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Strength of adhesive contact between a rough fibrillar structure and an elastic 10 

body: Influence of fibrillar stiffness 11 

Adhesive contact between a rough fibrillar structure and an elastic half space is 12 

numerically studied using the boundary element method. The fibrils are modelled 13 

as soft cylinders with constant stiffness and a gaussian distribution of heights. 14 

Adhesive strength is obtained as function of preload, roughness, and fibril stiffness. 15 

The adhesive strength after large enough preloading increases with decrease of 16 

fibril stiffness tending to a limiting value, which is independent of roughness. The 17 

present model aims to bridge the limiting cases of very rigid fibrils and extremely 18 

soft fibrils. In particular, we determined the stiffness needed to make the adhesion 19 

stress "tolerant" to the roughness, and an enhancement of adhesion is obtained by 20 

decreasing stiffness.   21 

Keywords: adhesion; rough contact; simulation; fibrillar stiffness; Boundary 22 

Element Method 23 

1 Introduction 24 

Adhesive contact of rough surfaces has been very intensively investigated in the last few 25 

decades. One of the hot topics were fibrillar structures, which are found in many bio- 26 

systems, e.g., feet of geckos [1]-[3], which contains millions of array-like forms of 27 

microcosmic fibrils with hierarchical structures (branch-seta-spatula), and this is regarded 28 

as the main contributing factor to its strong adhesion ability. There is a large number of 29 

studies seeking for understanding of the mechanism of strong attachment of these 30 

structures,  starting with the simple idea contact splitting to complicated hierarchical 31 

structures, mimicking the biological attachment systems [4]-[9]. Hui et al. proposed a 32 

splitting model containing an independent array of springs with spherical tips, and the 33 

length of fibrils was ruled by Gaussian distribution to represent the height of the surface 34 

asperities [5][6]. The compensation through increasing the compliance of fibrils can 35 

weaken the detrimental effect of roughness. Schargott proposed a hierarchical model 36 

based on the tokay gecko’s pad, to investigate the adhesive contact with a rough surface 37 
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[9]. By increasing number of hierarchical layers which essentially increases the 38 

compliance of the system, a stronger adhesive force was obtained.  39 

The basis for analysis of complicated structures remains the adhesin theory by Johnson, 40 

Kendall and Roberts (JKR) [10] or for simple cylindrical fibrils the Kendall’s solution 41 

[11][12][13]. Based on the theoretical studies, technologies for fabrication of structured 42 

surfaces mimicking the function of gecko’s feet have been developed. Micropillar‐43 

patterned PDMS surfaces have shown a stronger adhesion compared with unpatterned 44 

surfaces [14]. It was found that elastic fibrils possess better adaptability to comply 45 

surfaces, even to rough surfaces [15]. Surfaces with artificial geometry such as concave 46 

shape could optimize the stress distribution and then enhance adhesive strength [16]. For 47 

structural applications, Heide-Jørgensen et al. investigated an array-structure of pillars in 48 

the double cantilever beam (DCB) theoretically and experimentally, and altered the 49 

geometry of pillars to affect the fracture behaviour of the DCB and then increase the 50 

toughness of the material [17]. Morano et al. suggested an introduction of channel in the 51 

sub-surface of an interface, which can affect the dissipated energy through channel 52 

geometry [18]. Since 2000s, the concept of contact splitting became popular for 53 

explanation of strong adhesive strength of fibrillar interfaces which states that splitting of 54 

a large, compact surface into smaller discrete sub-surfaces leads to an increase of adhesive 55 

force [19][20]. It can be attributed to the fact that the adhesive strength turns larger as the 56 

size of fibrils decreases, since a higher critical stress is needed for the separation of a 57 

single fibril; on the other side, splitting the surface could optimize the stress concentration 58 

at the edge of contact and obtain a much uniform stress distribution. Takahashi 59 

numerically studied a multi-spring model based on the FEM [21]. The multi-spring model 60 

is governed by the JKR theory and each spring acts individually. Bhushan assembled 61 

springs to a hierarchical model based on force balance [22]. The DMT theory is applied 62 
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to each spring in the bottom-layer, and higher adhesion is observed. While a recent 63 

numerical study on flat-ended brush structures showed, however, that the contact splitting 64 

alone does not increase the adhesive strength. On the contrary, if the “splitted spots” are 65 

connected rigidly with each other, this always leads to a decrease of the adhesive strength 66 

