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SpookyNet: Learning force fields with electronic
degrees of freedom and nonlocal effects
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Machine-learned force fields combine the accuracy of ab initio methods with the efficiency of
conventional force fields. However, current machine-learned force fields typically ignore
electronic degrees of freedom, such as the total charge or spin state, and assume chemical
locality, which is problematic when molecules have inconsistent electronic states, or when
nonlocal effects play a significant role. This work introduces SpookyNet, a deep neural net-
work for constructing machine-learned force fields with explicit treatment of electronic
degrees of freedom and nonlocality, modeled via self-attention in a transformer architecture.
Chemically meaningful inductive biases and analytical corrections built into the network
architecture allow it to properly model physical limits. SpookyNet improves upon the current
state-of-the-art (or achieves similar performance) on popular quantum chemistry data sets.
Notably, it is able to generalize across chemical and conformational space and can leverage
the learned chemical insights, e.g. by predicting unknown spin states, thus helping to close a
further important remaining gap for today’s machine learning models in quantum chemistry.
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olecular dynamics (MD) simulations of chemical sys-

tems allow to gain insights on many intricate phe-

nomena, such as reactions or the folding of proteins!.
To perform MD simulations, knowledge of the forces acting on
individual atoms at every time step of the simulation is required?.
The most accurate way of deriving these forces is by (approxi-
mately) solving the Schrodinger equation (SE), which describes
the physical laws governing chemical systems>. Unfortunately, the
computational cost of accurate ab initio approaches* makes them
impractical when many atoms are studied, or the simulation
involves thousands (or even millions) of time steps. For this
reason, it is common practice to use force fields (FFs)—analytical
expressions for the potential energy of a chemical system, from
which forces are obtained by derivation—instead of solving the
SE°. The remaining difficulty is to find an appropriate functional
form that gives forces at the required accuracy.

Recently, machine learning (ML) methods have gained
increasing popularity for addressing this task®~1>. They allow to
automatically learn the relation between chemical structure and
forces from ab initio reference data. The accuracy of such ML-FFs
(also known as machine learning potentials) is limited by the
quality of the data used to train them and their computational
efficiency is comparable to conventional FFs!116,

One of the first methods for constructing ML-FFs for high-
dimensional systems was introduced by Behler and Parrinello for
studying the properties of bulk silicon!”. The idea is to encode the
local (within a certain cutoff radius) chemical environment of
each atom in a descriptor, e.g., using symmetry functions!8,
which is used as input to an artificial neural network!® predicting
atomic energies. The total potential energy of the system is
modeled as the sum of the individual contributions, and forces
are obtained by derivation with respect to atom positions.
Alternatively, it is also possible to directly predict the total energy
(or forces) without relying on a partitioning into atomic
contributions?0-22. However, an atomic energy decomposition
makes predictions size extensive and the learned model applicable
to systems of different size. Many other ML-FFs follow this design
principle, but rely on different descriptors23-2% or use other ML
methods®®26, such as kernel machines”-27-32, for the prediction.
An alternative to manually designed descriptors is to use the raw
atomic numbers and Cartesian coordinates as input instead.
Then, suitable atomic representations can be learned from (and
adapted to) the reference data automatically. This is usually
achieved by “passing messages” between atoms to iteratively build
increasingly sophisticated descriptors in a deep neural network
architecture. After the introduction of the deep tensor neural
network (DTNN)33, such message-passing neural networks
(MPNNs)3# became highly popular and the original architecture
has since been refined by many related approaches3>-37.

However, atomic numbers and Cartesian coordinates (or
descriptors derived from them) do not provide an unambiguous
description of chemical systems®8. They only account for the
nuclear degrees of freedom, but contain no information
about electronic structure, such as the total charge or spin state.
This is of no concern when all systems of interest have a con-
sistent electronic state (e.g., they are all neutral singlet structures),
but leads to an ill-defined learning problem otherwise (Fig. la).
Further, most ML-FFs assume that atomic properties are domi-
nated by their local chemical environment!!. While this
approximation is valid in many cases, it still neglects that
quantum systems are inherently nonlocal in nature, a quality
which Einstein famously referred to as “spooky actions at a
distance™®. For example, electrons can be delocalized over a
chemical system and charge or spin density may instantaneously
redistribute to specific atoms based on distant structural changes
(Fig. 1b)40-44,

ML-FFs have only recently begun to address these issues. For
example, the charge equilibration neural network technique
(CENT)*> was developed to construct interatomic potentials for
ionic systems. In CENT, a neural network predicts atomic elec-
tronegativities (instead of energy contributions), from which
partial charges are derived via a charge equilibration scheme*0-48
that minimizes the electrostatic energy of the system and models
nonlocal charge transfer. Then, the total energy is obtained by an
analytical expression involving the partial charges. Since they are
constrained to conserve the total charge, different charge states of
the same chemical system can be treated by a single model. The
recently proposed fourth-generation Behler-Parinello neural
network (4G-BPNN)#° expands on this idea using two separate
neural networks: The first one predicts atomic electronegativities,
from which partial charges are derived using the same method as
in CENT. The second neural network predicts atomic energy
contributions, receiving the partial charges as additional inputs,
which contain implicit information about the total charge. The
charge equilibration scheme used in CENT and 4G-BPNNs
involves the solution of a system of linear equations, which for-
mally scales cubically with the number of atoms, although
iterative solvers can be used to reduce the complexity®. Unfor-
tunately, only different total charges, but not spin states, can be
distinguished with this approach. In contrast, neural spin equi-
libration (NSE)>°, a recently proposed modification to the
AIMNet model®!, distinguishes between a and B-spin charges,
allowing it to also treat different spin states. In the NSE method, a
neural network predicts initial (spin) charges from descriptors
that depend only on atomic numbers and coordinates. The dis-
crepancy between predictions and true (spin) charges is then used
to update the descriptors and the procedure is repeated until
convergence. An alternative approach to include information
about the charge and spin state is followed by the BpopNN
model®2. In this method, electronic information is encoded
indirectly by including spin populations when constructing
atomic descriptors. However, this requires running (constrained)
density functional theory calculations to derive the populations
before the model can be evaluated. A similar approach is followed
by OrbNet>3: Instead of spin populations, the atomic descriptors
are formed from the expectation values of several quantum
mechanical operators in a symmetry-adapted atomic orbital basis.

