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Zusammenfassung

Gegenstand dieser Dissertation ist das Volumen konvexer Körper K ⊆ Rn. Konkret unter-
suchen wir das Volumen vol(K) vor dem Hintergrund von drei verschiedenen Teilgebieten
der Konvexgeometrie.

Im ersten Teil der Arbeit vergleichen wir das Volumen von K mit der Anzahl der ganz-
zahligen Punkte G(K) = |K ∩ Zn|, die in K enthalten sind. G(K) darf dabei als ein
diskreter Volumenbegriff verstanden werden. Zum einen stellen wir Bezüge zwischen der
Anzahl der ganzzahligen Punkte in K zu den Gitterpunkten in Schnitten von K mit
geeigneten Hyperebenen her, wie man sie in ähnlicher Form aus der klassischen Kon-
vexgeometrie kennt. Zum anderen wollen wir die Diskrepanz zwischen dem diskreten
Volumen G(K) und dem kontinuierlichen Volumen vol(K) mit Hilfe von Parametern aus
der Geometrie der Zahlen, wie etwa den sukzessiven Minima, kontrollieren.

Der zweite Teil widmet sich einer sogenannten Affine Subspace Concentration Condition
für zentrierte Polytope. Eine solche wurde zuerst von Wu für zentrierte Polytope, die
zusätzlich reflexiv und glatt sind, bewiesen [Wu22]. Wus Resultat gibt neue Erkenntnisse
über die Verteilung des Volumens innerhalb dieser Polytope. Wir zeigen, dass die Reflex-
ivität und Glattheit für die Gültigkeit von Wus Ungleichung nicht notwendig sind, d.h.
wir verallgemeinern die Affine Subspace Concentration Conditions auf beliebige zentrierte
Polytope. Dabei stoßen wir auf einen Zusammenhang zu den klassichen Linear Subspace
Concentration Conditions in hohen Dimensionen.

Im dritten Teil befassen wir uns mit dem Mahlervolumen auf zwei speziellen Klassen
von Polytopen, deren Eckenzahl in jeder Dimension beschränkt ist. Unser Ziel ist es für
diese Klassen obere Schranken an das Mahlervolumen anzugeben, die eine Verbesserung
der Blaschke-Santalóschen Ungleichung darstellen. Zunächst betrachten wir dazu die
Voronoizellen von Gittern im R3. Wir zeigen, dass das Gitter A⋆

3 ein lokales Maximum
des Mahlervolumens der Voronoizelle darstellt und wir präsentieren einen Ansatz um mit
Hilfe von sogenannten Shadow Systems zu zeigen, dass das Maximum in der Tat global
ist. Die zweite Klasse, die wir untersuchen, sind die Matching Polytope von Wäldern mit
fester Kantenzahl. Wir konstruieren Triangulierungen dieser Polytope und ihrer polaren
Polytope, die es uns erlauben ihr Volumen mit Mitteln der Kombinatorik auszudrücken.
So erhalten wir eine obere Schranke an ihr Mahlervolumen, welche die Blaschke-Santaló
Ungleichung für Wälder mit hinreichend vielen Blättern verbessert.
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Abstract

The subject of this thesis is the volume of convex bodies K ⊆ Rn. Specifically, we inves-
tigate the volume vol(K) in the context of three different branches of convex geometry.

In the first part of the thesis, we compare the volume of K to the number of integer
points G(K) = |K ∩ Zn| contained in K. Here, one might think of G(K) as a discrete
notion of volume. First we establish relations between the lattice points in K and the
lattice points in suitable hyperplane sections of K, similar to those that are known for
vol(K) from classical convex geometry. Moreover, we control the discrepancy between
the discrete volume G(K) and the continuous volume vol(K) with the help of parameters
from the geometry of numbers, such as the successive minima.

The second part is devoted to so-called affine subspace concentration conditions for cen-
tered polytopes. Such conditions have first been proven by Wu [Wu22] for centered poly-
topes that are, in addition, reflexive and smooth. Wu’s result gives new insights on the
distribution of volume within those polytopes. We prove that the conditions of reflexivity
and smoothness are not necessary for Wu’s inequalities to hold, i.e., we generalize the
affine subspace concentration conditions to arbitrary centered polytopes. In doing so we
find a connection to the classical linear subspace conditions in high dimensions.

In the third part, we consider the Mahler volume on two classes of polytopes, whose vertex
numbers are bounded in each dimension. Our goal is to formulate upper bounds on the
Mahler volume for these classes that improve on the Blaschke-Santaló inequality. First, we
work with Voronoi cells of lattices in R3. We prove that the lattice A⋆

3 is a local maximizer
of the Mahler volume of these Voronoi cells and we present an approach to showing that
it is indeed the global maximizer with the help of so-called shadow systems. The second
class that we investigate, are matching polytopes of forest with a fixed number of edges.
We construct triangulations of these polytpes and their polars that allow us to express
their volume in combinatorial terms. As a consequence, we obtain an upper bound on
the Mahler volume which improves on the Blaschke-Santaló inequality for forests with
sufficiently many leaves.
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1 Introduction

The present thesis is devoted to the investigation of three different aspects of the volume
functional on the class of convex bodies. Reduced to three keywords, these are discretiza-
tion, subspace concentration and polarity. More precisely, the thesis consists of three parts.
In the first part, we will compare the volume of a convex body to the number of integer
points it contains. In the second part, we prove a so-called affine subspace concentration
condition for centered polytopes. In the third part, we compare the volumes of lattice
Voronoi cells and matching polytopes of forests to the volume of their respective polar
polytopes. The purpose of this chapter is to give an overview of the results obtained in
the three parts, assuming some of the terms and definitions that are to be introduced in
the upcoming chapters.

In Part I, we study the connection of the volume vol(K) of a convex body K to the
number of lattice points G(K) = |K ∩ Zn| contained in K. The two questions that we
investigate are

1) Which properties of the volume functional vol(·) carry over to the lattice point
enumerator G(·)?

2) Are there bounds on the deviation G(K)/vol(K) of the volume and the lattice
point enumerator that are invariant with respect to unimodular transformations
and converge to 1 as we replace K by rK, where r → ∞?

Chapter 3 addresses the first question. We strive for inequalities that relate G(K) to
the number of lattice points of K in suitable hyperplane sections and projections. A
key objective of this research is to find “fully discrete” relations – these are typically
inequalities that depend solely on K ∩ Zn. Among other results, we find for an origin-
symmetric body K ⊆ Rn the following lower bound in terms of coordinate sections:

G(K)
n−1
n >

1

4n−1

( n∏
i=1

G(K ∩ e⊥i )
) 1

n
.

This may be regarded as a discrete variant of Meyer’s inequality for the volume [Mey88]

vol(K)
n−1
n ≥ n!

1
n

n

( n∏
i=1

voln−1(K ∩ e⊥i )
) 1

n
.

Moreover, we construct a sequence of convex bodies that shows that, in contrast to Meyer’s
inequality, our result for the symmetric case cannot be extended to arbitrary convex
bodies.
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In a similar spirit, we given an upper bound on G(K) in terms of hyperplane sections by
showing that

G(K)(n−1)/n ≤ cnG(K ∩H)

for a suitable hyperplane H depending on K and a constant cn > 0 depending only on
the dimension n. As we will see, the order of magnitude of cn is between

√
n and n2.

In Chapter 4 we treat Question 2. It is a general intuition that the discrete measure
G(K) behaves similarly to vol(K) once the convex body in question is large enough. Our
goal is to specify the meaning of the words “similarly” and “large” in this context. The
main result of the chapter is the following threefold relation between the volume, the
lattice point enumerator and the so-called successive minima λi(K), 1 ≤ i ≤ n, of an
n-dimensional convex body K ⊆ Rn:

vol(K)

n∏
i=1

(
1− nλi(K)

2

)
≤ G(K) ≤ vol(K)

n∏
i=1

(
1 +

nλi(K)

2

)
, (1.1)

where for the lower bound λn(K) ≤ 2/n is necessary. We apply this result to obtain a weak
resolution of a long-standing open problem by Betke, Henk and Wills who conjectured
that the following discrete version of Minkowski’s classical second theorem on successive
minima holds [BHW93]:

G(K) ≤
n∏

i=1

⌊ 2

λi(K)
+ 1
⌋
.

We deduce the weaker inequality

G(K) ≤
n∏

i=1

(
2

λi(K)
+ n

)
.

It shows that a discrete version of Minkowski’s theorem, which is equivalent to the con-
tinuous original, exists. A key step in our proof is to control the successive minima during
a geometrical process known as the Blaschke shaking of K.

Although the bounds in (1.1) meet the criteria that are formulated in Question 2, they
lack the property of being “tight at every scale”. By this we mean that there is most likely
no convex body K for which an arbitrary dilate mK, where m ∈ N, achieves equality. In
the plane we can overcome this issue for the upper bound by showing

G(K) ≤ vol(K)

(
1 +

λ1(K)

2

)
(1 + λ2(K)) .

Equality is obtained for any right triangle of the form K = conv{0,me1,me2}, m ∈ N.

In Part II we turn to subspace concentration conditions. A polytope P that contains the
origin in its interior, given by an irredundant representation of the form P = {x ∈ Rn :

⟨ai, x⟩ ≤ 1, 1 ≤ i ≤ m}, is said to fulfill the (linear) subspace concentration condition with
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respect to the linear subspace L, if∑
i: ai∈L

vol(Ci) ≤
dimL

n
vol(P ),

where Ci denotes the pyramid obtained by taking the convex hull of the origin together
with the facet of P that corresponds to ai. Apart from their key role in the study of the
log-Minkowski problem, the subspace concentration conditions are interesting in their on
right, since they encode strong geometric information on P . It has been shown by Henk
and Linke that the subspace concentration conditions hold true for any centered polytope
P together with any linear subspace L [HL14]. In the special class of smooth reflexive
centered polytopes, Wu proved an affine version of the subspace concentration conditions,
using the special role of these polytopes in toric geometry [Wu22]:∑

i: ai∈A
vol(Ci) ≤

dimA+ 1

n+ 1
vol(P ),

where A is an affine subspace of Rn. The main result of Chapter 5 is an extension of
Wu’s inequality to arbitrary centered polytopes. The proof makes use of a surprising phe-
nomenon in high dimensions, where the linear subspace concentration conditions, applied
to multiple pyramids over P , yield the affine subspace concentration conditions for P .

Part III is about the relation between the volume of an origin-symmetric body K to the
volume of its polar body K⋆. Since the polarity operation is inclusion reversing, one
can see (e.g. by considering the John ellipsoid) that there are constants 0 < cn ≤ Cn

depending only on the dimension such that

cn ≤ vol(K)vol(K⋆) ≤ Cn.

Thus, vol(K) and vol(K⋆) are reciprocal to one another, up to a constant. Their product
is called the Mahler volume. The quest for the largest possible lower bound cn is known
as the Mahler conjecture. Although it dates back to 1930s, it is still one of the major
open problems in convex geometry. We briefly summarize the state of the conjecture in
Chapter 2. For more exhaustive references, we also refer to [Sch14, Sec. 10.7].

The smallest possible upper bound Cn, however, is known to be vol(Bn)2, where Bn is
the Euclidean unit ball [Sch14, Eq. 10.28]. This bound is called the Blaschke-Santaló
inequality. An important aspect of this bound is that equality is achieved, if and only if
K is an ellipsoid. This raises the natural question of upper bounding the Mahler volume
of a polytope that is reasonably far from being an ellipsoid (for example, because it has a
bounded number of vertices). In the plane, Meyer and Reisner proved that the polygons
with m vertices that maximize the Mahler volume are linear images of the regular m-gon
[MR11]. In the general setting, Böröczky proved a stability version of the Blaschke-Santaló
inequality [Bör10].

Here we are aim for explicit improvements of the Blaschke-Santaló inequality for two
classes of polytopes for which the reciprocity relation between vol(P ) and vol(P ⋆) becomes
particularly apparent. The first of these two classes are the Voronoi cells VΛ of lattices

3



Λ, which we study in Chapter 6. As we shall see, the polar V ⋆
Λ of the Voronoi cell is the

convex hull of the inversion of Λ \ {0} at the unit sphere (up to a factor 2).

In the planar case, we identify the hexagonal lattice as the lattice Λ, which uniquely (up to
dilations and isometries) maximizes the Mahler volume of vol(VΛ)vol(V

⋆
Λ ). Even though

this fact follows from the aforementioned theorem of Meyer and Reisner, we provide an
independent proof that exploits the periodic structure of the Voronoi subdivision.

The fact that the hexagonal lattice maximizes the Mahler volume is accordant with the
idea of the hexagonal lattice as the “roundest lattice” in the plane – it also minimizes the
covering radius and maximizes the packing radius among all 2-dimensional lattices of a
fixed density. In higher dimensions, these parameters are in general not extremal for the
same lattice, which is why there is no natural candidate for a lattice that might maximize
the Mahler volume of its Voronoi cell. In the three-dimensional case, we can show that
A⋆

3, the dual lattice to the root lattice A3, is at least a local maximizer of the Mahler
volume, and we are able to give supporting evidence for the conjecture, that it is in fact
the unique global maximizer.

The second class of polytopes, which we investigate in Chapter 7, are matching polytopes
of forests. For a forest G, the matching polytope M(G) is the convex hull of all indicator
vectors of matchings of G. It has been shown by Liu that the volume of M(G) is given
by the number of certain permutations of the edges of G, the so-called standard labelings
[Liu12]. We extend Liu’s ideas to the polar AM(G) of G and we find a second class
of permutations, which we will call co-standard labelings, that encode the volume of the
polar. It will turn out that the standard labelings act in a “global” way on the edges, while
the co-standard labelings permute the edges “locally”. We use this characterization of
the volume of M(G) and its polar to obtain upper bounds on the Mahler volume of M(G)
that depend only on a combinatorial parameter of G and improve on the Blaschke-Santaló
inequality for forests with many leaves.

In the course of our study of the Mahler volume of M(G) we construct two explicit pulling
triangulations of the matching polytope and its polar, respectively. In particular, we will
see that the triangulation of AM(G) has an interesting greedy structure that bears strong
similarities with the Stanley’s triangulation of the chain polytope of a poset.

Chapter 3 is published in [FH22], a joint work with Martin Henk, while the results of
Chapter 4 can be found in the joint work with Eduardo Lucas [FL22]. Chapter 5 is
a joint work with Martin Henk and Christian Kipp and Chapter 7 originates from an
ongoing project together with Raman Sanyal.
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2 Basics

The present thesis investigates problems in the fields of convex and discrete geometry, as
well as the geometry of numbers. In this chapter, we recall the basic concepts in these
areas in order to provide the mathematical groundwork of the thesis. In addition to
the summary presented here, there is a multitude of books that provide an exhaustive
overview, which goes far beyond this chapter. We refer to the books of Gruber [Gru07]
and Schneider [Sch14] as resources for convex geometry. The books [GL87], by Gruber
and Lekkerkerker, and [Cas71], by Cassels provide a solid background on the geometry of
numbers. Moreover [CS99], by Conway and Sloane, is a good reference for specific lattices
and their properties, and in [BR07], by Beck and Robins, the number of integer points
in lattice polytopes is studied in detail. Finally, Ziegler’s book [Zie12] gives a thorough
introduction into the theory of polytopes.

Before we come to the geometric background of the thesis, we fix standard terms and
notations.

For a non-zero vector x ∈ Rn, we denote the orthogonal complement of span{x} by x⊥

and its Euclidean norm by |x|. For a set X ⊆ Rn, bdX, clX and intX denote the
boundary, closure and interior of X within Rn. We write Bn = {x ∈ Rn : |x| ≤ 1}
and Sn−1 = bdBn for the Euclidean unit ball and sphere, respectively, as well as Cn =
[−1, 1]n for the symmetric cube. The line segment between x, y ∈ Rn is denoted by
[x, y] = {λx + (1 − λ)y : λ ∈ [0, 1]}. For two non-empty sets A,B ⊆ Rn the Minkowski
sum is defined elementwise, i.e., A + B = {a + b : a ∈ A, b ∈ B}. Similarly, for a scalar
λ ∈ R, one defines λA = {λ a : a ∈ A} and we write −A = (−1)A. For an affine subspace
A ⊆ Rn and a set M ⊆ Rn we denote by M |A the image of the orthogonal projection
of M on A. We write {x}|A = x|A. Moreover, for n ∈ N, we write [n] = {1, ..., n} and([n]
k

)
= {I ⊆ [n] : |I| = k}. For i ∈ [n], we denote by ei ∈ Rn the i-th standard unit

vector. The symbol 1n denotes the vector (1, ..., 1)T ∈ Rn. If n is clear from the context
we simply write 1 = 1n.

2.1 Convex Geometry

Convex geometry refers to the investigation of convex sets in Rn. This has been initiated
by Hermann Brunn and Hermann Minkowski. Since convex sets arise in various areas, such
as optimization, functional analysis, or probability, to name a few, convex geometry is a
very colourful branch of mathematics in which several different disciplines play together.
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Classes of convex bodies. A convex body is a compact convex set K ⊆ Rn. We say
that K is origin symmetric (short: symmetric), if K = −K. The set of all convex bodies
in Rn is denoted by Kn, the set of all n-dimensional convex bodies K ∈ Kn is denoted
by Kn

n and the set of all origin symmetric convex bodies is denoted by Kn
os. A convex

body K ∈ Kn is called unconditional , if it is symmetric with respect to all the coordinate
hyperplanes, i.e., (±x1, ...,±xn) ∈ K, for any x ∈ K.

Functions associated to a convex body. A structural advantage of convex bodies
towards arbitrary compact sets is the fact that convex bodies may be described by several
well-behaved functions. A classical example of such a function is the support function. The
support function of a convex body K is defined for x ∈ Rn as h(K,x) = supy∈K⟨x, y⟩.

If the origin is an interior point of K, the polar body of K is defined as

K⋆ = {y ∈ Rn : ⟨x, y⟩ ≤ 1, ∀x ∈ K} ∈ Kn.

Moreover, for such K, the gauge function | · |K : Rn → R≥0 is defined by |x|K = min{µ ≥
0 : x ∈ µK}. The gauge function is related to the support function via the formula
| · |K⋆ = h(K, ·). If K ∈ Kn

os, then | · |K defines a norm on Rn whose unit ball is K.

Figure 2.1: Illustration of the support and gauge functions of K = C2 at the point x =
(2, 2)T . We have h(K,x) = 4 and |x|K = 2.

Volume. The volume vol(K) of a convex body K is its n-dimensional Lebesgue measure.
IfK is contained in a k-dimensional affine space F , we denote by volk(K) its k-dimensional
Lebesgue measure in F .

One of the fundamental theorems concerning the volume of a convex body is the Brunn-
Minkwoski inequality. For two convex bodies (or, more generally, compact sets) K,L ⊆
Rn and a scalar α ∈ [0, 1], it states that

vol(αK + (1− α)L)
1
n ≥ α vol(K)

1
n + (1− α)vol(L)

1
n . (2.1)

In words, the volume functional to the power 1/n is concave with respect to Minkowski
addition. In the convex case, equality is obtained in (2.1), if and only if K = βL+ t, for
certain β ≥ 0 and t ∈ Rn, or, if K and L lie in parallel hyperplanes.
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An important consequence of (2.1) is the concavity principle of Brunn, which states that
for any convex body K ⊆ Rn and any linear subspace V ⊆ Rn the intersection function

V → R, x 7→ vol(K ∩ (x+ V ⊥))

is concave on its support, which is given by K|V . In particular, if K ∈ Kn
os, the volume-

maximal section with an affine space parallel to V ⊥ passes through the origin.

In convex geometry, there is a large variety of problems centered around the volume
functional. One of them, which plays a particular role in this thesis, is the relation
between the volume of K and its polar body K⋆. More precisely, the problem is to bound
the product vol(K)vol(K⋆), for K ∈ Kn

os.

As for the upper bound, it is known that

vol(K)vol(K⋆) ≤ vol(Bn)2,

with equality, if and only if K = ABn, for some A ∈ GLn(R), i.e., K is an ellipsoid. This
inequality is known as the Blaschke-Santaló inequality .

On the other end of the spectrum, Mahler conjectured that

vol(K)vol(K⋆) ≥ 4n

n!
. (2.2)

This conjecture is known as the Mahler conjecture and the quantity vol(K)vol(K⋆) is also
called the Mahler volume of K. It may be regarded as one of the central open problems
in convex geometry.

Equality holds in (2.2) for the class of Hanner polytopes . A class that is defined by the
following rules.

i) C1 = [−1, 1] is a Hanner polytope.

ii) P ×Q is a Hanner polytope, if P and Q are Hanner polytopes.

iii) P ⋆ is a Hanner polytope, if P is a Hanner polytope.

The Mahler Conjecture is confirmed in dimensions up to 3 [Mah39, IS20] and in general,
by a result of Kuperberg [Kup09], it is known that

vol(K)vol(K⋆) ≥ πn

n!
. (2.3)

Moreover, it has been shown by Saint-Raymond that the Mahler conjecture holds true
for unconditional bodies [Sai81].

Polytopes. For a set X ⊆ Rn, we denote the convex hull of X by convX. If X is finite,
convX is called a polytope. On many occasions, polytopes act as the “discrete building
blocks” of convex geometry.

7



By the Minkowski-Weyl theorem, any polytope P ⊆ Rn may be represented as an inter-
section of finitely many half-spaces, i.e.,

P = {x ∈ Rn : ⟨x, ai⟩ ≤ bi, ∀i ∈ [m]}, (2.4)

where a1, ..., am ∈ Rn and b1, ..., bm ∈ R. Conversely, any bounded intersection of finitely
many half-spaces is a polytope. A constraint ⟨x, ai⟩ ≤ bi in (2.4) is called irredundant, if
it cannot be omitted without altering the polytope. In this case, the set {x ∈ P : ⟨ai, x⟩ =
bi} is called a facet of P . More generally, a face F of a polytope P is an intersection of
P with a supporting hyperplane, i.e., F = {x ∈ P : ⟨x, a⟩ = h(P, a)} for some a ̸= 0. We
say that F is a k-face, if F is k-dimensional, and 0-dimensional faces are called vertices
of P . The empty set and P itself are (−1)- resp. n-faces of P per convention.

If the origin is an interior point of P , one can normalize the inequalities on the right hand
side of (2.4) such that bi = 1 holds for all i ∈ [m], i.e.,

P = {x ∈ Rn : ⟨x, ai⟩ ≤ 1, ∀i ∈ [m]}. (2.5)

If this description is irredundant, the ai’s turn out to be the vertices of P ⋆. In particular,
the description is unique. There is a duality between the faces of P and P ⋆: For a k-face
F ⊆ P , 0 ≤ k ≤ n− 1 the set

F ⋄ = {y ∈ P ⋆ : ⟨y, x⟩ = 1, ∀x ∈ F} (2.6)

is an (n−1−k)-face of P ⋆, which we call the polar face of F and every (n−k−1)-face of
P ⋆ arises as an F ⋄, for some k-face F ⊆ P . Moreover, the diamond-operation is inclusion
reversing, i.e., we have F ⊆ G, if and only if G⋄ ⊆ F ⋄.

A special class of polytopes in the context of integer points are lattice polytopes. These
are polytopes of the form P = convX, where X ⊆ Zn. A lattice polytope P whose polar
P ⋆ is again a lattice polytope is called reflexive.

Decompositions. As in many other areas of mathematics, the “Divide-and-Conquer”-
principle also finds its applications in the study of convex bodies. Most generally, a
polyhedral polyhedral decomposition of a set X is a set of polytopes P = (Pi)i∈I such that
X =

⋃
i∈I Pi and any two distinct Pi’s intersect in a set of measure zero.

Decompositions in this general sense are a convenient tool to compute the volume of a
convex body. However, oftentimes it is helpful to impose more structure on a decompo-
sition. This leads to what we shall call a polyhedral subdivision of X. By this, we mean
a polyhedral decomposition P that satisfies the following properties:

i) If P ∈ P and F ⊆ P is a face of P , then F ∈ P .

ii) For any P, P ′ ∈ P , the intersection P ∩ P ′ is a face of both P and P ′.

The inclusion-maximal polytopes in P are called facets of P . We notice that the facets
of a polytope P coincide with the facets of its boundary complex, which is the polyhedral
subdivision of bdP given by all k-faces of P , for k < dimP . Moreover, a polyhedral
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subdivision is uniquely defined by its facets, which is why we shall oftentimes identify P
with its facets.

Figure 2.2: Two decompositions of a rectangle into smaller rectangles. The decomposition
on the left is not a subdivision, but the decomposition on the right is.

Finally, a triangulation is a polyhedral subdivision P , such that every P ∈ P is a simplex,
i.e., the convex hull of dim(P ) + 1 affinely independent points.

Centroid. Intuitively, the centroid of a convex body is its center of gravity. Formally,
one defines the centroid for a d-dimensional convex body K ∈ Kn as

c(K) =
1

vold(K)

∫
K
x dx ∈ K

where the integral is to be understood componentwise in the affine hull of K. K is called
centered , if c(K) = 0. Centered bodies are comparatively close to origin symmetric bodies
in the sense that we have

−K ⊆ dK. (2.7)

The factor d in the above inclusion cannot be improved as the centered simplex shows.

Moreover, the centroid may be computed from a decomposition. Let P = (P1, ..., Pm) be
a decomposition of a d-dimensional body K into d-dimensional polytopes (if any), then
we have

c(K) =
vold(P1)

vold(K)
c(P1) + · · ·+ vold(Pm)

vold(K)
c(Pm) (2.8)

by the additivity of the integral.

Anti-blocking bodies. We finish this section by introducing the class of anti-blocking
convex bodies, which play a major role at several points in this thesis. Anti-blocking
bodies have been studied primarily in the context of optimization, their properties as
listed below can be found in [Sch86, Sec. 9.3].

K ∈ Kn is called anti-blocking , if K = L ∩ Rn
≥0, for some unconditional body L. This is

equivalent to the condition that K ⊆ Rn
≥0 and for any x ∈ K, we have (x′1, ..., x

′
n)

T ∈ K,
for all x′i ∈ [0, xi]. Both unconditional and anti-blocking bodies fulfill the equations
K ∩ e⊥i = K|e⊥i for all i ∈ [n]. Indeed, anti-blocking bodies are characterized by this
equation among convex bodies in Rn

≥0.
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Further, there is a one-to-one correspondence between anti-blocking and unconditional
bodies: If K is unconditional, then K ∩ Rn

≥0 is anti-blocking by definition and if K is
anti-blocking, then

UK =
{
(σ1x1, ..., σnxn)

T : x ∈ K,σi ∈ {−1, 1}
}

is unconditional. This correspondence gives rise to a natural definition of polarity for anti-

Figure 2.3: An example of an anti-blocking K ⊆ R2. Its associated unconditional UK is
depicted by the dashed line.

blocking bodies: One defines the anti-blocking polar of an n-dimensional anti-blocking
body K as AK = (UK)⋆ ∩ Rn

≥0. This is equivalent to

AK = {y ∈ Rn
≥0 : ⟨x, y⟩ ≤ 1, ∀x ∈ K}.

If P is an anti-blocking polytope, there is a unique irredundant representation of P of the
form (cf. (2.4))

P = {x ∈ Rn
≥0 : ⟨x, ai⟩ ≤ 1, ∀i ∈ [m]},

where a1, ..., am ∈ Rn
≥0. Unlike for polytopes that contain the origin in their interior, the

vectors a1, ..., am are not the vertices of AP . But we have AP = {a1, ..., am}↓, where for
X ⊆ Rn

≥0, one defines

X↓ = conv{x′ ∈ Rn
≥0 : ∃x ∈ X ∀i ∈ [n] x′i ≤ xi}.

2.2 Geometry of Numbers

The geometry of numbers was historically introduced by Hermann Minkowski in 1910
in his fundamental work Geometrie der Zahlen [Min10] in order to treat problems that
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arise in number theory, such as the minima of quadratic forms, geometrically. Today,
the theory has grown beyond its original purpose and serves as a powerful instrument for
those who aim to count, estimate or compute the integer points in a convex set.

Lattices. At the heart of the theory are (Euclidean) lattices . These are discrete sub-
groups Λ ⊆ Rn. Equivalently, a lattice may be represented as

Λ =

{
k∑

i=1

αibi : αi ∈ Z, ∀i ∈ [k]

}
,

where b1, ..., bk are linearly independent. The set on the right hand side is also referred to
as the integral span of b1, ..., bk and we denote it by spanZ{b1, ..., bk}. The set {b1, . . . , bk}
is called a (lattice) basis of Λ and one defines detΛ = volk([0, b1] + · · ·+ [0, bk]).

If b1, ..., bn ∈ Zn form a basis of the lattice Zn, the corresponding matrix U = [b1, ..., bn] is
called unimodular. Unimodular matrices form a subgroup of GLn(R), which is denoted by
GLn(Z). If A and B are (the matrices of) two bases of Λ, then there exists a unimodular
matrix U ∈ GLn(Z) such that A = BU . The converse is also true. With this character-
ization of lattice bases, one can define the topological space of n-dimensional lattices as
the quotient Ln = GLn(R)/GLn(Z). This way, a sequence of lattices (Λ(i))i∈N ⊆ Ln is
convergent to a lattice Λ ∈ Ln, if and only if for any basis B of Λ, there exists a sequence
of bases B(i) of Λ(i), such that B(i) converges to B in Rn,n.

A sublattice of Λ is a subgroup of Λ. Sublattices of Λ that arise as intersections Λ ∩ L,
where L ⊆ Rn is a linear subspace, are called primitive. If L fulfills dimL = dim(Λ ∩ L),
L is called a lattice subspace of Λ. A point v ∈ Λ \ {0} is called primitive, if Zv is a
primitive sublattice of Λ. The index of a sublattice Λ′ ⊆ Λ is the number of different
cosets a+Λ′, a ∈ Λ. If dimΛ′ = dimΛ, this number is known to be finite and is given by
detΛ′/ detΛ.

The polar lattice of Λ is defined as

Λ⋆ = {a ∈ spanΛ : ⟨b, a⟩ ∈ Z, ∀b ∈ Λ}.

There are several duality relations between Λ and Λ⋆ of which we recall a few here
(cf. e.g. [Mar03, Prop. 1.3.4]). First of all the determinants of Λ and Λ⋆ are linked
by the simple formula detΛdetΛ⋆ = 1. Further, a k-dimensional subspace L ⊆ spanΛ
is a lattice subspace of Λ, if and only if its orthogonal complement L⊥ in spanΛ is a
(dimΛ− k)-dimensional lattice subspace of Λ⋆. In particular, every lattice hyperplane H
of Λ possesses a primitive normal vector v⋆ ∈ Λ⋆ and the determinant of Λ ∩H is given
by |v⋆| detΛ. Moreover, the orthogonal projection Λ⋆|L is a k-dimensional lattice and we
have the following relation:

(Λ ∩ L)⋆ = Λ⋆|L. (2.9)

The lattice point enumerator of a set A ⊆ Rn with respect to the lattice Λ is defined as
GΛ(A) = |A ∩ Λ|. In the case Λ = Zn we write G(A) = GZn(A)
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Relations between vol(·) and GΛ(·). The lattice point enumerator may be regarded
as a discrete way to measure the size of a set M ; while vol(M) counts every point in M
via integration, GΛ(M) forgets about all points in M except for the discrete set M ∩ Λ.
It is natural to ask under which conditions, these two notions of size may be related.

First of all, it follows from the properties of the Riemann integral that the volume and
the lattice point enumerator agree asymptotically, i.e., one has

lim
r→∞

vold(rM)

GΛ(rM)
= detΛ. (2.10)

for any d-dimensional lattice Λ and any full-dimensional Jordan-measurable set M ⊆
span(Λ). Note that any convex body K ⊆ span(Λ) is Jordan-measurable. Moreover,
(2.10) also holds, if one replaces GΛ(rM) by |M ∩ (t+ Λ)| for some t ∈ span(Λ).

Figure 2.4: Illustration of (2.10); Counting the lattice points of Λ in 2M is equivalent to
counting the points of 1

2Λ in M . If we replace Λ by εΛ as in the figure, the complex of
boxes converges to M as ε ↘ 0. Note that each box in this complex has volume εn detΛ.

The asymptotic relation (2.10) does not yield a direct insight on the number of lattice
points of M itself in comparison to its volume. Indeed, if M is not convex, one can easily
find examples for which vol(M) is arbitrarily small/large compared to GΛ(M). For convex
bodies, however, universal bounds are known. Let us consider a convex body K ∈ Kn and
an n-dimensional lattice Λ ⊆ Rn. By a a result of van der Corput [GL87, Ch. 2, Thm.
7.1] one has

vol(K) ≤
(
2n−1(GΛ(K) + 1)

)
detΛ, (2.11)

whenever −K = K. A lower bound on the volume has been obtained by Blichfeldt [Bli21],
who showed for K ∈ Kn with dim(K ∩ Λ) = n that

vol(K) ≥ 1

n!

(
GΛ(K)− n

)
detΛ. (2.12)

Further, it is known that for any Lebesgue-measurable set M ⊆ Rn, there exists a vector
t ∈ Rn such that

vol(M) ≤ G(M + t). (2.13)

This result is attributed to van der Corput and Remak [GL87, Ch. 2, Sec. 6].

Finally, we want to mention here a classical identity of Pick that gives a precise connection
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between the volume and the number of lattice points in a planar lattice polygon P ⊆ R2:

vol(P ) = G(P )− G(bdP )

2
− 1. (2.14)

Successive minima and covering radius. Consider an n-dimensional lattice Λ and
an n-dimensional convex body K ∈ Kn

os. Then, the i-th successive minimum is defined
as

λi(K,Λ) = min
{
λ > 0 : dim(λK ∩ Λ) ≥ i

}
,

for i = 1, . . . , n. Roughly speaking, the successive minima of a K with respect to Λ
measure the extend or “dimensionality” of K in the lattice Λ; For instance, if the first k
successive minima λi(K,λ) are significantly smaller than the remaining n− k, one might
think of K as being concentrated around a k-dimensional lattice subspace of Λ.

If K is not necessarily symmetric, we define λi(K,Λ) = λi(cs(K),Λ), where cs(K) =
1
2(K −K) is the central symmetral of K(cf. Figure 2.5). The successive minima of K can

Figure 2.5: Illustration of the successive minima of a non-symmetric body. Since ±e2 are
the only non-zero vectors in 1

2cs(K), we have λ1(K) = 1/2. Further, we have λ2(K) =
1, which is attained by ±e1. In general, one may think of λ1(K) as the reciprocal of the
maximum number of collinear lattice points in K, up to a factor 2 and rounding.

also be expressed with the help of the gauge function of cs(K); First, we have λ1(K,Λ) =
min |x|cs(K), where x ranges over Λ \ {0}, and we let x1 ∈ Λ \ {0} be a realizer of this
minimum. For 1 < i ≤ n we assume that we already found i − 1 independent vectors
x1, ..., xi−1 ∈ Λ such that λj(K,Λ) = |xj |cs(K), 1 ≤ j < i. Then we have λi(K,Λ) =

min |x|cs(K), where x ranges over Λ \ span{x1, ..., xi−1} and we let xi be a realizer of this
minimum.