(approximately proportional to the “filling factor” of microcontacts compared with the 67 

whole apparent contact area [23]). But if the fibrils possess elasticity, the adhesive 68 

strength can increase or decrease - depending on the number and elasticity of the fibrils 69 

[24]. In the present work, we consider the rough contact with a gaussian height 70 

distribution. We use the mesh-dependent detachment criterion which previously has been 71 

shown to be equivalent to the JKR theory. The elastic coupling of fibrils is treated 72 

numerically exactly, without any further simplifications.  73 

 Adhesive contact between the rough pillar structure and an elastic half space is 74 

numerically simulated using the Fast Fourier Transform-assisted Boundary Element 75 

Method (FFT-assisted BEM) [25][26]. The fibrils are modelled as elastic cylinders while 76 

the counter-partner as elastic half space. The numerical procedure is described in the 77 

previous paper [24]. The rough brush-structure with rigid pillars was studied in ref [27]. 78 

In this paper we focus on the influence of fibril stiffness.   79 

 2 Numerical model and simulation method 80 

The numerical model is shown in Figure 1. The elastic half space has the elastic modulus 81 

E and Poisson’s ratio . The brush structure is composed of a large number of cylindrical 82 

pillars with the same radius. The lengths of pillars, are, however, characterized by the 83 

probability density function  84 

Φ(𝑙) =
1

√2𝜋𝜎
e

−
(𝑙−𝑙0)2

2𝜎2 , (1) 85 
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where 𝑙 is the height of pillars, 𝜎 and 𝑙0 are the standard deviation and the mean value 86 

respectively. The parameter  describes the characteristic roughness of the fibrillar 87 

structure. The elasticity of the pillars is modelled by the rigid cylinders coupled elastically 88 

to a rigid plate with linear springs as shown in Figure 1, which is equivalent to a system 89 

with a thin elastic layer between cylinders and a rigid plate [29] (Figure 1 right).  90 

 91 

 92 

Figure 1 Sketch of adhesive contact between a elastic rough fibrillar structure and an elastic half space. The right 93 
figure shows a three-dimensional illustration. 94 

Under the normal load on the rigid plate, the fibrillar structure is pressed into the 95 

elastic half space by an indentation depth d. Effects of buckling are not considered in the 96 

present work. For the elements in contact, this macroscopic indentation depth 97 

(displacement of the structure) contains two parts: the surface displacement of elastic 98 

half-space u and the displacement of the corresponding spring ∆l (or elongation of the 99 

fibrils, see Figure 1).  Therefore, the following condition is satisfied:  100 

𝑑 = 𝑢 + ∆𝑙. (2) 101 

We assume that all springs have the same normal stiffness k. The equilibrium condition 102 

for the contact of the n-th pillar with the elastic half space reads 103 

𝑓𝑛 = 𝑘∆𝑙𝑛 = ∫ 𝑝𝑛d𝐴𝑛
𝐴𝑛

, (3) 104 

where pn is the pressure distribution in the contact of the pillar with the half-space, An is 105 

the contact area of the pillar. Substitution of (3) into (2) gives   106 
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𝑢𝑛 = 𝑑 −
1

𝑘
∫ 𝑝𝑛d𝐴𝑛

𝐴𝑛

. (4) 107 

Here un is the surface displacement of elastic half space in the area of An. It is noted that 108 

it is generated not only from the pressure pn in this area of An but from the pressure in the 109 

whole contact region.   110 

The normal displacement of elastic half space 𝑢(𝑥, 𝑦) under the action of normal 111 

stress distribution 𝑝(𝑥′, 𝑦′), is described by integration of the fundamental solution of 112 

Boussinesq [28],  113 

𝑢z(𝑥, 𝑦) =
1

𝜋𝐸∗
∫ ∫

1

√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2
𝑌𝑋

 𝑝(𝑥′, 𝑦′)d𝑥′d𝑦′. (5) 114 

In a discrete form, it can be written as 115 

𝑢𝑖𝑗 = 𝐾𝑖𝑗𝑖′𝑗′ 𝑝𝑖′𝑗′ , (6) 116 

where u is the displacement of surface element at position (i, j) in two-dimensional 117 

discretization, p is the normal stress acting on the element (𝑖′, 𝑗′), K is the influence 118 

coefficient. We discretize the simulation area in square elements with the total number of 119 

