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Abstract

The topic of the present thesis is the scattering of electromagnetic plane waves by rough
surfaces, i.e. by smooth and bounded perturbations of planar faces. Moreover, the contrast
between the cover material and the substrate beneath the rough surface is supposed to be
low. In this case, a modification of Stearns’ far-field formula for the scattered field, based on
Born approximation and Fourier techniques, is derived for a special class of surfaces. This
class contains the graphs of functions, where the interface function is a radially modulated
almost periodic function. For the Born formula to converge, a sufficient and almost necessary
condition is given. The obtained far field contains plane waves, far-field terms like those
for bounded scatterers, and, additionally, a new type of terms. Furthermore, it is proven
that Stearns’ conclusions concerning an approximate formula for the reduced efficiencies in
the specular directions also hold for the presented class of interface functions. The derived
formulas can be used for the fast numerical computations of far fields and for the statistics
of random rough surfaces, which is shown for a simple example.






“The history of science teaches only too plainly the lesson
that no single method is absolutely to be relied upon,
that sources of error lurk where they are least expected,

and that they may escape the notice of the most experienced
and conscientious worker.”

SiR JOHN WILLIAM STRUTT, LORD RAYLEIGH
Transactions of the Sections’ (1883)
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background

The progress of modern technology vitally relies on computer chips or other electronic components with
small and smaller details. The production of such components, on the other hand, usually involves
lithographic processes employing light with wavelengths depending on the size of the desired structure
details. Therefore, it is necessary to manufacture optical devices (e.g. optical gratings) designed for very
short wavelengths. However, at some point, a perfect fabrication of such devices in accordance with
the guidelines of design becomes either too difficult or is even not possible. Instead, the manufactured
components of the optical devices deviate from ideal components by random aberrations. In the simplest
case, a planar interface separating two different materials has typically a lot of tiny corrugations called
roughness. In the present thesis, the term 'roughness’ denotes a mostly smooth perturbation from a flat
surface. Using such an interface to refract electromagnetic waves, the surface deviations, now almost in
the size of the small wavelengths, become visible. Though the example of a planar interface is simple,
a full understanding of the roughness phenomena is crucial for many applications. For example, the
lithographic fabrication of computer chips in the extreme ultraviolet light (EUV) range, say of about
13 nm, requires the use of multi-layer systems (MLS) as Bragg mirrors, and each of the interfaces in
this MLS has a specific roughness. To understand the impact of such an MLS on the reflection of
light, the roughness effects on the reflection and transmission of light at each of the interfaces must be
clarified. Naturally, the MLS is not the only source of roughness in an EUV-grating. These can also
include roughness of the absorber structures above the MLS, e.g. line edge or line width roughness.
Understanding the impact of this kind of roughness is especially important when considering the inverse
problem in scattering metrology or the optimal design problem. These problems, however, will not be
subject of this thesis. The aspects, how these roughness effects of grating structures influence the
scattered field and may be included into the inverse problem, were, for example, studied in [26], [21]
and [20].

One of the models to describe MLS’ is used in the software of Windt [40] and is based on formulas
derived by Stearns [36]. Note that similar models have been proposed for MLS’ earlier by e.g. Bousquet
et al. [7] and Elson et al. [16]. Stearns’ formulas for a single interface scattering are obtained as follows:
Suppose the rough interface is a fixed smooth interface, which is a bounded non-local perturbation
of the ideal planar interface, and suppose a time-harmonic electromagnetic plane wave is incident
from above. Manipulating Maxwell’s equations according to Jackson [23, Sect. 10.2.A], the partial
differential equations can be reduced to an inhomogeneous vector Helmholtz equation for the scattered
electric displacement field. On the right-hand side, however, there appears a second order derivative of
the total electric field, i.e., of the sum of the incoming field and the scattered field. On the other hand,
if the scattered field is small in comparison with the incoming field, the first order Born approximation
suggests to neglect the scattered electric field on the right-hand side. In other words, it remains to solve
a vector Helmholtz equation with unknown displacement field and with known right-hand side. This is
done by applying Fourier transform to both sides of the equation and by dividing with the coefficient of
the Fourier transformed displacement field. The inverse Fourier transform now yields an explicit formula
for the displacement field. This formula is an integral over the three-dimensional space. However, the
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integration in one of the three dimensions can be computed analytically by the residue theorem. Finally,
taking limits and analysing the asymptotic behaviour, a corresponding far-field formula can be derived.

Of course, the Born approximation is not always justified (cf. [27] for a study on the validity for
bounded scatterers, or [11] in the 2D case of an inhomogeneous layer on top of a perfectly conducting
plate). However, for electromagnetic waves in the range of X-rays or EUV light, the optical contrast
of the materials is often relatively small, i.e., the refractive index is often close to one. In this case, if
the corrugations of the interface are not too large, and if the interface is smooth, the scattered field is
expected to be small in comparison to the incoming wave field, assuming the incident direction is not
to close to grazing direction. In this sense, the total field, as the sum of the scattered and incoming
field, is almost identical to the incoming field alone, leading to the above described manipulation of the
right-hand side of the Helmholtz equation. Moreover, Born approximation should be meaningful even
if the scattered displacement field in the vector Helmholtz equation is replaced by the deviation of the
scattered displacement field from the field resulting from an ideal planar interface. In this case a small
term concentrated close to the interface and the deviation of the scattered electric field from that of
the ideal interface is neglected.

Besides the formula of Stearns, there exist many alternative approximate formulas or rigorous
numerical methods. These results are reported in the monographs by Beckmann et al. [4], Ogilvy [33],
and Voronovich [38] as well as in the overview articles of DeSanto [14] and Elfouhaily et al. [15]. Among
the approximate methods, the perturbation theory and the Kirchhoff theory are the most commonly
used. Both theories are restricted to so called ’slightly rough’ surfaces. This property is, for example,
determined by the Rayleigh criterion (cf. [33, Sect. 1.2]), which is based on the phase shift and the
resulting constructive or destructive interference when a wave is scattered at two arbitrary points of
the interface. In the sense of ’slightly rough’, it is usually assumed that the deviations from a planar
surface are much smaller than the wavelength of the incident light.

In perturbation theory the total field, as a functional of the interface height function f, is represented
as a Taylor series w.r.t. the interface height at the mean scattering surface, which is mostly commonly
the zero plane. The introduced assumption of ’slightly rough’ is necessary for the convergence of this
Taylor representation. The series is then truncated after finitely many terms. By assuming that this
truncated series also satisfies the boundary condition at the interface, a new and simplified boundary
condition on the mean interface, here a plane, is obtained. Moreover, assuming that the scattered field
can be represented as a series of functions that behave as O(f") for n — oo and by plugging this into
the new boundary condition, an approximate solution of the scattered field on the boundary is acquired
by equating terms of the same order in f. An expression of the field away from the interface is obtained
by using an integral representation of the field w.r.t. the mean interface. Usually this integral has to
be evaluated numerically, which may involve computationally expensive calculations. However, when
considering the stochastically averaged intensity, it may be reduced to the power spectrum density of
the random process defining the rough interface. In special cases this term can be obtained analytically.
The accuracy of the theory naturally depends on the accuracy and order of the truncated Taylor series.
Effects like multiple scattering are included up to the order of the series expansion, while shadowing
effects are neglected. More details on this theory and its accuracy can be found in Chapter 3 of the book
by Ogilvy [33] and Chapter 4 of the book by Voronovich [38]. A general introduction into perturbation
theory can be found in [30] by Nayfeh.

In Kirchhoff theory, also called tangent plane theory, as in the perturbation theory, an approximate
expression of the total field on the interface is constructed and an integral formula is used to extend
this result beyond the interface. The expression on the interface is acquired by approximating the
interface at any point by an infinite tangent plane and using the analytically known scattering result
at this plane as a local solution of the scattered field. Integrating appropriately over all these local
solution gives an approximate solution of the wanted scattered field at the interface. In some special
cases, e.g. scattering at a perfectly conducting surface, the integral representation of the field away from
the interface can be further simplified to an analytical expression. In all other cases the integral has
to be evaluated in other ways, for example by integrating numerically, which has the disadvantage of
being computationally expensive. Obviously, the Kirchhoff approach considers the interface as a single
scatterer and neglects multiple scattering and shadowing effects. Moreover, the local approximation
of the surface by infinite planes restricts the approach to interfaces with sufficiently small curvature
depending on the wavelength of the incoming field. More details on this theory can again be found in



CHAPTER 1. INTRODUCTION
1.1. Background 9

the books by Ogilvy [33], see Chapter 4, and by Voronovich [38], see Chapter 5, as well as the book by
Beckmann and Spizzichino [4].

Note that for Stearns’ approximated far-field formula, the assumption ’slightly rough’ can be relaxed
in the sense that the height perturbation of the interface can be of the size of the wavelength of the
incident light, as long as the material constants are similar enough to ensure a small scattered field. The
approach also differs from the perturbation and Kirchhoff theory, in that it solves the approximated
Helmholtz equation analytically and thus also includes multiple scattering and shadowing effects, as
long as they do not result in a strong scattered field such that Born approximation can no longer be
applied. Another big advantage of the approach by Born approximation is the explicit far-field formula
for the scattered field, where no additional integration is necessary. Note that for the previous two
approximation methods, this is only the case in very specific situations, e.g. scattering at a perfectly
conducting surface. Moreover, in theory it is also possible to consider continuous material transitions
using Born approximation. In fact Stearns [36] also addresses this issue in his paper. However, this will
not be a topic in the present thesis. The disadvantage of this approach, compared with perturbation
and Kirchhoff theory, is its restriction to the low contrast case. On the other hand, since it is the goal of
this thesis to examine scattering effects at rough interfaces for small wavelengths, e.g. EUV lithography,
this can be assumed to be satisfied.

Among the rigorous approaches, boundary integral equation methods and finite elements methods
are the most prominent. To arrive at the former, the field is represented by potentials or simplified
potentials over the interface. Born approximation can also be used here to derive simple explicit
formulas. On the other hand, to get rigorous formulas, the corresponding transmission problem for
Maxwell’s equation is to be solved, e.g. using boundary elements or finite elements, depending on
the preferred method. Clearly, this can only be done numerically, i.e. up to a small error of the
numerical method depending on the computing power. This, however, has the distinctive drawback
that a numerical solution for the rigorous approach will take much longer computing times then the
evaluation of the approximate formulas. Additionally, the numerical evaluation requires a bounded
domain, which is usually obtained by truncation. These truncations introduce additional errors and
have to be taken into account. One way is to use absorbing boundary layers to avoid reflection at
the artificial boundaries or, in the case of periodic interfaces, to reduce the domain of calculation
to one period of the interface. However, even in this case, if the period is very big compared to
the incident wavelength the computing time will be considerable. Apart from this, the analysis of
the numerical algorithms in the rigorous case is also difficult. Even for the simpler acoustic case in
the three-dimensional space, there seems not to be any analytic theory for rough interfaces involving
incident and reflected plane waves. The case of point sources is treated by Chandler-Wilde et al. [10, 9]
using a variational approach. The uniqueness of a solution for plane wave incidence in 2D is considered
in [12] and [29].

So far, the rough interface has been considered as a single smooth interface. In applications, however,
the shape is not known explicitly. Realistically, the interface is an unknown realisation of some random
process, which is for example described by distribution and correlation functions. Usually this is relaxed
by considering special classes of random processes, e.g. stationary Gaussian processes, which are then
characterised by only a few parameters like the size of the corrugations (standard deviation) and the
smoothness (correlation length) of the interface. On the other hand, the incoming plane wave is in
reality a ray with a diameter much larger than the wavelength and the dimension of the corrugations.
The processing of the wave often acts like averaging over the local corrugations. Hence, the rough
interface should be considered as a random process and the statistics of the resulting stochastic electric
field is the entity of interest (cf. the above-mentioned monographs). The overview article [34] by Ogura
and Takahashi gives an introduction into a stochastic functional approach to obtain the scattered
stochastic field. In the present thesis, the stochastic view will not be considered analytically. Note,
however, that a fast approximate formula for a single realisation of the stochastic process is a good
starting point for a statistical analysis, for example using a Monte-Carlo approach. This is illustrated
in a simple numerical example.
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1.2 Contribution of the present work

The aim of this thesis is to check the validity of the Stearns’ formula. No doubt, whenever the Born
approximation is meaningful, the formulas yield accurate results when compared to physical measure-
ments. From the mathematical point of view, however, the integrals in the formula do not exist for
general bounded rough surfaces, even not for smooth ones. Therefore, in the present thesis, a mathe-
matically rigorous modification of Stearns’ formula is sought. For this, the following points are required.

e The vector Helmholtz equation for the scattered displacement field is replaced by that for the
deviation to the displacement field of the ideal planar interface.

e A special variant of the limiting absorption principle is to be applied.

e The direct and inverse Fourier transforms are applied in the generalised sense, i.e. in the sense
of Schwartz distributions.

e In order to justify the change in the order of integration, the unbounded domains of integration
are to be truncated. After all manipulations are performed, the limit of the resulting formula for
the truncated domains tending to the original unbounded domains is to be accessed.

e To get the inverse Fourier transform, a Fourier transform of bounded functions along the radial
directions is to be evaluated. This requires a specific behaviour of the radial functions at infinity.
For example, the class of interfaces can be restricted to special combinations of Fourier modes.

In fact, the rough interfaces in the present thesis are restricted to graphs of functions belonging to a
special class. This class contains the algebra of almost periodic functions as well as almost periodic
functions modulated by radial functions decaying at infinity. Note that almost periodic functions
have been used already by Stover [37] and simpler biperiodic functions by Rice [35] to model rough
surfaces. Moreover, combinations of Fourier modes play an important role for stochastic processes
(cf. e.g. Yaglom [41, Equ. (2.61) in Sect. 8]).

In this way, the formula by Stearns [36], restricted to rough’ interfaces, is given a strong mathemat-
ical foundation. The present thesis establishes two main novelties over Stearns’ approach. Firstly, a
special variation of the limiting absorption principle is employed. Secondly, the target field is replaced
by that for the deviation to the displacement field of the ideal planar interface. Only these changes to
Stearns’ approach make it possible to obtain a mathematically rigorous formula for the scattered far
field. Moreover, note that the presented approach is not restricted to the introduced class of interfaces.
The presented techniques to derive far-field formulas may also be used for different classes of interfaces
or potentially even in the case of continuous material transitions, provided that the Born approxima-
tion is justified and that some criteria are met, e.g. the interface class is a Banach space with known
Fourier transforms of the contained functions. In the context of rough interfaces it may also be possible
to apply the proposed approach to real random processes instead of ’known’ interface realisations. A
suggestion how this may be realised is given in Chapter 7.

The main result of the present thesis is a formula in the sense of Born approximation for the
electromagnetic far field, which is adapted to the above-mentioned class of interfaces. Combining these
formulas for reflection and transmission over several interfaces, the case of MLS’ can be treated like
in e.g. [36]. This, however, will also not be shown in the present thesis. Moreover, the approach of
treating MLS’ in [36] only considers the specular reflection modes, which is not enough, as is shown in
the upcoming publication by Haase [18]. Here, the importance of including further refraction orders
into the modelling of the MLS is illustrated. Even though the class of interfaces is already restricted,
for the formula to be well defined, a further condition on the interface function is needed. Namely,
if the evanescent Fourier modes for the fields with limited absorption tend to a plane-wave mode
propagating parallel to the surface plane, then the coefficients of these Fourier modes diverge, and no
limit of limiting absorption exists. In particular, for the special case of gratings, the formula of Born
approximation converges if there is no Rayleigh mode, i.e., no reflected plane-wave mode propagating
parallel to the plane of the grating. Since the differentiated formulas converge as well, it is clear that the
Born approximation is a solution of the vector Helmholtz equation, in the sense that the transmission
conditions are satisfied approximately. In summary, the following assumptions were made:



CHAPTER 1. INTRODUCTION
1.2. Contribution of the present work 11

Low contrast, e.g. short wavelengths

Time-harmonic plane wave incidence

e Non-grazing incident

Almost periodic interface with no or radial decay of polynomial order
e No surface waves

Under these assumption, the far-field formulas can be derived. The obtained far field consists of plane
waves and far-field terms like those for bounded scatterers. Additionally, there appears a new type of
terms, for which it is yet unclear whether they are physically meaningful. The derived formulas can be
used for fast numerical computations of far fields as well as for the statistics of random rough surfaces.

This thesis is structured as follows. The notation and the inhomogeneous vector Helmholtz equation
in the sense of Born approximation is introduced in Chapter 2. A general formula for its reflected near-
field solution, based on the Fourier transform, is given at the beginning of Chapter 3. The validity of
this formula is proven in the remainder of that chapter. To be precise, in the first two subsections of
Section 3.2 the Helmholtz equation is solved by using generalised Fourier transforms. The resulting
integrals are represented as Cauchy principle value limits of integrals truncated at infinity to change the
order of integration of the truncated integrals. It can then be shown in the following two subsections
that the integration in one of the three dimensions, as well as all the Cauchy principle value limits
but one can be evaluated explicitly. To evaluate the remaining limit in Section 3.3, a class of special
interface functions is defined in Subsection 3.3.1 and the limit is evaluated for such functions in the two
subsequent subsections.

Similarly to Chapter 3, the main result of this thesis, namely the formula for the reflected (Thm. 4.1)
and transmitted far-field (Thm. 5.1), are given at the beginning of their respective chapters 4 and 5.
These results are proven in the following sections. In particular, the far-field formula for the reflected
field is proven in detail. To prove the far-field asymptotics, the integral representation of the reflected
field is split into two integrals corresponding to bounded integrands of evanescent and plane-wave
modes, and weakly singular integrands with a small domain of integration (cf. Sect. 4.2.1). In the last
two sections of Chapter 4 the obtained far-field formula is compared with Stearns’ formula. To be
more specific, Stearns’ formula for the reduced efficiency in specular reflection direction is confirmed
in Subsection 4.3. In Subsection 4.4 it is proven that Stearns’ far-field formula in the sense of Born
approximation is asymptotically the same to the one presented in this thesis for the specific example
of a sinusoidal grating.

Since the proof for the near- and far-field formula of the transmitted field is very similar to the
reflected case, Chapter 5 only gives an overview on how the proofs in Chapters 2—4 have to be modified
to obtain the formulas proposed at the beginning of Chapter 5. Part of the far-field formula of Theorem
4.1, and thus Theorem 5.1, is proven in the Chapters A and B of the appendix. In the former, the field
scattered at an ideal interface, which is a well-known result from Fresnel’s formulas, is considered. In
Chapter B the far field for interfaces with very specific parameters, for which the order of the singularity
of the integral representation of the field increases, is derived.

Finally, in Chapter 6, the derived far-field formulas will be used to calculate the scattered field
for random surface realisations. These ’realisations’ of the scattered field are then used in a simple
Monte-Carlo approach to get the averaged field that would usually be observed when measuring the
scattered field in an experimental setup. The main part of this thesis is concluded by Chapter 7, which
gives a short summary of the results as well as some ideas on how these may be extended in future
work.

Throughout this thesis constants ¢ with or without index are used for estimates and inequality
chains. If not defined otherwise, these denote generic positive constants the values of which vary from
instance to instance.
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Chapter 2

Born approximation

In this chapter Maxwell’s equations will be used to describe the total reflected field in form of a solution
of an inhomogeneous vector Helmholtz equation. This equation will then be approximated in the sense
of the first order Born approximation used by Stearns [36]. It will also be seen that a similar equation
holds for the approximation of the desired reflected field minus the reflected field that results from
illuminating an ideal interface, which is an interface defined by a plane. The approximate equation for
this ’difference field’ is then solved analytically using generalised Fourier transform, in the following
chapter. Some minor preparations for these examinations will end Chapter 2.

2.1 Incident wave

Consider a time-harmonic incident plane wave &(Z,t) = E°(Z) e~ illuminating the interface between
two constant materials from above. The function E°(Z) = &° ¢?*¥ denotes the time independent part of
Eo(Z,1), where k := (kg ky, k)T = kit € R? is the wave vector, with k := ||| := ,/figeow > 0 the real
valued wave number, k., < 0 and 7° a normalised vector that describes the direction of propagation
of the incident field in the coordinate system shown in Figure 2.1. The values ¢g > 0 and pg > 0
denote the electric permittivity resp. magnetic permeability of the medium above the interface, while
€y and g denote the same below the interface. Note that €, €, po and p are not necessarily the free
space values for the vacuum. The symbol &° denotes the constant vector fixing polarisation and phase.
Naturally, €9 is assumed to be perpendicular to k.

o
€0

€

T

Figure 2.1: Coordinate system and propagation direction of incident field

2.2 Inhomogeneous vector Helmholtz equation

Note that, since the wave number k£ = ,/eguow is assumed to be real valued, the material above
the interface is non-absorbing. The physical background on the other hand, states that there are no
materials that do not absorb at least a very small amount of the energy of an electromagnetic field
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travelling through. To incorporate this information into the solution of the subsequently established
vector Helmholtz equation, the limiting absorption principle (first used in [22]) is applied. In this sense
the examinations in this and the following sections of this chapter will be dgne for an adapted wave
vector k, of the incident field with a complex valued third component, i.e. k, := (ky,ky, k. )" with
k.- =k, +i7, a negative 7 € R close to zero and k, < 0. Afterwards, for the solution of this slightly
perturbed problem, the limit 7 0 is applied to obtain a solution of the unperturbed problem in the
sense of the limiting absorption principle. For technical reasons only the third component of the wave
vector instead of the whole vector is chosen complex. This is motivated by the fact that only waves that
propagate away from the interface are of interest, while surface waves will be excluded in the context
of this thesis. In this context, surface waves are to be understood as plane waves, whose propagation
direction is parallel to the mean plane of the surface heights, e.g. the z-y-plane in Figure 2.1. Indeed, the
subsequently derived formulas for the reflected field will not be valid in the case that such surface waves
occur. For simplicity, define €, := ey — 72/(pow?) + 127k, /(uow?), with which k2 := k -k = Lo€rw?
and Ime, > 0. In the course of this thesis a number of definitions will be introduced. To make the
reading of this thesis more accessible, a list of the most important of these definitions is attached at
the end.
The Maxwell equations that describe the field in the absence of sources are

V x € =—-0,B, (2.2.1)

V-B=0,
V-D=0, V x 'H = 8,D, (2.2.2)
where & is the electric field, D the displacement field, H the magnetic field and B the magnetic induction.
The system of equations (2.2.1) and (2.2.2) can be reduced to one equation, namely an inhomogeneous
vector Helmholtz equation. Following [23, Sect. 10.2.A], consider V2D — pge, 02D, which using the
equality V x V x D = V(V - D) — V2D and the first of the equations (2.2.2) equals —V x V x D —
o€ 0:(0¢D). Moreover, with the second equation and by adding a zero it transforms to —V x V x
(D—€¢E)+ €,V x(=V xE— ppdH). In the context of this thesis, the magnetic permeability o = g
will be assumed to be everywhere constant. Following (2.2.1), —V x & = 9,88, which leads to the wave
equation

V2D — uoeTBtQﬁ =-VxVx (23 — 6-,—5) + €,0;V X (E’_ mﬂ%) , (2.2.3)

by changing the order of the spatial and time derivatives in the second summand on the right-hand
side. As mentioned above, for this thesis, a harmonic time variation e~*?! with a frequency w for the
incident field is assumed, which results in time-harmonic total fields 23, g, & and H. Furthermore,
these fields will be identified with the time-independent amplitude factors 5, B , E and H of the fields,
which multiplied with e~ will give the time dependent fields. With this, equation (2.2.3) reduces to

(V2+k2) D=~V x V x (5—675),

since B = ,uoﬁ if po is everywhere constant. The solution function D of this equation is defined on the
whole R3. On the other hand, a physical interpretation for the function can onl}i be given above the
interface, where it describes the total displacement field. Defining Eo(f) := €%*T a5 the incoming
and E(Z) as the total electric field, the reflected field is defined as E™(%) := E(%) — E°(Z), where,
once more, a physical interpretation exists only for the function above the interface. To continue, let
the interface between the two media be described by the graph {(z/, f(2')) : 2’ € R?} of a function

f € LF(R2), with

LY (R?) := {f € L>=(R?) ’ lim 1 /[R s f)dny = O} . (2.2.4)

Note that for any function f, where limp_ 1/(4R?) f[_R R2 f(n")dn' = ¢ # 0, the coordinate system
can be shifted by c in the z-direction to get a function in Ly (R?). Employing the definitions of the
displacement fields of the incoming D°(Z) := e, E°(Z) and the total electric field D(Z) := e,(Z)E(Z),
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with

o e if 2> f(af)
er(8) = {66 it z < f(2')

for all Z = (2/,2)T € R3, the definition for the reflected part of the displacement field D (%) :=
D(Z) — D°(%) takes the form e,(Z)E(Z) — e,E°(Z). Unlike €, the electric permittivity € of the
material below the interface is allowed to be complex valued. Note that |e; — €| is assumed to be small
to satisfy the low contrast assumption, which is necessary for the validity of the subsequently used Born
approximation.

It is well established, that the incoming field satisfies the homogeneous vector Helmholtz equation
(V2 + ki)ﬁo = 0 above the interface. Applying this, the inhomogeneous Helmholtz equation for the
reflected field is obtained as

(V24 k2) D" = -V x [V x (a(E+ )] (2.2.5)

where (%) := e,(Z) — €,. Note that « is zero everywhere above the interface.

2.3 Born approximation

Neglecting the term ET(f) in (2.2.5), a solution in the sense of the first order Born approximation is
acquired.

(V> +k2) D" = -V x [v x (aEO)} (2.3.1)

This approximation is motivated by the fact, that in special situations, e.g. for X-rays in the case of
interfaces with low material contrast, small perturbation or/and small gradients, the scattered field is
very small compared to the incident field, such that E° 4+ E" ~ EO.

Note that the existence of a mathematically rigorous treatment of the Born approximation of

(V24 52) D ==V x |V x (aF)]

is not yet clear. The mathematical formalism would have to look as following. First, a corresponding
solution theory would have to be defined on two Banach spaces B; and Bo, where the operator V24 k2
maps from By to By and the inverse operator, i.e. the solution operator, maps from Bs to B;. Conse-
quently, By contains the scattered wave solution D and includes a sufficient radiation condition that
ensures the uniqueness of the solution. On the other hand, the space By has to contain —V x [V x (o E)]
for all E € By. Moreover, |V x [V x (o E)]||5, has to go to zero as ||allec — 0 and |V x [V x E"]||5,
has to go to zero as ||ET||B — 0. In such a setting, it would be assumed that any general solution
D = eoE € By consists of the sum of a particular solution Dr = eOE’” € By and a solution of the
corresponding homogeneous equation, i.e. the incoming plane wave ED. Consequently, the particular
solution E” = E — E° can be obtained as the solution of

(V2 +K2) D" = =V x [V x (a(E" + E°)], (2.3.2)

since (V2 + k2)EO = 0. The radiation condition in B; ensures that E" is a unique solution in this space.
It now follows that ||E"||5, tends to zero as the material contrast €y — € and thus |||« tends to zero,
since then ||V x [V x (a E)]||z, — 0 and thus E — E°.

In this sense, the error of the Born approximation can be bounded by the error on the right-hand
side of (2.3.2) or (2.2.5) if E" is neglected, ie. the error can be bounded by ||E||,. Furthermore, under
the low contrast assumption, it is feasible to assume that the bulk of the reflected energy is reflected
in specular direction k" := (ky, ky, —k.) ", such that E" can be represented as the sum of a plane wave

@e*"7 in this direction and a small remainder €7, As a consequence,

o B, = (@™ 4 &), < e+ e, 233)
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This would directly correspond to the approach made by Stearns [36]. In this thesis, a slightly modified
approach was chosen, introduced in the following.

In the special case of an ideal interface fo = 0 and the corresponding ag (%), let DSC( ) be the
solution of (2.2.5). On the other hand, the field reflected from an ideal interface can also be calculated
directly using Fresnel’s formulas (cf. Chapter A). With this in mind, set, for an arbitrary interface
function f € LF(R?), aq(Z) := o) — ag(¥) and DU&) = D" (&) — ﬁrg(f) and use (2.2.5) for the
difference field D? to get

(V2 +k2) DU&) = -V x [Vx (a(@) (B + E7(@)) )| + Vx [V x (0(@) (E°@) + Ep(@) )]
— _Ux :VX (ad(f) B(7) }-VX [VX (a(f) Er(f))} 1V x [VX (ag(f) Eg(f))}
— _VUx :VX (ad(f) (Eo(f) + B (2) )} _Vx [VX (ag(f) E’”(a‘:‘))}
+Vx [VX (ag( 7) VQ(@')) (2.3.4)
— Ux :VX (ad(f) (Eo(f) + ET(f)))} _Vx [VX (ag(f) (Er(f) - E&(f)))} .

In the sense of Born approximation the terms E" and ETQ = ﬁTQ /€o are again neglected on the right-
hand side, such that (2.3.4) reduces to

(V2 + k2) DYF) = —V x [w (ad(f)EO(f))]. (2.3.5)

The advantage of considering this equation instead of (2.3.2) is that «4(#) has a compact support
wrt. z if f € LyF(R?) C L°(R?), since then aq(F) = 0 for |z| > || f||oc, While (&) has an unbounded
support in all three arguments. This is needed later, when the Fourier transform of ag4 is evaluated. As
before (cf. (2.3.3)), assuming an appropriate solution theory, the error of such an approximation can be
bounded by the error introduced on the right-hand side to reach (2.3.5). In this case, the approximation
error would be bounded by a constant times

o B +ao (B = E)| 5,

< flaa B, + lloa(E" = Eg)ll,

<||ad ﬂ zk m+€r ||Bl+||a9 ﬂ zk m"’eﬂT—CﬁL‘QeZkTq ||B1

< ||OZdCL€Zk T

s, + llea(@ = o) 5, +[leae|5, + lloo e, (2.3.6)
Note that it can be expected that this bound is smaller than (2.3.3). Indeed, especially in the case
of small perturbations of the interface, the field reflected in non-specular directions is much smaller
than that in the specular direction k" such that ||eT|| and ||@ — dg]| are very small. Moreover, the

bound ||adae““ Z|| 5, in (2.3.6) is smaller than ||ae“C Z|| g, in (2.3.3), since ag has a compact support
in its third argument. For the remainder of this thesis, except in Chapter 5 where a very similar
Born approximation is introduced for the transmitted field, the term 'Born approximation’ is used to
reference the approximation that leads from (2.3.4) to (2.3.5).

To solve equation (2.3.5) in the following sections by using Fourier transformation, it is necessary
to specify the set of interface functions. In a first step this will now be done very roughly to ensure the
validity of the Fourier transform. In Section 3.3.1 this set will then be reduced even further to a very
specific space based on almost periodic functions (cf. [5]) to get explicit solution formulas.

Observe, that the set of interface functions f can be chosen in such a way that oy identifies a
functional of the dual space of the Schwartz space (cf. Definition C.1), i.e. [;s aa(Z)@(F) dZ is finite for
all o € S(R?). In this sense ag is an element of S'(R?), the dual space of S(R?). As mentioned above,
this especially holds true for all f € L°(R?), in which case the support of ay(¥) is bounded in the
direction of z. In the following, such a function f will be assumed with ||f||., = /2 and h > 0. With
this the Fourier transform &4 := F(ayg) of ag, which is needed later on, is well defined in the generalised
sense. To be precise, for smooth functions ¢ and ¥ with compact support, the Fourier transform and
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its inverse are defined by

Fo(8) :=¢(8) := /(p(f) e 4z, (2.3.7)
R3
F1p() = (F) = # /¢(§) ¢i¥7 45 (2.3.8)
RS

and ¢(Z) = (¢)(Z). Furthermore, if the duality (f, g) of the spaces C§° and (C§°)* is the extension of
the scalar product [ fg, then the generalised Fourier transform é&g of the Schwartz distribution aq is

defined by
(@a(5), 9(5)) := (2m)° (aa(i), §(17)) (2.3.9)

for all p € S(R3).
In the next section a similar formula will be used, where the argument of @y is shifted by k.. For
7 := (N2, 7y, M), there holds
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Chapter 3

The reflected near field

3.1 The near-field formula

In this chapter it will be shown that

Theorem 3.1 (The reflected near field). Assume an interface that is described by the graph of a
function

3
feA:= {f R* — R| f € L™(R?), Z [ S D e eiwéﬂf”/} +g(n),
L=

YA S VA

3
Aej €C, wi; €R2 DY A+ ]|+ P2t < 00},

(=0 jEZ

where Ao j, = 0 if w ;, = (0,0)7, and satisfies the condition

ké¢clq |k + ijw&j :mj € N s.t. ij <00y, (3.1.1)
JEZ JEZ
where N, is the set of non-negative integers and k' := (km,ky)—r. Moreover, such an interface is

assumed to be illuminated by an incoming plane wave as in Subsection 2.1. Then the introduced Born
approzimation, as defined by (2.3.5), in the case of limiting absorption has, for the absorption going to
zero, the following well-defined limit for the reflected electric field for z > 2h:

E"(%) = E}(&) + Eo(%) = Eqg — Eo — By — B2 — E3 — Ey, (3.1.2)
where
N oik" &

Eo = r(k,é , 3.1.3
0 =1k T (3.1.3)

A [ (0"

. yn \ T - =0 - AR
Ey :222—60 Z Z A0 p d¢ [(@; x €°) x @] (wl) eI, (3.1.4)
nG]NOJGZO

-1 € |S —w +w”)| 2 20) o 2 e T
d§ { = [(5ex %) x5 e ds’, (3.1.5)
nelN, jEZ 0 7)}

(‘:Lf) dc / e Ko (|8 — (K 43.,)|) [(5ex@0) x 5] ¢ s, (3.1.6)
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1
By—i > Z/&gyj(_;f) d(/{"‘le’|5l’(’“l+@5’j)| [(8e x &%) x 5¢] e 7 ds’, (3.1.7)
n 0

2
8m?eg N, ) & o
. kz+\/l~f2—|k’|2 ky
r(k,e%) = = - (kye) — kae)) | —kao
ko —1JR2 — K| 0

ks + K20 k2 = K s (el + kye®) — K[> [ ~Hak

~ = 2 ’
R2k, — K2\ k2 — k2 K kP

= VEkZ =52, 5, = (8z,8y,w) ", k= v Ho€hw, ko= (ks by, —k) T, &5 == (K —|—u~)6)j,wg)T, wl =

k2 — |k’ +@p ® and &° the incident polarisation vector (9,e9,e2)". The terms S‘Zj’
are defined as in the subsequent Lemma 3.9. Furthermore, there exists a zo > 0 such that the sums in

Ey, £ =0,...,4, are absolutely and uniform convergent for any z > zg.

+

- -
wy ; and gn

Remark 3.2. Eramining the definintions (3.1.3) to (3.1.8) it is easily seen that E" is a linear com-
bination of plane waves and evanescent modes as well as integrals over plane waves and evanescent
modes. By formally applying the differential operator Vzx Vzx to Eg and Ey to Ey it can be shown
that they individually solve the homogeneous vector Helmholtz equation V x V x E +k?E = 0. Indeed,
this follows since for any vector § with ||S|| = k,

Since w, the third component of the propagation direction J;, and &, the third component of the propa-
gation direction 3¢, are either non-negative real valued or complex valued with a vanishing real part and
a positive imaginary part, only waves travelling upwards or parallel to the interface are added or inte-
grated to obtain (8.1.2). Condition (3.1.1) ensures that only waves travelling away from the interface
are included into the sum in (3.1.4).

Remark 3.3. In the very simple case of scattering at an ideal interface, i.e. f(n') =0 or equivalently
g(m')=0and A\; =0 for all ¢ =0,...,3 and j € Z, all terms in (3.1.2) except for Eg (cf (3.1.3))
are zero. Thus E"(%) = Eq. Indeed, this follows directly from the definitions (8.3.18) to (38.8.20) of
:\Zj forall £ =0,...,3 and j € Z and g,, in the subsequent Lemma 3.9. Consequently, for scattering
at an ideal interface Formula (3.1.2) is the exact solution of the scattering problem.

The proof of this theorem encompasses the entire Chapter 3. As a first step, the Helmholtz equation
(2.3.5) for the difference field will be solved by applying the generalised Fourier transform, resulting in
an integral representation of the reflected displacement field. These integrals will then be interpreted
as Cauchy principal value integrals at infinity, which allows to interchange the order of integration in
the following subsection. In the last two subsections of this section, one of the integrals is evaluated
explicitly by applying contour integration and all but one of the limits of the Cauchy principal values
are evaluated. Since the evaluation of the remaining limit requires the additional restrictions and
considerations formulated in the theorem, it is examined separately in Section 3.3. In the last section
of this chapter, the formula for the reflected electric field will be derived and the absolute and uniform
convergence of the sums in Ey for £ =0,...,4 will be proven.



CHAPTER 3. THE REFLECTED NEAR FIELD
3.2. Solving the Helmholtz equation 19

3.2 Solving the Helmholtz equation

3.2.1 Formula for the solution via Fourier transform

Applying the generalised Fourier transform (cf. (2.3.9)) to both sides of (2.3.5), the following equation
is reached (cf. Eo(f) = &0 gikr7)

—

(=% +k2) DY(3) = — [(§x &°) x 8] Ga(5 — kr), (3.2.1)

where D%(3) := F(D%(-))(3) is applied component-wise, s2 := ||5]|> and where the constants of the
classical Fourier transform and its inverse (see (2.3.7) and (2.3.8)) are used. Equation (3.2.1) can then
be resolved w.r.t. D4(3) to get

DS = [(5x %) x 5] ST,

where s? # k2 for all §€ R? and 7 < 0. To get an expression for ﬁd(f), the inverse Fourier transform
has to be applied. This is also to be done in the generalised way. Consequently,

= G (D). 0(9)
= s {aate R XD o)
— (e i [L5E o)

for all ¢ € C°(R3). Indeed, the last equation in the equality chain is valid since 52 — k2 # 0 for all
5 € R? and 7 < 0, which shows that [(5x &) x 3]/(s? — k2) @(3) is a Schwartz function. Thus, by
definition (cf. (2.3.9)),

(B%@).0@) = (ol 7,71 ([%} ¢7(§9> @)

. §x &) x &
= L/ad(ﬁ) eikr-ﬁ/M¢(§) e g dif
s

(2m)? s — k2
R3 R3
it Fxe% x3 - i o
:/ad(n)ean/% (@) (5) e~ dsdd, (3.2.2)
R3 R3

where the integrals are well defined, since

§xé% x§ . §x¢é%) x§ - -
7! (—[( sWLLNE (5)) o= [LEZ5T oy 0y e7as

2 _ 12
s2 — k2 s2 — k2
R3

the Fourier transform of a Schwartz function, is a Schwartz function (cf. Theorem C.2) and since
aq(7f) €7 is uniformly bounded w.r.t. 7 := (1.,7,) € R? and . € R and aq4(7) has a compact
support w.r.t. 7,. Using these arguments, it is also easily seen that the outer integral in (3.2.2) exists
absolutely.

eik

3.2.2 Interchanging the order of integration

It is the goal of the next subsection to integrate analytically w.r.t. s,, the third component of § :=
(82, 8y,82) | in (3.2.2) such that only the integrals w.r.t. s, and s, remain. To reach this goal the order
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of integration is interchanged. In order to enable such a change and the application of Lebesgue’s dom-
inated convergence theorem (cf. Theorem C.3), hereafter called Lebesgue’s theorem, bounded domains
of integration would be helpful. A switch to finite sections of the unbounded domain can be realised
by the limit of a Cauchy principal value. Since the outer integral w.r.t. 77 in (3.2.2) exists absolutely
for a complex valued k2, it is equal to its Cauchy principal value at infinity

= o §xet)yxsl - -
(5'@.0@) = i [ a7 [LEEELET (o) ) intasay

C3(7) R3

where C3(F) := Ba(7) x [=F,7] and Ba(F) := {n/ € R*: |[/| < 7}. On the other hand, for any fixed ,
the integrals w.r.t. 77 and 3 are also absolutely integrable, since (p) € S(R?) decays faster than any
polynomial as ||5]| tends to infinity. This allows Fubini’s theorem (cf. Theorem C.4) to be applied.
Thus oy
- o X X .
(D@ @) = Jim [ [ autpe e dﬁ% (%) (3) 5.
T—00 5% — K7

R3 C5(7)

In the following subsections the term

R Ix &0 3 L
(D@), o(@)) = e / / a7 iﬁ'“"“”dﬁ% / P(@) e Tdzds  (3.2.3)

R3 C3(7 R3

will be considered under the assumption that 7 > h is arbitrarily fixed. The limit 7 — oo will be
examined later in Subsection 3.3.

Again, since the integral w.r.t. §in (3.2.3) is absolutely integrable and thus equal to its Cauchy
principal value at infinity,

R
- 1 T §x &%) x 5] -
<D?(§c’), go(f)> = lim / / /ad(ﬁ) eI (5 k) dﬁ[(zizﬁ] /cﬁ(f) e ?dEds, ds’,
: 52 — k2
—R C3(T) R3
with &' = (s, sy)T. Since ¢ has a compact support, the integrand of the integrals w.r.t. # and § is

absolutely integrable for any fixed r, R € R. Hence, for the bounded domain of integration, Fubini’s
theorem can be applied and the order of integration can be interchanged to obtain

(D@, @)

— 1 li
T (27T)3 T,ngloo

3 Bg (’I‘ —R 03

_[(Fx @) x §]

s ST ds, ds’ d, (3.2.4)

\ .
\
di
®
5
‘fi
F
o
3
—

ot
number w will be chosen in such a way that the argument of the complex number /w is an element
of the interval [0, 7). Thus, by definition, the imaginary part of &, is positive and the integrand of the
integration w.r.t. s, in (3.2.4) has no poles for any fixed s’ € R%.

where &, := ,/k2 — s2 — s2. Here and in the remainder of this thesis the square root of a complex

3.2.3 Analytical integration

It is the goal of this subsection to resolve the limit w.r.t. R using contour integration and by applying
Lebesgue’s theorem to evaluate the limit before the integrals w.r.t. s’ and Z. To apply Lebesgue’s
theorem, it will be shown that the integrand of the integral w.r.t. s of (3.2.4) is uniformly bounded
and pointwise convergent w.r.t. R — co and R > |ET|, for any fixed » € R. Note that, for the bound
to be integrable w.r.t. s’ and Z, it is sufficient that the integral w.r.t. s, is absolutely integrable with
uniform bound for any fixed s’ € Ba(r) and ¥ € R3, since Ba(r) is bounded and ¢ has a compact
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- — >

R s, = Rew

Figure 3.1: Contour integration path

support. From this point onwards, it will be assumed that the field is only evaluated outside the
interface region, i.e. it is assumed that |z| > h, where z is the third component of Z.
For convenience, suppose 7 > h and define A := A; := ¢, — ¢, and

G5 (58— ky) == / aq(if) e~ k) 47

Cs3(F)
C5(7)
fn")
/ / _lnz Sz_kz T) d77 —”7/'(5/—79/) d/r]l
BQ(T 0
_ foy o
= —A / { i(sz —kar) e e R qyy
B 2,7 n.=0
_l(sz_kz 7') f(ﬁ') S /
=iA / e =KD qyy (3.2.5)
Bt z T
such that
1
45— ) / / —ilo—her) CIO) 4 f(af) e R (3.2.6)
By(7) 0

which is continuously differentiable and uniformly bounded w.r.t. §. By analytic continuation of the
function é;(5F— k) [(§x €°) x 5]/(s2 — €2) €% w.r.t. s, onto C for all z > h, a meromorphic function
(cf. Definition C.6) is obtained. Thus the residue theorem (cf. Theorem C.7) can be applied to the
integration over the closed path 0Q0r := Cr U [-R, R], with Cp := {# € C:Imz > 0, |z| = R}. The
curve Cp is assumed to be oriented counter-clockwise. The integral w.r.t. s, in (3.2.4) can then be
written as (cf. Figure 3.1)

R - . ) . )
[ vt M e [y LTl e

—a W =&

R Cr
(8, x @) ¥ 8e.] e,

%,

where 5, = (84, sy, w) " for w € C. The second summand on the right-hand side of (3.2.7) corresponds
to 2mi times the winding number of the integration path around ; times the residue of the integrand
at w = &;. The point w = &, is enclosed by the path dQg, since R > |k;| > |&;| was assumed.
Parametrising the curve Cg by Re'® for ¢ € [0, 7], the absolute value of the first summand in (3.2.7)

+ 271 @f(gg_r — ET)

(3.2.7)
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can be estimated as

&n(8, — . [(gw X 60) X gw} eiwz w
[ @ Fo) (e ey <

T

— 0] —
L - [(SReW’ X e ) X SReW’} i2Ret? . ;
= #(Sreic — kr : : izRe™ i Ret?
[ e =) Gt e iy e e

0
T . ~0 .
PR - [(SReid) X e ) X SReid)} . i6 izRe'®
< | |as(Fpois — Fp) B . Re'® #Re'? | g
_/a(sR¢ )(Rez¢—§f)(Rez¢+§T)Z e e o
0
< sup |Whes X D) X Fnee] o f ) pesnet [l ao
= geon | (Re — &) (Re + &) " e ’ 0
. [(5Reie X €°) X Sgeis] G (Faro — T )ReigRew /6_%Rsin¢> do
sefon |(Re'® —&)(Re'® + &) " e ’ 0
/2
§2C(s’)/eféRSinqbdqﬁng(s/). (3.2.8)
0

It will be shown subsequently that the constant C(s’) := ¢ ca(s’) with

N " i Z Rel®
€1 = sup sup sup |@z(5geio — kr) Re'2He

s'€R? Re||k, |,00) $€[0,7]

and
[(§R6i¢ X 50) X §R€i¢]
(Re' — & )(Re' +&7)

co(s’) = sup  sup
Re([|k-|,00) ¢€[0,7]

is finite for any fixed s’ € R2.

It is easily seen that the supremum co(s’) is finite, since the numerator is a polynomial of order two
of Re*®, while the second order polynomial in the denominator has no zeros. It can also be shown that
¢y is finite. Together with (3.2.5) consider

A o 7 iZ Re'®
sup a;(sR€i¢—k7)Rez2Re
¢€[0,7]

_ —i(Re—k. ) f(of v
— s A / 1 e i(Re ) f(n') e*iﬁ,'(slfk,) dn/Rei%Rew

¢€[0,7] ~ Rei? — kz,‘r
Bg(’r‘)
= sup | [ R e (0] g0 ) g
¢€[0,7] Rei® — kz,T

B2 (7)

/ [em 586 | ¢=Rame(5 1) (=S 0)] gy

2(F)

Al R ,
—m [ e an

BQT

o AR

up =

¢€[0,7] |R_ |kz,‘r||
B

where it was used that both z and z/2 — f(1) are positive for all z > h and 7’ € R? and where the
last term is uniformly bounded w.r.t. R for any fixed 7, since R was chosen larger than |k;| > |k, |
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The second term of (3.2.7) is also uniformly bounded w.r.t. s’ for any fixed » € R and z > h, as will
be shown in the following. First note that the supremum

[(5e, x &) x 5. ]

2 _ o2 _ 2
k% —s2 sy

[(5, x %) x 5. |
&

is finite since the denominator is a second order polynomial of s’ without zeros, while the absolute value

of the numerator is bounded from above by a polynomial with a total degree of two. Now consider
(cf. (3.2.6))

= sup
s’€R2

(3.2.9)

g, =0 -
(54,:(§5T — ET) [(Sfr XZ- ) X 857-] eif-,—z
T
X >0 % g,
= |Qr(5, — kr) & e’ (e, 23) S¢, |
S 3 d;'(ggr - E‘r)f ew*z

_z(ﬁT—kz )¢ f(n dcf( ) —in’-(s'—k") dT]l é-‘r €i£TZ

I
>
\
O\H

BQ(T
1
§03|A€T / fo z— Cf(ﬁ) iks ¢ f(n') dCdn/
Bo(7) 0
1
203|A€T / / —Cf n) \k275/2‘s1n9 7T<f(77 dCdn
By (7) O
1
< 3 |AE,| e E VIR —Tlsing / /e*“f'("')dCdn’, (3.2.10)
By (7) 0

where 0 := arg k72_ —s2€(0,m),(2—Cf(n')) > h/2and s% = |S/|2 = Si—FSi Note that lim‘s/|_,oo 0=
7/2. Therefore, lim|y|_, o |¢-| exp(—2+/[kZ — s”2[sinf) = 0, which shows that (3.2.10) is uniformly
bounded w.r.t. s’ € R? for any fixed 7 and 2z > h = 2| f||oc. Hence the supremum

N -0 N
G (e, — kr) [(5%. XZ ) x 5] o7
T

is finite for any fixed ¥ > h and 7 < 0. Consequently, the integral w.r.t. s, in (3.2.4) is absolutely
bounded by 7 C(s’) + 2w 4 () (cf. (3.2.8)), which is integrable on the bounded set Ba(r).

With this, Lebesgue’s theorem can be applied to evaluate the limit R — oo. Using estimate (3.2.8)
it can be shown, that the limit of the integral over Cr tends to zero as R tends to infinity. In fact, by
showing that the non-negative upper bound (3.2.8) of the absolute value of the integral over C'r tends
to zero for any fixed z > h > 0, the same holds for the integral itself. To show this, the integral in the
upper bound (3.2.8) is divided into the sum of the integrals over the interval [0,7/4] and [r/4,7/2],
such that

(3.2.11)

/2 /4 /2
/engsinqbdd): /eféRsinqbd(b_F /eféRsinqbd(b.
0 0 /4

The limit R — oo of these integrals can then be estimated as
/2
lim e” 25 4 < lim Te=8Rsing _ iy Ze3R
R—o0 R—oo 4 R—oo 4
/4

S
[
s}

(3.2.12)
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and, since 2cos¢ > 1 for ¢ € [O, %],

/4 m/4
B}im /e_%RSi“¢d¢<B}im /e_%RSi“¢QCos¢d¢
0 0
/4
4 z N
:H}Ln;o—ﬁ/eiiRsm‘;5 (—?cosgb) do
0
4 (e a1
=lm ——-[— | =0. 3.2.13
A ( R ) (3219

Therefore, (cf. (3.2.7))

- §x &%) x 3| . - Se. x €0) x & |
I%LI};o / (5&;(5— k- % €% ds, = i &F(gﬁf _ kr) [(857' ZT) 857_} elrz

and it follows that (cf. (3.2.4))

= ' (e, x@%) x 8| . -
(D@, 0(@)) = o lim_ [ (@) / ar(ie, — Fy) L Z )Xl psaggan, (3210
]R3 BQ(’I‘) T

if p(Z) =0 for z < h.

3.2.4 Resolution of one Cauchy principal value

The goal of this subsection is to evaluate the limit r — oo in equation (3.2.14). To achieve this, it will
be shown that the integrand of the integral w.r.t. s’ in this equation is absolutely integrable for all fixed
2’ € R? and z > h. Afterwards it will be proven that this absolute integral is also uniformly bounded
w.r.t. 7 > 0 for any fixed 2/ € R? and z > h. The absolute value of the product of ¢ € C§°(R?)
and the integral w.r.t. s’ in equation (3.2.14) is then dominated by a non-negative integrable function
independent of r. Therefore Lebesgue’s theorem can be applied.

First, the term & = /k2 — &2, with k., = k. + 47 and k, < 0 will be examined more closely.
Assuming s”2 > 2||k,||2, it is easily seen that Re(k2—s"2) = k2—72—52 < 0 and Im (k2 —s'2) = 2k.7 > 0.
Moreover, the argument arctan(2k,7/(k* — 72 — s'?)) + 7 of the complex number k2 — s'? is an element
of the interval (7/2, 7), for arctan: R — (—7/2,7/2). Hence the angle 6, defined as the argument of the
complex number /k2 — 52, lies in (7/4,7/2) leading to sin 6 > 1/+/2. With this in mind and the fact
that |z — f(n')] > h/2 for all |z| > h, consider the following estimates together with (3.2.9), (3.2.10)
and (3.2.11).

R -0 .
/ G (Se, — kr) [(5e, Xz ) * 5] RENCFW,
2(r) T
>0
< / df(g’&_ _ ET) [(557 XZ ) X S¢ } i%. 7 &’
Ba(r) T
0
S/ G (Fe, — F0) [(5e, x &%) x ¢ | Jide, 7| gy
R2 &
0
S / dr(gg_r —_ "T) I:(S£ X Z ) X 857] eZSET T dS/
B2 (V2[R ) !
I &

R2\ Bz (V2[k-|)
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< 2r|kr Pea(F) + c3 /
R2\ Bz (v2|k-|)

< 27T|]€ | C4 )
+os A / / e IVIETTsing oo VIl o709y s
R2\ B2 (v2|k- I) 32(7:)

< 27T|E7—|2C4(f)+03A /
R\ Bz (v2|k-|)

&l

57' - kz,‘r

[e%m + eiﬁ\ﬂkg*—sﬂl e’ h] ds’. (3.2.15)

Similar to the estimate (3.2.10), the remaining quotient is uniformly bounded w.r.t. s’. This shows that
the integral is finite for any fixed 2/ € R? and z > h since the integrand decreases exponentially. Thus
Lebesgue’s theorem can be applied to evaluate the limit » — oo and

. oy s
(DL@), (7)) = #/@(i‘)/d;(g& iy LG XZ ) XSe] itz g gz, (3.2.16)
R3 R2 T

if p(Z) =0 for all z < h.

3.3 Resolution of remaining limits for a special interface space

To evaluate the last remaining limit 7 — oo from the Cauchy principal values as well as the limit 7 " 0
of the limiting absorption principle, the set of interface function has to be reduced from L (R?) to a
subset with specific properties. Defining the subset as in Theorem 3.1, it will be shown in the following
subsection that the remaining limits exist for interfaces from this set. In the last part of this section the
limits will then be evaluated to finally obtain formula (3.1.2) for the reflected field outside the interface
region.

3.3.1 Almost periodic and decaying interface functions

Unfortunately, we were not able to treat general bounded and smooth interface functions f, so we have
to restrict our analysis to a special class. Interface functions from this class must have an explicit
Fourier transform. Furthermore, they should contain functions with a superposition of corrugations,
e.g. almost periodic functions (cf. [5]), and functions of the same type, but with an integer order of
decay at infinity. The idea is to model rough surfaces by superposition of corrugations while, at the
same time, including interfaces with decaying properties.