The present work introduces SpookyNet, a deep MPNN which
takes atomic numbers, Cartesian coordinates, the number of
electrons, and the spin state as direct inputs. It does not rely on
equilibration schemes, which often involve the costly solution of a
linear system, or values derived from ab initio calculations, to
encode the electronic state. Our end-to-end learning approach is
shared by many recent ML methods that aim to solve the
Schrodinger equation®*->® and mirrors the inputs that are also
used in ab initio calculations. To model local interactions between
atoms, early MPNNs relied on purely distance-based
messages>>3>37, whereas later architectures such as DimeNet>’
proposed to include angular information in the feature updates.
However, explicitly computing angles between all neighbors of an
atom scales quadratically with the number of neighbors. To
achieve linear scaling, SpookyNet encodes angular information
implicitly via the use of basis functions based on Bernstein
polynomials®® and spherical harmonics. Spherical harmonics are
also used in neural network architectures for predicting rota-
tionally equivariant quantities, such as tensor field networks®?,
Cormorant®, PaiNN®!, or NequIP%2. However, since only scalar
quantities (energies) need to be predicted for constructing ML-
FFs, SpookyNet projects rotationally equivariant features to
invariant representations for computational efficiency. Many
methods for constructing descriptors of atomic environments use
similar approaches to derive rotationally invariant quantities
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Fig. 1 Main features of SpookyNet and problems addressed in this work. a Optimized geometries of Agy/Agz (left) and singlet/triplet CH; (right).
Without information about the electronic state (charge/spin), machine learning models are unable to distinguish between the different structures. b Au,
dimer on a MgO(001) surface doped with Al atoms (Au: yellow, Mg: gray, O: red, Al: pink). The presence of Al atoms in the crystal influences the
electronic structure and affects Au, binding to the surface, an effect which cannot be adequately described by only local interactions. € Potential energy E,o
(solid black) for O-H bond dissociation in water. The asymptotic behavior of Epq for very small and very large bond lengths can be well-approximated by
analytical short-ranged E, (dotted red) and long-ranged E;, (dotted orange) energy contributions, which follow known physical laws. When they are
subtracted from £, the remaining energy (solid blue) covers a smaller range of values and decays to zero quicker, which simplifies the learning problem.
d Visualization of a random selection of learned interaction functions for SpookyNet trained on the QM7-X7" dataset. They are designed to closely
resemble atomic orbitals, facilitating SpookyNet's ability to extract chemical insight from data.

from spherical harmonics?>0304, In addition, SpookyNet allows
to model quantum nonlocality and electron delocalization
explicitly by introducing a nonlocal interaction between atoms,
which is independent of their distance. Following previous works,
its energy predictions are augmented with physically motivated
corrections to improve the description of long-ranged electro-
static and dispersion interactions37-6>6, Additionally, SpookyNet
explicitly models short-ranged repulsion between nuclei. Such
corrections simplify the learning problem and guarantee correct
asymptotic behaviour (Fig. 1c). As such, SpookyNet is a hybrid
between a pure ML approach and a classical FF. However, it is
much closer to a pure ML approach than methods like IPML®7,
which rely exclusively on parametrized functions (known from
classical FFs) for modeling the potential energy, but predict
environment-dependent parameters with ML methods. Further,
inductive biases in SpookyNet’s architecture encourage learning
of atomic representations which capture similarities between
different elements and interaction functions designed to resemble
atomic orbitals, allowing it to efficiently extract meaningful che-

mical insights from data (Fig. 1d).

Results

SpookyNet architecture. SpookyNet takes sets of atomic num-
bers {Z,,...,Zy|Z; € N} and Cartesian coordinates
{ry,...,7yI7; € R}, which describe the element types and

positions of N atoms, as input. Information about the electronic
wave function, which is necessary for an unambiguous descrip-
tion of a chemical system, is provided via two additional inputs:
The total charge Q € Z encodes the number of electrons (given
by Q + >_Z;), whereas the total angular momentum is encoded as
the number of unpaired electrons S € IN. For example, a singlet
state is indicated by S = 0, a doublet state by S=1, and so on. The
nuclear charges Z, total charge Q and spin state S are transformed
to F-dimensional embeddings and combined to form initial
atomic feature representations

x© =e;+e;+es.

(M

Here, the nuclear embeddings e, contain information about the
ground state electron configuration of each element and the

electronic embeddings eg and eg contain delocalized information
about the total charge and spin state, respectively. A chain of T
interaction modules iteratively refines these representations
through local and nonlocal interactions

o _ (z 1) (t) (t=1) =
X; + local ({x , U}]GN(1)>

(2
+ nonlocal® ({x(tfl) b,

where N (i) contains all atom indices within a cutoff distance 7.y
of atom i and 7;; =7, — 7, is the relative position of atom j with
respect to atom i. The local interaction functions are designed to
resemble s, p, and d atomic orbitals (see Fig. 1d) and the model
learns to encode different distance and angular information about
the local environment of each atom with the different interaction
functions (see Fig. 2a). The nonlocal interactions on the other
hand model the delocalized electrons. The representations x() at
each stage are further refined through learned functions F,

according to ygt) = F,(x) and summed to the atomic descrip-

tors

f—z¢” 3)
from which atomic energy contributions E; are predicted with
linear regression. The total potential energy is given by
4)

N
Epot = iZ:l Ei +E.+ Eele + Evdw ’

rep
where E.,, Eeles and E,q,, are empirical corrections, which aug-
ment the energy prediction with physical knowledge about
nuclear repulsion, electrostatics, and dispersion interactions.
Energy-conserving forces F; = —0E,/07; can be obtained via
automatic differentiation. A schematic depiction of the Spooky-
Net architecture is given in Fig. 3.

Electronic states. Most existing ML-FFs can only model struc-
tures with a consistent electronic state, e.g., neutral singlets. An
exception are systems for which the electronic state can be
inferred via structural cues, e.g., in the case of protonation/
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Fig. 2 Examples of chemical insights extracted by SpookyNet. a Visualization of the learned local chemical potential for ethanol (see methods). The

individual contributions of s-, p-, and d-orbital-like interactions are shown (red:

low energy, blue: high energy). b Potential energy surface scans obtained by

moving an Au, dimer over an (Al-doped) MgO surface in different (upright/parallel) configurations (the positions of Mg and O atoms are shown for
orientation). SpookyNet learns to distinguish between local and nonlocal contributions to the potential energy, allowing it to model changes of the potential

energy surface when the crystal is doped with Al atoms far from the surface.
principles that can be transferred to much larger structures outside the chemic
from SpookyNet trained on the QM7-X database (opaque in color) are shown a

¢ A model trained on small organic molecules learns general chemical
al space covered by the training data. Here, optimized geometries obtained
nd compared with reference geometries obtained from ab initio calculations

