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Abstract

This thesis studies the problem of option pricing via replication by a large investor whose
trading affects the stock price. We formulate and solve this question first in a binomial setting.
Then we consider a suitably scaled sequence of such binomial large investor models and prove
their convergence towards a continuous-time diffusion. This requires that we analyze carefully
both the convergence of the large investor’s strategy functions and the stochastic process of
the underlying fundamentals. The convergence of the latter is derived from a new convergence
result for general correlated random walks.

In each single time step, we model the stock price as a function of time, some fundamentals
and the large investor’s stock holdings, and we assume that the fundamentals describe a
random walk. We analyze in detail the price mechanism which models how the large investor’s
trades affect prices and elaborate on the importance of a “fair” price system as a theoretical
benchmark. This can be used to define implicit transaction losses and the real value of a large
investor’s portfolio. We derive conditions which prevent paper-value and real-value arbitrage
opportunities for the large investor and show the existence and uniqueness of a replication
strategy for a given contingent claim. As a consequence of its feedback on the stock price,
this strategy is in general only given implicitly by a fixed point theorem.

To study the convergence of a sequence of binomial large investor models, we rescale the
fundamentals as in Donsker’s theorem. In a first step, we then show that the convergence of
the large investor’s strategy functions is implied by their convergence at maturity. The limit
function is identified as the solution of a non-linear final value problem. By a suitable strategy
transform, this can be simplified to a perturbation of a linear problem in a “fair” market.
We then prove the convergence in distribution of the binomial large investor models under
two different regimes of martingale measures. Because the transition probabilities for the
fundamentals under these measures typically depend on the large investor’s stock holdings
before and after his trade, we have to extend classical convergence results to a setting with
general correlated random walks.

For general correlated random walks, the direction of the next move depends on time, the
current position and the direction of the previous move. Using Donsker’s scaling, we prove
the convergence in distribution of a sequence of such walks towards a diffusion limit, and we
explicitly identify the diffusion coefficients. It turns out that in comparison to the classical
case, both volatility and drift are reinforced due to the correlation between the increments
of the discrete walks. In particular, we obtain a convergence result for existing large investor
models from the literature. Moreover, our study highlights the importance and influence of
the choice of price mechanism.





Zusammenfassung

Die vorliegende Arbeit betrachtet das Problem der Optionsbewertung durch Replikation für
einen Großinvestor, der den Aktienpreis durch sein Handeln beeinflußt. Diese Frage wird
zuerst in einem binomialen Rahmen formuliert und gelöst. Im Anschluß untersuchen wir
eine geeignet skalierte Folge von solchen binomialen Großinvestormodellen und beweisen ihre
Konvergenz gegen ein zeitstetiges Diffusionsmodell. Dazu müssen wir sowohl die Konvergenz
der Strategiefunktionen des Großinvestors als auch den stochastischen Prozeß, der die zu-
grundeliegenden Fundamentaldaten modelliert, sorgfältig beschreiben. Die Konvergenz der
Modelle erhalten wir aus einem neuen Konvergenzresultat für allgemeine korrelierte Irrfahr-
ten.

Für jeden einzelnen Zeitpunkt modellieren wir den Aktienpreis als eine Funktion von Zeit,
gewissen Fundamentaldaten und dem Aktienbesitz des Großinvestors, und wir beschreiben
die Fundamentaldaten durch eine binäre Irrfahrt. Wir untersuchen detailliert den Preisme-
chanismus, der den Einfluß des Großinvestors auf den Aktienkurs modelliert, und arbeiten
die Bedeutung eines “fairen” Preissystems als theoretischer Benchmark heraus. Dieser kann
dann benutzt werden, um implizite Transaktionsverluste und den Realwert eines Großin-
vestorportefeuilles zu definieren. Wir entwickeln Bedingungen, die Papierwert- und Realwert-
Arbitrage ausschließen, und beweisen die Existenz und Eindeutigkeit von Replikationsstrate-
gien für ein gegebenes Endportefeuille. Wegen ihrer rückkoppelnden Wirkung auf den Ak-
tienpreis ist diese Strategie im allgemeinen nur implizit durch einen Fixpunktsatz gegeben.

Um die Konvergenz einer Folge von binomialen Großinvestormodellen zu betrachten, reska-
lieren wir den Prozeß der Fundamentaldaten wie im Satz von Donsker. Zunächst zeigen wir
dann, daß die Konvergenz der Strategiefunktionen des Großinvestors aus ihrer Konvergenz
am Fälligkeitstermin folgt. Die Grenzfunktion ergibt sich als Lösung eines nicht-linearen End-
wertproblems, welches durch eine geeignete Strategietransformation auf eine Störung eines
linearen Problems in einem “fairen” Markt reduziert werden kann. Im Anschluß beweisen wir
die Verteilungskonvergenz der binomialen Großinvestorenmodelle unter zwei verschiedenen
Regimen von Martingalmaßen. Weil die Übergangswahrscheinlichkeiten für den Fundamen-
taldatenprozeß unter diesen Maßen in der Regel vom Aktienbestand des Großinvestors vor
und nach seiner Transaktion abhängen, müssen wir dazu klassische Konvergenzresultate auf
allgemeine korrelierte Irrfahrten erweitern.

Für allgemeine korrelierte Irrfahrten hängt die Richtung des nächsten Schrittes von Zeit,
momentaner Position und der Richtung des letzten Schrittes ab. Wenn eine Folge solcher
Irrfahrten wie bei Donsker skaliert wird, zeigen wir, daß sie in Verteilung gegen einen Diffu-
sionsprozeß konvergiert, dessen Diffusionskoeffizienten wir explizit beschreiben. Dabei stellt
sich heraus, daß im Vergleich zum klassischen Fall sowohl Volatilität als auch Drift durch die
Korrelation zwischen den Zuwächsen der Irrfahrten verstärkt werden. Insbesondere erhalten
wir ein Konvergenzresultat für bestehende Großinvestormodelle aus der Literatur. Darüber
hinaus unterstreicht unsere Arbeit die Bedeutung und den Einfluß, den die Wahl des Preis-
mechanismus hat.
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Introduction

Stochastic models for option pricing can be traced back to the thesis of Bachelier (1900)
from the beginning of the last century. Bachelier modelled the stock price by a Brownian
motion with drift and then calculated option prices as expected values under the real-world
probability measure. To prevent negative stock prices, Samuelson (1965) proposed to model
returns by a Brownian motion so that the stock price itself becomes a geometric Brownian
motion. In that setup, Black and Scholes (1973) argued that the price for an option on the
stock must coincide with the price of a replicating portfolio in stock and bond. By showing
that replicating strategies for European calls and puts exist, they derived their celebrated
pricing formula. Merton (1973, 1977) extended the results of Black and Scholes in many
directions. Cox and Ross (1976) and more generally Harrison and Kreps (1979) showed that
in contrast to Bachelier’s approach, the Black-Scholes option price can be computed as the
expectation of the final payoff under the risk-neutral measure under which the stock earns
the riskless rate of return.
Around the same time Cox, Ross and Rubinstein (1979) developed a discrete approximation of
the Black-Scholes model. They showed that the Black-Scholes price for a European call can be
obtained as the limit of the unique arbitrage-free call option prices in a sequence of suitably
scaled binomial models if the time step goes to zero. In each binomial model, the option
price can be found by elementary mathematics because at any node of the binomial tree, the
required stock and bond holdings are determined by a self-financing condition from the two
possible option values at the next nodes. This gives a recursion to calculate simultaneously
the option values and the hedging strategy from the final payoff values at maturity.
The classical literature assumes that all investors have the same information, that the mar-
ket is complete in the sense that every contingent claim is attainable by some replicating
trading strategy, that the market is frictionless, and that all investors act as price takers.
Of course, these assumptions only give a very idealized picture of reality. To amend this,
the Black-Scholes analysis has been extended in numerous ways to accomodate for example
incompleteness, transaction costs, short-sale constraints, or asymmetric information. Also
the price-taking assumption has been relaxed, first in a discrete binomial model by Jarrow
(1994), and then in a continuous-time model by Frey (1998) and others. In this thesis, we
first extend the class of price mechanisms considered by these authors and then show in this
more general setting that a sequence of discrete binomial models similar to Jarrow (1994)
converges to a continuous model which generalizes Frey (1998). If the large investor acts as
a price taker, this reduces to the Cox-Ross-Rubinstein (1979) result.
Jarrow (1992, 1994) starts with a general model for the stock price process in a discrete
binomial large investor model. To exclude market manipulation generated by trading in
stock and bond, he assumes that the stock price depends on time, some fundamentals, and
on the current but not on the previous stock holdings of the large investor. If the large
investor is allowed to trade in a derivative of the stock, the markets for the stock and its
derivative must be in synchrony to prevent market manipulation strategies for the large
investor. Jarrow (1994) then shows by example that in such a synchronous market, the price
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4 INTRODUCTION

and the large investor’s hedging strategy for a European call can still be derived as in the
Cox-Ross-Rubinstein model by a backward recursion. In contrast to the standard binomial
model, however, the stock prices in the recursive formulæ depend on the large investor’s
hedging strategy, which induces additional volatility.
Frey (1998) starts with a general reaction function which describes in a temporary equilib-
rium the stock price as a function of time, some fundamental value modelled as a geometric
Brownian motion, and the large investor’s stock holdings. He concentrates on the replication
price at which a large investor can perfectly replicate an option with a sufficiently smooth
payoff. The replicating strategy is given via a martingale representation for the final option
value, where the trading strategy appears not only as integrand, but also in the integrator
of the stochastic integral which describes the large investor’s cumulative gains from trade.
Frey (1998) transforms this stochastic representation into a quasi-linear final value problem
for the large investor’s strategy function, parametrized by time and fundamentals. He proves
existence and uniqueness of solutions to that final value problem and discusses the qualitative
difference of the large investor’s replicating strategy compared to the corresponding hedging
strategy in the classical Black-Scholes model.
While Jarrow and Frey work with an external fundamental state variable, Schönbucher and
Wilmott (2000) and Sircar and Papanicolaou (1998) use the feedback perturbed price process
as the observable process. Schönbucher and Wilmott (2000) study the price dynamics in
illiquid markets and its reaction to the trading strategy of a large investor. Their analysis
leads to a partial differential equation for the replication paper value of an option, which is
equivalent to Frey’s (1998) description via the associated strategy. Sircar and Papanicolaou
(1998) derive the same partial differential equation and perform an extensive asymptotic and
numerical study by considering the nonlinearity as a perturbation to the classical Black-
Scholes partial differential equation.
Weak convergence questions for discrete large investor models have already been examined
by Frey and Stremme (1997) and Bierbaum (1997). These authors assume in their results the
convergence both of the strategy functions used by the large investor and of the discrete fun-
damental price processes. In contrast, we derive here the convergence of these two sequences
directly from the option replication result in the discrete binomial models.

In relation to the existing literature on large investor models, this thesis makes two main
contributions. We first introduce and analyze in detail an extensive class of discrete binomial
models for option replication and option valuation with a large investor. Then we show that
these discrete models converge in distribution to certain diffusion models.
Similarly as in Jarrow (1994) or Frey (1998), the equilibrium price on intervals where the
large investor does not trade is modelled as a function of time, some fundamental value
and the large investor’s stock holdings. In discrete time, we carefully explore the price
mechanism which determines the stock price at which the large investor actually trades.
This includes an investigation of trades at the initial and final trading dates, and covers both
permanent and temporary price impacts which may result from the large investor’s activity.
The corresponding continuous-time limits provide new insights into the assumptions about
the price mechanism in existing large investor models.
In the discrete model, the binomial tree for the relevant stock prices is still recombining if the
large investor uses path-independent trading strategies. We derive existence and uniqueness
of such a strategy which replicates a given contingent claim. If the stock price does not
completely adjusts to an order of the large investor before it is executed, the large investor’s
replicating strategy is not given explicitly as in Cox, Ross and Rubinstein (1979), but only as a
solution to a fixed point problem. Its non-linearity makes the subsequent convergence analysis
more difficult to handle and forces us to derive quite precise asymptotic error estimates.
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One important insight that emerges from our analysis is that in large investor models, the
main focus should be on the trading strategy and not on the value process. In particular, the
self-financing condition is a condition on the strategy, and it uniquely determines the latter
from a given final position. But as already observed by Jarrow (1992) and Schönbucher and
Wilmott (2000), there are at least two different methods to assess a large investor’s strategy:
its paper value and its real value. We give a new interpretation of the real value as the
portfolio liquidation value under a “fair” price system in the large investor market. We also
derive conditions on the trading strategy which exclude paper-value arbitrage, and we show
that a large class of price systems does not allow real-value arbitrage opportunities.
The convergence in distribution of our binomial large investor models to a continuous-time
diffusion is proved in two steps. We first show that the large investor’s strategy functions
converge towards some limit function and then use this to show that the sequence of fun-
damental processes converges in distribution. The above limit function is the solution of
a generally highly non-linear final value problem; this can be substantially simplified by a
suitable integral transform. The transformed problem can then be viewed as a perturbation
of a linear problem in a large investor market with a “fair” pricing system.
To obtain the convergence of the fundamental processes in a sequence of large investor models,
we have to study general correlated random walks, for which the direction of the next move
depends on time, the current position and the direction of the previous move. We prove
that a sequence of such correlated random walks which are scaled as in Donsker’s theorem
converges to a diffusion limit, and we identify the diffusion coefficients. The volatility and
drift of the limit process are reinforced due to the correlation between the increments of the
discrete random walks. These results are of independent mathematical interest and constitute
another main contribution of the thesis.
The basic convergence theorem for general correlated random walks is first applied to prove
the convergence in distribution of a sequence of binomial models under the associated p-
martingale measures under which both the large investor stock price and the paper value of the
large investor’s portfolio are martingales. The transition probabilities for the fundamentals
can here depend on the two previous values, since the large investor stock price is a function
of the large investor’s stock holdings both before and after his trade. Hence we need the full
strength of the theorem. For the particular class of models where the stock price completely
adjusts to an order of the large investor before that is executed, the transition probabilities
only depend on the last value of the fundamentals. Here we establish that a suitably scaled
sequence of Jarrow’s (1994) binomial models converges to Frey’s (1998) model under the
p-martingale measures.

We now give a more detailed overview of the various chapters in this thesis.
In Chapter 1, we present the discrete-time binomial model of a large investor market. Like
Frey (1998), we model the equilibrium stock price in the market as a function of time, of
some fundamental value, and of the current stock holdings of the large investor. However,
this price is only valid if the large investor is inactive at this point in time, and one must
model very precisely what happens when the large investor trades a non-infinitesimal number
of shares. The large investor price at which the large investor can actually settle his trades
is defined as a weighted average of equilibrium prices so that the price system in the large
investor market is described by a pair (ψ, µ) of an equilibrium price function ψ and a price
determining measure µ. The choice of µ represents the way that the market reacts to the large
investor’s order. Our setting covers the mechanisms used in the papers of Frey and Stremme
(1997), Bierbaum (1997), Frey (1998), Sircar and Papanicolaou (1998), Schönbucher and
Wilmott (2000), Jonsson, Keppo and Meng (2004) and Baum (2001), who all assume that
the market immediately and fully adjusts to an order of the large investor. It also includes the
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other extreme where the large investor can trade at the old equilibrium price with the price
only adjusting directly after the large investor’s trade; this mechanism is implied in Platen
and Schweizer (1998) when switching from the ith to the (i + 1)th model. In addition to
the above permanent price impacts we can also model temporary price impacts in the spirit
of Bertsimas and Lo (1998), Bertsimas, Hummel and Lo (2000), Almgren and Chriss (1999,
2000), Huberman and Stanzl (2004, 2003), Bakstein (2001), or Çetin, Jarrow and Protter
(2004). For a practitioner’s view on the market mechanism in the presence of a large investor
see also Taleb (1996).
A key role is played by the (theoretical) benchmark price defined as the arithmetic average
of all equilibrium stock prices which correspond to a fixed stock position of the large investor
lying between the stock holdings before and after his trade. It satisfies the properties of a fair
price and can be used to specify implied transaction losses relative to the benchmark price.
This provides a link to small investor models with transaction costs as studied in discrete
time by Boyle and Vorst (1992) and Opitz (1999).
Since the stock price is affected by the large investor’s stock holdings, it is not a priori clear
how to value a portfolio of the large investor. Chapter 1 introduces two different concepts for
this. One is a mark-to-market approach which simply uses the last price seen on the market
by the large investor to assess his complete stock holdings. The portfolio value obtained from
this valuation is called paper value as in Jarrow (1992) and Schönbucher and Wilmott (2000).
Frey (1998) also implicitly values the large investor’s portfolio by means of the paper value.
The second approach considers the real value of the large investor’s portfolio, defined as the
theoretical liquidation price the large investor could achieve if he sold his portfolio without
any transaction losses. This coincides with the “real value” of Schönbucher and Wilmott
(2000) who define this as the limit of successive small block trades. Hence we obtain a new
interpretation of why the real value is a good proxy for the actual value of the large investor’s
portfolio.
After fixing the one-period price mechanism, we extend the large investor model to a dynamic
multi-period setting where the fundamentals are given by a binomial random walk. This
extends the binomial models of Jarrow (1994) and Bakstein (2001). For path-independent
trading strategies, the binomial tree described by the vector of possible large investor and
equilibrium stock prices is still recombining. For a suitable class of contingent claims, this
allows one to determine a self-financing option replication strategy along the lines of Cox,
Ross and Rubinstein (1979). But in contrast to the explicit Cox-Ross-Rubinstein case, if the
stock price does not completely adjust to an order of the large investor before its execution,
the large investor’s strategy is only given as the solution to a fixed point problem for which
we show existence and uniqueness. Moreover, one must carefully investigate the behavior of
the large investor stock price at the initial and final trading dates.

In the Cox-Ross-Rubinstein model, the (discounted) value process of any self-financing trad-
ing strategy is a martingale under the unique measure which makes the (discounted) price
process a martingale. This gives a recursive formula for the value function and also shows
that this small investor market is free of arbitrage. Chapter 2 contains similar results for
our large investor market, but we now need to distinguish between paper value and real value
arbitrage. For a natural class of self-financing trading strategies, the paper value process
is a martingale under the p-martingale measure, the unique measure which turns the large
investor price process into a martingale, and so this class is free of paper-value arbitrage.
However, the p-martingale measure is highly dependent on the large investor’s trading strat-
egy. If the equilibrium price function has a multiplicative structure, the real value process is
always a supermartingale under the s-martingale measure, which is the martingale measure
for the associated small investor price process. Hence such a market structure permits no
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real-value arbitrage opportunities.
Sufficient conditions to exclude arbitrage for the large investor have been given in different
models by Jarrow (1992, 1994), Bank (1999), Baum (2001), Bank and Baum (2004), Huber-
man and Stanzl (2004), Çetin, Jarrow and Protter (2004). The martingale property of the
paper value has already been used by Frey (1998) to determine the replicating strategy for a
contingent claim in his continuous-time model.
In Chapter 2, we also derive an implicit difference equation of second order for the large in-
vestor’s strategy function ξn in the nth binomial model. This forms the basis of the subsequent
convergence analysis in Chapter 3. We then explain the similarities with the proportional
transaction cost models of Boyle and Vorst (1992) and Musiela and Rutkowski (1998). These
suggest to focus on multiplicative price systems, where the impact from the large investor’s
stock holdings enters the equilibrium price in a multiplicative way. For such price systems
the recursions for the strategy function and the real value process simplify considerably. If
the large investor does not face any transaction losses, the real value process even becomes a
martingale under the s-martingale measure, every contingent claim is attainable, and we can
explicitly calculate its replicating strategy.

Chapter 3 is devoted to the convergence of a sequence {ξn}n∈IN of strategy functions from
binomial large investor models as the time step goes to zero. Under suitable assumptions, the
limit function ϕ must satisfy a partial differential equation which is the continuous analogue
of the difference equation for ξn. Together with the convergence at the final date, this gives
a final value problem for ϕ, and we prove existence and uniqueness of a solution. Then we
show that the convergence of the discrete strategy functions {ξn}n∈IN to ϕ follows from the
convergence of their values immediately before and at maturity to the corresponding values
of ϕ.
In general, the final value problem for ϕ is highly non-linear, but it can be simplified to a
quasi-linear problem by working with transformed functions gn = g ◦ ξn and γ = g ◦ϕ. If the
price system excludes any instantaneous transaction gains or losses, the transformed problem
is even linear, each gn can be calculated by an explicit recursive scheme from its values at
and immediately before maturity, and the limit γ satisfies a linear final value problem. Thus
existence and uniqueness of solutions to the final value problem as well as the convergence
of the transformed strategy functions follow from classical results. If the price system does
not prevent transaction losses, however, the recursive scheme for gn remains implicit and the
final value problem for γ is only quasi-linear. We adapt a proof by Frey (1998) to show that
even in this setting the final value problem for γ still has a solution if the boundary values at
maturity do not become too large. We then generalize the convergence result for {gn}n∈IN to
this general case and transform the results back into corresponding results for the strategy
functions {ξn}n∈IN and their limit ϕ.
The detailed investigation of the strategy as a function of time and fundamentals is not
needed in the standard Cox-Ross-Rubinstein model; since the stock price is not affected by the
strategy, the convergence of the value process can be shown without using the convergence of
the strategy. But in the large investor model, convergence of the strategy functions is essential
to deduce the convergence in distribution of the binomial large investor models. Convergence
of the strategy functions is also a key assumption for the convergence results of Frey and
Stremme (1997) and Bierbaum (1997). Once the convergence of the strategy functions is
shown, we use this to derive a similar convergence result for the real value functions. The
partial differential equation satisfied by their limit v̄ resembles the structure known from
continuous-time models with proportional transaction costs as the continuous-time limits of
the models of Leland (1985) and Boyle and Vorst (1992) or the continuous-time model of
Barles and Soner (1998). This structural resemblance has also been observed by Frey (2000).
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And like in the Black-Scholes model, the limiting strategy function ϕ is (a transform of) the
spatial derivative of the real value function v̄. If the price system does not induce transaction
losses, the partial differential equation for v̄ again becomes linear and basically reduces to the
Black-Scholes equation. Such a behavior was also discovered by Jonsson, Keppo and Meng
(2004).

In Chapter 4, we investigate the convergence in distribution of a sequence of binomial
large investor models. Apart from the convergence of the strategy functions, the other key
assumption for the convergence result in Frey and Stremme (1997) is the convergence of the
discrete-time fundamental processes to a continuous-time diffusion. We give conditions on
the parameters of the binomial models which actually imply the convergence in distribution
of the fundamental processes, and we explicitly determine the coefficients of the limiting
diffusion in terms of the price system (ψ, µ) and the limiting strategy function ϕ. It is then
straightforward to prove by the continuous mapping theorem the convergence of all other
model-relevant processes like price, strategy and value.
Of course, convergence in distribution always depends on the underlying probability mea-
sures, and this becomes an issue for the large investor model. We show convergence under
two different regimes: the p-martingale measures and the s-martingale measures. Under es-
sentially the same assumptions which guarantee the convergence of the strategy functions in
Chapter 3, we can apply a convergence theorem for general correlated random walks from
Chapter 5 to deduce the desired convergence. In the particular case where the equilibrium
price completely adjusts to an order of the large investor before the order is actually executed,
the convergence under the p-martingale measures implies the convergence of a suitably scaled
version of Jarrow’s (1994) model to the model of Frey (1998). By writing the paper value in
the limit model as a function of time and stock price, we also obtain a non-linear partial differ-
ential equation for the continuous paper value function which generalizes the corresponding
partial differential equations of Schönbucher and Wilmott (1996, 2000), Sircar and Papani-
colaou (1998), Frey (2000), and Frey and Patie (2002). The situation under the s-martingale
measures is considerably simpler, and the limit of the fundamentals is just a Brownian mo-
tion with drift. In the absence of a large investor, the results under the p- and s-martingale
measures coincide and we recover the convergence of the Cox-Ross-Rubinstein models to the
Black-Scholes model as a special case.

The key ingredient for the results in Chapter 4 is a convergence theorem for general correlated
random walks. This is a mathematical contribution of independent interest which is presented
in Chapter 5. For a correlated random walk, the direction of the next move depends on
its tilt, i.e., on the direction of the move in the previous step. But for our application in
Chapter 4, we need general correlated random walks where the direction of the next move
can also depend on time and the current position in space. If a sequence of such walks
is scaled as in Donsker’s theorem and if for each possible direction of the random walk’s
previous move, the transition probabilities converge to a (possibly different) limit function,
our main convergence theorem for general correlated random walks states that the rescaled
sequence converges in distribution to the solution of a stochastic differential equation. The
generator of the latter is explicitly given, and a positive correlation between the direction of
two successive moves increases the volatility of the limit process. As a corollary, we show
that general correlated random walks can be used to approximate general diffusion processes
via a recombining binomial tree.
While the proof of the main convergence theorem is based on standard ideas, the details
become rather tricky and involved because the correlation between two successive increments
of the random walk need not vanish asymptotically. It is essential to carefully select proper
lenses to look at our random walk, since its behavior “at a microscopic level” on time intervals
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of order O(δ2) is very different from the “large picture” on time intervals of length O(δ) which
prevails in the limit.
Correlated random walks, which were introduced by Gillis (1955) and Mohan (1955), are
important objects on their own and have a variety of applications outside mathematical
finance. An overview of some of the literature is given in Section 5.1. But up to now,
research has almost exclusively focused on time- and space-homogeneous correlated random
walks which are much easier to handle than the general inhomogeneous case. Thus our
convergence results noticeably extend results of Renshaw and Henderson (1981), Szász and
Tóth (1984), Tóth (1986), Opitz (1999) and Mauldin, Monticino and Weizsäcker (1996) on
the convergence of homogeneous correlated random walks.
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Chapter 1

The Large Investor in Discrete
Time

In this chapter we present the discrete, binomial model of a large investor market, which
forms the basis of our convergence analysis in Chapter 3 and 4. At the beginning, we have
to describe the market mechanism in some more detail. The market is supposed to be in
a Walrasian equilibrium as long as the large investor does not trade. It is then essential
to model very precisely the stock price movements when the large investor trades a non-
infinitesimal number of shares, and because of its importance, we start with such a model
in a static world. Our discussion will reveal the significance of a certain benchmark price
which can then be used in order to specify implied transaction losses in the large investor
market model. After having described the price mechanism in a single time point, we turn
to a general dynamic multi-period large investor market model, which also depends on time
and on the evolution of some external fundamentals given by a binomial random walk, and
define self-financing trading strategies and portfolio values in a way similar to small investor
market models. However, we have to differentiate between the paper value and the real value.
Under certain assumptions on the price system of our large investor model – stated in terms
of the associated transaction losses – we then present the class of star-convex contingent
claims, which are defined in terms of the large investor’s final stock holdings at maturity, and
we show that all those contingent claims are attainable by a replicating trading strategy. A
similar result holds for the replication of a certain paper value. In contrast to the standard
Cox-Ross-Rubinstein model, the corresponding replicating strategies will in general only be
given as solutions to a fixed point equation, and the derivation of an existence and uniqueness
result for this fixed point equation is a central result of this chapter. Last but not least we
give examples of large investor price systems which satisfy the assumptions needed for these
results, and we show that our large investor model contains the Cox-Ross-Rubinstein model
as a special case.

1.1 The Market Mechanism in a Single Time Point

In a large investor financial market there exists one (large) investor who can affect the stock
prices by his trading. Because of the large investor’s influence on the stock prices, the
stock price will vary depending on the trades of the large investor, even if the time and
the fundamental information at this time is kept constant. Especially, allowing the large
investor to perform several subsequent trades at one point in time, the large investor might
even realize immediate arbitrage opportunities due to price manipulation techniques, which
a small investor cannot apply.

11
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Before we develop a fully dynamic large investor model where the large investor’s stock price
also depends on time and some fundamental information at this time, we will first focus on
the price mechanism in a single time point, i.e. before some new fundamental information
arrives. In such a situation we carve out conditions on general large investor’s price functions
which ensure that any round-trip of the large investor excludes any transaction gains or losses.
These conditions are satisfied by the benchmark price, which is constructed as the mean of
equilibrium prices. For the important class of exponential equilibrium price functions, the
benchmark price even is the unique price function which excludes both immediate transaction
gains and immediate transaction losses.

Thus, let us assume that at some fixed time (or in some time interval) in which no new
information arrives the market there exist some function S : IR2 → IR such that for each
ξ1, ξ2 ∈ IR the large investor is faced with a per-share price of S(ξ1, ξ2) when shifting his
stock position from ξ1 to ξ2. Supposing that the trades of the large investor are wound off
much faster than new information appears in the market, we can take for granted that the
large investor can conduct several transactions according to this price building mechanism.
In an idealized world, all transactions do not take time at all, such that the large investor
can perform infinitely many transactions.

1.1.1 Round-Trips and a Fair Price

Depending on the particular form of the price mechanism described by S : IR2 → IR the
large investor might profit or suffer from buying and selling stocks. In this section we look
for conditions which a price function S∗ : IR2 → IR has to satisfy to be a “fair price” in that
the large investor does not gain or lose any money from round-trips.
In order to start, suppose that the large investor initially holds ξ shares of stock. Then he
could buy α ≥ 0 shares at a total price of αS(ξ, ξ+α) and then sell these α shares immediately
at a total price of αS(ξ + α, ξ). Overall, this investment costs him

C+(ξ, α) := α
(
S(ξ, ξ + α)− S(ξ + α, ξ)

)
.

If the costs C+(ξ, α) are negative, this means that the large investor receives the amount∣∣C+(ξ, α)
∣∣ as a result of his two transactions. In this case the large investor could repeat the

game over and over and basically earn any positive amount one can imagine; this would be
an immediate arbitrage opportunity for the large investor.
Similarly, the large investor could also sell α stocks and then re-buy them leading to total
costs of

C−(ξ, α) := α
(
S(ξ − α, ξ)− S(ξ, ξ − α)

)
.

The two strategies described above are simple forms of round-trips. A round-trip is a strategy
to buy and sell stocks in such a way that the initial stock position is re-attained at the end.
In mathematical terms we use the following definition:

Definition 1.1. A (deterministic) k-step round-trip is a vector α ∈ IRk which satisfies∑k
i=1 αi = 0. For all k ∈ IN we denote the space of all k-step round-trips by Rk. The costs

associated with a round-trip α ∈ Rk starting at level ξ ∈ IR are given by

Ck(ξ, α) :=
k∑
i=1

αiS

(
ξ +

i−1∑
j=1

αj , ξ +
i∑

j=1

αj

)
.

Remark. By the definition of Rk it is obvious that Rk is the (k − 1)-dimensional space
orthogonal to the vector (1, 1, . . . , 1)tr ∈ IRk. �
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A large investor with an initial stock holding ξ who applies the round-trip α ∈ Rk changes
his stock holdings according to the scheme

ξ → ξ + α1 → ξ + α1 + α2 → · · · → ξ +
k−1∑
j=1

αj → ξ.

Like in the exemplary buy-and-sell case, it is clear that if the large investor starts with a
stock position ξ ∈ IR and there exist some k ∈ IN and some round-trip α ∈ Rk such that
the associated costs Ck(ξ, α) are strictly negative, then the large investor has an arbitrage
opportunity.
A “fair price” mechanism in a large investor market would be a price mechanism which
excludes any instantaneous transaction gains and transaction losses from round-trips. Thus,
a fair price function S∗ : IR2 → IR should satisfy

C∗
k(ξ, α) :=

k∑
i=1

αiS
∗

(
ξ +

i−1∑
j=1

αj , ξ +
i∑

j=1

αj

)
= 0 for all ξ ∈ IR, α ∈ Rk, and k ∈ IN (1.1)

Instead of verifying (1.1) for all k ∈ IN it suffices to check it for k = 3, as the following
proposition shows:

Proposition 1.2. Condition (1.1) holds for all k ∈ IN if and only if

ρS∗
(
ξ, ξ + ρd

)
+ (1− ρ)S∗

(
ξ + ρd, ξ + d

)
= S∗

(
ξ + d, ξ

)
(1.2)

for all ρ ∈ [0, 1] and ξ, d ∈ IR.

Proof. It is clear that (1.2) is necessary for (1.1), since the former follows from the latter by
taking α =

(
ρd, (1 − ρ)d,−d

)tr ∈ R3. It remains to show that (1.2) for all ρ ∈ [0, 1] and
ξ, d ∈ IR is also sufficient for (1.1). For this reason let us fix k ∈ IN and suppose that (1.2)
holds for all ρ ∈ [0, 1] and ξ, d ∈ IR.
Since the only round-trip α ∈ R1 is α = 0, it is clear that (1.1) holds for k = 1. For k = 2 a
round-trip α ∈ R2 must have the form α = (d,−d) for some d ∈ IR. Then (1.1) is implied by
(1.2) with ρ = 1 which gives the symmetry

S∗
(
ξ, ξ + d

)
= S∗

(
ξ + d, ξ

)
for all ξ, d ∈ IR. (1.3)

Let us now come to the case k = 3 and take some α ∈ R3. Without loss of generality we can
assume αi 6= 0 for all i ∈ {1, 2, 3}, otherwise we are back in the case k = 2. By the definition
of R3 we have α1 +α2 +α3 = 0. Then one of the αi’s has the opposite sign of the two others,
i.e. there exist an i∗ ∈ {1, 2, 3} with sgn

(
αi∗
)

= −sgn
(
αj
)

for j 6= i∗. We will first assume
i∗ = 3 and set d = −α3. Since

∑3
i=1 αi = 0, αi 6= 0 for i ∈ {1, 2, 3}, and i∗ = 3 we have

α1 = ρd and α2 = (1− ρ)d for some ρ ∈ (0, 1),

hence we see that

C∗
3 (ξ, α) = ρdS∗(ξ, ξ + ρd) + (1− ρ)dS∗(ξ + ρd, ξ + d)− dS∗(ξ + d, ξ).

Due to (1.2) this term vanishes, thus we have proved (1.1) for k = 3 if i∗ = 3. The cases
i∗ = 1 and i∗ = 2 follow similarly. For example if i∗ = 1 we can set α̂1 = α2, α̂2 = α3, and
α̂3 = α1 as well as ξ̂ = ξ + α1 to conclude from

∑3
i=1 α̂i = 0 that

C∗
3 (ξ, α) = α̂3S

∗(ξ̂ + α̂1 + α̂2, ξ̂
)

+ α̂1S
∗(ξ̂, ξ̂ + α̂1

)
+ α̂2S

∗(ξ̂ + α̂1, ξ̂ + α̂1 + α̂2

)
= 0
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which of course simplifies to

C∗
3 (ξ, α) =

3∑
i=1

α̂iS
∗

(
ξ̂ +

i−1∑
j=1

α̂j , ξ̂ +
i∑

j=1

α̂j

)
= C∗

3

(
ξ̂, α̂
)
. (1.4)

It still remains to prove (1.1) for k > 3. Here we are going to use an inductive argument. Let
us assume that for some k > 3 we have shown

k−1∑
i=1

αiS
∗

(
ξ +

i−1∑
j=1

αj , ξ +
i∑

j=1

αj

)
= 0 for all ξ ∈ IR and α ∈ Rk−1. (1.5)

Then we have to show that (1.1) even holds for all ξ ∈ IR and α ∈ Rk. Thus, let us fix ξ ∈ IR
and some round-trip αk ∈ Rk. We then fragment this k-step round-trip into one (k− 1)-step
round-trip αk−1 and a 3-step round-trip β3 by defining αk−1 ∈ Rk−1 by

αk−1
i = αki for 1 ≤ i ≤ k − 2 and αk−1

k−1 = −
k−2∑
j=1

αkj ,

and the vector β3 ∈ R3 by

β3
1 :=

k−2∑
j=1

αkj , β3
2 = αkk−1, and β3

3 = αkk.

Then we have for 1 ≤ i ≤ k − 2:

αki S
∗

(
ξ +

i−1∑
j=1

αkj , ξ +
i∑

j=1

αkj

)
= αk−1

i S∗

(
ξ +

i−1∑
j=1

αk−1
j , ξ +

i∑
j=1

αk−1
j

)
,

for i = k − 1:

αkk−1S
∗

(
ξ +

k−2∑
j=1

αkj , ξ +
k−1∑
j=1

αkj

)
= β3

2S
∗

(
ξ +

1∑
j=1

β3
j , ξ +

2∑
j=1

β3
j

)
,

and for i = k:

αkkS
∗

(
ξ +

k−1∑
j=1

αkj , ξ +
k∑
j=1

αkj

)
= β3

3S
∗

(
ξ +

2∑
j=1

β3
j , ξ +

3∑
j=1

β3
j

)
.

Finally, by the definitions of αk−1
k−1 and β3

1 and the two-dimensional case (1.3), we get

αk−1
k−1S

∗

(
ξ +

k−2∑
j=1

αk−1
j , ξ +

k−1∑
j=1

αk−1
j

)
= −β3

1S
∗(ξ + β3

1 , ξ
)

= −β3
1S

∗(ξ, ξ + β3
1

)
.

Thus (1.1) with α = αk is equivalent to

k−1∑
i=1

αk−1
i S∗

(
ξ +

i−1∑
j=1

αk−1
j , ξ +

i∑
j=1

αk−1
j

)
+

3∑
i=1

β3
i S

∗

(
ξ +

i−1∑
j=1

β3
j , ξ +

i∑
j=1

β3
j

)
= 0

and this holds true because of the induction hypothesis (1.5) and the case for k = 3. q.e.d.
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Remark. Jarrow (1992) derives sufficient conditions for the non-existence of market manip-
ulation strategies in discrete multi-period large investor markets. One of these conditions
prevents any trading strategies where the large investor establishes a trend and then trades
against it before the market collapses. In our model which was restricted to a single time
point, or at least a time interval in which no new information occurs and solely the large
investor has a significant impact on the stock price, the condition (1.1) excludes such market
manipulating trading strategies. �

Of course, the constant price function S∗ : IR2 → IR with S∗ ≡ c for some c ∈ IR satisfies the
conditions (1.1) and (1.2). Before we present non-trivial price functions which satisfy these
conditions as well, we should take a closer look at how we want to model the price mechanism
in the large investor market so as to search for functions within the proper class.

1.1.2 The Class of General Price Functions

In this section we will present a class of price functions S : IR2 → IR which is used to
describe the stock price mechanism in a single time point. The class presented is motivated
by an analysis of the market reaction to trades of the large investor, and allows for various
information structures between the small and the large investor.
Thus, let us assume that S : IR2 → IR is some price function, such that the large investor
is faced with a price of S(ξ1, ξ2) when he shifts his stock holdings from ξ1 to ξ2. If the
large investor holds ξ ∈ IR shares and does not trade, the stock price in the market will be
f(ξ) := S(ξ, ξ). This price f(ξ) can be viewed as the Walrasian equilibrium price in a market
where ξ shares are held by the large investor and the large investor has no additional demand
or supply. The rest of the shares is assumed to be held by the small investors, and thus the
price f(ξ) could have been derived from the cumulative excess demand function of the small
investors for any given constant stock position ξ ∈ IR of the large investor.
Now suppose that for some ξ1, ξ2 ∈ IR the large investor changes his stock position from ξ1 to
ξ2 shares. In this case the old Walrasian equilibrium at the price f(ξ1) is disturbed and the
market will move towards the new equilibrium at the price f(ξ2). It remains to model in more
detail how the transition takes place from the old to the new equilibrium, and in particular
from the old equilibrium price f(ξ1) to the new equilibrium price f(ξ2). Especially, we are
interested at which per-share price the large investor can trade the |ξ2− ξ1| stocks needed to
shift his stock holdings from ξ1 to ξ2 shares. This question basically leads back to the question
how the information about the large investor’s trade is noticed by the market participants.
Depending on the information structure the small investors (can) adapt their stock holdings
more or less quickly to the stock holdings which they prefer in the new equilibrium. We will
illustrate this with two simple examples.

Example 1.1. Suppose that our market consists of the large investor and “infinitely many”
“infinitesimally small” investors. As long as the large investor holds ξ1 ∈ IR stocks, we are in
the old equilibrium at the stock price f(ξ1); thus each small investor is willing to buy and sell
an infinitesimal share of the stock at a price f(ξ1) per stock. Without loss of generality let
us assume that ξ1 < ξ2, i.e. the large investor wants to buy ξ2 − ξ1 stocks. He could achieve
this goal by entering separate contracts with all the small investors to buy an “infinitesimal
small” amount of stocks from each of the “infinitely many” small investors, such that overall
he has bought ξ2 − ξ1 stocks.
In this case the small investors notice the disturbance of the old equilibrium with a certain
delay, and the large investor can realize a per-share price of f(ξ1). After the large investor’s
trade the small investors have to adjust their individual stock holdings according to their
individual excess demand functions, such that the new equilibrium price f(ξ2) will quickly
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emerge. The large investor can realize the price f(ξ1) since the stocks are exchanged before
the small investors are aggregated. �

In the next example the information structure is reversed and the demand of the small
investors is aggregated before the large investor’s trade is executed.

Example 1.2. We once again consider a market with one large investor and “infinitely many”
“infinitesimally small” investors, but now suppose that the large investor does not or cannot
enter into contracts with each small investor separately, but buys the ξ2−ξ1 > 0 stocks needed
to shift his stock holdings from ξ1 to ξ2 at the stock exchange. Since the large investor wants
to shift his portfolio regardless of the stock price he can obtain, he has to place an unlimited
order. Due to the additional demand for stocks at the stock exchange there will be much
more small investors whose sell orders can be accepted to maximize the volume of sales, and
the price fixed by the broker will be f(ξ2).
Since a similar reasoning works if the large investor sells stocks, we can conclude that if the
small investors are aggregated before the stocks are exchanged the large investor can only
realize a price f(ξ2). �

Depending on the realistic problem, it is easy to think of cases where we have a situation in
between the two extremes of the preceding examples: Perhaps not all of the small investors
are of the same size, there might be a few larger ones with whom the large investor is willing
to enter into separate contracts on a part of the stocks he is going to buy or sell, and he
might buy/sell the rest at possibly different stock exchanges.
If we know for each ξ ∈ IR the equilibrium stock price f(ξ) which would appear in the market
whenever the large investor held the fixed amount of ξ shares, then we can model the price
mechanism in the large investor market by introducing a price-determining (probability)
measure µ on IR, which reflects the information structure between the small investors and
the large investor. Namely, we then model the price function S : IR2 → IR which describes
the per-share price of the large investor’s transaction of ξ2 − ξ1 shares to change his stock
holdings from ξ1 to ξ2 by

S(ξ1, ξ2) =
∫
f
(
(1− θ)ξ1 + θξ2

)
µ(dθ) for all ξ1, ξ2 ∈ IR. (1.6)

Within this setting we recover the price-building mechanism of Example 1.1, where the
price-determining measure is the Dirac measure δ0 concentrated in 0, and the mechanism
of Example 1.2 where µ = δ1, i.e. the Dirac measure concentrated in 1. Most natural are
price-determining measures which lie “between” these two Dirac measures, i.e. which are
probability measures on [0, 1]. However in taking for example µ = δx for some x > 1, we can
also model price dynamics, where the market at first overreacts because of the sudden addi-
tional large investor’s supply or demand, since there is not enough instantaneous liquidity in
the market.

Remark. The representation (1.6) can be rewritten as

S(ξ, ξ + α) =
∫

f(ξ + θα)µ(dθ) for all ξ, α ∈ IR. (1.7)

We will use both representations in the sequel. �

In order to guarantee the existence of the price functions of the form (1.6) we suppose that
the function f : IR→ IR describing the equilibrium stock prices is Lebesgue-measurable and
locally bounded, and that the price-determining measure µ is such that the integral in (1.6)
exists for all ξ1, ξ2 ∈ IR. This leads to the following definitions:
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Definition 1.3. Let M(IR) denote the set which contains all probability measures on IR.
For every Lebesgue-measurable and locally bounded function f : IR → IR the family S(f)
of general price functions based on f is given by the set of all functions S : IR2 → IR
satisfying (1.6) for some price-determining measure

µ ∈ M(f) :=
{
µ ∈M(IR) :

∫ ∣∣f((1− θ)ξ1 + θξ2
)∣∣µ(dθ) <∞ for all ξ1, ξ2 ∈ IR

}
. (1.8)

The class of general price functions is then given by

S :=
{
S
∣∣S ∈ S(f) for some Lebesgue-measurable and locally bounded f : IR→ IR

}
.

Moreover, we define the class Se of exponential price functions as the set

Se :=
{
S
∣∣S ∈ S(f) for some f : IR→ IR with f(ξ) = a+ becξ for all ξ ∈ IR

}
.

The class of exponential price function turns out to be a well-suited subclass of general price
functions. Especially, all exponential price functions are either bounded from above (if b ≤ 0)
or from below (if b ≥ 0), and in particular if both b ≥ 0 and a ≥ 0, then each large investor
price S ∈ S(f) which is generated from the equilibrium price function f(ξ) = a+ becξ for all
ξ ∈ IR is nonnegative. Provided that even a = 0 and b > 0, the stock price is either constant
(if c = 0) or for every x > 0 there exists some position ξ of shares held by the large investor,
such that the equilibrium price in the market becomes f(ξ) = x. Of course, the equilibrium
function f associated to an exponential price function S ∈ Se is always monotone, and it is
strictly monotone if b, c ∈ IR\{0}.
Remark. In Section 1.3.1 we will generalize the equilibrium stock price f so that it also
depends on time and some stochastic process which describes market fundamentals. The
defining equation (1.6) for the large investor’s stock price is generalized accordingly. This
will give us a stochastic and dynamic model for the stock price which is comparable to the
usual models of the stock price in large investor models as for example in Jarrow (1992,
1994) or Frey (1998). Compared to these models we have modelled more precisely the price
mechanism at a trading date for the large investor, and we have substantially extended the
class of price mechanism considered. For this reason, we will already pause here to discuss
how the stock price in a large investor market is modelled in the literature.
Jarrow (1992, 1994) models the stock price as a reaction function to the large investor’s trades
and thus assumes that the market completely adjust to an order of the large investor before
this order is executed. While Jarrow (1992, 1994) starts his discussion with a very general
discrete stock price process which can depend on the entire history of the large investor’s
strategy, he can only prove absence of arbitrage for the large investor if the stock price process
is independent of the large investor’s past holdings. In a market in continuous time, Frey and
Stremme (1997) use a market clearing condition of zero total excess demand as introduced by
Föllmer and Schweizer (1993) to obtain a Walrasian equilibrium stock price. By this means,
they implictly suppose that the market adjusts as well to the large investor’s order before it is
actually executed. The model of Frey and Stremme (1997) has been applied and extended by
Frey (1998), Sircar and Papanicolaou (1998), Platen and Schweizer (1998), Bierbaum (1997),
Baum (2001) and Bank and Baum (2004). Schönbucher and Wilmott (1996, 2000) describe in
detail the price mechanism; they assume that first the small investors and the large investor
simultaneously submit an order and that then the equilibrium price is determined. Closely
related are the models of Kyle (1985) and Back (1992) for a financial market with an insider.
In all these models the implied price-determining measure is given by µ = δ1.
In Cvitanić and Ma (1996) and the successional papers of Buckdahn and Hu (1998) and
Cuoco and Cvitanić (1998) the large investor’s stock holdings do not affect the stock price
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immediately, but only in the long run via the drift and volatility coefficients of a stochastic
differential equation which describes the stock price. In order to be able to apply the theory of
forward-backward stochastic differential equations these authors suppose that the stochastic
differential equation for the stock price depends only on the number of stocks held by the
large investor, but not on the instantaneous change of the number. This limits the feedback
of the large investor’s trading strategy on the stock price. Bank (1999) combines elements of
the diffusion approach of Cuoco and Cvitanić (1998) with the reaction function framework
of Jarrow (1992) and Frey and Stremme (1997).
The above models only consider the permanent price impact of the large investor’s trade.
Temporary price impacts where the market first overreacts and then recovers are also a
common feature in real-world large investor markets, and sometimes these price impacts are
much larger than the permanent impacts. For example, a sizable order of the large trader
fills up the best quotes on the market, and it will take some time until new orders from
the small investors arrive. Recent studies have shown that institutional investors often break
their larger trades into several smaller packages that they execute successively. Bertsimas and
Lo (1998) have set up an additive model which incorporates both permanent and temporary
price impact in order to study optimal execution strategies for a large investor who has to
build up or liquidate a certain portfolio. Their model has been subsequently extended by
Almgren and Chriss (1999, 2000), Almgren (2003) and Huberman and Stanzl (2004, 2003).
A multiplicative version of Bertsimas and Lo (1998) has been studied in Bertsimas et al.
(2000), Bakstein (2001), and Bakstein and Howison (2002). Çetin et al. (2004) and Çetin
et al. (2002) model temporary price impacts by hypothesizing a stochastic supply curve for
the stock price as a function of trade size. A different form of price impact is modelled by
Subramanian and Jarrow (2001), who derive optimal liquidation strategies for a large investor
who can only execute his orders with a certain time delay. Taleb (1996) describes the market
behavior in an illiquid financial market from a practitioner’s point of view. �

1.1.3 Existence and Uniqueness of a Fair Price

We will now show that any general price function S ∈ S for which the price-determining
measure µ is the Lebesgue measure λ on [0, 1] satisfies the “fair price” condition (1.1), and
thus give a sufficient condition for (1.1) to hold. For all non-degenerate exponential price
functions S ∈ Se we even prove that µ = λ is necessary for (1.1). We will start with the first
statement:

Proposition 1.4. Let f : IR → IR be Lebesgue-measurable and locally bounded, and define
S∗ ∈ S, S∗ : IR2 → IR by

S∗
(
ξ1, ξ2

)
=
∫ 1

0
f
(
(1− θ)ξ1 + θξ2

)
λ(dθ) for all ξ1, ξ2 ∈ IR. (1.9)

Then the “fair price” condition (1.1) holds.

Proof. By Proposition 1.2 it suffices to prove that (1.2) holds, i.e. we have to show for all
ξ, α ∈ IR and ρ ∈ [0, 1]

ρ

∫ 1

0
f(ξ+ραθ)λ(dθ) + (1−ρ)

∫ 1

0
f
(
ξ+ρα+(1−ρ)αθ

)
λ(dθ) =

∫ 1

0
f(ξ+α−αθ)λ(dθ). (1.10)

In order to do so, we fix ξ, α ∈ IR and then use a probabilistic argument which will be recycled
in Proposition 1.5. To this end let

(
Ω,F ,P

)
be some probability space on which we can define

for each ρ ∈ [0, 1] a random variable Uρ by P
(
Uρ = 1

)
= ρ = 1 − P

(
Uρ = 0

)
and some

random variable Z which is uniformly distributed on [0, 1] and independent of {Uρ}ρ∈[0,1]. If
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we now set Y := 1−Z and define the family of random variables
{
Xρ
}
ρ∈[0,1]

in terms of Uρ

and Z as

Xρ := UρρZ +
(
1− Uρ

)(
ρ+ (1− ρ)Z

)
for ρ ∈ [0, 1],

then (1.10) can be rewritten as

E
[
f
(
ξ + αXρ

)]
= E

[
f
(
ξ + αY

)]
for all ρ ∈ [0, 1]. (1.11)

A sufficient condition for this to hold is that Xρ and Y are identically distributed. Since Z
is uniformly distributed on [0, 1], this is also the case for Y = 1−Z. Moreover, by the law of
total probability we have for all ρ ∈ (0, 1) and x ∈ (0, 1):

P
(
Xρ ≤ x

)
= P

(
UρρZ +

(
1− Uρ

)(
ρ+ (1− ρ)Z

)
≤ x

)
= ρP

(
ρZ ≤ x

)
+ (1− ρ)P

(
ρ+ (1− ρ)Z ≤ x

)
= ρP

(
Z ≤ x

ρ

)
+ (1− ρ)P

(
Z ≤ x− ρ

1− ρ

)
=

{
ρxρ 0 < x ≤ ρ

ρ+ (1− ρ)x−ρ1−ρ ρ ≤ x < 1

= x,

and due to Xρ = Z for all ρ ∈ {0, 1} the equality P
(
Xρ ≤ x

)
= x even holds for all x ∈ (0, 1)

and ρ ∈ [0, 1]. Thus, for all ρ ∈ [0, 1] the random variable Xρ is uniformly distributed on [0, 1]
as is Y . This proves (1.11), and since ξ and α have been fixed arbitrarily the proposition
follows. q.e.d.

The “fair” price functions given in Proposition 1.4 all employ the rather special price-
determining measure λ. Of course, if the equilibrium price function f : IR → IR does
not depend on the large investor’s stock holdings but is constant, i.e. if there exists some
c ∈ IR such that f(ξ) = c for all ξ ∈ IR, every price-determining measure leads to the same
“fair” price function S∗ : IR2 → IR given by S(ξ1, ξ2) = c for all ξ1, ξ2 ∈ IR. Thus, the
price-determining measure associated to a “fair” price function need not be λ. Of course, in
the given example of a constant equilibrium price function, the fair price function S∗ can be
represented as in (1.9) as well, since S∗ does not depend on the price-determining measure
at all.
We will now show that every “fair” exponential price function can be represented like (1.9).
For non-constant price functions this implies that the price-determining measure µ has to be
the Lebesgue measure on [0, 1], while for constant price functions it only implies that µ can
be chosen as the Lebesgue measure on [0, 1].

Proposition 1.5. For any S∗ ∈ Se the “fair price” condition (1.1) holds if and only if S∗

has a representation of the form (1.9).

Proof. Let S∗ ∈ Se. We have already seen in Proposition 1.4 that (1.1) holds if S∗ has a
representation of the form (1.9). It remains to show that the existence of such a representation
is also necessary for “fair price” functions. Due to Proposition 1.2 it suffices to show that the
simplified condition (1.2) implies that S∗ can be represented as in (1.9).
By the definition of Se there exist some a, b, c ∈ IR and some probability measure µ such
that

S∗
(
ξ1, ξ2

)
= a+ becξ1

∫
ecθ(ξ2−ξ1)µ(dθ) for all ξ1, ξ2 ∈ IR. (1.12)
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If b = 0 or c = 0, then the price S∗(ξ1, ξ2) is constant and depends neither on ξ1 nor on ξ2,
and also not on the price-determining measure µ. In these cases (1.2) trivially holds and we
can replace the original price-determining measure µ in (1.12) by the Lebesgue measure λ
on [0, 1] to obtain a representation of the form (1.9). Thus, we can assume without loss of
generality that b, c ∈ IR\{0}.
Next we recall from the definition of Se ⊂ S that the price-determining measure µ in (1.12)
satisfies ∫ ∣∣a+ bec((1−θ)ξ1+cθξ2)

∣∣µ(dθ) <∞ for all ξ1, ξ2 ∈ IR.

By the triangular inequality this is equivalent to imposing
∫
|b|ec((1−θ)ξ1+cθξ2)µ(dθ) < ∞ for

all ξ1, ξ2 ∈ IR. Dividing the latter bound by |b|ecξ1 > 0 and then substituting s = c(ξ2 − ξ1),
shows that the price-determining measure satisfies∫

esθµ(dθ) <∞ for all s ∈ IR. (1.13)

As in the proof of Proposition 1.4 we now rewrite our problem in stochastic terms. Therefore,
let us take a probability space

(
Ω,F ,P

)
on which we can define some random variable Z

with distribution µ. Because of (1.13) we have E
[
esZ
]

=
∫
esθµ(dθ) < ∞ for all s ∈ IR. In

terms of Z the change of variable formula restates (1.12) as

S∗(ξ1, ξ2) = a+ becξ1E
[
ec(ξ2−ξ1)Z

]
for all ξ1, ξ2 ∈ IR,

and hence, due to b 6= 0, the simplified “fair price” condition (1.2) is equivalent to

ρE
[
ecdρZ

]
+ (1− ρ)E

[
ecd(ρ+(1−ρ)Z)

]
= E

[
ecd(1−Z)

]
for all ρ ∈ [0, 1] and d ∈ IR. (1.14)

We continue to follow the stochastic description of the problem in the proof of Proposition 1.4
and take a family

{
Uρ
}
ρ∈[0,1]

of random variables which are independent of Z and satisfy
P
(
Uρ = 1

)
= ρ = 1 − P

(
Uρ = 0

)
for all ρ ∈ [0, 1]. Then we can again define the random

variable Y = 1− Z and the family
{
Xρ
}
ρ∈[0,1]

of random variables given by

Xρ := UρρZ +
(
1− Uρ

)(
ρ+ (1− ρ)Z

)
for ρ ∈ [0, 1].

Substituting d = s
c we now see that equation (1.14) is equivalent to

E
[
esX

ρ
]

= E
[
esY
]

for all s ∈ IR. (1.15)

Since E
[
esZ
]
< ∞ for all s ∈ IR, we also have E

[
esY
]

= esE
[
e−sZ

]
< ∞ for all s ∈ IR.

Hence the moment generating function s→ E
[
esY
]

determines the distribution of Y , and it
follows from (1.15) that (1.2) holds if and only if each Xρ for ρ ∈ [0, 1] and Y are identically
distributed.
It remains to show that Xρ and Y can only be identically distributed for all ρ ∈ [0, 1] if
µ = λ. Thus, let us assume that for each ρ ∈ [0, 1] the random variable Xρ has the same
distribution as Y , i.e. we assume that

P
(
Xρ ≤ x

)
= P

(
Y ≤ x

)
(1.16)

for all x ∈ IR and ρ ∈ [0, 1]. Since the two random variables Uρ and Z which generate Xρ

are independent, we can apply for each ρ ∈ (0, 1) the law of total probability to express the
distribution of Xρ as in Proposition 1.4 by

P
(
Xρ ≤ x

)
= ρP

(
Z ≤ x

ρ

)
+ (1− ρ)P

(
Z ≤ x− ρ

1− ρ

)
for all x ∈ IR.
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If we now recall the definition of Z we can rewrite the distribution of Xρ in terms of the
price-determining measure µ and the parameter ρ ∈ (0, 1) as

P
(
Xρ ≤ x

)
= ρµ

((
−∞,

x

ρ

])
+ (1− ρ)µ

((
−∞,

x− ρ

1− ρ

])
for all x ∈ IR. (1.17)

Moreover, since U0 = 0 and U1 = 1 a.s., it follows directly that

P
(
Xρ ≤ x

)
= P

(
Z ≤ x

)
= µ

(
(−∞, x]

)
for all x ∈ IR and ρ ∈ {0, 1}. (1.18)

On the other hand, by the definition of Y we can also express the distribution of Y in terms
of µ, namely we get

P
(
Y ≤ x

)
= P

(
1− Z ≤ x

)
= P

(
Z ≥ 1− x

)
= µ

(
[1− x,∞)

)
. (1.19)

We will now employ (1.16) for different x and ρ to show that we indeed have µ = λ. At first
we fix ρ = 1 to show that µ is symmetric around the point 1

2 . Namely, we get from (1.16),
(1.18), and (1.19) with x = 1

2 − z:

µ

((
−∞,

1
2
− z

])
= µ

([
1
2

+ z,∞
))

for all z ∈ IR. (1.20)

Now we fix x = 1, to conclude from (1.16), (1.17), and (1.19):

ρµ
((
−∞, ρ−1

])
+ (1− ρ)µ

(
(−∞, 1]

)
= µ

(
[0,∞)

)
for all ρ ∈ (0, 1). (1.21)

Since the symmetry (1.20) in particular implies that µ
(
(−∞, 1]

)
= µ

(
[0,∞)

)
, we can simplify

(1.21) to
ρµ
((
−∞, ρ−1

])
= ρµ

(
[0,∞)

)
for all ρ ∈ (0, 1),

hence after a division by ρ and a subtraction of µ
(
(−∞, 1]

)
= µ

(
[0,∞)

)
we arrive at

µ
((

1, ρ−1
])

= 0 for all ρ ∈ (0, 1).

If we take the limit as ρ ↘ 0, we conclude µ
(
(1,∞)

)
= 0, and by the symmetry (1.20) we

even get
µ
(
(−∞, 0) ∩ (1,∞)

)
= 0. (1.22)

Now we employ (1.16) for x = 0, and obtain by (1.17), (1.19) and (1.22) the equality

ρµ
(
{0}
)

= µ
(
{1}
)

for all ρ ∈ (0, 1),

since −ρ
1−ρ < 0 for these ρ. Taking again ρ ↘ 0, we conclude µ({1}) = 0 and therefore also

µ({0}) = 0. Finally, we can consider (1.16) for x ∈ (0, 1) and ρ = x. In this case (1.17) and
(1.19) imply

xµ
(
(−∞, 1]

)
+ (1− x)µ

(
(−∞, 0]

)
= µ

(
[1− x,∞)

)
for all x ∈ (0, 1). (1.23)

Due to µ
(
(−∞, 0] ∩ [1,∞)

)
= 0, equation (1.23) can now be rewritten in terms of z = 1− x

as (1 − z)µ
(
(0, 1)

)
= µ

(
[z, 1)

)
for all z ∈ (0, 1). Taking into account that µ is a probability

measure, this implies
µ
(
(0, z)

)
= z for all z ∈ (0, 1),

hence, indeed, the price-determining measure µ has to be the Lebesgue measure λ on [0, 1],
which was left to show. q.e.d.
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1.1.4 The Benchmark Price

Let now S ∈ S be some general price function for the large investor in the single-period
market. If we want to valuate the large investor’s transactions – or also his total portfolio –
in an unbiased fashion, the price function S is not of great use. For example it does not take
into account that the price paid by the large investor to reach a certain number of shares
might have been excessively high, since the large investor’s demand had led to a market
squeeze. In such a case the price given by S would be higher than the “fair” value for the
stocks bought.
In view of Proposition 1.4 and Proposition 1.5 we will use a “fair” valuation principle, which
is based on the benchmark price function associated to a general price function S ∈ S.

Definition 1.6. Let f : IR→ IR be some Lebesgue-measurable and locally bounded function,
and S ∈ S(f). Then the associated benchmark price function S∗ : IR2 → IR is given by

S∗(ξ1, ξ2) :=
∫
f
(
(1− θ)ξ1 + θξ2

)
λ(dθ) for all ξ1, ξ2 ∈ IR, (1.24)

where of course λ is again the Lebesgue measure on [0, 1].

Because of Proposition 1.4 the benchmark price function satisfies the “fair price” condition
(1.1), and moreover, by Proposition 1.5 it is the unique price function S∗ ∈ S(f) which
satisfies this condition if f is of exponential form.

Remark. Note that for each S ∈ S the function f : IR → IR of the representation (1.6) can
be recovered as f(ξ) = S(ξ, ξ) for all ξ ∈ IR. Hence we can calculate the benchmark price
function S∗ : IR2 → IR from the sole knowledge of the (real-world-)price function S : IR2 → IR.
Especially, the price function S ∈ S and the associated benchmark price function S∗ coincide
if the large investor does not trade, i.e. we have S(ξ, ξ) = S∗(ξ, ξ) for all ξ ∈ IR. �

For a large investor who has initially held ξ1 shares and now changes his stock holdings to ξ2
shares, the benchmark price S∗(ξ1, ξ2) represents a fair per-share price for this transaction,
in particular the price is symmetric in that S∗(ξ1, ξ2) = S∗(ξ2, ξ1) for all ξ1, ξ2 ∈ IR. In most
cases however, the benchmark price S∗(ξ1, ξ2) will not coincide with the actual price S(ξ1, ξ2)
at which the large investor shifts his portfolio from ξ1 to ξ2.
If for example the large investor has more information than the average small investor, then
the large investor might buy stocks more cheaply than for the benchmark price and sell stocks
at a higher price. Such a situation has been depicted in Example 1.1 if the equilibrium price
function f : IR → IR is chosen to be strictly increasing. In such a market environment it
is easy to see that the large investor has arbitrage opportunities. However, the arbitrage
opportunity does not necessarily mean that the large investor can make any profit he desires:
If the large investor can only buy a limited number of shares for a price below the benchmark
price, the arbitrage opportunities might be limited.
On the other hand, if the large investor faces prices higher than the benchmark price whenever
he buys shares, and if at the same time for all his sales he can only attain prices lower than
the benchmark price, then the large investor does not have any arbitrage opportunities at
all. This happens to be the case in the market of Example 1.2 if the equilibrium price
function function f : IR → IR is increasing. If the actual prices are strictly worse than the
corresponding benchmark prices, then the large investor is even exposed to some transaction
losses with regard to the benchmark price, as we will describe in detail in Section 1.2.

Under the regime of the benchmark price system, all round-trips lead neither to costs nor to
profits, thus especially we conclude from (1.1) for k = 2 that the price to buy an additional
amount of ξ2 − ξ1 shares to ξ1 shares originally held by the large investor equals the price
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the large investor would get for selling ξ2 − ξ1 out of a total number of ξ2 shares. Similar
considerations for k = 3 show that under the benchmark price regime there is no difference
between buying an extra amount of ξ2 − ξ1 shares in addition to the ξ1 shares originally
held by the large investor, or selling all ξ1 shares and then buying the total amount of ξ2
immediately thereafter. For later reference, we will put this observation into a small lemma:

Lemma 1.7. Let f : IR → IR be a Lebesgue-measurable and locally bounded function and
µ ∈ M(f) some associated price determining measure. Then the benchmark price function
S∗ : IR2 → IR in the market described by f and µ satisfies

S∗
(
ξ1, ξ2) = S∗

(
ξ2, ξ1

)
(1.25)

and (
ξ2 − ξ1

)
S∗
(
ξ1, ξ2

)
= ξ2S

∗(ξ2, 0)− ξ1S
∗(ξ1, 0) for all ξ1, ξ2 ∈ IR. (1.26)

Proof. Since the benchmark price function satisfies the “fair price” condition (1.1), the state-
ments (1.25) and (1.26) follow directly from (1.1) for k = 2 and k = 3. q.e.d.

Often we will find it useful to fix some Lebesgue-measurable and locally bounded equilibrium
price function f : IR → IR and then consider the various large investor prices which result
for different price-determining measures. In this case we parametrize all S ∈ S(f) in terms
of the associated price-determining measures µ ∈ M(f) by setting

Sµ
(
ξ1, ξ2

)
=
∫
f
(
(1− θ)ξ1 + θξ2

)
µ(dθ) for all ξ1, ξ2 ∈ IR and µ ∈ M(f). (1.27)

Thus, we have S(f) =
{
Sµ : µ ∈ M(f)

}
. Of course the benchmark price function associated

to the whole class S(f) is identified as S∗ = Sλ, and since this particular price function
satisfies the “fair price” condition, it will often turn out to be the price function which is
most easy to deal with, and which gives the basic intuition to deal with the more general
price functions from the class S(f).

1.1.5 A Translation Invariance for Exponential Price Functions

We have already mentioned some advantages of exponential price functions in Section 1.1.2.
In this section we will present another specific feature of exponential price functions: They
are basically the only interesting functions for which a certain translation invariance holds.
The results of this section will not be used in the rest of this thesis, thus the section may be
omitted at first reading.
Suppose that we are given an equilibrium price function f : IR→ IR of true exponential form,
i.e. there exist some a ∈ IR and b, c ∈ IR\{0} such that

f(ξ) = a+ becξ for all ξ ∈ IR. (1.28)

Parametrize now all associated large investor price functions S ∈ S(f) by µ ∈ M(f) as in
(1.27), fix for a moment the amount α ∈ IR of shares by which the large investor shifts his
portfolio, and set

∆(µ) := ∆α(µ) :=
1
c

log
∫
ecαθµ(dθ) for all µ ∈ M(f).
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Then for each price-determining measure µ ∈ M(f) and an arbitrary initial stock holding of
ξ shares we can calculate the large investor price Sµ(ξ, ξ+α) which the large investor has to
pay per share of the α shares he wants to buy as

Sµ(ξ, ξ + α) = a+ b

∫
ec(ξ+αθ)µ(dθ) = a+ bec(ξ+∆(µ)),

and hence we have

Sµ(ξ, ξ + α) = f
(
ξ + ∆(µ)

)
for all ξ ∈ IR and µ ∈ M(f), (1.29)

where ∆(µ) depends on α, but not on ξ. This means that for each fixed transaction size
α ∈ IR the (real-world-)price Sµ(ξ, ξ + α), given that the large investor had initially held ξ
shares, can be obtained by evaluating the equilibrium price function f at the initial stock
position shifted by an amount ∆(µ), which does not depend on the initial stock position ξ.
The next proposition shows that a condition of the form (1.29) basically limits f to be of
exponential form.

Lemma 1.8. Assume that the equilibrium price function f ∈ C2(IR) is strictly monotone
and fix α ∈ IR\{0}. Then there exists some function ∆ = ∆α : M(f) → IR with

Sµ(ξ, ξ + α) = f
(
ξ + ∆(µ)

)
for all ξ ∈ IR and µ ∈ M(f) (1.30)

if and only if
f(ξ) = a+ becξ or f(ξ) = a+ bξ for all ξ ∈ IR (1.31)

for some a, b, c ∈ IR.

Proof. We have already shown above that (1.30) holds if f is of exponential form. To show
that it also holds for all affine functions f : IR→ IR of the form f(ξ) = a+ bξ, let us fix such
a function f : IR → IR and define ∆(µ) = α

∫
θµ(dθ) for all µ ∈ M(f). Then (1.30) holds

since we have for all ξ ∈ IR and µ ∈ M(f)

Sµ(ξ, ξ + α) = a+ bξ + bα

∫
θµ(dθ) = a+ b

(
ξ + ∆(µ)

)
.

It remains to show that a representation of the form (1.30) implies (1.31). For a proof let us
note that f ∈ C2(IR) implies that both the Lebesgue measure λ and the Dirac measure δ1
concentrated in 1 belong to the class M(f). Moreover, M(f) is convex, thus we conclude

µ(ρ) := (1− ρ)λ+ ρδ1 ∈ M(f) for all ρ ∈ [0, 1],

and therefore (1.30) provides the existence of some function ∆̂ : [0, 1] → IR which satisfies

Sµ(ρ)(ξ, ξ + α) = f
(
ξ + ∆̂(ρ)

)
for all ξ ∈ IR and ρ ∈ [0, 1]. (1.32)

By the definition of Sµ and µ(ρ) we can rewrite this expression for all ξ ∈ IR and ρ ∈ [0, 1] as

f
(
ξ + ∆̂(ρ)

)
= (1− ρ)

∫ 1

0
f
(
ξ + θα

)
λ(dθ) + ρ

∫
f
(
ξ + θα

)
δ1(dθ). (1.33)

Since f ∈ C2(IR) is strictly monotone, the last equation can be solved for ∆̂(ρ), and so we
see that the function ∆̂ : [0, 1] → IR is twice differentiable. Hence (1.33) can be differentiated
with respect to ρ and we obtain for all ξ ∈ IR and ρ ∈ (0, 1):

∆̂′(ρ)f ′
(
ξ + ∆̂(ρ)

)
=
∫
f
(
ξ + θα

)(
δ1 − λ

)
(dθ). (1.34)
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A second differentiation of this equation gives

∆̂′′(ρ)f ′
(
ξ + ∆̂(ρ)

)
+
(
∆̂′(ρ)

)2
f ′′
(
ξ + ∆̂(ρ)

)
= 0. (1.35)

Now fix an arbitrary ρ ∈ (0, 1). Since f is strictly monotone and α 6= 0, we conclude that
the right hand side of (1.34) does not vanish. Then (1.34) implies ∆̂′(ρ) 6= 0, and thus (1.35)
becomes

f ′′
(
ξ + ∆̂(ρ)

)
f ′
(
ξ + ∆̂(ρ)

) = − ∆̂′′(ρ)

α
(
∆̂′(ρ)

)2 .
Since this holds for all ξ ∈ IR we conclude

f ′′(ξ)
f ′(ξ)

=
f ′′(0)
f ′(0)

for all ξ ∈ IR,

and this is only fulfilled if either f ′′ ≡ 0, i.e. f(ξ) = a + bξ, or if f(ξ) = a + becξ for some
a ∈ IR and b, c ∈ IR\{0} and all ξ ∈ IR. q.e.d.

Remark. Gerber (1979) uses a similar proof to show that in actuarial mathematics a mean
value principle is consistent if and only if it is an exponential principle or the net premium
principle. Gerber points out that the net premium principle is of limited usefulness since it
does not produce any security loading. Similarly, we do not work with a linear equilibrium
price function f : IR → IR, ξ 7→ a + bξ, since for b 6= 0 such an equilibrium price function
leads to possible unbounded negative prices. The constant case f(ξ) = a can also be covered
as a special case of an exponential equilibrium price functions, once we allow that b and c in
the representation (1.28) may also become zero. �

The translation invariance (1.30) which we have expressed in terms of the underlying equi-
librium price function f : IR → IR can also be expressed in terms of any large investor price
function S ∈ S(f). For example, for any Lebesgue-measurable and locally bounded equi-
librium price function f : IR → IR for which the translation invariance (1.30) holds we can
define

D(µ) := Dα(µ) := ∆α(µ)−∆α(λ) for all µ ∈ M(f),

since for all those functions we have λ ∈ M(f). Then (1.30) and Sλ = S∗ imply

Sµ(ξ, ξ + α) = f
(
ξ + ∆(µ)−∆(λ) + ∆(λ)

)
= S∗

(
ξ +D(µ), ξ +D(µ) + α

)
(1.36)

for all ξ ∈ IR and µ ∈ M(f). Hence, for a fixed transaction size of α shares the actual price
Sµ(ξ, ξ + α) the large investor would be faced with if he had initially held ξ shares equals
the benchmark price S∗

(
ξ +D(µ), ξ +D(µ) + α

)
for the same transaction volume, but now

starting from an initial endowment of ξ+D(µ). Here the shift D(µ) does not depend on the
initial position ξ.
Even if the equilibrium price function f : IR → IR does not have a structure of the form
(1.31), there exists of course subclasses of M(f) such that a representation like the one in
(1.36) still holds. The following example will present such a class which works for almost
every given equilibrium price functions. The particular feature of exponential and linear price
functions is that all the associated price-determining measures µ satisfy (1.30) and (1.36).

Example 1.3. Let f : IR → IR be Lebesgue-measurable and locally bounded and µ ∈ M(f)
some price-determining measure associated to f . Then for each s ∈ IR for which the shifted
measure µs defined by µs

(
(−∞, x]

)
= µ

(
(−∞, x−s]

)
for all x ∈ IR is also a price-determining

measure associated to µ (i.e. µs ∈ M(f)), it is easy to see from (1.7) that

Sµs

(
ξ, ξ + α

)
= Sµ

(
ξ + αs, ξ + αs+ α

)
for all ξ, α ∈ IR, (1.37)
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i.e. a shift of the measure µ by s is equivalent to a shift in the large investor’s initial stock
holdings by αs. If the equilibrium price function f : IR → IR is strictly increasing, then a
positive shift of the measure implies that the large investor can only obtain a lower price
than under the original price-determining measure µ if he sells some or all of his shares, and
at the same time he has to pay more for any share he buys.
If the original price-determining measure µ is the Lebesgue measure λ on [0, 1], the represen-
tation (1.37) becomes

Sµs

(
ξ, ξ + α

)
= S∗

(
ξ + αs, ξ + αs+ α

)
for all ξ, α ∈ IR,

and thus it resembles the representation (1.36). �

1.2 Transaction Losses

Having defined a benchmark price, we can now relate the actual price paid by the large
investor for a certain transaction to the corresponding benchmark price. In doing so we will
introduce the notation of transaction losses. These transaction losses provide a link between
our large investor model and small investor models with transaction costs. We then outline
some basic properties which a true transaction loss function should satisfy and give conditions
such that these hold.

1.2.1 The Transaction Loss Function

For each large investor price function S : IR2 → IR based on a weighted mean of equilibrium
prices as in (1.6) we can quantify the transaction losses which the large investor has to bear
because he cannot buy shares for the “fair” benchmark price. We do this by taking the
difference between the total actual costs and the theoretical costs which the large investor
would pay if he could use the benchmark price for his transaction. Similarly, we can calculate
the transaction loss which the large investor suffers when he sells shares. Formally, we
introduce the transaction loss in terms of the transaction loss function:

Definition 1.9. For any S ∈ S the implied transaction loss function c : IR2 → IR is
defined by

c
(
ξ1, ξ2

)
:=
(
ξ2 − ξ1

)(
S
(
ξ1, ξ2

)
− S∗

(
ξ1, ξ2

))
for all ξ1, ξ2 ∈ IR.

If we want to parametrize the whole class S(f) =
{
Sµ : µ ∈ M(f)

}
of large investor price

functions associated to some given Lebesgue-measurable and locally bounded equilibrium
price function f : IR → IR, we will parametrize the associated transaction loss functions
accordingly, i.e. we then define the family

{
cµ : µ ∈ M(f)

}
of transaction loss functions

cµ : IR2 → IR by

cµ
(
ξ1, ξ2

)
:=
(
ξ2 − ξ1

)(
Sµ
(
ξ1, ξ2

)
− S∗

(
ξ1, ξ2

))
for all ξ1, ξ2 ∈ IR and µ ∈ M(f). (2.1)

Remark. By the definitions of the set S(f) and the benchmark price function S∗ = Sλ we
immediately see that (2.1) reads as

cµ
(
ξ, ξ + α

)
= α

∫
f(ξ + θα)

(
µ− λ)(dθ) for all ξ, α ∈ IR and µ ∈ M(f). (2.2)

Thus, the transaction loss cµ(ξ, ξ+α) made by a large investor who initially held ξ shares and
then buys another α shares is given in terms of an integral of the equilibrium price function
with respect to the (signed) measure µ− λ. �
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Let us now fix some Sµ ∈ S. If we write the price paid for ξ2 − ξ1 shares to shift the large
investor’s portfolio from ξ1 to ξ2 as(

ξ2 − ξ1
)
Sµ
(
ξ1, ξ2

)
=
(
ξ2 − ξ1

)
S∗
(
ξ1, ξ2

)
+ cµ

(
ξ1, ξ2

)
for all ξ1, ξ2 ∈ IR, (2.3)

the actual price (ξ2 − ξ1)Sµ(ξ1, ξ2) paid by the large investor can be recovered as the sum
of the “fair” price (ξ2 − ξ1)S∗(ξ1, ξ2) for that transaction plus the transaction loss loading
cµ(ξ1, ξ2). This resembles the structure of a market with transaction costs, and these similar-
ities will be often explored in this thesis. However, we want to point out that there is neither
a bid-ask spread, nor is there any transaction fee in our large investor market. As long as
the large investor behaves like a small investor and trades only infinitesimally many shares,
he can buy and sell them for the same (equilibrium) price. The large investor is exposed
to transaction losses only because of the lack of liquidity in the market due to the dispro-
portionately large size of his trades. Moreover, since the market power of the large investor
changes the equilibrium price in the market, the transaction losses of the large investor are
not immediately realized. Only if the large investor performs a round-trip he has to admit
that the transaction losses occurred are really transaction costs, otherwise the transaction
losses are hidden behind the change of the equilibrium price. That is why the large investor’s
transaction losses are really only losses and not costs.
In order to exclude immediate arbitrage opportunities, we need to require that for all round-
trips of the large investor, starting from an arbitrary initial stock holding, the sum of trans-
action losses incurred is always nonnegative, i.e. we have to suppose that

k∑
i=1

cµ

(
ξ +

i−1∑
j=1

αj , ξ +
i∑

j=1

αj

)
≥ 0 for all ξ ∈ IR, α ∈ Rk and k ∈ IN .

Though this slightly complicated condition already rules out any possibility that the large
investor becomes rich at a single point in time by performing a sequence of successive trades
at this single time point, we will usually impose a slightly stronger condition on the trans-
action loss function, which is much easier to check. Namely, we will require that the whole
transaction loss function cµ : IR2 → IR is nonnegative. This condition also simplifies the ex-
clusion of arbitrage opportunities in a dynamic framework which we will set up in Section 1.3.
Moreover, nonnegative transaction losses make the connection to small investor models with
transaction costs much more transparent.
In order to draw a parallel to transaction costs models we will also state conditions on the
large investor market in terms of the transaction loss function cµ : R2 → IR and not in terms
of the equilibrium price function f : IR → IR and the associated price-determining measure
µ ∈ M(f) which lie behind the large investor market.

Remark. For any fixed locally bounded and Lebesgue-measurable equilibrium price function
f : IR → IR we can define the relation 4f on the set M(f) of associated price-determining
measures by setting

µ1 4f µ2 ⇐⇒ α

∫
f(ξ + αθ)µ1(dθ) ≤ α

∫
f(ξ + αθ)µ2(dθ) for all ξ, α ∈ IR. (2.4)

Because of (2.2) it follows that for any µ ∈ M(f) the transaction loss function cµ : IR2 → IR
is nonnegative if and only if µ 4f λ. The latter condition can sometimes be easier to check.
If for example the equilibrium price function f : IR → IR is nondecreasing, then µ1 4f µ2

holds for all measures µ1 ∈M(f) which are stochastically smaller than µ2.
The relation 4f is indeed a pre-order, since it is reflexive (i.e. µ 4f µ) and transitive
(i.e. µ1 4f µ2 4f µ3 implies µ1 4f µ3). In general the pre-order 4f does not define a
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partial order on M(f), since it need not be antisymmetric (i.e. µ1 4f µ2 4f µ1 need not
imply µ1 = µ2). However, if the equilibrium price function f : IR→ IR is of strict exponential
form, i.e. if there exist some a ∈ IR and b, c ∈ IR\{0}, such that f(ξ) = a+ becξ for all ξ ∈ IR,
then the pre-order 4f is even antisymmetric and hence a partial order on M(f), since (2.4)
and µ1 4f µ2 4f µ1 imply

αb

∫
eαcθµ1(dθ) = αb

∫
eαcθµ2(dθ) for all α ∈ IR,

from which we can conclude that the moment generating functions of µ1 and µ2, and therefore
also the measures themselves coincide. �

1.2.2 Two Desirable Properties for Transaction Loss Functions

Common sense would easily state a whole bunch of properties which a transaction loss func-
tion should satisfy. We have already argued in the previous section why we prefer to work
with nonnegative transaction loss functions. Moreover, in a perfect market it should not be
beneficial to buy more shares than necessary and then immediately sell back the excess part
of these shares. Additionally, the total transaction losses should not decrease with the size of
the transaction. In this section we will give a precise definition of those two properties and
then find conditions on the equilibrium price function and the price-determining measure in
the large investor market under which these properties hold.

Definition 1.10. Let a large investor market be described by an equilibrium price function
f : IR → IR which is Lebesgue-measurable and locally bounded and by an associated price-
determining measure µ ∈ M(f).

(i) The market (or also the stock price Sµ) implies a natural loss structure if the asso-
ciated transaction loss function cµ : IR2 → IR satisfies

cµ
(
ξ, ξ + α+ β

)
+ cµ

(
ξ + α+ β, ξ + α

)
≥ cµ

(
ξ, ξ + α

)
(2.5)

for all ξ, α, β ∈ IR with αβ ≥ 0.

(ii) The market (or also the stock price Sµ) implies nondecreasing total transaction
losses if the associated transaction loss function cµ : IR2 → IR satisfies

cµ
(
ξ ± α, ξ

)
≤ cµ

(
ξ ± β, ξ

)
(2.6)

for all ξ, α, β ∈ IR with 0 ≤ α ≤ β.

The condition (2.5) for the natural loss structure can be viewed as a weak no-arbitrage
statement. If this condition even held for all α, β ∈ IR, then the large investor would never
benefit from breaking one transaction into two or more successive transactions. For a market
with a natural loss structure we only require this condition for αβ ≥ 0. In this case, it might
be beneficial for the large investor to split one large transaction into several smaller ones, but
the large investor cannot prevent or reduce losses by buying more stocks than he ultimately
wants to buy and then selling the excess of his demand immediately. Similarly, it is not
advantageous for him to sell more stocks than he really wants to sell and then to buy back
those which he needs to reach his target stock holdings.
The second condition on the large investor market, namely the condition of nondecreasing
total transaction losses, states that the total transaction losses can only increase, but never
decrease with increasing transaction volume. Of course, this does not mean that the relative
transaction losses per share cannot decrease. Since the definition of the transaction loss
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function implies that there are no transaction losses if the large investor does not trade,
i.e. cµ(ξ, ξ) = 0 for all ξ ∈ IR, a market with nondecreasing total transaction losses always
implies that the transaction loss function cµ : IR2 → IR is nonnegative.
In Section 1.4 we will employ the condition of a natural loss structure in order to prove ex-
istence, and the condition of nondecreasing total transaction losses in order to prove unique-
ness, of discrete trading strategies which replicate a certain class of contingent claims in
multi-period markets. For this reason, we will provide now some lemmata, which give suffi-
cient conditions on both the equilibrium price function and the associated price-determining
measure, such that the resulting market implies a natural loss structure and nondecreasing
total transaction losses. These conditions are far from being necessary and should only be
viewed as exemplary.

At first we focus on the natural loss structure. For practical purposes it helps to rewrite the
loss-oriented Definition 1.10(i) in terms of a condition on the stock price:

Lemma 1.11. Let Sµ ∈ S be a large investor price function. Then for any ξ, α, β ∈ IR the
condition (2.5) holds if and only if

(α+ β)Sµ
(
ξ, ξ + α+ β

)
≥ βSµ

(
ξ + α+ β, ξ + α

)
+ αSµ

(
ξ, ξ + α

)
. (2.7)

In particular, Sµ implies a natural loss structure if and only if (2.7) holds for all ξ, α, β ∈ IR
with αβ ≥ 0.

Proof. Let us recall that the benchmark price function S∗ : IR2 → IR was defined so that
it satisfies the “fair price” condition (1.1). Applying this equation to the 2-step round-
trip (α,−α) ∈ R2, starting from any initial stock holding ξ ∈ IR, we obtain the equality
S∗(ξ, ξ + α) = S∗(ξ + α, ξ), and just another application of the same equation now to the
3-step round-trip

(
α+ β,−β,−α

)
∈ R3 yields

(α+ β)S∗
(
ξ, ξ + α+ β

)
− βS∗

(
ξ + α+ β, ξ + α

)
− αS∗

(
ξ, ξ + α

)
= 0.

If the definition (2.1) of the transaction loss function cµ : IR2 → IR is plugged into expression
(2.5) it immediately follows from the equation above that (2.5) and (2.7) are equivalent for
all ξ, α, β ∈ IR. q.e.d.

Example 1.4. Let us assume that the large investor market is specified by some strictly
increasing equilibrium function f : IR → IR and the price-determining measure δ1, i.e. the
Dirac measure concentrated at 1. Then the market switches to the new equilibrium before
the large investor has traded any stocks, so that for all ξ1, ξ2 ∈ IR the large investor price
is given by Sµ(ξ1, ξ2) = f(ξ2). Since f : IR → IR is strictly increasing, (2.7) holds for all
ξ, α, β ∈ IR with αβ ≥ 0. However, for −α < β < 0 it is easy to see that (2.7) fails to hold.
Hence we conclude from Lemma 1.11 that the market implies a natural loss structure, but
(2.5) does not hold for all ξ, α, β ∈ IR, i.e. it can be advantageous for the large investor to
break up one transaction into smaller subtransactions. �

The next lemma gives sufficient conditions on the equilibrium price function f : IR → IR
and the associated price-determining measure µ in order to ensure that the resulting market
represented by the large investor price function Sµ : IR2 → IR implies a natural loss structure.

Lemma 1.12. Let us suppose that the price function Sµ : IR2 → IR of the large investor has
the form

Sµ
(
ξ, ξ + α

)
=
∫
f
(
ξ + θα

)
µ(dθ) for all ξ, α ∈ IR, (2.8)
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where the equilibrium price function f : IR → IR is nondecreasing and the associated price-
determining measure µ ∈ M(f) is a probability measure µ on [0, 1] which satisfies

µ
(
[0, px]

)
≤ pµ

(
[0, x]

)
for all p, x ∈ [0, 1]. (2.9)

Then Sµ implies a natural loss structure.
Similarly, a price function Sµ : IR2 → IR of the form (2.8) implies a natural loss structure if
the equilibrium price function f : IR→ IR is nonincreasing and the price-determining measure
µ ∈ M(f) is a probability measure on [0, 1] which has no point mass in (0, 1] and satisfies

µ
(
[0, px]

)
≥ pµ

(
[0, x]

)
for all p, x ∈ [0, 1].

Proof. Let us start with the proof of the first statement. Due to Lemma 1.11 it suffices to
show (2.7) for all ξ, α, β ∈ IR with αβ ≥ 0. Since (2.7) trivially holds if α = β = 0, we can
exclude this case. In all other cases we have to consider, the sum c := α+ β will not vanish
so that ρ = α

α+β is well defined and ρ ∈ [0, 1]. Thus, we only have to show

cSµ(ξ, ξ + c) ≥ cρSµ(ξ, ξ + cρ) + c(1− ρ)Sµ(ξ + c, ξ + cρ) (2.10)

for all ρ ∈ [0, 1] and c ∈ IR. We will recover (2.10) as an inequality between expectations of
f with respect to certain random variables based on µ as the one used in Proposition 1.5. In
order to prove the inequality between these expectations we utilize the properties imposed
on µ. Namely, we will prove that (2.9) and the concentration of the probability measure µ
on [0, 1] imply

µ
(
(a, 1]

)
≥ ρµ

((
a

ρ
, 1
])

+ (1− ρ)µ
([

0,
1− a

1− ρ

))
(2.11)

for all a ∈ IR and ρ ∈ [0, 1], where we understand the two cases ρ ∈ {0, 1} as limiting cases
of ρ ↘ 0 and ρ ↗ 1, respectively. For this purpose, we distinguish four cases: a < 0,
0 ≤ a < ρ ≤ 1, then 0 ≤ ρ ≤ a ≤ 1, and as the forth case a ≥ 1. In the first and forth
case, i.e. if a < 0 or a ≥ 1, we see that (2.11) holds with equality due to µ

(
[0, 1]

)
= 1. If

0 ≤ a < ρ ≤ 1 we can apply (2.9) with p = ρ and x = a
ρ to obtain

µ
(
[0, a]

)
≤ ρµ

([
0, ρ−1a

])
.

Using once again the concentration of µ on [0, 1] we get from subtracting µ
(
[0, 1]

)
= 1 on

both sides and rearranging terms

1− ρ+ ρµ
((
ρ−1a, 1

])
≤ µ

(
(a, 1]

)
.

If we finally note that due to 1−a
1−ρ > 1 we have µ

([
0, 1−a

1−ρ
))

= 1, we see that (2.11) holds for
0 ≤ a < ρ ≤ 1 as well. It just remains to prove (2.11) for the case 0 ≤ ρ ≤ a ≤ 1. In this
case we notice that (2.9) with x = 1 implies

µ([0, p]) ≤ p for all p ∈ [0, 1], (2.12)

hence, using (2.12) at first with p = a and then with p = 1−a
1−ρ , we conclude

µ
(
(a, 1]

)
= 1− µ([0, a]) ≥ 1− a = (1− ρ)

1− a

1− ρ
≥ (1− ρ)µ

([
0,

1− a

1− ρ

])
.

Due to a
ρ ≥ 1 we now have µ

((
a
ρ , 1
])

= 0, hence the inequality (2.11) follows also for all
0 ≤ ρ ≤ a ≤ 1, and thus it indeed holds for all ρ ∈ [0, 1] and a ∈ IR.
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Let us now take a random variable Z with distribution µ. Then (2.11) is equivalent to

P
(
Z > a

)
≥ ρP

(
ρZ > a

)
+ (1− ρ)P

(
1− (1− ρ)Z > a

)
for all a ∈ IR and ρ ∈ [0, 1]. (2.13)

If we also introduce the family of random variables {Uρ}ρ∈[0,1] in such a way that each Uρ is
independent of Z and satisfies

P
(
Uρ = 1

)
= ρ = 1−P

(
Uρ = 0

)
for ρ ∈ [0, 1],

and then define the family {Xρ}ρ∈[0,1] of random variables as in Proposition 1.4 and 1.5 by

Xρ := UρρZ +
(
1− Uρ

)(
1− (1− ρ)Z

)
for all ρ ∈ [0, 1],

we can rewrite (2.13) in terms of Xρ as

P
(
Z > a

)
≥ P

(
Xρ > a

)
for all a ∈ IR and ρ ∈ [0, 1].

But this is equivalent to saying that for all ρ ∈ [0, 1] the random variable Z is stochastically
larger than Xρ (i.e. Z ≥st Xρ). Therefore we have

E
[
g(Z)

]
≥ E

[
g
(
Xρ
)]

for all ρ ∈ [0, 1]

and for all nondecreasing functions g : IR → IR. Especially, the function gc : IR → IR,
z 7→ cf(ξ + cz) inherits its monotonicity from f : IR→ IR, and thus we get

cE
[
f(ξ + cZ)

]
≥ cE

[
f
(
ξ + cXρ

)]
for all ρ ∈ [0, 1] and c ∈ IR.

By the definitions of Xρ and Uρ, we can now use the law of total probability to rewrite the
last inequality as

cE
[
f(ξ + cZ)

]
≥ cρE

[
f
(
ξ + cρZ

)]
+ c(1− ρ)Ef

[(
ξ + c(1− (1− ρ)Z)

)]
and recalling the definitions of the random variable Z and the large investor price function
Sµ : IR2 → IR this is indeed for all ρ ∈ [0, 1] and c ∈ IR equivalent to (2.10). Hence it follows
that Sµ implies a natural loss structure.
For the second statement one can use similar arguments to conclude that Xρ ≥st Z for all
ρ ∈ [0, 1], from which we draw the same conclusion as in the first case. q.e.d.

Remark. Two remarks of (im)possible extensions of Lemma 1.12 should be made:

(i) The inequality (2.12) shows that for any given nondecreasing equilibrium price functions
f : IR → IR all price-determining measures µ ∈ M(f) considered in Lemma 1.12 are
stochastically larger than the Lebesgue measure λ on [0, 1]. However, the condition
µ ≥st λ alone is too weak to imply (2.11) for all a ∈ IR and all ρ ∈ [0, 1], and it was this
condition which was essential to prove the natural loss structure without any additional
restrictions on f . In order to see that (2.11) need not hold if µ ≥st λ, let us define the
probability measure µ by µ

(
{1/2}

)
= µ

(
{1}
)

= 1/2. Then we have µ ≥st λ, but for
1
2 ≤ a < ρ ≤ 1 we have µ

((
a
ρ , 1
])

= µ
(
{1}
)

= 1
2 and µ

([
0, 1−a

1−ρ
))

= µ
(
{1/2, 1}

)
= 1,

hence we get

ρµ

((
a

ρ
, 1
])

+ (1− ρ)µ
([

0,
1− a

1− ρ

))
=

1
2
ρ+ (1− ρ) =

1
2

+
1
2

(1− ρ) >
1
2

= µ
(
(a, 1]

)
.

To this price-determining measure µ one can now easily find examples of nondecreasing
equilibrium price functions f : IR→ IR (e.g. the identity) for which (2.7) does not hold
for all ξ, α, β ∈ IR with αβ ≥ 0, i.e. where the market described by f and µ does not
imply a natural loss structure.
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(ii) If Z is a random variable with values in (1,∞), we have of course P(Z > a) = 1 for all
a ≤ 1. On the other hand, for all a > 1 and ρ ∈ [0, 1] such a random variable satisfies
P
(
1 − (1 − ρ)Z > a

)
= P

(
−(1 − ρ)Z > a − 1

)
= 0 and P(ρZ > a) ≤ P(Z > a).

This shows that (2.13) also holds for all random variables with values in (1,∞), and
we can use the same arguments as in the proof of Lemma 1.12 to conclude that the
market described by f and µ still implies a natural loss structure if the equilibrium price
function f : IR→ IR is nondecreasing and if the price-determining measure µ ∈ M(f) is
a mixture of a probability measure on [0, 1] satisfying (2.9) and a probability measure
on (1,∞). �

We now give an example of a probability measure µ with values in [0, 1] which satisfies (2.9).

Example 1.5. Let λ denote as always in this thesis the Lebesgue measure on [0, 1], and δ1 the
Dirac measure concentrated in 1. Then for any fixed ρ ∈ [0, 1] the measure µ = ρλ+(1−ρ)δ1
satisfies (2.9), since

µ
(
[0, px]

)
= ρpx+ (1− ρ)δ1

(
{px}

)
≤ p
(
ρx+ (1− ρ)δ1({x})

)
= p
(
[0, x]

)
for all p, x ∈ [0, 1]. Especially, a large investor market described by any nondecreasing
equilibrium price function f : IR → IR and by this price-determining measure µ implies a
natural loss structure. �

We may consider the Dirac measure δ1 as the limit of uniform distributions on [1 − h, 1]
as h → 0. In the next lemma we will give conditions on the equilibrium price function f
and the associated price-determining measure µ which guarantee that the market does not
only imply a natural loss structure, but also nondecreasing total transaction losses. For the
price-determining measure µ we allow for a generalized version of the measures considered in
Example 1.5, for the equilibrium price function f : IR → IR we require some smoothness in
addition to the monotonicity of Lemma 1.12.

Lemma 1.13. Let f : IR → IR be some nondecreasing and continuously differentiable equi-
librium price function, and consider for ρ, h ∈ [0, 1] the associated price-determining measure
µ = µρ,h ∈ M(f) on

(
[0, 1],B([0, 1])

)
defined by

µρ,h(A) = ρλ(A) + (1− ρ)
1
h
λ
(
A ∩ [1− h, 1]

)
for all A ∈ B([0, 1]), (2.14)

where we shall interpret the last term on the right-hand side as the Dirac measure in 1 if
h = 0. Then the price function Sµ : IR2 → IR given by (2.8) implies both a natural loss
structure and nondecreasing total transaction losses.

Proof. Let us first show that Sµ implies a natural loss structure. Due to Lemma 1.12 it
suffices for this to show (2.9). In the case h = 0 this was already shown in Example 1.5, so
we can assume without loss of generality that 0 < h ≤ 1. But also in these cases (2.9) holds,
since the inequality (px− c)+ ≤ p(x− c)+ for all c, p, x ∈ [0, 1] implies

µρ,h
(
[0, px]

)
= ρpx+ (1− ρ)

1
h
λ
(
[1− h, px]

)
= ρpx+ (1− ρ)

1
h

(
px− 1 + h

)+
≤ ρpx+ (1− ρ)p

1
h

(
x− 1 + h

)+ = pµρ,h
(
[0, x]

)
for all ρ, p, x ∈ [0, 1]. Thus, for all ρ, h ∈ [0, 1] the market described by f and µ = µρ,h, or
also the associate price function Sµ, indeed implies a natural loss structure.
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Now let us proceed to show that it also implies nondecreasing transaction losses, i.e. we have
to show that (2.6) holds for all ξ, α, β ∈ IR with α ≤ β. We first employ representation (2.2)
of cµ and the definition of µ = µρ,h in (2.14) to write cµ(ξ + α, ξ) for all α, ξ ∈ IR as

cµ
(
ξ + α, ξ

)
= −α

∫
f
(
ξ + (1− θ)α

)(
µ− λ

)
(dθ)

= α(1− ρ)

(∫ 1

0
f
(
ξ + (1− θ)α

)
dθ − 1

h

∫ 1

1−h
f
(
ξ + (1− θ)α

)
dθ

)
.

Without loss of generality let us assume ρ = 0. Then α 7→ cµ(ξ + α, ξ) is differentiable, and
its derivative is for all ξ, α ∈ IR given by

d

dα
cµ
(
ξ + α, ξ

)
=
∫ 1

0
f
(
ξ + (1− θ)α

)
dθ + α

∫ 1

0
(1− θ)f ′

(
ξ + (1− θ)α

)
dθ

− 1
h

∫ 1

1−h
f
(
ξ + (1− θ)α

)
dθ − α

1
h

∫ 1

1−h
(1− θ)f ′

(
ξ + (1− θ)α

)
dθ.

Using partial integration, this derivative simplifies for all ξ, α ∈ IR to

d

dα
cµ
(
ξ + α, ξ

)
=
[
−(1− θ)f

(
ξ + (1− θ)α

)]1
0
− 1
h

[
−(1− θ)f

(
ξ + (1− θ)α

)]1
1−h

= f(ξ + α)− f(ξ + hα)

Therefore, it follows from f : IR→ IR being nondecreasing and h ∈ [0, 1] that

d

dα
cµ
(
ξ + α, ξ)

{
≤ 0 for α ≤ 0
≥ 0 for α ≥ 0,

(2.15)

and consequently Sµ indeed implies nondecreasing total transaction losses. q.e.d.

Remark. As in Lemma 1.12 the conclusion of Lemma 1.13 holds as well if the equilibrium
price function f : IR → IR in the market is nonincreasing instead of nondecreasing and if
on the other hand the price-determining measure µ = µρ,h on

(
[0, 1],B([0, 1])

)
is for some

ρ, h ∈ [0, 1] given by

µρ,h = ρλ(A) + (1− ρ)
1
h
λ
(
A ∩ [0, h]

)
for all A ∈ B([0, 1])

instead of (2.14). Moreover, rewriting (2.2) as

cµ(ξ + α, ξ) = α

(∫ 1

0
f
(
ξ + (1− θ)α

)
dθ −

∫
f(ξ + (1− θ)α

)
µ(dθ)

)
for all α, ξ ∈ IR.

it can easily be seen that for all nondecreasing equilibrium price functions f : IR→ IR and all
price-determining measures µ which are concentrated on (1,∞) the function α 7→ cµ(ξ+α, ξ)
is nondecreasing as long as α > 0 and it is nonincreasing for α < 0. Together with the remark
after Lemma 1.12 this shows that we could draw the same conclusions as in Lemma 1.13 if
we relaxed the form of price-determining measures considered to mixtures of measures of the
form (2.14) and probability measures on

(
(1,∞),B((1,∞))

)
. �
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1.2.3 The Local Transaction Loss Rate

The transaction loss function cµ : IR2 → IR of (2.1) models the transaction losses in an
additive way, and therefore can also be used if the equilibrium stock price becomes 0 or even
negative. However, in ordinary stock markets – even in the presence of a large investor –
the stock price will always stay positive, since the liability of each shareholder is limited to
the amount which he had invested in the stock. In such markets we can introduce a (local)
transaction loss rate function which describes the transaction losses per traded share as a
fraction of the benchmark price. A Taylor expansion of the transaction loss rate function will
then give necessary conditions on the market to guarantee nonnegative transaction losses. The
multiplicative representation of the transaction losses by means of the transaction loss rate
will be used in the subsequent chapters to exploit similarities with small investor markets
models with proportional transaction costs as described for example by Boyle and Vorst
(1992) or Musiela and Rutkowski (1998).

Definition 1.14. Let the large investor market be described by some positive, locally
bounded, and Lebesgue-measurable function f : IR → (0,∞) and some associated price de-
termining measure µ ∈ M(f). Then the local (implied) transaction loss rate function
kµ : IR2 → IR is given by

kµ
(
ξ1, ξ2

)
= sgn

(
ξ2 − ξ1

)(∫ f((1− θ)ξ1 + θξ2
)
µ(dθ)∫

f
(
(1− θ)ξ1 + θξ2

)
λ(dθ)

− 1

)
for all ξ1, ξ2 ∈ IR, (2.16)

where sgn
(
ξ1, ξ2

)
= 0 if ξ1 = ξ2.

Remark. For each fixed ξ1, ξ2 ∈ IR we can use (2.16) and (2.2) to write the transaction loss
incurred by the large investor when shifting his stock holdings from ξ1 shares to ξ2 shares as

cµ
(
ξ1, ξ2

)
=
∣∣ξ2 − ξ1

∣∣S∗(ξ1, ξ2)kµ(ξ1, ξ2). (2.17)

This shows that kµ(ξ1, ξ2) indeed describes the transaction loss rate as a fraction of the total
transaction price |ξ2 − ξ1|S∗(ξ1, ξ2) which would be necessary if the transaction were made
at the benchmark price of S∗(ξ1, ξ2) per share.
Whenever kµ is well-defined, the previous equality also shows that the transaction loss rate
kµ(ξ1, ξ2) is nonnegative if and only if the transaction loss cµ(ξ1, ξ2) is nonnegative, since kµ
is only well-defined if the equilibrium price function f and hence also the benchmark price
function S∗ is positive. �

Example 1.6. Let us fix some b > 0 and c ∈ IR and consider the equilibrium price function
f : IR→ (0,∞) given by f(ξ) = becξ for all ξ ∈ IR. Then for any price-determining measure
µ ∈ M(f) we have

kµ
(
ξ, ξ + α

)
= sgn(α)

(∫
bec(ξ+αθ)µ(dθ)∫
bec(ξ+αθ)λ(dθ)

− 1

)
= sgn(α)

(∫
ecαθµ(dθ)∫
ecαθλ(dθ)

− 1
)

for all α, ξ ∈ IR.

Hence for this exponential equilibrium price function the transaction loss rate does not depend
on the initial stock holding ξ of the large investor. But in contrast to small investor models
with proportional transaction costs the transaction loss rate kµ

(
ξ, ξ+α

)
still depends on the

size α of the transaction, so it is really only a local rate. �

When we consider in Chapters 3 and 4 continuous-time limits of discrete multi-period large
investor markets it will become necessary to study the behavior of kµ(ξ + α, ξ) for small
values of α. The following lemma gives the key insights by providing a Taylor expansion
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of kµ(ξ + α, ξ). This expansion can also be utilized to state necessary conditions on the
equilibrium price function f and the associated price-determining measure µ such that the
transaction loss rate function kµ : IR2 → IR, or equivalently the transaction loss function
cµ : IR2 → IR, in the large investor market described by f and µ does not become negative.

Proposition 1.15. Let a large investor market be described by some equilibrium price func-
tion f and an associated price-determining measure µ. Suppose that the equilibrium price
function f : IR→ (0,∞) is positive and twice continuously differentiable, and that there exist
some constants L1, L2 ∈ IR such that∣∣∣∣f ′(ξ)f(ξ)

∣∣∣∣ ≤ L1 and
∣∣∣∣f ′′(ξ)f(ξ)

∣∣∣∣ ≤ L2 for all ξ ∈ IR.

Moreover, assume that the associated price-determining measure µ satisfies
∫
eη|θ|µ(dθ) <∞

for some η > 0. Then for all ξ ∈ IR the transaction loss rate function satisfies

kµ(ξ + α, ξ) = |α|f
′(ξ)
f(ξ)

∫
θ
(
µ− λ)(dθ) +O

(
α2
)

as α→ 0. (2.18)

Especially, kµ : IR2 → IR can only be nonnegative if either
∫
θµ(dθ) = 1

2

or f : IR→ IR is nondecreasing and
∫
θµ(dθ) > 1

2

or f : IR→ IR is nonincreasing and
∫
θµ(dθ) < 1

2 .

Proof. By the definition of kµ : IR2 → IR in (2.16) we have

kµ(ξ + α, ξ) = −sgn(α)

(
1

f(ξ)

∫
f
(
ξ + (1− θ)α

)
µ(dθ)

1
f(ξ)

∫
f
(
ξ + (1− θ)α

)
λ(dθ)

− 1

)
for all ξ, α ∈ IR. (2.19)

In order to reach the expansion (2.18), we are going to utilize several Taylor expansions. At
first, note that for all ξ, α ∈ IR there exist functions γ = γξ,α : IR→ [0, 1] such that

f
(
ξ + (1− θ)α

)
= f(ξ) + (1− θ)αf ′(ξ) +

1
2

(1− θ)2α2f ′′
(
ξ + (1− θ)γ(θ)α

)
. (2.20)

Let ν be an arbitrary probability measure on
(
IR,B(IR)

)
which satisfies

∫
e|θ|ην(dθ) <∞ for

some η > 0. Integrating (2.20), dividing the result by f(ξ) > 0, and utilizing
∫
ν(dθ) = 1

leads to
1

f(ξ)

∫
f
(
ξ + (1− θ)α

)
ν(dθ) = 1− αhν(ξ, α) for all ξ, α ∈ IR, (2.21)

where the function hν : IR2 → IR is for all ξ, α ∈ IR defined by

hν(ξ, α) =
f ′(ξ)
f(ξ)

(∫
θν(dθ)− 1

)
− 1

2
α

∫
(1− θ)2

f ′′
(
ξ + (1− θ)γ(θ)α

)
f(ξ)

ν(dθ).

We now want to show that, uniformly for all ξ ∈ IR,

hν(ξ, α) =
f ′(ξ)
f(ξ)

(∫
θν(dθ)− 1

)
+O(α) as α→ 0. (2.22)

In order to do so we notice that for all ξ, β ∈ IR there exists some γ1 ∈ [0, 1] such that

f ′′(ξ + β)
f(ξ)

=
f ′′(ξ + β)
f(ξ + β)

exp
(
log f(ξ + β)− log f(ξ)

)



36 CHAPTER 1. THE LARGE INVESTOR IN DISCRETE TIME

=
f ′′(ξ + β)
f(ξ + β)

exp
(
β
d

dξ
log f(ξ + γ1β)

)
=
f ′′(ξ + β)
f(ξ + β)

exp
(
β
f ′(ξ + γ1β)
f(ξ + γ1β)

)
.

Thus, we can use the bounds on the ratios of derivatives of f : IR→ (0,∞) to deduce∣∣∣∣f ′′(ξ + β)
f(ξ)

∣∣∣∣ ≤ ∣∣∣∣f ′′(ξ + β)
f(ξ + β)

∣∣∣∣ exp
(
|β|
∣∣∣∣f ′(ξ + γ1β)
f(ξ + γ1β)

∣∣∣∣) ≤ L2e
|β|L1 for all ξ, β ∈ IR,

and since the latter bound implies for all ξ, α ∈ IR with |α|L1 < η that∣∣∣∣∣
∫

(1− θ)2
f ′′
(
ξ + (1− θ)γξ,α(θ)α

)
f(ξ)

∣∣∣∣∣ ≤ L2

∫
(1− θ)2e|(1−θ)α|L1ν(dθ) <∞, (2.23)

the desired expansion (2.22) follows uniformly for all ξ ∈ IR from the definition of hν . More-
over, we can also write hν(ξ, α) = O(1) as α→ 0, uniformly for all ξ ∈ IR, since∣∣∣∣f ′(ξ)f(ξ)

(∫
θν(dθ)− 1

)∣∣∣∣ ≤ L1

(∣∣∣∣∫ θν(dθ)
∣∣∣∣+ 1

)
<∞. (2.24)

Especially, (2.23) and (2.24) hold uniformly for all ξ ∈ IR and both measures ν = λ and
ν = µ. As the last step preparatory to prove (2.18), we apply another Taylor expansion to
note that for all cµ, cλ ∈ IR and α < 1

|cλ| , there exists some γ2 ∈ [0, 1] so that

1− αcµ
1− αcλ

= 1 +
(
cλ − cµ

)
α+ cλ

cλ − cµ
(1− γ2αcλ)3

α2 = 1 +
(
cλ − cµ

)
α+O

(
α2
)

as α→ 0. (2.25)

If we now apply (2.25) to cν = hν(ξ, α) for ν ∈
{
λ, µ

}
then (2.21) and the bounds (2.23) and

(2.24) imply
1

f(ξ)

∫
f
(
(1− θ)(ξ + α) + θξ

)
µ(dθ)

1
f(ξ)

∫
f
(
(1− θ)(ξ + α) + θξ

)
λ(dθ)

= 1− α
f ′(ξ)
f(ξ)

∫
θ
(
µ− λ

)
(dθ) +O

(
α2
)

as α→ 0,

uniformly for all ξ ∈ IR. Hence (2.18) follows from (2.19).
The second statement of the proposition is a direct consequence of (2.18): Let us assume
that the transaction loss rate function kµ : IR2 → IR is nonnegative, and suppose that for
example

∫
θµ(dθ) > 1

2 , but that there exists some ξ ∈ IR for which f ′(ξ) < 0. Then (2.18)
and

∫
θλ(dθ) = 1

2 imply

0 ≤ lim
α↓0

kµ(ξ + α, ξ)
α

=
f ′(ξ)
f(ξ)

∫
θ
(
µ− λ)(dθ) < 0,

which gives a contradiction. q.e.d.

Proposition 1.15 gives rise to the following definition:

Definition 1.16. For any probability measure µ on
(
IR,B(IR)

)
for which the first moment

is well-defined we introduce the non-linearity parameter

d(µ) :=
∫
θ
(
µ− λ

)
(dθ) =

∫
θµ(dθ)− 1

2
. (2.26)

Remark. Let us assume that there do no exist any negative transaction losses. Because of
Proposition 1.15 we can then restrict our attention without losing much generality to a large
investor market with nondecreasing equilibrium price function f : IR → IR and a price-
determining measure µ satisfying d(µ) ≥ 0. In such a situation the non-linearity parameter
d(µ) describes the distance between two pricing mechanisms, namely between the actually
experienced one and the benchmark price. The larger d(µ), the larger the local transaction
loss rate kµ : IR2 → IR, and also the larger the transaction loss cµ : IR2 → IR. If d(µ) = 0 the
local transaction loss rate kµ(ξ + α, ξ) is only a term of order O

(
α2
)

as α→ 0. �
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In a continuous-time limit of multi-period discrete large investor market models as we will
describe in Chapters 3 and 4, the parameter d(µ) gives the key information about the market’s
price building mechanism. Especially, d(µ) describes the degree of non-linearity of the partial
differential equation satisfied by (a transform of) all self-financing strategy functions in those
markets. But before we come to this in any more detail, we first have to build up a discrete
multi-period large investor model.

1.3 The Binomial Multi-Period Large Investor Market Model

In this section we will lift the large investor market model from a model at one single point in
time to a stochastic multi-period model. The market is once again described by an equilibrium
price function and an associated price-determining measure, but now the equilibrium price
function depends not only on the large investor’s stock holdings, but also on time and on
some stochastic fundamentals. In order to capture these additional dependences we have to
extend the various price functions and the transaction loss function of Sections 1.1 and 1.2,
respectively. We then restrict our attention to discrete markets where the large investor can
only trade at a finite number of equidistant points in time. The process of the fundamentals
at the trading dates is modelled by a binomial random walk. Since the large investor affects
the stock price by his trading, the stock price in the market is also influenced by the particular
portfolio strategy of the large investor. As in small investor markets we stipulate that the
large investor uses self-financing trading strategies, so that no funds are given to or taken
away from the market between the first and last trade. An example will show in which sense
the stock prices appearing in such a market are still recombining. Having set up the large
investor market model, we come to the natural question what the value of a portfolio held by
the large investor is. Depending on the objective, there are different valuation principles for
such a portfolio. Section 1.3.5 will introduce the two valuation concepts used in the sequel,
namely the concept of the paper value and the concept of the real value of a portfolio.

1.3.1 The General Dynamic Large Investor Price System

In order to start with the description of the multi-period model, we fix some time point
T > 0. At first we will then introduce the large investor price system on the whole time
interval [0, T ]. The financial market described by this price system contains many small
investors and one large investor, and we assume that there are two primary traded securities
on this market: a risky asset, referred to as a stock, and a risk-free asset, referred to as a
bank account. While the market power of each single small investor (given by the size of
his transactions) is so small that his transactions do not significantly influence the market
prices, the large investor’s trades can move the stock prices. The bond market is supposed
to be much more liquid than the stock market such that at any time t ∈ [0, T ] even the large
investor can borrow or lend any cash amount for the same interest rate. Without loss of
generality we then may even suppose that the risk-free interest rate is 0, i.e. the value of a
unit of cash is constantly 1 on the whole time interval [0, T ]; otherwise we could take the
bank account as a numeraire and consider discounted stock prices.
The basic parameter driving the stock price is given by some fundamental value process. It
accounts for all relevant (or “fundamental”) stochastic influences on the stock price which
are not caused by the large investor’s trades, and it may represent the aggregated income of
the small investors (as in Frey and Stremme (1997)), or stock-relevant news, or any other
nondeterministic influence on the stock price. In addition, we assume that at any fixed time
point and for any fixed value of the fundamentals at this time, the stock price is influenced
by the large investor’s trades as in Section 1.1. Last but not least, we also allow for other
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factors, which have a deterministic impact on the stock prices as time proceeds.
Thus, instead of the Walrasian equilibrium price function f : IR→ IR which was the starting
point of our simplified model in Section 1.1 and depended only on the large investor’s stock
holdings, we now start with an equilibrium price function ψ : [0, T ]×IR2 → IR which depends
on time, the fundamentals, and the stock holdings of the large investor, i.e. we assume that
for any time t ∈ [0, T ], any fixed value u ∈ IR for the fundamentals at time t, and any number
ξ of stocks held by the large investor at time t there exists a Walrasian equilibrium price for
the stock if the large investor does not trade at that time, and this equilibrium price is given
by ψ(t, u, ξ). We will always assume that the fundamentals are modelled in such a way that
– ceteris paribus – an increase in the fundamentals leads to a higher stock price.

Definition 1.17. A Lebesgue-measurable function ψ : [0, T ]× IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ)
is called an equilibrium price function if it is locally bounded and strictly increasing in u.
In this case we define the associated small investor price function ψ• : [0, T ] × IR → IR
by

ψ•(t, u) = ψ(t, u, 0) for all (t, u) ∈ [0, T ]× IR.

The equilibrium price function ψ : [0, T ] × IR2 → IR is called multiplicative if there exists
some function f : IR→ IR such that ψ can be represented as

ψ•(t, u, ξ) = ψ•(t, u)f(ξ) for all (t, u, ξ) ∈ [0, T ]× IR2. (3.1)

Remark. The associated small investor price function relates the large investor market to an
associated small investor market. The name goes back to Baum (2001), who was the first who
has seen the importance of the associated small investor market (“assozierter Finanzmarkt”)
for the investigation of the large investor market. We shall also exploit the relationship
between both markets. �

As we proceed we will require different degrees of smoothness for the function ψ, and for the
largest part of this thesis we will also suppose that ψ is strictly positive. For the beginning,
however, we will stay with the very general equilibrium price function of Definition 1.17
and transfer the price mechanism introduced in the single-period model of Section 1.1.2 in
a straightforward way to the dynamic model which comes with such a general equilibrium
price function, by condensing the analogues of Definitions 1.3 and 1.6 to the dynamic model
in the following definition:

Definition 1.18. Let ψ : [0, T ]×IR2 → IR be some equilibrium price function. A probability
measure µ ∈

⋂
(t,u)∈[0,T ]×IR M

(
ψ(t, u, · )

)
is called price-determining measure for ψ. The

large investor price function Sµ : [0, T ]×IR3 → IR associated to such a pair of equilibrium
price function ψ and corresponding price-determining measure µ is given by

Sµ
(
t, u, ξ1, ξ2

)
=
∫
ψ
(
t, u, (1− θ)ξ1 + θξ2

)
µ(dθ) for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3. (3.2)

In such a case, for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3 the associated benchmark price function
S∗ : [0, T ]× IR3 → IR is defined by

S∗(t, u, ξ1, ξ2) := Sλ(t, u, ξ1, ξ2) =
∫ 1

0
ψ
(
t, u, (1− θ)ξ1 + θξ2

)
λ(dθ), (3.3)

where λ denotes – as always in the sequel – the Lebesgue measure on [0, 1].

For each (t, u, ξ1, ξ2) ∈ [0, T ]×IR3 the large investor price Sµ(t, u, ξ1, ξ2) gives the actual price
per share which the large investor is faced with when shifting his stock holdings at time t
from ξ1 to ξ2 shares and if at that time the fundamentals are u.
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Remark. If the equilibrium price function ψ is multiplicative as in (3.1) the model becomes
particularly nice, since then the term ψ•(t, u), which depends solely on time and fundamentals,
can be pulled out of the integrals in (3.2) and (3.3), respectively. Moreover, in this case
the set

⋂
(t,u)∈[0,T ]×IR M

(
ψ(t, u, · )

)
of admissible price-determining measures associated to ψ

simplifies to M(f). �

As in Section 1.1 the large investor price is completely determined by the equilibrium price
function and the associated price-determining measure; thus we may state:

Definition 1.19. The tuple (ψ, µ) is called a (large investor) price system or even a
large investor market if ψ : [0, T ] × IR2 → IR is an equilibrium price function and µ is a
price-determining measure for ψ.

Remark. Of course the tuple (ψ, µ) only provides the framework of the large investor market,
namely the price system, but it does not specify the evolution of the fundamentals nor the
trades of the large investor, though they are essential for the actual appearance of the large
investor market. �

Now we can also transfer Definition 1.9 of a transaction loss function and the related prop-
erties of Section 1.2.2 to the general large investor market described by (ψ, µ):

Definition 1.20. Let (ψ, µ) be a large investor price system. Then the (implied) transac-
tion loss function cµ : [0, T ]× IR3 → IR is given by

cµ
(
t, u, ξ1, ξ2

)
:=
(
ξ2 − ξ1

) ∫
ψ
(
t, u, (1− θ)ξ1 + θξ2

)(
µ− λ

)
(dθ) (3.4)

for all t ∈ [0, T ] and u, ξ1, ξ2 ∈ IR. We say that the price system (ψ, µ) (or the large investor
price function Sµ : [0, T ]× IR3 → IR) implies a natural loss structure or nondecreasing
total transaction losses, if Sµ(t, u, · , · ) : IR2 → IR implies a natural loss structure or
nondecreasing total transaction loss, respectively, for all t ∈ [0, T ] and u ∈ IR.

While the general dynamic price system introduced in this section is suitable for continuous
trading in time, we will assume for the rest of this chapter that the large investor trades
only at a finite number of trading times. The general formulation of the price system as we
have set it up in this section will become important in Chapter 3 and 4 when we look at
the convergence of a sequence of discrete models which are all based on the same underlying
price system.

1.3.2 A Binomial Model for the Fundamentals

The price system (ψ, µ) determines only the basic pricing mechanism in the large investor
market. If we now want to construct a stochastic model, we have to specify when and how
the large investor trades in this market and how the fundamentals evolve between the trading
times. In this section we specify the time points at which the large investor can trade and
the evolution of the fundamentals between these time points. The large investor’s portfolio
strategy, which describes the large investor’s trades in stocks and cash, will then be defined
in Section 1.3.3.
In order to start with a discrete model, we fix an arbitrary n ∈ IN , divide the interval [0, T ]
into dnT e subintervals by picking out the dnT e + 1 equidistant time points

{
tnk
}

0≤k≤dnT e
given by

tnk =
kT

dnT e
for all k ∈ IN0 with 0 ≤ k ≤ dnT e, (3.5)

and assume that the large investor can only trade at these dates. On the set of time points
given by

{
tnk
}

0≤k≤dnT e we model the evolution of the fundamentals as a random walk, in
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the sense that between two successive time points the fundamentals can either increase or
decrease by an amount δ, where δ is used here and for the whole remainder of the thesis as
the reciprocal square root of n, i.e. we will always (and for all n ∈ IN) use the shorthand

δ := δn :=
1√
n
.

Remark. For the most part of this thesis we assume for simplicity that T = 1 such that the
kth time point simplifies to tnk = k

n for all 0 ≤ k ≤ n. �

In order to formally set up the random walk which describes the values of the fundamentals
at each of the time points

{
tnk
}

0≤k≤dnT e we define for each n ∈ IN the set Ωn := {−1, 1}dnT e+1

of outcomes and associate to it the corresponding power set Fn
dnT e := P(Ωn) as σ-field, such

that
(
Ωn,Fn

dnT e
)

is a measurable space, on which we can introduce the probability measure
Pn by

Pn(ω) :=
1

2dnT e+1
for all ω ∈ Ωn. (3.6)

For each n ∈ IN and any fixed initial value u0 ∈ IR of the fundamentals at time tn0 = 0 we can
then define the fundamental process Un =

{
Unk
}

0≤k≤dnT e and the associated tilt process

Zn =
{
Znk
}

0≤k≤dnT e on the probability space
(
Ωn,Fn

dnT e,P
n
)

by setting

Znk := ωnk+1 and Unk := u0 + δn

k∑
j=1

Znj for all 0 ≤ k ≤ dnT e, (3.7)

where ωnk+1 denotes the (k + 1)st component of ωn ∈ Ωn. On
(
Ωn,Fn

dnT e,P
n
)

we can then
introduce the filtration Fn =

{
Fn
k

}
0≤k≤dnT e generated by the tilt process, i.e. we define

Fn
k := σ

(
Zn0 , Z

n
1 , . . . , Z

n
k

)
for all 0 ≤ k ≤ dnT e.

Remark. Actually, (after a certain change of measure) the process
{
Unk
}

0≤k≤dnT e is a general
correlated random walk in the sense of Definition 5.2 in Chapter 5. For each 0 ≤ k ≤ dnT e the
tilt Znk depicts the direction of the last move of the fundamentals leading to the fundamental
value of Unk at time tnk . Especially, if the stock price adjusts with a certain delay to the
large investor’s trades such that the price-determining measure µ is not the Dirac measure
δ1 concentrated in 1, the tilt Zn0 at time tn0 = 0 will become important for our general
convergence results in Chapter 4, once we suppose a certain relationship between the tilt Zn0
and the stock holdings ξn−1 immediately before time 0.
On the other hand, the choice of the probability measure Pn in (3.6) is not essential for our
proceedings. We could have taken any probability measure P̃n on

(
Ωn,Fn

dnT e
)

under which
all states ωn ∈ Ωn have a strictly positive probability to occur, since we will see that like in
the Cox-Ross-Rubinstein model the original probability measure has no effect on the large
investor’s replication price of an option. �

We will now introduce some more notation to denote the possible realizations of the funda-
mental process over time. Since the random walk Un lives on a triangular grid, we define at
first a compact notation to address each node of the grid:

Definition 1.21. For each m ∈ IN0 the triangular grid of indices I(m) is given by

I(m) :=
{

(k, i)
∣∣ k ∈ {0, 1, . . . ,m} and i ∈ Ik

}
,

where the set Ik of possible indices at step k is defined by

Ik :=
{
−k, 2− k, . . . , k

}
for all k ∈ IN0.

