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Abstract

A direct evaporator for a high temperature organic Rankine cycle (ORC)
plant with toluene as a working fluid is designed and tested. The exhaust
gas from a 800 kWe combined heat and power plant is cooled on the shell
side of the present heat exchanger, while the working fluid is heated and
evaporated within eight helically coiled tubes, constituting a tube bundle. A
method to obtain optimal design parameters for this type of heat exchanger
is presented, considering the heat source, the ORC and the available space
at the test site. After manufacturing, the apparatus is tested to validate
the design procedure, focusing on the employed heat transfer and pressure
loss correlations on the shell side. It is shown that the predicted values of
the overall heat transfer coefficient and the shell side Nusselt number are
in good agreement with experimental data, showing a maximum deviation
of 5.5%. The measured shell side pressure loss is slightly higher than the
predicted value, indicating that the correlation underestimates the pressure
loss coefficient by up to 7% at low Reynolds numbers, but has a good accuracy
at higher Reynolds numbers. It is observed that it is essential to adjust the
mass flow rate of the working fluid in each coil to obtain a homogenous vapor
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quality. A reliable operation of the direct evaporator with a maximum heat
flow of 225 kW is shown.

Keywords: Direct evaporator, Organic Rankine cycle (ORC), Multi-coil
helical heat exchanger, Waste heat recovery

1. Introduction1

With a rising global demand for energy and the associated increase in2

fossil fuel consumption, dramatic environmental issues due to air pollution3

and climate change have emerged [1, 2]. Much of the primary energy used in4

industrial applications is discharged to the environment in the form of waste5

heat [3, 4] so that there is a large potential for savings by exploiting such heat6

sources. Moreover, there are many renewable sources, e.g. geothermal, solar7

thermal or biomass combustion waste heat, that can be used to contribute8

to the development of a sustainable energy supply [5, 6, 7]. The organic9

Rankine cycle (ORC) is a promising technology for these objectives. Like10

the Rankine cycle that operates with water, the ORC converts a heat flow11

into mechanical power, but relies on other working fluids, which allow for12

the use of low temperature heat, simple cycle designs and the possibility of13

small scale power plants [8].14

Despite the fact that the idea of using a working fluid other than water in15

steam engines already emerged in the early 19th century, the beginning of16

modern ORC research is based on the work of D’Amelio in the 1930s and led17

to a first commercial power plant in 1952 [9]. The rapidly growing number18

of publications until today [10] can serve as an indicator of the general inter-19

est in ORC technology and the need for its optimization. Most publications20

are of theoretical type and deal with the cycle design and the selection of21

an optimal working fluid [11]. As a key component, also various types of22

expanders were intensively studied [12, 13]. Only limited research is avail-23

able for heat exchangers directly related to the usage in ORC plants [14],24

although the evaporator is a particularly challenging component because its25

design has to be adopted closely to the heat source. On the one hand, a26

too small sized evaporator would yield incomplete evaporation, leading to27

an insufficient turbine output power or even damage, on the other hand an28

oversized evaporator correlates with too high investment costs. Most present29

ORC plants use an intermediate circuit to transfer heat from the source to30

the working fluid [10], which entails high investment costs and space require-31
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ments. In addition, a substantial part of the exergy is lost and the achievable32

efficiency is reduced, since the maximum temperature of the working fluid de-33

creases and also mechanical power for the intermediate cycle pump is needed34

[15]. In this context, mainly shell and tube heat exchangers are used with35

the working fluid on the shell side, resulting in a high hold up. Alternatively,36

heat can be transferred directly from the source to the working fluid, thereby37

increasing efficiency and reducing costs. However, such a design may lead to38

a more susceptible operating performance due to temperature fluctuations39

and a conceivable shortening of the working fluid operating time because40

of thermal decomposition at hot spots in the evaporator [16]. In the case41

of direct heat transfer, usually once-through heat exchangers are used with42

straight finned tubes, in which the working fluid flows through the tubes [17].43

Another type is the shell and helical tube heat exchanger, where the working44

fluid also flows within the tubes. Compared to heat exchangers with straight45

tubes, those of the shell and helical tube type are described as advantageous46

in terms of better heat transfer, caused by a secondary flow inside the tubes47

[18] and a more compact size, but the secondary flow also leads to a higher48

pressure loss. Although this type of heat exchanger is well known and often49

used in food and chemical processing as well as in nuclear reactors for steam50

generation [19], its use in connection with ORC systems has hardly been51

documented in research.52

Kosmadakis et al. [20] and Kaya et al. [14] employed a helical coil heat53

exchanger as an evaporator in a low temperature solar thermal ORC plant,54

where heat transfer takes place from hot liquid water on the shell side to55

a single tube coil filled with working fluid. In the high temperature range,56

especially for the utilization of exhaust gas waste heat, for which Hatami57

et al. [21] reviewed different types of evaporators, only one publication by58

Wang et al. [22] is known, where a multi-coil evaporator was used in an ORC59

test rig. However, their focus lied on the holistic experiment, but details on60

the design parameters and the heat transfer behavior of the heat exchanger61

were not presented.62

For these reasons, it seemed worthwhile to investigate this type of evaporator63

in conjunction with ORC technology, which was carried out in the present64

work for a planned high temperature ORC plant, which used toluene as a65

working fluid and was driven by waste heat from a biogas combined heat66

and power plant (CHP). In the following, the biogas plant with a maximum67

electrical output of 800 kWe and an exhaust gas temperature of up to 519◦C68

is analyzed together with the operating points of the ORC to determine the69

3



requirements for the evaporator. Subsequently, the design procedure for an70

efficient and compact evaporator is described in detail, including a discussion71

of the employed heat and pressure loss correlations from the literature. The72

nominal heat flow transferred from the exhaust gas on the shell side to eight73

tube coils, filled with toluene, is studied. The results and observations that74

were obtained after manufacturing of the full scale heat exchanger and the75

following field tests are discussed to validate the design parameters. Conse-76

quently, the present work provides a suitable procedure for the design of an77

innovative direct evaporator in the field of ORC technology and describes its78

operational behavior.79

2. Design of the helical coil evaporator80

The present evaporator is a direct coupling device between the heat source81

and the ORC working fluid. Therefore, it has an influence on the performance82

and reliability of two complex plants at the same time so that an appropriate83

design is crucial. For the present scenario, the heat source and the ORC are84

thus described and analyzed in the following.85

2.1. Heat source86

The exhaust gas of a biogas CHP served as the heat source in the present87

work. A 16 cylinder V-type combustion engine by MWM with a generator88

set used biogas as a fuel and had a maximum electrical power output of 80089

kWe. The engine power was adapted to the fluctuating electrical energy de-90

mand and was often operated with semi load. This boundary condition must91

not affect the operational capability of the ORC and thus had to be consid-92

ered in the evaporator design process. Important parameters for three load93

conditions of the engine, as given by the CHP supplier [23], are listed in Tab.94

