
Evaluating and Improving Robustness in

Reinforcement Learning using

Self-Supervised Representation Learning

Master of Science Thesis

Khushdeep Singh Mann

Evaluating and Improving Robustness in

Reinforcement Learning using Self-Supervised

Representation Learning

by

Khushdeep Singh Mann

A thesis submitted in partial fulfillment for the

degree of Master of Science (M.Sc.)

in

ICT Innovation - Autonomous Systems

First advisor - Prof. Dr. Matthias Bethge (University of Tübingen)

Second advisor - Prof. Dr. Klaus Robert Müller (Technische Universität Berlin)

June 2021

Declaration of Authorship

I hereby declare that the work conducted during the course of this thesis was in cor-

respondence with the regulations of Technische Universität Berlin. This thesis is the

result of my original work and the used external sources have been indicated and ac-

knowledged as references wherever applicable. This thesis has not been submitted to

any other academic institution for any degree or qualification. I, hereby, acknowledge

and abide by the academic rules and regulations for undertaking post graduate studies

at Technische Universität Berlin.

Name of Student: Khushdeep Singh Beant Singh Mann

Degree course: ICT Innovation (Autonomous Systems)

Faculty: Fakultät IV Elektrotechnik und Informatik Technische Universität

Berlin

Khushdeep Singh Mann

June 2021

Abstract

Dynamically changing constraints in robotics demand the ability to learn, adapt, and

reproduce tasks. The robotic workspace is sometimes unpredictable and high dimen-

sional, limiting the scalability of supervised and Reinforcement Learning (RL). In order

to tackle these constraints, we undertake Self-Supervised Learning (SSL) approach for

inferring and analyzing the internal dynamics within model-free reinforcement learning

algorithms.

The thesis investigates the behavior of RL agents under morphological distribution shifts.

We train the policies for different RL agents and test transfer the learnt models over sev-

eral perturbed environments. The perturbed environments being generated by changing

the length and mass of agent limbs. Later, we compare the performance of RL policies

with and without integrated SSL representations, allowing the agents to adapt across the

environments with perturbed parameters. We find that out-of-distribution performance

of self-supervised models is correlated to degradation in agent reward. This work has

been accepted at the ’Self-Supervision for Reinforcement Learning Workshop - ICLR

2021’ and the short paper is available here.

https://openreview.net/forum?id=hR_TNbCr_nQ

Abstract

Robotische Systeme müssen in der Lage sein, sich an Änderungen ihrer Dynamik und

wechselnden Umweltbedingungen flexibel anzupassen. Diese Änderungen sind manch-

mal schwer vorhersagbar und limitieren die Skalierung von Methoden des verstärkenden

Lernens (Reinforcement Learning, RL) in der realen Welt. In dieser Arbeit betrachten

und analysieren wir Methoden des selbstüberwachten Lernens (Self-Supervised Learning,

SSL), um RL Modelle an ändernde Dynamiken anzupassen.

Wir betrachten dabei Veränderungen des Körperplan verschiedener RL Agenten und

untersuchen, ob mittels Adaptation per SSL eine Verbesserung des erwarteten Gewinns

erreicht werden kann. Während wir eine Korrelation zwischen der Verringerung des

Gewinns und des erwarteten Fehlers eines SSL Modells unter einer Dynamikänderung

feststellen, finden wir noch keinen ausreichenden Beleg für einen kausalen Zusammen-

hang. Teil dieser Arbeit erschien bereits als kurzer Beitrag auf dem Self-Supervision for

Reinforcement Learning Workshop der ICLR2021 link.

https://openreview.net/forum?id=hR_TNbCr_nQ

Acknowledgements

At first, I would like to thank my supervisor - PhD candidate Steffen Schneider and

Prof. Matthias Bethge from the University of Tübingen for giving me an opportunity to

work on this thesis and for the constant support. Steffen always provided feedback on

my progress and appreciated my efforts. He was always available to discuss ideas and

help me with the codebase.

Next, I would like to thank Prof. Georg Martius from Autonomous Learning group at

Max Planck Institute for Intelligent Systems for providing valuable feedback during the

mid-presentation of my thesis. I highly appreciate the efforts made by Jin Hwa Lee from

Technische Universität Munich (TUM) for fine tuning the wav2vec model and generating

trained models for various reinforcement learning agents.

I also thank Prof. Dr. Klaus Robert Müller and Dr. Grégoire Montavon from Technische

Universität Berlin (TUB) for administrative supervision of this thesis.

I would like to thank EIT Digital Master School for providing me an opportunity to

study ICT Innovation in Autonomous Systems at two European universities: KTH

Royal Institute of Technology in Sweden and Technische Universität Berlin in Germany.

At last, I thank my parents and my sister for their support throughout my life.

Technische Universität Berlin Khushdeep Singh Mann

June 2021

Contents

Declaration of Authorship i

Abstract ii

Abstrakt iii

Acknowledgements iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Research goal . 1

1.2 Approach . 2

1.3 Contribution . 2

1.4 Thesis Structure . 2

2 Related Work 4

2.1 Robustness in Reinforcement Learning . 4

2.2 Representations in Reinforcement Learning 5

2.3 Self-Supervised Learning in Reinforcement Learning 5

3 Reinforcement learning Problem 7

3.1 Introduction . 7

3.2 Markov decision process . 7

3.3 Policy . 8

3.4 Return . 9

3.5 Value functions . 9

3.6 Bellman Equations . 10

3.7 Model Free methods . 11

3.7.1 Value Based Methods . 11

3.7.1.1 Monte Carlo Methods . 12

3.7.1.2 Temporal Difference Learning 12

3.7.1.3 Function Approximators 14

Contents vi

3.7.2 Policy Based Methods . 15

3.7.3 Actor Critic Methods . 15

3.8 Model Based methods . 17

3.9 Summary . 18

4 Deep Neural Networks 19

4.1 Introduction . 19

4.2 Building Blocks . 19

4.2.1 Artificial Neuron . 19

4.2.2 Activation Functions . 20

4.3 Feed Forward Neural Networks . 21

4.3.1 Architecture . 21

4.3.2 Training . 21

4.3.3 Batch normalization . 22

4.3.4 Regularization Methods . 22

4.3.4.1 Dropout . 22

4.4 Summary . 23

5 Deep Reinforcement Learning 24

5.1 Introduction . 24

5.2 Deep Q Learning . 24

5.3 Deep Deterministic Policy Gradient (DDPG) 26

5.4 Twin Delayed DDPG (TD3) . 28

5.5 Soft Actor Critic (SAC) . 31

5.6 Pybullet Physics Engine . 33

5.7 Continuous Control Agents . 34

5.8 Summary . 36

6 Self Supervised Learning 37

6.1 Introduction . 37

6.2 Self supervised learning model . 37

6.2.1 The wav2vec model . 37

6.2.2 Contrastive loss function . 39

6.3 Summary . 40

7 Experimental Design 41

7.1 Introduction . 41

7.2 Generating novel morphological perturbed environments 41

7.3 Overview of the research hypothesis and experimental setup 42

7.3.1 Step 1 - Training RL policies over baseline environments 43

7.3.2 Step 2 - Evaluating trained RL policies on novel perturbed envi-
ronments . 43

7.3.3 Step 3 - Training the SSL model using the data from N most
suitable environments . 44

7.3.4 Step 4 - Integrating the non-invariant state representations and
re-training the RL policy . 45

7.3.5 Step 5 - Evaluating the re-trained RL policy over new perturbed
environments . 46

Contents vii

7.3.6 Step 6 - Comparing the baseline RL policy performance over per-
turbed environments with and without integrated SSL represen-
tations . 46

7.4 Summary . 46

8 Experimental results 48

8.1 Introduction . 48

8.2 Experimental setup results . 48

8.2.1 Step 1 - Training RL policies over baseline environments 48

8.2.2 Step 2 - Evaluation of trained RL policies on novel perturbed
environments . 49

8.2.3 Step 3 - Training the SSL model using the data from N most
suitable environments . 53

8.2.4 Step 4 - Integrating the non-invariant state representations and
re-training the RL policy . 53

8.2.5 Step 5 - Evaluating the re-trained RL policy over new perturbed
environments . 54

8.2.6 Step 6 - Comparing the baseline RL policy performance over per-
turbed environments with and without integrated SSL represen-
tations . 54

8.3 Summary . 55

9 Conclusion 57

9.1 Discussion . 57

9.2 Conclusion . 57

9.3 Directions for the future work . 58

A Supplementary results 59

Bibliography 72

List of Figures

3.1 The fundamental interaction between an RL agent and environment. The
agent interacts with action at and in return obtains next state st+1 along
with reward rt:= r(st, at). This process occurs at each time step. 8

3.2 Two steps in Generalized Policy Iteration (GPI) framework [1] 12

3.3 The actor-critic architecture [2] . 16

3.4 Flow diagram of model-based RL [3] . 17

4.1 Basic model of an Artificial Neuron [4] 20

4.2 Feed forward neural network architecture [5] 21

4.3 Neural network with and without dropout [6] 23

5.1 An overview of DDPG algorithm [7] . 26

5.2 Continuous control agents in PyBullet physics engine 34

6.1 Pre-training of audio data X , encoded with two convolutional neural net-
works. The model is optimized to predict the next time step task [8]
. 38

7.1 Benchmarking robustness to morphological perturbations in PyBullet.
The modified morphology of Hopper, Walker2D, Half-Cheetah and Ant
is a challenging test for the policies trained on baseline. 42

7.2 Generating novel perturbed environments according to gaussian normal
distribution with three different standard deviation values 42

7.3 Overview of the research hypothesis and experimental setup involving
- training RL policy on baseline envs., evaluating on perturbed envs.,
training SSL model, and integrating representations with RL policy . . . 43

7.4 Step 2 - Evaluating several trained RL policies (DDPG, TD3, SAC) on
novel perturbed environments . 44

7.5 Step 3 - Pre-training contextualized representations jointly on the N most
suitable environments . 45

7.6 Step 4 - Integrating the (non-invariant) state representation and re-training
the RL policy . 45

7.7 Step 5 - Evaluating the re-trained RL policy over perturbed environments 46

7.8 Step 6 - Comparing the performance of baseline RL policy over perturbed
environments with and without integrated SSL representations 47

8.1 Hopper training results with different RL policies 49

8.2 Walker training results with different RL policies 49

8.3 Halfcheetah training results with different RL policies 49

8.4 Ant training results with different RL policies 50

List of Figures ix

8.5 Testing trained DDPG models on non-perturbed and perturbed Hopper
parameters . 50

8.6 Testing trained TD3 models on non-perturbed and perturbed Hopper
parameters . 51

8.7 Testing trained SAC models on non-perturbed and perturbed Hopper
parameters . 52

8.8 Testing SAC models with different alpha values on perturbed Hopper
parameters . 56

A.1 Testing trained TD3 models on non-perturbed and perturbed Walker2D
parameters . 60

A.2 Testing trained SAC models with different alpha values on perturbed
Walker2D parameters . 60

A.3 Testing SAC models with different alpha values on perturbed Walker2D
parameters . 61

A.4 Testing trained TD3 models on non-perturbed and perturbed Halfcheetah
parameters . 62

A.5 Testing trained SAC models on non-perturbed and perturbed Halfcheetah
parameters . 62

A.6 Testing SAC models with different alpha values on perturbed Halfcheetah
parameters . 63

A.7 Testing trained TD3 models on non-perturbed and perturbed Ant param-
eters . 64

A.8 Testing trained SAC models on non-perturbed and perturbed Ant param-
eters . 64

A.9 Testing SAC models with different alpha values on perturbed Ant param-
eters . 65

A.10 Wav2vec model plots for average accuracy of predicting future latents and
training, validation loss functions with two receptive fields for Hopper . . 66

A.11 Wav2vec model plots for average accuracy of predicting future latents for
Walker2D and Halfcheetah . 66

A.12 Comparing TD3 training for two receptive fields with integrated ’only
wav2vec’ and ’wav2vec+ 1 state’ models for Hopper 67

A.13 Comparing TD3 training with integrated ’only wav2vec’ and ’wav2vec+
1 state’ models for four agents . 68

A.14 Comparing TD3 training with different integrated models for Hopper . . . 69

A.15 Comparison between wav2vec + 1 state models tested on ’old’ and ’new’
perturbed Hopper parameters . 70

A.16 Comparison between three different models tested on perturbed Hopper
parameters . 71

List of Tables

5.1 Hyperparameters for DDPG algorithm 27

5.2 Hyperparameters for TD3 algorithm . 30

5.3 Hyperparameters for the SAC algorithm. 32

5.4 Default values of Hopper model . 34

5.5 Default values of Walker model . 35

5.6 Default values of Half-Cheetah model . 35

5.7 Default values of Ant model . 35

6.1 Hyperparameters for Wav2vec model . 38

I dedicate this work to my parents and my sister.

Chapter 1

Introduction

Humans and animals have the ability to adapt to the changes in their environments.

Their behavior is highly adaptive when being deployed on different terrain, grabbing

different objects, changes to their bodies during the injury or during the growth process.

This kind of adaptive behavior is necessary for functioning in the real world.

On the other hand, robots and artificial agents are less versatile and are typically de-

ployed with fixed behaviors. This leads to robots and agents succeeding in specific tasks

while failing in others such as changes in the environment, experiencing system malfunc-

tioning, or encountering a difficult terrain. While a potential research direction to learn

adaptive control policies for robots by imitating animals have been discussed in [9, 10].

1.1 Research goal

The goal of this thesis is to investigate how self-supervised learning can improve the

robustness of state-of-art reinforcement learning (RL) policies for continuous control

agents subjects to morphological changes (perturbations) in their physical structure.

Hence, the following research questions are addressed:

• How robust are current state-of-art RL policies against perturbations in an agent’s

physical structure?