Consider the following linear vector space of interface functions.

:{f;]R2_>]Ryfe,4®}, (3.3.1)
3
AC {f R? — C| f € L(R?), = [% RYE ei“’évf'"’} +901')
=

0N+ P e

)‘éJ € (Da wé,j € R27 ||f||_A < OO}

where s
1= D23 el + 9o (3.3.2)
(=0 j€Z
and Hg(n’)HLLOO = ||+ 01?2 g(n")||.. Note, that the restrictions wj ; = —wj _; and Arj = Xe,—;

for £ =0,1,2,3 and j € Z ensure that the function f, given as a sum in the definition of A®, is real
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Figure 3.2: Example of an interface function from .4 using only the almost periodic portion and choosing
a finite number of uniformly distributed random parameters wy, ; with corresponding )o ; to get a given
correlation function (cf. Chap. 6).

valued. Furthermore, it is assumed that the ‘Ué,j of a function f € A® are unique, meaning that from

wy; = wy, follows that j = «. Note that the function .., A¢; et in the definition of AC fits
the framework of almost periodic functions (cf. [5]). These type of functions have been used before by
Stover [37] to characterise rough surfaces as superpositions of sinusoidal gratings. There holds

Remark 3.4. It is easily seen that for any f € A where X j, = 0 if wg ;, = (0,0)7, the function f is
also an element of LI (R?) (cf. (2.2.4)), since it is not hard to show that in this case

. ’
lim / Z )\O,j eiwo,5°M d77l _
R—o0 4

[~ R,R)2 1<%

as is shown in the proof of the subsequent lemma.

Lemma 3.5. Any function f € A is uniquely determined by the terms Mg, wéﬁj and g, i.e. two
different sets of terms (\e,j,w; ;,9) and (Xg,j,&gﬁj,gz) will result in two different functions f and f.
Proof. Assume a function f € A can be represented by two different parameter sets

S1i= 1 (Mes) pe= (w5 re= ,q), Sy = (M) o=
1 ( e,g)<z3%i.,3) (wg,J)(z 0,...3) g 2 ( é,g)(é 0,

JEZ

- -
o) ()

Note that the mean value of a function h : R? — C, defined as limpg_ .o 1/(4R?) ffR ffR h(n')dn/, i
zero for any function h(n') = ¢ei with wp; # (0, 0) T, since such a function & is periodic with period
p’ :=wj ; such that [mpe/2 (P2 ) dyf = 0 for all m € Z. On the other hand, for an absolutely

mpg/2 mpy/2
summable sequence A ; with j € Z, the mean value of Zjez Ae,j e g

A 432/ / D Arg b dif = hnéo 4R2/ / e = A

JGZ

where j; € Z is the unique index with wé)jl = (0, O)T. Moreover, for £ = 1,...,3 it is easily seen that

We '
w ' /
mn 2/ / EZM eiwe dn’ = Z)\gd 1 2/ / —dny' =0.
W IR 1+|77|2 AR VIET
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Since g(n') tends to zero as || — oo, it is also easily seen that limp .. 1/(4R?) LRR fng(n’) dn = 0.
Naturally, the same properties hold for the parameter set So.

This is now used to show that the two different parameter sets of f € A, defined above, are
identical. First, assume that a spatial frequency w(’h with Ao, # 0 exists in S; that does not exists in
S, i.e. wy , # @ ; for all j € Z. Defining

3
1 I .

p(l,w,) = lim 4—]%2/ / E g Mg et +g(n) o I+ 2 e ™o diy,
R—o0 ~RJ-R /1 + |77 |2 jez

=1

and

1 R R U
610 = Jim i [ [ 8 S A e ) TP e
e —RJI=R | 4=y \/1+|77 |2 jez

it follows that 1(0,wg,) = Xo,., while 1(0,wq,) = 0. This, however, is a contradiction, since both
parameter sets represent the function f. Thus, it can be assumed w.l.o.g. that wg; = &g ; for all
J € Z. Now it is easily shown that Ao, = Ao, for any + € Z, since u(0,wp,) = Xo,, and (0,wp,) =
(0,a5,) = Ao, have to be the same. Consequently (Ao ;)jez = (Xoj)jez and > ez Mo ewo M —
Yjez Xo,;j €00 Naturally, this shows that f (1) — > iez Ao, e = fnf) — Yjez No,j €05,
Similar to the parameters with £ = 0, it can be shown that the parameters in S; and Ss are identical
for [ = 1. As before, a spatial frequency w; , with A, # 0 in S; can be assumed such that w; , # @; ; for
all j € Z. Again, the contradiction that p(1,wj,) = Ai,, is not equal to fi(1,w;,) = 0 can be observed.
Hence, it can be assumed w.l.o.g. that w; ; = @, ; for all j € Z. Once more, it is now easily proven
that \;, = A, for any ¢ € Z, since p(l,w;,) = A, and f(l,w;,) = i(l,@;,) = A, have to be identical.
Thus, > ez A ey = Yz Ar; €13 This can now be repeated for [ = 2, 3, finally leading to

which concludes the proof of the lemma. |
It can also be shown that

Lemma 3.6. The spaces A and A, together with the norm || - || 4 and pointwise multiplication, form
Banach algebras.

Proof. To show that AC is a Banach algebra, it has to be shown that A€ with the norm || - || 4 is a
complete, normed C-vector space, which together with the pointwise multiplication forms an associative
algebra, which is sub-multiplicative w.r.t. the vector space norm. It is not hard to shown that (A%, ||| 4)
with pointwise summation is a normed C-vector space. Indeed, since for f,, € A® for all n € Ny,

(fr+ f2)(') := fr(n') + fa(n')

n

3
1 ; / 1 . /
D AT ] +ar(n) + Y [74 Y oa7 e } +92(1')
/1 + |77’|2 J€z =0, /14 |77/|2 JEZ

1 ~ ~ i o’
7> (N +AL) €9 "] +a1(n') + g2(n'),

Vit e

~
Il
o

~
(=)
— l_|
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where {@; ;|7 € Z} := {w} ;| € Z} U{w} ;| j € Z} and

n — n
5\? L )\m if @ w“ =wy,
’] 0 else

for n = 1,2, the summation is well defined in A®. Furthermore, since the representation of any f € A€
is unique, f = 0 is the unique zero element in A® with || f||4 = 0. Using the fact that || - || 4 is a sum
of the I and L>-norm, it is then easily proven that || - || 4 is also a norm and that (A%, |- ||4) is a
normed C-vector space. Moreover, since the spaces of absolutely summable series’ I' and uniformly
bounded functions L> are complete spaces, this can also be shown for A®. To be precise, assuming
fn is a Cauchy sequence in A€, it follows that for any € > 0 there exists an N > 0, such that for all
n,m> N

3
I fn = Fnlla =D D A2, = A + 1A+ 10112 gn(n) = A+ 1P gm()| , <.

=0 jEZ

where {w; ;|j € Z} := Une]NO{W?,jU € 7Z} and :\Zj as above, but for all n € Ny, not just n = 1,2.
Since both ' and L> are complete vector spaces, it follows that a Aej € 11(C) and a G € L>®(R?)

exists, such that )\"J tends to A¢; in the I*-norm and (1 + [17'|?)2 g, (') tends to G(n') in the L>-norm
as n tends to infinity. With this, a potential limit of f,, can be deﬁned as

! : ! ORI 4 G(n/

=0 ,/1+|77/|2 JEZ

which is an element of AC. Since the two parts of f converge in I' and L, respectively, it holds that
for any € > 0 there exists a constant N > 0 such that for all n > N, ||(5\Zj)j€Z — (Mej)jezln < €/5
for all £ =0,...,3 and that ||(1+ [7'[?)? gn(n') — G(0')|le < €/5. Consequently || f, — f||4 < € for all
n > N, which shows that f € A€ is the limit of f,, w.r.t. || - || 4 and thus that A is complete.

Next it will be shown that (A%, ||-||.4) with pointwise multiplication is an associative Algebra, where
the product is sub-multiplicative w.r.t. || - || 4. By virtue of the pointwise definition of the product it
is easily seen that it is indeed an associative Algebra, if the product of two elements from the space is
an Eler}rllent of the space itself. For convenience, define A} := A} (') == 3,7 A eis forn =1,2,
such that

(fr-f2)(') == fr (") fa(n)
3
1 1 1 w2 .o’
= [ = D M )| | D e DN e o)
=0 ,/1 + |77’|2 jez =0 /1 4+ |77/|2 JEZ
e AGAZ + ATAZ ASAZ + ATAZ + AJAZ AJAZ + ATAZ + ASAZ + ALAZ
= AgAg + 5 + 3
V1i+n'P? 1+ 7| VIFP
3
ATAZ + AJAZ + ALAZ  AIAZ + ALA3 ALA3Z + ) Z A2

T+ P2 T E | APy = VI

3 1
+92(0) Y ———= + 91(0) 92 (0)
=0 /1 + 02
min{3,x} 3 2 3 Al

AGAL g+ a1(n s +g200) ) ———;
Z <1+ In K mago,n—m Z:% V3i+)? ; I+

+91(n") g2(n'), (3.3.3)
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where

A= | et | [ et | < 3T et

JEZ LEZ JEZ EZ

The sum on the right-hand side can easily be transformed to get

AAZ = Z Nej e (3.3.4)

JEZ

Next, the order of the summations w.r.t. x and £ on the right-hand side of (3.3.3) is interchanged. To

do so, all the &, ; for a fixed  and all £ are collected, i.e. {@], ;|j € Z} := U;“‘ﬁj};?gwg}{wﬁyj|j eZ}.

Moreover, the )\é , where the corresponding w - is equal to a given & ,, are added, i.e.

K,L?

min{3,x}

Mewi= DY gy (@) AL, (3.3.5)

{=max{0,x—3} JEZ

such that new pairs (A, ,) are obtained, where &, # @, for 11 # 15. Here, the symbol 1 is
used for the indicator function, i.e. for a set M the value 157(m) is one if m € M and zero otherwise.
For a singleton M = {mo}, 157(m) is shortly written as 1n,(m). Consequently,

min{3,x} min{3,x}
_ .y ’ — .y
E AL, = E E Ay €T = § Ay €1
f=max{0,k—3} {=max{0,k—3} jEZ LEZ

since the summation on the right-hand side of (3.3.4) exists absolutely, which shows that the summa-
tions w.r.t. £ and j can be rearranged freely. Replacing ¢ by j for consistency, this leads to

(fi Z 7]6 ”n‘i‘g()

3
Z \/1+| '1* ez
where

3
_ o, A2
= Z)\Melwm,j'n +a1(n) Z e
44/1 ! jez ’ —o V14 |77'|22
3 1
+ g2(n +91(0") g2(n').
Z:; VIFITE

It remains to show that || f1 - f2]|4 is finite by showing that the norm is sub-multiplicative, or to be
precise, that [|f1 - fala < [[fillallf2]la. For convenience, define X := > ., [A\} ;| for n = 1,2 and
Y, = Yz |\s.jl, such that

o) = —— Z

1+ )?)?

3
- folla =Y S+ 10+ 017 9(0)lloo, (3.3.6)

k=0
where

6

1L+ ' 12)? g() oo < Z ) Ay e +

\/1+|77 BT

22 23: A}
T+ g21) ) ———
—oV1I+P Il

3
AZ
A+ o) Y ——
=0 V1I+ 1?1l

+ ||+ B2 ) g2 )|

+
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6 3 3
<Y Se A lg1llace Y57 + 1920400 D Tk + llg1]l4,00 /19211 4,00- (3.3.7)
k=4 £=0 £=0
On the other hand, (cf. (3.3.4) and (3.3.5))
min{3,x} - min{3,x} -
<> X e ,@oRLI= X XN
JEZ f=max{0,x—3} {=max{0,k—3} JEZ
min{3,x} min{3,x}
= D D NIl = DY EiER.
{=max{0,kx—3} jJEZ LEZ £=max{0,k—3}
It is not hard to check that
6 6 min{3,x} 3 3 M3 3
DIED DD DR e -l DI RD B
k=0 k=0 Z:max{07n—3} =0 k=0 L{=0 k=0
Altogether, (cf. (3.3.6) and (3.3.7))
3 3 T
[f1+ falla < [Z %+ |91||4,oo] [Z 57+ llg2llaco | = Il Allall f2]la-
/=0 =0 i
Thus || - ||4 is a sub-multiplicative norm w.r.t. the associative algebra and Banach space A€, proving
the statement of the lemma for A€. The same arguments can also be used to show identical properties
for A, with the small difference that it is an R-vector space. |

Remark 3.7. The coefficients A ; depend continuously on f € A. Moreover, the term g depends
continuously on f € A w.r.t. to the norm |||, ..

3.3.2 Existence of the remaining Cauchy principal value and the limit of
the limiting absorption principle

It is the goal of this subsection to show that the limits 7 ' 0 and 7 — oo of (3.2.16) exist under the
assumption that f is an element of A. To be precise, this subsection solely consists of the proof that

Theorem 3.8. For any function f(n') from A the limit

[(5e, > %) x 5. |

&

e%r T ds’ dx

(3.3.8)

(560,009 = i i

o(@) / ar(5e, — o)
R3 R2

exists.

Consider only the integral w.r.t. s’ for an interface function f € A. Using the equations (3.2.5) and
(3.2.6) for Gy, (3.3.8) transforms to

A

(D'@). (@) = — 55 lim Jim [ §(@) D s(@) d, (3.3.9)
R3
where from now on A := Ay = ¢y — ¢, and
1— —i(&r—kx,-)f(n') NN, S X 0 X Sy .
FT,F(f) ;:/ / 65 - e in (s fk)dn/ [(Sfr Z ) Sfr] PRER R (3.3.10)

R2 By (7)

1
- -0 -
— Z/ / /efi(f‘r*(szriT))g f(n") dCf(TI/) efin’~(s’7k') dn/ [(Sfr X Z ) X 857} eiEgT T dS/
) 0 ’

R2 By (F
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Here it can easily be shown that Fubini’s theorem can be applied for any fixed 7 and 7 < 0, since

eis (==C ) decays exponentially as |s’| tends to infinity and since the integrand is uniformly bounded
w.r.t. ' € Ba(7). Hence, the order of integration can be interchanged. Additionally replacing the
exponential function in e~* &~ (1) by jts power series,

1
— =0 —
1“7);(;5’) = z//{ / e*i(fr*if)(f(n’)eiszj'(n’)f(n/)e—in/,(sl_k/)dn/ [(3@ xXe )xng} eigﬁf'f} 4’ A

&r
0 R2 “Bs(F)

1
. N s ’ & — iT)n i "y —in' (s =K' ’
i (=i0)" f(n )n+1 ( etk=CF(n") p—in ( ) dn
0//{ / g{) n!

R2 “By(7) "

[(HET X 6‘0) X §§T] eiggrj} ds’ dC

ér
=111 +ilo, (3.3.11)

where

n!

8 . n
{ Z (—i)" f(ﬁ/)"ﬂm eih=CF) gmin'-(s'=K") qpy

R2 Ba(7) n=0
— >0 a
[(5. xz ) x 5. ] 65} 4 dC. (3.3.12)

{ i (ciey flofy S I b o) i (oK) gy

!
R Ba(7) =9 !
- =0 I~
[(857_ X Z ) X 857—} eig‘&_.f} dS/ dC (3313)

First, examine integral (3.3.12) by pulling the finite sum outside the integrals and replace eth=CF(n') by
the power series of the exponential function, giving

1
_ (—ZOn { (& — iT)n N+l LikoC f(n') ,—in"(s'—k') 3,/
I = g f) e e d
1 00/ ol / 2 / n 1

R2 Ba(7)

[(8e, x &%) x 5] esm} ds’ d¢

1
(—iQ)" (& —ir)" Nt (kCFO )™ i (s =k') 30

n=0 R2 Ba(7) Mo
[(8e, x &%) x 3] eigsr'f} ds’ d¢ (3.3.14)

Since f is an element of the Banach algebra A c A, the term
Fa(') = fukec(n), Frkog = frtetcf = 3" %ﬂ’””*l (3.3.15)

meN,

is also an element of A®, such that (cf. subsequent Lemma 3.9)

3
ful) =3 [; SN, ] 075 0).

7
(=0 =\ 14 |nf|? i€z
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Note that this reformulation could already be plugged into I'; #(Z) (cf. (3.3.11)) to get (cf. (3.3.9))
(D@, (@)

= —z— lim lim /// SgT ~ gO) x gET] e T
8m2 7,0 7—00 f.,_
R3 0 R2
zﬂi—ﬁzw_ﬁ"
B (7) nelN, (=0 jE€Z 1+| /|

It is the overall goal of this and the next subsection to show in which sense the sums w.r.t. n, j and ¢
can be pulled outside the integrals, while the limits w.r.t. # and 7 are evaluated before the integrals.
Applying this formally would lead to

(D"@), 0(@))

%izzﬁa‘ i

¢=0 neN, jE€Z

+ gn(1', C)} =i (' =K) dn’} ds’ d¢ dz.

0
/ p f // —in/.(s/_(k’-i-@é,j)) d’l’]/ [(5'50 % é»O) % §£0} 561—1 ei§§0~f dS/ df}
R2 R2 |2
A [ (i)
. L —1
"WZ{/W)/ o
nelNo gs 0 '

[t e o [ ) et g
R2 R2

where the first integral w.r.t. 7’ can be evaluated explicitly using known solutions of generalised Fourier
transforms. To do all of this rigorously, it will be shown in the current subsection that the limits w.r.t. 7
and 7 exist, by separating the sum w.r.t. » into a finite sum and the rest (cf. (3.3.11)). For the finite
sum it is then shown in which sense the transformations of switching the order of the limits, the sums
and the integrals can be applied. In the following Subsection 3.3.3 it will then be proven that this also
holds for the entire infinite sum w.r.t. n by letting the number of terms in the finite sum tend to infinity
and showing that the integral over the rest, i.e. Iz, tends to zero.

It is used that

Lemma 3.9. For any function f in A, the function f, (c¢f. (3.3.15)) is equal to

Fal) =Y [ﬁ S5 ] + (0, C), (3.3.16)
L+ i€z

where @ ;, £ =10,1,2,3 are defined by

{@6;:5ez} = {Z Ml o my € N, > my < oo} , (3.3.17)

KEZ KEZ
{&zﬁj:jEZ}z{Zmeln:m E]NO,Zm <ooz Zm }
=0 KEZ KEZ =1 KEZ
and where
Y Y . —n— Th' )\ N M
Aog = Ao (C) = > (k) ' h—n=1) lH %1 ; (3.3.18)
my€Ng: KEZ

M=), cp Mr2n+1, Mm<oo
’ o~
ez MrWo =@ ;
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~ 4 m!
A=A 5(0) = > (ik-¢)" ! (Tn—Ln'—l)' [H 1T [A;;‘l], ] ., (3.3.19)
mLG]NO: ’ = ke

R Y4 1 ~

m’*Zl:O Z){GZ m, >n+1, m<oo
2 1 __ 14 Lo~
1=1 V2 ez M=t 300 Xonez MWl =90 ;

gn(n',Q) =" W(iwm > 9(7) (3.3.20)

melN, R 3 ¢
n5€Im+’n+1\(eL:JOI7TL+”+1> ng!\/1+ ||

1 v Pugl™s | 5 miehs
H 2 e JEZ
' )
" mj.

1=0
4 4
If; —{ﬁ5:—(n0, ,ng) € IN5 an—a,Zlnl: }, £=0,1,2,3
1=0 1=1
Ja 1= { Moo 1= (M) jez |m; € Ny, ij =a,. (3.3.21)

Proof. The existence of representation (3.3.16) is a simple consequence of the algebra structure of A.
It remains to derive the formulas for the coefficients and g,.

Using the multinomial theorem (cf. Theorem C.8) twice it can be shown that, if me := (m;) ez is
a sequence of non-negative integers, fis := (ng,...,n4) € ]Ng and m,n > 0,

. 1\n4 m+n+1!3 1 iw; n’
sapyrr= Y |2 I IBECE

= n4! L P In; :
5€Lm4nt1 =0 nyla/1+ |77/| JEZ
O A GETER Y H 1

- n4! / 5 Iy
ﬁsel7n+7l+1 =0 nl| 1 + |77/|
)™ | i X miwr
E nl! H [ J]' e jez
mj:

Moo €Jn, JEZ

ny

B g™ (m+n+1)! 3 (A4 in/-jijw{,j
= L T e

3
M5€lm4nt1 2 (g:l lny o €Jn, JEZ '
7’L4! 1+ |77 |

The sum over the 5-tuples 7i5 can then be separated into terms which contain the lower powers of

1/4/1+ |7'|° without powers of g(n') and a part with finite [|ll4 oo-norm. E.g., only the five-tuple

(m +n+1,0,0,0,0) will result in terms without the term 1/1/1 + |5’|*, positive powers of the same

or g(1'), while only the five-tuple (m + n,1,0,0,0) will result in terms with 1/1/1 + |’|* and without
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g(n'). Note that ng in I, ; is always zero for any ¢ = 1,2, 3. This then leads to

m+n A aqm in’-_E mjw(/kj
Fo )yt = mn )y 11 % "

Moo €EJm4n+1 JEZ ’

A g™

3 4
(m+n+1)!
=11 4 /1+ |77I|2€ s €L, g P=0 Moo €Jny JEZ my!

>

ﬁ5617n+71+1\( U Ifn+n+l) nal\/1+ ||

£=0

s ’
in' > mjw
JEZ

Agl™a | maen

3
I > _ [ﬁzj! e iz : (3.3.22)

With this, define (cf. (3.3.15))

m (m+n+1)! 11 [Xo,;1™

m! m;! ’

j\g,ernJrl (mOO) = (ZkZC)
gt

JEZ
Dp(moo) =Y mjwp s
jez
for all Mmoo € Jim4n+1, all m € N, and any fixed n € IN;. This can be extended by defining

Sn e M- (meo) ifm>n+1
N (7, Moo ) = {007 olse (3.3.23)

for all m € IN,. Assigning an index j € Z to every pair (M, mq) leads to the desired expression

> g MEEEDE s T 7[&:;;].:7”

melN, Moo €Jm4nit1 JEZ '

DTN N, meg) e @olme)

meEN; moc€Jm

~ oy
n Lin' wg ;
= g /\o,je i,

JEZ

s ! ’
in'- 3 mywg
JEZ

where X’OIJ and @ ; are defined by {&yg ; : j € Z} = {@)(Moo) : Moo € i, M € Ny} and

Aoy = > X5 (17, mec). (3.3.24)

M, Moo 1@ (Moo ) =W 4

Thus (3.3.18) follows.
Similarly the second term of (3.3.22) can be transformed. First note that the product

L . 1,
puggs | 5 vt

I ¢ |l

1=0 ml e, | 7€z I
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can be rewritten as the sum

¢ Ay | i Z Emwu

SRV Gt
Pl mk!

for all m, € Xf:anu all 775 € IfnJrnH, all m € IN;, and any fixed n € IN;. Furthermore, this is again
extended by defining

A mana (M) if i >n+1

0 else

A? (’ﬁ’L, ’Iﬁg) = {
for all m € INy, which leads to the reformulation

o (MR 1) ‘ Ng)ma\ i S mer
S (ik-0) (m+n+1)! NI H(%)e P

m! ,
melN, "5€Im+n+1 =0 mec€Jpn, \JEZ

Z Z Z )\é m+n+1( ) ein’-&)é(rﬁ[)

mE]NO n-;GI

Si

e x X I,

Z Z Z N (17, i) €M 02 (o)

meN, 75l

m sz >< an
_ in  in' @) -
= E )\Ljen i,
JEZ
where every j corresponds with one triple (m, n5, my) and where /\” and @ Wz are defined for any fixed

0=1,2,3 by {@;; :j € Z} = {w;(1mie) : mog €l>< Jn,, s €15 M € Ny} and
’ =0

A= > A7 (1, 1)

m,mg € Jnl,ﬁ5€I£71:®/ =) (M)
. ,

At last define g, as the last line in (3.3.22). u

I X

0

Remark 3.10. Note that f, also depends on the constant k. and the variables ¢ € [0,1] and n €
{0,...,8}. Consequently, Ay, is dependent on k., ¢ and n, while (:Jé)j is a constant for any fixed
{=0,...,3 and j € Z. Similarly the function g, depends on k, and .

Using the lemma, the limit 7 — oo of I; (cf. (3.3.14)) can be evaluated as the sum of the three terms

hm Il = Il 1+ Il 2+ 11 3, (3325)
where
8 1
I, := FEI&ZZ{/S\SJ _n' dC/{ / i@, e—i”]/.(s/_k/) !
n=0j€Z 0 Bs(7)

[(8e, x &%) x 8] e f} ds’}, (3.3.26)
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3 8 I am . \n
i S5 fo 8 [ [ L iy
0 R2

¢=1n=0j€Z Ba(7) /1 4 |77/|2
[(8e, x €°) x 3. ] esw} ds'} (3.3.27)
and
lig:= lim Z/ /{ ] g”) / (', Q) e (=) qyy
T B (T)
[(8e, x &%) x 3] eigsr'f} ds’ dc. (3.3.28)

The limit (3.3.28) can easily be evaluated by applying Lebesgue’s theorem, since for any n € {0,...,8}
the function g, is independent of s’, continuously dependent on ¢ (cf. (3.3.20)) and absolutely integrable
w.r.t. / € R?, such that there holds |fB gn(n C) e~ (=K qy| < maxceo,1] [z 19n (', Q) dny’ <
¢n < 00. Moreover, the term (£, —i7)" /&, [(S£T x &0) x 3¢_] €¥¢ % is uniformly bounded and absolutely
integrable w.r.t. s’ € R? for any fixed 7 < 0, since e*~* decays exponentially.

To evaluate the limits (3.3.26) and (3.3.27) consider the Fourier transform

1

[——
RrR2 \/1+ |17’|2

for ¢ € {0,1,2,3}, which can be evaluated as a Hankel transform of order zero defined as (cf. [1,
Eqn. 9.1.18, p. 104] for the relation between Hankel and Fourier transform)

e—in/_(s/_(k/_j’_d)z,j)) d77/

/flnl Jo(13' 1) | | = o= /f|n| =i gy,
0 R2

where Jy is the zero order Bessel function of the first kind. Keeping in mind that the inverse Hankel
transform coincides with the Hankel transform itself, the well-known Fourier transform for the Dirac
delta and [31, Eqns. 2.19 and 2.20, p. 8 and Eqn. 2.110, p. 22] lead to

/efm'-(suw'me,j)) diff = 4n%5 (s — (K + @) ;) , (3.3.29)

R2

e |s— k+w1])|

1 . ! !’ !’ ~ 1
/ e (=W H21)) gyt — o e (3.3.30)
(L

g2 \/1+ Ids 5 = (& +w1’j)‘
L (= +350) qpf = o Ko (|5 — (K + & 3.3.31
T D =Ko (4= 4+ 33,) @231

2
and

1 o' (s' = (K +@3 ;) dn = 2r e—|5'—(’€/+@é,j>|, (3.3.32)

[ =
R2 |/ 1+ 7|
where K(z) is the modified Bessel function of the second kind, which has a logarithmic singularity at

z = 0. Note that the right-hand side of (3.3.30) is a weakly singular function, while that of (3.3.32) is
uniformly bounded.
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It can be shown that the limit of integral (3.3.26) and (3.3.27) is well defined in the sense of a limit
in S’(R?), since

n._ (&= i) e >0 2 5, &
on(s') = =T [(5e, x €°) x 3, ] e~
&r '
is a Schwartz function for 7 < 0 and |z| > h. For convenience, define

1

2@
1+

With this, the limit of the integral w.r.t. s’ in (3.3.26) and (3.3.27) is evaluated as

Frp (') := 1, (1) e (@R,

1 e ’ A
lim —e" (@D o= Ay o, (s') ds’ = lim [ FFryi(s') n(s') ds’

T—00 / 2 T—00
R2 By(7) \/ 1+ |7 R?

= lim [ Fre5(n') Fon(n') drf

R2

= / Fooj(n') Fn(n') dnf (3.3.33)
IR2

1 s N~ ’
= [ —= T Fou () dn,

2 (/14 ||?

which is finite for any |z| > h and 7 < 0, since Fip, € S(R?). Note that the limit is uniform w.r.t. j
and (. Indeed, switching to absolute values in the formulas for Iy ; and I; o (cf. (3.3.26) and (3.3.27))
will lead to a product of a sum over j independent of 7, times an integral independent of j, which is
the third line of formula (3.3.33) switched to absolute values. To be exact,

1
i | [, dc/Fu,J ) Fouln') | < hmZ/lAM d</|Fre,J ) Fenl)| df
jez

|Fon(n)]
e [
By(®) \/ 1+ 7|

amZ/

J

< jim > f | e / =
L+ [o')?
/ |Fenm)]
Zo 1+ | ’|
< Cl,n,s
where ¢g ,, is finite for all £ = 0,...,3 and n = 0,...,8. This follows since (S\Zj)jez is an absolutely

summable sequence w.r.t. j, while F,, is a Schwartz function and thus absolutely integrable.
Altogether, for the integral w.r.t. s’ and n’ in Iy o, i.e. for £ € {1,2,3}, this results in (cf. (3.3.33))

1 o~ ’ A
lim L @) i gy o () ds = / FFaui(s) ouls)ds'.  (3.330)

T—00 26
R? By(7) \/1+ [
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Inserting this into (3.3.27) leads to

3 8 L o
he=2 2.0 / A (_zf) 4 / Floo5(s') on(s") ds’ (3.3.35)
{=1n=0j€Z n: s
3 8 L " o
S 5 [ 0 1 )
=1 n=0j€Z 0 y e

These integrals exist since the integrands are at most weakly singular, since the FF ¢ ; (cf. (3.3.30)—
(3.3.32)) are bounded at infinity (cf. [1, Eqn. 9.7.2, p. 122]) and since ¢**¢- 7 is exponentially decreasing
and thus ensures the existence of the integral w.r.t. s'.

It remains to examine the limit 7 0 of (3.3.35). Note that the integral w.r.t. s’ exists even if the
singularity points of (3.3.30) or (3.3.31), that appear only for 7 = 0, coincide with the singularity point
of 1/& =1//k2 — 82 for T = 0.

Lemma 3.11. For any k € R, and k' € R2, as well as a sufficiently large positive constant c, the
absolute value

1 f—
/ < f logl = || ,
AT /7, =+
2 (2k) Ba(2k) |s |

is finite.

Proof. Obviously this holds true if |k’| # k, since then the two quotients in the integrand are not
coinciding weak singularities. For |k'| = k assume w.lo.g. that &’ = (0,k)". Otherwise, for polar
coordinates (7, ¢) the angle ¢ can be substituted by ¢ + ¢ — 7/2, where k' = k(cos ¢y, sin¢y) . For
|k’'| = k the neighbourhood of the point where the two singularities coincide is of particular interest,
since the two singularities are again only weakly singular or even bounded, and thus integrable, outside
of this neighbourhood. Hence, only a small neighbourhood of ' = ¥, determined by the small constants
€z, €y > 0, will be considered. In particular, the constant €, is assumed smaller than €, and k&, = k.
For an appropriately chosen neighbourhood the integral on the right-hand side can be written as

/k2+52752

1 k/_ A
/ / loglk! I
| /| | |k — s

/2 —e2—s2

Note that for this domain of integration, the term 1/4/|k2 — |s'|*| is weakly singular on a segment of
a circle with radius k. Now a smooth coordinate transformation is introduced such that this term is
modified to a weak singularity on one coordinate axis of the new system and the weak singularity at
s’ =k’ is moved to the origin. To be precise, s, is substituted by t, and s, by (t, +1) /k? — t2 leading
to

/ \/H"/th 1 1 ‘log’(o,k)T—(tm,(ty—i-l) M)TH
VZFL VI 0,07 = (ta, (8 + 1) VRZ —2)T
" | ’

dt, dt,.
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It is not hard to show that for ¢, — 0,
2
. 1/1+ﬁ71
; Lo g 0T = ety + 1) =)
/ dt, dt,
) V2L VI ‘(O,k)T — (g, (ty + 1) /B2 —t%)T‘
17%71
[log]t'] |
< | / Uy,
Vi
Here,
1 |log|t/ log (13 + 13
// 'Og,'" . d / /2l 840 g, g
Vi i Je+t
log(t2 + 12
—4/ /2| 8 )|dtwdty
Viy t2 12
log (¢2 (1 + 2
/ / log(ty (1 +£)) | dt, dt, (3.3.36)
Viy V1+2
€x/ty
log (1 + ¢2
M dt, dty,

€y
|10gtu|/ 1 / 1 /
24/ : dt,dt, +2 [ —
) Viy ) V1+2 . ) Viy ) V1+2

arsmh (6 ) dt,
ty ‘

2
ol 1o <§—”” +o 1 i—;”) dt,
Yy

% |logt,| log (ez t2 + 62 (lo
gty)
dt dt (3.3.37)
i, y / y

is finite. Note that €,/t, > 1 for 0 < ¢, < €, < €;. Thus, since log(1 + ¢2) < log2 and 1//1+¢2 <1
for 0 < ¢, < 1 and since log(1 +t2) < c(1+t2)Y/6 and 1 + 2 > 2 for 1 < t, < e,/t,, the second,
obviously positive integral on the right-hand side of (3.3.36) can be bounded from above by

where

€y €x/ty

/|10gty| / 1 /
Viy 1+t2 fod

0 0

I
o\

I
S—

0

log 1+t2) K 1 | log( ) K 1 U |log( )
dtmdtyg/—/ dt, U—i—/— / dt, dt
\/_ V1+12 S tyo V1+12 Viy / V1+t2
eyl 5 €y 1 €/ |tyl 1
og
< dt +C/— dt, dt
VI VE ] )t
€ 1 €y 1 5:/|ty‘
og
< dt — dt, dt
[ ] 7 [ g
0 1
€y €y 1
log 2 / 1 €3
< dt, +3c | — — 1] dt,. 3.3.38
0 Viv 0 fy [[ty]% 1 ! | )



CHAPTER 3. THE REFLECTED NEAR FIELD
40 3.3.2 Existence of the remaining limits

It is easily seen that this bound is finite, since only weak singularities occur. Thus the lemma is
proven. |

This can be used to apply Lebesgue’s theorem to evaluate the limit 7 0 of the integrand w.r.t. s’
n (3.3.35) and thus (3.3.27), such that

1 Cn
lnn Lo = ZZ > / _;f) dg/fFoo,l,j(s’)gnfl [(8e x &%) x 8] e7ds’ 5. (3.3.39)
]RQ

(=1n=0j€Z 0

On the other hand, for the integral w.r.t " and 7 in I ; the limit (cf. (3.3.29) and (3.3.34))

tim [ [ G () A = Ao @ 4+ )

T—00

R2 BQ (r)

is obtained. In this sense, the limit in (3.3.26) evaluates as

i A" .
Ly=4r2) ") / Xg i (—iQ)"™ d¢ o7 [(B2 x &%) x @] e, (3.3.40)

n! wl,

with & = (k' + cb&j,wg’T)T and w! = \[k2 — |k +&f ; ] Note again that the A7 o ; are absolutely
summable w.r.t. j, which is a consequence of the Banach algebra properties of AC.

It remains to consider the limit 7 ' 0 of the two terms I ; and I 3 (cf. (3.3.40) and (3.3.28)). For
I1.1, this limit is easily evaluated, since the sum w.r.t. j exists absolutely and the integral w.r.t. { is
uniformly bounded w.r.t. 7. However, it has to be assumed that w’ ; # 0, i.e. that (cf. (3.3.17) for the
connection between wy ; and @ ;)

k ¢ cl ‘k’ + ijwé)j : my € N s.t. Z mj < 00 (3.3.41)
JEZ JEZ

to obtain a finite value lim; -0 (w! . — 7)" /w! _ for n = 0. Under this assumption,

i 1n—1
lim Ty = 47r22 Z/Xg (=i¢)" [ : } [(&g x 50) x Qg} T, (3.3.42)

n= OJGZO

Remark 3.12 (Remarks on the restriction of wave numbers).

i) Condition (3.8.41) is not always necessary. If k = ’k’ + Zjeijwé,j‘ for a special sequence m;
and if this is an isolated point of the set in the formula (3.3.41), and if, by chance, the coefficient

1

Z /~g,j (—i¢)" d¢ [Wi,o]n/n!

nelN,

of the corresponding 1/w! . (see the subsequent (3.1.4) and Theorem 3.1) vanishes, then the limit
T /0 may be possible even though (3.8.41) is violated.

ii) In the case of a decaying interface, i.e. \o; = 0 and wy ; = (0,0)T for all j € Z, condition
(8.8.41) is always satisfied, since k, < 0 such that k # |k'|. Moreover, it follows that Xg)j =0 for
all j € Z, such that Eg =0 (cf. (3.1.4)).

iii) For a simple bi-periodic interface f(n') := cos(w’ - n') with a fized W' € R? the spatial frequencies
wy; are only non-zero for one pair (j,—j) € Z?, e.g. wy, = W' and wy_, = —w'. With this it
is easily seen that condition (3.3.41) reduces to |k’ + mW'|*> # k? for all m € Z. By solving the
quadratic equation w.r.t. m it can also be rewritten as [k’ - wy £ /(K - w))? + k2] /|w'| ¢ Z with

/

wy = w'/|W']. These are the so-called reflected (transmitted) Rayleigh modes of a grating.
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iv)

vi)

vii)

In the case where R := {wy ;| j € Z} = Q2 N [—1,1)%, the set of all pairs of rational numbers
in [—1,1)%, it is easily seen that for any value w!. € Q2 a finite subset M of R exists such that

Wy = >\ Wo;- Naturally, it follows that all k € [0,00) are excluded by condition (3.8.41) and
that the formulas derived in this thesis can not be applied.

A simple non-periodic interface function with only countably many wave number exclusions is
f(n') = cos(ng)+cos(mn,) = 1/2e e 41/2 e~ M= 41/2 e +1/2 ™= (doubly periodic function,).
Here it can easily be confirmed that for normal incidence, i.e. k' = (0,0)", condition (3.3.41)
reduces to k # |m1 + ma 7| for all my,mq € Z.

For any set R := {w( ;| j € Z} that has a subset D which is dense in some domain Q C R?
with (0,0)T € Q, all non-negative real valued wave numbers are excluded by condition (3.3.41).
Indeed, if wy, = mingep ||, a sufficiently large m € N can be found such that mw,, > V2. As
a consequence, m R has a subset that is dense in [—1,1]%, which leads to a case very similar to
the example in Remark 3.12 (iv).

A sufficient condition for the existence of wave numbers that satisfy condition (8.3.41) is to have
only finitely many non-zero spatial frequencies wo ;. This is the most relevant case for numerical
stmaulations.

Analogously to (3.3.40), the limit 7 ,” 0 of I 3 (cf. (3.3.28)) is easily calculated using Lebesgue’s
theorem, since the absolute value of the integral [ (7 I, C) e~ (s"=k) 4y is uniformly bounded
w.r.t. 8 by [|gnllLr(r2) < [gnlla,00 [I1/(1+ 1'*)?[| L1 (r2) < oo while the term (& —i7)" /& [(5¢, x €7) x
Se, | e'¥e-'% g pointwise convergent and uniformly bounded w.r.t. 7 by a function that is integrable
w.r.t. . It follows that the limits ¥ — co and 7 / 0 of (3.3.14) can be evaluated.

Now consider the remaining integral I (cf. (3.3.13))

n!

1 50 n
e f | {B[ S (i) payt S I i) i (k) gy

[(gﬁ? X 50) X ggﬂ'] eisl~m, eizf.,— } ds/ dc

1
- AN n 57'_7;7—” 7 ! 1+77/:1= —in’-(s'—k'
:/ { / Z(_ZC) f(n/) +1( ' ) etk=C f(n") |/|4_e ' ( k)dn/
0 R2 Ba( =9 n: 1+|77|*

(e % &) % e] o izzf}ds/ a

e e
ér
1 . ’ ’
= AN n (57’ - 7/7—)” i n I+ v;l' e .(S " )
:/ { / Z(_ZC) f(nl) -‘rlTeszf(n) ( 1)—’— | /|4 dnl
0 R2 “By(7) n=9 ' T
3. x &% x 3 .
[(SET Z ) Sf-r] 67,5 T 61257— } dS/ dC, (3343)

where V1, := 0 —I—@;ly and |/ |1l =k —|—773. To further transform this expression, consider the following
lemma.

Lemma 3.13. For two complex valued functions f,g € C*(R?) the following equation holds true.

P9 0(s) = S (-1 (1) o4 [0 ) )
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Proof. The Leibniz rule (cf. Theorem C.9) implies

0s, [02,f(s) g(s")] = 0, F(5") g(s") + 5, f(s) Os, 9(s"

0z, [02,(s") g(s")] = 05, f(s') g(s") + 203, f(s") Ds,9(s") + 02, f(s") 02, g(s")

92, (05, f(s) g(s")] = 05, £(5") g(s") + 302 f(s") D, 9(s") + 303 f(s") 0%, g(s') + Os, () O, g(s).
These are now used to replace all the terms from

0s, [F(s") g(s")] = 05, f(5") g(s")+40%, f(5') s, (s)+602, f(5")0Z, g(s')+40s, £(s")02, g(s')+f(5")0%, 9(s")

that contain derivatives of g. Or, to be more precise, all the terms of the form 9*~" f(s') ot g(s),
where 1 < /¢ < 3, are removed.

Naturally, Lemma 3.13 also holds for derivatives w.r.t. s,, such that

F(s") (14 V3) g(s") = £(5") g(s") + f(5") 02, 9(s") + f(5') 03, 9(5")

M,,;,-\

= f(s') g(s _ym (1) i o s g(s
= 19+ S () Aot
DI m () os o))

Applying this to the integrand w.r.t. " in (3.3.43), the equation transforms to

s s () [/

j=0 m=0

’ ’ OO _ i\ iszf(ﬁ’)
4—m)a’; ma; N n T — 1T iz € —in' (s’ —K
o | [l | S (e gty BT e | S k)dn’]
N n=9 n: 1+ |77 |>s<
BQ(T‘)
Se. X €O x & | . s
[(Sfr Z ) 857’] els eziff}dsl dC, (3344)

where 043» is a multi-index defined as

(0,0) ifj=0
o =< (1,0) ifj=1
(0,1) ifj=2

and
0 ifj=0
Mj = =J . .
4 otherwise

Applying integration by parts (4 — m) times to the integral w.r.t. s’ leads to

etk=C f(n')

— e*in -(s —k ) dnl
1+,

[ o |3 e sy e

’ =y 70 3
a(4—m)aj [[( & X¢€ ) X 3&] s’ @' ei;&] } ds’ d¢, (3.3.45)
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where the absolute value of

Z (_ZC)n f(n/)n-i-l (57’ - ZT) ei%&-

= n!
8 .
= F) e &I =5) =5 _ 3 ()" f(n,)n+1@r—7 R (3.3.46)

n=0

is uniformly bounded w.r.t. n” and 7 and decreases exponentially as |s| tends to infinity. Indeed,
f(n') is bounded, |r| < 1 and the right-hand side of the last equation is an exponentially decaying
function w.r.t. s', since z > 0 and (¢ f(n') — 2/2) < 0. Moreover, ¢**/2¢7 and all its derivatives decay
exponentially for |s'| to infinity, which shows that the boundary terms that would usually occur after
integrating by parts are zero. Note, that the derivatives do not introduce singularities for 7 < 0.
Thus, the limit 7 — oo can now be evaluated, since the integrand w.r.t. ' is dominated by the term
1/(1+ | [,) for 5| — oo.

Furthermore, for the terms in the sum with the index j = 0, the same arguments can be used to
evaluate the limit 7 0, since the term 1/, is only weakly singular for 7 = 0. To evaluate the limit
7 /0 for any fixed j = 1,2 it remains to be shown that

’ s —ir\" —m)a’ 5, g0 S R
oL [Z (i) sy &I e | o )J[[(Swe Pl E]

e
n=9 n! §T

is uniformly bounded w.r.t. n and —1 < 7 < 0 by a function integrable w.r.t. s’. If this condition is
satisfied, Lebesgue s theorem can be applied. The existence of the integral w.r.t.  is then ensured by
the term 1/(1+ 0’ | ). Before an estimate of (3.3.47) can be found, the derivatives have to be examined.
This is done in two steps. After splitting the domain of integration w.r.t. s’ in (3.3.45) into By(2k)
and R? \ By(2k), the behaviour of (3.3.47) at the singularity s> = k% and at infinity are examined
separately. To be precise,

AE{:Jz—iZ( )/{

(3.3.47)

j=0m=0
—in)" k¢ f(n) L
/ {/ [ _ZC)n f(77')"+1 (& 'ZT) ci5ér —in'-(s'—k") dn
piy n! 1+ |n/|
’ g 0 Y
aifl m)aj [[(Sfr XZ ) X SET] els z’ ezzﬁT]}dSl
e n ik:C f(n') v
+ a“}a] i n n+1 (5 ZT) € 67“7 ~(s —k ) d /
‘ [Z_jg( 0" f) —~ T "

R2\By(2k) R2

— =0 o
a(4 m)a [[(5 - X ‘2 ) X 557] s’ @' eig&] } ds’} dc. (3.3.48)

To study the behaviour around the singularity, the subsequent lemma is used to show that the differ-
entiation and the summation in (3.3.47) can be interchanged.

Lemma 3.14. For all s’ in the compact set Ba(2k), the sums

Z (_zg)n f(n/)n-i-l (57’ - ZT) ei%ff

n=9

and

3

Z )L (6 — i) €3] (3.3.49)

n=9

are uniformly bounded w.r.t. s € Bo(2k) and 7 € [—1,0] for any fized n’ € R2.
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Proof. This is obviously true for the first term since no singularities occur and e~ 2% decays exponen-
tially for any fixed 7 € [0,1] as |s’| — oo. To show this for the second term, examine the derivative by
using the Leibniz rule. But first, for convenience, define

Fia(6) = (¢—ir)" (3.3.50)
and
Fy(€) := e’ ¢, (3.3.51)
With this
a:’%l} [(57’ - ZT)n ei%&—} = :;LO‘;' [Fl,n (57’) F2 (57')]
i ! o m—Ua’
=3 et (&) o R ). (3.3.52)
=0

To further study these derivatives, Faa di Bruno’s formula (cf. Theorem C.10), which is a generalisation
of the chain rule for higher order derivatives, is used. Defining

l
Tl:—{(ﬁl,...,&)elNé: Zoéo—l}, (3.3.53)
o=1
l
st = Ny, (0, 0) =) L (3.3.54)
o=1
and
l
priING = Ny, (0, 0) - ] ¢!
o=1
leads to
. , 0
o l! 5 (7, 3:,% -
as’J [Fl,n (gT)] = Z W agj_(él)Fl,n (5‘1’)} H [ 0|€ ‘|
Bt} then P at o
and
(m —1)! mt [ ¢ “
(m—1)a} m—D! 1o, (& o &
0, B (6)] = > —Al )] II l p ]
Zz::(ff,...,éfn,l)ETmfz Pm—itt2 é)2:11 '
Thus (cf. (3.3.52))
ma; .\ GZ “ 1 S 2 Sm— 2
o [(&_ —ir)" e 2&] — Zml Z - - [agi(ll)Fl,’ﬂ (&) a& z(fz)F2 (57’)}
I=0 (7, 73)€Ty X Ty Pz(fl)pm—z(fz)
/ o 02
f[%e] T [5
o=1 ol o=1 ol ,
2> 2>1
where (cf. (3.3.50) and (3.3.51))
s (0 n! L \n—s; (£
(951@1)}71,7; (5_’_) = - (57 _ lT) 1(£1)
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and
Sm— (f ) 2
agm L(fz)F2 (57_) _ ( g) 1(£2 61557‘,
This leads to
O [(6r — im)" €]
IS 1 L
=0 (ll,EQ)GTlXTm 1

pr(01) pm—1(l2) (n — si(

Sy
S~—
S—
—
)
4
SN—
3
>
=
S
)
/N
~.
[\
N——
w
3
=~
@
vl
ey
3

max{l,m—1}

/ Z,
957,
II lT] , (3.3.55)
o=1

7o>1

where
L+ 2 if o <min{l,m —1}

0y = 14 i

ifm—-Il<o<l
[2

ifl<o<m-—1
Now Faa di Bruno’s formula is applied once more to evaluate the derivative
9 ;

e = o [V ]

- 23
So(l3)—1 o 2 ‘
| — 5o (£ J _
£73€To po( 3) +=0 Lg,:>
Thus, since
/ e
9,7 [k2 — s

u! =0
K= {3

if 2 > 1 for + > 2, which shows that only those (5 contribute where £3 + 23 = o, and by defining
0 ¢x
0/2

o—k—1 o
1—2 1-2(o—k) 0
— [2 _ ol2
Zmo—Qm lbll< 2 >1 he =
0/2

: 0—2K 20/ K
k2 — s 9,7 [k2 —s7]
1!
O' o K 9o— 2K
-y

2!
[o 1_[—1 (ﬂ)] . 8/2172(075)
= (0 — 2k)! i 2
It follows that (cf. (3.3.55))

[S/](o—2n)o¢; '
O [(&r —im)" €557]

zém! Z 1

n! n—si(fy) [ 2\ smo1@) L
- — — (57’ - 17') ! 1— e'z &
AT X pi(01) pm—i(£2) (n — s;(£1))! ( 2)

max{l,m—1}

0/2
H 55_1—20) Z o 53& [Sl](o—2n)a/
o=1 xk=0

lo2>1

o~

45



CHAPTER 3. THE REFLECTED NEAR FIELD
3.3.2 Existence of the remaining limits
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where C, , := (=1)°7%2°72%/(k! (0 — 2r)!) Hf;g”_l{(l —21)/2} and (cf. (3.3.53))

max{l,m—1}
o=1 o 1 20)+E;n ll éi 1— 20))

T[] =™

o=1
£o>1
_ (SL(Fl)"rsm—l(52)72l72(m7l))
B 1
6(2m75l(51)75m7l(z2)) ’
Hence
m 1 nl (&_ o Z-T)nfsl(fl)

ma; s \m i%fT — | — — = = =
(6 —im" @3] =3 m 2 pi(l1) prm—1(£2) (”—Sz(fl))!5£2m_sz(€1)_swz(b))

0y

=0 (£1,02)ETI X Ty

- Sm—L([2) max{l,m—1} | 0/2 to .
(3) 11 Z Cow €25 [0 | 3 138, (3.3.56)
Z0221
Note that -
(5 _ Z.T)nfsl(el)
6(2771—51([1)—57,171([2))
is uniformly bounded w.r.t. s’ € By(2k) for any 7 < 0 and n > 9, since the denominator only has zeros
in the complex plane. On the other hand, for the limit 7 0
_ ’n,—Sl(Zl) n_sl(zl) n
(& —i7) 3 = & (3.3.57)
52777,—57,171(@2)

li = ~— = = ~
T%g(zm—sl(m—sm,l(z?)) 5(2771—51(&)—5,%1(@2))

which is uniformly bounded w.r.t. s’ € By(2k) for any n > 9, since m < 4 and s,,—;(¢2) > 0. Summing
up over n in (3.3.49), the n! cancels and the factor 1/(n — s;(¢1))! ensures the convergence. |

Consequently, the left derivative in (3.3.47) can be evaluated by differentiating every summand

separately. In view of (3.3.57), consider

(g‘r - iT) niSl(a) - (57-

(mesz(zl)*smfl(zz)) B 6;51
; )n/gq(?m*smfz(fﬂz))

—ir) (e, —ir)”
(€1) 6(2m75m71(£72))

T

and formula (3.3.56) can be transformed further. Now collect all factors of (£

with fixed sm_l(@) into one function to get

where
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L Z m! (57 - iT) —ei(fa) (_z)smfz(l@)

= = —

P (3
p1(l1) pm—1(€2) é‘;sl(el) 2

ZzETmfl
577171([2):1‘
max{l,m—1} | o/2 b
[T > Comed "
o=1 k=0
7,>1
and (cf. (3.3.53) and (3.3.54))
Iy = ib(m) ‘= max _max Sm_l(ZQ) <m <4.

1=0,..., m el

For convenience, define S,,, := {(1,¢1,1) : 1=0,...,m, {1 € T;, [ =0,...,1,}. This leads to (cf. (3.3.47))

Z (_ZC) f(n/)nJrla:/w‘;' [(57_ _ ,”_)n ei%&.}

n!

n=9

= i (Zi0)" Syt Z B 457 (s’,z)i(& —i7) e3¢

= o, (1o s )
= Z (_ZC)n f(n/)n-i-l Z qj,l-,a (S 72) (67— — ZT) ei%&_- (3358)

(n — Sl(f_’l))' 57(_27”70

n=9 (1,81,1)€Sm

Similarly, the derivative on the right of (3.3.47) can be evaluated as

, - ) - -
6(477”)0‘:‘ [(Sfr x e ) X 557} eis’»m/ ei%ﬁr _ 49 (8/757') eis’-m' ei%fr (3 3 59)
s [ T (9-2m) ’ -
o
where @;(s',&;) := @;(s',&-, 2) is a vector valued polynomial of positive finite order that collects the

remaining terms resulting from the differentiation. Thus (cf. (3.3.47))

’ 0 —an)" . —m)a’ S, g0 3 o
%" lZ (i) pofy+ E I 5] o/ )][[(Swe Ll g s

’ n=9 n! 57

=3Oyt Y Ginl 2 (& i) e e (3.00)
n=9

(1,81,1)€Sm (n - Sl(gl))! 9-1

for ' € By(2k). However, this is bounded uniformly w.r.t. 7 and 7’ by a function that is integrable
w.r.t. s, since lim, ~o(&, — ir)" /€271 = €79t where n — 9 +1 > 0 for n > 9. Hence, Lebesgue’s
theorem can be applied for this part of integral (3.3.48), i.e. for the integration w.r.t. s’ over By (2k)
(cf. second and third line on the right-hand side of (3.3.48)), to evaluate the limits w.r.t. 7 and 7 before
the integrals.

