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Abstract

This thesis studies the problem of option pricing via replication by a large investor whose
trading affects the stock price. We formulate and solve this question first in a binomial setting.
Then we consider a suitably scaled sequence of such binomial large investor models and prove
their convergence towards a continuous-time diffusion. This requires that we analyze carefully
both the convergence of the large investor’s strategy functions and the stochastic process of
the underlying fundamentals. The convergence of the latter is derived from a new convergence
result for general correlated random walks.

In each single time step, we model the stock price as a function of time, some fundamentals
and the large investor’s stock holdings, and we assume that the fundamentals describe a
random walk. We analyze in detail the price mechanism which models how the large investor’s
trades affect prices and elaborate on the importance of a “fair” price system as a theoretical
benchmark. This can be used to define implicit transaction losses and the real value of a large
investor’s portfolio. We derive conditions which prevent paper-value and real-value arbitrage
opportunities for the large investor and show the existence and uniqueness of a replication
strategy for a given contingent claim. As a consequence of its feedback on the stock price,
this strategy is in general only given implicitly by a fixed point theorem.

To study the convergence of a sequence of binomial large investor models, we rescale the
fundamentals as in Donsker’s theorem. In a first step, we then show that the convergence of
the large investor’s strategy functions is implied by their convergence at maturity. The limit
function is identified as the solution of a non-linear final value problem. By a suitable strategy
transform, this can be simplified to a perturbation of a linear problem in a “fair” market.
We then prove the convergence in distribution of the binomial large investor models under
two different regimes of martingale measures. Because the transition probabilities for the
fundamentals under these measures typically depend on the large investor’s stock holdings
before and after his trade, we have to extend classical convergence results to a setting with
general correlated random walks.

For general correlated random walks, the direction of the next move depends on time, the
current position and the direction of the previous move. Using Donsker’s scaling, we prove
the convergence in distribution of a sequence of such walks towards a diffusion limit, and we
explicitly identify the diffusion coefficients. It turns out that in comparison to the classical
case, both volatility and drift are reinforced due to the correlation between the increments
of the discrete walks. In particular, we obtain a convergence result for existing large investor
models from the literature. Moreover, our study highlights the importance and influence of
the choice of price mechanism.






Zusammenfassung

Die vorliegende Arbeit betrachtet das Problem der Optionsbewertung durch Replikation fiir
einen Groflinvestor, der den Aktienpreis durch sein Handeln beeinflult. Diese Frage wird
zuerst in einem binomialen Rahmen formuliert und gel6st. Im Anschlufl untersuchen wir
eine geeignet skalierte Folge von solchen binomialen Groflinvestormodellen und beweisen ihre
Konvergenz gegen ein zeitstetiges Diffusionsmodell. Dazu miissen wir sowohl die Konvergenz
der Strategiefunktionen des Groflinvestors als auch den stochastischen Prozef}, der die zu-
grundeliegenden Fundamentaldaten modelliert, sorgfiltig beschreiben. Die Konvergenz der
Modelle erhalten wir aus einem neuen Konvergenzresultat fiir allgemeine korrelierte Irrfahr-
ten.

Fiir jeden einzelnen Zeitpunkt modellieren wir den Aktienpreis als eine Funktion von Zeit,
gewissen Fundamentaldaten und dem Aktienbesitz des Grofiinvestors, und wir beschreiben
die Fundamentaldaten durch eine binare Irrfahrt. Wir untersuchen detailliert den Preisme-
chanismus, der den Einflufl des Grofiinvestors auf den Aktienkurs modelliert, und arbeiten
die Bedeutung eines “fairen” Preissystems als theoretischer Benchmark heraus. Dieser kann
dann benutzt werden, um implizite Transaktionsverluste und den Realwert eines Groflin-
vestorportefeuilles zu definieren. Wir entwickeln Bedingungen, die Papierwert- und Realwert-
Arbitrage ausschlieffen, und beweisen die Existenz und Eindeutigkeit von Replikationsstrate-
gien fiir ein gegebenes Endportefeuille. Wegen ihrer riickkoppelnden Wirkung auf den Ak-
tienpreis ist diese Strategie im allgemeinen nur implizit durch einen Fixpunktsatz gegeben.

Um die Konvergenz einer Folge von binomialen Grofiinvestormodellen zu betrachten, reska-
lieren wir den Prozel der Fundamentaldaten wie im Satz von Donsker. Zunéchst zeigen wir
dann, dafl die Konvergenz der Strategiefunktionen des Groflinvestors aus ihrer Konvergenz
am Félligkeitstermin folgt. Die Grenzfunktion ergibt sich als Losung eines nicht-linearen End-
wertproblems, welches durch eine geeignete Strategietransformation auf eine Stérung eines
linearen Problems in einem “fairen” Markt reduziert werden kann. Im Anschlufl beweisen wir
die Verteilungskonvergenz der binomialen Groflinvestorenmodelle unter zwei verschiedenen
Regimen von Martingalmafen. Weil die Ubergangswahrscheinlichkeiten fiir den Fundamen-
taldatenprozefl unter diesen Maflen in der Regel vom Aktienbestand des Groflinvestors vor
und nach seiner Transaktion abhédngen, miissen wir dazu klassische Konvergenzresultate auf
allgemeine korrelierte Irrfahrten erweitern.

Fiir allgemeine korrelierte Irrfahrten héngt die Richtung des nédchsten Schrittes von Zeit,
momentaner Position und der Richtung des letzten Schrittes ab. Wenn eine Folge solcher
Irrfahrten wie bei Donsker skaliert wird, zeigen wir, daf} sie in Verteilung gegen einen Diffu-
sionsprozef3 konvergiert, dessen Diffusionskoeffizienten wir explizit beschreiben. Dabei stellt
sich heraus, dafl im Vergleich zum klassischen Fall sowohl Volatilitat als auch Drift durch die
Korrelation zwischen den Zuwéchsen der Irrfahrten verstéarkt werden. Insbesondere erhalten
wir ein Konvergenzresultat fiir bestehende Grofiinvestormodelle aus der Literatur. Dariiber
hinaus unterstreicht unsere Arbeit die Bedeutung und den Einfluf}, den die Wahl des Preis-
mechanismus hat.






Contents

Introduction 3
1 The Large Investor in Discrete Time 11
1.1 The Market Mechanism in a Single Time Point . . . . . ... ... ... ... 11
1.1.1 Round-Trips and a Fair Price . . . . . . .. ... ... ... ... ... 12

1.1.2 The Class of General Price Functions . . . . .. ... ... ... ... 15

1.1.3 Existence and Uniqueness of a Fair Price . . . .. ... ... ..... 18

1.1.4 The Benchmark Price . . . . . . ... ... ... ... ... ..... 22

1.1.5 A Translation Invariance for Exponential Price Functions . . . . . . . 23

1.2 Transaction Losses . . . . . . . . . . . L L 26
1.2.1  The Transaction Loss Function . . . . . . ... .. ... ... ..... 26

1.2.2  Two Desirable Properties for Transaction Loss Functions . . . . . .. 28

1.2.3 The Local Transaction Loss Rate . . . . . . .. ... ... .. ..... 34

1.3 The Binomial Multi-Period Large Investor Market Model . . . . . . ... .. 37
1.3.1 The General Dynamic Large Investor Price System . . . . . . ... .. 37

1.3.2 A Binomial Model for the Fundamentals . . . . . . .. ... ... ... 39

1.3.3 The Large Investor’s Portfolio Strategy . . . .. ... .. ... .... 41

1.3.4 The Evolution of the Stock Price . . . . . . .. ... ... ... .... 43

1.3.5 The Value of a Portfolio Strategy . . . . . . . ... ... ... .. ... 45

1.4 Replication . . . . . . . . L 49
1.4.1 Definitions . . . . . .. 50

1.4.2 Replication of Star-Convex Contingent Claims . . . ... ... . ... 52

1.4.3 Paper Value Replication . . . . . . .. ... ... ... L L. 58

1.4.4 Star-Concave Portfolios . . . . ... ... ... ... ... ....... 64

1.5 Examples of Large Investor Price Functions . . . . . . ... ... ... .... 67
2 Recursive Equations for Value and Strategy 75
2.1 No Arbitrage and Martingale Measures . . . . . . . .. ... . ... ... 76
2.1.1 No Arbitrage for the Large Investor . . . . .. ... ... ... .... 7
2.1.2 Examples of Admissible Trading Strategies . . . . ... ... ... .. 79
2.1.3 Three Kinds of Martingale Measures . . . . . . . .. ... ... .... 80
2.1.4 Recursive Schemes for the Value Functions . . . ... ... ... ... 84
2.1.5 The Value Processes as (Super-)Martingales . . . . . . . ... ... .. 87

2.2 Recursive Schemes for the Strategy Function . . . . .. ... ... ... ... 89
2.3 Connections to Models with Transaction Costs . . . . . . .. ... ... ... 93
2.4  Markets with a Multiplicative Equilibrium Price Function . . . . . . . .. .. 96
2.4.1 The Strategy Transform . . . . . . ... ... ... ... ... .. 96
2.4.2 The Recursive Schemes Revisited . . . . . . .. ... ... ... .... 98
2.4.3 'Trading at the Benchmark Price . . ... ... ... ... ... .... 100

1



2 CONTENTS

3 Convergence of the Strategy Functions 105
3.1 Holder Spaces and Discrete Derivatives . . . . . . . . . .. ... ... ..... 106
3.2 The Case without Transaction Losses . . . . . . .. .. .. .. ... .. .... 109

3.2.1 The Limiting PDEs for the Strategy Functions and their Transforms . 110
3.2.2 Convergence of the Transformed Strategy Functions . . . .. ... .. 113
3.2.3 Convergence of the Strategy Functions . . . . . .. ... ... .. ... 121
3.2.4 Convergence of a Subsequence of Strategy Functions . . . . . ... .. 124
3.3 The General Case . . . . . . . . . . . e 128
3.3.1 Existence of a Solution to the Limiting PDE . . . . .. ... ... .. 130
3.3.2 Convergence of the Transformed Strategy Functions . . . .. ... .. 141
3.3.3 Convergence of the Strategy Functions . . . . . . . .. ... ... ... 150
3.4 The Limit of the Real Value Functions . . . . . . .. ... ... ........ 153
3.4.1 Convergence of the Real Value Functions . . . ... ... ... .... 154
3.4.2 The Final Value Problems for Strategy and Real Value Revisited . . . 158
3.4.3 Comparison with Standard Models . . . . . ... ... ... ...... 160

4 Convergence of the Binomial Model 169
4.1 Convergence for General Correlated Random Walks . . . .. .. .. .. ... 169
4.2 Convergence under the p-Martingale Measures . . . . ... ... ... . ... 171

4.2.1 General Assumptions and Definitions . . . . . . . .. ... ... .... 172
4.2.2 Existence of the p-Martingale Measures . . . . . ... ... ... ... 175
4.2.3 Convergence of the Fundamentals. . . . . . .. ... ... ... .... 180
4.2.4 Convergence of the Large Investor Price and the Paper Value Processes 182
4.2.5 The Continuous-Time Paper Value Function . .. ... ... .. ... 187
4.2.6 The Continuous-Time Stochastic Model . . . . . . .. ... ... ... 200
4.3 Convergence under the s-Martingale Measures . . . . . . . .. ... ... ... 206

5 Diffusion Limits for General Correlated Random Walks 213
5.1 Results on Homogeneous Correlated Random Walks . . . . . . ... ... .. 213
5.2 Our Results for General Correlated Random Walks . . . . . . .. .. ... .. 216
5.3 Proof of the Main Convergence Theorem . . . . . . . . .. ... ... ..... 223

5.3.1 Conditional Moments of the Correlated Random Walk . . . . . . . .. 225
5.3.2 Approximations for the Auxiliary Functions . . . . . . . .. ... ... 230
5.3.3 Tightness . . . . . . . . . e 241
5.3.4 Convergence of the Conditional Local Moments . . . . . . . ... ... 247
5.3.5 Employing the Continuity in the Time Variable . . . . . . . . ... .. 259
5.3.6  Final Preparatory Steps . . . . . . .. . ... oL 263
5.3.7 Proof of the Main Convergence Theorem . . . . . . . . ... ... ... 268
Collection of Stated Assumptions 272

Bibliography 277



Introduction

Stochastic models for option pricing can be traced back to the thesis of Bachelier (1900)
from the beginning of the last century. Bachelier modelled the stock price by a Brownian
motion with drift and then calculated option prices as expected values under the real-world
probability measure. To prevent negative stock prices, Samuelson (1965) proposed to model
returns by a Brownian motion so that the stock price itself becomes a geometric Brownian
motion. In that setup, Black and Scholes (1973) argued that the price for an option on the
stock must coincide with the price of a replicating portfolio in stock and bond. By showing
that replicating strategies for European calls and puts exist, they derived their celebrated
pricing formula. Merton (1973, 1977) extended the results of Black and Scholes in many
directions. Cox and Ross (1976) and more generally Harrison and Kreps (1979) showed that
in contrast to Bachelier’s approach, the Black-Scholes option price can be computed as the
expectation of the final payoff under the risk-neutral measure under which the stock earns
the riskless rate of return.

Around the same time Cox, Ross and Rubinstein (1979) developed a discrete approximation of
the Black-Scholes model. They showed that the Black-Scholes price for a European call can be
obtained as the limit of the unique arbitrage-free call option prices in a sequence of suitably
scaled binomial models if the time step goes to zero. In each binomial model, the option
price can be found by elementary mathematics because at any node of the binomial tree, the
required stock and bond holdings are determined by a self-financing condition from the two
possible option values at the next nodes. This gives a recursion to calculate simultaneously
the option values and the hedging strategy from the final payoff values at maturity.

The classical literature assumes that all investors have the same information, that the mar-
ket is complete in the sense that every contingent claim is attainable by some replicating
trading strategy, that the market is frictionless, and that all investors act as price takers.
Of course, these assumptions only give a very idealized picture of reality. To amend this,
the Black-Scholes analysis has been extended in numerous ways to accomodate for example
incompleteness, transaction costs, short-sale constraints, or asymmetric information. Also
the price-taking assumption has been relaxed, first in a discrete binomial model by Jarrow
(1994), and then in a continuous-time model by Frey (1998) and others. In this thesis, we
first extend the class of price mechanisms considered by these authors and then show in this
more general setting that a sequence of discrete binomial models similar to Jarrow (1994)
converges to a continuous model which generalizes Frey (1998). If the large investor acts as
a price taker, this reduces to the Cox-Ross-Rubinstein (1979) result.

Jarrow (1992, 1994) starts with a general model for the stock price process in a discrete
binomial large investor model. To exclude market manipulation generated by trading in
stock and bond, he assumes that the stock price depends on time, some fundamentals, and
on the current but not on the previous stock holdings of the large investor. If the large
investor is allowed to trade in a derivative of the stock, the markets for the stock and its
derivative must be in synchrony to prevent market manipulation strategies for the large
investor. Jarrow (1994) then shows by example that in such a synchronous market, the price
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4 INTRODUCTION

and the large investor’s hedging strategy for a European call can still be derived as in the
Cox-Ross-Rubinstein model by a backward recursion. In contrast to the standard binomial
model, however, the stock prices in the recursive formulee depend on the large investor’s
hedging strategy, which induces additional volatility.

Frey (1998) starts with a general reaction function which describes in a temporary equilib-
rium the stock price as a function of time, some fundamental value modelled as a geometric
Brownian motion, and the large investor’s stock holdings. He concentrates on the replication
price at which a large investor can perfectly replicate an option with a sufficiently smooth
payoff. The replicating strategy is given via a martingale representation for the final option
value, where the trading strategy appears not only as integrand, but also in the integrator
of the stochastic integral which describes the large investor’s cumulative gains from trade.
Frey (1998) transforms this stochastic representation into a quasi-linear final value problem
for the large investor’s strategy function, parametrized by time and fundamentals. He proves
existence and uniqueness of solutions to that final value problem and discusses the qualitative
difference of the large investor’s replicating strategy compared to the corresponding hedging
strategy in the classical Black-Scholes model.

While Jarrow and Frey work with an external fundamental state variable, Schénbucher and
Wilmott (2000) and Sircar and Papanicolaou (1998) use the feedback perturbed price process
as the observable process. Schénbucher and Wilmott (2000) study the price dynamics in
illiquid markets and its reaction to the trading strategy of a large investor. Their analysis
leads to a partial differential equation for the replication paper value of an option, which is
equivalent to Frey’s (1998) description via the associated strategy. Sircar and Papanicolaou
(1998) derive the same partial differential equation and perform an extensive asymptotic and
numerical study by considering the nonlinearity as a perturbation to the classical Black-
Scholes partial differential equation.

Weak convergence questions for discrete large investor models have already been examined
by Frey and Stremme (1997) and Bierbaum (1997). These authors assume in their results the
convergence both of the strategy functions used by the large investor and of the discrete fun-
damental price processes. In contrast, we derive here the convergence of these two sequences
directly from the option replication result in the discrete binomial models.

In relation to the existing literature on large investor models, this thesis makes two main
contributions. We first introduce and analyze in detail an extensive class of discrete binomial
models for option replication and option valuation with a large investor. Then we show that
these discrete models converge in distribution to certain diffusion models.

Similarly as in Jarrow (1994) or Frey (1998), the equilibrium price on intervals where the
large investor does not trade is modelled as a function of time, some fundamental value
and the large investor’s stock holdings. In discrete time, we carefully explore the price
mechanism which determines the stock price at which the large investor actually trades.
This includes an investigation of trades at the initial and final trading dates, and covers both
permanent and temporary price impacts which may result from the large investor’s activity.
The corresponding continuous-time limits provide new insights into the assumptions about
the price mechanism in existing large investor models.

In the discrete model, the binomial tree for the relevant stock prices is still recombining if the
large investor uses path-independent trading strategies. We derive existence and uniqueness
of such a strategy which replicates a given contingent claim. If the stock price does not
completely adjusts to an order of the large investor before it is executed, the large investor’s
replicating strategy is not given explicitly as in Cox, Ross and Rubinstein (1979), but only as a
solution to a fixed point problem. Its non-linearity makes the subsequent convergence analysis
more difficult to handle and forces us to derive quite precise asymptotic error estimates.
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One important insight that emerges from our analysis is that in large investor models, the
main focus should be on the trading strategy and not on the value process. In particular, the
self-financing condition is a condition on the strategy, and it uniquely determines the latter
from a given final position. But as already observed by Jarrow (1992) and Schonbucher and
Wilmott (2000), there are at least two different methods to assess a large investor’s strategy:
its paper value and its real value. We give a new interpretation of the real value as the
portfolio liquidation value under a “fair” price system in the large investor market. We also
derive conditions on the trading strategy which exclude paper-value arbitrage, and we show
that a large class of price systems does not allow real-value arbitrage opportunities.

The convergence in distribution of our binomial large investor models to a continuous-time
diffusion is proved in two steps. We first show that the large investor’s strategy functions
converge towards some limit function and then use this to show that the sequence of fun-
damental processes converges in distribution. The above limit function is the solution of
a generally highly non-linear final value problem; this can be substantially simplified by a
suitable integral transform. The transformed problem can then be viewed as a perturbation
of a linear problem in a large investor market with a “fair” pricing system.

To obtain the convergence of the fundamental processes in a sequence of large investor models,
we have to study general correlated random walks, for which the direction of the next move
depends on time, the current position and the direction of the previous move. We prove
that a sequence of such correlated random walks which are scaled as in Donsker’s theorem
converges to a diffusion limit, and we identify the diffusion coefficients. The volatility and
drift of the limit process are reinforced due to the correlation between the increments of the
discrete random walks. These results are of independent mathematical interest and constitute
another main contribution of the thesis.

The basic convergence theorem for general correlated random walks is first applied to prove
the convergence in distribution of a sequence of binomial models under the associated p-
martingale measures under which both the large investor stock price and the paper value of the
large investor’s portfolio are martingales. The transition probabilities for the fundamentals
can here depend on the two previous values, since the large investor stock price is a function
of the large investor’s stock holdings both before and after his trade. Hence we need the full
strength of the theorem. For the particular class of models where the stock price completely
adjusts to an order of the large investor before that is executed, the transition probabilities
only depend on the last value of the fundamentals. Here we establish that a suitably scaled
sequence of Jarrow’s (1994) binomial models converges to Frey’s (1998) model under the
p-martingale measures.

We now give a more detailed overview of the various chapters in this thesis.

In Chapter 1, we present the discrete-time binomial model of a large investor market. Like
Frey (1998), we model the equilibrium stock price in the market as a function of time, of
some fundamental value, and of the current stock holdings of the large investor. However,
this price is only valid if the large investor is inactive at this point in time, and one must
model very precisely what happens when the large investor trades a non-infinitesimal number
of shares. The large investor price at which the large investor can actually settle his trades
is defined as a weighted average of equilibrium prices so that the price system in the large
investor market is described by a pair (¢, ) of an equilibrium price function ¢ and a price
determining measure . The choice of i represents the way that the market reacts to the large
investor’s order. Our setting covers the mechanisms used in the papers of Frey and Stremme
(1997), Bierbaum (1997), Frey (1998), Sircar and Papanicolaou (1998), Schonbucher and
Wilmott (2000), Jonsson, Keppo and Meng (2004) and Baum (2001), who all assume that
the market immediately and fully adjusts to an order of the large investor. It also includes the
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other extreme where the large investor can trade at the old equilibrium price with the price
only adjusting directly after the large investor’s trade; this mechanism is implied in Platen
and Schweizer (1998) when switching from the ith to the (¢ + 1)th model. In addition to
the above permanent price impacts we can also model temporary price impacts in the spirit
of Bertsimas and Lo (1998), Bertsimas, Hummel and Lo (2000), Almgren and Chriss (1999,
2000), Huberman and Stanzl (2004, 2003), Bakstein (2001), or Cetin, Jarrow and Protter
(2004). For a practitioner’s view on the market mechanism in the presence of a large investor
see also Taleb (1996).

A key role is played by the (theoretical) benchmark price defined as the arithmetic average
of all equilibrium stock prices which correspond to a fixed stock position of the large investor
lying between the stock holdings before and after his trade. It satisfies the properties of a fair
price and can be used to specify implied transaction losses relative to the benchmark price.
This provides a link to small investor models with transaction costs as studied in discrete
time by Boyle and Vorst (1992) and Opitz (1999).

Since the stock price is affected by the large investor’s stock holdings, it is not a priori clear
how to value a portfolio of the large investor. Chapter 1 introduces two different concepts for
this. One is a mark-to-market approach which simply uses the last price seen on the market
by the large investor to assess his complete stock holdings. The portfolio value obtained from
this valuation is called paper value as in Jarrow (1992) and Schonbucher and Wilmott (2000).
Frey (1998) also implicitly values the large investor’s portfolio by means of the paper value.
The second approach considers the real value of the large investor’s portfolio, defined as the
theoretical liquidation price the large investor could achieve if he sold his portfolio without
any transaction losses. This coincides with the “real value” of Schonbucher and Wilmott
(2000) who define this as the limit of successive small block trades. Hence we obtain a new
interpretation of why the real value is a good proxy for the actual value of the large investor’s
portfolio.

After fixing the one-period price mechanism, we extend the large investor model to a dynamic
multi-period setting where the fundamentals are given by a binomial random walk. This
extends the binomial models of Jarrow (1994) and Bakstein (2001). For path-independent
trading strategies, the binomial tree described by the vector of possible large investor and
equilibrium stock prices is still recombining. For a suitable class of contingent claims, this
allows one to determine a self-financing option replication strategy along the lines of Cox,
Ross and Rubinstein (1979). But in contrast to the explicit Cox-Ross-Rubinstein case, if the
stock price does not completely adjust to an order of the large investor before its execution,
the large investor’s strategy is only given as the solution to a fixed point problem for which
we show existence and uniqueness. Moreover, one must carefully investigate the behavior of
the large investor stock price at the initial and final trading dates.

In the Cox-Ross-Rubinstein model, the (discounted) value process of any self-financing trad-
ing strategy is a martingale under the unique measure which makes the (discounted) price
process a martingale. This gives a recursive formula for the value function and also shows
that this small investor market is free of arbitrage. Chapter 2 contains similar results for
our large investor market, but we now need to distinguish between paper value and real value
arbitrage. For a natural class of self-financing trading strategies, the paper value process
is a martingale under the p-martingale measure, the unique measure which turns the large
investor price process into a martingale, and so this class is free of paper-value arbitrage.
However, the p-martingale measure is highly dependent on the large investor’s trading strat-
egy. If the equilibrium price function has a multiplicative structure, the real value process is
always a supermartingale under the s-martingale measure, which is the martingale measure
for the associated small investor price process. Hence such a market structure permits no
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real-value arbitrage opportunities.

Sufficient conditions to exclude arbitrage for the large investor have been given in different
models by Jarrow (1992, 1994), Bank (1999), Baum (2001), Bank and Baum (2004), Huber-
man and Stanzl (2004), Cetin, Jarrow and Protter (2004). The martingale property of the
paper value has already been used by Frey (1998) to determine the replicating strategy for a
contingent claim in his continuous-time model.

In Chapter 2, we also derive an implicit difference equation of second order for the large in-
vestor’s strategy function £ in the nth binomial model. This forms the basis of the subsequent
convergence analysis in Chapter 3. We then explain the similarities with the proportional
transaction cost models of Boyle and Vorst (1992) and Musiela and Rutkowski (1998). These
suggest to focus on multiplicative price systems, where the impact from the large investor’s
stock holdings enters the equilibrium price in a multiplicative way. For such price systems
the recursions for the strategy function and the real value process simplify considerably. If
the large investor does not face any transaction losses, the real value process even becomes a
martingale under the s-martingale measure, every contingent claim is attainable, and we can
explicitly calculate its replicating strategy.

Chapter 3 is devoted to the convergence of a sequence {£"} e of strategy functions from
binomial large investor models as the time step goes to zero. Under suitable assumptions, the
limit function ¢ must satisfy a partial differential equation which is the continuous analogue
of the difference equation for £". Together with the convergence at the final date, this gives
a final value problem for ¢, and we prove existence and uniqueness of a solution. Then we
show that the convergence of the discrete strategy functions {{"},ew to ¢ follows from the
convergence of their values immediately before and at maturity to the corresponding values
of .

In general, the final value problem for ¢ is highly non-linear, but it can be simplified to a
quasi-linear problem by working with transformed functions ¢g" = go&™ and v = go . If the
price system excludes any instantaneous transaction gains or losses, the transformed problem
is even linear, each ¢g" can be calculated by an explicit recursive scheme from its values at
and immediately before maturity, and the limit ~ satisfies a linear final value problem. Thus
existence and uniqueness of solutions to the final value problem as well as the convergence
of the transformed strategy functions follow from classical results. If the price system does
not prevent transaction losses, however, the recursive scheme for ¢g" remains implicit and the
final value problem for ~ is only quasi-linear. We adapt a proof by Frey (1998) to show that
even in this setting the final value problem for ~y still has a solution if the boundary values at
maturity do not become too large. We then generalize the convergence result for {g"},en to
this general case and transform the results back into corresponding results for the strategy
functions {£"},env and their limit ¢.

The detailed investigation of the strategy as a function of time and fundamentals is not
needed in the standard Cox-Ross-Rubinstein model; since the stock price is not affected by the
strategy, the convergence of the value process can be shown without using the convergence of
the strategy. But in the large investor model, convergence of the strategy functions is essential
to deduce the convergence in distribution of the binomial large investor models. Convergence
of the strategy functions is also a key assumption for the convergence results of Frey and
Stremme (1997) and Bierbaum (1997). Once the convergence of the strategy functions is
shown, we use this to derive a similar convergence result for the real value functions. The
partial differential equation satisfied by their limit ¢ resembles the structure known from
continuous-time models with proportional transaction costs as the continuous-time limits of
the models of Leland (1985) and Boyle and Vorst (1992) or the continuous-time model of
Barles and Soner (1998). This structural resemblance has also been observed by Frey (2000).
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And like in the Black-Scholes model, the limiting strategy function ¢ is (a transform of) the
spatial derivative of the real value function v. If the price system does not induce transaction
losses, the partial differential equation for v again becomes linear and basically reduces to the
Black-Scholes equation. Such a behavior was also discovered by Jonsson, Keppo and Meng
(2004).

In Chapter 4, we investigate the convergence in distribution of a sequence of binomial
large investor models. Apart from the convergence of the strategy functions, the other key
assumption for the convergence result in Frey and Stremme (1997) is the convergence of the
discrete-time fundamental processes to a continuous-time diffusion. We give conditions on
the parameters of the binomial models which actually imply the convergence in distribution
of the fundamental processes, and we explicitly determine the coefficients of the limiting
diffusion in terms of the price system (v, ) and the limiting strategy function . It is then
straightforward to prove by the continuous mapping theorem the convergence of all other
model-relevant processes like price, strategy and value.

Of course, convergence in distribution always depends on the underlying probability mea-
sures, and this becomes an issue for the large investor model. We show convergence under
two different regimes: the p-martingale measures and the s-martingale measures. Under es-
sentially the same assumptions which guarantee the convergence of the strategy functions in
Chapter 3, we can apply a convergence theorem for general correlated random walks from
Chapter 5 to deduce the desired convergence. In the particular case where the equilibrium
price completely adjusts to an order of the large investor before the order is actually executed,
the convergence under the p-martingale measures implies the convergence of a suitably scaled
version of Jarrow’s (1994) model to the model of Frey (1998). By writing the paper value in
the limit model as a function of time and stock price, we also obtain a non-linear partial differ-
ential equation for the continuous paper value function which generalizes the corresponding
partial differential equations of Schénbucher and Wilmott (1996, 2000), Sircar and Papani-
colaou (1998), Frey (2000), and Frey and Patie (2002). The situation under the s-martingale
measures is considerably simpler, and the limit of the fundamentals is just a Brownian mo-
tion with drift. In the absence of a large investor, the results under the p- and s-martingale
measures coincide and we recover the convergence of the Cox-Ross-Rubinstein models to the
Black-Scholes model as a special case.

The key ingredient for the results in Chapter 4 is a convergence theorem for general correlated
random walks. This is a mathematical contribution of independent interest which is presented
in Chapter 5. For a correlated random walk, the direction of the next move depends on
its tilt, i.e., on the direction of the move in the previous step. But for our application in
Chapter 4, we need general correlated random walks where the direction of the next move
can also depend on time and the current position in space. If a sequence of such walks
is scaled as in Donsker’s theorem and if for each possible direction of the random walk’s
previous move, the transition probabilities converge to a (possibly different) limit function,
our main convergence theorem for general correlated random walks states that the rescaled
sequence converges in distribution to the solution of a stochastic differential equation. The
generator of the latter is explicitly given, and a positive correlation between the direction of
two successive moves increases the volatility of the limit process. As a corollary, we show
that general correlated random walks can be used to approximate general diffusion processes
via a recombining binomial tree.

While the proof of the main convergence theorem is based on standard ideas, the details
become rather tricky and involved because the correlation between two successive increments
of the random walk need not vanish asymptotically. It is essential to carefully select proper
lenses to look at our random walk, since its behavior “at a microscopic level” on time intervals
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of order O(42) is very different from the “large picture” on time intervals of length O(&) which
prevails in the limit.

Correlated random walks, which were introduced by Gillis (1955) and Mohan (1955), are
important objects on their own and have a variety of applications outside mathematical
finance. An overview of some of the literature is given in Section 5.1. But up to now,
research has almost exclusively focused on time- and space-homogeneous correlated random
walks which are much easier to handle than the general inhomogeneous case. Thus our
convergence results noticeably extend results of Renshaw and Henderson (1981), Szdsz and
Téth (1984), Téth (1986), Opitz (1999) and Mauldin, Monticino and Weizsdcker (1996) on
the convergence of homogeneous correlated random walks.
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Chapter 1

The Large Investor in Discrete
Time

In this chapter we present the discrete, binomial model of a large investor market, which
forms the basis of our convergence analysis in Chapter 3 and 4. At the beginning, we have
to describe the market mechanism in some more detail. The market is supposed to be in
a Walrasian equilibrium as long as the large investor does not trade. It is then essential
to model very precisely the stock price movements when the large investor trades a non-
infinitesimal number of shares, and because of its importance, we start with such a model
in a static world. Our discussion will reveal the significance of a certain benchmark price
which can then be used in order to specify implied transaction losses in the large investor
market model. After having described the price mechanism in a single time point, we turn
to a general dynamic multi-period large investor market model, which also depends on time
and on the evolution of some external fundamentals given by a binomial random walk, and
define self-financing trading strategies and portfolio values in a way similar to small investor
market models. However, we have to differentiate between the paper value and the real value.
Under certain assumptions on the price system of our large investor model — stated in terms
of the associated transaction losses — we then present the class of star-convexr contingent
claims, which are defined in terms of the large investor’s final stock holdings at maturity, and
we show that all those contingent claims are attainable by a replicating trading strategy. A
similar result holds for the replication of a certain paper value. In contrast to the standard
Cox-Ross-Rubinstein model, the corresponding replicating strategies will in general only be
given as solutions to a fixed point equation, and the derivation of an existence and uniqueness
result for this fixed point equation is a central result of this chapter. Last but not least we
give examples of large investor price systems which satisfy the assumptions needed for these
results, and we show that our large investor model contains the Cox-Ross-Rubinstein model
as a special case.

1.1 The Market Mechanism in a Single Time Point

In a large investor financial market there exists one (large) investor who can affect the stock
prices by his trading. Because of the large investor’s influence on the stock prices, the
stock price will vary depending on the trades of the large investor, even if the time and
the fundamental information at this time is kept constant. Especially, allowing the large
investor to perform several subsequent trades at one point in time, the large investor might
even realize immediate arbitrage opportunities due to price manipulation techniques, which
a small investor cannot apply.

11
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Before we develop a fully dynamic large investor model where the large investor’s stock price
also depends on time and some fundamental information at this time, we will first focus on
the price mechanism in a single time point, i.e. before some new fundamental information
arrives. In such a situation we carve out conditions on general large investor’s price functions
which ensure that any round-trip of the large investor excludes any transaction gains or losses.
These conditions are satisfied by the benchmark price, which is constructed as the mean of
equilibrium prices. For the important class of exponential equilibrium price functions, the
benchmark price even is the unique price function which excludes both immediate transaction
gains and immediate transaction losses.

Thus, let us assume that at some fixed time (or in some time interval) in which no new
information arrives the market there exist some function S : IR> — IR such that for each
&1,&2 € IR the large investor is faced with a per-share price of S(£1,&2) when shifting his
stock position from & to &. Supposing that the trades of the large investor are wound off
much faster than new information appears in the market, we can take for granted that the
large investor can conduct several transactions according to this price building mechanism.
In an idealized world, all transactions do not take time at all, such that the large investor
can perform infinitely many transactions.

1.1.1 Round-Trips and a Fair Price

Depending on the particular form of the price mechanism described by S : IR?> — IR the
large investor might profit or suffer from buying and selling stocks. In this section we look
for conditions which a price function S* : IR? — IR has to satisfy to be a “fair price” in that
the large investor does not gain or lose any money from round-trips.

In order to start, suppose that the large investor initially holds £ shares of stock. Then he
could buy a > 0 shares at a total price of aS(§, £+a) and then sell these a shares immediately
at a total price of aS(€ + a, ). Overall, this investment costs him

CH(& ) =S+ a) — S(E+a,9)).

If the costs Ct (&, a) are negative, this means that the large investor receives the amount
‘C* (&, oz)‘ as a result of his two transactions. In this case the large investor could repeat the
game over and over and basically earn any positive amount one can imagine; this would be
an immediate arbitrage opportunity for the large investor.

Similarly, the large investor could also sell « stocks and then re-buy them leading to total
costs of

C7(&a) =S~ a8 - S(§,¢ —a)).

The two strategies described above are simple forms of round-trips. A round-trip is a strategy
to buy and sell stocks in such a way that the initial stock position is re-attained at the end.
In mathematical terms we use the following definition:

Definition 1.1. A (deterministic) k-step round-trip is a vector o € IRF which satisfies
Zle a; = 0. For all k € IN we denote the space of all k-step round-trips by 9. The costs
associated with a round-trip o € R* starting at level & € IR are given by

k i—1 %
Ck(é’,a) = ZQZS’(f—F Zaj,é’ + Zoaj).
i—1 j=1 j=1

Remark. By the definition of %¥ it is obvious that ¥ is the (k — 1)-dimensional space
orthogonal to the vector (1,1,...,1)" € IR, O
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A large investor with an initial stock holding & who applies the round-trip o € 9R¥ changes
his stock holdings according to the scheme

k—1
§—>£+a1—>£+a1+a2—>---—>§+2aj—>f.
j=1

Like in the exemplary buy-and-sell case, it is clear that if the large investor starts with a
stock position & € IR and there exist some k& € IN and some round-trip o € R* such that
the associated costs Ck (&, «) are strictly negative, then the large investor has an arbitrage
opportunity.

A “fair price” mechanism in a large investor market would be a price mechanism which
excludes any instantaneous transaction gains and transaction losses from round-trips. Thus,
a fair price function S* : IR? — IR should satisfy

k i-1 i
Cr(§,a):= Z%’S* <£+Zaj,§+ Za]) =0 forallé € R, a € R¥ and k € IN (1.1)

i=1 j=1 j=1

Instead of verifying (1.1) for all £ € IN it suffices to check it for k = 3, as the following
proposition shows:

Proposition 1.2. Condition (1.1) holds for all k € IN if and only if

pS* (&€ + pd) + (1 —p)S™ (£ + pd,E +d) = S* (£ + d,€) (1.2)
for all p €10,1] and &,d € R.

Proof. 1t is clear that (1.2) is necessary for (1.1), since the former follows from the latter by
taking o = (pd, (1 — p)d, —d)tr € M3. It remains to show that (1.2) for all p € [0,1] and
&,d € IR is also sufficient for (1.1). For this reason let us fix £ € IV and suppose that (1.2)
holds for all p € [0,1] and £,d € IR.

Since the only round-trip a € R! is a = 0, it is clear that (1.1) holds for k = 1. For k =2 a
round-trip o € 2 must have the form a = (d, —d) for some d € IR. Then (1.1) is implied by
(1.2) with p =1 which gives the symmetry

S*(&,E+d) =S (E+d, &) forall(,de . (1.3)

Let us now come to the case k = 3 and take some o € 3. Without loss of generality we can
assume «; # 0 for all ¢ € {1,2,3}, otherwise we are back in the case k = 2. By the definition
of |3 we have a1 + s+ a3 = 0. Then one of the o;’s has the opposite sign of the two others,
i.e. there exist an ¢* € {1,2,3} with sgn(ai*) = —sgn(aj) for j # i*. We will first assume
1* = 3 and set d = —a3. Since Zg’zl a; =0, a; #0 for i € {1,2,3}, and i* = 3 we have

a1 =pd and g =(1—p)d forsome pe (0,1),
hence we see that
C3(& ) = pdS™(&, & + pd) + (1 — p)dS™(§ + pd, § + d) — dS*(§ +d, §).

Due to (1.2) this term vanishes, thus we have proved (1.1) for k¥ = 3 if ¢* = 3. The cases
i* =1 and ¢* = 2 follow similarly. For example if i* = 1 we can set &1 = a9, &2 = ag, and
a3z = aq as well as £ = £ + a7 to conclude from Zf’zl &; = 0 that

C3(6,a) = a3S™ (€ + Gy + do,€) + a1S*(§,€ + G1) + GaS™ (€ + 1, €+ +G2) =0
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which of course simplifies to

3 1—1 7
Cie ) =S s (5{@,5{@) _ci(éa). (1.4
i=1 j=1 j=1

It still remains to prove (1.1) for £ > 3. Here we are going to use an inductive argument. Let
us assume that for some k& > 3 we have shown

k—1 i—1 i
Z%‘S* <§ + Zaj,§+ Zaj> =0 forall £ e Rand a e R 1L (1.5)

i=1 j=1 j=1

Then we have to show that (1.1) even holds for all £ € IR and a € R¥. Thus, let us fix £ € IR
and some round-trip a* € ¥, We then fragment this k-step round-trip into one (k—1)-step
round-trip a1 and a 3-step round-trip 5 by defining o1 € |F1 by

Ea

-2

k-1 _ _k . k—1 __ k

af =af forl1<i<k-2 and o;";=-— aj,
J

Il
_.

and the vector 83 € R®3 by
k-2
A= af, pi=af_y, and B} =aj.
j=1

Then we have for 1 <i <k — 2:
i—1 i i—1 i
e <§+ Sakct Za§> ot (5 P ek et za;w),
Jj=1 Jj=1 j=1 j=1

fori=%k—1:
k—2 k—1 1 2
k S* k k _ BS* 3 3
gy (f+2aj,§+2aj>—ﬁ2 <§+Zﬁj,§+§jﬁj>,
Jj=1 Jj=1 j=1 j=1
and for ¢ = k:
k—1 k 2 3
aS* (£+Za§,§+§ja§> =ﬁ§S*<€+Zﬂ?,£+Zﬁ§’>.
Jj=1 Jj=1 j=1 j=1

Finally, by the definitions of o/,ij and 3} and the two-dimensional case (1.3), we get
k—2 k—1

apT18” (f +Y il a§1> = —B18*(£+ 87,6) = —B1S* (&, 6+ B]).
j=1 j=1

Thus (1.1) with o = o is equivalent to

k—1

i—1 i 3 i—1 i
> akts (5 +Y b+ Za§1> +Y Bs” (5 +> B e+ Zﬁ?) =0
j=1 j=1 i=1 j=1 Jj=1

i=1

and this holds true because of the induction hypothesis (1.5) and the case for k = 3. q.e.d.
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Remark. Jarrow (1992) derives sufficient conditions for the non-existence of market manip-
ulation strategies in discrete multi-period large investor markets. One of these conditions
prevents any trading strategies where the large investor establishes a trend and then trades
against it before the market collapses. In our model which was restricted to a single time
point, or at least a time interval in which no new information occurs and solely the large
investor has a significant impact on the stock price, the condition (1.1) excludes such market
manipulating trading strategies. O

Of course, the constant price function S* : IR?> — IR with S* = ¢ for some ¢ € IR satisfies the
conditions (1.1) and (1.2). Before we present non-trivial price functions which satisfy these
conditions as well, we should take a closer look at how we want to model the price mechanism
in the large investor market so as to search for functions within the proper class.

1.1.2 The Class of General Price Functions

In this section we will present a class of price functions S : IR> — IR which is used to
describe the stock price mechanism in a single time point. The class presented is motivated
by an analysis of the market reaction to trades of the large investor, and allows for various
information structures between the small and the large investor.

Thus, let us assume that S : IR> — IR is some price function, such that the large investor
is faced with a price of S(&1,&2) when he shifts his stock holdings from &; to &. If the
large investor holds ¢ € IR shares and does not trade, the stock price in the market will be
f(&) :=S5(£,€). This price f(£) can be viewed as the Walrasian equilibrium price in a market
where £ shares are held by the large investor and the large investor has no additional demand
or supply. The rest of the shares is assumed to be held by the small investors, and thus the
price f(£) could have been derived from the cumulative excess demand function of the small
investors for any given constant stock position £ € IR of the large investor.

Now suppose that for some &1, &> € IR the large investor changes his stock position from & to
& shares. In this case the old Walrasian equilibrium at the price f(&;) is disturbed and the
market will move towards the new equilibrium at the price f(&2). It remains to model in more
detail how the transition takes place from the old to the new equilibrium, and in particular
from the old equilibrium price f(£1) to the new equilibrium price f(&2). Especially, we are
interested at which per-share price the large investor can trade the |{; — & stocks needed to
shift his stock holdings from &; to &5 shares. This question basically leads back to the question
how the information about the large investor’s trade is noticed by the market participants.
Depending on the information structure the small investors (can) adapt their stock holdings
more or less quickly to the stock holdings which they prefer in the new equilibrium. We will
illustrate this with two simple examples.

Ezample 1.1. Suppose that our market consists of the large investor and “infinitely many”
“infinitesimally small” investors. As long as the large investor holds &; € IR stocks, we are in
the old equilibrium at the stock price f(&;); thus each small investor is willing to buy and sell
an infinitesimal share of the stock at a price f(&1) per stock. Without loss of generality let
us assume that £; < &2, i.e. the large investor wants to buy & — &; stocks. He could achieve
this goal by entering separate contracts with all the small investors to buy an “infinitesimal
small” amount of stocks from each of the “infinitely many” small investors, such that overall
he has bought & — & stocks.

In this case the small investors notice the disturbance of the old equilibrium with a certain
delay, and the large investor can realize a per-share price of f(&;1). After the large investor’s
trade the small investors have to adjust their individual stock holdings according to their
individual excess demand functions, such that the new equilibrium price f(&2) will quickly
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emerge. The large investor can realize the price f(&;) since the stocks are exchanged before
the small investors are aggregated. ([

In the next example the information structure is reversed and the demand of the small
investors is aggregated before the large investor’s trade is executed.

Ezample 1.2. We once again consider a market with one large investor and “infinitely many”
“infinitesimally small” investors, but now suppose that the large investor does not or cannot
enter into contracts with each small investor separately, but buys the £&s—&; > 0 stocks needed
to shift his stock holdings from &; to £ at the stock exchange. Since the large investor wants
to shift his portfolio regardless of the stock price he can obtain, he has to place an unlimited
order. Due to the additional demand for stocks at the stock exchange there will be much
more small investors whose sell orders can be accepted to maximize the volume of sales, and
the price fixed by the broker will be f(&2).

Since a similar reasoning works if the large investor sells stocks, we can conclude that if the
small investors are aggregated before the stocks are exchanged the large investor can only
realize a price f(&2). O

Depending on the realistic problem, it is easy to think of cases where we have a situation in
between the two extremes of the preceding examples: Perhaps not all of the small investors
are of the same size, there might be a few larger ones with whom the large investor is willing
to enter into separate contracts on a part of the stocks he is going to buy or sell, and he
might buy/sell the rest at possibly different stock exchanges.

If we know for each £ € IR the equilibrium stock price f(§) which would appear in the market
whenever the large investor held the fixed amount of £ shares, then we can model the price
mechanism in the large investor market by introducing a price-determining (probability)
measure i on IR, which reflects the information structure between the small investors and
the large investor. Namely, we then model the price function S : IR? — IR which describes
the per-share price of the large investor’s transaction of £, — &; shares to change his stock
holdings from &; to & by

S(&1,&2) = /f((l —0)&1 4 0&) u(df)  for all &1, & € RR. (1.6)

Within this setting we recover the price-building mechanism of Example 1.1, where the
price-determining measure is the Dirac measure Jg concentrated in 0, and the mechanism
of Example 1.2 where y = 01, i.e. the Dirac measure concentrated in 1. Most natural are
price-determining measures which lie “between” these two Dirac measures, i.e. which are
probability measures on [0, 1]. However in taking for example y = ¢, for some z > 1, we can
also model price dynamics, where the market at first overreacts because of the sudden addi-
tional large investor’s supply or demand, since there is not enough instantaneous liquidity in
the market.

Remark. The representation (1.6) can be rewritten as

S(§,§+a):/f(§+0a),u(d0) for all £, € RR. (1.7)

We will use both representations in the sequel. O

In order to guarantee the existence of the price functions of the form (1.6) we suppose that
the function f : IR — IR describing the equilibrium stock prices is Lebesgue-measurable and
locally bounded, and that the price-determining measure p is such that the integral in (1.6)
exists for all &1,& € IR. This leads to the following definitions:
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Definition 1.3. Let M(IR) denote the set which contains all probability measures on IR.
For every Lebesgue-measurable and locally bounded function f : IR — IR the family &(f)
of general price functions based on f is given by the set of all functions S : R? — IR
satisfying (1.6) for some price-determining measure

weM(f) = {u e M(R) : /!f((l —0)&1 4 0&2) | u(df) < oo for all &1, € ]R} . (1.8)

The class of general price functions is then given by
CRES {S ‘ S € 6(f) for some Lebesgue-measurable and locally bounded f : IR — ]R}.
Moreover, we define the class &, of exponential price functions as the set
Se :={5| S € &(f) for some f: R — IR with f(§) =a + be for all € € R}.

The class of exponential price function turns out to be a well-suited subclass of general price
functions. Especially, all exponential price functions are either bounded from above (if b < 0)
or from below (if b > 0), and in particular if both b > 0 and a > 0, then each large investor
price S € &(f) which is generated from the equilibrium price function f(&) = a 4 be¢ for all
£ € IR is nonnegative. Provided that even a = 0 and b > 0, the stock price is either constant
(if ¢ = 0) or for every x > 0 there exists some position £ of shares held by the large investor,
such that the equilibrium price in the market becomes f(§) = x. Of course, the equilibrium
function f associated to an exponential price function S € &, is always monotone, and it is
strictly monotone if b, c € IR\{0}.

Remark. In Section 1.3.1 we will generalize the equilibrium stock price f so that it also
depends on time and some stochastic process which describes market fundamentals. The
defining equation (1.6) for the large investor’s stock price is generalized accordingly. This
will give us a stochastic and dynamic model for the stock price which is comparable to the
usual models of the stock price in large investor models as for example in Jarrow (1992,
1994) or Frey (1998). Compared to these models we have modelled more precisely the price
mechanism at a trading date for the large investor, and we have substantially extended the
class of price mechanism considered. For this reason, we will already pause here to discuss
how the stock price in a large investor market is modelled in the literature.

Jarrow (1992, 1994) models the stock price as a reaction function to the large investor’s trades
and thus assumes that the market completely adjust to an order of the large investor before
this order is executed. While Jarrow (1992, 1994) starts his discussion with a very general
discrete stock price process which can depend on the entire history of the large investor’s
strategy, he can only prove absence of arbitrage for the large investor if the stock price process
is independent of the large investor’s past holdings. In a market in continuous time, Frey and
Stremme (1997) use a market clearing condition of zero total excess demand as introduced by
Foéllmer and Schweizer (1993) to obtain a Walrasian equilibrium stock price. By this means,
they implictly suppose that the market adjusts as well to the large investor’s order before it is
actually executed. The model of Frey and Stremme (1997) has been applied and extended by
Frey (1998), Sircar and Papanicolaou (1998), Platen and Schweizer (1998), Bierbaum (1997),
Baum (2001) and Bank and Baum (2004). Schonbucher and Wilmott (1996, 2000) describe in
detail the price mechanism; they assume that first the small investors and the large investor
simultaneously submit an order and that then the equilibrium price is determined. Closely
related are the models of Kyle (1985) and Back (1992) for a financial market with an insider.
In all these models the implied price-determining measure is given by pu = d;.

In Cvitani¢ and Ma (1996) and the successional papers of Buckdahn and Hu (1998) and
Cuoco and Cvitani¢ (1998) the large investor’s stock holdings do not affect the stock price
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immediately, but only in the long run via the drift and volatility coefficients of a stochastic
differential equation which describes the stock price. In order to be able to apply the theory of
forward-backward stochastic differential equations these authors suppose that the stochastic
differential equation for the stock price depends only on the number of stocks held by the
large investor, but not on the instantaneous change of the number. This limits the feedback
of the large investor’s trading strategy on the stock price. Bank (1999) combines elements of
the diffusion approach of Cuoco and Cvitani¢ (1998) with the reaction function framework
of Jarrow (1992) and Frey and Stremme (1997).

The above models only consider the permanent price impact of the large investor’s trade.
Temporary price impacts where the market first overreacts and then recovers are also a
common feature in real-world large investor markets, and sometimes these price impacts are
much larger than the permanent impacts. For example, a sizable order of the large trader
fills up the best quotes on the market, and it will take some time until new orders from
the small investors arrive. Recent studies have shown that institutional investors often break
their larger trades into several smaller packages that they execute successively. Bertsimas and
Lo (1998) have set up an additive model which incorporates both permanent and temporary
price impact in order to study optimal execution strategies for a large investor who has to
build up or liquidate a certain portfolio. Their model has been subsequently extended by
Almgren and Chriss (1999, 2000), Almgren (2003) and Huberman and Stanzl (2004, 2003).
A multiplicative version of Bertsimas and Lo (1998) has been studied in Bertsimas et al.
(2000), Bakstein (2001), and Bakstein and Howison (2002). Cetin et al. (2004) and Cetin
et al. (2002) model temporary price impacts by hypothesizing a stochastic supply curve for
the stock price as a function of trade size. A different form of price impact is modelled by
Subramanian and Jarrow (2001), who derive optimal liquidation strategies for a large investor
who can only execute his orders with a certain time delay. Taleb (1996) describes the market
behavior in an illiquid financial market from a practitioner’s point of view. (I

1.1.3 Existence and Uniqueness of a Fair Price

We will now show that any general price function S € & for which the price-determining
measure p is the Lebesgue measure A on [0, 1] satisfies the “fair price” condition (1.1), and
thus give a sufficient condition for (1.1) to hold. For all non-degenerate exponential price
functions S € &, we even prove that = A is necessary for (1.1). We will start with the first
statement:

Proposition 1.4. Let f : IR — IR be Lebesgue-measurable and locally bounded, and define
S*e &, 8% : R?— R by

1
S* (fl,fg) = /U f((l — 9){1 + 952)/\(010) for all &1,& € IR. (19)

Then the “fair price” condition (1.1) holds.

Proof. By Proposition 1.2 it suffices to prove that (1.2) holds, i.e. we have to show for all
&a€ R and p € [0,1]

1 1 1
,0/ f(&+pad)X\(do) + (l—p)/ f (&4 pat(1—p)ab)X(d) —/ f(€+a—af)X\(dF). (1.10)
0 0 0

In order to do so, we fix £, « € IR and then use a probabilistic argument which will be recycled
in Proposition 1.5. To this end let (Q, F, P) be some probability space on which we can define
for each p € [0,1] a random variable U? by P(U? = 1) = p =1 — P(U” = 0) and some
random variable Z which is uniformly distributed on [0, 1] and independent of {U”} (o 17- If
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we now set Y := 1 — Z and define the family of random variables {X p}p in terms of U”

and Z as

€[0,1]

XP:=UrpZ+ (1=U")(p+(1—p)Z) forpe[0,1],

then (1.10) can be rewritten as
E[f(§+axp)} :E[f(gmy)} for all p € [0, 1]. (1.11)

A sufficient condition for this to hold is that X” and Y are identically distributed. Since Z
is uniformly distributed on [0, 1], this is also the case for Y = 1 — Z. Moreover, by the law of
total probability we have for all p € (0,1) and = € (0, 1):

P(X* <) =P(UpZ + (1-U")(p+(1-p)Z) <)
=pP(pZ <)+ (1 —pP(p+(1—-p)Z < x)

(esz) (e

1—p
B p% O0<zxz<p
et A-pEL p<a<i

:$’

and due to X? = Z for all p € {0,1} the equality P(X* < x) = 2 even holds for all z € (0,1)
and p € [0, 1]. Thus, for all p € [0, 1] the random variable X* is uniformly distributed on [0, 1]
as is Y. This proves (1.11), and since ¢ and « have been fixed arbitrarily the proposition
follows. q.e.d.

The “fair” price functions given in Proposition 1.4 all employ the rather special price-
determining measure A. Of course, if the equilibrium price function f : IR — IR does
not depend on the large investor’s stock holdings but is constant, i.e. if there exists some
¢ € IR such that f(§) = c for all £ € IR, every price-determining measure leads to the same
“fair” price function S* : IR? — IR given by S(&1,&) = c for all £1,& € IR. Thus, the
price-determining measure associated to a “fair” price function need not be A. Of course, in
the given example of a constant equilibrium price function, the fair price function S* can be
represented as in (1.9) as well, since S* does not depend on the price-determining measure
at all.

We will now show that every “fair” ezponential price function can be represented like (1.9).
For non-constant price functions this implies that the price-determining measure p has to be
the Lebesgue measure on [0, 1], while for constant price functions it only implies that pu can
be chosen as the Lebesgue measure on [0, 1].

Proposition 1.5. For any S* € &, the “fair price” condition (1.1) holds if and only if S*
has a representation of the form (1.9).

Proof. Let S* € &.. We have already seen in Proposition 1.4 that (1.1) holds if S* has a
representation of the form (1.9). It remains to show that the existence of such a representation
is also necessary for “fair price” functions. Due to Proposition 1.2 it suffices to show that the
simplified condition (1.2) implies that S* can be represented as in (1.9).

By the definition of &, there exist some a,b,c¢ € IR and some probability measure p such
that

S*(&1,&) = a+ be™ / e0&2=8) (dh)  for all £1,& € RR. (1.12)
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If b =0 or ¢ = 0, then the price S*(£1,&2) is constant and depends neither on &; nor on &3,
and also not on the price-determining measure p. In these cases (1.2) trivially holds and we
can replace the original price-determining measure p in (1.12) by the Lebesgue measure A
on [0, 1] to obtain a representation of the form (1.9). Thus, we can assume without loss of
generality that b,c € IR\{0}.

Next we recall from the definition of &, C & that the price-determining measure p in (1.12)
satisfies

/|a + bec((1—9)§1+00§2)}u(d9) < oo forall &,& € R.

By the triangular inequality this is equivalent to imposing [ [b|e((1=9&1+<0%) (dg) < oo for
all £1,& € IR. Dividing the latter bound by [ble* > 0 and then substituting s = ¢(& — &),
shows that the price-determining measure satisfies

/esfm(de) < oo forall seR. (1.13)

As in the proof of Proposition 1.4 we now rewrite our problem in stochastic terms. Therefore,
let us take a probability space (Q,}' , P) on which we can define some random variable Z
with distribution p. Because of (1.13) we have E[e®?] = [e*f4(df) < oo for all s € IR. In
terms of Z the change of variable formula restates (1.12) as

S*(E1,6) = a+ becglE[ec(@_gl)Z} for all £,,& € IR,
and hence, due to b # 0, the simplified “fair price” condition (1.2) is equivalent to
pE [ecdpz} +(1- p)E[ecd@Hl—P)Z)] - E[ecdﬂ—Z)} forall p € [0,1] and d € R. (1.14)

We continue to follow the stochastic description of the problem in the proof of Proposition 1.4
and take a family {U L }p €[0,1] of random variables which are independent of Z and satisfy
P(U?=1)=p=1-P(U? =0) for all p € [0,1]. Then we can again define the random

variable Y = 1 — Z and the family {X P }p €[0,1] of random variables given by

XP=UPpZ+ (1-UP)(p+ (1 —p)Z) forpel0,1].

Substituting d = % we now see that equation (1.14) is equivalent to
E[esX”} - E[esY} for all s € IR. (1.15)

Since E[eSZ] < oo for all s € IR, we also have E[esy] = eSE[e*SZ] < oo for all s € IR.
Hence the moment generating function s — E[esy] determines the distribution of Y, and it
follows from (1.15) that (1.2) holds if and only if each X” for p € [0, 1] and Y are identically
distributed.

It remains to show that X” and Y can only be identically distributed for all p € [0, 1] if
p = A. Thus, let us assume that for each p € [0,1] the random variable X? has the same
distribution as Y, i.e. we assume that

P(X* <z)=P(Y <) (1.16)

for all z € IR and p € [0,1]. Since the two random variables U” and Z which generate X*
are independent, we can apply for each p € (0, 1) the law of total probability to express the
distribution of X7 as in Proposition 1.4 by

P(X”Sx)—pP(Z§x>+(1—p)P<Z§T_p) for all z € IR.
P
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If we now recall the definition of Z we can rewrite the distribution of X” in terms of the
price-determining measure p and the parameter p € (0,1) as

P(X’<z)= pp((—oo, z]> +(1- p)u((—oo, T:Z]) for all x € IR. (1.17)
Moreover, since UY = 0 and U =1 a.s., it follows directly that
P(X? <z)=P(Z <xz)=p((—o0,2]) forallz € IR and p € {0,1}. (1.18)

On the other hand, by the definition of Y we can also express the distribution of Y in terms
of u, namely we get

PY<z)=P(1-Z<z)=P(Z>1-2)=p(l -z, 0)). (1.19)

We will now employ (1.16) for different = and p to show that we indeed have = A. At first
we fix p = 1 to show that p is symmetric around the point % Namely, we get from (1.16),
(1.18), and (1.19) with z = 3 — 2

(b ) n([bran)) wwzem o

Now we fix x = 1, to conclude from (1.16), (1.17), and (1.19):
pu((—oo,p_l]) + (1= p)p((—00,1]) = p([0,00)) for all p € (0,1). (1.21)

Since the symmetry (1.20) in particular implies that z((—o0,1]) = p([0,00)), we can simplify
(1.21) to

p,u((foo,p_l]) = pu([0,00)) for all p € (0,1),

hence after a division by p and a subtraction of p((—00,1]) = p([0,00)) we arrive at

u((l,p‘l]) =0 for all p € (0,1).

If we take the limit as p \, 0, we conclude x((1,00)) = 0, and by the symmetry (1.20) we
even get
p((=00,0) N (1,00)) = 0. (1.22)

Now we employ (1.16) for = 0, and obtain by (1.17), (1.19) and (1.22) the equality

pr({0}) = p({1}) forall p € (0,1),

since % < 0 for these p. Taking again p \, 0, we conclude p({1}) = 0 and therefore also
1({0}) = 0. Finally, we can consider (1.16) for € (0,1) and p = z. In this case (1.17) and
(1.19) imply

zp((—00,1]) + (1 — 2)p((—00,0]) = p([l — z,00)) for all z € (0,1). (1.23)

Due to p((—o00,0] N [1,00)) = 0, equation (1.23) can now be rewritten in terms of z =1 —z
as (1 —2)u((0,1)) = p([z,1)) for all z € (0,1). Taking into account that p is a probability
measure, this implies

1((0,2)) ==z forall z € (0,1),

hence, indeed, the price-determining measure p has to be the Lebesgue measure A on [0, 1],
which was left to show. q.e.d.
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1.1.4 The Benchmark Price

Let now S € & be some general price function for the large investor in the single-period
market. If we want to valuate the large investor’s transactions — or also his total portfolio —
in an unbiased fashion, the price function S is not of great use. For example it does not take
into account that the price paid by the large investor to reach a certain number of shares
might have been excessively high, since the large investor’s demand had led to a market
squeeze. In such a case the price given by S would be higher than the “fair” value for the
stocks bought.

In view of Proposition 1.4 and Proposition 1.5 we will use a “fair” valuation principle, which
is based on the benchmark price function associated to a general price function S € &.

Definition 1.6. Let f : IR — IR be some Lebesgue-measurable and locally bounded function,
and S € &(f). Then the associated benchmark price function S* : IR> — IR is given by

S*(&1,&2) == /f((l —0)& + 0&)A(dF) for all &1, & € IR, (1.24)

where of course A is again the Lebesgue measure on [0, 1].

Because of Proposition 1.4 the benchmark price function satisfies the “fair price” condition
(1.1), and moreover, by Proposition 1.5 it is the unique price function S* € &(f) which
satisfies this condition if f is of exponential form.

Remark. Note that for each S € & the function f : IR — IR of the representation (1.6) can
be recovered as f(§) = S(&,¢) for all £ € IR. Hence we can calculate the benchmark price
function S* : IR? — IR from the sole knowledge of the (real-world-)price function S : IR? — IR.
Especially, the price function S € & and the associated benchmark price function S* coincide
if the large investor does not trade, i.e. we have S(£,§) = S*(&,¢) for all € € R. O

For a large investor who has initially held &; shares and now changes his stock holdings to &
shares, the benchmark price S*(§1,&2) represents a fair per-share price for this transaction,
in particular the price is symmetric in that S*(&1, &) = S*(&2,&1) for all &1,& € IR. In most
cases however, the benchmark price S*(&1,&2) will not coincide with the actual price S(&1,&2)
at which the large investor shifts his portfolio from &; to &o.

If for example the large investor has more information than the average small investor, then
the large investor might buy stocks more cheaply than for the benchmark price and sell stocks
at a higher price. Such a situation has been depicted in Example 1.1 if the equilibrium price
function f : IR — IR is chosen to be strictly increasing. In such a market environment it
is easy to see that the large investor has arbitrage opportunities. However, the arbitrage
opportunity does not necessarily mean that the large investor can make any profit he desires:
If the large investor can only buy a limited number of shares for a price below the benchmark
price, the arbitrage opportunities might be limited.

On the other hand, if the large investor faces prices higher than the benchmark price whenever
he buys shares, and if at the same time for all his sales he can only attain prices lower than
the benchmark price, then the large investor does not have any arbitrage opportunities at
all. This happens to be the case in the market of Example 1.2 if the equilibrium price
function function f : IR — IR is increasing. If the actual prices are strictly worse than the
corresponding benchmark prices, then the large investor is even exposed to some transaction
losses with regard to the benchmark price, as we will describe in detail in Section 1.2.

Under the regime of the benchmark price system, all round-trips lead neither to costs nor to
profits, thus especially we conclude from (1.1) for & = 2 that the price to buy an additional
amount of £&» — &; shares to & shares originally held by the large investor equals the price
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the large investor would get for selling & — & out of a total number of & shares. Similar
considerations for &k = 3 show that under the benchmark price regime there is no difference
between buying an extra amount of & — &; shares in addition to the &; shares originally
held by the large investor, or selling all £ shares and then buying the total amount of &
immediately thereafter. For later reference, we will put this observation into a small lemma:

Lemma 1.7. Let f : IR — IR be a Lebesgue-measurable and locally bounded function and
w € M(f) some associated price determining measure. Then the benchmark price function
S* : IR? — IR in the market described by f and p satisfies

S*(&1,62) = S (&2,&1) (1.25)

and

(fg — 51)5* (fl,fg) = &5 (52,0) -5 (61,0) for all &1,& € IR. (1.26)

Proof. Since the benchmark price function satisfies the “fair price” condition (1.1), the state-
ments (1.25) and (1.26) follow directly from (1.1) for k = 2 and k = 3. q.e.d.

Often we will find it useful to fix some Lebesgue-measurable and locally bounded equilibrium
price function f : IR — IR and then consider the various large investor prices which result
for different price-determining measures. In this case we parametrize all S € &(f) in terms
of the associated price-determining measures p € 9M(f) by setting

Sﬂ (51,52) = /f((l — «9)51 + 962)#((19) for all 51,52 € IR and n e m(f) (1.27)

Thus, we have &(f) = {S, : p € M(f)}. Of course the benchmark price function associated
to the whole class &(f) is identified as S* = S, and since this particular price function
satisfies the “fair price” condition, it will often turn out to be the price function which is
most easy to deal with, and which gives the basic intuition to deal with the more general
price functions from the class &(f).