• Can representations learnt through self-supervised models improve the robustness

of RL policies tested on perturbed environments?

Chapter 1 Introduction 2

1.2 Approach

The first part of the thesis includes changing the morphological structure of continuous

control RL agents. Next, we evaluate the robustness of state-of-art RL policies over

these different agent structures in order to investigate how sensitive are these policies

subject to the changes in the physical model. Then, we filter over all the collected

state-space data to train the Self-Supervised Learning (SSL) model to extract useful

representations.

The second part involves fine-tuning the SSL model and integrating the learnt state-space

representations with state-of-art RL policies. Training and re-evaluating the robustness

over agent’s morphology. Later, providing experimental evidence for a correlation be-

tween the generalization of the agent’s internal model and the obtained rewards. Finally,

providing the conclusion and directions for the future work.

1.3 Contribution

The main contributions of this thesis are:

• Development of an new scheme for investigating and benchmarking the perfor-

mance of continuous control RL agents subject to morphological changes.

• Exploring the adaptiveness and robustness of state-of-art RL policies with inte-

grated SSL models across morphological domain shifts in agent’s physical struc-

ture.

1.4 Thesis Structure

The remaining thesis is structured as follows:

Chapter 2 presents the related work in representation learning and self-supervised learn-

ing in context of reinforcement learning.

Chapter 3 discusses an formal introduction to reinforcement learning by providing rele-

vant mathematical background. The chapter also discusses traditional RL approaches,

model-free and model-based methods.

Chapter 4 introduces the basics of deep neural networks along with their architecture

and some training techniques.

2

Chapter 1 Introduction 3

Chapter 5 focuses on Deep Reinforcement Learning (DRL), and provides details on the

DRL algorithms considered for the scope of this thesis. In the later part, this chapter

introduces the physics engine and elaborates on continuous control agents included in

the experimental setup of this thesis.

Chapter 6 presents the self-supervised learning model, its architecture, mathematical

background and model parameters used for extracting representation from RL data

during the thesis.

Chapter 7 describes the various steps involved in the experimental design process.

Chapter 8 evaluates the performance for different experimental steps and discusses the

results.

Chapter 9 presents the conclusion of the undertaken work in the thesis and provides

directions for future work.

3

Chapter 2

Related Work

2.1 Robustness in Reinforcement Learning

Robustness and generalization are the key challenges in reinforcement learning especially

when applied to robotic applications, wherein a policy trained in simulation is transferred

and should be adaptive to different real-world conditions. As the standard reinforcement

learning policies are developed for learning on environments in simulation, these policies

are inefficient once transferred to real system as analyzed in [11].

Various attempts have been made by proposing different techniques towards gaining ro-

bustness in reinforcement learning policies. Meta-learning has been proven successful for

adapting to continuous control tasks on simulated as well as real-world agents [12]. This

framework demonstrated an agent’s ability to quickly adapt to a missing leg, adjust-

ments on slopes and novel terrains, and compensating for pulling payloads. Yet another

framework for accessing generalization in RL by changing parameters such as power,

density, friction for continuous control agents have been proposed in [13]. The authors

introduced an new algorithm in [14] to learn robust policies for domain adaptation using

an ensemble of simulated source domains.

Moreover, a recent framework to incorporate robustness to perturbations into continuous

control reinforcement learning algorithms is implemented in [15]. A study of attaining

generalization via exploring the morphological structure of the agent has been demon-

strated in [16]. Additionally, authors in [17] investigated the existence of a single global

policy to have generalization across wide range of agent morphologies. [18] presents a

new method for learning the parametric controller for changes in morphological structure

of physics-based characters in simulation.

Chapter 2 Related Work 5

Improving the robustness of RL algorithms has also being considered through data

augmentation [19, 20]. The authors in [19] enable robust learning from pixels using an

data augmentation scheme that can be applied to model-free RL algorithms.

2.2 Representations in Reinforcement Learning

A new approach to teach robots and artificial agents about their environments is through

representation learning. Extracting representations using unsupervised learning ap-

proach with contrastive predictive coding is presented in [21]. [22] illustrates the theo-

retical analysis of contrastive unsupervised representation learning.

A representation learning framework from raw pixels and extracting high-level features

[23] show promising results for RL. Yet another approach to learn task-relevant robust

latent representations is observed in [24]. The authors study how the learnt invariant rep-

resentations can accelerate reinforcement learning. In regards to scalable reinforcement

learning from pixels, [25] presents learning behaviors by latent imagination. Represen-

tation learning have also been used for learning object attributes from unlabelled videos

[26] so as to generalize to unseen environments.

2.3 Self-Supervised Learning in Reinforcement Learning

Self-supervised learning is an powerful tool to learn representations from unlabelled data

sets. An approach to attain generalization in reinforcement learning by exploring the use

of self supervision is [27]. Here, the the policy is allowed to train even after deployment

using self-supervision and this approach improves generalization across several tasks.

The work in [28] investigates the task-agnostic representations for continuous control

tasks and show that such representations enable the learning of continuous control poli-

cies.

Complex tasks can be tackled through RL, but the learning tends to be task-specific. The

researchers in [29] undertake a new approach using self-supervised exploration that leads

to fast adaptation to new tasks. Self-supervised learning have also being deployed for

unsupervised domain adaptation [30] having unlabelled data on target domain, the rep-

resentations of the source and target domains were aligned by performing self-supervised

tasks on both domains simultaneously.

Self-supervised approach for learning representations of motion attributes is proposed

in [31]. This approach accounts for learning behaviors from unlabelled video recordings

5

Chapter 2 Related Work 6

and study how this can be useful in robotic imitation settings. [32] focuses on acquiring

object-centric representations for self-supervised robotic grasping tasks with an idea that

these representations can be refined continuously as the robot collects more experience

by interacting with the environment.

6

Chapter 3

Reinforcement learning Problem

3.1 Introduction

Reinforcement Learning (RL) is a branch of machine learning that deals with making

a sequence of decisions. The RL problem consists of a decision maker called agent.

Everything else outside the agent is called environment. The agent interacts with the

environment and in return receives new state and a scalar reward. The obtained reward

signal indicates how good or bad the agent’s action was at that particular instant. The

goal of an RL agent is to maximize the cumulative sum of rewards. In order to achieve

this goal, the agent tries to learn behaviors by following a certain policy- a rule to

decide what actions to take. Accordingly, a policy maps the agent states to action and

the task of an RL agent is to learn an optimal policy. RL is different from supervised

and unsupervised learning in a way that RL agent needs to explore the environment

and learn based on trial and error. The formalization of RL problem is to optimize

a Markov Decision Process (MDP). This chapter further provides formal definitions of

RL components including Policy, Value function and Bellman equations. The chapter

also elaborates traditional RL methods, Model-based and Model-free RL. The chapter

is based on Reinforcement Learning by Sutton and Barto [2], lecture series by David

Silver [33], educational resource on deep reinforcement learning produced by OpenAI

[34] and a master thesis [35] . The interaction loop between agent and environment is

depicted in (3.1).

3.2 Markov decision process

A Markov Decision Process (MDP) is defined by the tuple M = (S, A, P, R , γ), where

the symbols denote:

Chapter 3 Reinforcement learning Problem 8

Figure 3.1: The fundamental interaction between an RL agent and environment. The
agent interacts with action at and in return obtains next state st+1 along with reward

rt:= r(st, at). This process occurs at each time step.

• A set of states, s ∈ S, where S is state space

• A set of actions, a ∈ A, where A is action space

• Transitional probability distribution P : S × A × S → [0, 1]

P(s’| s, a) = Pr(st+1 = s’ | st = s, at = a)

which symbolizes that given a state st and action at, how likely the agent ends up

in state st+1.

• Reward function R : S × A × S → R

R(s, a, s’) = E(rt | st = s, at = a, st+1 = s’)

is the instantaneous reward received after the transition from state s to s’ due to

action a.

• The discount factor γ, which is used to generate discounted reward.

The most vital aspects of an MDP are the transitional probabilities and reward function.

In general, both of these aspects are considered unknown for an reinforcement learning

setting.

3.3 Policy

The motive of the MDP is to find a policy that can train an RL agent and maximize the

cumulative rewards obtained after taking a series of actions. If the policy only depends

on the state, π(s), it is termed as deterministic, else stochastic π(a|s), which outputs a

probability distribution over actions, given a state s.

8

Chapter 3 Reinforcement learning Problem 9

3.4 Return

The goal of an RL agent in an MDP is to maximize its cumulative rewards. The sum

of rewards obtained from the environment is termed as return, Gt, which is defined at

time t as follows:

Gt = rt + rt+1 + rt+2 + ... + rT

where, T is the final step.

For continuing tasks, the final step T would be infinite. Thus, we define the return in

terms of discounted rate, γ as:

Gt = rt + γrt+1 + γ2 rt+2 + ... =
∞∑
k=0

γkrt+k

where γ ∈ [0, 1) is the discount factor.

3.5 Value functions

It is important for an RL agent to determine how good it is to be in an particular

state, or to examine what action to take at a particular time instant. An entity that

measures the *goodness* of a state or an state-action pair is termed as value function.

It is expressed in terms of expected return. Now, the reward obtained is dependent on

the actions undertaken in a given state. As the agent’s actions are based on the policy

it follows, the value functions are defined with respect to the policies. Consider an agent

following a policy π from a state s. The value function denoted by Vπ(s) for the policy

π is given by

Vπ(s) = Eπ (Gt | st = s) = Eπ(
∞∑
k=0

γkrt+k | st= s)

Similarly, we define an action-value function, Qπ(s,a), that determines how good it is for

an agent to take a particular action a from state s following a policy π. This action-value

function is also known as Q-function and is mathematically expressed as

Qπ(s, a) = Eπ(Gt|st = s, at = a) = Eπ(
∞∑
k=0

γkrt+k|st = s, at = a) (3.1)

9

Chapter 3 Reinforcement learning Problem 10

3.6 Bellman Equations

Bellman equations form the central element of many RL algorithms. It decomposes the

value function into two parts, the immediate reward and the discounted future values.

Bellman equations represent the value function as a recursive relationship between the

current value of state and its successive states. The equations in this section are based

on [36]. Mathematically, the Bellman expectation equation for state-value function is

defined as:

Vπ(s) = Eπ(rt+1 + γVπ(st+1)|st = s) (3.2)

Similarly, the state-action value function is expressed as:

Qπ(s) = Eπ(rt+1 + γQπ(st+1, at+1)|st = s, at = a) (3.3)

While solving an MDP, the RL agent is trying to find an optimal value function. The

optimal value function, V∗(s) can be expressed as,

V∗(s) = max
π

Vπ(s), ∀ s ∈ S

Similarly, the optimal action-value function, Q∗(s,a) can be expressed as,

Q∗(s) = max
π

Qπ(s), ∀ s ∈ S, a ∈ A

As value functions are dependent on policies, the agent is trying to find an optimal

policy. An policy π is said to be better than another policy π’ if the expected return of

that policy is better than π’ for all s ∈ S. This means, V π(s) ≥ V π’ (s) for all s ∈ S. For

an optimal policy, the following equation holds,

V∗(s) = max
a∈A(s)

Qπ∗(s, a) (3.4)

Expanding equation (3.1) with (3.4) we get,

V∗(s) = max
a

Eπ∗(Gt|st = s, at = a)

= max
a

Eπ∗(
∞∑
k=0

γkrt+k|st = s, at = a)

= max
a

∑
s′

p(s′|s, a)[R(s, a, s′) + γV∗(s
′)]

(3.5)

10

Chapter 3 Reinforcement learning Problem 11

Equation (3.5) is known as Bellman optimality equation for state-value function, V∗(s’).

Similarly, the Bellman optimality equation for action-value function, Q∗ is given by,

Q∗(s, a) = Eπ(rt + γmax
a′

Q∗(st+1, a′)|st = s, at = a)

=
∑
s′

p(s′|s, a)[R(s, a, s′) + γmax
a′

Q∗(s
′, a′)]

(3.6)

An important aspect of RL algorithms is whether the agent can learn a model of its envi-

ronment. This means learning a function that predicts the state transition probabilities

and rewards. If learning such a function is feasible, the algorithm can solve the Bellman

optimality equations in an iterative process. Such methods are termed as model-based

algorithms, discussed in section (3.7).

In case, the transition probabilities are not known, the algorithm estimates the value

function and policy by performing rollouts on the system. Such methods are termed as

model-free algorithms, discussed in section (3.8).

3.7 Model Free methods

In model-free methods the RL agent learns directly from the interactions with the en-

vironment, but does not learn a model. Model-free methods are either value-based or

policy-based. The value-based methods perform iterative updates of the perceived state

to eventually learn an optimal policy. While, policy-based methods directly update the

policy without storing the states [37].

Model-free algorithms can also be categorized into off-policy or on-policy. Off-policy

algorithms evaluate and update a policy which is different from policy being used to

generate actions. While On-policy algorithms evaluate and update the same policy that

is being used to generate actions [38]. The following illustrates more on value-based

methods and policy-based methods.

3.7.1 Value Based Methods

As value-functions are state-action pair functions estimating the value of a specific action

in a particular state, or the return for that action. Considering Vπ(s) - the value of a

state s under a policy π and Qπ(s,a) - the value of taking action a in state s under

the policy π, the challenge is estimating these value functions for a particular policy.

Estimating these value would result in accurately selecting an action that would provide

the best possible total reward [39].

11

Chapter 3 Reinforcement learning Problem 12

3.7.1.1 Monte Carlo Methods

Monte Carlo methods rely on sampling states, actions and rewards from a given environ-

ment. This eliminates the need of knowing the state transitional probability distributions

or having a model of the environment. Monte Carlo methods follow Generalized Policy

Iteration (GPI) framework which is an two step process. The first step policy evaluation

attempts to have an approximation of value function based on the current policy. The

second step policy improvement improves the policy with respect to the current value

function. The pictorial representation is visible in figure (3.2).

