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Summary

This thesis analyses three problems from discrete geometry and optimization via discrete-
analytic hybrid methods.

The absolute value equation (AVE) is a piecewise linear system which is equivalent
to the linear complementarity problem (LCP) and thus generalizes linear and quadratic
programming. Unique solvability for arbitrary right-hand sides has long been comprehen-
sively characterized for both systems, but not non-unique solvability. To fill this gap in
the theory, we analyze homotopies of the identity map and the piecewise linear function
corresponding to the AVE. Doing so, we identify certain real eigenvalues of the coefficient
matrix of the AVE that determine the singularity-structure of these homotopies. Let k
be the number of these eigenvalues which is larger than one. We prove that the mapping
degree of the aforementioned piecewise linear function is congruent to (k + 1) mod 2. We
also derive an exact formula for the degree, which is more technical. Finally, we develop
the analogous results for the LCP.

The calibration of internal combustion engines is a problem that has risen to promi-
nence during the so-called diesel crisis. Engine behavior can be modeled as a function
from the space of actuators to the space of performance measurands. A calibration solu-
tion is a set of lookup tables that associate performance demands to points in the actuator
space which achieve these demands, while respecting side constraints such as emission
standards. We develop an adaptive multigrid method for identifying and circumventing
loci of turbulence, which are the cause of emission spikes during the generation of the
lookup tables. With the resulting algorithm we calibrate a benchmark engine model in
accordance with several EURO emission norms.

Dürer’s problem asks whether every 3-polytope has a net, that is, whether it is pos-
sible to cut it along some spanning tree of its edge graph so that the resulting connected
surface may be unfolded flat into the plane without self-overlaps. A 3-prismatoid is the
convex hull of two polygons A, B in parallel planes HA and HB . It is called nested if the
orthogonal projection of A to HB is properly contained in B, or vice versa. We show that
every nested prismatoid has a net. To this end we adapt and extend an unfolding tech-
nique pioneered by O’Rourke in his work on nearly flat, acutely triangulated convex caps.
The basic approach is to project a nested prismatoid P—a convex cap by definition—to
the plane HB , establish a cutting scheme for the flat polytope, lift the scheme back into
P , and then prove that a certain continuous deformation of the unfolding of the flat
polytope into the unfolding of P does not cause overlaps.





Zusammenfassung

Diese Arbeit behandelt drei Probleme aus der diskreten Geometrie und Optimierung
mittels diskret-analytischer Hybridmethoden.

Die Absolutwertgleichung (AWG) ist ein stückweise lineares Gleichungssystem, das
äquivalent zum linearen Komplementaritätsproblem (LCP) ist und daher lineare und
quadratische Programmierung generalisiert. Die vollständige Charakterisierung eindeu-
tiger Lösbarkeit von AWG und LCP für beliebige rechte Seiten sind klassische Resultate
der Literatur. Eine vergleichbare Charakterisierung der nicht-eindeutigen Lösbarkeit
existiert jedoch nicht. Um diese Lücke in der Theorie zu schließen, analysiseren wir Ho-
motopien der Identitätsabbildung und der stückweise linearen Funktion, welche durch
die AWG definiert wird. Hierbei identifizieren wir bestimmte reelle Eigenwerte der Koef-
fizientenmatrix der AWG, welche die Singulariätsstruktur der untersuchten Homotopien
determinieren. Es sei k die Zahl der besagten Eigenwerte, welche größer als eins sind.
Wir beweisen, dass in diesem Fall der Abbildungsgrad der stückweise linearen Funktion,
welche der AWG korrespondiert, kongruent zu (k + 1) mod 2 ist. Desweiteren leiten wir
eine exakte Formel für den Abbildungsgrad her. Schließlich entwickeln wir die analogen
Ergebnisse für das LCP.

Die Kalibrierung von Verbrennungsmotoren ist ein Problem, das während der so-
genannten Dieselkrise zur Prominenz gelangte. Das Motorenverhalten kann als eine
Funktion vom Raum der Aktuatoren in den Raum der Leistungsmesswerte modelliert
werden. Eine Kalibrierungslösung ist ein Satz von Lookup-Tabellen, die einer Menge von
Leistungsanforderungen eine Menge von Punkten im Aktuatorenraum zuordnet, welche
besagte Anforderungen, unter Berücksichtigung von Nebenbedingungnen wie z.B. Emis-
sionsgrenzen, realisieren. Wir entwickeln ein adaptives Mehrgitterverfahren um bei der
Erstellung der Kalibrierungslösung Regionen stark nichtlinearen Motorenverhaltens im
Aktuatorenraum, welche eine Hauptursache von Emissionsspitzen sind, zu identifizieren
und zu umgehen. Mittels des resultierenden Algorithmus kalibrieren wir ein Benchmark-
Motorenmodell unter Einhaltung verschiedener EURO-Abgasnormen.

Dürers Problem stellt die Frage, ob jedes 3-Polytop ein Netz hat, das heißt, ob man
es entlang eines Spannbaums seines Kantengraphen aufschneiden kann, so dass die resul-
tierende zusammenhängende Fläche ohne Selbstüberlappungen in die Ebene aufgefaltet
werden kann. Ein 3-Prismatoid ist die konvexe Hülle zweier Polygone in parallelen Ebe-
nen HA und HB . Es wird verschachtelt genannt, falls die orthogonale Projektion von
A auf HB echt in B enthalten ist. Wir beweisen, dass jedes verschachtelte Prismatoid
ein Netz hat. Hierzu adaptieren und erweitern wir eine Auffaltungsstrategie, die von
O’Rourke eingeführt wurde. Der Grundgedanke ist, ein verschachteltes Prismatoid P
nach HB zu projizieren, ein Schnittschema für das flache Polytop einzuführen, nach P
zurück zu projizieren und dann zu beweisen, dass eine bestimmte stetige Verformung der
Auffaltung des flachen Polytops in die Auffaltung von P nicht zu Überlappungen führt.
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Introduction

The fields of nonlinear optimization and discrete geometry naturally interact and en-
rich each other. For example, a frequent object of study in nonlinear optimization are
functions which are nonsmooth in the sense that they are continuous and differentiable
everywhere except on some lower dimensional surface or other “small” subsets of the
domain. The cuts in the flow of derivative information caused by nonsmoothness turn
analytical problems into hybrids of interwoven analytic and combinatorial issues that
necessitate the incorporation of discrete methods into the toolbox for their investigation.

This is exemplified by generalized derivative concepts such as the Bouligand deriva-
tive, wherein the local linear approximation of a function—the classical derivative—
is replaced by a piecewise linear approximation whose linear pieces are the directional
derivatives, if they exist [Sch12, p. 67ff]. The combinatorial difficulty of the correspond-
ing piecewise linear system – whose solution may be a step, e.g., in a generalized Newton’s
method incorporating the Bouligand derivative – can often be bounded in terms of ana-
lytic properties of the underlying nonsmooth function. Coherent orientation, convexity,
and local bijectivity are inherited by definition [Sch12, p. 67ff]. Other properties, such as
local Lipschitz constants, have a more subtle influence on the structure of local piecewise
linearizations; see, for example [Gri13], [GBRS15], [GSL+18].

The key difficulty of solving a piecewise linear system is to determine the cell(s) of the
corresponding polyhedral domain-subdivision containing the solution(s), of which there
can be exponentially many. For functions with finitely many linear pieces this task can
be reduced to solving a linear complementarity problem (LCP), or an equivalent absolute
value equation (AVE) [GBRS15, Lem. 6.5.]. The piecewise linear functions corresponding
to AVE and LCP are linear on the orthants of Rn and thus positively homogeneous. This
allows to investigate them as spherical maps, e.g., via

Sn−1 ∋ x 7→ F (x)
∥F (x)∥2

,

making a straightforward application of topological tools such as homotopy and degree
theory possible. Moreover, since the orthants of Rn are simplicial cones, key structural
questions about the functions can be answered by means of basic linear algebra. Switch-
ing back and forth between the spherical and the simplicial view facilitates the proof of
our first main result [RTC19].
Main Result 1. Exact formulae and formulae mod 2 for the degree of the piecewise
linear functions associated to an LCP, resp., AVE.

Piecewise linearizations can also occur in a context where the investigated function
is not given by an analytic expression, but instead in the form of experimental samples.
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In the second chapter of this thesis we develop an algorithm for the practical calibration
of internal combustion engines. A calibration solution is a set of support points of a
piecewise linear function, called an engine map, that outputs the necessary engine settings
for a given performance demand. As indicated above, the engine behavior is not given
as a finite formula or program, but can only be sampled. It has to be assumed that
the relations between the actuator settings of an engine and its performance data is
nonsmooth or at least not sufficiently smooth, since smooth models consistently fail to
predict the engine behavior with sufficient accuracy [BJP+20]. In our approach this
failure of smooth models is turned into a feature, by utilizing a strong divergence between
model-predicted and actual performance as an indicator for nonsmooth engine behavior
and the necessity to increase the sampling density. This incorporation of a smooth
technique is complemented by the use of discrete optimization machinery, specifically
mixed integer nonlinear programs, to select a set of suitable support points for the engine
map from the collected data. This results in our second main contribution [BJP+20].

Main Result 2. A practical algorithm for the calibration of internal combustion engines
in accordance with several EURO emission norms.

Polytopes and polyhedra are an object of study in numerous optimization contexts,
e.g., as feasible sets of linear programs or linear regions of piecewise linear functions.
The Clarke derivative, another generalized derivative concept, is the convex hull of the
matrices that define the linear pieces of the Bouligand derivative [Sch12, p. 89]. For
example, for the piecewise linear function corresponding to an AVE the Clarke derivative
at the origin of Rn is a cross polytope with vertices I − AS, where A ∈ Mn(R) is the
AVE’s coefficient matrix and S ∈ diag({−1, 1}n).

The combinatorics of a polytope are uniquely defined by its face lattice [Zie95, p.
55]. Above dimension 3 it is not clear if and when a given lattice is the face lattice of a
polytope. In dimension 3 this question is settled by Steinitz’ theorem which says that a
graph is the edge graph of a 3-polytope if and only if it is 3-connected and planar [Ste22].
This gives a combinatorial characterization of edge graphs of 3-polytopes.

However, relevant polytope classes can be hybrids of combinatorial and metric restric-
tions. For example, 3-prismatoids are defined partially in combinatorial terms, in that
they have two designated facets so that all edges which are not contained in either must
be incident to one vertex of each, and partially in metric terms, since the two designated
facets must lie in parallel planes.

It is an open question, whether every 3-prismatoid is edge-unfoldable, that is, if it
can be flattened into the plane without self-overlap after cutting a suitable spanning tree
of its edge-graph. The combinatorial structure of 3-prismatoids implies that they can
be decomposed into three distinct parts, the two aforementioned designated facets and
the connected set of all other facets which is called the band. We consider a subclass
of 3-prismatoids with an additional metric restriction, called nested 3-prismatoids. We
show that the band of a nested prismatoid can always be cut into two parts which are
of “small enough” curvature so that the two band pieces and two designated facets can
be, via three carefully selected edge-gluings, reconnected into a surface whose unfolding
does not self-intersect [Rad21].

Main Result 3. A constructive proof that every nested 3-prismatoid is edge-unfoldable.

We will now introduce the three included works in more detail.

2



0.1 Degree theory for the absolute value equation

The Linear complementarity problem (LCP) stands at the crossroads of numerous opti-
mization contexts. Not only do many problems in computational mechanics arise nat-
urally in LCP form. Linear and quadratic programs are special cases of the LCP. For
a comprehensive introduction to the topic, see [CPS92]. Other relevant optimization
problems, such as equilibrium computations in bimatrix games [CPS92], or – as men-
tioned above – the solution of arbitrary finite piecewise linear systems [GBRS15], can be
reduced to solving an LCP.

The by now classical standard form was introduced by Cottle and Dantzig in [CD68].
Let q ∈ Rn and M ∈ Mn(R), where Mn(R) denotes the space of n × n real matrices.
Then the linear complementarity problem LCP(M, q) is to find vectors v, w ∈ Rn

≥0 with
wT v = 0 so that

w = Mv + q .

Equivalent systems have been formulated, e.g., via max or min expressions [BC08], and
absolute values [Neu90, Chap. 6]. Arguably, the so-called absolute value equation (AVE)
stands out among these, both in terms of depth and quantity of the associated publica-
tions. Let A ∈ Mn(R) and b ∈ Rn. Then the AVE poses the problem to find a vector
z ∈ Rn so that

z − A|z| = b ,

where | · | denotes the componentwise absolute value. The term absolute value equation
was coined only recently by Mangasarian in [Man07], but the first journal publication
to investigate the system – in the context of the inversion of interval matrices and the
solution of linear interval systems – was authored by Rohn several decades earlier [Roh89].
The equivalence of AVE and LCP was already noted in the latter reference and exploited
in an existence proof for LCP solutions that avoids any use of P -matrices.

Via the identities

z = max(0, z) − max(0, −z) and |z| = max(0, z) + max(0, −z) ,

the AVE can be rewritten as

(I − A) max(0, z) + (I + A) max(0, −z) = b .

A multiplication with the inverse of either I − A or I + A, if they exist, turns the above
equation into an LCP in standard form.

For for both AVE and LCP unique solvability is comrehensively characterized. The
LCP(M, q) is uniquely solvable for arbitrary right-hand sides q ∈ Rn if and only if M is
a P-matrix, that is, if all principal minors of M are positive [CPS92]. Let Sn be the set
of n × n diagonal matrices with entries in {−1, 1}, then the sign-real spectrum of A is
defined as the set of real eigenvalues of the 2n matrices SA, or equivalently AS, where
S ∈ Sn. The largest element of the sign-real spectrum of A is called the sign-real spectral
radius of A. Rump and Rohn independently showed that the piecewise linear function

FA : Rn → Rn , z 7→ z − A|z|

is a PL homeomorphism and the AVE uniquely solvable if and only if the sign-real
spectral radius is smaller than 1 [Rum97], [Neu90, Chap. 6]. In this case (I − A) and
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(I + A) are invertible and (I − A)−1(I + A), respectively (I + A)−1(I − A), the coefficient
matrices of the equivalent LCPs in standard form, are P -matrices.

The sign-real spectral radius can be interpreted as a piecewise linear analogue of
contractivity conditions for linear operators, or as a generalized Perron root for matrices
without sign-restrictions [Rum97]. Its computation is equivalent to the computation
of the weighted componentwise distance to the nearest singular matrix [Rum97]. This
relation provides a direct connection between the condition of the matrices I − AS (and
I − SA) and the complexity of the AV E, which is NP-complete in general [Chu89],
but lies in O(n3) for certain uniquely solvable systems with well-conditioned matrices
I− AS [Rad16]. The latter fact makes the AVE particularly interesting in light of recent
developments in real algebraic geometry that deal with precisely such connections of
complexity and condition, see [AL17, BC13] for founding texts of the research area.

For mere (possibly non-unique) solvability of AVE and LCP there has never been
derived a similarly comprehensive characterization as for unique solvability, neither in
terms of the sign-real spectrum of A, nor of subdeterminants of the coefficient matrix of
an LCP. We close this gap in the theory by characterizing the mapping degree of FA and
its LCP-counterpart.

To this end, we define the concept of aligned values and the aligned spectrum. On
the AVE side an aligned value is a nonnegative element of the sign-real spectrum of A
so that there exists a corresponding eigenvector of SA in the positive orthant of Rn, or
equivalently an eigenvector of AS which lies in the orthant corresponding to the signature
S.

We establish that a generic matrix form, which excludes certain degeneracies, can
be achieved by a random perturbation with probability 1 (Proposition 1.4.2). Such a
perturbation does not affect the mapping degree. This allows us to prove two theorems.
The first one gives the following concise formula for the degree mod 2 [RTC19].
Theorem 1.1.1. Let A ∈ Rn×n be generic. Then

deg FA ≡ (k + 1) mod 2 ,

where k is the number of aligning values larger than 1. Moreover, the degree of FA is 1
if all aligning values are smaller than 1, and 0 if all are larger than 1.

Let λ1, λ2, . . . be the aligning values of FA ordered by descending magnitude and let
t ∈ R≥0. The key idea of the proof of Theorem 1.1.1 is to establish the degree changes via
an analysis of the homotopy (z, t) 7→ FtA in small neighborhoods of the reciprocals of the
λi by means which are, if not exactly Morse-theoretical, certainly unthinkable without
the general inspiration of Morse theory.

The second theorem gives an exact, but more technical formula, for the statement of
which we refer to Chapter 1. Let Si be the signature matrix corresponding to an aligned
value λi. The exact formula for the degree is derived by summing over the signs of the
derivatives of the characteristic polynomials of the matrices ASi evaluated in the λi.

Further, we develop LCP-analogues of all definitions and results that we derived for
the AVE. The key reason that the main statements are proved for the lesser known AVE
and then transferred to the LCP and not the other way around, is that the structural
similarity of the AVE’s left side

z − A|z| = Iz − A|z| = (I − AS)z = −(AS − I)z
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to an eigenvalue equation, which makes it possible to formulate various key arguments
in a slicker fashion than it could be done in the LCP-setting.

Concerning complexity, it is known that computation of the sign-real spectral radius
is NP-hard. Moreover, determining an aligned vector to a given aligned value λ means to
obtain a nontrivial solution for the AVE z −λ−1A = 0, which is an NP-complete problem
due to the NP-completeness of the equivalent problem for the LCP [Chu89]. It is thus
likely that determining even a part of the aligned spectrum is a hard problem as well.

0.2 Calibration of internal combustion engines

The calibration of internal combustion engines is a problem that has risen to prominence
during the so-called diesel crisis. Engine behavior can be modeled as a function from the
space of engine actuators to the space of engine performance measurands. A calibration
solution is a set of lookup tables, one per actuator. These tables associate an actuator
setting to each element of a set of k × k revolution frequency/torque demands for the
engine. Via their combination, the calibration solution associates to each of the k × k
revolution frequency/torque demands a point in the actuator space. Values in between
are linearly interpolated by the engine control unit. A solution is feasible if it satisfies
two criteria. It must conform to emission standards, such as the EURO norms set by the
EU, cf. [M+16], and it must be drivable. Drivability means that the distance between
neighboring solution points in the actuator space is bounded in order to prevent engine
damage due to an overly rapid change of settings. An optimal calibration solution is a
feasible solution that minimizes fuel consumption.

Traditionally, calibration solutions were obtained by measuring the actuator space on
a uniform grid and then optimizing on the set of measurements. Modern engines have
in the order of ten actuators and sensors each. This leads to a combinatorial explosion
of the number of measurements that would have to be performed on a uniform grid.
Due to the aforementioned limits of the actuator variation speed, the required number of
measurements makes the uniform grid approach infeasible on actual physical test engines.
Moreover, even if the measurements could somehow be performed, optimizing over the
immense resulting data set would be virtually impossible.

The strategies to circumvent the curse of high dimensionality can be divided into
two major lines of thought: modeling of the engine behavior via smooth functions and
adaptive meshing. The first approach employs (a comparably small number of) engine
measurements to determine the parameters of some model function that is fitted to the
engine behavior. Several software packages are available to this end, cf. [KPF+03],
[KKL10], and [Mat18]. Due to their smoothness, modeling functions fail to capture the
small subsets of the actuator space whereon the engine function displays a “strongly
nonlinear” behavior, which is a main cause of emission spikes. In an engineering context
the term “strong nonlinearity” has to be understood phenomenologically. A function is
strongly nonlinear if measurements in some small neighborhood vary extensively in a
manner that is not satisfactorily captured by smooth models. Likely underlying causes
include insufficient and lack of differentiability. Adaptive meshing methods aim to remedy
this problem by concentrating measurements in and near areas of strong nonlinearity.

The starting point of our project was the fact that even the–at the time–most suc-
cessful adaptive meshing method in the field, the local linear neuro-fuzzy model LOLIMOT
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(local linear model tree) [SHI00], failed to produce calibration solutions for current emis-
sion norms. We base our calibration algorithm on LOLIMOT and refine the latter in several
key aspects. LOLIMOT detects insufficient smoothness by comparing local models to actual
measurements. This knowledge is used to fit models to smaller and smaller neighbor-
hoods, which may lead to overfitting. We zoom in on strong nonlinearities with a similar
detection method. Our algorithm differs from LOLIMOT in that we do not produce a
(local linear neuro-fuzzy) model, but instead use a mixed integer nonlinear programming
approach to select actual measured data points for the final calibration solution.