1. The exhaust gas temperature was in a range between 468 and 519◦C and95

increased with decreasing load. Assuming its exploitation down to 150◦C,96

the exhaust gas heat load was between 257 and 419 kW, which corresponds97

to 22-25% of the primary fuel energy. Furthermore, it was necessary to know98

the composition of the exhaust gas, which can be calculated from the known99

composition of the biogas, being a mixture of methane (CH4) and carbon100

dioxide (CO2), and had a volume fraction of 52% and 48%, respectively, in101

the present scenario. Complete combustion can be assumed with an air fuel102

ratio of 1.69 that leads to a calculated molar exhaust composition of 70.3% ni-103

trogen (N2), 11.2% water (H2O), 10.8% CO2 and 7.7% oxygen (O2). For this104
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exhaust gas mixture, the highly sophisticated GERG-2008 equation of state105

[24] allowed for the calculation of temperature-dependent thermodynamic106

properties, except for the transport coefficients. The dynamic viscosity of107

the mixture ηm was determined with the method of Wilke [25]108

ηm =
n∑

i=1

yiηi∑n
j=1 yjΦij

, (1)

with mole fraction yi, dynamic viscosity ηi of the pure component i, the109

binary interaction parameter110

Φij =
(1 + (ηi/ηj)

1/2(Mj/Mi)
1/4)2

(8(1 +Mi/Mj)1/2
, (2)

and the molar massesMi andMj of the pure components i and j, respectively.111

The thermal conductivity λm was calculated following Mason and Saxena [26]112

λm =
n∑

i=1

yiλi∑n
j=1 yjAij

, (3)

where λi is the thermal conductivity of the pure component i and the binary113

interaction parameter Aij is analogous to Φij in Eq. (2), substituting λi for ηi.114

The dynamic viscosity and thermal conductivity data of the pure components115

were obtained from highly accurate equations of state [27, 28, 29, 30, 31].116

To ensure a safe plant operation of the CHP, its supplier specified that the117

pressure loss in the entire exhaust gas line must not exceed 25 mbar. Con-118

sidering a catalytic converter and a muffler that also cause pressure loss, the119

maximum permissible pressure loss on the exhaust side of the evaporator was120

limited to 15 mbar in consultation with the CHP supplier. Furthermore, the121

outlet temperature of the exhaust gas should not be below 120◦C to avoid122

water condensation.123

2.2. Organic Rankine cycle124

Fig. 1 shows the schematic structure of the planned ORC plant with125

toluene as a working fluid and an expected output power of 40 kWe. Beside126

the direct evaporator that was investigated in the present work, the other127

key components were a turbine, a recuperator, a condenser, which discharges128

the heat to a water-glycol mixture, and a feed pump. Given by a preliminary129

design of the ORC, toluene entered the heat exchanger with a temperature130
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Table 1: Different load conditions of the present CHP.

Load 100 75 50 %
Electrical power output 800 600 400 kW ±8%
Jacket water heat load 421 335 258 kW ±8%
Exhaust gas heat load 419 343 257 kW ±8%
Exhaust gas temperature 468 492 519 ◦C
Mass flow of exhaust gas 1.1808 0.8956 0.6192 kg/s
Fuel consumption 1916 1479 1047 kW +5%
Electrical efficiency 41.8 40.6 38.2 %
Total efficiency 63.7 63.2 62.8 %

of 155.5◦C and a pressure of 17.5 bar to be heated, evaporated and with131

a degree of 3 K, slightly superheated up to a temperature of 255◦C, while132

the pressure loss should be small in order to obtain a high efficiency. The133

working fluid mass flow rate at the nominal design point was 0.56 kg/s,134

which leads to a necessary heat input of 263 kW. In addition to this basic135

information, the proposed working fluid had to be considered in terms of136

safety and environmental issues. Toluene, whose basic properties are listed137

in Tab. 2, is a hydrocarbon that is hazardous to health and aquatic life. It has138

an autoignition temperature of 535◦C [32], which is higher than the maximum139

temperature of the exhaust gas. Andersen et al. [33] studied the thermal140

stability of toluene at a temperature of 315◦C, obtaining a decomposition rate141

of 3.3 years for the loss of 50% of the pure fluid. Beneficial characteristics142

of toluene are its zero ozone depletion potential (ODP) and global warming143

potential (GWP) [34]. Based on these considerations, the use of a direct144

evaporator that is in compliance with safety regulations was assessed to be145

feasible for the planned ORC plant.146

2.3. Design method for the heat exchanger147

The evaporator was designed for the nominal capacity of the planned148

ORC plant and thus for a maximum heat transfer of 263 kW. The input149

parameters for the working fluid side were known from the analysis of the150

ORC. On the shell side, a part of the cooled exhaust gas was took off after the151

evaporator and fed back into the hot stream, reducing the inlet temperature152

and minimizing the risk of thermal decomposition of toluene at hot spots.153

Furthermore, the mass flow rate was increased by this measure, leading to154

a better heat transfer. For a typical CHP power output of 600 kWe, an155
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Figure 1: Process flow diagram of the planned ORC plant.

Table 2: Properties of toluene.

Chemical formula C7H8

CAS number 108-88-3
Molecular weight 92.138 g/mol
Critical temperature 318.60◦C
Critical pressure 41.263 bar
Autoignition temperature 535◦C
ODP 0
GWP 0

7



exhaust gas inlet temperature of 378◦C and an outlet temperature of 192◦C156

leads to a mass flow rate of 1.32 kg/s at a pressure of 1.03 bar. The heat157

flow from the exhaust was assumed to be 277 kW to compensate for heat158

loss to the environment of 5%. From these input parameters, a temperature159

profile emerges as shown in Fig. 2, where it becomes apparent that the160

heat exchanger can be divided into three sections, namely the preheating of161

liquid toluene, its evaporation and superheating. Further, the pinch point162

temperature difference (PPTD) with a value of 32 K occured at the beginning163

of evaporation.164

A schematic of the heat exchanger is depicted in Fig. 3. It consists of an165

inner and an outer shell with an annulus in between, providing space for166

the exhaust gas flow and the tube bundle. The latter was made of multiple167

coils with a staggered layout. The arrangement of multiple coils, in which the168

flow of the working fluid distributes, was a particular challenge in subsequent169

calculations. Due to the smallest diameter of the inner coil, its total length170

and thus the flow resistance inside the tube were the lowest. Consequently,171

the working fluid mass flow would decrease from the inner to the outer coils,172

while the heat transfer area increases, resulting in an incomplete evaporation173

in the inner coils and a high degree of superheating in the outer coils. To174

prevent this and to obtain the same temperature and vapor quality at the175

exit of each coil, the flow rates had to be adjusted with valves in front of the176

coils.177

The design process was conducted with the logarithmic mean temperature178

difference (LMTD) method, which describes the heat transfer Q̇LMTD from179

the exhaust to the working fluid with180

Q̇LMTD = k AHT ∆Tln = k AHT
∆T1 −∆T2

ln(∆T1/∆T2)
, (4)

where k is the overall heat transfer coefficient, AHT the heat transfer area181

and ∆Tln the logarithmic mean temperature difference with the temperature182

differences ∆T1 and ∆T2 between the fluids at the heat exchanger inlet and183

outlet, respectively.184

The overall heat transfer coefficient for the tubes was determined following185

Baehr and Stephan [35]186

k =

((
1

αiri
+ ln

(
ro
ri

)
1

λS
+

1

αoro

)
ro + ri

2

)−1

, (5)
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Figure 2: Heat transfer in the direct evaporator, following the state point numbering
introduced in Fig. 1. The working fluid toluene was heated, evaporated and superheated
with an overall load of 263 kW.