(transparent in gray). As indicated by the low root mean square deviations (RMSD), geometries predicted by SpookyNet are very similar to the reference.
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Fig. 3 Schematic depiction of the SpookyNet architecture with color-coded view of individual components. a Architecture overview, for details on the
nuclear and electronic (charge/spin) embeddings and basis functions, refer to Egs. (9), (10), and (13), respectively. b Interaction module, see Eq. (11). ¢
Local interaction block, see Eq. (12). d Nonlocal interaction block, see Eq. (18). e Residual multilayer perceptron (MLP), see Eq. (8). f Pre-activation residual

block, see Eq. (7).

deprotonation3’. In most cases, however, this is not possible, and
ML-FFs that do not model electronic degrees of freedom are
unable to capture the relevant physics. Here, this problem is
solved by explicitly accounting for different electronic states (see

Eq. (1)). To illustrate their effects on potential energy surfaces,
two exemplary systems are considered: Agi/Ag; and singlet/
triplet CH,, which can only be distinguished by their charge,
respectively, their spin state. SpookyNet is able to faithfully
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et CH,. The middle and right columns show the prediction of SpookyNet with

and without charge/spin embedding, respectively, whereas the reference ground truth is shown in the left column. Minimum energy structures and

prediction errors (AE) for the minimum energy are also shown.

reproduce the reference potential energy surface for all systems.
When the charge/spin embeddings eqp/es (Eq. (1)) are removed,
however, the model becomes unable to represent the true potential
energy surface and its predictions are qualitatively different from
the reference (see Fig. 4). As a consequence, wrong global minima
are predicted when performing geometry optimizations with a
model trained without the charge/spin embeddings, whereas they
are virtually indistinguishable from the reference when the
embeddings are used. Interestingly, even without a charge
embedding, SpookyNet can predict different potential energy sur-
faces for Agi/Ag; . This is because explicit point charge electro-
statics are used in the energy prediction (see Eq. (4)) and the
atomic partial charges are constrained such that the total molecular
charge is conserved. However, such implicit information is insuf-
ficient to distinguish both charge states adequately. In the case of
singlet/triplet CH,, there is no such implicit information and both
systems appear identical to a model without electronic embed-
dings, i.e., it predicts the same energy surface for both systems,
which neither reproduces the true singlet nor triplet reference.

Models with electronic embeddings even generalize to
unknown electronic states. As an example, the QMspin
database® is considered. It consists of ~13k carbene structures
with at most nine non-hydrogen atoms (C, N, O, F), which were
optimized either in a singlet or triplet state. For each of these,
both singlet and triplet energies computed at the MRCISD+Q-
F12/cc-pVDZ-F12 level of theory are reported, giving a total of
~26k energy-structure pairs in the database (see ref. © for more
details). For the lack of other models evaluated on this dataset,
SpookyNet is compared to itself without electronic embeddings.
This baseline model only reaches a mean absolute prediction
error (MAE) of 444.6 meV for unknown spin states. As expected,
the performance is drastically improved when the electronic
embeddings are included, allowing SpookyNet to reach an MAE
of 68.0 meV. Both models were trained on 20k points, used 1k
samples as validation set, and were tested on the remaining data.
An analysis of the local chemical potential (see methods) reveals
that a model with electronic embeddings learns a feature-rich
internal representation of molecules, which significantly differs
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Fig. 5 Dissociation curves of different diatomic molecules predicted by SpookyNet with/without nonlocal interactions. Individual panels show the
dissociation curves for different species. From top-left to bottom/right: HLi, HF, HNa, HCI, LiF, LiCl, NaF, NaCl, and FCI.

between singlet and tripled states (see Supplementary Fig. 3). In
contrast, the local chemical potential learned by a model without
electronic embeddings is almost uniform and (necessarily)
identical between both states, suggesting that the electronic
embeddings are crucial to extract the relevant chemistry from
the data.

Nonlocal effects. For many chemical systems, local interactions
are sufficient for an accurate description. However, there are also
cases were a purely local picture breaks down. To demonstrate
that nonlocal effects can play an important role even in simple
systems, the dissociation curves of nine (neutral singlet) diatomic
molecules made up of H, Li, F, Na, and Cl atoms are considered
(Fig. 5). Once the bonding partners are separated by more than
the chosen cutoff radius .y, models that rely only on local
information will always predict the same energy contributions for
atoms of the same element (by construction). However, since
electrons are free to distribute unevenly across atoms, even when
they are separated (e.g., due to differences in their electro-
negativity), energy contributions should always depend on the
presence of other atoms in the structure. Consequently, it is
difficult for models without nonlocal interactions to predict the
correct asymptotic behavior for all systems simultaneously. As
such, when the nonlocal interactions are removed from interac-
tion modules (Eq. (2)), SpookyNet predicts an unphysical “step”
for large interatomic separations, even when a large cutoff is used
for the local interactions. In contrast, the reference is reproduced
faithfully when nonlocal interactions are enabled. Note that such
artifacts—occurring if nonlocal interactions are not modeled—are
problematic e.g., when simulating reactions. Simply increasing
the cutoff is no adequate solution to this problem, since it just
shifts the artifact to larger separations. In these specific examples,
even the inclusion of long-range corrections is insufficient to
avoid artifacts in the asymptotic tails (analytical corrections for
electrostatics and dispersion are enabled for both models),
although they can help in some cases37-79,

More complex nonlocal effects may arise for larger structures.
For example, Ko et al. recently introduced four datasets for
systems exhibiting nonlocal charge transfer effects*®. One of these
systems consists of a diatomic Au cluster deposited on the surface
of a periodic MgO(001) crystal (Au,-MgO). In its minimum

energy configuration, the Au, cluster “stands upright” on the
surface on top of an O atom. When some of the Mg atoms (far
from the surface) are replaced by Al (see Fig. 1b), however, the
Au, cluster prefers to “lie parallel” to the surface above two Mg
atoms (the distance between the Au and Al atoms is above 10 A).
In other words, the presence of Al dopant atoms nonlocally
modifies the electronic structure at the surface in such a way that
a different Au, configuration becomes more stable. This effect can
be quantified by scanning the potential energy surface of
Au,-MgO by moving the Au, cluster above the surface in
different configurations (see Fig. 2b). Upon introduction of
dopant Al atoms, nonlocal energy contributions destabilize the
upright configuration of Au,, particularly strongly above the
positions of oxygen atoms. In contrast, the parallel configuration
is lowered in energy, most strongly above positions of Mg atoms.
When applied to the Au,-MgO system, SpookyNet signifi-
cantly improves upon the values reported for models without any
treatment of nonlocal effects and also achieves lower prediction
errors than 4G-BPNNs#’, which model nonlocal charge transfer
via charge equilibration (see Table 1). For completeness, values
for the other three systems introduced in ref. 4° are also reported
in Table 1, even though they could be modeled without including
nonlocal interactions (as long as charge embeddings are used).
For details on the number of training/validation data used for
each dataset, refer to ref. 4 (all models use the same settings).