Figure 3.2: Two steps in Generalized Policy Iteration (GPI) framework [1]

Using this two step process the Monte Carlo algorithm converges to the optimal policy

and value function but need sufficient exploration and large number of iterations.

3.7.1.2 Temporal Difference Learning

Temporal difference (TD) learning methods can be used to estimate these value func-

tions. If estimation technique is not used, the agent needs to wait until the final reward

has been received so as to update the state-action pair values. Instead, the TD methods

calculate the temporal error- the difference between new and old estimate of the value

function. Thus, final reward is estimated at each state and state-action pair is updated.

This approach reduces the variance but increases bias in the value-function estimation.

The update equation is formally expressed as:

V (st) ← V (st) + α[rt+1 + γ V (st+1) - V (st)]

where, st is the state at time t, rt+1 is the reward at time t+1 and α is the learning

rate. As the value is updated partially using an estimate technique, TD method is

12

Chapter 3 Reinforcement learning Problem 13

termed as ”bootstrapping” method. Two widely used TD algorithms are Q-Learning and

SARSA (State-Action-Reward-State-Action). Q-learning is an off-policy TD algorithm

introduced by Chris Watkins [40]. The actions are chosen based on ε-greedy policy, and

the algorithm converges close to the approximation of action-value function. Q-learning

learns an optimal policy irrespective if the actions where chosen from an exploratory or

any random policy. The update equation is given by:

Q(st, at)← Q(st, at) + α[rt+1 + max
a

γQ(st+1, at+1)−Q(st, at)] (3.7)

The Q-learning algorithm is summarized as:

Algorithm 1: Q-learning (off-policy)

1 Initialize Q(s,a) arbitrarily;

2 repeat

3 Initialize s;

4 for each step of episode do

5 Select action a from state s using policy derived from Q (e.g, ε-greedy);

6 Perform action a, observe reward r and next-state s′;

7 Update Q using equation (3.7)

8 end for

9 until terminated ;

SARSA is an on-policy TD algorithm. It is different from Q-learning in a way that

it learns an action-value function instead of value function. The maximum reward for

the next state may not be used for updating the Q-values, instead, a new action is

selected based on the same policy that determined the current action. The algorithm is

13

Chapter 3 Reinforcement learning Problem 14

summarized as:

Algorithm 2: SARSA (on-policy)

1 Initialize Q(s,a) arbitrarily; repeat

2 Initialize s;

3 Select action a from state s using policy derived from Q (e.g, ε-greedy);

4 for each step of episode do

5 Perform action a, observe reward r and next-state s′;

6 Select next-action a′ using policy derived from Q (e.g, ε-greedy);

7 Update Q using

8

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)] (3.8)

9 end for

10 until terminated ;

Monte Carlo methods have a lot of variance but are not biased. While TD methods

are biased while having reduced variance. An TD(λ) is a generic reinforcement learning

method that unifies Monte Carlo and TD methods. TD(λ) algorithm considers the

returns after every certain number of steps and takes an weighted average of those

returns.

In TD(λ) algorithm an additional parameter called eligibility trace et(s) is associated

with each state. The eligibility trace is updated for each state as per the following

equation:

et(s) =

if s 6= st

if s = st

where λ is the trace-decay parameter.

The eligibility trace combines two things - how frequent and how recent a state is. It is

used as a scaling factor for the TD error [41].

3.7.1.3 Function Approximators

A technique for estimating an unknown function based on historical information or avail-

able observations is termed as Function Approximation. As the state space dimension-

ality increases it becomes impossible to keep track of all information. So, representing

14

Chapter 3 Reinforcement learning Problem 15

the value function in the form of look up table is not possible. Function approximators

can be used to estimate the value functions based on environmental observations.

Consider a value function V (s;θ), where θ is the parameter vector θ = (θ1, θ1, ..., θn)T.

A way of mapping θ to the space of value function can be accomplished with function

approximators. In this way, only the model parameters are needed to be stored and

function approximators can better generalize the training samples.

Many types of function approximators are found in literature. Like linear and radial

basis functions, or recently the neural networks. Currently neural networks are the most

widely used function approximators due to their ability of representing complex value

functions with less parameters. However, attaining convergence for neural networks is

tricky when applied to reinforcement learning [42].

3.7.2 Policy Based Methods

Policy based methods are a type of reinforcement learning techniques that optimize the

parameterized policies with respect to the cumulative rewards with the help of gradient

descent. For an parameterized policy πθ, with θ being the parameter vector, these

methods optimize the policy by fine tuning in the parameter space θ ∈ Θ. The policy

parameters are then updated using the gradient descent in the direction of increasing

expected return. The equation for updating the policy parameters is given by:

θt+1 = θt + α∇θJ (3.9)

where J is the expected return given by:

J = Eπ(
∞∑
k=0

γkrk) (3.10)

Properties of policy based methods include more stability (better convergence) and well

performance in high dimensional or continuous action spaces. Also these methods can

learn stochastic policies as compared to whereas value based approaches [43]. Drawback

of this technique is that the convergence may occur on local optimum and not the global

optimum. This is due to large variance in the policy evaluation step.

3.7.3 Actor Critic Methods

Actor critic methods are the TD methods that have separate memory allocation for

explicitly representing the policy, independent of the value function. Actor is the policy

15

Chapter 3 Reinforcement learning Problem 16

structure used to select actions and critic is the estimated value function. The critic

criticizes the actions undertaken by the actor. The critic evaluates the policy based on

the temporal difference error and then the policy is updated. A functional representation

of actor-critic architecture is shown in figure (3.3).

Figure 3.3: The actor-critic architecture [2]

The actor-critic methods are mostly on-policy, but off-policy methods have been intro-

duced as well [44]. Further, these methods may have better convergence properties as

compared to only critic based methods, as long as these methods are gradient-based.

Actor critic methods have faster convergence due to variance reduction [45].

For the mathematical representation of actor critic method we consider [46]. The state

value function in a policy π is Vπ(s) and can be estimated by Vπ
V(s) using neural networks

as function approximators. Similarly, action value function Qπ(s,a) can be estimated

by Qπ
U(s,a). Next, we substitute the state value function estimator into the Bellman

equation (3.2) to get:

Vπ
V(st) ∼= r + γVπ

V(st+1) (3.11)

We approximately get an error by using equation (3.11). This error is known as temporal

difference error (TD error) represented by the symbol δ.

δ = Vπ
V(st)− r− γVπV(st+1) (3.12)

This error δ is considered as loss function and being driven to zero using stochastic

gradient ascent/descent. We consider policy function π with parameter vectors θ and J

as expected return from state Vπ(s). J is optimized according to policy gradient theorem

16

Chapter 3 Reinforcement learning Problem 17

as [47]:

∇θJ(θ) = E[∇θ(logπθ(s, a)) ∗Qπ(s, a)] (3.13)

where πθ is the estimate of policy π. These algorithms are termed as stochastic actor-

critic algorithms.

Although the gradient of J has also been defined subject to deterministic policy by

deterministic policy gradient (DPG) theorem [48]. In this case J is obtained as:

∇θJ(θ) = E[∇θ(logπθ(s, a)) ∗ ∇aQπ(s, a)] (3.14)

More efficiency is obtained while computing DPG gradients and these algorithms per-

form better than the stochastic counterparts.

3.8 Model Based methods

The interactions of an RL agent with its environment can be used to learn a model

of the environment. In model-based methods, the agent tries to learn the model over

time in order to simulate transitions and increase the sample efficiency. While model-

free RL emphasizes learning, model-based RL emphasizes planning. A flow diagram of

model-based RL is presented in figure (3.4).

Figure 3.4: Flow diagram of model-based RL [3]

Model-based RL methods has higher sample efficiency, implying that it requires less

data to learn a policy[49]. These methods can plan better by even simulating sequence

of actions rather than performing them in actual world. The virtue of the modeling

process enables the transfer of these methods to other tasks.

17

Chapter 3 Reinforcement learning Problem 18

Model-based RL methods demand learning both policy and a model, thus increasing the

degree of involved error. It might happen that the learnt model is not accurate, then the

learnt policy would not be optimal or would just fail. For same reason, these methods

are computationally demanding than model-free methods [3].

3.9 Summary

The chapter introduced the general reinforcement learning problem along with related

concepts. Mathematical formulation of RL problem will later help in understanding the

involved algorithms for this thesis (sections 5.3, 5.4, 5.5). Traditional RL approaches

along with model-free and model-based methods were discussed. Model-free methods

learn directly by interacting with the environment in real-world or in simulation, whereas

model-based methods use limited interactions with the real environment and constructs

a model for simulating the future episodes. The next chapter will discuss the basics of

deep neural networks (DNN) and its relevance for RL.

18

Chapter 4

Deep Neural Networks

4.1 Introduction

Neural networks are a set of algorithms designed to recognize patterns. Modelling of

these networks have been inspired by human brain and how it filters information [50, 51].

Neural networks with atleast two layers can be termed as deep neural networks (DNN).

DNNs have led to some of the recent achievements in artificial intelligence and are used to

build state-of-art systems. These achievements lie in different domains including robotics

[10, 52–54], image recognition [55], handwriting recognition [56], speech recognition [57],

and autonomous vehicles [58]. A detailed history of DNNs is presented in [50].

Neural networks are used for approximating multivariate functions involving higher de-

grees of complexity. It has been proven that such approximations can achieve any degree

of accuracy [59]. This chapter provides details on building blocks, common architecture

and training of neural networks. Also, the chapter elaborates on a training technique

batch normalization and a regularization technique dropout.

4.2 Building Blocks

Artificial neural networks consists of several interconnected neurons arranged in several

layers.

4.2.1 Artificial Neuron

An basic unit of artificial neuron as seen in figure (4.1) takes an input vector x with

weights w and calculates the weighted sum for all inputs. This weighted sum is added

Chapter 4 Deep Neural Networks 20

to the bias denoted by b and passed through an activation function f to produce the

final output represented by the following equation:

yi = f (
n∑
j=0

xjwi,j + bi) (4.1)

Figure 4.1: Basic model of an Artificial Neuron [4]

4.2.2 Activation Functions

Activation functions are mathematical expressions determining the output of an neuron.

These functions can be linear or non-linear. Non-linear activation functions help the

network to learn complex data, represent almost any function with reasonable accuracy.

Many activation functions have been introduced in literature, some of the commonly

used activation functions include rectified linear unit (ReLu), sigmoid and hyperbolic

tangent. These functions are mathematically expressed as:

- Rectified Linear Unit (ReLU)[60]:

f(x) = max (0, x) (4.2)

- Sigmoid :

f(x) =
1

1 + e−x
(4.3)

- Hyperbolic Tangent :

f(x) =
ex − e−x

ex + e−x
(4.4)

ReLU is most commonly used activation function and provides best performance over

many tasks. Advantages of ReLU over other activation functions include lower run time,

sparsity and reduced likelihood of vanishing gradients.

20

Chapter 4 Deep Neural Networks 21

4.3 Feed Forward Neural Networks

4.3.1 Architecture

Feed forward network is most straight forward and common architecture used in DNN.

It consists of three layers, viz, input layer, hidden layers and output layer. The flow of

information is from input layer towards the output layer through hidden layers as seen

in figure 4.2. The ’deepness’ of neural networks is based on the number of hidden layers.

Complex architectures involving many hidden layers are found in literature [61].

Figure 4.2: Feed forward neural network architecture [5]

4.3.2 Training

Initially the weights of the neural network are set randomly. Training a neural networks

mean adjusting its weights using a technique called backpropagation. Each time an

generated output is compared with the desired output and the error is used to update

the weights using a gradient descent algorithm. As the weights of output layer are

updated at first and then proceeding backward to the input layer, the technique is

termed as backpropagation.

Recently, stochastic gradient descent have gained popularity for training neural networks.

However, improved versions of stochastic gradient descent like AdaGrad [62] and Adam

[63] are also available. These methods converge faster and consider only few training

samples to update weights, as compared to vanilla gradient descent methods.

21

Chapter 4 Deep Neural Networks 22

4.3.3 Batch normalization

Batch normalization (BN) is an method for training complex DNNs that standardizes

the input to a layer for each mini-batch. As the normalization ensures activation values

within certain upper and lower bounds, the approach leads to faster learning rates. BN

significantly reduces the number of training epochs and stabilizes the learning process.

BN method allows each layer to learn independently, improving the speed and accuracy

of the training phase [64]. BN technique have been used in RL algorithms for the

modelling part of this thesis.

4.3.4 Regularization Methods

The performance of DNNs improve as they are fed with more and more datasets. At the

same time, a model can overfit over training dataset. Regularization methods are used to

reduce over-fitting and to enhance the robustness of the neural network to unseen data.

Different regularization techniques include L1 or L2 regularization, Dropouts[6], Batch

normalization[64], Data Augmentation, and Early stopping. A comparison between

different regularization techniques is available in [65].

4.3.4.1 Dropout

Dropout is an frequently used regularization technique for large neural networks. Es-

sentially, the technique randomly ’drops’ out or turns off certain neurons during the

training. This lead to smaller network and other neurons step in and make predictions

for missing neurons. Thus, the network learns an independent internal representation

and is less sensitive to certain weights of the neurons. Such networks are more robust,

eliminating the chances of over-fitting. However, during the testing, none of neurons are

dropped.

Visual presentation of dropout technique is shown in figure (4.3). It consists of standard

neural network on the left and a the same network after applying dropout on the right.

As seen in right network, connections of certain neurons have been removed during the

training phase. This removal of the connections is random and neurons to be removed

are selected with probability p, which is an hyperparameter of the dropout function.

Dropout can be applied to the hidden or input layers.

