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Zusammenfassung

Diese Dissertation untersucht Wege zur Minderung des Klimawandels und stellt neue
Ansätze zum Umgang mit sozioökonomischer Unsicherheit bei der szenariobasierten
Gestaltung der Klimapolitik vor. Angesichts der Komplexität des Klimawandels
muss die Wissenschaft, die das Problem analysiert, interdisziplinär sein. Auch die
Stochastizität und Unsicherheit, die alle Aspekte des Lebens auf dem Planeten
umgeben, müssen in Studien, die das Problem untersuchen, berücksichtigt werden. Die
Kombination gut etablierter Methoden der Unsicherheitsanalyse mit sozio-ökonomischen
Szenarien ermöglicht neue methodische Ansätze zur Analyse von Klimaschutzpfaden.
Sozio-ökonomische Unsicherheit bezieht sich auf unterschiedliche zukünftige Pfade
des globalen Bevölkerungswachstums, der Wirtschaftsleistung und der Entwicklung
gesellschaftlich relevanter techno-ökonomischer Parameter. Wie wichtig ist der Einfluss
der Unsicherheit des Wirtschaftswachstums auf zukünftige Emissionen und Klimaziele?
Wir berücksichtigen die Unsicherheit explizit mit der stochastischen Version eines
Energie-Wirtschafts-Klima-Modells. Emissionsintensitätsziele werden als ein Mittel
zur Absicherung gegen Wachstumsunsicherheiten gesehen, aber unsere Studie zeigt
durch einen Multikriterienvergleich von absoluten Emissionszielen und Emissionsinten-
sitätszielen, dass absolute Ziele mehr Vorteile haben. Darüber hinaus werden weltweit
schnelle Veränderungen der wirtschaftlichen Kosten von Energietechnologien beobachtet.
Es ist schwierig, solide Vorhersagen über die zukünftige Entwicklung und die Rolle
dieser Technologien bei der Gestaltung der Energie- und Klimapolitik abzuleiten. Diese
Doktorarbeit bietet eine Sensitivitätsanalyse der Auswirkung von Unsicherheiten in
techno-ökonomischen Parametern der Energieerzeugung auf Klimaschutzpfade und
hebt die wichtige Rolle des Transportsektors hervor. Schließlich gibt es verschiedene
Schemata, die Gerechtigkeit des Klimaschutzes zu beschreiben, die ein oder mehrere
Gerechtigkeitsprinzipien ansprechen und letztendlich beschreiben, wie die Last der
Minderung des Klimawandels zwischen den Weltregionen verteilt wird. Wie interagiert
die sozioökonomische Unsicherheit mit der Lastenverteilung des Klimaschutzes? Um
diese Frage zu beantworten und eine Lücke in der Literatur zu füllen, bietet diese
Doktorarbeit eine Analyse verschiedener Lastenverteilungsschemata über Regionen



hinweg und unter sozioökonomischer Unsicherheit und zeigt, dass eine Welt, die sich in
Richtung Nachhaltigkeit orientiert, die Last der Klimastabilisierung leichter zwischen
den Regionen verteilen wird.
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Abstract

This doctoral thesis explores pathways towards mitigation of climate change and presents
novel approaches to tackling socio-economic uncertainty in scenario-based climate policy
design. Given the complexity of climate change, the science that analyzes the problem
has to be inter-disciplinary, while the stochasticity and uncertainty surrounding all
aspects of life on the planet needs to be considered in studies investigating it. Combining
well established uncertainty analysis methods with socio-economic scenarios facilitates
new methodological approaches for analyzing climate mitigation pathways. Socio-
economic uncertainty refers to different future paths of global population growth,
economic output, and development in techno-economic parameters relevant to society.
How important is the effect of economic growth uncertainty on future emissions and
climate targets? We explicitly account for uncertainty using a stochastic version of an
en energy-economy-climate model. Emission intensity targets are considered means to
hedge against growth uncertainty, but our study shows via a multi-criteria comparison
of absolute versus intensity emission targets that absolute targets have more benefits.
Further, rapid changes in economic costs of energy technologies are being observed
globally. It is difficult to derive solid predictions on the future evolution and role of
such technologies in shaping energy and climate policy. At the same time, different
sectors of the economy feature different characteristics and decarbonization potentials.
This thesis provides a sensitivity analysis of the effect of uncertainty in techno-economic
parameters of energy generation on climate mitigation pathways and highlights the
important role of the transport sector. Finally, several different schemes exist to
describe the equity dimension of climate change mitigation, addressing one or more
equity principles and ultimately describing how the burden of mitigating climate change
is shared among world regions. How does socio-economic uncertainty interact with the
burden sharing of climate mitigation? To answer this question and fill a gap in the
literature, this thesis provides an analysis of several different burden sharing schemes
across regions and under socio-economic uncertainty, and shows that a world leaning
towards sustainability will distribute more easily the burden of climate stabilization
between regions.
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1
Introduction

1.1 Motivation

Climate change is the most severe and complex environmental problem the world has
faced to date. Further characteristics of climate change are its multi-faceted nature,
the high uncertainty it entails, and its global scale. The scientific community informs
the society in a) understanding the causes and state of the problem, b) assessing its
natural, societal and monetary impacts, and c) exploring the alternative pathways
leading to its solution. While the causes of climate change have been solidly identified
as the anthropogenic intervention in Earth’s natural cycles—which leads to changes in
the way the atmosphere traps solar radiation—the exact magnitude of the problem
and the approaches to its solution are under ongoing investigation and debate, due to
its sheer complexity and because the continuous alarming signals reported by scientists
are not taken into full consideration by governments. Further, several current extreme
weather and natural phenomena are attributed to climate change by scientists but
are not regarded as such by all politicians, whereas future impacts of climate change
can not be fully understood due to the wide range of possible outcomes, spanning
the natural, societal and economic sphere. Finally, pathways leading to sustainable
solutions of the problem are subject to extensive debate, mostly due to the widespread
understanding that many potential technological solutions are already present, but a
successful implementation depends also on political will—and is consequently affected
by the above discussions about the physical science and the impacts—and market as well
as social dynamics. Given the complexity of the issue, the science that analyzes climate
change has to be inter-disciplinary, while the stochasticity and uncertainty surrounding
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1. Introduction

all aspects of life on the planet needs to be considered in studies investigating climate
change.

This doctoral thesis explores item c) above—alternative pathways towards mitigation
of climate change—and presents novel approaches to tackling socio-economic uncertainty
in scenario-based climate policy design. With socio-economic uncertainty we refer to
different future paths of global population growth, economic output, and development
in techno-economic parameters relevant to society. Community efforts by scientists from
different disciplines spanning the whole range of climate-relevant research have led to
the generation of scenarios describing these paths, harmonizing the analyses of climate
mitigation scenarios across studies, and bridging the information flow between the three
areas of climate change research mentioned above. Combining well established methods
of model-based uncertainty analysis with these scenarios facilitates new methodological
approaches for analyzing climate mitigation pathways. An increasing number of studies
follows this approach, including the studies contained in the present thesis.

1.2 Structural elements of climate change mitiga-
tion research

In this section the framework that contains the research presented in this thesis will
be described. First, a short description is provided on how climate change research is
divided into three main areas. Then, shifting the focus to climate change mitigation
(the specific area of climate change research discussed throughout the thesis), some of
its structural elements are briefly discussed.

Climate change research is divided in three main areas. Area I deals with the
physical science behind climate change: greenhouse gases (GHG) and aerosols in the
atmosphere; temperature changes in the air, land and ocean; the hydrological cycle
and changing precipitation (rain and snow) patterns; extreme weather; glaciers and
ice sheets; oceans and sea level; biogeochemistry and the carbon cycle; and climate
sensitivity (a measure of the additional warming caused by a doubling of the CO2 in
the atmosphere).

Area II assesses its natural, societal and monetary impacts, from a world-wide to a
regional view, looking into ecosystems and biodiversity, and humans and their diverse
societies, cultures and settlements. It considers their vulnerabilities and the capacities
and limits of these systems.

Finally, area III explores the solution space towards stabilizing the Earth’s
temperature. It addresses all aspects of mitigation including technical feasibility, cost
and the enabling environments that would allow measures to be taken up. Enabling
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1.2 Structural elements of climate change mitigation research

environments cover policy instruments, governance options and social acceptability.
Synergies and trade-offs with adaptation measures are of increasing interest as are
co-benefits, risks and links to sustainable development.

The IPCC, an independent, international, Nobel-prize-winning body of scientists
formed by the UN and the WMO issues assessment reports on climate change
periodically. The IPCC consists of three working groups, matching exactly the topics
of the three areas mentioned above. The IPCC does not conduct its own research,
it rather brings together the current available knowledge in the form of periodical
assessment reports aiming to assist decision-makers in understanding and dealing with
climate change.

1.2.1 Economics of climate change mitigation

The field of economics of climate change mitigation deals with questions such as

• what investments are needed to solve the climate externality/curb GHG emissions
in an efficient way?

• how high is the cost of saving the climate?

• how does climate stabilization interact with economic growth?

• how does climate policy interact with broader sustainability?

• what policy instruments are more efficient in decarbonizing the economic system?

In the following, selected topics that deal with these questions and are relevant to
the research presented in the current thesis are discussed.

1.2.1.1 Market-based policy instruments

Economic theory suggests that market-based instruments—as opposed to command-
and-control policies—are more efficient in achieving environmental goals. Here, the
concept of carbon price plays a central role. It represents a tax on every CO-emitting
activity, or the price of an allowance to emit one tonne of CO2 in a cap-and-trade
system. The latter is a system where, given a fixed amount of overall emissions allowed
in a certain period, emitters are endowed with allowances to emit. These allowances
can be traded, or emitting firms can invest in cleaner production. It is thus a system
where the quantity is fixed and the price is determined by the market. In the case
of a carbon tax, i.e. a fixed carbon price, it is the quantity that will be determined
by the market dynamics. Beyond market-based economic policies, such as efficiency
standards, technology support, etc., gained a lot of attention in recent years when it
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1. Introduction

started becoming evident that market-based instruments alone will not be sufficient
to stabilize the climate in the scale and speed that is needed for remaining in safe
planetary boundaries (Bertram et al., 2015).

1.2.1.2 The price of carbon and its social cost

But even when investigating the carbon price alone, its exact value and trajectory
are of great interest and still highly debated (Strefler et al., 2020; Rogelj et al., 2019).
Economic theory suggests that the carbon price should be equal to the social cost
of carbon (SCC, i.e. the monetized net present value damage from the emission of
one additional tonne of greenhouse gas equivalents into the atmosphere). Yet, the
prerequisites for this equality to hold are almost impossible to achieve, as perfectly
functioning markets and a correct calculation of the SCC are required. Markets are
not perfect and the SCC tends to be very sensitive to the choice of time preference
(Arrow et al., 2013) valuing future vs. current welfare, which makes its calculation a
value-laden decision.

As a result, there is no clear definition of a "correct" SCC. Instead, the carbon price
is commonly derived using integrated assessment models running in a so-called cost-
effectiveness mode, rather than conducting cost-benefit analyses containing internalized
future damages from climate change. Cost-effectiveness studies take climate targets
as given, thus containing less trade-offs than cost-benefit analyses. However, hybrid
approaches also exist, such as cost-risk analyses (Held, 2019) and least-total-cost studies
(Schultes et al., 2020). All studies in the present thesis are cost-effectiveness studies.
Another source of debate around the carbon price is found in the study of regional
disparities in ambition, ability, and responsibility to act against climate change. The
topics range from the effect of a globally uniform carbon price and of inter-regional
climate-related monetary transfers on the sovereignty of national states to the amount
and structure needed for a proper "climate finance" between developed and developing
countries (Bauer et al., 2020).

1.2.1.3 New approaches to established concepts

The economic theory around climate change evolves constantly as the understanding
of the problem progresses. Widely spread concepts are being updated to account for
recent developments in research. An example is the use of the Hotelling rule (Hotelling,
1931) for the optimal pricing of a non-renewable and non-augmentable resource. The
Hotelling rule suggests that the optimal trajectory for the price of a non-renewable and
non-augmentable resource should follow the discount rate, and has been widely used
in the literature for designing optimal carbon price paths. This has been challenged
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recently as the availability of technologies that generate negative emissions makes the
remaining carbon budget non finite.

Another notable area of fast advancements is the topic of optimal investment across
time. Using methods to account for levelized costs of carbon (i.e. accounting for system
path dependencies, see Vogt-Schilb, Meunier, and Hallegatte, 2018), as opposed to
static marginal abatement cost representations, options that look expensive in the
short term turn out to be the ones that would make the most reasonable investment in
the long run. An example is the power sector, which features high prices currently, but
is expected to dominate the energy sector and become the cheapest source of energy
(Luderer et al., 2021).

1.2.1.4 Further topics

Further topics include the separation of policies targeting the demand and supply side
(Creutzig et al., 2018) and the consideration of the characteristics of individual sectors
of the economy, e.g. land-use (Popp et al., 2011), buildings (Levesque et al., 2018),
industry (Broeren, Saygin, and Patel, 2014), and transport (Pietzcker et al., 2014;
Wenz et al., 2020). Of particular interest is the interaction of climate policies with the
general sustainability perspective (e.g. the Sustainable Development Goals), see .e.g
Bertram et al., 2018; Burke et al., 2016, as well as the role of climate change in the topic
of global inequality (King and Harrington, 2018), e.g. developing versus developed
countries, or different income levels in the population of single regions/countries.

1.2.2 The need for scenarios

Scientists working in the three research areas of climate change (see section 1.2) interact
and exchange information, as a result of cross-topic cause-effect chains and feedback
loops starting with economic activity that generates emissions which change the climate
and affect ecosystems and humans. In order for the research communities related to
the physical science, impacts, and mitigation areas to interact effectively, the different
scenarios generated in each area have to be compatible with each other. Further, given
the vast amount of research output that needs to be processed by each of the IPCC
working groups each time assessment reports are released, every report takes several
years in the making. Early scenarios were generated sequentially which was leading to
substantial delays in the information flow between the working groups (Moss et al.,
2010).

Newly developed scenarios aim to tackle these issues, by allowing for a harmonized
and parallel—as opposed to sequential—scenario development among the working
groups. The climate mitigation working group uses the Representative Concentration
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1. Introduction

Pathways (RCPs) and the Shared Socio-economic Pathways (SSPs) to achieve this. The
SSPs (O’Neill et al., 2014) describe five self-consistent storylines of possible economic
and social development for the current century (Riahi et al., 2017). These storylines
span the available uncertainty ranges in terms of economic development, population
growth, etc. As such, they provide an excellent basis for uncertainty analysis of climate
policy. Furthermore, research has identified economic growth and technology availability
as important sources of uncertainty in future GHG emissions, and consequently, climate
mitigation pathways (Marangoni et al., 2017). Given the large amount of models and
modeling teams, and the need for harmonization of the assumptions that policy studies
are based upon in order to better inform stakeholders, another category of scenarios—
complementary to the SSPs—has been developed, the Share Policy Assumptions (SPAs,
Kriegler et al., 2014). The SPAs prescribe climate policy paths and provide a tool for
effectively combining the SSPs with the RCPs in exploring the scenario space.

1.2.3 Models

Computer-based simulations play a central role in all three areas of IPCC’s research.
These simulations are run by mathematical models, describing physical and socio-
economic processes. The variety of models and modelling approaches among the three
groups of the IPCC and among the various research groups on climate change globally
is immense, and this is another reason why harmonization of scenarios among models
(and across IPCC groups) is important.

1.2.3.1 Physical science models

General Circulation Models (GCMs), often divided into Atmospheric General Circula-
tion Models (AGCM) and Oceanic General Circulation Models (OGCM), in combination
with models for land and sea-ice are the basis of the modeling work in the first group
of the IPCC. They are completed by satellite observation and other types of data. The
output of these models is used to predict and explain future climates and other earth
system processes, and to calculate important measures like the climate sensitivity and
the remaining carbon budget (amount of greenhouse gas emissions in gigatonnes) for
certain global temperature or radiative forcing (the difference between solar irradiance
absorbed by the Earth and energy radiated back to space, commonly used as a measure
for global warming) thresholds.
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1.2 Structural elements of climate change mitigation research

1.2.3.2 Impact models

Impact models take the output of earth system models as input and explore the
consequences of disturbed physical processes on human and natural systems various
sectors (i.e. agriculture, forestry, water resources etc.). The multi-faceted nature of
these impacts and the difficulty in monetizing them are among the challenges that
impact modelers are facing. Further, these models are exposed to extreme uncertainties.
The newly established UN’s Sustainable Development Goals provide an excellent
framework for the understanding and categorization of impacts.

1.2.3.3 Energy-economy-climate models

The focus of the present thesis will be on climate mitigation pathways, which are based
to a large extent on results from energy-economy-climate (EEC) models (like e.g. the
REMIND model used in the present thesis, see Luderer et al., 2015), referred to as
integrated assessment models (IAMs) when they consider also land-use change. These
models use techno-/socio-economic data and trends as inputs, and derive—among
others—energy system configurations and the resulting GHG emissions, based on
criteria such as optimal future global (or for major world regions) consumption paths
or least-cost energy (or land) systems. EECs, ever increasing in technological detail
and policy- and economic realism (e.g. with sectoral detail), rely on scenarios such
as the SSPs to cover the uncertainty space and give adequate information to the
public, stakeholders etc. Further, results from EECs are often used in international
model-intercomparison projects, for better coordination between researchers, tackling
uncertainty, and more understanding of the insights delivered by EECs (Tavoni et al.,
2013; Kriegler et al., 2014; Luderer et al., 2018; Bauer et al., 2018).

Economic system representation
In terms of the representation of the economic system, EEC models can be classified
into general equilibrium models and partial equilibrium models. The former cover all
economic sectors and derive a solution where all markets are cleared, whereas the
latter derive their solution based on criteria such as the least economic cost of an
aggregate measure, e.g. total agricultural production costs. EECs are often
soft-coupled with models generating socio-economic trends, like population and energy
demand scenarios.

A well established concept in the economic representation of EECs is the structure of
a function-tree consisting of nested constant-elasticity-of-substitution (CES) production
functions. At the top level, usual inputs to the production function are energy services,
labor, and capital, generating economic output (gross domestic product) that can be
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either saved, invested, or consumed. The part that is consumed is directly aggregated
over time to derive intertemporal welfare. The invested part can be used either for
investment in generic macroeconomic capital, or for energy investment. The lower
parts of the CES tree feeding into the upper most level can be divided into economic
sectors (in REMIND these are: buildings, industry, and transport). The exogenous
demand for final energy by sector (and sub-sector) and economic output scenarios are
derived by soft-coupled models analyzing socio-economic trends.

Solution algorithms
Another classification can be done in terms of the solution algorithm in the temporal
dimension, i.e. time. Models are described as recursive-dynamic if they solve time
period after time period, whereas intertemporal models compute a solution for the
complete time horizon of the problem at once. In the context of intertemportal
optimization the concept of perfect foresight emerges, which describes the situation of
a decision-maker that instantly "knows" the outcome of their current and future
decisions. Perfect foresight plays an important role in studies on uncertainty, and
methods for accounting for uncertainty have to effectively overcome this limitation
(more on this in paragraph 1.3.3.1).

Energy system representation
The energy part of EEC models (e.g. of REMIND) often features high granularity in
terms of the available technological options for energy conversion. These include
renewable energy sources, fossil resources, nuclear power, geothermal energy, but also
more advanced technologies such as hydrogen, synthetic fuels, carbon capture and
storage, negative emissions technologies, biofuels, batteries, smart electricity grids etc.
To capture real world dynamics, full accounting of energy capacity vintaging is used,
combined with real-world data from data providers like the International Energy
Agency (IEA) or the International Renewable Energy Agency (IRENA). Technological
learning (i.e. the reduction of investment cost of new technologies with increasing
installed capacity) is also parameterized and included in most models. Further, to
realistically model energy investment and deployment, adjustment costs are taken into
consideration. These costs help regulate the speed of generation of energy capacities
by respecting economies of scale. At the same time, energy capacity can be removed
before the end of its lifetime if it is considered uneconomical (e.g. in the presence of
stringent climate policy).
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1.3 Uncertainties of climate change and solution
approaches

In this section an overview of uncertainty in the context of climate change with a
special focus on mitigation will be given. A definition of related terms is provided,
followed by common methods to solve problems including uncertainty, while the chapter
finishes with typical examples of topics where uncertainty usually arises. This discussion
provides the foundation of the three main chapters of the present thesis.

1.3.1 Introduction - Uncertainty classification

A common classification of uncertainty happens with the distinction between stochas-
tic/aleatory uncertainty (the persistent randomness of the observed/modelled system
due to unresolved processes) and epistemic uncertainty (due to things one could in
principle know but do not in practice). There are various kinds of epistemic uncertainty,
the incomplete knowledge of model parameters is called parametric uncertainty (Golub,
Narita, and Schmidt, 2014). Another one is structural uncertainty, e.g. when comparing
results from different models with different structures. The studies of the present thesis
mostly deal with parametric uncertainty.

Uncertainty is often referred to as risk, depending mostly on the context (e.g.
finance or energy-economy studies). There are concepts related to uncertainty analyses
that are central to the idea of dealing with the unknown, i.e. deriving optimal strategies
under uncertainty. One such concept is the agent’s risk aversion, which describes a
measure of the sensitivity of the decision-maker(s) to an incomplete knowledge of
the parameters of a system and consequently affects their chosen strategy. In typical
energy-economy-climate models this parameter is by definition coupled to a parameter
describing the preference of the decision-maker towards a smooth optimal consumption
path. This has an impact on uncertainty analyses with energy-economy-models (Lorenz
et al., 2012), but disentangling these two parameters would mean completely changing
the intertemporal character of the objective function (Traeger, 2009). Further, the
concept of learning describes the impact and value of updated information about these
parameters and can also have a great impact on the optimal strategy (Lara and Gilotte,
2009; Baker, 2006). Finally, in many cases the derivation of such an optimal strategy
will mean expressing it in terms of the expected value of some metric, based on a known
probability distribution of the uncertain parameter.

9



1. Introduction

1.3.2 Methodological approaches to uncertainty analysis

As mentioned above, due to large uncertainties, climate change research is often
scenario-based. The scenarios used do not try to predict the future, but rather spell
out possible futures. After possible scenarios have been identified (usually by expert
elicitation (see e.g. Baker et al., 2015; Bosetti et al.; 2015) or by a process like the
SSP process), uncertainty analysis methods can be applied to explore the uncertainty
space. A classification of important uncertainty analysis methods for scenario-based
modelling can be done into two main categories. The first category involves methods
that analyze the scenario space either selectively or more extensively, but in both cases
derive more than one optimal solutions. The second category consists in deriving one
single solution that explicitly accounts for the uncertainty in model inputs. This single
solution path is also called hedging strategy.

Further differences between the two categories are the computational and conceptual
complexity, as well as the applications for which they are mostly used. The first category
contributes mainly to the field of uncertainty propagation, giving insights into the
sources of uncertainty and quantifying it, whereas the second method is more suitable
for decision-making under uncertainty (Kann and Weyant, 2000).

1.3.2.1 Uncertainty propagation

Typical examples of the first category are scenario analysis and sensitivity analysis.
Scenario analysis consists in performing one simulation for each available storyline
(one-factor-a-time methods) described by a scenario table of parameter input values,
whereas sensitivity analysis is broader and involves running one simulation for several
distinct input parameter values, and combinations thereof, based on probability density
functions and a multitude of available parameter sampling methods. Methods for
efficient handling of the exponentially increasing dimensionality of the problem are
constantly being developed and improved, involving methods such as Monte Carlo,
Gaussian quadratures, etc.

1.3.2.2 Decision-making under uncertainty

The second category contains conceptually more complex methods such as Discrete
Stochastic Programming and Dynamic Stochastic Programming, among others. These
methods are more difficult to implement than those of the first category, as they require
not only high amounts of computational resources, but also algorithmic intervention to
the model. They do, however, greatly assist decision-making by deriving single optimal
paths instead of numbers of paths equal to the number of different possible scenarios,
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as the methods of the first category do. Discrete Stochastic Programming consists
in exposing the decision-making process of a model (e.g. the social planner) to all
possible values of an uncertain parameter at the same time, thereby allowing for only
one possible optimal solution. The method to do so consists in the introduction of
different states-of-the-world, each one corresponding to a different discrete value of the
parameter, and formulating the objective function of the model in a way that it solves
for the expected value of e.g. utility, based on given probabilities for the realisation of
any of the states-of-the-world. These probabilities can take any form and this is what
gives the method the characterization stochastic. Dynamic Stochastic Programming
is used in multi-stage decision problems and involves a parameter showing stochastic
behavior across the temporal dimension, it is thus more suitable for stochastic/aleatory
uncertainty. Finally, methods exist that offer the decision-maker tools that derive
robust strategies under uncertainty, these methods are characterized as Robust Decision-
Making (Lempert et al., 2006; Hall et al., 2012).

1.3.3 Sources of uncertainty

1.3.3.1 Regulatory uncertainty

Regulatory uncertainty is the term describing missing information about the evolution
of current—and announcement of new—measures to mitigate climate change by
governments. An example is the permit price in the European Emissions Trading
Scheme: the volatility observed is coupled to policy announcements. Given the
importance of the energy sector in GHG emissions, capturing investors’ behavior is
crucial for the analysis of optimal energy investments under regulatory uncertainty
about climate policy. However, when using a typical energy-economy-climate (or
integrated assessment) model, i.e. in a general equilibrium framework, the low share of
the energy sector in the total economic output makes the welfare effects from regulatory
uncertainty negligible from the social planner point of view, but the optimal investments
surely remain significant from an investor’s perspective.

A metric for the effect of regulatory uncertainty
The crucial question is whether the general equilibrium modelling framework can
reflect the investors’ risk aversion, the result of which would be a hedging strategy (i.e.
a drop or rise in emissions compared to the deterministic case). In the case of
uncertain regulation of carbon emissions this will be reflected in a different energy
investment—and consequently emissions—path followed in the
decision-under-uncertainty framework than in the learn-then-act (deterministic) case.
More concretely, if the optimal path under regulatory uncertainty differs from the one

11



1. Introduction

followed when the best guess value of the uncertain parameter (here, the level of the
carbon tax is used as a proxy for regulatory uncertainty) is realized in deterministic
mode (the best-guess case), then a hedging strategy is observed. To illustrate this, we
define a metric for the conditions for appearance of hedging. Let Û = ∑︁

s ηsUs be
expected utility, while s denotes the state-of-the-world (each state-of-the-world
describes the whole system given a certain value of the uncertain parameter, see
Appendix for more information) and ηs is the probability of each of the n

states-of-the-world. Then, for a typical diminishing marginal utility (i.e. the utility
takes a logarithmic form: at higher consumption levels, marginal consumption results
in less marginal utility than in low consumption levels) based on per capita
consumption we get:

Û =
∑︂

s

∑︂
t

e−ρtP ln Cs

P
, s ∈ [1, ..., n] (1.1)

where P is population (assumed equal in all scenarios), t is time, ρ is the pure time
preference rate (basically the rate in which future utility loses its present value), and
Cs (consumption in each state-of-the-world) is given by:

C = Y − I − EE − ET . (1.2)

In Eq. 1.2, Y is total income, I are are investments in the general good, EE are
energy expenditures and E are emissions, which are multiplied by the carbon tax T .
Y is considered equal across all scenarios (climate policy does not have a large effect
on GDP) and Is, EEs are equalized by definition (the decision variables have to be
equalized across the states-of-the-world, see Appendix). Using a second degree Taylor
expansion for the logarithm:

ln (x + dx) ≈ ln x0 + 2dx

x0
− dx2

2x0
2 − 3

2 (1.3)

and combining Eqs. 1.1, 1.2, and 1.3 we get:

Û = UBG − VAR(ET ) . (1.4)

Here, UBG denotes the utility in the deterministic case, while the term VAR is the
difference between the decision-under-uncertainty case and the deterministic case, given
by:

VAR =
∑︂

t

e−ρt P

2(Y − 1)2

 ∑︂
s

ηsEsTs − EBGTBG

 (1.5)
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1.3 Uncertainties of climate change and solution approaches

Due to the low share of the energy sector on total output, the VAR term is negligible.
This shows that for the case of an uncertain future carbon tax T the effect can not
be large and the optimal solution under uncertainty will coincide with the optimal
deterministic solution calculated with the best guess value of the uncertain parameter.
If we use the same metric to quantify the effect an uncertain GDP path will have, the
effect could be larger. In this case the VAR term takes the form VAR(Y ) ≡

∑︂
t

e−ρtP

1
η

∑︂
s

Ys

2(I + EE)

2 + Ys

2(I + EE)

 − Ys

2(IBG + EE)

2 + YBG

2(IBG + EE)

 .

