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Abstract

Internet of Things (IoT) systems, including Wireless Sensor Networks (WSNs), are getting in-
tegrated into virtually all aspects of life faster than before. These systems are used from agricul-
tural monitoring and actuation to manufacturing plants. Such wireless networks play a critical
role in home and health applications as well as security and asset tracking. The knowledge of
physical position of the nodes is important for many applications of WSNs, but this information
is often not readily available. In the past, a plethora of different solutions has been proposed
that focus on recovering the positions of the sensor nodes, often at the cost of high complexity,
preconfiguration, training or limited accuracy.

The precision and computational complexity of such “positioning” algorithms is still a big
issue. However, there are cases where the objects are placed in one of a few possible predeter-
mined positions, especially indoors. In those cases, the set of potential locations of the objects
is limited and computing the relative positions of those objects in relation to each other might
be sufficient to determine their real positions and a precise location in the z, y, 2 coordinates is
not necessary.

This thesis focuses on determining the relative positions of nodes in a WSN by utilizing
only readily available Received Signal Strength (RSS) information that is provided by the radio
chips they are equipped with. Contrary to common belief, the “closeness” information can be
extracted with high confidence among one sender and multiple receiver nodes.

An RSS sampling technique for extracting closeness information is introduced as the initial
step of position discovery. This technique utilizes the frequency diversity features of the radio
modules. Combining the frequency diversity with statistical reasoning allowed us to demon-
strate how RSS information can be used for detecting closer nodes to a transmitting node with
high confidence, where this information cannot be extracted by connectivity information. The
closeness information can then be utilized to discover node positions by having only one or few
nodes at known places on a grid-like setting.

For relative node position discovery, two types of grid settings were considered: one-
dimensional and two-dimensional. The only prerequisite for introduced position discovery al-
gorithms is the knowledge of one reference node at one head of a one-dimensional grid and the
knowledge of two reference nodes at two corners of a two-dimensional grid.

In this study, a successful position discovery is defined as mapping all nodes to the cells of
the grid perfectly, otherwise a result is considered unsuccessful even when only two nodes are
mapped to swapped cells. The proposed techniques result in up to 100 % successful position
discovery in the repeated real-world experiments and in the simulations.
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For self-detecting whether a run of position discovery was successful, reliability analyses
are developed. Using these analyses each result is mapped into one of the high, medium or
low reliability categories. Over 99 % of the results that are assigned to high reliability category
were perfectly correct and the unsuccessful computations could be assigned to the remaining
categories.

It has been discussed that the suggested frame of procedures has significant advantages
over other systems that are commonly used for indoor position discovery, such as accuracy,
time-complexity and independence from an infrastructure. The results are compared to Multi-
Dimensional Scaling (MDS) and fingerprinting-based systems.
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Zusammenfassung

Die Geschwindigkeit, mit der sich Internet-of-Things (IoT) Systeme, wie z.B. kabellose Sen-
sornetzwerke (Wireless Sensor Networks - WSN) in nahezu allen Bereich des tidglichen Lebens
ausbreiten steigt rasant an. In der Landwirtschaft und der Industriellen Fertigung werden durch
solche Systeme zunehmend Monitoring Anwendungen realisiert. Smart-Home und Gesundheit-
sapplikationen werden durch sie iiberhaupt erst moglich und auch in den Bereichen Sicherheit
und Asset-Management spielen sie eine immer wichtigere Rolle. In vielen dieser Anwendung
sind die physikalischen Positionierungsdaten einzelner Sensorknoten von entscheidender Be-
deutung, obwohl sie nicht immer einfach abzuleiten sind. Darum wurden in der Vergangenheit
eine Vielzeit unterschiedlicher Mechanismen entwickelt, die - oftmals mit hohem Aufwand und
Trainingsbedarf, hoher Komplexitét, aber geringer Genauigkeit - die Positionierung der im Sys-
tem beteiligten Knoten ermitteln kénnen.

Die mangelnde Genauigkeit und der hohe Aufwand, um die Positionierung von Sensor-
knoten in einem System zu bestimmen sind noch immer eine der grof3ten Herausforderungen
beim Design von Sensornetzwerken. Bei bestimmten Anwendungen, insbesondere im Indoor-
Bereich, ist eine komplexe Berechnung hingegen gar nicht nétig, da sich die Knoten lediglich
iiber eine limitierte Anzahl vordefinierter Positionen verteilen. In solchen Fillen kann es aus-
reichen, die relative Positionierung der Knoten zueinander zu bestimmen, wihrend die genaue
Bestimmung der z, y, z-Raumkoordinaten der Knoten nicht notig ist.

Die vorliegende Arbeit beschiftigt sich mit der Bestimmung relativer Positionierungs-
Koordinaten unter Sensorknoten eines kabellosen Sensornetzwerks durch die Nutzung der emp-
fangenen Signalstirke (Received Signal Strength - RSS). Alle heute iiblichen WSN-Chipsets
liefern bereits einen entsprechenden Indikator (den RSSI). Im Widerspruch zur vorherrschen-
den Meinung, konnen Informationen zum Abstand zweier Knoten mit hoher Zuverldssigkeit
von diesem Wert abgeleitet werden, selbst in Szenarios mit nur einem Sender und mehreren
Empfingern.

Als initialen Schritt zur Ableitung von Positionierungsdaten aus dem RSSI wird hier ein
eine RSS Sampling Methode prisentiert, die sich auf Frequenzdiversititseigenschaften genutzter
Funkmodule stiitzt. Die Kombination aus dieser Diversititsbetrachtung und statistischen Ar-
gumentationsketten erlaubt es uns, mit hoher Zuverladssigkeit genaue Aussagen iiber die Nihe
verschiedener Knoten zueinander zu machen, was iiber die reine Analyse von Verbindungsinfor-
mationen nicht gelingen kann. Diese Information der Néhe einzelner Knoten zueinander wird
in einem zweiten Schritt dann genutzt, um die Lokalisierung auf einem Gitter (Grid) moglicher
Positionen zu bestimmen.



Zwei verschiedene Arten von Grids werden in dieser Arbeit betrachtet: eindimensionale
sowie zweidimensionale Versionen. FEinzige Voraussetzung fiir jegliches Setup ist dabei die
Kenntnis iiber die Positionierung eines Referenzknotens am Kopf- oder Endpunkt des eindi-
mensionalen Grids, bzw. zwei Referenzknoten in zwei Ecken des zweidimensionalen Grids.

Wir gehen in dieser Arbeit davon aus, dass ein erfolgreicher Positionieringdurchgang die
Grid-Positionierung aller Knoten richtig bestimmt. Bei jeder Abweichung, selbst wenn nur zwei
Knoten auf vertauschten Plédtzen lokalisiert wurden, wird der Positionierungsversuch als nicht
erfolgreich gewertet. Die hier vorgestellten Techniken zeigen Erfolgsraten von bis zu 100 % in
verschiedentlich wiederholten Feldversuchen und Simulationen.

Um systemintern entscheiden zu kénnen, ob ein Positionierungsversuch erfolgreich durch-
gefiihrt werden konnte, werden die Systeme zusétzlich mit einem Zuverldssigkeitsanalyse-Tool
ausgestattet, das jede erfolgte Positionierung in eine der Zuverlissigkeitskategorien high, medium
und [ow einstuft. Dabei waren iiber 99 % der Versuche, die mit high bewertet wurden tatséchlich
erfolgreich.

Zusammenfassend kann festgehalten werden, dass die hier vorgestellten Mechanismen sig-
nifikante Vorteile gegeniiber giingigen Methoden zur relativen Positionierung von Sensorknoten
im Indoor-Bereich haben, dazu zédhlen die hohe Genauigkeit, die geringe Komplexitét und Berech-
nungskosten sowie die Unabhingigkeit von einer Netzinfrastruktur. Insbesondere vergleichen
wir die hier vorgestellten Mechanismen mit dem Multi-Dimensional-Scaling (MDS) Ansatz
sowie mit auf Fingerprinting basierenden Systemen.
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Chapter 1

Introduction

Location has been one of the most important information, if not the most. Everything in the
nature requires this information; plants detect the position of the sun, animals mark and find
their territories, humans determine it proactively. Discovering one’s own or others’ location
is crucial for survival. We humans have developed numerous ways to compute the location
information. It began with observing the positions of big landmarks, such as mountains and
water bodies. The sun was of big help, hence the directions were defined: East, West, North
and South. Later our ancestors created their own landmarks, such as drawings and carvings.
Once the early humans started to migrate from one place to another, they realized they could use
particular stars as reference points to figure out where they were.

With time, more precise measurement systems were created. The distances were first
measured in relative units, like feet and arm lengths, then in more standardized measures such
as meters. Along the way, imaginary landmarks were defined instead of physical ones, namely
parallels and meridians, which would help one communicate their location on the Earth.

In the middle ages, determining their own geographical location was (and still is) crucial
for the sailors. Some used polarization with sunstones to find their positions with respect to the
sun. Later the magnetic compass was developed to compute their relative bearings. Next, they
developed dead reckoning methods to compute their current locations some time after they left
their last-known positions. Then they calculated the absolute locations of landmarks, or they
built their own landmarks, sea marks and lighthouses at known locations to develop piloting
methods with their compasses. This enabled the development of triangulation methods for
calculating location fixes, with respect to a few known points.

Fast-forwarding to the modern age; artificial satellites were built and placed on one of Earth’s
orbits to form the Global Positioning System (GPS), which have been helping us to pinpoint our
global location with down to five meter precision [4]. GPS consists of twenty-four satellites
that sit on six orbits of the Earth. Users scan for signals from the visible GPS satellites and
process the arrival time delays of the signals from four of the satellites to compute their own
latitude, longitude and altitude relative to the World Geodetic System (WGS) and time relative
to the U. S. Naval Observatory (USNO) time. With development of mobile communication sys-
tems, we integrated the GPS into our cellular telephony devices. Today, techniques to deduce
the geographic or relative locations of mobile or stationary objects are defined under the term
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“positioning”, which is also referred as “localization”. Some researchers argue that these two
terms differ in the absoluteness or relativeness of the calculated position information [5], but
most often they are used interchangeably.

Precise determination of location has enabled new services, such as geographic tracking of
objects or humans, assisted navigation or determining presence. These services very often utilize
GPS localization, which works only when direct Line-of-Sight (LoS) to at least four satellites is
possible. This limitation encourages the scientific community to search for alternative position-
ing systems that would also work where such satellite visibility is not present.

Alternative systems have been developed for the cases when the GPS is not available; such as
vision based systems with video cameras, ranging using cellular and other Radio Frequency (RF)
signals or connectivity based positioning systems [6]. However, these systems, which strictly
depend on an outdoor infrastructure, do not work inside of buildings reliably. Furthermore,
camera-based systems require certain types of light conditions, RF-based ranging requires LoS
and indoor deployments are often too dense for connectivity-based systems. Hence the research
in localization is split into two main categories: outdoor positioning and indoor positioning.
This work finds its place in the latter one.

1.1 Indoor Positioning

1.1.1 Why is it needed

Many of us spend most of their time and keep most of their belongings indoors. Very often we
interact with other people indoors, use indoor appliances such as copiers and coffee machines,
use phones and computers that are attached to indoor infrastructures. Also, when we enter
a new building, finding certain things or other people can be challenging, due to the lack of
known landmarks. We need to understand floorplans and orient ourselves accordingly, if they
are provided to us. Navigating inside a new building is a time consuming, non-trivial task.

Another important aspect is business. Most of the time shopping is done inside buildings,
like a mall or a gallery. Commercial goods are stored behind the walls. Packaging and storing
of organic and non-organic items and other inventory processing happen inside buildings. These
necessities add significant value to development of indoor positioning systems.

There is also an increasing demand for Location Based Services (LBS) [7]. For example, in
a museum a hand-held device can provide us specific information about an artifact, before which
we are standing. Customized announcements can be made, or individualized messages can be
delivered to people at specific locations without necessarily knowing their identities, such as for
advertising purposes. Likewise, shops can provide time and location specific offers to the people
who visit them. In a grocery store, indoor navigation systems can help us collect the items on
our shopping list faster.

Very recently, a smartphone game, which rewards its players based on outdoor navigating
activities, has been a big success [8]. A system, which enables indoor navigation, may help
indoor versions of that particular game to be developed, or may help developers create other
such games. These systems can even be integrated into existing games to provide new features.

Location information has also a big role in the Industry 4.0 realm [7,9]. At each stage of the
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production cycle, this information will enable easier access to facility components, maintenance
workers and machinery that move and interact with each other, as well as humans. The precision
of mobility in robotics can also be increased. Collecting and processing of data can be improved.

The need for indoor positioning systems are beyond industrial and convenience domains. In
cases of emergencies, it can save lives of first responders, such as firefighters, by helping them to
navigate towards their targets and then —just as importantly— aiding them navigate their ways
out from a collapsing building.

These use cases and applications are only limited with human imagination. The need for
determining positions of people and objects is obvious and often vital. The research, like in this
work, is currently continuing at a global scale and new ideas and systems are emerging almost
daily.

1.1.2 Where can it be used: Some Practical Examples

We perform indoor position discovery more often than we think, though manually. For example
when we enter a plane’s fuselage, we need to locate our seats by comparing the number on
our boarding cards to the row and seat numbers. We do the same at a theater or an opera. It
is not only the guests who need to find the locations of these items, but also the people who
are maintaining them. Some objects require regular maintenance and they are often removed
from and reinstalled to their places. It is important for the maintainers to figure out where
one particular seat is located among all others for various reasons, such as providing customer
specific service, safety or post-service data analysis. Easy retrieval of position information is
also critical for our peers in the society who are hard of hearing or seeing.

The information on the location of the seats can be also used to facilitate safety practices.
If we know which seat is where in a plane fuselage, the seat belt checks can be done remotely
with the wireless capable electronics attached to the seats, which will decrease operational time
overhead per flight. After a tragic incident of a plane crush, the seats that are recovered post-
accident can be analysed to increase flight safety, if the configuration of the seats can be identi-
fied prior to the beginning of a flight, especially if the seats and their locations change in between
flights.

Many commercial products are stored indoors in warehouses that contain big numbers of
similar looking containers. The containers may need to be individually identified, which is a
time consuming process. Manual search can be replaced by an automatized indoor positioning
technique. Today, systems that utilize self-navigating robots for fetching items in the storage
rooms exist [10]. The operation of these robots depends on a database, in which the positions of
all the items are pre-recorded.

These needs and principles can be applied to many different scenarios, from hospital beds to
classroom seats or to devices in a call center, where many of the similar looking items exist. The
fast identification of object positions can be crucial. Particularly, the advancements in Industry
4.0 create new application areas and needs for indoor positioning systems, such as inside mines
or production plants.
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1.1.3 Challenges in Indoor Positioning Systems

Positioning techniques that are designed for outdoor use utilize landmarks or signals from other
sources. Outdoor positioning mostly relies on either Time of Arrival (ToA) measurements or
signal attenuation calculations at LoS. Implementing such systems is very challenging indoors
because the LoS is often hard to achieve due to the partitioning of buildings. Also the level
of multipath fading is higher inside buildings. Most common challenges that arise with indoor
positioning systems are listed below. It must be noted that the way these challenges is handled
might vary across different systems and not all of these challenges may be relevant for each type
of indoor positioning system.

Unavailability of Satellite-based Systems

Due to its availability, applicability and simplicity at the industrial and end-user systems, the
GPS has become the de facto standard for outdoor positioning globally. Among other satellite-
based systems GLONASS (Global Orbiting Navigation Satellite System) [11], Galileo [12] and
Beidou [13] are popular in Russia, Europe and China respectively. These Global Navigation
Satellite Systems (GNSSs) are integrated in land, nautical and air vehicles, in mobile telephony
systems, in security and tracking devices and they can even be attached to wild animals [14].
The satellite signals, however, can attenuate to the levels that they become useless when they
penetrate through the walls and ceilings of most buildings. Because of this reason indoor po-
sitioning systems rely on other passive or active RF or optical systems, and they often require
specific infrastructures such as access points, Radio-Frequency Identification (RFID) tags, Quick
Response Codes (QR codes) or sound emitters.

Accuracy

The equipment that indoor positioning systems rely on are often imprecise. Utilizing Wi-Fi
Access Points (APs) is common but they are known to provide inaccurate and inconsistent re-
sults. For example 5 meter positioning accuracy may be sufficient for most outdoor positioning
systems but such precision can be useless indoors, output of which might appear in a different
room of a building. Therefore, special hardware designed for more accurate indoor positioning
is required, which increases the costs substantially. When we consider the potential density of
indoor objects, whose positions are desired to be determined, the installation costs can rise very
quickly.

Need for infrastructure

Many of the indoor positioning systems rely on the existence of an infrastructure. The infras-
tructure may already exist in the building, for example Access Points for Wi-Fi network connec-
tivity can be used for fingerprinting systems. Installation of extra hardware, such as ultra-sound
transmitters, QR codes or Bluetooth Low Energy (BLE) beacons, may also be needed. Two
big problems arise with equipping a building with such infrastructure for an indoor positioning
system:
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1. Retrofitting an infrastructure costs time and money.

2. The infrastructure cannot be easily moved or changed, otherwise the system will need to
be reconfigured (e.g. retrained) accordingly.

Need for additional hardware attachments

Particularly the systems that rely on ranging between devices require additional wireless in-
terfaces, or attachments, like ultra-sound and chirp-based ranging systems, on the devices that
need to be positioned. Additional need for hardware implicitly increases the setup and opera-
tional costs. Maintenance of such systems may become infeasible by time due to technological
developments and supply of the special hardware may become scarce.

Need for training

Fingerprinting systems are very popular, yet they are the most demanding ones in terms of need
for preconfiguration. They require extensive offline training phases which take a lot of time
and manual labor. Some ranging systems require their parameters to be adjusted to suit their
environment. There are also systems that require the precise floorplan of their environment,
which may not always exist and need to be produced.

The mechanisms that are developed in this thesis handle all these challenges successfully.

1.2 Goals of the Thesis

In outdoor situations, we are mostly interested in finding out locations relative to the Earth’s co-
ordinate system, therefore we use global look-up maps for matching our locations to addresses
or known locations. In contrast, each building has its own coordinate system and each build-
ing is different in size and shape. Indoor environments are also very different from outdoors
in terms of wireless signal propagation characteristics. Under controlled environments some
systems achieve centimeter-grade precision, however they require Line-of-Sight, which is often
not possible to have, and multipath is often too high [15]. Indoor positioning starts with the
knowledge of the environment that the object to position is in, and the location information is
expected to be expressed relative to that particular environment.

This assumption motivated this work for creating a solution for the indoor position discovery
problem to handle the challenges that are explained in Section 1.1.3 better than the present state-
of-the-art systems.

We will approach the indoor positioning problem from a different perspective, which is
assigning objects to their potential positions, rather than finding cartesian coordinates of the ob-
jects. We have observed that there is a big enough class of applications, in which the sought
objects could occupy only some predetermined positions, which could be represented as a reg-
ular grid. For example, staff of a call-center use only one of suitably equipped desks during
their work, experimenters in a lab use one of the laboratory benches, patients waiting for a ra-
diological screening use one of few clothes-changing cabins, passengers of an airplane occupy
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one of the seats in predefined positions inside the fuselage et cetera. In fact, for such applica-
tions the location problem can be reduced to the problem of determining the mapping between
a set of objects and a set of candidate positions. Such a mapping problem can be addressed
in one-dimensional, two-dimensional or three-dimensional settings. In the scope of this work,
one-dimensional and two-dimensional settings will be addressed.

A newly emerging sub-class of WSNs is the Linear Sensor Networks (LSN), in which the
nodes of the network are placed in a linear shape in space [16]. These kinds of networks in-
volve nodes that perform sensing and measurement in conditions where the geographical multi-
dimensionality is not relevant. For example above and under ground pipeline control and sens-
ing, under water pipeline sensing, railroads and subway monitoring, powerline monitoring, bor-
der and coast monitoring and roadway driver alerting type of applications [17]. The special case
of these settings allow and often require special techniques for their common problems, such as
routing efficiency, network reliability, security and location management [18]. In this class of
applications, exact distance between the nodes are not needed but their positions relative to each
other is the important information. In many industrial settings, such as warehouse management,
the merchandise is stored in strictly regular grids. Pick-by-Light (PbL) is a modern and effi-
cient way of speedy access to those items, however the installation and maintenance costs are
high [19]. A self-discovering multi-hop wireless network of PbL setup will also benefit greatly
by a configuration-free position discovery system.

Therefore, the object position discovery problem that we are tackling is an object-to-position
mapping problem, rather than computing cartesian coordinates. This problem of indoor position-
ing field assumes that the candidate positions are predefined, such as the cubicles of a working
space, shelves of a warehouse or seats in an auditorium. The objects, whose positions need to be
recovered, are assumed to be enhanced with wireless communication capabilities. These objects
may or may not have Line-of-Sight to each other.

Throughout this thesis, the objects, whose positions need to be discovered, are assumed to be
part of a WSN and we will be referring to them as “nodes” when we explain our approaches. The
position discovery algorithms that are proposed in this work produce a mapping between a set of
N nodes and a set of IV positions. We use a binary metric for measuring their performances: the
mapping of nodes to positions is either perfectly correct or it is not correct. A correct (or true
or success) result means that NV nodes could be placed in [V positions without any error. An
incorrect (or false or fail) result means the assignment of nodes to positions was not perfectly
correct.

The system that is designed in this work is free from an infrastructure and a training phase.
We have designed and tested our algorithms for the common communication radio modules for
WSNs, therefore they are free from special ranging or other dedicated positioning hardware
attachments. We assumed that the proposed systems will work inside any type of indoor en-
vironments, and hence an aid from GNSS is considered to be absent. We targeted to achieve
an indoor positioning system that creates an assignment of objects to their predefined potential
positions. Therefore we are interested in not an accuracy metric that is expressed in a coordinate
system, but a precise assignment of the nodes to their positions.

The mechanisms that one can utilize through common communication radios chip are:
presence information, ToA, Packet Reception Rate (PRR) and RSS. Presence information re-
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quires installing properly labelled radio tags to predetermined locations and it is used to alert
whenever an object with a compatible radio interface enters the proximity. Such a system is out
of our interest as it requires a costly infrastructure. Time of Arrival based positioning systems
require fast Central Processing Units (CPUs) that can measure the Time of Flight. RF signals
travel at the speed of light, and one meter accuracy requires approximately 3 ns time resolu-
tion. Most WSN systems contain low-energy CPUs that cannot achieve such a resolution [20].
In close distances that we are interested in indoors, such as 1 - 3 meters between the wire-
less terminals, the PRR between a sender and multiple receivers is often indistinguishable [21].
Therefore, rather than ranging or static tag-based approaches, utilizing RSS for indoor position
discovery is investigated in this work.

It is common knowledge that RSS cannot be converted to distance indoors reliably [7,22—
26]. Many RSS based systems require extensive training phases, which cost time, power and
money [27]. Such training phases are also very prone to errors and need to be re-done if the
building structure or layout changes [28]. Even though RSS is thought to be an unreliable tool
to discover device positions in indoor settings, it will be shown in this thesis that it can be
leveraged to detect closeness information among peers of multichannel capable WSN nodes.
Therefore, use of extra hardware for ranging or preconfiguration is avoided.

It will be assumed that the nodes are deployed in a virtual grid, each cell of which contains
only one node. Detection of the positions of nodes relative to each other requires initial position
information of one node in single-dimensional settings (in LSN systems) and initial position
information of two nodes in two-dimensional WSN deployments. The nodes with known initial
positions are called reference nodes and they are positioned in one end/corner cell of the grid
setting. These reference nodes decide which other nodes might be occupying the cells adjacent
to theirs. Then these nodes that are newly assigned to their cells decide which other nodes might
be occupying the cells adjacent to theirs and this system runs until each node is assigned to
one cell/position. We have analysed two types of assignment methods: an easy-to-implemet
iterative method and a more precise probabilistic method. The iterative assignment of nodes to
positions produces a definitive node-to-position matching for a position and then proceeds to the
next position, which ends with a final position classification of nodes. The probabilistic method
produces one or more node-to-position matchings with different probabilities and chooses one
of the many possible mappings that has the highest probability.

For validating our hypotheses, we have used real-world measurements, most of which were
performed on the TWIST testbed [29]. We utilized frequency diversity in the measurements and
used RSS values in all available channels of the radio chip. Our proposed methods start with all
nodes in the system exchanging packets at all available radio channels and then they compare the
measured RSS values to one another. Such a measurement system can be seamlessly integrated
to the regular packet exchange of a deployed network. The measurements were then used to
compute the most likely position mapping of the nodes of the network.

We have also performed an additional level of validation by using a simulator. We believe
that this combination of experiments (simulated and real-life) allowed us a more realistic and
representative assessment of our results when compared to many recent studies that are evaluated
only on one type of environment.
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We also defined a second type of quality metric for our results, which we named “reliability”.
The reliability assessment classifies the output of our algorithms into one of the three categories:
high, medium or low. We show that a node positioning result with a reliability level of high
is indeed reliable, whereas a result with low quality cannot be trusted and the measurements
should repeated.

Reliability level of the results (discovered node positions) is calculated by initially assuming
that the result of the position discovery for that experiment is correct. We then repeat the position
discovery for some subset of the nodes in a different direction using the same measurement set
and compare these two results. Depending on how well these two results match, we assign the
reliability level. This allows us to confirm the results and in case of detecting a “low” reliable
result, we can suggest using a different set of measurements, i.e. waiting for some minutes and
repeating the measurement campaign.

The approaches that are introduced in this work, have proven that the RSS information,
coupled with frequency diversity, can be used for precise relative position discovery of wireless
nodes. The performance in recognition of node positions in an LSN has been about 100 %
success when the wireless medium had normal level of external interference and noise, and the
performance stayed over 60 % when the channel conditions were harsher. Of all these computed
results, the success rate was 100 % if the reliability level was high and the vast majority of
the results with medium level of reliability was correct. Most of the unsuccessful results (not
achieving perfect mapping of nodes to positions) could be classified to low level reliability.
These results were obtained both from real world experiments and our simulations.

In the two-dimensional case, the success rate was close to 100 % for the configurations
reflecting a common indoor office environment. When the modelled environment represented
a challenging wireless medium, the success rate stayed above 58 %. Similarly, the results with
high reliability rank were over 99 % correct and the majority of the fails could be classified into
the low reliability rank.

In summary, this work investigates indoor positioning problem as a node-to-position map-
ping problem, which is free from the challenges of a training phase, an infrastructure or extra
hardware. It is shown that, for reliable position discovery it is enough that each node sends a
number of beacon messages and these messages are used to compute mapping of wireless nodes
to their potential positions with high success in a regular grid-like setting.

1.3 Outline

The rest of this dissertation is structured as follows: first the background information on the tech-
nologies that are relevant to this thesis is explained and a summary of previous work on related
positioning technologies and systems is provided. The following chapters elaborate on proposed
methodologies for determining node positions in single-dimensional and two-dimensional cases.
In the final part, main contributions of this research is summarized and possible directions for
future research are suggested. A more detailed description of each chapter is given below:

e Chapter 2 — Background contains an overview of the technologies, which have been
utilized in this work.
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o Chapter 3 - Related Work provides an introduction to indoor positioning solutions in
WSN. It constitutes a brief survey of indoor positioning techniques and it discusses why
the existing studies do not solve the problem of mapping nodes to potential positions.

e Chapter 4 — Determining Node Closeness at a Single Channel shows the evaluation
of RSS information for finding comparative proximity information. As an outcome of
experiments, first hints for solving the problem of relative position discovery are retrieved.

o Chapter 5 — One-Dimensional Node Position Discovery discusses how small changes
in the wavelength of a wireless signal can cause variance in the multipath. Varying wave-
lengths of the propagated signal result in different propagation paths and therefore a re-
ceiver will measure different RSS values from the same stationary transmitter for trans-
missions at different channels. This observation and the algorithms we built around it are
then used to deduce the physically closest receiver node from a set of nodes at varying dis-
tances. This chapter continues with explaining how to detect the sequence of nodes, which
are positioned along a line, by leveraging RSS measurements. Two main techniques are
discussed: an iterative approach and a probabilistic approach. Iterative approach is easy
to implement and it is lighter in terms of computational complexity, while probabilistic
approach provides more accurate results. Computation of the reliability metric is also
introduced in this chapter.

e Chapter 6 — Two-Dimensional Node Position Discovery elaborates on how the proba-
bilistic node sequence discovery system can be extended to the two-dimensional space. It
analyses the case with the minimum number of needed reference nodes (two nodes) and
later how to increase accuracy by adding one more reference node. The system in this
chapter also contains an adapted version of the reliability assessment algorithm.

e Chapter 7 — Conclusions provides a short review of the proposed solutions and a sum-
mary of the major contributions of this work. In addition, directions for future research
are discussed.
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Chapter 2

Background

2.1 Wireless Sensor Networks

In early 2000s, the shape of information generation has changed. The desktop computers, main-
frames and laptops used to be almost the only data generators, which obtained their input from
humans or other fraditional computation units, like themselves. The information that they pro-
cessed was at best indirectly related to their physical environment [30]. With the advancements
in microprocessor and radio technologies, smaller sized low-energy devices could be manufac-
tured and they became ready to operate independent of the fixed power and data networks.

