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Zusammenfassung

In dieser Arbeit untersuchen wir geometrische Maße in zwei verschiedenen
Erweiterungen der Brunn-Minkowski-Theorie.

Der erste Teil dieser Arbeit befasst sich mit Problemen in der Lp-Brunn-
Minkowski-Theorie, die auf dem Konzept der p-Addition konvexer Körper ba-
siert, die zunächst von Firey für p ≥ 1 eingeführt und später von Lutwak et al.
für alle reellen p betrachtet wurde. Von besonderem Interesse ist das Zusammen-
spiel des Volumens und anderer Funktionale mit der p-Addition. Bedeutsame
offene Probleme in diesem Setting sind die Gültigkeit von Verallgemeinerungen
der berühmten Brunn-Minkowski-Ungleichung und der Minkowski-Ungleichung,
insbesondere für 0 ≤ p < 1, da die Ungleichungen für kleinere p stärker werden.
Die Verallgemeinerung der Minkowski-Ungleichung auf p = 0 wird als loga-
rithmische Minkowski-Ungleichung bezeichnet, die wir hier für vereinzelte poly-
topale Fälle beweisen werden. Das Studium des Kegelvolumenmaßes konvexer
Körper ist ein weiteres zentrales Thema in der Lp-Brunn-Minkowski-Theorie,
das eine starke Verbindung zur logarithmischen Minkowski-Ungleichung auf-
weist. In diesem Zusammenhang stellen sich die grundlegenden Fragen nach
einer Charakterisierung dieser Maße und wann ein konvexer Körper durch sein
Kegelvolumenmaß eindeutig bestimmt ist. Letzteres ist für symmetrische konve-
xe Körper unbekannt, während das erstere Problem in diesem Fall gelöst wurde.
Die Schlüsseleigenschaft in der Lösung ist eine Konzentrationsgrenze eines gege-
benen Kegelvolumenmaßes eingeschränkt auf lineare Unterräume. Wir werden
eine Charakterisierung von Kegelvolumenmaßen von Trapezen herleiten und
neue Beispiele konvexer Körper mit nicht-eindeutigem Kegelvolumenmaß prä-
sentieren. Dabei werden wir diskutieren, wie das Vorhandensein einer Schranke
an die Konzentration auf Unterräumen die oben genannten Fragen beeinflusst.

Im zweiten Teil betrachten wir eine erst kürzlich entdeckte Familie geometri-
scher Maße, die in der dualen Brunn-Minkowski-Theorie vorkommt. Die soge-
nannten dualen Krümmungsmaße von konvexen Körpern fungieren als Gegen-
stücke zu Krümmungsmaßen in der klassischen Brunn-Minkowski-Theorie und
schließen das Kegelvolumenmaß als Sonderfall ein. Duale Krümmungsmaße ha-
ben in den letzten Jahren großes Interesse geweckt. Die Aufgabe, die Resultate,
die für Kegelvolumenmaße erzielt wurden, auf die allgemeineren dualen Krüm-
mungsmaße auszudehnen, erfordert neuartige Abschätzungen der Unterraum-
konzentration. Den Ideen von Kneser und Süss folgend, beweisen wir Varianten
der Brunn-Minkowski-Ungleichung unter gewissen Symmetrievoraussetzungen,
mit deren Hilfe wir scharfe Schranken an die Unterraumkonzentration für nahe-
zu alle dualen Krümmungsmaße symmetrischer konvexer Körper folgern.
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Abstract

In this work we study geometric measures in two different extensions of the
Brunn-Minkowski theory.

The first part of this thesis is concerned with problems in Lp Brunn-Minkowski
theory, that is based on the concept of p-addition of convex bodies, which was
first introduced by Firey for p ≥ 1 and later considered for all real p by Lutwak
et al. The interplay of the volume and other functionals with the p-addition
is of particular interest. Considerable open problems in this setting include
the validity of extensions of the celebrated Brunn-Minkowski inequality and
Minkowski’s inequality, particularly for 0 ≤ p < 1 as the inequalities become
stronger for smaller p. The generalization of Minkowski’s inequality to p = 0
is called logarithmic Minkowski inequality, which we will prove here for some
particular polytopal instances. The study of the cone-volume measure of con-
vex bodies is another central subject in Lp Brunn-Minkowski theory, which
exhibits a strong connection to the logarithmic Minkowski inequality. Funda-
mental questions in this context ask for a characterization of these measures and
when a convex body is uniquely determined by its cone-volume measure. The
latter is unknown even for symmetric convex bodies whereas the former prob-
lem was solved in this case. The key property in the solution is a concentration
bound of a given cone-volume measure restricted to linear subspaces. We will
establish a characterization of cone-volume measures of trapezoids and present
new examples of convex bodies with non-unique cone-volume measure. Thereby
we will discuss how the presence of a subspace concentration bound affects the
aforementioned questions.

In the second part we consider an only recently discovered family of geometric
measures arising in dual Brunn-Minkowski theory. The so-called dual curvature
measures of convex bodies act as counterparts of curvature measures in the
classical Brunn-Minkowski theory and include the cone-volume measure as a
special case. Dual curvature measures gained much interest in the last few
years. The task of extending the results obtained for cone-volume measures to
the more general dual curvature measures requires novel subspace concentration
inequalities. Following the ideas of Kneser and Süss we establish variants of
the Brunn-Minkowski inequality under some symmetry assumptions with the
aid of which we prove sharp subspace concentration bounds on nearly all dual
curvature measures of symmetric convex bodies.
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Introduction

The Brunn-Minkowski theory combines the concept of convex sets, which find
applications in many mathematical subfields due to their structural richness,
with the volume and other functionals. The foundation of this theory is the fa-
mous (and name-giving) Brunn-Minkowski inequality linking the volume func-
tional and the Minkowski addition of convex sets. It states that for two convex
bodies K,M in Euclidean n-space Rn and a parameter λ ∈ [0, 1]

vol((1 − λ)K + λM) 1
n ≥ (1 − λ) vol(K) 1

n + λ vol(M) 1
n .

An important aspect is the study of differentials of the volume and other func-
tionals with respect to Minkowski addition. Variational formulas for these func-
tionals exhibit a connection between certain measures and the convex body
under consideration. Those measures induced by convex bodies are called geo-
metric measures. One of the most well-known examples is the (classical) surface
area measure of a convex body K, that for a set U of unit outer normal vec-
tors measures the area of the part of boundary of K which is associated to U .
The understanding of geometric measures has been proved to be an important
ingredient for establishing sharp inequalities in convex geometric analysis. The
task of characterizing geometric measures, i.e., to find necessary and sufficient
conditions such that a given measure appears, for instance, as the surface area
measure of a convex body, is called Minkowski problem. Although Minkowski
problems have been worked on for decades, for many important geometric mea-
sures a full characterization is missing. There are two far-reaching extensions
of the classical Brunn-Minkowski theory, both arising basically by replacing the
classical Minkowski addition by another additive operation. The first one is
the p-addition introduced by Firey [30] for p ≥ 1 and extended by Lutwak [61,
62] to p < 1, which leads to the rich and emerging Lp Brunn-Minkowski the-
ory. Therein a central object is the cone-volume measure which stands out
due to its SL(n)-invariance, whereas most other geometric measures are only
SO(n)-invariant. The second extension, introduced by Lutwak [58], is called
dual Brunn-Minkowski theory and essentially emerges by replacing convex bod-
ies and support functions by star bodies and radial functions, respectively. The
word “dual” here refers to similarities of concepts in both theories rather than
duality in a strict mathematical sense. The geometric measures of interest in
dual Brunn-Minkowski theory are the dual curvature measures recently intro-
duced by Huang, Lutwak, Yang and Zhang [48]. These are the long missing
counterparts of curvature measures in classical Brunn-Minkowski theory and
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2 Introduction

VK(η) SK(η)
η

K

Figure 1: Surface area measure and cone-volume measure of a smooth convex
body

they have already been studied thoroughly since their discovery. This thesis
is mainly concerned with Minkowski problems regarding cone-volume measures
and dual curvature measures.

We will provide notions and definitions that will be used later on in Chapter 1.
In particular we will properly introduce the concept of area measures, including
the classical surface area measure

SK(η) = Hn−1(ν−1
K (η)),

where K ⊆ Rn is a convex body, η ⊆ Sn−1 a Borel set and Hn−1 the (n − 1)-
dimensional Hausdorff measure. Here Sn−1 denotes the unit sphere in Euclidean
n-space and νK denotes the Gauss map (see p. 7 for the definition). The cone-
volume measure of a convex body K ⊆ Rn with the origin in its interior is given
by

VK(η) = 1
n

∫︂
ν−1

K
(η)

⟨x,νK(x)⟩ dHn−1(x)

for every Borel set η ⊆ Sn−1. It is closely related to the classical surface area
measure (see Fig. 1). We will state the Minkowski problems associated to the
respective measures and present (partial) solutions to them.

Chapter 2 focuses on some problems in Lp Brunn-Minkowski theory that are
related to the cone-volume measure of convex bodies. The task of characterizing,
when a given measure is the cone-volume measure of a convex body, is also
known as the logarithmic Minkowski problem. Symmetric convex bodies are
the largest class this goal has been achieved for. It was proved in [19] that a
non-zero finite even Borel measure µ on Sn−1 is the cone-volume measure of a
symmetric convex body if and only if the subspace concentration inequality

µ(L ∩ Sn−1) ≤ dim(L)
n

µ(Sn−1)

is satisfied for every proper subspace L ⊆ Rn, and equality is attained for
some L, if and only if there is a subspace L′ complementary to L such that
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µ is concentrated on Sn−1 ∩ (L ∪ L′). In the general setting the gap between
known necessary and sufficient conditions is quite large. A little more is known
for the two-dimensional case. Here we will examine the cone-volume measure
of trapezoids explicitly to highlight the presence of conditions which are – in
contrast to the subspace concentration inequality – non-linear in terms of cone-
volumes. Moreover, we will discuss the question when a polygon is uniquely
determined by its cone-volume measure. This has been answered by Stancu [77]
for symmetric polygons, but for symmetric polytopes in higher dimensions it
is an open problem. Here we will present examples of non-symmetric polygons
with few vertices and non-unique cone-volume measure. In addition, the cone-
volume measure appears naturally in problems of Lp Brunn-Minkowski theory
aiming for results stronger than their counterpart in classical Brunn-Minkowski
theory. For two convex bodies K,M ⊆ Rn with the origin in their interiors their
log-combination with respect to λ ∈ [0, 1] is given by

(1 − λ)K +0 λM

=
{︁

x ∈ Rn : ⟨u,x⟩ ≤ hK(u)1−λhM (u)λ for all u ∈ Sn−1}︁ ,
where hK and hM denote the support functions of K and M , respectively. The
logarithmic Brunn-Minkowski inequality reads as

vol((1 − λ)K +0 λM) ≥ vol(K)1−λ vol(M)λ.
As a consequence of the inequality of arithmetic and geometric means one can
easily check that the logarithmic Brunn-Minkowski inequality, if it holds true,
is in fact stronger than the classical Brunn-Minkowski inequality. It was proved
(among other cases) for pairs of symmetric convex bodies in the plane in [18]
and if both K and M are unconditional convex bodies in arbitrary dimension
in [74]. It is conjectured that the logarithmic Brunn-Minkowski inequality holds
whenever K and M are symmetric. It was shown by Böröczky, Lutwak, Yang
and Zhang [18] that the logarithmic Brunn-Minkowski inequality is equivalent
to the logarithmic Minkowski inequality∫︂

Sn−1

log
(︃

hM (u)
hK(u)

)︃
dVK(u) ≥ vol(K)

n
log
(︃

vol(M)
vol(K)

)︃
in the sense that if one holds for all pairs of symmetric convex bodies K and
M , the other one follows. The logarithmic Minkowski inequality does not hold
for arbitrary pairs of convex bodies with the origin as an interior point. For
centered convex bodies, i.e., convex bodies whose centroid (or center of mass) is
the origin, there is no example known that violates the logarithmic Minkowski
inequality. Here we will verify the logarithmic Minkowski inequality for some
particular instances where one of the convex bodies is centered and the other
one is either a simplex or a parallelepiped. The presented results are based on
joint work with Martin Henk [43].

Chapter 3 revolves around Minkowski problems in dual Brunn-Minkowski
theory, namely regarding the dual curvature measures. For some q ∈ R and a
convex body K ⊆ Rn with the origin in its interior one may define the qth dual
curvature measure of K via˜︁Cq(K, η) = 1

n

∫︂
νK (η)−1

|x|q−n ⟨νK(x),x⟩ dHn−1(x)
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for every Borel set η ⊆ Sn−1. They not only play an important role in dual
Brunn-Minkowski theory, they also include well-known measures from classical
Brunn-Minkowski theory, e.g., the cone-volume measure in case q = n. Regard-
ing the dual Minkowski problem, i.e., finding necessary and sufficient conditions
on dual curvature measures, much progress has been made during the past cou-
ple of years. In [48] it was shown that, given q ∈ (0, n) and a non-zero finite
even Borel measure µ on the sphere, a certain subspace concentration inequality
is sufficent for the existence of a symmetric convex body K with µ = ˜︁Cq(K, ·).
In this work we will establish tight subspace concentration bounds of dual cur-
vature measures of symmetric convex bodies for the parameter ranges q ∈ (0, n)
and q ∈ [n + 1,∞). The former supplements a result obtained by Böröczky,
Lutwak, Yang, Zhang and Zhao [17] which lead to a solution of the even dual
Minkowski problem for parameters q ∈ (0, n): A non-zero finite even Borel mea-
sure µ on Sn−1 is the qth dual curvature measure of a symmetric convex body
if and only if the subspace concentration inequality

µ(L ∩ Sn−1) < min
{︃

dim(L)
q

, 1
}︃
µ(Sn−1)

is satisfied for every proper subspace L ⊆ Rn. Our proofs of the necessity of the
subspace concentration inequality rely heavily on the symmetry of the involved
convex bodies and variants of the Brunn-Minkowski inequality where the volume
functional is replaced by a measure having a power of the Euclidean norm as
Lebesgue density function. Moreover, we will discuss which of these inequalities
can be easily extended to other norms. The remaining range q ∈ (n, n + 1)
in the symmetric setting is completely open as neither necessary nor sufficient
conditions are known at this moment. At least in the planar case n = 2 we also
provide tight subspace concentration bounds by extending the abovementioned
inequalities. The results presented in this chapter are based on joint works with
Károly Böröczky, Jr., and Martin Henk [14, 42].



1 Preliminaries

The aim of this chapter is to provide the essential definitions and concepts used
throughout the thesis. We recommend the books by Gardner [32], Gruber [36]
and Schneider [75] as excellent references on convex geometry.

Foundations

We consider the Euclidean n-space Rn = {x = (x1, . . . , xn)T : x1, . . . , xn ∈ R}
equipped with standard inner product ⟨x,y⟩ =

∑︁n
i=1 xiyi for x,y ∈ Rn. The

Euclidean norm will be denoted by |x| =
√︁

⟨x,x⟩ for x ∈ Rn and if x ̸= 0 its
normalization is x = x

|x| . We write e1, . . . , en for the standard basis vectors in
Rn. For any setX ⊆ Rn we write int(X) and ∂X for its interior and its boundary
points, respectively. We denote by Bn the n-dimensional Euclidean unit ball,
i.e., Bn = {x ∈ Rn : |x| ≤ 1}, and by Sn−1 = ∂Bn = {x ∈ Rn : |x| = 1} its
boundary.

For a linear subspace L ⊆ Rn, L⊥ is its orthogonal complement and the
orthogonal projection onto L is denoted by ·|L. For a non-empty set X ⊆ Rn
we define its linear hull by

lin(X) =
{︄

m∑︂
i=1

λixi : m ∈ N, λi ∈ R,xi ∈ X for i = 1, . . . ,m
}︄
,

its affine hull by

aff(X) =
{︄

m∑︂
i=1

λixi : m ∈ N, λi ∈ R,xi ∈ X for i = 1, . . . ,m,
m∑︂
i=1

λi = 1
}︄
,

its positive hull

pos(X) =
{︄

m∑︂
i=1

λixi : m ∈ N, λi ≥ 0,xi ∈ X for i = 1, . . . ,m
}︄

and its convex hull by

5



6 1 Preliminaries

conv(X)

=
{︄

m∑︂
i=1

λixi : m ∈ N, λi ≥ 0,xi ∈ X for i = 1, . . . ,m,
m∑︂
i=1

λi = 1
}︄
.

The convex hull conv{x,y} of two points x,y ∈ Rn will be abbreviated by
[x,y]. A set is called convex if it equals its convex hull. A set of points
X ⊆ Rn is called affinely independent if aff(X \ {x}) ̸= aff(X) for every
x ∈ X. Its dimension is the maximal number of affinely independent points
contained in it minus 1 and will be denoted by dim(X). For convenience we
also define dim(∅) = −1. The relative interior of a set X is the interior of X
with respect to its affine hull.

Convex bodies
A convex and compact set with non-empty interior is called a convex body.
We write Kn for the set of all convex bodies in Rn and Kn

o for convex bodies
containing the origin in the interior, i.e., Kn

o = {K ∈ Kn : 0 ∈ intK}.

As usual, Minkowski addition of subsets of Rn and multiplication with
scalars are defined pointwise so that for X,Y ⊆ Rn and α, β ∈ R we write

αX + βY = {αx + βy : x ∈ X,y ∈ Y }. (1.1)

In case X,Y ∈ Kn and α, β ≥ 0 or 0 ≤ β = 1−α ≤ 1, we also speak of Minkowski
combination and convex combination between convex bodies, respectively. For
A ⊆ R we also define A ·X = {αx : α ∈ A,x ∈ X}.

The normalized k-dimensional Hausdorff measure will be denoted by Hk and
instead of it we will sometimes write volk for the volume or just vol if the dimen-
sion is apparent from the context. The k-dimensional Hausdorff measure par-
ticularly coincides with the k-dimensional Lebesgue measure in affine subspaces
and k-dimensional spherical Lebesgue measure on subspheres. In integrals we
will often abbreviate dHn(x) by dx, when integrating with respect to Hn, and
dHn−1(u) by du, when integrating with respect to Hn−1. According to this,
the centroid c(X) of a Lebesgue measurable set X ⊆ Rn with positive volume
is defined by

c(X) = 1
vol(X)

∫︂
X

x dx.

If c(X) = 0, the set X is called centered. In addition, we will denote the set of
centered convex bodies by Kn

c and the subclass of symmetric convex bodies by
Kn
s , i.e., convex bodies K with K = −K. An even stronger notion of symmetry

is held by unconditional convex bodies. These are symmetric about every
coordinate hyperplane, i.e., if K ∈ Kn is an unconditional convex body, then
(x1, . . . , xn)T ∈ K implies (±x1, . . . ,±xn)T ∈ K.

By the well-known Brunn-Minkowski inequality we know that the nth root
of the volume of a Minkowski combination is a concave function.
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u

HK(u)

hK(u)
K

Figure 1.1: Smooth convex body and supporting hyperplane

Theorem 1.1 (Brunn-Minkowski inequality, see, e.g., [75, Thm. 7.1.1]). If
K,L ∈ Kn and 0 < λ < 1, then

vol((1 − λ)K + λL) 1
n ≥ (1 − λ) vol(K) 1

n + λ vol(L) 1
n (1.2)

and equality holds if and only if K and L are homothetic, i.e., they are equal up
to translation and scaling.

For fixed a ∈ Rn \ {0} and α ∈ R the hyperplane given by the equation
⟨a,x⟩ = α will be denoted by H(a, α). We will sometimes use a⊥ instead
of H(a, 0). We write H−(a, α) and H+(a, α) for the halfspaces defined by
⟨a,x⟩ ≤ α and ⟨a,x⟩ ≥ α, respectively. For a convex and compact set K ⊆ Rn
the support function hK : Rn → R is defined by (see Fig. 1.1)

hK(x) = max
y∈K

⟨x,y⟩ .

It is worth noting that convex bodies are uniquely determined by their support
functions since for given K ∈ Kn the support function hK is the pointwise
minimal function with

K = {x ∈ Rn : ⟨u,x⟩ ≤ hK(u) for all u ∈ Sn−1}.

On the other hand, each convex, positively 1-homogeneous function Rn → R is
the support function of a convex and compact set. A boundary point x ∈ ∂K
is said to have a (not necessarily unique) unit outer normal vector u ∈ Sn−1

if ⟨u,x⟩ = hK(u), i.e., x ∈ H(u, hK(u)). The corresponding supporting hy-
perplane H(u, hK(u)) will be denoted by HK(u). We write ∂′K for the set of
boundary points of K with unique outer normal vector and define the Gauss
map νK : ∂′K → Sn−1 such that νK(x) is the unique unit outer normal vector
of x ∈ ∂′K. Almost every boundary point of convex body has a unique outer
normal vector in the sense that (∂K) \ (∂′K) has (n− 1)-dimensional Hausdorff
measure 0 (see, e.g., [75, Thm. 2.2.5]). If ∂K = ∂′K, K is called smooth.
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Polytopes
A polytope is the convex hull of finitely many points. If a polytope is k-
dimensional, we also call it k-polytope. Fulldimensional polytopes are also
convex bodies and we will use the symbols Pn,Pn

c ,Pn
s ,Pn

o ⊆ Kn to denote
the sets of n-polytopes, centered n-polytopes, symmetric n-polytopes and poly-
topes containing the origin in the interior, respectively. Polytopes in the plane
R2 will also be called polygons. Each polytope can be written as the convex
hull of a unique minimal set of points, called vertices. In addition to that,
it is well known (c.f., e.g., [75, Sect. 2.4]) that a polytope can be equivalently
described as a bounded intersection of finitely many halfspaces, i.e., a bounded
set of the form

{x ∈ Rn : Ax ≤ b},
where m ∈ N, A ∈ Rm×n and b ∈ Rm. For an n-polytope P ∈ Pn we say
that u ∈ Sn−1 is a unit outer normal vector of P if voln−1(P ∩HP (u)) > 0.
The outer normal vectors of P are precisely the irredundant row vectors of A
scaled to unit length. In particular, there are only finitely many of them. The
set of all unit outer normal vectors of a polytope P is denoted by U(P ). For a
given u ∈ U(P ) we associate a set of points in the boundary of P arising from
the intersection of P with the supporting hyperplane HP (u). This point set
F (P,u) = P ∩HP (u) is called facet of P normal to u. Moreover, a given finite
set U ⊆ Sn−1 appears as the set of outer normal vectors of some fulldimensional
polytope in Rn if and only if posU = Rn, i.e., we say that U is not concentrated
on a closed hemisphere.

There are two notable instances of polytopes in this work. A k-simplex or
just simplex is the convex hull of k + 1 affinely independent points. Volume
and centroid of a simplex can be easily computed from their vertices, i.e., if
an n-simplex is given as S = conv{v1, . . . , vn+1} for some affinely independent
points v1, . . . , vn+1 ∈ Rn, then

vol(S) = |det(vn+1 − v1,vn+1 − v2, . . . , vn+1 − vn)| ,

c(S) = 1
n+ 1

n+1∑︂
i=1

vi.