where αi and αo are the heat transfer coefficients inside and outside the187

tube, respectively, ri the inner and ro the outer tube radii and λS the ther-188

mal conductivity of the wall material that was assumed to be 17 W/(mK)189

for the employed stainless steel (EN 1.4571) [36]. For comparable appliances,190

e.g. shell and U-tube heat exchangers, it is known from the literature [37]191

that the heat transfer coefficient at the outside of a tube bundle, which is in192

contact with a gas flow, is low compared to values inside the tube so that193

αo represents the main heat resistance dominating the overall heat transfer194

coefficient. A preliminary estimation of αo in a range between 100 and 200195

W/(m2K) and αi with values above 1000 W/(m2K) confirmed this finding.196

This implies that the heat exchanger design should aim at a high shell side197

heat transfer coefficient to increase the value of k and consequently allow for198

a small heat transfer surface AHT at given Q̇ and ∆Tln, cf. Eq. (4). A small199

heat transfer area correlates with a low demand for steel material, reducing200

costs for the heat exchanger.201

202

For the estimation of αo, an approach of Gnielinski [38] was used in the203

present work, where204
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Figure 3: Schematic cutaway drawing of a shell and multi-coil helical heat exchanger.
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αo =
Nubundle λm

l
, (6)

with the characteristic length205

l =
π

2
do, (7)

where do is the outside tube diameter. For the estimation of the tube bundle206

Nusselt number Nubundle, Gnielinski [38] states207

Nubundle = fANu1,0, (8)

where the configuration factor fA for staggered tubes is208

fA = 1 +
2

3b
, (9)

with the pitch ratio b = z/do, while the geometry parameter z is defined in209

Fig. 3. Furthermore, the Nusselt number for a single row of tubes is210

Nu1,0 = 0.3 +
√

Nu2
1,lam + Nu2

1,turb, (10)

with a laminar contribution211

Nu1,lam = 0.664
√

ReΨ,1
3
√

Pr, (11)

and a turbulent contribution212

Nu1,turb =
0.037 Re0.8

Ψ,1 Pr

1 + 2.443 Re−0.1
Ψ,1 (Pr2/3 − 1)

. (12)

The Reynolds number ReΨ,1 in the range 10 < ReΨ,1 < 106 is213

ReΨ,1 =
w l ρm
Ψ ηm

, (13)

where w is the flow velocity in the free shell annulus, ρm the density of the214

gas mixture and Ψ the void fraction in the shell that is determined with215

Ψ = 1− π

4 a
for b ≥ 1, and (14)

Ψ = 1− π

4 a b
for b < 1, (15)
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with the horizontal split ratio a = s/do, while the parameter s is defined in216

Fig. 3.217

From these relationships, it becomes apparent which parameters have an218

influence and how they have to be modified in order to increase the heat219

transfer coefficient on the shell side of the heat exchanger. The main fac-220

tor of influence is the gas velocity that is taken into account by the velocity221

within the free shell annulus w, and its increase entails a better heat transfer.222

Reducing the area of the shell annulus by varying the inner and outer shell223

diameters leads to higher values of w. Indeed, the tube bundle is located224

within the free shell annulus, leading to a reduced flow section and conse-225

quently to a higher velocity, which is considered by the shell void fraction226

Ψ. The closer the tubes are arranged to each other, the smaller the value227

of Ψ, which in turn leads to an increasing heat transfer coefficient. Another228

variable is the tube dimension due to the characteristic length l, cf. Eqs.229

(6) and (13), defined by the outer tube diameter that also characterizes the230

entire arrangement of the tube bundle.231

However, some requirements limited the maximum value of the outer232

heat transfer coefficient. The main restriction was the maximum permissible233

pressure drop of the exhaust gas that was 15 mbar for the entire evaporator.234

Considering a feed and exit passage, the pressure drop caused by the tube235

bundle should not exceed 10 mbar. Since the pressure drop correlates with236

gas velocity, the free shell annulus and the space between the tubes in the237

bundle may not be reduced arbitrarily. Moreover, an increasing tube bundle238

length leads to an increasing pressure drop. For practical reasons at the239

test site, the maximum diameter of the apparatus, including its insulation,240

was 1.2 m, leading to a maximum diameter of 0.8 m of the outer shell,241

while the height of the tube bundle was limited to 2.5 m. In terms of the242

manufacturing process, the minimum diameter of the inner shell was set to243

0.35 m, the spacing between each coil was at least 2 mm and only standard244

tube dimensions were considered in the design process. The basic input245

parameters are summarized in Tab. 3.246

The LMTD design approach is based on averaged thermodynamic prop-247

erties so that the heat exchanger was discretized into segments, in which the248

variation of properties was small enough to assume that it occurs stepwise. In249

the present work, the tube bundle was discretized in segments with a height250

of 0.15 m for the preheater, where the heat flux was low, and 0.05 m for the251

evaporator and superheater section, respectively, where higher heat fluxes252

occurred. For the estimation of an appropriate tube arrangement and the253
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Table 3: Basic input parameters for the tube bundle design process.

Parameters Unit
Minimum inner shell diameter DS,i 0.35 m
Maximum outer shell diameter DS,o 0.8 m
Maximum height of tube bundle 2.5 m
Minimum spacing between each coil 0.002 m
Maximum exhaust pressure drop 10 mbar
Thermal conductivity of tube material 17 W/(mK)
Fluid Toluene Exhaust gas
Mass flow 0.56 1.32 kg/s
Pressure 17.5 1.03 bar
Inlet temperature 155.5 378 ◦C
Outlet temperature 255 192 ◦C

shell side design, the heat transfer coefficient on the tube inside was initially254

assumed to be constant with αi = 1000 W/(m2K). The calculation process,255

which is illustrated by a schematic flow chart in Fig. 4, was initiated with the256

first segment of the preheater, where the inlet temperature of the working257

fluid and the outlet temperature of the exhaust gas were known. For a first258

iteration, the exhaust inlet temperature was assumed so that the heat flow259

Q̇EB was obtained by an energy balance. Based on these data, the outlet260

temperature of the working fluid was estimated, leading to ∆Tln. The heat261

transfer area in the segment was calculated for the specified tube bundle and262

subsequently, the heat transfer coefficient on the shell side was calculated as263

described by Eqs. (6) to (15), yielding the overall heat transfer coefficient k264

and thus the transferred heat flow Q̇LMTD. Subsequently, the exhaust inlet265

temperature was adjusted until the difference between the heat flow from266

the energy balance and heat transfer calculation was minimal and converged267

below a threshold value. The obtained fluid states were transferred as inputs268

for the subsequent segment. When the working fluid reached a saturated269

liquid state, the height of that specific segment was adjusted until the out-270

let enthalpy value converged to the saturated liquid enthalpy. Subsequently,271

this procedure was continued for the evaporator and the superheater until272

the working fluid temperature attained the required value. Summarizing the273

segment heights, the total height of the tube bundle and the total tube length274

was estimated.275

Finally, the pressure drop of the exhaust gas in each segment was deter-276
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Figure 4: Schematic flow chart of the heat transfer calculation with the LMTD method
to determine a favorable shell and tube bundle design.