This new type of devices quickly became able to collect information from the physical envi-
ronment that they were deployed in and transmit their data to fixed workstations. Initially they
were embedded into bigger workstations and had one task. These semi-independent systems
that interact with the environment and provide data to the system they are physically attached to
are called embedded systems. The impact of the embedded systems is continuously growing and
they are becoming more present in everyday life, such as in common home appliances, vehicles
like cars, trucks, trains and planes, cameras and even mobile phones.

With the integration of sensors and actuators to embedded systems, they enabled human-to-
machine and machine-to-machine interactions. These type of interactions often required them to
be physically detached from their hosting systems. Some application scenarios could easily be
implemented using wires for communication of sensor and actuator systems to other systems.
However, such cabling of rather small devices have significant drawbacks, such as breaking
of the wires and high total cost of these wires. Therefore wireless communication between
devices quickly became an essential requirement for the implementation of sensing and actuating
applications. This new type of networks are called Wireless Sensor Networks (WSNss).

These networks can interact with their environments by sensing and/or controlling physi-
cal parameters. The nodes of a WSN can perform individually, as well as collaboratively to
accomplish their tasks. These tasks can support many real-world applications, and these appli-
cations are only limited by our imagination. Hence WSNs are also a continuous research and
engineering subjects. The WSNs cannot be restricted to a single set of requirements, they are
flexible. They can contain and connect different types of hardwares and abstractions. They are
often battery-powered, so they can be mobile as well as static. Their hardware is often made

11



CHAPTER 2. BACKGROUND

of low-energy components, therefore these networks support (and are often designed for) long-
time applications; meaning that they are designed to operate for months or even years without
physical maintenance. Their tasks are usually simple enough to not require a high-end pro-
cessor, which makes them cost efficient, as well. As of today (year 2017) a single WSN node
can be purchased for less than 20 Euros with processor, wireless radio chip and a few sensors
integrated.

Due to their characteristics of supporting a wide range of applications WSN systems are
required to be flexible and adaptable. These requirements bring a range of challenges and fea-
tures, which have been studied for a long time and still are open for advancements. In the
books [30] and [31] these features are classified as type of service, quality of service, fault toler-
ance, lifetime, scalability, wide range of densities, programmability, maintainability, data traffic
flow, network topology, indoor or outdoor, automation, context awareness, mobility, node het-
erogeneity, housing, power awareness, financial feasibility, security, delay tolerance, reliability,
time synchronization and localization/positioning. In this thesis, indoor and positioning features
will be on the focus.

Wireless Sensor Networks can be used in almost all aspects of life that one can imagine.
Their flexible and infrastructureless nature, combined with benefits of producing information in
different environments enable us to deploy them in many places and allow us collect data and
perform actuations in anywhere that we want. Having low computational power on the nodes is
not a limitation, since their primary task is to generate and relay information that can be used in
powerful backend mechanisms.

Considering current research trends and areas, the application scenarios of WSNs can be
categorized as, but are not limited to, control and automation, healthcare, environmental mon-
itoring, security and surveillance, logistics, home and office, transportation, tourism, education
and training. Position information of the WSN nodes are either essential or beneficial to all these
areas of WSN applications.

2.2 Wireless Sensor Network Hardware Platforms

Wireless Sensor Networks have more limitations on the hardware side than most common types
of mobile computers, such as celular phones, laptop computers or tablets. These limitations are
natural causes of the application requirements that these systems are targeted at. The nodes of
such networks need to be cheap, small and equipped with right sensors or actuators. They need
to be energy efficient, yet they need to have enough computational power and memory and they
must contain low-power communication modules [32].

Most sensor nodes are composed of a controller, memory, power supply, sensors and actua-
tors and a communication module.

Controller or a CPU is required to process data and information, execute operations and con-
nect other components.

Memory is needed to store programs and external data. Data are often stored in a different
memory unit than the programs.

12
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Power supply is often batteries. With increased accessibility to energy harvesting mechanisms
various technologies, such as solar cells, have been supporting the rechargeable batteries
or they have even been replacing traditional batteries. [33]

Sensors and actuators are nodes’ interfaces to the physical world. They can read or control
the parameters of the real world.

Communication module is necessary for communicating with other nodes and form a network.

These components need to function with taking energy consumption into consideration. Typ-
ically, the controller and the communication module switch to sleep mode whenever they are not
active. A preprogrammed soft timer is used to coordinate the sleep-wakeup cycle. Recent ad-
vances in low-power listening solutions allow nodes to sleep for more than 99 % of the time,
while seamlessly allowing the network to perform its regular operations like routing [34]. In
case of non-cyclical, event-based sleep-wakeup mechanisms, sensors trigger that behavior de-
pending on the measurements they take from the physical environment, such as when the carbon
dioxide values exceed tolerable limits.

2.2.1 Examples of WSN nodes

There are many hardware platforms that are low-power, wireless capable and can host sensors
and actuators. While many of them have been developed by research institutes for research
purposes, there is an upward trend in targeting industrial applications. Table 2.1 provides a
representative list of WSN hardware platforms.

Any of these hardware platforms could have been used in the real-world experimentation
of this thesis as a tool for taking RSS measurements. Their radio modules are programmable
and they can change their radio frequency channels during the runtime. All of these platforms
are programmable with the commonly used WSN operating systems TinyOS 2.1 [50] or Con-
tiki [51]. Because of popularity and ease-of-use factors we have selected the TelosB/TmoteSky
platform running with TinyOS 2.1 in our measurements and experimentation.

These platforms are only a small subset of Wireless Sensor Network platforms. There are
many other products, designs and even attempts, such as Ember nodes [52], FireFly nodes [53],
G-nodes [54], Fleck nodes [55], Particles [56], SquidBee [57] or WeBee [58]. Even the popular
IoT system Raspberry PI can be used as a WSN platform [59]. After all, a Wireless Sensor
Network node is a component of a wireless network that is capable of some processing and
collecting sensor information and it can communicate with other nodes within its geographical
proximity wirelessly. Due to the ever increasing popularity of IoT systems and WSNs, new
platforms continue to emerge for both industrial applications and academic research purposes.
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Table 2.1: A Representative List of WSN Hardware Platforms

Name Controller Memory Radio Chip Connections
EYES [35] MSP 430 48 KB Flash, 10 KB RAM TDAS5250 USB, ADC
(868.35 MHz)

BT Node [36] Atmel ATmega 128L | 128 KB Flash, 64+180 Kb RAM CC1000 ISP, UART, SPI, 12C, GPIO and ADC
Scatterweb [37] ARM7-TDMI 512 KB FLash, 98 KB RAM CC1100 USB, SPI, 12C, RS232, CAN, SD-Card
Imote2 [38] Intel PXA271 XScale | 256 Kb SRAM, 32 MB Flash, CC2420 UART, SPI, 12C, SDIO, GPIO

32 MB SDRAM
MicaZ [39] Atmel ATmegal28L | 4 Kb RAM, 128 KB Flash CC2420 USB, SPI, I2C, ADC
IRIS [40] Atmel ATmegal281 128 Kb Flash, 8 KB RAM IEEE 802.15.4 | 12C, SPI, UART
Mulle [41] ARM Cortex-M4 16 MB Flash, 4 KB RAM AT86RF212B | 60-pin I/O connector
TmoteSky [42] MSP 430 10 KB SRAM, 48k Flash and CC2420 USB, SPI, I2C, ADC
TelosB [43] 1 MB RAM
Kmote [44] MSP 430 10 KB SRAM, 48 KB Flash and CC2420 USB, SPI, I2C, ADC

1 MB RAM
Shimmer [45] MSP 430 10 KB SRAM, 48 KB Flash and CC2420 USB, SPI, 12C, ADC, SD-Card

1 MB RAM
RE-Mote [46] ARM Cortex-M3 512 KB Flash, 32 KB RAM CC2538 and ADC, SPI, I2C, SD-Card, USB

CC1200

TI Sensortag [47] | ARM Cortex M3 128 KB Flash, 8 KB + 20 KB SRAM, | CC2650 UART, I2C, GPIO
Seed-Eye [48] PIC32MX795F512L. | 512 + 12 KB Flash, 128 KB RAM MRF24J40MB | ADC, SPI, I12C,CAN,UART, USB
nRF52 DK [49] ARM Cortex-M4 512 KB ROM, 64 KB RAM nRF52832 ADC, I12C, SPI, UART
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2.3 IEEE 802.15.4 Standard and CC2420

The Institute of Electrical and Electronics Engineers (IEEE) is a professional association and
the leading standards development organization, which supports working groups to develop and
maintain wireless and wired communication standards, as well as other technical standards like
electric power, biomedical technology et cetera. Most known examples of the communication
standards that IEEE maintains is IEEE 802.3 (Ethernet) and IEEE 802.11 (Wi-Fi). In Wireless
Sensor Networks, one of the varieties of Wireless Personal Area Networks (WPAN) can be used,
such as IEEE 802.15.1 (Bluetooth) [60], IEEE 802.15.3 (Ultra-Wideband (UWB)) [61] or IEEE
802.15.6 (Wireless Body Area Network (WBAN)) [62]. In this thesis, the IEEE 802.15.4 is
used, which defines the Low-Rate Wireless Personal Area Networks [1] .

The IEEE 802.15.4 standard is developed for low-data-rate control and monitoring applica-
tions, for which energy efficiency and low power consumption is essential. It defines the physi-
cal layer and the media access control (MAC) layer of the Open Systems Interconnection (OSI)
model. Primary purposes of an Low-Rate Wireless Personal Area Network (LR-WPAN) are ease
of deployment, reliable data transfer, being low cost, long battery life and flexibility. Two types
of devices can participate in an IEEE 802.15.4 network: a full-function device and a reduced-
function device. A full-function device can serve as a coordinator to the network, as well as just
a regular participant. On contrary, a reduced-function device is not capable of serving as a coor-
dinator and is intended to accomplish very simple, light-weight tasks, such as a light switch or a
temperature sensor. Depending on the application requirements, an IEEE 802.15.4 LR-WPAN
operates in either a star topology, or a peer-to-peer topology as illustrated in Figure 2.1.

Star Topology Peer-to-Peer Topology
————— PAN
Coordinator
PAN
Coordinator O Full Function Device

O Reduced Function Device
<« Communication Flow

Figure 2.1: Star and peer-to-peer topology examples. (Reproduced from the standard definition

(1D

There are three frequency bands that IEEE 802.15.4 operates on: 868 MHz (Europe only),
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902 MHz (Americas only) and 2.4 GHz (worldwide). The 868 MHz band has one channel with
a bandwidth of 600 kHz and a data rate of 20 kbits/s. 902 MHz band defines 10 channels, each
of which is 2 MHz apart and the data rate is 40 kbits/s. At the 2.4 GHz band, IEEE 802.15.4
standard defines 16 channels with a channel bandwidth of 5 MHz and a data rate of 250 kbits/s.
In this work, 2.4 GHz band was used and the higher number of channels was essential for our
hypotheses.

The hardware that was used in the experiments performed for this thesis featured a radio
chip, which is called CC2420 from Texas Instruments. CC2420 is a 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Tranceiver [63]. It is a single-chip transceiver and designed for low power, low
voltage wireless applications. It is suitable for both full-function devices and reduced-function
devices with a programmable output power. It has a sensitivity level of -95 dBm and separate
transmit and receive buffers. Its output power can be programmable between -25 dBm and 0
dBm with a current consumption of 8.5 mA to 17.4 mA.

2.4 TWIST Testbed

Doing research on WSNs can be challenging. When the deployed number of nodes needs to be
more than a few, the material and time costs can rise quickly. The limited resources on the nodes
make it impractical for over-the-air reprogramming, which also takes too much time for small
and repetitive modifications of the original program.

When we do research and experimentation, we would like to gather as much relevant data
as we can and we often want to reach to the nodes individually. TWIST testbed is created at
Telecommunication Networks group at Technical University Berlin (TKN) to help with such
challenges that the scientists experience [29]. The TWIST testbed has also been our choice for
the long-term measurements (lasting several days) of our experiments. Its goal is to support the
design, implementation, test and evaluation of WSN applications and protocols. It is based on
off-the-shelf hardware and uses open-source software. TWIST is well documented and can be
reproduced by any interested organization.

TWIST is a scalable and flexible testbed for indoor deployment of WSNs. It provides basic
services like node configuration, network-wide programming, out-of-band extraction of debug
data and gathering of application data. It supports co-operation of heterogeneous hardware
platforms and active power supply control of the nodes.

TWIST meets following testbed requirements:

Building different system architectures: For example an architecture can be flat, where all the
nodes are homogeneous, or segmented, where some nodes act as gateways.

Easy programming and debugging: Frequent reprogramming is typical for WSN applications,
therefore it is essential to be able to update the software on the nodes in parallel. A testbed
should also provide support for delivering ”out-of-band” debug messages, such as using a
wired back-channel.

On-the-fly re-configuration: The testbed should be able to emulate node-failures or controlled
interference.
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Testbed management: The testbed must be able to address each node separately through their
unique identifiers. It should detect defect nodes and other components individually.

2.4.1 TWIST Architecture

TWIST testbed has six components in its architecture. As illustrated in Figure 2.2, the lowest
layer hosts the sensor nodes, which are connected to USB hubs through passive and active USB
cables. These hubs are controlled by super nodes, which are connected to the server and the
control station at the highest layer.

Control
Station

Ethernet
Backbone
Super L.
Node
Passive
USB
Cable USB2.0
Ooog - - 0000 2Ooog 2 Ooo-
Passive§
USB | Active | i 1
Cable | UsB | | |
‘ Cable ‘ ‘ ‘
Socket
] ] ] ]
WSN Passive
Node USB
Cable
=8 6 4
WSN
Node

Figure 2.2: Hardware architecture of the TWIST testbed
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Sensor nodes

Current deployment of TWIST (as of 2017) contains TelosB [43] and eyesIFX [64] sensor nodes
at the lower layer, both of which use their USB interfaces for power, re-programming and serial
messaging.

Testbed sockets and USB cabling

The sockets of the testbed are the points where the USB cables are attached to. Each socket has
a unique identifier and their exact location is known. The sensors are connected to these sockets
throught passive USB cables. The sockets are connected to the rest of the testbed through a
combination of active and passive USB cables, depending on the distance due to the 5 meter
limitation of the passive cables.

USB hubs

USB hubs enable TWIST binary power-control over the sensor nodes. The self-powered USB
hubs support port power switching by sending a control message. This means, TWIST can
control the power supply of any sensor node individually.

Super nodes

To relax the limitations of USB infrastructure, super nodes are introduced to the system for
controlling several USB hubs in parallel. These are 32-bit embedded devices connected to net-
worked storage systems and run a customised distribution of Linux operating system on them.

Server

The core of the server is a PostgreSQL database that stores the information and configuration
data like node IDs, sockets, locations of the components and the binding of the components.
This database is also used for recording debug and application data of the experiments.

Control station

The control station is a workstation that runs Linux on it. The control station invokes the scripts
that run on super nodes through ssh remote command execution. These scripts provide func-
tionalities like sensor node programming, executing, power control and collecting debug and
application data.

2.4.2 TWIST Deployment

As of writing this document, the deployment of the TWIST testbed spans over three floors for
over 1500 m? of the TKN building in Berlin, Germany. In the current configuration, there are
102 Tmote Sky (and TelosB) nodes and 102 eyesIFXv2 nodes. The number of super nodes is
46, which are connected to 60 USB hubs. The complete deployment contains over 1300 meters
of USB cables.
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2.5 Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS) is a multivariate statistical method that helps estimating the
values along one or more continuous dimensions, which are defined as distances between pairs
of objects [65]. It takes inter-object relationships (or distances) and represents those objects
on a multidimensional map, where the distances between pairs of objects are related to the
original relationships. It is used for analysing relationships and patterns given a set of points
and dissimilarities among them. For example, it is used for providing a visual representations
of these distances on a map. It is originally introduced in an article [66], in the journal of the
Psychometric Society, called Psychometrika, which aims to develop psychological studies as a
quantitative relational science. Their articles examine statistical methods, discuss mathematical
techniques and advance theory for evaluating behavioral data in psychology [67]. Psychometrika
has been active since 1936 and MDS is still very popular in psychological research.

In the later parts of this work, MDS has been used to compute the relative positions of sensor
nodes. These positions, which are computed with the help of MDS, are then compared to the
node positions that are computed by the systems proposed by this thesis.

2.5.1 Algorithm

MDS takes the distances between objects and rearranges them in such a configuration that is
representative of the original distances. This rearrangement can be implemented in any number
of directions, including one. For example, if the objects are cities and the relationships are the
actual distances in meters, the two-dimensional output of MDS produces a geographical map of
these cities. The actual orientation of the axes in the output of MDS is arbitrary, but the distances
between the objects in the output is monotonically relational to the distances in the input.

What MDS technically does is; given a relationship matrix as input, finding a set of vectors
in p-dimensional space, such that the euclidian distances between the pairs of nodes in that p-
dimensional space correlate to the euclidian distances between the same pairs of nodes in the
input matrix. The system is explained in a simplified way in Algorithm 1.

Algorithm 1 Multi-Dimensional Scaling; given input matrix D
1: Assign points to arbitrary coordinates in p-dimensional space
2: Compute euclidean distances among all pairs of points, to form the D’ matrix.
3: Compare the D' matrix with the input D matrix by evaluating the stress function. The
smaller the value, the greater the correspondence between the two.
4: Adjust coordinates of each point in the direction that best minimizes stress.
5: Repeat steps 2 through 4 until stress won’t get any lower.

2.5.2 Input of MDS

MDS takes a set of relationships between the data points of the system as a symmetric square
matrix. This matrix is called either a similarity matrix or a dissimilarity matrix. In a similarity
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matrix, the node pairs get closer to each other with increasing value of relationship. A dissimi-
larity matrix, on the other hand, possesses an opposite measure of closeness, in which the nodes
are closer to each other with decreasing value of relationship.

For example, a matrix of cities, with geographical distances as their relationships, is a dis-
similarity matrix because the greater the distance is, farther apart the cities are. A metric MDS
is the one, in which the disimmilarities are quantitative and a non-metric MDS is the one, the
dissimilarities of which is qualitative (such as ordinal).

2.5.3 Dimensionality

The decision about the dimensionality for analysing data is a critical part of MDS. In most visu-
alization purposes, the dimensions are selected among the set of {1, 2, 3}, because these are the
dimensions that humans can perceive. The dimensions can also represent the number of signifi-
cant or relevant relationships between the nodes. This is usually the case for dimension reduction
problems. The number of dimensions also directly affect the stability and the computation time
of the system.

Dimensionality is a complex part of MDS and it can be theoretically analysed much deeper.
However, the scope of this thesis is finding geographical positions of objects, and therefore we
will be interested in only one and two dimensions of MDS, as well as other algorithms introduced
and mentioned in this work.

2.5.4 Stress

The correspondence between the distances among points that are calculated by MDS, which is
provided by the input matrix is called stress and it is measured by a stress function. In classical
metric MDS the stress is calculated as in Equation 2.1:

~ 2

> (dij — diy)
> di”

, where d;; is the Euclidian distance between points 7 and j, and the czz-j is the predicted
distance of the MDS model. The lower stress value is, the better the MDS output gets. In the
perfect case, stress approaches to zero.

Different implementations of MDS uses different stress functions. The quality of the out-
put is directly affected by the stress function and the number of maximum iterations that an
implementation uses to minimize stress.

Like most iterative algorithms, MDS algorithms are also prone to failing to reach an optimal
solution. This can be caused by reasons like local minima, solution degeneracy, or an inadequate
number of iterations. These issues are important to take into consideration when implementing
or selecting an MDS system.

In this work, MDS was used to compute relative positions of nodes in a WSN. Several
implementations have been tried out on the same measured data and SMACOF (”Scaling by
MAjorizing a COmplicated Function”) algorithm [68] was chosen, where it performed better on
our data.

stress = 2.1)
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Most commonly used positioning systems utilize GNSS technologies (such as GPS and Galileo)
with over 5.8 billion devices that contain one of the GNSS chips in year 2017 [69]. However,
these systems do not perform well indoors due to their requirement of direct line of sight to the
satellites. They also increase the energy consumption of the low-power devices that they are
attached to. Therefore GNSS-based systems are not favorable in low power WSN, especially for
indoor applications.

Plethora of algorithms are developed for WSNs for calculating the node positions without
deploying expensive gadgets (such as GPS modules) on each of them. Yet, positioning in WSN
is still very challenging, since the nodes have very limited computational capabilities and often
are required to run on small batteries [70]. WSN nodes also have to collaborate with each other
to position themselves, with a cost of increased deviation in precision.

3.1 Positioning Techniques in WSN

Most of the positioning techniques in WSNs are based on Angle of Arrival (AoA), Time of Ar-
rival (ToA), RSS measurements and connectivity. Each system has its own advantages and draw-
backs. For example AoA requires special antennas and ToA performs poorly if there is no
LoS. RSS-based techniques often require exhausting training phases and they are too sensitive
to environmental changes and noise . Some systems use hybrid mechanisms to compensate for
drawbacks of the positioning techniques they use [71]. These techniques are discussed in more
detail in the following part.

The positioning techniques require few nodes with known geographical position informa-
tion, which are called anchors or reference nodes and their locations are provided to the rest of
the network. The nodes with unknown locations are called non-anchor or blind nodes and their
positions need to be computed using measurements originating from or aligned to the reference
nodes.
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3.1.1 AoA-based Positioning

In AoA-based techniques, the nodes create virtual bearing lines passing through the relevant
anchor node and themselves [72]. When two or more of those bearing lines intersect at one
point, the nodes can determine their locations by using the angle between the bearing lines and
the distance in between the anchor nodes. The computation is a simple geometrical calculation.
In existence of noise the bearing lines from more than two anchors may not overlap. Then, a
triangle will be formed from those lines and the location will be estimated by using triangulation
calculations.

The angle of the incoming signal can tell a sensor node the orientation of the incoming
signals, which is called angulation. Angulation techniques require special equipment, such as
antenna arrays, and require direct line of sight between the receiver and the transmitter.

One way of detecting the AoA is Beamforming, [2]. This technique uses the anisotropy in the
reception pattern of an antenna. The beam pattern of the receiver antenna is rotated mechanically
or electronically. The direction of the antenna where the maximum signal strength is received,
is assumed to be the direction of the transmitter, see Figure 3.1. However, this approach fails
to detect the correct direction of the transmitter if the transmitted signal amplitude changes. To
handle this issue, a second omnidirectional antenna is used to normalize the strength measure of
the received signal.

Figure 3.1: The illustration of the horizontal antenna pattern of an anisotropic antenna [2]

Another similar approach is using more than one stationary anisotropic antennas with known
patterns, [2,73]. This approach makes the antenna patterns overlap to decide from which is the
signal coming. The antenna that receives the highest signal strength is considered to determine
the direction of the signal and other antennas are used for fine tuning the angle. In this approach,
more number of antennas lead to the better estimation of the direction. According to [73], eight
antennas can provide an accuracy of 2 degrees.

A different type of AoA technique is detecting the phase differences in the arriving sig-
nal, [74]. This approach requires an array of antennas, which are separated by a uniform dis-
tance. The transmitter’s signals arrive at the elements of the antenna array with different phases.
By using the distances between antennas, one can calculate the angle of the incoming signal.
However, this approach requires relatively high signal strength and it is very sensitive to inter-
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ference and multipath.

The directivity of the antenna, shadowing and multipath limit AoA accuracy. The AoA mea-
surements highly rely on the LoS path between the transmitter and the receiver. Multipath re-
flections can appear as separate signals coming from an entirely different direction, which make
AoA measurements difficult for positioning. To counteract, some deterministic and stochastic
maximum likelihood algorithms have been proposed [74], which can increase the accuracy of
AoA measurements with a cost of greater complexity.

AoA-based techniques have limited use, due to the LoS requirement and high sensitivity
to noise. One study by Lee et al. [75] combines the angles between the pairs of nodes with
the distances between the same pairs and computes the coordinates using basic trigonometry.
These calculated coordinates are disseminated through the rest of the network and the procedure
is repeated for each node. Then the calculated coordinates of each node by other nodes are
averaged to find the final position. The simulations of this study give over 1.5 m of location
error, which increases as the node density increases.

A study, named Localization and Routing in Sensor Networks by Local Angle Information,
shows a use of local angle information and connectivity in geographic localization of WSNs [76].
The authors state that the angle information is sufficient for a topology control problem that as-
sumes location information, even though it is not sufficient to derive the global geometry. The
topology is taken as a graph and the intersection of the edges in the graph is decided depending
on the angle in between those edges and the lengths of the edges do not matter. Their work
focuses on generating the routing paths rather then providing the locational coordinates to the
nodes. To do this, embedding of unit disk graphs with angle information is used. The authors
discussed that this problem is in fact NP-hard but their linear programming based solution pro-
vided good results. The study remains on a theoretical level, showing how the angle information
can be used for location based routing without having actual location information.

3.1.2 ToA-based Positioning

In WSN, distance based positioning techniques are common. Computing the positions by using
the distances to multiple reference points is called multilateration, [70]. In two-dimensional
space, at least three anchor nodes are required to estimate the location of a sensor node. When a
node computes its distance from an anchor node, then it should be somewhere within the circle
that has the anchor node on its center and whose radius is the distance from the non-anchor node.
By measuring the distance from three or more anchor points, the non-anchor node can tell that it
lies inside the area where all three circles intersect. Ideally, a non-anchor node tries to minimize
the difference function, given in Equation 3.1, for all combinations of three anchor nodes that it
can communicate to.

ooy =V (@ —24)2+ (y —ya)? —ral + |V (z —25)2+ (y — yB)2 — 75|
+ 1V (@ —20)?+ (y — yo)? — rc 3.1)

In the formula above, the non-anchor node is at point (x, y) on the plane, where the anchor
nodes A, Band C are at (x4,y4), (x5, yp) and (xc, yo) respectively. The measured distances
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to the anchor nodes are given by r 4, 7 and r¢ and the location accuracy estimation quality o ,
is minimized.

One way of computing distance between wireless tranceivers is by propagation time mea-
surements. Propagation time is either one-way or roundtrip propagation time, Time of Ar-
rival (ToA), or Time Difference of Arrival (TDoA) measurements [2].

GPS-based positioning is the most typical example in this category. The GPS receivers on
earth, receive transmissions from GPS satellites and calculate their distances to those satellites.
Although only three satellites are sufficient to locate a receiver, a fourth satellite is required to
correct possible synchronization error of the receivers.

In ToA measurements, the distance between the transmitter and the receiver is estimated
by measuring the time a signal takes to reach its receiver. One-way propagation time measure-
ments timestamp the signal at the sender and subtract that time from the receiver’s local time.
This method requires highly accurate synchronization of the nodes in the network, which in-
creases the complexity of a WSN application. Such precise local time stamping mechanisms
make ToA-based approaches often inapplicable for energy constrained systems. Similarly, a
roundtrip propagation time measurement timestamps the transmitted packet twice at the sender.
It measures the total time of the transmission, which is sent and is bounced back to the original
transmitter immediately by the receiver. Hence, the transmitter can use its local time to compute
how long it takes for the packet to travel that distance twice. However, the problem with this
approach is the unpredictable delays at the receiver side, before sending the packet back to the
transmitter. To overcome this problem, the receiver puts its local receive and send times inside
the packet, allowing the initial sender to subtract the delay in the receiver side from the total
travel time of the packet [70]. However, most power constrained WSNs cannot benefit from
roundtrip propagation time of the communication packets as it is since the RF signals travel
through the air at the speed of light, which is much greater than the resolution of the processors
used in most WSN hardware.

When there are more than one receiver, which are all able to receive transmissions from a
single sender, TDoA becomes another applicable method [2]. In this technique, several receivers
receive the same signal from one transmitter and the reception lags in compare to other other
receivers are measured as a function of distance. This technique, too, requires highly accurate
time synchronization and it suffers from multipath. TDoA-based positioning can be used when
the non-anchor nodes know the time difference in their receptions of signal from an anchor node.
This way they can create a virtual hyperbola, which passes through the exact location of the an-
chor node. The higher is the number of non-anchor nodes receiving the same signal, the higher
is the number of hyperbolas created. This allows better estimation of their locations. By defi-
nition, hyperbolas are non-linear and so are their equations. Therefore, location estimation by
using TDoA methods requires lots of complex non-linear matrix calculations and a good Max-
imum Likelihood estimator. These issues make the use of TDoA based localization techniques
less applicable for the sensor networks.

The authors of RF Time of Flight Ranging for Wireless Sensor Network Localization [77]
studied the use of RF signals for wireless sensor network localization. This work requires a very
specific type of hardware, as they used low power external boards with an RF interfaces, very
accurate clock and a microcontroller. They transmitted RF signals at 2.4 GHz frequency and
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measured the Time of Flight (ToF) between two sensor nodes. After a short synchronization
process, the nodes exchange ranging signals and measure the time of flight in nanosecond pre-
cision. The system is tested in indoor and outdoor experiments. Outdoors, the accuracy was as
good as 1 meter, while it was 3 meters indoors.

NanoLOC [78] is another technology that is used to measure distance. It contains a mixed
signal chip which uses a ToF method that employs a ranging signal sent by a reader and an
acknowledgement sent back from the tag to cancel out the requirements for clock synchroniza-
tion. The method provides a protection against multipath propagation and noise by its Chirp
Spread Spectrum modulation technique and uses 80 MHz of bandwidth. The system operates
at 2.4 GHz. For ranging, chirp pulses are used, which are linear frequency modulated signals
with a constant amplitude. So each chirp pulse that’s transmitted through the air, has an lin-
early increasing frequency. The system is commercially available and is tested many times. The
measured precision of ranging is 2 meters indoors and 1 meter outdoors.