Moreover, n-simplices are the only polytopes in Rn having exactly n+ 1 outer
normal vectors which is also minimal among all n-polytopes. Restricting to
symmetric polytopes Pn

s the latter role is taken by linear images of the cube
[−1, 1]n. These are called parallelepipeds and are precisely the polytopes
given as solution sets of systems of the form

|⟨ui,x⟩| ≤ hi, i = 1, . . . , n,

for some linearly independent u1, . . . ,un ∈ Sn−1 and h1, . . . , hn > 0. In this
case the volume of the parallelepiped can be computed by

2n
∏︁n
i=1 hi

|det(u1, . . . ,un)| (1.3)

Both simplices and parallelepipeds often appear as extremal cases of problems
in convex geometry. Three-dimensionals instances of a simplex and a paral-
lelepiped are depicted in Figure 1.2.
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Figure 1.2: 3-simplex and 3-dimensional parallelepiped

Geometric measures
The combination of the volume functional and Minkowski addition is fundamen-
tal in the Brunn-Minkowki theory. The Minkowski sum K+M , K,M ∈ Kn, for
“small” M may be interpreted as a pertubation of K. Intriguingly, since sup-
port functions are linear with respect to Minkowski addition of convex bodies,
the support function of the sum K + M is represented by the sum of support
functions hK+hM . When hM is replaced by an arbitrary function f : Sn−1 → R,
the convex body defined by

[hK + f ] = {x ∈ Rn : ⟨u,x⟩ ≤ hK(u) + f(u) for all u ∈ Sn−1},

is called the Wulff shape of hK + f . The support function of the Wulff shape
[hK + f ] does not necessarily agree with hK + f , but we always have [hK ] = K
for K ∈ Kn. The variational formula

lim
ϵ→0

vol([hK + εf ]) − vol([hK ])
ε

=
∫︂

Sn−1

f(u) dSK(u), (1.4)

for every continuous function f : Sn−1 → R, was originally established by Alek-
sandrov ([2], see also [75, Lem. 7.5.3]). Here SK is the Borel measure on Sn−1

known as the surface area measure of the convex body K and defined by

SK(η) = Hn−1(ν−1
K (η))

for each Borel set η ⊆ Sn−1. The notion of surface area measures goes back
to Lebesgue and Minkowski. If K = P is a polytope, the surface area measure
is discrete and concentrated on the outer normal vectors. Moreover, for each
outer normal vector it assigns the area of the facet. To be more precise, it holds
that

SP (η) =
∑︂

u∈U(P )∩η

voln−1(F (P,u))

for every Borel set η ⊆ Sn−1 (see Fig. 1.3). A common extension of the volume
functional are the quermassintegrals Wi(K) of a convex body K ∈ Kn, which
may be defined via the classical Steiner formula, expressing the volume of the
Minkowski sum of K ∈ Kn and λBn, i.e., the volume of the parallel body of K
at distance λ ≥ 0, as a polynomial in λ (cf., e.g., [75, Sect. 4.2])

vol(K + λBn) =
n∑︂
i=0

λi
(︃
n

i

)︃
Wi(K). (1.5)
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Pη

SP (η)

Figure 1.3: Surface area measure of a polygon

In particular, W0(K) = vol(K). The quermassintegrals of a convex body K may
be interpreted as – up to normalization – the average volume of projections of K,
i.e., Kubota’s integral formula (cf., e.g., [75, Subsect. 5.3.2]) states that

Wn−i(K) = vol(Bn)
voli(Bi)

∫︂
G(i,n)

voli(K|L) dL, (1.6)

i = 0, . . . , n, where integration is taken with respect to the rotation-invariant
probability measure on the Grassmannian G(i, n) of all i-dimensional linear
subspaces. Aleksandrov [2] and Fenchel and Jessen [28] established a variatonal
formula similar to (1.4) for quermassintegrals in case f is a support function
and only right limits are considered:

lim
ε↘0

Wn−1−i(K + εM) − Wn−1−i(K)
ε

=
∫︂

Sn−1

hM (u) dSi(K,u) (1.7)

for K,M ∈ Kn, i = 0, . . . , n − 1, where Si(K, ·) are Borel measures on the
sphere called area measures of K. The (n − 1)th area measure Sn−1(K, ·) is
just the surface area measure of K. Interestingly, the area measures of a convex
body admit a local Steiner-type formula like (1.5) in the following sense. For
a convex body K ∈ Kn and a point x ∈ Rn the metric projection pK(x)
is the unique point in K that is closest to x. For x ∈ Rn \ K we also define
υK(x) = x − pK(x), i.e., υK(x) is a (not necessarily unique) unit outer normal
vector of pK(x) and for every x ∈ Rn its distance to K by

d(K,x) =
{︄

|x − pK(x)| , if x /∈ K,
0, if x ∈ K.

Then for a Borel set η ⊆ Sn−1 and λ > 0 we consider the local parallel body
(see Fig. 1.4)

BK(λ, η) = {x ∈ Rn : 0 < d(K,x) ≤ λ and υK(x) ∈ η} .

The local Steiner formula expresses the volume of BK(λ, η) as a polynomial in λ.
Its coefficients are – up to constants depending on i and n – the area measures
(cf., e.g., [75, Sect. 4.2])

vol(BK(λ, η)) = 1
n

n∑︂
i=1

λi
(︃
n

i

)︃
Sn−i(K, η). (1.8)
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BK(1/2,η)
=AK(1/2,ω)

η

ω
K

C0(K,ω) = Hn−1(η)

Figure 1.4: Local parallel bodies BK(λ, η) and AK(λ, ω)

In particular, the total of the area measures give the quermassintegrals, i.e.,
nWi(K) = Sn−i(K, Sn−1) for i = 1, . . . , n (cf. (1.5) and (1.8)). Other notions
of parallel bodies give rise to different sets of measures. For K ∈ Kn

o , λ > 0 and
a Borel set ω ⊆ Sn−1 we set (see Fig. 1.4)

AK(λ, ω) =
{︂

x ∈ Rn : 0 < d(K,x) ≤ λ and pK(x) ∈ ω
}︂
,

whose volume admits the Steiner-type formula

vol(AK(λ, ω)) = 1
n

n∑︂
i=1

λi
(︃
n

i

)︃
Cn−i(K,ω), (1.9)

where the Borel measures Ci(K, ·) are called curvature measures of the con-
vex body K. Note that this is the definition of curvature measures given in [48]
and other authors define the curvature measures on ∂K instead of Sn−1. Both
notions are related by an appropriate scaling of the points in ω. The 0th curva-
ture measure was introduced by Aleksandrov [2] and called integral curvature.
The name of the curvature measures stems from the relation

C0(K,ω) = Hn−1 (︁{︁u ∈ Sn−1 : x ∈ K ∩HK(u) and x ∈ ω
}︁)︁
,

i.e., if K is smooth, then every direction v ∈ ω points towards a unique boundary
point λv ∈ ∂K, which has a unique outer normal vector, and in that case
C0(K,ω) measures the subset of points in Sn−1, that are normal to such points
in ∂K. Again, from (1.9) it can be seen that nWi(K) = Cn−i(K, Sn−1) for
i = 1, . . . , n. An exhaustive treatment of surface area and curvature measures
can be found in [75, Chapter 4] (see also [27]).

The cone-volume measure of a convex body K ∈ Kn
o is the Borel measure

VK on the sphere defined by

VK(η) = 1
n

∫︂
η

hK(u) dSK(u)

for every Borel set η ⊆ Sn−1. In case of a polytope P ∈ Pn
o the cone-volume

measure takes on a simple form. Just as the surface area measure the cone-
volume measure of a polytope is concentrated on its outer normal vectors U(P ),
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P

η

VP (η)

Figure 1.5: Cone-volume measure of a polygon

and for every u ∈ U(P ) the cone-volume measure at u is the volume of the
cone with apex at the origin and as base the facet of P with outer normal u
(see Fig. 1.5), i.e.,

VP (η) =
∑︂

u∈U(P )∩η

vol(conv(F (P,u) ∪ {0})). (1.10)

The cone-volume measure of convex bodies has been studied extensively over
the last few years in many different contexts like the geometry of lnp balls ([5,
70, 71]), classification of SL(n)-invariant valuations ([39, 57]), centro-affine sur-
face area and curvature ([56, 73, 76, 85]), Schneider’s projection problem ([40]),
Ehrhart polynomials ([44]), Lp John ellipsoids ([45, 65]), isotropic measures ([12,
16]) and Orlicz-Brunn-Minkowski theory ([34, 66, 67]). One very important
property of the cone-volume measure – and which makes it so essential – is its
SL(n)-invariance, or simply called affine invariance, i.e., for K ∈ Kn

o , A ∈ Rn×n

with |det(A)| = 1 it holds that VAK(η) = VK(A−T η) for every Borel set
η ⊆ Sn−1. The definition of the cone-volume measure also stems from Lp Brunn-
Minkowski theory. This will be elaborated in Chapter 2.

Minkowski problems
A cornerstone of the Brunn-Minkowski theory is to characterize geometric mea-
sures. The problem originates from the characterization of surface area measures
of convex bodies. Minkowski himself posed and solved the problem for sur-
face area measures of polytopes. Later Aleksandrov [2] as well as Fenchel and
Jessen [28] independently established the following solution for arbitrary con-
vex bodies by using the variational formula (1.4) to transform the Minkowski
problem into a minimization problem among support functions. This technique
is still widely used to solve Minkowski problems related to other measures.

Theorem 1.2 (Aleksandrov [2], Fenchel, Jessen [28]). Let µ be a non-zero finite
Borel measure on Sn−1 that is not concentrated on a closed hemisphere. Then
there exists a convex body K ∈ Kn with SK = µ if and only if∫︂

Sn−1

u dµ(u) = 0. (1.11)

If such K exists, it is unique up to translation.
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Minkowski first solved the problem for measures which are either discrete or
continuous, thus referred to as (classical) Minkowski problem. In case of a
polytope P the equation (1.11) becomes∑︂

u∈U(P )

voln−1(F (P,u))u = 0. (1.12)

Today the characterization of area measures Si(K, ·) of convex bodies K ∈ Kn,
i ∈ {1, . . . , n − 1}, among the finite Borel measures on the sphere is known as
the Minkowski–Christoffel problem, since for i = n − 1 it is the classical
Minkowski problem and for i = 1 it is known as Christoffel problem. For
i = 1 Firey [29] and Berg [6] solved the problem independently and derived
a necessary and sufficient condition which looks rather technical (see also [75,
Thm. 8.3.8]). In the case 1 < i < n − 1 the characterization of area measures
Si(K, ·) still is a major open problem. If one considers the curvature measures we
speak of Aleksandrov problems since for C0 the problem has been solved by
Aleksandrov [2]. We refer to [75, Chapter 8] and [48, p. 4] for more information
and references on the Minkowski-Christoffel problem and also characterization
of curvature measures.

The Minkowski problem associated to cone-volume measures of convex bodies
in Kn

o is called logarithmic Minkowski problem. The discrete planar even
logarithmic Minkowski problem was completely solved by Stancu [77, 78] via
crystalline flows. She also proved that cone-volume measures of polytopes in
P2
s are unique with parallelograms being the only exception. The latter result

was generalized to K2
s by Böröczky, Lutwak, Yang and Zhang in [18]. Later,

the same authors used a variational approach to extend Stancu’s solution of
the even logarithmic Minkowski problem for P2

s to arbitrary dimensions and
even measures on the sphere. One of the striking properties of cone-volume
measures of symmetric convex bodies is an upper bound on the concentration
on subspaces.

Theorem 1.3 (Böröczky, Lutwak, Yang, Zhang [19]). Let µ be a non-zero
finite even Borel measure on Sn−1. Then there exists a symmetric convex body
K ∈ Kn

s with VK = µ if and only if

µ(Sn−1 ∩ L) ≤ dimL

n
µ(Sn−1) (1.13)

for every proper subspace L of Rn, and equality in (1.13) is attained for some
L, if and only if there is a subspace L′ complementary to L such that µ is
concentrated on Sn−1 ∩ (L ∪ L′).

The inequality (1.13) along with its equality condition is known and will be
referred to as subspace concentration condition. The above result settles
the logarithmic Minkowski problem for symmetric convex bodies. However, the
question of uniqueness of cone-volume measures of symmetric convex bodies re-
mains an open problem. The general setting is more challenging. The validity
of the subspace concentration condition for cone-volume measures of centered
polytopes was established by Henk and Linke [41] and extended to centered
convex bodies by Böröczky and Henk [13]. In the latter paper another remark-
able result states the existence of lower bounds on concentration of cone-volume
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measures of centered convex bodies on open hemispheres. Stability in (1.13) for
centered convex bodies is thematized in [12]. Regarding the general case, even
less is known. Zhu [86] proved that in the discrete case there are no additional
conditions on the measure if its support is in general position and not con-
centrated on a closed hemisphere. A set of vectors is said to be in general
position if each n-element subset is linearly independent. In other words, Zhu
showed that every measure on Sn−1, that is concentrated on a finite subset of
Sn−1 in general position, but not on a closed hemisphere, can be realized as the
cone-volume measure of a polytope. A refinement of this result can be found
in [11], where it was proved that the validity of (1.13) (for a certain subset
of subspaces) is a sufficient condition when the given measure is discrete but
not necessarily symmetric. Chen, Li and Zhu [22] then used a sophisticated
approximation argument to conclude that the strict inequality in (1.13) is also
sufficient in case of non-even measures. Moreover, they gave the first examples
of non-unique cone-volume measures not coming from parallelepipeds. On the
other hand, necessary conditions on arbitrary cone-volume measures are widely
missing. In [10], Böröczky and Zhu established a sharp upper bound on sub-
space concentration on 1-dimensional subspaces. Nevertheless, as they point
out, their condition is non-sufficient even in the planar case.



2 The logarithmic Minkowski inequality and the
planar cone-volume measure

2.1 An introduction to Lp Brunn-Minkowski
theory

The starting point of this chapter is the study of the volume of certain sums of
convex bodies other than the Minkowski addition defined by (1.1). Recall that
the support function of a Minkowski combination λK + (1 − λ)M , K,M ∈ Kn,
λ ∈ [0, 1], is given by λhK +(1−λ)hM which represents the weighted arithmetic
mean of hK and hM . It seems natural to consider other means of the respective
support functions as well, where p-means (also called Hölder or generealized
means) are the most well-known examples. For p ∈ R \ {0}, positive numbers
s, t ∈ R>0 and a weighting parameter λ ∈ [0, 1] the p-mean of s and t is given
by

Mp(s, t, λ) = [(1 − λ)sp + λtp]
1
p ,

where we may extend the definition to p = 0 via taking the limit

M0(s, t, λ) = lim
p→0

[(1 − λ)sp + λtp]
1
p = s1−λtλ,

which is the weighted geometric mean of s and t. The family of p-means include
the arithmetic mean as special case when p = 1. Moreover, the means are
monotone with respect to p, i.e., for p ≤ p′ it holds that

Mp(s, t, λ) ≤ Mp′(s, t, λ).

In order to consider the p-mean of support functions we have to assure positivity.
That is why here only the class Kn

o is considered. Now for p ̸= 0, K,M ∈ Kn
o ,

and scalars s, t ≥ 0 the p-combination of K and M with respect to s and t is
(see Fig. 2.1)

s ·p K +p t ·p M

=
{︂

x ∈ Rn : ⟨u,x⟩ ≤ [shK(u)p + thM (u)p]
1
p for all u ∈ Sn−1

}︂
,

or in case s = λ, t = 1 − λ,

15
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p = 0 p = 1/2

p = 1 p = 5

Figure 2.1: p-combination 1
2K +p

1
2M for K = conv

{︂(︁0
2
)︁
,
(︁ −1

−1/2
)︁
,
(︁ 2

−1/2
)︁}︂

and
M = [−1, 1]2

(1 − λ) ·p K +p λ ·p M
= {x ∈ Rn : ⟨u,x⟩ ≤ Mp(hK(u), hM (u), λ) for all u ∈ Sn−1}. (2.1)

In the context of p-combinations we will usually just write · instead of ·p.

We want to point out that one may study p-combinations in a slightly more
general way: The notion of p-means can be extended to p ∈ {±∞} via taking
the limit, and if p > 0, the p-mean can be defined on the set of nonnegative
numbers so that also convex bodies K with 0 ∈ ∂K may be considered in p-
combinations. However, for the sake of simplicity we restrict ourselves to p ∈ R
and p-combinations within Kn

o .

The p-combination of convex bodies was first considered by Firey [30] for
p ≥ 1. He also established an extension of the Brunn-Minkowski inequality (1.2)
to p-combinations for p > 1. More precisely, he proved that for p > 1, K,M ∈ Kn

o

and λ ∈ [0, 1]

vol((1 − λ)K +p λM)
p
n ≥ (1 − λ) vol(K)

p
n + λ vol(M)

p
n . (2.2)

Very recently Kolesnikov and Milman [54] established (2.2) under some smooth-
ness assumptions on K and M , if p < 1 and p is sufficiently close to 1. Due to
Lutwak [61] is the following variational formula

lim
ε↘0

vol(K +p εM) − vol(K)
ε

= 1
p

∫︂
Sn−1

hM (u)phK(u)1−p dSK(u). (2.3)
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for p > 1 and K,M ∈ Kn
o . The measure S(p)

K given by

dS(p)
K = h1−p

K dSK

is called Lp surface area measure of K and can be defined this way for every
p ∈ R. In particular, the Lp surface area measure coincides with the classical
surface area measure and – up to a factor – with the cone-volume measure in
the cases p = 1 and p = 0, respectively. The task of characterizing Lp surface
area measures is known as Lp Minkowski problem and was first addressed
by Lutwak [61]. The Lp Brunn Minkowski theory has gained much interest
throughout the years and has developed rapidly since 1990’s. We refer to [75,
Chapter 9] for a comprehensive overview of Lp Brunn-Minkowski theory. Recent
progress on the Lp Minkowski problem was made in [7, 15, 21, 23, 24, 46, 49,
50, 55, 63, 84, 85, 87, 88].

As Schneider points out, Lutwaks solution to the Lp Minkowski problem for
p > 1 in [61] actually only requires p > 0. This was the dawn of the Lp Brunn-
Minkowski theory for 0 < p < 1, which is both fascinating, since inequalities like
(2.2) and (2.3) become stronger for smaller p, and challenging, since in general
the p-mean of support functions is not the support function of the respective p-
combination for p < 1. By taking the limit p → 0+ the inequality (2.2) becomes
the logarithmic Brunn-Minkowski inequality

vol((1 − λ) ·K +0 λ ·M) ≥ vol(K)1−λ vol(M)λ, (2.4)

where we define by

(1 − λ)K +0 λM

= {x ∈ Rn : ⟨u,x⟩ ≤ M0(hK(u), hM (u), λ) for all u ∈ Sn−1}

the log-combination of K and L with respect to λ (cf. (2.1)). It can be seen
from the arithmetic-geometric mean inequality that the logarithmic Brunn-
Minkowski inequality (2.4), if it holds true, is in fact stronger than (1.2).
Böröczky, Lutwak, Yang and Zhang [18] conjectured that (2.4) holds for all
pairs of symmetric convex bodies K,M ∈ Kn

s , but so far it has been verified
only in particular instances. In [18], the planar case n = 2 was established and
Saroglou [74] showed that (2.4) holds for pairs of unconditional convex bodies
in arbitrary dimension, i.e., for convex bodies that are symmetric about every
coordinate hyperplane (see also [8, 25] for preliminary work). Both results were
given alongside a characterization of the equality cases.

It is well-known that the classical Brunn-Minkowski inequality (1.2) is equiv-
alent to Minkowski’s mixed volume inequality, which, for two convex bodies
K,M ∈ Kn

o , can be stated as∫︂
Sn−1

hM (u)
hK(u) dVK(u) ≥ vol(K)

n−1
n vol(M) 1

n . (2.5)

Just as for the Brunn-Minkowski inequality, the Minkowski inequality (2.5)
can be seen as a particular case of a family of Lp Minkowski inequalities in
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the Lp Brunn-Minkowski theory. The Lp Minkowski inequality states that for
K,M ∈ Kn

o ∫︂
Sn−1

(︃
hM (u)
hK(u)

)︃p
dVK(u) ≥ vol(K)

n−p
n vol(M)

p
n (2.6)

and it was proved by Lutwak [61] for p > 1. So far, however, it is an open
problem if (2.6) holds even for pairs of symmetric convex bodies when 0 < p < 1.
In a fundamental paper, Böröczky, Lutwak, Yang and Zhang [18] established
the Lp Minkowski inequality in the plane in the case where K,M ∈ K2

s and
0 < p < 1. Moreover, they showed that in any dimension the Lp Brunn-
Minkowski inequality (2.2) and the Lp Minkowski inequality (2.6) are equivalent
in the class of symmetric convex bodies.

Theorem 2.1 (Böröczky, Lutwak, Yang, Zhang [18]). Let p > 0. The Lp Brunn-
Minkowski inequality (2.2) holds for all K,M ∈ Kn

s and λ ∈ [0, 1] if and only if
the Lp Minkowski inequality (2.6) holds true all K,M ∈ Kn

s .

The results extend to the limit case p → 0+ which is as follows.

Theorem 2.2 (Böröczky, Lutwak, Yang, Zhang [18]). The logarithmic Brunn-
Minkowski inequality (2.4) holds for all K,M ∈ Kn

s and λ ∈ [0, 1] if and only if
the logarithmic Minkowski inequality∫︂

Sn−1

log hM (u)
hK(u) dVK(u) ≥ vol(K)

n
log vol(M)

vol(K) (2.7)

holds true all K,M ∈ Kn
s .

The inequality (2.7) is called the logarithmic Minkowski inequality and it was
proved to hold in the plane ([18], see [68] for a different proof) and for pairs of
unconditional convex bodies in any dimension ([74]).

In the general setting almost nothing is known. There are counterexamples
showing that neither (2.4) nor (2.7) hold for pairs of arbitrary convex bodies
containing the origin in the interior, e.g., a cube and a suitable translate of it.
Instead one considers certain classes of convex bodies granting control over the
location of the origin. Xi and Leng [80] proved that (2.4) holds if the two bodies
are in so-called dilation position, which includes the class Kn

s . Guan and Li [38]
established among others the logarithmic Minkowski inequality when K is the
Euclidean unit ball and the Santálo point of M is the origin. The Santálo point
of a convex body K is the point x ∈ intK minimizing vol([K − x]∗) where
[K − x]∗ is the polar body of K − x (cf. (3.1)). Further results were obtained
by Stancu [79], e.g., she proved among others that the logarithmic Minkowski
inequality (2.7) holds true for convex bodies K,M ∈ Kn

o , when K is a polytope
and each facet of K touches the boundary of L. Stancu also established versions
of (2.7) where in place of M an affine image of M is used; for instance when
K is a centered simplex with constant edge length and M a given convex body,
then there is an affine image M̃ of M such that (2.7) holds for K and M̃ .

In the Sections 2.2 and 2.3 we will study the logarithmic Minkowski (2.7) in-
equality in the context of centered convex bodies. This particularly includes the
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class of symmetric convex bodies. Here we will prove the logarithmic Minkowski
inequality in some very particular instances. More precisely, we establish the log-
arithmic Minkowski inequality (2.7) when the gauge body is a centered simplex
and the other one is centered, and also when the gauge body is a parallelepiped
and the other one is symmetric. The main tool in the proofs are sharp volume
bounds on intersections of centered convex bodies with hyperplanes and halfs-
paces like Grünbaum’s inequality (2.9). Furthermore, we extend the logarithmic
Minkowski inequality for parallelepipeds to the setting where the second body is
only centered rather than symmetric, but only in small dimensions. The results
of the Sections 2.2 and 2.3 appeared as joint work with Martin Henk [43].

The Section 2.4 treats the logarithmic Minkowski problem in the plane for
trapezoids. Our main result is a full characterization of cone-volume measures
of trapezoids including the explicit computation of a trapezoid from a given
cone-volume measure. Together with results stated in [78] this settles the loga-
rithmic Minkowski problem for quadrilaterals. We discuss uniqueness of cone-
volume measures in Section 2.5. Moreover, from the aforementioned explicit
description we may derive a family of examples confirming non-uniqueness of
cone-volume measures of quadrilaterals. So far, the only examples, which are
not parallelepids, were given in [22] including fivegons in the planar case. The
logarithmic Minkowski problem for polygons with at least five vertices is still
open.

2.2 The logarithmic Minkowski inequality for
simplices

We will now prove the logarithmic Minkowski inequality (2.7) for some special
cases. They all have in common that one of the convex bodies under consider-
ation is assumed to be centered and the other one is either a centered simplex
or, in Section 2.3, a parallelepiped. One of the used tools is a reformulation of
Minkowski’s characterization theorem (Theorem 1.2). For a polytope P ∈ Pn

o

and a unit outer normal vector u ∈ U(P ) the volume of the corresponding cone
can be computed by (cf. (1.10))

VP (u) = vol(conv(F (P,u) ∪ {0})) = hP (u)
n

voln−1(F (P,u)),

which is the well-known pyramid formula. Substituting into (1.12) yields the
equivalent equation ∑︂

u∈U(P )

VP (u)
hP (u) u = 0, (2.8)

so that Minkowski’s characterization becomes a statement formulated entirely in
terms of support functions and cone-volumes. The second important ingredient
in the proofs is Grünbaum’s inequality. Each symmetric convex body divided
by a hyperplane through the origin will have its volume split into equal parts.
Due to Grünbaum is the following sharp bound for centered convex bodies
(see Fig. 2.2).
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P

c(P )

Figure 2.2: Extremal case of Grünbaum’s inequality

Theorem 2.3 (Grünbaum [37]). Let K ∈ Kn
c and u ∈ Sn−1. Then

vol(K ∩H−(u, 0)) ≥ vol(K)
(︃

n

n+ 1

)︃n
(2.9)

with equality if and only if K is a cone whose base is parallel to H(u, 0) and
contained in H+(u, 0).

We are now ready to prove the logarithmic Minkowski inequality for centered
simplices and centered convex bodies. As an introductory remark we want to
point out that for P ∈ Pn

o and M ∈ Kn
o with vol(P ) = vol(M) – which we can

always assume because the logarithmic Minkowski inequality is scaling-invariant
– the inequality (2.7) can be restated as

∏︂
u∈U(P )

(︃
hM (u)
hP (u)

)︃VP (u)
≥ 1. (2.10)

Theorem 2.4 (Henk, P. [43]). Let S,M ∈ Kn
c , where S is a simplex. Then∫︂

Sn−1

log hM (u)
hS(u) dVS(u) ≥ vol(S)

n
log vol(M)

vol(S) . (2.11)

Equality holds if and only if S and M are dilates.

Proof. The inequality (2.11) is homogeneous in both S and M , so without loss
of generality we assume that vol(S) = vol(M) = 1. Let U(S) = {u1, . . . ,un+1}.
First we note that since S is centered all cone-volumes VS(ui) coincide. Indeed,
if v1, . . . , vn+1 ∈ Rn are the vertices of S, then each facet F (S,ui) of S contains
exactly n of its vertices, say v1, . . . , vi−1,vi+1, . . . , vn+1, and

VS(ui) = vol(conv(F (S,ui) ∪ {0}))

= 1
n

|det(v1, . . . , vi−1,vi+1, . . . , vn)|

= 1
n

|det(v1 − (n+ 1) c(S),v2, . . . , vi−1,vi+1, . . . , vn)|

= 1
n

|det(−(v2 + . . .+ vn + vn+1),v2, . . . , vi−1,vi+1, . . . , vn)|

= 1
n

|det(vi,v2, . . . , vi−1,vi+1, . . . , vn)|



2.2 The log-Minkowski inequality for simplices 21

= VS(u1).