14



mined following an approach of Gaddis and Gnielinski [39]277

∆pExh = ξ nW
ρm w2

n

2
, (16)

where ξ is the pressure loss coefficient, nW the number of windings in a seg-278

ment and wn the gas velocity in the narrowest flow section. The detailed279

calculation of these parameters is described in the Appendix. By summa-280

rizing the pressure losses in all segments, the total pressure loss in the tube281

bundle was obtained.282

Calculations were conducted for tube bundles with a number of 4 to 10283

coils and tubes with a nominal size of DN 10, DN 15 and DN 20. Fig. 5284

presents the results for the averaged outside heat transfer coefficient, the285

height of the tube bundle to transfer the required heat and the associated286

exhaust gas pressure loss. The values of ᾱo decrease with an increasing num-287

ber of coils and with an increasing tube diameter. This is a consequence of288

lower gas velocities in bundles with a higher number of coils and larger tube289

diameter. The resulting height of the tube bundle decreases with an increas-290

ing number of coils due to the heat transfer area enlargement. However, the291

low outside heat transfer coefficient for larger tube diameter correlates with292

higher tube bundles. The maximum tube bundle height of 2.5 m is marked293

in Fig. 5 and illustrates that the minimum number of coils to comply with294

this limit was 7, 8 and 10 coils for the nominal tube sizes DN 10, DN 15 and295

DN 20, respectively. The results for the exhaust gas pressure drop within the296

tube bundle show that a low number of coils and small tube diameter lead297

to a high pressure loss. Considering the upper limit of 10 mbar, it became298

apparent that only configurations with a nominal tube size of DN 10 and 9299

or 10 coils, as well as a tube size of DN 15 with 8 coils were possible, while300

the combinations of DN 15 with 9 and 10 coils and also the DN 20 with 10301

coils exceeded the maximum outside shell diameter of 0.8 m. Furthermore,302

it was observed that the tube arrangement should be as close as possible,303

accomplished by small values of z and s, and that the diameter of the in-304

ner shell should be at its minimum limit, leading to beneficial heat transfer305

results.306

Based on these findings, a precise design calculation was carried out for307

the tube bundle arrangements, by also taking into account correlations for308

the heat transfer coefficient within the tubes and by determining the pressure309

drop of the working fluid. For the toluene single phase flow, i.e. the liquid310

state and the superheated vapor, an approach for helically coiled tubes by311
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Figure 5: Selected results from the preliminary tube bundle design for different coil num-
bers and nominal tube sizes: a) averaged shell side heat transfer coefficient ᾱo; b) height
of tube bundle Hb; c) exhaust gas pressure loss ∆pExh.
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Gnielinski [40] was used, where the Nusselt number for turbulent flows with312

Re > 2.2 · 104 is313

Nu =
ζ/8 Re Pr

1 + 12.7
√
ζ/8 (Pr2/3 − 1)

(
Pr

PrW

)0.14

, (17)

with the friction factor314

ζ =
0.3164

Re0.25 + 0.03

(
di
D

)0.5

, (18)

where D is the diameter of the coil in an inclined plane, considering the coil315

diameter DC and the pitch P , cf. Fig. 3316

D = DC

(
1 +

(
P

π DC

))
. (19)

Subsequently, the heat transfer coefficient was calculated with αi = Nuλ/di.317

318

The pressure loss of a fluid at a single phase flow within a coiled tube can be319

determined following Gnielinski [40] and Mishra et al. [41]320

∆pWF,sp = ζsp
l

di

ρ w2
i

2
, (20)

with the tube length l and the friction factor for turbulent flows321

ζsp =
0.3164

Re0.25

(
1 + 0.095

(
di
D

)0.5

Re0.25

)
. (21)

322

323

The two phase vapor-liquid flow in helical coiled tubes is complex and324

only few correlations to describe the heat transfer and pressure drop are325

available in the literature. Further, Kaya et al. [14] showed that the deviation326

between results determined with different correlations is large. Vashisth et327

al. [42] reviewed available research on flow phenomena within coiled tubes.328

They found that the flow patterns can approximately be described with the329

Lockhart-Martinelli parameter, used for the design of heat exchangers with330

straight horizontal tubes. Subsequently, the heat transfer coefficient inside331

the coils was calculated with an approach for flow boiling in horizontal tubes,332

described in the VDI Wärmeatlas [43]333
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αi = CF

(
q̇

q̇0

)n

F (p∗)F (d)F (W )F (Ṁ, ẋ)α0, (22)

where the parameters CF, F (p∗), F (d) and F (W ) consider the influence of334

fluid properties, pressure, tube diameter and tube surface, respectively. The335

heat flux and the normalized heat flux were taken into account by q̇ and336

q̇0. Further, the factor F (Ṁ, ẋ) characterizes the flow pattern, including the337

mass flux Ṁ and the vapor quality ẋ, while α0 is the heat transfer coefficient338

at normalized conditions, given in the literature. The detailed estimation339

of these parameters is described in the Appendix. The pressure drop of the340

working fluid, caused by the two phase flow, was determined following Garcia341

et al. [44]342

∆pWF,tp = 2ζtp
l

di
ρ w2

i , (23)

with the friction factor343

ζtp = A2ReB2 +
A1ReB1 − A2ReB2

(1 + (Re/T )C)D
, (24)

where the parameters A1, A2, B1, B2, C, D and T depend on the particular344

flow pattern and empirical values were available in the literature. The de-345

tailed calculation procedure including the determination of the flow pattern346

with the Lockhart-Martinelli parameter is described in the Appendix.347

The design procedure based on a discretization of the heat exchanger and348

the LMTD method was extended with the correlations for the inside of the349

tubes. In a first step, the mean temperature of the working fluid in a seg-350

ment was determined from the inlet and outlet conditions known from the351

preliminary design, leading to the averaged thermodynamic properties and352

to an inside heat transfer coefficient. The latter was used to substitute the353

preliminary value of αi = 1000 W/(m2K). Subsequently, a recalculation of354

the heat transfer coefficient at the shell side was conducted, which in turn,355

led to new heat transfer coefficient inside the tube. In this way, an iterative356