The Cricket location support system [79] proposed the use of ultrasonic signals in addition
to the RF signals for supporting localization systems, since the speed of sound is much lower
than that of RF, which allows the WSN hardware measure the time difference in between the
transmissions. In this approach, the transmitter sends an RF signal, letting the receiver know
that the ultrasonic signal is also transmitted. On reception of the RF signal, the receiver enables
its ultrasonic receptors and waits for the sound signal to arrive. The time difference between
the RF reception and sound reception is then used to calculate the exact distance between the
transmitter and the receiver nodes. Cricket is one of the studies that has been heuristically
tested. The experiments show that the position estimation error rate in a stationary deployment
(non-mobile) approaches to 0 % with the use of enough number of samples. Even though the
accuracy of this method is rather high, it suffers from multipath effects, which increases the
complexity of the system. Another limitation is that common low power ultrasonic modules
have approximately five meters of effective transmission range [80]. Another problem with this
approach is, if the RF signals collide, the receiver node will have difficulties in distinguishing the
ultrasonic signals one from another. Also, the sound signals suffers more from severe multipath
effects that are caused by the reflections from the walls.

The n-Hop Multilateration Primitive for Node Localization Problems [80] explains a way to
position sensor nodes in a multihop setting, which the authors call collaborative multilateration.
The positions of the nodes are estimated by setting up a global non-linear optimization problem
and solving it by using iterative least squares. Collaborative multilateration can be done either
in a centralized or in a distributed manner. This algorithm is a range-based algorithm and the
range is assumed to be measured by the use of ultrasonic sensors. The system has four phases.
In the first phase, the nodes create groups among each other to form subtrees to determine which
nodes have unknown locations. In the second phase, the nodes estimate their locations initially
by using their distances to other nodes and the locations of the anchor nodes. In the third phase,
the initial location estimates are refined by using iterative least squares method. Finally the new
location information is used to tune the locations of the nodes that might have poorly estimated
locations. The simulations show that the localization accuracy has an average error of 3 cm.

UWB signals can be used to increase the accuracy in distance measurements [81]. The
bandwidth of UWB signals are typically very large and hence a pulse in the signal takes a very
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short time. Sending such short pulses in the signals allow the receivers decouple the original
signal from the reflections, which results in better prevention of multipath effects. However, the
UWRB systems get harshly affected by NLoS situations.

In the study [81], UWB radios are used for generating distance information. The UWB
radios are selected because their high time resolution allows UWB hardware to provide better
accuracy with time based distance measurement schemes. The experiments show that this ap-
proach provides more accurate results as the bandwidth of the transmitted signal increases. With
a bandwidth value that is above 2.4 GHz, we can get less than 0.2 meters accuracy. When the
bandwidth goes above 5 GHz, the accuracy becomes less than 0.1 meters and approaches to 0 as
the bandwidth increases.

A different approach to measure the distance between two points is by using light beams,
which is called lighthouse approach, [82]. This approach uses a light source which is constantly
producing light strong enough to reach to the nodes that want to measure their distance. The
source is rotating around its own axis, like a lighthouse, and the receiver derives the distance to
the light source by measuring the duration it receives the light beams from the source. The nodes
can have a very small optical receiver, which is an advantage in compare to using ultrasonic
receivers, but the transmitter will be large. This approach, too, requires direct line of sight
between the light transmitter and the receiver.

3.1.3 RSS-based Positioning

RSS measuremets is another commonly used method of position discovery, through either dis-
tance estimation or fingerprinting. A Received Signal Strength Indication (RSSI) is provided in
almost all wireless communication devices. RSSI feature does not cost extra power consump-
tion and does not require any additional hardware. This technique is based on the fact that RSS’s
being inversely proportional to the distance from transmitter by the Friis equation [83], which is
shown in Equation 3.2.

_ RBGG N

Pr(d) - (47’F)2d2 (32)

where P; and P, respectively are the transmit and receive power values, GGy and G, are
transmitter and receiver antennas’ gains, A is the transmitted signal’s wavelength and d is the
distance in between the transmitter and the receiver. This formula represents the free space
model and it is does not consider any environmental attenuation. This over-idealization is de-
creased by using a path loss exponent parameter v, which makes the equation more realistic in
Equation 3.3 [2] [83].

d
P.(d)[dBm] = Py[dBm] — 10calogig (d) + X, (3.3)
0
, where Py[dBm] is the reference power value in dBm at a reference distance dy and « is the
path loss exponent, which corresponds to a rate at which the received power strength decreases
with distance. X, is the effect of shadowing, which is the Gaussian variation around the path
loss value.
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RSS-based fingerprinting is preferred for indoor scenarios, due to its implicit feature of tak-
ing characteristics of the environment into consideration. This technique works in two phases:
training and testing [84]. In the training phase the fingerprints (usually RSSI and sensor val-
ues) are collected and stored in a database. In the testing phase the fingerprints in the database
are matched with the current measurements to estimate positions. The matching of the finger-
prints are usually done through a machine-learning-based system, such as nearest-neighbor or
k-nearest-neighbors, or even neural-networks.

In the study Indoor Fingerprint Localization in WSN Environment Based on Neural Net-
work [85], RSSI fingerprints are collected and fed into a neural-network (Levenberg-Marquardt)
algorithm to detect node positions. The authors defined 240 measurement points in a 86 m? in-
door space at roughly equal distances to each other. The fingerprints of 100 RSSI values were
taken from 5 anchor nodes. These measurements were then fed to the neural-network model
with 5 inputs (for each anchor) and 2 outputs (z, y coordinates). The system resulted in 0.3 m
positioning error in most cases, and the error went up to over 10 m in some other cases.

Similar results were reported by the authors of [86]. They have used both range-based
RSS positioning (namely, multilateration and Min-Max) and RSS fingerprinting mechanisms
(nearest-neighbor and k-nearest-neighbors) to compute node positions. Their results show be-
tween 0.12 m and 0.60 m position error for range-based techniques, and between 0.312 m and
0.55 m position error for fingerprinting-based techniques.

In the study Probabilistic Localization for Outdoor Wireless Sensor Networks [87] an out-
door localization methodology based on RSS measurements was proposed. The inaccuracy in
the RSS measurements are handled by a distributed, probabilistic approach and the complexity
of the computations is reduced by the use of fast Fourier transforms. The proposed algorithm
starts with a calibration process, in which they create a map of RSS to a probability density func-
tion (PDF) of the corresponding distance. The calibration is done by placing a transmitter and a
receiver at several known distances from each other and the RSS is measured (and logged) at the
receiver for many packets. After this, a non-anchor node assumes its location by looking at the
map and measures the RSS from an anchor node. Then it intersects this new measurement with
the old PDF and broadcasts the new PDF to its neighbors. The estimations of the non-anchor
nodes are then improved by using negative constraints. In addition, the authors reduce the com-
putational complexity of the algorithm by the use of fast Fourier transforms. The simulations
show 0.2 error rate in node positions.

The authors of Wireless Sensors Self-Location in an Indoor Wireless Local Area Network
(WLAN) Environment [88] analysed positioning by information from indoor WLAN systems
for positioning of indoor WSN. Two systems are studied; a triangulation method and a heuristic
method using neural networks both of which use RSS to localize the nodes with the help of
WLAN APs. In neural networks based approach, the sensor nodes start with a training phase, in
which they save the RSS values for each AP and the values are stored in the database. In the latter
phase, they compute the positions by comparing the received signal strengths to the data stored in
the database. In the second case, the sensor nodes locate themselves with triangulation by using
the prior knowledge of the AP locations and their antenna gains. The distance of sensor nodes to
the APs are measured by the momentary RSS value and triangulated for location estimation. As
performance of the algorithms, the authors conclude that, triangulation-based localization works
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better then the neuronal-network based system in general. But if the system has various types
of walls among the sensors and APs, the neural network based positioning works better than the
triangulation approach. The positioning error they achieved with the triangulation based system
is 1.3 meters, while with the neuronal network based system it is 2.5 meters. However, these
results are taken in different sites.

3.1.4 Connectivity-based Positioning

Position discovery is also possible using the connectivity information between the nodes within
the network. By evaluating the information of which nodes can communicate to which other
nodes, the node locations can be estimated [89].

In [90], the packet delivery ratio between the nodes is taken as the connectivity metric. Using
this method, a non-anchor node evaluates its connection quality to its neighbors with known (or
computed) locations and it estimates its own position by calculating how much distance does the
measured connection quality correspond to.

Another method is introduced in [91] is called distance vector - hop (DV-hop). This work
assumes that the nodes of the network are spread into the area uniformly. The system starts
with the anchor nodes disseminating their location information within the network. While this
information is flooded by the non-anchor nodes, the hop count, which starts at zero from the
anchors, is incremented. Whenever an anchor node receives a location packet from another
anchor, it calculates the average inter-node distance by dividing its distance to that anchor node
by the hop count. This distance information is then spread back inside the network and non-
anchor nodes calculate their distances to those anchor nodes. When a node has enough distance
information from different anchors, it estimates its location by trilateration.

In [89] an MDS-based system is proposed, which takes connectivity information as the in-
put. The distances are represented as shortest path distances. These inter-node distances are
converted to coordinates by using the classical MDS algorithm. Then, the results are normalized
to the map by fitting the computed positions of the reference nodes to their actual positions. This
system resulted in 2.4 m positioning error in their simulations (assuming that the unit lenght is
selected as 1 m). With refinements to their system, by clustering the nodes to position and join-
ing these clusters, they achieved 0.29 m of positioning error in the simulations. In later chapters
of this thesis, an adaptation of this system will be used for performance comparison with our
proposals.

Another connectivity-based positioning system is introduced in the paper “Range-free Lo-
calization Algorithm Using Expected Hop Progress in WSN” [92]. This study proposes a range-
free localization algorithm that uses expected hop progress for sensor location prediction, which
is based on accurate analysis of hop progress with randomly deployed sensors. The authors show
that the expected hop progress is a function of node density, node connectivity and transmission
range. The proposed system fuses the trilateration techniques with the expected hop progress.
Each sensor node is assumed to store a database in its memory which maps the node connectiv-
ity to the corresponding expected hop progress. The simulations show that this algorithm leads
to a distance estimation error of O with 0.425 probability. As for the performance, over 90 %
of sensors estimate their positions within a deviation of one transmission range from the actual
positions.
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Summary

Computing the locations of very low capacity sensor nodes is challenging. Many algorithms
have been developed using various positioning techniques.

For many sensor network positioning systems, the size of the network is a big concern. The
cost and scalability limitations make angle of arrival techniques less applicable. Mounting extra
directional antennas or using anisotropic antennas add up to the cost and require more complex
architectures. A better alternative to AoA-based approaches could be the lighthouse technique.
However, in many indoor sensor network applications, expecting a direct line of sight to the
reference light sources is hard and the preconfiguration of the system is cumbersome.

ToA/ToF-based techniques are relatively more applicable to the sensor networks. Those tech-
niques can be very efficient outdoors and can locate nodes in relatively big distances. However,
RF ranging techniques are highly error prone indoors. Although UWB seems like a good alter-
native to RF based ranging systems, their precision is also within the ranges of several meters
and often require LoS. Ultrasonic based positioning provides centimeter-level precision quality,
however it requires installment of special infrastructure and sound signals do not travel more
than a couple meters away when utilized on low-energy sensor networks.

RSS-based positioning receives more interest from the scientific community because RSS
information is very often readily available on the communication radio chips. Two biggest
type of this kind of positioning is Fingerprinting and RSS-ranging. Fingerprinting requires an
exhausting training phase and once the anchors are replaced, the training phase must be repeated.
Ranging methods are too prone to the environmental noises and conversion of RSS to physical
distance is not reliable enough.

Connectivity-based positioning is the easiest to implement in comparison to other types of
positioning techniques, however they do not work if the network is too dense. If all of the nodes
are within each other’s proximity, it is not possible to make a distinction between the nodes.
Some hybrid algorithms combine connectivity information with other types of information, such
as RSS, but this brings extra cost to the application and it is still not precise enough.

3.2 Discussion

In the previous section some positioning techniques, which we think are most representative to
WSN, are discussed. Indoor positioning systems are not limited to the field of WSN, in fact it
is a widely studied research topic. Plethora of papers are published each year in this field, and
many of them provide very promising results.

Studying indoor positioning or localization is not easy, especially when it comes to the eval-
uation of the systems and experiments. Researchers often analyse their systems on a simulated
environment, or they have access only to limited spaces, which causes over-customizing their
algorithms to their environments. These issues make it very challenging for the scientists to
compare their systems to other systems. Because of these problems, there are now performance
evaluation platforms, such as PerfLoc [93].

Microsoft Research has been organizing the Microsoft Indoor Localization Competition [94]
since 2014. The purpose of this series of competitions is to give different academic and industry
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groups an opportunity to test their indoor localization technologies in a realistic, unfamiliar envi-
ronment [27]. They categorize the competing systems as infrastructure-free and infrastructure-
based. The infrastructure-free systems utilize only existing Wi-Fi infrastructure that is assumed
to be already there and they fuse the Wi-Fi signals with sensors, such as accelerometer and gy-
roscope. The infrastructure-based systems deploy extra hardware to the environment, such as
bluetooth beacons, magnetic resonators, ultrasound transmitters and customized RF transmitters.

In the 2014 competition, the winning team achieved 0.72 m accuracy and only three teams
achieved an accuracy under 2 m. The average position error changed between 0.72 m and
10.22 m. The position error that was seen from these systems were 2.5 m and above according
to the CDFs of the location errors of these systems [27].

In later years lidar-based systems also appeared in the competition and achieved higher accu-
racy (between 0.2 m and 0.03 m) than the other systems. However, despite their high accuracy,
their cost, size and high energy requirements prevent these systems from becoming a mainstream
indoor positioning system, especially for WSNs [28].

In the 2014, 2015 and 2016 competitions a few infrastructure-free positioning solutions
achieved an accuracy of 1-2 m but most of them around 3-4 m. Even the fingerprinting-based
infrastructure-free systems showed great variation in performance across years and across teams,
and they were not able to provide below 2 m accuracy, although fingerprinting has been a well-
studied methodology. Similar inconsistency also appeared in infrastructure-based systems, with
their performances varying between 0.23 m and 3.22 m in accuracy.

In the 2017 competition, the teams were given 7 hours for their preparation and training
phases. Each team needed on average 5 hours to finish preparation, which is a significant amount
of time if an environment changes day to day.

Considering the published literature work in the field of indoor positioning systems, one can
claim that relative position discovery on a grid-like setting can be achieved by using one of those
published studies that provides an accuracy level that is smaller than the sizes of the cells of the
grid. However, the evaluations and competitions for indoor localization solutions in foreign
and uncontrolled environments show that consistency in performance and adequate precision (in
scales of few decimeters to one meter) has not been achieved yet. Despite the claimed research
results, practical applications of indoor position discovery are far from being applicable. Ab-
sence of a mainstream indoor position discovery solution, which has been commercialized as of
2017 is also an anecdotal evidence that, an adequately precise and consistent indoor positioning
solution does not yet exist, which is low on cost and energy requirements. Therefore, in this
work we aimed to develop the cheapest (in terms of hardware, cost, energy and time require-
ments) system for discovering the positions of nodes in a WSN under the assumption that precise
cartesian coordinates are not necessary.

3.3 Towards Preconfiguration-free Position Discovery

Developing a cheap indoor positioning system encouraged us to use only the available infor-
mation from the common WSN hardware, therefore we investigated utilizing RSS as the main
source of information for the rest of this thesis. RSS information during the regular communica-
tion of the wireless nodes is readily available in most common WSN hardware platforms, such
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as the ones listed in Section 2.2.1.

Multiple studies, such as [95], show that RSS data by itself does not provide practical use for
range estimation. The studies that rely on RSS information often require an intensive calibration
process or a database for mapping the RSS values to actual distances or positions. Those com-
putations are environment specific and computed mappings are not directly reusable in different
locations without recalibrating. In [96], a calibration method that promises to reduce the error
in localization has been described. Their method places two wireless nodes at known locations
(hence, known distance to each other) and then samples RSS between each other. They repeat
this procedure at varying distances and generate a dB scale RSS attenuation model versus dis-
tance. They update this model through out the operation of the network amongst the anchor
nodes.

A good comparison of some of the best known RSS based positioning algorithms is given
in [97], with conclusions that the relative positioning error is between 50 % and 100 % in most
cases.

Another comparison is given in [98], focusing on indoor applications. It is shown that even
when the nodes are located between 1 to 2 meters apart in a grid, the error is more than 2 meters
with a probability of 0.5 or higher.

Despite several years of prolific research activity in the area of radio-based localization algo-
rithms [99], the most popular and precise methods for indoor localization still leverage the tried
method of signal fingerprinting, following the pioneering work of Microsoft on the RADAR
system [100]. Several studies have demonstrated that the fading-related distortions, which make
range-based RSS approaches impractical for precise indoor localization [3,95, 101].

This realization has stimulated much interest in range-free approaches like the centroid or
APIT methods [102]. This dissertation on position and sequence discovery shares the view with
the range-free methods that the RSS information should not be directly used to invert the path-
loss curve in order to estimate the range between two communicating nodes. Instead of complex
approaches to estimate and compensate the distortion effects of the fading, we put higher weight
on leveraging the diversity in the frequency domain which allows us to achieve slightly different
fading behaviors even for static nodes [103]. This has been proven very useful also for non-RSS
range-based methods like the ToF approach presented in [104].

Averaging RSS samples across different channels, as means of improving the stability of the
mean RSS estimate, has also been explored in the works presented in [105] [24]. This thesis uses
the simple averaging as only one of several different metrics for position detection, along with
better ones. For example, the comparative benefit of concentrating on statistics involving the
higher-magnitude tail of the RSS sample population is also analysed, similarly to the focus on
the shortest ToF samples in [104]. Also, the inter-dependence of the different proximity metrics
with our algorithms are considered and the combination in more challenging environments with
strong NLoS components are evaluated.

The field of indoor position discovery clearly lacks an affordable system that solves the prob-
lem for all types of applications. Even if we want to discover the positions of the objects relative
to each other, there is no one-size-fits-all type of solution. Therefore we want to solve this prob-
lem for the specific case, where the nodes are placed on a regular grid setting and the positions
are represented relative to each other. This definition of the problem fits to many indoor, office-

31



CHAPTER 3. RELATED WORK

like settings, where the space is partitioned into regular sections and relative positions of the
objects can be mapped to real locations in the space prospectively.

This work proposes several methodologies for discovering the positions of a definite number
of wireless nodes in a roughly regular grid setting. Both single-dimensional (1 x n) (LSN) and
two-dimensional (m x n) settings are discussed and solutions are proposed. LSN approaches
and applications are relatively recent, yet there has been a good number of studies done in this
field. The applications of LSNs include, but are not limited to, liquid pipeline monitoring, bridge
and tunnel monitoring and actuations, railroad and subway monitoring, border monitoring, sea
coast monitoring, as well as powerline monitoring [16] [106] [107].

Even though a grid setting is a common configuration indoors, it has not been exclusively
studied within the scientific community throughly enough. Hence, this chapter continues with a
brief discussion of most relevant work that can be utilized towards node position discovery in a
grid setting.

In [108] the authors describe a ranking algorithm, which discovers the ordering of the nodes
using connectivity information and the knowledge of first node in the network. The system
first discovers one and two-hop neighbors by sending a hello message. Two-hop discovery
requires exchange of one-hop neighbor lists within the network. After that they run a centroid
algorithm and compute the order (ranks) of the nodes. We see two big limitations in this type of
connectivity-based approaches; first, they require the node deployment to be sparse enough, such
that their systems can implicitly label the nodes that are not within each others communication
range as far nodes, secondly they cannot support a fully connected wireless network, in which
any node can communicate immediately to any other node. The success rate of the algorithm
reaches to 95 % if the connectivity degree is 1 within the network, and their results show that
when the connectivity of the reference node increases to 6 or more, the success rate drops under
40 % for a network of 13 nodes. These rates are achieved with 5 m inter-node distances, while
our system works with inter-node distances of under 1 m. Their approach was also tested only
in the simulation environment, while we verified our approach both on real-world measurements
and on simulated data.

In [109] the authors created a spatial ordering algorithm for one-dimensional WSNs. They
advocate that RSS information is useful for localization algorithms and a comparative ranking
of RSS values correlate with the spatial ordering of the nodes in a linear setting. Their claim
is, smoothing (averaging) the signal strength values with as little as 2 samples provide 99 %
chance of correctly identifying the closest node information from a single node’s point of view.
Therefore the authors conclude that ranking of RSS values on a single transmission channel can
be mapped to node ordering for about 99 % of the time. Unfortunately we have not been able to
reproduce these results with our real-world experiments (see Chapter 4). Also other studies in
the literature (such as [110]) appear to be in contradiction to the statements that are presented in
that work.

The authors of [111] published their results for a system to detect relative node positions in
a LSN topology. They rank the immediate neighbors of each node in a neighborhood list and
iteratively select the most likely next node for building the order. It seems that the authors did
not notice our work [112], which has been published two years earlier. But their results, using a
similar approach to what we have presented in our paper, confirm the correctness of our work!
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In [113] the authors introduce the concept of sequence-based localization, a 2D range-free
approach where the space is divided into regions that can be uniquely identified using sequences
representing the rank of distances from a set of reference nodes. Their procedure for determin-
ing the unknown node location sequence (the distance rank table from the unknown node to
all reference nodes) faces the same challenges due to the distortion of the RSS signal through
shadowing and multipath as in this work. They do not attempt to mitigate these effects using
statistical methods or frequency diversity, and only rely on comparing the corrupted distance
rank sequence to the set of all possible rank sequences. Their method implicitly requires a high
number of reference nodes, in comparison to the number that is required in the proposals of this
thesis.

Another 2D range-free positioning and tracking scheme, based on relative distances between
neighbors, has been presented in [114, 115]. The approach aims at improving the performance
of pure connection-based, range-free methods through the concept of a “Relative Signature Dis-
tance (RSD)”, new metric expressing the expected proximity between 1-hop neighbors. Even
though that approach has also been evaluated for a long one-dimensional node configuration
outdoors, the focus is on estimation of the spatial coordinates of the nodes instead of just the
node sequence. The approach also lacks any mechanisms to deal with the challenging indoor
conditions that are in the focus of this work. A similar attempt to improve the connection-based
range estimates is presented in [116]. They derive the node locations locally from expected hop
progress, in which the nodes broadcast their own transmission capabilities, and use the anchor
locations that they are aware of. However, the accuracy of the positioning is only within half of
a node’s transmission range. In comparison, our work not only deals with much denser settings,
but also implicitly supports heterogeneous networks and the nodes do not need to announce
their transmission capabilities, since the closest node selection mechanism uses one sender and
multiple receivers.

A method for relative position discovery of wireless sensor nodes in linear typologies, pre-
sented in [110] is the most similar to our work, from the point of view of the common focus
on determination of the correct node sequence, instead of estimation of spatial coordinates. The
proposed method shares resemblance with our single-channel, greedy, average-RSS approach,
introduced and it is more extensively evaluated in one of our papers [112]. Similarly to the
other related work, however, their method has not been evaluated in indoor environments. This
simple approach, too, is not able to deal with the challenging fading disturbances that are typical
for indoor environments. In that study, accuracy was commented on, however any indication of
accuracy detection does not exist like it is provided in this thesis.

An anchor-free localization method is proposed in [117] that is comparable to MDS-MAP.
The authors use estimated distances between the neighboring nodes and generate the node posi-
tions as a result of a central non-linear optimization process. They claim that they can increase
the localization accuracy, if MDS output is given to their algorithm as the initial state. However,
they rely on measured ranges from one node to another, which is in practice sensitive to the
challenging propagation effects elaborated which results in erroneous location estimates.

The surveys [118], [119], [120] commonly concluded that range-free position discovery sys-
tems fall short in accuracy. In contrast, this thesis proposes techniques for a highly accurate in-
door position discovery when the nodes are relatively close to each other, and ways of assessing
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whether the perfect accuracy has been reached. This qualifies our work as being more applicable
for a range- and preconfiguration-free position discovery system, even for challenging and dense
indoor environments.
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Chapter 4

Determining Node Closeness at a
Single Channel

In previous chapters, the ineffectiveness of converting RSS values into distances, as well as
difficulty of utilizing raw RSS values for various types of indoor position discovery methods
were discussed. Despite the fact that computing geographical positions by relying only on signal
attenuation level is very difficult, we attempt to find ways for identifying the closest node to a
particular transmitting node in this chapter.

Our intuition is, if each node can detect the closest node (among many nodes) to itself,
the spatial sequence mapping of nodes can be created. For example, the sequence of nodes,
which are positioned in a linear setting, can be iteratively discovered starting from the node at
the beginning of the sequence (the reference node). Therefore, detecting the closest node is
essential to further construction of the complete map of relative node positions.

We will start investigating the possibility of using RSS for closeness detection, as it is an
already available information that comes at no extra cost from the radio chip. In this chapter,
different ways of processing such data will be analyzed through real-world experiments. These
experiments will be repeated for different transmission power levels and different distances be-
tween the pairs of nodes.

4.1 Approach

The goal of this section is to analyze different techniques for detecting the closer one of two
nodes. For the analysis, the RSS values from a number of transmissions between one sender
(reference) and two receiver nodes are sampled. By examining the distributions of all the values
taken in the measurements, we will try to choose one of the receivers as the closer node to the
reference node. An experiment is composed of a set of transmissions at the same transmit power
level from one reference node and the RSS values are collected from two receiver nodes.

To conjecture whether an experiment is conclusive or not, we defined the metric T'rust level,
which takes a value between 0 and 1. Greater values of the trust level indicates higher confidence
in our decision. After having a reasonable number of experiments, we will observe the corre-
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lation between the trust level and the verdict by looking at how many times and under which
circumstances the ground truth is reached (the closest node is correctly detected). We plan to set
the trust thresholds for classifying the future verdicts.

The symbols that we use here are as the follows:

Assuming that Node A and Node B are measuring from the same reference Node R:
1 — Index of the transmissions of R in an experiment

*RSS 4 — Set of RSS measurements by Node A throughout an experiment

RSSY — Value of an RSS measurement by Node A from the transmission i

A — Mean value of *RS Sy

o4 — Standard deviation of *RSS 4

E, — (RSSY > RSS%) The event that RSSY is higher than RSS% for transmission 4
*F, — The set of all events F,

P(E,) — Empirical probability of event F,

Closernode = A — The verdict is node A is closer to Node R node than Node B
Aa — Trust Level if Closernode = A

We divide this approach into several sub-hypotheses and examine them under the same con-
dition (measuring on a single channel), which are given in the following sections. We anticipate
that at least one of these sub-hypotheses will help us to find a correlation between a verdict for
closer node and the trust level of that decision.

4.1.1 Sub-Hypotheses

We introduce 5 hypotheses for identifying node closeness, which take the RSS values as input.

Sub-Hypothesis 1: The bigger the mean of RSS, the closer the node

We will first try comparing the mean of the RSS values from both nodes as a way of indicating
the closer one of two adjacent nodes. These RSS values will be sampled from the same set of
transmissions from a particular reference node. Therefore, if the mean of RSS values measured
by Node A is greater than that of Node B, then we conjecture that Node A is closer to the
Reference Node R than Node B is. We evaluate the Trust Level () of this verdict by finding the
proportion of the difference between the mean RSS values of both nodes to the mean RSS value
of the closer node.

if wa > pp then; Closernoder = A
Aa = (pa —pB)/pa 4.1)

Sub-Hypothesis 2: Comparison of empirical probabilities

Each of the two nodes measures the RSS value from the same transmission ¢, which is indicated
with RS.S®. Fora particular instance of transmission, where RS Sf4 #% RS 553, either of these two
events occurs: B, = RSSY > RSSY or E, = RSSL > RSSY,. The empirical probabilities
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of these two events are found by calculating the ratio of the cardinality of each event set (|*E)
to the total number of events, which are indicated by P(E,) and P(E}). We will use these
probabilities as an indicator of the closer node, which is the node that is associated to the greater
one of these two probabilities. The Trust Level (A) is conjectured by the difference of these
probabilities.

E, = RSS) > RSSY,
E, = RSS% > RSSY

[*Ea| [“E|
P(E) =" pgy— "l
)= g m T T R
if Vi, P(E,) > P(Ey) then; Closernoder = A
Aa = P(E,) — P(Ey) (4.2)

Sub-Hypothesis 3: RSS interval comparison

In this sub-hypothesis, we define the “RSS Intervals (RI)” as a symmetrical interval around
the mean values (p) of RSS readings of each node. The Rls are bounded by the standard
deviation (o) of the measurements.

RI = [RI™™ RI™®)| = [y — 0, u + 0] (4.3)

By using o, we will be processing on a more representative portion of the data. The decision
on the closer node is given by comparing the boundaries of the RIs that are defined on the
probability density functions (PDFs) of the measured RSS values by both of the nodes.