N×N; the stress p and the displacement u have the same matrix dimension N×N, and the 120 

matrix K of influence coefficients has the dimension of N2×N2. To reduce the complexity, 121 

the Fast Fourier Transform (FFT) is usually applied to accelerate the computation of the 122 

convolution (6), which reduces the complexity from o(N4) to o(N2logN2) [30]. Before 123 

carrying out the FFT, the matrix of influence coefficient is usually constructed in the 124 

‘convolution’ form of having the same dimension N×N: 125 

𝑢 = 𝐾 ∗ 𝑝, (7) 126 

where “*” means convolution operation. The operation of FFT is then  127 

𝑢 = IFFT[FFT(𝐾) ⋅ FFT(𝑝)]. (8) 128 
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In a recent study on flat-ended soft brush structure [24] the BEM was further 129 

developed to take into account of pillar stiffness directly. The relation between the 130 

macroscopic indentation depth and pressure distribution on elastic half space is obtained 131 

by 132 

𝑑 =
ℎ2

𝑘
Π ∗ 𝑝 + 𝐾 ∗ 𝑝 = [

ℎ2

𝑘
Π + 𝐾] ∗ 𝑝, (9) 133 

where П is a new matrix of influence coefficient whose elements are equal either one or 134 

zero and its distribution in matrix depends on the size of pillars. The first term in Eq. (9) 135 

is actually the displacement of springs but in a “convolution” form. Eq. (9) considers the 136 

displacement of both springs and the elastic half-space simultaneously. Similarly, the FFT 137 

can be carried out for Eq. (9) 138 

𝑑 = IFFT [FFT (
ℎ2

𝑘
Π + 𝐾) ⋅ FFT(𝑝)] . (10) 139 

In this way, the spring stiffness is directly integrated into the influence matrix. The details 140 

on this method can be found in [24]. 141 

In numerical simulation, we give the general displacement of the fibrillar structure d 142 

(displacement-controlled indentation). The stress p can be obtained by solving the Eq. 143 

(10) using the conjugate-gradient method [25], then the displacement of the elastic half-144 

space u can be determined by Eq. (8) based on the balanced stress distribution p, and the 145 

displacement of springs ∆l is obtained from Eq. (2) based on known d and u.  146 

For simulation of adhesion we use the mesh-dependent detachment criterion by Pohrt 147 

and Popov [31]. We apply Griffith’ crack criterion and obtain a critical stress value pc 148 

depending on meth-size. We compare the stress in each element with the critical value pc 149 

and let detach those elements, whose tensile stress is larger than pc. Based on that, a stress-150 

based criterion for elemental separation is obtained for simulation of pull-off. This 151 
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method can numerically reproduce the JKR-solution with very high accuracy. The details 152 

on the principle and numerical procedure of this method are found in reference [31]. 153 

 154 

3 Results 155 

In simulation, the brush structure is pressed into the elastic half space by an 156 

indentation depth d and then pulled off until complete detachment under condition of 157 

controlled displacement.  The results are normalized by the characteristic values of force, 158 

critical indentation in the case of a flat rigid brush structure [23],  159 

𝐹̃ =
𝐹

𝐹𝑐
, 𝑑̃ =

𝑑

𝑑𝑐
, (11) 160 

with 161 

𝐹𝑐 = √8𝜋𝜑𝐸∗Δ𝛾(√𝐴0/𝜋)
3
, (12) 162 

𝑑𝑐 = √2𝜋𝜑Δ𝛾(√𝐴0/𝜋)

𝐸∗
, (13) 163 

where 𝜑 is the filling ratio defined as the ratio of area total cross sections of pillars, are 164 

located 𝐴𝑐𝑟𝑜𝑠𝑠 , and the nominal area 𝐴0 , 𝜑 = 𝐴𝑐𝑟𝑜𝑠𝑠 𝐴0⁄ , 𝐸∗  is the effective elastic 165 

modulus 𝐸∗ = 𝐸 (1 − 𝑣2)⁄ , Δ𝛾 is the work of adhesion per unit area. 𝐹𝑐 is the adhesive 166 

force (the maximal pull-off force) in the case of the rigid flat-ended brush structure, and 167 