In order to avoid some case distinctions in Section 1.4 we also set I−1 := {}.
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u31 = δ

u2(−2) = −2δ

u00 = 0

u11 = δ

u22 = 2δ

u20 = 0

u33 = 3δ

u3(−1) = −δ

u3(−3) = −3δ

u1(−1) = −δ

U0 U1 U2 U3

Figure 1.1: Possible realizations up to time tn3 with u0 = 0

If we now take m = dnT e for some fixed n ∈ IN , then I
(
dnT e

)
denotes the complete triangular

grid of indices needed to describe all possible realizations of Un, and we can adopt for each
n ∈ IN the notation

unki := u0 + iδn for all (k, i) ∈ I
(
dnT e

)
(3.8)

to denote all possible realizations of Un between tn0 = 0 and tndnT e = T .

Definition 1.22. The set Unk of possible realizations of Un at time tnk (or: at the kth
step) is given by

Unk :=
{
unki : i ∈ Ik

}
for all 0 ≤ k ≤ dnT e and n ∈ IN . (3.9)

Moreover, the set of all possible time-space realizations An(m) up to time tnm is defined
by

An(m) :=
{(
tnk , u

n
ki

) ∣∣ (k, i) ∈ I(m)
}

for all m,n ∈ IN0 with m ≤ dnT e. (3.10)

For the set of all possible time-space realizations up to time tndnT e = T we write An instead
of An

(
dnT e

)
.

Figure 1.1 depicts the possible realizations of the fundamentals up to time tn3 . In this figure
we have set u0 = 0 and suppressed the index n.

1.3.3 The Large Investor’s Portfolio Strategy

Having specified the discretization of the time axis and having modelled the behavior of the
fundamentals along the so-defined time grid, we still need to exactly specify the model for
the large investor’s stock and cash holdings in order to have a full description of the large
investor market. In Section 1.3.2 we have determined for each fixed n ∈ IN the time points{
tnk
}

0≤k≤dnT e at which the large investor can trade, now we have to specify the portfolio
strategy used by the large investor, i.e. we have to describe how the large investor shifts his
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portfolio from stocks into the bank account and vice versa as time proceeds. Since the large
investor does not trade between any two successive time points tnk and tnk+1, his portfolio in
stocks and cash will remain constant in between. At each time point tnk with 0 ≤ k ≤ dnT e
the large investor will take into account all the fundamentals or news which are known by time
tnk for the set-up of his revised portfolio structure. Formally, we define the large investor’s
portfolio strategy as a sequence of instantaneous portfolios:

Definition 1.23. Let n ∈ IN and the fundamental process Un =
{
Unk
}

0≤k≤dnT e be defined
as in (3.7).

(i) For each 0 ≤ k ≤ dnT e a portfolio at time tnk is a two-dimensional Fn
k -measurable

random variable
(
ξnk , b

n
k

)
. The portfolio

(
ξnk , b

n
k

)
is called path-independent if there

exist two functions ξn
(
tnk , ·

)
, bn
(
tnk , ·

)
: Unk → IR such that

ξnk = ξn
(
tnk , U

n
k

)
and bnk = bn

(
tnk , U

n
k

)
, (3.11)

and in this case we adopt the shorthands

ξnki = ξn
(
tnk , u

n
ki

)
and bnki = bn

(
tnk , u

n
ki

)
for all i ∈ Ik (3.12)

to denote all possible realizations of ξnk and bnk , respectively.

(ii) A portfolio strategy or trading strategy (ξn, bn) is an Fn-adapted two-dimensional
stochastic process. A portfolio strategy is path-independent if for each 0 ≤ k ≤ dnT e
the portfolio

(
ξnk , b

n
k

)
is path-independent. In this case we introduce the strategy

function ξn : An → IR and the cash holdings function bn : An → IR as the two
functions which satisfy (3.11) for all 0 ≤ k ≤ dnT e, and once again adopt for all
0 ≤ k ≤ dnT e the shorthands (3.12).

(iii) The portfolio held by the large investor immediately before time tn0 = 0 is denoted by(
ξn−1, b

n
−1

)
and supposed to be deterministic.

If the large investor uses the portfolio strategy (ξn, bn) he holds for each 0 ≤ k ≤ dnT e − 1 a
total number of ξnk stocks and the cash amount bnk between time tnk and time tnk+1. At time
T = tndnT e he holds a portfolio of ξndnT e stocks and bndnT e in cash.

Remark. Note that our definition of a portfolio strategy differs from the standard definition
used in the Cox-Ross-Rubinstein model, since we only require that the strategy (ξn, bn)
is adapted, but not predictable. In the Cox-Ross-Rubinstein model the portfolio strategy
(φn, βn) =

{
φnk , β

n
k

}
1≤k≤dnT e is normally introduced in such a way that the portfolio

(
φnk , β

n
k

)
describes the number of stocks held between tnk−1 and tnk for each 1 ≤ k ≤ dnT e. If we
take our definition of a portfolio strategy (ξn, bn) and set

(
φnk , β

n
k

)
=
(
ξnk−1, b

n
k−1

)
for all

1 ≤ k ≤ dnT e, then (φn, βn) is of course predictable and fulfills the ordinary definition of the
portfolio strategy in the Cox-Ross-Rubinstein model. However, since the large investor price
for the stock depends on the large investor’s stock holdings, and in general even both before
and after his trade, it is much easier for us to think of ξnk as the number of stocks and bnk as
the cash amount held between time tnk and time tnk+1, for all 0 ≤ k ≤ dnT e − 1. �

As in the standard small investor models like the Cox-Ross-Rubinstein model we concentrate
our analysis on those trading strategies of the large investor for which the large investor does
not input or withdraw any funds from the market between the time points 0 and T . This
leads to the definition of a self-financing strategy:

Definition 1.24. For any n ∈ IN a portfolio strategy
(
ξn, bn

)
is called self-financing if

bnk−1 = bnk +
(
ξnk − ξnk−1

)
Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
for all 1 ≤ k ≤ dnT e. (3.13)



1.3. THE BINOMIAL MULTI-PERIOD LARGE INVESTOR MARKET MODEL 43

Under the self-financing condition any increase in the number of shares of stock held by large
investor at any of the trading dates

{
tnk
}

1≤k≤dnT e is completely financed by a reduction of
the cash amount held in his portfolio and vice versa.

1.3.4 The Evolution of the Stock Price

For every n ∈ IN the evolution of the stock price in the discrete large investor market with
the trading dates

{
tnk
}

0≤k≤dnT e is now completely determined by the price system (ψ, µ), the
fundamental process Un, the stock-related part ξn of the portfolio strategy (ξn, bn), and –
depending on the price system – also on the large investor’s stock holdings ξn−1 immediately
before time tn0 = 0. Of course, the critical moments in the evolution of the stock price are
the trading times

{
tnk
}

0≤k≤dnT e where the large investor adjusts his portfolio, since here the
stock price obtained in the market switches from the old Walrasian equilibrium, which holds
as long as the large investor keeps his old stock position, to a new equilibrium which takes into
account the large investor’s new stock holdings. Such a critical moment has been described
in detail for a fixed time point tnk and fixed fundamentals Unk in Section 1.1.2.
Figure 1.2 depicts the possible evolution of the stock price up to the trading time tn3 if the
large investor uses a path-independent portfolio strategy (ξn, bn). For the sake of clarity the
dependence of ψ on t and any superscript n is suppressed in this figure. In order to explain
the figure, let us start at the first point in time which is used for trading, namely at tn0 = 0.
At this time the fundamentals are given by Un0 = un00 = u0, and according to his portfolio
strategy (ξn, bn) the large investor has to shift his stock holdings from the ξn−1 shares of stock
which he had initially held to ξn00 = ξn

(
tn0 , u

n
00

)
shares. Before the large investor places any

order, the equilibrium price for the stock at time tn0 = 0 is based on the large investor’s
initial ξn−1 shares of stock, so it is given by ψ

(
tn0 , u

n
00, ξ

n
−1

)
. In the figure we now suppose

that ξn−1 < ξn00, such that the large investor has to buy ξn00 − ξn−1 additional shares of stock.
Because of the price system (ψ, µ) the average price per share for this transaction is given by
S+

00 := Sµ
(
tn0 , u

n
00, ξ

n
−1, ξ

n
00

)
. (If ξn−1 ≥ ξn00, the large investor would have to sell ξn−1−ξn00 shares

for the price S+
00 per share.) With the large investor having shifted his stock holdings to ξn00

stocks, the new equilibrium stock price on the market at time tn0 becomes ψ
(
tn0 , u

n
00, ξ

n
00

)
.

As time proceeds, the fundamentals change, for example because of some news arriving. At
time tn1 the fundamentals have changed either to un11 or to un1(−1), and the corresponding
equilibrium prices before the large investor acts on the market are ψ

(
tn1 , u

n
1(±1), ξ

n
00

)
. But

at time tn1 the large investor has to shift his stock position again, namely to ξn11 or ξn1(−1),
respectively. In our figure we assume ξn11 > ξn00 > ξn1(−1), which implies that the large investor
has to buy ξn11 − ξn00 shares at an average stock price of S+

11 := Sµ
(
tn1 , u

n
11, ξ

n
00, ξ

n
11

)
if the

fundamentals have increased, and he has to sell ξn00 − ξn1(−1) shares at an average price of
S−1(−1) := Sµ

(
tn1 , u

n
1(−1), ξ

n
00, ξ

n
1(−1)

)
if the fundamentals have decreased between time tn0 and

time tn1 .
Figure 1.2 illustrates that the binomial tree for the stock prices is recombining as long as
the large investor’s portfolio strategy is path-independent. However, compared to a standard
Cox-Ross-Rubinstein model, the influence of the large investor’s stock holdings on the stock
price itself complicates the method how the stock prices recombine. In the standard Cox-
Ross-Rubinstein model the stock price at each trading time is exogenously given as a function
ψ• : [0, T ] × IR → IR of time and fundamentals and does not depend on the actual stock
holdings of one particular investor. Therefore, the stock price which appears in the market if
the fundamentals go up first and then down is the same as if the fundamentals go down first
and then up again. In both cases the price would be given by ψ•

(
tn2 , u

n
20

)
.

In Figure 1.2 we can see the additional complexity of the recombining property in our large
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ψ
(
u00, ξ00
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)
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(
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S+
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Figure 1.2: Possible stock prices up to time tn3
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investor model: The equilibrium price at time tn2 before the large investor has traded is given
by ψ

(
tn2 , u

n
20, ξ

n
11

)
if the fundamentals went up and then down, and by ψ

(
tn2 , u

n
20, ξ

n
1(−1)

)
if

the fundamentals went down first and then up. If the prices really depend on the holdings
of the large investor, these two equilibrium prices do not coincide, and as long as the price-
determining measure µ of the price system (ψ, µ) is not the Dirac measure δ1, the two large
investor prices S∓20 := Sµ

(
tn2 , u

n
20, ξ

n
1(±1), ξ

n
20

)
, i.e. the average stock prices the large investor

might be faced with when performing the necessary transaction at time tn2 , do not coincide
either. However, the new equilibrium price which appears in the market after the large
investor’s transaction will be ψ

(
tn2 , u

n
20, ξ

n
20

)
in both cases, and thus, in the sense described

above, the binomial tree for the stock prices in the large investor model is indeed recombining
as well.

Remark. Bakstein (2001) has developed a binomial large investor model which incorporates
in addition to the random price impact known from the Cox-Ross-Rubinstein model both
a short-term price impact due to the lack of liquidity at the large investor’s trades and a
permanent slippage due to the large investor’s stock holdings. If the large investor uses a
path-independent trading strategy, the stock price process lives on a recombining tree which
is similar to the one of Figure 1.2. �

1.3.5 The Value of a Portfolio Strategy

If an investor holds a certain portfolio, he is inclined to assess his portfolio by some valuation
rule. For a large investor who affects the stock price by his own trading it is not a priori clear
how to value his stock holdings. In this section we develop two different valuation concepts
for a large investor’s portfolio or his portfolio strategy. Therefore, let us once again fix some
price system (ψ, µ), some discretization parameter n ∈ IN and the large investor’s stock
holdings ξn−1 immediately before time tn0 = 0, and model the evolution of the fundamentals
by a random walk Un as in (3.7).
There is no doubt how the cash in the large investor’s portfolio should be valued. Since the
investor could borrow or lend an arbitrary amount of cash for the same interest rate, which we
suppose to be zero, the only reasonable price per unit of cash in the large investor’s portfolio
is 1. In the standard Cox-Ross-Rubinstein model the shares of stock in the investor’s portfolio
are priced along the same reasoning by the actual stock price in the market. In this case the
stock price is also exogenously given and does not depend on the investor’s particular stock
holdings. However, the discussion at the end of Section 1.3.4 has once again shown that in a
true large investor market there is no longer one unique stock price for a given combination of
time and fundamentals like in the Cox-Ross-Rubinstein model. Hence every valuation of the
large investor’s stock holdings will depend on the particular stock price selected to value his
share of stock, and like in small investor models with transaction costs the values of the large
investor’s portfolio before and after his transaction need not coincide. Our two valuation
concepts for the value of the large investor’s portfolio strategy at a certain point tnk in time
evaluate the portfolio after the large investor’s trade at time tnk .
The first concept uses the most recent price experienced by the large investor, i.e. the average
per-share price for his transaction at this point in time. If for example the large investor
has held ξnk−1 shares of stock immediately before time tnk and shifts his stock holdings at
time tnk to ξnk shares, then the average stock price achieved by that transaction is given by
Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
. This approach to valuate the large investor’s stock holdings leads to the

concept of the paper value of a portfolio strategy.

Definition 1.25. The paper value V n
k of a portfolio strategy

(
ξn, bn

)
at time tnk is given

by
V n
k := ξnkSµ

(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
+ bnk for all 0 ≤ k ≤ dnT e.
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We will write V n =
{
V n
k

}
0≤k≤dnT e to denote the paper value process between time 0 and T .

Remark. The paper value is a mark-to-market approach in the sense that it values the whole
stock holdings of the large investor by the last price seen on the market by the large investor.
A similar valuation concept of paper value was first introduced in discrete time by Jarrow
(1992) and in continuous time by Schönbucher and Wilmott (2000). Implicitly, the paper
valuation concept is also assumed in the continuous-time models of Frey (1998, 2000) and
Sircar and Papanicolaou (1998), as we shall see when we investigate the limits of our discrete
models in Chapter 4. A related mark-to-market concept in discrete time has been developed
by Bakstein (2001) and Bakstein and Howison (2002). These two authors use the mid-
market price, which prevails in the market after the transaction of the large investor has been
executed and the stock price has found its new equilibrium, as their mark-to-market value of
the large investor’s stock position. If we suppose a negligible bid-ask spread the mid-market
price is the mark-to-market price for a small investor. Our paper value is also similar to the
“marked-to-market value” of Çetin et al. (2004). In a continuous-time economy where the
large investor affects the stock price only temporarily through the number of shares traded
in a particular point in time, this mark-to-market value uses the marginal stock price to
evaluate the large investor’s portfolio. �

The stock price used for determining the paper value is an observed market price, so that the
paper value can be calculated by the large investor without knowing the detailed structure of
the price system (ψ, µ). This simplicity and transparency makes the paper value an important
valuation rule, especially in a real-life market, where the actual price system (ψ, µ) is not
known at all, and where in general two agents will have two different beliefs on the “true”
price system; if these agents had to find a common valuation principle for the large investor’s
portfolio, they could still agree on the paper value.
However, the paper value has some serious drawbacks: The stock price of Sµ

(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
per share is only the per-share price for the transaction which changed the large investor’s
stock holdings from ξnk−1 to ξnk shares. It is not guaranteed that the large investor can
achieve the same price when immediately switching his stock holdings back from ξnk to ξnk−1

shares, nor that he could sell all his ξnk shares for that price. Moreover, even if the large
investor could sell all his ξnk shares for that price, this would not imply that at time tnk the
large investor could also build up his stock holdings from zero for the same price, so the
paper value need not reflect the strategic value of the large investor’s stock holdings at all.
Thirdly, as a function of the large investor’s stock holdings ξnk−1 before time tnk , the stock price
Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
used for the calculation of the paper value is a retrospective stock price,

though a decision-oriented valuation rule should rather use a topical or even a prospective
price.

Remark. The third drawback could be circumvented by valuing the large investor’s stock
holdings with the new Walrasian equilibrium price ψ

(
tnk , U

n
k , ξ

n
k

)
which appears immediately

after the large investor’s transaction. However, except for an infinitesimal amount of shares
the large investor can not trade shares for this price. In reality the large investor might even
be unaware of this equilibrium price, while he will always know the price Sµ

(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
at which he has traded. �

In Section 1.1 we have explained in great detail the usefulness of the benchmark price function
as a large investor price function which satisfies the “fair” price condition (1.1). The bench-
mark price gives the “fair” price per share for a transaction of the large investor in the sense
that any (instantaneous) round-trip of the large investor does not lead to any transaction
loss or profit. For example, the “fair” price for the transaction necessary to switch the large
investor’s stock holdings at time tnk from ξnk−1 to ξnk shares is given by S∗

(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
,
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and this price coincides with the benchmark price S∗
(
tnk , U

n
k , ξ

n
k , ξ

n
k−1

)
for the immediate can-

cellation of that transaction. In order to assess the whole position of ξnk shares held by the
large investor at time tnk , the benchmark price S∗

(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
is still unsuitable, since it

is a retrospective price as well, as it depends on the large investor’s stock holdings ξnk−1 before
time tnk . However, we can easily use the benchmark price function S∗

(
tnk , U

n
k , · , ·

)
: IR2 → IR

to construct an objective and topical valuation for the ξnk shares held by the large investor at
time tnk , namely just by taking the benchmark price S∗

(
tnk , U

n
k , ξ

n
k , 0
)

which corresponds to
the liquidation of all the ξnk shares held by the large investor at time tnk . Of course, this price
only depends on the ξnk shares held by the large investor at time tnk , and since the benchmark
price is a “fair” price, it even coincides with the benchmark price S∗

(
tnk , U

n
k , 0, ξ

n
k

)
which

corresponds to the transaction needed by the large investor if he wants to change his stock
holdings at time tnk from 0 to ξnk shares.
Thus, it is sensible to add another price function to the price functions of Section 1.3.1:

Definition 1.26. Let (ψ, µ) be a large investor price system, and S∗ : IR3 → IR the bench-
mark price function in the market described by (ψ, µ). Then the (loss-free) liquidation
price function S̄ : [0, T ]× IR2 → IR is for all (t, u, ξ) ∈ [0, T ]× IR× IR given by

S̄(t, u, ξ) := S∗(t, u, ξ, 0) = S∗(t, u, 0, ξ) =
∫ 1

0
ψ(t, u, θξ)λ(dθ). (3.14)

Remark. Note that the liquidation price is only a theoretical liquidation price, which cannot
be observed in the market. In a “normal” large investor market, the large investor price and
the benchmark price will not coincide, but the large investor is exposed to transaction losses.
In this case the large investor would only achieve a worse price per share than the liquidation
price if he would immediately liquidate his stock holdings.
Though the liquidation price S̄

(
tnk , U

n
k , ξ

n
k

)
itself cannot be observed in the market, it can be

calculated like in (3.3) from the new Walrasian equilibrium price ψ
(
tnk , U

n
k , ξ

n
k

)
at time tnk , if

both the price system (ψ, µ) and the large investor’s stock holdings ξnk are known, since the
only missing variable, the value Unk of the fundamentals at time tnk , can be calculated from
ψ
(
tnk , U

n
k , ξ

n
k

)
by inverting the strictly increasing function ψ

(
tnk , ·, ξnk

)
: IR→ IR. �

If we now use the liquidation price to value the stock holdings of the large investor, we have
found a second valuation principle for the portfolio strategy of a large investor, and since the
liquidation price depends only on the large investor’s stock holdings at a single point in time,
this second valuation concept even works for a portfolio of the large investor at any one point
in time:

Definition 1.27. The real value V̄ n
k of a portfolio

(
ξnk , b

n
k

)
at time tnk is given by

V̄ n
k := ξnk S̄

(
tnk , U

n
k , ξ

n
k

)
+ bnk for all 0 ≤ k ≤ dnT e. (3.15)

If
(
ξn, bn

)
is a portfolio strategy, then for any 0 ≤ k ≤ dnT e the real value of

(
ξn, bn

)
at

time tnk is the real value of the corresponding portfolio
(
ξnk , b

n
k

)
at time tnk . In this case we

will write V̄ n =
{
V̄ n
k

}
0≤k≤dnT e to denote the real value process between time 0 and T .

Remark. The introduction of the real value shows the self-financing property of (3.13) in a
new light. Recalling the definition of the transaction loss function cµ : [0, T ] × IR3 → IR
of (3.4), we see that the self-financing condition (3.13) is equivalent to

bnk−1 = bnk +
(
ξnk − ξnk−1

)
S∗
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
+ cµ

(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
for all 1 ≤ k ≤ dnT e.
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Moreover, the time- and fundamental-dependent analogue of (1.26) gives us the formula(
ξnk − ξnk−1

)
S∗
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
= ξnk S̄

(
tnk , U

n
k , ξ

n
k

)
− ξnk−1S̄

(
tnk , U

n
k , ξ

n
k−1

)
, and thus the self-

financing condition is also equivalent to

ξnk−1S̄
(
tnk , U

n
k , ξ

n
k−1

)
+ bnk−1 = ξnk S̄

(
tnk , U

n
k , ξ

n
k

)
+ bnk + cµ

(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
(3.16)

for all 1 ≤ k ≤ dnT e. Hence the self-financing condition can be reinterpreted as the rule that
for any trading time tnk from

{
tnk
}

1≤k≤dnT e the “real value” of the “old” portfolio
(
ξnk−1, b

n
k−1

)
has to compensate both the real value of the “new” portfolio

(
ξnk , b

n
k

)
and the loss induced

by the portfolio shift from ξnk−1 to ξnk shares of stock.
The equation (3.16) also shows that even for a self-financing strategy the “real value” before
and after the large investor’s trade need not coincide. If the implied transaction losses
cµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
are positive, then the “real value” of the portfolio strategy at time tnk

evaluated before the large investor shifts his portfolio from ξnk−1 to ξnk shares of stock would
be larger then the real value after the transaction. We have introduced the real value as
the value after the large investor’s trade since this definition ensures that the real value of a
path-independent self-financing portfolio strategy is recombining. �

As we proceed we will often have to distinguish between the different possible future values
of the large investor’s portfolio given the information which is available at a certain point in
time. In order to describe these possible outcomes, we will now introduce functional analogues
of the two value processes V n and V̄ n, i.e. we want to express the real and the paper value
of a given trading strategy (ξn, bn) as functions of time and the possible outcomes of the
fundamental process Un.
If we restrict our attention to path-independent portfolio strategies, we can introduce such
a function for the real value by means of the strategy and cash holdings function of Defini-
tion 1.23:

Definition 1.28. Let us suppose that
(
ξn, bn

)
is a path-independent portfolio with corre-

sponding strategy and cash holdings functions ξn : An → IR and bn : An → IR, respectively.
Then the real value function v̄n = v̄n,(ξ

n,bn) : An → IR is given by

v̄n(t, u) := ξn(t, u)S̄
(
t, u, ξn(t, u)

)
+ bn(t, u) for all (t, u) ∈ An. (3.17)

With this definition we can recover the real value at time tnk of a path-independent portfolio
strategy (ξn, bn) as

V̄ n
k = v̄n

(
tnk , U

n
k

)
for all 0 ≤ k ≤ dnT e. (3.18)

Since the paper value does not only depend on the stock holdings ξnk after the trade at time
tnk , but also on the stock holdings ξnk−1 at time tnk−1, an analogous functional representation
of the paper value function needs an additional dimension.

Definition 1.29. Under the assumptions of Definition 1.28 the paper value function
vn = vn,(ξ

n,bn) : An × IR→ IR is given by

vn
(
t, u, ξ) := ξn(t, u)Sµ

(
t, u, ξ, ξn(t, u)

)
+ bn(t, u) for all (t, u, ξ) ∈ An × IR. (3.19)

With this definition we can recover the paper value V n
k of a path-independent portfolio

strategy (ξn, bn) at time tnk as

V n
k = vn

(
tnk , U

n
k , ξ

n
k−1

)
for all 0 ≤ k ≤ dnT e. (3.20)

Moreover, for all those path-independent trading strategies and all 1 ≤ k ≤ dnT e the large
investor’s stock holdings ξnk−1 between time tnk−1 and time tnk can be written in the functional
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form ξnk−1 = ξn
(
tnk−1, U

n
k−1

)
, hence we can rewrite (3.20) as V n

k = vn
(
tnk , U

n
k , ξ

n
(
tnk−1, U

n
k−1

))
.

This shows that as opposed to the real value the paper value at time tnk will in general depend
not only on the fundamental value Unk at time tnk , but also on the fundamentals Unk−1 just
before time tnk .

Remark. The real value of a portfolio was first proposed by Schönbucher and Wilmott (2000)
in the context of a continuous-time market where the large investor can trade at any time
during some time interval [0, T ]. Their market mechanism corresponds to a price system
(ψ, µ) where the price-determining measure µ either is or can at least be chosen to be the
Dirac measure δ1 concentrated in 1. Like in our derivation Schönbucher and Wilmott (2000)
obtain the real value of a portfolio

(
ξnk , b

n
k

)
as the sum of the price of the cash amount bnk and

a theoretical liquidation value for the ξnk shares of stocks, but they motivate the liquidation
value for the stock position differently. Namely, they define the liquidation value as the price
which could be obtained by an infinitely rapid, yet not instantaneous, liquidation of the
stock position via infinitely many infinitely small transaction blocks, such that – given that
the price function ψ : [0, T ]× IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ) is increasing in ξ – the real value
describes the maximal cash amount the large investor could receive for his portfolio. When
using the limit of their liquidation strategies, Schönbucher and Wilmott (2000) also notice
that a round-trip does not induce any transaction losses, and conclude that it cannot induce
any transaction gains either for no-arbitrage reasons. Such a statement was made precise by
means of the benchmark price in Section 1.1. However, despite their findings with regards
to the real value, Schönbucher and Wilmott (2000) only consider the replication of the paper
value of an option and look at the paper value of the replicating strategy when it comes to the
replication of options. Thus, they do not fully employ the real value concept for replication
purposes as we will do in Chapter 2. In a general semimartingale setting, Schönbucher and
Wilmott’s real value concept has been analyzed and exploited for superreplication by Baum
(2001) and Bank and Baum (2004).
The real value is also implicitly used by Jonsson and Keppo (2001), who assume in their
pricing model for a European call option written by a large investor that at maturity the
holder of the option has the right to immediately sell all shares of stock back to the large
investor and receive instead an amount which equals the real value of the large investor’s
stock position. In the most recent version of this paper, Jonsson et al. (2004) argue that the
delivery is taking place in infinitesimal packages, and hence they really employ the real value.
A slightly different version of a liquidation price in discrete time was already introduced by
Jarrow (1992). In opposition to our valuation concept Jarrow’s “real wealth” considers the
real liquidation price and implicitly accounts for transaction losses, ignoring the strategic
advantages of holding the stock position for hedging purposes. �

1.4 Replication

In this section we consider replication problems in our binomial large investor market. The
natural replication problem in large investor market concerns the replication of certain portfo-
lios, especially of contingent claims. Since the possible stock and cash positions of a replicating
trading strategy have to satisfy a sequence of (in general) non-trivial fixed point equations
it is not a priori clear that replicating strategies for the large investor exist at all. However,
we will introduce the notation of star-convex portfolios and show that under some regularity
assumptions on the price system (ψ, µ) and the structure of the transaction losses in this
market there exists for each star-convex contingent claim a self-financing replicating strategy,
which is described by the sequence of fixed point problems, and if the price system implies
nondecreasing transaction losses, this replicating strategy even is unique. While the more
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natural replication problem in the large investor market is to replicate a given number of
shares of stock and a given cash amount, the large investor might also want to replicate a
certain paper value. In Section 1.4.3 we will give conditions under which the large investor
can solve such a problem as well.
Thus, let us fix some price system (ψ, µ) and some n ∈ IN and define the trading dates{
tnk
}

0≤k≤dnT e on [0, T ] and the binomial random walk Un =
{
Unk
}

0≤k≤dnT e describing the
fundamentals at these time points as in Section 1.3.2.

1.4.1 Definitions

At first we have to specify the definition of a contingent claim and its attainability in a large
investor environment. Then we will introduce the concept of star-convex portfolios in our
market and show that the long European call is an example of a star-convex contingent claim.
In the standard Cox-Ross-Rubinstein model the investor can shift his portfolio without any
transaction losses from a pure stock portfolio to one which consists of cash only, and vice
versa. Thus in that model one does not have to distinguish between physical delivery and
cash settlement, and a contingent claim is defined as a portfolio value at maturity T , or –
put in mathematical terms – as an Fn

dnT e-measurable random variable.
However, in an environment with a large investor a round trip will in general induce some
transaction losses, and thus the large investor cannot transfer cash positions into stock posi-
tions with the same real value (and vice versa) at no costs. Therefore, we have to distinguish
in large investor markets between physical delivery and cash settlement of an option – or more
generally: between the different combinations in stocks and cash at maturity, even though
they might lead to the same real value.
This situation differs from the standard Cox-Ross-Rubinstein or Black-Scholes setting, but
it is similar to the replication of contingent claims in a market with transaction costs. Hence
our definition of a contingent claim can parallel the definition used in binomial transaction
costs models as considered by Boyle and Vorst (1992) and others.

Definition 1.30. A contingent claim
(
ξn, bn

)
at maturity T is a portfolio at time tndnT e = T .

Definition 1.31. A contingent claim
(
ξn, bn

)
is called attainable if there exists a self-

financing portfolio strategy
(
ξn, bn

)
such that ξndnT e = ξn and bndnT e = bn. In this case we say

that
(
ξn, bn

)
replicates the contingent claim

(
ξn, bn

)
.

Remark. If (ξn, bn) is the replicating strategy of some attainable contingent claim (ξn, bn),
then the large investor needs ξn0 shares of stock and the cash amount bn0 at time tn0 = 0 in
order to be able to replicate the option. Under the assumption that the large investor has
held ξn−1 shares of stock immediately before time 0, the large investor would need a total cash
amount of

v
(
0, un00, ξ

n
−1

)
= ξn0Sµ

(
0, un00, ξ

n
−1, ξ

n
0

)
+ bn0 , (4.1)

at time 0 in order to build up his portfolio at this point in time. This amount is just the
paper value of the portfolio

(
ξn0 , b

n
0

)
at time 0. However, as in small investor markets with

transaction costs we have to be careful with the interpretation of v
(
0, un00, ξ

n
−1

)
as the “fair”

price of the contingent claim, since there might exist other self-financing trading strategies
which lead to at least ξn shares of stock and a cash amount of at least bn at time tndnT e, but
which are cheaper to set up than the perfect replicating strategy (ξn, bn).

Not every contingent claim need be attainable. Therefore, when we want to find replicating
strategies, we have to limit the class of contingent claims considered. It turns out that the
class of star-convex contingent claims is a good choice, since every star-convex contingent
claim can be replicated by the large investor.
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Definition 1.32. For each 0 ≤ k ≤ dnT e a path-independent portfolio
(
ξnk , b

n
k

)
at time tnk is

called convex if the function ξn
(
tnk , ·

)
: Unk → IR of representation (3.11) is nondecreasing;

it is called concave if ξn
(
tnk , ·

)
: Unk → IR is nonincreasing.

Recalling the shorthand (3.12) we say that a convex portfolio
(
ξnk , b

n
k

)
at time tnk is star-

convex if for all i ∈ Ik−1 =
{

1− k, 3− k, . . . , k − 1
}

we have

ξnk(i±1)Sµ
(
tnk , u

n
k(i±1), ξ

n
k(i∓1), ξ

n
k(i±1)

)
+ bnk(i±1)

≥ ξnk(i∓1)Sµ
(
tnk , u

n
k(i±1), ξ

n
k(i∓1), ξ

n
k(i±1)

)
+ bnk(i∓1).

(4.2)

A concave portfolio
(
ξnk , b

n
k

)
at time tnk is called star-concave if for all i ∈ Ik−1

ξnk(i±1)Sµ
(
tnk , u

n
k(i±1), ξ

n
k(i∓1), ξ

n
k(i±1)

)
+ bnk(i±1)

≤ ξnk(i∓1)Sµ
(
tnk , u

n
k(i±1), ξ

n
k(i∓1), ξ

n
k(i±1)

)
+ bnk(i∓1).

A portfolio strategy
(
ξn, bn

)
is (star-)convex if the portfolios

(
ξnk , b

n
k

)
are (star-)convex for

all 0 ≤ k ≤ dnT e, and similarly the portfolio strategy is called (star-)concave if all the
portfolios

{(
ξnk , b

n
k

)}
0≤k≤dnT e are (star-)concave.

Remark. Since Un0 = {u0} consists of a single element and since I−1 := {}, every portfolio at
time 0 is star-convex. Moreover, by the same arguments as in the remark after Definition 1.27
we see that (4.2) can for all 0 ≤ k ≤ dnT e and all i ∈ Ik−1 be rewritten as

ξnk(i±1)S̄
(
tnk , u

n
k(i±1), ξ

n
k(i±1)

)
+ bnk(i±1)

≥ ξnk(i∓1)S̄
(
tnk , u

n
k(i±1), ξ

n
k(i∓1)

)
+ bnk(i∓1) − cµ

(
tnk , u

n
k(i±1), ξ

n
k(i∓1), ξ

n
k(i±1)

)
.

(4.3)

Hence, in the presence of an ordinary price system (ψ, µ) with a nonnegative transaction loss
function cµ : [0, T ]× IR3 → [0,∞), the condition of star-convexity means that at any trading
time tnk and for any particular outcome unk(i±1) of the fundamentals at this time, the large
investor will always turn down an offer to exchange his portfolio for the deterministic portfolio(
ξnk(i∓1), b

n
k(i∓1)

)
, which his trading strategy would require if at one time point between tn0 = 0

and tnk the fundamentals had gone in the opposite direction . Namely, (4.3) says that the
real value of the target portfolio

(
ξnk(i±1), b

n
k(i±1)

)
required by the large investor’s trading

strategy under the time-space realization
(
tnk , u

n
k(i±1)

)
is never lower than the real value of

the “neighboring” portfolio
(
ξnk(i∓1), b

n
k(i∓1)

)
reduced by the losses necessary to shift this

portfolio to the target portfolio. �

In the next example we show that a long European call with physical settlement is star-convex.

Example 1.7 (European Call). Let us assume for simplicity T = 1. The (long) European call
C = Cα of α ≥ 0 shares of stock with strike K ∈ IR is defined as the portfolio C =

(
ξn, bn

)
at time tnn = T which consists of ξn = α1{S̄(T,Un

n ,α)>K} shares of stock and the cash amount
bn = −αK1{S̄(T,Un

n ,α)>K}. If we look at the real value of this contingent claim as we have
defined it in Definition 1.28 we see that it is given by

V̄ n
n = α

(
S̄(T,Unn , α)−K

)+
,

and hence the real value of the European call has (almost) the form of an excess claim if the
(in this case: liquidation) stock price exceeds the strike K which we are accustomed to from
small investor market models.
We will now show that nonnegative transaction losses imply that the call C is star-convex.
In order to do so, we will identify the contingent claim

(
ξn, bn

)
as in Definition 1.31 with

the portfolio
(
ξnn , b

n
n

)
at time tnn = T in order to access its possible outcomes

(
ξni , b

n
i

)
for all
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i ∈ In. Because of the previous remark, we only have to show that (4.3) holds with k = n
and all i ∈ In−1, and since the transaction loss function cµ : [0, T ]× IR3 → IR is supposed to
be nonnegative, it suffices to show

ξnn(i±1)S̄
(
T, unn(i±1), ξ

n
n(i±1)

)
+ bnn(i±1) ≥ ξnn(i∓1)S̄

(
T, unn(i±1), ξ

n
n(i∓1)

)
+ bnn(i∓1) (4.4)

for all i ∈ In−1. Let us now fix such an i ∈ In−1 and note that by the definition of the
loss-free liquidation price function S̄ : [0, T ]× IR2 → IR in (3.14) we have

S̄
(
T, unn(i−1), α

)
=
∫ 1

0
ψ
(
T, unn(i−1), (1− θ)α

)
λ(dθ)

<

∫ 1

0
ψ
(
T, unn(i+1), (1− θ)α

)
λ(dθ) = S̄

(
T, unn(i+1), α

)
,

since the equilibrium price function ψ : [0, T ] × IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ), is strictly
increasing in u. Three possible cases can occur. Either we have S̄

(
T, unn(i+1), α

)
≤ K, or

S̄
(
T, unn(i−1), α

)
> K, or we have

S̄
(
T, unn(i−1), α

)
≤ K < S̄

(
T, unn(i+1), α

)
. (4.5)

In the first two cases it follows that ξnn(i−1) = ξnn(i+1) and bnn(i−1) = bnn(i+1), and hence (4.4)
trivially holds. In the third case the definition of the call implies that

(
ξnn(i−1), b

n
n(i−1)

)
= (0, 0)

and
(
ξnn(i+1), b

n
n(i+1)

)
=
(
α,−αK

)
. Thus, the two inequalities in (4.4) follow from (4.5) as

well, and the long European call is indeed a star-convex contingent claim. �

Remark. Example 1.7 reveals the main reason why we call the class of portfolios introduced
in Definition 1.32 convex: In the example of the long European call its real value is a convex
function of the loss-free liquidation price S̄(T,Unn , α). However, as we have indicated in the
beginning of this section the value of a contingent claim is not the right tool to describe
contingent claims in a market with a large investor, and so we have to transfer the convexity
from functions to portfolios. This brings some difficulties, but still relates back to the terms
used in standard small investor market models. �

1.4.2 Replication of Star-Convex Contingent Claims

Under some regularity assumptions on the price system and the implied loss structure we
will show in this section that in our binomial model every star-convex contingent claim is
attainable, and we will also give conditions such that the replicating strategy is unique.
In order to find the replicating strategy we use the same approach as in the Cox-Ross-
Rubinstein model and construct it step by step by calculating the portfolios necessary to
replicate the contingent claim backwards in time. In the Cox-Ross-Rubinstein model this
recursively leads to explicit equations for the values of the strategy and cash holdings at the
different points in time. Similarly we can find formulæ for these values in the large investor
case. However, the values of the strategy function are only given as solutions of a non-trivial
fixed point equation. Thus, the existence and uniqueness results for the replicating strategy
become much more involved than in a small investor model.

Let us now assume we are given some star-convex contingent claim (ξn, bn). In order to
replicate this claim by a portfolio strategy (ξn, bn) we need ξndnT e = ξn shares of stock and the
cash amount bndnT e = bn at maturity, so let us define the portfolio of the replicating strategy
(ξn, bn) at time tndnT e = T like this. Since (ξn, bn) is star-convex, the portfolio

(
ξndnT e, b

n
dnT e

)
is star-convex as well.
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Let us now assume that for some 1 ≤ k ≤ dnT e and all k ≤ j ≤ dnT e we have already
constructed star-convex portfolios

(
ξnj , b

n
j

)
at time tnj as part of a potential replicating strategy

(ξn, bn). Then we have to find out how the large investor’s portfolio between the trading
times tnk−1 and tnk has to look like in order to allow the large investor to (exactly) finance
the portfolio

(
ξnk , b

n
k

)
at time tnk . Hence we are looking for a portfolio

(
ξnk−1, b

n
k−1

)
at time

tnk−1 which satisfies the self-financing condition (3.13). If the fundamentals at time tnk−1 are
Unk−1, then the fundamentals Unk at time tnk will either be Unk−1 + δn or Unk−1 − δn, and the
self-financing condition reads

bnk−1 = bn
(
tnk , U

n
k−1 ± δn

)
+
(
ξn
(
tnk , U

n
k−1 ± δn

)
− ξnk−1

)
Sµ

(
tnk , U

n
k−1 ± δn, ξ

n
k−1, ξ

n
(
tnk , U

n
k−1 ± δn

))
.

(4.6)

From these two equations it follows that if some portfolio
(
ξnk−1, b

n
k−1

)
satisfies (4.6), then

there exists a path-independent one. Thus, we can use the shorthands of Definition 1.23,
namely

ξn(k−1)i = ξn
(
tnk−1, u

n
(k−1)i

)
and bn(k−1)i = bn

(
tnk−1, u

n
(k−1)i

)
for all i ∈ Ik−1, (4.7)

where ξn
(
tnk−1, ·

)
: Unk−1 → IR and bn

(
tnk−1, ·

)
: Unk−1 → IR are the two functions that allow

us to represent the stock and bank account holdings at time tnk−1 in terms of the fundamentals
Unk−1 as

ξnk−1 = ξn
(
tnk−1, U

n
k−1

)
and bnk−1 = bn

(
tnk−1, U

n
k−1

)
, (4.8)

respectively, and rewrite (4.6) in terms of these shorthands. Hence the self-financing condi-
tion implies that the possible stock and cash holdings (4.7), which the potential replicating
strategy prescribes at time tnk−1 depending on the particular realization un(k−1)i of the funda-
mentals Unk−1, have to satisfy

bn(k−1)i = bnk(i±1) +
(
ξnk(i±1) − ξn(k−1)i

)
Sµ
(
tnk , u

n
k(i±1), ξ

n
(k−1)i, ξ

n
k(i±1)

)
for all i ∈ Ik−1. (4.9)

If we subtract the two equations in (4.9) from each other we get for all i ∈ Ik−1:

0 = bnk(i+1) − bnk(i−1) +
(
ξnk(i+1) − ξn(k−1)i

)
Sµ
(
tnk , u

n
k(i+1), ξ

n
(k−1)i, ξ

n
k(i+1)

)
+
(
ξn(k−1)i − ξnk(i−1)

)
Sµ
(
tnk , u

n
k(i−1), ξ

n
(k−1)i, ξ

n
k(i−1)

)
.

(4.10)

This is a fixed point equation for ξn(k−1)i, and the derivation of this fixed point equation did
not employ the star-convexity at all.

Remark. In the particular case where the price-determining measure µ of the price system
(ψ, µ) is the Dirac measure δ1 concentrated in 1, such that the equilibrium price always
immediately adjusts to an order of the large investor before it is executed, the large investor
price function Sµ : [0, T ] × IR3 → IR of (3.2) simplifies to Sµ

(
t, u, ξ1, ξ2

)
= ψ(t, u, ξ2) for

all (t, u, ξ1, ξ2) ∈ [0, T ] × IR3. If ψ(tnk , u
n
k(i+1), ξ

n
k(i+1)) − ψ(tnk , u

n
k(i−1), ξ

n
k(i−1)) is positive, the

equation (4.10) can be transformed into an explicit equation for ξn(k−1)i, and it becomes

ξn(k−1)i =
bnk(i+1) + ξnk(i+1)ψ(tnk , u

n
k(i+1), ξ

n
k(i+1))−

(
bnk(i−1) + ξnk(i−1)ψ(tnk , u

n
k(i−1), ξ

n
k(i−1))

)
ψ(tnk , u

n
k(i+1), ξ

n
k(i+1))− ψ(tnk , u

n
k(i−1), ξ

n
k(i−1))

for all i ∈ Ik−1. The synchronous market condition of Jarrow (1994) implicitly imposes a
price mechanism which corresponds to a price-determining measure µ = δ1. Whenever the
market does only perceive the large investor’s stock position, but not his position in the
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option contract, Jarrow derives the replication strategy of a contingent claim in his two-
step binomial model by equivalent formulæ. Also Frey’s (1998) model in a continuous-time
framework implicitly uses a price system (ψ, µ) with a price-determining measure µ = δ1,
since it assumes that an order of the large investor is executed at the equilibrium price
which already reflects the new stock position of the large investor. Though the fixed point
problem becomes explicit for the particular choice of the price-determining measure which
has been used in the literature, for our general analysis we need to consider more general
price-determining measures, and thus we proceed in finding solutions for the general fixed
point problem (4.10). �

Our next important step is to find conditions under which (4.10) has a solution for all
i ∈ Ik−1. If such solutions exist we can use (4.9) as a definition for the possible cash
holdings

{
bn(k−1)i

}
i∈Ik−1

, and the portfolio
(
ξnk−1, b

n
k−1

)
given by (4.7) and (4.8) satisfies the

self-financing condition (4.6). Hence we can use this portfolio at time tnk−1 as part of the
replicating strategy (ξn, bn) we want to construct.
The next lemma states conditions under which the fixed point equation (4.10) has a solution.
Under some reasonable assumptions on the loss structure implied by the price system (ψ, µ)
we can even show that the portfolio

(
ξnk−1, b

n
k−1

)
inherits the star-convexity of the portfolio(

ξnk , b
n
k

)
, which becomes important if we want to repeat the preceding argument to construct

the portfolio
(
ξnk−2, b

n
k−2

)
of the replicating strategy (ξn, bn) as well.

Proposition 1.33. Let us assume that the equilibrium price function ψ : [0, T ]× IR2 → IR,
(t, u, ξ) 7→ ψ(t, u, ξ), is continuous in ξ, and suppose that for some 1 ≤ k ≤ dnT e the portfolio
(ξnk , b

n
k) is star-convex. Then there exists some function ξn

(
tnk−1, ·

)
: Unk−1 → IR with

ξn(k−1)i := ξn
(
tnk−1, u

n
(k−1)i

)
∈
[
ξnk(i−1), ξ

n
k(i+1)

]
for all i ∈ Ik−1 (4.11)

which solves (4.10).
Moreover, if the price system (ψ, µ) implies a natural loss structure and if for all ξ1, ξ2 ∈ IR
and i ∈ Ik−2 the large investor price function Sµ : [0, T ]× IR3 → IR satisfies

Sµ
(
tnk−1, u

n
(k−1)(i−1), ξ1, ξ2

)
≤ Sµ

(
tnk , u

n
ki, ξ1, ξ2

)
≤ Sµ

(
tnk−1, u

n
(k−1)(i+1), ξ1, ξ2

)
, (4.12)

then the portfolio
(
ξnk−1, b

n
k−1

)
at time tnk−1 implied by (4.10) and (4.9) is again star-convex.

Proof. For the proof of the first statement, let us fix 1 ≤ k ≤ n and i ∈ Ik−1, and define the
function gnki :

[
ξnk(i−1), ξ

n
k(i+1)

]
→ IR by

gnki(ξ) := bnk(i+1) − bnk(i−1) +
(
ξnk(i+1) − ξ

)
Sµ
(
tnk , u

n
k(i+1), ξ, ξ

n
k(i+1)

)
+
(
ξ − ξnk(i−1)

)
Sµ
(
tnk , u

n
k(i−1), ξ, ξ

n
k(i−1)

) (4.13)

for all ξ ∈
[
ξnk(i−1), ξ

n
k(i+1)

]
. Since

(
ξnk , b

n
k

)
is star-convex, we get by (4.2)

gnki
(
ξnk(i−1)

)
= bnk(i+1) − bnk(i−1) +

(
ξnk(i+1) − ξnk(i−1)

)
Sµ
(
tnk , u

n
k(i+1), ξ

n
k(i−1), ξ

n
k(i+1)

)
≥ 0

and

gnki
(
ξnk(i+1)

)
= bnk(i+1) − bnk(i−1) +

(
ξnk(i+1) − ξnk(i−1)

)
Sµ
(
tnk , u

n
k(i−1), ξ

n
k(i+1), ξ

n
k(i−1)

)
≤ 0.

Now ψ is continuous in its third component, hence gnki is continuous as well, and there has
to be some ξ ∈

[
ξnk(i−1), ξ

n
k(i+1)

]
with gnki(ξ) = 0, i.e. the fixed point problem (4.10) has at

least one solution ξn(k−1)i. Since such a solution exist for every i ∈ Ik−1 the first statement of
Proposition 1.33 is shown.
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The implied portfolio
(
ξnk−1, b

n
k−1

)
at time tnk−1 is convex, since for any j ∈ Ik−2 an application

of (4.11) to i = j ± 1 yields

ξn(k−1)(j+1) ≥ ξnkj ≥ ξn(k−1)(j−1).

Now let us suppose that the assumptions of the second statement in Proposition 1.33 hold.
We then have to show that the portfolio

(
ξnk−1, b

n
k−1

)
at time tnk−1 inherits its star-convexity

from
(
ξnk , b

n
k

)
. By the two inequalities (4.2) in Definition 1.32 this requires to show that for

all i ∈ Il−1 the two inequalities(
ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl , u

n
l(i+1), ξ

n
l(i−1), ξ

n
l(i+1)

)
+ bnl(i+1) − bnl(i−1) ≥ 0 (4.14)

and (
ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl , u

n
l(i−1), ξ

n
l(i+1), ξ

n
l(i−1)

)
+ bnl(i+1) − bnl(i−1) ≤ 0 (4.15)

hold, where we have set for expository reasons l = k − 1. If l = 0 there is nothing to show,
since every portfolio at time tn0 = 0 is star-convex. Thus we may assume without loss of
generality l ≥ 1, and fix some i ∈ Il−1. In this case we obtain from an application of both
inequalities in (4.9):

bnl(i−1) − bnl(i+1) = bn(l+1)i +
(
ξn(l+1)i − ξnl(i−1)

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i−1), ξ

n
(l+1)i

)
− bn(l+1)i −

(
ξn(l+1)i − ξnl(i+1)

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
(l+1)i

)
.

(4.16)

Hence the left-hand side of inequality (4.14) can be rewritten as(
ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl , u

n
l(i+1), ξ

n
l(i−1), ξ

n
l(i+1)

)
+ bnl(i+1) − bnl(i−1) = I + II,

where the terms I and II are given by

I :=
(
ξnl(i+1) − ξnl(i−1)

)(
Sµ
(
tnl , u

n
l(i+1), ξ

n
l(i−1), ξ

n
l(i+1)

)
− Sµ

(
tnl+1, u

n
(l+1)i, ξ

n
l(i−1), ξ

n
l(i+1)

))
and

II :=
(
ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i−1), ξ

n
l(i+1)

)
−
(
ξnl(i+1) − ξn(l+1)i

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
(l+1)i

)
−
(
ξn(l+1)i − ξnl(i−1)

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i−1), ξ

n
(l+1)i

)
Because of the natural loss structure we can apply Lemma 1.11 with

ξ = ξnl(i−1), α = ξn(l+1)i − ξnl(i−1) ≥ 0, and β = ξnl(i+1) − ξn(l+1)i ≥ 0

in order to conclude that II ≥ 0, and due to α+β ≥ 0 the second inequality in (4.12) implies
I ≥ 0 as well, hence we have shown (4.14).
Similarly, we can write the left-hand side of (4.15) as(

ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl , u

n
l(i−1), ξ

n
l(i+1), ξ

n
l(i−1)

)
+ bnl(i+1) − bnl(i−1) = III + IV,

where the terms III and IV are given by

III :=
(
ξnl(i+1) − ξnl(i−1)

)(
Sµ
(
tnl , u

n
l(i−1), ξ

n
l(i+1), ξ

n
l(i−1)

)
− Sµ

(
tnl+1, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
l(i−1)

))
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and

IV :=
(
ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
l(i−1)

)
−
(
ξnl(i+1) − ξn(l+1)i

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
(l+1)i

)
−
(
ξn(l+1)i − ξnl(i−1)

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i−1), ξ

n
(l+1)i

)
,

and we can conclude from the first inequality in (4.12) and Lemma 1.11 applied to

ξ = ξnl(i+1), α = −
(
ξnl(i+1) − ξn(l+1)i

)
≤ 0 and β = −

(
ξn(l+1)i − ξnl(i−1)

)
≤ 0

that III ≤ 0 and IV ≤ 0, respectively, hence (4.15) holds as well. Since i ∈ Il−1 can be
chosen arbitrarily, we thus conclude that the portfolio

(
ξnl , b

n
l

)
is indeed star-convex. q.e.d.

Remark. In Section 1.5 we will give non-trivial examples for price systems (ψ, µ) which satisfy
the assumptions of Proposition 1.33, at least for all sufficiently large n ∈ IN .

In general there might exist more than one solution ξn(k−1)i ∈
[
ξnk(i−1), ξ

n
k(i+1)

]
to the fixed

point problem (4.10). The next proposition states that under some intuitively convincing
assumptions on the loss structure there is at most one solution to the fixed point problem.

Proposition 1.34. Assume again that the equilibrium price function ψ : [0, T ] × IR2 → IR,
(t, u, ξ) 7→ ψ(t, u, ξ), is continuous in ξ, but now suppose also that the price system (ψ, µ)
implies nondecreasing total transaction losses. Then for any convex portfolio

(
ξnk , b

n
k

)
at some

time tnk with 1 ≤ k ≤ dnT e and for all i ∈ Ik−1 a solution ξn(k−1)i ∈
[
ξnk(i−1), ξ

n
k(i+1)

]
to the

fixed point equation (4.10) is always unique.

Proof. Let us fix 1 ≤ k ≤ n and i ∈ Ik−1 and recall from the proof of Proposition 1.33
the function gnki :

[
ξnk(i−1), ξ

n
k(i+1)

]
→ IR given by (4.13). Now it is easy to see that the

representation (2.1) of the static transaction loss function can be transferred to the dynamic
transaction loss function of (3.4), hence (4.13) can be rewritten in terms of the transaction
loss function cµ : [0, T ] × IR3 → IR and the benchmark value function S∗ : [0, T ] × IR3 → IR
as

gnki(ξ) = bnk(i+1) − bnk(i−1) + cµ
(
tnk , u

n
k(i+1), ξ, ξ

n
k(i+1)

)
− cµ

(
tnk , u

n
k(i−1), ξ, ξ

n
k(i−1)

)
+
(
ξnk(i+1) − ξ

)
S∗
(
tnk , u

n
k(i+1), ξ, ξ

n
k(i+1)

)
+
(
ξ − ξnk(i−1)

)
S∗
(
tnk , u

n
k(i−1), ξ, ξ

n
k(i−1)

)
.

Since Sµ implies nondecreasing total transaction losses, ξ 7→ cµ
(
tnk , u

n
k(i+1), ξ, ξ

n
k(i+1)

)
de-

creases and ξ 7→ cµ
(
tnk , u

n
k(i−1), ξ, ξ

n
k(i−1)

)
increases on

[
ξnk(i−1), ξ

n
k(i+1)

]
. Thus, if we can show

that the function hnki :
[
ξnk(i−1), ξ

n
k(i+1)

]
→ IR given by

hnki(ξ) =
(
ξnk(i+1) − ξ

)
S∗
(
tnk , u

n
k(i+1), ξ, ξ

n
k(i+1)

)
+
(
ξ − ξnk(i−1)

)
S∗
(
tnk , u

n
k(i−1), ξ, ξ

n
k(i−1)

)
for all ξ ∈

[
ξnk(i−1), ξ

n
k(i+1)

]
is strictly decreasing, then gnki strictly decreases on

[
ξnk(i−1), ξ

n
k(i+1)

]
as well, and thus there can exist at most one ξ ∈

[
ξnk(i−1), ξ

n
k(i+1)

]
with gnki

(
ξ
)

= 0.
In order to show that hnki is indeed strictly decreasing, let us first note that by the time-space
dependent analogue of (1.26) and the definition of the loss-free liquidation price function
S̄ : [0, T ]× IR2 → IR in (3.14) we can rewrite hnki(ξ) for all ξ ∈

[
ξnk(i−1), ξ

n
k(i+1)

]
as

hnki(ξ) = ξnk(i+1)S̄
(
tnk , u

n
k(i+1), ξ

n
k(i+1)

)
− ξnk(i−1)S̄

(
tnk , u

n
k(i−1), ξ

n
k(i−1)

)
− ξ
(
S̄
(
tnk , u

n
k(i+1), ξ

)
− S̄

(
tnk , u

n
k(i−1), ξ

))
.
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The first two terms of this expression are constant in ξ, and since Lebesgue and Riemann
integrals over continuous functions on a finite interval coincide, we can rewrite the third term
of this expressions as

ξ
(
S̄
(
tnk , u

n
k(i+1), ξ

)
− S̄

(
tnk , u

n
k(i−1), ξ

))
= ξ

∫ 1

0
ψ
(
tnk , u

n
k(i+1), θξ

)
− ψ

(
tnk , u

n
k(i−1), θξ

)
λ(dθ)

= ξ

∫ 1

0
ψ
(
tnk , u

n
k(i+1), θξ

)
− ψ

(
tnk , u

n
k(i−1), θξ

)
dθ

=
∫ ξ

0
ψ
(
tnk , u

n
k(i+1), x

)
− ψ

(
tnk , u

n
k(i−1), x

)
dx.

But due to our general assumption that the equilibrium price function ψ : [0, T ]× IR2 → IR,
(t, u, ξ) 7→ ψ(t, u, ξ) is strictly increasing in u, it follows that the integrand of the last integral
is strictly positive for all possible values x ∈ IR, thus the integral itself is strictly increasing,
and hence the function hnki :

[
ξnk(i−1), ξ

n
k(i+1)

]
→ IR, ξ 7→ hnki(ξ) strictly decreases, which was

left to prove. q.e.d.

In our attempt to find a replicating strategy for a star-convex contingent claim Proposi-
tion 1.33 has shown that if for some 1 ≤ k ≤ dnT e we have already constructed star-convex
portfolios

{(
ξnj , b

n
j

)}
k≤j≤dnT e as part of a potential replicating strategy

(
ξn, bn

)
, then we can

also construct a star-convex portfolio
(
ξnk−1, b

n
k−1

)
at time tnk−1 of such a (potential) repli-

cating strategy – at least as long as the conditions given in Proposition 1.33 are satisfied.
Having found this portfolio we can repeat our arguments until we finally have constructed a
full sequence of star-convex portfolios at all trading times, from tndnT e = T down to tn0 = 0.
But in that case we have constructed a full self-financing trading strategy (ξn, bn) which
replicates (ξn, bn). Since the condition (4.12), which assures that

(
ξnk−1, b

n
k−1

)
inherits the

star-convexity from
(
ξnk , b

n
k

)
, does not depend on the portfolio

(
ξnk , b

n
k

)
itself, the following

corollary is an immediate consequence of Propositions 1.33 and 1.34:

Corollary 1.35. Let us assume that the large investor price system (ψ, µ) satisfies the fol-
lowing properties:

(i) The equilibrium price function ψ : [0, T ]× IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ) is continuous
in ξ.

(ii) The price system (ψ, µ) implies a natural cost structure.

(iii) For all 1 ≤ k ≤ dnT e, all i ∈ Ik−1 and all ξ1, ξ2 ∈ IR the large investor price function
Sµ : [0, T ]× IR3 → IR generated by (ψ, µ) satisfies (4.12).

Then for every star-convex contingent claim
(
ξn, bn

)
there exists a self-financing trading strat-

egy
(
ξn, bn

)
=
{(
ξnk , b

n
k

)}
0≤k≤dnT e which replicates

(
ξn, bn

)
. Moreover, if (ψ, µ) also implies

nondecreasing total transaction losses, then the replicating strategy is unique among all strate-
gies which satisfy

ξn(k+1)(i−1) ≤ ξnki ≤ ξn(k+1)(i+1) for all (k, i) ∈ I(dnT e − 1).

Remark. As in the first part of the proof of Proposition 1.33 it is easy to see that if the
portfolio

(
ξnk , b

n
k

)
is star-concave, then there exists a portfolio

(
ξnk−1, b

n
k−1

)
which satisfies

the self-financing condition (4.9). Unfortunately, if Sµ implies a natural loss structure then
the star-concavity of

(
ξnk , b

n
k

)
is not necessarily inherited by

(
ξnk−1, b

n
k−1

)
. We will discuss

star-concave portfolios later in Section 1.4.4. �

Let us first show that star-convex contingent claims also appear in certain problems where
the large investor wants to replicate his paper wealth.
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1.4.3 Paper Value Replication

Most of the replication problems in small investor markets are written in terms of value
replication, and even Frey (1998) states his replication problem in a continuous large investor
market as a problem to achieve a certain paper value at maturity. In order to clarify the
relation of these replication problems, and especially of Frey’s problem, to our replication
problem of Section 1.4.2, we will now present a link between the replication of a certain
option value by the paper value at maturity of a self-financing portfolio strategy on the one
hand and the replication of star-convex contingent claims as considered in Section 1.4.2 on
the other hand. This section might be skipped on first reading.
Since the large investor price depends on the large investor’s stock holdings, the stock holdings
at and immediately before maturity needed to replicate the option value can only be derived
as a solution of a multidimensional fixed point equation. If the option value is given as
a convex function of the large investor price at maturity, we will prove the existence of a
solution to this fixed point problem under some regularity conditions on the price system
(ψ, µ) and the option’s payoff function. Once we have also shown that the implied portfolio
immediately before maturity is star-convex, we can proceed as in Section 1.4.2 to construct
a trading strategy which replicates the option value.
For ease of presentation we will assume in this section that T = 1 so that the index dnT e of
the different processes and shorthands simplifies to dnT e = n.
We now suppose that the large investor wants to find a self-financing strategy (ξn, bn) such
that in any state of the world the induced paper value at maturity coincides with the value of
a certain option which is determined as some function h : IR→ IR of the large investor price
at time T . For example the large investor might be an investment fund that has to achieve
a certain target at time T , which is measured by the stock price at this particular date.
The large investor price Sµ

(
T,Unn , ξ

n
n−1, ξ

n
n

)
at time T depends not only on the fundamentals

Unn at this time, but also on the ξnn−1 and ξnn shares of stock held by the large investor at
the time points tnn−1 and tnn = T , respectively, and so we have to look for a self-financing
trading strategy (ξn, bn) such that the corresponding paper value V n

n at time T satisfies
V n
n = h

(
Sµ
(
T,Unn , ξ

n
n−1, ξ

n
n

))
in order to replicate the option value by the paper value of the

large investor’s portfolio strategy. Due to the definition of the paper value V n
n this means

that we have to find a self-financing trading strategy (ξn, bn) with

ξnnSµ
(
T,Unn , ξ

n
n−1, ξ

n
n

)
+ bnn = h

(
Sµ
(
T,Unn , ξ

n
n−1, ξ

n
n

))
. (4.17)

Under suitable conditions on the price system (ψ, µ) and the convex option payoff h : IR→ IR
we will derive in three steps a self-financing strategy (ξn, bn) which satisfies the final condition
(4.17). At first, we will simultaneously show the existence of two portfolios

(
ξnn , b

n
n

)
and(

ξnn−1, b
n
n−1

)
at and immediately before time tnn = T , such that (4.17) holds and such that

at time T the portfolio
(
ξnn , b

n
n

)
can be generated from the portfolio

(
ξnn−1, b

n
n−1

)
in a self-

financing fashion, meaning that

bnn−1 = bnn +
(
ξnn − ξnn−1

)
Sµ
(
T,Unn , ξ

n
n−1, ξ

n
n

)
. (4.18)

Then we will show that the portfolio
(
ξnn−1, b

n
n−1

)
at time tnn−1 is star-convex, and finally use

our results of Section 1.4.2 to construct a full self-financing trading strategy with the final
portfolios

(
ξnn−1, b

n
n−1

)
and

(
ξnn , b

n
n

)
at time tnn−1 and tnn, respectively.

The first step is the most demanding step, since it involves an existence result on a high-
dimensional fixed point problem. Instead of the original fixed point problem (4.17) we will
solve in the following lemma a related fixed point problem, which does not involve the cash
position bnn. We write it in terms of the possible realizations as introduced by the shorthands
(3.12).



1.4. REPLICATION 59

Proposition 1.36. Let us assume that the equilibrium function ψ : [0, T ] × IR2 → IR,
(t, u, ξ) 7→ ψ(t, u, ξ) of the price system (ψ, µ) is nondecreasing in ξ and that the price-
determining measure µ is a probability measure on [0, 1]. Moreover, suppose that the payoff
function h : IR → IR in (4.17) is convex and that its left- and right-hand first derivatives
are bounded. Then there exist some nondecreasing functions ξn

(
tnn−1, ·

)
: Unn−1 → IR and

ξn
(
tnn, ·

)
: Unn−1 → IR, such that

ξn(n−1)i =
h
(
Sµ
(
T, unn(i+1), ξ

n
(n−1)i, ξ

n
n(i+1)

))
− h
(
Sµ
(
T, unn(i−1), ξ

n
(n−1)i, ξ

n
n(i−1)

))
Sµ
(
T, unn(i+1), ξ

n
(n−1)i, ξ

n
n(i+1)

)
− Sµ

(
T, unn(i−1), ξ

n
(n−1)i, ξ

n
n(i−1)

) (4.19)

for all i ∈ In−1,

ξnn(±n) = h′
(
ψ
(
T, unn(±n), ξ

n
n(±n)

)
+
)
, (4.20)

and

ξnni =


h(Sµ(T,un

ni,ξ
n
(n−1)(i+1)

,ξn
ni))−h(Sµ(T,un

ni,ξ
n
(n−1)(i−1)

,ξn
ni))

Sµ(T,un
ni,ξ

n
(n−1)(i+1)

,ξn
ni)−Sµ(T,un

ni,ξ
n
(n−1)(i−1)

,ξn
ni)

if denominator 6= 0

h′
(
ψ
(
T, unni, ξ

n
ni

)
+
)

otherwise.
(4.21)

for all i ∈ In−2.

The proof of the proposition will be based on Brouwer’s fixed point theorem, thus let us
briefly restate it:

Brouwer’s Fixed Point Theorem . Let D be a non-empty compact convex subset of a
finite-dimensional normed space. If L is a continuous operator which maps D into itself,
then L has at least one fixed point.

For a proof of Brouwer’s fixed point theorem, see for example (Aliprantis and Border, 1999,
Chapter 16.9).

Proof of Proposition 1.36. Let us choose some constant M > 0 which bounds the left- and
right-hand derivatives of the option payoff function h : IR→ IR, i.e. M satisfies

∣∣h′(x−)
∣∣ ≤M

and
∣∣h′(x+)

∣∣ ≤M for all x ∈ IR. The left- and right-hand derivatives of h exist on the whole
real line, since for any convex function there is at most a countable number of points where
the function is not differentiable. Then define the set D of ranked vectors (αn−1, αn) by

D :=
{(
αn−1, αn

)
∈ D

∣∣∣−M ≤ αn(−n) ≤ α(n−1)(1−n) ≤ αn(2−n) ≤ · · · ≤ α(n−1)(n−1) ≤ αnn ≤M
}

where the set D of (2n+ 1)-dimensional vectors is given by

D =
{(
αn−1, αn

) ∣∣∣ αk =
(
αk(−k), αk(2−k), . . . , αkk

)
∈ IRk+1 for k ∈ {n− 1, n}

}
.

The set D is not empty, and it is obviously closed, bounded, and convex. Now define the
mapping f : D → D by setting

f(n−1)i

(
αn−1, αn

)
:=

h
(
Sµ
(
T, unn(i+1), α(n−1)i, αn(i+1)

))
− h
(
Sµ
(
T, unn(i−1), α(n−1)i, αn(i−1)

))
Sµ
(
T, unn(i+1), α(n−1)i, αn(i+1)

)
− Sµ

(
T, unn(i−1), α(n−1)i, αn(i−1)

)
for all i ∈ In−1,

fni
(
αn−1, αn

)
:=


h(Sµ(T,un

ni,α(n−1)(i+1),αni))−h(Sµ(T,un
ni,α(n−1)(i−1),αni))

Sµ(T,un
ni,α(n−1)(i+1),αni)−Sµ(T,un

ni,α(n−1)(i−1),αni)
if denominator 6= 0

h′
(
ψ
(
T, unni, αni

)
+
)

otherwise
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for all i ∈ In−2, and fn(±n)

(
αn−1, αn

)
:= h′

(
ψ
(
T, unn(±n), αn(±n)

)
+
)
. If we can show that

f
(
αn−1, αn

)
∈ D for all

(
αn−1, αn

)
∈ D, Brouwer’s fixed point theorem will yield the desired

assertion.
As a first step to show that f maps D into itself let us note that the definition of the large
investor price function Sµ : [0, T ] × IR3 → IR in (3.2), the assumed monotonicity of the
function ξ 7→ ψ(t, u, ξ), and the concentration of the probability measure µ on the interval
[0, 1] imply for all t ∈ [0, T ] and u, ξ1, ξ2 ∈ IR the implication

ξ1 ≤ ξ2 ≤ ξ3 ⇒


Sµ
(
t, u, ξ2, ξ1

)
≤ ψ

(
t, u, ξ2

)
≤ Sµ

(
t, u, ξ2, ξ3

)
and

Sµ
(
t, u, ξ1, ξ2

)
≤ ψ

(
t, u, ξ2

)
≤ Sµ

(
t, u, ξ3, ξ2

)
.

(4.22)

Let us now fix some arbitrary
(
αn−1, αn

)
∈ D. Then f

(
αn−1, αn

)
∈ D if and only if

−M ≤ fn(−n)

(
αn−1, αn

)
≤ f(n−1)(1−n)

(
αn−1, αn

)
,

f(n−1)(n−1)

(
αn−1, αn

)
≤ fnn

(
αn−1, αn

)
≤ M ,

and if for all i ∈ In−2 we have

f(n−1)(i−1)

(
αn−1, αn

)
≤ fni

(
αn−1, αn

)
≤ f(n−1)(i+1)

(
αn−1, αn

)
. (4.23)

We will start with the proof of (4.23) for all i ∈ In−2. For this purpose we fix an arbitrary
i ∈ In−2 and introduce the shorthands

ψ1 = Sµ
(
T, un(i−2), α(n−1)(i−1), αn(i−2)

)
ψ2 = Sµ

(
T, uni, α(n−1)(i−1), αni

)
ψ3 = Sµ

(
T, uni, α(n−1)(i+1), αni

)
ψ4 = Sµ

(
T, un(i+2), α(n−1)(i+1), αn(i+2)

)
.

Since
(
αn−1, αn

)
∈ D implies the ordering

αn(i−2) ≤ α(n−1)(i−1) ≤ αni ≤ α(n−1)(i+1) ≤ αn(i+2)

and since the equilibrium price function ψ : [0, T ]× IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ), is strictly
increasing in the fundamental value u, we then get from (4.22) that ψ1 < ψ2 ≤ ψ3 < ψ4. If
we even have ψ2 < ψ3, the convexity of h implies

h(ψ1)− h(ψ2)
ψ1 − ψ2

≤ h(ψ2)− h(ψ3)
ψ2 − ψ3

≤ h(ψ3)− h(ψ4)
ψ3 − ψ4

,

which is by the definition of f : D → D seen to be equivalent to (4.23). In the other case,
i.e. if ψ1 < ψ2 = ψ3 < ψ4 we can still deduce from the convexity of h that

h(ψ1)− h(ψ2)
ψ1 − ψ2

≤ lim
ε↘0

h(ψ2)− h(ψ2 − ε)
ψ2 − (ψ2 − ε)

= h′(ψ2−) = h′(ψ3−)

≤ h′(ψ3+) = lim
ε↘0

h(ψ3 + ε)− h(ψ3)
ψ3 + ε− ψ3

≤ h(ψ4)− h(ψ3)
ψ4 − ψ3

,

and hence α(n−1)(i−1) ≤ αni ≤ α(n−1)(i+1) and (4.22) even imply

Sµ
(
T, uni, α(n−1)(i±1), αni

)
= ψ

(
T, uni, αni

)
.
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Looking once again at the definition of the multi-dimensional function f : D → D this shows
that (4.23) holds as well if ψ2 = ψ3, and since i ∈ In−2 could be chosen arbitrarily, (4.23)
holds for all i ∈ In−2.
By similar considerations we can show that fn(−n)

(
αn−1, αn

)
≤ f(n−1)(1−n)

(
αn−1, αn

)
and

f(n−1)(n−1)

(
αn−1, αn

)
≤ fnn

(
αn−1, αn

)
. Finally, the two bounds −M ≤ fn(−n)

(
αn−1, αn

)
and fnn

(
αn−1, αn

)
≤M follow directly from the definition of M as a bound on the derivative

of h : IR→ IR.
Thus, we have proved that f : D → D maps D into itself, and hence we can indeed ap-
ply Brouwer’s fixed point theorem to conclude that there exists at least one fixed point(
α∗n−1, α

∗
n

)
∈ D of f . This enables us to define the functions ξn

(
tnn−1, ·

)
: Unn−1 → IR and

ξn
(
tnn, ·

)
: Unn → IR by

ξnk
(
tnk , u

n
ki

)
= α∗ki for k ∈ {n− 1, n} and all i ∈ Ik,

and these functions obviously satisfy the equations (4.19) to (4.21) because of the definition
of f : D → D. Moreover, the two functions ξn

(
tnn−1, ·

)
and ξn

(
tnn, ·

)
are nondecreasing

because of the structure of the set D. This completes our proof of Proposition 1.36. q.e.d.

Once we have shown the existence of the two functions ξn
(
tnn−1, ·

)
and ξn

(
tnn, ·

)
, we can use

these functions to define the amount of shares in the two portfolios held by the large investor
immediately before and at time tnn = T by evaluating the functions at the fundamentals Unn−1

and Unn , respectively, and setting ξnn−1 = ξn
(
tnn−1, U

n
n−1

)
and ξnn = ξn

(
tnn, U

n
n

)
.

To complete our definitions at times tnn−1 and tnn of the large investor’s portfolios
(
ξnn−1, b

n
n−1

)
and

(
ξnn , b

n
n

)
for which the replication condition (4.17) and the self-financing condition (4.18)

hold, we still have to determine the cash holdings bnn−1 and bnn at these two points in time. In
order to make sure that (4.17) and (4.18) hold in any state of the world, we will define these
cash holdings as well as functions of the possible fundamental values at these time points,
and introduce at first the function bn

(
tnn, ·

)
: Unn → IR by

bn
(
tnn, u

n
ni

)
= h

(
Sµ
(
T, unni, ξ

n
(n−1)(i+1), ξ

n
ni

))
− ξnniSµ

(
T, unni, ξ

n
(n−1)(i+1), ξ

n
ni

)
for i ∈ In\{n}

and

bn
(
tnn, u

n
ni

)
= h

(
Sµ
(
T, unni, ξ

n
(n−1)(i−1), ξ

n
ni

))
− ξnniSµ

(
T, unni, ξ

n
(n−1)(i−1), ξ

n
ni

)
for i ∈ In\{−n}.

It can be easily seen that this definition of the function bn
(
tnn, ·

)
is consistent, though the

definitions of the values bn
(
tnn, u

n
ni

)
overlap for all i ∈ In−2 = In\{−n, n}: Because of the

particular form of ξnni as given in (4.21), for all i ∈ In−2 both definitions of bnn
(
tnn, u

n
ni

)
are

equivalent to

bn
(
tnn, u

n
ni

)
=


h(S−ni)S

+
ni−h(S

+
ni)S

−
ni

S+
ni−S

−
ni

if S+
ni 6= S−ni,

h(S+
ni)− h′(S+

ni+)S+
ni if S+

ni = S−ni,

where S±ni is used as a shorthand for Sµ
(
T, unni, ξ

n
(n−1)(i±1), ξ

n
ni

)
.

Similarly, it follows from the definition of the function ξn
(
tnn−1, ·

)
by (4.19) that the function

bn
(
tnn−1, ·

)
: Unn−1 → IR which is for all i ∈ In−1 given by

bn
(
tnn−1, u

n
(n−1)i

)
= bn

(
tnn, u

n
n(i±1)

)
+
(
ξnn(i±1) − ξn(n−1)i

)
Sµ
(
tnn, u

n
n(i±1), ξ

n
(n−1)i, ξ

n
n(i±1)

)
is consistently defined despite the double definition for each possible value bn

(
tnn−1, u

n
(n−1)i

)
.
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If we now determine the cash holdings of the two portfolios
(
ξnn , b

n
n

)
and

(
ξnn−1, b

n
n−1

)
at and

immediately before time tnn = T by bnn = bn
(
tnn, U

n
n

)
and bnn−1 = bn

(
tnn−1, U

n
n−1

)
, it follows

from Proposition 1.36 that on the one hand the condition (4.17) for the paper value replication
holds in any state of the world, and that on the other hand the self-financing condition (4.18)
holds as well, i.e. the portfolio

(
ξnn , b

n
n

)
can be financed at time T by the portfolio

(
ξnn−1, b

n
n−1

)
held by the large investor between time tnn−1 and tnn.

Having found portfolios at time tnn−1 and at time tnn = T , our replication problem (4.17)
now basically becomes a replication problem for the portfolio

(
ξnn−1, b

n
n−1

)
at time tnn−1. In

order to apply our results of Section 1.4.2 to this problem, we have to show that the portfolio(
ξnn−1, b

n
n−1

)
is star-convex. The next lemma shows that this is indeed the case under the

same additional conditions as in Lemma 1.33.

Lemma 1.37. In addition to the assumptions of Proposition 1.36 let us suppose that the
price system (ψ, µ) implies a natural loss structure and that the large investor price function
Sµ : [0, T ]× IR3 → IR generated by (ψ, µ) satisfies

Sµ
(
tnn−1, u

n
(n−1)(i−1), ξ1, ξ2

)
≤ Sµ

(
tnn, u

n
ni, ξ1, ξ2

)
≤ Sµ

(
tnn−1, u

n
(n−1)(i+1), ξ1, ξ2

)
for all i ∈ In−2 and all ξ1, ξ2 ∈ IR. Then the portfolio

(
ξnn−1, b

n
n−1

)
is star-convex.

Proof. The portfolio
(
ξnn−1, b

n
n−1

)
is convex, since the function ξn

(
tnn−1, ·

)
: Unn−1 is nonde-

creasing by Proposition 1.36. In order to show that it is even star-convex, we will once again
use our shorthands (3.12) and note that the self-financing condition (4.18) implies

bn(n−1)j = bnn(j±1) +
(
ξnn(j±1) − ξn(n−1)j

)
Sµ
(
tnn, u

n
n(j±1), ξ

n
(n−1)j , ξ

n
n(j±1)

)
for all j ∈ In−1.

Let us then set l = n− 1 and use the upper (+) equation for j = i− 1 and the lower (-) one
for j = i+ 1. Then we obtain:

bnl(i−1) − bnl(i+1) =
(
ξnl(i+1) − ξn(l+1)i

)
Sµ
(
tnn, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
(l+1)i)

)
+
(
ξn(l+1)i − ξnl(i−1)

)
Sµ
(
tnn, u

n
(l+1)i, ξ

n
l(i−1), ξ

n
(l+1)i)

)
for all i ∈ Il−1.

From here we can proceed exactly as in the proof of Proposition 1.33. Thus, the portfolio(
ξnn−1, b

n
n−1

)
at time tnn−1 is indeed star-convex. q.e.d.

As the third step of constructing the replicating trading strategy to (4.17), it just remains to
find a trading strategy up to the time point tnn−1 which replicates the star-convex portfolio(
ξnn−1, b

n
n−1

)
at time tnn−1. Such conditions were derived in Proposition 1.33, and so we can

conclude by an analogue to Corollary 1.35:

Corollary 1.38. Let us assume that the large investor price system (ψ, µ) satisfies the fol-
lowing properties:

(i) The equilibrium price function ψ : [0, T ]× IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ) is continuous
in ξ and nondecreasing in ξ.

(ii) The price-determining measure µ is a probability measure concentrated on [0, 1].

(iii) The price system (ψ, µ) implies a natural cost structure.

(iv) For all 1 ≤ k ≤ n, all i ∈ Ik−1 and all ξ1, ξ2 ∈ IR the large investor price function
Sµ : [0, T ]× IR3 → IR generated by (ψ, µ) satisfies (4.12).
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Then for each convex payoff function h : IR→ IR for which the left- and right-hand derivatives
are bounded there exists some self-financing trading strategy

(
ξn, bn

)
such that the paper value

replication (4.17) holds.

In Section 1.4.2 we have also derived a uniqueness result for the replicating strategy of a star-
convex contingent claim

(
ξn, bn

)
. However, since Brouwer’s fixed point theorem only gives the

existence and not the uniqueness of a fixed point, we cannot draw the same conclusions for
the problem of paper value replication as we did in Section 1.4.2. Actually, in the particular
case where the large investor price does not depend on the large investor’s strategy it is easy
to see that there exist infinitely many self-financing trading strategies (ξn, bn) which satisfy
(4.17), but which only differ in the (not necessarily star-convex) portfolio

(
ξnn , b

n
n

)
at time

tnn = T .

Remark. Because of the particular features of the large investor model and the various possible
stock prices which might be used for the valuation of the large investor’s stock holdings and the
value of the option at maturity, there are various other possible models for value replication:
For example, instead of using the average price of Sµ

(
T,Unn , ξ

n
n−1, ξ

n
n

)
paid for the ξnn − ξnn−1

shares of stock bought by the large investor at time tnn = T , we could use the equilibrium
price ψ

(
T,Unn , ξ

n
n

)
, which any investor in the market would pay for an infinitesimal amount

of stock immediately after the transaction of these ξnn − ξnn−1 shares, in order to calculate the
option value. Of course, in this case one should use the same stock price to calculate the
“value” of the large investor’s portfolio at time T , so that our condition for the replicating
self-financing strategy (ξn, bn) would become

ξnnψ
(
T,Unn , ξ

n
n

)
+ bnn = h

(
ψ
(
T,Unn , ξ

n
n

))
. (4.24)

In the special case where the price-determining measure µ of the price system (ψ, µ) is the
Dirac measure δ1 concentrated in 1, the large investor price function Sµ : [0, T ] × IR3 → IR
of (3.2) simplifies to Sµ

(
t, u, ξ1, ξ2

)
= ψ(T, u, ξ2) for all (t, u, ξ1, ξ2) ∈ [0, T ] × IR3, so that

(4.17) and (4.24) coincide. As pointed out in the remark following equation (4.10), this
special price-determining measure is used in the discrete model of Jarrow (1994) and in the
continuous model of Frey (1998). In particular, Frey’s approach of paper value replication,
which he writes in terms of the equilibrium price function like (4.24), is at the same time the
(continuous-time analogue of the) paper value replication (4.17) which we have considered in
this section.
However, in general the two conditions (4.17) and (4.24) differ. In such a situation there
are two reasons why we do not work with condition (4.24): First of all, in practice it is
unlikely that the value of some option is determined by one single spot price in the market
at which only an infinitesimal small amount of shares is traded. But even if it is we might
still argue that the large investor will buy immediately before appraisal such that his price
Sµ
(
T, unn(i±1), ξ

n
(n−1)i, ξ

n
n(i±1)

)
will be the assessed price.

Secondly, (4.24) is mathematically undesirable, since the price ψ
(
T,Unn , ξ

n
n

)
would become an

additional price which we have to consider in order to find a replicating strategy, in addition
to the large investor price Sµ

(
T,Unn , ξ

n
n−1, ξ

n
n

)
at which the large investor really trades.

Of course, instead of replicating a certain option by some trading strategy’s paper value at
maturity, we could also consider the problem where the large investor wants to find a trading
strategy (ξn, bn) such that the real value of this strategy at time T matches with some
prescribed option value. In order to determine the real value as introduced in Definition 1.28,
the large investor’s stock holdings of ξnn shares at time T have to be valued by using the
loss-free liquidation price S̄

(
T,Unn , ξ

n
n

)
, and so it makes sense that the same price is used

for determining the option value at maturity. Thus, we could also look for a self-financing
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trading strategy (ξn, bn) which satisfies

ξnnS̄
(
T,Unn , ξ

n
n

)
+ bnn = h

(
S̄
(
T,Unn , ξ

n
n

))
. (4.25)

We have already touched on this sort of replication problem in Example 1.7 where we have
seen that the real value of the long European call of α shares at time T has such a represen-
tation if the payoff function h : IR→ IR is given by h(x) = α(x−K)+ for all x ∈ IR.
Basically this real-value approach splits the trades at the time point T in two parts: At first
the large investor buys the ξnn − ξnn−1 shares of stock which he needs to buy at time tnn = T
according to his trading strategy (ξn, bn), and the average price at which these stocks are
traded is the large investor price Sµ

(
T,Unn , ξ

n
n−1, ξ

n
n

)
. Thereafter, the large investor sells all

the ξnn shares of his portfolio for the loss-free liquidation price S̄
(
T,Unn , ξ

n
n

)
. This liquidation

price only is a realizable liquidation price if the transaction does not cause any transaction
losses. In a similar fashion Boyle and Vorst (1992) model option replication in a small
investor market with proportional transaction costs, since they implicitly value the stock and
cash holdings at maturity without any transaction cost charge. (Musiela and Rutkowski,
1998, Section 2.5) explicitly mention the absence of transaction costs at maturity as one of
the their key assumptions for a small investor model with transaction costs, which slightly
extends Boyle’s and Vorst’s work.
However we do not want to exclude implied transaction losses at maturity, since we do not
see why the price mechanism at time T should conceptually differ from the price mechanism
at all other points in time. Moreover, the loss-free liquidation price cannot be observed in the
market, so that the statement of the replication problem in terms of the loss-free liquidation
price will be of limited use for real-world markets. Especially, a market participant who does
not know the fundamental value and the large investor’s stock holdings is in general unable
to find out the loss-free liquidation price, even if he knows the price system (ψ, µ). �

1.4.4 Star-Concave Portfolios

In this section we shortly describe the problems which occur if we want to transfer our
derivation of replicating strategies for star-convex contingent claims as in Section 1.4.2 to
the derivation of similar replicating strategies for star-concave contingent claims. Basically,
in a non-degenerate large investor market the recursive derivation of a self-financing trading
strategy (ξn, bn) which replicates a certain star-concave contingent claim (ξn, bn) along the
lines of Section 1.4.2 will only be successful if the discrete spatial derivative of the associated
strategy function ξn : An → IR does not become too large, and an a-priori bound on this
derivative is needed in order to prove the attainability of (ξn, bn). Section 1.4.4 may be
omitted at the first reading.
Let us assume that we are given some star-concave contingent claim (ξn, bn), and that in our
attempt to construct a self-financing trading strategy (ξn, bn) which replicates (ξn, bn) we have
constructed star-concave portfolios

(
ξnj , b

n
j

)
for some 1 ≤ k ≤ dnT e and all k ≤ j ≤ dnT e. If

there exists a portfolio
(
ξnk−1, b

n
k−1

)
at time tnk−1 such that the portfolio

(
ξnk , b

n
k

)
at time tnk

can be (perfectly) financed by the portfolio
(
ξnk−1, b

n
k−1

)
in that the self-financing condition

(3.13) holds, our discussion in Section 1.4.2 has already shown that the possible realizations
ξn(k−1)i = ξn

(
tnk−1, u

n
(k−1)i

)
and bn(k−1)i = ξn

(
tnk−1, u

n
(k−1)i

)
of the large investor’s shares in

stocks and cash amounts in the portfolio
(
ξnk−1, b

n
k−1

)
satisfy the fixed point equation (4.10)

for the stock holdings and the explicit equation (4.9) for the cash amounts.
In order to prove the existence of a solution to the fixed point problem (4.10) for this time
step, we can proceed along the same lines as in the proof of Proposition 1.33. For the
replication of star-convex contingent claims in Section 1.4.2 we then have shown that the
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star-convexity of the portfolio at time tnk will be passed on to the portfolio at time tnk−1

if the price system implies a natural loss structure and if the large investor price function
Sµ : [0, T ] × IR3 → IR satisfies the ordering (4.12) for all i ∈ Ik−2 and all ξ1, ξ2 ∈ IR. As
we will show in Section 1.5 under very limited restrictions on the price system (ψ, µ) this
condition (4.12) can be guaranteed for all 1 ≤ k ≤ dnT e, all i ∈ Ik−2 and all ξ1, ξ2 ∈ IR.
However, if we want to prove that the star-concavity of

(
ξnk , b

n
k

)
is inherited by the portfolio(

ξnk−1, b
n
k−1

)
at time tnk−1, we have to impose a different condition on the large investor price

function. Namely, we then have to guarantee that the large investor price function is of such
a form that for all possible outcomes of the fundamental value at time tnk−1 the (ask-)price
at which the large investor sells shares of stock at time tnk can be higher than the (bid-)price
at which the large investor has bought the same amount of stocks at the time tnk−1, and vice
versa, that the (ask-)price at which the large investor has sold shares of stock at time tnk−1

can be lower than the (bid-)price at which the large investor could re-buy the same amount
of stocks at time tnk . In general, such a condition on the price system (ψ, µ) is much more
difficult to satisfy than the condition (4.12), which only compares bid-prices with bid-prices
and ask-prices with ask-prices, and if we do not want to stick with degenerate price systems
which exclude transaction losses, we cannot require such a condition to hold for all possible
transactions, but we have to limit the size of the transactions. Assuming that for all i ∈ Ik−2

the difference between the two possible stock holdings ξn(k−1)(i+1) and ξn(k−1)(i−1) given the
fundamental value Unk−2 = un(k−2)i at time tnk−2 is lower than the maximal transaction size, we
can then proceed as in Proposition 1.33 to show that the portfolio

(
ξnk−1, b

n
k−1

)
is star-concave

as well.

Proposition 1.39. Let us assume that the equilibrium price function ψ : [0, T ]× IR2 → IR,
(t, u, ξ) 7→ ψ(t, u, ξ) is continuous in ξ, and suppose that for some 1 ≤ k ≤ dnT e the portfolio(
ξnk , b

n
k

)
is star-concave. Then there exists some function ξn

(
tnk−1, ·

)
: Unk−1 → IR with

ξn(k−1)i := ξn
(
tnk−1, u

n
(k−1)i

)
∈
[
ξnk(i+1), ξ

n
k(i−1)

]
for all i ∈ Ik−1 (4.26)

which solves the fixed point problem (4.10). Assume now that the price system (ψ, µ) also
implies a natural loss structure and that there exists some Bn ∈ [0,∞] such that for all
i ∈ Ik−2 and all ξ1, ξ2 ∈ IR with ξ1 ≤ ξ2 ≤ ξ1 +Bn the large investor price function satisfies

Sµ
(
tnk−1, u

n
(k−1)(i−1), ξ1, ξ2

)
≤ Sµ

(
tnk , u

n
ki, ξ2, ξ1

)
(4.27)

and

Sµ
(
tnk , u

n
ki, ξ1, ξ2

)
≤ Sµ

(
tnk−1, u

n
(k−1)(i+1), ξ2, ξ1

)
. (4.28)

Then the portfolio
(
ξnk−1, b

n
k−1

)
at time tnk−1 which is implied by (4.10) and (4.9) is again

star-concave if for all i ∈ Ik−2 we have
∣∣ξn(k−1)(i+1) − ξn(k−1)(i−1)

∣∣ ≤ Bn.

Proof. The existence of the function ξn
(
tnk−1, ·

)
can be shown as in Proposition 1.33, and

because of the interlocked structure ξnk(i+1) ≤ ξn(k−1)i ≤ ξnk(i−1) for all i ∈ Ik−1 the function
ξn
(
tnk−1, ·

)
: Unk−1 → IR has to be nonincreasing because the function ξn

(
tnk , ·

)
: Unk → IR is

nonincreasing. Let us now set l = k − 1 and consider the implied portfolio
(
ξnl , b

n
l

)
given by

ξnl = ξn
(
tnl , U

n
l

)
and bnl = bn

(
tnl , U

n
l

)
, where the function bn

(
tnl , ·

)
is defined via (4.9). Under

our conditions we have to show that
(
ξnl , b

n
l

)
inherits the star-concavity from

(
ξnl+1, b

n
l+1

)
as

well. Also this proof parallels the proof of Proposition 1.33. In order to show that(
ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl , u

n
l(i+1), ξ

n
l(i−1), ξ

n
l(i+1)

)
+ bnl(i+1) − bnl(i−1) ≤ 0 for all i ∈ Il−1 (4.29)
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we notice that by assumption we have
∣∣ξnl(i+1) − ξnl(i−1)

∣∣ ≤ Bn, hence it follows from the
inequality (4.28) that

Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
l(i−1)

)
≤ Sµ

(
tnl , u

n
l(i+1), ξ

n
l(i−1), ξ

n
l(i+1)

)
for all i ∈ Il−1. (4.30)

Together with the monotonicity of ξn
(
tnl , ·

)
and (4.16) this implies that(

ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl , u

n
l(i+1), ξ

n
l(i−1), ξ

n
l(i+1)

)
+ bnl(i+1) − bnl(i−1)

≤
(
ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
l(i−1)

)
−
(
ξnl(i+1) − ξn(l+1)i

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i+1), ξ

n
(l+1)i

)
−
(
ξn(l+1)i − ξnl(i−1)

)
Sµ
(
tnl+1, u

n
(l+1)i, ξ

n
l(i−1), ξ

n
(l+1)i

)
.

The right-hand side of this inequality can now be bounded from above by 0 because of
Lemma 1.11 applied with ξ = ξnl(i+1), α = ξn(l+1)i − ξnl(i+1) ≥ 0, and β = ξnl(i−1) − ξn(l+1)i ≥ 0.
Thus, the bound (4.29) holds, and by analogous arguments we can also show(

ξnl(i+1) − ξnl(i−1)

)
Sµ
(
tnl , u

n
l(i−1), ξ

n
l(i+1), ξ

n
l(i−1)

)
+ bnl(i+1) − bnl(i−1) ≥ 0 for all i ∈ Il−1.

Hence
(
ξnl , b

n
l

)
is indeed star-concave. q.e.d.

Now we can use the same sort of recursive arguments as in Section 1.4.2 to obtain an attain-
ability result for star-concave contingent claims:

Corollary 1.40. Let us assume that the large investor price system (ψ, µ) satisfies the fol-
lowing properties:

(i) The equilibrium price function ψ : [0, T ]× IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ) is continuous
in ξ.

(ii) The price system (ψ, µ) implies a natural cost structure.

(iii) There exists some Bn ∈ [0,∞] such that for all 1 ≤ k ≤ dnT e, all i ∈ Ik−1, and all
ξ1, ξ2 ∈ IR with ξ1 ≤ ξ2 ≤ ξ1 +Bn the large investor price function Sµ : [0, T ]×IR3 → IR
generated by (ψ, µ) satisfies (4.27) and (4.28).

Then for every star-concave contingent claim
(
ξn, bn

)
there exists some trading strategy(

ξn, bn
)

=
{(
ξnk , b

n
k

)}
0≤k≤dnT e which replicates

(
ξn, bn

)
and for which the corresponding strat-

egy function ξn : An → IR satisfies

ξn(k+1)(i−1) ≤ ξnki ≤ ξn(k+1)(i+1) for all (k, i) ∈ I(dnT e − 1), (4.31)

if we can guarantee by some other means that in the case of existence every such replicating
strategy satisfies

∣∣ξn(k+1)(i+1) − ξn(k+1)(i−1)

∣∣ ≤ Bn for all (k, i) ∈ I(dnT e − 1).

In order to apply Corollary 1.40 to show the attainability of a sequence
{

(ξn, bn)
}
n∈IN of

star-concave contingent claims, we shall find some global bound B ∈ [0,∞] such that on the
one hand for all n ∈ IN , all 1 ≤ k ≤ dnT e, all i ∈ Ik−1, and all ξ1 ≤ ξ2 ≤ ξ1 + 2δnB the
inequalities (4.27) and (4.28) for the large investor price function hold, and such that on the
other hand for all n ∈ IN the (possible) existence of a replicating strategy (ξn, bn) for the
contingent claim (ξn, bn) implies that the discrete derivative

∆n
u ξ

n
(
tnk+1, u

n
ki

)
:=

1
2δn

(
ξn
(
tnk+1, u

n
ki+δn

)
−ξn

(
tnk+1, u

n
ki−δn

))
=

1
2δn

(
ξn(k+1)(i+1)−ξ

n
(k+1)(i−1)

)
of the associated strategy function ξn : An → IR is bounded by B for all (k, i) ∈ I(dnT e− 1).
Those a-priori bounds on ∆n

u ξ
n will only be derived at the end of Section 3.3.3, where we will

use bounds on the derivative of the (candidate) continuous limiting function of the discrete
strategy functions

{
ξn
}
n∈IN to obtain a bound on the discrete derivatives as well.
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Remark. Because of the interlocked structure there is always a natural bound on all possi-
ble star-concave trading strategies (ξn, bn) which satisfy (4.31), since this condition implies
ξn(k+1)(i−1) − ξn(k+1)(i+1) ≤ ξnk(i−2) − ξnk(i+2) for all 0 ≤ k ≤ dnT e and all i ∈ Ik−2, and hence
they especially meet∣∣ξn(k+1)(i+1) − ξn(k+1)(i−1)

∣∣ ≤ ξndnT e(−dnT e) − ξndnT ednT e for all (k, i) ∈ I(dnT e − 1).

Since the stock holdings ξndnT e at maturity tndnT e = T of any trading strategy (ξn, bn) which
replicates (ξn, bn) are determined by ξndnT e = ξn, this observation gives us also a directly
available a-priori bound Bn on the trading strategies in Corollary 1.40.
However, if the large investor price function Sµ : [0, T ] × IR3 → IR is not degenerate, for
employing this bound the difference ξn[nT ](−[nT ])−ξ

n
[nT ][nT ] between the largest and the smallest

possible number of shares held by the large investor at time tn[nT ] = T normally needs to be too
small to be of any practical use. For example, if we fix such a non-degenerate large investor
price function and consider a sequence of replication problems by successively increasing
the number of points on the binomial grid through the parameter n ∈ IN and looking at a
corresponding family

{
(ξn, bn)

}
n∈IN of star-concave contingent claims, the inequalities (4.27)

and (4.28) will only hold for all (sufficiently large) n ∈ IN , all 1 ≤ k ≤ dnT e, all i ∈ Ik−1, and
all ξ1 ≤ ξ2 ≤ ξ1+Bn ifBn = O(δn) as n→∞. Hence, the choice ofBn = ξn[nT ](−[nT ])−ξ

n
[nT ][nT ]

would restrict us to star-concave contingent claims for which the difference between the largest
and smallest possible number of shares held by the large investor at time T is of order O(δn)
and thus diminishes as n → ∞. At least in the limit, this approach would exclude all
interesting cases of star-concave contingent claims.
Another, totally different approach to circumvent the problems which occur when replicating
star-concave contingent claims as the number of time points on the grid tends to infinity makes
the price system (ψ, µ) depend on n ∈ IN . If the corresponding sequence

{
(ψn, µn)}n∈IN of

price systems converges to a degenerate price system (ψ, µ) as n → ∞ in that the limiting
price system (ψ, µ) excludes any transaction losses, one can guarantee that in the limit the
ordering conditions (4.27) and (4.28) hold for all ξ1, ξ2 ∈ IR. In this case, the sequence of
bounds

{
Bn
}
n∈IN need not be chosen to be of order O(δn) as n→∞ any more, and one can

once again consider more general star-concave contingent claims. However, since this model
would limit the candidate limiting price system, we will not further pursue this idea. �

For the largest part of our thesis we will from now on stick to the replication of star-convex
contingent claims (ξn, bn) and their corresponding replication strategies (ξn, bn). Even in
this case we will need to find bounds on the discrete derivatives ∆n

u ξ
n when it comes to the

convergence of a sequence of strategy functions ξn : An → IR towards a continuous-time
limit. But the problem is much easier to handle since the existence result for the replicating
strategies (ξn, bn) as given in Corollary 1.35 does not depend on these bounds.

1.5 Examples of Large Investor Price Functions

To finish this chapter we now give examples of large investor price systems (ψ, µ) for which the
various conditions in Section 1.4 hold. We start with a parametrized family of large investor
price systems (ψ, µ) where the equilibrium price function ψ is non-negative and multiplicative
and where the price-determining measure µ is concentrated on the unit interval, and then give
conditions on the parameters which guarantee that the associated price system satisfies the
conditions in Section 1.4. In particular, we will show that our large-investor model contains
the standard Cox-Ross-Rubinstein model as a special case.

Example 1.8. Let ψ• : [0, T ] × IR → (0,∞) be a positive and differentiable function which is
strictly increasing in u and satisfies the bounds L :=

∥∥ ψ•
ψ•u

∥∥ := sup(t,u)∈[0,T ]×IR
∣∣ ψ•(t,u)
ψ•u(t,u)

∣∣ < ∞
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and K :=
∥∥ ψ•t

ψ•u

∥∥ < ∞. Then for some fixed c ≥ 0 a feasible equilibrium price function
ψ : [0, T ]× IR2 → (0,∞) can be defined by

ψ(t, u, ξ) = ψ•(t, u)ecξ for all (t, u, ξ) ∈ [0, T ]× IR× IR.

By the multiplicative structure of ψ we have
∥∥ ψ
ψu

∥∥ = L < ∞ and
∥∥ ψt

ψu

∥∥ = K < ∞ as well.
As a price-determining measure associated to ψ, we take again some probability measure
µ = µρ,h from the family

(
µρ,h

)
ρ,h∈[0,1]

of probability measures on
(
[0, 1],B([0, 1])

)
which

were for each h, ρ ∈ [0, 1] introduced in (2.14) as

µρ,h(A) = ρλ(A) + (1− ρ)
1
h
λ
(
A ∩ [1− h, 1]

)
for all A ∈ B([0, 1]). (5.1)

Recall that the last term on the right-hand side is interpreted as the Dirac measure in 1 if
h = 0. The large investor price function Sµ : [0, T ] × IR3 → (0,∞) associated to ψ and µ is
then for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3 given by

Sµ(t, u, ξ1, ξ2) =
∫
ψ
(
t, u, (1− θ)ξ1 + θξ2

)
µ(dθ) = ψ•(t, u)

∫ 1

0
ec(1−θ)ξ1+cθξ2µ(dθ). (5.2)

Because of the special form of the price-determining measure µ = µρ,h of (5.1) we can
compute the integral

∫ 1
0 e

c(1−θ)ξ1+cθξ2µ(dθ) = ecξ1
(
ρ
∫ 1
0 e

cθ(ξ2−ξ1)dθ+(1−ρ) 1
h

∫ 1
1−h e

cθ(ξ2−ξ1)dθ
)

to conclude

Sµ
(
t, u, ξ1, ξ2

)
= ψ•(t, u)ecξ1

(
ρ
ec(ξ2−ξ1) − 1
c(ξ2 − ξ1)

+ (1− ρ)
ec(ξ2−ξ1) − ec(1−h)(ξ2−ξ1)

c(ξ2 − ξ1)h

)
(5.3)

for all (t, u, ξ1, ξ2) ∈ [0, T ] × IR3, where the cases ξ1 = ξ2, h = 0, and c = 0 have to be
understood as the corresponding limits. �

The family of large investor price systems (ψ, µ) described by Example 1.8 is a very rich
family. By choosing the parameters ρ and h in an appropriate way, we can construct from
this family of price systems certain sub-families which satisfy the various conditions imposed
on price systems in Section 1.4, especially the conditions of Corollary 1.35, Corollary 1.38,
and Corollary 1.40.

Lemma 1.41. Fix a large investor price system (ψ, µ) with some equilibrium price function
ψ : [0, T ] × IR2 → (0,∞) and some price-determining measure µ = µρ,h as specified in
Example 1.8. Then:

(i) (ψ, µ) implies a natural loss structure and nondecreasing total transaction losses.

Now let us suppose that n > K2 and t1, t2 ∈ [0, T ] satisfy
∣∣t1 − t2

∣∣ ≤ δ2n. Then we also have:

(ii) For all u, ξ1, ξ2 ∈ IR the large investor price function Sµ : [0, T ]× IR3 → (0,∞) satisfies

Sµ
(
t1, u− δn, ξ1, ξ2

)
< Sµ

(
t2, u, ξ1, ξ2

)
< Sµ

(
t1, u+ δn, ξ1, ξ2

)
. (5.4)

(iii) If for some R ∈ [0,∞] and ρ, h ∈ [0, 1] we have

chR+ log
(

(1− ρ) + ρec(1−h)R
)
< δn

1
L

(
1− δnK

)
, (5.5)

then inequalities like the one in (5.4) hold even if the large investor’s stock holdings are
changed a little bit between t1 and t2, namely then Sµ satisfies

Sµ
(
t1, u− δn, ξ1, ξ2

)
< Sµ

(
t2, u, ξ3, ξ1

)
for all ξ2 ≤ ξ1 ≤ ξ3 +R (5.6)

and

Sµ
(
t1, u+ δn, ξ1, ξ2

)
> Sµ

(
t2, u, ξ3, ξ1

)
for all ξ2 ≥ ξ1 ≥ ξ3 −R. (5.7)
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(iv) If ξ2 = ξ3 then (5.6) holds for all ξ2 ≤ ξ1 and (5.7) hold for all ξ2 ≥ ξ1, regardless of
whether (5.5) is fulfilled.

(v) On the other hand, if

min

{
log

ρ+ (1− ρ)e
1
2
c(1−h)R

ρ+ (1− ρ)e−
1
2
c(1−h)R

, log
(

1 +
1− ρ

ρh

)}
< δn

1
L

(
1− δnK

)
, (5.8)

then for all u ∈ IR and all ξ1, ξ2 ∈ IR with
∣∣ξ2 − ξ1

∣∣ ≤ R we have

Sµ
(
t1, u− δn, ξ1, ξ2

)
< Sµ

(
t2, u, ξ2, ξ1

)
< Sµ

(
t1, u+ δn, ξ1, ξ2

)
. (5.9)

If all strict inequalities in (ii) to (v) are replaced by weak ones, the statements hold for all
n ≥ K2 and t1, t2 ∈ [0, T ] satisfying |t1 − t2| ≤ δ2n.

Remark. In (5.5) and (5.8) we use the convention 0 · x = 0 and x
0 = ∞ for all x ∈ [0,∞].

Proof. Statement (i) follows directly from Lemma 1.13, thus let us move on to (ii). Owing
to the multiplicative structure (5.2) of Sµ : [0, T ]× IR3 → (0,∞), for all t1, t2 ∈ [0, T ] and all
u, ξ1, ξ2 ∈ IR the quotient

Sµ
(
t1, u− δn, ξ1, ξ2

)
Sµ
(
t2, u, ξ1, ξ2

) =
ψ•(t1, u− δn)
ψ•(t2, u)

(5.10)

does not depend on the large investor’s initial and final stock holdings of ξ1 and ξ2 shares,
respectively. An application of Taylor’s rule then shows that there exist some t∗, u∗ with t∗

being located between t1 and t2 and u− δn ≤ u∗ ≤ u such that

log
ψ•(t1, u− δn)
ψ•(t2, u)

= logψ•
(
t1, u− δn

)
− logψ•

(
t2, u

)
= −δn

ψ•u
(
t∗, u∗

)
ψ•
(
t∗, u∗

) + (t1 − t2)
ψ•t
(
t∗, u∗

)
ψ•
(
t∗, u∗

) .
The last term can now be rewritten as −δn ψ

•
u(t∗,u∗)
ψ•(t∗,u∗)

(
1− t1−t2

δn

ψ•t(t∗,u∗)
ψ•u(t∗,u∗)

)
. Since ψ• and ψ•u are

positive, we conclude from the definition of L that ψ•u(t∗,u∗)
ψ•(t∗,u∗) ≥ 1

L . On the other hand, the

condition |t1 − t2| ≤ δ2n and the definition of K imply t1−t2
δn

ψ•t(t∗,u∗)
ψ•u(t∗,u∗)

≤ δnK, which is strictly
less than 1 because n > K2. If we finally take the exponential, we can bound (5.10) from
above by

Sµ
(
t1, u− δn, ξ1, ξ2

)
Sµ
(
t2, u, ξ1, ξ2

) ≤ exp
(
−δn

1
L

(
1− δnK

))
for all u, ξ1, ξ2 ∈ IR. (5.11)

Since the expression on the right-hand side is strictly less than 1, this proves the lower
inequality of (5.4). It is clear that for n = K2 we would still get the weak inequality
Sµ
(
t1, u− δn, ξ1, ξ2

)
≤ Sµ

(
t2, u, ξ1, ξ2

)
, since in this case the right-hand side of (5.11) is still

not larger than 1. The upper inequality of (5.4) follows similarly.
In order to prove (iii) assume that R ∈ [0,∞] and ρ, h ∈ [0, 1] satisfy (5.5). We will only
prove (5.6) for the case where h > 0 and c > 0, but it is easy to see that our argument works
for h = 0 as well, and the assertion for c = 0 is almost trivial. Since we have already shown
(5.11) it suffices to show

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ3, ξ1

) < exp
(
δn

1
L

(1− δnK)
)

(5.12)
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for all t ∈ [0, T ], u ∈ IR and ξ2 ≤ ξ1 ≤ ξ3 +R; then (5.6) follows from

Sµ
(
t1, u− δn, ξ1, ξ2

)
Sµ
(
t2, u, ξ3, ξ1

) =
Sµ
(
t1, u− δn, ξ1, ξ2

)
Sµ
(
t2, u, ξ1, ξ2

) Sµ
(
t2, u, ξ1, ξ2

)
Sµ
(
t2, u, ξ3, ξ1

) < 1. (5.13)

Let us fix t ∈ [0, T ], u ∈ IR, and ξj ∈ IR for j ∈ {1, 2, 3}. As a shorthand let us set αj = ξj−ξ1
for j ∈ {2, 3}. Without loss of generality we assume that αj 6= 0. By (5.3) we have:

Sµ
(
t, u, ξ1, ξ2

)
= ψ•(t, u)ecξ1

(
ρ

1
cα2

(
ecα2 − 1

)
+ (1− ρ)

1
cα2h

(
ecα2 − ec(1−h)α2

))
.

Using now this equation and factoring out ec(ξ1−ξ3) we also get

Sµ
(
t, u, ξ3, ξ1

)
= ψ•(t, u)ecξ1

(
ρ

1
cα3

(
ecα3 − 1

)
+ (1− ρ)

1
cα3h

(
echα3 − 1

))
.

Thus, the quotient of Sµ
(
t, u, ξ1, ξ2

)
and Sµ

(
t, u, ξ3, ξ1

)
is given by

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ3, ξ1

) =
ρ 1
cα2

(
ecα2 − 1

)
+ (1− ρ) 1

cα2h

(
ecα2 − ec(1−h)α2

)
ρ 1
cα3

(
ecα3 − 1

)
+ (1− ρ) 1

cα3h

(
echα3 − 1

) (5.14)

and only depends on the differences α2 = ξ2 − ξ1 and α3 = ξ3 − ξ1. Since the condition
ξ2 ≤ ξ1 ≤ ξ3 +R is equivalent to α2 ≤ 0 and −R ≤ α3, for {ξi}1≤i≤3 satisfying this condition
the quotient (5.14) can be bounded by

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ3, ξ1

) ≤ ρe0 + (1− ρ)e0

ρe−cR + (1− ρ)e−chR
= echR

1
(1− ρ) + ρe−c(1−h)R

(5.15)

due to the mean value theorem and the monotonicity of x 7→ ex. Now x 7→ ex is also convex,
and hence 1

2

(
ec(1−h)R + e−c(1−h)R

)
≥ 1, which leads to the bound(

(1− ρ) + ρec(1−h)R
)(

(1− ρ) + ρe−c(1−h)R
)

= 1 + 2ρ(1− ρ)
(
ec(1−h)R + e−c(1−h)R

2
− 1
)
≥ 1.

If we then replace the fraction in the upper bound (5.15) of Sµ(t,u,ξ1,ξ2)
Sµ(t,u,ξ3,ξ1) by (1− ρ) + ρec(1−h)R

and apply (5.5) we conclude

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ3, ξ1

) ≤ echR
(
(1− ρ) + ρec(1−h)R

)
< exp

(
δn

1
L

(
1− δnK

))
. (5.16)

Thus (5.12) holds for all t ∈ [0, T ], u ∈ IR, and ξ2 ≤ ξ1 ≤ ξ3 + R, and hence (5.6) holds as
well. It is clear from (5.16) that we still have a weak inequality in (5.6) if we only have a
weak inequality in (5.5). The proof of (5.7) goes along the same lines.
If ξ2 = ξ3 we can derive the inequalities in (5.6) and (5.7) under less stringent conditions and
thus show (iv). Let us again concentrate on the lower inequality (5.6), and consider without
loss of generality only the case h, c > 0 and ξ1 6= ξ2. With α := α2 = α3 the quotient (5.14)
simplifies for any fixed t ∈ [0, T ] and u ∈ IR to

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ2, ξ1

) =
ρ+ (1− ρ)xh(cα)e

1
2
c(1−h)α

ρ+ (1− ρ)xh(cα)e−
1
2
c(1−h)α

, (5.17)
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where the function xh : IR→ IR is given by

xh(z) =
1
h
e

1
2
(1−h)z e

hz − 1
ez − 1

for all z ∈ IR.

Since h ∈ (0, 1], it is clear that xh(z) ≥ 0 for all z ∈ IR, and since c ∈ (0, 1] as well, we get

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ2, ξ1

) ≤ ρ+ (1− ρ)xh(cα)
ρ+ (1− ρ)xh(cα)

= 1 as long as α ≤ 0. (5.18)

If we combine this inequality for t = t2 with the lower inequality of (5.4), this gives (5.6).
Combining that equation with (5.11) we derive (5.6) for all ξ2 = ξ3 ≤ ξ1. The second part of
(iv) can be shown similarly.
Finally, we come to (v). Again, we will only show the lower inequality in (5.9) for the
special case h, c > 0. Because of (iv) it just remains to show that this inequality holds
for ξ2 − R ≤ ξ1 < ξ2, i.e. if 0 < α := ξ2 − ξ1 ≤ R. Looking once again at the function
xh : IR→ [0,∞) we notice that for all z ∈ IR

x2
h(z) =

(
ez − e(1−h)z

) (
ehz − 1

)
h2 (ez − 1)2

=
e(1+h)z − 2ez + e(1−h)z

h2 (e2z − 2ez + 1)
=

∑∞
k=1

1
(2k)!(hz)

2k∑∞
k=1

1
(2k)!z

2k
≤ 1.

Thus, we can use the monotonicity of x 7→ d+bx
d+ax for a, b, d ≥ 0 and b ≥ a to bound the fraction

(5.17) as long as 0 ≤ α ≤ R by

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ2, ξ1

) ≤ ρ+ (1− ρ)e
1
2
c(1−h)α

ρ+ (1− ρ)e−
1
2
c(1−h)α

≤ ρ+ (1− ρ)e
1
2
c(1−h)R

ρ+ (1− ρ)e−
1
2
c(1−h)R

. (5.19)

If ρ is close to 1, the bound (5.19) is not very tight. In this case a better bound for the
fraction (5.17) can be obtained by noting that

he
1
2
(1−h)zxh(z) =

ez − e(1−h)z

ez − 1
≤ 1 for all z ≥ 0,

since this inequality and xh(z) ≥ 0 allow us to bound (5.17) by

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ2, ξ1

) ≤ ρ+ (1− ρ) 1
h

ρ
= 1 +

1− ρ

ρh
. (5.20)

Combining (5.19) and (5.20) and then applying condition (5.8) leads to the inequality

Sµ
(
t, u, ξ1, ξ2

)
Sµ
(
t, u, ξ2, ξ1

) ≤ min

{
ρ+ (1− ρ)e

1
2
c(1−h)R

ρ+ (1− ρ)e−
1
2
c(1−h)R

, 1 +
1− ρ

ρh

}
< exp

(
δn

1
L

(1− δnK)
)
.

Therefore, we can conclude as in (5.13) that under (5.8) we have

Sµ
(
t1, u− δn, ξ1, ξ2

)
Sµ
(
t2, u, ξ2, ξ1

) < 1. (5.21)

This shows that the lower inequality in (5.9) holds not only for all ξ1 ≤ ξ2 as in (iv),
but also for all ξ2 − R ≤ ξ1 < ξ2. Again it is easy to see that we still have the weak
inequality Sµ

(
t2, u, ξ2, ξ1

)
≤ Sµ

(
t1, u − δn, ξ1, ξ2

)
if (5.8) holds with weak inequality only or

if n = K2. Similarly to (5.21) one can show that the second inequality in (5.9) holds as long
as ξ2 ≤ ξ1 ≤ ξ2 +R. q.e.d.
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Lemma 1.41(i) and (ii) give conditions such that the assumptions on the large investor
price system (ψ, µ) in Corollary 1.35, which shows the attainability of star-convex contingent
claims, and in Corollary 1.38, which shows the existence of a paper value replicating strategy,
are fulfilled. Moreover, under the conditions imposed by Lemma 1.41(i) and (v) the assump-
tions on the large investor price system in the attainability result for star-concave contingent
claims, namely in Corollary 1.40, are satisfied as well. In Chapter 2 we will also need price
systems (ψ, µ) for which the associated large investor price function Sµ satisfies inequalities
of the form (5.6) and (5.7).

Remark. Note that Lemma 1.41(ii) does not hinge on the multiplicative structure of the
equilibrium price function ψ : [0, T ]× IR2 → IR nor on the particular form (5.1) of the price-
determining measure µ. It is straightforward to prove (ii) for any (not necessarily positive)
equilibrium price function ψ : [0, T ] × IR2 → IR which is differentiable in t and u and which
satisfies K :=

∥∥ ψt

ψu

∥∥ <∞, and for any associated price-determining measure µ. However, the
multiplicative structure of the ψ and the specific form of µ were essential in order to bound
the ratios Sµ(t,u,ξ1,ξ2)

Sµ(t,u,ξ3,ξ1) and Sµ(t,u,ξ1,ξ2)
Sµ(t,u,ξ2,ξ1) , respectively, which led to the statements (iii) to (v).�

The next example shows that the Cox-Ross-Rubinstein model of a small investor market is
indeed a special case of our large investor market model.

Example 1.9. If in Example 1.8 we choose c = 0, such that for all (t, u, ξ) ∈ [0, T ] × IR2

the equilibrium price function ψ : [0, T ] × IR2 → IR is given by ψ(t, u, ξ) = ψ•(t, u), not only
this function, but also the large investor price function Sµ : [0, T ] × IR3 → (0,∞) and the
benchmark price function S∗ : [0, T ] × IR3 → (0,∞) do not depend any more on the large
investor’s stock holdings, and we have

ψ(t, u, ξ1) = ψ(t, u, ξ2) = Sµ(t, u, ξ1, ξ2) = S∗(t, u, ξ1, ξ2) = ψ•(t, u)

for all (t, u, ξ1, ξ2) ∈ [0, T ] × IR3. In particular, the large investor price function Sµ is also
independent of the price-determining measure µ.
If we then fix some S0, σ > 0 and µ, r ∈ IR and further specify the (small investor price)
function ψ• : [0, T ]× IR→ (0,∞) by

ψ•(t, u) = S0e
σu+(µ−r)t for all (t, u) ∈ [0, T ]× IR,

all the three price functions ψ, Sµ, and S∗ used in our large investor model coincide with
the discounted price function in the Cox-Ross-Rubinstein model where the initial price at
time 0 is given by S0, the risk free interest rate by r, and the volatility and drift parameters
of the stock price process by σ and µ, respectively. The bounds L and K then simplify to
L =

∥∥ ψ•
ψ•u

∥∥ = 1
σ and K =

∥∥ ψ•t

ψ•u

∥∥ = |µ−r|
σ .

Because of Lemma 1.41(i) and (ii) the large investor price system (ψ, µ) satisfies the assump-
tions imposed on the price system in Corollary 1.35 and Corollary 1.38 once the discretization
parameter n ∈ IN is chosen to be larger than K2. Moreover, because of the special form of
the equilibrium price function ψ : [0, T ] × IR2 → (0,∞), the condition (4.17) for the paper
value replication reduces to

ξnnψ
•(T,Unn ) + bnn = h

(
ψ•(T,Unn )

)
.

Because of the self-financing condition (3.13) the paper value replication condition then im-
plies

ξnn−1ψ
•(T,Unn ) + bnn−1 = h

(
ψ•(T,Unn )

)
as well, and recalling from the remark following Definition 1.23 that we use (ξnn−1, b

n
n−1) to

denote the (large) investor’s portfolio between tnn−1 and tnn, the latter replication condition is
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seen to be the usual replication condition in the Cox-Ross-Rubinstein model. In the standard
Cox-Ross-Rubinstein model one considers the replication of a unit European call with a strike
price X ∈ IR, i.e. the payoff function h : IR→ IR is given by h(x) = (x−X)+ for all x ∈ IR.
This payoff function satisfies the conditions imposed in Corollary 1.38, since h : IR → IR is
obviously convex, and since its left- and right-hand derivatives are bounded by 1. Thus, our
model indeed contains the Cox-Ross-Rubinstein model as a (very) special case. �

Remark. Since the large investor price function Sµ : [0, T ]× IR3 → (0,∞) of the price system
described in Example 1.9 does not depend on the large investor’s stock holdings, for all
u, ξ1, ξ2 ∈ IR and all t1, t2 ∈ [0, T ] with

∣∣t1 − t2∣∣ ≤ δ2n the condition (5.4) immediately implies
(5.9). This shows that not only the assumptions of Corollary 1.35 and Corollary 1.38, but
also the assumptions of Corollary 1.40 are satisfied by the price system (ψ, µ) described in
Example 1.9, even if the bound Bn used for that assumptions is set to be Bn = ∞. Hence,
under the price system of Example 1.9 which corresponds to the Cox-Ross-Rubinstein model
we can also replicate all star-concave contingent claims. �
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Chapter 2

Recursive Equations for Value and
Strategy

In the previous chapter, we have shown the existence and uniqueness of replicating strategies
in a binomial large investor market model. This chapter takes a closer look at the large
investor’s trading strategies and the corresponding paper and real values.
We first focus on extending classical results from the theory of small investor binomial market
models to the large investor model. These include the determination of a martingale measure,
a recursive formula for the value function, and last but not least a no-arbitrage result. The
analogues of these results in a large investor model depend on the particular valuation concept
used, and so we have to distinguish between the real and the paper value concept here as
well. Above all, we have to differentiate between the corresponding two notions of arbitrage.
In order to draw the same conclusion as in the Cox-Ross-Rubinstein model that the market
is free of arbitrage, we have to restrict the class of admissible trading strategies. We also find
backward recursions for the two value functions, but in contrast to the Cox-Ross-Rubinstein
model these recursive formulæ now depend on the large investor’s particular trading strategy.
Likewise, there still exists a martingale measure which turns both the large investor price
process and the paper value process into martingales, but this measure depends on the large
investor’s strategy as well. For the concept of the real value, we present a measure under
which the real value process is a supermartingale and the loss-free liquidation price process
at least almost a martingale.
Since the recursion formulæ for the value functions and the martingale measures strongly
depend on the large investor’s strategy, it is essential to consider in detail the strategy, and
especially the strategy function, of the large investor. This is done in Section 2.2 where
we derive an implicit difference equation of second order for the large investor’s strategy
function. This will later be a starting point for a convergence analysis as n→∞. Before we
come to any convergence results in Chapter 3, however, we shortly turn our attention from
large investor models to small investor market models with proportional transaction costs.
After translating into our notation we shall see that large investor models and small investor
models with transaction costs have many similarities, and some of these similarities will be
exploited in Chapter 3 and 4.
In these two later chapters we shall only work with large investor markets where the equi-
librium price function has a multiplicative structure as in Definition 1.17. For those large
investor markets, the similarities with small investor markets with transaction costs turn out
to be even more pronounced. Moreover, the recursive formula for the real value function
then simplifies considerably, and in particular, the real value process now becomes a super-
martingale under the martingale measure in the associated small investor market. In the
specific case where the large investor trades at the benchmark price the real value is even a

75



76 CHAPTER 2. RECURSIVE EQUATIONS FOR VALUE AND STRATEGY

martingale under this measure, every contingent claim is attainable, and we can explicitly
calculate the replicating strategy.

For simplicity, we will assume in the whole chapter that T = 1 so that we have tnn = T in the
nth binomial model. The generalization to an arbitrary T > 0 is straightforward and just
requires frequent replacements of n by dnT e.

2.1 No Arbitrage and Martingale Measures

In the usual Cox-Ross-Rubinstein setting of a small investor financial market there exists
only one price at any trading time

{
tnk
}

0≤k≤n, and only one reasonable valuation principle
for pricing a portfolio

(
ξnk , b

n
k

)
at time tnk . Under the risk-neutral measure in such a model not

only the stock price process but also the value process of every self-financing trading strategy
is a martingale. The martingale representation for the value process can then be used to
recursively calculate all possible values of the discrete value function on the binomial grid,
starting with the possible values at maturity T . Moreover, since the value process of every
self-financing portfolio strategy is a martingale under the risk neutral measure, it is easily
seen that there are no arbitrage opportunities in the Cox-Ross-Rubinstein model. In this
section we want to explore how these properties of small investor binomial models generalize
in the presence of a large investor.
Now we have introduced several stock prices and two different valuation principles for a
portfolio strategy of the large investor in such a market, and each of these has its own
relevance, depending on the particular intention of the large investor. A large investor who
wants to replicate the paper value of a given option would be more interested in the paper
value process; a large investor who valuates his portfolio by the real value, which he could
achieve by selling his whole portfolio without any transaction losses, would be inclined towards
using the real value process. For this reason we will deal both with the concept of the large
investor stock price and the paper value of a portfolio, and with the concept of the loss-free
liquidation price and the associated valuation concept of the real value.
Depending on the price and valuation concept chosen, several properties of small investor
markets will only hold in a relaxed form as soon as a large investor is introduced. For exam-
ple, it will turn out that the paper value process remains a martingale under the martingale
measure for the large investor price process, but this measure now becomes highly depen-
dent on the large investor’s strategy, and in general it will even depend on his pre-trading
endowment.
However, the martingale representation of the paper value does not take into account the
implied transaction losses caused by the large investor’s transactions. The generalization
of the Cox-Ross-Rubinstein model to transaction costs shows that in such a small investor
market the value process is only a supermartingale under the martingale measure for the
stock price. We will also find a measure under which the real value process in a large investor
market becomes a supermartingale, but this measure is an ordinary martingale measure for
the loss-free liquidation price process only between the transactions of the large investor.
Our findings will then be used to prove that there are no paper and no real value arbitrage
opportunities within certain classes of admissible trading strategies.
In order to find the martingale representations for the value processes, and as a preparation
of the continuous-time limit, we also give recursive representations for both value functions
if the large investor’s trading strategy is known.