22

Chapter 4 Deep Neural Networks 23

Figure 4.3: Neural network with and without dropout [6]

4.4 Summary

DNNs hold potential for fetching representations and learning from large unlabelled

datasets. They are general purpose function approximators. DNNs are scalable systems

that are being used for high-dimensional and dynamic training environments. DNNs

will be used along with RL for training agents to perform specific task in continuous

state-space (chapter 7).

23

Chapter 5

Deep Reinforcement Learning

5.1 Introduction

Deep Reinforcement Learning (DRL) helps intelligent machines to learn through their

actions similar to how humans learn through their experience. Recently DRL has gained

a lot of attention due to its breakthroughs in AlphaGo[66], solving rubik’s cube with

robotic hand [67], stratergy emergence in multi-agent systems [68], and Atari games [69].

As DRL algorithms can train an agent in high dimensions it becomes ideal choice for

executing locomotive tasks in simulation.

DRL uses Deep Neural Networks as function approximators for policy or value func-

tions in RL. DRL has been successfully applied in Q-learning [69, 70] and actor-critic

methods[46]. This chapter provides details on deep Q-learning, elaborates on actor-critic

methods, viz, Deep Deterministic Policy Gradient (DDPG), Twin delayed DDPG (TD3)

and Soft Actor Critic (SAC). The chapter also provides details on the physics engine

used for simulation and the agents involved for experimentation.

5.2 Deep Q Learning

Q-Learning (section 3.7.1.2) is an model-free reinforcement learning algorithm that is

widely used. Combining DNN with Q learning proved to be huge success in Atari games

[69, 70]. Since then the algorithm has been considered for high dimensional state space.

The paper [70] provides the mathematical background for this section. DNN parame-

terize the Q-function by a neural network with weights θ and the algorithm is termed

Chapter 5 Deep Reinforcement Learning 25

as Deep Q-Learning (DQN). The algorithm minimizes the loss function given by:

Li(θ)i = Es,a∼ρ(.)[(yi −Q(s, a; θ))]2 (5.1)

where y i = E s′∼ε[(r+ γ maxa′ Q(s′, a′; θi−1)|s,a] is the target for i th iteration and ρ(s,a)

is the probability distribution over sequence s and actions a. Differentiating the loss

function with respect to weights we obtain the following gradient:

∇θiLi(θi) = Es,a∼ρ(.);s′∼ε[(r + γmax
a′

Q(s′, a′; θi−1)−Q(s, a; θi))∇θiQ(s, a; θi)] (5.2)

It is computationally efficient to optimize the loss function by stochastic gradient de-

scent. Weights are updated every time step by single samples obtained from behavior

distribution ρ and the expectations from emulator ε.

DQN has advantages due to the use of experience replay. These include greater data

efficiency as each step of experience is used in many weight update and reduced variance

due to learning from randomized samples. The randomized samples are sampled from

a fixed length representation of history given by the function φ. The DQN algorithm is

given by:

Algorithm 3: Deep Q-learning with Experience Replay

1 Initialize replay memory D to capacity N

2 Initialize action-value function Q with random weights

3 for episode = 1, M do

4 Initialise sequence s1 = x 1 and preprocessed sequenced φ1 = φ(s1)

5 for t=1, T do

6 With probability ε select a random action at

7 otherwise select at = maxaQ
∗(φ(st), a; θ)

8 Execute action at in emulator and observe reward rt and image xt+1

9 Set st+1 = st, at, xt+1 and preprocess φt+1 =φ(st+1)

10 Store transition (φt, at, rt, φt+1) in D

11 Sample random minibatch of transitions (φj , aj , rj , φj+1) from D

12 if φj+1 is terminal then

13 yj = rj

14 else

15 yj = rj+ maxa′Q(φj+1, a’; θ)

16 end if

17 Perform a gradient descent step on (yj - Q (φj , aj ; θ))
2 using eq. 5.2

18 end for

19 end for

25

Chapter 5 Deep Reinforcement Learning 26

DQN cannot be applied to tasks for continuous action spaces due to its need for cal-

culating the maximum over actions. To overcome this issue and to work in continuous

action spaces, an actor-critic algorithm has been developed that uses Q-function as critic,

updating the policy using deterministic policy gradient as introduced in section (3.7.3).

5.3 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) [53] learns a Q-function and a policy for

continuous action spaces. Both the actor and Q-function being used as critic are ap-

proximated by two separate neural networks. DDPG is similar to DQN for continuous

action spaces. It is an off policy algorithm. An overview of the algorithm is presented

in figure (5.1).

Figure 5.1: An overview of DDPG algorithm [7]

Updating the actor-critic parameters using equation (5.2) may not result in the learning

to converge. DDPG algorithm includes a couple of tricks to traditional actor-critic

approach with neural networks. The first trick is to use experience replay which was

used in DQN. The other trick is using target networks. Target networks are separate

neural networks that are copies of actor and critic networks. The weights of these target

networks are updated slowly to track the learned networks. This constraint improves

the stability of the learning. Target networks are used to calculate the TD error y as

expressed below [35]:

y = Es′∼ε[r + γQ′(s′, µ′(s′; θµ
′
); θQ

′
)] (5.3)

26

Chapter 5 Deep Reinforcement Learning 27

where Q ’(s,a;θQ
′
) and µ(s; θµ

′
) are the target networks for critic and actor with weights

θQ
′

and θµ
′

respectively.

The loss function is given by:

L = Es′∼ρ,a∼β(y−Q(s, a; θQ
′
))2 (5.4)

where β is behaviour policy and Q(s,a;θQ) is the critic network with weights θQ.

Policy updates are obtained from deterministic policy gradient theorem[48] as:

∇θµJ = Es∼ρβ [∇aQ(s, a; θQ)|s,a=µ(s;θµ)∇θQµ(s; θµ)|s] (5.5)

where µ(s; θµ) is the actor network with weights θµ.

The DDPG algorithm is presented in algorithm (4) and DDPG hyperparameters used

for this thesis are expressed in table (5.1).

Algorithm 4: Deep Deterministic Policy Gradient

1 Initialize replay memory D to capacity N

2 Initialize critic network Q(s,a|θQ) and actor µ(s|θµ) with weights θQ and θµ

3 Initialize the target networks Q ’ and µ′ with weights θQ
′ ← θQ, θµ

′ ← θµ

4 for episode = 1, M do

5 Get initial state s

6 Initialize a random process N for action exploration

7 for t=1, T do

8 Select action at = µ(st; θ
µ) +N

9 Perform action at, observe reward r t and next state st+1

10 Store transition (st, at, rt, st+1) in D

11 Calculate the target using (5.3) for each transition

12 Update the critic by minimizing the loss in (5.4)

13 Update the actor network using (5.5)

14 Update target networks using:

θQ
′ ←τθQ + (1 - τ)θQ

′

θµ
′ ←τθµ + (1 - τ)θµ

′

15 end for

16 end for

Table 5.1: Hyperparameters for DDPG algorithm

27

Chapter 5 Deep Reinforcement Learning 28

Hyperparameters Value

Discount factor γ 9.9 × 10−1

Soft target network update parameter τ 10−3

Batch size 64

Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−3

Training steps 106

Exploration steps 103

Maximum steps for each episode 103

Replay buffer size 105

Dimensions of first hidden layer for actor and critic 400 units

Dimensions of second hidden layer for actor and critic 300 units

Exploration noise 0.1

Policy noise 0.2

Noise clip 0.5

Nonlinearity ReLU[60]

Optimizer Adam [63]

5.4 Twin Delayed DDPG (TD3)

DDPG achieves good performance sometimes, but requires hyperparameter tuning.

DDPG fails when the learned Q-function begins to overestimate the Q-values dramat-

ically, this exploits the error in Q-function and eventually the policy breaks. Twin

Delayed DDPG (TD3) [71] addresses these issues by considering three tricks [34]:

• Firstly, TD3 learns two Q-functions instead of one, using the smaller of two Q-

values as the target in Bellman error loss function. This trick is termed as ’Clipped

Double Q-learning’. The corresponding target in Bellman error loss function is:

y(r, s′) = r + γ min
i=1,2

Qφi,targ(s
′, a′(s′)) (5.6)

where Qφ1 and Qφ2 are two Q-functions with weights φ1 and φ2 respectively.

• Secondly, less frequent updates of the policy and the target networks than the

Q-function. This trick is known as ’Delayed Policy Updates’.

• Thirdly, exploitation of Q-function errors is made harder for the policy by adding

noise to the target action. This trick is termed as ’Target Policy Smoothing’. The

clipped target action is expressed as:

a′(s′) = clip

(
µθtarg(s

′) + clip(ε,−c, c), alow, ahigh
)
, ε ∼ N (0, σ) (5.7)

28

Chapter 5 Deep Reinforcement Learning 29

where µθtarg is the target policy, ε is the added noise, a low and ahigh are the lower

and higher bounds for all valid actions a.

These three tricks altogether improves the performance over baseline DDPG. The loss

functions for two Q-functions are:

L(φi,D) = E(s,a,r,s′)∼D

[(
y(r, s′)−Qφi(s, a)

)2]
(5.8)

29

Chapter 5 Deep Reinforcement Learning 30

The TD3 algorithm can be viewed in algorithm (5) and the hyperparameters used for

this thesis are presented in table (6.1):

Algorithm 5: Twin Delayed DDPG

1 Initialize replay memory D to capacity N

2 Initialize critic networks Qφ1 , Qφ2 with weights φ1, φ2 and actor µθ with

weights θ

3 Set target parameters to main parameters θtarg ← θ, φtarg,1 ← φ1, φtarg,2 ← φ2

4 for episode = 1, M do

5 Get initial state st

6 for t=1, T do

7 Select action at using (5.7)

8 Perform action at, observe reward r t and next state st+1

9 Store transition (st, at, rt, st+1) in D

10 if it’s time to update then

11 for j in range(how many updates) do

12 Randomly sample a batch B of transitions from D
13 Compute target actions a’ (s’) using (5.7)

14 Compute targets using (5.6)

15 Update Q-functions by one step of gradient descent using (5.5)

16 if j mod policydecay = 0 then

17 Update the actor network using

∇θ 1
|B|
∑
s∈B

Qφ1(s, µθ(s))

Update target networks using:

φtarg,i ←τφtarg,i + (1 - τ)φi, for i = 1, 2

θtarg ←τθtarg + (1 - τ)θ

18 end if

19 end for

20 end if

21 end for

22 end for

Table 5.2: Hyperparameters for TD3 algorithm

30

Chapter 5 Deep Reinforcement Learning 31

Hyperparameters Value

Discount factor γ 9.9 × 10−1

Soft target network update parameter τ 5 × 10−3

Batch size 256

Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−4

Training steps 106

Exploration steps 103

Maximum steps for each episode 103

Replay buffer size 105

Dimensions of first hidden layer for actor and critic 400 units

Dimensions of second hidden layer for actor and critic 300 units

Exploration noise 0.1

Policy noise 0.2

Noise clip 0.5

Nonlinearity ReLU[60]

Optimizer Adam [63]

5.5 Soft Actor Critic (SAC)

Soft Actor Critic (SAC) algorithm [72] is a bridge between stochastic policy optimization

and DDPG-based approaches. It optimizes stochastic policy in off-policy way. Similar

to TD3, it uses clipped double-Q trick and also benefits from something similar to target

policy smoothing.

Entropy regularization is the central feature of SAC. Entropy is a measure of randomness

in the policy. The actor network or the policy is trained to maximize the expected reward

along with maximizing the entropy. This aligns with exploration-exploitation strategy,

increase in entropy imply more exploration [34].

The Bellman equation for the entropy regularized Qπ is approximated by:

Qπ(s, a) ≈ r + γ

(
Qπ(s′, ã′)− α logπ(ã′|s′)

)
, ã′ ∼ π(·|s′) (5.9)

where

πθ is the policy with parameter θ,

ã’ are the next actions to be sampled from from the policy and not the replay buffer,

whereas r and s’ are sampled from the replay buffer,

α > 0 is the entropy regularization coefficient,

logπ(·|s’) represents the entropy term for policy π

31

Chapter 5 Deep Reinforcement Learning 32

SAC also learns two Q-functions similar to TD3, using the smaller one as the target in

Bellman error loss function. The loss function is given by equation (5.8). The target is

given by:

y(r, s′) = r + γ

(
min
i=1,2

Qφtarg,i(s
′, ã′)− α logπθ(ã′|s′)

)
, ã′ ∼ πθ(·|s′) (5.10)

The SAC algorithm is presented in algorithm (6) and the hyperparameters used for this

thesis are listed in table (5.3).

Algorithm 6: Soft Actor Critic

1 Initialize replay memory D to capacity N

2 Initialize critic networks Qφ1 , Qφ2 with weights φ1, φ2 and actor µθ with

weights θ

3 Set target parameters to main parameters φtarg,1 ← φ1, φtarg,2 ← φ2

4 for episode = 1, M do

5 Get initial state st

6 for t=1, T do

7 Select action at ∼ πθ(·|s)
8 Perform action at, observe reward r t and next state st+1

9 Store transition (st, at, rt, st+1) in D

10 if it’s time to update then

11 for j in range(how many updates) do

12 Randomly sample a batch B of transitions from D
13 Compute targets for the Q-functions using (5.10)

14 Update Q-functions by one step of gradient descent using (5.8)

15 Update policy by one step of gradient descent using

∇θ 1
|B|
∑
s∈B

(
min
i=1,2

Qφi(s, ãθ(s))− α logπθ(ãθ(s)|s)
)

Update target networks using:

φtarg,i ←τφtarg,i + (1 - τ)φi for i=1,2

16 end for

17 end if

18 end for

19 end for

Table 5.3: Hyperparameters for the SAC algorithm.