𝑑𝑐  is the critical displacement. The characteristic roughness 𝜎 and spring stiffness are 168 

normalized as 169 

𝜎̃ =
𝜎

𝑑𝑐
, 𝑘̃ =

𝑘

𝐸∗𝐿
, (14) 170 

where 𝐿 is the size of simulation area, so the nominal area 𝐴0 = 𝐿 × 𝐿. The value 𝐸∗𝐿 is 171 

the contact stiffness of a rigid punch with diameter 𝐿 in contact with an elastic half space. 172 
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So the dimensionless stiffness indicates the stiffness of the fibril structure in comparison 173 

with the contact property.  174 

In the present study, we used 324 pillars distributed in a square area, with the ratio 175 

𝜑 = 0.16. In an example we show the value of the dimensionless stiffness using the 176 

values of biomaterial: pillars distributed in area 10𝜇m × 10𝜇m have elastic modulus 1 177 

GPa, length 2 μm and diameter 0.2 μm, and the half space has effective elastic modulus 178 

E*=1 GPa. According to the beam theory pillar’s stiffness is 0.02 N/mm. Contact stiffness 179 

of a rigid flat punch with this elastic half space is roughly 10 N/mm. This case corresponds 180 

to the dimensionless stiffness 𝑘̃ = 0.002. To obtain a general law, the dimensionless 181 

stiffness 𝑘̃, the roughness 𝜎̃, and the maximum indentation depth 𝑑̃ are varied to study 182 

their influence on adhesive strength. 183 

3.1 Influence of roughness and preload 184 

First, we present nine simulations of pull-off process for different roughness 𝜎̃ 185 

ranging from 0.07 to 2.10. In all cases, the structure was first pressed up to the indentation 186 

depth corresponding to the preload 𝐹̃𝑃 ≈ 6.5 . Spring dimensionless stiffness 𝑘̃ = 10 187 

means that we consider a very stiff embedding of the pillars. Dependences of normal 188 

force on indentation depth and contact area are shown in Figure 2.  189 

 190 
Figure 2 Dependence of normal force on indentation depth (a) and contact area (b) for different roughness. The 191 

spring stiffness is 𝑘̃ = 10. 192 
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At the maximum indentation depth, the applied force (preload) 𝐹̃𝑃  is recorded. 193 

During the pull-off, the normal force 𝐹̃  changes from compression to tension. The 194 

absolute value of the minimum negative pull-off force is considered as adhesive force 𝐹̃𝐴. 195 

It is clearly seen that the adhesive force decreases with roughness. For very rough 196 

structures, there is almost no tensile force, so the adhesive force is zero. The fact that 197 

roughness reduces the strength of adhesion is a well-known fact (it is generally valid with 198 

an exception of a slight enhancement of adhesion for very small level of surface 199 

roughness [32][33][34]).  200 

In the second series, we change the initially applied normal force 𝐹̃𝑃 (preload). This 201 

changes the preliminary contact area 𝐴 achieved before reversing the force and eventually 202 

affect the adhesive force 𝐹̃𝐴. In Figure 3, the influence of preload 𝐹̃𝑃 on adhesive force 𝐹̃𝐴 203 

is shown for different roughness 𝜎̃. The values are averaged over 10 realizations of the 204 

rough brush structure. For a given roughness 𝜎̃, the adhesive force 𝐹̃𝐴 increases with the 205 

preload 𝐹̃𝑃 almost linearly firstly, and ultimately reaches to a plateau where the adhesive 206 

force is preload-insensitive. This behaviour can be observed for all values of roughness, 207 

𝜎̃. For a very small roughness e.g. 𝜎̃ = 0.070 (blue curve in Figure 3), the structure is 208 

almost flat, so that the value of normalized adhesive force approaches one, which 209 

corresponds to a rigid flat brush structure. The quantitative analysis of roughness and 210 

preload is given in the next section together with the consideration of spring stiffness.     211 
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 212 