1.1.5 A Translation Invariance for Exponential Price Functions

We have already mentioned some advantages of exponential price functions in Section 1.1.2.
In this section we will present another specific feature of exponential price functions: They
are basically the only interesting functions for which a certain translation invariance holds.
The results of this section will not be used in the rest of this thesis, thus the section may be
omitted at first reading.

Suppose that we are given an equilibrium price function f : IR — IR of true exponential form,
i.e. there exist some a € IR and b, c € IR\{0} such that

(&) =a+be forall £ € R. (1.28)
Parametrize now all associated large investor price functions S € &(f) by u € M(f) as in

(1.27), fix for a moment the amount « € IR of shares by which the large investor shifts his
portfolio, and set

Ap) =A%) = ilog/ecaeu(de) for all p € M(f).
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Then for each price-determining measure p € 9(f) and an arbitrary initial stock holding of
¢ shares we can calculate the large investor price S, (&, € + o) which the large investor has to
pay per share of the a shares he wants to buy as

Su&é+a)=a+ b/ec(§+a9)u(d9) —a+ bec(ﬁ—O—A(y))’

and hence we have

Su€,€+a)=f(E+A(n) forall &€ IR and p € M(f), (1.29)

where A(p) depends on a, but not on . This means that for each fixed transaction size
a € IR the (real-world-)price S,(§,€ + «), given that the large investor had initially held &
shares, can be obtained by evaluating the equilibrium price function f at the initial stock
position shifted by an amount A(u), which does not depend on the initial stock position &.
The next proposition shows that a condition of the form (1.29) basically limits f to be of
exponential form.

Lemma 1.8. Assume that the equilibrium price function f € C%(IR) is strictly monotone
and fiz o € IR\{0}. Then there exists some function A = A% : M(f) — IR with

Su,&+a)=f(E+A(p) forall§ € R and p € M(f) (1.30)

if and only if
f&)=a+be or f(€)=a+b¢ foralécR (1.31)

for some a,b,c € IR.

Proof. We have already shown above that (1.30) holds if f is of exponential form. To show
that it also holds for all affine functions f : IR — IR of the form f(§) = a+ b¢, let us fix such
a function f : IR — IR and define A(p) = « [ Ou(d) for all g € M(f). Then (1.30) holds
since we have for all £ € IR and p € M(f)

Su(€, &+ a) = a—l—bf—l—ba/@,u(d@) =a+b({+ Ap)).

It remains to show that a representation of the form (1.30) implies (1.31). For a proof let us
note that f € C2(IR) implies that both the Lebesgue measure A and the Dirac measure &;
concentrated in 1 belong to the class 9M(f). Moreover, () is convex, thus we conclude

1(p) == (L= p)A+ pd1 € M(f) for all p € [0,1],
and therefore (1.30) provides the existence of some function A [0,1] — IR which satisfies
Sup)(&§+a) = f(§ + A(p)) for all £ € IR and p € [0,1]. (1.32)
By the definition of S, and p(p) we can rewrite this expression for all £ € IR and p € [0,1] as
1
FE+A0) = =) [ Fe+02)3@) +p [ e+ 00)r(an).  (133)
Since f € C?(IR) is strictly monotone, the last equation can be solved for A(p), and so we

see that the function A : [0,1] — IR is twice differentiable. Hence (1.33) can be differentiated
with respect to p and we obtain for all £ € IR and p € (0,1):

B(p)f 6+ 8(9) = [ 1(6-+0a) (51— N (ab). (1.34)
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A second differentiation of this equation gives

A"(p)f' (€ + Alp)) + (A (p) " (€ + A(p)) = 0. (1.35)

Now fix an arbitrary p € (0,1). Since f is strictly monotone and a # 0, we conclude that
the right hand side of (1.34) does not vanish. Then (1.34) implies A’(p) # 0, and thus (1.35)
becomes

f1E+Ap)  Ap)

FE+AP)  a(A(p)*
Since this holds for all £ € IR we conclude

f"€) — £7(0) for all £ € IR,

& 110

and this is only fulfilled if either f” = 0, i.e. f(€) = a + b¢, or if f(€) = a + bes for some
a € IR and b,c € IR\{0} and all £ € IR. q.e.d.

Remark. Gerber (1979) uses a similar proof to show that in actuarial mathematics a mean
value principle is consistent if and only if it is an exponential principle or the net premium
principle. Gerber points out that the net premium principle is of limited usefulness since it
does not produce any security loading. Similarly, we do not work with a linear equilibrium
price function f : IR — IR, & — a + b€, since for b # 0 such an equilibrium price function
leads to possible unbounded negative prices. The constant case f(£) = a can also be covered
as a special case of an exponential equilibrium price functions, once we allow that b and ¢ in
the representation (1.28) may also become zero. O

The translation invariance (1.30) which we have expressed in terms of the underlying equi-
librium price function f : IR — IR can also be expressed in terms of any large investor price
function S € &(f). For example, for any Lebesgue-measurable and locally bounded equi-
librium price function f : IR — IR for which the translation invariance (1.30) holds we can
define

D(p) i= D*(u) i= A%(u) — A°(\) for all 4 € M(f),

since for all those functions we have A € 9M(f). Then (1.30) and Sy = S* imply
Su(§: €+ ) = F(E+Ar) = AQX) + AN) = S*(§+ D(w),§ + D(n) + a) (1.36)

for all £ € IR and p € 9M(f). Hence, for a fixed transaction size of o shares the actual price
S,(&, € + a) the large investor would be faced with if he had initially held £ shares equals
the benchmark price S* (& + D(u), € + D(u) + a) for the same transaction volume, but now
starting from an initial endowment of £ + D(u). Here the shift D(u) does not depend on the
initial position &.

Even if the equilibrium price function f : IR — IR does not have a structure of the form
(1.31), there exists of course subclasses of M(f) such that a representation like the one in
(1.36) still holds. The following example will present such a class which works for almost
every given equilibrium price functions. The particular feature of exponential and linear price
functions is that all the associated price-determining measures p satisfy (1.30) and (1.36).

Ezample 1.3. Let f : IR — IR be Lebesgue-measurable and locally bounded and pu € 9(f)
some price-determining measure associated to f. Then for each s € IR for which the shifted
measure /i; defined by p,((—00,z]) = p((—o0,z—s]) for all 2 € IR is also a price-determining
measure associated to p (i.e. us € M(f)), it is easy to see from (1.7) that

Su, (& 6+a) =5, (E+as,E+as+a) foral ac R, (1.37)
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i.e. a shift of the measure p by s is equivalent to a shift in the large investor’s initial stock
holdings by as. If the equilibrium price function f : IR — IR is strictly increasing, then a
positive shift of the measure implies that the large investor can only obtain a lower price
than under the original price-determining measure y if he sells some or all of his shares, and
at the same time he has to pay more for any share he buys.

If the original price-determining measure p is the Lebesgue measure A on [0, 1], the represen-
tation (1.37) becomes

Su(§6+a) =5 (E+as,{+as+a) forall {,ac R,

and thus it resembles the representation (1.36). ]

1.2 Transaction Losses

Having defined a benchmark price, we can now relate the actual price paid by the large
investor for a certain transaction to the corresponding benchmark price. In doing so we will
introduce the notation of transaction losses. These transaction losses provide a link between
our large investor model and small investor models with transaction costs. We then outline
some basic properties which a true transaction loss function should satisfy and give conditions
such that these hold.

1.2.1 The Transaction Loss Function

For each large investor price function S : IR?> — IR based on a weighted mean of equilibrium
prices as in (1.6) we can quantify the transaction losses which the large investor has to bear
because he cannot buy shares for the “fair” benchmark price. We do this by taking the
difference between the total actual costs and the theoretical costs which the large investor
would pay if he could use the benchmark price for his transaction. Similarly, we can calculate
the transaction loss which the large investor suffers when he sells shares. Formally, we
introduce the transaction loss in terms of the transaction loss function:

Definition 1.9. For any S € & the implied transaction loss function ¢ : R?> — IR is
defined by

o(61,8) = (- &) (5(6.&) - 57(61,&)) forall &6 € R,

If we want to parametrize the whole class &(f) = {S, : p € M(f)} of large investor price
functions associated to some given Lebesgue-measurable and locally bounded equilibrium
price function f : IR — IR, we will parametrize the associated transaction loss functions
accordingly, i.e. we then define the family {Cu e M( f)} of transaction loss functions
Cu: R?> —» R by

cu(é1,&) = (& - &) (SM(&,&) - S*(§1,§2)) for all £;,& € R and p € M(f). (2.1)

Remark. By the definitions of the set &(f) and the benchmark price function S* = S\ we
immediately see that (2.1) reads as

cu(, €+ @) :a/f(£+9a)(u—)\)(d9) for all £, € IR and p € M(f). (2.2)

Thus, the transaction loss ¢, (&, £ +a) made by a large investor who initially held £ shares and
then buys another « shares is given in terms of an integral of the equilibrium price function
with respect to the (signed) measure p — A. O
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Let us now fix some S, € &. If we write the price paid for {& — &; shares to shift the large
investor’s portfolio from &; to & as

(2 —€1)Su(&1,&) = (& — &) S (&, &) +cu(&1,&) forall &,& € R, (2.3)

the actual price (§&2 — &1)Su(&1,&2) paid by the large investor can be recovered as the sum
of the “fair” price ({2 — &1)5*(&1,&2) for that transaction plus the transaction loss loading
cu(&1,&2). This resembles the structure of a market with transaction costs, and these similar-
ities will be often explored in this thesis. However, we want to point out that there is neither
a bid-ask spread, nor is there any transaction fee in our large investor market. As long as
the large investor behaves like a small investor and trades only infinitesimally many shares,
he can buy and sell them for the same (equilibrium) price. The large investor is exposed
to transaction losses only because of the lack of liquidity in the market due to the dispro-
portionately large size of his trades. Moreover, since the market power of the large investor
changes the equilibrium price in the market, the transaction losses of the large investor are
not immediately realized. Only if the large investor performs a round-trip he has to admit
that the transaction losses occurred are really transaction costs, otherwise the transaction
losses are hidden behind the change of the equilibrium price. That is why the large investor’s
transaction losses are really only losses and not costs.

In order to exclude immediate arbitrage opportunities, we need to require that for all round-
trips of the large investor, starting from an arbitrary initial stock holding, the sum of trans-
action losses incurred is always nonnegative, i.e. we have to suppose that

k i—1 i
ZCu<f+Zajaf+ZOéj> >0 forall € R, aeR and ke IN.

i=1 j=1 j=1

Though this slightly complicated condition already rules out any possibility that the large
investor becomes rich at a single point in time by performing a sequence of successive trades
at this single time point, we will usually impose a slightly stronger condition on the trans-
action loss function, which is much easier to check. Namely, we will require that the whole
transaction loss function ¢, : IR? — IR is nonnegative. This condition also simplifies the ex-
clusion of arbitrage opportunities in a dynamic framework which we will set up in Section 1.3.
Moreover, nonnegative transaction losses make the connection to small investor models with
transaction costs much more transparent.

In order to draw a parallel to transaction costs models we will also state conditions on the
large investor market in terms of the transaction loss function ¢, : B> — IR and not in terms
of the equilibrium price function f : IR — IR and the associated price-determining measure
€ IM(f) which lie behind the large investor market.

Remark. For any fixed locally bounded and Lebesgue-measurable equilibrium price function
f 1 IR — IR we can define the relation <y on the set (f) of associated price-determining
measures by setting

p1 <2 = a/f(§ + af)p(dh) < a/f(§ + af)uz(dh) for all £, a € R. (2.4)

Because of (2.2) it follows that for any u € M(f) the transaction loss function ¢, : IR* — IR
is nonnegative if and only if u <y A. The latter condition can sometimes be easier to check.
If for example the equilibrium price function f : IR — IR is nondecreasing, then pi <y po
holds for all measures p1; € M(f) which are stochastically smaller than po.

The relation < is indeed a pre-order, since it is reflexive (i.e. p <y p) and transitive
(i.e. p1 <y p2 <y p3 implies pu; <y p3). In general the pre-order <y does not define a
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partial order on 9M(f), since it need not be antisymmetric (i.e. @1 < po <¢ w1 need not
imply g1 = pe). However, if the equilibrium price function f : IR — IR is of strict exponential
form, i.e. if there exist some a € IR and b, c € IR\{0}, such that f(£) = a+be* for all ¢ € IR,
then the pre-order <y is even antisymmetric and hence a partial order on 9(f), since (2.4)

and p1 <y p2 <y p1 imply
ab/eo‘ceul(de) = ab/eo‘ce,ug(dO) for all a € IR,

from which we can conclude that the moment generating functions of 11 and uo, and therefore
also the measures themselves coincide. O

1.2.2 Two Desirable Properties for Transaction Loss Functions

Common sense would easily state a whole bunch of properties which a transaction loss func-
tion should satisfy. We have already argued in the previous section why we prefer to work
with nonnegative transaction loss functions. Moreover, in a perfect market it should not be
beneficial to buy more shares than necessary and then immediately sell back the excess part
of these shares. Additionally, the total transaction losses should not decrease with the size of
the transaction. In this section we will give a precise definition of those two properties and
then find conditions on the equilibrium price function and the price-determining measure in
the large investor market under which these properties hold.

Definition 1.10. Let a large investor market be described by an equilibrium price function
f : IR — IR which is Lebesgue-measurable and locally bounded and by an associated price-
determining measure p € 9MM(f).

(i) The market (or also the stock price S,) implies a natural loss structure if the asso-
ciated transaction loss function ¢, : IR? — IR satisfies

(& é+a+pB)+eu(+a+BE+a)>cu(éE+a) (2.5)
for all &, a, 8 € R with a8 > 0.

(#4) The market (or also the stock price S,) implies nondecreasing total transaction
losses if the associated transaction loss function ¢, : IR* — IR satisfies

cu(é+a,§) <cu(§£5,€) (2.6)
for all £, , 0 € IR with 0 < a < .

The condition (2.5) for the natural loss structure can be viewed as a weak no-arbitrage
statement. If this condition even held for all o, 8 € IR, then the large investor would never
benefit from breaking one transaction into two or more successive transactions. For a market
with a natural loss structure we only require this condition for a3 > 0. In this case, it might
be beneficial for the large investor to split one large transaction into several smaller ones, but
the large investor cannot prevent or reduce losses by buying more stocks than he ultimately
wants to buy and then selling the excess of his demand immediately. Similarly, it is not
advantageous for him to sell more stocks than he really wants to sell and then to buy back
those which he needs to reach his target stock holdings.

The second condition on the large investor market, namely the condition of nondecreasing
total transaction losses, states that the total transaction losses can only increase, but never
decrease with increasing transaction volume. Of course, this does not mean that the relative
transaction losses per share cannot decrease. Since the definition of the transaction loss
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function implies that there are no transaction losses if the large investor does not trade,
ie. cu(& &) =0 for all £ € IR, a market with nondecreasing total transaction losses always
implies that the transaction loss function ¢, : IR? — IR is nonnegative.

In Section 1.4 we will employ the condition of a natural loss structure in order to prove ex-
istence, and the condition of nondecreasing total transaction losses in order to prove unique-
ness, of discrete trading strategies which replicate a certain class of contingent claims in
multi-period markets. For this reason, we will provide now some lemmata, which give suffi-
cient conditions on both the equilibrium price function and the associated price-determining
measure, such that the resulting market implies a natural loss structure and nondecreasing
total transaction losses. These conditions are far from being necessary and should only be
viewed as exemplary.

At first we focus on the natural loss structure. For practical purposes it helps to rewrite the
loss-oriented Definition 1.10(¢) in terms of a condition on the stock price:

Lemma 1.11. Let S, € G be a large investor price function. Then for any &, o, 3 € IR the
condition (2.5) holds if and only if

(a+B)Su(&,+a+8) > BSu(E+a+ 8,6+ a) +aS, (6 + ). (2.7)

In particular, S,, implies a natural loss structure if and only if (2.7) holds for all &, o, f € IR
with aB > 0.

Proof. Let us recall that the benchmark price function S* : IR> — IR was defined so that
it satisfies the “fair price” condition (1.1). Applying this equation to the 2-step round-
trip (o, —a) € M2, starting from any initial stock holding ¢ € IR, we obtain the equality
S*(&,&€ + a) = S*(€ + o, &), and just another application of the same equation now to the
3-step round-trip (a + 3,0, —a) € N3 yields

(a+B)S*(§,+a+8) —BS* (E+a+B,{+a) —aS* (& E+a) =0.

If the definition (2.1) of the transaction loss function ¢, : IR* — IR is plugged into expression
(2.5) it immediately follows from the equation above that (2.5) and (2.7) are equivalent for
all &, a, 0 € R. g.e.d.

Example 1.4. Let us assume that the large investor market is specified by some strictly
increasing equilibrium function f : IR — IR and the price-determining measure 1, i.e. the
Dirac measure concentrated at 1. Then the market switches to the new equilibrium before
the large investor has traded any stocks, so that for all £&1,& € IR the large investor price
is given by S,(&1,&2) = f(&2). Since f : IR — IR is strictly increasing, (2.7) holds for all
& a,f € IR with aff > 0. However, for —a < 8 < 0 it is easy to see that (2.7) fails to hold.
Hence we conclude from Lemma 1.11 that the market implies a natural loss structure, but
(2.5) does not hold for all £, a, f € IR, i.e. it can be advantageous for the large investor to
break up one transaction into smaller subtransactions. Il

The next lemma gives sufficient conditions on the equilibrium price function f : R — IR
and the associated price-determining measure u in order to ensure that the resulting market
represented by the large investor price function S, : IR? — IR implies a natural loss structure.

Lemma 1.12. Let us suppose that the price function S, : IR? — IR of the large investor has
the form

Su(& &+ a) = /f(§ + 0c)pu(df)  for all &, a € IR, (2.8)
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where the equilibrium price function f : IR — IR is nondecreasing and the associated price-
determining measure p € IM(f) is a probability measure p on [0, 1] which satisfies

([0, pz]) < pu([0,2]) for all p,x € [0, 1]. (2.9)

Then S,, implies a natural loss structure.

Similarly, a price function S, : IR?> — IR of the form (2.8) implies a natural loss structure if
the equilibrium price function f : IR — IR is nonincreasing and the price-determining measure
p € M(f) is a probability measure on [0, 1] which has no point mass in (0,1] and satisfies

1([0,pz]) > pu([0,2]) for all p,x € [0,1].

Proof. Let us start with the proof of the first statement. Due to Lemma 1.11 it suffices to
show (2.7) for all £, o, f € IR with a3 > 0. Since (2.7) trivially holds if « = 8 = 0, we can
exclude this case. In all other cases we have to consider, the sum ¢ := «a 4+ 8 will not vanish

so that p = ;75 is well defined and p € [0, 1]. Thus, we only have to show

cSu(&, € +¢) 2 epSu(&, €+ cp) + (1 = p)Su(€ + ¢, & + cp) (2.10)

for all p € [0,1] and ¢ € IR. We will recover (2.10) as an inequality between expectations of
f with respect to certain random variables based on u as the one used in Proposition 1.5. In
order to prove the inequality between these expectations we utilize the properties imposed
on p. Namely, we will prove that (2.9) and the concentration of the probability measure p

on [0, 1] imply
p((a,1]) = pu<<z, 1]) +(1- p)u<[0, 1 — Z)) (2.11)

for all @ € IR and p € [0, 1], where we understand the two cases p € {0,1} as limiting cases
of p \, 0 and p " 1, respectively. For this purpose, we distinguish four cases: a < 0,
0<a<p<l1 then 0 < p <a <1, and as the forth case a > 1. In the first and forth
case, i.e. if a < 0 or a > 1, we see that (2.11) holds with equality due to x([0,1]) = 1. If
0<a<p<1wecan apply (2.9) with p=p and = = % to obtain

1[0, al) < pu([0,p7"a]).

Using once again the concentration of u on [0,1] we get from subtracting ,u([(), 1]) =1 on
both sides and rearranging terms

L=p+pp((pa,1]) < u((a,1]).

If we finally note that due to t—z > 1 we have p(]0, t—g)) = 1, we see that (2.11) holds for
0 <a<p<1aswell. It just remains to prove (2.11) for the case 0 < p < a < 1. In this
case we notice that (2.9) with z = 1 implies

w([0,p]) <p forall p€[0,1], (2.12)
hence, using (2.12) at first with p = a and then with p = %Z, we conclude

(@) =1 p(0a) 2 1-a= (1= 9 =2 = (= pu( [0. 122 ).

1 "1—0p

Due to % > 1 we now have u <<%, 1}) = 0, hence the inequality (2.11) follows also for all
0 < p<a<1,and thus it indeed holds for all p € [0,1] and a € IR.
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Let us now take a random variable Z with distribution pu. Then (2.11) is equivalent to
P(Z>a)>pP(pZ >a)+(1—p)P(1—(1-p)Z >a) forallac IRandpc[0,1]. (2.13)

If we also introduce the family of random variables {U”} ,¢[o,1] in such a way that each U” is
independent of Z and satisfies

P(U’=1)=p=1-P({U"=0) forpel0,1],
and then define the family {X*} (o] of random variables as in Proposition 1.4 and 1.5 by
XP:=UpZ+ (1-U")(1—(1—p)Z) forallpe0,1],
we can rewrite (2.13) in terms of X” as
P(Z>a) >P(X”>a) forallae Randpe|0,1].

But this is equivalent to saying that for all p € [0, 1] the random variable Z is stochastically
larger than X7? (i.e. Z >4 X*). Therefore we have

E[g(2)] > E[g(X*)] for all p € [0,1]

and for all nondecreasing functions g : IR — IR. Especially, the function ¢¢ : IR — IR,
z — cf(§ + cz) inherits its monotonicity from f : IR — IR, and thus we get

cE[f(E+c2)] > cE[f((¢+cX”)] forall pe[0,1] and c € RR.

By the definitions of X” and U”, we can now use the law of total probability to rewrite the
last inequality as

cE[f(£+ CZ)] > cpE[f(§+ cpZ)] +c(1— p)Ef[(£ +e(l—(1- p)Z))]

and recalling the definitions of the random variable Z and the large investor price function
S, : IR* — IR this is indeed for all p € [0,1] and ¢ € IR equivalent to (2.10). Hence it follows
that S, implies a natural loss structure.

For the second statement one can use similar arguments to conclude that X” >, Z for all
p € [0,1], from which we draw the same conclusion as in the first case. q.e.d.

Remark. Two remarks of (im)possible extensions of Lemma 1.12 should be made:

(i) The inequality (2.12) shows that for any given nondecreasing equilibrium price functions
f : IR — IR all price-determining measures p € 9M(f) considered in Lemma 1.12 are
stochastically larger than the Lebesgue measure A on [0,1]. However, the condition
i >s A alone is too weak to imply (2.11) for all @ € IR and all p € [0, 1], and it was this
condition which was essential to prove the natural loss structure without any additional
restrictions on f. In order to see that (2.11) need not hold if u >4 A, let us define the
probability measure p by n({1/2}) = p({1}) = 1/2. Then we have p >4 A, but for
1 <a<p<1wehave ,u((%,l]) = pu({1}) = 3 and M([O’%Z)) = pn({1/2,1}) =1,
hence we get

pu((ZJD +(1—p)u<{0, i:Z)) :%p+(1—p):%+%(l—p) >%:u((a71])-

To this price-determining measure p one can now easily find examples of nondecreasing
equilibrium price functions f : IR — IR (e.g. the identity) for which (2.7) does not hold
for all £, «, 8 € IR with a8 > 0, i.e. where the market described by f and pu does not
imply a natural loss structure.
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(i) If Z is a random variable with values in (1, 00), we have of course P(Z > a) = 1 for all
a < 1. On the other hand, for all @ > 1 and p € [0, 1] such a random variable satisfies
P(1-(1-p)Z>a)=P(-(1—-p)Z >a—-1) =0 and P(pZ > a) < P(Z > a).
This shows that (2.13) also holds for all random variables with values in (1,00), and
we can use the same arguments as in the proof of Lemma 1.12 to conclude that the
market described by f and p still implies a natural loss structure if the equilibrium price
function f : IR — IR is nondecreasing and if the price-determining measure p € M(f) is
a mixture of a probability measure on [0, 1] satisfying (2.9) and a probability measure
on (1,00). O

We now give an example of a probability measure p with values in [0, 1] which satisfies (2.9).

Ezample 1.5. Let X\ denote as always in this thesis the Lebesgue measure on [0, 1], and J; the
Dirac measure concentrated in 1. Then for any fixed p € [0, 1] the measure u = pA+ (1 —p)dy
satisfies (2.9), since

([0, px]) = ppx + (1 — p)dr ({pz}) < p(px + (1 — p)dr({z})) = p([0, z])

for all p,x € [0,1]. Especially, a large investor market described by any nondecreasing
equilibrium price function f : IR — IR and by this price-determining measure p implies a
natural loss structure. O

We may consider the Dirac measure d; as the limit of uniform distributions on [1 — h, 1]
as h — 0. In the next lemma we will give conditions on the equilibrium price function f
and the associated price-determining measure p which guarantee that the market does not
only imply a natural loss structure, but also nondecreasing total transaction losses. For the
price-determining measure p we allow for a generalized version of the measures considered in
Example 1.5, for the equilibrium price function f : IR — IR we require some smoothness in
addition to the monotonicity of Lemma 1.12.

Lemma 1.13. Let f : IR — IR be some nondecreasing and continuously differentiable equi-
librium price function, and consider for p, h € [0, 1] the associated price-determining measure

1= o € M(f) on ([0,1],B([0,1])) defined by
1o (A) = pA(A) + (1 — p)%)\(A A[L—h1]) foral AcB(0,1),  (2.14)

where we shall interpret the last term on the right-hand side as the Dirac measure in 1 if
= 0. Then the price function S, : R?> — IR given by (2.8) implies both a natural loss
structure and nondecreasing total transaction losses.

Proof. Let us first show that S, implies a natural loss structure. Due to Lemma 1.12 it
suffices for this to show (2.9). In the case h = 0 this was already shown in Example 1.5, so
we can assume without loss of generality that 0 < h < 1. But also in these cases (2.9) holds,
since the inequality (pr —¢)™ < p(x — ¢)* for all ¢,p,z € [0, 1] implies

b (10.p2]) = ppz + (1 = p) ;AL — h.pal) = ppr + (1= p) 7 (p — 1+ )"

h
1
<ppr+ (1= ppy(r—1+ h) " = pupn ([0, ])

==

for all p,p,xz € [0,1]. Thus, for all p,h € [0,1] the market described by f and p = p,p, or
also the associate price function S, indeed implies a natural loss structure.
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Now let us proceed to show that it also implies nondecreasing transaction losses, i.e. we have
to show that (2.6) holds for all &, «, § € IR with o < 3. We first employ representation (2.2)
of ¢, and the definition of p = 1,5, in (2.14) to write ¢, (§ + o, §) for all a,§ € IR as

cu(é+a,§) = —a/f(f—l—(l —0)ar) (1 — M) (d)

1 1
:a(l—p)</o f(£+(1—9)a)d0—;/1 f(§+(1—9)a)d9>.

—h

Without loss of generality let us assume p = 0. Then a — ¢,(§ + «, &) is differentiable, and
its derivative is for all &, a € IR given by

d 1 1 ,
dacu(gm,g):/g f(£+(1—9)a)d9+a/0 (1 0)f'(€ + (1 — 0)a)do
1 1
—;L/l_hf(f—i—(l—9)a)d9—afll/1_h(1—9)f’(£+(1—9)a)d9.

Using partial integration, this derivative simplifies for all £, « € IR to

1

Lpet e = [F0-0f(E+ (1-0a)] — 1 [-(1-0)f(E+ (1~ 0)a)]
= f(€+a) = f(§+ha)

1-h

Therefore, it follows from f : IR — IR being nondecreasing and h € [0, 1] that

d <0 fora<o0

el ’ = = 2.15

dacﬂ(£+a£){20 for a > 0, ( )
and consequently S, indeed implies nondecreasing total transaction losses. q.e.d.

Remark. As in Lemma 1.12 the conclusion of Lemma 1.13 holds as well if the equilibrium
price function f : IR — IR in the market is nonincreasing instead of nondecreasing and if
on the other hand the price-determining measure p = p, 5 on ([0, 1], B([0, 1])) is for some
p,h €]0,1] given by

Jon = PA(A) + (1 — p)%)\(A A[0,A]) for all A€ B([0,1])

instead of (2.14). Moreover, rewriting (2.2) as

1
Cu(£+aaf):a</0 f(§+(1—9)a)d0—/f(£—|—(1—9)0[);1((19)) for all a, € € R.

it can easily be seen that for all nondecreasing equilibrium price functions f : IR — IR and all
price-determining measures p which are concentrated on (1, 00) the function a — ¢, ({4, §)
is nondecreasing as long as o > 0 and it is nonincreasing for o < 0. Together with the remark
after Lemma 1.12 this shows that we could draw the same conclusions as in Lemma 1.13 if
we relaxed the form of price-determining measures considered to mixtures of measures of the
form (2.14) and probability measures on ((1,00), B((1,0))). O
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1.2.3 The Local Transaction Loss Rate

The transaction loss function ¢, : IR> — IR of (2.1) models the transaction losses in an
additive way, and therefore can also be used if the equilibrium stock price becomes 0 or even
negative. However, in ordinary stock markets — even in the presence of a large investor —
the stock price will always stay positive, since the liability of each shareholder is limited to
the amount which he had invested in the stock. In such markets we can introduce a (local)
transaction loss rate function which describes the transaction losses per traded share as a
fraction of the benchmark price. A Taylor expansion of the transaction loss rate function will
then give necessary conditions on the market to guarantee nonnegative transaction losses. The
multiplicative representation of the transaction losses by means of the transaction loss rate
will be used in the subsequent chapters to exploit similarities with small investor markets
models with proportional transaction costs as described for example by Boyle and Vorst
(1992) or Musiela and Rutkowski (1998).

Definition 1.14. Let the large investor market be described by some positive, locally
bounded, and Lebesgue-measurable function f : IR — (0,00) and some associated price de-
termining measure p € M(f). Then the local (implied) transaction loss rate function
ky IR? — IR is given by

[F((1—0)&1 + 08) p(do)
L (1= 0)& + 6&) A(db)

where sgn(fl,ég) =0 if 51 = 52.

Remark. For each fixed &1,& € IR we can use (2.16) and (2.2) to write the transaction loss
incurred by the large investor when shifting his stock holdings from &; shares to £ shares as

cu(&1,8) = [& — &1|S™ (&, &) ku (61, &2). (2.17)

kyu(&1, &) =sgn(& — &) < — 1) for all £&1,& € R,  (2.16)

This shows that k,(£1,£2) indeed describes the transaction loss rate as a fraction of the total
transaction price |2 — &1[5*(&1,&2) which would be necessary if the transaction were made
at the benchmark price of S*(&1,&2) per share.

Whenever k,, is well-defined, the previous equality also shows that the transaction loss rate
k. (&1, &2) is nonnegative if and only if the transaction loss c,(&1,£2) is nonnegative, since k,
is only well-defined if the equilibrium price function f and hence also the benchmark price
function S* is positive. [l

Ezample 1.6. Let us fix some b > 0 and ¢ € IR and consider the equilibrium price function
f: IR — (0,00) given by f(£) = be for all £ € IR. Then for any price-determining measure
€ M(f) we have

bec€+ad) (1o cafl
ku(&,€+a) = sgn(a) <§b20(5+ae)§gd0; - 1) = sgn(a) ({,Zwa)\ (@0) — ) for all o, € € IR.

Hence for this exponential equilibrium price function the transaction loss rate does not depend
on the initial stock holding & of the large investor. But in contrast to small investor models
with proportional transaction costs the transaction loss rate &, (f ,E+ a) still depends on the
size a of the transaction, so it is really only a local rate. ([l

When we consider in Chapters 3 and 4 continuous-time limits of discrete multi-period large
investor markets it will become necessary to study the behavior of k,(§ + o, &) for small
values of a. The following lemma gives the key insights by providing a Taylor expansion
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of ku(§ + ,&). This expansion can also be utilized to state necessary conditions on the
equilibrium price function f and the associated price-determining measure p such that the
transaction loss rate function k,, : R?> — IR, or equivalently the transaction loss function
Cu - IR? — IR, in the large investor market described by f and p does not become negative.

Proposition 1.15. Let a large investor market be described by some equilibrium price func-
tion f and an associated price-determining measure . Suppose that the equilibrium price
function f : IR — (0,00) is positive and twice continuously differentiable, and that there exist
some constants L1, Lo € IR such that

(€
f€)

Moreover, assume that the associated price-determining measure p satisfies [ el 1u(dh) < oo
for some n > 0. Then for all £ € IR the transaction loss rate function satisfies

/()
f(€)

Especially, k, : IR? — IR can only be nonnegative if either [ Ou(dd) = %

’SLQ for all € € IR.

k(€ +a,§) = ol

/e(u —A)(d0) + O(a?) asa— 0. (2.18)

or f: IR — IR is nondecreasing and [ 0u(d0) >

[T T

or f: IR — IR is nonincreasing and [ Op(df) <
Proof. By the definition of k,, : IR* — IR in (2.16) we have

1
a,&) = —sgn(a f(g)ff(§+(1_9)

In order to reach the expansion (2.18), we are going to utilize several Taylor expansions. At
first, note that for all £, a € IR there exist functions v = ¢ o : IR — [0, 1] such that

Zgigjgi - 1) for all £,a € IR. (2.19)

FE+(=6)a) = F(€) + (1 - 0)af ©) + 51— 0P (€ + (1~ hr(B)a).  (220)

Let v be an arbitrary probability measure on (IR, B(IR)) which satisfies [ el?ny(df) < oo for
some 1 > 0. Integrating (2.20), dividing the result by f(£) > 0, and utilizing [ v(df) = 1
leads to

1
7© / F(E+ (1 =0)a)v(dd) =1—ah,(§a) foral§ ac R, (2.21)

where the function h, : IR?> — IR is for all £, a € IR defined by

CFO( [ 1) Lo [ gad" (€A =01(0))
h(&:2) = g </ ou(db) 1) o [0 G ().
We now want to show that, uniformly for all £ € IR,
_[©) v — «) asa —
hy(§, @) = G </9 (d9) 1) + O(w) 0. (2.22)

In order to do so we notice that for all £, 3 € IR there exists some ;1 € [0, 1] such that

D e
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SRR (g FUE+B) (A F(E+mB)
= e+ ) p<5@1gﬂ5+760 TN p(ﬂﬂ5+%m>'

Thus, we can use the bounds on the ratios of derivatives of f : IR — (0,00) to deduce
PR PR o (1[4 07

&) 171 fE+5) fE+mP)
and since the latter bound implies for all £, « € IR with |a|L; < 7 that

_ Qf//(g + (1 - 9)’}’5706(9)04)
‘/“ g 7©

the desired expansion (2.22) follows uniformly for all £ € IR from the definition of h,. More-
over, we can also write h,(§,a) = O(1) as a — 0, uniformly for all £ € IR, since

’j;((;) </0u(d9) - 1>‘ < Iy (’/91/(619)

Especially, (2.23) and (2.24) hold uniformly for all £ € IR and both measures v = A and
v = pu. As the last step preparatory to prove (2.18), we apply another Taylor expansion to
note that for all ¢,,cy € IR and a < there exists some 2 € [0, 1] so that

D < Lol forall ¢,8 € R,

< Ly /(1 — 0)%el =02l (d) < oo, (2.23)

+ 1> < o0. (2.24)

Ic K
1—ac, e\ —Cy
(1 —r2acy)?

If we now apply (2.25) to ¢, = hy (€, @) for v € {\, u} then (2.21) and the bounds (2.23) and
(2.24) imply
1

1G] ff( —0)(&+ ) +9§),u(d0) , 71(6)

A I —0)E+a)T66)AE8) T

uniformly for all £ € IR. Hence (2.18) follows from (2.19).

The second statement of the proposition is a direct consequence of (2.18): Let us assume
that the transaction loss rate function k, : IR?> — IR is nonnegative, and suppose that for
example [ Op( d9 1, but that there exists some ¢ € IR for which f/(£) < 0. Then (2.18)
and [ OX(df) = 5 1mply

=1+ (ex—cu)a+cn o’ =14 (ex—cu)a+0(a?) asa— 0. (2.25)

1— acy

/e(u —A)(df) + O(a®) asa— 0,

k(€ + o §) f'(&)/
0 < lim -£ = O(n— N)(dF) <0,
ol0 o f(&) (= X)(a8)
which gives a contradiction. q.e.d.

Proposition 1.15 gives rise to the following definition:

Definition 1.16. For any probability measure p on (ﬂ%, B (]R)) for which the first moment
is well-defined we introduce the non-linearity parameter

d(p) == /e(ﬂ ) (d6) = /eu(da) _ % (2.26)

Remark. Let us assume that there do no exist any negative transaction losses. Because of
Proposition 1.15 we can then restrict our attention without losing much generality to a large
investor market with nondecreasing equilibrium price function f : IR — IR and a price-
determining measure p satisfying d(u) > 0. In such a situation the non-linearity parameter
d(u) describes the distance between two pricing mechanisms, namely between the actually
experienced one and the benchmark price. The larger d(u), the larger the local transaction
loss rate k, : IR? — IR, and also the larger the transaction loss Cu: R? — IR. If d(p) = 0 the
local transaction loss rate k,(§ + «, §) is only a term of order O(a2) as a — 0. (]
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In a continuous-time limit of multi-period discrete large investor market models as we will
describe in Chapters 3 and 4, the parameter d(u) gives the key information about the market’s
price building mechanism. Especially, d(u) describes the degree of non-linearity of the partial
differential equation satisfied by (a transform of) all self-financing strategy functions in those
markets. But before we come to this in any more detail, we first have to build up a discrete
multi-period large investor model.

1.3 The Binomial Multi-Period Large Investor Market Model

In this section we will lift the large investor market model from a model at one single point in
time to a stochastic multi-period model. The market is once again described by an equilibrium
price function and an associated price-determining measure, but now the equilibrium price
function depends not only on the large investor’s stock holdings, but also on time and on
some stochastic fundamentals. In order to capture these additional dependences we have to
extend the various price functions and the transaction loss function of Sections 1.1 and 1.2,
respectively. We then restrict our attention to discrete markets where the large investor can
only trade at a finite number of equidistant points in time. The process of the fundamentals
at the trading dates is modelled by a binomial random walk. Since the large investor affects
the stock price by his trading, the stock price in the market is also influenced by the particular
portfolio strategy of the large investor. As in small investor markets we stipulate that the
large investor uses self-financing trading strategies, so that no funds are given to or taken
away from the market between the first and last trade. An example will show in which sense
the stock prices appearing in such a market are still recombining. Having set up the large
investor market model, we come to the natural question what the value of a portfolio held by
the large investor is. Depending on the objective, there are different valuation principles for
such a portfolio. Section 1.3.5 will introduce the two valuation concepts used in the sequel,
namely the concept of the paper value and the concept of the real value of a portfolio.

1.3.1 The General Dynamic Large Investor Price System

In order to start with the description of the multi-period model, we fix some time point
T > 0. At first we will then introduce the large investor price system on the whole time
interval [0,7]. The financial market described by this price system contains many small
investors and one large investor, and we assume that there are two primary traded securities
on this market: a risky asset, referred to as a stock, and a risk-free asset, referred to as a
bank account. While the market power of each single small investor (given by the size of
his transactions) is so small that his transactions do not significantly influence the market
prices, the large investor’s trades can move the stock prices. The bond market is supposed
to be much more liquid than the stock market such that at any time ¢ € [0, 7] even the large
investor can borrow or lend any cash amount for the same interest rate. Without loss of
generality we then may even suppose that the risk-free interest rate is 0, i.e. the value of a
unit of cash is constantly 1 on the whole time interval [0,7]; otherwise we could take the
bank account as a numeraire and consider discounted stock prices.

The basic parameter driving the stock price is given by some fundamental value process. It
accounts for all relevant (or “fundamental”) stochastic influences on the stock price which
are not caused by the large investor’s trades, and it may represent the aggregated income of
the small investors (as in Frey and Stremme (1997)), or stock-relevant news, or any other
nondeterministic influence on the stock price. In addition, we assume that at any fixed time
point and for any fixed value of the fundamentals at this time, the stock price is influenced
by the large investor’s trades as in Section 1.1. Last but not least, we also allow for other
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factors, which have a deterministic impact on the stock prices as time proceeds.

Thus, instead of the Walrasian equilibrium price function f : IR — IR which was the starting
point of our simplified model in Section 1.1 and depended only on the large investor’s stock
holdings, we now start with an equilibrium price function v : [0, T] x IR? — IR which depends
on time, the fundamentals, and the stock holdings of the large investor, i.e. we assume that
for any time ¢ € [0, 7], any fixed value u € IR for the fundamentals at time ¢, and any number
& of stocks held by the large investor at time ¢ there exists a Walrasian equilibrium price for
the stock if the large investor does not trade at that time, and this equilibrium price is given
by ¥(t,u,&). We will always assume that the fundamentals are modelled in such a way that
— ceteris paribus — an increase in the fundamentals leads to a higher stock price.

Definition 1.17. A Lebesgue-measurable function ¢ : [0, T] x IR?> — IR, (t,u, &) — ¥ (t,u, €)
is called an equilibrium price function if it is locally bounded and strictly increasing in .
In this case we define the associated small investor price function ¢: [0,7] x R — IR
by

P(t,u) =(t,u,0) for all (t,u) €[0,T] x R.

The equilibrium price function 1 : [0,T] x IR?> — IR is called multiplicative if there exists
some function f : IR — IR such that 1) can be represented as

P(t,u, &) = w(t,u)f(&) forall (t,u,§) €[0,T] x R?. (3.1)

Remark. The associated small investor price function relates the large investor market to an
associated small investor market. The name goes back to Baum (2001), who was the first who
has seen the importance of the associated small investor market (“assozierter Finanzmarkt”)
for the investigation of the large investor market. We shall also exploit the relationship
between both markets. ]

As we proceed we will require different degrees of smoothness for the function 1, and for the
largest part of this thesis we will also suppose that 1 is strictly positive. For the beginning,
however, we will stay with the very general equilibrium price function of Definition 1.17
and transfer the price mechanism introduced in the single-period model of Section 1.1.2 in
a straightforward way to the dynamic model which comes with such a general equilibrium
price function, by condensing the analogues of Definitions 1.3 and 1.6 to the dynamic model
in the following definition:

Definition 1.18. Let ¢ : [0, T] x IR?> — IR be some equilibrium price function. A probability
measure p € m(t,u)E[O,T]XRm(w(t7 u, )) is called price-determining measure for 1. The
large investor price function S, : [0, 7] x IR? — IR associated to such a pair of equilibrium
price function v and corresponding price-determining measure p is given by

Sﬂ (t, u,gl,fg) = /T,Z)(t, u, (1 - 0)51 + 952),&((19) for all (t, u,ﬁl,ﬁg) S [O,T] X ]RB. (3.2)

In such a case, for all (t,u,&;,&2) € [0,T] x IR? the associated benchmark price function
S*:[0,T] x IR® — IR is defined by

1
S*(tv u, &1, 52) = S)\(ta u, &1, 52) = /0 ¢(ta u, (1 - 9)51 + 052))‘(610)’ (33)

where A\ denotes — as always in the sequel — the Lebesgue measure on [0, 1].

For each (t,u,&1,&) € [0,T] x IR? the large investor price S, (¢, u, &1, &2) gives the actual price
per share which the large investor is faced with when shifting his stock holdings at time ¢
from &; to & shares and if at that time the fundamentals are wu.
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Remark. If the equilibrium price function 1 is multiplicative as in (3.1) the model becomes
particularly nice, since then the term (¢, u), which depends solely on time and fundamentals,
can be pulled out of the integrals in (3.2) and (3.3), respectively. Moreover, in this case
the set n(t,u) cOTIxR ﬁﬁ(w(t, u, - )) of admissible price-determining measures associated to 1
simplifies to M(f). O

As in Section 1.1 the large investor price is completely determined by the equilibrium price
function and the associated price-determining measure; thus we may state:

Definition 1.19. The tuple (¢, u) is called a (large investor) price system or even a
large investor market if ¢ : [0, 7] x IR? — IR is an equilibrium price function and p is a
price-determining measure for .

Remark. Of course the tuple (¢, 1) only provides the framework of the large investor market,
namely the price system, but it does not specify the evolution of the fundamentals nor the
trades of the large investor, though they are essential for the actual appearance of the large
investor market. O

Now we can also transfer Definition 1.9 of a transaction loss function and the related prop-
erties of Section 1.2.2 to the general large investor market described by (1, ):

Definition 1.20. Let (¢, ) be a large investor price system. Then the (implied) transac-
tion loss function c, : [0,7] x IR* — IR is given by

cu(t,u,&1,&) == (&2 — &) /1/1(15,% (1 —0)& 4 0&) (1 — A)(d9) (3.4)

for all t € [0,T] and u, &1,& € IR. We say that the price system (1, u) (or the large investor
price function S, : [0, 7] x IR? — IR) implies a natural loss structure or nondecreasing
total transaction losses, if S,(t,u, -, -) : IR?> — IR implies a natural loss structure or
nondecreasing total transaction loss, respectively, for all ¢ € [0, 7] and u € IR.

While the general dynamic price system introduced in this section is suitable for continuous
trading in time, we will assume for the rest of this chapter that the large investor trades
only at a finite number of trading times. The general formulation of the price system as we
have set it up in this section will become important in Chapter 3 and 4 when we look at
the convergence of a sequence of discrete models which are all based on the same underlying
price system.

1.3.2 A Binomial Model for the Fundamentals

The price system (1, 1) determines only the basic pricing mechanism in the large investor
market. If we now want to construct a stochastic model, we have to specify when and how
the large investor trades in this market and how the fundamentals evolve between the trading
times. In this section we specify the time points at which the large investor can trade and
the evolution of the fundamentals between these time points. The large investor’s portfolio
strategy, which describes the large investor’s trades in stocks and cash, will then be defined
in Section 1.3.3.

In order to start with a discrete model, we fix an arbitrary n € IN, divide the interval [0, 7]
into [nT'] subintervals by picking out the [nT] + 1 equidistant time points {tz}o <k<[nT]
given by

kT

[nT]
and assume that the large investor can only trade at these dates. On the set of time points
given by {tz we model the evolution of the fundamentals as a random walk, in

n

ty = for all kK € INg with 0 < k < [nT], (3.5)

}ogkgmﬂ
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the sense that between two successive time points the fundamentals can either increase or
decrease by an amount &, where ¢ is used here and for the whole remainder of the thesis as
the reciprocal square root of n, i.e. we will always (and for all n € IV) use the shorthand

1
0:=10,:= —.
n \/ﬁ
Remark. For the most part of this thesis we assume for simplicity that 7' = 1 such that the
kth time point simplifies to ¢} = % forall 0 < k <n. ([l
In order to formally set up the random walk which describes the values of the fundamentals
at each of the time points {tz}0<k<[nﬂ we define for each n € IN the set Q" := {—1,1}["T1+1

of outcomes and associate to it the corresponding power set anT] =P (") as o-field, such
that (Q”, anT]) is a measurable space, on which we can introduce the probability measure
P" by

n 1 n

For each n € IN and any fixed initial value ug € IR of the fundamentals at time t{j = 0 we can
then define the fundamental process U" = {U ,?}0 <k<[nT and the associated tilt process

Z" = {Zl?}ogkgfnﬂ on the probability space (Q”,]—"Fnﬂ , P") by setting
k
Zyi=wpyy and Ufi=ug+0, Y Z7 forall 0 <k < [nT], (3.7)
j=1

where wy', | denotes the (k + 1)st component of w™ € Q™. On (Q”,}"FRTW,P”) we can then
introduce the filtration F" = {.7-",?’}0 <k<[nT] generated by the tilt process, i.e. we define

Fi=0(23,27,...,2;) forall 0 <k < [nT].

Remark. Actually, (after a certain change of measure) the process {U ,:L} 0<k<[nT] is a general

correlated random walk in the sense of Definition 5.2 in Chapter 5. For each 0 < k < [nT"] the
tilt Z;' depicts the direction of the last move of the fundamentals leading to the fundamental
value of U}’ at time t}}. Especially, if the stock price adjusts with a certain delay to the
large investor’s trades such that the price-determining measure p is not the Dirac measure
01 concentrated in 1, the tilt Z7 at time tj = 0 will become important for our general
convergence results in Chapter 4, once we suppose a certain relationship between the tilt Zg
and the stock holdings £, immediately before time 0.

On the other hand, the choice of the probability measure P" in (3.6) is not essential for our
proceedings. We could have taken any probability measure P™ on (Q”, ]:’[“nﬂ) under which
all states w™ € Q" have a strictly positive probability to occur, since we will see that like in
the Cox-Ross-Rubinstein model the original probability measure has no effect on the large
investor’s replication price of an option. O

We will now introduce some more notation to denote the possible realizations of the funda-
mental process over time. Since the random walk U™ lives on a triangular grid, we define at
first a compact notation to address each node of the grid:

Definition 1.21. For each m € INy the triangular grid of indices I(m) is given by
I(m):={(k,i) |k €{0,1,...,m} and i € T},
where the set Zj of possible indices at step k is defined by
1y = {—k,Q—kz,...,k:} for all k € INy.

In order to avoid some case distinctions in Section 1.4 we also set Z_; := {}.
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u33 = 30
//
Uzo = 20
/ \
U] = 0 U3l = 0
ugo = 0 us0 = 0
Ui(-1) = =0 u3(-1) = —0
\ //
Ug(—2) = —20
\
Uz(—3) = —30
Up U Us Us

Figure 1.1: Possible realizations up to time ¢ with ug = 0

If we now take m = [nT'] for some fixed n € IN, then I([nT]) denotes the complete triangular
grid of indices needed to describe all possible realizations of U™, and we can adopt for each
n € IN the notation

ujy; =g + i, for all (k,i) € I([nT7) (3.8)

to denote all possible realizations of U™ between tj = 0 and t?n

=T

Definition 1.22. The set U]’ of possible realizations of U™ at time ¢} (or: at the kth
step) is given by

Up = {uy; : i€} forall0<k < [nT] andn e V. (3.9)

Moreover, the set of all possible time-space realizations A" (m) up to time ¢} is defined
by
A™(m) = {(t}, uy) | (k,9) € I(m)}  for all m,n € Ny with m < [nT]. (3.10)

For the set of all possible time-space realizations up to time t?nT] =T we write A" instead

of A ([nT1).

Figure 1.1 depicts the possible realizations of the fundamentals up to time ¢4. In this figure
we have set ug = 0 and suppressed the index n.

1.3.3 The Large Investor’s Portfolio Strategy

Having specified the discretization of the time axis and having modelled the behavior of the
fundamentals along the so-defined time grid, we still need to exactly specify the model for
the large investor’s stock and cash holdings in order to have a full description of the large
investor market. In Section 1.3.2 we have determined for each fixed n € IN the time points
{t};}o <k<[nT] at which the large investor can trade, now we have to specify the portfolio
strategy used by the large investor, i.e. we have to describe how the large investor shifts his
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portfolio from stocks into the bank account and vice versa as time proceeds. Since the large
investor does not trade between any two successive time points ¢} and ¢}, ;, his portfolio in
stocks and cash will remain constant in between. At each time point ¢ with 0 < k < [nT']
the large investor will take into account all the fundamentals or news which are known by time
ty for the set-up of his revised portfolio structure. Formally, we define the large investor’s
portfolio strategy as a sequence of instantaneous portfolios:

Definition 1.23. Let n € IV and the fundamental process U™ = {U,?}(qunT be defined

as in (3.7).

1

(i) For each 0 < k < [nT'] a portfolio at time ¢} is a two-dimensional F}'-measurable
random variable ({g, bZ) The portfolio (fg, b’g) is called path-independent if there
exist two functions £" (t;cﬂ -), b (tz, ) : U — IR such that

i =¢"(tr, Up) and by =" (ty, Up), (3.11)
and in this case we adopt the shorthands
&y ="ty ugy) and bY =0"(t},up;) foralli€ Iy (3.12)
to denote all possible realizations of ;' and b}, respectively.

(7i) A portfolio strategy or trading strategy (£",b") is an F"-adapted two-dimensional
stochastic process. A portfolio strategy is path-independent if for each 0 < k < [nT']
the portfolio ({,?,bg) is path-independent. In this case we introduce the strategy
function £" : A" — IR and the cash holdings function 5" : A" — IR as the two
functions which satisfy (3.11) for all 0 < k < [nT'], and once again adopt for all
0 < k < [nT'] the shorthands (3.12).

(73i) The portfolio held by the large investor immediately before time ¢ = 0 is denoted by
(fﬁl, b’jl) and supposed to be deterministic.

If the large investor uses the portfolio strategy (£, b") he holds for each 0 < k < [nT] —1 a
total number of ;! stocks and the cash amount b} between time ¢}’ and time ¢}, ;. At time
T= t?nﬂ he holds a portfolio of §’ﬁnﬂ stocks and b?nﬂ in cash.

Remark. Note that our definition of a portfolio strategy differs from the standard definition
used in the Cox-Ross-Rubinstein model, since we only require that the strategy (£",b")
is adapted, but not predictable. In the Cox-Ross-Rubinstein model the portfolio strategy
(o™, 5") = {¢”, 6£}1<k<[nT] is normally introduced in such a way that the portfolio ( [ ﬂ,?)
describes the number of stocks held between ty_, and t} for each 1 < k < [nT]. If we
take our definition of a portfolio strategy (£",0") and set (qﬁz,ﬁg) = (5}5_1,1)2_1) for all
1 <k < [nT], then (¢™, ™) is of course predictable and fulfills the ordinary definition of the
portfolio strategy in the Cox-Ross-Rubinstein model. However, since the large investor price
for the stock depends on the large investor’s stock holdings, and in general even both before
and after his trade, it is much easier for us to think of ' as the number of stocks and b} as
the cash amount held between time ¢} and time ¢}, for all 0 < k < [nT'] — 1. O

As in the standard small investor models like the Cox-Ross-Rubinstein model we concentrate
our analysis on those trading strategies of the large investor for which the large investor does
not input or withdraw any funds from the market between the time points 0 and T. This
leads to the definition of a self-financing strategy:

Definition 1.24. For any n € IN a portfolio strategy (f", b") is called self-financing if
by =bp + (&8 — &1) Su(t, UL 81, &) forall 1 < k < [nTT. (3.13)
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Under the self-financing condition any increase in the number of shares of stock held by large
investor at any of the trading dates {tﬁ}l <k<[nT is completely financed by a reduction of
the cash amount held in his portfolio and vice versa.

1.3.4 The Evolution of the Stock Price

For every n € IN the evolution of the stock price in the discrete large investor market with
the trading dates {tg} 0<k<[nT] is now completely determined by the price system (1), i1), the
fundamental process U", the stock-related part £" of the portfolio strategy (£",6"), and —
depending on the price system — also on the large investor’s stock holdings ", immediately
before time tfj = 0. Of course, the critical moments in the evolution of the stock price are
the trading times {tZ} 0<k<[nT] where the large investor adjusts his portfolio, since here the
stock price obtained in the market switches from the old Walrasian equilibrium, which holds
as long as the large investor keeps his old stock position, to a new equilibrium which takes into
account the large investor’s new stock holdings. Such a critical moment has been described
in detail for a fixed time point ¢} and fixed fundamentals U}’ in Section 1.1.2.

Figure 1.2 depicts the possible evolution of the stock price up to the trading time t% if the
large investor uses a path-independent portfolio strategy (£™,0™). For the sake of clarity the
dependence of ¥ on ¢ and any superscript n is suppressed in this figure. In order to explain
the figure, let us start at the first point in time which is used for trading, namely at tj = 0.
At this time the fundamentals are given by Ug = u{, = uo, and according to his portfolio
strategy (£",b") the large investor has to shift his stock holdings from the £, shares of stock
which he had initially held to &g, = £" (tg, ugo) shares. Before the large investor places any
order, the equilibrium price for the stock at time ¢t = 0 is based on the large investor’s
initial £", shares of stock, so it is given by w(tg,ugo,fﬁl). In the figure we now suppose
that £", < &y, such that the large investor has to buy &j, — £"; additional shares of stock.
Because of the price system (1), ) the average price per share for this transaction is given by
S(J)B = S#( 05 UGos €15 56‘0). (If €™, > &Fy, the large investor would have to sell ™, —&(j, shares
for the price 5’6{) per share.) With the large investor having shifted his stock holdings to &,
stocks, the new equilibrium stock price on the market at time ¢;j becomes 1/1(758, UGy 56‘0).

As time proceeds, the fundamentals change, for example because of some news arriving. At
time ¢} the fundamentals have changed either to uj; or to U1y and the corresponding

equilibrium prices before the large investor acts on the market are w(t?,u’f( 11)7580)’ But
at time ¢7 the large investor has to shift his stock position again, namely to £} or 5?(71),
respectively. In our figure we assume &7 > &gy > f?(_l), which implies that the large investor

has to buy &y — & shares at an average stock price of Sf; = S, (¢7,ufy, &, €1) if the
fundamentals have increased, and he has to sell £, — f?(,l) shares at an average price of

51_(—1) = Su( ?,u’f(_l),fgo,f?(_l)) if the fundamentals have decreased between time ¢ and
time 7.

Figure 1.2 illustrates that the binomial tree for the stock prices is recombining as long as
the large investor’s portfolio strategy is path-independent. However, compared to a standard
Cox-Ross-Rubinstein model, the influence of the large investor’s stock holdings on the stock
price itself complicates the method how the stock prices recombine. In the standard Cox-
Ross-Rubinstein model the stock price at each trading time is exogenously given as a function
v :[0,T] x R — IR of time and fundamentals and does not depend on the actual stock
holdings of one particular investor. Therefore, the stock price which appears in the market if
the fundamentals go up first and then down is the same as if the fundamentals go down first
and then up again. In both cases the price would be given by 17)(153, ugo).

In Figure 1.2 we can see the additional complexity of the recombining property in our large
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Figure 1.2: Possible stock prices up to time t%
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investor model: The equilibrium price at time ¢ before the large investor has traded is given
by ¥ (t5,uby, &) if the fundamentals went up and then down, and by w(tg,ugo,f?(_l)) if
the fundamentals went down first and then up. If the prices really depend on the holdings
of the large investor, these two equilibrium prices do not coincide, and as long as the price-
determining measure p of the price system (¢, u) is not the Dirac measure J1, the two large
investor prices S5, = S, (tg,ugo,ff‘( ﬂ),ggo), i.e. the average stock prices the large investor
might be faced with when performing the necessary transaction at time ¢3, do not coincide
either. However, the new equilibrium price which appears in the market after the large
investor’s transaction will be v (t%,ul,, 5,) in both cases, and thus, in the sense described
above, the binomial tree for the stock prices in the large investor model is indeed recombining
as well.

Remark. Bakstein (2001) has developed a binomial large investor model which incorporates
in addition to the random price impact known from the Cox-Ross-Rubinstein model both
a short-term price impact due to the lack of liquidity at the large investor’s trades and a
permanent slippage due to the large investor’s stock holdings. If the large investor uses a
path-independent trading strategy, the stock price process lives on a recombining tree which
is similar to the one of Figure 1.2. O

1.3.5 The Value of a Portfolio Strategy

If an investor holds a certain portfolio, he is inclined to assess his portfolio by some valuation
rule. For a large investor who affects the stock price by his own trading it is not a priori clear
how to value his stock holdings. In this section we develop two different valuation concepts
for a large investor’s portfolio or his portfolio strategy. Therefore, let us once again fix some
price system (¢, ), some discretization parameter n € IN and the large investor’s stock
holdings £, immediately before time ¢ = 0, and model the evolution of the fundamentals
by a random walk U™ as in (3.7).

There is no doubt how the cash in the large investor’s portfolio should be valued. Since the
investor could borrow or lend an arbitrary amount of cash for the same interest rate, which we
suppose to be zero, the only reasonable price per unit of cash in the large investor’s portfolio
is 1. In the standard Cox-Ross-Rubinstein model the shares of stock in the investor’s portfolio
are priced along the same reasoning by the actual stock price in the market. In this case the
stock price is also exogenously given and does not depend on the investor’s particular stock
holdings. However, the discussion at the end of Section 1.3.4 has once again shown that in a
true large investor market there is no longer one unique stock price for a given combination of
time and fundamentals like in the Cox-Ross-Rubinstein model. Hence every valuation of the
large investor’s stock holdings will depend on the particular stock price selected to value his
share of stock, and like in small investor models with transaction costs the values of the large
investor’s portfolio before and after his transaction need not coincide. Our two valuation
concepts for the value of the large investor’s portfolio strategy at a certain point ¢} in time
evaluate the portfolio after the large investor’s trade at time ¢J.

The first concept uses the most recent price experienced by the large investor, i.e. the average
per-share price for his transaction at this point in time. If for example the large investor
has held &' ; shares of stock immediately before time ¢} and shifts his stock holdings at
time ¢} to &;' shares, then the average stock price achieved by that transaction is given by
Sy (tg, Ul 801, 52) This approach to valuate the large investor’s stock holdings leads to the
concept of the paper value of a portfolio strategy.

Definition 1.25. The paper value V) of a portfolio strategy (f“,b") at time ¢} is given
by
Vit =St U, &80, &) + b for all 0 < k < [nT7].
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We will write V™ = {an} 0<k<[nT] to denote the paper value process between time 0 and 7.

Remark. The paper value is a mark-to-market approach in the sense that it values the whole
stock holdings of the large investor by the last price seen on the market by the large investor.
A similar valuation concept of paper value was first introduced in discrete time by Jarrow
(1992) and in continuous time by Schénbucher and Wilmott (2000). Implicitly, the paper
valuation concept is also assumed in the continuous-time models of Frey (1998, 2000) and
Sircar and Papanicolaou (1998), as we shall see when we investigate the limits of our discrete
models in Chapter 4. A related mark-to-market concept in discrete time has been developed
by Bakstein (2001) and Bakstein and Howison (2002). These two authors use the mid-
market price, which prevails in the market after the transaction of the large investor has been
executed and the stock price has found its new equilibrium, as their mark-to-market value of
the large investor’s stock position. If we suppose a negligible bid-ask spread the mid-market
price is the mark-to-market price for a small investor. Our paper value is also similar to the
“marked-to-market value” of Cetin et al. (2004). In a continuous-time economy where the
large investor affects the stock price only temporarily through the number of shares traded
in a particular point in time, this mark-to-market value uses the marginal stock price to
evaluate the large investor’s portfolio. [l

The stock price used for determining the paper value is an observed market price, so that the
paper value can be calculated by the large investor without knowing the detailed structure of
the price system (¢, u). This simplicity and transparency makes the paper value an important
valuation rule, especially in a real-life market, where the actual price system (1, 1) is not
known at all, and where in general two agents will have two different beliefs on the “true”
price system; if these agents had to find a common valuation principle for the large investor’s
portfolio, they could still agree on the paper value.

However, the paper value has some serious drawbacks: The stock price of S, (t}g, Ul &y, 5}3)
per share is only the per-share price for the transaction which changed the large investor’s
stock holdings from & ; to & shares. It is not guaranteed that the large investor can
achieve the same price when immediately switching his stock holdings back from ;! to &
shares, nor that he could sell all his ;! shares for that price. Moreover, even if the large
investor could sell all his &' shares for that price, this would not imply that at time ¢}} the
large investor could also build up his stock holdings from zero for the same price, so the
paper value need not reflect the strategic value of the large investor’s stock holdings at all.
Thirdly, as a function of the large investor’s stock holdings &' ;| before time ¢}, the stock price
Sy, (t’,g, Ul &y, f,’;”) used for the calculation of the paper value is a retrospective stock price,
though a decision-oriented valuation rule should rather use a topical or even a prospective
price.

Remark. The third drawback could be circumvented by valuing the large investor’s stock
holdings with the new Walrasian equilibrium price @D(tz, U, 5,?) which appears immediately
after the large investor’s transaction. However, except for an infinitesimal amount of shares
the large investor can not trade shares for this price. In reality the large investor might even
be unaware of this equilibrium price, while he will always know the price Su( UL &R, 52)
at which he has traded. O

In Section 1.1 we have explained in great detail the usefulness of the benchmark price function
as a large investor price function which satisfies the “fair” price condition (1.1). The bench-
mark price gives the “fair” price per share for a transaction of the large investor in the sense
that any (instantaneous) round-trip of the large investor does not lead to any transaction
loss or profit. For example, the “fair” price for the transaction necessary to switch the large
investor’s stock holdings at time ¢} from & ; to £ shares is given by S*( [ U,?,ﬁ,’;_l,g};),
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and this price coincides with the benchmark price S* (tz, Uz, &, fgﬁl) for the immediate can-
cellation of that transaction. In order to assess the whole position of £}’ shares held by the
large investor at time ¢}, the benchmark price S* (t};7 U &n_qs 5,’;) is still unsuitable, since it
is a retrospective price as well, as it depends on the large investor’s stock holdings &;'_; before
time t7,. However, we can easily use the benchmark price function S*( Uy, -, ) ‘R’ > R
to construct an objective and topical valuation for the &}’ shares held by the large investor at
time 7, namely just by taking the benchmark price S* (t};”, U;J,{,?,O) which corresponds to
the liquidation of all the £}’ shares held by the large investor at time ¢;}. Of course, this price
only depends on the ;! shares held by the large investor at time ¢} , and since the benchmark
price is a “fair” price, it even coincides with the benchmark price S*( 5 U ,?,0,{2) which
corresponds to the transaction needed by the large investor if he wants to change his stock
holdings at time ¢} from 0 to &} shares.

Thus, it is sensible to add another price function to the price functions of Section 1.3.1:

Definition 1.26. Let (¢, ;) be a large investor price system, and S* : IR?® — IR the bench-
mark price function in the market described by (¢, ). Then the (loss-free) liquidation
price function S : [0,7] x IR? — IR is for all (t,u,&) € [0,T] x IR x IR given by

1
S(t,u, &) == S*(t,u,&0) = S*(t,u,0,£) = /0 P(t,u, 08) X(dO). (3.14)

Remark. Note that the liquidation price is only a theoretical liquidation price, which cannot
be observed in the market. In a “normal” large investor market, the large investor price and
the benchmark price will not coincide, but the large investor is exposed to transaction losses.
In this case the large investor would only achieve a worse price per share than the liquidation
price if he would immediately liquidate his stock holdings.