Generalization across chemical and conformational space. For
more typical ML-FF construction tasks where nonlocal effects are
negligible and all molecules have consistent electronic states,
SpookyNet improves upon the generalization capabilities of
comparable ML-FFs. Here, the QM7-X database’! is considered
as a challenging benchmark. This database was generated starting
from ~7k molecular graphs with up to seven non-hydrogen atoms
(C, N, O, S, Cl) drawn from the GDBI13 chemical universe’2.
Structural and constitutional (stereo)isomers were sampled and
optimized for each graph, leading to ~42k equilibrium structures.
For each of these, an additional 100 non-equilibrium structures
were generated by displacing atoms along linear combinations of
normal modes corresponding to a temperature of 1500 K, which
leads to ~4.2M structures in total. For each of these, QM7-X
contains data for 42 physicochemical properties (see ref. 7! for a
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Table 1 Root mean square errors (RMSEs) of energies (meV/atom), forces (meV A—1) and charges (me) for the datasets
introduced in ref. 4°,
2G-BPNN 3G-BPNN 4G-BPNN SpookyNet
CioHa/CroHT Energy 1.619 2.045 1194 0.364
Forces 129.5 231.0 78.00 5.802
Charges — 20.08 6.577 0.117
Nag,/sClg Energy 1.692 2.042 0.481 0.135
Forces 57.39 76.67 32.78 1.052
Charges — 20.80 15.83 0.1m
Ag;/f Energy 352.0 320.2 1.323 0.220
Forces 1803 1913 31.69 26.64
Charges — 26.48 9.976 0.459
Aur,-MgO Energy 2.287 — 0.219 0.107
Forces 153.1 — 66.0 5.337
Charges — — 5.698 1.013
The values for 2G-, 3G-, and 4G-BPNNs are taken from ref. 49. Best results in bold.
Table 2 Mean absolute errors for energy (meV) and force (meV A—1) predictions for the QM7-X71 dataset.
task SchNet33 PaiNNS! SpookyNet
Known molecules/ Energy 50.847 15.691 10.620 (0.403)
Unknown conformations Forces 53.695 20.301 14.851 (0.430)
Unknown molecules/ Energy 51.275 17.594 13.151 (0.423)
Unknown conformations Forces 62.770 24161 17.326 (0.701)
Results for SpookyNet are averaged over four runs, the standard deviation between runs is given in brackets. Best results in bold.

complete list). For constructing ML-FFs, however, the properties
E\or and Fyy, which correspond to energies and forces computed
at the PBEO+MBD7374 level of theory, are the most relevant.
Because of the variety of molecules and the strongly distorted
conformers contained in the QM7-X dataset, models need to be
able to generalize across both chemical and conformational space
to perform well. Here, two different settings are considered: In the
more challenging task (unknown molecules/unknown conforma-
tions), a total of 10,100 entries corresponding to all structures
sampled for 25 out of the original ~7k molecular graphs are
reserved as test set and models are trained on the remainder of
the data. In this setting, all structures in the test set correspond to
unknown molecules, i.e., the model has to learn general principles
of chemistry to perform well. As comparison, an easier task
(known molecules/unknown conformations) is constructed by
randomly choosing 10,100 entries as test set, so it is very likely
that the training set contains at least some structures for all
molecules contained in QM7-X (only unknown conformations
need to be predicted). SpookyNet achieves lower prediction errors
than both SchNet3> and PaiNN®! for both tasks and is only
marginally worse when predicting completely unknown mole-
cules, suggesting that it successfully generalizes across chemical
space (see Table 2). Interestingly, a SpookyNet model trained on
QM?7-X also generalizes to significantly larger chemical struc-
tures: Even though it was trained on structures with at most seven
non-hydrogen atoms, it can be used e.g., for geometry optimiza-
tions of molecules like vitamin B2, cholesterol, or deca-alanine
(see Fig. 2c). The optimized structures predicted by SpookyNet
have low root mean square deviations (RMSD) from the ab initio
reference geometries and are of higher quality than structures
obtained from other models trained on QM7-X (see Supplemen-
tary Fig. 6). Remarkably, it even predicts the correct structures for
fullerenes, although the QM7-X dataset contains no training data
for any pure carbon structure. As an additional test, the trained
model was also applied to structures from the conformer
benchmark introduced in ref. 7>, which contains structures with

up to 48 non-hydrogen atoms. Here, the relative energies between
different conformers are predicted with sub-kcal accuracy,
although absolute energies are systematically overestimated for
large structures (see the conformer benchmark in the Supple-
mentary Discussion for details).

Since the QM7-X dataset has only recently been published, the
performance of SpookyNet is also benchmarked on the well-
established MD17 dataset?!. MDI17 consists of structures,
energies, and forces collected from ab initio MD simulations of
small organic molecules at the PBE+TS7%77 level of theory.
Prediction errors for several models published in the literature are
summarized in Table 3 and compared to SpookyNet, which
reaches lower prediction errors or closely matches the perfor-
mance of other models for all tested molecules.

Discussion
The present work innovates by introducing SpookyNet, an
MPNN for constructing ML-FFs, which models electronic
degrees of freedom and nonlocal interactions using attention in a
transformer architecture’37%. SpookyNet includes physically
motivated inductive biases that facilitate the extraction of che-
mical insight from data. For example, element embeddings in
SpookyNet include the ground state electronic configuration,
which encourages alchemically meaningful representations. An
analytical short-range correction based on the Ziegler-Biersack-
Littmark stopping potential®® improves the description of nuclear
repulsion, whereas long-range contributions to the potential
energy are modeled with point charge electrostatics and an
empirical ~ dispersion  correction,  following  previous
works37:6581-84 These empirical augmentations allow SpookyNet
to extrapolate beyond the data it was trained on based on physical
knowledge from data.