(1.6)
This leads us to the conclusion that the general equilibrium model is more suitable

for analysing the broader issue of socio-economic uncertainty, rather than regulatory
uncertainty alone. To capture the latter a partial equilibrium model would be needed,
e.g. a stochastic stand-alone REMIND (Luderer et al., 2015) energy system model.

A different approach to regulatory uncertainty
A common method to overcome these difficulties and derive optimal solutions under
regulatory uncertainty is the method of fixing the decision variables of a
time-dependent (mostly inter-temporal) model to their optimal values in the absence
of a policy signal (calculated by an additional model simulation), up to the point that
a climate policy is announced. Their optimal values after the announcement of the
climate target (or, e.g. carbon price) are the optimal values under uncertainty. The
method is easy to apply algorithmically and falls under the category of scenario
analysis mentioned above, i.e. it derives one optimal path for each different value of
the uncertain parameter.

The Paris Agreement as regulatory framework
The regulatory uncertainty around climate change has been greatly reduced with the
Paris Agreement (UNFCCC, 2015), a milestone in decades of international efforts to
achieve common ground in combating climate change by the international community.
The agreement, signed in December 2015 by almost all nations, foresees the
announcement of national pledges to be fulfilled in the years to come (until the year
2030 in most cases). This provides a relatively robust regulatory framework that can
be used in studies analysing the ambition and impact of climate policies and derive
useful conclusions on possible outcomes and potential emission gaps, i.e. remaining
efforts still needed in order to follow a pathway leading to acceptable temperature
change by the end of the century.
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1. Introduction

1.3.3.2 Socio-economic uncertainty

With the term "socio-economic uncertainty" we refer to different possible future paths
of global population growth, economic output, and values of energy/land-use related
techno-economic parameters relevant to society. Given socio-economic uncertainty,
choosing the optimal climate policy among possible pathways is not obvious as compared
to e.g. an uncertain climate sensitivity, since the baseline (i.e. the reference pathway)
to which climate impacts and mitigation costs are compared to is itself uncertain.
The following three chapters explore different approaches to tackling socio-economic
uncertainty in climate change mitigation studies.

1.3.3.3 Uncertainty in natural phenomena

An argument that speaks against taking immediate action on climate change could
be the commonly used financial risk reduction strategy of "wait-and-see", where a
decision-maker may wait until the uncertainties around the problem at hand have been
reduced with updated incoming information. But in the case of climate change, given
potential extreme and irreversible damages, this strategy is rejected for being too risky,
see also (Weitzman, 2009). Typical sources of uncertainty include the above-mentioned
climate sensitivity, as well as the conditions leading to several natural "tipping points",
i.e. natural systems prone to suffer an irreversible shift to a new equilibrium due to
increased global mean temperatures.

1.4 Thesis outline

The outline of the thesis is the following: the underlying theory and research is spelled
out in the introduction, while in the second chapter we analyze optimal climate policy
under explicit accounting of economic growth uncertainty. In the third chapter we
proceed to discussing the effect of technological uncertainty on the costs of climate
change mitigation. In a final step, in the fourth chapter, we explore how socio-economic
uncertainty could influence the optimal burden sharing of climate change mitigation
among world regions. The fifth chapter summarizes and concludes. Figure 1.1 provides
a visualization of the spatial and thematic coverage of the studies included in the
present thesis.
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Uncertainty

Chapter 3: Uncertainty in Techno-
Economic Parameters

Chapter 4: Socio-economic Uncertainty 
and Burden Sharing of Climate Change 
Mitigation

Figure 1.1: Graphical representation of main chapters. The graph shows the
spatial and uncertainty coverage of the main chapters of the thesis.

1.4.1 The effect of economic growth uncertainty on climate
policy

Starting at the regional level, the effect of economic growth uncertainty on optimal
climate policy is discussed in detail in chapter 2. How important is the effect that
economic growth has on future emissions, and subsequently, climate targets? The
applied method goes beyond simple scenario or sensitivity analysis by explicitly
accounting for growth uncertainty using a stochastic version of an energy-economy-
climate model. Since intensity targets are considered as means to hedge (i.e. dampen
potential negative effects) against this uncertainty, the study leads to a multi-criteria
comparison (numerically and analytically) of absolute versus intensity emission targets
for the world’s largest emitter (China). China’s main Paris Agreement pledge is
formulated as an emissions intensity target.

1.4.2 The effect of techno-economic parameters on climate
mitigation

The energy sector accounts of the highest carbon emissions and at the same time
features also the largest decarbonisation potential. Around the globe, rapid changes
in economic costs of technologies converting one form of energy to another are being
observed. Rapid declines in the case of renewable energy sources and high volatility
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in the case of fossil fuels such as gas and oil make it nearly impossible to derive solid
predictions on their future evolution and role in shaping energy and climate policy. At
the same time, different sectors of the economy (buildings, transport, industry) feature
different characteristics and decarbonization potentials. These disparities have not
received enough attention. Chapter 3 provides a sensitivity analysis of the effect of
uncertainty in regionally differentiated techno-economic parameters of energy generation
on climate mitigation pathways. Further, a discussion is provided on how economic
sectors react to and influence this uncertainty, under different levels of climate policy
ambition.

1.4.3 Equity and socio-economic uncertainty

Economic efficiency characterizes all climate mitigation pathways derived with
optimization-based (as opposed to simulation models) energy-economy-climate models.
Yet, apart from efficiency, the equity dimension needs to be taken into consideration as
well. Without equity consideration, future agreements on multilateral action against
climate change will be at risk, as developing countries could argue on the basis of
Shared but Differentiated Responsibilities and not sign agreements that not foresee
a fair distribution of efforts towards climate stabilization. Given the complexity of
accounting each region’s contribution and role in the overall problem (climate change),
several different schemes exist to describe the equity dimension. Each of these schemes
addresses one or more equity principles, e.g. capability, equality, responsibility, etc.,
ultimately describing how the burden of mitigating climate change is shared among
world regions. How does the interaction between socio-economic uncertainty and
burden sharing of climate mitigation look like? To answer this question and fill a gap
in the literature, Chapter 4 provides a global study with regional breakdown, in which
we perform an analysis of several different burden sharing schemes across regions, in
the presence of socio-economic uncertainty.
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Abstract

We compare the effectiveness of absolute vs. intensity targets in preparing China for progressively stronger climate

action under the Paris Agreement. The Agreement requires countries to submit nationally determined contributions

(NDCs) every five years and in addition calls for submission of long-term low greenhouse gas emission development

strategies up to 2050. This study conducts a multi-criteria comparison of the adoption of an absolute vs. an

intensity interim target in 2030, followed by an absolute target in 2050, for China. In doing so, we explicitly

consider economic growth uncertainty as it is the main motivation behind China’s and other developing countries’

adoption of intensity targets for 2030. We perform the target comparison analytically, as well as using the stochastic

version of a large-scale integrated assessment model. The stochastic model is based on expected utility theory and

explicitly accounts for uncertainty.

Key policy insights:

• If China wants to hedge against higher than expected economic growth, it is reasonable to adopt an intensity

target. However, in case of lower economic growth, this choice becomes problematic as policy costs will rise

while the economy grows slow

• The difference in costs due to the 2030 target choice can be of the same order of magnitude as the overall

climate policy costs themselves

• An interim absolute target performs better than an equivalent intensity target, under multiple criteria

Keywords: intensity target, economic growth uncertainty, China NDC

1. Introduction

With the contribution of China and India, more than one third of global greenhouse gas (GHG) emissions are

currently controlled by targets indexed to future gross domestic product (GDP). This means that, instead of aiming

to limit the amount of annual emissions by a given year by an absolute number, China and India are aiming for

a reduction in the emission intensity of their economy, i.e. CO2 emissions per unit of GDP by 2030, as part of

nationally determined contributions (NDCs) under the Paris Agreement. China’s NDC also contains a target to

peak GHG emissions before 2030, but this does not describe an absolute reduction compared to a reference year,

1Corresponding author, giannou@pik-potsdam.de

Preprint submitted to Climate Policy October 18, 2022
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and could thus lead to different emission pathways depending on how the economy grows. In addition, China’s

NDC includes two secondary absolute targets for forestry and non-fossil fuel use. In climate policy design, emission

intensity targets are used as alternatives to absolute (or quantity) emission targets in order to hedge against

economic growth uncertainty, which is particularly large in rapidly developing countries like China and India. At

the same time, research (IPCC, 2018; Luderer et al., 2018) shows that the next decade of mitigation action up to

2030 will determine the chances of staying below the warming limits set out in the Paris Agreement. Thus, it is

important to explore the implications of the choice of target type in 2030 in preparing the economy and energy

system for mid-century (2050) targets, toward the Paris Agreement ambition of holding global mean warming

”well below” 2 ◦C. We do so here for the world’s largest emitter, China, applying a state-of-the-art stochastic

energy-economy model that explicitly accounts for economic growth uncertainty.

China is currently implementing an emissions trading system, the first one in history formulated with an

emissions intensity cap instead of an absolute cap (Goulder et al., 2017). At the same time, its economy is

undergoing structural changes (Wang et al., 2019c; Mi et al., 2017a; Lin et al., 2019), thereby reducing its GHG

emissions (Guan et al., 2018; Zheng et al., 2019). It is also taking measures to reduce air pollution (Li et al., 2019),

and investing heavily in renewables. Yet, these actions alone are not sufficient to rapidly decarbonize the Chinese

economy, simply due to the country’s sheer size and its dependence on coal, reflecting continued dependence on

coal in several emerging economies (Edenhofer et al., 2018; Wang et al., 2019a). While global coal demand dropped

in 2015 for the first time this century, the International Energy Agency forecasts that demand will increase again

and will not return to 2014 levels until 2021 (IEA/OECD, 2018). Since China currently accounts for 50% of global

coal demand—and almost half of coal production—global coal demand in the next decade will depend greatly on

the trajectory of China, itself highly uncertain like the future economic growth of China (Lin et al., 2018).

Economic growth is an important indicator to which projected CO2 emissions are sensitive (Marangoni et al.,

2017; Mouratiadou et al., 2016). Economic growth is in turn also affected by CO2 emissions (Mi et al., 2017b).

In the presence of a target indexed by economic growth this effect is further strengthened. It is expected to

intensify even more with growing regional rivalry in trade (Neuenkirch and Neumeier, 2015). Motivated by the

above, we address the following research question. Under growth uncertainty, does an intensity or a quantity

target for 2030 perform better in preparing the Chinese economy for a mid-century target and ultimately a 2 ◦C

pathway? Given that a growth-indexed (intensity) target makes the amount of emissions at the target heavily

dependent on economic output, we conduct the analysis to explicitly account for growth uncertainty by deploying

a state-of-the-art stochastic integrated assessment model.

The remainder of the paper is structured as follows. Section 2 gives a short overview of how the two target

types and target sequencing emerged in the Paris Agreement process, section 3 provides a literature review on

the comparison of intensity versus quantity targets, and section 4 describes the scenarios and methods we use for

the present comparison. Section 5 begins the target comparison with an analytical method and shows results of

deterministic and stand-alone numerical scenarios, which motivate the stochastic analysis on sequential 2030 and

2050 targets under growth uncertainty, on which the final target comparison is based. Section 6 concludes and

discusses policy implications. In the SOM, a description of the models and additional methods used in the study is

provided, as well as a literature review on uncertainty considerations in energy-economy models of climate change.

2. Economic Growth Uncertainty
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2. NDCs and target sequencing after Paris

Under the Paris Agreement, participating countries have announced their NDCs, with most pledging emission

reductions up to 2030. Apart from the variation in the level of ambition between countries, there is also a distinction

in the chosen types of emission reduction targets. The Paris Agreement calls on developed countries to adopt

”economy-wide absolute emission reduction targets”, aiming to reduce domestic emissions by a fixed amount

compared to a base-year, e.g. 2005 (UNFCCC, 2015). Based on this, many developing countries, including China

and India, have chosen to adopt an emission intensity target. This is because an intensity target T hedges against

not achieving the desired reduction in absolute emissions E because of unexpected accelerated growth in the

economy, as the allowed emissions would increase in lockstep with economic growth Y :

T =
E

Y
(1)

An intensity target also helps to avoid ”hot-air”, which might occur if the absolute target no longer imposed a

constraint, because of slow economic growth resulting in lower than expected emissions. With an intensity target,

however, the amount of allowed emissions decreases with slower growth (Equation 1). The possibility of hot-air

can harm a country’s credibility towards other participants of an agreement. Finally, there is also a political stance

reflected in the choice of a target indexed to economic output; an acknowledgement that the willingness to act

against climate change exists, but is combined with a statement that penalizing growth of developing countries

does not correctly reflect the responsibilities associated with historical emissions. Intensity targets are believed

to effectively limit economic growth losses from climate policy in contrast to quantity (Pizer, 2005). However,

intensity targets are problematic, as they allow emissions to continue to increase(Vuuren et al., 2002), imposing

no overall cap. In the case of China and India, which are responsible for over one third of global emissions, the

choice of target could have a substantial impact on global decarbonization pathways(Zhu et al., 2015). Progress

made in the implementation of NDCs will be monitored and reviewed every 5 years, with a first global stocktake

scheduled for 2023. Mid-century strategies are already being discussed, as countries are invited in the decision

accompanying the Paris Agreement to submit these strategies by 2020 (UNFCCC, 2015). This means that, once

these mid-century targets are in place, the NDCs will, in effect, become interim targets, and a situation of target

sequencing will emerge. Compatibility of NDCs and 2050 targets is important and will play a decisive role in paving

the way for long term climate stabilization (Pahle et al., 2018; Kriegler et al., 2018). An analysis of the dynamics

of this succession of targets under uncertainty is pursued in this study.

3. The literature on target comparison

Intensity targets can be indexed to output or input and are well established in environmental regulation. In the

climate change context, they gained more attention when the US decided against ratification of the 1997 Kyoto

Protocol (which included absolute targets), and instead took on an intensity target. The debate following the

collapse of negotiations at the 2009 Copenhagen Climate Conference—when it became clear that a Kyoto-like

global agreement including absolute targets with permit trading was not achievable—has focused on a wider range

of national and progressively strengthened commitments.

2.3 The literature on target comparison
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Overall, the scientific literature on comparison between intensity and absolute targets in environmental regula-

tion can be divided into two main categories: literature on economy-wide regulation, and literature on regulation

at firm or sectoral level, see e.g. Quirion (2005). The focus of this paper will be the category of economy-wide regu-

lation, which we divide further into three subcategories: (I) analyses of policies for a specific country or region and

discussion of which target performs better; (II) discussions of the implications of the target choice on international

bilateral (or broader) agreements in terms of willingness to participate and commit; and (III) target sequencing,

i.e. situations where in multi-stage policy design either choice of target can be implemented sequentially.

Marschinski and Edenhofer (2010) discuss (I), (II) as well as (III) using formal analyses with simple analytic

models, including also the concepts of hot-air and banking/borrowing of emission permits. They find intensity

targets to perform better than absolute targets only under very specific conditions, e.g. a significant positive

correlation between shocks in emissions and output. Ellerman andWing (2003) also touch on all three subcategories,

and find hybrid targets including only some reduced form of indexation—which they analyze in detail—to have

advantages over pure absolute or intensity targets, but conclude in making the case that willingness to act is more

important than the target type.

In the subcategory of single country studies (I), Lu et al. (2013) analyze China’s previous intensity targeting for

2020 and conclude that the advantage of flexibility offered by intensity targets is reduced by the prospect of a low

growth scenario, which would incur high costs. Wang (2014) calls for a Chinese shift to an absolute emissions cap

in order to break the link between emissions and growth. This is based on the grounds of an expected coal import

increase under an intensity target following a reduction in coal usage in big coal exporting countries (e.g USA).

Zhu et al. (2018) propose a hybrid control scheme based on quantity (energy consumption and CO2 emissions) and

intensity (energy intensity and carbon intensity). Webster et al. (2010) also propose a hybrid instrument consisting

of a quantity target combined with a safety valve, and perform a Monte-Carlo analysis for the US economy using

a CGE model. They include uncertainty in three parameters: GDP, the rate of autonomous energy efficiency

improvement, and the elasticities of substitution of the production functions. Their analysis results in favoring

intensity targets depending on parameter values and only in combination with a safety valve instrument. Pizer

(2005) makes the case for intensity targets on the grounds of preserving developing countries’ right to near-term

emission growth.

In the subcategory (II) of interacting participants in agreements, Akimoto et al. (2008) propose a scheme based

on sectoral intensity targets, as opposed to country-specific ones, thus reducing the overall energy transformation

costs. However, they do not consider the welfare implications and do not account for uncertainty. Dudek and Golub

(2003) reject the concept of intensity targets arguing that it could add yet another hurdle to the implementation

of already difficult to achieve international agreements.

Authors address the subcategory of target sequencing (III) the least. Sue Wing et al. (2006) find intensity

control more suitable under a broad range of emission targets, especially for developing countries. Their analysis

is based on two indicators arising from consideration of uncertainty: preservation of expectations and temporal

stability.

Here we discuss subcategories (I) and (III) of target comparison studies. We also contribute to the literature

on China’s climate and energy policy in the post-Paris Agreement era. We do so by explicitly accounting for

2. Economic Growth Uncertainty
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economic growth combined with short- and long-term climate targets (sequencing), thereby proposing a framework

for dealing with these two types of uncertainties. Additionally, in order to address target achievability, the target

comparison criteria found in the literature are extended with our multi-criteria analysis.

4. Study design

As growth uncertainty drives the choice of intensity targets, we use methods for explicitly accounting for

uncertainty in our modelling. Moreover, to capture the importance of current targets in paving the way for

future climate policy we consider target sequencing scenarios. Finally, since reduction of fossil fuel resource use

is crucial in shaping China’s emissions future, we use a model of large technological detail to capture realistic

energy system configurations. We run all scenarios with the integrated assessment model REMIND (Luderer et al.,

2015), in its stochastic version called REMIND-S, which is presented here for the first time (the descriptions of

REMIND and REMIND-S are found in the Supplementary Online Material (SOM)). An overview of the scenarios

considered in our study is given in Table 1. Scenarios unfold in two dimensions: a) Learning about 2050 climate

targets, and b) Learning about economic growth. By ”learning”, we mean the information available to (energy)

investors under uncertainty, see also Chapter A.3 of the SOM. Concerning the first dimension we consider the

following four scenarios: a no-target scenario (BASE); a scenario (Q50) with a ”stand-alone” (as opposed to

”sequencing”) quantity target in 2050, that assumes learning has already happened in 20102, (that is, Q50 is

known to the investors); and scenarios with intensity (I30) or quantity (Q30) target types in 2030, which assume

that announcement of Q50 happens later than 2010 (target sequencing scenarios) and investors are constrained by

their earlier actions after the announcement. The second dimension represents different years where learning about

economic growth occurs: 2010 or 2030. Here, ”learning in 2010” describes the situation where the investors take

decisions accounting for China’s best-guess growth path in the period 2010-2030. The different scenario dimensions

are explained in further detail below.

4.1. Climate policy scenarios

We define sequencing scenarios as cases with a 2 ◦C-compatible GHG emissions quantity3 reduction target in

2050 (mid-century strategy), that has been announced in the year 2030, which we call the learning point. Before the

learning point, the investor ”sees” only the 2030 target; only for the period after the learning point can decisions

be tailored to the updated information (i.e. the Q50 target). To set the stage for these sequencing scenarios

we also run ”stand-alone” scenarios with the 2030 Chinese climate target formulated as either a GHG intensity

target4—reflecting the current situation—or an equivalent GHG quantity target (I30 and Q30). Before 2030, the

2050 target is unknown and only a 2030 target exists, reflecting the current level of information. The technique

to implement the sequencing scenario in a model with perfect foresight such as REMIND is as follows: a scenario

with only the 2030 target (stand-alone scenario) is run in a first step and then the sequencing scenario is optimized

2Initial point of the model’s time horizon.
3Because the long-term goal of 2 ◦C adopted by the Paris Agreement corresponds to a quantity target (i.e. an absolute limit on

cumulative CO2 emissions), we formulate the 2050 target solely as a quantity target and do not consider 2050 intensity target scenarios.
4Our formulation of China’s intensity target encompasses also China’s peaking target.
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over the period 2030-2050 to achieve the mid-century target, with the energy and mitigation investment trajectory

fixed to the stand-alone run until 2030. We also consider a hypothetical scenario of full information, where both

the Q50 target and growth uncertainty are considered to have been resolved already in 2010 and no interim target

in 2030 is needed. This deterministic scenario (Q50-L10-medium) with fixed expectations about economic growth

(”medium”) is then used to derive the optimal 2030 interim targets (Figure 1), thereby ensuring that they are

aligned with the 2050 quantity target for China, which in turn is fixed to a global below 2 ◦C scenario based on

results from the CD-LINKS project (Kriegler et al., 2018). It is important to note that our calculation of optimal

interim targets leads to a more stringent intensity target in 2030 (72% reduction relative to 2005; 0.91 Mt CO2-

e/billion US$2005) than provided in the official Chinese NDC (60-65% reduction relative to 2005), which reflects

the fact that the cost-efficient pathway towards the 2050 emission quantity target—and the overall below 2 ◦C

target—typically lies below China’s NDC intensity target in 2030 (UNEP, 2017), see Figure 3. For the comparison

of interim target types, we adopt the emissions in 2030 (13.4 Gt CO2eq, within the uncertainty range found in

studies using also national Chinese models like TIMES (Grubb et al., 2015; Roelfsema et al., 2020) of the cost

effective mid-century strategy (Q50-L10-medium) as the quantity target (Q30) equivalent to I30.

Climate policy in all scenarios is enforced via an economy-wide lump-sum carbon tax, covering also CH4 and

N2O emissions, however excluding land-use change5 CO2 emissions. The carbon tax takes an initial value in 2020

and then rises with a 5% annual increase. To derive the optimal carbon tax path, the model is solved iteratively

(with updating of the initial carbon tax value between iterations) until the climate target, i.e. the reduction of GHG

emissions or GHG intensity, is met. Decision variables in REMIND are investments in the macroeconomic capital

stock as well as into energy generation technologies (optimal allocation). Technological change is an important

driver of the evolution of energy systems. For mature technologies, such as coal-fired power plants, the evolution

of techno-economic parameters in the production function of REMIND is prescribed exogenously. For less mature

technologies with substantial potential for cost decreases via learning-by-doing, investment costs are determined

via an endogenous one-factor learning curve approach that assumes floor costs. In the presence of a national target,

a carbon tax is used so that the optimal investments shift to cleaner energy sources, but REMIND fully accounts

for path dependencies (e.g. past investments in power plants that have not yet reached the end of their lifetime),

as well as increasing marginal costs in the case of rapid expansion of technologies (adjustment costs).

4.2. Economic growth scenarios

The SSP26 ”middle-of-the-road” GDP path (Kriegler et al., 2014) is our central, medium growth scenario. Then,

by increasing labor productivity7—the main driving force of economic growth in the REMIND model (Luderer et al.,

2015)—by 25% and by decreasing it by 25% we generate the ”High” and ”Low” scenarios. All three scenarios are

assumed to have equal probability. Figure 2 shows the resulting baseline GDP paths for China. For comparison,

current growth estimates from other sources—SSP1, SSP5, OECD, and Price-Waterhouse-Coopers—are also shown.

5These are also reduced in policy scenarios, but by prescribed scenarios.
6Shared socio-economic pathways (SSPs, O’Neill et al. (2014)).
7By designing the growth scenarios via labor productivity—rather than directly prescribing GDP paths—we capture macro-economic

effects of different policy choices.
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Table 1: Overview of the scenarios considered. There are 2 dimensions in the study, reflected in the scenario names as follows: ”Climate

target(s)”-”Year where learning about growth uncertainty occurs”. Example names: Q50-L10 means stand-alone quantity target in

2050 (i.e. no 2030 target) - learning about growth in 2010, I30-L30 denotes a sequencing scenario with intensity target in 2030 and

quantity target in 2050 - learning about growth in 2030, etc. In cases where the focus is on a particular growth scenario (low, medium

or high), it will be added to the scenario name as follows: Q50-L10-medium. Notes: The 2050 target is formulated solely as a quantity

target, because the long-term 2 ◦C target is also of the same kind.

Economic Growth

2030 Target Learn 2010 Learn 2030

2050 Target

No Target No Target BASE-L10 BASE-L30

Stand-alone No Target Q50-L10 Q50-L30

Sequencing
Intensity I30-L10 I30-L30

Quantity Q30-L10 Q30-L30

Total GHG Emissions (Mt CO2eq/yr) Emissions Intensity (Mt CO2eq/billion US$2005)

2010 2020 2030 2040 2050 2010 2020 2030 2040 2050
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Figure 1: Calculation of China’s Q30 and I30 targets, based on full information, i.e. medium growth assumptions and full target

information. We derive the optimal 2030 quantity target for China (Q30) as well as the equivalent intensity target (I30) from the

optimal emissions path of a policy scenario (black line) compatible with the 2 ◦C long-term target featuring the 2050 cost-efficient

emissions from the CD-LINKS project (Q50) as target.

This illustrates the difficulty of deriving solid predictions of Chinese economic growth (Morgan, 2018; Christensen

et al., 2018).

5. Results

5.1. The importance of target type

5.1.1. Analytical results

Here, a discussion is provided on how each target type shapes the optimal carbon price differently. This is

important because different incentives and investment dynamics are reflected in the optimal carbon price paths,

and subsequently different hedging strategies against uncertainty (e.g. a preventive strategy versus a wait-and-see

approach). We will show that when emission intensity decreases with economic growth—as is commonly the case—

the target type has a strong effect on how economic growth shapes the optimal carbon price paths, i.e. different
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Figure 2: Uncertainty in economic growth of China, measured in purchasing power parity (PPP) GDP. A 25 percent variation around

the medium growth scenario (SSP2, O’Neill et al. 2014) is used for the labor efficiency parameter in our scenarios (Low, Medium,

High). For reference, SSP1 and SSP5 (based on OECD projections; Kriegler et al. (2017)) as well as other scenarios from the OECD

(OECD, 2018), and Price-Waterhouse-Coopers Hawksworth et al. (2017) are shown.

incentives for investment are generated. More precisely, we show that in the presence of a quantity target, the

optimal carbon price increases with economic growth, whereas under an intensity target it decreases.

We define the emissions reduction in each case as ∆E ≡ Ebase − Epol. In a single period setting (stand-alone

target), and under an emissions quantity target Q, we obtain (comparing the medium with the low growth scenario):

∆EM = EM,base −Q > EL,base −Q = ∆EL, (2)

because EM,base > EL,base (see Figure 3). Thus, since abatement in the medium scenario is larger than in the

low scenario (the target Q is fixed, but baseline emissions are higher under medium growth than under low growth),

the medium scenario will feature a higher carbon price.

In the case of an intensity target I, we get (Y stands for GDP):

∆EL = EL,base − I · YL,pol = EM,base ·
EL,base

EM,base
− I · YM,pol ·

YL,pol

YM,pol
> EM,base − I · YM,pol = ∆EM (3)

The inequality in eq. 3 holds only if

EL,base

EM,base
>

YL,pol

YM,pol
⇒ IL,base

IM,base
· YL,base

YM,base
>

YL,pol

YM,pol
⇒ IL,base > IM,base (4)

(GDP cancels out because Ybase ≈ Ypol; climate policy has very little impact on GDP). The last inequality of eq.

4 holds for China and most countries, because emissions intensity is commonly reduced faster in a higher growth

compared to a lower growth scenario, see Figure 3. Thus from eq. 3 it holds that ∆EM < ∆EL

Summarizing, in the presence of an intensity target the optimal carbon price will be highest for the low growth
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scenario, as seen also in Figure 4. As the carbon price is a proxy for costs of policies, this has serious implications

in how the hedging strategies of the early years are shaped, which we will quantify numerically in the following.