Further, LOLIMOT composes the calibration solution componentwise, which can lead
to redundancies during the physical experiments and unpredictable interactions of the
component functions during the assembly of the calibration solution. Our process con-
siders all actuators and measurands at once by a randomized measurement distribution
approach for the whole actuator space which is weighted by the density of measurements
already taken and the measure of local smoothness described above. This combination
of methods allows us to significantly improve on the performance of LOLIMOT. The main
result of our work [BJP+20] is that we manage to calibrate a benchmark engine model
by AVL [Ve13] for several EURO emission norms.

0.3 Edge-unfolding nested prismatoids

The question whether any 3-polytope is edge-unfoldable, that is, whether it is possible
to cut its boundary along some spanning tree of its edge graph so that the resulting
connected surface may be unfolded flat into the plane without self-overlaps, can be dated
back to the “Painter’s Manual” by Albrecht Dürer [Dü25]. It is thus often referred to as
Dürer’s problem. The first author to explicitly state it was Shephard [She75]. Grünbaum
conjectured the question to have a positive answer [Grü91]. His conjecture is commonly
referred to as Dürer’s conjecture. Its status is still open.

Several related problems were solved. For dimensions n ≥ 4 the analogous question
to Dürer’s conjecture, is it possible to cut the boundary of a convex d-polytope along its
ridges without disconnecting it so that the resulting (d − 1)-dimensional surface can be
isometrically embedded into a hyperplane of Rd, has been positively answered [MP08].
Another problem concerns edge-unfoldability of non-convex polytopes which are com-
binatorially equivalent to a convex 3-polytope. Several ununfoldable families of such
polytopes are known, cf. [Grü02, Tar99, DDE20].

Moreover, any set of cuts into the surface of a 3-polytope that forms a tree which spans
the vertices will yield a surface that can be immersed isometrically into a plane. Two
cutting strategies based on this general requirement, which are in some sense dual, have
been shown to yield overlap-free unfoldings which are called star and source unfoldings.
The star unfolding is obtained by picking a “generic” point x in a convex 3-polytope
P and then cutting the shortest paths (in the intrinsic metric of P ) between x and the
vertices of P . By “generic” we mean that x is picked so that the shortest paths to the
vertices are unique and do not intersect more than one vertex, which is the case for
almost all x ∈ P . The star unfolding was introduced by Alexandrow [Ale50, p. 195] and
proved to lead to an overlap-free unfolding by Aronov and O’Rourke [AO92]. For the
source unfolding, P is cut along the so-called cut locus, which is the closure of the set
of points with a non-unique shortest path to a source point x in P . The cut locus was
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introduced by Poincaré [Poi05]. The resulting unfolding trivially is an embedding because
unfoldings are isometries which means that shortest paths in P unfold into straight lines
in the plane.

Concerning the original problem, there are indications both for a positive and a nega-
tive answer. Ghomi showed that every 3-polytope can be unfolded after an affine stretch-
ing, which implies that there are no combinatorial obstructions to edge-unfoldability
[Gho14]. O’Rourke showed that any sufficiently flat, acutely triangulated polyhedral cap
is edge-unfoldable [O’R18], [O’R17]. Also, large scale computer experiments have found
overlap-free unfoldings for every tested polytope [Sch97]. On the other hand, similar
experiments revealed that the probability that a randomly picked spanning tree of the
edge graph leads to an overlap-free unfolding goes to zero with increasing complexity of
the polytope [Sch90]. Moreover, a generalized form of Dürer’s conjecture concerning so-
called pseudo-edges, which are certain geodesics in the intrinsic metric of the polytope,
has recently been falsified [BG17]. Finally, Dürer’s conjecture could only be verified for
very narrow classes of polytopes.

Among these classes are domes and prismoids. A dome is a 3-polytope that has one
designated facet to which all others are incident. There exist several proofs of the edge-
unfoldability of domes, for example in the book on unfolding algorithms by Demaine
and O’Rourke [DO07]. A prismatoid is the convex hull of two convex polygons A, B in
parallel planes HA and HB , respectively. A prismoid is a prismatoid whose lateral facets
are trapezoids. O’Rourke proved the edge-unfoldability of prismoids via the so-called
petal unfolding strategy, where the band is either cut once at every vertex of A, or once
at every vertex of B [O’R01].

It is not known whether a general prismatoid is unfoldable. Prismatoids are signif-
icantly more complicated than prismoids, because the lateral facets can be trapezoids,
triangles which contain an edge of A, and triangles which contain an edge of B in arbi-
trary sequence. A prismatoid is nested if the orthogonal projection of A to HB is properly
contained in B, or vice versa. The main result of this thesis’ final section is [Rad21]:

Theorem 3.1.1. Any nested prismatoid is edge-unfoldable.

Nested prismatoids are polyhedral caps. This observation allows us to follow a strat-
egy in the proof which was pioneered by O’Rourke in his work on nearly flat polyhedral
caps, and can be summarized as “flatten, cut, project back up, unfold”. The adapta-
tion of this approach to the case of nested prismatoids relies on two gimmicks. First, we
diverge from the two standard methods to unfold prismatoids, which are the band unfold-
ing, where the band is unfolded in one piece, and the above-mentioned petal unfolding.
Instead, we cut the band (of an arbitrary nested prismatoid P ) into two pieces whose
curvature we bound via a careful selection of the cut edges. Second, we either attach
trapezoids to the ends of the two band pieces or embed them in trapezoids, depending
on the situation. We then prove that A, B and the two extended – but easier to analyze
– band pieces can be glued together along three suitable edges so that the resulting poly-
hedral surface can be unfolded without self-overlap, which implies edge-unfoldability of
P . A frequently used tool in our analysis is the notion of radially monotone polygonal
paths introduced by O’Rourke in [O’R18].
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Chapter 1

Degree theory for the absolute
value equation

This chapter is taken from the article “Generalized Perron roots and solvability of the ab-
solute value equation” [RTC19] by Manuel Radons and Josué Tonelli-Cueto. An extended
abstract of this work has been published in the proceedings of the Discrete Mathematics
Days 2022 [RTC22].

1.1 Introduction

The linear complementarity problem LCP(q, M), where q ∈ Rn, and M ∈ Mn(R), the
space of n × n real matrices, is to determine v, w ∈ Rn

≥0 with vT w = 0 so that

v = Mw + q . (1.1)

It provides a common framework for numerous optimization tasks in economics, engi-
neering and computer science. Classical problems that can be reduced to solving an
LCP include bimatrix games, linear and quadratic programs [CPS92]. Recent appli-
cations are the correct formulation of numerical models for free-surface hydrodynamics
[BC08], L1 regularization in reinforcement learning [JPwP10], and the massively parallel
implementation of collision detection on CUDA GPUs [Ngu07, Chap. 33].

It is well known that an LCP(q, M) is uniquely solvable for arbitrary q if and only if
M is a P -matrix, that is, a matrix whose principal minors are all positive. If LCP(q, M)
is solvable—possibly non-uniquely—for arbitrary q, then M is called a Q-matrix. There
exists no comprehensive characterization of Q-matrices. We will study this question by
investigating the following equivalent problem [MM06]. Let b ∈ Rn and A ∈ Mn(R).
Then the absolute value equation (AVE) poses the problem to find a vector z ∈ Rn so
that

z − A|z| = b , (1.2)

where | · | denotes the componentwise absolute value. The AVE is an interesting problem
in its own right. For example, a result by Rump [Rum97, Thm. 2.8] relates the number
of solutions of (1.2) to the condition of the matrix A, which is noteworthy in light of
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recent developments in real algebraic geometry that deal with precisely such connections
of complexity and condition [BC13, Part III]. However, the main focus of theoretical
investigations of the AVE is to obtain statements about the LCP. A recent success of
this approach is the development of condition numbers for the AVE that lead to new
error bounds for the LCP [ZH22].

We will study solvability of the AVE, but with our eyes on the Q-matrix problem.
To this end we investigate the piecewise linear function

FA : Rn → Rn

z 7→ z − A|z|
(1.3)

associated to the AVE (1.2) and determine its degree and its degree modulo 2 (see
Section 1.3.1) in terms of the aligned spectrum of A (see Section 1.2):

Speca(A) := {λ ≥ 0 | ∃x ̸= 0 : |Ax| = λx}. (1.4)

The first main result of this article relates the degree of FA to what we call the aligned
count of A:

ca(A) := #{λ ∈ Speca(A) | λ > 1} (1.5)
where the count on the right-hand side is with multiplicities.

The term generic in the theorem and the corollaries means that the statement holds
for all matrices that have a specific property (see Definition 1.4.1), which is satisfied for
all matrices except those in a given homogeneous hypersurface (see Section 1.4). This
condition, akin to the general position condition in the polyhedral world, guarantees that
a random matrix (with respect to a continuous distribution) is generic with probability
1.
Theorem 1.1.1. Let A ∈ Mn(R) be generic such that 1 /∈ Speca(A). Then the degree of
FA is well-defined and it satisfies that

deg FA ≡ 1 + ca(A) mod 2 (1.6)

Moreover, deg FA equals 1 if all aligned values are smaller than 1, and it equals 0 if all
aligned values are larger than 1.

Corollary 1.1.2. Let A ∈ Mn(R) be a generic matrix. Then the number of aligned
values of A, counted with multiplicity, is odd.

Corollary 1.1.3. Let A ∈ Mn(R) be a generic matrix such that 1 ̸∈ Speca(A). If ca(A)
is even, then the AVE (1.2) has a solution for every b ∈ Rn.

After stating Theorem 1.1.1, we might wonder if there is an exact formula for the
degree of FA when A is generic (in the sense of Definition 1.4.1). Indeed, there is such
formula and Theorem 1.1.1 is a direct consequence of the following more general—but
more technical—theorem.
Theorem 1.1.4. Let A ∈ Mn(R) be generic and such that 1 /∈ Speca(A). Then the
degree of FA is well-defined and it satisfies that

deg FA = 1 −
∑

{sign(χ′
SA(λ)) | λ > 1, S ∈ S, ∃x ∈ R>0 : SAx = λx}

where χSA is the characteristic polynomial of SA, and S ⊆ Mn(R) is the set of sign
matrices, i.e., diagonal matrices with ±1 in the diagonal entries.
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Observe that the right-hand side sum runs over all aligned values greater than 1,
since we have that |Ax| = λx for some x ̸= 0 if and only if SAx = x for some S ∈ S and
x ∈ Rn

≥0. Now, for a generic matrix (see Definition 1.4.1), all aligned values correspond
to simple eigenvalues of some SA, and so the right-hand side sum is nothing more than
a “signed aligned count”, i.e., a signed variation of the aligned count ca(A). In this way,
Theorem 1.1.1 is just Theorem 1.1.4 reduced modulo 2.

As we mentioned above, a key reason to study the AVE is to gain insights into the
equivalent LCP. To this end we derive LCP-analogues for the concept of the aligned spec-
trum and all statements about the degree of FA listed in this introduction. Concerning
our afore-stated interest in Q-matrices, we note that Corollary 1.1.3 directly translates
into a statement about the latter, i.e., the coefficient matrix of an LCP is a Q-matrix if
the LCP-equivalent of the aligned count is even (Corollary 1.5.7).

Organization In Section 1.2, we recall the sign-real spectrum and we introduce the
aligned spectrum which naturally emerges during the study of the eigenproblem of FA;
in Section 1.3, we recall the topological notion of degree, its formula in terms of signed
counts of preimages of a regular value, and some of its properties in the case of interest;
in Section 1.4, we introduce the notion of genericity of a matrix relevant to our context
and show some perturbation results. In Section 1.5, we show how the above results for
AVEs can be transferred to LCPs. We conclude in Section 1.6 proving Theorems 1.1.1
and its corollaries, and also Theorem 1.1.4.

1.2 Sign-Real and Aligned Spectra

The sign-real and aligned spectra of A emerge naturally when we study the map FA (1.3).
Note that studying this map in order to understand (1.2) is a similar to the strategy in
linear algebra to study z 7→ Az in order to understand the solvability of Az = b

We note that FA is a positively homogeneous map, i.e., for every z ∈ Rn and λ > 0,
FA(λz) = λFA(z); and that FA is piecewise linear, with linear parts of the form

I − AS (1.7)

for sign matrices S ∈ S := {diag(s1, . . . , sn) | si ∈ {−1, +1}}.

1.2.1 Sign-real spectrum and bijectivity

The sign-real spectrum was used independently by Rump [Rum97] and Rohn [Neu90,
Chap. 6] to determine when the function FA is bijective, or equivalently, when the
absolute value equation (1.2) is uniquely solvable for arbitrary b.

Definition 1.2.1. Let A ∈ Mn(R). The sign-real spectrum of A, Specρ(A), is the set

Specρ(A) := R≥0 ∩
⋃

S∈S
Spec(SA).

Theorem 1.2.2. Let A ∈ Mn(R). Then the following are equivalent:

(a) max Specρ(A) < 1,
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(b) FA is bijective,

(c) The AVE (1.2) has a unique solution for every b ∈ Rn.

The largest element of the sign-real spectrum, max Specρ(A), is called the sign-real
spectral radius. Due to Theorem 1.2.2 it can be considered as a generalization of con-
tractivity conditions for linear operators. Rump [Rum97] also showed that the sign-real
spectral radius generalizes the Perron root to matrices that are not positive. Another
generalization of Perron Frobenius theory, to homogeneous monotone functions on the
positive cone, was introduced in [GG04]. It is not clear how these two generalized theories
are related apart from their common origin.

1.2.2 Aligned spectrum and the eigenproblem

The aligned spectrum arises when studying the eigenproblem for FA: Determine for
which λ ≥ 0 and v ∈ Rn \ 0, we have

FA(v) = λv.

Proposition 1.2.3. Let A ∈ Mn(R), λ ≥ 0 and v ∈ Rn \ 0. Then FA(v) = λv if and
only if there is some sign matrix S ∈ S such that Sv ≥ 0 and (1 − λ, |v|) is an eigenpair
of SA.

Proof. If FA(v) = λv, then we have that (1 − λ)v = A|v|. Now, let S ∈ S such that
Sv ≥ 0, by taking as the diagonal elements of S the signs of the components of v. Then
(1 − λ)|v| = (1 − λ)Sv = SA|v|. Hence there is S ∈ S such that Sv ≥ 0 and (1 − λ, |v|)
is an eigenpair of SA.

Conversely, if such an S exists, then

FA(v) = v − A|v| = v − S(SA)|v| = v − S(1 − λ)|v| = λv,

where we have used that S2 = I. Consequently, (1 − λ, |v|) is an eigenpair of SA, and
v = S|v|.

In view of the above proposition, the aligned spectrum is introduced. We note that
the definition below is equivalent to that given in (1.4).

Definition 1.2.4. Let A ∈ Mn(R). An aligned trio of A is a triplet (λ, S, v) ∈ R≥0 ×
S × (Sn−1 ∩ Rn

≥0) such that
SAv = λv.

Given such a trio, we call (S, v) an aligned vector and λ an aligned value of A. The
aligned spectrum of A, which we denote Speca(A), is the set of aligned values of A, i.e.,

Speca(A) := {λ ≥ 0 | ∃S ∈ S, v ∈ Rn
≥0 \ 0 : SAv = λv}.

The following proposition shows how the aligned spectrum is related to the solution
set of FA(z) = 0. In analogy to linear maps, we call FA nondegenrate if FA(z) = 0 has
only the trivial solution z = 0.
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Proposition 1.2.5. Let A ∈ Mn(R). Then FA(z) = 0 has non-trivial solutions if and
only if 1 ∈ Speca(A).

Proof. By Proposition 1.2.3, non-trivial solutions of FA(z) = 0 correspond to aligned
trios of the form (1, S, v). Hence, the claim follows.

From the definitions it follows that

Speca(A) ⊆ Specρ(A). (1.8)

However, this is not an equality in general.

Example 1.2.6. Let

A :=
(

1 0
−1/2 1/2

)
. (1.9)

One readily checks that

Speca(A) = {1/2} ⊊ Specρ(A) = {1/2, 1}.

Moreover, by Theorem 1.2.2 and Proposition 1.2.5, this example shows that FA might
not be bijective, even though it is nondegenrate. Furthermore, it shows that the largest
aligned value and the sign-real spectral radius do not necessarily coincide. In light of
Theorem 1.1.1, this demonstrates that we may have deg FA = 1 without bijectivity.

We finish with the following example which shows that A 7→ max Speca(A) is not
continuous unlike A 7→ max Specρ(A) which is [Rum97, Corollary 2.5]. However, in the
generic case (see Definition 1.4.1), we can recover continuity, since simple real eigenvalues
cannot become complex and strictly positive vectors cannot become nonpositive under
an arbitrarily small perturbation.

Example 1.2.7. Let t lie in a sufficiently small neighborhood of 0 and consider the
following family of matrices:

At :=
(

1 −0.5 − t
0.5 0

)
. (1.10)

A straightforward calculation shows that Specρ(At) is equal to{
1 +

√
−2t

2 ,
1 −

√
−2t

2 ,

√
2
√

1 + t − 1
2 ,

1 +
√

2
√

1 + t

2

}
,

if t ≤ 0; and {√
2
√

1 + t − 1
2 ,

1 +
√

2
√

1 + t

2

}
if t > 0. Similarly, we can see that Speca(At) is equal to{

1 +
√

−2t

2 ,
1 −

√
−2t

2 ,

√
2
√

1 + t − 1
2

}
,

if t ≤ 0; and {√
2
√

1 + t − 1
2

}
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if t > 0.
Hence, we have that

max Specρ(At) = 1 +
√

2
√

1 + t

2 ≥ max Speca(At) =
{

1+
√

−2t
2 , if t ≤ 0 ,

√
2

√
1+t−1
2 , if t > 0 .

This shows that the maximum of the aligned spectrum is not continuous.

1.3 Degree of a map

The degree of a continuous map G : Sn−1 → Sn−1 is a fundamental topological invariant
that is preserved under homotopy. Intutively, we only have to think of the degree as
the number of times that the map wraps Sn−1 around itself. Its formal definition is as
follows.
Definition 1.3.1. Let G : Sn−1 → Sn−1 be a continuous map. The degree of G, deg G,
is the unique integer d such that the induced map Hn−1(f) : Hn−1(Sn−1) → Hn−1(Sn−1)
of homology groups is given by

x 7→ dx

under the choice of any fixed isomorphism Hn−1(Sn−1) ≃ Z.

Among the main properties of the degree, we have the following, cf. [OR09, p. 98 ff].
Proposition 1.3.2. Let G0, G1 : Sn−1 → Sn−1 be continuous maps. Then the following
holds:

(1) deg idSn−1 = 1 and deg(−idSn−1) = (−1)n.

(2) deg G1 ◦ G0 = deg G1 deg G0.

(3) If there is a homotopy between G0 and G1, that is, a continuous map H : [0, 1] ×
Sn−1 → Sn−1 such that for all x ∈ Sn−1, H(0, x) = G0(x) and H(1, x) = G1(x),
then

deg G0 = deg G1.

Moreover, the converse statement is also true.

(4) If G0 is not surjective, then deg G0 = 0.

Our investigation will be centered around FA which are nondegenerate. In this case,
we can consider the spherical map

F̄A : Sn−1 → Sn−1

x 7→ FA(x)/∥FA(x)∥2
(1.11)

and define the degree of FA as
deg FA := deg F̄A. (1.12)

This definition agrees with a more traditional count used for maps Rn 7→ Rn. Recall
that the set of regular values of FA is the set given by

RegFA := {y ∈ Rn | ∀x ∈ F −1
A (y), ∂FA(x) is well-defined and invertible},

where ∂FA is the Jacobian of FA.
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Proposition 1.3.3. Let A ∈ Mn(R) be such that 1 /∈ Speca(A). Then the set of regular
values of FA is dense and for all y ∈ RegFA we have

deg FA =
∑

x∈F −1
A

(y)

sign(det(∂FA(x))). (1.13)

Proof. By [CPS92, p. 509 ff] the oriented preimage counts of a nondegenerate positively
homogeneous function and its restriction to the sphere coincide.

Moreover, the following proposition is helpful for our degree computations.

Proposition 1.3.4. Let A, A0, A1 ∈ Mn(R). Then:

(1) If A : [0, 1] → Mn(R) is a continuous path between A0 and A1 such that for all
t ∈ [0, 1], 1 /∈ Speca(A(t)); then

deg FA0 = deg FA1 .