The use of RSS Intervals for data evaluation leads us to following three cases:

Case 1: If the RSS intervals of the two sets of samples are not overlapping, then the node which
has the lower bound of its RI (RI}Z{Z'") higher than the upper bound of the other node
(RIZ*) is taken to be closer to the reference point (transmitter node) with 1.0 level of
trust.

if Rlﬁlm > RIF then; Closernoder = A
Aar=10 (4.4)

Case 2: If the RSS intervals are overlapping, then we compare the mean values (14, 4p) and
the upper bounds of the RIs (RI}***, RIZ%*). If both the mean value (114) and the upper
bound of the RSS interval (RI7**) of node A are greater than those of the other node’s,
then we conjecture that node A is closer. The trust level (\) of the verdict is calculated by
dividing the non-overlapping part of the two RIs to the RI of the Closernode.

if RIT* > RIF* AND py > pup then; Closernodeg = A

Ay 1 n(RIZe, RIZe) — max(RIG™, RIG™) “s)
RITaes — Rfin
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Case 3: If the comparison in Case 2 show that only one of those values (ua or RIT%) is
greater than that of node B’s, then we compare the differences between the mean values
(Ap) to the differences between the upper bounds of the RIs (A RI™%%).

The greater one of those differences (significant difference) will be used as an indicator
of the closer node, with the set of equations below:

Ap = |pa — psl (4.6)
and

ARI™ = |RI — RIpO*| @.7)
and

wa, Ap>ARI™™ and pa > pp

wB, Ap>ARI™ and up > pa
©=1Y RI7®, ARI™®> Ap> and RI}™ > RIJ™
RIZ*, ARI™® > Ap > and RIF* > RITY

4.8)

Above; ¢ is the value, which has a significance in the PDFs of one of the nodes. Therefore;
the assumption is, whichever value ¢ € {ua, RI'T™, up, RIF*"} takes, is associated
with the closer node.

A, € , R
Closernode = ¢ € pa, RIT™} 4.9)
B, ¢ e {up, RIF*"}

The trust level (\) of the verdict is again calculated by proportioning the non-overlapping
portion of the two RIs to the RI of the Closernode. If the Closernode = A, then:

min(RIFY, RIT®) — max(RI", RIF™
AA =1- ( z R?maaz _ lez(n 4 z ) (4'10)
A A

Sub-Hypothesis 4: Comparison of every n'" transmission

This sub-hypothesis performs the same evaluation as the sub-hypothesis 2, but uses less trans-
mission samples that are taken from every n‘" transmission. This is done to create a more sparse
set of values, hence reduce condensed noise if there were any.

E, = RSSY > RSSk

Ey, = RSS§ > RSSY,

if Vienxj P(Eq) > P(Ey), forj={0,1,2,...,|N/n]} then; Closernode = A

A = P(E,) — P(Ep) (4.11)
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Sub-Hypothesis 5: Smaller portions of the large measurement

In this sub-hypothesis, we divide the set of measured RSS values into subsets of 100 transmis-
sions, having n subsets. Then we choose the k" subset, which contains the smallest afz + a]’%
value and we apply the Hypothesis 2 on that subset only. This k%" subset is supposedly the most
stable part of the collected data, due to having less variation. Here total number of transmissions
should be more than a few multiples of 100.

4.1.2 Evaluation

We performed a set of experiments to test the proposed sub-hypotheses in a building at the
Technische Universitit Berlin. Three TelosB type WSN nodes were placed roughly along a line
and one of them was used as the reference node while others were used as receivers.

The reference node was assigned the ID 0, closer receiver node was assigned ID 1 and
farther receiver node was given ID 2. After applying our hypotheses on the measurements, if
the algorithms indicated Node 1 as the closer node, the decision was considered correct and the
decision was classified as incorrect if the Node 2 was chosen as the closer node.

The reference node (Node 0) transmitted 1000 packets at 10 ms intervals and two receiving
nodes captured the RSS values of those transmissions from the RSS Indicator (RSSI) of the
CC2420 chips on the nodes. Each set of experiments was repeated with a different transmission
power level from the set {0, —5,—10,—15,—25} dBm. 0 dBm is the highest and —25 dBm
is the lowest power level that CC2420 transmits at. The reason for running the algorithms
at different transmit power levels was to understand if these power levels would influence the
results.

During the first set of experiments, the nodes were positioned at equal distances in a large
hall without any furniture. There were two active Wi-Fi access points on the walls and the build-
ing was hosting institutes that performed research on various wireless networking technologies,
therefore some uncontrolled electromagnetic noise was expected.

The nodes were placed 100 ¢m apart from each other (meaning; the first receiver is 100 cm
and the second receiver is 200 ¢m away from the reference node) and the RSS values were
observed from 1000 transmissions. The nodes were on a single plane, put on tables without any
obstacles in between, roughly along a straight line. The results of the evaluations of the sub-
hypotheses are given in Table 4.1 and the observations are plotted in Figures 8.1,8.2, 8.3, 8.4,
8.5 (in the Appendix A) at each transmission power level, which include the probability density
distributions. In these figures, the part that is marked with a gray mask shows the subset of data
which was selected by the sub-hypotheses 5. These results show that all of the sub-hypotheses
could detect the closer node correctly at all of the transmit power levels and the channel was
fairly stable even for lower levels of transmit power, an example of which can be seen in the
Figure 4.1. However when we changed the distance between the nodes, we have observed that
the performance of the algorithms were not consistent.
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Table 4.1: Dist: 100 cm, Line of Sight

Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 1.00 Correct Sub-Hypothesis 1 1 1.00 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 0.98 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 0.96 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 1.00 Correct Sub-Hypothesis 1 1 1.00 Correct
Sub-Hypothesis 2 1 0.98 Correct Sub-Hypothesis 2 1 0.94 Correct
Sub-Hypothesis 3 1 0.92 Correct Sub-Hypothesis 3 1 0.82 Correct
Sub-Hypothesis 4 1 0.99 Correct Sub-Hypothesis 4 1 0.93 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 0.95 Correct
Tx: -25 dBm

Sub-Hypotheses: | Decision | Trust Level | Result

Sub-Hypothesis 1 1 1.00 Correct

Sub-Hypothesis 2 1 1.00 Correct

Sub-Hypothesis 3 1 1.00 Correct

Sub-Hypothesis 4 1 1.00 Correct

Sub-Hypothesis 5 1 1.00 Correct

Probability Density Function. Distance: 100 apart at LoS , Tx Power: -25 dbm
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Figure 4.1: 100 cm apart nodes; reference node Tx Power: -25 dBm
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The second set of experiments were performed with the same settings as the previous one,
except the nodes were placed 200 ¢cm apart from each other. Observations are plotted in Figures
8.6,8.7, 8.8, 8.9, 8.10 (in the Appendix A) for each transmission power level.

The results of the sub-hypotheses from this set of measurements are given in Table 4.2. The
Figure 4.2 shows that even when all the controlled parameters (distance, transmit power level,
node positions, packet length) stayed same, the channel conditions changed. In the first 200
transmissions the Node 1 registered higher RSS readings than the Node 2. Between about 220"
transmission and 680" transmission Node 2 was measuring higher values, and after that Node
1 measured higher RSS values again.

Probability Density Function. Distance: 200 apart at LoS , Tx Power: 0 dbm
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Figure 4.2: 200 cm apart nodes; reference node Tx Power: 0 dBm

These observations showed that the channel did not stay coherent for the complete duration
of the measurements and the some indication of fading channel characteristics was noticeable.

The third experiment set was done with NLoS conditions in a lecture room with multiple
rows of seats in it. The nodes were put right behind the backsides of the seats, which were
80 cm apart from each other. This means Node 1 and the reference node had one seat in between
and Node 2 was two seats away from the reference node. Observations are plotted in Figures
8.11,8.12, 8.13, 8.14, 8.15 (in the Appendix A) at each transmission power. The results of the
sub-hypotheses are given in Table 4.3.
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Table 4.2: Dist: 200 cm, Line of Sight

Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level Result Hypothesis: Decision | Trust Level Result
Sub-Hypothesis 1 2 1.00 Incorrect Sub-Hypothesis 1 2 1.00 Incorrect
Sub-Hypothesis 2 2 0.02 Incorrect Sub-Hypothesis 2 2 0.43 Incorrect
Sub-Hypothesis 3 2 0.05 Incorrect Sub-Hypothesis 3 2 0.34 Incorrect
Sub-Hypothesis 4 2 0.02 Incorrect Sub-Hypothesis 4 2 0.40 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 0.74 Incorrect
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 2 1.00 Incorrect Sub-Hypothesis 1 1 1.00 Correct
Sub-Hypothesis 2 1 0.02 Correct Sub-Hypothesis 2 1 0.76 Correct
Sub-Hypothesis 3 1 0.50 Correct Sub-Hypothesis 3 1 0.34 Correct
Sub-Hypothesis 4 2 0.04 Incorrect Sub-Hypothesis 4 1 0.76 Correct
Sub-Hypothesis 5 2 0.12 Incorrect Sub-Hypothesis 5 1 0.85 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 1.00 Incorrect
Sub-Hypothesis 2 2 0.07 Incorrect
Sub-Hypothesis 3 1 0.39 Correct
Sub-Hypothesis 4 2 0.12 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect
Table 4.3: Dist: 80 cm, Non - Line of Sight
Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 1.00 Correct Sub-Hypothesis 1 1 1.00 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -10 dBm Tx: -15dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 1.00 Correct Sub-Hypothesis 1 1 1.00 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 0.99 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 0.99 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 1.00 Correct
Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct
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In the fourth set of experiments that were performed in the same room, the nodes are placed
two seats apart from each other, which was equal to 160 c¢m in between the nodes (hence the
receiver 2 was 320 ¢m and 4 seats away from the reference node). Observations are plotted in
Figures 8.16, 8.17, 8.18, 8.19 and 8.20 for each transmission power level. The results of the
sub-hypotheses are shown in Table 4.4.

Table 4.4: Dist: 160 cm, Non - Line of Sight

Tx: 0dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 1.00 Correct Sub-Hypothesis 1 1 1.00 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 1.00 Correct
1 1

Sub-Hypothesis 5 1.00 Correct Sub-Hypothesis 5 1.00 Correct

Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 1.00 Correct Sub-Hypothesis 1 1 1.00 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 1.00 Correct

1.00 Correct
1.00 Correct
1.00 Correct
1.00 Correct

Sub-Hypothesis 2
Sub-Hypothesis 3
Sub-Hypothesis 4
Sub-Hypothesis 5

== =]~

The third and fourth set of experiments at NLoS provided all successful results. Inter-node
distances were comparable to LoS experiments that are given above. These experiments are so
far not conclusive and it was not possible to recreate the conditions that caused an experiment to
be unsuccessful in a repeatable way. However, these results hint that when we had a Trust Level
of 0.5 or higher with the sub-hypotheses 2, 3 or 4, their verdict was correct for most of the time.
But this is not a conclusive result.

For verifying the observation about the Trust Level threshold, the unidistance setting was
changed. We placed the reference node at a different distance (d.S) to the first receiver than the
distance between the receiving nodes (dV). In other words, the first receiver was dS cm away
and the second receiver was dS + dN cm away from the sender (reference node). We performed
new measurements with such parameters at LoS and NLoS settings. In one experiment, when
the distance from the sender to the closer node was dS = 100 c¢m and the distance between
the receiving nodes was d/N = 50 cm, we observed both successful and unsuccessful results at
different transmit power levels, as given in the Table 4.5.

More experiment results at varying dS and d/N paremeters are provided in the Appendix A,
in Tables 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10 and 8.11.
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Table 4.5: Line Of Sight, dS=100, dN=50

Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.05 Correct Sub-Hypothesis 1 1 0.09 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 0.98 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 0.96 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 0.99 Correct
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 2 0.02 Incorrect Sub-Hypothesis 1 1 0.18 Correct
Sub-Hypothesis 2 2 0.69 Incorrect Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 2 0.87 Incorrect Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 2 0.71 Incorrect Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 2 0.90 Incorrect Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm

Sub-Hypotheses: | Decision | Trust Level | Result

Sub-Hypothesis 1 1 0.20 Correct

Sub-Hypothesis 2 1 1.00 Correct

Sub-Hypothesis 3 1 1.00 Correct

Sub-Hypothesis 4 1 1.00 Correct

Sub-Hypothesis 5 1 1.00 Correct

These results show that when the distance between the sender node and the receiver nodes
is increased, the verdicts become unreliable. They were giving us wrong results with high trust
levels.

It is intuitive to assume that multipath is causing instability when we rely on RSS to de-
termine closeness. Some research, such as [121] [122], indicate that displacing the reference
node’s antenna for a few centimeters (less than a wavelength distance) should have an impact on
the measured values. So, we performed experiments by displacing the nodes for 6 cm and sum-
marized the results in Tables 4.6 and 4.7. These two experiments show that small repositioning
of the antenna can have a big impact on the RSS measurements.

Moving the antennas in space changes the propagation path of the transmitted signal and
therefore the multipath effects change as well. Using two antennas, or displacing the antennas
during the runtime of a network is not practical. Therefore we decided to investigate ways
of changing the propagation paths of the signals while keeping the nodes stationary, which is
elaborated in the next chapter.
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Table 4.6: Line Of Sight, dS=500, dN=50

Tx: 0 dBm Tx: -5dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.18 Incorrect Sub-Hypothesis 1 2 0.19 Incorrect
Sub-Hypothesis 2 2 0.99 Incorrect Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 0.97 Incorrect Sub-Hypothesis 4 2 0.97 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -10 dBm Tx: -15dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.15 Incorrect Sub-Hypothesis 1 2 0.14 Incorrect
Sub-Hypothesis 2 2 1.00 Incorrect Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.06 Incorrect
Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect
Table 4.7: Line Of Sight, dS=506, dN=50
Tx: 0dBm Tx: -5dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.05 Correct Sub-Hypothesis 1 1 0.07 Correct
Sub-Hypothesis 2 1 0.81 Correct Sub-Hypothesis 2 1 0.94 Correct
Sub-Hypothesis 3 1 0.55 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 0.78 Correct Sub-Hypothesis 4 1 0.95 Correct
Sub-Hypothesis 5 1 0.98 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.05 Correct Sub-Hypothesis 1 1 0.04 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 0.85 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 0.93 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 0.84 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.03 Correct
Sub-Hypothesis 2 1 0.96 Correct
Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 0.80 Correct
Sub-Hypothesis 5 1 0.96 Correct
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4.2 Summary and Next Steps

In this chapter we have proposed different hypotheses in an attempt to identify the closest node
to a particular transmitter (reference) node. We worked with the distribution of the RSS values at
a single channel and at different transmit power levels. The parameters that we have considered
were the mean of the RSS values, the empirical probabilities of measuring a higher RSS value,
and the non-overlapping areas in the probability densities of RSS values. The experimental
results of the introduced sub-hypotheses were most of the time indifferent from each other. A
few of the cases, in which the results differed from each other (such as all incorrect), could not
be reproduced in other settings. Therefore, we refrain from pointing at any of them for being
better than the other ones.

The experiments that were performed in various configurations showed that, the closer node
was detected correctly for about fifty per cent more frequently than it was detected incorrectly,
which was more often the case when the receiving nodes were placed closer to each other than
to the reference node (including the results shown in the Appendix A). But we do not consider
this difference significant enough to produce a conclusion.

The results have also demonstrated that diversity in the power levels of the transmission did
not have an impact on the results. Therefore, we can eliminate the suspicion that diversity in
transmission power could help separating closer and farther nodes in space if RSS is the source
of information.

We have observed indications that controlled displacement of transmission antenna could
help with identifying the closer receiver to the transmitter node. In such small scales, the obvious
impact of such a displacement is the changed multipath. Since physically manipulating the nodes
in a WSN during its runtime is not practical, we looked for other ways of altering the multipath
phenomenon. This reasoning encouraged us to study the impact of the frequency diversity in
transmissions as the next step.
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Chapter 5

One-Dimensional Node Position
Discovery

In the previous chapter, we attempted to utilize RSS information to identify the spatial closeness
of the nodes with regard to each other. The hypotheses that were introduced succeeded more
often than failed, but identifying the cases when they would succeed or fail was not possible.
Analysing the distribution of the RSS values or repeating experiments with varying transmit
power levels did not increase the chances in relating RSS to closeness of the nodes. These
results are in line with the findings of many other studies in the scientific community, such
as [23] or [26]. It was also observed that moving the antenna of the transmitting node only
by a fraction of the signal’s wavelength impacted the results, as shown in Tables 4.6 and 4.7.
Therefore, we started to look deeper into the basic characteristics of wireless signal propagation
in indoor settings. RSS is a monotonic function of distance between the transmitter and receiver
pairs. But in reality signal strength does not always correlate with the actual geographic distance,
due to many reasons like wireless fading and multipath propagation. As it is discussed in Chapter
3, even under stationary conditions RSS can vary in time; which makes it unsuitable for indoor
ranging [95]. Regardless, we hold on to our claim that it is possible to recognize the spatial
closeness of the nodes relative to each other by using available RSS information, based on the
findings that are discussed previously in Section 4.2.

The power of transmitted radio signal attenuates with the distance in space. This means that
under ideal conditions, a farther node will measure a lower RSS than a closer node to the source
of a signal in LoS settings, because the signal attenuation is a function of distance. The derivative
of this function is negative and the absolute value of this derivative decreases as the distance to
the transmitter grows. Therefore, in theory, a node that measures the highest RSS value from
a particular instance of transmission, must be the closest node to the transmitter among other
nodes.

We assume that all transmissions are done at a constant power level T'x. Let us assume
that Rx zp is the expected RSS value at node B for the transmission of node A in the ideal
case of having no external effects, but only distance related attenuation. Similarly, Rx 4¢ is the
ideal RS'S value of the reception at node C. If node B is closer to node A than node C' is,
then the inequality of Rx 4p > Rz sc should be true under ideal and isolated conditions. This
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phenomenon is, however, severely affected by multipath distortion as it was shown in Chapter 4.

Multipath distortion can be defined as a combination of multipath propagation (multiple
paths caused by reflection or refraction of the transmitted signal) and RF interference along this
path (constructive or destructive). In this context, we refer this shortly as multipath. Multipath
can corrupt or destroy the signal, as well as increase or decrease its amplitude at the receiver
antenna. Multipath does not affect just a few single transmissions, but it has a more severe and
longer lasting impact, such that not even taking the mean of many RSS measurements could
neutralize its impact in our previous experiments.

Inevitably, some of these multipath effects will add to the magnitude of Rx value. We denote
this effect with ¥, which is a random variable. So the measured signal strength at node B will
be RSSap = Rxap + Y4pg, and it will be RSS4c = Rxac + ¥ 4c atnode C.

Let us consider a simple three-node sequence discovery scenario (shown by Figure 5.1), in
which node A wants to determine whether node B or node C is closer, where all of them are
placed d distance apart from each other.

BSSas = Rxas + Wap

RSSac = Rxac+ Wac

Figure 5.1: Three nodes (A,B,C) and effective multipath ()

We would be able to recognize the sequence correctly, if RSS4p >> RSSac was always
correct. Therefore we want the inequality given below to be true :

RSSApB >>? RSSac
= Rzap + VYR >>? Rxac +Vac
= Rrap — Rrac > Uac — Uyp 5.1)

To make this inequality hold, we can either increase the left side, or decrease the right side
of the inequality, and we will both. We increase the difference on the left side, by taking the
nearby nodes into account for comparison. Hence, the derivative of the ideal signal attenuation
curve remains bigger.

Concurrently, we want to reduce the difference on the right side of the inequality by finding
similar values of W at both of the receivers. There is always a chance, that the farther away node
can be affected by a bigger constructive multipath than the closer node, or the closer node can
be affected by a greater destructive multipath. Yet, the peak of the multipath for a transmission
by node A is expected to be similar when received by neighboring nodes B and C' if they are
physically close to each other: WR* ~ WA Let this peak value of multipath be W™,
Therefore, to use in our comparisons (Equation 5.2), we are trying to find a value of received
signal strength that is close to such a peak magnitude of the RSS at the receiver (RSS™),
which is transmitted signal power with attenuation plus multipath effect.
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if WS A WA, then WS — W ~ 0
Raap — Ruac >" W& — URE
Rz ap — Rrac >" 0
= RSSTE" " RSSTAT (5.2)

To increase the chances of finding an RSS measurement that is affected by a level of mul-
tipath, which is close to the U}'%* and W'¢%¥, we should seek for enough diversity in RSS that
are presumably affected by varying multipath effects. Changing the wavelength of the wireless
signal changes the reflection and refraction points inside a room and therefore it changes the
paths it travels. Different propagation paths results in different multipath effects, which can be
less or more impactful on the original signal. For triggering such a change in the measurements,
frequency diversity is introduced to the measurements, which is explained in the following sec-
tion.

5.1 Frequency Diversity

In Chapter 4 it was suggested that some small spatial displacement of the transmitter antenna
could have an impact in correlating RSS to physical proximity, by causing a change in the
propagation paths of the signal. Because spatial movement is not always possible during the
runtime of a network, we are looking for the ways to change the propagation paths of wireless
signals.

When the distance between a node (A) and another node (B) changes, the measured signal
strength (RSS 4 p) should also change for the transmitted signals between them. However, as we
discussed previously, such a change is not always correlated to the distance in small distances
due to multipath. In [3], the signal strength has been shown as a function of distance and it is
shown that the replacement of receiver antenna in factors of the wavelength, causes a big change
in RSS gain in both positive and negative directions in mobile channels.

Figure 5.2 is produced by a simulation, explained in [3]. That simulation models a wireless
fading channel for a signal at 1 GHz frequency and has a 30 cm wavelength. We therefore spec-
ulate that U"*** can be found by some positional displacement of the transmitter’s radio antenna
within a wavelength distance. However, it is not possible to reposition the nodes in a network to
find the best positions separately. At this point, we want to benefit from the multichannel radio
for displacing the propagation path of the transmitted signals. The displacement of a dissemi-
nated signal in fractions of a wavelength in high frequencies (such as 2.4 GHz) can have a big
effect on aggregate gain, which we examine below.

It is visible in the Figure 5.2 that there is a rough periodicity in the amplitude of the received
signal strength that is roughly equal to half of a wavelength. But even such a big movement
would not assure achieving U"**; sometimes a displacement for several wavelengths would be
needed. When using the CC2420 radio chip, which operates on 2.4 GH z frequency, we need
roughly 1.2 G H z bandwidth for observing the whole change in RSS. But we have only 80 M H z
bandwidth spread across 16 channels (11 to 26) that are 5 M H z apart [63]. Our hypothesis is
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Figure 5.2: Signal Strength as Function of Position [3]
(figure obtained from author’s lecture notes)

to combine this limited frequency diversity with time diversity in order to achieve an acceptably
good approximation of RSS™%, therefore W™**.

In search for the RS S™**, we can make many transmissions spread along a window of time
in all available channels to have adequate number of samples. Among all those samples, we will
select the highest measured RSS as being probably the Rz + ¥™%", Since multipath (V) is a
random variable, we want to find the maximum that it takes within a certain time for all nodes
that are in comparison. Therefore we claim that, if we collect enough samples of RSS data over
time, we will have a better chance in reaching (or getting sufficiently close) to one of the peaks
that are illustrated in Figure 5.2.

We verified this hypothesis by experiments.

In one experiment, node A is positioned 100 ¢m away from node B at its line-of-sight and
node A transmitted a bulk of modulated IEEE 802.15.4 encoded packets starting from the lowest
available frequency level to the highest one in 1 MHz intervals ! at a constant transmit power.
The plotted values in Figure 5.3 are the averages (over 100 measurements) of RSS4p values
at each frequency. Here we observe that the difference in the strength of the received signal on
different channels can be as big as 25 dBm. This change achieves pretty much the whole scope
of the changes in W as theoretically predicted in [3]. In our later experiments, we observed that

'The channels, at which the CC2420 radio chip works, are 5 MHz apart, but the radio chip is programmable in
1 MHz steps.

50



5.1. FREQUENCY DIVERSITY

sampling 40 times with 20 ms intervals is just as good as sampling 100 times at the same speed
and having 200 samples did not improve the values, either. This observation is consistent with
the existing literature within the community working on wireless channel propagation models.
In [123] the authors state that for reliably modeling a wireless channel, a sample measurement
set of size between 20 and 40 is enough. Their conclusion is also supported by real-world
measurements. We also analysed the number of required measurements later in Section 5.4.5
for finding a good sample size for reliable results.

Insights into frequency diversity was also extensively studied in [124]. It was confirmed that
the wireless medium does not stay constant over time and the best channel for increasing packet
reception between pairs of nodes was analyzed. The authors also confirmed that the wireless
link quality shows large variation not only over frequency, but also over time. This conclusion
is consistent with the findings in this thesis. Hence combining the frequency diversity with
time diversity is promising for measuring close ¥ magnitudes at nearby nodes, therefore we can
reduce the right side of Equation 5.1.

RSS change over Channel
-40 w w ‘

Average RSS
&

60 .
—65} i
_70 | | | | | | |
0 2 4 6 8 10 12 14 16
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Figure 5.3: Change in RSS between two nodes over 16 channels at 2.4 GHz using CC2420

The same experiment was also repeated for different orientations of the receiver antenna,
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which is illustrated in the Figure 5.4. We can see that the antenna orientation does not affect the
measurements much, as the peak RSS values for different orientations are close to each other.
Hence, the approach is suitable for two-dimensional position discovery purposes, as well.

Mean RSS

2400 2410 2420 2430 2440 2450 2460 2470 2480
Frequency (MHz)

orientation - East + North - South — West

Figure 5.4: Change in RSS between two nodes over all available frequencies at 2.4 GHz by
CC2420 radio chip of a TelosB node. Each dataset (by color) represents a different orientation:
north, south, west, east.

With these experiments we understand that, by finding the maximum RSS value that we
measure from a set of transmissions over time and frequency from node A to node B and node C,
we can reduce the randomness in the impact of multipath and have a stronger indication about
the closer node by comparing the RS.S™%* values of receiving nodes.

5.2 Detecting Closeness with Frequency Diversity and Position
Computation

In the previous section we discussed how the change in measured RSS values can be created
by involving frequency diversity in the measurements. This change can be used to reduce the
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comparative impact of multipath at the receiver nodes that are positioned close to each other and
can help detecting the closer node to a sender. If the closer one of two or more receiver nodes
can be detected, then a linear sequence of nodes in space can be constructed by starting from
one head of the node deployment.

We start with the assumption of having the information on the identity of the node that oc-
cupies the first position in the sequence, which we call the reference node. The reference node
is the first sender node and performs z transmissions at all available radio channels according
to the Algorithm 2. The receiver nodes measure the RSS and each one reports the highest RSS
measurement associated with that particular transmitter by using the Algorithm 3. This infor-
mation is then collected from the receiver nodes and the closest receiver node to that particular
sender is centrally selected with the Algorithm 4.

Algorithm 2 for Sender node
for firstChannel — lastChannel do
fori=1— zdo
Radio.Send(Packet;)
end for
end for

Algorithm 3 for Receiver nodes
Y« THIS_NODE_ID
for firstChannel — lastChannel do
140
while ; < z do
Packet pkt < Radio.Receive()
i < getOrder(pkt)
X « getSenderId(pkt)
rss < getRss(pkt)

if rss > RSSVY” then > RSSYY = (Rexy + Yiaz)
RSSY < rss
end if
end while
end for
Report RS S

Algorithm 4 Decision algorithm
Closer Node < arg max(RSSWE", RSSTEY, ...)

If there are more than three nodes in the deployment, this sequence detection system is
reiterated for constructing a sequence from closeness information. The roles are then changed
and every node in the sequence temporarily becomes the sender (in turns) while others, as well
as the previous senders, remain as receivers.
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If there are only three nodes in the network, comparing the RS.S™* for two adjacent nodes
can indicate the closer node of the two. But if there are more nodes, whose positions are un-
known, a simple comparison or sorting of these RSS™** values would not be reliable. The
signal attenuation is an inverse exponential function of distance. When the distance from the
transmitter is increased, the difference between the theoretical RSS (Rx) values decrease and
the effects of multipath become more prominent. Therefore the transmissions only from the ref-
erence node is not enough for having a strong decision about the sequence. More measurements
must be taken from the farther nodes in the sequence.

In a network of m nodes, above procedure can be applied to compute the spacial sequence
of nodes as following:

In turns, each node becomes a sender once. After each sender node N; (1 < i < m),
collected the maximum RSS measurements from each of its receivers, a sequential vector of
neighborhood is created by using the sorted RSS measurements. This vector is called Proximity
Vector (PV).

PV; =[Ny, ..., N, ..., Ny, where

RSST% > RIS > RSSTS

In this sequence, the nodes that are closer to the head position are more likely to be geo-
graphically closer as well, since they measured a higher RS S™®* than the nodes that are farther
from the head node in the PV/.

For the final decision, we take the reference node (/Ng) and assign it to the first place in
the sequence and flag it. Then starting from PVg, we take the first unflagged node (N;) and
continue iterating with the vector of that node (PV;). This procedure is given in Algorithm 5.

Algorithm 5 Sequence discovery algorithm
*PV « Set of Proximity Vectors
*N < Set of All Nodes
S < {} // Empty Sequence
Np < N.getReferenceNode()

Ny NR
while UnflaggedExists(* V) do
S.add(Ny)
Ny.setFlag(true)
Ny < firstUnflaggedIn(PV;)
end while
return S

5.2.1 Evaluation

We have verified above hypothesis with real world experiments. In the experiments, we chose
the closest node for each node by using the algorithms that are described above. The first node
in the node sequence has been taken as the reference node. Then, iteratively, we sorted the
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remaining nodes into a single-dimensional sequence. All experiments were done indoors, in the
same building that was used in the previous measurements, where the impact of multipath was
noticeable.