Figure 3: Overview of the deterministic case (learn about growth in 2010). Left: GHG emissions scenarios for China. The 13.4 Gt

CO2eq target is not constraining for the low growth Q30 scenario (hot-air is the difference in 2030 between the dashed blue and

the continuous black line), and the indexed target (I30 scenarios) is not unique. Without uncertainty (medium growth) it makes no

difference whether an intensity or quantity target is chosen. Right: GHG intensities for the same scenarios. The converging Q30

emission scenarios are now diverging, and the I30 scenarios are converging to our 2 ◦C-compatible intensity target. The official NDC

intensity target of China is depicted in the grey area. It is not imposing a constraint, as it lies above the baseline intensities in 2030.

Note: L10 has been omitted from the scenario names
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Figure 4: How economic growth scenarios shape the optimal carbon price paths in China, i.e. the policy costs; Q30 and I30 targets

have reversed behavior in response to the high and low growth scenarios, whereas they are equal in the absence of uncertainty (medium

growth).
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5.1.2. Numerical results

To motivate the use of a stochastic modelling framework in the upcoming sections, we start the numerical

analysis by investigating the deterministic modelling—i.e. assuming that learning about growth uncertainty has

occurred already in 2010, see Chapter A.3 of the SOM—of the targets in 2030. We compare the medium with the

high and low growth scenarios, and discuss environmental implications in terms of total GHG emissions. Differences

in marginal abatement costs are expressed in terms of carbon prices. Finally, we discuss welfare effects in terms of

differences in balanced growth equivalents (BGE), as proposed by Stern (2007), and further analyzed and used by

Anthoff and Tol (2009), and Drouet and Emmerling (2016), see the SOM for details.

The optimal emissions of the deterministic cases are given in Figure 3. Without uncertainty, it makes no

difference whether an intensity or quantity target is chosen, which can be proven also analytically (Ellerman and

Wing, 2003). Since we have chosen equivalent quantity and intensity targets for the medium growth scenario,

optimal emissions are identical in this case, as seen by the coinciding paths (black line). This is no longer true for

the high and low growth scenarios. If a higher than expected growth is observed, emissions in 2030 will be higher

regardless of target choice, seen by the difference in the red and the black curves. An intensity target (I30-L10)

has increased emissions in total and in absolute value in 2030, whereas a quantity target (Q30-L10) meets the 2030

target of 13.4 Gt CO2eq but with increased total emissions. In the case of low growth, the quantity target is not

imposing a constraint as the baseline emissions are already below it (dashed blue line). The average annual growth

rate of GDP in the period 2010-2030 is assumed to be 6.7% in the medium growth SSP2 scenario (historical data:

ca. 6.5% in 2017-2020). By conducting a sensitivity analysis of emissions on the GDP growth rate we find that

emissions under a quantity target are the same as in the medium growth baseline (i.e. the target is not imposing

a constraint) at an average annual growth rate of GDP of 6.1%8. The non-constraining target could give rise to

hot-air and climate policy costs can drop to zero. In contrast, an intensity target can impose a stringent emissions

constraint on a slow growing economy (weak blue line), i.e. an additional challenge.

In terms of marginal abatement costs, Figure 4 shows that under high growth, to reach a quantity target they can

increase almost 3-fold, whereas they would decrease under an intensity target. On the other hand, in the low growth

case, there is a significant increase in marginal abatement costs for reaching the intensity target, while the quantity

target produces hot-air, i.e. no costs (the target is not imposing a constraint as baseline emissions are already

below it). Regarding the welfare effects, Table 2 shows how the differences in welfare between target types compare

with each other and—for reference—with the costs of climate policy. In the case of high growth, an intensity

target performs better than a quantity target, whereas in the case of low growth, only an intensity target incurs

costs (as the quantity target is not imposing a constraint), so quantity has an advantage. Our sensitivity analysis

of emissions on the GDP growth rate (see Chapter A.6 of the SOM) suggests that these effects are monotonous,

meaning that an intensity target has a lower BGE than quantity under low growth already at a marginal variation

in GDP growth around the medium scenario (because the intensity target is a ”moving” emissions target), and a

higher BGE in the case of high growth, which means it provides cost containment compared to a quantity target.

8For reference, our low growth scenario features a GDP growth rate in the period 2010-2030 of 5.5%, and the average annual growth

rate of long-term OECD projections for 2020-2050 is ca. 2.5%.
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Table 2: Comparison of welfare effects until 2030 measured as percent changes in balanced growth equivalents (BGE, see the SOM)

for the different target types of the stand-alone 2030 scenarios. The last two rows are the corresponding climate policy costs (i.e.

comparison with the baseline) for each target and for the same period, which we use for reference.

Scenarios compared ∆BGE 2030 (%)

High growth (I30-L10-High vs. Q30-L10-High) 1.0

Medium growth (I30-L10-Medium vs. Q30-L10-Medium) 0

Low growth (I30-L10-Low vs. Q30-L10-Low) -0.97

Quantity (BASE-L10 vs. Q30-L10) 0.6

Intensity (BASE-L10 vs. I30-L10) 0.75

In the medium growth case, there is no difference in welfare, due to the equivalence of the two targets in the

absence of uncertainty. It is important to note that the differences in welfare between the targets in the high and

low growth scenarios could reach the same order of magnitude as the costs of climate policy (last two rows of Table

2). This observation, combined with the case-dependent advantage that each target exhibits—depending on what

growth scenario materializes—motivates us to perform the stochastic analysis of the upcoming sections, in order

to compare intensity and quantity targets.

5.2. How hedging strategies shape the target sequencing

5.2.1. Target sequencing scenarios

In the remainder of the paper we perform decision-making under uncertainty (see Chapter A.3 of the SOM) with

the REMIND-S model, as opposed to the deterministic analysis of the previous section. We do so by performing an

expected value welfare maximization across all three growth cases (low-medium-high) at once. We thus derive one

single optimal emissions path instead of one for each growth scenario, which is the main feature of the stochastic

model. This allows us to identify hedging strategies (hedging strategies are characterized by a lower emissions

pathway due to taking into account all three possible economic growth outcomes simultaneously, compared to

simply assuming medium growth in a deterministic optimization, see Figure A.1).

The implementation of the stochastic optimization problem describes the situation of an investor who has to

decide on a single energy sector investment strategy for the period 2010-2030 until uncertainty about economic

growth is resolved. The REMIND-S model also accounts for investments in industrial capital stock as an additional

optimization variable. This decision remains freely adjustable to the individual economic growth scenario from

2010 onward, assuming that capital markets can learn immediately about the actual growth path as it unfolds. To

implement the target sequencing, we calculate the optimal emission paths for cases where, initially, decisions up to

a certain point are taken with only the 2030 targets being known (stand-alone scenarios), and an announcement

of a ”follow-up” 2050 quantity target taking place in the same year. This myopic behavior describes a situation

of unanticipated learning in 2030. We simulate two types of sequencing scenarios, one that follows after the 2030

intensity target case, which is denoted with I30-L30, and one that follows after the 2030 quantity target case,

which we denote with Q30-L30 (see also Table 1). REMIND-S calculates the optimal paths that emerge around

mid-century, resulting from investment decisions pre-2030 taken under growth uncertainty and without information

2.5 Results

29



about the follow-up 2050 target.

In Figure 5, we show how target sequencing shapes optimal emissions paths, and plot these next to the hy-

pothetical, full-information case of the 2 ◦C compatible stand-alone9 target in 2050, which we used to derive the

optimal 2030 targets. Due to the stronger hedging (i.e. the deviation from the Q50-L10-medium scenario, which

we analyze in detail in the next section) in the I30-L30 scenario, decarbonization starts earlier and thus total

emissions (area under emissions curve) are lower than in the quantity target case (483 Gt CO2 in I30Q-L30 vs.

527 Gt CO2eq in Q30-L30). In Figure 6, a more detailed representation of the same scenarios is shown, focusing

on key variables and adding the baseline scenario. An intensity target scenario has a higher net present value (in

year 2020) carbon price (27.7 $/tCO2 vs. 18.6 $/tCO2). This leads to over-investment in energy in the early years

(energy investment curve). The 2050 target announcement leads to jumps in the optimal carbon price paths. It

can also lead to substantial early retirement of coal capacity in the power sector up to 2050 (aggregated over time)

of up to 2500 GW, i.e. nearly 40% of total projected coal capacity in the baseline (6,400 GW), and 66% more

than the idle capacity in the quantity target scenario (these estimates are in the lowest range of estimated stranded

capacity from Wang et al. (2019a) and Wang et al. (2019b)). Finally, a quantity target could lead to less welfare

losses as seen in the certainty- and balanced-growth equivalent curves. Figures A.8 and A.9 show further numerical

results, including for GDP, energy demand, and energy mixes.
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Figure 5: Optimal emissions of the target sequencing scenarios for China (featuring uncertainty about growth and 2050 target until

2030), compared to the stand-alone medium-growth Q50 deterministic scenario (full information about 2050 target and economic

growth). In 2030 uncertainty is resolved (learning point) and the 2050 absolute emissions target is announced (myopic behavior). The

decisions prior to the learning point are equal across the growth scenarios (one line for each target type) whereas after the learning

point they can be tailored to the individual growth scenarios, see Chapter A.3 of the SOM. In the graph the intensity target’s stronger

hedging is shown.

9The Q50-L10-medium scenario features no growth uncertainty, and has full long-term target information; thus an interim target is

obsolete.
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Figure 6: Optimal paths of the sequencing scenarios for China, under uncertainty. The same graphs with each growth scenario plotted

separately are found in Figure A.7. CGBE: certainty- and balanced-growth equivalent.

Sue Wing et al. (2006) discuss the theoretical property stating that intensity targets lead to a slower decoupling

of growth and emissions. In our stochastic analysis, however, where hedging strategies against growth uncertainty

are identified, we find that it is the intensity target that could lead to a faster—but more costly—reduction in

emissions.

5.2.2. Hedging strategies in the energy system

The sequencing scenarios of the previous section exhibit a different behavior depending on whether the 2030

target is an intensity or absolute target. We showed analytically that this is due to different incentives generated

by each target type. With the sectoral and technological detail of REMIND-S we are able to quantify the optimal

hedging strategies dictated by the different incentives of the previous sections. Hedging is the result of seeking the

best compromise between all the possible growth scenarios, and exists also in the baseline case (see Chapter A.4

of the SOM). However, it unfolds differently in the case of climate targets under growth uncertainty. Under an

intensity target the low growth scenario poses a challenge for the economy if realized, as the 2030 intensity target

becomes more stringent if GDP grows slowly (see Figure 3). The dominance of the low growth scenario leads to

the hedging strategy of further reduced emissions when comparing a full-information with an uncertainty scenario

(Q50-L10-Medium vs. I30-L30 in Figure 5), describing a preventive strategy. This happens via increased renewable

energy capacity additions in the power sector—alongside increased energy investment in general—compared to the
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quantity target case (see Figure A.4 for a comparison of energy investment strategies). However, this comes at

an increased price for energy, as seen on the same figure. Under a quantity target the hedging strategy differs

substantially; now the high growth scenario poses a challenge—due to high policy costs if the target is fixed (see

again Figure 3)—and the least-cost possible energy system in the presence of the short-term 2030 target is one

characterized by moderate energy investment, pointing to a wait-and-see strategy and less hedging in emissions.

This is reflected also in the average price paid for energy, as seen in Figure A.5.

5.2.3. The role of coal

The power sector plays an important role in the transition to a low-carbon economy. In China, this sector is

dominated by coal. An illustration of how coal shapes the hedging in emissions is shown in Figure 7, where it is

seen that until 2020 in the quantity target scenario optimal coal usage follows a similar path as the deterministic

policy case, only to be reduced further under an intensity target. This is not the case for the other two important

fossil fuel energy sources, gas and oil, as seen on the same figure. The coal reduction under the intensity scenario

is driven by the retired coal capacity in the power sector (see Figure 6 and section 5.2.1).

We examine also the stylized case of anticipated learning about uncertainty, described by the introduction of

a learning step in a perfect foresight model like REMIND-S, which greatly reduces the target effect and leads to

similar strategies for each target. As seen in Chapter A.4.2 of the SOM, anticipated learning reduces the importance

of target choice and leads to almost the same amount of uncertainty-driven emissions reduction for a quantity and

an intensity target.
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Figure 7: Optimal fossil resource usage in China under uncertainty compared to the scenario of full information. The quantity scenario

features no further uncertainty-driven decrease in coal usage whereas oil and gas are reduced.

5.3. Multi-criteria comparison of intensity vs. quantity targets

Climate targets, as policy objectives, need to be evaluated in terms of more than one property to achieve political

and social acceptance; climate policy will affect the environment (GHG concentration, air pollution, etc.), but it

can also create winners and losers depending on the direction of investment streams. It can even be the reason
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Table 3: Overview of criteria for target comparison. A detailed description of the indicators is provided in Chapter A.7 of the SOM.

Criterion Short description Category

GHG emissions Total GHG emissions in the period 2005-2050 Environmental

Carbon price The size of the carbon price that has to be exerted on the economy

for the target to be met

Efficiency

Welfare loss Indicator based on total discounted social welfare loss until 2050.

Measured in balanced growth equivalents

Efficiency

Idle coal capac-

ity

Total retired coal capacity in the power sector that has not reached

the end of its lifetime

Disruptiveness

Cost volatility Expressed by the volatility of the carbon price around 2030, the year

of learning about the mid-century target

Disruptiveness

Expected

Value of Infor-

mation

Describes the difference in the value of learning about growth uncer-

tainty between the two target types

Expectation

Stabilization

Non-optimal

investment

The amount by which investment in energy deviates from the medium-

growth full-information path

Expectation

Stabilization

why capacity is retired earlier than expected (due to unanticipated strengthening of policies), giving rise to sunk

investments. Moreover, different target types can give rise to completely different response strategies. For example,

a preventive strategy can incentivize high investment in energy early on, whereas a wait-and-see strategy can have

the opposite effect. This will affect how costs are distributed over time. Furthermore, as targets will inevitably be

sequential, the above-mentioned effects will become more complex, as it is also the type of the second target and

the time of its announcement that will play an important role. Lastly, the fact that economic growth cannot be

predicted with certainty already affects the baseline case (over- or under-investment), and this effect intensifies in

the presence of climate policy.

To address these implications and take into account the findings of the analytical discussion and the determin-

istic and stochastic analyses, we compare intensity and quantity targets under multiple criteria. We choose four

categories of criteria: the environment, economic efficiency (relating to costs of policies and their distribution

over time), disruptiveness (relating to abrupt changes in the system caused by the announcement of targets) and

expectation stabilization (relating to how targets under growth uncertainty affect investors’ optimal behavior).

Overall, we use seven criteria. Environmental criteria are expressed in terms of GHG emissions, while target ef-

ficiency is measured in terms of carbon prices and welfare. As indicators addressing disruptiveness, we use idle

coal capacity and climate policy cost volatility. To assess the robustness of targets for stabilizing expectations, we

rate them according to the Expected Value of Information (EVOI) and non-optimal investment. The criteria are

summarized in Table 3, and explained in detail in Chapter A.7 of the SOM.

Figure 8 illustrates the multi-criteria comparison between a quantity and an intensity target, taking into account

target sequencing and growth uncertainty. The quantity target performs better in five out of seven criteria, whereas

intensity is better under one. The individual values of the indicators are discussed in section 5.2.1. Regarding the

criteria classification, an intensity target leads to slightly lower total emissions but the quantity target features

more economic efficiency (lower carbon price and less welfare losses) and favors stabilization of expectations (less
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non-optimal investment). In terms of disruptiveness, a sudden switch to a quantity target after 2030 could cause

significant coal capacity in the power sector to become idle. Under a quantity target the idle capacity would be

lower, with the additional benefit of a smaller jump in the carbon price due to the announcement of the 2050 target.

In the EVOI case there is no clear advantage of either a quantity or intensity target, highlighting the dominant

role of growth uncertainty. The reduction of growth uncertainty largely eliminates the target effect, as shown in

Chapter A.4.2 of the SOM. Summarizing, a 2030 quantity target features an easier low carbon transition, e.g. with

less costs and less idle capacity in the energy sector. The overall effect of the quantity target performing better can

be interpreted as a manifestation of the optimal response to the risk of realization of the low growth scenario in

the case of an intensity target, which outweighs the risk of a high growth scenario under a quantity target (because

under high growth the extra climate policy costs are more easily borne). It is thus more beneficial to hedge against

growth uncertainty with a 2030 quantity target because in the case of low growth it provides cost containment and,

at the same time, offers a smoother transition to the mid-century quantity target.

We acknowledge that the absence of indicators relating to interaction with other countries (incentives, cooper-

ation, etc.) and the absence of an indicator based on air quality constitute limitations for our study. To capture

these, a stochastic model with regional interaction (and high spatial resolution) would be needed, which currently

involves a prohibitive computational burden. Moreover, the model’s sensitivity related to the utility function’s

constant relative risk aversion could be explored in a further analysis.

2. Economic Growth Uncertainty

34



Cost volatility

Expected Value of Information

Welfare loss 
(reduction compared to full−information)

Idle capacity

Non−optimal investment

Carbon price

Emissions

0 100 200 300

Value relative to full−information in %

scenario

INT

Q50−L10−Medium

QUAN

Figure 8: Multi-criteria comparison of quantity and intensity targets for China. Indicators are listed along the y-axis and their values are

given on the x-axis as percentages relative to the medium-growth full-information scenario value (Q50-L10-Medium), for harmonization.

A lower indicator value indicates a more positive effect, i.e. reduced risk. A quantity target generally performs better than an intensity

target. In one case there is no clear advantage for the one or the other type of target (EVOI). Note: the full-information value is 100%

for the four upper indicators. For the three indicators at the bottom where scaling with the full-information value is not possible (it is

zero by definition), we scale with the respective lower value. A detailed explanation of the criteria is given in Chapter A.7 of the SOM.

6. Conclusions

We performed an empirical study of China’s climate policy to assess if its 2030 emission intensity target performs

better than an absolute target in preparing the economy for a 2 ◦C compatible mid-century target, i.e. in a target

sequencing situation.

Taking into account all possible growth scenarios, we show that an interim 2030 absolute target en route to a 2

◦C compatible mid-century quantity target performs better than an intensity target in our multi-criteria comparison

for the case of China; costs are lower and it also reduces uncertainty. As an explanation for the advantage of a

quantity target over an intensity one, we show analytically that the target type has a strong effect on how growth

scenarios shape the optimal carbon price, i.e. different incentives for investment are generated for each target type.

The analytic results enhance the robustness of the findings, as the form of the probability distribution describing

the uncertainty does not play any role there.

China’s climate targets constitute an important part of the Paris Agreement, reflecting the country’s key role

in the negotiations and the international effort to combat climate change. As such, their performance needs careful
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analysis both for the sake of China’s economy and for a successful agreement. Ellerman and Wing (2003) suggest

that—in a theoretical and perfectly flexible system—intensity and quantity targets can be interchanged infinitely

and eventually lead to the same costs and emissions. This is challenged here, due to the fact that, in reality, energy

investment cycles and power plant lifetimes have time scales longer than the target updating (e.g. China’s official

5-year plans, or the Paris Agreement process for mid-century strategies); that is, the system shows inertia rather

than flexibility. Consequently, successions of different types of targets will lead to a discontinuity and should be

avoided. A strengthening of China’s climate ambition is underway, driven by the fact that, in the current 5-year

plan, climate targets were easily met through energy saving policies and economic structure adjustments. The

adoption of a 2030 absolute target is more suitable for China, as the long-term 2 ◦C target is also, in effect, an

absolute target. The switch from the current interim intensity target to absolute emissions control could happen

gradually, taking advantage of the Agreement’s updating of targets every five years.

Code and data availability. REMIND is open-source: https://github.com/remindmodel/remind. The source

code of the models used (REMIND and REMIND-S) as well as the data are available by the authors upon request.
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a b s t r a c t

Limiting global warming to “well below 2�C” as stated in the Paris Agreement requires ambitious
emissions reductions from all sectors. Rapid technology cost declines in the energy sector are changing
energy investment and emissions, even with the weak climate policies currently in place. We assess how
energy supply costs and carbon dioxide removal (CDR) availability affect mitigation by performing a
sensitivity analysis with the energy-economy-climate model REMIND. We use new scenarios with car-
bon price paths that aim to reduce the frequently seen temperature overshoot. Further, we measure the
sensitivities of mitigation indicators to the costs of technologies across economic sectors. We assess the
sensitivity to nine techno-economic parameters: the costs of wind, solar, biomass, gas, coal, oil, nuclear,
and electric/hydrogen vehicles, as well as the injection rate of Carbon Capture and Storage (CCS). While
technology costs play a role in shaping optimal pathways, we find that transport sector costs affect the
economics of deep decarbonization, whereas costs of renewables are more important for scenarios under
weak climate policies. This further highlights the value of renewable energy deployment as a no-regrets
option in climate policy. In terms of the sensitivity of model outputs, economic indicators become more
sensitive to costs than emissions, with increasing policy stringency.

© 2020 Published by Elsevier Ltd.

1. Introduction

The energy sector accounts for the largest share of greenhouse
gas (GHG) emissions [1] and holds the greatest decarbonization
potential [2]. Thus, investments in energy transformation tech-
nologies are key factors shaping climate mitigation pathways
[3e6]. Previous studies have shown that the uncertainty associated
with the costs of energy technologies constitutes an important
component of the overall uncertainty present in mitigation path-
ways [7e11].

Energy investment costs have changed drastically over time and
vary considerably across space [12]. Solar and onshore wind have
levelized costs of electricity (LCOE) that are in some regions lower
than the long-run-marginal-cost (LRMC) of standing coal capacity,

but analysts suggest a strong policy signal (in the form of carbon
price or efficiency standard) is still needed for a fast decarbon-
ization of the power sector [13e18]. At the same time, the decar-
bonization of the transportation sector is proceeding [19] and
depends on the cost of electric and fuel-cell vehicles [20e22], as
well as oil prices [23], and policies [24].

Given recent changes, what are the differences in computing
global mitigation pathways using 2015 technology cost projections
versus 2019 costs? How are CDR1 demands and individual sectors
affected? What is the relative importance of the costs of technol-
ogies when compared with each other? and which mitigation in-
dicators are affected the most by these costs? In an approach
similar to Bosetti et al. [25]; we tackle these uncertainties by per-
forming a sensitivity analysis of mitigation indicators on energy
technology costs, under various levels of climate policy ambition.
We assess the sensitivity of nine techno-economic parameters:
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renewable energy (wind, solar photovoltaics and concentrated
solar power (CSP)) technology costs, nuclear power plant costs, cost
curves for fossil fuel extraction (gas, coal, oil), biomass supply costs,
as well as rates of injecting carbon dioxide (CO2) into the ground
(CCS2). The CO2 injection rate crucially determines the mitigation
potential of BECCS (bioenergy with CCS), an important CDR tech-
nology. We also consider costs of electric and hydrogen-fueled
vehicles, as alternatives to oil in the transport sector. The techno-
economic parameters are chosen so as to cover the entire energy
supply, with two important additions: one from the energy de-
mand side (vehicle costs), and the CO2 injection rate. We further
contrast scenarios including large-scale CDR with scenarios where
CDRdother than reforestation and afforestationdis not allowed.
Apart from being a useful tool for answering the above questions,
sensitivity analysis is good scientific practice for enhancing trans-
parency and the credibility of model results for informing societal
decisions [26,27].

The remainder of the paper is structured as follows. In the next
section, we describe the scenarios and methods used here: the
climate policy scenarios, the technology cost ranges, and the
sensitivity analysis method. We then present the results starting
with the insights gained from the effect that technology costs have
on global outcomes across sectors, followed by a ranking of
important mitigation indicators with respect to their relative
sensitivity to technology costs. Section 5 summarizes and con-
cludes. We compute all scenarios with the large-scale and tech-
nologically detailed energy-economy model REMIND. See
Appendix A.1 for a detailed description.

2. Scenarios and methods

2.1. Climate policy scenarios

Table 1 shows the scenarios considered, which feature an
extensive coverage of climate policy ambition, and use SSP23 socio-
economic assumptions. The scenarios range from a no-policy
baseline (BASE) to a continuation of the currently announced
Paris pledges (NDC) and three different scenarios (B900, B1100,
B1300) assuming global CO2 emissions are constrained by a budget
of 900, 1100 and 1300 Gt CO2 in the time period 2011-peak year,
respectively. With “peak-year” we refer to the year where global
mean temperature peaks.

Typical budget scenarios usually feature carbon prices4

increasing exponentially until the end of the century, and tend to
show increased demand for CDR and an overshoot in temperature.
Here, we use newly developed scenarios [28] with carbon prices

increasing steeply until net carbon emissions become zero (this
point corresponds also to roughly the peak temperature point), and
increase slowly afterwards (see Fig. A.8 of the Appendix). This
carbon price trajectory leads to a moderate need for CDR, a reduced
overshoot in the global mean temperature, and is more in line with
the interpretation of the Paris climate targets as not-to-exceed
limits [29].

To isolate the effect of energy technology costs from CDR
availability, we consider scenarios with andwithout additional CDR
technologies5 (direct air capture and BECCS). The full ensemble of
approximately 400 scenarios is found in the Appendix. Fig. 1 vi-
sualizes the technology cost uncertainty by showing CO2 emissions
(by sector and total), carbon prices, and consumption losses for the
baseline, NDC, and B1100 policy scenarios. For each indicator, pol-
icy, and CDR availability scenario, a different spread is observed in
the computed values. Quantifying and understanding this uncer-
tainty is the goal of this paper. Due to space constraints, we focus on
our main scenario B1100; other scenarios are described in the
Appendix.

2.2. Technology cost ranges

The nine (groups of) technologies with uncertain costs (or po-
tential) are shown in Table 2, while an overview of the ranges
considered in the sensitivity analysis is given in Fig. A.9, expressed
in terms of low, medium, and high levels for each. REMIND com-
putes endogenous resourcemarket prices, thus for the sensitivity of
the costs of fossil fuels (oil, coal, gas) we choose the extraction costs
according to the SSP scenario variation: SSP1, SSP2, and SSP5 [30],
delivering the low, medium, and high cases, respectively. The SSP
scenarios feature extraction cost curves for each of REMIND’s world
regions, the average of which is shown in Fig. A.9. For the variation
of the remaining energy conversion technologies we use capital
costs, whereas for CCS we use CO2 injection rates. Capital cost
uncertainty is important also because of a potential rise of interest
rates in the future. Our cost ranges for renewables are derived from
observed investment cost ranges (high, reference, and low; source:
LCOE ranges from IRENA [31]. Nuclear power plant costs are varied
by a range derived from observed typical cost overruns during
construction. To visualize the resulting ranges we plot the turnkey
costs for wind, solar photovoltaics, CSP, nuclear, as they are used in
REMIND. We vary simultaneously costs of battery-electric and full-
cell vehicles (”ELH2” will be used throughout the paper to refer to
the pair) by observed purchase costs (5th and 95th percentile of the
cost of a medium size vehicle, Cox et al. [32], and the CCS injection
rate according to the following values: 0,5% (reference, yielding
roughly 60Mt CO2 per day), 0,1% (low injection rate, corresponding
to the ”high” case in the sensitivity analysis, as in ”low availability”,

Table 1
Number of model runsdper policy and CDR availability scenariodneeded for the extended one-factor-at-a-time method used here, and scenario description. Explanation of
numerical values: 3 refers to the reference cases (all factors at reference value/all factors at high/all factors at low), 9 to the number of factors (BIO, CCS, COAL, etc.), and 4 to the
sensitivity cases (factor value at high/low/others-high/others-low). Temperature increase is global mean surface-air temperature increase compared to themean of 1850e1900
in 2100, CO2 budgets are given in the period 2011e2100.

with CDR without CDR Description

No-policy baseline 3þ9x4 3þ9x4 Counterfactual scenario without climate policies
NDC 3þ9x4 3þ9x4 Nationally Determined Contributions continued without increased ambition
B1300 3þ9x4 3þ9x4 67% prob. of 2�C; 1300 Gt CO2 in 2011e2100
B1100 3þ9x4 3þ9x4 ”well below” 2�C; 1100 Gt CO2 in 2011e2100
B900 3þ9x4 3þ9x4 67% prob. of 1.5�C; 900 Gt CO2 in 2011e2100

2 Carbon Capture & Storage.
3 Shared socio-economic pathways [50].
4 climate policy in all our scenarios is enforced via a global, uniform, lump-sum

carbon price, covering also CH4 and N2O emissions. These are also reduced in
policy scenarios, but by prescribed paths.