(2) If Speca(A) ⊆ [0, 1), then deg FA = 1.

(3) If Speca(A) ⊂ (1, ∞), then deg FA = 0.

Proof. (1) Consider the following homotopy between F̄A0 and F̄A1 :

[0, 1] × Sn−1 ∋ (t, x) 7→ H(t, x) = F̄A(t)(x) =
FA(t)(x)

∥FA(t)(x)∥2
.

This homotopy is well-defined because, by assumption and Proposition 1.2.5, FA(t)(x)
does not vanish at any (t, x). Hence F̄A0 and F̄A1 are homotopic and so they have the
same degree.

(2) Consider the path

[0, 1] ∋ t 7→ A(t) := (1 − t)A.

This path joins A with O and it satisfies the condition of (1). Hence deg FA = deg FO =
deg idSn−1 = 1.

(3) Consider the following homotopy

[0, 1] × Sn−1 ∋ (t, x) 7→ H(t, x) = (1 − t)x − A|x|
∥(1 − t)x − A|x|∥2

.

Note that the map (t, x) 7→ (1 − t)x − A|x| is continuous, so if it is not vanishing, then
the above homotopy is well-defined and continuous. If t < 1, then

Sn−1 ∋ x 7→ (1 − t)x − A|x| = (1 − t)FA/(1−t)(x)

cannot vanish by Proposition 1.2.5, since 1 /∈ Speca(A/(1−t)) = Speca(A)(1−t) ⊂ (1, ∞).
If t = 1, then

Sn−1 ∋ x 7→ A|x|

15



does not vanish, because otherwise 0 /∈ Speca(A). Thus the desired map does not vanish
and we obtain a homotopy between F̄A and

Sn−1 ∋ x 7→ A|x|
∥A|x|∥2

.

If we precompose this map with x 7→ |x|, it does not change. Now, since x 7→ |x| is not
surjective,

deg
(

x 7→ A|x|
∥A|x|∥2

)
= deg

(
x 7→ A|x|

∥A|x|∥2

)
deg(x 7→ |x|) = 0,

as we wanted to show.

We conclude with an example which shows that the relationship between the aligned
spectrum and the degree in Theorem 1.1.1 holds only modulo 2

Example 1.3.5. Let ε be in a sufficiently small neigborhood of zero. Consider the family
of matrices:

Bε :=
(

2.5 −1.25 − ε
1.25 0

)
. (1.14)

We can see that

Speca(Bε) =
{

1.25
(
1 +

√
−0.8ε

)
, 1.25

(
1 −

√
−0.8ε

)
, 1.25

(√
2
√

1 + 0.4ε − 1
)}

,

if ε ≤ 0; and that
Speca(Bε) =

{
1.25

(√
2
√

1 + 0.4ε − 1
)}

,

if ε > 0. And so we see that

#{λ ∈ Speca(Bε) | λ > 1} =
{

2, if ε < 0
0, if ε > 0

,

and that
deg FBε

= 1
by Proposition 1.3.4, cf. Figure 1.

On the one hand, this shows that the degree is more stable than the number of aligned
values greater than one. On the other hand, note that the change in the number of aligned
values greater than one happens because for ε = 0, Bε is not generic—it has a double
aligned value.

Moreover, for ε < 0, Bε is generic (see Definition 1.4.1) and it satisfies

#{λ ∈ Speca(Bε) | λ > 1} − 1 = deg FBε ;

and for ε > 0, Bε is still generic, but

#{λ ∈ Speca(Bε) | λ > 1} + 1 = deg FBε
.

This shows that the equality modulo 2 in Theorem 1.1.1 cannot be corrected in an easy
way to obtain an equality between the degree and the number of aligned values greater
than one. We need the more technical expression in Theorem 1.1.4 for this.
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Figure 1: Image of the unit circle under FBε . For ε = −0.01 (left) and ε = 0.01 (right)
it winds around the origin.

1.4 Generic matrices

To make precise the statement of Theorem 1.1.1, we introduce a notion of genericity
adapted to our setting.

Definition 1.4.1. A generic matrix is a matrix A ∈ Mn(R) such that for every aligned
trio (λ, S, v) of A, a) λ is a simple eigenvalue of SA, and b) v is strictly positive.

Since genericity usually means a class of entities whose complement is contained in a
proper algebraic hypersurface, we need to show that the above notion is indeed a generic
one according to the common use.

Proposition 1.4.2. The set of matrices that is not generic in Mn(R) is contained in a
proper algebraic hypersurface.

In particular, for any random matrix A ∈ Mn(R) with an absolutely continuous dis-
tribution, A is generic almost surely.

Proof. We only have to prove that the set of matrices with double aligned values or
aligned vectors in the boundary of the positive orthant is contained in a hypersurface.

The above set is contained in the union of the sets

{A ∈ Mn(R) | SA has a double eigenvalue} (1.15)

and
{A ∈ Mn(R) | SA has a non-zero eigenvector in H} (1.16)

where S ∈ S runs over all sign matrices and H over all coordinate hyperplanes—of the
form Xi = 0. Thus, if we show that each one of these sets is contained in a hypersurface,
then we are done, since a finite union of hypersurfaces is a hypersurface.

On the one hand, the set 1.15 is given by the discriminant of the characteristic
polynomial of SA, which is well-known to define a proper algebraic hypersurface in
Mn(R). On the other hand, the set 1.16 is a proper algebraic hypersurface by [OS13,
Propoposition 1.2]. Hence, all the sets are proper algebraic hypersurfaces, and the proof
is complete.
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1.4.1 Interpretation of count for generic matrices

When we introduced the aligned count, see (1.5),

ca(A) = #{λ ∈ Speca(A) | λ > 1},

we said that the right-hand side counts multiplicities. Note that for generic A, an aligned
value λ will always be a simple eigenvalue of the corresponding SA, where S ∈ S.
However, there might be more than one such SA. Because of this we have to include the
“counted with multiplicity”. The following proposition gives an alternative interpretation
of the central quantity ca(A) for Theorem 1.1.1 in terms of F̄A.

Proposition 1.4.3. Let A ∈ Mn(R) be generic. Then ca(A) is equal to the number of
fixed points of F̄A such that its antipodal point is mapped to them. In other words,

ca(A) = #{x ∈ Sn−1 | x = F̄A(x) = F̄A(−x)}.

For proving this proposition, the following proposition will be useful.

Proposition 1.4.4. Let A ∈ Mn(R) and x ∈ Sn−1. If FA is nondegnerate, then x
is a fixed point of F̄A if and only if there is an aligned trio (λ, S, v) such that either
x = −Sv or λ < 1 and x = Sv. Moreover, when x is a fixed point of F̄A, the following
are equivalent:

• F̄A(−x) = x.

• There is an aligned trio (λ, S, v) such that λ > 1 and x = −Sv.

Proof of Proposition 1.4.3. By Proposition 1.4.4, the fixed points x ∈ Sn−1 of F̄A such
that F̄A(−x) = x are in one-to-one correspondence with the aligned trios (λ, S, v) such
that λ > 1. Since A is generic, this means precisely the number of aligned values greater
than one counted with multiplicity.

Proof of Proposition 1.4.4. If (λ, S, v) is an aligned trio, then

FA(Sv) = (1 − λ)Sv

and
FA(−Sv) = (1 + λ)(−Sv).

In this way, −Sv is always a fixed point of F̄A and Sv is so if and only if λ < 1. This
shows one direction.

If x ∈ Sn−1 is a fixed point of F̄A, then for some µ > 0,

FA(x) = µx.

Let S ∈ S be such that Sx ≥ 0, so that v = Sx. Then we have that

SAv = (1 − µ)v.

If 1 − µ ≥ 0, then (1 − µ, S, v) is an aligned trio such that 1 − µ < 1 and x = Sv.
Otherwise, 1 − µ < 0, and then (µ − 1, −S, v) is an aligned trio and x = −(−S)v. Hence
there is an aligned trio (λ, S, v) such that either x = −Sv or λ < 1 and x = Sv.

18



We show the second equivalence. Let x ∈ Sn−1 be a fixed point of F̄A. Then, by
the first part, there is an aligned trio (λ, S, v) such that either x = −Sv or λ < 1 and
x = Sv. In the second case, we have that

F̄A(−x) = −x.

Thus we must have the first case. But then F̄A(−x) = x if and only if λ > 1, because
otherwise −x is also a fixed point.

If x = −Sv for some aligned trio (λ, S, v) such that λ > 1. Then, by the first
equivalence, x = −Sv is a fixed point of F̄A, and, by direct computation, F̄A(−x) = x.

1.4.2 Perturbation of matrices to make them generic

The following proposition shows that matrices corresponding to non-degenerate maps can
be slightly perturbed to obtain a generic matrix with the same corresponding degree.

Proposition 1.4.5. Let A ∈ Mn(R) be such that 1 /∈ Speca(A). Then:

(a) The quantity

κa(A) := sup
x ̸=0

∥x∥2

∥FA(x)∥2
(1.17)

is finite.

(b) For every ε ∈ (0, 1/ κa(A)) and

Ã ∈ BF (A, ε) := {X ∈ Mn(R) | ∥X − A∥F < ε},

FÃ is nondegenrate, and deg FÃ = deg FA.

(c) Let Ã ∈ BF (A, ε) be a random matrix with the uniform distribution on BF (A, ε),
then Ã is generic with probability one.

Proof. (a) We have that

min
x ̸=0

∥FA(x)∥2

∥x∥2

is zero if and only if 1 ∈ Speca(A) by Proposition 1.2.5. Hence, it is a positive number if
1 /∈ Speca(A) and its inverse, the quantity κa(A), must be finite.

(b) By the inequalities between matrix norms, we can show that

1
κa(Ã)

≥ 1
κa(A) − ∥Ã − A∥ .

Hence, if Ã ∈ B(A, ε), with the given choice of ε, then no matrix in the segment [A, Ã]
can have 1 as an aligned value. Consequently, we have a path between A and Ã, given
by t 7→ (1 − t)A + tÃ, such that no matrix in the path has 1 as an aligned value, and so
deg FÃ = deg FA by Proposition 1.3.4 (1).

(c) This is a direct consequence of Proposition 1.4.2.
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Figure 2: Image of the unit circle under FAε . For ε = 0.2 it winds around the origin
(left). For ε = −0.2 it does not (right).

We observe that the above proposition can only be applied when 1 /∈ Speca(A).
In that case, it allows us to produce a generic matrix Ã such that FÃ has the same
topological structure—degree—as FA. Now, if 1 ∈ Speca(A), this perturbation trick will
not produce FÃ with the same topological structure as the following examples show.

Example 1.4.6. Let

A :=
(

2 −1
−1 0

)
(1.18)

for which Speca(A) = {1,
√

2 − 1}. Now consider the following perturbation

Aε :=
(

2 −1 − ε
−1 0

)
. (1.19)

We can see that for ε > 0, deg FAε = 1, since all aligned values are smaller than one;
and that for ε < 0, deg FAε = 0, after a straightforward computation. Moreover, Figure
2 indicates—and it can be checked by computation—that

FAε
(x) =

(
r
0

)
,

where r > 0, does not have a solution for ε < 0, cf. Figure 2.
Hence, when we perturb A ∈ Mn(R) with 1 ∈ Speca(A), neither do we get consistent

topological information about FÃ via the perturbed matrix Ã, nor do we obtain consistent
information about the general solvability of the AVE (1.2).

Example 1.4.7. Consider a generic matrix A ∈ Mn(R) so that all aligned values have
odd multiplicity. Then for every t > 0, tA is generic as long as 1/t /∈ Speca(A). As t
increases from zero to infinity, we have that deg FtA alternates parity as t crosses the
inverses of the aligned values of A, by Theorem 1.1.1. This shows again that perturbing
matrices with 1 as an aligned value will not produce consistent topological information.
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1.5 Transfer of results to LCPs

Classically [CPS92, Chap. 1], the LCP is associated to the following piecewise linear
function

GM : Rn → Rn

z 7→ (M + I)z/2 + (M − I)|z|/2 ,
(1.20)

where we have rewritten the expression in terms of absolute values. If GM is surjective,
then LCP(q, M) has a solution for any q ∈ Rn. Therefore studying the degree of GM is
the LCP -equivalent of studying the degree of FA in the context of AVEs.

The following proposition which is well-known in the literature (see [CPS92, Chap.
1], [MM06] and [Neu90, Chap. 6]) makes explicit how AVEs, LCPs and GM relate.

Proposition 1.5.1. Let M ∈ Mn(R) and q ∈ Rn. The map (v, w) 7→ v −w is a bijective
correspondence between the solution (v, w) ∈ Rn

≥0 ×Rn
≥0 of LCP(q, M) and the solutions

x ∈ Rn of GM (x) = q. In particular, if M + I is invertible, then LCP(q, M) is equivalent
to solve the AVE given by

z − (M + I)−1(M − I)|z| = 2(M + I)−1q

In this case, the images of the spherical restrictions F̄(M+I)−1(M−I) and

ḠM := GM

∥GM ∥2

are congruent, which shows that the degrees of both maps are identical up to a sign change
according to the determinant sign of the transformation matrix M + I. In particular, the
parities of their degrees are the same.

To further analyze the degree of GM , we introduce the LCP-variant of aligned trios
of Definition 1.2.4 and of generic matrices of Definition 1.4.1—for which we can prove
claims analogous to those of Section 1.4.

Definition 1.5.2. Let M ∈ Mn(R). An LCP-aligned trio of M is a triplet (λ, S, v) ∈
R≥0 × S × (Sn−1 ∩ Rn

≥0) such that

(M − I)v = λ(M + I)Sv .

Given such a trio, we call (S, v) an LCP-aligned vector and λ an LCP-aligned value of
M . The LCP-aligned spectrum of M , which we denote Speca

L(M), is the set of LCP-
aligned values of M .

LCP-aligned vectors are not eigenvectors of GM and thus also not fixed points of ḠM .
However, they and their polar opposites are exactly the pairs of antipodal points which
are mapped to pairs of antipodal points by ḠM (if the corresponding LCP-aligned value
is smaller than 1) or to a single point (if the corresponding LCP-aligned value is larger
than 1). This property of LCP-aligned vectors seems to be more crucial to the parity of
the degree which mirrors the number of times that the sphere is folded onto itself by ḠM

than the property of being an eigenvector or a fixed point of the spherical map.

Definition 1.5.3. An LCP-generic matrix M ∈ Mn(R) is a matrix such that a) M + I

is invertible, and b) (M + I)−1(M − I) is generic.
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LCP-generic matrices are really generic due to Proposition 1.4.2 and the fact that
{M ∈ Mn(R) | det(M +I) = 0} is an algebraic hypersurface. Let M ∈ Mn(R) be a matrix
so that GM is nondegenerate. Analogously to Proposition 1.4.5, a random perturbation
of M will be LCP-generic almost surely.

We can now state the main theorems (Theorems 1.2.2 and 1.1.4) and their corollaries
in the context of LCPs. Recall that deg GM is the degree of the spherical map ḠM : x 7→
GM (x)/∥GM (x)∥2.

Theorem 1.5.4. Let M ∈ Mn(R) be LCP-generic such that 1 ̸∈ Speca
L(M). Then the

degree of GM is well-defined and it satisfies that

deg GM ≡ 1 + ca
L(M) mod 2

where ca
L(M) is the number of LCP-aligned values greater than one, counted with multi-

plicity. Moreover, we have deg GM = sign(det(M + I)) if ca
L(M) = 0 and deg GM = 0 if

all LCP-aligned values of M are larger than 1.

Theorem 1.5.5. Let M ∈ Mn(R) be LCP-generic such that 1 ̸∈ Speca
L(M) Then the

degree of GM is well-defined and it satisfies that

deg GM = sign(det(M + I)) −
∑

(λ,S,v) LCP-aligned trio of M
λ>1

sign
(

χ′
M+I,(M−I)S(λ)

)
.

where χU,V := det(TU − V ) is the generalized characteristic polynomial of (U, V ) ∈
Mn(R)2.

Corollary 1.5.6. Let M ∈ Mn(R) be an LCP-generic matrix. Then the number of
LCP-aligned values of M , counted with multiplicity, is odd.

Corollary 1.5.7. Let M ∈ Mn(R) be LCP-generic such that 1 ̸∈ Speca
L(M). If ca

L(M)
is even, then M is a Q-matrix, i.e., for all q ∈ Rn, LCP(q, M) has a solution.

To show these theorems and their corollaries, we only need to show how the notions
in the LCP-setting crrespond to the notions in the AVE-setting. The following three
propositions allow us to do these trasnlations. The first one gives how aligned trios
correspond to LCP-aligned trios; the second one gives sufficient condition for the degree
of GM to be well-defined; and the third one relates the degree of GM to that of FA for
an appropriate A.

Proposition 1.5.8. Let M ∈ Mn(R) be such that M + I is invertible. Then (λ, S, v) ∈
R≥0 × S × (Sn−1 ∩ Rn

≥0) is an LCP-aligned trio of M if and only if it is an aligned trio
of (M + I)−1(M − I).

Proposition 1.5.9. Let M ∈ Mn(R). Then GM (z) = 0 has non-trivial solutions if and
only if 1 ̸∈ Speca

L(M). In particular, if 1 ̸∈ Speca
L(M), the degree of GM is well-defined,

the set of regular values of GM is dense and for all y ∈ RegGM we have

deg GM =
∑

x∈G−1
M

(y)

sign(det(∂GM (x))). (1.21)

Proposition 1.5.10. Let M ∈ Mn(R) be such that 1 ̸∈ Speca
L(M) and such that M + I

is invertible. Then

deg GM = sign(det(M + I)) · deg F(M+I)−1(M−I).
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Proof of Proposition 1.5.8. Note that, when M +I is invertible, (λ, S, v) is a LCP-aligned
trio of M if and only if λSv = (M +I)−1(M −I)v. The latter is equivalent to λv = S(M +
I)−1(M −I)v, which means exactly that (λ, S, v) is an aligned trio of (M +I)−1(M −I).

Proof of Proposition 1.5.9. The first claim is proven as in Proposition 1.2.5. The second
one follow from [CPS92, p. 509 ff], since GM is a nondegenrate positively homogeneous
map.

Proof of Proposition 1.5.10. This follows from the multiplicative property of the degree
and the fact that

LM ◦ F̄(M+I)−1(M−I) = ḠM

where LM : x 7→ (M +I)x/∥(M +I)x∥2. Recall that we have that deg LM = sign(det(M +
I)).

We now give the proof of Theorems 1.5.4 and 1.5.5.

Proof of Theorem 1.5.4. By Propositions 1.5.8, 1.5.9 and 1.5.10, we have that

deg GM ≡ deg F(M+I)−1(M−I) mod 2

and
ca

L(M) ≡ ca((M + I)−1(M − I)) mod 2.

Hence the theorem follows by Theorem 1.1.1.

Proof of Theorem 1.5.5. By Propositions 1.5.8,

deg GM = sign(det(M + I)) deg F(M+I)−1(M−I).

Hence, by Theorem 1.1.4 and Proposition 1.5.10,

deg GM = sign(det(M+I))−
∑

(λ,S,v) LCP-aligned trio of M
λ>1

sign
(

det(M + I)χ′
(M+I)−1(M−I)S(λ)

)
.

Now,
det(M + I))χ′

(M+I)−1(M−I)S(λ) = χ′
M+I,(M−I)S(λ),

so we obtain the desired result.

1.6 Proof of Theorems 1.1.1 and 1.1.4 and Corollar-
ies 1.1.2 and 1.1.3

We first show how Theorem 1.1.1 follows from Theorem 1.1.4. Then we prove the corol-
laries 1.1.2 and 1.1.3. We finish giving the proof of Theorem 1.1.4.
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1.6.1 Proof of Theorem 1.1.1

Note that the formula of Theorem 1.1.1 can be rewritten as

deg FA = 1 −
∑

(λ,S,v) aligned trio of A
λ>1

sign(χ′
SA(λ)).

Now, since A is generic, we have that for each aligned trio (λ, S, A), λ is a simple eigen-
value of SA and so a simple root of χSA. Hence sign(χ′

SA(λ)) is either +1 or −1 for each
summand in the sum. Moreover, for a specific aligned value λ, the summand sign(χ′

SA(λ))
appears as many times as the size of

{(S, v) | S ∈ S, v ∈ Sn−1 ∩ Rn
≥0, (S, v) is the aligned vector of A corresponding to λ}.