For K ∈ Kn
n, the linearly independent lattice points xi ∈ Λ, 1 ≤ i ≤ n, corresponding to

the successive minima, i.e., xi ∈ λi(K,Λ) cs(K), do not form a basis of Λ in general. It
was shown by Mahler, however, that there exists a lattice basis b1, . . . , bn ∈ Λ such that

|bi|cs(K) ≤ max

{
1,

i

2

}
λi(K,Λ). (2.15)
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When considering the successive minima of the polar body K⋆ of K ∈ Kn
os, the following

useful reciprocity relation holds

λi(K
⋆,Λ⋆)λn+1−i(K,Λ) ≥ 1. (2.16)

Moreover, the parameter λ1((K − K)⋆,Λ⋆) is called the lattice width of K with respect
to Λ. The flatness theorem of Banaszczyk et al. states that [BLPS99]

λ1((K −K)⋆,Λ⋆) ≤ cn
3
2 (2.17)

for any convex body K ∈ Kn
n with intK ∩Zn = ∅, where c > 0 is an absolute constant.

If Λ = Zn, we write λi(K) = λi(K,Λ). Since one has λi(K,AZn) = λ(A−1K,Zn), it is
oftentimes enough to consider restrict to the case Λ = Zn.

As an “inhomogeneous counterpart” of the successive minima, the covering radius µ(K,Λ)
is defined as the smallest number µ > 0 such that µK + Λ = Rn. Again, we write
µ(K) = µ(K,Zn). In terms of the gauge function, one has

µ(K,Λ) = max
x∈Rn

min
y∈Λ

|x− y|cs(K) .

For this reason, µ(K) is also referred to as the “inhomogeneous minimum” of K, while
the λi(K) is called the “i-th homogeneous minimum” of K. A distinction that dates back
to Minkowski’s studies of quadratic forms. The covering radius is related to the successive
minima via the inequality [KL88, Lemma 2.4]

λn(K,Λ)

2
≤ µ(K,Λ) ≤

n∑
i=1

λi(K,Λ)

2
. (2.18)

Minkowski’s theorems on successive minima. Minkowski’s first theorem on suc-
cessive states that a symmetric convex body K ∈ Kn

os with K ∩ Λ = {0}, for some
n-dimensional lattice Λ, has volume at most 2n det Λ. Since λ1(K,Λ) contains no lattice
points except for the origin, this theorem can be reformulated as

λ1(K,Λ)n vol(K) ≤ 2n det Λ.

Minkowski’s first theorem has applications in various areas of number theory, ranging
from Lagrange’s four-square theorem to the study of number fields.

Minkowski also gave a generalization of his first theorem that takes all successive minima
into account.

1

n!

n∏
i=1

2

λi(K,Λ)
≤ vol(K)

detΛ
≤

n∏
i=1

2

λi(K,Λ)
. (2.19)

This classical result is known as Minkowski’s second theorem on successive minima. For
origin-symmetric K, this has been proven by Minkowski [GL87, Ch. 2, Thms. 9.1 and
9.2]. For general K ∈ Kn

n, the upper bound follows directly from the inequality vol(K) ≤
vol(cs(K)), which in turn is a special case of the Brunn-Minkowski inequality (2.1). The
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lower bound can also be proved by an inclusion argument, similar to the symmetric case:
One considers the convex hull of the n segments in K that realize the λi(K,Λ) [HHH16,
Rem. 1.1].

Betke, Henk andWills studied the relation of the lattice point enumerator to the successive
minima of K and conjectured for K ∈ Kn

n that [BHW93, Conj. 2.1]:

GΛ(K) ≤
n∏

i=1

⌊ 2

λi(K,Λ)
+ 1
⌋
, (2.20)

where for a real number x ∈ R, ⌊x⌋ = max{z ∈ Z : z ≤ x} denotes the floor function.
Malikiosis was able to show that [Mal12, Thm. 3.2.1]

GΛ(K) ≤ 4

e

(√
3
)n−1

n∏
i=1

( 2

λi(K,Λ)
+ 1
)
. (2.21)

In the plane, the conjecture has been settled by Betke, Henk and Wills themselves
[BHW93, Theorem 2.2] and in dimension 3 by Malikiosis [Mal12]. In arbitrary dimen-

sion, however, the factor (4/e)
√
3
n−1

in (2.21) is the best known. We will revisit the
conjectured inequality (2.20) in more detail in Chapter 4.
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Part I

Discretization
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3 Bounds on the Lattice Point
Enumerator via Slices and
Projections

In this chapter, we formulate and prove inequalities that relate the lattice points inside
a convex body K to the number of lattice points in hyperplane sections or projections of
K. We obtain inequalities that may be regarded as “discrete analogues” of classical and
modern theorems on the volume of convex bodies.

With the exceptions of Remark 3.1.6 and Theorem 3.2.6, the results in this chapter are
published in [FH22], a joint work with Martin Henk.

3.1 A Discrete Meyer Inequality

One of the central questions in Geometric Tomography is to determine or to reconstruct
a set K in the n-dimensional Euclidean space Rn by some of its lower dimensional “struc-
tures” (see [Gar06]). Usually, these are projections on and sections with lower dimensional
subspaces of Rn. A classical and very well-known example in this context is the famous
Loomis-Whitney inequality [LW49], which compares the volume of a non-empty compact
set K to the geometric mean of its projections onto the coordinate hyperplanes:

vol(K)
n−1
n ≤

( n∏
i=1

voln−1(K|e⊥i )
) 1

n
. (3.1)

Equality is attained, e.g., if K = [a1, b1] × · · · × [an, bn], ai < bi, is a rectangular box.
For various generalizations and extensions of this inequality we refer to [BGL18] and the
references within.

Loomis and Whitney proved (3.1) by observing that it suffices to prove it when K is the
non-overlapping union of equal cubes which is then a purely combinatorial problem. In
particular, this combinatorial version implies (and is actually equivalent to) the following
discrete variant of (3.1):

G(K)
n−1
n ≤

( n∏
i=1

G(K|e⊥i )
) 1

n
. (3.2)
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So (3.1) and (3.2) are equivalent statements for compact sets. The discrete version (3.2)
was also independently proven by Schwenk and Munro [SM83].

Due to the comparison of n- and (n−1)-dimensional volumes in (3.1), it is easy to see that
there is no lower bound on the volume in terms of the geometric mean of voln−1(K|e⊥i ).
However, if we further assume that K ∈ Kn, and if we replace projections by sections,
then it was shown by M. Meyer [Mey88] that

vol(K)
n−1
n ≥ n!

1
n

n

( n∏
i=1

voln−1(K ∩ e⊥i )
) 1

n
, (3.3)

where equality is attained, if and only if K is a generalized crosspolytope, i.e., K =
conv{a1e1,−b1e1, . . . , anen,−bnen}, for some ai, bi ≥ 0. Observe that n!1/n/n is asymp-
totically 1/e. Meyer’s inequality may be regarded as a dual inequality to (3.1) in the
setting of polarity of convex bodies.

In [GGZ05], Gardner, Gronchi and Zong posed the question to find a discrete analogue
of M. Meyer’s inequality (3.3); more precisely, they asked

Question. Let n ∈ N. Is there a constant cn > 0 such that for all K ∈ Kn,

G(K)
n−1
n ≥ cn

( n∏
i=1

G(K ∩ e⊥i )
) 1

n
? (3.4)

As in the case of the Loomis-Whitney inequality, a discrete version (3.4) would imply the
analogous inequality for the volume, and hence, by (3.3) we certainly have cn ≤ n!1/n/n
(cf. (2.10)). In the plane, Gardner et al. [GGZ05] proved

G(K)
1
2 >

1√
3

(
G(K ∩ e⊥1 ) ·G(K ∩ e⊥2 )

) 1
2 ,

for any K ∈ K2. The elongated cross-polytope K = conv{±e1,±he2} shows that 1√
3
is

asymptotically best possible, i.e., for h → ∞. Hence, in contrast to the Loomis-Whitney
inequality, (3.3) has no equivalent discrete version, since in the plane the constant in
Meyer’s inequality is 1/

√
2.

Even more, in dimension n ≥ 3 the answer to the above question of Gardner et al. is
negative, as the following proposition shows.

Proposition 3.1.1. Let n ≥ 3 be fixed. There exists no positive number c > 0 such that
for all K ∈ Kn

G(K)
n−1
n ≥ c

( n∏
i=1

G(K ∩ e⊥i )
) 1

n
. (3.5)

Proof. We first prove it for n = 3. For an integer k ∈ N, let Tk be the simplex with vertices
{0, e1, e1+k e2, k e3} (see Figure 3.1). Then, G(Tk) = 2(k+1) and also G(Tk∩e⊥1 ) = k+1
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Figure 3.1: The simplex Tk.

and G(Tk ∩ e⊥2 ) = G(Tk ∩ e⊥3 ) = k + 2. Thus

(G(Tk))
2
3(∏3

i=1G(Tk ∩ e⊥i )
) 1

3

≤ 2
2
3
(k + 1)

2
3

k + 1
= 2

2
3 (k + 1)−

1
3

and so the left hand side tends to 0 as k → ∞.

For n ≥ 4 we just can consider, e.g., the simplices conv(Tk ∪ {e4, . . . , en}).

Roughly speaking, the simplex Tk from above falsifies (3.5) because the two skew segments
[0, ke3] and [e1, e1 + k e2] are both “long”, but do not generate any additional lattice
points in Tk. Such a construction is not possible in the symmetric case. In fact, if
K ∈ Kn

os possesses 2h + 1 lattice points on the coordinate axis Ren, any interior lattice
point v ∈ K ∩ e⊥n will contribute Ov,n(h) lattice points to K. Here, Ov,n hides a constant
that only depends on v and n.

However, unlike the simplex above, a symmetric convex body always contains at least
G(K)/3n interior lattice points (see [GS16]). Motivated by this heuristic, we conjecture
the following polytopes to be extremal in (3.4), when restricted to Kn

os.

Example 3.1.2. For an integer h ∈ N let Kh = conv
(
(Cn−1 × {0}) ∪ {±h en}

)
be a

double pyramid over the (n − 1)-dimensional cube Cn−1 = [−1, 1]n−1 (see Figure 3.2).
Then G(Kh) = 3n−1+2h, G(Kh∩e⊥i ) = 3n−2+2h, for 1 ≤ i < n, and G(Kh∩e⊥n ) = 3n−1.
Thus,

lim
h→∞

G(Kh)
n−1∏n

i=1G(Kh ∩ e⊥i )
=

1

3n−1
,

and we conjecture (3.4) to hold with cn = 3−
n−1
n ≈ 1/3, when restricted to symmetric

convex bodies. ⋄

Indeed, there is strong computational evidence that the conjectured bound is correct in
low dimensions (up to 5). We can prove the following weak version of the conjecture.
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Figure 3.2: The double pyramid Kh.

Theorem 3.1.3. Let K ∈ Kn
os. Then

G(K)
n−1
n >

1

4n−1

( n∏
i=1

G(K ∩ e⊥i )
) 1

n
.

For the proof, we need to understand the behaviour of the lattice point enumerator of a
symmetric convex body regarding translations and dilations. These bounds will also be
used extensively in the further sections of this chapter.

Lemma 3.1.4. Let K ∈ Kn
os, t ∈ Rn and A ∈ Zn,n be an invertible matrix with integral

entries. Then,

G
(
AK + t

)
≤ 2n−1| detA|(G(K) + 1) ≤ 2n| detA|G(K).

In particular, we have

G(K + t) ≤ 2n−1(G(K) + 1) ≤ 2nG(K), (3.6)

which is best possible, and for m ∈ N,

G(mK) ≤ 2n−1mn(G(K) + 1) ≤ (2m)nG(K), (3.7)
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which is best possible up to a factor (1 + 1
2m−1)

n.

Proof. Let Λ = 2AZn ⊆ Zn and let Γi ⊆ Zn, 1 ≤ i ≤ 2n| detA|, be the cosets of Λ in Zn.
Consider two points yj = Axj + t ∈ AK + t, where xj ∈ K, j = 1, 2, that belong to a
common Γi, say. For such points, we have y1 − y2 ∈ Λ. Thus, by the symmetry of K, we
have

1

2
(y1 − y2) = A

(1
2
(x1 − x2)

)
∈ AK ∩AZn = A(K ∩ Zn).

That means ∣∣(AK + t) ∩ Γi − (AK + t) ∩ Γi

∣∣ ≤ ∣∣A(K ∩ Zn)
∣∣ = G(K). (3.8)

Since for any two finite sets A,B ⊆ Rn (cf. [TV06, Sec. 5.1])

|A+B| ≥ |A|+ |B| − 1,

we get from (3.8)
∣∣(AK + t)∩ Γi

∣∣ ≤ (G(K) + 1)/2. Since the Γi’s form a partition of Zn,
the desired inequality follows.

In order to see that (3.6) is best-possible, consider the rectangular box Qk = 1
2 [−1, 1]n−1×

[−k + 1
2 , k − 1

2 ], where k ∈ N, and t = (12 , . . . ,
1
2)

T ∈ Rn. Then, we have G(Qk) = 2k − 1
and G(Qk + t) = 2n−12k = 2n−1(G(Qk) + 1).

For (3.7), let K =
[
− (1− 1

2m), 1− 1
2m

]n
; then G(mK) = (2m− 1)nG(K).

Remark 3.1.5.

i) In his thesis, Berg showed that for any n ∈ N there exists a 2K ∈ Kn
os with G(2K) =

4n − 2n + 1 such that any line passing through the origin contains at most 3 lattice
points of 2K [Ber18, Prop. 5.13]. This implies that G(K) = 1. Regarding (3.7) with
m = 2, this example shows that the constant 4n cannot be replaced by a constant
of order cn with c < 4.

ii) Restricted to the class of origin-symmetric lattice polytopes, (3.6) is best possible
up to a factor 4, as the polytopes

Kh = conv
(
(Cn−1 × {0}) ∪ {±h en}

)
of Example 3.1.2 together with the vector t = (1/2, . . . , 1/2, 0)T show. On the one
hand, one has G(Kh) = 2h+ 3n−1, where O(·) describes the asymptotic behaviour
for h → ∞. On the other hand, the cube [0, 1]n−1 is contained in the relative interior
of K ∩ e⊥n + t. Even more, each of its vertices v are at half distance between t and
one of the vertices of K ∩ e⊥n + t. As a result of Brunn’s concavity principle (cf.
Section 2.1), the line v + Ren is half as long as the line t + Ren. Consequently, it
contributes h + O(1) points to (Kh + t) ∩ Zn. Since there are 2n−1 such lines, we
obtain

lim
h→∞

G(Kh + t)

G(Kh)
= lim

h→∞

2n−1(h+O(1))

2h+O(1)
= 2n−2.
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In fact, Wills [Wil73] showed that for any lattice polygon P ⊆ R2 and t ∈ R2 one
has G(P + t) ≤ G(P ). We conjecture that for any lattice polytope P ∈ Kn

os,

G(P + t) ≤ 2n−2G(P ).

iii) If K is not necessarily symmetric, (3.6) and (3.7) fail. In that case, counterexamples
are given by the simplices Tk in the proof of Proposition 3.1.1. Basically, the reason
for this is that Tk contains O(k) lattice points, while in a translation or dilation
of Tk one may find a right-angled triangle spanned by two orthogonal segments
of length O(k) each, lying in a hyperplane of the form e⊥i + t, t ∈ Z3. Such a
triangle contributes O(k2) points. Again, letting k → ∞ shows that the inequalities
cannot be generalized to the non-symmetric case. This has also been observed
independently by Lovett and Regev in [LR17]. ⋄

Next we come to the proof of Theorem 3.1.3.

Proof of Theorem 3.1.3. For i ∈ [n], let Ki = K ∩ e⊥i . We consider the linear map

ϕ : (K1 ∩ Zn)× · · · × (Kn ∩ Zn) → ((K −K) ∩ Zn)n−1 given by

ϕ
(
(a1, . . . , an)

)
=
(
(a2 − a1), (a3 − a1), . . . , (an − a1)

)
.

Since this is an injective map, if follows that

G(K −K)n−1 ≥
n∏

i=1

G(Ki). (3.9)

Since K is origin symmetric, we have K−K = 2K and the bound follows from (3.7).

Remark 3.1.6. At the expanse of a worse constant, one can extend the above proof to
centered convex bodies. Indeed, for K ∈ Kn centered, we have

G(K −K) = G
(
(n+ 1)

1

n+ 1
(K −K)

)
≤ (2(n+ 1))nG

( 1

n+ 1
(K −K)

)
≤ (2(n+ 1))nG(K),

where we used Lemma 3.1.4, (3.7) and (2.7). Combining this with (3.9), we obtain

G(K)
n−1
n ≥ 1

(2(n+ 1))n−1

( n∏
i=1

G(K ∩ e⊥i )
) 1

n
. (3.10)

As the class of centered bodies is broader than the origin symmetric bodies, we do not
expect 3−(n−1)/n to be the best constant in (3.10). Indeed, by replacing the cube Cn−1 in
the construction of Example 3.1.2 by the centered simplex

S = {x ∈ Rn−1 : xi ≥ −1, x1 + · · ·+ xn ≤ n− 1}
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we see, by considering the centered bodies

Ph = conv
(
S × {0} ∪ {±en}

)
,

that the constant in (3.10) cannot be greater than G(S)−1/n =
(
2n−1
n−1

)−1/n ≈ 1/4. ⋄

3.2 Reversing the Discrete Meyer Inequality

While it is not possible to bound the volume of a symmetric convex set K from above
in terms of

∏n
i=1 voln−1(K ∩ e⊥i ), Feng, Huang and Li proved in [FHL19] that there is

a constant c̃n ≤ (n − 1)! such that for any K ∈ Kn
os there exists an orthogonal basis

u1, . . . , un ∈ Rn such that:

vol(K)
n−1
n ≤ c̃n

( n∏
i=1

voln−1(K ∩ u⊥i )
) 1

n
. (3.11)

Alonso-Gutiérrez and Brazitikos [AB21] improved this result considerably: they showed
that up to a universal constant the best possible c̃n is equal to the so called maxi-
mum isotropic constant in dimension n, which is bounded from above by O((log n)4)
(see [KL22]). For a definition of the isotropic constant and extensive background mate-
rial thereunto, we refer to [BGVV14]. Moreover, they proved that this is valid for any
centered convex body. Here we prove the following inequalities:

Theorem 3.2.1. Let K ∈ Kn
os. There exists a basis b1, . . . , bn of the lattice Zn such that

G(K)
n−1
n < O(n2 2n)

( n∏
i=1

G(K ∩ b⊥i )
) 1

n
, (3.12)

and there exists ti ∈ Zn, 1 ≤ i ≤ n, such that

G(K)
n−1
n < O(n2)

( n∏
i=1

G
(
K ∩ (ti + b⊥i )

)) 1
n
. (3.13)

The idea of the proof is to choose a lattice basis that is short with respect to | · |K⋆ and
then decompose Zn =

⋃
j∈Z{x ∈ Zn : ⟨x, bi⟩ = j} and estimate the sections parallel to b⊥i

against the central one. Recall from Section 2.1 that for the volume, Brunn’s concavity
principle states that

vol
(
K ∩ (t+ L)

)
≤ vol(K ∩ L),

for any k-dimensional linear subspace L ⊆ Rn, t ∈ Rn and K ∈ Kn
os. So the volume-

maximal section of K parallel to L is indeed always the one containing the origin.
Unfortunately, this is false in the discrete setting as the following example shows: Let
K = conv

(
± ([0, 1]n−1 × {1})

)
and for 1 ≤ k ≤ n − 1, let Lk = span{e1, ..., ek}. Then

G(K ∩ Lk) = 1, but G(K ∩ (en + Lk)) = 2k.
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Here we have the following kind of a discrete Brunn’s concavity principle, which also
appears in [Ber18, Sec. 5.2]:

Lemma 3.2.2. Let K ∈ Kn
os and let L ⊂ Rn be a k-dimensional linear lattice subspace,

i.e., dim(L ∩ Zn) = k, k ∈ {0, . . . , n− 1}. Then for any t ∈ Rn,

G(K ∩ (t+ L)) ≤ 2kG(K ∩ L), (3.14)

and the inequality is best possible.

For various discrete versions of the classical Brunn-Minkowski theorem, which in partic-
ular implies Brunn’s concavity principle we refer to [GG01, HKS21, HIY18, IYZ20].

Proof. Without loss of generality, let t ∈ Zn. We denote m = G(K ∩ L). Towards a
contradiction, assume that G(K ∩ (t + L)) > 2k m. Consider the k-dimensional lattice
Λ = Zn ∩ L. By the pigeon hole principle, there exist (m + 1) distinct lattice points
x0, . . . , xm ∈ K ∩ (t+Λ) such that x0 − t, . . . , xm − t are in the same coset of Λ/2Λ. This
implies that

1

2
(xi − x0) =

1

2
((xi − t)− (x0 − t)) ∈ K ∩ Λ

are m + 1 distinct points in K ∩ Λ, a contradiction to the choice of m. The tightness of
the bound has already been verified in (3.14).

Proof of Theorem 3.2.1. By induction on the dimension, we will show that for any n-
dimensional convex body K ∈ Kn

os and any n-dimensional lattice Λ, there exists a basis
b1, . . . , bn of Λ⋆ and vectors t1, . . . , tn ∈ Λ such that

GΛ(K)n−1 ≤ (n!)24n
n∏

i=1

GΛ

(
K ∩ (ti + b⊥i )

)
. (3.15)

From this, (3.13) follows by considering Λ = Zn and taking the nth root. Moreover, (3.12)
follows immediately from (3.13) and Lemma 3.2.2.

First, we assume dim(K ∩ Λ) = n. For any b ∈ Λ⋆ we may write

GΛ(K) =

⌊h(K,b)⌋∑
i=−⌊h(K,b)⌋

GΛ

(
K ∩ {x ∈ Rn : ⟨b, x⟩ = i}

)
≤ (2⌊h(K, b)⌋+ 1)GΛ

(
K ∩ (tb + b⊥)), (3.16)

where tb ∈ Λ is chosen to be the translation that maximizes the number of lattice points
in a section parallel to b⊥.

Now let b1, . . . , bn ∈ Λ⋆ be a basis of Λ⋆ obtained from (2.15) with respect to the polar
body K⋆, i.e., we have |bi|K⋆ ≤ iλi(K

⋆,Λ⋆), 1 ≤ i ≤ n. For the vectors bi we denote the
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above translation vectors tbi by ti. Then, on account of h(K, bi) = |bi|K⋆ we conclude
from (3.16) that

GΛ(K)n ≤ n!
n∏

i=1

(
2λi(K

⋆,Λ⋆) + 1
) n∏
i=1

GΛ

(
K ∩ (ti + b⊥i )

)
≤ n!3n

n∏
i=1

λi(K
⋆,Λ⋆)

n∏
i=1

GΛ

(
K ∩ (ti + b⊥i )

)
, (3.17)

where for the last inequality we used λi(K
⋆,Λ⋆) ≥ 1 which follows from the assumption

dim(K ∩ Λ) = n via (2.16).

Using the upper bound of Minkowski’s theorem (2.19), the lower bound on the volume
product (2.3) and van der Corput’s inequality (2.11), we estimate

n∏
i=1

λi(K
⋆,Λ⋆) ≤ 2n det Λ⋆

vol(K⋆)
≤ n!

( 2
π

)n
vol(K) detΛ⋆ ≤ n!

(4
3

)n
GΛ(K). (3.18)

Substituting this into (3.17) yields the desired inequality (3.15) for this case.

It remains to consider the case dim(K ∩ Λ) < n, so let K ∩ Λ ⊆ H for some (n − 1)-
dimensional lattice subspace H ⊆ Rn. Let Γ = Λ∩H. We apply our induction hypothesis
to Γ and K ∩H. Hence, we find a basis y1, ..., yn−1 of Γ⋆ and vectors t1, ..., tn−1 ∈ Γ such
that

GΓ(K)n−2 ≤ (n− 1)!24n−1
n−1∏
i=1

GΓ

(
K ∩ (y⊥i + ti)

)
,

which is equivalent to

GΓ(K)n−1 ≤ (n− 1)!24n−1GΓ(K ∩ b⊥n )
n−1∏
i=1

GΓ

(
K ∩ (y⊥i + ti)

)
, (3.19)

where bn ∈ Λ⋆ is a primitive normal vector of H. Unfortunately, the independent system
{y1, . . . , yn−1, bn} is in general not a basis of Λ⋆. In fact, the yi’s are not elements of Λ⋆

in the first place.

In view of (2.9), we have Γ⋆ = Λ⋆|H = Λ⋆|b⊥n . So there are vectors bi ∈ (yi + Rbn) ∩ Λ⋆.
For these vectors, one has b⊥i ∩H = y⊥i ∩H. By our assumption on K, this means

GΓ

(
K ∩ (y⊥i + ti)

)
= GΛ

(
K ∩ (b⊥i + ti)

)
, (3.20)

for all 1 ≤ i ≤ n− 1. Moreover, {b1, . . . , bn} is a Λ⋆-basis, since

det(b1, . . . , bn) = det(y1, . . . , yn−1, bn)

= |bn| det Γ⋆ =
|bn|
det Γ

=
|bn|

|bn| detΛ
= detΛ⋆.

In view of (3.19) and (3.20), {b1, . . . , bn} is the desired basis and our proof is complete.
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If we just want to find linearly independent lattice points ai ∈ Zn, 1 ≤ i ≤ n, for the slices
in Theorem 3.2.1 instead of a basis, then one can save one factor of n in the bounds of
Theorem 3.2.1. To see this, we replace in the proof above the basis vectors bi by linearly
independent lattice points ai ∈ λi(K

⋆)K⋆ ∩ Zn, 1 ≤ i ≤ n. In this case we do not need
the estimate (2.15). In particular this leads to

G(K)
n−1
n < O(n) max

t∈Zn,u∈Zn\{0}
G(K ∩ (t+ u⊥)). (3.21)

This may be regarded as a lattice version of the well-known slicing problem for volumes
asking for the correct order of a constant c such that for all centered convex bodies K ∈ Kn

there exists a u ∈ Rn \ {0} such that

vol(K)
n−1
n ≤ c vol(K ∩ u⊥). (3.22)

To this day, the best known bound is of order (log n)4 (cf. [KL22]), improving an earlier
result of Chen.

We obtain a discrete slicing inequality for non-symmetric convex bodies similar to (3.21).

Theorem 3.2.3. Let K ∈ Kn. Then

G(K)
n−1
n ≤ O(n2) max

t∈Zn,u∈Zn\{0}
G(K ∩ (t+ u⊥)). (3.23)

If K ∈ Kn
os, the constant can be replaced by O(n).

Before we come to the proof, we note that if we consider (3.16), we can also estimate
G(K), if K is not symmetric; in that case one replaces the factor (2⌊h(K, b)⌋+ 1) on the
right hand side by the number of hyperplanes parallel to b⊥ that intersect K. As it will
turn out, the challenge then is to compare the number of lattice points in K −K to the
number of points in K.

For volume, such a comparison is provided by the Rogers–Shephard inequality [RS58a],
which asserts that

vol(K −K) ≤
(
2n

n

)
vol(K).

The simplices Tk given in the proof of Proposition 3.1.1 show that there is no similar
inequality for the lattice point enumerator: While we have G(Tk) = O(k), in Tk − Tk we
find the triangle conv{0, k/2e2, ke3} which contains O(k2) lattice points. Since k can be
arbitrarily large, there is no constant cn > 0 depending only on the dimension such that
G(K −K) ≤ cnG(K).

However, the simplices Tk are extremely flat and therefore easily admit a large hyperplane
section. Our strategy in order to prove Theorem 3.2.3 will be to argue that convex bodies
K whose difference body K − K contains disproportionately many lattice points are
automatically flat. This reasoning is inspired by the proof of Theorem 4 in [AGP+17].
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Proof of Theorem 3.2.3. The inequality for K ∈ Kn
os is already given by (3.21). So let

K ∈ Kn. We may assume dim(K ∩ Zn) = n, because otherwise, K ∩ Zn is contained
in a hyperplane itself and the inequality follows directly. Therefore, K − K contains n
linearly independent lattice points and it follows λ⋆ = λ1

(
(K −K)⋆

)
≥ 1 (cf. (2.16)). Let

y ∈ λ⋆(K −K)⋆ ∩ Zn \ {0}. Then

h(K, y) + h(K,−y) = h(K −K, y) = |y|(K−K)⋆ = λ⋆,

and similarly to (3.16), (3.17), we obtain for a certain t ∈ Zn

G(K) ≤ (2λ⋆ + 1)G
(
K ∩ (t+ y⊥)

)
≤ 3λ⋆G

(
K ∩ (t+ y⊥)

)
. (3.24)

Let c = c(K) be the centroid of K. From (2.7) we deduce that

K −K ⊂ (n+ 1)(−c+K). (3.25)

First we assume that 1
2(K + c) = c + 1

2(−c + K) does not contain any integral lattice
point. By the flatness theorem (2.17) we have

λ∗ = 2λ1

((1
2
(c+K)− 1

2
(c+K)

)⋆)
= O(n3/2).

In view of (3.24) we are done.

So we can assume that there is a lattice point a ∈ 1
2(c + K) ∩ Zn. By the choice of c

(cf. (3.25)), we get

a+
1

2(n+ 1)
(K −K) ⊆ 1

2
(c+K) +

1

2(n+ 1)
(K −K)

=
1

2
K +

1

2

(
(c+

1

(n+ 1)
(K −K)

)
⊆ 1

2
K +

1

2
K = K.

(3.26)

Now in order to bound λ∗ in this case we use (3.18) applied to (K −K)⋆ and Zn, which
implies

(λ∗)n ≤ n!

(
4

3

)n

G(K −K).

Together with (3.24) we obtain

G(K)n ≤ n!4nG(K −K)G
(
K ∩ (t+ y⊥)

)n
. (3.27)

In order to estimate the number of lattice points in K −K we may apply (3.7) and with
(3.26) we get

G(K −K) ≤ 4n(n+ 1)nG
( 1

2(n+ 1)
(K −K)

)
≤ 4n(n+ 1)nG(K).
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By plugging this into (3.27), we obtain

G(K)n−1 ≤ 16nn!(n+ 1)nG
(
K ∩ (t+ y⊥)

)n
.

After taking the n-th root, we have

G(K)
n−1
n ≤ O(n2)G

(
K ∩ (t+ y⊥)

)
,

as desired.

Remark 3.2.4. The slicing problem (3.22) has also been extensively studied for other
measures. For instance, Koldobsky [Kol14b] proved for origin-symmetric convex bodies
that

µ(K) ≤ O(
√
n) max

x∈Rn\{0}
µ(K ∩ x⊥)vol(K)1/n

for measures µ that admit a continuous density and it was shown by Klartag and Livshyts
[KL20] that the order of

√
n is optimal (see also [KK18]). An extension to lower dimen-

sional sections was given by Koldobsky in [Kol14a, Kol15], and Chasapis, Giannopoulos
and Liakopoulos [CGL17] proved for general convex bodies that

µ(K) ≤ O(k)(n−k)/2max
F

µ(K ∩ F )vol(K)
n−k
n , (3.28)

where F ranges over all k–dimensional subspaces of Rn and µ is a measure with a locally
integrable density function. In [AHZ17] the authors obtained an inequality similar to
(3.28) for K ∈ Kn

os and the lattice point enumerator:

G(K) ≤ O(1)n nn−k max
F

G(K ∩ F )vol(K)
n−k
n ,

where F ranges over all k–dimensional linear subspaces with dim(F ∩Zn) = k. In the case
k = n− 1 and convex bodies of “small” volume, Regev [Reg16] proved via a probabilistic
approach such an inequality with the constant O(n) instead of O(n)n−1. ⋄

Next, we will give an example that shows that all the constants in (3.12), (3.13), (3.21)
and (3.23) must be at least of order

√
n.

Theorem 3.2.5. For n ∈ N there exists a sequence of n-dimensional origin-symmetric
convex bodies (Kj)j∈N such that

lim sup
j→∞

G(Kj)
n−1
n

supH G(Kj ∩H)
≥ c

√
n,

where H ranges over all affine hyperplanes in Rn and c > 0 is a universal constant.

Proof of Theorem 3.2.5. We consider a lattice Λ ⊆ Rn such that Λ is self-polar (i.e.,
Λ = Λ⋆), and λ1(B

n,Λ) = c
√
n, where c is an absolute constant. Such lattices have
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been detected by Conway and Thompson [HM73, Thm. 9.5]. We will use a volume
approximation argument for the Euclidean ball rBn = {x ∈ Rn : |x| ≤ r}, where r → ∞.

For x ∈ Rn \ {0} and α ∈ R, let H(x, α) = {y ∈ Rn : ⟨x, y⟩ = α} be the corresponding
hyperplane. For r > 0 let ar ∈ Rn and αr ∈ R≥0 be such that GΛ(rB

n ∩ H(ar, αr)) is
maximal. Since Λ is self–polar, we may assume that ar ∈ Λ and αr ∈ Z. In order to
control the limit as r → ∞ we want to find a sequence of radii (rj)j∈N ⊆ N such that
rj → ∞ and H(arj , αrj ) is constant. To this end, fix a primitive vector a0 ∈ Λ. Van der
Corput’s inequality (2.11) yields

GΛ

(
rBn ∩H(ar, αr)

)
≥ GΛ(rB

n ∩ a⊥0 ) ≥ 2−(n−1)rn−1ωn−1

|a0|
, (3.29)

where ωi denotes the volume of the i–dimensional Euclidean unit ball and we used that
the determinant of Λ ∩ a⊥0 is given by |a0| detΛ = |a0|, since the determinant of any
self-polar lattice is 1 (cf. Section 2.2).

On the other hand, if r is large enough, rBn contains n linearly independent points of Λ.
Thus, the maximal section rBn ∩H(ar, αr) contains (n − 1) affinely independent points
of Λ; otherwise, we might choose another point x ∈ rBn ∩ Λ and replace H(ar, αr) by
the affine hull of rBn ∩H(ar, αr)∩Λ and x. This yields a hyperplane that contains more
lattice points of rBn than H(ar, αr), contradicting the maximality. Hence, Blichfeldt’s
inequality (2.12) yields

GΛ

(
rBn ∩H(ar, αr)

)
≤ n! rn−1ωn−1

|ar|
.

Combining with (3.29), we obtain |ar| ≤ 2n−1 n! |a0|, for all but finitely many r ∈ N. Since
this bound is independent of r, we find a sequence (rj)j∈N ⊆ N that tends to infinity such
that arj = a, for all j and some primitive a ∈ Λ independent of j.

Since a ∈ Λ, we have for any α > |a|2,

−a+ (rjB
n ∩H(a, α) ∩ Λ) ⊆ rjB

n ∩H(a, α− |a|2) ∩ Λ.

Hence, we may assume that αrj ≤ |a|2. Since αr is integral, we even find a sequence of

radii (rj)j∈N ⊆ N such that H(arj , αrj ) = H(a, α) =: H for all j and a fixed α ∈ N.

We choose Kj = rjB
n. In order to estimate the limit, we want to apply (2.10) to rjB

n

and rjB
n ∩ H. The latter body may be viewed as a ball of radius rj − o(rj) that is

embedded in an (n− 1)-space together with a translation of Λ ∩ a⊥. Thus, by (2.10),

lim
j→∞

GΛ(rjB
n)n−1

maxGΛ(rjBn ∩H)n

= lim
j→∞

(
GΛ(rjB

n)/rnj
)n−1(

GΛ(rjBn ∩H)/(rj − o(rj))n−1
)n

= |a|nω
n−1
n

ωn
n−1

≥ (c
√
n)ne−c′n,
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where c′ > 0 is an absolute constant. In the last step we used the assumption that
λ1(B

n,Λ) = c
√
n and Stirling’s formula to estimate the volumes, together with the for-

mula ωn = π
n
2 /Γ(n2 + 1), where Γ is the Gamma-function. Taking the n-th root yields

the claim.