For all s' € R?\ Ba(2k) (cf. fourth and fifth line on the right-hand side of (3.3.48)) the derivatives
in (3.3.47) can be evaluated by considering the right-hand side of (3.3.58) for these s’. Since the sums
in this term exist absolutely,

S ;T /\n+1 q%1[1(8/7z) (5"' - iT)n i58r
(=iQ)" f(n) Z (n—sl(a))! €£2m71~> e

n=9 (1,81,1)€Sm

_ s1(01) B )
= Z {qgnjjl (S’,Z) (&—(+)[) f(n/)sz(él)-l-l (_ig)sl(fl)
S 3

T

0o . \n—s;(£1)
— "*SZ(EI) / nfsl(é‘l) (57 B ZT) }eigg.,.
ng( 9) £ oA
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o ysi(h) B )
= Z {qyljj‘l (S’,Z) (5"—177) f(n/)sz(él)-l-l (—iC)Sl(zl)

2m—1
(1,0, )ESm §£ )
= T o (& —iT " iz
Yoo (=" ) & i) ~ ) ise (3.3.61)
77,:9—51([1) '
. \si(fh)
m & — it l s (25 . vy (2
= 2 {qj.,z,q<s’,z> o (zmim F T (—igy )
(1,0, 1)€Sm &
8—s1(f1) . \T
—i(&r—iT ’ o n & =it iz
e &+ S f(n') _ ZO (_ZC) f(,r]/) ( — ) e &

which is uniformly bounded w.r.t. 7 and 1’ by a function that is integrable w.r.t. s’, since |&;| > ¢ >0
for |¢'| > 2k. The same holds again true for (3.3.59). Note, that the integrand in (3.3.48) is uniformly
bounded w.r.t. " as well. Hence, Lebesgue’s theorem can also be applied to the integrals on the fourth
and fifth line on the right-hand side of (3.3.48) to evaluate the limits before the integrals.

3.3.3 Evaluation of the remaining Cauchy principal value and the limit of
the limiting absorption principle

Thus it has been shown that the limits 7 " 0 and 7 — oo of I'; #(Z) (cf. (3.3.11)) exist, by showing
that they exist for I; (cf. (3.3.12)) and I (cf. (3.3.13)). Note, that the splitting of the sum over n in
(3.3.11) can be done for 8 replaced by any fixed N > 8. The existence of the limits of (3.3.12) and
(3.3.13) will still hold. This will now be used to prove

Lemma 3.15. Defining lim := lim lim and
:r/‘ 7,0 T—o00
r—00

~ JaN ) n gT —ar)" i "y —in'-(s' =K §§_’_><60 Xg&f i8¢ X
wn(C,n', s’ 7, 1) = (—iQ)" f(n') +1]132(f)(77/)7( ] ) etk=C 1) =i’ ( k>—[( 5) }e e

the limits w.r.t. T and 7 can be evaluated before taking the sum w.r.t. n on the right hand side of
(8.8.11), such that

hm (I + 1) = hm///anCn s, 7, m)dn ds’ d¢

r—»oo 7000 R2 Rz "€No

hr% ///wn ¢, s 7, m)dny ds’ d¢. (3.3.62)
E]NO TT—/>‘OOO ]R2 IR2

Proof. Note, that the existence of the left-hand side of (3.3.62) has been shown in the previous subsec-
tion. Consider,

;%///wnm S, 7,7) dy ds' d¢

nelNy 7500 0 R2 R2

li 1 n dy' ds' d
Ngnoo T%///U’CUSTT)WSC

07500 0 R2 R2

:]\}gnm;%///anCn s, 7 ) dn ds’ d¢

F—00 () R2ZR2 T 0
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oo

lim 1 n(Cn 7 T) | dn'ds'd
NEHOOTI}%/// USTT) Z U}(C,’I],S,T,T) n as C

00 () R2 R2 nelNg n=N+1

;%///anm .7, 7) do ds' ¢

7—00 0 R2 R2 nelN,

_Z\}E»noo‘ll'l/‘rnO/// Z wy(¢,n', 8,7, 7)dn’ ds’ d¢,

o0 0 R2 g2 MmN+

where it was used that ZnG]NO wn(¢,n', ', 7,7) is absolutely integrable w.r.t. ¢, " and s’ for any fixed
7 > 0. The existence of the first term on the right-hand side has already been shown. It remains to
evaluate the limit

lim lim /// Z wn (¢, 1,8, 7, 7)dn ds’ d¢ = hm lim I

N~>oo T/‘O N-—oo T/
T—00 () R2R2 T N+1 >8 Fooo

for 8 replaced by N in I (cf. (3.3.13)), by applying Lebesgue’s theorem. To do so, the same transfor-
mations that led to (3.3.45) are applied here. Furthermore, the integral w.r.t. s’ is again split into the
sums of integrals over the two domains By(2k) and R? \ By (2k). As before, this allows to evaluate the
limits 7 — oo and 7 " 0 by evaluating the limits of the integrand before evaluating the integrals. Thus

lim 1 0 (7, 7)dn ds'd
N@OOT%///ZwC??STT)nSC

Fooo () R2R2 =Nt

// Z wn (¢, 7,8, 00,0)dn’ ds’ dC. (3.3.63)
R2 R?
In view of (3.3.45), for 7 = 0 the limit (3.3.63) transforms to

~ / !/ / !/
A}gnoo}%/// Z wn(C,n' s, For)dy ds’ d¢ = lgnOo / Z wr(n, (', s")dn' ds’ d¢

Fooo () g2 R2 =V N>8 Ba(2k) R n=N+1
+ lim / wa(N,¢,n', ") dn ds’ d¢,
Bs(
where (cf. (3.3.45) and (3.3.60))

2 M; m /
w1 (n ' s = : 4 )" \n+1 qj»”}(s 2 13
(o)=Y {(m>< o sy T o

G(s',€) ™ %€ e 1) ;,4 ei"’-(s”“,)}
L+l
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and (cf. (3.3.45), (3.3.58), (3.3.59) and the third line of (3.3.61))

2 M gsl(a) . .
@<N,<,n',s'>:=zz{ 5 [qm (0 &

s1(€1) £/ )51(£1)+1
2 2 2 |Gaalh ) S IO
J=0m=0R (1,6, esn

o0

Z M gn]

n!
n:NJrl*Sl(El)
4\, i5e- @ ik.C f(n') 1 —in'-(s'—k")
q;(s',&) et T et=e1n e " .
(m) 5(558) 1+ |y |2

It remains to apply Lebesgue’s theorem to evaluate the limit N — oco. First consider

e 00 00
Z wl(”aCunlusl) < Z |7J11(n7<a77/75/)| < Z |1I}1(n7<-777l781)| .
n=N+1 n=N+1

n=9

However, estimating (3.3.60), it has already be shown that this function is integrable w.r.t. , s’ and
¢. Hence, Lebesgue’s theorem can be applied. At last, consider the term

2 M; m / . ' .
Gin 7 : —iCf(7)€]
|’LZ)2(N,<,77/,SI)| < Z Z { Z [ LI T f(nl)sz( 1)+1 CSZ( 1) Z IiYAVDISE
91 ]
i=om=0 Lo hes, LI & vy "
()51 e et g oo )
m 1+l
2 MJ m ! o0 . n
Gie 2 ] i S [ZiCHE]
ARG Nsu@)+1] Fsi(f) N ITOINT)ST
<% { Py [ g T e =
j=0m=0 (1,61,1)ESm, n=0
(4) 7:(s',€) eiFe T gik=C f(n') 1 . e—in/-(s/—k’)
mn L+ ',
_ 2 M; ;’n,l:_‘l (S/,Z) / Sz([1)+1 51(171) |—in(n/)£| ize
_ZZ qZ 597[ f(77) ¢ e }6 }
J=0m=0 \ (1.7} ))eSnm

(4) 7; (s, €) eis' @’ gik=C f(n') 1 - e—in'(s' k")
m L+ n'l,

}

Csl(f?i) e—(z—Cf(n'))\/SQ—kz]

2

which is integrable w.r.t. s’ € R?\ Ba(2k), ' and ¢ for z > h. Thus Lebesgue’s theorem can be applied
to show that

m /
qjjjl (S~7 Z) f(n/)sz (£1)+1

m L+ [,

1 o0
A}im /// Z wn (¢, 7, 8" ,00,0)dn’ ds’ d¢
NE%OO R2 R2 n=N+1
1

= / /A}im wn (¢, 1,8, 00,0)dn’ ds’ d¢

0 Repe N>8 n=N+1

207
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since -
. / /
Jim Y wa (G, 8, 00,0)

N>8 n=N+1

converges pointwise to zero. Consequently, equation (3.3.62) holds true. ]

Thus it was shown that both limits in (3.3.8) can be evaluated by applying Lebesgue’s theorem,
integration by parts and the generalised Fourier transform, which then formally leads to

: L [(5e x @) x 5] s
(DU, (7)) = s / 5(7) / a3 — k) M %7 44 47,
R3 R?

1 emiekage)
&3 zA/ - e D anf

where (cf. (3.2.5))

and where the above manipulations are needed to define the integral (see the subsequent formula
(3.3.65)). Since the integral w.r.t. s’ is a locally bounded integrable function w.r.t. & with z > h, the
distribution D?(Z) can be identified with the locally integrable function

P I IO [(5e x &%) x 3] iFed g/

D4(@) = o2 /a(85 k) B — et ds’. (3.3.64)
RQ

More precisely, the last integral is well defined in the sense (cf. (3.3.8)—(3.3.11), (3.3.25), (3.3.28),

(3.3.30)—(3.3.32), (3.3.42), (3.3.39) and (3.3.62))

=g A 1~n (=i
D4(z) = ~is Z Z/AOJ

n

d¢ [(@; x &%) x @;] (wd)" " e@®

neN, jE€Z |
2y oy [ dc/{e”el )
-
1,5
n€]N JEZY) (K + @ J)’

[(5e x &%) x 3] € &'f} ds’

1
R it
S 2 / iy, dC/ {5"‘1 Ko (|s" = (' +2,)])

nelN, je€Z R2

1
A _C)n { n—1 —|s'—(k/+&/ )|
— 7 — E E i dC 5 e 3,j
eR T[S /

nelN, jeZ

[(55 X €0) X §§] el E'f}ds’
A —i)" Ca s
g 2 /( nf) /{5n1/§n(n’7é‘)6_’"'(s ) ay
R2

R2

[(5e x &%) x ] eifﬁ'f} ds' dg, (3.3.65)

with &; = (k' + &f j,wl) T, wl = (/k? — |k + & 4|? and )\?J, by ; and gy as in Lemma 3.9.
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3.4 Reflected electric field

Following the definitions and notation introduced in Section 2.2 the reflected displacement field ﬁg(f),
which equals Dd( 7) for z > h, can be reduced to its underlying electric fields.

where D"(Z) = eE"(Z), 5&(3‘:’) = eOETQ(f). Hence, when applying this to equation (3.3.65), the
reflected electric difference field is represented by Eﬂd(") = 1/eg DUZ) = _Zz OEg (cf. (3 1.4)-
(3.1.8)) for all Z € R?x(h, 00). With this, formula (3.1. 2) from Theorem 3.1, E™(Z) = E(Z)+ Eo(Z) =

Q — Z?:o By for all £ € R2 x (h,00), where Eq = Eq(%), is reached. The explicit formula of Eg
(cf. (3.1.3)), describing the electric field reflected from an ideal interface, is shown in Section A.3 in the
appendix (cf. Eqn. (A.3.2)). Apart from this, it only remains to proof the absolute convergence of the
infinite sums in Fy to Ej.

The definition of the algebra norm in (3.3.2) implies that, for any ¢ € [0, 1],

n [ n+1
Do | < eI < e (3.4.1)
JEZ
with a constant ¢ > 0 independent of n. Furthermore, for any £ =0, ..., 3, the function :\Zj(o — :\Zj

(cf. (3.3.18) and (3.3.19)) is continuous w.r.t. ¢ by the algebra property of .A®. The absolute convergence
of the sums will be shown separately for Fy, F, for £ = 1,2,3 and Ejy, starting with Ey.
Split Ey according to (cf. (3.1.4))

Ey = E$ + E},
[ (0"
yn \ 7 ST > N1 i
2y Y [ @) xa] @7 e
ne]N JEZ 0 ’
|K'+@0,5 | <k
E}:= Fy — E§.

Note that condition (3.3.41) implies that a constant € > 0 exists such that

sup }kz — }k' —i—&fm—H > €
JEZ

and thus |w]| > e. Moreover, since &y ; is independent of n, the same holds for .
First consider EY, i.e. where w? € R. Thus

1
1 n+2
LIETS SR DI Y Y] >3 el AR
nelN, JEZ 0 nelN, eZ 0
|K'+20,5 | <k | Jr‘*’01|<k

where (o := argmax.cg ) |5\81j (¢)|- However, (3.4.1) implies

E5l<= Y = 53

nelN, jGZ nelN,

n n k2 k" Hf”n Ck2 g
3o5(60)| B2 < Sl YD A = S a4 < oo

n!
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For Ej define a 2 with zo > [|f|| 4, and assume z > zo. It follows that

Else Y o X [ acke ekl
nelN, JEZ 0 | |
|k +@p ;|>k
1
e 4 o lw2] 20
T € n!
€N, JEZ
|k @ ;|>k

To find the supremum of ‘wg‘n el = () :=thet?,
which is non-negative for ¢ > 0. Moreover, the function is zero at ¢ = 0 and for ¢ — oco. Thus, since
the derivative

R(t) =nt" et — 5th et = (n— zot)t" e R0
has only one zero, apart from ¢ = 0, at t = n/z, this is the argument of the global maximum of h for
€ [0,00). Consequently, sup;>q h(t) = (n/z0)"e™" = (n/e)"z, " and with Stirling’s formula (cf. [3,
p. 75])
n—oo n! _
sup [t" eftz“] ~ z " (3.4.2)

t>0 V2t n

Using (3.4.1) once more, it follows that

k2
Bt < v /‘/\
’ 0‘ en§0 2mn JGZZ * nG]N
|k +a@5,; |>k

dc O—ng c Z k? ||f||A (||f||A>n<OO

20

for z9 > || f|| 4. Hence, E} and therewith Ey is absolutely and uniformly convergent for any z > 2.

Similarly, this can be shown for E,, with £ =1,2,3 (cf. (3.1.5) to (3.1.7)). This time the domain of
integration of the integral w.r.t. s’ is split into the two parts By(v/2k) and R?\ Bo(v/2k). For the first
part, there holds |£] < k and

zz]

d< / {gnlrm(s’) [(8e x €°) x 5¢] €' m} ds’

nelN, jEZ | B, (\/_k)
1 ot
<c) | dC k™ / o, (3.4.3)
nl ’ iq
Ba(V2k)
where ||5¢|| = k for s’ € Ba(v/2k) and where
s'—(k'+@1 ) , L,
ru(s) = e . | a8 = Ko (|8 = (K +35)]), rag(s) = el AL
’ |8 — (k' + @} )| ’ 7 ’

Since Ko (|s' — (k' + @b ;)|) has a logarithmic singularity at s’ = &’ + &} ; and is otherwise continuous,
it is easily shown that |rg;(s)| < ¢/|s" — (k' + @ ;)| for £=1,2,3, where c is independent of j. Thus,
since ¢/|s" — (K + @ ;)| is a weakly singular function w.r.t. s’, where j only determines the position
of the singularity, Lemma 3.11 shows that there exists another ¢ > 0 independent of j such that
fBg(ﬂk) [re;(s)]/1€] ds” < ¢ < oo. Using this and (3.4.1), it follows that (cf. (3.4.3))

nelN, jE€Z ||

1
5| [0 S8 [ e fe s o
Ba(V2k)

k™ i
<2 fla Y E WA _ o et 1914 < o,

nelN,
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On the other hand, for the integral in £, over the complementary domain R? \ Ba(v/2k), the same zg
as before is used to show that for |¢| > k with s’ € R?\ Ba(v/2k), (cf. (3.4.2) with t = [¢])

1
/X’f _n, / {gn—w,j(s’) [(5e x €%) x 5¢] €' w} ds’
0

R2\ Bz (V2k)
[ el
R2\ B2 (V/2k)

nE]NOJEZ

n
1,5

d¢k / €] e €170 jry 5 (s")| ds’
R2\ B2 (V2k)

in
AL

1
1
gczﬁzgj%o/

nelN

d¢ / e, (s")| ds’.
R2\ B2 (Vv/2k)

=)

In addition to the weak singularity it is now also used that 7, ;(s’) decays exponentially as |s’| tends
to infinity (cf. [1, Eqn. 9.7.2, p. 122]). Again, a constant ¢ independent of j can be found such that
f]R2\BQ(k) |re.;(s")| ds’ < ¢. Thus (3.4.1) shows that

> /5‘7110‘(_;? d¢ / {6”‘”@4(8’) [(8 x &%) x 5] eiﬂs'i} ds’
0

R2\ B (v2k)
Z kIIfIIA (I|f||v4>"<
20
€N,

for zo > ||f]| 4. It follows that E, is absolutely and uniformly convergent for any ¢/ = 1,2,3 and

2> || flla-
Now only E; (cf. (3.1.8)) remains. Note that the function g,(n,¢) (cf. (3.3.20)) also depends
continuously on ¢. Similar to (3.4.1) it can also be shown that (cf. (3.3.2))

(1+)° 1
/|gnn 0) /( gy 0 < <>||4m/7(1+|n,|2)2 (344

< llgn(n' s Ollyse < e || e®=<I || < e lIFI (3.4.5)

for any fixed ¢ € [0,1]. As for E; to E3 the domain of integration of the integral w.r.t. s’ in Ey is split
into the two parts Bo(v/2k) and R? \ Bo(v/2k). The first part can be estimated as

/ {5“/%@60 e ) ' [(5e x %) x 5] e f} ds"d¢

1

>/

neN, [ Ba(v2k) R2
<> = // w1, O)| Ay’ d¢ k2 / —ds
nelNg |§|
0 R? Ba(V2k)

where the integral w.r.t. s’ is finite. Since g,(n',¢) is a continuous function w.r.t. ¢, the integral
Sz 1gn(n’, )| dn’ is also a continuous function w.r.t. {. Hence, the first mean value theorem for inte-
gration can be used to show that there exists a (o € [0,1] such that (cf. (3.4.5))

//Ignn Q)] dn d¢ = /Ignn o)l dn’ < c|lflI5H

0 R2
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Hence

/ {é" 1/gn(n e )y [(5e x &%) x 5] € i}ds d¢

2(k) R2

> / (ciey
0 B

nelNg

<o fla 3 EA _ g g ek < oo

nelNg

For the second part of the integral, zo is this time chosen such that zo > 2 f|| ,. Assume z > 2y and
note that |£| > k for s’ € R? \ Ba(v/2k). Thus (cf. (3.4.2))

1
/ n' / {gn_l /ﬁn(ﬁ',C) e_in/'(s/_k/) d77/ [(5’5 X 50) X Sg] i i} ds’ d¢
0

nelN,

R2\ B2 (v/2k) R2
€ el
Z //|9n77C|d77dC / |||| HEPW
nelNg 0 R2 ]R2\Bg(\/§]g)
e n! //Ign UNSIRURS / €] e 61 F el B g
nelN, 0 R2 ]RQ\BQ(\/ik)
1
SC Zo //'"77 C|d77d< / e—|5\%0d81'
nelN, 2 0 R2 R2\ B (vEk)

Using the first mean value theorem for integration w.r.t. ¢ and (3.4.5) for a final time then leads to

S S [ e o ttan e e i e v
0

R2

K |l.f|].4 2||f||A>”
SCZ V2mn ( 20 <

nelNg

for z9 > 2||f|| 4. Consequently, Ey is also absolutely and uniformly convergent for any z > 2. This
concludes the proof of Theorem 3.1.
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Chapter 4

The reflected far field

4.1 The far-field formula

The primary goal of this chapter is to determine the far-field pattern for the solution of the reflected
electric field in the case of interface functions from AN L. In the context of this thesis, the reflected
far field is understood as the reflected field many wavelengths above the highest points of the 'rough’
surface. This far-field pattern can be described by the asymptotic behaviour of (3.1.2) for ||Z|| — o
with & = ||#|| m and a fixed direction 1 = (my,m,, m,)" s.t. m, > 0. For this thesis, only the terms
of the asymptotic expansion that decay at most with the order 1/||Z|| are considered for the far-field
pattern. All other terms will be neglected. There holds,

Theorem 4.1 (The reflected far field). Assume the interface is the graph of a function f € ANLE as
described in Remark 3.4 that satisfies condition (8.3.41). Moreover, suppose this interface is illuminated
by an incoming plane wave as described in Subsection 2.1. Then the far-field asymptotics of the reflected
polarised electric field for z > max {2/f]| 4,2 ||fll.}, ¥ =: Rm and R := ||Z|| in the sense of the Born
approzximation is

L Lo eRRALT
E"(Rm) =r(k,e )W
A [ o ("
n -1 - o - n—1 ;RG:.
—ige D X RO dC [(@ % 20) x @] ()" e
nelN, JEZ 0
W 25, <k
AR oy o €RR
e H(m) [(m x &%) x i =

1

A - iR(k' 07 ;)-m'
—ig D / NSO [((F+&1 5,007 x &) x (K434 ;,0)T | —————

kRm.,

Ak2 eikR
—~ H () [(m x &%) x 1] (%ﬁmﬁ)

3
~ B g m) [(m x &) x ] 1‘%}% e R 4 <%> (4.1.1)

where iy := (nQ,n, —nd) " (cf. def. of W° in Sect. 2.1), 3 = (K + &) ;,w)) T, wl = | [k2 — |k + & |2,
r(k, &%) is defined by Equation (8.1.9) in Theorem 3.1,

4 1 . n
LD S0 ERmO 5 o) d,
0

n!
neN, jEZ £=1
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Hy () = V3 F(n > [ (ikms O" 4,
0

HQ (T?L) :

1 _ .
)SEEDS / (0 S g

nelN, JEZ 0
~ 1 :k /_k/
@y s=km

S‘Zj’ @we,; and G, defined as in Lemma 3.9, F denotes the elliptic integral of the first kind (cf. [1,

Eqgn.

17.2.6, p. 234]) and

ei|km/7(k,+&,1’j)| . . / k:/+(:11j
|km,7(kl+‘:)£,j)| if /=1 and m ;ﬁ #
-1 if{=1and m' = k+:“
- / / ~7 . - ’ E'4+@)
he g (M, Q) := Ko (|km -k +w2’j)‘) fe=2andm'# k/+]f:y - (4.1.2)
—L [y +log(£ (14m.)?) —iZ] if£=2and m' = 122
o |km/ = (K 434 ;)| if¢=3
L[ gu(n, ) e K ) g i g — 4

Remark 4.2 (Appearance of far-field terms).

i)

ii)

iii)

iv)

The sum of plane waves in the second line of (4.1.1) is the far field corresponding to the near-field
term Eo (cf. (3.1.4)) in Equation (3.1.2). Similarly, the index ¢ =1,...,4 of h¢ jn corresponds
to the near-field terms Ey to Ey (¢f. (3.1.5) to (3.1.8)) in (3.1.2). Moreover, the fourth line
of (4.1.1) as well as the following line containing the function Hi are additional far-field terms
corresponding to Ey, while the line containing Ho is an additional far-field term for Es.

In the case of a purely almost periodic interface function, i.e. g(n') = 0 and X¢; = 0 for all
¢ =1,2,3 and j € Z, only the plane wave terms in the first two lines of Equation (4.1.1)
remain. This can be seen by considering the definitions (3.3.19) and (3.3.20) of gn and A} ; for
al=1,...,3 and j € Z in Lemma 3.9 or, more easily, by examining equation (3.3.22) m the
proof of thzs lemma

The same terms of (4.1.1) will also remain, if the interface is further simplified to be periodic
or bi-periodic. This case is examined in the numerical example of Chapter 6. This chapter
also discusses how the calculation of the amplitude factors Ay ; may be simplified in these cases.
Moreover, the sum w.r.t. j in the second line of (4.1.1) will reduce to only finitely many plane
wave terms.

In the case of an interface function with the lowest decay order towards infinity, e.g. f(n') :=
cos(w' - n')//1+ 0|2 or equivalently g(n') =0, 11 = M1 = 1/2, —wj 4 = wj; = and
all other A¢; are equal to zero, all terms of Equation (4.1.1), except for the plane waves in the
second line, will be non-zero.

Increasing the decay further by using an interface function with compact support, all terms except
the first line of (4.1.1) and the summand with { = 4 in H will be zero. This shows that a
locally bounded perturbation of a planar interface results in a reflected far field, described as the
superposition of one plane wave, resulting from the scattering at an ideal plane, and the usual
radially decaying wave resulting from scattering at a bounded obstacle.

Apart from the usual plane wave and radial decay terms, i.e. terms with ¢!f9 ™ o ¢*F /R
Equation (4.1.1) also contains some terms with more unusual decay orders. However, these come
only into play in very specific instances. For example, consider the function Bld’n(ﬁi, ¢) (cf. first
two lines of (4.1.2)) contained in the definition of H (), which is the amplitude function of the
radial decay term e*f'/R. The function hi j, has to be defined piecewise to avoid the possible
singularity at km' = k' + & ;. When proving Theorem 4.1, this means that in this situation the
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far-field asymptotics have to be derived separately. Consequently, in this case, and only in this
case, the new decay order terms 1/R and eikR/\/ﬁ come into play. Or in other words, the function
Hy is zero in all other cases. Ezamining the singularity point km' = k'+; ;, where & ; is defined
by Lemma 3.9, it is apparent that this situation only occurs for very specific combinations of wave
vectors k with k = ||k| and spatial frequencies wy ; of the interface. Even then, the singularity,

which is to be avoided, only manifests in one reflection direction m = (m’,\/1 — |[m/|2)T with
m' = (K + (:Jllj)/k Similarly, Ha corresponds to the possible singularity in ho j .

Similar to Chapter 3 and Theorem 3.1, this chapter is mainly dedicated to proving Theorem 4.1.
Additionally, the last two sections contain remarks comparing the here presented far-field solution with
the results by Stearns [36].

In the following two sections the main terms of asymptotic behaviour of (3.1.2) will be derived. For
the plane waves in Eg and (3.1.4) the asymptotic expansion is already the plane wave formula itself.
For the remaining terms (3.1.5)—(3.1.8), the basic approach is to transform the integral w.r.t. s’ to
polar or spherical coordinates, as needed. The resulting integrals are then integrated by parts w.r.t. the
radius or the polar angle such that the resulting terms either contribute to the far-field pattern or can
be shown, mostly by using the Riemann-Lebesgue lemma (cf. Thm. C.11), to decay faster than 1/||Z].
Special care is taken for weakly singular integrands (cf. (3.1.5) and (3.1.6)). This is done by introducing
a cut-off function with a support in a small neighbourhood around the singularity and thus splitting
the integrand into singular and non-singular parts. The resulting integrals are treated separately in
Subsections 4.2.2, 4.2.3 and 4.2.4. The idea for determining the asymptotic behaviour of the weakly
singular integrals is to further split the integrands step by step. Finally, there remain non-singular
integrands and one singular integrand, which can be evaluated explicitly. In Subsection 4.2.4.4 all is
put together to obtain the far-field asymptotics formulated in Theorem 4.1. In the last two sections
4.3 and 4.4 these results will be compared with those by Stearns (cf. [36]) for two special cases, i.e. the
formula for the reduced energy reflected in specular direction and the scattering at a sinusoidal grating.

4.2 Several parts of the field in correspondence to a partition of
the domain of integration

4.2.1 Splitting of the field

To obtain an approximation of the far field, the terms on the right-hand side of (3.1.2) will be treated
separately, starting with the second, i.e. (3.1.4). Examining the exponent of

i@ E _ (K 4@y ;) izy k2= [k 4y |

it can be deduced that the electric field Ey is a superposition of plane waves and evanescent modes,
which correspond to |k’ +ay ;| < k and |k’ +&g ;| > k, respectively. This is aresult of | /k? — [K' + &g ;]2
being either real or purely imaginary with a non-negative imaginary part. To evaluate the far field,
the far-field direction is fixed by a unit vector m with m, > 0 and the far-field behaviour at the points
& =: Rm, where R tends to infinity, is considered. In (3.1.4) all summands, for which [k’ +&f ;[* > k2,
decay exponentially as R tends to infinity and are thus negligible evanescent modes of the electric field.
Only the remaining terms, as well as Eg (cf. (3.1.3)), contribute as plane wave modes to the far-field.

Next, the remaining terms (3.1.5) to (3.1.8) are examined. For convenience in the following exam-
inations, define the new normalised variable 7" := 8¢ /(s2 + 52 + EY2 = 5k = (ng,ny,nl)T with
n” :=+/1—n'2. It follows that ds’ = k*dn’ and

2EDIDD / Xy, e / hes () gini2 gy ¢ (4.2.1)

, ng

nelN, jEZ | R2 Z

for ¢ =1,...,4, where S\Z)j =1for j =0and n € IN; and S\Z)j =0for j € Z\ {0} and n € IN,
AR e [bn' -~ 421, )|

[n;]n ’Im’ _ (k' Lo )’
Lj

hij(n) = hijn(n) : (7" x &°) x "], (4.2.2)

=1
47eg
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. AN . N . Ak3 rin ! ! ~ 1/ —r -0 =7
haj(n') = hojn(n') =1 pr [nZ]" Ko (|kn' — (K" 4+ & ;)|) [(7" x &%) x "], (4.2.3)
hai(n') := h3in(n) = i AF 7] e k' =4S D] [ (7 < @9) x 7] (4.2.4)
»J 5Js 4.7T60 z
and
Aks —17 ! 'n,,f ! =T = g
hao(n') := haon(n') =i . [nZ]" /gn(n ¢) e (kn'=K) gy (" x &) x qi"] . (4.2.5)

R2

Examining the exponent of ¢*7" % = ¢ikn" ¢’ cikzv1=n" it can be deduced that this part of the electric
field is also a superposition of plane waves and evanescent modes, which correspond to n'2 < 1 and

2 > 1, respectively. Moreover, the functions hy ;(n') and ho j(n’) possess weak singularities at kn’' =
k' +&) ; and kn' = k'+y 5, respectively. Note that these singularities coincide with the weak singularity
/nl =1/V1—=n2if [ + & ;| =k or |[k' + @5 ;| = k. In these cases, the integrals are still absolutely
integrable (cf. Lemma 3.11) but introduce addltlonal challenges when deriving the far-field asymptotics.
These challenges can be overcome by examining the integrals in these cases very carefully and adapting
the methods, used in the following for the cases of non-intersecting singularities, appropriately. Since
the examinations of the asymptotic behaviour for [k’ +&; ;| = k, for £ =1,..., 4, are quite extensive but
otherwise very similar to those shown in the following, they are presented in the appendix in Section
B.

To study the integrals in the case that [k" + & ;| # k for £ = 1,...,4, the domain of integration
w.r.t. n’ will be separated according to the areas of integration corresponding to plane waves (|n'| < 1)
and evanescent modes (|n| > 1) and a small neighbourhood around the singularity point &' = & ;,
£=1,...,4 (cf. Figure 4.1). Consequently, (cf. (4.2.1))

hy i (n') o =
/ l:z(rn ) o g = Wi+ Wi+ Wi, (4.2.6)
R2 *
where
h y ! 12T
Wg{j = / (1 — Xe(kn' — k' — @273’)) e,;b(rn ) T Q! (4.2.7)
Bs(1) ?
~ hl i(n/ ikn” T
Wi = [ (1w ) M) e g,
R2\Bj(1) ?
and
hei(n') e -
Wé?:j = /Xe(kﬂ/ -k - &Jé)j) % R T Q! (4.2.8)

R2

Here x. € C5°(R?), suppyx. C Ba(e), xe(n') = 1 for n’ € Bz(e/2) and a small constant ¢ > 0 with
€ <|k— |k +& || for £=1,...,4. This choice of € ensures that either suppx.(k - —k' — @ ;) C B2(1)
~/

or suppxe(k - —k' — @j ;) € R*\ By(1). The asymptotics for R — oo of these three integrals will be
examined separately in the following three subsections.

4.2.2 Smooth integrands of evanescent modes

First consider W7, by introducing polar coordinates n’ = pnf, with n{ := (cos ¢,sin¢)". Integration
by parts w.r.t. p leads to
21 oo
Wi = / / (1= Xelkpnt = K = &4 5)) by om) 00— L emHime VP T dp g
01 R4
21 oo

- szm / / = Xe(kpro = k/—%j)) he j(pnp) eFPBmom’ g emkRm= /2 =1\ qp g
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"y Ny Ty
| | |
1 e e 1 T
| \ |
| o ‘ 4! ‘ Iy~
(@) W, for |t | <1 (0) W2, for |55 | <1 © Wi, for | <] <
Ty A k""“:’é,j Ty A k,+‘:’é,j ny A k/+£;€ ;
‘ k ‘ % | A
| + | . | n
1 e 1 e 1 e
| ! |
(d) W, for | 25203 | 5 1 (e) WE, for |~201 | > 1 (£) W3, for | 25203 | 5 1
Figure 4.1: Domains of integration of W} i wp ; and wp j
2m
1 . ;L 00
—- 1— kon. — k' — & . ) ho (on ezkpRnO»m e—k:Rmz\/p —1} d
szmZ/K Xe(kp 0 z,g) &J(P 0) p=1 o
0
21 oo
1 ~ ikpRn)-m'| —kR 21
*kRm //ap Kl = Xe(kpnp — ¥ —c%)) he j(png) eFPHmo ™ } e~ FRm=VP =145 dg
4
01
1 2.1 1 2.2
= Pt W 4.2.9
ikRm. % " ikRm, %9’ ( )
where
2T
W2.1 . 1— k /I kl o~ hy s 1 ikRng-m/d 4.2.10
5 = Xe (kg @y ;) ) hej(ng)e o (4.2.10)
0
and

21w oo

Wit = / / Op | (1= xcllopny = K = &} )) heg(pmg) oo’ | e=kRmvi =T apag. (4.211)
0 1

First, consider W7 for m’ # (0,0)" and
k| cos(g — o).

m/
[m’| —

(cos¢’,sing’)". Substitute u = u(¢) := knj - m’ =
Naturally this has to be done separately for the two sets ¢ — ¢’ € [0,7) and
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¢ — ¢ € [m,2r) leading to
27 4-¢’
Wit = / (1 — Xe(kng — k' — a)g,yj)) he j () R0 ™ 4
e
—k|m’|

- 1
= [ (1 welhnl ) = = 81,)) B s ) e
| A k2 |m!| — u?

k|m/|

- / (1 — Xe(kng o(u) — k" — (;)é,j)) he,j (ng,2(w)) 1

2
—k|m/| A E2m!|T — u?

ezRu du

eiRu du,

where

cos [(—1)L+1 arccos (klxt’l) +¢" + (- 1)2#}
sin [(—1)“"1 arccos (W) +¢' 4+ (1 — 1)27r}

for « = 1,2. Note that the integrand of both integrals is absolutely integrable w.r.t. « on the compact
set [—k|m'|,k|m'|]. Thus, according to the Riemann-Lebesgue lemma, the integral converges to zero
as R tends to infinity. Furthermore, this shows for m’ # (0,0)" that the first term on the right-hand
side of (4.2.9) tends to zero faster than 1/R as R tends to infinity. In the case of m’ = (0,0)" the term

2w
1

g | (L Xl =K —&05)) hej(nf) do (4.2.12)
0

remains. Later on, when examining Wé{ ;» it will be seen that this term also occurs for the integral over
Bs(1) but with opposite sign, which shows that the sum of the two (cf. (4.2.6)) is equal to zero.
For sz (cf. (4.2.11)) examine the derivative

Dy [(1 — Xelkpng — k' — (:}Zj)) ha.j(pnl) eikpRné.m’}
— k- V(b — K — ;) e ) R
(1 Xellpmy = K = @1,) )y T o) e
+ ikR”é) -m/ (1 - Xe(kpn6 -k - ‘%,j)) he,; (png) eikpRng-m’ (4.2.13)
Since, for some arbitrary v; € R?,

!/

n P
V [nL(n' :‘V[ 1—n’2”=’— = ,
Vil = [V [V |~
1 n —v c
‘V [|n’ — V’|:| ’ B ‘_m/ _ ,//|3 - 1/’|2
and
I, , ,
’v [e*kln v I} ’ = ‘—k l”/ V,| ekl < ¢, (4.2.14)
n —v
it follows for £ =1 (cf. (4.2.2)) that
1
[ty - Vhe j(pnp)| e~ 2 Rm= V=1 < ° T ———
’kpnf)—k’—l—u?z’j ’kpné—k’—k@é)j p?—1
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for p € [1,00). The same estimate also holds for ¢ = 2, 3,4, since hy ;(pn() has a weaker singularity at
the same position in these cases. This shows that

P LUV I D L
Vp?—1

| (1= xelkpnt = K =4, )) mh - Ve (om)

It follows that (cf. (4.2.13))

engmz\/ﬂ <c <1+75 - —I—R)
/p2 —

for p € [1, 00), since Vxe(kpng—k'—&; ;) = 0 in a small neighbourhood of kpng = k'+&j ;. Substituting
u:= R+/p? — 1 in this estimate, (cf. (4.2.11))

(W < 27TC/ <1+%+R> e~ slm=Vrt -1,
02—

R

2
1

c 1 U U k. u
:27TE E +1+ e 277 du
u? u?

0 Vet et

since u?/R? > 0 and uwe */4m=% < ¢ for all u € [0,00) and R > 0. Consequently the second term on
the right-hand side of (4.2.9) has an asymptotic behaviour of o(1/R) and

2m
1 - 1
0

4.2.3 Smooth integrands of plane waves
Recall that (cf. (4.2.7))

he () ikgrar.m
ng)j = / (1 — Xe(kn' — k' — & )) hes (') e RBITM (4.2.16)

4,5 nr
z
Ba(1)

Y
mapping of the points of the unit disk onto the upper hemisphere of the unit ball. For convenience,
the vector 7" will be transformed to spherical coordinates (6, ¢), where the direction of the polar axes
is chosen as m. As a result " - m equals cos . If

To examine this integral, observe that n' = (ng,ny)" — @" = (ng,ny, /1 —n2 —n2)" is a bijective

1 = (sin accos B, sin asin 3, cosa) T, (4.2.17)
with the z-axis as polar axis, then 7" can be represented as

i (0, ) := A - (sin 6 cos ¢, sin 0 sin ¢, cos 0) |

sin v cos B cos 0 + (cos acos 3 cos ¢ — sin [ sin ¢) sin §
= | sinasinfBcosf + (cosasin Fcos ¢+ cos Gsing)sind | | (4.2.18)
cos « cos B — sin v cos ¢ sin 6
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Rw
N,
\

Figure 4.2: Spherical coordinates w.r.t. m

with
cosacos3 —sinf sinacos cosf —sinf 0 cosa 0 sina
A= [cosasinf cos@ sinasinf | = |sing cosgG 0] - 0 1 0 ,
—sina 0 cos 0 0 1 —sina 0 cosa

as visualised in Figure 4.2. Now n, and n, can be substituted in integral (4.2.16). For this, the
determinant of the Jacobian matrix d(ng,ny,)/0(6, ¢) needs to be calculated, which leads to

6 T . . . .
det (7;29 ZS/) ) = sin (— sin asin 6 cos ¢ + cos acosB) = n. (6, ¢) sin 6. (4.2.19)
Since the calculation of the determinant is a lengthy process but otherwise contains no difficulties, it

will not be shown in more detail. As a result, the differential dn’ is replaced by n’ (0, ¢)sin 6 df d¢.
Thus

Wll,j:/ / (1—x€(kn’(9,¢>)—k’—cbgyj)) hg,j(n'(e,gz))) sin 0 ¢*F 030 49 4 (4.2.20)
0 0

where 0(¢) < 7 is the angle at which 7" (6(¢), ¢) lies in the = —y plane, i.e. n7(8(¢), ¢) = 0, and n/(6, ¢)
is defined as (n”(0,¢),n"(0,¢))". Further substituting cos by 1, where 6 € [0,0(¢)] C [0,7], and

z Yy
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applying integration by parts to the integral w.r.t. ) leads to the expression

2w 1

Wh= [ ] (1 xelin(0) = 8 = 37) i (' (0,0)) 7 v
0 cost(4)
0
N %% 7(1 — Xe(kno(¢) — k' — @é,j)) he.j (n6(¢)) e/FRe0s0(9) 4
q
- ﬁ? /1 Oy Kl — Xe(kn' (¢, ¢) — k' — @;)j)) he (n’@)’ ¢))} ¢RBY Qo dgh
0 cos®
—or (1 - Xé(k::f —K - %)) he,;(m') j]:;
- ﬁ 7(1 = Xelkng () — K — azﬁj)) he; (n6(¢)> ¢ihRc0s0(9) g
0
2

(0, B) = ( sin acos 3 ¢ + (cos accos B cos ¢ — sin Bsin @)/ 1 — 2 >
e = sin asin 3 1 + (cos asin B cos ¢ + cos Bsinp)/1 — 2 )’

nl (1, ¢) := cosa) — sina cos g/ 1 — 12
and n{(¢) :=n/(cos0(¢), ¢). Similarly to (4.2.10) and (4.2.11), define

27

Wi = / (1= xelhn(8) = ¥ = &}, ;)) heg (nh(9)) ™R eo=0@ dg
0
and
27 1
Wl = / / Dy Kl — Xe(kn' (¢, ¢) — k' — @é,j)) he; (n/(%(b))} R R Qo dob,
0 cos8(¢)

such that (cf. (4.2.21))
e 1 1.1 1 1.2

Wi, ::2ﬂ'(1'— Xe(kng (o) —'k/'—<bég)) he j(m') iR R Ve T ;E§§LV}J-

To examine Wé{jl a closer look at cosf(¢) is necessary. Since 6(¢) is defined as the solution of

n.(0(¢), p) = cosacosb(¢p) — sin asinO(¢) cos p = 0,

the value cos6(¢) is found as

cos (Atan(zg;g)) if o {Z,2n} and w#0

0 if p € %,%w} ora=20

)

cosf(¢) = {

(4.2.21)

(4.2.22)

(4.2.23)

(4.2.24)

(4.2.25)

(4.2.26)

(4.2.27)
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with
Atan: R\ {0} — [0,7] \ {g}

arctan(zx) ifx>0

7 4 arctan(z) ifx <0’

x — Atan(z) := {

On the other hand, replacing sin 6(¢) in (4.2.26) by /1 — cos? 6(¢) and dividing by cos «, the equation

cos B(¢) = tan acos ¢ /1 — cos? ()

is obtained. Squaring and rearranging this leads to
(1+ tan? o cos? ) cos? §(p) = tan® acos® ¢

and

tan o cos ¢
V1+tanZacos? ¢

which is an alternative representation of cos 8(¢), equivalent to (4.2.27). From this, it is easily deduced
that cos@(¢) is monotone for ¢ € [0,7) and for ¢ € [m,27). Thus, unless a = 0 or equivalently
m’ = (0,0)7, the substitution ¢ := cos#(¢) for these two intervals is possible. For now it is assumed
that o € (0,7/2). It is easily calculated that the inverse function ¢(t) = arccos(cot o t/+/1 — t2?) such

that d¢ = — cosa/[(1 — t?) V/sin? o — 2] dt with cos(¢) € (—sina,sina] for ¢ € [0, 7). Thus

cosf(¢) =

(4.2.28)

sin

- COs & 1 i
Wil = / (1= xelb 1 (6) = K = 7)) by (g (1)) Sy — s ™1t
—sin o sin“oa —t
sSin o« 1 |
- / (1 — Xe(kng o(t) — &' —a;,j)) hej (nga(t)) fos‘; _ GRRY g
—si - sin® o — t2

where
nha(8) = (cos O(6(0) + (1 = 1) 7). 6(t) + (1 = 1) 7)

for I = 1,2. Since « € (0,7/2), or equivalently |m’| # 0, and thus 0 < sin« < 1, the integrands of these
integrals are only weakly singular at ¢ = £ sin a and thus absolutely integrable. Hence, the asymptotic

behaviour
1 1.1 1
R O\ g

for the second term on the right-hand side of (4.2.21) follows from the Riemann-Lebesgue lemma. In
the case that & = 0 and thus cos8(¢) = 0 the term

27

i (1 — Xelkno(9) = K = ‘f’é,j)) hej (”6(@5)) do, (4.2.29)

with (cf. (4.2.22))
n) (6) = cosfcosg —sinfBsing \ [ cos(B+ &)
O\ sinBcos¢ + cosBsing )~ \ sin(B+ ¢)
remains. Note that with this and o = 0, (4.2.29) is the negative of (4.2.12). Thus the two terms cancel
when ng)j is added to WZ]‘ (cf. (4.2.6)).



CHAPTER 4. THE REFLECTED FAR FIELD
66 4.2.4 Singular integrands

Next ng)'j? (cf. (4.2.24)) is examined. Note that the function hs;(n’) can also be written as a

function hy ;(n’,n?), with n? := /T —n/2 (cf. (4.2.2)-(4.2.5)). For convenience this will be used until
the end of this subsection. For ng)f examine the derivative

0u [ (1= ek’ (6, 0) = ¥ = 7)) By (n'(1,0))]
= 0y [(1 = xelkn'(0,0) =K = &} ))) B (', 6). 201, 9) )
= —kyn' (6, 6) - Vxelkn' (v,0) = K = &} ;) hey (W' (0,0),nl (4, 9))
(1= el (6, 0) = K = 34,)) Oy’ (8,6) - Virhe (' (6, 8). 2 (45, )
(1= el (6, 6) = K = 3}.5)) unl(,6) Duzhe (' (0,6),nE(0,9) ).
where (cf. (4.2.22))

sin avcos 3 + (cos a cos 3 cos ¢ — sin B sin ¢p) —=2%

Ay’ (P, ¢) = o (4.2.30)

sin asin 8 4 (cos asin B cos ¢ + cos [ sin @) —

ﬁ
<
o

i

and (cf. (4.2.23))

_v
1—¢2

Observe that hy ;(n/,n”) and its partial derivatives w.r.t. n’ and n’ are uniformly bounded w.r.t. n’

and n}, except at the singularity kn' = k' + &, ;- Since the singularity is cut off by 1 — x and Ve, it

follows that for |n’| <1

Oyn. (1, ¢) = cosa + sina cos ¢ (4.2.31)

00 [ (1= xelbn' (6, 0) = & = 21 ))) e (w2, 9)) || < (1 + %)
which is integrable on the compact domain of integration {(¢,¥)| 0 < ¢ < 27, cos8(¢) < ¢ < 1}. Thus
the absolute value of the integral w.r.t. ¢ in (4.2.24) is uniformly bounded w.r.t. R by a function that
is integrable w.r.t. ¢. Furthermore, it follows from the Riemann-Lebesgue lemma that the integral
w.r.t. ¢ converges pointwise to zero as R tends to infinity. Consequently, Lebesgue’s theorem shows
that W&f tends to zero as R tends to infinity. Hence, (cf. (4.2.25))

1 _ eikR
Wiy = 2w (1= xclbm’ K = 54,)) by S
27
/ 1 ! ! ~ 1/ ! 1
ol [ (1= xelhnie) = 1 = ,)) s () do o ().
0

Now consider a fixed direction m’. Since € can be chosen arbitrarily small, x(km' — k" — &} ;) is either

zero if km' # k' +@; ; or one if km' = k" + @ ; such that

L eikR
W), =2m(1- ]lk/er;J(km/)) he j(m) TR
7 1
~ ol [ (1= i) = ¥ = &) hes (@) ao +o (3 ). (232)
0

4.2.4 Singular integrands
Recall that (cf. (4.2.8))
. / . o
ng - /Xe(kn/ kK &27 ) he (n ) R RAT T 1

J T
n
R?2 ?



CHAPTER 4. THE REFLECTED FAR FIELD

4.2.4 Singular integrands 67
n n
Y T liFJ’Z,j Y I
k
\ & \
o 1 ne 1 ne

| | |
| | |

K 4oy K —&) K 4oy K+

(a) |[~i| > 1 (b) m' # — 2t for [“71 | < (c) m' = =2

Figure 4.3: Three cases for integration of W},

To examine this integral, three cases will be considered separately. To be precise, the support of the
cut-off function can either lie outside of the unit disk (cf. Fig. 4.3(a)) or inside of it. If it is inside
the unit disk the two cases of km’ # k' + &y ; (cf. Fig. 4.3(b)) and km/ = k' + @ ; (cf. Fig. 4.3(c))
are studied. These distinctions are necessary since different substitutions are applied to these different
situations, to determine the asymptotic behaviour of the integral Wé’: j-

4.2.4.1 Singularity on unit disc

First assume km’ # k' + & ;, [ 4+ @ ;|/k < 1 and a small € such that m’ ¢ suppxe(k(-, -)T —k' -} ;)
(cf. Fig. 4.3(b)). Now, applying the same substitution as in Section 4.2.3, (cf. (4.2.30), (4.2.31) and the
first line of (4.2.21))

27 1
W€j:/" Xe (b (. 8) — K — 302) by (' (10, 8)) @ dp .
0 cos6(¢)

In the case of £ > 1 the same approach as for W} ; can be applied, since here hy,; has at most a loga-
rithmic singularity at the point kn’ = k' + wz , which is still absolutely integrable after differentiating
w.r.t. 1. To be more precise, for £ = 2,3 it follows that even the derivative w.r.t. ¥ of hyj; (cf. (4.2.3),
(4.2.4) and for the derivative of K in hs ; [1, Eqns. 9.6.27, 9.6.11 and 9.6.10, pp. 120 and 119]), occur-
ring when applying integration by parts w.r.t. ¢ (cf. (4.2.21)), is still integrable w.r.t. ¢ € [cos0(¢), 1]
and ¢ € [0,27). For ¢ = 4 the derivative w.r.t. ¢ of h4g is also integrable w.r.t. 1 € [cos0(¢), 1] and
¢ € [0,2m), since (cf. (4.2.5))

Ve / G Q) e (B ) @y = i / 0 G, Q) e () gy
IR2 ]R2

is uniformly bounded w.r.t. n’(y, ¢) € Ba(1) and 9yn' (¢, ¢) is weakly singular. Indeed the function
Gn(n',¢), as an element of the Banach algebra A® w.r.t. 1/, was defined in such a way that it can be
shown that || 1’| gn (', C)| L1 (w2) is finite for any fixed ¢ € [0,1]. Hence,

1
3 _ _
Wgi=o (—) (=234 (4.2.33)
It remains to examine the case £ = 1. Define

[, 0) = ha i (n' (¥, 0)) |0 (,0) = V'], (4.2.34)
where v/ := (k' + & ;) /k. Integral W} ; transforms to

2m 1

Wﬂ:/ Xe (k' (¢, ) — UV

0 cosf(¢)

fi@, 9)

ikR’L/Jd do.
W a) -] ¢ W
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At this point, the cut-off function is specified further by defining it as the tensor product of two cut-off
functions X! = x2 € C§°(R), with the same or a smaller € as before. Thus, by defining (o, ¢) " such

that n/(1o, ¢o) = ' and € < 19 — cos0(¢) for all ¢ € suppxi(- — ¢o),

fi(¥, ¢)

3 _ ikRip
Wi; = i (w, ) — ] e dy de.

ﬁ@—%p/ﬁ@—%)

Po—€

o\§

The upper bound of one of the integral w.r.t. v could also have been replace by ¢y + €. For simplicity
the one is left unchanged. The integral is now split into

WP =W+ g;(o, go) W)2, (4.2.35)
where
¢ (4 — $0)2 +b (6 — 60)2 + & () — o) (& — do)

2m

~92 .
WJ3.2 ::/XE ¢ ¢0 Xs(w 1/)0)

/ V(W —0)2 +5(6— d0)? + & — o) (6 — d)
¢M¢—%V+bw—%v+eW—w@w—¢w

R dyp g (4.2.37)

9; (¥, 8) := [ (4, 9) 00—V (4.2.38)
and
) 2 sin accos 3 — (cos a cos 3 cos ¢y — sin 5sin @) ;/’_“W ?
a:= |0y [n (¥, ¢)] Té;z;/jg ~ || sinasin B — (cos asin 3 cos ¢ + cos Ssin @) ;b_owz . (4.2.39)
2
o , | { (= cosacos fsin ¢ —sinﬁcos¢0)\/1—w2>
b= 1% {n 2 Ay N }<(— cos asin B sin ¢ + cos 5 cos ¢p) \/ﬁ (4.2:40)

)
= 2{(% [0 (¥, )] - 05 [ (¥, )] }w:wo'

P=¢o

Note that @, b and ¢ are finite since —1 < —sina < cosf(¢) < ¥ < 1 for a € [0,7/2). There also
holds

Lemma 4.3. The function g;, as defined in (4.2.38), is a continuous function for all (v, ¢)" #
(0, ¢0) . Furthermore, g; can be extended continuously by defining

6o

Proof. It is easily seen that g; is a continuous for all (1, ¢) " # (o, ¢o) ', since this holds for f; and since
In/ (v, ¢) — V| is only zero at (1o, ¢o)'. Obviously, the limit lim y, ¢)— (vo,00) [7 (5 @) = [ (o, ¢o) is
also finite, since f; is defined by removing the singularity of hq ;. Cons1der the limit (¢, ¢) — (1o, ¢o)
of the remaining factor in g; by transforming the point (¢ — o, ¢ — #0) " to the polar coordinates
r (cos~y,sin~y) and considering the limit » — 0. It will be shown that all the radial limits exist and are
independent of the angle ~v. With

i (1 —10)” +b (¢ — do)” + E(v — tho) (& — do) + Y, by 1o (% — o) (6 — )"

(I1,l2)EN
l1+12>3
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being the Taylor expansion of |n'(), ¢) — 1/|2 at (1, ¢) = (o, ¢o), it can be concluded that

, \/dw—¢0)2+5(¢—¢0)2+5(¢—¢0)(¢—¢0)
lim
(¥,6)— (Yo, $0) [n' (¢, ¢) — V|
Vi (W = 0)? +5(6 — 60)? + (6 — vo) (6 — o)

= lim
GOZE0 | fa (= )2 4+ b (6 — d0)2 + (0 — ¥0) (& — 60) + X biyta (1 — %0 (& — G0)'
(l1,12) €N
l1+12>3

r\/dCOSQW—FESinzw—i—Ecosvsinv

= lim
o /- T ~ . .
T_} \/ar2 cos?y + br2 sin? 4 + &2 cos ysiny + 133 by, 1, r(11H12=3) cosliy sin'2y

(ll ,lg)E]Ng
l14+12>3

\/dcos27 + Bsinzv + ccosysiny
= lim

0 \/EL cos? v + bsin? v 4 écosysiny 4+ Y] by, 1, rl1H2=3) cosliy sin'2y
(I1,l2)ENZ
l14+122>3
—1, (4.2.41)

where

a cos? y+bsin y + ¢ cosysiny
= (Oyn/ (o, $o) cosy + Dy’ (Yo, ¢o) siny) - (Dyn’ (o, do) cosy + Dpn’ (o, do) sin )
= |9yn/ (1o, ¢o) cosy + Ogn’ (1ho, o) siny|* # 0.