5 CDR from exogenous reforestation and afforestation scenarios is always
allowed.
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i.e. high cost; for compatibility with the other varied inputs), 100%
(unconstrained injection rate, corresponds to the ”low” case in the
sensitivity analysis). Finally, biomass extraction costs (also highly
uncertain like the CCS injection rate) are varied by 50% higher and
lower compared to the reference SSP2 value.

2.2.1. Modelling of energy technology costs
The costs of energy technologies in REMIND, which are balanced

in the macro-economic budget equation, consist of those arising
from the extraction of energy resources and the investment
indand use ofdenergy conversion technologies.

First, the costs associatedwith the extraction of coal, oil, gas, and

uranium are represented by regional long-runmarginal supply cost
curves which relate cumulative resource extraction to marginal
costs [30,33,34]. These costs increase with cumulative extraction
reflecting the transition from low-costs (e.g. conventional oil) to
high-costs mines and deposits (e.g. offshore oil, tight oil, oil shale)
[33,35,36]. In addition, the production of fossil fuels is subject to
adjustment costs that are represented by quadratic curves and
account for the costs increase stemming from short-term changes
in production [37]. Trade costs are added to the overall production
fuel costs [37]. Bioenergy costs are also modelled by supply cost
curves that capture the time, scale, and region dependent change of
bioenergy production costs, as well as path dependencies resulting

Fig. 1. Impact of technology uncertainty on mitigation. The ensemble of scenarios for the no-policy baseline, NDC continuation, and B1100 scenarios, see Table 1. Indicators
shown are emissions (total and by sector), policy costs, and carbon price. Throughout the paper, the unit chosen for the net present value of the carbon price is US%2005, same holds
for the rest of the monetary values, e.g. costs (US$2005 is the internal currency of the REMIND model). Technology costs are the source of uncertainty of all policy scenarios. Vertical
lines on the right show the uncertainty range. Sectors (lower row of indicators) feature similar uncertainty range, but transport has a stronger variation in the stringent policy case
(B1100; transport is also the only sector with rising short-term emissions). The NDC scenarios clearly fall short of adequate emissions reductions for reaching ambitious climate
goals. Uncertainty in economics increases with policy stringency, while uncertainty in emissions decreases. CDR availability increases the uncertainty range (vertical lines), giving
more flexibility to the system. The same graph including also the B900 and B1300 scenarios is found in the Appendix.

Table 2
Technologies with uncertain costs (or potential) considered in the present study. REMIND features specific costs per region, the values shown here are the global average. The
price (and usage) paths resulting from the given input parameter uncertainty ranges are plotted in Fig. A.9

Technology
Techno-economic Ranges (2050)

Short name parameter Low Medium High

Wind power converters WIND Capital cost (US$2005/kW) 480 830 1290
Utility scale solar PV & CSP SOLAR Capital cost (US$2005/kW) 180/1500 230/2350 420/3300
Nuclear power plants NUCLEAR Capital cost (US$2005/kW) 2700 6000 8750
Electric & fuel-cell H2 vehicles ELH2 Purchase cost (US$2005/veh) 7700/11500 12500/20000 17700/27000
Carbon Capture & Storage CCS CO2 injection rate (Mt CO2/day) 12 60 (unconstrained)
Biomass BIO Extraction cost (US$2005/GJ) �50% 2 þ50%
Coal COAL Extraction cost (US$2005/GJ) 1 1.57 1.9
Gas GAS Extraction cost (US$2005/GJ) 2.41 3 4.06
Oil OIL Extraction cost (US$2005/GJ) 4.3 7.87 11
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from past land conversions and induced technological changes in
the land-use sector [38].

Secondly, each energy conversion technology is characterised by
investment costs, operation and maintenance costs, and fuel costs
[39]. Investment costs are modelled as turnkey costs and are
regionally differentiated. These are computed by adding financing
costs that occur over the construction time of technologies to
specific overnight capital costs with a view to capture differences in
the cost of capital across technologies and regions. Investment costs
remain relatively constant for most technologies (e.g. coal power
plant) and decrease for some relatively new technologies (e.g. wind
and solar photovoltaics, electric/hydrogen vehicles), due to rapid
innovation and technological change. Technological change is
modelled via learning curves that relate cumulative capacity
installation to marginal costs. Operation and maintenance costs are
divided into fixed yearly operating and maintenance costs which
are estimated as a fraction of investment costs and variable oper-
ating costs which scale with energy output. Finally, fuel costs are
those arising from the energy resource production described in the
previous paragraph.

2.3. Sensitivity analysis (method description)

Here, the sensitivity analysis of techno-economic parameters
(technology and extraction costs, injection rate, purchase costs of
electric/hydrogen vehicles) using the energy-economy-climate
model REMIND will be presented. We will refer to the techno-
economic parameters as factors (i.e. model inputs in sensitivity
analysis jargon). Due to the model size (60þ energy technologies,
12 world regions, 19 time-steps) an extended one-factor-at-a-time
method featuring efficient sampling is used here, same as in Mar-
angoni et al. [40]. “Extended” refers to the ability of the method to
compute also the factor interaction effect [41], which is computed
as follows: each factor is changed to its high (or low) value while all
other factors are kept at their reference value, and, additionally,
each factor is fixed at its reference value while all other factors are
moved to their high (or low) values. The former gives the first-order
(or direct) effect of a factor, while the latterdwith a change in
signdgives the total effect of the factor in question.

3. The effect of technology costs on mitigation indicators

We present the results in two parts. First, to quantify the sources
of uncertainty we show the individual effect of technology costs on
selected mitigation indicators. Second, to answer the question
about which mitigation indicators are affected the most by tech-
nology costs, we compute aggregate measures that summarize the
individual effects. We then compare the sensitivities (sensitivity
indices) of the indicators. We separate the mitigation indicators
(model outputs) into three thematic groups, to provide a better
structure and increase the readability of the results. The first group
relates to the economics of decarbonization, the second contains
indicators describing the depth of decarbonization by mid-century,

and the third contains CDR demand and the year of carbon
neutrality (YCN). See Table 3 for detail.

3.1. Economic indicators

Results for the first indicator group are shown in Fig. 2, which
presents four modified tornado-diagrams, similar to the ones
commonly used in sensitivity analyses. The figure shows the indi-
cator reference value (shown separately at the top in grey bars) as
well as the magnitude and direction of change from reference to
low/high for each factor. It thus illustrates how much each factor
affects each indicator and allows comparisons of the relative
importance of each. The corresponding graphs for the B900 and
B1300 scenarios are found in Fig. A.11. In tornado-diagrams,factors
are typically sorted with the most influential at the top, the
resulting shape is what gives them this name. Here, we modify the
diagram by sorting the factors in thematic color-coded clusters:
renewables (green), nuclear (purple), low-carbon mobility (light
blue), biomass and CCS (pink), and fossil (brown).

Climate policy costs6 increase by 20% when low-carbonmobility
(electric vehicles and hydrogen-powered fuel-cell vehicles, ELH2) is
more expensive, and the CCS injection rate is low (red bars). This is
the largest increase, followed by an 8% increase in policy costs if oil
extraction were lower cost. The highest cost decrease (9%) comes
also from ELH2 being cheaper, followed by wind and biomass/coal
(8%). Similar dynamics occur in the no-CDR case, seen in the bottom
left panel of Fig. 2. Biomass is an important factor also in the
absence of CDR. Carbon prices react in a much more sensitive way
to CCS availability than policy costs, but the effect of ELH2 and oil
remains significant also here, and becomes even more pronounced
in the no-CDR case. The other three policy scenarios (and their no-
CDR alternatives) show the same behavior in policy costs and car-
bon prices (in the Appendix). Overall, transport-related costs (ELH2
and oil) alongside biomass and CCS have the largest impact on the
economic indicators.

3.2. Depth of decarbonization

Fig. 3a shows the reference values for the second group of in-
dicators (depth of decarbonization), and adds the sectoral dimen-
sion. The indicators here describe the average progress made in
decarbonization in the period 2030e2050. Sectoral emissions from
buildings, industry, and transportation exclude indirect emissions
from upstream, e.g. electricity. Fig. 3(bef) are modified tornado-
diagrams showing sensitivities to technology costs and CCS avail-
ability. In the total values (Fig. 3b), ELH2 and CCS have the biggest
effect on emissions, followed by an emissions decrease at low costs
for wind and oil. The strong effect the costs of renewables have on
the electricity share of final energy is comparable to the effect of

Table 3
Characteristics of mitigation indicators (model outputs).

Group Indicator By Sector Year Aggregated

1 Economics Carbon tax No 2100 No
Climate policy costs No 2010e2100 Yes

2 Depth CO2 emissions Yes 2030e2050 mean No
Electricity share of final energy Yes 2030e2050 mean No
Fossil carbon intensity of fuels Yes 2030e2050 mean No

3 CDR and YCN Cumulated CDR No 2020e2100 Yes
Year of carbon neutrality No e No

6 Net present value of consumption losses in the period 2011e2100, relative to
the no-policy baseline.
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ELH2. In contrast the impact of renewables on fossil carbon in-
tensity is lower than those of ELH2 and oil.

Demand-sector contributions are shown in Fig. 3(cee). The
transport sector (e) includes the largest individual factor effects of
the analysis, ELH2 and oil. Electricity supply (f) shows the highest
overall sensitivity, combining indirect effects from downstream
changes in demand (oil, ELH2, CCS) and the direct influence of
technology costs (solar, wind, and nuclear). Conversely, fossil
resource prices other than oil show a limited influence on power
sector decarbonization, shown by the fossil carbon intensity of
fuels.

3.3. CDR and year of carbon neutrality

Overall, CDR adds flexibility to the system, which leads to a
stronger effect of energy technology costs on mitigation than in the
cases without CDR. For example, see the increase in the uncertainty
ranges of Fig. 1, as well as the differences between Fig. 3 and A.12.
Fig. 4 shows the impact of costs on CDR use. The CCS injection rate
has the highest impact, but in the case of unconstrained injection
(blue bar) the effect is very limited compared to low injection,
where CDR is reduced by more than 50%. This shows that the
reference value for the injection rate limit leads to CDR use that is
close to the economic optimum for the modeldconstraining in-
jection further has a large effect, but relaxing it does relatively little.

Another 12% variation comes from the uncertainty in oil prices.
The year of carbon neutrality is also largely unaffected by the

variation of the factors, except for CCS and ELH2. Also here an un-
constrained injection rate does not have an impact, compared to a
strong shift of more than 10 years if the CCS injection rate is low. In
the case of ELH2, lower purchase costs would lead to a decrease in
emissions in the short-term that would then need to be compen-
sated less by CDR later on, shifting the YCN to the right compared to
the reference.

3.4. Relative sensitivities of indicators

There are several approaches to summarizing sensitivity anal-
ysis results. In most cases the so-called sensitivity indices are
computed, describing the impact of model inputs on model out-
puts. We apply two different metrics for the calculation of the
sensitivity indices. The first one is described by the direct effect a
factor has on the variance of a certain output and is called first order

Sobol’ index [42]:Si ¼ VXi
ðEX�i

ðY jXiÞÞ
VðYÞ , where i: factor, X: vector of

factors, E: expected value operator, Y: indicator, and V: indicator
variance.

The second metric is described by the total effect a factor has on
the percent change of an indicator from its reference value; total in
this case refers to the sum of the direct effect (like above) plus the
interaction effect of the factor in question with the rest of the

Fig. 2. Modified tornado-diagrams: Economic indicators. The Sensitivities panel shows absolute change (x axis) in mitigation indicators caused by a one-factor-at-a-time
variation of technology costs (y axis). Blue bars correspond to low cost, red bars to high cost (for the CCS injection rate, the only technology where a physical property rather
than costs is varied, the colors are used to reflect how ”accessible” the technology isdthus red is low rate and blue is high). Reference values (equal across factors) are shown with
grey horizontal bars at the top, black lines show the sensitivity ranges. Example on how the information on the diagrams is interpreted: ”cheap oil and expensive ELH2 lead to
increased policy costs in a B1100 scenario”, etc. The policy costs are described as net present value consumption losses relative to the baseline, aggregated over the period
2010e2100 and discounted at 5%. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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factors. The percent change is given by the following formula.

%change ¼P
i
100 ,

 
jYH;i�YRj
jYH;ijþjYR j þ

jYL;i�YRj
jYL;ijþjYRj

!
, where i: factor, H: high,

R: reference, L: low, and Y: indicator value.whereas the interaction
effect is captured by themethod described byMarangoni et al. [40];

Fig. 3. Modified tornado-diagrams with sectoral detail. Absolute change (x axis) in the indicators describing the depth of decarbonization caused by one-factor-at-a-time
variation of technology costs (y axis). Red bars correspond to high cost, blue bars to low. Reference values (equal across factors) are shown with grey horizontal bars at the top,
black lines show the sensitivity ranges. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. CDR and year of carbon neutrality Impact of technology cost uncertainty a) on the CDR demand and b) on the shift in the year of carbon neutrality, YCN. The reference YCN
is denoted by a black dot on the graph.
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consisting of runningdalongside scenarios with a normal one-
factor-at-a-time variationdscenarios where one factor is main-
tained at the reference value and all the other factors are changed
to the high or low values. These findings are summarized in Fig. 5,
and provide a compact overview of the detailed results given in the
tornado-diagrams of sections 3.1-3.3 (expanded to include also the
no-policy baseline and the NDC scenario), visualizing the

dominating effect of the CCS injection rate and ELH2/oil on the
indicators variance and percent change. Fig. 5 also shows that the
costs of renewables reach their highest impact in the NDC case.
However, the NDC scenarios clearly fall short of adequate emissions
reductions for reaching ambitious climate goals, as seen also in
Fig. 1.

Based on the above calculations, Fig. 6 informs decision-making

Fig. 5. Sensitivity indices Left: Sobol’ first order (direct) indices describe the contribution (share) of each factor (model input) to the variance of the model outputs. Right: The total
effect describes the direct contribution of each factor to the percent change in outputs plus the effect caused by the interactions of the factor with the other factors. NPV: net present
value.

Fig. 6. Comparison of mitigation indicators by individual factor effect. The mitigation indicators shown here describe challenges (climate policy costs) and sustainability
concerns related to climate change mitigation (total CDR requirements and total (gross) emissions). Scenario: B1100 with CDR, year 2100. Reference values (World total CDR/World
gross emissions/Policy costs): 413 Gt CO2/5 Gt/1,74% Net present value of consumption losses 2010-2100.
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by analysing trade-offs among policy cost, mitigation, and sus-
tainability (i.e.minimizing CDR). It assesses the effects of technol-
ogy costs and CCS availability on climate policy costs, emissions,
and total CDR requirements, in a B1100 scenario. Each effect is
measured by computing the percent change of each indicator
(compared to the reference), when going from the reference to high
and ow for each factor. This way, we can visualize the type of model
output that each factor is affecting the most. The transport-related
factor ELH2 influences the policy costs significantly more than the
other indicators, due to the constraints imposed by the low number
of decarbonization options available to the sector.

3.5. Edge cases: scenarios of full- and no-flexibility

The ”edge cases” of the factor values describe worlds with and
without flexibility, i.e. worlds where energy technology options are
either very difficultdsee also the LimTech scenario from Kriegler
et al. [4]dor very easy to reach. Here, these worlds are modelled by
taking all the factors at their respective low or high cost value, at
the same time. An overview of how the edge cases shape three key
mitigation indicators (final energy demand, policy costs, carbon
price) for the B1100 policy case is given in Fig. 7, where climate
policy costs and near-term carbon prices nearly double when going
from full-to no-flexibility (”all low” versus ”all high”), combined
with a 25% average final energy demand response. These results
provide intuition about the mitigation potential of a) a wide spec-
trum of technology options, and b) policy instruments beyond
carbon pricing. It is important to note that these edge cases give an
indication of the size of the solution space only as it is seen from the
viewpoint of a neutral energy/technology ”planner”, who does not
know which options reduce emissions and which do not. This
means that the edge cases do not cover the full range of mitigation
outcomes from all the possible technology cost combinations. For
example the case of all mitigation technologies being easily acces-
sible while fossil fuels are expensive, and vice versa, are not
considered here. These cases can potentially lead to even stronger
variation in mitigation-related outputs as they would be tailored to
explicitly favor or hinder mitigation.

4. Summary and conclusions

This sensitivity analysis of technology costs shows that the un-
certainty in biomass&CCS followed by the transport-related op-
tions (ELH2 and oil) have the largest effects on both physical and
economic mitigation indicators. These findings agree with results
reported by Luderer et al. [43] and Kriegler et al. [4]; where the
strongest variation among technologies originates from BECCS and
energy intensity (transport-related). In the case of biomass&CCS,
this happens because these technologies directly control the option
to create net negative emissions, but in the case of low-carbon
mobility and oil, the explanation is two-fold. First, increasing pol-
icy stringency requires a rapid decarbonization of the power sector,
which features many complementary optionsdmaking one more
expensive does not hurt very much. The buildings and industry
sectors feature high electrification in the reference scenario, so only
the transport sector affects carbon prices. Second, the transport
sector emissions are the only ones that keep rising in the short
term. These two effects make transport the price-setting sector.

The year of carbon neutrality remains largely unaffected by the
variation in costs. This indicates the importance of early climate
action, as even in “favorable” price scenarios, optimal emissions
need to reach zero by 2065. On the other hand, the use of CDR is a
more sensitive economy-wide physical mitigation indicator, mainly
affected by the CCS injection limit and the dipole oil/ELH2.
Furthermore, the remaining emissions of NDC scenarios with low
costs of renewables raise the question of whether falling prices for
renewables alone will be sufficient to reach long-term climate
targets, such as the well below 2�C. Finally, the high overall influ-
ence of biomass&CCS (with uncertain potential) and transport-
related technologies (difficult to decarbonize) on the indicators,
highlights the need for robust and broad policy support for
achieving the goals of the Paris Agreement.

The present study focuses on uncertain factors in the energy
supply side, and further research shedding light onto demand-side
uncertainties is needed to provide additional information for
climate policy. Finally, including second-best effects, and further
analysing integration constraints andmarket imperfections leading
to the actual costs of technologies not reaching the market, would

Fig. 7. Edge cases. Differences between the reference case and worlds with no- and full-flexibility (all technology costs at high and low values, respectively).
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enhance the usefulness of the present findings.
Code and data availability. REMIND is open-source: https://

github.com/remindmodel/remind. The version used here is
REMIND v2.1.1 (https://doi.org/10.5281/zenodo.3730918).

Author contribution

Anastasis Giannousakis, designed the study, conducted the
derivation of input data ranges, modeling work, post-processing,
and created the figures, wrote the paper. J�erôme Hilaire, sup-
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Appendix A

Appendix A.1. The integrated assessment model REMIND

REMIND (REgional Model of INvestment and Development) is a
multi-sector, multi-region integrated assessment model used for
global and regional climate policy analysis [44]. REMIND has been
used extensively in IPCC reports, e.g. IPCC [45] and IPCC [46]; and
major model intercomparison projects, e.g. Kriegler et al. [4];
Pietzcker et al. [47]; Bauer et al. [48]; Luderer et al. [2]; Riahi et al.
[49]. It combines a top-down Ramsey-type growth model with a
bottom-up energy system model of large technological detail. In
the macro-economic core of REMIND, aggregated and discounted
intertemporal social welfare is maximized for a number of regions

spanning the whole globe, while pathways are derived for savings
and investments, factor incomes, as well as energy and material
demand. The utility function of REMIND exhibits constant relative
risk aversion and has a logarithmic form on consumption. Regions
interact by trade in primary energy carriers, emission permits, and
a composite good. The detailed representation of the energy system
in each region consists of capital stocks for more than 60 technol-
ogies for energy conversion, including technologies that are able to
generate negative emissions, like bioenergy combined with carbon
capture and sequestration.

In REMIND, economic activity results in demand for energy
services, which in turn results in GHG emissions from extraction
and burning of fossil fuels in different sectors (buildings, industry,
transport) and levels (primary, secondary, final, and useful energy).
Mitigation scenarios analyse optimal strategies for decarbonization
with the use of a carbon tax applied on the economy, resulting in a
shift from fossil use to renewable energy. A full portfolio of GHG is
considered (CO2, CH4, N2O, NH3, F-gases, etc.), either via emissions
from energy use or via exogenous marginal abatement cost curves
(e.g. land-use). Adjustment costs in energy investment and
deployment account for policy realism and path dependency.
REMIND usually runs in so-called cost-effectiveness mode, not
internalizing potential economic damages of climate change, but
rather analyzing energy technology portfolios and investment dy-
namics under given climate targets (carbon budgets, reduction
relative to a baseline, carbon taxes, etc.). REMIND features endog-
enous technological learning for several energy conversion tech-
nologies (investment costs decrease with increasing installed
capacity).

Appendix A.2. The effect of technology costs on the baseline, NDC,
and B900/B1300 scenarios

Fig. A.11 shows the variation of the economic indicators (see
Table 3) for the B900 and B1300 scenarios. We observe the same
dynamics as in the B1100 scenario (see section 3.1 of the main
article), with the effects of ELH2, oil and CCS becoming more pro-
nounced as target stringency increases from B1300 to B1100 and
B900. Conversely, the overall effect of technology uncertainty on
emissions is reduced when going from NDC to B1100 and further to
B900 (see Figs. A.14 and A.13). The sensitivity of CDR use scales with
increasing policy ambition as seen on Fig. A.15.

Fig. A.8. Differences between End-of-Century and Peak-budget scenarios.
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Fig. A.9. Technology cost ranges of the present study. Turnkey costs for solar photovoltaics, CSP, onshore wind, and nuclear power. Average extraction costs for fossil fuels, and
purchase costs for hydrogen and electric vehicles. For biomass, the effect of the range in production cost is shown by means of primary energy usage. The CDR curve shows the
uncertainty in the CCS injection rate. See section 2.2 for sources.

Fig. A.10. Ensemble showing all scenarios, with uncertainty ranges
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Fig. A.11. Modified tornado-diagrams: Economic indicators for additional policy scenarios. The Sensitivities panel shows absolute change (x axis) in mitigation indicators
caused by one-factor-at-a-time variation of technology costs (y axis). Blue bars correspond to low cost, red bars to high (for the CCS injection ratedthe only technology where a
physical property rather than costs is varieddthe colors are used to reflect how ”accessible” the technology is, thus red is low rate and blue is high). Reference values (equal across
factors) are shown with grey horizontal bars at the top, black lines show the sensitivity ranges. Example on how the information on the diagrams is interpreted: ”cheap oil and
expensive ELH2 lead to increased policy costs in a B900 scenario”, etc. The policy costs are net present value consumption losses relative to the baseline, aggregated over the period
2010e2100 and discounted at 5%.
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Figure A.12Modified tornado-diagrams with sectoral detail, B1100 w/o CDR. Absolute change (x axis) in the indicators describing the depth of decarbonization caused by one-
factor-at-a-time variation of technology costs (y axis). Red bars correspond to high cost, blue bars to low. Reference values (equal across factors) are shownwith grey horizontal bars
at the top, black lines show the sensitivity ranges.
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Fig. A.13. Modified tornado-diagrams with sectoral detail, B900. Absolute change (x axis) in the indicators describing the depth of decarbonization caused by one-factor-at-a-
time variation of technology costs (y axis). Red bars correspond to high cost, blue bars to low. Reference values (equal across factors) are shownwith grey horizontal bars at the top,
black lines show the sensitivity ranges.
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Fig. A.14. Modified tornado-diagrams with sectoral detail, NDC scenario. Absolute change (x axis) in the indicators describing the depth of decarbonization caused by one-factor-
at-a-time variation of technology costs (y axis). Red bars correspond to high cost, blue bars to low. Reference values (equal across factors) are shownwith grey horizontal bars at the
top, black lines show the sensitivity ranges.
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Fig. A.15. Modified tornado-diagram: CDR demand across policy scenarios. Absolute change (x axis) in the indicators describing the CDR demand caused by one-factor-at-a-time
variation of technology costs (y axis). Red bars correspond to high cost, blue bars to low. Reference values (equal across factors) are shownwith grey horizontal bars at the top, black
lines show the sensitivity ranges.
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Abstract
We analyze the burden sharing of climate stabilization under socio-economic scenario uncer-
tainty and for various burden-sharing regimes. For this purpose, we quantify mitigation efforts
in terms of emission reductions and mitigation costs for a number of major world regions,
considering scenarios with and without climate finance. The influence of socio-economic
drivers on the burden sharing is crucial, but it has not yet been studied in the context of the
most recent scenario framework—the shared socio-economic pathway scenarios (SSPs). Here,
we show that sustainable development as represented by the SSP1 scenario reduces the
challenges of burden sharing and makes it easier to achieve equitable climate policies. In
contrast, in a scenario with fossil-fueled development (SSP5), the risk of political
infeasibility—measured by the variation of mitigation costs across regions and the amount
of implied international transfers—increases with most burden-sharing regimes.

1 Introduction

The current climate policy (Paris Agreement) focuses on national contributions (NDCs) and
early entry points of action, but recent studies (e.g., Robiou du Pont et al. 2017; Rogelj et al.
2017; Kriegler et al. 2018; Vrontisi et al. 2018) show that greenhouse gas (GHG) emission
reductions in line with NDCs will not be sufficient to achieve a long-term climate stabilization
below 2 °C. Unilateral emission reductions need to be intensified in ambition and likely be
followed by multilateral action. Yet, efforts to implement an ambitious multilateral reduction
plan will only be successful if the overall burden sharing meets certain fairness criteria. The
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principle of Common but Differentiated Responsibilities, as a cornerstone of sustainable
development, holds also for climate policies and is thus included in the Paris Agreement
(UNFCCC 2015). The goal-oriented use of instruments that support international climate
policy, such as climate finance and emissions trading, could help improve the efficiency,
while at the same time increase the fairness of mitigation measures. The burden sharing across
countries will likely differ with the level of global mitigation, and its perceived equity depends
on the dynamics of climate change and its socio-economic drivers. The newly developed
shared socio-economic pathway scenarios (O’Neill et al. 2014) provide a useful tool to
consider the uncertainty in the future development of these drivers.

The burden sharing of climate stabilization and the feasibility of fair burden-sharing regimes
have not yet been studied in the context of the SSPs. In this paper, we do so and contribute to the
existing literature by comparing the mitigation burden sharing of a 2 °C climate stabilization in
different socio-economic futures represented by the scenarios SSP1 (Bsustainable
development^), SSP2 (Bmiddle-of-the-road^), and SSP5 (Bfossil-fueled development^). In
the absence of climate finance, developing countries would face rather high costs (cf. Tavoni
et al. 2015), which conflicts with the principle of Common but Differentiated Responsibilities.1

We address the underlying fairness dimension by contrasting carbon tax scenarios with cap-
and-trade scenarios based on different permit allocation schemes. We quantify the burden
sharing of mitigation across a number of major world regions, while using the term burden
sharing for both the sharing of financial burdens (mitigation costs and financial transfers) and
mitigation efforts (emission reduction levels). Furthermore, we evaluate the burden-sharing
scenarios with regard to their chances of implementation (i.e., political feasibility) based on
their contribution to the equalization of mitigation costs and the requirements of climate finance
across regions. In a next step, by decomposing mitigation costs, we identify components that
contribute differently to the cost magnitude across regions and to the cost shares in each region
across the SSPs. This decomposition addresses the sensitivity of the mitigation costs to a
number of socio-economic and techno-economic parameters and assumptions. Our results
provide meaningful information for climate policy-makers on how to design future policy
regimes and how to implement and direct financial transfers.