Let us consider a large investor market which is specified in terms of some price system
(ψ, µ) consisting as usual of an equilibrium price function ψ : [0, T ] × IR2 → IR and a price
determining measure µ associated to ψ. Immediately before time 0 the large investor is
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supposed to hold ξn−1 shares of stock. The large investor trades on this market according to
some self-financing trading strategy (ξn, bn).

2.1.1 No Arbitrage for the Large Investor

In the first subsection we introduce two different arbitrage concepts which are based on the
two different value concepts, and define admissible trading strategies. Moreover, as the main
result of this section we state a no-arbitrage result for the large investor model.

Definition 2.1. A self-financing trading strategy (ξn, bn) is a paper-value arbitrage op-
portunity if

P
(
vn
(
T,Unn , ξ

n
n−1

)
≥ vn

(
0, Un0 , ξ

n
−1

))
= 1 and P

(
vn
(
T,Unn , ξ

n
n−1

)
> vn

(
0, Un0 , ξ

n
−1

))
> 0.

A self-financing trading strategy (ξn, bn) is a real-value arbitrage opportunity if

P
(
v̄n
(
T,Unn

)
≥ v̄n

(
0, Un0

))
= 1 and P

(
v̄n
(
T,Unn

)
> v̄n

(
0, Un0

))
> 0.

Since the large investor’s trades affect the stock prices in the market, we cannot expect that
the whole class of self-financing portfolio strategies is free of arbitrage opportunities, even if
we only consider discrete binomial models. However, for each of the two arbitrage concepts
introduced in Definition 2.1 we can single out a large subclass of self-financing admissible
strategies which do not lead to arbitrage opportunities.
In order to minimize the notational ballast we will only look for arbitrage opportunities within
the class of path-independent portfolio strategies (ξn, bn) =

{(
ξnk , b

n
k

)}
0≤k≤n. In this case we

can introduce the strategy function ξn : An → IR which corresponds to the trading strategy
(ξn, bn) as in Definition 1.23, and then define some condensed notation to denote the large
investor price and the transaction loss at time t, respectively, where the large investor switches
his stock holdings ξ in the presence of the fundamentals u to the amount required by the
strategy function ξn, i.e. we define the functions Sξ

n

µ : An × IR→ IR and cξ
n

µ : An × IR→ IR
for all (t, u, ξ) ∈ An × IR by

Sξ
n

µ (t, u, ξ) := Sµ
(
t, u, ξ, ξn(t, u)

)
=
∫
ψ
(
t, u, (1− θ)ξ + θξn(t, u)

)
µ(dθ) (1.1)

and

cξ
n

µ (t, u, ξ) := cµ
(
t, u, ξ, ξn(t, u)

)
=
(
ξn(t, u)−ξ

)∫
ψ
(
t, u, (1−θ)ξ+θξn(t, u)

)(
µ−λ

)
(dθ). (1.2)

Within the class of path-independent self-financing strategies we can spot two different classes
of admissible strategies.

Definition 2.2. The set Zn
P = Zn

P

(
ψ, µ, ξn−1

)
consists of all path-independent and self-

financing strategies (ξn, bn) which satisfy

Sξ
n

µ

(
tnk , U

n
k−1 − δ, ξnk−1

)
< Sξ

n

µ

(
tnk−1, U

n
k−1, ξ

n
k−2

)
< Sξ

n

µ

(
tnk , U

n
k−1 + δ, ξnk−1

)
(1.3)

for all 1 ≤ k ≤ n, where we use as usual the convention δ = δn = 1√
n

. The elements
(ξn, bn) ∈ Zn

P are called p-admissible.
Moreover, we introduce the set Zn

R of all path-independent and self-financing trading strate-
gies (ξn, bn) which satisfy

S̄
(
tnk , U

n
k−1 − δ, ξnk−1

)
< S̄

(
tnk−1, U

n
k−1, ξ

n
k−1

)
< S̄

(
tnk , U

n
k−1 + δ, ξnk−1

)
(1.4)

for all 1 ≤ k ≤ n. A strategy (ξn, bn) ∈ Zn
R is called r-admissible.
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If the large investor does not affect the prices and thus acts as a small investor, the equilibrium
price function ψ : [0, T ] × IR2 → IR satisfies ψ(t, u, ξ) = ψ•(t, u) for all (t, u, ξ) ∈ [0, T ] × IR2.
Then each of the sequences of inequalities (1.3) and (1.4) holds if and only if we have

Assumption A. The associated small investor price function ψ• : [0, T ]× IR→ IR satisfies

ψ•
(
tnk , U

n
k−1 − δ

)
< ψ•

(
tnk−1, U

n
k−1

)
< ψ•

(
tnk , U

n
k−1 + δ

)
for all 1 ≤ k ≤ n. (1.5)

Thus under Assumption A, the sets of p- and r-admissible strategies coincide, and all path-
independent self-financing strategies are admissible.

Remark. Note that Assumption A is the usual no-arbitrage condition in general binomial
small investor markets. In order to replicate a contingent claim in a discrete large investor
market, Jarrow (1994) assumes that the speculator has only “local” price adjustment power.
This corresponds to the condition on p-admissibility in (1.3). �

We can easily state conditions on the small investor price function ψ• : [0, T ]× IR → IR such
that Assumption A holds:

Lemma 2.3. Suppose that the small investor price function ψ• : [0, T ] × IR → IR is con-
tinuously differentiable and satisfies K :=

∥∥ ψt

ψu

∥∥ < ∞. Then Assumption A holds for all
n > K2.

Proof. Let n > K2 and fix some 1 ≤ k ≤ n and u ∈ IR. Since tnk − tnk−1 = δ2, it follows from
the mean value theorem that there exist some tnk−1 ≤ t∗ ≤ tnk and some u ≤ u∗ ≤ u+ δ such
that

ψ•
(
tnk , u+ δ)− ψ•

(
tnk−1, u

)
= δ2ψ•t

(
t∗, u∗

)
+ δψ•u

(
t∗, u∗

)
= δ2ψ•u

(
t∗, u∗

)(
1 + δ−1 ψ

•
t

(
t∗, u∗

)
ψ•u
(
t∗, u∗

)) .
Since ψ• is a small investor price function, it is strictly increasing in u like the underlying
large investor price function, and hence we can employ the definition δ = 1√

n
and n > K2 to

bound

ψ•
(
tnk , u+ δ)− ψ•

(
tnk−1, u

)
≥ δ2ψ•u

(
t∗, u∗

)(
1−

√
n

∥∥∥∥ψ•tψ•u
∥∥∥∥) > 0.

This proves the upper inequality in (1.5). The lower inequality follows analogously. q.e.d.

In Section 2.1.5 we will prove:

Proposition 2.4. For every large investor market (ψ, µ) we have the following no-arbitrage
statements:

(i) There is no paper-value arbitrage opportunity for the large investor within the class of
p-admissible trading strategies.

(ii) If (ψ, µ) excludes instantaneous transaction gains, i.e. if the transaction loss function
cµ : [0, T ] × IR3 → IR is nonnegative, then there is no real-value arbitrage opportunity
within the class of r-admissible trading strategies.

If the large investor is forced to use only admissible trading strategies, we therefore can
transfer the principles of arbitrage-free pricing from small investor models to the large investor
market.
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2.1.2 Examples of Admissible Trading Strategies

Before we move on to prove that there are indeed no arbitrage opportunities among the class
of admissible trading strategies, we should rather convince ourselves that the degenerate large
investor market (ψ, µ) where ψ(t, u, ξ) = ψ•(t, u) for all (t, u) ∈ [0, T ]× IR is not the only large
investor market, for which p- and r-admissible trading strategies exist. For that reason, we
will use this section to give examples of p- and r-admissible trading strategies.
It will turn out that the condition (1.3) for p-admissibility in general limits the distance of the
large investor’s stock holdings at two subsequent time points tnk and tnk+1. However, whenever
the large investor price system (ψ, µ) is multiplicative, the condition (1.4) for r-admissibility
does not restrict the choice of strategies at all.
For ease of presentation we will restrict our search of p-admissible trading strategies to those
large investor price systems (ψ, µ) which were introduced in Example 1.8. For these large
investor price systems we have shown in Lemma 1.41(i) and (ii) that they satisfy both the
assumptions on the price system needed in Section 1.4.2 to show the existence and uniqueness
of replication strategies for star-convex contingent claims, and the assumptions needed for
the existence result for paper value replication in Section 1.4.3.
In both sections we have constructed replicating strategies

(
ξn, bn

)
which are interlocked in

the sense that the associated strategy functions ξn : An → IR satisfy

ξnk(i−1) ≤ ξn(k−1)i ≤ ξnk(i+1) for all 1 ≤ k ≤ n and i ∈ Ik−1. (1.6)

Thus we may be satisfied with considering only strategies which have such an interlocked
structure.

Proposition 2.5. Let (ψ, µ) be a price system as specified in Example 1.8, and let ξn−1 be
the large trader’s endowment in stocks immediately before time tn0 = 0. Using the convention
0 · ∞ = 0, take now some B ∈ (0,∞] such that

chB +
1
δ

log
(

(1− ρ) + ρec(1−h)Bδ
)
<

1
L

(
1− δK

)
. (1.7)

Then each self-financing and path-independent portfolio strategy (ξn, bn) which is interlocked
as in (1.6) and which satisfies∣∣ξnk − ξnk−1

∣∣ ≤ δB for all 0 ≤ k ≤ n− 1 (1.8)

is p-admissible.

Proof. Let us take some price system (ψ, µ) and some self-financing trading strategy (ξn, bn)
as described in the proposition. We then have to show that the two inequalities in (1.3) hold
for all 1 ≤ k ≤ n.
Fix 1 ≤ k ≤ n. Due to the interlocked structure we have ξn

(
tnk , U

n
k−1− δ

)
≤ ξnk−1, and due to

(1.8) we also have ξnk−1 ≤ ξnk−2+
∣∣ξnk−1−ξnk−2

∣∣ ≤ ξnk−2+δB. Since tnk−tnk−1 = δ2, an application
of Lemma 1.41(iii) and the definition of our shorthand Sξ

n

µ : An× IR→ IR in (1.1) yields the
lower inequality in (1.3). The upper inequality follows by symmetric arguments. q.e.d.

Remark. In the specific case where either c = 0 or h = ρ = 0 the condition (1.7) holds for each
B ∈ (0,∞]. In the first case, the large investor acts as a small investor and does not influence
the market price at all. In the second case the price-determining measure µ = µρ,h is the
Dirac measure δ1 concentrated in 1 such that the stock price moves to the new equilibrium
at the moment where the large investor announces his trade, but before he can execute a
transaction. In both cases all trading strategies with the interlocked structure (1.6) are p-
admissible if δK < 1. In general, however, only moderately fluctuating portfolio strategies
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will satisfy (1.8), since B has to be chosen sufficiently small. Apart from the two cases
mentioned above, (1.8) and thus (1.3) for k = 1 depend on the large investor’s endowment
ξn−1 in stocks before time 0. This is not a parameter which can be manipulated arbitrarily
to match the bound in (1.8). If we required (1.3) only for all 2 ≤ k ≤ n the dependence on
ξn−1 would vanish. However, in order that (ξn, bn) is p-admissible, (1.3) has to hold for all
1 ≤ k ≤ n, and hence the dependence on ξn−1 reduces the possible trading strategies to those
strategies where the large investor’s portfolio does not drift too far away from the original
stock holdings ξn−1.
We may allow a manipulation of ξn−1 if the buyer of the contingent claims pays the large
investor at time tn0 = 0 with a portfolio

(
ξn∗ , b

n
∗
)

of stocks and cash. In such a situation we
may set ξn−1 = ξn∗ . Especially, if the large investor receives the portfolio

(
ξn0 , b

n
0

)
at time

tn0 = 0, then we would set ξn−1 = ξn0 , and (1.8) for k = 0 is trivially satisfied.
Note also that the left-hand side in (1.7) is of order c

(
ρ+ (1−ρ)h

)
B as n→∞, which shows

that the condition (1.8) is really only an O(δ)-condition as n→∞. �

For 1 ≤ k ≤ n− 1 the condition (1.8) can be rewritten in terms of the “discrete derivatives”

ξn(t+ δ2, u± δ)− ξn(t, u)
δ

for all (t, u) ∈ An(n− 2) (1.9)

of the strategy function ξn : An → IR. Except in the cases c = 0 and h = ρ = 0 condition
(1.8) requires global bounds on these discrete derivatives. Global bounds on the derivatives
of the strategy function play a major rule in dealing with existence and uniqueness of the
replicating strategies in continuous times, as we shall see in Section 3.3.3.

Let us now turn to r-admissible trading strategies: For a large class of large investor price
systems (ψ, µ), which includes all the price systems covered in Example 1.8, all self-financing
trading strategies are r-admissible.

Proposition 2.6. Let ψ : [0, T ] × IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ), be some equilibrium price
function which is differentiable with respect to t and u and for which K :=

∥∥ ψt

ψu

∥∥ <∞. If µ is
any price-determining measure for ψ and if n > K2, then all self-financing trading strategies
in the large investor market described by (ψ, µ) are r-admissible.

Proof. Since S̄(t, u, ξ) = S∗(t, u, ξ, 0) = Sλ(t, u, ξ, 0) with λ = µ1,1, the statement for those
price systems (ψ, µ) which were introduced in Example 1.8 follows from Lemma 1.41(ii). The
general case follows from the remark following that lemma. q.e.d.

Remark. For n ≤ K2 it may be that there are some self-financing trading strategies which are
r-admissible and others which are not. However, this cannot happen if ψ is multiplicative,
since then the condition of r-admissibility simplifies to (1.5), which does not depend on the
strategy at all. �

2.1.3 Three Kinds of Martingale Measures

In a small investor market it is known that the absence of arbitrage is basically equivalent
to the existence of an equivalent martingale measure, i.e. a measure P∗

n ≈ Pn under which
the price process is a martingale. Since there are different possible price processes which one
may consider in a large investor market, and since most of these price processes depend on
the large investor’s actual trading strategy, the situation in a large investor market becomes
slightly more complicated. However, if we single out certain price processes for admissible
trading strategies, we can identify several meaningful martingale measures: We derive one
martingale measure for the associated small investor price process, another one for the large
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investor price process, and finally find a measure under which the loss-free liquidation price
behaves at least almost like a martingale.

Definition 2.7. Suppose a large investor market is described by the price system (ψ, µ) and
let the fundamental process Un = {Unk }0≤k≤n and the associated tilt process Zn = {Znk }0≤k≤n
on
(
Ωn,Fn

n

)
be defined as in (1.3.7).

(i) Under Assumption A the s-martingale weight function p̄n : An(n − 1) → (0, 1) is
defined by

p̄n(t, u) =
ψ•(t, u)− ψ•(t+ δ2, u− δ)

ψ•(t+ δ2, u+ δ)− ψ•(t+ δ2, u− δ)
for all (t, u) ∈ An(n− 1). (1.10)

In terms of this weight function we introduce on the measurable space
(
Ωn,Fn

n

)
the

martingale measure P̄n in the associated small investor market by

P̄n
(
Unk = Unk−1 + δ

∣∣∣Unk−1

)
= p̄n

(
tnk−1, U

n
k−1

)
for all 1 ≤ k ≤ n, (1.11)

and by P̄n
(
Zn0 = 1

)
= Pn

(
Zn0 = 1

)
.

(ii) Let (ξn, bn) be a p-admissible trading strategy and the p-martingale weight function
pξ

n

n : An(n− 1)× IR→ IR be given by

pξ
n

n (t, u, ξ) :=
Sξ

n

µ

(
t, u, ξ

)
− Sξ

n

µ

(
t+ δ2, u− δ, ξn(t, u)

)
Sξ

n

µ

(
t+ δ2, u+ δ, ξn(t, u)

)
− Sξ

n

µ

(
t+ δ2, u− δ, ξn(t, u)

) (1.12)

for all (t, u, ξ) ∈ An(n − 1) × IR. Then the p-martingale measure Pξn

n on
(
Ωn,Fn

n

)
is the probability measure which is defined in terms of the initial distribution given by
Pξn

n

(
Zn0 = 1

)
= Pn

(
Zn0 = 1

)
and Pξn

n

(
Un1 = Un0 + δ

∣∣Zn0 ) = pξ
n

n

(
tn0 , U

n
0 , ξ

n
−1

)
, and by

the transition probabilities

Pξn

n

(
Unk = Unk−1 + δ

∣∣∣Unk−1, U
n
k−2

)
= pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
(
tnk−2, U

n
k−2

))
(1.13)

for all 2 ≤ k ≤ n.

(iii) Let (ξn, bn) be some r-admissible trading strategy and the r-martingale weight func-
tion p̄ξ

n

n : An(n− 1) → (0, 1) for all (t, u) ∈ An(n− 1) be defined by

p̄ξ
n

n (t, u) :=
S̄
(
t, u, ξn(t, u)

)
− S̄

(
t+ δ2, u− δ, ξn(t, u)

)
S̄
(
t+ δ2, u+ δ, ξn(t, u)

)
− S̄

(
t+ δ2, u− δ, ξn(t, u)

) . (1.14)

Then the r-martingale measure P̄ξn

n is the unique measure on
(
Ωn,Fn

n

)
which sat-

isfies P̄ξn

n

(
Zn0 = 1

)
= Pn

(
Zn0 = 1

)
and

P̄ξn

n

(
Unk = Unk−1 + δ

∣∣∣Unk−1

)
= p̄ξ

n

n

(
tnk−1, U

n
k−1

)
for all 1 ≤ k ≤ n. (1.15)

Note that for any p-admissible trading strategy (ξn, bn) the p-martingale measure Pξn

n is
indeed a probability measure equivalent to the original measure Pn, despite the fact that
the p-martingale weight function was introduced as a function which maps into the whole
domain of real numbers. Namely, by the definition of p-admissibility, it is guaranteed that
the weights pξ

n

n

(
tnk , U

n
k , ξ

n
k−1

)
take on only values in (0, 1) for each 0 ≤ k ≤ n− 1.
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Remark. If the large investor does not affect the prices and thus acts as a small investor, so
that the equilibrium price function ψ : [0, T ] × IR2 → IR satisfies ψ(t, u, ξ) = ψ•(t, u) for all
(t, u, ξ) ∈ [0, T ]× IR, all three martingale measures P̄n, P̄ξn

n , and P̄ξn

n are well defined if and
only if Assumption A holds, and then these measures coincide. In general, however, the p-
and r-martingale measures will depend on the particular trading strategy (ξn, bn) used by
the large investor (respectively on his strategy function ξn : An → IR), while the martingale
measure in the associated small investor market never depends on the large investor’s trades.
Note that the strategy influences the p- and the r-martingale measure in a rather different
way: Like the martingale measure in the associated small investor market, the r-martingale
measure keeps the fundamental process

{
Unk
}

0≤k≤n a one-step Markov process, but for all

1 ≤ k ≤ n the transition probability p̄ξ
n

n

(
tnk−1, U

n
k−1

)
from Unk−1 to Unk now depends on the

large investor’s static endowment ξnk−1 = ξn
(
tnk−1, U

n
k−1

)
in stocks between time tnk−1 and tnk .

On the p-martingale measure, however, the influence of the large investor’s strategy is
so strong that it will in general destroy the Markov property of the fundamental process{
Unk
}

0≤k≤n. Only the two-dimensional process
{(
Unk , U

n
k−1

)}
1≤k≤n remains Markov, but its

transition probabilities will now strongly depend on the evolution of the actual strategy; for all
2 ≤ k ≤ n its transition probability pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
(
tnk−2, U

n
k−2

))
= pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

)
to move from

(
Unk−1, U

n
k−2

)
to
(
Unk , U

n
k−1

)
depends not only on the large investor’s stock

holdings ξnk−1 between time tnk−1 and tnk , but also on the previous endowment ξnk−2 and the
two possible values ξn

(
tnk , U

n
k−1± δ) of the new endowment ξnk = ξn

(
tnk , U

n
k

)
at time tnk , given

the information Fn
k−1 up to time tnk−1. This can be seen from (1.12) as soon as the definition

of S̃µ in (1.1) is employed. Moreover, Pξn

n even depends on the large investor’s pre-trading
endowment ξn−1 in stocks via the initial distribution of Un1 . �

If the equilibrium price function ψ : [0, T ] × IR2 → IR is multiplicative so that there is
some function f : IR→ IR which can be used to factorize ψ as ψ(t, u, ξ) = ψ•(t, u)f(ξ) for all
(t, u, ξ) ∈ [0, T ]×IR2, the definitions of the loss-free liquidation function S̄ and the benchmark
price function S∗ imply that the loss-free liquidation price function S̄ : [0, T ]× IR× IR→ IR
is multiplicative as well, namely

S̄(t, u, ξ) = ψ•(t, u)
∫ 1

0
f(θξ) dλ(θ) for all (t, u, ξ) ∈ [0, T ]× IR× IR. (1.16)

Then all path-independent self-financing strategies are r-admissible if and only if Assump-
tion A holds, and in this case the r-martingale measures P̄ξn

n for all self-financing trading
strategies (ξn, bn) coincide with the martingale measure P̄n in the associated small investor
market.
While the p-martingale measure is a martingale measure in the strict sense in that the large
investor price process is a martingale, the r-martingale measure does not make the loss-
free liquidation price process into a martingale, because it does not take into account the
jumps invoked by the large investor’s trades. However, it turns out that even in the non-
multiplicative case a similar property remains valid.

Proposition 2.8. Fix a large investor price system (ψ, µ).

(i) Under Assumption A the associated small investor martingale measure P̄n is the unique
probability measure on

(
Ωn,Fn

n

)
under which the associated small investor price process{

ψ•
(
tnk , U

n
k

)}
0≤k≤n is a martingale.

(ii) Let (ξn, bn) be a p-admissible trading strategy. Then the p-martingale measure Pξn

n is
the unique probability measure on

(
Ωn,Fn

n

)
under which the large investor price process{

Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)}
0≤k≤n is a martingale.
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(iii) For every r-admissible trading strategy (ξn, bn) the r-martingale measure P̄ξn

n is the
unique probability measure on

(
Ωn,Fn

n

)
under which the loss-free liquidation price after

the transaction at time tnk−1 can be calculated from the loss-free liquidation price before
the transaction at time tnk as

S̄
(
tnk−1, U

n
k−1, ξ

n
k−1

)
= Ēξn

n

[
S̄
(
tnk , U

n
k , ξ

n
k−1

) ∣∣∣Fn
k−1

]
for all 1 ≤ k ≤ n. (1.17)

Moreover the martingale measures P̄n, Pξn

n , and P̄ξn

n are equivalent to the original measure
Pn on

(
Ωn,Fn

n

)
.

Proof. The proof of the statements (i) to (iii) follows directly from the definition of the
measures P̄n, Pξn

n , and P̄ξn

n in Definition 2.7. For example the definition of the p-martingale
weight function pξ

n

n : An(n− 1)× IR→ IR in (1.12) implies for all 1 ≤ k ≤ n that

Sξ
n

µ

(
tnk−1, U

n
k−1, ξ

n
k−2

)
= pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

)
Sξ

n

µ

(
tnk , U

n
k−1 + δ, ξnk−1

)
+
(

1− pξ
n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

))
Sξ

n

µ

(
tnk , U

n
k−1 − δ, ξnk−1

)
,

(1.18)

and by the definition of Pξn

n this is equivalent to

Sµ
(
tnk−1, U

n
k−1, ξ

n
k−2, ξ

n
k−1

)
= Eξn

n

[
Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

) ∣∣∣Fn
k−1

]
for all 1 ≤ k ≤ n, (1.19)

which indeed means that
{
Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)}
0≤k≤n is a martingale under Pξn

n . On the
other hand (1.19) implies (1.18) and this equation determines for all p-admissible functions
the probabilities

{
pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

)}
1≤k≤n which define Pξn

n . The statements (i) and (iii)
can be proved similarly.
Each of the three measures P̄n, Pξn

n , and P̄ξn

n is equivalent to Pn on
(
Ωn,Fn

n

)
, since all three

weight functions p̄n, pξ
n

n and p̄ξ
n

n take on values in the open interval (0, 1) only. q.e.d.

Remark. The martingale-like condition (1.17) states that the loss-free liquidation price pro-
cess is a martingale between the large investor’s transactions. Note that both the loss-free
liquidation price S̄

(
tnk , U

n
k , ξ

n
k−1

)
before and the loss-free liquidation price S̄

(
tnk , U

n
k , ξ

n
k

)
after

the large investor has executed his transaction of ξnk −ξnk−1 stocks at time tnk are only theoret-
ical prices, which are not apparent on the market. As opposed to the small investor prices,
the loss-free liquidation prices depend on the large investor’s stock holding.
Of course, we could easily construct modified stock prices which preserve the martingale
property under Pξn

n : We have to offset the jumps in the loss-free liquidation price process
which occur whenever the large investor’s portfolio has to be adjusted. This could either be
achieved additively by defining the price process Šn =

{
Šnk
}

0≤k≤n as

Šnk := S̄
(
tnk , U

n
k , ξ

n
k

)
−

k∑
j=0

(
S̄
(
tnj , U

n
j , ξ

n
j

)
− S̄

(
tnj , U

n
j , ξ

n
j−1

))
for all 0 ≤ k ≤ n, (1.20)

or in a multiplicative way – at least as long as the equilibrium price function ψ and hence S̄
is strictly positive. In this case one would define the price process Ŝn =

{
Ŝnk
}

0≤k≤n by

Ŝnk := S̄
(
tnk , U

n
k , ξ

n
k

) k∏
j=0

S̄
(
tnj , U

n
j , ξ

n
j−1

)
S̄
(
tnj , U

n
j , ξ

n
j

) for all 0 ≤ k ≤ n. (1.21)
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Though both price processes Šn and Ŝn adjust the loss-free liquidation price process by the
immediate leverage of the large investor’s transaction, they will in general not remove all
influence of the strategy (ξn, bn) on the price process. However, if ψ has a multiplicative
structure then by (1.16) the product on the right hand side of (1.21) becomes a telescoping
product, and thus the defining equation (1.21) for Ŝnk simplifies to

Ŝnk = ψ•
(
tnk , U

n
k

) ∫ 1

0
f
(
θξn−1

)
dθ = S̄

(
tnk , U

n
k , ξ

n
−1

)
for all 0 ≤ k ≤ n, (1.22)

i.e. the adjusted stock price Ŝn is the liquidation price in the same market, which would
appear if the large investor did not trade during the whole time interval [0, T ], but kept his
stock holdings at the position ξn−1 he had immediately before time tn0 = 0. �

2.1.4 Recursive Schemes for the Value Functions

We now give schemes to recursively calculate the paper and the real value function for a
replicating strategy at all nodes of the binomial tree from the set of possible final values. On
the one hand, such representations will imply that the value processes are (super-)martingales
under the p- and r-martingale measure, respectively, and on the other hand, such a represen-
tation will be used in Section 3.4 to derive a PDE for the continuous-time limit of the value
functions. As opposed to the corresponding recursive scheme in the Cox-Ross-Rubinstein
model, the recursions for the paper and real value function in the large investor model will
normally depend on the large investor’s strategy, so, in general, the recursions for the value
functions will not be of any use to find a replicating trading strategy for a given contingent
claim.

Proposition 2.9. Consider a large investor market described by the price system (ψ, µ).

(i) If (ξn, bn) is a p-admissible trading strategy, then the associated paper value function
vn : An × IR → IR along the process

{(
tnk , U

n
k , ξ

n
k−1

)}
0≤k≤n can be calculated from the

possible realizations of the final paper values V n
n = vn

(
T,Unn , ξ

n
n−1

)
by the recursive

scheme

vn
(
tnk−1, U

n
k−1, ξ

n
k−2

)
= pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

)
vn
(
tnk , U

n
k−1 + δ, ξnk−1

)
+
(

1− pξ
n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

))
vn
(
tnk , U

n
k−1 − δ, ξnk−1

) (1.23)

for all 1 ≤ k ≤ n. Moreover, the large investor’s stock holdings ξnk−1 between time tnk−1

and time tnk satisfy the fixed point equation

ξnk−1 =
vn
(
tnk , U

n
k−1 + δ, ξnk−1

)
− vn

(
tnk , U

n
k−1 − δ, ξnk−1

)
Sξ

n

µ

(
tnk , U

n
k−1 + δ, ξnk−1

)
− Sξ

n

µ

(
tnk , U

n
k−1 − δ, ξnk−1

) for all 1 ≤ k ≤ n. (1.24)

(ii) If (ξn, bn) is an r-admissible trading strategy, then the associated real value function
v̄n : An → IR can be calculated from the possible realizations of the final real values
V̄ n
n = v̄n

(
T,Unn

)
by the recursive scheme

v̄n
(
tnk−1, U

n
k−1

)
= p̄ξ

n

n

(
tnk−1,U

n
k−1

)(
v̄n
(
tnk , U

n
k−1+δ

)
+ cξ

n

µ

(
tnk , U

n
k−1+δ, ξnk−1

))
+
(

1−p̄ξn

n

(
tnk−1,U

n
k−1

))(
v̄n
(
tnk , U

n
k−1−δ

)
+ cξ

n

µ

(
tnk , U

n
k−1−δ, ξnk−1

)) (1.25)
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for all 1 ≤ k ≤ n. Moreover, in this case the number ξnk−1 of shares of stock held by the
large investor between time tnk−1 and tnk satisfies the fixed point equation

ξnk−1 =
v̄
(
tnk , U

n
k−1 + δ

)
− v̄
(
tnk , U

n
k−1 − δ

)
S̄
(
tnk , U

n
k−1 + δ, ξnk−1

)
− S̄

(
tnk , U

n
k−1 − δ, ξnk−1

)
+
cξ

n

µ

(
tnk , U

n
k−1 + δ, ξnk−1

)
− cξ

n

µ

(
tnk , U

n
k−1 − δ, ξnk−1

)
S̄
(
tnk , U

n
k−1 + δ, ξnk−1

)
− S̄

(
tnk , U

n
k−1 − δ, ξnk−1

) (1.26)

for all 1 ≤ k ≤ n.

Proof. Basically, the proof of both parts follows the usual reasoning in standard Cox-Russ-
Rubinstein models.

(i) Since (ξn, bn) is p-admissible, it is in particular self-financing, i.e. (1.3.13) holds. Plug-
ging Definition 1.25 into this equation we can rewrite (1.3.13) in terms of the paper
value V n =

{
V n
k

}
0≤k≤n of (ξn, bn), which leads to the system of equations

V n
k−1 = V n

k − ξnk−1

(
Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
− Sµ

(
tnk−1, U

n
k−1, ξ

n
k−2, ξ

n
k−1

))
(1.27)

for 1 ≤ k ≤ n. Now we employ (1.3.20) to express the paper value by means of the
paper value function, replace Unk by its two possible realizations Unk−1 ± δ, and make
use of (1.1), to rewrite (1.27) for all 1 ≤ k ≤ n as

vn
(
tnk−1, U

n
k−1, ξ

n
k−2

)
= vn

(
tnk , U

n
k−1 ± δ, ξnk−1

)
− ξnk−1

(
Sξ

n

µ

(
tnk , U

n
k−1±δ, ξnk−1

)
− Sξ

n

µ

(
tnk−1, U

n
k−1, ξ

n
k−2

))
.

(1.28)

Subtracting one equation in (1.28) from the other and then dividing the result by the
term Sξ

n

µ

(
tnk , U

n
k−1+δ, ξnk−1

)
−Sξ

n

µ

(
tnk , U

n
k−1−δ, ξnk−1

)
> 0 yields (1.24). The denominator

of (1.24) is strictly larger than zero, since (ξn, bn) is p-admissible.

In order to derive the recursive scheme (1.23) we now just have to plug (1.24) into
(1.28), recall ξnk−1 = ξn

(
tnk−1, U

n
k−1

)
, and apply the definition of the p-martingale weight

function pξ
n

n .

(ii) In order to prove the second part, we will once again rewrite the self-financing condition,
now in terms of the real value process V̄ n. By Definition 1.27 the real value V̄ n satisfies

bnk = V̄ n
k − ξnk S̄

(
tnk , U

n
k , ξ

n
k

)
for all 0 ≤ k ≤ n. (1.29)

Now Propositions 1.4 and 1.2 assure that the fair price condition (1.1.1) holds, hence
an application of that equation with α1 = −ξnk , α2 = ξnk−1, and α3 = ξnk − ξnk−1 shows
that the revenue of selling ξnk shares meets the price paid for buying at first ξnk−1 shares
and then ξnk −ξnk−1 shares, if all transactions are based on the corresponding benchmark
prices. Therefore, (1.29) can be rewritten as

bnk = V̄ n
k − ξnk−1S̄

(
tnk , U

n
k , ξ

n
k−1

)
−
(
ξnk − ξnk−1

)
S∗
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
for all 0 ≤ k ≤ n,

and by the remark following Definition 1.27 a self-financing portfolio strategy fulfills

bnk−1 = V̄ n
k − ξnk−1S̄

(
tnk , U

n
k , ξ

n
k−1

)
+ cξ

n

µ

(
tnk , U

n
k , ξ

n
k−1

)
for all 1 ≤ k ≤ n.

Applying (1.29) we can get rid of the cash holdings bnk−1 and obtain for all 1 ≤ k ≤ n:

V̄ n
k−1 = V̄ n

k + cξ
n

µ

(
tnk , U

n
k , ξ

n
k−1

)
− ξnk−1

(
S̄
(
tnk , U

n
k , ξ

n
k−1

)
− S̄

(
tnk−1, U

n
k−1, ξ

n
k−1

))
. (1.30)
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Now we can represent the real value process by means of the real value functions as in
(1.3.18) and replace Unk by its two possible outcomes Unk−1±δ based on the information
at time tnk−1. Then (1.30) implies

v̄n
(
tnk−1, U

n
k−1

)
= v̄n

(
tnk , U

n
k−1 ± δ

)
+ cξ

n

µ

(
tnk , U

n
k−1 ± δ, ξnk−1

)
− ξnk−1

(
S̄
(
tnk , U

n
k−1 ± δ, ξnk−1

)
− S̄

(
tnk−1, U

n
k−1, ξ

n
k−1

)) (1.31)

for all 1 ≤ k ≤ n. As in the first part we now subtract one equation of (1.31) from the
other, which gives us for all 1 ≤ k ≤ n the representation (1.26).

Last but not least, we insert (1.26) into (1.31) and apply the definition of the r-
martingale weight function p̄ξ

n

n to arrive at (1.25).

Thus, both statements of the proposition have been proved. q.e.d.

The right-hand sides of the recursive equations (1.23) and (1.25) still depend on the strategy
function ξn : An → IR via the probability pξ

n

n and p̄ξ
n

n and the function cξ
n

µ . For this reason, we
have to determine the strategy function before we can analyze the corresponding value process
if we want to replicate a certain contingent claim or if we want to show the convergence of our
discrete-time model towards a continuous-time limit. This order seems to be in opposition to
the order in deriving a replication strategy in the Cox-Ross-Rubinstein model. But it is the
more natural approach, since the strategy is the fundamental quantity for the replication of
a contingent claim, in particular if the large investor is faced with transaction losses or gains
when shifting some of his stock holdings into cash or vice versa.

Remark. If the equilibrium price function ψ : [0, T ]× IR2 → IR does not depend on the large
investor’s stock holdings, such that the large investor acts like a small investor, the (paper)
value function simplifies to vn(t, u, ξ) = vn(t, u, 0) for all (t, u, ξ) ∈ An × IR, according to
its definition in (1.3.19). In this case the p-martingale weights

{
pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

)}
1≤k≤n

do not depend on the investor’s strategy either, and one can recursively calculate the value
function of a self-financing strategy (ξn, bn) along the process

{(
tnk , U

n
k

)}
solely from knowing

its possible final values, since the recursive scheme (1.23) separates the calculation of the value
function from the corresponding strategy function ξn : An → IR.
In general, however, the recursive scheme given by (1.23) strongly depends on the particular
trading strategy of the large investor: For each of the weights

{
pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

)}
1≤k≤n

the strategy function ξn : An → IR has to be evaluated at four different nodes. In particular,
it is unpleasant that the formula (1.23) to calculate the paper value at time tnk−1 depends
on the large investor’s stock holdings ξnk−2 immediately before tnk−1. The formula in (1.24)
does not help to calculate these stock holdings, since we would need to know the paper value
function vn

(
tnk−1, · , · ) : Unk−1 × IR → IR at time tnk−1. Hence we will end up with a vicious

cycle if ξn : An → IR is not known in advance.
In the special case where the price-determining measure µ is the Dirac measure δ1 concen-
trated in 1, such that at any trading time the stock price in the market jumps from the old to
the new equilibrium before the large investor can start his transactions and the large investor
price function simplifies to Sµ(t, u, ξ1, ξ2) = ψ(t, u, ξ2) for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3, both
the value function and the p-martingale weight in (1.23) do not depend on ξnk−2, but the
p-martingale weight pξ

n

n

(
tnk−1, U

n
k−1, ξ

n
k−2

)
still depends on the values of the strategy function

at time tnk and tnk+1. Thus, (1.23) still does not separate the recursive calculation of the paper
value function from the associated strategy function.
Compared to the recursive scheme for the paper value, the recursion (1.25) for the real value is
less intertwined with the strategy function ξn : An → IR. By definition, the real value depends
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only on the current stock holdings of the large investor, and the same holds true for the r-
martingale weights

{
p̄ξ

n

n

(
tnk−1, U

n
k−1

)}
1≤k≤n. If the equilibrium price function is multiplicative

it follows from the representation (1.16) that the r-martingale weights (1.14) do not depend on
the strategy at all. However, in general the implied transaction losses cξ

n

µ

(
tnk , U

n
k−1± δ, ξnk−1

)
,

which depend on both the large investors stock holdings ξnk−1 immediately before and the
holdings ξn

(
tnk , U

n
k−1±δ) at (the end of) time tnk , will still prevent us to separate the recursive

calculation of the real value from the associated strategy.
The recursive scheme (1.25) does not depend on the strategy if the equilibrium price function
ψ is multiplicative and if the large investor always trades at the benchmark price, such that
no implied transaction (gains or) losses can occur. In that case, the recursive scheme to
calculate the real value is separated from the strategy function in exactly the same way as
the calculation of the value function in a small investor market. We will discuss this important
special case in some more detail in Section 2.4.3. �

The missing separability of the recursive value calculation in (1.23) and (1.25) from the
corresponding strategy function ξn : An → IR for most large investor markets (ψ, µ) will
complicate our approach to approximate the value functions vn and v̄n for large n ∈ IN by
some continuous functions; it forces us to find some approximations for the strategy function
first. For that reason, we will derive in Section 2.2 recursive schemes for the strategy function
ξn : An → IR, which basically resemble the form of (1.23) and (1.25), but which now depend
only on the strategy function itself.

2.1.5 The Value Processes as (Super-)Martingales

As a consequence of the recursive equations for the value functions in Proposition 2.9 we
can easily characterize the value processes, which are associated to a certain self-financing
trading strategy of the large investor, in terms of the p- and r-martingale measures, re-
spectively: Under the right measure the value processes become (super-)martingales. These
characterizations can then be used to prove the no-arbitrage statement of Proposition 2.4.

Corollary 2.10. Consider a large investor market described by the price system (ψ, µ).

(i) For every p-admissible trading strategy (ξn, bn) the paper value process V n =
{
V n
k

}
0≤k≤n

is a martingale under the p-martingale measure.

(ii) If the price system (ψ, µ) excludes instantaneous transaction gains, then for every r-
admissible trading strategy (ξn, bn) the real value process V̄ n =

{
V̄ n
k

}
0≤k≤n is a super-

martingale under the r-martingale measure.

(iii) If the price system (ψ, µ) excludes instantaneous transaction gains and transaction
losses (so that the large investor always trades at the benchmark price), then for ev-
ery r-admissible trading strategy (ξn, bn) the real value process V̄ n is even a martingale
under the r-martingale measure.

Proof. The proofs of the three statements are straightforward consequences of Proposition 2.9
and Definition 2.7.

(i) By the definition of the p-martingale measure Pξn

n we can rewrite (1.23) in terms of
Pξn

n as

V n
k−1 = v

(
tnk−1, U

n
k−1, ξ

n
k−2

)
= Eξn

n

[
v
(
tnk , U

n
k , ξ

n
k−1

) ∣∣∣Fn
k−1

]
= Eξn

n

[
V n
k

∣∣Fn
k−1

]
, (1.32)

for all 1 ≤ k ≤ n, which shows the martingale property of V n.
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(ii) Since (ψ, µ) is assumed to exclude instantaneous transaction gains, the transaction
loss function cnµ : [0, T ] × IR3 → IR is nonnegative, and so is the reduced function
c̃nµ : An × IR → IR of (1.2). Moreover the r-martingale weights

{
p̄n
(
tnk−1, U

n
k−1

)
}1≤k≤n

are probability weights, hence (1.25) implies for all 1 ≤ k ≤ n:

v̄n
(
tnk−1, U

n
k−1

)
≥ p̄ξ

n

n

(
tnk−1, U

n
k−1

)
v̄n
(
tnk , U

n
k−1 + δ

)
+
(

1− p̄ξ
n

n

(
tnk−1, U

n
k−1

))
v̄n
(
tnk , U

n
k−1 − δ

)
.

(1.33)

Of course, this inequality can be rewritten in terms of the r-martingale measure P̄ξn

n ,
and we get the supermartingale property

V̄ n
k−1 = v̄n

(
tnk−1, U

n
k−1

)
≥ Ēξn

n

[
v̄n
(
tnk , U

n
k

) ∣∣∣Fn
k−1

]
= Ēξn

n

[
V̄ n
k

∣∣Fn
k−1

]
(1.34)

for all 1 ≤ k ≤ n. In general, V̄ n will not be a martingale under P̄ξn

n due to the
transaction loss terms in (1.25).

(iii) However, if the market price mechanism excludes both instantaneous transaction gains
and instantaneous transaction losses, so that the large investor can always trade at
the benchmark price, the implied transaction losses cξ

n

µ

(
tnk , U

n
k−1 ± δ, ξnk−1

)
in (1.25)

vanish, and equality holds in (1.33) and (1.34) for all 1 ≤ k ≤ n, so that V̄ n is even a
P̄ξn

n -martingale.

Thus, all three statements of the corollary have been proved. q.e.d.

Remark. Since both the large investor price process
{
Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)}
0≤k≤n and the

paper value process V n =
{
V n
k

}
0≤k≤n are martingales under the p-martingale measure, the

fundamental property of small investor markets without transaction costs that both the stock
price and the value process of any self-financing trading strategy are martingales under the
same measure, is preserved if the large investor stock price is taken as the relevant price
for valuation. However, the p-martingale measure Pξn

n is by far more complex than in the
small investor case, since it strongly depends on the particular trading strategy of the large
investor. In continuous-time, Frey (1998) uses the fact that both the price process and the
paper value process are martingales under the p-martingale measure in order to determine
the replicating strategy of a contingent claim.
If the large investor’s portfolio is evaluated by means of the loss-free liquidation price, our
large investor model is more reminiscent of a small investor model with transaction costs:
Like the value process in such a model, the real value is only a supermartingale under the
r-martingale measure P̄ξn

n , and a Pξn

n -martingale only if there are no transaction losses.
Also Baum (2001) noted that in his general semimartingale model the real value process is a
supermartingale, and then employed the supermartingale property for his no-arbitrage result.
In the subsequent paper of Bank and Baum (2004), the finite variation part of the real value
is interpreted as the induced transaction costs due to limited liquidity. However, since Baum
(2001) and Bank and Baum (2004) only considered price mechanisms which correspond to
a price determining measure µ = δ1, these authors did not obtain a martingale property
analogously to Corollary 2.10(iii) as a special case. Instead, they focus on superreplication
with respect to the real value to obtain reasonable prices for a contingent claim. Baum (2001)
then transforms theses results into corresponding results for superreplication with respect to
the paper value.
We will come back to similarities with transaction costs models in Section 2.3 and we continue
the discussion of similarities to the model of Baum (2001) and Bank and Baum (2004) at the
end of Section 2.4. �
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Now we can finally devote our attention to the proof of the no-arbitrage statement of Propo-
sition 2.4.

Proof of Proposition 2.4. Focusing only on admissible trading strategies as defined in Defi-
nition 2.2, the proof of both parts follows from Corollary 2.10 and the usual arguments of
no-arbitrage theory in small investor markets.

(i) Assume (ξn, bn) ∈ Zn
P is an arbitrage opportunity. Then we will have under the original

measure Pn the strict inequality En
[
vn
(
T,Unn , ξ

n
n−1

)
−vn

(
0, Un0 , ξ

n
−1

)]
> 0. Since Pξn

n is
equivalent to Pn, the strict inequality is preserved by the change from the original mea-
sure Pn to the paper value martingale measure Pξn

n . On the other hand, Corollary 2.10
implies that Eξn

n

[
vn
(
T,Unn , ξ

n
n−1

)]
= vn

(
0, Un0 , ξ

n
−1

)
, which leads to a contradiction.

(ii) The proof of (ii) follows along the same lines.

Thus, within the classes of p- and r-admissible strategies there are no paper-value and real-
value arbitrage opportunities, respectively. q.e.d.

Remark. The no-arbitrage statement of Proposition 2.4 has forced us to restrict the class of
strategies used by the large investor to p- and r-admissible trading strategies, respectively.
However, one might argue that a realistic model for a large investor model has to allow
(limited) arbitrage opportunities by the large investor.
Then it may make sense to relax the class of p- or r-admissible trading strategies which
the large investor can pick. For example Definition 2.2 could be relaxed such that all path-
independent and self-financing strategies (ξn, bn) which satisfy for all 1 ≤ k ≤ n the inequality
Sξ

n

µ

(
tnk , U

n
k−1 − δ, ξnk−1

)
< Sξ

n

µ

(
tnk , U

n
k−1 + δ, ξnk−1

)
are p-admissible. Besides the no-arbitrage

statement of Proposition 2.4 all statements of the two previous section, especially the recursive
representation of Proposition 2.9(i), would transfer to the more general situation, but the
p-martingale weight function pξ

n

n of Definition 2.7 may then take on arbitrary real values so
that the p-martingale measure Pξn

n might be only a signed measure, and not necessarily a
probability measure equivalent to Pn. �

2.2 Recursive Schemes for the Strategy Function

As we have seen in the discussions in Section 2.1.4, the strategy function ξn : An → IR is the
most important object in large investor market models, and in general, we will only be able
to derive some results for the value functions if we have first derived similar results for the
strategy function. This especially holds true if we look for some convergence results for our
large investor models as n→∞. Therefore, we will start the convergence results in Chapter 3
with convergence results for the sequence

{
ξn
}
n∈IN of strategy functions ξn : An → IR, and

thus we need for each (sufficiently large) n ∈ IN a suitable representation for the strategy
function ξn : An → IR which can support us for the proof of convergence. The representations
given in this section will be difference equations of second order.
In view of finding representations for ξn : An → IR and some fixed n ∈ IN , we start with
the fixed point equation (1.4.10). Next to the original fixed point problem (1.4.10) we have
already derived two alternate representations of this fixed point problem in Section 2.1.4,
namely the representations (1.24) and (1.26). Like the original fixed point problems, both
representations have the same drawback that they involve not only the strategy function
ξn : An → IR, but also some additional function: either the function bn : An → IR describing
the cash amount held by the large investor, or one of the two sorts of value functions for the
large investor’s portfolio.
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But in order to take limits it is necessary to find a representation of ξn : An → IR which does
not involve any other function for which the limit as n→∞ is not known yet. Fortunately,
we can easily get rid of the large investor’s cash holdings in the representation (1.4.10), and
thus arrive at the following two representations, which for the sake of clarity are written in
terms of our shorthands (1.3.12).

Proposition 2.11. Consider a large investor market described by the price system (ψ, µ).

(i) If the trading strategy (ξn, bn) is p-admissible, then the associated strategy function
ξn : An → IR satisfies the recursive relation

ξn(k−1)i = ξnk(i+1)

Sξ
n

µ

(
tnk , u

n
k(i+1), ξ

n
(k−1)i

)
− Sξ

n

µ
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n
(k+1)i, ξ

n
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)
Sξ

n

µ
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n
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n
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)
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n
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)
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)
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)
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)
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)
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(
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)
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n
(k−1)i

)
(2.1)

for all 1 ≤ k ≤ n− 1 and all i ∈ Ik−1.

(ii) If the trading strategy (ξn, bn) is r-admissible, then the associated strategy function
ξn : An → IR solves the system of equations given by

ξn(k−1)i = ξnk(i+1)

S̄
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n
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n
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+

Dξn

µ

(
tnk , u

n
(k−1)i

)
S̄
(
tnk , u

n
k(i+1), ξ

n
(k−1)i

)
− S̄

(
tnk , u

n
k(i−1), ξ

n
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)
(2.2)

for all 1 ≤ k ≤ n− 1 and all i ∈ Ik−1, where the nominator Dξn

µ

(
tnk , u

n
(k−1)i

)
of the last

term denotes the spread

Dξn
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n
(k−1)i

)
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)
between the transaction losses along the two possible paths which lead from fundamentals
of Unk−1 = un(k−1)i at time tnk−1 to fundamentals of Unk+1 = un(k+1)i at time tnk+1.

Proof. Let us fix 1 ≤ k ≤ n − 1 and i ∈ Ik−1. By (1.4.9) applied for (k + 1, i ± 1) instead
of (k, i), we know that if the fundamentals have moved from unk(i±1) to un(k+1)i, the large
investor’s portfolios

(
ξnk(i±1), b

n
k(i±1)

)
and

(
ξn(k+1)i, b

n
(k+1)i

)
before and after his self-financing

transaction at time tnk+1 satisfy

bnk(i±1) = bn(k+1)i +
(
ξn(k+1)i − ξnk(i±1)

)
Sµ
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n
(k+1)i, ξ

n
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n
(k+1)i

)
. (2.3)

If we plug these two equations into (1.4.10), we get

0 =
(
ξnk(i+1) − ξn(k−1)i

)
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.

(2.4)
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This equation can now easily be rewritten in representations similar to (1.23) and (1.25):

(i) Collecting similar terms in (2.4) and then dividing the result by the stock price difference
Sµ
(
tnk , u

n
k(i+1), ξ

n
(k−1)i, ξ

n
k(i+1)

)
− Sµ

(
tnk , u

n
k(i−1), ξ

n
(k−1)i, ξ

n
k(i−1)

)
leads to (2.1). For all p-

admissible trading strategies the denominator in (2.1) is strictly positive.

(ii) Recalling the definition of the implied transaction loss function, we have

(ξ2 − ξ1)Sµ(t, u, ξ1, ξ2) = (ξ2 − ξ1)S∗(t, u, ξ1, ξ2) + cµ(t, u, ξ1, ξ2) (2.5)

for all (t, u, ξ1, ξ2) ∈ [0, T ] × IR3. Moreover, due to the fair price condition (1.1.1) and
the definition of the loss-free liquidation price S̄(t, u, ξ) = S∗(t, u, ξ, 0) = S∗(t, u, 0, ξ)
for all (t, u, ξ) ∈ [0, T ]× IR2 it follows that

(ξ2 − ξ1)S∗(t, u, ξ1, ξ2) = ξ2S̄(t, u, ξ2)− ξ1S̄(t, u, ξ1). (2.6)

If (2.6) is inserted in (2.5) and then the latter equation utilized to replace the Sµ-terms
in (2.4), we obtain

0 = ξnk(i+1)S̄
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.

If we now rearrange terms and then divide the resulting equation by the stock price
difference S̄

(
tnk , u

n
k(i−1), ξ

n
(k−1)i

)
− S̄

(
tnk , u

n
k(i−1), ξ

n
(k−1)i

)
, which is strictly positive for all

r-admissible trading strategies, we indeed obtain (2.2).

This concludes our proof. q.e.d.

Both recursive schemes (2.1) and (2.2) are implicit difference equations of second order in
space and time for the strategy function ξn : An → IR, since they both depend on the values
of ξn at the four points

(
tnk±1, u

n
(k±1)i

)
and

(
tnk , u

n
k(i±1)

)
. Despite the involvement of three

points in time, we will see in Chapter 3 that the difference equation converges towards a
differential equation of second order in space and first order in time.

Remark. To some extend, the recursive schemes (2.1) and (2.2) for calculating the strategy
function ξn : An → IR resemble the schemes to calculate the value functions in Proposi-
tion 2.9. However, there are several differences. If the pre-trading stock endowment ξn−1

and the strategy function ξn : An → IR are known, the recursions of Proposition 2.9
can be used to calculate the value functions as soon as the corresponding final values,
V n
n = vnn

(
T,Unn , ξ

n
n−1

)
and V̄ n

n = v̄n
(
T,Unn

)
, respectively, are known in any state of the world.

In contrast, the recursions of Proposition 2.11 require the knowledge of the large investors
stock holdings ξnn−1 = ξn

(
tnn−1, U

n
n−1

)
and ξnn = ξn

(
T,Unn

)
immediately before and at maturity

tnn = T , since for each 1 ≤ k ≤ n − 1 and each particular realization un(k−1)i of Unk−1 both
equations for ξn

(
tnk−1, U

n
k−1

)
= ξn(k−1)i depend not only on the two possible stock holdings

ξn
(
tnk , U

n
k−1± δ

)
= ξnk(i±1) which the strategy function ξn will prescribe at time tnk , depending

on the outcome of Unk = Unk−1 ± δ, but also on the stock holdings ξn
(
tnk+1, U

n
k−1

)
= ξn(k+1)i

which will be prescribed at time tnk+1 if the fundamental process will return to the value Unk−1

at this time.
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In Section 1.4.2, the stock holdings ξnn−1 immediately before maturity have been determined
from the final stock and cash holdings ξnn = ξn and bnn = bn via the fixed point equation
(1.4.10); in Section 1.4.3, the stock holdings ξnn−1 and ξnn immediately before and at maturity
have been determined simultaneously in Proposition 1.36 such that they satisfy the condition
(1.4.17) of paper value replication.
A second difference relates to the implicit form of the determining equations for ξn(k−1)i in
Proposition 2.11. Given that the strategy function ξn : An → IR is known, the recursive
schemes for the value functions in Proposition 2.9 provide explicit equations for the possible
values vn

(
tnk−1, U

n
k−1, ξ

n
k−2

)
and v̄n

(
tnk−1, U

n
k−1

)
of the value functions at time tnk−1 from the

possible values of these functions at time tnk . The recursion schemes for the strategy function
ξn : An → IR of Proposition 2.11, however, remain implicit schemes, since the weights and
the spread Dξn

µ

(
tnk , u

n
(k−1)i

)
between the transaction losses on the right-hand side of (2.1) and

(2.2) depend on ξn(k−1)i as well.
In the special situation where the large investor price function has the particular form
Sµ(t, u, ξ1, ξ2) = ψ(t, u, ξ2) for all (t, u, ξ1, ξ2) ∈ [0, T ]×IR3 (as it is for example the case if the
price-determining measure µ is the Dirac measure δ1 concentrated in 1) the first representation
(2.1) of Proposition 2.11 becomes an explicit equation for the value ξn(k−1)i = ξ

(
tnk−1, u

n
(k−1)i

)
for all 1 ≤ k ≤ n − 1 and i ∈ Ik−1, while the second representation may still remain an
implicit equation. �

Example 2.1. Let us assume that the price system (ψ, µ) excludes any instantaneous transac-
tion gains or losses, since either the price-determining measure µ is the Lebesgue measure λ on
[0, 1], or since the equilibrium price function ψ does not depend on the large investor’s stock
holdings. In such a market, the spreadDξn

µ

(
tnk , u

n
(k−1)i

)
between the possible transaction losses

vanishes, and (2.2) can be used to calculate the restriction ξn
∣∣
An(n−1)

of the strategy function
ξn : An → IR to the possible time-space combinations before time tnn = T , solely from the
possible stock holdings ξnn−1 = ξn

(
tnn−1, U

n
n−1

)
immediately before time T , without knowing

the possible values ξnn = ξn
(
T,Unn

)
of ξn at maturity. Since for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3

Propositions 1.4 and 1.2 imply that

(ξ − ξ1)S∗(t, u, ξ1, ξ) + (ξ2 − ξ)S∗(t, u, ξ2, ξ)

does not depend on ξ ∈ IR, it follows that the knowledge of ξnn is also not necessary if the
restriction ξn

∣∣
An(n−1)

is calculated from (2.1). �

Example 2.2. Let the price system (ψ, µ) be determined by some equilibrium price function
ψ : [0, T ] × IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ) which is nondecreasing in ξ, and an associated
price-determining measure µ which is concentrated on [0, 1]. Then for every p-admissible
convex trading strategy we have

Sξ
n

µ

(
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n
(k+1)i, ξ

n
k(i−1)

)
≤ Sξ

n

µ

(
tnk+1, u

n
(k+1)i, ξ

n
k(i+1)

)
for all 1 ≤ k ≤ n− 1 and all i ∈ Ik−1.

Let us now fix some 1 ≤ k ≤ n − 1 and i ∈ Ink−1, and assume that the fundamentals
at time tnk−1 are given by Unk−1 = un(k−1)i. Since the definition of p-admissibility implies
that the weights of ξnk(i+1) and ξnk(i−1) in the representation (2.1) are probability weights,
the weight of ξn(k+1)i is also a probability weight, and (2.1) represents the stock holdings
ξn
(
tnk−1, U

n
k−1

)
= ξn(k−1)i between time tnk−1 and time tnk as a convex combination of the

values of the strategy function ξn : An → IR at the three points
(
tnk , U

n
k−1 +δ

)
=
(
tnk , u

n
k(i+1)

)
,(

tnk+1, U
n
k−1

)
=
(
tnk+1, u

n
(k+1)i

)
, and

(
tnk , U

n
k−1 − δ

)
=
(
tnk , u

n
k(i−1)

)
.

Remark. Note that the weights of ξnk(i+1) and ξnk(i−1) in (2.1) are probability weights for all
p-admissible trading strategies (ξn, bn), even if the price system (ψ, µ) does not satisfy the
conditions of Example 2.2. �
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For practical purposes and for the determination of a continuous approximating function
of a discrete strategy function, the representation (2.2) proves to be more useful than the
representation (2.1), especially if the equilibrium price function is multiplicative.

2.3 Connections to Models with Transaction Costs

In this section we show that our large investor market model has many similarities with
certain binomial models for small investor markets with transaction costs. Especially we
will see that the p-martingale measure Pξn

n , which turns the paper value into a martingale,
has a counterpart in a small investor model with transaction costs. Since transaction costs
models are widely known and since they have been analyzed in great detail, the similarity to
transaction costs models gives an indication how the non-linearity in large investor markets
affects martingale measures and replicating strategies. In particular, this has proved useful
to find the limit of the strategy functions ξn : An → IR as n → ∞ as it will be derived in
Chapter 3.

One of the best-known binomial models with transaction costs is the model with fixed propor-
tional transaction costs as presented e.g. in Boyle and Vorst (1992), the textbook of Musiela
and Rutkowski (1998), or – in a slightly generalized version allowing for different transaction
costs rates for buying and selling – in the diploma thesis of Opitz (1999). If we look at Boyle
and Vorst’s binomial model with n steps, at each trading time t ∈ (0, T ] and each possible
state u ∈ IR of the fundamentals, the small investor has to pay for each share of stock that he
buys not only the exogenously given stock price ψ•(t, u), but the amount

(
1+κn

)
ψ•(t, u), where

κn ≥ 0 is some fixed transaction cost rate. Similarly the investor receives only
(
1−κn

)
ψ•(t, u)

for each share of stock he sells. Boyle and Vorst (1992) assume that there are no transaction
costs at time 0, so that the large investor’s pre-trading endowment does not affect the stock
price.
In order to compare this model with our large investor model, we can now write the average
price per share which the small investor actually has to pay when shifting his portfolio at
time t from ξ1 to ξ2 shares of stock, given that the fundamentals are u, in terms of the price
function Sn : [0, T ]× IR3 → IR which for all t ∈ [0, T ] and u, ξ1, ξ2 ∈ IR is defined by

Sn(t, u, ξ1, ξ2) :=

{
ψ•(0, u) if t = 0
ψ•(t, u)

(
1 + sgn(ξ2 − ξ1)κn

)
if t ∈ (0, T ].

(3.1)

The price function Sn in the small investor market with transaction costs corresponds to the
large investor price function Sµ, but the influence of the two stock positions ξ1 and ξ2 before
and after the trade at time t is noticeably simpler than their influence on the function Sµ,
since ξ1 and ξ2 affect the price function Sn only through sgn

(
ξ2−ξ1

)
. However, in contrast to

the large investor price function Sµ, the price function Sn is discontinuous on the hyperplane
ξ1 = ξ2. This discontinuity will restrict some of the analogies with large investor models to
a formal level.
Since for each fixed (t, u) ∈ [0, T ]×IR and non-vanishing stock prices ψ•(t, u) the price function
S∗(t, u, · , · ) : IR2 → IR determined by S∗(t, u, ξ1, ξ2) = ψ•(t, u) for all ξ1, ξ2 ∈ IR is the only
function of the form (3.1) which satisfies the fair-price condition (1.1.1), it is quite clear that
in the small investor model with proportional transaction costs, the price ψ•(t, u) plays the
role of the benchmark price. Then the transaction costs function cn : [0, T ] × IR3 → IR
in the model with transaction costs can be introduced like the transaction losses in the
large investor model, namely by cn(t, u, ξ1, ξ2) =

(
ξ2 − ξ1

)(
Sn(t, u, ξ1, ξ2) − ψ•(t, u)

)
for all
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(t, u, ξ1, ξ2) ∈ [0, T ]× IR3, which leads to the transaction costs of

cn
(
t, u, ξ1, ξ2

)
=

{
0 for (t, u, ξ1, ξ2) ∈ {0} × IR3∣∣ξ2 − ξ1

∣∣κnψ•(t, u) for (t, u, ξ1, ξ2) ∈ (0, T ]× IR3,
(3.2)

as we would expect.
Like in our large investor market, we can then define trading strategies (ξn, bn) in the market
with transaction costs. If such a trading strategy is path-independent, we can also introduce
the strategy function ξn : An → IR as in the large investor case. In analogy to Definition 1.24
a trading strategy (ξn, bn) =

{(
ξnk , b

n
k

)}
0≤k≤n in the market with transaction costs is self-

financing if

bnk−1 = bnk +
(
ξnk − ξnk−1

)
Sn
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
for all 1 ≤ k ≤ n.

Moreover, we can introduce the paper value process Ṽ n =
{
Ṽ n
k

}
of a trading strategy (ξn, bn

)
in the market with transaction costs by

Ṽ n
k = bnk + ξnkS

n
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)
for all 0 ≤ k ≤ n,

where again ξn−1 denotes the initial endowment of the (small) investor immediately before
time tn0 = 0. Note, however, that the paper value process does not depend on the particular
value of ξn−1, since Sn

(
0, Un0 , ξ

n
−1, ξ

n
0

)
= ψ•

(
0, Un0

)
.

Now suppose that for some fixed n ∈ IN the small investor price function ψ• : [0, T ]× IR→ IR
satisfies Assumption A. Then for all sufficiently small κn > 0 we even have

1 + κn
1− κn

ψ•
(
tnk , U

n
k−1 − δ

)
< ψ•

(
tnk , U

n
k−1

)
<

1− κn
1 + κn

ψ•
(
tnk , U

n
k−1 + δ

)
for all 1 ≤ k ≤ n.

Under this condition we can, for each path-independent and self-financing trading strategy
(ξn, bn), copy the Definition 2.7(ii) of the p-martingale measure Pξn

n in the large investor
market, and analogously define a Pn-equivalent probability measure P̃ξn

n in the market with
transaction costs. Namely, we can define some weight function p̃ξ

n

n : An(n− 1)× IR→ (0, 1)
for all (t, u, ξ) ∈ An(n− 1)× IR by
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−Sn
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) ,
and then define the new probability measure P̃ξn
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Ωn,Fn
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)
via the initial distributions
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and the transition probabilities
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for all 2 ≤ k ≤ n

for the fundamental process Un under P̃ξn

n .
By the same arguments as in the large investor model it follows that the paper value pro-
cess Ṽ n associated to the trading strategy (ξn, bn) becomes a martingale under the measure
P̃ξn

n . Hence the initial wealth Ṽ n
0 = bn0 + ξn0ψ

•(0, Un0 ) needed at time 0 to replicate the final
contingent claim

(
ξnn , b

n
n

)
with paper value Ṽ n

n = bnn + ξnnψ
•(T,Unn )(1 + sgn(ξnn − ξnn−1)κn

)
can be calculated as the expectation Ṽ n

0 = Ẽξn

n

[
Ṽ n
n

]
. For the special case where

(
ξnn , b

n
n

)
is a long European call which is settled by delivery, such a representation can already be
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found in Boyle and Vorst (1992) or Musiela and Rutkowski (1998), and they show that the
corresponding strategy function ξn : An → IR satisfies

ξn
(
t+ δ2, u− δ

)
≤ ξn(t, u) ≤ ξn

(
t+ δ2, u+ δ

)
for all (t, u) ∈ An(n− 1). (3.3)

If for some 1 ≤ k∗ ≤ n and all 0 ≤ t < tnk∗ the inequalities in (3.3) are strict, then the
distribution of Un1 under Pξn

n simplifies to

P̃ξn

n

(
Un1 = Un0 + δ

)
=

ψ•(0, Un0 )− ψ•
(
tn1 , U

n
0 + δ

)
(1− κn)

ψ•
(
tn1 , U

n
0 + δ

)
(1 + κn)− ψ•

(
tn1 , U

n
0 − δ

)
(1− κn)

and for all 2 ≤ k ≤ k∗ the conditional distribution of Unk given its two predecessors becomes

P̃ξn

n

(
Unk = Unk−1 + δ

∣∣Unk−1, U
n
k−2

)
=
ψ•(tnk−1, U

n
k−1)(1 + ηnk−1κn)− ψ•

(
tnk , U

n
k−1 + δ

)
(1− κn)

ψ•
(
tnk , U

n
k−1 + δ

)
(1 + κn)− ψ•

(
tnk , U

n
k−1 − δ

)
(1− κn)

,

where ηnk−1 = sgn
(
ξn
(
tnk−1, U

n
k−1

)
− ξn

(
tnk−2, U

n
k−2

))
.

On the set Fn
k∗ our measure P̃ξn

n coincides with the martingale measure used by Boyle and
Vorst (1992) and Musiela and Rutkowski (1998). Note, however, that for the European
call the two measures do not coincide on all of Ωn, since there are normally some states
(t, u) ∈ An(n − 1) on the binomial tree, with t being sufficiently close to maturity, where it
is clear that the call is going to end in the money, say, regardless how the fundamentals will
evolve between time t and T , just because of the binomial restrictions on the price process.
In such states the associated replicating strategy function of the large investor stays constant,
and the inequalities in (3.3) become equalities. For these states our transition probabilities for
the fundamentals will not match with those given in Musiela and Rutkowski (1998). However,
since the choice of these probability weights only reallocates the probability weights among
paths which all lead to the same final paper value of Ṽ n

n , the (paper) value at time 0 calculated
by Ṽ n

0 = Ẽξn

n

[
Ṽ n
n

]
does indeed coincide with the value calculated by Boyle and Vorst (1992)

or Musiela and Rutkowski (1998).

Remark. We should conclude this section with a discussion on the absence of transaction costs
at time tn0 = 0. Musiela and Rutkowski (1998) motivate this assumption by the aversion to
dealing with pre-trading endowment in stocks. This is basically the only reason to exclude
transaction costs at time 0, since there is no other convincing reason why the market structure
at time 0 should be conceptually different from the one at all other time points t ∈ (0, T ]. Of
course, it is straightforward to adjust the transaction cost model to include transaction costs
at time 0 as well.
The dependence of the pre-trading endowment is a bother in our large investor model as
well, even more than in the small investor model with transaction costs: In the large investor
model it strongly restricts the class of p-admissible trading strategies, and hence the class of
contingent claims which are attainable by such p-admissible trading strategies. In contrast
to the small investor model with transaction costs, however, it does not suffice to exclude
any transaction gains or losses at time tn0 = 0 in order to remove the influence of the large
investor’s stock holdings ξn−1 immediately before tn0 on the model, since for any equilibrium
price function ψ : [0, T ] × IR2 → IR, for which ξ 7→ ψ(0, Un0 , ξ) is not constant, the bench-
mark price S∗

(
0, Un0 , ξ

n
−1, ξ

n
0

)
depends on both the large investor’s stock holdings ξn−1 and ξn0

immediately before and after tn0 .
Of course, by the definition of the large investor price function in (1.3.2) the large investor
price Sµ

(
0, Un0 , ξ

n
−1, ξ

n
0

)
does not depend on ξn−1 if the price-determining measure µ is the

Dirac measure δ1 concentrated in 1. If µ = δ1 the market price jumps to its new equilibrium
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as soon as the large investor announces, but before he can execute, his trade, and we get
Sµ
(
t, u, ξ1, ξ2

)
= ψ

(
t, u, ξ2

)
for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3.

In order to avoid the dependence on the large investor’s pre-trading endowment we could
also employ the price-determining measure µ = δ1 only to describe the price mechanism at
time 0, and some more suitable measures for all other trading times in (0, T ]. However, since
there is no obvious reason why the price mechanism at time 0 should conceptually differ from
the price mechanisms at the other time points, we have decided not to pursue such a model.
Thus, in our large investor model we have to remain careful about the large investor’s initial
endowment in the stock. �

2.4 Markets with a Multiplicative Equilibrium Price Function

The connections between small investor models with transaction costs and large investor
models become especially noticeable if the equilibrium price function in the large investor
market has a multiplicative structure. In this case the large investor market model can
basically be written in terms of a small investor market model with transaction costs, where
the small investor uses a transformed trading strategy. However, the large investor model
remains more complex than the ordinary small investor models with transaction costs, since
the transaction loss rate depends on the absolute size of the large investor’s stock holdings.
In addition to the similarities with transaction cost models, the multiplicative structure
considerably simplifies the shape of the r-martingale measure and the recursion for the real
value function, since the r-martingale weight function now coincides with the s-martingale
weight function and hence does not depend on the large investor’s strategy any more. The
simplification is maximal for multiplicative large investor models if the price system prevents
any instantaneous transaction gains and losses. In this case, the large investor’s trading
strategy is just a transform of the small investor’s trading strategy in the associated small
investor market and all path-independent contingent claims are attainable.
For the remainder of the thesis, we will only consider large investor price systems (ψ, µ) where
the equilibrium price function ψ : [0, T ] × IR2 → IR has a multiplicative structure, and we
will always assume

Assumption B (Multiplicative structure of ψ). There exists a locally bounded function
f : IR → (0,∞) which is continuous a.e. (with respect to the Lebesgue measure on IR) such
that the equilibrium price function ψ : [0, T ]× IR2 → IR can be written as

ψ(t, u, ξ) = ψ•(t, u)f(ξ) for all (t, u, ξ) ∈ [0, T ]× IR× IR. (4.1)

Remark. Since every equilibrium price function ψ : [0, T ] × IR2 → IR, (t, u, ξ) 7→ ψ(t, u, ξ) is
increasing in u, any function f : IR→ IR that satisfies (4.1) cannot become zero on IR. By the
definition of ψ• : [0, T ]×IR→ IR in Definition 1.17 we also have f(0) = 1. In Proposition 1.33,
where we have proved the existence of a replicating strategy, we employed the condition that
ψ is continuous in ξ. In this case f : IR→ IR is of course continuous as well, and the positivity
of f follows already from the representation (4.1). �

2.4.1 The Strategy Transform

We will see that under Assumption B a large investor market can be basically viewed as a
small investor market with transaction costs, where the small investor uses a transformed
strategy. This point of view will simplify the analysis of large investor markets considerably.
In Section 2.1.3 the multiplicative form (4.1) of ψ was seen to carry over to the loss-free
liquidation price function S̄ : [0, T ]× IR2 → IR, which then can be written as in (1.16). Since
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for all a.e. continuous functions the Lebesgue integral over [0, 1] coincides with the Riemann
integral, the real value of ξ shares of stock at time t given fundamentals of u now becomes

ξS̄
(
t, u, ξ

)
= ξψ•(t, u)

∫ 1

0
f(θξ)λ(dθ) = ψ•(t, u)

∫ ξ

0
f(x) dx for all (t, u, ξ) ∈ [0, T ]× IR2, (4.2)

which is the same as the price of
∫ ξ
0 f(x) dx shares in the associated small investor market

described by the small investor price function ψ• : [0, T ] × IR → IR. More generally, the
benchmark price for buying ξ2 − ξ1 shares of stock turns out to be

(
ξ2−ξ1

)
S∗
(
t, u, ξ1, ξ2

)
= ψ•(t, u)

(
ξ2−ξ1

)∫
f
(
(1−θ)ξ1+θξ2

)
λ(dθ) = ψ•(t, u)

∫ ξ2

ξ1

f(x)dx, (4.3)

i.e. it corresponds to the price of
∫ ξ2
ξ1
f(x)dx =

∫ ξ2
0 f(x)dx−

∫ ξ1
0 f(x)dx shares in the associated

small investor market.
This connection between the benchmark prices and the prices in the associated small investor
market gives us a first hint why the following transform g : IR→ IR becomes extremely useful
in multiplicative large investor markets.

Definition 2.12. If the large investor market (ψ, µ) satisfies Assumption B, then the strat-
egy transform g : IR→ IR is defined by

g(ξ) =
∫ ξ

0
f(x) dx. (4.4)

If ξn : An → IR denotes some strategy function in such a market, the transformed strategy
function gn : An → IR is given by

gn(t, u) = g
(
ξn(t, u)

)
=
∫ ξn(t,u)

0
f(x) dx for all (t, u) ∈ An. (4.5)

Since f : IR→ (0,∞) is positive, g : IR→ IR is strictly increasing and hence invertible.

Besides the loss-free liquidation and the benchmark price, we would also like to write the
transaction loss function cµ : [0, T ]× IR3 → IR in a way which is familiar from small investor
models. Because of the nature of cµ, we cannot expect to find an analogue in the standard
Cox-Ross-Rubinstein model without transaction costs, but we have to allow for models with
transaction costs, and since we have presented the small investor market model with propor-
tional transaction costs in detail in Section 2.3, we want to mirror the multiplicative structure
(3.2) of the transaction cost function in such a model. For this purpose let us recall the local
transaction loss rate function kµ : IR2 → IR, which we have introduced so far only for static
large investor markets. Under Assumption B the definition of Section 1.2.3 can be transferred
one-to-one to a multiplicative dynamic large investor market:

Definition 2.13. For any large investor market (ψ, µ) for which Assumption B holds the
local (implied) transaction loss rate function kµ : IR2 → IR is given by

kµ
(
ξ1, ξ2

)
= sgn

(
ξ2 − ξ1

)(∫ f((1− θ)ξ1 + θξ2
)
µ(dθ)∫

f
(
(1− θ)ξ1 + θξ2

)
λ(dθ)

− 1

)
for all ξ1, ξ2 ∈ IR. (4.6)

Remark. As usual, we use sgn(0) = 0. �
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Like in the static case, the local transaction loss rate indicates the average transaction loss
per share as a percentage of the benchmark price. More precisely, we have for all tuples
(t, u, ξ1, ξ2) ∈ [0, T ]× IR3 that

cµ
(
t, u, ξ1, ξ2

)
=
∣∣ξ2 − ξ1

∣∣S∗(t, u, ξ1, ξ2)kµ(ξ1, ξ2), (4.7)

since cµ : [0, T ]× IR3 and S∗ : [0, T ]× IR3 inherit the multiplicative structure of ψ so that the
proof of (1.2.17) can be copied. In this representation, we can recognize the cost structure
(3.2) of the small investor model with proportional transaction costs, where now the rate
kµ(ξ1, ξ2) may depend on the large investor’s stock holdings, and where the ”fair”, exoge-
nously given price ψ•(t, u) in the small investor market is replaced by the benchmark price
S∗(t, u, ξ1, ξ2) in the large investor market. Due to (4.3) we can also express the transaction
losses in terms of the small investor price ψ•(t, u) by writing

cµ(t, u, ξ1, ξ2) =
∣∣∣∣∫ ξ2

ξ1

f(x) dx
∣∣∣∣ψ•(t, u)kµ

(
ξ1, ξ2

)
for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3. (4.8)

This shows that even the transaction losses in our multiplicative large investor model can
(locally) be represented as the costs which a small investor in a market with proportional
transaction costs of kµ(ξ1, ξ2) is faced when buying g(ξ2)−g(ξ1) =

∫ ξ2
ξ1
f(x) dx shares of stock

in order to adjust his share in stocks from g(ξ1) to g(ξ2).

Remark. The transformation of the original strategy (function) ξn : An → IR by the strategy
transform g : IR → IR will help us to compare our large investor model with small investor
models with transaction costs. However, it should be noted that there remains an essential
difference to those transaction cost models, especially when it comes to convergence: In the
standard n-step small investor models with transaction costs as presented by Boyle and Vorst
(1992) or Musiela and Rutkowski (1998), the transaction cost rate κn is a constant which only
depends on n. Opitz (1999) slightly extends this model by allowing two different rates for
buying and selling, but all these models do not allow for a dependence of the transaction cost
rate on the absolute size of the large investor’s stock holdings. Thus, the dependence of the
transaction loss rate kµ : IR2 → IR on the large investor’s stock holdings as described by (4.6)
substantially differs from the known transaction cost models. Moreover, the convergence
results for small investor models with transaction costs rely on the assumption that the
transaction cost rate in the n-step model is scaled by κn = κδn for some fixed κ > 0. In our
large investor model the transaction loss rate kµ

(
ξn1 , ξ

n
2

)
tends to 0 as n→∞ only if the size∣∣ξn1 − ξn2

∣∣ of the large investor’s trade tends to 0. For this reason, the derivation of limits for
the large investor model will remain much more complicated than the derivation of limits in
the small investor model with transaction costs. �

2.4.2 The Recursive Schemes Revisited

As we have already stated in Section 2.1.3, in a multiplicative market the r-martingale mea-
sure P̄ξn

n and the associated small-investor martingale measure P̄n coincide for any self-
financing and path-independent trading strategy (ξn, bn), and the results of Proposition 2.9
and Corollary 2.10 on the real value simplify as well:

Corollary 2.14. Consider a large investor market described by (ψ, µ), and suppose that
both Assumptions A and B hold. Then for all path-independent and self-financing trading
strategies (ξn, bn) we have:

(i) The trading strategy (ξn, bn) is r-admissible.
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(ii) The associated real value function v̄n : An → IR can be calculated from the possible
realizations of the final real value V̄ n

n = v̄n
(
T,Unn

)
by the recursive scheme

v̄n
(
tnk−1, U

n
k−1

)
= p̄n

(
tnk−1,U

n
k−1

)(
v̄n
(
tnk , U

n
k−1+δ

)
+ cξ

n

µ

(
tnk , U

n
k−1+δ, ξnk−1

))
+
(

1−p̄n
(
tnk−1,U

n
k−1

))(
v̄n
(
tnk , U

n
k−1−δ

)
+ cξ

n

µ

(
tnk , U

n
k−1−δ, ξnk−1

)) (4.9)

for all 1 ≤ k ≤ n. Moreover, in this case the number of stocks ξnk−1 held by the large
investor between time tnk−1 and tnk satisfies the fixed point equation

∫ ξn
k−1

0
f(x) dx =

v̄
(
tnk , U

n
k−1 + δ

)
− v̄
(
tnk , U

n
k−1 − δ

)
ψ•
(
tnk , U

n
k−1 + δ

)
− ψ•

(
tnk , U

n
k−1 − δ

)
+
cξ

n

µ

(
tnk , U

n
k−1 + δ, ξnk−1

)
− cξ

n

µ

(
tnk , U

n
k−1 − δ, ξnk−1

)
ψ•
(
tnk , U

n
k−1 + δ

)
− ψ•

(
tnk , U

n
k−1 − δ

) (4.10)

for all 1 ≤ k ≤ n.

(iii) If the market (ψ, µ) excludes instantaneous transaction gains, then the real value pro-
cess V̄ n is a supermartingale under the martingale measure P̄n in the associated small
investor market.

(iv) If (ψ, µ) excludes instantaneous transaction gains and losses, then V̄ n even is a mar-
tingale under P̄n.

Proof. As we have already noticed in Section 2.1.3, the conditions (1.4) for all 1 ≤ k ≤ n
on r-admissibility are equivalent to the conditions enforced by Assumption A, because of the
multiplicative structure (1.16) and the positivity of f : IR→ (0,∞).
In Section 2.1.3 we have also seen that for all self-financing trading strategies (ξn, bn) the r-
martingale weight functions p̄ξ

n

n : An(n−1) → IR do not depend on the strategy and coincide
with the s-martingale weight function p̄n : An(n− 1) → IR. Hence (ii) follows directly from
Proposition 2.9(ii) and (4.2).
With the r- and s-martingale weight functions coinciding, of course all r-martingale measures
P̄ξn

coincide with the martingale measure P̄n in the associated small investor market, so that
(iii) and (iv) are immediate consequences of Corollary 2.10(ii) and (iii). q.e.d.

Remark. Note that by (4.8) the transaction losses in (4.9) and (4.10) could also be represented
as

cξ
n

µ

(
tnk , U

n
k−1 ± δ, ξnk−1

)
=
∣∣∣∣∫ ξn(tnk ,U

n
k−1±δ)

ξn
k−1

f(x) dx
∣∣∣∣ψ•(tnk , Unk−1 ± δ

)
kµ
(
ξnk−1, ξ

n(tnk , U
n
k−1 ± δ)

)
for all 1 ≤ k ≤ n. We have avoided this representation to keep the equations (4.9) and (4.10)
more clearly arranged. �

As we have seen in Section 2.2, for all 1 ≤ k ≤ n− 1 the stock holdings at time tnk−1 can also
be represented in terms of a fixed point equation which solely depends on the possible stock
holdings at time tnk and tnk+1. In a multiplicative setting the statement of Proposition 2.11(ii)
simplifies as well and now becomes:

Corollary 2.15. Let ψ : [0, T ] × IR2 → IR be some equilibrium price function which is
multiplicative and which satisfies Assumptions A and B. Then for any path-independent
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and self-financing trading strategy the associated strategy function ξn : An → IR solves the
recursive scheme∫ ξn

(k−1)i

0
f(x) dx =

ψ•
(
tnk , u

n
k(i+1)

)
− ψ•

(
tnk+1, u

n
(k+1)i

)
ψ•
(
tnk , u

n
k(i+1)

)
− ψ•

(
tnk , u

n
k(i−1)

) ∫ ξn
k(i+1)

0
f(x) dx

+
ψ•
(
tnk+1, u

n
(k+1)i

)
− ψ•

(
tnk , u

n
k(i−1)

)
ψ•
(
tnk , u

n
k(i+1)

)
− ψ•

(
tnk , u

n
k(i−1)

) ∫ ξn
k(i−1)

0
f(x) dx

+
Dξn

µ

(
tnk , u

n
(k−1)i

)
ψ•
(
tnk , u

n
k(i+1)

)
− ψ•

(
tnk , u

n
k(i−1)

)
(4.11)

for all 1 ≤ k ≤ n− 1 and all i ∈ Ik−1.

Proof. This is an immediate consequence of Proposition 2.11(ii) and Assumption B. q.e.d.

If the large investor can always trade at the benchmark price S∗, such that the transaction loss
function cµ : [0, T ] × IR3 → IR and hence its spread Dξn

µ vanishes, the transformed strategy

g
(
ξn(k−1)i

)
=
∫ ξn

(k−1)i

0 f(x) dx at the grid point (k−1, i) is an explicit linear combination of the
two possible successors g

(
ξnk(i±1)

)
. Especially, in terms of the transform, (4.11) resembles the

recursive formula for the strategy function in a small investor market, where the transform
g : IR → IR is just the identity. If we recall the introduction to Section 2.4.1, it is not
surprising that the strategy transform in a large investor market without transaction losses
and transaction gains plays exactly the same role as the original strategy in a small investor
market.
For the general case with non-vanishing transaction losses (or gains), we combine (4.8) with
the definition of the spread Dξn

µ

(
tnk , u

n
(k−1)i

)
in Proposition 2.11(ii), and thus obtain for later

reference the equality

Dξn

µ

(
tnk , u

n
(k−1)i

)
= ψ•

(
tnk+1, u

n
k+1

)(∣∣∣∣∫ ξn
k(i+1)

ξn
(k+1)i

f(x) dx
∣∣∣∣kµ(ξnk(i+1), ξ

n
(k+1)i

)
−
∣∣∣∣∫ ξn

k(i−1)

ξn
(k+1)i

f(x) dx
∣∣∣∣kµ(ξnk(i−1), ξ

n
(k+1)i

))

+ ψ•
(
tnk , u

n
k(i+1)

)∣∣∣∣∫ ξn
k(i+1)

ξn
(k−1)i

f(x) dx
∣∣∣∣kµ(ξn(k−1)i, ξ

n
k(i+1)

)
− ψ•

(
tnk , u

n
k(i−1)

)∣∣∣∣∫ ξn
k(i−1)

ξn
(k−1)i

f(x) dx
∣∣∣∣kµ(ξn(k−1)i, ξ

n
k(i−1)

)
(4.12)

for all 1 ≤ k ≤ n− 1 and i ∈ Ik−1.

2.4.3 Trading at the Benchmark Price

The results of Corollaries 2.14 and 2.15 become particularly handy if, in addition to the
Assumptions A and B on the equilibrium price function, the price system (ψ, µ) of the large
investor market excludes any instantaneous transaction gains or losses. In this case all path-
independent contingent claims are attainable and the replicating strategy of such a claim is
a simple transform of a related replicating strategy in the associated small-investor market
model.
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Before we state this result formally, let us shortly discuss how a price system (ψ, µ) which
excludes any instantaneous transaction gains and losses will look like. Since the transaction
loss function cµ : [0, T ]× IR3 → IR can for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3 be written as

cµ
(
t, u, ξ1, ξ2

)
=
(
ξ2 − ξ1

)(
Sµ
(
t, u, ξ1, ξ2

)
− S∗

(
t, u, ξ1, ξ2

))
, (4.13)

the absence of any instantaneous transaction gains or losses implies that the large investor
executes all his trades (where ξ1 6= ξ2) at the benchmark price, and due to the definitions of
the large investor and the benchmark price function Sµ and S∗ in Definition 1.18 the values
of these two price functions coincide if ξ1 = ξ2, so cµ ≡ 0 even implies

Sµ
(
t, u, ξ1, ξ2

)
= S∗

(
t, u, ξ1, ξ2

)
for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3.

Thus, if the large investor market (ψ, µ) excludes instantaneous transaction gains and losses,
we may always assume without loss of generality that the price-determining measure µ is the
Lebesgue measure λ on [0, 1].

Proposition 2.16. Let us assume that the large investor market (ψ, µ) excludes any instan-
taneous transaction gains or losses and satisfies Assumptions A and B. Then every path-
independent contingent claim (ξn, bn) is attainable by a unique replicating strategy (ξn, bn).
If (γ̄n, b̄n) is the replicating strategy for the contingent claim

(
g(ξn), bn

)
in the associated

small investor market, then the replicating strategy (ξn, bn) for the claim (ξn, bn) in the large
investor market is given by ξnk = g−1

(
γ̄nk
)

and b̄nk = bnk for all 0 ≤ k ≤ n.

Proof. Let (ξn, bn) be an arbitrary path-independent contingent claim. We will construct
a replicating trading strategy (ξn, bn) =

{(
ξnk , b

n
k

)}
0≤k≤n similar to the replicating trading

strategy of a star-convex contingent claim in Section 1.4.2.
Of course, the replicating portfolio at time tnn = T has to satisfy ξnn = ξn and bnn = bn, so
we will define ξnn and bnn that way. This definition allows us to determine the real value
V̄ n
n = v̄n

(
T,Unn

)
= bnn + ξnnS̄

(
T,Unn , ξ

n
n

)
at time T in each state of the world. Since the

transaction loss terms in (4.9) vanish, we can then recursively calculate the values of the real
value function v̄n : An → IR solely from its final values vn(T, · ) : Unn → IR via

v̄n
(
tnk , U

n
k

)
= p̄n

(
tnk , U

n
k

)
v̄n
(
tnk+1, U

n
k + δ

)
+
(
1− p̄n

(
tnk , U

n
k

))
v̄n
(
tnk+1, U

n
k − δ

)
(4.14)

for all 0 ≤ k ≤ n− 1.
Now we have seen in Section 2.4.1 that the strategy transform g : IR → IR, ξ 7→

∫ ξ
0 f(x) dx

is invertible, hence the stock positions
{
ξnk
}

0≤k≤n−1
of the large investor’s trading strategy

can be explicitly calculated from (4.10) as

ξnk = g−1

(
v̄
(
tnk+1, U

n
k + δ

)
− v̄
(
tnk+1, U

n
k − δ

)
ψ•
(
tnk+1, U

n
k + δ

)
− ψ•

(
tnk+1, U

n
k − δ

)) for all 0 ≤ k ≤ n− 1. (4.15)

Last but not least, because of Definition 1.27 the large investor’s cash position bnk between
time tnk and tnk+1 can be calculated from the real value V̄ n

k = v̄n
(
tnk , U

n
k

)
and the stock holdings

ξnk by
bnk = v̄n

(
tnk , U

n
k

)
− ξnk S̄

(
tnk , U

n
k , ξ

n
k

)
for all 0 ≤ k ≤ n− 1. (4.16)

It is easy to see that the so-defined trading strategy (ξn, bn) is path-independent. In order to
check the self-financing condition, note that the definitions of bnk and of the strategy transform
g : IR→ IR imply for all 0 ≤ k ≤ n− 1 that

ξnk S̄
(
tnk+1, U

n
k+1, ξ

n
k

)
+ bnk = g

(
ξnk
)
ψ•
(
tnk+1, U

n
k+1

)
+ v̄n

(
tnk , U

n
k

)
− g
(
ξnk
)
ψ•
(
tnk , U

n
k

)
. (4.17)
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Due to (4.15), (4.14), and the definition of the s-martingale weights in (1.10), the right-hand
side of (4.17) equals just the portfolio value v̄n

(
tnk+1, U

n
k+1

)
= ξnk+1S̄

(
tnk+1, U

n
k+1, ξ

n
k+1

)
+ bnk+1

at time tnk+1, regardless of the outcome of the fundamental value Unk+1 = Unk ±δ at time tnk+1.
Hence we have

ξnk S̄
(
tnk+1, U

n
k+1, ξ

n
k

)
+ bnk = ξnk+1S̄

(
tnk+1, U

n
k+1, ξ

n
k+1

)
+ bnk+1 for all 0 ≤ k ≤ n− 1,

and by the remark following Definition 1.27, this and cµ ≡ 0 indeed implies that (ξn, bn) is
self-financing.
The trading strategy (ξn, bn) is the unique self-financing trading strategy which replicates
(ξn, bn), since every replicating strategy has to fulfill (4.15) and (4.16).
In order to prove the second statement, let us first note that the modified equilibrium function
ψ•∗ : [0, T ]× IR2 → IR defined by

ψ•∗(t, u, ξ) = ψ•(t, u) for all (t, u, ξ) ∈ [0, T ]× IR2 (4.18)

satisfies the Assumptions A and B as well. Of course (ψ•∗, µ) just describes the associated small
investor market, since ψ•∗ does not depend on ξ, and the loss-free liquidation price function
in the market (ψ•∗, µ) coincides with the equilibrium price function ψ•∗ in this market.
An application of the proposition’s first part to the market (ψ•∗, µ) yields that the contingent
claim

(
g(ξn), bn

)
is replicable by some replicating strategy (γ̄n, b̄n). Since ψ•∗ is the loss-free

liquidation price function in (ψ•∗, µ), the real value function v̄∗ = v̄n,∗ : An → IR of the
replicating strategy (γ̄n, b̄n) has the final value

v̄∗
(
T,Unn

)
= b̄nn + γ̄nnψ

•∗(T,Unn , g(ξn)
)

= bn + g(ξn)ψ•
(
T,Unn

)
= bn + ξnS̄

(
T,Unn , ξn

)
, (4.19)

where the second equality stems from the replication condition
(
γ̄nn , b̄

n
n

)
=
(
g(ξn), bn

)
and the

definition of ψ•∗, and the third equality from the specific form (4.2) of the loss-free liquidation
price function S̄ : [0, T ] × IR2 → IR under Assumption B. But the expression on the right-
hand side of (4.19) is just the final value v̄n

(
T,Unn

)
of the real value function of the strategy

(ξn, bn) in the large investor market, and since both v̄n and v̄∗ can be completely recovered
from their final values by the recursion (4.14) for 0 ≤ k ≤ n − 1, it follows that both value
functions coincide, i.e. v̄∗ ≡ v̄n.
Due to (4.18) and Definition 2.12, the strategy transform in the small investor market (ψ•∗, µ)
is the identity, hence (4.15) applied to the replicating strategy (γ̄n, b̄n) in (ψ•∗, µ) implies that
the (small) investors stock position γ̄nk between time tnk and tnk+1 is given by

γ̄nk =
v̄
(
tnk+1, U

n
k + δ

)
− v̄
(
tnk+1, U

n
k − δ

)
ψ•
(
tnk+1, U

n
k + δ

)
− ψ•

(
tnk+1, U

n
k − δ

) for all 0 ≤ k ≤ n− 1. (4.20)

Comparing this definition with the definition of the stock holdings ξnk in the large investor
market (ψ, µ), shows indeed ξnk = g−1

(
γ̄nk
)

for all 0 ≤ k ≤ n − 1. Of course, this equality
holds for k = n as well, since the replicating conditions of both strategies imply the equalities
ξnn = ξn = g−1

(
g(ξn)

)
= g−1

(
γ̄nn
)
.

In order to show that the cash holdings of both trading strategies coincide, we once again
recall the definition of the real value and note that the loss-free liquidation price function in
the small investor market (ψ•∗, µ) is given by ψ•∗, such that the equality of the two real value
functions and ξnk = g−1

(
γ̄nk
)

imply

b̄nk = v̄∗
(
tnk , U

n
k

)
− γ̄nkψ

•∗(tnk , Unk , γ̄nk ) = vn
(
tnk , U

n
k

)
− ξnk S̄

(
tnk , U

n
k , ξ

n
k

)
= bnk

for all 0 ≤ k ≤ n. This concludes our proof. q.e.d.
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In small investor models, it is common to parametrize the replicating strategy and the cor-
responding value function in terms of time t and the stock price ψ•(t, u), and not in terms of
time and the fundamentals u at this time. In order to make the results of Proposition 2.16
more comparable with the usual parametrization of small investor models, we would like to
parametrize the real value function in terms of time and stock price as well.
We will see that for the small investor market such a parametrization is no problem. If (ψ, µ)
is a true large investor market such that the equilibrium price function depends on the large
investor’s stock holdings, the key question is once again which stock price we should choose for
the parametrization. Since we have restricted us in this section to large investor models where
the large investor trades at the benchmark price, we have the advantage that large investor
price and benchmark price coincide, but there are still several other candidates of possible
stock prices. For example, let us assume that at time t the fundamental value is u, and that
in this situation the large investor’s strategy tells him to switch his stock holdings from ξ1
to ξ2 shares. Then we might use as the parameter for the reparametrized real value function
either the small investor stock price ψ•(t, u), the benchmark price S∗(t, u, ξ1, ξ2) effectively
paid by the large investor for the transaction of the missing ξ2 − ξ1 stocks, one of the two
equilibrium prices ψ(t, u, ξ1) and ψ(t, u, ξ2) immediately before and after the large investor’s
transaction has been executed, or also one of the corresponding loss-free liquidation prices
S̄(t, u, ξ2) and S̄(t, u, ξ2).
Though the small investor stock price is in general not visible in the market, we will take
this price to parametrize the value function, since all other candidates depend on the number
of shares held by the large investor, and can therefore be manipulated. Moreover, since no
instantaneous transaction losses and gains occur, we might argue that at the trading time
t the large investor first liquidates his whole stock holdings ξ1 at the per-share liquidation
price S̄(t, u, ξ1), such that at least for an infinitesimally short time the equilibrium price on
the market is actually given by ψ•(t, u), and that the large investor then buys ξ2 shares of
stocks at the per-share liquidation price S̄(t, u, ξ2), even if this leads to unnecessarily large
transactions.
Thus, in order to clarify the connections with the usual small investor binomial model, we
will now shortly explain how the value function can be parametrized in terms of time and
small investor stock price as well. Let us again take some large investor price system (ψ, µ)
as in Proposition 2.16, where the large investor always trades at the benchmark price, and
assume that the contingent claim (ξn, bn) is replicated by the trading strategy (ξn, bn) with
associated real value function v̄n : An → IR. In order to capture the possible combinations
of time t and small investor stock price x = ψ•(t, u) in our discrete model, we introduce the
set D̄n as the image of the trace function r : An → IR, (t, u) 7→

(
t, ψ•(t, u)

)
, i.e.

D̄n :=
{

(t, x) ∈ [0, T ]× IR
∣∣ (t, x) =

(
t, ψ•(t, u)

)
for some (t, u) ∈ An

}
. (4.21)

By Definition 1.17 the equilibrium price function ψ : [0, T ] × IR2 → IR, and therefore also
the associated small investor price function ψ• : [0, T ] × IR → IR, is strictly increasing in the
fundamentals. Hence for each fixed t ∈ [0, T ] the function u 7→ ψ•(t, u) is invertible and there
exists a uniquely defined function un : D̄n → IR such that ψ•

(
t, un(t, x)

)
= x for all (t, x) ∈ D̄n.

Then the real value of the portfolio strategy (ξn, bn) can be parametrized in terms of time t
and the corresponding small investor stock price x by the function w̄n : D̄n → IR which we
define as

w̄n(t, x) = v̄n
(
t, un(t, x)

)
for all (t, x) ∈ D̄n. (4.22)

In particular, the real value of the contingent claim at time T can be written as a function
h(x) of the small investor stock price x = ψ•(T, u) at this time by setting h(x) = w̄n(T, x) for
all x ∈ IR which satisfy x = ψ•(T, u) for some u ∈ Unn .
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Because of (4.14) the value at time tnk of the replicating strategy of any contingent claim with
a real value of h

(
ψ•(T,Unn )

)
can then be calculated by

w̄n
(
tnk , ψ

•(tnk , Unk )) = Ēn

[
h
(
ψ•
(
T,Unn

)) ∣∣∣Fn
k

]
for 0 ≤ k ≤ n, (4.23)

and rewriting (4.15) in terms of w̄n we see that for any 0 ≤ k ≤ n − 1 the large investor’s
stock holdings between time tnk and tnk+1 of such a replicating strategy are given by

ξnk = g−1

(
w̄
(
tnk+1, ψ

•(tnk+1, U
n
k + δ

))
− w̄

(
tnk+1, ψ

•(tnk+1, U
n
k − δ

))
ψ•
(
tnk+1, U

n
k + δ

)
− ψ•

(
tnk+1, U

n
k − δ

) )
.

If (ψ, µ) is a small investor market, the strategy transform g : IR → IR will be the identity,
and it is easily seen that our large investor strategies really generalize the hedging strategies
known from small investor markets.

Remark. For caution, we recall that in small investor markets, the notation ξnk is often used
to denote the small investor’s strategy between time tnk−1 and tnk , while we use it to denote
the large investor’s strategy between time tnk and tnk+1. �

The importance of the associated small investor market for the analysis of the large investor
market was first noted by Baum (2001). In a general semimartingale model he supposes
that the equilibrium price process

{
ψ
(
tnk , U

n
k , ξ
)}

0≤k≤n is a (local) martingale for all constant
stock holdings ξ ∈ IR of the large investor. This corresponds to the martingale-like property
(1.17), which shows that the loss free-liquidation price would become a martingale under the
r-martingale measure if the large investor’s trading itself did not affect the stock prices. Under
the multiplicative structure of Assumption B, the r-martingale measure coincides with the
s-martingale measure of the associated small investor market, and the representation (1.17)
is equivalent to saying that the associated small investor prices process

{
ψ•
(
tnk , U

n
k

)}
0≤k≤n is

a martingale.
Baum (2001) and Bank and Baum (2004) also noted that the real value process is a super-
martingale under the s-martingale measure, and they employed this supermartingale property
to derive a no-arbitrage result and superreplication strategies. However, because they only
focused on price mechanisms which correspond to a price determining measure µ = δ1, they
did not notice that the real value becomes a martingale if the large investor trades at the
benchmark price.
The simplified behavior of the large investor model, and especially of a multiplicative model,
where the large investor trades at the benchmark price can serve as the starting point of an
analysis of more complex large investor models where another price mechanism applies. The
special case where the large investor trades at the benchmark price still contains much more
information on a large investor model than the very special case where the large investor
trades like an investor in the associated small investor market.



Chapter 3

Convergence of the Strategy
Functions

In the standard Cox-Ross-Rubinstein model, the stock price does not depend on the investor’s
trading strategy, and hence it is possible to show the convergence in distribution of the
discrete binomial models without a detailed investigation of the strategy. However, if the
large investor becomes so large that his trades actually affect the stock price, we first need
to show that his discrete strategy functions converge before we can derive in Chapter 4
results on the convergence in distribution of our large investor models. Thus, the following
chapter is devoted to the convergence of a sequence {ξn}n∈IN of strategy functions in the
discrete binomial large investor models. The limit of the strategy functions has to satisfy a
certain final value problem. If a solution ϕ to the candidate final value problem exists, the
convergence of the discrete strategy functions follows from their convergence immediately
before and at maturity to the corresponding values of ϕ. The final value problem for ϕ is
highly non-linear, but it can be transformed into a simpler quasi-linear problem by means of
the strategy transform g : IR → IR. Therefore, we shall rather study the convergence of the
transformed strategy functions gn = g ◦ ξn towards some continuous-time limit γ, and then
transform our results back into corresponding results for ξn and the limit ϕ = g−1 ◦ γ. Once
the convergence of the strategy functions is shown, we can employ this convergence in order
to derive a similar statement for the real value functions.
The existence and uniqueness results for solutions to the final value problems which have to
be satisfied by the limit functions γ and ϕ are stated in terms of certain Hölder spaces. Those
function spaces are introduced in Section 3.1. In Section 3.2 we focus on large investor models
where the price system (ψ, µ) excludes any instantaneous transaction gains or losses. In this
particular case, each of the transformed strategy functions {gn}n∈IN can be calculated from
its values at and immediately before maturity by means of an explicit recursive scheme, and
the limit γ satisfies a linear final value problem. Thus, existence and uniqueness of solutions
to the final value problem as well as the convergence of the transformed strategy functions
follow from classical results.
If the price system does not prevent transaction losses, however, the recursive schemes for
{gn}n∈IN remain implicit schemes, and the final value problem for the limit γ is only quasi-
linear. In Section 3.3 we adapt a related proof by Frey (1998) to show that even in this more
general setting the final value problem for γ still has a solution if the boundary values at
maturity do not become too large. Under this condition we then sketch how the methods used
to prove the convergence statement of Section 3.2 can be generalized in order to prove the
convergence of {gn}n∈IN even in the presence of transaction losses. Our convergence results
are then transformed back into the corresponding results for the strategy functions {ξn}n∈IN
and their limit ϕ.

105
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Finally, we come to the convergence of the discrete real value functions {v̄n}n∈IN towards
a continuous-time limit in Section 3.4. If the large investor does not always trade at the
benchmark price, our convergence result for the real value functions relies on the convergence
of the strategy functions, and the final value problem which describes the limit function v̄
also depends on the limit ϕ of the strategy functions. It turns out that ϕ is a transform of
v̄’s spatial derivative. A first discussion of the final value problem for v̄ and a comparison
with corresponding problems for value functions in standard small investor models concludes
the chapter.

Throughout this chapter, we work with a large investor price system (ψ, µ) which satisfies
the multiplicative structure of Assumption B. Moreover, as in Chapter 2 we only consider
the case T = 1 in order to avoid lengthy indices for the discrete time points

{
tnk
}

0≤k≤dnT e.

3.1 Hölder Spaces and Discrete Derivatives

Of course, we will only be able to prove the convergence of a family {ξn}n∈IN of discrete
strategy functions ξn : An → IR to a continuous function ϕ : [0, T ] × IR → IR as n → ∞
if we assume certain regularity conditions, and since the candidate limiting function ϕ itself
is given as a solution to a (non-linear) partial differential equation (PDE), we even need
some regularity conditions just to show the existence of such a solution. It turns out that
certain Hölder spaces are appropriate function spaces both for the limiting function ϕ and
for the two components of the multiplicative equilibrium price function in order to derive
existence and convergence results. In this first section we introduce the various Hölder spaces
which we employ in Chapters 3 and 4, and we also define some abridged notation for discrete
derivatives which help us to keep the complexity of our formulæ at a moderate level.

Let us first recall the definition of Hölder continuity:

Definition 3.1. Let D ⊂ IR. Then a function h : D → IR is Hölder continuous with
exponent β ∈ (0, 1) if there exists a nonnegative constant K such that

|h(x)− h(y)| ≤ K|x− y|β for all x, y ∈ D.

Then we can define Hölder spaces as in Ladyženskaja, Solonnikov and Uraĺ ceva (1968):

Definition 3.2. For k, l ∈ IN0 and β ∈ (0, 1), the Hölder space H
1
2
(k+β),k+l+β

(
[0, T ]× IR

)
consists of all continuous and bounded functions h : [0, T ] × IR → IR, (t, x) 7→ h(t, x), such
that

(i) for all η1, η2 ∈ IN0 with 2η1 ≤ k and 2η1 + η2 ≤ k + l the derivatives(
∂

∂t

)η1 ( ∂

∂xj

)η2
h : (0, T )× IR→ IR (1.1)

exist and are both continuous and bounded,

(ii) all of the derivatives in (i) with 2η1 = k−1 or 2η1 +η2 = k+ l−1 are Hölder continuous
in t with exponent 1

2(1 + β), and

(iii) all of the derivatives in (i) with 2η1 = k or 2η1 + η2 = k + l are Hölder continuous in t
with exponent 1

2β and Hölder continuous in x with exponent β.

We then write h ∈ H
1
2
(k+β),k+l+β

(
[0, T ]×IR

)
, and since the derivatives in (1.1) are continuous

and bounded, we can extend them in a continuous fashion to the whole domain [0, T ] × IR.
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Therefore, for t = 0 and t = T we will understand any derivative
(
∂
∂t

)η1( ∂
∂xj

)η2h(t, u) as the
right- or left-hand limit as t↘ 0 or t↗ T , respectively.

A function h : [0, T ]× IR→ IR belongs to the Hölder space H
1
2
(k+β),k+l+β

loc

(
[0, T )× IR

)
if for

all η1, η2 ∈ IN0 with 2η1 ≤ k and 2η1 + η2 ≤ k + l the derivatives (1.1) exist and satisfy the
conditions (i) to (iii) for each compact subinterval of [0, T )× IR. In this case we can extend
the derivatives of (1.1) in a continuous fashion to the domain [0, T )× IR.

Remark. Normally we consider “symmetric” Hölder spaces H
1
2
(k+β),k+β

(
[0, T ]× IR

)
. In this

case we can simplify each pair of conditions on η1 and η2 in (i) to (iii) to a single condition,
since then the first condition of each pair is seen to be redundant. �

Similarly to the Hölder spaces for time-dependent functions h : [0, T ]× IR → IR we can also
define the corresponding Hölder spaces for functions f : IR→ IR:

Definition 3.3. For any k ∈ IN0 and β ∈ (0, 1) the Hölder space Hk+β(IR) consists of all
bounded functions f : IR → IR which are k times continuously differentiable, with bounded
derivatives up to order k, and for which the kth derivative f (k) : IR→ IR is Hölder continuous
with exponent β.
Finally, we introduce the Hölder space Hk+β

loc

(
IR
)

of all functions f : IR → IR which are
k times differentiable, and for which the kth derivative f (k) : IR → IR is Hölder continuous
with exponent β on any compact subset of IR.

Using a norm which basically sums up the (minimal) bounds on the derivatives (1.1) and
the minimal Hölder constants for the derivatives considered in (ii) and (iii), it can be shown
that the space H

1
2
(k+β),k+l+β

(
[0, T ]× IR

)
is complete, and likewise it follows that Hk+β(IR)

is complete as well.
It is clear that for any k, l ∈ IN0 and β ∈ (0, 1) the Hölder space H

1
2
(2k+β),2k+l+β

(
[0, T ]× IR

)
is a subspace of the space Ck,2k+l

(
[0, T ]× IR) of continuously differentiable functions of order

k and 2k + l, respectively:

Definition 3.4. Let k, l ∈ IN0. Then the space Ck,l
(
[0, T ] × IR

)
consists of all continuous

functions h : [0, T ] × IR → IR, (t, x) 7→ h(t, x), which are k times continuously differentiable
with respect to t and l times continuously differentiable with respect to x. The subspace
Ck,lb

(
[0, T ] × IR

)
consists of all h ∈ Ck,l

(
[0, T ] × IR

)
which are bounded together with their

partial derivatives
(
∂
∂t

)η1( ∂
∂x

)η2h : (0, T ) × IR → IR for all η1, η2 ∈ IN0 with η1 ≤ k, η2 ≤ l
and either η1η2 = 0 or η1 + η2 ≤ k ∧ l.
We write h ∈ Ck,l

(
[0, T ) × IR

)
if h : [0, T ] × IR → IR, (t, x) 7→ h(t, x), is continuous on

[0, T ) × IR and if it is k times continuously differentiable with respect to t and l times
continuously differentiable with respect to x.
Last but not least, for each k ∈ IN0 we denote as usual the space of k times continuously
differentiable functions by Ck(IR), and the subspace of all functions in Ck(IR) which are
bounded together with all their derivatives up to order k by Ckb (IR).

Actually, we will need that ratios of the small investor price function ψ• : [0, T ] × IR → IR

like
1
2
ψ•uu−ψ•t

ψ•u
lie in certain Hölder spaces. In order to restate such conditions in terms of the

underlying function ψ• itself, it is useful to define another class of functions which need not
be bounded, but for which some ratios of derivatives belong to certain Hölder spaces.

Definition 3.5. Let k ∈ IN , l ∈ IN0, and β ∈ (0, 1). A function h : [0, T ] × IR → IR,
(t, x) 7→ h(t, x), belongs to the class Ĥ

1
2
(k+β),k+l+β

(
[0, T ]× IR

)
if and only if

(i) for all η1, η2 ∈ IN0 with 2η1 ≤ k and 2η1 + η2 ≤ k + l the derivatives (1.1) exist,
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(ii) the first spatial derivative ∂
∂xh : (0, T )× IR→ IR is strictly positive,

(iii) for all η1, η2 ∈ IN0 with 2η1 ≤ k and 1 ≤ 2η1 + η2 ≤ k + l the ratio functions(
∂

∂x
h(t, x)

)−1( ∂

∂t

)η1 ( ∂

∂xj

)η2
h : (0, T )× IR→ IR

are bounded, Hölder continuous in x with exponent β, and Hölder continuous in t with
exponent 1

2(1+β) if 2η1 +η2 = k+ l−1 or 2η1 = k−1, and with exponent 1
2β otherwise.

In this case we write again h ∈ Ĥ
1
2
(k+β),k+l+β

(
[0, T ]× IR

)
.

For our convergence results, we will frequently deal with maximum norms over different
domains. We find it convenient to denote all these norms by ‖ · ‖, and distinguish between
the norms by specifying the set over which the maximum is taken as a subscript:

Definition 3.6. Let d ∈ IN , and suppose we are given some functions h1 : D1 → IR and
h2 : D2 → IR mapping from some subsets D1 ⊂ IRd and D2 ⊂ [0, T ] × IRd to IR. Then
we write ‖h1‖D1 := supx∈D1

|h1(x)| and ‖h2‖D2 := sup(t,x)∈D2
|h2(t, x)|. In the special case

where D1 = IRd or D2 = [0, T ]× IRd, we often suppress the subscript D1 or D2, respectively.

We have already mentioned discrete derivatives of the discrete strategy function ξn : An → IR
when discussing Corollary 1.40 in Section 1.4.4. When proving the convergence of a sequence
{ξn}n∈IN of strategy functions towards a continuous-time limit ϕ : [0, T ]× IR → IR which is
given as a solution to a certain PDE, we will definitely need to work with certain discrete
derivatives of ξn which converge towards the corresponding partial derivatives of ϕ. Now
we have to take into account that for each n ∈ IN the strategy function ξn : An → IR is
only defined a discrete binomial grid, so we need to be careful with the arguments of the
discrete derivatives. For example, it is useful to define the discrete first spatial derivative of
a function h : An → IR for all those points (t, u) ∈ [0, T ]× IR which lie exactly between two
points (t, u± δ) ∈ An. Since these points do not lie on the binomial grid An, we first need to
define a reasonable domain for the discrete derivatives.

Definition 3.7. As a generalization of the set of possible time-space realizations An(m) in
(1.3.10), we define the set of possible arguments of the lth discrete derivative as

Anl (m) =
{(
tnk , u

) ∣∣∣ for k ∈ {l, l + 1, . . . ,m} and u ∈ Unk−l
}

for all 0 ≤ l ≤ m ≤ n,

and we again write Anl instead of Anl (n). Then for any n ∈ IN and any function h : An → IR
on the grid An the three discrete derivatives ∆n

u h : An1 → IR, ∆n
uu h : An2 → IR, and

∆n
t h : An1 (n− 1) → IR are defined by

∆n
u h(t, u) =

h(t, u+ δ)− h(t, u− δ)
2δ

for (t, u) ∈ An1 ,

∆n
uu h

(
t, u
)

=
∆n
u h(t, u+ δ)−∆n

u h(t, u− δ)
2δ

for (t, u) ∈ An2 ,

and

∆n
t h
(
t, u
)

=
h(t+ δ2, u)− h(t− δ2, u)

2δ2
for (t, u) ∈ An1 (n− 1).

Remark. If the function h even is defined on the whole slab [0, T ] × IR and belongs to the
space C1,2

b

(
[0, T ] × IR

)
, it is clear that

∥∥∆n
u h − hu

∥∥
An

1
→ 0,

∥∥∆n
uu h − huu

∥∥
An

2
→ 0, and∥∥∆n

t h− ht
∥∥
An

1 (n−1)
→ 0 as n→∞, so in this sense the discrete derivatives of Definition 3.7

are indeed approximations of the partial derivatives of h : [0, T ]× IR→ IR. Note also that for
all 0 ≤ m ≤ n the set An0 (m) of possible arguments for the 0th discrete derivative is equal to
the set An(m) of possible time-space realizations up to time tnm as introduced in (1.3.10). �
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3.2 The Case without Transaction Losses

Before we shall treat in Section 3.3 the convergence of a sequence of strategy functions
in binomial markets which are based on a general multiplicative price system, we confine
ourselves in this section to multiplicative price systems which exclude any instantaneous
transaction gains or losses. For such a price system (ψ, µ), we build for each n ∈ IN the
nth binomial market model as described in Section 1.3, and choose a self-financing strategy
(ξn, bn) with corresponding strategy function ξn : An → IR. We then give conditions on the
convergence of the values of the large investor’s strategy functions immediately before time
T which imply that the sequence {ξn}n∈IN of discrete strategy functions converges uniformly
for all trading times before maturity to the solution ϕ : [0, T ] × IR → IR of a certain semi-
linear parabolic final value problem. Such a convergence result for the strategy functions
can be easily shown once we have proved an analogous statement for the convergence of the
corresponding sequence {gn}n∈IN of transformed trading strategy functions gn : An → IR,
given by gn = g ◦ ξn, towards the transform γ = g ◦ ϕ : [0, T ]× IR→ IR.
The section is divided into four parts. In the first part we present the final value problem for
γ and then show its equivalence with the final value problem for the corresponding original
strategy function ϕ. While the PDE for ϕ is only semi-linear, the PDE for the transform γ is
linear, hence existence and uniqueness follow from classical results. In the subsequent part,
i.e. in Section 3.2.2, we use standard techniques for the approximation of linear PDEs by
difference schemes like certain maximum principles in order to prove that – roughly speaking
– the transformed strategy functions {gn}n∈IN converge uniformly on [0, T ) × IR to γ with
order O

(
δ2+β

)
if the values of the transformed strategy function γn

(
tnn−1, ·

)
immediately

before time T converge uniformly to the corresponding values of γ with order O
(
δ4+β

)
. In

Section 3.2.3 the results of Section 3.2.2 are then translated into corresponding results for
the original strategy functions {ξn}n∈IN . While we shall take for granted in Section 3.2.2
the existence of a sufficiently smooth solution γ to the final value problem, we will sketch
another proof for the convergence of subsequences of {gn}n∈IN in Section 3.2.4, which does
not presuppose the existence of γ. Section 3.2 gives us much insight into the tools used to
handle the general case, where transaction losses are not prevented by the price system (ψ, µ),
but it does not overwhelm us with bounds on the non-linearities caused by these losses.
We have already seen in Section 2.4.3 that for any multiplicative price system (ψ, µ) which
excludes any instantaneous transaction gains and losses we may assume without loss of gener-
ality that the price-determining measure µ is the Lebesgue measure λ concentrated on the unit
interval. Thus, in this section we will fix an equilibrium price function ψ : [0, T ]× IR2 → IR
which satisfies Assumption B and consider for each n ∈ IN the binomial market of Section 1.3
which is based on the price system (ψ, µ) = (ψ, λ). As we proceed, we will require different
degrees of smoothness for the two components ψ• and f of the function ψ. However, we will
always suppose that the small investor price function ψ• : [0, T ] × IR → IR, (t, u) 7→ ψ•(t, u),
is continuously differentiable with respect to t, two times continuously differentiable with
respect to u, and that it satisfies

∥∥ ψ•t

ψ•u

∥∥ < ∞. The function f : IR → (0,∞) needs to be at
least continuously differentiable.
Since we know from Lemma 2.3 that under these conditions Assumption A holds for all
n >

∥∥ ψ•t

ψ•u

∥∥2, we can conclude from Proposition 2.16 that for all those n ∈ IN every path-
independent contingent claim

(
ξn, bn

)
is attainable by a unique path-independent and self-

financing trading strategy
(
ξn, bn

)
. Moreover, we recall from Corollary 2.15 and the subse-

quent discussion that in this case the transformed strategy function gn : An → IR, which was
introduced in Definition 2.12 as

gn(t, u) := g
(
ξn(t, u)

)
=
∫ ξn(t,u)

0
f(x) dx for all (t, u) ∈ An,
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can be recursively calculated as

gn
(
tnk−1, u

)
= p̂n

(
tnk−1, u

)
gn
(
tnk , u+ δ

)
+
(

1− p̂n
(
tnk−1, u

))
gn
(
tnk , u− δ

)
, (2.1)

where the weight function p̂n : An(n− 2) → (0, 1) is given by

p̂n
(
tnk−1, u

)
=

ψ•
(
tnk , u+ δ

)
− ψ•

(
tnk+1, u

)
ψ•
(
tnk , u+ δ

)
− ψ•

(
tnk , u− δ

) for 1 ≤ k ≤ n− 1 and u ∈ Unk−1. (2.2)

The recursive scheme (2.1) will be the starting point for our convergence analysis in Sec-
tion 3.2.2.

3.2.1 The Limiting PDEs for the Strategy Functions and their Transforms

In this section we first introduce the final value problem for the potential limiting function
γ : [0, T ] × IR → IR of a sequence {gn}n∈IN of transformed strategy functions gn : An → IR.
Existence and uniqueness of solutions to this final value problems follow from standard results.
We then proceed and define the corresponding final value problem for the limit ϕ of the
original strategy functions and show the equivalence of both final value problems.
In case of convergence, the limit γ : [0, T ] × IR → IR of a sequence of transformed strategy
functions will solve a final value problem of the form

γt(t, u) +
1
2
γuu(t, u) = γu(t, u)

ψ•t(t, u)− 1
2ψ
•
uu(t, u)

ψ•u(t, u)
for all (t, u) ∈ [0, T )× IR, (2.3)

with final condition

γ(T, u) =
∫ ζ(u)

0
f(x) dx for all u ∈ IR, (2.4)

where the function ζ : IR → IR describes the required stock holdings of the large investor
immediately before maturity. Since this problem is a linear final value problem, we can use
standard results from PDE theory to prove existence and uniqueness of (classical) solutions
to this final value problem. For example, we have

Lemma 3.8. Suppose that for some k ≥ 2 we have ψ• ∈ Ĥ
1
2
(k+β),k+β

(
[0, T ] × IR

)
. If the

boundary function ζ : IR → IR is continuous and chosen such that
∥∥∫ ζ( · )

0 f(x) dx
∥∥ is finite,

then the final value problem (2.3), (2.4) has a unique solution γ : [0, T ]×IR→ IR in the space
C0,0
b

(
[0, T ]× IR

)
∩C1,2

(
[0, T )× IR

)
. If we even have f ∈ Hk−1+β

loc (IR) and ζ ∈ Hk+β
(
IR
)
, this

solution even belongs to the Hölder space H
1
2
(k+β),k+β

(
[0, T ]× IR

)
.

Proof. Let us define the drift coefficient b : [0, T ]× IR→ IR by

b(t, u) =
1
2ψ
•
uu(t, u)− ψ•t(t, u)

ψ•u(t, u)
for all (t, u) ∈ [0, T ]× IR,

where we identify the derivatives in t = 0 and t = T as the right- and left-hand limits,
respectively. By the definition of the Hölder class Ĥ

1
2
(k+β),k+β

(
[0, T ]× IR

)
, it follows that b

belongs to the Hölder space H
1
2
(k−2+β),k−2+β

(
[0, T ]× IR

)
. Moreover, the boundary function

γ(T, · ) : IR → IR, u 7→
∫ ζ(u)
0 f(x) dx is continuous and bounded. So, after a time inversion

t̃ = T − t, the existence of a solution γ ∈ C0,0
b

(
[0, T ] × IR

)
∩ C1,2

(
[0, T ) × IR

)
to the final

value problem (2.3), (2.4) follows either from Theorem 12, Sec. 7, Chap. 1 in Friedman
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(1964), or from Theorem IV.16.2 in Ladyženskaja et al. (1968), and the uniqueness follows
by Theorem 16, Sec. 9, Chap. 1 in Friedman (1964) or Theorem I.2.6 in Ladyženskaja et al.
(1968).
If we suppose f ∈ Hk−1+β

loc (IR) and ζ ∈ Hk+β(IR), the boundary function γ(T, · ) even belongs
to the Hölder space Hk+β(IR), and γ ∈ H

1
2
(k+β),k+β

(
[0, T ]×IR

)
follows from Theorem IV.5.1

in Ladyženskaja et al. (1968). q.e.d.

Remark. The proof shows that the statement of Lemma 3.8 still holds if we only require that
the function

∫ ζ( · )
0 f(x) dx is continuous instead of requiring that ζ itself is continuous. �

The next proposition yields that the linear parabolic final value problem (2.3), (2.4) for
γ : [0, T ]× IR→ IR is equivalent to the semi-linear parabolic final value problem

ϕt(t, u) +
1
2
ϕuu(t, u) = ϕu(t, u)

ψt
(
t, u, ϕ(t, u)

)
− 1

2
d
duψu

(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

) on [0, T )× IR, (2.5)

where the final condition is now given by

ϕ(T, u) = ζ(u) for all u ∈ IR. (2.6)

It will turn out later in Corollary 3.14 that such a final value problem is satisfied by the limit
of a converging sequence {ξn}n∈IN of strategy functions ξn : An → IR.

Proposition 3.9. Let k ≥ 2 and β ∈ (0, 1), and suppose that there exist some functions
ψ• ∈ C1,2

(
[0, T ]× IR

)
and f ∈ Hk−1+β

loc (IR) such that

ψ(t, u, ξ) = ψ•(t, u)f(ξ) for all (t, u, ξ) ∈ [0, T ]× IR2.

Then there exists a solution ϕ ∈ H
1
2
(k+β),k+β

(
[0, T ] × IR

)
of the final value problem (2.5),

(2.6) if and only if there exists a solution γ ∈ H
1
2
(k+β),k+β

(
[0, T ] × IR

)
of the final value

problem (2.3), (2.4), and two such solutions are connected via

γ(t, u) = g
(
ϕ(t, u)

)
=
∫ ϕ(t,u)

0
f(x) dx for all (t, u) ∈ [0, T ]× IR. (2.7)

Proof. Let us assume that ϕ ∈ H
1
2
(k+β),k+β

(
[0, T ]×IR

)
is a solution of the final value problem

(2.5), (2.6), and define γ : [0, T ]× IR→ IR via (2.7). Differentiating this equation we get for
all (t, u) ∈ [0, T ]× IR:

γt(t, u) = f
(
ϕ(t, u)

)
ϕt(t, u) (2.8)

γu(t, u) = f
(
ϕ(t, u)

)
ϕu(t, u), (2.9)

and

γuu(t, u) = f
(
ϕ(t, u)

)
ϕuu(t, u) + f ′

(
ϕ(t, u)

)
ϕ2
u(t, u). (2.10)

As a first step we prove that a solution of the final value problem (2.5), (2.6) is also a solution
of (2.3), (2.4). The boundary condition (2.4) is obviously implied by the boundary condition
(2.6). For the purpose of obtaining the PDE (2.3) as well, we fix (t, u) ∈ [0, T ) × IR and
notice that (2.8) and (2.10) induce

γt(t, u) +
1
2
γu(t, u) = f

(
ϕ(t, u)

)(
ϕt(t, u) +

1
2
ϕuu(t, u) +

1
2
f ′(ϕ(t, u))
f(ϕ(t, u))

ϕ2
u(t, u)

)
. (2.11)
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Since the equilibrium price function ψ : [0, T ] × IR2 → IR has a multiplicative structure, its
first order derivatives are given by ψt(t, u, ξ) = ψ•t(t, u)f(ξ) and ψu(t, u, ξ) = ψ•u(t, u)f(ξ) for
all ξ ∈ IR, and, moreover, we obtain

d

du
ψu
(
t, u, ϕ(t, u)

)
= ψ•uu(t, u)f

(
ϕ(t, u)

)
+ ψ•u(t, u)f ′

(
ϕ(t, u)

)
ϕu(t, u).