approximation was carried out until the heat transfer coefficients were con-357

stant on both sides. Based on the proportion of the heat transfer surface,358

the mass flow rate of the working fluid in each coil was initially specified.359

After calculating all segments, the mass flow rates in the coils were adjusted360

so that an equal outlet temperature was reached. The pressure drop of the361
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working fluid was determined for each segment and led to the total pressure362

drop by summarizing. Since the tube coil with the largest diameter leads to363

the highest pressure drop due to its largest tube length and mass flow rate,364

it was assumed that this value represents the pressure drop of the working365

fluid caused by the evaporator. This was permissible because the pressure366

within the inner coils was reduced by valves at the entry of the coils.367

The resulting design parameters and obtained performances of the possible368

tube bundle configurations are summarized in Tab. 4. In general, the heat369

transfer that can be assessed by the overall heat transfer coefficient k was370

minimal in the preheating section, increased at the evaporator and decreased371

at the superheater again. In association with a small logarithmic mean tem-372

perature difference ∆Tln during preheating (cf. Fig. 2), the heat flux was373

low, which required a large heat transfer area and the major part of the total374

tube bundle height for this section of the heat exchanger. Evaporation and375

superheating of the working fluid takes place in a comparatively small part376

of the tube bundle, caused by increasing values of the overall heat transfer377

coefficient and ∆Tln. Furthermore, it was ascertained that the tube bundle378

configurations with the smaller nominal tube size of DN 10 and especially379

with 9 coils, exhibit higher heat transfer coefficients at the tube inside, which380

can be explained by a higher mass flux of the working fluid. However, it was381

found that the crucial parameter resulting from the design calculation was382

the pressure drop of the working fluid. High flow velocities, which are advan-383

tageous for the heat transfer, also lead to high pressure loss, especially for384

configurations with the small tube diameter of DN 10 that are 1.10 and 0.92385

bar for the tube bundles with 9 and 10 coils, respectively. The configuration386

with a nominal tube size of DN 15 and 8 coils yielded a pressure drop of 0.35387

bar, which was suitable for the planned ORC plant. Since the other results388

obtained for this configuration, particularly the total tube bundle height of389

2.29 m and the exhaust gas pressure drop of 9 mbar, were also within the390

specified limits, it was decided to realize the direct evaporator with this de-391

sign.392

Fig. 6 shows the heat transfer coefficients inside and outside the tubes, as393

well as the working fluid pressure drop as a function of the height of the se-394

lected tube bundle. The heat transfer coefficient on the shell side was highest395

at the exhaust gas entry with a value of 149 W/(m2K) and decreased to a396

value of 129 W/(m2K) at the exit, caused by the increasing density of the397

gas mixture during its cooling and the correlating decline of flow velocity.398

The mass flux of the working fluid inside the tubes was in a range of 201 to399
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395 kg/(m2s) at the inside and outside coil, respectively. Subsequently, the400

heat transfer coefficient inside the tubes was averaged over the eight coils and401

was lowest at the entry of the working fluid with a value of 1140 W/(m2K).402

With rising temperature and the related decrease in density, the flow velocity403

increased, leading to an increase of ᾱi that had a value of 1464 W/(m2K) at404

the end of the preheating section. For the evaporation section, the two phase405

flow led to a rapid rise of the heat transfer coefficient with a value of 3510406

W/(m2K) that also increased with further heating due to the increasing heat407

flux and flow velocity. The initial slug flow pattern subsequently changed408

into an annular flow pattern and thus to a further increase of ᾱi that had its409

maximum value of 4546 W/m2K at a vapor quality of 0.55. Further increase410

of the vapor quality led to a decrease of the heat transfer coefficient inside411

the tubes. With a single phase flow in the superheating section, the heat412

transfer coefficient declined again to a value of 1659 W/(m2K). The working413

fluid pressure loss as a function of the tube bundle height was approximately414

linear for the preheating section and had a value of 0.15 bar at a height of415

1.58 m. With the emergence of evaporation and the associated high veloc-416

ity of the vapor-liquid flow, the pressure loss grows exponentially so that the417

major pressure drop of the working fluid was attained within the evaporation418

zone. Finally, it is worth to mention that 69% of the heat transfer area was419

needed for the preheating of the working fluid, while only 50% of the total420

heat flow was transferred in this section of the present heat exchanger.421

3. Description of field test422

The direct evaporator was manufactured with parameters close to the423

design calculations. For practical reasons, the spacing between the tube coils424

was slightly larger and with this the free shell annulus that had a cross section425

area of 0.3904 m2. The outside and inside diameters of the DN 15 tubes were426

do = 21.3 mm and di = 17.3 mm, respectively, while the realized geometric427

parameters of the tube bundle were a = 2.347 and b = 0.986, with a total428

height of 2.5 m instead of 2.29 m, to consider the uncertainties of the heat429

transfer correlations and to ensure a reliable operation of the planned ORC430

plant. A technical drawing and a photograph of the heat exchanger at the431

test site is shown in Fig. 7. The tube bundle was held by three mounting432

sheets that were manufactured stepwise with assembling the coils one after433

another from the inside to the outside. However, the tubes were not fixed434

with the mounting and free spacing was provided in order to avoid tensions435
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Table 4: Results from the design calculation for different tube bundle configurations.

Parameters DN 15 DN 10 DN 10 Unit
8 coils 9 coils 10 coils

Preheater
ᾱo 134 152 139 W/(m2K)
ᾱi 1296 1889 1618 W/(m2K)
k̄ 129 153 139 W/(m2K)
∆pWF 0.145 0.377 0.321 bar
∆pExh 5.4 6.2 4.6 mbar
Height 1.58 1.24 1.18 m
Evaporator
ᾱo 142 161 148 W/(m2K)
ᾱi 4064 5535 5260 W/(m2K)
k̄ 147 172 159 W/(m2K)
∆pWF 0.193 0.693 0.576 bar
∆pExh 2.7 3.2 2.34 mbar
Height 0.69 0.55 0.52 m
Superheater
ᾱo 147 167 153 W/(m2K)
ᾱi 1659 2379 1844 W/(m2K)
k̄ 144 170 154 W/(m2K)
∆pWF 0.015 0.025 0.022 bar
∆pExh 0.09 0.07 0.05 mbar
Height 0.02 0.01 0.01 m
Total height 2.29 1.80 1.71 m
Total tube length 747 796 870 m
Total ∆pWF 0.353 1.095 0.919 bar
Total ∆pExh 9 9.5 7 mbar
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Figure 6: Heat transfer coefficient at the outside and inside of the tubes as well as the
working fluid pressure drop as a function of tube bundle height for the selected design.
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caused by thermal expansion. The heat exchanger and the exhaust gas pipe436