The paper is structured as follows. In Section 2, we discuss the existing literature on the
burden sharing of climate change mitigation. The analysis in this study is performed by
applying the integrated assessment model REMIND, followed by an ex-post analysis of model
results. The model and the experimental design are presented in Section 3. In presenting
results, we start in Section 4 with comparing global mitigation levels and costs across different
SSPs. In Section 5, we discuss the regional allocation of mitigation efforts. We quantify the
level of emission reduction each region has to provide according to the globally cost-effective
emission reduction strategy and contrast it to the amount of permits each region is allocated
under different burden-sharing regimes. Furthermore, we quantify the mitigation costs of the
burden-sharing regimes and evaluate these regimes along criteria of political feasibility.
Equality-based burden sharing schemes perform quite well and are subsequently subject to
an in-depth analysis including a decomposition of the implied mitigation costs across different
SSP scenarios in Section 6. We conclude in Section 7.

1 The principle of Common but Differentiated Responsibilities (as stated in the Framework Convention on
Climate Change) requests all parties to act on the basis of equality. While all countries are responsible for
protecting the climate system, the level of action should respect national differences of capabilities to avoid
unwarranted social costs in particular for developing countries.
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2 Literature

The literature on international burden sharing of climate change mitigation is rich with fairness
playing a major role in most studies (Rose et al. 1998; Berk and den Elzen 2001; den Elzen
et al. 2005; Ekholm et al. 2010; Hof et al. 2010; Leimbach et al. 2010; Lüken et al. 2011;
Luderer et al. 2012; Aboumahboub et al. 2014; Höhne et al. 2014; Raupach et al. 2014; Tavoni
et al. 2015; Herrala and Goel 2016; Robiou du Pont et al. 2017). An appropriate setting to
investigate burden sharing is provided by the cap-and-trade systems. In such systems, coun-
tries are entitled to greenhouse gas emissions by an agreed initial allocation of allowances. The
burden sharing is a result of this allocation. The higher the share of allocated permits, the lower
the relative burden is. This mitigation burden can be reduced Pareto efficiently by the trade of
emission permits. Rose et al. (2017) identify mitigation cost savings of 77% when the national
reduction pledges in the Paris Agreement are combined with an emission trading system.
Extreme emission reduction rates, e.g., 15% per year for North America under a 2 °C scenario
and an equity-based allocation of emission quotas—as computed by Raupach et al. (2014)—
could be avoided by emissions trading. The problem of distributing emission permits, how-
ever, cannot be fully solved by economic criteria, because emissions trading yields Pareto
efficiency irrespective of the initial distribution of emission permits (Rose and Stevens 1993;
Manne and Stephan 2005). This holds under certain conditions in theory and will roughly take
effect in this way in reality despite existing market failures. BWhere-flexibilty^ and the
separation of equity and efficiency in emissions reduction follow Coase (1960), who addressed
the assignment of property rights as an efficient solution to market externalities. While this
leads to equal marginal costs of emission reduction across countries, regional mitigation cost
levels vary across countries depending on the applied burden-sharing rules.

The literature studies several burden-sharing schemes with benefits varying across countries
and regions. Recent overviews on burden-sharing schemes (also called effort-sharing ap-
proaches) are provided by den Elzen et al. (2010), van Ruijven et al. (2012), Höhne et al.
(2014), and Zhou and Wang (2016). As fairness turned out to be a key component of climate
policy agreements and the lack thereof a major barrier in current and past negotiations, a
number of studies focus on equity-based principles of burden sharing, e.g., Rose and Stevens
(1993), Kverndokk (1995), Metz (2000), Vaillancourt and Waaub (2004), Markandya (2011),
Mattoo and Subramanian (2012), Klinsky and Winkler (2014), Kverndokk (2018), and
Leimbach et al. (2018). Lange et al. (2010) find out that even with self-interested agents,
equity arguments are used, for example, in order to facilitate negotiations. While the burden-
sharing schemes mostly rely on the initial allocation of emission permits, Böhringer and Helm
(2008) focus on a fair division of the efficiency gains that arise from exchanging permits.
Gerlagh (2007), furthermore, addresses the burden-sharing issue not only as an interregional
but also as an intergenerational issue.

Several previous studies on mitigation burden sharing investigated the influence of different
permit allocation rules in scenarios aiming at achieving different climate stabilization targets.
But, while Marangoni et al. (2017) identify energy intensity and economic growth as major
factors that explain the uncertainty of CO2 projections, the influence of these socio-economic
drivers on the burden sharing has rarely been studied. Ekholm et al. (2010) have done this
based on the SRES scenarios. In few other studies, sensitivity analyses have been carried out
by varying growth rates of GDP and population and by varying elasticity parameters or the
availability of technologies (e.g., Yohe and van Engel 2004; Lüken et al. 2011; Aboumahboub
et al. 2014). The present study contributes to the literature by investigating the impact of socio-
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economic drivers and conditions on the burden sharing of climate change mitigation based on
a robust approach. In this approach, we take into account the interdependency of socio-
economic factors represented by the new SSP scenarios (Riahi et al. 2017). These scenarios
provide quantitative projections based on five narratives of alternative socio-economic devel-
opments (O’Neill et al. 2014) and a consistent compilation and implementation of economic,
demographic, energy-related, and land use-related model assumptions. While the present study
covers uncertainty on socio-economic drivers, it does not cover uncertainty that is represented
by model assumptions and properties. In this latter respect, we refer to an effort-sharing
analysis by van den Berg et al. (2019) which covers a broad range of uncertainty of model
parameters. In contrast to the present study, van den Berg et al. (2019) do not address the cost
dimension of burden sharing, but put a stronger focus on domestic reduction efforts within
burden-sharing schemes.

To our knowledge, our study is the first that addresses the burden-sharing dimension in the
framework of the new SSP scenarios. Apart from this novelty, this study puts an aspect into the
focus—regional mitigation costs—that so far has not received much attention in the analysis of
mitigation scenarios within the SSP context. The SSP overview paper by Riahi et al. (2017)
does provide a brief summary of global average mitigation costs, but no indication is given
how the costs spread across different countries or world regions. By quantifying regional
mitigation costs, this study also goes beyond of what most studies that analyze burden-sharing
regimes usually do: comparing emission reduction efforts. Even if we admit that the quanti-
fication of regional mitigation costs is subject to uncertainties, in relative terms they charac-
terize the cost implications of different burden-sharing regimes quite well and allow
concluding on their political feasibility. The attempt to evaluate the political feasibility of
burden-sharing regimes and, in addition, a new scenario of constraining mitigation costs are
further contributions of this study to the literature.

3 Model and experimental design

We perform the burden-sharing analysis by the use of the integrated assessment model
REMIND, followed by an ex-post analysis. REMIND features verified ability to analyze
SSP scenarios (Kriegler et al. 2017). It is a global, multi-regional, energy-economy-climate
model (Leimbach et al. 2010). A detailed model description is provided by Luderer et al.
(2015) and a summary is given in section A.1 of the Supplementary Material.

The version of REMIND applied here divides the world into eleven model regions: Sub-
Saharan Africa (AFR), China, EU-28 (EUR), India, Japan, Latin America (LAM), Middle East
and North Africa (MEA), Other Asia (OAS), Russia, the USA, and Rest of the World (ROW).
As a measure of burden sharing, we compute the mitigation cost of each region defined as
discounted aggregated consumption losses2 of a mitigation scenario compared with the
respective baseline scenario without climate policy. The computation of mitigation costs is
based on a welfare-optimal solution that meets a given climate target cost-effectively. As usual

2 Mitigation costs are measured in percent of baseline consumption discounted by the internal discount rate. Most
mitigation cost analyses use an exogenous discount rate (usually 5%). This introduces an imprecision that is
avoided by the current approach. Major component of the discount rate is the pure rate of time preference. As in
most other comparable models, we use the same rate of time preference for all regions. We apply a value of 3%.
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in the cost-effectiveness mode, damage costs and benefits of avoided climate damages are not
additionally taken into account.

The current model implementation allows REMIND to analyze SSP1, SSP2, and SSP5
scenarios. We run for each SSP a baseline scenario that assumes the absence of climate policy
and a set of mitigation scenarios (see Table 1) that all keep the radiative forcing level below
2.6 W/m2 in 2100. This forcing target implies a high probability for keeping the increase of the
global mean temperature below 2 °C (compared with the pre-industrial level).

Commonly, SSP-based mitigation scenarios include additional policy assumptions called
shared policy assumptions (SPAs) (see Kriegler et al. 2014). We follow the SPA benchmark
scenarios. They start from a fragmented policy regime with different regional carbon taxes and
include a transition phase between 2025 and 2040 towards a climate policy regime with a
uniform global carbon tax. We include this scenario type (TAX) as a reference policy scenario.
Most integrated assessment studies restrict the analysis of mitigation effort sharing on results
from this scenario type, thus giving a rather limited perspective on the burden-sharing dimen-
sion. The burden-sharing analysis in this study explores scenarios that assume a global cap-and-
trade system succeeding the fragmented policy regime in 2025. The cap-and-trade systems are
based on a set of permit allocation rules. Permit trading implies financial transfers on the carbon
market that we consider as representative for any form of climate finance that lead to a cost-
optimal allocation of emission reductions. In this study, reduction efforts as well as mitigation
costs of each policy scenario are measured in comparison with the baseline scenario. This is in
contrast to other studies on burden-sharing regimes that relate reduction efforts to a given
emission level in a reference year (e.g., Höhne et al. 2014; Robiou du Pont et al. 2017).

Table 1 provides an overview of the permit allocation schemes. They represent a selection
of allocation schemes frequently discussed in the literature (cf. van Ruijven et al. 2012; Höhne
et al. 2014; Zhou and Wang 2016) and linked to the equity principles categorized by IPCC’s
Fifth Assessment Report (IPCC, WG III, p. 318 f.).

The contraction and convergence (CC) scheme (Meyer 2000) allocates global emission
permits (determined by the globally optimal emission trajectory) in proportion to the weighted
average of each region’s share in global emissions in 2005 and an equal per capita share.
Weights of the per capita share increase linearly over time. As of 2050, permits are allocated to
the regions according to the equal per capita rule only. The equal effort-sharing (EC) scheme is
aimed at adjusting the mitigation costs across regions (see Supplementary Material A.2).
According to the grandfathering (GF) principle, regions are allocated with a share of permits

Table 1 Applied scenarios and burden-sharing schemes

Scenario name Equity principle/
IPCC category

Type
of analysis

SSP1 SSP2 SSP5

Baseline Simulation
Carbon tax (TAX) SSP1-TAX SSP2-TAX SSP5-TAX Simulation
Contraction and convergence (CC) SSP1-CC SSP2-CC SSP5-CC Capability and equality Simulation
Population share (POP) SSP1-POP SSP2-POP SSP5-POP Equality Simulation
Equal effort sharing (EC) SSP1-EC SSP2-EC SSP5-EC Equality Ex-post
Grandfathering (GF) SSP1-GF SSP2-GF SSP5-GF Sovereignty Ex-post
GDP intensity (GI) SSP1-GI SSP2-GI SSP5-GI Capability/Need Ex-post
Historic responsibility (HR) SSP1-HR SSP2-HR SSP5-HR Responsibility Ex-post
Equal per capita (PC) SSP1-PC SSP2-PC SSP5-PC Equality Ex-post
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that corresponds to their share on global GHG emissions in 2005, while the GDP intensity
(GI) principle allocates permits equal to the share of each region on global GDP. Historical
responsibility (HR) is measured as the contribution of each region to the temperature increase
in 2005 and applies data from MATCH (2017). Corresponding data are also used by Höhne
et al. (2011). Section A.3 of the Supplementary Material provides the details of how the permit
emission share is calculated for this scheme. In the equal per capita (PC) scheme, each region
receives emission permits in proportion to its projected population in each year. The population
share (POP) scheme is based on a different rule of equal per capita allocation. The share S of
region r in global permits is based on the cumulative population share over the twenty-first
century (t = 1, … , T):

Sr ¼ ∑tPr;t

∑t∑rPr;t

Population values Pr, t are determined by the SSP population scenarios (KC and Lutz 2017).
In line with the motivation of this study, we select several burden-sharing schemes that are

based on equity principles. There is Bno absolute standard of equity^ (IPCC 2014, p. 317) and
no direct way of quantifying the equity of burden-sharing regimes. Yet, there is certainly a
different degree of fairness associated with each scheme, which can be described in a
qualitative way and which certainly plays an important role in the political discussion.

In this study, we attempt to additionally contribute to the discussion on what the appropriate
burden-sharing regime might be by deriving quantitative indicators of political feasibility. We
select two criteria that both address concerns of international negotiations and are accessible
within the applied methodological framework of this study. A first concern relates to the
distribution of mitigation costs. A high divergence of mitigation costs across countries is
assumed to decrease the acceptance and feasibility of climate protocols. Second, huge amount
of transfers (e.g., implied by emission trading regimes) are often seen as barriers for
implementing equity-based burden sharing.3 Consequently, in operationalizing the aspect of
political feasibility, we evaluate two indicators:

& Volume of carbon trade costs/revenues
& Deviation of regional mitigation costs

We classify the burden-sharing schemes according to these two criteria and in addition
investigate in how far the respective characteristics of burden-sharing regimes vary across
different SSP scenarios.

In mitigation scenarios with no climate finance (TAX), regions enact carbon pricing in
accordance with the abovementioned shared policy assumptions and a globally uniform carbon
tax from 2040 on. There is neither an allocation of emission permits nor any other kind of
financial transfer between model regions. To arrive at a cost-effective solution, we compute
these scenarios by using exponentially rising global carbon tax paths compatible with the
climate target.

3 The evaluation of transfers is mixed (Kverndokk 2018). Limited and purposeful transfers can certainly facilitate
climate agreements as climate finance is part of the UNFCCC. But at the same time, we see resistance regarding
some forms of transfers, for example, development aid. This resistance is assumed to be increased with the level
of transfers. In addition, high transfers on the carbon market bear institutional challenges like the climate rent
curse (Kornek et al. 2017).
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The climate finance scenarios assume an explicit burden-sharing scheme as part of an
international climate agreement. In these scenarios, emission permits are allocated to regions in
accordance with the burden-sharing scheme as well as with the climate target. Once allocated,
emission permits can be traded in our model and generate—as a particular form of climate
finance—revenues for permit selling regions. Technically, we compute the cost-effective
solution by distributing a global permit budget compatible with the forcing target to regions
and making sure that the permit market clears.

While we run some of the scenarios directly with REMIND in order to generate further
results that we analyze in Section 6, for most of the burden-sharing regimes, we derive the
desired results based on an ex-post analysis. This part of the assessment makes use of model
output from REMIND and builds on a feature that a number of integrated assessment models
are associated with: the separation of efficiency and equity (Rose and Stevens 1993; Manne
and Stephan 2005; Luderer et al. 2012). This feature results in a pattern of regional technology
portfolios and emissions that does not depend on the allocation of emission permits. Moreover,
the resulting carbon price is also nearly independent of the permit allocation. The revenues on
the carbon market represent income that does not change the investment structure but solely
increases the consumption level.4 Analytical details of the method underlying the ex-post
analysis are given in the Supplementary Material (A.4).

4 Global mitigation level and costs across SSPs

The present study analyzes the sharing of mitigation efforts in ambitious climate stabilization
scenarios (2.6 W/m2) based on cost-optimal global emission trajectories. Figure 1 shows the
emission trajectories of baseline and policy scenario runs of each SSP. Mitigation gaps
between respective baseline and policy scenarios vary significantly across the SSPs. Differ-
ences in resulting mitigation costs can be expected.

Under ambitious climate stabilization scenarios, the SSP1-TAX scenario exhibits costs of
around 0.8% of consumption. The costs are more than double in SSP2-TAX (1.8%) and triple
in SSP5-TAX (2.4%). Due to the separation of efficiency and equity (see Section 3), the global
mitigation costs are the same for the climate finance scenarios. The cost figures mirror the
mitigation challenges that the different socio-economic pathways are linked with (O’Neill et al.
2014). In a world that respects environmental boundaries (SSP1), a less energy and carbon
intensive way of production and moderate economic growth result in a relatively small
mitigation gap. Comparatively low additional efforts are needed to close this gap. On the
other hand, in a world with high economic growth fueled by fossil fuels (SSP5), baseline
emissions are huge and the mitigation challenge is large.

The conclusion of the Fifth Assessment Report (AR5) of the IPCC that global costs increase
with the ambition of the mitigation goal (IPCC 2014) applies to the present results if we take the
mitigation gap (mitigation challenge) in the evaluation of the mitigation goal into account. That
means, with striving for the same climate stabilization goal, the mitigation target is the more
ambitious the larger the baseline emissions. This makes the mitigation under the SSP5 scenario
more ambitious than under the SSP2 and even more than under the SSP1 scenario.

4 The separation of equity and efficiency as well as the implied consequences holds under the assumption of
perfectly competitive markets, but not necessarily in the presence of market power.
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If we compare the SSP2-TAX results with corresponding figures from IPCC’s AR5
(IPCC 2014), we can summarize that the present analysis yields cost figures that are at
the lower end of the respective IPCC range in the years 2030 (1%) and 2050 (2%) and
close to the median in 2100 (5%).

5 Regional burden-sharing analysis

5.1 Allocation of mitigation efforts

In this subsection, we discuss the allocation of GHG emissions reductions needed to fill the
mitigation gap identified in the previous section. The regional distribution of the related costs
is discussed in the next subsection. To characterize the reduction efforts, we compare the
emission level that each region is qualified for—from the allocation of allowances—with their
actual emission level according to the globally cost-effective emission trajectory. From this
comparison, we can conclude which regions face additional burden. Both variables represent
share values measured as percentage amount of cumulated baseline emissions.

Whereas the allocation of allowances depends on the burden-sharing regime, the actual
emission trajectories do not. We therefore start with analyzing the emission and emission
reduction levels computed with the TAX scenarios. Cumulative regional reduction shares
increase over time. Emission levels close to or below zero have to be achieved by most
regions. As expected, SSP5 shows the highest shares in the long term. In the midterm, SSP2
demonstrates similar reduction shares (see Fig. 2). The maximum holds for AFR: up to 80%
under SSP5 in 2100 compared with 65% in SSP2 and 60% in SSP1. Cumulative reduction
shares differ more between regions for the time horizon until 2050 than until 2100. Figure 2
shows the cumulative emission reduction shares (until 2050) for each region across the three
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SSP scenarios.5 Across all SSPs, developing regions (AFR, China, India, LAM) face the
highest reduction shares. While higher reduction shares do not necessarily mean higher
mitigation costs, fair burden-sharing schemes may have to take this reduction effort sharing
into account.

The allocation of emission allowances varies only slightly across the different SSPs (see
Fig. 3).6 More remarkable is the variation of allocated allowances due to the different burden-
sharing schemes. For nearly all regions, we can identify allocation schemes that provide
permits in the range between 30 and 100% of baseline emissions. This range is, on the one
hand, more narrow for China, LAM, and OAS, and on the other hand, expanded to values of
well above 100% for AFR. The latter applies in the case of the equal effort-sharing regime also

5 The share levels of SSP2 can be compared with those presented by Tavoni et al. (2015, Fig. 3). In the present
study, share levels are in general slightly lower but show a higher spread between regions. In each of the two
studies, EUR shows the lowest shares, which implies that the mitigation costs in this region increase faster with
emission reductions than in other regions. It, moreover, indicates that the energy system in EUR today is more
advanced and will not expand the use of fossil fuels within the near-term future as other regions will do in the
baseline scenario.

Fig. 2 Regional emission reduction shares cumulated over the time horizon 2015–2050

6 With the same stabilization target, and hence a similar global emission budget, the variation of the allocation of
allowances across SSPs only depends on differences in the time profile of global emissions (see Fig. 1). In the
short term, a higher (lower) absolute amount of permits is allocated under SSP5 (SSP1) than under SSP2. Since
the respective baselines show the same differences, the allocation measured as aggregated share of baseline
emissions shows low variance across SSPs.
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to MEA and Russia. Consequently, for each region, allocation schemes exist that provide
either permits above or below the actual emission level. This reference level is represented in
Fig. 3 by the pink Btax^ marker. Whereas the actual emission level is at the upper part of the
range of allocated allowances for LAM and for developed regions (the USA, EUR), it is more
in the lower part for developing regions like AFR, India, and OAS. In the former case,
additional expenditures on the carbon market are implied and in the latter case corresponding
revenues. A further discussion on the advantages and disadvantages of the different burden-
sharing regimes for each region will be provided in the context of the implied mitigation costs
in the next section. A detailed time profile of respective permit allocations for each burden-
sharing regime is shown in Fig. S.1 of the Supplementary Material.

5.2 Mitigation costs

When analyzing the regional mitigation costs, most integrated assessment studies apply results
from tax scenarios only. Adding the SSP dimension, we find that the global ranking of SSPs in
terms of mitigation costs also holds on the regional level (see Fig. 4). A notable exception is
LAM for which we see lower costs in SSP5 than in SSP2 and SSP1. An explanation is given in
Section 6 where a decomposition of the mitigation costs is presented. Despite the maintained
ranking, we see that the SSP1 and SSP5 scenarios are relatively less costly for the developing
countries than the SSP2 scenario. This is linked to the comparatively favorable demographic
development (i.e., less population growth) and a higher degree of technological progress and
diffusion in SSP1 and SSP5. While there are large differences in mitigation costs across
countries and regions, each region’s deviation from the global average, however, does not vary
much across the different SSPs.

Fig. 3 Allocation of emission allowances per burden-sharing scheme measured as aggregated share of baseline
emissions between 2015 and 2050
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In the policy reference scenario (TAX), we see the highest mitigation costs for MEA and
Russia than AFR and India. OAS, China, and the USA face mitigation costs around the global
average or in the case of China and the USA partly even below the average. Finally, we
observe the lowest costs for LAM and EUR. Apart from LAM, this ranking is the same as
identified by Tavoni et al. (2015, Fig. 5) based on a multi-model comparison study of a policy
scenario similar to the present SSP2-TAX scenario. Moreover, the level of mitigation costs of
the SSP2-TAX scenario is also comparable with the results from the study by Aboumahboub
et al. (2014, Fig. 1), except for China and Russia, for which we find lower mitigation costs.

The policy reference scenarios assume after an initial period of fragmented mitigation
action a globally uniform carbon tax. While this ensures global efficiency, it disproportionately
burdens less affluent countries. With introducing burden-sharing schemes that include climate
finance based on an initial allocation of emission allowances, the distribution of mitigation
costs (see Fig. 5) changes significantly. Non-equality-based burden-sharing regimes (e.g., GF,
GI) increase the mitigation costs of developing regions like AFR and India substantially. For
Russia and MEA, all burden-sharing regimes other than the equal effort-sharing (EC) yield
mitigation costs well above the global average. The range of variation is rather small for the
most developed regions EUR and the USA, which is mainly due to the fact that even
comparably high expenditures on the carbon market represent a low share of consumption
and GDP, respectively. Also for China and LAM, the variation is comparably low. Most
extreme is the distribution of mitigation costs under the HR burden-sharing scheme. As the
global mitigation costs are always the same across the burden-sharing schemes for a given
climate target and a given SSP scenario, variation in the permit allocation always implies that
some regions profit while others lose. The position of each region shows little variation across
the SSPs. The implications of the PC and POP burden-sharing schemes in the case of India
constitute a notable exception. While in SSP1 and SSP2, these burden-sharing regimes result
in comparable low mitigation costs; they are well above the global average in SSP5. Due to
higher economic growth in India in SSP5, that in the short-term is partly fueled by fossil
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resources, the domestic demand on emission permits increases and results in additional
consumption losses that cannot be compensated by permit sales. Table S.1 in the Supplemen-
tary Material summarizes qualitatively the relative burden of each region under the different
burden-sharing schemes.

5.3 Political feasibility of burden-sharing schemes

In the following, we aim for a further classification of the burden-sharing schemes. We assess
their political feasibility measured by the implied amount of net transfers and the variation of
regional mitigation costs.

The Supplementary Material (SM) illustrates and quantifies the cumulated permit trade
value for each region, burden-sharing scheme, and SSP, until 2100 (Fig. S.2 and Table S.2).
The transfer values show a wide range across the burden-sharing schemes for regions like
AFR, EUR, and India, while they are narrower for Russia, LAM, and MEA if the EC regime is
neglected. This can mainly be explained by the variation in the allocation of permits (see Fig.
3)—high variation for AFR, EUR, and India and low variation for LAM. For MEA and
Russia, we observe large revenues from the permit market with the EC regime, but small trade
volumes with all other regimes, due to the relative small scale of these economies. Figure 6a
summarizes the total amount of transfers on the carbon market. It is the highest for the HR
regime, comparatively high for the EC regime and the lowest for the CC regime. Across all
burden-sharing regimes, we see the highest transfers for SSP5 and the lowest for SSP1, which
implies that net transfers increase with the variation across regional mitigation costs. The
spread, however, is not always equal. While the GF and GI regimes have a comparable amount
of transfers as the PC and PI regimes under SSP1 and SSP2, it is substantially higher under
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SSP5. This is in particular due to the large increase of permit imports of AFR and India (and
exports of China) under the GF and GI regime in SSP5 (see Fig. S.2).

With regard to the comparison of implied mitigation costs, we computed the standard
deviation of mitigation costs—summarized in Fig. 6b. The contribution of permit trade to the
mitigation costs in each region is presented in Table S.3 (SM). By construction, the EC regime
demonstrates the lowest deviation of regional mitigation costs. Again, the highest levels are
related to the HR regime. All other regimes demonstrate a similar standard deviation between 2
and 4 percentage points. These latter levels are comparable with the deviation of regional
mitigation costs in the TAX scenarios. The ranking of mitigation cost levels across SSPs also
holds for the standard deviation, with the highest figures for SSP5. While the increase of costs
differences between SSP2 and SSP5 is in particular high for the HR regime, the PC and POP
regimes see just a small difference between SSP2 and SSP5. In all burden-sharing regimes,
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apart from the EC and HR schemes, a substantial contribution to the standard deviation level is
caused by high mitigation costs for MEA and Russia.

If we interpret high values in the two analyzed criteria (implied transfers and deviation in
regional mitigation costs) as barriers of political feasibility, we come to the following conclu-
sion. The regime based on historical responsibility is hardly feasible in the form implemented
here, as it turns around the reduction burdens in an extreme way. Developed countries have to
pay for the major part of global emission reduction despite of decreasing emission and
population shares. Overall, the grandfathering and GDP intensity regimes—due to its higher
amount of transfers—appear less feasible as the equality-based burden-sharing regimes, from
which the contraction and convergence scheme has some additional merits due to a slightly
lower implied transfer volume compared with the equal per capita and cumulated population
share regime. The equal effort-sharing regime has a clear advantage with respect to one
criterion but also a clear disadvantage with respect to the other. Compared with the burden-
sharing scenarios with climate finance, the non-finance TAX scenarios (previous section) have
a comparative advantage with respect to the two criteria assessed: no transfers at all and an
average deviation of mitigation costs. Overall, the risk of political infeasibility increases clearly
from SSP1 to SSP2 and to SSP5. A sustainable development as represented by the SSP1
scenario clearly reduces the challenges of burden sharing and makes it easier to achieve
equitable climate policies.

At this point, we want to stress that we only analyzed pure allocation schemes—mixed
types are possible and can potentially combine advantages. In addition, other evaluation
criteria may shift the overall picture. In particular, the domestic dimension of distributional
effects of climate policies is important, but not in the scope of this study.

6 Equality-based burden sharing

Equality-based burden-sharing regimes perform relatively well under the criteria considered in
the previous section. In particular, they do not imply above average financial transfers as
generally expected. We subject two of these schemes to an in-depth analysis: the per capita
convergence (CC) and the population share (POP) burden-sharing schemes. This analysis
provides findings that partly apply to other burden-sharing regimes as well and hence
complements the analysis of Section 5.

Surprisingly, for most regions, mitigation cost differences are much higher between the two
equality-based policy scenarios than between the corresponding TAX and CC scenarios (see
Fig. 5). While mitigation costs for some of the most affected regions, namely, AFR and India,
are high in the case of a global carbon tax and CC scenarios, they are low or even negative in
the POP scenarios. In the POP scenarios, higher costs can be observed in particular in regions
that feature according to the demographic projections less population growth or even a decline
in population: China, EUR, and Russia. For the USA, under the POP scenario, there is hardly
an increase of mitigation costs in SSP5 compared with the other SSPs. Because of higher
population growth in SSP5, a larger amount of allocated emission permits benefits the USA.