32

Chapter 5 Deep Reinforcement Learning 33

Hyperparameters Value

Discount factor γ 9.9 × 10−1

Soft target network update parameter τ 5 × 10−3

Alpha α [0.01, 0.033, 0.05, 0.1, 0.2, 0.33]

Batch size 256

Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−4

Policy learning rate 3 × 10−4

Training steps 106

Exploration steps 103

Maximum steps for each episode 103

Replay buffer size 105

Dimensions of first hidden layer for actor and critic 400 units

Dimensions of second hidden layer for actor and critic 300 units

Gradient steps (updates per step) 1

Target update interval 1

Automatic entropy tuning False

Log sig max 2

Log sig min −20

Epsilon ε 10−6

Nonlinearity ReLU[60]

Optimizer Adam([63])

SAC is particularly sensitive to the entropy regularization coefficient α. By choosing

the right value of the parameter, the model is able to balance between exploration

and exploitation. This leads to faster learning and better performance. However, the

optimal value of α varies between different agents and needs to be tuned separately.

Four different continuous control agents were considered for the course of this thesis, as

visible in section (5.7). The experimentation design (chapter 7) describes the training

of these agents corresponding to six different values of α in section 7.3.1 inspired by the

values found in [72].

So far we have introduced and elaborated on different reinforcement learning algorithms,

the proceeding sections will describe the physics engine used for reinforcement learning

simulations and details on four agents.

5.6 Pybullet Physics Engine

PyBullet[73] is an simple python module to Bullet[74]. The Bullet is a free and open

source physics engine. Previously, the MuJoCo[75] physics engine was used for many of

the standard reinforcement learning environments. An interesting comparison between

different simulation tools designed for robotics can be viewed in [76].

33

Chapter 5 Deep Reinforcement Learning 34

5.7 Continuous Control Agents

The thesis considers four continuous control agents that are used for experiments as

shown in figure (5.2). The goal for each of these agents is to run as fast as possible

by performing locomotion. The observational state space and the action space for each

agent is presented alongside. The reward obtained for these agents is the delta in distance

covered and small penalty proportional to magnitude of performed action. The state

space consists of angular positions and velocities of the joints. The reward contains the

delta in distance covered as well as a small penalty proportional to the magnitude of the

action.

(a) Hopper (b) Walker2d (c) HalfCheetah (d) Ant

Figure 5.2: Continuous control agents in PyBullet physics engine

• Hopper (S ∈ R15 , A ∈ R3) is an 3 DoF two-dimensional one-legged agent. The

goal to run forward is achieved by hopping (thus the name). The environment is

reset when the hopper model falls on the ground. The default values of different

hopper limbs in the pybullet simulator are listed in table (5.4).

Table 5.4: Default values of Hopper model

Model parameters Width Length

Torso 0.05 1.45

Thigh 0.05 1.05

Leg 0.04 0.6

Foot 0.06 0.26

• Walker2D (S ∈R22 , A ∈R6) is a 6-DoF two-legged agent resembling two con-

nected instances of the Hopper model. The goal to move forward is achieved by

walking motion. The environment is reset when the model falls over. Default

values of walker2d limbs for pybullet simulator are listed in table (5.5).

34

Chapter 5 Deep Reinforcement Learning 35

Table 5.5: Default values of Walker model

Model parameters Width Length

Torso 0.05 1.45

Thigh 0.05 1.05

Leg 0.04 0.6

Foot 0.06 0.2

• HalfCheetah (S ∈R26 , A ∈R6) is an 6 DoF two-dimensional model. The goal

to move forward is achieved by running. The default values for this agent used in

simulation are listed in table (5.6).

Table 5.6: Default values of Half-Cheetah model

Model parameters Width Length

Torso 0.046 0.5

Head 0.046 0.15

Front thigh 0.046 0.145

Front shin 0.046 0.15

Front foot 0.046 0.094

Front thigh 0.046 0.133

Front shin 0.046 0.106

Front foot 0.046 0.07

• Ant (S ∈R28 , A ∈R8) is an 8 DoF three-dimensional four-legged agent. The

agent uses alternate legs at a time for performing forward locomotion. The default

limbs and their values for this agent are listed in table (5.7).

Table 5.7: Default values of Ant model

Model parameters Width Length

Torso 0.25 0.25

Front left leg joint1 0.08 0.2

Front left leg joint2 0.08 0.2

Front left leg foot 0.08 0.4

Front right leg joint1 0.08 0.2

Front right leg joint2 0.08 0.2

Front right leg foot 0.08 0.4

Left back leg joint1 0.08 0.2

Left back leg joint2 0.08 0.2

Left back leg foot 0.08 0.4

Right back leg joint1 0.08 0.2

Right back leg joint2 0.08 0.2

Right back leg foot 0.08 0.4

35

Chapter 5 Deep Reinforcement Learning 36

5.8 Summary

We described three algorithms that are suitable for training four continuous action spaces

reinforcement learning agents. Further, we provide details on the self-supervised learning

model used for extracting feature representations from perturbed environment data in

chapter (6).

36

Chapter 6

Self Supervised Learning

6.1 Introduction

Generating labels for a dataset is expensive, while unlabelled data can be generated all

the time. The motivation for Self-Supervised Learning (SSL) is to consider unlabelled

dataset and exploit a variety of labels. This would help in gaining supervision from the

dataset itself. In the self-supervised task we are interested in the intermediate learned

representations, with an assumption that representation model can learn characteristics

or the high-quality latent variables of the unlabelled dataset for real-world tasks [77].

SSL technique for learning representation models have been employed in reinforce-

ment learning[78, 79], machine learning[80], computer vision [81–83], natural language

processing[84], and robotics[31, 32]. For the course of thesis, an SSL model, wav2vec[8]

which is developed for speech recognition will be integrated with the state-of-art RL

algorithms from chapter (5).

6.2 Self supervised learning model

6.2.1 The wav2vec model

The wav2vec model was originally designed to have raw audio signal as input, and then

passed through two convolutional networks. The first network ’encoder network’ embeds

the input in a latent space and the second ’context’ network generates contextualized

representations by combining multiple time-steps of the encoder network as seen in figure

(6.1). Both networks are used to compute the contrastive loss function in equation (6.1).

Chapter 6 Self Supervised Learning 38

Figure 6.1: Pre-training of audio data X , encoded with two convolutional neural
networks. The model is optimized to predict the next time step task [8]

The hyperparameters used to train the wav2vec model for this thesis are listed in table

(6.1).

X represents the raw audio samples, the encoder network is given by f : X 7→ Z and

the context network given by g : Z 7→ C. For a given receptive field size v, context

network combines multiple latent representations zi ... zi−v into single contextualized

tensor ci = g(zi...zi−v).

Table 6.1: Hyperparameters for Wav2vec model

38

Chapter 6 Self Supervised Learning 39

Hyperparameters Value

Receptive field 16

Number of workers 6

Max. update 4 ×105

Save interval 1

Log interval 10

Architecture wav2vec base

Learning rate scheduler cosine

Learning rate 1e-6

Minimum learning rate 1e-9

Maximum learning rate 5 ×10−4

Convolutional feature layers (64,128,128)

Convolutional aggregator layers (128, 128)

Prediction steps 1-16

Offset auto

Residual scale 0.5

Warmup updates 500

Warmup init learning rate 1e-07

criterion binary cross entropy

Number of negatives 10

Sample size 103

Max. tokens 104

Optimizer Adam[63]

6.2.2 Contrastive loss function

The model is trained to distinguish a sample zi+k which is k future steps from distractor

samples z̃ drawn from proposal distribution pn, by minimizing the contrastive loss given

by[8]:

Lk = −
T−k∑
i=1

(
log σ

(
zTi+khk(ci)

)
+ λ E

z̃∼pn

[
log σ(−z̃T hk(ci))

])
(6.1)

where Lk is computed for every k = 1,....,K. T is the sequence length and λ was set

to number of negative samples. The sigmoid is denoted by σ(x)= 1/1+exp(-x) and

the probability of zi+k being the true sample is given by σ
(
zTi+khk(ci)

)
. The hk(ci) =

Wkci + bk is a step-specific affine transformation for each step k, applied to ci [85]. The

loss L =
∑K

k=1 Lk, is optimized over different step sizes.

The wav2vec model outperformed the best character-based system in speech recognition

literature, while using less labeled training data.

39

Chapter 6 Self Supervised Learning 40

6.3 Summary

The chapter introduced the basic understanding of self supervised learning and it’s

applications in different domains. Functional concepts of an SSL technique - wav2vec

model were elaborated along with the involved contrastive loss function. A motivation

to consider wav2vec model for the course of this thesis was stated in this chapter. The

proceeding chapters will describes the experimental setups and the results for different

RL agents considering deep RL algorithms integrated with and without wav2vec model.

40

Chapter 7

Experimental Design

7.1 Introduction

The previous chapters provided theoretical background for the reinforcement learning

algorithms (policies) and self-supervised learning model. This chapter demonstrates the

experimental design steps for testing the state-of-art RL policies over the morphological

changes of an agent’s body (perturbed environments). We illustrate how these perturbed

environments are generated, an overview of the research hypothesis.

7.2 Generating novel morphological perturbed environments

We consider the continuous control agents from section (5.7) and make morphologi-

cal perturbations according to an gaussian normal distribution in two parameters, viz,

’length’ and ’width’ for each individual limbs. The mean of the normal distribution

is ’default value’ of length and width (as shown for different agents in section (5.7)),

and three different values of standard deviation - 0.05, 0.1 and 0.2 are considered for

sampling. Thus, the two parameters for individual limbs are sampled according to the

criteria shown in figure (7.2). 200 perturbed environments are generated corresponding

to each value of standard deviation, resulting in total 600 perturbed environments. An

comparison between baseline and morphological perturbations for all agents is presented

in figure (7.1).

Chapter 7 Experimental Design 42

Figure 7.1: Benchmarking robustness to morphological perturbations in PyBullet.
The modified morphology of Hopper, Walker2D, Half-Cheetah and Ant is a challenging

test for the policies trained on baseline.

Figure 7.2: Generating novel perturbed environments according to gaussian normal
distribution with three different standard deviation values

7.3 Overview of the research hypothesis and experimental

setup

We propose an hypothesis that SSL representations improve the robustness of RL poli-

cies. Accordingly, an visual presentation of the experimental setup can be viewed in

figure (7.3). At first, the reinforcement learning algorithms (policies) are trained on

42

Chapter 7 Experimental Design 43

Figure 7.3: Overview of the research hypothesis and experimental setup involving
- training RL policy on baseline envs., evaluating on perturbed envs., training SSL

model, and integrating representations with RL policy

the baseline environment for different agents. Next, these trained policies are tested

on different novel perturbed environments (old) and agent states are recorded. These

recorded states are fed into the self supervised learning model to gain representations

of the data. Then, these representations are integrated with RL policies. These RL

policies are again trained with updated representations over baseline environment and

finally tested on new and old perturbed environments.

7.3.1 Step 1 - Training RL policies over baseline environments

We train one million time-steps for different policies consisting of several episodes. Each

episode is limited to maximum 1000 time-steps. We train multiple seeds of RL policies

for each continuous control agent over their baseline environments in PyBullet simulator.

For all the agents, we have trained 50 seeds for DDPG, 50 seeds of TD3 and 60 seeds

of SAC. While training for SAC, we considered six different values of α and trained 10

seeds corresponding to each α value.

7.3.2 Step 2 - Evaluating trained RL policies on novel perturbed en-

vironments

The multiple seeds of trained RL policies - DDPG, TD3 and SAC are evaluated on novel

perturbed environments generated according to section (7.2). Since we considered 200

perturbed environments for each value of standard deviation, we use this same 200 envs.

for evaluating the performance of three RL policies in order to have fair comparison. We

compare the performance of policies based on the rewards obtained on perturbed envs.

This evaluation step is shown in figure (7.4).

43

Chapter 7 Experimental Design 44

Figure 7.4: Step 2 - Evaluating several trained RL policies (DDPG, TD3, SAC) on
novel perturbed environments

7.3.3 Step 3 - Training the SSL model using the data from N most

suitable environments

In the previous step we reported the rewards obtained by evaluating RL policies over

several perturbed envs. In this step we consider the data from all 600 perturbed envs.

(200 envs. for each of 3 different standard deviation values) for all RL algorithms. The

rewards obtained and reported are the ’median’ of an specific experiment.

The collected data is split into training and validation sets with 80% for the former and

20% for later. Importantly, we perform this split based on the perturbed envs., meaning

all data from randomly chosen 160 envs. (80% of 200) is considered for training set,

whereas remaining data from 40 envs. is considered for validation set. Similarly, the

same procedure is followed for data corresponding to different standard deviation values

for all agents.

Next, we choose the N most suitable envs. by having a median reward threshold above

a value of 750. This choice of reward threshold is sufficiently enough for an RL agent to

solve the original task of moving/running in forward direction.

We consider the recorded states data from these N most suitable envs. to train the

wav2vec SSL model. Note that this process of selecting N most suitable envs. is done

separately for each agent and SSL model is trained separately for each agent, while the

condition of reward threshold being 750 for all the agents. This experimental step is

visible in figure (7.5).

We train two variants of wav2vec model for Hopper with receptive fields 16 and 32.

While for other three agents, we train the wav2vec model only with receptive field value

of 16.