Hence the PDE (2.5) can be rewritten as

ϕt(t, u) +
1
2
ϕuu(t, u) +

1
2
f ′(ϕ(t, u))
f(ϕ(t, u))

ϕ2
u(t, u) = ϕu(t, u)

ψ•t(t, u)− 1
2ψ
•
uu(t, u)

ψ•u(t, u)
.

If we plug this equation into our formula (2.11), we get

γt(t, u) +
1
2
γu(t, u) = f

(
ϕ(t, u)

)
ϕu(t, u)

ψ•t(t, u)− 1
2ψ
•
uu(t, u)

ψ•u(t, u)
,

and upon identifying the factor in front of the fraction as γu(t, u) due to (2.9), it follows that
γ : [0, T ] × IR → IR indeed solves the PDE (2.3), and hence the final value problem (2.3),
(2.4).
In order to show that γ ∈ H

1
2
(k+β),k+β

(
[0, T ]×IR

)
as well, we remark that by the boundedness

of ϕ there exists a compact interval I ⊂ IR such that ϕ(t, u) ∈ I for all (t, u) ∈ [0, T ] × IR.
Since f ∈ Hk−1+β

loc (IR), its derivatives up to order k−1 are continuous, and hence there exists
some K1 ∈ IR such that∣∣f (i)(x)

∣∣ ≤ K1 for all x ∈ I and all 0 ≤ i ≤ k − 1. (2.12)

Additionally f (k−1) : IR → IR is Hölder continuous, so there exists some K2 in IR such that∣∣f (k−1)(x) − f (k−1)(y)
∣∣ ≤ K2|x − y|β for all x, y ∈ I. Then it is easily seen from (2.7) –

(2.10) and similar formulæ for the higher derivatives of γ (if k > 2) that the boundedness of
γ and its derivatives is implied by the boundedness of the derivatives of ϕ up to the same
order, and a similar statement holds for the Hölder continuity of derivatives of γ. Hence
γ ∈ H

1
2
(k+β),k+β

(
[0, T ]× IR

)
is implied by ϕ ∈ H

1
2
(k+β),k+β

(
[0, T ]× IR

)
.

Now assume that γ ∈ H
1
2
(k+β),k+β

(
[0, T ] × IR

)
satisfies the final value problem (2.3), (2.4),

and define ϕ(t, u) := h
(
γ(t, u)

)
, where h : IR → IR is the inverse function to g : IR → IR,

ξ 7→
∫ ξ
0 f(x) dx. Using the derivatives h′(x) = 1

f(h(x)) and h′′(x) = − f ′(h(x))
f3(h(x))

for all x ∈ IR,
we can calculate for all (t, u) ∈ [0, T ]× IR the derivatives

ϕt(t, u) =
1

f
(
h(γ(t, u))

)γt(t, u),

ϕu(t, u) =
1

f
(
h(γ(t, u))

)γu(t, u),

and

ϕuu(t, u) =
1

f
(
h(γ(t, u))

)γuu(t, u)−
f ′
(
h(γ(t, u))

)
f3
(
h(γ(t, u))

)γ2
u(t, u),

and it follows that ϕ : [0, T ]×IR satisfies (2.5), (2.6). Again the boundedness of γ yields some
compact interval I ⊂ IR such that γ(t, u) ∈ I for all (t, u) ∈ IR. The function f : IR → IR is
strictly positive, and continuous since f ∈ Hk−1+β

loc

(
IR
)
. Thus there exists some c > 0 such

that f(h(x)) ≥ c for all x ∈ I. Now the proof proceeds as in the first part and shows that
indeed ϕ ∈ H

1
2
(k+β),k+β

(
[0, T ]× IR

)
. q.e.d.
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3.2.2 Convergence of the Transformed Strategy Functions

In this section we show the convergence result for the transformed strategy functions {gn}n∈IN .
We assume that a solution γ ∈ H2+ 1

2
β,4+β

(
[0, T ]× IR

)
of the final value problem (2.3), (2.4)

exists, as it will be the case if for example ψ• ∈ Ĥ2+ 1
2
β,4+β

(
[0, T ] × IR

)
, f ∈ H3+β

loc (IR), and
ζ ∈ H4+β

(
IR
)

(see Lemma 3.8).
Basically, we will show that the transformed strategies {gn} converge uniformly on [0, T )×IR
with order O

(
δ2+β

)
to γ as n → ∞ if the values of the transformed strategy functions im-

mediately before T converge to the corresponding values of T uniformly with order O
(
δ4+β

)
.

We leave aside the convergence of the values of the transformed strategies {gn}n∈IN at time
T for the moment, but we shall discuss this shortfall in Section 3.2.3, where we deal with the
convergence of the original strategy functions.
Let us now start with the precise statement of the result:

Theorem 3.10. Let (ψ, µ) be a large investor price system which satisfies µ = λ and As-
sumption B, and suppose that ψ• ∈ Ĥ2+ 1

2
β,4+β

(
[0, T ] × IR

)
. If γ ∈ H2+ 1

2
β,4+β

(
[0, T ] × IR

)
solves the final value problem (2.3), (2.4) and if there exists some K ∈ IR such that∥∥gn(tnn−1, ·

)
− γ
(
tnn−1, ·

)∥∥
Un

n−1
≤ Kδ4+β for all n ∈ IN, (2.13)

then the sequence {gn}n∈IN of discrete functions gn : An → IR converges to the function
γ : [0, T ]× IR→ IR in the sense that

‖gn − γ‖An(n−1) = O
(
δ2
)

(2.14)

and∥∥∥∥gn(·+ δ2, · ± δ)− gn ∓ δγu − δ2
(
γt +

1
2
γuu

)∥∥∥∥
An(n−2)

= O
(
δ2+β

)
as n→∞. (2.15)

Remark. The theorem’s proof will indicate that we could replace condition (2.13) by the
slightly weaker condition that both the inequality

∥∥gn(tnn−1, ·
)
−γ
(
tnn−1, ·

)∥∥
Un

n−1
≤ Kδ4 and

the inequality
∥∥∆n

u g
n
(
tnn−1, ·

)
−∆n

u γ
(
tnn−1, ·

)∥∥
Un

n−2
≤ Kδ3+β hold for all n ∈ IN . �

The theorem’s proof follows from certain maximum principles for gn − γ and ∆n
u g

n −∆n
u γ.

Before we come to the proof itself, we will sketch the idea.
In order to show that ‖gn − γ‖An(n−1) = O

(
δ2
)

as n → ∞, we will show that the function
γ : [0, T ] × IR → IR approximately solves the recursive equation (2.1) with the function
gn : An → IR replaced by the function γ : [0, T ] × IR → IR, up to an error term of order
O
(
δ4
)
. Thus we get for all sufficiently large n ∈ IN , all 1 ≤ k ≤ n− 1 and u ∈ Unk−1:

gn
(
tnk−1, u

)
− γ
(
tnk−1, u

)
= p̂n

(
tnk−1, u

)(
gn
(
tnk , u+ δ

)
− γ
(
tnk , u+ δ

))
+
(

1− p̂n
(
tnk−1, u

))(
gn
(
tnk , u− δ

)
− γ
(
tnk , u− δ

))
+O

(
δ4
)
.

For all n >
∥∥ ψ•t

ψ•u

∥∥2 the function p̂n : An(n − 2) → (0, 1) of (2.2) is well defined, and since it
takes values in (0, 1), it follows that for all sufficiently large n ∈ IN and each 1 ≤ k ≤ n−1 the
difference

∥∥gn(tnk−1, ·
)
−γ
(
tnk−1, ·

)∥∥
Un

k−1
can be bounded in terms of

∥∥gn(tnk , · )−γ(tnk , · )∥∥Un
k

plus an O
(
δ4
)
-term. Starting at k = n− 1 and working backward until k = 1 gives a bound

in terms of
∥∥gn(tnn−1, ·

)
− γ
(
tnn−1, ·

)∥∥
Un

n−1
plus n− 1 error terms of order O

(
δ4
)
, which sum

up to a term of order O
(
δ2
)
. This is a standard argument for approximating a linear PDE

by a difference scheme.
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In order to prove (2.15), we show that a similar maximum principle holds for the maximum
norm

∥∥∆n
u g

n
(
tnk−1, ·

)
− ∆n

u γ
(
tnk−1, ·

)∥∥
Un

k−2
by using the difference of (2.1) evaluated for

u′ := u+δ and u′ := u−δ and some 2 ≤ k ≤ n−1, u ∈ Unk−2. This allows us to conclude that
for 1 ≤ k ≤ n− 1 the maximum norm

∥∥∆n
u g

n
(
tnk , ·

)
−∆n

u γ
(
tnk , ·

)∥∥
Un

k−1
can be bounded by∥∥∆n

u g
n
(
tnn−1, ·

)
−∆n

u γ
(
tnn−1, ·

)∥∥
Un

n−2
plus n − k − 1 terms of order O

(
δ3+β

)
, and therefore

by a term of order O
(
δ1+β

)
. Then a suitable application of (2.1) and (2.3) will yield (2.15).

Thus, we first have to make sure that γ really solves (2.1) up to a term of order O
(
δ4
)
. This

requires an order approximation of p̂n : An(n − 2) → IR. Next to the order approximations
for p̂n which is needed now, we also state two similar order approximations in the following
lemma, which we need later when we prove the convergence of ∆n

u g
n as well.

Lemma 3.11. Suppose that the assumptions of Theorem 3.10 hold. Then

2p̂n
(
tnk−1, u

)
− 1 = δ

1
2ψ
•
uu

(
tnk , u

)
− ψ•t

(
tnk , u

)
ψ•u
(
tnk , u

) +O
(
δ3
)

as n→∞, (2.16)

uniformly for all 1 ≤ k ≤ n − 1 and u ∈ Unk−1. Moreover, uniformly for all 2 ≤ k ≤ n − 1
and u ∈ Unk−2 we have

p̂n
(
tnk−1, u+ δ

)
+ p̂n

(
tnk−1, u− δ

)
− 1 = δ

1
2ψ
•
uu

(
tnk , u

)
− ψ•t

(
tnk , u

)
ψ•u
(
tnk , u

) +O
(
δ3
)

(2.17)

and

p̂n
(
tnk−1, u+ δ)− p̂n

(
tnk−1, u− δ) = δ2

d

du

1
2ψ
•
uu

(
tnk , u

)
− ψ•t

(
tnk , u

)
ψ•u
(
tnk , u

) +O
(
δ3+β

)
(2.18)

as n→∞.

Proof. We will prove (2.16) in detail, since it exemplarily reveals the techniques used to get
order approximations for functionals of ψ• : [0, T ] × IR → IR. It draws on several Taylor
expansions.
At first, let us fix δ > 0 and suppose that 0 ≤ t ≤ T and u ∈ IR. By Taylor’s rule there exist
some u−, u+ ∈ IR with u− δ ≤ u− ≤ u ≤ u+ ≤ u+ δ such that

ψ•(t, u± δ)− ψ•(t, u) = ±δψ•u(t, u) +
1
2
δ2ψ•uu(t, u)± 1

6
δ3ψ•uuu(t, u) +

1
24
δ4ψ•uuuu

(
t, u±

)
.

If we divide the sum of these two equations by 2δψ•u(t, u) and apply the intermediate value
theorem to the mean of ψ•uuuu

(
t, u±

)
, we get for some u− δ ≤ u1 ≤ u+ δ:

ψ•(t, u+ δ)− 2ψ•(t, u) + ψ•(t, u− δ)
2δψ•u(t, u)

=
1
2
δ
ψ•uu(t, u)
ψ•u(t, u)

+
1
24
δ3
ψ•uuuu

(
t, u1

)
ψ•u(t, u)

. (2.19)

Now notice that by the mean value theorem there exists some u2 between u and u1 such that
logψ•u(t, u1)− logψ•u(t, u) = (u1 − u) d

du logψ•u(t, u2) = (u1 − u)ψ
•

uu(t,u2)
ψ•u(t,u2)

, and therefore∣∣∣∣ψ•uuuu(t, u1)
ψ•u(t, u)

∣∣∣∣ =
∣∣∣∣ψ•uuuu(t, u1)
ψ•u(t, u1)

∣∣∣∣ elogψ•u(t,u1)−logψ•u(t,u) ≤
∥∥∥∥ψ•uuuuψ•u

∥∥∥∥ exp
(
δ

∥∥∥∥ψ•uuψ•u
∥∥∥∥) , (2.20)

where we have suppressed the subscript [0, T ]×IR of the norm ‖ ·‖. Since ψ• : [0, T ]×IR→ IR

belongs to the Hölder class Ĥ2+ 1
2
β,4+β

(
[0, T ] × IR

)
, we have

∥∥ψ•z

ψ•u

∥∥ < ∞ for z ∈ {uu, uuuu},
and thus (2.19) and (2.20) imply uniformly for all 0 ≤ t ≤ T and u ∈ IR:

ψ•(t, u+ δ)− 2ψ•(t, u) + ψ•(t, u− δ)
2δψ•u(t, u)

=
1
2
δ
ψ•uu(t, u)
ψ•u(t, u)

+O
(
δ3
)

as δ → 0.
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Similarly we can show uniformly for all (t, u) ∈ [0, T ]× IR that

ψ•(t, u+ δ)− ψ•(t, u− δ)
2δψ•u(t, u)

= 1 +O
(
δ2
)

as δ → 0,

and uniformly for all 0 ≤ t ≤ T − δ2 and u ∈ IR that

ψ•(t+ δ2, u)− ψ•(t, u)
2δψ•u(t, u)

= δ
ψ•t(t, u)
ψ•u(t, u)

+O
(
δ3
)

as δ → 0.

Now recall the definition of p̂n : An(n− 2) → IR in (2.2) for all n ∈ IN with n >
∥∥ ψ•t

ψ•u

∥∥2. We
get for all those n ∈ IN , all 1 ≤ k ≤ n− 1 and all u ∈ Unk−1:

2p̂
(
tnk−1, u

)
− 1 =

ψ•
(
tnk , u+ δ

)
− 2ψ•

(
tnk , u

)
+ ψ•

(
tnk , u− δ

)
− 2
(
ψ•
(
tnk+1, u

)
− ψ•

(
tnk , u

))
ψ•
(
tnk , u+ δ

)
− ψ•

(
tnk , u− δ

) .

Inserting the three previous expansions and using once again Taylor’s rule, now applied to
the function x 7→ 1

1+x , we conclude from the boundedness of the ratios ψ•t

ψ•u
and ψ•uu

ψ•u
that

2p̂
(
tnk−1, u

)
− 1 =

1
2δ

ψ•uu(tnk ,u)

ψ•u(tnk ,u)
− δ

ψ•t(tnk ,u)

ψ•u(tnk ,u)
+O

(
δ3
)

1 +O
(
δ2
) = δ

1
2ψ
•
uu

(
tnk , u

)
− ψ•t

(
tnk , u

)
ψ•u
(
tnk , u

) +O
(
δ3
)
,

and because of δ = δn = n−
1
2 , we arrive at (2.16).

The proofs of (2.17) and (2.18) follow similarly to the proof of (2.16). For (2.18) we have to
be a little bit careful, since we have only assumed ψ• ∈ Ĥ2+ 1

2
β,4+β and therefore cannot use

Taylor approximations for the function ψ• of any order with more than two derivatives in time
or more than four space derivatives, nor derivatives like ψ•tuuu. However, if we first develop a
Taylor series for ψ•

(
t+ δ2, u± δ

)
around (t, u± δ) and then expand ψ•(t, u± δ) and ψ•t(t, u± δ)

around (t, u), we can show that a suitable expansion for the left-hand side of (2.18) exists.
Moreover, the highest derivatives which appear, namely ψ•uuuu, ψ•tuu, and ψ•tt, appear pairwise
and offset each other due to the Hölder continuity of the derivative ratios.
To make this clearer, let us first convince ourselves that due to the bounds ex − 1 ≤ xex and
1− e−x ≤ x for x ≥ 0, and due to the considerations leading to (2.20), we have∣∣∣∣∣ψ•u

(
t, u+ η

)
ψ•u(t, u)

− 1

∣∣∣∣∣ ≤ |η| exp
(
|η|
∥∥∥ψ•uu
ψ•u

∥∥∥) for all t ∈ [0, T ] and u, η ∈ IR. (2.21)

Our Taylor series for the left-hand side of (2.18) will involve for example a term of the form
ψ•z(t,u+)−ψ•z(t,u−)

ψ•u(t,u)
with z = uuuu and u − 2δ ≤ u− ≤ u ≤ u+ ≤ u + 2δ. This term can be

bounded by∣∣∣∣ψ•z(t, u+)
ψ•u(t, u+)

∣∣∣∣ ∣∣∣∣ψ•u(t, u+)
ψ•u(t, u)

− 1
∣∣∣∣+
∣∣∣∣ψ•z(t, u+)
ψ•u(t, u+)

− ψ•z(t, u−)
ψ•u(t, u−)

∣∣∣∣+
∣∣∣∣ψ•z(t, u−)
ψ•u(t, u−)

∣∣∣∣ ∣∣∣∣1− ψ•u(t, u−)
ψ•(t, u)

∣∣∣∣ ,
and since

∥∥ψ•z

ψ•u

∥∥ <∞, our bound in (2.21) shows that the first and the last terms are of order
O
(
δ
)
, while the term in the middle can be seen to be of order O

(
δβ
)

as δ → 0 by the Hölder
continuity of the derivative ψ•z

ψ•u
.

Full details of the proof of (2.17) and (2.18), however, are omitted to save the reader from
another bunch of Taylor approximations. q.e.d.
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Remark. The above notes to the proof of (2.18) could also be used to show that for any
k ∈ IN the condition logψ• ∈ H

1
2
(k+β),k+β

(
[0, T ]× IR

)
together with the additional condition

d
du logψ•(t, u) ≥ c > 0 for all (t, u) ∈ [0, T ] × IR implies that ψ• ∈ Ĥ

1
2
(k+β),k+β

(
[0, T ] × IR

)
.

However, even for the Cox-Ross-Rubinstein model of Example 1.9, where the small investor
price function ψ• : [0, T ]× IR→ IR is given by ψ•(t, u) = S0e

σu+(µ−r)t for all (t, u) ∈ [0, T ]× IR
and some fixed S0, σ > 0 and µ, r ∈ IR, the condition logψ• ∈ H

1
2
(k+β),k+β

(
[0, T ]× IR

)
is not

satisfied, since the function ψ• itself is not bounded. This is the prime reason why we consider
equilibrium price functions ψ• from the (larger) class Ĥ

1
2
(k+β),k+β

(
[0, T ]× IR

)
. �

As promised, we can now show that
∥∥gn − γ

∥∥
An(n−1)

= O
(
δ2
)

as n→∞.

Lemma 3.12. Let us suppose that the price system (ψ, µ) satisfies the assumptions of The-
orem 3.10, and suppose that the solution γ : [0, T ]× IR→ IR of the final value problem (2.3),
(2.4) lies in the space C2,4

b

(
[0, T ]× IR

)
. Then

∥∥gn− γ∥∥An(n−1)
= O

(
δ2
)

as n→∞ is implied
by the condition

∥∥gn(tnn−1, ·
)
− γ
(
tnn−1, ·

)∥∥
Un

n−1
≤ Kδ4 for all n ∈ IN and some K ≥ 0.

Proof. Similarly to the proof of Lemma 3.11, Taylor’s rule shows for all t ∈
[
δ2, T

]
and u ∈ IR

that there exist some u−, u+ ∈ IR with u − δ ≤ u− ≤ u ≤ u+ ≤ u + δ and some t∗ ∈ [0, T ]
with t− δ2 ≤ t∗ ≤ t such that

γ
(
t, u± δ

)
= γ(t, u)± δγu(t, u) +

1
2
δ2γuu(t, u)± 1

6
δ3γuuu(t, u) +

1
24
δ4γuuuu

(
t, u±

)
and

γ
(
t− δ2, u

)
= γ(t, u)− δ2γt(t, u) +

1
2
δ4γtt

(
t∗, u

)
.

Since all appearing derivatives of γ are globally bounded on [0, T ] × IR, and due to formula
(2.16) of Lemma 3.11, we can now write uniformly for all n >

∥∥ ψ•t

ψ•u

∥∥2, all 1 ≤ k ≤ n− 1, and
all u ∈ Unk−1:

p̂n
(
tnk−1, u

)
γ
(
tnk , u+ δ

)
+
(

1− p̂n
(
tnk−1, u

))
γ
(
tnk , u− δ

)
− γ
(
tnk−1, u

)
=

1
2

(
γ
(
tnk , u+ δ

)
+ γ
(
tnk , u− δ

))
− γ
(
tnk−1, u

)
+
(

2p̂n
(
tnk−1, u

)
− 1
)1

2

(
γ
(
tnk , u+ δ

)
− γ
(
tnk , u− δ

))
=

1
2
δ2γuu

(
tnk , u

)
+ δ2γt

(
tnk , u

)
+O

(
δ4
)

+

(
δ

1
2ψ
•
uu(tnk , u)− ψ•t(tnk , u)

ψ•u(tnk , u)
+O

(
δ3
))(

δγu
(
tnk , u

)
+O

(
δ3
))

= δ2

(
γt
(
tnk , u

)
+

1
2
γuu
(
tnk , u

)
+ γu

(
tnk , u

) 1
2ψ
•
uu(tnk , u)− ψ•t(tnk , u)

ψ•u(tnk , u)

)
+O

(
δ4
)
,

and since γ : [0, T ]×IR solves the parabolic partial differential equation (2.3), the O
(
δ2
)
-term

vanishes. Hence for each fixed N >
∥∥ ψ•t

ψ•u

∥∥2 there exists an L ∈ IR such that for all n ≥ N ,
1 ≤ k ≤ n− 1 and u ∈ Unk−1 we have∣∣∣p̂n(tnk−1, u

)
γ
(
tnk , u+ δ

)
+
(

1− p̂n
(
tnk−1, u

))
γ
(
tnk , u− δ

)
− γ
(
tnk−1, u

)∣∣∣ ≤ δ4L. (2.22)



3.2. THE CASE WITHOUT TRANSACTION LOSSES 117

Without loss of generality we may assume L ≥ K. The statement of the lemma will follow
once we have shown that ∥∥∥gn(tnk , · )− γn

(
tnk , ·

)∥∥∥
Un

k

≤ (n− k)δ4L, (2.23)

for all n ≥ N and all 0 ≤ k ≤ n− 1, since then
∥∥gn − γn

∥∥
An(n−1)

≤ nδ4L, and the definition

of δ = δn = n−
1
2 leads to

∥∥gn − γn
∥∥
An(n−1)

≤ δ2L.
The proof of (2.23) follows from a backward induction over k. For k = n−1 the bound (2.23)
holds because of our assumption and L ≥ K. Let us now assume that n ≥ N and that (2.23)
holds for some 1 ≤ k ≤ n− 1. Then from (2.1) and 0 < p̂n(t, u) < 1 for all (t, u) ∈ An(n− 2)
it follows that for all u ∈ Unk−1:∣∣∣gn(tnk−1, u

)
− γn

(
tnk−1, u

)∣∣∣ ≤ p̂n
(
tnk−1, u

)∣∣∣gn(tnk , u+ δ
)
− γ
(
tnk , u+ δ

)∣∣∣
+
(

1− p̂n
(
tnk−1, u

))∣∣∣gn(tnk , u− δ
)
− γ
(
tnk , u− δ

)∣∣∣+
∣∣Rnk−1(u)

∣∣,
where

∣∣Rnk−1(u)
∣∣ is given by the left hand side of (2.22). Hence we can conclude from (2.22)

and our induction hypothesis that∥∥∥gn(tnk−1, ·
)
− γn

(
tnk−1, ·

)∥∥∥
Un

k−1

≤
∥∥∥gn(tnk , · )∥∥∥Un

k

+ δ4L ≤ δ4(n− k + 1)L,

which proves the induction step. q.e.d.

The next lemma uses similar methods to bound the error incurred by approximating the
discrete derivative ∆n

u g
n : An1 → IR with the discrete derivative ∆n

u γ : An1 → IR, which itself
is an O

(
δ2
)
-approximation on the grid An1 of the continuous derivative γu : [0, T ] × IR, as

n→∞.

Lemma 3.13. Suppose that the large investor price system (ψ, µ) and the solution γ of the
final value problem (2.3), (2.4) satisfy the assumptions of Theorem 3.10. Then∥∥∥∆n

u g
n
(
tnn−1, ·

)
−∆n

u γ
(
tnn−1, ·

)∥∥∥
Un

n−2

≤ Kδ3+β for all n ∈ IN (2.24)

implies
∥∥∆n

u g
n −∆n

u γ
∥∥
An

1 (n−1)
= O

(
δ1+β

)
as n→∞.

Proof. Let us first generate a recursive formula for the restriction of ∆n
u g

n : An1 → IR to
An1 (n − 1), analogous to the recursive equation (2.1). By the definition of ∆n

u g
n in Defini-

tion 3.7 and by a twofold application of (2.1) we obtain for all n >
∥∥ ψ•t

ψ•u

∥∥2, all 2 ≤ k ≤ n− 1
and u ∈ Unk−2:

2δ∆n
u g

n
(
tnk−1, u

)
= gn

(
tnk−1, u+ δ

)
− gn

(
tnk−1, u− δ

)
= p̂n

(
tnk−1, u+ δ

)
gn
(
tnk , u+ 2δ

)
−
(

1− p̂n
(
tnk−1, u− δ

))
gn
(
tnk , u− 2δ

)
+
(

1− p̂n
(
tnk−1, u+ δ

)
− p̂n

(
tnk−1, u− δ

))
gn
(
tnk , u

)
.

After a rearrangement of terms we obtain the following recursive formula for the restriction
of ∆n

u g
n to An1 (n− 1) → IR:

∆n
u g

n
(
tnk−1, u

)
= p̂n

(
tnk−1, u+ δ

)
∆n
u g

n
(
tnk , u+ δ

)
+
(

1− p̂n
(
tnk−1, u− δ

))
∆n
u g

n
(
tnk , u− δ

)
.

(2.25)
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Next we investigate the error we make if we replace in the previous equation gn by γ, i.e. we
consider the term

Rn
(
tnk−1, u

)
:= p̂n

(
tnk−1, u+ δ

)
∆n
u γu(tnk , u+ δ

)
+
(

1− p̂n
(
tnk−1, u− δ

))
∆n
u γ
(
tnk , u− δ

)
−∆n

u γ
(
tnk−1, u

)
for n >

∥∥ ψ•t

ψ•u

∥∥2, all 2 ≤ k ≤ n − 1 and u ∈ Unk−2. To find order approximations for this,
let us fix δ2 ≤ t ≤ T and u ∈ IR. Similar to the Taylor expansions of the previous lemma,
but now employing the Hölder continuity of γuuuu as well, we get for s = t − δ2 and some
u− δ ≤ u− ≤ u ≤ u+ ≤ u+ δ:

∆n
u γ
(
s, u
)

= γu
(
s, u
)

+
1
6
δ2γuuu(s, u) +

1
48
δ3
(
γuuuu

(
s, u+

)
− γuuuu

(
s, u−

))
= γu

(
s, u
)

+
1
6
δ2γuuu(s, u) +O

(
δ3+β

)
as δ → 0.

If we use this equation, expand γu(s, u) around (t, u), and also recall that γtu and γuuu are
Hölder continuous in t with exponent 1

2

(
1 + β

)
we see that

∆n
u γ
(
t− δ2, u

)
= γu(t, u)− δ2

(
γtu(t, u)− 1

6
γuuu(t, u)

)
+O

(
δ3+β

)
as δ → 0.

Moreover, by the Hölder continuity of γuuuu we get for all (t, u) ∈ [0, T ]× IR that

1
2
(
∆n
u γ(t, u+ δ) + ∆n

u γ(t, u− δ)
)

= γu(t, u) +
2
3
δ2γuuu(t, u) +O

(
δ3+β

)
as δ → 0

and

1
2
(
∆n
u γ(t, u+ δ)−∆n

u γ(t, u− δ)
)

= δγuu(t, u) +O
(
δ3
)

as δ → 0,

and all the preceding convergence statements are seen to hold uniformly for all δ2 ≤ t ≤ T
and u ∈ IR. Then we rewrite Rn

(
tnk−1, u

)
as

Rn
(
tnk−1, u

)
=
(

1 + p̂n
(
tnk−1, u+ δ

)
− p̂n

(
tnk−1, u− δ

))∆n
u γ(tnk , u+ δ) + ∆n

u γ(tnk , u− δ)
2

+
(
p̂n
(
tnk−1, u+ δ

)
+ p̂n

(
tnk−1, u− δ

)
− 1
)∆n

u γ(tnk , u+ δ)−∆n
u γ(tnk , u− δ)

2
−∆n

u γ
(
tnk−1, u

)
and apply the expansion for ∆n

u γ and the expansions (2.17) and (2.18) of Lemma 3.11 to that
equation; this shows that uniformly for all 2 ≤ k ≤ n− 1 and u ∈ Unk−2 we can approximate
Rn : An1 (n− 1) → IR by

Rn
(
tnk−1, u

)
= δ2

d

du

(
γt
(
tnk , u

)
+

1
2
γuu
(
tnk , u

)
+

1
2ψ
•
uu(tnk , u)− ψ•t(tnk , u)

ψ•u(tnk , u)
γu
(
tnk , u

))
+O

(
δ3+β

)
,

as n→∞, and as in the previous lemma the O
(
δ2
)
-term vanishes, since γ : [0, T ]× IR→ IR

solves the partial differential equation (2.3). Thus, for each N >
∥∥ ψ•t

ψ•u

∥∥2 there exists some L1

such that for all n ≥ N we have ‖Rn‖An
1 (n−1) ≤ L1δ

3+β . We may again assume without loss
of generality that L1 ≥ K.
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In contrast to (2.1), the recursive equation (2.25) does not present ∆n
u g

n
(
tnk−1, u

)
as a lin-

ear combination of the two potential successors ∆n
u g

n
(
tnk , u ± δ

)
, since the two weights for

∆n
u g

n
(
tnk , u± δ

)
do not add up to 1. However, the amount p̂n

(
tnk−1, u+ δ

)
− p̂n

(
tnk−1, u− δ

)
,

by which the sum of the weights misses the value 1, is seen to be only of order O
(
δ2
)
, due

to (2.18) in Lemma 3.11. Thus, for each N >
∥∥ ψ•t

ψ•u

∥∥2 there exist some L2 such that for all
n ≥ N , all 2 ≤ k ≤ n− 1 and u ∈ Unk−2 we have∣∣∣p̂n(tnk−1, u+ δ

)
− p̂n

(
tnk−1, u− δ

)∣∣∣ ≤ δ2L2. (2.26)

Let us now fix some N > ‖ ψ
•

t

ψ•u
‖2 and the corresponding constants L1 and L2. We will show

that for all n ≥ N and 1 ≤ k ≤ n− 1:∥∥∥∆n
u g
(
tnk , ·

)
−∆n

u γ
(
tnk , ·

)∥∥∥
Un

k−1

≤ δ3+βL1

n−k−1∑
j=0

(1 + δ2L2)j . (2.27)

Again, this will be done via an inductive argument over k. It is clear by assumption (2.24)
that (2.27) holds for k = n − 1. For the induction step let us suppose that (2.27) holds for
some 2 ≤ k ≤ n − 1. Then from the recursive formula (2.25) and from the definition of
Rn
(
tnk−1, u

)
we get for all u ∈ Unk−2 that∣∣∣∆n

u g
n
(
tnk−1, u

)
−∆n

u γ
(
tnk−1, u

)∣∣∣
≤ p̂n

(
tnk−1, u+ δ

)∣∣∣∆n
u g

n
(
tnk , u+ δ

)
−∆n

u γ
(
tnk , u+ δ

)∣∣∣
+
(

1− p̂n
(
tnk−1, u− δ

))∣∣∣∆n
u g

n
(
tnk , u− δ

)
−∆n

u γ
(
tnk , u− δ

)∣∣∣+
∣∣Rn(tnk−1, u

)∣∣,
since the two appearing weights are nonnegative. Due to

∥∥Rn∥∥An
1 (n−1)

≤ L1δ
3+β we thus

recursively obtain a bound on the maximum norms of the differences ∆n
u g

n −∆n
u γ:∥∥∥∆n

u g
n
(
tnk−1, ·

)
−∆n

u γ
(
tnk−1, ·

)∥∥∥
Un

k−2

≤
(

1 + p̂n
(
tnk−1, u+ δ

)
− p̂n

(
tnk−1, u− δ

))
·
∥∥∥∆n

u g
n
(
tnk , ·

)
−∆n

u γ
(
tnk , ·

)∥∥∥
Un

k

+ L1δ
3+β .

Hence (2.26) and our induction assumption (2.27) imply

∥∥∥∆n
u g

n
(
tnk−1, ·

)
−∆n

u γ
(
tnk−1, ·

)∥∥∥
Un

k−2

≤
(
1 + δ2L2

)
L1δ

3+β
n−k−1∑
j=0

(
1 + δ2L2

)j + L1δ
3+β

= δ3+βL1

n−k∑
j=0

(
1 + δ2L2

)j
,

and so indeed (2.27) holds for all 1 ≤ k ≤ n−1 and all n ≥ N . To complete the proof, notice
that by the definition of δ = δn = n−

1
2 and the monotonicity of n 7→

(
1 + 1

nL2

)n we have for
all 1 ≤ k ≤ n− 1:

δ3+β
n−k−1∑
j=0

(
1 + δ2L2

)j ≤ δ3+βn
(
1 + δ2L2

)n ≤ δ1+βeL2 ,

and therefore the lemma is implied by the availability of (2.27) for all 1 ≤ k ≤ n − 1 and
n ≥ N . q.e.d.



120 CHAPTER 3. CONVERGENCE OF THE STRATEGY FUNCTIONS

Remark. We could also replace the discrete derivative ∆n
u γ by the continuous derivative γu

and show that
∥∥∆n

u g
n − γu

∥∥
An

1 (n−1)
= O

(
δ1+β

)
as n → ∞ follows from the condition that∥∥∆n

u g
n
(
tnn−1, ·

)
− γu

(
tnn−1, ·

)∥∥
Un

n−2
≤ Kδ3+β for all n ∈ IN . However, if the third spatial

derivative γuuu does not vanish at t = T , it is easy to see that for any α > 3 the latter
condition and

∥∥gn(tnn−1, ·
)
− γ
(
tnn−1, ·

)∥∥
Un

n−1
≤ Kδα cannot hold simultaneously, and hence

we could not derive the statement of Lemma 3.12 at the same time. �

There are only minor steps left to prove Theorem 3.10:

Proof of Theorem 3.10. Since (2.14) is already implied by Lemma 3.12, we only have to
validate that (2.15) holds as n→∞, and we are content to prove the lower (minus) case, since
the upper (plus) case follows by similar arguments. For the proof notice that due to condition
(2.13) and the definition of the discrete derivatives ∆n

u g
n : An1 → IR and ∆n

u γ : An1 → IR, we
have ∣∣∣∆n

u g
n
(
tnn−1, u

)
−∆n

u γ
(
tnn−1, u

)∣∣∣ ≤ Kδ3+β for all u ∈ Unn−2.

Hence the assumptions of Lemma 3.13 hold, and thus
∥∥∆n

u g
n −∆n

u γ
∥∥
An

1 (n−1)
= O

(
δ1+β

)
as

n→∞.
By calculations analogous to the one in Lemma 3.11 it can be shown that uniformly for all
0 ≤ t ≤ T − δ2 and u ∈ IR:

1
2ψ
•
uu(t+ δ2, u)− ψ•t(t+ δ2, u)

ψ•u(t+ δ2, u)
=

1
2ψ
•
uu(t, u)− ψ•t(t, u)

ψ•u(t, u)
+O

(
δ2
)

as δ → 0.

Together with the approximation (2.16) of Lemma 3.11 and γ ∈ H2+ 1
2
β,4+β

(
[0, T ]× IR

)
, this

implies uniformly for all 0 ≤ k ≤ n− 2 and u ∈ Unk that

Rn
(
tnk , u

)
:= 2p̂n

(
tnk , u

)
∆n
u γ
(
tnk+1, u

)
− γu

(
tnk , u

)
+ δ

(
γt
(
tnk , u

)
+

1
2
γuu
(
tnk , u

))
= δ

(
γt
(
tnk , u

)
+

1
2
γuu
(
tnk , u

)
+

1
2ψ
•
uu(tnk , u)− ψ•t(tnk , u)

ψ•u(tnk , u)
γu
(
tnk , u

))
+O

(
δ2
)

as n→∞, and since γ : [0, T ]× IR→ IR satisfies (2.3), the first term on the right-hand side
drops out and

∥∥Rn∥∥An(n−2)
= O

(
δ2
)

as n→∞.

Now fix some n >
∥∥ ψ•t

ψ•u

∥∥2, some 0 ≤ k ≤ n − 2, and some u ∈ Unk , and recall the recursive
equation (2.1) with k − 1 replaced by k. Subtracting gn

(
tnk+1, u− δ

)
on both sides, we get

gn
(
tnk , u

)
− gn

(
tnk+1, u− δ

)
= p̂n

(
tnk , u

)
2δ∆n

u g
n
(
tnk+1, u

)
.

If we now subtract δγu(tnk , u)− δ2
(
γt(tnk , u) + 1

2γuu(tnk , u)
)

on both sides and use the triangle
inequality and the definition of Rn

(
tnk , u

)
, we obtain:∣∣∣gn(tnk , u)− gn

(
tnk+1, u− δ

)
− δγu

(
tnk , u

)
+ δ2

(
γt
(
tnk , u

)
+

1
2
γuu
(
tnk , u

))∣∣∣
≤ 2δp̂n

(
tnk , u

)∣∣∆n
u g

n
(
tnk+1, u

)
−∆n

u γ
(
tnk+1, u

)∣∣+ δ
∣∣Rn(tnk , u)∣∣

≤ 2δ
∥∥∆n

u g
n −∆n

u γ
∥∥
An

1 (n−1)
+ δ
∥∥Rn∥∥An(n−2)

= O
(
δ2+β

)
as n→∞,

where the last line follows from p̂n : An(n−2) → (0, 1), ‖Rn‖An(n−2) = O
(
δ2
)

as n→∞, and
Lemma 3.13. Changing the sign within the absolute value and taking the norm ‖ · ‖An(n−2)

we see that the lower (minus) case approximation of (2.15) holds. This concludes the proof
of the theorem. q.e.d.
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Remark. The proof suggests that it would perhaps be more natural to use a Taylor expansion
around

(
tnk , u

)
for the second-order approximation of gn

(
tnk , u± δ

)
− gn

(
tnk−1, u

)
, as opposed

to the Taylor expansion around
(
tnk−1, u

)
. We prefer the expansion around

(
tnk−1, u

)
because

it simplifies the representation (2.15) in terms of the sup-norm on the space An(n− 2). �

3.2.3 Convergence of the Strategy Functions

As a corollary of Theorem 3.10, we can now use the convergence of the transformed strategy
functions to derive an analogous result for the convergence of the sequence {ξn}n∈IN of strat-
egy functions ξn : An → IR as n → ∞ to the solution ϕ : [0, T ] × IR → IR of the final value
problem (2.5), (2.6).

Corollary 3.14. Let (ψ, µ) be a large investor price system which satisfies µ = λ and
Assumption B, and suppose that the two components ψ• and f of ψ in the representation
ψ(t, u, ξ) = ψ•(t, u)f(ξ) belong to the Hölder spaces Ĥ2+ 1

2
β,4+β

(
[0, T ] × IR

)
and H3+β

loc (IR),
respectively. If ϕ ∈ H2+ 1

2
β,4+β

(
[0, T ] × IR

)
solves the final value problem (2.5), (2.6) and

there exists some K ∈ IR such that∥∥ξn(tnn−1, ·
)
− ϕ

(
tnn−1, ·

)∥∥
Un

n−1
≤ Kδ4+β for all n ∈ IN, (2.28)

then the discrete strategy functions ξn : An → IR converge to ϕ : [0, T ]× IR→ IR in the sense
that

‖ξn − ϕ‖An(n−1) = O
(
δ2
)

(2.29)

and∥∥∥∥ξn(·+ δ2, · ± δ)− ξn ∓ δϕu − δ2
(
ϕt +

1
2
ϕuu

)∥∥∥∥
An(n−2)

= O
(
δ2+β

)
as n→∞. (2.30)

Proof. Since ϕ ∈ H2+ 1
2
β,4+β

(
[0, T ]× IR

)
, it is in particular bounded. As a first step towards

the proof of the corollary, we will show that condition (2.28) guarantees the existence of a
uniform bound on

∥∥ξn∥∥An(n−1)
for all n ∈ IN as well.

Let us fix some n >
∥∥ ψ•t

ψ•u

∥∥2. Then the weight function p̂n : An(n− 2) → (0, 1) of (2.2) is well
defined, and since the weights take only values in (0, 1), the recursive equation (2.1) implies:

min
v∈Un

k

{
gn
(
tnk , v

)}
≤ gn

(
tnk−1, u

)
≤ max

v∈Un
k

{
gn
(
tnk , v

)}
for all 1 ≤ k ≤ n− 1 and u ∈ Unk−1.

If we nest these bounds for all 1 ≤ k ≤ n − 1, we finally realize that the minimum and
the maximum of gn

(
An(n − 1)

)
are already determined by the minimum and maximum of

gn
(
tnn−1,Unn−1

)
, the possible values of the transformed strategy function gn at time tnn−1, i.e.

min
v∈Un

n−1

{
gn
(
tnn−1, v

)}
≤ gn(t, u) ≤ max

v∈Un
n−1

{
gn
(
tnn−1, v

)}
for all (t, u) ∈ An(n− 1). (2.31)

Now recall the definition of gn : An → IR as gn(t, u) = gn
(
ξn(t, u)

)
for all (t, u) ∈ An.

Since the strategy transform g : IR → IR is strictly increasing and invertible, it follows that
ξn(t, u) = g−1

(
gn(t, u)

)
for all (t, u) ∈ An, and we derive from (2.31) similar bounds for the

range of ξn
(
An(n− 1)

)
, namely

min
v∈Un

n−1

{
ξn
(
tnn−1, v

)}
≤ ξn(t, u) ≤ max

v∈Un
n−1

{
ξn
(
tnn−1, v

)}
for all (t, u) ∈ An(n− 1). (2.32)



122 CHAPTER 3. CONVERGENCE OF THE STRATEGY FUNCTIONS

Combining (2.32) with (2.28) and using the boundedness of ϕ, we can find some compact
interval I ⊂ IR such that not only ϕ(t, u) ∈ I for all (t, u) ∈ [0, T ]× IR, but even ξn(t, u) ∈ I
for all (t, u) ∈ An(n− 1) and all n ∈ IN .
Next, we set γ(t, u) := g

(
ϕ(t, u)

)
for all (t, u) ∈ [0, T ]×IR. By Proposition 3.9 the transformed

function γ : [0, T ] × IR → IR solves the final value problem (2.3), (2.4) and belongs to the
Hölder space H2+ 1

2
β,4+β

(
[0, T ] × IR

)
. To apply Theorem 3.10 it remains to show (2.13) for

some K̃ ∈ IR. Since f : IR → IR is continuous and strictly positive and since I is compact,
we conclude that there exist some 0 < c ≤ C such that c ≤ f(ξ) ≤ C for all ξ ∈ I. But then
it follows from the definition of gn and γ for all u ∈ Unn−1 and all n ∈ IN that

∣∣∣gn(tnn−1, u
)
− γ
(
tnn−1, u

)∣∣∣ =

∣∣∣∣∣
∫ ξn(tnn−1,u)

ϕ(tnn−1,u)
f(x) dx

∣∣∣∣∣ ≤ C
∣∣∣ξn(tnn−1, u

)
− ϕn

(
tnn−1, u

)∣∣∣,
and after taking the norm ‖ · ‖Un

n−1
and using the assumption (2.28), we can infer that (2.13)

holds with the constant K replaced by K̃ = KC. Hence we deduce from Theorem 3.10 the
convergence results (2.14) and (2.15).
Now we change the direction of our arguments and show that these two statements in terms
of gn and γ imply the statements (2.29) and (2.30) given in terms of ξn and ϕ. For this
purpose, let us consider the inverse g−1 : g(IR) → IR of the strategy transform g : IR → IR,
ξ 7→

∫ ξ
0 f(z) dz. Since f ∈ H3+β

loc

(
IR
)
, the first three derivatives of h := g−1 exist, are

continuous and for all x ∈ g(IR) given by

h′(x) =
1

f(h(x))
, h′′(x) = − f

′(h(x))
f3(h(x))

and h(3)(x) = 3
(f ′)2(h(x))
f5(h(x))

− f ′′(h(x))
f4(h(x))

.

In particular, all three derivatives are bounded on the compact interval g(I). Let us now
take (t, u) ∈ An(n− 1) for some n ∈ IN . On account of the mean value theorem there exists
some x∗ ∈ g(I), lying between gn(t, u) = g

(
ξn(t, u)

)
and γ(t, u) = g

(
ϕ(t, u)

)
, such that

ξn(t, u)− ϕ(t, u) = h
(
gn(t, u)

)
− h
(
γ(t, u)

)
=

1
f(h(x∗))

(
gn(t, u)− γ(t, u)

)
and after taking the norms ‖ · ‖An(n−1) and using the definition of c > 0 we conclude from
(2.14):

∥∥ξn − ϕ
∥∥
An(n−1)

≤ 1
c

∥∥gn − γ
∥∥
An(n−1)

= O
(
δ2
)

as n→∞.

This proves (2.29). In order to prove (2.30) let us note that a Taylor expansion of h around
γ(t, u), the boundedness of h′′ : IR → IR on g(I), and the convergence in (2.14) imply
uniformly for all (t, u) ∈ An(n− 1) that

h
(
gn(t, u)

)
− h
(
γ(t, u)

)
=

1
f
(
ϕ(t, u)

)(gn(t, u)− γ(t, u)
)

+O
(
δ4
)

as n→∞, (2.33)

where we again took advantage of h
(
γ(t, u)

)
= ϕ(t, u) for all (t, u) ∈ [0, T ] × IR. Another

application of (2.14) together with the boundedness of γt and γuu enables us to write uniformly
for all (t, u) ∈ An(n− 2) that

gn
(
t+ δ2, u± δ

)
− γ(t, u) = gn

(
t+ δ2, u± δ

)
− γ
(
t+ δ2, u± δ

)
+ γ
(
t+ δ2, u± δ

)
− γ(t, u)

= δγu(t, u) +O
(
δ2
)
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for n → ∞, and therefore we can use a second Taylor expansion of h around γ(t, u), this
time up to the third derivative, to conclude from the boundedness of the second and third
derivative of h : IR→ IR on g(I) that uniformly for all (t, u) ∈ An(n− 2)

h
(
gn(t+ δ2, u± δ)

)
− h
(
γ(t, u)

)
=

1
f(ϕ(t, u))

(
gn(t+ δ2, u± δ)− γ(t, u)

)
− 1

2
δ2
f ′(ϕ(t, u))
f3(ϕ(t, u))

γ2
u(t, u) +O

(
δ3
)

as n→∞.
(2.34)

If we now subtract (2.33) from (2.34) and notice that h
(
gn(t, u)

)
= ξn(t, u) for all (t, u) ∈ An

we get uniformly for all (t, u) ∈ An(n− 2)

ξn
(
t+ δ2, u± δ

)
− ξn(t, u)

=
1

f
(
ϕ(t, u)

) (gn(t+ δ2, u± δ
)
− gn(t, u)− 1

2
δ2
f ′
(
ϕ(t, u)

)
f2
(
ϕ(t, u)

)γ2
u(t, u)

)
+O

(
δ3
)

as n→∞,

and by the approximation (2.15) and the lower bound f
(
ϕ(t, u)

)
≥ c for all (t, u) ∈ [0, T ]×IR,

we can proceed and rewrite the last term as

=
1

f
(
ϕ(t, u)

) (±δγu(t, u) + δ2
(
γt(t, u)+

1
2
γuu(t, u)

)
− 1

2
δ2
f ′
(
ϕ(t, u)

)
f2
(
ϕ(t, u)

)γ2
u(t, u)

)
+O

(
δ2+β

)
.

Last but not least let us recall that the derivatives of γ : [0, T ] × IR → IR are given by
(2.8) – (2.10). If we plug these formulæ into the previous line, we get uniformly for all
(t, u) ∈ An(n− 2) that

ξn
(
t+ δ2, u± δ)− ξn(t, u) = ±δϕu(t, u) + δ2

(
ϕt +

1
2
ϕuu(t, u)

)
+O

(
δ2+β

)
as n→∞,

and (2.30) follows immediately. q.e.d.

Remark. As Theorem 3.10 does not contain a convergence statement for the boundary func-
tion gn(T, · ) : Unn → IR, our convergence statement of Corollary 3.14 does not say anything
either about the convergence of the values at maturity of the strategy function ξn : An → IR;
we have formulated our convergence results in Section 3.2.2 and 3.2.3 only for the maximum
norms over the truncated grids An(n − 1) = An ∩ [0, T ) × IR. With this restriction, our
convergence statements are much more powerful than they would be if we were to include
the convergence of the large investor’s stock holdings (or its transforms) at time T in our
statements.
In order to see why this is so, let us fix some n >

∥∥ ψ•t

ψ•u

∥∥2 and consider all path-independent
contingent claims which lead to the same real value, i.e. we take some V̄ n

n ∈ Fn
n and look

at the set
{(
ξn,α, bn,α

)
}α∈In of all path-independent contingent claims

(
ξn,α, bn,α

)
with real

value V̄ n
n = ξn,αS̄

(
T,Unn , ξn,α

)
+ bn,α, where In is a suitable index set. By Lemma 2.3 and

Proposition 2.16 any of these contingent claims
(
ξn,α, bn,α

)
is attainable by a unique portfolio

strategy
(
ξn,α, bn,α

)
. As we have seen in (2.4.15) for each discrete time point tnk < T , the

values of the adjoining strategy functions ξn,α : An → IR are uniquely determined by the
possible values of the real value function v̄n : An → IR at time point tnk+1. Thus, for all
α ∈ In the strategy functions ξn,α : An → IR coincide on all time points before time T , i.e. on
An(n− 1).
However, there are infinitely many contingent claims

{(
ξn,α, bn,α

)}
α∈In and hence infinitely

many portfolio strategies
{(
ξn,α, bn,α

)}
α∈In which lead to the same real value V̄ n

n = v̄n
(
T,Unn

)
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at maturity; the corresponding strategy functions ξn,α : An → IR differ only on the set
{T} × Unn , which determines the final stock holdings of the large investor at maturity, as
required by the associated contingent claim

(
ξn,α, bn,α

)
. Since the large investor trades at the

benchmark price, he can arbitrarily re-shuffle his portfolio between his bank account holdings
and his stock holdings without any transaction losses, and hence, from a replication-oriented
point of view, all the contingent claims

(
ξn,α, bn,α

)
are equivalent.

In order to derive a convergence statement for the strategy functions {ξn}n∈IN which in-
cludes the convergence at time T , we would need to specify the particular contingent claim(
ξn,α, bn,α

)
which we replicate, and not only its real value. For example, we cannot expect the

uniform convergence as n→∞ of ξn : An → IR, including the values at maturity, towards the
solution ϕ : [0, T ]× IR→ IR of a final value problem of the form (2.5), (2.6), if the sequence
{ξn}n∈IN of strategy functions prescribes cash settlement at time T . In fact, we should then
have ξn(T, u) = 0 for all u ∈ Unn and n ∈ IN , hence the limit ϕ would also satisfy ϕ(T, u) = 0
for all u ∈ IR, and a maximum principle would imply that ϕ vanishes on the whole domain
[0, T ]× IR.
This indicates why we really ought to limit our investigation to the convergence results as
stated in Theorem 3.10 and in Corollary 3.14. Within this formulation, we have some degree
of freedom to choose the large investor’s stock holdings at time T . The particular stock
holdings at time T will only become important for the convergence results of Section 3.3,
where we consider price systems which allow for implied transaction losses. We shall see that
in such a general setting we need both the convergence of the strategy functions at time T and
immediately before time T to obtain uniform convergence results for the strategy functions
{ξn}n∈IN similar to the ones of (2.29) and (2.30). �

3.2.4 Convergence of a Subsequence of Strategy Functions

In the last subsection of Section 3.2, we will sketch the proof of a second convergence state-
ment for a sequence {gn}n∈IN of transformed strategy functions. Like Theorem 3.10, this
convergence statement will again only show convergence on the domain [0, T ) × IR, but the
result is weaker than Theorem 3.10 in that it only proves convergence of a subsequence of
{gn}n∈IN . On the other hand, the proof does not rely on the existence of a solution to the
final value problem (2.3), (2.4), but proves its existence as a by-product of the convergence
of subsequences of the transformed strategy functions gn : An → IR and their discrete deriva-
tives. Compared to the situation where we first have to guarantee the existence of a solution
γ ∈ H2+ 1

2
β,4+β

(
[0, T ]× IR

)
via Lemma 3.8, the convergence statement which we present here

requires less restrictive assumptions on the functions f : IR→ IR and ζ : IR→ IR.
We will limit our attention to the convergence statement for the sequence {gn}n∈IN of trans-
formed strategies, but we could of course formulate an equivalent result for the sequence
{ξn}n∈IN of associated original strategy functions ξn : An → IR. Our proof adapts an exis-
tence proof of Section 7.2 in John (1978) for solutions to an initial value problem of the form
ut(t, x)− a(t, x)uxx(t, x)− b(t, x)ux(t, x) = 0 for all (t, x) ∈ [0, T ]× IR with initial condition
given by u(0, x) = h(x) for all x ∈ IR. John proves the existence only under the assumption
that h ∈ C4

b (IR), but his argument can be generalized to situations where this condition is
relaxed to h ∈ H2+β(IR) for some β ∈ (0, 1).
We have the following convergence statement for {gn}n∈IN :

Proposition 3.15. Let the price system (ψ, µ) = (ψ, λ) satisfy the multiplicative structure of
Assumption B, and suppose that the small investor function ψ• : [0, T ]×IR→ IR belongs to the
class Ĥ2+ 1

2
β,4+β

(
[0, T ]× IR

)
. Moreover, suppose that there exists some function ζ : IR → IR
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such that the function
∫ ζ( · )
0 f(x) dx belongs to H2+β(IR) and∥∥∥∥∥gn(tnn−1, ·

)
−
∫ ζ( · )

0
f(x)dx

∥∥∥∥∥
Un

n−1

= O
(
δ2+β

)
as n→∞. (2.35)

Then there exist a solution γ : [0, T ]×IR→ IR of (2.3), (2.4) and a subsequence
{
nj
}
j∈IN ⊂ IN

such that

lim
j→∞

∥∥gnj − γ
∥∥
Anj (nj−1)

= 0,

lim
j→∞

∥∥∆nj

t gnj − γt
∥∥
A

nj
1 (nj−2)

= 0,

lim
j→∞

∥∥∆nj
u gnj − γu

∥∥
A

nj
1 (nj−1)

= 0,

and

lim
j→∞

∥∥∆nj
uu g

nj − γuu
∥∥
A

nj
2 (nj−1)

= 0.

Remark. Of course,
∫ ζ( · )
0 f(x) dx ∈ H2+β(IR) is implied by f ∈ H1+β

loc (IR) and ζ ∈ H2+β(IR).
This shows indeed that Proposition 3.15 requires less stringent assumptions on the regularity
of f and ζ than the existence result for γ ∈ H2+ 1

2
β,4+β

(
[0, T ]× IR

)
by means of Lemma 3.8.

Proof (sketched). We will only sketch the proof of Proposition 3.15. Let us note first that
(2.35) together with

∫ ζ( · )
0 f(x) dx ∈ H2+β(IR) implies the existence of some Ki ∈ IR for

i ∈ {0, 1, 2, 3} such that∥∥gn(tnn−1, ·
)∥∥

Un
n−1

≤ K0,
∥∥∆u g

n
(
tnn−1, ·

)∥∥
Un

n−2
≤ K1,

∥∥∆uu g
n
(
tnn−1, ·

)∥∥
Un

n−3
≤ K2,

and
1
δβ
∥∥∆uu g

n
(
tnn−1, ·+ δ

)
−∆uu g

n
(
tnn−1, · − δ

)∥∥
Un

n−4
≤ K3 for all n ≥ 4.

Using these bounds we can conclude step by step that the restriction of gn : An → IR to
the set An(n − 1) = An ∩ [0, T ) × IR, and similar restrictions of the discrete derivatives
∆u g

n : An1 → IR, ∆uu g
n : An2 → IR and ∆t g

n : An1 (n − 1) → IR, can be bounded for all
n ∈ IN . Since for each n ∈ IN the domains of these functions contain only a finite number of
elements, it suffices to show that the restrictions are bounded for all sufficiently large n ∈ IN .
In order to do so we recollect the recursive inequalities (2.1) for gn and (2.25) for ∆n

u g
n for

all n >
∥∥ ψ•t

ψ•u

∥∥2. Since the weight function p̂n : An(n − 2) → (0, 1) of (2.2) takes only values
in (0, 1), an iterated application of (2.1) and the definition of K0 imply

∥∥gn∥∥An(n−1)
≤ K0

for all n >
∥∥ ψ•t

ψ•u

∥∥2. Similarly, we use the recursive equation (2.25) for ∆n
u g

n and the bound

(2.26) to obtain for all n >
∥∥ ψ•t

ψ•u

∥∥2 and 1 ≤ k ≤ n− 1 the inequality

∥∥∆n
u g

n
(
tnk , ·

)∥∥
Un

k−1
≤

n−k−1∑
j=0

(
1 + δ2R

)j∥∥∆n
u g

n
(
tnn−1, ·

)∥∥
Un

n−2
. (2.36)

As a consequence, we get from the definition of K1 the upper bound
∥∥∆n

u g
n
∥∥
An

1 (n−1)
≤ eRK1.

From the recursive equation (2.25) we can also construct some recursion formula for ∆n
uu g

n,
namely we get for all n >

∥∥ ψ•t

ψ•u

∥∥2 and 3 ≤ k ≤ n− 1:

∆n
uu g

n
(
tnk−1, u

)
= p̂n

(
tnk−1, u+ 2δ

)
∆n
uu g

n
(
tnk , u+ δ

)
+ 2δ∆uu p̂

n
(
tnk−1, u

)
∆n
u g

n
(
tnk , u

)
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+
(
1− p̂n

(
tnk−1, u− 2δ

))
∆n
uu g

n
(
tnk , u− δ

)
.

Arguments similar to the one leading to (2.26) show that for any R′ >
∥∥ d2

du2

1
2
ψ•uu−ψ•t

ψ•u

∥∥ we
obtain the bound 1

δ

∥∥∆n
uu p̂

n
∥∥
An

2 (n−2)
≤ R′ for all sufficiently large n ∈ IN . If, in addition,

we use
∥∥∆n

u g
n
∥∥
An

1 (n−1)
≤ eRK1, we can adjust and slightly generalize the proof of (2.36)

to show that the sup-norm
∥∥∆n

uu g
n
∥∥
An

2 (n−1)
of the second discrete space derivatives can be

bounded by some constant C1 depending only on K2, K1, and global bounds on functionals
of ψ• : [0, T ] × IR → IR, which do not depend on n either. A last iteration of that procedure
shows that

1
2δβ

∥∥∥∆n
uu g

n
(
·, ·+ δ

)
−∆n

uu g
n
(
·, · − δ

)∥∥∥
An

3 (n−1)
≤ C2

for some constant C2 which only depends on K3, K2, K1 and on global bounds of functionals
of ψ• : [0, T ]× IR→ IR.
If we now consider the discrete time derivative ∆n

t g
n, a twofold application of the recursive

equation (2.1) and rearranging terms shows that for all n >
∥∥ ψ•t

ψ•u

∥∥2 and 1 ≤ k ≤ n − 2 we
have

0 = ∆n
t g

n
(
tnk , u

)
+ an

(
tnk , u

)
∆n
uu g

n
(
tnk+1, u

)
+ bn

(
tnk , u

)1
2

(
∆n
u g

n
(
tnk+1, u+ δ

)
+ ∆n

u g
n
(
tnk+1, u− δ

))
,

(2.37)

where the function an : An1 (n− 2) → IR is for all (t, u) ∈ An1 (n− 2) given by

an(t, u) := p̂n(t− δ2, u)p̂n(t, u+ δ) +
(
1− p̂n(t− δ2, u)

)(
1− p̂n(t, u− δ)

)
=

1
2

+ δ∆n
u p̂

n(t, u) +
1
2
(
2p̂n(t− δ2, u)− 1

)(
p̂n(t, u+ δ) + p̂n(t, u− δ)− 1

)
,

and where similarly the function bn : An1 (n− 2) → IR satisfies for all (t, u) ∈ An1 (n− 2)

bn(t, u) :=
1
δ

(
p̂n(t− δ2, u)p̂n(t, u+ δ)−

(
1− p̂n(t− δ2, u)

)(
1− p̂n(t, u− δ)

))
=

1
2δ

((
2p̂n(t− δ2, u)− 1

)(
1 + 2δ∆n

u p̂
n(t, u)

)
+ p̂n(t, u+ δ) + p̂n(t, u− δ)− 1

)
.

By approximations like in Lemma 3.11 we get uniformly for all (t, u) ∈ An1 (n− 2)

an(t, u) =
1
2

+O(δ) and bn(t, u) =
1
2ψ
•
uu(t, u)− ψ•t(t, u)

ψ•u(t, u)
+O

(
δβ
)

as n→∞. (2.38)

Thus, for all n >
∥∥ ψ•t

ψ•u

∥∥2 and 1 ≤ k ≤ n − 2, the norm
∥∥∆n

t g
n
(
tnk , ·

)∥∥
Un

k−1
can be bounded

in terms of the norms
∥∥∆n

uu g
n
(
tnk+1, ·

)∥∥
Un

k−1
,
∥∥∆n

u g
n
(
tnk+1, ·

)∥∥
Un

k
and of global bounds on

functionals of ψ• : [0, T ] × IR → IR; hence
∥∥∆n

t g
n
∥∥
An

1 (n−2)
can be bounded uniformly for all

n ∈ IN as well. Similarly it follows that

1
2δβ

∥∥∥∆n
t g

n(·, ·+ δ)−∆n
t g

n(·, · − δ)
∥∥∥
An

2 (n−2)

=
1

2δ1+β

∥∥∥∆n
u g

n
(
·+ δ2, ·

)
−∆n

u g
n
(
· − δ2, ·

)∥∥∥
An

2 (n−2)
≤ C3

for some C3, and last but not least we also conclude that there is some C4 ∈ IR such that
1

2δβ

∥∥∆n
t g

n( · − δ2, · ) − ∆n
t g

n( · + δ2, · )
∥∥
An

2 (n−3)
≤ C4, where both C3 and C4 only depend

on K1, K2, K3 and on global bounds on functionals of ψ• : [0, T ]× IR→ IR.
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We then restrict our attention to the subsequence {4i}i≥i0 ⊂ IN , starting at some sufficiently
large i0 ∈ IN . Without loss of generality we may assume i0 = 1. The sequence of grids{
A4i}

i∈IN is an increasing sequence of lattices, and so are the sequences
{
A4i

(4i − 1)
}
i∈IN ,{

A4i

1 (4i − 1)
}
i∈IN , and all the other similar sequences of sets of possible arguments for the

discrete derivatives. Now the convergence of a subsequence of the {gn} and of the corre-
sponding discrete derivatives of Definition 3.7 follows from a straightforward application of
the Bolzano-Weierstraß theorem: Let us start with g4i

and define A :=
⋃∞
k=1A4k

(4k − 1).
Since

∥∥gn∥∥An(n−1)
≤ K0 for all sufficiently large n ∈ IN , there exists a subsequence

{
nj
}
j∈IN

of {4i}i∈IN such that γ(t, u) := limj→∞ gnj (t, u) exists for all (t, u) ∈ A. Now the discrete
derivatives ∆n

u g
n, ∆n

uu g
n, and ∆n

t g
n are bounded as well, uniformly in n ∈ IN . Hence we

find, possibly after extracting a further subsequence of
{
nj
}
j∈IN , which we will call again{

nj
}
j∈IN for simplicity, that

γ′(t, u) := lim
j→∞

∆nj
u gnj (t, u) for all (t, u) ∈ A′ :=

∞⋃
i=1

A4i

1 (4i − 1),

γ′′(t, u) := lim
j→∞

∆nj
uu g

nj (t, u) for all (t, u) ∈ A′′ :=
∞⋃
i=1

A4i

2 (4i − 1),

and γ̇(t, u) := lim
j→∞

∆nj

t gnj (t, u) for all (t, u) ∈ Ȧ :=
∞⋃
i=1

A4i

1 (4i − 2).

Since gn, ∆n
u g

n, ∆n
uu g

n, and ∆n
t g

n can be bounded on the intersection of [0, T ) × IR with
their respective domains uniformly for all n ∈ IN , the functions γ, γ′, γ′′, and γ̇ are bounded
on their respective domains as well.
Let (t, u) and (t, v) be two elements of A with v > u. Then for all sufficiently large j ∈ IN we
have (t, u), (t, v) ∈ Anj (nj − 1), and v − u = 2kjδnj for some kj ∈ IN , since, by its definition,
δ = δn = n−

1
2 . Thus we can conclude from

∥∥∆n
u g

n
∥∥
An

1 (n−1)
≤ eRK1 for all sufficiently large

n that

∣∣gnj (t, v)− gnj (t, u)
∣∣ =

kj∑
l=1

∣∣∣gnj
(
t, u+ 2lδnj

)
− gnj

(
t, u+ 2(l − 1)δnj

)∣∣∣
≤ 2kjδnje

RK1 = eRK1|u− v|.

Taking the limit j → ∞ implies that γ : A → IR is Lipschitz in u. Similarly, we can show
that γ : A → IR satisfies a Lipschitz condition in t as well, that γ′ : A′ → IR is Lipschitz in
u and satisfies a Hölder condition with exponent 1

2(1 + β) in t, and that γ′′ : A′′ → IR and
γ̇ : Ȧ → IR satisfy Hölder conditions with exponents β in u and exponent 1

2β in t. Then due
to the Arzelà-Ascoli theorem the functions γ, γ′, γ′′, and γ̇ can be extended to continuous
bounded functions on the whole closed slab [0, T ]× IR.
Actually, we can show a little bit more than just Lipschitz and Hölder continuity. For
example, let us suppose that (t, u), (t, v) ∈ A. Then for sufficiently large j ∈ IN we have
(t, u), (t, v) ∈ Anj

(
nj − 1

)
, and for v > u it follows that

(
t, u + δnj

)
∈ Anj

1

(
nj − 1

)
. It can

now be shown that∣∣∣∣gnj (t, u)− gnj (t, v)
u− v

−∆nj
u gnj

(
t, u+ δnj

)∣∣∣∣ ≤ C1|u− v|,

where C1 is the uniform bound on
∥∥∆nj

uu gn
∥∥
An

2 (n−1)
, and thus we get in the limit∣∣∣∣γ(t, u)− γ(t, v)

u− v
− γ′(t, u)

∣∣∣∣ ≤ C5|u− v| for all t ∈ [0, T ] and u, v ∈ IR
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for some constant C5 ∈ IR. If we let v → u, the derivative γu(t, u) is seen to exist and
γu(t, u) = γ′(t, u) for all (t, u) ∈ [0, T ] × IR. In the same manner one can show for some
C6 ∈ IR that∣∣∣∣γ′(t, u)− γ′(t, v)

u− v
− γ′′(t, u)

∣∣∣∣ ≤ C6|u− v|β for all t ∈ [0, T ] and u, v ∈ IR

to conclude that γuu(t, u) = γ′′(t, u) for all (t, u) ∈ [0, T ] × IR, and analogously it follows
that γt(t, u) = γ̇(t, u). Last but not least, due to (2.37) and (2.38) it can be seen that
γ : [0, T ] × IR → IR satisfies the partial differential equation (2.3). The final condition (2.4)
is implied by (2.35), γ(t, u) = limj→∞ gnj (t, u) for all (t, u) ∈ A, and the boundedness of
γt. q.e.d.

In the formulation of Proposition 3.15 the subsequence {nj}j∈IN for which the associated
subsequence

{
gnj
}
j∈IN of transformed strategy functions converges is not explicitly given.

If we want to approximate a solution of the final value problem (2.3), (2.4) for instance
on a computer, we have to know an explicit subsequence for which the discrete transforms
converge.
Note however that we have actually provided the essentials of a slightly stronger statement
than the one of Proposition 3.15. Namely, our proof indicates that the assumptions of the
proposition imply that for any subsequence of {4i}i∈IN there exists some subsequence {nj}j∈IN
such that the sequence

{
gnj
}
j∈IN converges as j →∞ to a solution γ of the linear final value

problem (2.3), (2.4) in the sense of the statement in the proposition, and by the remark to
Lemma 3.8 the solution to that partial differential equation is unique. Hence the convergence
of the subsequences implies that the whole sequence

{
g4i}

i∈IN of transformed strategy func-
tions g4i

: A4i → IR converges on [0, T ) × IR in the same sense to this solution as i → ∞ ,
i.e. we have

Corollary 3.16. Let nj = 4j for all j ∈ IN . Under the assumptions of Proposition 3.15 the
subsequence

{
gnj
}
j∈IN of the discrete transformed strategies {gn}n∈IN converges on [0, T )×IR

to the solution γ : [0, T ]× IR→ IR of (2.3), (2.4) in the form stated in the proposition.

Remark. This subsection has indicated how we can weaken the conditions of Theorem 3.10
such the (transformed) strategy functions still converge in a sufficiently accurate way, at least
when restricting the attention to n-step binomial models where n is a power of 4. Nevertheless,
in the remainder of this thesis we will focus on situations where the whole sequence {gn}n∈IN
of transformed strategy functions gn : An(n − 1) → IR converges as n → ∞, and accept
the stronger differentiability conditions in order to assure such a convergence. The notation
becomes simpler under these stronger conditions. In particular, our restriction simplifies the
treatment of the non-linear case, which will be considered in the next section. �

3.3 The General Case

Having shown the uniform convergence of the strategy functions {ξn}n∈IN in the special case
of a large investor market model which excludes any immediate transaction gains and losses,
we now shift our attention to a general large investor market (ψ, µ), which still satisfies a
multiplicative structure as in Assumption B, but which might induce transaction losses.
In the loss-free case of Section 3.2 we were able to turn the implicit recursive scheme for the
strategy function ξn into an explicit scheme for the transformed strategy function gn. Then
we first proved the convergence of the sequence {gn}n∈IN to a solution of a linear partial
differential equation. In the general case, however, the recursive schemes for the transformed
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strategy functions remain implicit, and the candidate limit function γ is only given as the
solution of a quasi-linear partial differential equation.
Like in Section 3.2 we will first look at the existence and uniqueness of a solution to the
final value problem for the potential limit of the transformed strategy function. Because of
the non-linearity of the partial differential equation, the existence and uniqueness is not as
straightforward as in the special case of Section 3.2, but we can adapt a proof of Frey (1998)
and show that a unique solution to the final value problem still exists if the values in the final
condition stay sufficiently small. Having obtained this first important result in Section 3.3.1,
we explain in the following section how the methods used in Section 3.2.2 can be generalized
in order to prove that the sequence {gn}n∈IN of transformed strategy functions gn : An → IR
converges uniformly to the solution γ : [0, T ]×IR→ IR of the quasi-linear final value problem
if only the values of the transformed strategies immediately before and at maturity converge
towards the corresponding values of γ.
In Section 3.3.3 we finally use the convergence result for the transformed strategy functions
to derive an analogous convergence result for the sequence {ξn}n∈IN of original strategy
functions. This convergence result for the strategy functions provides exactly the kind of
convergence which we need in Chapter 4 in order to guarantee the weak convergence of the
value and price processes, but we have to make the detour via the transformed strategy
function, since the final value problem which is solved by the limit of the strategy functions
fails to be quasi-linear.

In order to get started, let us consider a multiplicative price system (ψ, µ) for which the
equilibrium price function ψ : [0, T ] × IR2 → IR satisfies Assumption B. For the general
case we now also require that the equilibrium price function ψ (or equivalently ψ•, because of
Assumption B) stays strictly positive and that the price determining measure µ is sufficiently
good-natured. Moreover, as for the special case dealt with in Section 3.2 we need some
smoothness and boundedness for the two components ψ• and f of ψ. We will impose

Assumption C. The small investor price function ψ• : [0, T ] × IR → IR, (t, u) 7→ ψ•(t, u) is
continuously differentiable with respect to t and twice continuously differentiable with respect
to u. The function ψ• itself and its spatial derivative ψ•u are strictly positive, and the function
satisfies

∥∥ ψ•t

ψ•u

∥∥ <∞ and L0 :=
∥∥ ψ•
ψ•u

∥∥ <∞. For the function f : IR → (0,∞) we assume that
it is at least twice continuously differentiable. Finally we assume that the price determining
measure µ ∈M(f) has a finite first moment.

As we proceed, we will further strengthen the regularity assumptions on ψ and µ. Especially,
we will once again assume that both components of ψ belong to certain Hölder spaces.
In addition to that, we will prevent any immediate arbitrage opportunity as described in
Section 1.2.1 by

Assumption D. The price system (ψ, µ) excludes any immediate transaction gains, i.e. the
local transaction loss rate function kµ : IR2 → IR of Definition 2.13 is nonnegative.

If we now recall Definitions 1.16 and 2.12 of the non-linearity parameter d(µ) and the strategy
transform g, respectively, we can introduce a function which plays the role of the transaction
loss rate function in the corresponding continuous-time model, and which for simplicity is
defined as a function of the large investor’s transformed stock holdings x = g(ξ):

Definition 3.17. The transformed loss function κ : g(IR) → IR is given by

κ(x) = 2d(µ)
f ′
(
g−1(x)

)
f2
(
g−1(x)

) for all x ∈ g(IR). (3.1)

Remark. Proposition 1.15 and the Definition 1.16 of d(µ) imply that Assumption D implies
κ(x) ≥ 0 for all x ∈ IR.
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3.3.1 Existence of a Solution to the Limiting PDE

As in Section 3.2 we start with the final value problem which is solved by the limit of the
transformed strategy functions gn : An → IR. In contrast to the case without transaction
losses, this final value problem becomes non-linear; more specifically, it is quasi-linear. First
we introduce the final value problem with a scaling factor for the final condition. Then we
present in Proposition 3.18 this section’s main result, saying that a unique solution to the
non-linear final value problem still exists if the scaling factor is chosen sufficiently small.
The proof of Proposition 3.18 fills out most of this section and it is, at least to a large extent,
very technical. The most demanding part is to prove the existence of a solution. We intend
to follow a proof of Frey (1998) who shows the existence of continuous hedging strategies for
convex options in a continuous-time large-investor model where the price building mechanism
is determined by the Dirac measure δ1 concentrated in 1 as in Example 1.2 of Chapter 1. For
that reason, we first show that Proposition 3.18 follows from a second proposition, i.e. from
Proposition 3.19, which states a similar existence and uniqueness result for a more suitable
initial value problem. In the initial value problem of Proposition 3.19 the scaling parameter
controls the non-linearity of the partial differential equation instead of the boundary condi-
tion. The proof of Proposition 3.19 can then parallel the proof of Frey’s Theorem 4.2 and
involves two more lemmata to transfer existence and uniqueness results for parabolic quasi-
linear Cauchy problems as stated in Ladyženskaja et al. (1968) via some modified initial value
problem to our somewhat more general case.
At the very end of this section, we slightly extend the results of Proposition 3.18 in two
corollaries by reconsidering the regularity assumptions used.

We shall see in Section 3.3.2 that in case of convergence the limit γ : [0, T ] × IR → IR of
the transformed strategy functions will solve a final value problem which is given by the
quasi-linear partial differential equation

γt(t, u) +
1
2
d

du

((
1 +

ψ•(t, u)
ψ•u(t, u)

κ
(
γ(t, u)

)
γu(t, u)

)
γu(t, u)

)

= γu(t, u)

(
ψ•t(t, u)
ψ•u(t, u)

− 1
2
ψ•uu(t, u)
ψ•u(t, u)

(
1 +

ψ•(t, u)
ψ•u(t, u)

κ
(
γ(t, u)

)
γu(t, u)

)) (3.2)

for all (t, u) ∈ (0, T )× IR, and a final condition of the form

γ(T, u) = α

∫ ζ(u)

0
f(x) dx for all u ∈ IR, (3.3)

where α ∈ IR is some scaling parameter. Apart from this scaling parameter, the function
ζ : IR → IR, u 7→ ζ(u) describes for every fundamental value u ∈ IR immediately before
maturity the corresponding stock holdings of the large investor at this time.

Remark. If the transformed loss function κ : IR → IR vanishes (either via d(µ) = 0 or
via f ′ ≡ 0), then the non-linear PDE (3.2) reduces to the linear PDE (2.3). In this case
Lemma 3.8 has shown that for any α ∈ IR there exists a solution γ ∈ H1+ 1

2
β,2+β

(
[0, T ]× IR

)
to the final value problem (3.2), (3.3) as long as the two components ψ• and f of ψ belong to the
Hölder spaces Ĥ1+ 1

2
β,2+β

(
[0, T ] × IR

)
and H1+β

loc (IR), respectively, and if also ζ ∈ H2+β(IR).
In general, however, the terms which involve the transformed loss function κ : IR → IR lead
to non-linear effects, and we can prove existence of solutions to (3.2), (3.3) only for |α| > 0
sufficiently small and, of course, for α = 0. �
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Let us now fix some bounded function ζ : IR→ IR and define the two bounds

b := min

{
0, inf
u∈IR

∫ ζ(u)

0
f(x) dx

}
and B := max

{
0, sup
u∈IR

∫ ζ(u)

0
f(x) dx

}
,

which are basically bounds on the initial condition in (3.3). Due to Assumption C, the
function f is in particular continuous and it follows that the two bounds b and B are finite
since ζ is bounded.
We also define the constants ρ1 and ρ2 by

ρ1 := lim sup
ξ→∞

max
{
g(−ξ)
g(B)

,−
∣∣∣∣g(ξ)
g(b)

∣∣∣∣} and ρ2 := lim inf
ξ→∞

min
{
g(ξ)
g(B)

,

∣∣∣∣g(−ξ)
g(b)

∣∣∣∣} ,
where we use the convention |x|

0 = ∞ for all x 6= 0. Since Assumption B implies that
f : IR → IR is strictly positive, the strategy transform g : IR → IR, ξ 7→

∫ ξ
0 f(x) dx is

strictly increasing and satisfies g(0) = 0. Thus we conclude from −∞ < b ≤ B < ∞ that
ρ1 ∈ [−∞, 0) and ρ2 ∈ (1,∞].
From the definition of ρ1 and ρ2 it follows that for all ρ1 < α < ρ2 and all b ≤ x ≤ B we have
αx ∈ g(IR), and especially the inverse g−1 : g(IR) → IR, and therefore also κ : g(IR) → IR,
is well defined on the set

(
ρ2g(b), ρ2g(B)

)
. Hence if f : IR → IR is twice continuously

differentiable, we can define the functions Lκ : IR+ → IR+ and L′κ : IR+ → IR+, which bound
the influence of implied transaction losses, by

Lκ(α) := ‖κ‖[αb,αB] and L′κ(α) := max
{
Lκ(α), |α|‖κ′‖[αb,αB]

}
for all 0 ≤ α < ρ2. (3.4)

Note that L′κ is a bound on the derivative of κ, but is not the derivative of Lκ. We may
extend the definitions of (3.4) to ρ1 < α ≤ 0 if we define the interval [y, x] for x < y as
the interval [x, y], as we will do for the rest of this chapter. Since f is strictly positive by
Assumption B and continuously differentiable by Assumption C it is also bounded away from
0 on each compact interval [αb, αB] with ρ1 < α < ρ2. Hence we conclude Lκ(α) < ∞ and
L′κ(α) <∞ for all ρ1 < α < ρ2.
In the present section, we will show the following result:

Proposition 3.18. In addition to the Assumptions B, C, and D suppose that the two com-
ponents ψ• and f of ψ belong to the Hölder spaces Ĥ1+ 1

2
β,3+β

(
[0, T ] × IR

)
and H3+β

loc (IR),
respectively, and suppose that ζ ∈ H2+β(IR). Then there exist some constants α1, α2 ∈ IR
with ρ1 < α1 < 0 < α2 < ρ2 such that for all α ∈ (α1, α2), the final value problem (3.2), (3.3)
has a solution γ ∈ H1+ 1

2
β,2+β

(
[0, T ]× IR

)
with

inf
v∈IR

α

∫ ζ(v)

0
f(x) dx ≤ γ(t, u) ≤ sup

v∈IR
α

∫ ζ(v)

0
f(x) dx for all (t, u) ∈ [0, T ]× IR (3.5)

and

2L0L
′
κ(α) inf

(t,u)∈[0,T ]×IR
γu(t, u) > −1. (3.6)

Moreover, for all α ∈ (ρ1, ρ2) there exists at most one solution γ ∈ C1,2
b

(
[0, T ]× IR

)
of (3.2),

(3.3) which satisfies γ(t, u) ∈
[
αb, αB

]
for all (t, u) ∈ [0, T ]× IR, and (3.6).

Remark. Since the space H1+ 1
2
β,2+β

(
[0, T ]× IR

)
is a subspace of C1,2

b

(
[0, T ]× IR

)
, the stated

conditions imply that there exists for all α ∈ (α1, α2) a unique solution within the class of
functions γ ∈ C1,2

b

(
[0, T ]× IR

)
which satisfy (3.6). �
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Proof. As a first step, we will explain why it suffices to show that for all ζ ∈ H2+β(IR)
there exists some ᾱ > 0 such that for all 0 ≤ α < ᾱ the final value problem (3.2), (3.3) has
a solution as stated in the proposition, and why we only need to show uniqueness for the
special case α = 1.
Note that ζ ∈ H2+β(IR) is bounded, so that the discussion after the definition of ρ1 and ρ2

implies ρ1 < 0 and ρ2 > 1. Since f : IR → IR is strictly positive, the strategy transform
g : IR→ IR, ξ 7→

∫ ξ
0 f(x) dx is strictly increasing and thus it follows that for all ρ1 < α < ρ2

we have α
∫ ζ(u)
0 f(x) dx ∈ g(IR), and we can define for all those α the function ζα : IR → IR

by ζα(u) = g−1
(
α
∫ ζ(u)
0 f(x) dx

)
for all u ∈ IR, where again g−1 : g(IR) → IR is the inverse

function of g : IR→ IR. By the monotonicity of g : IR→ IR the final condition (3.3) is for all
ρ1 < α < ρ2 equivalent to

γ(T, u) = 2
α

ρ1

∫ ζρ1/2(u)

0
f(x) dx for all u ∈ IR, (3.7)

or also to

γ(T, u) =
∫ ζα(u)

0
f(x) dx for all u ∈ IR. (3.8)

Once we have proved that ζρ1/2 ∈ H2+β(IR) and that for all ζ ∈ H2+β(IR) there exists some
ᾱ = ᾱ(ζ) > 0 such that for all 0 ≤ α < ᾱ a solution of the final value problem (3.2), (3.3)
exists which satisfies the conditions (3.5) and (3.6), we can apply this result to the final value
problem (3.2), (3.7) to conclude that a solution to (3.2), (3.3) with (3.5) and (3.6) also exists
for all α ∈ IR with max

{
1
2ρ1ᾱ

(
ζρ1/2

)
, ρ1

}
< α ≤ 0.

Moreover, noting that for any ρ1 < α < ρ2 the uniqueness of a solution to (3.2), (3.3) is
equivalent to the uniqueness of the problem (3.2), (3.8), we see that once we have shown
ζα ∈ H2+β(IR) for all ρ1 < α < ρ2 the uniqueness statement of Proposition 3.18 already
follows from the statement for α = 1 and all ζ ∈ H2+β(IR).
Thus, let us fix ρ1 < α < ρ2 and prove that f ∈ H1+β

loc (IR) and ζ ∈ H2+β(IR) imply
ζα ∈ H2+β(IR): We have to show the boundedness of ζα, the existence and boundedness of
the derivatives ζαu and ζαuu, and the Hölder continuity of ζαuu : IR→ IR.
In order to show that ζα : IR→ IR stays bounded, we note that the boundedness of ζ : IR→ IR
and the continuity of f : IR → IR imply

∥∥∫ ζ
0 f(x) dx

∥∥ < ∞. If we now recall the definitions
of the bounds b and B and ρ1 and ρ2 we see that on the compact set

[
αb, αB

]
the function

g−1 : g(IR) → IR is well defined and bounded, since it is continuous. Hence, by definition,
ζα : IR→ IR is bounded as well.
Secondly, the differentiability properties of f : IR → IR and ζ : IR → IR imply that the
function ζα : IR→ IR is twice differentiable and its derivatives are given by

ζαu (u) = α
f(ζ(u))
f(ζα(u))

ζu(u)

and

ζαuu(u) = α
f ′(ζ(u))ζ2

u(u) + f(ζ(u))ζuu(u)
f(ζα(u))

− α2 f
2(ζ(u))

f3(ζα(u))
ζ2
u(u) for all u ∈ IR.

These derivatives are bounded, since the appearing derivatives of f and ζ are bounded, and
since the continuity and strict positivity of f : IR→ IR imply that f is bounded away from 0
on the bounded range of ζα : IR→ IR. The Hölder continuity of ζαuu : IR→ IR can be shown
similarly.



3.3. THE GENERAL CASE 133

It is obvious that γ ≡ 0 is a solution of (3.2), (3.3) for α = 0. Hence, for the proof of
Proposition 3.18 it is sufficient to consider only solutions of (3.2), (3.3) with 0 < α < ρ2. Let
us normalize this family of final value problems by replacing every appearing γ in these two
equations by αγα. Note that here and in the sequel, the superscript α stands for an index,
not for an exponent. After dividing both equations by α, the family of final value problems
(3.2), (3.3) can be transformed to the family given by the partial differential equation

γαt (t, u) +
d

du
aα1
(
t, u, γα(t, u), γαu (t, u)

)
− aα

(
t, u, γα(t, u), γαu (t, u)

)
= 0 (3.9)

on [0, T )× IR, with the final condition

γα(T, u) =
∫ ζ(u)

0
f(x) dx for all u ∈ IR (3.10)

being the same for all 0 < α < ρ2. Here the two coefficients aα1 : [0, T ] × IR3 → IR and
aα : [0, T ]× IR3 → IR in (3.9) are for all 0 < α < ρ2 and all (t, u, γ, p) ∈ [0, T ]× IR3 given by

aα1 (t, u, γ, p) :=
1
2

(
1 +

ψ•(t, u)
ψ•u(t, u)

κ(αγ)αp
)
p =

1
2
p+

ψ•(t, u)
ψ•u(t, u)

κ(αγ)
α

2
p2 (3.11)

and

aα(t, u, γ, p) :=
(
ψ•t(t, u)
ψ•u(t, u)

− 1
2
ψ•uu(t, u)
ψ•u(t, u)

(
1 +

ψ•(t, u)
ψ•u(t, u)

κ(αγ)αp
))

p. (3.12)

In order to apply standard results from the theory of quasi-linear Cauchy problems, we
perform a time inversion by considering the PDE for γ̄α : [0, T ] × IR → IR defined by
γ̄α(t, u) = γα(T − t, u) for all (t, u) ∈ [0, T ]× IR and all 0 < α < ρ2. We get for all 0 < α < ρ2

and (t, u) ∈ (0, T ]× IR:

γ̄αt (t, u)− d

du
aα1
(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
+ aα

(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
= 0 (3.13)

and

γ̄α(0, u) =
∫ ζ(u)

0
f(x) dx for all u ∈ IR. (3.14)

Hence Proposition 3.18 immediately follows from the following proposition, stated in terms
of the corresponding initial value problem (3.13), (3.14). q.e.d.

Proposition 3.19. In addition to the Assumptions B, C, and D suppose that the two compo-
nents ψ• and f of ψ belong to the Hölder spaces Ĥ1+ 1

2
β,3+β

(
[0, T ]× IR

)
and H3+β

loc (IR), respec-
tively, and suppose that ζ ∈ H2+β(IR). Then there exists some 0 < ᾱ ≤ ρ2 such that for all
0 ≤ α < ᾱ the initial value problem (3.13), (3.14) has a solution γ̄α ∈ H1+ 1

2
β,2+β

(
[0, T ]× IR

)
with

inf
v∈IR

∫ ζ(v)

0
f(x) dx ≤ γ̄α(t, u) ≤ sup

v∈IR

∫ ζ(v)

0
f(x) dx for all (t, u) ∈ [0, T ]× IR (3.15)

and

2αL0L
′
κ(α) inf

(t,u)∈[0,T ]×IR
γ̄αu (t, u) > −1. (3.16)

Moreover, for all 0 ≤ α < ρ2 there exists at most one solution γ̄α ∈ C1,2
b

(
[0, T ] × IR

)
of

(3.13), (3.14) which satisfies (3.16) and

b ≤ γ̄α(t, u) ≤ B for all (t, u) ∈ [0, T ]× IR. (3.17)
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We will prove this second proposition with the help of two lemmas. As in Frey (1998) we
will introduce a modified initial value problem, where the diffusion coefficients are truncated
so that the non-linearity stays bounded. For a good choice of the truncation, the modified
partial differential equation becomes uniformly parabolic, and an existence and uniqueness
result for quasi-linear partial differential equations can be applied. For sufficiently small
α ≥ 0 it then can be shown that the solutions γ̄α to the modified initial value problem do
not reach regions where the diffusion coefficients have been genuinely truncated, and thus,
they are also solutions to the unrestricted initial value problem (3.13), (3.14).
At first, we have to truncate the unbounded diffusion coefficients a1 : [0, T ] × IR3 → IR and
a : [0, T ] × IR3 → IR. In order to define truncated versions of these coefficients, let us recall
the definition of Lκ : IR+ → IR+ and L′κ : IR+ → IR+ in (3.4). Then for all 0 < ε < 1, M > 0,
and 0 ≤ α < ρ2 we can define a smooth cutoff function

cα = cαε,M : IR→
[

1
2

ε− 1
L0L′κ(α)

,
M

L0L′κ(α)

]
(3.18)

which satisfies the two conditions

cα(x) = x for
1
2

2ε− 1
L0L′κ(α)

≤ x ≤ 1
2

M

L0L′κ(α)
and 0 ≤ d

dx
cα(x) ≤ 1 for all x ∈ IR.

Here and for the rest of this section we set x
0 = sgn(x)∞ for x 6= 0. The cutoff function

will be used to cut off those terms in the diffusion coefficients aα1 and aα which lead to a
non-linear appearance of the first derivative γ̄αu in the PDE (3.13).
In order to show uniqueness of the modified initial value problem, we also introduce for all
0 < ε < 1 and all 0 ≤ α < ρ2 truncated versions κ̄α = κ̄αε of the transformed loss function
κ : g(IR) → IR, by taking some function κ̄α : IR→

[
0, (1 + ε)Lκ(α)

]
which is smooth outside

of [αb, αB] and satisfies both

κ̄α(x) = κ(x) for all x ∈ [αb, αB] and 0 ≤ κ̄α(x) ≤ (1 + ε)Lκ(α) for all x ∈ IR. (3.19)

By the definition of ρ2 the transformed loss function is well defined for all x ∈ [αb, αB] and any
0 ≤ α < ρ2. Finally, we can define the truncated diffusion coefficients āα1 : [0, T ]× IR3 → IR
and āα : [0, T ]× IR3 → IR by

āα1 (t, u, γ, p) :=
1
2
p+

ψ•(t, u)
ψ•u(t, u)

κ̄α(αγ)
∫ p

0
cα(αq) dq (3.20)

and

āα(t, u, γ, p) :=
ψ•t(t, u)− 1

2ψ
•
uu(t, u)

ψ•u(t, u)
p− ψ•uu(t, u)

ψ•u(t, u)
ψ•(t, u)
ψ•u(t, u)

κ̄α(αγ)
∫ p

0
cα(αq) dq (3.21)

for all (t, u, γ, p) ∈ [0, T ]× IR3 and all 0 ≤ α < ρ2.
We will then consider the initial value problem which for all (t, u) ∈ (0, T ]× IR is given by

γ̄αt (t, u)− d

du
āα1
(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
+ āα

(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
= 0 (3.22)

and

γ̄α(0, u) =
∫ ζ(u)

0
f(x) dx for all u ∈ IR. (3.23)

The first lemma proves existence and uniqueness of solutions to the modified problem (3.22),
(3.23).
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Lemma 3.20. In addition to the Assumptions B, C, and D suppose that the two components
ψ• and f of ψ belong to the Hölder spaces Ĥ1+ 1

2
β,2+β

(
[0, T ]× IR

)
and H2+β

loc (IR), respectively,
and suppose that ζ ∈ H2+β(IR). Then for all 0 ≤ α < ρ2 the modified initial value problem
(3.22), (3.23) has a solution γ̄α ∈ H1+ 1

2
β,2+β

(
[0, T ] × IR

)
, and for any specific choice of the

cutoff function (3.18), there exist some constants K(α, ε,M) depending on 0 < ε < 1, and
M > 0, such that ‖γ̄αu ‖ ≤ K(α, ε,M) ≤ K(α0, ε,M) for all 0 ≤ α ≤ α0 < ρ2.
If f ∈ C3(IR) then for all 0 ≤ α < ρ2, 0 < ε < 1 and M > 0, the solution γ̄α of (3.22),
(3.23) is unique within the space C1,2

b

(
[0, T ]× IR

)
.

Proof. The proof will follow from Theorem V.8.1 in Ladyženskaja et al. (1968) (shortly
denoted by Theorem V.8.1), and parallels the proof of Proposition 4.3 in Frey (1998). Let
us fix 0 ≤ α < ρ2. For the existence part we have to show that the assumptions a) – c)
of Theorem V.8.1 are fulfilled. Condition a) holds, since ζ ∈ H2+β(IR) and f ∈ H2+β

loc (IR)
implies that

∫ ζ
0 f(x) dx ∈ H2+β(IR) (actually, at this point it suffices that f belongs only

to the space H1+β
loc (IR)), and hence especially

∥∥∫ ζ
0 f(x) dx

∥∥ < ∞. For condition b), let us
likewise define the function Aα : [0, T ]× IR3 → IR by setting for all (t, u, γ, p) ∈ [0, T ]× IR3

Aα(t, u, γ, p) := āα(t, u, γ, p)− ∂

∂γ
āα1 (t, u, γ, p)p− ∂

∂u
āα1 (t, u, γ, p).

Since our assumptions and the definition of κ̄α imply that the truncated transformed loss
function κ̄α : IR→ IR is differentiable, taking the derivatives in (3.20) yields

∂

∂γ
āα1 (t, u, γ, p) =

ψ•(t, u)
ψ•u(t, u)

α
(
κ̄α
)′(αγ)

∫ p

0
cα(αq) dq, (3.24)

∂

∂u
āα1 (t, u, γ, p) =

(
1− ψ•(t, u)

ψ•u(t, u)
ψ•uu(t, u)
ψ•u(t, u)

)
κ̄α(αγ)

∫ p

0
cα(αq) dq, (3.25)

and plugging the three equations (3.21), (3.24), and (3.25) into the definition of the function
Aα : [0, T ]× IR3 → IR leads to

Aα(t, u, γ, p) = −bα(t, u, γ, p)p, (3.26)

where

bα(t, u, γ, p) =
1
2ψ
•
uu(t, u)− ψ•t(t, u)

ψ•u(t, u)

+
(
κ̄α(αγ) +

ψ•(t, u)
ψ•u(t, u)

α
(
κ̄α
)′(αγ)

)∫ p

0
cα(αq) dq

(3.27)

for all (t, u, γ, p) ∈ [0, T ]×IR3. Especially, we get Aα(t, u, γ, 0) = 0 for all (t, u, γ) ∈ [0, T ]×IR2.
To verify c) in Theorem V.8.1 we have to check the conditions b) and c) of Theorem V.6.1
in Ladyženskaja et al. (1968), which from now on will just be called Theorem V.6.1. As in
Frey (1998), we will prove slightly weaker conditions, since we do not show the conditions b)
and c) for |γ| ≤ M , but for γ ∈ [b, B], since it easily follows from the discussion leading to
(V.6.8) and its transference to the Cauchy problem in (V.8.2), (V.8.3) that by the remarks
leading to Theorem I.2.9 of Ladyženskaja et al. (1968) we might apply a generalized version
of their Theorem I.2.1 (or their Corollary I.2.1) to replace in our case the range [−M,M ]
of possible solutions

{
γ̄α,N

}
N∈IN of the first boundary problems in the expanding cylinders{

ΩN × (0, T )
}
N∈IN , and thus also of the initial value problem (3.22), (3.23), by [b, B] or

even its subset
[
infv∈IR

∫ ζ(v)
0 f(x) dx, supv∈IR

∫ ζ(v)
0 f(x) dx

]
(see Ladyženskaja et al. (1968),

p. 493).
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At first, we are going to check condition b) of Theorem V.6.1. By our assumptions on the
functions ψ• : [0, T ] × IR → IR and f : IR → IR, the functions āα1 : [0, T ] × IR3 → IR and
āα : [0, T ]×IR3 → IR are continuous, the derivatives ∂

∂z ā
α
1 for z ∈ {p, γ, u} exist and are given

by (3.24), (3.25), and

∂

∂p
āα1 (t, u, γ, p) =

1
2

+
ψ•(t, u)
ψ•u(t, u)

κ̄α(αγ)cα(αp) for all (t, u, γ, p) ∈ [0, T ]× IR3. (3.28)

Now we have to check that the two statements of (V.6.9) in Ladyženskaja et al. (1968) hold,
i.e. in our one-dimensional setting we have to show that there exist some strictly positive
constants l, L ∈ IR which may depend on the choice of α, ε, and M , such that

l ≤ ∂

∂p
āα1 (t, u, γ, p) ≤ L (3.29)

and (∣∣āα1 (t, u, γ, p)
∣∣+
∣∣∣∣ ∂∂γ āα1 (t, u, γ, p)

∣∣∣∣) (1 + |p|
)

+
∣∣∣∣ ∂∂uāα1 (t, u, γ, p)

∣∣∣∣+
∣∣aα(t, u, γ, p)

∣∣ ≤ L(1 + |p|)2
(3.30)

for all (t, u, γ, p) ∈ [0, T ] × IR × [b, B] × IR. Let us fix (t, u, γ, p) ∈ [0, T ] × IR × [b, B] × IR.
Note that such a choice of γ implies by the definition of κ̄α : IR→

[
0, (1 + ε)Lκ(α)

]
in (3.19)

that κ̄α(αγ) = κ(αγ) and
(
κ̄α
)′(αγ) = κ′(αγ). Let us also notice that the strict positivity of

ψ• : [0, T ]× IR→ IR implies L0 > 0.
Let us start with (3.29). Since ψ•

ψ•u
: [0, T ] × IR → IR and κ̄α : IR →

[
0, (1 + ε)Lκ(α)

]
are

nonnegative, since for γ ∈ [b, B] the truncated κ̄α satisfies κ̄α(αγ) = κ(αγ) ≤ Lκ(α), and
since cα : IR →

[
1
2

ε−1
L0L′κ(α) ,

M
L0L′κ(α)

]
is nondecreasing and satisfies cα(0) = 0, we can bound

(3.28) on [0, T ]× IR× [b, B]× IR by

1
2

+ L0Lκ(α)cα
(
−α|p|

)
≤ ∂

∂p
āα1 (t, u, γ, p) ≤ 1

2
+ L0Lκ(α)cα

(
α|p|

)
. (3.31)

Hence we get ∂
∂p ā

α
1 (t, u, γ, p) = 1

2 if Lκ(α) = 0 . If Lκ(α) > 0 the definition of L′κ(α) implies
that L′κ(α) ≥ Lκ(α) > 0. Hence the range of cα is bounded, and since cα(0) = 0 and
d
dxc

α ∈ [0, 1] we now get from the mean value theorem and the definition of the range of cα

that

max
{
−α|p|, 1

2
ε− 1

L0L′κ(α)

}
≤ cα

(
−α|p|

)
≤ 0 and 0 ≤ cα

(
α|p|

)
≤ min

{
α|p|, M

L0L′κ(α)

}
.

Thus we get, again using L′κ(α) ≥ Lκ(α), for all (t, u, γ, p) ∈ [0, T ]× IR× [b, B]× IR that

0 < max
{

1
2
− αL0Lκ(α)|p|, ε

2

}
≤ ∂

∂p
āα1 (t, u, γ, p) ≤ 1

2
+ min

{
αL0Lκ(α)|p|,M

}
. (3.32)

This proves (3.29), since we may define l and L by l = l(α, ε,M) = max
{

1
2 −αL0Lκ(α)|p|, ε2

}
and L = L(α, ε,M) = 1

2 + min
{
αL0Lκ(α)|p|,M

}
. For (3.30) note that by the monotonicity

of cα and due to cα(0) = 0 we have
∣∣∫ p

0 c
α(αq)dq

∣∣ ≤ |p|
∣∣cα(αp)

∣∣ for all p ∈ IR. Without loss
of generality we assume that M ≥ 1

2 . Then we have |ε− 1| ≤ 1 ≤ 2M , and using the bounds
on cα

(
±α|p|

)
we get∣∣∣∣∫ p

0
cα(αq) dq

∣∣∣∣ ≤ |p|min
{
α|p|, M

L0L′κ(α)

}
for all p ∈ IR.
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Hence, starting from (3.20), the same bounds that led to (3.32) now imply

∣∣āα1 (t, u, γ, p)
∣∣ ≤ 1

2
|p|+ L0Lκ(α)

∣∣∣∣∫ p

0
cα(αq) dq

∣∣∣∣ ≤ |p|
(

1
2

+ min
{
αL0Lκ(α)|p|,M

})
, (3.33)

for any (t, u, γ, p) ∈ [0, T ]× IR× [b, B]× IR. Similarly we get for those (t, u, γ, p) from (3.24),
(3.25), and (3.21), respectively,∣∣∣∣ ∂∂γ āα1 (t, u, γ, p)

∣∣∣∣ ≤ |p|min
{
αL0L

′
κ(α)|p|,M

}
, (3.34)∣∣∣∣ ∂∂uāα1 (t, u, γ, p)

∣∣∣∣ ≤ |p|
(

1
L0

+
∥∥∥∥ψ•uuψ•u

∥∥∥∥)min
{
αL0Lκ(α)|p|,M

}
(3.35)

and

∣∣aα(t, u, γ, p)
∣∣ ≤ |p|

(∥∥∥∥ψ•tψ•u
∥∥∥∥+

1
2

∥∥∥∥ψ•uuψ•u
∥∥∥∥(1 + 2 min

{
αL0Lκ(α)|p|,M

}))
. (3.36)

The previous four bounds validate the second condition of (V.6.9), i.e. there exists some
L = L(α, ε,M) ∈ IR such that not only (3.29) but also (3.30) holds. This proves that Assump-
tion b) of Theorem V.6.1 is satisfied as well. As explained on p. 451 and p. 493 in Ladyženskaja
et al. (1968), the norm ‖γ̄αu ‖ can now be bounded by some constant K := K(α, ε,M), which
only depends on the lower and upper bounds l = l(α, ε,M) and L = L(α, ε,M), and on∥∥ d
du

∫ ζ( · )
0 f(x) dx

∥∥ =
∥∥f(ζ)ζu∥∥. Since the bounds in (3.32) to (3.36) are monotone in α, the

bound K := K(α, ε,M) can be chosen to be nondecreasing in α, i.e. for all 0 ≤ α ≤ α0 < ρ2

we have
∥∥γ̄αu∥∥ ≤ K(α, ε,M) ≤ K(α0, ε,M).

To validate condition c) in Theorem V.6.1, we have to show that the restrictions to the set
[0, T ]× IR× [b, B]× [−K,K] of the functions āα1 : [0, T ]× IR3 → IR and āα : [0, T ]× IR3 → IR
and of the derivatives ∂

∂z ā
α
1 : [0, T ] × IR3 → IR, with z ∈ {p, γ, u}, satisfy Hölder conditions

with exponent 1
2β in t, and with exponent β in u, γ, and p. This follows easily from our

assumptions, and since our choice of the cutoff function cα of (3.18) implies that these
functions are even Lipschitz in p on sets of the form [0, T ] × IR × [b, B] × [−K̃, K̃] for all
K̃ ≥ 0.
Thus, by Theorem V.8.1 for each 0 ≤ α < ρ2 a solution γ̄α ∈ H1+ 1

2
β,2+β

(
[0, T ] × IR

)
of the

truncated initial value problem (3.22), (3.23) exists.

It remains to prove the uniqueness under the additional assumption that f ∈ C3(IR). This
requires to check the three conditions given at the end of Theorem V.8.1. For this purpose,
let us fix 0 ≤ α < ρ2. Similarly to the lower bound in (3.32), which is valid only as long as
γ ∈ [b, B], we can show from (3.28) and the definitions of L0, the cutoff function cα given in
(3.18), and the truncated transformed loss function κ̄α : IR →

[
0, (1 + ε)Lκ(α)

]
, that for all

(t, u, γ, p) ∈ [0, T ]× IR3 we have

∂

∂p
āα1 (t, u, γ, p) ≥ 1

2
− 1

2
(1 + ε)(1− ε) ≥ 1

2
ε2 ≥ 0. (3.37)

Hence condition (V.8.6) in Ladyženskaja et al. (1968) holds. Moreover, it is easily seen
from (3.28) and 0 ≤ d

dxc
α(x) ≤ 1 for all x ∈ IR that both derivatives ∂2

∂p2
āα1 (t, u, γ, p) and

∂2

∂γ∂p ā
α
1 (t, u, γ, p) exist for all (t, u, γ, p) ∈ [0, T ] × IR3 and that for all N > 0 they can be

bounded on sets of the form [0, T ] × IR × [−N,N ]2 by arguments similar to the one used
to derive (3.32) to (3.36). From (3.26) and (3.27) we obtain the same statement for the
derivative ∂

∂pA
α(t, u, γ, p). This gives the second condition at the end of Theorem V.8.1.
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Finally, our additional condition f ∈ C3(IR) assures that κ : g(IR) → IR belongs to C2(IR),
and especially that supx∈[αb,αB]

∣∣κ′′(x)
∣∣ is bounded. Since κ̄α is smooth outside [αb, αB], we

can also conclude that supγ∈[−N,N ]

∣∣(κ̄α)′′(αγ)
∣∣ can be bounded for each N > 0, and hence

it follows from (3.26) and (3.27) that ∂
∂γA

α(t, u, γ, p) exists for all (t, u, γ, p) ∈ [0, T ] × IR3

and that it is bounded on sets of the form [0, T ] × IR × [−N,N ]2 for any N > 0 as well.
Thus, the third condition at the end of Theorem V.8.1 is also satisfied and Theorem V.8.1
in Ladyženskaja et al. (1968) gives us for all 0 ≤ α < ρ2 the uniqueness of the solution γ̄α to
(3.22), (3.23) within the class C1,2

b

(
[0, T ]× IR

)
. q.e.d.

Remark. Instead of using the second half of Theorem V.8.1 in Ladyženskaja et al. (1968),
Frey (1998) uses their Theorem V.6.1 to prove the uniqueness of his truncated non-linear
parabolic initial value problem (33), (30). However, it is not clear to us how he transfers
the uniqueness result of the first boundary problem in a bounded domain, which is treated
in Theorem V.6.1, to the uniqueness of the Cauchy problem (33), (30). For that reason, we
rather use the uniqueness results for Cauchy problems given at the end of Theorem V.8.1,
which require the additional postulate that f : IR → IR is three times differentiable with
bounded derivatives on compact sets. �

For the proof of Proposition 3.19 we have to find explicit bounds for γ̄α : [0, T ] × IR → IR,
and we need to strengthen the bounds on the derivatives γ̄αu : [0, T ]× IR→ IR of Lemma 3.20
a little bit. In analogy to the definition of b and B let us define the bounds b′ and B′ on the
derivatives of the initial condition (3.23) by

b′ := min
{

0, inf
u∈IR

{
f
(
ζ(u)

)
ζu(u)

}}
and B′ := max

{
0, sup
u∈IR

{
f
(
ζ(u)

)
ζu(u)

}}
.

Moreover, we define the bounds K and K, depending on α, ε, and M , by

K(α, ε,M) :=

{
−K(α, ε,M) if b′ < 0
0 if b′ = 0

and K(α, ε,M) :=

{
K(α, ε,M) if B′ > 0
0 if B′ = 0

Since K(·, ε,M) : [0, ρ2) → [0,∞) is nondecreasing, K(·, ε,M) : [0, ρ2) → (−∞, 0] is nonin-
creasing and K(·, ε,M) : [0, ρ2) → [0,∞) is nondecreasing. Under slightly stronger conditions
than the ones of Lemma 3.20, we arrive at the following result:

Lemma 3.21. Let us consider the family of modified Cauchy problems (3.22), (3.23) for
0 ≤ α < ρ2 and some fixed cutoff levels 0 < ε < 1 and M > 0. Under the assumptions of the
existence part of Lemma 3.20 we have for all 0 ≤ α < ρ2

inf
v∈IR

∫ ζ(v)

0
f(x) dx ≤ γ̄α(t, u) ≤ sup

v∈IR

∫ ζ(v)

0
f(x) dx for all (t, u) ∈ [0, T ]× IR. (3.38)

Moreover, if ψ• ∈ Ĥ1+ 1
2
β,3+β

(
[0, T ] × IR

)
and f ∈ H3+β

loc (IR), then for all 0 ≤ α < ρ2 the
bounds on the derivative γ̄αu : [0, T ]× IR→ IR of Lemma 3.20 can be sharpened to

K(α, ε,M) ≤ γ̄αu (t, u) ≤ K(α, ε,M) for all (t, u) ∈ [0, T ]× IR. (3.39)

Proof. Let us fix 0 < ε < 1, M > 0, and 0 ≤ α ≤ α0 < ρ2. As pointed out in Frey (1998), the
existence of a solution γα ∈ H1+ 1

2
β,2+β

(
[0, T ]× IR

)
to (3.22), (3.23) implies that this solution

also solves the linear parabolic equation

γ̄αt (t, u) = âα(t, u)γ̄αuu(t, u) + b̂α(t, u)γ̄αu (t, u) for all (t, u) ∈ [0, T ]× IR, (3.40)
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where the diffusion coefficients âα : [0, T ] × IR → IR and b̂α : [0, T ] × IR → IR are given by
âα(t, u) = ∂

∂p ā
α
1

(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
and b̂α(t, u) = bα

(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
for all

(t, u) ∈ [0, T ]× IR, and ∂
∂p ā

α
1 : [0, T ]× IR3 and bα : [0, T ]× IR3 are given by (3.28) and (3.27),

respectively.
The validity of the estimate (3.38) was already derived in the proof of Lemma 3.20, in the
comments before the demonstration of condition c) in Theorem V.8.1. Moreover, due to
(3.37) and the boundedness of âα : [0, T ]× IR→ IR and b̂α : [0, T ]× IR→ IR, the bounds on
γ̄α : [0, T ]× IR→ IR in (3.38) now also follow directly either from the maximum principle for
linear parabolic partial differential equations (see for example Corollary I.2.1 in Ladyženskaja
et al. (1968)), or the Feynman-Kac formula, as Frey (1998) proposes.
Under the additional differentiability assumptions on the two functions ψ• : [0, T ] × IR → IR
and f : IR → IR, the derivatives âαu : [0, T ] × IR → IR and b̂αu : [0, T ] × IR → IR exist and
belong to the class H

1
2
β,β
(
[0, T ] × IR

)
. Thus we can conclude from Theorem 10, Sec. 5,

Chap. 3 in Friedman (1964), in combination with the remark after Theorem 11 of the same
section, that the derivatives γ̄αut and γ̄αuuu exist and are continuous on (0, T ] × IR, and that
they are bounded on each slab of the form (t0, T ] × IR with 0 < t0 < T . Especially, we can
differentiate the linear PDE (3.40), and obtain as in the proof of Proposition 4.4 in Frey
(1998) for all (t, u) ∈ (0, T ]× IR that

γ̄αut(t, u) = âα(t, u)γ̄αuuu(t, u) +
(
âαu(t, u) + b̂α(t, u)

)
γ̄αuu(t, u) + b̂αu(t, u)γ̄αu (t, u). (3.41)

Since ζ : IR → IR is differentiable, upon differentiating the initial condition, we see that
γ̄αu (0, u) = d

du

∫ ζ(u)
0 f(x) dx = f

(
ζ(u)

)
ζu(u). Hence, after taking the limit of the solutions{

γ̄α,N
}

of the first boundary problem of the form (V.0.1), (V.8.2) in Ladyženskaja et al.
(1968), we get from their uniform bound (V.8.4) and the maximum principle Theorem I.2.1
in Ladyženskaja et al. (1968) (or from the Feynman-Kac formula) that

b′et‖b̂
α
u‖ ≤ γ̄αu (t, u) ≤ B′et‖b̂

α
u‖ for all (t, u) ∈ [0, T ]× IR. (3.42)

If we now use (3.42) to determine whether γ̄αu : [0, T ] × IR → IR either stays nonnegative or
nonpositive on [0, T ] × IR, and the bound

∥∥γ̄αu∥∥ ≤ K(α, ε,M) of Lemma 3.20 to bound the
modulus, we obtain (3.39). q.e.d.

Remark. We do not use (3.42) directly since this would require us to bound ‖b̂αu‖, and that
would involve bounds for the second derivative γ̄αuu : [0, T ] × IR → IR, which we know is
bounded, but for which we did not derive a uniform bound for all 0 ≤ α ≤ α0 < ρ2.
Also notice that our proof of (3.39) implies that for all 0 < t0 ≤ T the solution γ̄α to the
Cauchy problem (3.22), (3.23) belongs to H1+ 1

2
β,3+β

(
[t0, T ] × IR

)
, and if ζ ∈ H3+β(IR) we

even get γ̄α ∈ H1+ 1
2
β,3+β

(
[0, T ]× IR

)
. �

Finally, we can accomplish the proof of Proposition 3.19, which mimics Frey’s (1998) proof
of his Theorem 4.2.

Proof of Proposition 3.19. For the existence part, we will consider the modified Cauchy prob-
lem (3.22), (3.23) instead of (3.13), (3.14) and show that for sufficiently small α > 0, the
cutoff which was introduced by our truncated diffusion coefficients ā1 : [0, T ]× IR3 → IR and
ā : [0, T ]× IR3 → IR does not take place.
Let us set

ᾱ := sup
0<ε<0.5,M>0

0<α<ρ2

{
min

{
α,

2ε− 1
2L0L′κ(α)

1
K(α, ε,M)

,
1
2

M

L0L′κ(α)
1

K(α, ε,M)

}}
,
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and fix α < ᾱ. Then there exist some 0 < α0 < ρ2, some M > 0 sufficiently large, and some
0 < ε < 1

2 sufficiently small, such that

α ≤ min
{
α0,

2ε− 1
2L0L′κ(α0)

1
K(α0, ε,M)

,
1
2

M

L0L′κ(α0)
1

K(α0, ε,M)

}
.

Especially, we get α ≤ α0. Since L′κ : [0,∞) → [0,∞) and K(·, ε,M) : [0, ρ2) → [0,∞) are
nondecreasing, and K(·, ε,M) : [0, ρ2) → (−∞, 0] is nonincreasing, it follows from 2ε− 1 < 0
and M > 0 that

α ≤ min
{

2ε− 1
2L0L′κ(α)

1
K(α, ε,M)

,
1
2

M

L0L′κ(α)
1

K(α, ε,M)

}
.

Lemma 3.20 guarantees the existence of a solution γ̄α ∈ H1+ 1
2
β,2+β

(
[0, T ]×IR

)
to the modified

initial value problem (3.22), (3.23). By Lemma 3.21 the solution satisfies (3.38) and (3.39).
Now we first note that by the bounds (3.38) and the definition of κ̄α : IR→

[
0, (1 + ε)Lκ(α)

]
in (3.19) we have κ̄α

(
αγ(t, u)

)
= κ

(
αγ(t, u)

)
for all (t, u) ∈ [0, T ]×IR. Secondly, the left-hand

side of (3.39), 2ε − 1 < 0 and K(α, ε,M) ≤ 0 imply αγ̄αu (t, u) ≥ 1
2

2ε−1
L0L′κ(α) , and similarly it

follows that αγ̄αu (t, u) ≤ 1
2

M
L0L′κ(α) . Hence the definition of cα : IR →

[
1
2

ε−1
L0L′κ(α) ,

M
L0L′κ(α)

]
in

(3.18) yields
∫ γ̄α

u (t,u)
0 cα(αq) dq =

∫ γ̄α
u (t,u)

0 αq dq = 1
2α
(
γ̄αu (t, u)

)2 for all (t, u) ∈ [0, T ] × IR.
Comparing now the definitions (3.20) and (3.21) with (3.11) and (3.12) respectively, we find
that for all (t, u) ∈ [0, T ]× IR the diffusion coefficients

aα1
(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
= āα1

(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
and

aα
(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
= āα

(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
coincide if γ̄α is plugged in. Hence γ̄α : [0, T ] × IR → IR solves the unrestricted Cauchy
problem (3.13), (3.14) as well. The property (3.16) now follows from (3.37) for the tuple(
T − t, u, γ̄α(t, u), γ̄αu (t, u)

)
, and all (t, u) ∈ [0, T ]× IR.

Now assume that γ̄α,1 : [0, T ] × IR → IR and γ̄α,2 : [0, T ] × IR → IR are two solutions of
the unrestricted problem (3.13), (3.14), both satisfying (3.17) and (3.16). By (3.17) and the
definition of κ̄α = κ̄αε : IR→

[
0, (1 + ε)Lκ(α)

]
in (3.19) we obtain for each ε > 0 the equality

κ̄α
(
αγ̄α,i(t, u)

)
= κ

(
αγ̄α,i(t, u)

)
for all (t, u) ∈ [0, T ] × IR and i ∈ {1, 2}. Secondly, due to

(3.16) there exists some ε0 > 0 such that

2αL0L
′
κ(α)γ̄α,iu (t, u) ≥ ε0 − 1 for all (t, u) ∈ [0, T ]× IR and i ∈ {1, 2}.

If we now set ε = 1
2ε0 and M = 2αL0L

′
κ(α) maxi∈{1,2}

∥∥γ̄α,iu

∥∥, the definition of cα given by

(3.18) implies again that
∫ αγ̄α,i

u (t,u)
0 cα

(
αq
)
dq = 1

2α
(
γ̄αu (t, u)

)2 for all (t, u) ∈ [0, T ] × IR and
i ∈ {1, 2}, and hence γ̄α,1 and γ̄α,2 are also solutions of the truncated problem (3.22), (3.23),
and therefore they must coincide by the uniqueness statement of Lemma 3.20. q.e.d.

Using Remark V.8.1 in Ladyženskaja et al. (1968) and revising our proofs of Proposition 3.18
and Proposition 3.19 carefully, we can state

Corollary 3.22. If the condition on ζ : IR→ IR in Proposition 3.18 is relaxed to ζ ∈ C1
b (IR),

there still exist some α1 < 0 < α2 such that for all α ∈ (α1, α2), the initial value problem
(3.2), (3.3) has a solution γ ∈ C1,2

(
[0, T ) × IR

)
∩ C0,1

b

(
[0, T ] × IR

)
which satisfies (3.5) and

(3.6).
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Moreover, another application of Theorem 10, Sec. 5, Chap. 3 in Friedman (1964) as in the
proof of Lemma 3.21, or of Theorem IV.5.1 in Ladyženskaja et al. (1968), gives us as a second
corollary:

Corollary 3.23. In addition to the Assumptions B, C, and D suppose now that for some
k ≥ 2 the two components ψ• and f of ψ belong to the Hölder spaces Ĥk+ 1

2
β,2k+β

(
[0, T ]× IR

)
and H2k+β

loc (IR), respectively, and that ζ ∈ H2k+β(IR). Then for all α ∈ (α1, α2), the solution
γ : [0, T ]× IR→ IR of (3.2), (3.3) satisfies γ ∈ Hk+ 1

2
β,2k+β

(
[0, T ]× IR

)
.

3.3.2 Convergence of the Transformed Strategy Functions

In this subsection, we consider the convergence of the sequence {gn}n∈IN of discrete trans-
formed strategy functions gn : An → IR to the continuous solution of the final value problem
(3.2), (3.3). The central result is Theorem 3.24. Under the assumption that a solution γ to
the final value problem exists and that the price system (ψ, µ) is sufficiently regular, the the-
orem states that the functions {gn}n∈IN converge with a certain order towards this solution
if the function values of gn in the last two time steps t = tnn−1 and t = tnn converge to the
corresponding values of γ.
Because of the non-linearities the proof of Theorem 3.24 is technically involved and will only
be sketched by indicating how the methods used for Theorem 3.10 in the setting without
transaction losses can be carried over to the case with transaction losses.
Under the assumptions of Proposition 3.18 we have shown in the previous section that the
initial value problem (3.2), (3.3) has a solution γ : [0, T ]× IR→ IR, and this solution satisfies
(3.5) and (3.6). Especially, by the definitions of L0 :=

∥∥ ψ•
ψ•u

∥∥ and L′κ(α) in (3.4) it is easily
seen that (3.6) implies

1 +
ψ•(t, u)
ψ•u(t, u)

κ
(
γ(t, u)

)
γu(t, u) ≥ ε for all (t, u) ∈ [0, T ]× IR and some ε > 0, (3.43)

since the infimum over [0, T ]× IR of the left-hand side must be strictly larger than 1
2 .

We will outline a proof of the following analogue of Theorem 3.10:

Theorem 3.24. Let (ψ, µ) be a large investor price system which satisfies Assumptions B, C,
and D. Moreover, suppose that the two components ψ• and f of the equilibrium price function
ψ belong to the Hölder spaces Ĥ2+ 1

2
β,4+β

(
[0, T ] × IR

)
and H4+β

loc (IR), respectively, and that
there exists some η > 0 such that

∫
eη|θ|µ(dθ) <∞.

If the final value problem (3.2), (3.3) has a solution γ : [0, T ]× IR→ IR which belongs to the
Hölder space H2+ 1

2
β,4+β

(
[0, T ]×IR

)
and satisfies (3.43), and if there exists some L ∈ IR such

that for all sufficiently large n ∈ IN we have∥∥gn(tnk , · )− γ
(
tnk , ·

)∥∥
Un

k
≤ Lδ4+β for k ∈ {n− 1, n}, (3.44)

then the sequence {gn}n∈IN of discrete transformed strategy functions gn : An → IR converges
to the function γ : [0, T ]× IR→ IR in the sense that

‖gn − γ‖An = O
(
δ2
)

(3.45)

and∥∥∥∥gn(·+ δ2, · ± δ)− gn ∓ δγu − δ2
(
γt +

1
2
γuu

)∥∥∥∥
An(n−1)

= O
(
δ2+β

)
as n→∞. (3.46)
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Remark 1. As in Theorem 3.10 we might relax the condition (3.44) slightly, and replace it by
the conditions

∥∥gn(tnk , · )− γ
(
tnk , ·

)∥∥ ≤ Lδ4+β and
∥∥∆n

u g
n
(
tnk , ·

)
−∆n

u γ
(
tnk , ·

)∥∥
Un

k
≤ Lδ3+β

for k ∈ {n− 1, n}. �

Remark 2. Besides the additional condition (3.43), which trivially holds in the case without
transaction losses (where κ ≡ 0), there are three differences to the statement of Theorem 3.10.
First of all, we need some more assumptions on the price system (ψ, µ). This is caused
by the non-linear loss terms. Note that apart from

∫
eη|θ|µ(dθ) < ∞ all these additional

conditions have also been used in Corollary 3.23 in order to show the existence of a solution
γ : [0, T ]× IR→ IR to the non-linear final value problem.
Secondly, we now have to require the convergence of the (transformed) strategy functions
not only at the time points {tnn−1}n∈IN , which are all strictly smaller than T , increase
monotonously, and converge to T as n → ∞, but also at the time point tnn = T for all
n ∈ IN . This is due to the implied transaction losses, which we assume to occur even at time
t = T .
Since we have to require the convergence at the time point tnn, we can use this additional
assumption to include the possible time-space realizations {tnn}×Unn in the approximations for
gn and the time-space realizations {tnn−1}×Unn−1 in the approximations for gn(·+δ2, ·+δ)−gn.
This constitutes the third (but minor) difference to the statement of Theorem 3.10. �

In the remainder of this section we will sketch a proof of Theorem 3.24 which follows to the
largest possible extent the proof of Theorem 3.10 in Section 3.2.2. For this reason let us
suppose that the theorem’s assumptions hold. We should like to write for each 1 ≤ k ≤ n− 1
the transformed strategy gn

(
tnk−1, u

)
at time tnk−1 as a convex combination of its two possible

successors gn
(
tnk , u ± δ

)
at time tnk as we did in (2.1), i.e. we should like to find for all

sufficiently large n ∈ IN some probability weight function p̌n : An(n − 2) → [0, 1] such that
for all 1 ≤ k ≤ n− 1 and all u ∈ Unk−1 we have

gn(tnk−1, u) = p̌n(tnk−1, u)gn(tnk , u+ δ) +
(
1− p̌n(tnk−1, u)

)
gn(tnk , u− δ). (3.47)

If the weights p̌n
(
tnk−1, u

)
are sufficiently well-behaved, we can use at least basically the

same arguments as in the proof of Theorem 3.10 to derive the convergence statements of
Theorem 3.24 from (3.47).
However, the crucial issue in the general case is the derivation of a sufficiently well-behaved
weight function p̌n. The transaction losses induced by the large investor’s trading strategy
have already prevented us in Section 2.4 from obtaining an explicit recursive scheme for the
transformed strategy function, and so we cannot find a representation (3.47) where the weight
p̌n
(
tnk−1, u

)
does not depend on the transformed strategy gn(tnk−1, u). Thus, our goal can only

be to find weights p̌n
(
tnk−1, u

)
for all 1 ≤ k ≤ n − 1 and u ∈ Unk−1 which satisfy (3.47) and

which do not depend too strongly on the transformed strategy so that we can still control the
weights sufficiently well. Actually, it will turn out that such a weight p̌n

(
tnk−1, u

)
depends

on the values gn(tnk−1, u), gn(tnk , u± δ), and gn(tnk+1, u) of the transformed strategy function.
With suitable controls on the influence of the transformed strategy at hand, the arguments
of the proof of Theorem 3.10 can then be transferred to this section’s general setting.