were insulated with a 0.2 m thick layer of mineral wool and covered by a437

metal housing. The exhaust gas line of the CHP was adapted with a branch438

pipe in connection with a gas damper that allowed for a variable control439

of the exhaust flow provided to the evaporator. Further, the exhaust gas440

recirculation was driven by a fan that could be adjusted with a frequency441

inverter. Because of practical reasons only four valves were installed in front442

of the tube bundle, thus, the working fluid flow rate of two adjacent coils was443

adjusted by one motorized control valve.444

The arrangement of the measuring instrumentation is illustrated in Fig.445

1. All temperatures were measured with platinum resistance thermometers446

with a basic resistance of 1000 Ω (Pt1000), while pressure measurement of447

the working fluid cycle was conducted with absolute pressure transmitters448

(APT) S-20 supplied by WIKA. For the determination of the mass flow449

rate in the ORC, a differential pressure flow meter according to DIN EN450

ISO 5167 was used, equipped with a differential pressure transmitter DE451

70 by Fischer. Further, a pitot static tube anemometer combined with a452

C 310 multifunctional transmitter by KIMO was used for the measurement453

of the exhaust gas flow ratio. The difference pressure module of the C 310454

transmitter was also employed to determine the pressure drop on the shell455

side of the heat exchanger. The uncertainties of the measuring equipment456

are given in Tab. 5.457

The evaluation and tests of the direct evaporator were conducted while458

the ORC test rig was not entirely completed. Especially the turbine was459

not operational, thus, the working fluid was carried through a bypass (cf.460

Fig. 1) and expanded with an orifice plate, before entering the recuperator.461

To reach the nominal mass flow rate, the orifice plate was designed with a462

cross-sectional area that was 64% larger than the minimum cross-sectional463

area of the turbine nozzle, considering the coefficient of contraction [43].464

For the experiments, first, the cooling cycle was started, followed by the465

working fluid feed pump, beginning with a low rotational frequency and a466

slight opening of the exhaust gas damper. Subsequently, the flow rates of467

toluene and exhaust gas were increased stepwise, while the fan of the exhaust468

recirculation was adjusted in line to obtain a target state point. The start469

up of the experimental setup took about 30 min and when a steady state in470

terms of constant mass flow rates, temperatures and pressures was reached,471

the measured parameters were used to evaluate the performance of the heat472

exchanger.473
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Figure 7: Left: Technical drawing of the direct evaporator, with hidden tube bundle for
better clarity. Right: Photograph of the apparatus at the test site.

Table 5: Uncertainties of the measuring equipment.

Variable Sensor type Range Uncertainty
T (exhaust) Pt1000 0 - 480◦C ± 0.10%
T (ORC) Pt1000 0 - 350◦C ± 0.10%
p (ORC high pressure ) APT 0 - 25 bar ≤ ± 0.5%
p (ORC low pressure) APT 0 - 6 bar ≤ ± 0.5%
ṁ (ORC) difference pressure 0.22 - 0.707 kg/s ± 1.4%
ṁ (exhaust) Pitot static tube 0 - 2.2 kg/s ± 1.2%
∆p (exhaust) difference pressure 0 - 1000 Pa ± 0.2%
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4. Results and discussion474

4.1. Heat transfer performance475

The heat transfer performance of the present direct evaporator was in-476

vestigated under different operating conditions. The working fluid mass flow477

rate was varied between 0.45 and 0.54 kg/s, the inlet temperature and pres-478

sure was between 175 and 205.5◦C and 14.1 and 19.7 bar, respectively, while479

the degree of superheating ranged between 6.2 and 30.7 K. The mass flow480

rate of the exhaust gas was between 1.15 and 1.3 kg/s, with inlet temper-481

atures varying from 348 to 394◦C. The maximum heat flow transferred to482

the toluene was 225 kW. To evaluate the experimental data, the overall heat483

transfer coefficient k (cf. Eq. (4)) was recalculated with the known heat484

transfer area and heat flow, while the logarithmic mean temperature differ-485

ence was determined for the preheater, evaporator and superheater sections,486

respectively. This was conducted with the knowledge of the working fluid487

saturation temperature that led to the pinch point temperature difference.488

Subsequently, the overall heat transfer coefficient from experiment was com-489

pared with the correlations presented in section 2.3.490

The results are shown in Fig. 8 and it can be stated that the experimen-491

tal values of k, being in a range between 100.1 and 118.1 W/(m2K), are in492

good agreement with those from the correlations with a maximum relative493

deviation of 5.2% and an averaged deviation of 2%. Moreover, it can be seen494

that the overall heat transfer coefficient recalculated from the experimental495

data tends to be lower than that from the correlations. In a further step,496

the Nusselt number on the shell side was recalculated from the experimental497

values of k to examine the convective heat transfer between the exhaust gas498

and the tube bundle that represents the main heat transfer resistance. For499

this purpose, the heat transfer coefficient inside the tubes was obtained from500

the correlations, which is sufficiently accurate because of the small influence501

of αi on k. The resulting tube bundle Nusselt numbers from present experi-502

ments and from the Gnielinski correlation are shown in Fig. 9 as a function503

of the Reynolds number. Because of the connection between the overall heat504

transfer coefficient and the Nusselt number, the relative deviation between505

the experimental results and those from the correlation is similar and in a506

range of up to 5.5%, with an averaged value of 2.2%. However, it can be seen507

that the experimental results tend to be higher than the predicted data at508

small Reynolds numbers and lower at higher Reynolds numbers. The slope of509

the Nusselt number correlation as a function of the Reynolds number seems510

25



to be slightly too high for the present heat exchanger.511

In general, it turned out that the employed heat transfer correlations are512

suitable for the design of a direct evaporator with multiple helical coils. The513

overall heat transfer coefficient, recalculated from the measurements, was514

lower than that obtained in the original design calculation in section 2.3,515

which can be explained by the slightly different geometry parameters of the516

manufactured tube bundle. However, the target heat flow transferred to517

the working fluid of 263 kW was not reached yet, since it was not possible to518

achieve the nominal operating condition without a turbine. Once the turbine519

will be in operation, higher working fluid mass flow rates should be possible520

and consequently the exhaust gas mass flow rate can be increased as well.521

Then, the toluene will enter the evaporator at a lower temperature because522

of a decreasing heat flow in the recuperator. Based on these aspects and523

by considering the observations from the present work, it can be expected524

that the desired heat flow will be reached because of increasing heat transfer525

coefficients and a larger logarithmic temperature difference between exhaust526

gas and toluene.527

Another focus was on the working fluid temperature at the exit of each coil,528

where the variation was supposed to be small. For this reason, the mass flow529

rate within two adjacent coils was adjusted by a valve in front of these coils,530

respectively. It was observed that this setup is operational, but a notable531

temperature difference occurs for a pair of coils, where the inner coil is only532

slightly superheated, while the outer coil with the larger heat transfer area,533

was superheated in a range between 25 to 30 K. The required vapor tem-534

perature was then reached after mixing of the individual vapor flows. It has535

to be noted that a high degree of superheating in the tube coils will cause536

a reduction in the working fluid lifetime. Thus, an adjustable valve in front537

of each coil is suggested, while it can be stated that a heat exchanger with538

multiple helical coils and without any regulation of the mass flow inside the539

tubes, as discussed by Wang et al. [22], cannot be operational in terms of540

an appropriate vapor quality. In addition, the heat loss of the present heat541

exchanger was determined to be in a range of 2.5 to 14.2% of the exhaust gas542

heat flow, with an averaged value of 7.1%. Thus, the heat loss is higher than543

expected, which could be a consequence of a humid mineral wool insulation,544

unfortunately caused by rain that leaked through the metal housing.545
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Figure 8: Overall heat transfer coefficient from experiment compared with predicted val-
ues.
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Figure 9: Shell side Nusselt number as a function of Reynolds number from experiment
(◦) compared with predicted values ( ).
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4.2. Pressure loss546