44

Chapter 7 Experimental Design 45

Figure 7.5: Step 3 - Pre-training contextualized representations jointly on the N most
suitable environments

Figure 7.6: Step 4 - Integrating the (non-invariant) state representation and re-
training the RL policy

7.3.4 Step 4 - Integrating the non-invariant state representations and

re-training the RL policy

This step involves integrating the non-invariant state representations from SSL model

and re-training the baseline RL policy as presented in figure (7.6). The hypothesis is

that the state representations improve the performance of baseline policy. In this step we

train various models, viz, training 10 seeds on just SSL representations, and integrated

SSL representations with the last state vector (obtained by default from the simulator)

By default, the RL policies are designed to train on only the last state vector, further in

order to understand how increasing the memory affects the training process we provide

results from training on last 8 state vectors, and last 16 state vectors

45

Chapter 7 Experimental Design 46

Figure 7.7: Step 5 - Evaluating the re-trained RL policy over perturbed environments

7.3.5 Step 5 - Evaluating the re-trained RL policy over new perturbed

environments

The step includes evaluating the re-trained RL policy (trained by integrating the SSL

representations) over new perturbed environments as shown in figure (7.7). Here, we

again sample the perturbed envs. according to the same criteria as described in section

(7.2) and term these as ’new’ perturbed envs. Also, for curiosity we evaluated the re-

trained RL policy over previous perturbed envs. that were generated during step 2 and

call them as ’old’ perturbed envs. For this step we only consider TD3 policy and for the

Hopper agent.

7.3.6 Step 6 - Comparing the baseline RL policy performance over

perturbed environments with and without integrated SSL rep-

resentations

In this step we compare the performance of RL policy, specifically TD3 on the perturbed

environments before and after integrating the SSL representations as shown in figure

(7.8). This step compares the results from step 2 and step 5. We support or falsify our

initial hypothesis that SSL representations improve the robustness of RL policies.

7.4 Summary

The chapter described about the research hypothesis in general and the breakdown of

experimental design into several steps in order to support or falsify the hypothesis. For

experimental step 3, I would like to thank Jin Hwa Lee from Technische Universität

46

Chapter 7 Experimental Design 47

Figure 7.8: Step 6 - Comparing the performance of baseline RL policy over perturbed
environments with and without integrated SSL representations

Munich (TUM) for fine tuning and generating all trained wav2vec models for various

RL agents. Next chapter provides the results and analysis for different experimental

design steps.

47

Chapter 8

Experimental results

8.1 Introduction

This chapter provides the results for different experimental steps described in the pre-

vious chapter. We show that a correlation exists between the degradation in rewards

with the difference in environments. The chapter also provides description and analysis

on the obtained results.

8.2 Experimental setup results

8.2.1 Step 1 - Training RL policies over baseline environments

Results of training multiple seeds for different RL policies corresponding to four different

agents are presented in figure (8.1, 8.2, 8.3, 8.4). Training results includes 50 seeds for

DDPG and TD3, while 60 seeds for SAC involving six different α values. Benchmarking

results for different agents on PyBullet environments for TD3 and DDPG policies can

be viewed in [86].

Considering the training results for different agents, it can be concluded that multiple

seeds of DDPG policy does not train well, while TD3 and SAC works well for all agents.

We observe variance in training with SAC due to different α values suggesting that the

agent is difficult to train with certain α.

Chapter 8 Experimental results 49

(a) Training with DDPG- 50 seeds (b) Training with TD3- 50 seeds (c) Training with SAC- 60 seeds

Figure 8.1: Hopper training results with different RL policies

(a) Training with DDPG- 50 seeds (b) Training with TD3- 50 seeds (c) Training with SAC- 60 seeds

Figure 8.2: Walker training results with different RL policies

(a) Training with DDPG- 50 seeds (b) Training with TD3- 50 seeds (c) Training with SAC- 60 seeds

Figure 8.3: Halfcheetah training results with different RL policies

8.2.2 Step 2 - Evaluation of trained RL policies on novel perturbed

environments

Hopper

Several trained models of RL policies starting with DDPG in figure (8.5) are evaluated

on non-perturbed (the baseline env. for reference) and novel perturbed environments.

We evaluate on 200 perturbed envs. for each value of standard deviation. Results

corresponding to TD3 and SAC are visible in figures (8.6) and (8.7) respectively.

In general, the performance of RL policies degrade with increase in standard deviation

value. The performance with DDPG is not good on perturbed envs. (figure (8.5)) as

49

Chapter 8 Experimental results 50

(a) Training with DDPG- 50 seeds (b) Training with TD3- 50 seeds (c) Training with SAC- 60 seeds

Figure 8.4: Ant training results with different RL policies

(a) Testing on non-perturbed hopper parameters (baseline)

(b) Testing on perturbed hopper parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as reference)

Figure 8.5: Testing trained DDPG models on non-perturbed and perturbed Hopper
parameters

compared on TD3 and SAC (figures (8.6) and (8.7)), this is due to poor training of

DDPG models over baseline hopper environment as seen in figure (8.1). This means

that data generated from DDPG evaluation cannot be used for training SSL model for

step 3. Thus, for the other three agents - Walker2D, HalfCheetah and Ant, we do not

evaluate their DDPG models on perturbed envs. and instead only consider TD3 and

SAC evaluation.

The SAC evaluation on perturbed envs. in figure (8.7) is a combined result of six α

values i.e 0.01, 0.033, 0.05, 0.1, 0.2, and 0.33. Figure (8.8) shows the performance of

specific α over three different standard deviation values. As observed in figure (8.8), all

50

Chapter 8 Experimental results 51

(a) Testing on non-perturbed hopper parameters (baseline)

(b) Testing on perturbed hopper parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as reference)

Figure 8.6: Testing trained TD3 models on non-perturbed and perturbed Hopper
parameters

α parameters follow similar performance pattern for each case of standard deviation. No

drastic difference in performance is visible for any specific value of α. This imply that

SAC policy in the case of Hopper is not affected much by changing the α value.

Walker2D

Trained models of TD3 and SAC policies are evaluated on non-perturbed (the baseline

env. for reference) and novel perturbed environments as seen in figures (A.1) and (A.2)

respectively. While the performance of TD3 is quite good, some SAC models lacked

performance typically because those were trained with some α values not suitable for

Walker2D. In general the data is sufficiently good enough to be used for SSL training.

The SAC evaluation results on perturbed envs. consisting of various α values are pre-

sented in figure (A.3). As observed, four α parameters follow similar pattern in per-

formance, except for α = 0.2 and α = 0.33 those illustrate poor performance. Also, it

can be noted that α = 0.2 and α = 0.33 limit the performance within a certain reward

range. Thus, for the Walker2D we observe a drastic difference in performance for two

values of α.

51

Chapter 8 Experimental results 52

(a) Testing on non-perturbed hopper parameters (baseline)

(b) Testing on perturbed hopper parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as reference)

Figure 8.7: Testing trained SAC models on non-perturbed and perturbed Hopper
parameters

Halfcheetah

TD3 and SAC trained models are evaluated on non-perturbed and novel perturbed

environments as seen in figures (A.4) and (A.5) respectively. TD3 performance is quite

good, while some SAC models do not perform well, we infer that training with some α

values was not suitable for HalfCheetah. Generally, the generated data is good enough

to be considered for SSL training.

Figure (A.6) presents SAC evaluations corresponding to different α values on perturbed

environments. It can be noted that α = 0.01, 0.033, 0.05 follow similar pattern in

performance, while α= 0.2, 0.33 illustrate poor performance in a certain range. However,

the results for α = 0.1 do not vary much across different standard deviation values. Thus,

for the walker2D agent we observe a drastic performance difference for three α values.

Ant

Figures (A.7) and (A.8) represent the evaluation of TD3 and SAC trained models on

non-perturbed and novel perturbed environments. Performance of TD3 policy is quite

52

Chapter 8 Experimental results 53

good, while we observe variance in SAC performance. This variance is likely due to

training with certain α values that are not suitable for Ant. Moreover, the amount of

generated data can considered for SSL training.

SAC evaluations corresponding to different α values on perturbed environments can be

viewed in figure (A.9). For α = 0.2, 0.33 the reward values are confined to particular

range across all plots. However, α = 0.01, 0.033, 0.05 seems to follow regular pattern in

performance, while α = 0.1 does not seems to have a regular pattern. Thus, a drastic

difference in Ant performance can be observed across plots for different α values.

8.2.3 Step 3 - Training the SSL model using the data from N most

suitable environments

The two trained variants of wav2vec model with receptive fields 16 and 32 in the case of

Hopper are presented in figure (A.10). In general, the loss function drastically decreases

and saturates at a low value against the training steps for both the training and validation

datasets. This imply appropriate tuning of hyperparameters for the model.

Also, figure (A.10) shows the accuracy of the model to predict latents in the future from

1 to 14 latent steps for Hopper. Similar result for Walker2D and HalfCheetah can be

viewed in figure (A.11). These plots demonstrate that the objective is neither impossible

nor trivial. As expected the prediction accuracy falls with the number of latent steps

implying that prediction task becomes harder as the target is further ahead.

8.2.4 Step 4 - Integrating the non-invariant state representations and

re-training the RL policy

The non-invariant state representations obtained from the SSL model are integrated

back to the baseline TD3 policy. We perform re-training of the TD3 policy in two cases,

firstly, re-training only over the obtained SSL representations, and secondly, re-training

over the integrated representations along with the last state vector of the agent.

The results of training 10 seeds for these two cases for Hopper (for two variants of

receptive fields) are presented in figure (A.12) and for all agents are presented in figure

(A.13). In general, re-training just over the obtained SSL representations do not yield

expected results, this can be due to limited training of the SSL model. While, the

performance of integrated representations and one state model is good enough.

Figure (A.14) presents the comparisons between 10 seeds of different models for Hopper

agent with TD3 policy. Here, the 1 state model is the baseline model wherein we use

53

Chapter 8 Experimental results 54

one state vector (obtained from simulator) for training the TD3 policy. While we also

considered training with last 8 states and 16 states in order to evaluate the role of

training with larger memory of state vectors. The other models considered are the ones

from figure (A.12). It can be seen that the performance of 8 state and 16 state models

are bad as compared to baseline 1 state model. Thus, having more state vectors in

memory does not result in good performance. A potential reason is the need of larger

neural network architecture when we consider more state vectors. Of all the considered

models, the best performance has been obtained by integrated representations and 1

state model. It is worth noticing that this model also reduces variance in training as

compared to the baseline 1 state model.

8.2.5 Step 5 - Evaluating the re-trained RL policy over new perturbed

environments

In the previous step, the results of re-trained TD3 policy models with integrated SSL

representations for Hopper agent were presented. In this step we evaluate these trained

models over the newly sampled perturbed environments according to the criteria men-

tioned in section (7.2). While we also evaluate these models over the same perturbed

envs. that were considered to generate the training data in step 3, these envs. are termed

as ’old’ perturbed envs. for reference. The evaluation results over these ’old’ and ’new’

perturbed envs. are presented in figure (A.15). It is surprising that the performance is

similar in both cases and thus we conclude that their is little to no robustness gain with

this evaluation step.

8.2.6 Step 6 - Comparing the baseline RL policy performance over

perturbed environments with and without integrated SSL rep-

resentations

In step 5 we introduced the ’new’ perturbed envs. and evaluated the performance of

re-trained TD3 policy models with integrated SSL representations for Hopper agent. In

this step we compare the evaluation performance of 1 state and 8 state models from

step 4 over these ’new’ envs. The comparison results are presented in figure (A.16).

Due to poor training with 8 state models in step 4, their evaluation performance is bad

(A.16(b)) compared to the other models. While, their is no significant difference when

we compare evaluations from 1 state model (A.16(a)) and integrated representations and

1 state model (A.16(c)). Thus, we conclude by saying that their is little to no robustness

gain before and after integration of the representations in this evaluation step.

54

Chapter 8 Experimental results 55

8.3 Summary

The chapter provided results for different experimental steps. Based on the results, it is

visible that increasing the level of perturbations (by increasing the standard deviation

while sampling) correlates with the degradation in rewards. For the SAC policy, the α

value affects the rewards degradation over perturbed envs. to limited extent for Hopper

and Walker2D as they are unstable envs. with respect to the morphological structure,

while to an large extent in Half-cheetah and Ant as these are stable environments.

The SSL model was trained well due to a drastic drop in the model loss function.

It was observed that the integrated representations helped in reducing the variance

during the re-training of RL policy models. While there was no significant difference

when evaluating the trained models over several perturbed envs. with and without

integrated SSL representations. Thus, we acquire no to little robustness gain during

this experimental design process.

55

Chapter 8 Experimental results 56

(a) Testing different alpha models on perturbed Hopper parameters with standard deviations of 0.05

(b) Testing different alpha models on perturbed Hopper parameters with standard deviations of 0.1

(c) Testing different alpha models on perturbed Hopper parameters with standard deviations of 0.2

Figure 8.8: Testing SAC models with different alpha values on perturbed Hopper
parameters

56

Chapter 9

Conclusion

9.1 Discussion

Robots and artificial agents need to adapt to the intrinsic or extrinsic changes while

performing different tasks in their respective environments. Reinforcement learning

(RL) can be used to develop adaptive controller for an agent subjected to these changes.

Accordingly, the first goal of this thesis was to investigate the robustness of RL policies

against intrinsic changes in agent’s morphological structure. The second goal was to

identify whether the self-supervised representation learning can improve the robustness

of considered RL policies.

In the beginning, thesis provides an theoretical background for understanding RL in

general, defining the necessary terminologies with the mathematical equations and in-

troducing model free and model based methods. Next, the basic building blocks of Deep

Neural Networks (DNN) were presented alongside with their architecture and training

techniques. Later, the relevant deep RL policies were described in detail with respect to

theory, mathematical expressions, pseudo codes and model hyperparameters. The thesis

also provides details on the physics engine used for simulation and the continuous state

space agents used for experimentation. Lastly, Self-Supervised Learning (SSL) model

was introduced with its theory, model parameters and mathematical loss function.

9.2 Conclusion

In order to achieve thesis goals, a step by step experimental pipeline is proposed in

chapter (7). The results corresponding to first goal are presented in sections (8.2.1)

and (8.2.2). Wherein we find that the performance of baseline RL policies degrade as

Chapter 9 Conclusion 58

we increase the distribution shift in agent’s physical morphology. Next, to achieve the

second thesis goal, we trained the SSL model for extracting the feature representations

from agent’s state space dataset. While we did not find evidence of a performance

improvement when using SSL representations, some initial evidence points towards a

reduced variance in the obtained reward as described in section (8.2.4).