As a first step to the proof of Theorem 3.24 we write the fixed point equation (2.4.11) as a
difference equation which is seen to be the discrete analogue of the partial differential equation
(3.2). However, keeping our goal to obtain a suitable representation (3.47), we should like to
rewrite (3.2) in another form. Therefore let us suppose that γ : [0, T ] × IR → IR solves the
PDE (3.2) and satisfies (3.43). If we subtract

γu(t, u)
1
2
d

du

(
ψ•(t, u)
ψ•u(t, u)

κ
(
γ(t, u)

)
γu(t, u)

)
− γt(t, u)

ψ•(t, u)
ψ•u(t, u)

κ
(
γ(t, u)

)
γu(t, u)
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from both sides of (3.2), and divide the resulting equation by 1 + ψ•(t,u)
ψ•u(t,u)

κ
(
γ(t, u)

)
γu(t, u), we

can transform (3.2) into

γt(t, u) +
1
2
γuu(t, u) + bγ(t, u)γu(t, u) = 0 for all (t, u) ∈ [0, T ]× IR, (3.48)

where the function bγ : [0, T ]× IR→ IR is defined by

bγ(t, u) =
1
2
d
du

(
ψ•u(t, u) + ψ•(t, u)κ(γ(t, u))γu(t, u)

)
−
(
ψ•t(t, u) + ψ•(t, u)κ(γ(t, u))γt(t, u)

)
ψ•u(t, u) + ψ•(t, u)κ(γ(t, u))γu(t, u)

.

Then we shall transform the fixed point equation (2.4.11) into a difference equation for the
discrete transformed strategy gn : An → IR, which is a discrete analogue of the partial
differential equation (3.48).

If we look at the candidate limiting equation (3.48), it is clear that our difference equation
for gn : An → IR should contain terms which approximate the transformed loss function
κ : IR→ IR of (3.1), evaluated at gn, and also terms which approximate its first derivative. In
order to find those approximations, we fix the measure µ and introduce some more notation for
all n ∈ IN and any function ρ : An → G := g(IR) (and hence in particular for ρ = gn = g◦ξn).
We introduce the function J : G2 → IR given by

J(x1, x2) = sgn(x2 − x1)kµ
(
g−1(x1), g−1(x2)

)
for all x1, ξ2 ∈ IR, (3.49)

and define for all (t, u) ∈ An1 (n− 1) the shorthands

J±−
(
ρ, t, u

)
= J

(
ρ(t− δ2, u), ρ(t, u± δ)

)
and

J±+
(
ρ, t, u

)
= J

(
ρ(t, u± δ), ρ(t+ δ2, u)

)
.

For all (t, u) ∈ An1 (n− 1) we shall use three different approximations of κ
(
Σn
u ρ(t, u)

)
, where

Σn
u ρ(t, u) =

1
2
ρ(t, u+ δ) +

1
2
ρ(t, u− δ) for all (t, u) ∈ An1 .

For ∆n
u ρ(t, u) 6= 0, our approximations of κ

(
Σn
u ρ(t, u)

)
are given by

Kn
±
(
ρ, t, u

)
= ∓

J+
± (ρ, t, u)− J−± (ρ, t, u)

δ∆n
u ρ(t, u)

,

and

K̄n
(
ρ, t, u

)
=

(
ρ(t, u+ δ)− ρ(t− δ2, u)

)
J+
− (ρ, t, u)−

(
ρ(t− δ2, u)− ρ(t, u− δ)

)
J−− (ρ, t, u)

δ2
(
∆n
u ρ(t, u)

)2 .

If ∆n
u ρ(t, u) = 0, we set Kn

±(ρ, t, u) = K̄n(ρ, t, u) = κ
(
Σn
u ρ(t, u)

)
.

In order to approximate κ′
(
Σn
u ρ(t, u)

)
, we define for all (t, u) ∈ An1 (n−1) the two expressions

K̇n
±
(
ρ, t, u

)
= ∓

(
ρ(t± δ2, u)− ρ(t, u− δ)

)
J+
± (ρ, t, u) +

(
ρ(t, u+ δ)− ρ(t± δ2, u)

)
J−± (ρ, t, u)

δ3
(
∆n
u ρ(t, u)

)3 ,
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if ∆n
u ρ(t, u) 6= 0 and K̇n

±
(
ρ, t, u

)
= 1

2κ
′(Σn

u ρ(t, u)
)
± τ
(
Σn
u ρ(t, u)

)
otherwise. We shall see in

Lemma 3.25 that for all (t, u) ∈ An1 (n− 1) the term K̇n
±(ρ, t, u) approximates the expression

1
2κ

′(Σn
u ρ(t, u)

)
± τ
(
Σn
u ρ(t, u)

)
, respectively, where the function τ : G→ IR is given by

τ(x) =
f ′′
(
g−1(x)

)
f3
(
g−1(x)

) ∫ θ(1− θ)
(
µ− λ

)
(dθ) for all x ∈ G.

Thus, the sum of the terms K̇n
±
(
ρ, t, u

)
approximates κ′

(
Σn
u ρ(t, u)

)
.

Remark. The reader might be puzzled why we talk about approximations of e.g. κ
(
Σn
u ρ(t, u)

)
and not of approximations for κ

(
ρ(t, u)

)
. The reason is simple: It follows from the definition

of An and An1 (n−1) in Definition 3.7 that (t, u) ∈ An1 (n−1) implies (t, u) 6∈ An, hence ρ(t, u)
is not defined if ρ is only defined on the grid An. On the other hand Σn

u ρ(t, u) is defined
for all functions ρ : An → IR, and if for all n ∈ IN the functions ρ = ρn : An → IR can be
extended to the same smooth function on [0, T ]× IR, then the expression Σn

u ρ(t, u) will give
an order O

(
δ2
)
-approximation for ρ(t, u) as n→∞. �

With the definitions of Kn
±
(
ρ, t, u

)
and so forth in mind, we should assure ourselves that our

approximations really approximate those values which we claim that they approximate. This
will be carried out in the next lemma.

Lemma 3.25. Assume f ∈ H4+β
loc (IR) and that the measure µ fulfills

∫
eη|θ|µ(dθ) < ∞ for

some η > 0. Moreover, suppose that ρ ∈ C2,4
b

(
[0, T ] × IR

)
is some function with a range

ρ
(
[0, T ]× IR

)
which is contained in G := g(IR). Then we have

Kn
±
(
ρ, tn, un

)
= κ

(
ρ(tn, un)

)
+O

(
δ2
)
, (3.50)

K̄n
(
ρ, tn, un

)
= κ

(
ρ(tn, un)

)
+O

(
δ2
)
, (3.51)

and

K̇n
±(ρ, tn, un) =

1
2
κ′
(
ρ(tn, un)

)
± τ
(
ρ(tn, un)

)
+O

(
δ2
)

(3.52)

as n → ∞ uniformly for all sequences
{

(tn, un)
}
n∈IN for which (tn, un) ∈ An1 (n − 1) for all

n ∈ IN .

Proof. Let us set h = g−1 to denote the inverse h : G → IR of the strategy transform
g : IR→ IR, and introduce the integral function I : IR2 → IR by

I(ξ1, ξ2) =
∫
f
(
(1− θ)ξ1 + θξ2

)(
µ− λ

)
(dθ) for all ξ1, ξ2 ∈ IR.

We will first show that the function J : G2 → IR of (3.49) satisfies

J(x1, x2) =
h(x2)− h(x1)

x2 − x1
I
(
h(x1), h(x2)

)
for all x1, x2 ∈ IR with x1 6= x2. (3.53)

For this purpose note that by the definition of g : IR→ IR, ξ 7→
∫ ξ
0 f(x) dx we have

g(ξ2)− g(ξ1)
ξ2 − ξ1

=
1

ξ2 − ξ1

∫ ξ2

ξ1

f(q) dq =
∫ 1

0
f
(
(1− θ)ξ1 + θξ2

)
dθ =

∫
f
(
(1− θ)ξ1 + θξ2

)
λ(dθ)

for all ξ1, ξ2 ∈ IR with ξ1 6= ξ2, since λ is the Lebesgue measure concentrated on [0, 1]. Now
g : IR → IR is strictly increasing, hence the representation (3.53) follows from the definition
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of h = g−1 and the local transaction loss rate function kµ : IR2 → IR in (2.4.6). Moreover, we
have I(ξ, ξ) = f(ξ)

∫ (
µ − λ

)
(dθ) = 0 for all ξ ∈ IR since µ and λ are probability measures,

and thus we may also write J(x, x) = 0 = h′(x)I
(
h(x), h(x)

)
for all x ∈ G.

Next we calculate the derivatives of the function I : IR2 → IR. Since f ∈ H4+β(IR), since
there exists exists some η > 0 such that

∫
eη|θ|µ(dθ) <∞, and since λ is concentrated on the

compact set [0, 1], we conclude as in Theorem A.9.1 of Durrett (1996) that the function I is
four times continuously differentiable, and for 0 ≤ k ≤ 4 the partial derivatives with respect
to one variable only can be calculated as

∂k

∂ξk2
I(ξ1, ξ2) =

∫
θkf (k)

(
(1− θ)ξ1 + θξ2

)(
µ− λ

)
(dθ)

and

∂k

∂ξk1
I(ξ1, ξ2) =

∫
(1− θ)kf (k)

(
(1− θ)ξ1 + θξ2

)(
µ− λ

)
(dθ) for all ξ1, ξ2 ∈ IR.

Since
∫

1
(
µ− λ

)
(dθ) = 0, the first derivatives at the point (ξ, ξ) become:

∂

∂ξ2
I(ξ1, ξ2)

∣∣∣∣∣ξ1=ξ
ξ2=ξ

= − ∂

∂ξ1
I(ξ1, ξ2)

∣∣∣∣∣ξ1=ξ
ξ2=ξ

= f ′(ξ)
∫
θ
(
µ− λ

)
(dθ) = f ′(ξ)d(µ) for all ξ ∈ IR.

Similarly we see from
∫
θ2
(
µ− λ

)
(dθ) =

∫
θ − θ(1− θ)

(
µ− λ

)
(dθ) that for all ξ ∈ IR

∂2

∂ξ22
I(ξ1, ξ2)

∣∣∣∣∣ξ1=ξ
ξ2=ξ

= f ′′(ξ)
∫
θ2
(
µ− λ

)
(dθ) = f ′′(ξ)d(µ)− f ′′(ξ)

∫
θ(1− θ)

(
µ− λ

)
(dθ),

and by analogy the second derivative with respect to the first variable becomes

− ∂2

∂ξ21
I(ξ1, ξ2)

∣∣∣∣∣ξ1=ξ
ξ2=ξ

= f ′′(ξ)d(µ) + f ′′(ξ)
∫
θ(1− θ)

(
µ− λ

)
(dθ) for all ξ ∈ IR.

After this preparatory work we can show the convergence results (3.50)-(3.52). Without loss
of generality we assume that ∆n

u ρ(tn, un) 6= 0 for all sufficiently large n ∈ IN . Let us start with
the expression Kn

−(ρ, t, u), and take any sequence
{

(tn, un)
}
n∈IN with (tn, un) ∈ An1 (n−1) for

all n ∈ IN . By the definitions of Kn
−(ρ, t, u) and ∆n

u ρ(tn, un) we see that for all sufficiently
large n ∈ IN

Kn
−(ρ, tn, un) =

J+
− (ρ, tn, un)− J−− (ρ, tn, un)

δ∆n
u ρ(tn, un)

= 2
J
(
ρ(tn − δ2, un), ρ(tn, un + δ)

)
− J

(
ρ(tn − δ2, un), ρ(tn, un − δ)

)
ρ(tn, un + δ)− ρ(tn, un − δ)

.

Since I : IR2 → IR is four times continuously differentiable, it is easily seen from the rep-
resentation (3.53) that J : G2 → IR is four times continuously differentiable as well. Since
ρ : [0, T ] × IR → IR is bounded, there exists some compact interval D ⊂ IR such that
ρ(t, u) ∈ D for all (t, u) ∈ [0, T ] × IR. Hence we especially get that the maximum of the
third derivative of J : G2 → IR in the compact set D2 is attained, and by making a Taylor
expansion around the point ρ(tn, un) we can conclude

Kn
−(ρ, tn, un) = 2

∂

∂x2
J(x1, x2)

∣∣∣∣∣x1=ρ(tn,un)
x2=ρ(tn,un)

+O
(
δ2
)

= 2
f ′
(
g−1(ρ(tn, un))

)
f2
(
g−1(ρ(tn, un))

)d(µ) +O
(
δ2
)
,
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as n → ∞, uniformly for all sequences
{

(tn, un)
}
n∈IN with (tn, un) ∈ An1 (n − 1) for all

n ∈ IN . By the definition of κ : IR→ IR in (3.1) the leading term on the right-hand side can
be identified as κ

(
ρ(tn, un)

)
, hence the lower (minus) case of (3.50) is shown.

The statements for Kn
+(ρ, tn, un) and K̄n(ρ, tn, un) follow by similar means. Now let us

consider (3.52) and exemplarily show the convergence of K̇n
−(ρ, tn, un). By definition, we

obtain for all (t, u) ∈ An1 (n− 1):

K̇n
−(ρ, t, u) = 8

ρ(t− δ2, u)− ρ(t, u− δ)(
ρ(t, u+ δ)− ρ(t, u− δ)

)3J(ρ(t− δ2, u), ρ(t, u+ δ)
)

+ 8
ρ(t, u+ δ)− ρ(t− δ2, u)(
ρ(t, u+ δ)− ρ(t, u− δ)

)3J(ρ(t− δ2, u), ρ(t, u− δ)
)
.

If we expand the right-hand side of this equation around ρ(t, u), and use J(x1, x2) = 0 and
∂
∂x2

J(x1, x2) = − ∂
∂x1

J(x1, x2) for all x1, x2 ∈ G with x1 = x2, we obtain

K̇n
−(ρ, t, u) =

∂2

∂x2
2

J(x1, x2)

∣∣∣∣∣x1=ρ(tn,un)
x2=ρ(tn,un)

+O
(
δ2
)

as n→∞.

Now it can be shown that for all x ∈ G we have

∂2

∂x2
2

J(x1, x2)

∣∣∣∣∣x1=x
x2=x

= 2h′(x)h′′(x)
∂

∂ξ2
I
(
ξ1, ξ2

)∣∣∣∣∣ξ1=h(x)
ξ2=h(x)

+
(
h′(x)

)3 ∂2

∂ξ22
I
(
ξ1, ξ2

)∣∣∣∣∣ξ1=h(x)
ξ2=h(x)

.

Since h′(x) = 1
f(h(x)) and h′′(x) = − f ′(h(x))

f3(h(x))
for all x ∈ G, the formulas for ∂

∂ξ2
I(ξ1, ξ2) and

∂2

∂ξ22
I(ξ1, ξ2) on the diagonal ξ1 = ξ2 lead to

∂2

∂x2
2

J(x1, x2)

∣∣∣∣∣x1=x
x2=x

=

(
f ′′(h(x))
f3(h(x))

− 2

(
f ′(h(x))

)2
f4(h(x))

)
d(µ)− f ′′(h(x))

f3(h(x))

∫
θ(1− θ)

(
µ− λ

)
(dθ),

and if we differentiate the function κ : IR→ IR in (3.1) and use the definitions of h : G→ IR
and τ : G→ IR, the last line becomes 1

2κ
′(x)− τ(x). Thus we have derived the convergence

statement for K̇n
−(ρ, tn, un) as stated in (3.52). q.e.d.

Before we can rewrite the fixed point equation (2.4.11) into a discrete analogue of the par-
tial differential equation (3.48) we still need to introduce some more definitions to bring the
analogy out most clearly. For this reason, let us recall Definition 3.7, and by slightly extend-
ing this definition to functions which are defined on the whole time slab [0, T ] × IR, let us
define the discrete derivative ∆n

u ψ
• : An1 → IR as the discrete derivative of the restriction of

ψ• : [0, T ]× IR→ IR on An, i.e.

∆n
u ψ
•(t, u) =

ψ•
(
t, u+ δ)− ψ•(t, u− δ)

2δ
for all (t, u) ∈ An1 .

In a similar manner we also define

Σn
u ψ
•(t, u) =

ψ•
(
t, u+ δ) + ψ•(t, u− δ)

2
for all (t, u) ∈ An1 .

Additionally, we will now define the operator ∆n
uu,t on the space of functions h : An → IR by

setting for all (t, u) ∈ An1 (n− 1)

∆n
uu,t h(t, u) =

1
δ2

(
h(t, u+ δ)− 2h(t+ δ2, u) + h(t, u− δ)

)
, (3.54)
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and then ∆n
uu,t ψ

•(t, u) analogously. It is clear that ∆n
uu,t is a discrete version of the differential

operator ∂2

∂u2 − 2 ∂
∂t .

Now let us choose for each n ∈ IN some k = k(n) and i = i(n) with 1 ≤ k ≤ n − 1 and
i ∈ Ik−1, and set (tn, un) :=

(
tnk , u

n
(k−1)i

)
. By the definition of An1 (n− 1) in Definition 3.7 it

follows that (tn, un) ∈ An1 (n− 1). Observe that by the definition of un(k±1)i in (1.3.8) we also
have

(
tnk , u

n
(k+1)i

)
= (tn, un). We will omit the subscript n in tn and un from now on, but

notice that the point (t, u) ∈ An1 (n− 1) changes for varying n ∈ IN .
If we look back to Corollary 2.15 and recall our shorthands (1.3.12) and the definition of the

strategy transform gn : An → IR in (2.4.5), we just bring
∫ ξn

(k−1)i

0 f(x) dx = gn(t − δ2, u) to
the other side of the equality sign to rewrite the fixed point equation (2.4.11) as

0 =
ψ•(t, u+ δ)− ψ•(t+ δ2, u)
ψ•
(
t, u+ δ)− ψ•(t, u− δ)

(
gn(t, u+ δ)− gn(t− δ2, u)

)
+
ψ•(t+ δ2, u)− ψ•(t, u− δ)
ψ•(t, u+ δ)− ψ•(t, u− δ)

(
gn(t, u− δ

)
− gn(t− δ2, u)

)
+

Dξn

µ

(
t, u
)

ψ•
(
t, u+ δ

)
− ψ•

(
t, u− δ

) .
Here the spread Dξn

µ (t, u) of the transaction losses involved is given by (2.4.12).
Let us first consider the first two summands which do not involve the term Dξn

µ (t, u). Upon
using the equality ac−bd = 1

2(a+b)(c−d)+ 1
2(a−b)(c+d) and our definitions of the discrete

derivatives, we can rewrite this part as

Ln(t, u) :=
(
gn(t, u+δ)−2gn

(
t−δ2, u

)
+gn(t, u−δ)

)
+ δ2

∆n
uu,t ψ

•(t, u)
2∆n

uψ
•(t, u)

∆n
u g

n(t, u). (3.55)

Notice that the fraction
∆n

uu,t ψ
•(t,u)

∆n
u ψ
•(t,u) is an O

(
δ2
)
-approximation of ψ•uu(t,u)−2ψ•t(t,u)

ψ•u(t,u)
as n → ∞.

If ‖gn − γ‖An = O
(
δ2+β

)
as n → ∞ for some function γ ∈ C1,2

b

(
[0, T ] × IR

)
, we also have∥∥∆n

u g
n(t, u)− γu(t, u)

∥∥
An

1
= O

(
δ1+β

)
and∥∥∥∥ 1

2δ2
(
gn(·, ·+ δ)− 2gn

(
· − δ2, ·

)
+ gn(·, · − δ)

)
−
(
γt +

1
2
γuu

)∥∥∥∥
An

1

= O
(
δβ
)

as n→∞.

Let us now suppose for a moment that we are in the linear setting of Section 3.2 such that
there are no implied transaction losses, i.e. that the term Dξn

µ (t, u) vanishes. Then we have
Ln(t, u) = 0, and ‖gn − γ‖An = O

(
δ2+β

)
as n → ∞ and (3.55) imply that the function

γ : [0, T ]× IR→ IR has to satisfy the partial differential equation (2.3).
For the general non-linear case, we now show that the term Dξn

µ (t, u) can equally be expressed
in terms similar to the ones in (3.55), so that we can indeed rewrite (2.4.11) into a discrete
version of (3.48). To this end, we have to separate another term from Dξn

µ (t, u) which also
involves the expression gn(t, u + δ) − 2gn

(
t − δ2, u

)
+ gn(t, u − δ). For this purpose, recall

the definition of Dξn

µ (t, u) in (2.4.12) and the function J : G2 → IR of (3.49). Then we can
rewrite

Dξn

µ

(
t, u
)

ψ•(t, u+ δ)− ψ•(t, u− δ)
= Tn1 (t, u) + Tn2 (t, u), (3.56)

where the terms Tn1 (t, u) and Tn2 (t, u) are given by

Tn1 (t, u) =
ψ•(t+δ2, u)

2δ∆n
u ψ
•(t, u)

(
J
(
gn(t, u+δ), gn(t+δ2, u)

)(
gn(t+δ2, u)− gn(t, u+δ)

)
− J

(
gn(t, u−δ), gn(t+δ2, u)

)(
gn(t+δ2, u)− gn(t, u−δ)

))
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and

Tn2 (t, u) =
1

2δ∆n
u ψ
•(t, u)

(
ψ•
(
t, u+δ

)
J
(
gn(t−δ2, u), gn(t, u+δ)

)(
gn(t, u+δ)− gn(t−δ2, u)

)
− ψ•

(
t, u−δ

)
J
(
gn(t−δ2, u), gn(t, u+δ)

)(
gn(t, u−δ)− gn(t−δ2, u)

))
.

With our approximations for κ and κ′ on hand, we can find difference representations for
Tn1 (t, u) and Tn2 (t, u) which resemble (3.55). Let us first consider the term Tn1 (t, u). By an
application of the equality ac − bd = (a − b)(c + d) − ad + bc, we can express it in terms of
Kn

+(gn, t, u), K̇n
+(gn, t, u) and ∆n

uu,t g
n(t, u) from (3.54) by

Tn1 (t, u) =
1
2
δ2
ψ•(t+δ2, u)
∆n
u ψ
•(t, u)

∆n
u g

n(t, u)
(
Kn

+(gn, t, u)∆n
uu,t g

n(t, u) + K̇n
+(gn, t, u)

(
∆n
u g

n(t, u)
)2)

.

The term Tn2 (t, u) is slightly more complicated since it involve the two prices ψ•(t, u ± δ).
However, if we use the equality ac− bd = 1

2(a+ b)(c− d) + 1
2(a− b)(c+ d) and the definition

of K̄n(ρ, t, u), we get

Tn2 (t, u) :=
Σn
u ψ
•(t, u)

2δ∆n
u ψ
•(t, u)

(
J
(
gn(t−δ2, u), gn(t, u+δ)

)(
gn(t, u+δ)− gn(t−δ2, u)

)
− J

(
gn(t−δ2, u), gn(t, u+δ)

)(
gn(t, u−δ)− gn(t−δ2, u)

))
+

1
2
δ2K̄n(gn, t, u)

(
∆u g

n(t, u)
)2

The first line of the last equation has now the same structure as the term D1, and we can
again use the equality ac− bd = (c+ d)(a− b) + bc− ad to achieve:

Tn2 (t, u) =
1
2

Σn
u ψ
•(t, u)

∆n
u ψ
•(t, u)

Kn
−(gn, t, u)∆n

u g
n(t, u)

(
gn(t, u+ δ)− 2gn(t− δ2, u) + gn(t, u− δ)

)
+

1
2
δ2
(
∆n
u g

n(t, u)
)2(

K̄n(gn, t, u) +
Σn
u ψ
•(t, u)

∆n
u ψ
•(t, u)

K̇n
−(gn, t, u)∆n

u g
n(t, u)

)
.

Since we have Ln(t, u) +Tn1 (t, u) +Tn2 (t, u) = 0, we can divide this equation by δ2 to see that
it is equivalent to the difference equation

0 = Dn(t, u)
1

2δ2
(
gn(t, u+ δ)− 2gn(t− δ2, u) + gn(t, u− δ)

)
+

1
2

∆n
u g

n(t, u)Nn(t, u), (3.57)

where the two functions Dn : An1 (n − 1) → IR and Nn : An1 (n − 1) → IR are for all n ∈ IN
and all (t, u) ∈ An1 (n− 1) defined by setting

Dn(t, u) = 1 +
Σn
u ψ
•(t, u)

∆n
u ψ
•(t, u)

Kn
−(gn, t, u)∆n

u g
n(t, u)

and

Nn(t, u) =
∆n
uu,t ψ

•(t, u)
∆n
u ψ
•(t, u)

+ K̄n(gn, t, u)∆n
u g

n(t, u) +
ψ•(t+ δ2, u)
∆n
u ψ
•(t, u)

Kn
+(gn, t, u)∆n

uu,t g
n(t, u)

+
(

Σn
u ψ
•(t, u)

∆n
u ψ
•(t, u)

K̇n
−(gn, t, u) +

ψ•(t+ δ2, u)
∆n
u ψ
•(t, u)

K̇n
+(gn, t, u)

)(
∆n
u g

n(t, u)
)2
.
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The expression Dn(t, u) approximates the denominator of bγ(t, u) in (3.48). Once we have
shown that Dn(t, u) > 0 for all sufficiently large n, we can divide the equation (3.57) by
Dn(t, u) and obtain

1
2δ2
(
gn(t, u+ δ)− 2gn(t− δ2, u) + gn(t, u− δ)

)
+ ∆n

u g
n(t, u)Bn(t, u) = 0, (3.58)

where Bn : An1 (n−1) → IR is for all (t, u) ∈ An1 (n−1) defined as the ratio Bn(t, u) = 1
2
Nn(t,u)
Dn(t,u) .

The difference equation (3.58) is now easily seen to be a discrete version of the PDE (3.48): If
‖gn−γ‖An = O

(
δ2+β

)
as n→∞, then we could conclude from Taylor’s rule and Lemma 3.25

that uniformly for all (t, u) ∈ [0, T ]× IR, we have

1
δ2
(
gn(t, u+ δ)− 2gn(t− δ2, u) + gn(t, u− δ)

)
= γt(t, u) +

1
2
γuu(t, u) +O

(
δβ
)
,

∆n
u g

n(t, u) = γu(t, u) +O
(
δ1+β

)
,

Bn(t, u) = bγ(t, u) +O
(
δβ
)
,

and it would also suffice to have (3.46) and ‖gn − γ‖An = O
(
δ2
)

as n→∞.
In order to show that Dn(t, u) > 0 for all sufficiently large n ∈ IN , note that by the definitions
of Kn

−(ρ, t, u) we have Kn
−
(
gn, t, u

)
= κ

(
Σn
u g

n(t, u)
)

if ∆n
u g

n(t, u) = 0, and otherwise the
definitions of J : G2 → IR in (3.49), and of gn = g ◦ ξn : An → IR in (2.4.5) lead to

Kn
−
(
gn, t, u

)
= sgn

(
gn(t, u+ δ)− gn(t− δ2, u)
gn(t, u+ δ)− gn(t, u− δ)

)
kµ
(
ξn(t− δ2, u), ξn(t, u+ δ)

)
δ
∣∣∆n

u g
n(t, u)

∣∣
+sgn

(
gn(t− δ2, u)− gn(t, u− δ)
gn(t, u+ δ)− gn(t, u− δ)

)
kµ
(
ξn(t− δ2, u), ξn(t, u+ δ)

)
δ
∣∣∆n

u g
n(t, u)

∣∣ .

Hence Assumption D implies that Kn
− is nonnegative as long as

gn(t, u− δ) ≤ gn(t− δ2, u) ≤ gn(t, u+ δ)

or equivalently

ξn(t, u− δ) ≤ ξn(t− δ2, u) ≤ ξn(t, u+ δ). (3.59)

Since ψ• : [0, T ] × IR → IR is nonnegative as well, we can conclude that Dn(t, u) ≥ 1 for all
(t, u) ∈ An1 (n − 1) if the strategy function ξn : An → IR satisfies the interlocking property
(2.1.6), which in particular holds for the replication strategy of all star-convex contingent
claims.
The replication strategy of a star-concave contingent claim, however, satisfies

ξn(t, u− δ) ≥ ξn(t− δ2, u) ≥ ξn(t, u+ δ) (3.60)

for all (t, u) ∈ An1 (n− 1) and we get Dn(t, u) ≤ 1 for all (t, u) ∈ An1 (n− 1). If the contingent
claim is neither star-convex nor star-concave we might have (3.59) for some (t, u) ∈ An1 (n−1)
and (3.60) for others. In all these cases we know that for all sufficiently small α, a continuous
solution to (3.2), (3.3) exists. Starting with this solution it can then be shown that for
some sufficiently large M ∈ IN we can bound Dn(t, u) ≥ 1

2ε, uniformly for all n ≥ M and
all (t, u) ∈ An1 (n − 1). We will come back to star-concave trading strategies at the end of
Section 3.3.3.
The difference equation (3.58) can now also serve as the starting point to derive for all
sufficiently large n ∈ IN suitable probability weight functions p̌n : An(n − 2) → [0, 1]
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which satisfy the representation (3.47): We can define such weight functions p̌n by setting
p̌n(t, u) = 1

2

(
1 + δBn(t+ δ2, u)

)
for all (t, u) ∈ An(n− 2). If we multiply (3.58) again by δ2,

bring gn(t− δ2, u) to the other side of the equality sign, and use the definition of ∆n
u g(t, u)

we see that (3.58) is indeed equivalent to

gn(t− δ2, u) = p̌n
(
t− δ2, u

)
gn(t, u+ δ) +

(
1− p̌n(t− δ2, u)

)
gn(t, u− δ),

for all (t, u) ∈ An1 (n − 1). Moreover, for all sufficiently large n ∈ IN the range of p̌n is
indeed contained in [0, 1], since it can be inductively shown that

∥∥Bn
∥∥
An

1 (n−1)
is uniformly

bounded for all n ∈ IN for which it is defined because of the boundedness of the solution
γ : [0, T ]× IR→ IR to (3.48) and the boundedness of its derivatives γu, γuu, and γt.
Using now basically the same arguments as in Section 3.2.2 we arrive at the representation

gn(tnk−1, u)− γ(tnk−1, u) = p̌n(tnk−1, u)
(
gn(tnk , u+ δ)− γ(tnk , u+ δ)

)
+
(
1− p̌n(tnk−1, u)

)(
gn(tnk , u− δ)− γ(tnk , u− δ)

)
+O

(
δ4
)
,

as n → ∞, uniformly for all 1 ≤ k ≤ n − 1 and u ∈ Unk−1, and this allows us to argue again
that the convergence of gn immediately before maturity implies the convergence of gn to γ
in all prior time points. Thus we get (3.45). Similarly, we can transfer the arguments used
to derive (2.15) to the general case with transaction losses in order to prove (3.46), but an
exact proof becomes technically cumbersome.
This ends our outline of the proof of Theorem 3.24.

3.3.3 Convergence of the Strategy Functions

Having obtained a convergence result for a sequence of transformed strategy functions, we can
now use the strategy transform to transfer that convergence result back into a convergence
statement for the associated sequence of original strategy functions. We first state the non-
linear final value problem for the limiting strategy function. Existence and uniqueness results
for this problem are immediately derived from the corresponding results for the limiting
transformed strategy. Then the convergence result for the strategy functions follows as a
corollary to Theorem 3.24.
In order to rewrite the final value problem (3.2), (3.3) for the limit γ : [0, T ]× IR→ IR of the
transformed strategies gn : An → IR into a final value problem for the limit ϕ : [0, T ]×IR→ IR
of the strategy functions ξn : An → IR we proceed as in Section 3.2.1, and therefore recall
the strategy transform g : IR→ IR of Definition 2.12. Since we have gn = g ◦ ξn for all n ∈ IN
we obtain for the limits

γ(t, u) = g
(
ϕ(t, u)

)
=
∫ ϕ(t,u)

0
f(x) dx for all (t, u) ∈ [0, T ]× IR. (3.61)

If we now apply Assumption B, the quasi-linear partial differential equation (3.2) can be
rewritten in terms of the limiting strategy function ϕ as

ϕt(t,u) +
1
2
d

du

((
1+2d(µ)

ψξ
(
t,u,ϕ(t,u)

)
ψu
(
t,u,ϕ(t,u)

)ϕu(t,u)
)
ϕu(t,u)

)

= ϕu(t,u)

(
ψt
(
t,u,ϕ(t,u)

)
ψu
(
t,u,ϕ(t,u)

) − 1
2

d
duψu

(
t,u,ϕ(t,u)

)
ψu
(
t,u,ϕ(t,u)

) (1+2d(µ)
ψξ
(
t,u,ϕ(t,u)

)
ψu
(
t,u,ϕ(t,u)

)ϕu(t,u)
))
.

(3.62)

It is obvious that (3.62) generalizes the linear PDE (2.5), and we can directly state the
non-linear analogue of Proposition 3.9:



3.3. THE GENERAL CASE 151

Proposition 3.26. In addition to the Assumptions B, C, and D suppose that f ∈ Hk+β
loc (IR)

for some k ≥ 2 and β ∈ (0, 1). Then there exists a solution γ ∈ H
1
2
(k+β),k+β

(
[0, T ] × IR

)
of

the final value problem (3.2), (3.3) with scaling parameter α = 1 if and only if there exists a
solution ϕ ∈ H

1
2
(k+β),k+β

(
[0, T ] × IR

)
of (3.62) with final condition given by ϕ(T, u) = ζ(u)

for all u ∈ IR, and two such solutions are connected via (3.61).

Remark 1. Note that we need one more derivative of f : IR→ IR than in Proposition 3.9, since
the derivative of the transformed loss function κ : IR → IR contains the second derivative of
f : IR→ IR. �

Remark 2. Of course, we can also rewrite the PDE (3.62), which is given in divergence form,
into a PDE of a form similar to (3.48). For this purpose, let us define the drift coefficient
bϕ : [0, T ]× IR→ IR for all (t, u) ∈ [0, T ]× IR by

bϕ(t, u) =
1
2
d
du

(
ψu(t, u, ϕ(t, u)) + 2d(µ)ψξ(t, u, ϕ(t, u))ϕu(t, u)

)
ψu(t, u, ϕ(t, u)) + 2d(µ)ψξ(t, u, ϕ(t, u))ϕu(t, u)

−
ψt(t, u, ϕ(t, u)) + 2d(µ)ψξ(t, u, ϕ(t, u))ϕt(t, u)
ψu(t, u, ϕ(t, u)) + 2d(µ)ψξ(t, u, ϕ(t, u))ϕu(t, u)

.

Then it can be shown by performing the same operations which led to (3.48) that the non-
linear PDE (3.62) can be rewritten as

ϕt(t, u) +
1
2
ϕuu(t, u) + bϕ(t, u)ϕu(t, u) = 0 for all (t, u) ∈ [0, T ]× IR,

and this representation indeed resembles the form of (3.48). �

We consider once again the final value problem for (3.62) with the final condition chosen
sufficiently small, and hence for fixed ζ : IR→ IR we look at solutions ϕ : [0, T ]× IR→ IR to
the PDE (3.62) which satisfy a boundary condition of the form

ϕ(T, u) = α̃ζ(u) for all u ∈ IR (3.63)

for some α̃ ∈ IR which is sufficiently small. The parameter α̃ serves the same purpose as
the scaling parameter α of (3.3): If |α̃| is chosen sufficiently small, the norms

∥∥∫ α̃ζ(u)
0 f(x)

∥∥
and

∥∥ d
du

∫ α̃ζ(u)
0 f(x) dx

∥∥ become small enough so that the final value problem (3.2) with final
condition γ(T, u) =

∫ α̃ζ(u)
0 f(x) dx has a solution.

In order to state this in exact terms, let us define the bounds b̃ and B̃ on the range of
1
α̃ϕ : [0, T ]× IR→ IR by analogy with the bounds b and B by

b̃ = min
{

0, inf
u∈IR

ζ(u)
}

and B̃ = max
{

0, sup
u∈IR

ζ(u)
}
.

Last but not least, let us also introduce the function L̃′κ : IR → IR as an analogue of L′κ(α)
by setting

L̃′κ(α̃) :=
∣∣2d(µ)

∣∣max

{∥∥∥∥f ′(ξ)f(ξ)

∥∥∥∥
[α̃b̃,α̃B̃]

, |α̃|
∥∥∥∥ ddξ f ′(ξ)f(ξ)

∥∥∥∥
[α̃b̃,α̃B̃]

}
for all α̃ ∈ IR. (3.64)

Then we can use Proposition 3.18 and its proof to derive a similar statement for the final value
problem (3.62), (3.63), which again says that for sufficiently small values on the boundary
{T} × IR, the final value problem has a solution:
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Proposition 3.27. In addition to the Assumptions B, C, and D suppose that the two com-
ponents ψ• and f of ψ belong to the Hölder spaces Ĥ1+ 1

2
β,3+β

(
[0, T ] × IR

)
and H3+β

loc (IR),
respectively, and suppose that ζ ∈ H2+β(IR). Then there exist some α̃1, α̃2 ∈ IR with
α̃1 < 0 < α̃2 such that for all α̃ ∈ (α̃1, α̃2), the final value problem (3.62), (3.63) has a
solution ϕ ∈ H1+ 1

2
β,2+β

(
[0, T ]× IR

)
which satisfies

inf
v∈IR

α̃ζ(v) ≤ ϕ(t, u) ≤ sup
v∈IR

α̃ζ(v) for all (t, u) ∈ [0, T ]× IR (3.65)

and

2L0L̃
′
κ(α̃) inf

(t,u)∈[0,T ]×IR
ϕu(t, u) > −1. (3.66)

Moreover, for all α̃ ∈ IR there exists at most one solution ϕ ∈ C1,2
b

(
[0, T ] × IR

)
of (3.62),

(3.63), which satisfies (3.66) and ϕ(t, u) ∈
[
α̃b̃, α̃B̃

]
for all (t, u) ∈ [0, T ]× IR.

Remark. In Proposition 3.18 we had to limit the range of α to (ρ1, ρ2), since the transformed
loss function κ : g(IR) → IR is only defined on g(IR), which might be a true subset of IR.
In (3.62) such a problem cannot occur, since f : IR → IR is defined for all ξ ∈ IR, hence we
can state for example the uniqueness result for all α̃ ∈ IR. The definition of L̃′κ(α̃) can be
justified if we once again run through the proof of Proposition 3.18 and adjust it in order to
prove the existence of a solution of (3.62), (3.63) directly. As an indication why we have to
replace L′κ(α) by L̃′κ(α̃), let us note that for sufficiently small |α| > 0 the expression L′κ(α)
of (3.4) will be dominated by Lκ(α) = ‖κ‖[αb,αB] =

∥∥ f(g−1( · ))
f2(g−1( · ))

∥∥
[αb,αB]

. Likewise, for small∣∣α̃∣∣ > 0 the maximum in the definition of Lκ(α̃) will be attained by the term
∥∥f ′
f

∥∥. Since
γu(t, u) = f

(
ϕ(t, u)

)
ϕu(t, u) for all (t, u) ∈ [0, T ] × IR, a comparison of (3.66) with (3.6)

makes the different denominator at least plausible. �

As in Section 3.2.3 we can now rephrase the convergence statement for the transformed
strategy functions gn : An → IR of Theorem 3.24 into a statement in terms of the strategy
functions ξn : An → IR and their limit ϕ : [0, T ]× IR→ IR:

Corollary 3.28. Let (ψ, µ) be a large investor price system which satisfies Assumptions B, C,
and D. Moreover, suppose that the two components ψ• and f of the equilibrium price function
ψ belong to the Hölder spaces Ĥ2+ 1

2
β,4+β

(
[0, T ] × IR

)
and H4+β

loc (IR), respectively, and that
there exists some η > 0 such that

∫
eη|θ|µ(dθ) <∞. If the function ϕ ∈ H2+ 1

2
β,4+β

(
[0, T ]×IR

)
solves the final value problem (3.62), (3.63) and satisfies 1+2d(µ)ψξ(t,u,ϕ(t,u))

ψu(t,u,ϕ(t,u))ϕu(t, u) ≥ ε > 0
for all (t, u) ∈ [0, T ] × IR, and if there exists some L ∈ IR such that for all sufficiently large
n ∈ IN and for k ∈ {n− 1, n}∥∥ξn(tnk , · )− ϕ

(
tnk , ·

)∥∥
Un

k
≤ Lδ4+β, (3.67)

then the discrete strategy functions ξn : An → IR converge to the function ϕ : [0, T ]× IR→ IR
in the sense that

‖ξn − ϕ‖An = O
(
δ2
)

(3.68)

and∥∥∥∥ξn(·+ δ2, · ± δ)− ξn ∓ δϕu − δ2
(
ϕt +

1
2
ϕuu

)∥∥∥∥
An(n−1)

= O
(
δ2+β

)
as n→∞. (3.69)
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Remark. In view of the first remark following Theorem 3.24 it is possible to replace the final
condition (3.67) by the combination of the two conditions

∥∥ξn(tnk , · ) − ϕ
(
tnk , ·

)∥∥
Un

k
≤ Lδ4

and
∥∥∆n

u ξ
n
(
tnk , ·

)
−∆n

u ϕ
n
(
tnk , ·

)∥∥
Un

k
≤ Lδ3+β for all k ∈ {n− 1, n}. �

The convergence result of Corollary 3.28 not only proves the convergence of a sequence of given
strategy functions ξn : An → IR. In combination with the existence result of Proposition 3.27,
it is also a helpful tool if we want to construct discrete replicating strategies for contingent
claims

(
ξn, bn

)
as we did in Section 1.4, at least if n is sufficiently large.

To illustrate this, let us come back to the replication of star-concave contingent claims of
Section 1.4.4, and take some nonincreasing function ζ : IR→ IR. Supposing the assumptions
of Proposition 3.27 to hold, we choose some α̃1 < α̃ < α̃2, and denote by ϕ : [0, T ]× IR→ IR
the solution of (3.62), (3.63). If we want to replicate a discrete star-concave contingent claim(
ξn, bn

)
with ξn = α̃ζ

(
Unn
)
, we start by defining ξn

(
tnn, ·

)
: Unn → IR by ξn

(
tnn, u

)
= α̃ζ(u)

for all u ∈ Unn , and use Proposition 1.33 to calculate the function ξn
(
tnn−1, ·

)
: Unn−1 → IR,

which gives us the necessary stock holdings for a self-financing replicating strategy at time
tnn−1. Then it can be checked whether for all sufficiently large n ∈ IN this function satisfies∥∥ξn(tnn−1, ·

)
− ϕ

(
tnn−1, ·

)∥∥
Un

n−1
≤ Lδ4+β for some L > 0. For example, this condition will

hold if bn = bn
(
tnn, U

n
n

)
is chosen as

bn
(
tnn, u

n
ni

)
= bα0 −

∑
j∈In−1
j≤i

((
ϕnn(j+1) − ϕn(n−1)j

)
Sµ
(
tnk , u

n
n(j+1), ϕ

n
(n−1)i, ϕ

n
n(i+1)

)
+
(
ϕn(n−1)j − ϕnn(j−1)

)
Sµ
(
tnk , u

n
n(j−1), ϕ

n
(n−1)i, ϕ

n
n(i−1)

)) (3.70)

for some bα0 ∈ IR, where in analogy to the shorthand ξnki = ξn
(
tnk , u

n
ki

)
of (1.3.12) the

expression ϕnki is a shorthand for ϕ
(
tnk , u

n
ki

)
for all 0 ≤ k ≤ n and i ∈ Ik. Namely, if

ξn = ξn
(
tnn, U

n
n

)
and bn = bn

(
tnn, U

n
n

)
is chosen as in (3.70), then the definition of

(
ξn, bn

)
implies that ξn(n−1)i = ϕn(n−1)i solves the fixed point equation (1.4.10) for all k = n and all
i ∈ In−1.
If the trading strategies ξn : An → IR from time tn0 = 0 up to time tnn = T exist for all
sufficiently large n ∈ IN , we can apply Corollary 3.28 to prove the convergence of those
replicating strategies towards the continuous-time solution ϕ : [0, T ] × IR → IR. Moreover,
since in particular the derivative ϕu : [0, T ] × T → IR is bounded, we can conclude that for
any ε > 0 and all sufficiently large n ∈ IN we have

∥∥∆n
u ξ

n
∥∥
An

1
≤
∥∥ϕu∥∥ + ε. This bound

on the derivative can now serve as an a priori estimate on
∥∥∆n

u ξ
n
∥∥
An

1
when we construct a

star-concave replicating trading strategy as in Section 1.4.4.

3.4 The Limit of the Real Value Functions

For the convergence in distribution of our discrete binomial large investor models we shall
require in Chapter 4 not only the convergence of the discrete strategy functions, but also the
convergence of the associated real value functions towards a continuous-time limit. Such a
convergence statement for the real value functions is derived in Section 3.4.1. For a general
price system (ψ, µ) with transaction losses this convergence result draws on the convergence
of the discrete strategy functions as shown in Section 3.3, and like the limit functions of the
convergence statements in Sections 3.2 and 3.3, the limit function v̄ is given as the solution
to a final value problem. In the presence of transaction losses the final value problem for v̄
also depends on the limit ϕ of the strategy functions. In Section 3.4.2 we derive minimal
regularity assumptions which simultaneously guarantee the existence of solutions to the final
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value problems for ϕ and v̄. The limit strategy ϕ is seen to be a transform of the spatial
derivative of v̄. Especially, in the absence of transaction losses we use this relationship to
weaken the regularity assumptions on the boundary condition for ϕ which we had to impose
in Sections 3.2 and 3.3, so that our limit model can cope for example with a European call.
In Section 3.4.3 we introduce a new parametrization for v̄ in order to compare the final value
problem for the limiting real value function with the corresponding final value problems in
standard small investor models like the Black-Scholes model and small investor models with
proportional transaction costs.
Some results of this section could be presented in more detail, and in particular the conver-
gence of the value functions could be proved rigorously by using tools of Section 3.2 and 3.3.
However, we do not always go into every detail and rather give an overview of possible exten-
sions and immediate consequences of our model, in order to quickly come to the convergence
results in Chapter 4, where we show convergence in distribution of our discrete binomial
models.

3.4.1 Convergence of the Real Value Functions

In this section we show the convergence of the discrete real value functions along the lines of
the convergence statements for the (transformed) strategy functions in Section 3.2 and 3.3.
It is seen that the limit of the real value functions satisfies a linear final value problem. If the
price system does not exclude transaction losses, this final value problem involves the limit
ϕ of the strategy functions, and in noticeable contrast to small investor models, we can only
show the convergence of the discrete value functions if we likewise suppose the convergence
of the discrete strategy functions.
Again we suppose that the price system (ψ, µ) satisfies Assumptions B and D. In order to
get started and quickly come to the convergence result for the real value functions, we will
also suppose Assumption C, though we can slightly relax that assumption if (ψ, µ) does not
induce any transaction losses. In particular, we recall from Lemma 2.3 that Assumption C
implies Assumption A for all sufficiently large n ∈ IN .
We now assume that for each n ∈ IN the large investor replicates some contingent claim
(ξn, bn) by using some path-independent self-financing portfolio strategy (ξn, bn) with asso-
ciated strategy function ξn : An → IR and cash holdings function bn : An → IR as given by
Definition 1.23. We have already shown in great detail in Sections 3.2 and 3.3 under which
conditions the strategy functions {ξn}n∈IN converge to a limit function ϕ : [0, T ]× IR→ IR.
In this section we give additional conditions on the convergence of the cash holdings functions
at maturity, such that the sequence {v̄n}n∈IN of real value functions converges towards a limit
function v̄ : [0, T ]×IR→ IR as well, where for each n ∈ IN the real value function v̄n : An → IR
was introduced in Definition 1.28 by

v̄n(t, u) := ξn(t, u)S̄
(
t, u, ξn(t, u)

)
+ bn(t, u) for all (t, u) ∈ An.

For all sufficiently large n ∈ IN (for which Assumption A holds) we have shown in Corol-
lary 2.14(ii) that the real value function can be recursively calculated from its range of final
values by

v̄n(t, u) = p̄n(t, u)
(
v̄n
(
t+ δ2, u+ δ

)
+ cξ

n

µ

(
t+ δ2, u+ δ, ξn(t, u)

))
+
(
1− p̄n(t, u)

)(
v̄n
(
t+ δ2, u− δ

)
+ cξ

n

µ

(
t+ δ2, u+ δ, ξn(t, u)

)) (4.1)
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for all (t, u) ∈ An(n− 1), and for all those (t, u) we have derived the representation

gn(t, u) = g
(
ξn(t, u)

)
=
v̄(t+ δ2, u+ δ)− v̄(t+ δ2, u− δ)
ψ•(t+ δ2, u+ δ)− ψ•(t+ δ2, u− δ)

+
cξ

n

µ

(
t+ δ2, u+ δ, ξn(t, u)

)
− cξ

n

µ

(
t+ δ2, u− δ, ξn(t, u)

)
ψ•(t+ δ2, u+ δ)− ψ•(t+ δ2, u− δ)

.

(4.2)

for the transformed strategy function gn = g ◦ ξn : An → IR. Note that the s-martingale
weight function p̄n : An(n − 1) → IR and the shorthand cξ

n

µ used in the two representations
were defined in (2.1.10) and (2.1.2), respectively.
Let us now take some function ζ : IR → IR and some constant α ∈ IR so that the limiting
strategy function ϕ : [0, T ]× IR→ IR solves the final value problem

ϕt(t,u) +
1
2
d

du

((
1+2d(µ)

ψξ
(
t,u,ϕ(t,u)

)
ψu
(
t,u,ϕ(t,u)

)ϕu(t,u)
)
ϕu(t,u)

)

= ϕu(t,u)

(
ψt
(
t,u,ϕ(t,u)

)
ψu
(
t,u,ϕ(t,u)

) − 1
2

d
duψu

(
t,u,ϕ(t,u)

)
ψu
(
t,u,ϕ(t,u)

) (1+2d(µ)
ψξ
(
t,u,ϕ(t,u)

)
ψu
(
t,u,ϕ(t,u)

)ϕu(t,u)
)) (4.3)

for all (t, u) ∈ [0, T )× IR with final condition

ϕ(T, u) = αζ(u) for all u ∈ IR, (4.4)

and let us set again γ = g ◦ ϕ. From the discussion in the previous section we know that
under these conditions γ solves the final value problem (3.2) with γ(T, u) =

∫ αζ(u)
0 f(x) dx

for all u ∈ IR. Now fix some bα0 ∈ IR and define the function bα : IR→ IR by

bα(u) = bα0 −
∫ u

0
ψ•(T, ū) d

(∫ αζ(ū)

0
f(z) dz

)
for all u ∈ IR. (4.5)

It turns out that under suitable conditions the discrete real value functions {v̄n}n∈IN will
converge towards the solution v̄ : [0, T ]× IR→ IR of the linear final value problem

v̄t(t, u) +
1
2

(
1 +

ψ•(t, u)
ψ•u(t, u)

κ
(
γ(t, u)

)
γu(t, u)

)
v̄uu(t, u)

= v̄u(t, u)

(
ψ•t(t, u)
ψ•u(t, u)

+
1
2
ψ•uu(t, u)
ψ•u(t, u)

(
1 +

ψ•(t, u)
ψ•u(t, u)

κ
(
γ(t, u)

)
γu(t, u)

)) (4.6)

for all (t, u) ∈ [0, T )× IR, where the boundary condition at time T is given by

v̄(T, u) = αζ(u)S̄
(
T, u, αζ(u)

)
+ bα(u) for all u ∈ IR. (4.7)

If the transaction loss function κ does not vanish, (4.6) depends on the limiting strategy
function ϕ via γ = g◦ϕ. Moreover, we shall see that γ(t, u) = v̄u(t,u)

ψ•u(t,u)
for all (t, u) ∈ [0, T ]×IR.

Hence γ, which we already know, is also completely determined by the solution v̄ of (4.6),
(4.7). If we plugged in this relation in (4.6), we would obtain a non-linear final value problem
for v̄. Due to our knowledge of γ, however, we only need to solve the linear problem (4.6),
(4.7).
Remark. The final condition on the right-hand side of (4.7) can be interpreted as the sum of
the loss-free liquidation value αζ(u)S̄

(
T, u, αζ(u)

)
of ϕ(T, u) = αζ(u) shares of stock and an

amount of bα(u) in cash. If ζ ∈ C1
b (IR), we can rewrite (4.5) as

bα(u) = bα0 − α

∫ u

0
ψ
(
T, ũ, αζ(ũ)

)
ζu(ũ) dũ for all u ∈ IR,

and (3.70) becomes the limit of (4.5) as n→∞. �
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The next lemma gives fairly general conditions under which the function bα : IR → IR is
well defined and under which the final value condition (4.7) is continuous in u. It will soon
become clear in Section 3.4.2 why we allow ζ to be non-continuous, despite the fact that we
have required much more smoothness for it in Sections 3.2 and 3.3.

Lemma 3.29. Assume that ψ• ∈ C0,1
(
[0, T ]×IR

)
and f ∈ C(IR), and suppose that ζ : IR→ IR

is bounded and can be written as ζ = ζac + ζd, where ζac is absolutely continuous with respect
to the Lebesgue measure on IR and where ζd consists only of (left and right) jumps. Then
the function bα : IR → IR of (4.5) is well-defined, and the final condition for v̄ in (4.7) is
continuous in u and differentiable in all continuity points of ζ.

Proof. We first have to show that the Riemann-Stieltjes integral in (4.5) is well-defined for
all u ∈ IR. Therefore, we have to show that, like the function ζ : IR → IR, the function
γ̄ : IR → IR, given by γ̄(u) :=

∫ αζ(u)
0 f(z)dz for all u ∈ IR, can be written as the sum of

an absolutely continuous and a pure jump function, i.e. that it does not contain a singularly
continuous part. To limit the notational burden, let us assume without loss of generality that
ζd is right continuous. The pure jump part γ̄d : IR→ IR of γ̄ is given as

γ̄d(u) :=
∫ αζ(0)

0
f(z)dz +

∑
0<ū≤u

∫ αζ(ū)

αζ(ū−)
f(z) dz −

∑
u<ū≤0

∫ αζ(ū)

αζ(ū−)
f(z) dz for all u ∈ IR,

where of course (at least) one of the two sums is always empty. For the remainder term
γ̄ac : IR→ IR, given by γ̄ac(u) := γ̄(u)− γ̄d(u) for all u ∈ IR, we obtain from considering the
cases 0 ≤ v ≤ u, v ≤ 0 ≤ u and v ≤ u ≤ 0 separately

γ̄ac(u)− γ̄ac(v) =
∫ αζ(u)

αζ(v)
f(z) dz −

∑
v<ū≤u

∫ αζ(ū)

αζ(ū−)
f(z) dz

=
∫ αζ(u)

αζ(v)
f(z)1{

IR\
⋃

ū∈IR[αζ(ū−),αζ(ū)]
}(z) dz for all 0 ≤ v ≤ u,

where we again set
[
αζ(ū−), αζ(ū)

]
:=
[
αζ(ū), αζ(ū−)

]
if αζ(ū−) > αζ(ū). The function

ζ : IR → IR is bounded, thus there exists some R > 0 such that ‖ζ‖ ≤ R, and since
f : IR→ (0,∞) is continuous, f := max[−R,R] f(x) exists as well. Hence we get

∣∣γ̄ac(u)− γ̄ac(v)
∣∣ ≤ f

∣∣∣∣∫ αζ(u)

αζ(v)
1{

IR\
⋃

ū∈IR[αζ(ū−),αζ(ū)]
}(z) dz

∣∣∣∣ = f |α|
∣∣ζac(u)− ζac(v)

∣∣.
By definition, a function z is absolutely continuous, if for any ε > 0 there exists some δ > 0
such that

∑n
i=1

∣∣z(xi)−z(yi)∣∣ < ε for every finite collection
{

(xi, yi)
}

1≤i≤n of non-overlapping
intervals with

∑n
i=1 |xi − yi| < δ. Thus it is clear that the absolute continuity of ζac implies

the absolute continuity of γ̄ac, and hence γ̄ : IR → IR can indeed by written as the sum
γ̄ = γ̄ac + γ̄d of an absolutely continuous function γ̄ac : IR → IR and some pure jump part
γ̄d : IR → IR. Since the function ψ• : [0, T ]× IR → IR, (t, u) 7→ ψ•(t, u) is continuous in u, the
Riemann-Stieltjes integral in (4.5) is well defined.
By partial integration we then obtain

bα(u) = bα0 − ψ•(T, u)
∫ αζ(u)

0
f(x) dx+ ψ•(T, 0)

∫ αζ(0)

0
f(z) dz +

∫ u

0

∫ αζ(ū)

0
ψ•u(T, ū)f(z) dz dū,

and by (2.4.2) the final condition (4.7) becomes

v̄(T, u) = αζ(0)S̄
(
T, 0, αζ(0)

)
+ bα0 +

∫ u

0

∫ αζ(ū)

0
ψ•u(T, ū)f(z) dz dū for all u ∈ IR, (4.8)

which is of course continuous in u and differentiable in all continuity points of ζ. q.e.d.
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If the strategy function ϕ : [0, T ] × IR → IR and hence also the transform γ = g ◦ ϕ is
known, the partial differential equation (4.6) is linear, hence sufficient conditions for the
existence of uniqueness of solutions can be derived from classical arguments. For example,
we might basically use the same arguments as for the final value problem (2.3), (2.4) to
conclude from Theorem IV.5.1 in connection with the discussion on p. 389 in Ladyženskaja
et al. (1968) that for any k ≥ 2 and β ∈ (0, 1) the final value problem (4.6), (4.7) has a unique

solution v̄ : [0, T ] × IR → IR from the class H
1
2
(k+β),k+β

loc

(
[0, T ] × IR

)
for which

∥∥ v̄
ψ•u

∥∥ < ∞
and

∥∥ v̄z

ψ•u

∥∥ < ∞ for z ∈ {t, u, uu} if the functions ψ•, f , and ϕ belong to the Hölder spaces

Ĥ
1
2
(k+β),k+β

(
[0, T ] × IR

)
, Hk−1+β(IR), and H

1
2
(k−1+β),k−1+β

(
[0, T ] × IR

)
, respectively. Note

that we need not state an extra condition for the boundary, since αζ = ϕ(T, · ) and hence
αζ ∈ Hk−1+β(IR) is already implied by ϕ ∈ H

1
2
(k−1+β),k−1+β

(
[0, T ]× IR

)
.

Especially, a unique solution v̄ ∈ H
1
2
(4+β),4+β

loc

(
[0, T ] × IR

)
exists under the assumptions of

Corollary 3.28, where we have stated conditions which guarantee that the convergence of
the strategy functions ξn : An → IR at the times tnn−1 = T − δ2 and tnn = T implies their
convergence towards ϕ on their whole domain.
If we now additionally suppose that the cash holdings functions bn : An → IR of Defini-
tion 1.23 converge to the function bα at time T , at which for each n ∈ IN the cash holdings
function just describes the cash position bn prescribed by the replicated contingent claim
(ξn, bn), then by the definition of v̄n this is equivalent to additionally supposing that the final
values v̄n(T, · ) : Unn → IR of the real value functions converge to v̄(T, · ) : IR → IR, and we
can show the following result:

Proposition 3.30. In addition to the assumptions of Corollary 3.28 suppose that the final
values bn(T, · ) : Unn → IR of the sequence {bn}n∈IN of cash holdings functions bn : An → IR
converge to the function bα : IR→ IR of (4.5) in the sense that∥∥bn(T, · )− bα

∥∥
Un

n
≤ Kδ2+β for all sufficiently large n ∈ IN . (4.9)

Then the real value functions v̄n : An → IR converge to the solution v̄ : [0, T ] × IR → IR of
(4.6), (4.7) in the sense that ‖v̄n − v̄‖An = O

(
δβ
)

as n→∞.

Remark. A proof of Proposition 3.30 is based on the recursive formula (4.1) in combination
with the representation (4.2), which both hold for all sufficiently large n ∈ IN , namely for
all those n ∈ IN for which Assumption C implies Assumption A, and the proof follows the
ideas of Theorem 3.10 and Theorem 3.24. Especially note that by the remark following
Corollary 2.14 and the definition of the function function J : G2 → IR in (3.49) we have

cξ
n

µ

(
t+δ2, u±δ, ξn(t, u)

)
=
(
gn(t+δ2, u±δ)−gn(t, u)

)
J
(
gn(t, u), gn

(
t+δ2, u±δ)

)
ψ•(t+δ2, u±δ)

for all (t, u) ∈ An(n − 1) and hence the expansions of J in Lemma 3.25 yield that the
transaction loss term in (4.2) vanishes if n→∞, and therefore

γ(t, u) =
v̄u(t, u)
ψ•u(t, u)

for all (t, u) ∈ [0, T ]× IR. (4.10)

And indeed, if we differentiate the PDE (4.6) with respect to u, divide it by ψ•u(t, u), and use
(4.10) to replace the derivatives of v̄u : [0, T ]× IR→ IR by derivatives of γ : [0, T ]× IR→ IR,
we arrive at the PDE (3.2). �
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3.4.2 The Final Value Problems for Strategy and Real Value Revisited

In this section we derive minimal regularity assumptions which simultaneously guarantee the
existence of a solution ϕ to the final value problem (4.3), (4.4) and of a solution v̄ to the final
value problem (4.6), (4.7). Our findings will indicate advances which can be obtained in the
continuous model at almost no additional efforts.
We are guided by the results of the Black-Scholes model, where f ≡ 1. In such a model the
value function v̄ : [0, T ]×IR→ IR of a unit European call is continuous, but the final strategy
function ζ : IR → IR, u 7→ ζ(u), which describes the required stock holdings at maturity T ,
jumps from 0 to 1, i.e. from not holding the stock at time T to holding it, depending on the
fundamental value u. However, all the existence results for solutions ϕ : [0, T ] × IR → IR to
the final value problem (4.3), (4.4) which we have presented in Sections 3.2 and 3.3, require at
least continuity of the function ζ : IR→ IR. Hence we are especially interested in weakening
our conditions on the continuity of ζ in order to include the European call in our analysis.
We will now introduce a tuple

(
αζ, bα

)
of functions which describes a European call of α

shares of stock in the continuous model:

Example 3.1 (European Call). Let the price system (ψ, µ) satisfy Assumption B and suppose
that the two components ψ• and f of ψ belong to the spaces C0,1

(
[0, T ] × IR

)
and C(IR),

respectively. Let K ∈ IR be some strike price so that

lim
u→−∞

ψ•(t, u) ≤
(∫ 1

0
f(θα) dθ

)−1

K ≤ lim
u→∞

ψ•(t, u).

Then there exists some u∗ ∈ IR such that ψ•(T, u∗) =
(∫ 1

0 f(θα) dθ
)−1

K, and by (2.4.2) the
real value αS̄(T, u∗, α) of a position of α shares of stock satisfies

αS̄(T, u∗, α) = ψ•(T, u∗)
∫ α

0
f(z) dz = α

∫ 1

0
ψ•(T, u∗)f(θα) dθ = αK.

Let us now define the functions ζ : IR→ IR and bα : IR→ IR by ζ(u) = 1{u≥u∗} and

bα(u) = −αK −
∫ u

u∗
ψ•(T, ū) d

(∫ αζ(ū)

0
f(z) dz

)
for all u ∈ IR,

respectively. Since the function u 7→
∫ αζ(u)
0 f(z) dz is a pure jump function with only one

jump from the left at u∗, we have∫ u

u∗
ψ•(T, ū) d

(∫ αζ(ū)

0
f(z) dz

)
=

{
−ψ•(T, u∗)

∫ α
0 f(z)dz = −αK if u < u∗

0 if u ≥ u∗,
(4.11)

and hence bα simplifies to bα(u) = −αK1{u≥u∗}. The tuple (αζ, bα) is a (functional) descrip-
tion of a European call of (long) α shares of stock in the continuous limit model. In order to
see its connection to the European call which we have introduced in the discrete setting of
Example 1.7, note that the definition of ζ implies

αζ(u)S̄
(
T, u, αζ(u)

)
=

{
0 if u < u∗

αS̄
(
T, u, α

)
if u ≥ u∗.

The real value of the European call at time T can therefore be written as

v̄(T, u) = αζ(u)S̄
(
T, u, αζ(u)

)
+ bα(u) = α

(
S̄(T, u, α)−K

)+ for all u ∈ IR, (4.12)
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where the last equality employs the fact that ψ• : [0, T ] × IR, (t, u) 7→ ψ•(t, u) and hence
also S̄ : [0, T ] × IR × IR, (t, u, ξ) 7→ S̄(t, u, ξ) is strictly increasing in u. Now (4.12) reflects
the real value v̄(T,Unn ) = V̄ n

n = α
(
S̄(T,Unn , α) − K

)+ of the European Call in the discrete
Example 1.7.
Note that we would obtain the same real value v̄(T, u) if we set ζ(u) = 1{u>u∗} and

bα(u) = −
∫ u

u∗
ψ•(T, ū) d

(∫ αζ(ū)

0
f(z) dz

)
= −αK1{u>u∗} for all u ∈ IR.

However, the first choice of ζ corresponds to the large investor’s final stock holdings ξn for
the discrete European call of Example 1.7. �

For our goal to state minimal conditions which simultaneously guarantee the existence of
solutions to the final value problems for ϕ and v̄, we first consider price systems (ψ, µ)
without transaction losses. In this case the final value problem (4.6), (4.7) for v̄ does not
depend on the solution ϕ (or on its transform γ = g ◦ ϕ) to the final value problem (4.3),
(4.4). Thus, we can first obtain an existence result for the final value problem for v̄ and then
look for a solution ϕ to (4.3), (4.4). We find that the function ζ : IR → IR in the boundary
condition (4.7) need not be continuous in order to guarantee the existence of a solution v̄ to
the final value problem (4.6), (4.7). Once a solution to that final value problem has been
found, this solution can be used to construct a solution ϕ to (4.3), (4.4). In particular, our
results will allow us to treat European calls.
We suppose again that Assumptions B and C hold. In addition to that, we suppose

Assumption E. The transformed loss function κ : g(IR) → IR of (3.1) vanishes, i.e. we
have d(µ)f ′(ξ) = 0 for all ξ ∈ IR. Moreover, suppose that the two components ψ• and f of
ψ belong to the Hölder spaces ψ• ∈ Ĥ1+ 1

2
β,3+β

(
[0, T ] × IR

)
and H1+β

loc (IR), respectively. The
function ζ : IR → IR for the final condition is bounded and can be written as ζ = ζac + ζd,
where ζac is absolutely continuous with respect to the Lebesgue measure on IR and ζd consists
only of (left and right) jumps. The parameter α ∈ IR is some arbitrary real number.

If Assumptions B, C, and E hold, we can conclude by the same sort of arguments as in
Lemma 3.8 that the final problem (4.6), (4.7) for the continuous benchmark price function
v̄ : [0, T ] × IR → IR has a unique solution v̄ : [0, T ] × IR → IR which belongs to the class

H
1+ 1

2
β,3+β

loc

(
[0, T ) × IR

)
∩ C0,0

(
[0, T ] × IR

)
. For this solution v̄ we can define the function

γ : [0, T ]× IR→ IR by

γ(t, u) =
v̄u(t, u)
ψ•u(t, u)

for all (t, u) ∈ [0, T )× IR (4.13)

and

γ(T, u) =
∫ αζ(u)

0
f(z) dz for all u ∈ IR. (4.14)

Note that the representation (4.8) implies that v̄(T, · ) is almost everywhere differentiable
and

γ(T, u) =
v̄u(T, u)
ψ•u(T, u)

for all continuity points of ζ : IR→ IR. (4.15)

Then γ ∈ H1+ 1
2
β,2+β

loc

(
[0, T )×IR

)
solves the linear final value problem (2.3), (4.14). If we now

set ϕ := g−1 ◦ γ we can conclude as in Proposition 3.9 that ϕ solves the final value problem
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(2.5) with the (not necessarily continuous) final condition ϕ(T, u) = αζ(u) for all u ∈ IR, and
this solution is unique in the class C1,2

(
[0, T ) × IR

)
. Thus we have found weaker existence

conditions than the ones stated in terms of the transform γ in Lemma 3.8. Moreover, it
still follows from a maximum principle (Corollary I.2.1 in Ladyženskaja et al. (1968)) for the
linear parabolic final value problem (3.2.3), (3.2.4) that the range of γ is determined by the
final condition, i.e. we still have

inf
ū∈IR

{∫ αζ(ū)

0
f(x) dx

}
≤ γ(t, u) ≤ sup

ū∈IR

{∫ αζ(ū)

0
f(x) dx

}
,

and by the monotonicity of the strategy transform g : IR→ IR, x 7→
∫ x
0 f(z) dz it follows that

inf
ū∈IR

αζ(ū) ≤ ϕ(t, u) ≤ sup
ū∈IR

αζ(ū) for all (t, u) ∈ [0, T ]× IR.

Assumption E has the great advantage that it allows us to extend the continuous-time model,
which we derived as a limit of our discrete models, so that we can include a European call or
other “options” for which the prescribed stock holdings at maturity can still be represented
as a function of the fundamentals at that time, but for which this function is either not
differentiable or even not continuous. The drawback, however, is that Assumption E restricts
the class of price systems (ψ, µ) drastically, since it only allows for price systems without
transaction losses. If we want to include transaction losses in our analysis, we cannot expect
the same freedom in choosing ζ any more: In this case the final value problem (4.6), (4.7)
depends via γ = g ◦ ϕ on the solution ϕ of the final value problem (4.3), (4.4), and therefore
we first have to find a solution ϕ to the later problem. We note that minimal conditions
for the existence of a solution to the non-linear final value problem (4.3), (4.4) were given in
Corollary 3.22, though they were only stated in terms of the transformed strategy function
γ = g ◦ ϕ. It turns out that these conditions are also sufficient to guarantee the existence of
a solution to the final value problem (4.6), (4.7). Hence, in the general case with transaction
losses, we suppose in addition to Assumptions B and C:

Assumption F. The transaction loss function κ : g(IR) → IR of (3.1) is nonnegative,
i.e. d(µ)f ′(ξ) ≥ 0 for all ξ ∈ IR. Moreover, suppose that the two components ψ• and f of
ψ belong to the Hölder spaces ψ• ∈ Ĥ1+ 1

2
β,3+β

(
[0, T ] × IR

)
and H3+β

loc (IR), respectively. The
function ζ : IR→ IR for the final condition belongs to the class C1

b

(
IR
)
. The parameter α ∈ IR

is sufficiently close to 0 so that a solution ϕ : [0, T ]× IR→ IR to the final problem (4.3), (4.4)
exists and so that this solution satisfies the constraint

1 + 2d(µ)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≥ ε for all (t, u) ∈ [0, T ]× IR and some ε > 0.

Under Assumptions B, C, and F we get ϕ ∈ H1+ 1
2
β,2+β

loc

(
[0, T )× IR

)
∩ C0,1

b

(
[0, T ]× IR

)
, and

thus it follows once again from the theory of linear partial differential equations that the final

value problem (4.6), (4.7) has a solution v̄ ∈ H1+ 1
2
β,3+β

loc

(
[0, T )× IR

)
∩ C0,2

(
[0, T ]× IR

)
.

3.4.3 Comparison with Standard Models

We now compare the final value problem (4.6), (4.7) for the limiting real value function in our
large investor model with the corresponding final value problems for the value function in the
Black-Scholes model and in some more general small investor models with transaction costs.
Since the value function in the standard small investor models is written in terms of time and
(small investor) stock price, and not in terms of time and fundamentals, a comparison with
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these models becomes much more transparent if we reparametrize the real value function
v̄ : [0, T ] × IR → IR, (t, u) 7→ v̄(t, u) as a function w̄ of time t and small investor stock price
ψ•(t, u).
If the large investor price system (ψ, µ) excludes any transaction losses, we shall see that the
transform w̄ satisfies the Black-Scholes equation and the real value (function) of a European
call in the continuous large investor market will be seen to be just the Black-Scholes price
of the same European call with a modified strike price which reflects the market power of
the large investor. In the general case, where (ψ, µ) does not necessarily prevent transaction
losses, we do not have a closed-form solution for w̄ any more, but we can still make qualita-
tive statements. Besides comparisons with the associated model without transaction losses,
we show structural analogies to small investor models with transaction costs. However, in
this section we only consider the final value problem for the limiting real value function.
The distributional limit model and the limit for the paper value function are discussed in
Chapter 4.

We now require the two Assumptions B and C and one of the Assumptions E and F. At first
we want to transform the real value function v̄ : [0, T ] × IR → IR, (t, u) 7→ v̄(t, u), of time
t and fundamental value u into some function w̄ : D̄ → IR, (t, x) 7→ w̄(t, x) of time t and
small investor stock price x = ψ•(t, u). We have already encountered such a transformation
in the particular discrete setting of Section 2.4.3. Note that the small investor stock price
ψ•(t, u), which would occur if the large investor did not trade in stocks at all, might not be
observable by the small investors, who do not know the actual stock holdings of the large
investor. However, the large investor can derive and employ this price. Since he knows his
own stock holdings ϕ = ϕ(t, u) at time t, he can – and should – deduct his own leverage on
the stock price by dividing the observed market price ψ(t, u, ϕ) by f(ϕ) in order to obtain
the small investor price ψ•(t, u).
Before we can formally define the function w̄, we have to define its domain D̄; hence let us
introduce the set of possible time-space combinations of small investor prices in continuous
time as

D̄ :=
{

(t, x) ∈ [0, T ]× IR
∣∣x = ψ•(t, u) for some u ∈ IR

}
,

which is the continuous analogue of (2.4.21). Under our standing assumptions, the next
lemma shows that D̄ = [0, T ]× (0,∞).

Lemma 3.31. Under Assumptions B and C we have for all t ∈ [0, T ]:

lim
u→−∞

ψ•(t, u) = 0 and lim
u→∞

ψ•(t, u) = ∞.

Especially, for any bounded strategy function ϕ : [0, T ]× IR→ IR we have

lim
u→−∞

ψ
(
t, u, ϕ(t, u)

)
= 0 and lim

u→∞
ψ
(
t, u, ϕ(t, u)

)
= ∞.

Proof. Since d
du logψ•(t, u) = ψ•u(t,u)

ψ•(t,u) = ψu(t,u,ξ)
ψ(t,u,ξ) ≥ 1

L0
=: σ0 > 0 for all (t, u, ξ) ∈ [0, T ] × IR2

we have

logψ•(t, u) = logψ•(t, 0) +
∫ u

0

d

du
logψ•(t, ū)dū

{
≥ logψ•(t, 0) + σ0u if u ≥ 0
≤ logψ•(t, 0) + σ0u if u ≤ 0.

(4.16)

Taking the exponential on both sides and noting that ψ•(t, u) > 0 for all (t, u) ∈ [0, T ] × IR,
we get for any fixed t ∈ [0, T ]:

ψ•(t, u) ≥ ψ•(t, 0)eσ0u →∞ as u→∞
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and 0 < ψ•(t, u) ≤ ψ•(t, 0)eσ0u → 0 as u→ −∞.

This shows the first statement. The second part of the lemma follows immediately from the
multiplicative structure of ψ : [0, T ]× IR2 → IR, and the boundedness of ϕ : [0, T ]× IR→ IR,
since it implies that there exist some 0 < c ≤ C such that c ≤ f

(
ϕ(t, u)

)
≤ C for all

(t, u) ∈ [0, T ]× IR. q.e.d.

By Definition 1.17 the equilibrium price function ψ : [0, T ] × IR2 → IR is strictly increasing
in u, and hence this monotonicity also holds for the associated small investor price function
ψ• : [0, T ]× IR→ IR. In particular, the function u : D̄ → IR is well defined by ψ•

(
t, u(t, x)

)
= x

for all (t, x) ∈ D̄, and we can then define the (transformed) real value function w̄ : D̄ → IR
in analogy to (2.4.22) by

w̄(t, x) = v̄
(
t, u(t, x)

)
for all (t, x) ∈ D̄. (4.17)

Noting that v̄t(t, u) = w̄t
(
t, ψ•(t, u)

)
+ w̄x

(
t, ψ•(t, u)

)
ψ•u(t, u) for all (t, u) ∈ [0, T ]×IR and using

similar equations for v̄u(t, u) and v̄uu(t, u), we can rewrite the partial differential equation
(4.6) for all (t, u) ∈ [0, T )× IR as:

w̄t
(
t, ψ•(t, u)

)
+

1
2

(
1 +

ψ•(t, u)
ψ•u(t, u)

κ
(
γ(t, u)

)
γu(t, u)

)
ψ•2u(t, u)w̄xx

(
t, ψ•(t, u)

)
= 0. (4.18)

In order to express (4.18) in terms of t and x = ψ•(t, u) only, we next define the volatility
function σ̄ : D̄ → (0,∞) by

σ̄(t, x) =
ψ•u(t, u(t, x))
ψ•(t, u(t, x))

for all (t, x) ∈ D̄. (4.19)

If we also recall (4.10), we see that

γ(t, u) = w̄x
(
t, ψ•(t, u)

)
for all (t, u) ∈ [0, T )× IR, (4.20)

and hence we get γu(t, u) = w̄xx
(
t, ψ•(t, u)

)
ψ•u(t, u). Plugging these expressions into (4.18) we

obtain the generalized Black-Scholes equation

w̄t(t, x) +
1
2

(
1 + xκ

(
w̄x(t, x)

)
w̄xx(t, x)

)
σ̄2(t, x)x2w̄xx(t, x) = 0 (4.21)

for all (t, x) ∈ [0, T )× (0,∞) = D\
(
{T} × (0,∞)

)
. For the boundary condition (4.7) we can

once again apply (2.4.2) and substitute x = ψ•(t, u) to rewrite it as

w̄(T, x) = hα(x) := x

∫ αη(x)

0
f(z) dz + bα

(
u(T, x)

)
for all x ∈ ψ(T, IR) = (0,∞), (4.22)

where the function η : ψ•(T, IR) → IR is given by η(x) = ζ
(
u(T, x)

)
for all x ∈ ψ•(T, IR). By

the final condition (4.22) the large investor has to hold αη(x) shares of stock and a cash
amount of bα

(
u(T, x)

)
at time T if the small investor stock price at that time is given by x.

The non-linear partial differential equation (4.21) generalizes the standard Black-Scholes
equation by the additional transaction loss term involving κ. Under Assumption E the
transformed loss function κ : g(IR) → IR vanishes on IR, and (4.21) basically reduces to the
Black-Scholes equation. In this case we can easily transfer results from the standard Black-
Scholes analysis and the theory of stochastic volatility models to the final value problem
(4.21), (4.22), e.g. in order to derive existence conditions or to find optimal super-replication
strategies for an associated continuous-time large investor model.
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In this thesis we will concentrate our investigation of the case where the large investor’s fi-
nal stock holdings are not described by a smooth function of the fundamentals, but where
the price system (ψ, µ) excludes any transaction losses, on our standard example, the Eu-
ropean call. If the volatility function σ̄ is constant, we are able to explicitly calculate the
corresponding large investor’s replication price for that call:
Example 3.2 (European Call). We continue with the European call

(
αζ, bα

)
of Example 3.1

in the special case where the loss function κ : g(IR) → IR vanishes, and where the small
investor price function ψ• : [0, T ]× IR→ IR can be written as

ψ•(t, u) = ea(t)+σu for all (t, u) ∈ [0, T ]× IR

and some constant volatility σ > 0 and some drift function a : [0, T ] → IR. In this case the
volatility function σ̄ : D̄ → IR of (4.19) is constant and equals σ, so that (4.21) becomes the
classical Black-Scholes equation.
Because of (4.12) in Example 3.1 we can rewrite the final condition (4.22) as

w̄(T, x) = α

∫ 1

0
f(αθ) dθ

(
x−K∗)+ for all x ∈ ψ•(T, IR),

where K∗ = K
(∫ 1

0 f(αθ) dθ
)−1. This shows that in terms of w̄ the final value problem (4.21),

(4.22) for the replication of a European call with final real value α
(
S̄(T, u, α)−K

)+ in the
continuous limit model becomes a standard Black-Scholes problem in the associated small
investor market, where a small investor has to replicate g(α) =

∫ α
0 f(z) dz = α

∫ 1
0 f(αθ)dθ

unit European calls (x −K∗)+ with the modified strike price K∗. Now it follows from the
standard Black-Scholes formula and the definition of K∗ that

w̄(t, x) = αC

(
t, x

∫ 1

0
f(αθ)dθ

)
. (4.23)

In this formula C : [0, T ]× (0,∞) → IR is the Black-Scholes price for a European call of one
share of stock with strike K, given by

C(t, x) = xΦ

(
log x

K + 1
2σ

2(T − t)
σ
√
T − t

)
−KΦ

(
log x

K − 1
2σ

2(T − t)
σ
√
T − t

)
,

and the function Φ : IR → [0, 1] is the standard normal cumulative distribution function
Φ(x) = 1√

2π

∫ x
−∞ e−z

2/2 dz for all x ∈ IR.

Recall from (2.4.2) that ψ•(t, u)
∫ 1
0 f(αθ)dθ = S̄(t, u, α) for all (t, u) ∈ [0, T ] × IR. Hence we

conclude from (4.23) that at each date t ∈ [0, T ]× IR, the replication price of the European
call of α shares of stock with total final payoff of α

(
S̄(T, u, α) −K

)+ for all u ∈ IR can be
calculated by the Black-Scholes formula if we plug in the loss-free liquidation price S̄(t, u, α)
at time t given fundamentals of u. Note that this liquidation price is only a theoretical
liquidation price, since the large investor does not hold α stocks at time t. More precisely,
upon differentiating (4.23) and substituting z = αθ we see that

w̄x(t, x) =
∫ α

0
f(z)dzΦ

(
log
(
x
K

∫ 1
0 f(αθ)dθ

)
+ 1

2σ
2(T − t)

σ
√
T − t

)
for all (t, x) ∈ [0, T )× (0,∞).

Because of g(x) =
∫ x
0 f(z)dz and Φ(x) < 1 for all x ∈ IR it then follows for all α 6= 0 that

0 < ϕ(t, u) = g−1
(
w̄x
(
t, ψ•(t, u)

))
< α or α < ϕ(t, u) < 0 for all (t, u) ∈ [0, T )× IR.

This means that as in the small investor case, the large investor holds at any time before
maturity a stock position which lies strictly between the two extreme payment obligations of
0 and α stocks, which the large investor might face at maturity. �
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Remark. In the particular case where ψ(t, u, ξ) = S0e
σu+(µ−r)t+gξ for all (t, u, ξ) ∈ [0, T ]×IR2,

Jonsson et al. (2004) have independently derived the same formula (4.23) for the value of α
European call options if the large investor always trades at the benchmark price. As discussed
in the remark concluding Section 1.3.5, in order to justify the validity of the benchmark price
at maturity, these authors assume that the holder of the option has the right to immediately
sell the α shares of stock back to the large investor and receive in exchange the corresponding
real value in cash. �

The previous example works especially well because it only considers the special setting
of Assumption E where the large investor does not have to bear any transaction losses.
Under Assumption F, however, the large investor is exposed to some nonnegative implied
transaction losses, and the term xκ

(
w̄x(t, x)

)
w̄xx(t, x) in (4.21) does not vanish. In that case

we can still prove the existence of solutions to (4.21), (4.22) via the final value problem (4.6),
(4.7) whenever the second derivative d2

dx2h
α of the boundary function hα : ψ(T, IR) → IR,

x 7→ hα(x), in (4.22) stays sufficiently small. Of course, this restriction excludes all standard
calls and puts, but as noted by Frey (1998), this is more a technical issue than a strong
limitation on the applicability of our model, since we might smooth out the kink in the payoff
of a call or put by replacing for example the payoff condition hα(x) = g(α)(x − K)+ by
hα(x) = 1

2g(α)
(√

ε+ (x−K)2 + x −K
)

for some small ε > 0. This smoothing would also
accommodate the fact that traders will stop their delta hedging of a call close to maturity if
its gamma becomes too large, and in particular if the stock price is close to the strike price.
The term for the implied transaction losses in the generalized Black-Scholes equation (4.21)
will change the volatility from σ̄ : D̄ → (0,∞) in the setting without transaction losses to
σ : D̄ → (0,∞) in the setting of Assumption F, where

σ2(t, x) =
(

1 + xκ
(
w̄x(t, x)

)
w̄xx(t, x)

)
σ̄2(t, x) for all (t, x) ∈ D̄. (4.24)

Under our standing assumptions we have L0 :=
∥∥ ψ•
ψ•u

∥∥ < ∞, hence we get σ̄(t, x) ≥ 1
L0

for
all (t, x) ∈ D̄. On the other hand, under Assumption F we conclude from ζ ∈ C1

b (IR) that
(4.20) even holds for all (t, u) ∈ [0, T ]× IR, and together with Definition 3.17, the definition
γ = g ◦ ϕ and the multiplicative structure of ψ we obtain

1 + ψ•(t, u)κ
(
w̄x(t, ψ•(t, u))

)
w̄xx

(
t, ψ•(t, u)

)
= 1 + 2d(µ)

ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) > ε.

Under Assumption E the left-hand side is 1, because of κ ≡ 0, thus we have proved that
under our standing assumptions the function σ2 : D̄ → IR can be bounded away from 0.
Since the loss function κ : g(IR) → IR is nonnegative and since D̄ = [0, T ]× (0,∞), it follows
that σ2(t, x) ≥ σ̄2(t, x) if w̄xx(t, x) ≥ 0, or equivalently if γu

(
t, u(t, x)

)
≥ 0. Now Lemma 3.21

yields that γu(t, u) ≥ 0 for all (t, u) ∈ [0, T ] × IR is already implied by αζu(t, u) ≥ 0 for all
(t, u) ∈ IR, hence it follows from the definition of η : ψ•(T, IR) → IR and the boundary condition
(4.22) that w̄xx(t, x) ≥ 0 for all (t, x) ∈ D̄ if only αη : ψ•(T, IR) → IR is nondecreasing, or
equivalently if hα : ψ•(T, IR) → IR is convex. Similarly, it follows that w̄xx(t, x) ≤ 0 for
all (t, x) ∈ D̄ if αη : ψ•(T, IR) → IR is nonincreasing, which is equivalent to requiring that
hα : ψ•(T, IR) → IR is concave. These observations can be used to show that the implied
transaction losses raise the real value of the replicating portfolio of a convex contingent claim
in the continuous limit model, and likewise they reduce the limiting real value of portfolios
which replicate concave contingent claims. Especially, in the limit model, the real value for
replicating a smoothed long call is higher and the one for a smoothed short call is lower than
the corresponding replication value in the associated small investor model of Black-Scholes
type. This coincides with our intuition, since in replicating a long call the large investor
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has to buy stocks when the stock price rises, which again leads to a further rise of the stock
prices, while in replicating a short call, the large investor’s strategy is anticyclic and reduces
the volatility in the market.
The additional implied term induced by the transaction losses might also be a good explana-
tion for the smile effect, which says that if the Black-Scholes formula is used to derive market
volatilities from European call prices in real markets, the implied volatility is normally a
U -shaped function of the option’s strike.

Remark 1. We have already encountered the connection between our discrete large investor
model and standard small investor models with transaction losses in Section 2.3. So it is no
surprise that the final value problem for the limit of the real value functions of the discrete
models, if the discrete grid becomes finer and finer, resembles the corresponding final value
problems for the replication value of options in continuous-time small investor models with
transaction costs. In particular, our results on the function w̄ and the volatility in the limit
model match up with the results on proportional transaction costs model such as the ones of
Leland (1985), Boyle and Vorst (1992) and Opitz (1999), and our limiting non-linear PDE
for w̄ is similar to the non-linear Black-Scholes equation derived by Barles and Soner (1998)
as a limit of utility-maximization-based option prices in certain proportional transaction cost
models.
Upon transforming Boyle and Vorst’s scaling h = T

n into our scaling δ2 = 1
n , we recall from

Boyle and Vorst (1992) that in a Cox-Ross-Rubinstein model with n time steps, constant
volatility σ̄0 and some constant transaction cost rate k, the replication prices of a long and
a short European call are for large values of n and small values of k approximately given by
the Black-Scholes prices with increased or decreased volatility σ given by

σ2 = σ̄2
0

(
1 +

1
σ̄0

2k
√
n
)

and σ2 = σ̄2
0

(
1− 1

σ̄0
2k
√
n
)
, (4.25)

respectively. Opitz (1999) extends this model and shows that if the transaction cost rates for
purchase and sale differ, the factor 2k has to be replaced by the sum of the rates for purchase
and sale.
Comparing the equations for σ2 in (4.25) with those in (4.24) we observe that the transaction
cost rate k plays the same role as the expression 1

2δκ
(
wx(t, x)

)∣∣xwxx(t, x)
∣∣ in (4.24). By

(4.20), by the definition of the loss function κ : IR → IR in (3.1) and by γ = g ◦ ϕ the last
expression becomes 1

2δκ
(
wx(t, x)

)∣∣xwxx(t, x)
∣∣ = δd(µ)f

′(ϕ(t,u))
f(ϕ(t,u)) |ϕu(t, u)|, which again is for

large n approximately given by kµ
(
ϕ(t− δ2, u), ϕ(t, u± δ)

)
due to the expansion (1.2.18) in

Proposition 1.15. Hence the transaction cost rate k in Boyle and Vorst (1992) corresponds
to the local implied transaction losses kµ

(
ϕ(t − δ2, u), ϕ(t, u ± δ)

)
. This actually was the

main motivation to introduce the local implied transaction loss rate kµ : [0, T ]× IR2 → IR in
(2.4.6).
Barles and Soner (1998) investigate the utility maximization approach of Hodges and Neu-
berger (1989) to show that if the product γN of risk aversion and the number of shares of
stocks sold tends to 0 and if the proportional transaction costs are given by µ = a

√
γN

for some a ∈ IR, then in the limit the value function for a short European call (either with
physical delivery or with cash settlement) will satisfy a non-linear PDE similar to (4.21):
only the expression xκ

(
w̄x(t, x)

)
w̄xx(t, x) is replaced by some more complicated function of

a2x2w̄xx(t, x).
The final value problem (4.21), (4.22) also resembles the final value problem for a European
call in the large investor model of Jonsson and Keppo (2002). These authors suppose that
the large investor’s trades change the relative excess return of the stock by some exponential
factor, and for the value function associated to a European call they then obtain a non-linear
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partial differential equation of the form (4.21), where the term 1 + xκ
(
w̄x(t, x)

)
w̄xx(t, x) is

replaced by some exponential of the derivative w̄x(t, x).
Platen and Schweizer (1998), Frey and Patie (2002) and Liu and Yong (2004) have explained
the smile pattern in various large investor models by the feedback of the large investor’s
trading strategy on the stock price. �

Remark 2. As a last remark in this section, we should spend some more time on our choice
of parametrizing the real value function v̄ : [0, T ] × IR → IR, (t, u) 7→ ψ•(t, u), in terms
of the small investor stock prices ψ•(t, u) by introducing the transform w̄ : D̄ → IR which
satisfies w̄

(
t, ψ•(t, u)

)
= v̄(t, u) for all (t, u) ∈ [0, T ] × IR. The small investor prices would

only appear in the market if the large investor did not trade in the stock at all. However,
since the large investor actively trades in the market according to the limit strategy function
ϕ : [0, T ] × IR → IR, it would also make sense to parametrize the value function in terms
of time t and the equilibrium stock price ψ

(
t, u, ϕ(t, u)

)
at that time. This would give a

parametrization in terms of a price which is not only observable by the large investor, but
also by the small investors.
There are several reasons which have prevented us from using such a parametrization for
the real value function. On the one hand, we would need to further restrict the possible
strategy functions ϕ : [0, T ] × IR → IR for the large investor in order to guarantee that the
price function u 7→ ψ

(
T, u, φ(t, u)

)
is invertible. In particular, we would have to put more

restrictions on α and ζ of the boundary condition (4.4); for example we would need to ex-
clude any short European call, where ζ : IR → IR is given as in Example 3.1 and α < 0.
But even if the derivative d

duψ
(
t, u, ϕ(t, u)

)
is strictly positive for all (t, u) ∈ [0, T ]× IR so

that we can indeed invert u 7→ ψ
(
T, u, φ(t, u)

)
, the analysis of the real value and strategy

functions in terms of some functions w̃ and ϕ̃ which satisfy w̃
(
t, ψ(t, u, ϕ(t, u))

)
= v̄(t, u) and

ϕ̃
(
t, ψ(t, u, ϕ(t, u))

)
= ϕ(t, u) for all (t, u) ∈ [0, T ]×IR becomes very unpleasant, since the pa-

rameter x = ψ
(
t, u, ϕ(t, u)

)
of w̃ and ϕ̃ itself depends on ϕ(t, u) = ϕ̃(t, x). In particular, this

complicates the relationship between the parametrization ϕ̃ of the large investor’s strategy
and the parametrization w̃ of the associated real value.
If the large investor always trades at the benchmark price so that the loss function κ vanishes,
the transfer from the partial differential equation (4.6) or (4.18) to a partial differential equa-
tion for w̃ remains comparatively simple. In such a situation we get for all (t, u) ∈ [0, T )× IR
that

0 = w̃t(t, x) +
1
2

(
d

du
ψ
(
t, u, ϕ(t, u)

))2

w̃xx(t, x)

+ w̃x(t, x)

(
d

dt
ψ
(
t, u, ϕ(t, u)

)
+

1
2
d2

du2
ψ
(
t, u, ϕ(t, u)

)
−
ψt + 1

2ψuu

ψu

d

du
ψ
(
t, u, ϕ(t, u)

))
,

where x = x(t, u) = ψ
(
t, u, ϕ(t, u)

)
, and where the missing arguments for the partial deriva-

tives of ψ : [0, T ]× IR2 → IR are also given by
(
t, u, ϕ(t, u)

)
. Note that the drift term w̃x(t, x)

disappears if ψξ

ψu
≡ const, since then ψuξ = ψuu

ψu
ψξ and ψξξ = ψuξ

ψu
ψξ, and the term in brackets

is seen to become 0 due to the partial differential equation (4.3) for ϕ : [0, T ]× IR → IR. In
this particular case w̃ satisfies an equation of Black-Scholes type with a time-space-dependent
volatility which depends on the strategy ϕ : [0, T ]× IR→ IR and its derivative ϕu, or equiva-
lently on the transform ϕ̃ of the strategy function ϕ and its derivative ϕ̃x. Though this case
is the easiest, without reparametrization the standard Black-Scholes analysis fails to find
solutions of the corresponding final value problem for w̃ or to derive the limiting replicating
strategy function ϕ̃. This does not give much hope for more general situations, where the
drift term in the partial differential equation for w̃ need not vanish at all.
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Although we reject the parametrization in terms of ψ•
(
t, u, ϕ(t, u)

)
for the limiting real value

function, we shall see in Section 4.2.5 that exactly this parametrization is beneficial for
analyzing the limit of the paper value functions {vn}n∈IN of (1.3.19). �
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Chapter 4

Convergence of the Binomial Model

In this chapter we investigate the convergence in distribution of the sequence of binomial
large investor models under two different regimes of martingale measures.
Our convergence results rely on a convergence theorem for general correlated random walks.
These random walks, for which the direction of the next move depends on time, space, and
the direction of the previous move, are introduced in Section 4.1. The convergence theorem
for this class of random walks, stated in Section 4.1 and proved in Chapter 5, shows that a
sequence of such (re-scaled) general correlated random walks converges to a diffusion process
with explicitly given coefficients if the one-step transition probabilities can be approximated
for large n ∈ IN by a suitable function of time, space and the direction of the previous move.
Section 4.2 deals with the convergence in distribution under the p-martingale measure which
is implied by the large investor’s strategy. Under each p-martingale measure the fundamental
process is a general correlated random walk. If we impose conditions as in Chapter 3 which
imply the convergence of the large investor’s discrete strategy and real value functions to so-
lutions of certain final value problems, then the transition probabilities for the fundamental
process have the asymptotic behavior required for an application of the convergence theorem
for correlated random walks. From this theorem, it follows that the sequence of (rescaled)
fundamental processes converges in distribution to a diffusion limit. The coefficients of the
limit process are explicitly given and depend on the limit of the large investor’s strategy func-
tions. From the convergence of the fundamental process we can then deduce the convergence
in distribution of all other model-relevant processes like price, strategy and value. We find
that our limit model does not only extend the Black-Scholes model, but also extends many
of the standard continuous-time large investor models found in the literature.
In Section 4.3 we consider the converge in distribution of the sequence of binomial large
investor models under the s-martingale measures. Under each of these measures, the funda-
mental processes is again a general correlated random walks, but of a very simple structure,
since its increments are not correlated at all. We again apply the convergence theorem for
general correlated random walks and show that the fundamentals converge to a Brownian
motion with drift. From this, we derive the convergence of strategy, price, and real value.
Like in the discrete case, the real value is in general a supermartingale under the s-martingale
measure , and it is a martingale if the price system excludes transaction losses.
As in Chapters 2 and 3 we again take T = 1 to limit the notational burden.

4.1 Convergence for General Correlated Random Walks

In order to prove the convergence of our discrete binomial large investor models, we appeal
to a powerful convergence theorem for a certain class of random walks, which we shall refer
to as general correlated random walks. These random walks are called correlated, since their
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transition probabilities depend on the direction of the random walk’s previous move, and they
are called general, since their one-step transition probabilities can also depend on time and
the random walk’s previous position in space. The convergence result is remarkable, since
it does not assume that the random walk is asymptotically uncorrelated in the sense that
the dependence of the transition probabilities on the direction of the random walk’s previous
move vanishes asymptotically.
Because the theory of general correlated random walks is a topic on its own, we defer a
precise definition and a discussion of those random walks to Chapter 5. In the current
section we only define a sequence of correlated random walks which have the same structure
as the fundamental processes in our discrete binomial models, and then state a convergence
theorem for this class of random walks which directly follows from the main convergence
theorem for general correlated random walks in Chapter 5. This will be sufficient to show
the convergence in distribution of our discrete large investor models in Sections 4.2 and 4.3.
Let us fix some u0, µ0 ∈ IR and some σ ≥ 0, and as in the previous chapters let us denote
δ = δn = n−

1
2 and tnk = k

n for all 0 ≤ k ≤ n and n ∈ IN . Suppose now that for each n ∈ IN
we are given some function pn : [0, T ) × IR × {±1} → [0, 1]. Then for each n ∈ IN we can
recursively define a general correlated random walk Xn = {Xn

k }0≤k≤n with values in IR and
its associated tilt process Zn = {Znk }0≤k≤n on some probability space

(
Ωn,Fn,Pn

)
by taking

some {±1}-valued random variable Zn0 , setting Xn
0 = u0, and then defining step by step the

random variables Znk ∈ {±1} denoting the tilt at step k (or at time tnk) by

Pn
(
Znk = 1

∣∣ {Zni }0≤i≤k−1

)
= Pn

(
Znk = 1

∣∣Xn
k−1, Z

n
k−1

)
= pn

(
tnk−1, X

n
k−1, Z

n
k−1

)
(1.1)

and the random variable Xn
k , which denotes the position of the correlated random walk Xn

at time tnk , by

Xn
k = Xn

0 + µ0t
n
k + σδ

k∑
i=1

Zni , for all 1 ≤ k ≤ n.

Thus the direction of the random walk’s move at time tnk , which is indicated by the tilt Znk ,
depends on the direction Znk−1 of the previous move. Moreover, in contrast to a homogeneous
random walk, the tilt Znk may also depend on the time tnk−1 and the position Xn

k−1 of the
random walk at tnk−1. This explains why we call the random walk Xn a general correlated
random walk. An extensive discussion of correlated random walks and similar concepts in
the literature is given in the introductory Sections 5.1 and 5.2 of Chapter 5.
Our convergence theorem for general correlated random walks is formulated in terms of
continuous-time stochastic processes with paths in the space D[0, T ] of càdlàg functions
f : [0, T ] → IR, i.e. of functions that are right-continuous and have left limits. Here the
space D[0, T ] is endowed with the Skorohod topology. In order to transform our sequence
{Xn}n∈IN of discrete general correlated random walks into a sequence of processes in D[0, T ]
we define for each n ∈ IN the continuous-time stochastic processes Un = {Unt }t∈[0,T ] in terms
of the correlated random walk Xn =

{
Xn
k }0≤k≤n by setting

Unt = Xn
dnte for all 0 ≤ t ≤ T . (1.2)

Remark. Recall our standing assumption T = 1. For a general T > 0, we would set
Unt = Xn

dñte, where ñ is for all n ∈ IN given by ñ = T−1dnT e. Then the following con-
vergence theorem also covers the general case. �

Now we can state the convergence theorem for general correlated random walks which we
shall need in Sections 4.2 and 4.3:

Theorem 4.1. Suppose the functions a : [0, T ]× IR → IR and b : [0, T ]× IR → IR belong to
the Hölder spaces H

1
2
(1+β),1+β

(
[0, T ] × IR

)
and H

1
2
β,β
(
[0, T ] × IR

)
, respectively, and assume
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‖a‖ < 1. If the probability functions pn : [0, T ) × IR × {±1} → [0, 1] of (1.1) converge
uniformly for all (t, u) ∈ [0, T )× IR in such a way that

pn(t, u,±1) =
1
2

(
1± a(t, u) + δb(t, u)

)
+O

(
δ1+β

)
as n→∞, (1.3)

then the sequence of processes {Un}n∈IN of (1.2), starting in u0 at time 0, converges in
distribution to the process U = {Ut}t∈[0,T ] given by U0 = u0 and

dUt =

(
µ0 +

σb(t, Ut)
1− a(t, Ut)

+
σ2au(t, Ut)(

1− a(t, Ut)
)2
)
dt+ σ

√
1 + a(t, Ut)
1− a(t, Ut)

dWt, (1.4)

where W = {Wt}t∈[0,T ] is a standard Brownian motion on [0, T ]. In particular, there exists
a weak solution of (1.4).

As usual, we write Un ⇒ U in order to denote that a sequence {Un}n∈IN of stochastic
processes in D[0, T ] (or more generally in Dd[0, T ]) converges in distribution to U . Of course,
convergence in distribution depends on the underlying probability measures. If we want
to emphasize the corresponding sequence {Pn}n∈IN of probability measures under which
{Un}n∈IN converges in distribution, we shall adopt the notation(

Un
∣∣Pn

)
⇒
(
U
∣∣P) as n→∞,

where P is the distribution of the limit process U .
We shall come back to correlated random walks in Chapter 5, where we also provide the
reader with a proof of Theorem 4.1. For now, we immediately proceed to an application of
this theorem in order to show the convergence of our binomial large investor models.

4.2 Convergence under the p-Martingale Measures

The p-martingale measure is the unique measure under which both the large investor price
process and the paper value process are martingales. In this section we show that our discrete
binomial models converge in distribution to a stochastic diffusion model if the large investor
asymptotically replicates the same contingent claim. Here the convergence means that the
sequence of distributions of the fundamental processes, the stock price processes and the
paper value processes under the associated p-martingale measures converge weakly.
The assumptions necessary to prove such a convergence statement are summarized in Sec-
tion 4.2.1. Especially, we suppose that the large investor’s discrete strategy functions converge
at and immediately before maturity to the corresponding values of the continuous strategy
function ϕ of Chapter 3, so that the strategy functions converge as in Chapter 3 on the
whole interval [0, T ]. Whenever the stock price does not immediately adjust to an order of
the large investor, we also require the convergence of the large investor’s stock holdings just
before time 0. Section 4.2.2 yields that for all sufficiently large n ∈ IN the large investor’s
discrete trading strategy

(
ξn, bn

)
is p-admissible so that the associated p-martingale measure

is well-defined. In Section 4.2.3 we find that under the p-martingale measure the fundamen-
tal process describes a general correlated random walk. Then an application of Theorem 4.1
shows that the sequence of fundamental processes converges in distribution to a diffusion
process. The diffusion coefficients are given explicitly and depend on ϕ. In Section 4.2.4 we
deduce the convergence of the sequences of tuples of fundamental, price, value and strategy
process from the convergence of the fundamentals, since these processes are all more or less
complicated functions of the fundamentals. Section 4.2.5 considers the limiting paper value
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function as a function of time and large investor stock price. We shall see that this function
solves a generalized Black-Scholes equation. Other continuous-time large investor models of
the literature turn out to be special cases of our limit model. Finally, in Section 4.2.6 we
explore the resulting limit model; we investigate existence and uniqueness of the stochastic
differential equation for the fundamentals under weaker regularity conditions, give martingale
representations for the stock price and paper value process, and discuss the problems of our
model with regard to the large investor’s trades at time 0 and at maturity.

4.2.1 General Assumptions and Definitions

In this section, we state the general setting used for our convergence results under the p-
martingale measures. First we describe the evolution of the fundamentals over time in the
discrete binomial models. Then we present the Assumptions G to L under which we derive
our convergence result. Some technical definitions conclude the section.
We start with expanding our definition of the fundamental process in the discrete models to
corresponding processes in the space D[0, T ] of càdlàg functions on [0, T ]. Therefore, let us
recall from Section 1.3.2 for each n ∈ IN the filtered probability space

(
Ωn,Fn

n ,Fn,Pn
)
, the

tilt process Zn = {Znk }0≤k≤n on
(
Ωn,Fn

n

)
, consisting of {±1}-valued random variables, and

the fundamental process Un = {Unk }0≤k≤n, which is given by

Unk = u0 + δ

k∑
j=1

Znj for all 0 ≤ k ≤ n. (2.1)

Here u0 ∈ IR is some arbitrary fixed real number, and δ is as usual given by δ = δn = n−
1
2 for

each n ∈ IN . As in (1.2) we now also define the continuous-time process Un =
{
Unt
}
t∈[0,T ]

with paths in the space D[0, T ] by setting

Unt := Undnte for all t ∈ [0, T ] (2.2)

and all n ∈ IN . Note that the definition of Un leads to some ambiguities, but it will be clear
from the context whether we consider the continuous-time jump process Un =

{
Unt
}
t∈[0,T ]

or
the discrete random walk Un =

{
Unk
}

0≤k≤n.
For the entire sequence of discrete large investor models, we have one underlying price system
(ψ, µ). In order to show the convergence in distribution of our discrete models we need to
impose:

Assumption G (On the price system (ψ, µ)). There exist some strictly positive func-
tions ψ• ∈ Ĥ2+ 1

2
β,4+β

(
[0, T ]× IR

)
and f ∈ H4+β

loc (IR) such that the equilibrium price function
ψ : [0, T ]× IR2 → IR satisfies the multiplicative structure

ψ(t, u, ξ) = ψ•(t, u)f(ξ) for all (t, u, ξ) ∈ [0, T ]× IR2.

We also have L0 :=
∥∥ ψ•
ψ•u

∥∥ < ∞. For the measure µ there exists some η > 0 such that∫
eη|θ|µ(dθ) <∞. The price system (ψ, µ) excludes any immediate transaction gains, i.e. by

the remark following Definition 3.17 we have in particular d(µ)f ′(ξ) ≥ 0 for all ξ ∈ IR.

Having agreed on the price system, we now consider the large investor’s strategy. We start
with fixing the shape ζ : IR → IR of the large investor’s stock holdings at maturity in the
continuous limit model as a function of the fundamental value. For a sufficiently small scaling
parameter |α|, Proposition 3.27 guarantees the existence of a sufficiently smooth function
ϕ : [0, T ] × IR → IR which coincides with αζ at maturity and which satisfies the partial
differential equation (3.4.3). This function ϕ will be our candidate for the large investor’s
limiting strategy function in continuous time:
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Assumption H (Solvability of the non-linear PDE for ϕ). For ζ ∈ H4+β(IR) the
parameter α ∈ IR is chosen so close to 0 that there exists some ϕ ∈ H2+ 1

2
β,4+β

(
[0, T ] × IR

)
which solves the final value problem (3.4.3), (3.4.4), which satisfies

α inf
z∈IR

ζ(z) ≤ ϕ(t, u) ≤ α sup
z∈IR

ζ(z) for all (t, u) ∈ [0, T ]× IR, (2.3)

and for which there exists some ε > 0 such that

2d(µ)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≥ −1 + ε for all (t, u) ∈ [0, T ]× IR. (2.4)

Assumption I (The p-martingale measures are well-defined). The scaling parameter
α ∈ IR from Assumption H is also chosen so close to 0 that

ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≥ −1 + ε for all (t, u) ∈ [0, T ]× IR. (2.5)

Remark. Note that we have shown in Proposition 3.27 that for all sufficiently small |α| > 0
the final value problem for ϕ given by (3.4.3), (3.4.4) has a solution which satisfies (2.3) and
2L0L̃

′
κ(α) inf(t,u)∈[0,T )×IR ϕu(t, u) > −1. By the definition of L0 and of L̃′κ in (3.3.64), the

latter inequality implies that there exists some ε > 0 such that

1 + 4d(µ)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≥ ε. (2.6)

This obviously implies (2.4). If 4d(µ) ≥ 1, we can conclude from (2.6) that (2.5) holds as
well. On the other hand, if we have the opposite inequality 4d(µ) < 1, the interval (α̃1, α̃2)
from which we can choose the scaling parameter α to guarantee the existence of a solution ϕ
to (3.4.3), (3.4.4) might be too big to guarantee that ϕ satisfies (2.5) as well. However, (2.5)
will hold if the scaling parameter is taken small enough: It can be checked from the proof
of Proposition 3.27 and Proposition 3.19 that we can still find an open subinterval (ᾱ1, ᾱ2)
with 0 ∈ (ᾱ1, ᾱ2) ⊂ (α̃1, α̃2) such that all solutions to the final value problem (3.4.3), (3.4.4)
with α ∈ (ᾱ1, ᾱ2) satisfy condition (2.5).
Of course, condition (2.5) ensures that the derivative d

duψ
(
t, u, ϕ(t, u)

)
remains bounded away

from 0. In particular, it guarantees that we can invert the function u 7→ ψ
(
t, u, ϕ(t, u)

)
. �

For each of our discrete large investor models, we can now take some path-independent
portfolio strategy

(
ξn, bn

)
as introduced in Definition 1.23, and we define the associated

strategy function ξn : An → IR and the cash holdings function bn : An → IR accordingly.
We only need to ensure the convergence of the strategy functions {ξn}n∈IN to the continuous
limit function ϕ immediately before and at maturity in order to conclude from Corollary 3.28
that the sequence {ξn}n∈IN converges to ϕ everywhere. In order to apply this corollary, we
therefore require:

Assumption J (Stock holdings converge close to maturity). Immediately before and
at maturity, the large investor’s stock holdings converge in the sense that

max
k∈{n−1,n}

∥∥ξn(tnk , · )− ϕ
(
tnk , ·

)∥∥
Un

k
= O

(
δ4+β

)
as n→∞. (2.7)

If we now suppose in addition to Assumptions G to J that the final values of the sequence
{bn}n∈IN of the discrete cash holdings functions bn : An → IR converge to a certain function
bα : IR→ IR, we can likewise conclude from Proposition 3.30 that the cash holdings functions
converge on their full domain to a continuous limit, or equivalently that the sequence {v̄n}n∈IR
of real value functions v̄n : An → IR, (t, u) 7→ v̄n(t, u) = ξn(t, u)S̄

(
t, u, ξn(t, u)

)
+ bn(t, u),

converges to a continuous limit v̄. Thus, we also impose
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Assumption K (Cash holdings converge at maturity). For some bα0 ∈ IR the function
bα : IR→ IR is given by

bα(u) = bα0 − α

∫ u

u0

ψ
(
T, ũ, αζ(ũ)

)
ζu(ũ) dũ,

and v̄ : [0, T ]× IR→ IR is the solution to the linear final value problem (3.4.6), (3.4.7) which
corresponds to the continuous strategy function ϕ : [0, T ]×IR→ IR via γ(t, u) =

∫ ϕ(t,u)
0 f(z) dz

for all (t, u) ∈ [0, T ]× IR. The cash holdings at maturity satisfy∥∥bn(tnn, · )− bα( · )
∥∥
Un

n
= O

(
δ2+β

)
as n→∞. (2.8)

In general, for each n ∈ IN , the large investor stock price Sµ
(
tn0 , U

n
0 , ξ

n
−1, ξ

n
0

)
at time tn0 = 0

depends not only on the large investor’s stock holdings ξn0 at time tn0 = 0, but also on his stock
holdings ξn−1 immediately before time 0. Only in the special situation where either the price
determining measure is the Dirac measure δ1 concentrated in 1 or the function f : IR → IR
is constant, we can be sure that the large investor price at time 0 does not depend on ξn−1.
In the second case, we could also assume without loss of generality that µ = δ1, since in this
case the price determining measure has no influence on the large investor stock price at all.
In order to obtain convergence in distribution of our discrete large investor models under the
p-martingale measures, we therefore impose

Assumption L (Pre-trading behavior of the stock holdings). One of the two following
conditions holds:

(i) The price determining measure µ is (or can be chosen as) the Dirac measure δ1 con-
centrated in 1, so that for all (t, u, ξ1, ξ2) ∈ [0, T ] × IR3 the large investor stock price
equals the equilibrium stock price directly after his trades, i.e. the large investor price
function Sµ : [0, T ]× IR3 → IR is for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3 given by the equation
Sµ(t, u, ξ1, ξ2) = ψ(t, u, ξ2).

(ii) For each n ∈ IN there is some Zn0 ∈ {±1} such that the large investor’s stock holdings
ξn−1 immediately before time tn0 = 0 satisfy

ξn−1 = ξn(0, u0)− δZn0 ϕu(0, u0) + δ2
(

1
2
ϕuu(0, u0)−ϕt(0, u0)

)
+O

(
δ2+β

)
as n→∞.

Remark. Assumption L(ii) is a delicate issue for several reasons. First of all, it is somewhat
unsatisfactory that we have to worry about the large investor’s stock holdings before time
0. However, this is clearly forced by our price building mechanism and the definition of the
large investor stock price.
Secondly, if we do reluctantly have to take into account the large investor’s stock holdings
immediately before time 0, the natural approach would be to assume that the large investor
did not trade at all in stocks before time 0, and therefore to assume ξn−1 = 0. Unfortunately,
this approach does not yield meaningful results. Namely, by taking ξn−1 = 0 for all n ∈ IN ,
the asymptotic evolution in Assumption L(ii) implies that ξn(0, u0) → 0 as n→∞, and the
convergence of {ξn}n∈IN in the sense that ‖ξn − ϕ‖An → 0 as n → ∞ leads to ϕ(0, u0) = 0
as well. If the final condition φ(T, · ) = αζ is nonnegative, and if there exists some compact
interval on which ϕ(T, · ) is strictly positive, it can be easily seen from the Feynman-Kac
formula that ϕ(0, u0) > 0. Thus, if ξn(T, ·) : Unn → IR were nonnegative and ξn−1 = 0 for all
n ∈ IN , then Assumption L(ii) and the convergence of ξn to ϕ would imply that the large
investor would asymptotically hold no shares at all between time 0 to time T , i.e. ϕ ≡ 0. Due
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to the convergence of ξn to ϕ this would mean that also the strategy function ξn : An → IR
would asymptotically vanish as n→∞.
The same conclusion would follow if the final values ξn(T, · ) of the discrete strategy function
ξn : An → IR were nonpositive for all n ∈ IN . This shows that under Assumption L(ii), at
least for a large class of strategy functions ξn : An → IR, we can only have ξn−1 = 0 for all
n ∈ IN if the stock holdings ξn : An → IR vanish as n→∞. But eliminating any stock trades
of the large investor on the time interval [0, T ] in the limiting model is a constraint on the
strategy functions which is far more restrictive than desirable.
However, if we want to show convergence on the open time interval (0, T ] only, we could drop
Assumption L. In doing so we fade out how the hedging portfolio of the large investor is
built up at time 0. Basically, Assumption L does nothing else: Under Assumption L(i) the
large investor stock price at which the large investor can buy shares at time t = 0 does not
depend on his portfolio before time 0. Under Assumption L(ii) the large investor needs only
asymptotically small adjustments to his portfolio at time 0, and for this reason the issue how
the large investor arrived at the stock position ξn−1 is put back to the distant past. In the
situation we are most interested in, the strategy function ξn : An → IR is used to replicate
a certain contingent claim (ξn, bn) at time T over the time interval [0, T ]. In such a model
it is important what happens at the time point 0, where the replicating portfolio is built up.
Thus, we are really interested in the convergence on the closed time interval [0, T ] and hence,
for µ 6= δ1, we need to employ Assumption L(ii) on the stock holdings immediately before
time 0. This reveals the difficulties which occur at time 0 even in the limit. We will come
back to this point at the end of Section 4.2.6. �

Under Assumption L(ii) it is reasonable to extend for each n ∈ IN the definition of the large
investor’s strategy function ξn : An → IR to the time point −δ2 by defining the pre-trading
fundamentals’ value as u0 − δZn0 and setting ξn

(
−δ2, u0 − δZn0

)
:= ξn−1. If Assumption L(ii)

does not hold, but Assumption L(i) does, we also define ξn
(
−δ2, u0 − δZn0

)
by setting

ξn
(
−δ2, u0 − δZn0

)
:= ξn(0, u0)− δZn0 ϕu(0, u0) + δ2

(
1
2
ϕuu(0, u0)−ϕt(0, u0)

)
in order to avoid some distinction of cases as we proceed. By this definition we have guaran-
teed that both cases of Assumption L imply

ξn
(
−δ2, u0−δZn0

)
−ξn(0, u0) = −δZn0 ϕu(0, u0)+δ2

(
1
2
ϕuu(0, u0)−ϕt(0, u0)

)
+O

(
δ2+β

)
(2.9)

as n→∞. We then define for all n ∈ IN and all 0 ≤ m ≤ n the set Ân(m) by

Ân(m) =
{

(t, u, z) ∈ An(m)× {±1} : ξn(t− δ2, u− zδ) is defined
}
, (2.10)

and in analogy to An = An(n) of Definition 1.22 we may also write Ân instead of Ân(n).

4.2.2 Existence of the p-Martingale Measures

After the statement of all our assumptions, we first have to make sure that under these
assumptions the p-martingale measures Pξn

n of Definition 2.7 are well-defined, at least for
all sufficiently large n ∈ IN , so that we can indeed consider the convergence in distribution
under the p-martingale measures. Therefore, we show in this section by some asymptotic
analysis that for all sufficiently large n ∈ IN the large investor’s trading strategy (ξn, bn) is
p-admissible. Our asymptotic analysis can then also be used to obtain the same asymptotic
properties for the one-step transition probabilities of the tilt and fundamental value processes



176 CHAPTER 4. CONVERGENCE OF THE BINOMIAL MODEL

under Pξn

n as they are required by the conditions of the convergence theorem for general
correlated random walks in Section 4.1.
The following lemma yields that the large investor’s portfolio strategy (ξn, bn) is indeed p-
admissible for all sufficiently large n ∈ IN .

Lemma 4.2. Under Assumptions G to J and L there exists some n0 ∈ IN such that for each
n ≥ n0 the self-financing trading strategy (ξn, bn) is p-admissible.

Proof. In order to show that a self-financing strategy (ξn, bn) is p-admissible, it suffices to
show that

Sξ
n

µ

(
t+ δ2, u− δ, ξn(t, u)

)
< Sξ

n

µ

(
t, u, ξn(t− δ2, u− zδ)

)
< Sξ

n

µ

(
t+ δ2, u+ δ, ξn(t, u)

)
(2.11)

for all (t, u, z) ∈ Ân(n− 1). We will show that

±
Sξ

n

µ

(
t, u, ξn(t− δ2, u− zδ)

)
− Sξ

n

µ

(
t+ δ2, u∓ δ, ξn(t, u)

)
δψu

(
t, u, ξn(t, u)

)
= 1 +

(
(1± z)d(µ) + (1∓ z)

1
2

)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) +O(δ) as n→∞,

(2.12)

uniformly for all (t, u, z) ∈ Ân(n − 1). Because of z ∈ {±1} and the two bounds (2.4) and
(2.5), we can then find some n0 ∈ IN such that for all (t, u, z) ∈ Ân(n − 1) and n ≥ n0 we
have

±
Sξ

n

µ

(
t, u, ξn(t− δ2, u− zδ)

)
− Sξ

n

µ

(
t+ δ2, u∓ δ, ξn(t, u)

)
δψu

(
t, u, ξn(t, u)

) ≥ 1
2
ε.

Since ψu is strictly positive, this leads to (2.11), and thus, for all n ≥ n0 all the trading
strategies (ξn, bn) are p-admissible if (2.12) holds uniformly for all (t, u, z) ∈ Ân(n− 1).
In order to show that (2.12) actually holds, we have to employ the convergence of the strategy
functions {ξn}n∈IN towards ϕ as guaranteed by Corollary 3.28, and then basically apply the
techniques used in the proof of Lemma 3.11 to approximate the terms on the left-hand side
of (2.12) by ψ

(
t, u, ξn(t, u)

)
. We develop these approximations up to such accuracy that they

can also be used in Lemma 4.3, which is a little bit more than needed for the proof of (2.12)
alone.
Let us recall from Corollary 3.28 that (3.3.69) holds, i.e. we have

ξn
(
t+ δ2, u± δ

)
− ξn(t, u) = ±δϕu(t, u) + δ2

(
ϕt(t, u) +

1
2
ϕuu(t, u)

)
+O

(
δ2+β

)
(2.13)

as n → ∞, uniformly for all (t, u) ∈ An(n − 1). Applying Taylor’s rule to expand the
derivatives of ϕ : [0, T ] × IR → IR around (t + δ2, u ± δ), we thus obtain uniformly for all
(t, u) ∈ An(n− 1):

ξn
(
t+ δ2, u± δ

)
− ξn(t, u) = ±δϕu

(
t+ δ2, u± δ

)
+ δ2

(
ϕt(t+ δ2, u± δ

)
− 1

2
ϕuu(t+ δ2, u± δ

))
+O

(
δ2+β

)
as n → ∞. If we now substitute in the previous equation t + δ2 and u ± δ by t and u,
respectively, and if we also apply (2.9), then we get, in addition to (2.13), for all (t, u, z) ∈ Ân,
the expansion

ξn(t− δ2, u− zδ)− ξn(t, u)

= −zδϕu(t, u)− δ2
(
ϕt(t, u)− 1

2
ϕuu(t, u)

)
+O

(
δ2+β

)
as n→∞.

(2.14)
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Due to the definition of the shorthand Sξ
n

µ (t, u, ξ) := Sµ
(
t, u, ξ, ξn(t, u)

)
in (2.1.1) we have

Sξ
n

µ (t, u, ξ) =
∫
ψ
(
t, u, (1− θ)ξ + θξn(t, u)

)
µ(dθ)

for all (t, u, ξ) ∈ [0, T ]× IR2. By Taylor’s rule we then obtain that for all (t, u, ξ) ∈ An × IR
there exists some function γ : IR → IR, with γ(θ) lying between θ and 1 for all θ ∈ IR, such
that

Sξ
n

µ (t, u, ξ) = ψ
(
t, u, ξn(t, u)

)
+ ψξ

(
t, u, ξn(t, u)

)(
ξ − ξn(t, u)

) ∫
(1− θ)µ(dθ)

+
1
2
(
ξ − ξn(t, u)

)2 ∫ (1− θ)2ψξξ
(
t, u, (1− γ(θ))ξ + γ(θ)ξn(t, u)

)
µ(dθ).