While the general method to combine analytical long-range
contributions with the predictions of a neural network is inspired
by PhysNet3’, there are several differences between PhysNet and
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Table 3 Mean absolute errors for energy (kcal mol—1) and force (kcal mol—1 A-1) predictions for the MD17 benchmark.
sGDML22 SchNet35 PhysNet37 FCHL1926 NequlP52 PaiNNS1 SpookyNet
Aspirin Energy 0.19 0.37 0.230 0.182 — 0.159 0.151 (0.008)
Forces 0.68 1.35 0.605 0.478 0.348 0.371 0.258 (0.034)
Ethanol Energy 0.07 0.08 0.059 0.054 — 0.063 0.052 (0.001)
Forces 0.33 0.39 0.160 0.136 0.208 0.230 0.094 (0.011)
Malondialdehyde Energy 0.10 0.3 0.094 0.081 — 0.091 0.079 (0.002)
Forces 0.41 0.66 0.319 0.245 0.337 0.319 0.167 (0.015)
Naphthalene Energy 0.12 0.16 0.142 017 — onz 0.116 (0.001)
Forces 0n 0.58 0.310 0.151 0.096 0.083 0.089 (0.018)
Salicylic acid Energy 0.12 0.20 0.126 0.114 — 0.114 0.114 (0.004)
Forces 0.28 0.85 0.337 0.221 0.238 0.209 0.180 (0.040)
Toluene Energy 0.10 0.12 0.100 0.098 — 0.097 0.094 (0.001)
Forces 0.14 0.57 0.191 0.203 0.101 0.102 0.087 (0.014)
Uracil Energy on 0.14 0.108 0.104 — 0.104 0.105 (0.001)
Forces 0.24 0.56 0.218 0.105 0.172 0.140 0.119 (0.021)
Results for SpookyNet are averaged over ten random splits, the standard deviation between runs is given in brackets. All models are trained on 1000 data points (separate models are used for each
molecule), best results in bold.

the present approach. Notably, PhysNet does not include analy-
tical short-range corrections and uses interaction functions that
rely on purely radial information (instead of incorporating
higher-order angular information). In addition, PhysNet cannot
model different electronic states or nonlocal effects. In contrast,
SpookyNet can predict different potential energy surfaces for the
same molecule in different electronic states and is able to model
nonlocal changes to the properties of materials such as MgO
upon introduction of dopant atoms. Further, it successfully
generalizes to structures well outside the chemical and con-
formational space covered by its training data and improves upon
existing models in different quantum chemical benchmarks. The
inductive biases incorporated into the architecture of SpookyNet
encourage learning a chemically intuitive representation of
molecular systems (see Fig. 2a). For example, the interaction
functions learned by SpookyNet are designed to resemble atomic
orbitals (see Fig. 1d). Obtaining such an understanding of how
ML models®>, here SpookyNet, solve a prediction problem is
crucially important in the sciences as a low test set error3? alone
cannot rule out that a model may overfit or for example capitalize
on various artifacts in data8 or show “Clever Hans” effects®”

So far, most ML-FFs rely on nuclear charges and atomic
coordinates as their only inputs and are thus unable to distinguish
chemical systems with different electronic states. Further, they
often rely on purely local information and break down when
nonlocal effects cannot be neglected. The additions to MPNN
architectures introduced in this work solve both of these issues,
extending the applicability of ML-FFs to a much wider range of
chemical systems than was previously possible and allow to
model properties of quantum systems that have been neglected in
many existing ML-FFs.

Remaining challenges in the construction of ML-FFs pertain to
their successful application to large and heterogenuous condensed
phase systems, such as proteins in aqueous solution. This is a
demanding task, among others, due to the difficulty of per-
forming ab initio calculations for such large systems, which is
necessary to generate appropriate reference data. Although
models trained on small molecules may generalize well to larger
structures, it is not understood how to guarantee that all relevant
regions of the potential energy surface, visited e.g. during a
dynamics simulation, are well described. We conjecture that the
inclusion of physically motivated inductive biases, which is a
crucial ingredient in the SpookyNet architecture, may serve as a
general design principle to improve the next generation of ML-
FFs and tackle such problems.

Methods

Details on the neural network architecture. In the following, basic neural net-
work building blocks and components of the SpookyNet architecture are described
in detail (see Fig. 3 for a schematic depiction). A standard building block of most
neural networks are linear layers, which take input features x € R"" and transform
them according to

linear(x) = Wx +b , (5)
where W € R"”"n and b € R" are learnable weights and biases, and n;, and
Nout are the dimensions of the input and output feature space, respectively (in this
work, i, = 14y, unless otherwise specified). Since Eq. (5) can only describe linear
transformations, an activation function is required to learn nonlinear mappings
between feature spaces. Here, a generalized SiLU (Sigmoid Linear Unit) activation
function®88% (also known as “swish™?) given by - - -

(©)

ax
silu(x) = =
is used. Depending on the values of a and 3, Eq. (6) smoothly interpolates between
a linear function and the popular ReLU (Rectified Linear Unit) activation®! (see
Supplementary Fig. 4). Instead of choosing arbitrary fixed values, « and 8 are
learnable parameters in this work. Whenever the notation silu(x) is used, Eq. (6) is
applied to the vector x entry-wise and separate « and f8 parameters are used for
each entry. Note that a smooth activation function is necessary for predicting
potential energies, because the presence of kinks would introduce discontinuities in
the atomic forces.

In theory, increasing the number of layers should never decrease the
performance of a neural network, since in principle, superfluous layers could
always learn the identity mapping. In practice, however, deeper neural networks
become increasingly difficult to train due to the vanishing gradients problem??,
which often degrades performance when too many layers are used. To combat this
issue, it is common practice to introduce “shortcuts” into the architecture that skip
one or several layers?, creating a residual block®. By inverting the order of linear
layers and activation functions, it is even possible to train neural networks with
several hundreds of layers®®. These “pre-activation” residual blocks transform input
features x according to

@)

Throughout the SpookyNet architecture, small feedforward neural networks
consisting of a residual block, followed by an activation and a linear output layer,
are used as learnable feature transformations. For conciseness, such residual
multilayer perceptrons (MLPs) are written as

residual(x) = x + linear, (silu, (linear, (silu, (x)))) .

®)

The inputs to SpookyNet are transformed to initial atomic features (Eq. (1)) via
embeddings. A nuclear embedding is used to map atomic numbers Z € N to
vectors e, € R” given by

resmlp(x) = linear(silu(residual(x))) .

e, =Md, +¢,. 9)
Here, M € R"*? is a parameter matrix that projects constant element descriptors
d, € R® to an F-dimensional feature space and &, € R are element-specific bias
parameters. The descriptors d; encode information about the ground state
electronic configuration of each element (see Supplementary Table 3 for details).
Note that the term &, by itself allows to learn arbitrary embeddings for different
elements, but including Md; provides an inductive bias to learn representations
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that capture similarities between different elements, i.e., contain alchemical
knowledge.

