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Computational Methods and Machine Learning for Crosslinking Mass
Spectrometry Data Analysis

by Sven Hans-Joachim GIESE

A central part in understanding complex biological systems is to uncover the func-
tion and structure of proteins. The elucidation of a protein’s structure and under-
standing its function are tightly connected. The underlying paradigm that struc-
ture defines function, has led to the development of many methods to derive the
three-dimensional structure of proteins and protein complexes. Crosslinking mass
spectrometry (CLMS) is a comparatively new tool for the analysis of single proteins,
multi-protein complexes, and protein-protein interactions. CLMS poses several chal-
lenges for mass spectrometry-based proteomics, which include understanding the
fragmentation behavior of crosslinked peptides to design efficient database search
strategies and improved acquisition settings.

CLMS builds upon the preservation of distance information by crosslinking rea-
gents, which is relayed by mass spectrometric analysis. To identify a crosslink in
a standard database search, theoretically all pairwise peptide combinations need to
be considered. Without the use of isotope-labeled or cleavable crosslinkers, apply-
ing a standard crosslinking approach using homobifunctional NHS-ester crosslinker
reagents, an exhaustive peptide identification strategy becomes quickly unfeasible
because of the dynamic explosion of the search space. Therefore, robust heuristics
are needed to make the identification of crosslinks in complex samples feasible. This
endeavor is even further hindered by the unequal fragmentation of the two peptides
in a crosslink under collision-induced dissociation conditions. The subsequent cov-
erage gap between the two peptides in a crosslink may lead to misidentifications.
This thesis presents computational approaches and machine learning methods to
improve the identification of crosslinked peptides.

First, an efficient strategy is outlined, based on an explorative study about the
fragmentation behavior of crosslinked peptides. Most importantly, the presented
search strategy shows that the information from isotope-labeled and cleavable cross-
linkers can be partially retrieved by computational processing of the spectra and
adequate mass spectrometric acquisition settings. A key concept builds upon the
ability to recognize crosslinked fragments from their mass and charge. This allows
to identify the two linked peptides in a sequential manner without searching all pep-
tide combinations exhaustively.

Second, to reduce the coverage gap, modern mass spectrometers offer versa-
tile fragmentation methods. For most crosslinks, electron-transfer dissociation com-
bined with higher-energy collision dissociation (HCD) yields the highest coverage.
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HCD remains an important choice because of its fast acquisition speed and compet-
itive sequence coverage.

Third, to avoid severe bias through the identification of noncovalently associ-
ated peptides as crosslinks, multiple solutions are feasible. For example, disruptive
ionization settings can be used to avoid noncovalently associated peptides entering
the mass spectrometer. Alternatively, post-acquisition heuristics using the retention
time difference between linear and crosslinked peptides add valuable information
to recognize noncovalent peptide associations.

Fourth, since complex crosslinking experiments with deep-proteome coverage
require extensive fractionation, being able to predict the retention behavior may
prove beneficial for peptide identification. In addition, mechanistic understanding
of the separation process helps to further improve the chromatographic separation.
For hydrophilic anion exchange chromatography (hSAX), the separation is heavily
influenced by charged amino acids and aromatics. Most importantly, the retention
behavior of linear peptides can be accurately predicted through deep neural net-
works.

Fifth, the ability to predict not only hSAX, but also strong cation exchange (SCX)
and reversed-phase retention times indeed proves to be a valuable addition for the
identification of crosslinked peptides. Siamese neural network architectures offer
elegant solutions to encode crosslinked peptides. Multi-task learning of several
chromatography domains at the same time allows robust and fast prediction of all
chromatography domains. Accurate reversed-phase predictions together with hSAX
and SCX fraction prediction allows rescoring already identified peptide spectrum
matches with a support vector machine. This workflow leads to more identified
protein-protein interactions at constant false discovery rate from a deep-fractionated
Escherichia coli sample.

The integration of advancements in crosslinking chemistry, sample acquisition,
database search, and machine learning together are essential stepping-stones for the
identification of crosslinked peptides in complex samples.
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von Sven Hans-Joachim GIESE

Ein zentraler Bestandteil zum Verständnis komplexer biologischer Systeme ist
die Aufdeckung der Funktion und Struktur von Proteinen. Die Aufklärung der Struk-
tur eines Proteins und das Verständnis seiner Funktion sind eng miteinander ver-
bunden. Das zugrunde liegende Paradigma, Struktur definiert Funktion, hat zur
Entwicklung vieler Methoden zur Bestimmung der dreidimensionalen Struktur von
Proteinen und Proteinkomplexen geführt. Die quervernetzende Massenspektrome-
trie (CLMS) ist ein vergleichbar neues Werkzeug für die Analyse von einzelnen Pro-
teinen, Multiproteinkomplexen und Protein-Protein-Interaktionen. CLMS stellt die
Massenspektrometrie-basierte Proteomik vor mehrere Herausforderungen, darun-
ter das Verständnis des Fragmentierungsverhaltens von quervernetzten Peptiden,
um effiziente Datenbank-Suchstrategien und verbesserte instrumentelle Aufnahme-
strategien zu entwerfen.

CLMS baut auf der Erhaltung von Abstandsinformationen durch die massen-
spektrometrische Analyse unter Verwendung von Quervernetzungsreagenzien auf.
Beim universellen Ansatz, d.h. ohne die Verwendung isotopenmarkierter oder spalt-
barer Quervernetzer, wird eine erschöpfende Peptididentifikationsstrategie aufgrund
der dynamischen Explosion des Suchraums schnell undurchführbar. Daher sind ro-
buste Heuristiken erforderlich, um die Identifizierung von Quervernetzungen in
komplexen Proben durchführbar zu machen. Dieses Bestreben wird durch die un-
gleiche Fragmentierung der beiden Peptide in einer Quervernetzung unter kollisi-
onsinduzierter Dissoziation behindert. Mit der daraus resultierenden Sequenzabde-
ckungslücke zwischen den beiden Peptiden in einer Quervernetzung kann es zu
einer Fehlidentifizierung kommen oder sogar zu einer starken Verzerrung der Iden-
tifikationsergebnisse. In dieser Arbeit werden rechnergestützte Ansätze und Metho-
den des maschinellen Lernens vorgestellt, um die Identifizierung von quervernetz-
ten Peptiden zu verbessern.

Zuerst wird eine effiziente Suchstrategie skizziert, basierend auf einer explo-
rativen Studie über das Fragmentierungsverhalten von quervernetzten Peptiden.
Die vorgestellte Suchstrategie zeigt, dass die Informationen von isotopenmarkierten
und spaltbaren Quervernetzern teilweise durch rechnerische Verarbeitung der Spek-
tren und geeignete massenspektrometrische Aufnahmeeinstellungen ersetzt werden
können. Ein Schlüsselkonzept basiert auf der Fähigkeit, quervernetzte Fragmente
anhand ihrer Masse und Ladung zu erkennen, um die beiden quervernetzten Pepti-
de sequenziell zu identifizieren.
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Zweitens bieten moderne Massenspektrometer vielseitige Fragmentierungsme-
thoden an, um die Sequenzabdeckung zu erhöhen. Für die meisten Quervernetzun-
gen liefert die Elektronentransferdissoziation in Kombination mit der hochenergeti-
schen Kollisionsdissoziation (HCD) die höchste Sequenzabdeckung. Die HCD bleibt
wegen der schnellen Aufnahmegeschwindigkeit und der kompetitiven Sequenzab-
deckung eine wichtige Option.

Drittens ist es möglich, schwere Verzerrungen durch die Identifizierung von ni-
chtkovalent assoziierten Peptiden als quervernetzte Peptide zu vermeiden. Zum
Beispiel können disruptive Ionisierungseinstellungen verwendet werden, um nicht-
kovalent assoziierte Peptide daran zu hindern in das Massenspektrometer zu ge-
langen. Alternativ liefern Heuristiken nach der Akquisition unter Verwendung der
Retentionszeitdifferenz von linearen und quervernetzten Peptiden wertvolle Infor-
mationen hinzu, um nicht-kovalent assoziierte Peptide zu erkennen.

Viertens, da komplexe Quervernetzungsexperimente mit tiefer Proteomabdeck-
ung eine umfangreiche Fraktionierung erfordern, kann sich die Vorhersage des Re-
tentionsverhaltens als vorteilhaft für die Peptididentifizierung erweisen. Darüber
hinaus hilft das mechanistische Verständnis des Trennprozesses, die chromatogra-
phische Trennung weiter zu verbessern. Bei der hydrophilen Anionenaustausch-
chromatographie (hSAX) wird die Trennung stark durch geladene Aminosäuren
und Aromaten beeinflusst. Am wichtigsten ist, dass das Retentionsverhalten von li-
nearen Peptiden durch tiefe neuronale Netzwerke genau vorhergesagt werden kann.

Fünftens erweist sich die Fähigkeit, nicht nur hSAX, sondern auch den starken
Kationenaustausch (SCX) und die Retentionszeiten in Umkehr-Phase Chromatogra-
phie vorherzusagen, in der Tat als wertvolle Ergänzung für die Identifizierung quer-
vernetzter Peptide. Siamesische neuronale Netzwerke bieten elegante Lösungen zur
Kodierung quervernetzter Peptide. Das Multi-Task-Lernen mehrerer Chromatogra-
phie-Domänen zur gleichen Zeit ermöglicht eine robuste und schnelle Vorhersa-
ge. Genaue Umkehrphasenvorhersagen zusammen mit hSAX- und SCX- Fraktions-
vorhersagen erlauben es, bereits identifizierte Peptidspektrum-Identifikationen mit
einer Support-Vektor-Maschine neu zu bewerten. Dabei können die identifizierten
Protein-Protein-Interaktionen von einer tief-fraktionierten Escherichia coli Probe um
das Zweifache erhöht werden bei konstanter Falschfindungsrate.

Fortschritte in der Quervernetzungschemie, der Probenvorbereitung, der Daten-
banksuche und dem maschinellen Lernen zusammen bilden wesentliche Sprung-
bretter für die Identifizierung von quervernetzten Peptiden in komplexen Proben.
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Chapter 1

Introduction

The cell. A fundamental goal in molecular biology is to understand the complex
processes that govern life in a functional cell. The central biomolecules that are in-
volved in virtually any life-dependent process are proteins (Keskin, Tuncbag, and
Gursoy, 2016). Only by the manifold interactions between proteins, cells can harvest
energy, produce metabolites, fight diseases, and reproduce. Therefore, the study
of the proteome and its rich interaction network will eventually enable modern life
science to intervene and optimize the cell’s response to the desired outcome.

Protein function. Proteins can function independently, in signal cascades, or
even in large molecular machines. The functional landscape that makes these inter-
actions possible is diverse. Based on the chemical properties of the involved pro-
teins, the nature of the interaction can be transient or permanent (Nooren, 2003).
Transient interactions have only short half-lives, while permanent interactions are
irreversible. This makes transient protein complexes, prime regulators in signal cas-
cades (Acuner Ozbabacan et al., 2011). Unfortunately, transient interactions are chal-
lenging to study because of their unstable nature. Therefore, the methods that are
required to study both types of interactions are also diverse. But why do we strive to
study the structure of proteins and protein complexes at all? A common paradigm
that architects and biologists try to exploit is “structure determines function”. Thus,
knowing the structure of a protein will hopefully help us to understand its func-
tion. Determining the structure of a protein is often achieved by assuming that they
have a single structural confirmation. To capture the structure of a protein, it is im-
portant to realize that there are many copies of the same protein in the cell – and
even across different cells. Depending on the environment and the interactions the
conformational states of a single protein vary (Miao and Cao, 2016). Examples in-
clude GTP-binding proteins, motor proteins, carrier proteins (Chen, Kurgan, and
Ruan, 2007). In addition, protein structures can have rigid and flexible parts (e.g.
unordered regions) that are vital for protein function (Craveur et al., 2015).

Structure determination. Capturing the structural information from peptides
to protein-protein interactions (PPIs) is difficult with a single technique alone. A
plethora of methods have been developed that each have their strengths and weak-
nesses. Traditionally, X-ray crystallography is the most used technique to deliver
structural information for proteins and protein complexes (Sali et al., 2003). X-ray
crystallography is a very well-developed method that delivers high-resolution struc-
tures if the targeted protein complex crystallizes. Even if the protein crystalizes, the
question remains whether the adopted protein structure represents the physiologi-
cal structure. This caveat makes X-ray crystallography less suited to study dynamic
PPIs (in vivo). Nuclear magnetic resonance spectroscopy (NMR) and single-particle
electron microscopy (cryo-EM) on the other hand are well suited to study dynamic
protein interactions. Cryo-EM and the recent breakthroughs in sample preparation,
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camera technology, and computational processing have led to high-resolution struc-
tures near to atomic resolution of 3 Å to 5 Å (Cheng, 2015). NMR, another technique,
is expanding its application towards in-cell analysis under physiological conditions
(Ikeya, Güntert, and Ito, 2019) and atomic resolution (Luchinat and Banci, 2017). For
more details on the field of structural biology and the study of PPIs the reader is re-
ferred to the following publications: (Leitner, 2016; Liu and Hsu, 2005; Miura, 2018;
Sali et al., 2003; Smits and Vermeulen, 2016).

Interactome screening. Despite the success and many applications of the above-
described methods in elucidating protein structures, they do not provide PPI in-
formation on a system-wide scale. A selection of current high-throughput meth-
ods for elucidating PPI information include: Affinity-purification mass spectrome-
try (APMS), Yeast Two-Hybrid (Y2H) screens, and crosslinking mass spectrometry
(CLMS). Depending on the analyzed species and technology, the magnitude in cov-
erage ranges from several thousand to tens of thousands of discovered PPIs (Mehta
and Trinkle-Mulcahy, 2016). A few years ago, CLMS would not have been consid-
ered in the context of large PPI screening experiments. In this thesis I show the im-
provements and contributions to the data analysis of crosslinking mass spectrometry
that contributed to the maturation of the field from the analysis of single proteins to
interactome studies.

1.1 Crosslinking Mass Spectrometry

CLMS. The design of CLMS experiments is very similar to standard proteomic work-
flows (Steen and Mann, 2004). A minimal CLMS experiment needs to perform cell
lysis, crosslinking, protein digestion, LCMS, and data analysis (Rappsilber, 2011;
Sinz, 2018). The introduced crosslinker covalently binds proximal amino acids in
a single protein or between multiple proteins. This bond remains intact through
the entire sample preparation and MS analysis. Thus, the identified crosslink spec-
trum matches (CSMs) represent peptide pairs that were spatially close during the
crosslinking reaction. Depending on the crosslinking chemistry used the respective
distance constraints vary. A common crosslinker, that is used in the universal ap-
proach (O’Reilly and Rappsilber, 2018) is bis(sulfosuccinimi-dyl)suberate (BS3). Uni-
versally applicable crosslinkers consist of two functional groups and a spacer. The
theoretical distance constraints are typically derived by adding the spacer length,
the length of the reactive amino acid’s side chain, and a spatial tolerance parameter
leading to approximately 27.4 Å for BS3 (Chen et al., 2010). This cutoff is supported
by molecular dynamic simulations, recommending 26 Å to 30 Å as a sensible cutoff
region (Merkley et al., 2014).

Relevance. CLMS is applicable to purified proteins (Belsom et al., 2016), protein
complexes (Kao et al., 2012; Walzthoeni et al., 2013), organelles (Liu et al., 2018; Ryl
et al., 2020) and entire proteomes (Götze et al., 2019; Liu et al., 2015). However, the
strength of CLMS lies within the possibility to analyze protein structures in their
native environment. This benefit comes with the drawback of medium-resolution
information compared to X-ray crystallography, NMR, or EM. For the development
of CLMS the availability of 3D-models from established methods is a blessing and
a curse; on the one hand available structures make it easy to validate identified
crosslinks, on the other hand discrepancies between 3D-models and crosslinks are
difficult to interpret (Chu, Thornton, and Nguyen, 2018). They could either be the
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result of different conformational states that were only captured by CLMS, or a 3D-
model that does not reflect the native structure, or a misidentified crosslink. Nev-
ertheless, available high-resolution 3D-models for proteins are often used to evalu-
ate self and heteromeric crosslinks in studies of single proteins or complex samples
(Mendes et al., 2019). A very active area of research is now elegantly combining
the information from the different structure determination methods into integrated
structural biology approaches (Cerofolini et al., 2019; Robinson et al., 2015; Schmidt
and Urlaub, 2017). Of particular interest is the combination of cryo-EM and CLMS
where the distance constraints together with density maps seem to complement each
other in computational modeling approaches (Steigenberger et al., 2020; O’Reilly et
al., 2020).

Peptide identification. Before distance constraints can be used in structural
modeling, the acquired mass spectra need to be matched to peptide pairs. This pro-
cess is usually done via a database search (Yılmaz et al., 2018) or spectral libraries
for data-independent acquisition (Müller et al., 2019). The database search poses a
major challenge for the universal crosslinking approach. Especially, the rapid in-
crease in search space commonly referred to as the n-square problem. The target
database of all possible crosslinks grows quadratically with the number of peptides.
The rapid explosion of the search space from combining two peptides from 50 pro-
teins, to a crosslink, reaches the search space size of a standard linear search (in-
cluding roughly 20000 proteins) (Yılmaz et al., 2018). This effect only gets amplified
with the use of promiscuous crosslinker chemistry (Belsom et al., 2016) or sequential
digestion (Mendes et al., 2019). The exhaustive construction of the target database
often becomes unfeasible for complex samples. Therefore, many search engines em-
ploy a heuristic two-pass strategy which tries to identify both peptides individually
(Yılmaz et al., 2018). However, various implementations of the two-step identifica-
tion process are found in the literature. Improvements for the data analysis in the
universal crosslinking approach are of central importance for the CLMS field and
the structural biology community, since approximately 78% of the studies between
2009 and 2019 use non-cleavable crosslinkers (Steigenberger et al., 2020).

Search heuristics. In Kojak (Hoopmann et al., 2015) the implemented two-pass
strategy is similar to an open-modification search strategy (Joice et al., 2014). Linear
peptides are searched with modifications on the crosslinkable residues to compute
a list of high scoring candidates. In a second step, these candidates are combined if
their summed mass and crosslinker modification fit the precursor mass. A very sim-
ilar strategy is used in pLink (Yang et al., 2012) with the distinction that the list of
candidate peptides is split into alpha and beta peptides based on the precursor mass.
The two candidate lists are then combined and scored as peptide pair. This strategy
was changed in pLink 2 (Chen et al., 2019), where first alpha peptide candidates are
identified with query-peaks1 from the spectrum. Then the alpha peptide candidates
are used to retrieve beta peptide candidates that match the precursor mass minus
the alpha peptide mass and the crosslinker mass. The peptide pairs are then fine-
scored to compute the final list of CSMs. A similar search strategy was proposed
earlier from an analysis of the fragmentation behavior of collision-induced dissoci-
ation (CID) fragmented crosslinked peptides (Giese, Fischer, and Rappsilber, 2015).
The implementation of this search strategy, xiSEARCH (Mendes et al., 2019) exploits
several characteristics from the fragmentation behavior analysis. Instead of placing
the modifications of unknown mass on the crosslinkable residues, the crosslinked

1Unfortunately, there was no formal definition of this term in the pLink 2 paper.
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fragments are computationally linearized. During this linearization, the most in-
tense ions are selected, and their m/z’s are transformed by applying a heuristic to
yield the m/z of linear fragments. This heuristic builds upon two observations: first,
crosslinked fragments have a higher mass and charge than linear fragments. Sec-
ond, the linear fragments can be computed by subtracting the crosslinked fragment
mass from the precursor mass. From the linearized fragment ions, alpha peptide
candidates are retrieved and subsequently for each alpha candidate matching beta
peptides are computed.

Coverage gap. Regardless of the applied search paradigm, the fragmentation
behavior of crosslinked peptides has proven difficult for the reliable identification of
both peptides. Instead of only considering targets (T) and decoys (D) as in a linear
search, CL engines must consider TT, TD, and DD matches. Ideally, in TT matches
both peptides achieve a high score, in TD matches the T achieves a high score and
the D achieves a low score, and in DD matches both peptides achieve a low score.
Unfortunately, this scenario does not necessarily reflect reality. Trnka et al. (Trnka
et al., 2014) reported for their search engine that the first peptide contributes a much
larger proportion of the final score than the second peptide. Unequal coverage of the
two peptides under high-energy collisional dissociation (HCD) conditions was the
main reason for this score gap. Under CID conditions it was even reported that the
intensities of the fragment ions differ considerably (Giese, Belsom, and Rappsilber,
2016). In addition to the different fragmentation behavior of CL peptides, spectra
of poor quality will also contribute to low scoring matches, as observed for linear
peptides (Renard et al., 2010).

Identification bias. The coverage gap also introduces potential biases to the pep-
tide identification. A common challenge are isobaric peptide combinations. With
the large search space many peptide combinations can match the precursor mass. If
only one peptide is well-characterized, the second peptide can be matched with only
a few or no matched fragment ions by the precursor mass, leaving considerable un-
certainty on the second peptide identification. A potential source for misidentifica-
tions are consecutive peptides from a single protein that get identified as crosslinked
(Iacobucci and Sinz, 2017). If the crosslinker only hydrolyzes partially on the consec-
utive peptide, the mass is the same as if there was a crosslinked peptide. This source
of error can easily be avoided by excluding all consecutive peptides identifications
after the database search. Another potential bias rises from ambiguous crosslink site
assignments, especially with promiscuous crosslinking reagents such as sulfosuc-
cinimidyl 4,4’-azipentanoate (sulfo-SDA) (Belsom et al., 2016). No or limited back-
bone fragmentation from the crosslinked peptides can lead to severe artifacts that
prevent the meaningful interpretation of crosslinked data. For sulfo-SDA it was
observed that under specific liquid chromatography conditions noncovalent pep-
tide associations (NAPs) get identified as crosslinked peptides (Giese et al., 2019).
The shown characteristics of NAPs revealed the vulnerability of search engines if
no proper fragmentation of the crosslinked fragments is required for identification.
In the above-mentioned publication the false discovery estimation (FDR), as judged
by the percentage of long-distance links, was three times higher than the estimated
FDR. While NAPs can largely be avoided by disruptive ionization settings, the un-
derlying missing evidence in the MS2 domain and resulting coverage gap remains
a challenge. To overcome the coverage gap, experimental and computational solu-
tions are feasible.
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Experimental Solutions

Fragmentation methods. Modern mass spectrometers such as the Orbitrap Fusion
Lumos (Thermo Fisher Scientific) offer versatile acquisition strategies. Apart from
the choice of the mass analyzer for the MS1 and MS2 spectra acquisition, a cen-
tral part is the choice of the fragmentation method. Traditionally, peptide frag-
mentation was mostly centered around CID or HCD fragmentation for linear and
crosslinked peptides. Alternative fragmentation methods include electron-transfer
dissociation (ETD) or combinations of ETD and CID/HCD (EThciD/EThcD). For
linear proteomics, decision trees have been proposed to enhance fragmentation ef-
ficiency based on precursor charge and m/z (Swaney, McAlister, and Coon, 2008).
This concept has also been investigated for CLMS and the universal crosslinking ap-
proach. The combined fragmentation method EThcD yielded on average the high-
est crosslinked peptide sequence coverage (Giese, Fischer, and Rappsilber, 2016). For
the individual peptides, the coverage gap was largest in CID but comparable in ETD,
ETciD, EThcD, and HCD. The increased acquisition time in EThcD comes with an
overhead in cycle time and thus fewer acquired spectra compared to HCD. To maxi-
mize the number of scans and sequence coverage a data-dependent decision tree was
proposed also for CLMS (Giese, Fischer, and Rappsilber, 2016). The combination of
different fragmentation methods is not the only choice to optimize fragmentation ef-
ficiency. Since most fragmentation methods need to be parameterized (e.g. collision
energy for HCD, or reaction time for ETD), they can also be optimized individually
(Diedrich, Pinto, and Yates, 2013). This process is not straight forward since b- and
y-ions seem to have different optimal normalized collision energies (NCE) (Révész
et al., 2018).

Cleavable crosslinker. In addition to the universal approach a specialized MS-
cleavable approach can also be used (O’Reilly and Rappsilber, 2018). Here, crosslinker
reagents containing MS-cleavable chemical groups are used that under CID/HCD
conditions results in characteristic peak doublets that reveal the individual peptide
masses (Kao et al., 2011; Sinz, 2017). This approach simplifies the identification of
crosslinks by reducing the computational complexity to that of linear peptide identi-
fication. Similarly, optimized acquisition schemas have been investigated that make
use of sequential CID-ETD fragmentation (Liu et al., 2017) and MS3 scans of the
individual peptides. Since the alpha and beta peptides are then fragmented inde-
pendently, preferred backbone cleavage in one of the peptides does not influence
the other peptide. However, the involved acquisition cycle for a single precursor
typically results in reduced numbers of acquired spectra and thus a loss in sensitiv-
ity. This method is most powerful if all signature peaks are observed, because only
then the MS3 acquisition is triggered. Currently this acquisition schema is recom-
mended when using the software XlinkX (Gonzalez-Lozano et al., 2020; Liu et al.,
2017). Unfortunately, observing both doublets is rarely the case (Lu et al., 2018). An-
other acquisition strategy builds upon a stepped NCE in which low NCEs are used
to produce (preferentially) reporter ion peaks, and higher NCEs are used for frag-
ment ions (Stieger, Doppler, and Mechtler, 2019). This approach is attractive since
acquisition time is saved by avoiding MS3 spectra but introduces again the coherent
fragmentation of the two peptides. So far, experimental approaches have not yet
solved the coverage gap satisfactory. For a more comprehensive review of current
acquisition trends, crosslinker chemistry, and computational solutions the reader is
referred to the following articles: (O’Reilly and Rappsilber, 2018; Steigenberger et al.,
2020; Yu and Huang, 2018).
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Computational Solutions

RT in CLMS. CLMS relies on the coordinated development of computational solu-
tions for novel acquisition schemas and crosslinkers. Many lessons can be learned
from linear proteomics, e.g. from considering multiple monoisotopic peaks (Lenz et
al., 2018) or using Skyline (MacLean et al., 2010) and Spectronaut for quantitation of
crosslinked peptides (Müller et al., 2018; Müller et al., 2019). Another idea from lin-
ear proteomics is to filter identified peptide spectrum matches (PSMs) based on the
difference between observed and predicted retention times (Klammer et al., 2007).
Theoretically, this approach introduces orthogonal information from the physico-
chemical properties of the peptides in the identification routine. For reversed-phase
(RP) chromatography, which is typically directly coupled to the MS, the mass of
the peptide correlates with the observed RT. Therefore, the readout of the precur-
sor mass is only partially useful to distinguish false from correct identifications. For
CSMs, predicted RTs may offer a loophole to distinguish correct from incorrect iden-
tifications. A typical scenario where misidentification occurs is when one peptide is
very thoroughly fragmented and the other is not. This could either stem from the
physicochemical properties of the crosslinked peptide or from the involvement of
an incorrect match. One would expect that the RT characteristics from these two
scenarios would help to distinguish correct from incorrect matches. Since CLMS ex-
periments often include an additional fractionation step, the RT prediction would
not necessarily be limited to RP.

CLMS experiments. Fractionation requires more material but increases sen-
sitivity and analysis depth compared to multiple injections of the same sample.
Ideally, the applied fractionation method can be used to enrich for a specific type
of molecule in early or later phases of the applied gradients and is orthogonal to
the chromatography method coupled to the MS. Typical fractionation methods for
CLMS include size exclusion chromatography (SEC), strong anion exchange chro-
matography (SCX), or hydrophilic strong anion exchange chromatography (hSAX)
which all can be used to enrich for crosslinked peptides. In addition, SCX and hSAX
showed, at least in linear proteomics, orthogonal separation capabilities (Ritorto et
al., 2013; Ruprecht et al., 2017). To decrease the complexity even further, multi-
dimensional fractionation methods are also being used in CLMS (Ryl et al., 2020).
The extensive use of fractionation techniques leaves room for a multi-dimensional
RT prediction to supplement the identification of crosslinks. Based on earlier ob-
servations that the elution behavior of hSAX is predictable (Giese, Ishihama, and
Rappsilber, 2018) this approach was investigated for CLMS (Chapter 6).

Using retention time predictions. Assuming that an accurate RT model can be
trained, the challenge remains how to incorporate the additional information into a
search engine score. PeptideProphet (Ma, Vitek, and Nesvizhskii, 2012) and Perco-
lator (Käll et al., 2007) were among the first tools to use machine learning for this
task. Both tools aim to discriminate between correct and incorrect PSMs from multi-
ple score features. For the CLMS analysis Kojak (Hoopmann et al., 2015) allows the
use of either tool in the post-processing of the results. So far, no rescoring method
has been tested together with the RT prediction of crosslinked peptides. First results
with unoptimized rescoring algorithms seem promising, suggesting to increase the
number of identifications at constant FDR (Chapter 6).

Machine learning in proteomics. The development of machine learning appli-
cations in proteomics is mainly driven by the availability of large data sets. For
linear peptides millions of acquired spectra were used to develop accurate MS2 in-
tensity prediction tools (C. Silva et al., 2019; Gessulat et al., 2019; Zhou et al., 2017).
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Together with the availability of large data sets and advancements in the field of
deep learning (LeCun, Bengio, and Hinton, 2015) MS-based proteomics can be sup-
plemented with machine learning models for protein digestion, retention time, and
peptide identification (Bouwmeester et al., 2020). Especially, the application of deep
learning methods is attractive since they are suited for complex tasks. Another ad-
vantage is that deep learning methods allow the application of transfer learning. In
these applications a deep neural network gets trained in a domain where a lot of
data is available, e.g. general-purpose image classification. In the transfer step, the
already trained network is fine-tuned for a more specific problem, e.g. lung cancer
detection from imaging systems (Fang, 2018). Conceptually, the advantage is that
the trained network already developed a robust method to recognize important el-
ements in an image. Therefore, much less data is required on the specialized task
(e.g. lung cancer detection). Similarly, the availability of large data sets in linear
proteomics might be useful for the development of specialized applications in the
CLMS analysis.

1.2 Contributions and Main Findings

In this chapter I list my contributions to advance the field of crosslinking mass spec-
trometry. Manuscripts 1-5 have been peer-reviewed and accepted for publication.
All manuscripts were written through contributions from all co-authors.

Manuscript 1

Giese, S. H., Fischer, L., & Rappsilber, J. (2016). A Study into the Collision-induced
Dissociation (CID) Behavior of crosslinked Peptides. Molecular & Cellular Pro-
teomics, 15(3), 1094–1104. https://doi.org/10.1074/mcp.M115.049296

The first publication entitled A Study into the Collision-induced Dissociation (CID)
Behavior of crosslinked Peptides (Chapter 2), is a fundamental contribution to improve
the understanding on the behavior of crosslinked peptides in the mass spectrometer.
This knowledge played a crucial role in the development of efficient search engines
that exploit the main findings. The use of isotope-labeled crosslinkers is not required
for an efficient search strategy in the universal approach. Instead crosslinked pep-
tide and fragment ion properties allow a heuristic reduction of the search complexity
due their higher mass and charge. In addition, it became apparent that the coverage
gap in crosslinks is also amplified by the unequal distribution of fragment intensi-
ties. For this manuscript, I performed the exploratory data analysis, analyzed all the
data and wrote the manuscript.

https://doi.org/10.1074/mcp.M115.049296
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Manuscript 2

Giese, S. H., Belsom, A., & Rappsilber, J. (2016). Optimized fragmentation regime
for diazirine photo-crosslinked peptides. Analytical Chemistry, 88(16), 8239–8247.
https://doi.org/10.1021/acs.analchem.6b02082

The second publication entitled Optimized fragmentation regime for diazirine photo-
crosslinked peptides (Chapter 3), is a direct follow-up to address the shortcomings that
were revealed in the first manuscript. We observed that HCD fragmentation is the
fastest available method and thus generated most links in an SDA crosslinked single
protein sample. However, the coverage of the second peptide could be greatly im-
proved by using EThcD fragmentation as well as the site-calling precision. To opti-
mize the total coverage in an experiment we recommend using a data-dependent de-
cision tree that chooses the best fragmentation method based on the m/z and charge
of a peptide. I thank Adam Belsom for acquiring the data for the project. I performed
the exploratory data analysis, analyzed all the data, and wrote the manuscript.

Manuscript 3

Giese, S. H., Belsom, A., Sinn, L., Fischer, L. & Rappsilber, J. Noncovalently Asso-
ciated Peptides Observed during Liquid Chromatography-Mass Spectrometry and
Their Effect on Cross-Link Analyses. Anal. Chem. 91, 2678–2685 (2019). https:

//doi.org/10.1021/acs.analchem.8b04037

The third publication entitled Noncovalently Associated Peptides Observed during
Liquid Chromatography-Mass Spectrometry and Their Effect on crosslink Analyses (Chap-
ter 4), demonstrates that poor fragmentation of crosslinked peptides can lead to un-
wanted artefacts during the identification process under certain liquid chromatog-
raphy conditions. To reduce the identification artefacts from noncovalent peptide
associations (NAPs) we recommend using more disruptive ionization settings on
the mass spectrometer. For already acquired data a heuristic retention time filter can
help to recognize NAPs. Again, I thank Adam Belsom and Ludwig Sinn for acquir-
ing the data. I performed the exploratory data analysis, analyzed all the data, and
wrote the manuscript.

https://doi.org/10.1021/acs.analchem.6b02082
https://doi.org/10.1021/acs.analchem.8b04037
https://doi.org/10.1021/acs.analchem.8b04037
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Manuscript 4

Giese, S. H., Ishihama, Y., & Rappsilber, J. (2018). Peptide Retention in Hydrophilic
Strong Anion Exchange Chromatography Is Driven by Charged and Aromatic Residues.
Analytical Chemistry. https://doi.org/10.1021/acs.analchem.7b05157

The fourth manuscript entitled Peptide Retention in Hydrophilic Strong Anion Ex-
change Chromatography Is Driven by Charged and Aromatic Residues (Chapter 5), was
not based on crosslinking mass spectrometry data. Instead, we analyzed a large set
of linear peptide identifications to model and understand the retention time behav-
ior of peptides separated by hydrophilic strong anion exchange chromatography
(hSAX). This fundamental work showed that anion exchange chromatography is
also largely identified by aromatic amino acids. The development of a first predictor
for the retention times in hSAX, allowed us to transfer the knowledge to crosslink-
ing mass spectrometry (next section). I performed the exploratory data analysis,
analyzed all the data, and wrote the manuscript.