Though the liquidation price S (tg, Uy, 5,:?) itself cannot be observed in the market, it can be
calculated like in (3.3) from the new Walrasian equilibrium price w( 5 UL, 52) at time ¢, if
both the price system (1), 1) and the large investor’s stock holdings &' are known, since the
only missing variable, the value U;! of the fundamentals at time ¢3!, can be calculated from
1/1( U, f};) by inverting the strictly increasing function w( [ fg) R — IR. g

If we now use the liquidation price to value the stock holdings of the large investor, we have
found a second valuation principle for the portfolio strategy of a large investor, and since the
liquidation price depends only on the large investor’s stock holdings at a single point in time,
this second valuation concept even works for a portfolio of the large investor at any one point
in time:

Definition 1.27. The real value an of a portfolio (52, bZ) at time ¢} is given by
Vit =S (L, U, &) + b for all 0 < k < [nT]. (3.15)

If (g”,b”) is a portfolio strategy, then for any 0 < k < [nT'| the real value of (ﬁn,b") at
time ¢3! is the real value of the corresponding portfolio (52, bﬁ) at time ¢}}. In this case we
will write V" = {an}o <k<[nT] to denote the real value process between time 0 and 7.

Remark. The introduction of the real value shows the self-financing property of (3.13) in a
new light. Recalling the definition of the transaction loss function ¢, : [0,7] x R} - R
of (3.4), we see that the self-financing condition (3.13) is equivalent to

WPy =b+ (& — &) S (R, Ul 81 &8) + (8, UL &Ry, &) for all 1 < k < [nT7.
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Moreover, the time- and fundamental-dependent analogue of (1.26) gives us the formula

(& = &0)S™ (0 URL G €)= &8 (6 U &) — S (8, UL €y ), and thus the self-

financing condition is also equivalent to
E1S(th Uk, &) + by = &S (6 UL &) + 0 + e (8, Uk €021, €7) (3.16)

for all 1 < k < [nT']. Hence the self-financing condition can be reinterpreted as the rule that
for any trading time ¢} from {t};}l <k<[nT] the “real value” of the “old” portfolio (5,?71, 271)

has to compensate both the real value of the “new” portfolio ({g, bZ) and the loss induced
by the portfolio shift from &;'_; to &' shares of stock.

The equation (3.16) also shows that even for a self-financing strategy the “real value” before
and after the large investor’s trade need not coincide. If the implied transaction losses
Cu (t’,;‘, Ug,égﬁl,ﬁg) are positive, then the “real value” of the portfolio strategy at time ¢}
evaluated before the large investor shifts his portfolio from &' ; to &} shares of stock would
be larger then the real value after the transaction. We have introduced the real value as
the value after the large investor’s trade since this definition ensures that the real value of a
path-independent self-financing portfolio strategy is recombining. (Il

As we proceed we will often have to distinguish between the different possible future values
of the large investor’s portfolio given the information which is available at a certain point in
time. In order to describe these possible outcomes, we will now introduce functional analogues
of the two value processes V™ and V", i.e. we want to express the real and the paper value
of a given trading strategy (£™,b") as functions of time and the possible outcomes of the
fundamental process U™.

If we restrict our attention to path-independent portfolio strategies, we can introduce such
a function for the real value by means of the strategy and cash holdings function of Defini-
tion 1.23:

Definition 1.28. Let us suppose that (f”,b”) is a path-independent portfolio with corre-
sponding strategy and cash holdings functions £ : A" — IR and b" : A™ — IR, respectively.
Then the real value function 7" = 7"(€"¥") . A" — IR is given by

0" (t,u) = E"(t,w)S (¢, u, & (¢, u)) + b"(t,u) for all (t,u) € A™ (3.17)

With this definition we can recover the real value at time ¢} of a path-independent portfolio
strategy (£",b") as B
Vit =o" (i, Up) forall 0 <k < [nT]. (3.18)

Since the paper value does not only depend on the stock holdings ;! after the trade at time
ty, but also on the stock holdings &} ; at time ¢}/ _,, an analogous functional representation
of the paper value function needs an additional dimension.

Definition 1.29. Under the assumptions of Definition 1.28 the paper value function
v = ™€) - A" xR — IR is given by

V" (tu, €)= €Mt u) Syt u, &, €Mt u) + 0" (t,u) for all (t,u,§) € A™ x IR. (3.19)

With this definition we can recover the paper value V;" of a path-independent portfolio
strategy (£",0") at time ¢} as

Vit =" (1, Up,&¢_y) forall 0 < k < [nT7. (3.20)

Moreover, for all those path-independent trading strategies and all 1 < k < [nT'] the large
investor’s stock holdings £ | between time ¢, and time ¢} can be written in the functional
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form &, =& (t}gfl, U,’;l), hence we can rewrite (3.20) as V' =" (t’g, up,gn (tZ—lv Ul?—l))'
This shows that as opposed to the real value the paper value at time ¢} will in general depend
not only on the fundamental value U}’ at time ¢}, but also on the fundamentals U}’ ; just
before time ¢}..

Remark. The real value of a portfolio was first proposed by Schénbucher and Wilmott (2000)
in the context of a continuous-time market where the large investor can trade at any time
during some time interval [0,7]. Their market mechanism corresponds to a price system
(1, u) where the price-determining measure p either is or can at least be chosen to be the
Dirac measure 0; concentrated in 1. Like in our derivation Schénbucher and Wilmott (2000)
obtain the real value of a portfolio (fg, bﬁ) as the sum of the price of the cash amount b} and
a theoretical liquidation value for the & shares of stocks, but they motivate the liquidation
value for the stock position differently. Namely, they define the liquidation value as the price
which could be obtained by an infinitely rapid, yet not instantaneous, liquidation of the
stock position via infinitely many infinitely small transaction blocks, such that — given that
the price function v : [0, T] x IR?> — IR, (t,u, &) — (t,u,£) is increasing in & — the real value
describes the maximal cash amount the large investor could receive for his portfolio. When
using the limit of their liquidation strategies, Schénbucher and Wilmott (2000) also notice
that a round-trip does not induce any transaction losses, and conclude that it cannot induce
any transaction gains either for no-arbitrage reasons. Such a statement was made precise by
means of the benchmark price in Section 1.1. However, despite their findings with regards
to the real value, Schonbucher and Wilmott (2000) only consider the replication of the paper
value of an option and look at the paper value of the replicating strategy when it comes to the
replication of options. Thus, they do not fully employ the real value concept for replication
purposes as we will do in Chapter 2. In a general semimartingale setting, Schonbucher and
Wilmott’s real value concept has been analyzed and exploited for superreplication by Baum
(2001) and Bank and Baum (2004).

The real value is also implicitly used by Jonsson and Keppo (2001), who assume in their
pricing model for a European call option written by a large investor that at maturity the
holder of the option has the right to immediately sell all shares of stock back to the large
investor and receive instead an amount which equals the real value of the large investor’s
stock position. In the most recent version of this paper, Jonsson et al. (2004) argue that the
delivery is taking place in infinitesimal packages, and hence they really employ the real value.
A slightly different version of a liquidation price in discrete time was already introduced by
Jarrow (1992). In opposition to our valuation concept Jarrow’s “real wealth” considers the
real liquidation price and implicitly accounts for transaction losses, ignoring the strategic
advantages of holding the stock position for hedging purposes. O

1.4 Replication

In this section we consider replication problems in our binomial large investor market. The
natural replication problem in large investor market concerns the replication of certain portfo-
lios, especially of contingent claims. Since the possible stock and cash positions of a replicating
trading strategy have to satisfy a sequence of (in general) non-trivial fixed point equations
it is not a priori clear that replicating strategies for the large investor exist at all. However,
we will introduce the notation of star-convex portfolios and show that under some regularity
assumptions on the price system (i, u) and the structure of the transaction losses in this
market there exists for each star-convex contingent claim a self-financing replicating strategy,
which is described by the sequence of fixed point problems, and if the price system implies
nondecreasing transaction losses, this replicating strategy even is unique. While the more
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natural replication problem in the large investor market is to replicate a given number of
shares of stock and a given cash amount, the large investor might also want to replicate a
certain paper value. In Section 1.4.3 we will give conditions under which the large investor
can solve such a problem as well.

Thus, let us fix some price system (¢, ) and some n € IN and define the trading dates
{ti}, <k<[nr] OO 0, 7] and the binomial random walk U™ = {U}'}, <k<[nr) describing the
fundamentals at these time points as in Section 1.3.2.

1.4.1 Definitions

At first we have to specify the definition of a contingent claim and its attainability in a large
investor environment. Then we will introduce the concept of star-convex portfolios in our
market and show that the long European call is an example of a star-convex contingent claim.
In the standard Cox-Ross-Rubinstein model the investor can shift his portfolio without any
transaction losses from a pure stock portfolio to one which consists of cash only, and vice
versa. Thus in that model one does not have to distinguish between physical delivery and
cash settlement, and a contingent claim is defined as a portfolio value at maturity 7', or —
put in mathematical terms — as an F Fnﬂ—measurable random variable.

However, in an environment with a large investor a round trip will in general induce some
transaction losses, and thus the large investor cannot transfer cash positions into stock posi-
tions with the same real value (and vice versa) at no costs. Therefore, we have to distinguish
in large investor markets between physical delivery and cash settlement of an option — or more
generally: between the different combinations in stocks and cash at maturity, even though
they might lead to the same real value.

This situation differs from the standard Cox-Ross-Rubinstein or Black-Scholes setting, but
it is similar to the replication of contingent claims in a market with transaction costs. Hence
our definition of a contingent claim can parallel the definition used in binomial transaction
costs models as considered by Boyle and Vorst (1992) and others.

Definition 1.30. A contingent claim ({n, bn) at maturity 7" is a portfolio at time t?nT] =T.

Definition 1.31. A contingent claim ({n,bn) is called attainable if there exists a self-
financing portfolio strategy (5", b”) such that anT] = ¢, and b?nT] = b,. In this case we say

that (f”, b”) replicates the contingent claim (ﬁn, bn).

Remark. If (£7,b"™) is the replicating strategy of some attainable contingent claim (&, by,),
then the large investor needs &; shares of stock and the cash amount b at time tfj = 0 in
order to be able to replicate the option. Under the assumption that the large investor has
held £, shares of stock immediately before time 0, the large investor would need a total cash
amount of

U(OaUGLo’f%) zfgSu(O,ugg,fﬁl,ég) +bn7 (4'1)
at time 0 in order to build up his portfolio at this point in time. This amount is just the
paper value of the portfolio (&7}, bg) at time 0. However, as in small investor markets with
transaction costs we have to be careful with the interpretation of U(O, UG 521) as the “fair”
price of the contingent claim, since there might exist other self-financing trading strategies
which lead to at least &, shares of stock and a cash amount of at least b,, at time t’ﬁnﬂ, but
which are cheaper to set up than the perfect replicating strategy (£",b™).

Not every contingent claim need be attainable. Therefore, when we want to find replicating
strategies, we have to limit the class of contingent claims considered. It turns out that the
class of star-convex contingent claims is a good choice, since every star-convex contingent
claim can be replicated by the large investor.



1.4. REPLICATION 51

Definition 1.32. For each 0 < k < [nT'] a path-independent portfolio (5,?, bﬁ) at time t}} is
called convex if the function £" (tz, ) : U} — IR of representation (3.11) is nondecreasing;
it is called concave if £" (tZ7 ) :U;! — IR is nonincreasing.

Recalling the shorthand (3.12) we say that a convex portfolio (fg,bg) at time ¢} is star-
convex if for all i € 7,1 = {1 —k,3—k,....k— 1} we have

&1y S (T WRie1)s Egigny Ertigen)) T Dkgien) (4.2)

> &1y S (ths Wiy Engign)r Ehgien)) T Ok(i1)-

A concave portfolio (52, bZ) at time ¢} is called star-concave if for all i € Zj,_;

Erie1y S (ths Wiy Engizn)r Ehgiseny) T Dk(ien)
< fl?(i;l)su( ks UZ(iil)vfl::l(im)afl?(iil)) + bZ(z‘;l)-

A portfolio strategy (£",b") is (star-)convex if the portfolios (£, b)) are (star-)convex for
all 0 < k < [nT], and similarly the portfolio strategy is called (star-)concave if all the

portfolios {(5,’;, bg) }OSkS () AT€ (star-)concave.

Remark. Since U = {up} consists of a single element and since Z_; := {}, every portfolio at
time 0 is star-convex. Moreover, by the same arguments as in the remark after Definition 1.27
we see that (4.2) can for all 0 < k < [nT'| and all i € Zj_; be rewritten as

Eri1)S (Ers Uiy Ergie)) + Vhien) (43)
2 §£‘<i¢1>5(t§37 “Z(iﬂ)afl?(ml)) + bZ(iﬂ) —Cu (tZ, “Z(iﬂ)v52(111)752(111))-

Hence, in the presence of an ordinary price system (¢, 1) with a nonnegative transaction loss
function ¢, : [0, 7] x IR* — [0, 00), the condition of star-convexity means that at any trading
time ¢} and for any particular outcome UZ(i L) of the fundamentals at this time, the large
investor will always turn down an offer to exchange his portfolio for the deterministic portfolio
(g;g(m), bZ(i:Fl)), which his trading strategy would require if at one time point between t{j = 0
and t} the fundamentals had gone in the opposite direction . Namely, (4.3) says that the
real value of the target portfolio (fg(l. il),bg(i i1)) required by the large investor’s trading

strategy under the time-space realization (t’,;”, “Z(i il)) is never lower than the real value of

the “neighboring” portfolio (fl?(iqil)’b;cl(iqil)) reduced by the losses necessary to shift this
portfolio to the target portfolio. O

In the next example we show that a long European call with physical settlement is star-convex.

Ezample 1.7 (European Call). Let us assume for simplicity 7' = 1. The (long) European call
C = C% of @ > 0 shares of stock with strike K € IR is defined as the portfolio C' = ({n, bn)
at time ¢;; = T which consists of & = ol gy )5k} shares of stock and the cash amount
bn = —aK 151 un ay>ky- 1f we look at the real value of this contingent claim as we have
defined it in Definition 1.28 we see that it is given by

Ve =a(S(T,U,0) - K)©,

and hence the real value of the European call has (almost) the form of an excess claim if the
(in this case: liquidation) stock price exceeds the strike K which we are accustomed to from
small investor market models.

We will now show that nonnegative transaction losses imply that the call C' is star-convex.
In order to do so, we will identify the contingent claim (fn,bn) as in Definition 1.31 with

the portfolio (52’, bﬁ) at time ¢ = 7" in order to access its possible outcomes ( e b?) for all
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i € I,,. Because of the previous remark, we only have to show that (4.3) holds with £k = n
and all ¢ € Z,,_1, and since the transaction loss function ¢, : [0, 7] x IR? — IR is supposed to
be nonnegative, it suffices to show

gg(z’:ﬁ:l)g(T7 uZ(i:tlyg:zL(i:tl)) + bZ(i:tl) 2 53(1';1)5(Tv UZ(i:I:I)’ 52(2';1)) + bZ(z':m) (4.4)

for all i € Z,,_1. Let us now fix sgch an ¢ € Z,_1 and note that by the definition of the
loss-free liquidation price function S : [0,7] x IR* — IR in (3.14) we have

1
S(T oy @) = /0 (T upyy, (1= 0)a) A(dF)
1
= /0 Y(T, 40y, (1= 0)er) A(df) = (T upy; g, @),

since the equilibrium price function v : [0,7] x R* — IR, (t,u,&) — (t,u,§), is strictly
increasing in u. Three possible cases can occur. Either we have S (T , U’Z(i +1),a) < K, or
S'(T, ug(i_l),a) > K, or we have

S(T, 'LLZ(iil),a) S K < S(T, U?L(i+1)7a). (45)

In the first two cases it follows that &/, | = &7 4y and by ;) = b 4y, and hence (4.4)

trivially holds. In the third case the definition of the call implies that (52(1'71)7 bZ(iq)) = (0,0)

and (§g(i+l),bz(i+l)) = (o, —aK). Thus, the two inequalities in (4.4) follow from (4.5) as

well, and the long European call is indeed a star-convex contingent claim. O
Remark. Example 1.7 reveals the main reason why we call the class of portfolios introduced
in Definition 1.32 convez: In the example of the long European call its real value is a convex
function of the loss-free liquidation price S(T,U", ). However, as we have indicated in the
beginning of this section the value of a contingent claim is not the right tool to describe
contingent claims in a market with a large investor, and so we have to transfer the convexity
from functions to portfolios. This brings some difficulties, but still relates back to the terms
used in standard small investor market models. O

1.4.2 Replication of Star-Convex Contingent Claims

Under some regularity assumptions on the price system and the implied loss structure we
will show in this section that in our binomial model every star-convex contingent claim is
attainable, and we will also give conditions such that the replicating strategy is unique.

In order to find the replicating strategy we use the same approach as in the Cox-Ross-
Rubinstein model and construct it step by step by calculating the portfolios necessary to
replicate the contingent claim backwards in time. In the Cox-Ross-Rubinstein model this
recursively leads to explicit equations for the values of the strategy and cash holdings at the
different points in time. Similarly we can find formulae for these values in the large investor
case. However, the values of the strategy function are only given as solutions of a non-trivial
fixed point equation. Thus, the existence and uniqueness results for the replicating strategy
become much more involved than in a small investor model.

Let us now assume we are given some star-convex contingent claim (&,,b,). In order to
replicate this claim by a portfolio strategy (£™,b™) we need éFnTW = &, shares of stock and the
cash amount b?nT] = b, at maturity, so let us define the portfolio of the replicating strategy
(&™,b™) at time t?nﬂ = T like this. Since (&,,b,) is star-convex, the portfolio (ff‘nﬂ,b?nﬂ)
is star-convex as well.
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Let us now assume that for some 1 < k < [nT'] and all k¥ < j < [nT] we have already
constructed star-convex portfolios ( }1, b?) at time t? as part of a potential replicating strategy
(&",0™). Then we have to find out how the large investor’s portfolio between the trading
times ¢}, and ¢} has to look like in order to allow the large investor to (exactly) finance
the portfolio (5,?, bg) at time ¢}!. Hence we are looking for a portfolio (51?—1= bZ—l) at time
ty_, which satisfies the self-financing condition (3.13). If the fundamentals at time ¢} , are
Uj'_,, then the fundamentals U]} at time ¢} will either be U’ | + &, or U]’ | — 6, and the

self-financing condition reads
bz.L_l = bn (t27 Ul?—l :l: 571)

(€7 (6 Uty = 00) = €0 ) Sy (0 Uty = 6 €1y, €7 (8, Uy £ 60) )

From these two equations it follows that if some portfolio (51211»1’271) satisfies (4.6), then
there exists a path-independent one. Thus, we can use the shorthands of Definition 1.23,
namely

f?kfl)i = 5"( Z_l,u?kfl)i) and b?kfl)i =b" (tﬁ_l, u?kfl)i) for all i € Ty, (4.7)

where &" (tzfp ) Uy | — IR and b" (tzfp ) : U} | — IR are the two functions that allow
us to represent the stock and bank account holdings at time ¢}!_; in terms of the fundamentals
Uy, as

§ioy =" (tho1, Upy) and by =0"(th_1, Ui y), (4.8)

respectively, and rewrite (4.6) in terms of these shorthands. Hence the self-financing condi-
tion implies that the possible stock and cash holdings (4.7), which the potential replicating
strategy prescribes at time ¢}_; depending on the particular realization u’("‘kil)i of the funda-
mentals U} |, have to satisfy

bo—1)i = Vkgiz1) + (giz(iil) - 5?k—1)i)5u (t};L?uZ(i:tl)’5?k—1)i?£l7cl(i:|:1)) for all i € Zp 1. (4.9)

If we subtract the two equations in (4.9) from each other we get for all i € Zj,_4:

0= b1y = Okimt) + (&) = Elem1)) S (T Wi 1) Elemryi Eriie))

+ (f(kfl)i - ék(ifl))sﬂ( k7uk(ifl)vS(kfl)wgk(ifl))‘

This is a fixed point equation for 5&71)1., and the derivation of this fixed point equation did
not employ the star-convexity at all.

Remark. In the particular case where the price-determining measure p of the price system
(1, ) is the Dirac measure §; concentrated in 1, such that the equilibrium price always
immediately adjusts to an order of the large investor before it is executed, the large investor
price function S, : [0,T] x R?® — IR of (3.2) simplifies to Su(t, u,ﬁl,ﬁg) = (t,u, &) for
all (t,u,&1,&) € 0,T) x R3. If w(tz,uz(iﬂ),ﬁg(iﬂ)) - w(tg,uz(i_l),fg(i_l)) is positive, the
equation (4.10) can be transformed into an explicit equation for 5&—1)1" and it becomes

brtirn) F &y L Wiy Eiiny) — Ok + & Y (R 1y &)
DR Wiy i) — PO WRo1) Ek—))

5&71)1 =

for all i € Z_y. The synchronous market condition of Jarrow (1994) implicitly imposes a
price mechanism which corresponds to a price-determining measure p = §;. Whenever the
market does only perceive the large investor’s stock position, but not his position in the
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option contract, Jarrow derives the replication strategy of a contingent claim in his two-
step binomial model by equivalent formulse. Also Frey’s (1998) model in a continuous-time
framework implicitly uses a price system (¢, 1) with a price-determining measure u = i,
since it assumes that an order of the large investor is executed at the equilibrium price
which already reflects the new stock position of the large investor. Though the fixed point
problem becomes explicit for the particular choice of the price-determining measure which
has been used in the literature, for our general analysis we need to consider more general
price-determining measures, and thus we proceed in finding solutions for the general fixed
point problem (4.10). O

Our next important step is to find conditions under which (4.10) has a solution for all
i € Tp—1. If such solutions exist we can use (4.9) as a definition for the possible cash
holdings {b?k—l)i}ieIk_l’ and the portfolio (&_;,b_;) given by (4.7) and (4.8) satisfies the
self-financing condition (4.6). Hence we can use this portfolio at time ¢}, as part of the
replicating strategy (£",0") we want to construct.

The next lemma states conditions under which the fixed point equation (4.10) has a solution.
Under some reasonable assumptions on the loss structure implied by the price system (1, )
we can even show that the portfolio (f,’;_l, b};_l) inherits the star-convexity of the portfolio
(fg, bg), which becomes important if we want to repeat the preceding argument to construct
the portfolio ({,?_2, bZ_Q) of the replicating strategy (£™,b™) as well.

Proposition 1.33. Let us assume that the equilibrium price function v : [0,T] X R’ - R,
(t,u,&) — Y(t,u,§), is continuous in £, and suppose that for some 1 < k < [nT'] the portfolio
(&R, bY) is star-convex. Then there exists some function £" (tz_l, ) cUp | — IR with

§lo—1yi = ¢&" (th1» Ufp—1) i) € [fk(z 1) fk(z+1)} for all i € Ty, (4.11)

which solves (4.10).
Moreover, if the price system (¢, ) implies a natural loss structure and if for all &1,& € IR
and i € Iy_o the large investor price function S, : [0,T] x IR?® — IR satisfies

S (k; 17u(k; 1)(i—-1)> 51552) <S (Z)uzz’aélvg?) SSN(k 17u(k; 1)(i+1)> 51552) (412)

then the portfolio (&8_,,bF_,) at time t}_, implied by (4.10) and (4.9) is again star-convez.

Proof. For the proof of the first statement, let us fix 1 < k <n and i € Z_1, and define the
function g, : [fk, (i— 1),§k l+1)] — IR by

9ri(€) = Y1y = Ormny + Gy — &) S (s W) & Ergisn)
+ (€ = &amn)) Su (ks wh—1), & ERim))

for all £ € [52(2'71)’52(%1)]' Since (5,?, bg) is star-convex, we get by (4.2)

(4.13)

ki (51?(1'—1)) = bZ(i+1) - bZ(i—l) + (fi?(z‘ﬂ) - 51?(1'—1))5# (t27UZ(1+1)75£(1—1)751?(1+1)) >0

and

i (i) = Uiy = Uity + (Ehgn) = Ehiim1)) S (8 Whi—1ys €y Ehi—r)) < O-

Now 1 is continuous in its third component, hence g;; is continuous as well, and there has
to be some £ € [fg(i_l),ﬁg(iﬂ)] with g,(§) = 0, i.e. the fixed point problem (4.10) has at
least one solution 5&-71)1" Since such a solution exist for every i € I, the first statement of
Proposition 1.33 is shown.
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The implied portfolio (52717 bzfl) at time ¢}!_, is convex, since for any j € Zy_» an application
of (4.11) toi = j £ 1 yields
5?1@—1)(341) 2 fgj = €?k—l)(j—l)'

Now let us suppose that the assumptions of the second statement in Proposition 1.33 hold.
We then have to show that the portfolio (51?71’ bzf1) at time ¢, inherits its star-convexity
from (5,?, b}g) By the two inequalities (4.2) in Definition 1.32 this requires to show that for
all i € Z;_1 the two inequalities

(&i+1) = &ili—1)) S (1 Wi 1) Gilim1ys Elli1)) + bilarn) = ii—1) = 0 (4.14)

and

(1) = Eili—1)) S (10 wii— 1) Gilizry» Elli—1)) + bilarr) = ii—1) <O (4.15)

hold, where we have set for expository reasons [ = k — 1. If [ = 0 there is nothing to show,
since every portfolio at time ¢ = 0 is star-convex. Thus we may assume without loss of
generality I > 1, and fix some ¢ € Z; 1. In this case we obtain from an application of both
inequalities in (4.9):

Biti—1y = Bty = Oinyi T (EGanys = &li—1)) S (t1s Ui 1yis &li—1)» &l 1)) (4.16)

— b1y = (€l — &) S (Grs Wiy ity Elnyi) -
Hence the left-hand side of inequality (4.14) can be rewritten as
(&) — Eilim1) S (s Wiy i1y Sllirn)) + Olarny — by = I + 11,

where the terms I and II are given by

I:= (éln(i+l) - éln(ifl)) (S (' >Ul i+1) fl (i—1) fz(z+1 ) = Su( ?Jrl’u7(1l+1)i7§l?ifl)7€ln(i+1)))

and

II:= (éﬁz‘ﬂ) o éZq(Jz‘—l))Su (tﬁrl’“7&+1)1753i—1)’5ﬁi+1))
- (ff(iﬂ) - f?lﬂ)z')Su (t 15w
- (§8+1)i - ngEifl))SM (t}:—l?u

Because of the natural loss structure we can apply Lemma 1.11 with

3

I+1)i» 5171’-5—1 §Z+1)‘)

—~

3

l+1)z7§l(z 1) €l+1) )

—~

§= fl?%l)? o= faJrl)i - flrziq) >0, and (= flrfiﬂ) - §8+1)z’ >0

in order to conclude that I > 0, and due to a+ 3 > 0 the second inequality in (4.12) implies
I > 0 as well, hence we have shown (4.14).
Similarly, we can write the left-hand side of (4.15) as

(1) — &ii—1)) S (80 wia—1y» Sl 1) Eilim1)) T Vi) — Vig—ry = LT+ 1V,

where the terms /1] and IV are given by

111 .= (gﬁi—&-l) - gﬁi—l)) (S” (t?, U;l(i_l)a gﬁi+1)a£ﬁi_1)) -5, (t?Jrl» u?H—l)i’ fﬁi—&-l)agl’zi—l)))
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and

1V = (fﬁiﬂ) - flrfifl))su (t?-i-l’u1(11+1)i7§ﬁi+1)7€l?i71))
- (flniﬂ) - §8+1)i)5 ( ?+17“Zﬂ)wfﬁiﬂ)vfﬁﬂ)i)
(5 (I+1)i — fl (i— 1)) (t?Jrlvu?lJrl)i?gl?ifl)"S(T;+1)i)’

and we can conclude from the first inequality in (4.12) and Lemma 1.11 applied to

§= 5%4.1)7 o= _(ngEi-H) - 584_1)2’) <0 and pB= _(§6+1)2‘ - fﬁi_l)) <0

that I11 < 0 and IV < 0, respectively, hence (4.15) holds as well. Since ¢ € Z;_; can be
chosen arbitrarily, we thus conclude that the portfolio (rfl", bf) is indeed star-convex. q.e.d.

Remark. In Section 1.5 we will give non-trivial examples for price systems (1), i) which satisfy
the assumptions of Proposition 1.33, at least for all sufficiently large n € IV.
In general there might exist more than one solution &7, (k—1)i [52(1.71),52(1. +1)] to the fixed

point problem (4.10). The next proposition states that under some intuitively convincing
assumptions on the loss structure there is at most one solution to the fixed point problem.

Proposition 1.34. Assume again that the equilibrium price function ¢ : [0,T] x IR?> — IR,
(t,u,&) — Y(t,u, &), is continuous in &, bult now suppose also that the price system (v, u)
implies nondecreasing total transaction losses. Then for any convex portfolio (5,?, bZ) at some
time tp with 1 < k < [nT'| and for all i € Zj_1 a solution 5&71)1. € [gg(ifl),gg(iﬂ)} to the
fized point equation (4.10) is always unique.

Proof. Let us fix 1 < k < n and ¢ € Z_1 and recall from the proof of Proposition 1.33
the function g, : [f}c‘(i_l),fguﬂ)] — IR given by (4.13). Now it is easy to see that the
representation (2.1) of the static transaction loss function can be transferred to the dynamic
transaction loss function of (3.4), hence (4.13) can be rewritten in terms of the transaction
loss function ¢, : [0,7] x IR* — IR and the benchmark value function S* : [0, 7] x R* — IR
as

9ei(§) = bZ(i—o—l) - bZ(i—l) + e (t}L UZ(z’Jrl)vfa §Z(i+1)) — Cu (tZa UZ(i—1)7€7 51?(1‘—1))
+ () — S (6 Uiy & i) + (€ = o)) S™ (10 i1y & Eray)-
Since S, implies nondecreasing total transaction losses, § +— ¢, (tz,uz(i +1)’§7§Z(i +1)) de-

creases and § — ¢, (tZ, uz(i_l), 5,52(1._1)) increases on [52(1._1), §Z(i+1)]. Thus, if we can show

that the function h}; : [52(1'71)’ §g(i+1)] — IR given by

Ri(€) = (Eirn) — €)™ (ths Uiy & &) + (€ = Eh—ny)S™ (10 i1y & Ehimny)

forall £ € [52(1—1)7 §Z(i+1)] is strictly decreasing, then g, strictly decreases on [gl?(i—l)’ ﬁg(iﬂ)]
as well, and thus there can exist at most one & € [5,?(1._1), gl?(iﬂ)] with g7 (&) = 0.
In order to show that h}; is indeed strictly decreasing, let us first note that by the time-space

dependent analogue of (1.26) and the definition of the loss-free liquidation price function
S:[0,T] x IR?* — IR in (3.14) we can rewrite h%,(£) for all £ € [5};‘(1‘71),52@“)] as

ki(€) = fz(iﬂ)g(t?lgvUZ(Hl)vf/?(iH)) - 51?(1;71)5'( k7uk (i—1)> fk (i—1) )



1.4. REPLICATION o7

The first two terms of this expression are constant in &, and since Lebesgue and Riemann
integrals over continuous functions on a finite interval coincide, we can rewrite the third term
of this expressions as

§<§(t27“2(i+1)75)—§(Iwuk(z 1) 5/ (% Ui(iz1)» 0€) — ¥tk w1y 0€) \(dO)
=< 0 w(t27“2(i+1)7€§)_w( kvulm 1) 65)
13

= /0 ¢(t2au2(l+1),$) — w(t’g,uz(z_l)"’lj)d:p

But due to our general assumption that the equilibrium price function ¢ : [0, 7] x R? - R,
(t,u, &) — ¥(t,u, &) is strictly increasing in u, it follows that the integrand of the last integral
is strictly positive for all possible values € IR, thus the integral itself is strictly increasing,
and hence the function AJ; : [ﬁg(i_l),fg(i +1)] — IR, £ — h},(§) strictly decreases, which was
left to prove. q.e.d.

In our attempt to find a replicating strategy for a star-convex contingent claim Proposi-
tion 1.33 has shown that if for some 1 < k < [nT] we have already constructed star-convex
portfolios {( 55 0] ) }k<J<[nT1 as part of a potential replicating strategy ({", b"), then we can
also construct a star-convex portfolio (ﬁ’g_l, 2_1) at time t}_, of such a (potential) repli-
cating strategy — at least as long as the conditions given in Proposition 1.33 are satisfied.
Having found this portfolio we can repeat our arguments until we finally have constructed a
full sequence of star-convex portfolios at all trading times, from t?nT] = T down to t;j = 0.
But in that case we have constructed a full self-financing trading strategy (£",b") which
replicates (&,,by). Since the condition (4.12), which assures that (& ;,b' ;) inherits the
star-convexity from (fg,bg), does not depend on the portfolio (fg,b};) itself, the following
corollary is an immediate consequence of Propositions 1.33 and 1.34:

Corollary 1.35. Let us assume that the large investor price system (1, p) satisfies the fol-
lowing properties:

(i) The equilibrium price function ¢ : [0,T] x IR?> — IR, (t,u, &) — (t,u,€) is continuous
mn €.

(13) The price system (1, u) implies a natural cost structure.

(#i7) For all1 < k < [nT], alli € Ix_1 and all &1,&2 € IR the large investor price function
S, 00,77 x IR? — IR generated by (1, 1) satisfies (4.12).

Then for every star-convex contingent claim (§n, bn) there exists a self-financing trading strat-
egy (fn,bn) = {(fg,bg) }0<k<[nﬂ which replicates (fn,bn). Moreover, if (¢, 1) also implies
nondecreasing total transaction losses, then the replicating strategy is unique among all strate-
gies which satisfy

é?k+1)(i71) S f;}z S £?k+1)(i+1) fOT’ all (k7 'l) c I( [TIT—I — 1)

Remark. As in the first part of the proof of Proposition 1.33 it is easy to see that if the
portfolio ({g,b%) is star-concave, then there exists a portfolio (ggﬁl,bgfl) which satisfies
the self-financing condition (4.9). Unfortunately, if S, implies a natural loss structure then
the star-concavity of (fg,bg) is not necessarily inherited by (5;21175211)- We will discuss
star-concave portfolios later in Section 1.4.4. O
Let us first show that star-convex contingent claims also appear in certain problems where
the large investor wants to replicate his paper wealth.
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1.4.3 Paper Value Replication

Most of the replication problems in small investor markets are written in terms of value
replication, and even Frey (1998) states his replication problem in a continuous large investor
market as a problem to achieve a certain paper value at maturity. In order to clarify the
relation of these replication problems, and especially of Frey’s problem, to our replication
problem of Section 1.4.2, we will now present a link between the replication of a certain
option value by the paper value at maturity of a self-financing portfolio strategy on the one
hand and the replication of star-convex contingent claims as considered in Section 1.4.2 on
the other hand. This section might be skipped on first reading.

Since the large investor price depends on the large investor’s stock holdings, the stock holdings
at and immediately before maturity needed to replicate the option value can only be derived
as a solution of a multidimensional fixed point equation. If the option value is given as
a convex function of the large investor price at maturity, we will prove the existence of a
solution to this fixed point problem under some regularity conditions on the price system
(1, 1) and the option’s payoff function. Once we have also shown that the implied portfolio
immediately before maturity is star-convex, we can proceed as in Section 1.4.2 to construct
a trading strategy which replicates the option value.

For ease of presentation we will assume in this section that 7" = 1 so that the index [nT'] of
the different processes and shorthands simplifies to [nT] = n.

We now suppose that the large investor wants to find a self-financing strategy (£", ") such
that in any state of the world the induced paper value at maturity coincides with the value of
a certain option which is determined as some function h : IR — IR of the large investor price
at time T'. For example the large investor might be an investment fund that has to achieve
a certain target at time 7', which is measured by the stock price at this particular date.
The large investor price S, (T Uy.&n_q, §n) at time T depends not only on the fundamentals
Ul at this time, but also on the 5}1‘71 and &) shares of stock held by the large investor at
the time points ¢'_; and ¢! = T, respectively, and so we have to look for a self-financing
trading strategy (£,b") such that the corresponding paper value V' at time 7' satisfies
V= h(SH (T, Uy, én_q, 5”)) in order to replicate the option value by the paper value of the
large investor’s portfoho strategy. Due to the definition of the paper value V"' this means
that we have to find a self-financing trading strategy (£",b") with

&S (T Uz €y, €0) + Vs = h(Su (T U 601, 60) ). (4.17)

Under suitable conditions on the price system (1, 1) and the convex option payoff h : IR — IR
we will derive in three steps a self-financing strategy (£", b™) which satisfies the final condition
(4.17). At first, we will simultaneously show the existence of two portfolios (£,b)) and

(&8_1,b 1) at and immediately before time ¢! = T, such that (4.17) holds and such that
at time 7' the portfolio ( n b") can be generated from the portfolio (53_1, bg_l) in a self-

n»-n

financing fashion, meaning that
b1 = by + (& — &-1) Su(T. Uy €01, 60) - (4.18)
Then we will show that the portfolio ( n_q1,bn_ 1) at time ¢]'_, is star-convex, and finally use

our results of Section 1.4.2 to construct a full self-financing trading strategy with the final
portfolios (£7_1,b_;) and (£,b)) at time ¢_; and ¢}, respectively.

The first step is the most demanding step, since it involves an existence result on a high-
dimensional fixed point problem. Instead of the original fixed point problem (4.17) we will
solve in the following lemma a related fixed point problem, which does not involve the cash
position b):. We write it in terms of the possible realizations as introduced by the shorthands

(3.12).
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Proposition 1.36. Let us assume that the equilibrium function ¢ : [0,T] x R*> — IR,
(t,u, &) — P(t,u,&) of the price system (¢, ) is nondecreasing in & and that the price-
determining measure p is a probability measure on [0,1]. Moreover, suppose that the payoff
function h : IR — IR in (4.17) is convex and that its left- and right-hand first derivatives
are bounded. Then there exist some nondecreasing functions £"(t"_, ) : U" ; — R and

gn(tr, ) :Ur_y — IR, such that "

h(Su(T, U (i41)> E(n—1)i7 ég(i—i—l))) — h(Su(T, Up -1y E(n—1)i» 52(1'—1)))

-1 = g (pm - - S o ~ . (4.19)
u( ’“n(i+1)v§(n—1)i°5n(i+1)) — S ’un(i—l)’g(n—l)i’gn(i—l))
foralli € T,
Eniany = I (¢(T7 UZ(inyng(in))—i_)v (4.20)
and
h(su (T7u2i’§?n71)(i+1)7£Zi))7h(sl‘(T7u2i75?n71)(i71) ,521)) . .
no— STy €0, 1y i1y €ni) = ST €0, 1y 1y €ni) if denominator # 0 (4.21)

n (1/1 (T, ul;, &%) +) otherwise.
for alli € Z,,_o.

The proof of the proposition will be based on Brouwer’s fixed point theorem, thus let us
briefly restate it:

Brouwer’s Fixed Point Theorem . Let D be a non-empty compact conver subset of a
finite-dimensional normed space. If L is a continuous operator which maps D into itself,
then L has at least one fized point.

For a proof of Brouwer’s fixed point theorem, see for example (Aliprantis and Border, 1999,
Chapter 16.9).

Proof of Proposition 1.36. Let us choose some constant M > 0 which bounds the left- and
right-hand derivatives of the option payoff function h : IR — IR, i.e. M satisfies ’h’ (a:—)| <M
and |h’ (:H—)‘ < M for all x € IR. The left- and right-hand derivatives of h exist on the whole
real line, since for any convex function there is at most a countable number of points where
the function is not differentiable. Then define the set D of ranked vectors (a,—1, ) by

D = {(an_1,0zn) €D ‘—M < Qp(n) S Q1) (1n) S Qpzn) < S Q1) (n1) S Qnn < M}
where the set D of (2n + 1)-dimensional vectors is given by
D= {(an_l,an) ’ o = (ap(—k), k) - - Qkk) € R for k € {n — l,n}}.

The set D is not empty, and it is obviously closed, bounded, and convex. Now define the
mapping f : D — D by setting

Fons(anran) = h(Su (T w1y Qn1)is o)) = h(Su(To iy 1y Qe 1)is Cni-1)) )
n—1)i\®n—-1,%n ) -— n n

= Su(T, un(i+1)’a(n—1)i’a"(i+1)) — Su(T, “n(iq)vo‘(n—l)ivo‘n(i—l))
forallie I,,_1,

h(Su(T g 0 (n—1)(i+1):¥ni)) —h(Su (T} ,0(n—1y(i—1),%ni))
S (Tl ;0 (n—1) (i+131ani)_su (Tur s 0 (n—1)(i—1)+Oni)

h <¢ (T, s, ozm-) +

if denominator # 0

Jus (an_l ’ an) . otherwise
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for all i € I,,—9, and fy(+ (an 1,ozn) = h’(¢(T, ug(in),an(in))—k). If we can show that
f (an_l, ozn) € D for all (an_l, ozn) € D, Brouwer’s fixed point theorem will yield the desired
assertion.

As a first step to show that f maps D into itself let us note that the definition of the large
investor price function S, : [0,7] x IR> — IR in (3.2), the assumed monotonicity of the
function £ — ¥ (t,u, ), and the concentration of the probability measure p on the interval
[0,1] imply for all ¢t € [0,7T] and u, &1, &2 € IR the implication

Sﬂ(t7u7£27§1) < w(t7u7£2) < Sﬂ(t7u7§27§3)
§1 <& <& = and (4.22)

SM (tv u, 517 g?) < ¢(t) u, g?) < Su (t7 u, €37 52) .
Let us now fix some arbitrary (ocn_l, an) € D. Then f (an_l, oen) € D if and only if

M < faemy(@nt,om) < faena-n (-1, an),
f(n—l)(n—l) (an—laan> < Jan (an—laan) < M,

and if for all ¢ € Z,,_o we have

f(n—l)(i—l)(an—han) < fni(an—laan) < f(n_l)(i+1)(an—l,an). (4.23)

We will start with the proof of (4.23) for all ¢ € Z,,_2. For this purpose we fix an arbitrary
1 € I,,_o and introduce the shorthands

S (T tn(i—2), Un—1)(i—1): On(i-2))
S (T Uniy Q(n—1)(i— 1),am)
S (T Uniy Qn—1) H_I),ozm)
S

T, Un(i42)s Q(n—1)(i+1)s Qn(i+2) ) -

Since (an,l, an) € D implies the ordering
An(i-2) < An-1)(i-1) < Oni < Qp_1)(i+1) < Qn(it2)

and since the equilibrium price function v : [0, T] x IR? — IR, (t,u, &) — (t, u, §), is strictly
increasing in the fundamental value u, we then get from (4.22) that ¥; < ¥ < b3 < 4. If
we even have 1o < 13, the convexity of h implies

h(11) — h(y)9) < h(2) — h(¥3) < h(3) — h(1)4)
Yvr—v T a—tp3 T Yz —iy

which is by the definition of f : D — D seen to be equivalent to (4.23). In the other case,
ie. if Y1 < g = Y3 < P4 we can still deduce from the convexity of h that

h(1) —h(2) _ . h(Y2) —h(Y2—e) ., + .,
Y1 —1ho Sil{% Vo — (2 —¢) = () = h(Ys—)

/ o h(s+e) = h(vs) _ h(va) — h(ys3)

st = e 0 = s

and hence a(,_1)(i—1) < @ni < @(n_1)(i+1) and (4.22) even imply

SM (T7 Uni, a(nfl)(iil)) anz) = I/J(Ta Uni, ani) .



1.4. REPLICATION 61

Looking once again at the definition of the multi-dimensional function f : D — D this shows
that (4.23) holds as well if 19 = 13, and since i € Z,,_s could be chosen arbitrarily, (4.23)
holds for all i € Z,,_5.

By similar considerations we can show that f,_p) (an_l,an) < ftn-1)(1-n) (an_l,an) and
f(n_l)(n_l)(an,l,an) < fnn(an,l,an). Finally, the two bounds —M < fn(_n)(an,l,an)
and fon(Qn_1, an) < M follow directly from the definition of M as a bound on the derivative
of h: IR — IR.

Thus, we have proved that f : D — D maps D into itself, and hence we can indeed ap-
ply Brouwer’s fixed point theorem to conclude that there exists at least one fixed point
(af_1,0%) € D of f. This enables us to define the functions £"(t2_;, -) : U ; — IR and
&nn, ) U — IR by

&ty upy) = for ke {n—1,n}and all i € I,

and these functions obviously satisfy the equations (4.19) to (4.21) because of the definition
of f: D — D. Moreover, the two functions &" (t;‘_l, ) and &" (t’fl, ) are nondecreasing
because of the structure of the set D. This completes our proof of Proposition 1.36. q.e.d.

Once we have shown the existence of the two functions 5”( n1s ) and &" (tz, ~), we can use
these functions to define the amount of shares in the two portfolios held by the large investor
immediately before and at time ¢;; = T" by evaluating the functions at the fundamentals U;’_;
and U}, respectively, and setting &7, = £"(¢"_,, U ) and & = £"(t, UY).

To complete our definitions at times ¢)'_; and ¢} of the large investor’s portfolios (fg_l, bz_l)
and (&7,b7) for which the replication condition (4.17) and the self-financing condition (4.18)
hold, we still have to determine the cash holdings b)) _; and b}, at these two points in time. In
order to make sure that (4.17) and (4.18) hold in any state of the world, we will define these
cash holdings as well as functions of the possible fundamental values at these time points,

and introduce at first the function b™ (¢, - ) : U — IR by

b (7 ) = h(SM (T, ;. ggln_l)(m),ggi)) — €S (T, €0y s €0) for i € T\ {n)
and

b" (752, Uﬁz) = h(Su (T, Uzz'vf?n_n(i_nvfzz‘)) = &niSu (T, “Ziaf?n_1)(¢_1)752i) for i € Ip\{—n}.

It can be easily seen that this definition of the function 5" (tZ, ) is consistent, though the
definitions of the values b™ (¢, u!;) overlap for all i € Z,,_p = Z,\{—n,n}: Because of the
particular form of £ as given in (4.21), for all i € Z,_» both definitions of b (¢7, u";) are

n’y “ni
equivalent to

h(Sp) S —h(S) S
b" (tz,uzz) = Spi=S;
h(SH) —n'(SH+)st if St =S

ni’

if St#£S

)

where S;;. is used as a shorthand for S, (T, u";, Eln—1)(i+1)" ).
Similarly, it follows from the definition of the function £" (tth . ) by (4.19) that the function
b (t"_4, - ) : UY_; — IR which is for all i € Z,,_; given by

O™ (tn—1s uln1yi) = 0" (tns upgiany) + Engier) = En1ye) S (tns Ungiznys Efnmyis Enie))

is consistently defined despite the double definition for each possible value b" (th, u?n_l)z.).
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If we now determine the cash holdings of the two portfolios (£7,b7) and (£2_,,b"_;) at and
immediately before time ¢! = T by b = b™(t7,U}) and b_, = b"(¢"_,UP_,), it follows
from Proposition 1.36 that on the one hand the condition (4.17) for the paper value replication
holds in any state of the world, and that on the other hand the self-financing condition (4.18)
holds as well, i.e. the portfolio (5;}, bﬁ) can be financed at time 7" by the portfolio (fﬁfl, b271)

held by the large investor between time ¢;_, and ¢],.

Having found portfolios at time ¢! ; and at time ¢ = T, our replication problem (4.17)
now basically becomes a replication problem for the portfolio (7,57 ;) at time ¢?_;. In
order to apply our results of Section 1.4.2 to this problem, we have to show that the portfolio
(&8_,,b_,) is star-convex. The next lemma shows that this is indeed the case under the

same additional conditions as in Lemma 1.33.

Lemma 1.37. In addition to the assumptions of Proposition 1.36 let us suppose that the
price system (¢, u) implies a natural loss structure and that the large investor price function
S, 0,17 x IR? — IR generated by (¥, 1) satisfies

Su(tZ—lau?n_l)(i_l)aghéé) < S}L(t27u217§17§2) < S,u(tthu?n_l)(i+1)7§17§2)

foralli € T,,_o and all £1,&9 € IR. Then the portfolio ( " K ) s star-convex.

n—1Yn—1

Proof. The portfolio ({Z_l, bg_l) is convex, since the function &" (tz_l, ) : U, is nonde-

creasing by Proposition 1.36. In order to show that it is even star-convex, we will once again
use our shorthands (3.12) and note that the self-financing condition (4.18) implies

bln—1)j = Ungany + Eniany = Em1)j) S (ths tngjarys Eoryj Enjany)  forall j € Ty

Let us then set [ =n — 1 and use the upper (4) equation for j =4 — 1 and the lower (-) one
for j =i+ 1. Then we obtain:

?(i—l) - b;l(i—t—l) = (§ﬁi+1) - 58—}—1)1‘)5# (tzvu?l-&-l)i’gﬁi—e—l)’éa—&—l)i))
+ (584—1)1' - 521(1—1))5;1 (’%U8+1)i’§ﬁi—1)vfﬁ+1)z‘)) for all i € 7y ;.

From here we can proceed exactly as in the proof of Proposition 1.33. Thus, the portfolio

(€2_,,07"_,) at time ¢7_; is indeed star-convex. q.e.d.

As the third step of constructing the replicating trading strategy to (4.17), it just remains to
find a trading strategy up to the time point ¢]!_; which replicates the star-convex portfolio
(§2_,,07"_,) at time ¢?_,. Such conditions were derived in Proposition 1.33, and so we can
conclude by an analogue to Corollary 1.35:

Corollary 1.38. Let us assume that the large investor price system (1, u) satisfies the fol-
lowing properties:

(i) The equilibrium price function 1 : [0,T] x IR* — IR, (t,u,&) — ¥(t,u, &) is continuous
i & and nondecreasing in &.

(1) The price-determining measure p is a probability measure concentrated on [0, 1].
(#i7) The price system (1, u) implies a natural cost structure.

(iv) For all1 < k < n, alli € Ty_1 and all &1,&2 € IR the large investor price function
S, :[0,T] x IR? — IR generated by (Y, i) satisfies (4.12).
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Then for each convex payoff function h : IR — IR for which the left- and right-hand derivatives
are bounded there exists some self-financing trading strategy (f", b”) such that the paper value
replication (4.17) holds.

In Section 1.4.2 we have also derived a uniqueness result for the replicating strategy of a star-
convex contingent claim (fn, bn). However, since Brouwer’s fixed point theorem only gives the
existence and not the uniqueness of a fixed point, we cannot draw the same conclusions for
the problem of paper value replication as we did in Section 1.4.2. Actually, in the particular
case where the large investor price does not depend on the large investor’s strategy it is easy
to see that there exist infinitely many self-financing trading strategies (£, ™) which satisfy
(4.17), but which only differ in the (not necessarily star-convex) portfolio (£,bl) at time
th="T.

Remark. Because of the particular features of the large investor model and the various possible
stock prices which might be used for the valuation of the large investor’s stock holdings and the
value of the option at maturity, there are various other possible models for value replication:
For example, instead of using the average price of S, (T LU Er 52) paid for the &) — &
shares of stock bought by the large investor at time ¢ = 7', we could use the equilibrium
price w(T LU, 52), which any investor in the market would pay for an infinitesimal amount
of stock immediately after the transaction of these &} — &', shares, in order to calculate the
option value. Of course, in this case one should use the same stock price to calculate the
“value” of the large investor’s portfolio at time 7', so that our condition for the replicating

self-financing strategy (£",b") would become
(T, €0) + b = h (v (T.UL,€0) ). (4:24)

In the special case where the price-determining measure p of the price system (v, u) is the
Dirac measure §; concentrated in 1, the large investor price function S, : [0,7] x R — R
of (3.2) simplifies to Su(t,u,fl,fg) = (T, u, &) for all (t,u, &1, &) € [0,T] x IR?, so that
(4.17) and (4.24) coincide. As pointed out in the remark following equation (4.10), this
special price-determining measure is used in the discrete model of Jarrow (1994) and in the
continuous model of Frey (1998). In particular, Frey’s approach of paper value replication,
which he writes in terms of the equilibrium price function like (4.24), is at the same time the
(continuous-time analogue of the) paper value replication (4.17) which we have considered in
this section.

However, in general the two conditions (4.17) and (4.24) differ. In such a situation there
are two reasons why we do not work with condition (4.24): First of all, in practice it is
unlikely that the value of some option is determined by one single spot price in the market
at which only an infinitesimal small amount of shares is traded. But even if it is we might
still argue that the large investor will buy immediately before appraisal such that his price
Sy (T, uz(iil),ﬁ?nfl)i, 52(&1)) will be the assessed price.

Secondly, (4.24) is mathematically undesirable, since the price w(T, uy, 5,’{) would become an
additional price which we have to consider in order to find a replicating strategy, in addition

to the large investor price S, (T, ur,&r_q, 5{{) at which the large investor really trades.

Of course, instead of replicating a certain option by some trading strategy’s paper value at
maturity, we could also consider the problem where the large investor wants to find a trading
strategy (£",0") such that the real value of this strategy at time 7' matches with some
prescribed option value. In order to determine the real value as introduced in Definition 1.28,
the large investor’s stock holdings of £ shares at time 7" have to be valued by using the
loss-free liquidation price S (T, U;},fﬁ), and so it makes sense that the same price is used
for determining the option value at maturity. Thus, we could also look for a self-financing
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trading strategy (£, ") which satisfies
ES(T, U &) + b = h(S(T. UL €1) ). (4.25)

We have already touched on this sort of replication problem in Example 1.7 where we have
seen that the real value of the long European call of « shares at time 7T has such a represen-
tation if the payoff function h : IR — IR is given by h(z) = a(x — K)* for all x € RR.
Basically this real-value approach splits the trades at the time point 7" in two parts: At first
the large investor buys the ) — &', shares of stock which he needs to buy at time ¢! =T
according to his trading strategy (£",b"), and the average price at which these stocks are
traded is the large investor price S, (T, ur,er_q, 52). Thereafter, the large investor sells all
the £7 shares of his portfolio for the loss-free liquidation price S (T, Uy, fg) This liquidation
price only is a realizable liquidation price if the transaction does not cause any transaction
losses. In a similar fashion Boyle and Vorst (1992) model option replication in a small
investor market with proportional transaction costs, since they implicitly value the stock and
cash holdings at maturity without any transaction cost charge. (Musiela and Rutkowski,
1998, Section 2.5) explicitly mention the absence of transaction costs at maturity as one of
the their key assumptions for a small investor model with transaction costs, which slightly
extends Boyle’s and Vorst’s work.

However we do not want to exclude implied transaction losses at maturity, since we do not
see why the price mechanism at time 7" should conceptually differ from the price mechanism
at all other points in time. Moreover, the loss-free liquidation price cannot be observed in the
market, so that the statement of the replication problem in terms of the loss-free liquidation
price will be of limited use for real-world markets. Especially, a market participant who does
not know the fundamental value and the large investor’s stock holdings is in general unable
to find out the loss-free liquidation price, even if he knows the price system (v, ). O

1.4.4 Star-Concave Portfolios

In this section we shortly describe the problems which occur if we want to transfer our
derivation of replicating strategies for star-convex contingent claims as in Section 1.4.2 to
the derivation of similar replicating strategies for star-concave contingent claims. Basically,
in a non-degenerate large investor market the recursive derivation of a self-financing trading
strategy (£, b™) which replicates a certain star-concave contingent claim (&, b,) along the
lines of Section 1.4.2 will only be successful if the discrete spatial derivative of the associated
strategy function £" : A™ — IR does not become too large, and an a-priori bound on this
derivative is needed in order to prove the attainability of (&,,b,). Section 1.4.4 may be
omitted at the first reading.

Let us assume that we are given some star-concave contingent claim (&,,b,), and that in our
attempt to construct a self-financing trading strategy (£”, b"™) which replicates (&, b,,) we have
constructed star-concave portfolios ( j”, b?) for some 1 <k < [nT] and all k < j < [nT]. If
there exists a portfolio (5,’;71, bzf1) at time ¢}!_; such that the portfolio (fg, bg) at time ¢}
can be (perfectly) financed by the portfolio (5?_1, 11?;—1) in that the self-financing condition
(3.13) holds, our discussion in Section 1.4.2 has already shown that the possible realizations
5&_1)1. = §”(t2_1,u?k_1)i) and b?k_l)i = §”(t2l_1,u?k_1)i) of the large investor’s shares in
stocks and cash amounts in the portfolio (fg_l, Z_l) satisfy the fixed point equation (4.10)
for the stock holdings and the explicit equation (4.9) for the cash amounts.

In order to prove the existence of a solution to the fixed point problem (4.10) for this time
step, we can proceed along the same lines as in the proof of Proposition 1.33. For the
replication of star-convex contingent claims in Section 1.4.2 we then have shown that the
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star-convexity of the portfolio at time ¢} will be passed on to the portfolio at time #7_;
if the price system implies a natural loss structure and if the large investor price function
S, 1 [0,T] x R* — IR satisfies the ordering (4.12) for all i € Zy_» and all £;,& € R. As
we will show in Section 1.5 under very limited restrictions on the price system (¢, 1) this
condition (4.12) can be guaranteed for all 1 < k < [nT], all i € Tj_o and all £,& € R.

However, if we want to prove that the star-concavity of (5,?, bg) is inherited by the portfolio
(52_1, 2_1) at time t}'_;, we have to impose a different condition on the large investor price
function. Namely, we then have to guarantee that the large investor price function is of such
a form that for all possible outcomes of the fundamental value at time ¢}, the (ask-)price
at which the large investor sells shares of stock at time ¢}/ can be higher than the (bid-)price
at which the large investor has bought the same amount of stocks at the time ¢7_,, and vice
versa, that the (ask-)price at which the large investor has sold shares of stock at time ¢}
can be lower than the (bid-)price at which the large investor could re-buy the same amount
of stocks at time ¢}!. In general, such a condition on the price system (¢, 1) is much more
difficult to satisfy than the condition (4.12), which only compares bid-prices with bid-prices
and ask-prices with ask-prices, and if we do not want to stick with degenerate price systems
which exclude transaction losses, we cannot require such a condition to hold for all possible
transactions, but we have to limit the size of the transactions. Assuming that for all ¢ € Z,_o
the difference between the two possible stock holdings 5&_1)@ ) and f?k_l)(i_l) given the
fundamental value U}} , = u?kd)i at time ¢}, is lower than the maximal transaction size, we

can then proceed as in Proposition 1.33 to show that the portfolio (5,’6‘71, bZA) is star-concave
as well.

Proposition 1.39. Let us assume that the equilibrium price function v : [0, T] X R? - IR,
(t,u, &) — Y(t,u,&) is continuous in &, and suppose that for some 1 < k < [nT'] the portfolio
(ﬁ,’g, bZ) is star-concave. Then there exists some function 5”( [ ) cUp -, — IR with

E?k—l)i = 571 (t’;clfl’ u?]f—l)i) S [gl?(z—i-l)? gl’g(l—l)] fO?" all ) S Ik_l (426)

which solves the fixed point problem (4.10). Assume now that the price system (1, ) also
implies a natural loss structure and that there exists some B™ € [0,00] such that for all
1€ Lg—o and all £1,& € IR with § < & < & + B" the large investor price function satisfies

S:u( Z—l?u?k_l)(i_1)7§17§2) S Su(t27u2i)§27€1) (427)
and
Su(ths uiis €1,€2) < Spu(tho1 ule_1yig1) &2:€1)- (4.28)

Then the portfolio (ﬁgfl,bzfl) at time t}_, which is implied by (4.10) and (4.9) is again
star-concave if for all i € Ij,_o we have |§?k_1)(2.+1) — 5&—1)(1‘—1)‘ < B".

Proof. The existence of the function £" (t};_l, ) can be shown as in Proposition 1.33, and
because of the interlocked structure §g(i+1) < 5&71)1 < EZ(FI) for all i € Z;_1 the function
5"( 1 ) :U;! | — IR has to be nonincreasing because the function f"( o ) U — IR is
nonincreasing. Let us now set [ = k — 1 and consider the implied portfolio (fl", bl") given by
g =¢£" (t?, Ul”) and b} = b" (t?, Ul”), where the function 5" (tl", ) is defined via (4.9). Under
our conditions we have to show that (fl", bl") inherits the star-concavity from ({l’fﬂ, bln+1) as
well. Also this proof parallels the proof of Proposition 1.33. In order to show that

(517&41) - ngZi—l))SM (tlnau?(iﬂ)vfﬁi—1)v§ﬁi+1)) + bﬁz‘ﬂ) - b?(i—n <0 forallieZ;; (4.29)
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we notice that by assumption we have ’5{2
inequality (4.28) that

S (tﬁl’u6+1)ia5ﬁz‘+1)v§ﬁi—1)) < Si( ?v“ln(z'+1)75172i—1)aff(i+1)) forall i € Zj5. (4.30)
Together with the monotonicity of £" (tl", ) and (4.16) this implies that
(Eie1) = Elim1) S (8 wilirny Ellim1y» Ellitny) + i) — bii—n)
= (5{Zi+1) - flrzz'—l))su (tln+17ule-l—l)i’SlTEi—l—l)’ngEi—l))
B (flrfiﬂ) - 58+1)i)5u( ?Jrl’u6+1)17521(i+1)7€8+1)i)
- (§8+1)i - glrzifl))sﬂ (t?—l-l? u?lJrl)i’ gﬁiflﬁé‘?ﬂrl)i)‘
The right-hand side of this inequality can now be bounded from above by 0 because of

Lemma 1.11 applied with £ = §ZTEZ.+1), o= §Z+1)i - g’fiﬂ) >0, and § = fﬁi_l) - ZH)%’ > 0.
Thus, the bound (4.29) holds, and by analogous arguments we can also show

(flrziJrl) - glrzifl))sﬂ (t?’ u?(ifl)vgln(i+1)’§lrzifl)) + bln(i+1) - b?(ifl) >0 forallieZ;.

Hence (ff, b?) is indeed star-concave. q.e.d.

i1) gﬁi_l)‘ < B", hence it follows from the

Now we can use the same sort of recursive arguments as in Section 1.4.2 to obtain an attain-
ability result for star-concave contingent claims:

Corollary 1.40. Let us assume that the large investor price system (i, u) satisfies the fol-
lowing properties:

(i) The equilibrium price function ¢ : [0,T] x R? — IR, (t,u,&) — (t,u,&) is continuous
m €.
(13) The price system (¢, u) implies a natural cost structure.

(1ii) There exists some B™ € [0,00] such that for all 1 < k < [nT], all i € Ty_1, and all
£1,6 € R with & < & < &+ B" the large investor price function S, : [0,T] x R — R
generated by (¢, u) satisfies (4.27) and (4.28).

Then for every star-concave contingent claim (fn,bn) there exists some trading strategy
(f”, b”) = {(52, b’,;) }OSkSMﬂ which replicates (fn, bn) and for which the corresponding strat-
egy function " : A" — IR satisfies

Eeanyi-1) < ki < &leanyrry for all (k,7) € I([nT] - 1), (4.31)
if we can guarantee by some other means that in the case of existence every such replicating
strategy satisfies }ﬁ&ﬂ)(iﬂ) - g?kﬂ)(iil)’ < B™ for all (k,i) € I([nT] —1).

In order to apply Corollary 1.40 to show the attainability of a sequence {(5"’17”)}% N of
star-concave contingent claims, we shall find some global bound B € [0, co] such that on the
one hand for all n € IN, all 1 < k < [nT], all i € Zj_1, and all § < & < & + 25, B the
inequalities (4.27) and (4.28) for the large investor price function hold, and such that on the
other hand for all n € IN the (possible) existence of a replicating strategy (£",b™) for the
contingent claim (&,,by,) implies that the discrete derivative

ALty upy) = 2(1511 <fn( 15 Ui +0n) —5”(t2+1,uzbr5n)) = 2(15n(5?k+1)(¢+1) —&let1)i-1))
of the associated strategy function " : A" — IR is bounded by B for all (k,i) € I([nT] —1).
Those a-priori bounds on A} " will only be derived at the end of Section 3.3.3, where we will
use bounds on the derivative of the (candidate) continuous limiting function of the discrete
strategy functions {5”}n e b0 obtain a bound on the discrete derivatives as well.
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Remark. Because of the interlocked structure there is always a natural bound on all possi-
ble star-concave trading strategies (£",b") which satisfy (4.31), since this condition implies
5?k+1)(z’—1) — §?k+1)(i+1) < 5}3(1,_2) — 51?(1’—',—2) for all 0 < k < [nT] and all i € Z_5, and hence
they especially meet

€01y 41) = Ee -1y | S Py pur) — Efnrpary for all (ki) € I([nT] — 1).

Since the stock holdings f” for at maturity t[ = = T of any trading strategy (", ") which
replicates (&,,b,) are determined by f () = = &,, this observation gives us also a directly
available a-priori bound B,, on the trading strategies in Corollary 1.40.

However, if the large investor price function S, : [0,7T] x R® — IR is not degenerate, for
employing this bound the difference 5[7:1T} (—[nT]) —§E1HT] [nT] between the largest and the smallest
possible number of shares held by the large investor at time tﬁlT] = T normally needs to be too
small to be of any practical use. For example, if we fix such a non-degenerate large investor
price function and consider a sequence of replication problems by successively increasing
the number of points on the binomial grid through the parameter n € IV and looking at a
corresponding family {({n, b")}n N of star-concave contingent claims, the inequalities (4.27)
and (4.28) will only hold for all (sufficiently large) n € IN, all 1 < k < [nT'], all i € T;_4, and
all & < & < &+B™if B" = 0(4,,) asn — oo. Hence, the choice of B" = f&T](_[nT])—f[’;T][nT]
would restrict us to star-concave contingent claims for which the difference between the largest
and smallest possible number of shares held by the large investor at time 7' is of order O(d,,)
and thus diminishes as n — oco. At least in the limit, this approach would exclude all
interesting cases of star-concave contingent claims.

Another, totally different approach to circumvent the problems which occur when replicating
star-concave contingent claims as the number of time points on the grid tends to infinity makes
the price system (¢, u) depend on n € IN. If the corresponding sequence {(zp", 1) bnemw of
price systems converges to a degenerate price system (1, 1) as n — oo in that the limiting
price system (¢, 1) excludes any transaction losses, one can guarantee that in the limit the
ordering conditions (4.27) and (4.28) hold for all £;,& € IR. In this case, the sequence of
bounds {B”}new need not be chosen to be of order O(d,,) as n — oo any more, and one can
once again consider more general star-concave contingent claims. However, since this model
would limit the candidate limiting price system, we will not further pursue this idea. O

For the largest part of our thesis we will from now on stick to the replication of star-convex
contingent claims (&,,b,) and their corresponding replication strategies (£",b™). Even in
this case we will need to find bounds on the discrete derivatives A7 €™ when it comes to the
convergence of a sequence of strategy functions £" : A" — IR towards a continuous-time
limit. But the problem is much easier to handle since the existence result for the replicating
strategies (£",b"™) as given in Corollary 1.35 does not depend on these bounds.