Electronic embeddings are used to map the total charge Q € Z and number of
unpaired electrons S € INj to vectors e, e5 € RF, which delocalize this
information over all atoms via a mechanism similar to attention”8. The mapping is
given by

k ¥ >0 v ¥ >0
q = linear(e,), k = { ot , V= {Y+ s
k_ Y<0 v_ ¥<0
¥in (1 Tk (10)
;= n( + exp( /f)) , ey = resmlp(av) ,
Zln(l + exp(q/k/+/F))

where k,v € R are parameters and ¥ = Q for charge embeddings, or ¥ = for
spin embeddings (independent parameters are used for each type of electronic
embedding). Separate parameters indicated by subscripts + are used for positive
and negative total charge inputs Q (since S is always positive or zero, only the
+ parameters are used for spin embeddings). Here, all bias terms in the resmlp
transformation (Eq. (8)) are removed, such that when av =0, the electronic
embedding ey = 0 as well. Note that >";a; =¥, i.e. the electronic information is
distributed across atoms with weights proportional to the scaled dot product
q/k/VF.

The initial atomic representations x()
of T interaction modules according to

(Eq. (1)) are refined iteratively by a chain

% = residual, (x*7V) |

x® = residual,® +14 n) , an

y® = resmlp(x?) .

Here, X € RF are temporary atomic features and I, n € R represent interactions
with other atoms. They are computed by local (Eq. (12)) and nonlocal (Eq. (18))
interaction blocks, respectively, which are described below. Each module t produces
two outputs x?, y® € R, where x(9 is the input to the next module in the chain
and all y® outputs are accumulated to the final atomic descriptors f (Eq. (3)).

The features 1 in Eq. (11) represent a local interaction of atoms within a cutoff
radius 7., € R and introduce information about the atom positions 7 € R>. They
are computed from the temporary features X (see Eq. (11)) according to

¢ = resmlp_(X) ,

5= Z resmlps(f(j) O (Gyg,(7y))
P, = 16%: resmlp, (%) © (G,§,(7;)) , (12)
= X resmlpy(X;) © (G484(7))

JEN()

1= resmlp(c + s+ (P;p,P,p) + <D1;17 Dza)L

where, N (i) is the set of all indices j= i for which 7]l < ey (with 7y =7, — 7).
The parameter matrices G;, G,, Gy € RF*X are used to construct feature -wise
interaction functions as linear combinations of basis functions g, € R¥,

QP e R¥*3, and g € R¥*® (see Eq. (13)), which have the same rotational
symmetries as s-, p-, and d-orbitals. The features s € R, p € RF*3, and d e RF*®

encode the arrangement of neighboring atoms within the cutoff radius and ¢ € R”
describes the central atom in each neighborhood. Here, s stores purely radial
information, whereas P and d allow to resolve angular information in a
computationally efficient manner (see Supplementary Discussion for details). The
parameter matrices P,,P,,D,, D, € R"™F are used to compute two independent
linear projections for each of the rotationally equivariant features p and d, from
which rotationally invariant features are obtained via a scalar product (-,-). The
basis functions (see Fig. 6) are given by

[ 080
gM=1 1 |,
L k-180
o1 08 08l
gp(;) = : : : s (13)
Lk—18" ka8 k-8l
08” 08" 08 08 &
ga() = : : : : : )
Lk-18° k&' k18 kB k18

& = pIFD - Y@

where the radial component py is

pr(r) = by g1 (EXP(—W)) feu(r) (14)

and

buacat0 = (o as)
are Bernstein polynomials (k=0, ..., K — 1). The hyper-parameter K determines
the total number of radial components (and the degree of the Bernstein
polynomials). For K — o, linear combinations of by x_;(x) can approximate

any continuous function on the interval [0, 1] uniformly®$. An exponential
function exp(—yr) maps distances r from [0, o) to the interval (0, 1], where y €
R, is a radial decay parameter shared across all basis functions (for
computational efficiency). A desirable side effect of this mapping is that the rate at
which learned interaction functions can vary decreases with increasing r, which
introduces a chemically meaningful inductive bias (electronic wave functions also
decay exponentially with increasing distance from a nucleus)3”->>. The cutoff
function

r<Teut

-7

0 [~

ensures that basis functions smoothly decay to zero for r > rg, so that no
discontinuities are introduced when atoms enter or leave the cutoff radius. The
angular component Y}'() in Eq. (13) is given by

vz H}m‘(z) : A\m\(x»}’) m<0

VR GERSIE) m=0,
V2-1I'(2) - B, (X y) m>0
Ap(xy) = ( )xpym 4 sm (m p))
B, (x,y) = ( ) " pcos (m —p)> , 17)
() = m)! L=, m)/2J lerzpfzzlfzp—m ,

( bop= 0
_ 1)117 21-2p\  (I—2p)!
= < )( )(leme)!’

where 7 =[x y Z]" and r = ||7||. Note that the Y}" in Eq. (17) omit the
normalization constant /(47)/(2] + 1), but are otherwise identical to the standard
(real) spherical harmonics.

Although locality is a valid assumption for many chemical systems!!, electrons
may also be delocalized across multiple distant atoms. Starting from the temporary
features % (see Eq. (11)), such nonlocal interactions are modeled via self-attention’®
as

q = resmlp,(X), Q=q, »»qN]T ,
k; = resmlp.(x;) , K= [k - kN}T , (18)
v, = resmlp,(X,), V= [vl ~-'VN}T ,
N = attention(Q,K,V), N= [nl . -nN}T ,

where the features n in Eq. (11) are the (transposed) rows of the matrix N € RN*F,
The idea of attention is inspired by retrieval systems”, where a query is mapped
against keys to retrieve the best-matched corresponding values from a database.
Standard attention is computed as

A=exp (QKT/ ﬁ) :
attention(Q, K, V) = DAV |

D = diag(Aly) , (19)

where Q,K,V € RN*F are queries, keys, and values, 1y is the all-ones vector of
length N, and diag(+) is a diagonal matrix with the input vector as the diagonal.
Unfortunately, computing attention with Eq. (19) has a time and space complexity
of O(N?F) and O(N? + NF)”?, respectively, because the attention matrix A €
RN*N has to be stored explicitly. Since quadratic scaling with the number of atoms
N is problematic for large chemical systems, the FAVOR+ (Fast Attention Via
positive Orthogonal Random features) approximation’® is used instead:

= [$@)--day)]" . K=[p(k)---plky)]"
D = diag QK 1)) ,
attention(Q,K, V) = D (QE V) .