Indeed, this inequality follows only if the two vectors Oyn’ (cf. (4.2.39)) and 9gn’ (cf. (4.2.40)) are not
parallel, i.e., if

i o' (1, )
d:= det< 300.9) >i§:$8 £0 (4.2.42)

for 1pg >cos0(¢g). On the other hand, in view of (4.2.19) and with ¢ = cos 8, this is easily proven since

s 1 O(ng,ny)
d‘wmﬂ“%aaﬁ

and since n’ (v, ¢) is by construction only zero for ¢ = cosé(¢). Thus for ¢y # cos6(dp), which is
equivalent to [v'| # 1 (cf. Sect. B of the appendix), it follows that d # 0. Note that this also shows that
a # 0 and b # 0, since if either of them were zero the partial derivative of n’ w.r.t. ¢ or ¢ (cf. (4.2.39)
or (4.2.40)) would be zero and thus d (cf. (4.2.42)). |

) = =n (. o0)

Using an approach similar to the one used for W7 ; (cf. Sect. 4.2.3), it will now be shown that W3
(cf. (4.2.36)) has an asymptotic behaviour of o(1/R) as R tends to infinity. Applying integration by
parts w.r.t. ¢ to W' (cf. (4.2.36)), keeping in mind that X?(1 — ) = x2(—€) = 0,

1

2 _
Wi = ﬁ /fci(gb ~ 40) X2 (1 — 1#?) (9 (¥, 9) — 9 (%0, $0)] pikRY do
g Vil — o2 +5(6— 002 +2(W —vo) (0 —00) |,
27 1 -2 . ‘ o -
_ ﬁ /Xi((ﬁ . ¢0) / 8¢ Xe (w 1/10) [g] (1/17 ¢) 9g; (1/107 (bo)} eszd) dw d¢

) Wl LV =02 +5(6— d0)? + 2w — o) (6 — d0)



CHAPTER 4. THE REFLECTED FAR FIELD
70 4.2.4 Singular integrands

/ (& — o) / 7/1 o) [9](1/) }) — gj(¢05¢0)} ikadd)dqﬁ
%J (4 — $0)2 +b (6 — 60)2 + (& — o) (& — do)
Lo Jatw— )2 +5(6 - g0)? +C(1/)—1/10)(¢—¢0)

27
n -
27
1
O/{E¢ o)

X2 (¢ = o) [a( = o) + § (¢ = do)] [95(1, 9) — g5 (v0, ¢0)] GikRY d¢} do
- .
Po—e \/dw—¢0)2+5(¢—¢0)2+5(¢—¢0)(¢—¢0)

:u"‘

(4.2.43)
Here
0u9,(1,6) = 0 1£5(6,6) \Ja (6 = 0)? + b6 — 60)? + £ — o) (6 — b0) ]
VAN = 0Oy =
V@00 = 102 +5(6 = 60)2 + (= 1) (6= do) + 3 bry 1y (¥ = )" (6 = 60)'
ey
=0, fi(, 9)
(—d0)1 (6—do)'2
1<: Eefvlzl 12 & (=P0)T+b (6=60)+2 (V=10) (9—90)
l1+12>3
(¥—10)'1 (p—¢o)'2
1(:122)261117\1121 12 G (=90)7+b (6= 0)>+2 ($—v0) (6—60)
I1+12>3
LS (6 = $0) 10 = 60)"
2) e @0 02 56— 00)? + &0~ wo) (6~ d0)
I1+12>3
B (¥ — ¥0)" (¢ — o) [2a(v) — o) + E(¢ — ¢o)]
7 2
[@ (¥ —10)2 +b(p — ¢0)* + (¥ — o) (¢ — ¢0)}
fi %’?@h(aﬁ%)b 3 (4.2.44)
1<:,z§el?vl§’l2 @ (¥—10)?+b (d—0)+& (¥—ho) (6—0)
l1+12>3

is uniformly bounded in a neighbourhood of (¢, ¢) = (¥, ¢o). Indeed, all quotients are bounded, while
this can be seen for 9y f; (1, ¢) by considering (4.2.34), (4.2.2), (4.2.14), (4.2.30) and (4.2.31) for ¢¢ < 1.
Furthermore, similar to (4.2.41), it will be shown subsequently that

9; (¥, ) — gj(¢o, o)
Va (W = 0)? +5(6 — 60) + (6 — vo) (& — o)

(4.2.45)

is uniformly bounded in a neighbourhood of (¢, ¢) = (wo, ¢o). In fact, once more, the existence of radial
limits is shown (cf. the evaluation of the limit in (4.2.41)). Consider the limit by applying L’Hopital’s
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rule w.r.t. r

lim g;(rcosy +1bo, rsiny + ¢o) — g;(¢o, do)

r—0 ~ 2 7 .2 ~ .
r4/a cos?y + b sin”~y + ¢ cosysin~y

fi (’I" cos y+1)o,r sin 'y+¢g) \/& cos? 'y+5 sin? y+&cos v sin vy

. — . — fi (%o, do)
. @ cos? y+bsin2 y+¢ cos v sin y+r S(r,
— lim v v v ysiny+r S(ry)
r—0 ~ P T .9 ~ .
r A/ acos?~y + bsin® vy + ¢cosysiny
(cos 7y,sin v)T»ij (r cos y+1)o,r sin 'y+¢0) \/d cos? 7+Bsin2 Yy+¢cosvysiny
. \/& cos? y+bsin2 y+&cos v sin y+r S(r,7y)
= lim
r—0 ~ 9 ) ~ .
a cos? v + bsin® vy + ¢cosysinvy
fi (7‘ cos y+1bo,r sin V"'d’o) Or[r S(ryy)] \/d cos2 y+bsin2 y+&cos v sin vy
2 \/& cos? y+bsin2 y+&cos v sin y+r S(T,’y)3
\/ELcos2 7 + bsin® y 4 &cosysiny
where
l1+12-3 l L)
S(r,y) = E biy 1, 273 coshiy sin'2ny,
(I1,12)ENG
l1+12>3
O [rS(r,y)] = E biya, (I + 1y — 2) rhH273) coghin ginl2y,
(l1,l2)ENG
I1+12>3

Moreover, the equations (4.2.34), (4.2.2), (4.2.14), (4.2.30) and (4.2.31) show that

1 1
|vfj(1/)v¢)| SC<1+\/17——1/)2> —C<1+ \/1—(rcosy+¢0)2> < 00 (4.2.46)

for sufficiently small r, since m’ # v and thus |¢)g| < 1. Therefore,

iy 92(7 €08y + o, rsiny + o) — g;(¥o, $o)
r—0 \/~ 9 7 .2 ~ .
r4/a cos?y + b sin”~ + ¢ cosysin~y

(4.2.47)

1y

inA) " Dy dm)en biy i, (11 +12 = 2) cos'ty sin'2y
(cosy,sing) - Vfi(¥o,d0)  fi(to, bo) (lllfl)fzgo v

\/5C052’7+l~781n2”y+6cos~ysin7 2

3
\/ELCOSQ”Y + bsin? v + ¢cos ysiny

is finite, since @ cos? v + bsin? v+ écosysiny # 0 has been shown above in context of the limit (4.2.41).
With this, it also easily shown that the right-hand side of (4.2.47) is a continuous function w.r.t. v and
thus uniformly bounded. Consequently, the following lemma shows that (4.2.45) is uniformly bounded
in a neighbourhood of (1, @) = (10, ¢o)-

Lemma 4.4. Assuming a compact set D C R? and a function F : D — R that is continuous for all

(¢, ) € D\{(vo, d0)}. Moreover, defining (r cos~y,rsiny) := (¢ —1g, ¢p— o) forr >0 and v € [0, 27],
it is assumed that the function

I(v) = lin%) F(rcosy+ 1o, rsiny + ¢o)
is uniformly bounded for all v € [0,27]. For such a function, there holds
[F (¢, ¢)] < ¢ <o
for all (v, ¢) € D.
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Proof. Since F' is continuous outside a neighbourhood Bj(vo, ¢0) = {(¢,¢) : (¥, &) — (o, ¢o)|| <
0] € D with § > 0 of (¢, $) = (o, dp) and since D is a compact set, it follows that F' is uniformly
bounded outside this neighbourhood, i.e. » > . Moreover, since F is continuous for (¢, ¢) # (¢o, ¢o),
and since cos~y and sin~y are continuous functions, the function (r,~) — F(rcosvy + g, rsiny + ¢g) is
continuous for all » > § and v € [0,27]. Hence, the supremum over all » > § and v € [0, 2] is finite
and attained either in the interior of D \ Bs(to, ¢o) or on its boundary. Thus, since the continuous
continuation () of F(rcos~y + g, rsiny + ¢g) to r = 0 is uniformly bounded w.r.t. v € [0, 27|, there
either exists a §p > 0 such that the supremum no longer changes for § smaller than J§p or the supremum
over all > 0 and v € [0, 27] is attained at » = 0. In the latter case, however, the supremum is also
finite, since I(y) = lim,_o F(rcosy + o, rsiny + ¢o) is uniformly bounded w.r.t. v € [0,27], thus
proving the lemma. u

Hence, using (4.2.44), (4.2.46) and (4.2.47), it is easily seen that all the integrands on the right-hand
side of (4.2.43) are at most weakly singular and thus absolutely integrable w.r.t. ©. Consequently, the
integrals w.r.t. ¢ are uniformly bounded w.r.t. R by a function that is integrable w.r.t. ¢. Lebesgue’s
theorem and the Riemann-Lebesgue lemma then show that

Wi =, <E>' (4.2.48)

To examine W3- (cf. (4.2.37)), substitute ¢ and ¢, after interchanging the order of integration, by
introducing the new variables

v — v = dVb (% — o)
and

~C -3
o —0p = \/55(1/)—1/10)4'\/1_7 (¢ — ¢0)-
Here d = \/ab— /4, vy := dVbao and a9 := Vb (¢/210 + b ). Thus dédy = 1/(db?)do dv and

Va0 — 602 +b(6 — d0)? +&(6 — o)(6 — o)

_ {&%ﬂ% {(J—JO)Q—I—%(v—vo)Q—g(v—vo)(a—UO)
) B :
y (v —wo)(o —00) — m( - 0)2}
= l\/&bj T (v —w0)?+ (6 — 00)?
@
_ VW —w0)?+ (0 —00)
b
It follows that (cf. (4.2.37))
1 27
wiz= [ o= ) X do) dg ™Y qy
' V& (W —0)2 +5(6 — 60)* + & (¥ — 00) (6 — 60)

\/'U_UQ 0—0'0)2

J\/Z §v+27r\/_ (U UO*_d(U UO))
_ =3 i—*_Ro
-= | w (U 2 o do e ™ .
(Yo—

o
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Defining d; := 1/52\/127 and dy := ¢/(2d) leads to

1 . —3 -
I d2v+2ﬂ-\/g >~<1 (aaodz(vvo))
€

1 - Vi 1d
W32 — / 2 (dy(v—o do e By gy, 4.2.49
J db Xe ( i 0)) V(0 —19)%+ (0 — 09)? ( )
7’03.76 JQ’U
1

- -3
Recall that € was chosen in such a way that y!((c — o9 — da(v — vo))/\/g ) is zero for o equal to the
boundaries of the domain of integration w.r.t. 0. Thus, integrating by parts w.r.t. o leads to

J2v+27r\/33 )21 <%2§v—uo)>
Vi do
S o=+ e -

dav
dyvt2eVb _
= / e <U—Uo —\/dzzg(v—vo)> Dy [log (J—go+\/(v_vo)2+(g_ao)2)} do
dav

dov+2nV/b [>~<1}’<%2§v—vo>>
_ ‘ Vb 5 -
T log (U — 00+ /(v —v9)? + (0 — a9) ) do.  (4.2.50)

\/33

lig’U

Note that the integrand of the integral on the right-hand side is uniformly bounded since [)ZHI (¢) is
zero in a neighbourhood of ¢ = 0. For the following, define

s(v,0) =0 — oo+ /(v —10)2 + (o — 00)2.

Taking into account that

1
Oy [log s(v,0)] = —(v — vg) Os [ } ,
it can be concluded that (cf. (4.2.50))
dyv+2my/b 1! <%}<vvo>> dotar/T [ﬁ]’(w)
do| = -0, 3
J Vot o oop 7

dav dav

Oy

Oy T (e
Lot2ry/b [¢1]'( 2=ge=da(v=r0)
ot T e

d~2U

) log s(v, o) do

d~21)

~ =3
Since [} ((0 — 00 —da(v — vo))/\/g ) is zero for o equal to the boundaries of the domain of integration
w.r.t. o, integration by parts w.r.t. o for the second integral on the right-hand side leads to

- =3 = ~ —3
dyvt2mV/b 7! (M) _ dyvt2mVb
€
do

8U \/Z'a _ ﬁ / [)21}//<0'—0’0—622(U—U0)

€

log s(v, o) do
s V(v —v9)? + (0 — 09)? b3 g \/33 )
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- =3
d2v+27'r\/; ~ ( )
1 11/ 0'—0'0—d2U—U0 vV — 1
s / [Xe] ( \/:3 ) s(v,0) do.
d~2’U b
(4.2.51)

Note that all integrands on the right-hand side of (4.2.51) are uniformly bounded, since [)Zﬂ” (¢) is
also zero in a neighbourhood of ¢ = 0.
With this in mind, integration by parts w.r.t. v is applied to integral Wf"z (cf. (4.2.49)), where

% (ch (v —wg)) is again zero at the boundaries of the domain of integration w.r.t. v. Hence, recalling
that [¥?]'(v)) = 0 in a small neighbourhood of ¢ = 0, (cf. (4.2.51))

i dotamV/B g1 (%M)
1 - € = o
WJ‘BQ - 77 / [5(?]/ (dl (v— UO)) Ve do e By gy,
ikRdb V(v =10)? + (0 — 00)?
1/10_—5 d~2v
dy
e dyvt2my/b 5! o—0o—da(v—v0)
L 2 (d : Vi ikd1 R
— — / X? (dl(v—vo)) av dO' e’L 1 UdU
ZkR dldbw K \/(U — U0)2 + (0- —_ 0-0)2
0'76 dzv

since the remaining integrand is uniformly bounded on the domain of integration, which allows to apply
the Riemann-Lebesgue lemma. Finally (cf. (4.2.35) and (4.2.48))

1
WPi=o (E)' (4.2.52)

4.2.4.2 Singularity in direction of asymptotics

It is now assumed that km’ = kv’ = k' + @ ; (cf. Fig. 4.3(c)) and € < min{sinca,1 — sina} such that
nl = v1—n2 > 0 for all n’ € suppxc (k(-, )" —km’). In this subsection the two cases of £ = 1

and ¢ = 2 are examined separately, since in both cases the function hy ;j(n’, v/1 — n’2) has a singularity
at ' = v/ = m’/. For £ > 2 the same techniques and arguments as for W}) ; can be used to proof the
asymptotic behaviour (compare with the beginning of Sect. 4.2.4.1)

5 , esz 1
Wi =2mhes(m') == +o (E)’ 0=34. (4.2.53)

For ¢ = 1,2 the same substitution as in Section 4.2.3 is applied. Thus, (cf. (4.2.8), (4.2.22), (4.2.23)
and the first line of (4.2.21))

27

1
W, = //Xe (kn' (1, ) — k') he (0 (4, 9)) €™ dyp dg. (4.2.54)
00

Estimate of Wf’j:
First W7 ; is examined (cf. (4.2.34)).

2

1
3= ! I ] CIX) B
WI’J_O/ / xelkn! (0. 8) = k') o Gy e e
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This time the cut-off function is specified as x.(kn'(¢, ¢) — kv') = xc(¢» — 1) with xc = 1 in a neigh-
bourhood of zero, where . € C§°(R) is defined with the same or a smaller epsilon than before. Recall
that n/(1,¢) = m/ = v/ for any ¢ € [0, 27),

27

1
- W9y
WLJ_O/O/ . In O Ay dg. (4.2.55)

For a € [0,7/2) it is easily seen that (cf. (4.2.22))
(500 = s+ evsrcon oy =) (00 ) wino T8 (07 ),

I cos 3
v _sma( sin 3 )
and

[ (6,6) = ¥/ |° = [sinar( — 1) + cos acos ¢ \/Wr +sin? ¢ (1 — ¢?)

=sin? a (1 — ¢)% + 2sinacosacos ¢ () — 1) /1 — 42

+ cos? acos? ¢ (1 — %) +sin® ¢ (1 — ¥?)

= (1—1)|sin®?a (1 —1) — 2sinacosacosp /1 — 2
-+00520¢cos2¢(1—|—¢)—I—sin2¢(1—|—1/))}
= (1—1)|sin?a (1 —1) — 2sinacosacosp /1 — 2
-—6082acos2¢(1—2/J)+2c052a6082¢—sin2¢(1—¢)+2sin2¢
— (1 —4) [2c0s? acos? ¢ + 2sin® ¢ — 2sinacosacosd /1 — 92
. (1—1) (sin®a — cos? a cos? ¢ — sin? ¢)}

=(1-1) 9 (1 —sinzacos2¢) — 2sinacosacos ¢4/ 1 — )2

+ (1 — 1) (sin® acos® ¢ — cos® a) ] . (4.2.56)
Keeping this in mind, define
4 o (-1 f vi—v
9 (¥, 8) == Xe (¥ — 1) £, 9) 0 9) (4.2.57)

V|
B R~ 1) f3(,0)
\/2— 2sin? avcos? ¢ — 2sinacos avcos g /1 — 2 + (1 — 1) (sin2acosz¢— cos? o)

3

for which

Lemma 4.5. There exists a continuous function g?((b) such that, for any 0<¢ <2, the limit

. 93(#)

ezists and is uniformly bounded w.r.t. ¢.

Proof. Note that g¢;(1,¢) = f;(1 /(vV24/1 —sin® acos? ¢) < oo, since f;i(1,¢) = fi(1,¢0) and

sinavcos?¢p < 1 for all ¢ € [0, 27r) and any fixed a € [0, ’2’) Furthermore the function 1, 8)
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has the form (cf. (4.2.34) and (4.2.2))

F3(9,6) = en [ (6,9)]" e WY ITPVAGHBO -0 COVI (D) 4 B() g/ T= 02 + F(9) 47
:ch([cosaw] + G, 8) + 1.0y (n) H(¢) " 1@)
o~ WVTTTA@)+B(6) 1-9)+C(6)\/1-9% () ( D) UVT— % + F(9)4?), (4.2.58)
where A(¢) := 2 — 2sin® a cos® ¢, B(¢) := sin® a cos® ¢ — cos? a, C(¢) := —2sin v cos v cos ¢ and
ch =i ﬁf:). (4.2.59)

Similarly, the functions D(¢), E(¢) and F(¢) are second order polynomials of sin ¢ and cos ¢, defined
such that (cf. (4.2.22) and (4.2.23))

E()p\/1 =2 + F(p)y® = (7 (1, ¢) x &%) x @i (¢, b). (4.2.60)
Moreover, by the binomial theorem (cf. Thm. C.12 and Equn. (4.2.23))

@) = 3 (Z) [cosay]" ™" [~sinacosgy/T= 47| "

m=0
such that

G, 9) =G = ( > cosaz/; {—sinacosgb\/l—dﬁ}m,

H(¢):= _(nii'l)' sinav cos ¢ [ cosa n (4.2.61)

Here it is assumed that G, (¢, ¢) = 0 for n < 2. This shows that

0
0600 = 3 () 0= eosa” " 7 [ smacoswm}m
YA

m=2

and G(1, ¢)/+/1 — 1 are uniformly bounded w.r.t. (¢, $) € suppx.(- — 1) x [0, 27] for any fixed n. It
follows that (cf. (4.2.57))

Xe(¥ = 1) fi(®,¢) + Xe (v = 1) 0y [£3 (4, 9)]

9y g (W, 9)] =
\/2 — 2sin® acos? ¢ — 2sinacosacos g /1 — 2 + (1 — 1)) (sin2a6052¢ — cos? )
s xXe(v—=1) f; (¥, d) (2 sin a cos a cos ¢ \/m — sin? acos? ¢ + cos? a)
\/2 —2sin® acos? ¢ — 2sinacosacos g /1 — 2 + (1 — 1)) (sin2acos2¢— cos? a)g,
(4.2.62)
where
Oy 15 (¢, 0))]
(Wx 6+ B (1—) + COVI- P B@)VI— 4+ 42y )
V1 v VA@) + B(9) (1 — ) + C(¢)y/T— &7

e*k\/ﬂ\/A(¢)+B(¢)(17¢)+C(¢)\/17¢2 (D(¢) + E(¢) 4 /1 — V2 + F(¢) ¢2) [ng(d],¢)]"
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4 o, e~ PVTTD AW +B(9) (1) +C(6)/T-07 <E(¢) 1—2 - —E/—i¢2222 +2F(9) 1/)) [nZ (%, 9)]"

= cn11,00)(0) (n cos"a 9" + 0y G (v, d) + (n = 1) H(¢) " *v/1 = ¢ — H(¢) = )

i

e*kﬂ\/A(¢)+B(¢)(1*¢)+C(¢)\/1*¢2 (D(¢) +E(¢)¢M+F(¢) w2) )

Collecting the terms in 9y [f;(¢, ¢)] that contain 1/v/1 — 1,

f(w 9)

+ fi (¥, ),

where

VIto
+E\A6) + B@) (1 - ) + C@)VT— 02 (D(6) + F() v?) } (4.2.63)

F2,6) 1= e [cosa ] e HVITP VA <1w>+c<¢>\/1w2{ _BE@)¢?

+ o L) (n) H(@) \/%—dj e WA LBO (-0 COVIR (D(g) 4 F(g) y?)

100, 8) = en g [cosa]” B(6) py/TT g e VTP VAGTBO (-0 /i3
VA@) + B6) (1 —6) + C(o)y/T— 42
+ ¢ [\/(w;f;mu o) (n) H <¢>w"-1\/1+w]

o FVI=0AAD)+B(6) (1-9)+C(0)y/T-02 { E(@)¢?

Ity
+ 2 \A6) + BO) (1 - 9) + COWT— 2 (D(6) + B(6) /T~ 2 + F(9)4?) }

+ep [ng (2/17 ¢)]" e*k\/m \/A(¢)+B(¢) (1—4)+C(9)\/1—22 {E((b) /1 — V2 + 2F(¢) ¥

Lk B(o)VT =0+ ALy (v
2 \J46) + B) (1 — ) + C(6) y T— 7
— en Tt oo (n) (n cos™ a "L+ G, ) + (n — 1) H(p) " 2y/T — ¢2)

E(6) vy/T= 02 + F(9) V) }

VT A@)+B(6) 1—0)+C(a)/T-42 ( ( $) /T — 92 + F(¢ )
+ cn 1100y (n) H(¢) B(¢) ¢+t e FVIZY VA@HB®) -0 +C(0)V/T-97 (4.2.64)
With this (cf. (4.2.62))
9y [9; (¢, 8)] = gj/% + 95 (1, ¢), (4.2.65)
where
03 6) = %6 = 1) 136, 6) L X DL0.0C0) A )

\/A(¢) + B(¢) (1 =) + C(¢)y/1 — 42 \/A(¢) + B(¢) (1 — ) 4+ C(¢)/1 — 42

(4.2.66)
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X (v — )fg(w 0) + Xe(¥ = 1) f1(1h, 9) N X (¥ =1) f;(v, ) B($)
%4 +B(6) (1=0)+ COVI=  \JA(0)+ Bo)(1— ) + COi— 12

In order to obtain the limit behaviour of dy [g;(¢¥, )] at ¥ =1 (cf. the subsequent (4.2.72)), the limit
¥ — 1 of the two functions f (v, ) and f] (¢, ¢) has to be evaluated. In view of (4.2.63) and (4.2.64),

3 -

12(6) = f(1,0) (4.2.67)
— e cos” @ { =24 LG (D(6) + FO) |+ Loy () 202 (DL6) + F(0).
£16) = £ (16)

kC(¢)
= ¢}, COS a{\/_ O)VA(S) + 2F (¢ Qﬁ\/A—(D(¢)+F(¢))}

+en ) (n {[ d)VA(P) —n cos™ a+ sin? a cos? (b[cosa} 2}

2( 2)
(016 >}-

Similarly, for the functions g% (v, ¢) and g7 (1, ¢),

2

f(9) £ (1, ¢o) sin acos a cos ¢
1(0) = g;(1,0) = . - 42,
g](¢) g_]( a¢) ﬁ\/m 4 —1_Sin2acos2¢3 ) ( 268)
1 2
9}(6) =g} (1,¢) = 3 (9) Ji(1,90) (cos? o = sin” o cos? ) (4.2.69)

VBV -silaco? ¢ 431 —sinlacos’ s

To evaluate the limit limy, 1 [y[g;(¥, ¢)]—g5(¢)//I—7] using L’Hopital’s rule, it is necessary to take a
closer look at the derivatives dy[f7 (¢, )] and Oy [g3 (1), ¢)]. For the first one (cf. (4.2.63)) a singularity

1/+/T =1 arises only in the terms where the exponential or (A(¢) + B(¢) (1 — ) + C(¢)y/1 — ¢2)'/?
is differentiated. Hence, it is easily shown that a function F7(¢),¢) exists that is uniformly bounded
w.r.t. ¢ in a neighbourhood of ¥y = 1, such that

Oy [f; (¥, )] = F} (¥, ¢)

VAW©) + B(9) (1 - ) + Co)/T— 02

+ cp g[cosom/)}

V=49
~VITT A+ B0) A—v) 01—z ) _ E9)¥?
V1+

+ 2 \A0) + B6) (1 - 0) + COWT— 2 (D(6) + F(9) ¢2)}

P \/A(¢)+B(¢) (1 =)+ C(p)\/1 -2
Vit —
RSSOV (0 + )

k
Ch g 11,00y (n) H(9)

]

. g [cosa )™ e HVIFVA@EB(6) (-0 +C(0) /107

C(6) s
VA@) + B(6) (1 — )+ C(¢)yT— 7

(Do) + F(9)42). (4:2.70)
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Similarly, a function Gs(z/J @), uniformly bounded w.r.t. 1 in a neighbourhood of ¥y = 1, can be found
such that (cf. (4.2.66))

Xe(¥ = 1) 0y [f5 (¥, 9)]

Ay (g5 (¥, 0)] = G5(1,¢) + (4.2.71)
VA@) +B(6) (1 — ) + C()/T—
. X —1) f3(0,6) C (o )W . 35— 1) f3(0, ) C(6)? “*ﬁij.
VAW@) +B(6) (1 - OVI—2  y/A(9) %) + C(O)V/I— 92
Using L’Hopital’s rule, it can now be shown that (cf. (4.2.65))

0 : 0
95 () 1 :1/1,1311 [93( ,®) — 95(4) T gk0)

VIi—v VI—1¢
= lim {31/, [95(1/1, ¢)] (=2)v/1 - 1/)} + gjl((b)

Pp—1

lim [aw l97,6)]

Equation (4.2.71) thus implies that

93(9) 1

V=0

) { limy—1 [0 [f;(0, )] VI=F] | FIO)C@ J5  §£i1,6)C(9)° 5 }
VAG) A(9) A(9)

, (4.2.67) and (4.2.58) yield

lim [aw 906,6)) -

=gj(¢) —

Now, since f;(1,¢) = f;(L, ¢o), (4.2.70

Jim [aw 9506,6)) —

which (cf. (4.2.69)) is uniformly bounded w.r.t. ¢. [
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Employing this lemma, W7 (cf. (4.2.55) and (4.2.57)) is split into

WP = Wj3'5 + WJ?’-G + Wf"7,

5]

where
25 9i (¥, ¢) = g;(L,¢) + 29} D) VI =¥ ,ps
W; // Nis=i e dy do, (4.2.73)
1
1kR7,ZJ
3.6 .
W O/ 95(1,6) do O/ = (4.2.74)
and
27 y 2T kR _ 1
WJ3.7 — _9 99(@ do [ e*FY qyp = —2 g?((b) d¢ 6.7_, (4.2.75)
O/ 0/ 0/ 1kR

Consider W]3'5 by applying integration by parts w.r.t. ¥. For this, note that by using L’Hopital’s
rule once more, it can be shown that (cf. (4.2.65), (4.2.68) and (4.2.69))

. [gjw,@ —g;(1,0) +29%(8) VI— 0 w]

Y1 1-4
= lim ~0, [95(0,6) = 9;(1,0) +240(6) V1 - 0]
. 97(¢)
= I}LInl - [@p [9; (1, 0)] — ﬁ]

is finite (cf. Lemma 4.5). Consequently,

9;(,6) = 95(1,8) +240(8) VT — p| ~ |1 = ¥ (4.2.76)
for 1» — 1. Thus, keeping in mind that g;(0,¢) = 0 (cf. (4.2.57)) since x(—1) = 0, integration by parts
w.r.t. ¢ in (4.2.73) provides

2

wpe = =1 [ [001,0) ~ 26(9)] do

+_

V=9 2 V=9

where the integrand of the second integral on the right-hand side is absolutely integrable w.r.t. ¢ and
¢ (cf. (4.2.72) and (4.2.76)). It follows that the Riemann-Lebesgue lemma can be applied, leading to

0
27 QJ(¢)
_%//{awggwﬂﬁ)] F 1000) - (¢”299(¢)\/—1‘¢}6iwd¢d¢,
0

27
;o = ﬁ/ [gj(la }) — 29?(0#)} dé +o <%> (4.2.77)
0

It remains to consider W36 (cf. (4.2.74)). Using [32, Eqn. 16, p. 18 and 75] leads to

/ pikRY G mcos(kR) C(kR) + sin(kR) S(kR) L \/2—sin(kR)C“(kR)—cos(kR) S(kR)
0

V=¥ VER e VER
2 N . ikR
-\ = (C(kR)—zS(kR)) T
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where C and S are the Fresnel integrals. Furthermore, since (cf. [1, Eqns. 7.3.9 and 7.3.10, p. 83 and
Eqns. 7.3.27 and 7.3.28, p. 89])

~ R—oo 1 sin (§k2R2) 1
C(kR) 5 + s +0 75 )
- R—oo 1 COS (%k2R2) 1
S(kR) 5 TR +0 )

it follows that

! eikR'l/J q 1_ieikR 1
O/M w‘ﬁﬁﬁ“(E)'

Thus (cf. (4.2.77), (4.2.74) and (4.2.75))

WP, =W2e+ wio+ wi’

27 o o
_ 1 ) 0 _ 1 — i kR 0 JR7: | 1
= s [ 10,00 2000 6+ v [g0.0000 2 o [ oras i o (3)
0 0 J
27 o0 o
1 1 — ekR ikR 1
0 0 0

Using f;(1,¢) = fi(1,¢0) (cf. (4.2.34) and (4.2.22)), |1, Eqn. 17.2.6, p. 234| and (4.2.57) leads to

2 2T 7r
£3(1,60) ! .
i(1,¢)do = do =v2 f;(1, d
0/%( NG /m¢ v2si %)O/JW(b

h 1
— V3 55(1, o) B\ o), (4279

where F denotes the elliptic integral of the first kind. For the last remaining integral fozﬂ g?((b) do, a
closer look at (cf. (4.2.68), (4.2.67), (4.2.58) and (4.2.61))

2(6) = (o) i1, ¢0) sinacosacos ¢
o cos"a E(¢) k.
=3 = +ag o (P() + F(9))
cn, nl n—1 sin . cos ¢
=5 gyt () [cosal e (D) + F(9))

~ fi(1,¢o) sinacosacos ¢

3
44/1 — sin® o cos? ¢

is necessary. Using (4.2.18), it is concluded that

ﬁr(q/)’qﬁ) = 170(‘%6#’) +COS¢61(O[767 V 1_1/}2) +Sin¢172(0176, V 1_1/}2)7

where Uo(c, 8,%), U1(a, 8,%) and U2(c, 3,1) are smooth vector valued functions. Moreover, equation
(4.2.60) implies that D(¢) + F(¢) = (m x €°) x mi. For the coefficient E(¢) of ¢1/1 — ¢? in (4.2.60),
it is concluded that E(¢) = E; sin¢+ Es cos ¢, with constants F1 and E» only dependent on «, 5 and
€Y. Indeed, due to (4.2.18) the coefficient of cos? ¢ can arise only from those terms in (77 x €°) x ¥y,
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which do not contribute to the terms with factor cos@sin 6 = 1p/1 — 2. Similarly, the coefficients of
sin? ¢ and 1 do not contribute to the terms with factor ¥\/1 — 12, i.e., to E(¢).

Hence
2 27 oy i
/9?(@5) d¢ = o om o; (¢9) +cn = cos™a [(m x %) x 1]
J J 2 /1 —sin® acos? ¢ 2
ch n! n—1 sin « cos ¢ o -0 .
— — —— 11 o)(n) | cos mxe ) Xm
2 (n—1)! oo () | ] 1 —sin® acos? ¢ [( ) }
~ fi(1,¢0) smacosacos¢}d¢
44/1 — sin® o cos? ¢
= ¢y wk cos"a [(ﬁi X 50) X 7’7’1} ,
since for any fixed m € R and any c;, co
2T ™
c1 sin ¢ + ¢ cos ¢ 4o = c1 sin ¢ + ¢ cos ¢ b+ /cl sin(¢ 4+ ) + ¢2 cos(¢+7r)d¢
V1 — sin” a cos? (bm 5 V1 — sin® o cos? (bm \/1 — sin® avcos?(¢ + )
T c1 sing + ¢y cosqu ¢+ T —cq sing — ¢ cosfI do
/1 —sin® acos? ¢ V1 — sin® acos? ¢
=0.
Consequently, since (cf. (4.2.2) and (4.2.34))
A K? - S -
fi(L o) =1 m? [(m x &%) x ni],
m, = cosa (cf. (4.2.17)) and in view of (4.2.59), (4.2.78) and (4.2.79)
_ 1 1—14 eikR ) AkB " . ~ eikR
WP, = V2 (1, ¢0) F(m\ @) (ﬁ +VT o \/}_%) ~ e cos™av [(m x €°) x ] TR
(2
ol =
R
AE?Z - V2 1— i e*B
=4 F n 0 Bl | 2= -z
I Ireg P\ agmz [ (7 x &%) ] (ikR VTR TR
AR, ., eikR 1
i g ms [(m x &°) x mi] R o (}_%)' (4.2.80)

Estimate of Wg’j:
Next W3 ; is examined (cf. (4.2.54)).

2

1
— / / e (k' (0, 8) — ko) hosy (0 (8, 8)) 7% i g
0 0

The cut-off function is defined the same way as in the case of £ = 1. Recall that the modified
Bessel function Ko (k |0/ — /| ) in ho;(n' (1, ¢)) (cf. (4.2.3)) has a logarithmic singularity of the form
—log (&0’ —v'|) (cf. [1, Eqn. 9.6.13, p. 119]), which, as seen above (cf. (4.2.56)), can be transformed
to

k 1 1 k?
3 |n’—u’|> =3 log(1 —v) + 3 log [Z(2—2sin2acos2¢—2sino¢cosacos¢\/1 — 2

+ (1 =) (sin® acos® ¢ — cos® @) )] (4.2.81)
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Define (cf. (4.2.3))
hi(h,6) = en Xe (o — DVT =02 [(7" x &%) x "] Ko (k |n — /)
+enkm? [(m x €°) x ] %log(l —1),
where ¢y, is the same as in (4.2.59). With this and (cf. [1, Eqns. 9.6.13 and 9.6.12, p. 119] and (4.2.81))
Ko (klnf = v]) = ~1og (5 I’ = /1) =3+ 0 (tog = /| I /)

1
= —5log(1-¢)=7+0 (log|n’ | = u'|2)

1

k
—510g[4 (2—251n acos? ¢ — 2sinacosacos /1 — 12

+ (1 — %) (sin® arcos® ¢ — cos® @) )] ) (4.2.82)
where 7 is Euler’s constant, it follows that
. n (s 50 [ 1 k? .2 2
hi(1,¢) = 1/1j1/mlhj(1/),q5) = —cpkm? [(m x &%) xm] {7+ glog 5 (1 —sin*acos® )| ».
Similar to W3 ;, the integral W3 ; is split as

ng = Wj378 + Wj3797 (4.2.83)

where
27 1
W = / / hi (1, ¢) e dyp dg
0 0
and
1
W= —cpkmm? [( x &%) x i /log(l — 1) R BV dyp, (4.2.84)
0

Once more, integration by parts w.r.t. ¢ is applied to examine the asymptotic behaviour of WJ?”S.
Recalling that x.(—1) =0,

2w .
W38 = —c km” [(ﬁ’ixé’o) XT?L}/ *+1 lo k—2 —|—l lo (1—sin2acosz¢) do et
f nkm Tl g 8 ikR
0
ik Ry
sz//aiﬁ (¥, )] ™ dy dg. (4.2.85)

To show that the last integral on the right-hand side tends to zero with order o(1/R), it is necessary
to show that 0y [h; (¢, ¢)] is absolutely integrable w.r.t. ¢ € [0, 1]. Consider (cf. [1, Eqn. 9.6.27, p. 120]
and (4.2.30))

Oy [h;i(¥,0)] = cnk X 1)v1—n" [(ﬁ x &%) x ii"] Ko (k |n' —V'|)
+ chk;@w D[’ ( ¢ )] - Vo [VI= 02" (" x 2%) x i"]| Ko (k [0’ = /)
=

—cpk Xe(p — 1)1 (n x &%) x i’ kdy[|n' — V'] Ky (k |n —v'])
- ch’; m? [(m x %) x ] j (4.2.86)
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Recall that y. was defined in such a way that ¥, = 0 in a neighbourhood of zero. Consequently the
first term on the right-hand side of (4.2.86) is uniformly bounded w.r.t. ¢ € [0,1] and thus absolutely
integrable. The second term, on the other hand, is absolutely bounded for ¢ € [0, 1] by the integrable

function (cf. (4.2.82)) log(1 ¢)>
og(1 —

1
c|1+ +
( ViI—19 VAT
since Vo [VI—nZ" [(ii” x ) x #"]] is uniformly bounded w.r.t. ¢ and ¢. Indeed, n” (i, ¢) =
1—n/(¢p,$)2 > 0 for all ¥ € suppy.. It remains to consider the last two terms in (4.2.86). For
this the series expansion of K is needed (cf. [1, Eqns. 9.6.11 and 9.6.10, p. 119] and [1, Eqn. 6.3.2,

p- 79])

1 1 k
Ky (kn' =V|) = AT +7 [210g (5 |n’ — I/|) +27 — 1] kin'—V'|+o (|n’ — 1/|2) , (4.2.87)

as well as the derivative (cf. (4.2.56))

1 \/2—2sin2ac052¢—2sino¢cosacos¢ 1—¢92+(1—1) (sin2acos2¢—c052a)

3¢[|n/—l/|] =
2 V1=
; v _ — 02 2.0 2
_|_l 2s1nacosacos¢\/m V1 z/J(sm Q.COs” ¢ — cos a)
2\/2—2sin2a6052¢—2sinacosacos¢ 1—92+(1—-14) (sin2acos2¢—6052a)
1|n" =7/
- _z 4.2.88
5 14 ( )
i v — 02 2. 2
+1 2smo¢coso¢cos¢m V1 1/1(5111 @ cos® ¢ — cos a)

)

2 \/2 — 2sin®a cos? ¢ — 2sin o cos o cos py/1 — Y2 + (1 —1h) (sin2a cos? ¢ — cos? )

where the last denominator is bounded. Indeed, +/1—1 is the singular factor in the term |n/(¢), ¢)—1/|
(cf. (4.2.56)) in the neighbourhood that is not cut-off by the factor X.(x — 1), while the denominator
equals |0/ (¢, ¢) — v'|/+/1 — 1. Since the last two terms on the right-hand side of (4.2.86) are bounded
for any ¢ € [0, 1), it remains to examine the limit ¢ /" 1 of the two, by using (4.2.87) and (4.2.88). For
¥ 1, this leads to

—enk e — DV1 =02 (7 x &%) x @] koy[|n' —v/|] Ki (k [n — /)

konria o o g1
_Chimz [(mxeo) Xm} m
k n = -0 — 1 / / / /
~ —Chg M [(m x &%) x ) {m+2kf)w[|n—l/|]l(1(k|n—1/|)}

= —thyg m? [(m x &%) x i {(9 (ﬁ) +O(log(1-¥))+0(1)+0O (|\/1 —w|)},

where limy, 1 /1 —n/(¢, )2 = limy,_n n% (1, d) = m,. Thus 9y[h;(, ¢)] (cf. (4.2.86)) is absolutely
integrable w.r.t. ¢ € [0,1]. Furthermore, using the Riemann-Lebesgue lemma, this shows that the
integral w.r.t. ¢» on the right-hand side of (4.2.85) converges to zero with the order o(1) for R — .
Since the integral w.r.t. ¢ is also uniformly bounded w.r.t. R and ¢, Lebesgue’s theorem can be applied
to show that this convergence order also holds for the integral w.r.t. ¢. Hence

2m
W3 = —cp km” [(ﬁlxéo)xm}/ :y—l—llog k—z +110g(1—sin2acos2¢) d¢eZkR+0 1
J nETe 2 2) "2 ikR R
0

52 - ik R 1
= —cpkmy [(m X é’O) X ﬁﬂ 2+ log (—) +/10g (1—sin2aco52 ¢) de » = +o0 (—)
0

2 ikR R
(4.2.89)
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Claim 4.1. The remaining integral can be evaluated as
/ log (1 — sin? a cos? ¢) d¢ = 4mlog (cos %) . (4.2.90)
0

Proof. It is easily seen that (4.2.90) holds true for a = 0. Thus, if the derivatives w.r.t. a of the two
sides of (4.2.90) are equal, then (4.2.90) follows. Applying the derivative w.r.t. o to (4.2.90) leads to

™ 2
-2 sinacosa/ .COQS—¢ d¢ = —2mtan (E) . (4.2.91)
o 1 —sin“acos? ¢ 2

To evaluate the integral on the left-hand side of (4.2.91), tan(¢/2) is substituted by «, with which

and

du =

1 1
S 4, e = 2 cos? <—> du =2 =<
2 cos? ( ) 2 cos? (%) + sin? (%) L+u

This leads to

RS-

4sinacosa (1 — u?)?

)2} du= _/0 (I +u?) [+ u2)? —sin® a(1 — u2)?] du.

N
/oo 4 sin v cos av (ﬁ)
0 (14u2) {1 —sin®a (1*“2

1+u?

Furthermore, it is easily confirmed that

1
(1 +u?)? —sin? a(1 — u?)? = (1 — sin” a) (v + u?) (—2 + u2) ;
o

where ug := /(1 —sina)/(1 + sina). Using this for a partial fraction decomposition it can be shown
that

o0 ’U.2
_4sinacosa/ o 3 du
O (1+u?) [1—sm2a(}+g§) ]

4sina cos o /°° (1 —u?)?
= — du
1—sin"a Jo (1+u2) (’U,(2J+’U,2) (# +u2)
0

4sinacosa/°° 4u? 1 b (14 ud)? 1
= - S u
1—sin®a Jo (1—ud)? 1+ u? O (1 —ud)(1 — up) u3 + u?
1 2)2 1
+ ( :—UO) ™~ T du
(1 —ug) (1 —ug) u—§+u2
_ _4sinacosa | dug w5 (I4wg)? 1w (1+ud)? m
1-sin2a | (1—-u2)22 °A-wd)I-ud)u?2 1—ud)(l—uld) °2
2u2 14+ u 1+ ul
— dnt B TN e B
‘“{ TP T ud 1w



CHAPTER 4. THE REFLECTED FAR FIELD

86 4.2.4 Singular integrands
1 sin o .
——47Ttana{ :l;rslza /1 —sina 12—|—sma}
s a)? 1+sina sina Sin o
1
= —47Ttana{ o (1 —cosa) }
2 sin? a
1—
_ _or .cos @
sin v
2ntan (3)
= —2mtan (=
0 5 )
which proves equation (4.2.91) and thus (4.2.90). [

Hence, (cf. (4.2.89))

3,8 n 50\ o .7 ~ K2 eikR 1
W% = —cpkm] [(m x e%) x m] {2w~y+7rlog (7) + 47 log (cos—)} kR (E) (4.2.92)

Finally, consider Wj3’9 (cf. (4.2.84)) using [32, Eqn. 116, p. 28 and 83|

eikR

ikR’

1
W = —cpkrm? [(m x &%) x i /log(l — 1) eFRY dy
0

= —cpkmm? [(" x @) x "] | Ci(kR) — 4 — log(kR) — i Si(k:R)}

Moreover, since (cf. [1, Eqns. 5.2.8, 5.2.9, 5.2.34 and 5.2.35, p. 60 and 61])

Ci(kR) T2~ 0 (%) Si(kR) "= g +O @)

it follows that

WP = cpkmm? [(A" x &%) x "] [& + log(kR) + ﬂ] et to(l
! z 2] ikR R

and (cf. (4.2.83), (4.2.92) and (4.2.59))
Wi = w4 W

ikR

2
ek (i x &) x 1] {m T log (’%) + 4log (cos 2)} o

kR 1
+ epkmm? [(7" x €°) x i"] [”y—i—log(kR) +z—} TRt (E) (4.2.93)

AR L - - k 7] e*R 1
=3 e m} [(mxe )xm} {logR—v—log (5) —4log(cos§)+z§} TR —l—o(}—%)

4.2.4.3 Singularity outside unit disc

Next, the case that [k+dyp ;|/k > 1is considered. For this purpose, the substitution to polar coordinates,
used in the first line of (4.2.9), leads to (cf. (4.2.8))

$po+m oo
Wes = [ [ xethony — o) £ e on) ol kB2 dp dg,
o / lpng —v'| /1
0—T

where (cf. (4.2.2)—(4.2.5))

Feilpng) = heg(png) long — v/, €=1,....4
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is uniformly bounded w.r.t. p and ¢ on compact sets. Note that, since the support of the cut-off
function (p, ny) — xe(kpny — kv') is located completely outside the unit circle around zero, there exists

a constant ¢ > 0 such that y/p% — 1 > ¢ for all kpny — kv’ € suppye. Thus, for R > 1,

Po+m
X ( klmo )| —kRm.§ 1
Wil < 5 / / = dpdge =of %) (4.2.94)
since |png — /|7 is locally integrable w.r.t. p and ¢.

4.2.4.4 The three cases together
Finally, combining (4.2.33), (4.2.52), (4.2.53), (4.2.80), (4.2.93) and (4.2.94),

@

3
Wi =N iay

ikR 1
O1¢ Wl g + b2 W2] + 27T|:53[ hs J( /) + 4y h41j(m’)} ZkR} + o0 <E>

:]lk’-i-a;. {Zélf—m F(r\ a) [(m x &%) x i (ﬁg—i_ﬁﬂ VR

Ak3 ., eikR
—2(51g2—0m [(mxe ) xm} IR
. A k3 n e o . - k « ] etkE
+ i 62 T [(1m x &°) x mi] {logR—*y —log <§> —4log (cos 5) +Z§} iR
, , eikR 1
+ 27 [53[ hgyj(m ) + 54g h41j(m ):| M +o <E>, (4295)

no matter if the point n’ with kn’ = k' + (:Jé)j is located inside or outside the unit circle and where §,,,,

is defined as the Kronecker delta.
In conclusion this shows that (cf. (4.2.6), (4.2.15), (4.2.32) and (4.2.95))

/hé,j("/) othTTE
n;
R2
=Wy, + Wi+ W,
, , eikR , eikR
=27 11{172}(@ (1 — ]lk,""a’é,j (km )) hm(m ) W + 27 ]1{374}(@ hg)j(m ) ﬁ

2 _ . ikR
b1 Ly ray (k') Ak n Br\ @) [(7 x &) x ] <£ " e—)

4reg Vk VR
' ARS » ., ¢ikR
— 0010 ﬂk’Jr&)iyj(km/) 2 m? [(m x &%) x m] R

AK3
460

k ikR 1
[logR—ﬁ—log (§> —4log (cos 5) —i—zg] ij +o0 (E)

This gives the asymptotics of one term in (4.2.1). From the uniform and absolute convergence of the
summation in (4.2.1) (cf. Thm. 3.1), it is obvious that the asymptotic limit and the summation in
(4.2.1) can be interchanged.

Finally the formulas for E;, for £ =1,...,4,

my [(m X €0) X ’Iﬁ]

+ 1 52[ ﬂk’+&;é ; (km/)

1

~ — n ikR
Be= 3 Z{Qﬂ{lﬁz}(@/%( Z:f) A¢ (1= Ty, (ko)) hey(m') ——

nelNy jEZ 0
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[0 (21KQ) i
wn (—1kQ)™ e
+27T]1{34}(€)/)‘EJ 1 hf;(m/)dC kR
0
1
1 Ak? - n in (_ZkC)n >, =0 - \/5 1—1 eikR
+261f]]-k’+diyj(kml) Trcg F(w\a)mz/)\m n! dC[(mxe )xm} ﬁ—i_\/— NG \/_
0
) AkS N “n (_,Lkg)n . . . esz
—zélgllk/+a,/1’j(km')2—€0mz/ &J’ng [(1m x €°) x ni] R

€0 n!

k ikR 1
{1ogR — 4 —log <§> —4log (cos %) + zg] ij} +o (E) (4.2.96)

are obtained, assuming that both (3.3.41) and [k' + & ;| # k, for £ = 1,...,4 and all j € Z, are
satisfied. The far-field asymptotics of E, for £ =1,... ,4 in the case that |k —i—wg) | = k is derived in the
appendix in Chapter B. These examinations are quite lengthy, since additional care has to be taken
concerning the occurring singularities of the integrands. Apart from that, the approach is very similar
to the one used to obtain (4.2.96).

Hence, with (4.2.96), (3.1.2)—(3.1.4) and Theorem B.1 with Equation (4.2.1) it can be shown that
Equation (4.1.1) in Theorem 4.1 holds. Indeed, Equation (4.1.1) can be obtained by separating the
different orders of decay w.r.t. R in (3.1.3), (3.1.4), (4.2.96) and (B.1.2). To be precise, Equations
(3.1.3) and (3.1.4) consist of non-decaying plane waves, while radial decay e?*#/R appears in the first,
second, fifth and seventh line of (4.2.96), as well as in the first term of (B.1.2). Apart from these decay
orders, the second term of (B.1.2) is a ’plane wave’ decaying with 1/R, in the fourth line of (4.2.96)
the radial decay orders 1/R and ¢! /\/R arise and the seventh line of (4.2.96) shows the usual radial
decay tempered by a logarithm, i.e. log Re?*%/R. For E; this leads to (cf. (4.2.2), (B.1.1) and (B.1.2))

AR < (—iko)
b, () Tt [ So, RO 4 [(m x &%) x ]
0

. ch) eikR
E E { / T d¢ (1 — ]lk’-i-w (km )) hlJ(m/) ikR
neN, jEZ 0
1
Ak? - i (ZERQ)"
. ’ n "
+ 12 ]lkura,/l’j (km ) ireq F(Tr \ a) m, /)\Lj n! dc

€0

1
3 (i ikR
i (k) 2 mg/)\?)jﬂdc [(7 x &°) x 1] }
0

J

. (_Z:'C)n dc [271. h1,j(m/)

nelNy j€Z

+ Z Z{ﬂk(|k/+("~/l,j|)/5‘1
0

B4 eiR(k’JrG)’l’j)-m'
+ 1o(n) 2wf1,j,n( p 14,0)

1 4+ R )
"2 ViR
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~ T ~ T o m
Ak2 Z /A k/+wi’j,0 y go y k/+WiJ—70 R(k + 1J)
260 4 k k kRm,
|k’ +(:J1J| k
where
[ i)
N IKM,

DD

nelN, JEZ
@ j=km/ k'

Hq(m)

and where the indicator functions 1 in line 1,2,4 and 5 were transformed to a condition to the sum

w.r.t. j in the last line or to a case in the function hq ; ,, defined as

—[em’ — 431, )] if
Ry (i, C) o= { Tem—Grrai ] B
—1

Similarly, for £ = 2 and with cosa = m, and 4log(cos(c/2))

I#—

if m' =

log(1/4 (1 + cos@)?), (cf. (4.2.3) and

(B.1.2))
5n ,ch) eikR
Z Z{ / T dC (1 — ]lk/-‘,-w (km )) hg)j(m/) ﬁ
nelN, jEZ 0
Ak3 /
+ilgygy (km /X;ﬁj d¢ [(mm x €°) x i)
0
k K eikR
{logR v - 10g<2>—4log cos—)+z§ ikR}
1
~ in ( ’LkC) ikH
+ > an(|k’+w’2,j|)/xg7j P dC2mhyj(m) = +o |
nelN, jEZ 0
AK3 —ikm, ()" - _q eRR
-5y Z/ 7@”( Q¢ [ x &%) x ]
nelN, je€Z |
Ak . L 1 logR g 1
+ Te Ho(m) [(m x eo) x i R ¢ +o (E)’
where
1
. n —tkm,
Ha () == Z Z 2,j(<)( y ) d¢
nelN, JEZ ’
@ s=km/—k'
and
— Ko(ykm'— (k' +@4,)|) if ! £ K20
h2,j,n(ma<) = - ;K@
—1 [ +log(E(1+m.)?) —iZ] ifm/ ==
At last, for £ = 3,4, (cf. (4.2.4), (4.2.5) and (B.1.2))
ZkC) ikR
=y Z%/M he.;(m') dC = —
nelN, jEZ 0
’Lk( ikR 1

1
+ 3> (K + @) 4)) / i
0

nelN, jEZ
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Ak / km.¢ kR 1
in TRM, . et
T 2 Z/Alﬂihlan( ,0)d¢ [(mi x €%) x 1] TR +O<E>’
nelNy jEZ 0
where
- e—|km/_(k/+a;j)| =3
hé’ "n(m’ C) = ~ —in' (Em' —k . .
’ #I]Rz gn(n',¢) e (k k)dn’ ifl=4

Subtracting these formulas for Ey to E4 and Equation (3.1.4) for Ey from Eg (cf. (3.1.2) and (3.1.3))
easily leads to (4.1.1), which concludes the proof of Theorem 4.1.