1.5 Examples of Large Investor Price Functions

To finish this chapter we now give examples of large investor price systems (1), i) for which the
various conditions in Section 1.4 hold. We start with a parametrized family of large investor
price systems (1, u) where the equilibrium price function 1 is non-negative and multiplicative
and where the price-determining measure p is concentrated on the unit interval, and then give
conditions on the parameters which guarantee that the associated price system satisfies the
conditions in Section 1.4. In particular, we will show that our large-investor model contains
the standard Cox-Ross-Rubinstein model as a special case.

Ezample 1.8. Let : [0,T] x IR — (0,00) be a positive and differentiable function Which is
strictly increasing in u and satisfies the bounds L : H H = SUP(z, e, T]X,R‘ Tl tu ‘ < 00
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and K = H%H < 00. Then for some fixed ¢ > 0 a feasible equilibrium price function
¥ :0,T] x IR> — (0,00) can be defined by

U(t,u, &) = p(t,u)e® for all (t,u,€) € [0,T] x IR x IR.
By the multiplicative structure of ¢ we have H%H =L < oo and H%H = K < oo as well.
As a price-determining measure associated to 1, we take again some probability measure
p = pppn from the family (“th)phe[o I of probability measures on ([0, 1], B([0,1])) which
were for each h, p € [0,1] introduced in (2.14) as

tron(A) = pA(A) + (1 — p)%

Recall that the last term on the right-hand side is interpreted as the Dirac measure in 1 if
h = 0. The large investor price function S, : [0,7] x IR* — (0,00) associated to ¥ and y is
then for all (t,u,&;,&) € [0,T] x IR? given by

AMAN[L=h,1]) forall A€ B([0,1]). (5.1)

1
Syt 61, E2) = / Ot u, (1 — )1+ 06) u(d0) = (1, w) / (c=06+0E  (40)  (5.9)

0

Because of the special form of the price-determining measure u = p, 5 of (5.1) we can
compute the integral fol ec1=0)81+e082,(d) = 1 (p fol e0&2=6)dg+(1—p) + fll,h el&2=81)qp)
to conclude

St 1,6) (1, u)ecs ec(62—61) _q a )60(52—51) — ec(1=h)(§2—&1) (5:3)
tu,§1,8) =p(t,u)e™ | p———F—+ (1 —p .
: (&2 — &) (& —&)h

for all (t,u,&,&) € [0,T] x IR®, where the cases & = &, h = 0, and ¢ = 0 have to be
understood as the corresponding limits. O

The family of large investor price systems (1, ) described by Example 1.8 is a very rich
family. By choosing the parameters p and h in an appropriate way, we can construct from
this family of price systems certain sub-families which satisfy the various conditions imposed
on price systems in Section 1.4, especially the conditions of Corollary 1.35, Corollary 1.38,
and Corollary 1.40.

Lemma 1.41. Fiz a large investor price system (¢, ) with some equilibrium price function
Y 2 [0,T] x R? — (0,00) and some price-determining measure j = Hph as specified in
Ezample 1.8. Then:

(1) (1, ) implies a natural loss structure and nondecreasing total transaction losses.
Now let us suppose that n > K? and ti,ty € [0,T] satisfy ‘tl - t2’ < 57%. Then we also have:
(ii) For all u,&1,& € IR the large investor price function S, : [0,T] x IR® — (0,00) satisfies

Su(ti,u—0n,&,8) < Su(ta,u, &1,8) < Su(tr, u+ 6n,&1,&). (5.4)
(zii) If for some R € [0,00] and p, h € [0,1] we have
chR + log <(1 —p)+ pec(lfh)R) < 5n%(1 -0, K), (5.5)

then inequalities like the one in (5.4) hold even if the large investor’s stock holdings are
changed a little bit between t1 and tz, namely then S, satisfies

Sp(ti,u—0p,81,&) < Su(ta,u, &s,&1) Jorall§ <& <&+ R (5.6)

and

Su(tr,u+ 6,61, 8) > Su(ta, u, &3,6) forall & > & > & — R. (5.7)
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(v) If & = &3 then (5.6) holds for all & < & and (5.7) hold for all & > &1, regardless of
whether (5.5) is fulfilled.

(v) On the other hand, if

in{10g £ (L= pet 0% (1 i p) < Gut (1 6,K) (5.8)
min < lo ,1o —_— n—(1—0,K), .
® ot (1= pe bR B T Tn L

then for all u € IR and all £1,& € IR with {52 — £1| < R we have

Sty —0n,€1,8) < Su(ta, u,&2,81) < Su(ty,u+6n,&1,&2). (5.9)

If all strict inequalities in (i) to (v) are replaced by weak ones, the statements hold for all
n > K? and t1,ty € [0,T] satisfying |t1 — ta| < 62.

Remark. In (5.5) and (5.8) we use the convention 0 -z =0 and § = oo for all z € [0, oo].

Proof. Statement (i) follows directly from Lemma 1.13, thus let us move on to (ii). Owing
to the multiplicative structure (5.2) of S, : [0, 7] x IR* — (0, 00), for all t1,t2 € [0, 7] and all
u, &1, &2 € IR the quotient

Su(ti,u—0n,&1,8) Bty u—5,)
SM (t27 U, 517 52) N @(t2’ 'LL) (510)

does not depend on the large investor’s initial and final stock holdings of £&; and &» shares,
respectively. An application of Taylor’s rule then shows that there exist some t*, u* with ¢*
being located between t1 and t5 and u — 6, < u* < u such that

@(th u— 571)
@(tQa u)

Wy (t*v U*)

I
og @(t*, U*)

+ (t1 — t2)

- t* *
= log@(tl,u — 5n) — log@(tg,u) =0, @Z( “ )

o)

The last term can now be rewritten as —d, %((ti*ﬁ)) (1 - “5_” t2 g;i’;ﬁ%) Since ¥ and %, are

positive, we conclude from the definition of L that %‘(ifuqi*)) > % On the other hand, the
condition [t; — t3| < 62 and the definition of K imply %gt(gﬁ; < 0, K, which is strictly
less than 1 because n > K2. If we finally take the exponential, we can bound (5.10) from
above by

< exp<—5ni(1 — 5nK)> for all u, &1,& € IR. (5.11)

SM (tla U — 5717 517 52)
Sp, (t27 u, 517 52)

Since the expression on the right-hand side is strictly less than 1, this proves the lower
inequality of (5.4). It is clear that for n = K? we would still get the weak inequality
Sy, (tl, u— 5n,£1,£2) < Su (tg,u,£1,£2), since in this case the right-hand side of (5.11) is still
not larger than 1. The upper inequality of (5.4) follows similarly.

In order to prove (iii) assume that R € [0,00] and p,h € [0,1] satisfy (5.5). We will only
prove (5.6) for the case where h > 0 and ¢ > 0, but it is easy to see that our argument works
for h = 0 as well, and the assertion for ¢ = 0 is almost trivial. Since we have already shown
(5.11) it suffices to show

S,LL (ta u, gla {2)

1
Sut e <o <5"Z(1 - 6nK)) (5.12)
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forall t € [0, 7], u € IR and & < & < &3 + R; then (5.6) follows from

Su(tlau - 6n7§17§2) _ S,u(tlau - 5n7£1a£2) Su(t2auagla£2)
Syu(t2,u, &3, 1) Su(ta,u,&1,8)  Su(te,u,&3,&)

Let usfixt € [0,T],u € IR, and §; € IR for j € {1,2,3}. As ashorthand let usset o;; = &;—&;
for j € {2,3}. Without loss of generality we assume that a; # 0. By (5.3) we have:

<1. (5.13)

Su (t7 u, 517 52) = @(t’ u)ec§1 <p1 (eca2 - 1) + (]‘ - p)i(ecag - €C(I_h)a2)> :

can cash

Using now this equation and factoring out e“617€3) we also get

S}L(t7u7£37§1) = @(ta u)ecgl (pl (ecoc3 - 1) + (1 - lo)i(edﬁmé3 - 1)>

cog casgh

Thus, the quotient of S, (t, u,§1,£2) and S, (t,u,fg,&) is given by

SM (ta u7§1a€2) _ Pﬁ (ecag - 1) + (1 - p) calzh (eca2 — ec(l_h)O‘?) (5 14)
Sﬂ (ta u7§3a§1) pi(eco@ — 1) + (1 — p) calgh (eChO‘S — 1) ’

and only depends on the differences as = & — &1 and a3 = & — &;. Since the condition
& < & <&+ Ris equivalent to ap < 0 and —R < as, for {&;}1<i<3 satisfying this condition
the quotient (5.14) can be bounded by

Sy (t,u, &1, 62) < pe’ +(1—p)e® JehR 1 (5.15)
SN (t7 u, 637 gl) a Pe_CR + (1 - ,O)G_ChR (1 — p) + pe—C(l—h)R .

due to the mean value theorem and the monotonicity of x — e*. Now x — e* is also convex,
and hence %(ec(l_h)R + e‘c(l_h)R) > 1, which leads to the bound

(1= p) + pe MR (1 = p) + pe~ ! =ME)

c(1-h)R —c(1-h)R
e (S

If we then replace the fraction in the upper bound (5.15) of % by (1—p) + pect=mE

and apply (5.5) we conclude

S,u (ta u, 517 52)
S,u (t7 u, &.37 51)

Thus (5.12) holds for all t € [0,T], u € IR, and & < & < &3+ R, and hence (5.6) holds as
well. It is clear from (5.16) that we still have a weak inequality in (5.6) if we only have a
weak inequality in (5.5). The proof of (5.7) goes along the same lines.

If &5 = &3 we can derive the inequalities in (5.6) and (5.7) under less stringent conditions and
thus show (iv). Let us again concentrate on the lower inequality (5.6), and consider without
loss of generality only the case h,c > 0 and & # &. With « := ag = a3 the quotient (5.14)
simplifies for any fixed ¢t € [0,7] and u € IR to

< echR((l — o)+ pec(lfh)R) < exp (571;/(1 — 5nK)> (5.16)

Sultu,€1,6) _ pt (L= pan(ca)er e
Su(tiu,&2,61)  p+ (1-— p)xh(ca)e_%c(l_h)o"

(5.17)
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where the function zp : IR — IR is given by

hz

—1
es(1-m=E_— - forallze R.
e J—

| =

xp(z) =

Since h € (0, 1], it is clear that zj

—

z) > 0 for all z € IR, and since ¢ € (0, 1] as well, we get

Sy(taua€17£2) < p+ (1 — p)xh(ca)
Sﬂ(tv ua{?agl) Pt (1 - p)fEh(CO[)

If we combine this inequality for ¢ = ¢t with the lower inequality of (5.4), this gives (5.6).
Combining that equation with (5.11) we derive (5.6) for all £, = &3 < &. The second part of
(iv) can be shown similarly.

Finally, we come to (v). Again, we will only show the lower inequality in (5.9) for the
special case h,c > 0. Because of (iv) it just remains to show that this inequality holds
for & — R < & < &, ie. if 0 < a = & — & < R. Looking once again at the function
xp, : IR — [0,00) we notice that for all z € IR

=1 aslongas a <0. (5.18)

20 (€2 — e1=M2) (chs — 1) (4h)z _ge7 4 o=z 332 iy (h2) -
Ipl\2) = = — .
" h? (e —1)° h? (€22 — 2¢% 4 1) Py (2}3)!2% -

Thus, we can use the monotonicity of z — gig; for a,b,d > 0 and b > a to bound the fraction
(5.17) as long as 0 < a < R by

Su(t,u, &1, €2) o pt(- p)ezcl=h)a _ et p)esei-hR
Su(tiu,&,6) ~ p+(1— p)e*%C(I*h)a ot (1- p)ef%c(lfh)R'

(5.19)

If p is close to 1, the bound (5.19) is not very tight. In this case a better bound for the
fraction (5.17) can be obtained by noting that

z _ ,(1-h)z
he%(l—h)zg;h(z) = % <1 forall z>0,
e —

since this inequality and xp(z) > 0 allow us to bound (5.17) by

Su(t u,&1,&) < p+(1-p) :1+ﬂ
St u,2,61) ~ P oh

Combining (5.19) and (5.20) and then applying condition (5.8) leads to the inequality

(5.20)

S (t _ lC(l—h)R _
SIGAR B ) Y Skl il el exp<5n1(1 —5nK>).
S}L (t7u7§27§1) P —+ (1 — p)@_ic(l_h)R ph L

Therefore, we can conclude as in (5.13) that under (5.8) we have

S,u(tla U — 5TL7 ‘517 52)
Su (t27 U, 627 51)

This shows that the lower inequality in (5.9) holds not only for all & < & as in (iv),
but also for all & — R < & < &. Again it is easy to see that we still have the weak
inequality S, (tz, u,fg,gl) < Su (tl,u — 5n,§1,§2) if (5.8) holds with weak inequality only or
if n = K2. Similarly to (5.21) one can show that the second inequality in (5.9) holds as long
as & <& <&+ R. gq.e.d.

<1. (5.21)
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Lemma 1.41(i) and (i7) give conditions such that the assumptions on the large investor
price system (1, ut) in Corollary 1.35, which shows the attainability of star-convex contingent
claims, and in Corollary 1.38, which shows the existence of a paper value replicating strategy,
are fulfilled. Moreover, under the conditions imposed by Lemma 1.41(¢) and (v) the assump-
tions on the large investor price system in the attainability result for star-concave contingent
claims, namely in Corollary 1.40, are satisfied as well. In Chapter 2 we will also need price
systems (¢, i) for which the associated large investor price function S, satisfies inequalities
of the form (5.6) and (5.7).

Remark. Note that Lemma 1.41(i¢) does not hinge on the multiplicative structure of the
equilibrium price function 4 : [0, T] x IR? — IR nor on the particular form (5.1) of the price-
determining measure p. It is straightforward to prove (ii) for any (not necessarily positive)
equilibrium price function ¢ : [0, 7] x IR?> — IR which is differentiable in ¢ and w and which
satisfies K := H%H < 00, and for any associated price-determining measure p. However, the

multiplicative structure of the 1) and the specific form of p were essential in order to bound
S/.L(tﬂl‘:gl’éé) and S}L(t7u’£17£2)
SH (t7u7§37§1) SH (t1u7§27€1) ’

The next example shows that the Cox-Ross-Rubinstein model of a small investor market is
indeed a special case of our large investor market model.

Ezample 1.9. If in Example 1.8 we choose ¢ = 0, such that for all (t,u,&) € [0,7T] x IR?
the equilibrium price function 1 : [0,7] x IR?> — IR is given by (¢, u, &) = %(t,u), not only
this function, but also the large investor price function S, : [0,7] x IR* — (0,00) and the
benchmark price function S* : [0,7] x IR* — (0,00) do not depend any more on the large
investor’s stock holdings, and we have

¢(t7u7£1) = UJ(t,U,gQ) = Su(tvua£17£2) = S*(taua£1a£2) = ’lI)(t,U)

for all (t,u,&1,&) € [0,T] x IR®. In particular, the large investor price function S, is also
independent of the price-determining measure .

If we then fix some Sp,0 > 0 and u,r € IR and further specify the (small investor price)
function 9 : [0,7] x IR — (0,00) by

the ratios respectively, which led to the statements (iii) to (v).0]

P(t,u) = Soe” Tt for all (t,u) € [0,T] x IR,

all the three price functions 1, S, and S* used in our large investor model coincide with
the discounted price function in the Cox-Ross-Rubinstein model where the initial price at
time 0 is given by Sy, the risk free interest rate by r, and the volatility and drift parameters
of the stock price process by o and u, respectively. The bounds L and K then simplify to
L=|lg] =5 and K = || 2] = =52,

Because of Lemma 1.41(7) and (i7) the large investor price system (1), ) satisfies the assump-
tions imposed on the price system in Corollary 1.35 and Corollary 1.38 once the discretization
parameter n € IN is chosen to be larger than K2. Moreover, because of the special form of
the equilibrium price function 1 : [0,T] x IR?> — (0, 00), the condition (4.17) for the paper
value replication reduces to

Ep(T,UR) + by = h(W(T, Uy)).

Because of the self-financing condition (3.13) the paper value replication condition then im-
plies
57?—1@(117 UrTLL) + bz—l = h(@(T7 UrrLL))

as well, and recalling from the remark following Definition 1.23 that we use (£_;,b]'_;) to
denote the (large) investor’s portfolio between tI'_; and ¢}, the latter replication condition is
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seen to be the usual replication condition in the Cox-Ross-Rubinstein model. In the standard
Cox-Ross-Rubinstein model one considers the replication of a unit European call with a strike
price X € IR, i.e. the payoff function h : IR — IR is given by h(z) = (x — X)* for all z € R.
This payoff function satisfies the conditions imposed in Corollary 1.38, since h : IR — IR is
obviously convex, and since its left- and right-hand derivatives are bounded by 1. Thus, our
model indeed contains the Cox-Ross-Rubinstein model as a (very) special case. U

Remark. Since the large investor price function S, : [0, 7] x IR* — (0, 00) of the price system
described in Example 1.9 does not depend on the large investor’s stock holdings, for all
u,&1,& € IR and all t1,ts € [0,T] with ‘tl — tg‘ < 62 the condition (5.4) immediately implies
(5.9). This shows that not only the assumptions of Corollary 1.35 and Corollary 1.38, but
also the assumptions of Corollary 1.40 are satisfied by the price system (v, ) described in
Example 1.9, even if the bound B™ used for that assumptions is set to be B,, = co. Hence,
under the price system of Example 1.9 which corresponds to the Cox-Ross-Rubinstein model
we can also replicate all star-concave contingent claims. O
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Chapter 2

Recursive Equations for Value and
Strategy

In the previous chapter, we have shown the existence and uniqueness of replicating strategies
in a binomial large investor market model. This chapter takes a closer look at the large
investor’s trading strategies and the corresponding paper and real values.

We first focus on extending classical results from the theory of small investor binomial market
models to the large investor model. These include the determination of a martingale measure,
a recursive formula for the value function, and last but not least a no-arbitrage result. The
analogues of these results in a large investor model depend on the particular valuation concept
used, and so we have to distinguish between the real and the paper value concept here as
well. Above all, we have to differentiate between the corresponding two notions of arbitrage.
In order to draw the same conclusion as in the Cox-Ross-Rubinstein model that the market
is free of arbitrage, we have to restrict the class of admissible trading strategies. We also find
backward recursions for the two value functions, but in contrast to the Cox-Ross-Rubinstein
model these recursive formulae now depend on the large investor’s particular trading strategy.
Likewise, there still exists a martingale measure which turns both the large investor price
process and the paper value process into martingales, but this measure depends on the large
investor’s strategy as well. For the concept of the real value, we present a measure under
which the real value process is a supermartingale and the loss-free liquidation price process
at least almost a martingale.

Since the recursion formulee for the value functions and the martingale measures strongly
depend on the large investor’s strategy, it is essential to consider in detail the strategy, and
especially the strategy function, of the large investor. This is done in Section 2.2 where
we derive an implicit difference equation of second order for the large investor’s strategy
function. This will later be a starting point for a convergence analysis as n — oco. Before we
come to any convergence results in Chapter 3, however, we shortly turn our attention from
large investor models to small investor market models with proportional transaction costs.
After translating into our notation we shall see that large investor models and small investor
models with transaction costs have many similarities, and some of these similarities will be
exploited in Chapter 3 and 4.

In these two later chapters we shall only work with large investor markets where the equi-
librium price function has a multiplicative structure as in Definition 1.17. For those large
investor markets, the similarities with small investor markets with transaction costs turn out
to be even more pronounced. Moreover, the recursive formula for the real value function
then simplifies considerably, and in particular, the real value process now becomes a super-
martingale under the martingale measure in the associated small investor market. In the
specific case where the large investor trades at the benchmark price the real value is even a
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martingale under this measure, every contingent claim is attainable, and we can explicitly
calculate the replicating strategy.

For simplicity, we will assume in the whole chapter that 7' = 1 so that we have ¢! =T in the
nth binomial model. The generalization to an arbitrary 1" > 0 is straightforward and just
requires frequent replacements of n by [nT].

2.1 No Arbitrage and Martingale Measures

In the usual Cox-Ross-Rubinstein setting of a small investor financial market there exists
only one price at any trading time {tZ}O << and only one reasonable valuation principle
for pricing a portfolio (f}g, bZ) at time ¢}}. Under the risk-neutral measure in such a model not
only the stock price process but also the value process of every self-financing trading strategy
is a martingale. The martingale representation for the value process can then be used to
recursively calculate all possible values of the discrete value function on the binomial grid,
starting with the possible values at maturity 7. Moreover, since the value process of every
self-financing portfolio strategy is a martingale under the risk neutral measure, it is easily
seen that there are no arbitrage opportunities in the Cox-Ross-Rubinstein model. In this
section we want to explore how these properties of small investor binomial models generalize
in the presence of a large investor.

Now we have introduced several stock prices and two different valuation principles for a
portfolio strategy of the large investor in such a market, and each of these has its own
relevance, depending on the particular intention of the large investor. A large investor who
wants to replicate the paper value of a given option would be more interested in the paper
value process; a large investor who valuates his portfolio by the real value, which he could
achieve by selling his whole portfolio without any transaction losses, would be inclined towards
using the real value process. For this reason we will deal both with the concept of the large
investor stock price and the paper value of a portfolio, and with the concept of the loss-free
liquidation price and the associated valuation concept of the real value.

Depending on the price and valuation concept chosen, several properties of small investor
markets will only hold in a relaxed form as soon as a large investor is introduced. For exam-
ple, it will turn out that the paper value process remains a martingale under the martingale
measure for the large investor price process, but this measure now becomes highly depen-
dent on the large investor’s strategy, and in general it will even depend on his pre-trading
endowment.

However, the martingale representation of the paper value does not take into account the
implied transaction losses caused by the large investor’s transactions. The generalization
of the Cox-Ross-Rubinstein model to transaction costs shows that in such a small investor
market the value process is only a supermartingale under the martingale measure for the
stock price. We will also find a measure under which the real value process in a large investor
market becomes a supermartingale, but this measure is an ordinary martingale measure for
the loss-free liquidation price process only between the transactions of the large investor.
Our findings will then be used to prove that there are no paper and no real value arbitrage
opportunities within certain classes of admissible trading strategies.

In order to find the martingale representations for the value processes, and as a preparation
of the continuous-time limit, we also give recursive representations for both value functions
if the large investor’s trading strategy is known.

Let us consider a large investor market which is specified in terms of some price system
(¢, 1) consisting as usual of an equilibrium price function v : [0,T] x IR*> — IR and a price
determining measure p associated to . Immediately before time O the large investor is
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supposed to hold ", shares of stock. The large investor trades on this market according to
some self-financing trading strategy (£",0").

2.1.1 No Arbitrage for the Large Investor

In the first subsection we introduce two different arbitrage concepts which are based on the
two different value concepts, and define admissible trading strategies. Moreover, as the main
result of this section we state a no-arbitrage result for the large investor model.

Definition 2.1. A self-financing trading strategy (£",b") is a paper-value arbitrage op-
portunity if

P (v (1,0, €01) 2 0" (0,U5,6%) ) =1 and P(o"(T,U71,) > v"(0,U5,€,)) > 0.
A self-financing trading strategy (£7,b") is a real-value arbitrage opportunity if
P(o"(T,U2) 2 0" (0,U7)) =1 and P(o"(T,U2) > "(0,U3)) > 0.

Since the large investor’s trades affect the stock prices in the market, we cannot expect that
the whole class of self-financing portfolio strategies is free of arbitrage opportunities, even if
we only consider discrete binomial models. However, for each of the two arbitrage concepts
introduced in Definition 2.1 we can single out a large subclass of self-financing admissible
strategies which do not lead to arbitrage opportunities.

In order to minimize the notational ballast we will only look for arbitrage opportunities within
the class of path-independent portfolio strategies (£",b") = {({2, bZ) } 0<k<n- 10 this case we
can introduce the strategy function £" : A™ — IR which corresponds to the trading strategy
(&, b™) as in Definition 1.23, and then define some condensed notation to denote the large
investor price and the transaction loss at time ¢, respectively, where the large investor switches
his stock holdings & in the presence of the fundamentals u to the amount required by the
strategy function £”, i.e. we define the functions Sﬁn A" x IR — IR and cin A" X IR — IR
for all (¢,u,&) € A" x IR by

S (t,u, €) = Syt u, &, €7t u)) = / b (t,u, (1= )€ + 06" (t, w)) p(do) (1.1)
and

't u,€) = e (b0, €, €t u)) = (€7t u)—€) / O(tu, (1-0)E+0¢7(t,w)) (u—N) (d6). (1.2)

Within the class of path-independent self-financing strategies we can spot two different classes
of admissible strategies.

Definition 2.2. The set Z5 = Z}é(@b,u@ﬁl) consists of all path-independent and self-
financing strategies (£",b") which satisfy
S (6 Uy = 0,600) < Si (th_y Uloy 6a) < S (1, URy +6.60,)  (1.3)

for all 1 < k < n, where we use as usual the convention § = §,, = ﬁ The elements

(&7, ") € Z} are called p-admissible.
Moreover, we introduce the set Z% of all path-independent and self-financing trading strate-
gies (£™,b™) which satisfy

S( ko Ui—1 — 9, 5]2171) < 5’(75271, Ul?flag;clfl) < S( i Uk—1 +9, 51?71) (1.4)

for all 1 <k <n. A strategy ({",0") € Z} is called r-admissible.



78 CHAPTER 2. RECURSIVE EQUATIONS FOR VALUE AND STRATEGY

If the large investor does not affect the prices and thus acts as a small investor, the equilibrium
price function ¢ : [0, 7] x IR* — IR satisfies ¥ (t,u, ) = @(t,u) for all (t,u,&) € [0,T] x IR>.
Then each of the sequences of inequalities (1.3) and (1.4) holds if and only if we have

Assumption A. The associated small investor price function ¥ : [0,T] X IR — IR satisfies
o(tr, Upy —0) <w(tf_1,Up_y) < (g, Up_y +6) foralll <k <n. (1.5)

Thus under Assumption A, the sets of p- and r-admissible strategies coincide, and all path-
independent self-financing strategies are admissible.

Remark. Note that Assumption A is the usual no-arbitrage condition in general binomial
small investor markets. In order to replicate a contingent claim in a discrete large investor
market, Jarrow (1994) assumes that the speculator has only “local” price adjustment power.
This corresponds to the condition on p-admissibility in (1.3). O

We can easily state conditions on the small investor price function @ : [0,7] x IR — IR such
that Assumption A holds:

Lemma 2.3. Suppose that the small investor price function v : [0,T] x IR — IR is con-

t

tinuously differentiable and satisfies K = HEH < 0. Then Assumption A holds for all
n> K2

Proof. Let n > K? and fix some 1 < k < n and u € IR. Since =t = 62, it follows from
the mean value theorem that there exist some ¢}!_; <t* <t} and some u < u* < u + ¢ such
that

— t* *
D(thu+0) = p(ti_p,u) = B (", u") + 00w (1, u") = 8°pu (¢, u") (1 ! 5_1M> |

Since ¥ is a small investor price function, it is strictly increasing in u like the underlying
large investor price function, and hence we can employ the definition § = ﬁ and n > K? to

bound
>>0.

This proves the upper inequality in (1.5). The lower inequality follows analogously. q.e.d.

Dty u+0) — B(tp_i,u) > 6%, (t*,u*) (1 — \/ﬁH;ft

In Section 2.1.5 we will prove:

Proposition 2.4. For every large investor market (¢, ) we have the following no-arbitrage
statements:

(1) There is no paper-value arbitrage opportunity for the large investor within the class of
p-admissible trading strategies.

(ii) If (¢, n) excludes instantaneous transaction gains, i.e. if the transaction loss function
¢yt [0,T] x R?® — IR is nonnegative, then there is no real-value arbitrage opportunity
within the class of r-admissible trading strategies.

If the large investor is forced to use only admissible trading strategies, we therefore can
transfer the principles of arbitrage-free pricing from small investor models to the large investor
market.
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2.1.2 Examples of Admissible Trading Strategies

Before we move on to prove that there are indeed no arbitrage opportunities among the class
of admissible trading strategies, we should rather convince ourselves that the degenerate large
investor market (1, ) where ¢(t,u, &) = 9(t,u) for all (t,u) € [0, T] X IR is not the only large
investor market, for which p- and r-admissible trading strategies exist. For that reason, we
will use this section to give examples of p- and r-admissible trading strategies.

It will turn out that the condition (1.3) for p-admissibility in general limits the distance of the
large investor’s stock holdings at two subsequent time points ¢} and ¢, ;. However, whenever
the large investor price system (1, u) is multiplicative, the condition (1.4) for r-admissibility
does not restrict the choice of strategies at all.

For ease of presentation we will restrict our search of p-admissible trading strategies to those
large investor price systems (1, u) which were introduced in Example 1.8. For these large
investor price systems we have shown in Lemma 1.41(7) and (i7) that they satisfy both the
assumptions on the price system needed in Section 1.4.2 to show the existence and uniqueness
of replication strategies for star-convex contingent claims, and the assumptions needed for
the existence result for paper value replication in Section 1.4.3.

In both sections we have constructed replicating strategies (f", b”) which are interlocked in
the sense that the associated strategy functions £ : A™ — IR satisfy

g;;(i_l) < g?k_l)i < 5,’;(i+1) foralll<k<nandié€Tp_. (1.6)

Thus we may be satisfied with considering only strategies which have such an interlocked
structure.

Proposition 2.5. Let (1, ) be a price system as specified in Ezample 1.8, and let ", be
the large trader’s endowment in stocks immediately before time tj = 0. Using the convention
0-00 =0, take now some B € (0,00| such that
1 1
chB + 10g<(1 —p)+ peC<1—h>B5) < £ (1-0K). (1.7)
Then each self-financing and path-independent portfolio strategy (™, b™) which is interlocked
as in (1.6) and which satisfies

& —&h1| < OB forall0<k<n-—1 (1.8)
s p-admissible.

Proof. Let us take some price system (¢, 1) and some self-financing trading strategy (£",b")
as described in the proposition. We then have to show that the two inequalities in (1.3) hold
forall 1 <k <n.

Fix 1 < k <n. Due to the interlocked structure we have f"( U — (5) <&, and due to
(1.8) we also have & _; < ng2+‘§}€"‘71—§£72| <& ,+0B. Since tp —tp | = 62, an application
of Lemma 1.41(#i7) and the definition of our shorthand Sﬁn : A" x IR — IR in (1.1) yields the
lower inequality in (1.3). The upper inequality follows by symmetric arguments. q.e.d.

Remark. In the specific case where either ¢ = 0 or h = p = 0 the condition (1.7) holds for each
B € (0,00]. In the first case, the large investor acts as a small investor and does not influence
the market price at all. In the second case the price-determining measure p = p, 5 is the
Dirac measure §; concentrated in 1 such that the stock price moves to the new equilibrium
at the moment where the large investor announces his trade, but before he can execute a
transaction. In both cases all trading strategies with the interlocked structure (1.6) are p-
admissible if K < 1. In general, however, only moderately fluctuating portfolio strategies
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will satisfy (1.8), since B has to be chosen sufficiently small. Apart from the two cases
mentioned above, (1.8) and thus (1.3) for & = 1 depend on the large investor’s endowment
&", in stocks before time 0. This is not a parameter which can be manipulated arbitrarily
to match the bound in (1.8). If we required (1.3) only for all 2 < k < n the dependence on
&", would vanish. However, in order that (£",0") is p-admissible, (1.3) has to hold for all
1 <k < n, and hence the dependence on ", reduces the possible trading strategies to those
strategies where the large investor’s portfolio does not drift too far away from the original
stock holdings £" ;.

We may allow a manipulation of £, if the buyer of the contingent claims pays the large
investor at time ¢} = 0 with a portfolio (§f, bfj) of stocks and cash. In such a situation we
may set £", = £!'. Especially, if the large investor receives the portfolio (fg,bg) at time
¢ =0, then we would set £, = &, and (1.8) for k = 0 is trivially satisfied.

Note also that the left-hand side in (1.7) is of order ¢(p+ (1 — p)h)B as n — oo, which shows
that the condition (1.8) is really only an O(d)-condition as n — 0. O

For 1 < k <n —1 the condition (1.8) can be rewritten in terms of the “discrete derivatives”

En(t+ 6%, u £ 6) — £ (¢, u)
)

for all (t,u) € A"(n —2) (1.9)

of the strategy function " : A" — IR. Except in the cases ¢ = 0 and h = p = 0 condition
(1.8) requires global bounds on these discrete derivatives. Global bounds on the derivatives
of the strategy function play a major rule in dealing with existence and uniqueness of the
replicating strategies in continuous times, as we shall see in Section 3.3.3.

Let us now turn to r-admissible trading strategies: For a large class of large investor price
systems (v, i), which includes all the price systems covered in Example 1.8, all self-financing
trading strategies are r-admissible.

Proposition 2.6. Let ¢ : [0,T] x IR?> — IR, (t,u,&) — (t,u,§), be some equilibrium price
function which is differentiable with respect to t and v and for which K := Hw—zH < oo. If uis
any price-determining measure for v and if n > K2, then all self-financing trading strategies
in the large investor market described by (1, u) are r-admissible.

Proof. Since S(t,u,&) = S*(t,u,&,0) = Sx(t,u,&,0) with A = puy1, the statement for those
price systems (¢, 1) which were introduced in Example 1.8 follows from Lemma 1.41(éi). The
general case follows from the remark following that lemma. q.e.d.

Remark. For n < K? it may be that there are some self-financing trading strategies which are
r-admissible and others which are not. However, this cannot happen if 1 is multiplicative,
since then the condition of r-admissibility simplifies to (1.5), which does not depend on the
strategy at all. [l

2.1.3 Three Kinds of Martingale Measures

In a small investor market it is known that the absence of arbitrage is basically equivalent
to the existence of an equivalent martingale measure, i.e. a measure P} ~ P" under which
the price process is a martingale. Since there are different possible price processes which one
may consider in a large investor market, and since most of these price processes depend on
the large investor’s actual trading strategy, the situation in a large investor market becomes
slightly more complicated. However, if we single out certain price processes for admissible
trading strategies, we can identify several meaningful martingale measures: We derive one
martingale measure for the associated small investor price process, another one for the large
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investor price process, and finally find a measure under which the loss-free liquidation price
behaves at least almost like a martingale.

Definition 2.7. Suppose a large investor market is described by the price system (v, ) and
let the fundamental process U™ = {U}! }o<k<n and the associated tilt process Z" = {Z}' }o<r<n
on (Q", F1) be defined as in (1.3.7).

(1) Under Assumption A the s-martingale weight function p" : A"(n — 1) — (0,1) is
defined by

-n _ @(tv u) _@(t+62au_ 6) n _
P (tu) = Tt Pt o) Pt 0 for all (t,u) € A"(n —1). (1.10)

In terms of this weight function we introduce on the measurable space (Q",}"ﬁ) the
martingale measure P” in the associated small investor market by

P"(U;; = UM, +6 } U,?_1> — 5"ty UP,) forall 1 <k<n, (1.11)

and by P"(Z§ =1) =P"(Z} =1).
(7i) Let (£™,b") be a p-admissible trading strategy and the p-martingale weight function
p%n : A"(n — 1) x IR — IR be given by
S (tu, €) — S5 (t+ 0%, u — §,6"(t,u))
S (t4 62,0 +6,67(t,w) = S (14 62,u — 6,67 (t, )

(o, €)= (1.12)

for all (t,u,¢) € A"(n — 1) x IR. Then the p-martingale measure P4 on (Q, 71
is the probability measure which is defined in terms of the initial distribution given by
Py (Zy =1) = P*(Zy = 1) and Py, (U} = Uy + 8| 23) = p& (t8,U§,€",), and by
the transition probabilities

P8 (Ul = Uiy + 8| Uiy, Upa) =0 (B0 U €7 (60, URs)) (113)
for all 2 < k <n.

(7i7) Let (§™,0™) be some r-admissible trading strategy and the r-martingale weight func-
tion 7% : A"(n— 1) — (0,1) for all (t,u) € A™(n — 1) be defined by

—£n t L S(tvuagn(tvu)) - S(t + (52,U — 5, fn(t,u))
i) = S(t+02,u+6,n(t,u)) — S(t+62,u—05,E(t,u))’

(1.14)

Then the r-martingale measure PS' is the unique measure on (Q”, ]—7}) which sat-
isfies f’%ﬂ (Z(’)"” = 1) = PpPn (Zg = 1) and

S (U = Uiy +9 } Uiy) =58 (60, Ufy) forall 1<k <. (1.15)

Note that for any p-admissible trading strategy (£",0") the p-martingale measure PS s
indeed a probability measure equivalent to the original measure P", despite the fact that
the p-martingale weight function was introduced as a function which maps into the whole
domain of real numbers. Namely, by the definition of p-admissibility, it is guaranteed that
the weights p%n (t}c‘, U, 51?—1) take on only values in (0, 1) for each 0 < k <n — 1.
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Remark. If the large investor does not affect the prices and thus acts as a small investor, so
that the equilibrium price function + : [0,T] x IR? — IR satisfies ¢(t,u, &) = ¥(t,u) for all
(t,u,€&) € [0,T] x IR, all three martingale measures P, P%n, and P4 are well defined if and
only if Assumption A holds, and then these measures coincide. In general, however, the p-
and r-martingale measures will depend on the particular trading strategy (£",0") used by
the large investor (respectively on his strategy function " : A" — IR), while the martingale
measure in the associated small investor market never depends on the large investor’s trades.
Note that the strategy influences the p- and the r-martingale measure in a rather different
way: Like the martingale measure in the associated small investor market, the r-martingale

measure keeps the fundamental process {U}:}O <p<n & One-step Markov process, but for all

1 < k < n the transition probability ﬁ%n( [ U,?_l) from U]’ ; to U;! now depends on the
large investor’s static endowment §; | = 5”( 1 U, ,?_1) in stocks between time ¢, and ¢}.
On the p-martingale measure, however, the influence of the large investor’s strategy is
so strong that it will in general destroy the Markov property of the fundamental process
{U,?}nggn. Only the two-dimensional process {(U,’j, Ul?fl) }1§k§n remains Markov, but its
transition probabilities will now strongly depend on the evolution of the actual strategy; for all
2 < k < n its transition probability pf, (£f_,,Up 1, " (t7 5, U y)) = p& (t7_ 1, U 1, €8 )
to move from (U,:L_l,U,?_2) to (U,’:,U,?_l) depends not only on the large investor’s stock
holdings &;! | between time ¢, and }}, but also on the previous endowment £’ , and the
two possible values {”( L, Ul £0) of the new endowment & = f”( [ U,’;) at time ¢}, given
the information 7}’ ; up to time ¢} ;. This can be seen from (1.12) as soon as the definition
of Su in (1.1) is employed. Moreover, P’ even depends on the large investor’s pre-trading
endowment £ in stocks via the initial distribution of U7". U

If the equilibrium price function 9 : [0,T] x IR?> — IR is multiplicative so that there is
some function f : IR — IR which can be used to factorize ¢ as (¢, u,§) = p(t,u)f(§) for all
(t,u, &) € [0, T] x IR?, the definitions of the loss-free liquidation function S and the benchmark
price function S* imply that the loss-free liquidation price function S : [0,7] x IR x IR — IR
is multiplicative as well, namely

1
S(t,u,€) = w(t,u)/o F(0£)dN(O) for all (t,u,&) € [0,T] x R x IR. (1.16)

Then all path-independent self-financing strategies are r-admissible if and only if Assump-
tion A holds, and in this case the r-martingale measures P for all self-financing trading
strategies (£™,b"™) coincide with the martingale measure P™ in the associated small investor

market.

While the p-martingale measure is a martingale measure in the strict sense in that the large
investor price process is a martingale, the r-martingale measure does not make the loss-
free liquidation price process into a martingale, because it does not take into account the
jumps invoked by the large investor’s trades. However, it turns out that even in the non-
multiplicative case a similar property remains valid.

Proposition 2.8. Fix a large investor price system (¢, ).

(i) Under Assumption A the associated small investor martingale measure P™ is the unique
probability measure on (Q”7 f}}) under which the associated small investor price process

{w(ty, Ug)}ogkgn is a martingale.

(i) Let (§,b™) be a p-admissible trading strategy. Then the p-martingale measure PS s
the unique probability measure on (Q”,fg) under which the large investor price process

{Su (t’,g, Ul &y, 5,’;) }nggn is a martingale.
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(ii1) For every r-admissible trading strategy (£™,b™) the r-martingale measure P s the
unique probability measure on (Q”, .7-";}) under which the loss-free liquidation price after
the transaction at time t;_, can be calculated from the loss-free liquidation price before
the transaction at time t}; as

Sty Up &) =S [S( n P € ) (f;}_l} foralll <k<mn.  (117)
Moreover the martingale measures P™, Pﬁn, and P& are equivalent to the original measure
n (0, FD).

Proof. The proof of the statements (i) to (iii) follows directly from the definition of the

measures P", P%n, and P in Definition 2.7. For example the definition of the p-martingale
weight function p§ : A"(n — 1) x IR — IR in (1.12) implies for all 1 < k < n that

St U & o) = 05 (1 Up 1, 61 0) S5 (1, Uy + 6,&81)

n n n n (1'18)
+ <1 — 5 ( kflaUk717€k72)>Su (tr, Up g — 6,68 4),

and by the definition of PS" this is equivalent to

Sy (1 Uy, e €61) = BE [ S0 (10, UE. 61, 68)

a } forall 1 <k <n, (1.19)

which indeed means that {Su (tz, U,?,&Zﬁl,ﬁg) }O<k<n is a martingale under P%'. On the

other hand (1.19) implies (1.18) and this equation determines for all p-admissible functions
the probabilities {p%n (U & y) which define P". The statements (¢) and (#41)
can be proved similarly.

Each of the three measures P, P%n, and 15%” is equivalent to P™ on (Q”, ]—}?), since all three

weight functions p", p%n and ﬁ,%n take on values in the open interval (0,1) only. q.e.d.

}1§k§n

Remark. The martingale-like condition (1.17) states that the loss-free liquidation price pro-
cess is a martingale between the large investor’s transactions. Note that both the loss-free
liquidation price S (tz, Uy, 5,’:_1) before and the loss-free liquidation price S (tZ, Uy, 5};‘) after
the large investor has executed his transaction of §; —&;!_; stocks at time #}} are only theoret-
ical prices, which are not apparent on the market. As opposed to the small investor prices,
the loss-free liquidation prices depend on the large investor’s stock holding.

Of course, we could easily construct modified stock prices which preserve the martingale
property under P%": We have to offset the jumps in the loss-free liquidation price process
which occur whenever the large investor’s portfolio has to be adjusted. This could either be
achieved additively by defining the price process S™ = { 5’};} 0<k<n 8

>

Sio= S U &) = DO (S, ) - S oy ;_1)) forall0<k<mn, (1.20)

J=0

or in a multiplicative way — at least as long as the equilibrium price function v and hence S
is strictly positive. In this case one would define the price process S™ = {S,?} o<k<n DY

k
o tn Uﬂ n J
w= St UL, &) H t” Ur, 2%) forall 0 < k <mn. (1.21)



84 CHAPTER 2. RECURSIVE EQUATIONS FOR VALUE AND STRATEGY

Though both price processes S™ and Sn adjust the loss-free liquidation price process by the
immediate leverage of the large investor’s transaction, they will in general not remove all
influence of the strategy (£,b") on the price process. However, if 1) has a multiplicative
structure then by (1.16) the product on the right hand side of (1.21) becomes a telescoping
product, and thus the defining equation (1.21) for S}g simplifies to

1
Sp=p(ty,Up) /0 f(6€,)do = S(tp, Ui, &%) forall 0 <k <n, (1.22)

i.e. the adjusted stock price S™ is the liquidation price in the same market, which would
appear if the large investor did not trade during the whole time interval [0, 7], but kept his
stock holdings at the position £”; he had immediately before time ¢{ = 0. (I

2.1.4 Recursive Schemes for the Value Functions

We now give schemes to recursively calculate the paper and the real value function for a
replicating strategy at all nodes of the binomial tree from the set of possible final values. On
the one hand, such representations will imply that the value processes are (super-)martingales
under the p- and r-martingale measure, respectively, and on the other hand, such a represen-
tation will be used in Section 3.4 to derive a PDE for the continuous-time limit of the value
functions. As opposed to the corresponding recursive scheme in the Cox-Ross-Rubinstein
model, the recursions for the paper and real value function in the large investor model will
normally depend on the large investor’s strategy, so, in general, the recursions for the value
functions will not be of any use to find a replicating trading strategy for a given contingent
claim.

Proposition 2.9. Consider a large investor market described by the price system (¢, p).

(2) If (£™,0™) is a p-admissible trading strategy, then the associated paper value function
" A" x IR — IR along the process {(tz, Ulg’fg—l)}o<k<n can be calculated from the

possible realizations of the final paper values V' = v (T ur,&n_ 1) by the recursive
scheme

Un( k—1> Ul?ﬂafl?ﬁ) :p%n( k1> UlgflvafQ)Un( i Up—1 + 9, ‘51?71)

nn n n niim rm n (123)
+ (1 — 8 ( k_laUk;_pgk—Q))U (th Uiy — 0,681)

for all 1 < k < n. Moreover, the large investor’s stock holdings & | between time t}_,
and time ty satisfy the fized point equation

(1 Uy + 0,68 ) =" (5, Uy — 0,60y

ye— ” Iy - foralll <k <n. (1.24)
Sﬂ (tk’ Uk’—l + 67 gk—l) - SM (tk;v Uk_l - 57 fk_l)

52—1 -

(4i) If (£™,b™) is an r-admissible trading strategy, then the associated real value function
" A" — IR can be calculated from the possible realizations of the final real values
Vi =o"(T,Uj) by the recursive scheme

0 (b, Uita) = B (1 Uf) (07 (1 Uit +9) + 6500, Uiy +0,614) )

+(1 P (tia U 1))(”( U, —0) + &5 Z,Uﬁ_l—é,gg_l)) (1.25)



2.1. NO ARBITRAGE AND MARTINGALE MEASURES 85

for all 1 < k < n. Moreover, in this case the number &, of shares of stock held by the
large investor between time ty_, and t} satisfies the fized point equation
(th, Upy +0) —o(ty, Upy —9)
St Uiy +0,68,) = S(t Uy = 0,804)
G (t UR 1 + 0,60 1) — i (.U, — 6,68 ,)
S Uy +0,81) = S(, Uiy = 6.64)

52—1 =

(1.26)
+

foralll1 <k <n.

Proof. Basically, the proof of both parts follows the usual reasoning in standard Cox-Russ-
Rubinstein models.

(i) Since (£",b™) is p-admissible, it is in particular self-financing, i.e. (1.3.13) holds. Plug-
ging Definition 1.25 into this equation we can rewrite (1.3.13) in terms of the paper
value V" = {Vk”}o <pep O (§7,0"), which leads to the system of equations

Vity = Vit = e (St U 60, 68) = Sultion U o 6i))) - (127)

for 1 < k < n. Now we employ (1.3.20) to express the paper value by means of the
paper value function, replace U}’ by its two possible realizations U] ; & §, and make
use of (1.1), to rewrite (1.27) for all 1 < k < n as

Un( k—1s Ul?fp@?fz) = Un( e U1 96, 51?71)
g (S U 0,601) = S (61, Ul €0)).

Subtracting one equation in (1.28) from the other and then dividing the result by the
term Sﬁn (tZ, Ui, +0, 51?—1) —Sﬁn (tzb, Ui —0, 5,’;_1) > 0 yields (1.24). The denominator
of (1.24) is strictly larger than zero, since (£",b") is p-admissible.

(1.28)

In order to derive the recursive scheme (1.23) we now just have to plug (1.24) into
(1.28), recall & | =¢&" (tz_l, U ,?_1), and apply the definition of the p-martingale weight

function p,%n .

(74) In order to prove the second part, we will once again rewrite the self-financing condition,
now in terms of the real value process V™. By Definition 1.27 the real value V" satisfies

=V = &gS(tr, U, &) forall 0 <k <n. (1.29)

Now Propositions 1.4 and 1.2 assure that the fair price condition (1.1.1) holds, hence
an application of that equation with oy = =&, as =, and a3 = & — £, shows
that the revenue of selling ;! shares meets the price paid for buying at first £’ ;| shares
and then & — &' shares, if all transactions are based on the corresponding benchmark
prices. Therefore, (1.29) can be rewritten as

=V S UR ) — (6 - €) ST (1 UR €8y, €8) forall0< K <m,
and by the remark following Definition 1.27 a self-financing portfolio strategy fulfills
Z*l = an - El?flg( Z? Ul?ugl’rclfl) —+ Cﬁn( Zv Ul?agl’rclfl) for all 1 S k S n.

Applying (1.29) we can get rid of the cash holdings b} _; and obtain for all 1 <k < n:

Vity = Vi o (1, U €)= G (S (0 U €1m1) = S(Ho0, Upa €1) ) (1:30)
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Now we can represent the real value process by means of the real value functions as in
(1.3.18) and replace U} by its two possible outcomes U}’ _; 4§ based on the information
at time ¢ ;. Then (1.30) implies

o (th_y, U y) = 0" (83, Up_y £ 6) + Cﬁn( UL £6,60 )

n Q4 TN n Q(+n n n (131)
— & (S Uy £ 8,600) = S(th1, Ui, 60))
for all 1 < k <mn. As in the first part we now subtract one equation of (1.31) from the
other, which gives us for all 1 < k < n the representation (1.26).

Last but not least, we insert (1.26) into (1.31) and apply the definition of the r-
martingale weight function p5, to arrive at (1.25).

Thus, both statements of the proposition have been proved. q.e.d.

The right-hand sides of the recursive equations (1.23) and (1.25) still depend on the strategy
function £ : A™ — IR via the probability p%n and ﬁfln and the function ¢ . For this reason, we
have to determine the strategy function before we can analyze the corresponding value process
if we want to replicate a certain contingent claim or if we want to show the convergence of our
discrete-time model towards a continuous-time limit. This order seems to be in opposition to
the order in deriving a replication strategy in the Cox-Ross-Rubinstein model. But it is the
more natural approach, since the strategy is the fundamental quantity for the replication of
a contingent claim, in particular if the large investor is faced with transaction losses or gains

when shifting some of his stock holdings into cash or vice versa.

Remark. If the equilibrium price function v : [0, 7] x IR? — IR does not depend on the large
investor’s stock holdings, such that the large investor acts like a small investor, the (paper)
value function simplifies to v"(¢,u,§) = v"™(¢,u,0) for all (¢,u,§) € A" x IR, according to
its definition in (1.3.19). In this case the p-martingale weights {pﬁn( 1 UR g, 5272) }1<k<n
do not depend on the investor’s strategy either, and one can recursively calculate the value
function of a self-financing strategy (£", ") along the process {(th U ,?) } solely from knowing
its possible final values, since the recursive scheme (1.23) separates the calculation of the value
function from the corresponding strategy function £" : A" — IR.

In general, however, the recursive scheme given by (1.23) strongly depends on the particular
trading strategy of the large investor: For each of the weights {pﬁn (tzfp Up 4, 5272) }1 <k<n
the strategy function " : A™ — IR has to be evaluated at four different nodes. In particular,
it is unpleasant that the formula (1.23) to calculate the paper value at time ¢} | depends
on the large investor’s stock holdings £}’ , immediately before ¢} ;. The formula in (1.24)
does not help to calculate these stock holdings, since we would need to know the paper value
function v"( b1y s ) Uy | x IR — IR at time t}_;. Hence we will end up with a vicious
cycle if £" : A" — IR is not known in advance.

In the special case where the price-determining measure p is the Dirac measure d; concen-
trated in 1, such that at any trading time the stock price in the market jumps from the old to
the new equilibrium before the large investor can start his transactions and the large investor
price function simplifies to S, (t,u,&1,£2) = ¥(t,u, &) for all (t,u,&1,&) € [0,T] x IR3, both
the value function and the p-martingale weight in (1.23) do not depend on & ,, but the
p-martingale weight pﬁn (tZ_l, Uy 1, 5,?_2) still depends on the values of the strategy function
at time ¢ and ¢}, ;. Thus, (1.23) still does not separate the recursive calculation of the paper
value function from the associated strategy function.

Compared to the recursive scheme for the paper value, the recursion (1.25) for the real value is
less intertwined with the strategy function £ : A" — IR. By definition, the real value depends
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only on the current stock holdings of the large investor, and the same holds true for the r-
martingale weights { ]3,5: (tz—p U ,?_1) }1 <p<p- 1 the equilibrium price function is multiplicative
it follows from the representation (1.16) that the r-martingale weights (1.14) do not depend on
the strategy at all. However, in general the implied transaction losses an (tz, Uy | £, 5,’;71),
which depend on both the large investors stock holdings &' ; immediately before and the
holdings £™ (t};, Ul {%£0) at (the end of) time ¢}, will still prevent us to separate the recursive
calculation of the real value from the associated strategy.

The recursive scheme (1.25) does not depend on the strategy if the equilibrium price function
1) is multiplicative and if the large investor always trades at the benchmark price, such that
no implied transaction (gains or) losses can occur. In that case, the recursive scheme to
calculate the real value is separated from the strategy function in exactly the same way as
the calculation of the value function in a small investor market. We will discuss this important
special case in some more detail in Section 2.4.3. O

The missing separability of the recursive value calculation in (1.23) and (1.25) from the
corresponding strategy function " : A" — IR for most large investor markets (¢, u) will
complicate our approach to approximate the value functions v™ and o™ for large n € IN by
some continuous functions; it forces us to find some approximations for the strategy function
first. For that reason, we will derive in Section 2.2 recursive schemes for the strategy function
£" : A" — IR, which basically resemble the form of (1.23) and (1.25), but which now depend
only on the strategy function itself.

2.1.5 The Value Processes as (Super-)Martingales

As a consequence of the recursive equations for the value functions in Proposition 2.9 we
can easily characterize the value processes, which are associated to a certain self-financing
trading strategy of the large investor, in terms of the p- and r-martingale measures, re-
spectively: Under the right measure the value processes become (super-)martingales. These
characterizations can then be used to prove the no-arbitrage statement of Proposition 2.4.

Corollary 2.10. Consider a large investor market described by the price system (i, ).

(i) For every p-admissible trading strategy (™, b") the paper value process V' = {an}0<k<n
is a martingale under the p-martingale measure. o

(13) If the price system (¢, ) excludes instantaneous transaction gains, then for every r-
admissible trading strategy (§",b") the real value process V™ = {an}ogkgn S a super-
martingale under the r-martingale measure.

(zit) If the price system (i, p) excludes instantaneous transaction gains and transaction
losses (so that the large investor always trades at the benchmark price), then for ev-
ery r-admissible trading strategy (€",b") the real value process V™ is even a martingale
under the r-martingale measure.

Proof. The proofs of the three statements are straightforward consequences of Proposition 2.9
and Definition 2.7.

(1) By the definition of the p-martingale measure P we can rewrite (1.23) in terms of
PS5, as

Vit = oty Uy €ee) = BS [0t UR €00) || = BS (Ve | F], (132)

for all 1 < k < n, which shows the martingale property of V™.
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(79) Since (¢, p) is assumed to exclude instantaneous transaction gains, the transaction
loss function ¢ : [0,77 x IR?® — IR is nonnegative, and so is the reduced function
¢yt A" x IR — IR of (1.2). Moreover the r-martingale weights {p (67—, U ) hi<ksn
are probability weights, hence (1.25) implies for all 1 < k < n:

o (1, Upy) > Ifzﬂ( ho, UR )0 (8, Up -y +96)

n (1.33)
(=B (G U ) 0" (0. Uy = 9).

Of course, this inequality can be rewritten in terms of the r-martingale measure Pﬁ",
and we get the supermartingale property

Vity = 0" (G, Ui 2 B [0 (0, UR) | | =B (V0| ) (134)

for all 1 < k£ < n. In general, V" will not be a martingale under f_’%n due to the
transaction loss terms in (1.25).

(#i7) However, if the market price mechanism excludes both instantaneous transaction gains
and instantaneous transaction losses, so that the large investor can always trade at
the benchmark price, the implied transaction losses cﬁ (th Ul £6, 5211) in (1.25)
vanish, and equality holds in (1.33) and (1.34) for all 1 < k < n, so that V" is even a

P%n-martingale.
Thus, all three statements of the corollary have been proved. q.e.d.

Remark. Since both the large investor price process {Su (tZ,U,?,fgil,fg) }nggn and the

paper value process V" = {an} o<k<n are martingales under the p-martingale measure, the
fundamental property of small investor markets without transaction costs that both the stock
price and the value process of any self-financing trading strategy are martingales under the
same measure, is preserved if the large investor stock price is taken as the relevant price
for valuation. However, the p-martingale measure P s by far more complex than in the
small investor case, since it strongly depends on the particular trading strategy of the large
investor. In continuous-time, Frey (1998) uses the fact that both the price process and the
paper value process are martingales under the p-martingale measure in order to determine
the replicating strategy of a contingent claim.

If the large investor’s portfolio is evaluated by means of the loss-free liquidation price, our
large investor model is more reminiscent of a small investor model with transaction costs:
Like the value process in such a model, the real value is only a supermartingale under the
r-martingale measure 13751", and a P%n—martingale only if there are no transaction losses.
Also Baum (2001) noted that in his general semimartingale model the real value process is a
supermartingale, and then employed the supermartingale property for his no-arbitrage result.
In the subsequent paper of Bank and Baum (2004), the finite variation part of the real value
is interpreted as the induced transaction costs due to limited liquidity. However, since Baum
(2001) and Bank and Baum (2004) only considered price mechanisms which correspond to
a price determining measure p = 401, these authors did not obtain a martingale property
analogously to Corollary 2.10(#i7) as a special case. Instead, they focus on superreplication
with respect to the real value to obtain reasonable prices for a contingent claim. Baum (2001)
then transforms theses results into corresponding results for superreplication with respect to
the paper value.

We will come back to similarities with transaction costs models in Section 2.3 and we continue
the discussion of similarities to the model of Baum (2001) and Bank and Baum (2004) at the
end of Section 2.4. ([l
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Now we can finally devote our attention to the proof of the no-arbitrage statement of Propo-
sition 2.4.

Proof of Proposition 2.4. Focusing only on admissible trading strategies as defined in Defi-
nition 2.2, the proof of both parts follows from Corollary 2.10 and the usual arguments of
no-arbitrage theory in small investor markets.

(7) Assume (£",b") € Z} is an arbitrage opportunity. Then we will have under the original
measure P” the strict inequality E”[ (T Uy, ) "(0 Uy, )] > 0. Since P$ is
equivalent to P™, the strict inequality is preserved by the change from the original mea-

sure P™ to the paper value martingale measure P . On the other hand, Corollary 2.10
implies that E% [ (T ur,er )] = (07 Uy, & ), which leads to a contradiction.

(7i) The proof of (ii) follows along the same lines.

Thus, within the classes of p- and r-admissible strategies there are no paper-value and real-
value arbitrage opportunities, respectively. q.e.d.

Remark. The no-arbitrage statement of Proposition 2.4 has forced us to restrict the class of
strategies used by the large investor to p- and r-admissible trading strategies, respectively.
However, one might argue that a realistic model for a large investor model has to allow
(limited) arbitrage opportunities by the large investor.

Then it may make sense to relax the class of p- or r-admissible trading strategies which
the large investor can pick. For example Definition 2.2 could be relaxed such that all path-
independent and self-financing strategies (£", b™) which satisfy for all 1 < k& < n the inequality
Sﬁn( LU — 0, 51?—1) < Sﬁn( LUl 46, 5,?_1) are p-admissible. Besides the no-arbitrage
statement of Proposition 2.4 all statements of the two previous section, especially the recursive
representation of Proposition 2.9(7), would transfer to the more general situation, but the
p-martingale weight function p%n of Definition 2.7 may then take on arbitrary real values so
that the p-martingale measure P might be only a signed measure, and not necessarily a
probability measure equivalent to P". ]

2.2 Recursive Schemes for the Strategy Function

As we have seen in the discussions in Section 2.1.4, the strategy function £ : A — IR is the
most important object in large investor market models, and in general, we will only be able
to derive some results for the value functions if we have first derived similar results for the
strategy function. This especially holds true if we look for some convergence results for our
large investor models as n — oo. Therefore, we will start the convergence results in Chapter 3
with convergence results for the sequence {f"}n N of strategy functions £" : A" — IR, and
thus we need for each (sufficiently large) n € IN a suitable representation for the strategy
function £ : A™ — IR which can support us for the proof of convergence. The representations
given in this section will be difference equations of second order.

In view of finding representations for £ : A" — IR and some fixed n € IV, we start with
the fixed point equation (1.4.10). Next to the original fixed point problem (1.4.10) we have
already derived two alternate representations of this fixed point problem in Section 2.1.4,
namely the representations (1.24) and (1.26). Like the original fixed point problems, both
representations have the same drawback that they involve not only the strategy function
& A" — IR, but also some additional function: either the function " : A™ — IR describing
the cash amount held by the large investor, or one of the two sorts of value functions for the
large investor’s portfolio.
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But in order to take limits it is necessary to find a representation of £ : A™ — IR which does
not involve any other function for which the limit as n — oo is not known yet. Fortunately,
we can easily get rid of the large investor’s cash holdings in the representation (1.4.10), and
thus arrive at the following two representations, which for the sake of clarity are written in
terms of our shorthands (1.3.12).

Proposition 2.11. Consider a large investor market described by the price system (¢, ).
(1) If the trading strategy (£™,0") is p-admissible, then the associated strategy function

& A" — IR satisfies the recursive relation

o Sh (£ U iny Elo1ys) — Si (41 U 1yi Sit))
(k—1)i = Sk(i+1) "l o,n n n n
Sﬁ (tk7uk(i+1)’§(k71)i) - SE (tk’uk(ifl)’f(kfl)i)

Si (her Whrny €)= S (B Wisno i)
S (s gy €)= S (6 40y )
Sii (th1u Mz,é,” y) = Sk (1 ) €ly)
Sﬁn (tZ>uk i1y (k-1 z) Sgn (tz7u2(i71)7£?k71)i)
forall1<k<n-—1andalli € Iy_4.

+ &) (2.1)

+ Skii-1)

(ii) If the trading strategy (£",b") is r-admissible, then the associated strategy function
& A" — IR solves the system of equations given by

S(tr, UR(it1): 61?(1’—&-1)) = S(th4a, Ulkt1)i0 51?(i+1))
S(th, Uk(it1)> g?kfl)i) - S(t; uz(ifl)’g?kfl)i)
L, 1)g(t2+17 ?k+1)i’§l?(i—1)) __S(tZ’uZ(i—l)’gg(i—l))
St R 1y EGenye) = SR w1y Elryi)
+ DEL@Za“?k-Qi)
St w1y E0ye) = S 1y 1)

foralll1 <k <n-—1 and allt € I;_1, where the nominator Dﬁn (tz,u&_l)i) of the last
term denotes the spread

5&-1)@' = 51?(z'+1)

(2.2)

DY (3 ul—1yi) = (6 uRiany Sl nyis Eheny) + (Rt Wi 1yis Ehisys i)

— (s Whi—1ys Ele1yi Ehii—1)) — Cu(hrts Wlr1yis Egin)s Ekrnye)
between the transaction losses along the two possible paths which lead from fundamentals
of Ul = u?k,_l) at time ty;_; to fundamentals of Uy’ | = u(k+1) at time ty; ;.

Proof. Let us fix 1 <k <mn—1andi € Zy_;. By (1.4.9) applied for (k+ 1,7 £ 1) instead
of (k,i), we know that if the fundamentals have moved from uZ(iil) to u(k+1)z’ the large
investor’s portfolios (Sl?(i 11y bZ(i i1)) and (é(k, 1) b?k +1)i ) before and after his self-financing
transaction at time ¢}, satisfy

Otizt) = Oty T (E0errys — Eien)) S (B Wt 1o Eginy EQornyi) - (2.3)

If we plug these two equations into (1.4.10), we get
0= (5?(#1) - ‘S?kfl)i)sﬂ (t27UZ(i+l)7£?kfl)i7fg(i+1))
+ (5&:—1)2' - 51?(2‘—1))Su (tz’“Z(i—l)’g&—1)w§g(i—1)) (2.4)
- (gl::l(i-i-l) - 5?k+1)i)5u (tz-i-l?u?k—&—l)i’gg(i—i—l)’g?k—l—l)i) .

- (f?kﬂ)i - fz(i—l))su (t2+1’ u?kﬂ)w 51?(1'—1)7 f?k-i—l)i)‘
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This equation can now easily be rewritten in representations similar to (1.23) and (1.25):

(1) Collecting similar terms in (2.4) and then dividing the result by the stock price difference
S (t?ﬂ“Z(i+1)75&—1)i75£(i+1)) — Su (tZ’UZ(i—l)’f?k—l)i’fg(i—l)> leads to (2.1). For all p-
admissible trading strategies the denominator in (2.1) is strictly positive.

(17) Recalling the definition of the implied transaction loss function, we have

(62 - gl)SM(t7u7§17€2) = (52 - gl)S*(t’u7£1’§2) =+ cu(t7u7§17£2) (25)

for all (t,u,£&1,&) € [0,T] x IR®. Moreover, due to the fair price condition (1.1.1) and
the definition of the loss-free liquidation price S(t,u,&) = S*(t,u,&,0) = S*(t,u,0,¢)
for all (t,u, &) € [0,T] x IR? it follows that

(52 - 61)5*(15,?,6,61,52) = 525(t7u7£2) - gl‘g(ta U,gl)- (26)

If (2.6) is inserted in (2.5) and then the latter equation utilized to replace the S,,-terms
in (2.4), we obtain

0 = &S (ths iy Eniinny) — 0 1)iS (> Whirny k1))
+ €1y S (s whi— 1) Ele1yi) — Erti—1)S (> Whi—1)Er(i—1))
— &S (s W 1)is Ehirn)) + e (s
— &0 1)iS (B 15 W 1)ir Eleryi) + ey S (i
+ D;%n (th U?kq)z')-

?k+1)i7 f?kﬂ)z‘)

U
u(k+1)i?£l?(i71))
If we now rearrange terms and then divide the resulting equation by the stock price

difference S'(tz, uz(ifl),f&fl)i) — S(tz, uz(ifl),f&fl)i), which is strictly positive for all
r-admissible trading strategies, we indeed obtain (2.2).