We conclude the section by proving an exact version of (3.13) in the plane.

Theorem 3.2.6. Let K ∈ K2. Then there exist two non-parallel lattice lines ℓ1, ℓ2 ⊆ R2

such that
G(K) ≤ G(K ∩ ℓ1) ·G(K ∩ ℓ2)

and the bound is tight.

Proof. Let ℓ1 be the lattice line with the maximum number of lattice points in K. We
choose ℓ2 to be the lattice line that is non-parallel to ℓ1 and contains the maximum number
of lattice points in K among all such lines. After applying a unimodular transformation
and a translation by an integral vector, we may assume that ℓ1 = Re1. Let Hi = ℓ1 + ie2
be the horizontal line at height i and let lj = G(K ∩ ℓj), j = 1, 2. Then we have

G(K) =
∑
i∈Z

G(K ∩Hi) =

l2−1∑
i=0

∑
j≡imod l2

G(K ∩Hj). (3.30)

Let
Mi =

⋃
j≡imod l2

(K ∩Hj ∩ Z2)

and mi = |Mi|. Towards a contradiction, assume that mi > l1 for some i ∈ {0, ..., l2 − 1}.
As by construction l1 ≥ l2, there exist two distinct points x, y ∈ Mi with x1 ≡ y1 mod l2.
By definition of Mi, we also have x2 ≡ y2 mod l2. Hence, by convexity, K contains the
l2 + 1 collinear lattice points x+ k

l2
(y − x), k = 0, ..., l2 (cf. Figure 3.3)

It follows from the maximality of ℓ2 that the segment [x, y] must be parallel to ℓ1, i.e.,
x, y ∈ Hj for some j ≡ i mod l2. Also, by the maximality of ℓ2, there cannot be a point
z ∈ Mi \Hj : By the pigeon hole principle, we could find a point in z′ ∈ [x, y] with z1 ≡ z′1
mod l2. Again, by definition of Mi, the points z and z′ are congruent mod l2Z2 and
therefore, [z, z′] contains more lattice points than ℓ2. But since [z, z

′] is not parallel to ℓ1,
this is a contradiction.

Thus, it follows that Mi ⊆ Hj . In particular, the points in Mi are collinear. This
contradicts the maximality of ℓ1, since we assumed |Mi| = mi > l1. So we have mi ≤ l1
and by (3.30) we obtain

G(K) =

l2−1∑
i=0

mi ≤ l1l2

as desired. In order to see that the bound is tight, it suffices to consider rectangles of the
form [0, a]× [0, b], where a, b ∈ Z.
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Figure 3.3: Two congruent points x and y lead to at most l2+1 many collinear points.

Bounding the number of lattice points in a convex body by the maximal 1-dimensional
affine section has been also done by Rabinowitz [Rab89] who obtained for K ∈ Kn

G(K) ≤
(
max

ℓ
G(K ∩ ℓ)

)n
, (3.31)

where the maximum ranges over all affine lattice lines ℓ. Berg proved a homogeneous
version of (3.31) in [Ber18, Thm. 5.14]: For K ∈ Kn

os, n > 1, there exists a 1-dimensional
linear subspace ℓ ⊆ Rn such that

G(K) ≤
(
4

3

)n

G(K ∩ ℓ)n.

3.3 Reversing the Discrete Loomis–Whitney Inequality

As for the projections, we discuss a reverse Loomis-Whitney inequality in the spirit of
(3.11). Campi, Gritzmann, and Gronchi [CGG18] reversed the Loomis–Whitney inequal-
ity (3.1) by showing that there exists a constant d̃n ≥ c/n, where c is an absolute constant,
such that

vol(K)
n−1
n ≥ d̃n

(
n∏

i=1

vol(K|u⊥i )

) 1
n

, (3.32)

where again u1, . . . , un form a suitable orthonormal basis. In [KSZ19], Koldobsky, Saroglou
and Zvavitch showed that the optimal order of the constant d̃n is of size n−1/2.

In order to get a meaningful discrete version of (3.32) we have to project so that Zn|u⊥i is
again a lattice, i.e., ui ∈ Zn, and we have to count the lattice points of K|u⊥i with respect
to this lattice.
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Theorem 3.3.1. Let K ∈ Kn
os with dim(K ∩ Zn) = n. There exist linearly independent

vectors v1, . . . , vn ∈ Zn such that

G(K)
n−1
n ≥ O(1)−n

( n∏
i=1

GZn|v⊥i
(K|v⊥i )

) 1
n
.

Before we come to the proof, we have to estimate the number of points in the projection
of K|v⊥ with respect to the projected lattice Zn|v⊥ against the number of points in
(K ∩ Zn)|v⊥ for a given v ∈ Zn. To this end, we prove the following lemma.

Lemma 3.3.2. Let K ∈ Kn
os and v ∈ (K ∩ Zn) \ {0}. Then we have

GZn|v⊥(K|v⊥) ≤ 4n−1 ·
∣∣(K ∩ Zn)|v⊥

∣∣.
Proof. Let z ∈ (1/2)(K|v⊥) be a lattice point in Λ = Zn|v⊥. As the function x �→
vol1(K ∩ (x + Rv)) is concave on K|v⊥ by Brunn’s concavity principle and we have, by
assumption, vol1(K ∩ Rv) ≥ 2|v|, we deduce that the preimage of z has length at least
|v|. Since it is located in a lattice line parallel to Rv, it contains a lattice point (cf. Figure
3.4).

Figure 3.4: The point z is located deep inside of K|v⊥. Therefore, its preimages is long
enough to guarantee a lattice point.

So we have shown

GΛ

(1
2
K|v⊥

)
≤ |(K ∩ Zn)|v⊥|.

Applying Lemma 3.1.4, (3.7), in the (n−1)-dimensional space v⊥ with the lattice Λ gives
GΛ(K|v⊥) ≤ 4n−1GΛ((1/2)(K|v⊥)), which concludes the proof.
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Remark 3.3.3. The inequality of Lemma 3.3.2 is essentially best possible, in the sense
that in any dimension, there is a convex body K ∈ Kn

os with en ∈ K, such that

GZn|e⊥n (K|e⊥n ) = 3n−1 and (K ∩ Zn)|e⊥n = {0}.

To see this, let u = (1, 2, 4, ..., 2n−1)T ∈ Rn. We have Cn ∩ u⊥ ∩ Zn = {0}; Suppose there
were a non-zero point x ∈ Cn ∩ u⊥ ∩ Zn. Let i be the largest index such that xi ̸= 0. By
symmetry, we may assume that xi > 0. It follows from

i−1∑
j=0

2j = 2i − 1, (3.33)

that ⟨x, u⟩ ≥ 1, a contradiction to x ∈ u⊥.

On the other hand, we have (Cn ∩ u⊥)|e⊥n = Cn−1. Let x ∈ {±1}n−1 be a vertex of
Cn−1. Then, by (3.33),

∣∣∑n−1
i=1 xi2

i−1
∣∣ ≤ 2n−1. So there exists xn ∈ [−1, 1] such that

(x, xn)
T ∈ Cn ∩ u⊥.

Thus, the convex body K = conv
(
(Cn ∩ u⊥) ∪ {±en}

)
has the desired properties. ⋄

Now we are ready for the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. We abbreviate λi = λi(K) and let vi ∈ λiK ∩ Zn, 1 ≤ i ≤ n, be
linearly independent. Due to our assumption we have λn ≤ 1 and so vi ∈ K. So we may
apply Lemma 3.3.2 to obtain

n∏
i=1

GZn|v⊥i
(K|v⊥i ) ≤ 4n(n−1)

n∏
i=1

∣∣Z|v⊥i
∣∣,

where Z = K ∩ Zn. It is therefore enough to show that

n∏
i=1

∣∣Z|v⊥i
∣∣ ≤ O(1)n

2 |Z|n−1. (3.34)

To this end we set Si = Z ∩ Rvi, 1 ≤ i ≤ n. Then |Si| = 2⌊1/λi⌋ + 1. Now we choose a
subset Zi ⊆ Z such that the projection Zi → Z|v⊥i is bijective. Clearly, Zi + Si ⊆ Z + Z
and so we have∣∣Z + Z

∣∣ ≥ ∣∣Zi + Si

∣∣ = (2⌊1/λi⌋+ 1) ·
∣∣Z|v⊥i

∣∣ ≥ 2

3
((2/λi + 1)

∣∣Z|v⊥i
∣∣,

where for the last estimate we used once more that λn ≤ 1. So we obtain

|Z + Z|n ≥
(2
3

)n n∏
i=1

(2/λi + 1)
n∏

i=1

∣∣Z|v⊥i
∣∣.
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In view of Lemma 3.1.4, (3.7) we have |Z + Z| ≤ G(2K) ≤ 4nG(K) = 4n|Z| and thus

4n
2
(3
2

)n
|Z|n ≥

n∏
i=1

(2/λi + 1)
n∏

i=1

∣∣Z|v⊥i
∣∣.

Finally we use Malikiosis’s discrete version of Minkowski’s 2nd theorem (2.21), i.e.,∏n
i=1(2/λi + 1) ≥

√
3
−n|Z| in order to get (3.34).

Remark 3.3.4.

i) The above proof does not depend on the particular properties of the lattice Zn.
So one obtains the same statement for an arbitrary n-dimensional lattice Λ ⊆ Rn.
More precisely, if K ∈ Kn

os fulfills dim(K ∩ Λ) = n, we have

GΛ(K)
n−1
n ≥ c−n

( n∏
i=1

GΛ|v⊥i
(K|v⊥i )

) 1
n
,

where vi ∈ λi(K,Λ)K ∩ Λ are linearly independent.

ii) Also, the above approach yields a reverse Loomis-Whitney-type inequality, if one
aims for a lattice basis, instead of merely independent lattice vectors. However, in
order to apply Lemma 3.3.2 one has to ensure that the basis is contained in K. For
the basis {b1, ..., bn} from equation (2.15), this means that one has to enlarge K by
a factor n. So in this case, we obtain

G(K)
n−1
n ≥ (cn)−n

( n∏
i=1

GZn|v⊥i
(K|b⊥i )

) 1
n
.

⋄

3.4 Unconditional Bodies

In this section, we improve some of our inequalities for unconditional bodies. We start
with (3.7).

Lemma 3.4.1. Let K ∈ Kn be unconditional and m ∈ N. Then G(mK) ≤ (2m−1)nG(K)
and the inequality is sharp.

Proof. First, we prove the claim for dimK = 1, i.e., we may assume that K = [−x, x] ⊆ R,
x ≥ 0. Then, G(K) = 2⌊x⌋+ 1. In case that x ∈ Z we have

G(mK) = 2mx+ 1 ≤ m(2x+ 1) = m ·G(K).

So let x /∈ Z. Then,
G(mK) ≤ 2mx+ 1 < 2m(⌊x⌋+ 1) + 1.
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Since both sides of the inequality are odd integers, we obtain

G(mK) ≤ 2m(⌊x⌋+ 1)− 1 = 2m⌊x⌋+ 2m− 1

= (2m− 1)
( m

2m− 1
2⌊x⌋+ 1

)
≤ (2m− 1)G(K).

Next, let K ⊆ Rn be an arbitrary unconditional convex body. Consider the unconditional
body K ′ obtained by multiplying the first coordinates in K by m. The lattice points in
K and K ′ can be partitioned into intervals parallel to e1. The intervals that we see in K ′

are exactly the intervals of K, multiplied by m. So by the 1-dimensional case we have
G(K ′) ≤ (2m− 1)G(K). If we repeat this argument for every coordinate, we end up with
the desired inequality. The cubes K =

[
− (1− 1

2m), 1− 1
2m

]n
show that the inequality is

sharp.

Lemma 3.4.1 yields a slightly improved version of Theorem 3.1.3 for the class of uncon-
ditional bodies.

Proposition 3.4.2. Let K ∈ Kn
os be unconditional. Then,

G(K)
n−1
n ≥ 1

3n−1

( n∏
i=1

G(K ∩ e⊥i )
) 1

n
.

Proof. Again, we write Ki = K ∩ e⊥i and hi = h(K, ei). Note that hi is attained by a
multiple of ei, since K is unconditional. This implies that

Ki + [−hi, hi]ei ⊆ 2K,

and we obtain

G(2K)n−1 ≥
n−1∏
i=1

(
(2⌊hi⌋+ 1)G(Ki) ≥

n∏
i=1

G(Ki),

where the last inequality follows from Kn ⊆ [−h1, h1] × · · · × [−hn−1, hn−1]. The claim
follows by applying Lemma 3.4.1 to the left-hand side above.

Note that for an unconditional body K ⊆ Rn one has K ∩ e⊥i = K|e⊥i , 1 ≤ i ≤ n.
Therefore, Proposition 3.4.2 is also a sharpening of Theorem 3.3.1. In fact, following the
lines of the proof of the discrete reverse Loomis-Whitney inequality in Section 3.3, the
above proof is a simplification of the proof in Section 3.3.

Moreover, the inequalities of Theorem 3.2.1 and 3.2.3 hold with constant 1 for uncondi-
tional bodies, by the Loomis–Whitney inequality.

As for the discrete Brunn inequality, a constant 1 is obtained when intersecting an un-
conditional body K with a coordinate subspace L, since every slice K ∩ (L+ t) is mapped
into the central slice injectively by the orthogonal projection onto L. Moreover, for any
hyperplane H there is a coordinate i such that the projection H → e⊥i is bijective and
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maps lattice points in H to lattice points in e⊥i . The index i can be chosen to be an
index for which the normal vector v of H is non-zero. Therefore, the maximal hyperplane
section with respect to G(·) can always be chosen to be a coordinate section.

However, for general subspaces L we cannot hope for a constant 1 in the discrete Brunn
inequality, as the next example illustrates.

Example 3.4.3. Consider the symmetric cube Cn = [−1, 1]n and the vector

u = (1, 2, . . . , 2n−1)T ∈ Rn.

Then we have G(Cn ∩ u⊥) = 1 (cf. Remark 3.3.3).

On the other hand, we have G(Cn∩{x ∈ Rn : ⟨x, u⟩ = 1}) = n, because, in view of (3.33),
the points xk = ek −

∑k−1
j=0 ej , 1 ≤ k ≤ n are contained in this section and as in Remark

3.3.3, by considering the maximal non-zero coordinate of a lattice point in this section,
there are no further points. ⋄
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4 Interpolating Between Volume
and Lattice Point Enumerator
with Successive Minima

This chapter aims at building a bridge between Minkowski’s second theorem on volume
and successive minima (4.2) and its conjectured discrete analogue (4.3). Apart from
Proposition 4.4.5 and Section 4.5, the results presented here can be found in the joint
work [FL22] with Eduardo Lucas.

4.1 The Conjectures of Betke, Henk and Wills

Minkowski’s second theorem on volume and successive minima states for an n-dimensional
convex body K ∈ Kn

n that (cf. (2.19) and the references thereafter)

1

n!

n∏
i=1

2

λi(K)
≤ vol(K) ≤

n∏
i=1

2

λi(K)
. (4.1)

The lower and upper bound in (4.1) are attained, e.g., by simplices and parallelepipeds
respectively. Recall from Chapter 2 that for an n-dimensional convex body K, which
is not necessarily symmetric, the successive minima are defined as λi(K) = λi(cs(K)),
where cs(K) = 1

2(K −K) is the central symmetral of K.

Many alternatives to Minkowski’s complicated original proof have been obtained. One of
the first short proofs was given by Davenport [Dav39]. More analytic proofs were obtained
by Weyl [Wey42] and Estermann [Est46]; and Bambah, Woods and Zassenhaus provided
three new proofs in [BWZ65]. A more recent example was obtained by Henk [Hen02].

The result has been extended, for instance, to more general successive minima by Hlawka
[GL87, Sec. 9.5]; to more general discrete sets, not necessarily lattices, by Woods [Woo66];
to intrinsic volumes by Henk [Hen90]; or to surface area measures by Henk, Henze and
Hernández Cifre [HHH16].

Although (4.1) gives a deep insight on the lattice point structure of K, it may be regarded
as a “continuous result”, as both the volume and the successive minima vary continuously
in K. In their paper [BHW93], Betke, Henk and Wills use the successive minima to infer
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estimates on the actual number of lattice points in K, a discrete parameter. They obtain
for K ∈ Kn

os that

1

n!

n∏
i=1

( 1

λi(K)
− 1
)
≤ G(K) ≤

n∏
i=1

( 2i

λi(K)
+ 1
)
, (4.2)

where for the lower bound λn(K) ≤ 2 is needed [BHW93, Prop. 2.1 and Cor. 2.1]. While
the lower bound is best-possible, it is conjectured that the upper bound can be strength-
ened as follows [BHW93, Conj. 2.1]:

Conjecture 4.1.1 (Betke, Henk, Wills). Let K ∈ Kn
n and λi = λi(K). Then one has

G(K) ≤
n∏

i=1

⌊ 2

λi
+ 1
⌋
. (4.3)

Equality would be attained, e.g., for boxes of the form [−m1,m1]× ...× [−mn,mn], where
mi ∈ Z>0. In dimension 2 the conjecture has been confirmed by Betke, Henk and Wills
themselves [BHW93, Thm. 2.2] and in dimension 3 it has been shown by Malikiosis [Mal12,
Sec. 3.2], who also proved the benchmark result (2.21).

Betke, Henk and Wills pointed out in [BHW93, Prop. 2.2] that any inequality of the
form

G(K) ≤
n∏

i=1

( 2

λi
+ ci

)
, (4.4)

for some numbers ci, 1 ≤ i ≤ n, independent of K (but not necessarily of n), would imply
the upper bound in Minkowski’s second theorem (4.1). Indeed, one can asymptotically
approximate the volume of K by the lattice point enumerator with respect to progressively
finer lattices (using the properties of the Riemann integral), to which (4.4) could then be
applied, and the resulting limit is precisely Minkowski’s bound.

In this chapter, we use Minkowski’s second theorem to show (4.4) with ci = n (cf. Corollary
4.1.4). In order to do so, we aim to express the deviation between G(K) and vol(K) in
terms of the successive minima λi(K), i = 1, ..., n. Our approach stems from another
conjecture by Betke, Henk and Wills that relates the volume, the lattice point enumerator
and the successive minima simultaneously.

Conjecture 4.1.2 (Betke, Henk, Wills). Let K ∈ Kn
n and λi = λi(K). Then,

G(K) ≤ vol(K)

n∏
i=1

(
1 +

i λi

2

)
(4.5)

and, if λn ≤ 2
n ,

G(intK) ≥ vol(K)
n∏

i=1

(
1− i λi

2

)
. (4.6)

40



Moreover, if K = −K and λn ≤ 2, we have

G(intK) ≥ vol(K)
n∏

i=1

(
1− λi

2

)
. (4.7)

The bound (4.7) is stated as Conjecture 2.2 in [BHW93], where it is formulated for
arbitrary n-dimensional lattices. However, there is no loss of generality in restricting to
the integer lattice Zn. (4.5) and (4.6) have been communicated to the authors of [FL22]
by Martin Henk personally. In the general case, we obtain the following weakenings of
(4.5) and (4.6):

Theorem 4.1.3. Let K ∈ Kn
n and λi = λi(K), i ∈ [n]. Then we have

G(K) ≤ vol(K)
n∏

i=1

(
1 +

nλi

2

)
. (4.8)

Moreover, if λn ≤ 2
n , we have

G(intK) ≥ vol(K)
n∏

i=1

(
1− nλi

2

)
. (4.9)

From this we can deduce immediately, by applying the upper bound in (4.1) to the volume
in (4.8), the following inequality:

Corollary 4.1.4. Let K ∈ Kn
n and λi = λi(K), i ∈ [n]. Then we have

G(K) ≤
n∏

i=1

(
2

λi
+ n

)
.

While our bound is tight for convex bodies rK, r → ∞, it is weaker than Malikiosis’s
bound (2.21), if, e.g., λi(K) = 1/c for some fixed number c > 0. Then our bound is of
order nn, while the bound in (2.21) is of order

√
3
n
.

Apart from yielding discrete versions of Minkowski’s second theorem, Conjecture 4.1.2 is
interesting in its own right; on the one hand, one can deduce the well-known formula (cf.
(4.10))

lim
r→∞

vol(rK)

G(rK)
= 1 (4.10)

from it, since λi(rK) tends to 0 as r → ∞. On the other hand, if K contains an n-
dimensional set of lattice points, it follows that λi(K) ≤ 2 holds, and, if K = −K, one
has λi(K) ≤ 1, 1 ≤ i ≤ n. Therefore, we retrieve the universal bounds

G(K) ≤ (n+ 1)! vol(K),
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for K with dim(K ∩ Zn) = n, and

G(intK) ≥ 2−n vol(K),

for K = −K with dim(K ∩ Zn) = n, from Conjecture 4.1.2. These bounds essentially
correspond to the classical results of Blichfeldt (2.12) and van der Corput (2.11).

In fact, all inequalities in Conjecture 4.1.2 have equality cases that are invariant with
respect to integer scaling; (4.5) is tight, e.g., for integer multiples of the standard simplex
Tn = conv{0, e1, ..., en}, since λi(Tn) = 2 and thus,

vol(mTn)

n∏
i=1

(
1 +

iλi(mTn)

2

)
=

1

n!

n∏
i=1

(m+ i),

where the right hand side is exactly the Ehrhart polynomial of Tn [BR07, Thm. 2.2 (a)].
In view of [BR07, Thm. 2.2 (b)], we have

G
(
int(mTn)

)
=

1

n!

n∏
i=1

(m− i) = vol(mTn)
n∏

i=1

(
1− iλi(mTn)

2

)
and so (4.6) is tight for integer multiples of Tn as well. As it has been mentioned already in
[BHW93], equality cases for (4.7) are given for example by boxes parallel to the coordinate
axes with integral side lengths.

In dimension 2, we can confirm the upper bound in Conjecture 4.1.2. For the non-
symmetric lower bound we obtain an asymptotic confirmation:

Theorem 4.1.5. Let K ∈ K2
2 and λi = λi(K). Then we have

G(K) ≤ vol(K)

(
1 +

λ1

2

)
(1 + λ2) (4.11)

and

G(intK) ≥ vol(K)

(
1− λ1

2
− λ2

)
. (4.12)

In particular, for any ε > 0, if λ1 ≤ 2ε
1+ε , it follows from (4.12) that

G(intK) ≥ vol(K)

(
1− λ1

2

)
(1− (1 + ε)λ2) .

The remainder of the chapter is organized as follows: In the upcoming Section 4.2 we
study the behaviour of the successive minima in a reduction process called “Blaschke’s
shaking procedure”. This will allow us to reduce the proofs of the Theorems 4.1.3 and
4.1.5 to anti-blocking bodies. Section 4.3 contains the proof of Theorems 4.1.3 as well as
further results that connect the volume and the lattice point enumerator of n-dimensional
convex bodies. In Section 4.4 we deal with the planar case and we prove Theorem 4.1.5
and (4.7) for symmetric lattice polygons and right triangles.
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4.2 Anti-Blocking Convex Bodies

Recall that a convex body K is anti-blocking if K ⊆ Rn
≥0 and for every x = (x1, . . . , xn) ∈

K the set {x′ ∈ Rn
≥0 : x′i ≤ xi, ∀i ∈ [n]} is also contained in K. Given the convexity of

K, the latter condition is equivalent to K ∩ e⊥i = K|e⊥i , for all i ∈ [n].

Anti-blocking bodies have been introduced in [Ful71]. Their volumes have been exten-
sively studied in [AASS]. In the discrete setting, the set of lattice points K ∩Zn inside of
an anti-blocking body K is called a compressed set. Compressed sets have been consid-
ered in [GG01] and [GT05] (in the context of sum-set estimates) and in [VR12] (in the
context of discrete isoperimetric inequalities).

The goal of this section is to prove the following statement:

Theorem 4.2.1. For any convex body K ∈ Kn
n, there exists an anti-blocking convex body

A ⊆ Rn
≥0 such that the following holds:

i) vol(K) = vol(A),

ii) G(K) ≤ G(A),

iii) G(intK) ≥ G(intA) and

iv) λi(K) ≥ λi(A), for all i ∈ [n].

This shows that it is enough to prove (4.5) and (4.6) for the special class of anti-blocking
bodies.

An important tool for the proof of Theorem 4.2.1 is the Blaschke shaking of a convex
body K ∈ Kn

n with respect to an oriented hyperplane u⊥, u ̸= 0, which is defined as

shu(K) =
⋃

x∈K|u⊥

[
x, x+

fu,K(x)

|u|
· u
]
,

where fu,K(x) denotes the length of the preimage of x under the orthogonal projection
K → u⊥ (cf. Figure 4.1). The Blaschke shaking has been introduced in [Bla17]. This
process, which bares resemblance to Steiner’s symmetrization, belongs to a wider class of
transformations known as “shakings”. These processes have been explored, for instance,
to obtain discrete isoperimetric inequalities by Kleitman [Kle79], and more recently by
Bollobás and Leader [BL91]. Stability results, akin to that of Gross for Steiner’s sym-
metrization, have been obtained by Biehl [Bie23], Schöpf [Sch76], and more recently,
Campi, Colesanti and Gronchi [CCG01], for example. Other applications were obtained
in [Uhr94] and [CCG99].

The operator shu is known to preserve convexity [CCG01, Lemma 1.1] and we have the
following lemma:

Lemma 4.2.2. Let K ∈ Kn
n and u ∈ Rn \ {0}. For the Blaschke shaking shu(K), the

following relations hold:
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Figure 4.1: Illustration of two consecutive Blaschke shakings. The body she2(she1(K)) is
anti-blocking.

i) K|u⊥ ⊆ shu(K)

ii) vol(K) = vol(shu(K)),

iii) |u|cs(K) = |u|cs(shu(K)),

iv) |x|cs(K) ≥
∣∣x|u⊥∣∣

cs(shu(K))
, for all x ∈ Rn.

If u = ei, for some i ∈ [n], we also have

v) G(K) ≤ G(shei(K)),

vi) G(intK) ≥ G(int(shei(K)).

Proof. i) and ii) follow directly from the definition of shu(K). For iii), we note that

|u|cs(K) = min
{
r ≥ 0 : ∃x, y ∈ K.u =

r

2
(x− y)

}
= min

{ 2|u|
|x− y|

: x, y ∈ K, [x, y] is parallel to u
}
=

2|u|
maxvol1(S)

,

where the maximum ranges over all segments S ⊆ K that are parallel to u. Now iii)
follows directly from the definition of shu(K).
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For iv) let r = |x|−1
cs(K). Then there are a, b ∈ K such that rx = 1

2(a − b) and from i) it
follows that

r · x|u⊥ =
1

2

(
a|u⊥ − b|u⊥

)
∈ cs

(
shu(K)

)
.

Thus
∣∣r · x|u⊥∣∣

cs(shu(K))
≤ 1, which implies iv) by the choice of r.

In order to prove v), we start with an interval I = [a, b] ⊆ R and show that the number
of lattice points in an interval of length b − a is maximized when a ∈ Z. Otherwise, we
could let δ = a− ⌊a⌋ and observe that

|(I − δ) ∩ Z| = ⌊b− δ⌋ − ⌈a− δ⌉+ 1 = ⌊b− δ⌋ − ⌊a⌋+ 1

≥ ⌊b⌋ − ⌊a⌋ = ⌊b⌋ − ⌈a⌉+ 1 = |I ∩ Z|

In order to obtain v) it is then enough to note that the lattice points in K and shei(K)
are contained in intervals of the same lengths, while in shei(K), these intervals start at
a lattice point and therefore contain at least as many lattice points as those in K (cf.
Figure 4.1).

vi) is proved with the same argument, but since the intervals involved are open, translating
them such that they start at a lattice point will potentially reduce, but never increase,
their lattice point count.

Proof of Theorem 4.2.1. Let v1, ..., vn ∈ Zn be linearly independent such that |vi|cs(K) =
λi(K). Since all the functionals involved are invariant with respect to unimodular transfor-
mations, we may assume that the matrix [v1, ..., vn] is an upper triangular matrix (e.g., a
Hermite-normal-form [Sch86, Sec. 4.1]). Let K0 = K and for j ∈ [n], let Kj = shej (Kj−1).
We show that A := Kn is the desired body. To this end, we prove the following statement
inductively.

Claim 1. For j ∈ {0, ..., n}, there exist linearly independent vectors u1, ..., un ∈ Zn such
that |ui|cs(Kj)

≤ λi(K) and the matrix [u1, ..., un] is of the form(
Dj 0
0 Tn−j

)
,

where Dj is a j × j-diagonal matrix and Tn−j is an (n − j) × (n − j)-upper triangular
matrix.

For j = 0, Claim 1 is clearly true with ui = vi, 1 ≤ i ≤ n. So we assume that the claim
holds for some j < n. We choose u′i = ui|e⊥j+1, for i ̸= j + 1, and u′j+1 = uj+1. In view of
Kj+1 = shej+1(Kj), Lemma 4.2.2 iv) and our induction hypothesis, we have∣∣u′i∣∣cs(Kj+1)

=
∣∣∣ui|e⊥j+1

∣∣∣
cs(Kj+1)

≤ |ui|cs(Kj)
≤ λi(K),

for all i ̸= j + 1. From Lemma 4.2.2 iii) it also follows that∣∣u′j+1

∣∣
cs(Kj+1)

= |uj+1|cs(Kj)
≤ λj+1(K).
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The matrix [u′1, ..., u
′
n] differs from [u1, ..., un] only by the zeros in the (j+1)-th row after

the diagonal entry. Therefore, the system u′1, ..., u
′
n ∈ Zn is also linearly independent and

it fulfills the requirements of Claim 1 for j + 1.

Hence, A = Kn satisfies λi(A) ≤ λi(K) for all i ∈ [n]. The other requirements i)–iii) on
A follow from a repeated application of Lemma 4.2.2 ii),v) and vi). It remains to prove
that A is indeed anti-blocking. To this end, we use induction again to prove:

Claim 2. For j ∈ {0, ..., n} and x ∈ Kj , we have x|e⊥i ∈ Kj , for all 1 ≤ i ≤ j.

Figure 4.2: The construction for the proof of Claim 2.

For j = 0, the statement is trivial. So we assume Claim 2 holds for some j ∈ [n]. Let
x ∈ Kj+1. By Lemma 4.2.2 i) it follows that x|e⊥j+1 ∈ Kj+1. So we consider i ∈ [j]. Let
xj+1 be the (j+1)-th entry of x and let y ∈ Kj be the lowest (with respect to ej+1) point in
the preimage of x|e⊥j+1 under the orthogonal projection Kj → e⊥j+1 (cf. Figure 4.2). Then,

[y, y + xj+1ej+1] ⊆ Kj . By induction, it follows that [y|e⊥i , y|e⊥i + xj+1ej+1] ⊆ Kj . Since
(y|e⊥i )|e⊥j+1 = (x|e⊥i )|e⊥j+1, the interval [(x|e⊥i )|e⊥j+1, (x|e⊥i )|e⊥j+1 + xj+1ej+1] is contained

in Kj+1. Since (x|e⊥i )|e⊥j+1 + xj+1ej+1 = x|e⊥i , Claim 2 holds for j + 1.

For j = n, Claim 2 yields that A is anti-blocking.

The proof of Claim 2 essentially corresponds to the argument given in the proof of Lemma
1.2 in [CCG01].
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One of the reasons why anti-blocking bodies are beneficial when dealing with successive
minima problems is that the successive minima are always realized by the standard basis
directions of Zn. Even more, the segments that testify for the successive minima are of
the form [0, (2/λi)ei], as the next lemma will show. In particular, all these segments share
the origin as a common point, a property that will be crucial in the proof of Theorem
4.1.3.

Lemma 4.2.3. Let K ∈ Kn
n be anti-blocking. Then the coordinates can be permuted in

such a way that |ei|cs(K) = λi(K) holds. In this case, one also has 2
λi(K)ei ∈ K, 1 ≤ i ≤ n.

Proof. Let v1, ..., vn ∈ Zn be linearly independent with |vi|cs(K) = λi(K). Then there
exists a permutation σ of [n] such that the σi-th entry of vi is non-zero. Otherwise
the determinant of [v1, ..., vn] would be zero, a contradiction. For the sake of simplicity
we assume that σ is the identity. Since K is anti-blocking, the projection wi of vi on
span{ei} =

⋂
j ̸=i e

⊥
j is contained in K and a repeated application of Lemma 4.2.2 iv)

shows that |wi|cs(K) ≤ |vi|cs(K) = λi(K). By the minimality of the λi’s and the fact that
wi ∈ span{ei} ∩ Zn, we obtain wi = ei and |ei|cs(K) = λi(K).

For the second part we deduce from |ei|cs(K) = λi(K) that

1

λi(K)
ei =

1

2
(a− b),

for some a, b ∈ K. Since 1/λi(K) is the maximal number r such rei ∈ cs(K), bi must be
zero. So b is a member of e⊥i and since K is anti-blocking we obtain

2

λi(K)
ei =

( 2

λi(K)
ei + b

)∣∣∣span{ei} = a|span{ei} ∈ K

as desired.

4.3 n-Dimensional Case

We start with the following bounds in terms of the covering radius µ(K) of K ∈ Kn
n.

Recall that µ(K) = min{µ ≥ 0 : µK + Zn = Rn}.

Proposition 4.3.1. Let K ∈ Kn
n and µ = µ(K). Then we have

G(K) ≤ vol(K)
(
1 + µ

)n
. (4.13)

If µ ≤ 1, i.e., K + Zn = Rn, we also have

G(intK) ≥ vol(K)
(
1− µ

)n
. (4.14)

Both inequalities are tight.
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The upper bound (4.13) has also been shown independently by Dadush in [Dad12, Lemma
7.4.1].

Proof of Proposition 4.3.1. For the upper bound, it is enough to show that µK contains
a measurable tiling set, i.e., a set S with intS ∩ (z + intS) = ∅, for all z ∈ Zn \ {0} and
S+Zn = Rn. Given the former condition, the latter condition is equivalent to vol(S) = 1.
For a tiling set S we have

G(K) = vol((K ∩ Zn) + S) ≤ vol(K + µK) = (1 + µ)nvol(K).

In order to find S, let P = [0, 1]n. There are finitely many translates µK + xi, xi ∈ Zn,
1 ≤ i ≤ m, that cover P . We define inductively P1 = P ∩ (µK + x1) and

Pi =
(
P \ (

⋃
j<i

Pj)
)
∩ (µK + xi).

Now, let Si = Pi − xi ⊆ µK and S =
⋃m

i=1 Si. We claim that S is the desired set. To
prove this, we show that S has volume 1 and that its Zn-translates do not overlap.

Clearly the Pi’s are interiorly disjoint, i.e., int(Pi)∩ int(Pj) = ∅, and satisfy
⋃m

i=1 Pi = P .
The Si’s are interiorly disjoint too; suppose there are i ̸= j such that intSi intersects
intSj . Then, intPi intersects intPj + xi − xj . Since the Zn translates of P are interiorly
disjoint, we must have xi = xj , a contradiction. Therefore the Si’s are interiorly disjoint
and it follows that

vol(S) =
m∑
i=1

vol(Si) =
m∑
i=1

vol(Pi) = vol(P ) = 1.

Now assume that intS intersects intS+x for some x ∈ Zn. Then there exist i, j ∈ [m] such
that intPi−xi intersects intPj −xj +x. Again, since the Zn-translates of P are interiorly
disjoint, as well as the Pi’s, we must have i = j and x = 0. Hence, the Zn-translates of S
are interiorly disjoint and so S is as desired. This finishes the proof of the upper bound.