To ensure an unrestricted operation of the CHP, the exhaust gas pressure547

loss of the direct evaporator was measured for different mass flow rates in a548

range from 0.56 to 1.36 kg/s and compared with the values predicted with549

the approach of Gaddis and Gnielinski, cf. section 2.3. The correlation was550

used to calculate the pressure loss depending on the characteristic exhaust551

flow velocity and for three temperatures of 130, 255 and 380◦C. The aver-552

aged exhaust temperatures during the experiments were within this range553

and the results are shown in Fig. 10, with a measured pressure loss from 141554

to 900 Pa and a flow velocity in a range between 3.5 and 10.9 m/s. These555

values agree well with the correlation, but tend to be slightly higher, the556

relative deviation is between 1.8 and 6.9%. It can be seen that the pressure557

drop increases quadratically with increasing flow velocity and increases with558

decreasing temperature. Additionally, the shell side pressure loss coefficient559

was recalculated from the experimental data, which is particularly suitable560

to validate the employed correlation for the design of the present apparatus561

because the dominating variable is the Reynolds number, while the tem-562

perature influence is small. The experimental pressure loss coefficient for563

Reynolds numbers in a range of 2186 to 6431 is compared with the correla-564

tion values at temperatures of 130, 255 and 380◦C in Fig. 11. It turns out565

that the pressure loss coefficient, recalculated from experiments, is higher566

than the predicted value and that the maximum deviation of 6.9% occurs at567

the lowest Reynolds number, while there is better agreement with increasing568

Reynolds number. Considering the fact that the experiments were carried569

out with an exhaust gas flow in the laminar-turbulent transition zone (100570

< Re < 104), the correlation seems to underestimate the influence of the571

laminar flow for the tube bundle design of the present work. However, the572

prediction of the shell side pressure loss was satisfactory, especially near the573

nominal operating condition and it can be stated that the required limit of574

10 mbar was not exceeded.575

For the working fluid toluene, pressure drop values between 0.5 and 1.1576

bar were measured, which was higher than expected. The interpretation of577

these results to validate the employed tube side pressure loss correlations is578

difficult because the pressure transducers were not located directly in front579

and behind the exit of the tube bundle, respectively, but after the recuperator580

and in front of the turbine. Consequently, the pressure loss caused by the581

piping and the adjustable valves in front of the tube bundle was included in582

the measurements. Especially mixing and redirection of the vapor flow after583
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the tube bundle could have caused a significant pressure loss. Furthermore,584

the difference in the degree of superheating at the exit of two adjacent coils,585

which was not considered during the design process, did not allow for an586

accurate comparison between the predicted values from the correlation and587

the experimental results. For the present ORC test rig, the feed pump allowed588

to compensate the working fluid pressure loss by increasing the rotational589

frequency. By this measure, it was possible to reach the target state point590

after the heat exchanger, which is of key importance to operate the turbine591

at its maximum efficiency.592
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Figure 10: Exhaust pressure drop as a function of the characteristic flow velocity from
experiment (symbols) and correlation (lines) for different temperatures.

5. Conclusion593

A direct evaporator of shell and multi helical coils type for a high tem-594

perature ORC plant to exploit exhaust waste heat was designed and tested.595

The requirements and boundary limits for the heat exchanger, the employed596

heat transfer and pressure loss correlations from the literature, the influence597

of the different parameters and the procedure to find an optimal design were598

presented. It was found that the main heat resistance is on the shell side,599
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Figure 11: Shell side pressure loss coefficient as a function of Reynolds number from
experiment (◦) and correlation (lines).

flown through by the exhaust gas and that its maximum permissible pres-600

sure loss is the limiting factor for the heat transfer coefficient. Subsequently,601

the direct evaporator with a tube bundle consisting of eight coils was man-602

ufactured and connected to an ORC plant that used toluene as a working603

fluid. Tests under various operating conditions were carried out, allowing604

for the determination of the overall heat transfer coefficient and shell side605

Nusselt number that were compared with the results from correlations. The606

experimental data were in good agreement with a deviation less than 5.5%,607

but tended to be slightly lower than the predicted values. Measurements of608

the shell side pressure drop were in good agreement, but slightly higher than609

the predicted data. It was found that the employed pressure loss correlation610

underestimates the influence of the laminar flow at low Reynolds numbers611

for the tube bundle design of the present work. Furthermore, it was essential612

to regulate the mass flow rate of the working fluid in front of each coil with613

adjustable valves to achieve a regular vapor quality. It can be concluded614

that the employed correlations and the optimization method are suitable for615

the design of a shell and helical coils evaporator. The test apparatus had a616

reliable operational behavior at a maximum transferred heat flow of 225 kW617

and was particularly qualified for the test site due to its compactness.618
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Appendix A. Parameters of the employed correlations625

Appendix A.1. Shell side pressure loss626

The parameters for the pressure loss calculation with an approach of627

Gaddis and Gnielinski are presented, starting with the flow velocity in the628

narrowest flow passage that is629

wn =
a

a− 1
w, for b ≥ 0.5

√
2a+ 1, (A.1)

and630

wn =
a

2(
√

0.25 a2 + b2 − 1)
w, for b < 0.5

√
2a+ 1, (A.2)

while a, b and w are defined in section 2.3. The pressure loss coefficient ξ is631

ξ = ξlfz,l + ξtfz,tFv, (A.3)

and is composed of a laminar part with632

ξl =
280π((b0.5 − 0.6)2 + 0.75)

(4ab− π)a1.6
Re−1

n , for b ≥ 0.5
√

2a+ 1, (A.4)

ξl =
280π((b0.5 − 0.6)2 + 0.75)

(4ab− π)(0.25 a2 + b2)0.8
Re−1

n , for b < 0.5
√

2a+ 1, (A.5)

and a turbulent part with633

ξt = 2.5 +

(
1.2

(a− 0.85)1.08

)
+ 0.4

(
b

a
− 1

)3

− 0.01
(a
b
− 1
)3

Re−0.25
n , (A.6)
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where the factor Fv is634

Fv = 1− exp

(
−Ren + 200

1000

)
. (A.7)