This concludes our proof. q.e.d.

Both recursive schemes (2.1) and (2.2) are implicit difference equations of second order in
space and time for the strategy function £ : A™ — IR, since they both depend on the values
of £ at the four points (tz il,u?k il)i) and (tZWZ(i :I:l))' Despite the involvement of three
points in time, we will see in Chapter 3 that the difference equation converges towards a
differential equation of second order in space and first order in time.

Remark. To some extend, the recursive schemes (2.1) and (2.2) for calculating the strategy
function &" : A" — IR resemble the schemes to calculate the value functions in Proposi-
tion 2.9. However, there are several differences. If the pre-trading stock endowment £,
and the strategy function £" : A" — IR are known, the recursions of Proposition 2.9
can be used to calculate the value functions as soon as the corresponding final values,
Vi =l (T, U, &0 _) and V" = 0" (T, Ul), respectively, are known in any state of the world.
In contrast, the recursions of Proposition 2.11 require the knowledge of the large investors
stock holdings &"_; = & (t7_, UP_,) and & = £"(T, UY) immediately before and at maturity
th =T, since for each 1 < k < n — 1 and each particular realization u?k_l)i of U’ ; both
equations for &" (tz_l, U,?_l) = f&fl)i depend not only on the two possible stock holdings
&n (t’,;”, Uy, + 5) = 51?(&1) which the strategy function {" will prescribe at time ¢}, depending
on the outcome of U;' = U;' ; £ 9, but also on the stock holdings £" (tZ_H, U,Z}_l) = §?k+1)i
which will be prescribed at time ¢} ; if the fundamental process will return to the value U;!_;
at this time.
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In Section 1.4.2, the stock holdings ¢! ; immediately before maturity have been determined
from the final stock and cash holdings & = &, and b = b, via the fixed point equation
(1.4.10); in Section 1.4.3, the stock holdings &' ; and &) immediately before and at maturity
have been determined simultaneously in Proposition 1.36 such that they satisfy the condition
(1.4.17) of paper value replication.

A second difference relates to the implicit form of the determining equations for f?kil)i in
Proposition 2.11. Given that the strategy function £" : A" — IR is known, the recursive
schemes for the value functions in Proposition 2.9 provide explicit equations for the possible
values v”( 1 U,’;_l,f,?_Q) and T)”( 1 U,Z}_l) of the value functions at time ¢} ; from the
possible values of these functions at time ¢}'. The recursion schemes for the strategy function
& A" — IR of Proposition 2.11, however, remain implicit schemes, since the weights and
the spread Dﬁn (t’,g, u?k_l)i) between the transaction losses on the right-hand side of (2.1) and
(2.2) depend on §e—1); as well.

In the special situation where the large investor price function has the particular form
Su(t,u,&1,6) = (t, u, &) for all (t,u, &1, &) € [0,T] x IR? (as it is for example the case if the
price-determining measure p is the Dirac measure 6; concentrated in 1) the first representation
(2.1) of Proposition 2.11 becomes an explicit equation for the value f(”kil)i = g(t;fl, u?k—l)i)
forall 1 < k <n-—1and i € Zp_1, while the second representation may still remain an
implicit equation. O
Ezample 2.1. Let us assume that the price system (1, 1) excludes any instantaneous transac-
tion gains or losses, since either the price-determining measure p is the Lebesgue measure A on
[0, 1], or since the equilibrium price function ¢ does not depend on the large investor’s stock
holdings. In such a market, the spread Dﬁn ( s u?k_l)i) between the possible transaction losses
vanishes, and (2.2) can be used to calculate the restriction £" ‘ An(n—1) of the strategy function
& A" — IR to the possible time-space combinations before time ¢! = T, solely from the
possible stock holdings £ ; = ™ (t7_,,U"_;) immediately before time T, without knowing
the possible values &% = (T, U) of " at maturity. Since for all (¢, u, &1, &) € [0,7] x R?
Propositions 1.4 and 1.2 imply that

(5 - 51)5*@’ Uﬂglaf) + (52 - é)S*(tuvé—Q?g)

does not depend on £ € IR, it follows that the knowledge of £ is also not necessary if the
restriction f"‘ A (1) is calculated from (2.1). O

Ezample 2.2. Let the price system (1, 1) be determined by some equilibrium price function
Y [0,T] x R? — IR, (t,u,€) — (t,u,&) which is nondecreasing in &, and an associated
price-determining measure p which is concentrated on [0,1]. Then for every p-admissible
convez trading strategy we have

Se (Rt Uk 1y Shiieny) < S5 (815 Wy 1y ERagny) forall 1<k <n—1andalli € Tp .

Let us now fix some 1 < k < n—1 and ¢ € Z] |, and assume that the fundamentals

at time ¢}, are given by U’ | = u?k_l)i. Since the definition of p-admissibility implies

that the weights of fg(i +1) and 5}5@_1) in the representation (2.1) are probability weights,
the weight of 5& +1i is also a probability weight, and (2.1) represents the stock holdings
5"( Z_l,U,?_l) = 5&—1)1‘ between time ¢}_; and time ¢} as a convex combination of the
values of the strategy function £” : A™ — IR at the three points ( U +5) = ( [ UZ(i+1))7
(th1, Upy) = (tZ—&-l’u?kJrl)i)’ and (17, Uj_; —9) = (tz7u2(i71))'

Remark. Note that the weights of 5?@4—1

p-admissible trading strategies (£",b™), even if the price system (1, 1) does not satisfy the
conditions of Example 2.2. O

) and ég(i—l) in (2.1) are probability weights for all
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For practical purposes and for the determination of a continuous approximating function
of a discrete strategy function, the representation (2.2) proves to be more useful than the
representation (2.1), especially if the equilibrium price function is multiplicative.

2.3 Connections to Models with Transaction Costs

In this section we show that our large investor market model has many similarities with
certain binomial models for small investor markets with transaction costs. Especially we
will see that the p-martingale measure P%n, which turns the paper value into a martingale,
has a counterpart in a small investor model with transaction costs. Since transaction costs
models are widely known and since they have been analyzed in great detail, the similarity to
transaction costs models gives an indication how the non-linearity in large investor markets
affects martingale measures and replicating strategies. In particular, this has proved useful
to find the limit of the strategy functions £" : A" — IR as n — oo as it will be derived in
Chapter 3.

One of the best-known binomial models with transaction costs is the model with fixed propor-
tional transaction costs as presented e.g. in Boyle and Vorst (1992), the textbook of Musiela
and Rutkowski (1998), or — in a slightly generalized version allowing for different transaction
costs rates for buying and selling — in the diploma thesis of Opitz (1999). If we look at Boyle
and Vorst’s binomial model with n steps, at each trading time ¢ € (0,7 and each possible
state u € IR of the fundamentals, the small investor has to pay for each share of stock that he
buys not only the exogenously given stock price %(t, u), but the amount (1 +/~£n)@(t, u), where
Kn > 0 is some fixed transaction cost rate. Similarly the investor receives only (1 — /in)zﬁ(t, u)
for each share of stock he sells. Boyle and Vorst (1992) assume that there are no transaction
costs at time 0, so that the large investor’s pre-trading endowment does not affect the stock
price.

In order to compare this model with our large investor model, we can now write the average
price per share which the small investor actually has to pay when shifting his portfolio at
time t from & to & shares of stock, given that the fundamentals are u, in terms of the price
function S™ : [0,7] x IR® — IR which for all ¢t € [0,T] and u, &1, & € IR is defined by

w(0,u) ift=0

P(t,u) (1 +sgn(ée — &)kn) if t € (0,T]. (3.1)

Sn(t7u7£17£2) = {

The price function S™ in the small investor market with transaction costs corresponds to the
large investor price function S,,, but the influence of the two stock positions &; and & before
and after the trade at time ¢ is noticeably simpler than their influence on the function S,
since &1 and & affect the price function S™ only through sgn (52 —61). However, in contrast to
the large investor price function S,,, the price function S™ is discontinuous on the hyperplane
&1 = &9. This discontinuity will restrict some of the analogies with large investor models to
a formal level.

Since for each fixed (t,u) € [0, 7] x IR and non-vanishing stock prices (¢, u) the price function
S*(t,u, -, -) : IR* — IR determined by S*(t,u,&1,&) = ©(t,u) for all £1,& € IR is the only
function of the form (3.1) which satisfies the fair-price condition (1.1.1), it is quite clear that
in the small investor model with proportional transaction costs, the price 9(¢,u) plays the
role of the benchmark price. Then the transaction costs function ¢® : [0,T] x R* — IR
in the model with transaction costs can be introduced like the transaction losses in the
large investor model, namely by (¢, u,&1,8&2) = (fg — 51) (S”(t, u, &1,&2) — 9(t, u)) for all
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(t,u,&1,&) € [0,T] x IR, which leads to the transaction costs of

0 for (t,u,&1,&) € {0} x IR3

& — &almadti) for (hu,er&) € (0.T] x B, )

c" (tv u, 51752) = {

as we would expect.

Like in our large investor market, we can then define trading strategies (£, ") in the market
with transaction costs. If such a trading strategy is path-independent, we can also introduce
the strategy function £” : 4™ — IR as in the large investor case. In analogy to Definition 1.24
a trading strategy (£",b") = {(fg,bﬁ) }0<k<n in the market with transaction costs is self-
financing if -

bi_y = b + (& — &_0) S (0, UL 601, 6F)  forall 1<k <.

Moreover, we can introduce the paper value process V™ = {‘N/k“} of a trading strategy (£", b”)
in the market with transaction costs by

Vi = b4+ RS (U 61, &7)  forall0 <k <mn,

where again £", denotes the initial endowment of the (small) investor immediately before
time ¢ = 0. Note, however, that the paper value process does not depend on the particular
value of £, since S" (O, Uél,fﬁl,f(}) = @7)(0, U{f).

Now suppose that for some fized n € IN the small investor price function @ : [0,7] x R — IR
satisfies Assumption A. Then for all sufficiently small x,, > 0 we even have

1+ n_—/n n —(n n
" (g, Up_y —6) < w(tg, Up_1)

1- mn _—
- p(tp,Up_1+6) foralll <k <n.

<7
11—k, 1+ knp

Under this condition we can, for each path-independent and self-financing trading strategy
(&™,b"), copy the Definition 2.7(ii) of the p-martingale measure P in the large investor
market, and analogously define a P"-equivalent probability measure P’ in the market with
transaction costs. Namely, we can define some weight function §5 : A™(n — 1) x IR — (0,1)
for all (t,u,§) € A"(n—1) x IR by

e B S"(t, u,f,f"(t,u))—S"(t+52,u—(5,§”(t, u),f"(t+52,u—5))
P (tu,€) = Sn(t+62,u+6, (L, uw), &M (t+62, u+0)) — SH(t+62,u—6,£"(t, ), £ (t+02, u—9))’

and then define the new probability measure P on (Q”,F}}) via the initial distributions
P (Zp = 1) = P"(Zy = 1) and PS(UP = Up + 6| Z3) = 55 (0,U3,¢",) = % (0,U7,0)
and the transition probabilities

Py (U =Up +6|Upy, Uy = ﬁﬁ”( M U, €M (s, U;g_g)) forall2<k<n

for the fundamental process U™ under f’ﬁn

By the same arguments as in the large investor model it follows that the paper value pro-
cess V™ associated to the trading strategy (£",b") becomes a martingale under the measure
P%'. Hence the initial wealth ‘70” = by + 56‘@(0, U(?) needed at time O to replicate the final
contingent claim (fﬁ,b?l) with paper value f/n" = b + ﬂf(u(T, ur) (1 + sgn(&) — 5;‘_1)/%)
can be calculated as the expectation ‘70” = Ei" [Vrﬂ For the special case where ( " b”)

ni»-n
is a long European call which is settled by delivery, such a representation can already be
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found in Boyle and Vorst (1992) or Musiela and Rutkowski (1998), and they show that the
corresponding strategy function £" : A" — IR satisfies

€' (t+0%u—10) <E€"(tu) < (t+0%u+6) forall (t,u) € A%(n—1). (3.3)

If for some 1 < k* < n and all 0 < ¢ < t}. the inequalities in (3.3) are strict, then the
distribution of UT* under PS5 simplifies to

P, UG+ 6) (1 + k) — 987, U = 6) (1 — kn)

P (U =Uf +0) =

and for all 2 < k < k* the conditional distribution of U}’ given its two predecessors becomes

PR U (L + k) — (6, U+ 6) (1 — Kn)
P UPR | +6) 1+ kn) — (7, UR |, —0) (1 — kyp)

P (UR =Up +6|ULy, Uy =

where 7j_; = sgn(€" (t;_y, Up_y) — €"(ti_0, Ui_5))-

On the set F’. our measure P4’ coincides with the martingale measure used by Boyle and
Vorst (1992) and Musiela and Rutkowski (1998). Note, however, that for the European
call the two measures do not coincide on all of Q", since there are normally some states
(t,u) € A"(n — 1) on the binomial tree, with ¢ being sufficiently close to maturity, where it
is clear that the call is going to end in the money, say, regardless how the fundamentals will
evolve between time ¢ and 7', just because of the binomial restrictions on the price process.
In such states the associated replicating strategy function of the large investor stays constant,
and the inequalities in (3.3) become equalities. For these states our transition probabilities for
the fundamentals will not match with those given in Musiela and Rutkowski (1998). However,
since the choice of these probability weights only reallocates the probability weights among
paths which all lead to the same final paper value of ‘N/?f, the (paper) value at time 0 calculated
by ‘70” =E} [V,ﬂ does indeed coincide with the value calculated by Boyle and Vorst (1992)
or Musiela and Rutkowski (1998).

Remark. We should conclude this section with a discussion on the absence of transaction costs
at time t{} = 0. Musiela and Rutkowski (1998) motivate this assumption by the aversion to
dealing with pre-trading endowment in stocks. This is basically the only reason to exclude
transaction costs at time 0, since there is no other convincing reason why the market structure
at time 0 should be conceptually different from the one at all other time points ¢t € (0,7]. Of
course, it is straightforward to adjust the transaction cost model to include transaction costs
at time 0 as well.

The dependence of the pre-trading endowment is a bother in our large investor model as
well, even more than in the small investor model with transaction costs: In the large investor
model it strongly restricts the class of p-admissible trading strategies, and hence the class of
contingent claims which are attainable by such p-admissible trading strategies. In contrast
to the small investor model with transaction costs, however, it does not suffice to exclude
any transaction gains or losses at time ¢ = 0 in order to remove the influence of the large
investor’s stock holdings {"; immediately before tj on the model, since for any equilibrium
price function v : [0,T] x IR? — IR, for which & + (0, UF,£) is not constant, the bench-
mark price S* (0, Uy, &%, {8) depends on both the large investor’s stock holdings {" and &
immediately before and after ¢.

Of course, by the definition of the large investor price function in (1.3.2) the large investor
price S, (0, Ug,fﬁl,gg) does not depend on £", if the price-determining measure p is the
Dirac measure d; concentrated in 1. If 4 = é; the market price jumps to its new equilibrium
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as soon as the large investor announces, but before he can execute, his trade, and we get
Su(t,u,&,&) =1 (t u,&) for all (¢,u,&,&) € [0,T] x R®.

In order to avoid the dependence on the large investor’s pre-trading endowment we could
also employ the price-determining measure y = 91 only to describe the price mechanism at
time 0, and some more suitable measures for all other trading times in (0,7"]. However, since
there is no obvious reason why the price mechanism at time 0 should conceptually differ from
the price mechanisms at the other time points, we have decided not to pursue such a model.
Thus, in our large investor model we have to remain careful about the large investor’s initial
endowment in the stock. (]

2.4 Markets with a Multiplicative Equilibrium Price Function

The connections between small investor models with transaction costs and large investor
models become especially noticeable if the equilibrium price function in the large investor
market has a multiplicative structure. In this case the large investor market model can
basically be written in terms of a small investor market model with transaction costs, where
the small investor uses a transformed trading strategy. However, the large investor model
remains more complex than the ordinary small investor models with transaction costs, since
the transaction loss rate depends on the absolute size of the large investor’s stock holdings.
In addition to the similarities with transaction cost models, the multiplicative structure
considerably simplifies the shape of the r-martingale measure and the recursion for the real
value function, since the r-martingale weight function now coincides with the s-martingale
weight function and hence does not depend on the large investor’s strategy any more. The
simplification is maximal for multiplicative large investor models if the price system prevents
any instantaneous transaction gains and losses. In this case, the large investor’s trading
strategy is just a transform of the small investor’s trading strategy in the associated small
investor market and all path-independent contingent claims are attainable.

For the remainder of the thesis, we will only consider large investor price systems (¢, 1) where
the equilibrium price function ¢ : [0,7] x IR?> — IR has a multiplicative structure, and we
will always assume

Assumption B (Multiplicative structure of ¢). There exists a locally bounded function
f IR — (0,00) which is continuous a.e. (with respect to the Lebesgue measure on IR) such
that the equilibrium price function v : [0,T] X IR?> = IR can be written as

Y(t,u, &) = pt,u)f(§)  forall (t,u,§) €[0,T] x R x IR. (4.1)

Remark. Since every equilibrium price function ¢ : [0, T] x IR? — IR, (t,u,&) — 1(t, u,§) is
increasing in u, any function f : IR — IR that satisfies (4.1) cannot become zero on IR. By the
definition of ¥ : [0,7] x IR — IR in Definition 1.17 we also have f(0) = 1. In Proposition 1.33,
where we have proved the existence of a replicating strategy, we employed the condition that
1) is continuous in €. In this case f : IR — IR is of course continuous as well, and the positivity
of f follows already from the representation (4.1). O

2.4.1 The Strategy Transform

We will see that under Assumption B a large investor market can be basically viewed as a
small investor market with transaction costs, where the small investor uses a transformed
strategy. This point of view will simplify the analysis of large investor markets considerably.

In Section 2.1.3 the multiplicative form (4.1) of ¢ was seen to carry over to the loss-free
liquidation price function S : [0, 7] x IR*> — IR, which then can be written as in (1.16). Since
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for all a.e. continuous functions the Lebesgue integral over [0, 1] coincides with the Riemann
integral, the real value of ¢ shares of stock at time ¢ given fundamentals of u now becomes

£S(t,u, &) = §wtu/f9§ (df) = tu/f )dzx for all (t,u,&) € [0,T] x IR?, (4.2)

which is the same as the price of fos f(z) dz shares in the associated small investor market
described by the small investor price function © : [0,7] x JR — IR. More generally, the
benchmark price for buying £ — &; shares of stock turns out to be

&2
(2—61)S" (fou, 61, 2) = D(t, u) (261 / F((1-06-+08) @) = 7(6w) [~ f)de, (1)

i.e. it corresponds to the price of fff f(z)dx = f02 x)dx — fo ' f(z)dx shares in the associated
small investor market.

This connection between the benchmark prices and the prices in the associated small investor
market gives us a first hint why the following transform ¢ : IR — IR becomes extremely useful
in multiplicative large investor markets.

Definition 2.12. If the large investor market (¢, u) satisfies Assumption B, then the strat-
egy transform g : IR — IR is defined by

3
:/ f(x)dx. (4.4)
0

If & : A" — IR denotes some strategy function in such a market, the transformed strategy
function ¢" : A" — IR is given by

€"(tu)
g"(t,u) = g(£"(t,u)) :/0 f(z)dx for all (t,u) e A". (4.5)

Since f : IR — (0, 00) is positive, g : IR — IR is strictly increasing and hence invertible.

Besides the loss-free liquidation and the benchmark price, we would also like to write the
transaction loss function ¢, : [0,7] x IR* — IR in a way which is familiar from small investor
models. Because of the nature of c,, we cannot expect to find an analogue in the standard
Cox-Ross-Rubinstein model without transaction costs, but we have to allow for models with
transaction costs, and since we have presented the small investor market model with propor-
tional transaction costs in detail in Section 2.3, we want to mirror the multiplicative structure
(3.2) of the transaction cost function in such a model. For this purpose let us recall the local
transaction loss rate function k, : IR? — IR, which we have introduced so far only for static
large investor markets. Under Assumption B the definition of Section 1.2.3 can be transferred
one-to-one to a multiplicative dynamic large investor market:

Definition 2.13. For any large investor market (¢, u) for which Assumption B holds the
local (implied) transaction loss rate function &, : IR? — IR is given by

(1= 6)& + 6&2) u(dh)
S (1= 0)& + 6&) A(db)

kyu(&1, &) =sgn(& — &) < - 1) for all £1,& € R (4.6)

Remark. As usual, we use sgn(0) = 0. O
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Like in the static case, the local transaction loss rate indicates the average transaction loss
per share as a percentage of the benchmark price. More precisely, we have for all tuples
(t,u,&1,&) € [0,T) x IR? that

cu(tu, &1,&) = & — &|S*(tu, &1, &) ku (&1, &), (4.7)

since ¢, : [0, T] x IR? and S* : [0, T] x IR? inherit the multiplicative structure of v so that the
proof of (1.2.17) can be copied. In this representation, we can recognize the cost structure
(3.2) of the small investor model with proportional transaction costs, where now the rate
k. (&1,&2) may depend on the large investor’s stock holdings, and where the "fair”, exoge-
nously given price 9(¢,u) in the small investor market is replaced by the benchmark price
S*(t,u,&1,&2) in the large investor market. Due to (4.3) we can also express the transaction
losses in terms of the small investor price (¢, u) by writing

&2
cu(t,u,&1,82) = ‘/ f(@)dz|p(t,u)k, (&1,&)  for all (t,u,&1,&) € [0,T) x IR?. (4.8)

This shows that even the transaction losses in our multiplicative large investor model can
(locally) be represented as the costs which a small investor in a market with proportional
transaction costs of k,,(&1,&2) is faced when buying g(&2) —g(&1) = féz f(x) dx shares of stock
in order to adjust his share in stocks from g(&1) to g(&2).

Remark. The transformation of the original strategy (function) £ : A™ — IR by the strategy
transform ¢ : IR — IR will help us to compare our large investor model with small investor
models with transaction costs. However, it should be noted that there remains an essential
difference to those transaction cost models, especially when it comes to convergence: In the
standard n-step small investor models with transaction costs as presented by Boyle and Vorst
(1992) or Musiela and Rutkowski (1998), the transaction cost rate k,, is a constant which only
depends on n. Opitz (1999) slightly extends this model by allowing two different rates for
buying and selling, but all these models do not allow for a dependence of the transaction cost
rate on the absolute size of the large investor’s stock holdings. Thus, the dependence of the
transaction loss rate k,, : IR? — IR on the large investor’s stock holdings as described by (4.6)
substantially differs from the known transaction cost models. Moreover, the convergence
results for small investor models with transaction costs rely on the assumption that the
transaction cost rate in the n-step model is scaled by x, = kd, for some fixed k > 0. In our
large investor model the transaction loss rate k,, (5{‘, 53) tends to 0 as n — oo only if the size
‘g’f — 55“ of the large investor’s trade tends to 0. For this reason, the derivation of limits for
the large investor model will remain much more complicated than the derivation of limits in
the small investor model with transaction costs. U

2.4.2 The Recursive Schemes Revisited

As we have already stated in Section 2.1.3, in a multiplicative market the r-martingale mea-
sure P4 and the associated small-investor martingale measure P" coincide for any self-
financing and path-independent trading strategy (£7,b"), and the results of Proposition 2.9
and Corollary 2.10 on the real value simplify as well:

Corollary 2.14. Consider a large investor market described by (¢, ), and suppose that
both Assumptions A and B hold. Then for all path-independent and self-financing trading
strategies (£™,b™) we have:

(1) The trading strategy (§",b"™) is r-admissible.
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(1i) The associated real value function v™ : A" — IR can be calculated from the possible
realizations of the final real value V* = o™ (T7 U,’;‘) by the recursive scheme

0" (th, Uity) = "(th1.Uka) <5n( U +0) + ¢ (87, Uty +9, fi?—l)) (49)
(1= U) ) (07 (82 Uit =) + € (81 Ut =0, 6 )

for all 1 < k < n. Moreover, in this case the number of stocks & _, held by the large
investor between time t}_, and t} satisfies the fized point equation

/le F2) de = ?(tg, U,%l +90) — Ti(t’,i, U,%l —6)
0 p(ty, Up_ +0) — oty Uy —96)
G (t Uy 40,80 ,) — i (0, Uy — 6,68,
Pty Up +0) —o(tg, Up_y —0)

(4.10)

forall1 <k <n.

(zit) If the market (¢, n) excludes instantaneous transaction gains, then the real value pro-
cess V™ is a supermartingale under the martingale measure P™ in the associated small
investor market.

(iv) If (¢, ) excludes instantaneous transaction gains and losses, then V™ even is a mar-
tingale under P™.

Proof. As we have already noticed in Section 2.1.3, the conditions (1.4) for all 1 < k < n
on r-admissibility are equivalent to the conditions enforced by Assumption A, because of the
multiplicative structure (1.16) and the positivity of f : IR — (0, c0).

In Section 2.1.3 we have also seen that for all self-financing trading strategies (£™,b") the r-
martingale weight functions ﬁ%ﬂ : A"(n—1) — IR do not depend on the strategy and coincide
with the s-martingale weight function p™ : A™(n — 1) — IR. Hence (ii) follows directly from
Proposition 2.9(ii) and (4.2).

With the r- and s-martingale weight functions coinciding, of course all r-martingale measures
P¢" coincide with the martingale measure P™ in the associated small investor market, so that

(7i7) and (iv) are immediate consequences of Corollary 2.10(¢7) and (47). q.e.d.

Remark. Note that by (4.8) the transaction losses in (4.9) and (4.10) could also be represented
as

o €n(tp,Up_ +0)
0 20 = | [ (&) dal (8, U + )k (61, €7 (5. Upy )
k—1

for all 1 < k < n. We have avoided this representation to keep the equations (4.9) and (4.10)
more clearly arranged. g

As we have seen in Section 2.2, for all 1 < k < n — 1 the stock holdings at time ¢}/_; can also
be represented in terms of a fixed point equation which solely depends on the possible stock
holdings at time ¢} and ¢} ;. In a multiplicative setting the statement of Proposition 2.11(i1)
simplifies as well and now becomes:

Corollary 2.15. Let ¢ : [0,T] x IR? — IR be some equilibrium price function which is
multiplicative and which satisfies Assumptions A and B. Then for any path-independent
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and self-financing trading strategy the associated strategy function £" : A" — IR solves the
recursive scheme

/ By = DU ) 7P i) / HN ) do
0 DR uRigny) — PR uRG1y) o
w(tZ:lvz?k—i-l)i) _@(t%“Z(i—l)) /5E(i—1>f($) e
DR upaay) — P uRyy) o
Dji (tf,u

w(tR, UZ(Z‘H))

(4.11)

U-1)
Pt )

foralll<k<n-—1andalli € Ly 1.

Proof. This is an immediate consequence of Proposition 2.11(77) and Assumption B. q.e.d.

If the large investor can always trade at the benchmark prlce S*, such that the transaction loss
function ¢, : [0 T] x 1R3 — IR and hence its spread D vanishes, the transformed strategy

( k 1)1) fo (- V" f(z) dx at the grid point (k— 1,4) is an explicit linear combination of the

two possible successors g(§ ¥ jEl)). Especially, in terms of the transform, (4.11) resembles the
recursive formula for the strategy function in a small investor market, where the transform
g : IR — IR is just the identity. If we recall the introduction to Section 2.4.1, it is not
surprising that the strategy transform in a large investor market without transaction losses
and transaction gains plays exactly the same role as the original strategy in a small investor
market.

For the general case with non-vanishing transaction losses (or gains), we combine (4.8) with
the definition of the spread Dﬁ (tk, Ule—1yi ) in Proposition 2.11(é¢), and thus obtain for later
reference the equality

n Ek(l"'l)
Dy (R ufy—rys) = Pt ufn) <’/ F(@) |k (Ei41)0 Er1yi)

Elot1yi
5k(z 1)
‘/ x)dx|k
&0

(k+1)i

£.Ic(z-‘,-l)
—I—w(tk,ukHl ‘/ () dx

(k: 1)i

5k(z 1)
k’ukz 1

(k: 1)

(gk (i— 1)’6 k—i—l)z))

(4.12)
o (Ele—1yi> k(i)

dx \ky, (gzlk—l)i’ 51?(1'—1))
foralll<k<n-—1andi€Zy_;.

2.4.3 Trading at the Benchmark Price

The results of Corollaries 2.14 and 2.15 become particularly handy if, in addition to the
Assumptions A and B on the equilibrium price function, the price system (1, ) of the large
investor market excludes any instantaneous transaction gains or losses. In this case all path-
independent contingent claims are attainable and the replicating strategy of such a claim is
a simple transform of a related replicating strategy in the associated small-investor market
model.
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Before we state this result formally, let us shortly discuss how a price system (1, 1) which
excludes any instantaneous transaction gains and losses will look like. Since the transaction
loss function ¢, : [0, 7] x IR* — IR can for all (¢,u,&,&) € [0,T] x IR® be written as

Cu (ta u, ‘517 52) = (52 - fl) (S,u, (tv U, gla {2) - 5" (ta u, 517 52)) ) (413)

the absence of any instantaneous transaction gains or losses implies that the large investor
executes all his trades (where &; # &2) at the benchmark price, and due to the definitions of
the large investor and the benchmark price function S;, and S* in Definition 1.18 the values
of these two price functions coincide if §; = &2, so ¢;, = 0 even implies

S/L(ta u?SlaéZ) — S*(tvuaglaéé) for all (tvua&-lvg?) S [OaT] X R3‘

Thus, if the large investor market (1, ) excludes instantaneous transaction gains and losses,
we may always assume without loss of generality that the price-determining measure p is the
Lebesgue measure A on [0, 1].

Proposition 2.16. Let us assume that the large investor market (1, u) excludes any instan-
taneous transaction gains or losses and satisfies Assumptions A and B. Then every path-
independent contingent claim (§,,by) is attainable by a unique replicating strategy (£™,0").
If (3,b") is the replicating strategy for the contingent claim (g(ﬁn),bn) in the associated
small investor market, then the replicating strategy (", b") for the claim (&, by) in the large
investor market is given by & = g_l(ﬁg) and IBZ = by for all 0 < k < n.

Proof. Let (&,,b,) be an arbitrary path-independent contingent claim. We will construct
a replicating trading strategy (£",b") = {(f,’;, bZ) }0 <p<p, Similar to the replicating trading
strategy of a star-convex contingent claim in Section 1.4.2.

Of course, the replicating portfolio at time ¢! = T has to satisfy £ = &, and b = by, so
we will define £ and b that way. This definition allows us to determine the real value
Vi = o"(T,Ur) = b + &S(T, U, &) at time T in each state of the world. Since the
transaction loss terms in (4.9) vanish, we can then recursively calculate the values of the real
value function 0" : A™ — IR solely from its final values v (T, -) : U} — IR via

o"(tp, UF) = p" (¢, UR) 0" (83,1, UR +6) + (1 — " (t7, UR) )" (th g1, UR — 0) (4.14)

forall 0 <k <n-—1.

Now we have seen in Section 2.4.1 that the strategy transform g : IR — IR, £ — fo x)dx
is invertible, hence the stock positions {fk }0 <pen_ Of the large investor’s trading strategy
can be explicitly calculated from (4.10) as

o(tr,  UP+6) —o(th, ,,UP =6
=gt (tiy, UL +0) = (6, UR =) forall 0 <k<mn-—1. (4.15)
Pty UP +0) = 9t 1, U = 9)

Last but not least, because of Definition 1.27 the large investor’s cash position b} between
time ¢}, and ¢}, can be calculated from the real value V;* = v" (tz, U ,?) and the stock holdings

£ by

bp =" (¢, UF) — &S (th, Up, &f) forall0 <k <n—1. (4.16)

It is easy to see that the so-defined trading strategy (£™,b") is path-independent. In order to
check the self-financing condition, note that the definitions of b}’ and of the strategy transform
g: IR — IR imply for all 0 < k <n — 1 that

ERS (thins Uiyrs &) + 0 = g(&0) 0(thin, Uinyr) + 0" (81, UR) — g(&1)w(th, UR). (4.17)
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Due to (4.15), (4.14), and the definition of the s-martingale weights in (1.10), the right-hand
side of (4.17) equals just the portfolio value " (tZH, U,?H) §i1S (tZH, Uk+1,§k+1) +07
at time ¢} |, regardless of the outcome of the fundamental value U}’, ; = U’ £6 at time ¢} ;.
Hence we have

&S (i1 Uiy &) + i = €41 S (i1 Ui &) + 01y forall 0 <k <n—1,

and by the remark following Definition 1.27, this and ¢, = 0 indeed implies that (£",b") is
self-financing.

The trading strategy (£",b") is the unique self-financing trading strategy which replicates
(&n, bn), since every replicating strategy has to fulfill (4.15) and (4.16).

In order to prove the second statement, let us first note that the modified equilibrium function
P* 1 [0,T] x IR* — IR defined by

T (t,u,€) = P(t,u) for all (t,u,&) € [0,T] x IR? (4.18)

satisfies the Assumptions A and B as well. Of course (%, ut) just describes the associated small
investor market, since ¥* does not depend on &, and the loss-free liquidation price function
in the market (%, 1) coincides with the equilibrium price function 7* in this market.

An application of the proposition’s first part to the market (o, 1) yields that the contingent
claim (g({n), bn) is replicable by some replicating strategy (3", b"). Since %" is the loss-free
liquidation price function in (¥*, u), the real value function v* = v™* : A" — IR of the
replicating strategy (37,b") has the final value

O(T,UR) = b+ 3551, U, 9(€n)) = bn + 9(&)D(T,US) = by + &S (T, U, &), (4.19)

where the second equality stems from the replication condition (vn, ) = ( (&n), n) and the
definition of *, and the third equality from the specific form (4.2) of the loss-free liquidation
price function S : [0,7] x IR? — IR under Assumption B. But the expression on the right-
hand side of (4.19) is just the final value " (T, U;") of the real value function of the strategy
(&™,b™) in the large investor market, and since both " and v* can be completely recovered
from their final values by the recursion (4.14) for 0 < k < n — 1, it follows that both value
functions coincide, i.e. v* = 0™,

Due to (4.18) and Definition 2.12, the strategy transform in the small investor market (77", u)
is the identity, hence (4.15) applied to the replicating strategy (¥7,b") in (*, u) implies that
the (small) investors stock position 7} between time ¢} and ¢}, | is given by

o(tr, UM +6) — v Ur—6
P = (thyn U +0) = 0(ty, Uk —0) forall 0 <k <n—1. (4.20)

Pt UR +0) = ot 1, U = 9)

Comparing this definition with the definition of the stock holdings &;! in the large investor
market (1, 1), shows indeed £ = ¢ 1( ) for all 0 < k < n — 1. Of course, this equality
holds for & = n as well, since the replicating conditions of both strategies imply the equalities
&==6=9"(9(6) =9 ()

In order to show that the cash holdings of both trading strategies coincide, we once again
recall the definition of the real value and note that the loss-free liquidation price function in
the small investor market (%, 1) is given by ¥, such that the equality of the two real value
functions and &;} = g ! ("yg) imply

for all 0 < k < n. This concludes our proof. q.e.d.
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In small investor models, it is common to parametrize the replicating strategy and the cor-
responding value function in terms of time ¢ and the stock price %(¢,u), and not in terms of
time and the fundamentals u at this time. In order to make the results of Proposition 2.16
more comparable with the usual parametrization of small investor models, we would like to
parametrize the real value function in terms of time and stock price as well.

We will see that for the small investor market such a parametrization is no problem. If (¢, 1)
is a true large investor market such that the equilibrium price function depends on the large
investor’s stock holdings, the key question is once again which stock price we should choose for
the parametrization. Since we have restricted us in this section to large investor models where
the large investor trades at the benchmark price, we have the advantage that large investor
price and benchmark price coincide, but there are still several other candidates of possible
stock prices. For example, let us assume that at time ¢ the fundamental value is u, and that
in this situation the large investor’s strategy tells him to switch his stock holdings from &
to & shares. Then we might use as the parameter for the reparametrized real value function
either the small investor stock price %(t,u), the benchmark price S*(t,u,&1,&2) effectively
paid by the large investor for the transaction of the missing £ — &1 stocks, one of the two
equilibrium prices (¢, u, &) and (¢, u, &2) immediately before and after the large investor’s
transaction has been executed, or also one of the corresponding loss-free liquidation prices
S(t,u,&) and S(t,u,&2).

Though the small investor stock price is in general not visible in the market, we will take
this price to parametrize the value function, since all other candidates depend on the number
of shares held by the large investor, and can therefore be manipulated. Moreover, since no
instantaneous transaction losses and gains occur, we might argue that at the trading time
t the large investor first liquidates his whole stock holdings £; at the per-share liquidation
price S(t,u, &), such that at least for an infinitesimally short time the equilibrium price on
the market is actually given by ©(t,u), and that the large investor then buys & shares of
stocks at the per-share liquidation price S(t,u,&2), even if this leads to unnecessarily large
transactions.

Thus, in order to clarify the connections with the usual small investor binomial model, we
will now shortly explain how the value function can be parametrized in terms of time and
small investor stock price as well. Let us again take some large investor price system (1), i)
as in Proposition 2.16, where the large investor always trades at the benchmark price, and
assume that the contingent claim (&, b,) is replicated by the trading strategy (£7,b") with
associated real value function " : A" — IR. In order to capture the possible combinations
of time ¢ and small investor stock price z = (¢, u) in our discrete model, we introduce the
set D" as the image of the trace function r : A" — IR, (t,u) — (t, w(t, u)), ie.

D" :={(t,x) € [0,T] x R|(t,x) = (¢, ®(t, u)) for some (¢t,u) € A" }. (4.21)

By Definition 1.17 the equilibrium price function ¢ : [0,T] x IR? — IR, and therefore also
the associated small investor price function ¥ : [0,7] x IR — IR, is strictly increasing in the
fundamentals. Hence for each fixed ¢ € [0, T the function u — (¢, u) is invertible and there
exists a uniquely defined function u™ : D" — IR such that %(t, u"(¢,z)) = « for all (¢,z) € D™
Then the real value of the portfolio strategy (£",0") can be parametrized in terms of time ¢
and the corresponding small investor stock price = by the function @w” : D" — IR which we
define as

w"(t,z) = 0" (t,u"(t,x)) for all (t,x) € D" (4.22)

In particular, the real value of the contingent claim at time 7" can be written as a function
h(zx) of the small investor stock price x = (T, u) at this time by setting h(z) = @w"™(T, x) for
all z € IR which satisfy x = 9(T,u) for some u € U)}.
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Because of (4.14) the value at time ¢} of the replicating strategy of any contingent claim with
a real value of h( (T, U")) can then be calculated by

" (tg, By, Ug)) ~- B, [h(@(T, U;;)) (f;g] for 0 < k <n, (4.23)

and rewriting (4.15) in terms of w™ we see that for any 0 < k < n — 1 the large investor’s
stock holdings between time ¢}’ and ¢}, | of such a replicating strategy are given by

gn -1 (U_](tz+1’ ( k+1’Uk +5)) —QD(tZ+1,@( k+1’Uk —6))> ]
P14, U +0) = 980, U = 9)

If (¢, 1) is a small investor market, the strategy transform ¢ : IR — IR will be the identity,
and it is easily seen that our large investor strategies really generalize the hedging strategies
known from small investor markets.

Remark. For caution, we recall that in small investor markets, the notation &;! is often used
to denote the small investor’s strategy between time ¢}}_; and ¢}}, while we use it to denote
the large investor’s strategy between time #;’ and ty; ;. O

The importance of the associated small investor market for the analysis of the large investor
market was first noted by Baum (2001). In a general semimartingale model he supposes
that the equilibrium price process {w(tz, Uy, f) } o<i<n 18 @ (local) martingale for all constant
stock holdings £ € IR of the large investor. This corresponds to the martingale-like property
(1.17), which shows that the loss free-liquidation price would become a martingale under the
r-martingale measure if the large investor’s trading itself did not affect the stock prices. Under
the multiplicative structure of Assumption B, the r-martingale measure coincides with the
s-martingale measure of the associated small investor market, and the representation (1.17)
is equivalent to saying that the associated small investor prices process {@(t};‘, U ,’j) is
a martingale.

Baum (2001) and Bank and Baum (2004) also noted that the real value process is a super-
martingale under the s-martingale measure, and they employed this supermartingale property
to derive a no-arbitrage result and superreplication strategies. However, because they only
focused on price mechanisms which correspond to a price determining measure y = 61, they
did not notice that the real value becomes a martingale if the large investor trades at the
benchmark price.

The simplified behavior of the large investor model, and especially of a multiplicative model,
where the large investor trades at the benchmark price can serve as the starting point of an
analysis of more complex large investor models where another price mechanism applies. The
special case where the large investor trades at the benchmark price still contains much more
information on a large investor model than the very special case where the large investor
trades like an investor in the associated small investor market.

}nggn



Chapter 3

Convergence of the Strategy
Functions

In the standard Cox-Ross-Rubinstein model, the stock price does not depend on the investor’s
trading strategy, and hence it is possible to show the convergence in distribution of the
discrete binomial models without a detailed investigation of the strategy. However, if the
large investor becomes so large that his trades actually affect the stock price, we first need
to show that his discrete strategy functions converge before we can derive in Chapter 4
results on the convergence in distribution of our large investor models. Thus, the following
chapter is devoted to the convergence of a sequence {{"},en of strategy functions in the
discrete binomial large investor models. The limit of the strategy functions has to satisfy a
certain final value problem. If a solution ¢ to the candidate final value problem exists, the
convergence of the discrete strategy functions follows from their convergence immediately
before and at maturity to the corresponding values of ¢. The final value problem for ¢ is
highly non-linear, but it can be transformed into a simpler quasi-linear problem by means of
the strategy transform ¢ : IR — IR. Therefore, we shall rather study the convergence of the
transformed strategy functions g = g o £” towards some continuous-time limit «, and then
transform our results back into corresponding results for £ and the limit ¢ = g~ 0~. Once
the convergence of the strategy functions is shown, we can employ this convergence in order
to derive a similar statement for the real value functions.

The existence and uniqueness results for solutions to the final value problems which have to
be satisfied by the limit functions « and ¢ are stated in terms of certain Holder spaces. Those
function spaces are introduced in Section 3.1. In Section 3.2 we focus on large investor models
where the price system (1, 1) excludes any instantaneous transaction gains or losses. In this
particular case, each of the transformed strategy functions {¢g"},cn can be calculated from
its values at and immediately before maturity by means of an explicit recursive scheme, and
the limit v satisfies a linear final value problem. Thus, existence and uniqueness of solutions
to the final value problem as well as the convergence of the transformed strategy functions
follow from classical results.

If the price system does not prevent transaction losses, however, the recursive schemes for
{9" }nemn remain implicit schemes, and the final value problem for the limit 7 is only quasi-
linear. In Section 3.3 we adapt a related proof by Frey (1998) to show that even in this more
general setting the final value problem for  still has a solution if the boundary values at
maturity do not become too large. Under this condition we then sketch how the methods used
to prove the convergence statement of Section 3.2 can be generalized in order to prove the
convergence of {¢g"},ev even in the presence of transaction losses. Our convergence results
are then transformed back into the corresponding results for the strategy functions {{" }nemn
and their limit .
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Finally, we come to the convergence of the discrete real value functions {0"},cn towards
a continuous-time limit in Section 3.4. If the large investor does not always trade at the
benchmark price, our convergence result for the real value functions relies on the convergence
of the strategy functions, and the final value problem which describes the limit function o
also depends on the limit ¢ of the strategy functions. It turns out that ¢ is a transform of
v’s spatial derivative. A first discussion of the final value problem for ¥ and a comparison
with corresponding problems for value functions in standard small investor models concludes
the chapter.

Throughout this chapter, we work with a large investor price system (v, ) which satisfies
the multiplicative structure of Assumption B. Moreover, as in Chapter 2 we only consider
the case T'=1 in order to avoid lengthy indices for the discrete time points {tZ} 0<k<[nT]"

3.1 Holder Spaces and Discrete Derivatives

Of course, we will only be able to prove the convergence of a family {{"},cn of discrete
strategy functions {" : A" — IR to a continuous function ¢ : [0,7] x R — IR as n — oo
if we assume certain regularity conditions, and since the candidate limiting function ¢ itself
is given as a solution to a (non-linear) partial differential equation (PDE), we even need
some regularity conditions just to show the existence of such a solution. It turns out that
certain Holder spaces are appropriate function spaces both for the limiting function ¢ and
for the two components of the multiplicative equilibrium price function in order to derive
existence and convergence results. In this first section we introduce the various Holder spaces
which we employ in Chapters 3 and 4, and we also define some abridged notation for discrete
derivatives which help us to keep the complexity of our formule at a moderate level.

Let us first recall the definition of Hélder continuity:

Definition 3.1. Let D C IR. Then a function h : D — IR is Holder continuous with
exponent (3 € (0,1) if there exists a nonnegative constant K such that

|h(x) — h(y)| < K|z —y|? forall z,y € D.
Then we can define Holder spaces as in Ladyzenskaja, Solonnikov and Ural'ceva (1968):

Definition 3.2. For k,l € INy and 5 € (0, 1), the Holder space H%(k+5)’k+l+ﬂ([0,T] x IR)
consists of all continuous and bounded functions h : [0,T] x R — IR, (t,z) — h(t,x), such
that

(7) for all m1,my € INg with 2m; < k and 2n; + 2 < k + [ the derivatives

(;)m <£j>mh:(o,T) xR — R (1.1)

exist and are both continuous and bounded,

(7i) all of the derivatives in (¢) with 29 = k—1 or 2n; +12 = k+1—1 are Holder continuous
in ¢ with exponent %(1 + ), and

(7i7) all of the derivatives in (¢) with 2n; = k or 2 + 12 = k + | are Holder continuous in ¢
with exponent % 6 and Holder continuous in x with exponent [.

We then write i € H2 (k8 k++5 ([0, T)x IR), and since the derivatives in (1.1) are continuous
and bounded, we can extend them in a continuous fashion to the whole domain [0,7] x IR.
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Therefore, for t = 0 and t =T we will understand any derivative (%)m (%)mh(t, u) as the
J
right- or left-hand limit as t \, 0 or t /T, respectively.
3 (k+5) k+4

A function h : [0,T] x IR — IR belongs to the Holder space H;> ([0,T) x IR) if for
all m1,m2 € INg with 2n; < k and 2n; + n2 < k + [ the derivatives (1.1) exist and satisfy the
conditions (¢) to (i4i) for each compact subinterval of [0,7") x IR. In this case we can extend

the derivatives of (1.1) in a continuous fashion to the domain [0,7) x IR.

Remark. Normally we consider “symmetric” Holder spaces H 3 (k+8). k40 ([0, T] x IR). In this
case we can simplify each pair of conditions on 7; and 72 in (i) to (iii) to a single condition,
since then the first condition of each pair is seen to be redundant. O

Similarly to the Holder spaces for time-dependent functions h : [0,7] x IR — IR we can also
define the corresponding Hélder spaces for functions f : IR — IR:

Definition 3.3. For any k& € INg and 8 € (0,1) the Holder space H**A(IR) consists of all
bounded functions f : IR — IR which are k times continuously differentiable, with bounded
derivatives up to order k, and for which the kth derivative f(*) : IR — IR is Holder continuous
with exponent [.

Finally, we introduce the Holder space H lk;rﬁ (JR) of all functions f : IR — IR which are
k times differentiable, and for which the kth derivative f*) : IR — IR is Holder continuous
with exponent 5 on any compact subset of IR.

Using a norm which basically sums up the (minimal) bounds on the derivatives (1.1) and
the minimal Holder constants for the derivatives considered in (i7) and (iii), it can be shown
that the space H%(k+,8),k+l+,8([0’ T] x IR) is complete, and likewise it follows that H**7(IR)
is complete as well.

It is clear that for any k,l € INy and 3 € (0, 1) the Holder space H%(2k+ﬁ)’2k+l+5([0, T] x IR)
is a subspace of the space C*-2k+! ( [0,T] x IR) of continuously differentiable functions of order
k and 2k + [, respectively:

Definition 3.4. Let k,] € INy. Then the space Ck’l([(),T] X ]R) consists of all continuous
functions h : [0,7] x R — IR, (t,z) — h(t,z), which are k times continuously differentiable
with respect to ¢t and [ times continuously differentiable with respect to z. The subspace
C’f’l([O,T] x IR) consists of all h € C*!([0,T] x IR) which are bounded together with their
partial derivatives (%)771 (%)mh :(0,T) x R — IR for all n1,n2 € INg with n; < k, na <
and either e =0o0r n + 1m0 < kAL

We write h € C*([0,T) x IR) if h : [0,T] x R — IR, (t,x) + h(t,z), is continuous on
[0,7) x IR and if it is k times continuously differentiable with respect to ¢ and [ times
continuously differentiable with respect to x.

Last but not least, for each k € INyg we denote as usual the space of k times continuously
differentiable functions by C*(IR), and the subspace of all functions in C*(IR) which are
bounded together with all their derivatives up to order k by CF(IR).

Actually, we will need that ratios of the small investor price function % : [0,7] x R — IR

17 =
like % lie in certain Hoélder spaces. In order to restate such conditions in terms of the
underlying function % itself, it is useful to define another class of functions which need not
be bounded, but for which some ratios of derivatives belong to certain Holder spaces.

Definition 3.5. Let k € IN, | € Ny, and 5 € (0,1). A function h : [0,T] x R — IR,
(t,z) — h(t,z), belongs to the class H%(k+ﬁ)’k+l+ﬂ([0, T x RR) if and only if

(i) for all m1,m2 € INyg with 2 < k and 2n; + n2 < k + [ the derivatives (1.1) exist,
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ii) the first spatial derivative 2k : (0,T) x IR — IR is strictly positive,
ox

(7i1) for all my,ma € INg with 2y < k and 1 < 2n; + 12 < k + [ the ratio functions

(Bo0) () () o e

are bounded, Holder continuous in z with exponent 3, and Hélder continuous in ¢ with
exponent £ (1+8) if 21 +n2 = k+1—1 or 21 = k—1, and with exponent 33 otherwise.

In this case we write again h € PI%(HQ)’]“HJFQ([O, T] x R).

For our convergence results, we will frequently deal with maximum norms over different
domains. We find it convenient to denote all these norms by || - ||, and distinguish between
the norms by specifying the set over which the maximum is taken as a subscript:

Definition 3.6. Let d € IN, and suppose we are given some functions hy : D; — IR and
hy : Dy — IR mapping from some subsets D; C RR? and Dy C [0,7] x IR? to IR. Then
we write [|h1l|p, := supgep, [h1(z)] and [|h2||p, = sup z)ep, [h2(t, )| In the special case
where Dy = IR% or Dy = [0,T] x IR?, we often suppress the subscript Dy or Ds, respectively.

We have already mentioned discrete derivatives of the discrete strategy function £" : A™ — IR
when discussing Corollary 1.40 in Section 1.4.4. When proving the convergence of a sequence
{€" }nen of strategy functions towards a continuous-time limit ¢ : [0, 7] x IR — IR which is
given as a solution to a certain PDE, we will definitely need to work with certain discrete
derivatives of £" which converge towards the corresponding partial derivatives of ¢. Now
we have to take into account that for each n € IN the strategy function &" : A" — IR is
only defined a discrete binomial grid, so we need to be careful with the arguments of the
discrete derivatives. For example, it is useful to define the discrete first spatial derivative of
a function h : A" — IR for all those points (¢,u) € [0,T] x IR which lie exactly between two
points (t,u+0) € A™. Since these points do not lie on the binomial grid A", we first need to
define a reasonable domain for the discrete derivatives.

Definition 3.7. As a generalization of the set of possible time-space realizations A"(m) in
(1.3.10), we define the set of possible arguments of the /th discrete derivative as

All(m) = {(tz,u)‘ for ke {l,l+1,...,m} andueul?_l} forall 0 <I<m<n,

and we again write A} instead of A}'(n). Then for any n € IV and any function h : A" — IR
on the grid A" the three discrete derivatives A7h : A} — R, A, h : A3 — IR, and
A} h: A}(n — 1) — IR are defined by

h(t,u+0) — h(t,u — 6)

A" h(t,u) = 55 for (t,u) € Ay,
A h(tu) = A" h(t,u+ 0) 2—6AZ h(t,u — 0) for () € AL,
and
A} h(t,u) = Wt + %, u)2;2h(t ) for (t,u) € A}(n—1).

Remark. If the function h even is defined on the whole slab [0,7] x IR and belongs to the

space C;’Q([O,T] x IR), it is clear that ||Alh — h“HA" — 0, | Az, h — hu“HAn — 0, and
1 2

1A% b= hel gy

are indeed approximations of the partial derivatives of h : [0,T] x IR — IR. Note also that for

all 0 < m < n the set Aj(m) of possible arguments for the Oth discrete derivative is equal to
the set A™(m) of possible time-space realizations up to time ¢!, as introduced in (1.3.10). O

— 0 as n — 00, so in this sense the discrete derivatives of Definition 3.7
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3.2 The Case without Transaction Losses

Before we shall treat in Section 3.3 the convergence of a sequence of strategy functions
in binomial markets which are based on a general multiplicative price system, we confine
ourselves in this section to multiplicative price systems which exclude any instantaneous
transaction gains or losses. For such a price system (1, u), we build for each n € IN the
nth binomial market model as described in Section 1.3, and choose a self-financing strategy
(€™, b™) with corresponding strategy function £" : A" — IR. We then give conditions on the
convergence of the values of the large investor’s strategy functions immediately before time
T which imply that the sequence {£"},en of discrete strategy functions converges uniformly
for all trading times before maturity to the solution ¢ : [0,7] x IR — IR of a certain semi-
linear parabolic final value problem. Such a convergence result for the strategy functions
can be easily shown once we have proved an analogous statement for the convergence of the
corresponding sequence {¢"}n,en of transformed trading strategy functions ¢” : A" — IR,
given by ¢g" = g o ", towards the transform v =go ¢ :[0,7] x R — IR.

The section is divided into four parts. In the first part we present the final value problem for
~ and then show its equivalence with the final value problem for the corresponding original
strategy function ¢. While the PDE for ¢ is only semi-linear, the PDE for the transform = is
linear, hence existence and uniqueness follow from classical results. In the subsequent part,
i.e. in Section 3.2.2, we use standard techniques for the approximation of linear PDEs by
difference schemes like certain maximum principles in order to prove that — roughly speaking
— the transformed strategy functions {¢"},cmn converge uniformly on [0,7") x IR to 7 with
order 0(62+5) if the values of the transformed strategy function ’y"( A ) immediately
before time T converge uniformly to the corresponding values of v with order 0(54+ﬁ ) In
Section 3.2.3 the results of Section 3.2.2 are then translated into corresponding results for
the original strategy functions {£"},cpn. While we shall take for granted in Section 3.2.2
the existence of a sufficiently smooth solution = to the final value problem, we will sketch
another proof for the convergence of subsequences of {¢"},emn in Section 3.2.4, which does
not presuppose the existence of . Section 3.2 gives us much insight into the tools used to
handle the general case, where transaction losses are not prevented by the price system (¢, ),
but it does not overwhelm us with bounds on the non-linearities caused by these losses.

We have already seen in Section 2.4.3 that for any multiplicative price system (¢, u) which
excludes any instantaneous transaction gains and losses we may assume without loss of gener-
ality that the price-determining measure p is the Lebesgue measure A\ concentrated on the unit
interval. Thus, in this section we will fix an equilibrium price function 4 : [0, T] x R?> - R
which satisfies Assumption B and consider for each n € IN the binomial market of Section 1.3
which is based on the price system (1, u) = (¢, \). As we proceed, we will require different
degrees of smoothness for the two components ¢ and f of the function . However, we will
always suppose that the small investor price function ¢ : [0,7] x R — IR, (t,u) — ¥(t,u),
is continuously differentiable with respect to ¢, two times continuously differentiable with
respect to u, and that it satisfies H%H < oo. The function f : IR — (0,00) needs to be at
least continuously differentiable.

Since we know from Lemma 2.3 that under these conditions Assumption A holds for all
n > H%HQ, we can conclude from Proposition 2.16 that for all those n € IN every path-
independent contingent claim (fn, bn) is attainable by a unique path-independent and self-
financing trading strategy (5", b”). Moreover, we recall from Corollary 2.15 and the subse-
quent discussion that in this case the transformed strategy function ¢g" : A" — IR, which was
introduced in Definition 2.12 as

en(tw)
G () = g(E(t,u)) = /0 F(@)de for all (£u) € A",
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can be recursively calculated as
g" (t?_h u) =p" (tz_l, u)g" (tZ, u—+ 5) + <1 —p" (tZ_l, u))g" (tz, u— 5), (2.1)
where the weight function p” : A"(n —2) — (0,1) is given by

P(th, u+9) = P(ty1,u)
Pt u+6) — p(th,u—9)

Pty u) = for1<k<n-—1anduel. (2.2)

The recursive scheme (2.1) will be the starting point for our convergence analysis in Sec-
tion 3.2.2.

3.2.1 The Limiting PDEs for the Strategy Functions and their Transforms

In this section we first introduce the final value problem for the potential limiting function
~v:[0,7T] x R — IR of a sequence {¢g"},cv of transformed strategy functions ¢" : A" — IR.
Existence and uniqueness of solutions to this final value problems follow from standard results.
We then proceed and define the corresponding final value problem for the limit ¢ of the
original strategy functions and show the equivalence of both final value problems.

In case of convergence, the limit v : [0,7] x IR — IR of a sequence of transformed strategy
functions will solve a final value problem of the form

1 Pe(t,u) — 3Puu(t, u)
t — t = t
PYt( )u) + 2’7uu( 7“) 'Yu( 7“) @u(t, U)

for all (t,u) € [0,T) x R, (2.3)
with final condition

¢(u)
Y(T,u) = / f(z)dx for all u € IR, (2.4)
0

where the function ¢ : IR — IR describes the required stock holdings of the large investor
immediately before maturity. Since this problem is a linear final value problem, we can use
standard results from PDE theory to prove existence and uniqueness of (classical) solutions
to this final value problem. For example, we have

Lemma 3.8. Suppose that for some k > 2 we have ¥ € ﬁ%(k+ﬂ)’k+5([0,T] X ]R). If the

boundary function ¢ : IR — IR is continuous and chosen such that Hfoq(.) f(z)dx H is finite,
then the final value problem (2.3), (2.4) has a unique solution v : [0,T] x IR — IR in the space
Cg’o([O,T] x R)NCY2([0,T) x IR). If we even have f € HlkO;Hﬁ(]R) and ¢ € H*O(IR), this

solution even belongs to the Hélder space H%(k+5)’k+ﬁ([0,T] x R).

Proof. Let us define the drift coefficient b : [0, 7] x IR — IR by

%f‘/juu (t) u) - @t(ta U)
Pu(t, u)

b(t,u) = for all (t,u) € [0,T] x IR,

where we identify the derivatives in ¢ = 0 and tAzl T as the right- and left-hand limits,
respectively. By the definition of the Holder class H 3 (k+8).k+08 ([O, T] x R), it follows that b

belongs to the Holder space H 5 (k=2+0) k—=2+6 ([0, T] x R). Moreover, the boundary function
T, ) R— R, u— fOC(u) f(z)dx is continuous and bounded. So, after a time inversion
t = T —t, the existence of a solution v € C’,?’O([O,T] x IR) N CH2([0,T) x IR) to the final
value problem (2.3), (2.4) follows either from Theorem 12, Sec. 7, Chap. 1 in Friedman
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(1964), or from Theorem IV.16.2 in Ladyzenskaja et al. (1968), and the uniqueness follows
by Theorem 16, Sec. 9, Chap. 1 in Friedman (1964) or Theorem 1.2.6 in Ladyzenskaja et al.
(1968).

If we suppose f € HZIZZHB(]R) and ¢ € H**P(IR), the boundary function (T, - ) even belongs

to the Holder space H*#(IR), and v € H%(]”ﬁ)’k*ﬁ([(), T x IR) follows from Theorem IV.5.1
in Ladyzenskaja et al. (1968). q.e.d.

Remark. The proof shows that the statement of Lemma 3.8 still holds if we only require that
the function fOC(') f(x) dx is continuous instead of requiring that ¢ itself is continuous. O

The next proposition yields that the linear parabolic final value problem (2.3), (2.4) for
v :[0,T] x IR — IR is equivalent to the semi-linear parabolic final value problem

Yy (t, u, o(t, u)) — %%wu (t, u, o(t, u))
Gu (t, u, o(t,u))

oult ) + 5 Punlt ) = pult ) on [0.T) x R, (2.5)

where the final condition is now given by

o(T,u) = C¢(u) for all u € R. (2.6)

It will turn out later in Corollary 3.14 that such a final value problem is satisfied by the limit
of a converging sequence {£"},cv of strategy functions £" : A" — IR.

Proposition 3.9. Let k > 2 and 5 € (0,1), and suppose that there exist some functions
e CY2([0,T] x R) and f € H,""P(IR) such that

loc
G(t,u, &) = Pt u) f(€)  for all (t,u,€) € [0,T] x R

Then there exists a solution ¢ € H%(kJrﬂ)’kJ“ﬁ([O,T] X ]R) of the final value problem (2.5),

(2.6) if and only if there exists a solution v € H%(Hﬁ)’k“‘ﬁ([o,ﬂ x IR) of the final value
problem (2.3), (2.4), and two such solutions are connected via

o(tu)
Y(t,uw) = g(pt,u) = /0 f(z)dx  for all (t,u) € [0,T] x IR. (2.7)

Proof. Let us assume that ¢ € 3 (k+0).k+5 ([O, T] x R) is a solution of the final value problem
(2.5), (2.6), and define «y : [0,7] x IR — IR via (2.7). Differentiating this equation we get for
all (t,u) € [0,T] x IR:

et u) = f (ot w))pe(t, u) )
Yul(t,u) = f (ot u)pult,u), )

and
Yuu(t,w) = f(p(t, ) pualt,w) + f (ot )02 (t, u). (2.10)

As a first step we prove that a solution of the final value problem (2.5), (2.6) is also a solution
of (2.3), (2.4). The boundary condition (2.4) is obviously implied by the boundary condition
(2.6). For the purpose of obtaining the PDE (2.3) as well, we fix (t,u) € [0,T) x IR and
notice that (2.8) and (2.10) induce

Vt(tu) + 1p)/u(tv u) = f((/?(t, U)) <¢t(t7u) + 1Souu(tvu) + EM

5 5 2 Flolt.u) <p3(t,u)> . (2.11)
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Since the equilibrium price function v : [0,T] x IR* — IR has a multiplicative structure, its
first order derivatives are given by ¥ (t,u, &) = (¢, u) f(&) and ¢, (¢, u, &) = Py (t,u) f(§) for
all ¢ € IR, and, moreover, we obtain

d
2o u(t, w0t w)) = Pun(t;w) (9 (1t w) + Bt ) (0, w)) pult, w).
Hence the PDE (2.5) can be rewritten as

1 f(e(t,u))

1 i (t,u) — l@uu(tau)
ei(t,u) + §<Puu(tau) + gmsﬁ(ta u) = ou(t,u) 2

Dy (t,u)

If we plug this equation into our formula (2.11), we get

Et(tv u) - %@uu(t u)
@u(ta u)

Ye(t, u) + %’yu(t,u) = f(go(t,u))npu(t,u) ,
and upon identifying the factor in front of the fraction as ~,(¢,u) due to (2.9), it follows that
v :[0,7] x R — IR indeed solves the PDE (2.3), and hence the final value problem (2.3),
(2.4).

In order to show that v € H 3 (k+0).k+5 ([0, T] x ]R) as well, we remark that by the boundedness
of ¢ there exists a compact interval I C IR such that ¢(t,u) € I for all (t,u) € [0,7] x IR.
Since f € H' 1*F (IR), its derivatives up to order k— 1 are continuous, and hence there exists

loc

some K7 € IR such that
|fD(z)| <Ky forallze€landall0<i<k—L (2.12)

Additionally f*=1 : R — IR is Holder continuous, so there exists some K5 in IR such that
| f*=D () — fED(y)| < Koz — y|? for all 2,y € I. Then it is easily seen from (2.7) -
(2.10) and similar formulee for the higher derivatives of v (if £ > 2) that the boundedness of
~ and its derivatives is implied by the boundedness of the derivatives of ¢ up to the same
order, and a similar statement holds for the Holder continuity of derivatives of v. Hence
v € H%(k“'ﬂ)’kJrﬁ([O,T] x IR) is implied by ¢ € H%(k+ﬁ)’k+3([O,T] x IR).

Now assume that v € H%(kJrﬁ)’k*ﬂ([O,T] x IR) satisfies the final value problem (2.3), (2.4),
and define p(t,u) = h(w(t,u)), where h : IR — IR is the inverse function to g : IR — IR,

& foé f(x)dz. Using the derivatives h'(z) = m and h''(z) = —}c;((z((i)))) for all x € IR,

we can calculate for all (¢,u) € [0,T] x IR the derivatives

1
@t(t7u) = m%(tﬂ%
1
pult,u) = m%(@u),
and
o1 A CGID)) By
‘:Duu(t7 )_f(h(,y(t?u)))')/uu(tv ) f3(h(7(t7u)))7u(t’ )7

and it follows that ¢ : [0, 7] x IR satisfies (2.5), (2.6). Again the boundedness of « yields some
compact interval I C IR such that v(¢,u) € I for all (¢,u) € IR. The function f : R — IR is
strictly positive, and continuous since f € H l’f);prﬁ (]R) Thus there exists some ¢ > 0 such

that f(h(x)) > c for all x € I. Now the proof proceeds as in the first part and shows that
indeed ¢ € H%(kJ“B)’Hﬁ([O,T] x R). q.e.d.
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3.2.2 Convergence of the Transformed Strategy Functions

In this section we show the convergence result for the transformed strategy functions {g" }nev.
We assume that a solution v € H 24384+ ([O, T] x ]R) of the final value problem (2.3), (2.4)
exists, as it will be the case if for example ¥ € ﬁ2+%5’4+ﬁ([O,T] X IR), fe Hi)tﬂ(ﬂ%), and
¢ € H*F(IR) (see Lemma 3.8).