Manuscript 5

Giese, S. H., Sinn, L. R., Wegner, F. & Rappsilber, J. Retention time prediction using
neural networks increases identifications in crosslinking mass spectrometry. Nat.
Commun. 12, 3237 (2021). https://doi.org/10.1038/s41467-021-23441-0

The fifth manuscript entitled Retention time prediction using neural networks in-
creases identifications in crosslinking mass spectrometry introduces the first model to
perform multi-dimensional peptide retention time prediction for crosslinked pep-
tides (Chapter 6). The data consists of deep-fractionated crosslinked samples by
SCX, hSAX and RP coupled to the mass spectrometer. The developed tool xiRT can
be used to generate accurate RT predictions for RP as well as fraction-based pre-
dictions for SCX and hSAX. The application of predicted RTs is demonstrated in
a crosslinked spectrum match rescoring approach using a support vector machine.
This workflow increased the number of PPIs at constant 1% PPI FDR. I thank Lud-
wig Sinn and Fritz Wegner for acquiring the data. I performed the exploratory data
analysis, developed the RT prediction models, analyzed all the data, and wrote the
manuscript together with Ludwig Sinn (shared first author).

https://doi.org/10.1021/acs.analchem.7b05157
https://doi.org/10.1038/s41467-021-23441-0
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1.3 Additional Publications

In addition to the manuscripts in this thesis, I authored or co-authored the following
publications:

Mendes, M. L.; Fischer, L.; Chen, Z. A.; Barbon, M.; O’Reilly, F. J.; Giese, S. H.;
Bohlke-Schneider, M.; Belsom, A.; Dau, T.; Combe, C. W.; Graham, M.; Eisele, M. R.;
Baumeister, W.; Speck, C.; Rappsilber, J. Mol. Syst. Biol. 2019, 15 (9), e8994.
An integrated workflow for crosslinking mass spectrometry. https://doi.org/10.
15252/msb.20198994

Lenz, S.; Giese, S. H.; Fischer, L.; Rappsilber, J. J. Proteome Res. 2018, 17 (11),
3923–3931. In-Search Assignment of Monoisotopic Peaks Improves the Identifica-
tion of Cross-Linked Peptides. https://doi.org/10.1021/acs.jproteome.8b00600

Karayel, Ö., Şanal, E., Giese, S. H., Üretmen Kagıalı, Z. C., Polat, A. N., Hu, C.-
K., Özlü, N. (2018). Comparative phosphoproteomic analysis reveals signaling net-
works regulating monopolar and bipolar cytokinesis. Scientific Reports, 8(1), 2269.
https://doi.org/10.1038/s41598-018-20231-5

Belsom, A., Mudd, G., Giese, S. H., Auer, M., & Rappsilber, J. (2017). Com-
plementary Benzophenone Cross-Linking/Mass Spectrometry Photochemistry. An-
alytical Chemistry, 89(10), 5319–5324. https://doi.org/10.1021/acs.analchem.

6b04938

Giese, S. H., Zickmann, F., & Renard, B. Y. (2016). Detection of Unknown Amino
Acid Substitutions Using Error-Tolerant Database Search. Methods in Molecular Bi-
ology (Clifton, N.J.), 1362(9), 247-264. https://doi.org/10.1007/978-1-4939-3106-4_
16

Polat, A. N., Karayel, Ö., Giese, S. H., Harmanda, B., Sanal, E., Hu, C. K., Özlü,
N. (2015). Phosphoproteomic analysis of aurora kinase inhibition in monopolar cy-
tokinesis. Journal of Proteome Research, 14(9), 4087–4098. https://doi.org/10.

1021/acs.jproteome.5b00645

Giese, S. H., Zickmann, F., & Renard, B. Y. (2014). Specificity control for read
alignments using an artificial reference genome-guided false discovery rate. Bioin-
formatics, 30(1), 9–16. https://doi.org/10.1093/bioinformatics/btt255

https://doi.org/10.15252/msb.20198994
https://doi.org/10.15252/msb.20198994
https://doi.org/10.1021/acs.jproteome.8b00600
https://doi.org/10.1038/s41598-018-20231-5
https://doi.org/10.1021/acs.analchem.6b04938
https://doi.org/10.1021/acs.analchem.6b04938
https://doi.org/10.1007/978-1-4939-3106-4_16
https://doi.org/10.1007/978-1-4939-3106-4_16
https://doi.org/10.1021/acs.jproteome.5b00645
https://doi.org/10.1021/acs.jproteome.5b00645
https://doi.org/10.1093/bioinformatics/btt255
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A Study into the Collision-induced Dissociation
(CID) Behavior of Cross-Linked Peptides*□S

Sven H. Giese‡§, Lutz Fischer§, and Juri Rappsilber‡§¶

Cross-linking/mass spectrometry resolves protein–pro-
tein interactions or protein folds by help of distance con-
straints. Cross-linkers with specific properties such as
isotope-labeled or collision-induced dissociation (CID)-
cleavable cross-linkers are in frequent use to simplify the
identification of cross-linked peptides. Here, we analyzed
the mass spectrometric behavior of 910 unique cross-
linked peptides in high-resolution MS1 andMS2 from pub-
lished data and validate the observation by a ninefold
larger set from currently unpublished data to explore if
detailed understanding of their fragmentation behavior
would allow computational delivery of information that
otherwise would be obtained via isotope labels or CID
cleavage of cross-linkers. Isotope-labeled cross-linkers
reveal cross-linked and linear fragments in fragmentation
spectra. We show that fragment mass and charge alone
provide this information, alleviating the need for isotope-
labeling for this purpose. Isotope-labeled cross-linkers
also indicate cross-linker-containing, albeit not specifi-
cally cross-linked, peptides in MS1. We observed that
acquisition can be guided to better than twofold enrich
cross-linked peptides with minimal losses based on pep-
tide mass and charge alone. By help of CID-cleavable
cross-linkers, individual spectra with only linear frag-
ments can be recorded for each peptide in a cross-link.
We show that cross-linked fragments of ordinary cross-
linked peptides can be linearized computationally and that a
simplified subspectrum can be extracted that is enriched in
information on one of the two linked peptides. This allows
identifying candidates for this peptide in a simplified data-
base search as we propose in a search strategy here. We
conclude that the specific behavior of cross-linked peptides
in mass spectrometers can be exploited to relax the re-
quirements on cross-linkers. Molecular & Cellular Pro-
teomics 15: 10.1074/mcp.M115.049296, 1094–1104, 2016.

Cross-linking/mass spectrometry extends the use of mass-
spectrometry-based proteomics from identification (1, 2),
quantification (3), and characterization of protein complexes
(4) into resolving protein structures and protein–protein inter-
actions (5–8). Chemical reagents (cross-linkers) covalently
connect amino acid pairs that are within a cross-linker-spe-
cific distance range in the native three-dimensional structure
of a protein or protein complex. A cross-linking/mass spec-
trometry experiment is typically conducted in four steps: (1)
cross-linking of the target protein or complex, (2) protein
digestion (usually with trypsin), (3) LC-MS analysis, and (4)
database search. The digested peptide mixture consists of
linear and cross-linked peptides, and the latter can be en-
riched by strong cation exchange (9) or size exclusion chro-
matography (10). Cross-linked peptides are of high value as
they provide direct information on the structure and interac-
tions of proteins.
Cross-linked peptides fragment under collision-induced

dissociation (CID) conditions primarily into b- and y-ions, as
do their linear counterparts. An important difference regarding
database searches between linear and cross-linked peptides
stems from not knowing which peptides might be cross-
linked. Therefore, one has to consider each single peptide and
all pairwise combinations of peptides in the database. Having
n peptides leads to (n2 � n)/2 possible pairwise combina-
tions. This leads to two major challenges: With increasing size
of the database, search time and the risk of identifying false
positives increases. One way of circumventing these prob-
lems is to use MS2-cleavable cross-linkers (11, 12), at the
cost of limited experimental design and choice of cross-linker.
In a first database search approach (13), all pairwise com-

binations of peptides in a database were considered in a
concatenated and linearized form. Thereby, all possible single
bond fragments are considered in one of the two database
entries per peptide pair, and the cross-link can be identified
by a normal protein identification algorithm. Already, the sec-
ond search approach split the peptides for the purpose of
their identification (14). Linear fragments were used to retrieve
candidate peptides from the database that are then matched
based on the known mass of the cross-linked pair and scored
as a pair against the spectrum. Isotope-labeled cross-linkers
were used to sort the linear and cross-linked fragments apart.
Many other search tools and approaches have been devel-
oped since (10, 15–19); see (20) for a more detailed list, at
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least some of which follow the general idea of an open mod-
ification search (21–24).
As a general concept for open modification search of cross-

linked peptides, cross-linked peptides represent two pep-
tides, each with an unknown modification given by the mass
of the other peptide and the cross-linker. One identifies both
peptides individually and then matches them based on know-
ing the mass of cross-linked pair (14, 22, 24). Alternatively,
one peptide is identified first and, using that peptide and the
cross-linker as a modification mass, the second peptide is
identified from the database (21, 23). An important element of
the open modification search approach is that it essentially
converts the quadratic search space of the cross-linked pep-
tides into a linear search space of modified peptides. Still,
many peptides and many modification positions have to be
considered, especially when working with large databases or
when using highly reactive cross-linkers with limited amino
acid selectivity (25).
We hypothesize that detailed knowledge of the fragmenta-

tion behavior of cross-linked peptides might reveal ways to
improve the identification of cross-linked peptides. Detailed
analyses of the fragmentation behavior of linear peptides exist
(26–28), and the analysis of the fragmentation behavior of
cross-linked peptides has guided the design of scores (24,
29). Further, cross-link-specific ions have been observed from
higher energy collision dissociation (HCD) data (30). Isotope-
labeled cross-linkers are used to distinguish cross-linked from
linear fragments, generally in low-resolution MS2 of cross-
linked peptides (14).
We compared the mass spectrometric behavior of cross-

linked peptides to that of linear peptides, using 910 high-
resolution fragment spectra matched to unique cross-linked
peptides from multiple different public datasets at 5% pep-
tide-spectrum match (PSM)1 false discovery rate (FDR). In
addition, we repeated all experiments with a larger sample set
that contains 8,301 spectra—also including data from ongo-
ing studies from our lab (Supplemental material S9-S12). This
paper presents the mass spectrometric signature of cross-
linked peptides that we identified in our analysis and the
resulting heuristics that are incorporated into an integrated
strategy for the analysis and identification of cross-linked
peptides. We present computational strategies that indicate
the possibility of alleviating the need for mass-spectrometri-
cally restricted cross-linker choice.

EXPERIMENTAL PROCEDURES

Spectra Collection and Filtering—We collected database search
results from experiments that were acquired and described in
previous publications (31–33) (Pride: PXD002142, PXD001835,
PXD001454) and accumulated cross-linked and linear peptide spec-
trum matches (PSMs). All data were acquired in CID mode on hybrid
linear iontrap-Orbitrap mass spectrometers (LTQ Orbitrap Velos,
Thermo Scientific, Bremen, Germany). The cross-linker in all searches

was bis(sulfosuccinimidyl)suberate or its isotopic variant bis(sulfos-
uccinimidyl)suberate-d4. A typical search was performed using Xi
(ERI Edinburgh, UK) and the following parameters: MS accuracy, 6
ppm; MS/MS accuracy, 20 ppm; enzyme, trypsin; maximum missed
cleavages, 4; maximum number of modifications, 3; fixed modifica-
tion, carbamidomethylation on cysteine; variable modifications, oxi-
dation on methionine; and modification by the hydrolyzed or the
ammonia reacted cross-linker on lysine, serine, threonine, tyrosine,
and the protein N terminus. Cross-linking was allowed to involve
lysine, serine, threonine, tyrosine, and the protein N terminus. To
ensure the analysis of high-quality data, we extracted 910 PSMs to
unique cross-linked peptides at a 5% FDR cutoff using XiFDR (v.
1.0.4.13, (31)). Along with the 910 cross-linked PSMs, we extracted
4,161 linear PSMs from the cross-linking acquisitions as a reference
data set for linear peptides. Detailed information about each PSM is
available in the Supplemental Table S1 along with the annotation of
the cross-linked peptides (Supplementary File S2). In addition, we
repeated all experiments with a larger sample set that contains 8,301
spectra—also including data from ongoing studies from our lab (Sup-
plemental material S9-S12). To provide a comparison on the specific
mass-spectrometric properties, we included search results from a
linear peptide identification experiment using MaxQuant from a cy-
clin-dependent kinase (CDK)-regulated chicken chromatin dataset
(34) on our machine with 1% FDR.

Data Extraction—Software written in Python (2.7, www.python.org)
was used to extract relevant fragmentation information from the local
PostgreSQL database containing details about search settings and
spectra annotations. For each PSM involving a cross-linked peptide,
the match score, peptide sequence (alpha and beta), precursor
charge, experimental mass, and cross-link position (alpha and beta
peptide) were extracted. In addition, the identified fragments were
stored with each PSM. For each fragment, the m/z, charge, fragment
type, intensity, and associated isotope cluster information were
stored. When isotope clusters were identified, the summed intensity
over all isotope peaks was used instead of the intensity of the
monoisotopic peak. Similarly, linear PSMs were extracted. After ex-
tracting all fragments, the intensity for each fragment was normalized
by division by the most intense fragment from the respective PSM. In
addition, the respective intensity rank for each matched fragment was
stored. A high rank refers to a high intensity and a rank of one to the
lowest intensity in that PSM. For example, a spectrum containing
three matched peaks with fictive intensities (10, 3, 1) was first nor-
malized by the base peak to arrive at (1, 0.3, 0.1). Then, the ranks
were derived such that the intensities are converted to (3, 2, 1). To
compare the ranked intensity among peptides of different length (as
done in Figs. 3A and 3B), the rank was further normalized by the
number of matched peaks per spectrum. Thereby, the highest intense
peak received a normalized rank value of 1. For the fictive example,
this led to peak intensities of (1, 0.66, 0.33). We then compared b- or
y-ion intensities for fragments in relation to the linker position or the
peptide length, disregarding the specific ion index information
(e.g. y7).

Similarity Computation of Linear and Cross-Linked Spectra—The
similarity comparison of two spectra was realized via an adapted
ranked dot product scoring scheme. The ranked dot product is usu-
ally used in spectral library searches where acquired spectra are
compared versus annotated spectra from previous database identifi-
cations (35). Here, we define the ranked dot product as follows:

RDP �
Sr � Tr

�Sr
2 � Tr

2 (Eq. 1)

where Sr � Tr is the scalar product of the two vectors Sr and Tr that
represent the identified ions of the source and target peptide, respec-
tively. Usually, the vectors Sr and Tr contain binned intensity values1 The abbreviations used are: PSM, peptide spectrum match.
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from the observed spectrum and the target spectrum from the spec-
tral library. Here, we adapted the scoring scheme such that only
nonlossy, b- and y-ion intensities were compared. For example, for a
peptide of length five, the vectors Sr and Tr have length eight. More-
over, instead of using actual intensity values, we replaced intensity
values by intensity ranks (35). If a specific ion type was present in the
source but not in the target peptide, the intensity for that particular ion
in the target peptide was set to zero and vice versa. Otherwise, the
intensity for each ion was derived via its rank. To evaluate the scoring
behavior, a reference similarity distribution of random pairings of
cross-linked peptides was computed. The reference distribution was
derived by computing the similarity of 1,000 random peptide combi-
nations. We made sure that no comparison of peptides with the same
sequence is included. The resulting random score distribution was
used to evaluate all other score distributions.

Evaluation of the Predictive Power to Distinguish Linear and Cross-
Linked Fragments—Based on the ground truth of 910 PSMs, we
evaluated the predictive power of the relative fragment mass and the
charge state as indicators whether or not a fragment is cross-linker
containing. The applied constraints were the fragment mass divided
by the precursor mass, the charge state of the fragment, and the
combination of both. Only fragments with isotope clusters were used
for this analysis. The performance of the classification was evaluated

via the sensitivity, defined as sn �
TP

TP � FN�
, and the specificity,

defined as sp �
TP

TP � FP�
, where a true positive (TP) is a fragment

that was annotated as cross-linker containing and is also predicted as
such, a false positive (FP) is a fragment that was annotated as linear
but was predicted as cross-linked, and a true negative (TN) is a
fragment that was annotated as linear and was also predicted linear.
Lastly, a false negative (FN) is a fragment that was annotated as
cross-linked but was not recognized as such.

RESULTS AND DISCUSSION

Mass and Charge of Cross-Linked Peptides Can Be Used
to Direct Data-Dependent Acquisition—Digestion of cross-
linked proteins yields both linear and cross-linked peptides.
We wondered if the signals of cross-linked peptides either in
MS1 or MS2 differed systematically from those of linear pep-
tides. Note that we are focusing here on the most frequent
form of cross-linked peptides: tryptic peptides that are cross-
linked via lysine residues or serine, threonine, and tyrosine.
The precursor masses of (tryptic, Lys/Ser/Thr/Tyr-linked)

cross-linked peptides and (tryptic) linear peptides have a large
overlap in their mass distribution (Fig. 1A). However, in the
margin area, i.e. considering all masses up to 1,300 Da, linear
peptides are more frequently observed than cross-linked pep-
tides. Given a mass cutoff of e.g. 1,300 Da, it is possible to
reduce the complexity of the sample dramatically, i.e. 33.3%
of the linear spectra can be disregarded. This benefit comes
with a loss of 2% in unique cross-linked peptides. Often,
these hits are disputable because both or one of the peptides
in the cross-linked product is rather short. In these cases,
reliable identification is usually not possible. Thus, restricting
acquisition to precursors above 1,300 Da appears a viable
strategy to enrich for cross-linked peptides. Cross-linked
peptides having a larger size than linear peptides can be
rationalized by them being a pair of peptides. In addition, a

protease-cleavage site is frequently blocked when using ly-
sine-reactive cross-linkers and trypsin. Cross-linked peptides
would then be expected to be a pair of peptides each having

FIG. 1. Precursor properties of linear and cross-linked peptides.
(A) Comparison of precursor masses from linear and cross-linked
identifications. (B) Comparison of the charge state from cross-linking
acquisitions (charge state 1 and 2 were excluded during acquisition)
and noncross-linked acquisitions (charge state 1 was excluded). (C)
Decision tree to enrich for cross-linked peptides. The cross-linking
results are derived from 1,255 PSMs identified with a 5% false dis-
covery rate and a minimum peptide length of 4. The linear identifica-
tions contain 14,361 PSMs with a 1% false discovery rate.
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a missed cleavage site and thus in total four-times the mass
of a linear peptide on average. This was already utilized in
sample preparation by enriching for cross-linked peptides in
size exclusion chromatography (10).
Cross-linked peptides are often higher charged than linear

peptides (Fig. 1B), as was noted based on smaller sample
sizes previously (9, 14). We investigated this here in detail
based on our set of 910 PSMs. All our data in cross-link
analyses were acquired excluding charge states 1 and 2,
based on our initial observations (9). Therefore, nothing more
can be said here on the occurrence of cross-linked peptides
in these charge states. Looking at linear peptides from non-
cross-linked samples, more than half (57%) are doubly
charged. This supports the current strategy of at least exclud-
ing doubly charged precursors during data acquisition (9, 14).
Adding triply charged precursors to the exclusion (14) further
improves on this by removing an additional 35% of linear
peptides. However, excluding triply charged precursors from
fragmentation analysis also reduces the number of identified
cross-linked peptides by almost half (48%). Given this con-
siderable loss of cross-linked peptides, it appears advisable
to exclude only doubly and not also triply charged precursors
from the analysis, at least when working with ionization con-
ditions similar to ours (9).
In summary, an enrichment of 2.3-fold could be achieved

for cross-linked over linear peptides. This is based solely on
MS1 peak characteristics and comes at no additional exper-
imental costs. It should be noted that this is comparable and
possibly complementary to the fold enrichment achieved by
the currently widely used chromatographic enrichment strat-
egies, strong cation exchange (9) or size exclusion chroma-
tography (10) for cross-linking experiments. In chromato-
graphic methods, about 50% of the linear peptides never
reach the mass spectrometer. In the acquisition-based ap-
proach, they do but are not selected for MS2.
Mass and Charge Reveal the Cross-Link Status of Frag-

ments without Using Isotopes—Extending the mass and
charge analysis to fragments (Fig. 2) leads to the observation
that linear fragments can be distinguished from cross-linked
fragments with high confidence. We define the normalized
fragment mass as the fragment mass divided by the precursor
mass. Looking at the normalized fragment mass reveals that
the distributions for cross-linked and linear fragments are very

FIG. 2. Fragment properties of cross-linked peptides. (A) Com-
parison of cross-linked and linear fragment masses of cross-linked
peptides normalized by their precursor mass. (B) Distribution of as-

signed charge states from isotope clusters distinguished in cross-
linked and linear fragments of cross-linked peptides. (C) Decision tree
visualizing the process to decide if a fragment is cross-linked or linear
based on charge and mass. (D) Receiver operating characteristic
curve showing the sensitivity (TP/(TP � FN)) and specificity (TN/(FP �
TN)) for assigning a cross-linked fragment as cross-linked and linear
fragments as noncross-linked. Thresholds are annotated and based
on charge and/or mass. The data were derived from 910 high-confi-
dence identifications with a 5% false discovery rate (FDR) and a
minimum peptide length of 6. Abbreviations: TP, true positives; FN,
false negatives; TN, true negatives; FP, false positives.
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well separated. Linear fragments tend to have a smaller mass
than 50% of the precursor mass. In contrast, cross-linked
fragments tend to have a larger mass than 50% of the pre-
cursor mass. Very few linear fragments (2.5%) and cross-
linked fragments (1.6%) are not following this rule. Conse-
quently, the mass-based prediction is highly successful.
Setting the decision boundary to 50% precursor mass yields
a sensitivity of 0.99 and a specificity of 0.97. The correspond-
ing receiver operating characteristic curve yields an area un-
der the curve of 0.996 (Fig. 2D) by relative fragment mass
alone.
In addition to the fragment mass, the charge state distribu-

tion differs for linear and cross-linked fragments (Fig. 2D).
Essentially all fragments with charge state one are linear.
Similarly, the vast majority of fragments that are triply or
higher charged are cross-linked. If the fragment is doubly
charged, the probability that the fragment is cross-linked is
four-times higher than being linear. Hence, cross-linked and
linear fragments can be very well separated by evaluating the
charge state of the fragment, reaching a sensitivity of 0.98 and
a specificity of 0.81, respectively. The charged-based predic-
tion yields an overall area under the curve of 0.93. A combined
approach of normalized fragment mass and charge state to
detect cross-linked fragment species provides additional re-
solving power and increases the area under the curve to �1
(Fig. 2D).

One of the first search algorithms for the identification of
cross-links by database searching builds on the idea of know-
ing which fragments are linear and which are cross-linked
(14). The cross-link status of the fragments was assessed
through isotope labeling. Using isotope-labeled cross-linker,
cross-linked fragments experience a mass shift in the frag-
mentation spectra of light and heavy cross-linked peptides. In
contrast, linear fragments are observed with identical mass in
both fragmentation spectra. While being intriguing, this ap-
proach for determining the cross-link status of fragments has
a number of inherent setbacks: (1) Both peaks of a labeled
cross-linked peptide have to be selected for fragmentation;
selecting only one does not yield the required information. (2)
The MS1 signal of the cross-linked peptide is split into two,
whereas other peptides are seen with their original intensity.
(3) The choice of cross-linker is limited. (4) Any use of isotope
labeling increases the complexity of the sample. (5) Use of
isotopes for this purpose complicates their use for quantita-
tion. We here present an alternative to isotope labeling for
high-resolution fragmentation spectra. If the fragment charge
can be determined and thus also the fragment mass, isotopes
are not needed to determine the cross-link status of frag-
ments. By using high-resolution data, the search algorithm
can benefit for free from the confident distinction of linear and
cross-linked fragments. This leaves isotopes for quantification
of cross-links (31).
Cross-Linked Peptides Fragment Similar to the Corre-

sponding Linear Peptides—Cross-linked peptides are ex-

pected to fragment like linear peptides to generate b- and
y-ions under CID conditions. However, the extent to which
this fragmentation is affected by the cross-link or the pres-
ence of two peptides in close proximity in the gas phase is
not immediately clear. As a first step, we compared the
fragmentation spectrum of the cross-linked peptide pair
AEFAEVSKLVTDLTK–AFKAWAVAR with those obtained for
both peptides individually (Fig. 3A, see Supplemental Fig. S6
for annotation of the individual spectra). For ease of compar-
ison, the b- and y-ion signals of the noncross-linked peptides
were moved to the same m/z value of the corresponding b- or
y-ion in the cross-linked peptide. The two fragmentation
spectra of the linear peptides together show a marked resem-
blance to the fragmentation spectrum of the cross-linked
peptide pair, albeit some fragment yields are affected by the
linkage. Furthermore, there was no dominant presence of
double fragmentation observed. This means that despite a
cross-linked peptide being more complex and having more
parameters, its fragmentation follows essentially the same
rules as apply to linear peptides. In essence, the cross-linked
peptide fragmented like two linear peptides, each bearing the
respective other peptide as a modification. This opens the
prospect of at least initially dealing with both peptides indi-
vidually during the identification process. Even if the final
evaluation of matches should be done as a cross-linked pair,
first candidates could be extracted from a linear instead of a
quadratic search space.
Cross-linked peptide CID spectra contain fragments from

two peptides but at unequal contribution. Usually, one of the
two partners of a cross-linked peptide shows superior frag-
mentation, measured in the number of fragments and their
intensities. Asymmetric sequence coverage of the two pep-
tides in a cross-link has been observed previously, under HCD
fragmentation conditions (30). We call the more dominant
fragmented peptide the alpha peptide and the submissive
peptide the beta peptide. Formally, the alpha peptide was
defined as the peptide with more identified ions among the
ten most intense peaks (Fig. 3B). On average, 78% of the
fragments within the ten highest intense matched fragments
are attributed to the alpha peptide (Fig. 3C). Alpha peptides
show consistently higher intensities for b- and y-ions,
whereas y-ions for both peptides are more intense than b-ions
(Fig. 3D). As the two peptides differ in the intensity of their
fragments, one could envision to use intensity as a means to
separate the otherwise superimposed fragmentation spectra
of both peptides of the cross-link. This suggests the possibil-
ity of separating the fragmentation spectra of alpha and beta
peptides computationally, similarly to the use of MS2-cleav-
able cross-linkers experimentally (11, 12). MS2-cleavable
cross-linkers, in addition, provide a route to the mass of the
alpha and beta peptides but restrict the choice of the cross-
linker. Also, normal cross-linkers cleave to some extent under
HCD fragmentation at the bond between the cross-linker and
the peptide (30). At least under our experimental conditions,
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this is a rare event (10% of cross-linked peptides) (Supple-
mental Table S8).
Investigating more systematically the fragmentation similar-

ity of peptides in cross-links and their linear counterparts
reinforced the above conclusions. A quantitative view at the
spectral similarity was achieved through exhaustive compar-
isons of cross-linked and linear peptides through the ranked
dot product. For the systematic assessment of the spectral
similarity, we used the linear peptide identifications from
cross-link database searches and compared the spectra to all
cross-linked peptides with the same sequence (Fig. 3E). Pep-
tides in cross-links display large spectral similarity to their
linear counterparts, regardless if alpha or beta peptides are
considered. However, subspectra for a peptide in a cross-link
look more alike, independent of the partner peptide or link
position, than to the spectra of the corresponding linear pep-
tide. Beta peptides generally perform less well in these com-
parisons. They tend to have less intense ions and also fewer
ions. This reduces the overlap of beta peptide fragment ions
between spectra. With a higher overlap in fragment ions, the
spectral similarity increases and vice versa. Factors that po-
tentially influence the fragmentation are the charge state,
cross-linked residue, or the partner peptide. Of these, the
highest influence on the fragmentation behavior comes from
the charge state with minor, but present, effects from the
other factors (see Supplemental Fig. S4).
Uncross-Linking Peptides by Data Analysis Resolves the n2

Problem of Their Identification—In order to identify a pair of
peptides that are cross-linked, one needs to consider the
pairwise combination of all peptides in a database. As data-
bases become bigger, this space grows quadratically. An
exhaustive database construction could be avoided if a few
candidates for at least one of the two peptides could be
identified in a simplified first search. Ideally, one was to isolate
the fragment peaks of one peptide. An adapted linear search
can then retrieve candidates for this peptide without having to
actually select a single one as the final match. Once having
candidates for this peptide, one would know the mass of the
corresponding second peptide, extract all mass matches from
the original database of linear peptides, and construct a con-
centrated “bonsai” database of peptide pairs that would
largely enrich for the cross-linked peptide. As observed
above, intensity enriches fragment ions of the alpha peptide
over those of the beta peptide. So, a stepwise extraction of
candidates appears possible.
Extracting candidates for the alpha peptide as a linear

peptide without knowing its peptide mass is complicated by
the intense presence of cross-linked fragments and by the

FIG. 3. Fragmentation patterns of cross-linked peptides. (A)
Spectral comparison of a cross-linked peptide (upper part) and an
overlay of the individual linear peptide spectra (lower part). Equivalent
fragments from the cross-linked peptide and the respective linear
peptides have been aligned to facilitate direct comparison (Supple-
mental Fig. S6 shows the individual spectra with annotations). (B)
Visualization of an idealized (hypothetical) cross-linked peptide spec-
trum that is divided into alpha and beta peptides. The alpha peptide
is defined as the peptide that has more ions among the ten most
intense ions. (C) Distribution of annotated fragment peaks among the
ten most intense ions of identified ions. The height refers to the mean
with the standard deviation as error bars. (D) Quantitative analysis of
b- and y-ion fragment peak intensities of alpha and beta peptides,
respectively. (E) Quantitative comparison of the spectral similarity

between linear (LN) and cross-linked (CL) peptides. A reference dis-
tribution is derived by randomly comparing spectra of cross-linked
peptides. The data for (B–E) was derived from 910 high-confidence
identifications with a 5% false discovery rate (FDR). Abbreviations:
CL, cross-linked; LN, linear.
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presence of fragments of the beta peptide. The dominance of
the alpha peptide suggests the possibility of extracting a
subspectrum that enriches for fragmentation information of
this peptide. This could be achieved by simply taking the ten
most intense fragments. However, this means that one looks
primarily at cross-linked fragments (Fig. 4). For y-ions, longer
fragments were seen with higher intensities (Fig. 4A). This
favors cross-linked fragments that tend to be larger. For b-
ions, there is no continuous effect. Instead, the cross-link site
appears to exert a direct effect, leading primarily to cross-
linked b-ions (Fig. 4B). The apparent influence of the link site
on b-ions can be mechanistically explained through the pres-
ence of the second peptide. Charge in fragments is primarily
carried by basic residues. y-ions of tryptic peptides have one
by default at their C terminus. b-ions lack this terminal basic
residue. However, cross-linked b-ions are modified by the
second peptide. In this way, like y-ions they carry a C-terminal

basic residue. The general dominance of cross-linked frag-
ments (Fig. 4C) complicates the identification of the alpha
peptide as they can only be used if the modification mass is
known. However, this mass is inaccessible. The only solution
would be to uncross-link the fragments.
Importantly, cross-linked fragments can be converted dur-

ing data processing into their linear counterparts. Above, we
established a reliable method to distinguish signals of cross-
linked and not cross-linked fragments. The challenge is in
converting cross-linked fragments into not cross-linked ones.
Interestingly, any fragment also carries with its mass the in-
formation of the matching counterpart that is missing to make
the whole peptide. Looking at this relation as a formula and
resolving this formula to the missing fragment defines the
mass of the fragment as the mass of the peptide less the
mass of the observed fragment. If the peptide is cross-linked
and the fragment is as well, then the missing fragment is

FIG. 4. Cross-linked peptide fragmentation patterns. Influence of the cross-link site (CL site) on y-ion (A) and b-ion yield (B), respectively.
Longer y-ions are located to the left of the cross-link site; longer b-ions are located to the right of the cross-link site. Fragment intensities were
transformed to ranks, with high intensities having a higher rank, and then normalized by the number of fragments in a spectrum. Error bars
correspond to the standard deviation of all measured intensities at a relative position. (C) Distribution of cross-linker containing and linear
fragments in cross-linked peptide spectra, respectively. (D) Example spectrum reflecting preferred cleavage of cross-linked fragments and an
exemplary linearization of the cross-linked y7-ion of the alpha peptide. As shown in the pictogram of the linearization process, the y9-ion is
transformed to the b2 ion (which was also observed as low intense peak) by subtracting the fragment mass from the precursor mass. Similarly,
the y8 ion can be transformed to the b3 ion, which is indicated by the annotation with a ‘*’ in the spectrum. (E) Sensitivity and specificity of
correctly assigned cross-linked and linear fragments by their charge and mass from the top ten identified ions. The underlying data were
extracted from 910 PSMs at a 5% FDR. For bar plots, the height and error bars refer to the mean and the standard deviation of all evaluated
PSMs. The linear alpha peptides are also shown in Supplemental Fig. S7.