In one experiment, we placed three TelosB nodes in a single-dimensional setting 100 cm
apart from each other. We collected R.S.S™?" values in all available 16 channels that the CC2420
radio operates at. Each transmission is repeated 100 times. The nodes were assigned IDs 5, 6, 7
and they were positioned in the order 5 — 7 — 6. The reference node was Node 5 and it was at the
first place in the node sequence. Hence Node 5 was the transmitter while the nodes 6 and 7 were
the receivers at the first iteration. After having collected the RSS data from the measurements,
we sorted them and found the correct ordering as being 5 — 7 — 6. The measurements of the
experiment are shown in the Figure 5.5.
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Figure 5.5: Experiment output gives the correct ordering: 5-7-6

The correct ordering is found, but the plotted measurements also showed that at each channel
the closer receiver to the reference measured higher signal strength than the farther receiver.
This was a case that any of the hypotheses from Chapter 4.1.1 would also detect the closer node.
However when we examine the measurements while the middle node (7) was the sender, we

55



CHAPTER 5. ONE-DIMENSIONAL NODE POSITION DISCOVERY

observe a greater difference in the measured signal strength values from the same distances.
This can have two reasons; either the impact of multipath was very severe at least at one of
those two different points in space and in that time, or the RSSI modules of the radio chips were
not calibrated. We eliminated the second option because the variation of RSSI readings across
different devices with the same chipset does not cause a difference as big as 12 dBm. We have
also discarded a possible calibration problem with our further experiments. Other research, such
as in [125], on the topic of mismatching RSSI values and node calibration also confirms that
calibration error does not cause such big differences in RSS measurements.

We extended the same experiment to four nodes, having a sequence of nodes with IDs 5 —
7 — 6 — 8 relatively and the Node 5 was the reference node. In these experiments, the node
placement was done irrespective of node IDs intentionally to prevent any false positive verdicts
due to software error. After applying the Algorithms 2 to 5, we were again able to find the
correct ordering with the measurement data shown in Figure 5.6.
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Figure 5.6: Experiment output gives the correct ordering: 5-7-6-8

In another experiment we used 5 nodes with IDs 5, 6, 7, 8, 9 and placed them in the
sequence 5 — 6 — 7 — 8 — 9 while decreasing the distance in between nodes to 50 cm, and we
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again assigned Node 5 as the reference node. After following the suggested methodology, the
outcome of this experiment was again the correct sequence. The measurement data from that
experiment are shown in Figure 5.7.
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Figure 5.7: Experiment output gives the correct ordering: 5-6-7-8-9

Even though in most cases the suggested method performed very well, letting us to discover
the correct sequence of nodes, there has been few cases in which the sequence of two of the
neighboring nodes were swapped. Such as, the data illustrated in Figure 5.8 has given us the
ordering as 5 — 7 — 6 — 8 — 9 with Node 5 being the reference node, while the correct ordering
was 5 — 6 — 7 — 8 — 9. This experiment was done with the same settings and at the location
as the other experiments and the internode distance was 100cm. However, when we took the
reference node as Node 9, we could find the correct orderingas 5 — 6 —7 — 8 — 9.

To further verify the effectiveness of frequency diversity on closeness information, we per-
formed two other sets of experiments. We placed 5 nodes 50 c¢m apart from each other in a
small, multipath-prone room. Each node transmitted 40 packets with 20 ms intervals, only on
Channel 11(2405 M H z) and we sorted the nodes according to the methodology in subsection
5.2. We repeated this experiment 10 times. Later, we repeated the same set of experiments
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with the complete channel diversity, which is 16 channels, without physically manipulating the
nodes.

In these experiments, we positioned Node 0 as the first node (reference node) in the sequence
and positioned nodes 1, 2, 3, 4 next to it respectively, each node was placed 50 cm farther than
the previous one. Hence, if the output of our algorithm was the sequence {0 1 2 3 4}, then the
verdict was True (T), otherwise False (F).

In Table 5.1, each row is the result of a separate experiment. We see that in single channel
case none of the 10 experiments resulted in correct sequence, while in multiple channel exper-
iments 9 out of 10 sequences were correct. It is also noticeable that in the incorrect verdict of
multiple channel experiments, only one node was not found in its respective position.

5.2.2 Summary

In this section, we suggested an approach for determining the closest node within multiple nodes
to a particular reference node and discovering the node sequence in a single-dimensional space.
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Figure 5.8: Experiment output gives the ordering slightly wrong as: 5-7-6-8-9
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COMPUTATION
Single Channel Multiple Channels
Exp. No: || Detected Sequence | Result || Detected Sequence | Result
1 02143 F 02341 F
2 02134 F 01234 T
3 02134 F 01234 T
4 02134 F 01234 T
5 02134 F 01234 T
6 02341 F 01234 T
7 02134 F 01234 T
8 02134 F 01234 T
9 02143 F 01234 T
10 02134 F 01234 T
Total: 0/10 Success 9/10 Success

Table 5.1: Experiment results: Single-Channel vs Multiple-Channel

We use RSS samples from transmissions at all available channels that the radio chip allows us to
operate at. For decision criterion, we take the highest measured RSS across all channels between
a node pair and by comparing these values with the values from all other pairs we give a binary
decision for choosing the closest node. Starting from one known reference node, we iterate
sorting the nodes in the sequence until positions of all nodes are computed. In our experiments
we had high success in sequence discovery with occasional error of swapped adjacent nodes,
while the overall sequence was still being correct.

This part of the study was demonstrated to technical and non-technical audiences in two
occasions. In first occasion, we performed our experiments at the research center of Airbus,
who sponsored the research during that time, and the system was demonstrated for detecting
positions of the passenger seats in a life-like mock-up of an airplane fuselage. This plane mock-
up was constructed with the same materials of a real airplane with the identical architecture. The
fuselage had five rows of seats with 80 cm spacing in between. Five nodes were placed on the
armrests of the seats in consecutive rows and these rows were discovered. The repetitive results
of the sequence discovery were correct and the audience has confirmed. The demonstration was
repeated with the nodes inside the life vest drawers of the seats and the results reflected the
correct rows of the seats again.

The second demonstration was performed at an event called Lange nacht der Wissenschften
(Long night of science) in Berlin, at a hall of the Technische Universitidt Berlin in Germany.
Five nodes were placed in cardboard boxes and they were shuffled. After running the introduced
sequence discovery system in this section, the audience could confirm that the results mapped to
the actual spatial sequence of the nodes. These boxes were 50 cm in width.

The proposed system should be seen as an evidence for the possibility of successful discov-
ery of relative node positions in a linear setting. Above results have shown that the suggested
system works both for LoS and NLoS settings. The proposed method and the results were also
published in the peer-reviewed paper [126]. For a better analysis for robustness, we used the
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TWIST testbed for the following experiments. In TWIST testbed, the nodes have walls in be-
tween and it is deployed in a building where various types of research on wireless networking
systems are performed, therefore the wireless medium is very unpredictable. The suggested
sequence discovery system did not perform well in the testbed, which we speculate due to the
reasons that are just mentioned. Therefore we decided to investigate further and develop better
algorithms that would accommodate challenging situations like the TWIST testbed was exposed
to.

In the following sections, we will extend the experiments to an increased number of nodes
and we will consider NLoS conditions that come with the testbed, which will bring us more
challenge in discovering the node sequence. The use of a testbed also allows us to perform more
number of experiments faster and create a base for comparing and quantifying the quality of
proposed systems.

5.3 Iterative Sequence Building

In the previous section it was shown that frequency diversity enables discovery of the closest
node to a particular sender and how this information can be used to deduce the node sequence.
We claim that for a reliable sequence discovery —even in heavily faded indoor environments
where the network is dense and localization is tough— it is enough that each node sends a
limited number of beacon messages and that these messages are received by as many other nodes
as possible (but not necessarily all), while recording the RSS of the incoming transmissions at
multiple radio channels.

In this section, we suggest methods for statistical processing of the collected RSS measure-
ments to construct the node sequence in a more robust way and we investigate the impact of
different parameters and decision criteria on the performance of sequence discovery methods.
Finally, we demonstrate the high precision of our selected approach in developing the node se-
quence, leveraging experimental data collected in a WSN testbed. The techniques and the results
in this section are published in our paper [112].

We will focus on developing a more robust way of node sequence discovery mechanism,
which will handle more challenging NLoS conditions better than the system that was introduced
in the previous section. The nodes, whose relative positions need to be discovered, are consid-
ered to be placed roughly along a straight line, in a single-dimensional grid setting. The cells of
the grid are assumed to be occupied with only one node of the network and no cell is assumed to
be vacant. The cells (or the node positions) might or might not be separated by obstacles, such
as walls or furniture. The prerequisite of knowing which node occupies the first position in the
grid is still there and the positions of the rest of the nodes need to be discovered. The nodes are
assumed to contain radio interfaces that can operate on multiple frequencies and they can report
RSS values upon packet reception.

Further, it is also assumed that the nodes are not mobile and they transmit at a relatively high
power setting, increasing the chances of correct packet reception. That is also because we would
like to allow the use of normal data packets for our approaches and hence produce less overhead
for sequence discovery.

In this part of the work, we approach the problem of sequence discovery in three discrete
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steps: 1. Measurement of RSS values, 2. Proximity Vector generation and 3. Sequence Building.
In the first step the RSS measurements are taken in all channels available to the radio hardware.
In the second step, we use the RSS values that are measured by the receiver nodes upon packet
reception, to derive a rough estimate of the closeness (in space) between the nodes. The vector
of these estimates, the proximity vector, contains a single node’s perspective, which might or
more likely might not, be correct. Then in the sequence building step, we fuse these local views
in a global view, giving the whole sequence.

We will take the MDS algorithm, which was explained in Section 2.5, as an alternative way
of creating the node sequence from the RSS information and it will be used in the comparative
analysis.

5.3.1 Measurement Procedure

This is the first step to sequence building as illustrated in Figure 5.9. This procedure is based on
the measurement method that is explained in Section 5.2.

Proximity Vector Sequence
Generation Building

Multi-channel RSS
measurements

Figure 5.9: Initial step of relative position discovery

All of the presented methods in the rest of this thesis share the same data collection stage as
follows:

1. n nodes are assumed to be placed in a grid with n cells

2. Each node in set *N = {Nj, No, ..., N,,} is set to the first channel C; from the set of
channels *C = {C1, Cs, ..., Crnaz }

3. Each node N; € *N, transmits z packets per each channel C to Ciqz

4. Each node that is in the transmission range of V; records the measured RSS from the
received packets at each channel C' to C,4,. All participating nodes change the radio
channel synchronously

5. After node N; completes transmission z at channel C, 4, all nodes move back to the first
channel (C) and next node in * N begins transmitting

6. The procedures 3 to 5 are repeated for each one of the n nodes in the set * /N
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This procedure does not need to be separated from the regular data transmission of a WSN,
as long as nodes use as many frequencies as possible during their communication. For the sake
of simplicity in explaining the algorithms, we will assume that all the information, collected by
the above procedure, is made available centrally for processing. We will elaborate on this at the
end of Section 5.3.3.

We also assume that the nodes are roughly synchronized to change channel at the same time.
This level of synchronization does not need extra transmission overhead. The sequence number
and the total number of packets are provided in each transmission. The nodes can utilize a
software alarm, which can be reset to the next channel switch time upon reception of each packet.
Thereby, nodes will roughly know when it is time to switch to the next channel. And finally,
an extra guard window of delay after each channel change and before start of new transmission
allows the nodes to settle to the same channel even when some timer drift occurs. This is not
a strict timer synchronization, but a technique to trigger channel switch inside a network at the
same time. This has been the actual procedure that we used in our demonstrations.

5.3.2 Proximity Vectors

This is the second step of iterative sequence building system, as illustrated in Figure 5.10.

Proximity Vector Sequence
Generation Building

Multi-channel RSS
measurements

Figure 5.10: Proximity vector generation step

In our algorithms, we will iteratively build the sequence by utilizing Proximity Vectors (PV),
which contains the set of nodes from a single node’s perspective in the order of estimated relative
proximity. The Node ¢ will have the proximity vector PV;, which roughly indicates that the
closest neighbor is the V;1, the second closest neighbor is the N;2 and so on.

P‘/; = {Nil’Ni2? ...7N,L‘n—1}

We suggest three methods to create proximity vector PV for any given node NN; in an n node
setting. First method takes the highest RSS measurements as suggested in the previous section,
the second method takes the average of all RSS measurements, which is applying the frequency
diversity to the first hypothesis in the Section 4.1.1, and the third method is a fusion of both,
which considers the average of a set of maximum RSS values that are measured from a particular
sender.

Maximum of all RSS readings (Max RSS)

For each transmitter /V;, the geographically closest node NN, is chosen by comparing the maxi-
mum RSS values that are measured by each of the receiver nodes within its transmission range.
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For relating RSS measurements to closeness, we compare the RSS readings of the nodes
from the same sender, but not necessarily from the same transmission. By transmitting packets
at different frequencies, the propagation paths of the transmissions are altered. The receivers
can measure very different values at different frequencies, while variance is very small within
the same frequency. Here the highest measured RSS value from the same transmitter is selected
from each node to compare. Each sender assumes that one of the many receivers, which reports
the highest RSS, is the geographically closest node to itself and places that node into the first
place init’s PV.

In other words, if the maximum RSS value, across all channels, that node /N; measures is
greater than the maximum RSS that node N measures from the same transmitter node N;, then
it is more probable that node N; is closer to node [V; than node NV, is. Consequently, N; is put
at a prior position in the proximity vector PV; for node V;.

This procedure is iterated for all the receiver nodes of the same sender by finding the next
biggest RSS value that is received by each of them until all receivers are placed in the proximity
vector. For each node NV; in the network, a separate PV is created using the same procedure.

We can formulate the above procedure to a network with n nodes as below:

Each node N; (1 < ¢ < n) collects the maximum RSS measurements from its receivers,
while N; was the transmitter. Its proximity vector (PV}) is then created such that:

PV; = [Nj, ..., Ng, ..., N | , where
RSSNN, > RSSNN, > RSSKN,,

In PV, the nodes with smaller indices are considered being geographically closer to node V;
too, since they measured a higher RSS™" than the nodes that are farther from the transmitter
node in the setting.

In case there are receivers with equal values of RSS™ from a particular sender 7 that are
competing for the position p in the PV}, such that

RSS%% = RSSyN, = K
we count the number of times the value K is measured at any channel by each of these
receivers and put the one that has measured this value more often in the prior position in PV;.

N Nj if count(RSSYN ) >= count(RSSYTY,)
TV N, if count(RSSﬁf]f,”j) < count(RSSRY )

Average of all RSS values (Avg RSS)

As an alternative to the method above, we also compute the average of all measured RSS values
for the same transmitter to construct the proximity vectors. In this case, the proximity vector
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PV of node i is formed as:

PV; = [Nj, ..., Ny, ..., Ny | , where

*RSSNZ-NJ- > ”‘1’%5’51\[1.]\@C > *RSSNiNm , where
rid

> RSSk,x,
*RSSnN, = =

rt

and % is the total number of packets that V. j received from N;.

Average of maximum 6% of RSS Values (Avg Max RSS 60)

In this approach, average of a subset of the sorted RSS values are used to construct proximity
vectors. This subset contains the highest 8% values of all RSS values across all channels for
each sender-receiver pair.

The set of these values are denoted by *RS SZ ax(6%) for the sender [V; and receiver IV;, and
the proximity vectors are constructed as:

PV; =[Nj, ..., N, ..., Np|, where
*RSSZWI(H%) N *RSSZZGI(Q%) S *RSS;:Lnam(Q%)

This subset is illustrated in Figure 5.11.

minRSS maxRSS
a I

Sorted RSS values across all channels from N to NJ.

0%

Figure 5.11: Schematic representation of processing RSS measurements

5.3.3 Sequence Building

The next step (Figure 5.12) in the position discovery process involves identification of the node
sequence, given rough estimates for the relative distances between node pairs, in the form of
the proximity vectors. Starting with the reference node, The final sequence is constructed using
either one of the two algorithms described below.
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Proximity Vector Sequence

Multi-channel RSS ]
Generation Building

measurements

Figure 5.12: Sequence building step

Greedy Sequence Building

This algorithm starts with placing the reference node Npg into the first position of sequence
vector, S. Then, the first node in PVy is added to S. Each time a new node is added in S, the
first unplaced node in its proximity vector is inserted in the next position and the placement is
iterated until all nodes are added to S. The procedure is outlined in Algorithm 6.

Algorithm 6 Greedy Sequence Building
*PV < Set of Proximity Vectors
*N < Set of all Nodes
S < {} // Empty Sequence
N; < Np // Starting from the Reference Node
S.add(N;)
for 1to (|*N| —1) do
N; + firstUnplacedN odeIn(PV;)
S.add(N;)

end for

Return S

For a network with n nodes, first node will choose the next node among n — 1 nodes, second
node will choose among n — 2 nodes and so on.. So total number of iterations is:

(n—1)n

(n=1)+ =2+ n=3)+..+n-—n-1)="—

The greatest term in the sum of iterations is n?, hence the complexity of this algorithm
is O(n?).

Greedy Lookback Sequence Building

This is an enhancement over previous basic greedy sequence building algorithm. Our observa-
tions have shown us that most of the wrong results are caused by very small differences in RSS
values. Therefore we set a threshold to tell a farther node from a closer one. This threshold de-
pends on the RSS Indicator resolution of the radio chip. If the difference between the values (we
call them score), that are used to produce the proximity vectors (such as MaxRSS, or AvgRSS),
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between the two best candidates (unplaced nodes with smallest indices) is less than the thresh-
old, then we ask the node that is placed in the growing sequence in the previous iteration. If that
node doesn’t have a difference greater than the threshold either, then we iterate this querying
until we find a node that has this difference bigger than the threshold or we reach to the first
node. If we reach to the very first node in the sequence, then it chooses a node regardless of the
threshold. The algorithm is as below:

Algorithm 7 Greedy Lookback Sequence Building
*PV < Set of Proximity Vectors
*N < Set of All Nodes
S « {} // Empty Sequence
Threshold <+ (RSSI Resolution of Radio Chip) x 2
N; < Ng // Starting from the Reference Node
for 1to (|*N|—1) do
N; <+ S.getLastNode()
scorel + firstUnplacedNodeIn(PV;).score()
score2 «+— secondUnplacedNodeIn(PV;).score()
while (scorel — score2 < Threshold) AND N; # Np do
N; + S.get(S.indexOf(N;) — 1)
scorel + firstUnplacedNodeIn(PV;).score()
score2 + secondUnplacedNodeIn(PV;).score()
end while
N; « firstUnplacedNodeIn(PV;)
S.add(Ny;)
end for
Return S

In a network with n nodes, if no node needs to look back, in the best case, then the complex-
ity of this algorithm will be same as the previous one: O(n?). In the worst case, all nodes will
need to look back until the first node in the growing sequence. Therefore, for the last decision,
the last node in the sequence will do n — 2 queries. Second last node will do (n — 3) + (n — 3)
queries, third node will do (n —4) 4+ (n — 4) 4+ (n — 4) and so on. So total number of queries
is(n—2)+2(n—3)+3(n—4)+...+ (n—2)(n — (n — 1)). The non-constant parts of this
series is:

(n—2)(n—1)
2

The greatest term in this equation is 3. Hence the complexity of this algorithm is O(n?).

These algorithms assume a centralized computation scheme. In a wireless setting it requires
delivering the RSS measurements of all nodes to a sink node. This overhead can be costly if
we are dealing with a big network. It is also possible to apply these algorithms in a distributed
manner, using few extra control packets. In this case, each node N; will create its own prox-
imity vector PVj;. At each iteration of sequence building, the growing sequence vector must be

n+2n+3n+..+(n—2)n=n
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sent to the last added node in the sequence vector, so it has the information of placed and un-
placed nodes. Finally, the last node in the iterations will initiate the propagation of the finalized
sequence vector into the network.

5.3.4 Evaluation

We have experimentally evaluated the suggested methodologies in the TWIST testbed environ-
ment. The testing area is exposed to various types of wireless traffic, mostly IEEE 802.11b/g/n,
IEEE 802.15.4 and Bluetooth, and has relatively high density of metal structures. The testbed
is also spread over the offices, so occasional change in the environment was expected but the
nodes stayed stationary.

We selected two sets of nodes in the testbed: nine TmoteSky nodes in the third floor of the
TWIST building and ten TmoteSky nodes in the fourth floor of the building. All nodes in each
of these sets are uniformly positioned along a line. The nodes are 3 m apart and there is one
wall in between each adjacent node pair. The testbed setting with nine nodes is illustrated in
Figure 5.13.

Experiment Setup:
Twist testbed floor plan

A A

24m

=
e
=
[N ]
e e e — —

Figure 5.13: Schematic representation of the experimental setup on the third floor

In the experiments, one measurement cycle was so composed, such that all nodes, in turns,
transmitted 40 beacon packets with 40 ms intervals on each of the channels C' € {11 to 26},
while the remaining nodes logged the RSS information from the received packets. All nodes
have synchronously changed channels after each period of 40 transmissions, which was ap-
proximately every 2 seconds at each channel while receiving from the same sender. A full
measurement cycle, involving sending 40 packets from each of 9 nodes in one set, across all 16
channels, takes approximately 4 minutes. In this analysis, 1000 repetitions of a measurement
cycle were performed on the set with nine nodes and 2000 repetitions of a measurement cycle
were performed on the set with ten nodes.

TWIST testbed provides a backchannel over the USB ports of the nodes for direct commu-
nication with the WSN hardware, which we used to synchronize the nodes’ channels and collect
the measurements. In the untethered experiments outside of the testbed, a control message was
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disseminated among the nodes when it was time to change channel. Total time to receive this
packet, change channel and relay this control packet is about 10 ms. So an additional time
window of n X 10 ms was used to allow all the nodes in the network to change their channels
synchronously.

Using the obtained RSS information from the measurements, for each node NV;, we created
the proximity vector PV; for estimating the closeness between /N; and the remaining nodes in
the sequence, as we defined in the previous part. We analyzed the average of maximum 6%
method with three different parameters: § = 2,0 = 5 and 6§ = 10.

Using the created PV's, a node sequence S was computed for each measurement cycle. This
was done for each combination of proximity vector and sequence building methods, described
in Sections 5.3.2 and 5.3.3. For example, we applied Greedy sequence building on the proximity
vectors generated by Max RSS, Avg RSS and Avg Max 0% (for three values of 8: 2, 5 and 10).
We repeated the same parametrization to Greedy Lookback sequence building and MDS as well.
Finally, each computed sequence was evaluated as “correct”, if the resulting node order matched
the ground truth (the sequence reflecting the real positions of the nodes), and it was classified as
“false” if the computed sequence did not match the ground truth.

We set the threshold value for the Greedy Lookback algorithm as 2 dBm. The RSS indicator
resolution of the radio chip in the hardware that was used in the experiments is 1 dBm, hence
2 dBm is the smallest significant threshold for this case.

The presented bar charts show the percentages of correct sequence discovery from all 1000
repetitions of the measurement cycle. Each bar color represents a different proximity vector
metric : maximum RSS (MaxRSS), average of all RSS values (AvgRSS), average of maximum
0 = 2 % (AvgMax2%), average of maximum 6 = 5 % (AvgMax5%) and average of maximum
0 =10 % (AvgMax10%).

Results on Isolated Channels

To better observe the impact of frequency diversity in the following part, we first present the
results from Greedy Sequence Building algorithm on the data taken from the third floor of the
testbed with nine nodes. The collected RSS values are grouped by the channels and the algorithm
was applied.

100 T T T T T T T T T T T T T I I I

;\? I MaxRSS

=~ 80 I AvgRSS H

a [ AvgMax2%

8 60 [ JAvgMax5% H
> O [ TAvgMax10%
Ba 40
£ s
G35 20

|—

0 "
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Channel

Figure 5.14: Sequence discovery on separate channels, no frequency diversity

The results presented on Figure 5.14, show that using RSS data collected from isolated chan-
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nels do not lead to satisfactory sequence discovery performance by using any of the proximity
vector forming method. The success rate remained below 40 % for all of the channels. The
success rate was also not consistent across different channels.

Success in Sequence Discovery

Next, the sequences were computed using all the measured RSS values at all channels. In a
linearly positioned setting of nodes, two different reference nodes can be selected at each end of
the sequence separately. After collecting the dataset, we ran our algorithms to build from both
ends of the sequence. If one imagines the physical arrangement of the nodes on a horizontal
line, we will refer to one direction of sequence construction as the LeftToRight direction and
to the other direction as the RightToLeft. Since the measurements are taken in a one-to-many
fashion, different directions have different orders of senders and receivers, therefore the dataset
that is processed and their results will not be same.

The results of the computations are given as bar plots in Figures 5.15, 5.16, 5.17, 5.18.
These results show that the frequency diversity in RSS measurements have a significant impact,
with the sequence detection rate immediately raising to over 80 %, while it was below 40 % for
isolated channels in the results from the same dataset given above in Section 5.3.4.

When we compare the results of LeftToRight and RightToLeft computations of the sequence,
we observe that the links are not symmetrical. Yet, our Greedy Lookback algorithm deals with
this asymmetry better than others, while maintaining the highest success ratio.

For comparisons we applied MDS using the same measurements. The RSS values were
converted to distances using the Equation 3.3 with the path loss exponent taken as 3, which
is frequently used for indoor environments. These distances were then scaled to a dimension
of 1. MDS does not benefit from the information of an anchor node, but only takes inter-node
distances as a distance metric. For the sake of fairness, we assumed the locations of the reference
nodes for MDS and ran the algorithm on the remaining nodes.

The results for MDS show high inconsistency in the success rate. The results vary between
almost no successfully detected sequences in the experimental data on the fourth floor (Right-
ToLeft) to almost perfect scores for the third floor (RightToLeft) scenario. This observation hints
at high sensitivity of MDS on the imprecise distance estimates from the proximity vectors. In
search of a globally optimal configuration, the classical MDS essentially puts equal weight on
all range estimates, disregarding the fact that the information is more reliable for closer nodes,
than for nodes that are farther away. In contrast, our greedy algorithms rely almost exclusively
on this info, only tapping at the information between more distant nodes when the first info is
inconclusive (in lookback version).

In terms of the impact of the proximity vector metric, the results show that “maximum RSS”
and “average of maximum 6 % RSS” performed very closely to each other and better than the
“average of all RSS” values. The reasons for the difference can be traced to a larger instability
of the average metric. Figure 5.19 summarizes the distribution of the different proximity vector
metrics for the sender /V; on the third floor, across the 1000 repetitions in the evaluation study.

To check if the sequence detection improvements are really due to the frequency diversity
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Figure 5.15: Sequence discovery using combined RSS values from all channels; Third floor,
1000 runs, LeftToRight

and not to time diversity or due to difference in the number of RSS samples?, we have repeated
the experiments on the third floor with 16 x40 samples at each channel separately. The results are
summarized in Figure 5.20 and show that the sequence detection success rate, without frequency
diversity, but with higher time diversity, still remains low (this time below 20 %).

When we compare Figures 5.20 and 5.14, we also observe that the channels characteristics
are not stable over time. Therefore, we verify that a set of RSS measurements over a single
channel is not reliable for node position discovery purposes.

To analyze the stability of the sequence detection success rate, we split the frequency diver-
sity results from the third floor experiments into 10 batches, which are shown in Figure 5.21.
The results indicate higher stability of the “average of maximum 0% proximity vector metric
with respect to the other metrics.

We have further analyzed the batches that had lower success rates. In those cases, we have
observed that promoting the most frequently computed sequence as the final decision, even after
a few tens of runs would result in detection of the correct sequence with very high probability.

2Single-channel proximity vectors operate over 40 RSS samples, while all-channel vectors operate over 16 x 40
samples, ignoring potential lost packets
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Figure 5.16: Sequence discovery using combined RSS values from all channels; Third floor,
1000 runs, RightToLeft

5.3.5 Summary

In this section we have tackled the problem of node sequence discovery using imprecise, RSS-
based, proximity vector estimates. The presented methodologies for proximity vector creation
and iterative sequence building algorithms show that even imprecise estimates of the relative
closeness between pairs of nodes can result in very precise estimation of the whole sequence
of nodes. We analysed two methods for creating sequences, a greedy iterative approach and
a greedy-lookback iterative approach. The first algorithm works by selecting the next node
in the sequence from the last node’s point of view. The greedy-lookback algorithm considers
the measurements from priorly appended nodes of the sequence for selecting the next node, if
the last node does not have a strong candidate. This greedy-lookback algorithm increases the
stability of the results with an added computational complexity.

Using these algorithms, the rate of successful recognition of the node sequence approached
to 100 %. Crucial factor for this success lies in the ability to leverage the available propagation
distortion diversity over multiple frequencies, allowing more robust relative comparison of the
closeness between node pairs despite the effects of large-scale and small-scale fading.
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Figure 5.17: Sequence discovery using combined RSS values from all channels; Fourth floor,
2000 runs, LeftToRight
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Figure 5.18: Sequence discovery using combined RSS values from all channels; Fourth floor,
2000 runs, RightToLeft
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Figure 5.20: Sequence discovery with larger time diversity
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Figure 5.21: Stability of sequence discovery with frequency diversity
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5.4 Probabilistic Sequence Building

The previous sections have demonstrated how RSS information, enhanced with frequency diver-
sity, can support the relative node position discovery in a linear deployment of a WSN through
sequence building algorithms. Then the sequence was iteratively built by the simple compari-
son of average of all RSS measurements and the results were not stable despite the utilization
of multichannel radios. Better sequence building algorithms developed to leverage only some
selected values of the RSS measurements, which are considered to be higher quality. The results
were considerably better but there is a potential for improvement, as in some cases the success
rate remained below 80 %. The motivation of this part is using more information by process-
ing all (or most) of the measurements for detection of closeness and deducing the best fitting
placement of the nodes in the sequence. Simple averaging mixes high-quality and low-quality
measurements with each other and we cannot know how to separate them. The binary proximity
decisions made with such mixed quality data causes instability, examples of which can be seen
by the Figures 5.17 and 5.18. Therefore we will consider a different approach, which assigns a
probability to each node for being the closest node to a particular sender node.