For the lower bound, we apply (2.13) to K ′ = (1 − µ)intK and obtain a vector t ∈ Rn

such that vol(K ′) ≤ G(K ′ + t). Since µK +Zn = Rn, we may assume that t ∈ µK holds.
Thus, for µ < 1,

vol(K)(1− µ)n = vol(K ′) ≤ G(K ′ + t) ≤ G
(
(1− µ)intK + µK) = G(intK).

For µ = 1 the lower bound is trivially satisfied.

In order to see that the inequality is tight, consider K = [0,m]n, where m ∈ Z>0. For such
cubes one has vol(K) = mn, G(K) = (m + 1)n, G(intK) = (m − 1)n and µ(K) = 1/m.
So equality is achieved for both of the bounds.

Remark 4.3.2. i) The strategy of finding an appropriate tiling used in the proof of
the upper bound above has also been applied, for instance, in the proof of Blichfeldt’s
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classical variant of (2.13) [GL87, Ch. 2, Thm. 5.2]. Moreover, in [XZ14], the authors
showed that convex tilings in these conditions need not exist.

ii) The disadvantage of (4.13) in comparison to the upper bound (4.8) is that it cannot
profit from K being large in a lattice subspace. Consider the convex body K =
[−r, r]n−1 × [−1/2, 1/2], where r is large. Then it holds that µ(K) = 1, so the
constant in (4.13) is 2n. But the constant in (4.8) is of order n + 1, since λi(K)
tends to 0 for i < n as r → ∞.

On the other hand, (4.14) is actually stronger than the lower bound (4.9) in Theorem
4.1.3. We will use (4.14) to prove (4.9) in Section 4.3.

iii) Applied to the special class of convex lattice tiles, i.e., convex bodies K with K +
Zn = Rn and intK ∩ (z + intK) = ∅, for all z ∈ Zn \ {0}, Proposition 4.3.1 yields
for r ≥ 1 that

(r − 1)n ≤ G(int(rK)) ≤ G(rK) ≤ (r + 1)n,

since vol(K) = µ(K) = 1 and µ(rK) = µ(K)
r , which is sharp for K = [0, 1]n and

r ∈ Z>0. ⋄

For the proof of Theorem 4.1.3, we also need an inequality of Davenport [Dav51], which
states that for any convex body K ∈ Kn

n one has the bound

G(K) ≤
n∑

k=1

∑
I∈
([n]
k

) voln−k(K|L⊥
I ), (4.15)

where LI = span{ei : i ∈ I}. For anti-blocking bodies K, (4.15) can also be derived
directly as follows:

G(K) = vol
(
(K ∩ Zn) + [−1, 0]n

)
≤ vol(K + [−1, 0]n)

=
n∑

k=1

∑
I∈([n]

k )

voln−k(K|L⊥
I ),

where the last equation follows, since for anti-blocking bodies, the Minkowski sum can be
decomposed into a union of disjoint prisms:

K + [−1, 0]n =
⋃

I⊆[n]

{
x ∈ Rn : x|L⊥

I ∈ K|L⊥
I and xi ∈ [−1, 0], ∀i ∈ I

}
.

We are now ready for the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. In order to prove (4.8), we may assume thatK is anti-blocking by
Theorem 4.2.1. After renumbering the coordinates, we can also assume that |ei|cs(K) = λi,

49



1 ≤ i ≤ n holds (cf. Lemma 4.2.3). For a set I ⊆ [n], let LI = span{ei : i ∈ I}. An
inequality of Rogers and Shephard [RS58a, Thm. 1] yields that

volk(K ∩ LI)voln−k(K|L⊥
I ) ≤

([n]
k

)
vol(K), (4.16)

for any I ∈
([n]
k

)
. By Lemma 4.2.3 we have 2

λi
ei ∈ K, so from (4.16), we deduce that

voln−k(K|L⊥
I ) ≤

(
n

k

)
vol(K)

volk(K ∩ LI)
≤
(
n

k

)
vol(K)

volk(conv{(2/λi)ei : i ∈ I})

= k!

(
n

k

)
vol(K)

∏
i∈I

λi

2
≤ vol(K)

∏
i∈I

nλi

2
.

Combining this with Davenport’s inequality (4.15) yields

G(K) ≤ vol(K)
∑
I⊆[n]

∏
i∈I

nλi

2
= vol(K)

n∏
i=1

(
1 +

nλi

2

)

as desired. In order to prove (4.9), we use the lower bound (4.14) in terms of µ(K), as
well as the relation (2.18), which states

µ(K) ≤
n∑

i=1

λi

2
. (4.17)

Since λn ≤ 2/n, (4.17) yields that µ(K) ≤ 1. Thus, we may apply Proposition 4.3.1 and
obtain

G(intK) ≥ vol(K)
(
1− µ(K))n ≥ vol(K)

(
1−

n∑
i=1

λi

2

)n
= vol(K)

( 1
n

n∑
i=1

(
1− nλi

2

))n
≥ vol(K)

n∏
i=1

(
1− nλi

2

)
,

where we used the inequality of arithmetic and geometric means in the last step.

Schymura generalized Davenport’s inequality (4.15) and obtained for an arbitrary linearly
independent set {b1, ..., bn} ⊆ Zn that

G(K) ≤
n∑

k=1

∑
I∈
([n]
k

) voln−k(K|L⊥
I )volk(PI), (4.18)

where LI = span{bi : i ∈ I} and PI =
∑

i∈I [0, bi] [Hen12, Lemma 1.1]. We reverse (4.18)
in the following way.
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Theorem 4.3.3. Let K ∈ Kn
n and let b1, ..., bn ∈ Zn be linearly independent. Then

vol(K) ≤
∑
I⊆[n]

GZn|L⊥
I
(intK|L⊥

I ) (4.19)

holds, where LI = span{bi : i ∈ I} and GZn|L⊥
I
denotes the lattice point enumerator with

respect to the projected lattice Zn|L⊥
I . The inequality is tight.

The factor volk(PI) in (4.18) is hidden in the correspondingly higher density of Zn|L⊥
I .

In fact, one has det(Zn|L⊥
I ) ≥ volk(PI)

−1.

Proof. For an ordered linearly independent set B = {b1, ..., bk} and a vector x =
∑k

i=1 αibi
in spanB, we write suppB(x) = {i : αi ̸= 0}. We will show the following statement:

Claim 3. Let Λ be an n-dimensional lattice and B = {b1, ..., bn} ⊆ Λ be a linearly
independent set. For any convex and bounded (but not necessarily closed) set K ⊆
span(Λ), and any t ∈ span(Λ), it holds that

GΛ(K + t) ≤
∑

I⊆suppB(t)

GΛ|L⊥
I
(K|L⊥

I ), (4.20)

where LI = span{bi : i ∈ I}.

If t = 0 there is only one summand in (4.20) corresponding to I = ∅, and so (4.20) reads
as GΛ(K) ≤ GΛ(K), a tautology. Thus, from now on we assume that t ̸= 0.

First we note that if n = 1, then (4.20) states for non-zero t that

GΛ(K + t) ≤ GΛ(K) + 1. (4.21)

Since any bounded convex set K ⊆ R1 is a bounded interval, the statement is confirmed.

Now, for any n > 1, we will prove (4.20) by induction on |suppB(t)|. If |suppB(t)| = 1
then t = α1b1 for some α1 ̸= 0, and thus

GΛ(K + t) =
∑

x∈K|b⊥1 ∩Λ|b⊥1

GΛ((K + t) ∩ (x+ Rb1)).

Since the bodies on the right hand side are segments parallel to t, we can apply (4.21)
and obtain

GΛ(K + t) ≤
∑

x∈K|b⊥1 ∩Λ|b⊥1

(
GΛ(K ∩ (x+ Rb1)) + 1

)
= GΛ(K) + GΛ|b⊥1

(K|b⊥1 ), (4.22)

which corresponds to (4.20) in this case.
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Finally, let t =
∑n

i=1 αibi be an arbitrary non-zero vector in span(Λ). Consider any
j ∈ suppB(t). We define t′ = t − αjbj and t′′ = t′|b⊥j as well as B′ = B \ {bj} and

B′′ = B′|b⊥j . Then, we observe that

suppB(t
′) = suppB′′(t′′) = suppB(t) \ {j}.

Therefore, we obtain with L̃I = span{bi|b⊥j : i ∈ I} that

GΛ(K + t) =GΛ(K + t′ + αjbj)

≤GΛ(K + t′) + GΛ|b⊥j
((K + t′)|b⊥j )

=GΛ(K + t′) + GΛ|b⊥j
(K|b⊥j + t′′)

≤
∑

I⊆suppB(t)\j

GΛ|L⊥
I
(K|L⊥

I )

+
∑

I⊆suppB(t)\j

G
(Λ|b⊥j )|L̃I

⊥((K|b⊥j )|L̃I
⊥
)

=
∑

I⊆supp(t)\j

(
GΛ|L⊥

I
(K|L⊥

I ) + GΛ|L⊥
I∪j

(K|L⊥
I∪j)

)
=

∑
I⊆suppB(t)

GΛ|L⊥
I
(K|L⊥

I ).

For the first inequality we used (4.22), and for the second inequality we used the induction
hypothesis (4.20) applied to K, Λ, B and t′, as well as to K|b⊥j , Λ|b⊥j , B′′ and t′′. This
finishes the proof of Claim 3 and so we obtain

G(intK + t) ≤
∑
I⊆[n]

GZn|L⊥
I
(intK|L⊥

I )

for any t ∈ Rn. Now inequality (4.19) follows from (2.13).

To see that it is tight let K = [0, ki]× ...× [0, kn], where ki ∈ Z>0, and bi = ei. Then we
have

vol(K) =
n∏

i=1

ki =
n∏

i=1

(
(ki − 1) + 1

)
=
∑
I⊆[n]

∏
i∈I

(ki − 1) =
∑
I⊆[n]

GZn|L⊥
I
(intK|L⊥

I ).

4.4 Two-Dimensional Case

For the proof of Theorem 4.1.5, we take the reduction from Section 4.2 a step further,
by shaking K in such a way that it is anti-blocking and, in addition, located below the
diagonal line passing through (2/λ1)e1 and (2/λ1)e2 (cf. Figure 4.3).
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(a) First, K is pushed under the diagonal D from
below, ...

(b) ...next from the right and then back down
on e⊥2 .

Figure 4.3: Illustration of the shaking process T .

To this end, we consider non-orthogonal shakings as a generalization of the Blaschke
shakings in Section 4.2; For an affine line ℓ ⊆ R2 and a vector u ∈ R2 \ {0} which is not
parallel to ℓ, let πu,ℓ denote the projection on ℓ along u. For K ∈ K2

2, we then define

shu,ℓ(K) =
⋃

x∈πu,ℓ(K)

[
x, x+ vol1 (K ∩ (x+ Ru))

u

|u|

]

as the Blaschke shaking of K with respect to u and ℓ. Note that in the setting of Section
4.2, we have shu = shu,u⊥ .

As we saw in Section 4.2, it is enough to prove Theorem 4.1.5 for K ∈ K2
2 anti-blocking.

Starting with an anti-blocking body K that satisfies |ei|cs(K) = λi(K) (cf. Lemma 4.2.3),
we construct a new body A by shaking K first vertically and then horizontally from below
against a lattice diagonal D = {x ∈ R2 : x1 + x2 = m}, m ∈ Z, and finally back down on
e⊥2 . (The value m ∈ Z may be chosen arbitrarily since lattice translations do not change
the involved parameters.) Formally, we define A = T (K), where

T = she2 ◦ sh−e1,D ◦ sh−e2,D.

We claim that A satisfies the following properties:

Lemma 4.4.1. Let K and A be as above. Then the following statements hold true:

i) A is convex,

ii) A is anti-blocking,

iii) vol(A) = vol(K),
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iv) G(A) ≥ G(K),

v) G(intA) ≤ G(intK),

vi) λ1(A) ≤ λ1(K),

vii) λ2(A) = λ2(K) and

viii) A ⊆ {x ∈ R2 : x1 + x2 ≤ 2/λ1(A)}.

For the proof of the lemma, we will use that non-orthogonal Blaschke shakings are
monotonous:

Lemma 4.4.2. Let K,L ∈ K2
2 with K ⊆ L. Also, let ℓ ⊆ R2 be a line and u ∈ Rn \ {0}

be not parallel to ℓ. Then we have

shu,ℓ(K) ⊆ shu,ℓ(L).

This is a widely known fact in the context of classical Blaschke shakings (cf. [CCG01,
Lemma 1.1 (iii)]).

Proof. Let sh = shu,ℓ and π = πu,ℓ. Consider a point x ∈ sh(K). Then we have x ∈
π(K) ⊆ π(L). Also, by inclusion, we have

l1 := vol1
(
K ∩ (x+ Ru)

)
≤ vol1

(
L ∩ (x+ Ru)

)
=: l2.

Hence, since x ∈ sh(K),

x ∈
[
π(x), π(x) + l1

u

|u|

]
⊆
[
π(x), π(x) + l2

u

|u|

]
⊆ sh(L).

Proof of Lemma 4.4.1. For i) we show that shu,ℓ(K) is convex for all u, K and ℓ as in
Lemma 4.4.2. To see this, we consider x, y ∈ shu,ℓ(K). Let x and y denote the points in
K on the lines x+ Ru and y + Ru respectively that minimize ⟨·, u⟩. Then, the points

z̃ = z + |z − πu,ℓ(z)| · u/|u|, z ∈ {x, y},

are contained in K. Lemma 4.4.2 then yields that

conv{πu,ℓ(x), πu,ℓ(y), x, y} = shu,ℓ
(
conv{x, x̃, y, ỹ}

)
⊆ shu,ℓ(K).

In particular, [x, y] ⊆ shu,ℓ(K), which shows that shu,ℓ(K) is convex. Thus, A is convex
as well.

Next, we consider the box B = [0, 2/λ1(K)]× [0, 2/λ2(K)]. Clearly, we have K ⊆ B and
by Lemma 4.4.2 it follows that A ⊆ T (B). The vertical segments sh−e2,D are of length
2/λ2(K). The vertical segments in sh−e1,D(sh−e2,D(B)) are also not longer than those in
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(a) Applying sh−e1,D to the box B does not change
the lengths of the vertical segments.

(b) Applying sh−e1,D does not lead to any
vertical segments of length higher than
2/λ2(K) as they are all contained in the grey
area.

Figure 4.4: Behaviour of the vertical segments when passing from B to T (B)

sh−e2,D(K). Therefore, all vertical segments in T (B) (and thus also in A) are of length
at most 2/λ2(K) (cf. Figure 4.4). On the other hand, by considering the triangle

∆ = conv{0, 2/λ1(K)e1, 2/λ2(K)e2} ⊆ K,

which fulfills T (∆) = ∆ because of λ1(K) ≤ λ2(K), we see that the segment over the
origin in A has length precisely 2/λ2(K). Since by construction we have A ∩ e⊥2 = A|e⊥2 ,
we obtain from this A ∩ e⊥1 = A|e⊥1 as well. Therefore, A is anti-blocking and fulfills
|e2|cs(A) = λ2(K), as well as |e1|cs(A) ≤ |e1|cs(∆) = λ1. So we obtained ii), vi) and vii).

iii) follows from Fubini’s theorem applied to span{u} and u⊥, since also for arbitrary non-
orthogonal shakings one has that shu,ℓ(K)|u⊥ = K|u⊥ and vol1(shu,ℓ(K) ∩ (x + Ru)) =
vol1(K ∩ (x+ Ru)), for any x ∈ u⊥.

iv) and v) are proven in the same way as Lemma 4.2.2 v) and vi), since π−ei,D(Z2) = Z2∩D
and, thus, all the shaken lattice segments in ei-direction of any sh−ei,D(K) contain a lattice
point on D as an endpoint.

For viii), let p denote the lowest point on the diagonal (with respect to e2) such that
p ∈ sh−e1,D(sh−e2,D(K)). Then we have

sh−e1,D(sh−e2,D(K)) ⊆ conv{me2, p|e⊥1 , p},

where m is the integer with the property that me2 ∈ D (cf. Figure 4.3). Applying she2
to both sides of the inclusion yields that

A ⊆ conv{0, 2/λ1(A)e1, 2/λ1(A)e2} ⊆ {x ∈ R2 : x1 + x2 ≤ 2/λ1(A)}.

55



In order to prove Theorem 4.1.5, we also need the following estimates, which follow from
elementary properties of concave functions:

Lemma 4.4.3. Let f : [a, b] → R be a concave function, then we have

1

2

(
f(a) + f(b)

)
(b− a) ≤

∫ b

a
f(t) dt.

Moreover, if f ′(a) exists, we also have∫ b

a
f(t) dt ≤ (b− a)

(
f(a) + (b− a)

1

2
f ′(a)

)
.

Proof. For the upper bound, let g be the affine linear function given by g(a) = f(a) and

g(b) = f(b), i.e., g(t) = f(b)−f(a)
b−a (t−a)+ f(a). By concavity, we have f ≥ g and therefore∫ b

a
f(t) dt ≥

∫ b

a
g(t) dt =

1

2

(
f(a) + f(b)

)
(b− a).

For the upper bound let h be the tangent of f at a, i.e., h(t) = f ′(a)(t− a)+ f(a). Again
by concavity, we have h ≥ f and, thus,∫ b

a
f(t) dt ≤

∫ b

a
h(t) dt ≤ (b− a)

(
f(a) + (b− a)

1

2
f ′(a)

)

Proof of Theorem 4.1.5. We write λi = λi(K), i = 1, 2. In view of Theorem 4.2.1 and
Lemma 4.4.1, we can assume that K is an anti-blocking body with |ei|cs(K) = λi and

K ⊆ {x ∈ R2 : x1 + x2 ≤ 2/λ1}. We let ℓt = {x ∈ R2 : x2 = t} denote the horizontal line
at height t ∈ R and we consider

f :
[
0,

2

λ2

]
→ R, t 7→ vol1(K ∩ ℓt).

We observe that h(K, e2) = 2/λ2 holds. Since K is convex, this implies that f is concave.
Moreover, since K is anti-blocking, f is decreasing. From the inclusion K ⊆ {x ∈ R2 :

x1 + x2 ≤ 2/λ1} it follows that

f(t) ≤ f(0)− t =
2

λ1
− t (4.23)

holds for all t ∈ [0, 2/λ2]. Exploiting the fact that the sections K ∩ ℓt are 1-dimensional,
we obtain that

G(K) =

⌊2/λ2⌋∑
i=0

G(K ∩ ℓt) ≤
⌊2/λ2⌋∑
i=0

(
f(i) + 1

)
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=
1

2
(f(0) + f(⌊2/λ2⌋) +

⌊2/λ2⌋∑
i=1

(1
2

(
f(i− 1) + f(i)

))
+ ⌊2/λ2⌋+ 1.

We apply (4.23) to f(⌊2/λ2⌋) and the lower bound in Lemma 4.4.3 to the summands
1
2

(
f(i− 1) + f(i)

)
and deduce

G(K) ≤ 2

λ1
− 1

2
⌊2/λ2⌋+

∫ ⌊2/λ2⌋

0
f(t) dt+ ⌊2/λ2⌋+ 1

≤ vol(K) +
2

λ1
+

1

λ2
+ 1

≤ vol(K)
(
1 + λ2 +

λ1

2
+

λ1λ2

2

)
= vol(K)

(
1 +

λ1

2

)(
1 + λ2

)
,

where we used the lower bound in Minkowski’s second theorem (4.1), applied to the
summands 2/λ1, 1/λ2 and 1 each, to obtain the third line. This shows the upper bound
(4.11) of the theorem.

For the lower bound, we assume that f is differentiable. Else, we might approximate f
with a linear spline φ from below. φ in turn can be approximated by a smooth concave
function g from below by rounding its corners. This function satisfies g(0) = f(0), and
thus, the anti-blocking convex body

K ′ = {(x, y) ∈ R2 : 0 ≤ y ≤ 2/λ2, 0 ≤ x ≤ g(y)} ⊆ K

is located underneath the diagonal {x ∈ R2 : x1 + x2 = 2/λ2(K
′)} as well.

We observe that ⌈2/λ2−1⌉ is the height of the highest horizontal integer line that intersects
intK. Therefore, we can estimate the number of interior lattice points of K as follows:

G(intK) =

⌈2/λ2−1⌉∑
i=1

G(intK ∩ ℓi) ≥
⌈2/λ2−1⌉∑

i=1

(
f(i)− 1

)
=

⌈2/λ2−1⌉∑
i=1

f(i)− ⌈2/λ2 − 1⌉.

We use the upper bound in Lemma 4.4.3 in order to estimate

f(i) ≥
∫ i+1

i
f(t) dt− 1

2
f ′(i),

for all 1 ≤ i < ⌈2/λ2 − 1⌉ and, since 2/λ2 − ⌈2/λ2 − 1⌉ ≤ 1,

f
(
⌈2/λ2 − 1⌉

)
≥
∫ 2/λ2

⌈2/λ2−1⌉
f(t) dt− (2/λ2 − ⌈2/λ2 − 1⌉)1

2
f ′(⌈2/λ2 − 1⌉

)
.
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Combining this, we obtain

G(intK) ≥
⌈2/λ2−1⌉−1∑

i=1

∫ i+1

i
f(t) dt+

∫ λ2/2

⌈2/λ2−1⌉
f(t) dt (4.24)

+
1

2

( ⌈2/λ2−1⌉−1∑
i=1

(
− f ′(i)

)
− (2/λ2 − ⌈2/λ2 − 1⌉)f ′(⌈2/λ2 − 1⌉

))
− ⌈2/λ2 − 1⌉

=vol(K)−
∫ 1

0
f(t) dt

+
1

2

( ⌈2/λ2−1⌉−1∑
i=1

(
− f ′(i)

)
− (2/λ2 − ⌈2/λ2 − 1⌉)f ′(⌈2/λ2 − 1⌉

))
− ⌈2/λ2 − 1⌉

Due to (4.23), we have ∫ 1

0
f(t) dt ≤ 2

λ1
− 1

2
. (4.25)

Next, we estimate the bracket term in the last but one line of (4.24). To this end, we
observe that −f ′ is increasing, since f is concave, and that −f ′ is non-negative, since K
is anti-blocking. Therefore, we obtain that

⌈2/λ2−1⌉−1∑
i=1

(
− f ′(i)

)
− (2/λ2 − ⌈2/λ2 − 1⌉)f ′(⌈2/λ2 − 1⌉

)
≥

⌈2/λ2−1⌉−1∑
i=1

∫ i

i−1
−f ′(t) dt

+
(
(2/λ2 − 1)− (⌈2/λ2 − 1⌉ − 1)

)
(−f ′(2/λ2 − 1))

≥
∫ 2/λ2−1

0
−f ′(t) dt = f(0)− f(2/λ2 − 1)

≥ 2

λ2
− 1,

where we used (4.23) in the last step. Substituting this and (4.25) into (4.24) yields

G(intK) ≥ vol(K)− 2

λ1
+

1

2
+

1

2

( 2

λ2
− 1
)
−
⌈
2

λ2
− 1

⌉
≥ vol(K)− 2

λ1
− 1

λ2
= vol(K)

(
1− 1

vol(K)

( 2

λ1
+

1

λ2

))
≥ vol(K)

(
1− λ1

2
− λ2

)
,

where we used vol(K) ≥ 2
λ1λ2

in the last step. Therefore, the proof of (4.12) is finished.
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Next, we prove (4.7) in the special classes of symmetric lattice polygons and rectangular
triangles.

Proposition 4.4.4. Let P ∈ K2
2 be an origin-symmetric lattice polygon, i.e., we have

−P = P and P is the convex hull of finitely many integer points. Then we have

G(intP ) ≥ vol(P )

(
1− λ1

2

)(
1− λ2

2

)
,

where λi = λi(P ).

Proof. Let λi = λi(P ), i = 1, 2. By Pick’s theorem (2.14), we have for a lattice polygon
P that

G(intP ) = vol(P )− G(bdP )

2
+ 1. (4.26)

An inequality of Henk, Schürmann and Wills yields that [HSW05, Eq. 1.6]

G(bdP )

2
≤ vol(P )

(λ1

2
+

λ2

2

)
. (4.27)

Combining (4.26) with (4.27) yields

G(intP ) ≥ vol(P )− vol(P )
(λ1

2
+

λ2

2

)
+ 1.

By the upper bound in (4.1), we have 1 ≥ vol(P )λ1λ2/4. Hence,

G(intP ) ≥ vol(P )
(
1− λ1

2
− λ2

2
+

λ1λ2

4

)
≥ vol(P )

(
1− λ1

2

)(
1− λ2

2

)
,

and the proof is finished.

Now we give the proof of (4.6) for right triangles, where we can reformulate the inequality
as follows.

Proposition 4.4.5. Let a, b ∈ R, where 2 ≤ b ≤ a, and define T = conv{0, ae1, be2}.
Then,

G(intT ) ≥ 1

2
(a− 1)(b− 2).

The proof builds on the classical argument for counting the number of lattice points in
a right triangle with integer vertices. There one considers the rectangle [0, a] × [0, b]
and uses the fact that this rectangle decomposes into two copies of T , namely T and
(a, b)T −T , that only intersect in the diagonal. For this argument, it is crucial that a and
b are integers. Only then one can guarantee that both copies contain the same number
of lattice points.

In the proof we will solve the issue by rounding a and b appropriately. For this, we
need some notation. For c ∈ R we write ⌊c⌉ ∈ Z to denote the unique integer with
c− ⌊c⌉ ∈ (−1/2, 1/2]. Furthermore, we define {c} = c− ⌊c⌉.
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Proof. Let t = (⌊a⌉, ⌊b⌉). We consider the triangle

T ′ = t− T =
{
y ≤ t :

⌊a⌉ − y1
a

+
⌊b⌉ − y2

b
≤ 1

}
=

{
y ≤ t :

y1
a

+
y2
b

≥ β
}
,

where the inequality y ≤ t is to be understood componentwise and β = 1 − {a}
a − {b}

b .
Observe that G(T ′) = G(T ). We distinguish the cases β < 1 and β ≥ 1, i.e., T and T ′

overlap and T and T ′ do not overlap (cf. Figure 4.5).

Figure 4.5: Illustration of the two main cases in the proof of Proposition 4.4.5. The situa-
tion on the left describes the case β < 1, in which the triangles T and T ′ overlap. On the
right, we see the case β > 1, where T and T ′ are disjoint.

Case 1 β < 1.

Case 1.1 {a} > 0, {b} > 0.

This means ⌊a⌉ = ⌊a⌋ and ⌊b⌉ = ⌊b⌋. Since T and T ′ overlap, estimating the number of
lattice points in [0, ⌊a⌋]× [0, ⌊b⌋] leads to

(⌊a⌋+ 1)(⌊b⌋+ 1) ≤ 2⌊a⌋+ 2⌊b⌋+G(intT ) + G(intT ′) = 2⌊a⌋+ 2⌊b⌋+ 2G(intT ).

It follows that.

2G(intT ) ≥ (⌊a⌋ − 1)(⌊b⌋ − 1) ≥
(
a− 3

2

)(
b− 3

2

)
≥ (a− 1)(b− 2),

where in the second step we used the assumption of Case 1.1 and in the third step the
fact that a ≥ b. So the case is finished.

Case 1.2 {a} > 0, {b} ≤ 0.

Similarly to the previous case, we have

2G(intT ) = (⌊a⌉ − 1)(⌊b⌉ − 1) = (a− {a} − 1)(b− {b} − 1)

≥
(
a− 3

2

)
(b− 1) = ab− b− 2a+

3

2
+

1

2
(a− b) +

1

2
a

≥ ab− 2a− b+ 2 = (a− 1)(b− 2).

For the second inequality, we used the assumption of Case 1.2, for the third inequality we
used 2 ≤ b ≤ a.
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Case 1.3 {a} ≤ 0, {b} > 0.

As in Case 1.1, we obtain

2G(intT ) ≥ (a− {a} − 1)(b− {b} − 1) =≥ (a− 1)
(
b− 3

2

)
= ab− b− 3

2
a+

3

2
= ab− b− 2a+

3

2
+

1

2
a ≥ (a− 1)(b− 2).

For the last step we used that a ≥ 2 and thus, 3/2 + a/2 ≥ 2. Since {a}, {b} ≤ 0 is not
compatible with β < 1, Case 1 is completed.

Case 2 β ≥ 1.

Case 2.1 {a} ≤ 0, {b} ≤ 0.

We have

β = 1− {a}
a

− {b}
b

≤ 1 +
1

2a
+

1

2b
≤ 1 +

1

b
.

This implies that a vertical segment in the strip S = {x ∈ R2 : 1 ≤ x1/a+ x2/b ≤ β} has
length < 1 and, thus, contains at most one lattice point (cf. Figure 4.6).

Figure 4.6: The vertical segments between T and T ′ cannot contain more than one lattice
point each.

The assumption of Case 2.1 is equivalent to ⌊a⌉ = ⌈a⌉ and ⌊b⌉ = ⌈b⌉. Counting the lattice
points in B = [0, ⌈a⌉]× [0⌈b⌉] leads to

(⌈a⌉+ 1)(]⌈b⌉+ 1) = 2⌈a⌉+ 2⌈b⌉+ 2G(intT ) + G(intB ∩ S)

≤ 2⌈a⌉+ 2⌈b⌉+ 2G(intT ) + ⌈a⌉ − 1.
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Rearranging gives

2G(intT ) ≥ ⌈a⌉⌈b⌉ − 2⌈a⌉ − ⌈b⌉+ 2 = (⌈a⌉ − 2)(⌈b⌉ − 1) ≥ (a− 2)(b− 1).

The claim follows from a ≥ b, since this implies (a− 2)(b− 1) ≥ (a− 1)(b− 2).

Case 2.2 {a} < 0 and {b} ≥ 0.

This means ⌊a⌉ = ⌈a⌉ and ⌊b⌉ = ⌊b⌋. Since T and (⌊a⌋, ⌊b⌋)T − T always intersect, we
have

2G(intT ) ≥ ⌊a⌋⌊b⌋ − ⌊a⌋ − ⌊b⌋+ 1

= (a− {a} − 1)(b− {b})− (a− {a} − 1)− (b− {b}) + 1

= ab− b{a} − a{b}+ {a}{b} − b+ {b} − a+ {a}+ 1− b+ {b}+ 1. (4.28)

Observe that in general, we have

β ≥ 1 ⇐⇒ −b{a} − a{b} ≥ 1. (4.29)

So by Case 2 it follows that −b{a} − a{b} ≥ 1 and we may continue as follows:

2G(intT ) ≥ ab− 2b− a+ 2 + {a}{b}+ 2{b}+ {a}
= ab− 2a− b+ 2 + a− b+ {a}{b}+ 2{b}+ {a}

≥ (a− 1)(b− 2) +
1

2
+ {a}{b}+ {b}+ {a}

= (a− 1)(b− 2) +
(1
2
+ {a}

)
+ {b}({a}+ 1).

For the second inequality we used that by a ≥ b and the assumption of Case 2.2 we must
have a ≥ ⌊b⌋ + 1

2 and therefore a − b ≥ 1
2 − {b}. It remains to observe that the last two

bracket terms in the above equation are non-negative and the case is completed.

Case 2.3 {a} ≥ 0, {b} < 0.

This is equivalent to ⌊a⌉ = ⌊a⌋ and ⌊b⌉ = ⌈b⌉. In Case 2.2, we did not use a ≥ b until
(4.28). So we may exchange the roles of a and b and obtain

2G(intT ) ≥ ab− 2a− b+ 2− a{b} − b{a}+ {a}{b}+ 2{a}+ {b}.

We let γ = −a{b} − b{a}+ {a}{b}+ 2{a}+ {b}, so we have to show γ ≥ 0. To this end,
we distinguish two final cases.

Case 2.3.1 {a} ≥ −{b}
2+{b} .

In view of (4.29), we have

γ ≥ {a}{b}+ 2{a}+ {b} = {a}({b}+ 2) + {b} ≥ −{b}+ {b} = 0,

where we used the assumption of Case 2.3.1 for the last inequality.

Case 2.3.2 {a} < −{b}
2+{b} .
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In view of −b+ {b}+ 2 ≤ {b} < 0, we have

γ = {a}(−b+ {b}+ 2) + {b} − a{b} ≥ {b} b

2 + {b}
− {b}+ {b} − a{b}

= {b}
( b

2 + {b}
− a
)
≥ {b}

( b

2 + {b}
− b
)
= b{b}

( 1

2 + {b}
− 1
)
≥ 0.

As {a}{b} > 0 is impossible within Case 2, Case 2 is completed, and therefore, the
proposition is shown.

4.5 Further Applications of the Interpolation

In this subsection, we demonstrate two simple applications of the interpolating inequalities
of Theorem 4.1.3 and Proposition 4.3.1.

Rectangular Simplices

For a ∈ Rn
>0, let

S(a) = conv{0, a1e1, ..., anen}

be the rectangular simplex with side lengths a1, ..., an at the origin. For a ∈ Zn, the
number of lattice points in S(a) has been studied by various authors, see for instance
[DR97] and [Pom93]. For arbitrary real parameters a ∈ Rn, the number G(S(a)) is not
as well understood.

Since we have vol(S(a)) = 1
n!a1 · · · an and (up to a renumbering) λi(S(a))/2 = 1/ai, we

obtain from Theorem 4.1.3 the following bound.

Proposition 4.5.1. For real numbers a1 > · · · > an we have

G(S(a)) ≤ a1 · · · an
n!

n∏
i=1

(
1 +

n

ai

)
. (4.30)

An upper bound of this form has also been proven by Yau and Zhang [YZ06], who
obtained

G(S(a)) ≤ a1 · · · an
n!

n∏
i=1

(
1 +

∑
j ̸=i

1

aj

)
(4.31)

for n ≥ 3. In general, none of the two bounds (4.30) and (4.31) is stronger than the other.
If all the ai’s are equal to a fixed number c, the product in (4.31) is (1+ (n− 1)c)n, while
in (4.30), we have (1 + nc)n. On the other hand, for a1 = c fixed and ai → 0, i > 1,
the product in (4.30) is of order (1 + n) and in (4.31) it is of order nn (see also Remark
4.3.2).
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Discrete Brunn-Minkowski Inequality

Let us recall the Brunn-Minkowski inequality (2.1) here. For two convex bodies K,L ⊆ Rn

and α ∈ [0, 1], we have

vol(αK + (1− α)L)
1
n ≥ α vol(K)

1
n + (1− α)vol(L)

1
n . (4.32)

In fact, convexity of K and L is not necessary for (4.32) to hold, but compactness suffices.
This inequality plays a role in several distinct disciplines of mathematics, and there is a
large variety of reformulations and generalizations of this inequality [Gar01]. One kind of
these generalizations are again discretizations of the inequality. There are two different
approaches to this.

• Lower bounds on the cardinality of |A+B|, where A,B ⊆ Zn,

• Lower bounds on G(K + L), where K,L ∈ Kn.

In the case of the discrete Meyer inequality and its reverse that we considered in Chapter
3, the distinction between the lattice point enumerator and the cardinality of a set in
the integer lattice was not necessary. In case of Minkowski addition, however, one has
G(K + L) ≥ |(K ∩ Zn) + (L ∩ Zn)| and the inequality is strict, for instance, if K = L =
1
2Cn.