Overall, there are large burdens on MEA and Russia. From a fairness perspective, this can
be justified by the large benefits from fossil resource extraction in the past, which have only
been possible due to ignorance of the external effects of fossil fuel consumption. Moreover, the
large policy cost for MEA and Russia is heavily driven by a baseline that assumes a
prolongation of the favor of non-internalizing external effects into the far future. Despite these
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arguments, a resistance of countries with large burden can be expected in climate policy
negotiations. In order to reflect on this, we run an additional scenario (BPOP-07^) where the
consumption losses compared with the baseline in each year are limited to a maximum of 7%.
We chose this value in order to identify sensitivities of the interregional trade-offs. Beyond
that, there is no other rationale behind this particular number.

The POP-07 scenario changes the burden sharing under SSP2 and in particular under SSP5
significantly (see Fig. 7). While the mitigation costs of Russia are more than halve in both SSP2
and SSP5, those of MEA are nearly halve in SSP5 and decrease by around 25% in SSP2.
Mitigation costs increase in SSP2 and SSP5 by up to 0.3 and 0.5 percentage points, respectively,
in other regions (China, India, EUR, the USA, OAS, LAM). In general, in all POP and CC
scenarios, changes in the burden sharing (compared with the TAX scenario) result from indirect
climate finance (i.e., endowment of emission permits). The POP-07 scenarios with a cost
constraint imply an additional transfer. While the model computes this as a deficit in the
intertemporal budget constraint (see the Supplementary Material A.6 for more details), in the real
world, this can be any type of transfer, debt relief, and redistribution of carbon market revenues.

In the case of SSP2-POP-07, these additional transfers are largely compensated by transfers
at the carbon market in the opposite direction. Hence, the total volume of net transfers only
increases by few percentage points. In contrast, the SSP5-POP-07 scenario exhibits an increase
of transfers by one-third compared with the respective SSP5-POP scenario. On the other hand,
there is a significant decrease in terms of the deviation of regional mitigation costs. The
standard deviation for both, the SSP2-POP-07 and SSP5-POP-07 scenario, is around 1.7% and
thus more than halves compared with the respective POP scenarios (cf. Figure 6b). In case of
SSP2, this result may be interpreted as an increase in political feasibility of the underlying
burden-sharing regime.

In order to get additional insight into the differential impacts of SSPs on the regional
mitigation costs, we perform a decomposition analysis. Details on this analysis are
provided in the Supplementary Material (A.7). We identify components that contribute
differently to the cost magnitude across regions and to the cost shares in regions across

Fig. 7 Mitigation costs per region for the SSP2 and SSP5 in ambitious climate stabilization scenarios (2.6 W/
m2), including the 7% cost cap scenarios
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the SSPs. The slightly lower economic growth rates (Dellink et al. 2017) and the
contained population growth (cf. KC and Lutz 2017) in SSP1 result in a somewhat
lower contribution of GDP losses to the mitigation costs in SSP1, whereas energy system
investments demonstrate a higher share in SSP1. First, this indicates that additional
investments in carbon-free technologies are requested independently of the economic
growth rate. Second, risk aversion on external environmental effects associated with
large-scale biomass technologies (e.g., loss of biodiversity, reduction of food security)
results in SSP1 in a preference to other forms of carbon-free energy technologies, like
solar and wind, which have a higher fixed cost share than biomass technologies. Usage
of biomass technologies in combination with carbon storage is in particular needed in
SSP5 due to high fossil fuel use in the early years and is supported by less risk aversion
to this technology compared with SSP1. In SSP5, biomass is used intensively as a liquid
fuel and hence causes a price drop on the oil market that changes the contribution of oil
and biomass trade to the mitigation costs substantially. The biomass trade effect is most
pronounced for LAM. LAM is the major exporter of biomass and profits from a higher
global demand for biomass and a price increase in SSP5. Consequently, LAM faces even
lower mitigation costs in SSP5 than in SSP1 (cf. Figure 7).

The contribution of permit trade to the mitigation costs was already discussed in
Section 5. Additional insights from the simulation of the CC and POP scenarios on the
intertemporal dynamics of trade flows and transfer volumes are provided in the Supple-
mentary Material (A.8).

7 Conclusions

This study quantifies the mitigation burden sharing of climate stabilization in different
futures represented by the newly developed socio-economic pathways scenarios SSP1,
SSP2, and SSP5. In accordance with what Riahi et al. (2017) already found, we identify
the highest mitigation costs in SSP5 and the lowest in SSP1 at the global level. We show
that this ranking also holds on the regional level. However, depending on the chosen
burden-sharing scheme, mitigation costs can vary significantly across regions. Overall,
the risk of political infeasibility of global burden-sharing regimes increases clearly from
SSP1 to SSP2 and to SSP5, since the amount of net transfers increases as the variation
across regional mitigation costs also does. This shows that a sustainable development
pathway as represented by the SSP1 scenario reduces the challenges of burden sharing
and makes it easier to achieve equitable climate policies.

By comparing different burden-sharing schemes with respect to criteria of political
feasibility, we find that the equal effort-sharing scheme, while clearly distinguished by
the balance of regional mitigation costs, has a disadvantage in the implied amount of
net transfers. In contrast, the absence of any transfer implies a lower political
challenge for non-climate finance scenarios like global tax scenarios. Yet, global tax
scenarios disproportionately burden developing countries, which, in addition, will be
affected by climate change impacts more heavily. Equality-based burden-sharing
schemes perform quite well with respect to the criteria of political feasibility. They
likely have an additional advantage regarding the fairness dimension that has not been
quantified. By combination with a cost constraint, we demonstrate how the variation
of regional mitigation costs in equality-based burden-sharing schemes could be
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decreased further. Under SSP2, this causes just a marginal increase of transfers and
hence provides an alternative burden-sharing regime with a reasonable degree of
political feasibility.

While this paper cannot provide final suggestions of how future climate policy regimes
have to be designed, it nevertheless identifies burden-sharing implications of different socio-
economic pathways that policy-makers should take into account. The burden-sharing perspec-
tive as well as the contributing components change with the SSPs and hence depend on how
the world evolves. Further research will have to further deepen the understanding on this
interrelation as well as add the perspective of the SSP3 and SSP4 pathways in this context.
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5
Discussion and Outlook

5.1 Summary

In the current section, the principal insights of the main chapters of the thesis will be
summarized. Overarching conclusions will be drawn in section 5.2.1, and the overall
methodological approach will be discussed in 5.2.2, while future work and possible
ways to address the limitations of the approaches used in the present thesis will be
shown in section 5.3.

5.1.1 Economic Growth Uncertainty (Chapter 2)

Emission intensity targets are motivated by uncertainty
Based on the overview given in 1.1 we begin the summary with the single-region study
on economic growth uncertainty. Baseline uncertainty is the term used to describe the
incomplete information about future emissions due to lack of solid predictions of
economic growth. It is one of the main motivations behind the adoption of emission
intensity targets by some developing countries during the Paris process. Intensity
targets—as opposed to absolute emission targets, i.e. reduction of emissions by an
absolute amount—use metrics such as emissions per unit of Gross Domestic Product
and are regarded as means to avoid the trade-off between high economic growth rates
and climate protection. However, evidence exists suggesting the non-existence of this
trade-off: on the one hand climate policy costs are found to be moderate in most
studies, and on the other high economic growth rates can be sustained while carbon
emissions are reduced.
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Target sequencing matters in target choice
Further, intensity targets can become problematic in other ways, especially if a
scenario of low growth materializes in which case the policy costs could rise drastically.
Situations of sequential targets also do not seem to favor intensity targets in the case
of climate change, as the long-term absolute target of "well below" 2 degrees warming
is more easily achieved with intermediate targets of the same type. The reason behind
the distortion appearing when in sequencing schemes targets of different types are
mixed lies in the different expectations each target type generates for investors,
potentially leading to economic disruptiveness with every target update. This analysis
highlights a) the importance of explicitly accounting for socio-economic uncertainty
and b) the advantage of absolute emission targets over intensity targets for the world’s
largest emitter, China.

5.1.2 Uncertainty in Techno-Economic Parameters (Chapter
3)

We now discuss uncertainty in techo-economic parameters in global scale. The cost
of energy technologies constitutes an important component of the overall uncertainty
present in mitigation pathways. More accessible energy conversion technologies (by
means of lower capital costs or fuel extraction costs) decrease estimates for global
mitigation costs. This, however, is true not only for the low-carbon options but for all
the important energy supply technologies considered here. On the other hand, the need
for emissions to reach net zero by mid-century remains unaffected by our consideration
of uncertainty in the costs of energy technologies, this is seen by the year-of-carbon-
neutrality which remains the same for almost all four hundred scenarios analyzed.
The overall findings of the study are in line with previous studies highlighting the
importance of negative emission technologies like biomass&CCS and energy intensity
(in which the transport sector plays an important role, see below) in shaping climate
mitigation pathways.

Economic sectors affected differently
The uncertainty in technology costs does not matter much in the power sector—where
a multitude of options is available—but is decisive for the transport sector, where the
substitutability is low and short-term emissions are predicted to keep rising even in
deep decarbonisation scenarios. Back to the sustainability dimension, early action
towards reducing emissions reduces the reliance on technologies with highly uncertain
potential and with possible barriers in social acceptance, like bioenergy and carbon
capture and storage, with moderate increase in total costs.
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5.1 Summary

Response to increasing policy ambition
Different levels of climate policy stringency show different sensitivities in the costs and
availability of energy technologies. In the no-policy baseline case, fossil fuels make up
almost half of the effect that energy technology costs have on carbon emissions.
Nuclear power also plays a role in the baseline and the continuation of
the—unambitious—Paris pledges, but the effect of fossils (especially coal) and nuclear
on emissions is dramatically reduced in the "well below 2 degrees" scenarios. Only the
transport-related oil maintains some of its effect, as transport is the bottleneck sector
(few options available compared to e.g. the power sector), while the costs of electric
and hydrogen vehicles dominate all levels of policy stringency. Deep decarbonisation
scenarios are also strongly affected by the availability of Carbon Capture and Storage,
which is by far the technology with the highest impact on the carbon price level.

5.1.3 Socio-economic Uncertainty and Burden Sharing of
Climate Change Mitigation (Chapter 4)

We finally shift the focus to the cooperative efforts of multiple regions towards climate
stabilization. The economic efficiency of climate mitigation pathways under socio-
economic uncertainty has been thoroughly investigated, but this is not the case for
the important and necessary step that comes after efficiency, equity. Without equity
consideration, future agreements on multilateral action against climate change will be
at risk, as developing countries could argue on the basis of Shared but Differentiated
Responsibilities and not sign agreements that not foresee a fair distribution of efforts
towards climate stabilization. We examine the economic and policy implications of six
burden sharing schemes under socio-economic uncertainty. The uncertainty scenarios
are provided by the SSPs, while the burden sharing schemes follow different equity
principles, e.g. capability, equality, responsibility, etc.

SSPs and global perspective
A world leaning towards sustainability—as, e.g. in a SSP1 scenario assuming a
combination of resource efficiency, preferences for sustainable production methods and
investment in human development—will distribute more easily the burden of climate
stabilization between regions. The necessary inter-regional monetary transfers and the
overall economic costs could be lower than in a world characterized by higher energy
intensity and fossil resource use, as in a SSP5 scenario, thus increasing the equity of
the burden sharing. However, as far as the regional mitigation costs is concerned,
developing countries could face smaller increases in costs in an SS5 world due to slower
population growth and higher degrees of technological progress.
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Regional dynamics
In further detail, scenarios without climate finance are found to disproportionately
burden less affluent countries. These scenarios feature carbon prices that are equal for
all regions, regardless of the strength and status of their economy. This would have a
completely different impact on e.g. India than in the EU. Even under consideration of
climate finance scenarios, i.e. where regions face additional costs for obtaining
emission allowances, richer regions are not expected to carry a rather higher burden
because these additional costs represent a relatively small share of consumption and
GDP. In terms of burden sharing schemes, the highest impact by a large margin is
shown by a scheme that distributes emission allowances based on the contribution of
each region to the current global warming (historical responsibility). Non
equality-based burden sharing schemes, on the other hand, clearly provide a
disadvantage for developing regions, as they increase their expenses in purchasing
emission allowances. Equality-based burden sharing delivers a more moderate result
than the one delivered by historical responsibility.

5.2 Conclusions

The conclusions are structured as follows: first the overall quantitative insights are
discussed with a reference to the magnitude of the effect of uncertainty on mitigation,
then more qualitative insights combining the findings of the three publications
comprising the present thesis are given. Finally, the general modelling approach
is assessed, followed with concluding remarks on the uncertainty analysis methods
deployed throughout the work.

5.2.1 Overall conclusions

5.2.1.1 Magnitude of the effect of socio-economic uncertainty on climate
mitigation pathways

Combining the results from the studies of the present thesis, we observe a considerable
effect of socio-economic uncertainty on optimal climate mitigation pathways. Mitigation
cost changes are found to be in the order of magnitude of doubling to tripling, depending
on whether the underlying input parameter changes are from different SSPs, economic
growth, or techno-economic scenarios. Also the ranges observed in emission scenarios
are considerable, highlighting the need for careful consideration of socio-economic
dynamics in analysis of future mitigation pathways. The common practice of sticking
to the middle-of-the-road SSP2 scenario might be misleading.
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5.2 Conclusions

5.2.1.2 Qualitative insights

Overall, the interaction between socio-economic uncertainty and the optimal design of
policies for climate mitigation (globally and among world regions) is found to follow
the sustainability dimension. This is found to hold also for scenarios without an equity
consideration, i.e. without climate finance between world regions. Yet the direct link
between sustainability and socio-economic uncertainty is enhanced when burden sharing
schemes based on equality are considered. Further, under multiple criteria, which
we divide in categories such as the environment, economic disruptiveness, economic
efficiency, and expectation stabilization, economic growth uncertainty (main source
of socio-economic uncertainty) is found to favor absolute emission reduction targets
rather than the intensity targets (emissions per unit of GDP) adopted by developing
countries.

Sustainability as described by the Share Socio-Economic Pathways (SSPs) is assisting
climate mitigation, but targeted policies can eventually deliver quick results in sectors
where these are needed. For example, a government support for lower prices of electric
and hydrogen cars could lead to a substantial decrease in the overall climate mitigation
costs. This is shown in our results and is further underpinned by the absence of
flexibility in the transport sector.

5.2.2 Discussion

5.2.2.1 General modelling approach

The application of rich in detail energy-economy-climate models in the present thesis
ensures that important path dependencies of the problem at hand are taken into
consideration. Path dependencies are described as system configurations that respect
the limitations dictated by past system states, e.g. due to existing investment lock-
ins. A simple marginal abatement cost curve approach would not be sufficient as the
metric that really matters is the so-called levelized cost of abated carbon, i.e. a metric
that takes into consideration the business cycles of energy investment and effectively
analyses the underlying trade-offs. Further, to achieve the necessary realism, advanced
technologies like carbon capture and storage, bioenergy, synthetic fuels, electromobility,
hydrogen, storage, and grid expansion need to be taken into account. The model
REMIND has the ability to capture path dependencies, contains advanced techonoliges
and features also the necessary tools for modeling carbon dioxide removal, which will
play an important role in deep decarbonisation scenarios if the currently observed
low-ambition policy is prolonged.

89



5. Discussion and Outlook

5.2.2.2 Modelling of climate policies

In terms of the model’s ability to analyse different policy schemes, REMIND can be
deployed in several modes, including cooperative and non-cooperative solutions, carbon
price policy scenarios with and without climate finance, as well as in scenarios with
emissions permit trading. This flexibility is needed for the possibility of considering a
broad range of socio-economic futures.

5.2.2.3 Spatial flexibility and modelling of trade

Finally, the model is able to take into account different spatial resolutions, from single
regions, like (China, India, the EU, etc.) to multi-region and global configurations.
Trade of goods, energy resources, and emissions between regions is important for the
economic accounting as well as the accounting in emissions, and is modelled in REMIND
as well. The method used to model trade is based on a common-pool approach, with
endogenously computed prices.

5.2.3 Suitability of used uncertainty analysis methods

5.2.3.1 Discrete Stochastic Programming

The application of methods for uncertainty analysis in the studies presented in this
doctoral thesis illustrates possible ways to respond to the need for consideration of
socio-economic uncertainty in energy- and climate change economics. The method
of Discrete Stochastic Programming (DSP) that is used in the chapter on economic
growth uncertainty (Chapter 2) involves a high computational burden and a large-scale
algorithmic intervention in the REMIND model, but is the only method deriving
a) a unique optimal path as response to the uncertainty and b) a hedging strategy,
i.e. a strategy as response to uncertainty driven by the agent’s risk aversion, and is
consequently suitable for answering the research questions of which are the implications
of economic growth uncertainty on climate policy and of which type of emissions target
performs better under multiple criteria. DSP finally also allows for the consideration
of learning∗ effects, which complete the uncertainty analysis.

5.2.3.2 Sensitivity analysis

To systematically analyze the effect of uncertainty in technology cost and availability
on climate mitigation pathways (Chapter 3) the method of sensitivity analysis is used.

∗Learning as additional information about uncertain parameters, not learning as it is defined when
costs of technologies decrease with increasing installed capacity
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Sensitivity analysis gives insights into a) the magnitude of the effect that different
input parameters have on model outputs and b) the relative sensitivity of important
model outputs in the inputs. These properties help quantify the effect and classify the
important sources of uncertainty and potential bottlenecks in solution approaches (e.g.
the transport sector and its lack of flexibility in technology switching).

5.2.3.3 Scenario analysis

The SSPs describe self-consistent storylines of human development and as such contain
a plethora of parameters, like population, GDP, etc. To conduct an analysis using the
SSPs as source of uncertainty (Chapter 4) the two previous methods are not suitable as
they do not provide easy means for changing many input parameters at once. Scenario
analysis is the suitable method in this case, as it involves the least computational effort
and is widely used in most studies analyzing climate mitigation scenarios.

5.2.3.4 Regulatory uncertainty

In the introduction, we briefly examined the limitations of current modelling frameworks
in addressing regulatory uncertainty. Quantifying the impact of regulatory uncertainty
on the optimal response (hedging strategy) of energy investment paths demonstrates a
potential limitation originating from the choice of modeling approach. It concretely
shows that in a general equilibrium framework, the optimal risk strategy seen from the
viewpoint of an investor can not be captured because of the fundamental assumption
about the existence of a social-planner. A partial equilibrium model would be more
adequate for capturing this effect. On the other hand, the hedging effect can be
significant in the case of a different uncertain parameter such as the total economic
output, because of the effect this parameter has on all factors of the production function.
In any case, the effect of learning (i.e. updated information) about uncertainties remains
significant, driven by the inertia of the system and the long-lived character of energy
investment, which surpasses typical intervals of climate policy agreements and their
announcements.

5.3 Future work

5.3.1 Overcoming limitations

The attractive property of delivering one single optimal path that takes into account
all available uncertainty scenarios, featured by methods such as Discrete Stochastic
Programming, comes with the limitation of considerable algorithmic and computational
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burden. It is, however, in some studies absolutely necessary for the sake of derivation of
policy advice. Efforts towards improvement of models (especially integrated assessment
models, which are very large in size) and methods aiming to achieve lower algorithmic
and computational burden would enhance the quality of uncertainty analyses delivered.
In a similar way, more efficient sampling methods for sensitivity analysis are being
constantly developed and could be deployed with the constantly-increasing-in-size
models frequenting climate change and energy economics studies. This would allow
to explore methods beyond simple one-factor-at-a-time methods. Sensitivity analyses
would ideally be delivered with every analysis published to help decision-makers better
grasp the stakes involved.

Further, a more thorough analysis of important parameters to which models of
climate change mitigation are found to be sensitive, like e.g. the pure time preference
rate and the agent’s risk aversion parameter, is needed to increase the robustness
of model insights. Moreover, efforts in this direction have to be collective and take
advantage of knowledge spillovers, in the sense that several models of the same type will
have to contribute to this at the same time. In further steps, multi-objective analyses
directly addressing trade-offs and synergies (such as environmental pollution and further
Sustainable Development Goals), or new formulations of the model’s objective functions
(e.g. going beyond consumption maximization), could constitute great improvements
of our modelling work.

5.3.2 Further topics

There are socio-economic factors that remain under-represented in uncertainty analyses.
An example of this are additional options from the energy demand side, like heat-
pumps and/or general consumer behavior, which could help complete the picture in
the investigation of socio-economic uncertainty. Further, the impact of ongoing and
future climate change on socio-economic scenarios describing the uncertainty space
is necessary for better informing stakeholders and decision-makers. Efforts in this
direction could greatly improve the usefulness of the SSPs.
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En route to China’s mid-century climate goal: Comparison of emissions intensity
versus absolute targets

Anastasis Giannousakis1, Lavinia Baumstark, Elmar Kriegler

Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, D-14412 Potsdam,
Germany

1. Supplementary Material

Appendix A.

Appendix A.1. The integrated assessment model REMIND

REMIND (REgional Model of INvestment and Development) is a multi-sector, multi-region integrated assess-

ment model used for global and regional climate policy analysis (Luderer et al., 2015). REMIND has been used

extensively in IPCC reports, e.g. IPCC (2014) and IPCC (2018), and major model intercomparison projects, e.g.

Kriegler et al. (2014), Pietzcker et al. (2017), Bauer et al. (2018), Luderer et al. (2018), Riahi et al. (2017). It

combines a top-down Ramsey-type growth model with a bottom-up energy system model of large technological

detail. In the macro-economic core of REMIND, aggregated and discounted intertemporal social welfare is maxi-

mized for a number of regions spanning the whole globe, while pathways are derived for savings and investments,

factor incomes, as well as energy and material demand. The utility function of REMIND exhibits constant relative

risk aversion and has a logarithmic form on consumption. Regions interact by trade in primary energy carriers,

emission permits, and a composite good. The detailed representation of the energy system in each region consists of

capital stocks for more than 60 technologies for energy conversion, including technologies that are able to generate

negative emissions, like bioenergy combined with carbon capture and sequestration.

In REMIND, economic activity results in demand for energy services, which in turn results in GHG emissions

from extraction and burning of fossil fuels in different sectors (buildings, industry, transport) and levels (primary,

secondary, and final energy). Mitigation scenarios analyze optimal strategies for decarbonization with the use of

a carbon tax applied on the economy, resulting in a shift from fossil use to renewable energy. A full portfolio of

GHG is considered (CO2, CH4, N2O, NH3, F-gases, etc.), either via emissions from energy use or via exogenous

marginal abatement cost curves (e.g. land-use). Adjustment costs in energy investment and deployment account for

policy realism and path dependency. REMIND usually runs in so-called cost-effectiveness mode, not internalizing

potential economic damages of climate change, but rather analyzing energy technology portfolios and investment

dynamics under given climate targets (GHG budgets, reduction relative to a baseline, carbon taxes, etc.)

1Corresponding author, giannou@pik-potsdam.de

Preprint submitted to Climate Policy August 19, 2020
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Appendix A.2. Decision-making under uncertainty in energy-economy models — Description of the REMIND-S

model

There are several approaches in the literature to tackle uncertainty in climate policy analysis, reviewed ex-

tensively by Golub et al. (2014), Traeger (2009), Kann and Weyant (2000), Heal and Millner (2014), Heal and

Kristrm (2002), Peterson (2005), and Baker and Shittu (2008). In energy-economy models, the first approach is

called uncertainty propagation, and includes the methods of scenario analysis and sensitivity analysis. Although

as methods they do not derive unique optimal decision paths, they provide important means for the design of

climate policy. They do so by thoroughly exploring the scenario space and deriving detailed insights for each case,

and by identifying which parameters contribute the most to uncertainty. A recent application of scenario analysis

in the context of climate change are the SSPs (ONeill et al., 2014)), where self-consistent scenarios for the most

important socio-economic drivers (population and economic growth, etc.) were developed for the future and a big

body of studies was carried out shedding light on the implications of these socio-economic drivers for energy and

land-use, emissions, climate change and mitigation of climate change (Riahi et al. (2017), Kriegler et al. (2017)). In

other applications, Marangoni et al. (2017) use a sophisticated sensitivity analysis method to test various different

parameters influencing emissions projections in the context of the SSPs, and conclude that economic growth and

energy intensity are the most important drivers of uncertainty.

As a second approach to tackling uncertainty, methods performing decision-making under uncertainty are used.

These include the methods of real option analysis (Anda et al., 2009) and stochastic modelling, e.g. discrete

stochastic programming (Bosetti and Tavoni, 2009) and dynamic stochastic programming (Jensen and Traeger

(2014) provide detailed estimates of optimal carbon taxes under long-term economic growth uncertainty using a

dynamic stochastic integrated assessment model).

The model REMIND-S (REMIND-Stochastic) is presented here for the first time. It is the version of REMIND

(see Appendix A.1) that explicitly accounts for uncertainty in one or more parameters. REMIND-S solves a

Discrete Stochastic Programming (DSP) problem. DSP is a common method to explicitly account for uncertainty

in integrated assessment models of climate change. It is widely used due to its moderate computational cost

and useful insights, as well as the fact that it provides means for inclusion of stochasticity and multi-stage decision

modelling. The key concept of DSP is to allow for the identification of one single optimal strategy under uncertainty

(illustrated on the right panel of Fig. A.1), as opposed to multiple state-dependent optimal paths in a learn-then-act

framework which can be explored by standard Monte Carlo, or simple deterministic scenario analysis (left panel

of Fig. A.1). Thus, in DSP, the decision maker is exposed to a range of values of the uncertain parameter(s) in

different ”states-of-the-world” (realizations of the uncertain parameter), and still derives a single optimal path.

The range of values of the uncertain parameter is described by a probability distribution running over the full

set of states-of-the-world. This probability distribution can take any form and this is what gives the method the

characterization ”stochastic”. REMIND-S features the exact same technological and sectoral detail as REMIND

(the same holds for the rest of the model structure), but in REMIND-S expected utility is maximized, i.e. the

weighted sum of utilities in each state-of-the-world, using the probabilities as weights, see equations describing

the No-Learn and Act-Then-Learn cases in Fig. A.1. Thus, each state-of-the-world of REMIND-S is actually an

instance of REMIND with different values for the uncertain parameters.
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Figure A.1: Schematic representation of the various levels of uncertainty consideration applied here, and the respective objective

functions. E is the expected value operator, U is the utility, s stands for state-of-the-world, I are the investment decisions, θ is the

uncertain parameter, and m a message containing information about θ. ”Learning” refers to the point in time where the message m is

received. Hedging is defined as the decision path that responds to uncertainty, driven by the decision maker’s risk aversion.

As mentioned above, the main feature of DSP is deriving a single optimal strategy under uncertainty. But

capturing one single decision path poses a challenge in a complex model like REMIND-S, where various different

investments and choices can be made. Thus, in REMIND-S, energy investments, fossil extraction rates and trade,

as well as early retired capacity are equalized across the states-of-the-world using special constraints, which leads to

equal emissions across the states-of-the-world; this is what is defined as one single optimal strategy. The presence

of these constraints in an expected utility optimization framework gives rise to hedging strategies (the red arrows

of Fig. A.1 show where the hedging takes place), as the best compromise between conflicting optimal decisions in

each state-of-the-world is sought after. This happens before uncertainty is resolved (learning point of Fig. A.1), as

the decision maker should be unaware of the state-of-the-world that will materialize. After the learning point the

constraints are fully relaxed so that decisions can be tailored to individual growth scenarios, and emissions differ

across the different states-of-the-world.

Risk aversion is described by the elasticity of intertemporal substitution (EIS), which describes also the decision

maker’s preference towards intertemporal equality, as we do not consider separate preferences (this would require

a different type of modelling, as intertemporal optimization cannot be easily combined with separate preferences).