Figure 3 Dependence of the preload and the adhesive force. The spring stiffness is 𝑘̃ = 10. 213 

3.2 Influence of stiffness 214 

With the same parameters as above, the simulations were repeated for different 215 

stiffness 𝑘̃ ranging from 10 to 0.001. The last one corresponds to very soft fibrils. The 216 

dependence of the preload and roughness on adhesive force for four selected cases 𝑘̃ =217 

1, 0.1, 0.01, 0.001 are shown in Figure 4.  218 

 219 
Figure 4 Dependence of adhesive force on the preload for different roughness with stiffness (a) 𝑘̃ = 1.0; (b) 𝑘̃ = 0.1; 220 

(c) 𝑘̃ = 0.01; (d) 𝑘̃ = 0.001. 221 
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With a decrease of 𝑘̃, the influence of roughness 𝜎̃𝑐 becomes weaker, thus the 222 

adhesive force becomes "tolerant" to roughness. The case of 𝑘̃ = 1.0  (Figure 4a) 223 

corresponds still to the quite rigid structure, and thus, the dependence is nearly the same 224 

as in the case 𝑘̃ = 10. It is seen that the enhancement of adhesive strength is achieved 225 

when the stiffness is smaller (softer fibrils), which is especially pronounces for large 226 

roughness. For example, in the case of a quite flat and rigid structure (𝑘̃ = 1.0 and the 227 

smallest roughness 𝜎̃ = 0.07 ), the maximum adhesive force 𝐹̃𝐴  lies at 1 while it 228 

approaches 2 if the pillars are very soft with of 𝑘̃ = 0.001 (Figure 4d). For the largest 229 

roughness 𝜎̃ = 2.1 , the structure with 𝑘̃ = 1.0 has almost vanishing adhesive strength, 230 

but with very soft pillars of 𝑘̃ = 0.001 it remains at a very high level of 𝐹̃𝐴 = 1.5.   231 

It is noted that the ranges of x coordinate in four figures of Figure 4 are different. 232 

The linear stage will be smaller when reducing the stiffness of springs. Softer structure 233 

reaches to saturation stage earlier compared with stiffer one. 234 

Let us look in more detail at the dependence of adhesive strength on preload. In 235 

the linear stage, 𝐹̃𝐴 is roughly proportional to 𝐹̃𝑃,  236 

𝐹̃𝐴 = 𝑐𝐹̃𝑃, (15) 237 

the slop 𝑐 being known as adhesion coefficient [35][36]. In Figure 5, the dependence of 238 

the adhesion coefficient 𝑐 on the roughness 𝜎̃, (for stiffness varying between 𝑘̃ = 0.001 239 

and 𝑘̃ = 10) is shown with symbols. The adhesion coefficient 𝑐 decreases rapidly with 240 

roughness, especially for larger stiffness 𝑘̃. With increasing 𝑘̃, curves approach the rigid 241 

case, and they collapse practically to one curve when 𝑘̃ ≥ 0.55. For soft foundation, e.g., 242 

𝑘̃ = 0.001, the adhesion coefficient can reach 𝑐 = 204 (for the smallest roughness 𝜎̃ =243 

0.01) which is more than 25 times larger than 𝑐 = 8 for stiffness 𝑘̃ ≥ 0.55. 244 
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 245 

Figure 5 (a) Dependence of the adhesion coefficient on the characteristic roughness for different stiffnesses, and (b) 246 
this dependence in double logarithmic coordinates.    247 

In [35], for elastically independent pillars where the height follows an exponential 248 

probability distribution an approximation of such a linear relation was given with 𝑐 =249 

𝐹̃𝐴

𝐹̃𝑃
=

1

𝜎̃
− 1. Similarly, we can approximate our present results with a similar dependency   250 

𝐹̃𝐴 = 𝑐(𝜎̃, 𝑘̃) ∙ 𝐹̃𝑃 = [𝛼(𝑘̃) ⋅
1

𝜎̃
− 𝛽(𝑘̃)] ∙ 𝐹̃𝑃, (16) 251 

where 𝛼 can be interpreted as an amplification factor depending on 𝑘̃, comparing to the 252 

rigid brush structure, while 𝛽 is the bias to determine the max roughness, after which 253 

adhesion vanishes. Fitting Eq. (12) to numerical results is shown by dashed lines in Figure 254 