If we now set ξ = ξn(t− δ2, u−zδ) and divide the previous equation by δψu
(
t, u, ξn(t, u)

)
, we

can apply the techniques of the proof of Lemma 3.11 combined with (2.14) to conclude from
ψ ∈ Ĥ1+ 1

2
β,2+β

(
[0, T ] × IR2

)
, ϕ ∈ H1+ 1

2
β,2+β

(
[0, T ] × IR

)
,
∫
eη|θ|µ(dθ) < ∞ for some η > 0,

and the boundedness of ξn : An → IR, which is induced by the convergence of ‖ξn − ϕ‖An ,
that uniformly for all (t, u, z) ∈ Ân(n− 1), we have

Sξ
n

µ

(
t, u, ξn(t− δ2, u− zδ)

)
− ψ

(
t, u, ξn(t, u)

)
δψu

(
t, u, ξn(t, u)

)
=
∫

(θ − 1)µ(dθ)
ψξ
(
t, u, ξn(t, u)

)
ψu
(
t, u, ξn(t, u)

) (zϕu(t, u) + δ

(
ϕt(t, u)− 1

2
ϕuu(t, u)

))
+

1
2
δ

∫
(1− θ)2 µ(dθ)

ψξξ
(
t, u, ξn(t, u)

)
ψu
(
t, u, ξn(t, u)

) ϕ2
u(t, u) +O

(
δ1+β

)
as n → ∞. Since ‖ξn − ϕ‖An

n
= O

(
δ2
)

as n → ∞, we can replace the ξn(t, u)’s on the
right-hand side of the equation by ϕ(t, u), and so we finally obtain

Sξ
n

µ

(
t, u, ξn(t− δ2, u− zδ)

)
− ψ

(
t, u, ξn(t, u)

)
δψu

(
t, u, ξn(t, u)

)
=
∫

(θ − 1)µ(dθ)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

) (zϕu(t, u) + δ

(
ϕt(t, u)− 1

2
ϕuu(t, u)

))
+

1
2
δ

∫
(1− θ)2 µ(dθ)

ψξξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

) ϕ2
u(t, u) +O

(
δ1+β

)
(2.15)

as n → ∞. Analogously, using (2.13) instead of (2.14) we can expand uniformly for all
(t, u, z) ∈ Ân(n− 1)

Sξ
n

µ

(
t+ δ2, u± δ, ξn(t, u)

)
− ψ

(
t, u, ξn(t, u)

)
δψu

(
t, u, ξn(t, u)

)
= ±1 +

∫
θ µ(dθ)

ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

) (±ϕu(t, u) + δ

(
ϕt(t, u)+

1
2
ϕuu(t, u)

))
+ δ

(
ψt
(
t, u, ϕ(t, u)

)
+ 1

2ψuu
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

) +
∫
θ µ(dθ)

ψuξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

) ϕu(t, u)

+
1
2

∫
θ2µ(dθ)

ψξξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

) ϕ2
u(t, u)

)
+O

(
δ1+β

)
(2.16)
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as n → ∞, since by the definition of Ân(n − 1) in (2.10) we have (t, u) ∈ An(n − 1) for all
(t, u, z) ∈ Ân(n − 1). Subtracting (2.16) from (2.15) and noting that by the definition of
the non-linearity parameter d(µ) in (1.2.26) we have

∫
θ µ(dθ) = d(µ) + 1

2 , we obtain (2.12),
uniformly for all (t, u, z) ∈ Ân(n− 1). This concludes our proof. q.e.d.

For all n ≥ n0 the p-martingale weight function pξ
n

n : An(n− 1) → IR of Definition 2.7(ii) is
well-defined, and we can introduce the probability weight function pn : Ân(n− 1) → (0, 1) in
terms of pξ

n

n by setting

pn(t, u, z) = pξ
n

n

(
t, u, ξn(t− δ2, u− zδ)

)
=
Sξ

n

µ

(
t, u, ξn(t− δ2, u− zδ)

)
− Sξ

n

µ (t+ δ2, u− δ, ξn(t, u)
)

Sξ
n

µ (t+ δ2, u+ δ, ξn(t, u)
)
− Sξ

n

µ (t+ δ2, u− δ, ξn(t, u)
) (2.17)

for all (t, u, z) ∈ Ân(n − 1). In the second line we have again employed the shorthand
Sξ

n

µ (t, u, ξ) := Sµ
(
t, u, ξ, ξn(t, u)

)
of (2.1.1). In terms of the weight function pn, the p-

martingale measure Pξn

n of Definition 2.7(ii) is for all n ≥ n0 given by the initial distribution
Pξn

n

(
Zn0 = 1

)
= Pn

(
Zn0 = 1

)
and by

Pξn

n

(
Znk+1 = 1

∣∣Unk , Znk ) = pn
(
tnk , U

n
k , Z

n
k

)
for all 0 ≤ k ≤ n− 1, (2.18)

and it is clear that for all those n the measure Pξn

n is equivalent to the original measure
Pn, since the range of pn is contained in the interval (0, 1). Recalling Proposition 2.8
and Corollary 2.10, we note that for each n ≥ n0 both the large investor price process{
Sµ
(
tnk , U

n
k , ξ

n
k−1, ξ

n
k

)}
0≤k≤n and the paper value process V n =

{
V n
k

}
0≤k≤n are martingales

under the p-martingale measure Pξn

n .

Remark. If the price determining measure µ is the Dirac measure δ1 concentrated in 1, the
stock price immediately adjusts to an order of the large investor before it is executed and
we have Sξ

n

µ (t, u, ξ) = ψ
(
t, u, ξn(t, u)

)
for all (t, u, ξ) ∈ [0, T ] × IR2. Hence the probability

function pn : Ân(n − 1) → (0, 1) does not depend on the tilt z any more, and the random
walk Un =

{
Unk
}

0≤k≤n describing the fundamentals becomes a Markov process under Pξn

n .
If the equilibrium price function ψ : [0, T ]×IR2 → IR does not depend on the (large) investor’s
stock holdings, such that ψ(t, u, ξ) = ψ•(t, u) for all (t, u) ∈ [0, T ] × IR, then the function
pn : Ân(n−1) → (0, 1) becomes pn(t, u, z) = ψ•(t,u)−ψ•(t+δ2,u−δ)

ψ•(t+δ2,u+δ)−ψ•(t+δ2,u−δ) for all (t, u, z) ∈ Ân(n−1),

and thus, pn and the p-martingale measure Pξn

n do not depend on the particular trading
strategy of the large investor. Especially, recall from Example 1.9 that the (discounted)
equilibrium price function in the Cox-Ross-Rubinstein model is given by

ψ
(
t, u, ξ) = S0e

σu+(µ−r)t for all (t, u, ξ) ∈ [0, T ]× IR2

with some fixed constants S0, σ > 0 and µ, r ∈ IR. In this case the probability function
pn : Ân(n− 1) → (0, 1) further simplifies to

pn(t, u, z) =
e(µ−r)δ

2 − e−σδ

eσδ − e−σδ
for all (t, u, z) ∈ Ân(n− 1),

i.e. it is even constant, so that for each n > n0 the fundamental process Un is a (space- and
time-) homogeneous Markov process. This special structure of Un under the (p-)martingale
measure makes the proof of convergence for a sequence of Cox-Ross-Rubinstein models like in
Duffie (1988) so easy. However, with the convergence theorem for general correlated random
walks of Section 4.1 at hand, we shall see that we can extend this convergence statement to
general large investor models. �



4.2. CONVERGENCE UNDER THE P -MARTINGALE MEASURES 179

Let us now define the two functions a : [0, T ]× IR→ IR and b : [0, T ]× IR→ IR by

a(t, u) =

(
d(µ)− 1

2

)
ψξ
(
t, u, ϕ(t, u)

)
ϕu(t, u)

ψu
(
t, u, ϕ(t, u)

)
+
(
d(µ) + 1

2

)
ψξ
(
t, u, ϕ(t, u)

)
ϕu(t, u)

and

b(t, u) = −
1
2
d
du

(
ψu(t, u, ϕ(t, u)) + 2d(µ)ψξ(t, u, ϕ(t, u))ϕu(t, u)

)
+ d

dtψ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)
+
(
d(µ) + 1

2

)
ψξ
(
t, u, ϕ(t, u)

)
ϕu(t, u)

for all (t, u) ∈ [0, T ]× IR. These two functions are well-defined, since their common denomi-
nator stays strictly positive because of the conditions (2.4) and (2.5) of Assumption H and I,
respectively.
As n → ∞, we can express the weight function pn : Ân(n − 1) → (0, 1) in terms of the
functions a and b like in (1.3). Moreover, it can be seen that the functions a and b satisfy
the Assumptions of Theorem 4.1:

Lemma 4.3. Under Assumptions G to J and L the weight function pn : Ân(n− 1) → IR can
be asymptotically expanded as

pn(t, u, z) =
1
2
(
1 + za(t, u) + δb(t, u)

)
+O

(
δ1+β

)
as n→∞, (2.19)

uniformly for all (t, u, z) ∈ Ân(n− 1).
Moreover the functions a : [0, T ] × IR → IR and b : [0, T ] × IR → IR belong to the Hölder
spaces H

1
2
(1+β),1+β

(
[0, T ]× IR

)
and H

1
2
β,β
(
[0, T ]× IR

)
, respectively, and ‖a‖ < 1.

Proof. In order to show (2.19) we proceed where we stopped with the proof of Lemma 4.2.
Dividing the difference of the upper (+) and the lower (−) case of (2.16) by 2, and using
again

∫
θ µ(dθ) = d(µ) + 1

2 from (1.2.26), we get for the divided denominator of the function
pn : Ân(n− 1) → IR given by (2.17)

Sξ
n

µ

(
t+ δ2, u+ δ, ξn(t, u)

)
− Sξ

n

µ

(
t+ δ2, u− δ, ξn(t, u)

)
2δψu

(
t, u, ϕ(t, u)

)
= 1 +

(
d(µ) +

1
2

)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) +O
(
δ1+β

)
as n→∞,

uniformly for all (t, u, z) ∈ Ân(n − 1). For n ≥ n0 this term is uniformly bounded away
from 0, and if we now also use (2.15) and again the lower (−) case of (2.16) to expand the

divided numerator Sξn

µ (t,u,ξn(t−δ2,u−zδ))−Sξn

µ (t+δ2,u−δ,ξn(t,u))
2δψu(t,u,ϕ(t,u)) of (2.17), it easily follows from the

definitions of pn : Ân(n − 1) → IR and of the two continuous functions a : [0, T ] × IR → IR
and b : [0, T ]× IR→ IR that indeed (2.19) holds.
Next we investigate the functions a : [0, T ] × IR → IR and b : [0, T ] × IR → IR. Dividing
numerator and denominator by ψu

(
t, u, ϕ(t, u)

)
, it is easily seen that the functions a and b

belong to the Hölder spaces H
1
2
(1+β),1+β

(
[0, T ] × IR

)
and H

1
2
β,β
(
[0, T ] × IR

)
, respectively,

since ψ ∈ Ĥ1+ 1
2
β,2+β

(
[0, T ] × IR2

)
and ϕ ∈ H1+ 1

2
β,2+β

(
[0, T ] × IR

)
, and since the divided

denominator is bounded away from 0 by the two bounds (2.4) and (2.5). In particular, there
exists some M ∈ (0,∞) such that the divided denominator satisfies

ε ≤ 1 +
(
d(µ) +

1
2

)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≤M for all (t, u) ∈ [0, T ]× IR. (2.20)
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In order to show that ‖a‖ < 1, let us now note that for the ε in Assumptions H and I we have

1 +
(
d(µ) +

1
2

)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u)−

∣∣∣∣∣
(
d(µ)− 1

2

)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u)

∣∣∣∣∣ ≥ ε,

as can be easily seen by considering separately the cases where the term within the absolute
value is nonnegative and nonpositive. If we now rearrange the terms such that the absolute
value stands alone on the right hand side of the inequality sign, divide the inequality by
1 +

(
d(µ) + 1

2

)ψξ(t,u,ϕ(t,u))
ψu(t,u,ϕ(t,u))ϕu(t, u), and then use the upper bound in (2.20), we obtain for all

(t, u) ∈ [0, T ]× IR

∣∣a(t, u)
∣∣ =

∣∣(d(µ)− 1
2

)
ψξ
(
t, u, ϕ(t, u)

)
ϕu(t, u)

∣∣
ψu
(
t, u, ϕ(t, u)

)
+
(
d(µ) + 1

2

)
ψξ
(
t, u, ϕ(t, u)

)
ϕu(t, u)

≤ 1− ε

M
< 1. (2.21)

This concludes our proof. q.e.d.

4.2.3 Convergence of the Fundamentals

In this section, we state our first distributional convergence result for our discrete large
investor models under the paper value martingale measures by showing that the sequence of
fundamental processes converges in distribution towards some continuous diffusion process.
The limit process depends on the large investor’s limiting strategy function ϕ.
In order to become more precise, let us fix again n0 ∈ IN as specified by Lemma 4.2 and
consider for each n ≥ n0 the distribution of the fundamental value process Un on the prob-
ability space

(
Ωn,Fn

n ,P
ξn

n

)
. We will show that the sequence {Un}n≥n0 of (2.2) converges

in distribution to some diffusion process U = {Ut}t∈[0,T ], i.e. we show that there exists a
probability measure Pϕ on

(
D[0, T ],B(D[0, T ])

)
such that(

Un
∣∣Pξn

n

)
⇒
(
U
∣∣Pϕ

)
as n→∞.

The limit process U will be characterized by its initial value U(0) = u0 at time 0, which is
the same as the initial value Un0 of each of the discrete random walks {Un}n≥n0 , and by the
volatility and drift parameters σϕ : [0, T ]× IR → [0,∞) and µϕ : [0, T ]× IR → IR, which for
all (t, u) ∈ [0, T ]× IR are given by

σ2
ϕ(t, u) :=

ψu
(
t, u, ϕ(t, u)

)
+ 2d(µ)ψξ

(
t, u, ϕ(t, u)

)
ϕu(t, u)

ψu
(
t, u, ϕ(t, u)

)
+ ψξ

(
t, u, ϕ(t, u)

)
ϕu(t, u)

(2.22)

and

µϕ(t, u) := −
d
dtψ
(
t, u, ϕ(t, u)

)
+ 1

2σ
2
ϕ(t, u) d2

du2ψ
(
t, u, ϕ(t, u)

)
d
duψ

(
t, u, ϕ(t, u)

) . (2.23)

Remark. Note that the denominators of σ2
ϕ and µϕ coincide. We have applied the chain

rule in (2.22) in order to emphasize that σ2
ϕ ≡ 1 if d(µ) = 1

2 . By the definition of d(µ)
in Definition 1.16 this especially holds true if the price-determining measure µ is the Dirac
measure δ1 concentrated in 1 as under Assumption L(i), i.e. if the market totally adjusts
the stock price to the changed demand of the large investor before he can enter into any
transaction. In this case the large investor price function Sµ : [0, T ] × IR3 of (1.3.2) is given
by Sµ(t, u, ξ1, ξ2) = ψ(t, u, ξ2) for all (t, u, ξ1, ξ2) ∈ IR. �

Now we can state the convergence theorem for the paper-value models:
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Theorem 4.4. Suppose that the Assumptions G- J, and L hold. Then under the respective
p-martingale measures Pξn

n , the sequence of processes
{
Un
}
n≥n0

starting in u0 at time 0
converges weakly to the process U = {Ut}t∈[0,T ] given by

dUt = σϕ(t, Ut)dWt + µϕ(t, Ut)dt for all t ∈ [0, T ], U0 = u0, (2.24)

i.e. there exists some measure Pϕ on
(
D[0, T ],B(D[0, T ])

)
such that W is a Pϕ-Brownian

motion and (
Un
∣∣Pξn

n

)
⇒
(
U
∣∣Pϕ

)
as n→∞.

Proof. We check that the sequence {Un}n≥n0 satisfies the assumptions of Theorem 4.1. For
each n ≥ n0 the stochastic process Un lives on the probability space

(
Ωn,Fn

n ,P
ξn

n

)
. By the

definition of Un = {Unt }t∈[0,T ] we have (2.2), where the discrete random walk
{
Unk
}

0≤k≤n is
for all n ∈ IN given by (2.1) in terms of the {±1}-valued tilt process {Znk }0≤k≤n. In particular,
the process Un maps into the space D[0, T ]. For each n ≥ n0 the processes {Unk }0≤k≤n and
{Znk }0≤k≤n satisfy (2.18). Hence the sequence

{
Un
}
n≥n0

has the form of (1.2) and fits into
the framework of Theorem 4.1.
In order to apply the theorem, we also need to check (1.3). By Lemma 4.3 the weight function
pn : Ân(n− 1) → IR satisfies (2.19) uniformly for all (t, u, z) ∈ Ân(n− 1). In order to apply
Theorem 4.1 we just extend the weight function pn : Ân(n − 1) → IR to [0, T ] × IR × {±1},
such that (1.3) holds uniformly for all (t, u) ∈ [0, T ] × IR. This can be easily arranged by
interpolation. Actually, the proof of Theorem 4.1 will show that in our case such an extension
is unnecessary, since

(
tnk , U

n
k , Z

n
k

)
∈ Ân(n− 1) for all 0 ≤ k ≤ n− 1.

Moreover, the functions a, b : [0, T ] × IR → IR of Lemma 4.3 satisfy the requirements of
Theorem 4.1. Hence we can apply the theorem to obtain the weak convergence of the se-
quence

{
Un
}
n∈IN to the diffusion process U =

{
Ut
}
t∈[0,T ]

given by (1.4) (with µ0 = 0 and
σ = 1). Straightforward calculation in terms of the expressions f1(u) := ψu

(
t, u, ϕ(t, u)

)
and

f2(u) := ψξ
(
t, u, ϕ(t, u)

)
ϕu(t, u) yields for all (t, u) ∈ [0, T ]× IR

1 + a(t, u)
1− a(t, u)

= σ2
ϕ(t, u) and

b(t, u)
1− a(t, u)

+
au(t, u)(

1− a(t, u)
)2 = µϕ(t, u).

This concludes the proof of the theorem. q.e.d.

Remark 1. For each n ≥ n0 the measure Pξn

n on the measurable space
(
Ωn,Fn

n

)
induces

a probability measure on the measurable space
(
D[0, T ],B(D[0, T ])

)
via the distribution

Pξn

n ◦ (Un)−1 of Un, which is the “canonical counterpart” of the measure Pξn

n on the space(
D[0, T ],B(D[0, T ])

)
. Thus, the statement of Theorem 4.4 is equivalent to saying that the

measures
{
Pξn

n ◦ (Un)−1
}
n≥n0

converge weakly to some measure Pϕ as n→∞. We will see
from the proof of Theorem 4.1 that the measure Pϕ is the unique solution to the martingale
problem starting in (0, u0) for the generator Lϕ : C2(IR) → C(IR), which is given by

(
Lϕ f

)
(t, u) =

1
2
σ2
ϕ(t, u)f ′′(u) + µϕ(t, u)f ′(u) for all (t, u) ∈ [0, T ]× IR (2.25)

and all f ∈ C2(IR). �

Remark 2. In Section 3.2.4 we have discussed how we can derive the convergence of a sub-
sequence of the strategy functions {ξn}n∈IN under less restrictive regularity assumptions on
the price system (ψ, µ) in the special case where (ψ, µ) excludes any transaction losses. We
are confident that in principle we could generalize such convergence results to the general
setting with transaction losses.
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If we have already found a subsequence {nm}m∈IN ⊂ IN such that for δ = δnm = n
−1/2
m we

have ‖ξnm − ϕ‖Anm = O
(
δ2
)

and∥∥∥∥ξnm(·+ δ2, · ± δ)− ξnm ∓ δϕu − δ2
(
ϕt +

1
2
ϕuu

)∥∥∥∥
Anm (nm−1)

= O
(
δ2+β

)
as m→∞,

then the proofs of Lemma 4.3 and Theorem 4.4 indicate that we could still show the conver-
gence (

Unm
∣∣Pξnm

nm

)
⇒
(
U
∣∣Pϕ

)
as m→∞,

even if we relax the Hölder continuity of the functions ψ•, f , and ϕ of Assumptions G and H
to ψ• ∈ Ĥ1+ 1

2
β,2+β

(
[0, T ]× IR

)
, f ∈ H2+β

loc (IR) and ϕ ∈ H1+ 1
2
β,2+β

(
[0, T ]× IR

)
, and if we drop

the strong Assumption J on the convergence of the large investor’s stock holdings around
maturity, which is needed to derive the convergence of the strategy functions {ξn}n∈IN to ϕ
from their convergence at the very end of the time interval [0, T ]. �

In the large investor models of Frey and Stremme (1997) and Bierbaum (1997), like the
convergence of the strategy functions, the convergence of the fundamental value process
towards a diffusion limit is just assumed, but not proved. Because of the convergence of the
fundamentals, these authors then conclude that the uniform convergence of the equilibrium
price functions also implies the convergence in distribution of the associated sequence of
equilibrium price processes by using the Continuous Mapping Theorem. The coefficients of
the limit distribution are explicitly given as functions of time and equilibrium price. In the
next section we show a slightly stronger result in our setting.

4.2.4 Convergence of the Large Investor Price and the Paper Value Pro-
cesses

The convergence result of Theorem 4.4 for the fundamentals is the main step in proving
the convergence of all relevant stochastic processes in the discrete large investor models to
continuous-time limit processes under the paper value martingale measure.
In this section we construct stochastic processes in D[0, T ] which describe the strategy, stock
price, and value processes in the discrete binomial models. Then we show that not only the
fundamental processes of Theorem 4.4, but also the strategy, stock price, and value processes
converge in distribution to some continuous limit processes, even jointly, when viewed as one
process with paths in the space Dd[0, T ]. In order to show this general convergence result,
we need to extend a proposition of Duffie and Protter (1992) which yields the simultaneous
convergence in distribution of a process X and other discrete stochastic processes for which
the stochastic influence is – at least basically – described by X as well.
Results on the simultaneous convergence of the different stochastic processes in the discrete
analogues of the Black-Scholes models are common in the financial literature. Simple variants
go back to He (1990). More advanced results can be found in Duffie and Protter (1992), who
apply results of Kurtz and Protter (1991, 1995) to mathematical finance. For an overview
of different convergence concepts see also Willinger and Taqqu (1991). Duffie and Protter
(1992) show the convergence of the financial gains process by checking that the sequence of
discrete price processes satisfies the technical condition of being good. This convergence then
implies that the discrete value processes converge as well. In contrast, we show directly that
the sequence of discrete paper value processes converges, and in this respect are closer to the
approach of He (1990).
For the convergence results in this section, we work on the spaces Dd[0, T ] of càdlàg functions
f : [0, T ] → IRd, with d ∈ IN , and we endow those spaces with the corresponding Skorohod
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topology. For a detailed discussion of these spaces, we refer the reader to Chapter 3 in
Billingsley (1968) or Section 6 in Kurtz and Protter (1995). However, it is worth mentioning
thatDd[0, T ] 6=

(
D[0, T ]

)d as Example 6.4 in Kurtz and Protter (1995) reveals. For a sequence

{Xn}n∈IN of random elements in Dd[0, T ] we write Xn P→ 0 if {Xn}n∈IN converges to 0 in
probability as n → ∞. Moreover, we denote the Euclidean norm in IRd by | · |, so that we
can distinguish it from sup-norms which are denoted by ‖ · ‖.
In (2.2) we have already introduced an extension Un =

{
Unt
}
t∈[0,T ]

of the discrete fundamen-
tal process {Unk }0≤k≤n to the space D[0, T ]. We now introduce similar D[0, T ]-versions of the
discrete (non-stochastic) sequence {tnk}0≤k≤n of time points and of the (stochastic) strategy,
price, and value processes in the discrete large investor markets. At the same time, we define
the associated notations for the limit processes as well. In order to keep our notation com-
pact, we drop the time interval [0, T ] in our notation of a stochastic process and write for
example Un = {Unt } instead of Un =

{
Unt
}
t∈[0,T ]

.

Definition 4.5. For each n ∈ IN , we define the following processes in D[0, T ]:

(i) The deterministic process τn = {τnt }, describing the latest trading time point in the
nth binomial model, is given by

τnt := tn[nt] for all t ∈ [0, T ].

(ii) The strategy process φn = {φnt } and the auxiliary strategy process φ̃n =
{
φ̃nt
}

,
describing in the nth binomial model the large investor’s current stock holdings and his
stock holdings before his last trade, are defined by

φnt := ξn
(
τnt , U

n
t

)
and φ̃nt := ξn

(
τnt − δ2, Unt − Zn[nt]δ

)
for all t ∈ [0, T ],

where the large investor’s strategy function ξn : An → IR is extended to the point
(−δ2, u0 − Zn0 δ) by setting ξn(−δ2, u0 − Zn0 δ) := ξn−1 in order to incorporate his stock
holdings immediately before time tn0 = 0.

(iii) The large investor price process Sn =
{
Snt
}

, which describes the (average) stock
price paid at the large investor’s latest trade in the nth binomial model, is defined in
terms of the large investor’s price function Sµ : [0, T ]× IR3 → IR of (1.3.2) by

Snt := Sµ
(
τnt , U

n
t , φ̃

n
t , φ

n
t

)
for all t ∈ [0, T ].

It depends on the strategy process φn and the auxiliary strategy process φ̃n.

(iv) The loss-free liquidation price process S̄n =
{
S̄nt
}

, which describes in the nth
binomial model the latest average liquidation price per share of the large investor’s
stock holdings if he could execute his trades at the benchmark price, is defined in terms
of the loss-free liquidation price function S̄ : [0, T ]× IR2 → IR given by (1.3.14) as

S̄nt = S̄
(
τnt , U

n
t , φ

n
t

)
for all t ∈ [0, T ].

It depends only on the large investor’s strategy process φn.

(v) The real value processes V̄ n =
{
V̄ n
t

}
, quoting the value of the large investor’s

portfolio in the nth binomial model in terms of the actual liquidation price, is defined
as

V̄ n
t = v̄n

(
τnt , U

n
t

)
= φnt S̄

n
t + bn

(
τnt , U

n
t

)
for all t ∈ [0, T ],

where v̄n : An → IR is the real value function of (1.3.17).
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(vi) Last but not least, we define the paper value process V n =
{
V n
t

}
, which values the

large investor’s portfolio in the nth binomial model at the last price experienced by the
large investor, by

V n
t = vn

(
τnt , U

n
t , φ̃

n
t

)
= φnt S

n
t + bn

(
τnt , U

n
t

)
for all t ∈ [0, T ].

where vn : An × IR→ IR is the paper value function of (1.3.19).

Of course, the process τn converges in D[0, T ] to the identity on [0, T ]. We now define the
(candidate) limit processes for the stochastic processes of Definition 4.5. In Proposition 4.8
below we then show that under the paper martingale measures, the processes of Definition 4.5
indeed converge in distribution towards their candidate limits, even simultaneously when
viewed as one process with path in Dd[0, T ].

Definition 4.6. We define the following processes in D[0, T ]:

(i) The strategy process φ = {φt}, describing the large investor’s stock holdings in the
limit model, is given by φt := ϕ(t, Ut) for all t ∈ [0, T ], where the limiting strategy
function ϕ : [0, T ]× IR→ IR is the solution of the final value problem (3.4.3), (3.4.4).

(ii) The (large investor) price process S = {St} in the limit model is given by

St = ψ
(
t, Ut, φt

)
= Sµ

(
T,Ut, φt, φt

)
for all t ∈ [0, T ].

(iii) The loss-free liquidation price process S̄ =
{
S̄t
}

in the limit model which is implied
by the strategy process φ is given by

S̄t := S̄
(
t, Ut, φt

)
for all t ∈ [0, T ].

(iv) The real value process V̄ = {V̄t} in the limit model is given as V̄t = v̄
(
t, Ut

)
for all

t ∈ [0, T ], where v̄ : [0, T ]× IR → IR is the (continuous-time) real value function,
i.e. the solution of the final value problem (3.4.6), (3.4.7).

(v) Last but not least, the paper value process V = {Vt} in the limit model is given as
Vt = v(t, Ut) for all t ∈ [0, T ], where v : [0, T ] × IR → IR is the (continuous-time)
paper value function which is for all (t, u) ∈ [0, T ]× IR given by

v(t, u) := v̄(t, u) + ϕ(t, u)
(
ψ
(
t, u, ϕ(t, u)

)
− S̄

(
t, u, ϕ(t, u)

))
.

Remark. The limit S of the large investor price processes {Sn} is just called price process,
since this price is not an exclusive price for the large investor any more. In the limit, the
large investor price Sµ

(
t, Ut, φt, φt

)
coincides with the equilibrium price ψ

(
t, Ut, φt) at which

the small investors in the market trade, given that the large investor trades according to his
strategy φ. �

However, before we can prove the joint convergence of the processes in Definition 4.5 to the
corresponding limit processes of Definition 4.6, we first need to extend Corollary 5.2 of Duffie
and Protter (1992), which yields the joint convergence of the tuples

{(
Xn
t , h

n(τnt , X
n
t )
)}

n∈IN
if the Dd[0, T ]-valued processes {Xn}n∈IN converge in distribution. For example, their con-
vergence result does not cover the convergence of the auxiliary strategy processes {φ̃n}n∈IN ,
since the auxiliary strategy process φn at time t depends not only on time τnt and funda-
mentals Unt at this time, but also on the current tilt Zn[nt] of the fundamental process. This
problem is solved by the following lemma:
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Lemma 4.7. For each n ∈ IN let Xn and Zn be random elements in Dd[0, T ], defined on
the same probability space

(
Ωn,Fn,Pn

)
, and suppose Xn ⇒ X for some continuous X, and

δnZ
n P→ 0 as n→∞. We also assume that for each n ∈ IN and all t ∈ [0, T ] the realizations

of
(
τnt , X

n
t , Z

n
t

)
are contained in some set Dn ⊂ [0, T ] × IR2d. If the sequence {hn}n∈IN of

functions hn : Dn → IRk converges uniformly to a continuous function h : [0, T ]× IRd → IRk

in the sense that sup(τ,x,z)∈Dn |hn(τ, x, z)− h(τ, x)| → 0 as n→∞, then we have{(
Xn
t , h

n
(
τnt , X

n
t , Z

n
t

))}
⇒
{(
Xt, h

(
t,Xt

))}
as n→∞. (2.26)

Especially, we have for all continuous functions h : [0, T ]× IRd → IRk that{(
Xn
t , h

(
τnt , X

n
t

))}
⇒
{(
Xt, h

(
t,Xt

))}
as n→∞. (2.27)

Proof. Let us set Y n := δnZ
n for all n ∈ IN . By Theorem 4.4 in Billingsley (1968) the

conditions on Xn and Zn imply (Xn, Y n) ⇒ (X, 0) as n → ∞. The remainder of the
proof follows by arguments analogous to the ones proving Lemma 5.2 and Proposition 5.1 in
Kurtz and Protter (1991): For any continuous x0 ∈ Dd[0, T ] and any convergent sequence
(xn, yn) → (x0, 0) in D2d[0, T ], there exist some continuous, strictly increasing functions
λn : [0, T ] → [0, T ] such that λn(t) → t and

(
xnλn(t), y

n
λn(t)

)
→
(
x0
t , 0
)

uniformly on [0, T ] as
n→∞. Moreover, the bound∣∣xnt ∣∣ ≤ ∣∣∣xnt − x0

λ−1
n (t)

∣∣∣+
∣∣∣x0
λ−1

n (t)

∣∣∣ for all t ∈ [0, T ]

and the continuity of x0 : [0, T ] → IR imply that R := supn∈IN supt∈[0,T ]

∣∣xnt ∣∣ <∞.
Without loss of generality we take Dn = [0, T ] × IR2d. Since h : [0, T ] × IRd → IRk is
continuous, it is uniformly continuous on the compact intervals [0, T ]× [−R,R]d, and due to
sup(τ,x,z)∈Dn |hn(τ, x, z)− h(τ, x)| → 0, we get∣∣hn(τnλn(t), x

n
λn(t), δ

−1
n ynλn(t)

)
− h
(
t, x0

t

)∣∣
≤
∣∣hn(τnλn(t), x

n
λn(t), δ

−1
n ynλn(t)

)
− h
(
τnλn(t), x

n
λn(t)

)∣∣+
∣∣h(τnλn(t), x

n
λn(t)

)
− h
(
t, x0

t

)∣∣→ 0

as n → ∞, uniformly on [0, T ]. By the extension of the Continuous Mapping Theorem as
stated in Theorem 5.5 of Billingsley (1968), we can now conclude from (Xn, Y n) ⇒ (X, 0)
and Zn = δ−1

n Y n that (2.26) holds. The choice Zn ≡ 0 gives (2.27). q.e.d.

Now we are well-equipped to show that under the paper value martingale measures not
only the fundamental processes, but also all other relevant processes of our discrete large
investor models converge in distribution towards their continuous counterparts as stated in
Definitions 4.5 and 4.6, and these processes even converge in distribution if they are viewed
as tuples in the space D7[0, T ]:

Proposition 4.8. Suppose that the Assumptions G-L hold. Then we have((
Un, φ̃n, φn, S̄n, Sn, V̄ n, V n

) ∣∣∣Pξn

n

)
⇒
((
U, φ, φ, S̄, S, V̄ , V

) ∣∣∣Pϕ
)

as n→∞. (2.28)

Proof. We prove the assertion by two applications of Lemma 4.7; the first application will
show that ((

Un, φ̃n, φn, V̄ n
) ∣∣∣Pξn

n

)
⇒
((
U, φ, φ, V̄

) ∣∣∣Pϕ
)

as n→∞, (2.29)

while the second application, using (2.29), yields the proposition. By Assumption H the limit
strategy function ϕ ∈ [0, T ] × IR → IR belongs to the Hölder space H1+ 1

2
β,2+β

(
[0, T ] × IR

)
,
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hence it is in particular continuous on [0, T ]×IR. Moreover, due to Corollary 3.28 the discrete
strategy functions ξn : An → IR satisfy ‖ξn − ϕ‖An = O

(
δ2
)

as n→∞, and thus, using our
definition of Ân in (2.10), we get sup

(t,u,z)∈Ân

∣∣ξn(t, u)− ϕ(t, u)
∣∣→ 0, since nothing depends

on z. We now want to show that similarly

sup
(t,u,z)∈Ân

∣∣ξn(t− δ2, u− zδ
)
− ϕ(t, u)

∣∣→ 0 as n→∞,

and for this purpose we recall the expansion (2.14). It allows us to conclude that∣∣ξn(t− δ2, u− zδ
)
− ϕ(t, u)

∣∣ ≤ ∣∣ξn(t− δ2, u− zδ)− ξn(t, u)
∣∣+
∣∣ξn(t, u)− ϕ(t, u)

∣∣ = O(δ)

as n→∞, uniformly for all (t, u, z) ∈ Ân, since ϕ belongs in particular to the Hölder space
H1+ 1

2
β,2+β

(
[0, T ]× IR

)
and

∥∥ξn − ϕ
∥∥
An = O

(
δ2
)
.

Moreover, we recall from Proposition 3.30 that
∥∥v̄n − v̄

∥∥
An = O

(
δβ
)

as n → ∞. Hence the
three-dimensional functions hn : Ân → IR3 given by

hn(t, u, z) =
(
ξn
(
t− δ2, u− zδ

)
, ξn(t, u), v̄n(t, u)

)
for all (t, u, z) ∈ Ân and n ∈ IN

converge in the sense of Lemma 4.7 to the continuous function h : [0, T ]× IR→ IR3 given by

h(t, u) =
(
ϕ(t, u), ϕ(t, u), v̄(t, u)

)
for all (t, u) ∈ [0, T ]× IR,

i.e. sup
(t,u,z)∈Ân

∣∣hn(t, u, z) − h(t, u)
∣∣ → 0 as n → ∞. The process Zn = {Zn[nt]} satisfies

δZn = δnZ
n P→ 0 as n→∞, since all elements of

{
Znk }0≤k≤n are 1 in modulus, and hence Zn

is uniformly bounded. Finally, Theorem 4.4 has shown that
(
Un
∣∣Pξn

n

)
⇒
(
U
∣∣Pϕ

)
, hence

Lemma 4.7 yields({(
Unt , h

n(τnt , U
n
t , Z

n
[nt])

)} ∣∣∣Pξn

n

)
⇒
({(

Ut, h(t, Ut)
)} ∣∣∣Pϕ

)
as n→∞.

Thus, an application of our definition of the functions hn and h as well as Definitions 4.5(ii)
and (v) and Definitions 4.6(i) and (iv) prove (2.29).
We now use the joint convergence (2.29) of the fundamental price processes {Un}n∈IN , the
strategy processes {φ̃n}n∈IN and {φn}n∈IN , and of the real value processes {V̄ n}n∈IN to obtain
the convergence of the two price processes and the paper value processes, which all use the
strategy processes as their arguments.
Since the large investor price function Sµ : [0, T ] × IR3 → IR of (1.3.2) and the loss-free
liquidation price function S̄ : [0, T ]× IR2 → IR of (1.3.14) are continuous, it is clear that the
function h : [0, T ]× IR4 → IR3 which we define for all (t, u, ξ1, ξ2, v) ∈ [0, T ]× IR4 by

h(t, u, ξ1, ξ2, v) :=
(
Sµ(t, u, ξ1, ξ2), S̄(t, u, ξ2), v + ξ2

(
Sµ(t, u, ξ1, ξ2)− S̄(t, u, ξ2)

))
is continuous as well. Hence it follows from the second part of Lemma 4.7 that({(

Unt , φ̃
n
t , φ

n
t , V̄

n
t , h

(
τnt , U

n
t , φ̃

n
t , φ

n
t , V̄

n
t

))} ∣∣∣Pξn

n

)
⇒
({(

Ut, φt, φt, V̄t, h
(
t, Ut, φt, φt, V̄t

))} ∣∣∣Pϕ
)

as n → ∞. Finally note that we can get rid of the cash holdings function bn : An → IR in
the defining equation (1.3.19) for the paper value function vn : An× IR→ IR by substituting
it by the remaining terms of (1.3.17), the definition of the real value function v̄n : An → IR.
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Using also the shorthand S̄ for the loss-free liquidation price introduced in (1.3.14), we get
for all (t, u, ξ) ∈ [0, T ]× IR2

vn(t, u, ξ) = ξn(t, u)Sµ
(
t, u, ξ, ξn(t, u)

)
+ bn(t, u)

= v̄n(t, u) + ξn(t, u)
(
Sµ
(
t, u, ξ, ξn(t, u)

)
− S̄

(
t, u, ξn(t, u)

))
,

and especially V n
t = vn

(
t, Unt , φ̃

n
t

)
= V̄ n

t +φnt
(
Snt − S̄nt

)
. Thus we get from Definition 4.5 and

Definition 4.6 that h
(
τnt , U

n
t , φ̃

n
t , φ

n
t , V̄

n
t

)
=
(
Snt , S̄

n
t , V

n
t

)
and h

(
t, Ut, φt, φt, V̄t

)
=
(
St, S̄t, Vt

)
.

This concludes the proof. q.e.d.

Remark. The last remark of Section 4.2.3 transfers to Proposition 4.8: We can discard the two
conditions (2.7) and (2.8) and weaken the differentiability assumptions on ϕ : [0, T ]×IR→ IR

to ϕ ∈ H1+ 1
2
β,2+β

(
[0, T ] × IR

)
if we know from some other arguments that the strategy

functions {ξn}n∈IN converge to ϕ in the sense that (3.3.68) and (3.3.69) hold, and that the
real value functions v̄n converge to v̄ such that

∥∥v̄n − v̄
∥∥
An = O

(
δβ
)

as n → ∞. Similar
statements for a subsequence are straightforward. �

4.2.5 The Continuous-Time Paper Value Function

In this section we investigate the limiting paper value function in some more detail. For
this reason, we reparametrize the paper value function in terms of time and stock price. We
then derive a final value problem for the transformed paper value function. This final value
problem shows that our continuous-time limit model covers the models of Schönbucher and
Wilmott (2000), Frey (1998, 2000) and Sircar and Papanicolaou (1998) as special cases.

We would like to state the final problem for the transformed paper value function in such a
generality that we can also deal with trading strategies which replicate non-smooth contingent
claims like European calls, even though the convergence result of Proposition 4.8 does not
cover those cases. In Section 3.4.2 we have seen that it suffices to require Assumptions B
and C and one of the Assumptions E or F in order to guarantee the existence of solutions
ϕ and v to the final value problems (3.4.3), (3.4.4) and (3.4.6), (3.4.7), respectively. Under
both sets of assumptions the (continuous-time) paper value function v : [0, T ] × IR → IR,
which is for all (t, u) ∈ [0, T ]× IR given by

v(t, u) = v̄(t, u) + ϕ(t, u)
(
ψ
(
t, u, ϕ(t, u)

)
− S̄

(
t, u, ϕ(t, u)

))
, (2.30)

is still well-defined. For that reason we suppose in this section that either Assumptions B, C
and E or Assumptions B, C and F hold. In order to explore the paper value function in some
more detail, and in order to compare it with the value function in the ordinary Black-Scholes
model, we reparametrize the paper value function in terms of the stock price in the limiting
market model. In Section 3.4 we have transformed the real value function into a function
of time and the small investor stock price. However, for the paper value function such a
transformation does not give much new insight, and it is more natural to reparametrize the
paper value function into a function of the equilibrium price ψ

(
t, u, ϕ(t, u)

)
in the limit model,

at which the small investors and the large investor buy or sell the next infinitesimal amount of
shares. For this reparametrization we have to make sure that the function u 7→ ψ

(
t, u, ϕ(t, u)

)
is invertible for every fixed time point t ∈ [0, T ]; hence we impose:

Assumption M. Let ϕ be the solution of the final value problem (3.4.3), (3.4.4). For each
fixed t ∈ [0, T ] the function Xϕ : IR→ (0,∞), u 7→ ψ

(
t, u, ϕ(t, u)

)
, is strictly increasing.
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Assumption M is a weaker formulation of Assumption I. Under Assumption M we can
reparametrize the paper value function v : [0, T ] × IR → IR from a function of time and
fundamentals into a function w : D → IR of time and stock price. Here the set D denotes the
set of all possible time-price combinations if the large investor’s stock holdings are determined
by the strategy function ϕ : [0, T ]× IR→ IR, i.e. D is given by

D :=
{

(t, x) ∈ [0, T ]× IR
∣∣x = ψ

(
t, u, ϕ(t, u)

)
for some u ∈ IR

}
. (2.31)

On the set D we then introduce the reparametrized paper value function w : D → IR by
w(t, x) = v

(
t, uϕ(t, x)

)
for all (t, x) ∈ D, where the reparametrization function uϕ : D → IR

is uniquely determined by

x = ψ
(
t, u, ϕ(t, u)

)∣∣
u=uϕ(t,x)

for all (t, x) ∈ D (2.32)

because of Assumption M. By Definition 4.6(ii) and (v) the paper value process V in the
limit model can now be expressed in terms of time t and stock price St = ψ

(
t, Ut, ϕ(t, Ut)

)
as Vt = w

(
t, St

)
for all t ∈ [0, T ].

We pause here shortly to describe the structure of the set D of (2.31) under our standing
assumptions. If Assumption F holds, then ϕ : [0, T ]× IR→ IR is continuous and bounded on
the whole domain [0, T ]× IR, and Lemma 3.31 implies D = [0, T ]× (0,∞). The situation is
more complicated if instead of Assumption F we only have Assumption E. In this case ϕ is
still bounded on [0, T ]×IR and continuous on [0, T )×IR, but it need not be continuous on the
boundary {T}×IR, since the boundary function ζ : IR→ IR might have jumps. If ζ : IR→ IR
jumps at some point u∗ ∈ IR and we do not have f

(
αζ(u∗−)

)
= f

(
αζ(u∗)

)
= f

(
αζ(u∗+)

)
,

then the function X : IR→ IR given by

X(u) = ψ
(
T, u, ϕ(T, u)

)
= ψ

(
T, u, αζ(u)

)
for all u ∈ IR (2.33)

jumps as well. Since X : IR → IR is strictly increasing by Assumption M, every jump of X
leads to a hole in the domain X(IR), i.e. the set X(IR) is given by X(IR) = (0,∞)\E , where
the exception set E is given as the union

E =
⋃
u∈IR

[
X(u−), X(u)

)
∪
⋃
u∈IR

(
X(u), X(u+)

]
(2.34)

of half-open intervals. In particular, D =
(
[0, T ]× (0,∞)

)
\
(
{T} × E

)
, and the set D is fuzzy

at the boundary if E is nonempty.

Remark. Recall from Section 3.4.2 that we need an assumption like Assumption E in order to
be able to incorporate European calls and other contingent claims in our analysis for which the
final stock holdings are not smooth functions of the fundamentals. For that reason it makes
sense to deal with the additional complications incurred by switching from Assumption F to
Assumption E. �

In analogy to our transformation of the final value problem (3.4.6), (3,4.7) for the real value
function v̄ : [0, T ]× IR→ IR into the corresponding final value problem (3.4.21), (3.4.22) for
its transform w̄ : D̄ → IR, we now derive a final value problem for the transformed paper
value function w : D → IR from (2.30) by using our results of Section 3.4.3. We start with
rewriting the partial differential equation for w̄ into a PDE for w. The diffusion coefficient
of the latter PDE can be better expressed in terms of two new functions:
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Definition 4.9. Let uϕ : D → IR denote again the reparametrization function which is
uniquely determined by (2.32). Then the Black-Scholes volatility σ̂ϕ : D → (0,∞) corre-
sponding to our model is given by

σ̂ϕ(t, x) :=
ψu
(
t, u, ϕ(t, u)

)
ψ
(
t, u, ϕ(t, u)

) ∣∣∣∣∣
u=uϕ(t,x)

for all (t, x) ∈ D,

while the liquidity effect cϕ : D → IR on the stock prices is defined by

cϕ(t, x) :=
ψξ
(
t, u, ϕ(t, u)

)
ψ
(
t, u, ϕ(t, u)

) ∣∣∣∣∣
u=uϕ(t,x)

for all (t, x) ∈ D.

Remark. In the specific situation where the equilibrium price function ψ : [0, T ] × IR2 → IR
is given by ψ(t, u, ξ) = S0e

a(t)+σu+cξ for all (t, u, ξ) ∈ [0, T ] × IR2, we have σ̂ϕ(t, x) = σ
and cϕ(t, x) = c for all (t, x) ∈ D. In particular, in the Cox-Ross-Rubinstein model of
Example 1.9, where c = 0 and a(t) = (µ− r)t for all t ∈ [0, T ], we have σ̂ϕ ≡ σ and cϕ ≡ 0.
In general, however, σ̂ϕ: D → IR and cϕ : D → IR still depend on ϕ : [0, T ]× IR→ IR via the
reparametrization function uϕ, even if ψ : [0, T ]× IR2 → IR has a multiplicative structure. �

As a first step, we can now derive the partial differential equation for w : D → IR.

Lemma 4.10. Suppose that Assumptions B, C and M and either Assumption E or F hold.
Then the transformed paper value function w : D → IR solves the partial differential equation

wt(t, x) +
1
2
σ̂2
ϕ(t, x)

1 +
(
2d(µ)− 1

)
cϕ(t, x)xwxx(t, x)(

1− cϕ(t, x)xwxx(t, x)
)2 x2wxx(t, x) = 0 (2.35)

for all (t, x) ∈ [0, T )× (0,∞).

Proof. We basically want to use the defining equation (2.30) of the paper value function
and (3.4.20) in order to rewrite the PDE (3.4.21) for the transformed real value function
w̄ into a PDE which only depends on the transformed paper value function w, the price
function ψ, the strategy function ϕ and their derivatives. Here the transformed real value
function w̄ : D̄ → IR of (3.4.17) is uniquely determined by w̄

(
t, ψ•(t, u)

)
= v̄(t, u) for all

(t, u) ∈ [0, T ] × IR. The proof of the lemma itself requires quite tedious calculations. By a
clever reshuffling of terms, these calculations can be simplified at least to some extent.
As a first step of the proof, we rewrite the defining equation (2.30) of the paper value function
v : [0, T ] × IR → IR in terms of the price function ψ, the strategy function ϕ and the
transformed real value function w̄ : D → IR, and then calculate its first derivatives. For this
purpose let us fix (t, u) ∈ [0, T )× IR and recall from Section 3.4 that∫ ϕ(t,u)

0
f(z) dz = γ(t, u) =

v̄u(t, u)
ψ•u(t, u)

= w̄x
(
t, ψ•(t, u)

)
. (2.36)

Differentiating this equation with respect to t and u, respectively, we see that

γt(t, u) = f
(
ϕ(t, u)

)
ϕt(t, u) = w̄xt

(
t, ψ•(t, u)

)
+ w̄xx

(
t, ψ•(t, u)

)
ψ•t(t, u) (2.37)

and

γu(t, u) = f
(
ϕ(t, u)

)
ϕu(t, u) = w̄xx

(
t, ψ•(t, u)

)
ψ•u(t, u). (2.38)
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Due to Assumption B and the definition of the liquidation price function S̄ : [0, T ]×IR2 → IR
in (1.3.14), it follows from (2.4.2) and (2.36) that ϕ(t, u)S̄

(
t, u, ϕ(t, u)

)
= ψ•(t, u)w̄x

(
t, ψ•(t, u)

)
.

If we now use v̄(t, u) = w̄
(
t, ψ•(t, u)

)
, we can rewrite the defining equation (2.30) of the paper

value function v : [0, T ]× IR→ IR for our fixed (t, u) ∈ [0, T )× IR by

v(t, u) = w̄
(
t, ψ•(t, u)

)
+ ϕ(t, u)ψ

(
t, u, ϕ(t, u)

)
− ψ•(t, u)w̄x

(
t, ψ•(t, u)

)
.

Upon differentiation with respect to u the two terms w̄x
(
t, ψ•(t, u)

)
ψ•u(t, u) offset each other,

and we get

vu(t, u) = ϕ(t, u)
d

du
ψ
(
t, u, ϕ(t, u)

)
+ ψ

(
t, u, ϕ(t, u)

)
ϕu(t, u)− ψ•(t, u)w̄xx

(
t, ψ•(t, u)

)
ψ•u(t, u).

If we now use the multiplicative structure of ψ for the middle term and apply (2.38), we
arrive at

vu(t, u) = ϕ(t, u)
d

du
ψ
(
t, u, ϕ(t, u)

)
, (2.39)

and similarly we get from (2.37)

vt(t, u) = w̄t
(
t, ψ•(t, u)

)
+ ϕ(t, u)

d

dt
ψ
(
t, u, ϕ(t, u)

)
. (2.40)

By definition of w : D → IR we have v(t, u) = w
(
t, ψ(t, u, ϕ(t, u))

)
. If we differentiate this

expression with respect to u and divide the result by d
duψ

(
t, u, ϕ(t, u)

)
> 0, a comparison

with (2.39) shows that as in the standard Black-Scholes model we have

ϕ(t, u) = wx
(
t, ψ(t, u, ϕ(t, u))

)
for all (t, u) ∈ [0, T )× IR. (2.41)

Now we can also differentiate v(t, u) = w
(
t, ψ(t, u, ϕ(t, u))

)
with respect to t, replace the

spatial derivative of w by (2.41) and then compare with (2.40). This yields

wt
(
t, ψ(t, u, ϕ(t, u))

)
= w̄t

(
t, ψ•(t, u)

)
for all (t, u) ∈ [0, T )× IR.

Last but not least another differentiation of (2.41) and an application of (2.38) gives for all
(t, u) ∈ [0, T )× IR:

wxx
(
t, ψ(t, u, ϕ(t, u))

) d
du
ψ
(
t, u, ϕ(t, u)

)
= ϕu(t, u) =

ψ•u(t, u)
f(ϕ(t, u))

w̄xx
(
t, ψ•(t, u)

)
. (2.42)

Let us now recall the function uϕ : D → IR of (2.32) and implicitly define the function
ρϕ : [0, T )× (0,∞) → (0,∞) for all (t, x) ∈ [0, T )× (0,∞) by

ρ2
ϕ(t, x) =

ψu + 2d(µ)ψξϕu(t, u)
ψ(t, u, ϕ(t, u))

ψu + ψξϕu(t, u)
ψ(t, u, ϕ(t, u))

∣∣∣∣
u=uϕ(t,x),

(2.43)

where the arguments
(
t, u, ϕ(t, u)

)
of the derivatives of ψ have been skipped. With this

notation, (2.42), another application of (2.38) and ψξ = ψ•f ′ imply for all (t, u) ∈ [0, T )× IR

wt

(
t, ψ
(
t, u, ϕ(t, u)

))
+

1
2
ρ2
ϕ

(
t, ψ
(
t, u, ϕ(t, u)

))
ψ2
(
t, u, ϕ(t, u)

)
wxx

(
t, ψ
(
t, u, ϕ(t, u)

))
= w̄t

(
t, ψ•(t, u)

)
+

1
2

(
ψu + 2d(µ)ψξϕu(t, u)

) ψ•u(t, u)
f(ϕ(t, u))

w̄xx
(
t, ψ•(t, u)

)
= w̄t

(
t, ψ•(t, u)

)
+

1
2

(
1 + 2d(µ)ψ•(t, u)

f ′(ϕ(t, u))
f2(ϕ(t, u))

w̄xx
(
t, ψ•(t, u)

))
ψ•2u(t, u)w̄xx

(
t, ψ•(t, u)

)
.
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After plugging in the definitions of the transformed loss function κ : g(IR) → IR in (3.3.1)
and of the volatility function σ̄ : D → (0,∞) in (3.4.19), the last line equals the left-hand
side of the partial differential equation (3.4.21) for x = ψ•(t, u). Thus, it follows that

wt(t, x) +
1
2
ρ2
ϕ(t, x)x2wxx(t, x) = 0 for all (t, x) ∈ [0, T )× (0,∞). (2.44)

In order to prove (2.35) it only remains to show that ρϕ : [0, T ) × (0,∞) → (0,∞) can be
rewritten as

ρ2
ϕ(t, x) = σ̂2

ϕ(t, x)
1 +

(
2d(µ)− 1

)
cϕ(t, x)xwxx(t, x)(

1− cϕ(t, x)xwxx(t, x)
)2 for all (t, x) ∈ [0, T )× (0,∞). (2.45)

For that purpose we first rewrite (2.43) for all (t, x) ∈ [0, T )× (0,∞) in terms of the Black-
Scholes volatility σ̂ϕ : D → (0,∞) and the liquidity effect cϕ : D → IR of Definition 4.9. This
gives us

ρ2
ϕ(t, x) = σ̂2

ϕ(t, x)
(

1 + 2d(µ)
cϕ(t, x)
σ̂ϕ(t, x)

ϕu(t, u)
)(

1 +
cϕ(t, x)
σ̂ϕ(t, x)

ϕu(t, u)
)∣∣∣∣

u=uϕ(t,x).

(2.46)

Calculating the derivative d
duψ

(
t, u, ϕ(t, u)

)
and using once again the definitions of σ̂ϕ and

cϕ we get from the left equality in (2.42)

ϕu(t, u) = xwxx(t, x)
(
σ̂ϕ(t, x) + cϕ(t, x)ϕu(t, u)

)∣∣∣
x=ψ(t,u,ϕ(t,u))

for all (t, u) ∈ [0, T )× IR.

If we now collect the terms with ϕu(t, u) we obtain(
1− cϕ(t, x)xwxx(t, x)

)
ϕu(t, u) = σ̂ϕ(t, x)xwxx(t, x). (2.47)

Since σ̂ϕ is strictly positive, the assumption cϕ(t, x)xwxx(t, x) = 1 leads to a contradiction,
hence we can divide (2.47) by the factor in front of ϕu(t, u) and finally arrive at the relation

ϕu(t, u) = σ̂ϕ(t, x)
xwxx(t, x)

1− cϕ(t, x)xwxx(t, x)

∣∣∣∣
x=ψ(t,u,ϕ(t,u))

for all (t, u) ∈ [0, T )× IR. (2.48)

Plugging this representation of ϕu into (2.46), we obtain the representation (2.45) which was
left to show. q.e.d.

For later reference, we formally define the function ρϕ : [0, T ) × (0,∞) → (0,∞) which
represents the diffusion coefficient of the PDE (2.35).

Definition 4.11. The function ρϕ : [0, T ) × (0,∞) → (0,∞) which satisfies (2.43) and
(2.45) is called large investor volatility for paper replication induced by the final strategy
function ϕ(T, · ) = αζ.

Remark. It is clear from our proof of Lemma 4.10 that under the stated assumptions the func-
tion ρϕ is well-defined. We have already seen from (2.47) that cϕ(t, x)xwxx(t, x) 6= 1. Using
(2.48) and Definition 4.9, this statement can now be strengthened to cϕ(t, x)xwxx(t, x) < 1
for all (t, x) ∈ [0, T )× (0,∞), since we have

cϕ(t, x)xwxx(t, x) =
cϕ(t, x)ϕu(t, u)

σ̂ϕ(t, x) + cϕ(t, x)ϕu(t, u)

∣∣∣∣
u=uϕ(t,x)

=
ψξ(t,u,ϕ(t,u))
ψu(t,u,ϕ(t,u))ϕu(t, u)

1 + ψξ(t,u,ϕ(t,u))
ψu(t,u,ϕ(t,u))ϕu(t, u)

∣∣∣∣∣
u=uϕ(t,x)

,
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where the denominator of the last fraction is strictly positive due to Assumption M. In the
“linear” case d(µ) = 0, where the partial differential equation for the strategy function is a
linear equation, the pole of the fraction in (2.45) reduces by one order, and (2.45) becomes

ρ2
ϕ(t, x) = σ̂2

ϕ(t, x)
1

1− cϕ(t, x)xwxx(t, x)
for all (t, x) ∈ [0, T )× (0,∞).

This gives us yet another indication why we need less stringent boundary conditions if the
price determining measure µ satisfies d(µ) = 0.
In the special case where µ is the Dirac measure in δ1, we have 2d(µ) = 1, and hence

ρ2
ϕ(t, x) = σ̂2

ϕ(t, x)
(

1
1− cϕ(t, x)xwxx(t, x)

)2

for all (t, x) ∈ [0, T )× (0,∞).

Under Assumptions B, C and F we have seen in Section 3.4.2 that the solution ϕ to the
final value problem (3.4.3), (3.4.4) belongs to the space C1

b (IR), and by Lemma 3.31 we have
D = [0, T ]× (0,∞). If in addition to these conditions the ratio ψ

ψu
is bounded away from 0,

it is easily seen from (2.43) that the continuous large investor volatility function ρϕ remains
bounded on its domain [0, T )×(0,∞). Therefore, it can be extended to a bounded continuous
function on D = [0, T ]× (0,∞).
If Assumption F is replaced by Assumption E, we cannot guarantee ϕ(T, · ) = αζ ∈ C1

b (IR),
and the function ρϕ : [0, T ) × (0,∞) → (0,∞) need not be smoothly continuable on D; the
large investor volatility ρϕ might explode at all the points (T, x) where x is a boundary point
of the set E of (2.34). �

In order to complete the final value problem for the transformed paper value function we still
need to state the final condition for w. Due to possible jumps of the function X : IR → IR,
u 7→ ψ(T, u, αζ(u)) of (2.33), this boundary condition becomes more challenging than in small
investor models. Before we come to the general final condition, we consider the final condition
for the transformed paper value of the European call which was introduced in Example 3.1.
Example 4.1 (European Call). Let us suppose the price system (ψ, µ) satisfies Assump-
tions B, C and the corresponding conditions of Assumption E. Let us also suppose that
f : IR → IR is nondecreasing. Fix some K ∈ IR and α ≥ 0, and as in Example 3.1 take
u∗ ∈ IR such that ψ(T, u∗) =

(∫ 1
0 f(θα) dθ

)−1
K. Let us now recall the European call

(
αζ, bα

)
of Example 3.1, which is given by ζ(u) = 1{u≥u∗} and bα(u) = −αK1{u≥u∗} for all u ∈ IR. If
α ≥ 0 is chosen small enough, all conditions of Assumption E and Assumption M hold.
The paper value function v : [0, T ]× IR→ IR at maturity T of the European call is given by

v(T, u) = αζ(u)ψ(T, u, αζ(u)) + bα(u) = α
(
ψ(T, u, αζ(u))−K

)+ for all u ∈ IR. (2.49)

In order to restate this final condition in terms of the transformed paper value function
w : D → IR, we first need to determine the set X(IR) of possible final stock prices. Since
X : IR→ IR has only one jump from the left at u∗, the exception set E of (2.34) is given by
E =

[
X(u∗−), X(u∗)

)
=
[
ψ(T, u∗, 0), ψ(T, u∗, α)

)
, and hence

X(IR) = (0,∞)\
[
ψ(T, u∗, 0), ψ(T, u∗, α)

)
.

On the set {T} ×X(IR) the transformed paper value function w : D → IR is now given by

w(T, x) = α(x−K)+ for all x ∈ X(IR).

If the contingent claim
(
αζ, bα

)
were given by ζ(u) = 1{u>u∗} and bα(u) = −αK1{u>u∗} for

all u ∈ IR, the paper value function v : [0, T ] × IR → IR would also be given by (2.49), but
the set X(IR) of possible stock price at maturity would differ in that

X(IR) = (0,∞)\
(
ψ(T, u∗, 0), ψ(T, u∗, α)

]
.
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Hence the domain D of the transformed paper value function w for the second version of
the European call differs on the boundary from the domain of the transformed paper value
function for the European call in the initially specified version. �

Now let us derive the final value condition for the transformed strategy function w for a more
general contingent claim (αζ, bα). For this purpose, we first investigate the possible stock
prices at maturity T . By (3.4.4), the large investor’s strategy at time T is prescribed by
ϕ(T, u) = αζ(u) for each possible value u ∈ IR of the fundamentals at that time. Thus, the
function X : IR→ (0,∞) given by

X(u) = ψ
(
T, u, αζ(u)

)
for all u ∈ IR

associates to each fundamental value the corresponding stock price at time T . We have al-
ready seen in the discussion following the definition of X in (2.33) that X(IR) = (0,∞)\E ,
where the exception set E is defined in (2.34). According to Assumption M the func-
tion X : IR→ X(IR) is strictly increasing and hence invertible. In addition to the inverse
X−1, which is only defined on the domain X(IR), we also introduce the generalized inverse
X− : (0,∞) → IR, which is defined for all positive real numbers by

X−(x) = sup
{
u ∈ IR

∣∣X(u) < x
}

for all x ∈ (0,∞).

If x ∈ X(IR) we get X−(x) = X−1(x), so X− indeed generalizes the classical inverse X−1.
In order to derive the final condition for the transformed paper value function, we start again
with (2.30). Setting t = T we obtain

v(T, u) = v̄(T, u) + ϕ(T, u)
(
ψ
(
T, u, αζ(u)

)
− S̄

(
T, u, αζ(u)

))
for all u ∈ IR.

If we now apply the final conditions (3.4.7) and (3.4.4) of the final value problems for v̄ and
ϕ, respectively, we get

v(T, u) = αζ(u)ψ
(
T, u, ϕ(T, u)

)
+ bα(u) for all u ∈ IR, (2.50)

where bα : IR→ IR was defined in (3.4.5) by bα(u) = bα0 −
∫ u
0 ψ
•(T, ū) d

(∫ αζ(ū)
0 f(z) dz

)
for all

u ∈ IR. Now w
(
T,X(u)

)
= v(T, u) implies

w(T, x) = αζ
(
X−1(x)

)
x+ bα

(
X−1(x)

)
for all x ∈ X(IR). (2.51)

This is a valid boundary condition for the partial differential equation (2.35). However, we
would like to state the final condition in some more intuitive form, which resembles the
structure of a European call or put as it is given in the Black-Scholes model. The following
lemma gives us such a representation.

Lemma 4.12. Under the Assumptions of Lemma 4.10, we can rewrite the final condition
(2.51) for the transformed paper value function into the condition

w(T, x) = wα0 + αh(x) + αH−(x) + αH+(x) for all x ∈ X(IR), (2.52)

where the constant wα0 = bα0 +αζ(0)ψ
(
T, u, αζ(0)

)
denotes the large investor’s final paper value

w
(
T,X(0)

)
= v(T, 0) when the fundamentals at time T vanish, the differentiable function

h : (0,∞) → IR is defined by

h(x) =
∫ x

X(0)
ζd(0) + ζac

(
X−(z)

)
dz for all x ∈ IR,
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and the càdlàg function H− : (0,∞) → IR defined by

H−(x) =


∑

X−(x)<u≤0

(
ζ(u)− ζ(u−)

)(
S∗
(
T, u, αζ(u), αζ(u−)

)
− x
)

if x < X(0),∑
0<u≤X−(x)

(
ζ(u)− ζ(u−)

)(
x− S∗

(
T, u, αζ(u−), αζ(u)

))
if x ≥ X(0)

and the càglàd function H+ : (0,∞) → IR given by

H+(x) =


∑

X−(x)≤u<0

(
ζ(u+)− ζ(u)

)(
S∗
(
T, u, αζ(u+), αζ(u)

)
− x
)

if x < X(0)∑
0≤u<X−(x)

(
ζ(u+)− ζ(u)

)(
x− S∗

(
T, u, αζ(u), αζ(u+)

))
if x ≥ X(0),

take account of the influence of ζ’s jumps from the left and right, respectively, on the final
paper value.

Proof. Without loss of generality, suppose that ζ : IR → IR is right continuous, so that H+

vanishes. In order to show that the two final conditions (2.51) and (2.52) are equivalent we
have to consider the function γ̄ : IR → IR given by γ̄(u) = γ(T, u) =

∫ αζ(u)
0 f(z) dz for all

u ∈ IR in some more detail; this function is used as the integrator in the Riemann-Stieltjes
integral which appears in the definition of bα : IR→ IR.
In the proof of Lemma 3.29 we have already seen that the decomposition of ζ into an ab-
solutely continuous part and a pure jump part implies the same property for γ̄, i.e. we can
write γ̄ = γ̄ac + γ̄d, where the pure jump part γ̄d is given by

γ̄d(u) =
∫ αζ(0)

0
f(z)dz +

∑
0<ū≤u

∫ αζ(ū)

αζ(ū−)
f(z) dz −

∑
u<ū≤0

∫ αζ(ū)

αζ(ū−)
f(z) dz for all u ∈ IR,

and the absolutely continuous part γ̄ac : IR→ IR by

γ̄ac(u) =
∫ u

0

d

dū

∫ αζ(ū)

0
f(z) dz dū =

∫ u

0
f
(
αζ(ū)

)
αζacu (ū)dū = α

∫ u

0
f
(
αζ(ū)

)
dζac(ū).

If we first apply the definitions of X : IR → (0,∞) and bα : IR → IR to (2.50), use the
definition of wα0 and then split each of the functions ζ and γ̄ into an absolutely continuous
and a pure jump component, we get

v(T, u) = bα0 + αζ(u)X(u)−
∫ u

0
ψ•(T, ū) dγ̄(ū) = wα0 +Dac(u) +Dd(u) (2.53)

for all u ∈ IR, where the functions Dac : IR→ IR and Dd : IR→ IR are given by

Dac(u) = αζac(u)X(u)− αζac(0)X(0)−
∫ u

0
ψ•(T, ū) dγ̄ac(ū) + αζd(0)

(
X(u)−X(0)

)
and

Dd(u) = αζd(u)X(u)− αζd(0)X(u)−
∫ u

0
ψ•(T, ū) dγ̄d(ū) for all u ∈ IR,

respectively. Now standard calculation yields∫ u

0
ψ•(T, ū) dγ̄ac(ū) = α

∫ u

0
ψ•(T, ū)f

(
αζ(ū)

)
dζac(ū) = α

∫ u

0
X(ū) dζac(ū) for all u ∈ IR.
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Hence we can conclude from an integration by parts, the substitution dz = dX(ū), and the
definition of h : (0,∞) → IR that

Dac(u) = α

∫ u

0
ζac(ū) dX(ū) = α

∫ X(u)

X(0)
ζac
(
X−(z)

)
dz = αh

(
X(u)

)
for all u ∈ IR.

In order to calculate Dd(u) we employ a telescoping sum for ζd(u)− ζd(0) to obtain

Dd(u) = α
∑

u<ū≤0

(
ζ(ū)− ζ(ū−)

)(
S∗
(
T, ū, αζ(ū−), αζ(ū)

)
−X(u)

)
+ α

∑
0<ū≤u

(
ζ(ū)− ζ(ū−)

)(
X(u)− S∗

(
T, ū, αζ(ū−), αζ(ū)

))
for all u ∈ IR,

and by comparing this expression with the definition of H− : (0,∞) → IR we see that
Dd(u) = αH−(X(u)

)
. Hence (2.53) implies

v(T, u) = wα0 + αh
(
X(u)

)
+ αH−(X(u)

)
for all u ∈ IR,

and the assertion follows immediately. q.e.d.

Although the functions h, H− and H+ of (2.52) are defined as functions of the stock price
X(u) = ψ

(
T, u, αζ(u)

)
at time T , they are still determined in terms of the boundary function

αζ : [0, T ]× IR→ IR of the strategy function ϕ. In the standard Black-Scholes model, where
the shares of stock held by any particular investor do not have an effect on the stock price,
an “option” is defined by its payoff function C : (0,∞) → IR in terms of the stock price at
maturity T , and this payoff function is used as the boundary condition for the value function
of the replicating strategy.
In the discrete setting of Section 1.4.3 we have used the large investor stock price as the input
of an “option” which describes the large investor’s paper value at maturity. In order to find a
trading strategy which replicates the paper value of such an “option”, we have solved a fixed
point problem for the large investor’s stock holdings at and immediately before maturity, and
then applied our usual recursive scheme to calculate the large investor’s replicating strategy
for all time points between 0 and T .
In a similar fashion, we can ask in the continuous time model for a trading strategy of the
large investor for which the paper value at maturity can be written as a given function
C : (0,∞) → IR of the (large investor) stock price at that time. For this purpose, let
us assume that the large investor replicates α 6= 0 “options” with the same payoff C(x),
depending on the stock price x at time T , such that the transformed paper value function
w : D → IR of his replicating portfolio at maturity satisfies

w(T, x) = αC(x) for all x ∈ X(IR). (2.54)

Suppose for a moment that we already know his final stock holdings ϕ(T, u) at time T for
all possible fundamental values u ∈ IR. Then at maturity the large investor holds on average
ζ(u) = 1

αϕ(T, u) shares per option. In addition, let us suppose that the price system (ψ, µ),
the function ζ and the constant α satisfy the Assumptions B, C, F and M.
Especially, Assumption F implies that ζ is differentiable and ζ = ζac since ζ has no jumps.
Therefore the function X : IR → (0,∞), u 7→ ψ

(
T, u, αϕ(T, u)

)
maps IR onto (0,∞), and

its inverse X−1 : (0,∞) → IR is differentiable. Moreover, the functions H− and H+ of
Lemma 4.12 vanish on IR, and h : (0,∞) → IR simplifies to h(x) =

∫ x
X(0) ζ

(
X−1(z)

)
dz for

all x > 0. By Lemma 4.12 the large investor’s (transformed) paper value at time T can now
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be written as w(T, x) = wα0 + α
∫ x
X(0) ζ

(
X−1(z)

)
dz for all x > 0 for some constant wα0 ∈ IR.

Because of (2.54), this also gives the same representation for αC(x) and differentiation yields

wx(T, x) = αC ′(x) = αζ
(
X−1(x)

)
for all x ∈ (0,∞). (2.55)

Since we assume α 6= 0, we can divide the right hand side of (2.55) by α, and plugging in
x = X(u) = ψ

(
T, u, αζ(u)

)
we obtain the fixed point equation

C ′(ψ(T, u, αζ(u))
)

= ζ(u) for all u ∈ IR (2.56)

for the shape ζ : IR→ IR of the large investor’s strategy function at time T .
On the other hand, if we are given an arbitrary function C : (0,∞) → IR and look for a trading
strategy such that the associated transformed paper value function satisfies w(T, x) = αC(x),
then the normalized stock holdings ζ = 1

αϕ(T, · ) of the large investor at time T have to sat-
isfy (2.56). Thus, if we do not know ζ, we can specify it as the solution to the fixed point
problem (2.56). The next proposition states conditions on the function C : (0,∞) → IR
which ensure that for all sufficiently small |α| the fixed point problem (2.56) has a unique
and sufficiently smooth solution ζ : IR → IR, so that α and ζ satisfy for example the condi-
tions of Assumption F. Once ζ is specified, the strategy function ϕ : [0, T ]× IR→ IR which
is necessary to achieve final stock holdings of ϕ(T, u) = αζ(u) for all u ∈ IR is determined
as the solution to the final value problem (3.4.3), (3.4.4). The constant bα0 , which describes
the large investor’s bond holdings at time T when the fundamentals are 0, is also com-
pletely specified by C and α and the solution ζ : IR → IR of (2.56), since (2.54) implies
bα0 = αC

(
ψ(T, 0, αζ(0))

)
− ζ(0)ψ

(
T, 0, αζ(0)

)
. Due to the fixed point equation (2.56) this

expression can be written just in terms of C and the stock price x0 = X(0) = ψ
(
T, 0, αζ(0)

)
as

bα0 = α
(
C(x0)− C ′(x0)x0

)
.

Thus, the next proposition will show that under suitable regularity conditions we can replicate
the paper value of given “options” C : (0,∞) → IR in the continuous model.

Proposition 4.13. In addition to Assumptions B and C suppose that for some k ∈ IN
the functions ψ• and f belong to the Hölder spaces Ĥ

1
2
(k+β),k+β

(
[0, T ] × IR

)
and Hk+β

loc (IR),
respectively. If the function C : (0,∞) → IR is (k + 1) times differentiable and if there exists
some B ≥ 0 such that∣∣∣∣xj( d

dx

)j+1

C(x)
∣∣∣∣ ≤ B for all x ∈ (0,∞) and all 0 ≤ j ≤ k, (2.57)

then there exists some open interval (α1, α2) ⊃ {0} such that for each α ∈ (α1, α2) the fixed
point equation (2.56) has a unique solution ζ : IR → IR, and the solution ζ belongs to the
space Ckb (IR).

Proof. Our argument follows the proof of an analogous statement in Lemma 3.6 of Frey
(1998). For each α ∈ IR and u ∈ IR the function aα,u : IR → IR, ξ 7→ C ′(ψ(T, u, αξ)

)
− ξ, is

continuous and surjective, since (2.57) implies ‖C ′‖ ≤ B. Hence for all α ∈ IR there exists
some function ζ = ζα : IR→ IR for which (2.56) holds. Of course, ζ is bounded by B as well.
If we now write ψξ(T, u, αξ) = ψ(T, u, αξ)f

′(αξ)
f(αξ) and apply (2.57) with j = 1 we obtain

∣∣∣C ′′(ψ(T, u, αξ)
)
ψξ(T, u, αξ)

∣∣∣≤ B sup
−|α|B≤z≤|α|B

∣∣∣∣f ′(z)f(z)

∣∣∣∣ for all α, u ∈ IR and ξ ∈ [−B,B].
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Since f is continuously differentiable and strictly positive, the fraction f ′

f is bounded on each
compact interval I. Hence there exists some open interval (α1, α2) ⊃ {0} such that for all
fixed α ∈ (α1, α2) we obtain the strict inequality

sup
{
αC ′′(ψ(T, u, αξ)

)
ψξ(T, u, αξ)

∣∣∣u ∈ IR, ξ ∈ [−B,B]
}
< 1.

Hence for all α ∈ (α1, α2) and all u ∈ IR the function aα,u : IR→ IR, ξ 7→ C ′(ψ(T, u, αξ)
)
− ξ

is strictly increasing. This implies the uniqueness of ζ : IR → IR. The implicit function
theorem gives the differentiability of ζ, and (2.56) yields

ζu(u) =
C ′′(ψ(T, u, αζ(u))

)
ψu(T, u, αζ(u))

1− αC ′′
(
ψ(T, u, αζ(u))

)
ψξ(T, u, αζ(u))

for all u ∈ IR.

It now follows easily that ζ belongs to the space Ckb (IR). q.e.d.

Remark. Recall the discussion of the replication of the paper wealth in the discrete setting
of Section 1.4.3. In that section we have shown how one can construct a discrete trading
strategy in the n-step binomial model, which replicates the value of a given (convex) “option”
C : (0,∞) → IR.
It is natural to start with some sufficiently smooth “option” C : (0,∞) → IR, and some
sufficiently small α > 0 such that the continuous-time strategy ϕ : [0, T ] × IR → IR implied
by C and α via (2.56) and ϕ(T, u) = αζ(u) exists, and ask whether the sequence of the
n-step discrete models of Section 1.4.3 will converge to the continuous model for the paper
replication of the same option C : (0,∞) → IR as n→∞, in the sense of the present section.
Unfortunately, in the large investor setting the dependence of the stock prices on the strategy
destroys the most straightforward approach. The values of the discrete strategy functions
ξn : An → IR at the time points tnn−1 and tnn, which are calculated in Proposition 1.36, do
not satisfy the condition (3.3.67) of Corollary 3.28, and they also do not satisfy the weaker
condition stated in the remark to that corollary. Thus, we cannot show that the sequence
of discrete strategy functions ξn : An → IR converges in the sense of Corollary 3.28 to the
continuous-time strategy function ϕ : [0, T ]× IR→ IR, because Assumption K is not satisfied
and for example Proposition 4.8 cannot be applied.
However, the situation is not totally hopeless. In view of our ansatz in Section 3.2.4 we believe
that it is still possible to find a subsequence {nj}j∈IN ⊂ IN such that along this subsequence
we have

∥∥ξnj − ϕ
∥∥
Anj = O

(
δ2
)

and∥∥∥∥ξnj (·+ δ2, · ± δ)− ξnj ∓ δϕu − δ2
(
ϕt +

1
2
ϕuu

)∥∥∥∥
Anj (nj−1)

= O
(
δ2+β

)
as j →∞,

where δ = δnj = n
− 1

2
j for all j ∈ IN . Using Remark 2 at the end of Section 4.2.3, we find

that at least for this subsequence the discrete models converge to the continuous model in
the sense of Proposition 4.8. �

Let us now recall the large investor volatility ρϕ : [0, T )× (0,∞) → (0,∞) of Definition 4.11.
If we write it in terms of the derivative wxx as in (2.45), it is given by

ρ2
ϕ(t, x) = σ̂2

ϕ(t, x)
1 +

(
2d(µ)− 1

)
cϕ(t, x)xwxx(t, x)(

1− cϕ(t, x)xwxx(t, x)
)2 for all (t, x) ∈ [0, T )× (0,∞).

The canonical generalization of the final value problem for the value function in the Black-
Scholes model to the paper value function of the large investor is then given by the partial
differential equation

wt(t, x) +
1
2
ρϕ(t, x)x2wxx(t, x) = 0 for all (t, x) ∈ [0, T )× (0,∞) (2.58)
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together with the final condition

w(T, x) = αC(x) for all x ∈ X(IR). (2.59)

for some payoff function C : (0,∞) → IR. Whenever C satisfies the assumptions of Proposi-
tion 4.13 and α is chosen small enough, or – more generally – whenever we are given some
α ∈ IR and ζ : IR→ IR such that Assumption M and either Assumption E or F hold so that
the functions h, H− and H+ of Lemma 4.12 and hence C : (0,∞) → IR given by

C(x) = wα0 + αh(x) + αH−(x) + αH+(x) for all x ∈ (0,∞), (2.60)

are well-defined, a solution to (2.58), (2.59) exists.

Remark. If ψξ ≡ 0 so that the large investor does not effect the stock price at all, then the
liquidity effect cϕ of the large investor vanishes, the Black-Scholes volatility σ̂ϕ of Defini-
tion 4.9 does not depend on the large investor’s strategy either, and we obtain ρϕ ≡ σ̂ϕ ≡ σ̄.
Here the function σ̄ : [0, T ) × (0,∞) → IR is given by σ̄(t, x) = ψ•u(t,u)

ψ•(t,u)
∣∣
u=u(t,x)

for all
(t, x) ∈ [0, T ] × (0,∞), where u(t, x) is the unique solution of ψ•

(
t, u(t, x)

)
= x. In addi-

tion to that simplification, the possible jumps of ζ : IR → IR do not lead to any jumps of
the function X : IR → (0,∞), u 7→ ψ

(
T, u, αζ(u)

)
, and hence X(IR) = (0,∞). It follows

that the final value problem for the transformed paper value coincides with the final value
problem (3.4.21), (3.4.22) for the corresponding transformed real value function. This is what
we expect, since it can be seen directly from the definition of the two functions that the real
value function coincides with the paper value function if ψξ ≡ 0.
In general, however, the volatility ρϕ in the partial differential equation (2.58) fundamentally
differs from the corresponding volatility term in the standard Black-Scholes model or in the
partial differential equation for the real value function. In the final value problem of the
value function in the standard Black-Scholes model, the volatility is constant or a function
of time and stock price. In Section 3.4.3 we have seen that the actual volatility in the
partial differential equation (3.4.21) for the real value function in a large investor model with
transaction losses also depends on the Gamma w̄xx and – if κ is not constant – on the Delta
w̄x of the transformed real value function w̄ : [0, T ] × (0,∞) → IR, (t, u) 7→ w̄(t, x) which
describes the value of the large investor’s portfolio as a function of time t and associated small
investor stock price x = ψ•(t, u). However, w̄xx has only a linear influence on the volatility. If
we now look at the large investor volatility ρϕ in (2.58), we see that the dependence on the
Gamma wxx is much more pronounced than in the partial differential equation for the real
value function, since wxx appears both in the numerator and in the denominator of ρϕ. In
contrast to the volatility in (3.4.21) the large investor volatility ρϕ still depends on wxx if we
are in the “linear” case d(µ) = 0, where no implied transaction losses occur and where the
two partial differential equations for the real value function and the strategy function become
linear. We should also note that the large investor volatility in general also depends on the
Delta wx of the paper value, since the functions σ̂ϕ and cϕ depend on wx via the equality
(2.41).
We also emphasize once again that the domain X(IR) = (0,∞)\E of the final condition might
consist of several disconnected parts due to the jumps of X : IR→ (0,∞), u 7→ ψ

(
t, u, αζ(u)

)
.

According to our model the large investor’s stock price at maturity can never take on any of
the values in E . However, the functions h : (0,∞) → IR and H± : (0,∞) → IR in (2.60) are
defined on the whole ray, so we can extend the final condition (2.60) to the whole interval
(0,∞). By this extension w is defined on the whole domain [0, T ] × (0,∞) and not only on
the fuzzy domain D =

(
[0, T ]× (0,∞)

)
\
(
{T} × E

)
. �

Let us now consider the special situation of a large investor price system (ψ, µ) where the
price determining measure µ is the Dirac measure δ1 concentrated in 1, such that the stock
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price immediately reacts to an announced change of the large investor’s portfolio before
the large investor can execute any trades. This price mechanism corresponds to the price
mechanism in the papers of Schönbucher and Wilmott (1996, 2000), Frey (1998, 2000), Frey
and Patie (2002) and Sircar and Papanicolaou (1998), who all consider the replication of the
large investor’s paper value in a continuous model. Except for Frey (1998), all these papers
derive a final value problem for the large investor’s paper value function which is equivalent
to (2.58), (2.59). In order to see the connection let us first note that µ = δ1 implies that
2d(µ) = 1, hence the large investor volatility function ρϕ : [0, T ]× (0,∞) → (0,∞) of (2.43)
and (2.45) simplifies to

ρϕ(t, x) =
ψu + ψξϕu(t, u)
ψ(t, u, ϕ(t, u))

∣∣∣∣
u=uϕ(t,x)

= σ̂ϕ(t, x)
1

1− cϕ(t, x)xwxx(t, x)
(2.61)

for all (t, x) ∈ [0, T )× (0,∞). Schönbucher and Wilmott (2000) derive the partial differential
equation for the large investor’s paper value function from an economic partial equilibrium
argument by supposing that the (large investor) stock price can be written as some unspecified
continuous diffusion process with time and space dependent diffusion parameters. Sircar and
Papanicolaou (1998) base their work on Frey and Stremme (1997), who study the influence of
an a priori determined trading strategy on the dynamics of the Walrasian equilibrium price,
and derive the same partial differential equation. In Schönbucher and Wilmott (2000) the
partial differential equation for the paper value is formulated in terms of the excess demand
function and in Sircar and Papanicolaou (1998) in terms of the relative demand function
for the small investors; both of these functions are assumed to be sufficiently smooth. For
example, we can transfer Sircar’s and Papanicolaou’s notation in terms of the relative demand
function D : [0, T ]× (0,∞)2 → IR and the constant supply S0 > 0 of stock into our notation
by defining the equilibrium price function ψ : [0, T ]× IR2 → IR as the unique solution to

S0D
(
t, ψ(t, u, ξ), eu

)
+ ξ = S0 for all (t, u, ξ) ∈ [0, T ]× IR2. (2.62)

For the bulk of their paper, Sircar and Papanicolaou (1998) consider a certain class of demand
functions, where the relative demand is reciprocal to the stock price and a power function
of the aggregated income of the small traders. Basically, this class of demand functions
was already proposed by Frey and Stremme (1997) because functions from that class have
simple homogeneity properties. The corresponding family of equilibrium price functions
ψ : [0, T ]× IR2 → IR is given by

ψ(t, u, ξ) = x∗eσu
1

max{η, 1− 1
S0
ξ}

for all (t, u, ξ) ∈ [0, T ]× IR2, (2.63)

for some scaling variable x∗ > 0, some volatility parameter σ > 0 and some sufficiently small
η > 0. Here the constant η should be so small that all “realistic” values ξ for the large
investor’s stock position satisfy 1

S0
ξ ≥ 1 − η. For the class of models described by (2.63),

the corresponding Black-Scholes volatility σ̂ϕ is constant and equals σ. The liquidity effect
cϕ(t, x) is given by cϕ(t, x) = 1

S0

(
1− 1

S0
wx(t, x)

)−1 for all (t, x) ∈ [0, T )× (0,∞) for which the
solution of the final value problem (2.58), (2.59) corresponding to the price function (2.63)
satisfies 1

S0
wx(t, x) ≤ 1 − η. Sircar and Papanicolaou (1998) then provide an asymptotic

analysis of the per-share price 1
αw(t, x) of the replicating portfolio of α > 0 (smoothed)

European calls or more general convex options if the ratio ρ = α
S0

of replicated options to the
total supply of options is small.
Frey (1998) also investigates the paper value replication of a contingent claim in a continuous-
time market model where the price determining measure of the underlying price system is
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given by µ = δ1. However, in this paper Frey does not explicitly state the non-linear Black-
Scholes equation for the paper value function, but only derives the final value problem for
the corresponding strategy function ϕ : [0, T ] × IR → IR and discusses the existence and
uniqueness of solutions to it. Especially, the partial differential equation for ϕ is equivalent
to (3.4.3) with 2d(µ) = 1. While the stock price in Frey (1998) is determined in terms of
a reaction function which solves a market clearing condition analogous to (2.62), the model
in Frey (2000) directly starts with a diffusion model for the stock price in terms of the
stock price process {St}, the large investor’s strategy process {φt}, some volatility parameter
σ̄ > 0 which reflects the volatility in the market without the large investor, and some market
liquidity parameter ρ ≥ 0, which – in contrast the corresponding parameters in Sircar and
Papanicolaou (1998) and Frey (1998) – is exogenously determined and does not depend on
the number α of replicated options. Under these assumptions, Frey (2000) derives a final
value problem for the paper value function which corresponds to (2.58), (2.59), where the
large investor volatility ρϕ in (2.61) only depends on the stock price x and the Gamma
wxx(t, x) since σ̂ϕ ≡ σ and cϕ ≡ ρ. This model is further extended in Frey and Patie
(2002) by introducing some liquidity profile λ : IR+ → IR+, which results in terms of our
notation in a liquidation effect cϕ : [0, T ) × (0,∞) → IR given by cϕ(t, x) = ρλ(x) for all
(t, x) ∈ [0, T ) × (0,∞). Frey and Patie (2002) argue that a non-constant liquidity profile λ
translates the common knowledge that the market liquidity in falling markets is lower than
in rising markets and that large moves in either direction limit the market liquidity. Then
they use the liquidity profile λ to model and explain a volatility smile observed in real data.
Last but not least, Frey and Patie (2002) provide an extensive numerical simulation study for
the paper value, its Delta and its Gamma, for a (smoothed) European call and a call spread.
Also note that due to µ = δ1 the models of these authors can be obtained as limits of discrete
binomial models as in Section 4.2.4 without assuming the convergence of the large investor’s
stock holdings before time 0, since these models satisfy Assumption L(i).
Since the discrete binomial model with µ = δ1 is a generalization of Jarrow’s (1994) model,
we may summarize our discussion of the situation µ = δ1 with the observation that we
have shown in Proposition 4.8 that properly scaled versions of Jarrow’s model converge in
distribution towards Frey’s (1998) model.

4.2.6 The Continuous-Time Stochastic Model

In order to conclude the discussion of the limit model under the p-martingale measure, we
treat in this section the existence and uniqueness of weak and strong solutions to the stochastic
differential equations for the fundamentals in a more general setting than in Section 4.2.3.
Then we apply Itô’s formula to the price and paper value processes to obtain a martingale
representation for these two processes. Finally, we discuss the problems which appear if
our continuous model is used to describe a large investor investor market where the large
investor follows our trading strategy between time 0 and time T , but where he trades a
non-infinitesimal amount of shares at the beginning and at maturity.
Recall from Theorem 4.4 the stochastic differential equation

dUt = σϕ(t, Ut)dWt + µϕ(t, Ut)dt for all t ∈ [0, T ], U0 = u0, (2.64)

which is solved by the distributional limit
(
U
∣∣Pϕ

)
of the discrete fundamental processes

under the p-martingale measures. Here W is a Pϕ-Brownian motion and the functions
σϕ : [0, T ]× IR→ IR and µϕ : [0, T ]× IR→ IR have been defined in (2.22) and (2.23), respec-
tively.
For any strategy function ϕ : [0, T ] × IR → IR for which the volatility and drift parameters
σϕ : [0, T ] × IR → IR and µϕ : [0, T ] × IR → IR are well-defined, we can introduce the
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infinitesimal generator Lϕ by setting(
Lϕ h

)
(t, u) =

1
2
σ2
ϕ(t, u)h′′(u) + µϕ(t, u)h′(u) for all (t, u) ∈ [0, T ]× IR and h ∈ C2

b (IR).

Let U =
{
Ut
}
t∈[0,T ]

be the coordinate process given by Ut(ω) = ω(t) for all t ∈ [0, T ] and
ω ∈ C[0, T ] and let

{
F̄t
}

denote the natural filtration of U . Recalling the martingale problem
of Chapter 6 in Stroock and Varadhan (1979), we can now give existence and uniqueness
conditions for solutions to the SDE (2.64). Since there exists two different existence and
uniqueness concepts of solutions to a stochastic differential equation, we state conditions for
both concepts.

Lemma 4.14. Let us assume that the function ψ : [0, T ] × IR2 → IR belongs to the space
C1,2

(
[0, T ]×IR2

)
with ψu > 0,

∥∥ ψ
ψu

∥∥, ∥∥ ψt

ψu

∥∥ and
∥∥ψuu

ψu

∥∥ being finite, and |d(µ)| <∞. Moreover,

suppose that ϕ : [0, T ]× IR→ IR belongs to C1,2
b ([0, T ]× IR) and that there exists some ε > 0

such that the inequalities (2.4) and (2.5) hold. Finally, let (t0, u0) ∈ [0, T ]× IR.

(i) On the filtered measurable space
{
C[0, T ],B(C[0, T ]),

{
F̄t
}
t∈[0,T ]

}
there exists a solution

Pϕ
t0,u0

to the martingale problem for Lϕ starting from (t0, u0).

(ii) Let
{
Ft
}
t∈[0,T ]

be the Pϕ
t0,u0

-completion of
{
F̄t
}
t∈[0,T ]

. On the filtered probability space(
C[0, T ],B(C[0, T ]),Pϕ

t0,u0
, {Ft}t∈[0,T ]

}
there exists some Brownian motion W such that

the coordinate process Ut(ω) = ω(t) solves the SDE

dUt = σϕ(t, Ut)dWt + µϕ(t, Ut)dt for all t ∈ [t0, T ], Ut0 = u0. (2.65)

(iii) If additionally ψ has a multiplicative structure

ψ(t, u, ξ) = ψ•(t, u)f(ξ) for all (t, u, ξ) ∈ [0, T ]× IR2

with both functions ψ• ∈ Ĥ1+ 1
2
β,2+β

(
[0, T ] × IR

)
and f ∈ H2+β

loc (IR) being strictly posi-
tive and ϕ ∈ H1+ 1

2
β,2+β

(
[0, T ] × IR

)
, the solution to (2.65) is unique in the sense of

probability law, and the martingale problem (and hence the SDE) is well-posed.

(iv) If furthermore the derivative ratios ψ•t

ψ•u
and ψ•uu

ψ•u
and the derivatives ϕt and ϕuu satisfy

not only a global Hölder condition, but even a global Lipschitz condition in u, and if
the second derivative f ′′ is locally Lipschitz on IR as well, then there exists a unique
strong solution to the SDE (2.65) on

(
C[0, T ],B(C[0, T ]),Pϕ

t0,u0
, {Ft}t∈[0,T ]

)
with the

given Brownian motion W of (ii).

Proof. For the first statement, it suffices to recognize that the stated conditions imply that
σ2
ϕ : [0, T ] × IR → IR and µϕ : [0, T ] × IR → IR of (2.22) and (2.23) are continuous and

bounded. Hence we can conclude with (Stroock and Varadhan, 1979, Theorem 6.1.7) that
for any (t, u) ∈ [0, T ]× IR the martingale problem for Lϕ starting at any (t, u) ∈ [0, T ]× IR
has at least one solution Pϕ

t,u.
In order to prove (ii) we notice that due to (2.4) and the boundedness assumptions on ϕ and
ψ, the generator Lϕ is uniformly elliptic, i.e. there exists some c > 0 such that σ2

ϕ(t, u) ≥ c for
all (t, u) ∈ [0, T ]. Now (ii) follows from (i) by Proposition 5.3.1 in Ethier and Kurtz (1986).
For (iii) we note that both functions σ2

ϕ : [0, T ] × IR → IR and µϕ : [0, T ] × IR → IR also

belong to the Hölder class H
1
2
β,β
(
[0, T ] × IR

)
; as in Chapter 3 we only need to assume that

f ∈ H2+β
loc (IR), since f is only evaluated at values in the bounded set ϕ

(
[0, T ]× IR

)
. Due to

the uniform ellipticity of Lϕ we can apply Theorem 6.3.2(i) of Stroock and Varadhan (1979)
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in connection with their Theorem 3.2.1 to conclude that the martingale problem for Lϕ is
well-posed, i.e. for any (t, u) ∈ [0, T ] × IR there exists a unique solution Pϕ = Pϕ

t,u for the
martingale problem for Lϕ starting at time t in u. Then, by Corollary 5.3.4 in Ethier and
Kurtz (1986), the solution of the SDE (2.65) is unique in the sense of probability law.
Now let us come to (iv). It follows that σ2

ϕ : [0, T ]× IR→ IR and µϕ : [0, T ]× IR→ IR satisfy
the Lipschitz condition that there exists some K ∈ IR such that∣∣σ2
ϕ(t, u1)− σ2

ϕ(t, u2)
∣∣+
∣∣µϕ(t, u1)− µϕ(t, u2)

∣∣ ≤ K|u1 − u2| for all t ∈ [0, T ] and u1, u2∈ IR.

Then Theorem 5.3.7 and Remark 5.3.9 in Ethier and Kurtz (1986) guarantee the pathwise
uniqueness of solutions to the SDE (2.65). q.e.d.

Remark. Note that the assumptions of Lemma 4.14 (i) to (iv) hold in particular under
Assumptions G and H.
By the same means as in the proof of Lemma 4.14 we can show that (2.65) is well-posed
under slightly weaker assumptions on the function ϕ : [0, T ]× IR→ IR than in (iii). Namely,
we may replace condition (2.4) by

1 + 2d(µ)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≥ 0 for all (t, u) ∈ [0, T ]× IR

to allow for degenerate volatilities σϕ. However, in order to obtain uniqueness in the sense of
probability law in these degenerate cases we then have to impose stronger regularity conditons
on ψ and ϕ, for example ψ ∈ C2,4

(
[0, T ]× IR2

)
and ϕ ∈ C2,4

b

(
[0, T ]× IR

)
, and the additional

bounds
∥∥ψz

ψu

∥∥ < ∞ for z ∈ {tuu, uuu, uuuu}. In fact, under these conditions the functions
σ2
ϕ : [0, T ] × IR → IR and µϕ : [0, T ] × IR → IR have two bounded continuous spatial

derivatives, and it follows from Theorems 6.3.2(i) and 3.2.6 in Stroock and Varadhan (1979)
that the martingale problem associated with the SDE (2.65) has a unique solution for each
(t0, u0) ∈ [0, T ]× IR. The rest follows as in the proof of (iii). �

We have seen in Proposition 2.8(ii) and Corollary 2.10(i) that the discrete large investor price
process Sn = {Snt } and the discrete paper value process V n = {V n

t } are martingales under the
p-martingale measure Pξn

n , whenever the discrete p-martingale measure is well defined. Due
to Lemma 4.3 our assumptions of Proposition 4.8 imply that for all sufficiently large n ∈ IN
the trading strategies (ξn, bn) are p-admissible and hence the associated p-martingales are
indeed well-defined. Therefore, we can expect that the martingale property of both processes
is preserved by the limit processes S = {St} and V = {Vt}. The next proposition shows
that our intuition is correct, and S and V are indeed Pϕ-martingales if for each t ∈ [0, T ] the
mapping u 7→ ψ•(t, u) grows at most exponentially. A local martingale representation for S and
V can even be derived under weaker regularity conditions than assumed in Proposition 4.8.
For that purpose, let us recall that the continuous-time (large investor) price process S = {St}
has been defined in Definition 4.6(ii) as St = ψ

(
t, Ut, ϕ(t, Ut)

)
for all t ∈ [0, T ], and that the

large investor volatility function ρϕ : [0, T )× (0,∞) → (0,∞) of Definition 4.11 satisfies

ρ2
ϕ

(
t, ψ(t, u, ϕ(t, u))

)
=
ψu + 2d(µ)ψξϕu(t, u)

ψ(t, u, ϕ(t, u))
ψu + ψξϕu(t, u)
ψ(t, u, ϕ(t, u))

(2.66)

for all (t, u) ∈ [0, T ) × IR, where we have skipped again the arguments
(
t, u, ϕ(t, u)

)
of the

derivatives of ψ.

Proposition 4.15. In addition to Assumptions B, C, F and M suppose that ζ ∈ H2+β(IR).
Then the large investor price process S = {St} and the paper value process V = {Vt} associ-
ated to the solution

(
U
∣∣Pϕ

)
to the SDE (2.64) are local Pϕ-martingales and satisfy

St = S0 +
∫ t

0
ρϕ(τ, Sτ )Sτ dWτ for all t ∈ [0, T ] (2.67)
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and

Vt = V0 +
∫ t

0
φτρϕ(τ, Sτ )Sτ dWτ for all t ∈ [0, T ]. (2.68)

If
∥∥ψ•u

ψ•
∥∥ <∞, then S and V are true Pϕ-martingales.

Proof. By Proposition 3.27, our assumptions imply that the solution ϕ to the final value
problem (3.4.3), (3.4.4) belongs to the space H1+ 1

2
β,2+β

(
[0, T ] × IR

)
. Then according to

Lemma 4.14 the SDE (2.64) is well-posed and there exists a unique weak solution
(
U
∣∣Pϕ

)
.

Recall that the continuous-time price process S = {St} has been introduced in Defini-
tion 4.6(ii) as St = ψ

(
t, Ut, ϕ(t, Ut)

)
; hence an application of Itô’s rule to the mapping

(t, u) 7→ ψ
(
t, u, ϕ(t, u)

)
yields

St = S0 +
∫ t

0
σϕ(τ, u)

d

du
ψ
(
τ, u, ϕ(τ, u)

)∣∣∣∣
u=Uτ

dWτ for all t ∈ [0, T ], (2.69)

since the definition of µϕ : [0, T ]× IR→ IR in (2.23) implies

µϕ(t, u)
d

du
ψ
(
t, u, ϕ(t, u)

)
+
d

dt
ψ
(
t, u, ϕ(t, u)

)
+

1
2
σ2
ϕ(t, u)

d2

du2
ψ
(
t, u, ϕ(t, u)

)
= 0

for all (t, u) ∈ [0, T ] × IR. Due to the definition of σϕ : [0, T ] × IR → IR in (2.22) and
the representation (2.43) for the large investor volatility ρϕ : [0, T ) × (0,∞) → (0,∞) of
Definition 4.11 we can rewrite

σφ(t, u)
d

du
ψ
(
t, u, φ(t, u)

)
= ρϕ

(
t, ψ(t, u, ϕ(t, u))

)
ψ
(
t, u, ϕ(t, u)

)
(2.70)

for all (t, u) ∈ [0, T )×IR. If we now apply the definition of St, we see that (2.69) is equivalent
to (2.67).
Moreover, we have seen in Section 3.4 that our assumptions imply that the paper value
function v : [0, T ]×IR→ IR of (2.30) belongs to the space C1,2

(
[0, T ]×IR

)
, and we can invoke

the implicit function theorem to conclude that the transform w : [0, T ]× (0,∞) → IR, which
satisfies w

(
t, ψ(t, u, ϕ(t, u))

)
= v(t, u) for all (t, u) ∈ [0, T ]×IR, belongs to C1,2

(
[0, T ]×(0,∞)

)
as well. Hence we can apply Itô’s formula a second time and obtain

dVt = dw(t, St) = wx(t, St) dSt + wt(t, St) dt+
1
2
wxx(t, St) d〈S〉t = wx(t, St)ρϕ(t, St)St dWt

for all t ∈ [0, T ], where the second equality follows from the partial differential equation (2.58).
If we now substitute (2.41) into this equation and use the Definition 4.6(i) of the strategy
process φ = {φt} as φt = ϕ(t, Ut) for all t ∈ [0, T ], we arrive at (2.68).
By (2.67) and (2.68), the processes S and V are local martingales. In order to show that
they are actually true martingales if

∥∥ψ•u

ψ•
∥∥ <∞, let us define the continuous local martingale

X = {Xt} by Xt =
∫ t
0 ρϕ(τ, Sτ ) dWτ for all t ∈ [0, T ], and consider the Doléans-Dade expo-

nential E(X) given by E(X)t = exp
(
Xt − 1

2〈X〉t
)

for all t ∈ [0, T ]. Since Z = E(X) is the
unique solution of Zt = 1 +

∫ t
0 ZτdXτ , the unique solution of

S′t = S0 +
∫ t

0
ρϕ(τ, Sτ )S′τ dWτ for all t ∈ [0, T ] (2.71)

is given by S′ := S0E(X). But S′ = S also solves (2.71), hence we have S = S0E(X).
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Now the representation (2.70) implies that ρϕ : [0, T ) × (0,∞) → (0,∞) is continuous,
and due to the boundedness of ϕu and of the fractions ψ•u

ψ• and ψ•ξ

ψ•u
, the function ρϕ is also

bounded. Thus, ρϕ can be extended to a bounded and continuous function on the space
D = [0, T ] × (0,∞). In particular, Novikov’s condition implies that E(X) is a martingale,
hence S is a martingale as well. Since φ = ϕ(t, Ut) is also bounded on [0, T ], we can use the
same type of argument to show that V is a martingale. q.e.d.

Remark. Under Assumptions B, C and F, we have seen in Section 3.4.2 that ϕ still belongs to

the space H
1+ 1

2
β,2+β

loc

(
[0, T )×IR

)
even if we cannot guarantee ζ ∈ H2+β(IR). In particular, this

implies ϕ ∈ H1+ 1
2
β,2+β

(
[0, T ∗]× IR

)
for all T ∗ < T . Hence the function σϕ : [0, T ]× IR→ IR

of (2.22) is still well-defined, and µϕ of (2.23) is at least well-defined on the semi-open slab
[0, T )× IR, but it might explode if t→ T . Similarly, the function v : [0, T ]× IR→ IR is still
well-defined on [0, T ]× IR, and due to (3.4.13) and (3.4.15) vuu, and hence also vt, still exists
not only on [0, T )× IR, but on the closed slab [0, T ]× IR. If we now apply Lemma 4.14 with
T replaced by T ∗ < T we find that there still exists a unique weak solution

(
U
∣∣Pϕ

)
to the

SDE

dUt = σϕ(T,Ut) dWt + µϕ(T,Ut) dt for all t ∈ [0, T ∗], U0 = 0,

Thus, we can construct step-by-step a unique weak solution on the whole semi-open time
interval [0, T ). If we also suppose Assumption M, then for all t ∈ [0, T ) the representations
of (2.67) and (2.68) still hold, and the processes {St}t∈[0,T ) and {Vt}t∈[0,T ) of stock price and
paper value before maturity are local martingales. The same conclusions would hold if As-
sumption F were replaced by Assumption E. Now suppose that in addition to Assumption F
we have

∥∥ψ•u

ψ•
∥∥ <∞. Then the large investor volatility function ρϕ : [0, T )× (0,∞) → (0,∞)

of (2.66) is still bounded, and the Novikov condition

Eϕ

[
exp

(
1
2

∫ T

0
ρ2
ϕ(t, St)dt

)]
<∞ (2.72)

implies that the process {St}t∈[0,T ) is a true martingale. Thus, ST = limt↗T St exists and
S = {St}t∈[0,T ], is a continuous martingale as well. Due to ‖ϕ‖ = ‖ζ‖ <∞ and φt = ϕ(t, Ut)
for all t ∈ [0, T ], the Novikov condition (2.72) for S also implies that V = limt↗T Vt exists
and that V = {Vt}t∈[0,T ] is a martingale.
However, under Assumption E the function ϕ : IR → IR, (t, u) 7→ ϕ(t, u), might have jumps
at the boundary t = T . If UT− ∈ IR is a jump point of ϕ(T, · ) = αζ, then it is not clear
whether ST = ST− = ψ

(
T,UT−, ϕ(T−, UT−)

)
. �

Initial and Final Stock Holdings

At this point, we also come back to the question of the initial and the final stock holdings.
Recall from Proposition 4.8 that our continuous-time model arose as a limit of discrete models
for which the stock holdings immediately before time 0 are almost the same as at time 0 (see
Assumption L), and similarly we had to require that the stock holdings at time T are almost
the same as immediately before time T (see Assumption J). From a practical point of view,
we might like to model the trading of the large investor over the time interval [0, T ] in such
a way that at time 0 he has to build up his portfolio from φ0− = 0 initial stock holdings, and
at time T he has to liquidate it again, i.e. φT = 0. Only for the time in between, we would
like to assume that φt = ϕ(t, Ut) for all 0 ≤ t < T . If we recall our general price mechanism
given by the large investor stock price Sµ : [0, T ] × IR3 → IR of (1.3.2), these assumptions
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would mean that the large investor buys at time 0 an amount of ϕ(0, U0) shares at an average
stock price of

S̃0 = Sµ
(
0, U0, 0, ϕ(0, U0)

)
=
∫
ψ
(
0, U0, θϕ(0, U0)

)
µ(dθ), (2.73)

and at time T he sells his ϕ(T,UT ) shares which he holds immediately before time T , having
used the continuous trading strategy φ = {ϕ(t, Ut)}t∈[0,T ). For this sale he would get an
average price of

S̃T = Sµ
(
T,UT , ϕ(T,UT ), 0

)
=
∫
ψ
(
T,UT , (1− θ)ϕ(T,UT )

)
µ(dθ). (2.74)

In each intermediate time point t in the open interval (0, T ), the large investor would trade
only an infinitesimal amount of stocks, and the large investor price would still be given by
S̃t = St = ψ

(
t, Ut, ϕ(t, Ut)

)
for all t ∈ (0, T ).

Hence, we might find it more realistic to work with the tilded price process S̃ = {S̃t}. The
drawbacks which we would have to accept under these circumstances are the jumps in the
stock price at the time boundaries 0 and T . In the existing literature, the jump at time 0
does not occur, since Frey (1998, 2000), Frey and Patie (2002), Schönbucher and Wilmott
(2000), and Sircar and Papanicolaou (1998) all use the Dirac measure δ1 concentrated in 1
as their price-determining measure µ. In that situation, (2.73) simplifies to S̃0 = S0. But
another choice of the price-determining measure will in general lead to a jump at time 0 from
S̃0 to S̃0+ = S0. Especially, at time 0 the price process {S̃t}t∈[0,T ] is not right-continuous any
more, and S̃ cannot be a martingale in the usual sense. In a way we have already encountered
such a problem in Section 2.1 and especially in Proposition 2.5, where we could only show
that a discrete trading strategy

(
ξn, bn

)
is p-admissible if the stock holdings ξn−1 immediately

before time 0 almost coincide with the stock holdings ξn0 at time 0.
The other difficulty occurs at time T . At this point the process S̃ is at least right-continuous
and has a left-hand limit S̃T− = ST as long as the process S = {St} is continuous, i.e. for
example under the conditions of Proposition 4.15. However, as noticed by Frey (1998), the
price process S̄ = {S̄t} does not admit an equivalent local martingale measure whenever
Pϕ
(
S̃T = ST

)
< 1, since then there exist free lunches with vanishing risk for the small

investors.
In view of the above problems, we might be tempted to choose the price-determining measure
µ non-constant over time in such a way that µ = δ1 at time 0 and µ = δ0 at time 1, in order
to exclude the difficulties mentioned. Unfortunately, Proposition 1.15 and the multiplicative
structure of ψ : [0, T ] × IR2 → IR imply that this does not solve our problems: For non-
constant f : IR→ IR, one of these two cases will lead to negative implied transaction losses,
and hence to a potential arbitrage opportunity for the large investor.
It is also not totally satisfying to restrict the time of observation to the smaller time window
(0, T ) where the large investor’s stock position changes continuously, which is basically what
we did in this section. For realistic models, it is important for the large investor to know
what happens at the boundary, how to build up the portfolio and how to liquidate it at the
end, since otherwise the applicability of the model will suffer.
A reasonable continuous-time large investor theory would rather give the large investor some
(though little) time to build up his stock holdings continuously and also some time around
T to liquidate them again. This fits with the intuition of the liquidation value concept of
Schönbucher and Wilmott (2000) and that of our benchmark price of Section 1.1. However,
in contrast to Schönbucher and Wilmott’s (2000) approach it is crucial not to take the limit
in time in Schönbucher and Wilmott’s derivation of the liquidation price, since otherwise we
are exactly in the unfavorable situation that the limiting price process jumps at the time
points 0 and/or T .
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Remark. Bakstein and Howison (2002) have also observed that Bakstein’s (2001) binomial
model crucially depends on the initial stock holdings of the large investor; they notice that
the replication price for a contingent claim becomes a function of the large investor’s initial
endowment. However, they argue that no-arbitrage will prevent the large investor from
manipulating the replication price. Without a rigorous proof, they then employ similarities
with transaction cost models to derive a continuous limit for the (super-)replication price in
terms of a partial differential equation. However, here they ignore again the dependence on
the large investor’s initial stock holdings. �

4.3 Convergence under the s-Martingale Measures

In this section we show that our binomial large investor models also converge to a continuous
diffusion model if we consider convergence under the s-martingale measures. If the equilib-
rium price function is multiplicative, this is equivalent to looking at the convergence under
the r-martingale measures. Under the s-martingale measures the fundamentals describe a
much simpler general correlated random walk as under the p-martingale measure, since they
are not correlated at all. Therefore, the convergence of the sequence of fundamental processes
is deduced much more easily than in Section 4.2. The convergence of price, strategy, and real
value processes follows. Last but not least, we consider the stochastic limit model in some
more detail and see that as in the discrete case the real value process is a supermartingale,
and a martingale only if the large investor always trades at the benchmark price.

Due to Lemma 2.3, the discrete s-martingale measure P̄n of Definition 2.7(i) is well-defined
whenever n > n0 :=

∥∥ ψ•t

ψ•u
‖2, and in this case it is equivalent to the original measure Pn on(

Ωn,Fn
)
. We have already seen in Section 2.1.3 that the s-martingale measure coincides

with the r-martingale measure if the equilibrium price function is multiplicative as under
Assumption B.
For n > n0 let us recall the s-martingale weight function p̄n : An(n−1) → IR which has been
defined in (2.1.10) as

p̄n(t, u) =
ψ•(t, u)− ψ•(t+ δ2, u− δ)

ψ•(t+ δ2, u+ δ)− ψ•(t+ δ2, u− δ)
for all (t, u) ∈ An(n− 1).

Under the s-martingale measure P̄n the distribution of the tilt Znk at time tnk only depends on
time and the fundamental value Unk−1 immediately before time tnk , but not on the tilt Znk−1,
since the definition of P̄n yields

P̄n
(
Znk = 1

∣∣Unk−1, Z
n
k−1

)
= p̄n

(
tnk−1, U

n
k−1

)
for all 1 ≤ k ≤ n. (3.1)

Thus, Un =
{
Unk
}

0≤k≤n is a special case of a general correlated random walk as presented in
Section 4.1; it is general, but not correlated.
For our convergence results we rather work with processes in the space D[0, T ], so we recall
the definition of the càdlàg version Un = {Unt } from (2.2). We shall show that the sequence
{Un}n>n0 of fundamental processes Un = {Unt } in D[0, T ] satisfies the assumptions of The-
orem 4.1. It turns out that proving the convergence of Un =

{
Unt
}

under the s-martingale
measure is much easier than proving the analogous statement under the p-martingale mea-
sure in Section 4.2.3, since for each n > n0 the measure P̄n does not depend on the strategy
function ξn : An → IR and since the random walk

{
Unk
}

0≤k≤n is Markov under P̄n because
of (3.1).
Similarly to Lemma 4.3 we can now expand the s-martingale weight function as n→∞ into
terms up to order O

(
δ1+β

)
.
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Lemma 4.16. If ψ• ∈ Ĥ1+ 1
2
β,2+β

(
[0, T ]× IR

)
then

p̄n(t, u) =
1
2

(
1− δ

1
2ψ
•
uu(t, u) + ψ•t(t, u)

ψ•u(t, u)

)
+O

(
δ1+β

)
as n→∞, (3.2)

uniformly for all (t, u) ∈ An(n− 1).

Proof. This follows like Lemma 3.11 (or Lemma 4.3). q.e.d.

It follows that the assumptions of Lemma 4.16 imply the conditions of the convergence
theorem for general correlated random walks as stated in Theorem 4.1, and we obtain:

Theorem 4.17. Suppose ψ• ∈ Ĥ1+ 1
2
β,2+β

(
[0, T ] × IR

)
. Under the equivalent s-martingale

measures P̄n, the sequence of fundamental processes {Un}n∈IN starting in u0 ∈ IR at time 0
converges weakly to the process U = {Ut} given by

dUt = −
ψ•t(t, Ut) + 1

2ψ
•
uu(t, Ut)

ψ•u(t, Ut)
dt+ dWt for all t ∈ [0, T ], and U0 = u0, (3.3)

i.e. there exists some measure P̄ on
(
D[0, T ],B(D[0, T ])

)
such that W is a P̄-Brownian

motion and (
Un
∣∣ P̄n

)
⇒
(
U
∣∣ P̄ ) as n→∞.

Proof. The statement follows directly from Lemma 4.16 and Theorem 4.1 with a ≡ 0 and

b ≡ −
1
2
ψ•uu+ψ•t

ψ•u
∈ H

1
2
β,β
(
[0, T ] × IR

)
once we note that for each n > n0 the definition of the

functions p̄n can be extended from the space An(n − 1) to the space [0, T ] × IR such that
(3.2) holds uniformly for all (t, u) ∈ [0, T ]× IR. q.e.d.

Remark. Under the assumptions of Theorem 4.17, we do not only get the existence of some
solution of (3.3) for all u0 ∈ IR. Due to

∥∥ ψ•t

ψ•u

∥∥ < ∞ and
∥∥ψ•uu

ψ•u

∥∥ < ∞, it immediately follows
from Proposition 5.3.10 in Karatzas and Shreve (1996) that a solution to (3.3) is unique in
the sense of probability law, hence the SDE (3.3) is well-posed. �

Like in Section 4.2.4 we now employ the convergence of the fundamentals to show that also the
strategy, price, and real value processes converge under the s-martingale measure, even when
considered as a tuple in Dd[0, T ]. In Definition 4.5 we have introduced D[0, T ]-versions of the
large investor’s discrete strategy process φn = {φnt }, the associated loss-free liquidation price
process S̄n = {S̄nt } and the real value process V̄ n = {V̄t} for each n ∈ IN . The corresponding
limit processes φ = {φt}, S̄ = {S̄t} and V = {Vt} of Definition 4.6 are well-defined under
Assumptions B, C, and either Assumption E or F.
By Proposition 2.8(i) the s-martingale measure is the unique probability measure which turns
the associated small investor price process

{
ψ•
(
tnk , U

n
k

)}
0≤k≤n into a martingale, so it makes

sense to consider the convergence of the sequence of small investor price processes as well. In
order to introduce D[0, T ]-versions of these processes, let us recall the deterministic process
τn = {τnt } of Definition 4.5(i). For any time t ∈ [0, T ] the time point τnt = tn[nt] is the latest
trading point for the large investor in the nth binomial model. We also introduce the limiting
small investor price process.

Definition 4.18. For all n ∈ IN the discrete small-investor price process Xn = {Xn
t } in

D[0, T ] associated to our large investor market is defined as Xn
t = ψ•(τnt , Unt ). Analogously,

the associated continuous small-investor price process X = {Xt} is given by Xt = ψ•(t, Ut)
for all t ∈ [0, T ].
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Remark. Since
{
ψ•
(
tnk , U

n
k

)}
0≤k≤n is a martingale under the s-martingale measure, the process

Xn is a P̄n-martingale as well. �

Now it is straightforward to prove:

Proposition 4.19. Suppose Assumptions G, H, J and K. Under the s-martingale measures
P̄n for the associated small-investor market we have((

Un, φn, Xn, S̄n, V̄ n
) ∣∣∣ P̄n

)
⇒
((
U, φ,X, S̄, V̄

) ∣∣∣ P̄) as n→∞. (3.4)

Proof. The proof follows from Theorem 4.17 and Lemma 4.7 in analogy to the proof of
Proposition 4.8, thus it is omitted. q.e.d.

Remark. As opposed to the p-martingale measures, the s-martingale measures do not depend
on the large investor’s stock holdings. For this reason Proposition 4.19 does not require
Assumptions I and L. Especially, we do not need to assume any convergence of the large
investor’s stock holdings before time 0. �

In Section 3.4.2 we have seen that solutions ϕ : [0, T ] × IR → IR and v̄ : [0, T ] × IR → IR to
the final value problems (3.4.3), (3.4.4) and (3.4.6), (3.4.7), respectively, exist even if we only
require Assumptions B, C and either Assumption E or F. Of course, these conditions are
implied by the prerequisites of Proposition 4.19. Under this weaker set of assumptions we
now take another look at the limiting stochastic model. In particular, we show that as in the
discrete case of Section 2.1.5 the real value process is a supermartingale, and a martingale if
the large investor does not face any transaction gains or losses at all.
We again transform the continuous real value function v̄ : [0, T ] × IR → IR into a function
which depends on time and small investor stock price. For this purpose, let us recall from
Lemma 3.31 that under Assumptions B and C we have

D̄ =
{

(t, x) ∈ [0, T ]× IR
∣∣x = ψ•(t, u) for some u ∈ IR

}
= [0, T ]× (0,∞).

Then we can define the transformed real value function w̄ : [0, T ]×IR→ IR as in Section 3.4.3
by setting w̄(t, x) = v̄

(
t, u(t, x)

)
for all (t, x) ∈ [0, T ]× (0,∞), where u = u(t, x) is the unique

solution of x = ψ•
(
t, u(t, x)

)
. Note that u = u(t, x) is well defined since Assumption C implies

ψ•u > 0. Let us also recall the volatility function σ̄ : [0, T ] × (0,∞) → (0,∞) of (3.4.19),
which is given by

σ̄(t, x) =
ψ•u(t, u(t, x))
ψ•(t, u(t, x))

for all (t, x) ∈ [0, T ]× (0,∞), (3.5)

and the transformed loss function κ : g(IR) → [0,∞) of (3.3.1), which has been defined in
terms of g : IR→ IR, ξ 7→

∫ ξ
0 f(z) dz as

κ(x) = 2d(µ)
f ′
(
g−1(x)

)
f2
(
g−1(x)

) for all x ∈ g(IR). (3.6)

Now we can express the dynamics of the small investor price and the real value process
under P̄ in terms of σ, κ, and the spatial derivatives of w̄. As the direct counterpart of
Proposition 4.15, this gives us a martingale representation for the price process, and a super-
martingale representation for the real value process.

Proposition 4.20. Let us suppose Assumptions B, C and either Assumption E or Assump-
tion F, and let

(
U
∣∣ P̄) be the unique weak solution to (3.3). Then the small investor price

process X = {Xt} associated to the large investor market and the real value process V̄ = {V̄t}
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of the large investor’s trading strategy solve for all t ∈ [0, T ] the stochastic differential equa-
tions

dXt = σ̄(t,Xt)Xt dWt (3.7)

and

dV̄t = w̄x(t,Xt)σ̄(t,Xt)Xt dWt −
1
2
κ
(
w̄x(t,Xt)

)(
σ̄(t,Xt)Xtw̄xx(t,Xt)

)2
Xt dt. (3.8)

In particular, if l0 :=
∥∥ψ•u

ψ•
∥∥ < ∞, then the associated small-investor price process X is a

P̄-martingale. The real value process V̄ is a P̄-supermartingale, and a P̄-martingale if in
addition to l0 <∞ the price system (ψ, µ) excludes transaction losses, i.e. if d(µ)f ′ ≡ 0.

Proof. Let us first consider the stochastic differential equation for the continuous small in-
vestor price Xt = ψ•(t, Ut). By Itô’s formula and the stochastic differential equation (3.3) we
obtain

dXt = dψ•(t, Ut) = ψ•u(t, Ut) dUt +
(
ψ•t(t, Ut) +

1
2
ψ•uu(t, Ut)

)
dt = ψ•u(t, Ut) dWt (3.9)

for all t ∈ [0, T ]. Now (3.7) follows directly from the definition of σ̄ : [0, T ]× (0,∞) → (0,∞)
in (3.5). If l0 < ∞, the volatility function σ̄ : D̄ → (0,∞) is bounded. Hence we can apply
Novikov’s condition as in the proof of Proposition 4.15 to conclude from (3.7) that X is a
martingale under P̄.
In order to prove (3.8) we again apply Itô’s formula; we write the real value process of
Definition 4.6(iv) by means of the transformed real value function w̄ : [0, T ] × (0,∞) → IR
in terms of the associated small investor price and obtain V̄t = v̄(t, Ut) = w̄(t,Xt) for all
t ∈ [0, T ]. As opposed to the transformed paper value function w : D → IR of Section 4.2.5,
the transformed real value function w̄ : [0, T ]×(0,∞) → IR is continuous on its whole domain,
even if the final condition αζ : IR→ IR for ϕ has jumps. Thus, Itô’s rule and (3.7) imply for
all t ∈ [0, T ]:

dV̄t = w̄x(t,Xt) dXt + w̄t(t,Xt) dt+
1
2
w̄xx(t,Xt) d〈X〉t

= w̄x(t,Xt)σ̄(t,Xt)Xt dWt +
(
w̄t(t,Xt) +

1
2
σ̄2(t,Xt)X2

t w̄xx(t,Xt)
)
dt.

Now the SDE (3.8) follows from the generalized Black-Scholes equation (3.4.21) for the trans-
formed value function w̄ : [0, T ]× (0,∞) → IR.
Next we want to show that the local martingale V̄ ∗ =

{
V̄ ∗
t

}
which is for all t ∈ [0, T ] given

by V̄ ∗
t =

∫ t
0 w̄x(τ,Xτ )σ̄(τ,Xτ )Xτ dWτ is a true martingale if l0 < ∞. Let us recall from our

discussion in Section 3.4.2 that the function γ : [0, T ] × IR → IR, (t, u) 7→
∫ ϕ(t,u)
0 f(z) dz is

bounded if either Assumption E or Assumption F holds. We have also seen in Section 3.4,
in particular in (3.4.15) and (3.4.13), that under our assumptions

w̄x
(
t, ψ•(t, u)

)
= γ(t, u) for all (t, u) ∈ [0, T )× IR (3.10)

and

w̄x
(
T, ψ•(T, u)

)
= γ(T, u) for all continuity points of ζ : IR→ IR. (3.11)
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Since the boundary values of the integrand do not affect the dτ -integral, the local martingale
V̄ ∗ has the quadratic variation

〈V̄ ∗〉t =
∫ t

0

(
w̄x(τ,Xτ )σ̄(τ,Xτ )Xτ

)2
dτ =

∫ t

0

(
γ(τ, Uτ )σ̄(τ,Xτ )Xτ

)2
dτ

not only for all t ∈ [0, T ), but even for all t ∈ [0, T ]. If l0 < ∞, the volatility function σ̄ is
bounded by l0, and together with the boundedness of γ, we conclude that there exists some
constant c ≥ 0 such that

Ē
[
〈V̄ ∗〉T

]
≤ cĒ

[∫ T

0
X2
τ dτ

]
. (3.12)

Because X is given by (3.7) and σ̄ is bounded by l0, for each stopping time with T ∗ ≤ T it
follows that Ē

[
X2
T ∗
]
≤ exp

(
T l20
)
, and (3.12) gives Ē

[
〈V̄ ∗〉T

]
< ∞. Thus, the Burkholder-

Davis-Gundy inequality yields Ē
[(

sup0≤t≤T |V̄ ∗
t |
)2]

< ∞, and hence V̄ ∗ is indeed a true
martingale.
If d(µ)f ′ ≡ 0, than the transformed loss function κ : g(IR) → [0,∞) of (3.6) vanishes, hence
we have V̄ = V̄ ∗, and if l0 <∞, the real value process V̄ is indeed a martingale. Especially,
d(µ)f ′ ≡ 0 is implied by Assumption E.
Under Assumption F the function κ need not vanish, but then we have ζ ∈ C1

b (IR) and
ϕ, γ ∈ C1,2

(
[0, T )× IR

)
∩C0,1

b

(
[0, T ]× IR

)
, and it follows from (3.11) that (3.10) holds for all

(t, u) ∈ [0, T ] × IR and w̄x : [0, T ] × (0,∞) → IR is bounded. Differentiating this expression
and employing the definition of σ̄ : [0, T ]× (0,∞) → IR in (3.5) we see that

σ̄(t, x)xw̄xx(t, x)
∣∣∣
x=ψ•(t,u)

= w̄xx
(
t, ψ•(t, u)

)
ψ•u(t, u) = γu(t, u) for all (t, u)∈ [0, T ]×IR (3.13)

is also bounded. Finally, the function κ ◦ w̄x : [0, T ] × (0,∞) → [0,∞) is bounded, since
w̄x : [0, T ]× IR → g(IR) is bounded and κ : g(IR) →

[
0,∞) is continuous. Thus, the process

A = {At} given by

At :=
1
2

∫ t

0
κ(w̄x(τ,Xτ ))

(
σ̄(τ,Xτ )Xτ w̄xx(τ,Xτ )

)2
Xτ dτ for all t ∈ [0, T ] (3.14)

satisfies
∫ T
0 d|A|t = AT < ∞, and the mapping t 7→ At is pathwise nondecreasing on [0, T ].