In [GG01, HIY18] discrete variants of the Brunn-Minkowski inequality within the integer
lattice are obtained, while in [HKS21, IYZ20, ILY22] one finds Brunn-Minkowski-type
inequalities for the lattice point enumerator of compact sets. It is pointed out in [IYZ20]
that no direct discretization of (4.32) exists, i.e., it is not true that

G(αK + (1− α)L)
1
n ≥ αG(K)

1
n + (1− α)G(L)

1
n .

for all λ ∈ [0, 1] and all compact sets (or even convex bodies) K,L ⊆ Rn. Instead, they
prove the elegant inequality

G(αK + (1− α)L+ (−1, 1)n)
1
n ≥ αG(K)

1
n + (1− α)G(L)

1
n , (4.33)

in which the convex combination of two compact sets K and L is enlarged by the open
cube (−1, 1)n. Using the approximation of the volume by the lattice point enumerator,
the classical Brunn-Minkowski inequality can be deduced from (4.33) and, moreover, the
proof of (4.33) is independent of the Brunn-Minkowski inequality.

A disadvantage of the enlargement by the cube (−1, 1)n in (4.33) is, however, that the
inequality is not unimodularly invariant; If αK + (1− α)L is the closed square C2, then,
G(C2 + (−1, 1)2) = G(C2), while for a shearing Mk = conv{±(2k− 1, 1)T ,±(2k+ 1, 1)T }
of C2, we have G(Mk + (−1, 1)2) → ∞ as k → ∞. Thus, applying a unimodular trans-
formation to K and L might affect the sharpness of (4.33) drastically.

We can use the approximation of the lattice point enumerator by the volume and the
covering radius (Proposition 4.3.1) in conjunction with the Brunn-Minkowski inequality
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to obtain a Brunn-Minkowski-type inequality for the lattice point enumerator of con-
vex bodies that is equivalent to the continuous inequality and invariant with respect to
unimodular transformations.

Proposition 4.5.2. Let K,L ∈ Kn
n and α ∈ [0, 1]. If, for the convex combination M =

αK + (1− α)L, we have M + Zn = Rn, then,

G(intM)
1
n ≥ 1− µ(M)

1 + µ(M)

(
αG(K)

1
n + (1− α)G(L)

1
n
)
.

Proof. As in the proof of Proposition 4.3.1, we find a tile T ⊆ µ(M)M . Hence, we obtain

αG(K)
1
n + (1− α)G(L)

1
n ≤α vol(K + T )

1
n + (1− α)vol(L+ T )

1
n

≤α vol(K + µ(M)M)
1
n + (1− α)vol(L+ µ(M)M)

1
n

≤ vol(α(K + µ(M)M) + (1− α)(L+ µ(M)M))
1
n

=(1 + µ(M))vol(M)
1
n ,

where for the last inequality, we applied the Brunn-Minkowski inequality to K +µ(M)M
and L+µ(M)M . Since by assumption M +Zn = Rn, we have µ(M) ≤ 1. For µ(M) = 1,
there is nothing to show, so we assume µ(M) < 1. Thus, we can apply the lower bound
of Proposition 4.3.1 and obtain

αG(K)
1
n + (1− α)G(L)

1
n ≤ 1 + µ(M)

1− µ(M)
G(M)

1
n ,

which finishes the proof.

It is not clear to see how the quantity µ(M) depends on the convex bodies K and L. In
order to gain a better understanding of the constant (1−µ(M))/(1+µ(M)) in Proposition
4.5.2 it would therefore be beneficial to estimate µ(M) from above by µ(K) and µ(L).
Since the covering radius is (−1)-homogeneous one might expect that an inequality of the
following form holds:

µ(M) ≤ 1
α

µ(K) +
1−α
µ(L)

.

We are not aware of any counterexamples to this inequality. However, we can only confirm
it in the special case of n = 2 and L = −K; Then, µ(K)K contains a convex tile P , which
is then necessarily centrally symmetric with respect to some center c ∈ Rn [GL87, Ch. 3,
Lemma 22.3]. Due to the translation invariance of µ(·), we may assume c = 0. Thus, we
have P = αP − (1− α)P ⊆ µ(K)M . From this, it follows that

µ(M) ≤ µ(K) =
1

α
µ(K) +

1−α
µ(−K)

.

It is decisive for this argument that the tile P is symmetric, which is why it does not
extend to higher dimensions.
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Part II

Subspace Concentration
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5 Affine Subspace Concentration
Conditions for Centered
Polytopes

In this chapter, we generalize the affine subspace concentration conditions that K.-Y. Wu
showed for centered smooth reflexive polytopes to arbitrary centered polytopes. The
results in this chapter stem from a work in progress with Martin Henk and Christian
Kipp.

Before we dive into the affine setting, we shall recall the linear case and its significance in
modern convex geometry.

5.1 Linear Subspace Concentration Conditions

Let P be an n-dimensional polytope in Rn that contains the origin as an interior point.
We recall from Chapter 2 that P admits a unique representation as (cf. (2.5))

P = {x ∈ Rn : ⟨ai, x⟩ ≤ 1, 1 ≤ i ≤ m},

where the vectors ai ∈ Rn \{0} are pairwise different and Fi = P ∩{x ∈ Rn : ⟨ai, x⟩ = 1},
1 ≤ i ≤ m, are the facets of P . Then the volume of P can be written as

vol(P ) =
1

n

m∑
i=1

voln−1(Fi)
1

|ai|
.

This identity is also known as the pyramid formula, as it sums up the volumes of the
pyramids (cones)

Ci = conv({0} ∪ Fi),

which form a subdivision of P . Observe that

vol(Ci) =
1

n

1

|ai|
voln−1(Fi), 1 ≤ i ≤ m.

These cone volumes are the geometric base of the cone-volume measure of an arbitrary
convex body, which is a finite positive Borel measure on the (n−1)-dimensional unit sphere
Sn−1 ⊆ Rn. The cone-volume measure is the subject of the well-known and important
log-Minkowski problem in modern convex geometry, see for instance [BHZ16, BLYZ13].
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In the discrete setting, i.e., the polytopal case, the cone-volume measure VP (·) associated
to P is the discrete measure

VP (η) =
m∑
i=1

vol(Ci) δui(η),

where η ⊆ Sn−1 is a Borel set, and δui(·) denotes the delta measure concentrated on ui. In
analogy to the classical Minkowski-problem, the discrete log-Minkowski problem asks for
sufficient and necessary conditions such that a discrete Borel measure µ =

∑m
i=1 γi δui(·),

γi ∈ R>0, ui ∈ Sn−1, is the cone-volume measure of a polytope.

Böröczky, Lutwak, Yang and Zhang settled the general (i.e., not necessarily discrete)
log-Minkowski problem for arbitrary finite even Borel measures. Here even means that
µ(A) = µ(−A) holds for all Borel sets A ⊆ Sn−1. This assumption corresponds to the
case of origin-symmetric convex bodies; reduced to the discrete setting their result may
be stated as follows:

Theorem 5.1.1 (Böröczky, Lutwak, Yang and Zhang, [BLYZ13]). A discrete even Borel
measure µ : Sn−1 → R≥0 given by µ =

∑m
i=1 γi δui, γi ∈ R>0, ui ∈ Sn−1, is the cone-

volume measure of an origin-symmetric n-polytope if and only if the subspace concentra-
tion conditions are fulfilled, i.e., for every linear subspace L ⊆ Rn it holds

µ(L ∩ Sn−1) =
∑

i:ui∈L
γi ≤

dimL

n

m∑
i=1

γi =
dimL

n
µ(Sn−1) (5.1)

and equality is achieved, if and only if there exists a complementary subspace L′ such that
µ is concentrated on L ∪ L′.

In the non-even case, even in the discrete setting, a complete characterization is still
missing, see [CLZ19]. The main problem here is the position of the origin.

Recall that an n-polytope P ⊆ Rn is called centered if its centroid c(P ) is at the origin,
i.e.,

c(P ) = vol(P )−1

∫
P
x dx = 0.

It is known that centered polytopes satisfy the subspace concentration conditions.

Theorem 5.1.2 (Henk and Linke, [HL14]). Let P = {x ∈ Rn : ⟨ai, x⟩ ≤ 1, 1 ≤ i ≤ m}
be a centered polytope and let L ⊆ Rn be a linear subspace. Then, (5.1) holds true, i.e.,∑

i: ai∈L
vol(Ci) ≤

dimL

n
vol(P ).

Equality is obtained if and only if there exists a complementary linear subspace L′ ⊆ Rn

to L such that {ai : 1 ≤ i ≤ m} ⊆ L ∪ L′.

For a generalization to centered convex bodies we refer to [BH16].
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Remark 5.1.3. i) The statement of Theorem 5.1.2 only depends on the direction of
the ai’s but not on their lengths. I.e., if we renormalize the inequalities of P to obtain
representation P = {x ∈ Rn : ⟨a′i, x⟩ ≤ bi, 1 ≤ i ≤ m}, for certain a′i ∈ Rn \ {0} and
bi ∈ R, then it still holds that∑

i: a′i∈L

vol(Ci) ≤
dimL

n
vol(P ).

This circumstance distinguishes the linear case from the affine inequalities to come.

ii) The subspace concentration conditions are used in convex and discrete geometry
beyond the context of the log-Minkowski problem, since they offer a deep insight
into the distribution of volume in a centered body (cf. Figure 5.1). Indeed, the
first time in recorded history that the subspace concentration conditions have been
formulated and proven for origin-symmetric polytopes was in [HSW05, Lemma 3.1].
In that paper, the authors use these inequalities to derive a relation between the
successive minima and the Ehrhart coefficients of a symmetric lattice polytope. We
encountered their result in the proof of Proposition 4.4.4 in the previous chapter. ⋄

Figure 5.1: The linear situation in Theorem 5.1.2.

5.2 Affine Subspace Concentration Conditions

The subspace concentration conditions have been recently reinterpreted in the context
of toric geometry in [HNS19], exploiting the deep connection between lattice polytopes
and toric varieties. This lead K.-Y. Wu to prove an elegant variant to Theorem 5.1.2 in
which the linear subspace concentration conditions (5.1) are replaced by an affine subspace
concentration condition.
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Theorem 5.2.1 (K.-Y. Wu, [Wu22]). Let P = {x ∈ Rn : ⟨ai, x⟩ ≤ 1, 1 ≤ i ≤ m} be a
centered reflexive smooth polytope and let A ⊆ Rn be a proper affine subspace. Then,∑

i: ai∈A
vol(Ci) ≤

dimA+ 1

n+ 1
vol(P ).

Equality is obtained if and only if there exists a complementary affine subspace A′, i.e.,
A ∩A′ = ∅ and aff(A ∪A′) = Rn, such that {ai : 1 ≤ i ≤ m} ⊆ A ∪A′.

Recall from Chapter 2 that a lattice polytope P is reflexive if P and P ⋆, the polar of
P , are both lattice polytopes. In other words, the vectors ai, 1 ≤ i ≤ m, as well as the
vertices of P are points of Zn. A lattice polytope P is said to be smooth if it is simple, i.e.,
each vertex of P is contained in exactly n facets Fj1 , . . . , Fjn , say, and the corresponding
normals aj1 , . . . , ajn form a lattice basis of Zn, i.e., (aj1 , . . . , ajn)Zn = Zn.

The purpose of this section is to generalize K.-Y. Wu’s affine subspace concentration
inequality to arbitrary centered polytopes.

Theorem 5.2.2. Let P = {x ∈ Rn : ⟨x, ai⟩ ≤ 1, 1 ≤ i ≤ m} be a centered polytope and
let A ⊆ Rn be an affine subspace. Then,∑

i: ai∈A
vol(Ci) ≤

dimA+ 1

n+ 1
vol(P ). (5.2)

Unlike Theorem 5.2.1, our proof does not give us insight into the characterization of the
equality case. In Section 5.3, we will characterize the equality case of (5.2) in two special
cases.

Remark 5.2.3. In contrast to the linear case, the affine subspace concentration conditions
depend on the normalization of the inequalities in the description of P in Theorems 5.2.1
and 5.2.2. If we rewrite P = {x ∈ Rn : ⟨a′i, x⟩ ≤ bi, 1 ≤ i ≤ m} as in Remark 5.1.3,
the affine dependencies between the new normals a′i can change. Hence, there is no
equivalent of the affine subspace concentration conditions on the level of Borel measures
on the sphere, without knowing the support function of the underlying polytope (if any).
However, the affine subspace concentration conditions supplement the geometric insight
concerning the volume distribution within centered polytopes from Remark 5.1.3 (cf.
Figure 5.2). ⋄

For the proof of Theorem 5.2.2, we will lift the polytope P to successively higher di-
mensions using a pyramid construction. The following lemma allows us to determine the
centroids of the pyramids that we construct this way.

Lemma 5.2.4. Let F ⊆ Rn be an (n− 1)-dimensional polytope and v /∈ aff(F ). Then,

c
(
conv(F ∪ {v})

)
=

n

n+ 1
c(F ) +

1

n+ 1
v. (5.3)
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Figure 5.2: The affine situation in Theorem 5.2.2. Note that in general a subset of the ai’s
affinely spans a k-subspace, if and only if the affine hulls of the corresponding facets inter-
sect in an (n− 1− k)-subspace. Here, this is a single point v.

Proof. As c(·) is affinely equivariant, it is enough to consider the case where F ⊆ {x ∈
Rn : xn = 0}, c(F ) = 0 and v = en, where en denotes the n-th standard unit vector. Let
Ht = {x ∈ Rn : xn = t}. Using Fubini’s theorem, we have

c(P ) =
1

vol(P )

∫ 1

0
voln−1(P ∩Ht) c(P ∩Ht) dt.

In our setting, we have P ∩Ht = (1− t)F + ten. Thus, it follows that

c(P ) =
voln−1(F )

vol(P )

(∫ 1

0
(1− t)n−1t dt

)
en

=
voln−1(F )

vol(P )

1

n(n+ 1)
en =

1

n+ 1
en,

where the last equality follows from the fact that P is a pyramid with height one over F
and therefore vol(P ) = voln−1(F )/n. Given our assumptions, the proof of the lemma is
finished.

We define for a k-dimensional polytope Q ⊆ Rk the pyramid pyr(Q) by

pyr(Q) = conv((Q× {1}) ∪ {−(k + 1)ek+1}) ⊆ Rk+1.

We will need the following properties of this embedding.

Lemma 5.2.5. Let P ⊆ Rn be given as in Theorem 5.2.2 and let P (1) = pyr(P ). Then
the following holds:
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i)

P (1) =

{
x ∈ Rn+1 :

〈(n+2
n+1ai

− 1
n+1

)
, x

〉
≤ 1, 1 ≤ i ≤ m,xn+1 ≤ 1

}
,

ii)

voln+1(P
(1)) =

n+ 2

n+ 1
voln(P ),

iii) P (1) is centered,

iv) Let C
(1)
i be the cone given by the facet of P (1) corresponding to the outer normal

vector
(
n+2
n+1ai,−

1
n+1

)T
and the origin. Then for 1 ≤ i ≤ m we have

voln+1(C
(1)
i ) = voln(Ci).

Proof. i) and ii) follow directly from the fact that P (1) is indeed a pyramid; iii) is a
consequence of Lemma 5.2.4. For iv), let Ci = Ci×{1}, G1 = conv(Ci ∪{−(n+1)en+1})
and G2 = conv(Ci ∪ {0}) ⊆ G1. Then we have C

(1)
i = G1 \G2 and therefore

voln+1(C
(1)
i ) = voln+1(G1)− voln+1(G2)

=
n+ 2

n+ 1
voln(Ci)−

1

n+ 1
voln(Ci)

= voln(Ci).

We finish the section by proving Theorem 5.2.2.

Proof of Theorem 5.2.2. Let A ⊆ Rn be a proper affine space, d = dimA, I = {i ∈ [m] :

ai ∈ A} and we may assume dim{ai : i ∈ I} = d. For any k, let

φk : Rk → Rk+1, x 7→
( k+2

k+1x

− 1
k+1

)
.

For j ≥ 1 and i ∈ [m] we set

a
(j)
i = (φn+j−1 ◦ · · · ◦ φn)(ai) ∈ Rn+j ,

and let L(j) = span{a(j)i : i ∈ I} ⊆ Rn+j . Observe that the vectors a
(j)
i have the form

a
(j)
i =


n+j+1
n+1 ai
cn+1
...

cn+j

 ,
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where

cn+k = − n+ j + 1

(n+ k)(n+ k + 1)
, 1 ≤ k ≤ j.

The cn+k’s only depend on n and j, but not on ai. Therefore, L
(1) is a (d+1)-dimensional

linear space and since the matrix (a
(j+1)
i : i ∈ I) differs from (a

(j)
i : i ∈ I) only by an

additional constant row and a multiplication of the first n+j rows, we have dimL(j) = d+1
for all j ≥ 1.

Now consider the pyramids P (j) = pyr(P (j−1)) with P (0) = P . A repeated application of
Lemma 5.2.5 i) and iii) shows that each P (j) is a centered pyramid that has the vectors

{a(j)i : i ∈ [m]} among its normal vectors and from Lemma 5.2.5 ii) we get

voln+j(P
(j)) =

(
j∏

k=1

n+ k + 1

n+ k

)
voln(P ) =

n+ j + 1

n+ 1
voln(P ).

Let C
(j)
i be the cone of P (j) corresponding to a

(j)
i . Lemma 5.2.5 iv) shows that

voln+j(C
(j)
i ) = voln(Ci), and so by Theorem 5.1.2 applied to P (j) and L(j) we obtain∑

i∈I
voln(Ci) =

∑
i∈I

voln+j(C
(j)
i )

≤ d+ 1

n+ j
voln+j(P

(j))

=
dimA+ 1

n+ 1

n+ j + 1

n+ j
voln(P ).

The claim follows from letting j → ∞.

5.3 On the Equality Case in the Affine Subspace
Concentration Conditions

In this section we discuss the equality case of the affine subspace concentration conditions.
For a centered polytope P = {x ∈ Rn : ⟨ai, x⟩ ≤ 1, 1 ≤ i ≤ m}, which is in addition
smooth and reflexive, Wu proves that equality is achieved in (5.2), if and only if there
exists an affine subspace A′ complementary to A such that {a1, ..., am} ⊆ A ∪ A′. It is
not hard to see that this condition is sufficient for the equality case, also in the general
setting; it suffices to apply (5.2) to both A and A′ and obtain

vol(P ) =
∑

i:ai∈A
vol(Ci) +

∑
i:ai∈A′

vol(Ci) ≤ vol(P ).

Thus, we have equality in (5.2) for A (and also for A′). However, due to the limiting
process in our proof of Theorem 5.2.2, we cannot exclude further equality cases at this
point.
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The main result of this section is the following theorem, which characterizes the equality
case in (5.2) for affine subspaces that either consist of a single point, or are given as the
affine hull of a facet of P ⋆, the polar of P .

Theorem 5.3.1. Let P = {x ∈ Rn : ⟨x, ai⟩ ≤ 1, 1 ≤ i ≤ m} be a centered n-dimensional
polytope.

i) If A = {ai} for some 1 ≤ i ≤ m, then equality holds in (5.2) if and only if P is a
pyramid with base Fi.

ii) If A is the hyperplane spanned by the ai’s corresponding to all the facets containing
a vertex v of P , then equality holds in (5.2) if and only if P is a pyramid with apex
v.

As a byproduct of the proof of Theorem 5.3.1, we will see alternative proofs of (5.2) in
these special cases. The first case of Theorem 5.3.1 slightly generalizes a former result
by Zhou and He [ZH17, Thm. 1.2]. There an additional technical assumption on P is
made.

In contrast to the description of the equality case in Theorem 5.2.1, the descriptions of
the equality cases in Theorem 5.3.1 do not explicitly refer to the normal vectors ai. The
following proposition gives an equivalent formulation of the equality case in Theorem
5.2.1; it shows that the two conditions in Theorem 5.3.1 are indeed special cases of the
general description in terms of the ai’s:

Proposition 5.3.2. Let P = {x ∈ Rn : ⟨x, ai⟩ ≤ 1, 1 ≤ i ≤ m}. Then there exist a
proper affine subspace A and a complementary affine subspace A′ such that {ai : 1 ≤ i ≤
m} ⊆ A ∪A′ if and only if P can be written as

P = conv(Q1 ∪Q2),

where Q1, Q2 ⊆ Rn are polytopes with dimQ1 + dimQ2 = n− 1 and affQ1 ∩ affQ2 = ∅.

A polytope that can be expressed as the convex hull of two polytopes Q1 and Q2 in
complementary affine subspaces is also called the join of Q1 and Q2 [HRZ17, p. 390].
Proposition 5.3.2 essentially states that a polytope P is a join of two polytopes, if and
only if its polar P ⋆ can be expressed as a join of two polytopes. This fact seems to be
well-known, but as we did not find a proof in the literature, we provide one here.

For the proof of Proposition 5.3.2, we recall from Chapter 2 that d-faces of P correspond
one-to-one to (n− d− 1)-faces of P ⋆ via the polarity operation (cf. (2.6))

F ⋄ = {y ∈ P ⋆ : ⟨y, x⟩ = 1, ∀x ∈ F},

where F is a d-face of P .
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Proof of Proposition 5.3.2. Since the ai’s are the vertices of P ⋆, the condition that
{a1, . . . , am} is contained in A ∪ A′ is equivalent to P ⋆ = conv(P1 ∪ P2), where P1 is
a d-polytope and P2 is an (n − d − 1)-polytope and affP1 = A and affP2 = A′ are com-
plementary affine spaces. By polarity, it is therefore enough to prove one direction of the
equivalence.

So let P = conv(Q1 ∪ Q2) with Q1 and Q2 as in the statement of the proposition. We
will prove that P ⋆ = conv{Q⋄

1 ∪ Q⋄
2}, where Q⋄

i is the polar face of Qi in P ⋆. To this
end, we need to show first that Q1 and Q2 are faces of P . Let x1 ∈ Q1, x2 ∈ Q2 and
L = span((Q1−x1)∪ (Q2−x2)). Since dimQ1+dimQ2 = n− 1, we have dimL ≤ n− 1.
Choosing a vector u ∈ L⊥ \ {0}, the linear functional f : Rn → R, x 7→ ⟨u, x⟩ satisfies
f(Q1) = {α} and f(Q2) = {β} for certain α, β ∈ R. Since P is n-dimensional and of the
form P = conv(Q1 ∪Q2), we have α ̸= β, f(P ) = conv{α, β} and

f−1({α}) ∩ P = Q1, f−1({β}) ∩ P = Q2.

This shows that Q1 and Q2 are faces of P .

Now we consider the polar faces Pi = Q⋄
i ⊆ P ⋆, i ∈ {1, 2}, of the two faces Q1, Q2 ⊂ P .

Note that dimP1 = n − d − 1 and dimP2 = d. Clearly, we have conv(P1 ∪ P2) ⊆ P ⋆. If
the inclusion was strict, we find a vertex v of P ⋆ which is neither a vertex of P1, nor of
P2. Consider the corresponding facet F = v⋄ of P . Since v is not contained in P1 ∪P2, it
follows by polarity that neither Q1, nor Q2 is contained in F . But Fi = Qi ∩ F is a face
of Qi. Thus, we have dimF1 ≤ d − 1 and dimF2 ≤ n − d − 2. Due to the assumption
P = conv(Q1 ∪Q2), the vertices of F are contained in Q1 ∪Q2, i.e., F = conv(F1 ∪ F2).
It follows that

dimF ≤ 1 + dimF1 + dimF2 = 1 + (d− 1) + (n− d− 2) = n− 2,

a contradiction. So we have proven P ⋆ = conv(P1 ∪ P2). Since dim(P ⋆) = n and P ⋆ ⊆
aff(P1 ∪ P2), we have aff(P1 ∪ P2) = Rn, so the affine hulls of P1 and P2 are indeed
complementary.

In order to prove Theorem 5.3.1, we need a characterization of pyramids by their inter-
section function.

Lemma 5.3.3. Let P ⊆ Rn be an n-dimensional polytope, u ∈ Sn−1 and let f : R → R,
given by

f(t) = voln−1((tu+ u⊥) ∩ P )
1

n−1 .

Let [α, β] = supp(f). If f is affine on [α, β] and f(β) = 0, then P is a pyramid with base
(αu+ u⊥) ∩ P and apex (βu+ u⊥) ∩ P .

Proof. Let S = (αu + u⊥) ∩ P and T = (βu + u⊥) ∩ P . Since f is affine, f(β) = 0 and
vol(P ) =

∫
R f(x)n−1dx > 0, we know that voln−1(S) = f(α) > 0. Let λ ∈ [0, 1]. By the

convexity of P , we have

λT + (1− λ)S ⊆
(
(λβ + (1− λ)α)u+ u⊥

)
∩ P =: Pλ.
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Combining this with the Brunn-Minkowski inequality (cf. Section 2.1), we obtain

f(λβ + (1− λ)α) ≥ voln−1(λT + (1− λ)S)
1

n−1

≥ λvoln−1(T )
1

n−1 + (1− λ)voln−1(S)
1

n−1

= λf(β) + (1− λ)f(α) (5.4)

Since f is affine, both inequalities hold with equality. The equality in the Brunn-
Minkowski inequality implies that S and T are homothetic (the other equality case being
ruled out by the fact that voln−1(S) > 0). Because voln−1(T ) = 0, this shows that T is a
singleton. Finally, since the polytope Pλ contains the polytope λT + (1 − λ)S, the first
equality in (5.4) implies that Pλ = λT +(1−λ)S. Since λ ∈ [0, 1] was arbitrary, it follows
that P is a pyramid with S as its base.

Now we ware ready to prove Theorem 5.3.1. We wil show the 0- and the (n−1)-dimensional
case separately. Also, for the (n−1)-dimensional case, we will give two alternative proofs.
One that uses elementary geometric arguments and another one that takes a more analytic
perspective.

We start with case of A being a singleton. Our proof is inspired by the proof of Grünbaum’s
theorem on central sections of centered convex bodies [Grü60].

Proof of Theorem 5.3.1 i). Without loss of generality, we assume that Fi = P ∩ {x ∈
Rn : ⟨e1, x⟩ = −α} for an appropriately chosen α > 0. Let Q = conv(Fi ∪ {βe1}), where
β > −α is chosen such that vol(Q) = vol(P ). We define two functions R → R via

f(t) = voln−1((te1 + e⊥1 ) ∩ P )
1

n−1 , g(t) = voln−1((te1 + e⊥1 ) ∩Q)
1

n−1 .

If ⟨e1, c(Q)⟩ ≥ ⟨e1, c(P )⟩, then by Lemma 5.2.4 it would follow that

vol(Ci) ≤ vol(conv(Fi ∪ {c(Q)})) = 1

n+ 1
vol(Q),

as desired. Recalling that P is centered, we have to show for γ = ⟨e1, c(Q)⟩ that

γ = ⟨e1, c(Q)− c(P )⟩ =
∫ ∞

−∞
t(g(t)n−1 − f(t)n−1)dt ≥ 0,

with equality if and only if P is a pyramid.

Since Q is a pyramid with base orthogonal to e1, g is affine on supp(g) = [−α, β]. By
Brunn’s concavity principle [AGM15, Thm. 1.2.1], f is concave on supp(f). Hence, g− f
is convex on supp(f)∩ supp(g). In fact, we have supp(f) ⊆ supp(g): If there was a t > β
with f(t) > 0, then the concavity of f would imply f > g on supp(g), in contradiction to
vol(Q) = vol(P ). Hence, g − f is convex on supp(f) and the sublevel set

supp(f) ∩ {g − f ≤ 0} = supp(f) ∩ {gn−1 − fn−1 ≤ 0}
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is convex. Since f(−α) = g(−α), it follows that supp(f) ∩ {g − f ≤ 0} = [−α, τ ] for a
τ ≤ β. On [τ, β] we have g ≥ f , leading to the desired estimate

γ =

∫ τ

−α
t(g(t)n−1 − f(t)n−1)dt+

∫ β

τ
t(g(t)n−1 − f(t)n−1)dt

≥
∫ τ

−α
τ(g(t)n−1 − f(t)n−1)dt+

∫ β

τ
τ(g(t)n−1 − f(t)n−1)dt

= τ

(∫ β

−α
(g(t)n−1 − f(t)n−1)dt

)
= τ (vol(Q)− vol(P )) = 0.

Equality holds if and only if g = f on [−α, β]. It is clear that this is the case if P is a
pyramid with base Fi; the other direction follows from Lemma 5.3.3.

Next, we give a geometric proof of Theorem 5.3.1 ii).

Geometric proof of Theorem 5.3.1 ii). Let I ⊆ [m] be the set of indices such that ⟨v, ai⟩ =
1, i.e., A = aff{ai : i ∈ I}. Since P is centered, we have − 1

nv ∈ P (see (2.7)). For i ∈ I,
we consider the cones Ci = conv(Fi ∪ {−(1/n)v}) ⊆ P , where Fi is the facet of P with
normal ai. By the volume formula for pyramids, we have vol(Ci) =

n+1
n vol(Ci). As the

Ci’s intersect in a set of measure zero, we obtain

vol(P ) ≥
∑
i∈I

vol(Ci) =
n+ 1

n
vol(Ci), (5.5)

so we have reproven Theorem 5.2.2 in this case. In order to have equality in the above,
we must have P =

⋃
i∈I Ci. Let J = [m] \ I. Then we have

⟨−(1/n)v, aj⟩ = 1, ∀j ∈ J, (5.6)

since otherwise, the cone Cj would have a positive volume and we could not achieve
equality in (5.5).

For j ∈ J , let Kj = conv{Fj , v} ⊆ P . Just like the Ci’s, the Kj ’s subdivide P , i.e.,
P =

⋃
j∈J Kj and the pyramids intersect in sets of measure zero. By (5.3), we have

c(Kj) =
n

n+1c(Fj) +
1
nv. It follows from (2.8) that

0 = c(P ) =
∑
j∈J

vol(Kj)

vol(P )

(
n

n+ 1
c(Fj) +

1

n+ 1
v

)
.

Multiplying with (n+ 1)/n and rearranging yields

− 1

n
v =

∑
j∈J

vol(Kj)

vol(P )

(
− 1

n
v

)
=
∑
j∈J

vol(Kj)

vol(P )
c(Fj).

79



For any j ∈ J , we have by (5.6):

1 = ⟨− 1

n
v, aj⟩ =

∑
k∈J

vol(Kk)

vol(P )
⟨c(Fk), aj⟩.

Towards a contradiction, assume that J contains more than one element. Then there
is a k ∈ J \ {j}. Since c(Fk) ∈ relintFk we have ⟨c(Fk), aj⟩ < 1. It follows that 1 <∑

k∈J vol(Kk)/vol(P ) = 1. Therefore, J can contain only one element, which corresponds
to the case that P is a pyramid with apex v.

We give another proof of Theorem 5.3.1 ii) via a probabilistic approach.

Analytic proof of Theorem 5.3.1 ii). Again, we only show the “only if” part of the equal-
ity case. To this end, we assume that vol(P ) = 1, which is not a restriction as both sides
of (5.2) are n-homogeneous. By definition, we have c(P ) = E[X], where X is a uniformly
distributed random vector in P . We consider the functional

f : Rn → R, f(x) =
1

n

∑
i:ai∈A

dist(x, aff(Fi)) voln−1(Fi),

where dist(x, aff(Fi)) is the signed Euclidean distance to aff(Fi), oriented such that it is
non-negative inside P . Note that for x ∈ P one has

f(x) =
∑

i:ai∈A
vol
(
conv(Fi ∪ {x})

)
.

As f is an affine map, we have

∑
i:ai∈A

vol(Ci) = E[f(X)] =

∫ 1

0
PX(f ≥ t)dt = 1−

∫ 1

0
PX(f < t)dt. (5.7)

We consider the function p : [0, 1] → [0, 1], t 7→ PX(f < t)
1
n . There holds p(0) = 0 and

p(t) = 1, for t ≥ m = max f(P ) ≤ 1. Let H(t) = {x ∈ Rn : f(x) ≤ t} be the half-space
where f ≤ t. Since the vertex v is the unique point that is contained in all facets Fi,
where ai ∈ A, we have 0 ∈ f(P ) and f(x) = 0 for x ∈ P , if and only if x = v. Thus,
P ∩H(0) = {v}. Using the inclusion

P ∩H(t) ⊇ t

m

(
P ∩H(m)

)
+

m− t

m
v,

we deduce that, for any t ∈ [0,m],

p(t) = vol(P ∩H(t))
1
n ≥ vol

( t

m

(
P ∩H(m)

)
+

m− t

m
v
) 1

n

=
t

m
vol
(
P ∩H(m)

) 1
n =

t

m
p(m) =

t

m
. (5.8)
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Applying this to (5.7), we have∑
i:ai∈A

vol(Ci) = 1−
∫ m

0
p(t)ndt− (1−m)

≤ m−
∫ m

0

(
t

m

)n

dt =
mn

n+ 1
≤ n

n+ 1
.

By our assumption that vol(P ) = 1, this is (5.2). In order to have equality, we must have
m = 1 and equality in (5.8), i.e., vol(P ∩H(t)) = tn for t ∈ [0, 1]. This is equivalent to
voln−1(P ∩ {x ∈ Rn : f(x) = t}) = ntn−1 for t ∈ [0, 1]. By Lemma 5.3.3, this implies that
P is a pyramid with apex v.

Remark 5.3.4. It is natural to ask whether the assumption in Theorem 5.3.1 ii) that
v is a vertex of P can be removed. In other words, is it possible to adapt our proofs to
the situation where the hyperplanes {x ∈ Rn : ⟨ai, x⟩ = 1}, ai ∈ A, intersect in a single
point v that is not necessarily contained in P (cf. Figure 5.2)? Both proofs of Theorem
5.3.1 ii) make use of the assumption that v ∈ P : In the first proof, we use it to derive
− 1

nv ∈ P ; in the second proof, it ensures that p is concave on [0,max f(P )]. It is not clear
how the first proof could be modified to dispense with the assumption. In the second
proof, a suitable upper bound on max f(P ) in terms of min f(P ) would be sufficient: The
concavity of p on [min f(P ),max f(P )] leads to the desired estimate if we additionally

assume that max f(P ) ≤ 1− min f(P )
n . ⋄

Finally, let us take a closer look at the affine subspace concentration inequality in the case
of simple polytopes. For a k-face of F of P , there are exactly n − k − 1 vectors among
the ai’s such that F ⊆ Fi. Without loss of generality, we assume that a1, ..., an−k−1 are
these vectors. In view of Theorem 5.3.1 i), we obtain

vol(Ci) ≤
1

n+ 1
vol(P ), for all 1 ≤ i ≤ n− k − 1. (5.9)

Summing up these inequalities gives the affine subspace concentration condition (5.2) for
P and A and, by the characterization of the equality case in Theorem 5.3.1 i), equality
holds, if and only if equality holds in each of the inequalities in (5.9). In particular,
equality holds, only if P is a pyramid with base F1. Since P is simple, this implies that
P is a simplex. So we obtained the following corollary:

Corollary 5.3.5. Let P = {x ∈ Rn : ⟨x, ai⟩ ≤ 1, 1 ≤ i ≤ m} be a centered simple
polytope. Let A ⊆ Rn be an affine subspace spanned by ai’s corresponding to all the facets
containing a k-face of P with 1 ≤ k ≤ n− 1. Then we have equality in (5.2) if and only
if P is a centered simplex.

Remark 5.3.6. Suppose that we have equality in Theorem 5.3.6 for a proper affine d-
subspace A and a centered reflexive smooth polytope P = {x ∈ Rn : ⟨x, ai⟩ ≤ 1, 1 ≤ i ≤
m}. Then, we obtain from Theorem 5.2.1 that {a1, ..., am} ⊆ A∪A′ holds for some affine
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subspace A′ which is complementary to A and in particular A and A′ are affinely spanned
by the ai’s they contain. Hence, we have P ⋆ = conv(P1 ∪ P2), for

P1 = conv(A ∩ {a1, ..., am}) and P2 = conv(A′ ∩ {a1, ..., am}).