Basically, we will show that the transformed strategies {¢"} converge uniformly on [0,7) x IR
with order 0(62+5) to v as n — oo if the values of the transformed strategy functions im-
mediately before T' converge to the corresponding values of T uniformly with order 0(64+ﬂ )
We leave aside the convergence of the values of the transformed strategies {¢" }nen at time
T for the moment, but we shall discuss this shortfall in Section 3.2.3, where we deal with the
convergence of the original strategy functions.

Let us now start with the precise statement of the result:

Theorem 3.10. Let (¢, u) be a large investor price system which satisfies p = A and As-
sumption B, and suppose that ¥ € H2+%5’4+B([O,T] X JR). If v € H2+%fg’4+ﬁ([0,T] X JR)
solves the final value problem (2.3), (2.4) and if there exists some K € IR such that

n—1s "

9" (s ) =2 Ghrs My, < K67 Jor alme B, -

then the sequence {g"}nemw of discrete functions g" : A" — IR converges to the function
v :[0,T] x IR — IR in the sense that

19" = Y ar(n-1) = O(6?) (2.14)

and

Remark. The theorem’s proof will indicate that we could replace condition (2.13) by the
slightly weaker condition that both the inequality Hg” (tha ) — 'y(tgfl, )Hun < K6* and
n—1

the inequality HAZ g" (tﬁfl, ) — AZ’y(tﬁfl, ) < K&3*P hold for all n € IN. 0

= O(52+ﬁ) asn —oo. (2.15)

2 An(n—2)

1
gn(. + 527 - 5) - gn + 6'7u - 52 <7t + '7uu> ‘

e,
The theorem’s proof follows from certain maximum principles for ¢" — v and A}l g™ — Al ~.
Before we come to the proof itself, we will sketch the idea.

In order to show that [|g" — 7||an(n—1) = O(0*) as n — oo, we will show that the function
v : [0,T] x IR — IR approximately solves the recursive equation (2.1) with the function
g" : A" — IR replaced by the function v : [0,7] x IR — IR, up to an error term of order
0(54). Thus we get for all sufficiently large n € IN, all 1 <k <n—1and v € U] ;:

g”(t}};_l,u) — y(tZ_l,u) :ﬁ”(t}};_l,u) (g”( bou+ 5) — fy(tz,u+ 5))
+ (1= 5" (trw)) (9" (60— 8) = (8w —6) ) +0(6").

For all n > H%}f the function p" : A™(n —2) — (0,1) of (2.2) is well defined, and since it
takes values in (0, 1), it follows that for all sufficiently large n € IN and each 1 < k < n—1 the

difference Hg”(t}gfl, -)—'y(tzil, ')Hu" can be bounded in terms of Hg”(t%, -)—’y(tz, )Hu"
k—1 k

plus an 0(64)—term. Starting at £k = n — 1 and working backward until £ = 1 gives a bound

in terms of || g™ (t7_y, -) —y(t8_4, ')Hunfl plus n — 1 error terms of order O(6*), which sum

up to a term of order 0(62). This is a standard argument for approximating a linear PDE
by a difference scheme.
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In order to prove (2.15), we show that a similar maximum principle holds for the maximum
norm HAZ g (th_y, ) — Ay (tr_y, )Hun by using the difference of (2.1) evaluated for
k—2

v :=u+dand v :=u—06andsome 2 <k <n—1,u €U ,. Thisallows us to conclude that
for 1 <k <n —1 the maximum norm HAZ g”(tZ, ) — AZ'y(tZ, )Hu" can be bounded by
k—1

HA "( L ) — AZ'y(tZ_l, -)HM;L2 plus n — k — 1 terms of order 0(53+5), and therefore

by a term of order O(6'77). Then a suitable application of (2.1) and (2.3) will yield (2.15).

Thus, we first have to make sure that v really solves (2.1) up to a term of order O(4*). This
requires an order approximation of p" : A"(n — 2) — IR. Next to the order approximations
for p™ which is needed now, we also state two similar order approximations in the following
lemma, which we need later when we prove the convergence of A7 g" as well.

Lemma 3.11. Suppose that the assumptions of Theorem 3.10 hold. Then

. o (17,
2p" (thyu) — 1= 52wuu( i) = Dr( ) +0(8*) asn— oo, (2.16)
Bu(ty, u)
uniformly for all1 < k <n—1 and u € U}l ;. Moreover, uniformly for all 2 <k <n —1
and v € U]}, we have

A

l7uu tn’ -y tn,
pn(;cl—lvu—i_(s)+ﬁn(t2—17u_5)_1:62w (]iU) wt(k U) +O(53) (217)
ZAGRD)

and

B 9 d 2WUU(tk7 ) @t(t}zvu) 3+3
Pty u+0) = P (th g u = 0) = 8 i) +O(5*F)  (2.18)

as n — oQ.

Proof. We will prove (2.16) in detail, since it exemplarily reveals the techniques used to get
order approximations for functionals of % : [0,7] x IR — IR. It draws on several Taylor
expansions.

At first, let us fix § > 0 and suppose that 0 < ¢ < T and u € IR. By Taylor’s rule there exist
some v, u” € IR with u — 6 <u~™ <u <u' <wu+ § such that

1 1 1
@(tv ut 5) - @(t U) = ié@u(ta u) + 562@1”(75, U) + 653@uuu(tv U) + ﬂ54@uuuu (t7 ui)'

If we divide the sum of these two equations by 2%, (¢, u) and apply the intermediate value
theorem to the mean of Py (t, ui), we get for some u — 6 < wuy < u+ 6

Pt u+0) = 20(tw) + Pt u—0) _ 1 Buult,w) | 1 g Pun (b 1)
267, (t, u) 2 pult,u) 24 pu(t,u)

Now notice that by the mean value theorem there exists some us between u and u; such that

log Ty (t, u1) — log Ty (t, u) = (u; — u)-< Ju log Uy (t, u2) = (ug — u)%, and therefore

(2.19)

@uguu(tyul) _ ‘WUUuu(t, Ul) elog@u(t,ul)flog@u(t,u) < ' Yunuu exp < H@Uuu ) : (220)
Pu(t, u) Wy (t, u1) Wy
where we have suppressed the subscript [0, 7] x IR of the norm || - ||. Since v : [0,T]x R — IR

belongs to the Holder class f]”éﬁ"”ﬂ([o,T] x IR), we have ‘ % < oo for z € {uu, vuuu},

and thus (2.19) and (2.20) imply uniformly for all 0 <¢ < 7T and u € IR:
@(tv U+ 5) B 21/7(ta u) + @(ta U — 5) _ 15@uu(t7 u)
20y, (t,u) 2 Pu(t,u)

+ 0(63) as § — 0.
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Similarly we can show uniformly for all (¢,u) € [0,T] x IR that

20, (t,u)

:1+O(52) as § — 0,

and uniformly for all 0 <¢ < T — 6% and v € IR that

@(t + 62?“) — @(t’u) — 5?15(157 u)

53 6 — 0.
250 (t.0) ot TOO) aso—0

Now recall the definition of p" : A"(n —2) — IR in (2.2) for all n € IN with n > H%HQ We
get for all those n € IN, all 1 <k <n—1andall u €Uy ;:

Pt u+06) = 2p(t7,u) + Bty u—08) — 2(p(t,,,u) — vty u))
(7, u+6) — p(tF,u—9) '

215( Z—lau) —-1=

Inserting the three previous expansions and using once again Taylor’s rule, now applied to
the function & — ——, we conclude from the boundedness of the ratios % and % that

=
Bt — Ot + 00 1m( ) — ultpu)
215( 271,U) —1= Du(t] u) B (tyu) = 62%u v - + 0(53)’
1+0(82) Bu(tf,u)

and because of § = 6,, = n_%, we arrive at (2.16).

The proofs of (2.17) and (2.18) follow similarly to the proof of (2.16). For (2.18) we have to
be a little bit careful, since we have only assumed ¥ € H2+354%8 and therefore cannot use
Taylor approximations for the function ¥ of any order with more than two derivatives in time
or more than four space derivatives, nor derivatives like ¥y, However, if we first develop a
Taylor series for (t+ 6%, u+4) around (¢, u=+§) and then expand §(t, u=+§) and ¥ (t,u=£0)
around (¢,u), we can show that a suitable expansion for the left-hand side of (2.18) exists.
Moreover, the highest derivatives which appear, namely Wyyuu, Wruu, and Py, appear pairwise
and offset each other due to the Holder continuity of the derivative ratios.

To make this clearer, let us first convince ourselves that due to the bounds ¢ — 1 < ze” and
1 —e " <z for x >0, and due to the considerations leading to (2.20), we have

Pu(t,u+1)

— -1
WU(ta U)

<n| exp(|n]”% > for all ¢ € [0, 7] and u,n € IR. (2.21)

Our Taylor series for the left-hand side of (2.18) will involve for example a term of the form
e (tut) — s (tu”) with z = wuww and v — 20 < v~ < u < ut < w+ 2§. This term can be

@u(tvu)
bounded by
e (t,u®) || Pult, u’) Dot ut)  a(tuT)| | | et uT) Pu(t, u”)
— — =1+ |= — = + | £ 1— 2
WYy (t7 u+) Yu (t7 u) Wu(ta U+) WU(ta ui) 'Wu( ) ui) W(t u)
and since } g—z < 00, our bound in (2.21) shows that the first and the last terms are of order

0(5), while the term in the middle can be seen to be of order 0(65) as 0 — 0 by the Holder
continuity of the derivative 1;—2

Full details of the proof of (2.17) and (2.18), however, are omitted to save the reader from
another bunch of Taylor approximations. q.e.d.
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Remark. The above notes to the proof of (2.18) could also be used to show that for any
k € IN the condition log® € H%(k+3)’k+5([0, T] x ]R) together with the additional condition
Llogp(t,u) > ¢ > 0 for all (t,u) € [0,T] x IR implies that ¥ € ﬁ%(k+ﬁ)’k+ﬁ([0,T] x IR).
However, even for the Cox-Ross-Rubinstein model of Example 1.9, where the small investor
price function % : [0,T] x IR — IR is given by %(t,u) = Soe?*T#=" for all (t,u) € [0,T] x IR
and some fixed Sp,o > 0 and p,r € IR, the condition logp € H2(E+), ’”5([0 T] x IR) is not
satisfied, since the function ¥ itself is not bounded. This is the prime reason why we consider
equilibrium price functions @ from the (larger) class H 3 (k+8). k45 ([0,T] x IR). O

As promised, we can now show that Hg” — 7“,4”(n—1) = 0(52) as n — oo.

Lemma 3.12. Let us suppose that the price system (1, 1) satisfies the assumptions of The-
orem 3.10, and suppose that the solution v : [0,T] X IR — IR of the final value problem (2.3),
(2.4) lies in the space Cy*([0,T] x R). Then ||g" — ’VHAn(n—l) = 0(6%) as n — oo is implied
by the condition Hg”(tﬁ_l, ) 'y(tZ 1 ')Hu" < K6* for alln € IN and some K > 0.

n—1

Proof. Similarly to the proof of Lemma 3.11, Taylor’s rule shows for all ¢ € [527 T] and u € IR

that there exist some v~ ,ut € R with u — 6 < v~ <u <u" <wu+§ and some t* € [0,T]
with t — 6% < t* < t such that

1 1 1
7(157 u =+ 6) = 7(t7 ’LL) + 6’Yu(t7 u) + 552’Yuu(ta U) + 653’7uuu(t) u) + ﬂ647uuuu (t, ui)
and

1
’y(t — 52, u) = y(t,u) — 8%y (t,u) + 5547& (t*, u)

Since all appearing derivatives of v are globally bounded on [0,7] x IR, and due to formula
(2.16) of Lemma 3.11, we can now write uniformly for all n > H%W, all1<k<n-—1,and
all u e Uy ;:

ﬁn(tz—l’u)r)/(t27u+ 5) + (1 *ﬁn(t;cl—lvu)>'7(t’lgvu - 6) - ’y(t}g_hu)
1
= 5(7( Z)u+5) +’7( Z?u - 6)) _W(t};’bfbu)
n(4n 1 n n
+ <2p (th 1 u) — 1>§<7(tk,u—i—5) —v(tk,u—é))

= 152ryuu(ztz,u) + 8%y (tr,u) + O(6%)

(5 QWuu(tl;au(ik’ u))t(tZ’ 53 ) 5’7u +O(53))
15
= 52 <’yt(tz,u) + %’Wm(tk? ) +7u( K ) 2 tl;;u(ik, lgt(tl’“ )> +O(64)’

and since 7 : [0, T] x IR solves the parabolic partial differential equation (2.3), the O(6?)-term

vanishes. Hence for each fixed N > H%HQ there exists an L € IR such that for all n > N,
1<k<n-—1anduecl) ; we have

B (g w)y (8w 0) + (1= 5" (6 0) )y (b w = 0) =y (tio )| < 5°L. (222)
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Without loss of generality we may assume L > K. The statement of the lemma will follow
once we have shown that

forallm > N and all 0 < k < n — 1, since then Hgn - 'VnHAn(nq

of § =6, = n=3 leads to Hg” — ’YnHAn(nfl) < §°L.

The proof of (2.23) follows from a backward induction over k. For k = n—1 the bound (2.23)
holds because of our assumption and L > K. Let us now assume that n > N and that (2.23)
holds for some 1 < k < n —1. Then from (2.1) and 0 < p"(¢t,u) < 1 for all (¢t,u) € A™(n — 2)

it follows that for all u € U}’ ;:

9 (1) =" (1) |, < (0= RIL (2.23)

k

) < né*L, and the definition

9" (i) = " ()| < B () | (8wt 6) = (8w + )

+ (1 —ﬁ“(t;;_l,u)) ‘g"( P ou— 8) — y(t0u— 5)\ + R (u)],

where ‘Rgfl(uﬂ is given by the left hand side of (2.22). Hence we can conclude from (2.22)
and our induction hypothesis that

lom (i ) =t )|,

k—1
which proves the induction step. q.e.d.

g

g (£, -)Hm 8L < n—k+ 1)L,
k

The next lemma uses similar methods to bound the error incurred by approximating the
discrete derivative A7 g™ : A7 — IR with the discrete derivative A} v : A7 — IR, which itself
is an 0(52)—approximation on the grid A7 of the continuous derivative v, : [0,T] x IR, as
n — oo.

Lemma 3.13. Suppose that the large investor price system (¢, p) and the solution ~y of the
final value problem (2.3), (2.4) satisfy the assumptions of Theorem 3.10. Then

HAZ g, ) = AT () -)Hm <K& forallne N (2.24)

n—2
implies | A7 g™ — AZWHA,{(n_l) =0(0) as n — oo.

Proof. Let us first generate a recursive formula for the restriction of A7 ¢" : A} — IR to
At (n — 1), analogous to the recursive equation (2.1). By the definition of A} ¢" in Defini-

tion 3.7 and by a twofold application of (2.1) we obtain for all n > H%Hz, all2<k<n-1
and u € U] ,:

AR g (171 u) = g (71 u+6) — g (£ 1 u— )
= 5" (g 0)g" (1w + 20) — (1= " (1 u = 8) )" (17, u — 20)
(1= (g 0) = B (tyu — 8) )" (t ).
After a rearrangement of terms we obtain the following recursive formula for the restriction
of A7 g" to A}(n —1) — IR:
AL g™ty u) =" (L, u+ 6) AL g™ (¢, u+6)

A (4n n n(im (225
+(1—p (tk_l,u—5))Aug (tk,u—5). )
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Next we investigate the error we make if we replace in the previous equation g” by -, i.e. we
consider the term

Rn(tZ—lvu) = ﬁn(tZ—lv u+ 5)AZ Yu b w+ 5)
(1= (b = 0) ) AL (= 0) = ALy (ty, )

for n > H%HQ, all 2 <k <n-—1andu € U, To find order approximations for this,

let us fix 6> <t < T and v € IR. Similar to the Taylor expansions of the previous lemma,
but now employing the Holder continuity of Yyuuu as well, we get for s = ¢t — 2 and some
u—06<u <u<ut <u+4d:

1 1
AZ’)/(S, u) = Yu (57 u) =+ 652’7uuu(57 u) + @63 ('Yuuuu (57 u+) — Yuuuu (37 Ui))

= ’yu(s,u) + %52'yuuu(s,u) + 0(53”3) as d — 0.

If we use this equation, expand ~,(s,u) around (¢,u), and also recall that 7, and 7y, are
Holder continuous in ¢ with exponent %(1 + ﬁ) we see that

Al y(t— 52,u) = yu(t,u) — 62 (’ytu(t, u) — é%w(t,u)> + O(53+’3) as 6 — 0.
Moreover, by the Holder continuity of Yyuu. we get for all (¢,u) € [0,7] x IR that
%(AZ Y(t,u+0) + AL y(t,u—0)) = yult,u) + %52%%(75, u) + 0(53+ﬁ) as 6 — 0
and
%(AZ Y(t,u+68) — Al y(t,u—6)) = yuult,u) + O(5%) as 0 — 0,

and all the preceding convergence statements are seen to hold uniformly for all 62 <t < T
and u € IR. Then we rewrite R" (tzfl, u) as

AZ’Y(tZa u+ 5) + Aﬁ W(tZ/U' — 5)
2
AZ’Y(t27 U+ 5) — AZ ’Y(ﬁ; u - 6)
2

R™(tg_y,u) = (1 +p" (o u+0) — P (th_y,u— 5))

(B (w4 0) + 5" (g u—6) 1)
- AZ ’Y(tz—lv ’U)
and apply the expansion for A}’ v and the expansions (2.17) and (2.18) of Lemma 3.11 to that

equation; this shows that uniformly for all 2 <k <n —1 and u € U}’ , we can approximate
R": Af(n—1) — R by

n (i d n 1 n l@UU(tTL’u)_@t(tn’fu) n
R™(th_q,u) :52% (’Yt(tkau)+27uu(tk,u)+2 Zju(t27u) k Yu (7, 1) +O(53+5),

as n — oo, and as in the previous lemma the 0(52)—term vanishes, since v: [0,7] x R — IR
solves the partial differential equation (2.3). Thus, for each N > H % H2 there exists some L

such that for all n > N we have [|R"|| 4 (n—1) < L1638, We may again assume without loss
of generality that L1 > K.
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In contrast to (2.1), the recursive equation (2.25) does not present Al g"(t7_;,u) as a lin-
ear combination of the two potential successors A7l ”(tZ, u £ 5) since the two weights for
A7 ”(t}g,u + 6) do not add up to 1. However, the amount p (tk LU+ 5) (t’,:, LU — 6),
by which the sum of the weights misses the value 1, is seen to be only of order 0(52) due

to (2.18) in Lemma 3.11. Thus, for each N > H%W there exist some Lo such that for all
n>N,all2<k<n-—1andu€cl] , we have

P (6w 8) — (8, u 5)’ < 6L, (2.26)

Let us now fix some N > ||%||2 and the corresponding constants L; and Lp. We will show
that foralln > Nand 1 <k <n-—1:

n—k—1
S §7PLy Y (1+6%Ly) . (2.27)
1 ]:0

k—

|ang(t. ) - Ay )|

Again, this will be done via an inductive argument over k. It is clear by assumption (2.24)
that (2.27) holds for £ = n — 1. For the induction step let us suppose that (2.27) holds for
some 2 < k < n — 1. Then from the recursive formula (2.25) and from the definition of
R" (t};_l, u) we get for all u € U], that

‘Aﬁg"( Zﬂﬂi) - AZ'Y( Zﬂ»u)
<P (gt 8)| AL (1R + 0) — AL (. u+ )

(1= P (0w — 8) )| A g (8w — 6) — ALy (1w — 0) |+ [R* (1, w),

since the two appearing weights are nonnegative. Due to HR"HAn(n_l) < L1638 we thus
1
recursively obtain a bound on the maximum norms of the differences A7 g™ — A7 v

|atgm i) At )|, < (145" (g u+6) =" (G u =)

k—2

J|angn . ) - ana(i, )|

+ L1531,
up

Hence (2.26) and our induction assumption (2.27) imply

n—k—1
|atg i, ) = auaio, ]|, < Q+PL) L Y (1402Lo) + Lio™
7=0

k-2

n—k
= (53+ﬂL1 Z(l + (SQLQ)],
§=0
and so indeed (2.27) holds for all 1 <k <n—1and all n > N. To complete the proof, notice
that by the definition of § = é,, = n=2 and the monotonicity of n — (1 + %Lz)n we have for
all 1 <k<n-1:

n—k—1
BN (14 0%La)’ < 8% (1 4 62Lo)" < 61 Pel2,
7=0

and therefore the lemma is implied by the availability of (2.27) for all 1 < k < n — 1 and
n> N. q.e.d.
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Remark. We could also replace the discrete derivative A7 v by the continuous derivative v,

and show that HAZ gt — 'YuHA’f(n—l) = O(dHB) as n — oo follows from the condition that
AL g™ (7, - ) — yu(th_y, )Hu“ < K&*P for all n € IN. However, if the third spatial
n—2

derivative vy, does not vanish at ¢t = T, it is easy to see that for any o > 3 the latter
condition and H gr(tn_y, ) =y, ')Hu" < K4“ cannot hold simultaneously, and hence
n—1

we could not derive the statement of Lemma 3.12 at the same time. O

There are only minor steps left to prove Theorem 3.10:

Proof of Theorem 3.10. Since (2.14) is already implied by Lemma 3.12, we only have to
validate that (2.15) holds as n — oo, and we are content to prove the lower (minus) case, since
the upper (plus) case follows by similar arguments. For the proof notice that due to condition
(2.13) and the definition of the discrete derivatives Aj} g" : A} — IR and A}y : A} — IR, we
have

n—1>

AL gt w) — ALy (B, w)| < KO*P for all uw e Uy,

Hence the assumptions of Lemma 3.13 hold, and thus HAZ " — AV 'VHAH(n—l) = O((SHB) as
n — oo. '
By calculations analogous to the one in Lemma 3.11 it can be shown that uniformly for all
0<t<T-6%anduc R:

3Puu(t +8%,u) = Byt + 0% 1) 5Puult, ) — Be(t,u)

_ 2
Pt £ 0% 0) = Tult) +O(5) as 0 — 0.

Together with the approximation (2.16) of Lemma 3.11 and v € H2+%ﬂ’4+ﬁ([0, T] x ZR), this
implies uniformly for all 0 <k <n — 2 and u € U’ that

ATL n n n n n 1 n
R (1) 1= 207 (05,0) AT (a,0) = ) + (20820 + G ()

_ n 1 n %@uu(th u) B @t(t};’ u) n 2
= () + ) PGSO, ) ) o)

as n — oo, and since v : [0,7] x IR — IR satisfies (2.3), the first term on the right-hand side
drops out and HR”HAW(N_Q) = 0(52) as n — oo.

Ty ||2 .
Now fix some n > H%‘ ,some 0 < k < n— 2, and some u € U, and recall the recursive

equation (2.1) with k£ — 1 replaced by k. Subtracting g" (tzﬂ, U — 5) on both sides, we get

g (1) = 9"t = 0) = 9" (1, 0) 2607 9" (tf40, ).

If we now subtract 07, (t7,u) — 6% (v (7, w) + 37uu(t?, u)) on both sides and use the triangle
inequality and the definition of R" (tz, u), we obtain:

1
9" (t ) = 9" (s = ) = 0% (1) + 0% (et w) + 570 (1, 0) )|
< 209" (i, u) |AL 9" (i w) — ALy (thy, w)| + 6| R ()|

< 20]|A7 g" — Ay )+5HR" 20(52+ﬂ) as n — 0o,

Al (n—1 H.A" (n—2)

where the last line follows from p" : A"(n—2) — (0,1), [|[R™|| an(n—2) = O(6%) as n — oo, and
Lemma 3.13. Changing the sign within the absolute value and taking the norm || - || 4n(n—2)
we see that the lower (minus) case approximation of (2.15) holds. This concludes the proof
of the theorem. q.e.d.
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Remark. The proof suggests that it would perhaps be more natural to use a Taylor expansion
around (tﬁ, u) for the second-order approximation of g" (tz, u =+ 5) —g" (tz_l, u), as opposed
to the Taylor expansion around (t;cl—l’ u) We prefer the expansion around (752,1, u) because
it simplifies the representation (2.15) in terms of the sup-norm on the space A"(n —2). O

3.2.3 Convergence of the Strategy Functions

As a corollary of Theorem 3.10, we can now use the convergence of the transformed strategy
functions to derive an analogous result for the convergence of the sequence {{"},en of strat-
egy functions " : A" — IR as n — oo to the solution ¢ : [0,7] x IR — IR of the final value
problem (2.5), (2.6).

Corollary 3.14. Let (¢, ) be a large investor price system which satisfies p = X\ and
Assumption B, and suppose that the two components @fmd f of ¥ in the representation
Y(t,u, &) = P(t,u)f(€) belong to the Hélder spaces H*T2P475([0,T] x R) and Hi)tﬁ(]R),

respectively. If ¢ € H2+%5’4+ﬂ([0,T] X JR) solves the final value problem (2.5), (2.6) and
there exists some K € IR such that

Hgn( n—1s ) - ‘P( 1> ')HM,?,l < K§*th for alln € IN, (2.28)

then the discrete strategy functions " : A" — IR converge to ¢ : [0,T] x IR — IR in the sense
that

1€ = @l an(n—1) = O(6?) (2.29)

and

= 0(52+5) asn — oo. (2.30)
An(n—2)

1
M-+ 6% £68) — " Fdp, — 6 (wt + 2(Puu> ’

Proof. Since p € H 2458,4+8 ([0, T] x R), it is in particular bounded. As a first step towards
the proof of the corollary, we will show that condition (2.28) guarantees the existence of a
uniform bound on HfTLHA"(nq) for all n € IN as well.

Let us fix some n > H%HQ Then the weight function p™ : A™(n —2) — (0,1) of (2.2) is well
defined, and since the weights take only values in (0, 1), the recursive equation (2.1) implies:

gzij%{g”(tz,v)} < g"( 71?:47“) < Trjggié{g”(tz,v)} forall1<k<n-—1landuel .

If we nest these bounds for all 1 < k < n — 1, we finally realize that the minimum and

the maximum of ¢g"(A"(n — 1)) are already determined by the minimum and maximum of

g™ (t"_,,U_), the possible values of the transformed strategy function g" at time ¢?'_;, i.e.

min {¢"(th_1,v)} < ¢"(t,u) < max {¢g"(tn_;,v)} forall (t,u) € A%(n—1). (2.31)
velln vell

Now recall the definition of ¢" : A" — IR as ¢g"(t,u) = ¢"(£"(t,w)) for all (t,u) € A"
Since the strategy transform ¢ : IR — IR is strictly increasing and invertible, it follows that
§"(t,u) = g~ (¢9"(t,u)) for all (¢,u) € A", and we derive from (2.31) similar bounds for the
range of £" (.A”(n — 1)), namely
min {&"(t7_1,v)} <& (t,u) < max {€"(t7_y,v)} forall (t,u) € A%(n—1). (2.32)
veUy_y

vely
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Combining (2.32) with (2.28) and using the boundedness of ¢, we can find some compact
interval I C IR such that not only ¢(¢,u) € I for all (¢t,u) € [0,T] x IR, but even £"(¢t,u) € I
for all (t,u) € A"(n—1) and all n € IN.

Next, we set (¢, u) := g(¢(t,u)) for all (¢,u) € [0,T]xIR. By Proposition 3.9 the transformed
function v : [0,7] x IR — IR solves the final value problem (2.3), (2.4) and belongs to the
Holder space H 2+ 3448 ([0,T] x IR). To apply Theorem 3.10 it remains to show (2.13) for
some K € IR. Since f : IR — IR is continuous and strictly positive and since I is compact,
we conclude that there exist some 0 < ¢ < C such that ¢ < f(§) < C for all £ € I. But then
it follows from the definition of ¢g" and v for all w € '_; and all n € IN that

En(tz—p“)
/ f(x) da

So(tzflvu)

<C

fn( Z?l,u) - Wn(tﬁqa“)

g"(tﬁfl,u) - v(tﬁfl,u)‘ =

)

and after taking the norm || - [|»_ and using the assumption (2.28), we can infer that (2.13)

holds with the constant K replaced by K = KC. Hence we deduce from Theorem 3.10 the
convergence results (2.14) and (2.15).

Now we change the direction of our arguments and show that these two statements in terms
of g" and v imply the statements (2.29) and (2.30) given in terms of {" and ¢. For this
purpose, let us consider the inverse g=! : g(IR) — IR of the strategy transform g : IR — IR,
£ — fog f(z)dz. Since f € Hl?;tﬂ(]R), the first three derivatives of h := g~! exist, are
continuous and for all z € g(IR) given by

Ha) =~ gy = L@ ey = g R@) S (A@)

f(h(x))’ - fh(x) o)) fA(h())

In particular, all three derivatives are bounded on the compact interval g(I). Let us now
take (t,u) € A™"(n — 1) for some n € IN. On account of the mean value theorem there exists
some z* € g(I), lying between ¢"(t,u) = g(£"(t,u)) and (¢, u) = g(¢(t,u)), such that

1
gn(t7u) - So(tau) =h gn(ta u) —h V(tau) = N gn(t7u) - ’7(t7 u)
(670,0) ~ h(a(t) = it )
and after taking the norms || - [| 4n(,—1) and using the definition of ¢ > 0 we conclude from

(2.14):

n 1 n
€™ - ‘PHAn(nq) < g”g - 7HAn(nq) =0(d%) asn— oo.

This proves (2.29). In order to prove (2.30) let us note that a Taylor expansion of h around
~(t,u), the boundedness of h”/ : IR — IR on g(I), and the convergence in (2.14) imply
uniformly for all (¢,u) € A"(n — 1) that

-
fp(t, u))

where we again took advantage of h(y(t,u)) = ¢(t,u) for all (¢t,u) € [0,T] x IR. Another
application of (2.14) together with the boundedness of ; and 7,,, enables us to write uniformly
for all (t,u) € A™(n — 2) that

h(g"™(t,w)) — h(v(t,u)) = (g"(t,u) —y(t,w)) + O(6*) asn — oo, (2.33)

g”(t—|—52,u:|:5) —y(t,u) :g”(t+62,u:|:5) —7(t—|—52,u:|:6) +7(t+52,u:|:5) —y(t,u)
= 0yu(t, u) + O(8°)
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for n — oo, and therefore we can use a second Taylor expansion of h around ~y(¢,u), this
time up to the third derivative, to conclude from the boundedness of the second and third
derivative of h : IR — IR on g(I) that uniformly for all (¢,u) € A™(n — 2)

W(Q"(t 1820t 6) —y(t, )

1o fleltw)
2" File(t,w)

If we now subtract (2.33) from (2.34) and notice that h(g"(t,u)) = £"(¢,u) for all (¢,u) € A"
we get uniformly for all (¢,u) € A™(n — 2)

h(g"(t +6% u+t 6)) — h('y(t, u)) =
(2.34)
Ya(t,u) + O(6°%) asn — oo,

" (t+ 0% uLs) — "t u)

= - <g”(t+52,ui6) —g"(t,u)

_ }52 (et u) o
fe(t,u)

ST N2t u) | +O(83) as n— oo,
20 f2(p(t,u)) > )

and by the approximation (2.15) and the lower bound f(¢(t,u)) > c for all (¢,u) € [0,T]x IR,
we can proceed and rewrite the last term as

= ! 1 1 f’((p(t,U))
- W <i57u(t7 u) + 42 (’Yt(tv u)+27uu(t7u)> - 262f2(go(t,u))fyg(t’u)> + 0(52+ﬁ).

Last but not least let us recall that the derivatives of v : [0,7] x IR — IR are given by
(2.8) — (2.10). If we plug these formulee into the previous line, we get uniformly for all
(t,u) € A"(n —2) that

" (t+ 0%, uL ) — £"(t,u) = £opy(t, u) + 6° (got + %@uu(t, u)> + 0(52+’8) as n — 0o,

and (2.30) follows immediately. q.e.d.

Remark. As Theorem 3.10 does not contain a convergence statement for the boundary func-
tion ¢"(T, -) : U — IR, our convergence statement of Corollary 3.14 does not say anything
either about the convergence of the values at maturity of the strategy function £ : A" — IR;
we have formulated our convergence results in Section 3.2.2 and 3.2.3 only for the maximum
norms over the truncated grids A%(n — 1) = A" N [0,7) x IR. With this restriction, our
convergence statements are much more powerful than they would be if we were to include
the convergence of the large investor’s stock holdings (or its transforms) at time 7" in our
statements.

In order to see why this is so, let us fix some n > H%HQ and consider all path-independent

contingent claims which lead to the same real value, i.e. we take some V* € F" and look
at the set {(ﬁn,a, bn,a)}ae 1n of all path-independent contingent claims (g,m, bn,a) with real
value V' = §n7a5’(T, U,’Z,fn,a) + by, where I™ is a suitable index set. By Lemma 2.3 and
Proposition 2.16 any of these contingent claims (&W, bn,a) is attainable by a unique portfolio
strategy ({"’a,b"’a). As we have seen in (2.4.15) for each discrete time point ¢} < T, the
values of the adjoining strategy functions £™® : A" — IR are uniquely determined by the
possible values of the real value function v" : A" — IR at time point ¢, ;. Thus, for all
a € I"™ the strategy functions €™ : A" — IR coincide on all time points before time T, i.e. on
A™(n —1).

However, there are infinitely many contingent claims {(fma, bn,a) }a cIn and hence infinitely

many portfolio strategies { (5""", b"’o‘) } which lead to the same real value V,* = o" (T, U]j)

aelm™



124 CHAPTER 3. CONVERGENCE OF THE STRATEGY FUNCTIONS

at maturity; the corresponding strategy functions ¢ : A" — IR differ only on the set
{T} x U, which determines the final stock holdings of the large investor at maturity, as
required by the associated contingent claim (fn,a, bn,a). Since the large investor trades at the
benchmark price, he can arbitrarily re-shuffle his portfolio between his bank account holdings
and his stock holdings without any transaction losses, and hence, from a replication-oriented
point of view, all the contingent claims (fn,a, bma) are equivalent.

In order to derive a convergence statement for the strategy functions {£"},cn which in-
cludes the convergence at time T', we would need to specify the particular contingent claim
(&W, bn@) which we replicate, and not only its real value. For example, we cannot expect the
uniform convergence as n — oo of £ : A" — IR, including the values at maturity, towards the
solution ¢ : [0,7] x IR — IR of a final value problem of the form (2.5), (2.6), if the sequence
{€"}nemw of strategy functions prescribes cash settlement at time 7. In fact, we should then
have £"(T,u) = 0 for all u € U} and n € IN, hence the limit ¢ would also satisfy ¢(T,u) =0
for all 4 € IR, and a maximum principle would imply that ¢ vanishes on the whole domain
[0,T] x IR.

This indicates why we really ought to limit our investigation to the convergence results as
stated in Theorem 3.10 and in Corollary 3.14. Within this formulation, we have some degree
of freedom to choose the large investor’s stock holdings at time 7. The particular stock
holdings at time 7' will only become important for the convergence results of Section 3.3,
where we consider price systems which allow for implied transaction losses. We shall see that
in such a general setting we need both the convergence of the strategy functions at time 7" and
immediately before time 71" to obtain uniform convergence results for the strategy functions
{" }nemn similar to the ones of (2.29) and (2.30). O

3.2.4 Convergence of a Subsequence of Strategy Functions

In the last subsection of Section 3.2, we will sketch the proof of a second convergence state-
ment for a sequence {¢"}n,en of transformed strategy functions. Like Theorem 3.10, this
convergence statement will again only show convergence on the domain [0,7) x IR, but the
result is weaker than Theorem 3.10 in that it only proves convergence of a subsequence of
{g"}new. On the other hand, the proof does not rely on the existence of a solution to the
final value problem (2.3), (2.4), but proves its existence as a by-product of the convergence
of subsequences of the transformed strategy functions ¢" : A" — IR and their discrete deriva-
tives. Compared to the situation where we first have to guarantee the existence of a solution
yeH 2438448 ([0, T] x ZR) via Lemma 3.8, the convergence statement which we present here
requires less restrictive assumptions on the functions f : IR — IR and ( : IR — IR.

We will limit our attention to the convergence statement for the sequence {¢" }nemn of trans-
formed strategies, but we could of course formulate an equivalent result for the sequence
{" e of associated original strategy functions £" : A" — IR. Our proof adapts an exis-
tence proof of Section 7.2 in John (1978) for solutions to an initial value problem of the form
ur(t, @) — a(t, z)ugs (t, ©) — b(t, x)uy(t,z) = 0 for all (t,z) € [0,T] x IR with initial condition
given by u(0,z) = h(x) for all z € IR. John proves the existence only under the assumption
that h € C’f(lR), but his argument can be generalized to situations where this condition is
relaxed to h € H**P(IR) for some 3 € (0,1).

We have the following convergence statement for {g" }nemn:

Proposition 3.15. Let the price system (¢, ) = (1, ) satisfy the multiplicative structure of
Assumption B, and suppose that the small investor function ¥ : [0,T] x IR — IR belongs to the

class fl2+%ﬁ’4+ﬁ([0,T] X ]R). Moreover, suppose that there exists some function ¢ : IR — IR
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such that the function fOC(’) f(z)dzx belongs to H**P(IR) and

= 0(52+5) as n — oo. (2.35)
Uy

¢(-)
(g, ) - /0 f()dz

Then there exist a solutiony : [0, T]x IR — IR of (2.3), (2.4) and a subsequence {n;} CIN

such that

jEN

Jim 1977 = s ;1) =0
L P
T
and
= 0.

]EIEQHAZ& gnj - 'YuuHA;j(nj_l)

Remark. Of course, fo( )f (z)dx € H**P(IR) is implied by f € HZIOJCFB(R) and ¢ € H*P(IR).
This shows indeed that Proposition 3.15 requires less stringent assumptions on the regularity

of f and ¢ than the existence result for v € H3h 4+ﬁ([0 T] x ]R) by means of Lemma 3.8.

Proof (sketched). We will only sketch the proof of Proposition 3.15. Let us note first that

(2.35) together with fOC(') f(z)dr € H**P(IR) implies the existence of some K; € IR for
i €{0,1,2,3} such that

Hg ( n—1> )HL{" 1 < Ko, HAugn(tZ—la ')Hug_2 < Kj, HAuugn(tZ_la .)Hu;f—s < Ko,
an 6ﬁHAuug (n 1y° +5) _Auugn(zfl,'_é)uus_zl SKg fOI' alln24

Using these bounds we can conclude step by step that the restriction of g : A" — IR to
the set A"(n — 1) = A" N[0,7) x IR, and similar restrictions of the discrete derivatives

A - R, Ay g" c Ay — IR and Ay g™ 2 AP(n — 1) — IR, can be bounded for all
n € IN. Since for each n € IN the domains of these functions contain only a finite number of
elements, it suffices to show that the restrictions are bounded for all sufficiently large n € IN.
In order to do so we recollect the recursive inequalities (2.1) for ¢"” and (2.25) for A7 g" for
all n > H%HQ Since the weight function p” : A"(n — 2) — (0,1) of (2.2) takes only values
in (0,1), an iterated application of (2.1) and the definition of Ky imply HgnHAn(n—U < Ky

for all n > H%W Similarly, we use the recursive equation (2.25) for A}l ¢" and the bound

(2.26) to obtain for all n > H%Hz and 1 <k <n —1 the inequality

n—k—1
1AL g (@ M < D2 @+ RV AT " (1 )y - (2.36)
7=0
As a consequence, we get from the definition of K the upper bound HAZ g”H AP (n—1) <elK;.

From the recursive equation (2.25) we can also construct some recursion formula for A7, 9",
namely we get for all n > H%H2 and 3<k<n-1:

AL g (G u) =P (E_ w4 28) AL, g™ (17, u+ 6) + 2880, p™ (th_ 1, w) AL g™ (87, w)
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+(1_ (tkz LU 5))A5ugn( Z,u—é).

Arguments similar to the one leading to (2.26) show that for any R’ > H d2 2%," v H we
du (v

< R’ for all sufficiently large n € IN. If, in addition,

n ATV

obtain the bound %H D

}Ag(n—Q)
we use HAZ g”HAn(n_l) < e®Kj, we can adjust and slightly generalize the proof of (2.36)
1
to show that the sup-norm HAZU g"H A2 (n—1) of the second discrete space derivatives can be
2
bounded by some constant C; depending only on K», K71, and global bounds on functionals

of p:[0,7] x IR — IR, which do not depend on n either. A last iteration of that procedure
shows that

< (Cy

g[St o) = AL o9

for some constant Co which only depends on K3, K5, K1 and on global bounds of functionals
of p:[0,7] x R — IR.
If we now consider the discrete time derivative A} ¢”, a twofold application of the recursive

equation (2.1) and rearranging terms shows that for all n > H%HQ and 1 <k <n—2 we

have
0= Afg”(tz,u) + a"( Z,U)Azug"(t’g+l,u)
0 (¢ u) 5 (A0 g™ (Fru+ 0) + AL g™ (Hp0u = ) ).

where the function a” : A}(n —2) — IR is for all (¢,u) € A} (n — 2) given by

a™(t,u) :=p"(t — 52 w)p"(t,u+0) + (1 —p"(t— 52,u)) (1 —p"(t,u — 6))
— 5 +SAT B (¢, u) + %(2]5”(15 — 5% u) — 1) (ﬁ”(t, W+ 8) + Pt u — ) — 1),

and where similarly the function b" : A} (n — 2) — IR satisfies for all (¢,u) € A} (n —2)

1 AN AT A o~
b (¢, ) = 5( (t = 0% w)p™(tu + 6) — (1 — p(t — 0% w)) (1 — p (t,u—a)))
1
= (27— 8 0) 1) (14 20005 (6w) + 4w+ 8) + 5t — )~ 1).
By approximations like in Lemma 3.11 we get uniformly for all (¢,u) € A} (n — 2)

%@uu (t7 U) — Y <t7 u)
@u(ta U)
Thus, for all n > Hg—tHZ and 1 < k < n — 2, the norm HA?g”(tZ, ')Hun can be bounded

w E—1
Hug_l, HAZ g (tZH, )Hug and of global bounds on
functionals of % : [0,T] x IR — IR; hence ||A} g"HA,f(n_
n € IN as well. Similarly it follows that

a(t,u) = % +0(5) and b"(t,u) = + 0(55) asn — oo. (2.38)

in terms of the norms HAZU g (tz 1 )

gy Can be bounded uniformly for all

g'(y+8) = A g"(- — )|

1 n
268 HAt A (n—2)

< (3

e R |

1
o 241+8 ‘

for some C3, and last but not least we also conclude that there is some Cy € IR such that
%LBHA? g+ — 6% ) — Agn(- + 6% ’)HAg(n—s) < (4, where both C3 and C4 only depend
on K1, Ko, K3 and on global bounds on functionals of % : [0,7] X IR — IR.
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We then restrict our attention to the subsequence {4'};>;, C IN, starting at some sufficiently
large ip € IN. Without loss of generality we may assume ¢9 = 1. The sequence of grids
{A‘U}i cv 18 an increasing sequence of lattices, and so are the sequences {A‘U (4" — 1)}1 N

{A‘lu (4% — 1)}Z CIN? and all the other similar sequences of sets of possible arguments for the
discrete derivatives. Now the convergence of a subsequence of the {¢g"} and of the corre-
sponding discrete derivatives of Definition 3.7 follows from a straightforward application of
the Bolzano-Weierstrafl theorem: Let us start with g% and define A = (J72, AY 4k — 7).
Since' Hg”H A7 (n—1) < K for all sufficiently large n € IN, there exists a subsequence {nj }]. N
of {4'}iev such that y(t,u) = lim;j_.o ¢ (¢, u) exists for all (t,u) € A. Now the discrete
derivatives A7 g", A7, g", and A} ¢g" are bounded as well, uniformly in n € IN. Hence we
find, possibly after extracting a further subsequence of {nj }j e Which we will call again
{nj}j N for simplicity, that

A (t,u) := lim Ay’ ¢" (t,u) for all (t,u) € A" := UAM

Jj—oo

7' (t,u) = lim Ayl g™ (t,u) for all (t,u) € A" := U.A4Z

]*)OO

and  (t,u) := hm A7 g"i(t,u) for all (t,u) € A := U AL (47— 2).
=1

Since g", Al g™, A, g", and A} ¢g" can be bounded on the intersection of [0,7") x IR with
their respective domains uniformly for all n € IV, the functions v, 7/, 4", and 4 are bounded
on their respective domains as well.

Let (t,u) and (t,v) be two elements of A with v > u. Then for all sufficiently large j € IN we
have (t,u), (t,v) € A" (n; — 1), and v — u = 2k;0,, for some k; € IN, since, by its definition,
§ = 6, = n"2. Thus we can conclude from HAZ g”
n that

H AP (n—1) < e K for all sufficiently large
kj

|97 (t,0) — g™ (tu)| =
=1

< 2kj5njeRK1 = eRK1|u — ).

g (t,u+216,,) — g™ (tu+2(1 = 1)6y,)

Taking the limit j — oo implies that v : A — IR is Lipschitz in w. Similarly, we can show
that v : A — IR satisfies a Lipschitz condition in ¢ as well, that 4’ : A" — IR is Lipschitz in
u and satisfies a Hélder condition with exponent 3(1 + ) in ¢, and that 7" : A” — IR and
A A — IR satisfy Holder conditions with exponents 3 in u and exponent %ﬁ in t. Then due
to the Arzela-Ascoli theorem the functions v, 7/, 4", and 4 can be extended to continuous
bounded functions on the whole closed slab [0,7] x IR.

Actually, we can show a little bit more than just Lipschitz and Holder continuity. For
example, let us suppose that (t,u), (t,v) € A. Then for sufficiently large j € IN we have
(t,u), (t,v) € A" (nj - 1), and for v > w it follows that (t,u + (5n].) c AV (nj - 1). It can
now be shown that

5 t, —q" t, ; )
g(60) Z9E0)  nms (104 5,)| < Cufu— o,
u—v

where C] is the uniform bound on HA wg H AB (1)’ and thus we get in the limit

— 7' (t,u)| < Cslu—wv| forallte0,T] and u,v € IR

‘W,ul)t : Z(t,v)



128 CHAPTER 3. CONVERGENCE OF THE STRATEGY FUNCTIONS

for some constant C5 € IR. If we let v — wu, the derivative 7,(t,u) is seen to exist and
Yu(t,u) = 4/ (t,u) for all (t,u) € [0,7] x IR. In the same manner one can show for some
Cs € IR that

vt u) — ' (t,v) —

t,u)| < Cglu—v|? forallt € [0,T] and u,v € R
u—wv

to conclude that vy, (t,u) = v"(t,u) for all (t,u) € [0,T] x IR, and analogously it follows
that v;(t,u) = 4(t,u). Last but not least, due to (2.37) and (2.38) it can be seen that
v :[0,T] x IR — IR satisfies the partial differential equation (2.3). The final condition (2.4)
is implied by (2.35), v(t,u) = limj_.o ¢" (¢, u) for all (¢t,u) € A, and the boundedness of
Ye. q.e.d.

In the formulation of Proposition 3.15 the subsequence {n;};cn for which the associated
subsequence {g"ﬂ' }j el of transformed strategy functions converges is not explicitly given.
If we want to approximate a solution of the final value problem (2.3), (2.4) for instance
on a computer, we have to know an explicit subsequence for which the discrete transforms
converge.

Note however that we have actually provided the essentials of a slightly stronger statement
than the one of Proposition 3.15. Namely, our proof indicates that the assumptions of the
proposition imply that for any subsequence of {4'};c v there exists some subsequence {n;};en
such that the sequence { g }j oy converges as j — 00 to a solution ~ of the linear final value
problem (2.3), (2.4) in the sense of the statement in the proposition, and by the remark to
Lemma 3.8 the solution to that partial differential equation is unique. Hence the convergence
of the subsequences implies that the whole sequence { g* }Z cN of transformed strategy func-

tions ¢g* : A* — IR converges on [0,7) x IR in the same sense to this solution as i — oo ,
i.e. we have

Corollary 3.16. Let n; =47 for all j € IN. Under the assumptions of Proposition .15 the
subsequence {g”j }jeﬂv of the discrete transformed strategies {g" }nen converges on [0,T) x IR
to the solution v : [0,T] x R — IR of (2.3), (2.4) in the form stated in the proposition.

Remark. This subsection has indicated how we can weaken the conditions of Theorem 3.10
such the (transformed) strategy functions still converge in a sufficiently accurate way, at least
when restricting the attention to n-step binomial models where n is a power of 4. Nevertheless,
in the remainder of this thesis we will focus on situations where the whole sequence {g" },cv
of transformed strategy functions g" : A™(n — 1) — IR converges as n — oo, and accept
the stronger differentiability conditions in order to assure such a convergence. The notation
becomes simpler under these stronger conditions. In particular, our restriction simplifies the
treatment of the non-linear case, which will be considered in the next section. Il

3.3 The General Case

Having shown the uniform convergence of the strategy functions {{"},emn in the special case
of a large investor market model which excludes any immediate transaction gains and losses,
we now shift our attention to a general large investor market (¢, 1), which still satisfies a
multiplicative structure as in Assumption B, but which might induce transaction losses.

In the loss-free case of Section 3.2 we were able to turn the implicit recursive scheme for the
strategy function £" into an explicit scheme for the transformed strategy function g™. Then
we first proved the convergence of the sequence {¢"},emw to a solution of a linear partial
differential equation. In the general case, however, the recursive schemes for the transformed
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strategy functions remain implicit, and the candidate limit function « is only given as the
solution of a quasi-linear partial differential equation.

Like in Section 3.2 we will first look at the existence and uniqueness of a solution to the
final value problem for the potential limit of the transformed strategy function. Because of
the non-linearity of the partial differential equation, the existence and uniqueness is not as
straightforward as in the special case of Section 3.2, but we can adapt a proof of Frey (1998)
and show that a unique solution to the final value problem still exists if the values in the final
condition stay sufficiently small. Having obtained this first important result in Section 3.3.1,
we explain in the following section how the methods used in Section 3.2.2 can be generalized
in order to prove that the sequence {¢g"},cn of transformed strategy functions ¢g” : A" — IR
converges uniformly to the solution v : [0,7] x IR — IR of the quasi-linear final value problem
if only the values of the transformed strategies immediately before and at maturity converge
towards the corresponding values of ~.

In Section 3.3.3 we finally use the convergence result for the transformed strategy functions
to derive an analogous convergence result for the sequence {£"},cn of original strategy
functions. This convergence result for the strategy functions provides exactly the kind of
convergence which we need in Chapter 4 in order to guarantee the weak convergence of the
value and price processes, but we have to make the detour via the transformed strategy
function, since the final value problem which is solved by the limit of the strategy functions
fails to be quasi-linear.

In order to get started, let us consider a multiplicative price system (1, u) for which the
equilibrium price function ¢ : [0,7] X IR’ — IR satisfies Assumption B. For the general
case we now also require that the equilibrium price function v (or equivalently 9, because of
Assumption B) stays strictly positive and that the price determining measure p is sufficiently
good-natured. Moreover, as for the special case dealt with in Section 3.2 we need some
smoothness and boundedness for the two components ¥ and f of ¥. We will impose

Assumption C. The small investor price function ¥ : [0,T] x R — IR, (t,u) — P(t,u) is
continuously differentiable with respect to t and twice continuously differentiable with respect
to u. The function p itself and its spatial derivative , are strictly positive, and the function
satisfies H%H < oo and Ly := H%H < 0. For the function f : IR — (0,00) we assume that
it 1s at least twice continuously differentiable. Finally we assume that the price determining
measure (1 € M(f) has a finite first moment.

As we proceed, we will further strengthen the regularity assumptions on % and u. Especially,
we will once again assume that both components of ¢ belong to certain Hoélder spaces.
In addition to that, we will prevent any immediate arbitrage opportunity as described in
Section 1.2.1 by

Assumption D. The price system (1, u) excludes any immediate transaction gains, i.e. the
local transaction loss rate function k,, : IR? — IR of Definition 2.13 is nonnegative.

If we now recall Definitions 1.16 and 2.12 of the non-linearity parameter d(;) and the strategy
transform g, respectively, we can introduce a function which plays the role of the transaction
loss rate function in the corresponding continuous-time model, and which for simplicity is
defined as a function of the large investor’s transformed stock holdings = = g(&):

Definition 3.17. The transformed loss function « : g(IR) — IR is given by
(g7 (2))

fAg~ (=)
Remark. Proposition 1.15 and the Definition 1.16 of d(x) imply that Assumption D implies
k(z) > 0 for all z € IR.

k(z) = 2d(p) for all z € g(IR). (3.1)



130 CHAPTER 3. CONVERGENCE OF THE STRATEGY FUNCTIONS

3.3.1 Existence of a Solution to the Limiting PDE

As in Section 3.2 we start with the final value problem which is solved by the limit of the
transformed strategy functions ¢" : A" — IR. In contrast to the case without transaction
losses, this final value problem becomes non-linear; more specifically, it is quasi-linear. First
we introduce the final value problem with a scaling factor for the final condition. Then we
present in Proposition 3.18 this section’s main result, saying that a unique solution to the
non-linear final value problem still exists if the scaling factor is chosen sufficiently small.
The proof of Proposition 3.18 fills out most of this section and it is, at least to a large extent,
very technical. The most demanding part is to prove the existence of a solution. We intend
to follow a proof of Frey (1998) who shows the existence of continuous hedging strategies for
convex options in a continuous-time large-investor model where the price building mechanism
is determined by the Dirac measure §; concentrated in 1 as in Example 1.2 of Chapter 1. For
that reason, we first show that Proposition 3.18 follows from a second proposition, i.e. from
Proposition 3.19, which states a similar existence and uniqueness result for a more suitable
initial value problem. In the initial value problem of Proposition 3.19 the scaling parameter
controls the non-linearity of the partial differential equation instead of the boundary condi-
tion. The proof of Proposition 3.19 can then parallel the proof of Frey’s Theorem 4.2 and
involves two more lemmata to transfer existence and uniqueness results for parabolic quasi-
linear Cauchy problems as stated in Ladyzenskaja et al. (1968) via some modified initial value
problem to our somewhat more general case.

At the very end of this section, we slightly extend the results of Proposition 3.18 in two
corollaries by reconsidering the regularity assumptions used.

We shall see in Section 3.3.2 that in case of convergence the limit v : [0,7] x IR — IR of
the transformed strategy functions will solve a final value problem which is given by the
quasi-linear partial differential equation

ity 428 ((1 # 2t )t ) e u>>

(3.2)
it u) 1 Puu(t,u) < w(t, w) >
=yt u)| = — == 1+ = k(v w)) v (t, u
Tl ><%(t’u> gttt (14 20 1)t )
for all (t,u) € (0,T) x IR, and a final condition of the form
(u)
Y(T,u) = a/ f(z)dz for all u € IR, (3.3)
0

where o € IR is some scaling parameter. Apart from this scaling parameter, the function
¢ : IR — IR, u— ((u) describes for every fundamental value u € IR immediately before
maturity the corresponding stock holdings of the large investor at this time.

Remark. If the transformed loss function x : IR — IR vanishes (either via d(u) = 0 or
via f’ = 0), then the non-linear PDE (3.2) reduces to the linear PDE (2.3). In this case
Lemma 3.8 has shown that for any a € IR there exists a solution v € HH%@HB([O7 T] x IR)
to the final value problem (3.2), (3.3) as long as the two components 7 and f of ¢ belong to the
Holder spaces PAIH'%B’HB([O, T] x IR) and Hllotﬁ(ﬂ%), respectively, and if also ¢ € H*TA(IR).
In general, however, the terms which involve the transformed loss function « : IR — IR lead
to non-linear effects, and we can prove existence of solutions to (3.2), (3.3) only for |a| > 0

sufficiently small and, of course, for a = 0. ([l
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Let us now fix some bounded function ¢ : IR — IR and define the two bounds
¢(u) ¢(u)
b:=min < 0, inf/ f(z)dx and B :=max< 0, sup/ f(z)dz 3,
uelR Jy uelR JO
which are basically bounds on the initial condition in (3.3). Due to Assumption C, the
function f is in particular continuous and it follows that the two bounds b and B are finite
since ( is bounded.
We also define the constants p; and p2 by
. 9(=¢) ‘9(5) ’} o [ g(€) [9(=€)
p1 = hmsupmax{,— e and pg :=liminf min ¢ =25, |=—==| §,
£—oo 9(B) " [g(b) €00 9(B)"| g(b)

where we use the convention %l = oo for all z # 0. Since Assumption B implies that
f IR — IR is strictly positive, the strategy transform g : IR — IR, ¢ — f0€ f(x)dx is
strictly increasing and satisfies g(0) = 0. Thus we conclude from —oco < b < B < oo that
p1 € [-00,0) and p3 € (1, 00].
From the definition of p; and ps it follows that for all p; < o < p and all b < x < B we have
azr € g(IR), and especially the inverse g~! : g(IR) — IR, and therefore also x : g(IR) — IR,
is well defined on the set (p2g(b), p2g(B)). Hence if f : IR — IR is twice continuously
differentiable, we can define the functions L, : IRt — IR" and L’ : Rt — IR™, which bound
the influence of implied transaction losses, by

Li(@) := ||&[[{apap) and L (o) := max {Le(), |o|||& | apap)} forall 0 < a < py.  (3.4)

Note that L], is a bound on the derivative of k, but is not the derivative of L,. We may
extend the definitions of (3.4) to p1 < a < 0 if we define the interval [y,z] for z < y as
the interval [z,y], as we will do for the rest of this chapter. Since f is strictly positive by
Assumption B and continuously differentiable by Assumption C it is also bounded away from
0 on each compact interval [ab, aB] with p1 < a < ps. Hence we conclude L (a) < oo and
Ll (a) < oo for all p1 < a < pa.

In the present section, we will show the following result:

Proposition 3.18. In addition to the Assumptions B, C, and D suppose that the two com-
ponents P and f of ¢ belong to the Holder spaces fIH%ﬂ’:ﬂ'ﬁ([O,T] x IR) and H;;Jcrﬂ(lR),
respectively, and suppose that ¢ € H“ﬁ(ﬂ%). Then there exist some constants a1, € IR
with p1 < aq < 0 < ag < p2 such that for all a € (a1, az), the final value problem (3.2), (3.3)

has a solution ~y € HH%B’%%([O, T] x IR) with
¢(v) ((v)
inf a/ flx)dx < vy(t,u) < supa/ f(x)dz  for all (t,u) € [0,T] x R (3.5)
velR 0 velR 0

and

2LoL inf u(t, —1. 3.6
oLy (a) (t,u)el[rolﬂmv( u) > (3.6)

Moreover, for all o € (p1, p2) there exists at most one solution v € C’;’Q([O, T] x R) of (3.2),
(3.3) which satisfies y(t,u) € [ab,aB] for all (t,u) € [0,T] x IR, and (3.6).

Remark. Since the space H1+%ﬁ’2+ﬁ([0, T] x IR) is a subspace of C’;’z([O, T] x IR), the stated
conditions imply that there exists for all @ € (a1, a2) a unique solution within the class of
functions v € C;’Q([O, T] x IR) which satisfy (3.6). O
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Proof. As a first step, we will explain why it suffices to show that for all ¢ € H*P(IR)
there exists some & > 0 such that for all 0 < o < & the final value problem (3.2), (3.3) has
a solution as stated in the proposition, and why we only need to show uniqueness for the
special case a = 1.

Note that ¢ € H**#(IR) is bounded, so that the discussion after the definition of p; and ps
implies p; < 0 and p2 > 1. Since f : IR — IR is strictly positive, the strategy transform

g:R— IR, &— fo x) dx is strictly increasing and thus it follows that for all p; < a < po
we have « fo () f( )dac € g(lR), and we can define for all those « the function (* : R — IR
by (*(u) =g 1( fc ) for all u € IR, where again ¢! : g(IR) — IR is the inverse

functlon of g: IR — IR. By the monotonicity of g : IR — IR the final condition (3.3) is for all
p1 < a < po equivalent to

o CP1/2(u)
Y(T,u) = 2/ f(z)dx forall u € IR, (3.7)
Pl
or also to
¢*(w)
Y(T,u) = / f(z)dz for all u € IR. (3.8)
0

Once we have proved that ¢#/2 € H?>*8(IR) and that for all ¢ € H**?(IR) there exists some
a = @(¢) > 0 such that for all 0 < a < & a solution of the final value problem (3.2), (3.3)
exists which satisfies the conditions (3.5) and (3.6), we can apply this result to the final value
problem (3.2), (3.7) to conclude that a solution to (3.2), (3.3) with (3.5) and (3.6) also exists
for all a € IR with max{%pld(cpl/z),pl} <a<0.

Moreover, noting that for any p; < a < p2 the uniqueness of a solution to (3.2), (3.3) is
equivalent to the uniqueness of the problem (3.2), (3.8), we see that once we have shown
¢* € H*P(IR) for all p; < a < py the uniqueness statement of Proposition 3.18 already
follows from the statement for a = 1 and all ¢ € H?>T5(IR).

Thus, let us fix py < a < pg and prove that f € Hllotﬁ(R) and ¢ € H**A(IR) imply
¢* € H**P(IR): We have to show the boundedness of (%, the existence and boundedness of
the derivatives ¢} and (;},, and the Holder continuity of (), : IR — IR.

In order to show that (¢ : IR — IR stays bounded, we note that the boundedness of { : IR — IR
and the continuity of f : IR — IR imply H fOC f(x) d:cH < 0o. If we now recall the definitions
of the bounds b and B and p; and p2 we see that on the compact set [ozb, aB] the function
g ! : g(R) — IR is well defined and bounded, since it is continuous. Hence, by definition,
(% : IR — IR is bounded as well.

Secondly, the differentiability properties of f : IR — IR and ¢ : IR — IR imply that the
function (¢ : IR — IR is twice differentiable and its derivatives are given by

f(¢(w)

G ) = @ ea )y

and

¢ (u) :af’(C(U))Cﬁ(U)+f()C(U))Cuu( w) 2 (W) SHCW) 200 forall w e R

J(¢(u) F3(¢*(w))

These derivatives are bounded, since the appearing derivatives of f and ¢ are bounded, and
since the continuity and strict positivity of f : IR — IR imply that f is bounded away from 0
on the bounded range of (¢ : IR — IR. The Holder continuity of (}, : IR — IR can be shown
similarly.
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It is obvious that v = 0 is a solution of (3.2), (3.3) for @« = 0. Hence, for the proof of
Proposition 3.18 it is sufficient to consider only solutions of (3.2), (3.3) with 0 < o < pa. Let
us normalize this family of final value problems by replacing every appearing - in these two
equations by av®. Note that here and in the sequel, the superscript « stands for an index,
not for an exponent. After dividing both equations by «, the family of final value problems
(3.2), (3.3) can be transformed to the family given by the partial differential equation

o d o « « (07 (e} (e}
yi(t,w) + %Cﬁ (t,u,’y (t,u), v (t, u)) —a (t,um (t,u), v (t,u)) =0 (3.9)

on [0,T) x IR, with the final condition
¢(u)
YT, u) = / f(z)dx forallue IR (3.10)
0

being the same for all 0 < a < py. Here the two coefficients af : [0,T] x R® — IR and
a®:[0,T] x IR* — IR in (3.9) are for all 0 < a < pp and all (t,u,~,p) € [0,T] x IR® given by

af (t,u,v,p) == ;(1 + ;i((tt ?)H(av)ap>p = %p + ;i((tt %fﬁ(ow)gp? (3.11)
and
a®(t,u,,p) = <:Z((ZZ)) — ;15::((75?5)) (1 + ;z((tgfg) n(ory)ap))p. (3.12)

In order to apply standard results from the theory of quasi-linear Cauchy problems, we
perform a time inversion by considering the PDE for 4 : [0,7] x IR — IR defined by
N (t,u) = (T —t,u) for all (t,u) € [0,T] x IR and all 0 < o < pa. We get for all 0 < o < po
and (t,u) € (0,T] x IR:

d
et u) — @a‘f‘ (T —t,u, Y (t, ), Yo (t, u)) +a® (T —t,u, Y (t, ), Yo (t, u)) =0 (3.13)

and
¢(u)
70, u) = / f(z)dz for all u € R. (3.14)
0

Hence Proposition 3.18 immediately follows from the following proposition, stated in terms
of the corresponding initial value problem (3.13), (3.14). q.e.d.

Proposition 3.19. In addition to the Assumptz'Aons 1B’ C, and D suppose that the two compo-
nents ¥ and f of ¢ belong to the Hélder spaces H1+§f8’3+ﬂ([0, T] x ]R) and Hl%;crﬁ(]R), respec-

tively, and suppose that ¢ € H2+ﬁ(1R). Then there exists some 0 < & < pa such that for all

0 < a < a the initial value problem (3.13), (3.14) has a solution ¥* € H1+%572+6([0,T] x IR)
with

((v) ¢(v)
inf / flz)dr <A%(t,u) < sup/ f(z)dx  for all (t,u) € [0,T] x R (3.15)
velR Jg veIR JO

and

2aLoL! inf (¢t —1. 3.16
QL n(a) (t,u)el[I(%,T]XRrYU( ’u) > ( )

Moreover, for all 0 < a < py there exists at most one solution ¥* € Cl}’z([O,T] X ]R) of
(3.13), (3.14) which satisfies (3.16) and

b<A%t,u) < B forall (t,u) €[0,T] x RR. (3.17)
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We will prove this second proposition with the help of two lemmas. As in Frey (1998) we
will introduce a modified initial value problem, where the diffusion coefficients are truncated
so that the non-linearity stays bounded. For a good choice of the truncation, the modified
partial differential equation becomes uniformly parabolic, and an existence and uniqueness
result for quasi-linear partial differential equations can be applied. For sufficiently small
« > 0 it then can be shown that the solutions ¥ to the modified initial value problem do
not reach regions where the diffusion coefficients have been genuinely truncated, and thus,
they are also solutions to the unrestricted initial value problem (3.13), (3.14).

At first, we have to truncate the unbounded diffusion coefficients a; : [0,7] x IR® — IR and
a:[0,T] x R® — IR. In order to define truncated versions of these coefficients, let us recall
the definition of L : IR" — IR and L], : IR" — IR" in (3.4). Then forall0 <& < 1, M > 0,

and 0 < a < py we can define a smooth cutoff function

1 -1 M
2 L()L;{(a) ’ LgL%(Q)

*=cy:R— (3.18)

which satisfies the two conditions

1 2¢—1 M d
57<x§ and 0< —c*(z) <1 foralzeR.