(20)

Here ¢ : RF >R/ -0 s a mapping designed to approximate the softmax kernel via f
random features, see ref. 7% for details (here, f= F for simplicity). The time and
space complexities for computing attention with Eq. (20) are O(NFf) and

O(NF + Nf + Ff)”?, ie., both scale linearly with the number of atoms N. To make
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Fig. 6 Visualization of basis functions. All basis functions , g[” with K= 4 (see Eq. (13)) with different radial and angular components p, (Eq. (14)) and Y}

(Eg. (17)) are shown.

the evaluation of SpookyNet deterministic, the random features of the mapping ¢
are drawn only once at initialization and kept fixed afterwards (instead of
redrawing them for each evaluation).

Once all interaction modules are evaluated, atomic energy contributions E; are
predicted from the atomic descriptors f; via linear regression

E, = W;fi + EZ. s (21)

and combined to obtain the total potential energy (see Eq. (4)). Here, w; € R are
the regression weights and E, € R are element-dependent energy biases.

The nuclear repulsion term E., in Eq. (4) is based on the Ziegler-Biersack-
Littmark stopping potential®® and given by

E., =kX X
i ©T i eNG)

4
<Z Cke—au,,aHZ,”)/d) .

k=1

Z,Z,
2 )

(22)

Here, k. is the Coulomb constant and ay, ¢, p, and d are parameters (see Eqgs. (12)
and (16) for the definitions of N/ (i) and f,,). Long-range electrostatic interactions
are modeled as

switc] (ri') 1 — f witd (r;)
Eele:kezzqiqj f ich J+ f ch b

- )
ij>i /rlzj+1 r

where ¢; are atomic partial charges predicted from the atomic features f; according
to

(23)

1 N
W P _ T ~

q; =W, £, + 4z, + N |:Q j;(wq fj + 4z, )] - (24)
Here, w, € RF and g, € R are regression weights and element-dependent biases,
respectively. The second half of the equation ensures that }>_,q; = Q, i.e., the total
charge is conserved. Standard Ewald summation®’ can be used to evaluate Eg,
when periodic boundary conditions are used. Note that Eq. (23) smoothly
interpolates between the correct r~! behavior of Coulomb’s law at large distances
(r> 7o) and a damped (v} + 12
smooth switching function fyicch given by

o) = {exp(fi) x>0

dependence at short distances (r <r,,) via a

0 x<0’

oll1—= " Ton
Toff ~Ton

Fowien(r) = U<1 _&> +J(ﬁ> '

Toff ~Ton Toff ~Ton

(25)

R 1 3 . NP .
For simplicity, r,, = 37 and rog = 574y €. the switching interval is

automatically adjusted depending on the chosen cutoff radius 7, (see Eq. (16)). It
is also possible to construct dipole moments ji from the partial charges according to
N
i=Yai (26)
i=
which can be useful for calculating infrared spectra from MD simulations and for
fitting g; to ab initio reference data without imposing arbitrary charge
decomposition schemes’®. Long-range dispersion interactions are modeled via the
term Eq4y. Analytical van der Waals corrections are an active area of research and
many different methods, for example the Tkatchenko-Scheffler correction”’, or
many body dispersion’4, have been proposed®. In this work, the two-body term of

the D4 dispersion correction!%0 is used for its simplicity and computational
efficiency:

(1) £(n)
" fdump(rij) .
ij

Egw=—22 285,, (27)

i jrin=68 " T
i
(n)
dispersion coefficients. They are obtained by interpolating between tabulated
reference values based on a (geometry-dependent) fractional coordination number
and an atomic partial charge g;. In the standard D4 scheme, the partial charges are
obtained via a charge equilibration scheme!%, in this work, however, the g; from
Eq. (24) are used instead. Note that the D4 method was developed mainly to
correct for the lack of dispersion in density functionals, so typically, some of its
parameters are adapted to the functional the correction is applied to (optimal
values for each functional are determined by fitting to high-quality electronic
reference data)!%0. In this work, all D4 parameters that vary between different
functionals are treated as learnable parameters when SpookyNet is trained, i.e., they
are automatically adapted to the reference data. Since Eq. (24) (instead of charge
equilibration) is used to determine the partial charges, an additional learnable
parameter s, is introduced to scale the tabulated reference charges used to
determine dispersion coefficients C;]n). For further details on the implementation of
the D4 method, the reader is referred to ref. 100.

Here s, are scaling parameters, fg;)mp is a damping function, and C;  are pairwise

Training and hyperparameters. All SpookyNet models in this work use T=6
interaction modules, F = 128 features, and a cutoff radius 7., = 10 a,

(=5.29177 A), unless otherwise specified. Weights are initialized as random (semi-)
orthogonal matrices with entries scaled according to the Glorot initialization
scheme”2. An exception are the weights of the second linear layer in residual blocks
(linear, in Eq. (7)) and the matrix M used in nuclear embeddings (Eq. (9)), which
are initialized with zeros. All bias terms and the k and v parameters in the elec-
tronic embedding (Eq. (10)) are also initialized with zeros. The parameters for the
activation function (Eq. (6)) start as & = 1.0 and 8 = 1.702, following the recom-
mendations given in Ref. 88, The radial decay parameter y used in Eq. (14) is
initialized to 1ag! and constrained to positive values. The parameters of the
empirical nuclear repulsion term (Eq. (22)) start from the literature values of the
ZBL potential®0 and are constrained to positive values (coefficients ¢, are further
constrained such that > ¢, =1 to guarantee the correct asymptotic behavior for
short distances). Parameters of the dispersion correction (Eq. (27)) start from the
values recommended for Hartree-Fock calculations!'?? and the charge scaling
parameter s, is initialized to 1 (and constrained to remain positive).

The parameters are trained by minimizing a loss function with mini-batch
gradient descent using the AMSGrad optimizer!%! with the recommended default
momentum hyperparameters and an initial learning rate of 10~3. During training,
an exponential moving average of all model parameters is kept using a smoothing
factor of 0.999. Every 1k training steps, a model using the averaged parameters is
evaluated on the validation set and the learning rate is decayed by a factor of 0.5
whenever the validation loss does not decrease for 25 consecutive evaluations.
Training is stopped when the learning rate drops below 10~> and the model that
performed best on the validation set is selected. The loss function is given by

L=aply+oaplp+a,l,, (28)
where Lg, Ly, and £, are separate loss terms for energies, forces and dipole

moments and «g, ar, and &, corresponding weighting hyperparameters that
determine the relative influence of each term to the total loss. The energy loss is
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given by

13 ref 2
> (Epo(.b _Epm.b) ’ 29)