4.3 Reduced wave mode in specular reflection

In this subsection it will be shown that the results in Section II.LE.1 of Stearns [36] can be derived
rigorously in the sense of Born approximation for interface functions in AN L. To be precise, it will
be proven that the wave mode of the plane wave reflected in specular direction can be represented as
the wave mode for reflection at an ideal interface multiplied by a correction factor. Indeed this factor
can be given explicitly. Note that this is shown for fields in the sense of Born approximation.

Theorem 4.6 (Reduced specularly reflected wave mode). Assuming an interface function f € ANLY,

the wave mode of the reflected plane wave in specular direction k= (kx, ky, —k.)T, in the above defined
sense of Born approximation, is

A ~ r o 0 or| Jik"-@ A ?
T 2k Kk x & ) x & } ) ([ e ) (4.3.1)
where
2 1 R R
B(—2k.) = / ag{ i / / n[,»<n/>,m><<>dnmdny] eIk g, (4.3.2)
n “R-R

Remark 4.7. In the case of an ideal surface with f = fg = 0, the function w = g is the Fourier
transform of Oc (o) = 6, i.e., Wq = 1. Consequently, Eqn. (4.3.1) shows that the specularly reflected
plane-wave mode for a general rough surface is that of the reflected plane-wave mode of the ideal planar
surface multiplied by the attenuation factor w(—2k,). Thus, the efficiency of that mode is attenuated
by the factor [w(—2k,)]?, where |(—2k.)| is less or equal to one. Indeed,

o(-2t.)| = | /mei”*dp(o' < p(oo) = pl(~h/2) =1

with the monotonically increasing function p(¢):=limp .o, 1/(4R?) ff/R fﬁRﬂ[f(n/))oo)(C) dn, dny satis-
fying p(co) =1 and p(—h/2) = 0.

Remark 4.8. Applying the formula for the Fourier transform of a derivative to Eqn. (4.3.2) and
subtracting wq(—2k,) = 1, there holds

2 R R
) . o y
w(_%Z):Hﬂlkzl/L%L”éo4—32//(]1[1'<n'>,oo>(C)—]l[o,o@(C)) dns dn, | e 2M1e g
_h
2

—R—-R

This provides a way to define w by classical integration.
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Proof. By examining Equation (3.1.4) and the definition of &; it is easily seen that a plane wave in
specular direction coincides with (:JBJ- = (0,0)T. Moreover, by notation, there is a unique j = jo such
that @f ; = (0,0) . Note that the corresponding AR 0.j, 1s the mean value of f,, (') = f"(n) e™=¢ F'y,
To be precise, it can be represented as (cf. (3.3.15) and (3.3.16))

7" : 1 n 4 !
A0 jo = Hm oy / /f () etR=C T an, dn,
7R7
R R
“inm [ (Sl St swo)na. o
-R 1+ Inl ez
Indeed, the mean value of all decaying parts of f,, can be bounded by
3 R R R R
1 . 1
A ZF//ie Yo Apy e dn, dny + 4R2//gn77 ¢) dn dny

=1 SRR A1+ |y i€z “r

3, R R R

=1 “rIr 1+ |77’|

[ LAES] f

. gn NG 00

Y | AR .

=t ~R-R \/1+ |77'|2 )

R R .
= ”Z%HA / / dn, dn,
“r2r T

for any fixed ¢ € [0,1]. Substituting v’ = 7’/R, with u/ = (us,u,) ", then leads to

3

. R R ) 1 R R
g S [ [ S e ndn 4 [l Oanan,
R-R —R—-R

=1 - 1_|_|,7/|2 JEZ
11
n 1
< lim %//7dumduy
R—oo A /1 +R2 |’LL |2

=0

and (cf. (4.3.3))

R R
1 n zw
Iggnoow//f( ") dng dny = 41[32//2A e@ea M dn, dn,

—R—-R

Additionally, since the sum exists absolutely, it can be evaluated after the integration. Moreover, for
JJ{M # (0,0)T the summands in the sum w.r.t. j are periodic with a mean of zero. Thus Equation
(4.3.3) follows.

With this, the specular part E* of E” (cf. (3.1.2) and (3.1.4)) minus the summand Eq (cf. (3.1.3)),
corresponding to the reflection at an ideal interface, is examined. Replacing A? 0, (cf. (4.3.3)) leads to

_’s _ or -0 or n—1 _ik"-&
e _—22—602/ o | n' a¢ [(Frx ) < B ool e
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:_12_602/1% OO4R2//fn+1 zk{f(n)d dﬁy( C) d<|k |n 1
[(kr X €0> X kr} iR 2.

Applying Lebesgue’s theorem for an infinite sum (integration with a discrete measure), it is easily seen
that

R R

M 1 n Z C n—
5 e s sman S8 s
-R
Ll (ciey
- Z 1%2%0/4 2//f"+1 eth=cIn )dnrdny dg |k= "~ .
nelN, “rR- R
since, with || f]leo < h < 0,
[ (= <> f1ff |k |n !
/@//f"“ k=00 dgy, dpy +—>— d( [k </4 2//h"+1dn dn, 2 d¢
0 “R-R
_hn+1|kz|n 1
N n! ’

which is absolutely summable w.r.t. n. Consequently,

/R/IZ —ilks ICf( N" ikac sy d(f( >d771d [(Erxgo)xgr}eiy_f

nelNg | |

- 1
B3 (7)) = —i —
0($) ‘ 260 R—»oo 4R2

1
=i 2_60 R—»oo 4R2

/R
“R-R
R R 1 )
/ / /e‘mkzlc-f("/) d¢ % dny dny [(ET X 50) X ET] et (4.3.4)
“R-R O

since k, < 0. Note that

1 (")
/ —i2|k:[C f( n)dCf / e~ 12lk=1C d¢ = / 0,5 (n e—2lk=1¢ dc.
0

0

Applying this to the right-hand side of (4.3.4) and using Fubini’s theorem leads to

R -

— k X 6 ) k’,‘} ST =
ES(Z) = —i — 1 dn, dn, e~ 2IF=1¢ 4 16 RE (435
(@) %m%m/ﬂp//[wwc>nne S )

The next step is to evaluate the limit w.r.t. R. To do so, note that the integral u(f,(,R) :=
ffR I?R]I[O,f(n’)} (¢) dn, dn, is a measure for the set of points ' € [~ R, R]? for which |¢| < sgn( f(1)
(cf. Fig. 4.4). With this in mind, it is easily seen that

B 1 [ f LT

/’L ) )

} iR? ’§4—}32//}]l[07f'(n’)](cﬂ dnmdnyﬁrm//ldnmdny=1a
-R-R “R-R

for any (. The last expression is integrable w.r.t. ¢ over the compact domain of integration [—h/2, h/2].
Lebesgue’s theorem thus shows that the limit w.r.t. R in (4.3.5) can be evaluated before the integration
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Figure 4.4: Symbolic visualisation of measure u(f,¢, R)

w.r.t. . Moreover, note that this limit is zero for |¢| > h/2 > | f(n')|. Hence the domain of integration
w.r.t. ¢ in (4.3.5) can be extended to R. The integral can then be interpreted as a Fourier transform
and

s 7) = n(f, ¢, R) e—2lk=I¢ e 20 vr| ikT-@
E3(@) = 2€0|I€ [/ Al TR d¢ [(k e ) X k} ¢
_ A . (G R) e—i2lk=C ~0 i
—‘m/&[éiﬁo = ¢ [( x & )xk}e . (4.3.6)
R

In correspondence with [36, Equation (12)] define

R—)OO 4R? // 1£r').00) (C) - Ay,

po(() := RHOO 1R / / [0 oo) ) dn dny, = L, m)(C)

p(¢):

It is easily confirmed that limp ..o u(f,¢, R)/(4R?) = po(¢) — p(¢) and that the Fourier transform
f]R p’Q(C) e~ 2lk=1C4¢ is equal to one, by using results for generalised Fourier transforms. Furthermore,
it can be shown that supp(p’) C [—h/2, h/2]. Thus, separately applying the integral w.r.t. ¢ in (4.3.6)
to p" and py is well defined and leads to

E3 (%) = 460|AT|21[)(—21~32) [(ET X é’o) X IQT} eiF"E _ 460|Akz|2 [(kr x & ) X ET} et %, (4.3.7)

where ( f]Rp e~2Ik=ICd¢. On the other hand, the subsequent Lemma 4.9 states that the

second summand in (4.3.7) is an approximation of the field Eé (%) (cf. (3.1.3)) reflected from an ideal
interface. Thus, since (4.3.7) is a formula for the plane-wave part of the field reflected in specular
direction minus an approximation of the reflected field for an ideal interface (Eg = F°— ETQ), it follows
that the plane wave part is equal to (cf. subsequent (4.3.8))

(@) = By(@) + Bpl#) = —pgin(~2k.) [( x &) x 7] 7 4 0 Ak
) = E3(T o7 Teolb ]2 . é e 2 ,

which is equal to [36, Equation (42)]. [ ]
For the proof of Theorem 4.6 the following lemma was used.

Lemma 4.9. Assume an ideal interface, defined by the graph of the function fo =0, is illuminated by
an incoming plane wave as described in Subsection 2.1. The reflected field is then given by

Bry(@) = 4£k2 [(,;; o go) o ,;;} JFE 40 ([i—f]ﬁ (4.3.8)
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Proof. The field reflected by an ideal interface is determined by Fresnel’s formulas. To be precise, for
some constant polarisation €7, (cf. (A.3.2))

L ke R =R BPh R R - R R R
Eg(7) = ik, @) erp(k) v (k,€7) Erpg (k) p e

= QVTE € ) erEp = = 5
k., — /K% — K| K2k, — k24 k2 — |K'|

)

(4.3.9)
where k = VHoeyw, k. <0,
. kel — kel - 1 Fy
ro(k.e%) =Y Ty eho(k) = — —k,
VTE( , € ) |]€I| 5 eTE( ) |]€I| 0 ’
k. k
. ks (kp€® + kye®) — K| €O - 1 o
T (k.80 = x vy z el (k)= —— | kyk, . 4.3.1
v (ks €7) kK] ) ern (k) o |K] |;€//|2 (4.3.10)

Here, the symbols &}, (k) and &1, (k) identify the polarisation directions of the reflected field, when
an ideal interface is illuminated by a TE- or TM-polarised plane wave. Thus, ETQ(f) is a convex
combination of the reflected fields resulting from these two polarisation states. To obtain (4.3.8), it is
thus sufficient to study the asymptotic behaviour in the case of these two polarisations. This is done by
considering the asymptotic behaviour of the two quotients in (4.3.9) for €{, — €, or equivalently A — 0.
To be precise, some terms are split off from these quotients and it will be shown that the remaining
terms decay with the order O([k?A/k?]?), while the split off terms are relevant for the asymptotics.
These decomposed terms are then plugged into (4.3.9) to replace the quotients. At the end, it will be
shown that this representation can be reduced to (4.3.8) for e — €.

_ First, the case of TE-polarisation is considered. Since k* = [K'|> + k2, k. < 0, k* = poeow? and
k? = poejw?, it is easily seen that

R e L Y e L 2 - k2 K2A

~ 2 - ~ 2 - ~ 2 ~
et B [ Y/ Y XAV
k2A 4k2

- 4degk? 1+ 2
o {|kz| k2 - |k’|2]
2
52 4?2 — [|kz| +/k? - |k’|2}

2

-1 ,

where

2 - 2
[|kz| + /K2 — |k’|2] {|kz| + /K2 — |k’|2]
r 1 2lk.| + k| + /2 — K
: [EREEr
[ . 2] 3lk.| + /K2 — |k
e /7]{2_']{,'2] || | I_
DM+VW—WF
o o1 Bkl R =R g2A B[k + k2 — |k

3

3 r 3°
~ €0 ~
[|kz| + 1/ k2 — |k'|1 |ko| + /K2 — |k’|2]
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Note that

B2 8k + B2 RP k2 Bkl R R k2 4k 1

lim —= _ R _ 1
e/ —eg € = 3 € 3 . 2 kz 3 26
0 €0 €0 |:|kz|+ k2_|k/|2:| 0 |:|kz|+ k2—|l€/|2:| 0 [ | |] 0

is finite, such that

4k? k2A
. ; —1=0 <?>
{|kz| + /K2 — |k’|2] ?

and

ke /K2 =K g2A EINE
\/ﬁ =G O . (4.3.11)
k — /R — K| z

Similarly, in the TM case, (cf. (4.3.9))

B+ R 0P R R 2 4 (B )

~ ~ 2 ~ ~ 2 5 — 2
K2k, — k24 k2 — k| k2|k, | + k21 /K2 — |k'| [kz|kz|+kz /k2_|k,|2]

SRR R P + R (KRR R — k(K2 - R?)

2 2
[122|kz| +k2\/152—|k’|2] {l}2|kz| +k2\/l§:2—|k’|2}

- ) (k?+5%) — K FA  KE(RP4E) K
o I = 27 T - — 2
{’“2"”'*’“2 k2—|k’l2] 0 {k2|kz|+k2 k2—|k’|2]
__FA LR | KA K2 (K2 447) — K 28— 1 (4.3.12)
T deok? |TK2 € 3 N 2 m( (48
{kQIszk? k2_|kf|]
where
kz(k2+l~f2) — k4 B 2:—2 -1 _ kz(k2+]~€2) _ k4 - k2(k§ _ |k/|2)
- — 5 2 4k2 . _ . 2 Yy
{k2|k2|+k2 k2 —|k'| } [k2|kz| R B2 |k }
- ) .
_ 2(1.2 2 4
= (R2(k2+R2) = k%) | — ~ e
[’“2"%' + k2 k?—v«f} Z
L 2(p24 12 4 p.2(1.2 2
T |2 (k24 R2) = K = k2 (k2 = k)] (4.3.13)
and
k 2 i 2 2 K2R2A
k2 (K k%) — K — B2 (k2 — [K]7) = k2% — B2 K[ — B2R2 + B2 K" = ———. (4.3.14)

€0



CHAPTER 4. THE REFLECTED FAR FIELD
96 4.3. Reduced wave mode in specular reflection

Furthermore, in the first summand on the right-hand side of (4.3.13),

2
41.2 7.2 2 7.2 712
. . Ak kz—[k k.| + k24 /% —|k|]

5~ oA = . (4.3.15)
{k2|kz| + k2\/k2—|k’|2} T AkAR2 [k2|kz| + k%/k2—|k/|2]
} . k2 |k |+ k2 |k |+ k2 k2 — k')
AkAk2 [122|kz|+k2\/l§:2—|k’|2]

with

2_ 721212 _ p4a(72_ |12
2 | — 2k | k22— o = L2 R k)

2k2|ke, | — 2|k, |+ k20 K2 — ||
I L e S I oy - A Al
k2 |k | — k2| k.| + k24 k2 — k|
ARPR2 (K2 - B?) + B - kR - B2+ R (R
2k2|k | — k2| ko |+ k24 k2 — |k |
_ (k2 - I;Q) Ak2k2 — K2R2 + K (k% + &?)
k2 |k, | — k2 |k, |+ k2 k2 — k|
CR2A ARPE? — K2R + (K (K2 4 R2)

O 22|k, | — k2|k. |+ k2 k2 — k')

Using this together with (4.3.15), (4.3.14) and (4.3.13), it is easily seen that

~ ki
im k2 k2 (k24 k?) — k* 2 -1
e)—€o k2 GoA ~ ~ 5 2 4I€§
[k2|kz| + k24 k2 — K| }
. k2 A
= lim

€h—€o0 k2 €0 A 4€0k2

K2A AR2K2 — 2K+ [K]? (2 + &) 2K2 (ke + k2 ke |+ k2 k2 — ||

€ - 7 2 - . 2
O 2k2|k, | —Kk2|k,|+k2\/ k2 —|K| AkAK2 [k2|]€z|+k2 /k2—|/€'|2]

+ (K2 (K24 2) -

N—

K N K2 12 (%2 B kz) 4k2K2 — K 4 2K2|K' 12 4 K2k,
4kt € ? 2k2|k, | 16 kBk2
k2 1 KX 4k -kt 2k — K
— z 2]{52—]{52) (4]€2—]€2 2]{," 2) — _ z z _ z
4e3k* + 8e3k* ( z z + 2| 4e3k* 8e3k* 8e3k*

is finite. It follows that

k2K, + K2\ k2—|k'|? 2 2 272
VRl M[QE_W([M}) 4316)

l;:ka k2 /k2—|k’|2 _460@

2 2
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for €, — €o, such that with (4.3.11) and (4.3.9)
Lo KA [ K2 S R K2A7°
EQ(‘T) = m {VTE(kue )eTE(k) [ w2 1} v (K, eo)e”}M(k)} T+ ([k—f] )
(4.3.17)
Note that since k" is orthogonal to &9 (k) = (ky, —kz,0)T /K| (cf. (A.1.1)), there holds
(k" x 25 (k) x k" = — (k" - €25 (k)) k" + k€2 p(k) = k*E05 (k) = k2L p (k). (4.3.18)

)T/ (KIK]) (cf. (A.2:2)), k- &0y () =

Similarly, since k is orthogonal to eTM(E) —(kgks, kyk., —|K'
—2k, [ef,/]. and

/ k:c kmkz
N o (7 P\ 7 1250 7y okz K] k?
(F" x @0, (k) x B~ = (k: eTM(k)) B+ k2 ey (F) = 275 b |- | Rk,
~k. K
[—2|k’|2+k2} kwk k. X Kok
2
= — | [F2F7 + R mohoks | = — (282 - #7] v | ks
(242 — k2] - K]
2
= —k? [ ks _ 1] &b (). (4.3.19)
k2 TM

Moreover, the polarisation vector €% can be represented as a convex combination of the polarisation

-,

vectors in the TE and TM case, i.e. €0 = vhp(k,é°) &%y (k) — vy, (k,é°) &%, (k) (cf. (A.3.1) and
(4.3.10)). Consequently, (cf. (4.3.18) and (4.3.19))

(F" x &) x k" = vh. (R, &%) [(E x @0 (k) x B } —uEa (R, &) [(E’“ x @00 (F)) x k}
=K {V:TFE(Eaé' )eTE(E) [ 72 1] VTM(E _)O) eTM(E)}

such that (cf. (4.3.17))

B = 55 (7 xe?) ] 00 ([52] )

proving the statement of the lemma. ]

4.4 The special case of a sinusoidal grating

In this section Formula (4.1.1) is compared with the one derived by Stearns [36] for the simple case
of a specific sinusoidal grating in the case of classical diffraction (incident direction k orthogonal to
grooves of periodic grating). In the first subsection a simplified version of Formula (4.1.1) for a specific
sinusoidal grating will be derived. This formula is then compared with that of Stearns in the second
subsection.

4.4.1 Applied far-field formula

Assume an interface function f € AN Ly, with

T ’ . ! h
f(@) = Xo—1 01" 4 N g 0T = 5 cosa. (4.4.1)
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It follows that

, why = ( ; ) . (4.4.2)

To evaluate the second line of (4.1.1) it is necessary to determine the values of X’OIJ and @y ; for the
interface (4.4.1). To do so, consider the formulas (3.3.17) and (3.3.18). Note that for f defined by
(4.4.1), the index set Z in (3.3.17) and (3.3.18) is reduced to {—1,1}. Thus (cf. (4.4.2))

“-(3)
for j € Z. Consequently, (cf. the definition of &; after (3.3.65))

ks + 7

ky
\/k:Q — (ks +5)? — K2
From now on classical diffraction will be assumed, meaning that k, = 0, which leads to
ky+j
J; = 0 . (4.4.3)
k? — (kac + .7)2

The factor 5\& can be transformed to (cf. (3.3.18))

i 3 ; ml B
A7 = (ikzg)m—n—l _ _ __
" m—mm%ﬂ il (m=n =Dty (223)1 (23
4= 0 mod 2
— i (ikC)™ (m+n+1)! ptntl
smasfolon-1) M gy (Snpdod )y (b))
tn+145= 0 mod 2
Indeed, the sum w.r.t. me (here myo = (mi,m_1)) in (3.3.24) reduces to the sum over all pairs

(m_1,my1) € N3, where m; +m_1 = m and m; — m_1 = j, such that miwpq +mo1wy g = &J{M—.
Note that this is a linear system of two linear independent equations for two variables, with the unique
solution m_y = (m —3)/2 and my = (m + j)/2. Moreover, m_1,m; € IN; implies that m + j has to be
even and that m > |j|. Thus (cf. (3.3.23), (3.3.24) and (3.3.21))

- m+j om—j
in In/ ~ _ in -
Aoj = E E Ao (17, Meg) = E o,m(—2 T )

MEN, Moo €Jm: m=max{0,|j|—n—1}
@0 (moo) =g ; m+n+1+5=0 mod 2

It follows that (cf. (4.1.1))

1
o A s (=) [ s 1r s (M1 +1)]
El@=—ig— 3> > > { o G U
0 n€N, jEZ m=max{0,|j|—n—1} ’ 0 )
m+n+14+75=0 mod 2

hﬁ],-‘rn-‘rl I:(("jj % 6‘0) X QJ} (W‘;)n71 i E o
4(tn+1) (m+n2+17j>! (Wr";l“)! N
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(=" . (A n)!

iy y et
nE]NOJEZm max{0,|j|—n—1}
m+n+14+3j=0 mod 2

mAntl (3. 50 = n—l
h [(“f] X e ) X WJ} (WJ) ‘ eia}j.i’ +Erg(f)
4(m+n+1) (m+n2+1—J)! (m+ﬂ2+1+])!
(4.4.4)
Note that three functions F;, G and H; can be defined such that
260 [ 2 ) - - N
Sor=ime |[B'@ - Ep@| =Y %Y. Y FGh+n)Gm) Hn),
JE€Z neN, m=max{0,|j|—n—1}
m+n+14+7=0 mod 2
with
b !hﬁrl-n-i-l
Fy(im+ ) i= N
4(m+n+1) (m+n+1—])| (m+n+1+])|
2 : 2 :
o (k)™
G(m) := T
)" oL - N1 o,z
H;(n) := ( — [(@; x €°) x &;] (wl)" e
For the absolutely converging sum in Sy there holds
So = S1 + 59, (445)
where
l7]—1 e}
Sp=> > > Fj (4 n) G(m) H;(n)
JEZ n=0 m=|j|-n—1
m+n+147=0 mod 2
] -1 oo
= > X > Flm+n)Gem) Hyn),
jez\{0} n=0 m=|j|-—n—1
m+n+14+3j=0 mod 2
Spi=> Y > Fj (1 + n) G(m) H;(n).

JE€EZ n=|j| _ m=0
m+n+14+j=0 mod 2

To switch the order of summation in the absolute convergent sums w.r.t. n and m in S;, the variable
m is substituted by m — n — 1 such that

l7l—1
Z Z Z Fiim—=1)G(m —n—1)H;(n)
jeZ\{0} n=0 m=|j|
m+]EOmod2
l7l-1
= > Z 3 Fi(m—1)Gln—n—1) H(n)

JEZ\{0} =41
m+]— 0 mod 2

Here, n is substituted by m —m — 1, leading to

> > z_: Fi(m — 1) G(m) H;(m —m — 1)

JEZ\{0} m=|j| m=m-—|j|
m+7=0 mod 2

= > Z Z (n— 1) G() Hj(n — i~ 1). (4.4.6)

JEZ\{0} =4l m=n—|jl|
n+j£0 mod 2
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Similarly in S, substituting m by m —n — 1, where m :=m+n+1 > |j| + 1, gives

=> > > Fj(m —1)G(m —n — 1) H;(n)

JEZ n:m m=n+1
m+7=0 mod 2

:Z Z Z Fj(m —1)G(m —n —1) H;(n)

JEZ n=|j]  m=|jl+1
m+7=0 mod 2
m>n+1

-y ¥ > Fi(m—1)G(m—n—1)Hj(n)

JEZ  m=lj|+1 n=|jl|
m+7=0 mod 2 n<m—1

Z > Z Fy(m —1) G(m —n — 1) H;(n).
€z =[jl+1 =14l
m+g Omod2

Substituting, once more, n by m —m — 1,

oo m—|j|-1
=> > Fj(m — 1) G(m) Hj(m —m — 1)
JEZ m=|j|+1 m=0
m+7=0 mod 2
oo n—|j|—-1
=> > > Fj(n—1)G(m) Hi(n—m —1). (4.4.7)
JEZ n=|jl+1 m=0

n+7=0 mod 2

Consequently, (cf. (4.4.5), (4.4.6) and (4.4.7))

> > i Fj(n—1)G(m) Hy(n — 1 — 1)

JjEZ\{o} n=|j| m=n—|j|
n+j=0 mod 2

—|jl-1

+> Z ZFn—l () Hj(n — 1 — 1)

JEZ =[jl+1
n+g 0 mod 2

= > Z Z L(n— 1) G() Hj(n —m — 1)

JEZ\{0} =[jl+1  m=n—]j|
n+jEO mod 2

71 -1

+ >0 Y Filil - 1) Gon) Hy(lj] - m—1)

JeZ\{0} m=0

oo
DY
JEZ\{0}  n=|j|+1

n+j_0mod2

+ Z ZFon—l () Ho(n — m — 1).

m=0

n—|jl-1

> Fj(n—1)G(m) Hj(n —m — 1)
m=0

n= 0mod2
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The first and the third line on the right-hand side of the last equation can obviously be combined,
leading to

S S he-nammn-n-y
JEZN{0}  n=[jl+1 M=
n+7=0 mod 2

[7]—1

+ > Y Filil - 1) GOm) Hy(lj] - m - 1)

JEZ\{0} =0

[e%e) n—1
+ > Y R(n—1)G(m) Ho(n — i — 1)
nEglznlod 2m:0
oo n—1
= > > Fj(n—1)G(m) Hj(n —m —1)
JEZ\{0}  n=|j|  m=0
n+7=0 mod 2

+ Z ZFon—l () Ho(n —m — 1), (4.4.8)

m=0
n= Omod 2

where the first and second line are merged into the fourth line. Thus, in view of the absolute convergence
n (3.1.4), the equations (4.4.4) and (4.4.8) imply

Y (s )]
E" (@) :_,_ > Z Z{ o )

0 jez\{0} =41
n+_]— 0 mod 2

e’} n—1 o (n—m—1) } o | — -0 - 0\n—m—2 L
iy A Z ( Z) _ (Zkz)m (n _ 1) h [(wo xe ) X wo} Q(WZ) ei@o T
2€p - — (n—m—l)! ! 4n [ ﬁ)l]
n= g?nod 2 2
+ Eo(7)

A 00 n—1 i (nfl)hnn_ll _kzﬁm 2 a_}j &0 —»j 5
DY 3 &) (= DHR)™ () [( >_<!)X !} J

, s 4l (n—m—1)!
JELN0}  m=lj| =0

n+j=0 mod 2
A S e )" - 1) n—2 [(ET go) 5 ET} ik" @
n= gmod 2 =0 :
| B, (4.4.9)

where k" = &o = (kz,0,—k;) for ky, =0 and k, < 0.

4.4.2 Near-field formula of Stearns
According to Stearns (cf. [36, Eqn. (19), p. 494])

S Ak? GURA™ = K) 1/ on L el ik g
E(x)ZSWQEO/nQ(nQ—ng) (" x &%) x "] e dn/,
R2

. T
where 71" := (nz,ny, V1-— n’2) yn' = (g, ny) T, % =02 402 0l = k—kz and where
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for g(Z) := 6 (2 — & cos z), is defined in a generalised sense (cf. (2.3.9)). Formally applying the Fourier

transform to ¢ and using the power series of the exponential function leads to

N h, . i : T
g(g‘) = /g(f) e*lS'I df — /\/5(2 _ 5 COS.I) e*lSzZ dZ 6715 T dxl — \/671% Sz COST e*lS T dxl
R3

R% R R?

-h n
—iz s ,
=27 d(sy / i3 52 cosw e T dy = 27 §(s,) E 7( 2'2) /cos”xe_““”d:v,
n
R

nelNg ’ R

where, using the binomial theorem,

, 1 , . ,
/cos" rze T dx = o / (e” + e_w)n e " Tdx
R

R
1 < n! , ,
— i(2m—n)x ,—isg x
2"Zm!(n—m)!/e ¢ de

m=0 R
2r n!
= 2_”m: il —m)] 5(sz +n —2m).
Hence,
o (—ihs)" o~ 1 )
§(8) :==4n* (sy) ng I mZ:O Y —— §(sg +n —2m)

and the occurring sums are absolutely convergent in the sense of distributions, i.e. when tested with a
smooth function ¢ € C§°(R?). It can now be shown that

Z Z " k)" (@ x €°) x ] kT E
260 e, b 4"m' n—m)! wy™ (kwz™ — k) ’

where @™ = (ky/k + (2m — n)/k, ky/k, w»™)T and w™ := /1 — [ky/k + (2m — n)/k]? — [k, /k]?
with k, = 0. Note that to get the correct power of k, the formula

1 1 1
/5(knz — ky +n—2m)d(kny) p(n')dn’ = e /5(nm) d(ny) @ (E [ng + ke —n + 2m)], Eny) dn’

R2

has been used. Splitting off the summand with n = 0 and applying the binomial theorem to (kw?>™ —
k.)"~! the formula can be rearranged to get

B (@) Ak Z Z —ih)" kw"’m — k)t [ x &%) x ] kT

T,
nE]N m=0 4nm ) Wz
Bk g ([ ) X
4”m' (n —m)! w™
nE]Nm 0

Ak [(w%0 x &0) x 0]
- % w?? (kwd? — kz)
_ - n - 1) ( kz)m n,min—1—m [(U_}m)m X 60) X u_jn)m] k™™ T
B 260 neZ]Nmz:omz:o 4"m' (n—1-m)! ™) kwz™ m! (n — m)! c

Ak [(7ig x €°) x rig] ik &
2¢g —n9 (—knd — k)

ikw® 0.z
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Ak? "L (—ih)" (n = 1)) (—k)™ nero | (W™ x E0) x W]
_ Z Z Z ( ? )~ (n )~( ) [kw;z,m] 2 [( ) ] ezkw T
2¢0 £ 4n ! (n —m—1)! m!(n —m)!
n€N m=0m=0
Ak (g x €°) x ig] ik -3
2¢g n9(knl+k.) ’
where w%9 = 7y and w%? = —n? since n? < 0. To further transform the term, it is used that the

summands w.r.t. n and m can be sorted w.r.t. 2m —n. To be precise, for any fixed j, the summands for
all pairs (n,m) where 2m —n = j are collected and added. Afterwards the sum over all these partial
sums is evaluated. Since 2m — n can take the value of every integer number, the sum over all partial
sums corresponds to the sum over all 5 € Z. For convenience, define

_kz) n,mn—m-—2 —n,m >0 -n,m] jtkd™™ T
F(2m—n,n)12m:0m[sz’ ] I:(’LU7 XG)X’LU }6 R
—ih)" (n — 1)!
Gy o GV (=1
471
Consequently,

JEZ n=max{|j|,1

n+j= 0 mod
> i F(j.n) G(n)
VA n=|j| (nTJ’_J '(112;])'

n—+7=0 mod 2
o

F(0,n) G(n)
z—:l [(3)1°

n=
n=0 mod 2

Keeping in mind that ™™ = (k,/k + (2m — n)/k, 0,\/1 = [ku/k + (2m —n)/k]2) T for j = 2m —n is
equal to 1/k (ky + 3,0, /k2 — (kz + 7)2) " = 1/k&; (cf. (4.4.3)), this leads to

n—1 . 7
. (=ih)" (n = D! (k)™ | S inem g [
Er(@) Z Z Z 4l (n— 1 —1)! (w2)
0 jez\{o0} =3l m=0
n+j= O mod 2

AR & (n — 1)! (=k2)™ | gyn—i—2 7= [(@o x €%) x Bo] 5.2
* 2¢0 Z Z 4"m' —m—1)! () [(ﬂ)!f e
n= O?nod? 2
+ Ak [(5 x €°) x ] ikl T
2¢g n9(knd +k,)
A — ~ ()" (n = ! (= k)™ memez [(@x80) x &) x
iz : (W) e
260jezz\;[o} n; mzz: animl (n —m —1)! (55! ()
n+7=0 mod 2
) A n 1hn (n_ 1)[ I |:(ET X 6‘0) X ET:| iz
gy 3 T e e
n:O mod2 2
A ,

+ Tl [(7i x &%) x iy e*mo® (4.4.10)
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for k, = ki%, where k" is defined as at the end of Section 4.4.1. Moreover, Lemma 4.9 states that

(cf. Eqn. (36) in [36] for €™ - fif = 0)

A 7 > Sr ikfg-E A nr > | ikT.Z T (2 k*A ?
m[(noxeo)xno}eko :?Okg[(k xeo)xk]ek _EQ(I)+O<|:]§—§:| >

Thus the two equations (4.4.9) and (4.4.10) are asymptotically the same for k?A/k? < 1.
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Chapter 5

The transmitted far field

The preceding three Chapters 2—4 only showed how the far-field formula in the sense of the Born
approximation can be derived for the reflected field. Naturally this can also be done for the transmitted
field. For now it will be assumed that €, the dielectric constant of the material below the interface, is
real valued and thus that the corresponding material is non-absorbing. The case of an absorbing lower
material is discussed in Remark 5.2.

In the non-absorbing case, it can be shown that

Theorem 5.1 (The transmitted far field). Assume the interface is the graph of a function f € ANLE
as described in Remark 3./ that satisfies condition (8.3.41). Furthermore, suppose this interface is
illuminated by an incoming plane wave as described in Subsection 2.1. Then the far-field asymptotics
of the transmitted polarised electric field for = < —max{2||f|| 4,2]/fll} in the sense of the Born
approximation is

OneN,  jez
|k +a) ;|<k
AR - ¢ikR
+ H(m) [(m x &%) x m] =

GiR(K &1 ;)-m/

ez kRm.,
&'+ 1=k
A]::Q N 1 ezfcR
+ Hai(m) [(m x &%) x m] | =— + Vir
AR3 - logR 1
+ Ho(m) [(m x & n| — eZkR+0<—>, 5.1
where m. < 0, k := \/poeqw, €, > 0, ih == (nd,ng,n)", nt = —\/k2 — [K/|2/k, &L o= (K + &) ;,@%)7,
B = =[R2 — |k + @2,
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©
Z
A

1 -
Fo7) = [0 B
0

and where :\Zj, @e,; and g, are defined in Lemma 3.9. The term F denotes the elliptic integral of the
first kind,

e—|l_cm/,(k/+@’1,j)| . _ , kl-‘,-(DL,-
W lff =1 and m 7é TJ
-1 if{=1and m = H%
- ~ . k/+w/
K (‘km’— k’+w’-D if £ =2 and m/ 2
hﬁ)j7 (’I”?L,C) _ 0 (~ 2]) 7£ l k”
—3 {”Y—!—log(%(l—kmz))—i%} if€:2andm’:%
e~ [Rm’ = (K +35.5)] if =3
%M%wm%“W”MiMﬂ
and
k 2 —ka /B2 — |k |?
B kyed — kel y k- (kp€d+kyel) — K| e ’
t(k,e%) =Q2—2r v | _k, |42 : e k.. (5.2)

. - T . 5 | kR
ko — k2= k| 0 K2k, —k2\/ k2 — k| e

To prove this, all the derivations from Chapter 2 to 4 and those in Chapter B in the appendix would
have to be repeated for the transmitted field. On the other hand, these derivations are very similar to
those for the reflected field. The main differences are changed constants and signs. As a consequence,
the proof for the transmitted field will only be outlined by highlighting the differences to the proof for
the reflected far field.

The first step is again to derive an inhomogeneous vector Helmholtz equation (cf. (2.2.3)), the
solution of which will now describe the total field below the interface. As before, the limiting absorption
principle is applied. But this time an imaginary part is added to the real valued dielectric constant €,
of the material below the interface. This is done in such a way that a small 7 is added to the third

component of the wave vector of specular transmission k' := (k', k)T with k! := —(k2 — |K/|2)Y/2,
ie. kb := (K, k! )" with k! . := kL +ir. Here and in the following, the term ’specular transmission

direction’ is used to describe the propagation direction corresponding to the transmitted plane wave
Etg, which results from diffraction at an ideal plane.

Defining &, := € — 72/(pow?) + i27k! / (pow?) ensures that k2 := kt - k! = poé,w? with Imé&, > 0.
With this, Maxwell’s equations (2.2.1) and (2.2.2) are used to show that

V2D — ,u0€7.8t25 =-V xVx ( D—¢, ) + €;0;V x (g— uoﬁ)
and for the assumed time-independent amplitude factors that
(v2+%3)ﬁ:—vaX (5—5712).

For any 7 below the interface, described by the graph of a function f € L>®(R?), i.e. z < f(z'), the
total displacement field D(Z) is equal to &,(Z)E (&), where

- Jeo ifz> f(2)
& (@)= {éT if 2 < f(a')
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Moreover, the total electric and displacement fields below the interface are equal to the transmitted
electric and displacement fields, respectively, such that D = D, E = E* and

(v2 +l§:3) D' = -V x [v x (@Etﬂ ,

where &(Z) := £;(&) — é-. At this point, the Born approximation is applied to this equation. Since
the low contrast case is assumed, the non-specular scattered field is very small compared to the field
transmitted in specular direction. In this sense almost all the energy of the incident field EO = &0 ¢i*#
is transmitted, such that E' ~ E° and similar to the transformations in Section 2.3 a new vector
Helmholtz equation

(v2 + 12:3) Dt = -V x [v X (@ EO)} (5.3)

is obtained. Note that the approximation E' ~ E° holds only at the material interface. Further away
from the interface, i.e. in negative z-direction in the lower material, the difference of the two fields E?
and E° would increase. However, since &(Z) is supported above the interface, this has no influence
on the presented Born approximation (5.3). Again, the same equation can also be formulated for the
special case of an ideal interface fo = 0 and the corresponding ago and ﬁ‘é, such that by defining

dg:= @& — ag and DY := D' — DY, (cf. the transformation leading to (2.3.5))
(v2 + IEZ) DY = —V x [v x (dd EO)} (5.4)

in the sense of the Born approximation. Similar to the reflected case, for the remainder of this thesis
the term ’Born approximation’ will refer to the approximation applied to reach Equation (5.4) for the
transmitted field.

As for (2.3.5) the Fourier transform is applied to both sides of this equation, which is then resolved
w.r.t. the Fourier transform of the transmitted field. Afterwards the generalised inverse Fourier trans-
form is applied and some of the occurring integrals are represented as Cauchy principal value integrals
at infinity to switch the order of integration (cf. transformations leading to (3.2.4)). Following the same
path for (5.4) gives

(D), (@) )

R

- . o

- (27T)3 Fli{lolor}l%lgloo QD(I)
—-R

IR3 BQ (T‘)

. §x &%) x 5
/ &a(if) e~ R g7 [(5xé )~>< 5] ¢ s, ds' di,
-8

where &, 1= —\/k2 — |¢'|2, with Im &, < 0 by definition of the chosen branch cut at the end of Section
3.2.2. The integral w.r.t. s, can again be integrated analytically by employing the residue theorem.
Similar to Section 3.2.3 it can be shown that with &% := F(aq(7) Loy 7 (7)),

R oy L L 20\ U )
lim /df:(§— k) [(SXG—M e ds, = —mi &;(55 - E) [(857 . e~ ) X %] e,
Sg - 572— . g‘r

R—o0

-R
This is shown using the same approach as in Section 3.2.3, but by replacing the curve Cr with the
clockwise oriented curve C_g := {z € C : Imz < 0,|z| = R} such that the singularity point enclosed
by the path [-R, RJUC_p is at w = §~T. With this, the same estimates as before can be used, since
again z sin¢ and (2/2 — f(n')) sin ¢ are positive for z < —h (transmitted case) and ¢ € [r, 27] (from
parametrisation R e’ of curve C_g). Similarly, the term (z—¢ f (1)) Im &; is again positive for ¢ € [0,1]
and z < —h, and limy|_o Im&; < 0, which was used to show that the constant c4(7) (cf. (3.2.11)) is
finite. It follows that (cf. (3.2.14))

’]T2 T—00 T'— 00
IR3 Bg (’I‘)

. = ) —
<ﬁ2(f),<p(f)> = —SL lim lim [ o(Z) / 67 (5, — k) e Xz )2 Fe] a2 gz
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if (&) =0 for z > —h. With the same arguments for the estimates as above, an estimate very similar
to (3.2.15) can be shown, such that Lebesgue’s theorem can be used to evaluate the limit w.r.t. r before
the integration w.r.t. &, giving (cf. (3.2.16))

[(5g, x &) %] s,

_ - T ds’ dF
&

(D). ¢(@)) = —55 lim @(f)/@f(g-T ~ %)
T4 F—00
R3 R2
if p(Z) =0 for z > —h.

To resolve the remaining limits w.r.t. 7 and 7 the approach from Section 3.3 is applied almost
identically. The space of interface functions is again restricted to functions f € AN L and it is then
shown that the limits w.r.t. 7 and 7 exist for such interfaces. Afterwards, these limits are evaluated
explicitly. With this, the transformations and estimates in Section 3.3 also hold for the formulas of the
transmitted field, since, similar to ¢+ # for z > h, the term e*r # decays exponentially for z < —h as
|s’| tends to infinity. At last, a formula for the transmitted field below the interface region is obtained,
(cf. (3.3.65))

0

R2 R2
(5.5)
for z < —h, with € := —y/k2 — |s/|2. Thus, using (A.3.3) in the appendix,
L o - cik' &
B (@) = B + 1.2 T (56)

Remark 5.2. It is not hard to show that the same formula is obtained if Im(ey) > 0, except that k
as well & will also be complex valued and that & is complex valued for all s' € R?. This makes the
evaluation of the far-field asymptotics significantly easier. Indeed, all the terms in (5.5) will decay
exponentially as R := ||Z|| tends to mﬁmty In the first term on the right-hand side this is easily seen
since the imaginary part of ¥ = —(k? — |k + & |?)/2 is negative for all possible @y ; and k', such that
|etfwzms| = e~ RIm@)m= decqys exponentially for m, := z/R < —h and R — oo. Similarly, for the
remaining terms [, F(s') €T ds' in (5.5), where F(s') is a locally integrable function with polynomial
growth at infinity, this is just as easily seen. To be precise, since In€ = —Im(k2? — |§'|2)Y/2 < —¢ < 0
and Im & ~ —|s'|, for |s'| — oo, it follows that the integral

/F(s’)eigé'fds’ §/|F(s') 3hmms qgf g Felm:|
2 R2
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is well defined and decays exponentially for m, < 0 and R > 1 as R tends to infinity.

Note the similarities of (5.6) to the reflected field (3.1.2). As a consequence of these similarities, it
is not hard, but very lengthy, to check that all estimates made in Chapters 4 and B to determine the
reflected far field also hold for this formula for the transmitted field, keeping in mind that e’ * decays
exponentially as |¢'| tends to infinity for z < —h. At last, this gives the formula for the transmitted far
field presented in Theorem 5.1.

Based on this formula for the transmitted far field, a result similar to Theorem 4.6 can be proven.

Theorem 5.3 (Reduced specularly transmitted wave mode). Assuming the scattering interface as the
graph of a function f € AN L, the wave mode of the transmitted plane wave in specular direction

k= (kzy Ky, k)T in the sense of Born approzimation is

o BAY (R x 2) < B s (TART]?

for z < —h, where k! := —\/k2 — |k'|2 and
R
(ki — k) = / [ c| fim s / / L) 000 (€) A dny] e K=k C g,

[NES

N

Proof. The proof of this theorem is very similar to that of Theorem 4.6. Note that the specular
transmitted plane-wave component of (5.1) again corresponds to the index jo defined in the latter
proof, such that (cf. (4.3.3))

R R
1 . /
n — 3 n+1 ik C f
)‘0 Jo }%gI})O AR2 / / ! (77/) e @) dng dny
R—-R

R R

. 1 1 in ) m ~

—IQPM@//{Z {722/\“6 “”} +gn(n’7<)}dnmdny-
SRR V=0 S 14 P ez

With this, the same transformations that led to the first line of (4.3.4), give

t.z

(—ikt ¢ f(n')" oik=C F(n') ac 13 f( )

n!
nelN, z

dn, dn, [(k ><é'0> xﬁt} ek

for z < —h. Continuing along the lines of the proof of Theorem 4.6 then easily leads to

ﬁ‘s f7< R) 7i(kt7kz) ¢ 7t 0 7t ikt.z
Eo(@ /ngnoo AR dg[(kxe)xﬂe
R
_ A At 7t =0 ot ikt-E
On the other hand,
A R O R N et S L e ol -l il LA

T 2ep k(KL —k.)  2pocqw?kl (k. — kL) 2Kk (k. — k)  2k2 KL (ks — ki)
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- R ey N 1 k,—kt
k2Kt (k. — k) 2k2k k2 2kL k2
1 1 k2—[k]? —1+ A k.
k2 2KL R2(k.+ k) k2 2e0k. KL (k. + kL)
1 N A N A 1 1
TR2 O depkZ  2el | KL (k, + kL) 2K2|7
where
1 L e LA S e Y PR e
ki (k. + kL) 2k2 0 2K2EL (k. + kL) 2kZKL (k. + kD)
- k. — Kt . k2 _ 2 B k2 — [kt]? N Ak?
2k Kkt (K, + k) 2k2KE (K, + k) 2k kD (K, + kD)2 2e0k2kt (K, + kL)
Ak? A k2
= + (5.8)
260 kz ké (kz + ki)z 260 kg ké (kz + ki)
such that
AT v 1] (AR
2 |kt (k. + kL)  2k2] k2
and

With this, it follows that (cf. (5.7))

B3(@) = 5 (1 et )kt [(Fxe?) xR o7 = (1 2 [ () ] 5

N
O ([ - )
for z < —h. Moreover, using the subsequent Lemma 5.5,

U | Ak N p Ak273
E (x):Eo(x)JrEtg(x):ﬁ (1+460k§)w(k§—kz) [(k:t xeo) xkt}ek +o<[?} )

z

for z < —h, concluding the proof of the theorem. |

Remark 5.4. [t is easily shown that the Remarks 4.7 and 4.8 also hold for the transmitted field, if
w(—2k,) is replaced by w(k! — k). Moreover, the result of Theorem 5.3 coincides with the conclusion
by Stearns (cf. [36, second line of Eqn. (42)]).

To prove Theorem 5.3 it was used that

Lemma 5.5. Assume an ideal interface, defined by the graph of a function fo =0, is illuminated by
an incoming plane wave as described in Subsection 2.1. The transmitted field is then given by

L1 AR\ [ o\ o] aitom K2A7?
EtQ(x):ﬁ (14‘@) [(ktxeo)th}e +O(|:F:| .
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Proof. In view of (A.3.3) in the appendix,
- o 2kz R 2kkz — ikt.@
EQ“:{mE+mMM} |
where
0 _ 0 ky
- kyex kxey7 Ehy = € —ky |,
|| KT\ o
t
s (kp€Q + kye0) — K| €2 ., 1 ek
vryM = — - s ern &m T kyki
FIF| w1\ i
Moreover, using (4.3.11) and (4.3.16), it is easily seen that
2k k. — k! KA KA
E_ =1 z 2 =1 @
otk Rtk Ak <{k2}
o th_ FRABYRIRT | ga {2’@ ~1]+0 [Mr
k2k, + k2Kt kzk _ g2 |/€’|2 460k§ k2 k2
such that
- 1 k2A . KA [ k2 T K2A1°
t =2\ 2 >t z —t k"
R Y L s ()
(5.9)
Furthermore, it is easily seen that (cf. (A.1.1) and (A.1.6))
KEx@dp) x k= — (k- @dp) kK + k2l = k2 edp = k2 e 5.10
TE erp TE-

It is harder to show a similar result for the TM-case. Consider (cf. (A.2.2) and (A.2.6))

(Et x é'gM) Rt = — (Et - é'gM) kt+k2e9,,

k = k. k
x ]{52 x vz
2 2 t 1./
- — Kk } k| — ky k.
[ =] |y | = i
{_|k/|2kz*ki + " }k kt
_ 1 /2k —k k t
= TR [—| | +k } ky K

(= KK + kﬂ (~Ik'?)

1 . 1 .
=2 (k'] + k. kL] €fpy = - [k* — k2 + k. kL] €f

With this,

k2A N RAYN ., k. K2A .
(1 + —460@) [(k x eTM) x K } —k (1 + —460@) Ehar = <1 + —460@) (k. — k') @by,

where

gt KR AR AR AR 11
T ket kl eo(k+ kL) 2e0k. e | (ke kL) 2k
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Similarly to (5.8), it is easily shown that

1 AR
(k. +kt) 2k, T 20 ks (ky + kt)?
such that
AK? K2AT
k, — kil = —
z 2€0kz+0<|: k§:| )
and

(H %) (7 x ea) < £ = & (1+ %) har = 5o T + O ([Z—ﬂ)
:k(l—fi}% {2];—%—1D€M+O<{li—fr>. (5.11)

Consequently, since €% = vrg é%p + vy €y, (cf. (A3.1), (5.10) and (5.11)),
(13 ) fors (7 8) ] omn (7 x ) ]} 0 (152 )
(1o o) [ <) #] w0 [52T)

z

and (cf. (5.9))

L1 AN [/ oo\ o] aites A7
EH(Z) = = <1+ 4€0k2> {(kt xeo) X kt} P T Lo ([?] )

z
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Chapter 6

A numerical example

In this chapter, an application of the far-field formulas (4.1.1) and (5.1) will be shown for the simple
example of a non-decaying interface from A N LEF. The interface, or more precisely its amplitude
factors, are constructed in such a way that the height of the interface at every point is a realisation of a
Gaussian distribution with mean zero and a given variance. Moreover, the heights at any two points of
the interface will be correlated according to a given correlation function. At the end, numerical results
will be presented and discussed shortly.

For simplicity, in the context of this chapter, the set of interface functions considered is restricted
to a subset of A. To be precise, an interface function f € A (cf. (3.3.1)) is supposed to consist only
of the almost periodic part (index £ = 0), leading to f(n') = > ;72 Aj ™5, Moreover, to actually
calculate the field, the infinite sum w.r.t. j is restricted to a finite one. At last, to further simplify
the calculations, it is assumed that the spatial frequencies w} are chosen from an equidistant mesh,
ie w' =wl, with a small fixed w € R and ¢’ € Z2.

J
Under these restrictions, the following theorem is shown.

Theorem 6.1. For any interface function
/) - Z /\[/ eiwl’~n', (61)
veT

from A (cf. (3.8.1)) with a finite subset T of Z2, the reflected and transmitted far fields can be calculated
as

B " 9 Z Z Z )‘(n+m+1) et (B x@0) x @ k@2
) ( ) Z E’eZz n=0m=0 m'nl n—f—m—i— 1) [ Z} ¢ [((AJ[/ ¢ ) wé/] e
|k +w 0| <k
L kg E .
+7"(k,60, *) |k/|2 }qv7M( )
Sk, Et = Z Z Z /\(n-‘rm-i-l) J28 Kl NP g &0 % ot ikt @
‘ NZ vep?  wm0m=0 m'n' n+m—|—1) [ ] e [(dp xe®) xap] e

|k +wl|<k

g
kTl -

S e € .
—l—t(k,eoje) |k/|2 +E§\7,M($)’

where the functions r(k,é°,&*) and t(k,é°, &) are defined by the Formulas (3.1.9) and (5.2), and
where )\("+m+1) is defined such that (6.4) holds. The terms EY /(%) and Ejt\-[ (@) are defined as the

remainder of the truncated sums w.r.t. n and m, i.e. the sums from N +1, M +1, N—i—l and M+1 to
infinity. Under the assumption that N +1 > 2(k||flla—1), M > 2(|k:| |flla—1), N >2k||f|la—1
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and M = M > 2 (|k.| || k|4 — 1), these truncation error terms are bounded by

N n
| Ex 0 (@)]| < 2 ( (k11 f1l4) “) (ke [If Y, 2 (RIS 171

wo Zo (n+1)! (M +1)! wo (N +2)!
N n+1 M+1 N+2
HE}E\?M@) < Ni Z (k[I.f]1.0) (sz:fHA) L2 2 (k[ f]) o171l
; @o \ = (n+1)! (M +1)! Qo (N +2)!
where
wp = min{ WKt wlP/k: O € Z?st. k> |k +we’|}, (6.2)

o = min{ B2 |k w2k € T2 st k> K +w£'|}.

Proof. First consider the reflected field. For the given subset of non-decaying interface functions f
(cf. (6.1)) from ANLE, the proof of Lemma 3.9 and the subsequent transformations leading to Theorem
3.1 easily reveal that the reflected far-field formula (4.1.1) reduces to only its first two lines, i.e.

. . ik Rty T
e* E"(Rm) =r(k,e”, &%) W (6.3)
A NN
. In -t ok [(=F o = —j =1 iR3I.m
DY / 50T ac o (81 %) x 3] (W) e
One]N0 JEZ '
Ik +@p <k

By choosing the spatial frequencies w’ of f from an equidistant mesh, it is possible to simplify the

J
calculation of the amplitude factors )\OJ(C). Recall that the sum w.r.t. j results from Lemma 3.9.

Comparing Formula (3.3.16) with (3.3.15) for f defined above,

n+1l k. ¢ f(n' In i@, .n' (ZkZC)m m+n+1 ('LkZC)m n+m+1) w0 .0’
L D D D e U0 D D ) DR VARSI
JEZ meN, ’ meN, tovez?

where A, (ntm+1) 5o defined such that

[f( m+n+1 [Z o ezwé n

lex

= N7 A gt (6.4)

m+n—+1
‘| U ez?

Thus, the sum w.r.t. j in (6.3) is replaced by the two sums w.r.t. m and ¢, the summand X’OIJ(C)
is replaced by (ik,¢)™ /m! )\glerJrl) and @&y ; by w/'. Hence, defining wf' = /B2 =K + wl]? and
Ge o= (K +wt )T,
ik RiTy it

k|

T Ty

nelNy meN

—

&~ E"(Rm) = r(k,é°,&*)

1

ik. ()" (=i¢)" n+m T~ - - =1 iRG, -
3 [ U s o) ] uf] e
=, Il
|k/+§e\<k0
L L. ¢ikRAg
=r(k,é%é )7|k,|2 (6.5)

. (=8)" (ikz)™ (ntmA1) [ 1L o [ (5 S0Y S 5] iRy i
o 3 S ) 5, AT G ] e

|k +w | <k
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Note, that using the convolution operator ’x’

<Z /\Efl)eiwl’-n’> (Z /\ sz’ ’) Z [A(Sl)*A(Sg)}ZI eiw[’-n’ _ Z )\gf1+82)eiw6’~n’7

0'ez? ez Lez? Lez?

which allows to calculate )\gﬂ_mﬂ) relatively easy by successively applying discrete convolution algo-
rithms.