Thus, for each i ∈ {1, . . . , n+1} we have VS(ui) = 1
n+1 . Hence in view of (2.10)

we just have to verify
n+1∏︂
i=1

hM (ui)
hS(ui)

≥ 1 (2.12)

and by (2.8) we also know

n+1∑︂
i=1

1
hS(ui)

ui = 0. (2.13)

Grünbaum’s centroid inequality (2.9) applied to the centered convex body M
gives for 1 ≤ i ≤ n+ 1

vol(M ∩H−(ui, 0)) ≥ vol(M)
(︃

n

n+ 1

)︃n
(2.14)

and for the simplex S we have the equality

vol(S) = vol(S ∩H−(ui, 0))
(︃
n+ 1
n

)︃n
(2.15)

for i = 1, . . . , n+ 1. Now suppose (2.12) does not hold. Then there exist also n
indices i = 1, . . . , n, say, with

n∏︂
i=1

hM (ui) <
n∏︂
i=1

hS(ui). (2.16)

Since M ⊆ {x ∈ Rn : ⟨ui,x⟩ ≤ hM (ui), 1 ≤ i ≤ n}, we conclude in view of
(2.14)(︃

n

n+ 1

)︃n
vol(M) ≤ vol(M ∩H−(un+1, 0))

≤ vol({x ∈ Rn : ⟨ui,x⟩ ≤ hM (ui), 1 ≤ i ≤ n, ⟨un+1,x⟩ ≤ 0}).

Let T = {x ∈ Rn : ⟨ei,x⟩ ≤ 1, 1 ≤ i ≤ n, ⟨
∑︁n
i=1 ei,x⟩ ≥ 0} and A be the

(n× n)-matrix with columns ui

hM (ui) , i = 1, . . . , n. Then

A−TT = {x ∈ Rn : ⟨ui,x⟩ ≤ hM (ui), 1 ≤ i ≤ n, ⟨un+1,x⟩ ≤ 0}

and thus, by (2.16) and (2.15),(︃
n

n+ 1

)︃n
vol(M) ≤

⃓⃓⃓⃓
det
(︃

u1

hM (u1) , . . . ,
un

hM (un)

)︃⃓⃓⃓⃓−1
vol(T )

=
∏︁n
i=1 hM (ui)

|det(u1, . . . ,un)| vol(T )

<

∏︁n
i=1 hS(ui)

|det(u1, . . . ,un)| vol(T )

= vol({x ∈ Rn : ⟨ui,x⟩ ≤ hS(ui), 1 ≤ i ≤ n, ⟨un+1,x⟩ ≤ 0})
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=
(︃

n

n+ 1

)︃n
vol(S).

This contradicts, however, the assumption that S and M have the same volume.

Suppose now we have equality in (2.12). Then we must also have equality for
each n-element subset of {1, . . . , n+ 1}, since in view of (2.16)

n+1∏︂
i=1
i ̸=j

hM (ui) ≥
n∏︂
i=1
i ̸=j

hS(ui)

must hold for every j and

(hS(u1) . . . hS(un+1))n =
n+1∏︂
j=1

n∏︂
i=1
i ̸=j

hS(ui)

≤
n+1∏︂
j=1

n∏︂
i=1
i ̸=j

hM (ui) = (hM (u1) . . . hM (un+1))n.

Moreover, for every choice of n indices, say {1, . . . , n}, by repeating the steps
above we have (︃

n

n+ 1

)︃n
vol(M) =

(︃
n

n+ 1

)︃n
vol(S)

=
∏︁n
i=1 hS(ui)

|det(u1, . . . ,un)| vol(T )

=
∏︁n
i=1 hM (ui)

|det(u1, . . . ,un)| vol(T )

= vol(M ∩H−(un+1, 0))

and by the characterization of the equality case in Theorem 2.3 we know that M
is a simplex with outer normals ui and centroid at the origin. Hence Minkowski’s
characterization formula (2.13) also holds with hS(ui) replaced by hM (ui) which
shows that S and M must be equal.

It is not hard to see that the logarithmic Minkowski inequality for centered
simplices (Theorem 2.4) implies the uniqueness of cone-volume measures con-
centrated on n + 1 affinely independent directions. However, this is also a
consequence of Minkowski’s characterization theorem (cf. Theorem 1.2). For if,
let u1, . . . ,un+1 be the outer unit normals of two simplices S, T ∈ Pn

o and the
two simplices have equal cone-volumes γi = VS(ui) = VT (ui), 1 ≤ i ≤ n + 1.
Let αi(S), αi(T ), 1 ≤ i ≤ n + 1, be the (n − 1)-dimensional volume of the
facet with outer normal vector ui of S and T , respectively. By (1.12) and the
affine independence of the normal vectors we get that (α1(S), . . . , αn+1(S))T
and (α1(T ), . . . , αn+1(T ))T are contained in a one-dimensional subspace, so
αi(S) = µαi(T ) for 1 ≤ i ≤ n+ 1 and a positive scalar µ. Hence,

hS(ui)
hT (ui)

=

(︂
nγi

αi(S)

)︂
(︂

nγi

αi(T )

)︂ = αi(S)
αi(T ) = µ,
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and so S = µT . Since vol(S) = vol(T ) it follows that S = T .

2.3 The logarithmic Minkowski inequality for
parallelepipeds

Using the same arguments as in the foregoing proof of Theorem 2.4 we may es-
tablish the logarithmic Minkowski inequality when both bodies are o-symmetric
and one is a parallelepiped. Instead of Grünbaum’s inequality (2.9) we use the
fact that hyperplanes through the origin cut symmetric sets into equal halves.

Proposition 2.5 (Henk, P. [43]). Let Q,M ∈ Kn
s , where Q is a parallelepiped.

Then ∫︂
Sn−1

log hM (u)
hQ(u) dVQ(u) ≥ vol(Q)

n
log vol(M)

vol(Q) .

Equality holds if and only if M is a parallelepiped with U(M) = U(Q).

Proof. Without loss of generality we assume that vol(Q) = vol(M). Let U(Q) =
{±u1, . . . ,±un}. First we note that all cone-volumes VQ(±ui) coincide as Q
is the linear image of a cube, so each cone of Q is the linear image of a cone of
the cube. Therefore and since M is symmetric we just have to verify

n∏︂
i=1

hM (ui)
hQ(ui)

≥ 1. (2.17)

Now suppose (2.17) does not hold. Since M ⊆ {x ∈ Rn : |⟨ui,x⟩| ≤ hM (ui), 1 ≤
i ≤ n}, we get

vol(M) ≤ vol({x ∈ Rn : |⟨ui,x⟩| ≤ hM (ui), 1 ≤ i ≤ n}) (2.18)

=
2n
∏︁n
i=1 hM (ui)

|det(u1, . . . ,un)|

<
2n
∏︁n
i=1 hQ(ui)

|det(u1, . . . ,un)|
= vol(Q).

This contradicts, however, the assumption of having the same volume.

Suppose now we have equality in (2.17). Then by the same arguments as
above

vol(Q) = vol(M) ≤ vol({x ∈ Rn : |⟨ui,x⟩| ≤ hM (ui), 1 ≤ i ≤ n})

=
2n
∏︁n
i=1 hM (ui)

|det(u1, . . . ,un)|

=
2n
∏︁n
i=1 hQ(ui)

|det(u1, . . . ,un)|
= vol(Q),
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i.e., M = {x ∈ Rn : |⟨ui,x⟩| ≤ hM (ui), i = 1, . . . , n}. Thus, M is parallelepiped
with outer normals ±u1, . . . ,±un. On the other hand, if Q and M are paral-
lelepipeds with the same volume and sets of outer normal vectors, then (2.17)
is satisfied with equality since the volumes are proportional to the product of
the supporting distances.

We conjecture that a similar result holds when the symmetry of M is replaced
by the weaker assumption M ∈ Kn

c . In this case, however, we can prove it only
in dimensions n ≤ 4.

Proposition 2.6 (Henk, P. [43]). Let n ∈ {2, 3, 4} and Q ∈ Kn
s , M ∈ Kn

c ,
where Q is a parallelepiped. Then∫︂

Sn−1

log hM (u)
hQ(u) dVQ(u) ≥ vol(Q)

n
log vol(M)

vol(Q) .

Equality holds if and only if M is a parallelepiped with U(M) = U(Q).

This case seems to be more intricate and the proof of the above statement
needs some preparation. Since the logarithmic Minkowski inequality only de-
pends on the supporting distances in directions u ∈ U(Q), similar to (2.18)
the problem becomes to find volume bounds for a certain M enclosing shifted
parallelepiped of the form

{x ∈ Rn : −α−1
i ≤ ⟨ei,x⟩ ≤ αi, 1 ≤ i ≤ n}, (2.19)

with some constants α1, . . . , αn ≥ 1. More precisely, establishing the logarithmic
Minkowski inequality in this setting is equivalent to proving that a centered
convex body contained in (2.19) has a volume smaller than 2n unless αi = 1 for
all i = 1, . . . , n (see Fig. 2.3).

For the proof of Proposition 2.6 we will need the following result by Milman
and Pajor [69] (see also [4]).

Theorem 2.7 (Milman, Pajor [69]). Let K ∈ Kn
c . Then

vol(K ∩ (−K)) ≥ 2−n vol(K).

From Theorem 2.7 one can easily deduce a volume bound for a centered convex
body with circumscribed axis-aligned parallelepiped.

Corollary 2.8. Let K ∈ Kn
c . Suppose there are numbers α1, . . . , αn ≥ 1 such

that
K ⊆ {x ∈ Rn : −α−1

i ≤ ⟨ei,x⟩ ≤ αi, 1 ≤ i ≤ n}
Then α1 · . . . · αn ≤ 4n

vol(K) .

Proof. By Theorem 2.7 and since

K ∩ (−K) ⊆ {x ∈ Rn : −α−1
i ≤ ⟨ei,x⟩ ≤ α−1

i , 1 ≤ i ≤ n}

we get

2−n vol(K) ≤ vol(K ∩ (−K)) ≤ 2nα−1
1 · . . . · α−1

n .
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x1

x2

α−1
1 α1

α−1
2

α2

M

Figure 2.3: A centered convex body M enclosed by the shifted paral-
lelepiped (2.19)

A more sophisticated estimate will be needed. We will establish next an upper
bound on the volume of centered convex bodies with respect to volume sections
and supporting distances. The intuition behind the following lemma is that if
the mass of slices of a convex body inside a bounding box is shifted with respect
to a fixed direction, then the centroid of the body moves into the same direction
(see Fig. 2.4).

Lemma 2.9 (Henk, P. [43]). Let K ∈ Kn
c , u ∈ Sn−1 and for t ∈ R define

f(t) = voln−1(K ∩H(u, t)). Then

vol(K) ≤ 2hK(u) max
t∈R

f(t), (2.20)

with equality if and only if K is a centered prism over a base parallel to u⊥.

Proof. Write ∥f∥∞ = maxt∈R f(t). By Fubini’s theorem we have

vol(K) =
hK (u)∫︂

−hK (−u)

f(t) dt (2.21)

and, since K is centered,

0 = ⟨u, vol(K) c(K)⟩ =
∫︂
K

⟨u,x⟩ dx =
hK (u)∫︂

−hK (−u)

tf(t) dt. (2.22)
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−hK(−u) hK(u)s

∥f∥∞

t

f(t)

Figure 2.4: Mass distribution of a convex body shifted as in the proof
of Lemma 2.9

By (2.21) we get
vol(K) ≤ (hK(u) + hK(−u)) ∥f∥∞ .

Thus, for s = vol(K)
∥f∥∞

we have −hK(−u) ≤ hK(u) − s ≤ hK(u) and (2.22) yields

0 =
hK (u)−s∫︂

−hK (−u)

tf(t) dt+
hK (u)∫︂

hK (u)−s

tf(t) dt

≤ (hK(u) − s)
hK (u)−s∫︂

−hK (−u)

f(t) dt+
hK (u)∫︂

hK (u)−s

tf(t) dt. (2.23)

With (2.21) it follows that

0 ≤ (hK(u) − s)

⎛⎜⎝vol(K) −
hK (u)∫︂

hK (u)−s

f(t) dt

⎞⎟⎠+
hK (u)∫︂

hK (u)−s

tf(t) dt

= (hK(u) − s)

⎛⎜⎝ hK (u)∫︂
hK (u)−s

(︁
∥f∥∞ − f(t)

)︁
dt

⎞⎟⎠+
hK (u)∫︂

hK (u)−s

tf(t) dt

≤
hK (u)∫︂

hK (u)−s

t
(︁

∥f∥∞ − f(t)
)︁

dt+
hK (u)∫︂

hK (u)−s

tf(t) dt

=
hK (u)∫︂

hK (u)−s

t ∥f∥∞ dt

=
∥f∥∞

2
(︁
hK(u)2 − (hK(u) − s)2)︁

=
∥f∥∞

2
(︁
2shK(u) − s2)︁



2.3 The log-Minkowski inequality for parallelepipeds 27

=
s ∥f∥∞

2

(︃
2hK(u) − vol(K)

∥f∥∞

)︃
.

From the latter inequality we obtain (2.20).

Suppose now we have equality in (2.20). Then we also have equality in
(2.23), and since f is positive on the interval (−hK(−u), hK(u)) it follows that
−hK(−u) = hK(u) − s. Hence vol(K) =

(︂
hK(u) + hK(−u)

)︂
∥f∥∞, which

by (2.21) shows that the volume sections f(t) are constant. Then (2.22) yields
hK(u) = hK(−u). Moreover, the equality conditions of the Brunn-Minkowski
inequality (1.2) assert that the sections K ∩ H(u, t), t ∈ [−hK(u), hK(u)], are
translates. Thus K is a prism.

As above we apply the foregoing lemma to the parallelepiped (2.19).

Corollary 2.10. Let K ∈ Kn
c with voln(K) = 2n. Suppose there are numbers

α1, . . . , αn ≥ 1 such that

K ⊆ {x ∈ Rn : −α−1
i ≤ xi ≤ αi, 1 ≤ i ≤ n}.

Then
n∏︂
j=1
j ̸=i

(︄
α−1
j + αj

2

)︄
≥ αi.

Proof. Let i ∈ {1, . . . , n}. By applying Lemma 2.9 with u = −ei we obtain

2n = vol(K) ≤ 2hK(−ei) max
t∈R

voln−1(K ∩H(ei, t))

≤ 2α−1
i

n∏︂
j=1
j ̸=i

(α−1
j + αj).

As our next step we show that the inequalities obtained in the Corollaries 2.8
and 2.10 admit only a trivial solution α1, . . . , αn if the dimension n is particu-
larly small.

Lemma 2.11. Let n ∈ {2, 3, 4}. Then the system of inequalities

αi ≥ 1 for each i = 1, . . . , n, (2.24)
α1 · . . . · αn ≤ 2n, (2.25)

n∏︂
j=1
j ̸=i

(︄
α−1
j + αj

2

)︄
≥ αi, for each i = 1, . . . , n, (2.26)

has the only solution α1 = . . . = αn = 1.

Proof. Without loss of generality we assume there is a solution to the above
system with α1 ≥ . . . ≥ αn.
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Case n = 2: By (2.26) we readily have

α−1
2 + α2 ≥ 2α1 ≥ 2α2,

which with (2.24) gives α1 = α2 = 1.

Case n = 3: Inequality (2.26) for i = 1 gives

(α2
2 + 1)(α2

3 + 1) ≥ 4α1α2α3 ≥ 4α2
2α3. (2.27)

Rearranging the terms yields

α2
3 + 1 − (4α3 − α2

3 − 1)α2
2 ≥ 0.

Note that (2.25) implies α3 ≤ 2 which in turn shows

4α3 − α2
3 − 1 ≥ 4α3 − 2α3 − 1 > 0.

Thus
α2

3 + 1
4α3 − α2

3 − 1 ≥ α2
2 ≥ α2

3,

which again can be rearranged to the polynomial inequality

0 ≤ α4
3 − 4α3

3 + 2α2
3 + 1 = (α3 − 1)(α3

3 − 3α2
3 − α3 − 1).

Since for the latter factor we have

α3
3 − 3α2

3 − α3 − 1 ≤ 2α2
3 − 3α2

3 − α3 − 1 = −α2
3 − α3 − 1 < 0,

by (2.24) we find α3 = 1. By (2.27) then it follows that

2(α2
2 + 1) ≥ 4α1α2 ≥ 4α2

2.

Thus α1 = α2 = 1.

Case n = 4: From (2.26) for i = 1 we get

(α2
2 + 1)(α2

3 + 1)(α2
4 + 1) ≥ 8α1α2α3α4 ≥ 8α2

2α3α4

or

(α2
3 + 1)(α2

4 + 1) −
(︂

8α3α4 − (α2
3 + 1)(α2

4 + 1)
)︂
α2

2 ≥ 0. (2.28)

We will eliminate successively the variables α2 and α3 to obtain a poly-
nomial inequality in the single variable α4.

Note that from (2.24) and (2.25) we have

α4
4 ≤ α1α2α3α4 ≤ 16,

α3
3 ≤ α3

3α4 ≤ α1α2α3α4 ≤ 16. (2.29)

Hence α4 ≤ 2 and α3 ≤ 24/3 ≤ 13/5. We aim to show that then

8α3α4 − (α2
3 + 1)(α2

4 + 1) > 0. (2.30)
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To this end, define D = [1, 13
5 ] × [1, 2] and f : D → R with f(x, y) =

8xy− (x2 + 1)(y2 + 1). As a polynomial, f attains a minimum on D. Also
f is differentiable and its gradient and Hessian are given by

∇f(x, y) =
(︃

8y − 2x(y2 + 1)
8x− 2y(x2 + 1)

)︃
,

∇2f(x, y) =
(︃

−2(y2 + 1) 8 − 4xy
8 − 4xy −2(x2 + 1)

)︃
,

respectively. If (x, y) ∈ D is a solution of ∇f(x, y) = 0 we see from the
first coordinate of ∇f that x = 4y

y2+1 . Then from the second coordinate
we find

0 = 8
(︃

4y
y2 + 1

)︃
− 2y

(︄(︃
4y

y2 + 1

)︃2
+ 1
)︄

= (y2 + 1)−2y
(︂

32(y2 + 1) − 32y2 − 2(y2 + 1)2
)︂

= (y2 + 1)−2y
(︂

− 2(y2 − 3)(y2 + 5)
)︂
.

Since y ≥ 1, f has its only stationary point at y = x =
√

3 which is a not
a minimum since

∇2f(
√

3,
√

3) =
(︃

−8 −4
−4 −8

)︃
is indefinite. Thus f attains its minimum at a point in ∂D, i.e., at some
point (1, y), ( 13

5 , y), (x, 1) or (x, 2), where x ∈ [1, 13
5 ] and y ∈ [1, 2]. Since

f(1, y) = 8y − 2(y2 + 1) ≥ 8y − 2(2y + 1) = 4y − 2 > 0,

f(13/5, y) = 104
5 y − 194

25 y
2 − 194

25 = 194
25

(︃
260
97 y − y2 − 1

)︃
>

194
25

(︃
5
2y − y2 − 1

)︃
= 194

25 (2 − y)(y − 1/2) ≥ 0,

f(x, 1) = 8x− 2(x2 + 1) ≥ 8x− 2
(︃

13
5 x+ 1

)︃
= 2

5(7x− 5) > 0

f(x, 2) = 16x− 5x2 − 5 = 5
(︃

16
5 x− x2 − 1

)︃
> 5

(︃
194
65 x− x2 − 1

)︃
= 5(13/5 − x)(x− 5/13) ≥ 0,

are positive in the given range, we have proved (2.30).

From (2.28) it then follows that

(α2
3 + 1)(α2

4 + 1)
8α3α4 − (α2

3 + 1)(α2
4 + 1) ≥ α2

2 ≥ α2
3

which can be rewritten as

α2
4 + 1
α4

≥ 8α3
3

(α2
3 + 1)2 . (2.31)
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The left hand side is increasing in α4 when 1 ≤ α4. We distinguish now
two cases. First, if α3 < 2, we use α4 ≤ α3 to conclude from (2.31) that

α2
3 + 1
α3

≥ 8α3
3

(α2
3 + 1)2

and so

0 ≤ (α2
3 + 1)3 − 8α4

3 = α6
3 − 5α4

3 + 3α2
3 + 1

= (α2
3 − 1)(α4

3 − 4α2
3 − 1) ≤ (α2

3 − 1)(α4
3 − 4α2

3)
= α2

3(α2
3 − 1)(α2

3 − 4).

The only solution to this inequality in [1, 2) is α3 = 1.

Now suppose α3 ≥ 2. From (2.29) we know α4 ≤ 16
α3

3
, which we may

combine with (2.31) to obtain

8α3
3

(α2
3 + 1)2 ≤

(︂
16
α3

3

)︂2
+ 1

16
α3

3

= 256 + α6
3

16α3
3

or equivalently

0 ≤ (256 + α6
3)(α2

3 + 1)2 − 128α6
3

= α10
3 + 2α8

3 − 127α6
3 + 256α4

3 + 512α2
3 + 256.

Clearly, in the range α3 ∈ [2, 13
5 ] we have

192 + 1744(α2
3 − 4) + 16(α2

3 − 4)2 > 0

and therefore

0 < α10
3 + 2α8

3 − 127α6
3 + 256α4

3 + 512α2
3 + 256

+
(︁
192 + 1744(α2

3 − 4) + 16(α2
3 − 4)2)︁

= α10
3 + 2α8

3 − 127α6
3 + 272α4

3 + 2128α2
3 − 6272

= (α2
3 − 4)2(α2

3 − 7)(α4
3 + 17α2

3 + 56).

But this is false since α2
3 < 7. Thus, we have proved α3 = 1 and subse-

quently α4 = 1. But in this case (2.26) becomes α−1
2 + α2 ≥ 2α1 and as

above this implies α1 = α2 = 1.

If n ≥ 5, the system of inequalities (2.24), (2.25), (2.26) admits more solutions,
e.g., for α1 = . . . = αn = 2 the inequalities (2.26) become (5/4)n−1 ≥ 2 which
is true for n ≥ 5.

We are now ready to give the proof of Proposition 2.6.

Proof of Proposition 2.6. Since Q is a parallelepiped, there exist linearly inde-
pendent u1, . . . ,un ∈ Sn−1 such that

Q = {x ∈ Rn : |⟨ui,x⟩| ≤ hQ(ui)}
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Let A be the matrix with columns u1, . . . ,un. Without loss of generality we
assume that vol(Q) = vol(M) = 2n

| det(A)| . As in the proof of Proposition 2.5 we
note that all cone-volumes VQ(±ui) coincide. Hence we just have to verify

n∏︂
i=1

hM (ui)hM (−ui)
hQ(ui)2 ≥ 1. (2.32)

Note that under these assumptions it follows from (1.3) that

n∏︂
i=1

hQ(ui) = | det(A)|
2n vol(Q) = 1.

Hence, with K = ATM , i.e., hK(±ei) = hM (±ui), we only have to show

n∏︂
i=1

(︂
hK(ei)hK(−ei

)︂
≥ 1, (2.33)

where vol(K) = 2n and the centroid of K is at the origin. Moreover, after
scaling by a suitable diagonal matrix of determinant 1 we may also assume
hK(ei)hK(−ei) = γ, 1 ≤ i ≤ n, for a suitable constant γ > 0.

Suppose (2.33) does not hold. Then γ = hK(ei)hK(−ei) < 1 for 1 ≤ i ≤ n,
and without loss of generality assume hK(ei) ≥ hK(−ei), i = 1, . . . , n. Then
for every x ∈ K and i = 1, . . . , n,

−hK(ei)−1 < −hK(−ei) ≤ ⟨ei,x⟩ ≤ hK(ei).

Hence, K is strictly contained in a shifted parallelepiped

P = {x ∈ Rn : −α−1
i ≤ ⟨ei,x⟩ ≤ αi}

for some α1, . . . , αn ≥ 1. Now Corollaries 2.8 and 2.10 yield α1 · . . . · αn ≤ 2n
and

n∏︂
j=1
j ̸=i

(︄
α−1
j + αj

2

)︄
≥ αi

for each i = 1, . . . , n. By Lemma 2.11 it follows that α1 = . . . = αn = 1. In
particular, vol(P ) = 2n which contradicts vol(P ) > vol(K) = 2n.

Suppose now we have equality in (2.32). Then we also have equality in (2.33).
Repeating the steps above we find that K is contained in the cube [−1, 1]n.
Since vol(K) = 2n it follows that K = [−1, 1]n. Thus, M is a parallelepiped
with outer normals ±u1, . . . ,±un.

We conjecture that Proposition 2.6 also holds in arbitrary dimension which
could possibly be proved by establishing an analogue of Lemma 2.9 for lower-
dimensional sections. It is, however, not clear how such an extension should
look like.