CID Behavior of Cross-Linked Peptides

1100 Molecular & Cellular Proteomics 15.3

 by guest on A
pril 22, 2020

https://w
w

w
.m

cponline.org
D

ow
nloaded from

 

18 Chapter 2. Manuscript 1. CID Behavior of Cross-Linked Peptides



linear. In this way, we can convert a cross-linked fragment into
a linear fragment. Since cross-linked fragments are generally
observed more frequently (Fig. 4C), the linearization step pro-
vides a valuable information gain. As all fragment ions are
linearized, the matching of fragments can be done entirely
free of having to consider cross-links. In consequence, the
processed MS2 spectrum contains the fragments of two lin-
ear peptides and thus provides much of the value of CID-
cleavable cross-linkers.
The linearization is straightforward and highly reliable. For

instance, the alpha peptide fragment ions y6�P, y7�P, y8�P,
and y9�P (�P refers to the cross-linked partner peptide) (Fig.
4D) fulfill the 50% precursor rule, i.e. their fragment mass is
larger than 50% of the precursor mass (note that they are the
base peaks). To remove the dependence of P—and perform a
simple linear matching—the cross-linked ions need to be
linearized: The y6�P-ion is converted into its complementary
b5-ion. y7�P becomes b4, y8�P becomes b3, and y9�P
becomes b2. Note that the b-ions were also observed on their
own in our example spectrum. However, this is not always the
case, and they would not have made it under the ten most
intense ions on their own. After the linearization, we only have
linearized fragments in the spectrum that can be matched by
standard database search approaches. We established above
that 60–100% of the top ten matched peaks in the fragmen-
tation spectrum of cross-linked peptides derived from alpha
peptide fragmentation. Among these, we detected the cross-
linked fragments with high success (�98% average per spec-
trum) by their charge or mass alone (Fig. 4E). In consequence,
we can extract a subspectrum that is largely enriched in linear
fragments of the alpha peptide, thus substituting further as-
pects of CID-cleavable cross-linkers.
Open modification search also resolves the n2 problem, but

it is still necessary to look for large modification masses.
Knowing which fragments are cross-linked (and knowing how
to linearize them) allows us to simplify the open modification
search paradigm: Instead of considering wide gap mass
ranges or all possible modification sites, a standard linear
search is sufficient to identify candidates for at least one of the
two peptides in the cross-linked peptide. Considering open
modifications is computationally expensive. Possibly as a
consequence, the prevalence of secondary cross-link reac-
tions, i.e. serine, threonine, or tyrosine cross-links with bis-
(sulfosuccinimidyl)suberate, are generally neglected (30). Our
results show that these reactions make up �14% of all cross-
links and thus contribute largely to the outcome of an analysis
(Supplemental Fig. S3). Identifying peptides with multiple
cross-link sites becomes even more challenging if photoacti-
vatable cross-linkers, such as sulfosuccinimidyl 4,4�-azipen-
tanoate (sulfo-SDA) are used (36). Sulfo-SDA links some nu-
cleophilic amino acids (lysine, serine, threonine, tyrosine, and
the protein N terminus) with any other amino acid by having a
standard N-hydroxysuccinimide (NHS)-activated ester on one
side and a highly reactive diazirine group on the other. There-

fore, open modification search paradigms would need to con-
sider almost as many linkable residues as there are amino
acids in the peptide to generate the right theoretical spectrum
for each cross-linkable site. Existing search engines could
utilize the highly reliable linearization process to avoid the
probing of all possible cross-link sites.
An Integrated Search Strategy for Cross-Linked Peptides—

With the above observations and concepts in hand, an inte-
grated search strategy becomes possible. The quadratic
search problem of cross-linked peptides can be simplified if
the database size is decreased. Instead of combining exhaus-
tively all peptides of the database, we first identify a set of
candidates for one peptide. In a second step, all peptides can
be extracted from the database that complete these candi-
dates to obtain the mass of the observed cross-linked pep-
tide. Combining these two sets of candidate linear peptides
gives a focused database of candidate cross-linked peptides.
The final identification is done against this largely reduced
database. The stepwise candidate extraction is facilitated by
the asymmetric fragmentation yield of cross-linked peptides.
One peptide tends to give more intense fragment signals. An
intensity cutoff can enrich, therefore, for information of one
peptide in a simplified subspectrum comprising the n most
intense peaks, e.g. n � 10. Unfortunately, cross-linked frag-
ments contribute the majority to this subset of signals. How-
ever, using charge and relative mass as indicators, these can
confidently be revealed and then converted into linear frag-
ments. This removes any dependence of fragments on know-
ing the other peptide. Candidates for the first peptide can now
be identified based on linear fragment data alone. Having a
small set of candidates of the first peptide allows calculating
the mass of the respective partner peptide candidates by
simple algebra from the mass of the cross-link. Consequently,
candidates for the second peptide can be extracted from the
database by mass look-up. In this way, an initial set of peptide
pair candidates is generated guided by data rather than fol-
lowing exhaustive combination of all peptides in the database.
Exhaustive database search in this hugely reduced peptide
pair database then allows identifying the final match.
We have implemented this search strategy in Xi and used it

successfully in several studies (33, 37–44). In concrete terms
(Fig. 5), we start with the full spectrum of all peaks from a MS2
scan. After charge state assignment and removal of isotopic
peaks (1) the linearization of alpha peptide candidate ions is
performed (2). The decision whether or not a fragment is going
to be linearized depends on the relative precursor mass and
the charge. If either the relative precursor mass is � � 0.5 or
the charge state � � 2, the given fragment will be linearized.
After the linearization, the ten highest ion signals are selected
for a dedicated linear database search for alpha peptide can-
didates (3). The first search is a means to extract a moderate
number of candidates for the alpha peptide without knowing
the mass or location of the cross-link. A small number of
peaks is usually sufficient to extract the true alpha peptide as
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one of the candidates from the database. However, the actual
identification is done on the full spectrum together with the
beta peptide. The list of alpha peptides is used to generate
corresponding beta peptides by a precursor mass filter (4).
Corresponding beta peptides are extracted by subtracting the
alpha peptide mass and the cross-linker mass from the meas-
ured precursor, as also explained above. Finally, the matching
peptide pairs (alpha � beta peptide candidates) are reevalu-
ated on the initial, untreated spectrum to localize the cross-
link site and perform a scoring with all fragment ions present.
Only in this step, the final alpha and beta peptide pairing/
scoring is done. The final match for any given spectrum is the
one with the highest scoring pair. After all spectra have been
processed, separate FDR estimation needs to be performed.
Elements of our stepwise identification have been described
previously (21).
Influence of the Sample Size on Our Analysis—We analyzed

the precursor and fragment information of 910 PSMs that
were identified in a collection of published experiments con-
ducted in our lab. In addition, we challenged the presented
analysis with all ongoing studies of our lab—yielding a total of
8,301 PSMs—to question if our set of 910 PSMs was large
enough to arrive at general conclusions (see Supplemental
material S9-S12). For example, the enrichment possibilities
during acquisition for cross-linked peptides have been inves-
tigated in Fig. 1—coming to the conclusion that a charge and
mass based selection filter greatly enriches cross-linked pep-
tides (Supplemental Fig. S9). Based on 910 PSMs our analysis
arrives at excluding 59% of linear peptides at the expense of

losing 7% cross-linked peptides. Based on all our data, we
conclude 59% of linear peptides can be excluded at the
expense of losing 4% cross-linked peptides. As a second
example, to distinguish cross-linked from linear fragments, we
introduced a mass cutoff of 50% precursor mass: In 910
PSMs, 2.5% of linear fragments and 1.6% of cross-linked
fragments were not following this 50% rule. For the larger
collection (8,301 PSMs), 2.25% of linear fragments and 1.8%
of cross-linked fragments did not follow this rule. Finally, 77%
of the top ten fragment peaks derive from the alpha peptide in
910 PSMs. This contrasts to 80% in 8,301 PSMs. Fragment
peak intensity is hence a reliable filter to assign a subset of
fragments to one of the two linked peptides. In summary, the
8,301 PSMs confirm the observations made on the basis of
910 PSMs, suggesting that our analysis was not limited by
sample size.

CONCLUSION

In this paper, we developed computational solutions to
three experimental problems, building upon in-depth data
mining of MS1 and MS2 properties of cross-linked peptides
(1). The enrichment of cross-linked peptides is crucial to the
success of cross-linking experiments. We show that focused
acquisition can reach similar enrichment success for cross-
linked peptides as chromatographic methods (2). Fragmen-
tation spectra of cross-linked peptides contain fragments of
two peptides. We find that fragments of the alpha peptide
can be enriched through selection of the most intense peaks.
Computationally, this parallels at least in part the use of

FIG. 5. A search strategy for the identification of cross-linked peptides based on their CID behavior. (1) A mass spectrum is processed
by peak picking, deisotoping, resolving losses, and decharging. (2) Putative cross-linked fragment peaks are converted to linear fragment
peaks. (3) The top ten peaks are extracted and matched against a linear database version. (4) n candidates for the alpha peptide are extracted.
For each alpha peptide candidate, m beta peptide candidates are extracted such that each alpha/beta pair adds up to the precursor mass.
(5) The combined identifications of alpha and beta peptides are then scored together.
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MS2-cleavable cross-linkers. A benefit of doing this compu-
tationally is not relying on cross-linker properties and thus
potentially being universally applicable (3). Finally, fragmenta-
tion spectra of cross-linked peptides contain linear and cross-
linked fragments. We show that cross-linked fragments have
a distinguishable signal in CID (mass and charge). Thus, there
is no need for labeling strategies to recognize cross-linked
fragments. Our resulting search strategy sees the linearization
of cross-linked fragments to collect enough evidence to ex-
tract candidates for one of the cross-linked peptides before
the other, an approach that avoids the large search space
of cross-linked peptides. In conclusion, computational ap-
proaches prove highly valuable in complementing experimen-
tal strategies in the endeavor of simplifying the identification
of cross-linked peptides.
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ABSTRACT: Cross-linking/mass spectrometry has evolved
into a robust technology that reveals structural insights into
proteins and protein complexes. We leverage a new tribrid
instrument with improved fragmentation capacities in a
systematic comparison to identify which fragmentation
method would be best for the identification of cross-linked
peptides. Specifically, we explored three fragmentation
methods and two combinations: collision-induced dissociation
(CID), beam-type CID (HCD), electron-transfer dissociation
(ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-
linked human serum albumin (HSA) served as a test sample,
yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false
discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs)
and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins
together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that
unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of
spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage
might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the
method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737).

Current methods of structural biology have left a systematic
and large gap in our knowledge of protein structures.1

Cross-linking/mass spectrometry (CLMS) is an emerging tool
that helps to gain structural information for challenging
proteins and protein complexes. In CLMS experiments, protein
complexes are chemically cross-linked, digested into peptides,
and then analyzed via mass spectrometry and bioinformatics.2−5

Identifying a cross-linked peptide pair or the linked residues
within, defines their maximal distance in the folded protein.
The derived distance constraints can then be used to determine
the low-resolution arrangement of protein complexes4,6,7 or
even the high-resolution structure of a protein by the help of
computational modeling.8

To identify cross-linked peptides, fragmentation spectra have
to be matched with peptide sequences by database search. For
this purpose, a number of tools have been developed,9,10 for
example, pLINK,11 Protein Prospector,12,13 StavroX,14

xQuest,15 Kojak,16 Xi,6,17 or even search engines18 based on
linear peptide identification search paradigms such as Mascot.19

One of the challenges in identifying cross-linked peptides is the
unequal fragmentation of the two linked peptides,13,17 that is,
often one of the two peptides is better fragmented and thus also
better characterized by fragment ions. Under collision-induced
dissociation (CID) conditions this has been investigated in
more detail, revealing that the intensity of observed fragment

ions is also affected.17 This is important for the scoring of cross-
linked peptides since in general the number of identified
fragment ions and their intensity is used for spectra matching.
Despite the obvious disadvantage of the unequal fragmentation,
scoring mechanisms managed to successfully exploit this fact:
To judge the complete cross-linked peptide-spectrum match
(PSM), the two individual peptide scores are weighted
differently.13,16 However, this should only be an ad hoc
solution; ideally the experimental setup can be changed in such
a way that the sequence coverage for both peptides is increased.
It is plausible that one of the available fragmentation methods
performs better than the others, and a comparative analysis into
the behavior of cross-linked peptides might reveal options for a
refined acquisition strategy.

Throughout the manuscript we use CID for resonant
excitation CID in the linear ion trap and HCD as the
abbreviation for beam-type CID (HCD is also often referred to
as higher-energy collisional dissociation). CID is one of the
standard methods of fragmenting peptides in proteomics and
has been used in many CLMS studies.6,20−24 The details of
CID of cross-linked peptides have recently been systematically
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assessed,17 but a systematic comparison to other fragmentation
methods such as HCD is lacking. HCD has also been used in
many CLMS studies.11,13,25,26 Neither a systematic analysis of
cross-linked peptides under HCD exists nor under electron-
transfer dissociation (ETD). ETD-based fragmentation, that is,
ETD with and without supplemental activation of CID
(ETciD) or HCD (EThcD)27 has neither routinely been
applied to cross-linked peptides nor investigated in much detail.
A sequential fragmentation scheme of CID and ETD is
reported to increase the identification and confidence levels of
cross-linked peptides.28 Another study acquired sequential CID
and ETD fragmentation spectra as an optimized method for
CID cleavable cross-linkers with signature peaks. Both spectra
are then matched with their appropriate ion types and scored
together, yielding an improved sequence coverage compared to
CID alone.29 Search strategies for noncleavable cross-linkers,
however, do not rely on the detection of signature peaks, and
thus, the time for the reisolation of the precursor can be saved
by simply using ETD with supplemental activation. It was also
shown that ETD alone can generate good ion coverage for both
peptides using a novel cross-linker,30 albeit the effect on
peptides cross-linked with another cross-linker remains to be
investigated. In contrast, ETD has been used frequently for
complete proteins31 or to characterize post-translational
modifications (since it leaves the often labile peptide
modifications intact32). Earlier studies stated that ETD
fragment peptides with charge states higher than two, more
extensively than CID.33 However, the underlying effect seems
to correlate with the mass-to-charge ratio (m/z) of the
precursors.34 For cross-linked peptides, we expect highly
charged precursors6,15,18 and, thus, potentially well-suited
targets for ETD.

High-sequence coverage is important to ensure selectivity
during database search when trying to identify the two cross-
linked peptides from the large choice of alternatives offered by
the database. Good backbone fragmentation should also be
beneficial to pinpoint the exact location of the cross-link.
Despite being the intuitive expectation, sequence coverage and
site calling precision do not necessarily have to be linked
directly. Properties of the linkage site might direct fragmenta-
tion toward neighboring backbone bonds or away from them.
Also, for amine-reactive cross-linkers, pinpointing the exact
position of the cross-link is assisted by the restricted chemical
reactivity toward lysine, serine, threonine, tyrosine, or the
protein N-terminus. Hence, depending on the peptide
sequence there might only be a single amino acid amenable
to the cross-linker reaction. For highly reactive cross-linkers
such as succinimidyl 4,4-azipentanoate (SDA) each residue in a
peptide needs to be considered when locating the linkage site.
Therefore, pinpointing the cross-link sites potentially requires
more complete backbone fragmentation than for more specific
cross-linkers.

In this study we compared three different fragmentation
techniques and two combined fragmentation schemes available
on a novel tribrid mass spectrometer (Orbitrap Fusion Lumos,
Thermo Fisher Scientific), CID, HCD, ETD, ETciD, and
EThcD, on cross-linked peptides obtained by tryptic cleavage of
SDA-cross-linked human serum albumin (HSA). The three-
dimensional structure of HSA has been resolved by X-ray
crystallography35 and is used as ground-truth to evaluate the
identification results. The right choice of fragmentation method
allows the number of identified linkage sites to be increased;
increasing the sequence coverage of both linked peptides

boosts the confidence of the matches and also the correct
localization of the cross-link site.

■ METHODS
Sample Preparation. Purified HSA (Sigma-Aldrich, St.

Louis, MO) was cross-linked using different cross-linker-to-
protein, weight-to-weight (w/w) ratios: 0.152:1, 0.203:1,
0.303:1, 0.406:1, 0.606:1, 0.811:1, 1.21:1, and 1.62:1. Aliquots
of purified HSA (15 μg, 0.75 mg/mL) in cross-linking buffer
(20 mM HEPES−OH, 20 mM NaCl, 5 mM MgCl2, pH 7.8)
were mixed with sulfo-SDA (Thermo Scientific Pierce,
Rockford, IL) to initiate incomplete reaction of the protein
with the sulfo-NHS ester component of the cross-linker.
Human blood serum from a healthy donor (20 μg, 1.0 mg/mL)
was cross-linked in a similar manner, using cross-linker-to-
protein ratios (w/w) of 0.5:1, 1:1, 2:1, and 4:1. Total reaction
volume in each case was 30 μL. For the second step of the
cross-linking procedure, photoactivation of the diazirine group
was carried out using UV irradiation from a UVP CL-1000 UV
Cross-linker (UVP Inc.). Samples were irradiated for either 25
or 50 min for purified HSA samples, and either 10, 20, 40, or 60
min in the case of blood serum samples and separated using gel
electrophoresis. Bands corresponding to monomeric HSA were
excised from gels and the proteins reduced with DTT, alkylated
using IAA, and digested using trypsin following standard
protocols.18 Peptides were loaded onto self-made C18
StageTips36 and eluted using 80% acetonitrile and 20%, 0.1%
TFA in water. The eluates from blood serum HSA and purified
HSA digests were mixed 0.33:1 as a master mix to be used
throughout this study. The two samples originally used in our
structural analysis of HSA8 were mixed here to gain enough
material to perform the experiments of this study in triplicates.
Data Acquisition. Peptides were loaded directly (2% B,

500 nL/min) onto a spray emitter analytical column (75 μm
inner diameter, 8 μm opening, 250 mm length; New
Objectives) packed with C18 material (ReproSil-Pur C18-AQ
3 μm; Dr Maisch GmbH, Ammerbuch-Entringen, Germany)
using an air pressure pump (Proxeon Biosystems).37 The 0.1%
formic acid served as mobile phase A and 0.1% formic acid/
80% acetonitrile as mobile phase B. Peptides were eluted (200
nL/min, linear gradient of 2−40% B over 139 min) directly
into an Orbitrap Fusion Lumos Tribrid mass spectrometer
(Thermo Fisher Scientific, San Jose, CA). Survey spectra were
recorded in the Orbitrap at 120000 resolution. Spectra for all
fragmentation methods were acquired using a scan range of
300−1700 m/z. Precursor ion isolation was performed with the
quadrupole and an m/z window of 1.6 Th. The precursor
automatic gain control (AGC) target value was 4 × 105,
maximum injection time 50 ms. For CID only, CID collision
energy was set to 30%. For HCD only, HCD collision energy
was set to 35%. For ETD only, the option to inject ions for all
available parallelizable time was selected (anion AGC 5 × 104,
60 ms maximum injection time). Supplemental activation (SA)
collision energy was set to 10% for ETciD, and 25% for EThcD.
Data Analysis. Raw files were preprocessed with MaxQuant

(v. 1.5.2.8) with “Top MS/MS peaks per 100 Da” set to 100.38

Resulting peak files (APL format) were subjected to Xi (ERI
Edinburgh, v. 1.5.584) and searched with the following settings:
MS accuracy, 6 ppm; MS/MS accuracy, 20 ppm; enzyme,
trypsin; max. missed cleavages, 4; max. number of modifica-
tions, 3; fixed modification, none; variable modifications,
carbamidomethylation on cysteine; oxidation on methionine;
cross-linker, SDA (mass modification: 109.0396 Da). In
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addition, variable modifications by the hydrolyzed cross-linker
(“SDA-hyd”, mass modification: 82.0413 Da) and loop-links
(“SDA-loop”, mass modification: 83.0491 Da) were allowed.
SDA cross-link reactions were assumed to connect lysine,
serine, threonine, tyrosine, or the protein N-terminus on the
one end of the spacer with any other amino acid on the other
end. FDR was estimated using XiFDR (v. 1.0.6.14)39 on a 5%
peptide spectrum match (PSM) level and 5% link-level only
including unique PSMs. The reference database consisted of a
single entry with the protein sequence of HSA (Uniprot:
P02768). For further analysis, PSM information (precursor m/
z, annotated fragments, score, peptide sequences, etc.) were
extracted from a local PostgreSQL database. The annotated
spectra are available in the Supporting Information (Figures
S4−S8).

To derive a decision tree for an optimized fragmentation
scheme for cross-linked peptides we divided the acquisition
range into a grid of m/z bins of size 200 for each charge state
from 3 to 7. After sorting all PSMs into this theoretical grid we
assigned each cell the best performing and second best
performing fragmentation method. The performance was
assessed through the median achieved sequence coverage of
the complete cross-linked peptide. Note, sequence coverage
does not depend on the possible fragment ions but rather on
the actual evidence (fragment ions) for specific n-terminal or c-
terminal sequences. To decide whether or not a fragmentation
method is favorable over another we conducted a simple, one-
sided permutation test40 with label swaps and 10.000 iterations.
P values lower than 0.05 were regarded as significant.
Permutation tests were only performed if more than 15
observations were in the best performing class. If the best and
second best were too similar to give significant results the best
performing method was also compared to all other methods.

All raw files are available via the PRIDE repository41 (PDX:
PXD003737) along with PSM results and the reference
FASTA.

■ RESULTS AND DISCUSSION
We investigated the impact of five fragmentation techniques
(CID, HCD, ETD, EThcD, ETciD) on the analysis of cross-
linked peptides using a latest generation Orbitrap mass
spectrometer (Orbitrap Fusion Lumos, Thermo Fisher
Scientific). HSA was used as a model protein with a known
crystal structure. Cross-linking experiments suffer under CID
conditions from the underrepresentation of fragment ions from
one of the two peptides.13,17 Here we define the peptide with
more intense ions among the ten most intense fragment ions as
the α-peptide and the remaining peptide as the β-peptide.17

Note that the nomenclature for the two peptides in a cross-link
is not standardized; other definitions using the achieved search
score13 or the peptide’s chain length or mass4 are used. We
hypothesized that the usage of other fragmentation techniques
has an impact on the fragmentation pattern of cross-linked
peptides and subsequently on the success rate of identification.
In our analysis we applied two different FDR-levels according
to the descriptive features that we evaluated.39 For the
evaluation of identification results on the crystal structure, a
link-level FDR is used. For the evaluation of PSM properties
(e.g., sequence coverage), a regular PSM FDR is used. An
overview is available in Table S1.
HCD Fragmentation Gives the Highest Number of

Identified Cross-Links. We compared the number of
identified cross-links that passed a 5% link-level FDR and a

5% PSM-level FDR to assess which fragmentation approach
leads to the highest identification success. The results,
accumulating the three technical replicates for all fragmentation
techniques, show that HCD (958 PSMs) gives the highest
number of identifications followed by CID (604 PSMs, Figure
1A). ETciD fragmentation achieves the lowest number of

identified cross-links with 296 PSMs. This order is closely
related to the number of acquired spectra in all replicates.
While HCD is the fastest acquisition technique producing
∼109000 MS2 spectra ETciD and ETD only produce ∼80000
spectra (Table S1). While the number of PSMs is only a proxy
for the success of CLMS experiments, the true value of CLMS
data comes from the corresponding distance constraints.
Therefore, for the comparison of cross-linking data it makes
sense to compare the results on the link-level. For the
comparison on the link-level only unique links are regarded for
further analysis. A unique link is defined by the combination of
residues involved in a cross-link, that is, a unique residue pair.

As is the case for PSMs, HCD fragmentation also returns the
highest number of identified links (Figure 1A). In total 1390
links (972 unique) were identified with the various methods:
Of the unique links HCD observed 446 links (46%), CID 297
links (31%), EThCD 240 links (25%), ETciD 205 links (21%),
and ETD 202 (21%). Note, the comparison of the links is not
straightforward if the cross-link site is ambiguous. We applied a
simple heuristic that assigns the linkage site to the c-terminal

Figure 1. Number of SDA-induced cross-links identified in HSA using
different fragmentation techniques. (A) Identified PSMs and links
were computed for 5% FDR-level on the respective category. (B)
Evaluation of the identified cross-links against the crystal structure of
HSA. The light gray distribution reflects the distance measurement
between identified residues in a cross-link mapped to the crystal
structure (the median is shown above the vertical line). The dark gray
distribution reflects all pairwise combinations of cross-linkable residues
in the crystal structure. The black vertical line at 25 Å is used to classify
cross-links as long distance or not.
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residue in ambiguous linkage windows. As HSA’s three-
dimensional structure has been resolved, it is possible to utilize
it as ground truth and further evaluate the quality of the
identified links. We used 25 Å here for SDA as the maximal α-
carbon distance of two linkable amino acids in the three-
dimensional structure. This provides a clear distinction between
true positive and false positive identifications. Each identified
link that lies within 25 Å in the crystal structure is plausibly a
true positive. Accordingly, every link that is further than 25 Å
apart is plausibly a false positive. This is a simplified approach,
as links shorter than 25 Å will also contain false positives as a
result of random matching, and conversely, longer links may be
true and result from protein structural flexibility. Comparing
the link information from all five fragmentation techniques
shows that the overall quality of the results is comparable across
all fragmentation modes and distinctly different from random
results. The derived distance distributions have a median of
12−13 Å and are very distinct from the random distance
distribution (Figure 1B). In addition, the results are comparable
in meeting the approximated 5% FDR. FDR analysis for the
HCD data and the ETciD data slightly underestimates the
number of false positives by 1% and 2.5%, respectively (Figure
S1). These can be partially explained by the definition of the
FDR itself, which only gives an approximation of the true false
discovery rate. Furthermore, the hard cutoff that was used has a
large impact on the computed FDR. For example, the ETciD
distances showed a larger peak just to the right of the desired
distance cutoff, indicating that a small increase in the maximal
allowed distance would give an FDR closer to the desired 5%.
The HCD distance distribution looks similar to a small
enrichment of false positives just outside the maximal allowed
distance. Thus, accounting for more flexibility would change
the FDR and suggests that the different methods lead to data of
comparable quality but different quantity.

Having a preranking of the individual fragmentation
techniques in terms of number of PSMs and unique cross-
links is desirable to maximize the information content in a
single run. Depending on the peptide properties, some
fragmentation methods might be more suited for a certain
group of peptides, and thus, using two (or more) orthogonal
fragmentation techniques may increase the overall yield in
peptide identifications and thus distance constraints. Disregard-
ing the link information to focus first on the identified peptide
pairs shows that HCD fragmentation also yields the largest
number of unique peptide pairs (Figure 2A). A total of 43%
(201 peptide pairs) are shared between at least two
fragmentation techniques. The remaining 57% (269 peptide
pairs) are unique to one of the five fragmentation techniques.
To maximize the information content, HCD should be
combined with CID fragmentation to increase the number of
unique links by 58 (Figure 2B). Interestingly, ETD
fragmentation can maximally increase the number of unique
links by 41 by using EThcD. We suspect that the difference in
the number of acquired spectra and actually identified PSMs is
the main driver for this effect. We define the identification rate,

IR, as =IR N
N

id

acq
, where Nid is the number of identified unique

PSMs and Nacq is the total number of acquired MS2 spectra
(Table S1). The IR reveals that HCD not only acquires most
spectra, but also has the highest success rate of 0.88% compared
to CID (0.61%), EThcD (0.52%), and ETD/ETciD (0.38%). If
speed and reliability of ETD-based fragmentation should
change in the future, this order of complementarity may

change. In comparison with linear peptide identifications,
where the IR reaches up to 54%42 (depending on the
instrumentation), the success rate of cross-link identification
is much lower. A contributing factor will be the generally low
abundance of cross-linked peptides when compared to linear
peptides, which will reduce their frequency of selection for
MS2, especially in competition with the linear peptides also
present. Other factors will include poorer database matching
due to often lower intensity, but also more complex spectra and
a larger search space.
ETD-Aided Fragmentation Improves the Coverage of

the Second Peptide. The identification of cross-linked
peptides poses two challenges: First, finding the correct peptide
pair, and second, assigning the correct cross-link site. High
peptide sequence coverage for both individual peptides should
be beneficial to assigning the correct site. Site calling will be

Figure 2. Pairwise result overlaps of fragmentation techniques. (A)
Overlap of identified peptide pairs (disregarding link-site positions)
between fragmentation techniques (Venn diagram generated with
Jvenn49). (B) Set difference matrix shows the number of uniquely
identified peptide pairs (disregarding link-site positions) by one
fragmentation technique (y-axis) when compared to another one (x-
axis).
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especially challenging when considering cross-linkers such as
SDA, where the number of cross-link target sites is large.

Under HCD conditions the coverage distribution for the α-
peptide is the lowest, with a mean coverage around 50%
(Figure 3A). The other four fragmentation techniques perform
very similar to only small improvements in the coverage of the

α-peptide with CID or EThcD fragmentation. Interestingly,
ETD involving fragmentation schemes do not increase the
fragmentation efficiency (measured by the peptide coverage)
much for the α-peptide. In fact, the highest coverage values for
the α-peptide were observed with CID fragmentation. In
contrast, the sequence coverage for the beta peptide largely
depends on the fragmentation method (Figure 3B). ETD,
ETciD, EThcD, and HCD show a much better fragmentation
compared to CID. Previously, ETD was reported to improve
the sequence coverage compared to CID.32,43 We observe here
that for cross-linked peptides this effect is very pronounced for
the β-peptide, but not for the α-peptide.

In general, in cross-linked peptides, one peptide matches
more and with higher intense fragment ions than the other. All
fragmentation methods yield at least an average coverage of
around 50% for the α-peptide. For the β-peptide, the average
coverage lies between 39% and 50%. CID would be the method
of choice for high α-peptide coverage. However, CID is
systematically disadvantaging the β-peptide. For the β-peptide,
the other fragmentation methods perform much better: EThcD
and HCD almost reach the same fragmentation efficiency as for
the α-peptide. In numbers, the largest discrepancy between α-
and β-peptide coverage was observed with CID, with a mean
coverage difference (MCD) of 19%. EThCD and HCD show
the lowest MCD of 8%. The overall best coverage is observed
with EThcD fragmentation (Figure 3C). ETciD seems to be
less effective, presumably as ETD in the first stage leads to
charge reduction, and CID then fragments a single precursor,
while HCD fragments all. Nevertheless, ETciD greatly
improves the coverage of the second peptide when compared
to CID.

To compare the fragmentation efficiency on both peptides in
a cross-link more systematically, we define the symmetry factor
(SF) as

= | − |α βSF cov cov (1)

where covα and covβ refer to the sequence coverage of the α-
and β-beta peptide, respectively. For convenience, we use the
negation SF′ of SF defined as

′ = −SF 1 SF (2)

A large SF′ means that α- and β-peptide coverage are very
similar and vice versa. CID shows the smallest among the five
fragmentation methods of ∼0.8. The other four methods
perform better than CID, with a median of ∼0.9 (Figure 3D).
In addition, ETD, ETciD, EThcD, and HCD have a smaller
spread than CID. In summary, CID exasperates the second
peptide problem. Nevertheless, CID still slightly outperforms
HCD in overall cross-linked peptide sequence coverage. In
order to maximize overall cross-linked peptide coverage ETD,
ETciD, and EThcD are recommended, based on median
coverage of the complete cross-linked peptide.
Precursor m/z Has a Large Effect on the Efficiency of

the Fragmentation. To follow-up on the different
fragmentation behavior of cross-linked peptides we investigated
how the precursor properties influence the fragmentation
efficiency. We first divided the m/z acquisition range into bins
of m/z 150 (starting from m/z 550). For each bin we then
collected the peptide identifications of all different fragmenta-
tion methods and investigated the sequence coverage based on
the m/z of the precursor.

ETD and EThcD lead to the highest sequence coverage
between m/z 500−800 (Figure 4A,B). However, ETD

Figure 3. Achieved sequence coverage comparison. Coverage
distribution of the α-peptide (A; more matches among the 10 most
intense fragment ions) and the β-peptide (B). The vertical line in
(A)−(C) reflects a reference value of 50% sequence coverage, meaning
fragments (b, c, y, or z) match to half of the backbone links between
residues along the sequence of the peptide. (C) Coverage distribution
for the complete cross-linked peptide. (D) Symmetry (absolute
coverage difference between alpha and beta peptide) distributions for
the different fragmentation techniques. The data in (A)−(D) were
analyzed using a 5% PSM FDR.
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efficiency decreases steeply with higher m/z, making HCD and
CID the better choice for precursors larger than m/z 1000. The
same trend is observed for all ETD-based methods. These
differences are more pronounced on the individual α- and β-

peptides. When the complete peptide coverage is compared
(Figure 4C), all methods stick more closely together but
EThcD and ETD still outperform all other methods for
precursors smaller than m/z 850. In higher m/z areas, only CID
and HCD are able to still produce enough peptide
identifications (data in the figure was limited to only include
m/z bins with at least five observations).

As demonstrated in the sections above, there are differences
in the efficiency of the fragmentation of cross-linked peptides.
In a more detailed comparison, we divided the acquisition
range into a grid made of charge bins of size one and m/z bins
of size 200. In each of these cells we then tested how well the
five different fragmentation methods performed. The perform-
ance was evaluated on the cross-linked peptide sequence
coverage. For the majority of peptides, EThcD achieved
significantly higher sequence coverage (Figure 4D) than the
second best method between 600 and 800 m/z (precursor
charge 3−6). In addition, the m/z cells 400−600 (z = 4) and
800−1000 (z = 5) are also favored by EThcD fragmentation.
Since the majority of cross-linked peptides (71%) lie within
600−1000 m/z, the most important area is dominated by
EThcD fragmentation. However, evaluated by pure numbers of
identifications, EThcD is not the best performing method. On
average, ∼35 PSMs are missed if EThcD is chosen over the
method that achieves the highest number of identifications. If
the evaluation metric is changed to the highest number of
identifications, HCD is outperforming the other fragmentation
methods for all m/z bins (Figure S3). Therefore, HCD was
selected as default method for regions where no significant
improvement could be observed by any of the other methods
(Figure 4D, HCD written in gray).
HCD, EThcD, and ETD fragmentation define the cross-

link site most unambiguously. The overall sequence
coverage is a valuable feature to assess the quality of peptide
identifications. However, for cross-linked peptides those
fragments flanking the cross-linked residues are important to
define the linkage site. This resembles the localization of post-
translational modifications such as phosphorylation, which
greatly benefited from the usage of combined fragmentation
methods.44 Limited information about the cross-link site is
available when none of the fragments next to a cross-linked
residue are observed; the cross-link site can then only be
assigned by prior assumptions or to larger sequence windows,
which becomes problematic if the site call is off by ±5 residues
(at least in HSA and using current ab initio structure
computation).8 Given the information from correct fragment
identifications, a combination of one c-terminal and one n-
terminal ion is enough to locate the cross-link site
unambiguously. Utilizing the high-resolution/accurate mass
measurement in our experimental design, we thus assumed that
each assigned fragment is correct for peptides passing the
specified FDR.

The cross-link site in α-peptides could be assigned to a single
residue in ∼65% of all PSMs identified with EThcD or HCD
(Figure 5A). The second best performing method was ETD,
with approximately 60% of PSMs where the cross-link could be
assigned to a single residue. CID and ETciD PSMs show the
lowest number of accurate site localizations to a single residue
(below 50% of all PSMs). All methods placed the cross-link site
on average within the critical 5 residue window for 97.2% ±
1.17 (α-peptides) and 95.6% ± 1.3 (β-peptides) of all PSMs.
For the β-peptide, this looks very similar; EThcD and HCD
show the best fragmentation behavior to localize the cross-link

Figure 4. Sequence coverage depending on precursor m/z and charge.
The average coverage values from (A) α-peptides, (B) β-peptides, and
(C) the complete cross-linked peptide are plotted vs the precursor m/
z. Each dot represents the median of all identified peptides in a
window of m/z 150. Error bars show the standard deviation. (D)
Decision surface to optimize the sequence coverage of cross-linked
peptide. The acquisition range was divided into bins of 200 m/z per
charge state. In each bin the best performing fragmentation method
(judged by median achieved sequence coverage) is used to color that
particular bin. The “*” denotes a significant improvement in sequence
coverage by using the best performing fragmentation method over the
second best. Areas with less than 15 observations are colored in light
red, falling back to HCD as standard fragmentation technique. Gray
annotations show areas where no significant improvement could be
obtained by choosing one method over the others.
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site (Figure 5B). With approximately 50% of precisely localized
cross-links in the β-peptide, the link-localization is less well for
the β-peptide than for the α-peptide. However, this is not as
pronounced as would be expected from the sequence coverage
asymmetry. This is counterintuitive since the coverage
distributions for HCD is among the lowest of all five
fragmentation techniques for the β-peptide. For EThcD, the
results for the determination of the cross-link site are more in
line with the observed coverage distributions. Still, the large
difference in the coverage distribution of the α- and β-peptides
seems not to be as pronounced for the distribution of correct
localizations of the cross-link site. One of the possible reasons is
that the cleavage of the peptides before and after the cross-link
site is preferred. For CID a statistical trend was reported that
cross-linked fragments outnumber linear fragments and tend to
have a higher intensity.17 We encounter the opposite for HCD,
linear fragments visibly outnumber cross-linked fragments
(Figure S8).
Data-Dependent Decision Tree for Optimized Acquis-

ition of Cross-Linked Peptides. CLMS studies vary in the

degree of complexity: single proteins, multiple protein
complexes or complete proteomes can be analyzed to generate
protein−protein interaction information or the three-dimen-
sional structure. Depending on the specific case we propose
two different acquisition strategies (Figure 6A): First, for single

proteins or small protein complexes, we recommend HCD as
the method of choice. Since the complexity of the sample is not
very high, cross-linked peptides can often be matched by
precursor mass alone. In addition, HCD fragmentation
generates enough fragments to precisely localize the cross-
link site in the majority of cases. For the second case, that is,
complex samples with many proteins not only the search space
becomes an issue but also the associated random matches. A
fragmentation scheme that generates highly discriminative
scores for target and decoy peptides will identify more peptides
under the same FDR threshold. The optimal fragmentation
scheme for such an experiment is shown in Figure 6B. Earlier
studies on the development of data dependent decision trees
(DDDT) for the acquisition of linear peptides mainly support
our conclusions: HCD gives the highest number of
identifications, but ETD gives higher search engine scores45

or, as in our case, higher sequence coverage. Compared to a
DDDT for linear peptides our results are slightly different but
still comparable. For example, linear DDDTs precursors with
charge state 3+ have been analyzed with ETD up to 750 m/z46

or 650 m/z,45 we only use ETD from 600−800 m/z. In
addition, instead of using ETD alone for 4+, 5+ precursors
below 1000 m/z and 800 m/z, respectively, EThcD is used. In
this study we investigated SDA-cross-linked, tryptic peptides.
Other cross-linkers or enzymes may lead to peptide populations

Figure 5. Cross-link site localization precision. (A) Cumulative
precision curve for the α-peptide. (B) Cumulative precision curve for
the β-peptide. With a precision value of one the cross-link site is
unambiguously located by adjacent backbone fragments (b, c, y, or z)
in the peptide. A value of two limits the cross-link site to two eligible
residues.