Lr=1]=
£ By=1

where B is the number of structures in the mini-batch, Ep, the predicted potential
energy (Eq. (4)) for structure b and E;ft_b the corresponding reference energy. The
batch size B is chosen depending on the available training data: When training sets
contain 1Kk structures or less, B =1, for 10k structures or less, B= 10, and for more

than 10k structures, B=100. The force loss is given by
2
) , (30)

JRENESIES S
T\ Bisi\N, i

—ref
where Ny, is the number of atoms in structure b and F;eb the reference force acting
on atom i in structure b. The dipole loss

1B N = —ref ’
L:p: Ehgl (;%,z;ﬁ.z;) —Hy

I
allows to learn partial charges (Eq. (24)) from reference dipole moments ﬁ;ff, which
are, in contrast to arbitrary charge decompositions, true quantum mechanical
observables®8. Partial charges learned in this way are typically similar in magnitude
to Hirshfeld charges!%2 and follow similar overall trends (see Supplementary
Fig. 5). Note that for charged molecules, the dipole moment is dependent on the
origin of the coordinate system, so consistent conventions must be used. For some
datasets or applications, however, reference partial charges qf‘,f obtained from a
charge decomposition scheme might be preferred (or the only data available). In
this case, the term «, £, in Eq. (28) is replaced by a, L, with

— 12 1% ref 2 32
Ly= \/Egl (thl (qi,b - qi,h) > : (32)

For simplicity, the relative loss weights are set to ap = ap= a,/, =1 in this
work, with the exception of the MD17 and QM7-X datasets, for which ar =100 is
used following previous work®’. Both energy and force prediction errors are
significantly reduced when the force weight is increased (see Supplementary
Table 4). Note that the relative weight of loss terms also depends on the chosen unit
system (atomic units are used here). For datasets that lack the reference data
necessary for computing any of the given loss terms (Egs. (29)-(32)), the
corresponding weight is set to zero. In addition, whenever no reference data
(neither dipole moments nor reference partial charges) are available to fit partial
charges, both E. and Eq,, are omitted when predicting the potential energy Epq
(see Eq. (4)).

For the “unknown molecules/unknown conformations” task reported in
Table 2, the 25 entries with the following ID numbers (idmol field in the QM7-X
file format) were used as a test set: 1771, 1805, 1824, 2020, 2085, 2117,
3019, 3108, 3190, 3217, 3257, 3329, 3531, 4010, 4181, 4319, 4713,
5174, 5370, 5580, 5891, 6315, 6583, 6809, 7020. In addition to energies
and forces, SpookyNet uses dipole moments (property D in the QM7-X dataset) to
fit atomic partial charges.

_ aEpo‘,b —ref

or,

(31)

Computing and visualizing local chemical potentials and nonlocal contribu-
tions. To compute the local chemical potentials shown in Fig. 2a and Supple-
mentary Fig. 3, a similar approach as that described in Ref.3? is followed. To
compute the local chemical potential Q}(7) of a molecule M for an atom of type A
(here, hydrogen is used), the idea is to introduce a probe atom of type A at position
7 and let it interact with all atoms of M, but not vice versa. In other words, the
prediction for M is unperturbed, but the probe atom “feels” the presence of M.
Then, the predicted energy contribution of the probe atom is interpreted as its local
chemical potential Q} (7). This is achieved as follows: First, the electronic
embeddings (Eq. (10)) for all N atoms in M are computed as if the probe atom was
not present. Then, the embeddings for the probe atom are computed as if it was
part of a larger molecule with N+ 1 atoms. Similarly, the contributions of local
interactions (Eq. (12)) and nonlocal interactions (Eq. (18)) to the features of the
probe atom are computed by pretending it is part of a molecule with N + 1 atoms,
whereas all contributions to the features of the N atoms in molecule M are com-
puted without the presence of the probe atom. For visualization, all chemical
potentials are projected onto the SN | |7 — 7| = 14,2 isosurface, where the
sum runs over the positions 7; of all atoms i in M.

To obtain the individual contributions for s-, p-, and d-orbital-like interactions
shown in Fig. 2, different terms for the computation of 1 in Eq. (12) are set to zero.
For the s-orbital-like contribution, both p and d are set to zero. For the p-orbital-

like contribution, only d is set to zero, and the s-orbital-like contribution is
subtracted from the result. Similarly, for the d-orbital-like contribution, the model
is evaluated normally and the result from setting only d to zero is subtracted.

The nonlocal contributions to the potential energy surface shown in Fig. 2b are
obtained by first evaluating the model normally and then subtracting the
predictions obtained when setting n in Eq. (11) to zero.

SchNet and PaiNN training. The SchNet and PaiNN models for the QM7-X
experiments use F = 128 features, as well as T=6 and T =3 interactions,
respectively. Both employ 20 Gaussian radial basis function up to a cutoff of 5 A.
They were trained with the Adam optimizer!?? at a learning rate of 107 and a
batch size of 10.

Data generation. For demonstrating the ability of SpookyNet to model different
electronic states and nonlocal interactions, energies, forces, and dipoles for three
new datasets were computed at the semi-empirical GFN2-xTB level of theory!04,
Both the Agi/Agy (see Fig. 4a) and the singlet/triplet CH, (see Fig. 4b) datasets
were computed by sampling 550 structures around the minima of both electronic
states with normal mode sampling?® at 1000 K. Then, each sampled structure was
re-computed in the other electronic state (e.g., all structures sampled for Agi were
re-computed with a negative charge), leading to a total of 2200 structures for each
dataset (models were trained on a subset of 1000 randomly sampled structures).
The dataset for Fig. 5 was computed by performing bond scans for all nine
shown diatomic molecules using 1k points spaced evenly between 1.5 and 20 aj,
leading to a total of 9k structures. Models were trained on all data with an increased
cutoff 7., = 18 ag to demonstrate that a model without nonlocal interactions is
unable to fit the data, even when it is allowed to overfit and use a large cutoff.
The reference geometries shown in Fig. 2c and Supplementary Fig. 6 were
computed at the PBEO+MBD7374 level using the FHI-aims code!9%106. All
calculations used “tight” settings for basis functions and integration grids and the
same convergence criteria as those applied for computing the QM7-X dataset’!.

Data availability

The singlet/triplet carbene and Agj/Ag; datasets generated for this work are available
without restrictions from https://doi.org/10.5281/zenodo.5115732108. All other datasets
used in this work are publicly available from ref. 19 (see completeness test in the
Supplementary Discussion), http://www.sgdml.org(MD17), ref. 110 (QM7-X), ref. 111
(datasets used in Table 1), and ref. ©3 (QMspin).

Code availability
A reference implementation of SpookyNet using PyTorch!!? is available from https://
github.com/OUnke/SpookyNet.
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