Using this, all values in Formula (6.5) can be calculated and it only remains to evaluate the formula
to obtain the reflected far field. Naturally the sums over n and m in (6.5) have to be truncated to
be evaluated. To control the error of such a cut-off, an error bound has to be found. The error of
truncating the sums after N and M steps is

HE}“VM )|| = Z Z Z /\(n+m+l)[ ]n,l & [(@w x &°) x @]
n=0m= m'n' n+m+1) v ez? v -
|k 4w 0| <k
(ntm+1) 7 =1 Sx (= >0 -
7;37; m!n! 7’L+m—|—1) é/eZZ2 >\é/ [Wz} € [(WZ/ X e ) X W[/} |
|k 4w 0| <k

. 00 0o N M N 0o 0o 00
First note that > .73 00 @nm =2 00 2am=0 nm = 2on0 2ometit1%nm T2 neN41 Dmeo Gnm
for some absolutely summable sequence (an,m)(n,m)Tenz- Furthermore,

(_i)n(ikz)m (n+m+1)1 p/qn—1 4 o -0 o
minl(n+m+1) Z A [w?] & [(@e x &%) x &y ]
0 ez?
|k 4wt |<k
< k;n k? )\(n+m+1) |wg/ n—1
“mlnl(n+m+1) ¢ z
0 ez?
|k 4wt |<k

Observe that the set {¢' € Z?| |k’ + w{'| < k} is finite. This shows that the positive constant wg < 1,
defined as the smallest real value of \/k2 — |k’ +w ¢'|/k for all £/ € Z? (cf. (6.2)), is well defined and

that [w!| > kwy such that |w? "1 < k"1 /w, since || < ||&e|| = k. Moreover, since
+m+1 +m+1
Do TR ST Y = [
0 ez? v ez?
|k +wt’ | <k

the Banach algebra properties of A prove that
n+m+1 n+m+1
PO EVAR B F VAR

Vez?
|k +wt'|<k
Altogether,
(_Z.)n(ikz)m (n+m+1) 1 ¢/ qn—1 L% o -0 R
min!(n+m+1) Zz Av [wo ] & [(@e x €°) x @]
V'ez
k' +w | <k
< — = || f
wom! (n+1)!
and
[Fvicall
N n 0 m oo n oo m
oL Z(kaHA) “ T k=t AL™Y | L 3 (K [1f]la)™+" Z(|kzll|f||A)
~wo \ & (n+1)! v m! wo \, 57 (n+1)! — ml :
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This can be further bounded using standard estimates for the approximation error of the exponential
function. To be precise, for e® and an arbitrary a € R,

aN+1

e — 2% = m’l‘]\[(&),

where |ry(a)] < 2if N > 2(|a] —1). Indeed, for N > 2(]a| — 1) and thus |a|/(N +2) < 1/2, it is easily
seen that

a a" o a[* oM (V1) oM~ al )"
_ < = = <
¢ ;n! —ngv;l - (N+1) Z" (N +1+n) (N+1)!; N+2
|a|N+1 0 1 |a|N+1

TN+ en (N )Y

since
(N +1)! - 1 1 1

(N+1+n)! TP (N +240) = T (N +2) T (Nt

Hence, assuming N and M sufficiently large, i.e. N +1 > 2(k||f|la — 1) and M > 2(|k.| | flla — 1),

vz 2 (= (k1™ e LMY 2 (k| f]l.a)V T2 N
HEN,M(CC)HSM_O<7§ (n+1)!> TR s ok 11

At last, using this bound to determine sufficiently large N and M to get a small error in the reflected
electric field,

(6.6)

(n m+1) ran—1 Ly - > - ik,
260 Z sz'n' n—l—m—l—l))\ LI e [(We x@0) xap] ek

tez? n=0m=

|k +w € | <k
for N, M — .
Starting with the first two lines of (5.1), the same approach can be used to get the formula and
corresponding error estimate for the transmitted field in Theorem 6.1. |

To get an interface (6.1), for which these formulas can be used to calculate the resulting field, a set
T was created containing a finite number of randomly chosen indices ¢'. Of course, to get a real valued
function f the negative indices —¢ are also added to Z, i.e. Z =Z,UZ_, where the ¢ in Z, are chosen
randomly and their negatives are collected in Z_. It is well known that if the length of the corrugations
in the rough surface is much smaller than the wavelength, the light ’sees’ only the averaged surface.
In view of this, it can be assumed that the corrugation lengths 27/|w ¢'| of the surface are larger than
a small constant times the wavelength. This restricts the range when choosing the finite number of
indices ¢'. To get the corresponding complex valued amplitudes Ay it is possible to simply choose them
independently and according to a uniform random distribution. The downside of this approach is that
it creates a random surfaces with no specific correlation function. Another way to define the interface
function is as follows.

Definition 6.2. Let for a given correlation function o2e —(Ini—=nb/e0)* , where o is the standard deviation
of the random effect, c; the correlation length and o a constant quanttfyiny the roughmness, the interface
function f be defined as

f(nl) = Z V we 7‘[’ +Zh7,é’) wt 77 (67)

o \/2|I Pyt
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with
Go(s') = 02/6_(‘m/|/0’)2a6_i5/'m/ dz’. (6.8)
R2
Here the value |Z| = |Z4|+ |Z-| = 2|Z4|, where I is the set of indices chosen uniformly, independent

and identically distributed from a finite set L, := {—L,—L+1,...,L—1}2 C Z? for some fived positive
L € N. The set Z_ is defined as {¢' € {—L+1,...,L—1,L}>: —¢' € I} such that T =T, UZ_.
Similarly to the indices in Ty, the values h, o and h; g for ¢ € T, are realisations of independent and
identically distributed random numbers. These random numbers are Gaussian with standard deviation
o and mean zero. By defining hy ¢ := hy _¢ and h; ¢ := —h; _¢ for oll £ € I_ it is ensured that f is a
real valued function. The Fourier transform Go, in (6.7) is called the power spectrum density and it is
shown in [28] that it can be evaluated explicitly for o = 1/2 and a =1 (cf. [33, Eqns. (2.6) and (2.7),
p. 14]). Indeed,

o2r o2c? ,(cz\s'\y
2
Gi(s) = ——— Gi(s) =mo’ce .

VIF @z

For such interface functions, there holds

Nl=

Proposition 6.3. The graph of a function f defined as in (6.7) describes a surface that has a correlation
function Corr(ny,n,) that approzimates o2e=m=ml/c0** " For all fived compact sets E C R? and if
1y — ny € E, the approximation Corr(n},ns) tends to the desired correlation function for w tending to
zero and w L tending to infinity.

Proof. For similarly defined one-dimensional random surfaces something comparable is shown in [24,
Appendix Chapter A].

Note, that f is defined with the help of two multivariate random variables. Firstly, a fixed number
|Z. | of indices ¢ are chosen randomly from the set £, = {—L,—L+1,...,L — 1}2. This can be
represented by a selection function Sy : £ +— {0, 1}, which is one if ¢’ is one of the randomly selected
indices in Z, and zero otherwise. With this (cf. (6.7)) and £ := {—-L,—~L+1,...,L —1,L}?

wlL . iwl
Fsmm ) = ——=>_ (Se +S-0) VGa(wl) (hypr +ihip) . (6.9)

mo\/2\Z| S=2

In this sense Sy can be identified by a 4L2-dimensional discrete random variable that takes values
from {0,1}4L° where exactly |7 | values are one, i.e. |Sy| := Ywee, Sv = |Z4|. In contrast, the
8L?-dimensional random variable H := ((hr¢')eer, . (hie)ecr,) is continuous and takes values from
R3-.

To calculate the correlation function of the heights at two given points 1} and 7}, the expected value
of the product of the random function at the two points is calculated, i.e.

Corr(my, m5) == E(f(s, 1) (01) f(s, 1) (M)

=y / fesp.my(mh) fes,.my(n) p(Ser, H) dH,
Sy 6{0,1}4L2R8L2
[Ser|=IZ4]

where p(Sy, H) is the corresponding joint probability density function. Since the random variables are
chosen independently, the joint density function is equal to the product of the density functions of the
single random variables. To be precise,

p(Se, H) =p(Ser) ] p(h, ;) p(h, 5)
é’€£+
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such that

2L2
Corr(ny,n5) = m Z / {
Sy 6{0,1}41’2 RSL2
[Ser[=1Z+]

S (St 4+ 5-0) \/Galw ) (g +ihigg)e™ }

el

[Z (Sgé + S_gé) Ga(wlhy) (hr,€’2+i hi7g/2)eiwzl2'77§]
thel

p(Se) 1] p(hr,z/)p(hi)@,)} dH.
el

Moreover, for any fixed realisation Sy the summations over ¢’ consists only of the indices ¢’ from Z
and Z_, leading for j = 1,2 to

> (Sé; + 5—@;) Go(wl) (hrer +ihig )™ 5
el

= > \JGalw ) (hrp +ihip) e 5 + 3"\ [Ga(wl) (A +ihig)e 5

ey e
Z \/ wﬂ ré’+lhzé’ E 77]+ Z 1/ wﬂ ré’ théz u;.)f 771
UEeTy UEeTL

where it was used that G, (—wl’) = Go(wl') (cf. (6.8)) and that hy¢ = hy_p and h; ¢ = —h; ¢ for
all ¢/ € Z_. Thus,

Corr(n},n5) = #fn“ Z Z Z \/Ga(wﬁ'l)\/Ga(wE’Q){

Sy 6{0,1}4L2 E/IGI+ Z/2€I+

|Ser1=1T4]
/—Zl' /

/ (Whoy +ihie) (W2 —ih7e) 11 (b, ) p(h; ) dH e mimtem)

R8L? ey

i / (hrey = i) (B, = ih3g) 11 plh o) plhy ) A et
REL? Vec,

+ / (hpgy +ihi g ) (h2 g +ih% ) H p(h, ;) p(h, ) dH i (€1 +5m3)
RSL2 ireL

+ / (Wt —ihig) (W +ibiy) T ph, p(hi,é/)dHe_w(é/l'"i_%'"é)}p(Sw)-
RSL2 el

Note that the mean integrals w.r.t. H correspond to the correlation of the random variables hM; and
hi7g; for all é;- € L and j = 1,2. As mentioned before, the random variables are independent and

2

Gaussian distributed with constant zero mean and variance o, such that the means of

(Prer +ihie) (heey, — i higy) = hoer hoer + hior Bigr + i (Rigr Bgr — oy gr higr),
(hr,zg —ihi,e;)(hr,z; —ihi,e;) = hrpy hyoy — hier hig, —i(h i0) Py, + P er g ),
(P +ihiey) (heyey + i hier) = hoor By = Bi g B o + i (haey Bgy + hoer i)
( ( (h

7,
e ity Pgy — hogr i)

)

=i hig) (B +ihiey) = ey hogy + hig by — i

are zero for all / ¢ 7., all ¢4 # ¢, and all £, = £, = /" in the second and third line, where the covariance

02 — 0% = 0 is obtained both times. Only the means of the first and last line can be non-zero, i.e. 202,
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and even then only in the cases of 4 = ¢}, = {'. Consequently,
2 L2 / : e/ ’ ’ / . e/ ’ ’
Corr(ny,n5) = T[T Z Z Go(w ') et (m=—n2) +Z Golw ) e ™ mi=m) L(S,,).
S£/€{0,1}4L2 LeTy eTy
[Ser|=1Z4 ]
(6.10)

Note that since the indices ¢’ in Z, are chosen uniformly, identically and independently distributed,
the sums

4L2 iwt (0} —5) AL? —iwt’-(n}—n})
e; Gl : T e; Go(wl')e
are Monte-Carlo approximations of the full sums

ZG“ (w?) it (n=m2) ZGQ (w?) et -(m—m)

veLy vecy
respectively. It follows that the expected values of these sums in (6.10) are equal to these full sums,

giving

2 2
Corr (1, m5) = # Y Galwt) et i) 4 8‘"—2 Y Galwt)e @ i) (6.11)
el el

Recalling the definition £, = {—L,—L+1,...,L—1}? it is then apparent that these sums are Riemann
sums approximating the integral

Go(s') eXs n—m2) qg

[~wL,wL]?

To be precise, the domain of integration [—wL,wL]? is split into 4L? squares of equal size w?. The
integral over one such square [wly, w(€,; +1)] X [wly, w(€, +1)] is then approximated by the cuboid with
the square as base and the height equal to the function value of Gy (s') e (=) at s = w(l,,£,)T
Since G (—s) = Gu(s) it follows that

Corr(1j,, 1) ~ / Gol(s)) e (m=m2) qgf _|_ / Gols') e ™ (m=m2) g/
[ wL,wL]? —wL,wL]?
/ Go(s') e =) qg'. (6.12)
[ wL,wL]?

Moreover, for ¢;, « > 0 the kernel of the Fourier transform G, (cf. (6.8)) is absolutely integrable such
that the Riemann-Lebesgue lemma gives that G, (s") tends to zero for |s’| — oo. Hence, the truncated
integral on the right-hand side of (6.12) is an approximation of the integral over the entire R?, i.e.

(cf. (6.8))

1 sl ’ ’ ’ ’ «
Corr(ny,n5) ~ H/Ga(s/) et - (m—m2) qg' = (filGa) () —nh) = o2e—(Im—mal/e)*> (6.13)

Note that this last approximation is better in the case of @ = 1, where GG, decays exponentially, while
G, decays much slower for « = 1/2. This shows that the function f in Definition 6.2 approximately
has the given correlation function o2e~(Ini=—mzl/er)*

It remains to consider the validity of these approximations. It is easily seen that (6.11) is a periodic
function w.r.t. nf — 05, while, according to the Riemann-Lebesgue lemma, (6.12) decays to zero as
|7y — nh| tends to infinity. Consequently, (6.11) can only tend uniformly to (6.12) for decreasing w, if
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Figure 6.1: Desired and reconstructed auto-correlation functions for 10 interface realisations and 100
(left) and 1000 (right) randomly chosen spatial frequencies

the difference 1 — 74 is restricted to a compact set. In this sense, the function (6.11) tends to (6.12)
weakly, i.e. when testing with functions from C§°(R?). Integral (6.12) on the other hand converges
uniformly w.r.t. 9§ —n4 to (6.13) as L tends to infinity, since G, is absolutely integrable. Indeed,

/Ga(sf)eis/-(ni—né)dsl_ / Ga(s') e =) qg'| = / Go(s) e’ (h—2) g/

R? [~wL,wL]? R2\[-wL,wL]?

< / |Ga(s')|ds’
R2\[-wL,wL]?

tends to zero as L tends to infinity. |

Remark 6.4. Using the same approach as in the proof of Proposition 6.3 it is also easily shown that
the given mean height p of zero and height variance o* are approzimated by the mean py and variance
O'ch = Corr(n',n') of the function f.

An example of such an interface is shown in Figure 6.2. Moreover, Figure 6.1 confirms that the
interface is correlated according to the auto-correlation function o2e=(In'l/e)* (here: o = 1). The
two plots in the figure show the desired auto-correlation function (blue) depending on the distance of
the points of the interface and the reconstructed auto-correlation functions (red) for ten realisations of
the interface. The latter are calculated by randomly choosing a finite number of point pairs (0], n5)
with fixed distance r = |n} —n5| and calculating the correlation for the corresponding pairs of interface
heights (f(n1), f(n})) for an interface realisation f. This is repeated for different distances r to get the
approximated correlation function for one realisation. Note that all field calculations in this chapter
were done for interface realisations where 100 spatial frequencies were chosen randomly. The right
picture in Figure 6.1 shows that the behaviour of the correlation function of the interface realisations
can be slightly improved by increasing the number of randomly chosen frequencies, or in this sense, the
number of basis functions for the interface. Naturally, this will also increase the computational cost
since the matrix Ay, for all ¢/ € [—-L, L]?> D Z, will have more non-zero entries, which will negatively
affect fast convolution algorithms used to calculate the factors )\ff).

Using the derived far-field formula (6.6), the efficiencies of the propagating plane waves (all ¢ where
|k' + wl'| < k) can be calculated (cf. Fig. 6.3(a)). They can be considered as discrete approximate
values for the density function of the scattered power. Recall (cf. [36, Equ. (24)]) that this density is the
differential power dP*¢ scattered into a solid angle df2 with direction m = (my, my,m,) ", i.e. (cf. [13,
Eqn. (1.36), p. 9])

ap ()
@ Ee
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Figure 6.2: An interface realisation from A N LF with 100 randomly chosen spatial frequencies, a
correlation length of 2.4 nm and a standard deviation for the height of 0.2 nm

The plane wave efficiencies displayed in Figure 6.3, on the other hand, are defined as

[E=()[|* K m-|

E(m) = -
() 1Bz k]

Note that dP*¢/dQ) is the portion of the incident energy scattered into direction 7, i.e. the energy
passing through a reference area orthogonal to m. The efficiency F(m), on the other hand, is the
portion of dP*®¢/dS) passing through a reference area parallel to the z-y-plane. The plots in Figures 6.3
and 6.5 are to be understood as follows. The distance of every plotted surface point from the origin
corresponds to the differential power dP*¢ scattered into the solid angle df2.

Knowing that the width of the illuminating beam is much larger than the wavelength, the actually
observable density function of the scattered power can be simulated as the average over many realisations
of such a simple rough interface. Indeed, in many practical applications the random interface is assumed
to be ergodic. This means that it is irrelevant whether the statistical average is taken over many different
parts of one realisation of the interface or over many different realisations at one point of the interface
(cf. [33, Sect. 2.1.7(c)]). Applying the latter, the power average is computed in a classical Monte-Carlo
manner and is presented in Figures 6.3(b) to 6.3(d) in a logarithmic scale, where, instead of dP"/dS2,
either the value 9+ log,,(dP"/dQ) is plotted, if the value is positive, or zero is plotted otherwise. Such
a scaling was chosen, since, depending on the direction, drastic differences in the order of magnitude
of dP"/dS2 can be observed. Naturally, a logarithmic scaling resolves this problem. However, since
dP"/dQY < 1, it follows that log,o(dP"/d2) < 0, which can not be used as a radial component in
spherical coordinates for the desired plots. Adding an arbitrary constant (here: 9) and setting all
resulting negative values to zero resolves this problem and results in a logarithmic plot dominated
by the highest values of dP"/dS?, while ignoring the smallest values. In addition to this rescaling,
all the surfaces in Figure 6.3, except that of Figure 6.3(e), are smoothened by convoluting the radial
components of the surface with a scaled density function of the Gaussian normal distribution. To be
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Figure 6.3: Approximated power density averaged over 1, 50, 200 and 2000 realisations of the interface
function: spatial frequencies for the interfaces with norm between zero and fixed upper bound (the
length of the lines representing the incident and specular directions in Figure (a)—(e) do not represent
the incident or deflected power in these directions; in Figure (f), the length of these lines represents the
power of the total field ch + ESQC deflected in the specular directions)

precise, let the E(m;), for a finite number of j € IN, be the calculated efficiencies. Then, the radial
function

1

27 52 {1 —e

R(7) :=
} {meR?:||m|=1}

e E N B (i) b, (71) i,
J

where s (here: 1/10) defines the smoothening radius, is used for the smoothened surfaces in the Figures
6.3 and 6.5 to define the distance of the surface from the origin for every direction @. Using the
coordinate transformation (4.2.22) to spherical coordinates, where 7 is the polar axis, the function
R(7) can be simplified to

E(T_ﬁ) Aom—1
J > e .

7 2ms? [1 — e_?}

The choice of the scaling constant 1/(27 s2[1 — e~2/%"]) ensures that

1 17— 712
—2 e_ 32 d’r?l,:l.
201 —e 32

2ms [l ¢ ﬂ{mem%nmnzl}
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Figure 6.4: Simulated averaged efficiency for fixed specular (left) and arbitrary non-specular (right)
directions as a function on the number of Monte-Carlo realisations

The smoothening is done to obtain surfaces, which represent the actual power density more closely,
by removing the discrete nature of the calculated efficiencies, which can still be observed, even after
averaging over 2000 realisations (cf. Fig. 6.3(¢)). The mentioned discrete nature of the efficiencies is the
result of choosing a finite number of spatial frequencies from a equidistant mesh to create the random
surface realisations.

Note, that the plots in Figure 6.3 only show the averaged power for the difference field E;c without
the field Eg scattered at an ideal interface. This is done since the portion of the power refracted
into the specular directions, especially the transmitted one, is much larger such that even the chosen
logarithmic scaling can not resolve both orders of magnitude at once. Indeed, for 2000 realisations, the
maximum differential power dP”/dS) of the difference field is 1.65 - 1078, while that for the specular
refracted directions in the case of an ideal interface is 1.82-10~* (reflected) and 0.99981 (transmitted).
This is visualised in Figure 6.3(f). This figure shows the same plot as Figure 6.3(d), except that the
lengths of the lines representing the incident and specular directions, now correspond to the power of
the incident field E® and the efficiencies of the total field ch + ”ch in the specular directions. When
studying the first four plots of Figure 6.3 it is apparent that, as one would expect, the surface smoothens
with an increasing number of realisation. An interesting fact, when studying the averaged power of the
difference field for this example, is that it seemingly converges much faster in the specular directions
than in other directions. This is visualised in Figure 6.4 by plotting the averaged power in dependence
of the number of realisations. The curves on the left side show the behaviour for the specular directions
(reflected and transmitted), while the plots on the right side show the same for arbitrarily chosen
directions other than the specular directions.

The following parameters and material constants were used for calculating the fields resulting in
Figure 6.3.

e Incidence wavelength \: 13.664 nm

e Dielectric constants €g: 1

e Lower dielectric constant e{: 0.97349584
e Magnetic permeability pg: 1
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Figure 6.5: Power density averaged over 2000 realisations of the interface function, where only one
interface parameter of the original set was changed respectively — Left: Increased correlation length ¢,
Middle: Increased standard deviation of interface heights, Right: spatial frequencies with norm between
fixed positive lower and upper bound

e Incidence wave vector k: k(1/v2,0,—1/v2)T
e Incidence polarisation €°: (0,—1,0)" (TE-polarisation, cf. (A.1.1))
e Step-size of spatial interface frequencies w: 47 /1500

e Upper bound for spatial frequencies: |w | < 27/5 (or equivalently a lower bound for spatial
wavelength or corrugation length of 5nm)

e Roughness constant a: 1
e Correlation length ¢;: 2.4nm

e Standard deviation of the interface height o: 0.2nm

Note that all the presented plots as well as the underlying calculations have been done using Matlab.

Figure 6.5 shows the effect if parameters are changed or if structure is added to the random interfaces.
For the first plot, the correlation length was more than doubled (now: 5nm). In contrast, for the plot
in the middle the correlation length was left at 2.4 nm, but the standard deviation was increased to the
tenfold, i.e. to 2nm. In both plots, these changes of the parameters defining the random behaviour of
the interfaces have visible effects on the power density. For the rightmost plot in Figure 6.5, an upper
bound for the corrugation length, or equivalently a positive lower bound for the spatial frequencies
(lw?| > 2m/15), of the rough surface is employed. This was not the case in the example above,
where the corrugation length was unbounded, since any spatial frequency close to zero was permitted.
Comparing the plot with Figure 6.3(d), a jump in the density function is observed for directions of a
fixed angle to the specular reflection or transmission direction. For directions closer to these directions
the density is remarkably smaller. This is plausible, since even for sinusoidal gratings with such an upper
bound for the corrugation length, there is no light, apart from the specular reflected or transmitted
modes, propagating into a cone around the specular direction.

Remark 6.5. Since the change of parameters has a visible influence on the power density, it is conceiv-
able to also consider the inverse problem, i.e. deriving the interface parameters from the measurement
of the power density. Naturally, to do so, the scattered field has to be measured very precisely in all
directions, not just the discrete refraction modes usually measured, e.g. for gratings. That such precise
measurements are possible was, for example, shown by Hakko et al. [19]. In their work, they measured
the weak scattered field in directions between the main refraction modes. This weak background scattered
field is caused by imperfections of the grating, i.e. roughness.
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Chapter 7

Summary and perspective

In this thesis, Born approximation was used to derive explicit formulas (cf. Thms. 4.1 and 5.1) for the
far field resulting from a plane wave scattered at a rough interface. This approach is heavily based on
work by Stearns [36]. To rigorously prove the obtained formulas, slight changes to Stearns’ approach
were necessary. Firstly, the problem was solved in the sense of a modified limiting absorption principle
by assuming materials that absorb energy of waves travelling away from the interface. Secondly the
scattered field was not calculated directly, but instead the difference of this wanted field and the
scattered field resulting from ideal planar surface was calculated. The latter was easily obtained by
applying the well-known Fresnel formulas such that the wanted scattered field could be obtained by
adding this formula to the solution for the difference field.

To apply the Born approximation it was assumed that the dielectric constants of the two materials
separated by the interface are very close to each other (low contrast). Furthermore, it was assumed
that the interface is defined by the graph of functions from a specific class (cf. Eqn. (3.3.1)), containing
almost periodic functions as well as almost periodic functions modulated by radial functions decaying
at infinity. For these interface functions the far-field formula for the reflected field were proven in detail,
while the proof for the transmitted far-field formula was only sketched by presenting the few differences
to the proof of the reflected field.

To derive the reflected far-field formula, the inhomogeneous vector Helmholtz equation was formu-
lated in the sense of a modified limiting absorption principle. Afterwards, the equation was adapted
using Born approximation by manipulating the right-hand side. This new equation could now be
solved applying generalised Fourier transforms, leading to an approximate integral representation of
the reflected field. The occurring integrals were represented as Cauchy principal integrals at infinity
to change the order of integration and one of them was evaluated explicitly by employing the residue
theorem. Assuming the above described class of interfaces, the remaining limits were evaluated. It was
also shown that the obtained formulas are asymptotically identical (small contrast) to the results by
Stearns, when comparing the reduced efficiencies in specular direction and the plane wave amplitudes
for scattering at a sinusoidal grating.

To illustrate how the presented far-field formulas may be applied, a simple example where the in-
terface was defined by purely non-decaying, i.e. containing no decaying parts, and highly oscillatory
biperiodic functions was introduced. Especially the second restriction led to a simplified setting, allow-
ing the use of discrete convolution algorithms to efficiently calculate the plane-wave amplitudes of the
scattered field. Additionally, an error bound for truncating the infinite sums in the far-field formulas
was derived. With this it was possible to implement a fast evaluation of a discrete approximation of the
scattered power density, which in turn made it possible to make a statistical analysis of the latter using
a simple Monte-Carlo approach. To be precise, the power density distribution was calculated for many
interface realisations and averaged. These averaged efficiencies correspond to efficiencies observable by
experimental physicist, since an illuminating beam in practice is much larger than the length of the
surface corrugations, leading to an averaging over many interface realisations. Furthermore, to create
more ’'realistic’ interface realisations, they were constructed in such a way that they satisfy a given
correlation function.

One of the next steps, when analysing scattering at rough surfaces in this manner, could be to



CHAPTER 7. SUMMARY AND PERSPECTIVE
126

extend the presented class of interface functions. This applies in particular to the almost periodic part.
At present this could be considered as a discrete representation of a random process. Indeed, Yaglom
[41] proves that most stationary random processes occurring in nature possess a well defined spectral
representation similar to the Fourier transform for integrable deterministic functions. To be precise, in
the one-dimensional case, a random process X (t) can be represented by

X(t) = / et dZ(s), (7.1)

R

where Z(s) is another random process and the integral is defined as a Stieltjes integral, i.e.

N
ist : : i5nt
dZ(s)= 1 1 nZ — Z(8p—
/ edZ(s)= lim om0 Y e [Z(sn) = Z(sn)],
R b—+o00 n=1
where a = s, $1,...,8nx = b is a partition of the interval [a, ] and §,, an arbitrary point in (s,_1, $p)-

If the density function pz of Z exists (e.g. Gaussian distribution), the spectral representation (7.1)
reduces to the usual Lebesgue integral, i.e.

X(t)= /pZ(s) et ds.

R

Using such a spectral representation (7.1), the class A (cf. (3.3.1)) of interface functions may be extended
by replacing the almost periodic sums >, Av,; ¢t with (7.1). Naturally, a corresponding formula
of (7.1) for the 2D case has to be formulated. By applying similar arguments and proofs as for the
"discrete’ case, it may now be possible to deduce similar explicit formulas describing the scattered
far field as a statistical distribution and not just as the field for a single interface realisation, as it is
the case with the result presented in this thesis. The first step toward such a far-field distribution
function, would be to once again consider realisations of the random interfaces, now defined with the
spectral representation (7.1) instead of almost periodic functions. However, the analysis to obtain
a corresponding far-field formula may necessitate the introduction of additional restrictions to the
interface, incident field or materials. The next step would be to analyse the stochastic properties of
these newly obtained formulas, i.e. the mean, variance, higher moments and distributions, as well as
the correlation of the power densities in different scattering directions. Again it may be required to
impose additional restrictions to the problem class.
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Appendix A

Reflection at an ideal interface

In this chapter, the classical solutions for a plane wave deflected at an ideal planar surface Q@ will be
derived. It is assumed that the incoming plane wave is as described in Subsection 2.1 with a wave
vector k. Furthermore, w.l.o.g. Q is assumed to be the z-y-plane. Thus &5 := (0,0,1)" is the normal of
Q. Two polarisation states are distinguished. For the TE case, the polarisation vector €2, is supposed
to be in the x-y-plane. In the TM case the corresponding polarisation vector €2,, is supposed to be
orthogonal to €%, and k. The two polarisation states will be examined in the first two sections. In
the final section of this chapter, the formula for the deflected wave in case of an arbitrary constant
polarisation €Y, which can be represented as a linear combination of €95 and €2, will be considered.
Note that the results of this chapter are well known. The main purpose of this chapter is to introduce
the notation used in the context of the present thesis.

A.1 TE polarisation

In the TE case, the polarisation vector €9 takes the form

1 Fy
Ap=— | —k: |, (A.1.1)
K| 0
since €2, must be orthogonal to the propagation direction k and of norm one. Naturally, this is not
unique. This is especially true in the case of normal incidence, i.e. k=k (0,0,—1)7, where (A.1.1) is not
well defined. In the case of non-normal incidence, both €% as in (A.1.1) and its negative are possible
polarisations. The given definition is chosen arbitrarily. In the normal case, all unit vectors parallel
to the z-y-plane are possible. Here, &2, is defined as (1,0, 0)". The case of non-normal incidence is
considered first. The scattered electric field is now determined by the classical jump conditions

|:E X 63:| = 0, |:ﬁ X €3:| = 0,
Q Q
i.e., by the equations (cf. [23, Eqn. (7.37), p. 304])
(¢Pp + erp — €rp) x & =0, (A.1.2)

(Exé%E+ET x &g — K xé}E) x & =0, (A.1.3)

where k7 := (K, —k,)T, with k' := (ku,k,)7, and k := (K, kL), with k! := —\/k2 — |K'|* and k :=
V/ Ho€pw, are the wave vectors of the reflected and transmitted plane wave modes, respectively. The
symbols €7, and €., identify the complex valued polarisation vectors of these modes, such that

ik"-T

or o ot =t ikt .z
Ergp =érge ) Ergp =érge .
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Note that €75 and € eTE are parallel to €2 ,. The orthogonality of €3 with €2, érp, €L, implies that
(k X @) X & = —&-k &y = —k.@p, for j = 0,7, 1. Hence, equation (A.1.3) simplifies to

—k,éPp —kl Erp+klehy =0. (A.1.4)

On the other hand, for the polarisation vectors in the z-y-plane, equation (A.1.2) leads to €95 + €5y —
et = 0. Substituting €t = e¥p + 75 into (A.1.4) gives

k

o L T Lt Ll R +\/k2 y
eTE = Tkt _kr eiQE = — eTO“E = |k/ —ks ) (A.1.5)

z z kz _ k2 _ |/€'| / 0

St >0 or k- 1 ky
érp=€rgptérg =2 = | ke (A.1.6)
kR — w2 R o
for k # k (0,0,—1)T and otherwise
= 1 1
k—k k
erp=——=1 0|, etp=2——=10
k+k\ g E+k\ g

A.2 TM polarisation

As before, it is necessary to specify the unit vector €2,,. Since the vector is contained in the incident
plane, it has to be a linear combination of k¥ and &: €3 such that € eT u -k = 0. Hence, a constant v € R is
to be determined such that €, is a multiple of k+vés and & édy; -k = 0. Taking the scalar product

of @), by k leads to v = —k?/k. and, by an additional normalisation with
2 |l. k2 2
=7 L H(k ooy~ K| = o R0 4K + (2 +82)7) (A2.)
kz k2 T Y kg z\"Vzx Y z Yy
k2 |k
to
1 k 1 Fok
e = k+ ﬂ):——Z(EjL ﬂ):—— kyk. | . A22
= | (Feva) = (Fva) = kP (422

Similar to the TE case, (A.2.2) is not well defined for normal incidence, i.e. k= (0,0,—1)7. In this
case, €0, is, for definiteness, defined as (0,1,0)". Note that this definition also satisfies the condition
for the TE polarisation above, such that the same approach can be used to show that

e k—k (1) _g k (1)
= — R 6 - B
ER T Y ™k

for k =k (0,0,—1)7.
In the case of k # k(0,0,—1)", the approach that led to (A.2.2) can also be used to easily show
that the unit vectors € and €¢, with €7.,, = v, €} and €}, = v, €}, can be represented as

kK2 — |k
1 kyk , . Ld

e =———| kyk. |, ey =—= /7 2 |. A.23
0 k |k/| |]Z1|2 0 k |k/| _ky k2 — |kl| ( )

L
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Similarly to the TE polarisation, the electric field is described by two jump equations, i.e.

|:€E . 53:| = 0, |:E X 53:| = O,
Q Q

or more precisely (cf. [23, Eqn. (7.37), p. 304])

[60 (€%M+Vrgg) —GIOVtég:I ez = U,

(EPnr + vy —viég) x @ = 0. (A.2.4)
The first equation shows that
K| K|
= 0 [G%ML"‘VT les].  k? L|k|’| —Vr L\kl’\ _k (1= )
t— >t ~ 79 E == —Ur),
€ €
0 €5l k AT k

while evaluating the cross product in (A.2.4) leads to

-0 i it =
(eTM +uvrey — 1y eo) X €3

| kyk kyks R AV G Ll
S S 4 S [P (R A A - — 0.
v A R RV
0 0 )

Obviously, the first and the second component of this vector valued equation are linear dependent,
while the third component is always satisfied. Thus, considering only the first component w.l.o.g. by
replacing v, with k/k (1 — v,-) and dividing by k,/|k’|, there follows

k2 k. | K JE2 "2 —
k+yrk+]}2 (I—v )\ k2= |K|"=0.

Hence,

K2k, + k2\/k2 — |k
Vp = — )

K2k, — k2\/k2 — |K/|

(™)

» Pk, + B2\ k2 — W2 hake
ey = T = > & |]€I| _kyk; (A25)
kaz_kQ /k2_|k/| —|kl|
for k # k (0,0,—1)T and (cf. (A.2.3))
k kk g [ e £ — e
ern = 7 (1-vp)éy = —2- = S| k2 — |k (A.2.6)
K2k, — k2\/k2 — || 2
— K|
for k # k (0,0,—1)T.
A.3 General polarisation
For a general polarisation, €° is a linear combination of the TE and TM vector, i.e.
e’ = (&% épp) @pp + (€7 €par) Epars (A.3.1)
where
o o Kyed —kael 0. g0 ko (ko€ + kyel) — K[ €2

“Ee = T = e
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for k # k (0,0,—1)T and otherwise

-0 -0 _ 0 >0 0 __ 0
e 'eTE—em, (& 'eTM—ey.

Consequently, the formulas (A.1.5) and (A.2.5) imply
_ k. + k2 — k) ky
E"(7) = — (kye) — kee)) | —ka

ko — /K2 — || 0

Rk + kB2 = K ke (ke + hye) — |20 [ ~Rak

keyk c (A.3.2)
~ ~ 2 Ty 2 e
2k, — k2\[k2 — |k K — K K|

for k # k(0,0,—1)7, while (A.1.6) and (A.2.6) imply

+

k
kyed — kyel _sz

k. — k2 — k') 0
_ 72 (10]2
(o + kyed) — P [ TRVEZIRL AL
’ ];2/{ k2 ‘];2 |k’|2 _ky ];32_|k/|2 |k/|2e (A.3.3)

— k[

EY#) =<2

for k # k (0,0,—1)T. In the case of k = k (0,0, —1)7, it is easily shown that

B = — g0 k"% BY(7) =2
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Appendix B

Asymptotics for the case of all
singularities on the unit circle

B.1 The formula

This chapter of the appendix deals exclusively with deriving the far-field asymptotics of Equation
(4.2.6) (cf. (4.2.1)) in the cases that |k’ +@p ;| = k for £ =1,...,4. In these cases the point of the weak

singularity of he ;. (n') is located on the singularity manifold of 1/n, = 1/v/1 — n’2. For convenience,
define v := (k' + &, ;)/k for £ =1,...,4 and

fe (0" nl) == fojn(n',nl) :=hejn(n') |n' —1| (B.1.1)
for £=1,...,4, where V1 —n'? in hy ; is identified by n?.

Theorem B.1. Assuming that || =1 and & = Rm with |m|| =1 and m, > 0,

T = fei(n',n7) 1 kR g,/
[/ —v'| 1—=n72
R2
, eikR , eikRV’»m’ 1
=27 hg)j(m ) ﬁ + ]1(170) (f, n) 2 ff,jﬂl(y ,0) m +o (E) (B12)

as R tends to infinity for any fired ¢ =1,...,4 and n € IN,.

The proof of the theorem is split into several parts, distributed over the following sections and
subsections. In Section B.2 an important lemma for the proof is presented and the domain of integration
of J (cf. (4.2.6)) is split according to plane-wave and evanescent modes. The asymptotic behaviour of
the integrals with these reduced domains of integration is determined in Sections B.3 and B.4.

B.2 Splitting the integral

To prove Theorem B.1, the following lemma will be necessary.

Lemma B.2. Assuming the function f ;(n',n}) is defined as in (B.1.1), then fo;(n’,n%) is finite at
any point (n',n")T € R3 for all ¢ = 1,...,4. Moreover, its partial derivatives are bounded for ¢ = 1,3, 4
and have at most a logarithmic singularity for { = 2 at the point (n’,n7)" = (V/, /1 — [n/|2)T.

Proof. Recall that (cf. (4.2.2) and (4.2.3))
CAK?

)
4meq

AR
Jain'sme) =i o

fl.,j(n/7n;) _ [nz]n €7|kn’7kl/| [(ﬁr % 50) > ﬁr} 7

2" Ko (Jkn' — kV'|) |n/ = /| [(7" x &%) xii"]. (B.2.1)
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Ny ' Ny '
| |
| \
= k’+:£ j V/ A k/+:2 ;
| \
| |
(a) J1 for || =1 (b) J2 for | =1

Figure B.1: Domains of integration of 73 and J;

Since the modified Bessel function n’ — Ky(Jkn' — kv'|) has a logarithmic singularity at n’ = v/, it is
easily seen that both functions fi; and fo ; are bounded for any (n’,n”) € R3. Moreover, the gradient
w.r.t. n’ of fo;j(n',n7) for £ =1,3,4 is bounded, whereas the gradient of f ;j(n’,n.) has a logarithmic
singularity at n’ = v/. To be precise, with 7" = (n’,n7) ", (cf. [1, Eqn. 9.6.27, p. 120])

r AkB rin n —v —|kn' —kv’ —r - —r
Vi uglol ) = i o g (2
A K2 g
ti = e I R g (A x @0) x ] (B.2.2)
4me €0
Ak4 I )
Vo fai(n',nl) = 471_60 [nl]™ |Z/ — Z/|K1 (|kn’ — kv']) |n' — /'] [(ﬁT X é’o) X fir}
Ak 3 ! !
e [P Ko (K = k) ﬁ [(77 x &) x 7]
ks TN / / / / - =0 =T
7] Ko (Jkn" — kV'|) [n' — V| Vo [(T" x €°) x "], (B.2.3)
0

where K (|kn' — kv'|) |n' — V| (cf. |1, Eqn. 9.6.11 with Eqn. 9.6.10, p. 119]) and (n’ —v')/|n’ — /| are
bounded at n’ = v/ and the term (7" x €°) x 7" is a polynomial of order two of n’ and n”. Thus all
terms in (B.2.2) and (B.2.3), except the second line on the right-hand side of (B.2.3) where K, has a
logarithmic singularity at zero, are bounded. Similarly, it is also not hard to show that f¢ ;(n’,n.) and
Vo foj(n',nl) for £ = 3,4 are bounded at n’ = v, keeping in mind that [|g,(-,{)|l4,00 < oo for any
fixed ¢ € [0, 1]. The partial derivatives w.r.t. n, are also bounded, since n, only occurs as an argument
of polynomials in f;, £ =1,...,4. |

The remainder of Chapter B will be used to prove the asymptotic behaviour of 7, stated in Theorem
B.1. The first step is to switch to polar coordinates (p, ¢) and to split the area of integration R? into
the unit disc and its complement. This is a natural split, since the exponent of e f=V1="" ig purely
imaginary for all n’ on the unit disc and real valued and negative for all n’ outside the unit disc.
This corresponds to integrating over all plane waves and evanescent modes, respectively. Applying this
coordinate transformation and split of the area of integration,

Po+m co

T = / /ff,a PG Pz) pikpRny-m/ P pikRm.+/1=p? dpdo
lprig — V’I 1—p?
¢o—m O
=1+ Jo, (B.2.4)
where n), := (cos ¢,sin¢) ", ¢ is defined such that v’ = (cos ¢g,sindg) " and (cf. Figure B.1)
¢o+m 1
/ fe NI pnOv ) eikpRnE,-m' P eikRmLz\/lfp2 dp d(b (B25)
Frera T

¢o—m O
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Po+m oo
/ flj pnOv : ) ikpRné)-m’ P efkRmz\/p271 ddeb (B26)
long — v | NI

po—7 1

The asymptotic behaviour of these two integrals will be determined in Sections B.3 and B.4.

B.3 Integrating over evanescent modes

To examine the asymptotic behaviour of the outer integral 75, it is necessary to take a closer look at
the occurring singularity in (B.2.6). Note that here the norm of the difference of the two vectors pnj
and v/ can be separated into differences of the radii and the angles. Indeed,

lonh — V' ° = (pnfy —v') - (pnfy — V') = (
= (p— 12 b +2(p — 1) -
=(p— 12 +2(p— )ity - (nf— /) +|np — /|,

png —no +no —v') - (png — ng +ng — /)
(nq

ng —v') + [y — v'[?

where
nf — /> = (cos ¢ — cos )2 + (sin ¢ — sin ) = 2 — 2(cos ¢ cos ¢ + sin ¢ sin gy )
=2(1 = cos(¢ — ¢p)) = 4sin’ (@) (B.3.1)
and
ity - (ny — ') = cos ¢ (cos ¢ — cos ¢ ) + sin @ (sin ¢ — singpg) = 1 — (cos ¢ cos ¢ + sin P sin ¢y
=1—cos(¢— ) = 2sin2<¢’_2¢0>. (B.3.2)

Thus,

=(p—1)*+4p sm2<@>. (B33)
The corresponding Taylor expansion w.r.t. p and ¢ leads to

o —V'[* = (p =12+ (6 — ¢0)* + (p— 1) (6 — d0)* + p O (¢ — b0)*). (B.3.4)

With this, the outer integral (B.2.6) is split into

Jo = —i{J1+J2+J3+J4+J5}, (B.3.5)
where
do+7 0o . )
f& pn s —p ) — eikpRn()»m'
//{ e RN e e
() ™
N PR (B.3.6)
V=1
po+7 oo
/ / feJ pnOa ) fl J( ) ikRng-m’ |:eik(pfl)Rn6~m’ _ 1:| P 7kRmz\/p271 dpd(b,
5 + (¢ — ¢0)? VpP-1
o—1

(B.3.7)
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Po+m oo
/ /ffj pnOa ) flj( ) ikRn()-m’ 14 efkRmz\/p2fl dpd(b, (B38)
. I PEENE VA
0— T
po+m oo [ k(p—1)Rny-m’ _1} 0
Ji = fo;(V,0) u/ j/ e ling-m e REm=N P =1 45 4, (B.3.9)
R V(R EE CE V-1
0—T
po+m oo
ikRnj-m’ P —kRm 2—-1
Js = fo;(V,0) / / ehBrom’ L ¢ VP ldpde. (B.3.10)
I V(e e O V-1
0—T

Note that the integrals Jo and .J; are only non-trivial for m’ # (0,0)". Hence, for the following
sections, it will be assumed that m’ # (0,0)". The asymptotic behaviour of J;, J3 and J5 in the case
of m' = (0,0)" will be examined separately in Section B.3.2. In view of Lemma B.2 it is also easily
seen that the constant fg ;(v/,0) is finite. Moreover, taking a closer look at (B.1.1) with (4.2.2)—(4.2.5),
it follows that fy,;(¢/,0) = 0 for £ = 2,3,4. Consequently, it is enough to examine the asymptotic
behaviour of J; and J5 for ¢ = 1. Similarly in Section B.4 for the inner integral 77, the asymptotic
behaviour of integrals that are multiplied with f, ;(+/,0) will be examined. For these integrals the
examinations will also be reduced to the case of ¢ = 1.

B.3.1 Oblique reflection
B.3.1.1 J;

To derive the asymptotic behaviour of Jy it is necessary to show that the integrand is absolutely
integrable. Consider the difference of the quotients in J; using the Taylor expansion (B.3.4),

1 1
long = V'l lp—1)% + (6 — p0)?2
( 12+ (¢ — ¢o)? — |pnpy — V|

|P”0 AR + (¢ — ¢0)? (|P"6 — v+ (p—=1)2+ (¢ - ¢0)2)
_ < 1) (6~ 60 +pO (6 — 60)") |
Aoy = Vo= DE T = 00 lon — v/ + o~ DE+ (0 30
Using this and substituting (p — 1,¢ — ¢o) " with 7 (cosv,sin) T it is easily seen that
lim ! - ! _1 cos 7y sin?y (B.3.11)

r=0 |png = V[ \/(p =12+ (¢ — hg)? 2

is uniformly bounded by 1/2 for all v € [0, 27]. Lemma 4.4 thus proves that the difference of quotients
in (B.3.11) is uniformly bounded in a neighbourhood of pn{; = v/. It follows that the integrand of .J; is
absolutely integrable, since only the weakly singular term 1/4/p? — 1 is locally unbounded, while the

term e *Fm=VP?—1 engures exponential decay for p tending to infinity. To get an exponential function
depending on m’ but independent of p, the integral is split into

Ji=Jia+ Jig, (B.3.12)

where

eikRng -m/’

Po+7 oo
/ 1 1
T :—J /{ff*j(””o’ e (lpna—v’l B \/(P—1)2+(¢—¢0)2>

14 e—klﬁnz\/p?—l}dpd(b7
p?—1
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po+7 oo
Ji2 = 7 /{fl i(png, /1= p?) ( ! - ! ¢k Rng m’
e J ’ nh — v/ _1)2 _ 2
PR long =" /(p = 1) + (¢ — o)
[eik(p*l)Rné'm, — 1} 75 - e~ kftm=y p21} dpde (B.3.13)
02 —

B.3.1.1.1 Jia

Integral J; 1 is examined using integration by parts w.r.t. p, leading to

1 Po+m oo 1 1
D= [ [ st vT=) - ik
o kAm, { o RN e R e

po—m 1
oo L
T 1 1
— (n" 0 _ ikRn -m/d
kRmz/f“<"°’)(|ng—w| |¢—¢>O|>e e
Po—
do+m oo
+ ! 7/ 8, | fo.i(png, /1 — p?) ! — 1 pikRng-m’
m, ’ n — v —1)2 _ 2
A R oy =1 =12+ (6 00)
0—T
e—kRmszLl} dpde. (B.3.14)

First it will be shown that the first integral on the right hand side of (B.3.14) decays faster than 1/R
as R tends to infinity. Defining ¢; such that m’ = (cos ¢1,sin¢1)", 1o := ¢o — ¢1 and substituting
¢ — ¢1 by 1 gives

Yo+
1 1 1

(ng — ikR|m’| cosy
kRmzw/ ff,](no(d}"'(bl)vo) <|n6(¢+¢1) —I/I| |’t/1—¢0|> e d1/) (B315)

To estimate the asymptotic behaviour of this integral the following lemma is applied

Lemma B.3. For any function g € L*°, any constant v € R and a positive constant b € R,

Po+m
lim / g(¥) [1 +rlog|y — o] ¥ dy = 0.

R—oo

Po—T

Proof. To prove this, it is the goal to apply the Riemann-Lebesgue lemma. To do so cos has to be
substituted by a new variable ¢, for which the domain of integration has to split into parts where cos
is strictly monotonic.

Define [l as the unique integer such that 9o — 7 < lpm < ¢y and

Arccos; : [cos(wo - ﬂ'),cos(ﬁow)] — [1/10 - ﬂ',éow]
t — Arccos; (t),

Arccosy : [cos(lo), cos((bo + 1)m)] — (forr, (bo + 1)7]
t +— Arccosy(t),

Arccosg : [cos((lo + 1)), cos(v + 7] — ((€o + 1), 10 + 7]
t +— Arccoss(t),
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such that cos (Arccos;(t)) =t for j = 1,2,3. This then leads to

Yo+

g(¥) [1 +rlog |y — 1/)0” gibRcos ¢ de
Yo—7
Lo (bo+1)m
= / g(w) [1 + T‘lOg WJ _ Q/JOH eibRcosw d"/] 4 / g(w) [1 + T].Og |,¢ _ "/JOH eibRcosw d"/]

Po—m Lo

Yo+

4 / 9() [1 + rlog |1 — ol] €*R¥ dy
(Lo+1)7

(—1)fo
1

= sgn (sin ¢y) / g(Arccos: (1)) {1 + rlog| Arccos: (t) — wou et qt
V1—t2
— cos Yo
(=1fott
1 .
— sgn (sin ) / g(Arccoss(t)) {1 + 7 log| Arccoss (t) — wo” oikRE 34
V1-—t2
(-1
— cos Yo 1
+ sgn (sin ) / g(Arccoss (1)) {1 + rlog|Arccoss(t) — ¢Ou — =Ryt (B.3.16)
V1—¢2
(~1)ros

It is easily seen that the integrands of the three integrals on the right-hand side of (B.3.16) are only
weakly singular, since Arccos;(t) is a continuous and ¢ a bounded function, while, by using L’Hépital’s
rule, it is not hard to show that log | Arccos;, (t) — | ~ log |t —to| for a fixed jo = 1,2,3 and ¢ty € [—1,1]
such that Arccosj,(to) = 1o. It follows that the term [1+7rlog| Arccos;(t) —1o|]/ V1 — t2 is only weakly
singular, even for |tg| = 1. The Riemann-Lebesgue lemma thus proves the statement. |

To apply Lemma B.3 to integral (B.3.15) it has to be shown that its integrand is at most logarith-
mically singular. Recall that fz ;(nf(¢ + ¢1),0) is bounded for all ¢ € [)g — 7, g + 7] (cf. Lemma
B.2). Moreover, it is easily shown that the term (cf. (B.3.4))

1 S () = %0)? — (¢ + ¢1) — /|
ng(Y+¢1) —v'| [ —ol | — ol Ing (v + ¢1) — V| [[o — ol + Iny (1 + ¢1) — v'[]
O (v — ho)*)
_ B.3.17
% — ol (0 + 90) — /1 [9 — dol + @ + oy — o] 2t
is bounded for all ¢ € [¢pg — 7, %o + 7]. Lemma B.3 thus proves that

e 1 1 1

! _ ikRng-m/ . -
FRm / o) (i = g gy) e o =o(g). @

The next step is to examine the remaining integral on the right-hand side of (B.3.14) by examining
the occurring derivative

/ — 1 — L
K [fé’j(p””’ 1 ”2)<|pna—w| ¢<p—1>2+<¢—¢o>2>1

.
= (n/Ov %) : vﬁ f@,j(pnév V 1- p2) ( ! L )

long =V (o —1)2 + (6 — ¢o)?

— foi(pnp, /1= p? no- (pro — V') p=1 ) B.3.19
fe, (pno p?) ( |pn6—Vl|3 \/(p—1)2+(¢—¢0)23 ( )
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Since Vi feo;(n',n,) has at most a logarithmic singularity (cf. Lemma B.2) and using (B.3.11), it is
easily seen that the first summand on the right-hand side is only weakly singular at p = 1 and ¢ = ¢y.
To show this for the second summand, it has to be proven that the difference of the two quotients is at
most weakly singular. Consider

np - (omp —v') p—1
oy — v 12T (6 o)
- (pn — np) + - (mh— ) p—1
onfy — v/ VO-12F 602
1 1 ng - (ng —v')
—(p—1 — 40 10 ) B.3.20
v ><|,m6_y/|3 ¢<p—1>2+<¢—¢0>23> oy — v/ (:3:20)

First, the last term on the right-hand side is examined, (cf. (B.3.2), (B.3.3) and (B.3.4))

s 2(p—¢
e R T |
|pn6—y/|3 |pn6—y/|2 |pn6—1/| (p—1)2+4psin2(@) |pn6_y/|

< < :
" V=12 +(0—0)?