The Reynolds number in the narrowest flow section Ren is635

Ren =
wndoρm
ηm

, (A.8)

with the dynamic viscosity of the gas mixture at the core flow temperature636

ηm (cf. Eq. (1)). Further, fz,l and fz,t are correction factors to consider the637

divergent fluid properties in the temperature boundary layer with638

fz,l =

(
ηW
ηm

)0.57((
4ab

π
− 1

)
Ren

)−0.25

, (A.9)

and639

fz,t =

(
ηW
ηm

)0.14

, (A.10)

where ηW is the dynamic viscosity of the fluid at the tube surface tempera-640

ture.641

Appendix A.2. Tube side heat transfer for vapor-liquid flow642

An approach from the VDI Wärmeatlas was used to obtain the heat643

transfer coefficient for the two phase flow inside the tubes. The influence of644

pressure is considered by645

F (p∗) = 2.692 p∗0.43 +
1.6 p∗6.5

1− p∗4.4
, (A.11)

where the reduced pressure is p∗ = ps/pc. Further, the tube dimension factor646

is647

F (d) = (0.01 m/di)
0.5, (A.12)

and the wall surface influence is648

F (W ) = (Ra/Ra0)0.133, (A.13)
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with the arithmetic average roughness Ra and the normalized value Ra0 that649

was 1 µm. The flow pattern factor in dependence of the mass flux Ṁ and650

the vapor quality ẋ was considered by651

F (Ṁ, ẋ) =

(
Ṁ

Ṁ0

)0.25(
1− p∗0.1

(
q̇

q̇cr,PB

)0.3

ẋ

)
, (A.14)

where Ṁ0 is the normalized mass flux with a value of 100 kg/(m2s) and q̇cr,PB652

is a reference heat flux653

q̇cr,PB = 3.2 p∗0.45 (1− p∗)1.2 q̇cr,0.1, for p∗ ≥ 0.1, (A.15)

and the critical heat flux for the case p∗ = 0.1 is654

q̇cr,0.1 = 0.144 ∆hv ((ρ′ − ρ′′)ρ′′)0.5 ((g σ)/ρ′)0.25 Pr−0.245, (A.16)

where ∆hv is the heat of vaporization, ρ′ and ρ′′ the saturated liquid and va-655

por density, respectively, g the standard gravity constant and σ the surface656

tension. Further, the normalized heat transfer coefficient and heat flux were657

available in the literature with α0 = 2910 W/(m2K) and q̇0 = 20000 W/m2
658

for toluene.659

For the present case of employing a hydrocarbon and a low thermal con-660

ductivity of the wall material (product of wall thickness and its thermal661

conductivity λS · t ≤ 0.7 W/K) the exponent n has to be calculated with662

n = κ (0.9− 0.36 p∗0.13), (A.17)

and663

κ = 0.675 + 0.325 tanh(3.711(λS · t− 0.0324)). (A.18)

The influence of the fluid properties was calculated with664

CF ∗ = 0.789

(
MWF

MH2

)0.11

, (A.19)

where MWF and MH2 are the molar masses of the working fluid and of hydro-665

gen, respectively. This correlation is valid for CF ∗ ≤ 2.5. Due to λS · t ≤ 0.7666

W/K, a correction for different flow patterns, has to be conducted and it is667

CF = ψ CF ∗ , with the correction factor668

33



ψ = 0.46 + 0.4 tanh(3.387(λS · t− 0.00862)), (A.20)

for stratified or wavy flow patterns,669

ψ = 0.671 + 0.329 tanh(3.691(λS · t− 0.00842)), (A.21)

for slug flow patterns and670

ψ = 0.755 + 0.245 tanh(3.702(λS · t− 0.0125)), (A.22)

for annular flow patterns. The determination of the flow patterns is described671

in the following section.672

Appendix A.3. Determination of two-phase flow patterns673

The different flow patterns that occur at the vapor-liquid flow inside the674

tubes were determined with a method described in the VDI Wärmeatlas,675

where a flow pattern map that is based on the work of Taitel and Dukler [45]676

is used. Here, the main parameter is the Lockhart-Martinelli number677

X =

(
1− ẋ
ẋ

)0.875 (
ρ′′

ρ′

)0.5 (
η′′

η′

)0.125

, (A.23)

with the saturated liquid and vapor viscosity η′ and η′′, respectively. The678

limiting curves in the flow pattern map are defined by the following numbers679

(ReL Fr′G)0.5 =

(
Ṁ3 ẋ2 (1− ẋ)

ρ′′(ρ′ − ρ′′) η′ g cosΘ

)0.5

, (A.24)

Fr0.5
Gm =

(
Ṁ2 ẋ2

g di ρ′ ρ′′

)0.5

, (A.25)

(Fr Eu)0.5
L =

(
ξ′ Ṁ2(1− ẋ)2

2di ρ′(ρ′ − ρ′′) g cosΘ

)0.5

, (A.26)

(We/Fr)L =
g d2

i ρ
′

σ
, (A.27)

following the notation of the VDI Wärmeatlas. The pitch angle of the tubes680

is considered by Θ and ξ′ is the pressure loss coefficient with681
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ξ′ =
0.3164

Re′0.25 , (A.28)

with the Reynolds number of the liquid682

Re′ =
Ṁ(1− ẋ) di

η′
. (A.29)

Appendix A.4. Two-phase flow pressure loss683

The vapor-liquid flow friction factor in the pressure loss correlation by684

Garcia et al. [44] was calculated with a Reynolds number that is685

Re =
wi di ρ

′

η′
, (A.30)

with the flow velocity686

wi = w′ + w′′. (A.31)

The employed parameters depending on the flow pattern are listed in Tab.687

A.6.688

Table A.6: Parameters of the employed vapor-liquid pressure loss correlation by Garcia et
al. [44].

Parameters A1 A2 B1 B2 C D T
Slug flow 13.98 0.1067 -0.9501 -0.2629 3.577 0.2029 293
Dispersed bubble flow 13.98 0.1067 -0.9501 -0.2629 2.948 0.2236 304
Stratified flow 13.98 0.0445 -0.9501 -0.1874 9.275 0.0324 300
Annular flow 3.671 0.0270 -0.6257 -0.1225 2.191 0.2072 10000
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Chemieingenieurwesen, VDI-Wärmeatlas, Springer Vieweg, Berlin,833

2013.834

[44] F. Garcıa, R. Garcıa, J. Padrino, C. Mata, J. Trallero, D. Joseph,835

Power law and composite power law friction factor correlations for lam-836

inar and turbulent gas–liquid flow in horizontal pipelines, International837

Journal of Multiphase Flow 29 (2003) 1605–1624. doi:10.1016/S0301-838

9322(03)00139-3.839

[45] Y. Taitel, A. Dukler, A model for predicting flow regime transitions in840

horizontal and near horizontal gas-liquid flow, AIChE Journal 22 (1976)841

47–55. doi:10.1002/aic.690220105.842

40