Figure 6. Acquisition strategy for cross-linked peptides. (A)
Recommended acquisition scheme for cross-linking samples. (B)
Data-dependent decision tree (DDDT) for cross-linked peptides.
Depending on the precursor charge state (3+, 4+, 5+, 6+, and other)
and the m/z, the appropriate fragmentation technique is selected.
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with distinct fragmentation behavior due to differences in size
or amino acid composition. Note, however, that the proposed
fragmentation scheme is similar to the decision tree for linear
peptides45,46 and may therefore be of more general value.

■ CONCLUSION
For the majority of the peptides EThcD is the method of
choice to achieve the highest sequence coverage. HCD is an
important alternative because of its superior speed, with only
somewhat reduced peptide sequence coverage. CID, ETD, and
ETciD only play minor roles. We advise to adjust the
acquisition scheme to follow the experimental setup: simple
protein samples should be analyzed using only HCD to
maximize number of observed links, which starts having value
in protein structure determination.8,47 For complex samples, we
propose a decision tree that is mainly based on EThcD and
HCD to maximize search specificity.
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ABSTRACT: Cross-linking mass spectrometry draws structural
information from covalently linked peptide pairs. When these
links do not match to previous structural models, they may
indicate changes in protein conformation. Unfortunately, such
links can also be the result of experimental error or artifacts.
Here, we describe the observation of noncovalently associated
peptides during liquid chromatography-mass spectrometry
analysis, which can easily be misidentified as cross-linked.
Strikingly, they often mismatch to the protein structure.
Noncovalently associated peptides presumably form during
ionization and can be distinguished from cross-linked peptides
by observing coelution of the corresponding linear peptides in
MS1 spectra, as well as the presence of the individual (intact)
peptide fragments in MS2 spectra. To suppress noncovalent peptide formations, increasingly disruptive ionization settings can
be used, such as in-source fragmentation.

The preservation of noncovalent associations in electro-
spray ionization (ESI) has been widely used in the field of

native mass spectrometry to study protein interactions. Major
achievements of native mass spectrometry include analyzing
the topology and stoichiometry of multiprotein complexes and
the binding of small molecules to proteins.1−3 The key premise
of the field is that the observed noncovalent interactions in the
gas phase are based on biologically relevant interactions in the
aqueous phase.4

Another mass spectrometric field that investigates (non)-
covalent interactions of proteins is cross-linking mass
spectrometry (CLMS).5−7 Here, spatially close amino acid
residues in native proteins are covalently linked. This preserves
spatial information throughout the subsequent non-native
analytical process, comprising trypsin digestion of the proteins
into peptides and their chromatographic separation for mass
spectrometric detection. A key premise of this field is that the
observed peptide interactions in the gas phase are exclusively
based on covalent links. Note that, for synthetic peptides, gas-
phase peptide−peptide complexes have been observed
recently,8 suggesting that not only proteins but also peptides
can remain associated during mass spectrometric analysis.
In theory, one can construct peptide pairs where mass

information alone cannot differentiate between covalent
linkage and noncovalent association. A peptide pair can reach
the same mass either by cross-linking or by noncovalent
association if one of the two peptides carries a loop-link, that is,
the frequent case of a cross-linker reacting with two amino acid

residues so near in sequence that they fall into a tryptic peptide
(Figure S1, Supporting Information). The concept of mass
equivalence between cross-linked and non-cross-linked pep-
tides has been exploited during data analysis, when using
standard proteomics software for the analysis of cross-linked
peptides, including Mascot9 to identify cross-linked peptides10

and quantitation software.11,12 If such noncovalent associations
physically arise, current cross-link analysis could be fooled into
misidentifying analytical artifacts as spatial information.
We observed surprising differences when comparing the

identified cross-links using data acquired on two different mass
spectrometers: a hybrid linear ion trap-Orbitrap mass
spectrometer (LTQ Orbitrap Velos, Thermo Fisher Scientific)
and a hybrid quadrupole-Orbitrap mass spectrometer (Q
Exactive, Thermo Fisher Scientific). This led us to investigate
the formation of noncovalent peptide associations with and
without cross-linking. We analyzed cross-linked human serum
albumin (HSA). Using only the monomeric protein band
obtained from sodium dodecyl sulfate polyacrylamide gel
electrophoresis allowed identified links to be validated against
an available three-dimensional structural model as “ground
truth” to reveal suspicious peptide pairs for detailed inter-
rogation. We then extended this data analysis to a four-protein
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mix without employing cross-linking to test if the noncovalent
association is cross-linker-specific.

■ MATERIALS AND METHODS
Data Acquisition. HSA Acquisition and Sample Prepara-

tion. Human blood serum (20 μg aliquots, 1 μg/μL) was cross-
linked using cross-linker-to-protein, weight-to-weight (w/w)
ratios of 1:1 and 2:1. Aliquots of human serum diluted with
cross-linking buffer (20 mM 4-(2-hydroxyethyl)-1-piperazinee-
thanesulfonic acid (HEPES)−OH, 20 mM NaCl, 5 mM
MgCl2, pH 7.8) were incubated with sulfosuccinimidyl 4,4′-
azipentanoate (sulfo-SDA) (Thermo Scientific Pierce, Rock-
ford, IL), in a reaction volume of 30 μL for 1 h at room
temperature. The diazirine group was then photoactivated by
UV irradiation, for either 10, 20, 40, or 60 min using a UVP
CL-1000 UV Cross-linker (UVP Inc.). Cross-linked samples
were separated using gel electrophoresis, with bands corre-
sponding to monomeric HSA excised and then reduced with
dithiothreitol, alkylated with iodoacetamide, and digested using
trypsin following standard protocols.10 Peptides were then
desalted using C18 StageTips13 and eluted with 80%
acetonitrile, 20% water, and 0.1% trifluoroacetic acid (TFA).
Peptides were analyzed on either a hybrid linear ion trap/

Orbitrap mass spectrometer (LTQ Orbitrap Velos, Thermo
Fisher Scientific) or a hybrid quadrupole/Orbitrap mass
spectrometer (Q Exactive, Thermo Fisher Scientific). In both
cases, peptides were loaded directly onto a spray analytical
column (75 μm inner diameter, 8 μm opening, 250 mm length;
New Objectives, Woburn, MA) packed with C18 material
(ReproSil-Pur C18-AQ 3 μm; Dr. Maisch GmbH, Ammer-
buch-Entringen, Germany) using an air pressure pump
(Proxeon Biosystems).14

Orbitrap Velos Analysis. Mobile phase A consisted of water
and 0.1% formic acid. Peptides were loaded using a flow rate of
0.7 μL/min and eluted at 0.3 μL/min, using a gradient with a 1
min linear increase of mobile phase B (acetonitrile and 0.1% v/
v formic acid) from 1% to 9%, increasing linearly to 35% B in
169 min, with a subsequent linear increase to 85% B over 5
min. Eluted peptides were sprayed directly into the hybrid
linear ion trap-Orbitrap mass spectrometer. MS data were
acquired in the data-dependent mode, detecting in the Orbitrap
at 100 000 resolution. The eight most intense ions in the MS
spectrum for each acquisition cycle, with a precursor charge
state of +3 or greater, were isolated with a m/z window of 2 Th
and fragmented in the linear ion trap with collision-induced
dissociation (CID) at a normalized collision energy of 35.
Subsequent (MS2) fragmentation spectra were then recorded
in the Orbitrap at a resolution of 7500. Dynamic exclusion was
enabled with single repeat count for 90 s.
Q Exactive Analysis. Mobile phase A consisted of water and

0.1% formic acid. Mobile phase B consisted of 80% v/v
acetonitrile and 0.1% formic acid. Peptides were loaded at a
flow rate of 0.5 μL/min and eluted at 0.2 μL/min, using a
gradient increasing linearly from 2% B to 40% B in 169 min,
with a subsequent linear increase to 95% B over 11 min. Eluted
peptides were sprayed directly into the hybrid quadrupole-
Orbitrap mass spectrometer. MS data (400−1600 m/z) were
acquired in the data-dependent mode, detecting in the Orbitrap
at 60 000 resolution. The ten most intense ions in the MS
spectrum, with a precursor charge state of +3 or greater, were
isolated with a m/z window of 2 Th and fragmented by higher-
energy collision-induced dissociation (HCD) at a normalized
collision energy of 28. Subsequent (MS2) fragmentation

spectra were recorded in the Orbitrap at a resolution of
30 000. Dynamic exclusion was enabled with a single repeat
count for 60 s.

In-Source Collision-Induced Dissociation Acquisitions.
HSA, equine myoglobin, ovotransferrin from chicken (all
from Sigma-Aldrich, St. Louis, MO), and creatine kinase from
rabbit (Roche, Basel, Switzerland) were dissolved in 8 M urea
with 50 mM ammonium bicarbonate to a concentration of 2
mg/mL each. The proteins were reduced by adding
dithiothreitol at 2.5 mM followed by an incubation for 30
min at 20 °C. Subsequently, the samples were derivatized using
iodoacetamide at 5 mM concentration for 20 min in the dark at
20 °C. The samples were diluted 1:5 with 50 mM ammonium
bicarbonate and digested with trypsin (Pierce Biotechnology,
Waltham, MA) at a protease-to-protein ratio of 1:100 (w/w)
during a 16-h incubation period at 37 °C. Then the digestion
was stopped by adding 10% TFA at a concentration of 0.5%.
The digests were cleaned up using the StageTip protocol.13

The samples were eluted from the C18 phase, partially
evaporated using a vacuum concentrator, and resuspended in
mobile phase A (0.1% formic acid). Two micrograms of tryptic
digests were loaded directly onto a 50 cm EASY-Spray column
(Thermo Fisher) packed with C18 stationary phase and
equilibrated to 2% of mobile phase B (80% acetonitrile, 0.1%
formic acid) running at a flow of 0.3 μL/min. Peptides were
eluted by increasing mobile phase B content from 2 to 37.5%
over 120 min, followed by ramping to 45% and to 95% within 5
min each. After a washing period of 5 min, the column was re-
equilibrated to 2% B. The eluting peptides were sprayed into a
Q Exactive High-field (HF) Hybrid Quadrupole-Orbitrap Mass
Spectrometer (Thermo Fisher Scientific, Bremen, Germany).
The mass spectrometric measurements in data-dependent
mode were acquired as follows: a full scan from 400 to 1600
m/z with a resolution of 120 000 was recorded to find suitable
peptide candidates which were subsequently quadrupole-
isolated within a m/z window of 2 Th and fragmented by
HCD at a normalized collision energy of 28, with
fragmentation spectra recorded in the Orbitrap at a resolution
of 30 000. Precursors with charge states from 3 to 6 were
selected for isolation. Dynamic exclusion was set to 15 s. Each
cycle allowed up to ten peptides to be fragmented before a new
full scan was triggered. The effect of in-source collisional
activation (ISCID) on the formation of noncovalently bound
peptides was investigated by setting voltages from 0 to 20 eV in
5 eV increments for each individual run. Each value tested was
probed in shuffled triplicates.

Data Processing. Raw files for cross-linking searches were
processed using MaxQuant15 (v. 1.6.1.0) to benefit from the
implemented precursor m/z and charge correction. Resulting
peak files in APL format were used to identify peptides in Xi16

(v. 1.6.739). The database search with Xi used the following
parameters: MS tolerance, 6 ppm; MS2 tolerance, 15 ppm;
missed cleavages, 3; enzyme, trypsin; fixed modifications,
carbamidomethylation (cm, +57.02 Da); variable modifica-
tions, oxidation methionine (ox, +15.99 Da). For sulfo-SDA,
the cross-linker mass 82.04 Da and the modifications SDA-loop
(+82.04 Da) and SDA-hyd (+100.05 Da) were used.17 False
discovery rate (FDR) estimation was done using xiFDR18 (v.
1.1.26.58), using either 5% link FDR (without boosting) or a
5% peptide spectrum match (PSM) FDR. The Euclidean cross-
link distances within HSA were estimated from mapping the
peptide sequences to the three-dimensional structure when
possible (PDB: 1AO619).
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Searches for noncovalently associated peptides (NAP) in the
absence of cross-linkers were also conducted using Xi with a
feature to search for noncovalently associated peptides. FDR
analysis was done at a 5% PSM level using the formula FDR =
(TD − DD)/TT,18 after removing all PSMs with a score less
than 1. FDRs were then transformed to q-values, defined as the
minimal FDR at which a PSM would pass the threshold.20

Linear peptide identifications from cross-linked acquisitions
were done using MaxQuant. We added the above-defined SDA-
loop and SDA-hyd modifications to the configuration file and
allowed up to five modifications on a peptide together with a
maximum of five missed cleavages. Resulting peptide
identifications were filtered at the default FDR of 1%. Non-
cross-linked acquisitions were searched with default settings
treating each replicate as a different experiment in the
experimental design.
RT profiles for a given m/z were extracted using the MS1

(peak picked) raw data after conversion to mzML using
msconvert.21 The postprocessing was done in Python using
pyOpenMS.22 RT profiles were defined as intensity values for a
given m/z for the monoisotopic peak and two isotope peaks.
During the developed look-up strategy, the precursor m/z of
the identified cross-linked peptide, the m/z of the α peptide,
and the m/z of the β peptide were searched in the MS1 data.
The precursor mass matches only the sum of the individual
peptides in a noncovalently associated peptide if one of the two
peptides is SDA-loop-modified. Therefore, the MS1 data was
screened for m/z traces of the individual peptides with and
without an added SDA-loop modification. Similarly, all charge
states up to the precursor charge were used. The m/z trace with
the largest number of peaks was eventually selected for each
individual peptide. The m/z seeds were all treated similarly; in
a RT window of 180 s, the given m/z was searched with a 20
ppm tolerance. If the m/z was found, the intensity was
extracted. Resulting RT profiles where smoothened by a
moving average with 15 points. For further data processing and
visualization, the RT profile with the most peaks (either
monoisotopic, first isotope, or second isotope peak) was
selected.
Statistical analysis and data processing were performed using

Python and the scientific package SciPy.23 Unless otherwise
noted, we performed significant tests using one-sided Mann−

Whitney-U-Tests with α = 0.05 and continuity correction. We
used the following encoding for p-values: ns, not significant; *,
≤0.05; **, ≤0.01; ***, ≤0.001. Along with the significance
tests, we provided effect size estimates based on Cohen’s d24

with pooled standard deviations, which uses the following
classification: small, |d| ≥ 0.2; medium, |d| ≥ 0.5; and large, |d|
≥ 0.8.
The mass spectrometry raw files, peak lists, search engine

results, MaxQuant parameter files, and FASTA files have been
deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE partner
repository25 with the data set identifier PXD010895.

■ RESULTS AND DISCUSSION
The results are divided into 4 parts: (1) Describes the results
from HSA cross-linking using sulfosuccinimidyl 4,4′-azipenta-
noate (sulfo-SDA) and then analysis with a Q Exactive (QE)
and LTQ Orbitrap Velos (Velos) mass spectrometer; (2)
describes the MS2 properties of the detected long-distance
links (LDL) with the QE and introduces the hypothesis of
noncovalently associated peptides (NAP) enduring ESI; (3)
summarizes intensity and retention time (RT) properties of the
identified PSMs; and (4) shows that noncovalently associated
peptides also occur in the absence of cross-linking.

Instrument Comparison Revealing a High Number of
Suspicious Cross-links in Q Exactive Data. We started by
comparing the results from cross-linking HSA with sulfo-SDA
using two different mass spectrometers: a Velos and a QE.
Cross-linked peptides were identified using Xi with subsequent
FDR filtering using xiFDR at a 5% link-level FDR. To
independently assess the quality of the results, we evaluated
how the identified cross-links matched to the available crystal
structure of HSA. At 5% link FDR, we identified 449 (QE) and
240 (Velos) links, of which 430 and 231 could be mapped to
the available sequence in the structural model, respectively.
The distance distributions of the mapped cross-links looked
similar for links below 22 Å (Figure 1a). However, for long
distances, the link distributions looked different. The QE data
shows a much higher percentage of links exceeding the 25 Å
cutoff, which is the empirically defined distance limit of SDA
cross-linking.26 This leads to 18% long-distance links (LDL)
for the QE data compared to 2% for the Velos data (Figure 1a

Figure 1. Quality control after cross-link identification at a 5% link FDR. (a) Results from cross-linking HSA with sulfo-SDA acquired on an Q
Exactive and an LTQ Orbitrap Velos mass spectrometer. The line at 25 Å indicates the distance cutoff for links classified as long distance. The inlet
shows the fraction of long-distance links (LDL) in each data set. (b) Score comparison between within-distance linkzs and LDL. LDL showed no
significant (ns) deviation from the within-distance links (two-sided Mann−Whitney-U-test at α = 0.05).
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inlet). Since the protein monomer band was analyzed, the
possibility that the LDL were derived from cross-linked homo-
oligomers can be largely neglected. One possibility is that the
deeper analysis on the QE, which is faster and more sensitive
than the Velos, detected a rare protein conformational state.
However, a previous analysis of SDA-cross-linked HSA on the
Velos yielded 500 identified links (5% link FDR), with
comparatively few LDL (6%).27 Also, data on the much faster
and more sensitive Fusion Lumos did not return in our hands
such proportion of LDLs (data not shown). This suggests that
the QE data does not cover conformational flexibility of the
protein. Instead, the QE data appears to suffer from a
systematic error that leads to many false identifications.
Importantly, this bias affects only target sequences as it is not
controlled by the FDR estimation. If these LDL were indeed
based on false identifications, one could suspect that they were
identified based on weak data and thus derived from low-
scoring PSMs. We therefore compared the highest scoring PSM
for each link above and below 25 Å (Figure 1b). Remarkably,
the LDL showed an even higher average score than the within-
distance links. This difference was small and not significant, but
it was still surprising that the two classes had a similar score
distribution. Next, we manually investigated LDL PSMs to
identify characteristics that might lead to a mechanistic
explanation of these links.
Long-Distance Links Lacking Support for Being

Cross-Linked. After suspecting a systematic identification
error in QE data, we manually inspected annotated LDL
spectra. We noticed that many spectra frequently contained
unexplained fragment peaks of high intensity. For example, in

the displayed spectrum (Figure 2a, upper panel), most of the
high-intensity peaks are explained but not the base peak. This
PSM was matched with a very low precursor error of 0.44 ppm
and had a very good sequence coverage in general. However,
while many of the linear fragments were identified, no cross-
linked fragments were matched. While there is convincing
evidence that the two identified peptides are correct, there is a
lack of fragment evidence that these peptides were indeed
cross-linked.
We tested our manual observations more systematically by

comparing the explained intensity in the MS2 spectrum across
all PSMs that passed the 5% link FDR (Figure 2b). There is
already a twofold increase in the median explained intensity
(EI) of the within-distance links (20% EI) and the LDL (10%
EI). This trend is also supported by a significant MWU test
(one-sided, α = 0.05) and a large Cohen’s d effect size (d =
0.95). One possible explanation is that the spectra that yield
LDL are simply of poor quality. This can happen when, for
example, peptides of similar m/z were coisolated, the precursor
was of low intensity, or the peptide simply did not fragment or
ionize very well. But as shown in Figure 1b, the search engine
scores of LDL were slightly higher than the scores from within-
distance links. Therefore, poor spectral quality is not a likely
reason for the large proportion of LDL. However, the number
of matched cross-linked and linear fragments was significantly
lower for the long-distance matches compared to that for the
within-distance matches (Figure 2c).
Recently, it has been proposed that SDA-formed bonds are

very susceptible to MS cleavage when involving a carboxylic
acid functional group.28 In these cases, the annotated spectra

Figure 2. Spectral characteristic of noncovalently associated peptides. (a) Comparison of the same scan (scan 34887, raw file *V127_F*) searched
with cross-link settings (upper panel) and searched with a noncovalent association setting (lower panel). (b) Comparison of the explained intensity
in the MS2 spectrum from all PSMs that passed the 5% link-level FDR. (c) Comparison of cross-linker-containing fragments and linear fragments in
the same set of PSMs as in (b). Number of observations for (b) and (c): ≤25 Å 2599 PSMs and >25 Å 326 PSMs.
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would also show a low EI and a low number of cross-linked
fragments with our search settings. However, it is unclear why
such a reaction should preferentially lead to LDLs. Therefore,
we hypothesized that the respective peptide pairs were not
actually cross-linked but were noncovalently associated.
Nevertheless, we investigated this in larger detail by following
the approach of Iacobucci et al.28 and performed a cleavable
cross-linker search on the Velos and the QE acquisitions
(Figure S2). A large portion of the identifications from the
cleavable cross-linker search on the QE (38%) were long-
distance links (presumably noncovalent peptide associations).
However, the distribution of links that match the crystal
structure revealed a preference for short distances, thereby
indicating that MS cleavage of the cross-linker can indeed be
observed. So, our data support both as parallel processes MS-
cleavable SDA links and noncovalent peptide complexes.
It would be interesting to investigate sequence determinants

of noncovalent association. Unfortunately, the lack of ground
truth and the low number of observations make it difficult to
investigate sequence-specific features that lead to noncovalent
peptide complexes. While cross-links should preferentially fall
below the distance cutoff, noncovalent peptide associations
should distribute randomly across the distance histogram.
Therefore, some links that match the crystal structure will also
arise from noncovalent associations. Those links falling above
the distance cutoff were too low in number for a statistical
enrichment analysis.
Low Intense Noncovalently Associated Peptides

Arising from Two Coeluting Peptides. As shown above,
LDL frequently achieved high scores and there was good
evidence based on the MS2 fragmentation that the peptides
were correctly identified. Had the peptides paired non-

covalently, this could happen either in solution or during the
ESI process. In the latter case, one would expect the individual
peptides to overlap in their chromatographic elution forming a
noncovalent pair during their coelution. In contrast, for cross-
linked peptides one would not expect any systematic coelution.
Therefore, we investigated the elution of the individual
peptides for all identifications (5% PSM FDR) following a
look-up strategy that started from the MS2 trigger time of the
cross-linked PSM (Figure 3a, for details see Materials and
Methods).
We successfully extracted 1458 mass traces for PSMs of links

within the distance cutoff and 238 mass traces for PSMs of
LDLs. For these PSMs, we then compared the maximum
intensity along the mass trace for the cross-link m/z and the
two individual peptides m/z (Figure 3b) within a window of
±90 s. Interestingly, the MS1 signals of long-distance links had
significantly lower intensities than links fitting to the crystal
structure, albeit with small effect size. In contrast, the MS1
intensities attributed to the individual peptides of LDL were
higher by almost 2 orders of magnitude within the elution
window compared to the control (peptides observed in cross-
links). This indicates a preference for coelution of individual
peptides with linked peptide pairs in the case of LDL but not
within-distance links.
The high signal intensity of individual peptides of LDL

around the elution of the LDL peptide made us wonder if they
coelute. We investigated the correlation of elution profiles
more systematically by computing the Spearman correlation
over the extracted ion chromatogram (XIC). While the
absolute correlation is neither very high for the within-distance
links nor for the LDL, the important feature is the difference
between the two classes (Figure 3c). The correlations of two

Figure 3. Analysis strategy and properties of LDL PSMs. (a) Noncovalent peptide search. On the basis of a cross-linked PSM (1), the individual
peptide sequences are searched in the MS1 such that the summed mass equals the precursor mass of the identified cross-link (2). (b) Maximum
intensity (along the m/z trace) for the identified cross-link and the m/z of the two individual peptides for links ≤25 Å and >25 Å. (c) Spearman
correlation of intensity profiles of the cross-link and the two individual peptides based on m/z matching in a RT window. (d, e) Examples of
intensity profiles of two LDL. Filled stars mark the isolation time point of the precursor that yielded the identified cross-link. Scaling factors for lower
intensity curves are written above the respective curves (e.g., ×10 equals a factor of 10). Additional information about the PSMs can be retrieved
through the uploaded results in PRIDE through the PSMIDs 7678478210 (d) and 7678602613 (e). (f) RT difference comparison of LDL and
within-distance links.
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single peptide m/z’s with each otherbut also individually
with the cross-linked m/zare all significantly larger for the
long-distance links compared to those for the within-distance
links (p-value ≤0.001). The fact that the absolute value of the
correlation is moderate is not surprising as it would be a
precondition of noncovalent association that the individual
peptides elute at an overlapping but not necessarily identical
time, as is also seen from two examples of coeluting and
associating peptides (Figure 3d,e). In the first example, all three
m/z species start eluting at a similar time point. One of them is
very abundant (MS1 intensity 1e9), reaching saturation and
showing a long elution tail. This covers the complete elution
time of the second peptide. As expected for an association
product of the two, the LDL peptide then coincides with the
elution of the second peptide. In a second example, the two
individual peptides partially coelute, and the LDL peptide is
observed during the time of their overlapping elution.
To our surprise, some cross-links that match the protein

structure showed correlating MS1 intensities with their linear
counterparts, despite a narrow matching time window.
Retention on a reversed phase is usually very sensitive such
that even peptide pairs with different cross-link sites show a
different elution time.26 We therefore suspected the coeluting
MS1 intensities to be the baseline signal of our look-up
strategy, which is solely based on m/z values and lacks
confirmation through identification data. Hence, we checked
for the RTs from the individual linear peptides relative to the
cross-links based on identifications instead of m/z matching
alone. We compared the cross-link identifications with the
closest RT from the linear identified peptides (with equal
modifications and equal composition). The absolute difference
of the individual RTs was mostly close to 0 min for the LDL
PSMs and approximately uniformly distributed for within-
distance PSMs (Figure 3f). The added control (random
pairings of RTs from linear identified peptides that were also
part of a cross-linked peptide) closely resembles the within-
distance PSM distribution. However, only 50% of the PSMs
have a RT difference smaller than 10 min. The remaining PSMs
have a large RT difference which reduces the possibility of
coelution. Interestingly, PSMs with a RT difference smaller
than 10 min have an average score of 10.0 (n = 32), while the
remaining PSMs (n = 32) have an average score of 6.7.
Possibly, the lower score indicates imprecise peptide
identifications and thus wrong RT times. In addition, matches

with large RT differences can still originate from wrong
identifications. Like target-decoy matches in a cross-link, in a
NAP one of the peptides could be correct and the other might
be a random match. In these cases, the RT difference would
also be randomly distributed.

In-Source Fragmentation Reduction of the Number
of Noncovalently Associated Peptides. On the basis of the
results above, one would predict NAPs to form even without
prior cross-linking. The phenomenon should depend on only
peptide concentration and their affinities. We therefore
investigated a four-protein mix without any cross-linker
addition and wondered if noncovalently associated peptides
could be identified. Note that here we changed to a Q Exactive
high field. Indeed, we identified 24 noncovalent peptide
associations (Figure 4). The formation of NAP is thus also
observable in linear proteomics that do not involve any cross-
linking chemistry. However, the number of NAP identifications
is low and unlikely to affect linear proteomics.
Since the involved forces leading to an interaction are

expected to be rather weak, employing in-source collision-
induced dissociation (ISCID) should reduce the number of
identified NAPs. Using an ISCID of 0, 5, 10, 15, and 20 eV, we
find 24, 11, 11, 6, and 3 NAP identifications at 5% PSM FDR
(Figure 4a). Increasing the ISCID from 0 to 20 results in a 90%
decrease of NAPs identifications. As a control, we also
investigated how linear peptide identifications were affected
by these voltages for ISCID and observed only a minor
detrimental effect. Predominantly, we saw self-associations of
the same peptide with all ISCID settings (88%, 64%, 73%, 33%,
and 67%) for 0, 5, 10, 15, and 20 eV ISCID). Also, in cross-
linked HSA we saw many self-links of peptides, which initially
perplexed us as these would indicate protein dimerization
despite us having isolated and analyzed the monomer. These
cross-linked peptides now pose strong candidates for NAPs as
well. This indicates that special care must be taken when
homomultimers are investigated via CLMS. Note that
homomultimers are not necessarily identified through cross-
links of the same peptide in both instances of the protein.
Cross-links involving overlapping peptide sequences can also
indicate homomultimerization (see Figure S4).
We noticed a feature of MS2 spectra of NAPs that may help

identify them in the future. The intact peptide peaks in multiple
charge states up to the NAP’s precursor charge state are
frequently observed and are of high intensity (Figure 4a,b). We

Figure 4. Noncovalently associated peptide identifications in non-cross-linked samples. (a) Number of PSMs after 5% PSM FDR in a noncovalent
search and linear identifications (1% FDR). Peptide m/z fraction refers to occurrences where the individual peptide or precursor peaks are found in
multiple charge states in the MS2 spectrum. (b) Noncovalent peptide identification with charge state 3, individual peptide peaks (P) were identified
with charge 2 (822.41 m/z) and charge 1 (1643.82 m/z). (c) MS1-derived peptide feature for the PSM displayed in (b). Top panel shows the
summed intensity over the m/z bins. Bottom panel shows the m/z over the RT color-coded by the intensity. Right panel shows the summed
intensity over the RT.
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encountered this in 62% of cases for the ISCID data set of 0 eV.
We are unaware of such charge-reduced precursor ions in HCD
fragmentation spectra of linear peptides and do not see a single
occurrence in our linear peptide data. This adds to NAPs being
revealed at MS1 level through their overlapping elution with
the individual linear peptides. It is unclear if NAP can be
avoided altogether. However, critical assessment of the
ionization settings appears to be advisable for CLMS analyses.
For the analysis of proteins via native MS, one should be

aware that these unspecific associations might be possible too,
even under “normal” LC conditions as we have used here. The
exact conditions that support the formation of NAPs are not
known.29 However, previous studies found that electrostatic
interactions lead to increased stability of noncovalent
complexes,30,31 but also solvent composition and ionization
settings29,32 are crucial. Likely, any parameter influencing the
ionization such as instrument architecture and flow rates play a
role. We therefore tested the influence of three flow rates on
the formation of NAPs but found no differences within our
experimental setup (Figure S3).
For cross-linking mass spectrometry experiments, NAPs pose

a challenge. Cross-linking experiments using SDA or similar
reagents are more susceptible to NAP identifications since the
cross-linker can form loop-links on lysine residues, resulting in
the same modification mass as a cross-linked peptide pair.
However, the formation of NAPs does not depend on the
cross-linker since we also observed their formation in non-
cross-linked samples. Therefore, in theory, other cross-linkers
will also lead to NAPs. A critical assessment of the specific
instrument ionization settings is thus crucial for successful
analysis of CLMS experiments. If the possible presence of
NAPs is ignored, they will lead to wrong distance constraints.
Even though structural-modeling approaches are to some
extent robust to the number of false positives,27 the influence of
a systematic source of false positives is unknown. Experiments
that aim to reconstruct the rough topology of protein
complexes are at high risk of false conclusions being drawn
from these false “cross-links”. Wrong interprotein links and
wrong intraprotein/loop-links might lead to inconclusive
results. Therefore, we strongly suggest reducing the possibility

of NAPs, either by optimizing acquisition settings or heuristic
post-acquisition filters.

Significance of Noncovalently Associated Peptides.
We observe NAPs here during the analysis of an SDA-cross-
linked protein. While SDA is of central importance to high-
density CLMS and the development of cross-linking for protein
structure determination, this is a very young research area with
currently few followers. Nevertheless, NAPs do not require the
presence of SDA as we show by our analysis of a standard four-
protein mix, without any cross-linking. The possible impact of
NAPs goes into several directions, where few NAPs could make
an impact. Self-association of loop-linked peptides would also
occur with cross-linkers such as BS3 or DSS, leading to the
possibility of misidentifying NAPs as cross-links. This would
then lead to a false biological conclusion, namely, that a protein
self-associates to form homodimers. Cleavable cross-linkers
have the advantage that if a full set of signature peaks is
observed, NAP formation can be ruled out. Unfortunately, the
set of signature peaks is not always complete.33 Second, our
analysis showed that NAPs yield excellent spectra, often better
than cross-linked peptides. When not considering NAPs, these
good spectra can match only one of the associated peptides
correctly, while for the second one the mass would be off by the
assumed presence of a cross-link. This can lead only to a false
target−target (TT) hit or target−decoy (TD) hit. Indeed, we
found in our analysis an example (Figure 5) where a high-
scoring TD from a cross-link search matched a TT during a
NAP search with improved confidence. In routine analyses of
protein complexes relatively few cross-links are being detected,
so few high-scoring TDs may noticeably reduce the identified
links. This was not the case in our analysis but should not be
dismissed outright and warrants further attention. Finally, the
presence of biologically not functional peptide−peptide
complexes in the gas phase suggests that also the analysis of
much larger proteins with many more interaction possibilities
may lead to such nonbiological associations. Consequently,
native mass spectrometry may require the development of
appropriate controls as has been suggested before.4

Figure 5. Butterfly plot of the same spectrum with different possible explanations. Upper panel shows the annotation from a cross-linking search
(target−decoy identification). Lower panel shows the annotation from a noncovalent search (target−target identification). Q Exactive acquisition:
raw file, *V127_K*; scan, 50038.
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■ CONCLUSION
Self-associations of peptides in solution has been shown to
yield stable oligomers that endure the ionization process.32 In
addition, the preservation of noncovalent associations through-
out ESI is exploited by native mass spectrometry. Here, we
show that peptides with very similar chromatographic RT
behavior can also remain together during the ionization process
under normal liquid chromatography conditions as they are
used in bottom-up proteomics. This implies that the
association process can be unspecific and occur during normal
LC-MS analysis. At the very least, the CLMS field should be
aware of this. Pointing at ionization parameters and post-
acquisition tests, we hope to assist the field in spotting and
counteracting this effect.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.8b04037.

Conceptual drawings of cross-links and noncovalently
associated peptides, results using cleavable cross-linking
search software, and results from acquisitions with
different flow rates (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: juri.rappsilber@tu-berlin.de.
ORCID
Sven H. Giese: 0000-0002-9886-2447
Adam Belsom: 0000-0002-8442-4964
Lutz Fischer: 0000-0003-4978-0864
Juri Rappsilber: 0000-0001-5999-1310
Author Contributions
The manuscript was written through contributions of all
authors.
Notes
The authors declare no competing financial interest.
The mass spectrometry raw files, peak lists, search engine
results, MaxQuant parameter files, and FASTA files have been
deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE partner
repository25 with the data set identifier PXD010895. In
addition, the PSMs at 5% FDR are available online using
xiVIEW:34,35 Velos, HSA data (https://xiview.org/xi3/
network.php?upload=34-08362-96692-34003-27750); QE,
HSA data (https://xiview.org/xi3/network.php?upload=35-
49786-17881-94522-79322); Q Exactive HF, protein mix
(https://spectrumviewer.org/viewSpectrum.php?db=ISCID).

■ ACKNOWLEDGMENTS
This work was supported by the Einstein Foundation, the DFG
[RA 2365/4-1, 25065445], and the Wellcome Trust through a
Senior Research Fellowship to J.R. [103139] and a multiuser
equipment grant [108504]. The Wellcome Centre for Cell
Biology is supported by core funding from the Wellcome Trust
[203149].

■ REFERENCES
(1) Liko, I.; Allison, T. M.; Hopper, J. T.; Robinson, C. V. Curr. Opin.
Struct. Biol. 2016, 40, 136−144.