32 2 The log-Minkowski inequality and the planar cone-volume measure

Figure 2.5: Trapezoid violating the subspace concentration inequality (2.34)

2.4 The logarithmic Minkowski problem for
trapezoids

It was mentioned earlier that the even logarithmic Minkowski problem, i.e.,
the task of characterizing the set of cone-volume measures of bodies in Kn

s , was
solved in [19] (see Theorem 1.3). As a starting point of the search for the solution
in the general setting we will consider the cone-volume measures of polygons
with few vertices. Restricting to the plane allows the use of tools that may not
have a direct extension to higher dimensions. For instance, the equality cases of
even cone-volume measures in the plane were fully characterized by Böröczky,
Lutwak, Yang and Zhang [18], but in higher dimensions this is considered a
significant open problem. Another example is the following result proved by
Stancu [78]. Here, for a discrete measure µ on the sphere, its support supp(µ)
is the set of points u with µ(u) > 0.

Theorem 2.12 (Stancu [78]). Let µ be a non-zero, finite, discrete Borel mea-
sure on S1, that is not concentrated on a closed hemisphere, and let m =
#(supp(µ)) ≥ 4. If either m > 4 and

µ(S1 ∩ L) < 1
2µ(S1) (2.34)

for every proper subspace L of R2 with #(L ∩ supp(µ)) = 2, or supp(µ) is in
general position, then there exists a polygon P ∈ P2

o with VP = µ.

An extension of the preceding theorem to higher dimensions was discovered
only after a decade by Böröczky, Hegedűs and Zhu [11]. The subspace concentra-
tion inequality (2.34) is not necessary as can be easily seen from the trapezoid
with vertices

(︁±ε
ε

)︁
,
(︁±1

−1
)︁
, for small ε > 0 (see Fig. 2.5). Still, Böröczky and

Hegedűs [10] proved a necessary condition for cone-volume measures evaluated
at antipodal points, which in the plane reads as follows.

Theorem 2.13 (Böröczky, Hegedűs [10]). Let K ∈ K2
o and u ∈ S1. Then

VK({±u}) ≤ vol(K) − 2
√︁

VK(u)VK(−u) (2.35)

and equality is attained if and only if K is trapezoid with two sides parallel to
u⊥ and the intersection point of the diagonals is contained in u⊥.
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u4

u1

u2

u3

ω

supp(µ)

Figure 2.6: Exemplary starting point (and solution) in Theorem 2.14
and Corollary 2.18

To this day no sufficient or necessary condition other than (2.34) and (2.35)
is known for the unrestricted planar logarithmic Minkowski problem.

Since cone-volumes of parallelograms associated to antipodal outer normal
vectors sum up to half of the parallelograms area (which characterizes their
cone-volume measures), and quadrilaterals without parallel sides are covered
by Theorem 2.12, trapezoids are the vertex-minimal open case in the discrete
logarithmic Minkowski problem. It is the main goal of this section to prove
a characterization of cone-volume measures of trapezoids which together with
Theorem 2.12 solves the logarithmic Minkowski problem for quadrilaterals.

Theorem 2.14. Let µ be a non-zero, finite Borel measure on S1 supported on
pairwise distinct and counterclockwise ordered unit vectors u1,u2,u3,u4 ∈ S1.
Suppose supp(µ) contains a single pair of antipodal points, say u1 = −u3, and
there is an open hemisphere ω ⊆ S1 such that supp(µ) ∩ ω = {u3}. Then there
exists a polygon P ∈ P2

o with VP = µ if and only if either

(i) µ(u1) + µ(u3) < µ(u2) + µ(u4), or

(ii) µ(u1) + µ(u3) ≥ µ(u2) + µ(u4) ≥ 2
√︁
µ(u1)µ(u3) and µ(u1) < µ(u3).

Moreover, P is uniquely determined unless µ(u1) + µ(u3) ≥ µ(u2) + µ(u4) >
2
√︁
µ(u1)µ(u3) and µ(u1) < µ(u3), and in the latter case there are exactly two

such polygons.

See Fig. 2.6 for a graphic representation of the notation.

It is remarkable that condition (i) is the subspace concentration inequal-
ity (2.34) whereas condition (ii) is mainly a rearrangement of (2.35). This
shows that the inequality (2.35) is almost a sufficient condition. The peculiar
thing about this characterization is the appearance of an extra condition if the
subspace concentration inequality is not satisfied.

The proof of Theorem 2.14 is based on an explicit computation of P for a
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given µ. Thereby a polynomial system arises which is stated and solved in the
following lemma.

Lemma 2.15. Let a, b ∈ R with a < b, and γi ∈ R>0, 1 ≤ i ≤ 4. Write
la =

√
1 + a2, lb =

√
1 + b2 and D = (γ2 + γ4)2 − 4γ1γ3. Consider the system

2γ1 = h1(−(b− a)h1 + lah2 + lbh4),
2γ2 = lah2(h1 + h3),
2γ3 = h3((b− a)h3 + lah2 + lbh4),
2γ4 = lbh4(h1 + h3),
lah2 + lbh4 > (b− a)h1,

h1, h2, h3, h4 > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.36)

(i) If either

(a) γ1 + γ3 ≥ γ2 + γ4 and γ1 ≥ γ3, or

(b) γ2 + γ4 < 2√
γ1γ3,

then (2.36) admits no solutions.

(ii) If either

(a) γ1 + γ3 < γ2 + γ4,

(b) γ1 + γ3 = γ2 + γ4 and γ1 < γ3, or

(c) γ1 + γ3 > γ2 + γ4 = 2√
γ1γ3 and γ1 < γ3,

then (2.36) has a unique solution given by

h1 = 1√︁
2(b− a)

−2γ1 + γ2 + γ4 +
√
D√︂

γ3 − γ1 +
√
D

,

h2 =
√︁

2(b− a)
la

γ2√︂
γ3 − γ1 +

√
D
,

h3 = 1√︁
2(b− a)

2γ3 − γ2 − γ4 +
√
D√︂

γ3 − γ1 +
√
D

,

h4 =
√︁

2(b− a)
lb

γ4√︂
γ3 − γ1 +

√
D
.

(iii) If γ1 + γ3 > γ2 + γ4 > 2√
γ1γ3 and γ1 < γ3, then (2.36) has exactly two
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different solutions given by

h1 = 1√︁
2(b− a)

−2γ1 + γ2 + γ4 ±
√
D√︂

γ3 − γ1 ±
√
D

,

h2 =
√︁

2(b− a)
la

γ2√︂
γ3 − γ1 ±

√
D
,

h3 = 1√︁
2(b− a)

2γ3 − γ2 − γ4 ±
√
D√︂

γ3 − γ1 ±
√
D

,

h4 =
√︁

2(b− a)
lb

γ4√︂
γ3 − γ1 ±

√
D
.

We shall prove Theorem 2.14 first.

Proof of Theorem 2.14. After carrying out a suitable rotation and reflection we
may assume that u1 = (0, 1)T , u2 = 1

la
(−1,−a)T , u3 = (0,−1)T and u4 =

1
lb

(1, b)T , where a, b ∈ R, b > a and la =
⃓⃓
(−1,−a)T

⃓⃓
, lb =

⃓⃓
(1, b)T

⃓⃓
. Suppose

h1, h2, h3, h4 > 0. A polygon

P =
4⋂︂
i=1

H−(ui, hi)

is a proper trapezoid if and only if the intersection point of H(u2, h2) and
H(u4, h4) given by

1
b− a

(︃
−(labh2 + lbah4)
lah2 + lbh4

)︃
is contained in intH+(u1, h1), i.e., lah2 + lbh4 > (b− a)h1, since otherwise P is
a triangle. Moreover, in this case the vertices of P are given as intersections of
index-adjacent supporting hyperplanes, namely

v1 =
(︃

−bh1 + lbh4
h1

)︃
, v3 =

(︃
ah3 − lah2

−h3

)︃
,

v2 =
(︃

−ah1 − lah2
h1

)︃
, v4 =

(︃
bh3 + lbh4

−h3

)︃
,

so that

F (P,u1) = [v1,v2], F (P,u3) = [v3,v4]
F (P,u2) = [v2,v3], F (P,u4) = [v4,v1].

Moreover, the cone-volumes of P (dependent on hi) are given by

VP (u1) = 1
2h1 · (−(b− a)h1 + lah2 + lbh4),

VP (u2) = 1
2h2 · la(h1 + h3),
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VP (u3) = 1
2h3 · ((b− a)h3 + lah2 + lbh4),

VP (u4) = 1
2h4 · lb(h1 + h3).

Applying Lemma 2.15 to the system VP (ui) = µ(ui), 1 ≤ i ≤ 4, yields the
desired assertion.

We finish this section with the proof of Lemma 2.15 where we reduce solving
(2.36) to finding positive solutions of a biquadratic equation. To this end, we
recall that for p, q ∈ R, and denoting D = p2 − q, the biquadratic equation
x4 − 2px2 + q = 0 in the variable x ∈ R has

• no positive solution, if either D < 0 or p ≤ −
√︁

|D|,

• exactly one positive solution, if either D ≥ 0 and p ∈ (−
√
D,

√
D], or

D = 0 and p > 0, given by x =
√︂
p+

√
D,

• exactly two positive solutions, if D > 0 and p >
√
D, given by x =√︂

p±
√
D.

Proof of Lemma 2.15. Suppose h1, h2, h3, h4 > 0 solve the system (2.36). Both
h2 and h4 can be computed from h1 and h3 and the given data, so that

h2 = 2l−1
a γ2

h1 + h3
, (2.37)

h4 =
2l−1
b γ4

h1 + h3
, (2.38)

2γ1 = h1

(︃
−(b− a)h1 + 2(γ2 + γ4)

h1 + h3

)︃
, (2.39)

2γ3 = h3

(︃
(b− a)h3 + 2(γ2 + γ4)

h1 + h3

)︃
. (2.40)

By considering the sum and difference of (2.39) and (2.40) and substituting the
variables h1, h3 > 0 by x > 0 and y ∈ R via

h1 = x2 − y

x
√︁

2(b− a)
,

h3 = x2 + y

x
√︁

2(b− a)
,

(2.41)

we find that the variables x =
√︂

b−a
2 (h1 + h3) and y = b−a

2 (h2
3 − h2

1) satisfy

2(γ1 + γ3) = (b− a)(h2
3 − h2

1) + 2(γ2 + γ4)
= 2y + 2(γ2 + γ4), (2.42)

2(γ3 − γ1) = (b− a)(h2
1 + h2

3) + 2(γ2 + γ4)h3 − h1

h1 + h3

= (b− a)
(︃

x2

b− a
+ y2

(b− a)x2

)︃
+ 2(γ2 + γ4) y

x2
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= x−2
(︂
x4 + y2 + 2(γ2 + γ4)y

)︂
. (2.43)

As a final step we normalize (2.43) and substitute y by means of (2.42). Summed
up, we find that each solution of (2.36) yields a positive root of

x4 − 2(γ3 − γ1)x2 + (γ1 + γ3)2 − (γ2 + γ4)2. (2.44)

Let p = γ3 − γ1 and D = (γ2 + γ4)2 − 4γ1γ3.

(i) If γ2 + γ4 < 2√
γ1γ3, then D < 0. Also, if γ1 + γ3 ≥ γ2 + γ4 and γ1 ≥ γ3,

then p ≤ 0 and

p2 = (γ3 − γ1)2 = (γ1 + γ3)2 − 4γ1γ3 ≥ D.

Hence (2.44) has no positive root.

(ii) Suppose that D ≥ 0 and p ∈ (−
√
D,

√
D], so that x =

√︂
p+

√
D > 0

solves (2.44). Then backsubstituting via (2.42), (2.41), (2.37) and (2.38)
yields

y = (γ1 + γ3) − (γ2 + γ4),

h1 = p+
√
D − (γ1 + γ3) + (γ2 + γ4)√︁

2(b− a)
√︂
p+

√
D

= 1√︁
2(b− a)

−2γ1 + γ2 + γ4 +
√
D√︂

γ3 − γ1 +
√
D

,

h3 = p+
√
D + (γ1 + γ3) − (γ2 + γ4)√︁

2(b− a)
√︂
p+

√
D

= 1√︁
2(b− a)

2γ3 − γ2 − γ4 +
√
D√︂

γ3 − γ1 +
√
D

,

h2 = 2γ2

la

√︁
2(b− a)

√︂
γ3 − γ1 +

√
D

2(γ3 − γ1 +
√
D)

=
√︁

2(b− a)
la

γ2√︂
γ3 − γ1 +

√
D
,

h4 = 2γ4

lb

√︁
2(b− a)

√︂
γ3 − γ1 +

√
D

2(γ3 − γ1 +
√
D)

=
√︁

2(b− a)
lb

γ4√︂
γ3 − γ1 +

√
D
.

In any case, γ2, γ4 > 0 implies h2, h4 > 0. Moreover,

0 < 4γ1(γ1 + γ2 + γ3 + γ4) = (2γ1 + γ2 + γ4)2 − (γ2 + γ4)2 + 4γ1γ3

and so 2γ1 + γ2 + γ4 >
√
D. This gives

(b− a)h1 =
√︃
b− a

2
−2γ1 + γ2 + γ4 +

√
D√︂

γ3 − γ1 +
√
D
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<

√︃
b− a

2
2γ2 + 2γ4√︂
γ3 − γ1 +

√
D

= lah2 + lbh4.

It remains to show, that in either of the cases D ≥ 0, p ∈ (−
√
D,

√
D],

or D = 0 and p > 0, and that consequently h1, h3 > 0 holds. The latter
inequalities are equivalent to

√
D > max(2γ1 − γ2 − γ4, γ2 + γ4 − 2γ3).

Case γ1 + γ3 < γ2 + γ4. The assumption yields

D = (γ2 + γ4)2 − 4γ1γ3 > (γ1 + γ3)2 − 4γ1γ3 = (γ3 − γ1)2 ≥ 0,
p2 = (γ3 − γ1)2 = (γ1 + γ3)2 − 4γ1γ3 < (γ2 + γ4)2 − 4γ1γ3 = D,

and
√
D =

√︁
(γ2 + γ4)2 − 4γ1γ3

=
√︂

(γ2 + γ4)2 + 4γ2
3 − 4γ3(γ1 + γ3)

>
√︂

(γ2 + γ4)2 + 4γ2
3 − 4γ3(γ2 + γ4)

=
√︁

(γ2 + γ4 − 2γ3)2

≥ γ2 + γ4 − 2γ3,

> γ2 + γ4 − 2γ3 + 2(γ1 + γ3 − γ2 − γ4),
= 2γ1 − γ2 − γ4.

Case γ1 + γ3 = γ2 + γ4, γ1 < γ3. We have

D = (γ2 +γ4)2 −4γ1γ3 = (γ1 +γ3)2 −4γ1γ3 = (γ3 −γ1)2 = p2 > 0.

Hence 0 < p =
√
D. Therefore, from the assumptions we also find

2γ1 − γ2 − γ4 = γ2 + γ4 − 2γ3 = γ1 − γ3 < 0 <
√
D.

Case γ1 + γ3 > γ2 + γ4 = 2√
γ1γ3, γ1 < γ3. We have

D = (γ2 + γ4)2 − 4γ1γ3 = 0

and p = γ3 − γ1 > 0. Furthermore,

2γ3 > γ1 + γ3 > γ2 + γ4 = 2√
γ1γ3 > 2γ1,

so that 2γ1 − γ2 − γ4 < 0 =
√
D and γ2 + γ4 − 2γ3 < 0 =

√
D.

(iii) From γ2 + γ4 > 2√
γ1γ3 it follows that

D = (γ2 + γ4)2 − 4γ1γ3 > 0.

Furthermore we readily have p = γ3 − γ1 > 0. Then γ1 + γ3 > γ2 + γ4
yields

p2 = (γ3 − γ1)2 = (γ3 + γ1)2 − 4γ1γ3 > (γ2 + γ4)2 − 4γ1γ3 = D,
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which shows that x =
√︂
p±

√
D are the positive roots of (2.44). It remains

to show that both roots lead to distinct solutions of (2.36). In full analogy
to (ii), backsubstituting gives

y = (γ1 + γ3) − (γ2 + γ4),

h1 = 1√︁
2(b− a)

−2γ1 + γ2 + γ4 ±
√
D√︂

γ3 − γ1 ±
√
D

,

h3 = 1√︁
2(b− a)

2γ3 − γ2 − γ4 ±
√
D√︂

γ3 − γ1 ±
√
D

,

h2 =
√︁

2(b− a)
la

γ2√︂
γ3 − γ1 ±

√
D
,

h4 =
√︁

2(b− a)
lb

γ4√︂
γ3 − γ1 ±

√
D
.

Again, γ2, γ4 > 0 implies h2, h4 > 0 and from h2 and h4 it can be seen
that both solutions are distinct. Moreover,

0 < 4γ1(γ1 + γ2 + γ3 + γ4) = (2γ1 + γ2 + γ4)2 − (γ2 + γ4)2 + 4γ1γ3

and so 2γ1 + γ2 + γ4 >
√
D > −

√
D. This gives

(b− a)h1 =
√︃
b− a

2
−2γ1 + γ2 + γ4 ±

√
D√︂

γ3 − γ1 ±
√
D

<

√︃
b− a

2
2γ2 + 2γ4√︂
γ3 − γ1 ±

√
D

= lah2 + lbh4.

It remains to show that in both cases h1, h3 > 0. From γ1 + γ3 > γ2 + γ4
we find

√
D =

√︁
(γ2 + γ4)2 − 4γ1γ3

=
√︂

(γ2 + γ4)2 + 4γ2
1 − 4γ1(γ1 + γ3)

<
√︂

(γ2 + γ4)2 + 4γ2
1 − 4γ1(γ2 + γ4)

=
√︁

(γ2 + γ4 − 2γ1)2.

Since γ2 + γ4 > 2√
γ1γ3 > 2γ1 it follows that

−
√
D <

√
D < γ2 + γ4 − 2γ1

< γ2 + γ4 − 2γ1 + 2(γ1 + γ3 − γ2 − γ4)
= 2γ3 − γ2 − γ4.

Thus, h1, h3 > 0.
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2.5 Subspace concentration and uniqueness of
the cone-volume measure

This section is concerned with non-uniqueness of cone-volume measures, i.e.,
the question when it is possible that two distinct convex bodies K,M ∈ Kn

o sat-
isfy VK = VM . We particularly discuss the correlation between uniqueness of
cone-volume measures and the validity of the subspace concentration inequal-
ity (1.13). This problem remarkably connects to the logarithmic Minkowski
inequality (2.7) – at least to some extent – as we will demonstrate. Suppose
K ∈ Kn

s strictly satisfies the subspace concentration inequality (1.13). Böröczky,
Lutwak, Yang and Zhang [19] transformed the even logarithmic Minkowski prob-
lem into the optimization problem

inf
{︃∫︂

Sn−1
log hQ(u) dµ(u) : Q ∈ Kn

s , vol(Q) = µ(Sn−1)
}︃
, (2.45)

where µ is a given even measure on the sphere satisfying the strict subspace con-
centration inequality. In particular, Lemma 4.1 and Theorem 6.3 in [19] assert
that (2.45) has a global minimum and every minimizer Q0 satisfies VQ0 = µ.
Hence, by setting µ = VK in (2.45) we find that VK is unique if and only if for
every M ∈ Kn

s and r = (vol(K)/ vol(M))1/n it holds that∫︂
Sn−1

log hrM (u) dVK(u) >
∫︂

Sn−1

log hK(u) dVK(u),

which can be equivalently written as∫︂
Sn−1

log hM (u)
hK(u) dVK(u) > − vol(K) log r = vol(K)

n
log vol(M)

vol(K) ,

i.e., VK is unique if and only if the strict logarithmic Minkowski inequality (2.7)
is satisfied for K and every M ∈ Kn

s .

A significant aspect of Theorem 2.14 is that it asserts the non-uniqueness
of cone-volume measures of trapezoids. Only recently, Chen, Li and Zhu [22]
gave the first non-trivial examples for non-uniqueness of cone-volume measures.
Their construction is based on a family of truncated cross-polytopes, which in
the planar case become fivegons (see Fig. 2.7).

The explicit computation in Lemma 2.15 produces every example of non-
unique cone-volume measures of trapezoids from prescribed unit outer normals
and cone-volumes. The solutions corresponding to the given data

u1 =
(︃

0
1

)︃
, µ(u1) = 4,

u2 = 1√
2

(︃
−1
1

)︃
, µ(u2) = 24,

u3 =
(︃

0
−1

)︃
, µ(u3) = 56,

u4 =
(︃

1
0

)︃
, µ(u4) = 12,
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Figure 2.7: Two fivegons with equal cone-volume measure found by Chen, Li
and Zhu [22, Thm. 6.1]

are illustrated in Fig. 2.8. Overall, on the one hand the uniqueness question for
cone-volume measures in the class K2

s is settled and the logarithmic Minkowski
inequality (2.7) is known to hold. On the other hand both assertions are false
for the class K2

o. For centered convex bodies in the plane they are both open
problems.

From the characterization result in Theorem 2.14 we may draw conclusions
about cone-volume measures of centered trapezoids. In this case the subspace
concentration inequality (1.13) holds, which is stronger than (2.35).

Theorem 2.16 (Böröczky, Henk [13]). Let K ∈ Kn
c . Then

VK(Sn−1 ∩ L) ≤ dimL

n
vol(K) (2.46)

for every proper subspace L of Rn, and equality in (2.46) is attained for some
L, if and only if there is a subspace L′ complementary to L such that µ is
concentrated on Sn−1 ∩ (L ∪ L′).

We will use the following relation which is probably known, but no reference
is known to the author.

Figure 2.8: Two trapezoids with equal cone-volume measure
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v1

v2

v3

v4

c1

c3

c2

c4

ci = (v1 + v2 + v3 + v4 − vi)/3

Figure 2.9: Determining the centroid of a quadrilateral from triangulations as
in the proof of Proposition 2.17

Proposition 2.17 (Xue1). Let Q ∈ P2
o be a quadrilateral with counterclockwise

ordered vertices v1,v2,v3,v4 ∈ S1. Then Q is centered if and only if

det(v2,v4) = − det(v2,v1) + det(v3,v2) + det(v4,v3) − det(v1,v4),
det(v3,v1) = − det(v2,v1) − det(v3,v2) + det(v4,v3) + det(v1,v4).

(2.47)

In particular, if Q is centered with ordered unit outer normals u1,u2,u3,u4 ∈ S1,
then

VQ(u1)2 − VQ(u1)VQ(u3) + VQ(u3)2

= VQ(u2)2 − VQ(u2)VQ(u4) + VQ(u4)2. (2.48)

Proof. Let Q ∈ P2
o with vertices v1,v2,v3,v4 ∈ R2 and ordered outer normals

u1,u2,u3,u4 ∈ S1 such that

F (Q,u1) = [v1,v2], F (Q,u3) = [v3,v4]
F (Q,u2) = [v2,v3], F (Q,u4) = [v4,v1].

The centroid of any measurable set X ⊆ Rn with vol(X) > 0 satisfies for any
partition into measurable sets X1 ∪X2 = X, vol(X1 ∩X2) = 0, the relation

c(X) = vol(X1)
vol(X) c(X1) + vol(X2)

vol(X) c(X2),

i.e., c(X) lies on the segment [c(X1), c(X2)]. Consider the partitions of Q
coming from its diagonals, i.e.,

Q = conv{v1,v2,v3}∪conv{v1,v3,v4} = conv{v2,v3,v4}∪conv{v1,v2,v4}.
1Fei Xue, private communication.
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The centroid is the unique intersection point of the segments joining the cen-
troids of the cells (see Fig. 2.9), i.e.,

c(Q) ∈
[︃

1
3(v1 + v2 + v3), 1

3(v1 + v3 + v4)
]︃

∩
[︃

1
3(v2 + v3 + v4), 1

3(v1 + v2 + v4)
]︃
.

The origin lies on each of both segments if and only if

det(v1 + v2 + v3,v1 + v3 + v4) = 0,
det(v2 + v3 + v4,v1 + v2 + v4) = 0.

Rearranging these equations by using the properties of the determinant yields
the equivalent equations

det(v2,v4) = − det(v2,v1) + det(v3,v2) + det(v4,v3) − det(v1,v4),
det(v3,v1) = − det(v2,v1) − det(v3,v2) + det(v4,v3) + det(v1,v4).

This is (2.47). Now if Q is centered, by multiplying the latter equations we find

det(v2,v4) det(v3,v1)

=
(︂

det(v4,v3) − det(v2,v1)
)︂2

−
(︂

det(v3,v2) − det(v1,v4)
)︂2

= 4
(︃(︂

VQ(u3) − VQ(u1)
)︂2

−
(︂

VQ(u2) − VQ(u4)
)︂2
)︃
. (2.49)

On the other hand, for any vectors a, b, c,d ∈ R2 it holds that

det(a, b) det(c,d) = det((a, b)T (c,d))

= det
(︃

⟨a, c⟩ ⟨a,d⟩
⟨b, c⟩ ⟨b,d⟩

)︃
= ⟨a, c⟩ ⟨b,d⟩ − ⟨a,d⟩ ⟨b, c⟩ . (2.50)

In particular,

det(v2,v4) det(v3,v1)
= ⟨v2,v3⟩ ⟨v4,v1⟩ − ⟨v2,v1⟩ ⟨v4,v3⟩
= ⟨v2,v3⟩ ⟨v4,v1⟩ − ⟨v3,v1⟩ ⟨v4,v2⟩ + ⟨v3,v1⟩ ⟨v4,v2⟩ − ⟨v2,v1⟩ ⟨v4,v3⟩
= ⟨v3,v1⟩ ⟨v2,v4⟩ − ⟨v3,v4⟩ ⟨v2,v1⟩ − ⟨v2,v4⟩ ⟨v1,v3⟩ + ⟨v2,v3⟩ ⟨v1,v4⟩
= det(v3,v2) det(v1,v4) − det(v2,v1) det(v4,v3)

= 4
(︂

VQ(u2)VQ(u4) − VQ(u1)VQ(u3)
)︂
.