In REMIND-S, EIS is equal to unity, giving the utility function its logarithmic form with diminishing returns of

consumption, see Appendix A.1.
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Appendix A.3. Uncertainty scenarios

A schematic of the approaches to uncertainty considered here is given in Figure A.1. First, in the presence of

a symmetrical probability distribution, the medium growth or best-guess (BG) case is the situation where—given

an uncertain parameter θ described by a known probability distribution—an optimal decision path can be derived

under complete information using the best-guess value of θ, E(θ), where E is the expected value operator. With

”decision path” we refer to optimal energy planning configurations (i.e. investments, fuel extraction and trade, and

capacity retirement decisions). The second case of Figure A.1, learn-then-act (LTA), describes a counterfactual,

where uncertainty about θ is completely resolved before energy planning is performed, thus it can be fully adapted

to each state-of-the-world (a ”state-of-the-world” describes one realization of θ). Third, act-then-learn (ATL) is

the case where all θ values remain possible and the decision path takes into account all of them at once. But the

decision makers will eventually learn or be able to make better assumptions about the uncertain parameter; at a

certain point in time uncertainty is resolved and the decisions after that point can be tailored to the individual

messages received. Last, no-learn (NL) is a special case of ATL where learning never happens and decisions are

taken under uncertainty throughout the time horizon.

Appendix A.4. How to hedge against growth uncertainty

Appendix A.4.1. Hedging in the absence of climate policy

Hedging is defined as the deviation of the single optimal decision path—produced with REMIND-S—when

compared with the path of the deterministic case. But why does hedging appear in the first place, i.e. why is

the single optimal path not simply the mean value between the growth scenarios (i.e. the medium growth—or

best-guess—result in the case of a symmetrical probability distribution, like in this study)? The latter can be

obtained by a simple scenario analysis, without stochasticity. In mathematical form (using the same notation as

in Figure A.1):

arg max
I

E[U(θ)] 6= arg max
IBG

U [E(θ)] (A.1)

To answer this question we look into how uncertainty affects optimal investments. Uncertainty in economic

growth leads to changes in optimal investment decisions already in the baseline case, in investments in the macroe-

conomic capital stock as well as energy investments. These changes occur while seeking one single energy investment

path, i.e. the best compromise between all the possible growth scenarios (only one is allowed in REMIND-S because

energy planning decisions cannot be tailored to individual growth scenarios prior to learning), when the decision

maker necessarily ends up with a trajectory that lies somewhere between the optimal paths of the deterministic

scenarios. This is the solution that includes the lowest sacrifice: the least possible overinvestment in case a low

growth scenario realizes, the least possible underinvestment in case a high growth scenario realizes, and, if possible,

neither overinvestment nor underinvestment in case the medium growth realizes. Indeed, as seen in Figure A.2 the

overall result is an investment path (grey line) that lies between the High- and Low-growth scenarios, but lower

than the medium growth path (black line), as the effect of uncertainty does not propagate linearly through the

growth scenarios, see Equation A.1. More specific, if optimal investments were to lie above the medium growth case
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and a low growth scenario materialized, this suboptimality turns out to be more expensive than if the investments

lie under the medium growth case, because in the high growth case the society is wealthier.
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Figure A.2: Hedging in investments in the baseline case for China. Left: Energy investments. Right: Macro-economic investments.

Note: macro-economic investments in the stochastic case are not equal across the growth scenarios, the grey line of the right graph

describes the average. Energy investments are equalized in REMIND-S by definition.

Furthermore, as seen in Figure A.3, the percent reductions in optimal energy technology investments under

uncertainty are not the same for each technology, showing a) energy-specific robust strategies in the baseline, and

b) highlighting the necessity to use a technology-rich model for the present analysis.
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Figure A.3: Variation in the optimal use of key energy sources between the medium-growth/full-information and the BASE-L30 case

(both without climate policy) in China. percent reduction is not the same for all energy types.
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Figure A.4: Hedging (defined as the deviation from the medium-growth full-information line) in emissions in the scenarios with and

without anticipated learning for stand-alone 2030 targets in China. Hedging is given by the difference between circles and triangles and

is much stronger in the case of an intensity target (dark green vs. orange dashed lines), but is almost equalized when learning in 2020

is considered (squares in 2020). The separate paths after 2020 exist because energy planning can adapt to individual growth scenarios

only after the learning point.
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Figure A.5: Left: Energy is cheaper in the case of a quantity target in China, as a result of a wait-and-see strategy. Right: Optimal

energy investments increase under uncertainty in the intensity target case, but decrease for a quantity target.

Appendix A.4.2. The effect of anticipated learning

When anticipated learning is considered (with a learning step in 2020, see A.4), more hedging (compared to

the no-learn case) takes place in the quantity target scenario, as the available information after 2020 allows for the

energy planner to respond to the upcoming target in 2030 individually, thus increasing investment and subsequently,
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Table A.1: Effect of uncertainty and target type on welfare (expressed as percent changes in aggregate policy costs and measured

in certainty-equivalent balanced growth equivalents; CBGE) for China: In the left column, a comparison of policy costs until 2030

between the deterministic and the scenarios with and without anticipated learning is shown. We see that anticipated learning about

uncertainties increases welfare significantly (difference between Expected Value of Perfect Information; EVOPI, and Expected Value of

Information; EVOI), and quantity targets can generate less costs than intensity targets. In the far right column, as reference, we show

the corresponding climate policy costs until 2030, i.e. BASE-L30 vs. I30-L30 and Q30-L30, and baseline vs. policy with anticipated

learning

No-Learn

Target Type EVOPI Reference Costs

Quantity 3.16 0.62

Intensity 4.1 1.6

Anticipated Learning

EVOI

Quantity 1.23 -0.06

Intensity 1.32 -0.03

welfare, see Table A.1 (more on this in the next paragraph). All the Q30-L20 scenarios meet the 13.4 Gt target

in 2030, except for the low growth scenario, where the target is not constraining, because overinvestment prior to

the learning point combined with low growth result in a pathway with emission reductions stronger than what the

target dictates. Overall, we see that learning eliminates to a great extend the difference between a quantity and

intensity target. This is reflected also in the respective coal usage as seen in Figure A.6

The welfare losses due to uncertainty, measured in certainty- and balanced-growth equivalents (CBGE), sum up

to 4.1 percent of net present value of total consumption, see Appendix A.5 for a detailed definition of the CBGE.

This is called expected value of perfect information (EVOPI), and is reduced when learning is considered, as seen

in Table A.1. The associated metric is called expected value of information (EVOI). This shows that with reduced

uncertainty (learning), the target type choice plays less of an important role in the decision-making process.
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Figure A.6: Coal usage in China in the 2030 target case. The quantinty no-learn scenario features no decrease in coal consumption,

compared to the deterministic medium-growth, but with anticipated learning (L20) coal is reduced. There is only one no-learn scenario

for each target because all 3 scenarios have the same optimal energy planning, by definition (the same happens for the L20 scenarios

prior to learning).

Appendix A.5. Policy costs measured in balanced growth equivalents

Climate policy costs in integrated assessment models are usually formulated in terms of relative differences in

intertemporal, aggregated, and discounted consumption (or GDP) between cases with and without policy. When

comparing climate policy costs across different baselines, as happens here where different growth scenarios are

considered, this method of comparison fails to capture the welfare effects correctly, as for each case one ends up

using a different yardstick. A measure that is more adequate is the balanced growth equivalent (BGE), which

describes the amount of today’s consumption, that, when extended into the future with a growth rate α, results

in the same amount of utility U as the scenario in question. In mathematical form the BGE is the solution of the

following equation with respect to γ:

T∑

t=0

U [γ(ω)(1 + α)t]Pt(1 + ρ)−t = W (ω) (A.2)

where ω is the policy in question, P is population, t is the time and T the time horizon, ρ is the discount rate
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and W is the welfare. For a standard constant relative risk aversion utility function we get:

γ(ω) = [(1− η)W (ω)]
1

1−η
[ T∑

t=0

(1 + α)t(1−η)Pt
(1 + ρ)t

]− 1
1−η

, for η 6= 0 (A.3)

and

γ(ω) = exp
(W (ω)− ln(1 + α)

∑T
t=0 tPt(1 + ρ)−t

∑T
t=0 Pt(1 + ρ)−t

)
, for η = 0 (A.4)

where η is the intertemporal elasticity of consumption.

Using the BGE relative differences between scenarios with different baselines are easily and intuitively compa-

rable. For scenarios where expected utility is maximized the certainty- and balanced-growth equivalent is defined

as the expected value of the BGE and used as adequate policy measure:

CBGE ≡ E(BGE) =
s∑

i=1

BGEipi (A.5)

Appendix A.6. Sensitivity of policy costs on the growth of GDP

Here the results of a sensitivity analysis on the GDP growth rate in the deterministic case are presented (Table

A.2).

Appendix A.7. Description of target rating criteria

We discuss the relative attractiveness of sequential intensity and quantity targets in terms of the criteria listed

below (the respective categories are provided in brackets), based on the sequencing scenarios (Q30-L30 and I30-

L30) of section 5.2. The expected value, i.e. the average between the three possible growth scenarios is taken

for the calculation of all indicator values. The Q50-L10 medium-growth/full-information scenario—with which we

normalize where noted—features full information about growth and 2050 target, and no 2030 target. For plots of

the indicators see Figure 6. For a detailed view of the optimal paths in each growth scenario see Figure A.7.

GHG emissions [Environmental]

We describe the emissions indicator in terms of the total amount of GHG emissions emitted by each target

type scenario in the period 2005-2050. The indicator is harmonized with the total GHG emissions reduction of the

full-information scenario in the period 2005-2050.

Carbon price [Efficiency]

The size of the carbon price that has to be exerted on the economy for the target to be met. To account for

time variability we take the net present value in 2020 (discounted at 5%) of the price path until 2050, and express

the indicator as percentage of the medium-growth full-information case.

Welfare loss [Efficiency]

The welfare loss indicator measures which target features a smaller reduction of social welfare against the

baseline in the period 2005-2050, relative to the reduction of the medium-growth full-information path (which thus

has a value of 100%). We use BGE values in 2050 in order to account for baseline variability, see Appendix A.5.

Idle coal capacity [Disruptiveness]

A.2 Chapter 2: Appendix

105



Table A.2: Expansion of Table 2: Comparison of welfare effects until 2030 measured as percent changes in balanced growth equivalents

(BGE, see Appendix A.5) for the different target types of the stand-alone 2030 scenarios. The GDP growth rate is increased gradually

(in 10% steps) until the value that corresponds to the scenarios considered in our study in order to examine the sensitivity of policy

costs to the GDP growth rate. The last two rows are the corresponding climate policy costs (i.e. comparison with the baseline) for

each target and for the same period, which we use for reference.

Scenarios compared ∆BGE 2030 (%)

High growth (I30-L10-High vs. Q30-L10-High) 1.00

High growth 90% (I30-L10-High vs. Q30-L10-High) 0.90

High growth 80% (I30-L10-High vs. Q30-L10-High) 0.82

High growth 70% (I30-L10-High vs. Q30-L10-High) 0.73

High growth 60% (I30-L10-High vs. Q30-L10-High) 0.67

High growth 50% (I30-L10-High vs. Q30-L10-High) 0.60

High growth 40% (I30-L10-High vs. Q30-L10-High) 0.48

High growth 30% (I30-L10-High vs. Q30-L10-High) 0.37

High growth 20% (I30-L10-High vs. Q30-L10-High) 0.25

High growth 10% (I30-L10-High vs. Q30-L10-High) 0.12

Medium growth (I30-L10-Medium vs. Q30-L10-Medium) 0

Low growth 10% (I30-L10-Low vs. Q30-L10-Low) -0.09

Low growth 20% (I30-L10-Low vs. Q30-L10-Low) -0.20

Low growth 30% (I30-L10-Low vs. Q30-L10-Low) -0.27

Low growth 40% (I30-L10-Low vs. Q30-L10-Low) -0.41

Low growth 50% (I30-L10-Low vs. Q30-L10-Low) -0.55

Low growth 60% (I30-L10-Low vs. Q30-L10-Low) -0.65

Low growth 70% (I30-L10-Low vs. Q30-L10-Low) -0.75

Low growth 80% (I30-L10-Low vs. Q30-L10-Low) -0.80

Low growth 90% (I30-L10-Low vs. Q30-L10-Low) -0.90

Low growth (I30-L10-Low vs. Q30-L10-Low) -0.97

Quantity (BASE-L10 vs. Q30-L10) 0.6

Intensity (BASE-L10 vs. I30-L10) 0.75

A.

106



Expected retired coal capacity in the power sector (i.e. retired capacity that has not reached the end of its

lifetime). To take into account also the years a power plant would spent in idle mode, we aggregate over time. The

indicator is normalized with the medium-growth full-information scenario value.

Cost volatility [Disruptiveness]

The sequencing scenarios with unanticipated announcement of the 2050 target, exhibit a myopic behavior

which can lead to jumps in costs. To capture these we calculate the difference in the carbon price across the various

growth scenarios in the time before and after the target announcement (2030). Since each growth scenario has an

independent carbon price, we take the expected value of the differences for each scenario in order to derive the cost

volatility indicator.

Expected Value of Information [Expectation Stabilization]

Describes the value—in terms of welfare gains—of learning about growth uncertainty in 2030, i.e. it compares

the BGE of the I30-L30 and Q30-L30 scenarios with the BGE of scenarios with no learning. See Table A.1 for

more information on this indicator.

Non-optimal investment [Expectation Stabilization]

Acting under uncertainty necessarily leads to a suboptimal allocation of resources, as explained in section

Appendix A.4. Thus, prior to the learning point, energy investment will be suboptimal. We measure this subop-

timality by comparing the absolute difference between the net present value (with a discount rate of 5%) of the

total energy investment of the period 2010-2030, i.e. up to the learning point, in the full-information case and

each target scenario. Thus, medium-growth full-information has a zero value by definition, and we scale with the

baseline value.
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Figure A.7: Target sequencing scenarios for China: detailed view (with each growth scenario plotted separately) of the variables used

for deriving the indicators for target comparison.
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Figure A.8: Optimal paths of energy demand (total, and by sector) and GDP for the sequencing scenarios for China, under uncertainty.

The graph shows how target sequencing shapes optimal emissions paths, plotted next to the hypothetical, full-information case of the 2

◦C compatible stand-alone target in 2050—which we used to derive the optimal 2030 targets—and the counterfactual baseline scenario.
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Figure A.9: Optimal energy mixes for the sequencing scenarios for China, under uncertainty. The graph shows how target sequencing

shapes optimal emissions paths, plotted next to the hypothetical, full-information case of the 2 ◦C compatible stand-alone target in

2050—which we used to derive the optimal 2030 targets—and the counterfactual baseline scenario.
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Burden Sharing of Climate Change Mitigation: Global and Regional Challenges under Shared 

Socio-Economic Pathways  

 

Supplementary Material 

Marian Leimbach, Anastasis Giannousakis 

A.1 The integrated assessment model REMIND 

REMIND is a global, multi-regional, energy-economy-climate model used in long-term analyses of            

climate change mitigation (e.g. Leimbach et al., 2010, Bauer et al., 2012, Bertram et al., 2015). A                 

detailed model description is provided by Luderer et al. (2015).  

The macro-economic core of REMIND is a Ramsey-type optimal growth model in which intertemporal              

global welfare is maximized. The model computes a unique Pareto-optimal solution that corresponds             

to the market equilibrium in the absence of non-internalized externalities. The world is divided into               

eleven model regions: Sub-Saharan Africa (AFR), China, EU-28 (EUR), India, Japan, Latin America             

(LAM), Middle East and North Africa (MEA), Other Asia (OAS), Russia, USA and Rest of the World                 

(ROW). Model regions trade final goods, primary energy carriers, and in the case of climate policy,                

emissions permits. Macro-economic production factors are capital, labor, and final energy.  

Economic activity results in demand for different types of final energy (electricity, solids, liquids,              

gases, etc.), determined by a production function with constant elasticity of substitution, and             

differentiated by stationary and transport uses. The energy system accounts for regional exhaustible             

primary energy resources through extraction cost curves. Bioenergy comes from different           

feedstocks: traditional biomass and first generation biomass, both assumed to phase out in the near               

future, as well as ligno-cellulosic residues and purpose-grown second-generation biomass. The           

regional biomass potential is represented by regional supply curves (Klein et al., 2014), which are               

derived from the land use model MAgPIE (Lotze-Campen et al., 2008). Costs of biomass production               

hence include opportunity costs of alternative land uses, e.g. using land for food production.              

Non-biomass renewable energy potentials are reflected in detail on the regional level. More than 50               

technologies are available for the conversion of primary energy into secondary energy carriers as well               

as for the distribution of secondary energy carriers into final energy. Techno-economic parameters             

(investment costs, operation and maintenance costs, fuel costs, conversion efficiency etc.)           

characterize each conversion technology.  

The model accounts for carbon dioxide emissions from fossil fuel combustion and land use as well as                 

emissions of other greenhouse gases (GHGs). The climate model MAGICC6 (Meinshausen et al.,             

2011), which emulates more complex general circulation models, is used to translate emissions into              

changes of atmospheric GHG concentrations, radiative forcing, and global mean temperature.  
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A.2 Equal effort sharing 

In the burden sharing regime with equal effort sharing, regions face the same, i.e. global average, 

consumption losses per GDP (or consumption, alternatively) at each point in time: 

     ∀ r , .nCLr
GP r

=
CLglob
GP glob

= CL0 = 1 .  

Applying eq. (1) as strict equation we get 

= GP LDCr + CTCr  r* C
0  

Applying eqs. (2) and (3) it holds 

 GP L  p S( r ∑
n

r=1
Er − Er)

  
= DCr −  r * C

0  

From that we can derive the regional permit emission share 

.Sr =
∑
n

r=1
Er

E + r p

DC −CLr glob
GPr

GPglob

 

A.3 Historic responsibility 

With baseline and policy emissions ​E​BAU​ and ​E​pol​, and the contribution ​ ​SHR​ of each region to the 

temperature increase until 2005, we compute the regional permit emission share associated with the 

burden sharing according to the historic responsibility by 

 .Sr =
∑
n

r=1
Er
pol

 

E − SHR • E −Er
BAU

r ∑
n

r=1
( r

BAU
r
pol)
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A.4 Ex-post analysis 

Based on the separation of efficiency and equity, the mitigation costs (percentage consumption             

losses, ) can be represented by two parts – the domestic costs (mainly costs of energy LC            CD      

system transformation) and carbon trade cost  (see Luderer et al., 2012):TCC  

               (1)L ≈DC TCC + C  

In common tax scenarios the second part vanishes. In cap-and-trade scenarios, the second part is               

different from zero and can be computed for each region ​r as a product of the global carbon price (                   p
) and the permit trade volume ( ):TP  

·PTCTCr = p r  (2) 

This trade volume can be calculated as the difference between the allocated permits (with ​S as                

allocated share) and the actual regional level of emissions ​E​: 

S  PT r = Er −  r • ∑
 

r
Er

(3) 

The needed input for this ex-post-analysis (i.e. data on global carbon price, global and regional GHG                

emissions) is derived from REMIND mitigation scenarios SSPx-TAX as introduced in section 3. The              

remaining unknown variable, the allocated share ​S ​, is provided by different burden sharing schemes.  
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A.5 Results from ex-post analysis 

 

 

Fig. S.1: ​Distribution of emission allowances until 2050 under different burden sharing schemes and 

SSPs 
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Table S.1: ​Regional mitigation costs compared to global average (+ above average; o around average; 

- below average) 

 

 

Table S.2​: Cumulated Permit trade value (discounted by 5% per year) in 2100 (in bill. US$2005); 

positive values indicate net costs, negative values net revenues    

 

 AFR CHN EUR IND LAM MEA OAS RUS USA 
CC o o o/- o/+ o/- ++ o ++ o/- 
EC o/+ o o o/+ o o/+ o o/+ o/- 
GF + o/- o/- ++ - ++ o/+ + - 
GI ++ - - + o/- ++ o ++ - 
HR --- - + --- + o/- o +++ o/+ 
PC o/- o o/- o o/- ++ o/- ++ o/- 

POP - o o/- o o/- ++ o/- ++ o/- 

  AFR CHN EUR IND LAM MEA OAS RUS USA 
CC 
  

SSP1 -440 -45 140 -8 176 255 -420 238 58 
SSP2 -422 86 435 -287 203 360 -289 182 -76 
SSP5 16 -357 1279 782 471 -465 -259 85 -394 

EC 
  

SSP1 -97 359 1801 -177 568 -2261 47 -763 708 
SSP2 68 -13 2117 -665 1456 -2497 821 -1294 744 
SSP5 762 1148 2666 -716 2552 -4433 201 -2346 1483 

GF 
  

SSP1 698 -307 -582 1423 -48 370 459 -200 -1424 

SSP2 1265 -334 -645 1793 -88 535 974 -434 -2186 

SSP5 1793 -608 23 3413 65 -277 1340 -693 -3058 

GI 
  

SSP1 971 -1381 -585 602 258 369 142 235 -699 
SSP2 1854 -1608 -834 800 292 438 582 180 -1332 
SSP5 2869 -3312 60 2088 711 -233 862 83 -1796 

HR 
  

SSP1 -2489 -1568 2831 -3269 1233 -1045 -291 1298 2028 
SSP2 -5577 -3901 7689 -5963 2905 -3929 -587 2224 4803 
SSP5 -16186 -8310 17751 -15513 9636 -8998 1143 7492 8954 

PC 
  

SSP1 -723 -29 474 -481 241 228 -719 363 727 
SSP2 -910 131 930 -1057 305 311 -771 392 903 
SSP5 -615 -302 1855 -224 626 -525 -884 370 812 

 POP 
  

SSP1 -1089 310 433 -383 300 216 -646 374 596 

SSP2 -1730 781 1004 -965 378 258 -693 409 831 
SSP5 -1367 1031 2243 287 1412 -828 -864 662 113 
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Fig. S.2: ​Cumulated Permit trade value (discounted by 5% per year) in 2100 (in bill. US$2005); 

positive values indicate net costs, negative values net revenues  

Table S.3​:  Contribution of permit trade to overall mitigation costs (in percentage points)  

 

  

  AFR CHN EUR IND LAM MEA OAS RUS USA 

CC 
  

SSP1 -0.8 0.0 0.0 0.0 0.2 0.4 -0.5 1.0 0.0 
SSP2 -0.9 0.1 0.2 -0.6 0.2 0.6 -0.4 0.8 0.0 
SSP5 0.0 -0.2 0.4 1.2 0.5 -0.6 -0.3 0.3 -0.1 

EC 
  

SSP1 -0.2 0.3 0.6 -0.3 0.6 -3.3 0.1 -3.2 0.3 
SSP2 0.2 0.0 0.7 -1.3 1.7 -3.9 1.1 -5.6 0.3 
SSP5 1.2 0.7 0.8 -1.1 2.6 -6.1 0.2 -8.5 0.4 

GF 
  

SSP1 1.4 -0.2 -0.2 2.4 0.0 0.5 0.5 -0.8 -0.5 

SSP2 2.8 -0.3 -0.2 3.5 -0.1 0.8 1.3 -1.9 -0.8 
SSP5 2.9 -0.4 0.0 5.1 0.1 -0.4 1.4 -2.5 -0.9 

GI 
  

SSP1 1.9 -1.0 -0.2 1.0 0.3 0.5 0.2 1.0 -0.3 
SSP2 4.1 -1.3 -0.3 1.6 0.3 0.7 0.8 0.8 -0.5 

SSP5 4.6 -2.1 0.0 3.1 0.7 -0.3 0.9 0.3 -0.5 
HR 
  

SSP1 -4.8 -1.1 0.9 -5.5 1.4 -1.5 -0.4 5.5 0.7 
SSP2 -12.4 -3.2 2.7 -11.6 3.4 -6.1 -0.8 9.7 1.8 

SSP5 -26.2 -5.3 5.1 -23.2 9.9 -12.3 1.2 27.3 2.6 
PC 
  

SSP1 -1.4 0.0 0.2 -0.8 0.3 0.3 -0.9 1.5 0.3 
SSP2 -2.0 0.1 0.3 -2.1 0.4 0.5 -1.0 1.7 0.3 
SSP5 -1.0 -0.2 0.5 -0.3 0.6 -0.7 -0.9 1.3 0.2 

 POP 
  

SSP1 -2.1 0.2 0.1 -0.6 0.3 0.3 -0.8 1.6 0.2 
SSP2 -3.8 0.6 0.4 -1.9 0.4 0.4 -0.9 1.8 0.3 
SSP5 -2.2 0.4 0.4 0.2 0.9 -0.7 -0.6 1.5 0.0 
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A.6 POP-07 scenarios 

Capital mobility in REMIND ensures that capital moves (i.e. is traded) between all regions until the                

rates of return of capital equalize. The Keynes-Ramsey rule applies, according to which the growth               

rate of per capita consumption in the balanced growth path is equal across all regions (assuming all                 

regions have the same pure rate of time preference).  

An upper bound on consumption losses, as in the POP-07 scenarios (section 6.1), may cause a                

distortion of the balanced growth path as demonstrated in Figure A.2. Whereas in the SSP5-POP               

scenario all trajectories of consumption losses are parallel to each other, this does not hold any                

longer for the consumption losses in the SSP5-POP-07 scenario.  

   

Fig. S.3​: Consumption losses over time in SSP5-POP (upper panel) and SSP5-POP-07 scenario (lower 

panel) 

The applied bound prevents in the case of MEA and Russia a further outflow of capital that would be                   

needed in order to meet the intertemporal budget constraint. This directly follows from the              

interaction of consumption ​C and capital export ​X in the budget constraint and the contribution of                

capital (composite good) exports in the intertemporal trade balance. In the reduced form, the budget               

constraint reads as 

C t = Y t + M t
g − X t

g − I
 
  

(with ​Y ​ representing GDP, ​M​ import of composite good ​g ​, and ​I​ macroeconomic investments). 

The intertemporal trade balance sums up net exports of the composite good and other goods ​o                

evaluated by respective net present value prices ​ p ​: 
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 B = ∑
 

t
p X p (X )( t
g( t

g
 
− M t

g) +
 
∑
 

o
 t
o

t
o − M t

o
 )

 

 
 

With C* as the optimal consumption in the unconstrained model it holds: 

if    C ​t​ > C ​t​*  then    B < 0. 

In the POP-07 scenarios, the model solution converges to a point where MEA and Russia accumulate                

a deficit ( ​B<0​) and all other regions a surplus in the intertemporal trade balance. We interpret this                 

deficit as a financial transfer by the surplus regions that confines the consumption losses in the                

deficit regions according to the specified bound.  
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A.7 Decomposition analysis 

A decomposition technique as described in Aboumahboub et al. (2014) is applied. The decomposition              

of mitigation costs is discussed by illustrations of the CC and POP scenarios (see Fig. S.4). The                 

decomposition for the TAX scenarios is equal to the two discussed scenarios for all components but                

the permit trade. The same applies to the burden sharing schemes analyzed in section 5. The permit                 

trade value is zero in the TAX scenarios. This equivalence of the decomposition is due to a property                  

of REMIND as general equilibrium model with intertemporal capital trade which allows the             

separation of equity and efficiency (cf. section 3.2).  

a.  

 

b. 
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c.  
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S. 4​: Decomposition of mitigation costs (panel a: SSP1, panel b: SSP2, panel c: SSP5)  

 

Qualitatively, the decomposition shows a similar pattern across all SSPs. Overall, direct GDP losses              

represent a major part in all regions. However, despite similar GDP growth in SSP1 and SSP2,                

mitigation costs due to GDP losses are smaller in SSP1 because of higher energy efficiency and a                 

higher preference for renewable energy. Both components reduce the carbon dioxide emission per             

unit of GDP already in the baseline. Mitigation costs contributions from trade are also large. Negative                

consumption effects due to decreasing fossil resource prices can be seen in MEA and Russia (to a                 

smaller extent also in USA), and positive effects in AFR, China, India, OAS and EUR. In Russia and                  

MEA, trade effects account for around 50% of the mitigation costs in all scenarios. Figures are even                 

higher in Russia when permit imports are additionally taken into account. In both regions biofuels               

substitute fossils, hence biomass imports increase in policy scenarios. Consequently, the negative            
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trade effect overcompensates savings from lower extraction and fuel costs. The only significant             

difference between the different scenarios of the same SSP type concerns the permit trade effect. It                

will be discussed in the next section. 

In how far do differences in the mitigation cost composition mirror differences in the socio-economic               

assumptions across regions and across SSPs? 