This probabilistic approach keeps a memory of the system, so it is best implemented central-
ized. The measurements are used to create a probability tree of the nodes, root of which contains
the reference node and each level corresponds to one distinct position in the sequence.

This proposed system is called Probabilistic Node Sequence Discovery (PNSD), a solution
for the indoor positioning problem for the cases in which precise room-level accuracy is desired.
By utilizing the diversity in frequency and time, in the same way that was defined in the previous
section, it will be shown that the probabilistic approach to this problem enables a more precise
classification of the spatial node sequences. This probabilistic methodology, and the results of
the analyses are published in our peer-reviewed paper [127].

We again focus on discovering positions of the nodes, relatively to each other, on a single-
dimensional setting (i.e. in rooms along a corridor). Same assumptions that are taken in the
previous parts of this chapter also pertain in this part. A set of n rooms, R; to 12, is considered
being the potential positions for the nodes to be mapped. Any adjacent pair of nodes might
be separated by a wall of the room or alike. Each room R; is considered to contain one of n
stationary nodes, whose presence is to be discovered and denoted as /N;. First room (position)
in the setting contains the Re ference node(/N1) and positions of the remaining nodes are not
known. We assume that all the positions are occupied or unoccupied positions do not need to be
discovered.

The system first collects RSS data in the same way that was described in Section 5.3.1. Here,
too, we desire diversity in RSS measurements for benefiting from diversity in signal propagation.
At any time during the measurement process the transmitting node is referred as the Sender while
all other nodes are referred as Receivers. The sender node transmits z packets in e channels.
All other nodes which successfully receive these transmissions keep a record of the sender,
transmission channel, transmission number and measured RSS.

After all nodes have assumed the sender roles and the measurements have been completed,
the collected data are sent to a processing center. All this data are later used for creating a
probability tree of the node positions, root of which contains the reference node.
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5.4.1 Building the Probability Tree

The tree is initiated by placing the reference node (/V) at the root position. The children of this
node in the tree will contain the receivers of V1, with probability weights. The weight is the
empirical probability of being the closest node. We define this probability as the ratio of the
number of times that the highest RSS value was measured in all transmission to the total number
of transmissions across all channels, for all the receivers of a sender. This way of calculating the
probability is based on the second sub-hypothesis in the Section 4.1.1. For example, from 100
transmissions by N, if node N2 measures the highest RSS value 60 times and N3 measures 40
times, then the weight of the edge between node N and Ny is 0.6 (P(N2|N1) = 0.6), whereas
the weight of the edge between node N7 and N3 would be 0.4 (P(N3|N7) = 0.4). Other
receivers will not be placed if they do not measure the highest RSS value for any transmission,
therefore P(N,|N1) = 0, = ¢ {2, 3}. For each added vertex (node) to the tree, this procedure
is repeated and the tree is accordingly extended until the depth of the tree is equal to the number
of all positions in the system. The procedure is shown in Algorithm 8.

Algorithm 8 Probability Tree Building Algorithm
Step 0: Initialize empty tree T

Step 1: For each node N; in the sequence

Step 1.1: Measure RSS from multiple frequencies
(triggered on demand or during normal communication)

Step 2: Collect measurement reports from each node
Step 3: Place reference node at the root (71) of the tree
Step 4: For each leaf (1) of the growing tree:

Step 4.1: Add all receivers of T,
except if they are already in the path 77 — T,

Step 4.2: Assign probability weights to new added edges

Step 5: Repeat Steps 4, 4.1, 4.2 until depth of T reaches
the total number of nodes

Step 6: Find the path (*_5') with greatest joint
probability from 77 to any of the w leaves T, in T’

Here, each vertex of the tree represents a node and each level of the tree represents a potential
position in the sequence. If an edge exists between two vertices V,, (containing node N,) and
Vp (containing node Ny), and level(V,) < level(V}), then the “weight of Edge(V,, V})” is the
assumed probability of “node IV, being at the next position after node N,”, P(N,|N,), at that
level. So the joint probability of a path S; is P(S;), which is the product of all the weights of
edges form T to the last vertex (node) in S;. Our verdict is the most probable path (sequence)
in S, which is the path S; that has the maximum joint probability.
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1 € 1 — wu // Total number of paths in the finalized tree
S = {81, 5}, Sty s Suti
S = argmax(P(*5))

T

=>5 = argmax( H P(Vy|Vy41))
y=To

A probability tree is visualized in Figure 5.22. For readability purposes we have considered
that maximum two nodes will have a probability greater than O to any parent node in the tree.

Reference
node

Figure 5.22: An illustration of a finalized probability tree.
Selected sequence is S = argmaz(P(*S))
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5.4.2 Evaluation on Testbed

We tested the presented probabilistic sequence determination method on the measurements that
were obtained from the TWIST testbed [29]. We used three sets of nodes: Set-A, Set-B and
Set-C. In each of these node sets in the testbed, the nodes are uniformly positioned 3 meters
apart along a line and there is one wall partition in between each adjacent node pair.

Set-A contained ten nodes from the fourth floor of TWIST building on the side faced to
the other buildings of the Technische Universitit Berlin. Set-B was the set of six nodes on the
fourth floor of the TWIST building, on the side which faced an open area. Set-C contained
ten nodes in the same rooms as Set-A, but slightly closer to the doors of the rooms than the
windows. The nodes in the Set-A, located in the south side of the building, are the same nodes
that were previously used in the experiments in Section 5.3.4. The placement of nodes in Set-A
is illustrated in Figure 5.23.

27m

z
z
N
=
©
z
s

Figure 5.23: Schematic representation of the experimental setup, Set-A

We took the measurements with the procedure we defined in Section 5.3.1. A measurement
cycle for one sender took about 2 seconds. The full measurement cycle, involving sending 40
packets from all of 10 nodes in the sequence, across all 16 channels, takes approximately 4.3
minutes. We have initially performed 2000 repetitions of the measurement cycle with the nodes
in Set-A over the span of roughly 6.5 days.

All of the measured RSS measurements were collected using the wired backchannel that
is provided by TWIST testbed. This backchannel was also used to synchronize the channel
switching during the experiments.

When applying our algorithms, we assumed N; as the reference node, whose position was
known to be the first of the sequence on the (virtual) left end. We also repeated our computa-
tions by taking the node at the right end of each node set as the reference node. Note that, when
we are looking for the closeness relationship among nodes, we consider the transmissions of
one-to-many, in other words from one sender to multiple receivers. Hence, reversing the com-
putation direction means that the order of senders and receivers are different. So each different
direction represents a different dataset and the results will not be related. We refer these differ-
ent directions of the same sequence of nodes as “LeftToRight” and “RightToLeft”, like in the
previous section. All these RSS readings are used for generating a weighted probability tree.
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For improving the computational performance, we have pruned the weakest paths from the tree
during the runtime of the algorithm, which we elaborate in Section 5.4.5.

For evaluating, we have compared our algorithm to RSS-based ranging and Multidimen-
sional Scaling (MDS). We used the Smacof implementation of MDS [68], since it gave better
results than the standard implementation of MDS in R-project environment [128]. As input to
MDS, we converted the RSS values to distance using path loss attenuation equation with path-
loss coefficient o« = 3.

For RSS ranging, we used the greedy approach: starting from the reference node, we added
the next closest node to the sequence and iterated this for each last added node until all nodes are
placed in a “greedy” manner. As input, we took the average of the values collected in all channels
(Greedy Avg) and on single channels 11, 18 and 26 (Greedy AvgCh{11,18,26}) separately. This
method was explained previously in Section 5.3.3 in more detail.

We have initially tested our algorithm on the Set-A with 2000 measurements. We repeated
the computations for both directions, namely RightToLeft and LeftToRight. In one direction our
methodology (PNSD) has achieved 100 % success, while in the other direction it has achieved
around 93.6 % success, which was influenced by external parameters to a small extend, in our
opinion. In this scope, “success” is again defined as perfectly recognizing the correct se-
quence. In Figure 5.24 the performance of PNSD in comparison to alternative methods is visi-
ble.
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Figure 5.24: Success on Set-A

Although being a very good position estimator for range-based localization, MDS could not
perform good enough for discovering sequences with RSS information. In one direction it pro-
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vided 100 % success but in the reversed direction it almost never succeeded (0.25 %) to generate
the correct node sequence. This shows that MDS is too sensitive to the asymmetry of the wire-
less channel. Although it has been used widely [95], averaging RSS measurements on a single
channel does not give us satisfactory results. On channel 11 (Greedy AvgChl1), 4.15 % and 0 %
of the time (for each direction) correct sequence were detected using the Greedy approach and
on channel 26 (Greedy AvgCh26) the success has been 0 % in either of directions. On the other
hand, the correct sequence was detected on channel 18 (Greedy AvgChl8) at 88.85 % rate in
one direction and 99.85 % in the other direction. This shows that the single-channel approaches
can sporadically lead to good results, but they have limited practical value because the optimal
channel changes with time. The Greedy approach with channel diversity (Greedy Avg) has been
quite successful (99.8 %) in the direction LeftToRight while it has shown very little success
(8.55 %) in the direction RightToLeft, which shows us that even channel diversity is not enough
by itself for highly successful sequence discovery.

The building we used in our experiments has a rectangular structure and it has offices on its
north and south sides. The measurements given above were taken from the south side, which
faces the rest of the campus area. We also took measurements from the north side, which faces an
open space, with a set of 6 nodes, Set-B. Due to the configuration of the environment, we expect
reduced interference effects on this side of the building, as opposed to the campus facing side.
Since the building has very similar features for both node sets, the measurements from Set-B
hint us that in the absence of the severity of interference that we are facing in our facilities, the
proposed method works flawlessly. We performed 692 (time-limited) measurement cycles and
had 100 % success with PNSD, which is shown in Figure 5.25.
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Figure 5.25: Success on north side, Set-B
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The side that hosted the nodes of the Set-B has minimal interference in comparison to the
other side of the facility. This is also improving the performances of other methodologies, such
as MDS had 100 % success in both directions. Greedy Average was about 87 % successful
in LeftToRight direction but only 18.93 % successful in the other direction. Greedy sequence
building on single channels again vary drastically, for example on Channel 18 correct detection
was 99.71 % and on Channel 26 success ratio was as little as 3.61 %.

All these experiments suggest that being in a high-interference medium, in comparison with
the other evaluated methods, PNSD shows better stability. We are analyzing this further in
Section 5.4.3.

As stated before, the misclassifications were not random, but rather localized into a small
part of the measurement environment. That is, in vast majority of the cases with Set-A, just two
of ten nodes were imprecisely estimated to be in swapped rooms with each other. We repeated
the experiments with the same settings but using a different set of nodes (Set-C) at slightly
different positions in the campus-side rooms. The 10 nodes in the experiments again had a linear
configuration. The major difference was that this time we performed the experiments during the
week, which meant a much bigger possibility of higher density of wireless transceivers around
the testbed. The ratio of finding the correct sequence was lower as expected. The results are
plotted in Figure 5.26. Although over all success was decreased, our proposed methodology was
much better, compared to alternative methods, in terms of both stability and success rate. It is
worth noting that success rate of Greedy Average at channel 11 results were better than others
in one direction. However, the results from the other direction show that getting good results
without frequency diversity is solely coincidental, just like we have seen also in Figure 5.24.

By looking at the results we could notice that there was an anomaly in some place or time
of the testbed-based experiments. Despite of a lot of effort, we have not been able to pinpoint
the reason for those anomalies. We tested and excluded the option of “faulty hardware”. We
intentionally created and monitored Wi-Fi interference, without being able to recreate same
type of anomaly. Nevertheless, we have introduced an additional feature to our algorithms for
“classification of result reliability”, which is explained in Section 5.4.4, in an effort to detect the
likelihood of existence of an anomaly at the time of the measurements.

Analysis of Imperfect Results in Set-A

All the results of PNSD, which did not provide the perfectly correct sequence, had single position
error, which means two nodes are swapped in their estimated positions. The analysis of the
results shows that these errors were localized at all cases, namely sixth and seventh nodes in
the sequence falsely appeared in each other’s places. We then examined the exact timestamps
at which the RSS measurements were taken in the non-perfect experiments. The measurements
were taken around christmas time, which is an official holiday in where TWIST is located. We
can see that the measurements which were taken outside of the official holiday time caused
a localized swap, as they were more likely to be exposed to interference. The other part of
the measurements, which fall within the christmas break time, could be used to determine the
sequence of the nodes with PNSD with perfect accuracy. We have plotted the indices of failed
experiments in Figure 5.27.

One sample of the raw measurements where PNSD had a successful discovery is shown in
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Figure 5.26: Success on second set of 10 nodes, Set-C
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Figure 5.27: Failed Experiments: each bar corresponds to the index of a failed experiment with
PNSD

Appendix B in Figures 9.21 to 9.24. It is evident in those measurements that the selection of the
closest receiver to a transmitting node is not trivial. Another sample of the raw measurements,

82



5.4. PROBABILISTIC SEQUENCE BUILDING

with which PNSD could not compute the correct sequence perfectly, is given in Figures 9.25 to
9.28, which also indicates the non-triviality of closest node detection.

5.4.3 Evaluation with Simulations

The results we present in the previous section were taken only in one specific building and one
specific testbed. Although we repeated the tests and measurements in different areas of same
testbed, these limited number of measurements will never be enough to guarantee that the current
results are not testbed or location specific. It is also not practical and time-wise feasible to repeat
the experiments in many different buildings.

To investigate the testbed dependency of our results, and different channel conditions, we
used a simulation model that represented an indoor environment. The RSS is assumed to be
affected by various propagation effects. Large scale variation of RSS is assumed to be caused
by change in distance. We do not consider shadow fading in this model. Small scale variation
of RSS is due to the fact that the wireless signals arrive at the receiver from multiple paths and
therefore suffer from multipath fading. As each channel bandwidth is smaller than coherence
bandwidth of usual office environments with around 100 ns delay spread, we assume a frequency
flat fading for each channel but the fading gain is expected to change from one channel to the
other channel which provides the frequency diversity of the system. We assume that the envi-
ronment is static and changes slowly in time which means that the coherence time is very large.
RSS is also affected by the white noise around the receiver.

In the design of simulations, the propagation effects were modeled using statistical channel
with path loss models [129, 130]. The signal strength values were produced based on the above
assumptions. The transmission power was constant and the path loss exponent « was assumed
to be static in the environment. We used Rayleigh fading model to model small scale fading
where the channel fading gains came from a Rayleigh distributed random variable. The fading
gains were assumed to be constant on a channel due to slowly fading assumption however it
was assumed that the fading gain was different on each channel. The relation between received
power Pr and transmit power Pr, both in milliwatts, is presented in the following equation:

)\ (0%
Pr=|h?*xPrx|———) +P, (5.3)
4xmxd

where h is the channel gain, which is a Rayleigh distributed random variable. A is the wavelength
at 2.4 GHz, « is the path loss exponent and d is the distance between transmitter and receiver
antennas in meters. P, is the power of additive white Gaussian noise in the environment. We
have chosen the noise variance as —45 dBm and the fading gain variance h as 10. Both random
variables have zero mean. Path loss exponent o was taken as 3, which is typical for indoor office
environments.

In Figure 5.28, we show a set of generated RSS values using above formula and parameters.
Each produced RSS value corresponds to the reading at different transmitter-receiver distance.
This graph shows that the signal strength value is a function of the distance, however it is not
always monotonically decreasing with distance due to multipath fading.

Later, we produced 16 x 40 values at 9 different receiver distances of 3 m apart and compared
them to one of the measurement sets from the testbed containing the same amount of RSS data.
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Figure 5.28: Simulated and ideal RSS values as a function of distance

The data are plotted side by side in Figure 5.29, showing that the values we produced with the
simulation model above were not far from what we would expect from our real measurement
environment. From the produced values, we dropped the values that were below the sensitivity
level of the radio chips, which is —97 dBm for CC2420.

Finally, we produced the same number of simulated results as we had in our measurements:
2000 repetitions of ten-node setups with nodes 3 m apart from each other. On each generated set
of data, we applied the methodology that we explained in Algorithm 8. The result were 100 %
perfect identification of the correct sequence for either directions.

Figure 5.30 shows us, that in a propagation medium that is fairly affected by fading and
multipath, our methodology remains robust, while MDS failed about 1 % of the time. We must
notice that LeftToRight and RightToLeft computations are pretty much symmetrical, since time
has not been a parameter in the RSS generation. For each experiment, we used same standard
deviation and mean values for Rayleigh distributed channel gain and Gaussian distributed white
noise. According to the Law of Large Numbers, the average of the random variables are expected
to approach to their mean values, which was the case in our simulations, too. When we average
a big number of values, produced with Formula 5.3, we come closer to what Free-space path
loss equation would give us under ideal conditions. Hence, 100 % success with averaging all
values from all channels is expected in simulations, although it is often not the case in real-world
scenarios.
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5.4.4 Reliability Analysis through Reverse Validation

With presented PNSD methodology we have achieved a significant improvement over alternative
methods in identifying node sequence correctly with relatively small inter-node distances. We
have shown that we can achieve up to 100 % correct identification of the node sequence where
other approaches seemed to be statistically unstable. We have also noticed that occasionally, due
to some anomalies, two adjacent nodes can be incorrectly identified in swapped spots. In this
work we assume that an outcome of relative position discovery that is less than 100 % correct
identification of node positions is not desired, and we want to be sure that the verdict is depend-
able. With this aim, we have developed a post-processing methodology to assess the reliability
of the computed sequence and change the verdict if a better one exists. Hence, we will evaluate
the reliability through reverse validation of the best sequence .S that has the highest probabil-
ity and the second best sequence So with second highest probability. Then we will choose the
sequence that is in agreement with the reverse sequence created from the same measurement.

We have argued that the channel does not stay symmetrical even though there is very little
time between measurements from node A to B and from B to A. In this case, assuming a four-
node scenario (A-B-C-D), node A wants to decide between adjacent nodes B and C, and it falsely
decides that C is the closer one instead of node B. In this case, the odds are very little for D to do
the exact same mistake by choosing B as the closest node. Such a case would require same type
of measurement distortion between different nodes and different places. But the correct verdict
of the sequence in one direction is much more likely to be in agreement with the sequence
constructed from the reverse direction. A similar idea, which was presented in 2011 in [109]
was not known to us at the developing time of this work, but it confirms our reasoning. With this
justification in mind, we construct another sequence of the nodes for validating a result, taking
the node in the last position of the constructed forward sequence as the reference node of the
backward sequence to be constructed.

PNSD produces a set of sequences *S = {S1, Sa, Ss, ..., Sy}, where

P(Sy) > P(S3) > P(S3) > ... > P(Sy)

For reliability analysis, we are interested in the two best sequences in the reverse direction that
are produced by taking the node placed in the last position of S; as the reference node, which
we denote with S; and S}, where P(S}) > P(S]). We are also interested in such reverse
sequences, which are produced by taking the node placed in the last position of S2, which are
S, and Sy, where P(S,) > P(S,).

Our probabilistic method has also shown us that imperfect results are not just random. When
we sort the sequences by their probabilities (*5), the second best sequence (52) has been in most
cases the correct one if the sequence (57) with the highest probability was incorrect.

For reliability assessment, we are looking for finding an agreement, by comparing the most
probable sequence (S57) with its most probable reverse sequence (S;) and second most probable
reverse sequence (Si’). Then we compare second most probable sequence (S2) with its most
probable reverse sequence (Sé) of Sy and second most probable reverse sequence (Sg ) of Ss.

Our claim is, the sequence (.5;), which matches one of its reverse sequences (S; or S;/) is
more likely to be the correct sequence (hence the verdict will be S;) and by looking at the rank
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() of that sequence (among other competing sequences of the same dataset) we will decide how
reliable the final decision is. Here we are taking a pragmatic approach of limiting the number of
candidate sequences to two in the reliability check. In the great number of observations that we
had with the correct and incorrect results, the correct result could either be found in one of these
two generated sequences or the correct sequence could not be found in the results at all. In the
case the correct result does not appear anywhere within the generated sequences, the chances of
a sequence to match with its reverse sequence is also very low.

We have 4 comparisons:

S| = S; = match_rank =1
S| = Sil = match_rank =1
Sy = Sé = match_rank = 2
Sy = S; = match_rank = 2

The number of comparisons (s) where we have a match:

1,if S; € {S;, S} }
Si) =
0, otherwise
s = t(S1) + t(S2)

As the final verdict, we choose between .S; and S3, depending on which one has a match
within its reverse sequences. If both of them have a matching sequence, then we choose the one
that is associated with the highest probability.

S;,if S; € {S;, S, yand s = 1

finalVerdict = { , . , v
S; = arg max(P(S1), P(S;), P(S}), P(S2), P(S;), P(Sy))if s # 1
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We define 3 levels of reliability: High, Medium and Low. For the first two levels of re-
liability, we are looking for matching sequences and a significant difference in the computed
probabilities.

The reliability levels are:

High:
if s = 1 and match_rank =1

Medium:
if s > 1 or match_rank = 2

Low:
ifs =0
or
if S} or Sy, cannot be produced in the same length as S; using the same dataset. This
happens in case of too many packet losses.
or

|[P(S1)=P(S2)]

i (P(S),P(S,

) <0.lands #1

If an experiment has one or two matching sequences, but none of these matching sequences
have a probability difference of at least 0.1 from the competing sequence (i.e P(S7) vs P(S2)),
then we put this experiment into the “Low” reliability class. This value of probability difference
threshold is a local parameter that is observed in many measurements that we performed and
analyzed. For different sizes of networks it must be properly chosen based on a few observations.
The analysis on how to mathematically calculate such a threshold is left to future work.

We applied the described reliability verification methodology to our experiments that we
presented in Section 5.4.2. In the experiment, in which we had 100 % success (Figure 5.24),
9 experiments resulted in wrong verdicts in oppose to 1991 correct verdicts by PNSD. Those
wrong verdicts, however, were all classified as “Medium” reliable. The other direction for the
nodes in the test, where we had 93.55 % success, the success ratio was increased to 96.95
% success, changing 68 wrong verdicts with the correct ones. In both cases, 100 % of the
sequences that were classified as “High” reliable, were the correct verdicts. Results are plotted
in Figure 5.31.

In the second set of experiments with the nodes in Set-C from the south part of the building,
in which we had lower success ratio (Figure 5.26), the verified success rate increased in both
directions. More importantly, we could associate most of the wrong verdicts with “Low” reliable
verdicts. Again 100 % of the “High” classified verdicts were correct. The results are shown in
Figure 5.32. In this set, the success ratio was increased from 60.05 % to 86.7 % in RightToLeft
direction and from 67.4 % to 89.5 % in the other direction. This was due to the nature of
our “reverse validation” algorithm which chooses the more consistent result as the final verdict.
Therefore, by applying reverse validation, we can go beyond assessing the reliability of a verdict,
and we can replace the verdict with a better one, increasing the chances of success.
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Figure 5.31: PNSD with verdict reliability classification, Set-A
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Figure 5.32: Sequence Discovery with verdict reliability classification, Set-C
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5.4.5 Complexity and Overhead Reduction
Computation with pruning

Constructing a probability tree for achieving the correct sequence is possible as shown in Section
5.4.1, but unfortunately this tree construction requires high computational complexity. Theoret-
ically, in the worst case scenario, the tree would result in (N — 1)! leaves for N nodes and the
computational complexity would be O(N!). This is not feasible if the number of nodes in a net-
work exceeds a few. For making this probabilistic position discovery system feasible, the size of
the tree needs to be reduced. One way of achieving this is by pruning the probability tree, when
the weight (joint probability) of a path (root-to-leaf) becomes too small as that sequence grows
into a less likely sequence. We prune the tree at every m'” level (in other words, after each m*"
position in a target sequence). In our experiments, we have also observed that the competition
for measuring the maximum RSS value occurs only among few closest nodes and much farther
nodes do not measure an RSS value that is higher than what those closest few nodes measure,
due to distance related attenuation, despite multipath and RF noise.

We define the pruning criterion at m‘* level as “half of the maximum root-to-leaf joint
probability(P%*)”. Any root-to-leaf path that has a smaller probability than 0.5 x P™% is
pruned out at each m" level and the iteration continues with the remaining leaves.

We applied this pruning method on the same data that we used to create the results in Fig-
ure 5.24. As a result, the computation time was drastically improved (from 15 minutes to 3-4
minutes for one experiment on an Intel i7 architecture) while maintaining the success ratio the
same. Figure 5.33 shows that the success ratio did not decrease when we pruned the probability
tree with 10 nodes at levels m = 5 and m = 1. The lesser values of m causes more frequent
pruning and hence the speed is also increased. One needs to keep in mind that pruning affects
the number of total paths in the final tree (number of candidate sequences).

Set-A
100 -
75 -
;\? PNSD Pruning
;; no Pruning
(%} -
8 50 m=5
o
5:) m=1
25 -
0 -
| 1
LeftToRight RightToLeft
Direction

Figure 5.33: Success with pruning, Set-A
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An illustration of the tree pruning, with m = 1 is shown in Figure 5.34.

Position 1
Reference
node
Position 2
Position 3
Position 4
Position 5

x removed link

Figure 5.34: An illustration of a finalized probability tree with pruning.
In this example m = 1 and selected sequence is S = argmazx(P(*S))
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Analysis of Required Number of Transmissions per Channel

Throughout this chapter we have validated our claims with experiments that used 40 transmis-
sions per channel and per sender node. The computation was centralized, meaning that all the
measurements needed to be collected at one processing center, which creates extra overhead. A
distributed version of this system can be developed by the help of a distributed minimum span-
ning tree, which can be studied as a future step, but it was not considered within the current
scope of this work.

Regardless of whether the implementation is distributed or centralized, it is logical to do
as few transmissions as possible to save energy and time. Therefore, we downsized our mea-
surements to fewer number of transmissions per channel while keeping the number of channels
same. To analyse the impact of such a reduction in number of transmitted packets, we repeated
the computations (results of which were presented in Figure 5.24) by filtering the input measure-
ment dataset down to arbitrarily selected 1, 8 and 16 transmissions per channel. In Figure 5.35,
we observe that the success ratio was not affected noticeably by the changing number of trans-
missions. This proves that the success we get with channel diversity is not because of the added
number of transmissions into the computations (by adding more samples for different channels),
but the changing of the multipath conditions by introducing the frequency diversity into the
system.

setA
100 -

75 -
50 -
25-
0-
1 1 1

1 8 16 40
Packets per Channel

Success [%]

direction [ RightToLeft|  LeftToRight

Figure 5.35: Impact of number of transmissions per channel, Set-A
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We have also examined the impact of the change in the number of transmissions per channel
for MDS in comparison to PNSD. In experiments with Set-A (LeftToRight direction), using
fewer number of transmissions did not have a significant impact on MDS either. However, for
the experiments with Set-C (RightToLeft direction), wherein the success ratio was worse for all
of the algorithms in consideration, MDS got affected more severely than PNSD by the reduced
number of transmissions. The comparison is shown in Figure 5.36.

Set-C [MDS vs PNSD] RightToLeft

60
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201
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1 8 16 40

Packets per Channel
| Aigorithm Il PNSDEIMDS |

Success [%]

Figure 5.36: Impact of number of transmissions per channel, Set-C RightToLeft

And finally we examined the impact of different number of transmissions per channel on
“reliability analysis” and we have noticed that using as many as 40 packets was indeed in-
creasing the reliability of the results. This analysis on Set-A RightToLeft direction is shown in
Figure 5.37.

To sum up, we have noticed that our suggested approach (PNSD) is considerably more robust
to varying number of transmissions per channel while MDS is affected in some cases. However,
PNSD benefits from larger number of transmissions per channel, resulting in increased levels of
reliability.
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Figure 5.37: Impact of number of transmissions per channel on reliability, Set-A RightToLeft

5.4.6 Summary

In this section we presented a methodology, Probabilistic Node Sequence Discovery (PNSD),
for discovering the node sequence in a linear configuration of wireless sensor networks. It was
shown that, contrary to popular belief, the imprecise RSS measurements from low-power radio
chips were useful for solving the problem of node sequence determination in challenging indoor
environments. The results of this section demonstrated how using more of the available infor-
mation (data in measurements) could allow a significant improvement in successful discovery
of node positions. The tree-based computations created an added complexity, which was not
the case in the previously introduced Greedy approaches. But by applying a pruning method
on the probability tree, we could achieve a faster implementation of introduced node sequence
discovery system.

Building on our claims and findings in the previous Sections 5.2 and 5.3, we have again
shown that frequency diversity is beneficial for relating RSS measurements to position informa-
tion. For the sake of fairness, the same frequency diversity was incorporated to other approaches
to which our probabilistic position discovery system was compared to.

We have compared the suggested methodology (PNSD) to greedy sequence building algo-
rithm and to well accepted MDS algorithm. The results showed that when the measurement
medium was not affected heavily by external factors (as with Set-B), 100 % successful posi-
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tion discovery was possible both by PNSD and MDS. However, when the measurement medium
got challenged by interference or other types of anomalies, MDS and Greedy approaches got
affected heavily while PNSD maintained its robustness (i.e. with Set-A, Set-C).