(2) Boeri Erba, E.; Petosa, C. Protein Sci. 2015, 24, 1176−1192.
(3) Leney, A. C.; Heck, A. J. R. J. Am. Soc. Mass Spectrom. 2017, 28,
5−13.
(4) Smith, R. D.; Light-Wahl, K. J.; Winger, B. E.; Loo, J. A. Org.
Mass Spectrom. 1992, 27, 811−821.
(5) Rappsilber, J. J. Struct. Biol. 2011, 173, 530−540.
(6) Yu, C.; Huang, L. Anal. Chem. 2018, 90, 144−165.
(7) Sinz, A. Angew. Chem., Int. Ed. 2018, 57, 6390−6396.
(8) Nguyen, H. T. H.; Andrikopoulos, P. C.; Rulís  ek, L.; Shaffer, C.
J.; Turec  ek, F. J. Am. Soc. Mass Spectrom. 2018, 29, 1706−1720.
(9) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S.
Electrophoresis 1999, 20, 3551−3567.
(10) Maiolica, A.; Cittaro, D.; Borsotti, D.; Sennels, L.; Ciferri, C.;
Tarricone, C.; Musacchio, A.; Rappsilber, J.Mol. Cell. Proteomics 2007,
6, 2200−2211.
(11) Chen, Z.; Fischer, L.; Tahir, S.; Bukowski-Wills, J.-C.; Barlow,
P.; Rappsilber, J. Wellcome Open Res. 2016, 1, 5.
(12) Mu ller, F.; Fischer, L.; Chen, Z. A.; Auchynnikava, T.;
Rappsilber, J. J. Am. Soc. Mass Spectrom. 2018, 29, 405−412.
(13) Rappsilber, J.; Ishihama, Y.; Mann, M. Anal. Chem. 2003, 75,
663−670.
(14) Ishihama, Y.; Rappsilber, J.; Andersen, J. S.; Mann, M. J.
Chromatogr. A 2002, 979, 233−239.
(15) Cox, J.; Mann, M. Nat. Biotechnol. 2008, 26, 1367−1372.
(16) Mendes, M. L.; Fischer, L.; Chen, Z. A.; Barbon, M.; O’Reilly, F.
J.; Bohlke-Schneider, M.; Belsom, A.; Dau, T.; Combe, C. W.;
Graham, M.; et al. bioRxiv 2018, 355396.
(17) Giese, S. H.; Belsom, A.; Rappsilber, J. Anal. Chem. 2017, 89,
3802−3803.
(18) Fischer, L.; Rappsilber, J. Anal. Chem. 2017, 89, 3829−3833.
(19) Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K.
Protein Eng., Des. Sel. 1999, 12, 439−446.
(20) Ka  ll, L.; Storey, J. D.; MacCoss, M. J.; Noble, W. S. J. Proteome
Res. 2008, 7, 40−44.
(21) Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P.
Bioinformatics 2008, 24, 2534−2536.
(22) Ro st, H. L.; Schmitt, U.; Aebersold, R.; Malmstro m, L.
Proteomics 2014, 14, 74−77.
(23) Oliphant, T. E. Comput. Sci. Eng. 2007, 9, 10−20.
(24) Cohen, J. Statistical power analysis for the behavioral sciences, 2nd
ed.; Hillsdale, N., Ed.; Lawrence Erlbaum Associates: Hillsdale, NJ,
1988.
(25) Vizcaíno, J. A.; Csordas, A.; Del-Toro, N.; Dianes, J. A.; Griss, J.;
Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.;
et al. Nucleic Acids Res. 2016, 44, D447−D456.
(26) Belsom, A.; Schneider, M.; Brock, O.; Rappsilber, J. Trends
Biochem. Sci. 2016, 41, 564−567.
(27) Belsom, A.; Schneider, M.; Fischer, L.; Brock, O.; Rappsilber, J.
Mol. Cell. Proteomics 2016, 15, 1105−1116.
(28) Iacobucci, C.; Go tze, M.; Piotrowski, C.; Arlt, C.; Rehkamp, A.;
Ihling, C.; Hage, C.; Sinz, A. Anal. Chem. 2018, 90, 2805−2809.
(29) Chen, F.; Gu lbakan, B.; Weidmann, S.; Fagerer, S. R.; Ibañ́ez, A.
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ABSTRACT: Hydrophilic strong anion exchange chromatog-
raphy (hSAX) is becoming a popular method for the
prefractionation of proteomic samples. However, the use and
further development of this approach is affected by the limited
understanding of its retention mechanism and the absence of
elution time prediction. Using a set of 59 297 confidentially
identified peptides, we performed an explorative analysis and
built a predictive deep learning model. As expected, charged
residues are the major contributors to the retention time
through electrostatic interactions. Aspartic acid and glutamic
acid have a strong retaining effect and lysine and arginine have
a strong repulsion effect. In addition, we also find the
involvement of aromatic amino acids. This suggests a
substantial contribution of cation−π interactions to the retention mechanism. The deep learning approach was validated
using 5-fold cross-validation (CV) yielding a mean prediction accuracy of 70% during CV and 68% on a hold-out validation set.
The results of this study emphasize that not only electrostatic interactions but rather diverse types of interactions must be
integrated to build a reliable hSAX retention time predictor.

Mass spectrometry (MS)-based proteomics is the driving
technology for the characterization and quantification of

complex protein samples.1−3 With the current advancements in
instrumentation and software solutions, the number of peptides
and proteins that can be identified in a minimal amount of time
have increased dramatically.4 However, deep proteome cover-
age of higher eukaryotes, mammalian cell lines, or tissue is
currently only feasible with extensive fractionation.5,6 The wide
dynamic range of all the expressed proteins in a cell remains a
major challenge, leaving the least abundant proteins (and
peptides) undiscovered. In these cases, online (1D) reverse
phase liquid chromatography (RP-LC) does not yield the
necessary separation of the proteome. Instead, prefractionation
is commonly applied to further reduce the complexity. Ideally,
the combined separation methods are as orthogonal as
possible5,7,8 to ensure the separation of similar analytes.
Interestingly, high-pH RP is often used as prior fractionation
method even though it is not truly orthogonal to standard RP
(low pH). Importantly, there is no universal best prefractiona-
tion method. Rather, the optimal separation method needs to
be chosen based on the analytes.9,10

While fractionation methods offer great possibilities to
reduce the sample complexity, they usually require larger
sample amounts and preparation time. Usually, most fractions
are injected separately without pooling. Therefore, the peptide
identification is fraction aware. This extra piece of information

can be incorporated into the database search.11−13 To fully
utilize this information, a computational model needs to be
developed that can confidently predict the retention time of a
peptide based on its amino acid sequence. The proteomics
community has successfully developed accurate models for the
prediction of the retention time in low pH RP-LC, which
typically is coupled directly to a mass spectrometer and
therefore widely applied in proteomics.14,15 Retention times
have also been predicted for other chromatographic methods
including high-pH RP-LC,16,17 hydrophilic interaction liquid
chromatography (HILIC),18 and strong cation exchange
chromatography (SCX).19 Various algorithms have been
applied for the described prediction task: simple linear
regression models,20 nonlinear models,21 support vector
regression models,11,16 artificial neural networks,22 or a physical
model describing the chromatographic process.23 For a
comprehensive review, the reader is referred to Tarasova et
al.14 and Moruz and Ka  ll.15
For standard shotgun proteomics, hydrophilic strong anion

exchange chromatography (hSAX) is largely orthogonal to RP-
LC.5 Currently, there is no model to predict the retention time
for hSAX. Moreover, the sequence specific features that
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influence the retention behavior of peptides during hSAX are
still unknown. A common approach is to incorporate (limited)
sequence information into the prediction model by creating
position specific retention coefficients18 or neighboring amino
acid effects.24 It would be desirable to (1) better understand the
mechanisms governing the retention behavior of peptides
during hSAX and (2) build a predictive machine learning model
that confidently predicts the retention time of a peptide based
on its sequence information.
In this study, we analyzed the chromatographic behavior of

59 297 peptides based on 29 hSAX fractions. We aim to
contribute new insights into the interaction of peptides during
hSAX and quantify how sequence features affect the retention
behavior. To accomplish this, a machine learning workflow is
applied and validated using 5-fold cross-validation. We
developed a neural network model that predicts the retention
time for peptides from an hSAX fractionation. The predictive
model and the preprocessing are available in the Python
package DePART (https://github.com/Rappsilber-Laboratory/
DePART).

■ METHODS
Experimental Details. The experimental data taken for this

study were published by Ritorto et al.5 In brief, the authors
performed hydrophilic strong anion exchange (hSAX)
chromatography on macrophage cells from Mus musculus to
test the peptide separation capabilities of hSAX followed by
mass spectrometry. The tryptic digest of the cell lysate was
analyzed with a LTQ Orbitrap Velos Pro (Thermo Fisher
Scientific, West Palm Beach, FL). The fractionation was
performed using an Ion Pac AS2425 column (2 × 250 mm,
2000 Å pore size, Thermo Fisher Scientific, Part No.: 064153)
with a 35 min gradient (0 to 1 M NaCl; solvent A, 20 mM Tris-
HCl at pH 8.0; solvent B, 20 mM Tris-HCl at pH 8.0, 1 M
NaCl). The functional group of the AS24 is an alkanol
quaternary ammonium ion on a solid support that aims at
minimal hydrophobicity. Details of the sample preparation
protocols can be found in the original manuscript.5

Data Processing. For our study, Ritorto et al. made the
results of their previous experiments available as MaxQuant
result files. We postprocessed the MaxQuant evidence file. In
total, 466 495 peptides were identified in 34 fractions. We
applied stringent filtering to avoid ambiguity in the training
data. This initial set of peptides was reduced by removing
contaminants, decoys, “only by site” identifications, and
modified peptides (other than carbamidomethylated cysteine).

In addition, for peptides identified in two adjacent fractions, the
identification with the lowest intensity was removed from the
data set. Peptides identified in more than two fractions or in
fractions that were not adjacent were also removed from the
data. Finally, fractions with less than 300 unique peptide
identifications were removedleaving 59 297 unique peptide
sequences distributed over 29 fractions for the data analysis. As
an independent data set, we used PXD006188,26 which was
analyzed using MaxQuant27 (v. 1.6.1.0) and filtered as
described above, resulting in 93 372 peptides being identified
in 32 fractions.
All processing was performed using Python 3.5 using the

packages numpy, scipy, matplotlib, scikit-learn, pandas, and
seaborn.

Machine Learning. For the computational modeling of the
retention time we followed two separate strategies, a regression
and a classification approach. In the regression case, a simple
linear model (LM) with a length correction parameter (LCP)
was used. The Python package pyteomics20 with LCP
optimization was used for the LM implementation. In the
classification case, a logistic regression (LR) and a feedforward
neural network (FNN) were used. In both cases, we evaluated
(and trained) the model using the accuracy metric, defined as
the proportion of correctly predicted fractions from all
predictions. With the LM, such a metric is ill-defined since
no discrete fraction is predicted. Therefore, we defined a forced
accuracy metric by first rounding the predictions to the nearest
integer and then computing the accuracy.
The FNN was implemented using Keras28 with the Theano29

backend. The network architecture consisted of four fully
connected layers with 50, 40, 35, and 29 neurons. As final
activation, the softmax function was used (Table S4). One
strength of the simple additive model is the intuitive
interpretation of the learned coefficients: a peptide’s elution
time increases (or decreases) by a certain factor based on the
amino acid count. For neural networks, with nonlinear
activation functions, the interpretation is not as straightforward.
Therefore, we added peptide features (e.g., pI or aromaticity)
based on the literature11,30 and our initial exploratory data
analysis to increase the predictive power in the classification
task. The complete definition of features is available in Table
S2.
The evaluation of the prediction performance was based on a

5-fold cross-validation (CV) strategy (including 75% of the
data, 44 471 peptides). In addition, a hold-out validation set
was used for the final model assessment (25% of the data,

Figure 1. Effect of the charged residues on peptide retention in hSAX. (a) Mean residue count per peptide for D/E (red) and K/R (blue) over
fraction. Error bars denote the standard deviation. Peptide count per fraction is shown in orange (total 59 297 unique peptides). (b) Effect of D/E
count (range 0−5) on peptide retention. (c) Extracted chromatogram of peptides with three and four D/E (red). Subpopulations were defined
according to the number of K/R residues (one to three, blue tones for peptides with three D/E residues and green tones for peptides with four D/E
residues). Crosses mark the mode of the respective distributions.
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14 825 peptides). In the CV setup, the training splits had
35 578 observations, and the validation splits had 8894
observations. We describe the machine learning workflow in
more detail in the Supporting Information, including a
performance comparison with other classifiers.

■ RESULTS
In the following section, we present our results and propose a
model for the driving interactions in hydrophilic strong anion
exchange chromatography (hSAX) for peptides. The result
section is divided into four parts: (1) A general overview is
given of the data and how the retention time during
prefractionation is influenced by charged amino acids. (2)
The influence of the charged amino acids is compared. (3) The
influence of usually noncharged amino acids is compared, and
finally, (4) a machine learning model is built to model peptide
retention during hSAX.
Peptide Retention in hSAX Is Driven by the Charged

Amino Acids. We first investigated the influence of acidic (E,
D) and basic (K, R) amino acids on the retention behavior of
peptides in an hSAX fractionation experiment. Note that
histidine residues will be uncharged under the pH conditions
used during fractionation. We used elution data of 59 297
tryptic peptides from murine macrophage cells separated into
29 fractions. Positively charged peptides elute early (fractions 1
and 2) and are separated from uncharged peptides (fractions 4
and 5) which in turn are separated from negatively charged
peptides (fractions 7−29), where charge was calculated from
the residues E, D, K, and R (Figure 1a).
While the mean count of D or E (D/E) residues in a peptide

increases with the fraction number, the mean count of K/R
residues stays constant (Figure 1a). In agreement with this,
missed cleavages are not enriched in any of the fractions
(Figure S1). The average retention behavior of tryptic peptides
appears to be mainly influenced by the occurrences of D/E
residues in the peptide sequence. These observations are also
supported numerically by their Pearson correlation coefficients
(PCC) of the summed residue charge per peptide and the
observed fraction number: for D/E residues, the PCC is −0.75;
for K/R, −0.03; and for D/E/K/R residues, the PCC is −0.83.
The peptide length on the other hand has a much smaller
overall influence across all fractions (PCC 0.33). Peptides with
0, 1, 2, 3, 4, and 5 D/E residues correspond on average to the
fractions 3, 6, 10, 14, 18, and 20, respectively (Table S1), thus,
leading to a mean increase per D/E residue of three fractions in
retention time.
Even though the mean increase of fraction numbers highly

correlates with the number of acidic residues, so does the D/E
peak width (Figure 1b). In addition, the higher the number of
D/E residues in the peptide, the more complex the
distributions appear. Peptides with two D/E residues distribute
on two peak fractions, while peptides with four D/E residues
distribute on four to six peak fractions.
Therefore, we investigated the influence of basic residues on

the retention time. Positively charged residues, lysine and
arginine, should weaken peptide retention during hSAX.
Indeed, K and R residues explain the multiple peak fractions
of peptides with one D/E (Figure 1c). With an increasing
number of K/R residues, the retaining effect of D/E diminishes,
and thus peptides elute earlier. Since the effect is quite strong,
in terms of retention shift by a single K/R residue, there is most
likely a repulsion mechanism involved. Interestingly, the elution
strength of K/R residues seems slightly stronger than the

retaining effect of D/E residues: The mean fraction value of
peptides with four D/E residues and two K/R residues
(summed residue charges equal to 2) is 16.5, while for peptides
with three D/E residues and one K/R (summed residue charge
also equal to 2), the mean fraction is 18.1. However, this
additional information on the K/R distribution does not fully
explain the observed substructures; there are clearly peak tails
visible, especially on the right side of the distributions (e.g., D/
E, 4; K/R, 3 in Figure 1c).

Lysine Exhibits Stronger Electrostatic Repulsion than
Arginine. We next evaluated if R and K differed in their effect
on peptide retention (Figure 2a). Peptides with four D/E

residues were found in the factions 22, 17, and 11 (median
fraction values) if they had one, two, or three arginines while
they were found in the fractions 21, 15, and 10 if they had one,
two, or three lysines. This means that lysines are more strongly
repelled than arginines in hSAX (on average, 1.3 fractions).
Statistical analysis using a Mann−Whitney−U (MWU) test
supports this observation. However, since the observed effect
size is rather small, the statistical significance should be
interpreted with caution (Figure S2a).
Similarly, we investigated possible differences between

aspartate and glutamate, peptides with either two D or two E
residues and either one, two, or three lysines (Figure 2b shows
data for up to two lysines). For this subset, the rounded median
fraction number for peptides with two D or two E residues is
12, 11, and 5 and 12, 11, and 5, respectively. This leads to an
average increase of 0.33 per fraction if there is an aspartate
instead of a glutamate in the peptide sequence. For the
negatively charged amino acids, we also conducted an MWU-
test: although the observable effect was even smaller, the test
still resulted in a significant difference between the retention
behavior of D and E (Figure S2b).

Aromatic Amino Acids Play a Key Role in Peptide
Retention during hSAX. As expected, peptide retention
during hSAX is dominated by charged residues. However,
peptides with one set of charged residues elute over many
fractions. Therefore, charged amino acids do not suffice to
explain peptide retention alone.
As a first step to search for additional contributions, a subset

of peptides was selected (two D/E residues, one R/K residue).
Then, the effect size of an amino acid on the retention time was
estimated using the slope from a linear regression model. The
response variable was set to the mean composition contribution

Figure 2. Detailed comparison of relative contributions of positively
(K/R) and negatively (D/E) charged residues on peptide retention in
hSAX. (a) Effect size of K/R residues. Peptides with four D/E residues
were divided according to their K and R count (K, green tones; R, blue
tones). (b) Effect size of E/D residues. Peptides with either two E or
two D residues are shown, split according to their number of K
residues (1 or 2).
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of an amino acid, while the explanatory variable was set to the
fraction number. On the basis of the regression slope and the
derived p-value (under the null hypothesis that the slope is
equal to zero), the remaining amino acids can be divided into
three categories: (1) retainingif the slope is positive and the
p-value is smaller than 0.05, (2) elutingif the slope is negative
and the p-value is smaller than 0.05, and (3) no (significant)
effectif the p-value is larger than 0.05. Accordingly, the
(aromatic) amino acids F, Y, and W show the strongest
retaining effect based on the regression slope (Figure 3, Figure
S4). Interestingly, peptides with 0 aromatic residues are found
in a sharp symmetrical distribution. With increasing aromatic
amino acids in the peptide sequence, the distributions shift to
later retention, become broader, and develop a right tail (Figure
S6). In contrast, the amino acid contributions of A, P, and S
and Q, T, and V show an eluting effect. For these amino acids,
the subpopulation peaks look very sharp, even with increasing
residues of the same group. The remaining amino acids C, I, N,
G, L, V, H, and M do not show a clear trend and thus could be
classified neither as eluting nor as retaining. Subtracting the
weighted counts of the aromatic residues (0.8W + 0.6Y + 0.3F)
to the residue charge increases the initial PCC from −0.83 to
−0.86. Adding the weighted counts of the residues A, P, Q, S,
T, and V (factor 0.1) further increases the retention PCC to
−0.88.
A Neural Network Achieves the Highest Prediction

Accuracy. As the final step in our analysis, we built a machine
learning model to predict the retention time of a peptide based
on its sequence features. After initial hyperparameter
optimization for a set of classifiers and regressors (Supporting
Information S3), we chose a linear regression model (LM), a
logistic regression model (LR), and a feedforward neural
network (FNN) for further analysis. The coefficients of the LM
are shown in Figure 4a. As expected, the sign and magnitude of
the coefficients largely match our manual analysis: First, the
basic residues have a strong eluting effect on the retention time
(large negative coefficient). Second, the acidic residues and the
aromatic residues have a strong retaining effect on the retention
time (large positive coefficient). In addition, the nuances
regarding the effect size of the basic residues also fit our
previous description that R is marginally stronger repelled than
K. This is most likely due to the lower basicity of K. Similar to
the coefficient representation from LM, FNNs can be used to
estimate approximately the influence of the input features by

analyzing the input weights of the first layer. Since we also used
position specific features in the machine learning workflow, the
average of the input weights can be used to roughly measure
these position dependent contributions to the retention in
hSAX. Most importantly, it appears that the influence of D/E
residues decreases with distance from the termini (Figure S7).
Further, S/T/V/A/P/Q residues roughly follow a similar trend.
In contrast, W/Y/F/H do not show decreasing weights for
internal residuesthe influence is rather stable across the
positions. For the remaining amino acids (I/G/L/C/M/N), the
weights are noisy and do not follow a clear pattern. This
observation fits the estimation of their influence from the
regression model. Therefore, the influence of these amino acids
cannot be clearly defined.

Figure 3. The effect of neutral amino acids on peptide retention in hSAX. Amino acids were grouped according to their influence on peptide
retention in hSAX by linear regression (Supporting Information). (a) Elution behavior of peptides with different numbers of F/Y/W and two D/E,
one K/R residues. (b−e) Elution behavior of peptides with different numbers of the indicated amino acids (b, P/A/S; c, Q/T/V; d, I/G/L; e, C/M/
N/H) and two D/E, one K/R, zero F/Y/W. Crosses mark the mode of the subpopulations.

Figure 4. Peptide retention time prediction for hSAX using machine
learning. (a) Residue retention coefficients from a linear model with
length correction parameter. (b) Fraction of correct predictions
(accuracy) of different prediction methods, estimated by 5-fold cross-
validation based on 35 578 (train) and 8894 (test) peptides in each
split. (c) Elution time prediction for the hold-out validation set, FNN
classifier (left) and LM (right); ρ indicates the Pearson correlation.
Linear Model (LM), Logistic Regression (LR), Feedforward Neural
Network (FNN).

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b05157
Anal. Chem. 2018, 90, 4635−4640

4638

5.3. Results 47



A neural network was most successful in predicting the
correct peptide fraction, as assessed by 5-fold cross-validation
(Figure 4b). With an accuracy of 70 ± 0.81% (mean ± standard
error of the mean), the classification algorithm outperformed
the linear regression model (22 ± 0.13% accuracy) and the
logistic regression model (48 ± 0.07% accuracy). With a lower
prediction resolution, e.g., evaluating the accuracy in a window
of ±1 fraction (1-off-accuracy), 92 ± 0.19% were correctly
classified. Although optimization aimed for accuracy, the best
performing FNN classifier also achieves a higher correlation
coefficient on a hold-out validation set (never used for training)
than the LM. The FNN achieves here a PCC of 0.94 where the
LM achieves a PCC of 0.9 (Figure 4c). The accuracy on this
validation set was comparable to the CV error with 68%
accuracy and 92% one-off accuracy. As the accuracy metric
already indicates, the LM performs much worse as seen in the
marginal distributions (Figure 4c). The distribution of the
predicted fractions does not appear similar to the observed
fraction distribution. The FNN can better capture the nonlinear
relationship and thus predicts the true fraction with a higher
accuracywhich is supported by the similarity of the marginal
distributions of the predicted and true fractions of the peptides
in the validation set.
Finally, we wondered if the results obtained for data by

Ritorto et al. would also be obtained with a different data set by
independent investigators. We downloaded an hSAX data set
from ProteomeXchange (PXD00618826) and repeated our
analysis. For these data, the training set comprised 70 029
unique peptides and the validation set, 23 343 unique peptides.
The accuracy during CV increased on the test data to 69 ±
0.21% and on the validation data to 72%. The one-off accuracy
even increased to 96%, most likely due to higher number of
training instances.

■ DISCUSSION
Fractionation methods such as ion exchange chromatography
(IEX) are popular tools for enrichment of certain analytes and
separation of complex samples. To perfect the separation
process, a basic understanding of the underlying principles must
be developed. For the principles behind the retention time of
peptides in hSAX chromatography, a linear model is a useful
starting point.
Our exploratory analysis as well as the modeling approach

showed that electrostatic forces, as expected, are the most
important interactions in hSAX. A previous study that
compared several fractionation methods for phosphopeptides
also reported a strong correlation of the acidic amino acids with
the elution time of peptides.9 The resolution based on simply
counting the D/E/R/K residues is enough to roughly map the
elution time of a peptide to ±5 fractions (on average). This
simple approach is supported by a good PCC (−0.83) of the
summed residue charge and the elution time. However,
differentiating the repelling (K/R) and retaining (D/E) effect
sizes should further improve the resolution. Additional
improvements can be achieved by including the influence of
the aromatic amino acids (W, Y, F; PCC −0.86).
The retaining effect of the aromatic amino acids could be

explained through cation−π interactions: a well-known
interaction from organic chemistry. Since aromatic amino
acids have a delocalized π electron system, the flat face of the
aromatic ring has a partial negative charge which attracts
cations and thus enables strong electrostatic interactions.31,32

Cation−π interactions are also essential for many biological

processes and protein folding, in which K/R residues can also
function as cations and thus reinforce bonds within a protein
structure. Possibly, cation−π interactions also happen within a
single peptide and therefore lead to a competition between the
stationary phase and the side chains of K/R. Multiple aromatic
amino acids in a peptide sequence lead to nonlinearity in the
retention behavior, i.e., multiple aromatic amino acids support
the interactions with the stationary phase more than expected
from adding individual contributions, possibly by forming
sandwich complexes of two aromatic amino acids and a cation.
For tryptic phosphopeptides, it has been shown that the

peptide C-terminus is likely oriented toward the stationary
phase33 during the separation in anion exchange chromatog-
raphy. Presumably, this also holds true for peptides in hSAX.
However, comparing the neural network weights revealed that
the influence of, e.g., D or E residue is not per se decreasing
from the N-terminus to the C-terminus as has been observed
for the SCX model.33 Thus, it is possible that the peptide
orientation in hSAX is bidirectionalor that D/E residues
show a different elution behavior when near the termini. If the
orientation of the peptide is indeed with the N-terminus toward
the stationary phase, the decrease of the neural network weights
is explainable with the limited accessibility of the acidic side
chains when the residue is buried in the sequence. The same
argumentation holds true for the orientation of the N-terminus
toward the stationary phase. However, since we only analyzed
tryptic peptides with basic side chains on the C-terminus, it
seems unlikely that they would prefer this orientation. Another
hypothesis is that the influence of C-terminal D/E residues is
not directly through the interaction of the residues with the
column but through intrapeptide interactions. For example,
acidic side chains of D/E and basic side chains of K/R could
form salt bridges. Thus, the closer the D/E residues are to the
C-terminus, the larger is the contribution or effect in the
determination of the retention time.
The retention time prediction field is fairly mature, and a

selection of published tools achieved an R2 ≥ 0.90, according to
a recent literature review.14 While most solutions achieve a very
high correlation (and R2), the true accuracy (defined as true
predictions/(true + false predictions)) is seldom evaluated. The
models used to predict the fraction either do not provide an
easily accessible probability or prefer to model the prediction
task as a regression problem19 allowing R2 to be calculated. We
modeled the prediction in a classification setup, using a feed-
forward neural network (FNN). Here, accuracy is an
appropriate evaluation metric. Accuracy is used to evaluate
classification problems, and the algorithm was trained to
optimize the accuracy and not R2. With the current
implementation, the FNN achieved an accuracy of 70 ±
0.81% during CV and 68% on the hold-out validation set. The
accuracy is a stricter metric than the correlation coefficient or
R2; the one-off accuracy increases on the CV data set to 92 ±
0.19% and on the hold-out validation data set to 92%. One
additional advantage of the FNN is that each prediction is
associated with a probability. This is a useful feature since it
allows selection of more confident predictions or incorporation
of the uncertainty in postprocessing.

■ CONCLUSION
We presented a first description of the parameters that
influence the retention of peptides during hSAX chromatog-
raphy. As expected, the charged amino acids largely define the
retention behavior of tryptic peptides. However, the aromatic
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amino acids also have a large impact on the retention behavior
presumably through cation−π interactions, which makes the
retention mechanism of hydrophilic anion exchange chroma-
tography more challenging to describe. Nevertheless, the
proposed neural network model achieves a high accuracy of
68% on the hold-out validation set paired with a high
correlation value of 0.94which enables the usage of our
model for statistical modeling of the confidence of peptide
identifications based on prefractionation. In the future, we want
to further improve our model with more training data, support
for post-translational modifications, and incorporation into a
robust scoring metric for peptide identification.
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Retention time prediction using neural networks
increases identifications in crosslinking mass
spectrometry
Sven H. Giese 1,2,3,5, Ludwig R. Sinn 1,5, Fritz Wegner 1 & Juri Rappsilber 1,4✉

Crosslinking mass spectrometry has developed into a robust technique that is increasingly

used to investigate the interactomes of organelles and cells. However, the incomplete and

noisy information in the mass spectra of crosslinked peptides limits the numbers of

protein–protein interactions that can be confidently identified. Here, we leverage chroma-

tographic retention time information to aid the identification of crosslinked peptides from

mass spectra. Our Siamese machine learning model xiRT achieves highly accurate retention

time predictions of crosslinked peptides in a multi-dimensional separation of crosslinked E.

coli lysate. Importantly, supplementing the search engine score with retention time features

leads to a substantial increase in protein–protein interactions without affecting confidence.

This approach is not limited to cell lysates and multi-dimensional separation but also

improves considerably the analysis of crosslinked multiprotein complexes with a single

chromatographic dimension. Retention times are a powerful complement to mass spectro-

metric information to increase the sensitivity of crosslinking mass spectrometry analyses.
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Crosslinking mass spectrometry (crosslinking MS) reveals
the topology of proteins, protein complexes, and
protein–protein interactions1. Fueled by experimental and

computational improvements, the field is moving towards the
analyses of interactomes of organelles and cells1–3. The identifi-
cation of crosslinked peptides poses three major challenges. First,
the low abundance of crosslinked peptides compared to linear
peptides decreases their chance for mass spectrometric observa-
tion. Second, the unequal fragmentation of the two peptides leads
to a biased total crosslinked peptide spectrum match (CSM)
score4,5. Third, the combinatorial complexity from searching all
the possible peptide pairs in a sample increases the chance for
random matches. These challenges increase from the analysis of
individual proteins to organelles and cells.

To address the challenge of low abundance, Crosslinking MS
studies routinely rely on chromatographic methods to enrich and
fractionate crosslinked peptides1,2,6. Essentially all analyses con-
tain at least one chromatographic step, by directly coupling
reversed-phase (RP) chromatography separation to the mass
spectrometer (LC–MS). Additional separation is frequently
employed when more complex systems are being analyzed. Strong
cation exchange chromatography (SCX)7,8 was used for the
analysis of HeLa cell lysate9 or murine mitochondria10. Size-
exclusion chromatography (SEC)11 was used to fractionate
crosslinked HeLa cell lysate12 and Drosophila melanogaster
embryos extracts13. Multi-dimensional peptide pre-fractionation
was used for the analysis of crosslinked human mitochondria
(SCX-SEC)14 and M. pneumoniae (SCX-hSAX)15. Such multi-
dimensional chromatography workflows can yield in the order of
10,000 CSM at a 1–5% false discovery rate (FDR)14–17.

The identification of cross-linked peptides from spectra is
however still challenged by the uneven fragmentation of the two
peptides and the large search space that increase the odds of
random matches. This is especially the case for heteromeric
crosslinks as the size of their search space exceeds that of self-
links, i.e., links falling within a protein or homomer16. Typically,
database search tools use the precursor mass and fragmentation
spectrum for the identification of peptides to compute a single
final score for each CSM. For linear peptides, post-search meth-
ods such as Percolator18 have been developed that train a
machine learning predictor to discriminate correct from incorrect
peptide identification. Percolator uses additional spectral infor-
mation (features) such as charge, length, and other enzymatic
descriptors of the peptide19 to compute a final support vector
machine (SVM) score. Similarly, the crosslink search engine
Kojak20 supports the use of PeptideProphet21,22 and XlinkX23

supports Percolator18, while pLink224 and ProteinProspector4

have a built-in SVM classifier to re-rank CSMs. Although RT data
are readily available, none of these tools use the, often multi-
dimensional, RT information for improved identification in
crosslinking studies. A prerequisite for this would be that reten-
tion times could be predicted reliably.

For linear peptides, RT prediction has been implemented
under various chromatographic conditions25–31. In contrast, RTs
of crosslinked peptides have not been predicted yet. A suitable
machine learning approach for this could be deep learning32.
Deep neural networks have been successfully applied in pro-
teomics, for example for de novo sequencing33 or for the pre-
diction of retention times29,34 and fragment ion intensities35.
Deep learning allows encoding peptide sequences very elegantly
through, for example, recurrent neural network (RNN) layers.
These layers are especially suited for sequential data and are
common in natural language processing32. RNNs use the order of
amino acids in a peptide to generate predictions without addi-
tional feature engineering. However, it is unclear how to encode
the two peptides of a crosslink.

Moreover, it is also unclear whether the knowledge of RTs
could improve the identification of cross-linked peptides. A
common scenario for an identified crosslink is that one of its
peptides was matched with high sequence coverage, while the
other was matched with poorer sequence coverage4. Such CSMs,
unfortunately, resemble matches where one peptide is correct and
the other is false (i.e., a target-decoy match or a true target and
false target match). Another consequence of coverage gaps is the
misidentification of noncovalently associated peptides as
crosslinks36. The severity of this coverage issue depends on the
applied acquisition strategy37, crosslinker chemistry38, and the
details of the implemented scoring in the search engine. Never-
theless, assuming RT predominantly depends on both peptides of
a crosslink, it could complement mass spectrometric information
and thus improve existing scoring routines and lead to more
crosslinks at the same confidence (i.e., constant FDR).

In this study, we prove that analytical separation behavior
carries valuable information about both crosslinked peptides and
can improve the identification of crosslinks. For this we build a
multi-dimensional RT predictor for crosslinked peptides based on
a proteome-wide crosslinking experiment comprising 144
acquisitions on an Orbitrap mass spectrometer from extensively
fractionated peptides of the soluble high-molecular-weight pro-
teome of E. coli. We then investigate the benefits of incorporating
the derived RT predictions into the identification process. In
addition, we demonstrate the value of RT prediction for a purified
multiprotein complex using the reversed-phase chromatography
dimension only.

Results and discussion
This section covers (1) a description of the experimental work-
flow and the motivation, (2) the evaluation of the developed
retention time predictor, (3) an interpretability analysis of the
deep neural network, (4) an analysis of the RT features and their
importance for rescoring, (5) the evaluation of the rescoring
results from an E. coli lysate, and (6) the evaluation of the
rescoring results from a routine crosslinking MS experiment, i.e.,
the analysis of a multiprotein complex (FA-complex).

A substantial fraction of crosslinks below the confidence
threshold are correct. Crosslinked peptides belonging to the
high-molecular-weight E. coli proteome were deep-fractionated
along three chromatographic dimensions (hSAX, SCX, and RP).
This 3D fractionation approach led to 144 LC–MS runs as some
of the 90 fractions contained enough material for repeated ana-
lysis. The resulting data were searched with an entrapment
database approach (Fig. 1a) leading to 11,196 CSMs (11072 TT,
87 TD, 37 DD, Supplementary Fig. 3) at 1% CSM-FDR, separ-
ating self and heteromeric CSMs16,39,40. The human entrapment
database allows to assess error, independently of the target-decoy
approach. This will play a critical role here as E. coli decoys will
be used for the machine learning-based rescoring (but not for the
RT prediction). Judged by a set of peptide characteristic metrics
(e.g., peptide length, pI, GRAVY) the human entrapment data-
base resembles the properties of the E. coli target database
(Supplementary Fig. 4).