But this quantity, for generic A, is precisely the multiplicity of λ. Hence, we have that
for all λ > 1, ∑

(λ,S,v) aligned trio of A

sign(χ′
SA(λ))

is the multiplicity of λ mod 2. Hence∑
(λ,S,v) aligned trio of A

λ>1

sign(χ′
SA(λ)) ≡ ca(A) mod 2,

and the first part of the theorem follows.
The second part is just Proposition 1.3.4(2)-(3).

1.6.2 Proof of Corollary 1.1.2

Since A is generic, the multiplicity of 0 as an aligned value is given by the size of the set

{(S, v) | S ∈ S, v ∈ Sn−1 ∩ Rn
≥0, (S, v) is the aligned vector of A corresponding to 0}.

This set is invariant under the transformation (S, v) 7→ (−S, v). Hence, the multiplicity
of 0 as an aligned value is always even.

By the proof of Lemma 1.6.1, we can consider perturbed matrix Ã with the same
number of positive aligned values as A, but such that 0 is not an aligned value of Ã.
Since the multiplicity of 0 is even, this means that the parity of the number of aligned
values of Ã and A is the same. Therefore, without loss of generality, we can assume that
A has only positive aligned values.

For t > 0, we have that
Speca(tA) = t Speca(A). (1.22)

For some t > 0 sufficiently large, every aligned value of tA is larger than one, because,
by assumption, A has only positive aligned values. Thus, by the second part of Theo-
rem 1.1.1, deg FtA = 0, and so, by the first part of the same theorem, ca(tA) is odd.
Hence tA has an odd number of aligned values, as we wanted to show.
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1.6.3 Proof of Corollary 1.1.3

If ca(A) is even, then, by Theorem 1.1.1, deg FA is odd, and so, in particular, non-zero.
Hence, by Proposition 1.3.2(4), F̄A is surjective, and so is FA.

1.6.4 Proof of Theorem 1.1.4

By perturbing A randomly, we can assume without loss of generality that all aligned
values of A are simple, i.e., that every aligned value of A appears only in one aligned trio
(λ, S, v) of A. The following lemma allows us to do this.

Lemma 1.6.1. Let A ∈ Mn(R) be generic such that 1 /∈ Speca(A). Then there is Ã
such that 1) 1 /∈ Speca(A), 2) Ã is generic, 3) FA and FÃ have the same degree, 4) A
and Ã have the same aligned count, i.e., ca(A) = ca(Ã); and∑

(λ̃,S,v) aligned trio of Ã
λ>1

sign(χ′
SÃ

(λ̃)) =
∑

(λ,S,v) aligned trio of A
λ>1

sign(χ′
SA(λ));

and 5) for every aligned value λ̃ of Ã, there is a unique S ∈ S such that λ̃ is an eigenvalue
of SÃ.

Proof. By Proposition 1.4.5, 1), 2), and 3) are guaranteed by taking Ã in a sufficiently
small neighborhood BF (A, ε) of A. Now, since A is generic, for each S ∈ S, given an
eigenvalue λ of SA, we proceed as follows:

(a) If λ /∈ [1, ∞) ⊆ C, then, by continuity of the eigenvalues, we have that for an
arbitrarily small perturbation of A, Ã, the corresponding eigenvalue, λ̃, is still outside
[1, ∞).

(b) If λ > 1 is not an aligned value, then (λI−SA)v does not vanish for v ∈ Sn−1 ∩Rn
≥0.

Therefore
min

v∈Sn−1∩Rn
≥0

∥(λI − SA)v∥2 > 0.

But this quantity is not only continuous in λ and A, but 1-Lipschitz in them. Hence,
for an arbitrarily small perturbation Ã of A, we can guarantee that the corresponding
eigenvalue λ̃ does not become an aligned value of Ã.

(c) If λ > 1 is an aligned value, consider an aligned trio (λ, S, v) such that ∥v∥2 = 1.
Since A is generic, λ is simple, and so we can apply the implicit function theorem to

R × Sn−1 × Mn(R) ∋ (λ, x, M) 7→ (det(λI − MS), (λI − MS)v)

at (λ, v, A). Hence, in a small neighborhood of A, we can write λ and v as smooth
functions of A. Since v is strictly positive, this means that for an arbitrarily small
perturbation Ã the aligned value λ goes to an aligned value λ̃ which is still simple as
an eigenvalue of ÃS. Moreover, if the perturbation is sufficiently small, λ̃ remains
inside (1, ∞), by continuity, and the signs of χ′

SA(λ) and of χ′
SÃ

(λ̃) coincide, by the
continuity of χ′

SM (µ) with respect to (M, µ).
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Putting the above together, we have that taking Ã in a sufficiently small neighborhood
BF (A, ε) of A we can guarantee that it satisfies 1), 2), 3) and 4).

For 5), we only have to show that for almost all Ã ∈ Mn(R), the SÃ, with S ∈ S,
do not share any eigenvalue. Once this is done, we can guarantee, by the above, that we
can choose a perturbation Ã with the desired properties. Note that this is the only point
where the perturbation is not arbitrary.

We will show that the set

MS := {X ∈ Mn(R) | X and SX have an eigenvalue in common}

is a proper algebraic hypersurface. Then the set of X such that S1X and S2X share an
eigenvalue for some S1, S2 ∈ S is given by⋃

S,T ∈S
SMT .

Therefore it will be a proper algebraic hypersurface, since it is a finite union of proper
algebraic hypersurfaces. Hence, we can choose Ã ∈ BF (A, ε) such that Ã does not lie in
it.

The determinant of the Sylvester matrix of the characteristic polynomials of X and
SX is zero if and only if X and SX share an eigenvalue (see [CLO07, Ch. 3, Prop. 8]).
Hence MS is described by the zero set of a single polynomial. If it is not the full set
Mn(R), then it is a proper algebraic hypersurface, as we wanted to show.

We show that MS does not contain all matrices, by constructing a matrix not in it.
Without loss of generality, we can assume that

S =
(
Ir

−In−r

)
with r < n. Consider the matrix

A =


0 −Ir
1 0

1
. . .

n − r − 1


whose eigenvalues are 1, e 2πi

r+1 , e 4πi
r+1 . . . , e 2rπi

r+1 , 1, . . . , n−r−1. Now, for S as defined above,
we have that

SA =


0 −Ir

−c 0
−a1

. . .
−an−r−1

 .

Hence the eigenvalues of SA are e πi
r+1 , e 3πi

r+1 , e 5πi
r+1 . . . , e

(2r+1)πi
r+1 , −1, . . . , −(n − r − 1), and

so A and SA do not have common eigenvalues for a sufficiently general choice of c and
the ai. Hence MS ̸= Mn(R) as we wanted to show.
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We will be considering the map FtA as t goes from arbitrarily small values to 1.
By (1.22), the map FtA is non-degenerate as long as 1/t /∈ Speca(A). Let

1 < λ1 < · · · < λc

be the aligned values greater than one of A. Further, let S1, . . . , Sc ∈ S be the corre-
sponding sign matrices of their unique aligned trios, and λ0 be the largest aligned value
smaller than 1 or zero if there are no such aligned values. By our initial assumption,
they are not repeated.

When t < 1/λc, we have, by Proposition 1.3.4 (2), that FtA has degree 1 and that
ca(tA) = 0. We aim to show that for t ∈ (1/λk+1, 1/λk), we have

deg FtA = 1 −
c∑

i=k+1
sign(χ′

ASi
(λi)),

which gives the desired claim when k = 0. To do so, we only have to show that the
degree of FtA changes by −χ′

ASi
(λi) when t passes through 1/λi. Note that, when

t varies within (1/λk+1, 1/λk), neither the aligned count nor the degree changes—the
latter by Proposition 1.3.4(1). Hence, without loss of generality, it is enough to prove
the following proposition.

Proposition 1.6.2. Let A ∈ Mn(R) be generic and (1, I, v) one of its aligned trios.
Assume that 1 ∈ Speca(A) is a simple aligned value such that for all S ∈ S \ {I}, 1 is not
an eigenvalue of SA. Then there is an ε > 0 such that for all t, s ∈ (0, ε),

deg F(1+t)A = deg F(1−s)A − sign(χ′
A(1)).

Once this proposition is shown, we obtain the following proposition by applying the
above one to AS/λ, where (λ, S, v) is the considered aligned trio.

Proposition 1.6.3. Let A ∈ Mn(R) be generic and (λ, S, v) one of its aligned trios.
Assume that λ ∈ Speca(A) is a simple aligned value such that for all T ∈∈ S \ {S}, λ is
not an eigenvalue of SA. Then there is an ε > 0 such that for all t, s ∈ (0, ε),

deg F(1/λ+t)A = deg F(1/λ−s)A − sign(χ′
AS(λ)).

With this proposition, the desired claim follows, i.e., that FtA changes the degree as
wanted each time t passes through the inverse of an aligned value. Note that by our
original perturbation, due to Lemma 1.6.1, the assumption is satisfied at each crossing.

Proof of Proposition 1.6.2

Since Specρ(A) is discrete, there is some ε0 > 0 such that I0 = (1 − ε0, 1 + ε0) does not
contain other elements from Specρ(A). For this interval, we have that for all t ∈ I0 \ {1},
I−tA is invertible; and for all t ∈ I0 and S ∈ S \{I}, I−tAS is invertible. If I−tAS is not
invertible, then 1/t ∈ Specρ(A) and so, by construction of I0, t = 1 and, by assumption
on the aligned value 1, S = I.

Now, since 1 is an aligned value and A generic, let v ∈ Sn−1 ∩ Rn
>0 be the associated

aligned vector with all positive entries. Now, we prove the following three lemmas in the
context of Proposition 1.6.2.
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Lemma 1.6.4. Let r > 0. Then there exist x ∈ B2(−v, r) and δ > 0 such that for all
t ∈ (1 − δ, 1 + δ) \ {1}, x is a regular value of FtA such that∑

z∈F −1
tA

z /∈Rn
≥0

sign(det(∂FtA(z))) (1.23)

does not depend on t.

Lemma 1.6.5. There exist r > 0 and δ > 0 such that for t ∈ (1 − δ, 1),

B(−v, r) ∩ FtA

(
Rn

≥0
)

= ∅

and for t ∈ (1, 1 + δ),
B(−v, r) ⊂ FtA

(
Rn

≥0
)

.

Once these lemmas are proved, we only have to choose r > 0, δ > 0 and x ∈ B(−v, r)
so that both Lemmas 1.6.5 and 1.6.4 apply. For this, we choose r > 0 and δ > 0 as in
Lemma 1.6.4, and then choose x ∈ B(−v, r) and, if necessary, a smaller δ > 0, following
Lemma 1.6.5. In this way, for s ∈ (1 − δ, 1), we obtain

deg FsA =
∑

z∈F −1
tA

z /∈Rn
≥0

sign(det(∂FtA(z)))

and for t ∈ (1, 1 + δ),

deg FtA =
∑

z∈F −1
tA

z /∈Rn
≥0

sign(det(∂FtA(z))) + sign(det(I − tA)),

since x has a preimage in the positive orthant when t > 1. Now, det(I − tA) = χtA(1).
We have that χA(1) = 0. Thus, for t ∈ (1, 1 + δ) sufficiently small,

sign(det(I − tA)) = sign
(

d

dt

∣∣∣∣
t=1

χtA(1)
)

.

Now, χtA(1) =
∑n

k=0 ck(A)tn−k, where ck(A) is the kth coefficient. Thus

d

dt

∣∣∣∣
t=1

χtA(1) =
n∑

k=0
(n − k)ck(A) = n

n−1∑
k=0

ck(A) −
n−1∑
k=0

kck(A) = −
n∑

k=0
kck(A) = −χ′

A(1),

where
∑n−1

k=0 ck(A) = −cn(A) follows from χA(1) = 0. Hence, the desired formula follows.
We finish the proof, by proving the lemmas above.

Proof of Lemma 1.6.4. Denote by

H := {y ∈ Rn | there is some i such that xi = 0} (1.24)

the union of the coordinate hyperplanes, and fix t ∈ I0 \ {1}. Then for all x ∈ Rn, x is
a regular point of FtA if and only if x /∈ FtA(H). If a preimage z of x does not lie on H,
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then FtA is differentiable at z. Moreover, at that point, the Jacobian will be of the form
I − tAS, for some S ∈ S, and it will be invertible since t ∈ I0 \ {1}.

Now, for all t ∈ I0,
H̃t :=

⋃
S∈S

(I − tAS)H ⊇ FtA(H)

is a hyperplane arrangement. Therefore we can choose a strictly negative x ∈ B2(−v, r)
such that x /∈ H̃1. If we show that I0 ∋ t 7→ dist(x, H̃t) is a continuous map, then, since
dist(x, H̃1) > 0, we can choose δ > 0 such that for all t ∈ (1 − δ, 1 + δ), dist(x, H̃t) > 0.
Thus for all t ∈ (1 − δ, 1 + δ), x /∈ FtA(H) and, by the discussion in the above paragraph,
x is a regular point of FtA.

To show that I0 ∋ t 7→ dist(x, H̃t) is continuous, we only have to observe that for all
i, S ∈ S and t ∈ I0,

(I − tAS){x | xi = 0}

is a hyperplane, since {x | xi} does not contain any vector in the kernel of I− tAS. Only
I − A has a kernel, but it is a line spanned by the strictly positive vector v. Moreover,
taking the generalized cross product of the (I− tAS)ej , j ̸= i, and normalizing it, we can
obtain a continuous map

I0 ∋ t 7→ n(S, i, t) ∈ Sn−1

that maps t to a normal vector of (I − tAS){x | xi = 0}. Hence

dist(x, H̃t) = min
{

|n(S, i, t)tx| | i ∈ {1, . . . , n}, S ∈ S
}

is a continuous function as we wanted to show.
Now, for all t ∈ (1 − δ, 1 + δ) and all S ∈ S \ {1}, we have that

(I − tAS)−1x /∈ H.

Note that, by choosing δ > 0 small enough if necessary, we can guarantee t ∈ I0 and that
I − tAS is invertible. Hence we have that the signs of (I − tAS)−1x are constant. This
means that, independently of t ∈ (1 − δ, 1 + δ),

F −1
tA (x) ∩ SRn

>0

is either empty or has size one. Now, for z ∈ SRn
>0, sign(det(δFtA(z))) = sign(det(I −

tAS)) is constant. Hence the sum (1.23) remains constant as desired.

For the proof of Lemma 1.6.5, we will need the following auxiliary lemma.

Lemma 1.6.6. Let A ∈ Mn(R). If λ is a simple eigenvalue of A, then

ker(λI − A) ∩ im(λI − A) = 0.

Proof of Lemma 1.6.6. If v ∈ ker(λI−A)∩ im(λI−A) is non-zero, then v ∈ ker(λI−A)2,
but v /∈ ker(λI − A). Thus v is a nontrivial generalized eigenvector of rank 2 of A
corresponding to λ. However, λ is a simple eigenvalue of A, so this is impossible.
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Proof of Lemma 1.6.5. By Lemma 1.6.6, we have that

−v /∈ (I − A)H,

where H is the union of the coordinate hyperplanes, as in the proof of Lemma 1.6.4.
Arguing as in that proof, we have that I0 ∋ t 7→ dist(−v, (I − tA)H) is continuous, and
so, since dist(−v, (I − A)H) is positive, we have that there is δ > 0 and r > 0 such that
for all t ∈ (1 − δ, 1 + δ) ⊆ I0,

dist(−v, (I − tA)H) > r.

We show now that these are the desired r and δ.
Fix t ∈ (1 − δ, 1). FtA(Rn

≥0) is a closed pointed cone, since it is image of a closed
pointed cone under the invertible linear map I− tA. This cone contains v, so it does not
contain −v. Now,

dist(−v, FtA(Rn
≥0)) = dist(−v, bdFtA(Rn

≥0)) ≥ dist(−v, (I − A)H),

since the nearest point in FtA(Rn
≥0) to −v lies in the boundary, bdFtA(Rn

≥0) of FtA(Rn
≥0),

which is contained inside (I − A)H. Hence, by the first paragraph in the proof, we have
dist(−v, FtA(Rn

≥0)) > r, and so B(−v, r) ∩ FtA(Rn
≥0)) = ∅, as desired.

Fix t ∈ (1, 1 + δ). FtA(Rn
>0) is a full-dimensional cone, since it is the image of a

full-dimensional cone under the invertible linear map I − tA. Now, we have that

dist(−v, bdFtA(Rn
≥0)) ≥ dist(−v, (I − A)H).

Therefore, by the first paragraph in the proof, dist(−v, bdFtA(Rn
≥0)) > r, and so we

obtain B(−v, r) ⊆ FtA(Rn
≥0)), as desired.
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Chapter 2

Calibration of internal
combustion engines

This chapter is taken from the article “Semi-automatically optimized calibration of inter-
nal combustion engines” [BJP+20] by Timo Burggraf, Michael Joswig, Marc E. Pfetsch,
Manuel Radons, and Stefan Ulbrich which has been published in Optimization and En-
gineering (2020).

2.1 Introduction

Due to the wish to save fossil fuels, stringent maximal emission limits and challenging
customer preferences, modern internal combustion engines (ICEs) become more and more
complex. Indeed, research towards the improved construction of combustion engines
is highly relevant for reaching the CO2 emission targets set by the European Union,
cf. [M+16].

This engine development results in an increasing number of actuators and sensors.
There are currently in the order of ten different actuators and sensors each. Examples
for actuators include the amount of injected fuel, exhaust recirculation control, air valve
angle, etc. Sensors measure, e.g., the temperature, maximal point of the cylinder, torque,
exhaust emission, etc. The actuators allow to produce a certain torque and revolution
frequency, which describe the two main requirements on the engine in usage. However,
several different settings of the actuators can result in the same torque/revolution fre-
quency combination. Moreover, their dependence is involved and not known exactly a
priori, i.e., it has to be measured and approximated. In this paper we deal with the
optimal engine calibration problem, i.e., to efficiently approximate this dependence by
few measurements and to choose optimal actuators settings.

The engine calibration problem consists of determining a so-called engine manifold,
which determines for each torque/revolution frequency combination a corresponding set-
ting for actuators. This manifold is usually discretized and the resulting solution map
is hard-coded into the engine control unit (ECU). The settings on the engine manifold
have to be chosen in such a way that they are consistent across various torque/frequency
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combinations, i.e., the engine manifold should be continuous. Moreover, the resulting set-
tings need to obey several restrictions in order to avoid damage of the engine as well as
bounds on the emissions produced. The emissions are measured with respect to so-called
driving cycles. These are certain prescribed changes in the torque/frequency settings
over time which are supposed to resemble usage in practice. These driving cycles are
applied to the engine on a measurement bench and the resulting emissions have to be
bounded.

The calibration process described above involves two main steps. First, the depen-
dence between the actuator settings and the output has to be measured. A naive enu-
meration of a uniform grid of possible actuator settings and interpolation would require
exponential time in the number of actuators. Therefore, one needs to design a process
to perform the measurements in relevant areas in order to speed up the measurement
process. Additionally, the actuator settings are continuously changed without waiting
until a steady-state has been reached. This allows to save time, but also introduces
measurement errors like hysteresis effects. Second, based on the so-obtained information
about the engine behavior, one should optimally choose the resulting engine manifold
and solution map. More precisely, one should select actuator settings for the final solu-
tion map that obey the above-mentioned restrictions and yield an approximation to an
optimal solution map which is sufficiently close in the sense that all prescribed emission
targets are met.

In this article we propose a new way to solve the engine calibration problem, which
consists of the following contributions:

◦ Adaptive meshing: The density of measurements is adapted within areas where the
measured function is sensitive with respect to its inputs, while keeping the density of
measurements coarse where it is not. This leads to a more accurate representation
of the engine manifold than with a uniform grid approach with a fraction of the
measurements. This first part is based on the well-established LOLIMOT (local linear
model tree) [SHI00] partitioning scheme of the space of actuator settings, which we
extend by more involved measurement-routing and grid-refinement schemes.

◦ Data cleaning: Before optimization, the measured data are cleaned by filtering out
redundancies and noise.

◦ Discretization and Optimization: We discretize the space of measurands in a fashion
that fits the format of lookup tables as they are stored in the engine control unit.
Using discrete optimization techniques, we select among the measured (and cleaned)
data such actuator settings that minimize fuel consumption of the engine while its
pollutant emissions conform to current regulations. The selected settings are drivable
in the sense that the actuator’s variation speed is bounded in order to prevent engine
damage.