Thus we conclude that V̄ = V̄ ∗ −A is a P̄-supermartingale. q.e.d.

Remark. Under Assumption F we have γ ∈ C1,2
(
[0, T )× IR

)
∩ C0,1

b

(
[0, T ]× IR

)
, and we get

from (3.10) and Itô’s rule

dw̄x(t,Xt) = dγ(t, Ut) = γu(t, Ut)dUt +
(
γt(t, Ut) +

1
2
γuu(t, Ut)

)
dt for all t ∈ [0, T ]× IR.

Thus, from the stochastic differential equation (3.3) we obtain d
〈
w̄x(·, X·)

〉
t

= γ2
u(t, Ut)dt,

and using the representation (3.13) we can express the dynamics of the nondecreasing process
A of (3.14) as dAt = 1

2κ
(
w̄x(t,Xt)

)
Xt d

〈
w̄x(·, X·)

〉
t
. This demonstrates that the process A

accounts for proportional (implied) transaction losses in terms of the transformed strategy{
γ(t, Ut)

}
=
{
w̄x(t,Xt)

}
. If we now use once again the definition γ : [0, T ] × IR → IR,

(t, u) 7→ g
(
ϕ(t, u)

)
=
∫ ϕ(t,u)
0 f(z) dz, we can express the quadratic variation of the transformed

trading strategy in terms of the original strategy φ as introduced in Definition 4.6(i), by
writing

d
〈
w̄x(·, X·)

〉
t

= f2
(
ϕ(t, Ut)

)
d
〈
ϕ(·, U·)

〉
t

= f2(φt) d〈φ〉t for all t ∈ [0, T ].
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Due to the definition of the transformed loss function κ : g(IR) → [0,∞) in (3.6) the SDE
(3.8) becomes dV̄t = γ(t, Ut) dXt − d(µ)Xtf

′(φt) d〈φ〉t, and recalling the loss-free liquidation
price function S̄ of Definition 1.26 and its representation in (2.4.2) the real value process
satisfies

dV̄t = S̄u(t, Ut, φt) dWt − d(µ)S̄ξξ(t, Ut, φt) d〈φ〉t for all t ∈ [0, T ]. (3.15)

This generalizes Satz 2.5 in Baum (2001) and Lemma 2.2 in Bank and Baum (2004). These
authors consider only price systems which correspond to a price-determining measure µ = δ1,
where the large investor’s orders always affect the stock price before being exercised, so that
d(µ) = 1

2 . Baum (2001) and Bank and Baum (2004), and in a less constructive way also Çetin
et al. (2004), conclude from their analogue of (3.15) that the large investor should rather use
trading strategies of bounded variation, since then the transaction loss term in (3.15) vanishes.
Therefore, instead of looking for perfect replication of contingent claims, they discuss how
to approximate the real value of a contingent claim by self-financing trading strategies with
continuous paths of bounded variation.
If the market price smoothly adjusts to orders of the large investor in the sense that the
price-determining measure is given by µ = λ, then d(µ) = 0, and the quadratic variation
of φ does not affect the dynamics of the real value process, which then becomes a (local)
martingale. Together with the representations (3.7) and (3.8) this allows to work basically
as in the Black-Scholes model, as we have already seen in Section 3.4 when we derived the
partial differential equation for the continuous-time real value function. �
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Chapter 5

Diffusion Limits for General
Correlated Random Walks

This chapter deals with the convergence of general correlated random walks. A class of those
random walks, for which the direction of the next step depends on time, space, and the
direction of the previous move, has already been introduced in Section 4.1, and an associated
convergence theorem has been stated without proof. In this Chapter, we introduce correlated
random walks systematically in a slightly more general setting, and then prove a convergence
theorem for those general correlated random walks, which covers the theorem of Section 4.1.
In Section 5.1 we give an overview of the literature on homogeneous correlated random walks,
for which the direction of the next step only depends on the direction of the previous move,
but not on time or space. In Section 5.2 we extend the definition of a homogeneous correlated
random walk to the definition of a general correlated random walk, where the direction of the
next step might also depend on time and the random walk’s position in space. If time and
space variables of a sequence of general correlated random walks are scaled like in Donsker’s
theorem and if for each possible direction of the random walk’s previous move the transition
probabilities converge to a (different) limit function, then our main convergence theorem for
general correlated random walks states that the sequence of random walks converges in dis-
tribution to the solution of a stochastic differential equation. The generator of this stochastic
differential equation is explicitly given. As a corollary to this main convergence theorem, we
prove Theorem 4.1 of Section 4.1. Moreover, we show that general correlated random walks
can be used to approximate general diffusion processes by a recombining binomial tree. Sec-
tion 5.3 is devoted to the proof of the main convergence theorem. While the proof is based on
standard ideas, the details of the proof become rather tricky and involved since the correlation
between two successive increments of the random walk may not vanish asymptotically.

5.1 Results on Homogeneous Correlated Random Walks

We start this chapter with a short discussion on homogeneous correlated random walks as
they have been considered in the literature during the last 90 years. In order to introduce
them let us denote the jth unit vector on Zd by ej , and set E =

{
±ej

∣∣ 1 ≤ j ≤ d
}

and
I =

{
j ∈ Z\{0}

∣∣−d ≤ j ≤ d
}

. Then we can define correlated random walks as in Chen and
Renshaw (1994):

Definition 5.1. Suppose {Zk}k∈IN is an E-valued homogeneous Markov chain with one-step
transition matrix P = (pij)i,j∈I and initial distribution p(1) = (pj)j∈I . Then for any fixed
x0 ∈ Zd the discrete random process {Xk}k∈IN0 given by Xk = x0 +

∑k
j=1 Zj for all k ∈ IN0

is called a d-dimensional homogeneous correlated random walk.

213
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Since Xk − Xk−1 = Zk for all k ∈ IN it follows that the probability that the random walk
moves in the (k + 1)-th step in a certain direction, given that a move in the direction ei
brought the random walk to the point x in the kth step, is

P
(
Xk+1 = x+ ej

∣∣Xk = x, Xk−1 = x− ei
)

= P
(
Zk+1 = ej

∣∣Xk = x, Zk = ei
)

= pij (1.1)

for all i, j ∈ I and all k ∈ IN . If the {Zk}k∈IN are independent, then all the rows of the
transition matrix P are identical, and {Xk}k∈IN reduces to a common random walk on the
d-dimensional lattice.

Remark. In Section 5.2 we will introduce more general correlated random walks, which are in-
homogeneous in time and space. For this reason we cannot adapt Chen and Renshaw’s (1994)
notation of “general correlated random walks”, but use the term “homogeneous correlated
random walks” for the walks of Definition 5.1. Chen and Renshaw (1994) denote their cor-
related random walks as “general” mainly to distinguish their model from the subclass of
symmetric homogeneous correlated random walks, for which the one-step transition matrix
P is symmetric, and because they allow for general initial distributions p(1). In applied pa-
pers, symmetric correlated random walks are often called persistent random walks as they
were considered in the book of Weiss (1994). However, the notion of persistence is not used
consistently. Szász and Tóth (1984) and Tóth (1986) introduce persistent random walks as
space-inhomogeneous correlated random walks, though they immediately thereafter restrict
themselves to homogeneous ones. �

The notion of correlated random walks was introduced at the same time by Gillis (1955)
and Mohan (1955). Weiss (1994) traces such models back to articles by Fürth (1917) and
Taylor (1921), who proposed a one-dimensional symmetric correlated random walk to model
turbulent diffusions. The work of Taylor was resumed and extended in Goldstein (1951).
Correlated random walks have been used to model a large variety of phenomena in natural
science. Next to the modeling of the diffusion of particles as in the early papers of Fürth
(1917), Taylor (1921), and Goldstein (1951), Renshaw and Henderson (1981) avail themselves
of correlated random walks to model a pin-ball machine, where marbles pass through a
triangular system of nails. This machine itself was constructed in order to imitate behavior
patterns in genetics. Correlated random walks have also been used to model the growth of the
Sitka spruce’s roots, animal diffusion and patterns in polymer chemistry (see the references
in Chen and Renshaw (1994)). Last but not least, Baloga and Glaze (2003) apply correlated
random walks to volcanology to obtain a model for the emplacement of pahoehoe (i.e. basaltic
lava) toes.
Let us now give a short overview of the mathematical results on correlated random walks
as they have occurred so far in the literature. For further references consider the surveys
in Lal and Bhat (1989) and Böhm (2000). In the existing literature the term “correlated
random walk” is only used to designate a homogeneous correlated random walk. Thus, unless
otherwise stated, all the models described in this section consider homogeneous correlated
random walks only.
A large part of the existing work is devoted to transience and recurrence of correlated random
walks. Gillis (1955) investigates a symmetric correlated random walk on a d-dimensional
lattice and calculates its moments for the one dimensional case. Thereafter he can show that
the symmetric correlated random walk is recurrent in dimensions 1 and 2 and transient for
all larger even dimensions. His conjecture that the random walk is transient for any d ≥ 3
was proved by Domb and Fisher (1958) also for a certain class of non-symmetric correlated
random walks. A more recent proof of Gillis’ conjecture for the class considered by Domb and
Fisher can be found in Chen and Renshaw (1992). Renshaw and Henderson (1981) give exact
expressions for the n-step transition probabilities for a one-dimensional symmetric correlated
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random walk on the integers. Lal and Bhat (1989) extend this result to a multidimensional
setting which allows for asymmetries as well.
Many authors focus on first-passage problems. Such investigations started with the work of
Mohan (1955), at the same time when Gillis (1955) introduced his correlated random walk.
Mohan modified the gambler’s ruin problem to allow for a correlation between the results
of two successive games, and then calculated the probability of ruin and expected duration
of play in such a model. Lal and Bhat (1989) consider restricted correlated random walks,
which are reflected if they hit certain boundaries, and determine equilibrium distributions
and first-passage times for such random walks. Böhm (2000) discusses the distribution of
a correlated random walk with absorbing boundary after n steps given that no absorption
took place up to time n. Allaart (2004a,b) finds optimal stopping rules for correlated random
walks.

In this chapter, we will give general conditions under which one-dimensional (in)homogeneous
correlated random walks which are scaled like the classical random walk in Donsker’s theorem
converge towards a diffusion process. Thus, we are especially interested in earlier convergence
results for correlated random walks. The oldest convergence result goes back to the very early
stages of correlated random walks, namely to Goldstein (1951). However, he does not use
Donsker’s scaling, and thus produces a limit result which is not comparable with our results.
He scales a symmetric homogeneous correlated random walk {Xk}k∈IN by the same order (say
O(n−1)) in time and space, and chooses the transition probabilities of the increments {Zk}
in such a way that the correlation between the direction of two successive steps converges
to 1 with order O(n−1) as n → ∞ as well. Then he shows that for large n ∈ IN the scaled
correlated random walk can be approximated by a continuous-time process, for which the
transition probability density solves the telegraph equation (see also Section 3.4d in Weiss
(1994) on this point).
In later papers authors scaled the homogeneous correlated random walk by a factor δ = n−

1
2

in the space direction and by a factor of order O(δ2) in the time direction, as it is done in
Donsker’s invariance principle. Scaling a one-dimensional symmetric correlated random walk
in such a way, Renshaw and Henderson (1981) take the limit in the Kolmogorov forward
equations to conclude that a symmetric correlated random walk can be approximated by a
Brownian motion with a variance depending on the correlation of the two successive incre-
ments of the random walk. In a two-dimensional setting similar results have been obtained
by Henderson, Renshaw and Ford (1984).
Szász and Tóth (1984) and Tóth (1986) consider correlated random walks in a random envi-
ronment. Though they introduce their model in a rather general way, such that the transition
matrix P = {pij}i,j∈I of (1.1), which is now stochastic, may depend on the actual position
x of the random walk (i.e. P = P (x)), all their results are only shown under the assumption
that the probability matrices {P (x)}x∈Z are either i.i.d. (as in Szász and Tóth (1984)) or
stationary and ergodic (as in Szász and Tóth (1984)). Thus, the intersection of their model
with models with a nonrandom environment consists just of the homogeneous random walks
given in Definition 5.1. In a one-dimensional setting Szász and Tóth (1984) prove an invari-
ance principle of Donsker type (in random environment) if the correlated random walk is
symmetric: For almost all realizations of the environment the scaled correlated random walk
converges weakly to a Brownian motion with some suitably chosen variance. This generalizes
the pointwise convergence result of Renshaw and Henderson (1981) to convergence in distri-
bution on the path space, even in a nonstochastic environment. If the transition matrix P is
not symmetric but implies a positive drift for the correlated random walk, Szász and Tóth
(1984) still derive a similar invariance principle. However, they can only state the limiting
drift explicitly, but not the limiting volatility. Tóth (1986) generalizes the result of Szász and
Tóth (1984) to the d-dimensional case, and proves that the finite-dimensional distributions
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of correlated random walks, for which the corresponding transition matrix P is bistochastic
and satisfies a uniform Döblin condition, converge to those of a Brownian motion with a
positive definite covariance matrix, if the random walk is scaled as in Donsker’s invariance
principle. If the matrix P is also symmetric, then it especially is self-adjoint. In such a
situation tightness, and hence weak convergence, of the scaled correlated random walks can
be obtained.
Opitz (1999) employs homogeneous correlated random walks to prove convergence in distri-
bution of an extension of Boyle and Vorst’s (1992) transaction cost model. Though he does
not recognize the logarithmic stock price in his model as a homogeneous random walk, the
converge result which he has obtained for a sequence of those processes shows the convergence
of a large family of homogeneous correlated random walks.

A class of related random walks are the directionally reinforced random walks introduced by
Mauldin, Monticino and Weizsäcker (1996). The probability that a directionally reinforced
random walk moves in a certain direction only depends on the number of steps which have
been taken in that direction since the last change of direction. If the reinforcement does
not depend on the number of steps, the directionally reinforced random walk reduces to a
homogeneous symmetric correlated random walk. Mauldin et al. (1996) use directionally re-
inforced random walks to model certain aspects of ocean surface wave fields. They investigate
recurrence and transience of such walks in different dimensions and then go on to prove the
convergence of a one-dimensional directionally reinforced random walk, which is again scaled
in the usual Donsker-type manner, to a Brownian motion with variance determined by the
quotient of variance and expectation of the number of steps between two adjacent changes
in direction. Using a constant reinforcement their method especially provides another proof
of the convergence result of Renshaw and Henderson (1981) (see Example 4.2 in Mauldin
et al. (1996)). Horváth and Shao (1998) extend the convergence result of Mauldin et al.
(1996) to a multidimensional directionally reinforced random walk and show further limiting
properties for such random walks. Finally, Allaart and Monticino (2001) consider optimal
stopping rules for one-dimensional directionally reinforced random walks without and with
transaction costs.

5.2 Our Results for General Correlated Random Walks

After our preliminary remarks about homogeneous correlated random walks, we can now go
on and define general correlated random walks, which may be inhomogeneous in time and in
space, in that the transition probabilities of (1.1) depend on the step k and the position x of
the random walk in the kth step. To the best of our knowledge such random walks have not
been considered so far in the literature.
We then scale a sequence of general correlated random walks like in Donsker’s theorem. If
the conditional probabilities for the direction of the random walk’s next move can be approx-
imated by a function of time, the random walk’s current position and the direction of the
random walk’s previous move, then we show that the sequence of general correlated random
walks converges in distribution to the solution of a stochastic differential equation. The co-
efficients of the SDE can be explicitly stated. As two corollaries to this main convergence
theorem, we prove Theorem 4.1 of Section 4.1 and show that general correlated random walks
can be used to approximate general diffusion processes by a recombining binomial tree.

Let us now formally introduce general correlated random walks. For simplicity, we restrict
our considerations from the beginning to the one-dimensional case. Since we will later define
random walks on a finite index set, we state their definition for the index set I = IN0 and
finite index sets of the form I = {0, 1, 2, . . . ,m} for some m ∈ IN .
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Definition 5.2. Let σ ≥ 0 and µ ∈ IR be fixed real numbers, Y some real-valued ran-
dom variable, and {Zk}k∈I a sequence of {±1}-valued random variables. Then the discrete
stochastic process X = {Xk}k∈I , which is defined by Xk = Y +

∑k
j=1(µ+σZj) for all k ∈ I, is

called a (general) correlated random walk if
{

(Xk, Zk)
}
k∈I is a two-dimensional Markov

process. In this case the random variable Zk is called the tilt of X in the kth step.

We emphasize that in this whole chapter µ always denotes the drift of a correlated random
walk and not a price-determining measure as in the preceding chapters.

Remark. Note that due to the relation Xk+1 = Xk + µ+ σZk+1 the process {(Xk, Zk)}k∈I is
Markov if and only if

P
(
Xk+1 = Xk+µ+σ, Zk+1 = 1

∣∣Xj , Zj ; 0 ≤ j ≤ k
)

= P
(
Zk+1 = 1

∣∣k,Xk, Zk
)

for all k ∈ I for which k + 1 ∈ I as well. In contrast to (1.1) this conditional probability
may now depend not only on the tilt Zk, but also on the actual position Xk of the correlated
random walk at step k, and on the step number itself. Thus, the general correlated random
walk can be inhomogeneous in time and space. �

From the previous remark we conclude that the distribution of a general correlated random
walk {Xk}k∈I is fully determined by σ, µ, the distribution of (X0, Z0), and by the conditional
probabilities

p̂(k, x, z) := P
(
Zk+1 = 1

∣∣Xk = x, Zk = z
)

for all (k, x, z) ∈ Î × IR× {±1}, (2.1)

where Î = {k ∈ I | k + 1 ∈ I}. Namely, starting with (X0, Z0), we can recursively define
the random variables Zk and Xk by P(Zk+1 = 1 |Xk, Zk) = p(k,Xk, Zk) and the relation
Xk+1 = Xk + µ+ σZk+1 for all k ∈ Î. We call σ and µ the volatility and drift parameter
of the random walk and the function p̂ : Î×IR×{±1} → [0, 1] defined by (2.1) the transition
function of the correlated random walk.

Remark. In contrast to the definition of homogeneous correlated random walks, Definition 5.2
utilizes the tilt Z0 before the first step as well. However, it is easy to see that our Defini-
tion 5.2 includes (the one-dimensional version of) Chen and Renshaw’s (1994) definition, as
we introduced it in Definition 5.1. Namely, the process X = {Xk}k∈IN0 is a homogeneous
correlated random walk in the sense of Definition 5.1 with transition matrix P =

(
r 1−r

1−s s

)
and initial distribution p(1) = (p, 1 − p)tr of the increments {Zk}k∈IN if and only if it is a
general correlated random walk with constant starting value X0 = Y = x0 ∈ Z, volatility and
drift parameters σ = 1 and µ = 0, and with the transition function p̂ : IN0×IR×{±1} → [0, 1]
and the distribution of Z0 satisfying

P(Z0 = 1)p̂(0, x, 1) + P(Z0 = −1)p̂(0, x,−1) = p for all x ∈ IR (2.2)

as well as p̂(k, x, 1) = r and p̂(k, x,−1) = 1− s for all (k, x) ∈ IN × IR. If r = s, then X is a
symmetric homogeneous correlated random walk.
The condition (2.2) guarantees that the initial condition P(Z1 = 1) = p for the sequence
{Zk}n∈IN , which only starts with Z1, holds. Note that for example in the case p > r ≥ 1− s
condition (2.2) cannot be satisfied if we also take p̂(0, x, 1) = r and p̂(0, x,−1) = 1 − s,
such that the transition function p̂ : IN0 × IR × {±1} → [0, 1] does not depend on the first
component. Of course (2.2) holds if we take for example Z0 = 1 and p̂(0, x, 1) = p for all
x ∈ IR. �

We will now give conditions such that a family {Xn}n∈IN of correlated random walks con-
verges to some continuous diffusion process on any compact time interval [0, T ]. There-
fore, we divide the time interval [0, T ] as in Section 1.3.2 into dnT e equidistant subintervals
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{[
tnk−1, t

n
k

]}
1≤k≤dnT e by setting tnk = kT dnT e−1 for all 0 ≤ k ≤ dnT e. Then we take a

sequence {Xn}n∈IN of correlated random walks Xn = {Xn
k }0≤k≤dnT e living on some proba-

bility space
(
Ωn,Fn,Pn

)
, with volatility and drift parameters σn and µn, respectively, and

transition function p̂n : {0, 1, . . . , dnT e − 1} × IR × {±1} → [0, 1] for all n ∈ IN . Let us also
introduce for each n ∈ IN the process Zn = {Znk }0≤k≤dnT e of associated tilts, such that

Xn
k = Xn

0 +
k∑
j=1

(
µn + σnZ

n
j

)
for 0 ≤ k ≤ dnT e. (2.3)

In order to make a rigorous convergence statement in the space D[0, T ] of càdlàg functions
on [0, T ], we introduce for each n ∈ IN the stochastic processes Un = {Un(t)}t∈[0,T ] and
V n = {V n(t)}t∈[0,T ], which are constant on each of the intervals

[
tnk−1, t

n
k

)
for all 1 ≤ k ≤ dnT e,

by
Un(t) := Xn

bñtc and V n(t) := Znbñtc for all 0 ≤ t ≤ T and all n ∈ IN , (2.4)

where ñ is for all n ∈ IN given by ñ := T−1dnT e. We will call Un the continuous-time
correlated random walk and V n the continuous-time tilt process, and we frequently
drop the term “continuous-time” if it is clear whether we consider Un or Xn, and V n or Zn,
respectively. Of course, for each n ∈ IN the processes Un and V n live on the same probability
space as Xn and Zn, namely on

(
Ωn,Fn,Pn

)
.

Remark. In Chapter 4 we have denoted continuous time processes Un by {Unt }t∈[0,T ]. We
slightly changed the notation, in order to prevent triple sub-indices in the proof of our main
convergence theorem. �

In the same way as we introduced Un and V n, we can also introduce the continuous-time
transition function pn : [0, T )× IR× {±1} → [0, 1] by

pn(t, x, z) = p̂n
(
bñtc, x, z

)
for all (t, x, z) ∈ [0, T )× IR× {±1}, (2.5)

which is constant on each interval of the form
[
tnk−1, t

n
k

)
for 1 ≤ k ≤ dnT e.

Remark. The definition of pn is only for notational convenience. Note that p̂n and pn are
equivalent, since p̂n(k, u, z) = pn

(
tnk , u, z

)
for all 0 ≤ k ≤ dnT e − 1 and (u, z) ∈ IR× {±1}.�

We are interested in the behavior of {Un}n∈IN as n → ∞. For this reason, we have to
assume some sort of convergence of the parameters µn and σn, and of the transition functions
pn : [0, T )× IR× {±1} → [0, 1]. We will require:

Assumption N. For δ = δn = n−
1
2 there exist some constants β ∈ (0, 1), σ ≥ 0, and µ ∈ IR

such that the volatility and drift parameters {σn}n∈IN and {µn}n∈IN satisfy

σn = σδ +O
(
δ1+β

)
and µn = µδ2 +O

(
δ2+β

)
as n→∞.

Moreover, there exist some functions a : [0, T ] × IR → IR and b : [0, T ] × IR → IR such that
uniformly for all (t, x) ∈ [0, T )× IR

pn(t, x,±1) =
1
2
(
1± a(t, x) + δb(t, x)

)
+O

(
δ1+β

)
as n→∞. (2.6)

Remark. Note that by its definition Un is scaled by order O
(
δ2
)

in time. The assumptions
on σn now ensure that the stochastic part of Un is scaled by order O(δ) in space, as in
Donsker’s theorem. The deterministic drift µn has to be scaled by order O

(
δ2
)

as n → ∞
to avoid explosion. Since the δb(t, x)-term disappears in the limit, in view of the remark
after (2.1) the convergence in (2.6) requires the correlated random walks {Xn

k }0≤k≤dnT e to be
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at least asymptotically symmetric. However, it will turn out that the remaining first-order
asymmetry represented by the term δb(t, x) in the expansion of the transition functions still
affects the behavior of the limit of the sequence {Un}n∈IN .
It is just for notational convenience that we have introduced the functions a and b on the
closed domain [0, T ]× IR, and not only on [0, T )× IR. �

The next example shows that we have to specify the limit functions a : [0, T ]× IR→ IR and
b : [0, T ]× IR→ IR a little bit further.

Example 5.1. Let us consider the sequence {Xn}n∈IN of homogeneous correlated random
walks given by (Xn

0 , Z
n
0 ) = (0, 1), σn = δ = n−

1
2 , µn = 0 and pn(t, x, z) = 1{z=1} for all

(t, x, z) ∈ [0, T ) × IR × {±1} and all n ∈ IN . Obviously Assumption N is satisfied, but due
to p̂n(k, x, z) = pn

(
tnk , x, z

)
= 1{z=1} for all 0 ≤ k ≤ dnT e − 1 and (x, z) ∈ IR it follows that

for each n ∈ IN all the Znk ’s are completely correlated, such that Zn0 = 1 implies Znk = 1
for all 1 ≤ k ≤ dnT e and hence Xn

k =
∑k

j=1 δZj = kδ. For all t ∈ (0, T ] this yields
Un(t) := Xn

bñtc = bñtcδ →∞ as n→∞. �

However, we will see that the conditions on the limit functions a and b are not very severe. Re-
calling our convention that ‖f‖ = ‖f‖[0,T ]×IR = sup(t,x)∈[0,T ]×IR |f(t, x)| if f : [0, T ]× IR→ IR
and ‖f‖ = ‖f‖IR = supx∈IR |f(x)| if f : IR → IR, for our main convergence theorem we will
suppose

Assumption O. The functions a : [0, T ]× IR→ IR and b : [0, T ]× IR→ IR satisfy:

(i) There exists some a ∈ (0, 1) such that ‖a‖ < a. Moreover, ‖b‖ <∞.

(ii) The spatial derivative a′ : [0, T ] × IR → IR given by a′(t, x) = d
dxa(t, x) is uniformly

bounded and continuous with respect to x for all (t, x) ∈ [0, T ]× IR.

(iii) a′ : [0, T ]× IR→ IR satisfies a global Hölder condition, uniformly in t ∈ [0, T ], i.e. there
exists some K0 ∈ IR+ and some β ∈ (0, 1) such that∣∣a′(t, x)− a′(t, y)

∣∣ ≤ K0|x− y|β for all x, y ∈ IR and all t ∈ [0, T ].

(iv) The function b : [0, T ]× IR→ IR is globally Hölder continuous in x with exponent β as
well, i.e. there exists some K1 ∈ IR+ such that∣∣b(t, x)− b(t, y)

∣∣ ≤ K1|x− y|β for all x, y ∈ IR and all t ∈ [0, T ].

(v) a : [0, T ]× IR→ IR, a′ : [0, T ]× IR→ IR, and b : [0, T ]× IR→ IR are continuous in t.

Remark. In this chapter we denote the spatial derivative by a′(t, x), and not by ax(t, x) as
we did in the previous chapters, in order to avoid confusions which sub-indices n that will
frequently occur. �

We will subsequently employ the conditions of Assumption O as we need them. Before we
can state our general convergence result for the sequence {Un}n∈IN , we have to introduce the
generator L : C2

b (IR) → Cb
(
[0, T ]× IR

)
in terms of the limiting functions a and b. Our most

general result will be stated in terms of the martingale problem for L.

Definition 5.3. Suppose that the Assumptions O(i), (ii) and (v) hold. Then the generator
L : C2

b (IR) → Cb
(
[0, T ]× IR

)
is for all (t, u) ∈ [0, T ]× IR and f ∈ C2

b (IR) given by

(
L f
)
(t, u) =

1
2
σ2 1 + a(t, u)

1− a(t, u)
d2

du2
f(u) +

(
µ+

σb(t, u)
1− a(t, u)

+
σ2a′(t, u)(

1− a(t, u)
)2
)
d

du
f(u). (2.7)
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Now we have everything to state our main convergence theorem for correlated random walks.

Theorem 5.4 (Convergence of General Correlated Random Walks). Suppose that
the Assumptions N and O hold, and that Un(0) ⇒ U(0) for some random variable U(0)
with distribution ν on

(
IR,B(IR)

)
. If the martingale problem for (L, ν) has a unique solution

on [0, T ], then the sequence
{
Un
}
n∈IN of continuous-time correlated random walks converges

weakly to the process U = {U(t)}t∈[0,T ] given by U(0) and

dU(t) =

(
µ+

σb
(
t, U(t)

)
1− a

(
t, U(t)

) +
σ2a′

(
t, U(t)

)(
1− a

(
t, U(t)

))2
)
dt+ σ

√
1 + a

(
t, U(t)

)
1− a

(
t, U(t)

)dW (t). (2.8)

Even if the martingale problem has no unique solution, any subsequence of {Un}n∈IN contains
a further subsequence which converges weakly to some solution of (2.8), which in this case
need not be unique.

Remark. The existence of a solution to the martingale problem is assured by Theorem 6.1.7
in Stroock and Varadhan (1979), since Assumption O implies that both coefficients of L are
bounded, and for each t ∈ [0, T ] continuous in the space variable. �

The stochastic differential equation (2.8) shows the nontrivial influence of the correlation of
two successive increments of the correlated random walk Un, or, for σ > 0 equivalently, of
two successive tilts. In order to convince ourselves that the diffusion limit is plausible, let us
first consider the case σn = δ = n−

1
2 , µn = 0 and pn ≡ 1

2 for all n ∈ IN . Then we are in
the setting of Donsker’s theorem, and Assumption N is satisfied with a ≡ b ≡ 0; the limiting
diffusion given by (2.8) reduces to the standard Brownian motion, as in Donsker’s theorem.
The generalization to general σn’s and µn’s as in Assumption N is obvious.
In a next step, let us assume that we are given a sequence {Un}n∈IN of general correlated
random walks where for which each of the transition functions pn : [0, T )× IR×{±1} → [0, 1]
satisfies (2.6), but none of the pn’s depend on its last component. Then a ≡ 0, and the
sequence {Un}n∈IN is a sequence of simple Markovian binomial processes. It is easy to see
that in this case E

[
Un(t+δ2) − Un(t)

∣∣Un(t) = u
]

= µn + σnE
[
Zn(t + δ2)

∣∣Un(t) = u
]

and
E
[
Zn(t+δ2)

∣∣Un(t) = u
]

= 2pn(t, u, 1)− 1; hence Assumption N implies

δ−2E
[
Un(t+ δ2)− Un(t)

∣∣∣Un(t) = u
]
→ µ+ b(t, u)

and similarly

δ−2E
[(
Un(t+ δ2)− Un(t)

)2 ∣∣∣Un(t) = u
]
→ σ as n→∞

uniformly for all (t, u) ∈ [0, T )× IR. In this situation classical convergence results for simple
binomial processes as in the papers of Nelson (1990) and Nelson and Ramaswamy (1990)
lead to the same results as our Theorem 5.4: Not only the drift parameter µ, but also the
asymptotic bias δb(t, x) in the transition probabilities affects the drift of the limiting diffusion
process.
Thirdly, let us assume µn = 0, σn = σδ, and pn(t, x,±1) = 1

2(1 ± a) for some constant
a ∈ (−1, 1) and all n ∈ IN . Then {Un}n∈IN is a sequence of continuous-time versions of
homogeneous correlated random walks as considered by Renshaw and Henderson (1981).
They have already proved that the correlation between two successive increments of the
random walk introduced by a nonzero a only changes the volatility of the limiting diffusion,
which in this cases is just a scaled Brownian motion. An increase in a, which indicates a
higher probability that two successive steps of the correlated random walk move into the
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same direction, increases the volatility. The reader might find this counterintuitive at the
first sight, since for a given a close to 1 an observer, who looks at just a few successive steps
of Un will most likely not observe any change in direction at all. However, if at some point in
time a change in direction occurs, the random walk will run in the new direction for quite a
large number of steps, before it again changes the direction, such that the overall fluctuations
of the correlated random walk with a high value for a are larger than for a walk with a lower
a. Thus, the volatility of the limiting diffusion process indeed increases in the parameter
a. The extreme case a = −1, which we excluded, would mean that the direction of the
increments of length σδ are changed at every step back and forth, such that in the limit, the
random walk just stays constant. In contrast, we have shown above in Example 5.1 for the
opposite extreme a = 1 that the correlated random walk need not converge. For a ∈ (−1, 1)
our reasoning depicts a key aspect of convergence of correlated random walks: We have to be
careful about looking at the random walk with the right magnifier, since the behavior of the
correlated random walk on a time scale of order O

(
δ2
)

turns out to differ from its behavior
on a time scale of order O(δ) as n→∞; in the case a > 0 the random walk seems to be inert
if we look at it through O

(
δ2
)
-lenses, but using O(δ)-lenses, we find it rather vivid.

The most demanding part of the proof of Theorem 5.4 consists of identifying the drift
of the limiting diffusion process for general limiting functions b : [0, T ] × IR → IR and
a : [0, T ]× IR→ IR in (2.6). However, the qualitative properties of the limiting drift can
be reasoned more easily: Let us take once again µn = 0, σn = σδ, and let us now set
pn(t, x,±1) = 1

2(1 ± a + δb) for all (t, x) ∈ [0, T ) × IR and some fixed positive constants a
and b. We have seen for a = 0 that b > 0, which reflects the asymptotic asymmetry of the
transition probabilities of the random walk, leads to a drift term in the stochastic differential
equation of the limiting process U : It is always (slightly) more likely to move upwards than
downwards. A positive a reinforces such a drift: though it is always more likely to move in
the direction of the last move, it is even (slightly) more likely to move in this direction if
the last move was an up-move. Thus, the drift-effect introduced by b is increased. The same
reasoning holds when b : [0, T ] × IR → IR is not constant and σn and µn satisfy only the
conditions of Assumption N. Note that the drift of the limiting diffusion process, which is
due to the drift parameters {µn}n∈IN , is not affected by the choice of a.
Last but not least, for a general limiting function a : [0, T ]× IR→ IR, the drift of the limiting
diffusion will also depend on the derivative of a.
The proof of Theorem 5.4 will take up the remainder of this chapter. Before we come to it,
let us shortly state two corollaries, which immediately follow from Theorem 5.4.

Corollary 5.5. Theorem 4.1 holds.

Proof. In the special case where we have σ = 0, we obtain the deterministic convergence
Ut → u0 +

∫ t
0 µ0ds = u0 + µ0t as n → ∞, uniformly for all t ∈ [0, T ]. Hence, for this case

the weak convergence of
{
Un
}
n∈IN is trivial, and we may suppose without loss of generality

σ > 0. It is clear that a ∈ H
1
2
β,1+β

(
[0, T ] × IR

)
with ‖a‖ < 1 and b ∈ H

1
2
β,β
(
[0, T ] × IR

)
satisfy Assumption O. Moreover, since σ > 0 and ‖a‖ < 1 we can bound the variance
coefficient of L away from 0 by bounding σ 1+a(t,x)

1−a(t,x) ≥ σ 1−‖a‖
1+‖a‖ > 0 for all (t, x) ∈ [0, T ] × IR.

Hence Theorem 3.2.1 of Stroock and Varadhan (1979) states that for each t ∈ [0, T ] and
each function f with compact support which possesses bounded continuous derivatives of all
orders, the final value problem

ft(s, u) + (Lf)(s, u) = 0 for all (s, u) ∈ [0, t)× IR and f(t, u) = h(u) for all u ∈ IR

which is induced by the operator L : C2
b (IR) → Cb(IR) of (2.7) has a unique solution

f ∈ C1,2
b

(
[0, T ]× IR

)
. Thus, recalling the previous remark we can apply Theorems 6.1.7
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and 6.3.2(i) in Stroock and Varadhan (1979) to conclude that the martingale problem for L
is well-posed; especially, there exists a unique solution to the martingale problem starting at
time 0 in u0 ∈ IR. q.e.d.

Another immediate consequence of Theorem 5.4 is the following result:

Corollary 5.6. Suppose σ̂ ∈ H
1
2
β,1+β

(
[0, T ]×IR

)
and µ̂ ∈ H

1
2
β,β
(
[0, T ]×IR

)
. If the function

σ̂ : [0, T ]×IR→ IR is bounded away from 0 then there exists a sequence {Xn}n∈IN of correlated
random walks, such that the associated continuous time processes {Un}n∈IN of (2.4) converge
weakly to the process U given by

dU(t) = µ̂
(
t, U(t)

)
dt+ σ̂

(
t, U(t)

)
dW (t), and U(0) = u0. (2.9)

Proof. Let us define the functions a : [0, T ]× IR→ IR and b : [0, T ]× IR→ IR by

a(t, u) =
σ̂2(t, u)− 1
σ̂2(t, u) + 1

and b(t, u) = 2
µ̂(t, u)− σ̂(t, u)σ̂′(t, u)

σ̂2(t, u) + 1
for all (t, u) ∈ [0, T ]× IR.

Then a straightforward calculation shows that

1 + a(t, u)
1− a(t, u)

= σ̂2(t, u) and
b(t, u)

1− a(t, u)
+

a′(t, u)
(1− a(t, u))2

= µ̂(t, u) for all (t, u) ∈ [0, T ]× IR.

Hence we just have to define for each n ∈ IN the random walk Xn by the initial condition
(Xn

0 , Z
n
0 ) = (u0, 1) (or = (u0,−1)), by the volatility and drift parameters σn = δ = n−

1
2 ,

µn = 0, and by the continuous-time transition function pn : [0, T )× IR× {±1} → [0, 1] given
by pn(t, u,±1) = 1

2

(
1±a(t, u)+δb(t, u)

)
for all (t, u) ∈ [0, T )×IR. Then Un converges weakly

to U due to Theorem 4.1. q.e.d.

Remark. Corollary 5.6 can be used to construct approximations of the diffusion U given by
(2.9) via a recombining homogeneous tree. If the drift µ̂ of U depends on the space variable
or the volatility σ̂ depends on the time or space variable and if we construct a binomial
process Xn = {Xn

k }0≤k≤dnT e, which approximates U , in the most straightforward manner
by setting P

(
Xn
k = Xn

k−1 + µ̂
(
tnk−1, X

n
k−1

)
δ2 ± σ̂

(
tnk−1, X

n
k−1

)
δ
∣∣Xn

k−1

)
= 1

2 for 1 ≤ k ≤ dnT e,
then the possible realizations of {(tnk , Xn

k )}0≤k≤n lead to a non-recombining tree, since the
value of Xn after an up move followed by a down move need not coincide with the value
obtained by performing the steps in reversed order. The common method to construct a
binomial approximation of the diffusion given by (2.9) on a recombining tree is due to Nelson
and Ramaswamy (1990). They construct a suitable transformation g(U) of U with constant
volatility, develop an approximation for g(U) by a simple binomial process, which lives on a
recombining tree, and then apply the inverse of g in order to construct a binomial approxi-
mation Xn of U . The paths of the approximation Xn are still recombining, but the tree on
which Xn lives is compressed and stretched in space in a patchy way.
The proof of Corollary 5.6 now shows that we can construct a (discrete) approximation process
Xn (namely a correlated random walk) which satisfies

∣∣Xn
k −Xn

k−1

∣∣ = δ for all 1 ≤ k ≤ dnT e.
This means that the tree implied by the possible realizations of {(tnk , Xn

k )}0≤k≤n is recom-
bining and homogeneous. However, such a simple tree structure is attained by a more com-
plicated structure of the probability weights, as the probability that the correlated random
walk Xn moves from a certain vertex v, say v =

(
tnk , X

n
k

)
in a certain direction, depends

not only on the vertex v, but also on the tilt Znk of the random walk at time tnk . Since
σnZ

n
k = Xn

k −Xn
k−1 − µn for 1 ≤ k ≤ dnT e, the tilt can be interpreted as the direction from

which the walk reached the vertex v. �
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5.3 Proof of the Main Convergence Theorem

In this section we present the proof of the Theorem 5.4. We first show that the sequence
{Un}n∈IN of continuous-time correlated random walks is tight in the Skorohod space D[0, T ]
by deriving precise bounds on product moments of the increments of the random walk and
then employing techniques of Billingsley (1968) for the fluctuation of partial sums of not
necessarily independent or identically distributed random variables. Then we show that the
distribution of the limit of each converging subsequence of {Un}n∈IN solves the martingale
problem for (L, ν). Since the correlation between two successive increments of Un does not
vanish as n→∞, this requires a careful consideration of conditional moments on a time scale
of order O(δ).

Before we give a detailed outline of the proof, let us agree on one simplification which does
not lead to any loss of generality, and also introduce some more notation which will be used
frequently in the sequel.
For ease of notation, we will assume from now on that T = 1. Then we especially have
ñ = n. Due to the Markov property of

{(
Xn
k , Z

n
k

)}
0≤k≤n we will frequently condition on

events of the form
{
Xn
k = x, Znk = z

}
or also on

{
Un(t) = u, V n(t) = v

}
. In order to keep

our notation compact, we introduce for all (t, u, v) ∈ [0, T ]× IR× {±1} the notation

Pu,v
t

(
·
)

:= Pn
(
·
∣∣Un(t)=u, V n(t)=v

)
and Eu,v

t

[
·
]

:= En
[
·
∣∣Un(t)=u, V n(t)=v

]
. (3.1)

By taking t = tnk and employing the definitions of Un and V n, our shorthands can be used
to represent conditional expectations with respect to

(
Xn
k , Z

n
k

)
, namely we have

Pn
(
·
∣∣Xn

k = x, Znk = z
)

= Px,z
tnk

(
·
)

and En
[
·
∣∣Xn

k = x, Znk = z
]

= Ex,z
tnk

[
·
]

(3.2)

for all 0 ≤ k ≤ n and (x, z) ∈ IR × {±1}. For our calculations it proves useful to write the
continuous-time transition function pn : [0, T )× IR × {±1} → [0, 1] of (2.5) for all n ∈ IN in
a form which resembles the asymptotic representation of (2.6), namely we write it as

pn(t, x,±1
)

=
1
2

(
1± an(t, x) + δbn(t, x)

)
for all (t, x) ∈ [0, T )× IR (3.3)

for some suitable functions an : [0, T ) × IR → IR and bn : [0, T ) × IR → IR. For each fixed
(t, x) ∈ [0, T )×IR the solutions an(t, x) and bn(t, x) of these two equations with two unknowns
are easily found, and hence under Assumption N the functions an and bn satisfy uniformly
for all (t, x) ∈ [0, T )× IR:

an(t, x) = pn
(
t, x, 1

)
− pn

(
t, x,−1

)
= a(t, x) +O

(
δ1+β

)
(3.4)

and

bn(t, x) =
1
δ

(
pn
(
t, x, 1

)
+ pn

(
t, x,−1

)
− 1
)

= b(t, x) +O
(
δβ
)

as n→∞. (3.5)

For each n ∈ IN the function an measures the influence of the correlation between two
successive tilts Znk−1 and Znk for all 1 ≤ k ≤ dnT e (respectively of V n(t − δ2) and V n(t) for
δ2 ≤ t ≤ T ), while bn describes the asymmetry of the tilt process {Znk }0≤k≤n (respectively
of {V n(t)}t∈[0,T ]). Since pn is a probability function it is clear from (3.4) and (3.5) that
|an(t, x)| ≤ 1 and δ|bn(t, x)| ≤ 1 for all (t, x) ∈ [0, T )× IR.
For the rest of this chapter we always assume that n ∈ IN and i, j, k, l,m ∈ IN0, even if we
do not state it explicitly.
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Steps in the Proof of the Main Convergence Theorem

The proof of Theorem 5.4 will be presented step by step. At first, we will calculate in Sec-
tion 5.3.1 for each fixed n ∈ IN the first and second conditional moment of the correlated
random walk Xn = {Xn

k }0≤k≤n. These moments are given in terms of two auxiliary func-
tions, which depend on the volatility and drift parameters σn and µn, and on the functions
an : [0, T ]× IR→ IR and bn : [0, T ]× IR→ IR. In Section 5.3.2 we will derive approximations
of various degrees of sharpness for those auxiliary functions by employing the Assumptions N
and O. A set of weaker approximations, which can be derived by using Assumptions N
and O(i) and (ii) only, will be used in Section 5.3.3 to bound the conditional moments of
increments of Xn in terms of the number of steps, for all sufficiently large n ∈ IN and a suffi-
ciently small number of incremental steps. These bounds will allow us to prove by standard
techniques that the sequence {Un}n∈IN of associated continuous-time random walks given by
(2.4) is tight.
We would like to conclude in analogy to Section 11.2 in Stroock and Varadhan (1979) that
the distribution of the limit of any converging subsequence of {Un}n∈IN is a solution to the
martingale problem for (L, ν). However, this is considerably more difficult than in Stroock
and Varadhan’s setting, since the correlation between two successive increments of Un does
not vanish as n → ∞. A key step in showing that nevertheless the limit distribution does
solve the martingale problem consists in determining the limit of the first two conditional
local moments of Un over a certain time interval, when normalized by the length of the
interval. They should coincide with the coefficients of the generator L given by (2.7). As
already mentioned in the reasoning of Theorem 5.4, in order to obtain the limit we will have
to take care about selecting the proper lenses to look at our random walk. The right lens to
prove convergence of the conditional local moments will be seen to be the O(δ)-lens, i.e. we
will consider the conditional moments of the increments of Un during a time interval of the
form [τ, τ + δ].
Since we do not require the functions a : [0, T ]×IR→ IR and b : [0, T ]×IR→ IR to be Hölder
continuous in the time arguments of a and b, we will demonstrate the convergence of the
conditional local moments of {Un}n∈IN in two steps. In Section 5.3.4 first approximations of
the conditional local moments will be derived by exploiting sharper approximations of our
auxiliary functions than in the tightness proof. These approximations are also derived in
Section 5.3.2, without assuming any continuity in the time variable for a : [0, T ]× IR→ IR or
b : [0, T ]× IR → IR. The approximations for the second and third moment will only depend
on the position Un(τ) of the correlated random walk at the beginning of the time interval
[τ, τ+δ], while the approximation of the first moment will still depend on the tilt Zn(τ) of Un

at the beginning of that interval. However, we will see that the tilt’s influence is manageable.
In Section 5.3.5 we will employ the time continuity of Assumption O(v) to show that the
approximations for the first two local moments as obtained in Section 5.3.4 converge to the
coefficents of the generator L, uniformly on compact intervals. These results will be applied in
Section 5.3.6 to show that for all sufficiently smooth functions f : IR→ IR and all sufficiently
large n ∈ IN the process

{
f
(
Un(t)

)
−
∫ t
0

(
Lf
)(
U(s)

)
ds
}
t∈[0,T ]

is at least approximately a
martingale.
In the concluding Section 5.3.6 it will be seen that this approximate martingale property
suffices to apply the same arguments as in the setting of Stroock and Varadhan (1979). Es-
pecially, we will show that indeed the distribution of the limit of any converging subsequence
of {Un}n∈IN is a solution to the martingale problem for (L, ν), which will complete the proof
of Theorem 5.4.
Due to the generality of the convergence theorem, many bricks of the proof are very technical.
Therefore the proofs of the following lemmas should be omitted on first reading.
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5.3.1 Conditional Moments of the Correlated Random Walk

We start with calculating the conditional moments of the general correlated random walk
Xn = {Xn

l }0≤l≤n given by (2.3) with T = 1. More exactly, for this section we fix n ∈ IN ,
(x, z) ∈ IR×{±1} and 0 ≤ i ≤ n and calculate the moments of the increments Xn

l −Xn
i given

the correlated random walk is at the ith step in x with tilt Zni = z. Since the distribution of
the correlated random walk is rather involved, we determine its moments in terms of some
auxiliary functions Akn,F and Bk

n,F .

Definition 5.7. Let us denote for all n ∈ IN and 0 ≤ k ≤ n − 1 the set of time points{
tnj
}

0≤j≤n−k by T nk . Then for any function F : IR→ IR we define the family {Akn,F }0≤k≤n−1

of functions Akn,F : T nk × IR→ IR recursively in terms of the function an : [0, T )× IR→ IR of
(3.4) by

A0
n,F

(
tnj , x

)
= F (x) (3.6)

for all 0 ≤ j ≤ n and all x ∈ IR and

Akn,F
(
tnj , x

)
=

1
2

(
Ak−1
n,F

(
tnj+1, x+ µn + σn

)
+Ak−1

n,F

(
tnj+1, x+ µn − σn

))
an
(
tnj , x

)
(3.7)

for all 0 ≤ j ≤ n−k, x ∈ IR, and 1 ≤ k ≤ n−1. Moreover, we define the family {Bk
n,F }1≤k≤n−1

of functions Bk
n,F : T nk × IR→ IR by setting for all 1 ≤ k ≤ n− 1, 0 ≤ j ≤ n− k, and x ∈ IR

Bk
n,F

(
tnj , x

)
=

1
2

(
Ak−1
n,F (tnj+1, x+ µn + σn)−Ak−1

n,F (tnj+1, x+ µn − σn)
)

+
1
2

(
Ak−1
n,F (tnj+1, x+ µn + σn) +Ak−1

n,F (tnj+1, x+ µn − σn)
)
δbn
(
tnj , x

)
,

(3.8)

where bn : [0, T )× IR→ IR was defined in (3.5). If F ≡ 1, then we write Akn instead of Akn,1,
and Bk

n instead of Bk
n,1.

Remark. It is easily seen from Definition 5.7 and from the representation (3.3) for the
continuous-time transition function of Xn that the functions Akn,F and Bk

n,F satisfy

Ex,z
tnj

[
Znj+1A

k−1
n,F

(
tnj+1, X

n
j+1

)]
= zAkn,F

(
tnj , x

)
+Bk

n,F

(
tnj , x

)
(3.9)

for all (x, z) ∈ IR× {±1}, 0 ≤ j ≤ n− k, and 1 ≤ k ≤ n− 1. Note that for all 0 ≤ k ≤ n− 1
and t ∈ T nk we have Akn(t, x) = ak if an(t, x) = a for all (t, x) ∈ T n1 × IR and some constant
a ∈ IR. Even if this does not hold for general functions an : [0, T ) × IR → IR, the intuitive
approximation Akn(t, x) ≈ akn(t, x) for all (t, x) ∈ T nk × IR is quite good, as we will see in
Lemma 5.13. �

The auxiliary functions Akn and Bk
n are used frequently in the remainder of this chapter,

the more general functions Akn,F and Bk
n,F are only needed in Lemma 5.28. Before we can

calculate the moments of Xn
l −Xn

i , we have to state two lemmas:

Lemma 5.8. We have for all F ∈ C1
b (IR), the space of bounded functions on IR with contin-

uous and bounded derivative, and all 0 ≤ i ≤ l ≤ n−m:

Ex,z
tni

[
Znl A

m
n,F

(
tnl , X

n
l

)]
= zAm+l−i

n,F

(
tni , x

)
+

l−1∑
j=i

Ex,z
tni

[
Bm+l−j
n,F

(
tnj , X

n
j

)]
. (3.10)
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Especially, the conditional mean of the tilt Znl at step l ≥ i given the random walk has been
in x with tilt z at the ith step, is given by

Ex,z
tni

[
Znl
]

= zAl−in

(
tni , x

)
+

l−1∑
j=i

Ex,z
tni

[
Bl−j
n

(
tnj , X

n
j

)]
. (3.11)

Proof. Let us fix F ∈ C1
b (IR). We prove the first assertion by induction over l. For l = i,

the statement (3.10) is trivially satisfied for all 0 ≤ m ≤ n− l. For the induction step let us
suppose that we have already proved (3.10) for some l ≥ i and all 0 ≤ m ≤ n − l. Then for
all 0 ≤ m ≤ n− l − 1 we get from the Markov property of

{
(Xn

k , Z
n
k )
}

0≤k≤n, from (3.9) and
from the induction hypothesis (3.10) (with m replaced by m+ 1):

Ex,z
tni

[
Znl+1A

m
n,F

(
tnl+1, X

n
l+1

)]
= Ex,z

tni

[
E
Xn

l ,Z
n
l

tnl

[
Znl+1A

m
n,F

(
tnl+1, X

n
l+1

)]]
= Ex,z

tni

[
Znl A

m+1
n,F

(
tnl , X

n
l

)]
+ Ex,z

tni

[
Bm+1
n,F

(
tnl , X

n
l

)]
= zAm+l−i+1

n,F (i, x) +
l−1∑
j=i

Ex,z
tni

[
Bm+l−j+1
n,F

(
tnj , X

n
j

)]
+ Ex,z

tni

[
Bm+1
n,F

(
tnl , X

n
l

)]
,

which proves (3.10) for l replaced by l+ 1 and all 0 ≤ m ≤ n− (l+ 1). Hence the expression
(3.10) holds for all i ≤ l ≤ n −m. Due to A0

n ≡ 1 the second statement (3.11) follows from
(3.10) for F ≡ 1 and m = 0. q.e.d.

Remark. Since Znl ∈ {±1}, we have Px,z
tni

(
Znl = 1

)
= Ex,z

tni

[
1{Zn

l =1}
]

= 1
2E

x,z
tni

[
1 + Znl

]
for all

i ≤ l ≤ n, and hence the probability that the correlated random walk has a positive tilt at
the lth step given it starts at the ith step in x with tilt z is given by

Px,z
tni

(
Znl = 1

)
=

1
2

(
1 + zAl−in

(
tni , x

)
+

l−1∑
j=i

Ex,z
tni

[
Bl−j
n (tnj , X

n
j )
])

for all i ≤ l ≤ n.

In particular, if the transition function pn : [0, T )× IR×{±1} → [0, 1] is symmetric and only
depends on the tilt of the random walk, but not on its position in space, such that we have
pn
(
t, x,±1

)
= 1

2

(
1± ãn(t)

)
for all (t, x) ∈ [0, T )× IR and some function ãn : [0, T ) → [−1, 1],

then it follows from Definition 5.7 that Akn
(
tnj , x

)
=
∏j+k−1
r=j ãn

(
tnr
)

and Bk
n

(
tnj , x

)
= 0 for

all 0 ≤ k ≤ n − 1, 0 ≤ j ≤ n − k, and x ∈ IR. Hence the conditional probability that the
correlated random walk has a positive tilt at the lth step simplifies to

Px,z
tni

(
Znl = 1

)
=

1
2

(
1 + z

l−1∏
r=i

ãn
(
tnr
))

for all i ≤ l ≤ n. �

In the following Proposition 5.10 we will inductively calculate the second conditional moment
of Xn

l − Xn
i for 0 ≤ i ≤ l ≤ n. In the induction step, we will encounter the expression

Ex,z
tni

[
Znl+1

(
Xn
l −Xn

i

)]
. Our second lemma shows how we can deal with this term:

Lemma 5.9. For all i ≤ l ≤ n− 1 we can determine:

Ex,z
tni

[
Znl+1

(
Xn
l −Xn

i

)]
= σn

l∑
j=i+1

Ex,z
tni

[
Al−j+1
n

(
tnj , X

n
j

)]
+

l∑
j=i+1

Ex,z
tni

[(
Xn
j −Xn

i

)
Bl−j+1
n

(
tnj , X

n
j

)]
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+ µn

(
z(l − i)Al−i+1

n

(
tni , x

)
+

l−1∑
j=i

(l − j)Ex,z
tni

[
Bl−j+1
n

(
tnj , X

n
j

)])
.

Proof. Let us again fix 0 ≤ i ≤ n and choose i ≤ l ≤ n − 1. By the Markov property, we
can write Ex,z

tni

[
Znl+1

(
Xn
l −Xn

i

)]
= Ex,z

tni

[(
Xn
l −Xn

i

)
E
Xn

l ,Z
n
l

tnl

[
Znl+1

]]
, and applying (3.11) we

obtain:

Ex,z
tni

[
Znl+1

(
Xn
l −Xn

i

)]
= Ex,z

tni

[(
Xn
l −Xn

i

)
Znl A

1
n(tnl , X

n
l )
]
+Ex,z

tni

[(
Xn
l −Xn

i

)
B1
n(tnl , X

n
l )
]
. (3.12)

In order to calculate Ex,z
tni

[(
Xn
l − Xn

i

)
Znl A

1
n(tnl , X

n
l )
]

we use an induction over l, and show
that for all i ≤ l ≤ n−m we have:

Ex,z
tni

[(
Xn
l −Xn

i

)
Znl A

m
n

(
tnl , X

n
l

)]
= σn

l∑
j=i+1

Ex,z
tni

[
Am+l−j
n

(
tnj , X

n
j

)]
+

l−1∑
j=i+1

Ex,z
tni

[(
Xn
j −Xn

i

)
Bm+l−j
n

(
tnj , X

n
j

)]

+ µn

(
z(l − i)Am+l−i

n

(
tni , x

)
+

l−1∑
j=i

(l − j)Ex,z
tni

[
Bm+l−j
n

(
tnj , X

n
j

)])
.

(3.13)

With (3.13) being shown for all i ≤ l ≤ n−m we can plug (3.13) with m = 1 into (3.12) and
incorporate the term Ex,z

tni

[(
Xn
l −Xn

i

)
B1
n(tnl , X

n
l )
]

in the second sum to validate the lemma’s
assertion. It remains to accomplish the induction to show (3.13). For l = i, both sides of
(3.13) are 0. Now suppose that for some l ≥ i + 1 the expression (3.13) holds for l̃ = l − 1
and all 0 ≤ m ≤ n − l + 1. Then we can write Xn

l −Xn
i = Xn

l−1 −Xn
i +

(
µn + σnZ

n
l

)
and

apply the Markov property of
{(
Xn
k , Z

n
k

)}
0≤k≤n, (3.9), and

∣∣Znl ∣∣ = 1 to conclude:

Ex,z
tni

[(
Xn
l −Xn

i

)
Znl A

m
n (tnl , X

n
l )
]

= Ex,z
tni

[(
Xn
l−1−Xn

i

)
E
Xn

l−1,Z
n
l−1

tnl−1

[
Znl A

m
n (tnl , X

n
l−1 + Znl )

]]
+ Ex,z

tni

[(
µn+σnZnl

)
Znl A

m
n

(
tnl , X

n
l

)]
= Ex,z

tni

[(
Xn
l−1 −Xn

i

)
Znl−1A

m+1
n

(
tnl−1, X

n
l−1

)]
+ Ex,z

tni

[(
Xn
l−1 −Xn

i

)
Bm+1
n

(
tnl−1, X

n
l−1

)]
+ µnE

x,z
tni

[
Znl A

m
n

(
tnl , X

n
l

)]
+ σnE

x,z
tni

[
Amn
(
tnl , X

n
l

)]
.

Now by the induction hypothesis (3.13) with (l,m) replaced by (l− 1,m+ 1) holds, and if in
addition we employ Lemma 5.8 we obtain by collecting terms

Ex,z
tni

[
Znl
(
Xn
l −Xn

i

)
Amn
(
tnl , X

n
l

)]
= σn

l−1∑
j=i+1

Ex,z
tni

[
Am+l−j
n

(
tnj , X

n
j

)]
+

l−2∑
j=i+1

Ex,z
tni

[(
Xn
j −Xn

i

)
Bm+l−j
n

(
tnj , X

n
j

)]

+ µn

(
z(l − i− 1)Am+l−i

n

(
tni , x

)
+

l−2∑
j=i

(l − 1− j)Ex,z
tni

[
Bm+l−j
n

(
tnj , X

n
j

)])
+ Ex,z

tni

[(
Xn
l−1 −Xn

i

)
Bm+1
n

(
tnl−1, X

n
l−1

)]
+ µn

(
zAm+l−i

n

(
tni , x

)
+

l−1∑
j=i

Ex,z
tni

[
Bm+l−j
n

(
tnj , X

n
j

)])
+ σnE

x,z
tni

[
Amn
(
tnl , X

n
l

)]
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= σn

l∑
j=i+1

Ex,z
tni

[
Am+l−j
n

(
tnj , X

n
j

)]
+

l−1∑
j=i+1

Ex,z
tni

[(
Xn
j −Xn

i

)
Bm+l−j
n

(
tnj , X

n
j

)]

+ µn

(
z(l − i)Am+l−i

n

(
tni , x

)
+

l−1∑
j=i

(l − j)Ex,z
tni

[
Bm+l−j
n

(
tnj , X

n
j

)])
,

which shows that (3.13) holds for l and all 0 ≤ m ≤ n − l as well, hence it holds for all
i ≤ l ≤ n and all 0 ≤ m ≤ n− l. This completes the proof of the lemma. q.e.d.

Now we can calculate the first two conditional moments of Xn
l −Xn

i :

Proposition 5.10. For all 0 ≤ i ≤ l ≤ n and (x, z) ∈ IR×{±1}, the conditional expectation
of Xn

l −Xn
i given

{
Xn
i = x, Zni = z

}
can be expressed by

Ex,z
tni

[
Xn
l −Xn

i

]
= µn(l − i) + σn

(
z
l−i∑
k=1

Akn
(
tni , x

)
+

l−1∑
j=i

l−j∑
k=1

Ex,z
tni

[
Bk
n(tnj , X

n
j )
])
. (3.14)

Moreover, the conditional second moment of Xn
l −Xn

i becomes

Ex,z
tni

[(
Xn
l −Xn

i

)2] = σ2
n

(
l − i+ 2

l−1∑
j=i+1

l−j∑
k=1

Ex,z
tni

[
Akn
(
tnj , X

n
j

)])
+ µ2

n(l − i)2

+ 2µnσn

(
z(l−i)

l−i∑
k=1

Akn
(
tni , x

)
+
l−1∑
j=i

l−j∑
k=1

(l−j)Ex,z
tni

[
Bk
n

(
tnj ,X

n
j

)])

+ 2σn
l−1∑
j=i+1

l−j∑
k=1

Ex,z
tni

[(
Xn
j −Xn

i

)
Bk
n

(
tnj , X

n
j

)]
,

(3.15)

and last but not least the conditional variance of Xn
l −Xn

i is for all those l ≥ i given by

Varx,ztni
[
Xn
l −Xn

i

]
= σ2

n

(
l − i+ 2

l−1∑
j=i+1

l−j∑
k=1

Ex,z
tni

[
Akn
(
tnj , X

n
j

)]

−
(
z
l−i∑
k=1

Akn
(
tni , x

)
+

l−1∑
j=i

l−j∑
k=1

Ex,z
tni

[
Bk
n

(
tnj , X

n
j

)])2
)

+ 2σn
l−1∑
j=i+1

l−j∑
k=1

Ex,z
tni

[(
Xn
j −Xn

i − (j − i)µn
)
Bk
n

(
tnj , X

n
j

)]
.

(3.16)

Proof. We fix 0 ≤ i ≤ n and use again an induction argument. All three equations are trivially
true for l = i. Thus, we only need to show the induction step. Let us first consider the mean.
If (3.14) holds for l−1 for some i ≤ l ≤ n, we can use the definition of the correlated random
walk

{
Xn
k

}
0≤k≤n in (2.3), the induction hypothesis, and (3.11) of Lemma 5.8 to get:

Ex,z
tni

[
Xn
l −Xn

i

]
= Ex,z

tni

[
Xn
l−1 −Xn

i

]
+ µn + σnE

x,z
tni

[
Znl
]

= µn(l − i− 1) + σn

(
z

l−i−1∑
k=1

Akn
(
tni , x

)
+

l−2∑
j=i

l−j−1∑
k=1

Ex,z
tni

[
Bk
n(tnj , X

n
j )
])

+ µn + σn

(
zAl−in

(
tni , x

)
+

l−1∑
j=i

Ex,z
tni

[
Bl−j
n (tnj , X

n
j )
])
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= µn(l − i) + σn

(
z
l−i∑
k=1

Akn
(
tni , x

)
+

l−1∑
j=i

l−j∑
k=1

Ex,z
tni

[
Bk
n(tnj , X

n
j )
])
,

and (3.14) holds for l as well.
Let us now turn to the second equation, and suppose that for some i ≤ l ≤ n − 1 the
second conditional moment of Xn

l − Xn
i is given by (3.15). We write again Xn

l+1 − Xn
i =(

µn + σnZ
n
l+1

)
+
(
Xn
l −Xn

i

)
to obtain

Ex,z
tni

[(
Xn
l+1 −Xn

i

)2] = Ex,z
tni

[(
µn + σnZ

n
l+1

)2]+ 2Ex,z
tni

[(
µn + σnZ

n
l+1

)(
Xn
l −Xn

i

)]
+ Ex,z

tni

[(
Xn
l −Xn

i

)2]
.

(3.17)

For the first term we immediately get from
∣∣Znl+1

∣∣ = 1 and (3.11):

Ex,z
tni

[(
µn+σnZnl+1

)2] = µ2
n + σ2

n + 2µnσnE
x,z
tni

[
Znl+1

]
= µ2

n+σ2
n+2µnσn

(
zAl−i+1

n

(
tni , x

)
+

l∑
j=i

Ex,z
tni

[
Bl−j+1
n

(
tnj , X

n
j

)])
.

(3.18)

For the second term, we can draw on (3.14) and Lemma 5.9 to conclude

Ex,z
tni

[(
µn + σnZ

n
l+1

)(
Xn
l −Xn

i

)]
= µn

{
µn(l − i) + σn

(
z

l−i∑
k=1

Akn
(
tni , x

)
+

l−1∑
j=i

l−j∑
k=1

Ex,z
tni

[
Bk
n

(
tnj , X

n
j

)])}

+ σn

{
σn

l∑
j=i+1

Ex,z
tni

[
Al−j+1
n

(
tnj , X

n
j

)]
+

l∑
j=i+1

Ex,z
tni

[(
Xn
j −Xn

i

)
Bl−j+1
n

(
tnj , X

n
j

)]

+ µn

(
z(l − i)Al−i+1

n

(
tni , x

)
+

l−1∑
j=i

(l − j)Ex,z
tni

[
Bl−j+1
n

(
tnj , X

n
j

)])}

= µ2
n(l−i) + σ2

n

l∑
j=i+1

Ex,z
tni

[
Al−j+1
n

(
tnj , X

n
j

)]
+ σn

l∑
j=i+1

Ex,z
tni

[(
Xn
j −Xn

i

)
Bl−j+1
n

(
tnj , X

n
j

)]

+ µnσn

(
z

(
(l − i)Al−i+1

n

(
tni , x

)
+

l−i∑
k=1

Akn
(
tni , x

))

+
l−1∑
j=i

l−j∑
k=1

Ex,z
tni

[
Bk
n

(
tnj , X

n
j

)]
+

l−1∑
j=i

(l − j)Ex,z
tni

[
Bl−j+1
n

(
tnj , X

n
j

)])
.

Now (3.15) with l replaced by l+ 1 follows from substituting in (3.17) the previous equation,
(3.18), and the induction hypothesis (3.15), and then collecting terms. Thus, the induction
step holds, and therefore (3.15) holds for all i ≤ l ≤ n. Finally, (3.16) directly follows from

Varx,ztni
[
Xn
l −Xn

i

]
= Ex,z

tni

[(
Xn
l −Xn

i

)2]− (Ex,z
tni

[Xn
l −Xn

i ]
)2

(3.19)

and the two previous equations, (3.14) and (3.15). q.e.d.
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5.3.2 Approximations for the Auxiliary Functions

Since we are mainly interested in the limiting behavior as n → ∞ of our correlated random
walk Xn, respectively of the continuous-time version Un given by (2.4), we do not spend
any more time on simplifying the exact formulæ for the conditional moments of Proposi-
tion 5.10, but rather look for approximations of these moments as n → ∞. For that reason
we subsequently invoke the conditions of Assumption N and Assumption O to obtain suitable
approximations of the auxiliary functions

{
Akn,F

}
0≤k≤n and

{
Bk
n,F

}
1≤k≤n.

Our first Lemma is a simple application of the definitions of Lipschitz and Hölder continuity,
but it proves to be useful in the proofs of some of the following approximations for the two
families of auxiliary functions.

Lemma 5.11. Let us suppose that F : IR→ IR is some bounded function satisfying a global
Lipschitz condition, i.e. there exists some LF ∈ IR+ such that∣∣F (x)− F (y)

∣∣ ≤ LF |x− y| for all x, y ∈ IR. (3.20)

Then under Assumption O(i) and (ii) there exists some K2 = K2,F ∈ IR+ such that for all
x, y ∈ IR, for all 0 ≤ j ≤ n− k + 1, and for all functions f, g : IN0 → IR, which may depend
on j and n,∣∣∣∣∣F (y)

j+k−1∏
l=j

a
(
tnl , y + g(l)

)
− F (x)

j+k−1∏
l=j

a
(
tnl , x+ f(l)

)∣∣∣∣∣
≤ K2(k + 1)ak

(
|y − x|+ sup

j≤l≤j+k−1
|g(l)− f(l)|

)
.

(3.21)

If in addition Assumption O(iii) holds then there also exists some K3 ∈ IR+ such that for all
x, y ∈ IR and all 0 ≤ j ≤ n− k + 1∣∣∣∣∣

j+k−1∑
l=j

a′
(
tnl , y+g(l)

)j+k−1∏
r=j
r 6=l

a
(
tnr , y+g(r)

)
−
j+k−1∑
l=j

a′
(
tnl , x+f(l)

)j+k−1∏
r=j
r 6=l

a
(
tnr , x+f(r)

)∣∣∣∣∣
≤ K3(k + 1)kak−1

(
|y−x|β ∨ |y−x|+ sup

j≤r≤j+k−1

(
|g(r)−f(r)|β ∨ |g(r)−f(r)|

))
.

(3.22)

and last but not least we then get for all x, z ∈ IR and all 0 ≤ j ≤ n− k + 1∣∣∣∣∣12
(
j+k−1∏
l=j

a
(
tnl , x+z+f(l)

)
+
j+k−1∏
l=j

a
(
tnl , x−z+f(l)

))
−
j+k−1∏
l=j

a
(
tnl , x+f(l)

)∣∣∣∣∣
≤ K0ka

k−1|z|1+β .

(3.23)

Proof. Let us fix x, y ∈ IR and 0 ≤ j ≤ n − k + 1. The first part of the Lemma is proved
easily. We can use the telescoping sum

j+k−1∏
l=j

a
(
tnl , y + g(l)

)
−
j+k−1∏
l=j

a
(
tnl , x+ f(l)

)
=

j+k−1∑
i=j

(
i∏
l=j

a
(
tnl , y + g(l)

)j+k−1∏
l=i+1

a
(
tnl , x+ f(l)

)
−
i−1∏
l=j

a
(
tnl , y + g(l)

)j+k−1∏
l=i

a
(
tnl , x+ f(l)

))



5.3. PROOF OF THE MAIN CONVERGENCE THEOREM 231

and thereafter the triangular inequality to bound

D1 :=

∣∣∣∣∣F (y)
j+k−1∏
l=j

a
(
tnl , y + g(l)

)
− F (x)

j+k−1∏
l=j

a
(
tnl , x+ f(l)

)∣∣∣∣∣
≤ |F (y)|

j+k−1∑
i=j

i−1∏
l=j

∣∣a(tnl , y + g(l)
)∣∣ j+k−1∏

l=i+1

∣∣a(tnl , x+ f(l)
)∣∣∣∣∣a(tni , y + g(i)

)
− a
(
tni , x+ f(i)

)∣∣∣
+
∣∣F (y)− F (x)

∣∣ j+k−1∏
l=j

∣∣a(tnl , x+ f(l)
)∣∣.

By the boundedness of a : [0, T ] × IR → IR and the Lipschitz continuity of F : IR → IR the
second summand can be bounded by LF |y − x|ak. To bound the first term as well, we note
that by Assumption O(ii) we have

∣∣a(tni , y+g(i)
)
−a
(
tni , x+f(i)

)∣∣ ≤ ‖a′‖
∣∣y+g(i)−x−f(i)

∣∣ for
all j ≤ i ≤ j+k−1. The latter term is bounded by ‖a′‖

(
|y−x|+supj≤r≤j+k−1 |g(r)−f(r)|

)
,

hence by the boundedness of ‖F‖ we overall get

D1 ≤ LF |y − x|ak + ‖F‖
j+k−1∑
i=j

ak−1‖a′‖
(
|y − x|+ sup

j≤r≤j+k−1
|g(r)− f(r)|

)

= LF |y − x|ak + ‖F‖‖a′‖kak−1

(
|y − x|+ sup

j≤i≤j+k−1
|g(i)− f(i)|

)
.

If we now set K2 = max
{
LF ,

1
a‖F‖‖a

′‖
}

, the desired statement (3.21) follows. In order to
prove (3.22) we use again a triangular inequality to bound:

D2 :=

∣∣∣∣∣
j+k−1∑
l=j

a′
(
tnl , y + g(l)

)j+k−1∏
r=j
r 6=l

a
(
tnr , y + g(r)

)
−
j+k−1∑
l=j

a′
(
tnl , x+ f(l)

)j+k−1∏
r=j
r 6=l

a
(
tnr , x+ f(r)

)∣∣∣∣∣
≤

j+k−1∑
l=j

∣∣a′(tnl , y + g(l)
)
− a′

(
tnl , x+ f(l)

)∣∣ j+k−1∏
r=j
r 6=l

∣∣a(tnr , y + g(r)
)∣∣

+
j+k−1∑
l=j

∣∣a′(tnl , x+ f(l)
)∣∣∣∣∣∣∣

j+k−1∏
r=j
r 6=l

a
(
tnr , y + g(r)

)
−
j+k−1∏
r=j
r 6=l

a
(
tnr , x+ f(r)

)∣∣∣∣∣.
Due to the Hölder continuity of a′ : [0, T ]× IR→ IR we have for all j ≤ l ≤ j + k − 1:∣∣a′(tnl , y + g(l)

)
− a′

(
tnl , x+ f(l)

)∣∣
≤
∣∣a′(tnl , y + g(l)

)
− a′

(
tnl , x+ g(l)

)∣∣+
∣∣a′(tnl , x+ g(l)

)
− a′

(
tnl , x+ f(l)

)∣∣
≤ K0|x− y|β +K0

∣∣g(l)− f(l)
∣∣β ≤ K0

(
|y − x|β + sup

j≤r≤j+k−1
|g(r)− f(r)|β

)
,

and by ‖a‖ < a this gives us a bound on the first sum. Moreover, it is easy to see from the
inequality (3.21) that the difference in the second sum can be bounded by the expression
K2,1ka

k−1
(
|y − x|+ supj≤r≤j+k−1 |g(r)− f(r)|

)
. Thus we get

D2 ≤
j+k−1∑
l=j

K0

(
|y − x|β + sup

j≤r≤j+k−1
|g(r)− f(r)|β

)
ak−1
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+
j+k−1∑
l=j

‖a′‖K2,1ka
k−1
(
|y − x|+ sup

j≤r≤j+k−1
|g(r)− f(r)|

)
≤ K0ka

k−1
(
|y − x|β + sup

j≤r≤j+k−1
|g(r)− f(r)|β

)
+ ‖a′‖K2,1k

2ak−1

(
|y − x|+ sup

j≤r≤j+k−1
|g(r)− f(r)|

)
.

Setting K3 = max
{
K0, ‖a′‖K2,1

}
gives the desired claim.

Finally, the proof of (3.23) follows as the proof of (3.21) by adding and subtracting the terms
1
2

(∏i
l=j a

(
tnl , x+z+f(l)

)
+
∏i
l=j a

(
tnl , x−z+f(l)

))∏j+k−1
l=i+1 a

(
tnl , x+f(l)

)
for all j ≤ i ≤ j + k − 2.

Instead of bounding the terms
∣∣a(tni , y+g(i))−a(tni , x+f(i))

∣∣ we now have to bound the terms
of the form

∣∣1
2

(
a(tni , x+z+f(l)) + a(t, x−z+f(l))

)
− a(tni , x+f(l))

∣∣ for all j ≤ i ≤ j + k − 1.
However, by the mean value theorem we find for all t ∈ [0, T ] and y, z ∈ IR some θ1, θ2 ∈ [0, 1]
such that

∣∣1
2

(
a(t, y + z) + a(t, y − z)

)
− a(t, y)

∣∣ = 1
2 |z|
∣∣a′(t, y + θ1z)− a′(t, y − θ2z)

∣∣, and by
the Hölder continuity of a′ as required by Assumption O(iii) we can bound this term uniformly
by 1

2 |z|K0|(θ1 − θ2)z|β ≤ K0|z|1+β. Since we do not have the extra F -factor as in the proof
of (3.21), we obtain (3.23). q.e.d.

Similarly, continuity in the time variable t ∈ [0, T ], implies that we can approximate expres-
sions like the one in the previous lemma by much simpler expressions, which are evaluated
only at one point in time. We state here a lemma, which is sufficient for our application in
Lemma 5.30.

Lemma 5.12. Let us assume that δ2κn = n−1κn → 0 as n→∞ and F : [0, T ]× IR→ IR is
continuous. Then under the Assumptions O(i), (ii), and (v) for any R > 0 and ε > 0 there
exists some N = NF (R, ε) ∈ IN such that for all n ≥ N , all 0 ≤ i ≤ j ≤ j+k−1 ≤ i+κn ≤ n,
and all |x| ≤ R we have∣∣∣∣∣F (tnj , x)

j+k−1∏
l=j

a
(
tnl , x

)
− F

(
tni , x

)
ak
(
tni , x

)∣∣∣∣∣ ≤ (k + 1)akε (3.24)

and ∣∣∣∣∣
j+k−1∑
l=j

a′
(
tnl , x

) j+k−1∏
r=j
r 6=l

a
(
tnr , x

)
− a′

(
tni , x

)
kak−1

n (i, x
)∣∣∣∣∣ ≤ (k + 1)kak−1ε. (3.25)

Proof. Without loss of generality we may assume ‖F‖ > 0. Let us fix R > 0, ε > 0, and
set ε̂ = εmin

{
a‖F‖−1, 1

}
. Since a and F are continuous on [0, T ] × IR, they are uniformly

continuous on the compact set [0, T ] × [−R,R], and hence there exists some η = η(ε̂) > 0
such that∣∣F (s, x)− F (t, x)

∣∣ ≤ ε̂ and
∣∣a(s, x)− a(t, x)

∣∣ ≤ ε̂ for all |s− t| ≤ η and |x| ≤ R.

Since δ2κn → 0, there exists some N ∈ IN such that δ2κn ≤ η for all n ≥ N . Fix some n ≥ N .
Then it follows from the definition of tni in Definition 5.7 that

∣∣tnl −tni ∣∣ = l−i
n ≤ δ2κn ≤ η for all

0 ≤ l−i ≤ κn. With ε̂ playing the role of LF |y−x| and
∥∥a′∥∥|y−x|, we now obtain by the same

means as in the proof of (3.21) in Lemma 5.11 that for all 0 ≤ i ≤ j ≤ j+ k− 1 ≤ i+κn ≤ n
we have∣∣∣∣∣F (tnj , x)

j+k−1∏
l=j

a
(
tnl , x

)
− F

(
tni , x

)
ak
(
tni , x

)∣∣∣∣∣ ≤ ε̂ak + ‖F‖ε̂kak−1 ≤ ε(k + 1)ak.
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In analogy, the proof of (3.25) follows by the means of the proof to (3.22). q.e.d.

Now we can start with stating approximations for the auxiliary functions Akn,F and Bk
n,F

of Definition 5.7. At first, we give bounds and O(δ)-approximations as n → ∞ for these
auxiliary functions, which only take advantage of the boundedness ‖a‖ < 1 and ‖b‖ < ∞ of
the limiting functions a : [0, T ] × IR → IR and b : [0, T ] × IR → IR from Assumption N, and
of the fact that a : [0, T ] × IR → IR is globally Lipschitz continuous in the space variable.
These conditions are sufficient to prove tightness of the sequence of continuous time processes
{Un}n∈IN in Section 5.3.3. For the sake of clarity, we state the lemma and our tightness result
under the slightly stronger conditions implied by Assumption O(ii).

Lemma 5.13. Let us assume that F : IR → IR is uniformly bounded. Then under Assump-
tion O(i) we have for all sufficiently large n ∈ IN ,

sup
(t,x)∈T n

k ×IR

∣∣Akn,F (t, x)
∣∣ ≤ ‖F‖ak for all 0 ≤ k ≤ n− 1. (3.26)

If in addition Assumption O(ii) holds and F : IR→ IR satisfies the global Lipschitz condition
(3.20), then there exist some K4, K5 ∈ IR+, which do not depend on k, such that for all
sufficiently large n ∈ IN we have for all 0 ≤ k ≤ n− 1:

sup
0≤j≤n−k, |y−x|≤2σn

∣∣Akn,F (t, y)−Akn,F (t, x)
∣∣ ≤ K4(k + 1)akδ (3.27)

and

sup
0≤j≤n−k
x∈IR

∣∣∣∣∣Akn,F (tnj , x)− F
(
x+ kµn

) j+k−1∏
l=j

a
(
tnl , x+ (l − j)µn

)∣∣∣∣∣ ≤ K5(k + 1)kak−1δ, (3.28)

and for all 1 ≤ k ≤ n− 1 we also have

sup
(t,x)∈T n

k ×IR

∣∣Bk
n,F

(
t, x
)∣∣ ≤ K6ka

k−1δ. (3.29)

Proof. We prove the first three statements by an induction over k. Let us start with (3.26).
Due to (3.4) and Assumption O(i) there exists some N1 ∈ IN such that ‖an‖[0,T )×IR ≤ a for
all n ≥ N1. We show inductively that (3.26) holds for all n ≥ N1 as well. For this purpose
fix such an n ≥ N1. Recalling the definition of A0

n,F

(
tnj , x

)
in (3.6) the bound (3.26) trivially

holds for k = 0, hence our induction can be anchored at k = 0. For the induction step let
us assume that sup(t,x)∈T n

k−1×IR
∣∣Ak−1

n,F (t, x)
∣∣ ≤ ‖F‖ak−1 for some 1 ≤ k ≤ n − 1. Using the

shorthands A± = Ak−1
n,F (tnj+1, x + µn ± σn) we then get from the definition of Akn,F

(
tnj , x

)
in

(3.7) and the definition of N1 that for all 0 ≤ j ≤ n− k and x ∈ IR∣∣Akn,F (tnj , x)∣∣ =
∣∣∣∣12(A+ +A−

)
an
(
tnj , x

)∣∣∣∣ ≤ 1
2
(
|A+|+ |A−|

)∣∣an(tnj , x)∣∣ ≤ ‖F‖ak−1a = ‖F‖ak.

This proves (3.26) for all n ≥ N1. Let us now turn to the next estimate, and choose some
σ̂ > σ and K̂ > ‖a′‖. We will then show that (3.27) with K4 := 2σ̂max

{
LF ,

1
aK̂‖F‖

}
holds

for all 0 ≤ k ≤ n− 1 and all sufficiently large n ∈ IN . In order to specify “sufficiently large”
we notice that due to Assumption N the exists some N3 ∈ IN such that 0 ≤ σn ≤ σ̂δ for all
n ≥ N3. Hence (3.4) and

∣∣a(t, y) − a(t, x)
∣∣ ≤ ∥∥a′∥∥|y − x| ≤ 2

∥∥a′∥∥|σn| for all t ∈ [0, T ] and
x, y ∈ IR with |y − x| ≤ 2σn imply that there exists some N4 ≥ max

{
N1, N3

}
such that

sup
t∈[0,T ], |y−x|≤σn

∣∣an(t, y)− an(t, x)
∣∣ ≤ 2σ̂K̂δ for all n ≥ N4. (3.30)
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Then we will show that for all n ≥ N4 and 0 ≤ k ≤ n− 1 the bound (3.27) holds. Therefore,
let us fix n ≥ N4 and apply again an induction over k. To anchor our induction, we notice
that by the definition of A0

n,F and the Lipschitz continuity of F we have∣∣A0
n,F (tnj , y)−A0

n,F

(
tnj , x

)∣∣ =
∣∣F (y)− F (x)

∣∣ ≤ LF |y − x| ≤ 2LF |σn| ≤ 2LF σ̂δ ≤ K4δ

for all 0 ≤ j ≤ n and |y − x| ≤ 2σn, which leads to (3.27) for k = 0. Now assume that (3.27)
holds for some 0 ≤ k ≤ n − 1 with k replaced by k̃ = k − 1, and fix 0 ≤ j ≤ n − k and
x, y ∈ IR such that |x− y| ≤ 2σn. By the definition of Akn,F in (3.7) we have:

Akn,F
(
tnj , y

)
−Akn,F

(
tnj , x

)
=

1
2
(
A+(y) +A−(y)

)
an
(
tnj , y

)
− 1

2
(
A+(x) +A−(x)

)
an
(
tnj , x

)
,

where we use the shorthands A±(z) := Ak−1
n,F

(
tnj+1, z + µn ± σn

)
for z ∈ {x, y}. Then an

application of the equality ab − cd = 1
2(a − c)(b + d) + 1

2(a + c)(b − d) for all a, b, c, d ∈ IR
gives us

Akn,F
(
tnj , y

)
−Akn,F

(
tnj , x

)
=

1
4

(
A+(y) +A−(y)−A+(x)−A−(x)

)(
an
(
tnj , y

)
+ an

(
tnj , x

))
+

1
4

(
A+(y) +A−(y) +A+(x) +A−(x)

)(
an
(
tnj , y

)
− an

(
tnj , x

))
.

(3.31)

Due to the induction hypothesis for k̃ = k − 1 and the definitions of our shorthands A±, we
can bound

1
2

∣∣∣A+(y)+A−(y)−A+(x)−A−(x)
∣∣∣ ≤ 1

2

(∣∣A+(y)−A+(x)
∣∣+
∣∣A−(y)−A−(x)

∣∣) ≤ K4ka
k−1δ,

and because of the first part of this lemma and N4 ≥ N1 we obtain

1
4

∣∣∣A+(y)+A−(y)+A+(x)+A−(x)
∣∣∣ ≤ 1

4

(∣∣A+(y)
∣∣+∣∣A+(x)

∣∣+
∣∣A−(y)

∣∣+∣∣A−(x)
∣∣) ≤ ‖F‖ak−1.

Hence, inserting absolute values in (3.31) and using the bounds ‖an‖[0,T )×IR ≤ a of the first
part and (3.30) as well, we get:∣∣Akn,F (tnj , y)−Akn,F

(
tnj , x

)∣∣ ≤ K4ka
k−1δa + ‖F‖ak−12σ̂K̂δ ≤ K4(k + 1)akδ,

where the last inequality stems from the definition K4 = 2σ̂max
{
LF ,

1
aK̂‖F‖

}
. Therefore,

the statement (3.27) holds for k as well, and thus for all k ∈ IN0.
The third statement follows similarly to the second one if we set for example K5 = aσ̂K2,
and choose N5 ≥ N0 such that ‖an − a‖[0,T )×IR ≤ δK5 for all n ≥ N5. In order to prove it,
let us fix n ≥ N5. Then, first of all, we have by definition of A0

n,F for all x ∈ IR the equality∣∣A0
n,F

(
tnj , x

)
−F (x)

∣∣ =
∣∣F (x)−F (x)

∣∣ = 0, which leads to (3.28) for k = 0. Assume now that
(3.28) holds for k̃ = k− 1 with 1 ≤ k ≤ n− 1, and fix 0 ≤ j ≤ n− k and x ∈ IR. Defining the
function F̃ : IR→ IR by F̃ (y) = F

(
y + kµn

)
for all y ∈ IR and setting x± = x+ µn ± σn we

can use F
(
x± + (k − 1)µn

)
= F̃ (x± σn), the induction hypothesis, and (3.21) to conclude:

D± :=

∣∣∣∣∣Ak−1
n,F

(
tnj+1, x

±)− F
(
x+ kµn

) j+k−1∏
l=j+1

a
(
tnl , x+ (l − j)µn

)∣∣∣∣∣
≤

∣∣∣∣∣Ak−1
n,F

(
tnj+1, x

±)− F
(
x± + (k − 1)µn

)j+k−1∏
l=j+1

a
(
tnl , x

± + (l − j − 1)µn
)∣∣∣∣∣
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+

∣∣∣∣∣F̃ (x± σn)
j+k−1∏
l=j+1

a
(
tnl , x+ σn + (l − j)µn

)
− F̃ (x)

j+k−1∏
l=j+1

a
(
tnl , x+ (l − j)µn

)∣∣∣∣∣
≤ K5k(k − 1)ak−2δ +K2ka

k−1
(
|σn|+ 0

)
≤ K5k(k − 1)ak−2δ + σ̂K2ka

k−1 = K5k
2ak−2δ.

Since by (3.26) and by the definition of N5 we also have
∣∣Ak−1

n,F

(
tnj+1, x

±)∣∣ ≤ ‖F‖ak−1 for all
n ≥ N5 ≥ N0, we see that for all n ≥ N5∣∣∣∣∣∣Akn,F (tnj , x)− F (x+ kµn)

j+k−1∏
l=j

a
(
tnl , x+ (l − j)µn

)∣∣∣∣∣∣
=

∣∣∣∣∣∣12
(
Ak−1
n,F

(
tnj+1, x

+
)

+Ak−1
n,F

(
tnj+1, x

−))an(tnj , x)− F (x+kµn)
j+k−1∏
l=j

a
(
tnl , x+(l − j)µn

)∣∣∣∣∣∣
≤ 1

2

∣∣∣Ak−1
n,F

(
tnj+1, x

+
)

+Ak−1
n,F

(
tnj+1, x

−)∣∣∣ · ∣∣∣an(tnj , x)− a
(
tnj , x

)∣∣∣+
∣∣a(tnj , x)∣∣12(D+ +D−

)
≤ ak−1K5δ + aK5k

2ak−2δ = (k + 1)kak−1K5δ.

This proves the induction step, and hence (3.28) for all 0 ≤ k ≤ n − 1 and n ≥ N5. Fi-
nally, let us recall from Assumptions N and O(i), and from (3.5), that

∥∥b‖ < ∞, and set
K6 := 1

2K4 + ‖b‖ · ‖F‖. Then for all fixed n ≥ N4, 1 ≤ k ≤ n− 1, 0 ≤ j ≤ n− k and x ∈ IR
we may once again use our shorthands A±(x) = Ak−1

n,F

(
tnj+1, x+µn±σn

)
to convince the reader

that (3.29) follows from the definition of Bk
n,F

(
tnj , x

)
in (3.8), 1

2 |A
+(x)−A−(x)| ≤ 1

2K4ka
k−1δ

by (3.27), and due to 1
2 |bn(t, x)|

(
|A+(x)|+ |A−(x)|

)
≤ ‖b‖ · ‖F‖ak−1. q.e.d.

The approximations of Akn
(
tnj , x

)
and Bk

n

(
tnj , x

)
of Lemma 5.13 are good enough to determine

the volatility coefficient of the limiting diffusion process, but unfortunately they are not good
enough to determine the drift of the diffusion as well. For this reason, we need stronger
bounds, and as a preparatory lemma to find such bounds, we provide the reader with an
improved version of the approximations for Akn

(
tnj , x

)
.

Lemma 5.14. Under the Assumptions N and O(i) to (iii) we also have the bound:

sup
0≤j≤n−k
|y−x|≤σn

∣∣∣∣∣Akn(tnj , y)−
j+k−1∏
l=j

a
(
tnl , x+ (l − j)µn

)

− (y − x)
j+k−1∑
l=j

a′
(
tnl , x+ (l − j)µn

) j+k−1∏
r=j
r 6=l

a
(
tnr , x+ (r − j)µn

)∣∣∣∣∣
≤ K7(k + 2)(k + 1)kak−1δ1+β.

(3.32)

for all sufficiently large n ∈ IN and all 0 ≤ k ≤ n− 1.

Proof. Let us set F ≡ 1 and fix some K2,K3 ∈ IR+ as in Lemma 5.11, some K4,K5 ∈ IR+

as described in Lemma 5.13, and some σ̂ > σ. Due to (3.4) there exists some L ∈ IR+ and
N7 ∈ IN such that for all n ≥ N7 we have ‖an − a‖[0,T )×IR ≤ Lδ1+β, and by Assumption N
and Lemma 5.13 we can suppose without loss of generality that 0 ≤ σn ≤ σ̂δ ≤ 1, and that
the bounds (3.26), (3.27), and (3.28) hold for all 0 ≤ k ≤ n and n ≥ N7. Finally, recalling
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the Hölder constant K0 of Assumption O(iii), we will show that for all n ≥ N7 the inequality
(3.32) holds for example with

K7 := σ̂max
{
σ̂−1L,K0σ̂

β, 2K3σ̂
β,K4

∥∥a′∥∥, 2a−1
∥∥a′∥∥K5

}
.

Of course, we use again an induction over k. For that reason let us fix n ≥ N7. The starting
assumption (3.32) for k = 0 is easily verified, since A0

n(tnj , y) = 1 for all 0 ≤ j ≤ n by the
definition in (3.6),

∏j−1
l=j an

(
tnl , x+(l− j)µn

)
= 1 by the definition of the empty product, and

since for k = 0 the sum in (3.32) is also empty. Now assume that (3.32) is true for k − 1; we
want to show that it even holds for k as long as 1 ≤ k ≤ n− 1. Therefore, let us fix x, y ∈ IR
with |x− y| ≤ σn and 0 ≤ j ≤ n− k, and set

D0 : = Akn(tnj , y)−
j+k−1∏
l=j

a
(
tnl , x+ (l − j)µn

)
− (y − x)

j+k−1∑
l=j

a′
(
tnl , x+ (l − j)µn

) j+k−1∏
r=j
r 6=l

a
(
tnr , x+ (r − j)µn

)
.

We separate those terms of a : [0, T ]× IR→ IR and a′ : [0, T ]× IR→ IR which are evaluated
at
(
tnj , x

)
, and rewrite D0 in terms of nine differences D(±)

i as

D0 = D1 + a
(
tnj , x

)(1
2
(
D+

2 +D−
2

)
+D3 + (y − x)

1
2
(
D+

4 +D−
4

))
+ (y − x)a′

(
tnj , x

)(1
2
(
D+

5 +D−
5

)
+D6

)
.

(3.33)

Here the appearing differences are with ỹ = y + µn given by

D1 := Akn
(
tnj , y

)
− 1

2

(
Ak−1
n

(
tnj+1, ỹ+σn

)
+Ak−1

n

(
tnj+1, ỹ−σn

))(
a
(
tnj , x

)
+ (y − x)a′

(
tnj , x

))
,

D±
2 := Ak−1

n

(
tnj+1, y + µn ± σn

)
−
j+k−1∏
l=j+1

a
(
tnl , x± σn + (l − j)µn

)
− (y − x)

j+k−1∑
l=j+1

a′
(
tnl , x± σn + (l − j)µn

) j+k−1∏
r=j+1
r 6=l

a
(
tnr , x± σn + (r − j)µn

)
,

D3 :=
1
2

(
j+k−1∏
l=j+1

a
(
tnl , x+ σn + (l − j)µn

)
+
j+k−1∏
l=j+1

a
(
tnl , x− σn + (l − j)µn

))

−
j+k−1∏
l=j+1

a
(
tnl , x+ (l − j)µn

)
,

D±
4 :=

j+k−1∑
l=j+1

a′
(
tnl , x± σn + (l − j)µn

) j+k−1∏
r=j+1
r 6=l

a
(
tnr , x± σn + (r − j)µn

)

−
j+k−1∑
l=j+1

a′
(
tnl , x+ (l − j)µn

) j+k−1∏
r=j+1
r 6=l

a
(
tnr , x+ (r − j)µn

)
,
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D±
5 := Ak−1

n

(
tnj+1, y + µn ± σn

)
−Ak−1

n

(
tnj+1, x+ µn

)
,

and

D6 := Ak−1
n

(
tnj+1, x+ µn

)
−
j+k−1∏
r=j+1

a
(
tnr , x+ (r − j)µn

)
.

We now bound these differences separately, and start with D1. Due to the mean value the-
orem there exists some θ ∈ [0, 1] such that a

(
tnj , y

)
= a

(
tnj , x

)
+ (y − x)a′

(
tnj , x+ θ(y − x)

)
,

and by the Hölder continuity of a′ which has been stated in Assumption O(iii) we ob-
tain

∣∣a′(tnj , x+ ξ(y − x)
)
− a′

(
tnj , x

)∣∣ ≤ K0|θ(y − x)|β ≤ K0|y − x|β . Now we conclude from
the inequalities |y − x| ≤ σn ≤ σ̂δ and the definition of the constant K7 that we can bound
|y − x|

∣∣a′(tnj , x+θ(y−x)
)
− a′

(
tnj , x

)∣∣ ≤ K0σ̂
1+βδ1+β ≤ K7δ

1+β. By the definition of L ≤ K7

and N7 we also have
∣∣an(tnj , y) − a

(
tnj , y

)∣∣ ≤ K7δ
β, hence we get by adding and subtracting

a
(
tnj , y

)
and (y − x)a′

(
tnj , x+ θ(y − x)

)
:∣∣an(tnj , y)− a

(
tnj , x

)
− (y − x)a′

(
tnj , x

)∣∣
≤
∣∣an(tnj , y)− a

(
tnj , y

)∣∣+ 0 + |y − x|
∣∣a′(tnj , x+ θ(y − x)

)
− a′

(
tnj , x

)∣∣ ≤ 2K7δ
1+β.

Additionally, we have by (3.26) that
∣∣Ak−1

n (tnj+1, ỹ± σn)
∣∣ ≤ ak−1, and hence it follows by the

definitions of Akn,F in (3.7) and ỹ = y + µn, and by 1
2(k + 1) ≥ 1, that

|D1| =
∣∣∣∣12(Ak−1

n

(
tnj+1, ỹ+σn

)
+Ak−1

n

(
tnj+1, ỹ−σn

))∣∣∣∣∣∣∣an(tnj , y)− a
(
tnj , x

)
− (y−x)a′

(
tnj , x

)∣∣∣
≤ ak−12K7δ

1+β ≤ K7(k + 1)kak−1δ1+β .

In order to bound
∣∣D±

2

∣∣ we can apply the induction hypothesis (3.32) with (k, j, x, y) replaced
by
(
k − 1, j + 1, x+ µn ± σ, y + µn ± σ

)
to obtain∣∣D±

2

∣∣ ≤ K7(k + 1)k(k − 1)ak−2δ1+β.

Next, a bound on D3 can be derived by (3.23) of Lemma 5.11, and since the definition of N7

implies σn ≤ σ̂δ; we get

|D3| ≤ K0(k − 1)ak−2|σn|1+β ≤ σ̂1+βK0(k − 1)ak−2δ1+β ≤ 1
2
K7k(k + 1)ak−2δ1+β,

using once again 1
2(k + 1) ≥ 1 for the last step. Analogously, we see by means of (3.22) in

the same lemma, with g(l) = f(l) = (l − j)µn for all l ∈ IN0, and due to 0 ≤ σn ≤ σ̂δ ≤ 1
that∣∣D±

4

∣∣ ≤ K3k(k − 1)ak−2
(
|σn|β ∨ |σn|+ 0

)
≤ σ̂βK3k(k − 1)ak−2δβ ≤ 1

2σ̂
K7(k + 1)kak−2δβ .

Now we consider the term before last and look for a bound for D±
5 . Because of the inequality∣∣y + µn ± σn − (x+ µn)

∣∣ ≤ |y − x|+ |σn| ≤ 2σn, we can apply (3.27), and multiplying
∣∣D±

5

∣∣
by
∥∥a′∥∥ we get due to δ ≤ 1 the bound∥∥a′∥∥∣∣D±

5

∣∣ ≤ ∥∥a′∥∥K4ka
k−1δ ≤ 1

2σ̂
K7(k + 1)kak−1δβ,

and finally we draw on (3.28) to bound
∥∥a′∥∥|D6| by∥∥a′∥∥|D6| ≤

∥∥a′∥∥K5k(k − 1)ak−2δ ≤ 1
2σ̂
K7(k + 1)kak−1δβ.
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Hence we get from (3.33) and ‖a‖ < a by collecting the above bounds:

|D0| ≤ |D1|+ ‖a‖
(

1
2

(∣∣D+
2

∣∣+
∣∣D−

2

∣∣)+ |D3|+ |y − x|1
2

(∣∣D+
4

∣∣+
∣∣D−

4

∣∣))
+ |y − x|

∥∥a′∥∥(1
2

(∣∣D+
5

∣∣+
∣∣D−

5

∣∣)+ |D6|
)

≤ K7(k + 1)kak−1δ1+β + aK7(k + 1)k(k − 1)ak−2δ1+β

+ a
1
2
K7k(k + 1)ak−2

(
δ1+β + |y − x|σ̂−1δβ

)
+ |y − x| 1

2σ̂
K7(k + 1)kak−1

(
δβ + δβ

)
.

If we now recall that |x − y| ≤ σn and N7 was chosen such that σn ≤ σ̂δ for all n ≥ N7, we
see that |x− y|σ̂−1 ≤ δ, and we obtain

|D0| ≤ K7a
k−1
(
(k + 1)k(k − 1) + 3(k + 1)k

)
δ1+β = K7(k + 2)(k + 1)kak−1δ1+β.

This proves the induction step, and hence the assertion. q.e.d.

Now it is only a small step to give bounds on σnA
k
n, σ2

nA
k
n, and σnB

k
n which are sufficiently

accurate for our applications.

Lemma 5.15. Under the Assumptions N and O(i) to (iii) there exist some constants K8

and K9 such that for all sufficiently large n ∈ IN , all x, y ∈ IR, 0 ≤ k ≤ n− 1, and r ∈ {1, 2}

sup
0≤j≤n−k

∣∣∣∣∣σrnAkn(tnj, y)−δrσr
j+k−1∏
l=j

a
(
tnl , x

)∣∣∣∣∣ ≤ K8(k+2)(k+1)akδr+β+K9(k+1)akδr|y−x|. (3.34)

Moreover, if in addition Assumption O(iv) holds there exist some constants K10 and K11

such that for all sufficiently large n ∈ IN the following bound holds for all x, y ∈ IR and
1 ≤ k ≤ n− 1:

sup
0≤j≤n−k

∣∣∣∣σnBk
n

(
tnj , y

)
− δ2σb

(
tnj , x

)j+k−1∏
l=j+1

a
(
tnl , x

)
− δ2σ2

j+k−1∑
l=j+1

a′
(
tnl , x

)j+k−1∏
r=j+1
r 6=l

a
(
tnr , x

)∣∣∣∣∣
≤ K10(k + 1)kak−1δ2

(
|y − x|β + |y − x|

)
+K11(k + 2)(k + 1)kak−1δ2+β.

(3.35)

Proof. The bound (3.34) follows easily from Lemma 5.13 and Lemma 5.11. Let us fix
ε > 0 and set F ≡ 1. By the above two lemmas and Assumption N there exist some
N8 ∈ IN and some L ∈ IR+ such that for all n ≥ N8 the bounds (3.26), (3.28), and (3.21)
hold, and additionally both

∣∣σrn − (σδ)r
∣∣ ≤ Lδr+β for r ∈ {1, 2} and |µn| ≤ εδβ for all

n ≥ N8. Hence, fixing some n ≥ N8, 0 ≤ k ≤ n − 1, and x, y ∈ IR, by (3.26) the bound
D1 := sup0≤j≤n−k

∣∣Akn(tnj , y)∣∣ ≤ ak ≤ 1
22(k + 1)ak holds, and due to (3.28) we bound

D2 := sup
0≤j≤n−k

∣∣∣∣∣Akn(tnj , y)−
j+k−1∏
l=j

a
(
tnl , y + (l − j)µn

)∣∣∣∣∣ ≤ K5(k + 1)kak−1δ.

Last but not least, let us notice that with g(l) = (l − j)µn, and f(l) = 0 for all l ∈ N0 we
have |g(l)− f(l)| ≤ |l − j||µn| ≤ kεδβ for all j ≤ l ≤ j + k − 1. Therefore, we get by (3.21)

D3 := sup
0≤j≤n−k

∣∣∣∣∣
j+k−1∏
l=j

a
(
tnl , y + (l − j)µn

)
−
j+k−1∏
l=j

a
(
tnl , x

)∣∣∣∣∣ ≤ K2(k + 1)ak
(
|y − x|+ kεδβ

)
.
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If we now add and subtract the terms δσAkn
(
tnj , y

)
and δσ

∏j+k−1
l=j a

(
tnl , y

)
within the absolute

value on the left-hand side of (3.34), we get for r ∈ {1, 2}

sup
0≤j≤n−k

∣∣∣∣∣σrnAkn(tnj , y)− (δσ)r
j+k−1∏
l=j

a
(
tnl , x

)∣∣∣∣∣ ≤ ∣∣σrn − (δσ)r
∣∣D1 + (δσ)r

(
D2 +D3

)
.

Employing
∣∣σrn − (δσ)r

∣∣ ≤ Lδr+β and the above bounds on D1 to D3, we obtain (3.34) for
example with K8 := max

{
σ
(
εK2 + 1

aK5

)
, 1

2L1

}
and K9 := σK2.

Now let us turn to (3.35). By Lemma 5.13 and Lemma 5.14 there exist some K4,K5,K7 > 0
and N9 ∈ IN such that with F ≡ 1 the bounds (3.27), (3.28), and (3.32) hold for all
n ≥ N9 and all 0 ≤ k ≤ n − 1. Due to Assumptions N and O(i) and (3.5) we can as-
sume without loss of generality that for all n ≥ N9 we have δ‖bn‖[0,T )×IR ≤ εδβ, for some
0 < ε ≤ min

{
1, 2K7

aK4
, 2K7

K5

}
, since δbn is uniformly of order O(δ) as n→∞.

Let us now fix n ≥ N9, 1 ≤ k ≤ n− 1, 0 ≤ j ≤ n− k, and x, y ∈ IR, and abbreviate products
and sums of the type as they appear in (3.32) and (3.35) by

Π(z, µ) :=
j+k−1∏
l=j+1

a
(
tnl , z + (l − j)µ

)
and

Σ(z, µ) :=
j+k−1∑
l=j+1

a′
(
tnl , z + (l − j)µ

) j+k−1∏
r=j+1
r 6=l

a
(
tnr , z + (r − j)µ

)
for all z, µ ∈ IR.

As a first step to prove (3.35) we will show that∣∣∣Bk
n

(
tnj , y

)
− δbn

(
tnj , y

)
Π(y, µn)− σnΣ(y, µn)

∣∣∣ ≤ K7(k + 2)(k + 1)kak−2δ1+β . (3.36)

In order to do so, we once again use the shorthands A±(y) := Ak−1
n (tnj+1, y + µn ± σn) and

recall from the definition of Bk
n

(
tnj , y

)
in (3.8) that

Bk
n

(
tnj , y) =

1
2
(
A+(y)−A−(y)

)
+

1
2
(
A+(y) +A−(y)

)
δbn
(
tnj , y

)
.

Hence the left-hand side of (3.36) can be written as
∣∣D1 + δbn

(
tnj , y

)
D2

∣∣ where we have set
D1 := 1

2

(
A+(y) − A−(y)

)
− σnΣ(y, µn) and D2 := 1

2

(
A+(y) + A−(y)

)
− Π(y, µn). We will

bound D1 and D2 separately. Let us start with D1. If we add and subtract 1
2Π(y, µn) to D1,

and then apply (3.32) with (j, k, y, x) replaced by (j+1, k−1, y+µn±σ, y+µn) we conclude∣∣D1

∣∣ ≤ 1
2

∣∣A+(y)−Π(y, µn)− σnΣ(y, µn)
∣∣+

1
2

∣∣Π(y, µn) + (−σn)Σ(y, µn)−A−(y)
∣∣

≤ K7(k + 1)k(k − 1)ak−2δ1+β .

In order to bound D2, we employ (3.27) and (3.28) for x = y+µn, and get with the abridged
notation Ā(y) := Ak−1

n

(
tnj+1, y + µn

)
and due to 1

2(k + 1) ≥ 1 on the one hand the bound∣∣A±(y) − Ā(y)
∣∣ ≤ K4ka

k−1δ ≤ 1
2aK4(k + 1)kak−2δ and on the other hand also the bound∣∣Ā(y)−Π(y, µn)

∣∣ ≤ K5k(k−1)ak−2δ ≤ K5(k+ 1)kak−2δ. If we now notice that by the choice
of ε we have aK4 ≤ 2

εK7 and K5 ≤ 2
εK7, we obtain by adding and subtracting Ā(y):∣∣D2

∣∣ ≤ 1
2

∣∣A+(y)− Ā(y)
∣∣+

1
2

∣∣A−(y)− Ā(y)
∣∣+
∣∣Ā−Π(y, µn)

∣∣ ≤ 3
ε
K7(k + 1)kak−1δ,
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Since
∣∣δbn(tnj , y)∣∣ ≤ εδβ, we arrive at (3.36) by the triangular inequality:∣∣D1 + δbn

(
tnj , y

)
D2

∣∣ ≤ ∣∣D1

∣∣+
∣∣δbn(tnj , y)∣∣∣∣D2

∣∣
≤ K7(k + 1)k(k − 1)ak−2δ1+β + εδβ

3
ε
K7(k + 1)kak−2δ

= K7(k + 2)(k + 1)kak−2δ1+β.

If we multiply (3.36) by σn, it basically remains to bound the error, which is involved by
replacing the term σnb

(
tnj , y

)
Π(y, µn) by δσb

(
tnj , y

)
Π(x, 0), and by replacing σ2

nΣ(y, µn) by
(δσ)2Σ(x, 0). By Assumption N and by (3.5) there exist some constants σ̂, L1, L2 ∈ IR+ and
some N10 ≥ N9 such that for all n ≥ N10 we have

σn ≤ σ̂δ,
∣∣σ2
n − (δσ)2

∣∣ ≤ L1δ
2+β,

∥∥σnbn − δσb
∥∥

[0,T )×IR ≤ L2δ
1+β , and |µn| ≤ εδ. (3.37)

Let us again fix some n ≥ N10, 1 ≤ k ≤ n, 0 ≤ j ≤ n − k and x, y ∈ IR, and set
K10 := σ2 max

{
K1, ‖b‖K2,

2
aK3

}
. Combining the definition of L2 with Assumption O(iv) we

see from adding and subtracting δσb(t, y) that
∣∣σnbn(t, y)−δσb(t, x)

∣∣ ≤ L2δ
1+β+σK1δ|y−x|β .

Last but not least, let us notice that with g(l) = (l − j)µn, and f(l) = 0 for all l ∈ IN0 we
have |g(l) − f(l)| ≤ |l − j||µn| ≤ |k − 1|εδ for all j + 1 ≤ l ≤ j + k − 1. Thus, we can
bound D3 := σnb

(
tnj , y

)
Π(y, µn) − δσb

(
tnj , x

)
Π(x, 0) with the help of (3.21) and the bound

|Π(y, µn)| ≤
∏j+k−1
l=j+1 a = ak−1, which itself immediately follows from Assumption O(i), by

|D3| ≤
∣∣σnb(tnj , y)− δσb

(
tnj , x

)∣∣|Π(y, µn)|+ δσ
∣∣b(tnj , x)∣∣∣∣Π(y, µn)−Π(x, 0)

∣∣
≤
(
L2δ

1+β + σK1δ|y − x|β
)
ak−1 + δσ‖b‖K2ka

k−1
(
|y − x|+ (k − 1)εδ

)
≤ 1

2
K10(k + 1)kak−1δ

(
|y−x|β + |y−x|

)
+
(

1
6
L2 +

1
2
εσ‖b‖K2

)
(k+2)(k+1)kak−1δ1+β,

where we also used k ≥ 1. Since k ∈ IN , we have |k−1|β ≤ |k−1|, and on the other hand ε ≤ 1
implies |µn| ≤ εδ ≤ 1 and hence |µn| ≤ |µn|β. Employing the bounds

∣∣σ2
n − (δσ)2

∣∣ ≤ L1δ
2+β,

|Σ(y, µn)| ≤
∑j+k−1

l=j+1

∥∥a′∥∥ak−2 =
∥∥a′∥∥(k− 1)ak−2, and (3.22) as well, we also find a bound on

D4 := σ2
nΣ(y, µn)− (δσ)2Σ(x, 0), namely

|D4| ≤
∣∣σ2
n − (δσ)2

∣∣∣∣Σ(y, µn)
∣∣+ (δσ)2

∣∣Σ(y, µn)− Σ(x, 0)
∣∣

≤ L1δ
2+β
∥∥a′∥∥(k − 1)ak−2 + (δσ)2K3k(k − 1)ak−2

(
|y − x|β ∨ |y − x|+ (k − 1)εβδβ

)
≤ 1

2
K10(k + 1)kak−1δ2

(
|y − x|β + |y − x|

)
+
(

1
6
L1

∥∥a′∥∥+ σ2K3ε
β

)
(k + 2)(k + 1)kak−2δ2+β,

where we used k ≥ 1 and |u|β ∨ |u| ≤ |u|β + |u| for all u ∈ IR in the last step. Hence we get
by adding and subtracting σnδb

(
tnj , x

)
Π(y, µn) and σ2

nΣ(y, µn)∣∣σnBk
n

(
tnj , y

)
− δ2σb

(
tnj , x

)
Π(x, 0)− (δσ)2Σ(x, 0)

∣∣
=
∣∣σn(D1 + δb(tnj , y)D2

)
+ δD3 +D4

∣∣ ≤ δσ̂
∣∣D1 + δb

(
tnj , y

)
D2

∣∣+ δ|D3|+ |D4|

≤ K10(k + 1)kak−1δ2
(
|y − x|β + |y − x|

)
+K11(k + 2)(k + 1)kak−1δ2+β ,

where K11 may be chosen as K11 = σ̂
aK7 + 1

6L2 + 1
2εσ‖b‖K2 + 1

6a

∥∥a′∥∥L1 + 1
aσ

2K3ε
β. q.e.d.
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5.3.3 Tightness

Our next aim is to prove that the sequence {Un}n∈IN of continuous time correlated random
walks given by (2.4) is tight in the Skorohod space D[0, T ]. This basically reduces to control-
ling the distribution of the maximum of partial sums of Xn. For the fluctuation of partial
sums of a sequence of not necessarily independent or identically distributed random variables,
we can invoke general techniques presented in Section 12 in Billingsley (1968). In order to
apply these techniques, we first have to find suitable bounds on certain product moments.
Such bounds can be derived by combining the formulæ for the conditional moments which
we stated in Proposition 5.10 with the bounds on the auxiliary functions of Section 5.3.2. We
give here a proposition, which only uses the weak bounds of Lemma 5.13.

Proposition 5.16. Under the Assumptions N and O(i) and (ii) there exists some con-
stant M > 0 such that for all sufficiently large n ∈ IN , for all (x, z) ∈ IR × {±1} and all
0 ≤ i ≤ k ≤ l ≤ n with l − i ≤

⌊
(δ2M)−1

⌋
we have the following bounds on the conditional

moments of the increments Xn
l −Xn

i of the correlated random walk Xn given that it is in x
with tilt z at the ith step:

Varx,ztni
[
Xn
l −Xn

i

]
≤ δ2M(l − i), (3.38)

Ex,z
tni

[(
Xn
l −Xn

i

)2] ≤ δ2M(l − i), (3.39)

and

Ex,z
tni

[
|Xn

k −Xn
i |2|Xn

l −Xn
k |2
]
≤ δ4M2(l − i)2. (3.40)

Proof. Of course, we have the implications (3.40) ⇒ (3.39) ⇒ (3.38). But our argument
below goes the other way round: We first prove (3.38), use this to prove (3.39), and use the
latter plus conditioning to get (3.40).
Let us take some σ̂ > σ and µ̂ > |µ|. By Assumption N and Lemma 5.13 there exist some
K ∈ IR+ and some N ∈ IN such that for all n ≥ N we have σn ≤ σ̂δ, |µn| ≤ µ̂δ2,∥∥Akn∥∥T n

k ×IR
≤ ak for all 0 ≤ k ≤ n− 1, and (3.41)∥∥Bk

n

∥∥
T n

k ×IR
≤ Kkak−1δ for all 1 ≤ k ≤ n− 1. (3.42)

Now let us fix some n ≥ N , (x, z) ∈ IR×{±1}, and 0 ≤ i ≤ n. In order to show (3.38) we will
consider the two summands of expression (3.16) separately. The first summand will be easily
bounded by a term δ2C1(l − i) for some C1 > 0, without further limitations on i ≤ l ≤ n;
for the second term we have to work harder, and we have to limit the size of l − i. But let
us start with the first term, and notice that due to (3.26) and 0 ≤ σn ≤ σ̂δ we have for all
i ≤ l ≤ n:

T1(l) := σ2
n

(
l − i+ 2

l−1∑
j=i+1

l−j∑
k=1

Ex,z
tni

[
Akn(tnj , X

n
j )
]

−

(
z
l−i∑
k=1

Akn
(
tni , x

)
+

l−1∑
j=i

l−j∑
k=1

Ex,z
tni

[
Bk
n(tnj , X

n
j )
])2)

≤ σ2
n

(
l−i+ 2

l−1∑
j=i+1

l−j∑
k=1

Ex,z
tni

[∣∣Akn(tnj , X
n
j )
∣∣]) ≤ δ2σ̂2

(
l−i+ 2

l−1∑
j=i+1

l−j∑
k=1

ak
)
≤ δ2C1(l−i),
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where C1 := σ̂2
(
1 + 2

∑∞
k=1 ak

)
= σ̂2 1+a

1−a . If Bk
n(t, y) = 0 for all (t, y) ∈ T nk × IR and

1 ≤ k ≤ n − 1, this proves (3.38). However, in general Bk
n will not vanish, and we have to

find a similar bound for the remainder term of (3.16), namely for

T2(l) := 2σn
l−1∑
j=i+1

l−j∑
k=1

Ex,z
tni

[(
Xn
j −Xn

i − (j−i)µn
)
Bk
n

(
tnj , X

n
j

)]
= 2σn

l−1∑
j=i+1

l−j∑
k=1

E(j, k) (3.43)

for all i ≤ l ≤ n, where we have set E(j, k) := Ex,z
tni

[(
Xn
j −Xn

i − (j − i)µn
)
Bk
n

(
tnj , X

n
j

)]
for

all 1 ≤ k ≤ n − 1 and i ≤ j ≤ n − k. This is more difficult, since we have to squeeze one
factor δ out of each of the expressions E(j, k) and we do not want to use a more complicated
approximation of Bk

n than (3.29). For this purpose let us define

C2 := σ̂K

∞∑
k=1

kak−1 =
σ̂K

(1− a)2
, C3 := σ̂

∞∑
k=1

ak =
σ̂a

1− a
, (3.44)

and

M1 := C1 + C2

(
2(1 + C3) +

1
1 + C3

)
. (3.45)

Then we are going to show via an induction over l that if we take M = M1, the bound (3.38)
holds for all i ≤ l ≤ n which satisfy 0 ≤ l − i ≤

⌊
(δ2M1)−1

⌋
. To start with, we remark

that the statement is trivially true for l = i. Assume now that for some i < l ≤ n with
l − i ≤

⌊
(δ2M1)−1

⌋
we have Varx,ztni

[
Xn
j −Xn

i

]
≤ δ2M1(j − i) for all i ≤ j ≤ l − 1. Since we

have already shown outside the induction that we can bound T1(l) by δ2C1(l− i), it remains
to show that |T2(l)| ≤ δ2C2

(
2(1 + C3) + (1 + C3)−1

)
. In order to accomplish such an upper

bound, we add and subtract Ex,z
tni

[
Xn
j −Xn

i

]
Ex,z
tni

[
Bk
n

(
tnj , X

n
j

)]
to E(j, k) and split E(j, k) into

two summands by writing E(j, k) = E1(j, k) + E2(j, k) with

E1(j, k) = Ex,z
tni

[(
Xn
j −Xn

i −Ex,z
tni

[
Xn
j −Xn

i

])
Bk
n(tnj , X

n
j )
]

and

E2(j, k) = Ex,z
tni

[
Bk
n(tnj , X

n
j )
](

Ex,z
tni

[
Xn
j −Xn

i

]
− (j − i)µn

)
for all i ≤ j ≤ l − 1 and 1 ≤ k ≤ n − 1. At first, let us look for a bound on E1(j, k) and
therefore apply (3.42) to get rid of the Bk

n

(
tnj , X

n
j

)
term, since it implies for all i ≤ j ≤ l− 1

and all 1 ≤ k ≤ n− 1:

Ex,z
tni

[∣∣Xn
j −Xn

i −Ex,z
tni

[Xn
j −Xn

i ]
∣∣∣∣Bk

n(tnj , X
n
j )
∣∣] ≤ Kkak−1δEx,z

tni

[∣∣Xn
j −Xn

i −Ex,z
tni

[Xn
j −Xn

i ]
∣∣].

Now the remaining expectation can be bounded by 1, since Lyapunov’s inequality and the
induction hypothesis lead to the sequence of inequalities

Ex,z
tni

[∣∣Xn
j −Xn

i −Ex,z
tni

[Xn
j −Xn

i ]
∣∣] ≤ (Ex,z

tni

[(
Xn
j −Xn

i −Ex,z
tni

[Xn
j −Xn

i ]
)2]) 1

2

=
(
Varx,ztni

[
Xn
j −Xn

i

]) 1
2

≤
(
δ2M1(j − i)

) 1
2 ≤

(
δ2M1

⌊
(δ2M1)−1

⌋) 1
2 ≤ 1,
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and hence we can conclude for all i ≤ j ≤ l − 1 and 1 ≤ k ≤ n− 1:∣∣E1(j, k)
∣∣ ≤ Ex,z

tni

[∣∣Xn
j −Xn

i −Ex,z
tni

[Xn
j −Xn

i ]
∣∣∣∣Bk

n(tnj , X
n
j )
∣∣] ≤ Kkak−1δ. (3.46)

In order to bound E2(j, k) we note that (3.14), z ∈ {±1}, σn ≤ σ̂δ, the bounds (3.41) and
(3.42), and the definitions of C2 and C3 in (3.44) imply

∣∣∣Ex,z
tni

[
Xn
j −Xn

i

]
− (j − i)µn

∣∣∣ ≤ σn

j−i∑
r=1

∣∣Arn(tni , x)∣∣+ σn

j−1∑
s=i

j−s∑
r=1

Ex,z
tni

[∣∣Br
n

(
s,Xn

s

)∣∣]
≤ σ̂δ

j−i∑
r=1

ar + σ̂δ

j−1∑
s=i

j−s∑
r=1

Krar−1δ ≤ δC3 + δ2
l−2∑
s=i

C2

for all i ≤ j ≤ l − 1 and all 1 ≤ k ≤ n− j, i.e. we have∣∣∣Ex,z
tni

[Xn
j −Xn

i ]− (j − i)µn
∣∣∣ ≤ δC3 + δ2(l − i− 1)C2. (3.47)

Now notice that l − i − 1 ≤
⌊
(δ2M1)−1

⌋
≤ 1

δ2M1
≤ 1

2δ2C2(1+C3)
, and using the bound δ ≤ 1

for the first term in (3.47), we obtain
∣∣Ex,z

tni

[
Xn
j −Xn

i

]
− (j − i)µn

∣∣ ≤ C3 + 1
2(1+C3) . Applying

once again (3.42) we can write for all i ≤ j ≤ l − 1 and 1 ≤ k ≤ n− 1:

∣∣E2(j, k)
∣∣ ≤ ∣∣∣Ex,z

tni

[
Xn
j −Xn

i

]
− (j − i)µn

∣∣∣Ex,z
tni

[∣∣Bk
n

(
tnj , X

n
j

)∣∣] ≤ (C3 +
1

2(1 + C3)

)
Kkak−1δ.

Thus we get from the bounds on E1(j, k) and E2(j, k) that for all 1 ≤ k ≤ n − 1 we have∣∣E(j, k)
∣∣ ≤ (1 + C3 + (2(1 + C3))−1

)
Kkak−1δ, and due to σn ≤ σ̂δ and the definition of C2

in (3.44) we can bound the remainder term T2(l) of (3.43) by

∣∣T2(l)
∣∣ ≤ 2σn

l−1∑
j=i+1

l−j∑
k=1

∣∣E(j, k)
∣∣ ≤ δ2C2

(
2(1 + C3) + (1 + C3)−1

)
(l − i).