Before attempting RT prediction and subsequent complemen-
tation of search scores, we investigated the extent of false
negatives, approximated here by PPIs present in STRING41 or
APID42 database. At 1% CSM-FDR, 110 such “validated” (val)
protein–protein interactions were identified. 10%, 30%, and 50%
CSM-FDR returned 226, 278, and 418 validated PPIs, respectively
(Fig. 1b). When raising the CSM-FDR from 1% to 50% we thus
saw a nearly 4-fold increase in the detectable number of validated
PPIs. In contrast, using a pessimistic approach of semi-randomly
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drawing pairs of E. coli proteins from the STRING/APID (first
protein) and the search database (second protein) yielded purely
by chance 10, 22, 44, and 91 overlapping PPIs with STRING or
APID for 1%, 10%, 30%, and 50% CSM-FDR cutoffs, respectively.
While this shows that loosening the FDR threshold increases
validated PPIs also by chance, the actual observed number is
much higher (418 versus 91 at 50% CSM-FDR). This means that
there is a substantial number of valid PPIs with insufficient match
confidence.

The underlying scoring challenge is essential to the identifica-
tion of peptides in general. The plethora of search engines for
linear43 and crosslinked peptides44 use spectral characteristics
differently for their scoring. In xiSEARCH, the final score is a
composite that incorporates spectral metrics such as explained
intensity and matched number of fragments. Empirically, we
observe a fast decrease in the search engine score (Fig. 1c) with
increasing FDR. This indicates that at higher FDRs spectral
matching metrics might be suboptimal. Poor spectral quality,
inefficient peptide fragmentation, or random fragment matching
all influence the search engine score negatively. RT information
could complement MS information but this would require
accurate RT prediction of cross-linked peptides.

Accurate multi-dimensional retention time prediction for
crosslinked peptides. RT prediction for crosslinked peptides has
not yet been achieved. One reason for this is the challenge of
encoding a crosslinked pair of peptides for machine learning. We
overcame this here using a Siamese neural network as part of a
new machine learning application, xiRT (Fig. 1d), which allowed
the incorporation of RTs into a rescoring workflow (Fig. 1e). The
Siamese part of the network (embedding layer and recurrent
layer) shares the same weights for both peptides. Practically, the

sharing of weights leads to consistent predictions, independent of
the peptide order. After the recurrent layer, the two outputs are
combined and passed to three subnetworks consisting of dense
layers with individual prediction layers (details on the archi-
tecture are available in Supplementary Fig. 1). In this multi-task
learning setup, the network simultaneously learns to predict the
hSAX, SCX and RP RT through a single training step. Multi-task
learning can improve the overall performance of predictors by
forcing the network to learn a robust representation of the input
data45.

The training and evaluation of xiRT followed a cross-validation
(CV) strategy that avoided the simultaneous learning and
prediction on overlapping parts of the data (see “Methods”
section, Fig. 2a). We used a 3-fold CV strategy where two folds
were used for training (excluding 10% for the validation
throughout the training epochs) and one fold for testing/
prediction. All CSMs with an FDR < 1% were used during the
CV. For the remaining CSMs, the best predictor (with the lowest
total loss) was used to predict the RTs.

To achieve the best possible prediction performance, hyper-
parameters of the network were optimized. Since extensive hyper-
parameter optimization on a small data set can lead to overfitting,
we initially optimized a large part of hyper-parameters using
20,802 unique linear peptide identifications at 1% FDR. The final
parameters for the Siamese network architecture for crosslinks
were obtained by a small grid-search (6453 unique peptide-pairs
at 1% CSM-FDR; Supplementary Fig. 5).

Using these parameters, we evaluated the learning behavior
during the training time (epochs) across the CV folds. The
training behavior on the three CV folds was similar and reached a
stable trajectory after approximately 15 epochs (Fig. 2b). Based
on very similar error trends on validation and training sets, we

Fig. 1 Workflow overview. a Experimental and data analysis workflow. The soluble high-molecular-weight proteome of E. coli lysate was crosslinked and
the digest sequentially fractionated by strong-cation exchange chromatography (SCX) (9 fractions collected), hydrophilic strong-anion exchange
chromatography (hSAX) (10 pools collected), and finally by reversed-phase chromatography (RP) coupled to the MS. The protein database for the
crosslink search was created by a linear peptide search with Comet and a sequence-based filter using BLAST. For each E. coli protein in the final database
(green) a human protein was added as a control (pale orange). b Potential for false-negative PPI identifications. Verified PPIs are estimated from matches
to the STRING/APID databases. PPIs are computed based on CSM-level FDR. Estimated random hits correspond to the average number of semi-randomly
drawn pairs (first protein was randomly selected from the STRING/APID database and the second protein was drawn from the FASTA file). Gained PPIs
accentuate the additional information that is available in the data at higher FDR. c Decrease of heteromeric CSM scores based on spectral evidence with
increasing CSM-FDR. Boxenplot shows the median and 50% of the data in the central boxes while each successive level outward represents half of the
remaining data. The sample size for each FDR category is given below the boxes. d xiRT network architecture to predict multi-dimensional retention times.
A crosslinked peptide is represented as two individual inputs to xiRT. xiRT uses a Siamese network architecture that shares the weights of the embedding
and recurrent layers. Individual layers for the prediction tasks are added with custom activation functions (sigmoid/linear functions for fractionation/
regression tasks, respectively). e Rescoring workflow. The predictions from xiRT are combined with xiSCORE’s output to rescore CSMs using a linear
support vector machine (SVM), consequently leading to more matches at constant confidence. Source data are provided as a Source Data file.
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concluded to have reached a state where neither overfitting nor
underfitting occurred. The overall performance across the
prediction folds was comparable in terms of accuracy (hSAX:
61% ± 1.1, SCX: 47% ± 1.7) and MSE (RP: 11.58 ± 2.0) (Fig. 2c).
Comparing single-task and multi-task configurations of xiRT
revealed no significant differences in the prediction accuracy but
greatly reduced run times (Supplementary Figs. 6 and 7). Note
that we estimated the theoretical boundaries given the ambiguous
elution behavior (i.e., peptide elution across multiple chromato-
graphic fractions) for SCX at 65% accuracy and for hSAX at 73%
accuracy (Supplementary Table 4 and Supplementary Fig. 8).
Most of the predictions showed only a small error, and thus a
high relaxed accuracy: for hSAX 94% ± 0.0 and for SCX 87% ±
1.15 of the predictions were within a range of ± 1 fraction
(Fig. 2d, e). The overall R2

RP of 0.94 ± 0.01 also showed a
predictable relationship for the RP dimension (Fig. 2f). The
consistent accuracy and R2 results across CV folds demonstrate
reproducible training and prediction behavior which reduces
unwanted biases from the different CV folds. In conclusion, RTs
of crosslinked peptides can robustly be learned within a data set,
making them available as features in a CSM rescoring framework.

It was difficult to compare our RT predictions to other studies
which used SCX46 or hSAX29 for multiple reasons: (1) there is
currently no other model that predicts the RT of crosslinked
peptides, (2) the recent SSRCalc46 study (SCX) for linear peptides
used a much larger data set of 34,454 unique peptides and the
fractionation was much more fine-grained (30–50 fractions).
Similarly, the hSAX29 study on linear peptides used a much finer
fractionation (30 fractions) and a different methodology to
encode the loss function during the machine learning. (3) Applied
gradients and liquid chromatography conditions can change the
elution behavior quite drastically. In our study, the number of

observations was neither for hSAX nor for SCX equally
distributed but varied between ~200 and ~2000 CSMs per
fraction (Supplementary Fig. 3). Since we employed a partially
exponential gradient during the chromatographic fractionation,
the degree of peptide separation varied for earlier and later
fractions.

Given that we had less data to train on than recent RT
predictions of linear peptides, we evaluated how the numbers of
observations influenced the prediction accuracy (R2

RP þ Acchsaxþ
Accscx; Fig. 2g). The learning curve showed two important
characteristics: first, the prediction performance over CV folds
was very reproducible. This means that predictions were robust
even with very moderate data quantity. Second, the maximal
performance was achieved with ~70–100% of the data points
(100% corresponding to 6453 total CSMs, 3871 for training, 431
for validation, 2151 for prediction). Given that a first plateau was
reached with 30% of the data, it is unclear if the final prediction
accuracy constitutes another local optimum or the limit of the
prediction accuracy. The individual task metrics showed that the
RP behavior seemed to be easier for the model to learn than the
ordinal regression tasks (SCX, hSAX, Supplementary Fig. 9). The
RP behavior could be accurately predicted from ~60% of the data
points, while the maximum accuracy for hSAX and SCX
dimensions was only achieved by using 80–100% of the data. In
other words, while using even fewer CSMs might be possible
when predicting RP RTs, one would expect a reduced accuracy in
the hSAX/SCX dimensions.

An approach to reduce the number of required CSMs would be
to leverage the abundantly available data on linear peptides
for transfer learning. Indeed, a recent study showed that transfer
learning across different peptide identification results works
well for linear peptides34. We also implemented the option to
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Fig. 2 Cross-validation of retention time prediction. a Applied cross-validation (CV) strategy in xiRT. To predict the retention times of CSMs excluded
from training, the best CV classifier is used. b xiRT performance over training epochs for strong-cation exchange chromatography (SCX, blue), hydrophilic
strong-anion exchange chromatography (hSAX, purple), and reversed-phase chromatography (RP, red) prediction with k= 3 CV-folds. Shaded areas show
the estimated 95% confidence interval with the dashed/solid line representing the mean for the validation/training data, respectively. c xiRT performance
across different metrics (error bars show standard deviation with the mean as center) for k= 3 CV folds. Prediction for the “unvalidated” data was only
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pre-train on linear data in xiRT. However, a robust and accurate
RT prediction could be achieved on a multiprotein complex
crosslinking study (FA-complex, see below) when first training on
the E. coli CSMs (Supplementary Fig. 10). Another possibility to
increase the training data size and robustness during CV is to
increase the number of folds, e.g., 5- or 10-fold, at the cost of
runtime. Increasing the expedience of xiRT, we also implemented
transfer learning for cases when the number of fractions differs
between the initial model and the new prediction task.

Explainable deep learning reveals amino acid contributions.
Using the SHAP package, we set out to explain predictions made
by xiRT. For instance, when a specific crosslinked peptide was
analyzed, residue-specific contributions towards the predicted RT
could be computed (Supplementary Fig. 11). The residues D, E, Y,
and F displayed high SHAP values indicating a stronger retention
during hSAX separation in a randomly chosen peptide. Looking
at a specific crosslinked peptide in SCX (Supplementary Fig. 12),
the SHAP values highlighted that K and R were the most
important residues contributing towards later peptide elution. As
one might expect, crosslinked K residues contributed much less
towards later elution times than the stronger charged, unmodified
K residues. Investigating the SHAP values for a collection of
CSMs revealed additional contributions from W for hSAX and H
for SCX while returning hydrophobic residues Y, F, W, I, L, V,
and M for RP (Supplementary Fig. 13), revealing residue con-
tributions in crosslinked peptides as seen in the respective ana-
lyses of linear peptides29,46,47. In summary, the SHAP values were
good estimates for the individual RT contributions of the amino
acid residues.

Next, we investigated the network architecture and the learned
feature representations more closely (Supplementary Note 4). As
first analysis, the dimensionality reduced embedding space across
the network was analyzed (Supplementary Fig. 14). This revealed
that the shared sequence-specific layer already captured the RP
properties quite well, while the hSAX and SCX properties were
not as clearly captured. As expected, the separation of CSMs
according to RT increased the further the features propagated
through the network. In the last layer, the RP and hSAX sub-
networks reached a very good separation, while in the SCX
subtask CSMs remained moderately separated in two dimensions.

RT characteristics for unsupervised separation of true and false
CSMs. Now that we established the RT prediction of crosslinked
peptides, we computed a set of chromatographic features to
explore their ability to separate true from false CSMs (Supple-
mentary Table 3). Dimensionality reduction was computed for
RP only (13 chromatographic features) and for SCX-hSAX-RP
(43 chromatographic features) predictions (Fig. 3a, b). Both
chromatographic feature sets revealed good separation possibi-
lities for confident TT (99% true, given 1% CSM-FDR) and TD
(100% false) identifications in two-dimensional space. For the RP
analysis, the TD E. coli CSMs and TT Mix/TD Mix CSMs were
enriched in one area of the plot (the lower right part, Fig. 3a). In
contrast, the subset of confident TT E. coli CSMs were distributed
outside this area. As one would expect for two sets of random
matches, the CSMs from the entrapment database (TT Mix, TD
Mix) closely followed the distribution of TD E. coli CSMs. The
areas populated by the known false matches were also populated
by an equal number of presumably false TT matches. When the
features of all three RT dimensions were considered, the
separation of true and false CSMs further improved (Fig. 3b).
Again, the distributions of TD E. coli CSMs and entrapment
CSMs behaved similarly. Interestingly, few CSMs that passed the
1% FDR threshold were located in regions dominated by false

identifications. This might identify them as part of the expectable
fraction of 1% false-positive identifications. Importantly, the
described separation was achieved unsupervised on RT features
alone, i.e., without a search engine score or target-decoy labels.

To test the transferability of our findings, we also ran xiRT with
unfiltered pLink2 results (Supplementary Note 4 and Supple-
mentary Fig. 15). The prediction performance from Q-value-
filtered CSMs was similar to the results with xiSEARCH
(Supplementary Fig. 15a–c). A two-sided t-test between hSAX,
SCX, and RP errors for TT and TDs revealed significant
differences in the respective error distributions using pLink2
identifications for the RT predictions (Supplementary Fig. 15d).
Importantly, the separation of true and false matches in two-
dimensional space was also possible with pLink2 identifications
(Supplementary Fig. 15e). In summary, xiRT can learn retention
times irrespective of the used search engine and the learned
chromatographic features alone carry substantial information to
separate true from false matches.

To investigate the relevance of multi-dimensional RT predic-
tions for the identification of cross-linked peptides, we first
supplemented each CSM with RT features. Then, we performed a
semi-supervised rescoring and evaluated the trained SVM model
using the SHAP framework. We chose to analyze SHAP values
for the 15 most important retention times features for TT
observations (FDR > 1%) that were predicted to be a correct TT
identification (Fig. 3c). This analysis revealed a similar magnitude
for all 15 SHAP values implying that a single feature alone is
insufficient to recognize false matches. Notably, the top 5 features
contained features from RP, hSAX, and SCX predictions which
indicates that each chromatographic dimension carried relevant
information for the rescoring. Because 11 of the 15 features were
predictions considering only one of the two peptides and not
directly derived from peptide-pairs, the predicted RTs displayed a
larger error. This analysis suggests that an RT prediction model
for linear peptides can add valuable information for crosslink
analyses. In general, the model learned mostly that low errors in
the RT dimensions indicate true positive identifications. Thus, the
model implicitly learned that the RT of a crosslinked peptide
should differ from the RT of the individual peptides. This might
become useful especially for distinguishing consecutive48 from
crosslinked peptides or when dealing with gas-phase associated
peptides36.

Rescoring crosslinked peptides enhances their identification.
Before computing a combined score, we compared the CSM scores
based on mass spectrometric information (xiSCORE) and RT
features (SVM score, Fig. 4a). Both scores largely agreed. Het-
eromeric CSMs passing 1% CSM-FDR yielded high SVM scores.
Also, most target-decoy CSMs achieved a low SVM score (Fig. 4a,
right) and a low xiSCORE (Fig. 4a, top). The SVM score dis-
tribution of the TDs matched closely the distribution of TTs in the
low scoring area, which indicated that they still modeled random
TT matches and that overfitting was avoided. Interestingly, the
TTs were overrepresented in the low scoring area for the xiSCORE
but not for the SVM score, suggesting that true TTs remained
hidden among the random matches when using xiSCORE alone.
The broad SVM score distribution of TTs indicated that the
rescoring process could be optimized. In conclusion, neither of the
mass spectrometric information (xiSCORE) nor the RT infor-
mation (SVM score) seem to reveal all true CSMs.

As a combination of both approaches should yield better
results than either alone, we combined the SVM score with the
xiSCORE. We evaluated the impact of rescoring CSMs on the
number and quality of identified PPIs, as PPIs are typically the
objective of large-scale cross-linking MS experiments.
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Heteromeric CSMs increased 1.7-fold and heteromeric PPIs
increased 1.4-fold (Fig. 4b). Self-links increased only marginally
in agreement with their smaller search space and accordingly
lower random match frequency. Essentially, nearly all self-links
were identified exhaustively based on mass spectrometric data
alone. In contrast, RT information substantially improved the
identification of heteromeric CSMs. Further gains might be
possible by directly combining RT features with mass spectro-
metric features (and possibly also other) for supervised scoring.

Likely, the benefits of RT predictions for the rescoring depend
on the data set and applied chromatographic separations. On the
E. coli data, we, therefore, performed additional analyses where
we limited the rescoring to only use a subset of the chromato-
graphic dimensions (Supplementary Table 5). The number of
identified CSMs for heteromeric links increased from 724 in the
reference to 902 (RP only), 977 (SCX-RP), 1092 (hSAX-RP), and
1199 (SCX-hSAX-RP). Likewise, PPIs increased from 109 to 135,
131, 157, 152, respectively (Supplementary Table 5). As observed
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above, gains can be expected from each chromatographic
dimension. When having to choose one ion chromatography,
the hSAX dimension seemed more useful than the SCX
dimension which could arise from the better prediction
performance or more complex separation mechanisms. Impor-
tantly, even using RP RT alone already led to a marked gain in
heteromeric PPIs (see also next section).

To systematically evaluate the additionally identified PPIs from
all three RT dimensions, we compared them to the originally
identified PPIs based exclusively on xiSCORE. In addition, the
STRING/APID databases and a set of PPIs from a larger study16

served as extra references for validation. Almost all PPIs found in
the original dataset by xiSCORE were also contained in the
rescored data set (91%). 85% of the newly identified PPIs were
either found in the data set from Lenz et al., in STRING/APID or
both. Among the eight PPIs unique to the rescored data set, only
one involved a human protein from the entrapment database
(Fig. 4c), which we could manually resolve and match to E. coli
(Supplementary Table 6). The remaining seven PPIs might
constitute genuine PPIs. Note that the overall percentage of PPIs
involving human proteins was reduced by rescoring. Since all
human target proteins were included in the positive training data,
this is an important indicator of a well-behaved model.
Deepening trust further, almost all novel PPIs were identified
with multiple CSMs (Fig. 4d). Finally, we selected the subnetwork
of the RNA polymerase to investigate the additionally identified
PPIs in a well-characterized interaction landscape (Fig. 4e).
Indeed, all interactions added by RT-based rescoring were already
reported in APID. In summary, all our evidence points at the
successful complementation of MS information by RT, at least for
a proteome-wide crosslinking analysis. It remained to be seen,
however, if this could also be leveraged in more routine
multiprotein complex analyses.

Multiprotein complex studies also benefit from the RT pre-
diction. Many cross-linking MS studies investigate multiprotein
complexes and rely on only a few chromatographic dimensions.
We, therefore, evaluated the benefit of predicted RTs for the
analysis of the FA-complex, an eight-membered multiprotein
complex that was crosslinked using BS3. Here, the search engine
score was supplemented exclusively with RP RT predictions
during the rescoring. By using transfer learning, the small number
of CSMs (692 unique CSMs, without considering charge states)
found in this multiprotein complex analysis were sufficient to
achieve accurate RP predictions (Supplementary Fig. 10). The
resulting crosslinks at 1% residue-pair FDR (lower levels set to
5%) showed an increase of 36 (+10%) self- and 53 (+70%)
heteromeric residue-pairs. Importantly, the rescored links showed
no indication of increased hits to the entrapment database
(Fig. 5a) indicating that no overfitting occurred during the
rescoring. At the same time, heteromeric PPIs already identified
before rescoring received additional support. For example, the
number and sequence coverage of links increased between
FAAP100 (100) and FANCB (B), FANCA (A) and FANCB, and
FANCA and FANCG (G). Overall, the heteromeric links
increased 1.7-fold with an even higher proportional increase in
“verified” links, i.e., fitting the available structure, by 1.9-fold
(Fig. 5b). The derived distance distribution of newly identified
links is dissimilar from a random distribution and shows no
indications of reduced quality (Fig. 5c). Applying this “structural
validation” on its own might be optimistic49, however, in sum-
mary, our rigorous quality control ensures trustworthy results. It
is currently unclear how far even smaller data sets could benefit
from xiRT. Generally, to improve prediction performance, pre-
training on larger data sets will lead to better generalization

abilities of the predictor. Subsequently, also smaller data sets can
be used for accurate RT prediction. To additionally benefit from
sample-specific information, increasing the cross-validation splits
will utilize larger parts of the data during training. In any case,
our successful analysis of a multiprotein complex supplemented
with only RP features highlights the broad applicability of xiRT.

Using a Siamese network architecture, we succeeded in
bringing RT prediction into the Crosslinking MS field, indepen-
dent of separation setup and search software. Our open-source
application xiRT introduces the concept of multi-task learning to
achieve multi-dimensional chromatographic retention time pre-
diction and may use any peptide sequence-dependent measure
including for example collision cross-section or isoelectric point.
The black-box character of the neural network was reduced by
means of interpretable machine learning that revealed individual
amino acid contributions towards the separation behavior. The
RT predictions—even when using only the RP dimension—
complement mass spectrometric information to enhance the
identification of heteromeric crosslinks in multiprotein complex
and proteome-wide studies. Overfitting does not account for this
gain as known false target matches from an entrapment database
did not increase. Leveraging additional information sources may
help to address the mass-spectrometric identification challenge of
heteromeric crosslinks.

Methods
Sample preparation and multidimensional fractionation. Biomass was produced
from a single clone of Escherichia coli K12 strain (BW25113 purchased from
DSMZ, Germany; https://www.dsmz.de/) by fermentation in a Biostat A plus
bioreactor (Sartorius, Göttingen, Germany) in LB medium with 0.5% (w/v) glucose
at 37 °C while monitoring and adjusting pH and dissolved oxygen by the addition
of sodium hydroxide/phosphoric acid or stir speed control, respectively. When the
culture grew to an optical density600 of 10 it was harvested by centrifugation at
5000×g, 4 °C for 15 min, then washed with 1× PBS, aliquoted, snap-frozen in liquid
nitrogen, and stored at −80 °C. Cell pellets were resuspended in lysis buffer (50
mM Hepes pH 7.2 at RT, 50 mM KCl, 10 mM NaCl, 1.5 mM MgCl2, 5% (v/v)
glycerol, 1 mM dithiothreitol (DTT), spatula tip of chicken egg white lysozyme
(Sigma, St. Louis, MO, USA)) and lysed by sonication. Prior to sonication, cOm-
plete EDTA-free protease-inhibitors (Roche, Basel, Switzerland) were added
according to the manufacturer’s instructions. Then, Benzonase (Merck, Darmstadt,
Germany) was added and the lysate cleared from cellular debris by centrifugation
for 15 min at 4 °C and 15.000×g. Fresh DTT was supplied to 2 mM. The obtained
supernatant was treated further by ultracentrifugation using a 70 Ti fixed-angle
rotor for 1 h at 106,000×g and 4 °C. Subsequently, the protein solution was con-
centrated using Amicon spin filters (15 kDa molecular weight cut-off; Merck,
Darmstadt, Germany) to reach a total protein concentration of 10 mg/ml, as judged
by microBCA assay (ThermoFisher Scientific, Waltham, MA, USA) and aggregates
removed by centrifugation for 5 min at 16,900×g and 4 °C. Then, 2 mg of this
soluble high molecular weight proteome was separated on a BioSep SEC-S4000
column (600 × 7.8 mm, pore size 500 Å, particle size 5 µm, Phenomenex, CA, USA)
at 200 µl/min flow rate and 4 °C with fraction collection of 200 µl over the
separation range from ~3 MDa to 150 kDa (as judged by Gel filtration calibration
kit (HMW), GE Healthcare) to give 44 fractions. The proteins of each fraction were
crosslinked using 0.75 mM disuccinimidyl suberate (DSS; Sigma, St. Louis, MO,
USA). The cross-linked samples were pooled and precipitated using acetone. Upon
resuspending in 6 M urea, 2 M thiourea, 100 mM ammonium bicarbonate (ABC),
the samples were derivatized by incubating 30 minutes at room temperature with
10 mM dithiothreitol followed by 20 mM iodoacetamide in the dark. Proteolysis
was accomplished using LysC protease (1:100 protease-to-substrate mass ratio;
Pierce Biotechnology, Rockford, IL, USA) for 4.5 h at 37 °C, followed by 1:5
dilution with 100 mM ABC and additional digestion with and Trypsin (1:25
protease-to-substrate mass ratio; Pierce Biotechnology, Rockford, IL, USA).
Digestions were quenched by adding trifluoroacetic acid (TFA) and cleaned up
using Stage-tips. The sample was fractionated in the first dimension on a Poly-
Sulfoethyl A strong cation exchange chromatography (SCX) column (100 × 2.1
mm, 300 Å, 3 µm) equipped with a guard column of identical stationary phase (10
× 2.0 mm) (PolyLC, Columbia, MD, USA) running at 0.2 ml/min on an Äkta pure
system (GE Healthcare, Chicago, IL, USA) at 21 °C. Mobile phase A was 10 mM
monopotassium phosphate pH 3.0, 30% acetonitrile; mobile phase B additionally
contained 1M potassium chloride (KCl). About 0.4 mg peptides dissolved in
mobile phase A were loaded and eluted isocratically over 2 min, followed by an
exponential gradient up to 700 mM KCl with the following steps: 12 min to 12.7%,
followed by 1-min steps to 14.5, 16.3, 18.8, 23.0, 30.0, 40.0, 70.0% B. We collected
nine high-salt fractions of 0.2 ml size during several replica SCX runs. Identical
fractions were pooled and desalted using Stage-tips followed by separation in the
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second chromatographic dimension by hydrophilic strong anion exchange chro-
matography (hSAX). Here, we used a Dionex IonPac AS-24 hSAX column (250 ×
2.0 mm) with an AG-24 guard column (Thermo Fisher Scientific, Dreieich, Ger-
many) running at 0.15 ml/min on an Äkta pure system (see above) and at 15 °C.
Mobile phases A and B were 20 mM Tris*HCl pH 8.0 with B additionally con-
taining 1 M sodium chloride. Samples were loaded in mobile phase A and sepa-
rated under isocratic conditions for 3 min, followed by elution using an exponential
gradient: 1.8, 3.5, 5.3, 7.1, 9.1, 11.2, 13.5, 16.3, 19.7, 24.1, 30.2, 38.8, 51.5, 70.6, 100%
B, each step lasting for one minute. Fractions of 0.15 ml size were collected along
the gradient. Ten pools were prepared (fractions 3-6/7-14/15-17/18-19/20-21/22-
23/24-25/26-27/29-29/30-35) and desalted using Stage-tips.

LC-MS for crosslink identification. Analysis of crosslinked peptides by LC-MS
was conducted on a Q Exactive HF mass spectrometer (ThermoFisher Scientific,
Bremen, Germany) coupled to an Ultimate 3000 RSLC nano system (Dionex,
Thermo Fisher Scientific, Sunnyvale, USA), operated under Tune 2.11, SII for
Xcalibur 1.5 and Xcalibur 4.2. Solvents A and B were 0.1% (v/v) formic acid and
80% (v/v) acetonitrile, 0.1% (v/v) formic acid, respectively. Peptide fractions were
dissolved and loaded in 1.6% acetonitrile, 0.1% formic acid onto an Easy-Spray
column (C18, 50 cm, 75 µm ID, 2 µm particle size, 100 Å pore size) operated at 300
nl/min flow and 45 °C. Peptide elution used the following gradient: 2 to 7.5% buffer
B within 5 min, from 7.5 to 42.5% over 80 min, to 50% B over 2.5 min, and then to
95% buffer B within 2.5 min and flushed for another 5 min before re-equilibration
at 2% B. Survey scans were acquired at a resolution of 120,000, automated gain
control of 3*106, maximum injection time of 50 ms while scanning from 400–1450
m/z in profile mode. The top 10 intense precursor ions with z= 3-6 and passing
the peptide match filter (preferred) were isolated using a 1.4m/z window and
fragmented by higher-energy collisional dissociation using stepped normalized
collision energies of 24, 30, and 36. Fragment ion scans were recorded at a reso-
lution of 60,000, with automated gain control set to 5*104, maximum injection
time of 120 ms, underfill ratio of 1%, and scanning from 200–2000m/z. Dynamic
exclusion for previously fragmented precursors and their isotopes was enabled for
30 s. To minimize the non-covalent gas-phase association of peptides, in-source-
CID was enabled at 15 eV36. Each LC-MS run lasted for 120 min.

Spectra and peptide spectrum match processing. All raw spectra were con-
verted to Mascot generic format (MGF) using msConvert50 (3.0.20175.cbf82d022).
The database search with Comet51 (v. 2019010) was done with the following set-
tings: peptide mass tolerance 3 ppm; isotope_error 3; fragment bin 0.02; fragment
offset 0.0; decoy_search 1; fixed modification on C (carbamidomethylation,
+57.021 Da); variable modifications on M (oxidation, +15.99 Da). False discovery
rate (FDR) estimation was performed for each acquisition. First, the highest-
scoring PSM for a modified peptide sequence was selected, then the FDR was
computed based on Comet’s e-value. Spectra were searched using xiSEARCH (v.
1.6.753)12, after recalibration of precursor and fragment m/z values, with the fol-
lowing settings: precursor tolerance, 3 ppm; fragment tolerance, 5 ppm; missed
cleavages, 2; missed monoisotopic peaks52, 2; minimum peptide length, 7; variable
modifications: oxidation on M, mono-links for linear peptides on K, S, T, Y, fixed
modifications: carbamidomethylated C. The specificity of the crosslinker DSS was
configured to link K, S, T, Y, and the protein N terminus with a mass of 138.06807
Da. The searches were run with the workflow system snakemake53. The FDR on
CSM-level was defined as FDR= TD − DD/TT40, where TD indicates the number
of target-decoy matches, DD the number of decoy–decoy matches, and TT the

number of target-target matches. Crosslinked peptide spectrum matches (CSMs)
with non-consecutive peptide sequences were kept for processing48. PPI level FDR
computation was done using xiFDR40 (v. 2.1.3 and 2.1.5 for writing mzIdentML) to
an estimated PPI-FDR of 1%, disabling the boosting and filtering options. CSM,
peptide, and residue-level FDR were fixed at 5%, protein group FDR was set to
100%. FDR estimations for self and heteromeric links were done separately. In
xiFDR a unique CSM is defined as a combination of the two peptide sequences
including modifications, link sites, and precursor charge state. For the assessment
of identified CSMs an entrapment database (described in the next section), as well
as decoy identifications, were used on both, CSM and PPI levels. PPI results were
also compared against the APID42 and STRING41 databases (v11, minimal com-
bined confidence of 0.15).

Database creation. The database of potentially true crosslinks was defined as
Escherichia coli proteome (reviewed entries from Uniprot release 2019-08). This
database was filtered further to proteins identified with at least a single linear
peptide at a q-value54 threshold of 0.01, qðtÞ ¼ mins≤ tFDRðsÞ, with the threshold t
and score s. This resulted in 2850 proteins. In addition to the FDR estimation
through a decoy database, we used an entrapment database. The proteins from the
entrapment database represent the search space of false-positive CSMs indepen-
dent of E. coli decoys and were sampled from human proteins (UP000005640,
retrieved 2019-05). E. coli decoys might fail in this task after machine learning if
overfitting should have taken place. So, entrapment targets allow control for
overfitting. For this, human target peptides were treated as targets and human
decoy peptides as decoys. To avoid complications through false spectrum matches
due to homology, we used blastp55 (BLAST 2.9.0+, blastp-short mode, word size 2,
e-value cutoff 100) and aligned all E. coli tryptic peptides (1 missed cleavage,
maximum length 100) to the human reference. All proteins that showed peptide
alignments with a sequence identity of 100% were removed from the human
database. Only the remaining 9990 sequences were used as candidates in the
entrapment database. For each of the 2850 E. coli proteins, a human protein was
added to the database. To reduce search space biases from protein length and thus
different number of peptides for the two organisms, we followed a special sampling
strategy. The human proteins were selected by a greedy nearest neighbor approach
based on the K/R counts and the sequence length. The final number of proteins in
the combined database (E. coli and human) was 5700 (2850*2).

Fanconi anemia monoubiquitin ligase complex data processing. The publicly
available raw files from an analysis of the BS3-crosslinked Fanconi anemia
monoubiquitin ligase complex56 (FA-Complex) were downloaded from PRIDE
together with the original FASTA file (PXD014282). The raw files were processed
as described for the E. coli data (m/z recalibration and searched with xiSEARCH),
followed by an initial 80% CSM-FDR filter for further processing. Due to the much
smaller FASTA database (8 proteins), the entrapment database was constructed
more conservative than for the proteome-wide E. coli experiment, i.e., for each of
the target proteins, the amino acid composition was used to retrieve the nearest
neighbor in an E. coli database. The FDR settings to evaluate the rescoring were set
to 5% CSM- and peptide-pair level FDR, 1% residue-pair- and 100% PPI-FDR
using xiFDR without boosting or additional filters. The resulting links were
visualized (circular view) and mapped to an available 3D structure (final refine-
ment model “sm.pdb”)57,58 using xiVIEW59. To ease the comparison of identified
and random distances, a random Euclidean distance distribution was derived in
three steps: first, all possible cross-linkable residue-pair distances in the 3D
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structure were computed. Second, 300 random “bootstrap” samples with n dis-
tances were drawn (n = the number of identified residue-pairs at a given FDR) and
third, the mean per distance bin was computed across all 300 samples.

xiRT—3D Retention Time Prediction. The machine learning workflow was
implemented in python (v. >3.7) and is freely available from https://github.com/
Rappsilber-Laboratory/xiRT. xiRT is the successor of DePART29, which was
developed for the retention time (RT) prediction of hSAX fractionated peptides
based on pre-computed features. xiRT makes use of modern neural network
architectures and does not require feature engineering. We used the popular
python packages sklearn60 (0.24.1) and TensorFlow61 (v. 1.15 and >2) for pro-
cessing (Supplementary Note 1 for more details). xiRT consists of five components
(Fig. 1d and Supplementary Fig. 1, Supplementary Note 1): (1) The input for xiRT
are amino acid sequences with arbitrary modifications in text format (e.g., Mox for
oxidized Methionine). xiRT uses a similar architecture for linear and crosslinked
peptide RT prediction. Before the sequences can be used as input for the network,
the sequences are label encoded by replacing every amino acid by an integer and
further 0-padded to guarantee that all input sequences have the same length.
Modified amino acids, as well as crosslinked residues, are encoded differently than
their unmodified counterparts. (2) The padded sequences were then forwarded into
an embedding layer that was trained to find a continuous vector representation for
the input. (3) To account for the sequential structure of the input sequences, a
recurrent layer was used (either GRU or LSTM). Optionally, the GRU/LSTM layers
were followed by batch normalization layers. For cross-linked peptide input, the
respective outputs from the recurrent layers were then combined through an
additive layer (default setting). (4) Task-wise subnetworks were added for hSAX,
SCX, and RP retention time prediction. All three subnetworks had the same
architecture: three fully connected layers, with dropout and batch normalization
layers between them. The shape of the subnetworks is pyramid-like, i.e., the size of
the layers decreased with network depth. (5) Each subnetwork had its own acti-
vation function. For the RP prediction, a linear activation function was used and
mean squared error (MSE) as loss function. For the prediction of SCX and hSAX
fractions, we followed a different approach. The fraction variables were encoded for
ordinal regression in neural networks62. For example, in a three-fraction setup, the
fractions (f ) were encoded as f 1 ¼ 0; 0; 0½ �; f 2 ¼ 1; 0; 0½ � andf 3 ¼ 1; 1; 0½ �: Subse-
quently, we chose sigmoid activation functions for the prediction layers and
defined binary cross-entropy (BC) as loss function. To convert predictions from the
neural network back to fractions, the index of the first entry with a predicted
probability of <0.5 was chosen as the predicted fraction. The overall loss was
computed by a weighted sum of the MSERP, BCSCX, and BChSAX. The weight
parameters are only necessary when xiRT is used to predict multiple RT dimen-
sions at the same time (multi-task). To predict a single dimension (single-task, e.g.,
RP only), the weight can be set to 1. The number of neurons, dropout rate,
intermediate activation functions, the weights for the combined loss, number of
epochs, and other parameters in xiRT were optimized on linear peptide identifi-
cation data. Reasonable default values are provided within the xiRT package. For
optimal performance, further optimization might be necessary for a given task.