We would like to stress that the algorithm described in this article is a tool for the
engineer, not a replacement. While it runs automatically once its parameters have been
set, the setting of these parameters, e.g., the determination of the subset of actuators
which is to be varied in a given situation, requires extensive knowledge and experience.
In this sense it is a semi-automatic process.

This article is structured as follows. In Section 2.2 we briefly review relevant literature.
A high-level description of the mathematical problem is given in Section 2.3. From this,
we arrive at the corresponding steps of our process. Section 2.4 provides the details of
our method. In Section 2.5 we present a practical case-study, and Section 2.6 contains
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the experimental results. We close with a few remarks.

2.2 State of the Art

In this section we describe the state of the art of calibration methods for the optimization
of ICEs. Many commercial and research products exist for measurement and calibration.
In the following we give a brief overview of the main approaches. Any calibration process
comprises the following two major components:

(A) Obtain a good approximation of the engine behavior, mathematically described in
terms of some function.

(B) Use whatever (approximate) knowledge of that function to produce a set of lookup
tables for the ECU.

The lookup tables may be optimized for various goals, e.g., dynamic driving behavior or
maximal performance. In the present work we are set on optimizing the fuel consumption
while conforming to a set of emission constraints.

2.2.1 A Naïve Measurement-Based Approach

A basic idea is to measure all actuator settings on a sufficiently fine uniform grid. For
modern engines this approach is infeasible for two reasons. First, the size of the grid
increases exponentially with the number of actuators. This would increase the number
of measurements —and thus also the measurement time— beyond any feasible bounds.
Second, even if such a comprehensive measurement were possible, it is computionally
infeasible to optimize over such large input. So neither Step (A) nor Step (B) can be
realized in this way.

2.2.2 The Model-Based Approach

For Step (A) in a model-based calibration the measurements are used to fit a given model
to the engine behavior. Once this fitting process is completed, in Step (B) lookup tables
for the ECU which are optimal with respect to the so-obtained model and a given set
of objectives are computed via standard techniques from nonlinear optimization such as
steepest descent methods, cf. [Ise14, p. 542]. A software package which does so in an
automated fashion is the Model-Based Calibration Toolbox for MATLAB [Mat18]. Leading
model-based approaches employ physical models, the training of neural networks via the
measurements, and statistical machine learning. An implementation that combines the
first two kinds is, e.g., the software package mbminimize [KPF+03]. Statistical machine
learning is used, e.g., in ASCMO [KKL10].

Physical models are usually described in terms of smooth functions. Similarly, most
neural networks also model smooth functions. For instance, perceptrons are commonly
composed of sigmoid functions and thus smooth, cf. [Ise03, pp. 103–111]. This restriction
to mathematical modeling via smooth functions inherently imposes severe limitations to
any model-based calibration of ICEs. The reason is that the functions necessary to
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describe an ICE well enough exhibit strong nonlinearities and may even be nondifferen-
tiable. In the former case, the approximation error can be bounded globally, but locally
the approximating functions are likely to exhibit strong oscillations that do not describe
the underlying engine behavior very well; cf. [Ise03, p. 105]. At a nondifferentiability of
a continuous function the role of the local linear approximation, which is the derivative,
is taken over by local piecewise linear approximations [Sch12, p. 67ff]. In this case any
sufficiently good approximation usually requires an exponential number of local models,
one for each linear piece. As a consequence, it is common that either Step (A) does
not describe the ICE well enough or both Step (A) and Step (B) are infeasible due to a
combinatorial explosion, just like in the naïve approach.

2.2.3 LOLIMOT

Local linear model trees (LOLIMOT) are arguably the most performant model-based cal-
ibration method to date; cf. [Ise14, p. 93], as well as [MVTI03]. LOLIMOT partitions the
space of actuator settings as a dissection into cubical cells. In each cubical cell, the
engine behavior is modeled by a Gaussian function on the basis of a “central composite
measurement point pattern”; cf. [Ise14, Fig. 3.4.12]. These local models are then stitched
together into a global one. If a local model fails to produce a sufficiently close approxima-
tion, e.g., due to a strongly nonlinear behavior of the engine, the corresponding cubical
cell is split along one of its axes and the engine behavior is modeled via a central com-
posite design on each sub-cell. This process is iterated until a sufficient model quality is
reached globally.

The key contribution of LOLIMOT is to introduce adaptive meshing to the engine cal-
ibration process. One drawback of the method is that only one output value is modeled
at a time. The engine model is then fused together from the component models for the
individual measurands; cf. [Ise14, p. 93]. This approach may cause both holes in the
modeled behavior as well as local redundancies of data. Further, the model produced by
LOLIMOT is a special type of radial basis function network; cf. [Ise10, p. 143]. These types
of neural nets require a locally homogeneous covering of the actuator space by measure-
ments; cf. [Ise03, p. 111]. This then necessitates the aforementioned fixed measurement
patterns within each cell. But any such fixed pattern is again, like in the previous ap-
proaches, subject to a combinatorial explosion in high dimensions. The adaptive meshing
with fixed local pattern is better than the uniform grid used in the naïve approach, but
only by a constant factor. This is the second drawback.

Our new method for engine calibration refines LOLIMOT by simultaneously considering
all measurands. This employs a more involved grid refinement scheme and randomized
measurement routing; cf. Section 2.4.2. In this way we can overcome conceptual limita-
tions of LOLIMOT.

2.2.4 Data Boundaries

Throughout its operation the measurand values of an ICE have to stay within certain
boundaries. Some of these boundaries are set in place to avoid destruction, e.g., for cylin-
der pressures or critical device temperatures. Others are induced, e.g., by emission and
noise regulations. In practice they are obtained automatically via established software
packages such as Cameo [GPFL01], TopExpert [FEZ04], or the MATLAB toolbox LOLIMOT
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(local linear model tree) [SHI00]. Throughout we will assume that all such boundary
informations are already given.

2.3 Mathematical Problem Description

The calibration of an internal combustion engine is the procedure to derive an engine
manifold, which is optimal with respect to some predefined objective. To reduce the
complexity of the model and to enhance practical implementation, these manifolds are
discretized to obtain solution maps (see Section 2.3.2 below). The calibration problem
posed informally in [MST18, p. 250] asks for an engine manifold that minimizes fuel
consumption, while conforming to a number of emission constraints. In this section
we will present two mathematical formalizations of the latter, one idealized continuous
version and its discretization whose output fits the format of the lookup tables for the
ECU.

In our setting, knowledge of the engine behavior with respect to variations of its
actuator settings is obtained by means of physical experiments on a test bench. In
addition to the revolution frequency, typical actuators include the injected fuel quantity,
the injection angle, or the valve pressure. The generated torque of the engine is a
measurand.

Technically there is a relevant distinction between direct and controlled actuators.
Direct actuators such as injected fuel quantity, injection angle, or valve pressure can be
set directly on the engine, while controlled actuators are set indirectly. For example, the
revolution frequency is a controlled actuator that is regulated via a brake on the engine
shaft. However, in our mathematical model this distinction is not relevant.

The aforementioned side constraints include limits on pollutant emission as well as
physical requirements such as engine temperature limits. They necessitate that not only
torque, but several other output values of the engine are measured as well. A realistic
engine model features m ≥ 8 actuators and n ≥ 14 measurands. In our mathematical
model we represent the relation between the setting of m actuators and n sensor values
by a function

F : Rm → Rn .

Throughout we make the fundamental assumption that F is continuous, but not nec-
essarily differentiable everywhere. Further, we will assume the actuator values to be
restricted to a box Uad ⊂ Rm, which we call the admissible domain. It was already noted
in Section 2.2.4 that throughout this work we assume Uad to be already given. The non-
critical sensor values define another box Yad ⊂ Rn, the admissible range; cf. Section 2.2.4.
The exact definitions of Uad and Yad will be stated in the subsequent Section 2.4.1. The
feasible space of F is the set

Ffsb := {(u, y) ∈ Uad × Yad | y = F (u)} ⊆ Rm × Rn .

The actuators correspond to the coordinates of u; examples are the revolution frequency
and the amount of fuel injected. Typical sensor values, i.e., coordinates of F (u), include
the torque and the emission of carbon monoxide.

We denote by “freq” the index of the actuator for revolution frequency and by “torq”
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the index of the torque sensor values. Then we call

OP := {(ufreq, ytorq) | (u, y) ∈ Ffsb}

the operation field of F . The operation field represents the behavior of the engine with
respect to revolution frequency and torque. While our methods are more general, we
focus on this particular pair of actuator and sensor values in our analysis.

2.3.1 Continuous Optimization Problem

It is important to understand that the actual optimization problem is inherently dis-
crete, since the desired output is a solution map for the ECU. These lookup tables of
actuator values for given frequency and torque combinations have a given finite length.
For the sake of a concise exposition, however, we now describe an idealized continuous
optimization problem which has the actual optimization problem that we want to solve
as a natural discretization. While similar optimization problems must be behind all
known approaches to ICE calibration, we are not aware of any complete description in
the available literature. Our model below is intended to fill this gap.

Optimization Space and Drivability

The feasible region of our continuous optimization problem is given by all engine man-
ifolds. Each such manifold is given as the image of a map M : OP → Rm that assigns
actuator settings to a given frequency and torque value pair in the operation field, i.e.,

[F (M(ufreq, ytorq))]torq = ytorq for all (ufreq, ytorq) ∈ OP . (2.1)

A basic requirement is that these maps are continuous.
Moreover, there are vital additional conditions to consider. Any solution to the engine

calibration problem must be drivable in the sense of [MST18, p. 258]: Varying actuators
too fast might damage the engine. Therefore in the (continuous) final solution map the
variation speed of every actuator is bounded by constants ∆a for a ∈ {1, . . . , m}. For
a given map M and actuator a, the corresponding drivability constraint is that for all
(ufreq, ytorq), (u′

freq, y′
torq) ∈ OP with u := M(ufreq, ytorq) and u′ := M(u′

freq, y′
torq) the

following has to hold

|ua − u′
a| = |[M(ufreq, ytorq)]a − [M(u′

freq, y′
torq)]a| ≤ ∆a · ∥(ufreq, ytorq) − (u′

freq, y′
torq)∥ ,

(2.2)

where ∥·∥ is some norm. As a consequence, the map Ma : OP → R is Lipschitz continuous
with constant ∆a. We define Ω as the set of all maps M which are feasible in the sense
that they obey the drivability constraint with respect to each actuator, more precisely,

Ω :=
{

M : OP → Rm : M satisfies (2.1) and moreover (2.2) for all a ∈ {1, . . . , m}
}

.

Driving Cycle and Emission Constraints

In accordance with current government regulations and common test cycles, the engine
behavior is optimized with respect to pre-defined scenarios, known as driving cycles. In

36



0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600 1800

V
e

lo
ci

ty
 [

km
/h

]  

Time [s] 

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600 1800

G
e

ar
 [

]  

Time [s] 

Figure 3: Operational profile of RANDOM driving cycle.

our continuous model a driving cycle is a time-parametrized curve

γdc : [0, 1] → OP ,

whose purpose is to simulate the phases of acceleration and constant speed of real-
world driving patterns. Driving cycles are given indirectly in the form of operational
profiles which map a time to a gear/velocity combination; cf. Figure 3. Taking into
account the weight of the car, its drag coefficient, specific tire friction, etc., every such
gear/velocity combination can be mapped to a revolution frequency/torque combination
in the operation field.

For the sake of the simplicity of exposition, here we will assume that the calibration
is performed with respect to a fixed driving cycle. Yet it is also natural to take the
combination of several driving cycles into account, and our approach also covers this
slightly more general situation.

An important constraint prescribed by regulations is to bound the resulting emissions
along the driving cycle. Emission pollutants include carbon monoxide (CO), hydrocarbons
(HC), nitrogen oxides (NOx) as well as particulate matter (PM) and number (PN). We denote
by E the index set that corresponds to pollutant emissions and by ep the emission limit
for pollutant p over the driving cycle.

Consider an engine manifold map M ∈ Ω and a pollutant p ∈ E. The frequency
and torque values along γdc produce actuator settings M(γdc(t)), which result in output
values F (M(γdc(t))), including the pollutant p. The integral of these values must satisfy
the emission constraint for all p ∈ E:∫ 1

0
[F (M(γdc(t)))]p · ∥γ̇dc(t)∥ dt ≤ ep . (2.3)

The factor ∥γ̇dc(t)∥ accounts for the fact that γdc is not necessarily normalized, i.e., the
speed of acceleration, deceleration, etc., varies. Table 2.1 shows the diesel engine emission
constraints for EURO norms 3-6c (E3-E6c).

The optimization formulation

Let “fuel” be the index of the actuator for the injected fuel quantity. It is possible that
one wants to optimize fuel consumption over a different curve than the driving cycle γdc.
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Table 2.1: Selection of EURO emission constraints for passenger cars with compression
ignition engine.

Em. Unit E3 (2001) E4 (2006) E5a (2011) E6b (2015) E6c (2018)

CO mg / km 2300 1000 1000 1000 1000
HC mg / km 200 100 100 100 100
NOx mg / km 150 80 60 60 60
PM mg / km – – 5 4.5 4.5
PN 1 / km – – – 6 · 1012 6 · 1011

We thus define a second curve in the operation field

φ : [0, 1] → OP .

Using the terminology developed so far, the continuous optimization problem is

minimizeM∈Ω

∫ 1

0
[M(φ(t))]fuel · ∥φ̇(t)∥ dt (2.4)

subject to
∫ 1

0
[F (M(γdc(t)))]p · ∥γ̇dc(t)∥ dt ≤ ep for all p ∈ E .

That is, the optimization goal is to minimize the total consumed fuel with respect to
the time parametrized curve φ in OP, while for all pollutants p the integral emission
along γdc is bounded by the prescribed constant ep. Implicitly, problem (2.4) is subject to
the driviability constraint, due to the fact that all manifold maps M ∈ Ω must conform
to inequality (2.2). In the discrete formulation of the engine calibration problem this
dependence will be made explicit. We further remark that the curves φ and γdc may
coincide, but they do not have to. More elaborate curves φ may be useful, e.g., for
controlling the fuel consumption also outside the driving cycle, while ignoring the fringes
of the operation field.

2.3.2 Discrete Optimization Problem

To obtain a finite-dimensional problem, the model is discretized to yield (characteristic)
engine maps. We consider combinations of k revolution frequencies and k torque demands
and subdivide the operation field OP of F into k2 congruent rectangles OPft, where
f and t ∈ [k] := {1, . . . , k} denote the rectangle’s frequency and torque coordinate,
respectively. This corresponds to the technical requirement that engine maps are given as
k×k-matrices, which for each combination yield the corresponding value of a particular
actuator. They are stored permanently in the engine control unit. A solution map
consists of a complete set of engine maps, one for each actuator. In this way a solution
map yields a discretization of the continuous solution map M described in Section 2.3.1.

Then, in our terminology, the solution map takes as input a frequency and torque
pair (f, t) ∈ [k] × [k] and yields as output an admissible actuator setting. The latter is a
point u ∈ Uad with (u, F (u)) ∈ Ffsb such that the pair (ufreq, ytorq) lies in the rectangle
of the discretized operation field corresponding to the input coordinates (f, t).
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Our goal is to obtain a solution map which is optimal with respect to a given objective,
while conforming to several constraints. Since typical constraints are continuous but
nonlinear and the solution map itself is discrete, this optimization problem belongs to
the wide class of mixed-integer/discrete nonlinear optimization problems, which are often
difficult to handle.

Splitting the engine calibration into Steps (A) (data acquisition) and (B) (compu-
tation of a solution map), cf. Section 2.2, our goal can be formulated as follows. In
Step (A) obtain, via actual measurements of the engine, a finite set

F̂ := {(u1, y1), (u2, y2), . . . , (uδ, yδ)}

of δ points in Ffsb, i.e., a set of actuator settings uq ∈ Uad such that yq = F (uq) ∈ Yad,
which is a sufficiently good representation of F . Here “sufficiently good” means that we
can, in Step (B), extract from F̂ a solution map that conforms to discretized versions
of the drivability and emission constraints presented in Section 2.3.1. In this sense, a
solution map is a sufficiently good discrete approximation to an optimal engine map M
of the continuous optimization problem (2.4).

Since F̂ is obtained via actual measurements, it is called the data set. The elements

dq := (uq, yq)

of F̂ are called data points. The final selection of the data points is the result of a cycle
of measurements and optimization steps, which are discussed in the sections below. We
will assume that none of the points in the data set lies on the boundary of any rectangle
OPft. In this case, the discretization of the operation field into k2 rectangles partitions
F̂ into sets

Sft :=
{

(u, y) ∈ F̂ | (ufreq, ytorq) ∈ OPft

}
.

We call each set Sft a stack, and the entire partition

k OP := {Sft | f, t ∈ [k]}

is the k-operation field of F with respect to F̂ . In the solution map each entire rectangle
OPft will be represented by a single measurement dft ∈ Sft. Hence, the discrete analogue
to Ω, the set of all manifold maps, is the set Ωk of all maps Mk : [k] × [k] → Rm × Rn,
such that Mk(f, t) ∈ Sft, i.e., select exactly one data point from each stack, and satisfy
a discrete analogue of the drivability constraint (2.2), see (2.5) below. Thus,

Ωk :=
{

Mk : [k] × [k] → Rm × Rn : Mk(f, t) ∈ Sft ∀f, t ∈ [k] and Mk satisfies (2.5)
}

.

The elements of Ωk are called solution maps. Each solution map Mk ∈ Ωk has precisely
k2 values Mk(f, t) ∈ Sft, one per stack. A solution map is uniquely determined by
the data points dft = Mk(f, t), f, t ∈ [k], and we call dft the representatives of the
k2 stacks Sft corresponding to Mk. The final calibration solution is a solution map
SOL ∈ Ωk which is optimal with respect to the given objectives, i.e., minimization of
fuel consumption, subject to emission regulations and drivability. The final solution will
be picked by solving the optimization problem (2.8) below.
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Discrete drivability constraint

Due to the uniform discretization of the k-operation field, a discrete drivability constraint
merely has to bound the difference between actuator settings of representatives of neigh-
boring rectangles OPft. That is, with dft = Mk(f, t), the discrete analogue of (2.2)
is

|[dft]a − [dgs]a| = |[Mk(f, t)]a − [Mk(f, t)]a| ≤ ∆a for all a ∈ [m] , (2.5)

and all tuples (f, t), (g, s) ∈ [k] × [k], where either g = f ± 1 or s = t ± 1.

Discrete emission constraint

To discretize the emission constraint (2.3), we replace an engine map M ∈ Ω by its
discrete counterpart Mk ∈ Ωk and obtain instead of the curve integral along the curve
γdc a weigthed sum. In fact, to each rectangle OPft we associate a weight ωft. This
weight is set to zero if the intersection of OPft with the image of the curve γdc is empty.
Otherwise ωft is a positive value that reflects the resistance time, i.e., the duration of
the curve γdc staying in the rectangle OPft. The function

DC: [k] × [k] → R≥0, (f, t) 7→ ωft (2.6)

serves as a discrete analogue of the continuous driving cycle γdc. Note that the map DC
only records which parts of the operation field are met by γdc for which duration, but it
ignores the order in which this happens.

The discrete emission constraint is now given as∑
(f,t)∈[k]×[k]

ωft · [Mk(f, t)]p ≤ ep for all p ∈ E . (2.7)

The practical driving cycles, for instance the New European Driving Cycle (NEDC) or
Real World Driving Cycle (RANDOM), are given by operational profiles which map a
time to a gear-velocity combination; cf. Figure 3 and Section 2.3.1. The weights ωft

can be derived from these profiles. The revolution frequency at a certain time can be
calculated directly from the current gear/velocity combination.

For the requested engine torque not only the speed but also the acceleration has to
be taken into account, along with the car’s mass, roll drag and air flow resistance. For a
schematic of a discretized driving cycle, cf. Figure 4.

Discrete optimization formulation

In the discrete version of problem (2.4), we approximate the objective function in a
similar fashion by replacing again the integral along the curve φ by a weighted sum. To
this end, let as above the weight function

Φ: [k] × [k] → R≥0, (f, t) 7→ Φft

be the discrete analogue of the curve φ describing how long the curve φ stays in OPft.
Again, Φ may coincide with DC from (2.6) or be chosen to optimize fuel consumption on
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Figure 4: Schematic of a discretized operation field and driving cycle. Resistance times
are represented by gray shades. (See also Figures 9 and 10.)

a larger part of the operation field. The optimization objective is now to find a solution
map SOL ∈ Ωk by picking for each stack Sft a single representative dft = SOL(f, t), so
that SOL ∈ Ωk solves

minimizeMk∈Ωk

∑
(f,t)∈[k]×[k]

Φft · [Mk(f, t)]fuel subject to the emission constraint (2.7).