Later, we investigated for any robustness gain after integrating the representations with

RL policies in section (8.2.5). We find that there was not much difference when evaluat-

ing RL policies over newly sampled perturbed environments with and without integrated

representations. Thus, we conclude that there was hardly any robustness gain achieved

via experimental design step 5. Lastly, in section (8.2.6) we compared performance of

different trained models over new perturbed envs. and hardly find any robustness gain

in this step.

In summary, the thesis examined the performance of actor-critic methods DDPG, TD3

and SAC for different RL agents subjected to morphological changes in body structure.

We find an correlation between obtained rewards and agent’s morphology. Further,

with SSL representations we find an improvement in training RL policies while we do

not achieve robustness over perturbed envs. for these policies. At last, we expect that

exploring self-supervision for developing adaptive RL mechanisms is an exiting research

direction.

9.3 Directions for the future work

The thesis presented an approach to integrate self-supervision with RL. The extensions

of this work can be the implemented actor-critic methods - DDPG, TD3 and SAC

can be fine tuned further with optimal hyperparameters. Also, new experiments can be

undertaken with increased capacity of these baseline networks. The SSL model- wav2vec

used for the course of this thesis was originally developed for speech processing, it might

be interesting to test using the latest developments in SSL. Robustness evaluation of

other baseline RL policies such as PPO[87], ACER[88], A2C[89], TRPO[90], GAIL[91]

can be undertaken along with integration of SSL. Experiments can be done with more

complex continuous state space RL agents such as Humanoid, Quadruped and Dog from

dm control suite[92] or with real mobile robots such as bipeds, quadrupeds or hexapods.

58

Appendix A

Supplementary results

This section includes additional figures in correspondence to chapter 8.

Appendix A Supplementary results 60

(a) Testing on non-perturbed Walker2D parameters (base-
line)

(b) Testing on perturbed Walker2D parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as
reference)

Figure A.1: Testing trained TD3 models on non-perturbed and perturbed Walker2D
parameters

(a) Testing on non-perturbed Walker2D parameters (base-
line)

(b) Testing on perturbed Walker2D parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as
reference)

Figure A.2: Testing trained SAC models with different alpha values on perturbed
Walker2D parameters

60

Appendix A Supplementary results 61

(a) Testing different alpha models on perturbed Walker2D parameters with standard deviations of 0.05

(b) Testing different alpha models on perturbed Walker2D parameters with standard deviations of 0.1

(c) Testing different alpha models on perturbed Walker2D parameters with standard deviations of 0.2

Figure A.3: Testing SAC models with different alpha values on perturbed Walker2D
parameters

61

Appendix A Supplementary results 62

(a) Testing on non-perturbed Halfcheetah parameters
(baseline)

(b) Testing on perturbed Halfcheetah parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as
reference)

Figure A.4: Testing trained TD3 models on non-perturbed and perturbed Halfcheetah
parameters

(a) Testing on non-perturbed Halfcheetah parameters
(baseline)

(b) Testing on perturbed Halfcheetah parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as
reference)

Figure A.5: Testing trained SAC models on non-perturbed and perturbed Halfcheetah
parameters

62

Appendix A Supplementary results 63

(a) Testing different alpha models on perturbed Halfcheetah parameters with standard deviations of 0.05

(b) Testing different alpha models on perturbed Halfcheetah parameters with standard deviations of 0.1

(c) Testing different alpha models on perturbed Halfcheetah parameters with standard deviations of 0.2

Figure A.6: Testing SAC models with different alpha values on perturbed Halfcheetah
parameters

63

Appendix A Supplementary results 64

(a) Testing on non-perturbed Ant parameters (baseline)

(b) Testing on perturbed Ant parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as reference)

Figure A.7: Testing trained TD3 models on non-perturbed and perturbed Ant pa-
rameters

(a) Testing on non-perturbed Ant parameters (baseline)

(b) Testing on perturbed Ant parameters with standard deviations of 0.05, 0.1 and 0.2 (with baseline as reference)

Figure A.8: Testing trained SAC models on non-perturbed and perturbed Ant pa-
rameters

64

Appendix A Supplementary results 65

(a) Testing different alpha models on perturbed Ant parameters with standard deviations of 0.05

(b) Testing different alpha models on perturbed Ant parameters with standard deviations of 0.1

(c) Testing different alpha models on perturbed Ant parameters with standard deviations of 0.2

Figure A.9: Testing SAC models with different alpha values on perturbed Ant pa-
rameters

65

Appendix A Supplementary results 66

(a) Wav2vec average accuracy to predict the latents in fu-
ture from 1 to 14 latent steps with receptive field 16

(b) Wav2vec training and validation loss with receptive
field 16

(c) Wav2vec average accuracy to predict the latents in fu-
ture from 1 to 14 latent steps with receptive field 32

(d) Wav2vec training and validation loss with receptive
field 32

Figure A.10: Wav2vec model plots for average accuracy of predicting future latents
and training, validation loss functions with two receptive fields for Hopper

(a) Wav2vec average accuracy to predict the latents in
future from 1 to 14 latent steps with receptive field 16 -
Walker2D

(b) Wav2vec average accuracy to predict the latents in
future from 1 to 14 latent steps with receptive fiel 16 -
Halfcheetah

Figure A.11: Wav2vec model plots for average accuracy of predicting future latents
for Walker2D and Halfcheetah

66

Appendix A Supplementary results 67

(a) TD3 training with integrated ’only wav2vec’ and ’wav2vec+ 1state’ with receptive field 16

(b) TD3 training with integrated ’only wav2vec’ and ’wav2vec+ 1state’ with receptive field 32

Figure A.12: Comparing TD3 training for two receptive fields with integrated ’only
wav2vec’ and ’wav2vec+ 1 state’ models for Hopper

67

Appendix A Supplementary results 68

(a) TD3 training with integrated ’only wav2vec’ (left) and ’wav2vec+ 1state’ (right) for Hopper default parameters

(b) TD3 training with integrated ’only wav2vec’ (left) and ’wav2vec+ 1state’ (right) for Walker2D default param-
eters

(c) TD3 training with integrated ’only wav2vec’ (left) and ’wav2vec+ 1state’ (right) for Halfcheetah default pa-
rameters

(d) TD3 training with integrated ’only wav2vec’ (left) and ’wav2vec+ 1state’ (right) for Ant default parameters

Figure A.13: Comparing TD3 training with integrated ’only wav2vec’ and ’wav2vec+
1 state’ models for four agents

68

Appendix A Supplementary results 69

(a) TD3 training with integrated 1 state model (b) TD3 training with integrated 8 state model

(c) TD3 training with integrated 16 state model (d) TD3 training with integrated ’wav2vec’ model

(e) TD3 training with integrated ’wav2vec+ 1 state’ model

Figure A.14: Comparing TD3 training with different integrated models for Hopper

69

Appendix A Supplementary results 70

(a) Testing ’wav2vec + 1 state’ models on Old perturbed Hopper parameters with standard deviations of 0.05, 0.1,
0.2

(b) Testing ’wav2vec + 1 state’ models on New perturbed Hopper parameters with standard deviations of 0.05,
0.1, 0.2

Figure A.15: Comparison between wav2vec + 1 state models tested on ’old’ and ’new’
perturbed Hopper parameters

70

Appendix A Supplementary results 71

(a) Testing ’1 state’ models on perturbed Hopper parameters with standard deviations of 0.05, 0.1, 0.2

(b) Testing ’8 state’ models on perturbed Hopper parameters with standard deviations of 0.05, 0.1, 0.2

(c) Testing ’wav2vec + 1 state’ models on perturbed Hopper parameters with standard deviations of 0.05, 0.1, 0.2

Figure A.16: Comparison between three different models tested on perturbed Hopper
parameters

71

Bibliography

[1] Abdulhadi Mohamed. Rl tutorial part 1: Monte carlo

methods. https://plusreinforcement.com/2018/07/05/

rl-tutorial-part-1-monte-carlo-methods/.

[2] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cam-

bridge, MA: MIT Press, 1st edition, 1998.

[3] integrate.ai. What is model-based reinforcement learn-

ing? https://medium.com/the-official-integrate-ai-blog/

understanding-reinforcement-learning-93d4e34e5698, 2018.

[4] Mahdi Shariati, Mohammad Saeed Mafipour, Peyman Mehrabi, Alireza Bahadori,

Yousef Zandi, Musab NA Salih, Hoang Nguyen, Jie Dou, Xuan Song, and Shek Poi-

Ngian. Application of a hybrid artificial neural network-particle swarm optimization

(ann-pso) model in behavior prediction of channel shear connectors embedded in

normal and high-strength concrete. Applied Sciences, 9(24):5534, 2019.

[5] Imad Dabbura. Coding neural network — forward propaga-

tion and backpropagtion. https://towardsdatascience.com/

coding-neural-network-forward-propagation-and-backpropagtion-ccf8cf369f76.

[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[7] Shrinath Deshpande. How to train your cheetah with deep re-

inforcement learning. https://medium.com/@deshpandeshrinath/

how-to-train-your-cheetah-with-deep-reinforcement-learning-14855518f916#:

~:text=As%20we%20see%20in%20Half,forward%20but%20in%20flipper%

20state., 2018.

[8] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec:

Unsupervised pre-training for speech recognition. arXiv preprint arXiv:1904.05862,

2019.

https://plusreinforcement.com/2018/07/05/rl-tutorial-part-1-monte-carlo-methods/
https://plusreinforcement.com/2018/07/05/rl-tutorial-part-1-monte-carlo-methods/
https://medium.com/the-official-integrate-ai-blog/understanding-reinforcement-learning-93d4e34e5698
https://medium.com/the-official-integrate-ai-blog/understanding-reinforcement-learning-93d4e34e5698
https://towardsdatascience.com/coding-neural-network-forward-propagation-and-backpropagtion-ccf8cf369f76
https://towardsdatascience.com/coding-neural-network-forward-propagation-and-backpropagtion-ccf8cf369f76
https://medium.com/@deshpandeshrinath/how-to-train-your-cheetah-with-deep-reinforcement-learning-14855518f916#:~:text=As%20we%20see%20in%20Half,forward%20but%20in%20flipper%20state.
https://medium.com/@deshpandeshrinath/how-to-train-your-cheetah-with-deep-reinforcement-learning-14855518f916#:~:text=As%20we%20see%20in%20Half,forward%20but%20in%20flipper%20state.
https://medium.com/@deshpandeshrinath/how-to-train-your-cheetah-with-deep-reinforcement-learning-14855518f916#:~:text=As%20we%20see%20in%20Half,forward%20but%20in%20flipper%20state.
https://medium.com/@deshpandeshrinath/how-to-train-your-cheetah-with-deep-reinforcement-learning-14855518f916#:~:text=As%20we%20see%20in%20Half,forward%20but%20in%20flipper%20state.

Bibliography 73

[9] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and

Sergey Levine. Learning agile robotic locomotion skills by imitating animals. arXiv

preprint arXiv:2004.00784, 2020.

[10] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsou-

nis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills

for legged robots. Science Robotics, 4(26), 2019.

[11] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. Crossing the reality

gap in evolutionary robotics by promoting transferable controllers. In Proceedings

of the 12th annual conference on Genetic and evolutionary computation, pages 119–

126, 2010.

[12] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel,

Sergey Levine, and Chelsea Finn. Learning to adapt in dynamic, real-world envi-

ronments through meta-reinforcement learning. arXiv preprint arXiv:1803.11347,

2018.

[13] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun,

and Dawn Song. Assessing generalization in deep reinforcement learning. 2019.

[14] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine.

Epopt: Learning robust neural network policies using model ensembles. arXiv

preprint arXiv:1610.01283, 2016.

[15] Daniel J Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi, Jackie Kay, Abbas

Abdolmaleki, Jost Tobias Springenberg, Timothy Mann, Todd Hester, and Mar-

tin Riedmiller. Robust reinforcement learning for continuous control with model

misspecification. arXiv preprint arXiv:1906.07516, 2019.

[16] Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learn-

ing to control self-assembling morphologies: a study of generalization via modular-

ity. arXiv preprint arXiv:1902.05546, 2019.

[17] Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them

all: Shared modular policies for agent-agnostic control. In International Conference

on Machine Learning, pages 4455–4464. PMLR, 2020.

[18] Jungdam Won and Jehee Lee. Learning body shape variation in physics-based

characters. ACM Transactions on Graphics (TOG), 38(6):1–12, 2019.

[19] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you

need: Regularizing deep reinforcement learning from pixels. arXiv preprint

arXiv:2004.13649, 2020.

73

Bibliography 74

[20] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Ar-

avind Srinivas. Reinforcement learning with augmented data. arXiv preprint

arXiv:2004.14990, 2020.

[21] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[22] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and

Nikunj Saunshi. A theoretical analysis of contrastive unsupervised representation

learning. arXiv preprint arXiv:1902.09229, 2019.

[23] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsuper-

vised representations for reinforcement learning. arXiv preprint arXiv:2004.04136,

2020.

[24] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine.

Learning invariant representations for reinforcement learning without reconstruc-

tion. arXiv preprint arXiv:2006.10742, 2020.

[25] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.

Dream to control: Learning behaviors by latent imagination. arXiv preprint

arXiv:1912.01603, 2019.

[26] Soeren Pirk, Mohi Khansari, Yunfei Bai, Corey Lynch, and Pierre Sermanet.

Object-contrastive networks: Unsupervised object representations. 2018.

[27] Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A Efros, Lerrel Pinto, and Xiao-

long Wang. Self-supervised policy adaptation during deployment. arXiv preprint

arXiv:2007.04309, 2020.

[28] Debidatta Dwibedi, Jonathan Tompson, Corey Lynch, and Pierre Sermanet. Self-

supervised representation learning for continuous control. 2018.