Hence, we indeed obtain Varx,zi
[
Xn
l −Xn

i

]
= T1(l) + T2(l) ≤ δ2M1(l− i) by the definition of

M1 in (3.45). Therefore the induction step holds, and we have proved

Varx,zi
[
Xn
l −Xn

i

]
≤ δ2M1(l − i) for all i ≤ l ≤ n with 0 ≤ l − i ≤

⌊
(δ2M1)−1

⌋
. (3.48)

Now let us set M2 :=
(
C3 + M

− 1
2

1 (µ̂ + C2)
)2 and write M := M1 + M2. Since M ≥ M1 we

have
⌊
(δ2M)−1

⌋
≤
⌊
(δ2M1)−1

⌋
and (3.38) for 0 ≤ l − i ≤

⌊
(δ2M)−1

⌋
follows from (3.48).

To prove the second inequality we still keep n ≥ N , (x, z) ∈ IR × {±1}, and 0 ≤ i ≤ n
fixed and note that the inductive proof of the first part has shown that (3.47) holds for all
1 ≤ l − i ≤

⌊
(δ2M1)−1

⌋
and i ≤ j ≤ l − 1. Due to

⌊
(δ2M)−1

⌋
≤
⌊
(δ2M1)−1

⌋
we especially

get for all 1 ≤ l − i ≤
⌊
(δ2M)−1

⌋
:∣∣Ex,z

tni

[
Xn
l −Xn

i

]∣∣ ≤ (l − i)|µn|+
∣∣Ex,z

tni

[
Xn
l −Xn

i

]
− (l − i)µn

∣∣
≤ (l − i)|µn|+ δC3 + δ2(l − i− 1)C2 ≤ δC3 + δ2(l − i)(µ̂+ C2),

(3.49)

since the definition of N and n ≥ N imply |µn| ≤ µ̂δ2. As opposed to the bound on E2(j, k)
we now use the bound

(l − i) =
√
l − i

√
l − i ≤

√
l − i

√⌊
(δ2M1)−1

⌋
≤
√
l − i

1
δ
√
M1

,
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and spending an additional factor
√
l − i ≥ 1 for the first term on the right-hand side of

(3.49), we get due to δ ≤ 1:

∣∣Ex,z
tni

[
Xn
l −Xn

i

]∣∣ ≤ δ
(
C3 +M

− 1
2

1 (µ̂+ C2)
)√
l − i ≤ δ

√
M2

√
l − i.

Since this bound trivially holds for l = i as well, we can write for all 0 ≤ l − i ≤
⌊
(δ2M)−1

⌋
:

Ex,z
tni

[(
Xn
l −Xn

i

)2] = Varx,ztni
[
Xn
l −Xn

i

]
+
(
Ex,z
tni

[
Xn
l −Xn

i

])2

≤ δ2M1(l − i) + δ2M2(l − i) = δ2M(l − i).

This proves the second statement. Now (3.40) follows immediately from (3.39) by condition-
ing on σ

(
Xn
j , Z

n
j ; 0 ≤ j ≤ k

)
and then using the Markov property of

{(
Xn
j , Z

n
j

)}
0≤j≤n, since

a first application of (3.39) with (̃i, l̃) = (k, l) and a second one with (̃i, l̃) = (i, k) yields

Ex,z
tni

[∣∣Xn
k −Xn

i

∣∣2∣∣Xn
l −Xn

k

∣∣2] = Ex,z
tni

[∣∣Xn
k −Xn

i

∣∣2EXn
k ,Z

n
k

tnk

[
|Xn

l −Xn
k |2
]]

≤ Ex,z
tni

[∣∣Xn
k −Xn

i

∣∣2δ2M(l − k)
]

≤ δ4M2(l − k)(k − i) ≤ δ4M2(l − i)2

for all 0 ≤ i ≤ k ≤ l ≤ n with l − i ≤
⌊
(δ2M)−1

⌋
. q.e.d.

As announced, we can now apply the techniques of Section 12 in Billingsley to prove tightness
of the sequence {Un}n∈IN . For this, it suffices to prove the next corollary for εn = ε for all
n ∈ IN . However, in Lemma 5.27 we will need a slightly more general formulation. Thus, we
state for the constant M > 0 chosen as in Proposition 5.16:

Corollary 5.17. Suppose that Assumptions N and O(i) and (ii) hold. Then for any σ̂ > σ
there exist some N ∈ IN and some K ∈ IR+ such that for any n ∈ IN and εn > 0 we have: If
n ≥ max

{
N,
(
4 σ̂
εn

)2}, (x, z) ∈ IR × {±1}, 0 ≤ i ≤ j ≤ n, and m ≤ min
{
n − j,

⌊
(δ2M)−1

⌋}
,

then

Px,z
tni

(
max

j≤l≤j+m

∣∣Xn
l −Xn

j

∣∣ ≥ εn

)
≤ δ4

Km2

ε4n
. (3.50)

Remark. The condition m ≤ n− j guarantees that all appearing Xn
j ’s are well defined. �

Proof. Let us take some σ̂ > σ. By Assumption N there exists some N such that for all
n ≥ N we have |µn|+ σn ≤ σ̂δ. Without loss of generality we can assume that for all n ≥ N
the statement of Proposition 5.16 holds as well.
Let us fix n ∈ IN and εn > 0 such that n ≥ max

{
N,
(
4 σ̂
εn

)2} holds. Then for any fixed
(x, z) ∈ IR × {±1}, 0 ≤ i ≤ j ≤ n and 0 ≤ m ≤ min

{
n − j,

⌊
(δ2M)−1

⌋}
we want to apply

results of Section 12 in Billingsley (1968). In order to align our notation with Billingsley’s
we set Sk := Xn

j+k − Xn
j , and note that by the definition of the correlated random walk{

Xn
k

}
0≤k≤n in (2.3) we can write Sk =

∑k
l=1 ξl for 0 ≤ k ≤ m, where ξl = µn + σnZ

n
j+l for

all 1 ≤ l ≤ m. Last but not least, as in Billingsley (1968) we define the maxima

Mm = max
0≤k≤m

{
|Sk|

}
and M ′

m = max
0≤k≤m

min
{
|Sk|, |Sm − Sk|

}
.

On page 88 in Billingsley (1968) it is shown that Mm ≤ 3M ′
m + max1≤k≤m |ξk|, and since

δ = n−
1
2 and n ≥ max

{
N,
(
4 σ̂
εn

)2} imply |ξk| ≤ |µn|+ σn ≤ δσ̂ ≤ 1
4εn for all 1 ≤ k ≤ m, we
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conclude Mm ≤ 3M ′
m + 1

4εn. Moreover, Xn
l −Xn

j = Sl−j for all j ≤ l ≤ j +m, and hence we
get

Px,z
tni

(
max

j≤l≤j+m
|Xn

l −Xn
j | ≥ εn

)
= Px,z

tni

(
Mm ≥ εn

)
≤ Px,z

tni

(
3M ′

m +
1
4
εn ≥ εn

)
= Px,z

tni

(
M ′
m ≥ 1

4
εn

)
.

Thus, in order to derive (3.50), it suffices to find an appropriate bound on Px,z
tni

(
M ′
m ≥ 1

4εn
)
.

Seeking to apply Theorem 12.1 in Billingsley (1968), we notice that by our choice of m
Proposition 5.16 implies for all 0 ≤ l1 ≤ l2 ≤ l3 ≤ m

Ex,z
tni

[∣∣Sl2 − Sl1
∣∣2∣∣Sl3 − Sl2

∣∣2] = Ex,z
tni

[
E
Xn

j+l1
,Zn

j+l1
tnj+l1

[∣∣Xn
j+l2 −Xn

j+l1

∣∣2∣∣Xn
j+l3 −Xn

j+l2

∣∣2]]
≤ δ4M2(l3 − l1)2 =

(
l3∑

l=l1+1

ul

)2

,

where ul = δ2M for all 1 ≤ l ≤ m, and hence an application of Billingsley’s Theorem 12.1
yields

Px,z
tni

(
M ′
m ≥ 1

4
εn

)
≤ K2,1

(
4
εn

)4
(

m∑
l=1

ul

)2

= K2,1

(
4
εn

)4

m2δ4M2,

where K2,1 may be taken as K2,1 = 4
(
21/5 − 1

)−5 ≈ 55021. This leads to (3.50) with
K = 44K2,1M

2. q.e.d.

Let us now recall from the definition in (2.4) the continuous-time versions Un = {Un(t)}t∈[0,T ]

and V n = {V n(t)}t∈[0,T ] of the correlated random walk Xn = Xn
0≤k≤dnT e and the associated

tilt process Zn = Zn0≤k≤dnT e, respectively. In order to conclude the proof of tightness of the
sequence {Un}n∈IN in the Skorohod space D[0, T ], we recall the modulus of continuity:

Definition 5.18. For s ∈ [0, T ] the modulus of continuity of a function f : [s, T ] → IR is
defined by

ws(f, η) = sup
t1,t2∈[s,T ], |t2−t1|<η

|f(t2)− f(t1)| for all η > 0. (3.51)

Now standard methods yield the tightness of {Un}n∈IN . We single out the essential step and
prove it also for conditioned processes, which start in a certain point u ∈ IR with tilt z ∈ {±1}
at a certain time s ∈ (0, T ], since we are going to use this general form in Lemma 5.31.

Proposition 5.19. Under the Assumptions N and O(i) and (ii), for any ρ > 0 and ε > 0
there exists some η > 0 such that Pu,z

s

(
ws(Xn, η) ≥ ρ

)
≤ ε for all sufficiently large n and all

(s, u, z) ∈ [0, T ]× IR× {±1}.

Proof. Let us fix (s, u, z) ∈ [0, T ]× IR× {±1}. For any η > 0 let us consider the time points
τi(η) := (s + iη) ∧ T for all 0 ≤ i ≤ r(η) := min

{
k ∈ IN : s + kη ≥ T

}
, which divide the

interval [s, T ] into the r(η) − 1 intervals [τi−1(η), τi(η)] for 1 ≤ i ≤ r(η) − 1 of length η and
one possibly shorter residual interval

[
τr(η)−1(η), τr(η)

]
. Then by the corollary to Theorem

8.3 in Billingsley (1968) we have

Pu,z
s

(
ws(Un, η) ≥ 3ρ

)
≤

r(η)∑
i=1

Pu,z
s

(
sup

τi−1(η)≤t≤τi(η)

∣∣Un(t)− Un
(
τi−1(η)

)∣∣ ≥ ρ

)
. (3.52)
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In order to bound Pu,z
s

(
supτi−1(η)≤t≤τi(η)

∣∣Un(t)−Un
(
τi−1(η)

)∣∣ ≥ ρ
)

for all sufficiently large n
and sufficiently small η > 0, we take some M > 0 for which the statement of Proposition 5.16
holds, fix ρ > 0, and choose some σ̂ > σ and some N as in Corollary 5.17. Without loss
of generality we may take N ≥ 2M . Then we have for all 0 < η ≤ 1

2M , 1 ≤ i ≤ r(η), and
n ≥ N :

⌊
nτi(η)

⌋
−
⌊
nτi−1(η)

⌋
< (s+ iη)n−

(
s+ (i− 1)η

)
n+ 1 = nη + 1 ≤ n

2M
+

n

2M
≤ n

M
.

Since the left-hand side is an integer, we even can conclude
⌊
nτi(η)

⌋
−
⌊
nτi−1(η)

⌋
≤
⌊
n
M

⌋
.

Due to the definition of Un in (2.4) we have

sup
τi−1(η)≤t≤τi(η)

∣∣Un(t)− Un
(
τi(η)

)∣∣ = max
bnτi−1(η)c≤l≤bnτi(η)c

∣∣Xn
l −Xn

bnτi(η)c
∣∣,

and thus it follows by Corollary 5.17 that there exists some K ∈ IR+, which does not depend
on (s, u, z), such that for all n ≥ max

{
N,
(
4 σ̂ρ
)2}, 0 < η ≤ 1

2M , and all 1 ≤ i ≤ r(η) we have

Pu,z
s

(
sup

τi−1(η)≤t≤τi(η)

∣∣Un(t)− Un
(
τi(η)

)∣∣ ≥ ρ

)
≤ δ4

K

ρ4

(⌊
nτi(η)

⌋
−
⌊
nτi−1(η)

⌋)2

≤ δ4
K

ρ4
(nη + 1)2 =

K

ρ4

(
η + δ2

)2
,

since nδ2 = 1. Hence we get from (3.52) for all 0 < η ≤ 1
2M :

Pu,z
s

(
ws(Un, η) ≥ 3ρ

)
≤ K

ρ4

r(η)∑
i=1

(
η + δ2

)2 =
K

ρ4
r(η)

(
η + δ2

)2 → K

ρ4
r(η)η2 as n→∞.

Since (s, u, z) ∈ [0, T ] × IR × {±1} were chosen arbitrarily and since the definition of r(η)
implies 0 ≤ r(η) < T−s

η + 1, we conclude

lim
η↘0

lim sup
n→∞

sup
(s,u,z)∈[0,T ]×IR×{±1}

Pu,z
s

(
ws(Xn, η) ≥ ρ

)
= 0.

This gives us the assertion. q.e.d.

Now the tightness of {Un}n∈IN in D[0, T ] follows straightforwardly:

Corollary 5.20. In addition to Assumptions N and O(i) and (ii), suppose that Un(0) ⇒ U(0)
as n → ∞. Then the sequence {Un}n∈IN is tight on D[0, T ] and every weak limit U is
continuous a.s.

Proof. Since Un(0) ⇒ U(0), the sequence of distributions
{
P
(
Un(0)

)−1}
n∈IN on IR is rela-

tively compact, and since IR is separable and complete, it follows from Prohorov’s theorem
that {Un(0)}n∈IN is tight on IR, and hence for each η > 0 there exists some a > 0 such that
P
(
|Un(0)| > a

)
≤ η for all n ≥ 1. Due to Proposition 5.19 we can now apply Theorem 15.5

in Billingsley (1968) and conclude that the sequence {Un}n∈IN is tight on D[0, T ], and that
every U ∈ D[0, T ] which is the weak limit of some subsequence

{
Unk

}
k∈IN must be continuous

a.s. q.e.d.
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5.3.4 Convergence of the Conditional Local Moments

With tightness having been demonstrated it remains to identify the limits of converging
subsequences of {Un}n∈IN . In the standard results for the convergence of binomial mod-
els (as in Nelson and Ramaswamy (1990)) or more general Markov chains (as in Stroock
and Varadhan (1979) or Nelson (1990)) it is assumed that the O(δ2)-local conditional mo-
ments converge, when time is scaled by order O(δ2) as well, and these limits will then be
identified as the instantaneous drift and the instantaneous variance of the limiting diffu-
sion process. However, for the correlated random walk the corresponding O(δ2)-local drift
limn→∞ δ−2Ex,z

t

[
Un
(
t + δ2

)
− Un(t)

]
, given that the process Un is at time t in Un(t) = x

with tilt V n(t) = z will in general not exist, as the next lemma shows:

Lemma 5.21. Suppose that Assumption N holds, and that the limit a : [0, T ]× IR→ IR is
continuous. Then for all (t, x, z) ∈ [0, T )× IR× {±1} we have:

lim
n→∞

δ−2Ex,z
t

[
Un
(
t+ δ2

)
− Un(t)

]
exists if and only if a(t, x) = 0.

Proof. Let us fix (t, x, z) ∈ [0, T ) × IR × {±1} and write tn− = tnbntc. Recall from the end of
Section 5.2 that we have assumed for simplicity T = 1. Due to the definition of Un in (2.4) and
the definition ofXn in (2.3) we then have Un(t+δ2)−Un(t) = Xn

bntc+1−X
n
bntc = µn+σnZnbntc+1

for all sufficiently large n ∈ IN , such that bntc + 1 ≤ n. Moreover, since Un(t) = Xn
bntc

and V n(t) = Znbntc, we see that the conditional expectations Ex,z
t

[
Un
(
t + δ2

)
− Un(t)

]
and

Ex,z
tn−

[
Un
(
t + δ2

)
− Un(t)

]
coincide due the definition of the conditional expectation Ex,z

t in
(3.1), and recalling that the continuous-time transition function pn : [0, T )× IR×{±1} → IR
was defined in terms of the discrete one given by (2.1), we can calculate

Ex,z
t

[
Un
(
t+ δ2

)
− Un(t)

]
= µn + σnE

x,z
tn−

[
Znbntc+1

]
= µn + σn

(
2pn(tn−, x, z)− 1

)
.

Thus, under Assumption N we get

Ex,z
t

[
Un
(
t+ δ2

)
− Un(t)

]
= µδ2 + zσa(t, x)δ + σb(t, x)δ2 +O

(
δ2+β

)
as n→∞,

and the statement of the lemma follows by dividing both sides by δ2. q.e.d.

Remark 1. As opposed to the O
(
δ2
)
-local drift, it is easy to see that under Assumption N

the O
(
δ2
)
-local variance limn→∞ δ−2Ex,z

t

[
(Un(t + δ2) − Un(t))2

]
exists, and it is for all

(t, x, z) ∈ [0, T )× IR× {±1} given by σ2. However, we have already discussed in the rea-
soning after the statement of Theorem 5.4 that the influence of the tilt on the transition
probabilities for the discrete random walks should affect the variance and the drift of the
limiting diffusion process U , and indeed, we will see that the O

(
δ2
)
-local variance does in

general not coincide with the variance of any limit process U . �

Remark 2. Let us fix t ∈ [0, T ). In their general setting for the convergence of Markov
processes Stroock and Varadhan (1979) and Nelson (1990) do not require the existence of the
O
(
δ2
)
-local conditional moments in the form we introduced them either; they only require

that truncated versions exist. Their generalization is of no use for our problem, since it is
easily seen that for our binomial process Un for fixed t ∈ [0, T ) and sufficiently large n ∈ IN
their truncation will not change Un at all. �

Due to Lemma 5.21 we have to spend considerably more time than in the standard models
on identifying the coefficients of the limiting diffusion process, though a large part of our
calculations has already been carried out in the lemmas of Section 5.3.2. The basic idea
behind our approach is quite simple: We do not look at the conditional local moments of
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increments of Un over time intervals with length of order O
(
δ2
)
, which would be sufficient for

a non-correlated random walk, but we consider the conditional moments of increments over
time intervals with length of order O(δ). Over intervals of this length the influence of the tilt
levels out such that the O(δ)-local drift limn→∞ δ−1Ex,z

t

[
Un(t+δ)−Un(t)

]
and the O(δ)-local

variance limn→∞ δ−1Ex,z
t

[
(Un(t+ δ)− Un(t))2

]
exist for all (t, x, z) ∈ [0, T )× IR× {±1}.

In order to get precise, we have to introduce some additional notation, which permits to
decompose the time interval [0, T ] in intervals of length O(δ), as the definition of the time
points tnk = kT dnT e−1 for 0 ≤ k ≤ dnT e allowed us to split [0, T ] in intervals of length O

(
δ2
)
:

Definition 5.22. For all n ∈ IN and all i ∈ IN0 the time points on the O(δ)-scale are given
by τni := δ2bi

√
nc. For each n ∈ IN and all t ∈ [0, T ] we then define jnt := sup

{
i ∈ IN0

∣∣ τni ≤ t
}

and int := inf
{
i ∈ IN0

∣∣ τni ≥ t
}

.

Remark. Recall our general restriction to the case T = 1. For a general T > 0, we would set
τni := T dnT e−1

⌊
i
√
n
⌋

for all n ∈ IN and i ∈ IN0. This is the reason why we do not simply
define τni = iδ: Our definition assures that each time point τni ∈ [0, T ] on the O(δ)-scale is
also a time point on the O(δ2)-scale, namely by taking k(i) = bi

√
n
⌋

we have τni = tnk(i) for
all 0 ≤ i ≤ jnT and n ∈ IN .
Moreover, at first sight, our notation of jnt and int is counterintuitive, since jnt ≤ int for all
t ∈ [0, T ]. However, in the following, we will evaluate both expressions at different values of
t: For fixed 0 ≤ s < t ≤ T we will see that for all sufficiently large n ∈ IN we have ins ≤ jnt .
For those n ∈ IN we then consider all integers between ins and jnt . In order to achieve the
canonical ordering of i and j in such a situation, we have to accept jnt ≤ int . �

In order to illustrate the two different partitions of [0, T ] which are induced by the O
(
δ2
)
-time

points
{
tnk
}

0≤k≤dnT e and by the O(δ)-time points
{
τni
}

0≤i≤jn
T

we provide an example with
n = 40 in Figure 5.1. Only the scaling on the time axis employs our general restriction to
the case T = 1.

τn
jn
t

tnbntcτn
in
s

tndnse

s

i

2 = ins

3

4.

-

.

t tnk , τn
i0.25 0.75

dnse

6

bntc

6 √
n =

√
40

30

20

0.5

10

n = 40

k

6

5 = jn
t

1

Figure 5.1: The definitions of τni , ins and jnt

For each integer-valued 0 ≤ k ≤ n on the left-hand side, the flight of stairs with the small
steps gives us the associated value of tnk on the horizontal axis, and similarly, starting with
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some i ∈ IN0 with 0 ≤ i ≤
√
n on the right-hand axis, the flight of stairs with the large steps

gives the value of τni on the horizontal axis. In addition, the figure explains in an illustrative
way how to derive tnbntc and τnint : If we are given some t ∈ [0, T ] and look for the largest integer
0 ≤ k ≤ n with tnk ≤ t, we start with t on the x-axis, draw a vertical line up to the small-sized
stairs, and then turn left to read off the corresponding k-value, which is of course given by
bntc. Evaluating tn· at bntc gives us the value tnbntc ≤ t. In order to determine the largest
integer 0 ≤ i ≤ jnT for which τni ≤ t, we once again start at t, but now follow the horizontal
up to the stairs with the large steps, and then turn right. This gives us the value jnt . Starting
with this point we now arrive at τnjn

t
≤ t. Since the range of values of {τni }0≤i≤jn

T
is contained

in
{
tnk
}

0≤k≤n, we even have τnjn
t
≤ tnbntc ≤ t for all 0 ≤ t ≤ T .

Similarly, we can start with some s ∈ [0, T ] to derive s ≤ tndnse ≤ τnins . In this case, starting
with s on the horizontal line, we have to move on one step beyond the point where the vertical
line through s crosses the small or large stairs and then move to the left or right to read off
dnse or ins , respectively.
By the definition of b·c we get x− (y+ 1) < bxc − byc < x− (y− 1), and since the difference
bxc−byc is of course again integer-valued, even the stronger inequalities bx− yc ≤ bxc − byc
and bxc − byc ≤ dx− ye hold for all x, y ∈ IR. Setting x = (i+ 1)

√
n and y = i

√
n, and then

multiplying the two inequalities by δ2 = n−1 we obtain

δ2
⌊√

n
⌋
≤ τni+1 − τni ≤ δ2

⌈√
n
⌉
, for all i ∈ IN0 and n ∈ IN . (3.53)

This shows that the length of the intervals
[
τni , τ

n
i+1

]
is indeed approximately δ. In our

example, the interval lengths of the intervals
[
τni , τ

n
i+1

]
with 0 ≤ i ≤ jnT − 1 = 5 are given by

δ2
⌊√

n
⌋

= 0.15 for i 6= 3 and δ2
⌈√

n
⌉

= 0.175 for i = 3.
Since our identification of the limiting distribution(s) of the converging subsequences of Un

only relies on the fact that 0 < lim infi∈IN0 δ
−1
(
τni+1−τni

)
and lim supi∈IN0

δ−1
(
τni+1−τni

)
<∞,

we may derive from (3.53) the rather crude bounds

1
4
δ < τni+1 − τni < 2δ for all i ∈ IN0 and all n ∈ IN . (3.54)

For the lower bound note that it obviously holds for n = 1, and for n ≥ 2 it follows from
δ2b

√
nc > δ2(

√
n − 1) = δ(1 − δ) ≥ δ

(
1 − 2−

1
2

)
> 1

4δ. The upper bound follows similarly
from (3.53) and 1 ≤

√
n for all n ∈ IN . Since τnjn

t
≤ t ≤ τnint

and τnint −1 < t < τnjn
t +1 by

Definition 5.22 we also obtain from the right-hand bound in (3.54) that

t− 2δ < τnjn
t
≤ t ≤ τnint < t+ 2δ for all t ∈ [0, T ] and n ∈ IN . (3.55)

As a preparation to find approximations for the conditional local moments on the O(δ)-time
scale as n→∞, we derive a lemma which helps us to bound increments of the continuous-time
random walk during time intervals with length of order O(δ) as n→∞. In this formulation it
will be used in Lemma 5.33. In order to be able to cite it directly in the proofs of Lemma 5.25
and Lemma 5.26, where we use it frequently, we provide a second, slightly weaker formulation.

Lemma 5.23. Under the Assumptions N and O(i)-(ii) we have

sup
(u,v)∈IR×{±1}

sup
0≤s≤t≤T
t−s≤Kδ

Eu,v
s

[∣∣Un(t)− Un(s)
∣∣α] = O

(
δ

1
2
α
)

as n→∞ (3.56)

for all fixed K ∈ IR+ and all α ∈ [0, 2]. Especially, we have for all α ∈ [β, 2]:

sup
(i,j,x,z)∈In

Ex,z
τn
i

[∣∣Xn
j − x

∣∣α] = O
(
δ

1
2
β
)

as n→∞, (3.57)

where In =
{

(i, j, x, z) ∈ IN0 × IN0 × IR× {±1}
∣∣ 0 ≤ i ≤ jnT − 1 and nτni ≤ j ≤ nτni+1 − 1

}
.
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Proof. Let us start with (3.56), fix K ∈ IR+ and α ∈ [0, 2], and define sn− := tnbnsc for all
s ∈ [0, T ] and n ∈ IN . By the definition of tnk we have sn− = δ2bnsc ≤ s. Then the definition
of Un in (2.4) implies for all n ∈ IN and 0 ≤ s ≤ T that Un(s) = Xn

bnsc = Xn
nsn

−
and

V n(s) = V n
nsn

−
, hence

(
Un(s), V n(s)

)
can be calculated from

(
Xn
nsn

−
, V n

nsn
−

)
and vice versa.

Thus, by the definition of the conditional expectations in (3.2) and (3.1) we have for all
0 ≤ s ≤ t ≤ T and (u, v) ∈ IR× {±1} the equality

Eu,v
s

[∣∣Un(t)−Un(s)
∣∣α] = Eu,v

sn
−

[∣∣Xn
ntn−

−Xn
nsn

−

∣∣α].
If we now apply Lyapunov’s inequality we get

Eu,v
s

[∣∣Un(t)−Un(s)
∣∣α] ≤ (Eu,v

sn
−

[∣∣Xn
ntn−

−Xn
nsn

−

∣∣2])α
2
. (3.58)

Attempting to apply the bound (3.39) of Proposition 5.16 for the second conditional moment
of increments of Xn we choose M > 0 such that for all sufficiently large n ∈ IN the assertion
of Proposition 5.16 holds. Since lim infn→∞ δ

⌊
(δ2M)−1c = ∞, there exists some N ∈ IN such

that for all n ≥ N both δ−1(K + 1) ≤ b(δ2M)−1c and the bound (3.39) hold, i.e.

Eu,v
tni

[(
Xn
l −Xn

i

)2] ≤ δ2M(l − i) for all 0 ≤ i ≤ k ≤ l ≤ n with l − i ≤
⌊
(δ2M)−1

⌋
(3.59)

and all (u, v) ∈ IR × {±1}. Let us now take n ≥ N , (u, v) ∈ IR × {±1}, and 0 ≤ s ≤ t ≤ T
with t − s ≤ Kδ. Due to the definitions of sn− and N , and due to n = δ−2 ≥ 1 we have
ntn− − nsn− = bntc − bnsc ≤ n(t − s) + 1 ≤ nKδ + 1 ≤ δ−1(K + 1) ≤

⌊
(δ2M)−1

⌋
, hence we

can indeed apply (3.59) with l = ntn− and i = nsn− to conclude from (3.58)

Eu,v
s

[∣∣Un(t)−Un(s)
∣∣α] ≤ (δ2M(ntn− − nsn−)

)α
2 ≤

(
δ2Mδ−1(K + 1)

)α
2 =

(
M(K + 1)

)α
2 δ

α
2 .

Since this bound does not depend on (u, v) ∈ IR × {±1}, but only on t − s ≤ Kδ, this
proves the first statement. For the second statement we recall again the definition of Un

in (2.4) and remark that the definition of the conditional probability Px,z
· in (3.2) and the

equality tnnτn
i

= τni imply that under Px,z
τn
i

we have Un(τni ) = Xn
nτn

i
= x for all n ∈ IN and all

(i, j, x, z) ∈ In. Moreover by dividing nτni ≤ j ≤ nτni+1−1 by n and using the definition of tnj
we obtain τni ≤ tnj ≤ τni+1 − 1

n , and due to (3.53) it follows that tnj − τni ≤ τni+1 − τni − 1
n ≤ δ.

Hence we can indeed apply (3.56) with K = 1 to conclude that uniformly for all (i, j, x, z) ∈ In

Ex,z
τn
i

[∣∣Xn
j − x

∣∣α] = Ex,z
τn
i

[∣∣Un(tnj )− Un
(
τni
)∣∣α] = O

(
δ

1
2
α
)

as n→∞

for all α ∈ [0, 2]. If α ∈ [β, 2] this immediately leads to the statement (3.57). q.e.d.

Instead of calculating the limits as n → ∞ of the first two conditional local moments
δ−1Eu,v

t

[
Un(t + δ) − Un(t)

]
and δ−1Eu,v

t

[
(Un(t + δ) − Un(t))2

]
on the O(δ)-scale for gen-

eral (t, u, v) ∈ [0, T ) × IR × {±1}, it suffices to consider the asymptotic behavior as n→∞
of the corresponding conditional O(δ)-local moments

(
τni+1 − τni

)−1Eu,v
t

[
Un(τni+1)− Un(τni )

]
and

(
τni+1 − τni

)−1Eu,v
t

[
(Un(τni+1)− Un(τni ))2

]
. At first, we derive a pair of approximations

for these O(δ)-local moments, which hold uniformly for all 0 ≤ i ≤ jnT − 1, without assuming
any continuity in time of the limiting functions a : [0, T ]× IR→ IR and b : [0, T ]× IR→ IR of
Assumption N. Therefore, the approximations are still rather complicated. In Section 5.3.5
we will employ the continuity in the time variable to replace the approximations of this section
by the coefficients of the claimed limiting diffusion process U given in (2.8).
Now let us define for each n ∈ IN the three functions which we will need in order to approx-
imate the first two conditional moments:
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Definition 5.24. For each n ∈ IN let us introduce the set T̃n :=
{
τni : 0 ≤ i ≤ jnT −1

}
. Then

we define for all n ∈ IN the O(δ)-local drift approximation function µ̃n : T̃n × IR → IR
by setting for all

(
τni , x

)
∈ T̃n × IR

µ̃n
(
τni , x

)
:= µ+

σδ2

τni+1 − τni

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

(
b
(
tnj, x

)j+k−1∏
l=j+1

a
(
tnl , x

)
+
j+k−1∑
l=j+1

σa′
(
tnl , x

)j+k−1∏
r=j+1
r 6=l

a
(
tnr, x

))
.

Moreover, we define the O(δ)-local drift correction function d̃n : T̃n × IR→ IR by

d̃n
(
τni , x

)
:=

σδ

τni+1 − τni

n(τn
i+1−τn

i )∑
k=1

nτn
i +k−1∏
l=nτn

i

a
(
tnl , x

)
for all

(
τni , x

)
∈ T̃n × IR,

and the O(δ)-local volatility approximation function σ̃n : T̃n × IR→ IR+ by

σ̃2
n

(
τni , x

)
:= σ2 +

2σ2δ2

τni+1 − τni

nτn
i+1−1∑

j=nτn
i +1

nτn
i+1−j∑
k=1

j+k−1∏
l=j

a
(
tnl , x

)
for all

(
τni , x

)
∈ T̃n × IR.

Remark. Note that the three expressions simplify considerably if the transition function
pn : [0, T ) × IR × {±1} → [0, 1] of (2.5) does not depend on the tilt. In this case Un is
a simple binomial process as considered by Nelson and Ramaswamy (1990), and Assump-
tion N implies a ≡ 0. Thus for all n ∈ IN the O(δ)-local drift approximation simplifies
to µ̃n

(
τni , x

)
= µ+ σδ2

τn
i+1−τn

i

∑nτn
i+1−1

j=nτn
i

b
(
τnj , x

)
for all (τni , x) ∈ T̃n × IR, the O(δ)-local drift

correction function d̃n ≡ 0 vanishes, and the O(δ)-local volatility approximation functions
becomes constant, namely σ̃2

n ≡ σ2 . If in addition the limiting function b : [0, T ]× IR → IR
is constant, then the O(δ)-local drift approximation function µ̃n is constant as well and for
all n ∈ IN given by µ̃n ≡ µ+ σb, since nδ2 = 1.
For a non-vanishing a : [0, T ] × IR → IR the following Lemma 5.25 will show that for any
0 ≤ i ≤ jnT − 1 some of the highest order terms in the approximation of the conditional
local first moment of Un over the time interval

[
τni , τ

n
i+1

]
for n→∞ do not only depend on

the position Un(τni ) of the random walk Un at time τni , but also on the associated initial
tilt V n(τni ). Depending on the sign of the tilt we have to add or subtract the local drift
correction term d̃n

(
τni , x

)
to the local drift approximation term µ̃n

(
τni , x

)
to obtain a suitable

approximation of the conditional local first moment. We will however see in Lemma 5.28 that
the influence of the initial tilt on such an O(δ)-subinterval

[
τni , τ

n
i+1

]
⊂ [0, T ] diminishes over

a longer time horizon. �

After all the preparatory work and definitions, we are finally ready to state the first approx-
imation for the term

(
τni+1 − τni

)−1Ex,z
τn
i

[
Un(τni+1) − Un(τni )

]
as n → ∞, uniformly for all

0 ≤ i ≤ jnT − 1:

Lemma 5.25. Under the Assumptions N and O(i)-(iii) the normalized conditional expecta-
tion of the increment of Un over the time interval

[
τni , τ

n
i+1

]
, given that Un is at time τni in

Un(τni ) = x with tilt V n(τni ) = z, and normalized by the length of the time interval, can be
approximated in terms of µ̃n

(
τni , x

)
and d̃n

(
τni , x

)
as follows:

sup
0≤i≤jn

T−1

∣∣∣∣Ex,z
τn
i

[
Un(τni+1)− Un(τni )

τni+1 − τni

]
− µ̃n

(
τni , x

)
− zd̃n

(
τni , x

)∣∣∣∣ = O
(
δ

1
2
β
)

as n→∞,

uniformly for all (x, z) ∈ IR× {±1}.
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Proof. Let us fix (x, z) ∈ IR × {±1}, n ∈ IN , and 0 ≤ i ≤ jnT − 1. Since tnnτn
i

= τni we get
from the definition of Un in (2.4) and from the formula for the conditional expectation for
the increments of Xn in (3.14)

Ex,z
τn
i

[
Un(τni+1)− Un(τni )

]
= Ex,z

τn
i

[
Xn
nτn

i+1
−Xn

nτn
i

]
= µn

(
nτni+1 − nτni

)
+ σnz

nτn
i+1−nτn

i∑
k=1

Akn
(
τni , x

)
+ σn

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

Ex,z
τn
i

[
Bk
n

(
tnj , X

n
j

)]
.

Dividing this expression by τni+1 − τni and subtracting µ̃n
(
τni , x

)
and zd̃n

(
τni , x

)
we get a

representation of the form

Ex,z
τn
i

[
Un(τni+1)− Un(τni )

τni+1 − τni

]
− µ̃n

(
τni , x

)
− zd̃n

(
τni , x

)
= Dn

1 +
zDn

2 (i, x) +Dn
3 (i, x)

τni+1 − τni
.

Here, for fixed z ∈ {±1}, the differences Dn
1 and Dn

2 (i, x) are for all n ∈ IN , 0 ≤ i ≤ jnT − 1,
and x ∈ IR given by Dn

1 := µnn− µ and

Dn
2 (i, x) :=

n(τn
i+1−τn

i )∑
k=1

(
σnA

k
n

(
τni , x

)
− δσ

nτn
i +k−1∏
l=nτn

i

a
(
tnl , x

))
, (3.60)

and with us defining for all n ∈ IN , 0 ≤ i ≤ jnT − 1, nτni ≤ j ≤ nτni+1 − 1, 1 ≤ k ≤ nτni+1 − j,
and x ∈ IR the expectations

Eni (j, k, x) := Ex,z
τn
i

[
σnB

k
n

(
tnj , X

n
j

)
−δ2σb

(
tnj , x

)j+k−1∏
l=j+1

a
(
tnl , x

)
−δ2σ2

j+k−1∑
l=j+1

a′
(
tnl , x

)j+k−1∏
r=j+1
r 6=l

a
(
tnr , x

)]

the difference Dn
3 (i, x) is for all n ∈ IN , 0 ≤ i ≤ jnT − 1, and x ∈ IR given as the double sum

Dn
3 (i, x) :=

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

Eni (j, k, x). (3.61)

Due to Assumption N it is obvious that Dn
1 = µnn − µ = O

(
δβ
)

as n → ∞. Moreover, by
(3.54) we have τni+1 − τni ≥ 1

4δ for all n ∈ IN and all 0 ≤ i ≤ jnT − 1, hence it suffices to show
that sup0≤i≤jn

T−1

∣∣Dn
2 (i, x)

∣∣ = O
(
δ1+ 1

2
β
)

and sup0≤i≤jn
T−1

∣∣Dn
3 (i, x)

∣∣ = O
(
δ1+

1
2
β
)

uniformly
for all x ∈ IR. Let us start with a bound on

∣∣Dn
2 (i, x)

∣∣. By Lemma 5.15 there exists some
K8 ∈ IR+ such that for all sufficiently large n ∈ IN the bound (3.34) holds with x = y and
r = 1. For such n ∈ IN we have for all 0 ≤ i ≤ jnT − 1 and all x ∈ IR

∣∣Dn
2 (i, x)

∣∣ ≤ n(τn
i+1−τn

i )∑
k=1

∣∣∣∣σnAkn(τni , x)− δσ

nτn
i +k−1∏
l=nτn

i

an
(
tnl , x

)∣∣∣∣
≤ K8

n(τn
i+1−τn

i )∑
k=1

(k + 2)(k + 1)akδ1+β ≤ 2K8

(1− a)3
δ1+β ,

since
∑∞

k=0(k + 2)(k + 1)ak = d2

da2

∑∞
k=0 ak = d2

da2
1

1−a = 2
(1−a)3

. Hence we even have
sup0≤i≤jn

T−1

∣∣Dn
2 (i, x)

∣∣ = O
(
δ1+β

)
as n → ∞, uniformly for all x ∈ IR, and due to β > 0

this implies that the expression is of order O
(
δ1+

1
2
β
)

as well.
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We are now going to show that
∣∣Dn

3 (i, x)
∣∣ = O

(
δ1+

1
2
β
)

as well. By a twofold application of
(3.57) in Lemma 5.23 there exists some M > 0 such that for all sufficiently large n ∈ IN we
have

sup
(i,j,x,z)∈In

Ex,z
τn
i

[∣∣Xn
j − x

∣∣β +
∣∣Xn

j − x
∣∣] ≤Mδ

1
2
β, (3.62)

with the set In given in Lemma 5.23. Fix n ≥ N sufficiently large, such that for some
constants K10 and K11 as in Lemma 5.15 the bound (3.35) holds for all 1 ≤ k ≤ n and such
that the bound (3.62) is in effect. Then taking the absolute value inside the expectation
we can bound the term

∣∣Eni (j, k, x)
∣∣ by means of (3.35) and (3.62) for all 0 ≤ i ≤ jnT − 1,

nτni ≤ j ≤ nτni+1 − 1, 1 ≤ k ≤ nτni+1 − j and x ∈ IR by∣∣Eni (j, k, x)
∣∣ ≤ K10(k+1)kak−1δ2Ex,z

τn
i

[∣∣Xn
j −x

∣∣β +
∣∣Xn

j −x
∣∣]+K11(k+2)(k+1)kak−1δ2+β

≤MK10(k+1)kak−1δ2+ 1
2
β +K11(k+2)(k+1)kak−1δ2+β.

Hence it follows from
∑∞

k=1(k+1)kak−1 = 2
(1−a)3

and
∑∞

k=1(k+2)(k+1)kak−1 = 6
(1−a)4

that

nτn
i+1−j∑
k=1

∣∣Eni (j, k, x)
∣∣ ≤ 2MK10

(1− a)3
δ2+ 1

2
β +

6K11

(1− a)4
δ2+β for all nτni ≤ j ≤ nτni+1 − 1.

Finally, if we take the sum over j from nτni to nτni+1 − 1 on both sides, then we obtain
nτni+1 − nτni − 1 ≤ δ−1 times the bound on the right hand side, and thus we get for all x ∈ IR
and 0 ≤ i ≤ jnT − 1:

∣∣Dn
3 (i, x)

∣∣ ≤ nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

∣∣Eni (j, k, x)
∣∣ ≤ 2MK10

(1− a)3
δ1+

1
2
β +

6K11

(1− a)4
δ1+β.

Since the bound on the right-hand side does not depend on i or x, we can indeed conclude
that sup0≤i≤jn

T−1

∣∣Dn
3 (i, x)

∣∣ = O
(
δ1+ 1

2
β
)

as n → ∞, uniformly for all x ∈ IR. Thus, the
lemma’s assertion is proved. q.e.d.

A similar result to Lemma 5.25 can be derived for the normalized conditional second moments
of the increments of Un, namely for

(
τni+1 − τni

)−1Ex,z
τn
i

[
(Un(τni+1)− Un(τni ))2

]
, uniformly for

all 0 ≤ i ≤ jnT − 1. However, the second moments converge more nicely than the first ones,
in the sense that the O

(
δ

1
2
β
)
-approximation does not depend on the tilt z at time τni .

Lemma 5.26. Under the Assumptions N and O(i)-(iv) the normalized second conditional
moments of the increments of Un over the time interval

[
τni , τ

n
i+1

]
, given that the correlated

random walk Un is at time τni in Un(τni ) = x with tilt V n(τni ) = z, can be approximated in
terms of σ̃2

n(τni , x) as follows:

sup
0≤i≤jn

T−1

∣∣∣∣∣Ex,z
τn
i

[(
Un(τni+1)− Un(τni )

)2
τni+1 − τni

]
− σ̃2

n

(
τni , x

)]∣∣∣∣∣ = O
(
δ

1
2
β
)

as n→∞, (3.63)

uniformly for all (x, z) ∈ IR× {±1}.

Proof. Basically, the proof of Lemma 5.26 follows the lines of the proof to Lemma 5.25, where
we now apply the long formula (3.15) for the second conditional moment of the increments
of the correlated random walk instead of the equality (3.14). Because of the complexity it
appears useful to introduce some notation for terms which will appear if we calculate the
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expression within the absolute value of (3.63). Thus, let us fix z ∈ {±1} and define for all
n ∈ IN , 0 ≤ i ≤ jnT − 1, and x ∈ IR the differences Dn

1 and Dn
2 by Dn

1 := σ2
nn− σ2 and

Dn
2 (i, x) :=

2
τni+1 − τni

nτn
i+1−1∑

j=nτn
i +1

nτn
i+1−j∑
k=1

(
σ2
nE

x,z
τn
i

[
Akn
(
tnj , X

n
j

)]
− δ2σ2

j+k−1∏
l=j

a
(
tnl , x

))
.

Moreover, for the same values of n, i, and x let us define the four remainder terms Rn1 to Rn4
by

Rn1 (i, x) := µ2
nn

2
(
τni+1 − τni

)
,

Rn2 (i, x) := 2zµnσnn
n(τn

i+1−τn
i )∑

k=1

Akn
(
τni , x

)
,

Rn3 (i, x) := 2µnσnn
nτn

i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

τni+1 − j/n

τni+1 − τni
Ex,z
τn
i

[
Bk
n

(
tnj , X

n
j

)]
,

and

Rn4 (i, x) :=
2σn

τni+1 − τni

nτn
i+1−1∑

j=nτn
i +1

nτn
i+1−j∑
k=1

Ex,z
τn
i

[(
Xn
j −Xn

i

)
Bk
n

(
tnj , X

n
j

)]
.

By the definition of Un in (2.4) we have Un(τni+1) − Un(τni ) = Xn
nτn

i+1
− Xn

nτn
i

. Then the

representation (3.15) with l = nτni+1 and ĩ = nτni and the definition of σ̃n in Definition 5.24
yield

Ex,z
τn
i

[(
Un(τni+1)− Un(τni )

)2
τni+1 − τni

]
− σ̃2

n(τni , x) = Dn
1 +Dn

2 (i, x) +
4∑

m=1

Rnm(n, i), (3.64)

as a simple comparison shows. We will now prove that the differences Dn
1 and Dn

2 (i, x) and
the remainder terms Rn1 (i, x) to Rn4 (i, x) are all terms at least of order O

(
δ

1
2
β
)

for n → ∞,
uniformly for all 0 ≤ i ≤ jnT − 1 and x ∈ IR. For the first term Dn

1 , this follows directly
from Assumption N since it even implies that σ2

nn− σ2 = O
(
δβ
)
. The bound on the second

difference Dn
2 (i, x) follows by similar means to the bound on the difference (3.60): Taking the

absolute value within the expectation and then applying (3.34) of Lemma 5.15 with r = 2
we see that there exist some K8,K9 ∈ IR+ such that for all sufficiently large n ∈ IN we can
bound∣∣∣∣∣σ2

nE
x,z
τn
i

[
Akn
(
tnj , X

n
j

)]
− δ2σ2

j+k−1∏
l=j

a
(
tnl , x

)∣∣∣∣∣ ≤ Ex,z
τn
i

∣∣∣∣∣σ2
nA

k
n

(
tnj , X

n
j

)
− δ2σ2

j+k−1∏
l=j

a
(
tnl , x

)∣∣∣∣∣
≤ K8(k + 2)(k + 1)akδ2+β +K9(k + 1)akδ2Ex,z

τn
i

[∣∣Xn
j − x

∣∣]
for all (x, z) ∈ IR × {±1}, 0 ≤ i ≤ jnT − 1, nτni + 1 ≤ j ≤ nτni+1 − 1, and 1 ≤ k ≤ nτni+1 − j.
We can now apply (3.57) of Lemma 5.23 with α = 1 to conclude that there exists some
M > 0 such that for all sufficiently large n ∈ IN not only the previous bound holds, but in
addition the remaining conditional expectation can be bounded by Ex,z

τn
i

[
|Xn

j − x|
]
≤Mδ

1
2
β

for all nτni + 1 ≤ j ≤ nτni+1 − 1 and x ∈ IR. Since we can bound
∑nτn

i+1−j
k=1 (k + 2)(k + 1)ak
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by
∑∞

k=0(k + 2)(k + 1)ak = 2
(1−a)3

and since on the other hand
∑nτn

i+1−j
k=1 (k + 1)ak ≤ 1

(1−a)2

it follows for all those n, j ∈ IN and all x ∈ IR

∣∣Dn
2 (i, x)

∣∣ ≤ 2δ2

τni+1 − τni

nτn
i+1−1∑

j=nτn
i +1

(
2K8

(1− a)3
δβ +

K9M

(1− a)2
δ

1
2
β

)
≤ 4K8

(1− a)3
δβ +

2K9M

(1− a)2
δ

1
2
β .

Since this last bound does not depend on i or x we conclude sup0≤i≤jn
T−1

∣∣Dn
2 (i, x)

∣∣ = O
(
δ

1
2
β
)

as n→∞, uniformly for all x ∈ IR.
Now we come to the remainder terms Rn1 to Rn4 . At first, we immediately get from As-
sumption N and (3.53) that sup0≤i≤jn

T−1

∣∣Rn1 (i, x)
∣∣ = O(δ) as n → ∞, and since Rn1 (i, x)

does not depend on x, this convergence holds of course uniformly for all x ∈ IR. In order
to bound the second remainder term Rn2 (i, x), we employ the inequality (3.26) to bound

sup0≤i≤jn
T−1

∑n(τn
i+1−τn

i )

k=1

∣∣Akn(τni , x)∣∣ ≤∑∞
k=1 ak <∞ for all sufficiently large n ∈ IN and all

x ∈ IR, and use µnσnn = O(δ) by Assumption N to conclude sup0≤i≤jn
T−1

∣∣Rn2 (i, x)
∣∣ = O(δ)

as n→∞, uniformly for all x ∈ IR. Thirdly, for all sufficiently large n ∈ IN , 0 ≤ i ≤ jnT − 1

and nτni ≤ j ≤ nτni+1 − 1 the fraction
τn
i+1−j/n
τn
i+1−τn

i
stays in the interval [0, 1], and bounding∣∣Bk

n

(
tnj , X

n
j

)∣∣ by (3.29) for a suitable chosen K6 > 0, we see that the inner sum in Rn3 (i, x)
can be bounded by

nτn
i+1−j∑
k=1

∣∣∣∣τni+1 − j/n

τni+1 − τni
Ex,z
τn
i

[
Bk
n

(
tnj , X

n
j

)]∣∣∣∣ ≤ ∞∑
k=1

K6ka
k−1δ =

K6

(1− a)2
δ.

Therefore, the expression
∑nτn

i+1−1

j=nτn
i

∑nτn
i+1−j

k=1

τn
i+1−j/n
τn
i+1−τn

i
Ex,z
τn
i

[
Bk
n

(
tnj , X

n
j

)]
can be bounded by

K6
(1−a)2

for all those sufficiently large n ∈ IN and all 0 ≤ i ≤ jnT − 1. Using again the bound
µnσnn = O(δ) it follows that sup0≤i≤jn

T−1

∣∣Rn3 (i, x)
∣∣ = O(δ) as n → ∞ uniformly for all

x ∈ IR as well. For the fourth remainder term Rn4 (i, x) there is slightly more work to do. At
first, we once again take the absolute value within the expectation and use (3.29) to bound∣∣Bk

n

(
tnj , X

n
j

)∣∣. This gives us for all sufficiently large n ∈ IN , and all (i, j, x, z) ∈ In as defined
in Lemma 5.23 the bound

∣∣Ex,z
τn
i

[(
Xn
j −Xn

i

)
Bk
n

(
tnj , X

n
j

)]∣∣ ≤ Ex,z
τn
i

∣∣Xn
j −Xn

i

∣∣K6ka
k−1δ for all

1 ≤ k ≤ nτni+1− j. For the remaining expectation we once again draw on Lemma 5.23, which
guarantees the existence of some M > 0 such that sup(i,j,x,z)∈In Ex,z

τn
i

[
|Xn

j −Xn
i |
]
≤ δ

1
2
βM

for all sufficiently large n ∈ IN . Thus we get uniformly for all 0 ≤ i ≤ jnT − 1, all
nτni + 1 ≤ j ≤ nτni+1 − 1, and all x ∈ IR the bound

nτn
i+1−j∑
k=1

∣∣Ex,z
τn
i

[(
Xn
j −Xn

i

)
Bk
n

(
tnj , X

n
j

)]∣∣ ≤ K6M

∞∑
k=1

kak−1δ1+
1
2
β,

and with the help of Assumption N we obtain sup0≤i≤jn
T−1

∣∣Rn4 (i, x)
∣∣ = O

(
δ

1
2
β
)
, uniformly

for all x ∈ IR. Thus, since z ∈ {±1} can be chosen arbitrarily, we indeed conclude from
the representation (3.64) and our order approximations of Dn

1 , Dn
2 , and Rn1 to Rn4 that the

lemma’s assertion holds. q.e.d.

In the next section, we employ the continuity of Assumption O(v) and replace the approx-
imations of Definition 5.24 by their limits as n → ∞. Before we come to that point, how-
ever, let us consider the normalized conditional local third moments of the increments of
Un over the O(δ)-time intervals

[
τni , τ

n
i+1

]
, and show that they converge to 0 uniformly for

all 0 ≤ i ≤ jnT − 1. This turns out to be important later when we have to show that any
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limiting distribution of {Un}n∈IN solves a martingale problem for the generator L from (2.7),
since then we will need that for all sufficiently smooth and bounded functions f : IR → IR
the remainder terms in the third-order Taylor expansions of Ex,z

τn
i

[
f
(
Un(τni+1)

)
− f
(
Un(τni )

)]
vanish uniformly for all 0 ≤ i ≤ jnT − 1 as n→∞.

Lemma 5.27. Under Assumptions N and O(i) and (ii) we have

sup
(x,z)∈IR×{±1}

sup
0≤i≤jn

T−1
Ex,z
τn
i

[∣∣Un(τni+1)− Un(τni )
∣∣3

τni+1 − τni

]
= O

(
δ

5
37

)
as n→∞. (3.65)

Proof. For some fixed σ̂ > σ let us choose M > 0, K ∈ IR+ and N ∈ IN such that the
assertion of Corollary 5.17 holds. Due to Assumption N we can assume without loss of
generality that |µn|+ |σn| ≤ σ̂δ for all n ≥ N . Now define

Ñ := max
{
N, 4M2, (4σ̂)

74
23

}
, (3.66)

and let us fix n ≥ Ñ , 0 ≤ i ≤ jnT − 1, and (x, z) ∈ IR× {±1}. Since n ≥ Ñ especially implies
n ≥ 4M2, we obtain by (3.54) and n = δ−2:

nτni+1 − nτni ≤ 2nδ = 2δ−1 ≤ 2δ−1

√
n

4M2
= (δM)−2. (3.67)

Since the definition of τni in Definition 5.22 implies that the left-hand side of (3.67) is integer-
valued, we even have nτni+1 − nτni ≤ b(δM)−2c. Moreover, due to the definitions of Un in
(2.44) and nτni , nτ

n
i+1 ∈ IN0 we get Un(τni+1)− Un(τni ) = Xn

nτn
i+1

−Xn
nτn

i
, hence we can apply

Corollary 5.17 and once again the left inequality in (3.67) to conclude that for any εn > 0
with n ≥ (4σ̂)2ε−2

n we have:

Pu,z
τn
i

(∣∣Un(τni+1)− Un(τni )
∣∣ ≥ ε

)
≤ δ4

K

ε4
(
nτni+1 − nτni

)2 ≤ 4δ2Kε−4. (3.68)

We want to apply (3.68) for εn = δ
14
37 and εn = δ

8
37 . In order to see that for these choices the

condition n ≥ (4σ̂)2ε−2
n is satisfied, we write at first n = n

23
37n

14
37 and then use n ≥ Ñ ≥ (4σ̂)

74
23

and n = δ−2 to obtain n ≥ (4σ̂)2δ−
28
37 . This shows that (3.68) holds for εn = δ

14
37 . Secondly

we notice that either 1 ≥ (4σ̂)
74
29 or (4σ̂)

74
23 ≥ (4σ̂)

74
29 . Thus, in both cases we can conclude

that n ≥ (4σ̂)
74
29 as well, and writing n = n

29
37n

8
37 we obtain n ≥ (4σ̂)2δ−

16
37 , hence (3.68) also

holds for εn = δ
8
37 .

Let us now split the set Ωn in three disjoint sets by defining

Kn
1 (i) :=

{∣∣Un(τni+1)− Un(τni )
∣∣ ≤ δ

14
37

}
Kn

2 (i) :=
{
δ

14
37 <

∣∣Un(τni+1)− Un(τni )
∣∣ ≤ δ

8
37

}
,

and

Kn
3 (i) :=

{∣∣Un(τni+1)− Un(τni )
∣∣ > δ

8
37

}
.

On Kn
1 (i) we can bound

∣∣Un(τni+1) − Un(τni )
∣∣ ≤ δ

14
37 , and upon using the trivial estimate

Pu,z
τn
i

(
Kn

1 (i)
)
≤ 1 we obtain:

Ex,z
τn
i

[∣∣Un(τni+1)− Un(τni )
∣∣31Kn

1 (i)

]
≤ δ3·

14
37 Pu,z

τn
i

(
Kn

1 (i)
)
≤ δ

42
37 . (3.69)
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Similarly, we can bound
∣∣Un(τni+1)− Un(τni )

∣∣ ≤ δ
8
37 on Kn

2 (i). However, the trivial estimate
Pu,z
τn
i

(
Kn

2 (i)
)
≤ 1 is not sharp enough for our desired convergence result. Instead, we will

bound the remaining probability by Pu,z
τn
i

(
Kn

2 (i)
)
≤ Pu,z

τn
i

(∣∣Xn
nτn

i+1
− Xn

nτn
i

∣∣ ≥ δ
14
37

)
and then

use (3.68) with εn = δ
14
37 to bound

Ex,z
τn
i

[∣∣Un(τni+1)− Un(τni )
∣∣31Kn

2 (i)

]
≤ δ

24
37 Pu,z

τn
i

(
Kn

2 (i)
)
≤ δ

24
37 4δ2Kδ−4· 14

37 = 4Kδ
42
37 . (3.70)

Last but not least, on Kn
3 (i) we once again write

Un
(
τni+1

)
− Un

(
τni
)

= Xn
nτn

i+1
−Xn

nτn
i

=
nτn

i+1∑
j=nτn

i +1

(
µn + σnZ

n
j

)
,

where the second equation stems from the definition of the correlated random walk Xn in
(2.3), and then employ |Znj | = 1 for all 0 ≤ j ≤ n and our assumption that |µn|+ |σn| ≤ σ̂δ
for all n ≥ N to conclude

∣∣∣Un(τni+1

)
− Un

(
τni
)∣∣∣ ≤ nτn

i+1∑
k=nτn

i +1

(
|µn|+ |σn|

)
≤
(
nτni+1 − nτni

)
σ̂δ ≤ 2σ̂,

using (3.54) for the last inequality. If we then apply (3.68) with εn = δ
8
37 we obtain

Ex,z
τn
i

[∣∣Un(τni+1)− Un(τni )
∣∣31Kn

3 (i)

]
≤ (2σ̂)3Pu,z

τn
i

(
Kn

2 (i)
)
≤ 4(2σ̂)3Kδ

42
37 . (3.71)

Adding up the three inequalities (3.69), (3.70) and (3.71) we get

Ex,z
τn
i

[∣∣Un(τni+1)− Un(τni )
∣∣3] ≤ (1 + 4K

(
1 + (2σ̂)3

))
δ

42
37 ,

and since
(
τni+1− τni

)−1 ≤ 4δ−1 by the lower bound in (3.54), the claimed rate of convergence
for
(
τni+1 − τni

)−1Eu,z
τn
i

[∣∣Un(τni+1)− Un(τni )
∣∣3], namely O

(
δ

5
37

)
as n→∞, follows. q.e.d.

Note that we could achieve some sharper bounds by dividing directly (3.68) by τni+1−τni . We
did not care about this better bound since the rate of convergence in (3.65) that we have shown
in the previous lemma is not the best that one could prove, anyhow. For example, one can
easily find a better rate by splitting the conditional expectation Eu,z

τn
i

[∣∣Un(τni+1)− Un(τni )
∣∣3]

not only into three, but into four or more terms. However, as it turns out in Lemma 5.32,
the obtained rate of convergence is sufficient for our needs.
For our further calculations the drift correction term zd̃n

(
τni , U

n(τni )
)
, which we had to

employ in order to find an o(1)-approximation as n→∞ for the normalized first conditional
moments over the time interval

[
τni , τ

n
i+1

]
for any 0 ≤ i ≤ jnT − 1, is a nuisance, since it still

depends on the initial tilt V n(τni ) = z at the beginning of that interval. If U is a diffusion
limit of some subsequence of {Un}n∈IN , then U cannot depend on a continuous limit of the
tilt process V n, since such a limit would have to be 1 if the limit U increases in t and −1
if U decreases in t, and with the Brownian path having no points of increase and no points
of decrease, such a process cannot exist. Fortunately, the influence of the tilt is negligible if
we just intersperse one more time interval with length of order O(δ) as n→∞, as the next
lemma indicates. This is essential to circumvent dealing with some limit of the tilt processes
{V n}n∈IN associated to {Un}n∈IN .
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Lemma 5.28. Under the Assumptions O(i) and (ii) we have for any f ∈ C1
b (IR):

sup
1≤i≤jn

T−1

∣∣∣Ex,z
τn
i−1

[
f
(
Un(τni )

)
d̃n
(
τni , U

n(τni )
)
V n(τni )

]∣∣∣ = O(δ) as n→∞, (3.72)

uniformly for all (x, z) ∈ IR× {±1}.

Proof. For all n ∈ IN and 1 ≤ i ≤ jnT − 1 let us introduce the function Fni : IR → IR
by Fni (x) := f(x)d̃n

(
τni , x

)
for all x ∈ IR, such that the definitions of the continuous-time

tilt in (2.4) and the O(δ)-time steps in Definition 5.22 imply the simplified representation
Ex,z
τn
i−1

[
f
(
Un(τni )

)
d̃n
(
τni , U

n(τni )
)
V n(τni )

]
= Ex,z

τn
i−1

[
Znnτn

i
Fni
(
Xn
nτn

i

)]
for all (x, z) ∈ IR× {±1}.

Recall now the general definition of the auxiliary functions Akn,F and Bk
n,F of Definition 5.7.

By the definition of A0
n,Fn

i
we have Fni (x) = A0

n,Fn
i

(
τni , x

)
for all x ∈ IR, hence we can apply

the definition of Un
(
τni
)

= Xn
nτn

i
in (2.4), Lemma 5.8, and the equality tnnτn

i−1
= τni−1 to

rewrite the expectation within (3.72) as

Ex,z
τn
i−1

[
Znnτn

i
Fni
(
Xn
nτn

i

)]
= zA

n(τn
i −τn

i−1)

n,Fn
i

(
τni−1, x

)
+

nτn
i −1∑

j=nτn
i−1

Ex,z
τn
i−1

[
B
nτn

i −j
n,Fn

i
(tnj , X

n
j )
]
. (3.73)

In order to bound (3.73), we want to use Lemma 5.13. Hence we have to show that Fni is
globally bounded and satisfies a global Lipschitz condition on IR. Let us fix n ∈ IN and
1 ≤ i ≤ jnT − 1. By (3.54) we have

(
τni+1− τni

)−1
δ ≤ 4, and due to Assumption O(i) it follows

that
∏nτn

i +k−1
l=nτn

i

∣∣a(tnl , x)∣∣ ≤ ak for all nτni ≤ k ≤ nτni+1 − 1, hence we get from the definition

of d̃n
(
τni , x

)
in Definition 5.24 that

‖Fni ‖ = sup
x∈IR

∣∣∣∣∣∣f(x)
σδ

τni+1 − τni

n(τn
i+1−τn

i )∑
k=1

nτn
i +k−1∏
l=nτn

i

a
(
tnl , x

)∣∣∣∣∣∣ ≤ 4σ‖f‖
∞∑
k=1

ak ≤ 4σ‖f‖ a

1− a
(3.74)

is finite. Now let us go on to show the Lipschitz continuity of Fni : IR→ IR. Since we assume
f ∈ C1

b (IR), we especially have |f(x) − f(y)| ≤ ‖f ′‖|x − y| for all x, y ∈ IR. Hence we can
apply (3.21) of Lemma 5.11 with F ≡ f to conclude that there exists some Kf ∈ IR+ such
that ∣∣∣∣∣f(x)

nτn
i +k−1∏
l=nτn

i

a
(
tnl , x

)
− f(y)

nτn
i +k−1∏
l=nτn

i

a
(
tnl , y

)∣∣∣∣∣ ≤ Kf (k + 1)ak|y − x|,

and thus it easily follows from the definition of Fni and d̃n that Fni : IR → IR satisfies the
Lipschitz condition

∣∣Fni (x)− Fni (y)
∣∣ ≤ δσ

τni+1 − τni

n(τn
i+1−τn

i )∑
k=1

Kf (k + 1)ak|y − x| ≤ KFn
i
|y − x|,

where KFn
i

= 4σKf
∑∞

k=0(k + 1)ak = 4σKf

(1−a)2
. Hence the Assumptions of Lemma 5.13 are

satisfied, and we can conclude from the bound in (3.26), the bound on ‖Fni ‖ in (3.74),
0 < a < 1, and the lower bound in (3.53) that for all sufficiently large n ∈ IN and all
1 ≤ i ≤ jnT − 1 and x ∈ IR we have∣∣∣An(τn

i −τn
i−1)

n,Fn
i

(
τni−1, x

)∣∣∣ ≤ ‖Fni ‖an(τn
i −τn

i−1) ≤ 4σ
1− a

‖f‖a
√
n = O

(
δα
)

as n→∞,
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for any α > 0, i.e. especially for α = 1. Taking the absolute value inside the expecta-
tion and then using the bound (3.29) we also see that there exists some K ∈ IR+ such
that

∣∣Ex,z
τn
i−1

[
B
nτn

i −j
n,Fn

i

(
tnj , X

n
j

)]∣∣ ≤ K
(
nτni − j

)
anτ

n
i −j−1δ for all sufficiently large n ∈ IN , all

1 ≤ i ≤ jnT − 1, nτni−1 ≤ j ≤ nτni − 1, and any (x, z) ∈ IR × {±1}. Thus, the substitution
k = nτni − j − 1 yields

nτn
i −1∑

j=nτn
i−1

∣∣∣∣Ex,z
τn
i−1

[
B
nτn

i −j
n,Fn

i

(
tnj , X

n
j

)]∣∣∣∣ ≤ K

n(τn
i −τn

i−1)−1∑
k=0

(k + 1)akδ ≤ K

(1− a)2
δ = O(δ) as n→∞.

Since the bounds hold uniformly for all 1 ≤ i ≤ jnT − 1 and (x, z) ∈ IR × {±1}, in view of
(3.73) this completes the proof of Lemma 5.28. q.e.d.

5.3.5 Employing the Continuity in the Time Variable

In order to achieve a diffusion limit, we have to replace in our approximations of Lemma 5.25
and Lemma 5.26 the discrete functions µ̃n, d̃n and σ̃2

n of Definition 5.24, which still depend
on n, by suitable limits as n→∞. The last lemma has indicated how we can eliminate the
function d̃n. Hence, it suffices to obtain limits for the two functions µ̃n : T̃n × IR → IR and
σ̃n : T̃n × IR → IR+. In order to do this, we have to employ the continuity of a, a′ and b in
the time variable t as stated in Assumption O(v).
More precisely, we will show that the functions µ̃n and σ̃2

n converge on bounded subsets of
their domains T̃n × IR to certain functions µ̌ : [0, T ] × IR → IR and σ̌ : [0, T ] × IR → IR+

introduced in terms of the limit functions a : [0, T ]× IR→ IR and b : [0, T ]× IR→ IR, which
satisfy (3.4) and (3.5), respectively:

Definition 5.29. The (local) drift function µ̌ : [0, T ]× IR→ IR is given by

µ̌(t, x) := µ+
σb(t, x)

1− a(t, x)
+

σ2a′(t, x)(
1− a(t, x)

)2 for all (t, x) ∈ [0, T ]× IR (3.75)

and the (local) volatility function σ̌ : [0, T ]× IR→ IR+ by

σ̌2(t, x) := σ2 1 + a(t, x)
1− a(t, x)

for all (t, x) ∈ [0, T ]× IR. (3.76)

Remark. If we compare the definitions of µ̌ and σ̌ with the definition of the generator
L : C2

b (IR) → Cb
(
[0, T ]× IR

)
in (2.7), which is in Theorem 5.4 claimed to determine the

limiting process U , we see that for all f ∈ C2
b (IR) the generator can be rewritten as

(Lf)(t, x) =
1
2
σ̌2(t, x)

d2

dx2
f(x) + µ̌(t, x)

d

dx
f(x) for all (t, x) ∈ [0, T ]× IR, (3.77)

i.e. the local drift and local volatility functions are just the coefficients of L. �

Now Lemma 5.12 gives us the tool to replace the tilded approximation functions µ̃n and σ̃n
of Definition 5.24 by the checked functions of Definition 5.29, namely it guarantees:

Lemma 5.30. Under Assumptions O(i), (ii), and (v) we have for any fixed R ∈ IR+:

sup
(t,x)∈T̃n×[−R,R]

∣∣∣µ̌(τni , x)− µ̃n
(
τni , x

)∣∣∣→ 0 as n→∞ (3.78)

and

sup
(t,x)∈T̃n×[−R,R]

∣∣∣σ̌2
(
τni , x

)
− σ̃2

n

(
i, x
)∣∣∣→ 0 as n→∞. (3.79)
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Proof. Comparing the definition of µ̃n : T̃n × IR → IR in Definition 5.24 with the definition
of µ̌ : [0, T ]× IR→ IR in Definition 5.29, we easily see that in order to show (3.78) it suffices
to show that the differences Dn

1 and Dn
2 , defined for all 0 ≤ i ≤ jnT − 1 and x ∈ IR by

Dn
1 (i, x) :=

b
(
τni , x

)
1− a

(
τni , x

) − δ2

τni+1 − τni

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

b
(
tnj , x

) j+k−1∏
l=j+1

a
(
tnl , x

)
and

Dn
2 (i, x) :=

a′
(
τni , x

)(
1− a(τni , x)

)2 − δ2

τni+1 − τni

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

j+k−1∑
l=j+1

a′
(
tnl , x

) j+k−1∏
r=j+1
r 6=l

a
(
tnr , x

)
,

satisfy sup|x|≤R sup0≤i≤jn
T−1

∣∣Dn
r (i, x)

∣∣→ 0 as n→∞ for r ∈ {1, 2}. Let us first consider Dn
1

and fix n ∈ IN and i ∈ IN0 with 0 ≤ i ≤ jnT − 1. By adding and subtracting

δ2b(τni , x)
τni+1 − τni

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

ak−1
(
τni , x

)
we can rewrite the difference Dn

1 (i, x) as Dn
1 (i, x) = b(τni , x)Dn

1,1(i, x) + Dn
1,2(i, x) with the

differences Dn
1,1(i, x) and Dn

1,2(i, x) given by

Dn
1,1(i, x) :=

1
1− a(τni , x)

− δ2

τni+1 − τni

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

ak−1
(
τni , x

)
and

Dn
1,2(i, x) :=

δ2

τni+1 − τni

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

(
b(τni , x)ak−1

(
τni , x

)
− b(tnj , x)

j+k−1∏
l=j+1

a
(
tnl , x

))
.

We will now bound the two differences Dn
1,1(i, x) and Dn

1,2(i, x) independently of i and x. For
the first term Dn

1,1(i, x), let us note that by the formula for the geometric sum we have

1
1− a(τni , x)

−
nτn

i+1−j∑
k=1

ak−1
(
τni , x

)
=

∞∑
k=0

ak
(
τni , x

)
−
nτn

i+1−j−1∑
k=0

ak
(
τni , x

)
=

∞∑
k=nτn

i+1−j
ak
(
τni , x

)
,

and hence we get due to
∑nτn

i+1−1

j=nτn
i

1 = n
(
τni+1 − τni

)
and n = δ−2 that Dn

1,1(i, x) satisfies

Dn
1,1(i, x) = δ2(τni+1 − τni )−1

∑nτn
i+1−1

j=nτn
i

∑∞
k=nτn

i+1−j
ak
(
τni , x

)
. Moreover, the lower bound in

(3.54) shows δ(τni+1 − τni )−1 ≤ 4. If we also use
∑nτn

i+1−1

j=nτn
i

1 = n
(
τni+1 − τni

)
, apply Assump-

tion O(i) and then change the order of summation we obtain

∣∣Dn
1,1(i, x)

∣∣ ≤ 4δ
n(τn

i+1−τn
i )∑

j=1

∞∑
k=j

ak = 4δ
∞∑
k=1

min{k,n(τn
i+1−τn

i )}∑
j=1

ak ≤ 4δ
∞∑
k=0

(k + 1)ak =
4δ

(1− a)2
,

and therefore supx∈IR sup0≤i≤jn
T−1

∣∣Dn
1,1(i, x)

∣∣ → 0. Next we show the convergence of Dn
1,2.

Since we have from (3.53) that 0 ≤ nτni+1 − nτni − 1 ≤
√
n = δ−1, and since tnnτn

i
= τni we
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can apply (3.24) of Lemma 5.12 with F ≡ b, (̃i, j̃, k̃) = (nτni , j + 1, k − 1), and κn =
√
n to

conclude that for any R > 0 and any ε > 0 there exists some N ∈ IN such that for all n ≥ N ,
0 ≤ i ≤ jnT − 1, nτni ≤ j ≤ nτni+1 − 1, and |x| ≤ R we obtain

nτn
i+1−j∑
k=1

∣∣∣∣∣b(τni , x)ak−1
(
τni , x

)
− b
(
tnj , x

) j+k−1∏
l=j+1

a
(
tnl , x

)∣∣∣∣∣ ≤
nτn

i+1−j∑
k=1

kak−1ε ≤ ε

(1− a)2
.

Now a summation of these bounds for all nτni ≤ j ≤ nτni+1− 1 and a division by n
(
τni+1− τni

)
yields due to n = δ−2

sup
|x|≤R

sup
0≤i≤jn

T−1

∣∣Dn
1,2(i, x)

∣∣ ≤ 1
n(τni+1 − τni )

nτn
i+1−1∑
j=nτn

i

ε

(1− a)2
=

ε

(1− a)2
,

and letting ε tend to 0 we see that the term on the left-hand side converges to 0 as n → ∞
as well. Since ‖b‖ < ∞ by Assumption O(i), the convergence of Dn

1,1 and Dn
1,2 implies

sup|x|≤R sup0≤i≤jn
T−1

∣∣Dn
1 (i, x)

∣∣→ 0 as n→∞.
Similarly we can write Dn

2 (i, x) = a′
(
τni , x

)
Dn

2,1(i, x) +Dn
2,2(i, x) with

Dn
2,1(i, x) :=

1(
1− a(τni , x)

)2 − 1
n(τni+1 − τni )

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

(k − 1)ak−2
(
τni , x

)
and

Dn
2,2(i, x) :=

δ2

τni+1−τni

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

(
a′
(
τni , x

)
(k−1)ak−2

(
τni , x

)
−
j+k−1∑
l=j+1

a′
(
tnl , x

)j+k−1∏
r=j+1
r 6=l

a
(
tnr , x

))

for all n ∈ IN , 0 ≤ i ≤ jnT − 1 and x ∈ IR. In analogy to the treatment of the differences Dn
1,1

andDn
1,2 we can draw on the equality

(
1−a(τni , x)

)−2 =
∑∞

k=0(k+1)ak
(
τni , x

)
to show the con-

vergence of supx∈IR sup0≤i≤jn
T−1

∣∣Dn
2,1(i, x)

∣∣ and (3.25) of Lemma 5.12 to show the convergence
of the term sup|x|≤R sup0≤i≤jn

T−1

∣∣Dn
2,2(i, x)

∣∣. Thus the boundedness of a′ : [0, T ]× IR→ IR

implies sup|x|≤R sup0≤i≤jn
T−1

∣∣Dn
2 (i, x)

∣∣→ 0 as n→∞. By our definitions of Dn
1 and Dn

2 this
completes the proof of (3.78).
The proof of (3.79) goes along the same lines as the proof of (3.78). Writing the fraction
1+a(t,x)
1−a(t,x) as 1 + 2 a(t,x)

1−a(t,x) we only have to show that sup|x|≤R sup0≤i≤jn
T−1

∣∣Dn
3 (i, x)

∣∣ → 0 as
n→∞, where Dn

3 (i, x) is for all 0 ≤ i ≤ jnT − 1 and x ∈ IR defined by

Dn
3 (i, x) :=

a(τni , x)
1− a(τni , x)

− δ2

τni+1 − τni

nτn
i+1−1∑

j=nτn
i +1

nτn
i+1−j∑
k=1

j+k−1∏
l=j

a
(
tnl , x

)
.

Now we can add and subtract the expression

δ2

τni+1 − τni

nτn
i+1∑

j=nτn
i +1

nτn
i+1−j∑
k=1

ak
(
τni , x

)
=

δ2

τni+1 − τni

nτn
i+1−1∑

j=nτn
i +1

nτn
i+1−j∑
k=1

ak
(
τni , x

)
and apply

∑∞
k=1 a

k
(
τni , x

)
= a(τn

i ,x)
1−a(τn

i ,x)
in order to show that if we define Dn

3,1(i, x) for all
0 ≤ i ≤ jnT − 1 and x ∈ IR as

Dn
3,1(i, x) :=

a(τni , x)
1− a(τni , x)

− δ2

τni+1 − τni

nτn
i+1∑

j=nτn
i +1

nτn
i+1−j∑
k=1

ak
(
τni , x

)
,
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we get supx∈IR sup0≤i≤jn
T−1

∣∣Dn
3,1(i, x)

∣∣ = O(δ) as n → ∞, and using (3.24) of Lemma 5.12
with F ≡ 1 we obtain sup|x|≤R sup0≤i≤jn

T−1

∣∣Dn
3,2(i, x)

∣∣→ 0 as n→∞, where

Dn
3,2(i, x) :=

δ2

τni+1 − τni

nτn
i+1−1∑

j=nτn
i +1

nτn
i+1−j∑
k=1

(
ak
(
τni , x

)
−
j+k−1∏
l=j

a
(
tnl , x

))

for all 0 ≤ i ≤ jnT −1 and x ∈ IR. Since Dn
3 (i, x) = Dn

3,1(i, x) +Dn
3,2(i, x) for all 0 ≤ i ≤ jnT −1

and x ∈ IR this concludes the proof of (3.79). q.e.d.

Due to Proposition 5.19, we need not care too much about unbounded paths of Un. In the
next lemma we show that if we start at a deterministic time s ∈ [0, T ] in a deterministic point
Un(s) = u ∈ IR with a deterministic tilt V n(s) = v ∈ {±1}, the conditional expectation of
the difference

∣∣µ̃(τni , Un(τni )
)
− µ̌

(
τni , U

n(τni )
)∣∣ still converges. This convergence is seen to

hold uniformly in the deterministic starting parameters (s, u, v), as long as they are taken
from a compact subset of [0, T ]× IR× {±1}.

Lemma 5.31. Under the Assumptions N and O(i), (ii), and (v) we have for all R ∈ IR+:

sup
(s,u,v)∈IR

sup
ins≤i≤jn

T−1
Eu,v
s

[∣∣µ̃n(τni , Un(τni )
)
− µ̌

(
τni , U

n(τni )
)∣∣]→ 0 as n→∞ (3.80)

and

sup
(s,u,v)∈IR

sup
ins≤i≤jn

T−1
Eu,v
s

[∣∣σ̃2
n

(
τni , U

n(τni )
)
− σ̌2

(
τni , U

n(τni )
)∣∣]→ 0 as n→∞, (3.81)

where IR := [0, T ]× [−R,R]× {±1}.

Proof. Let us set L := σ2‖b‖
1−‖a‖ + σ2‖a′‖

(1−‖a‖)2 . By Proposition 5.19 there exist for any ε > 0 some
η = η(ε) > 0 and N = N(ε) ∈ IN such that for all n ≥ N and all (s, u, v) ∈ IR we have
Pu,v
s

(
ws(Un, η) ≥ 1

)
≤ 1

1+2Lε. Fixing ε > 0 and (s, u, v) ∈ IR, let us for all n ≥ N define the
set

Kn := Kn(ε, s, u, v) :=
{
ω ∈ Ωn : Un(s) = u, V n(s) = v, and ws

(
Un, η(ε)

)
≤ 1
}
. (3.82)

We will only prove (3.80), since (3.81) follows by an analogous argument. Splitting the
expectation in (3.80) into two parts we can rewrite it for all n ≥ N and ins ≤ i ≤ jnT − 1 as

Eu,v
s

[∣∣µ̃n(τni , Un(τni )
)
− µ̌

(
τni , U

n(τni )
)∣∣] = Eu,vs

(
n, i,Kn

)
+ Eu,vs

(
n, i,Kc

n

)
where Eu,vs

(
n, i,D

)
:= Eu,v

s

[
1D
∣∣µ̃n(τni , Un(τni )

)
− µ̌
(
τni , U

n(τni )
)∣∣] for D ∈ {Kn,K

c
n}. We are

going to show that the first summand converges to 0 as n→∞, uniformly for all (s, u, v) ∈ IR
and ins ≤ i ≤ jnT − 1, hence we will have sup(s,u,v)∈IR supins≤i≤jn

T−1E
u,v
s (n, i,Kn) ≤ 1

1+2Lε for
all sufficiently large n ∈ IN . Moreover, we prove that the second summand can be uniformly
bounded by 2L

1+2Lε for all n ≥ N(ε). If these two claims are shown, we obtain (3.80) as well,
since ε > 0 can be chosen arbitrarily small.
In order to show the convergence of the first summand, Eu,vs

(
n, i,Kn

)
, we will start with

bounding Un(t) on Kn for all t ∈ [s, T ]. For this reason, let us pick some t ∈ [s, T ] and
decompose the interval [s, t] into m(t) :=

⌊
t−s
η c+1 subintervals

{[
s+(k−1)η̃, s+kη̃

]}
1≤k≤m(t)

of equal length η̃ := t−s
m(t) < η. Then writing Un(t)− Un(s) as a telescoping sum we obtain

∣∣Un(t)
∣∣ ≤ ∣∣Un(s)

∣∣+
m(t)∑
k=1

∣∣∣Un(s+ kη̃
)
− Un

(
s+ (k − 1)η̃

)∣∣∣.
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Since η̃ < η, the increments can be bounded by means of the modulus of continuity defined
in (3.51), and thus we get

∣∣Un(t)
∣∣ ≤ ∣∣Un(s)

∣∣ + m(t)ws
(
Un, η

)
. Since t ∈ [s, T ] was chosen

arbitrarily, and since m(t) ≤ T
η(ε) +1, we obtain supt∈[s,T ]

∣∣Un(t)
∣∣ ≤ R+ T

η(ε) +1 =: R̃(ε) on Kn.

Now R̃(ε) does not depend on our choice of (s, u, v) ∈ IR, hence the convergence statement
(3.78) of Lemma 5.30 implies for any fixed ε > 0 and uniformly for all (s, u, v) ∈ IR:

Eu,vs
(
n, i,Kn(ε, s, u, v)

)
≤ Eu,v

s

[
1{|Un(τn

i )|≤R̃(ε)}
∣∣µ̃n(i, Un(τni )

)
− µ̌

(
τni , U

n(τni )
)∣∣]

≤ sup
|x|≤R̃(ε)

sup
0≤i≤jn

T−1

∣∣∣µ̃n(τni , x)− µ̌
(
τni , x

)∣∣∣→ 0 as n→∞.

On the complementary set Kc
n = Kc

n(ε, s, u, v) we cannot bound supt∈[s,T ]

∣∣Un(t)
∣∣, but because

sup(s,u,v)∈IR Pu,v
s

(
Kc
n

)
≤ 1

1+2Lε for all n ≥ N by the definition of Kn and N = N(ε), it suffices
to bound for example supx∈IR sup0≤i≤jn

T−1

∣∣µ̃n(τni , x) − µ̌
(
τni , x

)∣∣ ≤ 2L, since we then have
uniformly for all n ≥ N(ε)

sup
(s,u,v)∈IR

sup
ins≤i≤jn

T−1
Eu,vs

(
n, i,Kc

n

)
≤ 2L sup

(s,u,v)∈IR
Pu,v
s

(
Kc
n

)
≤ 2L

1 + 2L
ε,

as desired. In order to prove that 2L really gives us a uniform bound on the difference of the
approximate mean local expectation µ̃n

(
τni , x

)
and the local drift parameter µ̌

(
τni , x

)
, let us

fix x ∈ IR and 0 ≤ i ≤ jnT − 1. Adding and subtracting µ and then taking absolute values,
we have

∣∣µ̃n(τni , x) − µ̌
(
τni , x

)∣∣ ≤ ∣∣µ̃n(τni , x) − µ
∣∣ +

∣∣µ̌(τni , x) − µ
∣∣. The last two terms can

be easily bounded: On the one hand, we have by Definition 5.24 for the approximate mean
local expectation µ̃n

(
τni , x

)
and due to δ2 = 1

n , Assumptions O(i) and (ii), and the definition
of L:

∣∣µ̃n(τni , x)− µ
∣∣ ≤ σ2

n(τni+1 − τni )

nτn
i+1−1∑
j=nτn

i

nτn
i+1−j∑
k=1

(
‖b‖

j+k−1∏
l=j+1

‖a‖+
j+k−1∑
l=j+1

‖a′‖
j+k−1∏
r=j+1
r 6=l

‖a‖

)

≤ σ2
∞∑
k=1

(
‖b‖ak−1 + ‖a′‖(k − 1)ak−2

)
=

σ2‖b‖
1− ‖a‖

+
σ2‖a′‖

(1− ‖a‖)2
= L.

On the other hand, it directly follows from the definition of the local drift in Definition 5.29
that

∣∣µ̌(τni , x) − µ
∣∣ ≤ L as well. Hence we have for all x ∈ IR and all 0 ≤ i ≤ jnT − 1 the

bound
∣∣µ̃n(τni , x)− µ̌

(
τni , x

)∣∣ ≤ 2L, which was left to prove. q.e.d.

5.3.6 Final Preparatory Steps

Let us recall from the outline of the proof for Theorem 5.4 given at the end of Section 5.2
that we want to show that the distribution of the limit U of any converging subsequence of
{Un}n∈IN is a solution of the martingale problem for (L, ν), where ν is the limiting initial
distribution. Especially, we have to show for all sufficiently smooth and bounded functions
f : IR→ IR that M = {M(t)}, given byM(t) = f

(
U(t)

)
−
∫ t
0

(
L f
)(
s, U(s)

)
ds for all t ∈ [0, T ],

is a martingale. For Markov chains Stroock and Varadhan (1979) construct a sequence of
discrete generators such that they can approximate M by a sequence of discrete martingales.
Due to the influence of the correlation between successive increments of Un, their approach
does not completely carry over to our setting of correlated random walks. However, the idea
stays the same: It suffices to construct a family {Mn}n∈IN of processes which converge to
M and which are approximately martingales, in the sense that they force M to be a true
martingale.
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For that reason, we will equip the probability space
(
Ωn,Fn,Pn

)
for each n ∈ IN with the

filtration {Fn
t }t∈[0,T ], which is generated by the continuous-time correlated random walk Un

and its continuous-time tilt process V n. From the definition of these two processes in (2.4)
and due to our standing restriction to the case T = 1 it is clear that

Fn
t := σ

(
Un(s), V n(s); 0 ≤ s ≤ t

)
= σ

(
Xn
j , Z

n
j ; 0 ≤ j ≤ bntc

)
for all t ∈ [0, T ].

Due to the correlation between the increments of Un we cannot prove that the conditional
expectation of f

(
Un(τni+1)

)
− f
(
Un(τni )

)
−
(
τni+1 − τni

)
(Lf)

(
τni , U

n(τni )
)

with respect to Fn
τn
i

converges to 0. However, we can choose s < τni in such a way that Fn
s contains most of the

information in Fn
τn
i

, and show that the conditional expectation with respect to this slightly
smaller σ-field is approximately zero. This serves us as a first estimate for the conditional
expectation Eu,v

τn
i

[
M(τni+1)−M(τni )

]
of the increments of M during the time interval

[
τni , τ

n
i+1

]
.

Applying the Lemmas 5.25 to 5.28 and Lemma 5.31 we will make our reasoning precise in:

Proposition 5.32. Under Assumptions N and O we have for all f ∈ C3
b (IR):

sup
(s,u,v)∈IR

ins +1≤i≤jn
T−1

∣∣∣∣∣Eu,v
s

[
f
(
Un(τni+1)

)
− f

(
Un(τni )

)
τni+1 − τni

− (Lf)
(
τni , U

n(τni )
)]∣∣∣∣∣→ 0 as n→∞ (3.83)

for every fixed R > 0.

Proof. Let us fix f ∈ C3
b (IR) and set K := 1

6‖f
′′′‖ <∞. By Taylor’s theorem we have for all

x, y ∈ IR ∣∣∣f(y)− f(x)− f ′(x)(y − x)− 1
2
f ′′(x)(y − x)2

∣∣∣ ≤ K
∣∣y − x

∣∣3. (3.84)

Recalling the remark to Definition 5.29, we know that (3.77) holds, hence we obtain∣∣∣∣∣Eu,v
s

[
f
(
Un(τni+1)

)
− f

(
Un(τni )

)
τni+1 − τni

− (Lf)
(
τni , U

n(τni )
)]∣∣∣∣∣

≤
∣∣∣∣Eu,v

s

[
f ′
(
Un(τni )

)
Dn

1 (i) +
1
2
f ′′
(
Un(τni )

)
Dn

2 (i)
]∣∣∣∣+KEu,v

s

[∣∣Rn(i)
∣∣]

for all n ∈ IN , (s, u, v) ∈ IR and 0 ≤ i ≤ jnT − 1, where the two differences Dn
1 (i) and Dn

2 (i)
and the remainder term Rn(i) are given by

Dn
1 (i) =

Un(τni+1)− Un(τni )
τni+1 − τni

− µ̌
(
τni , U

n(τni )
)
,

Dn
2 (i) =

(
Un(τni+1)− Un(τni )

)2
τni+1 − τni

− σ̌2
(
τni , U

n(τni )
)
,

and

Rn(i) =

(
Un(τni+1)− Un(τni )

)3
τni+1 − τni

for all n ∈ IN and 0 ≤ i ≤ jnT − 1.

Thus, in order to show the assertion, it suffices to show that for every fixed R > 0 the three
conditional expectations Eu,v

s

[
f ′
(
Un(τni )

)
Dn

1 (i)
]
, Eu,v

s

[
f ′′
(
Un(τni )

)
Dn

2 (i)
]
, and Eu,v

s

[
|Rn(i)|

]
converge to 0 as n → ∞, uniformly for all (s, u, v) ∈ IR and ins + 1 ≤ i ≤ jnT − 1. We
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start with the first term and split the expression f ′
(
Un(τni )

)
Dn

1 (i) into three parts by writing
f ′
(
Un(τni )

)
Dn

1 (i) = f ′
(
Un(τni )

)(
Dn

1,1(i) +Dn
1,2(i)

)
+Rn1 (i), where

Dn
1,1(i) :=

Un(τni+1)− Un(τni )
τni+1 − τni

− µ̃n
(
τni , U

n(τni )
)
− V n

(
τni
)
d̃n
(
i, Un(τni )

)
Dn

1,2(i) := µ̃n
(
τni , U

n(τni )
)
− µ̌

(
τni , U

n(τni )
)
,

and

Rn1 (i) := V n
(
τni
)
f ′
(
Un(τni )

)
d̃n
(
i, Un(τni )

)
for all n ∈ IN and 0 ≤ i ≤ jnT − 1. Then we have for all n ∈ IN , (s, u, v) ∈ IR, and
ins ≤ i ≤ jnT − 1:∣∣Eu,v

s

[
f ′
(
Un(τni )

)
Dn

1 (i)
]∣∣ ≤ ‖f ′‖

(∣∣Eu,v
s

[
Dn

1,1(i)
]∣∣+

∣∣Eu,v
s

[
Dn

1,2(i)
]∣∣)+

∣∣Eu,v
s

[
Rn1 (i)

]∣∣.
Now the bounds on

∣∣Eu,v
s

[
Dn

1,1(i)
]∣∣ and

∣∣Eu,v
s

[
Dn

1,2(i)
]∣∣ follow from the previous lemmas.

Namely, by conditioning on Fτn
i

and by the definition of Pu,v
t in (3.1) we have for all n ∈ IN

Eu,v
s

[
Dn

1,1(i)
]

= Eu,v
s

[
EUn(τn

i ),V n(τn
i )

τn
i

[
Dn

1,1(i)
]]

for all (s, u, v) ∈ IR, and ins ≤ i ≤ jnT − 1,

and hence by taking the absolute value inside the outer expectation and then applying
Lemma 5.25 we obtain sup(s,u,v)∈IR supins≤i≤jn

T−1

∣∣Eu,v
s

[
Dn

1,1(i)
]∣∣ = O

(
δ

1
2
β
)

as n→∞. More-
over, Lemma 5.31 implies that sup(s,u,v)∈IR supins≤i≤jn

T−1

∣∣Eu,v
s

[
Dn

1,2(i)
]∣∣→ 0 as n→∞. The

reason why we can state the convergence result in our assertion only for all ins +1 ≤ i ≤ jnT −1
rests on the remainder term Rn1 (i). For ins + 1 ≤ i ≤ jnT − 1 we can condition on Fτn

i−1
⊃ Fn

s

and bound ∣∣Eu,v
s

[
Rn1 (i)

]∣∣ ≤ Eu,v
s

[∣∣EUn(τn
i−1),V n(τn

i−1)

τn
i−1

[
Rn1 (i)

]∣∣]
to conclude in connection with Lemma 5.28 that supins +1≤i≤jn

T−1

∣∣Eu,v
s

[
Rn1 (i)

]∣∣ = O(δ) as
n→∞, uniformly for all (s, u, v) ∈ IR. If we combine the convergence of Dn

1,1, Dn
1,2, and Rn1 ,

we indeed get from the definitions of these three quantities that

sup
(s,u,v)∈IR

sup
ins +1≤i≤jn

T−1

∣∣Eu,v
s

[
f ′
(
Un(τni )

)
Dn

1 (i)
]∣∣→ 0 as n→∞.

Similarly, by writing Dn
2 (i) = Dn

2,1(i) +Dn
2,2(i) with

Dn
2,1(i) :=

(Un(τni+1)− Un(τni ))2

τni+1 − τni
− σ̃2

n

(
τni , U

n(τni )
)

and

Dn
2,2(i) := σ̃2

n

(
τni , U

n(τni )
)
− σ̌2

(
τni , U

n(τni )
)

for all n ∈ IN and 0 ≤ i ≤ jnT − 1

we obtain sup(s,u,v)∈IR supins≤i≤jn
T−1

∣∣Eu,v
s

[
f ′′
(
Un(τni )

)
Dn

2 (i)
]∣∣→ 0 if we use now Lemma 5.26

instead of Lemma 5.25. Last but not least, the uniform convergence of Eu,v
s

[
|Rn(i)|

]
follows

from Lemma 5.27, since the lemma implies for all (s, u, v) ∈ [0, T ]× IR × {±1} ⊃ IR and all
ins ≤ i ≤ jnT − 1:

Eu,v
s

[
|Rn(i)|

]
≤ Eu,v

s

[
EUn(τn

i ),V n(τn
i )

τn
i

[∣∣Rn(i)
∣∣]]

≤ sup
(x,z)∈IR×{±1}

sup
0≤j≤jn

T−1
Ex,z
τn
j

[∣∣Rn(j)
∣∣] = O

(
δ

5
37

)
as n→∞.

This completes the proof of the proposition. q.e.d.
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Remark. In order to show the convergence of the expectations Eu,v
s

[
Dn

1,1(i)
]
, Eu,v

s

[
Dn

2,1(i)
]
,

and Eu,v
s

[
Rn1 (i)

]
it is important that the convergence statements of Lemmas 5.25 to 5.28 hold

uniformly for all (x, z) ∈ IR × {±1}, and not only for |x| ≤ R: In contrast to the differences
in Lemma 5.31 we cannot bound (τni+1−τni )−1

(
Un(τni+1)−Un(τni )

)
on the complement of the

set Kn given in (3.82), and thus the proof of Lemma 5.31 cannot be modified to prove the
convergence of the three expectations under the less rigid assumption that the statements of
the Lemmas 5.25 to 5.28 only hold uniformly for all (x, z) ∈ [−R,R]× {±1} and every fixed
R > 0. �

If we iterate Proposition 5.32, we arrive at:

Corollary 5.33. Under the Assumptions N and O we have for all f ∈ C3
b (IR), all R ∈ IR+,

and 0 ≤ s ≤ t ≤ T

sup
|u|≤R
|v|=1

∣∣∣∣∣Eu,v
s

[
f
(
Un(t)

)
− f

(
Un(s)

)
−

jn
t −1∑

i=ins +1

(
τni+1 − τni

)(
Lf
)(
τni , U

n(τni )
)]∣∣∣∣∣→ 0 as n→∞.

Proof. Since the statement trivially holds for s = t, let us fix f ∈ C3
b (IR) and 0 ≤ s < t ≤ T .

Recall the definitions of τni , ins and jnt in Definition 5.22. Due to the inequalities (3.55) and
(3.54) we have

0 ≤ t− τnjn
t
≤ 2δ and 0 ≤ τnins +1 − s ≤ τnins +1 − τnins + τnins − s ≤ 4δ for all n ∈ IN . (3.85)

This shows that τnjn
t
→ t and τnins +1 → s as n → ∞. Hence we have τnins +1 ≤ τnjn

t
for all

sufficiently large n ∈ IN , and for those n by employing the telescoping sum

f
(
Un(t)

)
− f

(
Un(s)

)
= f

(
Un(t)

)
− f

(
Un
(
τnjn

t

))
+

jn
t −1∑

i=ins +1

(
f
(
Un(τni+1)

)
− f

(
Un(τni )

))
+ f

(
Un
(
τnins +1

))
− f

(
Un(s)

)
we see that it suffices to show that the three expressions

Dn
1 (u, v) := Eu,v

s

[
f
(
Un(t)

)
− f

(
Un
(
τnjn

t

))]
,

Dn
2 (u, v) := Eu,v

s

[
f
(
Un
(
τnins +1

))
− f

(
Un(s)

)]
,

and

Dn
3 (u, v) :=

jn
t −1∑

i=ins +1

(
τni+1 − τni

)
Eu,v
s

[
f
(
Un(τni+1)

)
− f

(
Un(τni )

)
τni+1 − τni

−
(
Lf
)(
τni , U

n(τni )
)]

satisfy sup(u,v)∈[−R,R]×{±1}
∣∣Dn

i (u, v)
∣∣ → 0 as n → ∞ for i ∈ {1, 2, 3}. For the first two

expressions, such a convergence result follows easily from Lemma 5.23. Namely, the bounds
in (3.85) enable us to conclude with Lemma 5.23 that uniformly for all (u, v) ∈ IR× {±1}:∣∣Dn

1 (u, v)
∣∣ ≤ Eu,v

s

[∣∣f(Un(t)
)
−f
(
Un
(
τnjn

t

))∣∣] ≤ ‖f ′‖Eu,v
s

[∣∣Un(t)−Un
(
τnjn

t

)∣∣] = O
(
δ

1
2

)
and∣∣Dn

2 (u, v)
∣∣ ≤ ‖f ′‖Eu,v

s

[∣∣Un(τnins +1

)
−Un(s)

∣∣] = O
(
δ

1
2

)
as n→∞.
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The convergence of Dn
3 (u, v) is not more difficult to prove. By Proposition 5.32 we have for

all fixed R ∈ IR+:

Sn := sup
(s,u,v)∈IR

ins +1≤i≤jn
t −1

∣∣∣∣∣Eu,v
s

[
f
(
Un(τni+1)

)
− f

(
Un(τni )

)
τni+1 − τni

− (Lf)
(
τni , U

n(τni )
)]∣∣∣∣∣→ 0 as n→∞.

Then it follows from IR = [0, T ]×[−R,R]×{±1} that uniformly for all (u, v) ∈ [−R,R]×{±1}

∣∣Dn
3 (s, t, u, v)

∣∣ ≤ jn
t −1∑

i=ins +1

(
τni+1 − τni

)
Sn =

(
τnjn

t
− τnins +1

)
Sn ≤ TSn → 0 as n→∞.

Since 0 ≤ s ≤ t ≤ T and R ∈ IR+ were chosen arbitrarily, our claim follows. q.e.d.

We now want to show that for all sufficiently large n ∈ IN the process Mn = {Mn(t)}
given by Mn(t) = f

(
Un(t)

)
−
∫ t
0

(
L f
)(
s, Un(s)

)
ds for all t ∈ [0, T ] is approximately a mar-

tingale, which approximates the continuous process M from the beginning of the section.
Therefore, we have to show that we can replace the sum in Corollary 5.33 by the integral∫ t
s

(
L f
)(
s, Un(s)

)
ds. This is the aim of the last lemma which we need before concluding the

proof of the main convergence theorem.

Lemma 5.34. Let us assume that for each n ∈ IN we are given some stochastic process Sn

in D[0, T ] defined on some probability space
(
Ωn,Fn,Pn

)
. If Sn ⇒ S as n → ∞ for some

a.s. continuous process S, then for any bounded continuous function L : IR → IR and all
0 ≤ s ≤ t ≤ T we have

En

[∣∣∣∣∫ t

s
L
(
τ, Sn(τ)

)
dτ −

jn
t −1∑

i=ins +1

(
τni+1 − τni

)
L
(
τni , S

n(τni )
)∣∣∣∣
]
→ 0 as n→∞.

Proof. We want to apply the bounded convergence theorem. However, since the probability
spaces

(
Ωn,Fn,Pn

)
, on which the Sn are defined, may differ for each n ∈ IN , we first have to

find a common probability space for all {Sn}n∈IN and S, or at least for stochastic processes
in D[0, T ] which have the same distributions. For this purpose we recall from Theorem 3.3.1
in Ethier and Kurtz (1986) that the weak convergence (Sn |Pn) ⇒ (S |P) as n → ∞ is
equivalent to the convergence of the corresponding distributions in the Prohorov metric,
since D[0, T ] is separable. Thus, by the Skorohod representation (Theorem 3.1.8 in Ethier
and Kurtz (1986)), there exists some probability space

(
Ω′,F ′,P′) on which are defined some

stochastic processes {Y n}n∈IN and Y such that P′(Y n)−1 = Pn(Sn)−1, P′Y −1 = PS−1, and
such that under P′ we have limn→∞ Yn = Y a.s.
Let us now fix 0 ≤ s ≤ t ≤ T . If a sequence {zn}n∈IN in D[0, T ] converges to some continuous
function z in the Skorohod topology, it also converges in the uniform topology (see p.112 in
Billingsley (1968)). In such a situation, we conclude from adding and subtracting z(tn) that
limn→∞ zn(tn) = z(t) for any sequence {tn}n∈IN in [0, T ] with limn→∞ tn = t. Moreover, we
find some a < mint∈[0,T ] z(t) and b > maxt∈[0,T ] z(t) such that zn(t) ∈ [a, b] for all t ∈ [0, T ]
and n ∈ IN . On [0, T ] × [a, b], the function L : [0, T ] × IR → IR is uniformly continuous,
and since (3.54) yields τni+1 − τni < 2δ for all ins + 1 ≤ i ≤ jnt − 1 the uniform convergence of
{zn}n∈IN also implies

jn
t −1∑

i=ins +1

(
L
(
τ, z(τ)

)
− L

(
τni , zn(τni )

))
1[τn

i ,τ
n
i+1)(τ) → 0 as n→∞.
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Since Y is continuous on [0, T ], we get by adding and subtracting L
(
τ, Y (τ)

)
and noting that

(3.54) and (3.55) imply s < τnins +1 → s and t ≥ τnjn
t
→ t the convergence

L
(
τ, Y n(τ)

)
−

jn
t −1∑

i=ins +1

L
(
τni , Y

n(τni )
)
1[τn

i ,τ
n
i+1)(τ) → 0 as n→∞, λ[s,t] ×P′-a.e.,

where λ[s,t] is the Lebesgue measure on [s, t]. Since ‖L‖ < ∞ we can bound the last line by
2‖L‖, and then apply the bounded convergence theorem to conclude

E′

[∣∣∣∣∫ t

s
L
(
τ, Y n(τ)

)
dτ −

jn
t −1∑

i=ins +1

(
τni+1 − τni

)
L
(
τni , Y

n(τni )
)∣∣∣∣
]

= E′

[∣∣∣∣∫ t

s

(
L
(
τ, Y n(τ)

)
−

jn
t −1∑

i=ins +1

L
(
τni , Y

n(τni )
)
1[τn

i ,τ
n
i+1)(τ)

)
dτ

∣∣∣∣
]
→ 0 as n→∞.

But for each n ∈ IN the process Y n has under P′ the same distribution as Sn under Pn, and
hence the statement of the lemma follows. q.e.d.

5.3.7 Proof of the Main Convergence Theorem

Now we are finally in a position to prove the main convergence theorem for our correlated
random walks, as it was stated in Theorem 5.4. As pointed out before, we want to imitate the
proof of an analogous statement for the convergence of Markov chains as given in Section 11.2
of Stroock and Varadhan (1979). However, we have to adjust it because of the special features
of correlated random walks, especially because of the dependences within the tilt process.

Proof of Theorem 5.4. We know by Corollary 5.20 that the sequence {Un}n∈IN is tight, hence
it is relatively compact by Prohorov’s theorem (Theorem 6.1 in Billingsley (1968)), and, in
addition, Corollary 5.20 also yields that any limiting process U is continuous. Thus, every
subsequence of {Un}n∈IN contains a further subsequence {Unk}k∈IN which converges weakly
to some continuous process U on D[0, T ]. If we can show that all converging subsequences
weakly converge to the same process U , an application of Theorem 2.3 in Billingsley (1968)
yields that then the whole sequence {Un}n∈IN converges weakly to U .
To that end, let us take some converging subsequence {Unk}k∈IN of {Un}n∈IN such that there
exists some process U in

(
D[0, T ],B(D[0, T ])

)
, which is defined on some probability space(

Ω̃, F̃ , P̃
)

such that Unk ⇒ U as k → ∞. By considering the distribution P := P̃U−1 of U ,
we can without loss of generality assume that

(
Ω̃, F̃ , P̃

)
=
(
D[0, T ],B(D[0, T ]),P

)
and that

U is the canonical process given by U(t, ω) = ω(t) for all t ∈ [0, T ] and ω ∈ D[0, T ]. Let us
then introduce the filtration {Ft}t∈[0,T ] on the probability space

(
D[0, T ],B(D[0, T ]),P

)
by

setting Ft := σ
(
U(s); 0 ≤ s ≤ t

)
for all t ∈ [0, T ]. We now want to show that P is a solution

of the martingale problem for (L, ν). Since our assumptions imply P
(
U(0) ∈ A

)
= ν(A) for

all A ∈ B(IR), we only have to show that for all functions f : IR→ IR with compact support
and which possess bounded derivatives of all orders,(

f
(
U(t)

)
−
∫ t

0
(Lf)

(
τ, U(τ)

)
dτ,Ft; 0 ≤ t ≤ T

)
is a P-martingale. (3.86)

Slightly more than that, we will show that (3.86) holds for all f ∈ C3
b (IR). For this purpose,

let us fix f ∈ C3
b (IR) and 0 ≤ s ≤ t ≤ T , and note that by the definition of L in (2.7) the

function (Lf) : [0, T ]× IR→ IR is bounded and continuous, due to Assumption O. Thus, the
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functional Ψ : D[0, T ] → IR given by Ψ(g) := f
(
g(t)

)
− f

(
g(s)

)
−
∫ t
s

(
L f
)(
τ, g(τ)

)
dτ for all

g ∈ D[0, T ] is continuous as well, and it can be bounded by

∣∣Ψ(g)
∣∣ ≤ 2‖f‖+

∫ t

s

∥∥(L f)
∥∥du ≤ 2‖f‖+ T‖L f‖ =: M <∞ for all g ∈ D[0, T ]. (3.87)

By the definition of weak convergence, Unk ⇒ U as k → ∞ implies for all bounded and
continuous functionals Φ : D[0, T ] → IR

E
[
Φ(U)

(
f
(
U(t)

)
− f

(
U(s)

)
−
∫ t

s
(Lf)

(
τ, U(τ)

)
dτ

)]
= lim

k→∞
Enk

[
Φ
(
Unk

)(
f
(
Unk(t)

)
− f

(
Unk(s)

)
−
∫ t

s

(
Lf
)(
τ, Unk(τ)

)
dτ

)]
.

(3.88)

If we can show that the limit on the right hand side vanishes for all 0 ≤ s ≤ t ≤ T and all
bounded and continuous Fs-measurable functionals Φ : D[0, T ] → IR then a monotone class
argument and the definition of the conditional expectation imply that

E
[
f
(
U(t)

)
− f

(
U(s)

)
−
∫ t

s
(Lf)(τ,X(τ))dτ

∣∣∣∣Fs] = 0 for all 0 ≤ s ≤ t ≤ T , (3.89)

and thus indeed (3.86) holds for the chosen function f ∈ C3
b (IR).

If (3.89) even holds for all functions f ∈ C3
b (IR), then P solves the martingale problem for

(L, ν). In this case we can apply Theorem 5.3.3 in Ethier and Kurtz (1986) to conclude that
there exists an extended probability space on which U solves (2.8) with P

(
U(0) ∈ A

)
= ν(A)

for all A ∈ B(IR). Now the uniqueness of the martingale problem for (L, ν) is equivalent to
the uniqueness in the sense of probability law of solutions to the stochastic integral equation
(2.8) with P

(
U(0) ∈ A

)
= ν(A) for all A ∈ B(IR): If the martingale problem has a unique

solution all weak limits of subsequences of {Un}n∈IN have to coincide. Hence, {Un}n∈IN
converges to the diffusion process given by (2.8) and P

(
U(0) ∈ A

)
= ν(A).

It remains to prove that for any f ∈ C3
b (IR), any 0 ≤ s ≤ t ≤ T , any bounded and continuous

Fs-measurable function Φ : D[0, T ] × IR → IR, and any weakly convergent subsequence{
Unk}k∈IN of {Un}n∈IN the limit on the right-hand side of (3.88) is 0. Without loss of

generality let us assume that the whole sequence converges, i.e. Un ⇒ U as n→∞ for some
continuous process U . Then we have to show

lim
n→∞

En

[
Φ(Un)

(
f
(
Un(t)

)
− f

(
Un(s)

)
−
∫ t

s
(Lf)

(
τ, Un(τ)

)
dτ

)]
= 0. (3.90)

For that purpose keep f ∈ C3
b (IR), 0 ≤ s ≤ t ≤ T , and some bounded and continuous(

Fs,B(IR)
)
-measurable mapping Φ : D[0, T ] → IR fixed for the rest of the proof.

As a first step, we want to show that Φ(Un) : Ωn → IR is
(
Fn
s ,B(IR)

)
-measurable for

each fixed n ∈ IN . Since Φ : D[0, T ] → IR is
(
Fs,B(IR)

)
-measurable, it suffices to show

that the mapping Un : Ωn → D[0, T ] is
(
Fn
s ,Fs

)
-measurable. For this purpose define the

projection π : D[0, T ] → D[0, s] by π(ω, r) = ω(r) for all r ∈ [0, s]. Then it is clear that
the σ-field generated by all single observations of Un : Ωn → D[0, T ] up to time s satisfies
σ
(
Un(r); 0 ≤ r ≤ s

)
= σ

(
(πUn)(r); 0 ≤ r ≤ s

)
, and since D[0, s] is separable it follows that

σ
(
(πUn)(r); 0 ≤ r ≤ s

)
=
(
πUn

)−1B
(
D[0, s]

)
. Hence we conclude that

σ
(
Un(r); 0 ≤ r ≤ s

)
=
(
πUn

)−1B
(
D[0, s]

)
= (Un)−1π−1B

(
D[0, s]

)
. (3.91)
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Replacing Un : Ωn → D[0, T ] by the canonical process U : D[0, T ] → D[0, T ] the same
arguments enable us to rewrite Fs as Fs = σ

(
U(r); 0 ≤ r ≤ s

)
= π−1B

(
D[0, s]

)
and hence,

we may substitute this equality in (3.91) and apply the definition of Fn
s on Ωn to conclude

Fn
s = σ

(
Un(r), V n(r); 0 ≤ r ≤ s

)
⊃ σ

(
Un(r); 0 ≤ r ≤ s

)
= (Un)−1Fs. (3.92)

This shows that Un is indeed
(
Fn
s ,Fs

)
-measurable, and consequently Φ(Un) is an

(
Fn
s ,B(IR)

)
-

measurable random variable for all n ∈ IN . Therefore we get for all n ∈ IN

En

[
Φ(Un)

(
f
(
Un(t)

)
− f

(
Un(s)

)
−
∫ t

s

(
L f
)(
τ, Un(τ)

)
dτ

)]
= En

[
Φ(Un)En

[
f
(
Un(t)

)
− f

(
Un(s)

)
−
∫ t

s

(
L f
)(
τ, Un(τ)

)
dτ

)∣∣∣∣Fn
s

]]
,

and by (3.1) we can rewrite the inner expectation as En
(
Un(s), V n(s)

)
, where

En(u, v) := Eu,v
s

[
f
(
Un(t)

)
− f

(
Un(s)

)
−
∫ t

s

(
L f
)(
τ, Un(τ)

)
dτ

]
for all (u, v) ∈ IR× {±1}.

Taking now absolute values and using |||Φ||| := ‖Φ‖D[0,T ] <∞, we thus can bound∣∣∣∣∣En

[
Φ(Un)

(
f
(
Un(s)

)
−f
(
Un(s)

)
−
∫ t

s
(Lf)

(
τ, Un(τ)

)
dτ

)]∣∣∣∣∣ ≤ |||Φ|||En
[∣∣En(Un(s), V n(s)

)∣∣].
Since for all (u, v) ∈ IR × {±1} we can rewrite En(u, v) as En(u, v) = Dn

1 (u, v) − Dn
2 (u, v)

with Dn
1 (u, v) and Dn

2 (u, v) being defined by

Dn
1 (u, v) = Eu,v

s

[
f
(
Un(s)

)
− f

(
Un(s)

)
−

jn
t −1∑

i=ins +1

(
τni+1 − τni

)
(Lf)

(
τni , U

n(τni )
)]

(3.93)

and

Dn
2 (u, v) = Eu,v

s

[∫ t

s
(Lf)

(
τ, Un(τ)

)
dτ −

jn
t −1∑

i=ins +1

(
τni+1 − τni

)
(Lf)

(
τni , U

n(τni )
)]
, (3.94)

respectively, we can apply the triangular inequality to conclude

En
[∣∣En(Un(s), V n(s)

)∣∣] ≤ E
[∣∣Dn

1

(
Un(s), V n(s)

)∣∣]+ En
[∣∣Dn

2

(
Un(s), V n(s)

)∣∣].
Hence it suffices to show that both En

[∣∣Dn
1

(
Un(s), V n(s)

)∣∣] and En
[∣∣Dn

2

(
Un(s), V n(s)

)∣∣]
converge to 0 as n→∞.
In order to show the convergence of the first term, we employ Corollary 5.20, which gave
us the tightness of {Un}, and conclude that for any ε > 0 there exists a compact set
Kε ⊂ D[0, T ] such that Pn

(
Un ∈ Kε

)
≥ 1 − ε for all n ∈ IN . Let us fix ε > 0. On Kε

we have Rε := supg∈Kε
supt∈[0,T ]

∣∣g(s)
∣∣ <∞, and hence we get from the definition of Dn

1 and
Corollary 5.33:

En
[∣∣Dn

1

(
Un(s), V n(s)

)∣∣1{Un∈Kε}

]
≤ sup

(u,v)∈[−Rε,Rε]×{±1}

∣∣Dn
1 (u, v)

∣∣→ 0 as n→∞.
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On the other hand, by exactly the same arguments as in (3.87), we can bound the term within
the expectation in (3.93) by M as well, and hence we also get

∣∣Dn
1

(
Un(s), V n(s)

)∣∣ ≤M , i.e.

En
[∣∣Dn

1

(
Un(s), V n(s)

)∣∣1{Un /∈Kε}

]
≤MPn

(
Un /∈ Kε

)
≤Mε.

Together, the last two bounds show that En
[∣∣Dn

1

(
Un(s), V n(s)

)∣∣] → 0 as n → ∞. Last but
not least, we plug in the definition of Dn

2 (u, v) from (3.94) and move the absolute value inside
the conditional expectation to obtain

En
[∣∣Dn

2

(
Un(s), V n(s)

)∣∣] ≤ En

[∣∣∣∣∫ t

s
(Lf)

(
τ, Un(τ)

)
dτ −

jn
t −1∑

i=ins +1

(
τni+1−τni

)
(Lf)

(
τni , U

n(τni )
)∣∣∣∣
]
.

Since the term on the right-hand side converges to 0 as n → ∞ by Lemma 5.34, this shows
limn→∞En

[∣∣Dn
2

(
Un(s), V n(s)

)∣∣] = 0. Thus, (3.90) holds, and the proof of Theorem 5.4 is
complete. q.e.d.
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Collection of Stated Assumptions

Assumption A (p. 78). The associated small investor price function ψ• : [0, T ] × IR → IR
satisfies

ψ•
(
tnk , U

n
k−1 − δ

)
< ψ•

(
tnk−1, U

n
k−1

)
< ψ•

(
tnk , U

n
k−1 + δ

)
for all 1 ≤ k ≤ n. (2.1.5)

Assumption B (Multiplicative structure of ψ, p. 96). There exists a locally bounded
function f : IR → (0,∞) which is continuous a.e. (with respect to the Lebesgue measure on
IR) such that the equilibrium price function ψ : [0, T ]× IR2 → IR can be written as

ψ(t, u, ξ) = ψ•(t, u)f(ξ) for all (t, u, ξ) ∈ [0, T ]× IR× IR. (2.4.1)

Assumption C (p. 129). The small investor price function ψ• : [0, T ]× IR→ IR, mapping
(t, u) 7→ ψ•(t, u), is continuously differentiable with respect to t and twice continuously dif-
ferentiable with respect to u. The function ψ• itself and its spacial derivative ψ•u are strictly
positive, and the function satisfies satisfies

∥∥ ψ•t

ψ•u

∥∥ < ∞ and L0 :=
∥∥ ψ•
ψ•u

∥∥ < ∞. For the func-
tion f : IR → (0,∞) we assume that it is at least twice continuously differentiable. Finally
we assume that the price determining measure µ ∈M(f) has a finite first moment.

Assumption D (p. 129). The price system (ψ, µ) excludes any immediate transaction gains,
i.e. the local transaction loss rate function kµ : IR2 → IR of Definition 2.13 is nonnegative.

Assumption E (p. 159). The transformed loss function κ : g(IR) → IR of (3.3.1) vanishes,
i.e. we have d(µ)f ′(ξ) = 0 for all ξ ∈ IR. Moreover, suppose that the two components ψ• and f
of ψ belong to the Hölder spaces ψ• ∈ Ĥ1+ 1

2
β,3+β

(
[0, T ]× IR

)
and H1+β

loc (IR), respectively. The
function ζ : IR → IR for the final condition is bounded and can be written as ζ = ζac + ζd,
where ζac is absolutely continuous with respect to the Lebesgue measure on IR and ζd consists
only of (left and right) jumps. The parameter α ∈ IR is some arbitrary real number.

Assumption E (p. 160). The transaction loss function κ : g(IR) → IR of (3.3.1) is non-
negative, i.e. d(µ)f ′(ξ) ≥ 0 for all ξ ∈ IR. Moreover, suppose that the two components ψ• and
f of ψ belong to the Hölder spaces ψ• ∈ Ĥ1+ 1

2
β,3+β

(
[0, T ] × IR

)
and H3+β

loc (IR), respectively.
The function ζ : IR → IR for the final condition belongs to the class C1

b

(
IR
)
. The parameter

α ∈ IR is sufficiently close to 0 so that a solution ϕ : [0, T ] × IR → IR to the final problem
(3.4.3), (3.4.4) exists and so that this solution satisfies the constraint

1 + 2d(µ)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≥ ε for all (t, u) ∈ [0, T ]× IR and some ε > 0.

Assumption G (On the price system (ψ, µ), p. 172). There exist some strictly positive
functions ψ• ∈ Ĥ2+ 1

2
β,4+β

(
[0, T ] × IR

)
and f ∈ H4+β

loc (IR) such that the equilibrium price
function ψ : [0, T ]× IR2 → IR satisfies the multiplicative structure

ψ(t, u, ξ) = ψ•(t, u)f(ξ) for all (t, u, ξ) ∈ [0, T ]× IR2.
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We also have L0 :=
∥∥ ψ•
ψ•u

∥∥ < ∞. For the measure µ there exists some η > 0 such that∫
eη|θ|µ(dθ) <∞. The price system (ψ, µ) excludes any immediate transaction gains, i.e. by

the remark following Definition 3.17 we have in particular d(µ)f ′(ξ) ≥ 0 for all ξ ∈ IR.

Assumption H (Solvability of the non-linear PDE for ϕ, p. 173). For ζ ∈ H4+β(IR)
the parameter α ∈ IR is chosen so close to 0 that there exists some ϕ ∈ H2+ 1

2
β,4+β

(
[0, T ]×IR

)
which solves the final value problem (3.4.3), (3.4.4), which satisfies

α inf
z∈IR

ζ(z) ≤ ϕ(t, u) ≤ α sup
z∈IR

ζ(z) for all (t, u) ∈ [0, T ]× IR, (4.2.3)

and for which there exists some ε > 0 such that

2d(µ)
ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≥ −1 + ε for all (t, u) ∈ [0, T ]× IR. (4.2.4)

Assumption I (The p-martingale measures are well-defined, p. 173). The scaling
parameter α ∈ IR from Assumption H is also chosen so close to 0 that

ψξ
(
t, u, ϕ(t, u)

)
ψu
(
t, u, ϕ(t, u)

)ϕu(t, u) ≥ −1 + ε for all (t, u) ∈ [0, T ]× IR. (4.2.5)

Assumption J (Stock holdings converge close to maturity, p. 173). Immediately
before and at maturity, the large investor’s stock holdings converge in the sense that

max
k∈{n−1,n}

∥∥ξn(tnk , · )− ϕ
(
tnk , ·

)∥∥
Un

k
= O

(
δ4+β

)
as n→∞. (4.2.7)

Assumption K (Cash holdings converge at maturity, p. 174). For some bα0 ∈ IR the
function bα : IR→ IR is given by

bα(u) = bα0 − α

∫ u

u0

ψ
(
T, ũ, αζ(ũ)

)
ζu(ũ) dũ,

and v̄ : [0, T ]× IR→ IR is the solution to the linear final value problem (3.4.6), (3.4.7) which
corresponds to the continuous strategy function ϕ : [0, T ]×IR→ IR via γ(t, u) =

∫ ϕ(t,u)
0 f(z) dz

for all (t, u) ∈ [0, T ]× IR. The cash holdings at maturity satisfy∥∥bn(tnn, · )− bα( · )
∥∥
Un

n
= O

(
δ2+β

)
as n→∞. (4.2.8)

Assumption L (Pre-trading behavior of the stock holdings, p. 174). One of the two
following conditions holds:

(i) The price determining measure µ is (or can be chosen as) the Dirac measure δ1 con-
centrated in 1, so that for all (t, u, ξ1, ξ2) ∈ [0, T ] × IR3 the large investor stock price
equals the equilibrium stock price directly after his trades, i.e. the large investor price
function Sµ : [0, T ]× IR3 → IR is for all (t, u, ξ1, ξ2) ∈ [0, T ]× IR3 given by the equation
Sµ(t, u, ξ1, ξ2) = ψ(t, u, ξ2) .

(ii) For each n ∈ IN there is some Zn0 ∈ {±1} such that the large investor’s stock holdings
ξn−1 immediately before time tn0 = 0 satisfy

ξn−1 = ξn(0, u0)− δZn0 ϕu(0, u0) + δ2
(

1
2
ϕuu(0, u0)−ϕt(0, u0)

)
+O

(
δ2+β

)
as n→∞.
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Assumption M (p. 187). Let ϕ be the solution of the final value problem (3.4.3), (3.4.4).
For each fixed t ∈ [0, T ] the function Xϕ : IR → (0,∞), u 7→ ψ

(
t, u, ϕ(t, u)

)
, is strictly

increasing.

Assumption N (p. 218). For δ = δn = n−
1
2 there exist some constants β ∈ (0, 1), σ ≥ 0,

and µ ∈ IR such that the volatility and drift parameters {σn}n∈IN and {µn}n∈IN satisfy

σn = σδ +O
(
δ1+β

)
and µn = µδ2 +O

(
δ2+β

)
as n→∞.

Moreover, there exist some functions a : [0, T ] × IR → IR and b : [0, T ] × IR → IR such that
uniformly for all (t, x) ∈ [0, T )× IR

pn(t, x,±1) =
1
2
(
1± a(t, x) + δb(t, x)

)
+O

(
δ1+β

)
as n→∞. (4.2.6)

Assumption O (p. 219). The functions a : [0, T ]× IR→ IR and b : [0, T ]× IR→ IR satisfy:

(i) There exists some a ∈ (0, 1) such that ‖a‖ < a. Moreover, ‖b‖ <∞.

(ii) The spatial derivative a′ : [0, T ] × IR → IR given by a′(t, x) = d
dxa(t, x) is uniformly

bounded and continuous with respect to x for all (t, x) ∈ [0, T ]× IR.

(iii) a′ : [0, T ]× IR→ IR satisfies a global Hölder condition, uniformly in t ∈ [0, T ], i.e. there
exists some K0 ∈ IR+ and some β ∈ (0, 1) such that∣∣a′(t, x)− a′(t, y)

∣∣ ≤ K0|x− y|β for all x, y ∈ IR and all t ∈ [0, T ].

(iv) The function b : [0, T ]× IR→ IR is globally Hölder continuous in x with exponent β as
well, i.e. there exists some K1 ∈ IR+ such that∣∣b(t, x)− b(t, y)

∣∣ ≤ K1|x− y|β for all x, y ∈ IR and all t ∈ [0, T ].

(v) a : [0, T ]× IR→ IR, a′ : [0, T ]× IR→ IR, and b : [0, T ]× IR→ IR are continuous in t.
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Schönbucher, P.J. and P. Wilmott (1996), Hedging in illiquid markets: Nonlinear effects,
in O.Mahrenholtz, K.Marti and R.Mennicken, eds, ‘ICIAM/GAMM 95: Proceedings of
the Third International Congress on Industrial and Applied Mathematics, Hamburg, 1995,
Special Issue: Zeitschrift für Angewandte Mathematik und Mechanik’, pp. 81–84.
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