As we saw in the proof of Proposition 5.3.2, P1 and P2 are faces of P ⋆. So A is the
affine space spanned by the ai’s such that P ⋄

1 ⊆ Fi. Recalling that smooth polytopes are
simple, it follows from Corollary 5.3.5 that P is a simplex. Simplices are therefore the
only equality cases in Theorem 5.2.1. ⋄
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Part III

Polarity
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6 Mahler Volume of
Low-Dimensional Voronoi Cells
of Lattices

This chapter is devoted to upper bounds on the Mahler volume of lattice Voronoi cells. In
a fixed dimension n, these convex bodies have at most (n+1)! vertices and at most 2(2n−1)
facets. Therefore, we expect the maximum Mahler volume of a lattice Voronoi cell to be
significantly smaller than the Blaschke-Santaló bound for origin-symmetric convex bodies
K ∈ Kn

os;
vol(K)vol(K⋆) ≤ vol(Bn)2,

where one has equality, if and only if K is an ellipsoid.

6.1 Voronoi Cells and Delaunay Subdivisions

In this section, we briefly recall the Voronoi and Delaunay subdivisions associated to
lattices. For a detailed introduction to these types of subdivisions we refer to [AKL13].

The (Dirichlet-)Voronoi cell of a lattice Λ ⊆ Rn (around the origin) is defined as

VΛ = {x ∈ spanΛ : |x| ≤ |x− a|, ∀a ∈ Λ}, (6.1)

i.e., VΛ is the collection of points that are at least as close to the origin as to any other
lattice point. By squaring the norms in (6.1) and rearranging, we obtain:

VΛ =
{
x ∈ spanΛ : ⟨x, a⟩ ≤ |a|2/2, ∀a ∈ Λ

}
. (6.2)

Indeed, VΛ is a polytope, since in the representation above, only finitely many lattice
vectors are relevant. These are called Voronoi relevant vectors and we denote them by
vor(Λ). In the literature, one oftentimes distinguishes between strict and weak Voronoi
relevant vectors, where weak Voronoi relevant vectors also include those lattice vectors
such that the corresponding inequality in (6.2) is fulfilled with equality for a point x ∈ VΛ

(but these points do not need to form a facet). In these terms, vor(Λ) denotes the set of
strict Voronoi relevant vectors.

Since Λ is an origin-symmetric point set, VΛ is an origin-symmetric polytope. Since
x + Λ = Λ holds for all x ∈ Λ, the Voronoi cell of Λ around any other x ∈ Λ (not
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necessarily the origin) is given by x+VΛ. In fact, the cells (x+VΛ)x∈Λ form a subdivision
of Rn [CS99, Ch. 2, Sec. 1.2] and thus, vol(VΛ) = detΛ.

The dual concept to the Voronoi subdivision is the Delaunay subdivision . For the defini-
tion, let c ∈ Rn and r > 0 be such that (c+int(r Bn))∩Λ = ∅, where Bn is the Euclidean
unit ball. Then,

Pc,r(Λ) = conv(Λ ∩ (c+ bd(r Bn))

is called a Delaunay polytope of Λ, if it is non-empty. We write Pc,r = Pc,r(Λ) if Λ is
understood. The Delaunay subdivision is then defined as

Del(Λ) = {P ⊆ Rn : P is a Delaunay polytope of Λ}.

We write Deln(Λ) for the set of n-polytopes in Del(Λ) and we say that Λ is generic, if
Del(Λ) is a triangulation.

The Delaunay subdivision is dual to the Voronoi subdivision in the following sense: Con-
sider a k-face F ⊆ VΛ of the Voronoi cell. Then, there exists a Delaunay (n− k)-polytope
P of Λ that contains the Voronoi relevant vectors whose corresponding facets contain F ,
as well as the origin, among its vertices. In particular, the affine hulls of P and F are
orthogonal. If F = {v} is a vertex, then P is an n-dimensional polytope and we have
P = Pv,|v| (cf. Figure 6.1).

Figure 6.1: The Voronoi cell of Λ = spanZ{(2, 0)T , (1, 2)T } (depicted in gray), together
with the six Delaunay triangles of Λ at the origin. The vertices of the Voronoi cell are the
centers of the circumcircles of the Delaunay triangles they are contained in.

Converserly, for every (n − k)-dimensional Delaunay polytope P containing the origin,
there exists a k-face F ⊆ VΛ of Λ, which is orthogonal to P . If P = Pc,r is n-dimensional,
then F = {c} is a vertex of P . We refer to [LD09] for a detailed account on these
connections.

The following two examples will play a key role in our investigation.
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Example 6.1.1. i) The Voronoi cell of Zn is given by [−1
2 ,

1
2 ]

n and we have vor(Zn) =
{±e1, ...,±en}. The Delaunay subdivision of Zn is determined by the n-polytopes
(z + [0, 1]n)z∈Zn .

ii) Let An = Zn+1∩1⊥n+1 and let A⋆
n be its dual lattice. The Voronoi cell of A⋆

n is given
as the convex hull of all permutations of the vector [CS99, Ch. 4, Sec. 6.6]

1

2(n+ 1)
(−n,−n+ 2, ..., n− 2, n)

This is a regular permutohedron (cf. [Zie12, Ex. 0.10]) and therefore a simple poly-
tope. Hence, A⋆

n is a generic lattice. ⋄

The geometry of VΛ encodes a lot of information on the lattice Λ. Its inradius r(VΛ), i.e.,
the maximum radius of a Euclidean ball contained in VΛ, is the packing radius 1

2λ1(Bn,Λ)
of Λ. Its circumradius R(VΛ), i.e., the minimum radius of a Euclidean ball containing VΛ,
equals the covering radius µ(Bn,Λ). And also the second moment

µ(VΛ) =

∫
VΛ

|x|2dx

is known as the “lattice quantization error”, a quantity that has applications to coding
theory [CS99] and also to Minkowski’s conjecture on inhomogeneous forms [RS17].

Gauss showed that the densest sphere packing by a lattice in 3-dimensional space is given
by the lattice A3 from Example 6.1.1. (If one considers arbitrary 3-dimensional packings,
this problem is known as the Kepler Conjecture for which a computer assisted proof has
been given in [Hal05, HAB+17]). Gauss’s result may be rephrased as an isoperimetric-type
inequality for the Voronoi cells of 3-dimensional lattices, namely

r(VΛ)
3

vol(VΛ)
≤ r(VA3)

3

vol(VA3)
,

for all 3-dimensional lattices Λ. In a similar spirit, one has

R(VΛ)
n

vol(VΛ)
≥

R(VA⋆
n
)n

vol(VA⋆
n
)
,

where n ≤ 5 (cf. [CS99, Ch. 2, Sec. 1.6]). More recently, Lángi showed in [Lán22] that

w(VΛ)
3

vol(VΛ)
≥

w(VA⋆
3
)3

vol(VA⋆
3
)
,

where w(K) =
∫
S2 h(K,u) − h(K,−u) d2u denotes the mean width of K ∈ K3. If one

would allow arbitrary convex bodies in the above inequalities, the extremal cases would
be given by the Euclidean ball in all three of the inequalities. Of course, the ball is
not among the lattice Voronoi cells. Nonetheless, these results give an insight on the
“roundness” of the Voronoi cell.
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Here we attempt to contribute to these results by studying upper bounds on the Mahler
volume of two and three dimensional Voronoi cells. A functional which, by the Blaschke-
Santaló inequality, is likewise maximized by the ball, but also by any other ellipsoid owing
to the fact that the Mahler volume is invariant under linear transformations.

The chapter is organized as follows. In Section 6.2 we take a closer look at the polar body
V ⋆
Λ of the Voronoi cell of Λ. For a generic lattice Λ, we develop a formula for vol(V ⋆

Λ )
depending on the Delaunay simplices of Λ that meet the origin. We use this formula
in Sections 6.3 and 6.4 in order to study the Mahler volume of 2- resp. 3-dimensional
lattice Voronoi cells. We will see that A⋆

2 is the strict (up to dilations and isometries)
global maximum of the Mahler volume among all 2-dimensional lattices and that A⋆

3 is a
strict local maximum among all 3-dimensional lattices. Section 6.5 contains a potential
proof strategy for the conjecture that A⋆

3 is indeed the global maximum in dimension 3.
We conclude with examples of lattice Voronoi cells and their Mahler volumes in higher
dimensions in Section 6.6.

6.2 The Polar Body of a Lattice Voronoi Cell

In view of (6.2), we are able to describe the polar of VΛ as a convex hull:

V ⋆
Λ = conv

{ 2x

|x|2
: x ∈ Λ \ {0}

}
.

The vertices of V ⋆
Λ are precisely the points 2x/|x|2, where x ∈ vor(Λ). The body 1

2V
⋆
Λ

bears the remarkable property that it intersects any hyperplane of the form {v ∈ Rn :

⟨v, x⟩ = 1}, where x ∈ Λ \ {0} – a point of intersection is the point x/|x|2. Lower bounds
on the volume of such bodies have been studied by Álvarez Paiva et al. in [APBT16] who
phrased the term unavoidable bodies for general convex bodies K ∈ Kn with the property
that K ∩ {x ∈ Rn : ⟨v, x⟩ = 1} ≠ ∅, for all v ∈ Zn \ {0}.

For a generic lattice Λ, the body V ⋆
Λ can be triangulated in a natural way.

Proposition 6.2.1. Let Λ be generic. Then V ⋆
Λ is simplicial, and can be triangulated as

follows:

V ⋆
Λ =

⋃
T

conv
{
0,

2x

|x|2
: x ∈ vert(T )

}
,

where T ranges over all full-dimensional Delaunay-simplices of Λ that include the origin.
In particular, we have

vol(V ⋆
Λ ) = 2n

∑
0∈T∈Deln(Λ)

vol(T )
∏

x∈vert(T )\{0}

|x|−2. (6.3)

Proof. We show that FT = conv{2x/|x|2 : x ∈ vert(T ) \ {0}}, T ∈ Deln(Λ), are facets of
V ⋆
Λ . Let c be the center of the sphere S that testifies for T . Then, since T has the origin

as a vertex, |x− c|2 ≥ |c|2, for any x ∈ Λ. Equality holds, if and only if x ∈ vert(T ).
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Rearranging the inequality gives 〈 2x

|x|2
, c
〉
≤ 1,

for all x ∈ Λ \ {0}, with equality, if and only if x ∈ vert(T ) \ {0}. Thus, FT ⊆ V ⋆
Λ is

the polar facet c⋄ of the vertex c of VΛ. The volume formula follows from expressing the
simplices conv{0, 2x/|x|2 : x ∈ vert(T )} as a linear image of T .

Note that the point x/|x|2 is the inverse point of x with respect to inversion in the unit
sphere. The above proof essentially recalls the fact that inversion in the unit sphere takes
the sphere S to a hyperplane H. Thereby, a point is mapped to the open half-space
defined by H which contains the origin, if and only if it is contained in the exterior of
S.

Before we finish this section, let us take a second look at the Delaunay simplices of a
generic lattice that meet the origin.

Remark 6.2.2. We define the star SΛ of the Delaunay triangulation Del(Λ) as the union
of all simplices in Del(Λ) that contain the origin, i.e.,

SΛ =
⋃

{T : 0 ∈ T ∈ Deln(Λ), dim(T ) = n}.

Figure 6.2: The Delaunay star SΛ of a 2-dimensional lattice.

The translates (x + SΛ)x∈Λ form an (n + 1)-fold tiling of Λ, since any point y ∈ Rn

(up to a set of measure zero) is contained in the interior of a some Delaunay n-simplex
T = conv{x0, ..., xn} and therefore precisely in the translates −xi + SΛ, for i ∈ {0, ..., n}.
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From that it follows that the volume of SΛ is (n+ 1) detΛ and, thus,

(n+ 1) detΛ = vol(SΛ) =
1

n!

∑
0∈T∈Deln(Λ)

∣∣ det spanZ(T )∣∣
≥ 1

n!
det Λ ·

∣∣{T ∈ Deln(Λ) : 0 ∈ T}
∣∣.

As the simplices in Deln(Λ) correspond to vertices of VΛ, we see that a generic lattice
Voronoi cell can have at most (n+ 1)! vertices, which is attained, for instance, if Λ = A⋆

n

(cf. Example 6.1.1). This fact was already known to Voronoi who showed that the number
of k-faces of a (not necessarily generic) lattice Voronoi cell is maximal for A⋆

n [Vor08b, §63-
§68, §101]. In particular, this result implies that in a given dimension, the Voronoi cells
of lattices cannot be arbitrarily close to an ellipsoid. More precisely, the Banach-Mazur
distance

dBM(VΛ, B
n) = inf

{
λ > 0 : ∃E ellipsoid. E ⊆ VΛ ⊆ λE

}
is bounded from below by a number cn > 1, independent of Λ (see, for instance, [Bör00]).
In view of Börc̈zky’s stability version of the Blaschke-Santaló inequality [Bör10], this raises
the hope for better upper bounds on the Mahler volume in this class of polytopes. ⋄

6.3 2-Dimensional Lattices

In this section we give a sharp upper bound on the Mahler volume of a 2-dimensional
lattice. We will see that it is attained, if and only if Λ is isometric to a dilation of A⋆

2.

For a 2-dimensional lattice Λ, a Delaunay triangle is always a non-obtuse triangle T such
that T ∩ Λ = vert(T ) [LD09, Eq. (13.2.9)]. Thus, we have by Pick’s theorem (2.14)
vol(T ) = 1

2 detΛ. Our key observation is that up to translation and reflection, there
exists only one Delaunay triangle in Del(Λ).

Lemma 6.3.1. Let Λ be generic 2-dimensional lattice and S, T ∈ Del2(Λ). Then there
exist x ∈ Λ and s ∈ {−1, 1} such that S = x+ sT .

Proof. Without loss of generality, we can assume that S contains the origin as a vertex.
Let T = conv{a, b, c}, for certain a, b, c ∈ Λ. Since we have Λ = x± Λ, for all x ∈ Λ, the
simplices Tx,± = ±(T −x) are Delaunay simplices of Λ, for all x ∈ {a, b, c}. Indeed, every
Tx,± contains the origin and the Tx,± are pairwise distinct. By Remark 6.2.2, there are
at most 6 Delaunay triangles at the origin. Hence, one of the Tx,± must be S (cf. Figure
6.3).

Again, we consider a 2-dimensional lattice Λ and let T be one if its Delaunay-triangles.
Let a, b, c ∈ Λ be the vertices of T and let Fx be the edge opposite to x, x = a, b, c. As a
consequence of Lemma 6.3.1, (6.3) can be rewritten as follows:
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Figure 6.3: The triangle T is equivalent to S, since S = −(T − x).

vol(V ⋆
Λ ) = 8

( vol(T )

vol(Fa)2vol(Fb)2
+

vol(T )

vol(Fa)2vol(Fc)2
+

vol(T )

vol(Fb)2vol(Fc)2

)
.

Each summand corresponds to the translation of T to the origin by −a, −b, or −c. The
factor 8 = 22 · 2 comes from considering −T . Since vol(VΛ) = detΛ = 2vol(T ), we have

vol(VΛ)vol(V
⋆
Λ ) = 16

( vol(T )2

vol(Fa)2vol(Fb)2
+

vol(T )2

vol(Fa)2vol(Fc)2
+

vol(T )2

vol(Fb)2vol(Fc)2

)
.

Let α be the angle measured in radians at a, and β and γ are the angles at b and c,
respectively. By the law of sines, one has

vol(T ) =
vol(Fa)vol(Fb) sin γ

2
=

vol(Fa)vol(Fc) sinβ

2
=

vol(Fb)vol(Fc) sinα

2
.

Hence,
vol(VΛ)vol(V

⋆
Λ ) = 4(sin2 α+ sin2 β + sin2 γ). (6.4)

We are now ready to prove a sharp upper bound on the volume product of a 2-dimensional
lattice Voronoi cell:

Proposition 6.3.2. For a 2-dimensional lattice Λ, we have

vol(VΛ)vol(V
⋆
Λ ) ≤ 9.

Equality is attained, if and only if Λ is equivalent to A⋆
2 up to dilations and isometries.

Since the Voronoi cell of A⋆
2 is a regular hexagon, Proposition 6.3.2 is a special case of

a more general theorem of Meyer and Reisner in [MR11], which states that among all
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polygons with m vertices the affine images of the regular m-gon maximize the Mahler
volume.

Proof. As the map Λ 7→ VΛ 7→ vol(VΛ)vol(V
⋆
Λ ) is continuous, it is enough to consider a

generic lattice Λ. In view of (6.4) and since T contains no obtuse angles, it is enough to
show sin2 α+ sin2 β + sin2 γ ≤ 9/4, for any choice of 0 ≤ α, β, γ ≤ π

2 with α+ β + γ = π.
Suppose that there are two angle < π/4. Then it follows that the third angle must be
> π/2, a contradiction. So we can assume that α, β ∈ [π/4, π/2]. On this interval, the
function x 7→ sin2 x is strictly concave. Therefore,

sin2 α+ sin2 β + sin2 γ ≤ 2 sin2
(α+ β

2

)
+ sin2 γ

= 1− cos(α+ β) + sin2(π − (α+ β))

with equality, if and only if α = β. We consider the function

f : [π/2, π] → R, f(ϕ) = 1− cosϕ+ sin2(π − ϕ).

A basic curve sketching shows that f attains its unique maximum at the point 2π/3 and
f(2π/3) = 9/4. Since α+ β ∈ [π/2, π], it follows that

sin2 α+ sin2 β + sin2 γ ≤ 9

4
,

as desired.

In order to have equality, we must have α = β and 2π/3 = α + β = 2α. From this, it
follows that α = β = γ = π/3. By Lemma 6.3.1, this characterizes Λ up to a dilation and
an isometry. It remains to note that A⋆

2 satisfies α = β = γ, which can be computed from
Example 6.1.1.

6.4 3-Dimensional Lattices

The goal of this section is to use an explicit description of the Vornoi cell of a 3-dimensional
lattice in order to express its Mahler volume as a rational function in 6 variables. This
will enable us to prove that A⋆

3 is a strict local maximum of the Mahler volume up to
dilations and isometries.

The structure of 3-dimensional lattice Voronoi cells has been studied by Fedorov who
proved that there exist exactly 5 different combinatorially non-equivalent 3-dimensional
lattice Voronoi cells [Fed85, Fed91]. Only one of these types is a simple polytope, the
permutohedron. This means, that any generic lattice in dimension 3 has a Voronoi cell
that is combinatorially equivalent to a permutohedron. In [CS92], Conway and Sloane
compute the coordinates of these permutohedra, using a parametrization of 3-dimensional
lattices due to Selling [Sel74]. In the following we sum up the results of Conway and Sloane
in order to obtain an explicit formula for the Mahler volume of a 3-dimensional lattice.
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In general, an n-dimensional lattice Λ is said to be of the first kind, if there exists an
obtuse superbasis (OSB) v0, ..., vn of Λ, that is, we have

i) Λ = spanZ{v1, ..., vn},

ii) v0 + · · ·+ vn = 0 and

iii) ⟨vi, vj⟩ ≤ 0 for all i ̸= j.

The numbers pij = −⟨vi, vj⟩ ≥ 0, 0 ≤ i ̸= j ≤ n are then called the Selling parameters
of Λ. An OSB is called strict, if pij > 0 for all choices of i and j. It follows from the
classification in [CS92] that a 3-dimensional lattice Λ is generic, if and only if it possesses
a strict OSB. Since pij = pji, we may index the Selling parameters of Λ by 2-elementary
subsets of {0, 1, 2, 3}. But for the sake of readability we abbreviate pij = p{i,j}.

Similarly to the angles α, β and γ in Section 6.3, the Selling parameters characterize
a lattice of the first kind Λ up to an isometry; to see this, consider the matrix V =
(v1, ..., vn). We note that

|vi|2 = ⟨vi,−
∑
j ̸=i

vj⟩ =
∑
j ̸=i

pij .

Hence the Gram-Matrix V TV maybe expressed in terms of the Selling parameters via

V TV =


∑

j ̸=1 p1j −p12 · · · −p1n
−p12

∑
j ̸=2 p2j · · · −p2n

...
...

. . .
...

−p1n −p2n · · ·
∑

j ̸=n pjn

 . (6.5)

From this we can reconstruct V uniquely up to a multiplication with an orthogonal matrix
from the right.

Note that for any choice of positive pij ’s the expression on the right hand side is a positive
definite matrix, since it is a strictly diagonal dominant matrix. A Cholesky decomposition
of this matrix gives a basis {v1, v2, v3} of a lattice Λ with Selling parameters (pij).

Example 6.4.1. i) In Zn, the system {−1, e1, ..., en} constitutes an OSB, which is
not strict; Selling parameters of Zn are p0i = 1 and pij = 0, for 1 ≤ i < j ≤ n.

ii) In A⋆
n, the vectors of the form( −1

n+ 1
, ...,

−1

n+ 1
,

n

n+ 1
,

−1

n+ 1
, ...,

−1

n+ 1

)T
∈ Rn+1 ∩ 1

⊥
n+1

are a strict OSB with Selling parameters pij =
1

n+1 for all 0 ≤ i < j ≤ n. Observe
that the Selling parameters of A⋆

n do not depend on i and j. ⋄

Voronoi showed in his memoires [Vor08a, Vor08b, Vor09] that any 3-dimensional lattice
is of the first kind. An algorithmic proof of this fact is given in [CS92, Sec. 7].
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For the remainder of the chapter, we shall think of R6 as R
(
4
2

)
, the coordinates are indexed

by 2-elementary subsets of {0, 1, 2, 3}. As the Mahler volume is invariant with respect to
orthogonal transformations, we may choose for any set of Selling parameters p ∈ R6

>0 a
3-dimensional generic lattice Λp with those parameters and restrict ourselves to bounding
the function

f : R6
>0 → R, f(p) = vol(VΛp)vol(V

⋆
Λp
). (6.6)

We will express f as a rational function in order to identify A⋆
3 as a local maximum of

the Mahler volume.

As for the volume of the Voronoi cell, (6.5) yields

vol(VΛ)
2 = det(Λ)2 = det(V TV ) =

∑
pijpklpmn, (6.7)

where the sum ranges of all triples of pairs of indices {i, j}, {k, l} and {m,n} whose
symmetric difference is non-empty (cf. [CS92, Eq. 15]). In order to express vol(V ⋆

Λ ) in
terms of p, we recall the description of VΛ due to Conway and Sloane in [CS92].

Voronoi cells of generic 3-dimensional lattices. Let Λ be a generic 3-dimensional
lattice with OSB {v0, v1, v2, v3} and Selling parameters p = (pij)0≤i<j≤3 ∈ R6

>0. Consider
the linear isomorphism

φ : R3 → 1
⊥
4 , x 7→ (⟨x, vi⟩)0≤i≤3.

It has been shown by Conway and Sloane [CS92, Sec. 8] that

φ(VΛ) = Z(p), (6.8)

where Z(p) = conv{pσ : σ ∈ S4}. Here, S4 denotes the group of permutations of {0, 1, 2, 3}
and for σ = (i, j, k, l) one has

(pσ)i =
1

2
(pij + pik + pil), (pσ)j =

1

2
(−pij + pjk + pjl),

(pσ)k =
1

2
(−pik − pjk + pkl), (pσ)l =

1

2
(−pil − pjl − pkl). (6.9)

Moreover, we have [CS92, Thm. 3]

vor(Λ) =
{
vS =

∑
s∈S

vs : S ⊆ {0, ..., 3}, S ̸= ∅, S ̸= {0, ..., 3}
}

The Voronoi relevant vectors whose inequalities in (6.2) are active at a vertex φ−1(pσ) of
VΛ, σ = (i, j, k, l) ∈ S4, are given by vi, vij and vijk [CS92, Sec. 8]. Hence, these 3 vectors
together with the origin form a Delaunay 3-simplex of Λ and conversely, every Delaunay
3-simplex of Λ at the origin is of this form. Since {v1, v2, v3} form a basis of Λ, so do the
vectors {vi, vj , vk} for any {i, j, k} ⊆ {0, ..., 3} and thus, also {vi, vij , vijk} form a basis.
Finally, the norm of any vS , where S is a proper subset of {0, ..., 3} is given by [CS92,
Thm. 4]

|vS |2 =
∑

i∈S, j∈Sc

pij .
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With this knowledge at hand, we express (6.3) in terms of p and obtain for a generic
3-dimensional lattice with Selling parameters p ∈ R6

>0:

vol(V ⋆
Λ ) =

4

3
vol(VΛ)

∑
(ijkl)∈S4

1

(pij + pik + pil)(pik + pil + pjk + pjl)(pil + pjl + pkl)
.

From (6.7) it follows that

f(p) =
4

3

(∑
pijpklpmn

)
·
( ∑

(ijkl)∈S4

1

(pij + pik + pil)(pik + pil + pjk + pjl)(pil + pjl + pkl)

)
, (6.10)

for all p ∈ R6
>0, where again the first sum ranges over all triples of index sets whose

symmetric difference is non-empty. This is indeed a rational function in p ∈ R6
>0. Using

sagemath [SageMath], we obtain

Lemma 6.4.2. For p ∈ R6
>0, let f(p) be as in (6.6). Then,

{p ∈ R6
>0 : ⟨p,16⟩ = 6} → R, p 7→ f(p)

attains a strict local maximum at p = 1.

Proof. In (6.10), We substitute p23 by 6− p01 − · · · − p13. This gives a function g in the
five variables p01, ..., p13. In sagemath, we can compute the gradient and the Hessian of
f and evaluate both in exact rational arithmetic at 15. This second derivative test shows
that g has a strict local maximum at 15.

The symbolic expression given by (6.10) is provided as a sage-object under this URL:

https://github.com/AnsgarFreyer/Dissertation_Data.git

As p encodes a unique lattice up to isometry and f is invariant with respect to dilation,
we deduce from Example 6.4.1 that A⋆

3 is a strict local maximum of the volume product
up to scaling and isometries. More precisely,

Theorem 6.4.3. For a 3-dimensional lattice Λ, let [Λ] be the equivalence class of lattices
obtained from Λ by applying dilations and isometries. Let

L3
∼ = {[Λ] : Λ 3-dimensional lattice}.

Then the map
F : L3

∼ → R, [Λ] 7→ vol(VΛ)vol(V
⋆
Λ )

attains a strict local maximum at [A⋆
3].
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Proof. First, we recall that by the invariance properties of the Mahler volume, the map
F is indeed well-defined.

Suppose [A⋆
3] was not a strict local maximum of F . Then we find a sequence (Λ(n))n∈N

of 3-dimensional lattices in 1
⊥
4 that converges to A⋆

3 such that F ([Λ(n)]) ≥ F ([A⋆
3]), but

no Λ(n) is equivalent to A⋆
3. For each Λ(n), we choose a superbasis B(n) in such a way

that B(n) converges pointwise to the obtuse superbasis B of A⋆
3 that has been described

in Example 6.4.1. Since B is a strict OSB, for large enough n, the superbases B(n) are
also strict OSBs. Let p(n) be the Selling parameters of Λ(n) that we gain from B(n). By
continuity, we have limn→∞ p(n) = 16. But on the other hand, we have

f(p(n)) = vol(VΛ(n))vol(V ⋆
Λ(n)) = F ([Λ(n)]) ≥ F ([A⋆

3]) = f(16).

Since none of the Λ(n) is equivalent to A⋆
3, none of the p(n) is a multiple of 16. Since

f is invariant with respect to scaling of p, we obtained a contradiction to Lemma 6.4.2.
Hence, [A3]

⋆ is indeed a strict local maximum of F .

We conjecture that A⋆
3 is indeed a global maximum.

Conjecture 6.4.4. For any 3-dimensional lattice Λ, we have

vol(VΛ)vol(V
⋆
Λ ) ≤ vol(VA⋆

3
)vol((VA⋆

3
)⋆) =

128

9

with equality, if and only if Λ can be obtained from A⋆
3 by dilations and isometries.

6.5 Towards Quasi-Concavity of f

So far we reduced the function f from (6.6) to a rational function in the Selling pa-
rameters. In this section we want to use the underlying geometry in order to develop a
strategy to prove Conjecture 6.4.4. In other words, f attains its maximum at p ∈ R>01.
Unfortunately, a proof of this statement is out of reach at the moment, but nonetheless,
the insights of this chapter may be regarded as supporting evidence of the conjecture.

Let us recall the representation of a generic lattice Voronoi cell as a linear image of
Z(p), p ∈ R6

>0 (cf. (6.8)). As the Mahler volume is invariant with respect to linear
transformations, we have

f(p) = vol(Z(p))vol(Z(p)⋆),

where the polarity and the volume are computed within span(Z(p)) = 1
⊥
4 . We will use

this view on f to show the following proposition.

Proposition 6.5.1. For 0 ≤ i < j ≤ 3, let eij denote the standard unit vector of R6

indexed by 2-element subsets of {0, ..., 3}. For p ∈ R6
>0 fixed, and {i, j} arbitrary, the

function
g : R>0 → R, t 7→ f(p+ teij)

is quasi-concave.
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A function ϕ : C → R on a convex set C is called quasi-concave, if {x ∈ C : ϕ(x) ≥ s}
is convex for any s ∈ R. If the function f itself was quasi-concave, then Conjecture
6.4.4 would follow, as Proposition 6.5.3 will show. However, this cannot be deduced from
Proposition 6.5.1.

In order to prove Proposition 6.5.1, we need the notion of shadow systems . For a fixed
vector v ̸= 0, a bounded set X ⊆ Rn, a bounded function α : X → R and an interval
I ⊆ R, the family of convex sets

Kt = conv{x+ α(x)tv : x ∈ X}, t ∈ I,

is called a shadow system. Shadow systems were introduced by Rogers and Shephard
[RS58b, She64]. We call a shadow system symmetric, if Kt ∈ Kn

os, for any t ∈ I. In
[CG06], Campi and Gronchi prove that for a symmetric shadow system, the function
t 7→ vol(K⋆

t )
−1 is convex. If in addition t 7→ vol(Kt) is an affine function, the Mahler

volume t 7→ vol(Kt)vol(K
⋆
t ) is quasi-concave in t [FMZ12, Cor. 2].

Proof of Proposition 6.5.1. For t ∈ R>0, consider the family of convex bodies

Kt = Z(p+ teij).

We have g(t) = vol(Kt)vol(K
⋆
t ) and indeed, (Kt)t>0 is a shadow system, which follows

from (6.9); we let X = {pσ : σ ∈ S4}, v = ei − ej and α(pσ) = 1, if i precedes j in σ
and α(pσ) = −1 otherwise. Moreover, we have by (6.8) that vol(Z(p)) = det(Λp)

2 for any
p ∈ R6

>0 and therefore, by (6.7),

vol(Z(p)) =
∑

pijpklpmn,

where the sum ranges over all index sets whose symmetric difference is non-empty. From
this, we obtain that the volume of Kt is an affine function in t, which finishes the proof.

Remark 6.5.2. From the coordinate representation (6.9), it follows that

Z(p) =
1

2

∑
0≤i<j≤3

pij [ei − ej , ej − ei],

where ei denotes the i-th standard unit vector in R4 indexed by {0, ..., 3}. In particular
Z(p) is a zonotope with fixed edge directions. Thus, geometrically, the shadow system
(Kt)t≥0 describes the process of elongating the edge in direction ei−ej , while keeping the
remaining edge lengths fixed. That way, we have an alternative argument why vol(Kt) is
an affine function in t (cf. Figure 6.4). ⋄

We finish the section by proving that quasi-concavity of f would imply Conjecture 6.4.4.

Proposition 6.5.3. Suppose that the function f as defined (6.6) is quasi-concave. Then,
Conjecture 6.4.4 holds true.
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Figure 6.4: 2-dimensional illustration of the shadow system; If we elongate the edge in di-
rection ei − ej by t, the new zonotope differs from Z(p) only by an “inserted” prism of
height t over Z(p)|(ei − ej)

⊥. Thus, its volume is an affine function in t.

Proof. Suppose there was a lattice Λ which is not obtained from A⋆
3 by isometries and

dilations, but fulfills
vol(VΛ)vol(V

⋆
Λ ) ≥ vol(VA⋆

3
)vol((VA⋆

3
)⋆).

Then there exists a set of Selling parameters p ∈ R6
>0, which is not a multiple of but

satisfies f(p) ≥ f( ). We consider the S4-action on R6
>0 given by (σp)ij = pσiσj . By

Remark 6.5.2, we have Z(σp) = σ−1Z(p), where the S4-action on the right hand side is
the usual permutation of the coordinates. Since f(p) is the Mahler volume of Z(p), we
see that f is invariant with respect to the S4-action on R6

>0. Hence, by quasi-concavity,
f(q) ≥ f( ) for any q ∈ O = conv{σp : σ ∈ S4}.

Now we prove that 1
24

∑
σ∈S4

σp ∈ O ∩ R6
>0 : Again, let ekl denote the standard unit

vector of R6 with respect to the indexing by 2-elementary sets. Then we have〈 ∑
σ∈S4

σp, ekl
〉
=

∑
0≤i<j≤3

pij s(kl; ij),

where s(kl; ij) = |S(kl; ij)| and

S(kl; ij) =
{
σ ∈ S4 : {i, j} = {σk, σl}

}
.

In order to prove the claim, it is enough to show s(kl; ij) = s(ab; ij) for all 2-elementary
subsets {a, b} and {k, l} of {0, ..., 3}. For this, consider any permutation π ∈ S4 with
πa = k and πb = l. Then we have S(kl; ij) ·π ⊆ S(ab; ij), which yields s(kl; ij) ≤ s(ab; ij).
Reversing the roles {k, l} and {i, j} shows that we have equality. This proves the claim.

Since p is not a multiple of , the polytope O is not a segment in R6
>0 . Thus, by

projecting O stereografically with respect to the origin on the hyperplane {⟨·, ⟩ = 6}, we
obtain a segment in that hyperplane that contains on which f is at least f( ). This
contradicts the fact that is a strict local maximum of f on that hyperplane (cf. Lemma
6.3.1).

Note that f is quasi-concave, if and only if it satisfies f(λp+ (1− λ)q) ≥ min{f(p), f(q)}
for all p, q ∈ R6

>0 and λ ∈ [0, 1] [BV13, Sec. 3.4.2]. With this definition we can efficiently
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test the quasi-concavity of f at two points p and q with random coordinates in a large
interval. No counterexamples have been obtained.

6.6 Examples in Higher Dimensions

With the help of the software polymake [AGH+17], we can compute the Voronoi cell of a
low-dimensional lattice from one of its Gram matrices. Below, we list examples of lattices
whose Voronoi cells have a potentially high Mahler volume.

The polymake script that we use has been implemented as part of a joint project with
Martin Henk and Lilli Leifheit. Given a basis B = {b1, ..., bn} of a lattice Λ = BZn, we
consider the parallelepiped P = {x ∈ Rn : |⟨x, bi⟩| ≤ |bi|2/2, ∀i ∈ [n]}. In view of (6.2),
we have VΛ ⊆ P . Moreover, one has vor(Λ) ⊆ 2VΛ; If there was a vector v ∈ vor(Λ),
which is not contained in 2VΛ, then there exists w ∈ vor(Λ) with ⟨v, w⟩ > |w|2. As we
have ⟨w, x⟩ ≤ |w|2/2 and ⟨v−w, x⟩ ≤ |v−w|2/2 for any x ∈ VΛ, we deduce ⟨v, x⟩ < |v|2/2
for all x ∈ VΛ. This contradicts v ∈ vor(Λ). Thus, in order to compute VΛ, it suffices to
compute the lattice points in 2P .