[29] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner,

and Deepak Pathak. Planning to explore via self-supervised world models. In

International Conference on Machine Learning, pages 8583–8592. PMLR, 2020.

[30] Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A Efros. Unsupervised domain

adaptation through self-supervision. arXiv preprint arXiv:1909.11825, 2019.

[31] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Ste-

fan Schaal, Sergey Levine, and Google Brain. Time-contrastive networks: Self-

supervised learning from video. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pages 1134–1141. IEEE, 2018.

74

Bibliography 75

[32] Eric Jang, Coline Devin, Vincent Vanhoucke, and Sergey Levine. Grasp2vec:

Learning object representations from self-supervised grasping. arXiv preprint

arXiv:1811.06964, 2018.

[33] David Silver. Reinforcement learning course by david silver. https://www.

youtube.com/watch?v=2pWv7GOvuf0&ab_channel=DeepMind.

[34] Spinning up in deep rl. https://spinningup.openai.com/en/latest/user/

introduction.html.

[35] Divyam Rastogi. Deep reinforcement learning for bipedal robots. http://

resolver.tudelft.nl/uuid:0fac495f-f87a-4a61-a80f-5f901323379a, 2017.

[36] Ayush Singh. Reinforcement learning: Bellman equation

and optimality (part 2). https://towardsdatascience.com/

reinforcement-learning-markov-decision-process-part-2-96837c936ec3,

2019.

[37] Cellstrat AI Lab. A summary of model-free rl algorithms. https://www.

cellstrat.com/2020/04/13/a-summary-of-model-free-rl-algorithms/,

2020.

[38] Abhishek Suran. On-policy v/s off-policy learning. https://towardsdatascience.

com/on-policy-v-s-off-policy-learning-75089916bc2f, 2020.

[39] Anthony Knittel Tim Eden and Raphael van Uffelen. Reinforcement learning.

https://www.cse.unsw.edu.au/~cs9417ml/RL1/index.html.

[40] Chris Watkins. Learning from delayed rewards. PhD thesis, King’s College, London,

1989.

[41] Alister Reis. Reinforcement learning: Eligibility traces and

td(lambda). https://amreis.github.io/ml/reinf-learn/2017/11/02/

reinforcement-learning-eligibility-traces.html, 2017.

[42] Sebastian Thrun and Anton Schwartz. Issues in using function approximation for

reinforcement learning. In Proceedings of the 1993 Connectionist Models Summer

School Hillsdale, NJ. Lawrence Erlbaum, 1993.

[43] David Silver. Lecture notes on reinforcement learning. https://stdm.github.io/

Lecture-notes-on-RL-David_Silver/, 2018.

[44] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv

preprint arXiv:1205.4839, 2012.

75

https://www.youtube.com/watch?v=2pWv7GOvuf0&ab_channel=DeepMind
https://www.youtube.com/watch?v=2pWv7GOvuf0&ab_channel=DeepMind
https://spinningup.openai.com/en/latest/user/introduction.html
https://spinningup.openai.com/en/latest/user/introduction.html
http://resolver.tudelft.nl/uuid:0fac495f-f87a-4a61-a80f-5f901323379a
http://resolver.tudelft.nl/uuid:0fac495f-f87a-4a61-a80f-5f901323379a
https://towardsdatascience.com/reinforcement-learning-markov-decision-process-part-2-96837c936ec3
https://towardsdatascience.com/reinforcement-learning-markov-decision-process-part-2-96837c936ec3
https://www.cellstrat.com/2020/04/13/a-summary-of-model-free-rl-algorithms/
https://www.cellstrat.com/2020/04/13/a-summary-of-model-free-rl-algorithms/
https://towardsdatascience.com/on-policy-v-s-off-policy-learning-75089916bc2f
https://towardsdatascience.com/on-policy-v-s-off-policy-learning-75089916bc2f
https://www.cse.unsw.edu.au/~cs9417ml/RL1/index.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://stdm.github.io/Lecture-notes-on-RL-David_Silver/
https://stdm.github.io/Lecture-notes-on-RL-David_Silver/

Bibliography 76

[45] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in

neural information processing systems, pages 1008–1014, 2000.

[46] Andy Steinbach. Rl introduction: simple actor-critic

for continuous actions. https://medium.com/@asteinbach/

rl-introduction-simple-actor-critic-for-continuous-actions-4e22afb712,

2018.

[47] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approximation.

In Advances in neural information processing systems, pages 1057–1063, 2000.

[48] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller. Deterministic policy gradient algorithms. In Proceedings of the 31st

International Conference on Machine Learning (ICML-14), page pp. 387–395, 2014.

[49] Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based re-

inforcement learning through optimistic policy search and planning. arXiv preprint

arXiv:2006.08684, 2020.

[50] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[51] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural net-

work model for a mechanism of visual pattern recognition. In Competition and

cooperation in neural nets, pages 267–285. Springer, 1982.

[52] Hiroyuki Miyamoto, Mitsuo Kawato, Tohru Setoyama, and Ryoji Suzuki. Feedback-

error-learning neural network for trajectory control of a robotic manipulator. Neural

networks, 1(3):251–265, 1988.

[53] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[54] Harry A Pierson and Michael S Gashler. Deep learning in robotics: a review of

recent research. Advanced Robotics, 31(16):821–835, 2017.

[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[56] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke,

and Jürgen Schmidhuber. A novel connectionist system for unconstrained handwrit-

ing recognition. IEEE transactions on pattern analysis and machine intelligence,

31(5):855–868, 2008.

76

https://medium.com/@asteinbach/rl-introduction-simple-actor-critic-for-continuous-actions-4e22afb712
https://medium.com/@asteinbach/rl-introduction-simple-actor-critic-for-continuous-actions-4e22afb712

Bibliography 77

[57] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. IEEE Signal processing magazine, 29(6):

82–97, 2012.

[58] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-

akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

[59] D. A. Vaccari and E. Wojciechowski. Neural networks as function approximators:

teaching a neural network to multiply. In Proceedings of 1994 IEEE International

Conference on Neural Networks (ICNN’94), volume 4, pages 2217–2222 vol.4, 1994.

doi: 10.1109/ICNN.1994.374561.

[60] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Icml, 2010.

[61] Eugenio Culurciello. Neural network architectures. https://

towardsdatascience.com/neural-network-architectures-156e5bad51ba.

[62] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of machine learning research,

12(7), 2011.

[63] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[64] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[65] Ismoilov Nusrat and Sung-Bong Jang. A comparison of regularization techniques

in deep neural networks. Symmetry, 10(11):648, 2018.

[66] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

et al. Mastering the game of go without human knowledge. nature, 550(7676):

354–359, 2017.

[67] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,

Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al.

Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

77

https://towardsdatascience.com/neural-network-architectures-156e5bad51ba
https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

Bibliography 78

[68] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob

McGrew, and Igor Mordatch. Emergent tool use from multi-agent autocurricula.

arXiv preprint arXiv:1909.07528, 2019.

[69] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. nature,

518(7540):529–533, 2015.

[70] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-

forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[71] Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approxi-

mation error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[72] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochastic

actor. arXiv preprint arXiv:1801.01290, 2018.

[73] Yunfei Bai Erwin Coumans. Pybullet quickstart guide. https://docs.google.

com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#

heading=h.2ye70wns7io3, 2016-2021.

[74] Yunfei Bai Erwin Coumans. Bullet real-time physics simula-

tion. https://pybullet.org/wordpress/index.php/2020/09/24/

pybullet-bullet-physics-3-05/, 2016-2021.

[75] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for

model-based control. In 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 5026–5033. IEEE, 2012.

[76] Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based

robotics: Comparison of bullet, havok, mujoco, ode and physx. In 2015 IEEE inter-

national conference on robotics and automation (ICRA), pages 4397–4404. IEEE,

2015.

[77] Lilian Weng. Self-supervised representation learning. lilianweng.github.io/lil-

log, 2019. URL https://lilianweng.github.io/lil-log/2019/11/10/

self-supervised-learning.html.

[78] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté,

and R Devon Hjelm. Unsupervised state representation learning in atari. arXiv

preprint arXiv:1906.08226, 2019.

78

https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://pybullet.org/wordpress/index.php/2020/09/24/pybullet-bullet-physics-3-05/
https://pybullet.org/wordpress/index.php/2020/09/24/pybullet-bullet-physics-3-05/
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html

Bibliography 79

[79] Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando

de Freitas. Playing hard exploration games by watching youtube. arXiv preprint

arXiv:1805.11592, 2018.

[80] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

[81] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-

jee, and Fillia Makedon. A survey on contrastive self-supervised learning. Tech-

nologies, 9(1):2, 2021.

[82] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Unsupervised fea-

ture learning via non-parametric instance-level discrimination. arXiv preprint

arXiv:1805.01978, 2018.

[83] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momen-

tum contrast for unsupervised visual representation learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020.

[84] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[85] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[86] Chris Nota. The autonomous learning library. https://

autonomous-learning-library.readthedocs.io/en/stable/guide/

benchmark_performance.html#:~:text=tested%20by%20DeepMind.-,

PyBullet%20Benchmark,PyBullet%20is%20free%20and%20open., 2020.

[87] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[88] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray

Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience

replay. arXiv preprint arXiv:1611.01224, 2016.

[89] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine

learning, pages 1928–1937. PMLR, 2016.

79

https://autonomous-learning-library.readthedocs.io/en/stable/guide/benchmark_performance.html#:~:text=tested%20by%20DeepMind.-,PyBullet%20Benchmark,PyBullet%20is%20free%20and%20open.
https://autonomous-learning-library.readthedocs.io/en/stable/guide/benchmark_performance.html#:~:text=tested%20by%20DeepMind.-,PyBullet%20Benchmark,PyBullet%20is%20free%20and%20open.
https://autonomous-learning-library.readthedocs.io/en/stable/guide/benchmark_performance.html#:~:text=tested%20by%20DeepMind.-,PyBullet%20Benchmark,PyBullet%20is%20free%20and%20open.
https://autonomous-learning-library.readthedocs.io/en/stable/guide/benchmark_performance.html#:~:text=tested%20by%20DeepMind.-,PyBullet%20Benchmark,PyBullet%20is%20free%20and%20open.

Bibliography 80

[90] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust region policy optimization. In International conference on machine learning,

pages 1889–1897. PMLR, 2015.

[91] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. arXiv

preprint arXiv:1606.03476, 2016.

[92] Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu,

Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess.

dmcontrol : Softwareandtasksforcontinuouscontrol, 2020.

80

	Title Page
	Declaration of Authorship
	Abstract
	Abstrakt
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research goal
	1.2 Approach
	1.3 Contribution
	1.4 Thesis Structure

	2 Related Work
	2.1 Robustness in Reinforcement Learning
	2.2 Representations in Reinforcement Learning
	2.3 Self-Supervised Learning in Reinforcement Learning

	3 Reinforcement learning Problem
	3.1 Introduction
	3.2 Markov decision process
	3.3 Policy
	3.4 Return
	3.5 Value functions
	3.6 Bellman Equations
	3.7 Model Free methods
	3.7.1 Value Based Methods
	3.7.1.1 Monte Carlo Methods
	3.7.1.2 Temporal Difference Learning
	3.7.1.3 Function Approximators

	3.7.2 Policy Based Methods
	3.7.3 Actor Critic Methods

	3.8 Model Based methods
	3.9 Summary

	4 Deep Neural Networks
	4.1 Introduction
	4.2 Building Blocks
	4.2.1 Artificial Neuron
	4.2.2 Activation Functions

	4.3 Feed Forward Neural Networks
	4.3.1 Architecture
	4.3.2 Training
	4.3.3 Batch normalization
	4.3.4 Regularization Methods
	4.3.4.1 Dropout

	4.4 Summary

	5 Deep Reinforcement Learning
	5.1 Introduction
	5.2 Deep Q Learning
	5.3 Deep Deterministic Policy Gradient (DDPG)
	5.4 Twin Delayed DDPG (TD3)
	5.5 Soft Actor Critic (SAC)
	5.6 Pybullet Physics Engine
	5.7 Continuous Control Agents
	5.8 Summary

	6 Self Supervised Learning
	6.1 Introduction
	6.2 Self supervised learning model
	6.2.1 The wav2vec model
	6.2.2 Contrastive loss function

	6.3 Summary

	7 Experimental Design
	7.1 Introduction
	7.2 Generating novel morphological perturbed environments
	7.3 Overview of the research hypothesis and experimental setup
	7.3.1 Step 1 - Training RL policies over baseline environments
	7.3.2 Step 2 - Evaluating trained RL policies on novel perturbed environments
	7.3.3 Step 3 - Training the SSL model using the data from N most suitable environments
	7.3.4 Step 4 - Integrating the non-invariant state representations and re-training the RL policy
	7.3.5 Step 5 - Evaluating the re-trained RL policy over new perturbed environments
	7.3.6 Step 6 - Comparing the baseline RL policy performance over perturbed environments with and without integrated SSL representations

	7.4 Summary

	8 Experimental results
	8.1 Introduction
	8.2 Experimental setup results
	8.2.1 Step 1 - Training RL policies over baseline environments
	8.2.2 Step 2 - Evaluation of trained RL policies on novel perturbed environments
	8.2.3 Step 3 - Training the SSL model using the data from N most suitable environments
	8.2.4 Step 4 - Integrating the non-invariant state representations and re-training the RL policy
	8.2.5 Step 5 - Evaluating the re-trained RL policy over new perturbed environments
	8.2.6 Step 6 - Comparing the baseline RL policy performance over perturbed environments with and without integrated SSL representations

	8.3 Summary

	9 Conclusion
	9.1 Discussion
	9.2 Conclusion
	9.3 Directions for the future work

	A Supplementary results
	Bibliography