Together with (2.49) it follows that

VQ(u2)VQ(u4) − VQ(u1)VQ(u3)

=
(︂

VQ(u3) − VQ(u1)
)︂2

−
(︂

VQ(u2) − VQ(u4)
)︂2
,

which gives (2.48).



44 2 The log-Minkowski inequality and the planar cone-volume measure

The conditions of Theorem 2.16 and Proposition 2.17 together are almost
sufficient for centered trapezoids. In fact, we may deduce a characterization of
cone-volume measures of centered trapezoids from Theorem 2.14 (see Fig. 2.6).

Corollary 2.18. Let µ be a non-zero, finite Borel measure on S1 supported on
pairwise distinct and counterclockwise ordered unit vectors u1,u2,u3,u4 ∈ S1.
Suppose supp(µ) contains a single pair of antipodal points, say u1 = −u3, and
there is open hemisphere ω ⊆ S1 such that supp(µ) ∩ ω = {u3}. Then there
exists a polygon P ∈ P2

c with VP = µ if and only if

(i) µ(u1) + µ(u3) < µ(u2) + µ(u4),

(ii) µ(u1)2 − µ(u1)µ(u3) + µ(u3)2 = µ(u2)2 − µ(u2)µ(u4) + µ(u4)2,

(iii) µ(u1) < µ(u3),

(iv) µ(u2) = µ(u4).

Moreover, P is uniquely determined.

Proof. We start by proving the necessity of all the conditions. Let T ∈ Pn
c

be a centered trapezoid with order outer normal vectors u1,u2,u3,u4 ∈ S1,
u1 = −u3, such that u3 = U(T ) ∩ ω for a suitable open hemisphere ω ⊆ S1.
Condition (i) is just the strict subspace concentration inequality for centered
convex polygons that are not parallelograms (see Theorem 2.16). The asser-
tion (2.48) of Proposition 2.17 is condition (ii). For condition (iv) consider the
segment S connecting the midpoints of F (T,u1) and F (T,u3). It divides T
into two parts of equal area such that exactly half of each segment T ∩H(u1, t),
t ∈ R, lies on either side of S. This shows that c(T ) is contained in S. Moreover,
S also divides the cones conv(F (T,ui) ∪ {0}), i ∈ {1, 3} into equal parts. Thus,
VT (u2) = VT (u4). The condition (iii) can be seen as follows. We abbreviate

hi = hT (ui),
fi = vol1(F (T,ui)),

for i = 1, 2, 3, 4. Since T is centered, Fubini’s theorem yields

0 =
h1∫︂

−h3

t vol1(T ∩H(u1, t)) dt

=
h1∫︂

−h3

t

(︃
t+ h3

h1 + h3
(f1 − f3) + f3

)︃
dt

= h1 + h3

6

(︂
(2f1 + f3)h1 − (f1 + 2f3)h3

)︂
= 2(h1 + h3)f1f3

3

(︂
(2f1 + f3)f3VT (u1) − (f1 + 2f3)f1VT (u3)

)︂
,

and so
VT (u1) = VT (u3) · (f1 + 2f3)f1

(2f1 + f3)f3
.
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From Minkowski’s characterization (2.8) and the fact that U(T ) ∩ ω = {u3} it
follows that f1 < f3 and thus (f1 + 2f3)f1 < (2f1 + f3)f3, which shows (iii).

On the other hand, suppose µ is given as above such that (i), (ii), (iii) and
(iv) hold. Theorem 2.14 asserts that there exists a unique trapezoid T ∈ P2

o with
VT = µ. It remains to show that T is centered. To this end, let v1,v2,v3,v4 ∈ R2

be the vertices of T and sorted such that

F (T,u1) = [v1,v2], F (T,u3) = [v3,v4]
F (T,u2) = [v2,v3], F (T,u4) = [v4,v1].

We start by proving that det(v3,v1) = det(v2,v4). Indeed, since F (T,u1) and
F (T,u3) are parallel we find that

0 = det(v2−v1,v4−v3) = det(v2,v4)−det(v2,v3)−det(v1,v4)+det(v1,v3).

Now (iv) is equivalent to det(v3,v2) = det(v1,v4). Hence det(v3,v1) = det(v2,v4).
As above, by (2.50) we have

det(v2,v4) det(v3,v1)
= ⟨v2,v3⟩ ⟨v4,v1⟩ − ⟨v2,v1⟩ ⟨v4,v3⟩
= ⟨v2,v3⟩ ⟨v4,v1⟩ − ⟨v3,v1⟩ ⟨v4,v2⟩ + ⟨v3,v1⟩ ⟨v4,v2⟩ − ⟨v2,v1⟩ ⟨v4,v3⟩
= ⟨v3,v1⟩ ⟨v2,v4⟩ − ⟨v3,v4⟩ ⟨v2,v1⟩ − ⟨v2,v4⟩ ⟨v1,v3⟩ + ⟨v2,v3⟩ ⟨v1,v4⟩
= det(v3,v2) det(v1,v4) − det(v2,v1) det(v4,v3)

= 4
(︂

VT (u2)VT (u4) − VT (u1)VT (u3)
)︂

= 4
(︂

VT (u2)2 − VT (u1)VT (u3)
)︂

= 4
(︂

VT (u1)2 + VT (u3)2 − 2VT (u1)VT (u3)
)︂

= 4(VT (u3) − VT (u1))2,

where we used (ii) and (iv). Since det(v2,v4) = det(v3,v1) and because of (iii)
and (iv) it follows that

det(v2,v4) = 2(VT (u3) − VT (u1))
= 2(VT (u3) − VT (u1) + VT (u2) − VT (u4))
= det(v4,v3) − det(v2,v1) + det(v3,v2) − det(v1,v4)

and

det(v3,v1) = 2(VT (u3) − VT (u1))
= 2(VT (u3) − VT (u1) − VT (u2) + VT (u4))
= det(v4,v3) − det(v2,v1) − det(v3,v2) + det(v1,v4).

Since (2.47) is satisfied, Proposition 2.17 asserts that T is centered.

The presented examples confirming non-uniqueness of non-trivial cone-volume
measure all have in common that either the subspace concentration inequality
is violated for a pair of antipodal outer normals, or the considered polygon has
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Figure 2.10: Fivegon in Proposition 2.19

no parallel sides. In case of quadrilaterals, Theorem 2.14 assures that this is
necessary. However, Malikiosis discovered the existence of a fivegon satisfy-
ing the strict subspace concentration inequality with non-unqiue cone-volume
measures.

Proposition 2.19 (Malikiosis2). There are two fivegons satisfying the strict
subspace concentration inequality that have the same cone-volume measure.

Proof. The fivegon given as (see Fig. 2.10)

P = conv
{︃(︃

−36
100

)︃
,

(︃
−330
100

)︃
,

(︃
−330
−98

)︃
,

(︃
−30
−98

)︃
,

(︃
66
−2

)︃}︃
,

has cone-volume data

u1 =
(︄

1√
2

1√
2

)︄
, VP (u1) = 3264,

u2 =
(︃

0
1

)︃
, VP (u2) = 14700,

u3 =
(︃

−1
0

)︃
, VP (u3) = 32670,

u4 =
(︃

0
−1

)︃
, VP (u4) = 14700,

u5 =
(︄

1√
2

− 1√
2

)︄
, VP (u5) = 3264.

In particular, P satisfies the subspace concentration inequality (2.34). Moreover,
the cone-volume measure of P is invariant under reflection about e⊥

2 , but P is
not.

The results of this section raise the questions whether cone-volume measures
of centered polygons are unique and if the the number of distinct polygons
realizing given cone-volume data can be bounded.

2Romanos Diogenes Malikiosis, private communication.



3 Dual curvature measures

3.1 An introduction to dual Brunn-Minkowski
theory

Duality of concepts generally describes the act of translating aspects of one
theory into another by an (often involutive) operation, e.g., dual spaces of vector
spaces or primal and dual linear programs in optimization. A duality within the
space of convex bodies is described by the following operation. For a non-empty
set X ⊆ Rn we define its polar set by

X∗ = {y ∈ Rn : ⟨x,y⟩ ≤ 1 for all x ∈ X}. (3.1)

The polar set is always a closed convex set containing the origin. Moreover, for
K ∈ Kn

o its polar K∗ is a convex body in Kn
o and (K∗)∗ = K. There is no

relation between the support functions hK and hK∗ of the same simplicity, but
hK∗ exhibits a geometric interpretation regarding K, which is

(hK∗(u))−1 = max{λ > 0 : λu ∈ K}, (3.2)

for u ∈ Sn−1. Its (−1)-homogeneous extension defined by ρK(x) = (hK∗(x))−1

for x ∈ Rn\{0} is called radial function of K. The geometric intuition behind
this duality is that points contained in K∗ interchange roles with halfspaces
containing K, i.e., x ∈ K∗ if and only if K ⊆ H−(x, 1), for x ̸= 0, and vice
versa.

The dual Brunn-Minkowski theory is a conceptually dual to the classical
Brunn-Minkowski theory which arises by replacing the Minkowski addition (1.1),
i.e., the addition of support functions, by addition of radial functions in the fol-
lowing way. For K,M ∈ Kn

o , and scalars s, t ≥ 0 the radial combination of
K and M with respect to s and t is

sK ˜︁+ tM = {x ∈ Rn : sρK(x) + tρM (x) ≥ 1} . (3.3)

In general, the radial combination of convex bodies is not necessarily a convex
set, but it is always a star-shaped set, i.e., a non-empty set S ⊆ Rn such
that for every x ∈ S the segment [0,x] is contained in S (see Fig. 3.1). The

47
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Figure 3.1: Radial combination 1
2K ˜︁+ 1

2M for K = conv
{︂(︁0

2
)︁
,
(︁ −1

−1/2
)︁
,
(︁ 2

−1/2
)︁}︂

and M = [−1, 1]2

definition (3.2) may be extended to compact star-shaped sets S ⊆ Rn via

ρS(x) = max{λ ≥ 0 : λx ∈ S},

for x ∈ Rn \ {0}. If ρS is positive and continuous, we call S a star body. The
set of star bodies in Rn will be denoted by Sno . Then the left hand side of (3.3)
can be characterized as the unique star body with

ρsK +̃ tM = sρK + tρM .

The dual Brunn-Minkowski theory was introduced by Lutwak [58]. His con-
tributions include among others an analogue of the Minkowski inequality (2.5)
from which the dual Brunn-Minkowski inequality

vol((1 − λ)K ˜︁+λM) 1
n ≤ (1 − λ) vol(K) 1

n + λ vol(M) 1
n ,

K,M ∈ Sno and λ ∈ [0, 1], may be derived (see also [59]). Moreover, there exist
functionals similar to the quermassintegrals defined in (1.5). Lutwak [58] found
that for a star body K ∈ Sno its dual parallel body K ˜︁+λBn also admits a
polynomial expansion given by

vol(K ˜︁+λBn) =
n∑︂
i=0

λi
(︃
n

i

)︃˜︂Wi(K),

where the functionals ˜︂Wi(K) defined this way are called dual quermassinte-
grals of K. In analogy to Kubota’s formula (1.6) the dual quermassintegrals˜︂Wi(K) exhibit the following integral geometric representation as the means of
the volumes of sections (see [60])

˜︂Wn−i(K) = vol(Bn)
voli(Bi)

∫︂
G(i,n)

voli(K ∩ L) dL,

for i = 0, . . . , n. The celebrated solution of the Busemann-Petty problem is
amongst the recent successes of the dual Brunn-Minkowski theory (cf. [31,
35, 81]) and it also has connections and applications to integral geometry,
Minkowski geometry and the local theory of Banach spaces. For more infor-
mation about the study of central sections of convex bodies we recommend the
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˜︁AK(1/2, η)

η

K

Figure 3.2: Local dual parallel body ˜︁AK(λ, η)

books of Gardner [32], Koldobsky [53] and Schneider [75, Sect. 9.3] and the
references therein.

For a long time an analogue of the variational formula (1.7) for dual quer-
massintegral has been unknown. This gap between classical and dual Brunn-
Minkowski theory was recently closed in a groundbreaking paper by Huang, Lut-
wak, Yang and Zhang [48]. Define the logarithmic Wulff shape of K ∈ Kn

o

with respect to a function f : Sn−1 → R, as the convex body

[hK exp(f)] = {x ∈ Rn : ⟨u,x⟩ ≤ hK(u) exp(f(u)) for all u ∈ Sn−1}.

Huang, Lutwak, Yang and Zhang proved for K ∈ Kn
o and every continuous

function f : Sn−1 → R the variational formula

lim
ϵ→0

˜︂Wn−i([hK exp(εf + o(ε, ·))]) −˜︂Wn−i([hK ])
ε

= i

∫︂
Sn−1

f(u) d˜︁Ci(K,u),

i = 1, . . . , n, where o(ε, ·) is an arbitrary family of real functions on Sn−1 with
limϵ→0

o(ε,u)
ε = 0, uniformly in u, and ˜︁Ci(K, ·) are Borel measures on Sn−1

(see [48, Thm. 4.5]). Amazingly, the measures ˜︁Ci(K, ·) admit a local Steiner-
type formula comparable to (1.8). For a convex body K ∈ Kn

o and a point
x ∈ Rn \ {0} we define by ˜︁pK(x) = ρK(x)x ∈ ∂K its radial projection onto
K and by ˜︁d(K,x) =

{︄
|x − ˜︁pK(x)| , if x /∈ K,
0, if x ∈ K,

its radial distance to K. Then for a Borel set η ⊆ Sn−1 and λ > 0 we consider
the local dual parallel body (see Fig. 3.2)

˜︁AK(λ, η) =
{︂

x ∈ Rn : 0 ≤ ˜︁d(K,x) ≤ λ

and, if x ̸= 0, ˜︁pK(x) ∈ HK(u) for some u ∈ η} .

Huang, Lutwak, Yang and Zhang established the polynomial expansion
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η

α∗
K(η)

K

Figure 3.3: Reverse radial Gauss image of a smooth convex body

vol( ˜︁AK(λ, η)) =
n∑︂
i=0

(︃
n

i

)︃
λi˜︁Cn−i(K, η) (3.4)

for every Borel set η ⊆ Sn−1 (see [48, Thm. 3.1]) and used (3.4) as the defini-
tion for the dual curvature measures ˜︁Ci(K, ·) of K, 0 ≤ i ≤ n, which act as
conceptual counterparts of the curvature measures defined in (1.9) in the dual
Brunn-Minkowski theory. Moreover, they gave an explicit integral representa-
tion of the dual curvature measures which is as follows. For a Borel set η ⊆ Sn−1

we define the reverse radial Gauss image by (see Fig. 3.3)

α∗
K(η) = {u ∈ Sn−1 : ˜︁pK(u) ∈ HK(v) for some v ∈ η}.

Then the dual curvature measures satisfy

˜︁Ci(K, η) = 1
n

∫︂
α∗

K
(η)

ρK(u)i du

for i = 0, . . . , n. This representation justifies to define for any q ∈ R the qth
dual curvature measure of K ∈ Kn

o by

˜︁Cq(K, η) = 1
n

∫︂
α∗

K
(η)

ρK(u)q du. (3.5)

If η is a Borel set, then α∗
K(η) is Hn−1-measurable (see [75, Lemma 2.2.11.]) and

so the qth dual curvature measure given in (3.5) is well defined. An astonishing
feature of these dual curvature measures is that they link two other fundamental
geometric measures of a convex body. When q = 0 the dual curvature measure
is – up to a factor of n – Aleksandrov’s integral curvature of the polar body
of K, i.e., ˜︁C0(K, ·) = 1

nC0(K∗, ·), and for q = n the dual curvature measure
coincides with the cone-volume measure of K (see [48, Lem. 3.8]).

We want to point out that there are also dual area measures corresponding
to the area measures defined in (1.8) given by

˜︁Sq(K,ω) = 1
n

∫︂
ω

ρK(u)q du
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for q ∈ R and Borel sets ω ⊆ Sn−1. An extensive description of the duality
between classical and dual area measures and curvature measures is contained
in [48].

The analogue to the Minkowski-Christoffel problem in the dual Brunn-Min-
kowski theory is the dual Minkowski problem. The task is, given q ∈ R and a
finite Borel measure µ on Sn−1, to find necessary and sufficient conditions for the
existence of a convex body K ∈ Kn

o such that ˜︁Cq(K, ·) = µ. It was introduced
in [48] and therein a sufficient condition for even measures was established.

Theorem 3.1 (Huang, Lutwak, Yang, Zhang [48]). Let q ∈ (0, n] and µ be a
non-zero finite even Borel measure on Sn−1. If

µ(Sn−1 ∩ L) < min
{︃

1 − q − 1
q

n− dimL

n− 1 , 1
}︃
µ(Sn−1) (3.6)

for every proper subspace L of Rn, then there exists a symmetric convex body
K ∈ Kn

s with ˜︁Cq(K, ·) = µ.

There are two remarkable aspects of Theorem 3.1. As for q = n the qth dual
curvature measure is equal to the cone-volume measure, also (3.6) becomes
the strict form of the subspace concentration inequality (1.13). Furthermore,
for 0 < q ≤ 1 the inequality (3.6) only asserts that µ is not concentrated
on a great subsphere. This is a necessary condition that can be seen from
(3.5). In particular, Theorem 3.1 solves the even dual Minkowski problem in
the range q ∈ (0, 1]. Examples of convex bodies showing that for q ∈ (1, n)
the inequality (3.6) is not a necessary condition were given in [14, Prop. 1.5]
and [82, Prop. A.1]. A necessary subspace concentration inequality for qth
dual curvature measures of symmetric convex bodies was proved by Böröczky,
Henk and the author. It was also shown that the inequality is sharp since the
aforementioned examples get arbitrarily close to the upper bound.

Theorem 3.2 (Böröczky, Henk, P. [14]). Let q ∈ (1, n) and K ∈ Kn
s . Then

˜︁Cq(K, Sn−1 ∩ L) < min
{︃

dimL

q
, 1
}︃ ˜︁Cq(K, Sn−1) (3.7)

for every proper subspace L of Rn.

We remark that since the bounds (3.6) and (3.7) coincide for dimL = 1, the
Theorems 3.1 and 3.2 solved the even dual Minkowski problem in the plane for
q ∈ (1, 2). The sufficiency of (3.7) was first proved by Zhao [82], when q is an
integer, and very recently in full generality by Böröczky, Lutwak, Yang, Zhang
and Zhao [17].

Theorem 3.3 (Böröczky, Lutwak, Yang, Zhang, Zhao [17]). Let q ∈ (0, n) and
µ be a non-zero finite even Borel measure on Sn−1. If

µ(Sn−1 ∩ L) < min
{︃

dimL

q
, 1
}︃
µ(Sn−1)

for every proper subspace L of Rn, then there exists a symmetric convex body
K ∈ Kn

s with ˜︁Cq(K, ·) = µ.
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The Theorems 3.2 and 3.3 combined solve the dual Minkowski problem for
symmetric convex bodies in the range q ∈ (0, n). The case q < 0 was treated by
Zhao [83]. He proved the absence of a non-trivial subspace concentration bound
even without any symmetry assumptions on the given measure. Moreover, he
established the uniqueness of dual curvature measures of convex bodies when
q < 0.

Theorem 3.4 (Zhao [83]). Let q < 0 and µ be a non-zero finite Borel measure
on Sn−1. Then there exists a convex body K ∈ Kn

o with ˜︁Cq(K, ·) = µ if and
only if µ is not concentrated on any closed hemisphere. Moreover, K ∈ Kn

o is
uniquely determined.

In the remaining paramater range q > n no sufficient condition in the (even)
dual Minkowski problem is known. A necessary subspace concentration inequal-
ity for dual curvature measures of symmetric convex bodies when q ≥ n+ 1 was
proved by Henk and the author.

Theorem 3.5 (Henk, P. [42]). Let q ≥ n+ 1 and K ∈ Kn
s . Then

˜︁Cq(K, Sn−1 ∩ L) < q − n+ dimL

q
˜︁Cq(K, Sn−1) (3.8)

for every proper subspace L of Rn.

The main goal of this chapter is to present the proofs of the Theorems 3.2
and 3.5 in full detail. We use the representation (3.5) to conclude that – sim-
ilar to the cone-volume measure – ˜︁Cq(K, η) measures the cones associated to
the outer normals in η just by a measure different from the volume. We will
follow the approach of Henk, Schürmann and Wills [44] who proved the neces-
sity of (1.13) for cone-volume measures of symmetric polytopes using only the
Brunn-Minkowski inequality (1.2). To this end, we establish Brunn-Minkowski
type inequalities in the Sections 3.2 and 3.3, where the volume is replaced by a
measure with a Lebesgue-density that satisfies a convexity principle.

In Section 3.4 we will prove Theorems 3.2 and 3.5 and also the sharpness
of the given bounds. Moreover, in Section 3.5 we establish an extension of
Theorem 3.5 to the range q ∈ (n, n+ 1) in case n = 2 and discuss the occurring
obstructions when n > 2.

Finally, we bring up a generalization of dual curvature measures proposed
in [64] in Section 3.6 and survey extensions of Theorems 3.2 and 3.5 in this
setting.

The results of this chapter originally appeared as joint works with Károly
Böröczky, Jr., and Martin Henk [14, 42].

3.2 A generalization of Anderson’s theorem on
even quasiconcave functions

The integral representation of dual curvature measures (3.5) has a striking re-
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semblance to the well-known volume formula of convex bodies K ∈ Kn
o

vol(K) = 1
n

∫︂
Sn−1

ρK(u)n du,

which can be proved just by using spherical coordinates in Rn. Using the con-
vention 0α = ∞, α < 0, for convenience, which is consistent to measure theoretic
considerations, the same method yields the following formula.

Lemma 3.6. Suppose q > 0, K ∈ Kn
o and Q ∈ Sno . Let η ⊆ Sn−1 be a Borel

set. Then ∫︂
α∗

K
(η)

ρQ(u)n−qρK(u)q du = q

∫︂
K∩
(︁
R≥0·α∗

K
(η)
)︁ ρQ(x)n−q dx. (3.9)

Proof. Since q > 0, the integral
∫︁ a

0 r
q−1 dr exists for any a > 0. By using

spherical coordinates and (3.5)

q

∫︂
K∩
(︁
R≥0·α∗

K
(η)
)︁ ρQ(x)n−q dx = q

∫︂
α∗

K
(η)

⎛⎜⎝ ρK (u)∫︂
0

ρQ(ru)n−qrn−1 dr

⎞⎟⎠ du

= q

∫︂
α∗

K
(η)

ρQ(u)n−q

⎛⎜⎝ ρK (u)∫︂
0

rq−1 dr

⎞⎟⎠ du

=
∫︂

α∗
K

(η)

ρQ(u)n−qρK(u)q du.

The nature of Lemma 3.6 is revealed when we consider (3.5) for a polytope
P ∈ Pn

o rather than an arbitrary convex body K ∈ Kn
o . In this case (3.9) with

Q = Bn gives (cf. (1.10))

˜︁Cq(P, η) = 1
n

∫︂
α∗

P
(η)

ρP (u)q du

= q

n

∫︂
P∩
(︁
R≥0·α∗

P
(η)
)︁ |x|q−n dx

= q

n

∑︂
u∈U(P )∩η

⎛⎜⎝ ∫︂
conv(F (P,u)∪{0})

|x|q−n dx

⎞⎟⎠ ,

(3.10)

i.e., the sum in (3.10) is taken over the same cones as the cone-volume measure,
which are measured by |·|α dHn(·), for some α ∈ (−n,∞), rather than the
Lebesgue measure. Following the idea of Henk, Schürmann and Wills [44] we
therefore seek for Brunn-Minkowski type inequalities for measures of this kind.



54 3 Dual curvature measures

α = −1
α = 1/2
α = 4/3

Figure 3.4: Quasiconcave (red), quasiconvex (violet) and convex (blue) instance
of the family {|·|α : α ∈ R \ {0}}

We point out that Lemma 3.6 is crucial for this approach which is why it is only
viable when q > 0.