1
& pu— f —_— —_——
o) = for ST ) ST S 3Tl () dz

Here and for the rest of this section we set § = sgn(z)oo for x # 0. The cutoff function
will be used to cut off those terms in the diffusion coefficients af and a® which lead to a
non-linear appearance of the first derivative 4$ in the PDE (3.13).

In order to show uniqueness of the modified initial value problem, we also introduce for all
0 <e<1landall 0<a< pytruncated versions k“ = K2 of the transformed loss function
k1 g(IR) — IR, by taking some function &% : R — [0, (1 + &)Ly ()] which is smooth outside
of [ab, aB] and satisfies both

RY(z) = k(z) forall x € [ab,aB] and 0<k%x) < (l+¢)L.(a) forall x € R. (3.19)

By the definition of ps the transformed loss function is well defined for all € [ab, «B] and any
0 < a < po. Finally, we can define the truncated diffusion coefficients a{ : [0, 7] x R> — IR
and a® : [0,7] x R®> — IR by

_ 1 p(t,u)
a’a taua ) =3 + —
1t u,y,p) = 5p Pult )

(o) [ ¢ (aa)da (3.20)

and

(0 U _liuu y U Yuu(t, ) YL, u) _ P
a®(t,u,,p) == pult Lu(fz) < >p— Zu(itu)) ;i((tt u))ﬂa(ow)/o c*(aq)dg  (3.21)

for all (t,u,,p) € [0,T] x IR* and all 0 < a < po.
We will then consider the initial value problem which for all (¢,u) € (0,7] x IR is given by

_a d —« e e ~« —o ~o
Vt (tv u) - %al (T —tu,y (t’ u)’ Yu (t’ u)) +a (T —t,u,y (tv u)’ Yu (tv u)) =0 (3'22)

and

0
(0, u) = / f@)dz forall uc R, (3.23)
0

The first lemma proves existence and uniqueness of solutions to the modified problem (3.22),
(3.23).
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Lemma 3.20. In addition to the Assumpt/z;ons1 B, C, and D suppose that the two components
v and f of ¥ belong to the Holder spaces H1+§6’2+5([0, T x IR) and Hf;ﬁ(R), respectively,

and suppose that ¢ € H**P(IR). Then for all 0 < o < py the modified initial value problem
(3.22), (3.23) has a solution ¥* € H1+%B’2+ﬂ([O,T] x IR), and for any specific choice of the
cutoff function (3.18), there exist some constants K(c,e, M) depending on 0 < & < 1, and
M >0, such that |75 < K(a,e, M) < K(a,e, M) for all0 < a < ap < p2.

If f € C3(IR) then for all 0 < a < pa, 0 < & < 1 and M > 0, the solution ¥* of (3.22),
(3.23) is unique within the space C';’Q([O,T] x IR).

Proof. The proof will follow from Theorem V.8.1 in Ladyzenskaja et al. (1968) (shortly
denoted by Theorem V.8.1), and parallels the proof of Proposition 4.3 in Frey (1998). Let
us fix 0 < a < po. For the existence part we have to show that the assumptions a) — c)
of Theorem V.8.1 are fulfilled. Condition a) holds, since ¢ € H2*#(IR) and f € H>'"(IR)

loc

implies that foc f(z)dx € H**P(IR) (actually, at this point it suffices that f belongs only
to the space Hl]hL (IR)), and hence especially Hfoc f(z)dx H < oo. For condition b), let us

oc

likewise define the function A% : [0, T] x IR? — IR by setting for all (t,u,,p) € [0,T] x IR?

_ 0 _ 0 _
Aa(t’ u, ’7,]9) = aa(ta u, 77p) - %a(fé(ta u, 7>p)p - %a(lx (tv u, Wap)'

Since our assumptions and the definition of K% imply that the truncated transformed loss
function & : IR — IR is differentiable, taking the derivatives in (3.20) yields

St ) = 2 a6 (@) [ o) do (320

and plugging the three equations (3.21), (3.24), and (3.25) into the definition of the function
A% [0,T] x R* — IR leads to

Aa(ta U,’}/,p) = _ba(tauv'y’p)pa (326)
where

%7uu(tv u) - 7T%f(t: u)
Pult ) (3.27)

+ (fﬂ"‘(av) + QZ(E 2,1;))05(,-;0)’(@7)) /0 " *(aq) dg

b (t,u,v,p) =

for all (¢,u,v,p) € [0, T]x IR3. Especially, we get A%(t,u,~,0) = 0 for all (t,u,~) € [0, T]x IR?.
To verify ¢) in Theorem V.8.1 we have to check the conditions b) and ¢) of Theorem V.6.1
in Ladyzenskaja et al. (1968), which from now on will just be called Theorem V.6.1. As in
Frey (1998), we will prove slightly weaker conditions, since we do not show the conditions b)
and c) for |y| < M, but for v € [b, B], since it easily follows from the discussion leading to
(V.6.8) and its transference to the Cauchy problem in (V.8.2), (V.8.3) that by the remarks
leading to Theorem 1.2.9 of Ladyzenskaja et al. (1968) we might apply a generalized version
of their Theorem 1.2.1 (or their Corollary 1.2.1) to replace in our case the range [—M, M]
of possible solutions {ﬁa’N } NelN of the first boundary problems in the expanding cylinders

{ol x (O,T)}New, and thus also of the initial value problem (3.22), (3.23), by [b, B] or

even its subset [inf,cp OC(U) f(z) dz,sup,cp fog(v) f(z)dz] (see LadyZzenskaja et al. (1968),
p. 493).
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At first, we are going to check condition b) of Theorem V.6.1. By our assumptions on the
functions @ : [0,7] x IR — IR and f : IR — IR, the functions a§ : [0,7] x R®> — IR and
a® : [0,T] x IR* — IR are continuous, the derivatives %EL‘{‘ for z € {p,~, u} exist and are given
by (3.24), (3.25), and

1 9t

9 antuyp) = - 4
op T T T Bt )

R*(ay)c®(ap) for all (t,u,v,p) € [0,T] x IR>. (3.28)

Now we have to check that the two statements of (V.6.9) in Ladyzenskaja et al. (1968) hold,
i.e. in our one-dimensional setting we have to show that there exist some strictly positive
constants [, L € IR which may depend on the choice of «, €, and M, such that

o,
I < a—pal (t,u,v,p) < L (3.29)

and

. 0 .
(“11 (t,u,,p)| + ’86‘1 (t,u,%p)D (1+Ipl)
Y
, (3.30)
|ttt o] < L0+

for all (¢t,u,v,p) € [0,T] x IR x [b, B] x IR. Let us fix (t,u,v,p) € [0,T] x R x [b, B] x IR.
Note that such a choice of  implies by the definition of &% : IR — [0, (14 &)Ly ()] in (3.19)
that &*(ay) = k(ay) and (Ra)/(av) = k/(ay). Let us also notice that the strict positivity of
¥:[0,T] x R — IR implies Ly > 0.
Let us start with (3.29). Since % :[0,T) x R — IR and &% : IR — [0, (1 + €)L(a)] are
nonnegative, since for v € [b, B] the truncated r® satisfies k*(ay) = k(ay) < L.(a), and
since ¢® : R — |1 LOEL?(Q), o L]\Z (Q)} is nondecreasing and satisfies ¢*(0) = 0, we can bound
(3.28) on [0,T] x IR x [b, B] x IR by

1

3} 1
5t LoLy(a)c® (—alp]) < a—pa(f‘(t,u,’y,p) < 5t LoLy(a)c* (apl). (3.31)

Hence we get gpaf‘(t,u,%p) =1if L.(a) =0. If L.(a) > 0 the definition of L/ () implies
that Ll (o) > L,(a) > 0. Hence the range of ¢* is bounded, and since ¢*(0) = 0 and
%co‘ € [0,1] we now get from the mean value theorem and the definition of the range of ¢*
that

1 e-1

. M
max {‘MPL 2W} < Ca(_a’p‘) <0 and 0< Ca(a|p‘) < min {a‘p’7 LOL’K(a)} .

Thus we get, again using L/ («) > L, (), for all (¢t,u,~,p) € [0,T] x IR x [b, B] X IR that

0 < max {; —aLoL.(a)|p|, ;} < gja‘f(t, u,y,p) < % + min{aLoL.(a)|p|, M}. (3.32)
This proves (3.29), since we may define [ and L by | = I(a, e, M) = max{3 —aLoL(a)|p|, 5}
and L = L(a,e, M) = 3 + min{aLoLx(a)|p|, M }. For (3.30) note that by the monotonicity
of ¢® and due to ¢*(0) = 0 we have | [I' ¢*(aq)dg| < |p||c*(ap)| for all p € IR. Without loss
of generality we assume that M > % Then we have |¢ — 1| <1 < 2M, and using the bounds
on ¢*(+alp|) we get

P M
‘/0 c*(aq) dq‘ < \p]min{ap|,w} for all p € IR.
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Hence, starting from (3.20), the same bounds that led to (3.32) now imply

_ 1
|a(1x(t7 u777p)‘ < §|p’ +LOLI€(Q)

c“(aq) dq‘ < |p| <1 + min{aLoL,(a \py,M}) , (3.33)

for any (t,u,v,p) € [0,7] x IR x [b, B] x IR. Similarly we get for those (t,u,,p) from (3.24),
(3.25), and (3.21), respectively,

‘ (t 7, >\ < lp| min{aLoLL(a)lpl, M}, (3.34)

’ St u, 7, )’<\pl< H%“

> min{aLoL(c)|p|, M} (3.35)

o <o (17
la®(t, u,y,p)| < Ip| <H%

H Duu

1 +2min{aLoLy(e)p], M})> . (3.36)

The previous four bounds validate the second condition of (V.6.9), i.e. there exists some
L = L(a, e, M) € IR such that not only (3.29) but also (3.30) holds. This proves that Assump-
tion b) of Theorem V.6.1 is satisfied as well. As explained on p. 451 and p. 493 in LadyZenskaja
et al. (1968), the norm ||7%|| can now be bounded by some constant K := K («,e, M), which
only depends on the lower and upper bounds [ = l(a,e, M) and L = L(«a,e, M), and on
H% fOC(') f(z)dx H = Hf((){uH Since the bounds in (3.32) to (3.36) are monotone in «, the
bound K := K(a, &, M) can be chosen to be nondecreasing in «, i.e. for all 0 < o < o < po
we have nygH < K(a,e,M) < K(ap,e,M).

To validate condition c¢) in Theorem V.6.1, we have to show that the restrictions to the set
[0,T] x IR x [b, B] x [~ K, K] of the functions a$ : [0,T] x IR* — R and a® : [0,T] x R> — IR
and of the derivatives a‘ial [0, 7] x R® — B, with z € {p,~,u}, satisfy Holder conditions
with exponent %ﬂ in ¢, and with exponent § in w, 7, and p. This follows easily from our
assumptions, and since our choice of the cutoff function ¢* of (3.18) implies that these
functions are even Lipschitz in p on sets of the form [0,7] x IR x [b, B] x [-K, K] for all
K >0.

Thus, by Theorem V.8.1 for each 0 < a < po a solution 3% € H1+%672+ﬁ([0,T] X jR) of the
truncated initial value problem (3.22), (3.23) exists.

It remains to prove the uniqueness under the additional assumption that f € C3(IR). This
requires to check the three conditions given at the end of Theorem V.8.1. For this purpose,
let us fix 0 < o < po. Similarly to the lower bound in (3.32), which is valid only as long as
v € [b, B], we can show from (3.28) and the definitions of Lg, the cutoff function ¢* given in
(3.18), and the truncated transformed loss function &% : IR — [0, (1 + &)L, ()], that for all
(t,u,v,p) € [0,T] x IR® we have

e2>0. (3.37)

| =

1+e)(1—¢)>

l\D\H
M\»ﬂ

0
—a; (t,u,vy,p) >
8}? l(a ,7]?)_

Hence condition (V.8.6) in Ladyzenskaja et al. (1968) holds. Moreover, it is easily seen
from (3.28) and 0 < %ca(x) < 1 for all x € IR that both derivatives %a?(t,u,fy,p) and
%gpd‘f(t,u,’y,p) exist for all (t,u,v,p) € [0,T] x IR® and that for all N > 0 they can be

bounded on sets of the form [0,7] x IR x [-N, N]? by arguments similar to the one used
to derive (3.32) to (3.36). From (3.26) and (3.27) we obtain the same statement for the
derivative %Aa(t, u,v,p). This gives the second condition at the end of Theorem V.8.1.
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Finally, our additional condition f € C3(IR) assures that  : g(IR) — IR belongs to C?(IR),
and especially that sup,¢jap,an) |”(2)| is bounded. Since % is smooth outside [ab, aB], we
can also conclude that sup,c(_n,nj ’ (Ra)”(a'y)} can be bounded for each N > 0, and hence
it follows from (3.26) and (3.27) that %Aa(t,u,%p) exists for all (t,u,~,p) € [0,T] x IR?
and that it is bounded on sets of the form [0,7] x IR x [~N, N]? for any N > 0 as well.
Thus, the third condition at the end of Theorem V.8.1 is also satisfied and Theorem V.8.1

in Ladyzenskaja et al. (1968) gives us for all 0 < o < po the uniqueness of the solution 3% to
(3.22), (3.23) within the class C,([0,7] x IR). q.e.d.

Remark. Instead of using the second half of Theorem V.8.1 in LadyZenskaja et al. (1968),
Frey (1998) uses their Theorem V.6.1 to prove the uniqueness of his truncated non-linear
parabolic initial value problem (33), (30). However, it is not clear to us how he transfers
the uniqueness result of the first boundary problem in a bounded domain, which is treated
in Theorem V.6.1, to the uniqueness of the Cauchy problem (33), (30). For that reason, we
rather use the uniqueness results for Cauchy problems given at the end of Theorem V.8.1,
which require the additional postulate that f : IR — IR is three times differentiable with
bounded derivatives on compact sets. [l

For the proof of Proposition 3.19 we have to find explicit bounds for ¥* : [0,7] x R — IR,
and we need to strengthen the bounds on the derivatives 7§ : [0, 7] x IR — IR of Lemma 3.20
a little bit. In analogy to the definition of b and B let us define the bounds b and B’ on the
derivatives of the initial condition (3.23) by

¥ := min {0, int { f(C(u))(u(u)}} and B = max{(),sél]%{ f(g(u))(u(u)}}.

Moreover, we define the bounds K and K, depending on «, €, and M, by

—K(a,e, M) if¥ <0
0 it 5 =0

K(a,e,M) if B'>0

and K(a,e, M) := {0 B —0

K(a,e, M) := {

Since K (-,&,M) : [0, p2) — [0,00) is nondecreasing, K(-,e, M) : [0, p2) — (—0o0,0] is nonin-
creasing and K (-,e, M) : [0, p2) — [0, 00) is nondecreasing. Under slightly stronger conditions
than the ones of Lemma 3.20, we arrive at the following result:

Lemma 3.21. Let us consider the family of modified Cauchy problems (3.22), (3.23) for
0 < a < p2 and some fixed cutoff levels 0 < e <1 and M > 0. Under the assumptions of the
existence part of Lemma 3.20 we have for all 0 < a < ps

¢(v) ¢(v)
inf flz)dx <A%(t,u) < sup/ f(z)dz  for all (t,u) € [0,T] x IR. (3.38)
velR Jg velR JO

Moreover, if ¥ € ﬁ1+%ﬁ’3+ﬂ([0,T] X R) and f € H>™P(IR), then for all 0 < a < py the

loc

bounds on the derivative 7§ : [0,T] x IR — IR of Lemma 3.20 can be sharpened to
K(a,e, M) <3%(t,u) < K(a,e, M) for all (t,u) € [0,T] x IR. (3.39)

Proof. Let us fix 0 <e <1, M >0, and 0 < a < ag < p2. As pointed out in Frey (1998), the
existence of a solution v, € H1+%ﬂ’2+ﬁ([0, T] x IR) to (3.22), (3.23) implies that this solution
also solves the linear parabolic equation

5t u) = a(t, u)F2, (¢, u) + b (L, w)F%(t,w)  for all (t,u) € [0,T] x R, (3.40)
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where the diffusion coefficients a® : [0,T] x IR — IR and b* : [0,T] x IR — IR are given by
a*(t,u) = %c—z? (T —t,u,3*(t,u), 73 (t,u)) and b (t, u) = b* (T —t,u,7%(t, u), 3 (t,u)) for all
(t,u) € [0,T] x IR, and 8%&% 1 [0, T) x IR? and b* : [0, T] x IR? are given by (3.28) and (3.27),
respectively.

The validity of the estimate (3.38) was already derived in the proof of Lemma 3.20, in the
comments before the demonstration of condition c¢) in Theorem V.8.1. Moreover, due to
(3.37) and the boundedness of a® : [0,T] x IR — IR and b* : [0,T] x IR — IR, the bounds on
7% :10,T] x IR — IR in (3.38) now also follow directly either from the maximum principle for
linear parabolic partial differential equations (see for example Corollary 1.2.1 in Ladyzenskaja
et al. (1968)), or the Feynman-Kac formula, as Frey (1998) proposes.

Under the additional differentiability assumptions on the two functions % : [0,7] x R — IR
and f : R — IR, the derivatives a® : [0,7] x R — IR and b : [0,T] x IR — IR exist and
belong to the class H %ﬂ’ﬁ([O,T] X B). Thus we can conclude from Theorem 10, Sec. 5,
Chap. 3 in Friedman (1964), in combination with the remark after Theorem 11 of the same
section, that the derivatives 73, and 7g,, exist and are continuous on (0,7 x IR, and that
they are bounded on each slab of the form (to, 7] x IR with 0 < ¢ty < T. Especially, we can
differentiate the linear PDE (3.40), and obtain as in the proof of Proposition 4.4 in Frey
(1998) for all (t,u) € (0,T] x IR that

For(t,w) = @ (t, w) i (8, w) + (a5 (1 u) + (¢, w)) Vo, () + b5 (6 w7 (tw). (3.41)

Since ¢ : IR — IR is differentiable, upon differentiating the initial condition, we see that
(0, u) = % fOC(“) f(z)dz = f(¢(u))Cu(u). Hence, after taking the limit of the solutions
{7%N} of the first boundary problem of the form (V.0.1), (V.8.2) in Ladyzenskaja et al.
(1968), we get from their uniform bound (V.8.4) and the maximum principle Theorem 1.2.1
in Ladyzenskaja et al. (1968) (or from the Feynman-Kac formula) that

pellbil < 50 (¢,u) < B'elbil for all (¢,u) € [0,T] x RR. (3.42)

If we now use (3.42) to determine whether 7 : [0,T] x IR — IR either stays nonnegative or
nonpositive on [0,7] x IR, and the bound Hf‘yﬁ‘” < K(a,e, M) of Lemma 3.20 to bound the
modulus, we obtain (3.39). q.e.d.

Remark. We do not use (3.42) directly since this would require us to bound ||b%|, and that
would involve bounds for the second derivative 45, : [0,7] x IR — IR, which we know is
bounded, but for which we did not derive a uniform bound for all 0 < a < ag < p2.

Also notice that our proof of (3.39) implies that for all 0 < ¢ty < T the solution 4% to the
Cauchy problem (3.22), (3.23) belongs to H1+%5’3+ﬁ([t0,T] x IR), and if ¢ € H3P(IR) we
even get 7 € H1+%5’3+ﬁ([O,T] x IR). O

Finally, we can accomplish the proof of Proposition 3.19, which mimics Frey’s (1998) proof
of his Theorem 4.2.

Proof of Proposition 3.19. For the existence part, we will consider the modified Cauchy prob-
lem (3.22), (3.23) instead of (3.13), (3.14) and show that for sufficiently small a > 0, the
cutoff which was introduced by our truncated diffusion coefficients a; : [0, T] x IR* — IR and
a:[0,T] x R®> — IR does not take place.

Let us set

_ , { 2e—1 1 1 M 1 }
a = sup miny{ o, = = ,
0<e<0.5,M>0 2LoL (o) K(cv,e,M)" 2 LoL} () K (v, e, M)
0<a<p2
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and fix o < @. Then there exist some 0 < agp < p2, some M > 0 sufficiently large, and some
0<e< % sufficiently small, such that

. { 2e -1 1 1 M 1 }
a < min § o, .

2LOL2(0&0) K(ao, g, M) ’ iLoL;(Oé()) F(ag, g, M)

Especially, we get a < ap. Since L, : [0,00) — [0,00) and K (-,&, M) : [0, p3) — [0,00) are
nondecreasing, and K (-,&, M) : [0, p2) — (—00, 0] is nonincreasing, it follows from 2e — 1 < 0
and M > 0 that

2 — 1 1 1 M 1 }
2LoL, (o) K(a,e, M)’ 2 LoL(e) K(a,e, M) |

a<min{

Lemma 3.20 guarantees the existence of a solution ¥* € H 1+38,2+8 ([0, T] x JR) to the modified
initial value problem (3.22), (3.23). By Lemma 3.21 the solution satisfies (3.38) and (3.39).
Now we first note that by the bounds (3.38) and the definition of &% : IR — [0, (1+¢)Ly(c)]
in (3.19) we have &* (ay(t,u)) = £(ay(t,u)) for all (t,u) € [0, T] x IR. Secondly, the left-hand

side of (3.39), 2¢ — 1 < 0 and K(a,e,M) < 0 imply a7y (t,u) > %LQE(I 7> and similarly it

_a 1 ips 1 M
follows that om/_ua( u) < QW. I_-Igence the definition of ¢® : R — [1 Toir(a) Tok! (a)]
(3.18) yields [ () e (ag)dg = I ) hgdg = %a(”yﬁ‘(t,u)) for all (t,u) € [0,T] x IR.

Comparing now the definitions (3.20) and (3.21) with (3.11) and (3.12) respectively, we find
that for all (t,u) € [0, 7] x IR the diffusion coefficients

af (T —t,u, 7 (t,w), 75 (tw) = af (T — t,u, 3 (t, w), 75 (t, w))

and

a® (T —t,u, 3 (t,w), 75 (t,w) = a® (T — t,u, 3 (t, ), 75 (t, w))

coincide if 4 is plugged in. Hence 4% : [0,7] x IR — IR solves the unrestricted Cauchy
problem (3.13), (3.14) as well. The property (3.16) now follows from (3.37) for the tuple
(T — t,u,3%(t, u), ’yutu),andall u) € [0,T] x IR.

Now assume that ¥%! : [0,T] x R — IR and ¥%? : [0,T] x IR — IR are two solutions of
the unrestricted problem (3.13), (3.14), both satisfying (3.17) and (3.16). By (3.17) and the
definition of R = K2 — [0,(1+¢€)Ly ( )] in (3.19) we obtain for each € > 0 the equality
R (a’y"""(t, u)) = H(Oé’}/ u)) for all ( € [0,7] x IR and i € {1,2}. Secondly, due to
(3.16) there exists some g9 > 0 such that

2aLoLl ()72 (t,u) > g9 — 1 for all (t,u) €[0,T] x IR and i € {1,2}.

If we now set € = 160 and M = 2aLgL («) maxie{m}Hﬁ{f’iH, the definition of ¢* given by

(3.18) implies again that fav“ () a(aq) dg = %a(f_yg‘(t,u))Q for all (¢t,u) € [0,T] x IR and
i € {1,2}, and hence 4! and %2 are also solutions of the truncated problem (3.22), (3.23),
and therefore they must coincide by the uniqueness statement of Lemma 3.20. q.e.d.

Using Remark V.8.1 in Ladyzenskaja et al. (1968) and revising our proofs of Proposition 3.18
and Proposition 3.19 carefully, we can state

Corollary 3.22. If the condition on ( : IR — IR in Proposition 3.18 is relaxed to { € Cl} (R),
there still exist some a1 < 0 < ag such that for all a € (o, ag), the initial value problem
(3.2), (3.3) has a solution v € CY*([0,T) x IR) N C’g’l([O,T] x IR) which satisfies (3.5) and
(3.6).
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Moreover, another application of Theorem 10, Sec. 5, Chap. 3 in Friedman (1964) as in the
proof of Lemma 3.21, or of Theorem IV.5.1 in Ladyzenskaja et al. (1968), gives us as a second
corollary:

Corollary 3.23. In addition to the Assumptions B, C, and D suppose now that for some
k > 2 the two components P and f of ¥ belong to the Hélder spaces H’”iﬁ’%‘w([(), T] x JR)

and H2k+B(B), respectively, and that ¢ € H**TB(IR). Then for all a € (a1, az), the solution

loc

v:[0,T] x R — IR of (3.2), (3.3) satisfies vy € HkJr%ﬁ’%Jrﬁ([O,T] x R).

3.3.2 Convergence of the Transformed Strategy Functions

In this subsection, we consider the convergence of the sequence {g"},en of discrete trans-
formed strategy functions g" : A™ — IR to the continuous solution of the final value problem
(3.2), (3.3). The central result is Theorem 3.24. Under the assumption that a solution 7 to
the final value problem exists and that the price system (v, ) is sufficiently regular, the the-
orem states that the functions {¢" },e converge with a certain order towards this solution
if the function values of g™ in the last two time steps t = ¢]'_; and ¢ = t], converge to the
corresponding values of ~.

Because of the non-linearities the proof of Theorem 3.24 is technically involved and will only
be sketched by indicating how the methods used for Theorem 3.10 in the setting without
transaction losses can be carried over to the case with transaction losses.

Under the assumptions of Proposition 3.18 we have shown in the previous section that the
initial value problem (3.2), (3.3) has a solution v : [0,7] x IR — IR, and this solution satisfies
(3.5) and (3.6). Especially, by the definitions of Lg := H%H and L (a) in (3.4) it is easily
seen that (3.6) implies

P(t, u)

14 =
Pu(t, u)

k(v(t,u))yu(t,u) > e for all (t,u) € [0,T] x IR and some £ > 0, (3.43)

since the infimum over [0,7] x IR of the left-hand side must be strictly larger than %
We will outline a proof of the following analogue of Theorem 3.10:

Theorem 3.24. Let (¢, ) be a large investor price system which satisfies Assumptions B, C,
and D. Moreover, suppose that the two components p and f of the equilibrium price function
1 belong to the Hoélder spaces ﬁ2+%ﬂ’4+ﬁ([O,T] X ZR) and HfOJgB(IR), respectively, and that
there exists some 1 > 0 such that [ e™0lu(d) < oo.

If the final value problem (3.2), (3.3) has a solution ~y : [0,T] x IR — IR which belongs to the
Holder space H2+%’8’4+5([O, T] x JR) and satisfies (3.43), and if there exists some L € IR such
that for all sufficiently large n € IN we have

g™ (#%: ) =7 (s ) logp = L7 Jor k€ {n —1m}, (3.44)

then the sequence {g" }nen of discrete transformed strategy functions g™ : A" — IR converges
to the function v : [0,T] x IR — IR in the sense that

lg™ = yllan = O(5%) (3.45)

and

= O(52+ﬁ) asn —oo.  (3.46)

2 A (n—1)

1
gn(. + 527 - 5) - gn + 6'7u - 52 <'Yt + '7uu> ‘
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Remark 1. As in Theorem 3.10 we might relax the condition (3.44) slightly, and replace it by

the conditions ||g™ (¢}, <) — (7, - )| < L6**+P and AL g™ (e, -) — An~(ty, )Hun < L§3th
k

for k € {n —1,n}. O

Remark 2. Besides the additional condition (3.43), which trivially holds in the case without
transaction losses (where k = 0), there are three differences to the statement of Theorem 3.10.
First of all, we need some more assumptions on the price system (¢, ). This is caused
by the non-linear loss terms. Note that apart from [ eM?u(dh) < oo all these additional
conditions have also been used in Corollary 3.23 in order to show the existence of a solution
v :[0,T] x IR — IR to the non-linear final value problem.

Secondly, we now have to require the convergence of the (transformed) strategy functions
not only at the time points {{]'_;}nemv, which are all strictly smaller than T, increase
monotonously, and converge to T' as n — oo, but also at the time point ¢} = T for all
n € IN. This is due to the implied transaction losses, which we assume to occur even at time
t="T.

Since we have to require the convergence at the time point ¢, we can use this additional
assumption to include the possible time-space realizations {¢]} x U} in the approximations for
g™ and the time-space realizations {t” ;} xU™ ; in the approximations for g"(-+§2, -+9)—g".
This constitutes the third (but minor) difference to the statement of Theorem 3.10. ]

In the remainder of this section we will sketch a proof of Theorem 3.24 which follows to the
largest possible extent the proof of Theorem 3.10 in Section 3.2.2. For this reason let us
suppose that the theorem’s assumptions hold. We should like to write for each 1 < k <n-—1
the transformed strategy g"( 1> u) at time ¢, as a convex combination of its two possible
successors g" (tﬁ,u + 5) at time ¢ as we did in (2.1), i.e. we should like to find for all
sufficiently large n € IN some probability weight function p" : A™(n — 2) — [0, 1] such that
forall1 <k <n-—1andall uecl | we have

9" (tiy,w) = p"(tg_y, w)g" (G u +0) + (1= p"(t5_y, ) 9" (8, u — ). (3.47)

If the weights p" (tzil,u) are sufficiently well-behaved, we can use at least basically the
same arguments as in the proof of Theorem 3.10 to derive the convergence statements of
Theorem 3.24 from (3.47).

However, the crucial issue in the general case is the derivation of a sufficiently well-behaved
weight function p'. The transaction losses induced by the large investor’s trading strategy
have already prevented us in Section 2.4 from obtaining an explicit recursive scheme for the
transformed strategy function, and so we cannot find a representation (3.47) where the weight
13”( 1> u) does not depend on the transformed strategy g™ (t}_,,u). Thus, our goal can only
be to find weights p"™ (tZ_l,u) forall1 <k <n-—1andu €U | which satisfy (3.47) and
which do not depend too strongly on the transformed strategy so that we can still control the
weights sufficiently well. Actually, it will turn out that such a weight p" (tz_l, u) depends
on the values g"(t}_;,u), g"(t},u ), and ¢g"(t}, ;,u) of the transformed strategy function.
With suitable controls on the influence of the transformed strategy at hand, the arguments
of the proof of Theorem 3.10 can then be transferred to this section’s general setting.

As a first step to the proof of Theorem 3.24 we write the fixed point equation (2.4.11) as a
difference equation which is seen to be the discrete analogue of the partial differential equation
(3.2). However, keeping our goal to obtain a suitable representation (3.47), we should like to
rewrite (3.2) in another form. Therefore let us suppose that « : [0,7] x IR — IR solves the
PDE (3.2) and satisfies (3.43). If we subtract

L4 (e
2 du \ Py (t,u)

v(t, u)
Ty (t, u)

Tt ) ﬂh@u»w@w)—%ﬁw) # (7t 0)) 1, 0)
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from both sides of (3.2), and divide the resulting equation by 1+ g(&% n(’y(t, u))fyu(t, u), we

can transform (3.2) into
1
Ye(t,u) + Eyuu(t,u) + b7 (t,u)yu(t,u) =0 for all (¢t,u) € [0,7] x IR, (3.48)

where the function b : [0,7] x IR — IR is defined by

N[

% (@u(ta ’LL) + @(ta u)/{(’y(tv u))’yu(t’ u)) - (@t(ta ’LL) + @(ta u)/{(/y(tv u))’Yt(tv u)) )

b (t,u) = Du(t,u) + B(t, w)r(y(t, )t )

Then we shall transform the fixed point equation (2.4.11) into a difference equation for the
discrete transformed strategy ¢” : A" — IR, which is a discrete analogue of the partial
differential equation (3.48).

If we look at the candidate limiting equation (3.48), it is clear that our difference equation
for ¢" : A" — IR should contain terms which approximate the transformed loss function
k: IR — IR of (3.1), evaluated at g", and also terms which approximate its first derivative. In
order to find those approximations, we fix the measure y and introduce some more notation for
all n € IN and any function p : A" — G := g(IR) (and hence in particular for p = g" = go&™).
We introduce the function .J : G — IR given by

J(21,22) = sgn(za — 21)k, (97 (x1), 97 (22)) for all 71,& € IR, (3.49)
and define for all (t,u) € A7 (n — 1) the shorthands
JE(p,t,u) = J(p(t — 6%,u), plt, u+5))

and
Jf (pst,u) = J(p(t,u+6), p(t + 62, u)).
For all (¢,u) € A}(n — 1) we shall use three different approximations of K/(EZ p(t, u)), where
S plt, ) = gpltyut-0) + pltu—6) for all (1,u) € Af.
For A} p(t,u) # 0, our approximations of /{(ZZ p(t, u)) are given by

Ji(pv 2 u) - J:E(,O, 2 u)

Kilot) =¥ Rtw
and
7y tyu) = LLOUF0) = 9l = ) T potow) = (plt — 0% ) = pltu = 9) T (p o).

62(An p(t, u))2

If A% p(t,u) = 0, we set K% (p,t,u) = K"(p, t,u) = (57 p(t,u)).
In order to approximate £’ (X7 p(t,u)), we define for all (¢, u) € A} (n—1) the two expressions

(p(t £ 62, u) — p(t,u—6))JL (p, t,u) + (p(t,u+8) — p(t £ 6%, w))J5 (p,t,u)
&3 (A7 p(t,u))3

)
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if A”p(t,u)# 0 and K} (p,t,u) = 3K/ (37 p(t,u)) £ (7 p(t,u)) otherwise. We shall see in

Lemma 3.25 that for all (t,u) € A%(n — 1) the term K7 (p,t,u) approximates the expression

%HI (22 p(t,u)) + 7(57 p(t,u)), respectively, where the function 7 : G — IR is given by

_ "7 (@)
F3 g~ (@)

Thus, the sum of the terms Ki (,0, t, u) approximates n’(EZ p(t, u))

7(z) /9(1 —0) (1 —A)(df) for all z € G.

Remark. The reader might be puzzled why we talk about approximations of e.g. K(EZ p(t, u))
and not of approximations for m(p(t, u)) The reason is simple: It follows from the definition
of A" and A} (n—1) in Definition 3.7 that (t,u) € A} (n—1) implies (t,u) ¢ A", hence p(t,u)
is not defined if p is only defined on the grid A™. On the other hand X p(t,u) is defined
for all functions p : A™ — IR, and if for all n € IN the functions p = p" : A" — IR can be
extended to the same smooth function on [0, 7] x IR, then the expression X7 p(¢,u) will give
an order O(6?)-approximation for p(t,u) as n — oco. O

With the definitions of K7 (p, t, u) and so forth in mind, we should assure ourselves that our
approximations really approximate those values which we claim that they approximate. This
will be carried out in the next lemma.

Lemma 3.25. Assume f € H4+ﬁ(]R) and that the measure p fulfills [ "% yu(df) < oo for

loc

some n > 0. Moreover, suppose that p € C’b2’4([0,T] X JR) 18 some function with a range
p([0,T] x IR) which is contained in G := g(IR). Then we have

K% (p,t",u") = s(p(t™,u")) + 0(52), (3.50)

K" (p,t",u") = k(p(t",u")) + O(6%), (3.51)
and

K% (p,t" u™) = %H/(p(t”,u”)) +7(p(t", u")) + 0(52) (3.52)

as n — oo uniformly for all sequences {(t",u”)}new for which (t",u") € A}(n — 1) for all
n € IN.

Proof. Let us set h = g~ ! to denote the inverse h : G — IR of the strategy transform
¢ : IR — IR, and introduce the integral function I : IR? — IR by

I(fl, 52) = /f((l - 9)51 + 052) (,u - )\) (d@) for all £1, fz € IR.

We will first show that the function J : G2 — IR of (3.49) satisfies

h(z2) — h(z1)

J(ml,xQ) = Ty — 71

I(h(:vl), h(xg)) for all 1,9 € IR with z1 # xs. (3.53)

For this purpose note that by the definition of g : IR — IR, £ — foé f(x) dx we have

9(&)—g&) 1 & ot B )
& —& - £ — & ‘, f(q)dq = /0 f((l 0)&1 + 952) df = /f((l 0)& + 952))\(d9)

for all £1,& € IR with & # &, since A is the Lebesgue measure concentrated on [0, 1]. Now
g : IR — IR is strictly increasing, hence the representation (3.53) follows from the definition




3.3. THE GENERAL CASE 145

of h = g~! and the local transaction loss rate function k, : IR? — IR in (2.4.6). Moreover, we
have I(£,€) = f(§) [ (1 — X)(df) = 0 for all £ € IR since p and X are probability measures,
and thus we may also write J(z,z) = 0 = 1/(z)I(h(z), h(z)) for all z € G.

Next we calculate the derivatives of the function I : IR*> — IR. Since f € H*(IR), since
there exists exists some 7 > 0 such that [ e 1(df) < oo, and since X is concentrated on the
compact set [0, 1], we conclude as in Theorem A.9.1 of Durrett (1996) that the function I is
four times continuously differentiable, and for 0 < k < 4 the partial derivatives with respect
to one variable only can be calculated as

ak

ok I(&1,62) = /Qkf(k) (1= 0)& + 0&) (1 — ) (dh)

and

k
885 I(&1,82) = /(1 — 0)F R (1= 0)&1 + 0&) (n— N)(dO) for all &,& € IR.
1

Since [1(p — A)(df) = 0, the first derivatives at the point (£,) become:
0
=1
1= 2€, (&1, &2)

2=

0 I(&1,8)

2 — 1(e) / 0(s— N)(d6) = f'(E)d(y) for all € € IR.

E1i§

§2=¢

Similarly we see from [62(p— A)(df) = [0 — 6(1 — 0) (1 — \)(df) that for all { € R

82

852 (51752

. (©) [ 62— Na8) = @)~ £(6) [ 01~ ) (1~ N)a),

and by analogy the second derivative with respect to the first variable becomes

32

(66|, _ = F©d + 1) / 0(1—0)(ji— \)(d#) forall € € R,
£2=

mm

After this preparatory work we can show the convergence results (3.50)-(3.52). Without loss
of generality we assume that A}l p(t", u™) # 0 for all sufficiently large n € IN. Let us start with
the expression K" (p,t,u), and take any sequence { (¢, u”)}new with (t",u") € A}(n—1) for
all n € IN. By the definitions of K" (p,t,u) and A p(t",u") we see that for all sufficiently
large n € IN

J(p, t" u™) — J (p, t", u™)
SA™ p(tn, um)
J(p(™ — 6%, u™), p(t™, u™ +8)) — J (p(t" — 6%, u™), p(t", u™ — b))
p(t™ um + 8) — p(t™, u™ — 9) '

K (p, t",u") =

=2

Since I : IR?> — IR is four times continuously differentiable, it is easily seen from the rep-
resentation (3.53) that J : G — IR is four times continuously differentiable as well. Since
p :[0,T] x R — IR is bounded, there exists some compact interval D C IR such that
p(t,u) € D for all (t,u) € [0,T] x IR. Hence we especially get that the maximum of the
third derivative of J : G> — IR in the compact set D? is attained, and by making a Taylor
expansion around the point p(t",u") we can conclude

L S (g (p(t", u™)))
KZ(p, ", u") = 25 ~J (1, 22) (g7 Hp(t", um)))

2\
9 +0(6%) =2

d(pn) +0(5%),

n1=p(t" ")
z2=p(t",u™)



146 CHAPTER 3. CONVERGENCE OF THE STRATEGY FUNCTIONS

as n — oo, uniformly for all sequences {(t”,u")}new with (t",u") € A}(n — 1) for all
n € IN. By the definition of x : IR — IR in (3.1) the leading term on the right-hand side can
be identified as x(p(t",u™)), hence the lower (minus) case of (3.50) is shown.

The statements for K% (p,t", u") and K"(p,t",u™) follow by similar means. Now let us
consider (3.52) and exemplarily show the convergence of K™ (p,t",u™). By definition, we

obtain for all (¢,u) € A}(n —1):

p(t — 527”) — p(t,u — 5)

(p(t,u+8) = p(t,u—4))°
p(t,u+0) — p(t — 6%, u)
(p(t, u+ 5) - p(t, U= 5))

If we expand the right-hand side of this equation around p(¢,u), and use J(x1,x2) = 0 and

K" (p,t,u) = J(p(t — 8% u), p(t,u+6))

5 (p(t = 6%,u), p(t,u— 9)).

%J(xl,xg) = —%J(wl,xg) for all x1, 20 € G with 1 = x9, we obtain
K" (p,t u)za—QJ(ml x2) +0(6%) asn — oo
T oay T moean) |
Zo=p n ,n

Now it can be shown that for all x € G we have

o 3 02
. — oh/ ()" ()51 .
(%% J(‘Tla m?) 1=c (l’) ( )ag (51752) §1zh(x)+( (:17)) 852 (51 52) &1=h(x)
To=x Eo=h(x) §2=h(z)
Since h'(z) = 0 1(90)) and h'(z) = ]{;(( (( )))) for all x € G, the formulas for @ 1(&1,&) and

I1(&1,&2) on the diagonal & = & lead to

852

o F'(hx)) (' ()" ﬂhm /

—J(z1,x = -2 d 6(1 do

53”71y (ﬁ@@» @) ) ) ),
and if we differentiate the function x : IR — IR in (3.1) and use the definitions of h : G — IR
and 7 : G — IR, the last line becomes +’(z) — 7(2). Thus we have derived the convergence
statement for K™ (p,t", u") as stated in (3.52). q.e.d.

Before we can rewrite the fixed point equation (2.4.11) into a discrete analogue of the par-
tial differential equation (3.48) we still need to introduce some more definitions to bring the
analogy out most clearly. For this reason, let us recall Definition 3.7, and by slightly extend-
ing this definition to functions which are defined on the whole time slab [0, 7] x IR, let us
define the discrete derivative A7 9 : A7 — IR as the discrete derivative of the restriction of
$:[0,T] x R — IR on A", i.e.

p(t,u+0) — p(t,u—9)

AT p(t,u) = 55 for all (t,u) € AY.

In a similar manner we also define

o(t,u+0) + w(t,u—0)

for all (¢,u) € AY.

Additionally, we will now define the operator A7, ; on the space of functions h : A" — IR by
setting for all (t,u) € A}(n —1)

Ay bt ) = 55 (Bt ut 8) = 2h(1 -+ 8%, w) + h(t,u— 5)). (3.54)

52
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and then Auu + 9(t, u) analogously. It is clear that A7, ; is a discrete version of the differential
operator 6 5.7 — 275 8

Now let us choose for each n € IN some k = k(n) and ¢ = i(n) with 1 < k < n —1 and
i € Ijp—1, and set (t",u") := (7, u U1 ). By the definition of A}(n — 1) in Definition 3.7 it
follows that (¢",u™) € A}(n —1). Observe that by the definition of u(kil) n (1.3.8) we also
have (tk, Ul 11 ) = (t",u"). We will omit the subscript n in ¢" and «" from now on, but
notice that the point (t,u) € A} (n — 1) changes for varying n € IN.

If we look back to Corollary 2.15 and recall our shorthands (1 3.12) and the definition of the

strategy transform ¢” : A" — IR in (2.4.5), we just bring fo(k Y f(x)de = g™(t — 6%,u) to
the other side of the equality sign to rewrite the fixed point equation (2.4.11) as

C p(tu+ ) —pt+6%u) [, .
© p(t,u+0) — (t,u—d) (9 (tutd)—g (t—62,u))
ot + 6%, u) — p(t,u — 6) . Dgn(t,u)
w(t,u+0) —p(t,u—9) (g (tu=0)=g (t_62’u)>+w(t,u+5/;—lu(t,u—5)‘

Here the spread D,in (t,u) of the transaction losses involved is given by (2.4.12).

Let us first consider the first two summands Which do not involve the term Dﬁn (t,u). Upon
using the equality ac—bd = 3(a+b)(c—d)+ 5(a—b)(c+d) and our definitions of the discrete
derivatives, we can rewrite this part as

AZu,t E(t u)

L"(t,u) :== (g”(t,u+5)—2g”(t—52, u) +g"(t,u—5)) + 52W

A" g"(t,u).  (3.55)

A
Notice that the fraction %wt(q;) is an 0(52) -approximation of W as n — o0.

If |[g" — y|lan = O(6*TP) as n — oo for some function v € Cb ([O,T] x IR), we also have
| AR g™ (¢, w) _%(t’“)HA? = O(6'"*+9) and

= 0(55) as n — oo.
AP

H252 ;- +0) —29"( ~ 5a')+9"('7'—5))—<%+;%u)’

Let us now suppose for a moment that we are in the linear setting of Section 3.2 such that
there are no implied transaction losses, i.e. that the term D,in (t,u) vanishes. Then we have
L™(t,u) = 0, and [|g" — v[lan = O(6°F) as n — oo and (3.55) imply that the function
v :[0,T] x IR — IR has to satisfy the partial differential equation (2.3).

For the general non-linear case, we now show that the term Dﬁn (t,u) can equally be expressed
in terms similar to the ones in (3.55), so that we can indeed rewrite (2.4.11) into a discrete
version of (3.48). To this end, we have to separate another term from Dﬁn (t,u) which also
involves the expression ¢"(t,u + 0) — 2g™ (t — (52,u) + g"(t,u — 9). For this purpose, recall
the definition of DY (t,u) in (2.4.12) and the function J : G2 — IR of (3.49). Then we can
rewrite

Dy (t,u)
P(t,u+9) — p(t,u — 9)

= T0(t,u) + T (¢, ), (3.56)

where the terms 77'(¢,u) and T3'(t,u) are given by

_ 2.
TP (t,u) = W(J(g"(t,u—l—é),g"(t—i—é% u)) (g"(t+6%u) — g"(t, u+6))

— J(g"(t, u—0), g" (t+06% u)) (gn(t+52, u) — g"(t, u—5))>
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and

1()(w(t,u—|—5)J( "(t—6%u), g"(t, ut6)) (g"(t, u+d) — g"(t—5%u))

Es
2 () = 35

—p(t,u—0)J(g"(t—56%u), g"(t,u+5)) (¢"(t, u—5) — g"(t— 0% u)))
With our approximations for x and ' on hand, we can find difference representations for
T (t,u) and T5'(t,u) which resemble (3.55). Let us first consider the term 77'(¢,u). By an
application of' the equality ac — bd = (a — b)(c + d) — ad + be, we can express it in terms of
K—?— (gn, t ’LL), K—Ti(gnv t) u) and AZu,t gn(tv U) from (354) by

Ty (1) = 62WAug (1) (K07 1 0) A 97 (1 10) + K™ 6, 0) (AT g7 (2, 0)) ).

The term T3'(¢,u) is slightly more complicated since it involve the two prices ¥(t,u + 9).
However, if we use the equality ac — bd = 3(a+b)(c — d) + 3(a — b)(c+ d) and the definition
of K™(p,t,u), we get

T (¢ u) :_W(J( "t ), g" (t, ut8)) (9" (1 ut5) — g (t—6% u))

— J(g"(t—0%u), g" (b u+6)) (g™ (t u—3) — g"(t—0% u)))
+ %521?”(9", t,u) (Au g"(t, u))2

The first line of the last equation has now the same structure as the term D1, and we can
again use the equality ac — bd = (¢ + d)(a — b) + bc — ad to achieve:

T (t,u) = ;iz(())K"(g" £ u) AT " (8, u) (9" ( u + 6) — 2¢™(t — 62, u) + g"(t,u — 6))

s La vt u)
752An n(t QKTL n ¢ u ’ K"(g™ t A " (t )
+ 5O 00)* (R ) + R AL )
Since we have L"(t,u) +T7(t,u) + T3 (t,u) = 0, we can divide this equation by §? to see that
it is equivalent to the difference equation

0= D"(t,u) s (" (t w4+ 8) — 207 (¢ — 62,u) + ¢"(t,u — ) + %Aﬁ ()N (), (3.57)

262

where the two functions D" : A}(n —1) — IR and N" : A}(n — 1) — IR are for all n € IN
and all (t,u) € AT(n — 1) defined by setting

D (t,u)—1+AW(t’u)K7(9,t,U)Aug (t,u)

and

Ar, () P(t + 0%, u)
A p(t, u) A y(t, u)

En ( ) n @(t+52’u) Snon n . n 2
+<A"(,)K (9" t, )+WK+(g,t,u)> (Aug (t,u))_

N"™(t,u) = + K™(g" t,u) A" g"(t,u) + K" (g"t,u)A? . g"(t,u
u + uu,t
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The expression D"(t,u) approximates the denominator of b7 (¢,u) in (3.48). Once we have
shown that D™(t,u) > 0 for all sufficiently large n, we can divide the equation (3.57) by
D"™(t,u) and obtain

1

2752 (gn(t7 U+ 5) - 29n(t - 52a u) + gn(t7 U — 5)) + AZ gn(tv U)Bn(t7 u) = 07 (358)

where B" : A?(n—1) — R is for all (t,u) € A} (n—1) defined as the ratio B"(t,u) = %g:gz;
The difference equation (3.58) is now easily seen to be a discrete version of the PDE (3.48): If
lg™ — || an = O(52+ﬁ ) as n — oo, then we could conclude from Taylor’s rule and Lemma 3.25

that uniformly for all (¢,u) € [0,T] x IR, we have

1
Ye(t,u) + i%m(t,lt) + O(éﬂ),

AL g™ (tu) = yu(t,u) + O(517F),
B"(t,u) = b (t,u) + O(5°),

1
g(g”(t,u +8) —2¢"(t — 6%, u) + ¢"(t,u — 9))

and it would also suffice to have (3.46) and ||g" — v[l.an = O(0?) as n — .

In order to show that D™ (¢,u) > 0 for all sufficiently large n € IV, note that by the definitions
of K"(p,t,u) we have K" (¢g"t,u) = (X ¢"(t,u)) if A% g"(t,u) = 0, and otherwise the
definitions of J : G? — IR in (3.49), and of g" = go &" : A" — IR in (2.4.5) lead to

n _ g (tu+8) — g™ (t — 6%,u)\ ku(E"(t — 6%, u), £ (¢, u+0))
K" (g 7t,U) = Sgn< g”(t,u + 5) _ g”(t,u _ 5) > (S}AZL g”(t,u)‘

<on g™ (t — 0%, u) — g"(t,u —6)\ ku(€"(t — 62, u), £ (t,u+6))
* & <gn(t¢u+5)_gn(t7u_6) ) 5‘Aﬂg”(t,u)| ‘

Hence Assumption D implies that K" is nonnegative as long as
g"(t,u—0) < g"(t — 6%, u) < g"(t,u+9)
or equivalently
EM(t,u—0) < EM(t— 6%, u) < E(t,u+9). (3.59)

Since p : [0,T] x IR — IR is nonnegative as well, we can conclude that D™(¢t,u) > 1 for all
(t,u) € A}(n — 1) if the strategy function " : A" — IR satisfies the interlocking property
(2.1.6), which in particular holds for the replication strategy of all star-convex contingent
claims.

The replication strategy of a star-concave contingent claim, however, satisfies

EM(t,u — 0) > €Mt — 0%, u) > £"(t,u+ 9) (3.60)

for all (t,u) € AT(n —1) and we get D"(t,u) < 1 for all (¢,u) € A}(n —1). If the contingent
claim is neither star-convex nor star-concave we might have (3.59) for some (¢,u) € A}(n—1)
and (3.60) for others. In all these cases we know that for all sufficiently small «, a continuous
solution to (3.2), (3.3) exists. Starting with this solution it can then be shown that for
some sufficiently large M € IN we can bound D"(t,u) > %5, uniformly for all n > M and
all (t,u) € A%(n —1). We will come back to star-concave trading strategies at the end of
Section 3.3.3.

The difference equation (3.58) can now also serve as the starting point to derive for all
sufficiently large n € IN suitable probability weight functions p" : A™(n — 2) — [0,1]
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which satisfy the representation (3.47): We can define such weight functions p™ by setting
P(t,u) = 5(1+ 6B™(t + 62, u)) for all (t,u) € A"(n — 2). If we multiply (3.58) again by 62,
bring ¢"(t — 6%, u) to the other side of the equality sign, and use the definition of A” g(¢,u)
we see that (3.58) is indeed equivalent to

g"(t— 6%, u) = 57 (£ — 6% u)g" (b, u+ 0) + (1 — 5(t — 6% ) g" (b, u — ),

for all (t,u) € AY(n — 1). Moreover, for all sufficiently large n € IN the range of p" is
indeed contained in [0, 1], since it can be inductively shown that HB”’ is uniformly

At (n—1)
bounded for all n € IN for which it is defined because of the boundedness of the solution
~v:[0,T] x IR — IR to (3.48) and the boundedness of its derivatives vy, Yyu, and ;.

Using now basically the same arguments as in Section 3.2.2 we arrive at the representation

g (tR_y u) — (R g, u) = PRy, u) (9" (th, u + 6) — (], u + 0))
+ (1= p"(tp_ 1, w) (9" (th u — 8) — y(t}, u — ) + O(8%),

as n — 0o, uniformly for all 1 <k <n —1and u € U}’ |, and this allows us to argue again
that the convergence of g™ immediately before maturity implies the convergence of g™ to ~
in all prior time points. Thus we get (3.45). Similarly, we can transfer the arguments used
to derive (2.15) to the general case with transaction losses in order to prove (3.46), but an
exact proof becomes technically cumbersome.

This ends our outline of the proof of Theorem 3.24.

3.3.3 Convergence of the Strategy Functions

Having obtained a convergence result for a sequence of transformed strategy functions, we can
now use the strategy transform to transfer that convergence result back into a convergence
statement for the associated sequence of original strategy functions. We first state the non-
linear final value problem for the limiting strategy function. Existence and uniqueness results
for this problem are immediately derived from the corresponding results for the limiting
transformed strategy. Then the convergence result for the strategy functions follows as a
corollary to Theorem 3.24.

In order to rewrite the final value problem (3.2), (3.3) for the limit ~y : [0,7] x IR — IR of the
transformed strategies g" : A" — IR into a final value problem for the limit ¢ : [0, T]x IR — IR
of the strategy functions £™ : A" — IR we proceed as in Section 3.2.1, and therefore recall
the strategy transform ¢ : IR — IR of Definition 2.12. Since we have g" = go&™ for all n € IN
we obtain for the limits

o(tu)
Yt u) = g(plt,u) = /0 F(@)de for all (t,u) € [0,T] x IR. (3.61)

If we now apply Assumption B, the quasi-linear partial differential equation (3.2) can be
rewritten in terms of the limiting strategy function ¢ as

1d e (t,u,go(t,u))
Sot(t/u) + 5% <<1+2d(u)dm(t,u,¢(t,u))(’pu(t#)> (;Du(tvu)>

_ " wt(t,u,cp(t,u)) _l%wu(t,u,go(t,u)) wg(t,u,go(t,u)) "
= ult )<wu(t,u,so<t,u>) 2 (tup(t) (”M(“)wu(t,um(t,u))*”“(t’ ))>

It is obvious that (3.62) generalizes the linear PDE (2.5), and we can directly state the
non-linear analogue of Proposition 3.9:

(3.62)
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Proposition 3.26. In addition to the Assumptions B, C, and D suppose that f € Hl’f)tﬁ(]R)
for some k > 2 and 3 € (0,1). Then there exists a solution vy € H%(k“'ﬁ)’k*'ﬂ([O,T] X R) of
the final value problem (3.2), (3.3) with scaling parameter o = 1 if and only if there exists a
solution ¢ € H%(kJ“B)’kJrﬁ([O,T] x IR) of (3.62) with final condition given by o(T,u) = ((u)

for all u € IR, and two such solutions are connected via (3.61).

Remark 1. Note that we need one more derivative of f : IR — IR than in Proposition 3.9, since
the derivative of the transformed loss function x : IR — IR contains the second derivative of
f:IR— IR. O

Remark 2. Of course, we can also rewrite the PDE (3.62), which is given in divergence form,
into a PDE of a form similar to (3.48). For this purpose, let us define the drift coefficient
b? :[0,T] x R — IR for all (t,u) € [0,T] x IR by

A (hult, u, 0t u)) 4 2d(p) et u, o(t, u)) o (t, u))
Uty u, o(t, w)) + 2d () e (L, u, o(t, u) ) pu(t, u)
Wt u, o(t w) + 2d()ve(t, u, o(t, u)) et )
Yu(t, u, p(t, u)) + 2d(p)e(t, u, p(t, u))pu(t, u)

1
b (t,u) = 2

Then it can be shown by performing the same operations which led to (3.48) that the non-
linear PDE (3.62) can be rewritten as

1
or(t,u) + igpw(t, w) + b9 (t,u)pyu(t,u) =0 for all (t,u) € [0,T] x R,

and this representation indeed resembles the form of (3.48). O

We consider once again the final value problem for (3.62) with the final condition chosen
sufficiently small, and hence for fixed ¢ : IR — IR we look at solutions ¢ : [0,7] x IR — IR to
the PDE (3.62) which satisfy a boundary condition of the form

o(T,u) = al(u) forallue R (3.63)

for some @ € IR which is sufficiently small. The parameter & serves the same purpose as
the scaling parameter « of (3.3): If |@| is chosen sufficiently small, the norms H fOO‘C(u) f (:U)H

and H % OdC(u) f(z)dx H become small enough so that the final value problem (3.2) with final
condition (T, u) = OOCC(“) f(x) dz has a solution.

In order to state this in exact terms, let us define the bounds b and B on the range of
égp :[0,7] x IR — IR by analogy with the bounds b and B by

b= min{O,uigg%C(u)} and B = max{(),sgg((u)}.

Last but not least, let us also introduce the function i; : IR — IR as an analogue of L/ («)
by setting

/()
f(€)

_lal

[ab,aB]

‘ 4/
a€ F()

[ab,aB]

L (&) := |2d(p1) | max { H } for all & € IR. (3.64)

Then we can use Proposition 3.18 and its proof to derive a similar statement for the final value
problem (3.62), (3.63), which again says that for sufficiently small values on the boundary
{T} x IR, the final value problem has a solution:
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Proposition 3.27. In addition to the Assumptions B, C, and D suppose that the two com-
ponents ¥ and f of 1 belong to the Holder spaces ﬁ1+%ﬂ’3+5([0,T] X IR) and Hi;’g(ﬂ%),
respectively, and suppose that ¢ € H**P(IR). Then there exist some ai,ds € IR with
a1 < 0 < ag such that for all & € (a1,a2), the final value problem (3.62), (3.63) has a

solution ¢ € Hl“'%ﬁ’“ﬁ([o, T] x IR) which satisfies

121% al(v) < p(t,u) < sup a(v) for all (t,u) € [0,T] X IR (3.65)
v veEIR
and
2Lo L. (& inf u(t ~1. 3.66
EA(@) it p(t) > (3.66)

Moreover, for all & € IR there exists at most one solution ¢ € C’;’Q([O,T] x IR) of (3.62),
(3.63), which satisfies (3.66) and p(t,u) € [di), dé] for all (t,u) € [0,T] x R.

Remark. In Proposition 3.18 we had to limit the range of « to (p1, p2), since the transformed
loss function k : g(JR) — IR is only defined on g(IR), which might be a true subset of IR.
In (3.62) such a problem cannot occur, since f : IR — IR is defined for all £ € IR, hence we
can state for example the uniqueness result for all @ € IR. The definition of L’ (&) can be
justified if we once again run through the proof of Proposition 3.18 and adjust it in order to
prove the existence of a solution of (3.62), (3.63) directly. As an indication why we have to
replace L’ () by L. (&), let us note that for sufficiently small || > 0 the expression L’ («)

of (3.4) will be dominated by Lyx(a) = ||&/[ap,aB] = H%H[ab B Likewise, for small
|&| > 0 the maximum in the definition of L, (&) will be attained by the term HfT/H Since

Yu(t,w) = f(pt w)eu(t,v) for all (t,u) € [0,T] x IR, a comparison of (3.66) with (3.6)
makes the different denominator at least plausible. (I

As in Section 3.2.3 we can now rephrase the convergence statement for the transformed
strategy functions g" : A" — IR of Theorem 3.24 into a statement in terms of the strategy
functions " : A" — IR and their limit ¢ : [0,7] x R — IR:

Corollary 3.28. Let (¢, 1) be a large investor price system which satisfies Assumptions B, C,
and D. Moreover, suppose that the tlwo components ¥ and f of the equilibrium price function
1y belong to the Hoélder spaces H2+56’4+B([0,T] X R) and H4+’6(IR), respectively, and that

loc
there exists somen > 0 such that [ e u(df) < co. If the function ¢ € H2+%’8’4+ﬁ([0, T] x]R)
solves the final value problem (3.62), (3.63) and satisfies 1+2d(ﬂ)%g@u(t, u)>e>0
for all (t,u) € [0,T] x IR, and if there exists some L € IR such that for all sufficiently large

n € IN and for k € {n —1,n}
lem(t ) = otk )l < L5, (3.67)

then the discrete strategy functions " : A — IR converge to the function ¢ : [0,T] x IR — IR
in the sense that

1€ = ¢llan = O(6?) (3.68)

and

= O(52+’3) asn —oo. (3.69)

2 Am(n—1)

1
(-4 0%, 4+ 0) — " F by, — 62 <<pt + sm)
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Remark. In view of the first remark following Theorem 3.24 it is possible to replace the final
condition (3.67) by the combination of the two conditions [|€" (¢}, -) — o (t7, )Hun < Lé&*
k

and HAZ &ty ) — A (¢, )Hu]? < Lo**B for all k € {n —1,n}. O

The convergence result of Corollary 3.28 not only proves the convergence of a sequence of given
strategy functions £ : A" — IR. In combination with the existence result of Proposition 3.27,
it is also a helpful tool if we want to construct discrete replicating strategies for contingent
claims (fn, bn) as we did in Section 1.4, at least if n is sufficiently large.

To illustrate this, let us come back to the replication of star-concave contingent claims of
Section 1.4.4, and take some nonincreasing function ¢ : IR — IR. Supposing the assumptions
of Proposition 3.27 to hold, we choose some & < & < &g, and denote by ¢ : [0,7] x R — IR
the solution of (3.62), (3.63). If we want to replicate a discrete star-concave contingent claim
(fn,bn) with &, = dC(UZZ), we start by defining &" (tﬁ, ) U — IR by £ (tﬁ,u) = a((u)
for all w € U}, and use Proposition 1.33 to calculate the function 5"( 1 ) Ul — IR,
which gives us the necessary stock holdings for a self-financing replicating strategy at time
»_1- Then it can be checked whether for all sufficiently large n € IV this function satisfies
H&”( no ) — ety )Hu" . < L§**P for some L > 0. For example, this condition will

hold if b, = b™ (¢, U%) is chosen as

b" (tzvu&') =b5 — Z <(¢Z(j+1) - ‘P?n—nj)su (tZa“Z(jH)’SO?n—nwSOZ(Z'H))
T (3.70)
+ (Qo?n—l)j - 902(;’—1))5# (th“Z(j—nv ‘P?n—l)z‘a %%‘—1)))

for some bf € IR, where in analogy to the shorthand &}, = §”( Z»“Zz) of (1.3.12) the
expression 3, is a shorthand for gp( Z,uﬁz) for all 0 < k < n and ¢ € Z;. Namely, if
& = {”(tZ,Uﬁ) and b, = b"(tZ,U,’{) is chosen as in (3.70), then the definition of (fn,bn)
implies that {Fn_l)i = @?n_l)i solves the fixed point equation (1.4.10) for all £ = n and all
1 €L, 1.

If the trading strategies " : A" — IR from time tj = 0 up to time ¢}, = T exist for all
sufficiently large n € IN, we can apply Corollary 3.28 to prove the convergence of those
replicating strategies towards the continuous-time solution ¢ : [0,7] x IR — IR. Moreover,
since in particular the derivative ¢, : [0,7] x T — IR is bounded, we can conclude that for
any € > 0 and all sufficiently large n € IN we have HAZ §"HA,11 < nguH + €. This bound

on the derivative can now serve as an a priori estimate on HAQ '3 when we construct a

g
star-concave replicating trading strategy as in Section 1.4.4.

3.4 The Limit of the Real Value Functions

For the convergence in distribution of our discrete binomial large investor models we shall
require in Chapter 4 not only the convergence of the discrete strategy functions, but also the
convergence of the associated real value functions towards a continuous-time limit. Such a
convergence statement for the real value functions is derived in Section 3.4.1. For a general
price system (1, ) with transaction losses this convergence result draws on the convergence
of the discrete strategy functions as shown in Section 3.3, and like the limit functions of the
convergence statements in Sections 3.2 and 3.3, the limit function @ is given as the solution
to a final value problem. In the presence of transaction losses the final value problem for v
also depends on the limit ¢ of the strategy functions. In Section 3.4.2 we derive minimal
regularity assumptions which simultaneously guarantee the existence of solutions to the final
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value problems for ¢ and ©. The limit strategy ¢ is seen to be a transform of the spatial
derivative of v. Especially, in the absence of transaction losses we use this relationship to
weaken the regularity assumptions on the boundary condition for ¢ which we had to impose
in Sections 3.2 and 3.3, so that our limit model can cope for example with a European call.
In Section 3.4.3 we introduce a new parametrization for v in order to compare the final value
problem for the limiting real value function with the corresponding final value problems in
standard small investor models like the Black-Scholes model and small investor models with
proportional transaction costs.

Some results of this section could be presented in more detail, and in particular the conver-
gence of the value functions could be proved rigorously by using tools of Section 3.2 and 3.3.
However, we do not always go into every detail and rather give an overview of possible exten-
sions and immediate consequences of our model, in order to quickly come to the convergence
results in Chapter 4, where we show convergence in distribution of our discrete binomial
models.

3.4.1 Convergence of the Real Value Functions

In this section we show the convergence of the discrete real value functions along the lines of
the convergence statements for the (transformed) strategy functions in Section 3.2 and 3.3.
It is seen that the limit of the real value functions satisfies a linear final value problem. If the
price system does not exclude transaction losses, this final value problem involves the limit
o of the strategy functions, and in noticeable contrast to small investor models, we can only
show the convergence of the discrete value functions if we likewise suppose the convergence
of the discrete strategy functions.

Again we suppose that the price system (1, ) satisfies Assumptions B and D. In order to
get started and quickly come to the convergence result for the real value functions, we will
also suppose Assumption C, though we can slightly relax that assumption if (¢, 1) does not
induce any transaction losses. In particular, we recall from Lemma 2.3 that Assumption C
implies Assumption A for all sufficiently large n € IN.