Cross-validation and prediction strategy. Cross-validation (CV) is a technique
to estimate the generalization ability of a machine learning predictor63 and is often
used for hyper-parameter optimization. We performed a 3-fold CV for the hyper-
parameter optimization on the linear peptide identification data from xiSEARCH,
excluding all identifications to the entrapment database (Supplementary Note 2
and Supplementary Fig. 2 for details). We defined a coarse grid of parameters
(Supplementary Table 1) and chose the best performing parameters based on the
average total (unweighted) loss, R2

RP and accuracy across the CV folds. Further, we
define the relaxed accuracy (racc) to measure how many predictions show a lower
prediction error than |1| fraction. We then repeated the process with an adapted set
of parameters (Supplementary Table 2). In addition to the standard CV strategy,
we used a small adjustment: per default, in k-fold cross-validation, the training split
consists of k− 1 parts of the data (folds) and a single testing fold. However, we
additionally used a fraction (10%) from the training folds as extra validation set
during training. The validation set was used to select the best performing classifier
over all epochs. The model assessment was strictly limited to the testing folds. This
separation into training, validation, and testing was also used for the semi-
supervised learning and prediction of RTs, i.e., when xiRT was used to generate
features to rescore CSMs previously identified from mass spectrometric informa-
tion. In this scenario, the CV strategy was employed to avoid the training and
prediction on the same set of CSMs. In xiRT, a unique CSM is defined as a
combination of the two peptide sequences, ignoring link sites and precursor charge.

Supervised peptide spectrum match rescoring. To assess the benefits of RT
predictions, we used a semi-supervised support vector (SVM) machine model. The
implementation is based on the python package scikit-learn60 in which optimal
parameters are determined via cross-validation. The input features were based on
the initial search score (for FA-complex only) and differences between predicted
and observed RTs. For each cross-linked peptide, three predictions were made per
chromatographic dimension: for the crosslinked peptide, for the alpha peptide, and
the beta peptide. Additional features were engineered depending on the number of

chromatographic dimensions and included the summed, absolute, or squared
values of the initial features (Supplementary Table 3 for all features). For example,
for three RT dimensions, the total number of features was 43. The data for the training
included all CSMs that passed the 1% CSM-FDR cutoff (self, heteromeric/TT, TD,
DDs) and TD/DD identifications that did not pass this cutoff. TTs were labeled as
positive training examples, TD and DDs (DXs) were labeled as negative training
examples.

To stratify the k-folds during CV, the CSMs were binned into k xiSCORE
percentiles. Afterward, they were sampled such that each score range was equally
represented across all CV folds. When the positive class was limited to the TT
identifications at 1% CSM-FDR, the number of negative observations was usually
larger than the number of positive observations. To circumvent this, for each CV
split, a synthetic minority over-sampling technique (SMOTE)64 was used to
generate a balanced number of positive and negative training samples (here only
used for the FA-complex data). SMOTE was applied within each CV fold to avoid
information leakage. A 3-fold CV was performed for the rescoring. In each
iteration during the CV, two folds were used for the training of the classifier, and
the third fold was used to compute an SVM score. During this CV step, a total of
three classifiers were trained. The scores for all TT-CSMs that did not pass the
initial FDR cutoff were computed by averaging the score predictions from the three
predictors. For all CSMs passing the initial FDR cutoff, rescoring was performed
when the CSM occurred in the test set during the CV. The final score was defined
as: xirescored ¼ xiSCORE þ xiSCORE ´ SVMscore, where SVMscore was the output from
the SVM classifier and xiSCORE the initial search engine score.

Feature analysis. The KernelExplainer from SHAP65 (Shapley Additive exPla-
nations, v.0.36.0) was used to analyze the importance of features derived from the
SVM classifier. SHAP estimates the importance of a feature by setting its value to
“missing” for an observation in the testing set while monitoring the prediction
outcome. We used a background distribution of 200 samples (100 TT, 100 TD)
from the training data to simulate the “missing” status for a feature. SHAP values
were then computed for 200 randomly selected TT (predicted to be TT) that were
not used during the SVM training. SHAP values allow to directly estimate the
contributions of individual features towards a prediction, i.e., the expected value
plus the SHAP values for a single CSM sums to the predicted outcome. For a
selected CSM, a positive SHAP value contributes towards a true match prediction.
For the interpretability analysis (SHAP) of the learned features in xiRT, the Dee-
pExplainer was used (Supplementary Note 3).

In addition, we performed dimensionality reduction using UMAP66 on the RT
feature space for visualization purposes (excluding the search engine score). UMAP
was run with default parameters (n_neighbors= 15, min_dist= 0.1) on the
standardized feature values. The list of used features for the multi-task learning
setup is available in Supplementary Table 3.

Statistical analysis. Significance tests were computed using a two-sided inde-
pendent t-test with Bonferroni correction. The significance level α was set to 5%.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via the jPOST partner
repository67 with the data set identifier PXD020407 and at https://doi.org/10.6019/
PXD020407. Raw data of the FA-Complex are available via the previously published
PRIDE identifier PXD014282. Additional files and intermediate results are available via
Zenodo at https://doi.org/10.5281/zenodo.4270323. PPI data were retrieved from
STRING (https://string-db.org/, v11) and APID (http://cicblade.dep.usal.es:8080/APID/
init.action, downloaded 09/2019). Source data are provided with this paper.

Code availability
The developed python package is available on the python package index, on GitHub
(https://github.com/Rappsilber-Laboratory/xiRT) and via Zenodo (https://doi.org/
10.5281/zenodo.4270323).
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Chapter 7

Outlook

The analysis of single proteins and protein complexes via crosslinking mass spec-
trometry is becoming an important part of many integrated structural biology ap-
proaches. The advancements in the field of structural biology will also increase
the demand for structural data under physiological conditions to complement tra-
ditional structure determination methods. The necessity to choose the best suiting
crosslinking chemistry, acquisition schema, identification workflows, and proper er-
ror estimation based on the biological question makes the field not easily accessible
to a large audience. For example, the use of promiscuous crosslinkers can increase
the distance constraints from crosslinking of a single protein or small complex, by
at least an order of magnitude. At the same time, the promiscuous crosslinking
chemistry could overwhelm current database search paradigms in proteome-wide
studies, without proper enrichment.
The ambitious goal to analyze snapshots of the entire interactome of a cell in a time-
resolved manner thus faces several challenges; even if crosslinking mass spectrome-
try is undergoing rapid changes with the development of new enrichment strategies,
instruments, fragmentation techniques, and (faster) crosslinking chemistry. These
advancements bring the field stepwise closer to true proteome-wide studies that
cover a large part of the proteome. Computational approaches will also continu-
ously play a vital role in the success of CLMS. So far, a sophisticated sensitivity anal-
ysis comparing heuristic and exhaustive search strategies remains to be done. For
example, with the availability of powerful graphics processing units, more costly
search strategies are feasible. In addition to the ever-increasing computing capac-
ities, machine learning methods become more powerful with more data at hand.
With the ability to predict each step of the liquid chromatography-mass spectrome-
try workflow for crosslinks, interesting possibilities open. For instance, access to the
application programming interfaces of the mass spectrometer vendors would allow
to target crosslinks more reliably or enable live searching of spectra. But also, tradi-
tional database searches can benefit from accurate retention time prediction. Either
through post-search rescoring or through a more targeted database search, where
only peptides are considered that are predicted to elute with the measured precur-
sor.
For CLMS, the next years will trigger a similar revolution as linear proteomics, with
further improvements in post-search validation algorithms, seamless identification
and quantitation, and more evolved data interpretation techniques. Lastly, it is
worthwhile to think outside the mass spectrometry field for the analysis of pro-
teins. An interesting development is the possibility to sequence proteins with the
nanopore. Even though this approach is still in its infancy it will certainly extend
the toolbox for studying proteomics.
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S3: Cross-linked residue distribution
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Supplementary Figure 3: Cross-linked residue distribution. Frequency distribution of all observed cross-linked
residues from 910 PSMs (A). Heatmap showing all observed linkage combinations based on BS3 cross-linking.
Annotations in the cells refer to the absolute counts of an observed linkage pair. Cross-links involving serine,
threonine or tyrosine in at least one linkage site account for roughly 14% of the cross-links (B).
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S4: Cross-link factors that influence fragmentation

Supplementary Figure 4: Influence on the cross-linking context on the spectral similarity. The x-axis describes
the similarity class constraints for the comparison. For example, in the ’partner’ class the cross-linked peptides
that were compared against each other had to be identified with the same partner. Multiple constraints are
simply combinations of individual classes. A reference distribution is derived by randomly comparing spectra
of cross-linked peptides. The data was derived from 8,301 high-confidence identifications by XiFDR with a 5%
false discovery rate (FDR). In addition, each peptide in a cross-link was required to be six amino acids or longer.
Note that this Figure includes data from unpublished acquisitions. Abbreviations: partner - partner peptide in
a cross-link, cl site - cross-linking site position. Data were derived from additional unpublished data from our
in-house database.
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S5: Fragment linearization among the top ten ions

Supplementary Figure 5: ROC curve evaluating the linearization of the ten highest intense (and identified)
ions. Sensitivity and specificity are defined as in the manuscript taking only fragments from the alpha peptide
into account. Annotations in the plot refer to the relative mass cut-off that is used to decide whether or not to
linearize a fragment.
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S6: Individual spectra
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Supplementary Figure 6: Peak annotation for the individual spectra used in the overlay spectrum shown in the
manuscript (Fig 3A). The cross-linked PSM (A), with the alpha peptide in red (upper peptide sequence) and
the beta peptide in blue (lower peptide sequence), the alpha peptide (B) and the beta peptide (C) are shown.
Additional information such as precursor mass (m/z), precursor charge (z), scan number, and PSMID (unique
identifier) are annotated.
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S7: Linear spectrum

Supplementary Figure 7: Linear spectrum corresponding to the alpha peptide shown in the manuscript (Fig.
4D). Additional information such as precursor mass (m/z), precursor charge (z), scan number, and PSMID
(unique identifier) are annotated.
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S8: Cross-linker fragmentation

count type / ion type immonium type peptide + cross-linker loss peptide loss
(P+i(P)) (P(+P)) (P+(P))

per cross-link 3% 16% 7%
per peptide 2% 10% 4%

Supplementary Table 1: Cross-linker fragmentation frequencies. P+i(P)) type ions have a modified lysine rest
on one end of the cross-link and on the other the complete second peptide. P(+P) refers to the individual
peptide fragments without the cross-linker mass and P+(P) refers to the individual peptides with the cross-
linker attached.
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S9: Figure 1 comparison to a larger sample

Section S9-S12 compare the results form the manuscript with another larger sample from our local database
including unpublished data.
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Supplementary Figure 9: Influence of different sample sizes on the results of Figure 1. The panel names refer
to the same names in the manuscript. The left column panels (A-C) are the same plots as in the manuscript
(published samples). The right column panels (A’-C’) are one-to-one copies of the plots from the manuscript
but with a larger sample size.

8

78 Appendix A. Supporting Information Manuscript 1



S10: Figure 2 comparison to a larger sample
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Supplementary Figure 10: Influence of different sample sizes on the results of Figure 2. The panel names refer
to the same names in the manuscript. The left column panels (A-D) are the same plots as in the manuscript
(published samples). The right column panels (A’-D’) are one-to-one copies of the plots from the manuscript
but with a larger sample size (all samples).
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S11: Figure 3 comparison to a larger sample
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(published samples). The right column panels (C’-E’) are one-to-one copies of the plots from the manuscript
but with a larger sample size (all samples).
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S12: Figure 4 comparison to a larger sample
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Supplementary Figure 12: Influence of different sample sizes on the results of Figure 4. The panel names
refer to the same names in the manuscript. The left column panels (A, B, C, E) are the same plots as in the
manuscript (published samples). The right column panels (A’, B’, C’, E’) are one-to-one copies of the plots
from the manuscript but with a larger sample size (all samples).
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Figure S4: Spectra are available online.
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S1 Visualization of cross-links and noncovalently associated pep-
tides

Fig. S1 visually describes the different types of peptides relevant for the main manuscript. Importantly, only
the cross-linked peptide (a) and the noncovalently associated peptide (c) have the same mass because of the
loop-link in c). This mass ambiguity is the reason that noncovalently associated peptides can be misidentified
as cross-links. More details on general cross-linking nomenclature can for example be found in Rappsilber [1].
Note that the two peptides in c) do not need to have the same sequence.

Figure S1: Visualization of different peptide definitions. (a) a typical cross-link between two peptides. (b) a
non-covalent peptide association between two peptides. (c) same as (b) but one of the peptides is loop-linked,
the mass of this species is the same as that of a cross-linked peptide.

S2 CLMS identifications assuming cleavability of SDA

In this section we used MeroX [2] to identify MS-cleavable cross-linker products from the Q Exactive (QE) data
set. We used the same settings for MeroX (v. 1.6.6.6) as in [3]. The SDA reaction product is assumed to be
cleavable when involving a carboxylic acid functional group [3]. The individual search results were combined
using the MeroX Merger (v. 1.2) with the -P 5 setting to set the desired FDR cut-off to 5%. From the merged
results we extracted the unique links and computed their distance in the crystal structure of HSA (PDB: 1AO6).
For the QE data, 184 unique links were identified of which 160 could be mapped to the crystal structure. 38%
(61 links) were long-distance links (Cαdistance ≥ 25Å), while 62% (99 links) matched the distance constraint.
For the Velos data, 34 unique links were identified of which 29 could be mapped to the crystal structure. 21% (6
links) were long-distance links, while 79% (23 links) matched the distance constraint. The results are consistent
with the presented data in Figure 1 of the manuscript. The distance histogram for the QE data shows a very
prominent enrichment of false positives exceeding the distance threshold. While in both cases the desired FDR
is not met, we hypothesize that the Velos results are suffering from the low number of identified links. Therefore,
reliable FDR estimation is hindered.

In general, Fig. S2a-b shows that MeroX is also able to identify the non-covalent peptide associations using
a cleavable cross-linker search. However, it is difficult to judge how many of the identified cross-links below
the 25Å cut-off are true cross-links (assuming cleavage of the cross-linker) and how many are non-covalent
associations. Since the search itself is not aware of any distance constraint, an obvious assumption is that
non-covalent associations should be distributed without preference below and above the distance cut-off. In
contrast, true cross-links will be enriched below the distance cut-off. Visually projecting the number of long-
distance links to the area below the distance cut-off indicates that a large portion of the within-distance links
are in fact non-covalent associations.

In addition, we also analysed the retention times (RT) from linear peptides with SDA modifications (e.g.
loop-linked or hydrolyzed cross-linker, see [4] for visualizations of the modifications). Interestingly, the RT of
linear peptides is approximately increased by 24 minutes with a single sda-loop modification (Fig. S2c). Sub-
sequently, the RT is almost doubled (42 minutes) when two loop-links were found in a peptide compared to the
unmodified version. This information can be used to compare the RT of the linear peptides that were identified
in a cross-link / non-covalent peptide association. We used the simplified assumption that identifications are
true cross-links when the distance constraints were met and non-covalent association otherwise. In Fig. S2d, the
RT difference between the two peptides in a cross-link / non-covalent association is shown. Initially, we tried
to map the individual peptide sequences identified by MeroX to the linear (modified) peptide identifications
from MaxQuant. For this one of the two peptides identified in a cross-link by MeroX was assumed to carry
a loop-link modification. Under these assumptions only a small number of cross-linked peptides yield a RT
for both peptides. The reason is that the individual peptides identified by MeroX were not identified in their
loop-linked form in MaxQuant. For peptides that are cross-linked, the RT difference from the individual pep-
tides should be randomly distributed. For peptides that are noncovalently associated, the RT difference from
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the individual peptides should be closely distributed zero. Because MeroX does not search for loop-link mod-
ifications in the search for noncovalently associated peptides the RT difference that is introduced through this
modification needs to be accounted for. Therefore, the expected RT difference for the individual peptides from
non-covalent associations is on average 24 minutes. Indeed, the two RT difference distributions from cross-links
and non-covalent associations look different and match the above described expectation (Fig. 3c). However, the
large enrichment of within-distance links with a very small RT difference hints on these identifications being
non-covalent peptide associations.

Figure S2: MeroX results and MaxQuant results. (a) Distance-histogram of unique links identified with MeroX
for Q Exactive data. (b) Distance-histogram of unique links identified with MeroX for Velos data. (c) Retention
time difference of unmodified and cross-linker modified linear peptides identified with MaxQuant. (d) RT
mapping of PSMs from a) to linear identifications (MaxQuant search) without RT adjustment for modifications.
Note: RT - retention time, NAP - non-covalent association, sda-hydro and sda-loop refer to modified cross-
linkers [4].

S3 Flow Rate Analysis on Q Exactive High-field

To further investigate the effect of different flow rates on the formation of non-covalent associations we acquired
the protein mix (non-cross-linked sample) on the Q Exactive High-field with three flow rates (in triplicates):
0.2 µL

min , 0.25
µL
min and 0.3 µL

min . The differences in the number of identifications were only small (Fig. S3a) and
comparable to the results from the main text (24 PSMs with IS-CID 0). To achieve the desired FDR cut-off of
5% the results were cut after the first decoy hit (S3b).
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S4 Falsely identified cross-link suggesting homo-dimerization

The spectrum in Fig. S4 shows an example of a cross-link that can falsely lead to the assumption of homo-
dimerization.
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Figure S1: Data overview. (A) Missed cleavage distribution. Stacked bar charts show the number of peptides
with 0, 1 or 2 missed cleavages per fraction. (B) Number of peptide identifications per fraction. The horizontal
line was set as cut-off - all fractions with fewer than 300 identifications were disregarded from the analysis. A
total number of 59,723 non-redundant peptides were analysed before using the cut-off.

S1 Effect Size and Retention Time Influence Differences of the Charged
Amino Acids

As established in the main text the effect size of the charged amino acids is very similar. However, the distri-
butions of peptides with 0-5 D or E residues are clearly shifted as shown in Fig. 1 of the manuscript. Table
S1 shows the average mean increase of the fraction number per peptide population with 0-5 D/E counts. On
average, a single D/E residue in the peptide sequence will shift the peptide 3 fractions. Since the effect size of
D/E is very similar (Fig. S2 B) we assume that the estimate holds for either D or E residues. On the other
hand the difference between K and R residues is more pronounced (Fig. S2 A).

Table S1: Effect of D and E residues to the retention time shift.

DE count Mean Fraction Difference to last Fraction

0 2.61 0
1 5.89 3.28
2 10.73 4.84
3 14.89 4.16
4 17.89 3
5 20.31 2.42

Note: The mean fraction was computed by first filtering all peptide identifications to sequences with 0-5 D or
E residues. For each of the five classes the mean fraction was then computed.

S2 Non-charged Amino Acid Contributions to the Retention Time

In the main text we classified the remaining amino acids as ’retaining’, ’eluting’ and ’other’. This classification
is mainly based on investigating an isolated subset of peptides with D/E residue count of 2 and K/R residue
count of 1. This subset is then used to visually and statistically infer the influence of the remaining amino
acids. As shown in Fig. S3 the number of observations of DE2, KR1 peptides is still very high and distributed
over 12 fractions. Based on these peptides we computed the average amino acid composition in each fraction
and performed linear regression analysis with the composition as dependent variable and the fraction as target
variable. Effectively, modeling the increase or decrease in the sequence composition for all 16 remaining amino
acids. The magnitude of the slope can be considered as correlation between the occurrences of amino acids and
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Figure S3: Sub-population of peptides with an D/E 2 and K/R 1 count. (A) The distribution of peptide
occurrences is shown depending on the observed fraction. Fractions below 8 and higher than 21 all contained
less than 1% (92) of the total number of observations (9,199) and were removed for further analysis. (B) Based
on the average composition of the peptides from (A) 20 linear regression models (for each amino acid one)
were fitted on the target variable (fraction number) and the dependent variable (average amino acid sequence
composition). The slopes of the regression model are shown as bars. Amino acids that have an retaining effect
are expected to have a positive slope, amino acids that have an eluting effect are expected to have a negative
slope.

a shifted retention time. For large positive slopes, we expected the amino acids to have an retaining effect on
the retention time. For large negative slopes, we expected the amino acids to have an eluting effect, see Fig.
S3B. The linear regression model was also used to perform a significant test on the slope of the fitted model:
with H0 assuming that the slope is equal to zero and H1 assuming that the slope is not equal to zero. The
test results and fitted lines are visualized in Fig. S4. Based on this we broadly classified the remaining amino
acids into retaining contributions (F, W, Y), eluting contributions (P, A, S, V, Q, T) and non-clear or other
contributions (L, I, G, N, M, C, H).
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Figure S4: Classification of non-charged amino acid effects on the retention time based on linear regression. As
described in Supplementary Fig. S3 linear regression models were fit to the sequence composition data from
peptides with an D/E 2 and K/R 1 count. In addition, a simple test with H0: the slope of the regression model
is equal to zero was performed using SciPy. The aromatics F, W, and Y yield significant results and have a
potentially large retaining effect. The amino acids P, A, S, V, Q and T also show a significant test results after
Benjamini-Hochberg correction [1], but for having an eluting effect. For the amino acids L, I, G,M, N and H
the slope of the regression model was not significantly different from zero and were thus classified as ambiguous
(’other’).
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Figure S5: Peptide length influence on the retention time. In each panel a subset of peptides is first extracted
(e.g. DE:1 KR:1 first filters all peptides with exactly one D or E residue and exactly one K or R residue). A
minimum number of observations of 300 peptides was required per category. The Avg Length represents the
mean peptide length of all peptides in a selected fraction.

Figure S6: Peptide counts across all fractions with 0,1,2 or 3 WYF residues. In addition to the applied FYW
filter all peptides have 2 D/E residues and 1 K/R residue.

S3 Machine Learning - Training, Prediction and Evaluation

Overview

We are interested in learning and predicting the interaction of peptides with the hSAX column - based on the
peptide sequence we want to be able to predict when the peptide will elute. Initially, we used a set of classifica-
tion algorithms in our pre-experiments. The selection of regression methods includes: simple linear regression
including the length correction parameter (lcp) with only the 20 amino acids as features (’Pyteomics’) [3], a
linear regression model with all designed features (Supplementary Table S2), ridge regression, lasso regression,
support vector machine regression (SVR) and random forest regression. The selection of classification algo-
rithms includes: feedforward neural network (FNN, Keras implementation with the Theano backend), logistic
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regression, random forest, gradient boosting (python package XGBoost1 [2]) , a support vector machine (SVM)
and ordinal logistic regression (python package MORD2 [7]). Except for Pyteomics, the FNN, MORD and
XGBoost the scikit-learn3 [6] implementations were used.

Input Features

An essential part of classical machine learning algorithms is the engineering of features. Based on initial
observations and by investigating the literature we came up with 218 features to summarize the properties
of a peptide that might govern retention. These features are summarized in Table S2. Similar to ELUDE
and SSRCalc we used hydrophobicity features, consecutive occurrences of amino acids [5] and position specific
features for the 20 amino acids [4].

Hyper-parameter Optimization

The above mentioned machine learning algorithms all require a fine tuning of their parameters to achieve the
best possible performance (hyper-parameter optimization). Our workflow for optimization, testing and valida-
tion the best parameters was as follows: (1) grid search for optimal hyper-parameters with 5-fold cross-validation
(CV), (2) selection of the best set of parameters for each classifier based on the achieved accuracy on the test
data and (3) validating the best performing classifier on a hold-out validation set that was never used for train-
ing. Table S3 gives and overview of the grid search for hyper-parameter optimization. Table S4 summarizes the
results for each classifier with the best set of parameters. The best performing classifier was a a feedforward
neural network implementation with an CV accuracy of 70± 0.81% (mean ± standard error of the mean). The
linear regression models achieved the lowest accuracy on the test sets with 19% ± 0.002. Pyteomics and the
corresponding linear model (lcp) with a minimal set of features were not included in the grid search.

Figure S7: Mean weights from the input layer to the first hidden layer in the FNN. The X-axes indicates
the position of an residue in the peptide sequence. The weights are derived from training the FNN on the
complete training data (Accuracy: 0.74, Correlation: 0.95). Abbreviations: N - peptide N-terminal, C - peptide
C-terminal, I - internal. The numbers indicate the distance to the respective termini.

1https://github.com/dmlc/xgboost
2https://pythonhosted.org/mord/
3http://scikit-learn.org/stable/
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Table S2: Extracted Features and their description.

Feature Description Total Features

AAcount Amino acid counts of all 20 amino acids 20
N[AA]1-5 Amino acid counts encoding the n-terminal positions from 1-5. 100
C[AA]2-5 Amino acid counts encoding the c-terminal positions from 2-5. N-

term was excluded as mostly R/K was observed.
80

CtermK/R Indicator if Lysine is the C-Terminal Residue 2
Patterns Counts the number of coherent amino acid patterns in the pep-

tide sequence of different classes: acidic, basic, aromatics, mixed
(acidic+basic) patterns. For example DD, KR, WW, DK.

4

Structural Features Percentage of amino acids from the sequence that are preferably in
the following secondary structure elements: Helix: V, I, Y, F, W, L.
Turn: N, P, G, S. Sheet: E, M, A, L.

3

Gravy Gravy according to Kyte and Doolittle. 1
pI Isoelectric point of the peptide sequence. 1
loglength Natural logarithm of the peptide length. 1
Netcharge Defined as sum of the acidic residues (-1 each), basic residues (+1)

and the aromatics F (0.3), W (0.8) and Y (0.6) in a peptide sequence.
1

N-/C-Term distance Shortest distance of E/D to the C-term and shortest distance of K/R
to the N-term.

2

TurnIndicator Average distance between Proline residues in the sequence. 1
Sandwich Aromatic patterns that are separated in sequence by one amino acid,

e.g. WXY.
1

Aromaticity Percentage of amino acids belonging to WFY. 1

Total number of features 218

Note: The count features were scaled with a length correction parameter (lcp).

Table S3: Initial parameter grid for hyper-parameter optimization

Classifier Parameter Grid

ORL IT ’alpha’: [0.1, 0.3, 0.5, 0.7, 0.9]
Lasso ’fit intercept’: [True, False], ’alpha’: [0.1, 0.3, 0.5, 0.7, 1], ’normalize’: [True,

False]
LinearRegression ’fit intercept’: [True, False], ’normalize’: [True, False]
Ridge ’fit intercept’: [True, False], ’alpha’: [0.1, 0.3, 0.5, 0.7, 0.9], ’normalize’: [True,

False]
SVM [’C’: [0.1, 1, 10], ’kernel’: [’linear’], ’class weight’: [None, ’balanced’], ’C’: [0.1, 1,

10], ’gamma’: [0.001, 0.0001], ’kernel’: [’rbf’], ’class weight’: [None, ’balanced’]]
OLR AT ’alpha’: [0.1, 0.3, 0.5, 0.7, 0.9]
RandomForestClassifier ’n jobs’: [20], ’n estimators’: [100, 500], ’max features’: (’log2’, ’auto’),

’max depth’: (None, 4, 7), ’min samples split’: (2, 15)
XGB ’reg alpha’: [0.01, 0.5, 1], ’n estimators’: [300, 500], ’gamma’: [0, 0.1, 1],

’max depth’: [3, 5, 9], ’reg lambda’: [0.01, 0.5, 1], ’nthread’: [20], ’learning rate’:
[0.1, 0.05]

RandomForestRegressor ’n jobs’: [20], ’n estimators’: [100, 500], ’max features’: (’log2’, ’auto’),
’max depth’: (None, 5, 15), ’min samples split’: (2, 15)

LogisticRegression ’C’: [0.01, 0.1, 1, 10], ’multi class’: [’ovr’, ’multinomial’], ’n jobs’: [20], ’solver’:
[’newton-cg’], ’class weight’: [None, ’balanced’]

Note: The parameter grid was searched exhaustively with all combinations. The definition of each parameter
is available via the documentations of scikit-learn, MORD and XGBoost. The neural network architecture was
optimized manually.
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Table S4: Best Results after hyper-parameter optimization with 5-fold cross-validation.

Classifier Best Parameters Train Accuracy (%) Test Accuracy (%)

FNN ’layer’: 4, ’neurons’: [50, 40, 35, 29], ’ac-
tivation’:[’relu’, ’tanh’, ’relu’, ’softmax’],
’batch size’:512, ’epochs’: 100

79 ± 1.27 70 ± 0.81

SVC ’class weight’: None, ’C’: 10, ’kernel’: ’lin-
ear’

64 ± 0.17 53 ± 0.19

SVR ’C’: 10, ’kernel’: ’rbf’, ’gamma’: ’auto’, ’ep-
silon’: 0.1

52 ± 0.06 50 ± 0.26

XGBClassifier ’n estimators’: 300, ’learning rate’:
0.1, ’reg lambda’: 0.01, ’reg alpha’: 1,
’max depth’: 9, ’nthread’: 25, ’gamma’:
0.1

100 ± 0.0 47 ± 0.32

XGBRegressor ’n estimators’: 300, ’learning rate’: 0.1,
’reg lambda’: 0.01, ’reg alpha’: 0.01,
’max depth’: 9, ’nthread’: 25, ’gamma’:
0.1

67 ± 0.17 46 ± 0.31

RF-Classifier ’max features’: ’auto’, ’n jobs’: 20,
’n estimators’: 500, ’min samples split’: 2,
’max depth’: None

100 ± 0.0 43 ± 0.33

LogisticAT ’alpha’: 0.5 43 ± 0.14 43 ± 0.18
RF-Regressor ’max features’: ’auto’, ’n jobs’: 20,

’n estimators’: 500, ’min samples split’: 2,
’max depth’: None

77 ± 0.04 42 ± 0.19

LogisticRegression ’solver’: ’newton-cg’, ’multi class’: ’multi-
nomial’, ’C’: 10, ’class weight’: None,
’n jobs’: 20

48 ± 0.07 40 ± 0.2

LinearRegression ’fit intercept’: True, ’normalize’: False 19 ± 0.15 19 ± 0.36
Ridge ’alpha’: 0.1, ’normalize’: False,

’fit intercept’: True
19 ± 0.15 19 ± 0.34

Lasso ’alpha’: 0.1, ’normalize’: False,
’fit intercept’: True

14 ± 0.07 14 ± 0.06

Note: The grid search results are based on 5-fold cross-validation and sorted after the test accuracy in
descending order. Values in the accuracy column represent the mean and standard error of the mean from the
CV. A full explanation of the parameters is available through the scikit-learn documentation. Abbreviations:
SVC - Support Vector machine Classification, OLR - Ordinal Logistic Regression, AT - All-Threshold, IT -
Immediate-Threshold, RF - Random Forest, FNN - Feedforward Neural Network.

References

[1] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach
to multiple testing, 1995.

[2] Tianqi Chen and Carlos Guestrin. XGBoost : Reliable Large-scale Tree Boosting System. arXiv, pages 1–6,
2016.

[3] Anton A. Goloborodko, Lev I. Levitsky, Mark V. Ivanov, and Mikhail V. Gorshkov. Pyteomics - a Python
Framework for Exploratory Data Analysis and Rapid Software Prototyping in Proteomics. J. Am. Soc.
Mass Spectrom., 24(2):301–304, feb 2013.

[4] Oleg V. Krokhin. Sequence-specific retention calculator. Algorithm for peptide retention prediction in ion-
pair RP-HPLC: application to 300- and 100-A pore size C18 sorbents. Anal. Chem., 78(22):7785–95, nov
2006.

[5] Luminita Moruz, An Staes, Joseph M. Foster, Maria Hatzou, Evy Timmerman, Lennart Martens, and Lukas
Käll. Chromatographic retention time prediction for posttranslationally modified peptides. Proteomics,
12(8):1151–9, apr 2012.

[6] Fabian Pedregosa and G Varoquaux. Scikit-learn: Machine learning in Python, volume 12. 2011.

8

100 Appendix D. Supporting Information Manuscript 4



[7] Fabian Pedregosa-Izquierdo. Feature extraction and supervised learning on fMRI : from practice to theory.
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Supplementary Note 1:
xiRT: Multi-task Retention Time Prediction using Neural Networks

Overview

The schematic architecture of the xiRT was presented in Figure 1 of the manuscript, while Supplementary
Figure 1 shows a more detailed view (exemplary configuration). Here, we want to give more details about the
individual layers. The input layer dimension is dynamically defined by the longest peptide that was identified
in the set of PSMs/CSMs. In the example in Supplementary Figure 1 this was set to 59. Subsequently, the
input is passed to a predefined embedding layer in TensorFlow. The embedding layer finds a continuous vector
representation from a list of positive integers. A hyper-parameter for the network is the length of the embedding
vector, here set to 50.

Siamese Architecture

The heart of the xiRT network is a recurrent layer where we either used a Gated Recurrent Unit (GRU-) [1] or a
Long short-term memory (LSTM)-layer [2]. These layers are especially suited for the handling sequential data,
e.g. language data or peptide sequences. They are available as GPU and CPU implementations in TensorFlow
and can thus be used interchangeably within xiRT. The central assumption for recurrent layers is that the order
of the input (here amino acids) plays a pivotal role in the prediction process [3]. By optionally applying a
bidirectional GRU/LSTM layer, the input sequence is handled forward and backward. To speed up the training
process, the activations are further batch-normalized to µ = 0, σ = 1. The above-described parts of the network
are designed in a Siamese fashion. That means that two input sequences (i.e. the individual peptides in a
crosslink) are passed to their custom inputs. However, these layers process the input in the same manner since
they share the same weights. The combination of the outputs from the Siamese network can be handled in
multiple ways. In Supplementary Figure 1 an Add-layer was used, which simply adds the two inputs element-
wise. For the retention time prediction of linear peptides there is only a single input and thus no Siamese or
additive layers are necessary.

Task Specific Layers

The architecture described above is also shared between the different prediction tasks. In this manuscript,
we developed a multi-task network that predicts peptide retention behaviour during SCX, hSAX and RP
chromatography. For this, the individual task-networks were designed in a symmetric fashion. They are defined
by a sequence of layers with: layeri = Dropout(BatchNormalization(Dense(x))). Per default we used i = 3 and
a pyramid-like structure for the dense layers with nneurons = [300, 150, 75]. The default dropout-rate was set to
0.1 for all dense layers. Moderate kernel regularization (l2, λ = 0.001) was also used.