For each α ∈ R \ {0} the function |·|α has a convexity property (see Fig. 3.4).
If α ≥ 1, then it is convex. When α ∈ (0, 1), it is a quasiconvex function, but
not convex. For α < 0, the function is quasiconcave. We say that a nonnegative
function f : Rn → R≥0 ∪ {∞} is quasiconvex if for every c ∈ R≥0 the sublevel
set

{f ≤ c} = f−1([0, c]) = {x ∈ Rn : f(x) ≤ c}

is convex, and quasiconcave if the superlevel sets

{f ≥ c} = f−1([c,∞]) = {x ∈ Rn : f(x) ≥ c}

are convex. Since convex sets are measurable and measurability of sub-/superlevel
sets implies measurability of functions, this definition yields that quasiconvex
and quasiconcave functions are Hausdorff-measurable functions. In [3], Ander-
son proved that if K ∈ Kn

s and f : Rn → R≥0 ∪ {∞} is quasiconcave and even,
the minimum value of ∫︂

t+K

f(x) dx

with respect to t ∈ Rn is attained at t = 0. This is obvious if restricted to the
one-dimensional case, since the evenness of f together with the quasiconcavity
implies that f is monotonically decreasing on any ray starting from the origin.
The proof of Anderson relies only on the Brunn-Minkowski inequality (1.2),
but the result can be strengthened to a Brunn-Minkowski type inequality for
integrals of quasiconcave functions. Here we compare the integral of f over
a convex body K with the integral over Minkowski combinations of the form
(1−λ)K+λ(−K). It can be observed, that on the one hand (1−λ)K+λ(−K)
is larger than K regarding volume, but also it lies somewhat closer to the origin
where f attains its peak (see Fig. 3.5).
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K

−K

Kλ

Figure 3.5: Level sets of a two-dimensinal quasiconcave function, and a
Minkowski combination (1 − λ)K + λ(−K)

Theorem 3.7 (Böröczky, Henk, P. [14]). Let f : Rn → R≥0 ∪ {∞} be an even
quasiconcave function. Let K ⊂ Rn be a compact, convex set with dimK = k.
Then for λ ∈ [0, 1] ∫︂

(1−λ)K+λ(−K)

f(x) dHk(x) ≥
∫︂
K

f(x) dHk(x). (3.11)

If the superlevel sets {f ≥ c} are closed for every c ≥ 0, then equality holds if
and only if for every c > 0

volk ([λK + (1 − λ)(−K)] ∩ {f ≥ c}) = volk(K ∩ {f ≥ c}).

Proof. Let Kλ = (1 − λ)K + λ(−K). By the convexity of the superlevel sets
of f we have for every c ≥ 0

Kλ ∩ {f ≥ c} ⊇ (1 − λ)
(︂
K ∩ {f ≥ c}

)︂
+ λ

(︂
(−K) ∩ {f ≥ c}

)︂
. (3.12)

The Brunn-Minkowski inequality (1.2) applied to the set on right hand side of
(3.12) gives

volk(Kλ ∩ {f ≥ c})
≥ volk ((1 − λ)(K ∩ {f ≥ c}) + λ((−K) ∩ {f ≥ c}))

≥
(︂

(1 − λ) volk(K ∩ {f ≥ c}) 1
k + λ volk((−K) ∩ {f ≥ c}) 1

k

)︂k
.(3.13)

Since f is even, the superlevel sets {f ≥ c} are symmetric. Hence,

volk(K ∩ {f ≥ c}) = volk((−K) ∩ {f ≥ c})

and so (3.13) becomes

volk(Kλ ∩ {f ≥ c}) ≥ volk(K ∩ {f ≥ c})
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for every c ≥ 0. Fubini’s theorem yields

∫︂
Kλ

f(x) dHk(x) =
∫︂
Kλ

⎛⎜⎝ f(x)∫︂
0

1 dc

⎞⎟⎠ dHk(x)

=
∞∫︂

0

volk(Kλ ∩ {f ≥ c}) dc

≥
∞∫︂

0

volk(K ∩ {f ≥ c}) dc

=
∫︂
K

f(x) dHk(x).

Suppose {f ≥ c} is closed for every c > 0, and we have equality in (3.11). Then
volk(Kλ ∩ {f ≥ c}) is lower semi-continuous with respect to c, and for λ ∈ [0, 1]
we find that

volk(Kλ ∩ {f ≥ c}) = volk(K ∩ {f ≥ c})

for every c > 0.

Theorem 3.7 includes the result of Anderson [3] as a special case when K
is the translate of a symmetric set. If f is chosen to be the constant function
f(x) = 1, x ∈ Rn, then (3.11) becomes the Brunn-Minkowski inequality (1.2)
for M = −K. Another interpretation is as follows. For a quasiconcave function
f : Rn → R≥0 ∪ {∞} we denote by Ψf the measure with Hausdorff-density
function f , i.e., dΨf = f dHn. The inequality (3.11) for k = n states that

Ψf ((1 − λ)K + λ(−K)) ≥ Ψf (K)

for K ∈ Kn and λ ∈ [0, 1]. The natural extension reads

Ψf ((1 − λ)K + λM) ≥ min {Ψf (K),Ψf (M)} (3.14)

for any K,M ∈ Kn, which is known as quasiconcavity of the measure Ψf .
However, the restriction to pairs (K,−K) ∈ (Kn)2 of Theorem 3.7 is crucial.
Counterexamples to (3.14) can be easily found also when f is an even func-
tion. As a matter of fact, the famous Borell-Brascamp-Lieb inequality asserts
that (3.14) holds if f− 1

n is a convex function (which is stronger than f being
quasiconcave). For more information on how convexity of measures and density
functions are related we refer to [9], [26] and [33, Sect. 15].

3.3 A Brunn–Minkowski type inequality for
moments of the Euclidean norm

Establishing a Brunn-Minkowski type inequality like (3.11) for convex functions
f is significantly more challenging. In this case the sublevel sets {f ≤ c} are
convex, but adapting the proof of Theorem 3.7 is not possible. In fact, for any



3.3 Brunn–Minkowski type inequality for moments of the Euclidean norm 57

M ∈ Kn
s , and t ∈ Rn such that M ∩ (M + t) = ∅ we may choose f to be 0 on M

and 1 otherwise, and K = M + t. Then f is an even convex function, but (3.11)
is wrong for any λ ∈ [0, 1] sufficently close to 1

2 . Nevertheless, in the special
case when f is a power of the Euclidean norm we prove the following result.

Theorem 3.8 (Henk, P. [42]). Let α ≥ 1 and K ∈ Kn with dimK = k ≥ 1.
Then for λ ∈ [0, 1] we have∫︂

(1−λ)K+λ(−K)

|x|α dHk(x) ≥ |2λ− 1|α
∫︂
K

|x|α dHk(x), (3.15)

with equality for λ ∈ (0, 1) if and only if α = 1, there exists a u ∈ Sn−1 such
that K ⊂ lin u, and the origin is not in the relative interior of the segment
(1 − λ)K + λ(−K).

Note, that when α = 0, also the inequality (3.15) becomes the Brunn-
Minkowski inequality (1.2) for K and −K. The rest of this section is devoted
to the proof of Theorem 3.8, but actually we prove a slightly more general
statement.

Theorem 3.9 (Henk, P. [42]). Let α ≥ 1 and K0,K1 ∈ Kn such that dimK0 =
dimK1 = k ≥ 1, volk(K0) = volk(K1) and their affine hulls are parallel. For
λ ∈ [0, 1] let Kλ = (1 − λ)K0 + λK1. Then we have∫︂
Kλ

|x|α dHk(x) +
∫︂

K1−λ

|x|α dHk(x)

≥ |2λ− 1|α
⎛⎝ ∫︂

K0

|x|α dHk(x) +
∫︂
K1

|x|α dHk(x)

⎞⎠ (3.16)

with equality for λ ∈ (0, 1) if and only if α = 1, there exists a u ∈ Sn−1 such
that K0,K1 ⊂ lin u, and the hyperplane H(u, 0) separates Kλ and K1−λ.

Now Theorem 3.8 follows by setting K = K0 = −K1. We start by recalling
a variant of the well-known Karamata inequality which often appears in the
context of Schur-convex functions.

Theorem 3.10 (Karamata’s inequality, see, e.g., [51, Theorem 1]). Let D ⊆ R
be convex and let φ : D → R be a non-decreasing, convex function. Let x1, . . . , xk,
y1, . . . , yk ∈ D such that

(i) x1 ≥ x2 ≥ . . . ≥ xk,

(ii) y1 ≥ y2 ≥ . . . ≥ yk, and

(iii) x1 + x2 + . . .+ xi ≥ y1 + y2 + . . .+ yi for all i = 1, . . . , k.

Then

φ(x1) + φ(x2) + . . .+ φ(xk) ≥ φ(y1) + φ(y2) + . . .+ φ(yk). (3.17)
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If φ is strictly convex, then equality in (3.17) holds if and only if xi = yi,
i = 1, . . . , k.

As a consequence we obtain a 0-dimensional version of Theorem 3.9, i.e., when
the convex sets are replaced by singletons.

Lemma 3.11 (Henk, P. [42]). Let α ≥ 1 and z0, z1 ∈ R. Then for λ ∈ [0, 1] we
have

|(1 − λ)z0 + λz1|α + |λz0 + (1 − λ)z1|α ≥ |2λ− 1|α
(︁

|z0|α + |z1|α
)︁

(3.18)

with equality for λ ∈ (0, 1) if and only if either

(i) z1 = −z0, or

(ii) α = 1, z0z1 < 0 and max{λ, 1 − λ} ≥ max{|z0|,|z1|}
|z0|+|z1| .

Proof. By symmetry we may assume that λ ≤ 1
2 , |z0| ≥ |z1| and z0 ≥ 0. Write

x1 = |(1 − λ)z0 + λz1| ,
x2 = |λz0 + (1 − λ)z1| ,
y1 = (1 − 2λ)z0,

y2 = (1 − 2λ) |z1| .

We want to apply Karamata’s inequality with D = R≥0 and f(t) = tα. We
readily have

y1 ≥ y2,

x2
1 − x2

2 = (1 − 2λ)(z2
0 − z2

1) ≥ 0,

which gives x1 ≥ x2. Since z1 ≥ −z0 we also have

(1 − λ)z0 + λz1 ≥ λz0 + λz1 = λ(z0 + z1) ≥ 0, (3.19)

from which we find

x1 = (1 − λ)z0 + λz1 ≥ (1 − λ)z0 − λz0 = y1.

It remains to show that x1 + x2 ≥ y1 + y2. The triangle inequality gives

|((1 − λ)z0 + λz1) ± (λz0 + (1 − λ)z1)| ≤ x1 + x2.

Hence

x1 + x2 ≥ max{|z0 + z1| , |(1 − 2λ)(z0 − z1)|}
≥ (1 − 2λ) max{|z0 + z1| , |z0 − z1|}
= (1 − 2λ)(z0 + |z1|)
= y1 + y2

(3.20)

and Karamata’s inequality (3.17) yields xα1 + xα2 ≥ yα1 + yα2 .

Suppose now we have equality in (3.18) and as before we assume 0 < λ ≤ 1
2 ,

|z0| ≥ |z1| and z0 ≥ 0. In view of our assumptions we have (3.19). First let
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α > 1. In this case the equality condition of Karamata’s inequality asserts
x1 = y1 and from (3.19) we conclude λz1 = −λz0. So for α > 1 equality in
(3.18) is equivalent to z1 = −z0.

Now suppose α = 1, and z1 ̸= −z0. In this case (3.18) becomes x1 + x2 =
y1 + y2 and the equality in (3.20) yields

(1 − λ)z0 + λz1 + |λz0 + (1 − λ)z1| = x1 + x2 = |(1 − 2λ)(z0 − z1)| ,

i.e., we have equality in the triangle inequality

|((1 − λ)z0 + λz1) + (−λz0 − (1 − λ)z1)| ≤ x1 + x2.

Thus, by (3.19) it follows that λz0 + (1 − λ)z1 ≤ 0. Since z0 ≥ 0 and z1 ̸= −z0
we must have z1 < 0. Moreover, since z0 ≥ |z1| this also shows z0 > 0. By
rearranging λz0 + (1 − λ)z1 ≤ 0 the inequality becomes

1 − λ ≥ z0

z0 − z1
.

In consideration of the made assumptions this is condition (ii). On the other
hand, following the same arguments condition (ii) implies x1 +x2 = y1 +y2.

At the present day there is a vast number of different proofs of the Brunn-
Minkowski inequality (1.2). Here we want to emphasize the version of Kneser
and Süss [52] who used an inductive argument and Fubini’s theorem to apply
a lower-dimensional Brunn-Minkowski inequality onto sections of convex bodies
with hyperplanes (see [75, Thm. 7.1.1] for an English version). An inductive
approach in the setting of Theorem 3.9 comes with the task of considering
the restriction of the function |·|α to sections of convex bodies. Instead, the
next lemma will allow us to replace spheres appearing as level sets of the norm
function by hyperplanes. It appeared first in Alesker [1] and for more explicit
versions of it we refer to [72, Lemma 2.1] and [4, (10.4.2)].

Lemma 3.12. Let α > −1. There is a constant c = c(n, α) such that for every
x ∈ Rn

|x|α = c ·
∫︂

Sn−1

|⟨θ,x⟩|α dθ.

Consequently, in the subsequent lemma we will prove a version of Theorem 3.9
with the function |⟨θ, ·⟩|α, θ ∈ Sn−1 fixed, in place of |·|α.

Lemma 3.13 (Henk, P. [42]). Let α ≥ 1 and K0,K1 ∈ Kn such that dimK0 =
dimK1 = k ≥ 1, volk(K0) = volk(K1) and their affine hulls are parallel. Let
θ ∈ Sn−1 and for λ ∈ [0, 1] let Kλ = (1 − λ)K0 + λK1. Then we have∫︂
Kλ

|⟨θ,x⟩|α dHk(x) +
∫︂

K1−λ

|⟨θ,x⟩|α dHk(x)

≥ |2λ− 1|α
⎛⎝ ∫︂

K0

|⟨θ,x⟩|α dHk(x) +
∫︂
K1

|⟨θ,x⟩|α dHk(x)

⎞⎠ . (3.21)
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Moreover, if K0 and K1 are not contained in affine spaces parallel to θ⊥ and
equality holds in (3.21) for λ ∈ (0, 1), then α = 1, K0 and K1 are translates and
the hyperplane H(θ, 0) separates Kλ and K1−λ.

Proof. Without loss of generality we assume that volk(K0) = volk(K1) = 1.
The Brunn-Minkowski-inequality (1.2) gives in this setting for any λ ∈ [0, 1]

volk(Kλ) ≥ 1. (3.22)

For t ∈ R denote

H(θ, t) = {x ∈ Rn : ⟨θ,x⟩ = t},
H−(θ, t) = {x ∈ Rn : ⟨θ,x⟩ ≤ t}.

First suppose that K0 lies in a hyperplane parallel to θ⊥ (and therefore Kλ

for λ ∈ [0, 1]), i.e., Ki ⊂ H(θ, ti) for some ti ∈ R, i ∈ {0, 1}. By (3.22) and
Lemma 3.11 we find∫︂

Kλ

|⟨θ,x⟩|α dHk(x) +
∫︂

K1−λ

|⟨θ,x⟩|α dHk(x)

= volk(Kλ) |(1 − λ)t0 + λt1|α + volk(K1−λ) |λt0 + (1 − λ)t1|α

≥ |(1 − λ)t0 + λt1|α + |λt0 + (1 − λ)t1|α

≥ |2λ− 1|α (|t0|α + |t1|α)
= |2λ− 1|α (volk(K0) |t0|α + volk(K1) |t1|α)

= |2λ− 1|α
⎛⎝ ∫︂

K0

|⟨θ,x⟩|α dHk(x) +
∫︂
K1

|⟨θ,x⟩|α dHk(x)

⎞⎠ .

Thus, in the following we may assume that K0 ̸⊆ v + θ⊥ for all v ∈ Rn and
hence, −hKi(−θ) < hKi(θ) for i = 0, 1. For t ∈ R and for i = 0, 1 we set

vi(t) = volk−1(Ki ∩H(θ, t)),
wi(t) = volk(Ki ∩H−(θ, t)),

so that wi(t) =
∫︁ t

−∞ vi(ζ) dζ, i ∈ {0, 1}. On (−hKi
(−θ), hKi

(θ)) the function vi
is continuous and hence wi is differentiable. For i ∈ {0, 1} let zi be the inverse
function of wi. Then zi is differentiable with

z′
i(τ) = 1

w′
i(zi(τ)) = 1

vi(zi(τ)) (3.23)

for τ ∈ (0, 1). Write zν(τ) = (1 − ν)z0(τ) + νz1(τ) for ν ∈ [0, 1]. By Fubini’s
theorem and a change of variables via t = zν(τ) we find∫︂
Kν

|⟨θ,x⟩|α dHk(x) =
∞∫︂

−∞

|t|α volk−1(Kν ∩H(θ, t)) dt

=
1∫︂

0

|zν(τ)|α volk−1

(︂
Kν ∩H(θ, zν(τ))

)︂
z′
ν(τ) dτ.

(3.24)
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Since Kν ∩ H(θ, zν(τ)) ⊇ (1 − ν)(K0 ∩ H(θ, z0(τ))) + ν(K1 ∩ H(θ, z1(τ))) we
may apply the Brunn-Minkowski inequality (1.2) to the latter set and together
with (3.23) we get

volk−1

(︂
Kν ∩H(θ, zν(τ))

)︂
z′
ν(τ)

≥ volk−1

(︂
(1 − ν)

(︁
K0 ∩H(θ, z0(τ))

)︁
+ ν
(︁
K1 ∩H(θ, z1(τ))

)︁)︂
z′
ν(τ)

≥
[︂
(1 − ν)v0(z0(τ))

1
k−1 + νv1(z1(τ))

1
k−1

]︂k−1
[︃

1 − ν

v0(z0(τ)) + ν

v1(z1(τ))

]︃
≥
[︂
v0(z0(τ))

1−ν
k−1 v1(z1(τ))

ν
k−1

]︂k−1 [︂
v0(z0(τ))−(1−ν)v1(z1(τ))−ν

]︂
= 1,

(3.25)

where for the last inequality we used the weighted arithmetic-geometric mean
inequality. Therefore, (3.24) and (3.25) yield∫︂

Kλ

|⟨θ,x⟩|α dHk(x) +
∫︂

K1−λ

|⟨θ,x⟩|α dHk(x)

≥
1∫︂

0

|zλ(τ)|α + |z1−λ(τ)|α dτ

=
1∫︂

0

|(1 − λ)z0(τ) + λz1(τ)|α + |λz0(τ) + (1 − λ)z1(τ)|α dτ.

Next in order to estimate the integrand we use Lemma 3.11 and then we sub-
stitute back via (3.23)∫︂

Kλ

|⟨θ,x⟩|α dHk(x) +
∫︂

K1−λ

|⟨θ,x⟩|α dHk(x)

≥
1∫︂

0

|(1 − λ)z0(τ) + λz1(τ)|α + |λz0(τ) + (1 − λ)z1(τ)|α dτ

≥
1∫︂

0

|2λ− 1|α
(︂

|z0(τ)|α + |z1(τ)|α
)︂

dτ (3.26)

= |2λ− 1|α
⎛⎝ 1∫︂

0

|z0(τ)|α dτ +
1∫︂

0

|z1(τ)|α dτ

⎞⎠
= |2λ− 1|α

⎛⎝ 1∫︂
0

|z0(τ)|α v0(z0(τ)) · z′
0(τ) dτ

+
1∫︂

0

|z1(τ)|α v1(z1(τ)) · z′
1(τ) dτ

⎞⎠
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= |2λ− 1|α
⎛⎝ ∞∫︂

−∞

|t|α volk−1(K0 ∩H(θ, t)) dt

+
∞∫︂

−∞

|t|α volk−1(K1 ∩H(θ, t)) dt

⎞⎠
= |2λ− 1|α

⎛⎝ ∫︂
K0

|⟨θ,x⟩|α dHk(x) +
∫︂
K1

|⟨θ,x⟩|α dHk(x)

⎞⎠ .

Now suppose that equality holds in (3.21) for two k-dimensional convex bodies
K0,K1 of k-dimensional volume 1 with Ki ̸⊆ v + θ⊥ for any v ∈ Rn, i ∈ {0, 1}.
Without loss of generality we may assume that 0 < λ ≤ 1

2 . Then the equality
in (3.21) implies equality in (3.25) for ν = λ and thus

volk(Kλ) =
1∫︂

0

volk−1

(︂
Kλ ∩H(θ, zλ(τ))

)︂
z′
λ(τ) dτ

= 1 = λ volk(K0) + (1 − λ) volk(K1).

Hence, by the equality conditions of the Brunn-Minkowski inequality (1.2), K0
and K1 are homothets and we conclude K0 = v + K1 for some v ∈ Rn. Thus
for τ ∈ [0, 1] and s = ⟨θ,v⟩

z0(τ) = z1(τ) + ⟨θ,v⟩ = z1(τ) + s. (3.27)

Since we must also have equality in (3.26) the equality conditions (i) and (ii) of
Lemma 3.11 can be applied to zi(τ), i = 0, 1. If α > 1, then Lemma 3.11 (i)
implies z0(τ) = −z1(τ) for τ ∈ [0, 1]. Together with (3.27), however, we get
that z0(τ) = s

2 is constant with respect to τ . Then v
2 + θ⊥ contains K0, which

contradicts the assumption.

Thus we must have α = 1 and in this case we get from Lemma 3.11 (ii) and
(3.27)

0 > z0(τ)z1(τ) = z0(τ)(z0(τ) − s), (3.28)

1 − λ = max{λ, 1 − λ} ≥ max{|z0(τ)| , |z0(τ) − s|}
|z0(τ)| + |z0(τ) − s|

(3.29)

for every τ ∈ [0, 1] except when z1(τ) = −z0(τ). The above considerations show
that there is at most one element in τ ∈ [0, 1] satisfying the latter equation.

By interchanging the roles of z0(τ) and z1(τ), if necessary, we may additionally
assume that s ≥ 0. In particular, by (3.28) and since z0 is continuous and
monotone, it follows that s > z0(τ) > 0 for all τ ∈ (0, 1). Then (3.29) becomes

1 − λ ≥ max{z0(τ), s− z0(τ)}
s

and we obtain

zλ(τ) = (1 − λ)z0(τ) + λ(z0(τ) − s) = z0(τ) − λs ≥ 0,
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z1−λ(τ) = λz0(τ) + (1 − λ)(z0(τ) − s) = z0(τ) − (1 − λ)s ≤ 0

for all τ ∈ (0, 1). By the continuity of z0 we have −hKλ
(−θ) ≥ 0 ≥ hK1−λ

(θ),
i.e., H(θ, 0) separates Kλ and K1−λ.

Now we are ready to prove Theorem 3.9.

Proof of Theorem 3.9. Without loss of generality we assume that volk(K0) =
volk(K1) = 1. In order to prove the desired inequality (3.16) we first substitute
the integrand via Lemma 3.12 which leads, after an application of Fubini’s
theorem, to the equivalent inequality

∫︂
Sn−1

⎛⎜⎝ ∫︂
Kλ

|⟨θ,x⟩|α dHk(x) +
∫︂

K1−λ

|⟨θ,x⟩|α dHk(x)

⎞⎟⎠ dθ

≥ |2λ− 1|α ×∫︂
Sn−1

⎛⎝ ∫︂
K0

|⟨θ,x⟩|α dHk(x) +
∫︂
K1

|⟨θ,x⟩|α dHk(x)

⎞⎠ dθ.

(3.30)

By Lemma 3.13 this inequality holds pointwise for every θ ∈ Sn−1. Hence we
have shown (3.30) and thus (3.16).

Now suppose that λ ∈ (0, 1) and equality holds in (3.16) for two k-dimensional
convex bodies K0,K1 of k-dimensional volume 1. Then we also have equal-
ity in (3.30) for any θ ∈ Sn−1. In particular, since K0 contains at least two
distinct points x,y ∈ K0, we may choose θ = x − y, so that K0 is not con-
tained in an affine space parallel to θ⊥. The necessary conditions for equality in
Lemma 3.13 assert that α = 1, K0 and K1 are translates, and H(θ, 0) separates
Kλ and K1−λ. On the other hand, if x and y are linearly independent, we find
v ∈ x⊥ \ y⊥ and ι ∈ R such that

⟨x + ιv,x⟩ = |x|2 > 0,
⟨x + ιv,y⟩ = ⟨x,y⟩ + ι ⟨v,y⟩ < 0,

i.e., K0 has a non-empty intersection with H(x+ιv, 0). Setting θ = x + ιv then
contradicts Lemma 3.13 as Kλ and K1−λ cannot be separated by H(θ, 0). Thus
every two points in K0 are linearly dependent, which means that K ⊆ lin u for
some u ∈ Sn−1. Following the same line of reasoning for K1 leads to the same
conclusion and since the affine hulls of K0 and K1 are parallel we also have
K1 ⊆ lin u. In particular, the function ⟨u, ·⟩ is not constant on K0 or K1 and
by Lemma 3.13 the hyperplane H(u, 0) separates Kλ and K1−λ.