(2.8)
Note that Mk ∈ Ωk includes the discrete drivability constraint (2.5). In Section 2.4.5 we
will demonstrate how to formulate this problem as an integer linear program (ILP).

2.4 Semi-automatic Calibration

Our method consists of two parts, one semi-automatic, and one automatic. Algorithm 1
is a first rough sketch of the automatic part, which will be detailed in the following. As
its input it is given the domain Uad, equipped with a grid, and an evaluation oracle for
the function F . It returns a solution map SOL: [k] × [k] → Rm × Rn, SOL ∈ Ωk, of
representatives of the k-operation field. In practice, the evaluation oracle for F is given
by an engine mounted on a test-bench.

The while loop of Algorithm 1, whose description makes up the bulk of this section,
terminates if a preliminary solution map S̃OL: [k] × [k] → Rm × Rn could be extracted
from the measured data. This preliminary solution map S̃OL conforms to the emission
and drivability constraints. However, for each stack Sft in k OP, it contains either a data
point dft, which will then represent Sft, or a placeholder that adds penalties to the total
emission; cf. Section 2.4.5. Note that the constraint Mk ∈ Ωk in (2.8) requires, that there
are no empty stacks, but our integer linear program (ILP) formulation of (2.8) in 2.4.5,
which is used by Algorithm 1, is extended such that it can handle empty stacks by using a
placeholder instead. In the second part, the gaps in S̃OL (marked with placeholders) are
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closed via interpolation-guided measurements and a complete solution map SOL ∈ Ωk

is returned; cf. Section 2.4.6. The penalty values ensure that replacing a placeholder
by a measured value can only improve the solution. As the preliminary solution map
S̃OL conforms to the given emission constrains, so must the complete solution map SOL,
which is thus a solution to problem (2.8).

In the semi-automatic part of our method, engineering knowledge is used to provide
a meaningful base set of measurements for Algorithm 1 and thus guide the calibration
process. During this so-called basic calibration, the first two steps in Algorithm 1 are
repeated for a preset amount of time with several actuators fixed to values that enforce
measurements in regions which are known to be critical to any calibration effort, re-
gardless of the specific engine. In particular, low torque regions, which have a significant
influence on the overall pollutant emission, are focused on hereby. As this semi-automatic
part of our method consists of a subset of the steps in Algorithm 1, we did not dedicate a
separate section to its description. Instead, we provide a protocol of the actuator settings
and their respective purposes during basic calibration in Section 2.6.1.

Algorithm 1: Engine calibration procedure
Input : admissible domain Uad, grid G, admissible range Yad, data set F̂ ,

precision parameter k, evaluation oracle F
Output: solution map SOL, updated data set F̂
initialization
while no ILP-solution S̃OL found do

iteration step: adds to F̂
data cleaning: reduces F̂ to F̂red
grid refinement
check integer linear program from Section 2.4.5 for feasibility with F̂red as
input and extract solution S̃OL if it exists

end
close the gaps in S̃OL
return (SOL, F̂ )

2.4.1 Initialization

The calibration procedure is initialized with the domain Uad equipped with a grid G, the
set of noncritical target values Yad, a (possibly empty) set of data points F̂ and a precision
parameter k. The function F is given implicitly; for a given setting of the actuators, the
sensors yield the respective function value by means of a physical measurement. We
assume that the data points in F̂ reflect true values of F . The domain

Uad =
m∏

i=1
Ii (2.9)

is a product of intervals I1, I2, . . . , Im, where Ii defines the range of variation of actuator
i; cf. Section 2.2.4. It may happen that Ii degenerates to a single point. Then the
corresponding actuator is called static, otherwise it is called dynamic.
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There are two cases to distinguish. In the first case, the set F̂ of data points is empty.
Then, for each dynamic actuator i, the corresponding interval Ii is subdivided into parts
of equal length. Otherwise, if F̂ is not empty, then we assume that each interval Ii is
equipped with its own subdivision. In either case, the product form (2.9) induces a grid
structure G on the domain. If F̂ is empty then this grid G is uniform. In the later stages
of the optimization, however, G will become more and more non-uniform.

Each measurand has an interval Jj of noncritical values. For example, the tem-
perature of the test engine has to stay within certain bounds to prevent it from being
damaged. Then

Yad =
n∏

j=1
Jj .

In practice, Yad is given in part by the physical test engine (e.g., the aforementioned
temperature limits) as well as by external factors such as government regulations (e.g.,
emission limits). Just like F , which is given by the physical test engine, we will assume the
set Yad to stay fixed throughout the whole calibration process. The precision parameter
k is dictated by the engine control unit’s engine map format.

During the various steps of the calibration, data points will be added to the set F̂ .
Thus, it may happen that F̂ becomes prohibitively large to perform subsequent steps of
the calibration. How to weed out less relevant measurements is the subject of Section 2.4.3
below.

2.4.2 Iteration Step

The basic iteration step can be subdivided into two phases: The generation of a measure-
ment plan, followed by the actual measurement, which is combined with a refinement of
the grid.

Generation of the Measurement Plan

For our given grid G and data set F̂ , we construct an abstract graph G = G(G, E) as
follows. The nodes of G are the grid boxes determined by G. Two m-dimensional grid
boxes are joined by an edge if their intersection is a grid box of dimension m − 1. If
there are no measurements yet, i.e., if F̂ is empty, then the grid G is uniform, and the
graph G is the dual graph of a cubical cell complex. Due to non-uniform refinement, the
structure of G will become more complicated.

The graph G is equipped with nonnegative node and edge weights. For a grid box B,
we denote by #B the number of points (uq, yq) ∈ F̂ such that uq ∈ B. Then the weight
wb of a grid box B is chosen as

wb(B) = vol(B)
#B + 1 , (2.10)

which we call the reciprocal data density of B. Adding 1 in the denominator prevents
division by zero. Further, we define the weight we of an edge between two adjacent grid
boxes B and B′ as the data density of B ∪ B′. That is,

we(B, B′) = #(B ∪ B′)
vol(B) + vol(B′) . (2.11)
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There is some room for adjusting these weights; the general idea is that the weights
should reflect the data densities.

The classical way to measure the engine behavior is to take a measurement only
once a steady-state is reached after an adjustment of the actuators. Accordingly, this
technique is called steady-state, or stationary measurement. A more recent approach is
the quasi-stationary measurement, also called sweep-mapping. Here, the actuators are
varied slowly and continuously according to a ramp function in order to save measurement
time. The output then follows with a little delay, while measurements are taken at a
regular frequency; cf. [Ise14, p. 93]. There are several techniques to bound and even
compensate the contouring error of quasi-stationary measurements; cf. [Ise14, p. 94ff] and
Remark 2.4.2. Throughout the while loop of Algorithm 1 quasi-stationary measurements
will be performed exclusively. For these the following concept is crucial.
Definition 2.4.1. (Measurement Ramp) For two points uq, ur ∈ Uad, we call the set{

uq + i · ur − uq

ℓ − 1 | i = 0, 1, . . . , ℓ − 1
}

the measurement ramp from uq to ur with ℓ measurements.

Zero-entries of ur − uq correspond to actuators which are locally static. Let δ := |F̂ |
and suppose that there is an admissible point u = uδ ∈ Uad where the last measurement
took place. If this does not exist, we choose u uniformly at random in the domain Uad.
Let B be the grid box containing u. We may assume that B is unique, since u has been
constructed in a randomized fashion. The two steps of the generation of the measurement
plan are as follows:

I. Random grid box: Pick a grid box B′ at random with probability
wb(B′)

W
,

where W =
∑

B∈G wb(B) is the sum of the reciprocal data densities of all boxes.

II. Measurement path: Determine a shortest path B = B0, B1, . . . , Bs = B′ in G from
B to B′ using Dijkstra’s algorithm with respect to the weights we in (2.11); cf.
Figure 5 and [Coo98, §2.2]. In each box Bq for q ∈ [s], pick a point uδ+q uniformly
at random. For 1 ≤ j ≤ s, connect the points uδ, uδ+1, . . . , uδ+s by s measurement
ramps with ℓj measurements each.

This will result in a total of up to
∑s

j=1 ℓj new measurements to be added to the set
F̂ . In our setting, the actuators are varied at a constant speed on each measurement
ramp. This speed is adjusted so that at least one actuator is varied at its maximal
variation speed; the values for the maximal actuator variation speeds are listed in Ta-
ble 2.2. The measurement frequency throughout the whole calibration process is set to
one measurement per second. As a consequence, both the length and the orientation of
the measurement ramps determine the numbers ℓj .

Measurement

The actual measurement is combined with an adaptive refinement of the grid. The goal
of the iteration is to fill the solution map in a way that the remaining small holes can be
closed by extrapolation of the surrounding data. The next step is then:
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Act. 2

Act. 1

High Density
Low Density

Figure 5: The routing during measurement planning prefers regions of low data density.
On the right: Corresponding path in the induced abstract graph.

III. Measurement: The actuator settings are varied continuously along the path pre-
scribed by the measurement ramps. This results in a linear ordering of the mea-
surements.

For the recording of the ℓj measurements per ramp, several additional aspects have
to be taken into account, as explained below. It is important not to store every mea-
surement, since we do not want to store redundant data. Thus, we restrict our attention
to relevant value variations, i.e., we only store the measurement F (uq) at a point uq if
the measurement is sufficiently different. Consequently, fewer than

∑s
j=1 ℓj data points

may be added to the set F̂ . Here one can choose among various meaningful distance
functions. However, we also want to establish a minimal measurement frequency. That
is, if we omitted too many subsequent measurements due to the previous rule, then we
store the measurement nonetheless.

Moreover, it may happen that a measured value lies outside the admissible range
Yad, i.e., it violates one or more restrictions. In order to exclude critical values, the
entire measurement is disrupted, and we continue from scratch at (I) with the last valid
measurement. Special care is needed for observables with a pronounced latency. The
development of these values is extrapolated, and the measurement is rerouted already if
the measured values get sufficiently close to the boundary of Yad.

2.4.3 Data Cleaning

Assume that the measurement phase of the iteration step is complete, i.e., a new set

F̂ = {(u1, y1), (u2, y2), . . . , (uδ, yδ)}

is available. In Section 2.4.4, we will compute local polynomial fits to the function F
using data points in F̂ as interpolation points. At points in which the interpolation is
not good enough, the grid is refined further. A fundamental necessity for the good fit of
a polynomial approximation is that the interpolation points from which it is generated
resemble a random point cloud. This is not the case for F̂ , since all points lie on a
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piecewise linear path given by the sequence of measurement ramps. We thus need to
extract a subset F̂red from F̂ that is sufficiently generic.

Furthermore, we want to translate the discrete version (2.8) of our optimization prob-
lem into an integer linear program which picks the right kind of measurements from which
we can then obtain our engine maps; cf. Section 2.4.5 below. However, our measurements
need to be preprocessed in order to make such an approach feasible by significantly re-
ducing the amount of data without affecting the accuracy.

As it turns out, we can achieve both goals with a single method, which we call the
adaptive space compressor. The idea is the following. For the set Û = {u1, u2, . . . , uδ},
which is the projection of the set F̂ onto the admissible domain Uad, we define a corre-
sponding threshold graph. Its nodes are the points uq, and there is an edge between uq

and ur if the Euclidean distance ∥uq − ur∥2 is below a certain threshold. This threshold
depends on the sizes of the two grid boxes which contain uq and ur. Then we iteratively
remove measurements which have the maximal node degree in the threshold graph until
only isolated nodes remain. This reduced set is denoted as Ûred, which yields

F̂red =
{

(u, y) ∈ F̂ | u ∈ Ûred
}

.

The set F̂red has significantly fewer data points compared to F̂ . As the threshold for
the connection of uq and ur by an edge depends on the size of the grid boxes containing
them, the distribution of the remaining data points reflects the structure of the grid G.
Due to the criteria for grid refinement, which will be introduced in (V) and (VI) below,
the structure of the grid G reflects the behavior of F . In particular, this means that
the data density is higher in regions where the behavior of F is hard to reconstruct by
interpolations. Thus, the adaptive space compressor filters out the relevant information
gained by the preceding measurements. Moreover, it breaks up the piecewise linear
structure of the data point distribution, leading to local (pseudo-)randomness which is
required by the polynomial interpolation.

Note that this reduction does not affect the set F̂ , but we rather explicitly keep F̂red
as a subset. In this way, all our measurements are taken into account for computing the
weights according to (2.10) and (2.11) in (I) in the next round of measurements.

Remark 2.4.2. Since the points ui are picked in a randomized fashion, the piecewise
differentiable map F is differentiable at ui almost surely. Thus, we may assume that
every ui lies at the center of an open ball on which F is smooth. The grid structure is
refined and thus the measurement density increased in areas which are not sufficiently
smooth; cf. Section 2.4.4. Consequently, in an individual grid box one can, with high
probability, cluster the measured points according to smooth patches of F . As a result,
for such clusters the local time constants are identifiable and the techniques for reversing
the contouring error by dynamic correction in [Ise14, p. 95f] can be applied successfully,
leading to stored measured values that closely approximate the steady state values of the
engine.

2.4.4 Grid Refinement

The purpose of refining the grid G is to accumulate sufficiently many “meaningful” data
points in the set F̂red, such that the k2 representatives for the solution map can be
extracted while observing the emission and drivability constraints. Recall that in our
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application we have m ≥ 8 actuators and n ≥ 14 measurands. This makes computing on
a uniform grid infeasible. The price to pay is that it is slightly more involved to determine
points uq in the admissible domain Uad such that the data point (uq, yq) adds significant
information to our data set F̂red and is thus stored. We proceed with the following step:

IV. Computation of local fit: We employ a Newton interpolation approach, which re-
quires only a partial recomputation of the interpolation polynomial if some inter-
polation points are exchanged. Each component function [F ]i : Rm → R, where
i ∈ [n], has to be interpolated by a Newton polynomial Ld[F ]i, where d is the
approximation order. Assuming the (d + 1)-times continuous differentiability of
[F ]i at u, a d-th order polynomial fit requires N :=

(
m+d

m

)
interpolation points

{uq1 , uq2 , . . . , uqN } ⊆ Û . These N points have to satisfy certain spatial relations
for the approximation properties of the interpolation polynomials to hold; the in-
terpolation problem is then called poised. The formulation of the latter conditions
is somewhat technical. We thus omit the details and refer to the literature instead;
cf., e.g., [SHI00]. Our data cleaning method in Section 2.4.3 ensures poisedness
(with high probability).
If an interpolation polynomial with N interpolation points which have the required
geometrical structure fails to give a d-th order approximation of [F ]i at u, this
indicates insufficient smoothness of [F ]i at u, which we will use as a criterion for a
local grid refinement. We aim at a second order fit, i.e., d = 2, which requires

N =
(

m + 2
m

)
= m (m + 1)

2

interpolation points. Our intention is to compare the measured value yq ∈ Yad at a
point uq ∈ Uad, where (uq, yq) ∈ F̂red, with a polynomial interpolation of F in uq

using elements of F̂red as interpolation points. The error of such an approximation
is minimized if we use the N closest neighbors {uq1 , uq2 , . . . , uqN } of uq in Uad as
interpolation points, such that

{(uq1 , yq1), (uq1 , yq2), . . . , (uqN , yqN )} ⊆ F̂red .

Concerning the implementation of the polynomial interpolation: As can be seen in
the experimental section below, we will usually have less than 100, 000 points in F̂red.
This makes the following brute-force approach feasible. Let δred := |F̂red| and assume for
simplicity that q = 1. Now calculate the squared Euclidean distances of u2, u3, . . . , uδred

to u1. This has a cost of roughly 3 · m · δred elementary arithmetic operations. Store
these values in the first row of a (2× [δred −1])-array and the indices of the corresponding
points ur in the second row (≈ 2 · δred writes). Then determine the N smallest entries of
the first row and return the corresponding second row entries.

A simple in-place algorithm to accomplish this is the following: First, determine the
N -th smallest element of the first row, which costs one sweep of the array; cf. [CLRS09,
p. 183 ff]. Second, sort all columns to the front of the array whose first row entry is
smaller than or equal to the N -th smallest first row entry. This costs another sweep of
the array. Finally, return the first N second row entries.

Repeating this procedure for all δred points in F̂red, we arrive at an approximate
cost of (3 · m + 4) · δ2

red ∈ O(m · δ2
red) elementary operations. In our setting, for up
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to 100, 000 points and 8 dynamic actuators, this results in a total of about 280 billion
elementary operations, which is a fairly insignificant task for modern computers. For
a general discussion on the nearest neighbor search in high dimensions we refer to the
survey [AI18]. The next step is the following:

V. Symmetric grid refinement: To decide whether the grid needs to be refined, we
compare the interpolated value, say F̃ (uq), with yq = F (uq). If the deviation
exceeds a threshold, then the box B which contains uq is split into 2m smaller grid
boxes, symmetrically in all coordinate directions.

The quality of the local fit depends on the differentiability properties of the approx-
imated function. Hence, the symmetric grid refinement increases the measurement
density in areas of potential nondifferentiability.

In practice, the static actuators can be ignored for the computation of the local fit and
the symmetric grid refinement.

Making the Grid Nonuniform

Recall that ultimately we want to solve the discrete version (2.8) of the constrained
optimization problem (2.4), i.e., we want to minimize the fuel consumption subject to the
drivability and emission constraints. For the iteration step, the drivability constraints
are irrelevant. Therefore we focus on the subset E of measurands corresponding to
the emissions. The final output of the calibration will be a solution map SOL ∈ Ωk

represented by k2 data points dft = SOL(f, t), where f, t ∈ [k], which cover the k-
operation field, while satisfying the emission constraints (2.7). In practice, it is a major
challenge to find sufficiently many points which satisfy the conditions (2.7) imposed by
emission control. This leads us to a second type of grid refinement.

VI. Asymmetric grid refinement: Consider the point uδ ∈ Uad at which the last mea-
surement was performed. Let f and t be indices such that (uδ

freq, yδ
torq) ∈ OPft,

where yδ = F (uδ). If, for any p ∈ E, we have

[F (uδ)]p < min
(uq,yq)∈Sft

([F (uq)]p) ,

i.e., if the emission measurement [F (uδ)]p is lower than any other value on the
corresponding stack Sft ⊂ F̂ , a cross-measurement is performed. To this end, each
actuator is varied individually to determine the direction with the biggest impact
on [F ]p. Afterwards, the grid box B containing uδ is split into two congruent (sub-
)boxes along the axis corresponding to the actuator whose variation has the biggest
impact on [F ]p.

Both types of grid refinement do not add data points to F̂red directly. However, the grid
refinements increase the probability for picking one of the subboxes in (I). This way one
can hope to find data points near (uq, yq) that add relevant information about F and
near (uδ, yδ) with better emission values than those currently stored in F̂ .
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2.4.5 An Integer Linear Program

As advertised in Section 2.3.2, we will now detail how to formulate the discrete opti-
mization problem (2.8) as an integer linear program (ILP) in order derive a preliminary
solution map S̃OL: [k] × [k] → Rm ×Rn from the reduced set of measurements F̂red that
satisfies the objectives listed in Section 2.3.2. This ILP-solution S̃OL is not necessarily
a complete solution map SOL, as it may contain some placeholders, which must be re-
placed in a subsequent interpolation step; cf. Section 2.4.6. For an introduction to the
solution of ILPs, see [Coo98], [Sch98], and [Sie01].

For a data point dq, let Sq be the stack that contains it. As before, let “fuel” be the
data point index corresponding to the injected fuel quantity. Then we call the weight

Φq := −
min

{
[dr]fuel | dr ∈ Sq

}
[dq]fuel

the prey value of dq. The prey value of dq is the negative of the quotient of the minimal
fuel consumption among all data points in Sq, the stack containing dq, over the fuel
consumption at dq. As such, the absolute value of any prey value is smaller than or equal
to 1. Ideally, a prey value equals −1.