It was also observed that there were some occasions, in which the correct construction of the
sequence was not possible. Despite hard efforts on determining the reasons for the instabilities
in the raw data, leading to false sequences when our and other approaches were applied, we
were not able to repeat the conditions that impaired the measurements. There have been periods
of time when successful determination was possible and there have been other periods of time
when correct determination of the sequence was not possible even after many repetitions. This
has motivated us to create an additional quality assessment step.

By generating the reverse sequence from our initial result we are able to assess the reliability
of the sequence estimates and even retroactively change the decision of the previous step to
a more probable estimate. Extensive tests have shown that all the classification for which we
could obtain “High” reliability verdicts have always been correct and the vast majority of those
with “Medium” reliability verdicts have been correct, but rarely wrong. All the remaining wrong
verdicts could be attributed to “Low’ level of reliability. Using this information, users can accept
the sequence with its provided reliability rank, or they might want to repeat the process until a
“High” reliable sequence is found.

5.5 Chapter Summary and Conclusions

In this chapter some unconventional ways of relating RSS information to relative positions were
provided, based on the findings in Section 5.2.

First, it is explained why frequency diversity can be used to determine comparative close-
ness of neighboring nodes. The experiment results verified that change in propagated signal
frequency can cause a change in the measured strength of the received signal for as big as
20 dBm. Later, we concluded that this change has an upper limit (¥"*%*) and a closer node has
an increased chance of measuring a greater local maximum RSS value than a node that is farther
away, if the diversity in frequency is incorporated to the measurements. This epiphany has led
us build node sequence discovery algorithms around this phenomenon.

Initially we used only the maximum RSS values measured by multiple receivers to find the
sequence. After that, we showed how iteratively building the sequence using different ways of
statistical processing could improve the results, such as through using mean of different per-
centiles in RSS measurements. The understanding that we gained from these techniques was; it
was not always possible to hit the maximum possible RSS value within a given time and given
environment. To increase the chances of finding better values to compare, averaging few highest
RSS values across different receivers and across different frequencies was helpful to increase
stability of the approach.

Although these methods provided good results, they were not taking some of the data, gener-
ated through the measurements, into consideration. In an attempt to increase accuracy in position
discovery, we decided to increase the level of information to use and a probabilistic approach to
sequence discovery, PNSD, was proposed.

Our probabilistic approach used the rankings from each measurement taken by each receiver
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at each channel to calculate the empirical probabilities of closeness. Increasing the amount of
information that is used to estimate the closeness of nodes also increased the chances of finding
the correct sequence.

The results were verified by real-world measurements taken from TWIST testbed in a crowded
office environment. Such measurements are considered being more representative for analysis
of physical systems. However, it is difficult to make a generalization about the position discov-
ery systems that are tested only in one type of environment. Although the basic version of the
sequence discovery system was successfully demonstrated to live audiences multiple times, a
simulation model was also developed for achieving a more general conclusion. These results
confirmed that our algorithms perform better than alternative approaches, even under simulated
environments.

Finally a verification system was developed in an attempt to filter the imperfect results.
We call this verification system “reliability through reverse validation”. The rationale we used
was that if the sequence that is constructed in one direction matches another sequence that is
constructed in the reverse direction, starting from the last node of the initial sequence, then
the chances are high that it is the correct sequence. Likewise, if the computed sequence was
incorrect, finding the exact same incorrect sequence again by starting from the other end of the
initial sequence would be very low.

We confirmed this hypothesis by applying the validation algorithm on the results of PNSD.
We could successfully sort out high, medium and low reliable results, by clustering the incorrect
results mostly on the low rank of the reliability and the high rank of the reliability analysis
contained only the correct results. The verification system was also able to select a better result,
which increased the overall success rate of our algorithm.

These advancements in the node sequence discovery in a linear configuration of wireless
nodes encouraged us to develop algorithms for two-dimensional configurations, in which the
nodes are placed on a regular grid setting. The following chapter contains a two-dimensional
adaptation of the PNSD system, which was developed in Section 5.4. Later in the following
section of the next chapter, a more generalized position discovery system for equidistant two-
dimensional grid settings is explained.
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Chapter 6

Two-Dimensional Node Position
Discovery

Methods and techniques for discovering the node sequence on a one-dimensional (1-D) setting,
by using only RSS information, were developed and analyzed in the previous parts of this thesis.
To map the nodes to their potential positions without using a ranging or training based system, it
was necessary to extract the closeness information. It was demonstrated that utilizing frequency
diversity in the measurements while collecting RSS readings was beneficial for identifying the
closest node to a particular sender.

In this chapter, relative node position discovery on two-dimensional (2-D) settings will be
studied. We will benefit from the findings of the previous chapter, such as data collection method
and closeness estimation.

Two cases of position discovery in two dimensions will be examined. First one is an exten-
sion of previously introduced PNSD system to the two-dimensional case. Second one is a more
generalized approach to relative node position discovery for equidistant two-dimensional grid
settings. We measured the performance of our proposals in comparison with the MDS-MAP
algorithm [131].

In this part of the work, a grid setting with cells along horizontal and vertical axes will be
considered. This is a common case for many indoor environments, such as offices, hospitals or
warehouses, if we take rooms or partitions of a building as cells of a virtual grid.

6.1 Extending PNSD to Rectangular Grids:
Constrained Two-Dimensional Position Discovery

In the previous chapter the PNSD algorithm was introduced as a way of identifying the node
sequence. In this part of the work, we will define an extension to PNSD for mapping a discovered
node sequence to a specific type of two-dimensional grids, where the nodes are placed closer to
each other on one dimension than on the other dimension.

This extension assumes a regular grid, each cell of which is occupied with one node of the
network, and no node is left out. It is also assumed that this 2-D grid, which on = dimension
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contains n, nodes and on y dimension contains 7, nodes, has n cells. Therefore; n = n; X ny.

We hold on to the prior prerequisite of having one reference node placed on one corner of the
system. On each dimension, the distances between the adjacent nodes are roughly equal along
one dimension and different than the other dimension; about d; on the x axis, d, on the y axis
and d, # dy. The constrained case of 2-D setting is: d is sufficiently smaller than d,, such
that, of the two adjacent nodes to a node N in the system, the one on the = dimension must be
able to be detected as being closer to N than the one on y dimension: d, < d,. We also need the
dimensions of the grid (number of columns 7, and rows n,) to know.

Under this constraint, a 1-D sequence of all the nodes will be populated by PNSD system.
This sequence will then be “folded” at each i x n," position, where i = 1 — ny, and eventually
finish with a set of nodes that are distributed along the rows and columns of the grid, as given in
Algorithm 9. We evaluated this method with simulations in the next part.

Algorithm 9 Folding 1-D Sequence into 2-D Grid
Step 1: Find the Sequence S using Algorithm 8

Step 2: Map S onto the Grid G of size n, X n,

Step 3: Revert even numbered rows of G

The constrained 2-D position discovery algorithm first calculates a linear sequence, and
then it folds the result into a two-dimensional grid. Visual illustrations of how a 1-D sequence
(illustrated with red arrows) is folded into a 2-D grid are given in Figures 6.1 and 6.2. The black
dots in these figures represent the nodes and the numbers next to them represent their assigned
IDs. The arrows represent the direction of sequence discovery, and the corners in the red line
show the folding points.

0 1 2 3 4
od 2 E 2
5 6 7 8 9
?3 & L2 &
]
©
S
= |10 11 12 13 14
> 6% 2 2 e
15 16 17 18 19
9 & L3 L3
0 2 4 6 8
X [meters]

Figure 6.1: Illustration of constrained 2-D position discovery at a 5 x 4 setting
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11 12 13 14 15 16 17 18|19

Y [meters]

0 2 4 6 8 10 12 14 16 18
X [meters]

Figure 6.2: Illustration of constrained 2-D position discovery ata 10 x 2 setting

6.1.1 Evaluation

In the evaluation of this mechanism, two types of scenarios were assumed, in which the grids
are shaped as rectangles of 10 x 2 and 5 x 4 cells and each cell contained one of the 20 nodes
of a network. In each setting, the nodes were placed closer to each other on x dimension than
on y dimension. Then, using the simulation model that was defined in the Section 5.4.3, RSS
values corresponding to 40 measurements at each 16 channels of IEEE 802.15.4 standard were
generated as a single dataset and 1000 such datasets were produced.

The simulation parameters were defined as:
e h: variance of Rayleigh distributed channel gain

e sdy,: variance of additive gaussian white noise (dBm)

n,: number of columns of the grid

n,: number of rows of the grid

d,: distance between each adjacent node on x dimension (meters)

d,: distance between each adjacent node on y dimension (meters)

a: path loss exponent

Table 6.1: Simulation Parameters

Setting | Grid Shape | n, | n, Noise Level: sd,, | h | o | d; d,
1 5 x 4 > 4 moderate: —45 dBm
2 10 x 2 10| 2
15/3 |2m|3m
3 5 x 4 > | 4 high: —30 dBm
4] 1ox2 |10] 2 gl
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The parameters that were used in these simulations represented a highly challenging indoor
scenario. We selected the variance of the Rayleigh channel gain as A = 15 which provides up
to 20 dBm difference in simulated RSS values across the channels. The variance in white noise
at —45 dBm level already causes up to 3 dBm fluctuation in the simulated RSS values within
the same channel. The system was also tested with a greater level of white noise by setting its
variance to —30 dBm. In both cases the path loss exponent o was taken 3. The parametrization
of the simulations are given in the Table 6.1.

The measurements that are obtained from the simulations were used to construct the mapping
of node positions with the Algorithm 9. The same measurements were also used with MDS-
MAP algorithm for comparison. MDS-MAP is a connectivity based approach that utilizes MDS.
Feeding connectivity data as the similarity metric to MDS gives a relative map of the node
locations [131]. In our evaluations we used the average of all RSS values across all channels
as the input for MDS-MAP and we used the Smacof implementation of MDS [68]. Then we
converted these values to distances in meters by using Friis” path loss formula. MDS-MAP
was not aware of the properties of the grid that the nodes are lying on and it generated node
maps, which were often in a grid-like shape that was randomly rotated to a random direction.
Following the directions in the MDS-MAP’s paper, we first scaled MDS’s coordinate system
to match the grid coordinates of our scenario and rotated it until the reference node matched
to the correct corner of the grid using procrustes analysis. Then we snapped the points in the
MDS-MAP output to the closest points of the simulation nodes and we placed each node from
the MDS-MAP result into a potential position in our system.

The results for both scenarios are shown in Figures 6.3 and 6.4. The plots show the success
rate of constrained 2-D sequence discovery with that of MDS-MAP side-by-side. In the 5 x 4
scenario the performances of both algorithms did not get affected too much by the increasing
white noise, but MDS-MAP has become totally unusable for the 10 x 2 scenario when the white
noise was increased. Our algorithm provided over 81 % success rate in both grid shapes with
moderate gaussian white noise. When the noise level was increased, the success rate of our
algorithm did not get impacted too much and stayed over 77 % in both shapes of the grid.

MDS-MAP has performed very good, when the grid setting was of size 5 x 4, which resem-
bles roughly a square. However, when the grid shape resembled a lengthy rectangle, as in 10 x 2
scenario, its success rate diminished. In that case, the calculated node mapping has taken a U
shape rather than a rectangle, an example of which is shown in Figure 6.5.

This showed the robustness of our algorithm against to the lengthiness of the 2-D grid.

In section 5.4.4, a technique to analyse the reliability of the calculated sequence was ex-
plained. Since the 2-D grid that is generated here is a folded form of the 1-D output of the
PNSD, we could apply the same algorithm on these results, too. Figures 6.6 and 6.7 show re-
sults of the success and reliability analysis when the noise level was medium. Figures 6.8 and
6.9 are the results of reliability analysis at the high noise level.

The results that were classified as “high reliable” were near 100 % correct and most of the
incorrect results were successfully classified as “low reliable”. These results are very promising
for a system that does not rely on any preconfiguration or training.
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Figure 6.6: Reliability analysis at
moderate noise level, 5 x 4 grid set-
ting
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Figure 6.7: Reliability analysis at
moderate noise level, 10 x 2 grid set-
ting
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Figure 6.8: Reliability analysis at high
noise level, 5 x 4 grid setting
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Figure 6.9: Reliability analysis at high
noise level, 10 x 2 grid setting
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6.1.2 Summary

In this part, an extension to the PNSD system is introduced for the two-dimensional settings
under the condition that inter-node distances on the z-axis are different than the inter-node dis-
tances on the y-axis. The inputs to this model are 1) the prior knowledge of the node at one of
the corners of the grid and 2) the knowledge of which dimension contains smaller inter-node
distances.

The system works by first creating a one-dimensional sequence of all the nodes in the grid.
After this sequence is created, the system folds the sequence at the ends of the rows and maps
the result to the two-dimensional grid.

In this system, it is required that the inter-node distances along one axis of the grid are
adequately different than the distances along the other axis. As a future work, this difference
can be analysed and the limitations for this kind of applications can be identified.

In the following section, a more generalized system for discovering relative node positions
on an equidistant two-dimensional grid setting will be discussed.
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6.2 Two-Dimensional Node Position Discovery on an Equidistant
Grid

In the previous section, the constrained 2-D node position discovery system, which was based
on the PNSD methodology defined in Chapter 5, was discussed. That system required the 2-D
grid setting to have different sizes in between the adjacent nodes on one axis than the other axis.

In this part of the work, we will discuss how the two-dimensional relative node position
discovery can be performed on the nodes that are placed in a grid setting, where the nodes are
approximately, but not strictly, at equal distances to each of their immediate neighbours at  and
y dimensions. These distances between the pairs of nodes can be as small as half a meter to a
few meters. A small subset of these nodes are taken as “Reference Nodes” and their positions
in the grid are known to us. In this part, the subset of reference nodes will contain two or three
nodes, in oppose to one node in the previous parts. The content of this section is published in
our paper [132].

6.2.1 Discovering the Closest Node in a Two-Dimensional Setting

The effectiveness of frequency diversity for altering the propagation path of the transmitted
signal and how combined RSS measurements from one transmitter to multiple receivers could
be leveraged to detect the node that is most likely to be the closest receiver to that particular
transmitter was discussed in the previous chapter.

In this part we will use a slightly different procedure to detect a set of possibly closest nodes
(candidates) to a node. The procedure runs between a sender node and a set of receiver nodes.
The beacon messages are sent in the same way as in the prior sections: by all nodes as senders
in turns, transmitting a number of beacon messages at all channels available to the radio chip.

The receivers listen to these transmissions and record the measured RSS values for each
transmission. At the end of the transmission campaign, each receiver returns a summary of the
measurements, which is the mean value of measured RSS values for each channel that are greater
than 6 percentile of all values measured on that channel, similar to the procedure explained at
the end of the Section 5.3.2. A sender transmits e X z packets at each of the total e channels,
and each receiver reports e summaries back, one for each channel.

The sender node N; compares the collected RSS summaries for each channel and puts the
ID of the node that reports the biggest RSS summary for each channel into a vector, V;. Also,
the ID of any other node that reports within the RSSI resolution range of the radio chip +£ dBm
to the biggest value of RSS summary in V; is added into that vector V;, because there are at
least two nodes at equal distances to each sender. The mode (most frequent element) of this
vector, mode(V};), is the node that is most likely be the closest node to that particular sender. In
our algorithms we also use the second mode (second most frequent element) of the candidate
vector as well, which we denote with modey(V;). Eventually, each sender generates a vector of
candidates with a minimum size of e elements. This procedure is summarized in Algorithm 10.
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Algorithm 10 findCandidates(Node [V;, threshold=6, resolution=¢, includeList = L)
Step 1: N; transmits z packets at each one of the e channels (z > 1)

Step 2: Each receiver node, N, € L, in the communication range measures RSS at each one
of e channels and reports the average of RSS measurements that are greater than 6 percentile
(RSS9) at each channel back to V;

Step 3: IV; produces a vector, V;, of receiver nodes that reported the +¢ dBm of maz(RSS?)
value at each channel

Return: V;

The ratio of the frequency of a node in the vector to the length of the vector gives the
probability of a node being the closest node to a particular sender, as in Equation 6.1.

frequency of NV, in candidate vector V; of N;

P(N|N;) = (6.1)

size of Vj

Based on the procedure findCandidates() and the probability of closeness calculation above,
we define two procedures for discovering the mapping of the nodes to the 2-D grid. First pro-
cedure focuses on minimizing the a priori knowledge (positions of reference nodes) required
for the relative node position discovery system and second procedure focuses on increasing the
robustness and the success rate of the position discovery.

6.2.2 Grid-Based Position Discovery with Two Reference Nodes: GBPD-2

This approach assumes that two nodes placed on two corners of the grid that share one edge are
known to us as reference nodes, such as shown in Table 6.2. The number of rows and columns
are initially not known. We call this system Grid Based Position Discovery with 2 reference
nodes (GBPD-2).

R1 GLQ G173 Gl,m
Ga1 G2 Ga3 Ga,m
G31 G32 G33 G3m
G(n_1)71 G(n_1)72 G(n_l)v?’ G(n—l),m
R2 Gn,? Gn,3 Gn,m

Table 6.2: Example placement of reference nodes R1 and R2 in Grid G

The system first discovers the nodes along the common edge shared with reference nodes.
The discovery is initiated by one of the reference nodes selecting two candidates as the imme-
diate neighbor along the edge. If the node that selects the candidates is positioned at G of
the grid G (cell at " row and ¢ column), then the candidates should be on cells Gry1,c and

105



CHAPTER 6. TWO-DIMENSIONAL NODE POSITION DISCOVERY

G c+1 as they are the geographically closest cells. Then the other reference node selects one of
these two candidates as the node closer to itself, indicating that it belongs to the common edge.
This procedure starts from the first edge (column) of the grid (¢ = 1), and iterates until all nodes
between two reference nodes along the same edge are discovered. We will use the notation G,
both as a cell in the grid G and as the node occupying that cell, since a one-to-one mapping is
targeted. Each candidate-finding includes the set of nodes that are not yet discovered in the grid,
which we denote with G’. In this procedure, which is given in Algorithm 11, first node discovers
two most likely closest nodes to itself as candidates and the second node chooses the closest
node from these two candidates.

Algorithm 11 findEdge(Node N1, Node N2) > GBPD-2
EdgeList < {} ; M1 + M2 + null
while (M1 OR M2) # N2 do
V} + findCandidates(/N 1, 6, &, includeList=G")
M1 + mode(Vq)
M2 + modes(V7)
V3 « findCandidates(N2, 6, £, includeList={ M 1,M2})
EdgeList.add(mode(V))
end while
Return: EdgeList

Table 6.3: Discovery of first row of Grid G using Algorithm 11: findEdge()

Discovering the first edge of the grid provides us the number-of-rows information. Knowing
that this edge is the first column of the grid, each consequent column is discovered one cell at
a time, in a row-by-row basis. During the procedure, a node in G . computes its candidate list,
L1, using the Algorithm 10. If L1 is bi-modal (having two modes), then the node in the next
row of the same column, G, . computes another candidate list, L2, and its mode is put in
Gri1,c+1. This eliminates the bi-modality of G... Then G, . again computes its candidate list
L1 and eventually the mode of L1 is placed in G .11. This procedure is iterated for each row in
a column, until all nodes are placed in the grid. The whole procedure is given in Algorithm 12
and it is illustrated in the Table 6.4.

106



6.2. TWO-DIMENSIONAL NODE POSITION DISCOVERY ON AN EQUIDISTANT GRID

[ R1 'G-}T_Q____) _____________
(Gaa |Gy ]
LG | ?
Gn-1)1
R2

Table 6.4: Discovery of further cells of Grid G using Algorithms 10 and 12
(solid red lines symbolize past computations, dashed red lines symbolize future computations)

Algorithm 12 buildGrid(Node R1, Node R2) > GBPD-2
firstColumn = findEdge(R1, R2)
G(...,1) « firstColumn
c+2 > starting from second column
while unplaced nodes exist do
for r in Each Row do
L1 «+ findCandidates(G.—1 r, 8, &, includeList=G")
if L1 is bi-modal and G'c—1 ;41 exists then
L2 < findCandidates(G.—1 41, 0, §, includeList=G")
Gery1 < mode(L2) > skip next iteration
L1 «+ findCandidates(G.—1 ,, 8, &, includeList=(G’))
end if
Ger < mode(L1)
end for
end while

6.2.3 Grid-Based Position Discovery with Three Reference Nodes: GBPD-3

This time the connected network of the nodes is assumed to have three reference nodes, R1,
R2 and R3, and these reference nodes are assumed to occupy the positions G'1.1, G2 and G2 1
of the Grid G, as shown in Table 6.5. The size of at least one of the dimensions and the total
number of nodes are also assumed to be known to us.

The first step is discovering the inner corner of these reference nodes (e.g. G'2 2 in Table 6.6),
completing the mapping of discovered nodes to a 2 x 2 square grid.

Next, the adjacent neighbors on either sides of the square is discovered: 2 nodes for the
vertical side (G1,3 and G2 3), 2 nodes for the horizontal side (G3 1 and G5 2). Now the system
has 8 nodes of a 3 x 3 grid discovered as illustrated in Table 6.7.

The iteration continues with the discovery of the missing corner node (G3 3) of the square
grid, and repeats until one of the edges of the Grid G is completely covered. Then the discovery
is iterated with edges only, until all the nodes are positioned. For this procedure, we define three
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R1 R2 G173 Gl,m
R3 G272 G273 GQ,m
Gs G32 Gs3 Gsm

G(n_1)71 G(n_l)a2 G(n_1)73 G(n—l),m
n,l Gn,? Gn,3 n,m

Table 6.5: Example node placement in Grid G

IR1 | R2.
R3 G2,2,:

Table 6.6: Discovering a corner node in Grid G

R1 | R2 |Gy,
R3 | Gap :szs,:
1G31 | Go!

L3

Table 6.7: Discovering side nodes in Grid G

methods: fe (find corner), fte (find top edge), fe (find edge), which are given in Algorithms
13, 14 and 15 respectively. The procedure for building the grid (buildGrid()) itself is given in
Algorithm 16 and illustrated in Figure 6.10 as a flow diagram.

An example iteration of buildGrid() algorithm is shown in Table 6.8. The cells are tagged
with labels {iteration_number:function}.

’ R1 H R2 H 2:fte H 7:fte H 14:fe \
| R3 || Lifc [| 4fc [ 9:fc || 15:fe |
| 3fte || 5:fc || 6:fc || 11:fc || 16:fe |
| 8:fte || 10:fc [| 12:fc [| 13:fc || 17:fe |

Table 6.8: Iterations and Functions
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Algorithm 13 fc(Node N1, Node N2, Node N 3) > find corner, GBPD-3
V1 <« findCandidates(N1, 6, S, includeList = G’ )
V5 < findCandidates(N2, 6, S, includeList = V1)
V3 <« findCandidates(IN 3, 6, S, includeList = V1)
Return:
cornerNode +— mode(Va + V3)

Algorithm 14 fte(Node N1, Node N2) > find top edge, GBPD-3
V1 <« findCandidates(IN1, 6, S, includeList = G’)
cl «+ mode(V7)
€2 + modes(V7)

Return:
argmaz(P(c1|N1) x P(c1|N2), P(c2|N1) x P(c2|N2))

Algorithm 15 fe(Node N1, Node N2) > find edge, GBPD-3
V1 < findCandidates(IN1, 6, S, includeList = G’)
if V7 is bi-modal and N2 exists then
V5 « findCandidates(IN2, 0, S, includeList = G”)
V1 « findCandidates(N1, 6, S, includeList = (G’ —mode(V2)))
end if
Return:
mode(V7)

Algorithm 16 buildGrid(Node R1, Node R2, Node R3) > GBPD-3
ng < number of Grid rows
ny <— number of Grid columns
Assumption: ng < ny
Ga2 + fc(R1,R2,R3) > 2 x 2 square shape is achieved
for d in 3 to n, do
Gi,a < fte(Gra-1,G1,4-2)
Ga1 < fte(Ga-11,Ga-21)
for jin2tod — 1do
Gjaq <+ fe(Gi—1,a-1,Gj-1,d,Gja—1)
Gaj < fe(Ga-1,j-1,Ga-1,5,Gaj-1)
end for
Gaa < fe(Ga-1,d-1,Ga-1,4,Gad—1)
end for
for d in n, + 1ton, do
for rin 1 to n, do
Gra= fe(Gra-1,Gri1,4-1)
end for
end for
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Start
R1,R2,R3

p! fc(next) |

Is Grid
complete?

Yes

Short side

completed? Yes

No

No fte(top)

fte(bottom)

Completed cells
form a square?

Yes—p»

Figure 6.10: Flowchart of GBPD-3, showing how find corner (fc), find top edge (fte) and find
edge (fe) procedures cooperate. next, top and bottom stand for the next cells to be discovered.
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6.2.4 Reliability Analysis

Due to the iterative nature of the process, an error in the midst of the grid would effect discovery
of all the remaining nodes from that error on. We therefore verify the first and the last edges for
consistency and assess how likely it is that all the nodes are positioned in the grid at the right
places. Algorithm 11 (findEdge) is used to discover the mapping of a set of nodes to an edge
of a two-dimensional grid. This algorithm takes the two ends of the edge as input and works
iteratively from one end to the other end.

First, one edge is discovered, which contains two of the reference nodes, starting from one
corner node towards the direction of the reference node R1. Then, the nodes at the opposite
corners of the grid (G1,, and Gy, ;) are taken and the last column is re-discovered using Al-
gorithm 11 to compare with what has already been found in the grid. Finally, the last column
is re-discovered in the reverse node order and the same comparison is applied. The reliability
of the result is determined with a value, which we call “score” that takes O as its initial value.
Each of these three comparisons add 1 to the current value of “score” if a match is found. At
the end, the value of score corresponds to a reliability classification. This procedure is given in
Algorithm 17 and it is designed for grids with more than two rows and two columns.

Algorithm 17 Calculate Reliability Score

score =0

if findEdge(Gnyl, Gl,l) == G?‘id[GLl, Gn,l] then
score = score+1

end if

if findEdge(G1 m, Gnm) == Grid[G1 m, G m] then
score = score+1

end if

if findEdge(Gr m, G1,m) == Grid|Gp m, G1,m) then
score = score+1

end if

return score

Where Grid[a,b] is the set of nodes already mapped into one edge between the positions a
and b of a grid GG by one of the GBPD-# algorithms.

And the reliability value will be:

high ,if score == 3
reliability = < medium ,if score == 2
low ,if score <1

This reliability assessment method is applicable to both GBPD-2 and GBPD-3 algorithms.
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6.2.5 Evaluation

To analyze proposed algorithms (GBPD-2 and GBPD-3) we used the same simulation model
that generates RSS values between any two nodes as a function of distance and random Rayleigh
channel gain, for an indoor environment. The validity of our simulation model was introduced
and verified in Section 5.4.3 .

The same parametrization of the attenuation model as in the previous section was also used
here. We considered two channel gain conditions, namely moderate noise (with variance of —45
dBm) and high noise (with variance of —30 dBm). In our model, —45 dBm of noise variance
causes RSS values to deviate about 1 — 2 dBm, which is also the precision of the CC2420 radio
chip. A noise variance of —30 dBm causes the readings under the same conditions to fluctuate
about 4 — 5 dBm, which is possible in very noisy indoor environments. The fading gain variance
h was taken as 15. Both random variables have zero mean. Path loss exponent o was taken as
3, which is typical for indoor office environments.

For our evaluations we generated RSS values according to the simulation parametrization
above. We fed our GBPD algorithms, the MDS-MAP and the Fingerprinting (Nearest Neighbor)
algorithms with these RSS values that are generated by the simulator. MDS-MAP does not
require anchor points, but only reference points to correct the scale and orientation of its output.
Therefore, the amount of required information is the same as in our GBPD algorithms. The
same amount of information can also be used for applying fingerprinting, which is a technique
frequently used method for indoor positioning. So it is natural to ask, whether the fingerprinting
might work for this kind of 2-D scenarios. We used the Smacof implementation of MDS in
MDS-MAP. The linear transformations of the MDS results using the anchor nodes, were applied
using procrustes analysis [133], which is implemented in the Vegan package for R [128]. For
both MDS-MAP and fingerprinting algorithms, we used the averages of the RSS values across
all channels as input.

We used the original fingerprinting approach [100], since the measurement points were al-
ways same as the training points and mobility of the nodes was not considered. When we talk
about node position discovery in a static setting with definite partitions, RSS-based fingerprint-
ing is a very popular method that finds wide use. We trained the fingerprinting system with 5 %
of the measurement sets and the rest of the measurements were used for testing.

In this part, too, the experiment results are identified either as a “success” or as a “fail”,
where “Success” indicates correct discovery of positions of all nodes in the grid setting and
“fail” indicates otherwise. Each of the following experiment scenarios was repeated 100 times.