It remains to show that this separating property also implies equality in (3.16).
If there exists such a u, then with an appropriate choice of coordinates we may
assume that K0,K1 ⊆ R, i.e., K0 = [ξ0, ξ0 + 1] and K1 = [−(ξ1 + 1),−ξ1] for
some ξ0, ξ1 ≥ 0. By symmetry we may assume λ ≤ 1

2 . The assumption that

Kλ = [(1 − λ)ξ0 − λ(ξ1 + 1), (1 − λ)(ξ0 + 1) − λξ1]
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and

K1−λ = [λξ0 − (1 − λ)(ξ1 + 1), λ(ξ0 + 1) − (1 − λ)ξ1]

are separated by the origin, means λ(ξ0+1)−(1−λ)ξ1 ≤ 0 ≤ (1−λ)ξ0−λ(ξ1+1)
and so∫︂

Kλ

|x| dx +
∫︂

K1−λ

|x| dx

=
(1−λ)(ξ0+1)−λξ1∫︂

(1−λ)ξ0−λ(ξ1+1)

t dt+
λ(ξ0+1)−(1−λ)ξ1∫︂
λξ0−(1−λ)(ξ1+1)

−t dt

= 1
2

[︂(︂
(1 − λ)(ξ0 + 1) − λξ1

)︂2
−
(︂

(1 − λ)ξ0 − λ(ξ1 + 1)
)︂2

−
(︂
λ(ξ0 + 1) − (1 − λ)ξ1

)︂2
+
(︂
λξ0 − (1 − λ)(ξ1 + 1)

)︂2]︂
= (2λ− 1)(ξ0 + ξ1 + 1)

= (2λ− 1) · 1
2

[︂
(ξ0 + 1)2 − ξ2

0 + (ξ1 + 1)2 − ξ2
1

]︂
= (2λ− 1)

⎛⎜⎝ ξ0+1∫︂
ξ0

t dt+
ξ1+1∫︂
ξ1

t dt

⎞⎟⎠
= (2λ− 1)

⎛⎝ ∫︂
K0

|x| dx +
∫︂
K1

|x| dx

⎞⎠ .

We remark that the factor |2λ − 1|α in the Theorems 3.8 and 3.9 cannot be
replaced by a smaller one. This can be seen from the following example. Let
C ∈ Kn

s , u ∈ Sn−1, and for every r ∈ R>0 set K(r)
0 = C+r·u and K(r)

1 = −K(r)
0 .

Then, for every ν ∈ [0, 1] we have K(r)
ν = C − (2ν − 1)ru and∫︂

K
(r)
ν

|x|α dx = rα
∫︂
C

⃓⃓
r−1x − (2ν − 1)u

⃓⃓α dx.

Moreover, the symmetry of C gives K(r)
1−ν = −K(r)

ν . Therefore and since⃓⃓
r−1x − (2ν − 1)u

⃓⃓α ≤ (|x| + |(2ν − 1)u|)α

for r ≥ 1, for a given λ ∈ [0, 1], we conclude by the dominated convergence
theorem

lim
r→∞

∫︁
K

(r)
1−λ

|x|α dx∫︁
K

(r)
1

|x|α dx
= lim
r→∞

∫︁
K

(r)
λ

|x|α dx∫︁
K

(r)
0

|x|α dx
= |2λ− 1|α .

Although (3.15) also holds for α = 0 we point out that an extension of Theo-
rem 3.8 to the intermediate cases α ∈ (0, 1), where |·|α is a non-convex function,
is not possible.
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Proposition 3.14 (Henk, P. [42]). Let α ∈ (0, 1). There is a closed interval
K ⊆ R and λ ∈ [0, 1] such that for Kλ = (1 − λ)K + λ(−K) we have∫︂

Kλ

|x|α dx < |2λ− 1|α
∫︂
K

|x|α dx.

Proof. Let ε > 0, K = [ε, 1 + ε] and λ = ε
1+2ε <

1
2 so that Kλ = [0, 1]. Then

(1 + α)
∫︂
Kλ

|x|α dx = 1

and

(1 + α)(1 − 2λ)α
∫︂
K

|x|α dx = (1 + α)(1 + 2ε)−α
1+ε∫︂
ε

xα dx

= (1 + ε)1+α − ε1+α

(1 + 2ε)α .

Let f(t) = (1 + t)1+α − t1+α and g(t) = (1 + 2t)α. Since

f(0) = 1 = g(0),
f ′(0) = (1 + α) > 2α = g′(0),

we have
(1 + ε)1+α − ε1+α

(1 + 2ε)α > 1

for small ε and hence, ∫︂
Kλ

|x|α dx < (1 − 2λ)α
∫︂
K

|x|α dx.

3.4 Subspace concentration in the even dual
Minkowski problem

In this section we will prove bounds on the subspace concentration of dual curva-
ture measures of symmetric convex bodies. In the following lemma we evaluate
an integral that repeatedly appears in the proofs of Theorems 3.2 and 3.5.

Lemma 3.15. Let q > 0, K ∈ Kn
s , Q ∈ Sno and L be a k-dimensional subspace

of Rn, where 1 ≤ k ≤ n− 1. Then for any s < k

∫︂
K|L

⎛⎜⎝ρK|L(y)s
∫︂

Kp̃K|L(y)

ρQ(z)n−q dz

⎞⎟⎠ dy = c

k − s
, (3.31)

where for v ∈ K|L we write Kv = K ∩ (v + L⊥) and c = c(q,K,Q,L) is a
constant independent of s.
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Proof. Since ˜︁pK|L(y) is homogeneous of degree 0 in y we have ˜︁pK|L(y) =˜︁pK|L(y) for every y ∈ K|L, y ̸= 0. Using spherical coordinates in K|L the left
hand side of (3.31) becomes

∫︂
K|L

⎛⎜⎝ρK|L(y)s
∫︂

Kp̃K|L(y)

ρQ(z)n−q dz

⎞⎟⎠ dy

=
∫︂

Sn−1∩L

ρK|L(u)∫︂
0

ρK|L(ru)sg(u)rk−1 dr du,

where g(u) =
∫︁
Kp̃K|L(u)

ρQ(z)n−q dz. Homogeneity of the radial function ρQ

and integration with respect to r yields

∫︂
K|L

⎛⎜⎝ρK|L(y)s
∫︂

Kp̃K|L(y)

ρQ(z)n−q dz

⎞⎟⎠ dy

=
∫︂

Sn−1∩L

ρK|L(u)sg(u)

ρK|L(u)∫︂
0

rk−s−1 dr du

=
∫︂

Sn−1∩L

ρK|L(u)sg(u)
ρK|L(u)k−s

k − s
du

= 1
k − s

∫︂
Sn−1∩L

ρK|L(u)kg(u) du,

where we used that the involved integrals are finite since s < k.

Now we are ready to prove the Theorems 3.2 and 3.5. We use Fubini’s theorem
to decompose the dual curvature measure of K ∈ Kn

s into integrals over sections
with affine planes orthogonal to the given subspace L. These sections contain
Minkowski combinations of parallel sections which lie in ∂K (see Fig. 3.6), and
by applying a Brunn-Minkowski type inequality we may compare these integrals
with the corresponding integrals over sections associated to the dual curvature
measure of the Borel set Sn−1 ∩ L. We start with the case q ∈ (0, n) where we
prove a slightly more general statement.

Theorem 3.16 ([14, cf. Rem. 4.1]). Let q ∈ (0, n) and K,Q ∈ Kn
s . Then∫︂

α∗
K

(Sn−1∩L)

ρQ(u)n−qρK(u)q du <
dimL

q

∫︂
Sn−1

ρQ(u)n−qρK(u)q du (3.32)

for every proper subspace L of Rn.

Proof. Let dimL = k ∈ {1, . . . , n − 1}. For y ∈ K|L and u ∈ Sn−1 ∩ L we
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Figure 3.6: Sections of convex bodies contain suitable Minkowski combinations
of parallel sections

denote

Ky = K ∩ (y + L⊥),

Mu = conv
{︂
K0,Kp̃K|L(u)

}︂
.

By (3.5), Lemma 3.6, Fubini’s theorem and the fact that My ∩ (y + L⊥) ⊆ Ky

we may write∫︂
Sn−1

ρQ(u)n−qρK(u)q du = q

∫︂
K

ρQ(x)n−q dx

= q

∫︂
K|L

⎛⎜⎝ ∫︂
Ky

ρQ(z)n−q dz

⎞⎟⎠ dy

≥ q

∫︂
K|L

⎛⎜⎝ ∫︂
My∩(y+L⊥)

ρQ(z)n−q dz

⎞⎟⎠ dy.

(3.33)

In order to estimate the inner integral we fix a y ∈ K|L, y ̸= 0, and for
abbreviation we set τ = ρK|L(y)−1 ≤ 1. Then, by the symmetry of K we find

My ∩ (y + L⊥) ⊇ τKp̃K|L(y) + (1 − τ)K0

⊇ τKp̃K|L(y) + (1 − τ)
(︃

1
2Kp̃K|L(y) + 1

2(−Kp̃K|L(y))
)︃

= 1 + τ

2 Kp̃K|L(y) + 1 − τ

2 (−Kp̃K|L(y)).

Hence, My ∩ (y +L⊥) contains a convex combination of a set and its reflection
at the origin. Note that the superlevel sets of ρQ(·)n−q are dilates of Q. This
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allows us to apply Theorem 3.7 from which we obtain∫︂
My∩(y+L⊥)

ρQ(z)n−q dz ≥
∫︂

Kp̃K|L(y)

ρQ(z)n−q dz (3.34)

for every y ∈ K|L, y ̸= 0. Together with (3.33) we find

∫︂
Sn−1

ρQ(u)n−qρK(u)q du ≥ q

∫︂
K|L

⎛⎜⎝ ∫︂
Kp̃K|L(y)

ρQ(z)n−q dz

⎞⎟⎠ dy.

By using Lemma 3.15 with s = 0 we then obtain the lower bound∫︂
Sn−1

ρQ(u)n−qρK(u)q du ≥ qc

k
, (3.35)

where c is a constant independent of s.

In order to evaluate the left hand side of (3.32) we recall that for x ∈ K we
have x ∈ α∗

K(Sn−1 ∩ L) if and only if the boundary point ˜︁pK(x) has a unit
outer normal in L. Hence,

K ∩
(︁
R≥0 · α∗

K(Sn−1 ∩ L)
)︁

=
⋃︂

v∈∂(K|L)

conv({0} ∪Kv)

and in view of (3.5), Lemma 3.6 and Fubini’s theorem we obtain∫︂
α∗

K
(Sn−1∩L)

ρQ(u)n−qρK(u)q du

= q

∫︂
K∩
(︁
R≥0·α∗

K
(Sn−1∩L)

)︁ ρQ(x)n−q dx

= q

∫︂
K|L

⎛⎜⎜⎝ ∫︂
conv

(︁
{0}∪Kp̃K|L(y)

)︁
∩(y+L⊥)

ρQ(z)n−q dz

⎞⎟⎟⎠ dy

= q

∫︂
K|L

⎛⎜⎜⎝ ∫︂
ρK|L(y)−1Kp̃K|L(y)

ρQ(z)n−q dz

⎞⎟⎟⎠ dy

= q

∫︂
K|L

ρK|L(y)k−q

⎛⎜⎝ ∫︂
Kp̃K|L(y)

ρQ(z)n−q dz

⎞⎟⎠ dy.

Using Lemma 3.15 again with s = k − q it follows from (3.35) that∫︂
α∗

K
(Sn−1∩L)

ρQ(u)n−qρK(u)q du = c ≤ k

q

∫︂
Sn−1

ρQ(u)n−qρK(u)q du.
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It remains to show that the inequality is strict. To this end, suppose that we
have equality in (3.32) for a proper subspace L. Then we must have equality
in (3.34) for almost every y in the relative interior of K|L. Hence, since q < n
and in view of the equality condition of Theorem 3.7, the equality in (3.34)
implies that My ∩ (y + L⊥) ∩ rQ and Kp̃K|L(y) ∩ rQ have the same (n − k)-
dimensional volume for almost every r > 0. Moreover, the equality in (3.33)
shows Ky = My ∩ (y + L⊥) and therefore

voln−k(Ky ∩ rQ) = voln−k(Kp̃K|L(y) ∩ rQ)

for almost every r > 0. Let ξ be a point maximizing ρQ over Kp̃K|L(y). In
particular, ρK|L(y)−1ξ ∈ Ky. Since y is a relative interior point of K|L, we
have ρK|L(y) > 1 and we may choose r > 0 such that

ρQ(ξ) < r−1 < ρK|L(y)ρQ(ξ) = ρQ
(︁
ρK|L(y)−1ξ

)︁
.

Since ξ maximizes ρQ on Kp̃K|L(y) the former inequality gives Kp̃K|L(y)∩rQ = ∅,
whereas the latter shows

voln−k(Ky ∩ rQ) > 0.

In view of (3.5), Theorem 3.2 is an immediate consequence of Theorem 3.16.
The proof of Theorem 3.5 is carried out analogously where instead of (3.11) we
use (3.15).

Proof of Theorem 3.5. Let dimL = k ∈ {1, . . . , n − 1}. For y ∈ K|L and
u ∈ Sn−1 ∩ L we denote

Ky = K ∩ (y + L⊥),

Mu = conv
{︂
K0,Kp̃K|L(u)

}︂
.

By (3.5), Lemma 3.6, Fubini’s theorem and the fact that My ∩ (y + L⊥) ⊆ Ky

we may write (cf. (3.33))

˜︁Cq(K, Sn−1) = 1
n

∫︂
Sn−1

ρK(u)q du

≥ q

n

∫︂
K|L

⎛⎜⎝ ∫︂
My∩(y+L⊥)

|z|q−n dz

⎞⎟⎠ dy. (3.36)

In order to estimate the inner integral we fix a y ∈ K|L, y ̸= 0, and for
abbreviation we set τ = ρK|L(y)−1 ≤ 1. Then, by the symmetry of K we find

My ∩ (y + L⊥) ⊇ τ(Kp̃K|L(y)) + (1 − τ)(K0)

⊇ τ(Kp̃K|L(y)) + (1 − τ)
(︃

1
2Kp̃K|L(y) + 1

2(−Kp̃K|L(y))
)︃

= 1 + τ

2 Kp̃K|L(y) + 1 − τ

2 (−Kp̃K|L(y)).
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Hence, My ∩ (y +L⊥) contains a convex combination of a set and its reflection
at the origin. This allows us to apply Theorem 3.8 from which we obtain∫︂

My∩(y+L⊥)

|z|q−n dz ≥ τ q−n
∫︂

Kp̃K|L(y)

|z|q−n dz

for every y ∈ K|L, y ̸= 0. By the equality characterization of Theorem 3.8 the
last inequality is strict whenever τ < 1, i.e., y belongs to the relative interior of
K|L. Together with (3.36) we find

˜︁Cq(K, Sn−1) > q

n

∫︂
K|L

ρK|L(y)n−q

⎛⎜⎝ ∫︂
Kp̃K|L(y)

|z|q−n dz

⎞⎟⎠ dy.

By using Lemma 3.15 with Q = Bn and s = n − q we then obtain the lower
bound ˜︁Cq(K, Sn−1) > q

n

c

k + q − n
,

where c is a constant independent of s.

On the other hand, in the same manner as in the proof of Theorem 3.16 we
find

˜︁Cq(K, Sn−1 ∩ L) = 1
n

∫︂
α∗

K
(Sn−1∩L)

ρK(u)q du

= q

n

∫︂
K|L

ρK|L(y)k−q

⎛⎜⎝ ∫︂
Kp̃K|L(y)

|z|q−n dz

⎞⎟⎠ dy.

Inequality (3.35) and Lemma 3.15, again, with Q = Bn and s = k − q yield

˜︁Cq(K, Sn−1 ∩ L) = q

n

c

q
<
k + q − n

q
˜︁Cq(K, Sn−1).

Next we show that the bounds given in Theorem 3.5 are tight for every choice
of q ≥ n+ 1.

Proposition 3.17 (Henk, P. [42]). Let q > n and k ∈ {1, . . . , n − 1}. There
exists a sequence of convex bodies Kl ∈ Kn

s , l ∈ N, and a k-dimensional subspace
L ⊆ Rn such that

lim
l→∞

˜︁Cq(Kl, Sn−1 ∩ L)˜︁Cq(Kl, Sn−1)
= q − n+ k

q
.

Proof. Let k ∈ {1, . . . , n− 1} and for l ∈ N, let Kl be the cylinder given as the
cartesian product of two lower-dimensional balls

Kl = (lBk) ×Bn−k.
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Let L = lin{e1, . . . , ek} be the k-dimensional subspace generated by the first
k canonical unit vectors ei. For x ∈ Rn write x = (x1,x2), where x1 ∈ Rk
and x2 ∈ Rn−k. The supporting hyperplane of Kl with respect to a unit vector
v = (v1,v2) ∈ Sn−1 ∩ L is given by

HKl
(v) = {x ∈ Rn : ⟨v1,x1⟩ = l}.

Hence the part of the boundary of Kl covered by all these supporting hyper-
planes is given by lSk−1 × Bn−k. In view of Lemma 3.6 and Fubini’s theorem
we conclude

˜︁Cq(Kl, Sn−1 ∩ L) = q

n

∫︂
lBk

⎛⎜⎜⎝ ∫︂
|x1|

l Bn−k

(|x1|2 + |x2|2)
q−n

2 dx2

⎞⎟⎟⎠ dx1. (3.37)

Denote the volume of Bn by ωn. Recall that the surface area of Bn is given by
nωn and for abbreviation we set

c = c(q, k, n) = q

n
kωk(n− k)ωn−k.

Switching to the cylindrical coordinates

x1 = su, s ≥ 0,u ∈ Sk−1, x2 = tv, t ≥ 0,v ∈ Sn−k−1,

transforms the right hand side of (3.37) to

˜︁Cq(Kl, Sn−1 ∩ L) = c

l∫︂
0

s/l∫︂
0

sk−1tn−k−1(s2 + t2)
q−n

2 dt ds

= c

l∫︂
0

1∫︂
0

sq−1lk−ntn−k−1(1 + l−2t2)
q−n

2 dt ds

= c lq−n+k
1∫︂

0

1∫︂
0

sq−1tn−k−1(1 + l−2t2)
q−n

2 dt ds.

Analogously we obtain

˜︁Cq(Kl, Sn−1) = q

n

∫︂
lBk

⎛⎜⎝ ∫︂
Bn−k

(|x1|2 + |x2|2)
q−n

2 dx2

⎞⎟⎠ dx1

= c

l∫︂
0

1∫︂
0

sk−1tn−k−1(s2 + t2)
q−n

2 dt ds

= clk
1∫︂

0

1∫︂
0

sk−1tn−k−1(l2s2 + t2)
q−n

2 dt ds

= clq−n+k
1∫︂

0

1∫︂
0

sk−1tn−k−1(s2 + l−2t2)
q−n

2 dt ds.
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The monotone convergence theorem gives

lim
l→∞

(clq−n+k)−1˜︁Cq(Kl, Sn−1 ∩ L)

= lim
l→∞

1∫︂
0

1∫︂
0

sq−1tn−k−1(1 + l−2t2)
q−n

2 dt ds

=
1∫︂

0

sq−1 ds ·
1∫︂

0

tn−k−1 dt = 1
q(n− k)

and

lim
l→∞

(clq−n+k)−1˜︁Cq(Kl, Sn−1)

= lim
l→∞

1∫︂
0

1∫︂
0

sk−1tn−k−1(s2 + l−2t2)
q−n

2 dt ds

=
1∫︂

0

sq−n+k−1 ds ·
1∫︂

0

tn−k−1 dt = 1
(q − n+ k)(n− k) .

Hence,

lim
l→∞

˜︁Cq(Kl, Sn−1 ∩ L)˜︁Cq(Kl, Sn−1)
= q − n+ k

q
.

The optimality of (3.7) can be established with a similar example where
Kl = Bk × (lBn−k) as it was done in [14] (see also [82]). Obviously this is
also a consequence of Theorem 3.3.

3.5 Further results

The Proposition 3.17 above particularly shows that the upper bound q−n+dimL
q

would be also optimal in the range q ∈ (n, n+ 1). Unfortunately, our approach
to prove Theorem 3.5 can not cover this missing range. One reason is that the
Brunn-Minkowski-type inequality (3.15) does not extend to α ∈ (0, 1) as shown
in Proposition 3.14. In the proof of Theorem 3.5 we applied (3.15) pointwise
onto the inner integral on the right hand side of (3.36). This brings up the
question, whether (3.15) is correct on a certain average, i.e., when both sides are
integrated with respect to λ ∈ [0, 1]. Note that in order to extend Theorem 3.5
to α ∈ (0, 1) we would need to prove

1∫︂
0

|2λ− 1|m−1
∫︂

(1−λ)K+λ(−K)

|x|α dHk(x) dλ

≥ 1
m+ α

∫︂
K

|x|α dHk(x), (3.38)
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for m ∈ N, K ∈ Kn with dim(K) = k ≥ 1 and α ∈ (0, 1). But this is also
false for some examples like m = 2, α = 1

2 and K = [1, 5]. In this case one can
compute

1∫︂
0

|2λ− 1|
∫︂

(1−λ)K+λ(−K)

√︁
|x| dx dλ = 4

945

(︂
− 19 + 32

√
2 + 275

√
5
)︂

≈ 2.713 . . .

and

1
2 + 1

2

∫︂
K

√︁
|x| dx = 4

15

(︂
5
√

5 − 1
)︂

≈ 2.714 . . .

In the particular case when m = 1 we will prove (3.38). To this end, we start
with an integral version of (3.18) for α ∈ (0, 1).

Lemma 3.18. Let α ∈ (0, 1) and z0, z1 ∈ R. Then

1∫︂
0

|(1 − λ)z0 + λz1|α dλ ≥ |z0|α + |z1|α

2(1 + α)

with equality if and only if z1 = −z0.

Proof. Without loss of generality we may assume that |z0| ≥ |z1| and, since
the inequality holds for z0 = z1 = 0, also z0 ̸= 0. Then the reverse triangle
inequality yields

1∫︂
0

|(1 − λ)z0 + λz1|α dλ

≥
1∫︂

0

|(1 − λ) |z0| − λ |z1||α dλ

=

|z0|
|z0|+|z1|∫︂

0

(︁
|z0| − λ(|z0| + |z1|)

)︁α dλ

+
1∫︂

|z0|
|z0|+|z1|

(︁
λ(|z0| + |z1|) − |z0|

)︁α dλ

= −(1 + α)−1(|z0| + |z1|)−1
[︂

|z0| − λ(|z0| + |z1|)
)︁1+α

]︂ |z0|
|z0|+|z1|

0

+ (1 + α)−1(|z0| + |z1|)−1
[︂
λ(|z0| + |z1|) − |z0|

)︁1+α
]︂1

|z0|
|z0|+|z1|

= (1 + α)−1(|z0| + |z1|)−1(︁ |z0|1+α + |z1|1+α )︁
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and equality holds in the first inequality if and only if z0z1 ≤ 0. It remains to
show that |z0|1+α+|z1|1+α

|z0|+|z1| ≥ |z0|α+|z1|α

2 . Indeed, since

0 ≤ (|z0|−|z1|)
(︂

|z0|α−|z1|α
)︂

=
(︂

|z0|1+α+|z1|1+α
)︂

−
(︂

|z0| |z1|α+|z1| |z0|α
)︂
,

we find(︂
|z0|α + |z1|α

)︂
(|z0| + |z1|) = |z0|1+α + |z1|1+α + |z0| |z1|α + |z1| |z0|α

≤ 2
(︂

|z0|1+α + |z1|1+α
)︂

with equality if and only if |z0| = |z1|.

Proposition 3.19. Let α ∈ (0, 1) and K ∈ Kn with dimK = k ≥ 1. Then
1∫︂

0

∫︂
(1−λ)K+λ(−K)

|x|α dHk(x) dλ > 1
1 + α

∫︂
K

|x|α dHk(x). (3.39)

Proof. Without loss of generality we assume that volk(K) = 1. Denote Kλ =
(1 − λ)K + λ(−K). As in the proof of Theorem 3.8 the inequality (3.39) is
equivalent to

∫︂
Sn−1

1∫︂
0

∫︂
Kλ

|⟨θ,x⟩|α dHk(x) dλ dθ ≥ 1
1 + α

∫︂
Sn−1

∫︂
K

|⟨θ,x⟩|α dHk(x) dθ.

by Lemma 3.12. In full analogy to the proof of Theorem 3.9 and using the same
notation z0, z1 where K0 = K and K1 = −K we find

∫︂
Kλ

|⟨θ,x⟩|α dHk(x) ≥
1∫︂

0

|(1 − λ)z0(τ) + λz1(τ)|α dτ.

Now Lemma 3.18 and backsubstituting yield
1∫︂

0

∫︂
Kλ

|⟨θ,x⟩|α dHk(x) dλ > 1
1 + α

∫︂
K

|⟨θ,x⟩|α dHk(x),

where the inequality is strict since both z0 and z1 are strictly increasing functions
whenever hK(θ) ̸= hK(−θ) and therefore z0(τ) = −z1(τ) cannot hold for every
τ ∈ (0, 1). This proves (3.39).

As a consequence we establish (3.8) when q ∈ (n, n + 1) and L is a one-
dimensional subspace.