AFR and India show the highest direct growth impact (GDP effect), which is due to the assumption of                  

relatively high growth rates in all scenarios (Dellink et al., 2017). The slightly lower economic growth                

rates and the contained population growth in SSP1 (cf. KC and Lutz, 2017) result in a somewhat lower                  

contribution of the GDP effect in SSP1. On the other hand, a higher share of mitigation costs,                 

compared to SSP2 and SSP5, is due to energy system investment costs (ESM_fixed). This indicates               

first that additional investments in carbon-free technologies are requested independently of the            

economic growth rate. Secondly, risk aversion on external environmental effects associated with            

large-scale biomass technologies (e.g. loss of biodiversity, reduction of food security) results in SSP1              

in a preference to other forms of carbon–free energy technologies, like solar and wind, which have a                 

higher fixed cost share than biomass technologies. With respect to the trade effects, AFR and India                

profit from lower prices on the energy markets – in particular with oil imports in SSP1. With a higher                   

energy demand in SSP2 and in particular SSP5 (Bauer et al. 2017, Kriegler at al. 2017, Fricko et al.,                   

2017), biomass plays a more important role – mainly as a unique technology of generating negative                

emissions, which are needed to compensate for remaining fossil fuel emissions. A higher share of               

negative mitigation costs is generated in AFR in SSP2 and SSP5 by revenues from biomass exports                

(both due to higher export quantities and higher prices). The biomass trade effect is most               

pronounced for LAM. LAM is the major exporter of biomass and profits from a price increase. A                 

higher global demand for biomass in SSP5 based on a higher preference for this energy carrier and                 

the need to compensate for initial higher fossil fuel consumption, enable LAM to scale up related                

trade benefits. Consequently, LAM faces even lower mitigation costs in SSP5 than in SSP1.  

In all other regions, we see the same variation across the SSPs with respect to the GDP effect (lower                   

share in SSP1) and energy system investment costs (higher share in SSP1), like in AFR and India. While                  

China, OAS, and EUR also demonstrate a similar pattern regarding the energy trade effect (higher               

negative shares in SSP1), the opposite (higher positive shares in SSP1) applies to MEA and the USA. In                  

particular, the major oil exporter MEA faces a higher share of mitigation costs due to losses in oil                  

trade in SSP1. In Russia, the gas trade has an equal share of the mitigation costs in SSP1 as the oil                     

trade, whereas the coal trade effect takes a much higher share in SSP2 and SSP5. This is a direct                   

consequence of the high level of coal consumption globally in the baselines of SSP2 and SSP5 and                 

related to the abundance of cheap coal in both scenario worlds. Compared to other regions, the USA                 

exhibits a high negative share (i.e. gains) from lower fuel expenditures in SSP1. Overall, the               

decomposition analysis uncovers significant differences as well as qualitative similarities in the            

mitigation cost structure across the SSP scenarios.  
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A.8 Permit trading 

Permit trading and in particular the allocation of permits are key components of burden sharing.               

Based on an agreed allocation of emission permits, transfers on the carbon market represent a               

well-defined form of climate finance. However, any type of climate finance implying the same              

transfers will yield the same burden sharing result. 

Fig. S.5 presents the trade pattern in scenarios with a large amount of permit trade – SSP2-POP and                  

SSP5-POP, peaking at 4.2 and 3.7 Gt CO​2​eq in 2025, respectively. The SSP1-POP scenario peaks at a                 

lower level of around 3.3 Gt CO​2​eq in 2025. The trade pattern is the same in all POP scenarios:                   

highest trade level in the beginning, a decreasing trade level until 2060 and a slight increase and                 

stabilization at moderate levels towards the end of the century. The permit trade is much lower in                 

the first half of the century in the CC scenarios (it hardly exceeds 1.5 Gt CO​2​eq ​in SSP5-CC and even                    

less in SSP2-CC and SSP1-CC), but the trade structure (i.e. the distribution of exporters and importers)                

is similar. This includes the switch of exporters and importers in 2060, which in particular holds for                 

the big players on the carbon market: AFR, India, OAS, USA and China. 

 

 

Fig. S.5​: Permit trade (in Gt CO​2​eq); left panel: SSP2-POP; right panel: SSP5-POP 

The switch of exporters and importers does not at all mean that the contribution of the permit trade                  

to the mitigation costs is well-balanced. The contribution of the permit trade depends on the carbon                

price as well as on the discount factor. The effects of both nearly cancel out each other. Thus, the                   

areas in Fig. S.5 roughly illustrate for which regions we may expect positive or negative contributions                

to mitigation costs.  

While details on these contributions are provided in Table S.3, another important information should              

be highlighted – the magnitude of revenues and transfers. Details on the cumulative amount of               

transfers are shown in Table S.2 and Fig. S.2. Furthermore, as Table S.4 demonstrates, transfers can                

be huge measured as share of GDP. Figures are high in the short term due to the large amount of                    

permits traded and in the long term as a result of high carbon prices. Due to the initial existence of a                     

fragmented climate policy regime, we see highest relative transfer levels with the beginning of the               

emissions trading system in 2025 and 2030. In SSP5-POP and SSP2-POP, we see maximum values of                

around 20% of GDP for AFR; for India the initial revenues are between 4% and 5% of GDP. These                   

revenues on the carbon market are accompanied by payments that amount in 2030 to around 4% of                 

A.

126



14 

GDP for Russia, around 2% of GDP for China and MEA, and around 1% of GDP for LAM and USA (see                     

Table S.4).  Later in the century, substantial transfers flow in the opposite direction.  

Permit trading in the equality-based scenarios analyzed (CC and POP) implies huge financial transfers,              

which however is put into perspective when compared to alternative burden sharing schemes as              

investigated in section 5. Improved institutions are required for administering financial transfers with             

care to avoid adverse effects, such as a “climate finance curse” (Jakob et al., 2015, Kornek et al.,                  

2017). 

 

Table S.4: Share of Permit trade value on GDP in 2030, 2050 and 2100 (in %) 

 

  

  AFR CHN EUR IND LAM MEA OAS RUS USA 
SSP1-POP 2030 8.6 -0.6 -0.1 1.9 -0.4 -0.6 1.1 -1.8 -0.4 

2050 3.1 -0.2 -0.3 0.8 -0.3 -0.7 0.9 -2.0 -0.4 
2100 -2.0 0.2 0.3 -3.9 0.0 2.9 -1.4 1.2 2.1 

SSP1-CC 2030 3.1 -0.3 0.0 0.5 -0.1 -0.8 0.6 -0.5 -0.1 
2050 2.5 -0.1 -0.3 1.0 -0.3 -0.8 0.9 -2.0 -0.4 
2100 -2.3 2.4 0.2 -3.8 0.1 2.9 -1.3 1.4 2.0 

SSP2-POP 2030 18.8 -1.4 -0.4 4.6 -0.7 -1.3 2.1 -3.0 -0.8 
2050 7.1 0.0 -0.7 2.2 -0.2 -2.0 0.9 -3.0 -0.5 
2100 -7.4 1.3 0.0 -7.3 2.1 8.8 -3.4 8.2 4.3 

SSP2-CC 2030 6.3 -0.7 0.0 1.6 -0.2 -1.8 1.1 -0.5 -0.2 
2050 5.4 0.3 -0.7 2.5 -0.2 -0.2 1.0 -3.0 -0.6 
2100 -8.0 2.1 0.0 -7.2 2.3 8.7 -3.4 8.3 4.2 

SSP5-POP 2030 17.6 -1.3 -0.2 4.3 -1.2 -1.6 2.1 -3.2 -0.8 
2050 5.7 -0.3 -0.5 1.5 -0.7 -1.7 0.9 -2.8 -0.5 
2100 -7.0 1.3 -0.7 -11.1 0.4 15.4 -4.1 9.6 3.3 

SSP5-CC 2030 7.2 -0.6 0.0 1.6 -0.3 -1.9 1.3 -0.5 -0.4 
2050 4.8 0.0 -0.7 2.0 -0.5 -1.5 1.1 -2.7 -0.8 
2100 -8.0 3.6 -1.0 -10.3 1.1 15.4 -3.5 10.3 2.8 

A.3 Chapter 4: Appendix

127



15 

References 

Aboumahboub, T., G. Luderer, E. Kriegler, M. Leimbach, N. Bauer, M. Pehl,  L. Baumstark (2014). “On 

the Regional Distribution of Climate Mitigation Costs: The Impact of Delayed Cooperative Action.” 

Climate Change Economics 5: 1440002. doi:10.1142/S2010007814400028. 

Bauer, N., K. Calvin, J. Emmerling, O. Fricko, S. Fujimori, J. Hilaire, J. Eomb, V. Krey, E. Kriegler, I. 

Mouratiadou (2017). “Shared Socio-Economic Pathways of the Energy Sector – Quantifying the 

Narratives.” Global Environmental Change 42: 316-330. 

Bauer, N., L. Baumstark, M. Leimbach (2012). „The REMIND-R model: the role of renewables in the 

low-carbon transformation - first-best vs. second best worlds.” Climatic Change 114: 145-168. 

Bertram, C., G. Luderer, R. C. Pietzcker, E. Schmid, E. Kriegler, O. Edenhofer (2015). “Complementing 

Carbon Prices with Technology Policies to Keep Climate Targets within Reach.” Nature Climate 

Change 5:  235-239.  

Dellink, R., J. Chateau, E. Lanzi, B. Magne (2017). „Long-term growth projections in Shared 

Socioeconomic Pathways.” Global Environmental Change 42: 200-214. 

Fricko, O., P. Havlik, J. Roegelj, Z. Klimont, M. Gusti, N. Johnson, P. Kolp, M. Strubegger, H. Valin et al. 

(2017). “The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road 

scenario for the 21st century.”  Global Environmental Change 42: 251-267. 

Jakob, M., Steckel, J. C., Flachsland, C., Baumstark, L. (2015). „Climate finance for developing country 

mitigation: blessing or curse?” Climate and Development 7: 1-15. 

KC, S., W. Lutz (2017). „The Human Core of the SSPs: Population Scenarios by Age , Sex and Level of 

Education for all Countries to 2100.” Global Environmental Change 42: 181-192. 

Klein, D., F. Humpenöder, N. Bauer, J.P. Dietrich, A. Popp, B. Bodirsky, M.  Bonsch, H. Lotze-Campen, 

H. (2014). “The global economic long-term potential of modern biomass in a climate-constrained 

world”, Environmental Research Letters, Vol. 9, 074017. 

Kriegler, E., N. Bauer, A. Popp, F. Humpenöder, M. Leimbach, J. Strefler, L. Baumstark, et al (2017). 

“Fossil-Fueled Development (SSP5): An Energy and Resource Intensive Scenario for the 21st Century.” 

Global Environmental Change 42: 297–315.  

Leimbach M., N. Bauer, L. Baumstark, M. Lüken, O. Edenhofer (2010). „Technological Change and 

International Trade – Insights from REMIND-R.” Energy Journal 31: 109-136. 

Lotze-Campen, H., C. Müller, A. Bondeau, S. Rost, A. Popp, W. Lucht (2008). “Global food demand, 

productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical 

programming approach.” Agricultural Economics 39: 325–338. 

Luderer, G., M. Leimbach, N. Bauer, E. Kriegler, L. Baumstark, C. Bertram, A. Giannousakis, et al. 

(2015). “Description of the REMIND Model (Version 1.6).” SSRN Scholarly Paper. Rochester, NY: Social 

Science Research Network, November 30, 2015. ​https://papers.ssrn.com/abstract=2697070​. 

A.

128



16 

Meinshausen, M., S. C. B. Raper, T. M. L. Wigley (2011). “Emulating Coupled Atmosphere-Ocean and               

Carbon Cycle Models with a Simpler Model, MAGICC6–Part 1: Model Description and Calibration.”             

Atmos. Chem. Phys 11: 1417–1456. 

A.3 Chapter 4: Appendix

129





References

Arrow, K. et al. (July 26, 2013). “Determining Benefits and Costs for Future
Generations”. In: Science 341.6144, pp. 349–350. issn: 0036-8075, 1095-9203. doi:
10.1126/science.1235665.

Baker, Erin (Feb. 1, 2006). “Increasing Risk and Increasing Informativeness: Equivalence
Theorems”. In: Operations Research 54.1, pp. 26–36. issn: 0030-364X. doi: 10.
1287/opre.1050.0213.

Baker, Erin et al. (May 1, 2015). “Future costs of key low-carbon energy technologies:
Harmonization and aggregation of energy technology expert elicitation data”. In:
Energy Policy 80, pp. 219–232. issn: 0301-4215. doi: 10.1016/j.enpol.2014.10.
008.

Bauer, Nico et al. (July 2, 2018). “Global energy sector emission reductions and
bioenergy use: overview of the bioenergy demand phase of the EMF-33 model
comparison”. In: Climatic Change. issn: 1573-1480. doi: 10.1007/s10584-018-
2226-y.

Bauer, Nico et al. (Dec. 2020). “Quantification of an efficiency–sovereignty trade-off in
climate policy”. In: Nature 588.7837. Number: 7837 Publisher: Nature Publishing
Group, pp. 261–266. issn: 1476-4687. doi: 10.1038/s41586-020-2982-5.

Bertram, Christoph et al. (Feb. 2, 2015). “Complementing carbon prices with technology
policies to keep climate targets within reach”. In: Nature Climate Change advance
online publication. issn: 1758-678X. doi: 10.1038/nclimate2514.

Bertram, Christoph et al. (2018). “Targeted policies can compensate most of the
increased sustainability risks in 1.5 °C mitigation scenarios”. In: Environmental
Research Letters 13.6, p. 064038. issn: 1748-9326. doi: 10.1088/1748- 9326/
aac3ec.

Bosetti, Valentina et al. (May 1, 2015). “Sensitivity to energy technology costs: A multi-
model comparison analysis”. In: Energy Policy 80, pp. 244–263. issn: 0301-4215.
doi: 10.1016/j.enpol.2014.12.012.

Broeren, M. L. M., D. Saygin, and M. K. Patel (Jan. 1, 2014). “Forecasting global
developments in the basic chemical industry for environmental policy analysis”. In:

131

https://doi.org/10.1126/science.1235665
https://doi.org/10.1287/opre.1050.0213
https://doi.org/10.1287/opre.1050.0213
https://doi.org/10.1016/j.enpol.2014.10.008
https://doi.org/10.1016/j.enpol.2014.10.008
https://doi.org/10.1007/s10584-018-2226-y
https://doi.org/10.1007/s10584-018-2226-y
https://doi.org/10.1038/s41586-020-2982-5
https://doi.org/10.1038/nclimate2514
https://doi.org/10.1088/1748-9326/aac3ec
https://doi.org/10.1088/1748-9326/aac3ec
https://doi.org/10.1016/j.enpol.2014.12.012


REFERENCES

Energy Policy 64, pp. 273–287. issn: 0301-4215. doi: 10.1016/j.enpol.2013.09.
025.

Burke, M. et al. (Apr. 15, 2016). “Opportunities for advances in climate change
economics”. In: Science 352.6283, pp. 292–293. issn: 0036-8075, 1095-9203. doi:
10.1126/science.aad9634.

Creutzig, Felix et al. (Apr. 2018). “Towards demand-side solutions for mitigating
climate change”. In: Nature Climate Change 8.4, pp. 260–263. issn: 1758-6798. doi:
10.1038/s41558-018-0121-1.

Golub, Alexander, Daiju Narita, and Matthias G. W. Schmidt (Apr. 1, 2014).
“Uncertainty in Integrated Assessment Models of Climate Change: Alternative
Analytical Approaches”. In: Environmental Modeling & Assessment 19.2, pp. 99–109.
issn: 1420-2026, 1573-2967. doi: 10.1007/s10666-013-9386-y.

Hall, Jim W. et al. (Oct. 1, 2012). “Robust Climate Policies Under Uncertainty: A
Comparison of Robust Decision Making and Info-Gap Methods”. In: Risk Analysis
32.10, pp. 1657–1672. issn: 1539-6924. doi: 10.1111/j.1539-6924.2012.01802.x.

Held, Hermann (Jan. 1, 2019). “Cost Risk Analysis: Dynamically Consistent Decision-
Making under Climate Targets”. In: Environmental and Resource Economics 72.1,
pp. 247–261. issn: 1573-1502. doi: 10.1007/s10640-018-0288-y.

Hotelling, Harold (Apr. 1, 1931). “The Economics of Exhaustible Resources”. In:
Journal of Political Economy 39.2. Publisher: The University of Chicago Press,
pp. 137–175. issn: 0022-3808. doi: 10.1086/254195.

Kann, Antje and John P. Weyant (Jan. 1, 2000). “Approaches for performing uncertainty
analysis in large-scale energy/economic policy models”. In: Environmental Modeling
& Assessment 5.1, pp. 29–46. issn: 1420-2026, 1573-2967. doi: 10 . 1023 / A :
1019041023520.

King, Andrew D. and Luke J. Harrington (2018). “The Inequality of Climate Change
From 1.5 to 2°C of Global Warming”. In: Geophysical Research Letters 45.10.
_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018GL078430,
pp. 5030–5033. issn: 1944-8007. doi: https://doi.org/10.1029/2018GL078430.

Kriegler, Elmar et al. (Feb. 1, 2014a). “A new scenario framework for climate change
research: the concept of shared climate policy assumptions”. In: Climatic Change
122.3, pp. 401–414. issn: 0165-0009, 1573-1480. doi: 10.1007/s10584-013-0971-5.

Kriegler, Elmar et al. (Jan. 28, 2014b). “The role of technology for achieving climate
policy objectives: overview of the EMF 27 study on global technology and climate
policy strategies”. In: Climatic Change 123.3. 00138, pp. 353–367. issn: 0165-0009,
1573-1480. doi: 10.1007/s10584-013-0953-7.

Lara, M. De and L. Gilotte (2009). “Precautionary Effect and Variations of the Value of
Information”. In: Uncertainty and Environmental Decision Making. Ed. by Jerzy A.

132

https://doi.org/10.1016/j.enpol.2013.09.025
https://doi.org/10.1016/j.enpol.2013.09.025
https://doi.org/10.1126/science.aad9634
https://doi.org/10.1038/s41558-018-0121-1
https://doi.org/10.1007/s10666-013-9386-y
https://doi.org/10.1111/j.1539-6924.2012.01802.x
https://doi.org/10.1007/s10640-018-0288-y
https://doi.org/10.1086/254195
https://doi.org/10.1023/A:1019041023520
https://doi.org/10.1023/A:1019041023520
https://doi.org/https://doi.org/10.1029/2018GL078430
https://doi.org/10.1007/s10584-013-0971-5
https://doi.org/10.1007/s10584-013-0953-7


REFERENCES

Filar and Alain Haurie. International Series in Operations Research & Management
Science 138. Springer US, pp. 239–253. isbn: 978-1-4419-1128-5 978-1-4419-1129-2.
doi: 10.1007/978-1-4419-1129-2_8.

Lempert, Robert J. et al. (Apr. 1, 2006). “A General, Analytic Method for Generating
Robust Strategies and Narrative Scenarios”. In: Management Science 52.4, pp. 514–
528. issn: 0025-1909. doi: 10.1287/mnsc.1050.0472.

Levesque, Antoine et al. (Apr. 1, 2018). “How much energy will buildings consume in
2100? A global perspective within a scenario framework”. In: Energy 148. tex.ids:
levesque_how_2018-1, pp. 514–527. issn: 0360-5442. doi: 10.1016/j.energy.
2018.01.139.

Lorenz, Alexander et al. (Feb. 1, 2012). “How to measure the importance of climate risk
for determining optimal global abatement policies?” In: Climate Change Economics
03.1, p. 1250004. issn: 2010-0078. doi: 10.1142/S2010007812500042.

Luderer, Gunnar et al. (Nov. 30, 2015). Description of the REMIND Model (Version
1.6). SSRN Scholarly Paper ID 2697070. Rochester, NY: Social Science Research
Network.

Luderer, Gunnar et al. (July 2018). “Residual fossil CO 2 emissions in 1.5–2 °C
pathways”. In: Nature Climate Change 8.7, p. 626. issn: 1758-6798. doi: 10.1038/
s41558-018-0198-6.

Luderer, Gunnar et al. (2021). “When the most valuable becomes the cheapest:
Electrification of global energy towards climate neutral energy systems”. In:
forthcoming.

Marangoni, G. et al. (Jan. 16, 2017). “Sensitivity of projected long-term CO2 emissions
across the Shared Socioeconomic Pathways”. In: Nature Climate Change advance
online publication. 00000. issn: 1758-678X. doi: 10.1038/nclimate3199.

Moss, Richard H. et al. (Feb. 11, 2010). “The next generation of scenarios for climate
change research and assessment”. In: Nature 463.7282, pp. 747–756. issn: 0028-0836.
doi: 10.1038/nature08823.

O’Neill, Brian C. et al. (Feb. 1, 2014). “A new scenario framework for climate change
research: the concept of shared socioeconomic pathways”. In: Climatic Change 122.3,
pp. 387–400. issn: 0165-0009, 1573-1480. doi: 10.1007/s10584-013-0905-2.

Pietzcker, Robert C. et al. (Jan. 1, 2014). “Long-term transport energy demand and
climate policy: Alternative visions on transport decarbonization in energy-economy
models”. In: Energy 64, pp. 95–108. issn: 0360-5442. doi: 10.1016/j.energy.
2013.08.059.

Popp, Alexander et al. (July 2011). “The economic potential of bioenergy for climate
change mitigation with special attention given to implications for the land system”.

133

https://doi.org/10.1007/978-1-4419-1129-2_8
https://doi.org/10.1287/mnsc.1050.0472
https://doi.org/10.1016/j.energy.2018.01.139
https://doi.org/10.1016/j.energy.2018.01.139
https://doi.org/10.1142/S2010007812500042
https://doi.org/10.1038/s41558-018-0198-6
https://doi.org/10.1038/s41558-018-0198-6
https://doi.org/10.1038/nclimate3199
https://doi.org/10.1038/nature08823
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1016/j.energy.2013.08.059
https://doi.org/10.1016/j.energy.2013.08.059


REFERENCES

In: Environmental Research Letters 6.3. Publisher: IOP Publishing, p. 034017. issn:
1748-9326. doi: 10.1088/1748-9326/6/3/034017.

Riahi, Keywan et al. (Jan. 2017). “The Shared Socioeconomic Pathways and their
energy, land use, and greenhouse gas emissions implications: An overview”. In:
Global Environmental Change 42, pp. 153–168. issn: 0959-3780. doi: 10.1016/j.
gloenvcha.2016.05.009.

Rogelj, Joeri et al. (Sept. 2019). “A new scenario logic for the Paris Agreement long-
term temperature goal”. In: Nature 573.7774, pp. 357–363. issn: 1476-4687. doi:
10.1038/s41586-019-1541-4.

Schultes, Anselm et al. (Aug. 15, 2020). Economic damages from on-going climate
change imply deeper near-term emission cuts.

Strefler, Jessica et al. (2020). “Alternative carbon price trajectories can avoid excessive
carbon removal”. In: Nature Communications (accepted).

Tavoni, Massimo et al. (Nov. 1, 2013). “The distribution of the major economies’ effort
in the durban platform scenarios”. In: Climate Change Economics 04.4, p. 1340009.
issn: 2010-0078. doi: 10.1142/S2010007813400095.

Traeger, Christian P. (2009). “Recent Developments in the Intertemporal Modeling
of Uncertainty”. In: Annual Review of Resource Economics 1.1, pp. 261–286. doi:
10.1146/annurev.resource.050708.144242.

UNFCCC (2015). “Paris Agreement”. In: https://unfccc.int/process-and-meetings/the-
paris-agreement/the-paris-agreement.

Vogt-Schilb, Adrien, Guy Meunier, and Stéphane Hallegatte (Mar. 1, 2018). “When
starting with the most expensive option makes sense: Optimal timing, cost
and sectoral allocation of abatement investment”. In: Journal of Environmental
Economics and Management 88, pp. 210–233. issn: 0095-0696. doi: 10.1016/j.
jeem.2017.12.001.

Weitzman, Martin L (Jan. 28, 2009). “On Modeling and Interpreting the Economics of
Catastrophic Climate Change”. In: The Review of Economics and Statistics 91.1.
Publisher: MIT Press, pp. 1–19. issn: 0034-6535. doi: 10.1162/rest.91.1.1.

Wenz, Leonie et al. (July 2020). “Road to glory or highway to hell? Global road access
and climate change mitigation”. In: Environmental Research Letters 15.7. Publisher:
IOP Publishing, p. 075010. issn: 1748-9326. doi: 10.1088/1748-9326/ab858d.

134

https://doi.org/10.1088/1748-9326/6/3/034017
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1038/s41586-019-1541-4
https://doi.org/10.1142/S2010007813400095
https://doi.org/10.1146/annurev.resource.050708.144242
https://doi.org/10.1016/j.jeem.2017.12.001
https://doi.org/10.1016/j.jeem.2017.12.001
https://doi.org/10.1162/rest.91.1.1
https://doi.org/10.1088/1748-9326/ab858d

	Title Page
	Zusammenfassung
	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Structural elements of climate change mitigation research
	1.2.1 Economics of climate change mitigation
	1.2.1.1 Market-based policy instruments
	1.2.1.2 The price of carbon and its social cost
	1.2.1.3 New approaches to established concepts
	1.2.1.4 Further topics

	1.2.2 The need for scenarios
	1.2.3 Models
	1.2.3.1 Physical science models
	1.2.3.2 Impact models
	1.2.3.3 Energy-economy-climate models


	1.3 Uncertainties of climate change and solution approaches
	1.3.1 Introduction - Uncertainty classification
	1.3.2 Methodological approaches to uncertainty analysis
	1.3.2.1 Uncertainty propagation
	1.3.2.2 Decision-making under uncertainty

	1.3.3 Sources of uncertainty
	1.3.3.1 Regulatory uncertainty
	1.3.3.2 Socio-economic uncertainty
	1.3.3.3 Uncertainty in natural phenomena


	1.4 Thesis outline
	1.4.1 The effect of economic growth uncertainty on climate policy
	1.4.2 The effect of techno-economic parameters on climate mitigation
	1.4.3 Equity and socio-economic uncertainty


	2 Economic Growth Uncertainty
	2.1 Introduction
	2.2 NDCs and target sequencing after Paris
	2.3 The literature on target comparison
	2.4 Study design
	2.5 Results
	2.6 Conclusions
	2.7 References

	3 Uncertainty in Techno-Economic Parameters
	3.1 Introduction
	3.2 Scenarios and methods
	3.3 The effect of technology costs on mitigation indicators
	3.4 Summary and conclusions
	3.5 Appendix
	3.6 References

	4 Socio-economic Uncertainty and Burden Sharing of Climate Change Mitigation
	4.1 Introduction
	4.2 Literature
	4.3 Model and experimental design
	4.4 Global mitigation level and costs across SSPs
	4.5 Regional burden sharing analysis
	4.6 Equality-based burden sharing
	4.7 Conclusions
	4.8 References

	5 Discussion and Outlook
	5.1 Summary
	5.1.1 Economic Growth Uncertainty (Chapter 2)
	5.1.2 Uncertainty in Techno-Economic Parameters (Chapter 3)
	5.1.3 Socio-economic Uncertainty and Burden Sharing of Climate Change Mitigation (Chapter 4)

	5.2 Conclusions
	5.2.1 Overall conclusions
	5.2.1.1 Magnitude of the effect of socio-economic uncertainty on climate mitigation pathways
	5.2.1.2 Qualitative insights

	5.2.2 Discussion
	5.2.2.1 General modelling approach
	5.2.2.2 Modelling of climate policies
	5.2.2.3 Spatial flexibility and modelling of trade

	5.2.3 Suitability of used uncertainty analysis methods
	5.2.3.1 Discrete Stochastic Programming
	5.2.3.2 Sensitivity analysis
	5.2.3.3 Scenario analysis
	5.2.3.4 Regulatory uncertainty


	5.3 Future work
	5.3.1 Overcoming limitations
	5.3.2 Further topics


	Appendix A 
	A.1 Statement of Contribution
	A.2 Chapter 2: Appendix
	A.3 Chapter 4: Appendix

	References