Obviously, this is only weakly singular and thus absolutely integrable. On the other hand, examining
the first term on the right-hand side of (B.3.20), (cf. (B.3.4))

1 1
<—n< 1 )
N T (i VRS e
[( - )2+(¢—¢0)2]3—|P"6—’/|G

(B.3.21)

S e PV TR G lonh —vP + V=17 + 6= 40 |
—(p-1) [(p—1)2+ (¢ — ¢0)2} - [( - )2+(¢ —$0)’+(p—1) (¢ — ¢0)2+p(9 (¢ — 00)Y)]’
=/ Vo= 12+ (0= 02 [lpny— /I + /(o= 12 + (6 — d0)? |
— (-1 3(p—1)2+ (¢—¢0)2} [(p—1) (¢—¢0)2+P0((¢—¢0)4)]
oty = v\ o= 1P+ G =60 [lonh —v'* + /(o= 1P+ (6 = 60)” |
oo B0 @] [0~ 1) (@ = 0)* 9O (@~ o))"
oty = v o =17+ @ =00 [lont —[* + /(0= 17 + (6 — 60)? |
C(p-1) =1 (@00 +0 (&= o))"

oty = v =17+ @ =60 [lont = v/[* + /(0= 17 + (6= 60)? |

Using the same approach of substitution as for (B.3.11) it is not hard to show that this term is bounded
by 1/+/(p + (¢ — ¢0)? at the potential singularity point (p,¢)" = (1,¢)". Thus, (cf. (B.3.19),
(B.3.20), (B 3 11) and (B.3.21))

- e |
A e
+ (¢ —¢0)?)| +

9p [fe,j(fmév 1—p?) <|

10 c
¢ = Ioel( Vo 12+ (&)

for (p,#)" — (1,¢0)". It follows that the absolute value of the second integral w.r.t. p on the right-hand

(B.3.22)
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side of (B.3.14) can be estimated as

1 1 _kRm _
[ (pn), pz) <| . 7 _ )] e~ kRm=/p?=1 4

R Y T VR e
o ! o kRm.y/p? 1
: /{V—“g( Ho el ¢<p—1>2+<¢—¢0>2} o
\/pr——l log((p — 1)? + (¢ — ¢0)?)| e FEm=VP*~14qp

1
7kRmz p2—1 dp + —kRm+/p%2—1 d
/\/ —1)2 + (¢ — ¢o)? ’ C/\/ —1)2 (¢_¢0)2e P

2 10g|¢) ¢0| / ——R 2 1
<- s d
= kRm. 8 } P

/ 1 i —kRm+/p?—
B e A e
where
[ bt VL

such that for ¢ € [¢po — 7, o + 7| (cf. (B.3.14))

7 — 1 1 R T
/8p [fl’j(pno’ b <|pn6—V’| - \/(P—1)2+(¢—¢0)2>] T
1

oo

— 218000 | hog(14 T+ (5= 00)?) — ¢ log [6—cul - / T 4

kRm.,
2
21 — — 2 Rm.V3
< c%fw + ¢ log(14+V/1+72) — ¢ log |¢—¢o| +C€/§R7mz

With this it is easily seen that functions g1, g2, g3 € L™ exist such that

[eS) ) 1 1 _kRm. T
[ lfe’j(pno’ s <|fm6—”’| ) V(p—1)2+(¢—¢o>2>]e ey
1

1 _ —cR
= 01(0) B g0) S gal0) 1 1o oo

and, substituting ¢ — ¢1 by v, defining 1 := ¢g — ¢1 and using Lemma B.3, (cf. (B.3.14) and (B.3.15))

Po+m oo

1 1 -
A1 —p? _ 7kRmz\/fﬂd ikRnym’
R¢/w/ [ff]ﬂno \/—p)<|pn6—y/| \/(p_1)2+(¢_¢0)2>]e pe é
1 po+m
— g [ {90 10810~ oul + a0 e e ag
¢po—m
po+m
+ 1 / 1 ik|m’|Rcos(¢f¢l)d
7 | 91 +logle —dolle p

po—T
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Po+m

- = / gs(w+¢1)[1+log|¢—¢o|]eik'm"RC°wdw+o(%)

Po—

(3)

Consequently, (cf. (B.3.14) and (B.3.18))

Jii1=o0 l . B.3.23
(%) (8.3.23)

B.3.1.1.2 J;.
To obtain the asymptotic behaviour of Jy o (cf. (B.3.13)) define

2
epi=C (lolg%R> : (B.3.24)

with C > 1/(2k*m?2) and consider (cf. (B.3.11) and Lemma B.2)

Po+m oo
|J1.2| <ec / / eik(p—l)Rng-m/ _ 1’ Qp - e—kRmz\/pQ—l dpd¢
¢0—7T 1 p N
po+7 1+er
<c / eik(pfl)Rng-m’ _ 1’ 5 - efkRmz\/pzfl ddeb
¢o—m 1 P
9 Po+m oo
_ c —kRm p2—1:|
TR / / 9, {e % dpdé (B.3.25)
¢o—7 1+er
¢o+7 1+er
—c eik(p—1)Rng-m’ _ 1‘ p e RRm=/p?—1 dpde + der e~ kRmz/(14er)?—1
Vpr-1 kRm,
¢0—7T 1
Since
VA +er)2—1=1/2€p+er? ~\2xr (B.3.26)
for R — oo and v2Ckm, > 1 it follows that (cf. (B.3.24))
e*kRmz (14€er)2—1 ~ efkRmz\/2eR — efkmz\/ﬁlogR — Rfmkmz -0 (%) (B327)

for R — oo. Hence,

dem —kRm.+/(14+€r)?—1 _ 1
kRmze \ =05 (B.3.28)

2
On the other hand, with p— 1 < e = C (1252

. 7’ ’ 2
oik(p—1)Rnjyom’ _ 1’ _ \/[cos(k(p —1)Rnjy-m') — 1} +sin®(k(p — 1)Rnf) - m/)

= \/2 - 2cos(§(p — 1)Rn}, - m’> = \/4sin2 (Z(p —1)Rn}) - m’>
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k
=2 sin (Z(p —1)Rny - m’)

k(1 2
~ ') & CBTO

(B.3.29)

for R — oo. The remaining integral on the right-hand side of (B.3.25) is examined by using this
estimate leading to (cf. (B.3.27))

14+er potm
¢ / eik(p—l)Rné»m 1‘ d(b e—kRmz\/;ﬂ—l dp
v/ p? —1
1 ¢o—7
k (loe R 5 ¢o+7 l+er
~cC= (log B)” / Ing - m'| dg / P e kRmav P2 =1 )
2 R p?—1
bo— 1
(log R)? e
= el o / oso— o] do [ 3, [eHmVI] dp
bo— 1

|m| (IOgR) —kRm. 1+er)2—1
= —2e0T T e e

1
(3
for R — oo. Overall, (cf. (B.3.25) and (B.3.28)) J1.2 = 0o(1/R) and (cf. (B.3.12) and (B.3.23))
Ji=o <%> (B.3.30)

B.3.1.2 J;
The first step to show the asymptotic behaviour of (cf. (B.3.7))

do+7 oo
J _/ /ff] pnOv ) ff]( ) ikRn6~m’ eik(pfl)Rn&m’ _ 1:| Z efkRmz p2—1 ddeb
ol + (¢ — ¢0)? V-1

is to change the order of integration. This is valid according to Fubini’s theorem, since the integral
exists absolutely (cf. Lemma 3.11). Now it can be shown that the quotient

fei(png, /1 = p?)—fo,;(V,0)
Vip=1)2+ (¢ — ¢0)?

is absolutely integrable w.r.t. ¢ € [¢9 — 7, ¢o + 7] for any fixed p > 1. Indeed, since fr ;(png, /1 — p?)
is finite for any p and ¢, the quotient can at most have a singularity at (p,¢) = (1, ¢o). On the other
hand, for p = 1 fixed, this quotient is at most logarithmically singular. This is easily seen by evaluating
the limit ¢ — ¢ of the quotient at p = 1 multiplied with 1/log|nj — v/|. Applying L’Hopital’s rule,
(cf. (B.3.1) and nj = (cos ¢,sinp) ")

( —sing ) Vo fo5(nh,0)

cos ¢

(nh.0)—fr (1.0
lim fl,a(”ov ) ffvf(y ’ /) = lim sgn(¢ — ¢o) o—¢
b—oo |¢ - ¢O| log |’fl0 -V | P—po log |n6 - V/| - COS(((b - ¢0)/2) W_;O)/z)

—sin¢ o 1
) ( cos ¢ ) * Vi fe,5(no, 0) log [ng—v7]
5—9
1= cos((¢ — 60)/2) a5mmita=é0172) TogTag=T

)

= 1. -
Jo sgn(¢ — ¢o
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which is finite, since the occurring limits limy—g4, Vi fe,i(ng,0)/log|ng — v/| (cf. Lemma B.2) and
limg—o (¢ — ¢0)/ sin((¢ — ¢o)/2) are finite. It follows that (cf.(B.3.4))

fei(png, V1 = p?)—fe;(V',0)
Vi - ) + (¢ — ¢0)?
in a neighbourhood of (p, ®) = (1, ¢o). With this it is easily shown that

fM(P”Oa\/ p?)— fla( 0)
Vip— ) + (¢ — ¢0)?

< cllog|png — /|| < ¢ flog((p—1) + (¢—0)?)|

e 2Im=VP T < e flog (= 1) + (d—0)°)| (B:3.31)

for any fixed p € [1,00), since fe i(png, /1 — p?) grows at most with a finite polynomial degree
y P g g

(cf. (B.2.1)), while e*F7=Vr*~1 decays exponentially for p — oco. Integral Jo can now be treated
similarly to Ji o (cf. (B.3.25)). Cousider (cf. (B.3.7) and (B.3.28))

1+€er ¢otm
|J2| <ec / eik(P*l)Rnfy-m/ _ 1’ ‘log((p_ 1)2_|_ (¢_¢0)2)‘ /2) 1€7%Rmz\/p271 d¢dp
1 ¢o—m p
4 oo ¢otm
_ C —ERm_ \/p2-1
kRmz/ /a,, [e ’ }d¢dp
1+€er ¢po—7
1+€er ¢otm
_ ik(p—1)Rn))-m’ 2 2 P o~ ERma/p?—1 1
—c e — 1| [log((p—1)>+(6—30)?)] VP Tdgdp+ o
Vpr-1 R
1 ¢o—7
In view of (B.3.29),
l1+€er po+m
A : k / / p 7—Rm p2—1 1
|| < 2¢ 2sin( (o= DRnj - m' ) flog |6 — doll —— e~V Tdgdp+ 0 ( -
1 ¢o—m P -1
do+7 1+er
Ck (log R)? ’ P ’ P ~%Rm.\/pP—1 1
~ e 28 [ g6 — golmp - m/| dp | —— VP Tdp 4o
2R 1/p2—1 R
¢o—m 1
1+e
_ ekl os Ry T w6 [ 0 [e-trmvmT] 4pso L
=TT R |og|¢ po| cos(¢d — ¢1)| do [ } ptolp
Po—m 1
Cklm/| (log R) —kRm PIRCIE 1
:—c% / log ¢ — ol cos(é — )] o [e=5meVFeR 1—1}+o(§)
=o0 1 (B.3.32)
= 7 3.
for R — oo.
B.3.1.3 J3
Recall that (cf. (B.3.8))
do+m co
/ /flj pnOa ) flj( ) ikRnf,-m P 7kRmz\/p271dpd¢
+ (¢ — ¢0)? Vpr-1
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As for J5 the order of integration can be changed. To get the asymptotic behaviour of Js3, integration
by parts w.r.t. p is applied , giving

fEJ 10,0)=fe;(V',0) ixpnt .m!
eZ nom d
3 kRmz / |¢ ¢0| ¢

—T

oo ¢po+m
1 fei(ong, V1= p*) = fo;(V,0) | kRt om —kRm.+/p2—1
0 0™ d VP =1 dp, B.3.33
+kRmZ/ / p[ N ) TN ]e pe p )

1 ¢o—7

where (fe;(ng,0)— fe;(/,0))/|¢ — ¢ol| is bounded by clog|é — ¢o| (cf. (B.3.31)). Here, Lemma B.3
proves that

ff] n07 f@](u O) ikRngvm/ _ <l>
kRmz / |¢ %ol ‘ “=o\&) (0334

—T

For the second integral on the right-hand side of (B.3.33) a closer look at the derivative is necessary.
Note that

.
B lff,j(ﬂ%vﬂ)_fé,j(l/”o)] _ <n6,—\/1”7> Vafei(pnh, /I p?)
2 Vip—1)2+ (¢ — ¢o)? Vo =12+ (¢ — ¢o)?
(p—1) [ff,j(png, VI= )= fo, (0, 0)}
Vip—1)2+ (¢ — ¢0)23 '

where (p —1)/1/(p — 1) + (¢ — ¢0)? is ﬁnite at the point (p,¢)" = (1,¢0)" and where the quotient

[fe.i(pmb, /1= p2)—Fo;(V,0)]/+/(p — 1)2 + (¢ — ¢0)? (cf. (B.3.31)) is logarithmically singular. Hence,
with Lemma B.2,

9, [f@,g(pno,\/ p?)—fe;(V, )] e~ hRma/P=1| o P ‘log((P—1)2+(¢—¢o)2)|' B335
Vip=1)% + (¢ — ¢0)? V1= V(o =12+ (6 — ¢0)?
Since
do+m . potm )
d¢ = d
) Vo er 2(;{ Vo T
= 210g(7r +V(p—-1)2+ 7T2) —2log(p—1), (B.3.36)

it follows that (cf. (B.3.33), (B.3.34) and (B.3.35))

oo g0t L log((p —1)% + (¢ — ¢0)?)| Py
c 1—p2 —5Rm./p>—1 l)
|J| < kRmz/ / V(o =12+ (¢ — ¢0)? e dp+O<R

1 ¢o—m

2c /Oopllog(p—l)l/ 1
T kRme T2 7 V(o= 1)+ (6 — ¢0)?

0

po+m

do e_%Rmz\/”z—_l dp+o (}%)

_ 2c /pllOg(p_l)llog(w—i— (p—1)2+7r2) e—%Rmz\/;ﬂ—ldp
kRm., /1 = p2
1 L=»

2 _kERm, 2_ 1
i [ gt ().
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2 p 2 —ERm.\/p2-1 1
< [log(p—1)] e~ 2fim=Vr dp—i—o(—).
kRm., /,/ — 2 R
1 L=»

Substituting u = /p? — 1 and choosing eg as in (B.3.24) then leads to

|J3] < kl;jnz / [log(x/?ﬂ—i—l—l)} e~ 3 Rms “du—i—o(;)
0\/5 o0
:kgjn / [log(VuQ—l-l—lﬂ e ® log 1—1)} e~z Bmeu gy
0

\/_

Note that ¢ [log(vu2z +1 — 1)) < esflogu]? for u € [0, /€g] and er < 1, and that

2 [log(v/u? +1 - 1>]2 e~ 5mv < o [log(Ver +1— 1)]” < ¢5 log RJ?,

for u € [\/€r, ). Thus

N

log R [
|J3] < k}? /[logu]zdu—i—q [koji ] /e Thmeu gy,
my m;
0 Jer
c3 [logR]2
= \/ r(2 — 2 |log/ log /€ —_—

(B.3.37)

Il

Q
7N
o= 3
~__ N

B.3.14 J4
Recall that (cf. (B.3.9))
do+m oo [ k(p—1)Rn{-m'

_1}
Ty = v 0 / / eikRné»m' P e—kRmz\/;ﬂ—ld do.
1= fo4( NS V-1 pdo

As for J; the first step to finding the asymptotic behaviour is to switch the order of integration. Thus,
after splitting the domains of integration w.r.t. p, (cf. (B.3.29) and choose e according to (B.3.24))

¢o—m 1

14+er pot+m eik(pfl)Rng -m’ _ 1’
|J4| < |f€,j(V/;0)| / P 7kRmz\/p271 dp
Y IV e Y
po—T
oo Pot+m
+21fe, (0, 0)] / / e \/p RN =
14€r ¢po—m 0 p
O| /|k 1 R +er pot+m
m og 0 _kRm —
< |f£,j(y’,0)| 5 / / kERm.+/p? 1dp
Vo Pl
1 ¢o—m
oo ¢otm )
P —kRm.\/p>—1
+2fe; (v, 0)] / / P=1dp. (B.3.38)
’ Y ISV EER v Y e

1+€er dpo—7
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Consequently, with (B.3.36) and u := /p? — 1,
) IS ) 14er ) R ) (1+€er)2—1
|J4] < C(Oiz ) / 0y {e_kRsz”Ll} dp—l—c(OgR ) / ‘log(\/zﬁ—i— 1-— 1)‘e_kRmz“ du
1 0
17 P 17 P S
+ cq / 0p [e*kRmz le} dp + ch / [log(p — 1)] e~ 3 Bms =19, [engmz ”2*1] dp,
1+er 14+er

where |log(p — 1)] e 2Bm=Vr*~1 < clog(eg) ~ log R for p € [1+€x, 00) and R — co. Hence (cf. (B.3.26)
and (B.3.27))

\/2€R
log R)? _ 1
|Jy| < c% / [logu|e kRmz“du—i—o(E)
0

ogR)? [ " 1
<—c7(Og ) /logue_kRmz“du—i—o(—)

- R R
0
log R)? 1
< —c(OgT)\/%R [log(\/2eR) — 1] +o (}—%),
since |logu| = —logu for u € [0, /2¢g], and where 2ep < 1 for a sufficiently large R. Therefore,
Ji=o(% (B.3.39)
1=0o(gx) 3.
B.3.1.5 Js
Recall that (cf. (B.3.10))
po+m oo ]
— ikRng-m’ P —kRm.+/p?—1
Js = fo.;(V,0) / eFRrom’ Lo VP —ldpde.
’ Vip=172+(6 = o)? V-1

¢0—ﬂ' 1

To find the behaviour of Js, the integral is split into integrals where the asymptotic behaviour can be
estimated and one integral which can be evaluated explicitly. This split is realised by replacing the
exponent ikRnj, - m' = ikr|m/|cos(¢ — ¢1) by its Taylor expansion w.r.t. ¢ at ¢ = ¢o. Here, two cases
have to be distinguished. The constant sin(¢g — ¢1) could either be zero or non-zero. In both cases the
integral will be split in correspondence to the Taylor expansion, i.e. for sin(¢g — ¢1) # 0,

Js = fo;(V,0) 51 + fo;(v,0) T3, (B.3.40)

where

L fotm oo eikRn6~m’ _ eikR\m’\ cos(¢of¢1)€7ikR|m’| sin(¢po—¢1)(p—o) p
o

—kRm.\/p?—1
Vo1 o= aop N e

po—m 1
$o+7 oo X S B B
J§2 - / /eZkR|m |Sln(¢0 ¢1)(¢ ¢0) eikR‘m,‘COS(CbO*Qﬁ)L e*kRmz /p2—1 dpd¢ (B341)
' 0 V(p—=1)2+ (¢ — ¢o)? Vpr—1
0—

Similarly, for sin(¢g — ¢1) =0,

Js = fo;(V,0) JZ 1+ fo;(V,0) J3,, (B.3.42)
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where

—+m
%o T gikRny-m’ _ ikR|m’| cos(do—1) o —ikR 1]

cos(do—1)(¢—¢o)?
0 1 0 p e*kRmz /p2,1dpd¢,

VPN N

2 .
Jg5q =

po—m 1

(B.3.43)

do+m co ‘m | 2
e~ ikRU5— cos(¢po—¢1)(d—¢o) ) ,
I3y = / / eikRRIm'[cos(bo=¢1) _L__ o~kRm-/i~1qpdg  (B.3.44)
1

+ (¢ — ¢0)? Vpi-1

()—71'

B.3.1.5.1 J3,

First note that for sin(¢y — ¢1) # 0 the Taylor expansion
= |m/| cos(¢ — ¢1) (B.3.45)
= |m/| cos(do — ¢1) — |m/|sin(do — ¢1)(¢ — do) — |m/| sin(do — ¢1) R($ — ¢o) (¢ — ¢0)”

is obtained, where

—cos(pg —¢1) ,ifo=0 mod 4

1 i ao (¢ — ¢0)° ) sin(¢o — 1) ,ifo=1 mod 4
sin(¢g — ¢1) (o+2)! 7’ o= cos(¢o — ¢1) ,ifo=2 mod 4’
—sin(¢g —¢1) ,if 0 =3 mod 4

R(¢ — ¢o) = —

o=0

It is easily shown that R(%)) is a continuously differentiable function for ¢ € [—m, 7]. By defining
a:= —k|m/|sin(¢g — ¢1), b:= k|lm/| cos(¢o — ¢1), (B.3.46)
this gives

pikRng-m’ _ jikR|m'| cos(¢o—¢1) ,—ikR|m’| sin(¢o—1)(¢—¢0) _ [eiaRR(qbfqbg)(qbfqbo)z o 1} iR piaR($—g0)

Moreover, after substituting ¢ — ¢ by % and changing the order of integration

zaRR -1 . p 3 )
J // zaRw d e—kRmz\/p -1 d esz
51 = %_1 e 1/’7?2_1 P

This integral is split further by separating the domain of integration w.r.t. p into [1,1 + eg] and
[1 4 €Rr,0). The absolute value of the integral over the second domain of integration gives

zaRR
/ / -1 ’L’aRdJ dw 7kRmz\/p271 dp
/ — 1 + 1/]2 /p —

//\/ —1)2 +¢? \/pp— Ly

1+er —m

On the other hand, it has already been shown that this upper bound decays faster than 1/R as R tends
to infinity, when this asymptotic behaviour was proven for Jy. Indeed, for ¢y = ¢ — ¢q, this bound
corresponds to the second term on the right-hand side of (B.3.38), which in turn is a bound for |Jy4|.
Thus,

1
TR T aRR() v _

1 ; /71 ; 1
Jl — _ ia R dw o —kRm+/p?—1 d bR — .
5.1 kRm, / /(p_1)2_|_1/}26 ¢ p | € pe +o &
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Next, the integral w.r.t. p is integrated by parts, leading to

J5q = J5 e+ It e I3 7 e, (B.3.47)
where
T iaRR(v) ¢
J5111 — 1 € W)™ _ 1 eiaR’L/J dw e—kRmz\/m
kRmz A /€R2 + ¢2
1 [ giaRRW)Y® _ 1
1.2 - iaRY
B = g / o iR dy) (B.3.48)
14+er « . 5
1 iaRR(Yp) = _ 1 .
Jéf’ = iR (p_ 1) € . ctalty dy e—kRmz\/pQ—l dp.
my —1)2 2
- (p=12+v¢

Counsider (cf. (B.3.27) and (B.3.36))

7kRmz (14€r)2—1

Jl

’ 51 _kRmz/Me 2+¢2
4

= [1og(7r +VeRr2 + 7r2) — log ER} e kBm=/(1ter)?—1

kRm.,
4
< [1og(ﬂ' +Ver? + 7T2) +c| 1ogR|} R~ VZCkm (B.3.49)
kRm.,
leading to
g (L (B.3.50)
5.1 A 3.
For J}2, the first step is to apply integration by parts w.r.t. ¢, which results in
; ia ) 72 ia —m) 72
Ji2 = —t et RRm™ —1 piaRm _ € RROD™ -1 o—iaRm
: akR?m, T T
i [ RRW) V4 2RROY arri v GaRRW _ 1\
+m/{m ol e @) —sgan e dy
=-L—-I+o 1
— 1 2 R )
where
._ 1 [ ’ iaRR(Y) 2 iaRy
I / g [R () ¥+ 2R(0)] ¢ e dy

zaRR( ) > 1 iaR
Iy = akRQm /sgnwd}—e dap.

Recall that aR () 1% + aRip = |m/| cos(¢p — ¢1) — b (cf. (B.3.45)) such that (cf. Lemma B.3)

s

/sgm/; R (1) ¢ + 2R ()] ik RIm’ | cos(y—o) dyp e~ = ¢ <%)7

—T

I =

kRm.,
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where ¥y = ¢9 — ¢1. The absolute value of Is can be estimated as

) piaRR($) 2 _ 1}
L] <
12| < la[kR2m, / =

™ |eiaRR(w) w? _ 1’ BT | iaRR(W)¥* _

|a|kRzmz(/ /)e VR d“mm%m / .

—R 14

NH

R
= |a|kR2mz( / />1dw+| |kRm. / by
o ()0 ()
R3 R%

_R 1
since 1/(VRY?) < 1 for || > R~/4, and since |e®@BRM)¥* _ 1|/(R1?) is uniformly bounded by a
constant ¢ < oo for all ¢ € [—R‘i,R_%] and R > 1. Indeed, the latter can be shown by evaluating
the limit ¢ — 0 of the quotient, using L’Ho6pital’s rule, i.e.

Bl

NH

¢aRR(W)V* _ 1 i, iaR R 2
; — i 1@ iaRR() W _ _
S lim = [R'(4) ¢ +2R(¥)] e

ik|m!|

OS((bO - ¢1) (B351)

for any fixed 1 < R < co. Thus, since the continuous continuation of |¢®BR(¥) ¥* _1|/(R2) to ¢ = 0,
i.e. the right hand side of (B.3.51), is constant, the function |e?®RR(¥)%* _ 1|/(R4?) is continuous
wrt. P € [ 1,1 and 1 < R < oo. Therefore, there exists a finite Ry > 1 such that the function
e BRWIYT 1| /(R?) is unlformly bounded by a constant cg, for all ¢ € [-1,1] and R € [1, Ry],
while, at the same time, |e*FRW Y™ _1|/(R¢?) < cp, for all ¢ € [~1,1] and R > Ry. The latter
follows, since, for any fixed and positive |¢| with [¢| < 1, the limit of |e?®RRW)¥* _ 1|/(R4?) for
R — oo is zero, the continuous continuation to ¢¥» = 0 on right-hand side of (B.3.51) is uniformly
bounded w.r.t. R > 1 and since |¢?@BR®)¥* _1|/(R¢?) is continuous w.r.t. 1 € [~1,1] for all R < oo.
Hence, |/ @RRW) ¥ _ 1| /(R4?) is uniformly bounded w.r.t. ¢ € [-1,1] and R > 1. Thus

1
Ji2=o0 (E)' (B.3.52)

Jl

Similar to J}2, the integral w.r.t. ¢ in J}3 is integrated by parts w.r.t. 1, leading to

1+er T
1 WaRR(P)Y? _ 1
J5113 — e [(p— 1) € . plaRY e—kRm.\/p?—1 dp
ia 2 2
1 (p - 1) + 1/) Y=—m
14+er «
1 RR/(Y)p? +2RR(Y) ¢ 4, 2 ia —kRma\/p?—
1 -7 (p_ 1) +¢
3 l4er m [eiaRR(w) P2 1}
ia —kRm.. 2
sl M AR T eIV dp,
= (p—12+7

The first integral can easily be estimated as

14+er

14+er 7T
1 laRR() P> _ 1 JVpro1 ¢ 1
_1 iaRy —kRmzy/p?—1 dopl < — / 1dp = — .
m; / [(p ) ‘ . ¢ Pl =R P=\R®

3
d (p = 1) +¢? 4
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For the second and third integral it is not hard to prove that (cf. the arguments following (B.3.51))

R/ 2 2R eiaRR(w) w2 -1 w
(p—1)2+¢? Ry/(p —1)2 + 4?2 (p=12+7¢
Thus, (cf. (B.3.36))
l14+er =« 1 1
13)] o € —kRm.\/p?—1 1
‘J5'1‘§R /. —(p_1)2+¢2d1/)e p dp—|—0<R>
o 17T 1 o 1
— _C —kRm+/p2—1 -
R 1/0/ VRN d”+"<R>
l+er

:% / og(x+ V= D2+ 7) log(p— 1) ekRmz\/pz—ldp+0(%)

1
1+4+€er 1+€r

C2 ‘ C2 ‘ 1
< = 1d = 1 —-1)|d —
<3 / Pt 5 / log(p — 1)| p+0(R)
1 1
14+er 1
- %f R — % / log(p —1)dp + o (E)’ (B.3.53)
1
since |log(p —1)] = —log(p — 1) for all p € [1,1 + er] and R sufficiently large, such that e =

C(log R/R)? < 1. Hence, substituting u = p — 1

)

€R

1
|J51_'f|§—% logudu—l—o(ﬁ)
0
= —,E( 4o (B.3.54)
= CQR OgER o ) 3.

Consequently, J33 = o(1/R) and (cf. (B.3.47), (B.3.50) and (B.3.52))

Jii=o <%> (B.3.55)

B.3.1.5.2 JZ,

Similar to J2 ;, a Taylor expansion of n{, - m’ is found in the case of sin(¢y — ¢1) = 0. To be exact,
ng - m’ = |m'[cos(¢ — ¢1)

= |m’| COS(gf)o — d)l) —

L costio — 1) — d0)? + Il cos(o — 91) Ra((6 — 60)?) (6~ )",
where

o0

((b ¢0)” Z 20(23-4%) '

As for R the function R9 and its derivative are continuous. Using this, substituting ¥ = (¢ — ¢o) and
changing the order of integration then gives (cf. (B.3.43) and (B.3.46))

2 // iR Ra( @)t _ 1 z%R’l/ﬁ dy p e_kRmz1/p2_1d eibR
5.1 — 2 2 !
NCEETE 1
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As for J}, the domain of integration w.r.t. p can be split into [1,1 + eg] and [1 + €g, 00), where € is
chosen as in (B.3.24) and where it was already shown that the asymptotic behaviour of (cf. the estimate

for the second integral in (B.3.38))

cibR R 4 /
/ / Sl eI gy L mkRma oL g
F \/T—i—w2 V21

//\/ —1)2 + ¢2 \/pp— P dp

l14+er —m

is o(1/R) (cf. (B.3.38)). The remaining integral in

14+er =

1 DR R2 ()9t _ 1 . . 1
J2 = —igRY" 44 9 [ —kRmz+/p —1} dp et -
1T kRm. 1/ G-12re® Vo e pe o\ R

is once again split into three separate integrals by using integration by parts w.r.t. p. Hence,

T2y = 3 e 4 R My g2 R (B.3.56)
where
T 2y 4
gl 1 R R2 (%) 9™ _ 1 e*i%Rﬂlz dl/)eikRmz /(Iter)2—1
51 kRm, Ver? + 2 '
1 [ebRRa@Hwt _ 1,
JZ2 = / IR B.3.
517 kRm. 9] e 2 dy, (B.3.57)
l14+er =« "
1 PR Ra(w?) 9t _ 1 B —
Br = iR (p=1)° e T dy eIV dp,
=1 (p=12+7v

It is easily seen that (cf. (B.3.49) and (B.3.50))

2 [ 1 ; 1
g2 < / dup e~ RBme/em?=1 _ (2 B.3.58
53] = S NEERT °\Rr (B:3.58)

The approach to show the asymptotic behaviour of the integral JZ-? is very similar to that of Ji-?
(cf. Sect. B.3.1.5.1). The only significant difference is that 1?2 is substituted by ¢, such that

2

1 ] eiVR R2(0) 62 _ |

i = e31% do.

T bR Ra(v?) ¢t
2 /e T it gy ¢

kRm. P kRm,
0 0
Since L’Hoépital’s rule shows that
eibR R2(¢) 6% _ 1

im ————— =3bli ! bR Ra(¢) ° _
R ib lim [R5() & + 2R2(9)] e

ik|m/|

T cos(¢po — ¢1), (B.3.59)

the same arguments as for J2# can be used to prove that

J22=o0 (E)' (B.3.60)
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To show the order of decay for J2+, arguments similar to those used in Section B.3.1.5.1 for J3-3
can be used as well. As for J2:2, 4?2 is substituted by ¢, which leads to

l4+er =

9 PR R 9t _ . —
B = iR / /(p—l) ge I dp etV
G Vip—1)?+¢?
1+€R7T2 . 2
bR Ra(¢) $* _ ‘
L P g S s,
N AN N R

Note that (cf. (B.3.59))

—1
Slimp =

lim [(p— 1)

»—0

eibR R2(6) 6* _ | ‘ R R2(6) 6> _
3 3
Vo lp =12+ 6 Vo

for any fixed p € [1,1 + eg]. This can then be used to apply integration by parts w.r.t. ¢, and the
formula

l+er
ibR Rao(n?)n* _
Bim i [ (o ) e g

bk R*m., / m/(p—1)% + 2

l+er 72 , 9
_ kR2 / /(p _ 1)R2(¢) o+ 2R2(¢)3¢ oibR Ra2(9) ¢ ,—i% R 4o e—kRmzmdp

Mz Vo (p—1)2+¢
l4ep n2 [ bR Ra(e) 62 _ 1} 1244
R & N L [ I LS SOV
wkREm ) VE =12+

is obtained. Furthermore, it is easily shown that

eiR Rz (r2)ym* _ 1
(&

—ibRﬁe—kRmﬂ/,ﬁ—l

(p=1) <c

Y P E—

and that

{eibR Ra(#) ¢ _ 1} [(p—1)2 +49)]
Ro[(p—1)2+ ¢’

R5(¢) ¢ + 2R2(9) ¢
‘(p_ b (p—1)2 +jb

‘ S C, (p - 1)
It follows that, by undoing the substitution ¢ = 1?2,
1+4+€er l+er w2

1729] < 2 / Ldp+ —2C
1

1 1
bk R2m, FRm, (HM) /!@m

14+er = 1
dy e FEm=VPP=1qp 4 o (E)

d(be—kRmz\/;ﬂ—l dp

2c

—ﬁ%@+ﬁ>fjﬁi%fﬁ

The previous estimates (B.3.53) and (B.3.54) now show that J27 = o(1/R) and thus that (cf. (B.3.56),
(B.3.58) and (B.3.60))

J2 =0 <%> (B.3.61)
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B.3.1.5.3 J;3,
As before, the order of integration can be changed, such that (cf. (B.3.41) and (B.3.46))

oo ¢po+m
JL _// iaR(qbfqbg)dgb 14 o~ kRm=\/p? ’1dpe
i L) V=174 (060 N
0— T

To determine the asymptotic behaviour it is the goal to obtain an integral in the form of a Fourier
transform, such that known formulas can be applied to evaluate that integral explicitly. To this end,
the integral is split into

J51.2 — Jl 1 ZbR Jl .2 ’LbR Jl .3 ZbR, (B362)
where (cf. (B.3.24))
oo ¢o+m
Jhl. zaR(d) ¢0) do e_kRszp2_1d
52 2
/ /¢ — 12+ (6 — 60)° \/p—l
14+€r po—m
l+er do—m 00 .
Ji3 = / < / + / ) ef(o=00) 4y —L__ o~kEmVP*-1q,  (B.3.63
B V=14 (6= o) V=i o (A6
—o0 o+
1+4+€er
Ji3 = / (aB6=00) dg L gmkRm= /o1 g, B.3.64
> V1P ) V7 g (364
Applying integration by parts w.r.t. p to Ji4 leads to
Po+m
T = 1 1 (HaR(6=00) 5 o—RRm-/(TFen)?=1
2T RRm. | e (6002
¢o—T
oo  ¢o+m
_ / p-1 3 elafi(@=d0) 4 e~RRmM=N/P? =1 qp (B.3.65)
WRms S L =1+ 6= o)

where (cf. (B.3.27))

po+m

1 / 1 ¢iaR(6=00) gy ¢ —kRm-/(Ter)?=1
kRm. Ver? + (¢ — ¢o)?
0—T
do+m
S 1 1 d(befkRmz\/(H»eR)Qfl
kRmz¢ €r? + (¢ — ¢o)?
0— T

[log(w +Ver? + 7T2) — log ER} e~ kRmz/(14er)?—1

IR
—0 (%) (B.3.66)

On the other hand, (cf. [3, Equ. (58), p. 621])

oo ¢otm
/ / —1 etal(¢—do) do e~ FRm=+/p?—1 dp
kRmz
+er po—7 ((b ¢0)
oo ¢otm )
c

< d e*kRmz\/pzfld
~ kRm, / / (p—1)2+ (¢ — ¢0)? i ’

1+er ¢po—7
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oo
2c / arCtan(P 1) efkRmz\/pzfldp

- kRm., p—1
14+er

cm —kRm,+/p?—1
< — d
= %kRenm. / c P

14+€er
such that by substituting u = /p? — 1
oo ¢o+m
/ / —1 ctal(¢—do) dé e~ FRmzy/p?—1 dp
kRmz

+e€R po—T ((b ¢O)

cm —kRm u
< — ERe!
N kRERmz / AV u2 “

A/ 1+€R 2 1

C2 T —kRmu
< — =% d
= %kRepm. / c b

(Iter)?—1
_ C2 T efkRmz (14€er)?—1
k2R2egm?
_ C2T e—kRm.\/(1+er)*~1
k2C(log R)?m? '
Thus (cf. (B.3.27), (B.3.65) and (B.3.66))
JE =o<i> (B.3.67)
5.2 R/ 3.

For J}2 (cf. (B.3.63)), substituting ¢ = ¢ — ¢y and integrating by parts w.r.t. p, gives

N , et 1 ([ N1
J1.2 — _ / / iaRy d —kRm.+/(14+€er)2—1 / / _~  iaRy d
5.2 kRmz< + r%2_|_w2e Ve +kRmz . + mh Y
1+er —Tr

- / (/ / ) +¢2 et dp e Y, (B.3.68)

where, using integration by parts w.r.t. ¢ for any fixed € > 0, it can be shown that

(/ /) ’LG.R’I,ZJ 1/) — |: 1 efiaRfr _ 1 eiaRfr
€2+1/}2 ZQR2 N ) Ve + w2

LT N Y e
+mR2<—/+/>\/mge dy

. (%) (B.3.69)

Furthermore,

14+er —7 o

kRmz /</+/> +¢2 e
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14er —m [e%e)
< 5 dyd
< R /</+/) v
C2
< .
= %Rm, "

Consequently, (B.3.24), (B.3.68) and (B.3.69) with € = 0 and € = er imply

1
J2=0(=). B.3.70
52 — 0 <R> ( )
Finally, recall that (cf. (B.3.64))
1 14+€er
z eiaR(9=90) 4 P o—kRm.\/p>-1 dp.
2 / /\/ —1)2+ (¢ — ¢0)? Vp?—1

Note that the integral w.r.t. ¢ is very similar to the definition of a Fourier transform (cf. (2.3.7)). To
utilise this fact, ¢ — ¢y is substituted by (p — 1) ¢ leading to

elafi(@=do) 4 = / e @ Rfe=Dt 4t = 2 Ko(Ja|R(p — 1)).  (B.3.71)
/\/ —1)24 (¢ — ¢0)? V1+ 12
Indeed, [32, Eqn. 42, p. 21 for v = 1] gives that
— WAt =2y Ki(y), y>0, /76iytdt:2(—y)K1(—y), y < 0.
R/‘/l“LtQS J Vit

On the other hand, using integration by parts, (cf. [1, Eqn. 9.6.28, p. 120])

et dt

¢— :‘—/[ ]dt:_y/ﬁ

1 t . 1 .
S Y B
y]R V142 Y V142

N —zay [yl Ka(yD] = sgny % Iyl Er(lyh] = - |8|y| [lyl e K:1(y))]
= 2KO(lyD-
Thus
l+er
J5s = / Ko(la|R(p — 1)) \/% e—kBma/P=1 g,

First of all, note that this integral is well defined since Ko(p — 1) has only a logarithmic singularity at
p =1 (ct. [1, Eqn. 9.6.53, p. 121]). To separate the singularity from the integrand, the integral is split
once more such that

1+4+€er

1 |al - _ VA1
1.3 _ _ Lhad | _ kRm.+/p?—1
J5s TR / [Ko(lalR(p 1)) +10g< 5 1ilp 1)) +7} 9p [e dp
1
U (al /T
_ a _ ~ P —kRm+/p%—1
/ [1og< ) R(p 1)) +’y} e e dp. (B.3.72)
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Applying integration by parts to the first integral on the right-hand side, (cf. [1, Eqn. 9.6.27, p. 120])

1l+er

o [ Kot - 0y g - 1)) 5] 9y [e VT g

kRm.,

1 Y,
=— {Ko(|a|ReR) + log(MReR> —i—ﬁ] e kRm=Ver?+2en

kRm., 2

+ e i [ Ko(lalr(o - 1)+ o (R - 1)) 45
1+er

i [ KalalRl - 0) + s | e,
1

where (cf. [1, Eqns. 9.6.12 and 9.6.13, p. 119])
of(ofRen) + g (18 Rer ) +3 = O (og(Ren) (e ?) = 0 (L),
;i\rri {K0(|G|R(p —1))+ log(%R(p - 1)) + ﬁ} =0. (B.3.73)

Moreover, since | — K1 (|a|R(p—1)) +1/(|a|R(p—1))| < ¢ < oo (cf. [1, Eqns. 9.6.10 and 9.6.11, p. 119])
for p € [1,1+ €g),

ol |7 1 ale 1" 1

a _ _ = | ekRmaypP-1 gl < 191€ / 1dp = —ol =

L [ el - )+ s e g < 918 [ adp— 0ten) o 5
1 1

and (cf. (B.3.72) and (B.3.27))

1+
1 1
Jig = / [log(MR(p— 1)) +1] X TR (}_z)
1

2 /0?2 —1
m ~ l4er 14+€er

_ log( 2 R) T —kRm.+/p>—1 _ _ P —kRm_.+/p>—1 i

R O, e dp log(p—1) T e dp+o 7

m, —
1 1 p
1og(|%|R) + 75 Hen
-~ 7 @ _ _ L —kRm.+/p>—1 l
R / log(p—1) T e dp+o (R . (B.3.74)

Substituting v = /p? — 1 in the remaining integral on the right-hand side of (B.3.74) and defining
dr = Ver? + 2¢g then gives
14+€er

10g(p _ 1) p/;_l e*kR’mz\/fﬂfl dp

1og(\/ 14+ u2— 1) e kEmau gy

O\:i“ O\a§‘

dr
= {log(\/ 1+u2— 1) — 210gu} e kRmau Qo 4 2/10gue‘kRmz“du (B.3.75)
0
dr kRm.dgr 1 LR kRm.dgr
2 2 _
= —/log(1+\/1+u2) e kM= g 4 / loguefudu—2M / e du,
kRm., kRm.,
0 0 0
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where [vVuZ+1—1]/u? = [1 +u? — 1]/[u?>(Vu2 +1+1)] = 1/[Vu2 + 1 + 1] is bounded and greater
than some positive constant c. The first of the integrals on the right-hand side can be examined using
integration by parts, resulting in (cf. (B.3.27))

dr
—/ 1og(1+ vV 1+u2) e kRmu gy

0

dr
B 10g(2+6R)6_kRmzdR _ log2 1 / 1 U —kRm.u g,
~ kRm, kRm. kRm. | 1+u2 141442
0
log 2 1
= " kRm, +O<E)'
Thus (cf. (B.3.75) and (B.3.27))
e o log2 _log(kBm.) 2 " 1
P —kRm 2—1 0og 0g my —u
1 1) — VP dp = — -2 1 d —=
og(p—1) 1 P = " %Rm, KRm. | kRm. / eeue U+O(R>’
1
(B.3.76)
where
kRm_.dgr kRm.dgr
logue " du = HII(IJ logue™"du
0 €
kRm.dg
1
= —log(kRm.dp) e FEm=dr 4 HII(I) logee ™ + / —e “du
€e— u
—kRm.d 1 —u : —€ 1 —u
= —log(kRm.dR) e 4R —e “du+ hH(lJ logee ™+ [ —e “du
u — u
kRm.dg e

= —log(kRm.dg) e *fm=4r _ B (kRm.dR) + lir% [logee ™+ Ei(e)]  (B.3.77)

and E; the exponential integral (cf. [1, Eqn. 5.1.1, p. 56]). In view of [1, Eqn. 5.1.11, p. 57] it is easily
seen that

€

gi_r% [logee ™ + Eqi(e)] = 21_1% [logee ™ — 5 —loge| = —7.

On the other hand, since Rdr = R\/égrv/er +2 = O (log R) as R tends to infinity, (cf. [1, Eqn. 5.1.51,
p. 59))

1 1
— 2 — —kRm \Ver2+2¢er
Ei(kRm.dg) = Ep (kRmz\/ €R” + 263) TRV e [1 +0 (—R>} )

Thus (cf. (B.3.27))
log(kRm.dg) e *m=r + B\ (kRm.dR)

1 2 1
= |tog(kRm./er? + 2¢r) + ] W = (_>
{g M.\ €R €R KRmoVen® T oen e 0 I

B log R
(%)

and (cf. (B.3.76) and (B.3.77))

1+4+€er
P _kRmoA o1 log 2 log(kRm.) 0% 1
1 —1) — VP dp = — -2 -2 - . B.3.
/ cglp—l) —me= e P = " %kRm. kRm, iem. 0\®) B3
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At last, (cf. (B.3.74))

1.3 _
J5.2 -

log|a| — 2log2 — log R — 2log(km.) — 4 n 1
ol =].
kRm., R

and (cf. (B.3.62), (B.3.67) and (B.3.70))

10g|a|—210g2—10gR 210g(kmz)—ﬁeibR+O 1
kRm, R)

Altogether, (cf. (B.3.5), (B.3.30), (B.3.32), (B.3.37), (B.3.39), (B.3.40) and (B.3.55))

log |a| — 2log2 — log R — 2log(km.) =4 ;g 1
) ikRm. < TR

1
J5.2 -

T2 =—2f¢;(V,0 (B.3.79)

for sin(¢g — ¢1) #0

B.3.1.5.4 J2,

As for J},, the order of integration in J2, (cf. (B.3.44) with (B.3.46)) is interchanged and ¢ — ¢y is
substituted by .

ﬂbRw? de efkRmz\/pzfl dp cibR

Again, it is the goal to obtain an integral that can be evaluated explicitly. For this purpose, the domains
of integration are split, such that

J52_2—J21 ibR J22 ibR J23 ’LbR (B380)
where
1 —z R’l/} —kRmz\/pz—ld
52 / / \/ - 1 +’(/J2 w 1/p _1 P
14er —m
14+er —7 o
1 b P2 /2
J2'2:_—/</—|—/> 671 Rwd efkRmz pfld,
5.2 /. —(p—1)2+1/12 ¥ T —1 P
1+er
23, P L LRV P B.3.81
23 //flwg b Ty (B.3.81)

It is easily seen that the same approach that was used to show that J22 = o(1/R) (cf. Sect. B.3.1.5.3)
can be applied here to prove that

1
JZy =0 <E>' (B.3.82)

Integrating J22 by parts w.r.t. p gives

l+er oo
2 1 - b 2 2
J2.2 — e*ZERw du) o |:efkRmz\/p 71} d
52 7 LRm, / (p—1)2 + 12 Y0y P

_ 2 / L iR g o hAmey /(e 1 _ 2 / L misre? gy
kRm. | \/er? + 92 ERm, | ||
14+€er oo

N 2 / p 671%31;,2 dep e~ kRmzy/p?>—1 dp. (B.3.83)

kRm. (TR VR
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Note that by substituting ¢ = ? and then integrating by parts w.r.t. ¢, for any € > 0

%/7, — e }lz/ — g
S oVeE+y A 2V €2+ ¢
i 2
= %%efi%}hﬂ _ ibip / €+ 2¢ . o—i% R dé
T™WeES+ T % 2./6 (2 + ¢)
1
= 5 B.3.84
° ( R) ( )
This can be applied to the first two integrals on the right-hand side of (B.3.83) such that, with p—1 < €g,
9 14+er oo 1 1 .
2.2 .
|J53] < ERm, " / /ﬁdwdﬁo(ﬁ) —0<}—%). (B.3.85)
1 ™

Recall that (cf. (B.3.81))

1+er
J52 —i5 Ry? dip P o~ kRm=y/p?—1 dp.

First, a closer look at the integral w.r.t. ¢ is necessary. The aim is to evaluate this integral explicitly
using known integral representations of Bessel functions. To do so, 1? is substituted by (p—1)?(¢—1)/2
for any p € [1,1+€g]. To be precise, the integral w.r.t. p has to be evaluated as an improper integral at
the lower bound p = 1. In this sense, the mentioned substitution results in (cf. [1, Eqn. 9.1.24, p. 104
with Eqn. 6.1.8, p. 76])

—i% Ry? dip

1
h/\/(p—1)2+¢26

1

- _{g Yo ('TilR(p - 1)2> + % sgn(b) Jo (%R(p - 1)2) } eli R’ (B.3.86)

Vpr-1

where Jy and Yj are the zero order Bessel functions of the first and second kind. This integral is once
more split by separating the singularity from the integrand. As a result,

l+er
b b |
B3 = _/ {gy"<|4_|3(p—1)2) +ig sen() Jo(%R(p—l)Q) } = L
1

JZ3 =13 + 1y, (B.3.87)
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where

14+er
Ig = - /
1

{2%(|Z| R(p— 1)) 10g(|8| (p—1)2>+igsgn(b)Jo<%R(p—1)2)}

o5 R(p—1)° p e—kRm.\/p?—1 dp
V-1 ’
Jr
/ ( (p—1) > eiFR(p—1)? P o~ kRm=y/p?—1 dp,
Vp2—1

1

To derive the asymptotic behaviour of I3, note that (cf. [1, Eqns. 9.1.12 and 9.1.13, p. 104])
™ v ~ 2
§Y0(U)—log(§) =5+ 0 (v), Jo(v) =1+ 0 (v2), vER, (B.3.88)

for v — 0. With this and by integrating Is by parts, it can be shown that (cf. [1, Eqn. 9.1.28, p. 105])

b STe?—1
13 — 1 s |b|R€R _ log | |R€R ﬂ- Sgn(b) JO | |R€R 614R€R —kRm, (1+6R)2—1
kRm, 4 ) 4

il sgn(b)
kRm.,
l+er

g | [“" >{ o (4 (p_l)z)_m—iﬂsgn(bﬂl(%R(ﬂ—l)Z)}

1

ei%R(pl)zekRmz\/p21] dp

- 2klfn T[<p—1>{2 YO(E' (p= >2> —log(%'R(p—l)z) —H'gsgn(b) Jo(%'R( —1)2>}
1
eiZR(p‘1)2e"“Rm2\/P2——11 dp, (B.3.89)

where J; and Y; are the first order Bessel functions of the first and second kind and (cf. (B.3.27) and
(B.3.88))

1 b b b
kRm. {g Yo (|74|R6R2> - 1og(%ReR2> + lg sgn(b) Jo (|4_|R6R2> } el fien it (et

— (%) [ﬁ + O (Rep?®) +1+0 (R2634)} o (%) =0 <%),

since Reg? — 0 as R — oo. Furthermore, [1, Eqns. 9.1.10 and 9.1.11, p. 104 with Eqn. 6.3.2, p. 79]
shows that both integrands of the remaining two integrals in (B.3.89) are uniformly bounded by a
constant ¢ > 0 for p € [1,1 + €g], such that (cf. (B.3.24))

1+4+€er
5 48T son(b b b 1 2 1
IB+7+zzsgn()}<3|b|c / ldp:3||c 73||CO(OgR) _O<R>' (B.3.90)

ERm. | = 2km., %em, T %km, | R?