Theorem 3.20. Let q ∈ (n, n + 1), K ∈ Kn
s and L be a one-dimensional

subspace of Rn. Then

˜︁Cq(K, Sn−1 ∩ L) < q − n+ 1
q

˜︁Cq(K, Sn−1).
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Proof. Following the lines of the proof of Theorem 3.5 and using the same
notation we find

˜︁Cq(K, Sn−1) ≥ q

n

∫︂
K|L

⎛⎜⎜⎝ ∫︂
1+τ

2 Kp̃K|L(y)− 1−τ
2 Kp̃K|L(y)

|z|q−n dz

⎞⎟⎟⎠ dy

and

˜︁Cq(K, Sn−1 ∩ L) = q

n

∫︂
K|L

τ q−k

⎛⎜⎝ ∫︂
Kp̃K|L(y)

|z|q−n dz

⎞⎟⎠ dy,

where τ = ρK|L(y)−1. Using spherical coordinates in K|L, i.e., y = r · u, r ≥ 0,
u ∈ Sn−1, and thereafter r = (1 − 2λ)ρK|L(u) the upper inequality becomes

˜︁Cq(K, Sn−1)

≥ q

n

∫︂
Sn−1∩L

ρK|L(u)∫︂
0

⎛⎜⎜⎝ ∫︂
1+τ

2 Kp̃K|L(u)− 1−τ
2 Kp̃K|L(u)

|z|q−n dz

⎞⎟⎟⎠ rk−1 dr du

= q

n

∫︂
Sn−1∩L

1
2∫︂

0

⎛⎜⎜⎝ ∫︂
(1−λ)Kp̃K|L(u)−λKp̃K|L(u)

|z|q−n dz

⎞⎟⎟⎠
×
(︁
(1 − 2λ)ρK|L(u)

)︁k−1(2ρK|L(u)) dλ du

= q

n

∫︂
Sn−1∩L

ρK|L(u)k

×
1∫︂

0

|2λ− 1|k−1

⎛⎜⎜⎝ ∫︂
(1−λ)Kp̃K|L(u)−λKp̃K|L(u)

|z|q−n dz

⎞⎟⎟⎠ dλ du.

Since k = 1 we apply Proposition 3.19 to get˜︁Cq(K, Sn−1)

>
q

n(q − n+ 1)

∫︂
Sn−1∩L

ρK|L(u)k
∫︂

Kp̃K|L(u)

|z|q−n dz du

= q2

n(q − n+ 1)

∫︂
Sn−1∩L

ρK|L(u)k−q

ρK|L(u)∫︂
0

rq−1
∫︂

Kp̃K|L(u)

|z|q−n dz dr du

= q2

n(q − n+ 1)

∫︂
Sn−1∩L

ρK|L(u)∫︂
0

ρK|L(ru)k−qrk−1
∫︂

Kp̃K|L(u)

|z|q−n dz dr du
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= q2

n(q − n+ 1)

∫︂
K|L

ρK|L(y)k−q
∫︂

Kp̃K|L(y)

|z|q−n dz dy

= q

q − n+ 1
˜︁Cq(K, Sn−1 ∩ L).

This settles the extension of Theorem 3.5 to α ∈ (0, 1) when n = 2.

Corollary 3.21 (Henk, P. [42]). Let q > 2 and K ∈ K2
s. Then

˜︁Cq(K, S1 ∩ L) < q − 1
q
˜︁Cq(K, S1) (3.40)

for every one-dimensional subspace L of R2.

The proof of Corollary 3.21 given in [42] is different and might be of some
interest on its own. It is based on sharp subspace concentration inequalities for
dual curvature measures of parallelepipeds. To this end, we need a variant of
Theorem 3.7 for quasiconvex functions.

Lemma 3.22 (Henk, P. [42]). Let f : Rn → R≥0 be an even quasiconvex func-
tion. Let K ⊂ Rn be a compact, convex set with dimK = k. Let λ ∈ [0, 1] and
v ∈ Rn. Then ∫︂

K+λv

f(x) dHk(x) ≤
∫︂

K+v

f(x) dHk(x).

If the sublevel sets {f ≤ c} are closed for every c ≥ 0, then equality holds if and
only if

(K + v) ∩ {f ≤ c} = (K ∩ {f ≤ c}) + v.

for every c > 0.

Proof. Apply Theorem 3.7 to the quasiconcave function f̃(x) = max(S−f(x), 0)
where S = sup{f(x + v) : x ∈ K} and the convex body M = K + v with
µ = 1−λ

2 , so that (1 − µ)M + µ(−M) = K + λv.

Based on Lemma 3.22 we can easily get a lower bound on the subspace con-
centration of prisms.

Proposition 3.23. Let q > n and K ∈ Kn
s be a prism, i.e., there is a u ∈ Sn−1,

and Q ⊂ u⊥ with Q = −Q and dimQ = n− 1, such that

K = conv
(︁
(Q− v) ∪ (Q+ v)

)︁
for some v ∈ Rn \ u⊥. Then

˜︁Cq(K, {±u}) > 1
q
˜︁Cq(K, Sn−1). (3.41)

Proof. Let L = lin{u}. Since the dual curvature measure is homogeneous, we
may assume that |⟨u,v⟩| = 1. There exists an invertible matrix A ∈ Rn×n with
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Av = u and Aw = w for all w ∈ u⊥, and our assumption yields |det(A)| = 1.
By Lemma 3.6 we may write

˜︁Cq(K, Sn−1) = q

n

∫︂
K

|x|q−n dx

= q

n

∫︂
AK

⃓⃓
A−1x

⃓⃓q−n dx.

Clearly AK = conv
(︁
(Q− u) ∪ (Q+ u)

)︁
and Fubini’s theorem gives

˜︁Cq(K, Sn−1) = q

n

1∫︂
−1

∫︂
Q+τu

⃓⃓
A−1z

⃓⃓q−n dz dτ

= 2q
n

1∫︂
0

∫︂
Q+τv

|z|q−n dz dτ.

Applying Lemma 3.22 to the inner integral gives

˜︁Cq(K, Sn−1) ≤ 2q
n

1∫︂
0

∫︂
Q+v

|z|q−n dz dτ

= 2q
n

∫︂
Q+v

|z|q−n dz.

On the other hand,

˜︁Cq(K, {±u}) = 2q
n

1∫︂
0

∫︂
τ(Q+v)

|z|q−n dz dτ

= 2q
n

1∫︂
0

∫︂
Q+v

τ q−n |z|q−n · τn−1 dz dτ

= 2q
n

∫︂
Q+v

|z|q−n dz

1∫︂
0

τ q−1 dτ

= 2
n

∫︂
Q+v

|z|q−n dz.

This gives (3.41) without strict inequality. Suppose we have equality. Then the
equality characterization of Lemma 3.22 implies

(Q+ v) ∩ rBn = (Q ∩ rBn) + v

for almost all r > 0. But for small r the left hand side is empty and hence
equality in (3.41) cannot be attained.
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As a consequence we deduce an upper bound on the subspace concentration
of dual curvature measures of parallelepipeds.

Corollary 3.24. Let q > n and P ∈ Pn
s be a parallelepiped. Then

˜︁Cq(P, Sn−1 ∩ L) < q − n+ dimL

q
˜︁Cq(P, Sn−1)

for every proper subspace L of Rn.

Proof. Let ±u1, . . . ,±un ∈ Sn−1 be the outer normal vectors of P . In particu-
lar, u1, . . . ,un are linearly independent. For a given k-dimensional subspace L
of Rn we may assume that uk+1, . . . ,un /∈ L. By Proposition 3.23

˜︁Cq(P, Sn−1 ∩ L) =
k∑︂
i=1

˜︁Cq(P, {ui,−ui})

= ˜︁Cq(P, Sn−1) −
n∑︂

i=k+1

˜︁Cq(P, {ui,−ui})

< ˜︁Cq(P, Sn−1) −
n∑︂

i=k+1

1
q
˜︁Cq(P, Sn−1)

= ˜︁Cq(P, Sn−1) − n− dimL

q
˜︁Cq(P, Sn−1)

= q − n+ dimL

q
˜︁Cq(P, Sn−1).

In particular this gives yet another proof of Corollary 3.21 as it can be reduced
to proving a subspace bound for parallelograms as follows. Let K ∈ K2

s and
L be a one-dimensional subspace of R2 spanned by u ∈ S1. If F = HK(u)
is a singleton, inequality (3.40) trivially holds. If dimF = 1, by an inclusion
argument it suffices to prove (3.40) for P = conv(F ∪ (−F )). Since F is a line
segment, P is a parallelogram and Corollary 3.24 gives (3.40) for P .

3.6 Lp dual curvature measures
In their recent paper Lutwak, Yang and Zhang [64] unified some notions of Lp
Brunn-Minkowski theory and dual Brunn-Minkowski theory. Their framework
is build upon the ith generalized dual curvature measure of K relative
to Q, i.e., for K ∈ Kn

o and Q ∈ Sno and i ∈ {0, . . . , n} it is a Borel measure on
Sn−1 × Sn−1 given by

˜︁Θi(K,Q,Ξ) = 1
n

∫︂
ψK (Ξ)

ρK(u)iρQ(u)n−i du

for every Borel set Ξ ⊆ Sn−1 × Sn−1, where

ψK(Ξ) =
{︁

u ∈ Sn−1 : ˜︁pK(u) ∈ HK(v) for some v ∈ Sn−1 and (u,v) ∈ Ξ
}︁
.
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The ith dual area measure and the ith dual curvature measure of a convex body
K arise as marginal measures from Θi via

˜︁Sq(K,ω) = ˜︁Θi(K,Bn, ω × Sn−1),˜︁Cq(K, η) = ˜︁Θi(K,Bn, Sn−1 × η),

where K ∈ Kn
o , i ∈ {0, . . . , n} and ω, η ⊆ Sn−1 are Borel sets. Moreover, for

each p, q ∈ R and Q ∈ Sno they define the Lp dual curvature measure or,
more precisely, the (p, q)th dual curvature measure of a convex body K ∈ Kn

o

relative to Q by

˜︁Cp,q(K,Q, η) = 1
n

∫︂
α∗

K
(η)

hK(αK(u))−pρK(u)qρQ(u)n−q du (3.42)

for Borel sets η ⊆ Sn−1, where αK(u) = {v ∈ Sn−1 : u ∈ HK(v)} for u ∈ Sn−1.
The Lp dual curvature measures include the Lp surface area measures and the
dual curvature measures as special cases since

˜︁Cp,q(K,K, ·) = ˜︁Cp,n(K,Bn, ·) = 1
n

S(p)
K ,˜︁C0,q(K,Bn, ·) = ˜︁Cq(K, ·),

for p, q ∈ R and K ∈ Kn
o (see [64, Prop. 5.4]). Given p, q ∈ R and Q ∈ Sno ,

the task of characterizing Lp dual curvature measures of convex bodies among
Borel measures on the sphere is called Lp dual Minkowski problem. It was
first posed in [64] where for p ≤ q uniqueness of Lp dual curvature measures of
polytopes was studied. Given a Borel measure µ ∈ Sn−1, Huang and Zhao [47]
related existence of solutions of ˜︁Cp,q(K,Q, ·) = µ when Q = Bn to an optimiza-
tion problem which led to a characterization of Lp dual curvature measures in
the particular cases when p > 0 and q < 0, and when p, q > 0, p ̸= q and µ
is even. In case p, q < 0, p ̸= q and µ is even, they also proved a sufficient
condition. Böröczky and Fodor [20] established for arbitrary Q ∈ Sno a sufficent
condition when p > 1, q > 0, p ̸= q and µ is discrete. In addition, regularity of
the involved convex bodies is discussed. The main focus in this section is on the
case p = 0, i.e., for fixed Q ∈ Sno we consider the (0, q)th dual curvature mea-
sures ˜︁C0,q(K,Q, ·) for K ∈ Kn

o . Here we discuss how the subspace concentration
inequalities presented in Section 3.4 may be generalized to Lp dual curvature
measures. For q ∈ (0, n) and Q ∈ Kn

s we already proved a straightforward
generalization of Theorem 3.2.

Theorem 3.25 (Böröczky, Henk, P. [14]). Let q ∈ (0, n) and K,Q ∈ Kn
s . Then

˜︁C0,q(K,Q, Sn−1 ∩ L) < min
{︃

dimL

q
, 1
}︃ ˜︁C0,q(K,Q, Sn−1) (3.43)

for every proper subspace L of Rn.

Proof. If dimL ≥ q, there is nothing to show. If dimL < q, by (3.42) and
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Theorem 3.16

˜︁C0,q(K,Q, Sn−1 ∩ L) = 1
n

∫︂
α∗

K
(η)

ρK(u)qρQ(u)n−q du

<
dimL

qn

∫︂
Sn−1

ρK(u)qρQ(u)n−q du

= dimL

q
˜︁C0,q(K,Q, Sn−1).

This bound is also optimal as the next example shows.

Proposition 3.26. Let q ∈ (0, n) and k ∈ {1, . . . , n − 1}. There exists a
sequence of convex bodies Kl ∈ Kn

s , l ∈ N, and a k-dimensional subspace L ⊆ Rn
such that

lim
l→∞

˜︁C0,q(Kl, Q, Sn−1 ∩ L)˜︁C0,q(Kl, Q, Sn−1)
=
{︄
k
q , if k < q,
1, if k ≥ q.

The proof will be omitted since it repeats the arguments of the proof of
Proposition 3.17 with Kl = Bk × (lBn−k) and ρn−q

Q instead of |·|q−n.

The point about (3.43), which deserves particular attention, is that the given
bound is independent of the body Q ∈ Kn

s . In fact, one cannot prove a Q
independent subspace concentration bound if either symmetry or convexity in
this assumption is dropped. We will prove this in the following two propositions
and begin with the case, when Q is not necessarily convex, but a star body.

Proposition 3.27. Let q ∈ (0, n). There is no non-trivial subspace concen-
tration bound on the (0, q)th dual curvature measures of symmetric convex bod-
ies that is uniform with respect to origin-symmetric star bodies, i.e., for every
k ∈ {1, . . . , n − 1} and ε > 0 there exist K ∈ Kn

s , an origin-symmetric Q ∈ Sno
and a k-dimensional subspace L of Rn such that˜︁C0,q(K,Q, Sn−1 ∩ L) > (1 − ε)˜︁C0,q(K,Q, Sn−1).

Proof. Let K = Bk × Bn−k and L = lin{e1, . . . , ek} be the k-dimensional
subspace generated by the first k canonical unit vectors ei. For x ∈ Rn write
x = (x1,x2), where x1 ∈ Rk and x2 ∈ Rn−k. The supporting hyperplane of K
with respect to a unit vector v ∈ Sn−1 ∩ L is given by

HK(v) = {x ∈ Rn : ⟨v1,x1⟩ = 1}.

Hence the part of the boundary of K covered by all these supporting hyperplanes
is given by Sk−1 ×Bn−k. Let

Q = {(x1,x2) ∈ Rn : |x1| ≤ 1, |x2| ≤ |x1|}.

Thus Q is star-shaped and for (x1,x2) ∈ Rn with x1 ̸= 0

ρQ(x1,x2) =
{︄

0, if |x2| > |x1|,
|x1|−1

, otherwise.
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1/
l

x1

x2

Figure 3.7: The star body Ql in the proof of Prop. 3.27

For each l ∈ N we define a star body Ql = Q + 1
lBn (see Fig. 3.7). Then ρQl

converges pointwise to ρQ. By (3.42), Lemma 3.6, Fubini’s theorem and the
monotone convergence theorem we conclude

lim
l→∞

˜︁C0,q(K,Ql, Sn−1 ∩ L)

= lim
l→∞

q

n

∫︂
Bk

⎛⎜⎝ ∫︂
|x1|Bn−k

ρQl
(x1,x2)n−q dx2

⎞⎟⎠ dx1

= q

n

∫︂
Bk

⎛⎜⎝ ∫︂
|x1|Bn−k

ρQ(x1,x2)n−q dx2

⎞⎟⎠ dx1

= q

n

∫︂
Bk

⎛⎜⎝ ∫︂
Bn−k

ρQ(x1,x2)n−q dx2

⎞⎟⎠ dx1

= lim
l→∞

q

n

∫︂
Bk

⎛⎜⎝ ∫︂
Bn−k

ρQl
(x1,x2)n−q dx2

⎞⎟⎠ dx1

= lim
l→∞

˜︁C0,q(K,Ql, Sn−1),

where we used, that ρQ(x1, ·) is zero on Bn−k \ (|x1|Bn−k).

We use a similar construction when we consider Q ∈ Kn
o .

Proposition 3.28. Let q ∈ (0, n). There is no non-trivial subspace concen-
tration bound on the (0, q)th dual curvature measures of symmetric convex bod-
ies that is uniform with respect to convex bodies in Kn

o , i.e., for every k ∈



82 3 Dual curvature measures

{1, . . . , n − 1} and ε > 0 there exist K ∈ Kn
s , an Q ∈ Kn

o and a k-dimensional
subspace L of Rn such that

˜︁C0,q(K,Q, Sn−1 ∩ L) > (1 − ε)˜︁C0,q(K,Q, Sn−1).

Proof. Let P = [−1, 1]n and L = lin{e1, . . . , ek} as above and define

Q = conv({0} ∪ F (P, e1)).

Thus Q is a convex body and for each l ∈ N we define Ql = Q + 1
lBn ∈ Kn

o .
In particular, ρQl

converges pointwise to ρQ. By (3.42), Lemma 3.6, Fubini’s
theorem and the monotone convergence theorem we conclude

lim
l→∞

˜︁C0,q(P,Ql, Sn−1 ∩ L)

= lim
l→∞

q

n

k∑︂
i=1

∫︂
conv({0}∪F (P,ei))

ρQl
(x)n−q + ρQl

(−x)n−q dx

= q

n

k∑︂
i=1

∫︂
conv({0}∪F (P,ei))

ρQ(x)n−q + ρQ(−x)n−q dx

= q

n

n∑︂
i=1

∫︂
conv({0}∪F (P,ei))

ρQ(x)n−q + ρQ(−x)n−q dx

= lim
l→∞

q

n

n∑︂
i=1

∫︂
conv({0}∪F (P,ei))

ρQl
(x)n−q + ρQl

(−x)n−q dx

= lim
l→∞

˜︁C0,q(K,Ql, Sn−1).

The foregoing propositions suggest that if, for fixed q ∈ R and Q ∈ Sno , there
are any non-trivial subspace concentration bounds on ˜︁C0,q(K,Q, ·), they depend
on Q.

As a final remark we want to discuss if and how Theorem 3.5 may be extended
to the (0, q)th dual curvature measure with respect to Q ∈ Kn

s . The main
ingredient in our proof was Theorem 3.8. In this setting we would need to
prove (3.15) with

∥·∥αQ = ρQ(·)−α

in place of |·|α. Note that for symmetric star bodies Q the function

∥x∥Q =
{︄
ρQ(x)−1, if x ̸= 0,
0, if x = 0,

defines a quasinorm on Rn, which is a norm if and only if Q is convex. In view
of Karamata’s inequality, which implies the 0-dimensional version of (3.15), one
could even consider φ(∥·∥Q) for a convex non-decreasing function φ : R≥0 → R≥0
instead of |·|α. The major obstruction for generalizing our method is a missing
variant of Lemma 3.12 for arbitrary norms. Unfortunately, this is only possible
in some cases.
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Lemma 3.29 ([53, Lem. 6.4]). Let Q ∈ Sno be an origin-symmetric star body
and α > 0. There exists a finite Borel measure µ on Sn−1 with

∥x∥αQ =
∫︂

Sn−1

|⟨θ,x⟩|α dµ(θ)

for all x ∈ Rn, if and only if (Rn, ∥·∥Q) can be isometrically embedded into the
space of functions whose αth power of the absolute value is Lebesgue integrable
over Rn.
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Conclusion

The present dissertation addressed Minkowski problems in Brunn-Minkowski,
Lp-Brunn-Minkowski and dual Brunn-Minkowski theory and related topics.

In Chapter 2 we investigated the cone-volume measure, that takes on a sig-
nificant role in the study of the logarithmic Brunn-Minkowski inequality (2.4)
and the logarithmic Minkowski inequality (2.7), which are conjectured to hold
for pairs of symmetric convex bodies. Known examples violating (2.7) typically
involve a convex body with boundary points close to the origin. We established
(2.7) in the context of centered convex bodies when one of the convex bodies is
a simplex, or a parallelepiped in dimensions up to four. It was pointed out that
the logarithmic Minkowski inequality (2.7) is connected to the problem of deter-
mining uniqueness of cone-volume measures. In Section 2.4 we fully character-
ized cone-volume measures of trapezoids alongside with necessary and sufficient
conditions for their uniqueness. On this basis, we constructed vertex-minimal
polygons with non-unique cone-volume measure in Section 2.5 and presented a
fivegon found by Malikiosis confirming that the strict subspace concentration
inequality (2.34) is not sufficent for uniqueness. From the characterization of
cone-volume measures of trapezoids (Theorem 2.14) we deduced necessary and
sufficient conditions in the logarithmic Minkowski problem for centered trape-
zoids. We are the first to state sufficient conditions for cone-volume measures
of centered bodies that are neither symmetric nor simplices. It remains an open
problem if in any dimension the cone-volume measures of centered convex bodies
are unique and if the logarithmic Minkowski inequality holds for pairs of cen-
tered convex bodies. Future studies could also target the logarithmic problem
for polygons with five or more vertices.

Chapter 3 addressed subspace concentration of dual curvature measures of
symmetric convex bodies, which are geometric measures recently introduced by
Huang, Lutwak, Yang and Zhang. They fill a blank spot in the dual Brunn-
Minkowski theory and consequently have been studied thoroughly since their
discovery. In addition, they deserve attention since the family of dual curvature
measures include cone-volume measures of convex bodies. While most published
works on the dual Minkowski problem aim for establishing sufficient conditions,
we stated and proved – in the symmetric setting – the only known non-trivial
necessary conditions. The given proofs are based on sharp estimates of inte-
grals of quasiconcave and convex density functions over certain regions within
a convex body. To this end, we established new Brunn-Minkowski type in-
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equalites for the measures defined by these density functions in the Sections 3.2
and 3.3 leading to subspace concentration bounds on the qth dual curvature
measure of an n-dimensional symmetric convex body in the parameter ranges
0 < q < n and q ≥ n + 1. The remaining range n < q < n+ 1 cannot be cov-
ered by our approach as was pointed out in Section 3.5. A detailed analysis
of the occurring obstructions enabled us to extend the subspace concentration
bounds to (n, n + 1) for one-dimensional subspaces or when the convex body
is a parallelepiped. From each of these results we deduced a tight subspace
concentration inequality for qth dual curvature measures of symmetric convex
bodies in the plane when q > 2. In Section 3.6 we applied our methods to the
more general theory of Lp dual curvature measures to prove another subspace
concentration inequality in this setting at least for 0 < q < n. Future studies
could aim for an extension of Theorem 3.8 to arbitrary norms which seems to
require a different approach than the Kneser-Süss proof of Theorem 3.9. Other
noteworthy research directions include establishing sufficient conditions in the
dual Minkowski problem for q > n or considering, e.g., centered convex bod-
ies to investigate if known results for the cone-volume measure have natural
generalizations.
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[x,y] convex hull/segment between x and y

#X number of elements of a finite set X

·|L orthogonal projection onto L

|·| (Euclidean) norm

x normalization x
|x|

⟨·, ·⟩ standard inner product

(1 − λ)K +p λM p-combination of the convex bodies K and M w.r.t. λ
(for p = 0 called log-combination)

(1 − λ)K ˜︁+λM radial combination of the star bodies K and M w.r.t. λ

aff affine hull

α∗
K reverse radial Gauss image of a convex body K

Bn Euclidean unit ball

c centroid

Ci(K, ·) ith curvature measure of the convex body K˜︁Cq(K, ·) qth dual curvature measure of the convex body K˜︁Cp,q(K, ·) (p, q)th dual curvature measure of the convex body K

conv convex hull

∂X boundary of the set X

∂′K boundary points of convex body K with unique outer
normal vector

dim dimension

ei ith standard basis vector of Rn

G(i, n) Grassmannian of i-dimensional subspaces of Rn

H(a, α) hyperplane defined by ⟨a,x⟩ = α
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H+(a, α) halfspace defined by ⟨a,x⟩ ≥ α

H−(a, α) halfspace defined by ⟨a,x⟩ ≤ α

Hk normalized k-dimensional Hausdorff measure

hK support function of convex body K

intX interior points of the set X

Kn set of convex bodies in Rn

Kn
c set of centered convex bodies in Rn

Kn
o set of convex bodies in Rn containing 0 in the interior

Kn
s set of symmetric convex bodies in Rn

lin linear hull

L⊥ orthogonal complement of the subspace L

Mp(·, ·, λ) p-mean with weighting parameter λ

N natural numbers 1, 2, . . .

νK Gauss map of K

pK metric projection map onto a convex body K˜︁pK radial projection map onto a convex body K

Pn set of n-polytopes in Rn

Pn
c set of centered polytopes in Rn

Pn
o set of polytopes in Rn containing 0 in the interior

Pn
s set of symmetric n-polytopes in Rn

pos positive hull

ρK radial function of convex body K

R real numbers

R>0 (R≥0) positive (nonnegative) real numbers

Rn Euclidean n-space

Rn×n real n-by-n matrices

Sn−1 (n− 1)-dimensional sphere in Euclidean n-space

Si(K, ·) ith area measure of the convex body K˜︁Sq(K, ·) qth dual area measure of the convex body K

SK surface area measure of the convex body K

S(p)
K Lp surface area measure of the convex body K

Sno set of star bodies in Rn

supp support
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U(P ) set of unit outer normal vectors of a polytope P

VK cone-volume measure of the convex body K

volk k-dimensional volume

Wi ith quermassintegral
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