We now assume that for each n € IN the large investor replicates some contingent claim
(&n, bp) by using some path-independent self-financing portfolio strategy (£",0") with asso-
ciated strategy function £" : A" — IR and cash holdings function 0" : A™ — IR as given by
Definition 1.23. We have already shown in great detail in Sections 3.2 and 3.3 under which
conditions the strategy functions {£"},emn converge to a limit function ¢ : [0,7] x R — IR.
In this section we give additional conditions on the convergence of the cash holdings functions
at maturity, such that the sequence {0"},cn of real value functions converges towards a limit
function v : [0,T]x IR — IR as well, where for each n € IN the real value function 2" : A" — IR
was introduced in Definition 1.28 by

" (t,u) ="t w)S (¢, u, & (¢, u)) + b"(t,u) for all (t,u) € A™

For all sufficiently large n € IN (for which Assumption A holds) we have shown in Corol-
lary 2.14(77) that the real value function can be recursively calculated from its range of final
values by

" (t,u) = p(t, u) <17”(t + 8% u46) + & (t+ 6% u+ 6,8, u))) W
4.1
+ (1 —p"(t, u)) <T)" (t + 52, U — 5) + cﬁn(t + 52, u+6,&"(t, u)))
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for all (¢,u) € A"(n — 1), and for all those (¢,u) we have derived the representation
o(t+0%u+8) —v(t+ 6% u—6)
P(t+6%2,u+0) —p(t+ 6%, u—9)
N cin(t + 0%, u+6,8"(t,u)) — c,in(t + 0%, u—6,8"(t,u))
P(t+6%2,u+0) —p(t+6%,u—9) ’
for the transformed strategy function g" = go ™ : A" — IR. Note that the s-martingale
weight function p" : A"(n — 1) — IR and the shorthand cz used in the two representations
were defined in (2.1.10) and (2.1.2), respectively.

Let us now take some function ¢ : IR — IR and some constant « € IR so that the limiting
strategy function ¢ : [0,7] x IR — IR solves the final value problem

prltu) + 2d<<1+2d< >M¢““’“)>%(t’“)>

gn(tv u) = g(gn(ta u)) =
(4.2)

du Yo (tu,p(t,u)) (43)
_ t u,o(t u 1 duwu (t u,p(t, u)) e (t,u,ap(t,u)) .
= pult ( (tu,(t,u)) 2 4y (tu,(t,u)) (1+2d(,u) Yo (tu,p(t,u)) gou(t,u)>
for all (¢,u) € [0,7) x IR with final condition
o(T,u) = al(u) for all u € IR, (4.4)

and let us set again v = g o ¢. From the discussion in the previous section we know that
under these conditions ~ solves the final value problem (3.2) with v(T,u) = [ ¢ f(x)dx
for all u € IR. Now fix some by € IR and define the function b : IR — IR by

u ()
b (u) = bg — /0 w(T, u) d(/o f(2) dz) for all u € IR. (4.5)

It turns out that under suitable conditions the discrete real value functions {0"},cn will
converge towards the solution v : [0,7] x IR — IR of the linear final value problem

Bt u) + = <1+ w(f “)) (w(tu))%(t,w) B (£, 1)

_ _ (4.6)
Btw) 1 Baltw) (| Btw)
Pult “)< Son R von ) GE~ o (GRS >>>
for all (t,u) € [0,T) x IR, where the boundary condition at time T is given by
o(T, u) = al(w)S(T,u,al(u)) + b*(u) for all u € IR. (4.7)

If the transaction loss function x does not vanish, (4.6) depends on the limiting strategy
function ¢ via 7y = gop. Moreover, we shall see that v(t,u) = % for all (t,u) € [0,T]x IR.
Hence ~y, which we already know, is also completely determined by the solution v of (4.6),
(4.7). If we plugged in this relation in (4.6), we would obtain a non-linear final value problem
for v. Due to our knowledge of «, however, we only need to solve the linear problem (4.6),
(4.7).

Remark. The final condition on the right-hand side of (4.7) can be interpreted as the sum of
the loss-free liquidation value a¢(u)S (T, u, a¢(u)) of ¢(T,u) = a((u) shares of stock and an
amount of b*(u) in cash. If ¢ € CL(IR), we can rewrite (4.5) as

b (u) = b — a/ou@/)(T,ﬂ, o (@) Cu() da for all u € IR,

and (3.70) becomes the limit of (4.5) as n — oc. O
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The next lemma gives fairly general conditions under which the function b* : IR — IR is
well defined and under which the final value condition (4.7) is continuous in w. It will soon
become clear in Section 3.4.2 why we allow ¢ to be non-continuous, despite the fact that we
have required much more smoothness for it in Sections 3.2 and 3.3.

Lemma 3.29. Assume thatp € C%'([0, T]x R) and f € C(IR), and suppose that ¢ : IR — IR
is bounded and can be written as ¢ = (% + (%, where (% is absolutely continuous with respect
to the Lebesque measure on IR and where (% consists only of (left and right) jumps. Then
the function b® : IR — IR of (4.5) is well-defined, and the final condition for v in (4.7) is
continuous in u and differentiable in all continuity points of .

Proof. We first have to show that the Riemann-Stieltjes integral in (4.5) is well-defined for
all v € IR. Therefore, we have to show that, like the function ¢ : IR — IR, the function
v : IR — IR, given by ¥(u) := OO‘C(U) f(2)dz for all u € IR, can be written as the sum of
an absolutely continuous and a pure jump function, i.e. that it does not contain a singularly
continuous part. To limit the notational burden, let us assume without loss of generality that
¢? is right continuous. The pure jump part 3¢ : IR — IR of 7 is given as

o ac(0) ol (@) - af(a) tor
3% (w) .—/0 f(z)dz + Z / f(z)dz Z / f(2)dz for all u € IR,

0<a<u ” (a=) u<a<0” a¢(a=)

where of course (at least) one of the two sums is always empty. For the remainder term
7% IR — IR, given by 5%(u) := J(u) — 5%(u) for all u € IR, we obtain from considering the
casesogvgu,vgoguandv<u<0separately

e - = [ ) w—»EZt/

C(U) v<u<u
ad(u)
/cxg(y) f(z)l{m\U%R[ag(m),ag(ﬁ)}}(z) dz forall 0 <wv <u,

where we again set [a((a—),a((n)] := [a((n), a¢(a—)] if a((ua—) > a((@). The function
¢ : R — IR is bounded, thus there exists some R > 0 such that [(|| < R, and since
f IR — (0,00) is continuous, f :=max|_g g f(z) exists as well. Hence we get
a(u)
1
{7\ Uyemlactamac@)} @

77 w) = 3(v)| < F 2)dz| = Flal[¢**(u) — ¢**(v)].
By definition, a function z is absolutely continuous, if for any € > 0 there exists some § > 0
such that Y7 [2(;) — 2(y;)| < ¢ for every finite collection {(z;,y;) }19.3” of non-overlapping
intervals with > 7" ;| |z; — y;] < . Thus it is clear that the absolute continuity of (*¢ implies
the absolute continuity of 4%¢, and hence 4 : IR — IR can indeed by written as the sum
7 = 5% 4+ ~4% of an absolutely continuous function 7%¢ : IR — IR and some pure jump part
7% : IR — IR. Since the function 7 : [0, T] x IR — IR, (t,u) + ©(t,u) is continuous in u, the
Riemann-Stieltjes integral in (4.5) is well defined.

By partial integration we then obtain

b*(w) = b3 — B(T,u) /0 e () dz + (T, 0) /0 2)dz + / / )f(2) dz da,

and by (2.4.2) the final condition (4.7) becomes

o(T,u) = a(0)S(T,0,a((0)) + bf + // )f(2)dzdu for allu € R, (4.8)

which is of course continuous in v and differentiable in all continuity points of (. q.e.d.
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If the strategy function ¢ : [0,7] x IR — IR and hence also the transform v = g o ¢ is
known, the partial differential equation (4.6) is linear, hence sufficient conditions for the
existence of uniqueness of solutions can be derived from classical arguments. For example,
we might basically use the same arguments as for the final value problem (2.3), (2.4) to
conclude from Theorem IV.5.1 in connection with the discussion on p. 389 in Ladyzenskaja
et al. (1968) that for any k > 2 and 3 € (0, 1) the final value problem (4.6), (4.7) has a unique

1 _
solution ¥ : [0,7] x IR — IR from the class HQ(k—w)’kJrﬁ([O,T] x IR) for which Hg—uH < 00

loc

< oo for z € {t,u,uu} if the functions ¥, f, and ¢ belong to the Holder spaces

and ‘ %
ﬁ%(k+6)’k+ﬁ([0,T] x R), H*"*F(IR), and H%(”Hm’k*Hﬂ([O,T] x IR), respectively. Note
that we need not state an extra condition for the boundary, since a¢ = (7, -) and hence
al € HF"B(IR) is already implied by ¢ € H%(k_l*'ﬂ)’k_Hﬁ([O,T] X jR)

La+p)4
Especially, a unique solution v € H foi +8). +ﬁ([O,T] X R) exists under the assumptions of

Corollary 3.28, where we have stated conditions which guarantee that the convergence of
the strategy functions £" : A" — IR at the times t”_; = T — ¢% and t" = T implies their
convergence towards ¢ on their whole domain.

If we now additionally suppose that the cash holdings functions 6" : A" — IR of Defini-
tion 1.23 converge to the function b at time 7', at which for each n € IN the cash holdings
function just describes the cash position b, prescribed by the replicated contingent claim
(&n, bp), then by the definition of o™ this is equivalent to additionally supposing that the final
values v"(T', -) : U} — IR of the real value functions converge to v(7T, -) : IR — IR, and we
can show the following result:

Proposition 3.30. In addition to the assumptions of Corollary 3.28 suppose that the final
values b"(T, -) : U — IR of the sequence {b"},ev of cash holdings functions b" : A" — IR
converge to the function b* : IR — IR of (4.5) in the sense that

Hb"(T, S) = ba‘ < K62 for all sufficiently large n € IN. (4.9)

n
Uy

Then the real value functions v : A" — IR converge to the solution v : [0,T] x IR — IR of
(4.6), (4.7) in the sense that [|0" — 0| a4n = O(6”) as n — oco.

Remark. A proof of Proposition 3.30 is based on the recursive formula (4.1) in combination
with the representation (4.2), which both hold for all sufficiently large n € IV, namely for
all those n € IN for which Assumption C implies Assumption A, and the proof follows the
ideas of Theorem 3.10 and Theorem 3.24. Especially note that by the remark following
Corollary 2.14 and the definition of the function function J : G? — IR in (3.49) we have

cﬁn(t—f—éz,uié, &' (t,u) = (g"(t+52,u:l:é)—g”(t,u))J(g”(t,u),g”(t—|—52,u:t(5))@(t—l—52,u:|:5)

for all (t,u) € A"(n — 1) and hence the expansions of J in Lemma 3.25 yield that the
transaction loss term in (4.2) vanishes if n — oo, and therefore

_ Ty(t,u)
y(t,u) = Tultn) for all (t,u) € [0,T] x IR. (4.10)

And indeed, if we differentiate the PDE (4.6) with respect to u, divide it by 7, (¢, u), and use
(4.10) to replace the derivatives of v, : [0,7] x IR — IR by derivatives of v : [0,7] x R — IR,
we arrive at the PDE (3.2). O
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3.4.2 The Final Value Problems for Strategy and Real Value Revisited

In this section we derive minimal regularity assumptions which simultaneously guarantee the
existence of a solution ¢ to the final value problem (4.3), (4.4) and of a solution v to the final
value problem (4.6), (4.7). Our findings will indicate advances which can be obtained in the
continuous model at almost no additional efforts.

We are guided by the results of the Black-Scholes model, where f = 1. In such a model the
value function v : [0,T] x IR — IR of a unit European call is continuous, but the final strategy
function ¢ : IR — IR, u — ((u), which describes the required stock holdings at maturity T,
jumps from 0 to 1, i.e. from not holding the stock at time 7" to holding it, depending on the
fundamental value u. However, all the existence results for solutions ¢ : [0,7] x IR — IR to
the final value problem (4.3), (4.4) which we have presented in Sections 3.2 and 3.3, require at
least continuity of the function ¢ : IR — IR. Hence we are especially interested in weakening
our conditions on the continuity of ¢ in order to include the European call in our analysis.
We will now introduce a tuple (oz( , bo‘) of functions which describes a European call of «
shares of stock in the continuous model:

Ezample 3.1 (European Call). Let the price system (1, 1) satisfy Assumption B and suppose
that the two components ¥ and f of 1 belong to the spaces 0071([O,T] X JR) and C(R),
respectively. Let K € IR be some strike price so that

~1
lim w(t,u) _(/ f(0a) d9> K < lim 9(t,u).

Then there exists some u* € IR such that (T, u* (fo f(0a) df) ™~ 1K, and by (2.4.2) the
real value aS(T,u*, ) of a position of o shares of stock satisfies

a 1
aS(T,u*, a) = p(T, u*)/o f(z)dz = a/o (T, u")f(fa) df = aK.

Let us now define the functions ¢ : IR — IR and b* : IR — IR by ((u) = 1{,>,+) and

u ac(a)
b (u) = —ak — / w(T, u) d(/ : f(2) dz> for all u € IR,
u* 0

respectively. Since the function v +— foaC(u) f(z)dz is a pure jump function with only one
jump from the left at u*, we have

U a¢(a) = x\ [ _ i *
/* w(T,ﬂ)d(/O ¢ £ dz) _ {0 P(T,u*) [y f(2)dz = —aK éz i Z* (411)

and hence b* simplifies to b%(u) = —aK 1>y} The tuple (a,b*) is a (functional) descrip-
tion of a European call of (long) a shares of stock in the continuous limit model. In order to
see its connection to the European call which we have introduced in the discrete setting of
Example 1.7, note that the definition of ¢ implies

if u<u*

o (w)S(T,u, ol (u)) = {ZS’(T u,a) if u > ut.

The real value of the European call at time T can therefore be written as

o(T,u) = al(u)S(T,u,a(u)) + b%(u) = a(S(T,u,a) — K)* forallue R,  (4.12)
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where the last equality employs the fact that » : [0,7] x R, (¢t,u) — ¥(t,u) and hence
also S : [0,T] x R x IR, (t,u,&) — S(t,u,&) is strictly increasing in u. Now (4.12) reflects
the real value o(T,U?) = V* = a(S‘(T, Uur o) — K)+ of the European Call in the discrete
Example 1.7.

Note that we would obtain the same real value v(7T',u) if we set ((u) = 1{,5,+) and

. o((3)
b () = — / (T, a) d( /O £(2) dz> = 0Klpeyy forallue R

However, the first choice of ¢ corresponds to the large investor’s final stock holdings &, for
the discrete European call of Example 1.7. g

For our goal to state minimal conditions which simultaneously guarantee the existence of
solutions to the final value problems for ¢ and o, we first consider price systems (v, u)
without transaction losses. In this case the final value problem (4.6), (4.7) for v does not
depend on the solution ¢ (or on its transform v = g o ¢) to the final value problem (4.3),
(4.4). Thus, we can first obtain an existence result for the final value problem for ¢ and then
look for a solution ¢ to (4.3), (4.4). We find that the function ¢ : IR — IR in the boundary
condition (4.7) need not be continuous in order to guarantee the existence of a solution v to
the final value problem (4.6), (4.7). Once a solution to that final value problem has been
found, this solution can be used to construct a solution ¢ to (4.3), (4.4). In particular, our
results will allow us to treat European calls.

We suppose again that Assumptions B and C hold. In addition to that, we suppose

Assumption E. The transformed loss function k : g(IR) — IR of (3.1) vanishes, i.e. we
have d(p)f' (&) = 0 for all £ € IR. Moreover, suppose that the two components p and f of

1 belong to the Holder spaces ¥ € .FAIH%ﬂ’BJrﬁ([O,T] X ]R) and Hll()—gﬁ(ﬂ%), respectively. The
function ¢ : R — IR for the final condition is bounded and can be written as ¢ = (% + (4,
where (% is absolutely continuous with respect to the Lebesgue measure on IR and (¢ consists

only of (left and right) jumps. The parameter o € IR is some arbitrary real number.

If Assumptions B, C, and E hold, we can conclude by the same sort of arguments as in
Lemma 3.8 that the final problem (4.6), (4.7) for the continuous benchmark price function
v :[0,7] x IR — IR has a unique solution v : [0,7] x IR — IR which belongs to the class

1
HllotQB’ngﬂ([O,T) x IR) N C*°([0,T] x IR). For this solution ¥ we can define the function
v:[0,T] x IR — IR by
y(t,u) = Ou(t, u) for all (t,u) € [0,T) x IR (4.13)
) @u(t, U) ) ) .

and

ag(u)
YT, u) = / f(z)dz for all u € IR. (4.14)
0

Note that the representation (4.8) implies that o(T, -) is almost everywhere differentiable
and
Uy (T, u)

V(Tv u) = =

———=  for all continuity points of { : IR — IR. (4.15)
Pu(T, u)

1
Then v € Hllc,tQB’Hﬁ([O, T) x IR) solves the linear final value problem (2.3), (4.14). If we now

set ¢ := g~! oy we can conclude as in Proposition 3.9 that ¢ solves the final value problem
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(2.5) with the (not necessarily continuous) final condition ¢(7,u) = a((u) for all u € IR, and
this solution is unique in the class 01’2([0,T ) X lR). Thus we have found weaker existence
conditions than the ones stated in terms of the transform v in Lemma 3.8. Moreover, it
still follows from a maximum principle (Corollary I.2.1 in LadyZzenskaja et al. (1968)) for the
linear parabolic final value problem (3.2.3), (3.2.4) that the range of 7 is determined by the
final condition, i.e. we still have

a¢(a) ag(a)
uig]%{ / f(x)dm}gv(t,u)ﬁsg]%{ / f(x)dx},

and by the monotonicity of the strategy transform g : IR — IR, z — fox f(2) dz it follows that

inf ad(u) < ¢(t,u) < sup al(u) for all (t,u) € [0,T] x IR.

el @R
Assumption E has the great advantage that it allows us to extend the continuous-time model,
which we derived as a limit of our discrete models, so that we can include a European call or
other “options” for which the prescribed stock holdings at maturity can still be represented
as a function of the fundamentals at that time, but for which this function is either not
differentiable or even not continuous. The drawback, however, is that Assumption E restricts
the class of price systems (v, u) drastically, since it only allows for price systems without
transaction losses. If we want to include transaction losses in our analysis, we cannot expect
the same freedom in choosing ¢ any more: In this case the final value problem (4.6), (4.7)
depends via v = g o ¢ on the solution ¢ of the final value problem (4.3), (4.4), and therefore
we first have to find a solution ¢ to the later problem. We note that minimal conditions
for the existence of a solution to the non-linear final value problem (4.3), (4.4) were given in
Corollary 3.22, though they were only stated in terms of the transformed strategy function
v = g o . It turns out that these conditions are also sufficient to guarantee the existence of
a solution to the final value problem (4.6), (4.7). Hence, in the general case with transaction
losses, we suppose in addition to Assumptions B and C:

Assumption F. The transaction loss function k : g(IR) — IR of (3.1) is nonnegative,
i.e. d(p)f'(§&) > 0 for all £ € IR. Moreover, suppose that the two components ¥ and f of
1 belong to the Holder spaces i € ﬁ1+%ﬂ’3+ﬁ([0,T] X R) and Hitﬁ(ﬂ%), respectively. The
function ( : IR — IR for the final condition belongs to the class C’l} (R) The parameter o € IR
is sufficiently close to 0 so that a solution ¢ : [0,T] x IR — IR to the final problem (4.3), (4.4)
exists and so that this solution satisfies the constraint

wf (t’ u, 80(75, u))

L2400 o)

ou(t,u) > e  for all (t,u) € [0,T] x IR and some £ > 0.

L2 (10, T) x R) 1 021 (10,T) x R), and

thus it follows once again from the theory of linear partial differential equations that the final
1
value problem (4.6), (4.7) has a solution v € H1+25’3+’8([0, T) x R) N C%%([0,T) x IR).

loc

Under Assumptions B, C, and F we get ¢ € H,

3.4.3 Comparison with Standard Models

We now compare the final value problem (4.6), (4.7) for the limiting real value function in our
large investor model with the corresponding final value problems for the value function in the
Black-Scholes model and in some more general small investor models with transaction costs.
Since the value function in the standard small investor models is written in terms of time and
(small investor) stock price, and not in terms of time and fundamentals, a comparison with



3.4. THE LIMIT OF THE REAL VALUE FUNCTIONS 161

these models becomes much more transparent if we reparametrize the real value function
0:[0,T] x R — IR, (t,u) — 0(t,u) as a function w of time ¢ and small investor stock price
B(t, u).

If the large investor price system (¢, 1) excludes any transaction losses, we shall see that the
transform w satisfies the Black-Scholes equation and the real value (function) of a European
call in the continuous large investor market will be seen to be just the Black-Scholes price
of the same European call with a modified strike price which reflects the market power of
the large investor. In the general case, where (¢, 1) does not necessarily prevent transaction
losses, we do not have a closed-form solution for w any more, but we can still make qualita-
tive statements. Besides comparisons with the associated model without transaction losses,
we show structural analogies to small investor models with transaction costs. However, in
this section we only consider the final value problem for the limiting real value function.
The distributional limit model and the limit for the paper value function are discussed in
Chapter 4.

We now require the two Assumptions B and C and one of the Assumptions E and F. At first
we want to transform the real value function v : [0,7] x IR — IR, (t,u) — v(t,u), of time
t and fundamental value u into some function w : D — IR, (t,x) — w(t,z) of time ¢ and
small investor stock price z = 9(t,u). We have already encountered such a transformation
in the particular discrete setting of Section 2.4.3. Note that the small investor stock price
P(t,u), which would occur if the large investor did not trade in stocks at all, might not be
observable by the small investors, who do not know the actual stock holdings of the large
investor. However, the large investor can derive and employ this price. Since he knows his
own stock holdings ¢ = (¢, u) at time ¢, he can — and should — deduct his own leverage on
the stock price by dividing the observed market price ¥ (¢, u,¢) by f(p) in order to obtain
the small investor price ¥(t, u).

Before we can formally define the function @, we have to define its domain D; hence let us
introduce the set of possible time-space combinations of small investor prices in continuous
time as

D :={(t,z) € [0,T] x R |2 = 1(t, u) for some u € R},

which is the continuous analogue of (2.4.21). Under our standing assumptions, the next
lemma shows that D = [0, 7] x (0, c0).

Lemma 3.31. Under Assumptions B and C we have for all t € [0,T]:

lim @(t,u) =0 and lim P(t,u) = co.

U——00 uU—00

Especially, for any bounded strategy function ¢ : [0,T] x IR — IR we have

lim w(t,u,gp(t, u)) =0 and lim w(tju,gp(t,u)) = 00.

Proof. Since %log@(t,u) = %“(ituz;) = ﬁ‘((ttif)) > L% =: 09 > 0 for all (t,u,&) € [0,T] x IR

we have
> log9(t,0) + opu ifu>0

v | (4.16)
<log9(t,0) + opu if u <O0.

u g
log ®(t, u) = log ¥(t,0) + / dulogw(t?u)du{
0

Taking the exponential on both sides and noting that @(t,u) > 0 for all (¢t,u) € [0,7] x IR,
we get for any fixed ¢ € [0, T:

p(t,u) > p(t,0)e’" — 00 asu — oo
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and 0 <9(t,u) <p(t0) e’ -0  asu— —oo.

This shows the first statement. The second part of the lemma follows immediately from the
multiplicative structure of ¢ : [0, T] x IR*> — IR, and the boundedness of ¢ : [0,7] x IR — IR,
since it implies that there exist some 0 < ¢ < C such that ¢ < f (gp(t,u)) < C for all
(t,u) € [0,T] x RR. q.e.d.

By Definition 1.17 the equilibrium price function 1 : [0, T] x IR?> — IR is strictly increasing
in u, and hence this monotonicity also holds for the associated small investor price function

:[0,T] x R — IR. In particular, the function u : D — IR is well defined by (¢, u(t, x)) =z
for all (t,2) € D, and we can then define the (transformed) real value function w : D — IR
in analogy to (2.4.22) by

w(t,z) =v(t,u(t,x)) for all (t,z) € D. (4.17)

Noting that o;(t, w) = @ (t, 9(t, u)) + g (¢, (¢, u))Pu(t, ) for all (¢,u) € [0,T] x IR and using
similar equations for o,(t, u) and vuu(t u), we can rewrite the partial differential equation
(4.6) for all (t,u) € [0,T) x IR a

p(t,u)
Do (t,u)

In order to express (4.18) in terms of ¢ and x = %(¢,u) only, we next define the volatility
function 6 : D — (0, 00) by

we (¢, 9(t,u)) + % (1 + ﬁ(v(t,u))*yﬁt,u)) P (t, u)Weq (t, B(t,u)) = 0. (4.18)

5t x) = W for all (¢, 2) € D. (4.19)

If we also recall (4.10), we see that
Y(t,u) = we (¢, 9(t,w)) for all (¢,u) € [0,T) x R, (4.20)

and hence we get v, (t,u) = Wy, (t, w(t, u))@u(t, u). Plugging these expressions into (4.18) we
obtain the generalized Black-Scholes equation

By(t, 7) + %(1 2 (1 (1, 2)) i (1, 2) ) 61, ) (1,2) = O (4.21)

for all (¢,z) € [0,T) x (0,00) = D\({T'} x (0,00)). For the boundary condition (4.7) we can
once again apply (2.4.2) and substitute x = (¢, u) to rewrite it as

an(x)
w(T,z) = h%(x) := x/o f(2)dz 4+ b*(u(T,z)) for all z € (T, R) = (0,00), (4.22)

where the function 7 : ©(T, IR) — IR is given by n(z) = ((u(T,z)) for all z € (T, R). By
the final condition (4.22) the large investor has to hold an(z) shares of stock and a cash
amount of b (u(T, x)) at time 7T if the small investor stock price at that time is given by x.
The non-linear partial differential equation (4.21) generalizes the standard Black-Scholes
equation by the additional transaction loss term involving k. Under Assumption E the
transformed loss function k : g(IR) — IR vanishes on IR, and (4.21) basically reduces to the
Black-Scholes equation. In this case we can easily transfer results from the standard Black-
Scholes analysis and the theory of stochastic volatility models to the final value problem
(4.21), (4.22), e.g. in order to derive existence conditions or to find optimal super-replication
strategies for an associated continuous-time large investor model.



3.4. THE LIMIT OF THE REAL VALUE FUNCTIONS 163

In this thesis we will concentrate our investigation of the case where the large investor’s fi-
nal stock holdings are not described by a smooth function of the fundamentals, but where
the price system (1, u) excludes any transaction losses, on our standard example, the Eu-
ropean call. If the volatility function & is constant, we are able to explicitly calculate the
corresponding large investor’s replication price for that call:

Ezample 3.2 (European Call). We continue with the European call (aC , ba) of Example 3.1
in the special case where the loss function k : g(IR) — IR vanishes, and where the small
investor price function 9 : [0, 7] x IR — IR can be written as

Pt u) = e®D+o for all (t,u) € [0,T] x IR

and some constant volatility o > 0 and some drift function a : [0,7] — IR. In this case the
volatility function & : D — IR of (4.19) is constant and equals o, so that (4.21) becomes the
classical Black-Scholes equation.

Because of (4.12) in Example 3.1 we can rewrite the final condition (4.22) as

w(T,z) = a/l f(af)do(z — K*)+ for all x € p(T, R),
0

where K* = K ( fo f(ab) dG) . This shows that in terms of w the final value problem (4.21),

(4.22) for the replication of a European call with final real value a(S(T,u,a) — K )+ in the
continuous limit model becomes a standard Black-Scholes problem in the associated small
investor market, where a small investor has to replicate g(a) = [;' f(2)dz = o fo f(a)do
unit European calls (z — K*)™ with the modified strike price K Now it follows from the
standard Black-Scholes formula and the definition of K* that

@(t,z) = aC <t,x /0 1 f(ae)d9> . (4.23)

In this formula C : [0,7] x (0,00) — IR is the Black-Scholes price for a European call of one
share of stock with strike K, given by

log £ + 1o2(T — 1) log £ — 1o2(T — 1)
C(t,z) = z® K2 — Ko K2 ,
(t2) =z ( oV —t

and the function ® : IR — [0,1] is the standard normal cumulative distribution function
() —%f e=*/2dz for all z € IR.

Recall from (2.4.2) that 9(t, u fo f(af)dd = S(t,u,a) for all (t,u) € [0,T] x IR. Hence we
conclude from (4.23) that at each date ¢t € [0,7] x IR, the replication price of the European
call of a shares of stock with total final payoff of a(S(T,u,a) — K)+ for all w € IR can be
calculated by the Black-Scholes formula if we plug in the loss-free liquidation price S(¢, u, «)
at time ¢ given fundamentals of u. Note that this liquidation price is only a theoretical
liquidation price, since the large investor does not hold « stocks at time t. More precisely,
upon differentiating (4.23) and substituting z = af we see that

W(t,7) /f d@(bg( o ! a9d9)+102(T_t)> for all (t,x) € [0,T) x (0, c0).

oVT
Because of g(z) = [ f(z)dz and ®(x) < 1 for all z € IR it then follows for all a # 0 that
0 < p(t,u) = g_l(ww(t,@(t,u))) <a or a<e(tu)<0 forall (t,u) €[0,T) x R.

This means that as in the small investor case, the large investor holds at any time before
maturity a stock position which lies strictly between the two extreme payment obligations of
0 and « stocks, which the large investor might face at maturity. O
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Remark. In the particular case where 1)(t, u, £) = SoetH="t49¢ for all (t,u, €) € [0, T] x IR?,
Jonsson et al. (2004) have independently derived the same formula (4.23) for the value of «
European call options if the large investor always trades at the benchmark price. As discussed
in the remark concluding Section 1.3.5, in order to justify the validity of the benchmark price
at maturity, these authors assume that the holder of the option has the right to immediately
sell the a shares of stock back to the large investor and receive in exchange the corresponding
real value in cash. (]

The previous example works especially well because it only considers the special setting
of Assumption E where the large investor does not have to bear any transaction losses.
Under Assumption F, however, the large investor is exposed to some nonnegative implied
transaction losses, and the term (w5 (t, ©))Wys (¢, ) in (4.21) does not vanish. In that case
we can still prove the existence of solutions to (4.21), (4.22) via the final value problem (4.6),
(4.7) whenever the second derivative %ho‘ of the boundary function h® : (T, R) — IR,
x — h*(z), in (4.22) stays sufficiently small. Of course, this restriction excludes all standard
calls and puts, but as noted by Frey (1998), this is more a technical issue than a strong
limitation on the applicability of our model, since we might smooth out the kink in the payoff
of a call or put by replacing for example the payoff condition h*(z) = g(a)(z — K) by
ho(z) = 1g(a)(/e + (x — K)? + 2 — K) for some small € > 0. This smoothing would also
accommodate the fact that traders will stop their delta hedging of a call close to maturity if
its gamma becomes too large, and in particular if the stock price is close to the strike price.
The term for the implied transaction losses in the generalized Black-Scholes equation (4.21)
will change the volatility from & : D — (0,00) in the setting without transaction losses to
o :D — (0,00) in the setting of Assumption F, where

o2(t, ) = (1 + (0 (¢, x))wm(t,x)>62(t,x) for all (¢,z) € D. (4.24)

Under our standing assumptions we have Ly := H@EH < 00, hence we get 5(t,x) > L%) for

all (t,2) € D. On the other hand, under Assumption F we conclude from ¢ € C}(IR) that
(4.20) even holds for all (t,u) € [0,7] x IR, and together with Definition 3.17, the definition
v = g o ¢ and the multiplicative structure of ¥ we obtain

1/15 (ta u, ¢<t7 ’LL))
Uy (t,u, o(t, u))

Under Assumption E the left-hand side is 1, because of kK = 0, thus we have proved that
under our standing assumptions the function ¢ : D — IR can be bounded away from 0.

Since the loss function & : g(IR) — IR is nonnegative and since D = [0, 7] x (0, 00), it follows
that o%(¢, z) > 6%(t, x) if Wy (t, 2) > 0, or equivalently if v, (¢, u(t, z)) > 0. Now Lemma 3.21
yields that v, (¢,u) > 0 for all (t,u) € [0,T] x IR is already implied by a(,(t,u) > 0 for all
(t,u) € IR, hence it follows from the definition of  : (T, IR) — IR and the boundary condition
(4.22) that 1w, (t,z) > 0 for all (¢,z) € D if only an : ¥(T, IR) — IR is nondecreasing, or
equivalently if h* : (T, IR) — IR is convex. Similarly, it follows that w.,(¢t,z) < 0 for
all (t,x) € D if an : ¥(T,R) — IR is nonincreasing, which is equivalent to requiring that
h® : p(T,IR) — IR is concave. These observations can be used to show that the implied
transaction losses raise the real value of the replicating portfolio of a convex contingent claim
in the continuous limit model, and likewise they reduce the limiting real value of portfolios
which replicate concave contingent claims. Especially, in the limit model, the real value for
replicating a smoothed long call is higher and the one for a smoothed short call is lower than
the corresponding replication value in the associated small investor model of Black-Scholes
type. This coincides with our intuition, since in replicating a long call the large investor

1+ (t, )k (Wa (¢, P(t, w))) Wan (£, B(E, u)) = 1+ 2d(p) ou(t,u) > €.
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has to buy stocks when the stock price rises, which again leads to a further rise of the stock
prices, while in replicating a short call, the large investor’s strategy is anticyclic and reduces
the volatility in the market.

The additional implied term induced by the transaction losses might also be a good explana-
tion for the smile effect, which says that if the Black-Scholes formula is used to derive market
volatilities from European call prices in real markets, the implied volatility is normally a
U-shaped function of the option’s strike.

Remark 1. We have already encountered the connection between our discrete large investor
model and standard small investor models with transaction losses in Section 2.3. So it is no
surprise that the final value problem for the limit of the real value functions of the discrete
models, if the discrete grid becomes finer and finer, resembles the corresponding final value
problems for the replication value of options in continuous-time small investor models with
transaction costs. In particular, our results on the function w and the volatility in the limit
model match up with the results on proportional transaction costs model such as the ones of
Leland (1985), Boyle and Vorst (1992) and Opitz (1999), and our limiting non-linear PDE
for w is similar to the non-linear Black-Scholes equation derived by Barles and Soner (1998)
as a limit of utility-maximization-based option prices in certain proportional transaction cost
models.

Upon transforming Boyle and Vorst’s scaling h = % into our scaling §% = %, we recall from
Boyle and Vorst (1992) that in a Cox-Ross-Rubinstein model with n time steps, constant
volatility g and some constant transaction cost rate k, the replication prices of a long and
a short European call are for large values of n and small values of k£ approximately given by
the Black-Scholes prices with increased or decreased volatility o given by

1 1
o2 = 53(1 v _—2k\/ﬁ) and o2 = 53(1 - _—2k\/ﬁ), (4.25)
g0 g0

respectively. Opitz (1999) extends this model and shows that if the transaction cost rates for
purchase and sale differ, the factor 2k has to be replaced by the sum of the rates for purchase
and sale.

Comparing the equations for o2 in (4.25) with those in (4.24) we observe that the transaction
cost rate k plays the same role as the expression 30k (wg(t,z))|zwae(t, )| in (4.24). By
(4.20), by the definition of the loss function s : IR — IR in (3.1) and by v = g o ¢ the last
expression becomes %5n(ww(t,:p))‘xwm(t,x)‘ = 5d(u)%|@u(t,u)], which again is for
large n approximately given by k, (¢(t — 6%, u), ¢(t,u £ d)) due to the expansion (1.2.18) in
Proposition 1.15. Hence the transaction cost rate & in Boyle and Vorst (1992) corresponds
to the local implied transaction losses k, (p(t — 6%, u), o(t,u = 8)). This actually was the
main motivation to introduce the local implied transaction loss rate &, : [0, 7] x R? - IR in
(2.4.6).

Barles and Soner (1998) investigate the utility maximization approach of Hodges and Neu-
berger (1989) to show that if the product yN of risk aversion and the number of shares of
stocks sold tends to 0 and if the proportional transaction costs are given by pu = a\/yN
for some a € IR, then in the limit the value function for a short European call (either with
physical delivery or with cash settlement) will satisfy a non-linear PDE similar to (4.21):
only the expression xk (u_)m(t, x))ﬁ)m(t, x) is replaced by some more complicated function of
a’0Wey (L, ).

The final value problem (4.21), (4.22) also resembles the final value problem for a European
call in the large investor model of Jonsson and Keppo (2002). These authors suppose that
the large investor’s trades change the relative excess return of the stock by some exponential
factor, and for the value function associated to a European call they then obtain a non-linear
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partial differential equation of the form (4.21), where the term 1 + z(Wy (¢, %)) Wan(t, z) is
replaced by some exponential of the derivative w,(t, x).

Platen and Schweizer (1998), Frey and Patie (2002) and Liu and Yong (2004) have explained
the smile pattern in various large investor models by the feedback of the large investor’s
trading strategy on the stock price. O

Remark 2. As a last remark in this section, we should spend some more time on our choice
of parametrizing the real value function v : [0,7] x R — IR, (t,u) — ¥(t,u), in terms
of the small investor stock prices ¥(t,u) by introducing the transform w : D — IR which
satisfies u_)(t, @(t,u)) = o(t,u) for all (t,u) € [0,T] x IR. The small investor prices would
only appear in the market if the large investor did not trade in the stock at all. However,
since the large investor actively trades in the market according to the limit strategy function
¢ : [0,T] x IR — IR, it would also make sense to parametrize the value function in terms
of time t and the equilibrium stock price w(t,u,go(t,u)) at that time. This would give a
parametrization in terms of a price which is not only observable by the large investor, but
also by the small investors.

There are several reasons which have prevented us from using such a parametrization for
the real value function. On the one hand, we would need to further restrict the possible
strategy functions ¢ : [0,T] x IR — IR for the large investor in order to guarantee that the
price function u +— ¢(T,u, gb(t,u)) is invertible. In particular, we would have to put more
restrictions on « and ¢ of the boundary condition (4.4); for example we would need to ex-
clude any short European call, where ( : IR — IR is given as in Example 3.1 and a < 0.
But even if the derivative %w(t,u,go(t,u)) is strictly positive for all (¢,u) € [0,7] x IR so
that we can indeed invert u +— w(T,u, qS(t,u)), the analysis of the real value and strategy
functions in terms of some functions w and ¢ which satisfy @ (¢, (¢, u, ¢(t,u))) = 9(t,u) and
G (t, (t, u, p(t,u)) = @(t, u) for all (¢,u) € [0,T] x IR becomes very unpleasant, since the pa-
rameter z = 1 (t, u, p(t,u)) of w and @ itself depends on ¢(t,u) = $(t, ). In particular, this
complicates the relationship between the parametrization ¢ of the large investor’s strategy
and the parametrization w of the associated real value.

If the large investor always trades at the benchmark price so that the loss function s vanishes,
the transfer from the partial differential equation (4.6) or (4.18) to a partial differential equa-
tion for @ remains comparatively simple. In such a situation we get for all (¢,u) € [0,T) x IR
that

2
0=w(t,x) + = = <dciw(t u, p(t, u))) Wy (t, )

Q.

d? wu d
+wx<t,:c>( TVt et u>)+; Tt us et u)) — u wiw o (t,u,so(t,u))>,

where x = x(t,u) = ¢(t, u, @(t, u)), and where the missing arguments for the partial deriva-
tives of ¢ : [0, 7] x IR* — IR are also given by (¢,u, ¢(t,u)). Note that the drift term @, (¢, z)

disappears if $5 = const, since then 1, = w‘“‘ e and e = “5 )¢, and the term in brackets

is seen to become 0 due to the partial dlfferentlal equation (4 3) for ¢ : [0,T] x R — IR. In
this particular case w satisfies an equation of Black-Scholes type with a time-space-dependent
volatility which depends on the strategy ¢ : [0,T] x IR — IR and its derivative ¢, or equiva-
lently on the transform ¢ of the strategy function ¢ and its derivative .. Though this case
is the easiest, without reparametrization the standard Black-Scholes analysis fails to find
solutions of the corresponding final value problem for w or to derive the limiting replicating
strategy function ¢. This does not give much hope for more general situations, where the
drift term in the partial differential equation for @ need not vanish at all.
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Although we reject the parametrization in terms of @(t, u, o(t, u)) for the limiting real value
function, we shall see in Section 4.2.5 that exactly this parametrization is beneficial for
analyzing the limit of the paper value functions {v"},ec v of (1.3.19). O
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Chapter 4

Convergence of the Binomial Model

In this chapter we investigate the convergence in distribution of the sequence of binomial
large investor models under two different regimes of martingale measures.

Our convergence results rely on a convergence theorem for general correlated random walks.
These random walks, for which the direction of the next move depends on time, space, and
the direction of the previous move, are introduced in Section 4.1. The convergence theorem
for this class of random walks, stated in Section 4.1 and proved in Chapter 5, shows that a
sequence of such (re-scaled) general correlated random walks converges to a diffusion process
with explicitly given coefficients if the one-step transition probabilities can be approximated
for large n € IN by a suitable function of time, space and the direction of the previous move.
Section 4.2 deals with the convergence in distribution under the p-martingale measure which
is implied by the large investor’s strategy. Under each p-martingale measure the fundamental
process is a general correlated random walk. If we impose conditions as in Chapter 3 which
imply the convergence of the large investor’s discrete strategy and real value functions to so-
lutions of certain final value problems, then the transition probabilities for the fundamental
process have the asymptotic behavior required for an application of the convergence theorem
for correlated random walks. From this theorem, it follows that the sequence of (rescaled)
fundamental processes converges in distribution to a diffusion limit. The coefficients of the
limit process are explicitly given and depend on the limit of the large investor’s strategy func-
tions. From the convergence of the fundamental process we can then deduce the convergence
in distribution of all other model-relevant processes like price, strategy and value. We find
that our limit model does not only extend the Black-Scholes model, but also extends many
of the standard continuous-time large investor models found in the literature.

In Section 4.3 we consider the converge in distribution of the sequence of binomial large
investor models under the s-martingale measures. Under each of these measures, the funda-
mental processes is again a general correlated random walks, but of a very simple structure,
since its increments are not correlated at all. We again apply the convergence theorem for
general correlated random walks and show that the fundamentals converge to a Brownian
motion with drift. From this, we derive the convergence of strategy, price, and real value.
Like in the discrete case, the real value is in general a supermartingale under the s-martingale
measure , and it is a martingale if the price system excludes transaction losses.

As in Chapters 2 and 3 we again take T'= 1 to limit the notational burden.

4.1 Convergence for General Correlated Random Walks

In order to prove the convergence of our discrete binomial large investor models, we appeal
to a powerful convergence theorem for a certain class of random walks, which we shall refer
to as general correlated random walks. These random walks are called correlated, since their

169
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transition probabilities depend on the direction of the random walk’s previous move, and they
are called general, since their one-step transition probabilities can also depend on time and
the random walk’s previous position in space. The convergence result is remarkable, since
it does not assume that the random walk is asymptotically uncorrelated in the sense that
the dependence of the transition probabilities on the direction of the random walk’s previous
move vanishes asymptotically.

Because the theory of general correlated random walks is a topic on its own, we defer a
precise definition and a discussion of those random walks to Chapter 5. In the current
section we only define a sequence of correlated random walks which have the same structure
as the fundamental processes in our discrete binomial models, and then state a convergence
theorem for this class of random walks which directly follows from the main convergence
theorem for general correlated random walks in Chapter 5. This will be sufficient to show
the convergence in distribution of our discrete large investor models in Sections 4.2 and 4.3.

Let us fix some ug, Ho € IR and some ¢ > 0, and as in the previous chapters let us denote
0 =0, =n"2 and t} = % for all 0 < k < n and n € IN. Suppose now that for each n € IN
we are given some function p" : [0,7) x IR x {£1} — [0,1]. Then for each n € IN we can
recursively define a general correlated random walk X" = {X]'}o<kx<n with values in IR and
its associated tilt process Z" = {Z}' }o<k<n on some probability space (Q”, Fr, P") by taking
some {+£1}-valued random variable Zg, setting X’ = ug, and then defining step by step the
random variables Z}' € {£1} denoting the tilt at step k (or at time ¢}) by

PTL(ZIQ1 =1 ‘ {Zzn}ogigk—l) = P”(Z,’j =1 } Xl?—la ZI?—I) = Pn (tZ—th?—h Zl?—l) (1-1)

and the random variable X}, which denotes the position of the correlated random walk X"
at time t7, by

k
X7 :Xg—i—,uot}z,+0(5ZZi", forall 1 <k <n.

i=1
Thus the direction of the random walk’s move at time ¢}, which is indicated by the tilt Z},
depends on the direction Z;'_; of the previous move. Moreover, in contrast to a homogeneous
random walk, the tilt Z7' may also depend on the time ¢} ; and the position X;' ; of the
random walk at ¢;_;. This explains why we call the random walk X" a general correlated
random walk. An extensive discussion of correlated random walks and similar concepts in
the literature is given in the introductory Sections 5.1 and 5.2 of Chapter 5.
Our convergence theorem for general correlated random walks is formulated in terms of
continuous-time stochastic processes with paths in the space D[0,T] of cadlag functions
f :[0,T] — IR, i.e. of functions that are right-continuous and have left limits. Here the
space D[0,T] is endowed with the Skorohod topology. In order to transform our sequence
{X"} e of discrete general correlated random walks into a sequence of processes in D[0, T
we define for each n € IV the continuous-time stochastic processes U™ = {U{" },¢(o,r) in terms
of the correlated random walk X" = {X]?}nggn by setting

Ul = Xf, forall0<t<T. (1.2)
Remark. Recall our standing assumption 7" = 1. For a general 7' > 0, we would set
upr =X Fﬁﬂ’ where 7 is for all n € IN given by 7 = T![nT|. Then the following con-
vergence theorem also covers the general case. O

Now we can state the convergence theorem for general correlated random walks which we
shall need in Sections 4.2 and 4.3:

Theorem 4.1. Suppose the functions a : [0,T] x R — IR and b : [0,T] x IR — IR belong to
the Holder spaces H%(lJrﬂ)’Hﬁ([O,T] x IR) and H%ﬁ’ﬁ([O,T] x IR), respectively, and assume
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lla|| < 1. If the probability functions p™ : [0,T) x IR x {£1} — [0,1] of (1.1) converge
uniformly for all (t,u) € [0,T) x IR in such a way that

P, 1) = %(1 = alt,w) + 8b(t,u) ) + O(8'7) as n — oo, (1.3)

then the sequence of processes {U"}nenw of (1.2), starting in ug at time 0, converges in
distribution to the process U = {Uy }yepo,1] given by Uy = ug and

2
dUt _ (uo + O'b(t7Ut) g au(ty Ut) ) dt+0' L(t?ljt)dwt’ (14)

1—al(t,Uy) (1 - alt, Ut))2 1—a(t,Uy)

where W = {Wi}ieo,m @8 a standard Brownian motion on [0, T]. In particular, there evists
a weak solution of (1.4).

As usual, we write U™ = U in order to denote that a sequence {U"},cn of stochastic
processes in D[0,T] (or more generally in D?[0, T]) converges in distribution to U. Of course,
convergence in distribution depends on the underlying probability measures. If we want
to emphasize the corresponding sequence {P"},cn of probability measures under which
{U"} e converges in distribution, we shall adopt the notation

(U”!P”):>(U|P) as n — 0o,

where P is the distribution of the limit process U.

We shall come back to correlated random walks in Chapter 5, where we also provide the
reader with a proof of Theorem 4.1. For now, we immediately proceed to an application of
this theorem in order to show the convergence of our binomial large investor models.

4.2 Convergence under the p-Martingale Measures

The p-martingale measure is the unique measure under which both the large investor price
process and the paper value process are martingales. In this section we show that our discrete
binomial models converge in distribution to a stochastic diffusion model if the large investor
asymptotically replicates the same contingent claim. Here the convergence means that the
sequence of distributions of the fundamental processes, the stock price processes and the
paper value processes under the associated p-martingale measures converge weakly.

The assumptions necessary to prove such a convergence statement are summarized in Sec-
tion 4.2.1. Especially, we suppose that the large investor’s discrete strategy functions converge
at and immediately before maturity to the corresponding values of the continuous strategy
function ¢ of Chapter 3, so that the strategy functions converge as in Chapter 3 on the
whole interval [0,7]. Whenever the stock price does not immediately adjust to an order of
the large investor, we also require the convergence of the large investor’s stock holdings just
before time 0. Section 4.2.2 yields that for all sufficiently large n € IV the large investor’s
discrete trading strategy (f”, b”) is p-admissible so that the associated p-martingale measure
is well-defined. In Section 4.2.3 we find that under the p-martingale measure the fundamen-
tal process describes a general correlated random walk. Then an application of Theorem 4.1
shows that the sequence of fundamental processes converges in distribution to a diffusion
process. The diffusion coefficients are given explicitly and depend on . In Section 4.2.4 we
deduce the convergence of the sequences of tuples of fundamental, price, value and strategy
process from the convergence of the fundamentals, since these processes are all more or less
complicated functions of the fundamentals. Section 4.2.5 considers the limiting paper value
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function as a function of time and large investor stock price. We shall see that this function
solves a generalized Black-Scholes equation. Other continuous-time large investor models of
the literature turn out to be special cases of our limit model. Finally, in Section 4.2.6 we
explore the resulting limit model; we investigate existence and uniqueness of the stochastic
differential equation for the fundamentals under weaker regularity conditions, give martingale
representations for the stock price and paper value process, and discuss the problems of our
model with regard to the large investor’s trades at time 0 and at maturity.

4.2.1 General Assumptions and Definitions

In this section, we state the general setting used for our convergence results under the p-
martingale measures. First we describe the evolution of the fundamentals over time in the
discrete binomial models. Then we present the Assumptions G to L under which we derive
our convergence result. Some technical definitions conclude the section.
We start with expanding our definition of the fundamental process in the discrete models to
corresponding processes in the space D[0,T] of cadlag functions on [0,T]. Therefore, let us
recall from Section 1.3.2 for each n € IN the filtered probability space (Q”,F}L‘,}" " P”), the
tilt process Z" = {Z} }o<k<n on (Q”,}'ﬁ), consisting of {£1}-valued random variables, and
the fundamental process U™ = {U}]' }o<k<n, Which is given by
k
U,?:uo—HSZZ]T-L forall 0 < k <n. (2.1)
j=1

Here ug € IR is some arbitrary fixed real number, and § is as usual given by § = §,, = n=2 for
each n € IN. As in (1.2) we now also define the continuous-time process U" = {Utn}te[o 7]

with paths in the space D[0,T] by setting
Ui :=Upyy forallte0,T] (2.2)

and all n € IN. Note that the definition of U™ leads to some ambiguities, but it will be clear
from the context whether we consider the continuous-time jump process U™ = {Ut"} tefo.1] OF
the discrete random walk U™ = {U£}0<k<n.

For the entire sequence of discrete large investor models, we have one underlying price system
(1, ). In order to show the convergence in distribution of our discrete models we need to
impose:

Assumption G (On the price system (i, ). There exist some strictly positive func-
tions P € H2+%ﬁ’4+5([0,T] X ]R) and f € H4+ﬂ(IR) such that the equilibrium price function

loc

¥ :[0,T] x IR?> — IR satisfies the multiplicative structure
Yt u, ) = pt,u) f(€)  for all (t,u,€) € [0,T) x IR?,

We also have Ly := ’£|

fe”'e‘,u(de) < 00. The price system (¢, p) excludes any immediate transaction gains, i.e. by
the remark following Definition 3.17 we have in particular d(u)f'(§) > 0 for all £ € IR.

< 00. For the measure p there exists some n > 0 such that

u

Having agreed on the price system, we now consider the large investor’s strategy. We start
with fixing the shape ¢ : IR — IR of the large investor’s stock holdings at maturity in the
continuous limit model as a function of the fundamental value. For a sufficiently small scaling
parameter |a|, Proposition 3.27 guarantees the existence of a sufficiently smooth function
¢ : [0,T] x R — IR which coincides with «( at maturity and which satisfies the partial
differential equation (3.4.3). This function ¢ will be our candidate for the large investor’s
limiting strategy function in continuous time:
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Assumption H (Solvability of the non-linear PDE for ¢). For ( € H**P(IR) the
parameter o € IR is chosen so close to 0 that there exists some ¢ € H2+%5’4+B([O,T] x IR)
which solves the final value problem (3.4.3), (3.4.4), which satisfies

a inf ((z) < (t,u) < asup((z) for all (t,u) €[0,T] x R, (2.3)
z€R 2€R

and for which there exists some € > 0 such that

¢§ (t, u, (p(t, u))
Yy (t,u, go(t,u))

Assumption I (The p-martingale measures are well-defined). The scaling parameter
a € IR from Assumption H is also chosen so close to 0 that

e (t, u, o(t, u))
Yy (t, u, p(t, u))

Remark. Note that we have shown in Proposition 3.27 that for all sufficiently small |a| > 0
the final value problem for ¢ given by (3.4.3), (3.4.4) has a solution which satisfies (2.3) and
2Lo Ll () inf( ey« Pult, u) > —1. By the definition of Ly and of L, in (3.3.64), the
latter inequality implies that there exists some € > 0 such that

e (t, u, o(t, u))
Yy (t, u, p(t, u))

This obviously implies (2.4). If 4d(u) > 1, we can conclude from (2.6) that (2.5) holds as
well. On the other hand, if we have the opposite inequality 4d(u) < 1, the interval (&1, ae)
from which we can choose the scaling parameter « to guarantee the existence of a solution ¢
to (3.4.3), (3.4.4) might be too big to guarantee that ¢ satisfies (2.5) as well. However, (2.5)
will hold if the scaling parameter is taken small enough: It can be checked from the proof
of Proposition 3.27 and Proposition 3.19 that we can still find an open subinterval (aq, @s)
with 0 € (&1, &2) C (&, &) such that all solutions to the final value problem (3.4.3), (3.4.4)
with a € (aq, a2) satisfy condition (2.5).

Of course, condition (2.5) ensures that the derivative %zp(t, u, ¢(t, u)) remains bounded away
from 0. In particular, it guarantees that we can invert the function u — @Z)(t, u, o(t, u)) O

2d(p) ou(t,u) > —=1+¢ forall (t,u) € [0,T] x IR. (2.4)

ou(t,u) > =1+¢ forall (t,u) € [0,T] x IR. (2.5)

1+ 4d(p) oult,u) > e. (2.6)

For each of our discrete large investor models, we can now take some path-independent
portfolio strategy (f",b”) as introduced in Definition 1.23, and we define the associated
strategy function " : A" — IR and the cash holdings function " : A" — IR accordingly.
We only need to ensure the convergence of the strategy functions {{"},en to the continuous
limit function ¢ immediately before and at maturity in order to conclude from Corollary 3.28
that the sequence {£"},en converges to ¢ everywhere. In order to apply this corollary, we
therefore require:

Assumption J (Stock holdings converge close to maturity). Immediately before and
at maturity, the large investor’s stock holdings converge in the sense that
max T, ) — olty, - L =0(8""%) asn— oco. 2.7

s (€1 )~ plik ) = O) 1)
If we now suppose in addition to Assumptions G to J that the final values of the sequence
{b"}nemv of the discrete cash holdings functions 4™ : A" — IR converge to a certain function
b : IR — IR, we can likewise conclude from Proposition 3.30 that the cash holdings functions
converge on their full domain to a continuous limit, or equivalently that the sequence {v" },er
of real value functions " : A" — IR, (t,u) — 0"(t,u) = £"(t,u)S(t, u,E"(t, uw)) + b"(t, u),
converges to a continuous limit ¥. Thus, we also impose
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Assumption K (Cash holdings converge at maturity). For some b§ € IR the function
b® : IR — IR is given by

u

() =t~ [ (T, al(@)6.(0) da

0

and v : [0,T] x IR — IR is the solution to the linear final value problem (3.4.6), (3.4.7) which

corresponds to the continuous strategy function ¢ : [0,T|x IR — IR via y(t,u) = fgp(t’u) f(z)dz
for all (t,u) € [0,T] x IR. The cash holdings at maturity satisfy

67t ) = 5[y =0(8*%) asn — oo. (2.8)

In general, for each n € IV, the large investor stock price S, (tg, Uy, &%, 58) at time tfj =0
depends not only on the large investor’s stock holdings £ at time ¢ = 0, but also on his stock
holdings ", immediately before time 0. Only in the special situation where either the price
determining measure is the Dirac measure ¢; concentrated in 1 or the function f : IR — IR
is constant, we can be sure that the large investor price at time 0 does not depend on &";.
In the second case, we could also assume without loss of generality that pu = d;, since in this
case the price determining measure has no influence on the large investor stock price at all.
In order to obtain convergence in distribution of our discrete large investor models under the
p-martingale measures, we therefore impose

Assumption L (Pre-trading behavior of the stock holdings). One of the two following
conditions holds:

(1) The price determining measure p is (or can be chosen as) the Dirac measure §; con-
centrated in 1, so that for all (t,u,&1,&) € [0,T] x IR? the large investor stock price
equals the equilibrium stock price directly after his trades, i.e. the large investor price
function S, : [0,T] x IR® — IR is for all (t,u,&1,&) € [0,T] x IR® given by the equation
Spu(t,u, &1, 82) = P(t, u, &a).

(17) For each n € IN there is some Z§ € {£1} such that the large investor’s stock holdings
£, immediately before time t = 0 satisfy

1
& =£"0,u0) — 6Zypu(0,ug) + 52 (2g0uu(0, uo) — (0, uo)> + O(52+B) as n — oo.

Remark. Assumption L(ii) is a delicate issue for several reasons. First of all, it is somewhat
unsatisfactory that we have to worry about the large investor’s stock holdings before time
0. However, this is clearly forced by our price building mechanism and the definition of the
large investor stock price.

Secondly, if we do reluctantly have to take into account the large investor’s stock holdings
immediately before time 0, the natural approach would be to assume that the large investor
did not trade at all in stocks before time 0, and therefore to assume £, = 0. Unfortunately,
this approach does not yield meaningful results. Namely, by taking ", = 0 for all n € IV,
the asymptotic evolution in Assumption L(iz) implies that £™(0,up) — 0 as n — oo, and the
convergence of {¢"},cv in the sense that ||" — ¢|an — 0 as n — oo leads to ¢(0,up) =0
as well. If the final condition ¢(7, -) = «( is nonnegative, and if there exists some compact
interval on which ¢(T, -) is strictly positive, it can be easily seen from the Feynman-Kac
formula that ¢(0,up) > 0. Thus, if £€*(T,-) : U — IR were nonnegative and ", = 0 for all
n € IN, then Assumption L(ii) and the convergence of " to ¢ would imply that the large
investor would asymptotically hold no shares at all between time 0 to time 7', i.e. ¢ = 0. Due
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to the convergence of £" to ¢ this would mean that also the strategy function £ : A" — IR
would asymptotically vanish as n — oo.

The same conclusion would follow if the final values £"(7, -) of the discrete strategy function
" . A" — IR were nonpositive for all n € IN. This shows that under Assumption L(ii), at
least for a large class of strategy functions {" : A" — IR, we can only have ", = 0 for all
n € IN if the stock holdings £" : A™ — IR vanish as n — oo. But eliminating any stock trades
of the large investor on the time interval [0,7] in the limiting model is a constraint on the
strategy functions which is far more restrictive than desirable.

However, if we want to show convergence on the open time interval (0,7 only, we could drop
Assumption L. In doing so we fade out how the hedging portfolio of the large investor is
built up at time 0. Basically, Assumption L does nothing else: Under Assumption L(i) the
large investor stock price at which the large investor can buy shares at time ¢ = 0 does not
depend on his portfolio before time 0. Under Assumption L(i7) the large investor needs only
asymptotically small adjustments to his portfolio at time 0, and for this reason the issue how
the large investor arrived at the stock position £"; is put back to the distant past. In the
situation we are most interested in, the strategy function " : A" — IR is used to replicate
a certain contingent claim (£",b") at time T" over the time interval [0, 7. In such a model
it is important what happens at the time point 0, where the replicating portfolio is built up.
Thus, we are really interested in the convergence on the closed time interval [0, 7] and hence,
for p # 01, we need to employ Assumption L(7i) on the stock holdings immediately before
time 0. This reveals the difficulties which occur at time 0 even in the limit. We will come
back to this point at the end of Section 4.2.6. O

Under Assumption L(i4) it is reasonable to extend for each n € IN the definition of the large
investor’s strategy function £” : A" — IR to the time point —2 by defining the pre-trading
fundamentals’ value as ug — 6 Z{ and setting £"(—6%, ug — 02§) := £";. If Assumption L(ii)
does not hold, but Assumption L(i) does, we also define f"(—ég, ug — 5Z{f) by setting

1
5”(—62,u0 - 626‘) = E"(0,ug) — 6 Z5pu(0,up) + 6 (2<,ouu(0, uo) — (0, uo)>

in order to avoid some distinction of cases as we proceed. By this definition we have guaran-
teed that both cases of Assumption L imply

(=6 uo—62§) —£"(0,u0) = =023 ¢u(0, ug) +6” (;@uum,uo)—wt(o,uo)) +0(5°17) (2.9)

as n — 0o. We then define for all n € IN and all 0 < m < n the set ﬁ"(m) by
A (m) = {(t,u,z) € A"(m) x {£1} : €"(t — 6>, u — 26) is defined}, (2.10)

and in analogy to A™ = A™(n) of Definition 1.22 we may also write A" instead of A™(n).

4.2.2 Existence of the p-Martingale Measures

After the statement of all our assumptions, we first have to make sure that under these
assumptions the p-martingale measures P4’ of Definition 2.7 are well-defined, at least for
all sufficiently large n € IN, so that we can indeed consider the convergence in distribution
under the p-martingale measures. Therefore, we show in this section by some asymptotic
analysis that for all sufficiently large n € IN the large investor’s trading strategy (£",b") is
p-admissible. Our asymptotic analysis can then also be used to obtain the same asymptotic
properties for the one-step transition probabilities of the tilt and fundamental value processes
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under P4 as they are required by the conditions of the convergence theorem for general
correlated random walks in Section 4.1.

The following lemma yields that the large investor’s portfolio strategy (£",5") is indeed p-
admissible for all sufficiently large n € IV.

Lemma 4.2. Under Assumptions G to J and L there exists some ng € IN such that for each
n > ng the self-financing trading strategy (§™,b") is p-admissible.

Proof. In order to show that a self-financing strategy (£",b") is p-admissible, it suffices to
show that

S5+ 6% u—6,6"(tu)) < S5 (tu, &Mt — 0% u—28)) < S5 (t+ 6% u+6,6"(t,u) (2.11)
for all (t,u,z) € A"(n —1). We will show that
N S,in(t, u, E"(t — 6%, u — 25)) — Sﬁn(t + 0%, u F 6, €(¢, u))
0y (t,u,f"(t,u))

14 ((1 +2)d(p) + (1F z);)

(2.12)

Ve (t, u, go(t,u)) ©u(t,u) + O(8) as n — oo,

hy (ta u, p(t, u))
uniformly for all (¢,u,z) € ﬁ”(n —1). Because of z € {£1} and the two bounds (2.4) and

(2.5), we can then find some ng € IN such that for all (¢, u,z) € A"(n — 1) and n > ngy we
have

N SE" (1 u, €7 (t — 6%, u — 26)) — S8 (t + 6%, u T 5,6"(t, u))
5w (t,u, €7(t, u))

Since 1, is strictly positive, this leads to (2.11), and thus, for all n > ng all the trading
strategies (£",b") are p-admissible if (2.12) holds uniformly for all (¢,u,z) € A™(n — 1).

In order to show that (2.12) actually holds, we have to employ the convergence of the strategy
functions {£"},en towards ¢ as guaranteed by Corollary 3.28, and then basically apply the
techniques used in the proof of Lemma 3.11 to approximate the terms on the left-hand side
of (2.12) by w(t, u, E"(t, u)) We develop these approximations up to such accuracy that they
can also be used in Lemma 4.3, which is a little bit more than needed for the proof of (2.12)
alone.

Let us recall from Corollary 3.28 that (3.3.69) holds, i.e. we have

vV
N | =

E(t+ 6% uxd) — E"(t,u) = £5pyu(t, u) + 6 (th(t, u) + %cpuu(t, u)) +0(0*F)  (2.13)

as n — oo, uniformly for all (¢,u) € A"(n — 1). Applying Taylor’s rule to expand the
derivatives of ¢ : [0,T] x IR — IR around (t + 62,u + §), we thus obtain uniformly for all
(t,u) € A"(n —1):

E(t+ 6% ukd) — €"(tu) = £y (t + 6%, u £ 5)
1
+ 62 <¢t(t +0%,u£0) = Spuu(t + 0% u 5)) +0(5*7)
as n — oo. If we now substitute in the previous equation ¢t + 6% and u + 6 by ¢ andAu,

respectively, and if we also apply (2.9), then we get, in addition to (2.13), for all (t,u, z) € A",
the expansion

&Mt — 8%, u — 20) — " (t,u)

= —20py(t,u) — 6 (%(ta u) — %(Puu(t, u)) + 0(52+B) as n — oo.

(2.14)
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Due to the definition of the shorthand SE (t,u, &) := Su(t,u, & E"(t,u)) in (2.1.1) we have

St u,€) = / Dt u, (1 0)€ + 067 (t,u)) ()

for all (t,u,¢) € [0,T] x IR?. By Taylor’s rule we then obtain that for all (t,u,¢) € A” x IR
there exists some function 7 : IR — IR, with v(0) lying between 6 and 1 for all § € IR, such
that

SE(t u, &) = v (t,u, £ (tu)) + e (t,u, & (8 u)) (€ — £ (t,u)) / (1—6) p(do)
%(s &"(t,u))? / (1= 0)%ee (t,u, (1 — 7(0))€ + ¥(0)€"(t,u)) u(d6).

If we now set & = £"(t — 6%, u — 2J) and divide the previous equation by 81, (t, u, E"(t, u)), we
can apply the techniques of the proof of Lemma 3.11 combined with (2.14) to conclude from
NS ﬁl“'%ﬁ’Q*’ﬁ([O,T] x IR?), ¢ € HH%B’Q‘W([O,T] x IR), [ eMpu(df) < oo for some 1 > 0,
and the boundedness of " : A" — IR, which is induced by the convergence of || — ¢|| an,
t