First we evaluated a topology of 20 simulated nodes, placed into the cells of a 5 x 4 grid, as
shown in Table 6.9. Each node was considered to be placed 3 meters away from its immediate
neighbor at the horizontal and vertical directions. We applied both GBPD-2 and GBPD-3, as
well as MDS-MAP and Fingerprinting algorithms, on the same set of RSS values. The results are
plotted in Figure 6.11 for two-reference-nodes scenario and in Figure 6.13 for three-reference-
nodes scenario. For two-reference nodes case, we assumed that the positions of the corner
nodes, NO and N15, were known to us. Likewise, NO, N1 and N5 were assumed to be known to
us for the three-reference-nodes scenario and the rest of the system was to be discovered. Other
algorithms in our comparisons were also given the same set of reference (anchor) nodes for the
sake of fairness.
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In addition to the success ratio, we also computed the “reliability” of the results. Figure 6.12
shows the classification of position discovery verdicts for the 5 x 4 topology using 2 reference
nodes with GBPD-2 algorithm. Figure 6.14 shows the same information for GBPD-3 algorithm,
which uses 3 reference nodes. Then we increased the size of the network, as well as the grid,
and performed the node position discovery on the new dataset that was produced with the same
simulation parameters. Figures 6.15 and 6.17 show the performance of GBPD-2 and GBPD-3
on a 10 x 5 topology with 50 nodes, also in comparison with MDS-MAP and Fingerprinting
algorithms. The reliability analysis results for 10 x 5 topology are given in Figures 6.16 and
6.17 respectively.

| NO [ N1 || N2 || N3 || N4 |
| N5 || N6 || N7 || N8 || N9 |
| N10 || N11 || N12 || N13 || N14 |
| N15 || N16 || N17 || N18 || N19 |

Table 6.9: 5 x 4 Grid of node placement for simulations

Moderate Noise High Noise

X
o
7
O
O
O
5
wn

0% 0%

GBPD-2 MDS-MAP  FP GBPD-2 MDS-MAP  FP

White Noise Level

. GBPD-2 Fingerprinting
Algorithm I MDS—MAP

Figure 6.11: GBPD-2: Grid based position discovery with two reference nodes, 5 x 4 topology
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Figure 6.12: GBPD-2: Reliability analysis of the results, 5 x 4 topology
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Figure 6.13: GBPD-3: Grid based position discovery with three reference nodes, 5 x 4 topology
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Figure 6.14: GBPD-3: Reliability analysis of the results, 5 X 4 topology
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Figure 6.15: GBPD-2: Grid based position discovery with two reference nodes, 10 x 5 topology
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Figure 6.16: GBPD-2: Reliability analysis of the results, 10 x 5 topology
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Figure 6.17: GBPD-3: Grid based position discovery with three reference nodes, 10 x 5 topology
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Figure 6.18: GBPD-3: Reliability analysis of the results, 10 x 5 topology

Results show that using such a low number of anchor points (reference nodes) for Finger-
printing is not sufficient. In certain cases, such as 5 x 4 topology, which is closer to a square
shape, MDS-MAP offers a satisfactory performance but fails to maintain stability when the
topology diverges from the square shape, such as for a 10 x 5 shaped topology. Also, it is more
sensitive to the noise level of the wireless medium than the GBPD approaches.

Here we need to mention a special case of MDS-MAP performance: if it was given three
anchor nodes at three different corners of a grid that has roughly a square shape, such as the
5 x 4 setting, it was able to produce 100 % correct results in moderate noise conditions. For
higher noise or lengthy topology settings, such as a 10 x 5 grid, the performance of MDS-MAP
did not improve by providing three anchor nodes at three different corners.

The reliability analysis has shown that the proposed method could successfully categorize
a vast majority of imperfect mappings (Verdict: FALSE) to “low” reliability level, whereas
almost 100 % of the results that were categorized in the “high” reliability level were the correct
mappings (Verdict: TRUE) in both channel conditions and both topologies.

In conclusion, the GBPD algorithms are more robust to the changes in the noise levels in the
environment and they scale better than the alternative approaches. Even though the increased
noise levels did not immensely affect the success rates, it was visible that the results were less
often in the high reliability category.

6.2.6 Summary

In this part we investigated solutions for discovering relative two-dimensional positions of multi-
channel wireless sensor nodes in equidistant 2-D grid settings. The proposed systems require
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the nodes’ communication radio interfaces to support multiple channels and the initial position
information of two or three nodes.

It has been shown that, by combining frequency diversity with statistical reasoning, discov-
ery of relative positions of WSN nodes is possible with high precision in dense two-dimensional
equidistant deployments. Based on the findings in the previous chapters, we developed a simu-
lation to reflect the behavior of an indoor medium and we have shown that the suggested system
outperforms MDS-MAP and Fingerprinting algorithms. Finally, we assessed the results of the
grid building algorithms for their reliabilities (high, medium or low), which can hint to the user
whether a particular measurement cycle needs to be repeated.

6.3 Chapter Summary and Conclusions

This chapter focused on discovering relative node positions on two-dimensional settings for
densely deployed indoor scenarios of WSNs. The first technique that we introduced is an exten-
sion to the Probabilistic Node Sequence Discovery (PNSD) algorithm for the 2-D grid settings,
where the distances between the node pairs were adequately different on the horizontal dimen-
sion than on the vertical dimension.

The second system that we proposed is a more generalized case, in which the nodes are
considered to be positioned on an equidistant 2-D grid setting, in which the adjacent pairs of
nodes has similar distances to each other on both vertical and horizontal dimensions.

These proposed techniques were verified using a simulation model that reflected crowded
indoor office conditions. The proposed techniques were compared to the commonly accepted
position discovery methods; MDS-MAP and Fingerprinting. Our algorithms demonstrated both
better success in correctly identifying the node positions and also more stability over changing
channel and topology conditions. In both cases, the proposed reliability computation technique
allowed us to classify our position discovery results in one of the high, medium or low categories.
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Conclusions

Humans spend most of their time indoors. We interact with other humans, as well as objects
inside buildings. The objects that we use indoors are often not placed randomly, but in an
orderly fashion, if they are needed to be obtained quickly or if their positions are important
information. There is an upward trend in enhancing the physical objects with Wireless Sensor
Network and Internet of Things systems by providing them communicational capabilities and
we can use such enhancements also for recovering the locations of the objects. There are cases,
where the locations of these objects fit roughly into regular grid settings. Such grid settings can
be single-dimensional in a linear form, such as along a corridor, or they can be two-dimensional,
such as rooms in hospitals or racks in warehouses.

Unavailability of GPS signals indoors and added costs of deploying indoor positioning in-
frastructure motivated us to utilize available Received Signal Strength (RSS) information that
is provided by most common radio chips during the communication packet exchange. In the
literature, it is widely argued that RSS is not a good indicator of distance due to the instability of
the wireless medium, multipath and other wireless interference, which we also confirmed in this
work. We have, however, shown that mapping nodes of a low-power wireless sensor network to
their potential positions in a regular grid can be done without calculating the geographical z, y
coordinates of the nodes, but such a mapping can be achieved through available RSS data, by
extracting the closeness information between the pairs of nodes in the network. We have also
discussed why traditional position discovery techniques that compute geographical coordinates
as the node positions are not usable in crowded indoor settings in Section 3.2.

This work proposes methods for discovering positions of the nodes relatively to each other
in a densely deployed WSN, by leveraging the frequency diversity in radio communications and
statistical reasoning. Unlike many range-free position discovery systems, we do not require a
sparse deployment of the nodes in the network. Each node is allowed, but not required, to exist
within the transmission range of any other node.

The position discovery systems that are proposed in this work produce a mapping between
a set of N nodes and a set of N positions in grid shape. For measuring their performances,
a binary metric is used: success of fail. Success in the results means that N nodes could be
mapped into N positions without any error. Fail in the results means that the assignment of
nodes to positions was not perfectly correct.

119



CHAPTER 7. CONCLUSIONS

First, we developed mechanisms for detecting physical closeness of nodes to each other
by leveraging frequency diversity. Using the closeness indication, techniques for matching the
nodes to their potential positions were developed.

We have validated the suggested algorithms and techniques using real-world experiments
and simulations. The real-world experiments were done in a crowded indoor office environment.
Different floors and sides of the experimentation building were used for achieving more diverse
conditions. The fact that this environment was a university building, where wireless research was
in focus, made the wireless medium even more challenging. In these real-world experiments,
the proposed algorithms could achieve successful discovery of relative node positions in large
number of repetitions at a higher rate than the competing mechanisms. These results were
supported by simulations, which represented different node placement and channel conditions.

Under realistic conditions, full success of a position discovery algorithm can never be guar-
anteed due to the unpredictable nature of wireless channel conditions. Therefore, the reliability
assessment systems were developed as an added quality metric and the results were assigned to
predefined high, medium and low reliability categories. The results that were assigned to the
high reliability category were correct for more than 99 % of the time. The results that were
assigned to the medium reliability were correct for most of the time and the majority of the
unsuccessful results were assigned to the [ow reliability category. This way a user can decide
whether the result of the position discovery system should be accepted, or if the measurements
need to be repeated until a result of category high is achieved. Within the scope of this work,
we did not analyze limitations on inter-node distances. Results of such an analysis would very
much depend on the measurement medium (building) and the measurement hardware. Instead
of such an analysis on distance and environmental limitations, we have developed the reliability
analysis system and we let the users determine their own limitations based on their hardware
and environment. Nevertheless, it is worth saying that, in our real-world experiments and live
demonstrations we have achieved successful discovery of the nodes in a linear setting for the
inter-node distances as small as 50 cm and higher.

7.1 Contributions
In the following, an outline of the major contributions of this thesis is given:

e [t has been confirmed that some very small displacement of the transmitter antenna can
have a significant impact on the multipath. A receiver node can measure noticeably dif-
ferent RSS values on the same channel as a result of such small changes in the antenna
position.

o It is shown that the multipath conditions that affect the wireless signals can also be al-
tered by changing the wavelength (frequency) of the signals. Such a change in the signal
frequency can cause a variation in the measured strength of the received signal for up to
20 dBm in our observations.

e [t has been shown that using only a single or a few highest measured RSS values help
determining the closest receiver node to a sender node, by reducing the randomness in the
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impact of multipath.

e We have presented easy-to-implement iterative sequence discovery algorithms, which
leverage imprecise estimates of relative node closeness by using the proposed multichan-
nel RSS measurement technique.

e We have proposed a probability-tree-based method —Probabilistic Node Sequence Dis-
covery (PNSD)— for more precise detection of the node sequence at the cost of a higher
computational complexity. This method was improved by a quality assessment technique,
“reliability through reverse validation”, to classify the reliability of the results as high,
medium or low. Additionally, the speed of computations was improved by utilizing a
probability tree pruning technique.

e Based on the findings and the developed techniques for the node sequence discovery, two
techniques for recognition of relative node positions in a two-dimensional grid setting
were proposed. First technique is a minimum-knowledge discovery system that requires
only two reference nodes and the second technique is a more precise version that requires
three reference nodes. These techniques were also supported by reliability assessment
methods that are customized for them.

In summary, we have shown that relative node position discovery is possible with high pre-
cision in indoor environments without any preconfiguration and training phase. The proposed
systems require the nodes to be deployed on a regular-grid-like setting. Only the position infor-
mation from one or few of the nodes in the network is needed as a starting point. The rest of
the discovery is performed with the help of the RSS information, which is often available in the
regular communication of the nodes in a network. Frequency diversity substantially increases
the chances of successful relative position discovery in these settings.

The results that are presented throughout this study are derived from more than 161 million
separate peer-to-peer measurements in an office environment. This dataset, which is made on-
line at [134], can be helpful for studying different fields of research, such as wireless channel
modeling. Considering that the measurement time alone was above 300 hours, reutilizing this
dataset can save a lot of precious research time. The developed software for performing mea-
surements is also made available online [135] and new measurements can be collected using
compatible hardware platforms, independent of the testbed.

7.2 Future Work

Progressive advancements in the algorithms and approaches that are developed during this work
indicate potentials for further optimizations. For example, a cluster analysis algorithm can be
used to create groups of nodes according to the estimates of relative closeness. These clusters
can then internally be processed for discovering the relative positions of their nodes locally,
and later the clusters can be chained to each other for generating a global view. Dividing the
nodes into clusters based on physical proximity can increase the chances of a successful position
discovery and decrease the speed of computations.
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Another future topic can be detecting the bad channel conditions during the process of col-
lecting RSS data and hence abruptly interrupting the position discovery system to save energy
until better channel conditions are detected.

In the scope of this thesis unoccupied cells in the grids were assumed inexistent, but such
cases can exist. An extension on gap detection can enable the support for more kinds of appli-
cations, in which the number of the nodes are less than the number of their potential positions.

The systems that are proposed throughout this work start with imprecise views of closeness
between the reference nodes and the other nodes. Then the mapping of the nodes are performed
in a one-by-one fashion. A genetic algorithm can help achieving the final mapping faster by
starting from an imprecise global view and then it can mutate the current mapping into a better
one. Such a technique can integrate two-way measurements from each pair of nodes and it can
converge faster into a state, in which the mapping of nodes cannot be improved with further
mutations.

Finally, the system can be expanded for supporting three-dimensional settings, which may
require knowledge of extra reference nodes.
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Appendix A

Observations and Raw Values of Single-channel RSS measurements

This Appendix contains the observations of single-channel RSS measurements. For each set of
measurements, top figures show the probability density distributions! of the raw RSS values,
which are shown in the bottom figures. The tagged data points are the relevant values for using
in the sub-hypotheses in Chapter 4.
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Figure 8.1: 100 cm apart nodes; reference node Radio Tx Power: 0 dBm

"Here it should be noted that a probability cannot be greater than 1. However some plots show values greater than
one, it is due to not having enough variation in the data to generate a probability density distribution. The area under
the probability density lines always add up to 1.
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Figure 8.3: 100 cm apart nodes; reference node Radio Tx Power: -10 dBm
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Probability Density Function. Distance: 100 apart at LoS , Tx Power: -25 dom

(=0

20.20- ' ;
w 1
015 I
'(; ' Receiver
= Node 1
F 010 Node 2
8
S 0.05-
o

0.00

RSS

-40

_504
0 -60 Receiver
N — Node 1
T —Node 2

-80

-90 N A M ]

0 100 200 300 400 500 600 700 800 900 1000

Sample No

Figure 8.5: 100 cm apart nodes; reference node Radio Tx Power: -25 dBm
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Probability Density Function. Distance: 200 apart at LoS , Tx Power: 0 dom
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Probability Density Function. Distance: 80 apart at NLoS , Tx Power: -5 dbm

P
210-
[0}
Ee] Receiver
2 [|Node 1
3 s5- [JNode 2
©
o)
o
o 0 [M2—02]_[Uo}—{u2+02
-50 -48 -46 -44
RSS
-40- N R N
50 JV = e Y i A Aoy I AT
AN -60- [ol+0! Receiver
2 — Node 1
T —Node 2
_804
-904
0 100 200 300 400 500 600 700 800 900 1000
Sample No
Figure 8.12: 80 cm apart nodes; reference node Radio Tx Power: -5 dBm, NLoS
Probability Density Function. Distance: 80 apart at NLoS , Tx Power: -10 dom
>08
2
& 0.6
© (W1+ 01 Receiver
f 0.4 [_INode 1
a [CINode 2
3
go2
o
0.0 ;
-58 -44
-404
o -60- Receiver
o0 — Node 1
o -70- — Node 2
-804
-904
0 100 200 300 400 500 600 700 800 900 1000

Sample No

Figure 8.13: 80 cm apart nodes; reference node Radio Tx Power: -10 dBm, NLoS

129




APPENDIX A

Probability Density Function. Distance: 80 apart at NLoS , Tx Power: -15 dbm
>\0'6‘ > Wy —IO1 Wy *I'01
[ :
® 0.4~ :
© ! Receiver
2 [|Node 1
= Node 2
Soz2- O
Q0
[
o
0.0
RSS
_404
_504
0 -60- ] : G : ﬁ ; t t; :ﬁd E:d:;mﬁ :;‘ Receiver
n — Node 1
T .0 o — Node 2
-804
-904
0 100 200 300 400 500 600 700 800 900 1000
Sample No
Figure 8.14: 80 cm apart nodes; reference node Radio Tx Power: -15 dBm, NLoS
Probability Density Function. Distance: 80 apart at NLoS , Tx Power: -25 dbm
220
‘@
G 15
o Receiver
51 0- [ INode 1
=1 [CINode 2
©
805
o
0.0 . .
-66 -64
RSS
o
-504
N -60- AT e it s ECEIVE
n — Node 1
@C g s o v m—rr—wur—nn~——|  — Node 2
-804
-904
0 100 200 300 400 500 600 700 800 900 1000
Sample No

Figure 8.15: 80 cm apart nodes; reference node Radio Tx Power: -25 dBm, NLoS

130




OBSERVATIONS AND RAW VALUES OF SINGLE-CHANNEL RSS MEASUREMENTS
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Probability Density Function. Distance: 160 apart at NLoS , Tx Power: -10 dbm

>15
B
o
T 1.01 Receiver
E [ INode 1
o [INode 2
@ 0.
o]
o
o

0.0 . .

-60 -58 -52
RSS
-40
_504
WA me——— [T 1 1 . TR P S N S——
0N -60 Receiver
— Node 1

T .0 —Node 2

-804

-904

0 100 200 300 400 500 600 700 800 900 1000

Sample No
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Probability Density Function. Distance: 160 apart at NLoS , Tx Power: -25 dbm
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Figure 8.20: 160 cm apart nodes; reference node Radio Tx Power: -25 dBm, NLoS

Table 8.1: Line Of Sight, dS=100, dN=50

Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.05 Correct Sub-Hypothesis 1 1 0.09 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 0.98 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 0.96 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 0.99 Correct
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 2 0.02 Incorrect Sub-Hypothesis 1 1 0.18 Correct
Sub-Hypothesis 2 2 0.69 Incorrect Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 2 0.87 Incorrect Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 2 0.71 Incorrect Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 2 0.90 Incorrect Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm

Sub-Hypotheses: | Decision | Trust Level | Result

Sub-Hypothesis 1 1 0.20 Correct

Sub-Hypothesis 2 1 1.00 Correct

Sub-Hypothesis 3 1 1.00 Correct

Sub-Hypothesis 4 1 1.00 Correct

Sub-Hypothesis 5 1 1.00 Correct
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Table 8.2: Line Of Sight, dS=200, dN=50

Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.01 Incorrect Sub-Hypothesis 1 2 0.02 Incorrect
Sub-Hypothesis 2 2 0.30 Incorrect Sub-Hypothesis 2 2 0.97 Incorrect
Sub-Hypothesis 3 2 0.18 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 0.33 Incorrect Sub-Hypothesis 4 2 0.96 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.03 Incorrect Sub-Hypothesis 1 2 0.03 Incorrect
Sub-Hypothesis 2 2 0.97 Incorrect Sub-Hypothesis 2 2 0.96 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect Sub-Hypothesis 4 2 0.99 Incorrect
Sub-Hypothesis 5 2 0.97 Incorrect Sub-Hypothesis 5 2 0.99 Incorrect
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.04 Incorrect
Sub-Hypothesis 2 2 0.97 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 0.98 Incorrect
Sub-Hypothesis 5 2 0.99 Incorrect
Table 8.3: Line Of Sight, dS=200, dN=100
Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 1 0.02 Correct Sub-Hypothesis 1 2 0.00 Incorrect
Sub-Hypothesis 2 1 0.99 Correct Sub-Hypothesis 2 1 0.15 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 2 0.25 Incorrect
Sub-Hypothesis 4 1 0.98 Correct Sub-Hypothesis 4 1 0.06 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 0.70 Correct
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.02 Correct Sub-Hypothesis 1 1 0.00 Correct
Sub-Hypothesis 2 1 0.83 Correct Sub-Hypothesis 2 1 0.28 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 0.18 Correct
Sub-Hypothesis 4 1 0.82 Correct Sub-Hypothesis 4 1 0.24 Correct
Sub-Hypothesis 5 1 0.95 Correct Sub-Hypothesis 5 1 0.37 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 1 0.00 Correct
Sub-Hypothesis 2 1 0.20 Correct
Sub-Hypothesis 3 1 0.17 Correct
Sub-Hypothesis 4 1 0.22 Correct
Sub-Hypothesis 5 2 0.12 Incorrect
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Table 8.4: Line Of Sight, dS=400, dN=50

Tx: 0 dBm Tx: -5dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.12 Correct Sub-Hypothesis 1 1 0.08 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.11 Correct Sub-Hypothesis 1 1 0.13 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.09 Correct
Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct
Table 8.5: Line Of Sight, dS=400, dN=100
Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.18 Incorrect Sub-Hypothesis 1 2 0.09 Incorrect
Sub-Hypothesis 2 2 1.00 Incorrect Sub-Hypothesis 2 2 0.99 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect Sub-Hypothesis 4 2 0.99 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -10 dBm Tx: -15dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.05 Incorrect Sub-Hypothesis 1 2 0.24 Incorrect
Sub-Hypothesis 2 2 1.00 Incorrect Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.13 Incorrect
Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect
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Table 8.6: Line Of Sight, dS=500, dN=50

Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.06 Incorrect Sub-Hypothesis 1 2 0.03 Incorrect
Sub-Hypothesis 2 2 0.97 Incorrect Sub-Hypothesis 2 2 0.91 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 0.65 Incorrect
Sub-Hypothesis 4 2 0.98 Incorrect Sub-Hypothesis 4 2 0.92 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 0.99 Incorrect
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.02 Incorrect Sub-Hypothesis 1 2 0.03 Incorrect
Sub-Hypothesis 2 2 0.38 Incorrect Sub-Hypothesis 2 2 0.94 Incorrect
Sub-Hypothesis 3 2 0.48 Incorrect Sub-Hypothesis 3 2 0.96 Incorrect
Sub-Hypothesis 4 2 0.39 Incorrect Sub-Hypothesis 4 2 0.92 Incorrect
Sub-Hypothesis 5 1 0.17 Correct Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.03 Incorrect
Sub-Hypothesis 2 2 0.54 Incorrect
Sub-Hypothesis 3 2 0.66 Incorrect
Sub-Hypothesis 4 2 0.55 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect
Table 8.7: Line Of Sight, dS=500, dN=100
Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.06 Incorrect Sub-Hypothesis 1 2 0.08 Incorrect
Sub-Hypothesis 2 2 1.00 Incorrect Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.11 Incorrect Sub-Hypothesis 1 2 0.13 Incorrect
Sub-Hypothesis 2 2 1.00 Incorrect Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.08 Incorrect
Sub-Hypothesis 2 2 0.97 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect
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Table 8.8: Non Line Of Sight, dS=160, dN=80

Tx: 0 dBm Tx: -5dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.06 Incorrect Sub-Hypothesis 1 2 0.23 Incorrect
Sub-Hypothesis 2 2 0.65 Incorrect Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 0.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 0.65 Incorrect Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 0.49 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.28 Incorrect Sub-Hypothesis 1 2 0.30 Incorrect
Sub-Hypothesis 2 2 1.00 Incorrect Sub-Hypothesis 2 2 1.00 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 1.00 Incorrect Sub-Hypothesis 4 2 1.00 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect Sub-Hypothesis 5 2 1.00 Incorrect
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level Result
Sub-Hypothesis 1 2 0.08 Incorrect
Sub-Hypothesis 2 2 0.99 Incorrect
Sub-Hypothesis 3 2 1.00 Incorrect
Sub-Hypothesis 4 2 0.97 Incorrect
Sub-Hypothesis 5 2 1.00 Incorrect
Table 8.9: Non Line Of Sight, dS=160, dN=160
Tx: 0 dBm Tx: -5dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.01 Correct Sub-Hypothesis 1 1 0.03 Correct
Sub-Hypothesis 2 1 0.14 Correct Sub-Hypothesis 2 1 0.70 Correct
Sub-Hypothesis 3 1 0.38 Correct Sub-Hypothesis 3 1 0.52 Correct
Sub-Hypothesis 4 1 0.07 Correct Sub-Hypothesis 4 1 0.71 Correct
Sub-Hypothesis 5 1 0.87 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -10 dBm Tx: -15dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 2 0.03 Incorrect Sub-Hypothesis 1 1 0.07 Correct
Sub-Hypothesis 2 2 0.53 Incorrect Sub-Hypothesis 2 1 0.94 Correct
Sub-Hypothesis 3 2 0.11 Incorrect Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 2 0.64 Incorrect Sub-Hypothesis 4 1 0.90 Correct
Sub-Hypothesis 6 1 0.06 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.04 Correct
Sub-Hypothesis 2 1 0.59 Correct
Sub-Hypothesis 3 1 0.68 Correct
Sub-Hypothesis 4 1 0.56 Correct
Sub-Hypothesis 5 1 1.00 Correct
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Table 8.10: Non Line Of Sight, dS=240, dN=80

Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.03 Correct Sub-Hypothesis 1 1 0.10 Correct
Sub-Hypothesis 2 1 0.17 Correct Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 0.26 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 0.06 Correct Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 2 0.65 Incorrect Sub-Hypothesis 5 1 1.00 Correct
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.11 Correct Sub-Hypothesis 1 1 0.12 Correct
Sub-Hypothesis 2 1 1.00 Correct Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.11 Correct
Sub-Hypothesis 2 1 1.00 Correct
Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct
Table 8.11: Non Line Of Sight, dS=240, dN=160
Tx: 0 dBm Tx: -5 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.08 Correct Sub-Hypothesis 1 1 0.08 Correct
Sub-Hypothesis 2 1 0.96 Correct Sub-Hypothesis 2 1 0.99 Correct
Sub-Hypothesis 3 1 1.00 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 0.98 Correct Sub-Hypothesis 4 1 1.00 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -10 dBm Tx: -15 dBm
Sub-Hypotheses: | Decision | Trust Level | Result Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.03 Correct Sub-Hypothesis 1 1 0.06 Correct
Sub-Hypothesis 2 1 0.73 Correct Sub-Hypothesis 2 1 0.94 Correct
Sub-Hypothesis 3 1 0.71 Correct Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 0.75 Correct Sub-Hypothesis 4 1 0.98 Correct
Sub-Hypothesis 5 1 1.00 Correct Sub-Hypothesis 5 1 1.00 Correct
Tx: -25 dBm
Sub-Hypotheses: | Decision | Trust Level | Result
Sub-Hypothesis 1 1 0.04 Correct
Sub-Hypothesis 2 1 0.98 Correct
Sub-Hypothesis 3 1 1.00 Correct
Sub-Hypothesis 4 1 0.98 Correct
Sub-Hypothesis 5 1 1.00 Correct
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Raw Multichannel RSS Measurements

Here two sample datasets from raw measurements are provided. First dataset is from a measure-
ment that could be successfully identified by the PNSD algorithm. The second dataset is from a
measurement that was not perfectly identified.

Each plot represents the RSS values from one sender node and two receiver nodes that are
closest to it, starting from one end of a sequence. The node with A (red color top on the legend)
is the closer node.
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Figure 9.21: Raw measurement from a successful sequence identification. Nodes 1 & 2 in the

sequence
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Figure 9.22: Raw measurement from a successful sequence identification. Nodes 3 & 4 in the

sequence

141




APPENDIX B

jove, D

Received Signal Strength

PN

—B0- s 4 oa

06 10 20

channel: 11

channel: 15

channel: 19

A A AMMA AMMAAA A A AMMAAAAMAAAMML

channel: 23

Positioning result: Correct

A a4
LIV WOV

30

400

Sender: 5

channel: 12

POVWORCRWIC RVCR KR VRN

channel: 13

consttoesseescscnsscnc’s ooce o0 con 0

channel: 14

PO R WE

, o, 0%, 00,
o ‘soe, ossens oo 00® as?s

channel: 16 channel: 17 channel: 18
AL A A4 M 4 a4
MM A MAL ass om
PRV PWCVCRC WLV
PR AT R P .
casencns 00 00,0000, 0 0000, %000 00000,
channel: 20 channel: 21 channel: 22
ALAAA AAAMAA AMdAMAMAAL Mar
M asamaan A4 B
040 00" 000t ssessesesonsessasense, o 0

channel: 24
AAAM AMAMAAMAA A MMk AM a4
MMM 4 4 AM A 4 4 ma

e000000e%e%0000®000%e 00%000 %% 000"

10 20 30

400

channel: 25
AAAA MMk AMAAAAA AL A A

A 4 oa N PPN

'y

esescccess soscesenee sesesssscsesesense

10 20 30

Packet Index

400

channel: 26

10 20 30 4o

Receiver
-6
-7

channel: 11

4

Received Signal Strength

0 10 20

channel: 15

channel: 19

30

Positioning result: Correct

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAAAAAL
sesesssessssssssssesssosssssssssensesess

s A Aa
A A AMAAAAAALL A AA A AMA AA Ak A4
Py

channel: 23
S b e e b,

400

Sender: 6

channel: 12

AMAAAAA AMAL, | AAAAAAAAA AAAAA AMAAA A

channel: 16

a “ WIS
A AA A M oa aaa

channel: 20

s A,
At At s St

channel: 24

10 20 30

400

channel: 13

AMMAA A MM AMMMA MM MMM A A AM &

PR N

A Hfua At st

s

channel: 17

A A A m
AMMAAL AMAAAAAAAAA AAAA AAAA AMAA  AdAAA

e e

channel: 21

Ay A, ALALA AL L AL Ak a0

e%00e% s a0 IO0 2000000 0 00 000 00

channel: 25

10 20 30

Packet Index

400

channel: 14

Aud,

channel: 18

b e et NessseSess BN

channel: 22
A At s ua 4
LA, g A4 am

channel: 26

10 20 30 40

Receiver
.7
-8

Figure 9.23: Raw measurement from a successful sequence identification

sequence
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Figure 9.24: Raw measurement from a successful sequence identification. Nodes 7 & 8 in the

sequence
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Figure 9.25: Raw measurement from an unsuccessful sequence identification. Nodes 1 & 2 in
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Figure 9.28: Raw measurement from an unsuccessful sequence identification
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