For each task, a custom prediction layer and a loss function are defined. The two employed fractionation
techniques SCX and hSAX are handled as ordinal regression problems in which sigmoid activations were used
and binary cross-entropy as loss. For the RP, we used a linear activation function and the mean squared
error as loss function. Note that the handling of data from fractionation also allows to treat the problem
as classification or as regression task and thus the use of softmax or linear activation functions are possible
(also configurable in xiRT). The total loss is computed as weighted sum of the three individual losses, e.g.
losstotal = wfractionation ∗ (lossSCX + losshSAX) + lossRP . Using Adam (Adaptive Moment Estimation) as
optimizer, the learning rate was fixed to 0.001 during development and optimization on linear data. After
optimization for crosslink data a higher learning rate (0.01) achieved faster convergence with similar accuracy
together with a batch-size of 256 and was therefore chosen as default value in xiRT.

Implementation Details

xiRT is implemented in the popular deep learning framework TensorFlow 2.0 [4]. All training and prediction
scripts were run on a TITAN X (Pascal) with 12.8 GB of memory. The usage of a dedicated GPU allows
to use optimized recurrent layers in TensorFlow. These layers have a ”CuDNN”-prefix, e.g. CuDNNGRU.
CuDNNLSTM. Our implementation can also be used on systems without GPUs, at the cost of higher run time.
TensorFlow also allows the usage of so-called callbacks. The most important callbacks in our implementation
are 1) ReduceLRonPlateau, 2) EarlyStopping and 3) ModelCheckpoint. The 1) callback is used to reduce the
learning rate by a factor of 0.5 when the performance has not improved in 15 epochs by a minimum delta of 1e-4.
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Similarly, 2) is used to speed up the training by stopping the process if no improvements were achieved in a
configurable number of epochs. In addition, for the final model the best weights over all epochs are chosen based
on the performance on the validation split. Finally, 3) is used to store the weights and model architecture on
disk. This allows applying the best model for the respective cross-validation folds and the candidate rescoring.
For transfer learning applications these trained models can also be used for new data sets. Most parameters of
the network such as learning rate, optimizer, batch size, epochs, callback settings, number of layers / neurons can
be adapted through a dedicated YAML file. The online documentation for xiRT on GitHub contains examples
for various training and RT dimension scenarios.

siamese

input_3: InputLayer
input:

output:

[(?, 59)]

[(?, 59)]

main_input: InputLayer
input:

output:

[(?, 59)]

[(?, 59)]

input_4: InputLayer
input:

output:

[(?, 59)]

[(?, 59)]

main_embedding: Embedding
input:

output:

(?, 59)

(?, 59, 50)

shared0_BiCuGRU(cu_dnngru_1): Bidirectional(CuDNNGRU)
input:

output:

(?, 59, 50)

(?, 100)

shared0_lstm_bn_1: BatchNormalization
input:

output:

(?, 100)

(?, 100)

add_1: Add
input:

output:

[(?, 100), (?, 100)]

(?, 100)

dense_9: Dense
input:

output:

(?, 100)

(?, 300)
dense_12: Dense

input:

output:

(?, 100)

(?, 300)
dense_15: Dense

input:

output:

(?, 100)

(?, 300)

batch_normalization_9: BatchNormalization
input:

output:

(?, 300)

(?, 300)
batch_normalization_12: BatchNormalization

input:

output:

(?, 300)

(?, 300)
batch_normalization_15: BatchNormalization

input:

output:

(?, 300)

(?, 300)

dropout_9: Dropout
input:

output:

(?, 300)

(?, 300)
dropout_12: Dropout

input:

output:

(?, 300)

(?, 300)
dropout_15: Dropout

input:

output:

(?, 300)

(?, 300)

dense_10: Dense
input:

output:

(?, 300)

(?, 150)
dense_13: Dense

input:

output:

(?, 300)

(?, 150)
dense_16: Dense

input:

output:

(?, 300)

(?, 150)

batch_normalization_10: BatchNormalization
input:

output:

(?, 150)

(?, 150)
batch_normalization_13: BatchNormalization

input:

output:

(?, 150)

(?, 150)
batch_normalization_16: BatchNormalization

input:

output:

(?, 150)

(?, 150)

dropout_10: Dropout
input:

output:

(?, 150)

(?, 150)
dropout_13: Dropout

input:

output:

(?, 150)

(?, 150)
dropout_16: Dropout

input:

output:

(?, 150)

(?, 150)

dense_11: Dense
input:

output:

(?, 150)

(?, 75)
dense_14: Dense

input:

output:

(?, 150)

(?, 75)
dense_17: Dense

input:

output:

(?, 150)

(?, 75)

batch_normalization_11: BatchNormalization
input:

output:

(?, 75)

(?, 75)
batch_normalization_14: BatchNormalization

input:

output:

(?, 75)

(?, 75)
batch_normalization_17: BatchNormalization

input:

output:

(?, 75)

(?, 75)

dropout_11: Dropout
input:

output:

(?, 75)

(?, 75)
dropout_14: Dropout

input:

output:

(?, 75)

(?, 75)
dropout_17: Dropout

input:

output:

(?, 75)

(?, 75)

hsax: Dense
input:

output:

(?, 75)

(?, 10)
scx: Dense

input:

output:

(?, 75)

(?, 9)
rp: Dense

input:

output:

(?, 75)

(?, 1)

Supplementary Figure 1: Example parameterization of xiRT. Dashed box represents the Siamese network part.
Boxes represent individual layers with their names, input and output dimensions. Question marks represent
the unknown batch-size at compilation time of the network.
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Supplementary Figure 2: Cross-validation results from applying xiRT on linear peptide input. a) Average
training performance on all tasks (SCX - blue; hsAX - purple; RP - red) over 75 epochs from k=3 CV-folds.
Confidence intervals show standard deviation from a 3-fold CV with the dashed/solid line representing the mean
for the validation/training data, respectively.. b) Evaluation metrics for all tasks on the different CV folds. c-e)
Representative results for a random prediction fold. Abbreviations: val, validation; pred, prediction, unval,
unvalidated; mse, mean squared error; acc, accuracy.; racc, relaxed accuracy (|error| ≤ 1).
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Supplementary Figure 3: Crosslink identifications over fractions / time. (a-b) Distribution of CSMs across
native fraction numbers from the off-line fractionation based on strong cation exchange (SCX) and hydrophilic
strong anion exchange (hSAX) chromatography. Black lines indicate the eluent concentration (represented by
conductivity) at the beginning of the fraction. (c) Distribution of CSMs across reversed-phase retention time
bins. Black lines indicate the eluent concentration (fraction of eluting mobile phase B) at the beginning of
the fraction. Data corresponds to 11072 CSMs at 1% FDR, all target-target hits excluding matches involving
human proteins.
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Supplementary Figure 4: Comparison of peptide properties from the E. coli target database and the H. sapiens
entrapment database. Variables: KR, K/R count in peptide; aromatic, F/Y/W counts; acids, D/E counts;
isoelectric point and GRAVY were computed using Biopython [5]. Boxplots show the median as line in the
IQR-box and the whiskers show the 1.5x interquartile range (min & max), points represent the outliers. E. coli
box represents n=69175 peptides, H. sapiens box represents n=66083 peptides, respectively.)

merge layer

Supplementary Figure 5: Hyper-parameter optimization for xiRT. Appropriate hyper-parameters were assessed
following cross-validation (k=3) on crosslinked peptides. The different merge functions (add, average, concat,
multiply - from light blue to dark blue) represent tensorflow implementations for the combination of the two
input vectors from the Siamese network outputs. Bars indicate the mean.

S-5

106 Appendix E. Supporting Information Manuscript 5



0 10 20

RP

Split = Train

0 10 20
Mean Squared Error (MSE)

Split = Validation

0 10 20

Split = Prediction

Accuracy
0.0 0.5 0.0 0.5 0.0 0.5

SCX

hSAX

Split = Train Split = Validation Split = Prediction

Single-Task
Multi-Task (2)
Multi-Task (3)

Supplementary Figure 6: xiRT performance for single- (grey) and multi-task parameterizations (with either (2)
or (3) tasks in lightblue and blue, respectively). Bars show the mean value from five replica of 3-fold CV (every
dot represents a single CV result). One-way ANOVA (type 2) results fail to reject the null hypothesis of an
equal mean in all groups at α = 0.05 (prediction split only). Results were: SCX (F = 2.7, p − value = 0.08,
n = 45), hSAX (F = 1.69, p−value = 0.20, n = 45), RP (F = 0.04, p−value = 0.96, n = 60), with 2 degrees of
freedom and 42 total df for the SCX/hSAX test and 57 total df for the RP test. Error bars show the standard
deviation. For all bars n=15, except for the Multi-Task (2) in the RP analysis, where RP results are derived
from SCX-RP and hSAX-RP, leading to n=30 observations for the RP performance.

Supplementary Figure 7: xiRT benchmark for single- (grey) and multi-task (blue) parameterizations on different
hardware. Every parameter was tested in n=5 replicates. For the ’summed’ single-task estimate random
replicates were paired. GPU analysis was performed on Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz equipped
with an TITAN X (Pascal) with 12GB memory. CPU analysis was performed on Intel(R) Core i7 6700K CPU
@ 4.00 GHz, with 32GB DDR4 memory. Error bars shown the standard deviation.
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Supplementary Figure 8: Redundancy of CSMs across SCX / hSAX fractions (6843 non-unique CSMs at at
1% FDR). If a CSM was identified in multiple fractions, the span (min and max of the fraction) was calculated
and visualized. For example, if a CSM was identified in the fractions 2,3,4, the span would be (2, 4), leading
to an increase in the plot at x=2 and y=4. In other words, 60 CSMs were indeed observed with a span of (2,
4). CSM redundancy was high in the last fractions (8 for SCX, 9 for hSAX) emphasizing ambiguous retention
behavior. Fraction numbers were transformed to start at zero.
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Supplementary Figure 9: Learning results on crosslink data from 3-fold cross-validation (five replicates). a)
total unweighted loss is shown, b and c) classification accuracy and d) R2 for the RP prediction is shown. Data
used (train, validation, prediction): 10% (387, 43, 215); 20% (774, 87, 430); 30% (1161, 130, 645); 40% (1548,
173, 860); 50% (1935, 216, 1075); 60% (2323, 259, 1290); 70% (2710, 302, 1505); 80% (3097, 345, 1720); 90%
(3484, 388, 1936); 100% (3871, 431, 2151). Vertical bars show the standard deviation with the mean as center.
Training, validation and prediction performance is shown in blue, orange and green, respectively.
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Supplementary Figure 10: Reversed-phase RT prediction for the Fanconi anaemia monoubiquitin ligase complex
data set[6] (FA-complex).The panels show the individual cross-validation predictions for the three training set-
ups. The modes (a) train (solely train on FA-complex data), (b) pretrained-predict (apply pretrained model,
using the subset of E. coli DSS-crosslink data at 1% CSM-FDR without fine-tuning), (c) pretrained-adjust (load
the previously described model, include fine-tuning the network during cross-validation). For the pretrained-
predict model, no cross-validation was performed. While the data contained 1400 CSMs at 1% CSM-FDR,
only about 700 CSMs were used by xiRT due to high peptide sequence redundancy. Cross-validation folds are
shown in orange, blue and red for the folds 1 to 3.
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Supplementary Figure 11: SHAP explanations for the hSAX elution behavior of a crosslinked peptide that eluted
in hSAX fraction 6 (0-based). a-b) SHAP values for the crosslinked peptide DGISYTFSIVPNALGkDDEVRK-
GAkHFDVDAFDAR (H- = N-terminus, clK = crosslinked lysine residue, -OH = C-terminus) for the prediction
to elute in fraction 5. c-d) SHAP values for the peptide to elute in fraction 6. e) Predicted output of the network
(ordinal fraction prediction) that is translated into the predicted fractions. The fraction is determined by the
first prediction that yields a probability lower than 0.5 (orange line). Negative (blue) SHAP-values contribute
towards an earlier elution, while positive (red) SHAP-values contribute towards later elution.
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Supplementary Figure 12: SHAP explanations for the SCX elution time of a crosslinked peptide that eluted in
SCX fraction 6 (0-based). See Supplementary Figure 11 for a detailed description.
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Supplementary Figure 13: SHAP values for individual amino acids of crosslinked peptides contributing towards
early or late elution in SCX/hSAX/RP separations. Positive (red) SHAP values contribute towards later elution,
negative (blue) SHAP values contribute towards earlier elution. Horizontal grey lines highlight R, K, clK, H
residues. SHAP values were computed for 500 randomly drawn CSMs passing 1% CSM-FDR.
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Supplementary Figure 14: Visualization of the embedding space throughout the network for each task. UMAP
parameters: metric, Euclidean; min dist, 0.0; n neighbors, 15. Individual plots correspond to the add (shared)
and dense (task-specific) layers in Supplementary Figure 1. UMAP was applied to a cross-validation model
from the E. coli DSS data set. Note that the given parameterization of UMAP might be suboptimal for all the
selected embedding spaces. Color bar represents the retention time in each dimension either in minutes (RP)
or discrete fractions (hSAX/SCX).
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Supplementary Figure 15: Evaluation of combining xiRT with pLink2 search results. a-c) Cross-validation
results on the second prediction fold using all three RT dimensions (hSAX, SCX, RP). pLink2 data was filtered
to a Q-value of 0.01 for the training process in xiRT. d) Error characteristics for TT (green, n=6436), TD
(orange, n=214) and DD (brown, n=34) CSMs. P-values are derived from a two-sided, independent t-test with
Bonferroni correction between TT and TD observations. P-values: 1.545e-03 (hsax), 5.667e-04 (scx), 3.381e-04
(rp), test-statistics: -3.364e+00 (hsax), -3.632e+00 (scx), -3.586e+00 (rp). e) Dimensionality reduced feature
space using UMAP with default parameters. Black dots represent CSMs that passed the 0.01 Q-value cutoff.
Only heteromeric crosslink spectrum matches are shown. TT and TD CSMs from E. coli are shown in green
and red, while TT and TD CSMs from human peptides crosslinked to E. coli are shown in orange (TT) and
peach (TD).
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Supplementary Note 2:
Hyper-Parameter Optimization on Linear Data

Neural networks are subject to many parameters that need tuning to achieve the best possible performance.
Based on our initial work on the prediction of hSAX RTs for linear peptides [7], we came up with an initial
architecture and then optimized it manually. Further, we choose a step-wise approach to find suitable hyper-
parameters during a 3-fold cross-validation search. The first grid of hyper-parameters is shown in Table 1. For
the CV, we split the data into a training fold, a validation fold (10% of the training fold data) and a testing
fold per CV iteration. We also use the term prediction fold synonymous to the testing fold since we only use
the testing fold predictions for CSM rescoring later on. All decoy-PSMs and identifications with a FDR higher
than the selected training FDR are assigned to an unvalidation fold. After the first round of CV on a set of
576 parameters, another grid-search (320 parameters) was performed with adjusted hyper-parameters (Table
2). This second grid was based on the best performing parameters in the first iteration with slight variations.
Note, the linear peptide identifications at 1% PSM-FDR were used for this procedure (n=20802 unique se-
quences, ignoring identifications to the entrapment database). For the execution of the hyper-parameter search,
we again designed a snakemake [8] workflow that can run an arbitrary number of configuration files. The best
final parameters were then chosen based on the means of the loss, r2rp, accuracyhSAX and accuracySCX in the
testing sets during CV. Note that the 2-step optimization offers a reasonable trade-off between finding optimal
parameters and decreasing the necessary run time.

The best parameters from optimization (Tab. 1, Tab. 2), showed an average (± standard deviation) R2
of 0.99 ± 0.003 for the RP task, average accuracy 64% ± 0.9 for hSAX task and 46% ± 0.7 for the SCX task
(Supplementary Figure 2). By using a relaxed accuracy metric (absolute prediction error ≤ 1 fraction), hSAX
RT prediction achieved 92% ± 0.3 and SCX RT prediction 74% ± 0.7.

The network performance across the individual CV-folds of the best parameter was very comparable in
terms of training time and performance (Supplementary Figure 2a). The CV was performed on 20802 unique
CSMs (train: 12481, validation: 1387, prediction: 6934 observations). The learning trajectory of the number of
epochs follows a very smooth learning curve and shows a constant improvement in the training and validation
fold with a small gap between the training and validation performance. We also observed that the prediction
accuracy for hSAX is better than for SCX in both, training and validation data. This trend is also observable
in the prediction folds (Supplementary Figure 2b). In addition, the performance drop from the validation fold
to the prediction fold is rather small which is desirable and shows good generalization ability of the network.
A lower prediction performance on the unvalidation split can be expected and hence serves as another quality
check. The predictions were made with the best classifier from the CV split. The individual predictions for a
single CV-fold are more accurate for the RP than for SCX or hSAX (Supplementary Figure 2c-e). While the
RP predictions achieve an r2 of 0.99, the accuracy in SCX and hSAX is limited to 0.64 and 0.45, respectively.
The different behaviour of hSAX and SCX might be explained through deviating peptide separation behaviour
with the applied gradients (Supplementary Figure 3). While the shape of the gradients is similar, the hSAX
gradient led to a more uniform distribution of crosslinked peptides across the elution window in contrast to
the more confined elution of crosslinked peptides in later SCX fractions. Therefore, adjacent SCX fractions are
expected to show a higher overlap in their identifications than fractions from hSAX.
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Supplementary Table 1: First parameter grid for the optimization on linear peptide data.

Parameter Parameter Grid Selected Parameter

recurrent type CuDNNGRU CuDNNGRU
recurrent units 25, 75, 125 75
recurrent activity l2 lambda 0, 0.001 0.001
recurrent kernel l2 lambda 0 0
dense layers 3 3
dense neurons (300, 150, 75), (150, 100, 50) (150, 100, 50)
dense kernel l2 lambda (0.001, 0.001, 0.001) (0.001, 0.001, 0.001)
dense dropout (0.3, 0.3, 0.3), (0.1, 0.1, 0.1) (0.1, 0.1, 0.1)
dense activation (relu, relu, relu), (swish, swish, swish) (swish, swish, swish)
embedding length 50, 100 50
batch size 256, 512 256
class weight 1, 250, 500 250

Note: Parameters with a prefix ”recurrent” were used for a single recurrent layer. Parameters with the
”dense” prefix were used for the task specific layers. A total set of 576 parameter combinations were used
during the grid search. Remaining settings were left at defaults. The best parameter was determined based on
the testing folds in a 3-fold CV experiment. Training time was limited to 75 epochs and early stopping
patience was set to 15.

Supplementary Table 2: Second parameter grid for the optimization on linear peptide data.

Parameter Parameter Grid Selected Parameter

recurrent type CuDNNGRU, CuDNNLSTM CuDNNGRU
recurrent units 75 75
recurrent activity l2 lambda 0, 0.001 0.001
recurrent kernel l2 lambda 0, 0.001 0.001
dense layers 3 3
dense neurons (300, 150, 75) (300, 150, 75)
dense kernel l2 lambda (0.001, 0.001, 0.001) (0.001, 0.001, 0.001)
dense dropout (0.2, 0.2, 0.2), (0.1, 0.1, 0.1 ) (0.1, 0.1, 0.1)
dense activation (relu, relu, relu), (swish, swish, swish) (relu, relu, relu)
embedding length 50, 75 50
batch size 256 256
class weight 1, 50, 100, 200, 250 50

Supplementary Note 3:
xiRT Explainability Analysis

In this section we describe the analysis of the SHAP values from the learned multi-task model. For this, the
used tensorflow-version needed to be downgraded to 1.15 together with SHAP (v. 0.36.0). As background data
100 randomly chosen CSMs were provided. To use the DeepExplainer, the trained network had to be dissected
into the single tasks. Furthermore, the ordinal regressions setup for hSAX and SCX complicates the analysis
since each sigmoid activation of the output vector can be explained via SHAP (padded positions were ignored).
Therefore, we only focused on the SHAP values for the relevant prediction decision, i.e. the sigmoid activiation
that was <= 0.5. With this special model architecture, the returned SHAP-values failed the ’check additivity’
flag in the SHAP package and the check was thus disabled. However, the magnitude and overall explanations
from the DeepExplainer show realistic feature importance values for the RT contributions on residue level. Since
the SHAP values only represent an approximation of the contributions we further explored their magnitude.
In Supplementary Figure 11 we demonstrate the explainability via SHAP of a crosslinked peptide’s predicted
retention time (hSAX fraction). The residues D, E, R and K behave mostly as expected. In addition, aromatics
(Y, F) also contribute to stronger retention and hence later elution times, while A contributes towards earlier
elution times. These observations are in line with an earlier study on the hSAX RT behavior[7]. Similarly,
an explanation for a SCX prediction is shown in Supplementary Figure 12. The global SHAP values based
on the raw sequence inputs to xiRT are shown in Supplementary Figure 13. For hSAX again, D, E, F, Y,
W belong to the major contributors towards extended retention times. For SCX, the positive contribution is
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mainly attributed towards R, K and H. Note that crosslinked K residues, contribute much less towards later
elution times than non-crosslinked K residues.

Supplementary Table 3: RT features used for prediction on E. coli data set.

# Feature Name Description

1 hsax-error crosslinked - raw error between observed and predicted (hSAX)
2 scx-error crosslinked - raw error between observed and predicted (SCX)
3 rp-error crosslinked - raw error between observed and predicted (RP)
4 hsax-error-peptide1 raw peptide 1 error (hSAX)
5 scx-error-peptide1 raw peptide 1 error (SCX)
6 rp-error-peptide1 raw peptide 1 error (RP)
7 hsax-error-peptide2 raw peptide 2 error (hSAX)
8 scx-error-peptide2 raw peptide 2 error (SCX)
9 rp-error-peptide2 raw peptide 2 error (RP)

10 peptide1 mean median of all peptide1 error (absolute values)
11 peptide1 sum sum of all peptide1 error (absolute values)
12 peptide1 max maximum of all crosslinked errors
13 peptide1 min minimum of all peptide1 errors
14 peptide2 mean median of all peptide2 errors (absolute values)
15 peptide2 sum sum of all peptide2 errors (absolute values)
16 peptide2 max maximum of all peptide2 errors
17 peptide2 min minimum of all peptide2 errors
18 cl mean median of all crosslinked errors (absolute values)
19 cl sum sum of all crosslinked errors (absolute values)
20 cl max maximum of all crosslinked errors
21 cl min minimum of all crosslinked errors
22 initial prod log2 product (absolute values + 0.1) of all initial errors (#1-9)
23 initial sum sum (absolute values) of all initial errors (#1-9)
24 initial min minimum (absolute values) of all initial errors (#1-9)
25 initial max maximum (absolute values) of all initial errors (#1-9)
26 hsax-error square squared hsax-error for crosslinked errors
27 hsax-error abs absolute hsax-error for crosslinked errors
28 scx-error square squared scx-error for crosslinked errors
29 scx-error abs absolute scx-error for crosslinked errors
30 rp-error square squared rp-error for crosslinked errors
31 rp-error abs absolute rp-error for crosslinked errors
32 hsax-error-peptide1 square squared hsax-error for peptide1 errors
33 hsax-error-peptide1 abs absolute hsax-error for peptide1 errors
34 scx-error-peptide1 square squared scx-error for peptide1 errors
35 scx-error-peptide1 abs absolute scx-error for peptide1 errors
36 rp-error-peptide1 square squared rp-error for peptide1 errors
37 rp-error-peptide1 abs absolute rp-error for peptide1 errors
38 hsax-error-peptide2 square squared hsax-error for peptide2 errors
39 hsax-error-peptide2 abs absolute hsax-error for peptide2 errors
40 scx-error-peptide2 square squared scx-error for peptide2 errors
41 scx-error-peptide2 abs absolute scx-error for peptide2 errors
42 rp-error-peptide2 square squared rp-error for peptide2 errors
43 rp-error-peptide2 abs absolute rp-error for peptide1 errors

Note: Features computed from xiRT predictions. All errors or predictions are derived from the same xiRT
model for crosslinked peptides. In the case of individual peptide predictions (peptide1/peptide2), the second
sequence in the input is set to all-zeroes. This feature set was used in the E. Coli analysis with all three RT
dimensions.
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Supplementary Table 4: Unique and redundant CSMs across hSAX and SCX fractions.

Total Unique Redundant hSAX hSAX SCX SCX
(red/same) (red/diff) (red/same) (red/diff)

Counts 39226 4500 6843 3729 3114 2849 3994
% 100 40 60 33 27 25 35

Note: Unique and redundant CSM identifications at 1% CSM-FDR (separate for heteromeric and self-links).
Unique CSMs are combinations of peptide 1, peptide 2, link site and charge state that were only identified
once. Redundant (red) CSMs were identified more than once and thus can either have different RT times
(”diff”) or the same RT times (”same”). Percentages show the observations divided by the sum of unique and
redundant CSMs (rounded). The theoretical accuracy limit for hSAX and SCX was derived by summing the
percentages of unique and ’red/same’ CSMs (hSAX: 73%, SCX: 65%).

Supplementary Table 5: Rescoring gains with different number of chromatographic dimensions.

level reference RP SCX-RP hSAX-RP SCX-hSAX-RP

heteromeric CSM 724 902 (+1.25x) 977 (+1.35x) 1092 (+1.51x) 1199 (+1.66x)
heteromeric Peptide 507 619 (+1.22x) 664 (+1.31x) 737 (+1.45x) 801 (+1.58x)
heteromeric Residues 414 508 (+1.23x) 546 (+1.32x) 603 (+1.46x) 654 (+1.58x)
heteromeric PPI 109 135 (+1.24x) 131 (+1.2x) 157 (+1.44x) 152 (+1.39x)

self CSM 10357 10404 (+1.0x) 10428 (+1.01x) 10439 (+1.01x) 10443 (+1.01x)
self Peptide 6521 6565 (+1.01x) 6586 (+1.01x) 6598 (+1.01x) 6601 (+1.01x)
self Residues 4810 4853 (+1.01x) 4873 (+1.01x) 4886 (+1.02x) 4888 (+1.02x)
self PPI 478 514 (+1.08x) 531 (+1.11x) 540 (+1.13x) 543 (+1.14x)

Note: The data corresponds to all E. coli target-target identifications at 5% CSM-, Peptide-, Residue-level
FDR and 1% PPI-FDR. Rescoring was performed using a linear SVM. Highest values are marked in bold. The
hyper-parameters for the rescoring were chosen dynamically via cross-validation for each run (’class weight’:
’None’, all conditions; ’C’: 100 (RP, SCX-RP, SCX-hSAX-RP); ’C’: 10 (hSAX-RP)), according to the sklearn
API. Values are rounded to two digits.

Supplementary Table 6: CSMs / PPIs involving a human protein (rescored results).

PSMID Protein 1 Protein 2 Protein 2 Peptide 1 Peptide 2 Peptide 2
(E. coli) (human) (E. coli) (human) (E. coli)
initial corrected initial corrected

2262348 P0AFG6 P50552 P0AFG6 SEEKclASTPAQR KELQKclVK KIKclELVAK
3165715 P0AFG6 P50552 P0AFG6 EDVEKclHLAK KELQKclVK KIKclELVAK
2545576 P0AFG6 P50552 P0AFG6 LLAEHNLDASAI- KELQKclVK KIKclELVAK

KclGTGVGGR

Note: The displayed CSMs correspond to the rescored identifications involving a human peptide as shown in
the manuscript (Figure 4). Three human target CSMs are shown that result in a single PPI between a human
protein and the E. coli protein SucB at 1% PPI-FDR (up to 5% for lower FDR levels). Manual inspection
revealed the SucB peptide KIKELVAK as a better match, i.e. a peptide of the same E. coli protein that the
peptide 1 is from. It had not been matched as it carries a rare modification that was not included in our
original search.
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Supplementary Note 4:
pLink2 Processing

The recalibrated MGF files were searched with pLink 2 (2.3.9) with the following search parameters: Flow
Type, HCD; Cross-Linker, DSS with AlphaSites = BetaSites = [KSTY; Enzyme, Trypsin; Missed Cleavages,
2; Peptide Mass [600, 6000]; Precursor Tolerance, 5ppm; Fragment Tolerance, 3ppm; Fixed Modifications,
Carbamidomethylation[C]; Variable Modifications, Oxidation[M]. The filter parameters were as follows: Filter
Tolerance, 10 ppm; FDR, separate FDR 1% at CSM level; Compute E-value, False.

We further processed the unfiltered results table from pLink2 in order to get all CSMs (including decoys)
and their associated error estimates for usage in xiRT. In short, we added the information about peptide origin,
target-decoy origin, species, peptide positions and RT in SCX/hSAX/RP. These steps were only performed
with the peptides that pass the 0.5 Q-value threshold (similar to the xiSEARCH processing, as only 50%
CSM-FDR data was used). These additional annotation steps were necessary since the filtered pLink2 results
(*.filtered cross-linked-spectra) do not provide the necessary information (e.g. decoy hits and error estimates
are not provided).

The generated file was then used as input for xiRT. For xiRT, the same settings as for xiSEARCH were
used. In total 35822 peptides were used as input data. During the CV 3866 peptides were used for training, 430
for validation and 2147 for prediction (prediction-fold is visualized in Supplementary Figure 15, together with a
2D-feature space representation using UMAP[9]. Using crosslinks identified from pLink2 lead to a comparable
prediction performance as using xiSEARCH (3871 training peptides, 431 validation peptides, 2151 prediction
peptides).

S-16

Appendix E. Supporting Information Manuscript 5 117



Supplementary References

[1] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning
Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” in Proc. 2014
Conf. Empir. Methods Nat. Lang. Process. Stroudsburg, PA, USA: Association for Computational
Linguistics, jun 2014, pp. 1724–1734. [Online]. Available: http://aclweb.org/anthology/D14-1179

[2] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–
1780, nov 1997. [Online]. Available: https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, may 2015.
[Online]. Available: http://www.nature.com/articles/nature14539

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale machine learning,” in Proc.
12th USENIX Symp. Oper. Syst. Des. Implementation, OSDI 2016, 2016.

[5] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck,
F. Kauff, B. Wilczynski, and M. J. L. de Hoon, “Biopython: freely available Python tools for computational
molecular biology and bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, jun 2009. [Online].
Available: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp163

[6] S. Shakeel, E. Rajendra, P. Alcón, F. O’Reilly, D. S. Chorev, S. Maslen, G. Degliesposti, C. J. Russo,
S. He, C. H. Hill, J. M. Skehel, S. H. W. Scheres, K. J. Patel, J. Rappsilber, C. V. Robinson, and L. A.
Passmore, “Structure of the Fanconi anaemia monoubiquitin ligase complex,” Nature, vol. 575, no. 7781,
pp. 234–237, nov 2019. [Online]. Available: http://www.nature.com/articles/s41586-019-1703-4

[7] S. H. Giese, Y. Ishihama, and J. Rappsilber, “Peptide Retention in Hydrophilic Strong Anion Exchange
Chromatography Is Driven by Charged and Aromatic Residues,” Anal. Chem., p. acs.analchem.7b05157,
mar 2018. [Online]. Available: http://pubs.acs.org/doi/10.1021/acs.analchem.7b05157

[8] J. Koster and S. Rahmann, “Snakemake–a scalable bioinformatics workflow engine,” Bioinformatics,
vol. 28, no. 19, pp. 2520–2522, oct 2012. [Online]. Available: https://academic.oup.com/bioinformatics/
article-lookup/doi/10.1093/bioinformatics/bts480

[9] L. McInnes, J. Healy, N. Saul, and L. Großberger, “UMAP: Uniform Manifold Approximation
and Projection,” J. Open Source Softw., vol. 3, no. 29, p. 861, sep 2018. [Online]. Available:
http://joss.theoj.org/papers/10.21105/joss.00861

S-17

118 Appendix E. Supporting Information Manuscript 5


	Title Page
	Declaration of Authorship
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Crosslinking Mass Spectrometry
	Experimental Solutions
	Computational Solutions


	Contributions and Main Findings
	Additional Publications

	Manuscript 1. CID Behavior of Cross-Linked Peptides
	Introduction
	Experimental Procedures
	Spectra Collection and Filtering
	Data Extraction
	Similarity Computation of Linear and Cross-Linked Spectra

	Results and Discussion
	Mass and Charge of Cross-Linked Peptides Can Be Used to Direct Data-Dependent Acquisition
	Mass and Charge Reveal the Cross-Link Status of Fragments without Using Isotopes
	Cross-Linked Peptides Fragment Similar to the Corresponding Linear Peptides
	Uncross-Linking Peptides by Data Analysis Resolves the n2 Problem of Their Identification
	An Integrated Search Strategy for Cross-Linked Peptides

	Conclusion
	References

	Manuscript 2. Optimized Fragmentation Regime
	Introduction
	Methods
	Sample Preparation
	Data Acquisition
	Data Analysis

	Results and Discussion
	HCD Fragmentation Gives Highest Number of Identified Cross-Links
	ETD-Aided Fragmentation Improves the Coverage of the Second Peptide
	Precursor m/z has Large Effect on the Efficiency of the Fragmentation
	HCD EThcD and ETD Fragmentation define the cross-link site most unambiguously
	Data-Dependent Decision Tree for Optimized Acquisition of Cross-Linked Peptides

	Conclusion
	Associated Content
	References 

	Manuscript 3. Noncovalently Associated Peptides
	Introduction
	Materials and Methods
	Data Acquisition
	Data Processing

	Results and Discussion
	Instrument Comparison Revealing a High Number of Suspicious Cross-links in Q Exactive Data
	Long-Distance Links Lacking Support for Being Cross-Linked
	Low Intense Noncovalently Assated Peptides Arising from Two Coeluting Peptides
	In-Source Fragmentation Reduction of the Number of Noncovalently Associated Peptides
	Significance of Noncovalently Associated Peptides

	Conclusion
	Associated Content
	References

	Manuscript 4. Peptide Retention Time Prediction
	Introduction
	Methods
	Experimental Details
	Data Processing
	Machine Learning

	Results
	Peptide Retention in hSAX Is Driven by the Charged Amino Acids
	Lysine Exhibits Stronger Electrostatic Repulsion than Arginine
	Aromatic Amino Acids Play a Key Role in Peptide Retention during hSAX
	A Neural Network Achieves the Highest Prediction Accuracy

	Discussion
	Conclusion
	Associated Content
	References

	Manuscript 5. Crosslinked Peptide Retention Time Prediction
	Introduction
	Results and discussion
	A substantial fraction of crosslinks below the confidence threshold are correct
	Accurate multi-dimensional retention time prediction for crosslinked peptides
	RT characteristics for unsupervised separation of true and false CSMs
	Rescoring crosslinked peptides enhances their identification
	Multiprotein complex studies also benefit from the RT prediction

	Methods
	Sample preparation and multidimensional fractionation 
	LC-MS for crosslinkin identification
	Spectra and peptide spectrum match processing
	Database creation
	Fanconi anemia monoubiquitin ligase complex data processing
	xiRT - 3D Retention Time Prediction
	Cross-validation and prediction strategy
	Supervised peptide spectrum match rescoring
	Feature analysis

	Data availability
	Code availability
	References

	Outlook
	Bibliography
	Supporting Information Manuscript 1
	Supporting Information Manuscript 2
	Supporting Information Manuscript 3
	Supporting Information Manuscript 4
	Supporting Information Manuscript 5