Further, for each index q ∈ [δred], where δred := |F̂red|, we introduce a binary decision
variable sq ∈ {0, 1}, which indicates whether the data point dq is part of the ILP-solution
S̃OL. The objective function of our integer linear program can now be written as

minimize
δred∑
q=1

Φq sq , (2.12)

while conforming to the constraints (2.13), (2.14), and (2.15), which are described in
detail below. It was already noted in Section 2.3.1 that there exists a wide array of
meaningful weight functions Φ (and their continuous counter-parts φ). The above choice
for Φ, the prey values, ensure that the ILP-solver picks for all operation points the data
point with the least possible fuel consumption among all feasible choices.

The stack constraint

The solution S̃OL of our ILP should contain at most one element from each stack Sft.
This condition is reflected in the stack constraint

sft +
∑

dq∈Sft

sq = 1 for all (f, t) ∈ [k] × [k] , (2.13)

where sft is a stack decision variable; it is 1 if it is not possible to choose a data point
for stack Sft and 0 otherwise. The nonzero sft are the placeholders we mentioned above.
They will be used in (2.15) to assign the penalty values to stacks that contribute no data
point to the ILP-solution S̃OL.

Formalizing the drivability constraint

To avoid engine damage, the discrete drivability constraint (2.5) ensures, that the varia-
tion speeds of all m actuators are constrained individually by nonnegative constants ∆a
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for a ∈ [m]. To write this condition as a constraint in an ILP, let dq ∈ Sft, and dr be a
data point in either neighboring stack Sf±1,t or Sf,t±1. Then the drivability constraints
(2.5) can be expressed as

sq + sr ≤ 1 if
∣∣[dq]a − [dr]a

∣∣ ≥ ∆a for any a ∈ [m] . (2.14)

Note that this is a secant constraint, since the data points compared are contained in
neighboring stacks.

Formalizing the emission constraint

The emission condition (2.7) describes the upper bound of several emission test cycles,
e.g., maximal NOx production. Additionally, the current output of a pollutant p ∈ E is
restricted by the boundaries of the respective interval of noncritical values

Jp = [ep, ep] .

In the following, the weights ωft represent the mean resistance time of the rectangles
OPft in the given test cycle. For simplicity of notation, the mean resistance time (cf.
Section 2.3.2) on the rectangle corresponding to the stack Sq containing dq is denoted
by ωq. Then the emission constraint can be formulated as follows:

δred∑
q=1

ωq [dq]p sq +
∑

(f,t)∈[k]×[k]

ωft ep sft ≤ ep for all p ∈ E . (2.15)

The second summand of the left hand side of the inequality serves as the above-mentioned
penalty term which compensates for stacks that contribute no data point to the ILP-
solution S̃OL.

Remark 2.4.3. We want to determine the size of our ILP. There are k2 equalities arising
from the stack constraints. Further, it has m · 2 · k · (k − 1) drivability constraints and
|E| linear emission inequalities. There are k2 stack decision variables and δred decision
variables sq, one for each data point in F̂red. In the situation of the simulation data
presented below, where k = 16, and m = 8, this results in 256 equalities and 3840 + 8
inequalities which constrain the ILP-solution S̃OL. Moreover, there are 256 stack decision
variables. The size of F̂red naturally varies throughout the calibration process, and may
range between 10.000 and 100.000.

2.4.6 Closing the Gaps in S̃OL

The calibration algorithm traces the behavior of the map F , given by the physical test
engine, by constructing a sequence of (one-dimensional) measurement ramps through the
domain Uad which is high-dimensional, as is the range of F . Naturally, this approach
cannot produce a sufficient coverage of Uad. In particular, often several stacks Sft of the
k-operation field will contain no data point that contributes to the solution S̃OL of the
integer linear program.

For each such non-contributing stack Sft we proceed as follows. First, we construct
a local model of F as follows. If Sft lies in the interior of the operation field, we pick
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N = m(m + 1)/2 data points

{(uq1 , yq1), (uq2 , yq2), . . . , (uqN , yqN )}

from neighboring stacks and compute a Newton type polynomial that interpolates the
points {uq1 , uq2 , . . . , uqN } as done in the local fit step IV. If an empty stack Sft lies on
the boundary of the operation field, then the local model is computed by calculating
secants of neighboring data points in the nearest stacks and extending them linearly.

Second, we find, e.g., via Newton’s method, some point ũ ∈ Uad such that under our
local model of F we have (ũfreq, ỹtorq) ∈ Sft. In a ball about ũ we perform randomized
measurements, e.g., using a normal distribution centered at ũ, until we find a point u with
(ufreq, ytorq) ∈ Sft and which satisfies the drivability constraints. Due to the continuity
of the manifold map there must exist a neighborhood of such points. The data point
dft := (u, y) is then added to the solution as the representative of the stack Sft. Our way
of picking the dft ensures that the completed solution map conforms to the drivability
constraint and we thus have SOL ∈ Ωk.

For pollutant p the penalty value is ep, the upper bound of the interval Jp = [ep, ep]
of noncritical values. Hence, any recorded value of pollutant p, by which the penalty
value is replaced, is smaller than or equal to ep. As a consequence, the total emission of
a complete solution map SOL cannot exceed that of S̃OL and must thus conform to the
emission constraint if the preliminary solution does. Since we also have SOL ∈ Ωk, as
noted above, the so-completed solution map does indeed solve problem (2.8).

2.5 AVL Engine Model

For our experiments in Section 2.6, we replace the test-bench with a model of a diesel
engine with turbo charger, pilot injection and variable turbine geometry. The latter has
been developed in cooperation with AVL GmbH and is based on measurements on a
compression ignition/diesel engine. Below we will give a brief overview of the effects of
the 8 actuators and 18 measurands that are simulated, thus indicating the scope of the
simulation. For a detailed description of the AVL model’s derivation, see [Bur15, p. 69ff]
and [Ve13].

2.5.1 Actuators of the AVL Engine Model

Revolution frequency of the crankshaft (RF) The crankshaft converts the reciprocating
motion of the cylinders into a rotational motion. In modern four-stroke engines every
cylinder fires once for every two revolutions of the crankshaft. The revolution frequency
is a controlled actuator, as discussed in Section 2.3. It stands out among the other
actuators since it provides one coordinate axis of the operation field.

Injected fuel quantity (IF) In contrast to a spark-ignited engine, the injected amount
of fuel is the most important actuator. More precisely, the injection process is crucial
in the application process of diesel engines. The injection process is given by several
pre/pilot-injections, a main injection and post-injections. Typically, the engine torque is
mainly determined by the main-injection. This actuator defines the total amount of fuel
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Table 2.2: Actuator-intervals during various calibration runs. ∆max denotes the maximal
variation speed of the actuator in respective units per second. LT/HT = low/high torque,
FR = free variation of torque; cf. Sections 2.6.1 and 2.6.2.

Act. Unit ∆max Basic, LT Basic, HT Basic, FR Full Calibration

RF 1
min 10 1000–2600 1000–2600 1000–2600 1000–2600

IF mm3

cycle 0.1 6–10 50–60 6–60 6–60
RP hPa 100 295677 / 405677 295677 295677 295677–1126537
AF mg

stroke 5 300 300 300 275–991
TG int 1 30 30 30 30–85
MT ◦ CA 0.2 0 / 10 0 0 0–10
PI mm3

cycle 0 1 1 1 1
PT µs 10 1540 1540 1540 1540–2565

per cycle. In this simple model, the injected fuel volume is divided into one pilot and
the main injection.

Pressure in the common rail system (RP) In contrast to solenoid-controlled unit injector
elements, the pressure is generated by a central fuel and high pressure pump. The fuel
injectors are opened and closed by piezo elements.

Air filling (AF) Similar to a spark ignited engine, an air valve controls the amount of
air which contributes to the combustion process. In this model the amount of air is given
directly in mass per piston stroke.

Turbine geometry (TG) Modern turbochargers do not have a static turbine geometry.
Variable-turbine-geometry turbochargers are able to tune the angle of the turbine blades
in order to increase the amount of boost. Alternative setups are given by static turbines
with waste gates. Waste gates are applied to reduce the amount of exhaust gas that
accelerates the turbine, so the amount of boost can be controlled. In our model the
geometry is given as a value between 30 and 85.

Main timing (MT) The main timing is comparable to the spark timing of Otto-engines.
It defines the start timing of chemical reactions in the crankshaft angle of the main
injection. Similar to the Otto engine, the pressure rise is delayed by the ignition delay.

Pilot injection (PI) and pilot timing (PT) Pilot injection works in tandem with pilot
timing to achieve a complete burning of the fuel, which in turn also drastically reduces the
emission of NOx gases. The pilot injection increases the temperature of the combustion
chamber, thus when the main injection occurs the fuel is sent into a chamber which
already is at a higher temperature than its autoignition point. This especially facilitates
the fuel burning at lower speeds.
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2.5.2 Measurands of the AVL Engine Model

Torque The produced torque of the engine. The revolution frequency and the engine
torque define the power level of the ICE. It stands out among the other measurands since
it provides the second coordinate axis of the operation field.

Fuel mass flow The amount of fuel which is delivered to the cylinder per hour.

Carbon monoxide, hydrocarbons, nitrogen oxides, soot The momentary and integral
exhaust emission of pollutants, given in parts per million and emission per hour.

Indicated mean pressure The average pressure over a cycle in the cylinder.

Lambda Lambda displays the chemical partitioning of the fuel. Spark-ignited engines
run on lambda around 1. The combustion limits are 0.6 and 1.6. The lambda value for
compression ignition engines is much higher, up to 20.

Manifold pressure The manifold pressure measures the absolute pressure in front of the
intake channel. The pressure depends on the absolute environmental pressure and the
boost level of the turbocharging system.

Boost pressure The boost pressure is created by the turbocharging unit. It depends on
the turbine geometry setting and the current combustion behavior.

Maximal cylinder pressure The maximal point of the cylinder pressure sequence. Every
engine has a specified maximal cylinder pressure, in order to avoid damaging of the
devices. Typically, the maximal pressure is about 160 bar.

Manifold temperature The manifold temperature measures the temperature in the in-
take channel.

Critical temperature The critical temperature is defined as the temperature of the burn
zone when the exhaust valves open. In case of bad timings, the fuel has not been
consumed completely, which results in the release of flames to the exhaust manifold,
catalysts and turbocharger. It indicates damages to sensitive parts of the engine setup.

Specific fuel consumption The current power level of the engine over the current fuel
consumption.
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2.6 Optimizing the AVL Engine Model

As explained in Section 2.4, we subdivide the engine optimization into two phases. During
the first phase, which we call basic calibration, measurements are taken for a prescribed
amount of time in regions which are known to be critical to any calibration effort, regard-
less of the specific engine. The basic calibration is concluded by passing the obtained
data to Algorithm 1, which is run without the emission constraint (2.15) in the ILP. If
constraint (2.15) is omitted, there always exists a feasible solution S̃OL to the ILP, which
may contain several gaps, though, due to the drivability constraint and empty stacks.
Hence, the while loop exits immediately and the gaps in S̃OL are closed.

In the second phase, which we call full calibration, a solution map conforming to all
constraints is obtained by building on and refining the preliminary solution map of the
first phase. During full calibration, Algorithm 1 runs automatically and without time
limit until it returns a complete solution map SOL.

One could, in theory, omit the first phase and turn the calibration procedure into
a fully automatic one by letting all actuators range freely on their whole domain right
from the start. However, carefully applying engineering-knowledge in the first phase
by bounding some actuators, fixing others, and ignoring the very restrictive emission
constraints results in the quick gathering of a meaningful base set of data which then
merely has to be refined in the sequel. In our experience, this approach considerably
reduces the number of measurements required.

Throughout this section the precision parameter k is set to 16, and this yields 256
representative data points for the solution map SOL. This determines the shapes of
Figures 7ff.

Remark 2.6.1. In the test bench scenario, measurements are taken, though not necessar-
ily stored, in regular time intervals. A realistic frequency is one measurement per second.
We take this frequency as the basis of our translation of the number of measurements in
the simulation into real-world time. Below, we state the costs of our method in real-world
time, as all computation times occurring during the different steps of Algorithm 1 are
negligible in comparison to the days, or even weeks, that the physical experiments on a
test bench can take.

2.6.1 Basic Calibration

During basic calibration, only two actuators are dynamic, IF and RF. The other six
actuators are static throughout. The phase is subdivided into three runs of several
hours. Here a run means the following: The intervals of the dynamic actuator IF and
the values of the static actuators are reset. Then the algorithm steps in Sections 2.4.2–
2.4.4 are repeated for a preset amount of time. The revolution frequency is set to vary
over its full range of 1000–2600 revolutions per minute throughout all three runs. For a
full account of the applied settings, see Table 2.2.

A good foundation for the optimization process is a well-defined low and high torque
boundary region. In a compression ignition engine the generated torque is roughly pro-
portional to the injected fuel. During the first run we measure the low torque region by
limiting the IF-interval to 6–10 mm3/cycle, while the static actuators are set to values
that support the creation of low torque operation points; cf. Table 2.2. This run takes 6
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Figure 6: Operation field saturation after basic calibration, before closing of gaps.

hours. The low torque region is measured for a second time span of 6 hours with slightly
modified settings, i.e., MT = 10.0 and RP = 405677 hPa. We measure the low torque
region twice because it represents, in particular, the situation during startup, where low
engine temperatures lead to unclean combustion, which causes high HC and CO emissions;
cf. for example [MP15]. Hence, a detailed image of the engine behavior in this area of
the operation field is desirable.

Afterwards, the IF-interval is reset to 50–60 mm3/cycle, so that the high torque
regions can be measured. The static actuators are set to values that support high torque
operation points; cf. Table 2.2. Again, the run takes 6 hours.

Finally, the lower and upper bound of IF are removed, in order to get a picture of the
remaining region of the solution map. Therefore, the static actuators are set to midrange
values; cf. Table 2.2. This region is measured for 6 hours, too. After 24 hours, we get a
coarse picture of the engine behavior.

As indicated above, the so-obtained data are used as a base set for a first run of
Algorithm 1, albeit with a deactivated emission constraint. Due to the omission of con-
straint (2.15), the while loop exits immediately as a feasible solution S̃OL to the ILP can
always be found in this case. Due to empty stacks and the drivability constraints, which
are still active, there may still be gaps in S̃OL, though. These are closed subsequently
by interpoation-guided measurements; cf. Section 2.4.6. For the comparison of an engine
map, i.e., a single component of a solution map, that respects the drivability constraint
to one that does not, see Figure 7.

It took an additional 45.8 hours to close all measurement holes. Figure 6 depicts the
saturation of the operation field before this completion. The average fuel consumption
for 100 kilometers of the so-derived preliminary solution is 4.65 liters in the NEDC. Since
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Figure 7: Top: Solution for actuator AF without drivability constraint. Bottom: AF
settings of EURO 5 solution respecting the drivability constraint.
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this optimization does not take exhaust emissions into account, the cycle integrals of CO,
HC and NOx are rather high: 3.68, 1.72 and 5.26, respectively, per NEDC. The solution
map obtained in the first calibration phase serves as the basis of the full calibration.

2.6.2 Full Calibration

During the full calibration phase the only static actuator is pilot injection. All oth-
ers range over their whole respective domains. With these presets, Algorithm 1 runs
automatically and without predefined time limit until it returns a solution map SOL.

The optimization is performed, first, for the NEDC, then for the RANDOM cycle. An
NEDC solution map that conforms to the EURO 4 norm is obtained after 68.51 hours,
one that conforms to EURO 5 after 88.41 hours. It turns out that the NEDC EURO 5
solution map conforms to all EURO 4 constraints with respect to the RANDOM cycle.
That is, it is also a EURO 4 solution map for the latter. A EURO 5 solution map is
obtained after 107.55 hours of measurement. For the emission constraints corresponding
to the different EURO norms, see Table 2.1.

To lend some context to these numbers, we performed the same calibrations using
uniform grids. To derive a solution map of equivalent quality, i.e., a solution map con-
forming to all constraints given by the different EURO norms, the uniform grid approach
consistently required 15 to 20 times as many measurements, whereby we again mean per-
formed measurements, not stored ones. This translates into a real-world measurement
time of weeks instead of days for a solution map of comparable quality.

Remark 2.6.2. Since the AVL model only has a measurand for particle mass, but not
for the number of particles, the determination of a EURO 6 solution map lies outside
of the model’s scope. However, the step from EURO 5 to EURO 6 merely adds an item
to the list of emission constraints. This poses no fundamental challenge to our method
which is scalable with respect to the number of pollutant limits. Naturally, adding further
constraints will increase the measurement time though.

Description of Figures

Figure 8 displays the lower NOx output on the better part of the operation field for the
RANDOM calibration in comparison to a calibration for the NEDC.

Figures 9 and 10 illustrate a typical feature of engine calibrations fitted to specific
driving cycles. These essentially subdivide the solution map into two parts. One covered
by the cycle, where emissions are optimized, and one where they are not. This leads to
emission values being 20–100 times higher on the part of the solution map that is not
covered by the driving cycle. The NEDC covers only a fraction of the operation field,
while the RANDOM cycle covers more than half of it. In Figure 11 one can observe
that the solution map for the RANDOM cycle displays 10–15 % higher values for specific
fuel consumption on most points of the operation field than the corresponding operation
points of a solution for the NEDC. One can, of course, enforce the selection of data
points with lower emission values on the part of the operation field not covered by a
driving cycle as well, but at the expense of a higher fuel consumption.
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Figure 8: Operation points where calibration for RANDOM cycle yields higher NOx emission than in
NEDC. Colors represent the ratio of the emission values.

2.7 Conclusion

In this article, we have described a semi-automatic approach to calibrate and optimize
internal combustion engines with several actuators and sensors. The side constraints
are limits given by safety or technical requirements, bounding the variation speed of
actuators and ensuring emission bounds on given driving cycles. Our method automati-
cally performs refinements of measurements, thus focusing the effort of the measurements
around regions of strongly nonlinear or even nonsmooth behavior of the engine. That
is, it automatically identifies neighborhoods of anomalous engine behavior and maps
them in appropriate detail. For the so-obtained data an optimal calibration solution is
computed.

The output of the algorithm is a solution map SOL which consists of actual measure-
ments and thus reflects the exact behavior of the engine for the given settings, as opposed
to indirectly derived actuator setting obtained via modeling or interpolation. This results
in improved values for pollutant emission and fuel consumption near strongly nonlinear
or even nonsmooth regions of the admissible domain.

In our experiments, we demonstrated the practicability of the adaptive meshing
methodology, showing a significant speed-up in the measurement time (from weeks down
to days) in comparison to uniform grids, without a loss of overall quality. Moreover, the
resulting solution maps respect the emission constraints of EURO 4 and 5 norms. We
would like to stress that in our method it is easy to take into account further emission
constraints such as, e.g., the number of emitted particles for the EURO 6 norms.

The next interesting step will be to test the method on an actual combustion engine.
It is our expectation that the experimental findings of this work will transfer well to the
real-life setting which is the engine test bench.
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Figure 9: Top: Weighting table of the NEDC. Middle: Resulting NOx emissions (in g/h)
after calibration for the NEDC. Bottom: NOx emissions with logarithmic scale.
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Figure 10: Top: Weighting table of the RANDOM cycle. Middle: Resulting NOx emis-
sions (in g/h) after calibration for the RANDOM cycle. Bottom: NOx emissions on a
logarithmic scale.
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Figure 11: Actuator IF after calibration for the NEDC (top) and RANDOM cycle (mid-
dle). Bottom: Operation points with higher values in calibration for RANDOM cycle
than for NEDC. Colors represent ratio of consumption values.
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Chapter 3

Edge-unfolding nested
prismatoids

This chapter is taken from the article “Edge-unfolding nested prismatoids” by Manuel
Radons. An extended abstract of this work has been published in the proceedings of the
Symposium on Computational Geometry: Young Researchers Forum 2022 [Rad22].

3.1 Introduction

The question whether every 3-polytope has a net, that is, whether it is possible to cut it
along some spanning tree of its edge graph so that the resulting connected surface may
be unfolded flat into the plane without self-overlaps, can be dated back to the “Painter’s
Manual” by Albrecht Dürer [Dü25]. It is thus often referred to as Dürer’s Problem.