5. It is seen that the function (12) describes the relation very well. The values of 𝛼, 𝛽 for 255 

different stiffness can be found in the Table 1.  256 

For very high roughness, the adhesive force should vanish. The transition from 257 

adhering to non-adhering surfaces is rather sharp, and the critical value of roughness, 258 

𝜎̃𝑐 = 𝛼/𝛽, can be identified with a good precision. Simulations show that this value 259 

strongly depends on the stiffness of pillars. For rigid case, the critical roughness is about 260 

3.67. The values for other soft pillars are listed in Table 1.    261 

Table 1 Values of 𝛼, 𝛽 and 𝜎̃𝑐  262 

𝑘̃ ≥0.55 0.1 0.055 0.02 0.01 0.008 0.004 0.002 0.001 

𝛼 0.11 0.15 0.18 0.28 0.44 0.59 0.91 1.7 3.32 

𝛽 0.03 0.035 0.035 0.05 0.08 0.09 0.1 0.11 0.15 

𝜎̃𝑐 3.67 4.29 5.14 5.6 5.5 6.56 9.1 15.45 22.13 
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 263 

Now we consider the region of plateau where the adhesive force is independent 264 

of preload. The dependence of adhesive force on the roughness and stiffness is shown in 265 

Figure 6.    266 

 267 

Figure 6 Dependence of adhesive force in the region of plateau on the roughness (a) and spring stiffness (b), and a 268 
three-dimensional illustration of dependence (c). 269 

Similarly, to the linear region, the curves are approaching those in the case of rigid 270 

pillars when the stiffness is larger than 0.55, 𝑘̃ ≥ 0.55, when they all collapse to one 271 

curve. The adhesive force 𝐹̃𝐴 at the plateau decreases with roughness 𝜎̃ and stiffness 𝑘̃. 272 

Similar relation between adhesive force and roughness has been numerically and 273 

experimentally obtained in other studies [5][37]. But in [5], the interaction among pillars 274 

(springs) was not considered, and it was assumed that all pillars separate at the same load 275 

and displacement individually for cases of 𝜎̃ → 0. Figure 6 shows that decreasing pillar 276 

stiffness 𝑘̃ leads to the initial concept of contact splitting. In this limit (and only in this 277 
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limit), the contact splitting really gives rise to a strong adhesion enhancement in 278 

comparison with the compact surface [14][38][39].   279 

4 Conclusion  280 

We studied the adhesive strength of a contact of a rough fibrillar structure and an 281 

elastic half space as function of stiffness of the fibrillar structure. The case of rigid pillars 282 

has been investigated recently [27]. The present model aims to bridge the limiting cases 283 

of very rigid fibrils and extremely soft fibrils (which approaches to contact splitting) 284 

[20][38][39]. We identified the relevant parameter of this transition and studied the 285 

transition in dependence of all essential material and loading parameters as preload, 286 

roughness and pillar stiffness. The stiffness of pillars was integrated into the FFT-assisted 287 

BEM directly so that the elastic interaction between pillars does not need to be considered 288 

independently.  289 

It is known that roughness and stiffness affect the strength of adhesion 290 

significantly. Simulation results in the present work show that the adhesive force first 291 

increases approximately linearly with the preload for the weak compression, then reaches 292 

to a plateau and becomes preload-insensitive as preload increases. For a specific 293 

roughness, the maximum adhesive force in the plateau region increases with the decrease 294 

of stiffness. A critical roughness, at which adhesion vanishes, exists for every determined 295 

stiffness, and the range of this value becomes larger for smaller stiffness, i.e. softer fibrils 296 

have much better adaptability to comply larger roughness, and the detrimental effect from 297 

roughness can be compensated by decreasing stiffness. On the other side, with increasing 298 

stiffness, the maximum adhesive force as well as the adhesion coefficient will rapidly 299 

converge to that of the rigid case, especially when stiffness 𝑘̃ ≥ 0.55 , all results 300 

practically collapse together. In particular, we determined the stiffness needed to make 301 
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the adhesion stress "tolerant" to the roughness, and an enhancement of adhesion is 302 

obtained by decreasing stiffness. 303 

 304 
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