As the examples we computed were well-behaved in the sense that the basis vectors were
not too long, we could use this approach without any preprocessing of the basis. In
general, one might apply an LLL-reduction to obtain a basis whose vectors are not too
long compared to the successive minima of Λ with respect to the Euclidean ball [LLL82].
In [HRS20], the authors prove upper and lower bounds on the size of parallelepipeds that
contain vor(Λ). Our polymake script can be found under the following URL:

https://github.com/AnsgarFreyer/Dissertation_Data.git

As it is oftentimes more convenient to encode a lattice in terms of its Gram matrix
Q = BTB rather than its basis B, our algorithm computes for a given positive definite
matrix Q the Voronoi cell

V (Q) = {x ∈ Rn : xTQz ≤ 1

2
ztQz, ∀z ∈ Zn},

i.e., the Voronoi cell of Zn with respect to the scalar product induced by Q. This is done
in order to avoid irrational numbers that might occur in a Cholesky decomposition of Q.
In fact, V (Q) may be computed with the same algorithm as described above for VΛ, by
replacing the Euclidean scalar product with the one induced by Q. Moreover, we have
V (Q) = B−1VΛ and therefore vol(V (Q))vol(V (Q)⋆) = vol(VΛ)vol(V

⋆
Λ ), which allows us

to compute the Mahler volume of VΛ in rational arithmetic, whenever a rational Gram
matrix Q of Λ is given.

Root lattices. The root lattices An (cf. Example 6.1.1), Dn = {x ∈ Zn : x1 + · · ·+ xn ∈
2Z} and Zn, as well as their polar lattices have a particularly rich symmetry group and
are therefore natural candidates for extrema of geometric functionals. The following table
shows their Mahler Volumes. Note that Zn is self-polar and that the Voronoi cell of Zn

is the unit cube, which is conjectured to attain the minimum Mahler volume among all
origin-symmetric convex bodies. Also, D3 is is equivalent to A3 and D4 is self-polar. In
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the last column we also list the Mahler volume of the Euclidean ball in the respective
dimension for the sake of comparison. All values are rounded up to the third decimal
place.

n Zn An A⋆
n Dn D⋆

n ball

3 10.667 13.334 14.223 13.334 14.223 17.546

4 10.667 14.584 17.361 16 16 24.352

5 8.533 12.6 17.28 14.4 16.384 27.707

6 5.689 8.984 14.525 10.311 12.642 26.705

Generic lattices in dimension 4. Our investigation of the 3-dimensional case relied
heavily on the fact that any generic 3-dimensional lattice Voronoi cell is combinatorially
equivalent to the permutohedron (cf. (6.9) and Remark 6.5.2). In higher dimensions, the
number of combinatorially distinct Delaunay lattice triangulations grows rapidly. While
there are 3 of them in dimension 4 [Vor08b, Vor09], there are already 222 in dimension 5
[EG02, SV06, DG09] and at least 567.613.632 in dimension 6 [BE13].

Interestingly, the matrices

D1
4 =


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

 , Di4a =


2 α −1 −1
α 2 −1 −1
−1 −1 2 1− α
−1 −1 2 1− α

 ,

and

Di4b =


3− γ γ −1 −1
γ 3− γ −1 −1
−1 −1 2 + 2β β
−1 −1 β 2 + 2β

 ,

where α ≈ 0.697, β ≈ 0.544 and γ ≈ 0.499 are algebraic numbers, are not only represen-
tatives of the three different types of generic 4-dimensional lattices, but are also the only
local minimizers of the covering radius, i.e., of the function Λ 7→ µ(Bn,Λ) (cf. [CS99, Ch.
2, Sec. 1.3]). In fact, we can check with polymake that the Voronoi cells that belong to the
above matrices are combinatorially distinct and, thus, serve as “round” representatives
of the three different types of generic Voronoi cells in dimension 4. Note that D1

4 is the
Gram matrix of A⋆

4. Let us denote the lattice corresponding to Di4a and Di4b by Λ4a and
Λ4b. We obtain the following values for the Mahler volume of these lattices. The Mahler
volume in the table below is rounded up to the third decimal place.

Lattice Voronoi cell Mahler volume

Z4 unit cube 10.667

A⋆
4 regular permutohedron 17.361

Λ4a ∼ 17.218

Λ4b ∼ 16.268

∼ 4-dimensional ball 24.352
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Note that the Mahler volumes of Λ4a and A⋆
4 are remarkably close to one another.

5-dimensional lattices. In [DGSW16], the authors classify the combinatorial types of
all (not necessarily generic) lattice Voronoi cells and provide a list of representatives for
each of the 110244 combinatorial types. Although there are infinitely many affine types
of lattice Voronoi cells, the examples in [DGSW16] serve as an interesting database for
our purposes. Among them, we find a lattice Λ5 whose volume product is exceptionally
close to the one of A⋆

5; we have vol(VΛ5)vol((VΛ5)
⋆) ≈ 17.273, while the volume product

of the Voronoi cell of A⋆
5 is 17.28. The Gram matrix of Λ5 is

7 3 −3 −3 −2
3 7 −2 −2 −3
−3 −2 7 2 −2
−3 −2 2 7 −2
−2 −3 −2 −2 7

 .

It is the 75774th element in the list computed in [DGSW16].
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7 Two Polytopes Associated to
Forests

In this chapter we consider two anti-blocking polytopes that can be associated to a forest;
the matching polytope and the substar polytope. These polytopes are dual to one another
and the volume of both polytopes can be described combinatorially in terms of the under-
lying forest. We will use the combinatorial view on the volume to obtain upper bounds
on the Mahler volume of this pair of polytopes. The results in this chapter are part of an
ongoing joint work with Raman Sanyal.

7.1 Basics From Combinatorics

Before we begin, let us briefly recall the basic terms and definitions from combinatorics
that are necessary for this chapter.

Graphs. We consider a graph as a pair G = (V,E), where V is finite and E ⊆
(
V
2

)
is

a set of 2-elementary subsets of V . The elements of V are called vertices of G and the
elements of E are called edges of G. If we are dealing with graphs and polytopes at the
same time, we might also call the elements of V nodes, in order to avoid confusion with
the vertices of polytopes. The degree of a vertex v in G is the number of edges of G that
contain v. An orientation O of a graph G is a binary relation on V such that {x, y} ∈ E
holds, if and only if either (x, y) ∈ O, or (y, x) ∈ O holds. If (x, y) ∈ O for an edge
e = {x, y} ∈ E, we call x the source and y the target vertex of e in O, and we say that e
is oriented from x to y.

We introduce shorthand notations for particular graphs. We denote by Pn the path graph
with n edges and by Cn the cycle graph with n edges. A matching of G is a set M ⊆ E
such that no two edges of M intersect. By Mn, we shall denote the matching graph with
n edges, i.e., Mn contains exactly n disjoint edges and 2n vertices. Moreover, for a vertex
v we call the vertices of G that form an edge with v the neighbors of v. The set of edges S
that contain v is called the star around v and v is the center of S. An edge that contains
a vertex is also said to cover this vertex. We let Sn denote the star graph with n edges, by
which we mean the graph that contains n+ 1 vertices, and n edges such that one vertex
is covered by all edges.

An important concept in the study of polytopes that are associated to graphs are cliques
and stable sets. A clique C of G = (V,E) is a subset of V such that any two vertices in C
are joined by an edge. Conversely, a stable set is a subset of V in which no two vertices
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are joined by an edge. We say that G is bipartite, if there exist two stable sets S1, S2 ⊆ V
such that V = S1 ∪ S2. It is important for the upcoming sections to note that

i) A stable set of G is a clique in the complement graph G = (V,
(
V
2

)
\ E),

ii) A matching is a stable set in the line graph LG = (E,F ), where we have {e, f} ∈ F ,
if and only if |e ∩ f | = 1.

For a graph G = (V,E), another graph H = (V ′, E′) is called a subgraph of G, if V ′ ⊆ V

and E′ ⊆ E. H is called an induced subgraph, if E′ = E ∩
(
V ′

2

)
. A forest is a graph that

does not contain a Ck as a subgraph, for any k ∈ N. A tree is a connected forest, i.e., any
two vertices are connected by a path.

A graph G is called perfect , if every induced subgraph H = (V ′, E′) of G fulfills

max{|C| : C ⊆ V ′ is a clique} = min{k : ∃S1, ..., Sk ⊆ V ′ stable. V ′ = S1 ∪ ... ∪ Sk}.

Perfect graphs are characterized as those graphs G that do not contain C2k+1, or C2k+1 as
an induced subgraph for k ≥ 2. This result is known as the strong perfect graph theorem,
which has been proven in 2006 by Chudnovsky et al. [CRST06]. It implies in particular
that G is perfect, if and only if G is perfect, a result that is known as the (weak) perfect
graph theorem, which has been proven by Lovász in 1972 [Lov72a, Lov72b].

Examples of graph classes that are perfect are

i) bipartite graphs,

ii) line graphs of bipartite graphs [Lov74],

iii) (in)comparability graphs of posets (cf. Section 7.3),

and many more “natural classes”. We refer to [BC84] for a more comprehensive overview.

Posets. Finally, we recall the basic terms concerning posets. For a detailed introduction,
we refer to [Sta11, Ch. 3]. A partially ordered set (poset) is a pair P = (X,≤), where X
is a set and ≤ is a relation on X such that

i) x ≤ x, for all x ∈ X,

ii) x ≤ y and y ≤ x implies x = y, for all x, y ∈ X,

iii) x ≤ y and y ≤ z implies x ≤ z, for all x, y, z ∈ X.

A chain of P is a subset C ⊆ X in which any two elements are comparable. Dual to
this, an anti-chain of P is a subset A ⊆ X such that any two distinct elements of A are
incomparable. We will be concerned with finite posets only. For such posets, a linear
extension is an order-preserving bijection σ : X → [n]. That is, we have σ(x) ≤ σ(y),
whenever x ≤ y.
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7.2 Combinatorial Anti-Blocking Polytopes

In this section we introduce the class of stable set polytopes, which may be regarded as the
most general class of anti-blocking polytopes that are associated to a graph. Afterwards,
we recall the definition of Stanley’s chain polytope and consider it in the framework of
stable set polytopes.

For a graph G = (V,E), the stable set polytope is defined as

Stab(G) = conv{1[S] : S ⊆ V is stable in G} ⊆ RV ,

where 1[S] is the indicator vector of S in RV , the real |V |-dimensional vector space whose
coordinates are indexed by V . Note that Stab(G) is an anti-blocking polytope, since any
subset of a stable set is stable.

We say that an anti-blocking lattice polytope P is reflexive, if its anti-blocking polar
AP is again a lattice polytope. Equivalently, P is reflexive, if and only if the associated
unconditional UP is a reflexive polytope (cf. Section 2.1).

Kohl, Olsen and Sanyal showed that reflexive anti-blocking polytopes are exactly the
stable set polytopes of perfect graphs [KOS20, Thms. 4.6 and 4.9].

Theorem 7.2.1 (Kohl, Olsen and Sanyal, [KOS20]). Let P ⊆ Rn
≥0 be an anti-blocking

polytope. Then, P is reflexive, if and only if there exists a unique (up to the labeling of
the nodes) perfect graph G with P = Stab(G).

As a byproduct of Matoušek’s proof of the weak perfect graph theorem [Mat02, Thm.
12.1.2], one obtains for a perfect graph G that its anti-blocking polar is given by AP =
Stab(G). In other words, we have

Stab(G) = {x ∈ RV
≥0 : ⟨x,1[C]⟩ ≤ 1, ∀C ⊆ G clique}

and the irredundant inequalities in the description are given by the maximal cliques of
G.

Theorem 7.2.1 raises the question whether geometric quantities of a reflexive anti-blocking
polytope P may be expressed in terms of its underlying perfect graph G. As for the vol-
ume, an explicit connection to the combinatorial properties of G has only been established
for the class of chain polytopes.

Chain Polytopes. Consider a finite poset P = (X,≤). The chain polytope of P has
been defined by Stanley in [Sta86] as

C(P) = {x ∈ RX
≥0 : ⟨x,1[C]⟩ ≤ 1, ∀C ⊂ P chain}.

The terms “chain polytope” and “stable set polytope” are somewhat inconsistent, since
the chain polytope is not the convex hull of all indicator vectors of chains of P. However,
we shall stick to this terminology, since it is widely used in the literature.
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The irredundant constraints of the chain polytopes are given by the maximal chains and
Stanley proved that the vertices of C(P) are precisely the points 1[A], where A ⊆ P is an
anti-chain [Sta86, Thm. 2.2]. This shows that C(P) is a reflexive anti-blocking polytope
and as such, there exists a perfect graph G such that C(P) = Stab(G). Indeed, if we
consider the comparability graph

Comp(P) =
(
X, {{x, y} : x < y or y < x}

)
,

we find that C(P) = Stab(Comp(P)), since chains and anti-chains of P correspond to
cliques and stable sets of Comp(P), respectively. The fact that comparability graphs of
posets are perfect can also be regarded as a reformulation of Mirsky’s theorem, which
states that the size of the largest chain in a poset P equals the minimum number of
anti-chains needed to partition P [Mir71].

Unlike for general stable set polytopes, the volume of C(P) is known to have a strong
combinatorial meaning for P [Sta86, Cor. 4.2].

Theorem 7.2.2 (Stanley). For a poset P with n elements, we have

vol(C(P)) =
1

n!
e(P),

where e(P) denotes the number of linear extensions of P.

Stanley’s result allows for geometric interpretations of combinatorial results involving the
number of linear extensions of a poset. For instance, Sidorenko proved that for any poset
P with the property that its incomparability graph Comp(P) is the comparability graph
of another poset P one has [Sid91]

e(P)e(P) ≥ n!. (7.1)

In view of Theorem 7.2.2, Sidorenko’s inequality becomes [BBS99]

vol(C(P))vol(AC(P)) = vol(C(P))vol(C(P)) ≥ 1

n!
. (7.2)

If we consider the corresponding unconditional body K = UC(P), (7.2) yields
vol(K)vol(K⋆) ≥ 4n/n!, i.e., the Mahler conjecture (cf. (2.3)) holds true for these bod-
ies. In general, for an anti-blocking body K we shall refer to the volume product
vol(K)vol(AK) as the Mahler volume of K.

Indeed, it has been shown by Saint-Raymond that the Mahler conjecture holds for an
arbitrary unconditional convex body [Sai81]. For an anti-blocking body K, this means
that the inequality

vol(K)vol(AK) ≥ 1

n!
(7.3)

holds. While the proof of Saint-Raymond uses methods from harmonic analysis, Meyer
gave a more elementary proof of the statement [Mey86]. In [BB00], remarkable parallels
between Meyer’s proof and the combinatorial argument of Sidorenko are established.
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Inspired by the history of Sidorenko’s inequality (7.1) and its interpretation (7.2), we
study the (Mahler) volume of two particular stable set polytopes, the matching and the
substar polytope of forests.

7.3 Matching and Substar Polytopes

In the following, we consider a forest G = (V,E) with n edges and we define the matching
polytope of G as

M(G) = conv{1[M ] : M ⊆ E matching in G} ⊆ RE
≥0. (7.4)

We have M(G) = Stab(LG) and, since a forest is bipartite, LG is perfect. Note that a
clique S ⊆ LG is a set of edges of G that intersect in common vertex of G, because G
contains no triangles. We call such a set S a substar of G. If S is a maximal clique, it is
called a star of G. With these terms, we have

M(G) = {x ∈ RE
≥0 : ⟨x,1[S]⟩ ≤ 1, ∀S ⊆ E star} (7.5)

and the description is irredundant. This insight is indeed a special case of Edmond’s
matching polytope theorem, which generalizes the description of the matching polytope to
the non-bipartite case [LP86, Sec. 7.3]. Note that in particular, a matching and a substar
intersect in at most one edge.

Remark 7.3.1. There are two types of stars in a forest G; either, the star consists of all
edges incident to a non-leaf vertex of G, or it consists of a single isolated edge. ⋄

The anti-blocking polar of M(G) is called the substar polytope of G. In view of (7.4) and
(7.5), we have

AM(G) = conv{1[S] : S ⊆ E substar of G}
= {x ∈ RE

≥0 : ⟨x,1[M ]⟩ ≤ 1, ∀M ⊆ E maximal matching}, (7.6)

and the descriptions are irredundant. Before we continue, let us consider some examples.

Example 7.3.2. i) If G = Mn is a single matching of size n, then every subset of E
is again a matching and the only (sub)stars are the n isolated edges of Mn. Thus,
M(Mn) = [0, 1]E is the cube of side length 1 and AM(Mn) = conv{0,1[e] : e ∈ E}
is the standard orthogonal simplex.

Conversely for the star graph Sn, that is, the graph that consists of n edges, all of
which meet at a common vertex, a matching can contain at most one edge. More-
over, any subset of the edges of Sn forms a substar. Hence, M(Sn) = conv{0,1[e] :
e ∈ E} and AM(Sn) = [0, 1]E .

Note that both M(Mn) and M(Sn) satisfy the Saint-Raymond inequality (7.3) with
equality.
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ii) Consider the path graph Pn with n edges. For convenience, we label the edges of
Pn with numbers from [n] such that any two consecutive edges intersect. That way,
a matching corresponds to a 0-1-string without consecutive 1s, while a star is a
0-1-string with exactly two consecutive 1s. Consequently,

M(Pn) = {x ∈ Rn
≥0 : xi + xi+1 ≤ 1, ∀i ∈ [n− 1]}

and the number of vertices (i.e., the number of matchings of Pn) is the (n + 2)nd
Fibonacci number Fn+2, since the number of 0-1-strings of length n obeys the same
recursion as the Fibonacci numbers. For this reason M(Pn) is also called “Fibonacci-
polytope”. It has been studied in a general context in [Ris05]. We will revisit this
polytope in Section 7.5.

iii) Consider the tree T = (V, {e1, e2, e3, f1, f2, f3}) as drawn in Figure 7.1.

Figure 7.1: A tree such that neither its matching polytope, nor its substar polytope can be
expressed as the chain polytope of some poset.

Suppose M(T ) is the chain polytope of some poset P. Since M(T ) = Stab(LT ) and
C(P) = Stab(Comp(P)), it follows from Theorem 7.2.1 that LT = Comp(P). So we
may assume that the ground set of P is E and we have that e1, e2, e3 are a chain in
P, since they form a clique in LT . Without loss of generality let e1 < e2 < e3 in P.
Since e2 and f2 intersect in T , they are comparable in P. If, for instance, f2 < e2
it follows that f2 < e3. But since f2 and e3 do not intersect in T they need to be
incomparable in P, a contradiction. The case e2 < f2 is treated analogously.

Moreover AM(T ) = Stab(LT ) is not a chain polytope either. If it was, we would
have by the same argument that we applied above LT = Comp(P) for some poset P.
In words, the line graph of T is the incomparability graph of P. Again, we identify
the ground set of P with E. Then a matching in T is a chain in P. So without
loss of generality, we may assume f1 < f2 < f3. Also {e1, f2, f3} is a matching in
T and therefore a chain in P. Since e1 is incomparable to f1 and f2 < f3, we must
have e1 < f2 < f3. In the same way, we obtain f1 < f2 < e3. From this, we deduce
e1 < e3, a contradiction, since e1 and e3 meet and are therefore incomparable.

This example shows that neither the class of matching polytopes, nor the class of
substar polytopes is contained in the class of chain polytopes. ⋄
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In order to compute the volume of M(G), we follow an approach by Liu in [Liu12]. A
matching M of a forest G is called almost perfect , if it covers any non-leaf vertex of G and
also contains all isolated edges. In the next section, we will construct an almost perfect
matching for a forest explicitly. However, in general, a bipartite graph does not need to
contain an almost perfect matching as the complete bipartite graph of size (2, 3) shows.

For a forest G, a map m that assigns to each subforest H of G a matching m(H) which
is almost perfect for H is called a matching choice function (MCF) of G. Given a forest
G with n edges and a matching choice function m of G, Liu defines a standard labeling
of G as a bijection σ : E → [n] with the property that

σ−1(i) ∈ m(G \ {σ−1(1), ..., σ−1(i− 1)}).

The set of all standard labelings of G with respect to m is denoted by St(G,m) and we
write st(G,m) = |St(G,m)| for the number of standard labelings of G with respect to
m.

It is convenient to denote a standard labeling in inline notation, i.e., we write σ =
(e1, ..., en), where ei = σ−1(i). We think of σ as a process of deleting the edges of G,
where at each step, where are only allowed to choose an edge from the current almost
perfect matching m(G \ {e1, ..., ei−1}) (see also Figure 7.2).

The following result is due to Liu [Liu12].

Lemma 7.3.3 (Liu). Let G be a forest with n edges and let m be an MCF of G. Then,

vol(M(G)) =
1

n!
st(G,m).

In particular, it follows from the lemma that st(G,m) does not depend on the MCF m.
Therefore, we may write st(G) = st(G,m) = n!vol(M(G)).

Liu’s proof of Lemma 7.3.3 uses a recursive argument in order to characterize the volume
of M(G) as a functional of G. Here, we shall give a proof of the lemma that highlights
the special geometric properties of M(G) using an alternative recursion.

Geometric proof of Lemma 7.3.3. We prove the claim by induction. For n = 1, the state-
ment is clearly true. Let n > 1 and consider M = m(G), the almost perfect matching of
G chosen by the MCF m. Then, 1[M ] is a vertex of M(G). Since M covers any non-leaf
vertex of G and contains any isolated edge, we have |M ∩ S| = 1, for all stars S ⊆ E. In
view of (7.5), this means that the vertex 1[M ] is contained in all facets of M(G) except
for the coordinate facets of the form Fe = {x ∈ M(G) : xe = 0} for e ∈ M . The distance
of 1[M ] to Fe is 1. We observe that Fe = M(G \ {e}). Therefore, by the pyramid formula
and our induction hypothesis, we have

vol(M(G)) =
1

n

∑
e∈M

vol(M(G \ {e})) = 1

n!

∑
e∈M

st(G \ {e},m). (7.7)
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Figure 7.2: Illustrations of the three standard labelings of the given tree. At the top, we see
a tree T with its vertices labeled from 0 to 4. The almost perfect matching is depicted in
black, while the remaining edges are grey. The tree T ′ below is obtained from T by deleting
the only black edge in its almost perfect matching. In the third row, we have two different
trees obtained from T ′ by deleting one of the edges in its almost perfect matching. Contin-
uing in this manner, we can delete all edges of T in three different ways. These ways are
the three standard labelings of T , they are listed at the bottom of the figure.
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But on the other hand, any σ = (e1, ..., en) ∈ St(G,m) has to start with an edge e1 ∈ M .
By definition, the sequence (e2, ..., en) is then an element of St(G \ {e1},m). Thus,

st(G,m) =
∑
e∈M

st(G \ {e},m).

We obtain, by rearrangig (7.7),

n! vol(M(G)) =
∑
e∈M

st(G \ {e},m) = st(G,m)

and the proof is finished.

The recursive application of the pyramid formula in the above proof corresponds to a
decomposition of M(G) into simplices. In fact, for any standard labeling σ = (e1, ..., en) ∈
St(G,m), there exists a lattice n-simplex

Sσ = conv{1[m(G \ {e1, ..., ei})] : 0 ≤ i ≤ n}. (7.8)

Moreover, Sσ has integral vertices and its volume is 1/n!. We call such simplices unimod-
ular .

If we choose m appropriately, the simplices (Sσ)σ∈St(G,m) form a triangulation of M(G).
We will explain these triangulations in detail in Section 7.4. Before that, let us introduce
a dual concept to standard labelings for the substar polytope.

A star S ⊆ E is called almost perfect, if it covers a leaf of G. A star choice function (SCF)
of G is a map s that assigns to each subgraph H of G an almost perfect star s(H) and a
co-standard labeling of G with respect to s is a bijection π : E → [n] with the property
that

π−1(i) ∈ s(G \ {π−1(1), ..., π−1(i− 1)}).

The set of co-standard labelings of G with respect to s is denoted by Co(G, s) and we
write co(G, s) = |Co(G, s)|. As for the standard labelings we may represent π ∈ Co(G, s)
as π = (e1, ..., en), where ei = π−1(i), and we think of π as a process of deleting the
edges of G, where at each step, we may only delete an edge from the substar s(G \
{π−1(1), ..., π−1(i− 1)}) (see also Figure 7.3).

An almost perfect star S ⊆ E has the property that it intersects every maximal matching
M of G; If a matching M does not intersect S, we could just add the edge to the leaf
covered by S to M , so M was not maximal. In view of (7.6), we see that 1[S] is contained
in every facet of AM(G) except for {x ∈ AM(G) : xe = 0} = AM(G \ {e}), e ∈ S.
Thus, we may follow the lines of the proof of Lemma 7.3.3 and obtain a combinatorial
description of vol(AM(G)).

Lemma 7.3.4. Let G be a forest with n edges let s be an SCF of G. Then,

vol(AM(G)) =
1

n!
co(G, s).
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Figure 7.3: Illustrations of the eight co-standard labelings of the tree from Figure 7.2.

Again, we find that co(G, s) is independent of the SCF s, which justifies the notation
co(G) = co(G, s) = n!vol(AM(G)). Similarly to (7.8), we obtain for any π = (e1, ..., en) ∈
Co(G, s) a unimodular simplex

Tπ = conv{ [s(G \ {e1, ..., ei})] : 0 ≤ i ≤ n} (7.9)

and the simplices (Tπ)π∈Co(G,s) form a decomposition of AM(G).

7.4 Explicit Pulling Triangulations of M(G) and AM(G)

In this section, we will construct a matching choice function m and a star choice function
s such that the decompostions (Sσ)σ∈St(G,m) and (Tπ)π∈Co(G,s) as defined in (7.8) and
(7.9) are in fact triangulations of M(G) and AM(G), respectively.

For this we need the notion of a pulling triangulation that goes back to Stanley [Sta80].
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Let us recall the definition; In general, we consider a polytope P ⊆ Rn and we fix an
enumeration vert(P ) = {v1, ..., vm} of its vertex set. For a non-empty face F ⊆ P , let
max(F ) = argmax{i : vi ∈ F}. A chain of faces

F : F0 ⊊ ... ⊊ Fn = P

is called a flag of P and F is called a full flag, if max(Fi) ̸∈ Fi−1, for all i ∈ [n]. For a full
flag F , one defines the simplex

SF = conv{max(Fi) : 0 ≤ i ≤ n}.

It has been observed in [Sta80, Lemma 1.1] that the simplices (SF )F , where F ranges
over all full flags of P , form a triangulation of P . This triangulation is referred to as the
pulling triangulation of P with respect to the vertex enumeration (v1, ..., vm).

Figure 7.4: Pulling Triangulation of a prism. The 3-simplices in the triangulation are given
by the convex hulls of the vertices labeled by {6, 3, 2, 1}, {6, 5, 2, 1} and {6, 5, 4, 1}.

Remark 7.4.1. Intuitively, the decompositions (Sσ)σ∈St(G,m) and (Tπ)π∈Co(G,s) of M(G)
and AM(G) are closely related to a pulling triangulation: A simplex Sσ, where σ =
(e1, ..., en), as defined in (7.8) corresponds to the flag

{0} ⊊ M(G \ {e1, ..., en−1}) ⊊ ... ⊊ M(G \ {e1}) ⊊ M(G).

Out of each face M(H) in this flag, we pick the vertex [m(H)]. What keeps (Sσ)σ∈St(G,m)

from being a pulling triangulation in general, is the circumstance that the rule by which
the vertex [m(H)] is chosen from M(H) might not be “consistent”. For instance, if
H ′ ⊆ H ⊆ G are subforests of G and m(H ′) ̸= m(H), but m(H ′) ⊆ H (i.e., it could have
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been chosen as the almost perfect matching of H), it is possible that there are simplices
in the decomposition (Sσ)σ∈St(G,m) that do not intersect in a common face (cf. Figure
7.5). ⋄

Figure 7.5: Let us consider F and G as facets of a hypothetical 4-dimensional matching
polytope M(G) such that F = M(H) and G = M(H ′) for two subforests H,H ′ ⊆ G.
Suppose our MCF m is such that [m(H)] = w, [m(H ′)] = u and [m(H ∩H ′)] = v. Then
the facets F and G are decomposed as it is drawn on the right, so they do not intersect in a
common face.

Our goal is to identify the decompositions of the previous section as pulling triangulations
for suitable MCFs and SCFs. Before we do so, we need one more piece of terminology. A
shelling of a forest G = (V,E) is an injective map ω : V → N with the property that∣∣{x ∈ N(v) : ω(x) < ω(v)}

∣∣ ≤ 1, ∀v ∈ V,

i.e., every vertex has at most one neighbor with a smaller number. By applying for
instance a breadth first search on each connected component, one can see that any forest
admits a shelling. Shellings of trees have been studied in the context of anti-matroids
[LKS12, Ch. III]. The next lemma contains two important observations.

Lemma 7.4.2. Let G = (V,E) be a forest with a shelling ω. For e = {u, v} ∈ E with
ω(u) < ω(v), let ce = 2−ω(v) and consider c = (ce)e∈E ∈ RE

≥0, as well as c
−1 = (c−1

e )e∈E ∈
RE
≥0. Then,

i) For every v ∈ V , there is at most one edge e = {v, u} ∈ E with ω(v) > ω(u).

ii) The maps {0, 1}E → R, x �→ ⟨x, c⟩ and {0, 1}E → R, x �→ ⟨x, c−1⟩ are injective.

Proof. i) is a direct consequence of the definition of a shelling. For ii), we note that

⟨x, c⟩ =
∑

e : xe=1

2−maxω(e). (7.10)

Since the exponents on the right hand side are all distinct by i), this expression is the
unique binary representation of some number. The statement for c−1 is proven in the
same way.

The critical step for our pulling triangulations is the following theorem.
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Theorem 7.4.3. Let G = (V,E) be a forest with n edges and a shelling ω. For e =
{u, v} ∈ E with ω(u) < ω(v), let ce = 2−ω(v) and consider c = (ce)e∈E ∈ RE

≥0, as well as

c−1 = (c−1
e )e∈E ∈ RE

≥0. Then,

i) There exists a unique vertex 1[M ] of M(G) that maximizes ⟨·, c⟩. M is an almost
perfect matching.

ii) There exists a unique vertex 1[S] of AM(G) that maximizes ⟨·, c−1⟩. S is an almost
perfect star.

Proof of Theorem 7.4.3. The uniqueness follows in both cases from Lemma 7.4.2.

i): Let M be a matching such that ⟨1[M ], c⟩ is maximal. Clearly, M is a maximal
matching and as such it contains every isolated edge. Towards a contradiction, let us
assume that there exists a non-leaf vertex v0 ∈ V which is not covered by M . Then,
v0 has a neighbor v1 with ω(v1) > ω(v0). Since M is maximal, v1 must be covered by
M , i.e., there exists an edge {v1, v2} ∈ M , v2 ̸= v0. Since ω is a shelling, we have
ω(v2) > ω(v1). Now we can replace the edge {v1, v2} by {v0, v1} and obtain a matching
M ′ with ⟨c,1[M ′]⟩ > ⟨c,1[M ]⟩.

ii): Clearly, S is a maximal substar, i.e., a star. Let v be the vertex of G for which ω is
maximal. It follows from the shelling property that v is a leaf. In general, we have

⟨1[S], c−1⟩ =
∑
e∈S

2maxω(e).

Thus, the product is maximal, if and only if v is covered by S. Since v is a leaf, S is
almost perfect.

In view of Lemma 7.4.2, we may order the vertices of M(G) and AM(G) by their products
with c resp. c−1. These orderings yield pulling triangulations S and T , and we have:

Corollary 7.4.4. Let G, c, c−1, S and T be as above. For a subforest H ⊆ G, let

m(H) = argmax{⟨c,1[M ]⟩ : M ⊆ E matching in H} and

s(H) = argmax{⟨c−1,1[S]⟩ : S ⊆ E substar in H}. (7.11)

These are well-defined MCFs resp. SCFs and the simplices (Sσ)σ∈St(G,m) and (Tπ)π∈Co(G,s)

are the facets of S and T .

Proof. We prove the statement for the matching polytope, the substar case follows the
same lines. In order to see that m is well-defined it suffices to apply Theorem 7.4.3 to the
subforest H with the shelling induced by ω. Moreover, for any σ ∈ St(G,m), the simplex
Sσ arises as SF , where F is the flag defined in Remark 7.4.1. By our choice of m, F is
indeed a full flag with respect to the ordering given by c. Therefore, Sσ is a facet of S.
Since we already know that the Sσ’s decompose M(G), there cannot be any further facets
in S.
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In the remainder of the chapter, unless otherwise stated, we will assume that our MCFs
and SCFs are of the form (7.11). The following characterization of these choice functions
follows directly from the interpretation of ⟨x, c⟩ as a binary number (cf. (7.10)).

Proposition 7.4.5. In the setting of Corollary 7.4.4, we have

i) m(H) is the matching in H, obtained by greedily adding edges in order to maximize
the cost function given by c.

ii) s(H) is the star in H that covers the leaf v, which is maximal with respect to the
shelling ω.

The matching and star choice functions of the trees in Figures 7.2 and 7.3 are the ones
given by (7.11). In the remainder of the chapter, we will consider shelled forests, by which
we mean pairs (G,ω), where G is a forest and ω is a shelling of G. Since the actual choice
of ω does not affect our arguments, we will oftentimes omit it in the notation.

Remark 7.4.6. i) Reflexive anti-blocking polytopes P are compressed, i.e., any pulling
triangulation of P is unimodular [Sul05], where a triangulation is called unimodular,
if the edges at any n-simplex in the triangulation form a basis of Zn. Apart from
matching and substar polytopes, an explicit description of a pulling triangulation is
known for chain polytopes [Sta86]. In Section 7.6, we will compare the triangulation
of the chain polytope to the triangulation of the substar polytope.

ii) The particular structure of the forest G and its line graph has enabled us to get a
good grip on a pulling triangulation of M(G). For the construction it was crucial
that G possesses an almost perfect matching, i.e., a matching M that intersects
every star. On the level of the line graph LG, this is equivalent to saying that there
exists a stable set M ⊆ LG, which meets every maximal clique of LG. In general,
a graph G in which every vertex induced subgraph satisfies this property is called
strongly perfect . Every strongly perfect graph is perfect, but the converse is not
true, as can be seen by considering the complement graph of a cycle C2n, where
n ≥ 3. It is also important to note that C2n itself is strongly perfect and therefore
the class of all strongly perfect graphs is not closed under complements.

Strongly perfect graphs have been considered in [BD84]. In [Rav99], many examples
of subclasses of strongly perfect graphs are given. Among them, one rediscovers
the line graphs of forests [Rav99, Fact 8] and their complements [Rav99, Fact 18].
Indeed, there are further examples of graph classes such that both G and G are
strongly perfect, such as the class of triangulated (or chordal) graphs [Rav99, Facts
3 and 16]. It is an interesting direction for future research to investigate the (Mahler)
volume of the stable set polytopes of those graphs.
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7.5 Combinatorial Bounds on the Mahler Volume

In this section, we use the combinatorial interpretation of the volume that we obtained
from Lemma 7.3.3 and 7.3.4 to derive an upper bound on the Mahler volume of M(G). Let
us note that due to the correspondence between unconditional and anti-blocking bodies,
the Blaschke-Santaló inequality translates to the realm of anti-blocking bodies as

vol(K)vol(AK) ≤ vol(Bn ∩ Rn
≥0)

2 =
(π
2
+ o(1)

)n 1

n!
, (7.12)

for any anti-blocking body K ⊆ Rn
≥0, as vol(B

n) = πn/2/Γ(n/2+1), where Γ denotes Eu-
ler’s Gamma-function. The main result of this section is Theorem 7.5.8, which improves
the Blaschke-Santaló inequality for forests with sufficiently many leaves. Before we for-
mulate and prove the theorem, let us consider the following example, which illustrates
the interplay of standard and co-standard labelings.