A polytope that has a net is called edge-unfoldable, or simply unfoldable. It was
proved by Ghomi that every polytope is unfoldable after an affine stretching, which
implies that every combinatorial type of polytope has an infinite number of unfoldable
realizations [Gho14]. O’Rourke established the unfoldability of nearly flat, acutely trian-
gulated convex caps [O’R18, O’R17]. A convex cap is a polytope C which has a designated
facet F so that the orthogonal projection of C \F onto F is one-to-one. An acute triangu-
lation is a triangulation so that every interior angle of every triangle is smaller than π/2.
A recent negative result, which Barvinok and Ghomi distilled from a highly original but
flawed preprint of Tarasov [BG17, Tar08], concerns the existence of counterexamples to a
more general form of Dürer’s problem which considers cuts along so-called pseudo-edges,
which are geodesics in the intrinsic metric of a polytope. Another generalized form of
Dürer’s problem concerns unfoldability of non-convex polytopes which are combinatori-
ally equivalent to a convex 3-polytope. There are several ununfoldable families of such
polytopes known, cf. [Grü02, Tar99, DDE20].
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Figure 12: Petal and band unfolding of a prism over a triangle.

3.1.1 Unfolding Prismatoids

A prismatoid P is the convex hull of two convex polygons A and B that lie in parallel
planes, say HA and HB . We will refer to A and B as the top and base of P , respectively.
If all lateral facets of a prismatoid are trapezoids, it is called a prismoid. In this case
corresponding top and base edges are parallel. The set of lateral facets of a prismatoid
is called its band. There are two natural ways to unfold primatoids, the band unfolding,
and the petal unfolding [O’R12], cf. Figure 12.

A band unfolding cuts one lateral edge, and unrolls the band into the plane as one
connected patch, while A and B are left attached to the latter along one suitable edge
each. Every prismoid has a lateral edge e so that the band, if cut along e, can be unfolded
without self-intersections [Alo05, ADL+08]. But there exist prismoids so that hat every
placement of the prismoid top overlaps with every of its band unfoldings [O’R07].

In a petal unfolding either A or B is a designated facet to which all lateral facets
are left attached. Assume that the designated facet is B. Then for each vertex bi of B
exactly one lateral edge adjacent to it is cut. The so-resulting petals are unfolded into the
plane while A is left attached to this unit along a single suitable edge. O’Rourke proved
that every prismoid has a non-overlapping petal unfolding [O’R01]. Smooth prismatoids,
which are the convex hull of two smooth convex curves lying in parallel planes, have a
petal unfolding as well [BCO04]. Further, several subclasses of prismatoids are known to
have a petal unfolding. A nonobtuse triangle is a triangle so that all its interior angles
are smaller than or equal to π/2. A prismatoid has a petal unfolding if all its facets,
except possibly its base B, are nonobtuse triangles [O’R12], or if the base is a rectangle
and all other facets are acute triangles, or if the top and base are sufficiently far from
each other [BDM21].

3.1.2 Main result

A prismatoid is nested if the orthogonal projection of A onto HB is properly contained
in B, or vice versa. We prove the following result.

Theorem 3.1.1. Let P be a nested prismatoid. Then P is edge-unfoldable.

To this end we apply a combination of the petal and the band unfolding strategies
to nested prismatoids. More precisely, we cut the band into two pieces. Crucial in the
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selection of the band-patches which are left intact is the notion of radially monotone
polygonal paths, which was introduced and exploited to great effect in [O’R18].

3.1.3 Content and Structure

In Section 3.2 we will introduce the necessary concepts for our investigation and a few
preliminary results. Sections 3.3 and 3.4 contain the proof of our main result. In Section
3.3 we devise a strategy to cut a nested prismatoid into four pieces. In Section 3.4 we
establish that these pieces can be glued together into an unfoldable polyhedral surface.

3.2 Preliminaries

We will follow notation and naming conventions established by Ghomi in [Gho14] and
O’Rourke in [O’R18, ADL+08] whenever possible. Throughout this work “polytope”
means the boundary of a convex 3-polytope which lives in R3. Consequently, a prismatoid
P is the boundary of the convex hull of two polygons A ⊂ HA and B ⊂ HB , where HA

and HB are parallel affine planes. We will assume without loss of generality that the
projection of A to HB is properly contained in B. We call A the top of P and B its
base. Further, we will assume that HB is the xy-plane embedded in R3 and HA, which
is a parallel to HB , has a positive height. Vertices of A and B are denoted ai and bj ,
respectively.

Throughout, polygons are convex unless explicitly stated otherwise. Vertices of an
n-gon are enumerated counterclockwise from 1 to n with respect to a viewpoint above the
polygon. Let D := conv(d1, . . . , dn), where conv denotes the convex hull of the vertices
d1, . . . , dn.

A subpath [di, di+1, . . . , dj ] of the boundary of D is denoted (di, dj). We define the
curvature at a vertex dk as the angle spanned by the outward normals of D at dk. The
total curvature of a subpath (di, dj) is the sum of the curvatures at its interior vertices.
In some sources these quantities are also called the turn angle and the turn; see, for
example, [Alo05]. For brevity we will refer to the total curvature of a path simply as its
curvature, if the meaning is clear from the context. If a band piece is bounded by the
top-subpath [ak, . . . , aℓ] and the base-subpath [bK , . . . , bL], then we call (ak, aℓ) its top
boundary and the curvature of (ak, aℓ) its top curvature. Base boundary and curvature
are defined analogously. We use the same letters in upper and lower case to underline
the facts that the end vertices of top and base boundary a) correspond to each other,
while b) they usually do not have the same index.

We define the flat prismatoid P 0 corresponding to P as follows: The lower facet of
P 0 coincides with the lower facet B of P . The upper facets of P 0 are obtained as the
cells of a subdivision of B which is induced by the orthogonal projection of P \ B onto
B.

3.2.1 Projections and unfoldings

Let P be a nested prismatoid with top A and base B. Then we denote the orthogonal
projection of any subset C ⊂ P onto HB by C̃.
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Figure 13: Stretching of paths with curvature > π
2 (left), resp. ≤ π

2 (right).

It is well-known that any spanning tree of the edge graph of a 3-polytope P induces
an unfolding of P into the plane, cf. [DO07, Lem. 2.2.2, p.311]. This unfolding is an
isometric immersion which is unique up to rigid motions. Any subset C of a 3-polytope P
which has been cut along a spanning tree of its edge graph can be isometrically immersed,
i.e., unfolded into a plane as well. We denote the unfolded image of C by C̄ and assume
the plane to be HB , the xy-plane embedded in R3. In particular, P̄ denotes the unfolded
image of P . In some sources P̄ is subscripted with the designation of the spanning tree
along which P has been cut. But we will construct only one such tree, hence omitting
the index introduces no ambiguities.

We remark that P̄ does not self-intersect if and only if its boundary does not self-
intersect. The discussion below will establish exactly such a lack of boundary self-
intersections.

3.2.2 Radial monotonicity

A polygonal path Γ ⊂ R2 is called radially monotone if traversing it from an endpoint the
euclidean distance to that endpoint monotonically increases. In other words, for points
pi, pj , pk ∈ Γ the euclidean distance of pi and pj is greater than that of pi and pk if and
only if their intrinsic distances in Γ have the same relation; cf. [O’R18]. Let Γ := (di, dj)
be a subpath of a convex n-gon D := conv(d1, . . . , dn) in some plane H, and Ω another
polygonal path in H that is obtained from Γ by keeping its first edge, (di, di+1), fixed
and decreasing its curvature at all interior vertices, but not decreasing it to 0 or less at
any vertex. We then say that Ω is obtained by stretching Γ. In [O’R18] we find the
following crucial observation.

Observation 3.2.1. Let Γ := (di, dj) be a subpath of a convex n-gon D in some plane
H, and let Ω be obtained by stretching Γ. If (di+1, dj) is radially monotone, then Γ
intersects Ω only in its first edge (di, di+1), cf. Figure 13.

Note that for a subpath of the boundary of a polygon a sufficient condition for radial
monotonicity is that its curvature does not exceed π/2.

3.2.3 Flattening of the band

The observation below was stated for the special case of nested prismoids in both [O’R07]
and [ADL+08]. We will generalize it to nested prismatoids.
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Observation 3.2.2. Let M be a connected piece of the band of some nested prismoid P
and let v be an interior vertex of either its top or its base boundary. Then the curvature at
v̄, the image of v under the unfolding of M into the plane, is smaller than the curvature
at v, but larger than 0.

First, recall some definitions from the literature. The total angle of a vertex is the
sum of the incident face angles. For any convex polyhedron, the total angle is ≤ 2π
with equality if and only if the incident faces lie in a plane (which does not occur in our
situation). Let M be a connected piece of the band of some nested prismatoid P which is
bounded by the polygonal path [ak, . . . , aℓ, bL, . . . , bK , ak]. For i ∈ {k + 1, . . . , ℓ − 1}, let
αA(ai) be the incident top angle at ai, and αM (ai) the sum of the incident band angles.
Similarly, for j ∈ {K + 1, . . . , L − 1}, let βB(bj) be the incident base angle at bj , and
βM (bj) the sum of the incident band angles. Further, define αM̄ (ai) and βM̄ (bj) for the
unfolded band piece M̄ analogously to αM (ai) and βM (bj).

Now let M̄ be an unfolding of M into the plane. Due to the assumption that P is
nested, we have

βB(bj) < βM (bj) = βM̄ (bj) < π .

Since the total angle at ai is smaller than 2π, we get

αA(ai) < 2π − αM̄ (ai) = 2π − αM (ai) < π < αM (ai) .

That is, the unfolding of (bK , bL), the base boundary of M , is a stretching of its orthogonal
projection to the plane. Likewise, (ak, aℓ) is stretched by its unfolding. But this is what
we needed to show.

3.3 Cutting strategy and placing the top

We now collect some observations about band unfoldings and then derive our cutting
strategy from these insights.

3.3.1 Observations about band unfoldings

Let M be a connected piece of the band of a nested prismatoid P , bounded at the top
by a path Γ := [a1, . . . , ak] and at the base by a path Ω := [b1, . . . , bK ]. Assume that the
pairs of edges (a1, a2), (b1, b2), and (ak−1, ak), (bK−1, bK) are each contained in a lateral
trapezoid and are thus parallel. Then by elementary geometry Γ and Ω both have the
same curvature. Assume that this curvature is ≤ π. Then, due to Observation 3.2.2, the
curvature of Γ̄ and Ω̄ is smaller than π, while the curvature at every interior vertex of Γ̄
and Ω̄ larger than 0. Together with the fact that their end edges must be parallel, this
implies that M̄ does not self-intersect and any line through an edge of Ω̄ induces a closed
half plane that contains M̄ .

Moreover, since the curvature of Γ̄ is smaller than π, by elementary arithmetic there
must exist an edge (āi, āi+1) so that if its relative interior is removed from Γ̄, each of
the two remaining subpaths of Γ̄ either consists of a single vertex or has a curvature
≤ π/2 and is thus radially monotone. Hence, Observations 3.2.1 and 3.2.2 imply that
if we attach A (thereafter Ā) to M̄ along (āi, āi+1), it does not intersect M̄ anywhere
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Ā

M̄

Figure 14: Containing M̄ and Ā

else. Moreover, any line through an edge of Γ̄ induces a closed half plane that contains
Ā. In particular, Ā cannot properly intersect the affine rays emanating from ā2 and āk−1
through the edges (ā1, ā2) and (āk−1, āk), respectively. Composing the latter rays with
the subpath [ā2, . . . , āk−1] yields an unbounded curve, say Γ̄′, that intersects Ā only in
the edge (āi, āi+1). Since Γ̄ and Ω̄ are parallel in their ends, every line through an edge
of Ω̄ – including the lines through its first edge (b̄1, b̄2) and its last edge (b̄K−1, b̄K) –
induces a closed half plane whose interior contains Γ̄′ and thus also Ā, cf. Figure 14. We
summarize the relevant aspects of these findings.

Observation 3.3.1. In the above constellation, M̄ does not self-intersect. Moreover,
there exists an edge e of Γ̄ so that if we attach A (thereafter Ā) to M̄ along e, the
resulting flat polyhedral surface, say N̄ , does not self-intersect and every line through an
edge of Ω̄ induces a closed half plane that contains N̄ .

3.3.2 Cutting and placing the top

We will now devise a cutting-scheme that recreates the above ideal constellation suffi-
ciently well to harness all its advantages. Let P be a nested prismatoid with top A, base
B, and corresponding flat prismatoid P 0. We assume that A is an m-gon with boundary
[a1, . . . , am] and B an n-gon with boundary [b1, . . . , bn].

Now pick any vertex of B. By rotating the indices, if necessary, we can assume that
we picked b1. Let L1 be the line through the edge (bn, b1). We say a line L supports
a polygon C in a plane H if it lies in H, has a nonempty intersection with C and C is
contained in one of the two closed half planes induced by L. Let L2 and L3 be the unique
disjoint supporting lines of Ã which are parallel to L1, and let L2 be the one closer to L1.
Further, let L4 be the unique supporting line of B which is parallel to L1 and disjoint
from it, cf. Figure 15 (left).

We denote by K the smallest index so that bK is contained in L4. Further, enumerate
the indices of Ã so that ã1 is contained in L2, but ã2 is not and denote by k the smallest
index so that ãk is contained in L3.
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Figure 15: Determining the lateral cut edges; the cut edges are printed fat (left) and
gluing trapezoids to the band (right)

Observation 3.3.2. The vertices a1 and b1, as well as ak and bK are adjacent. More-
over, the edge (a1, b1) lies in a lateral facet which contains the edge (bn, b1).

How do we see this? Pick an arbitrary vertex of the base, say bi, and let H− and H+ be
two hyperplanes which contain the lateral facets with base edges (bi−1, bi) and (bi, bi+1),
respectively. Then the intersections of H− and H+ with HA project orthogonally into
lines L− and L+ in HB which are parallel to (bi−1, bi) and (bi, bi+1), respectively. Relabel
A so that ã1 is contained in L−, but ã2 is not, and let k be the smallest index so that ãk

is contained in L+. Then by construction every lateral edge incident to bi must contain a
vertex of the path [a1, . . . , ak], and the first an the last vertices of this path are contained
in the lateral facets with base edges (bi−1, bi) and (bi, bi+1), respectively.

Now cut the lateral edges (a1, b1) and (ak, bK), as well as all top and base edges.
This dissects P into four pieces, the top A, the base B and two band pieces. We denote
the band piece in anticlockwise direction from (a1, b1) by M+ and the one in clockwise
direction by M−.

Next, we recreate our ideal constellation outlined above by embedding M+ in a
strictly larger polyhedral surface that satisfies all conditions which lead to Observation
3.3.1. To this end, let g1, g̃2, g̃3, and g4 be four parallel line segments of nonzero but
otherwise arbitrary length with the following properties.

• They lie in L1, L2, L3, and L4, respectively.

• They originate in b1, ã1, ãk, and bK , respectively.

• They all extend into the same direction, which is the one where neither g̃2, nor g̃3
intersect the interior of M̃+.

Let g2 and g3 be the orthogonal projections of g̃2 and g̃3 to HA and glue the two
trapezoids, say T1 and T2, which arise as the convex hulls of g1 and g2, resp., g3 and
g4, to M+ along their common edges (a1, b1) and (ak, bK), respectively, cf. Figure 15
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(right). The so-created polyhedral surface has a top and base curvature of exactly π and
both its end facets are trapezoids. Hence, Observation 3.3.1 applies to it – and thus to
its subset M+. Applying the analogous construction to M−, we get:

Observation 3.3.3. M̄+ does not self-intersect and there exists an edge e of its top
boundary Γ̄ so that if we attach A (thereafter Ā) to M̄+ along e, the resulting flat poly-
hedral surface does not self-intersect and every line through an edge of the base boundary
of M̄+ induces a closed half plane that contains it. Moreover, analogous statements hold
for M̄−.

3.4 Gluing the band pieces to the base

The cutting strategy presented above dissects a nested prismatoid into four pieces, A, B,
M+, and M−. Moving on, we attach the top A to M+ along the edge e from Observation
3.3.3. We will denote the polyhedral surface consisting of A glued to M+ along e by N .
There are technical reasons we will explain below to choose M+ and not M− for the
attachment of the top.

We will now single out two edges along which the three pieces B, M− and N can be
glued together into a polyhedral surface whise unfolding does not self-intersect. We will
denote by e− the edge that connects M− to B and by e+ the edge that connects B to
M+. To this end, we distinguish two cases. In the first case there exists a vertex of the
base with a curvature ≥ π

2 . In the second case no such vertex exists. We will treat the
first case in detail and then show how to reduce the second case to the first.

In the first case, label B so that the vertex with curvature ≥ π
2 is b1 and apply our

cutting strategy. Then set e− := (bn, b1) and e+ := (b1, b2). By Observation 3.3.3 we can
establish unfoldability in the first case by proving that M̄− intersects the line through e+
nowhere except in b1. Let g be the outward normal ray of e− at b1. Since the curvature
at b1 is ≥ π/2, we are done if we can prove that M̄− intersects g in b1 and nowhere else.
For this it suffices to prove that the base boundary of M̄− intersects g only in b1 and its
top boundary does not intersect g at all.

By Observation 3.3.2 our cutting strategy ensures the following: If there is more
than one lateral edge incident to b1, then (a1, b1) is the first one of them counted in
anticlockwise direction and there must exist a lateral facet that contains the edges e− =
(bn, b1) and (a1, b1). (This is not the case for M+, hence our choice above.) This facet is
either a trapezoid or a triangle. If it is not a trapezoid, embed the facet in a trapezoid by
taking its convex hull with a point that lies on L2 and projects into the interior of B, but
not into M̃−. By construction this does not increase the top curvature of M̃− beyond
π. We will thus assume without loss of generality that the lateral facet containing e− is
a trapezoid.

Since P is properly nested, i.e., Ã is contained in the interior of B, and due to the
curvature at b1, the reflection of M̃− at e− can intersect g in at most two points, the
endpoints of its base boundary, i.e., in b1 and the reflection of b̃ℓ at e−. Let p be a point
in either the top or the base boundary of M−, and p′ the reflection of p̃ at e−. We will
show that the distance of p̄ to g is larger than or equal to the distance of p′ to g, with
equality if and only if p is contained in e− = (bn, b1) or (am, a1), that is, if it lies in the
top or base edge of the lateral trapezoid that contains e−.
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Figure 16: Projection, reflection of projection, and unfolding of lateral trapezoid incident
to (bn−1, b0).

If p lies in e−, this is clear, because e− = ẽ− = ē−. By elementary geometry, the
edges (ãn, ã1), its reflection at e−, and (ān, ā1) are parallel. Moreover, ã1, its reflection
at e−, and ā1 lie on a line which is perpendicular to e−, cf. Figure 16. Hence, (ãn, ã1),
its reflection at e−, and (ān, ā1) can be translated into each other by translating them
parallelly to g. This proves the claim for p ∈ (an, a1).

Now denote by Ω the base boundary of M−. We can transform the reflection of Ω̃ at
e−, which we denote by Ω̃′, into Ω̄ as follows. First, decrease the curvature at b̃′

K+1 so
that it matches the curvature at b̄K+1 in Ω̄. This rotates the edge (b̃′

K , b̃′
K+1) about b̄K+1

in clockwise direction (seen from a vantage point above HB). Since the curvature of Ω̃′

is ≤ π and e− is perpendicular to g, this rotation must increase the distance to g for all
points in (b̃′

K , b̃′
K+1), except b̃′

K+1. Successively applying this procedure to b̃′
K+2,. . . ,b̃′

n

yields the claim. A similar argument can be made for the image of the top boundary
with one extra step: First perform the rotations, as above. This yields a curve congruent
to Γ̄. Then shift this curve parallely to g into Γ̄, which does not change the distance to
g for any point in the translated curve. This completes our proof for the first case that
there exists a base vertex with curvature ≥ π/2.

Now assume that B has no vertex with a curvature ≥ π/2. Then by elementary
arithmetic there must exist an index i so that the path (b1, bi) has a curvature in [ π

2 , π).
We set e+ := (bi−1, bi). Further, set e− := (bn, b1), as in the first case. Let L− be the
line through e−, L+ the line through e+, and p their intersection. Then the curvature of
the polygonal path [b1, p, bi−1] at p is ≥ π/2, and we can prove the claim that M̄− does
not intersect the outward normal ray g of (b1, p) emanating from p in full analogy to the
above claim that M̄− intersects g only in b1, where b1 is a base vertex with curvature
≥ π/2. This completes our proof for the second case that there exists no base vertex
with curvature ≥ π/2, and thus completes the proof of Theorem 3.1.1.
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Figure 17: Left: Unfolding of P 0. Ã′, the reflection of Ã, is attached at the fat edge of
the reflection of M̃+. Right: Unfolding of P
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