Example 7.5.1. Consider the “forest of stars” G as drawn in Figure 7.6. In a subgraph

Figure 7.6: A forest consisting of three disjoint stars. Its almost perfect matching is drawn
in black, while the remaining edges are grey. Its almost perfect star is the one on the right,
since it covers the leaf with the highest label.

H ⊆ G, exactly one edge for each of the three stars is present in m(H), except if we
deleted all edges of one star already. A standard labeling may therefore be identified
with a word of length 9 over the alphabet {0, 1, 2} in which every letter appears exactly
3 times. The i-th letter in the word signifies the star out of which the i-th edge in the
standard labeling is deleted. We obtain that there are 9!

3!3!3! standard labelings of G.

On the other hand, given the way the leaves are labeled in Figure 7.6, a co-standard
labeling will first delete all edges at 2 in an arbitrary order, then all edges at 1 and finally
it deletes the edges at 0. Thus, it is made up of 3 independent permutations, one for the
edges of each star. So there are 3!3!3! co-standard labelings. Thus,

vol(M(G))vol(AM(G)) =
st(G)co(G)

(9!)2
=

1

9!
.

This implies that the unconditional body UM(G) satisfies vol(UM(G))vol((UM(G))⋆) =
49/9!, i.e., the Mahler conjecture holds with equality for UM(G). This is not a coin-
cidence; Since G is a disjoint union of three stars, its matching polytope M(G) is the
product of three M(S3)’s, i.e., three 3-simplices (cf. Example 7.3.2). This translates to
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the unconditional body UM(G); it is a product of three 3-dimensional cross-polytopes
and therefore a Hanner-polytope. ⋄

In this example, the co-standard labelings acted as “local” permutations at each non-leaf
vertex, while the standard labelings where unable to distinguish between the leaves, but
only between the stars. They contributed the “global” part.

In the following we want to extend this idea to general forests. For this we need the notion
of a local edge ordering: Let σ = (e1, ..., en) be a permutation of the edges of a forest G
and let v be a vertex of V . Then σ induces an ordering of the edges incident to v in a
natural way; we read them off from left to right in σ. This ordering of the edges at v is
called the local edge ordering (LEO) at v given by σ and we denote it by σ(v).

Our goal is to establish the correspondence between a co-standard labeling σ of a forest
G and its LEOs (σ(v))v, where v ranges over all non-leaf vertices of G. Unfortunately, the
map σ 7→ (σ(v))v is in general not surjective, as the following example shows.

Example 7.5.2. Consider the co-standard labeling π = (01, 13, 14, 02) of the tree T in
Figure 7.3. It induces the LEOs π(0) = (01, 02) and π(1) = (01, 13, 14). But in contrast
to the forest of stars in Example 7.5.1, not every pair of LEOs can be realized by a
co-standard labeling π. For instance, the pair (π(0), π(1)), where π(0) = (02, 01) and
π(1) = (01, 13, 14), cannot be realized. If there was a co-standard labeling π with these
LEOs, the first edge of π must be 01, since the first edge in π is chosen from the star
around 1 (cf. Figure 7.3). But then the first edge in π(0) is 01 as well. ⋄

In order to fully understand the co-standard labelings of G, we will work with orientations
of G. First, for a forest G = (V,E) with a shelling ω, we fix the canonical orientation

Oc =
{
(x, y) : {x, y} ∈ E and ω(x) > ω(y)

}
.

We say that a vertex v is a root of G if it is minimal with respect to ω among all vertices
of its connected component in G. From now on, we call a vertex v a leaf of G if it has
din(v,Oc) = 0, where din(v,Oc) is the in-degree of v with respect to Oc. Note that these
are precisely the leaves in the traditional sense except for the roots if they happen to
be of degree 1. If a vertex v is not a root, there exists a unique neighbor w of v with
ω(w) < ω(v). This vertex w is called the parent of v and we denote it by w = parent(v).
Neighbors of v that are not the parent of v are referred to as children of v. In the
literature, an orientation of a tree such that every edge is oriented away from a root, is
also called an arborescence.

Next, we introduce a second orientation of G that arises from a co-standard labeling
σ : E → [n]. For an edge e = {x, y} ∈ E, let i ∈ [n] be such that σ(e) = i. We orient
the edge e from x to y, if S = s(G \ σ−1([i − 1])) is a star around y (we also say that y
is the center of S). And we orient e from y to x if S is a star around x. Note that if
S contains only a single edge, S is technically a star around both x and y. In this case
we shall consider S as a star around y, if and only if ω(y) < ω(x). The orientation that
results this way is denoted by Oσ.
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Figure 7.7: The figure illustrates another co-standard labeling of a tree. Note that the edge
01 is chosen at a time when the almost perfect star of the subgraph is {01, 14}. This star is
centered at 1, so 01 is oriented towards 1. On the other hand, 02 is chosen as the last edge.
The almost perfect star of the subgraph at that time is just {02} itself, which is centered at
0 per convention. Thus, 02 is directed towards 0.

Remark 7.5.3. Recall that the star s(G \ σ−1([i − 1])) is the star whose center is the
the parent w of the largest leaf v in G \σ−1([i− 1]). This parent may itself have a parent
x and the edge e = {w, x} could be chosen for the i-th place of σ. We then say that e
is chosen as an edge at w. If this happens, the orientation of e in Oσ is reverse to the
canonical orientation Oc. An example is given in Figure 7.7. ⋄

The orientations Oσ, σ ∈ Co(G, s), satisfy the following properties.

Lemma 7.5.4. Let G be a shelled forest and let σ be a co-standard labeling of G. Consider
the orientation Oσ associated to σ.

i) A leaf of G has no ingoing edge in Oσ.

ii) If an edge e = (x, y) ∈ Oc is reversed in Oσ, then e was not the last edge incident
to x in σ.

iii) Let v be neither a leaf nor a root. Let w be its parent. Then, (w, v) ∈ Oσ implies
(x, v) ∈ Oσ for some x ̸= v.
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Proof. i): Let v be a leaf and let e = {v, w} be the edge that is incident to v. Suppose
(w, v) ∈ Oσ. Then e is chosen as an edge at v. In particular, there is a subgraph H of G
such that s(H) is a star whose center is v. Such a star can contain no other edge than e.
But by our convention it is then a star with center w, since ω(w) < ω(v).

ii): Towards a contradiction, suppose that e was the last edge in σ that is incident
to x. Let i ∈ [n] with σ(e) = i. Then, x is a leaf of G \ σ−1([i − 1]) and we have
e ∈ S = s(G \ σ−1([i− 1])). This implies that S is a substar with center y. So e is chosen
as an edge at y. But then it is not reversed in Oσ.

iii): Assume that such a vertex x does not exist. Let i = σ({v, w}). Then, s(G\σ−1[i−1])
is a star with center v. Since v is not a leaf, there exist edges ej = {v, yi} ≠ {v, w}, j ∈ [k]
for some k > 0, in G \ σ−1[i− 1]. Since ω is a shelling and w is the parent of v, we have
ω(yj) > ω(v), for all j. By our assumption, we have (v, yj) ∈ Oσ, for all j, so ej is reversed
in Oσ. But since all ej ’s are chosen after {v, w}, one of them will be the last edge incident
to x which is deleted by σ. This contradicts ii).

Let G be a forest with an orientation O and let σ be a permutation of its edges. Similar
to the undirected case we define a directed local edge ordering (directed LEO) of σ at v
as the ordering of the ingoing edges at v as they appear in σ. This ordering is denoted
by σ(v,O). If the orientation is understood, we simply write σ(v) = σ(v,O). As from now
on we are only concerned with directed LEOs, this notation will cause no misconceptions
with the undirected case.

For a forest G = (V,E), let V ◦ denote its non-leaf vertices. Consider an orientation O of
G and a set of permutations (σ(v))v∈V ◦ of the ingoing edges of G at v. We say that the
tuple (O, (σ(v))v∈V ◦) is admissible, if for any v ∈ V such that (parent(v), v) ∈ O, we have
that {parent(v), v} is not the last edge in σ(v). Note that this implies in particular that
v is not a leaf.

Theorem 7.5.5. Let G be a shelled forest and let V ◦ be the set of non-leaf vertices of G.
Then the map

F : Co(G, s) →
{
(O, (π(v))v∈V ◦) admissible tuple for G

}
σ 7→ (Oσ, (σ

(v))v∈V ◦)

is a bijection.

Proof. Lemma 7.5.4 yields that for any co-standard labeling σ, the tuple (Oσ, (σ
(v))v∈V ◦)

is admissible. So the map is well-defined. Conversely, let (O, (π(v))v∈V ◦) be an arbitrary
admissible tuple. We will construct a unique co-standard labeling from that tuple.

Let e1 be the first edge in π(v), where v is the parent of the largest leaf w of G. By the
definition of an admissible tuple, the edge {v, w} must be oriented towards v, so π(v) is
non-empty and e1 indeed exists. We delete e1 from π(v) and G and continue. Suppose
the first i− 1 edges of σ are already fixed and deleted from G and their respective π(v)’s.
Let H be the subgraph of G given by the remaining edges and let v ∈ H be the largest
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vertex therein. Since the vertices are labeled with respect to a shelling, v is a leaf of H.
Let w = parent(v) be its parent. Then we must have (v, w) ∈ O. Otherwise, e = {v, w}
was ingoing at v and since v is a leaf, e would be the last edge in π(v), a contradiction
to the fact that (O, (π(v))v∈V ◦) is admissible. Thus, we did not delete all edges of π(w)

yet and we may choose the first of its remaining edges as ei. The resulting labeling
σ = (e1, ..., en) is co-standard since in every step we pick an edge from the almost perfect
star of the current subgraph. By construction we have F (σ) = (O, (π(v))v∈V ◦) and we
can reconstruct σ uniquely from (Oσ, (σ

(v))v∈V ◦) with the above construction. Thus, we
have found an inverse map to F .

Theorem 7.5.5 may be regarded as an abstraction of the idea developed for the forest of
stars in Example 7.5.1. Its benefit is that we are no longer faced with the situation that
one edge in a co-standard labeling influences two LEOs (cf. Example 7.5.2), since in the
directed case, an edge only contributes to one of the directed LEOs. Before we come to
the Mahler volume of M(G), let us illustrate the construction in the proof of Theorem
7.5.5.

Example 7.5.6. Consider the tree T from Figure 7.7 along with the admissible tuple
presented in Figure 7.8. Let σ be a co-standard labeling that yields this tuple. The almost

Figure 7.8: Another admissible tuple for the tree in Figure 7.7.

perfect star of T is {02, 25, 26}, it is centered around 2.. Thus, the first edge of σ must be
chosen from among those edges. We take a look into σ(2) and see that 26 is the first edge
in σ(2). So it must be the first edge in σ as well. We delete this edge from T and σ(2). In
order to find the next edge in σ we consider the subtree T ′ = T \ {26}. Its almost perfect
star is still centered around 2, since 25 is the edge to the largest leaf. The next edge in
σ(2) is 02 and so it must be the second edge in σ. Continuing in this manner, we see that
the only co-standard labeling that can be reconstructed from the given admissible tuple
is σ = (26, 02, 25, 13, 14, 01). ⋄

Remark 7.5.7. If we draw a forest in such a way that each vertex v is drawn below its
parent, an orientation O with the property

∀v ∈ V. (parent(v), v) ∈ O =⇒ ∃x ̸= parent(v). (x, v) ∈ O (NDF)

can be thought of as an orientation, such that we do not see a downward f low as in Figure
7.9. We call such an orientation NDF.
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Figure 7.9: This situation is excluded by the property (NDF).

In particular, (NDF) implies that a leaf has no ingoing edge in O. NDF orientations will
play a key role in our estimate of the Mahler volume. ⋄

With the understanding of co-standard labelings from Theorem 7.5.5, we can prove an
upper bound on the Mahler volume of M(G).

Theorem 7.5.8. Let G be a shelled forest with n edges. Define Ω(G) as the number of
NDF orientations O of G. Then,

vol(M(G))vol(AM(G)) ≤ Ω(G)

n!
.

Proof. Again, let V ◦ denote the set of non-leaf vertices of G. Note that by Theorem 7.5.5
and Lemma 7.5.4, the orientation O in an admissible tuple of G is an NDF orientation.
It, thus, follows from Theorem 7.5.5 that

co(G) ≤
∑
O

∏
v∈V ◦

din(v,O)!, (7.13)

where O ranges over all NDF orientations of G and din(v,O) denotes the in-degree of v
with respect to O.

For a fixed NDF orientation O and an edge e ∈ E, let t(e) be the target vertex of e in
O. For a standard labeling σ = (e1, ..., en) of G, consider the sequence (t(e1), ..., t(en)).
This is a word over the alphabet V ◦ in which every v ∈ V ◦ appears exactly din(v,O)
times. Since in a matching, a vertex is covered at most once, we can uniquely reconstruct
(e1, ..., en) from (t(e1), ..., t(en)). Thus, for any NDF orientation O, we have

st(G) ≤
∣∣{s ∈ (V ◦)n : Every v ∈ V ◦ appears din(vi,O) times in s}

∣∣
=

n!∏
v∈V ◦ din(v,O)!

Combining this with (7.13) gives

st(G)co(G) ≤
∑
O

st(G)
∏
v∈V ◦

din(v,O)! ≤ Ω(G)n!.
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The claim follows from the Lemmas 7.3.3 and 7.3.4 that relate the (co-)standard labelings
to the volume of M(G) resp. AM(G).

In an NDF orientation, the edges incident to a leaf have their leaf as a source (cf. Remark
7.5.7), so their orientation is fixed. If G has k connected components, then

Ω(G) ≤ 2|V
◦|−k. (7.14)

For the forest of stars in Example 7.5.1 we thus have Ω(G) = 1 and we have equality in
Theorem 7.5.8. In general, the bound in Theorem 7.5.8 is particularly strong, if G has
many leaves. For instance, we have

Corollary 7.5.9. Let G be a forest with n edges such that any non-leaf vertex is the
parent of at least 2 distinct vertices. Then,

vol(M(G))vol(AM(G)) ≤
√
2
n

n!
.

This improves (7.12), since
√
2 < π/2.

Proof. For such a forest, one has |V ◦| ≤ |V |/2 = n+k
2 , where k is the number of connected

components of G. So the claim follows from combining Theorem 7.5.8 with (7.14).

But what is the maximum number of NDF orientations that an arbitrary forest with n
edges can have? (7.14) gives an upper bound of 2n−2, but this is not sharp. Instead we
have the following bound.

Proposition 7.5.10. For a shelled forest G with n edges, we have

Ω(G) ≤ Ω(Pn) = Fn+1,

where Fn is the n-th Fibonacci number and the shelling of Pn is given by the natural
ordering of its vertices.

Proof. Let O be an NDF orientation of G. Consider a non-leaf vertex w of G such that
all its children are leaves. If w is a root, then G contains a star as a connected component
and there is only one NDF for this component, so the claim follows from induction. Let
us therefore assume that x = parent(w) exists.

Case 1 (w, x) ∈ O.

Then it follows directly that for any child v of w, the orientation O \ {(v, w)} is an NDF
orientation of G \ {{v, w}}, since no configurations as in Figure 7.9 can arise by deleting
{v, w}.

Case 2 (x,w) ∈ O.
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Then, for any child v of w, O′ = O \ {(v, x), (x,w)} is an NDF orientation for G′ =
G\{{v, x}, {x,w}}. To see this, we check that the defining property (NDF) is satisfied at
any vertex of G′. The only vertices for which (NDF) might fail are v, w and x because the
orientations at the remaining vertices are unaffected. But v was a leaf in G and is now
isolated in G′, so we do not need to take it into account. w has lost its parent edge, so
(NDF) is trivially fulfilled for w in G′. As for x, let us assume without loss of generality
that x has a parent y such that (y, x) ∈ O′. It follows that (y, x) ∈ O. Since O is an NDF
orientation, there is a child w′ of x with (w′, x) ∈ O. By assumption, we have w′ ̸= w.
Thus, (w′, x) ∈ O′ and (NDF) is fulfilled.

From the two cases, we obtain

Ω(G) ≤ Ω(G \ {{v, w}}) + Ω(G \ {{v, w}, {w, x}}).

Checking the maximal values of Ω for forests with 1 and 2 edges yields Ω(G) ≤ Fn+1 by
induction.

In order to see that Fn+1 = Ω(Pn), we label the vertices of Pn by the numbers 0, ..., n
such that {i− 1, i} forms an edge for every i ∈ [n]. This labeling is a shelling of Pn. We
observe that the NDF orientations of Pn are precisely the orientations for which we do
not have two consecutive “increasing edges”, i.e., we do not have (i− 1, i), (i, i + 1) ∈ O
for any i ∈ [n − 1]. It can be checked with a simple recursion that the number of such
orientations satisfies a Fibonacci recurrence and by checking the initial values, the claim
follows.

Since F
1/n
n+1 ≈

1+
√
5

2 > π
2 , the inequality

vol(M(G)vol(AM(G)) ≤ Fn+1

n!

obtained by combining Theorem 7.5.8 and Proposition 7.5.10 is no improvement of the
Blaschke-Santaló inequality (7.12). For this, we believe, a more detailed understanding
of the standard labelings would be necessary.

We conclude this section by using the (co-)standard labelings in order to determine the
Mahler volume of the Fibonacci polytope that we encountered in Example 7.3.2. Again,
let Fn be the n-th Fibonacci number and let An denote the number of alternating per-
mutations of [n], i.e., σ ∈ Sn such that σ(1) < σ(2) > σ(3) < σ(4) > .... The number An

occurs in various places within combinatorics, but also in the context of analytic func-
tions. It is sequence A000111 in the Online Encyclopedia of Integer Sequences. We
refer to [Sta09] for a survey on this sequence of numbers.

Proposition 7.5.11. Consider the path graph Pn with n edges. We have

i) M(Pn) =
An
n! and

ii) AM(Pn) =
Fn+1

n! .
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Proof. We equip Pn with the natural shelling, as we did in Proposition 7.5.10.

i): Here we consider a matching choice function that is different to the one that we found
in Section 7.3. Let M0 = {{0, 1}, {2, 3}, ...}. This is an almost perfect matching of Pn, so
we set m(Pn) = M0. For a subforest H ⊆ Pn, let m(H) be the union of H ∩M0 together
with all isolated edges of H. Since H is subgraph of a path, this is indeed an almost
perfect matching; A non-leaf vertex v of H is covered by exactly two edges e and f of H.
These are also the only edges in Pn that cover v. Thus, one of them is contained in M0

and therefore also in m(H).

Now we identify an edge {i−1, i} of Pn with i. That way, a standard labeling σ ∈ St(Pn,m)
is a permutation of [n]. We claim that the following are equivalent:

(a) σ is a standard labeling,

(b) σ is an alternating permutation.

Suppose first that σ ∈ St(Pn,m) and let i ∈ [n] be even. Then, {i − 1, i} ̸∈ M0. Hence,
by our choice of m, {i − 1, i} is not available for σ until {i − 2, i − 1} and {i, i + 1} are
deleted. That means, we have σ(i− 1) < σ(i) > σ(i+ 1) as desired.

Conversely, let σ be an alternating permutation. We have to show σ−1(i) ∈ m(Pn \
σ−1([i− 1]) for any i. Let j be the edge such that σ(j) = i, i.e., j = σ−1(i).

Case 1 j is even.

Since σ is alternating, we have σ(j − 1) < σ(j) > σ(j + 1). Thus, j is isolated in the
subgraph Pn \ σ−1([i− 1]) and by definition of m it follows that j ∈ m(Pn \ σ−1([i− 1])).

Case 2 j is odd.

Then we readily have j ∈ M0 \ σ−1([i− 1]) ⊆ m(Pn \ σ−1([i− 1])).

ii): This is a very similar argument to the proof of Proposition 7.5.10; At any point, we
can choose the last or the second to last edge of the current subgraph, provided that the
last edge is not isolated.

For trees T with n ≤ 10 edges, a sagemath [SageMath] computation shows that

st(T )co(T ) ≤ st(Pn)co(Pn).

So Pn is a potential maximizer of the Mahler volume among all forests with n edges.

Recall that A
1/n
n = 2

π + o(1) [Sta09, Eq. 1.10] and F
1/n
n = 1+

√
5

2 . So we have

vol(M(Pn))vol(AM(Pn)) =
1

n!2
AnFn+1 =

1

n!

(
1 +

√
5

π
+ o(1)

)n

.

Note that 1+
√
5

π ≈ 1.03, which is significantly smaller than π/2, the base of the exponential
factor in the Blaschke-Santaló inequality for anti-blocking bodies (7.12). The sage script
that computes the (co-)standard labelings of a given forest is available here:
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https://github.com/AnsgarFreyer/Dissertation_Data.git

The volume of M(Pn) has first been determined in [Sta86], where the matching polytope
is considered as a chain polytope of the so-called fence poset.

7.6 Further Properties of the Substar Polytope

In this section, we investigate the substar polytope of a forest more closely. The main
result is an alternative characterization of its triangulation that we constructed in Section
7.4. The facets of this triangulation were given by the simplices

Tσ = conv{1[s(G \ {e1, ..., ei})] : 0 ≤ i ≤ n},

where σ = (e1, ..., en) ∈ Co(G, s) and the star choice function s is chosen with respect to
a shelling ω of G (cf. Corollary 7.4.4).

For a graph G = (V,E) and a permutation σ = (e1, ..., en), we can construct a matchingM
recursively as follows: We start withM0 = {en}. For i < n we defineMi = Mi−1∪{en−i} if
this yields a matching andMi = Mi−1 otherwise. We setM = Mn−1. This is the matching
obtained by greedily picking the highest edge in σ. Therefore, we call it the greedy
matching of G with respect to σ. Moreover, for a subset F ⊆ E, we write G|F = (V, F ).
With these notions, we can describe the substar polytope AM(G) of a forestG as follows:

Theorem 7.6.1. Let G be a shelled forest with n edges and let σ = (e1, ..., en) be a co-
standard labeling. We denote the greedy matching of G|σ−1([i]) with respect to (e1, ..., ei)
by Mσ

i . For the corresponding facet Tσ in the triangulation of AM(G), we have

Tσ =
{
x ∈ RE : 0 ≤ ⟨x,1[Mσ

1 ]⟩ ≤ · · · ≤ ⟨x,1[Mσ
n ]⟩ ≤ 1

}
. (7.15)

Example 7.6.2. Once again, let us consider the tree T from Figure 7.3. We identify
an edge ij of T where i < j with its larger vertex j. Consider the co-standard labeling
σ = (13, 14, 02, 01) = (3, 4, 2, 1). Then we can write Tσ as follows:

Tσ = conv



1
0
1
1

 ,


1
0
0
1

 ,


1
1
0
0

 ,


1
0
0
0

 ,


0
0
0
0




= {x ∈ R4 : 0 ≤ x3 ≤ x4 ≤ x2 + x4 ≤ x1 ≤ 1}.

Note that {3}, {4}, {2, 4}, {1} are indeed the greedy matchings of the respective T |σ−1([i])

and that the i-th vertex in the convex hull description satisfies the i-th inequality with
strict inequality and the remaining ones with equality. ⋄
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Proof of Theorem 7.6.1. Let Si = s(G \ σ−1([i])), for 0 ≤ i ≤ n with the convention
[0] = ∅. For i < n, let (i) be the inequality

(i) : ⟨x,1[Mσ
i ]⟩ ≤ ⟨x,1[Mσ

i+1]⟩,

where Mσ
0 = ∅. Moreover let (n) be the inequality

(n) : ⟨x,1[Mσ
n ]⟩ ≤ 1.

We show that 1[Si] fulfills (i) with strict inequality and (j) with equality for all j ̸= i.
For this, we first notice that ⟨1[Si],1[M

σ
j ]⟩ = |Si ∩Mσ

i | ∈ {0, 1}.

We begin with S0 = s(G). Suppose that S0 ∩ Mσ
i = ∅ for some i > 0. By definition,

S0 is the star around v, the parent of the largest leaf w of G. S0 ∩Mσ
i = ∅ means that

v is not covered by Mσ
i . It follows that σ({v, w}) > i, otherwise the greedy algorithm

would not have overlooked the edge {v, w}. This means that {v, w} is still present in
any Gj = G \ σ−1([j]) with j ≤ i. As w has the largest label, any s(Gj) is a substar
centered at v = parent(w), for j ≤ i. But then, Mσ

i consists only of edges that cover v,
a contradiction. Hence, Mσ

i and S0 intersect for all i > 0, which gives equality in (1) to
(n) and strict inequality in (0).

Next, consider an arbitrary Si, for i < n. For j ≤ i we have Mσ
j ⊆ σ−1([j]) ⊆ σ−1([i]),

while on the other hand, Si ⊆ E \ σ−1([i]). Consequently, we have Si ∩ Mσ
i = ∅ for all

j ≤ i and therefore ⟨1[Si],1[M
σ
j ]⟩ = 0.

For j > i, we let H = G \ σ−1([i]). Then

τ : E \ σ−1([i]) → [n− i], τ(e) = σ(e)− i

is a co-standard labeling of H by definition and we have Si = s(H). Moreover, we have
M τ

j−i ⊆ Mσ
j , where M τ

j−i is the greedy matching of H|σ−1([j−i]) w.r.t. τ . Applying the
discussion of the case i = 0 from above to s(H) in H, we find that Si ∩ M τ

j−i ̸= ∅ and
therefore Si∩Mσ

j ̸= ∅. It follows that ⟨1[Si],1[M
σ
j ]⟩ = 1 for all j > i. Thus, 1[Si] satisfies

(i) with strict inequality and all the other inequalities with equality.

Since Sn = ∅, we have 1[Sn] = 0, which satisfies (i) with equality for i < n and (n) with
strict inequality. Our proof is now finished.

Remark 7.6.3. There is no direct analogue of Theorem 7.6.1 for the matching polytope
M(G), i.e., it is not true that the simplices in (7.8) may be written as

Sσ = {x ∈ RE : 0 ≤ ⟨x,1[Sσ
1 ] ≤ · · · ≤ ⟨x,1[Sσ

n ]⟩ ≤ 1},

where σ is a standard labeling of G and the Sσ
i ’s are substars that are constructed in

from σ in a certain way. As a counterexample, let us consider the path P4 with 4 edges
and the natural shelling, as well as the MCF m defined by this shelling. Then, σ =
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(01, 34, 12, 23) ∈ St(G,m) is a standard labeling and one quickly verifies that

Sσ = conv{1[01, 23],1[12, 34],1[12],1[34], 0}
= {x ∈ RE : 0 ≤ x01 ≤ x01 + x34 ≤ x01 + x12 ≤ x12 + x23 ≤ 1},

but the set {01, 34} is not a substar. ⋄

The chain polytope revisited. Let us compare the triangulation of AM(G) to the
triangulation of the chain polytope C(P) from Section 7.3 as it has been described by
Stanley in [Sta86, Sec. 5]. For a poset P, Stanley constructs a triangulation of C(P) as
follows. For a linear extension σ = (x1, ..., xn) of P and i ∈ [n], consider the chain

Kσ
i = {zj < · · · < z0},

where

i) z0 = xi,

ii) zi is the last element in σ that is smaller than zi−1 for any i ∈ [j],

iii) zj ∈ min(P).

Then, the n-simplices

∆σ = {x ∈ RX : 0 ≤ ⟨x,1[Kσ
1 ]⟩ ≤ · · · ≤ ⟨x,1[Kσ

n ]⟩ ≤ 1}

form a triangulation of C(P). These simplices appear to be very similar to the facets
(Tπ)π∈Co(G,s) of the triangulation of the substar polytope of a forest, as presented in (7.15).
Indeed, the chain Kσ

i is the one obtained by greedily adding elements from (x1, ..., xi),
starting with xi. Thus, it is in fact the “poset-analogue” of Mσ

i .

This connection goes further. For a linear extension σ = (x1, ..., xn) of P, we have

∆σ = conv{1[min(P \ {x1, ..., xi})] : 0 ≤ i ≤ n}

as can be checked similarly to the proof of Theorem 7.6.1, since min(P \ {x1, ..., xi}
is an anti-chain and therefore meets Kj in at most one point. From the convex hull
representation of ∆σ we see that Stanley’s triangulation is in fact a pulling triangulation;
We can order the anti-chains of P by their scalar product with

c = (2−π(x))x∈X ,

where π : X → [n] is a fixed linear extension of P. ⋄

We finish the investigation by proving that the path graph Pn achieves the minimum
volume among all substar polytopes of trees with n edges.

Proposition 7.6.4. Let G be a tree with n edges. Then,

vol(AM(G)) ≥ vol(AM(Pn)) =
Fn+1

n!
,
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where Fn is the n-th Fibonacci number.

Note that among all forests with n edges, the minimum is attained for the matching graph
Mn (cf. Example 7.3.2).

Proof. It suffices to prove co(G) ≥ Fn+1. We consider a vertex v of G whose children are
all leaves. We choose the shelling of G in such a way that these leaves have the highest
labels. This does not affect the number of co-standard labelings.

Case 1 v has at least two children w1 and w2.

Let ei = {v, wi}, ∈ {1, 2}. Then we have

co(G) ≥ |{σ ∈ Co(G, s) : σ1 = e1}|+ |{σ ∈ Co(G, s) : σ1 = e2}|
= co(G \ {e1}) + co(G \ {e2}) ≥ Fn + Fn > Fn+1.

Case 2 v has exactly one child w.

Since G is a tree, v has a parent, whenever n > 1. The first edge in a co-standard labeling
σ of G is either e = {v, w} or f = {v, parent(v)}. If f is the first edge, then v has no
parent in G \ {f}, so the second edge in σ is e. We obtain,

co(G) = co(G \ {e}) + co(G \ {e, f}) ≥ Fn + Fn−1 = Fn+1.
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Conclusion

We investigated three aspects of the volume of convex bodies. To conclude, let us reflect
on the main results and open questions of the three parts of the thesis.

In the first part we contributed to the study of the lattice point enumerator by showing
discrete analogues of Meyer’s inequality and its reverse, as well as the slicing inequality and
the reverse Loomis-Whitney inequality. In doing so, we also gained new insights on the
behaviour of G(K) under operations such as translations and dilations. We learned that
although the lattice point enumerator behaves similarly to the volume when K extends far
in every dimension, many geometric inequalities of the volume fail, or must be weakened,
when translated to the the integral setting. What remains open is the question for the
best-possible constants in many of these results.

We were able to use the successive minima in order to prove bounds on the lattice point
enumerator G(K) in terms of vol(K) that account for the above mentioned extension
of K in each dimension. As a Corollary, we obtained a discrete version of Minkowski’s
second theorem which is equivalent to the original version for the volume. A key element
of this research was to unify the concepts of compressions and Blaschke shakings within
the geometry of numbers. The open questions here are of course the sharp versions
of the conjectures of Betke Henk and Wills, but also the study of other parameters in
the geometry of numbers, such as the lattice width, under Blaschke shaking and similar
processes.

In contrast to the discrete arrangement of lattice points in a convex body K, in Part
II we considered the volume of K as a continuous distribution of mass inside of K. By
extending Wu’s affine subspace concentration conditions to arbitrary centered polytopes,
we saw new properties of this distribution. However, we are lacking a full characterization
of the equality case in the affine subspace concentration conditions.

In the first two parts, the polar body K⋆ of K was a helpful tool, while in the third
part it was the subject of our studies itself. We investigated the polar bodies of lattice
Voronoi cells and matching polytopes of forests in detail, with the aim of bounding their
Mahler volume. As for the lattice Voronoi cells, we saw that the lattice A⋆

3 constitutes a
strict local maximum of the Mahler volume of its Voronoi cell among all 3-dimensional
lattices. Despite strong computational and theoretical evidence, the question whether
A⋆

3 is indeed the global maximizer of the Mahler volume is still open. For the matching
polytopes M(G), we could exploit the underlying combinatorics of the forest G to give an
upper bound on its Mahler volume. In order to strengthen our bound, we believe that a
deeper understanding of the standard labelings of a forest would be necessary.
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Séminaire d’Initiation à l’Analyse, volume 11, page 25pp. Université Paris
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formes quadratiques. J. reine angew. Math., 133:97–178, 1908.

[Vor08b] G. Voronoi. J. reine angew. Math., 134:198–287, 1908.

[Vor09] G. Voronoi. J. reine angew. Math., 136:67–181, 1909.

[VR12] E. Veomett and A. J. Radcliffe. Vertex isoperimetric inequalities for a family
of graphs on Zk. Electron. J. Comb., 19:10.37236/2426, 2012.

[Wey42] H. Weyl. On geometry of numbers. Proc. London Math. Soc., 47(2):268–289,
1942.
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AK Anti-blocking polar of an anti-blocking body K

AM(G) Substar polytope of G

bdK Boundary of K

Bn Euclidean unit ball

c(K) Centroid of K

clK Closure of K

Cn n-dimensional origin symmetric cube with side length 2

co(G) Number of co-standard labelings of G

C(P) Chain polytope of P

cs(K) Central symmetral of K

Del(Λ) Delaunay decomposition associated to Λ

F ⋄ Polar face in P ⋆ of a face F ⊆ P

G(·) Lattice Point enumerator of Zn

G Complement graph of G

GLn(Z) n-dimensional unimodular group

h(K, ·) Support function of K

intK Interior of K

Kn Convex compact sets in Rn

Kn
n n-dimensional convex compact sets in Rn

Kn
os origin-symmetric convex compact sets in Rn
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K⋆ Polar body of K

K|L Orthogonal projection of K on L

λi(K) i-th successive minimum of K

Λ⋆ Polar lattice of Λ

LG Line graph of G

M(G) Matching polytope of G

µ(K) Covering radius of K

|x| Euclidean norm of x

|x|K Gauge function of K at x

O(·) Landau O-notation

1n All-ones vector of length n

1[X] Indicator vector/function of a set X

pij Selling parameters of Λ

shu(K) Orthogonal Blasche shaking of K on u⊥

shu,ℓ(K) Blaschke shaking of K on ℓ along u

Sn Group of permutations of n elements

Stab(G) Stable set polytope of G

st(G) Number of standard labelings of G

UK Unconditional body obtained from an anti-blocking body K

VΛ Voronoi cell of Λ

vol Lesbesgue measure in Rn

volk Lesbesgue measure in a k-dimensional subspace
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Brunn-Minkowski inequality, 6, 64
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polytope, 105
Convex body, 6
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perfect, 104
strongly perfect, 116
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generic, 86
of the first kind, 93
self-polar, 30
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directed, 120
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conjecture, 7, 106
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Mahler conjecture, 7
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Meyer’s inequality, 20
discrete version, 21
reversed, 25

Minkowski’s 2nd theorem, 14, 39
discrete version, 15, 40, 41
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Polytope, 7
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Hanner, 7
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smooth, 72

Pyramid formula, 69, 109
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Selling parameters, 93
Shadow systems, 97
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Simplex, 63

rectangular, 63
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Subspace concentration conditions, 70
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