1
At last, it only remains to derive the asymptotic behaviour of I;. Consider

1+4+€er

b .
14:_/ 10g(%3<p—1>2> GRG0 L —kRma /o1 g,

1 V-1
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log(mR) Her
- 7]{]%; / ezgR(p,l)zap {efkRmz\/le} dp
s
2 l+er
+ TR, / log(p—1) ei%R(pfl)zap {eikRmz V ptl} dp
1
log(mR) Hen
- 7}{&1 / ezgR(p,l)zap {efkRmz\/le} dp
s
2 14+er
+ TR / log(p — 1) {eigR(p_lf _ 1} 9, {e_kRmz,/pz_l dp
1
1+er
-2 / log(p — 1) Z - e kRma P2 =1 qp, (B.3.91)
1
where, by integrating by parts, (cf. (B.3.27))
14+er
1 / (R [e—kRmz\/&—l} dp = Leihren? —krm./repr—1 _ L
R R R
1
b 14+er
_ 15 / (p — 1)ei§R(P*1)2€*kRmz\/pQ*1 dp
1
1 1 1 1
= —— O J— e — — .
7t (6R)+O(R) R—i—o(R)
With this and (B.3.78) the right-hand side of (B.3.91) reduces to
log(%R) lo =
g2 log(kRm.) ol
I, =- 2 4 4
4 kRm., + kRm., + kRm., + kRm.,
2 " o 1
il —1)2 —kRm.. 2_
+ TR, / log(p — 1) [e i Rp—1)” _ 1} 0p [e kR P 1} dp+o (E) (B.3.92)
1
The remaining integral is also examined using integration by parts. Hence,
2 1+er
TR / log(p — 1) [ei%R(p—lf B 1} 9, [e_kRmz,/pz_l} dp
1
2 — ; 2 iR’
log(er) {eZZReR - 1] e kRmay/(I+er)® =1 _ i T
kRm, PN kRm log(p—1)
1+er 2
2 / iRl —1 e~ kRmA/FT )
km, R(p—1)
1
b l+er
N k:n / log(p — 1) (p — 1) e §RlP= 17 e=hlim= /o2 =1 q
o
where, using L’Hopital’s rule,
2 eliR-1’ ib 2 i )
li =1li —1)2 (log(p — 1)) et d =" = B.3.93
o~ KR CErEy o Ty P (loglp = 1))"e" ’ ( )
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and where it is easily shown that a constant ¢ with 0 < ¢ < co independent of R and p € [1,1 + €g]
exists such that

S R(p—1)* _ 1
R(p—1)

Together with (B.3.27)

<e, [log(p—1)|(p— 1) < clog Reg. (B.3.94)

1+4+€er
2 . i2R(p—1)> _ —kRm.+/p2—1
R / log(p—1) [e 1} 0y [e } dp
1
= IO}g%R o (%) + O (er) +log RO (eg®) =0 (}%)

and thus, with (B.3.92), it follows that

log|b|—51og2—310gR—410g(kmz)—4’y+ 1
- ol =|.
kRm., R

Iy =

Finally, (cf. (B.3.87) and (B.3.90))

log |b] — 5log2 — 3log R — 4log(km.) — 37 +i% sgn(b) 1
B kRm., to

7=
and (cf. (B.3.80), (B.3.82) and (B.3.85))

log [b] —5log2 — 3log R — 4log(km.) — 37 +igsgnb . 1
e tol =
kRm., R

2
J5.2__

_log|m/| —5log2 — dlogm. — 3(7 +log(kR)) +iF cos(¢o — ¢1) GBI cos(bo—61) 4 (l)
R )

kRm,
since b = k|m/| cos(¢o — ¢1), sgnb = sgn(cos(¢g — ¢1)) and (cf. beginning of Subsect. B.3.1.5.2)

1 dm/m| =V

—1 ifm//|m/| = v’

cos(¢o — ¢1) = {

which gives sgnb = cos(¢p — ¢1). Consequently (cf. (B.3.5), (B.3.30), (B.3.32), (B.3.37), (B.3.39),
(B.3.42) and (B.3.61))

Jo = —foi(,0) log |m/| — 5log2 — 4log m. _k:;[:y + log(kR)] + 5 cos(do — ¢1) ek RIm’| cos(do—¢1)
ikRm,,

‘o <%> (B.3.95)

B.3.2 Normal reflection

As mentioned before, the integrals Jo and Jy (cf. (B.3.7) and (B.3.9)) reduce to zero if the reflection
direction is orthogonal to the z-y-plane, i.e. m’ = (0,0) ", such that J» = —i(J; +J3+ J5) (cf. (B.3.5)).
First consider J; (cf. (B.3.6) for m’ = (0,0)" and thus m, = 1) by applying integration by parts
w.r.t. p.

bo+m

1 , ! !
Ji = Ed,[ fe.i(ng,0) <|n6 — v - |¢—¢0|) 10 e
o+ oo
il o T [ 1 T apa
+ R / /3;; lfm(lmo’\/ﬁ) <|pn6—l/| \/(p—1)2+(¢_¢0)2>] ) "

(;5[)771' 1
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The existence of these two integrals has already been shown in Subsection B.3.1.1.1 (cf. (B.3.17) and
(B.3.22)). Obviously, the first term on the right-hand side does not decay faster than 1/R. On the
other hand, the term will also occur with the opposite sign when examining the asymptotics of the inner
integral J; for m’ = (0,0) " (cf. the subsequent (B.4.106)). Thus, the two will cancel when added to
get the asymptotic behaviour of 7 (cf. (B.2.4)). It remains to examine the asymptotic behaviour of the
last term on the right-hand side of (B.3.96). It has already be shown that the occurring derivative can
be bounded by the weakly singular term (B.3.22). Thus, since |log((p—1)2+ (¢ — ¢0)?)| e F/4EVP*—1 <
c|log((¢ — ¢0)?)| for p > 1 and ¢ — 7 < ¢ < o + 7,

$o+m oo
i . n/ 2 1 — L e_kR\//ﬂ
= / /8,, lfe,;(ﬂ 0 V1= p%) <|pn6—y’| \/(p—1)2+(¢_¢0)2>] v

po—7 1
$o+7 oo ‘1 1 (¢ (;5 ) ))‘ 1
< i Og - 0 4 7§R /p271d d
- R¢0 71'\1/<{ 1 \/(p_1)2+(¢_¢0)2 ‘ ’ (b
T7F" [ 211o8(o — 00) 1 =
< 2_ og — @0 p+ d } —%R pz_ld '
=R j{ N/ B e s g ’

Moreover, with (B.3.36) and since log(m 4+ /(p — 1)2 + n2) e F/8RV P =1 < ¢,

¢o+7 oo
1 1 2

9y | fo.i(pno, V1 = p?) - e FRVPP 1 dpdg
VA I )
0o—T

2 — I /o3 T /
<A4c T ogm iR P=1dp +2— 10g(7r—|— (p—1)2+7r2)6_§R ”=ldp

KR ,/—p = KR

1

- Qk_iz /log(f)— 1) e ¥V =ty

1

< _16c 2Tt T logm ”+”1°g”/8 e ARV dp+2ﬁ e BV 1,
— é{/log —1e 4RVp_1dp
1
é —sRVe -1 —2—/log —1)e 4Rvpldp+o< >

00 1 1
. - —kRy/p?—1
/ lng (pny, - P ) <|pn6_yl| \/(p_1)2+(¢_¢0)2>‘| € dpd¢

¢0 w1
s < N _
§2i/ U pregy 9 ¢ [MIBVEEITD) gy,
kR u? +1 kR u? +1
0 0
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(L
=o{x):
Consequently, (cf. (B.3.96))

do+m
1

, 1 1 1
Jl = E / f&j(?’LO,O) (|TL6 —V’| - |¢_¢0|> d¢+0 (1_—%) (B397)

po—

for m’ = (0,0) 7.
Next, consider J3. Recall that for m’ = (0,0) ", (cf. (B.3.8))

//ff,g prig, /1= %) = fe;(V',0) o p efkRmdp
\/w ViE—1 ’

where n{) := n{ (1)) := (cos(1) + ¢o),sin(y) + ¢o)) " and v = 7ih(0). To obtain the asymptotic behaviour
of J3, integration by parts w.r.t. p is applied, such that

f@, nOu ff, (V 0)
Js = kR/ J w| ] W

1 T ff,] pn07 ) ff,](y 0) e—kR\/m
//apl V( I ]ow) dp, (B.3.98)

1

where (cf. (B.3.31))

< clog |¥].

fr.5(n6,0) = fo; (v, 0) '
Y]

This shows that the first integral on the right-hand side of (B.3.98) is well defined. Note that the second
integral on the right-hand side is the same as the second integral on the right-hand side of (B.3.33),
except that now m’ = (0,0)T and ¢ — ¢y was substituted by 1. Nonetheless, the same estimates can
be applied to show that the integral decays faster than 1/R as R tends to infinity. Altogether, undoing
the substitution ¢ = ¢ — ¢o, (cf. (B.3.98))

po+m
L e 0) = fes(,0) (1)

Finally, it remains to examine J5 (cf. (B.3.10)). To obtain the asymptotic behaviour of (cf. (B.3.10))

iy 1 >
Js = 2fg7j(z/,o)// N TSy Ay —L BV 1 g,
1 0

VP -1

the integral w.r.t. ¢ is evaluated explicitly (cf. (B.3.36)), giving

= ! I 1 14 7kR\/2—71
Js = 2f04(/,0) a =
// G-t o1
=2fg;(V, 0)/10g(7r+ (p —1)2+7r2> _p — o—FR\/P?— Ldp

—2f0;(V,0 /log N e PRV qp, (B.3.100)
pp
1
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The first of the two integrals on the right-hand side of (B.3.100) can be examined, by applying inte-
gration by parts, which leads to

Jinte s V77579 Fr

1

/log T+ —1)2+ 7r2) 0p {e*kR le} dp
10g / vV (P 1 2+7T2 7kR /p2—1 dp, (B3101)
TR T+ 2472

where, substituting u = /p? — 1,
/ - 1)2”2 e FRVP L gpl < %/e*%R\/ﬂdp
T+

)2 + 72

R
2
kR
Hence, (cf. (B.3.100) and (B.3.101))
log(2m [ _kRVET 1
_ v _ kR+/p?—1
J5—2fgd(l/,0) kR 2f /log 2_1 dp—l—o(R)
1
Using (B.3.24) and (B.3.78), this can further be transformed to
log(27) e
_ oglam / P —kRy/p?—1
Js =2fe;(V,0) —2f0;(V,0) / log(p— 1) ———ce P=hdp (B.3.102)
J kR J / /—p2 1
T log(p—1 1
“2fis 0 [ REER gy o ()
VAT R
1+er
log(2m) log2 log(kR) o
Jealv' ){ ¥R T kR TPTRR kR
— 2f[7j(1//, O) / log(p — 1) \/il 7kR v P2*1 dp + o (R) (B3103)
1+er p N
The remaining integral can be estimated as (cf. (B.3.27))
/ 1og(p—1)7p_e*kRVledp < clogegr / _e 2RVp*1dp
+er pr-l 1+er PPl

_ clogen —%Rx/mzo(i>
R )

kR
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since, for R > 1, |log(p — 1)| e #/2BVr*=1 < clogeg for all p in the interval [1 4 eg,00). At last,
(cf. (B.3.103))

log(2m)  log2+ 2log(kR) 1
J5—2fg7j(l/,0){ R + iR +2kR +o 7

and for m’ = (0,0) " (cf. (B.3.5), (B.3.97) and (B.3.99))
log(27m) + log 2 + 2log(kR) + 27

Jo = 2fe;(V',0) TR (B.3.104)
T 1 1 L e 0) = fus(,0) 1
I (n! - £,j\No, — Je i\, d -

+t s [fe,J(no,0)<|n | Py ¢0|> d¢+ikR¢Z % — ol ¢+0(R).

B.4 Integrating over plane-wave modes

Similar to Jo it is the goal to split the integral 77 into separate parts for which the asymptotic behaviour
can be estimated. At the end many integrals will be of order o(1/R), and one integral will remain that
can be evaluated explicitly, such that known asymptotic expansions can be used to prove the asymptotic
behaviour proposed in Theorem B.1. Again, it is also necessary to distinguish between the cases that
the reflection direction is orthogonal (normal) or oblique to the z-y-plane. As before, the orthogonal
case is considered last (cf. Sect. B.4.4).

B.4.1 Oblique reflection
Recall that (cf. (B.2.5))

/ / ffJ pnO p2) ikpRnf)(qb)-m' P eikRmz\/lpr dpde, (B41)

|pn0 | V1= p?

where v/ = n0(¢0) and || = 1. Since the singularity lies at the boundary of the domain of integration,
the latter can be split into an inner part, where the integrand is non-singular and a narrow outer
annulus that includes the singularity. The width of the outer part is to be defined in such a way that it
excludes m’. The splitting of the domain is accomplished by introducing a monotonic cut-off function
x(n') € C*°(B2(1)), defined such that m’ ¢ suppx with x(n') = 1 for all n’ close to and on the unit
circle. Since m, > 0 and ||m|| = 1 it can always be assured that the support of x is non-empty. Later
on, as the need arises, the cut-off function will be specified further. With this,

P (B.4.2)
where
A B e (oA B S S
Jl - X(pn0(¢)) | - — e 0 72 € z dpd¢7
png(9) — /| I=p
¢o—m 0
o T o 0O T ) iyt P kT
Jo = X(Pn0(¢>) lpng(6) — V'] e © A€ ’ dpdo. (B43)
po—m O Po Y s

where X(png(¢)) =1 — x(png(9)). N

To obtain the asymptotic behaviour of .J;, the same substitution into spherical coordinates (1, ¢) "
w.r.t. m, that was introduced at the beginning of Section 4.2.3 (cf. (4.2.22)), is used. Following these
transformations after undoing the transformation to polar coordinates,

bo+m 1 _1n 2
=[] el (wm(b(w,;)_‘ﬂw‘)

po— cos 0(¢)

e Y dop dg, (B.4.4)
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where 6(¢) is defined as the polar angle at which |n’(cos8(¢), ¢)| = 1. Note that y(m') = 1—x(m’) = 1.
The integral can now be integrated by parts w.r.t. ¢, leading to

¢o+m
N f,j Tﬂ(17¢)7V/Iir;?ZITES§
A / x(n'(1,9)) e( n'(1,¢) — /| )

po—T

L fei (' (cos9(6).9),0)

SR / Xl eost0-O) Forteosatgn. o) —

do+m 1
1 ff,' n/(wad))a 1 —”/(1/%@2 .
— ﬁ / 81p )_((n/(’l/}, d))) J( |TL/(’¢, (b) — I/I| ) elka dw d¢

po— cos 0(¢p)

eikR d(b

eikR cos 0(¢p) d(b

Since n'(1,¢) = m' (cf.(4.2.22)) is independent of ¢, the first integral on the right-hand side can be
evaluated explicitly. Moreover, with x(n/(cos6(¢),#)) = 0, the second integral is equal to zero. For
the last integral on the right-hand side, the Riemann-Lebesgue lemma can be used to show that the
integral tends to zero as R tends to infinity. Indeed, the cut-off function Y and its derivative ensure
that all possible singularities at n’ = v/ are removed and only weak singularities 1/4/1 — %2 remain,
which shows that the integral exists absolutely. Altogether,

= 21 fo,(m/';mz) in 1
J= =T ""r¢ — B.4.
"7 ikR |m/ — V| et R)’ (B.4.5)

where m’ # v/, since |V/| =1 and |m/| < 1.

B.4.2 Singular integral part for oblique reflection with singularity in same
direction

In this section the asymptotic behaviour of Jo (cf. (B.4.3)) in the cases that m//|m’| = v/, which is
equivalent to ¢9 = 0, will be determined. This is necessary, since the nature of the substitution to
the spherical coordinate system w.r.t. m from the previous subsection, changes the behaviour of the
singularity in the specific case that the two vectors m’ and v/ have the same direction. All the other
cases will be considered in the following Subsection B.4.3.

Transforming Jo to the spherical coordinate system (¢, )" w.r.t. 77, that was introduced at the
beginning of Section 4.2.3 (cf. (4.2.22) and (4.2.23)),

2 1

b= [ [ ooy OO e g, (B.46)

0 cos6(¢)

For this section only, it will be assumed that the cut-off function is dependent only on v such that
x(n'(,9)) = x(¥) € C(R) with x(1) = 0, suppx C [—sina,1) and x(¢p) = 1 for all ¢ €
[—sinq,sina]. These restrictions ensure that the assumptions made on x(n’) at the beginning of
Section B.4.1 are satisfied, since it can be shown that [—sina,sin«] is the range of cos(¢), while
n'(1,¢) =m'.

First note, that for v/ = n/(vg, ¢o) it is easily seen that ¢y := cosf(¢g) = sina for ¢o = 0
(cf. (4.2.28)). To show the asymptotic order of .J, it is necessary to change the order of integration to
apply the Riemann-Lebesgue lemma to the integral w.r.t. ¢b. Special care has to be given to the lower
bound of the integral w.r.t. ¢, which is depending on ¢. Recall that (cf. (4.2.28) and Figure B.2)

tan o cos ¢
/1 + tan? a cos? (;57

which is finite for any ¢ € [0,2x], as well as continuous and strictly monotonically decreasing for all
¢ € [0,7] and a > 0 (m’ # (0,0)"). Consequently, 1(¢) is a bijective mapping for all ¢ € [0, 7] and

(@) = cosb(¢) =
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Y
1
sin o
_\ cos 0(o)
0 + t
—sina +
Figure B.2: Integration boundary cosf(¢) for a = % and the corresponding area of integration of Jo

¥ in the range of ¥(¢), which can be shown is [—sina, sina]. Thus, a corresponding inverse function
(1)) can be found. Indeed,

cot a ¥
¢(1)) = arccos <W> = arccos <cot a \/17_—1/}2> . (B.4.7)

Using the implicit definition of ¢(¢) (cf. (4.2.26)), it is not hard to show that ¥(27 — ¢) = ¥(¢), which
mirrors the properties of ¥(¢) onto all ¢ € [, 27]. It follows that changing the order of integration
leads to

sin o 2m— ¢(¢)f l ) T(’lﬁ ¢))
2 Z,_] ’I’L 7 y T\, ik R
=[x [ ARSI e
—sina ¢(¢)
ff,] n "/Ju )7 z(w (b)) ik Ry
/ / W v B

Moreover, it is easily seen that n'(¢, ¢) and n% (1, @) (cf. (4.2.22) and (4.2.23)) are 27-periodic w.r.t. ¢
and that n” (¢, —¢) =nZ (¥, ¢) and |n' (¢, —¢) —v'| = |n' (¢, ®) —V/|. Indeed, the last statement follows
for ¢g = 0, since (cf. (4.2.22))

' (,6) = ' = |n' (4, 8) — ' (o, d0)|”
= {Sina (1 — o) 4+ cosa (cos p /1 — 2 — cos oz)} ’ +sin? ¢ (1 — 1?). (B.4.9)

Integral Jo now simplifies to

sin «

j2 / / fzj 7 7 z(w (b)) dd)eikadw
In V|

—sin« )
ff] n' (1, ¢),n7 (¢, ¢)) ik R
/ / g ] Gee dv, (B.4.10)
where
(0 (0, 0), 0% (0, 9)) 1= fo (0 (,0), 0% (1, 0)) + foi(n' (¢, =6),nL (%, —9)). (B.4.11)

Once again, the integrals are split to separate the singularity. To be precise, taking into account that
(cf. (B.3.36))

sin

| / 46 €Y dy + /1 () / . dg e dy

—sina qb(qp) \/b¢2+d Q/J w) sin o 0 \/B¢2+J(¢—1/10)4
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sin «

= [ Doy (bt Voyorr e - ) et a

—sina

sin o

- / X0 g (566) + Vb0 + a0 - o)t ) R ay

o X g o) 7 i [ X g (VBT ) 4 0

sin « sin «

/ v 10g(b7r+ \/_\/bw2+d (% — wo)) R 4y

—sina

sin o

- / X\(/%))log<b¢ +\f\/b¢ 2 4+ d (- ¢)) R 4y

—silna
- /a % log (Vbd (1 = 10)?) e au,

the integrals in J; (cf. (B.4.10)) are split into

Jy = Js+ fo;(V,0) Ju+ fo;(V,0) 5 + fo;(v,0) g, (B.4.12)
where
P2, (0 (9, 0), 5 (0, 6)) = 2f0;(/,0) o
/ / W, 8) — ] Aot dv
—sina ()
féj 1/) (b )Ty 1/} d))) - 2ff,j(ulvo) ik R
/ / e dg e™RY qyp, (B.4.13)
~ San( 1 -
Ja =2 dg e RV dy)
/ / I (¥, ¢’ | \foe 4w — o)
1 .
do ™Y qy, (B.4.14)
/ / I’ ¢ N T
1
Js = \/iz / x(¥) log <bﬂ' + \/z\/l;w2 +d (Y — 1/)0)4> e Qo (B.4.15)

—sina

sin

Jﬁ;z_% / X(1/))1og<b¢ ¥) + Vo by +d (v - ¢)>eik3¢d¢

2 77 2\ _ikRy
-7 log (Vbd (4 = 1)? ) €™V dy. (B.4.16)
The constants
b:=cos® a = m?, d:= ! (B.4.17)

4cost o



APPENDIX B. ASYMPTOTICS FOR SINGULARITIES ON THE UNIT CIRCLE
168 B.4.2 Reflection direction in singularity direction

are obtained by calculating the Taylor expansion of |n/(v,¢) — v/|? w.r.t. ¢ and ¢ at ¢o = 0 and
1o = sina up to the fourth order. To be exact,

In' (1, ) — V'|* = cos® a ¢® — 2sina ¢ (Y — tho) + @ (¥ — )" — %¢2 (¥ — 1o)?
4 2
{COZ - -= a} &'+ 0 ((0+ v val)). (B.4.18)

Indeed, defining T'(1, ¢) := sin a (¥ —pg)+cos a (cos ¢ /1 — P2 —cos a) and T (¥, ¢) = |n/ (¢, ¢)—V'|? =
[T, ¢)])? +sin? ¢ (1 —?) (cf. (B.4.9)), all necessary derivatives of T at ¢ = 0 and 1) = 1)y = sin v can
be calculated. For simplicity in these calculations, the symbols Typ gm = [0505 T (¥, )] (4.6)=(w0.60)
and Typ gm =[0505'T (1, §)] (4. ¢)=(sp0.¢0) fOr (0, d0) = (sinc, 0) will be used. Thus,

Ty = sina—cosacos¢oL2 =0, Ty, = —cosasingg /1 — ¢ =0,

1 —4g
Tyz = — cos acos ¢p 1 5 =— 12 . Ty =—cosacospgy/1— 13 =—cos’a,
m COs” «v 0
. sin «
Tpo,po = COS asin ¢g 11#7_0% =0, Tys = —3cosacos bo 11i0¢(2)5 =3
such that

Ty = 2Ty T — 25in? ¢ o =0,

Ty = 2Ty, T + 25sin ¢g cos ¢ (1 — 3) =0,

Tyo = 2Ty T + 2 [Ty, ] — 25in” ¢y =0
Tio.00 = 2Lyo.00 T + 2T, T, — 4 sin ¢ cos o 1o =0,

Tyz = 2Ty T +2 [Ty]? + 2(1 — ¥2) [cos® ¢ — sin® o | =2cos’ a,

Tys = 2Ty T + 6T,z T, -
Tyz.60 = 2T3,00 T + 2Ty Too + 4Tp0,00 Tyy — 4sin g cos o =0,
Tyo02 = 2T e 52 T + 2T g2 Typy + 4T 60 Ty — 410 [cOs” g — sin® ¢ | = —4sina,

Tys = 2Ty T + 6T 2 Ty, — 8sin g cos o (1 — ¥) =0,

Tys = 2Tys T + 8T,y Tyyy + 6[T2]” = 60864 ~
%87% = 2ngy¢,0 T+ 6Tw§y¢,0 Ty + 2ng Ty, + 6Tw§ To. b0 =0,
Ty 52 = 2Tz g2 T + ATy g2 Ty + 2Tz Tyo + ATy 4 Too + 4 [Tg.00)°

—4 [cos2 ¢ — sin? ¢0] = -2,

Tyy o3 = 2T 53 T + 2T Ty + 6Ty, 2 Ty, + 6T 52 Ty + 16%05in o cos g = 0,

Tya =2Tya T + 8Ty Ty, + 6[T¢g}2 —8(1—)) [0052 $o — sin? bo] = 6cos’ a — 8cos’ a

leading to (B.4.18). Later on, it will also be used that
Tys = 2Ty T + 10T Ty, + 20T, T2 = 60 % (B.4.19)

B.4.2.1 J;
First note that the integrands w.r.t. ¢ of Js (cf. (B.4.13)) are absolutely integrable for any fixed 1.

Indeed, this follows since, with L’Hopital’s rule, it is easily shown that
ij(nl(wa (b)? Uz (¢a ¢)) - 2f€,j(yl7 0)
' (1, ¢) — /|
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is bounded for v # 1y and has a logarithmic singularity at ¢ = ¢g for ¥ = 9y (cf. Lemma B.2),
while 947" (¢, ¢) (cf. (4.2.22) and (4.2.23)) is bounded. Keeping in mind that ¢y = sina, x(1) = 0,

x(sin@) = x(—sina) = 1 and ¢(sina) = ¢ = 0, integration by parts w.r.t. ¢ is applied to .J3, giving

/fl] 2/107 ) Z(¢07¢)) _2ff,j(y/70)
%= %R

d¢ eikR’LL'o
(Yo, ¢) — V|

f& 1/}05 )a z( 1/}0,@5)) —Zij(V/,O) —ikRao
sz/ ’ n'(=to, ¢) — V'] doe
L 12, (%, 0),n2($, ) = 2fe5(/,0)
~ R / / -7 o
1 R 6), nl (4, 6()) — 2fes(7,0)
am [ 0™ 0,600 — 1 ety
e ro (100w, 0) i w,0) = 260,070 | s
_ﬁ XW) / aw[ : |n’(1/),¢)—1/| d(be d’lﬂ
—sina $()
fgj n' (o, @), 2(1/10#25)) —2fe;(V',0) ikRipo
mR/ [0, 8) = 71 e
foi (0 (0, ), n% (¥, ¢)) — fe;(V,0) kR
sz / (¥, ) — V| doetide
nl —2f0;(,0 .
sz / O lfu o ¢|)n w@i@ﬂ o )] w3420
where (cf. (B.4.7))
, B P B cos o
¢’ () = 9y [arccos <coto¢\/17__¢2>] i m (B.4.21)

It is easily seen that the integrand of the second integral on the right-hand side is non-singular, which
shows that the integral is zero, since the upper and lower integration bounds are identical. On the
other hand, the first and the sixth line on the right-hand side of (B.4.20) cancel each other, since they
are identical except for the sign. Moreover, the derivative of the cut-off function x(1) is bounded for
all ¢ such that the integrands w.r.t. ¢ of the integrals on the third and seventh line on the right-hand
side of (B.4.20) are absolutely integrable, since the integral w.r.t. ¢ is finite for any fixed ¢ from the
compact set [—sina, 1]. The Riemann-Lebesgue lemma then proves that these two integrals tend to
zero as R tends to infinity. To show this for the remaining integrals on the fourth, fifth and eighth line
as well, a closer look at their integrands is necessary. Starting with that of the integral on the fourth
line, it will be shown that this integrand is absolutely integrable.
Since ¢’ (v) (cf. (B.4.21)) is weakly singular at ¢» = 9y = sin«, it is sufficient to show that

2,0 (0, (), nL (¥, 9())) = 2fe;(v',0)
[n (¢, 0(¥)) — /|

to deduce that the integrand of the integral on the fourth line of (B.4.20) is absolutely integrable.
Indeed, this holds since (cf. (B.4.11) and Lemma B.2)

250 (W, 0(0)), nL (¥, 9(¥))) — 2fe,5(v',0)
In' (1, () — v/|

< clog [ — vl (B.4.22)

< cllog |n/ (), ¢(¥)) — || (B.4.23)
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and, recalling that 9o = sina, (cf. (B.4.7) and (B.4.9))

06000 7= i ) o (22— s+ [1 - 50T
2 2 1
— [sina (v - o) + 22 6~ )| - o (07 - )
_ 1 2 _ 2
= ala [( — o) = (¢ + o) (¥ — ¥o)] = T ina (¥ — o). (B.4.24)

Consequently, the integral on the fourth line of (B.4.20) exists absolutely and the Riemann-Lebesgue
lemma once more proves that it tends to zero as R tends to infinity.

Next, to obtain the asymptotic behaviour of the integrals on the fifth and eighth line of (B.4.20),
consider the derivative

) [fzj(n'w,eﬁ),n;(w,qs)) — 2fe,j<v',0>]
P

[0 (,6) — |
_ Oun'(6,) - Vi S, (' (4,6), nL(1,6) + Dumi (v, 9) - Ve fE, (' (4, 8), w2 (1, 6)
[0 (,6) — |
Oun'(1,0) - (0 (¥, 8) = ') | 12, (0’ (¥,6), 0L (4, 6)) = 2fe;(¢/,0)]
) (6, 0) — v/’ |

where [n/(1, ¢) — V']/|n/ (¥, ¢) — V'] is bounded w.r.t. ¢ for any fixed ¢ € [—sina, 1]. Furthermore, it
was already seen that the partial derivatives of n’(¢, ¢) and n’ (¢, ¢) are finite at (1, ¢) T = (Yo, ¢0) ",
with 19 # 1. On the other hand,

f[z)j (n/(wv (b)? ”Q (1/17 ¢)) - 2f€,j(V/7 0)
|nl(¢7¢) _I/I| ,
Vir fe.j(n',n7) and thus of Vi f7(n/,n}) (cf. (B.4.11)) are absolutely bounded by c| log [n/ (¢, ¢) — /||
(cf. Lemma B.2). Hence

o fZJ(n/(¢=¢)vng(wv¢)) _2f€7j(7/70) < 6‘10g|n/(¢7¢) _I/H
v (¢, 9) — V'] 0/ (¢, 9) — V']

It follows that, if the integrands on the right-hand sides of

7 _fgz, (0 (¢, ), nL (¥, 9)) — 2fe,;(,0)] f |log|n/ (1, ¢) — /||
X(¢)¢4 “ [n' (1, ¢) — V| = CX(WdJ(w) Iw(9:9) = "

[ [logln’ (v, ¢) — /||
0/ (@, 0) — /]

do| < ex(¥) do

n' (¥, ¢) — V']

(
i [ £2 / T _ 4, ]
X(U))/aw ff,j(n (¢7¢)7nz(w7¢)) 2ff,](y70)
0

are integrable w.r.t. ¢, the Riemann-Lebesgue lemma shows that the fifth and eighth line of (B.4.20)
decay with the order o(1/R) as R tends to infinity. On the other hand, the integrability is easily shown
by undoing the substitution (4.2.22) to spherical coordinates (¢, ¢) and returning to the Cartesian
coordinate system n’ (compare with the difference between (4.2.16) and the first line of (4.2.21)).
First, however, the order of integration is switched back (compare with switch from (B.4.6) to (B.4.8)).
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Thus, recalling that x(¢)) was defined as x(n' (1, ¢)) for this section,

sin « iy 1 T
|log|n' (4, ¢) — V|| |log|n’ (v, ¢) = V||
dod dod
| X | e =t 9 1“_/ X | gy —o 0
—sin« o () sin « 0
o ogln (o) = |
og|n/ (v, ¢) — v
= dy d
[ ] oS avas
0 cos 6(¢)
B .« |log|n” — /|| 1 ,
_B : X(n) |n/ _ I/'| T |n/|2 dn’,

which is finite according to Lemma 3.11. Thus the integrands w.r.t. ¢ in the fifth and eighth line
of (B.4.20) are absolutely integrable, such that the Riemann-Lebesgue lemma reveals that both lines
decay as proposed. Finally, it was proven for all terms on the right-hand side of (B.4.20) that they
decay faster than 1/R, and thus that

Js=o0 (%) (B.4.25)

for m’/|m/| = V.

B.4.2.2 J,

For the integrand w.r.t. ¢ of Jy (cf. (B.4.14)) it can also be shown that it is bounded for any fixed
¢ € [—sina, 1]. Indeed, (cf. (B.4.18))

1 1
W=V et d— o)
_ —|n'(¥, ) = V/|* + b ¢* + d (¢ — )"
(6.0) = 1o+ A0 = b0 [ I0(5.60) ~ ]+ o A= v

~ 2sinad? (¥ —vo) + 562 (1 —v)? — |22 — a6t O (6 + [ —wol)°)
(5.0) = o6+ a0 = o)t [1(6.0) = )+ fog? (= ]

Using the expansion (B.4.18), the statement is easily proven, which shows that the integrals w.r.t. ¢
are finite for any fixed . As for J3 the integrals w.r.t. ¢ are integrated by parts, leading to

2 1
R ) W0 0) -~ Vi

9 / 1 1 —ik R
_2 _ doe ik Ro
kR J 0’ (=v0, @) =V [p e | 16qy8

Jy = dg e o

sin «

2 1 .
[ _ d szwd
ikRSZQ / [n! (4, ¢ \/5¢2+J(¢_¢0)4 pe v
i sin o 1 1 I ikad
+ikRS£a X(d}) [|7’L'( _V/l \/b¢ +d ¢ 1/}0) ] ¢(7/})€ P
9 sin « T 1 1 ‘
S x (%) Oy [ - — — —= = ] do otk RY dy
ZkRséa ¢(/w) In/ (1, ¢) — /| \/b¢2 +d (1) — o)
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d(b eikao

_i/ _
R ] W0 =1 Vi

1 T
2 1 ! '
2 [ vw [ = - ——— dpe™™ dy
sz/ 0/|n(1/1,¢)—V| \/b¢2+d(w—wo)4

sin o

1
2 1

1
——= [ x(®¥) [ 9 | = = P
ikR O/ [’ (1, ¢) = /| \/b¢2+d(w—wo)4

dep Y dop. (B.4.26)

sin o

The integrals on the first and sixth line cancel each other once more, while the integrand on the second
line is again zero, since the integrand is bounded and the area of integration a zero set. Moreover, since
the derivative of the cut-off function is bounded and zero in a neighbourhood of (v, )T = (g, do) ",
the integrals w.r.t. v on the third and seventh line exist absolutely and the Riemann-Lebesgue lemma
states that they tend to zero as R tends to infinity. To show the same for the fourth line, it is used
that ¢(10) ~ /1pg — 9 for 1 — 19 = sina. Indeed, by using L’Hopital’s rule it is easily shown that
(cf. (B.4.21))

. o(y) / " Cos & 1 \/1/10—1/1
wliglbo Vo — wli»r?po “20 W)V —v =2 hm — 9?2 /sina + ¢ /sina —
__ 2
cos ay/sin «

for a € (0,7/2), such that

oY) ~ L Vo — (B.4.27)

cos a/sin a
for ¢ — ). With this, b = cos? a and |n/ (v, d(¥)) — '|? = 2/ sina [t — 1o (cf. (B.4.24) for ¢ < 1pg =
sin @) it is easily shown that the term
1 1
W) =T o) +dw - o)t
1
JEW ol \fa2a I — ol + (W — vo)t
d (¢ — o)

VTl ke + 22 - vol? [/ 525 + /5 + dl - wol?

is bounded for all ¢ € [—sina,sina]. It follows that the integrand of the integral on the fourth line
on the right-hand side of (B.4.26) is only weakly singular (cf. (B.4.21)) and thus absolutely integrable.
Consequently, (cf. the Riemann-Lebesgue lemma) this integral tends to zero as R tends to infinity.
To determine the asymptotic behaviour of the remaining two integrals, it is necessary to examine the
occurring derivative w.r.t. 1 at the possible singularity point (g, ¢o)". Consider

1
19)
(U |n(¢¢ \/b¢2+d1/) 1/)0)
_law“” (1/)7¢)—V/| ] +2 (w_¢0)3
2w e -
3
_law [W(%qﬁ) - V/m + 2J(¢ _ 1/10)3 M

_ b ¢24-d (p—1po)t
|n/ (¢, ) — /| In' (¢, ¢) — v/ [?

3

: (B.4.28)
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where the Taylor expansions
By [0 (0, 6) — V' [°] = —2sina¢® + 4d (¢ — 1o)® + ...

and 1+ 7 = 1+0(z) are easily derived. It can further be shown that with do := —2sina, dy := —1/2,
ds := cos* a/4 — cos® a/3 and d3 := 1/2 sina/ cos® a, (cf. (B.4.18) and (B.4.19))

'@, 9) — v

b¢? + d (1 —o)*
do ¢* (v —1o)+dy ¢* (Y—100)?+da ¢* +ds (Y —100)° + O (¢ (¢+ [ —1ho])* + [ —1ho|°)

b¢? +d (¥ — vo)*

=1+0(¢+[¢— o)
for (1,¢)T — (1o, ¢o) T Thus (cf. (B.4.28))

3
=300 (10 (0, 0) = V'] + 20 (v —vo)? | [t L
(¥, ¢) — v/
L R ¢ = 24( — v0)® + 206 = o) [L+ O (6 + ¥ — o))
- b2 +do 2 (v — o) + d (¢ — 1p)*
—2do % +2d (¢ — o) O (¢ + |1 — o))
b2 + do ¢? (¥ — tho) + d (¥ — tho)*

is bounded for (¢, ¢)" — (¥o,¢0)" and (B.4.28) is absolutely integrable w.r.t. ¢ and then ¢, similar
to Js. Altogether, the Riemann-Lebesgue lemma gives that

Ji=o (}%) (B.4.29)

for m’/|m/| = V.

B.4.2.3 Js
Recall that (cf. (B.4.15))

1
Js = % / x(1) log (bw + \/i\/?nr? +d— ¢0)4) eRRY qqp,

—sina

It is easily seen that the integrand of Js is uniformly bounded for all ¢ € [~sina, 1]. Since x(1) = 0
and x(—sina) = 1, applying integration by parts to J5 gives

Js = — 72 1og<l_)7r + \/1:7\/1_7772 + 1651/)3) e~ kRvo
VbikR

1

_ \/l=72kR / X’(d]) 10g(b7r—|— \/g\/(;ﬂ—2 4 g(d’ _ ¢0)4) cikRY dop
Z .
1
— \/l:72k:R / X (¢) Oy [log(bw + \/Z\/Byrz +d (- 1/10)4)} ¢RRY 4y,
)

—sina

Obviously, the remaining integrals are absolutely integrable. By applying the Riemann-Lebesgue lemma
this, in turn, shows that they tend to zero as R tends to infinity. Indeed, both integrands are bounded
since x/(¢), the logarithm and its derivative are bounded for —sina < ¢ < 1. Hence

3 9 _ - - . 1
Js = —— log (bw + \/8\/ bm2 + 16d¢4) L <—> B.4.30
VbikR 0 R ( )

for m’/|m/| = V.
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B.4.2.4 Jg

The remaining integral Js (cf. (B.4.16)) can be rewritten as

sin

Jﬁz—% / X(U))log(bd) )+ Vo lbo(w)? +d(w - %))ei’“mdw

—sina

1

= [ v os(Vid(w - w)?) ¢ a

sin o

:_%_SL X(¥) [1og(b¢ )+ VBBOW)2 +d (6 — o) ) —%bg(lﬁo—w) et dys
"7 / a X () log(o — ) 7 dyp
log(5d) | 4T
_ ‘oglva) tk R = ik R
2 Sm/axw)e dyp - ngm/ax log( — tho) R dyp
=—-0L -1, — I3,

(B.4.31)
where

1
I = ib / [x(v) — 1] log(to — ) ™ do) + 2 / [x(1) = 1] log(¢) — 1h) €™ dyp

sin o

1

Iy:= % / log(tho — ) €™ dyp + % / log(t — tho) €™ dyp (B-4.32)

—sina sin o

and bd = 1/(4cos? a) # 0 (cf. (B.4.17)).

Since x(1) =0 and x(sina) = x(—sina) = 1, integrating I; by parts results in

sin

_ 1 / o oy X)) -1 cikRY
T / [x@)lgwo ¥) 1/)0—1/)} aw

— sin @

oo(] — ikR _ 4 / o X(W otk RY
- gl ) e /[ () og(u — ) + XL ke g

log(bd) log(bd .

 oglo) L6 [,
VbikR VbikR .

It is easily seen that the remaining integrals exist absolutely since x’(¢) is bounded and x(¢) is

identically one in a small neighbourhood of 1y = 1y = sina. The Riemann-Lebesgue lemma then
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proves that

1= g8 = %0) g 1og(bd) gy, +O<l) (B.4.33)
VbikR VbikR R

for m'/|m/| = v/.
Integral I, is treated similarly by applying integration by parts. To do so, it has to be shown that
the limit ¢ " 1 of the integrand is bounded. Consider, with ¢(¢g) = 0, (cf. (B.4.27) and (B.4.17))

wli/njjo [1og<b¢ +\f\/b¢ 2+ d (¢ — o) > - %bg(dfo—w}

(e = oW
—wl%ol(’g(bm*ﬁ\/” Vo9

COS (v
= log|( 2v2 ,
& ( Vsin a)

which is finite for a > 0. With this and ¢(— sina) = 7, integration by parts in Is leads to

2 COoS « :
12 = log <2\/_ > elkao
VbikR Vsina

B \/lzij {log (b’r + \/BM) - % 10%(21/)0)} e ikRYo (B.4.34)

- / V() [1og<b¢ 9) + Vo ooy +dw - wo)>—%1og(¢o—w)}emd¢

—sina

2
} L - %)3)

sin o

[ xtw10, on (b0tw) + Vinfbowr + (s — vt ) - 1outvo - )] e v

—sina

2
VbikR

Since x’(v) is bounded for all ¢ € [—sinq,sin«], the integral on the third line exists absolutely and
the Riemann-Lebesgue lemma can be applied. For the remaining integral it has to be shown that
the occurring derivative is absolutely integrable to apply the Riemann-Lebesgue lemma. It is easily
calculated that

oy ox(00) + Vo b0 + (v~ v ) - 1ot~ v)

b () + VBrE W oW H2d (b yo)®
b () +d (¥—o)* 1

1
)+ Vhbo()2 +d (6 vyt 20V

Voo'() Vi (v = ¢)®
oo+ at— o)t VBOW)2+d (% — o)t [6¢<w>+x/3¢6¢<w>2+& (¥ — o)
1 1
STt (B.4.35)
where (cf. (B.4.27))
lim (1 = po)?
P Joo() + dw — o)t [6¢<w> + Vo Jbo(w)? +d (- 1/)0)4}
~ lim —(—10)? —  lim (Y—10)? _
o - ~ o 408’
o \/b[ 600 1% (o -0)° |5 l ot +f\/ (o —0)? ] e
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Furthermore, it can be shown that the sum of the remaining two terms on the right-hand side of
(B.4.35) is finite at 1) = ¢. To be precise, it can be shown that

UTROW = 1
_ . /i
Vb (v) L1 AT we-

lim = lim

. o \/bcb 2 4 d (b — gho)" 290 — 9 o Yo —

is finite using L’Hopital’s rule. Indeed, since limy, ~y, #(%)/v/{o — 9 is non-zero and finite (cf. (B.4.27)),
and since limy, ~y, ¢’ (1) /1o — ¢ is finite (cf. (B.4.27)) it is not hard to show that the numerator of the
quotient on the right-hand side tends to zero as v tends to ¥y. Thus, L’Hopital’s rule can be applied
to get

lim \/:¢I( ) —I—l !
: 290 — ¥
Y700 | Jbdw)? +d ( — o)t

— — lim {\/EW( WY %m} (B.4.36)
¥ o \/ [ } o -
= ‘() 1_ o) ¢(¢)
_g(b(‘/))\/m% [ Yo—7 —i:2 wowsj [ 1/;01/;] 363[(1/}0 ¥) },
VO] +d (v — )
where (cf. (B.4.21))
I cos P 2 1
R e Y S Pl

Using the same arguments for ¢(v)/v/1o—1 and ¢’ (1) v/1bo— 1 as before and since, applying L’Hopital’s
rule, (cf. (B.4.21))

lqb’(w) L1 )

) Wo —¥) + 6v)

iy Voo =0 2\ =5 = o Vo -
— 2 m [ow) Vi - 5 2L
_2 lim cos o 24) n Ccos o P 1 _1 cos o 1 1 1
3y e | (1= 022 o + 0 1= o T o Yo—¢  21—=92 o+ ¢t~
zglim cos o 2y 1 cosa 1 :g\/m{ 11 ]
3v v |(L=92)2 o+ 21 =92 fpTe° 3 cosa |cos?a 8sina

is finite, it can be proven that (B.4.36) is also finite. It follows that the last integral on the right-hand
side of (B.4.34) exists absolutely and the Riemann-Lebesgue lemma gives

2 COoS « :
IQ = 10g <2\/_ ) elkao
VbikR Vsina

- \/zikR {log (l_m' + \/g\/l_)Tr2 + 16(71/13) - % 10g(21/)0)} e BV 4 (%) (B.4.37)

for m’/|m/| = v'.

Now only the evaluation of the integrals in I3 (cf. (B.4.32)) remains. The first step is to substitute
(o — ) /(2sin) by u in the first integral and () — ¢g)/(1 — sin) by u in the second integral, such
that

1 1
] o _ 1_gi . . .
I3 = 281\1/13 /log(2 sinq u) e~ FAZsImau gy gikRYvo 4y Sna /log((l —sina) u) etkR(I=sinau gy, pikRvo
b
0 0

S
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1 1
_ 251na log 2 sin « / —1kR2 sin au du eikao + 4(1 sin a) log —sina / ikR(1—sin a)u du eikao
0 0
1 1
sin a : —sina . . -
+2 logue ik R2 sin au du szwo + 4 /logu esz(l—sm a)u du eszwo
f Vb
_ log(2 s1nﬁa) [eﬂ'kRz sina _ 1] cikRo | 4 log(sma 1) {eikR(lfsin a) _ 1| pikReo
ikR\/l; ikRVb
1
Sm logue_”“m sinau g, oikRio _ sma 1/10gueikR(1—sin A gy, eikaO,
\/_
where, deﬁnlng s = —2sina < 0 or s := 1 —sina > 0, (cf. [32, Eqn. 106, pp. 27 and 82] and [1,

Equs. 5.2.8, 5.2.9, 5.2.34 and 5.2.35, pp. 60 and 61])

1
iksRu g _ Ot log(ksR) — Ci(ksR) —iSi(ksR) 7+ log(ksR) — i3 1
/ logue™ ™ du iksR - iksR to\Rr)

0

for ksR > 0. Note that the definitions of Ci and Si (cf. [1, Eqns. 5.2.1 and 5.2.2, p. 59]) yield that
Ci(—kR2sina) = Ci(kR2sina) + log(—1) and Si(—kR2sin«) = — Si(kR2sin«), where kR2sina > 0.
With this, I3 reduces to

I = 10%(2 sin av) [efikRQSina _ 1] otk R0 +410g(1—sir_104) [eikR(lfsina) _ 1} otk R0
ikRVD ikRVb
_ T Alog(=kR) —log(—1) +7F ixny, _ log2sina) wpy, 7 +108(kE) = iF ipy,
ikRVb ikRVb ikRVb
410g(1 - si_n a) eikRYo0 | ) (l)
ikRVb R
10g(2 sin ) o—ikR2sina ikRio +4IOg(1—SinO<) otk R(1=sin ) ,ikRio
ikRVD ikRVb
N 3y + 3log(k:Ri) —5i% CikRYo | (l),
ikRVb R
since log(—1) = im. Consequently, (cf. (B.4.12), (B.4.25), (B.4.29), (B.4.30), (B.4.31), (B.4.33) and
(B.4.37))

- log(bd) xRy, ( cos o ) ikryo 97 +3log(kR) —5iF kR
=l ’O){\/éikRe x/BmR (225 ) ¢ ikRVb
1
+o0 (E
, . —2logm.—2log2—2log2—log2—2logm.+log|m’|—3 (y+log(kR))+5iZ kR |
- f@,j(u 70) X e
ikRm,
1
“o()
/ e - T
i (0) log |m/| — 5log2 — 410%]:;;;3 (3 + log(kR)) +5i% GRRIm L, <%>7

since bd = 1/(4cos®a) (cf. (B.4.17)), m, = cosa and |m/| = sina = 1. At last, for m'/|m/| = v/
(cf. (B.4.2) and (B.4.5))

Q_Wfé,j(mlamz) ikR
ikR |m' —v'|

()

log [m/| — 5log2 — 4logm. — 3 (7 + log(kR)) + 513 kR |
e

Ji = ikRm,

+ f&j(y aO)
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Adding this to J2 (cf. (B.2.4) and (B.3.95)) for the case of m'/|m/| = v/ gives the final formula

21 foi(m/,mz) g , 2 Gk R | 1
=—————"¢ ,0 erEm — . B.4.
ikR |m’ — '] et feslv )kRmz to R (B-4.38)

B.4.3 Singular integral part for oblique reflection with singularity in differ-
ent direction

To show the asymptotic behaviour of Jy (cf. (B.4.3)) in the case that m//|m’| # 1/, the order of

integration is changed and the integral is split into five different parts. For each of these parts, the

order of decay as R tends to infinity will be shown separately in the following subsections. To do so,

the cut-off function x(n') is specified as a cut off function x(|n’|), only depending on the distance from
the origin. Furthermore, the variable €p is defined as

R i= — (B.4.39)

for all R > 1 such that x(1 —égr) = 1. Thus
jz = jg + j4 + j5 + jﬁ + j7, (B.4.40)

where
¢o+m 1—ER

j3 / / ff,J (pno(9), 1 = p?) eikpRng (¢)-m’ 14 ik Rm\/1—p dpdo,
(@) — 7] ir

do— ||
L (0) |
Jy = (o (6), /1T — p2 X\p _ ikpRnj(6)m’
A / t / Fesomy(6), v/ p>[|pn6(¢)_y,| | 5
%/)2 gihRms/1- } dp, (B.4.41)
1 ¢otm

7 fei(pni(9), V1= p?) = fo,i(V',0) 4 Rn)\(¢)-m’ 14 ikRm+/1—p?
Js = / / 1_ T (0 —a0)? e do 7me " dp, (B.4.42)

1—€R ¢po—7

P ko) R () m’ _ 1
~ e’ ng
Jo := fo;(V,0) / / ehBno(@)m’ g B gikBma1=0% q,  (B.4.43)
VI =02+ (6~ d0)? \/1—p
1 ¢0+7T 1
J7 = foi(V,0) / / ekl (9)m o B oikBm=1=p% q,, (B 4.44)
’ V=0 + (6~ do)? i

1—€Rr ¢o—

For convenience the term ny(¢) will be shortly denoted by n(, for the remainder of this section.

B.4.3.1 J;

To show the asymptotic behaviour of j3, the term is integrated by parts w.r.t. p, such that with
x(1—ér) = 1 and x(jm']) = 0,

¢0+7T1 €R
j3 = / / fl] pnO’ V 1- p2) eikpRn6~m'8 [eikRmZ‘/1*P2:| dpdgf)
szmz |pnl — V'] P
Po—7 |m/|
po+m

_ / foi((1 = €r)ng, /28R — €3) eR(—Er) Rngm’ ik Rm.\/2en =8 4,
szmz

|(1—€ér)ngy — V|

+Js1 + J3.2 + Jas + Jaa, (B.4.45)
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where
¢o+m1—ER

7 1 fei (o0, V1 = P%) ikpRnlym’ ikRm.\/T=p?
J = / ) ) etkpfing-m: jikRm. pdd7
3.1 ZkRmz / X (p) |pn/0 _ I//| P (b

do—7 |m/|

T

~ R e R N e R —
52 = R x(p) ot — ] ettrfimomt b ims V=" dp dg,

z 0

po—m |m/|

¢o+7m 1—€R
j3,3 = 1 (p) flqj(pnév V 1- p2) n6 ) (pn/O — V/) eikpRn6~m’ eikRmz\/lpr dpd(b,
ikRm. * oty — v
¢o—m |m/|
bo+m1—ER
j o féd pn07 V 1- p2) nIO -m/ ikpRny-m’ eikRvnz\/l—p2 dpde
e [y =/ ‘ pee
¢>o ™ |m/|

First consider Js 1. Note, that the derivative x/(p) in Js.1 removes the singularity at (p,¢)"
(1,¢0) ", since suppy’ C [|m’|, (1 +|m’|)/2], with |m/| < 1 (cf. beginnings of Sections B.4.1 and B.4. 3)
Thus, after switching the order of integration of Js 1, it is easily seen that, for any fixed p € [|m/|, (jm’|+
1)/2], the integrand of the integral w.r.t. ¢ in

1—€Rr| ¢ot+m
~ 1 i 0,/ 1 —p2) T
J31| < / / Xl(p) ff;](pnO; P )ezkpRnO»m d¢ dp
kRm, |ong — V|
[m/| po—m

is bounded for any fixed p in the bounded set [|m/[, (|m’| + 1)/2]. Since n{, - m' = |m/| cos(vpo — ¢1),
where n{(¢o) = v’ and |m’|n{(¢1) = m/, Lemma B.3 with the occurring r set to zero and Lebesgue’s
theorem now show that

Li:o(%>. (B.4.46)

To determine the asymptotic behaviour of j3_2 to J~3,4 the coordinate system is changed to the
modified spherical system used for J; in Section B.4.1. To be precise, the currently used system of
polar coordinates (p,#)" is returned to the Cartesian system n’ and afterwards the transformation,
introduced in Section 4.2.3 (cf. (4.2.22) and (4.2.23)), leading to (B.4.4) in Section B.4.1 is applied.
Taking into account that n’ = pn{, p = [n'], /1 — p? =nl and dédp = nL (Y, d)/|n' (¥, )| dy de, this
transformation gives

i (st (000, 21) Vs (1(0.002(0.9)
_ ( o =W @), RIS 0N D)) kg
hx—m&m!’/xﬂ (.0 S My do,
Yr(P)
(B.4.47)
27 1
~ 1 fl,j (n/(U)v(b)an(i/)aéb))
J3.3 1= —= {X(|nl(¢=¢)|) 3
kRm, /
w| | ]
n' (Y, 9) - [”/(1/’7 ¢) — V/} nZ(, @) eika} dy do (B.4.48)
(v, ¢) — /|

2m

mz/
0

J3,4 .

P e (0@ 0) i 9)) w,6) - !l (v, 9)
| s

' (¢, ) — /| |/ (0 (b)‘z RV Qo dg, (B.4.49)

Yr($)
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where ¢ (¢) := cosOr(¢) and Or(¢) the polar angle at which
7' (Vr(0),8)| =1—¢r (B.4.50)

for all ¢ € [0,27]. Note that 0 ¢ suppy, such that the term x(|n/(¥, ¢)|)/|n/ (¢, ¢)|*> in (B.4.47) to
(B.4.49) does not introduce a singularity into the integrands. The term n7 (¢, ¢) on the other hand is

zero at ¥ = (@) := limp_.cc Yr().

To obtain the asymptotic behaviour of j3_2 to J~3,4, consider the following lemma.
Lemma B.4. Assuming any locally integrable function (v, ¢) — F(n'(,¢)) e* B for ¢ € [¢(9),1]
and ¢ € [0,27], where

, log|n’ (¥, ¢) — /|
F
SR e

at (V¥,9) = (W(po),d0) and ¢o is defined such that n'(¥(¢o),do) = v/'. Then, with vr(¢) defined as

above,

Jin [ [ Por.e) e asds ~o.
0 Yr(e)

Proof. The first step is to split the integral into two parts, i.e.

2 1 21 Yr(¢)
F (' (4, 8)) ™ dupdg = RV dop dgp — F(n'(,¢)) e™™ dyp dg.
[ [ [l

(B.4.51)

To show that the first integral on the right-hand side tends to zero, the Riemann-Lebesgue lemma and
Lebesgue’s theorem have to be applied. To do so, it has to be shown that

Z/@ F (0! (1, 6)) €% dy d¢<//\F (4,8))] dpdo < //)'k)fn'”df;“j _Tl‘dwd¢

is finite. On the other hand, undoing the substitution (4.2.22) and returning to Cartesian coordinates
n’ leads to

1 1 ., 1
//|og|n Y, $) — Hd¢d¢= / ‘og|n V|| an'
W)~ W] VIR
(o) By (1)
which is finite according to Lemma 3.11. Thus, the Riemann-Lebesgue lemma implies

2 1
R1Ln;o/ / F(n'(,¢)) e* ™ dypdg = 0.
0

It is more involved to prove the same for the second integral on the right-hand side of (B.4.51).
Similarly to the first integral, the integral is bounded from above and the substitution (4.2.22) is undone,
ie.

27 1/JR(¢) 27 1/JR(¢)
F('(0.0) e apas) < [ [ (0,0)] dvdo
0 (o) 0 (o)
271'1[’1?,((15)‘1 | /(1/} ¢) /||
og|n' (v, d) — v
< dyd
‘Co/w(/w W) v
oglot 0l 1
= ——d 4.
c/ |n’—u’| ST n', (B.4.52)

Dr
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where v/ € Dr C Ba(1). Note that D := {n’ = n'(¢,¢) € R?|¢ € [0,27] and ¢ € [¢(d),¥r(4)]}
is the annulus {n’ € R?|1 — ér < |n’| < 1}, since ¥g(¢) is defined such that [n/(Yr(¢),d)| = 1 — €r
(cf. (B.4.50)) and 9 (¢) such that |n'(¥(¢), ¢)| = 1. Naturally, Dr tends to the zero set of the unit circle
as R tends to infinity (cf. (B.4.39)) and v/ = n/(¢(¢o), o) € Dr for any fixed R > 1, since || = 1.
Next, it will be shown that the integral over Dy tends to zero as R tends to infinity. For this, the same
approach as for the proof of Lemma 3.11 is used. First, however, the domain of integration Dpg is split
into a small neighbourhood around the singularity n’ = v’ and the rest. To be precise, as in the proof
of Lemma 3.11, it is assumed w.l.o.g. that +/ = (0,1)" such that the small neighbourhood around the
singularity n’ = v/ can be defined as all n’ € Dg with n, € [—¢,¢] and n, > 0 for a small and fixed
€ > 0. Now, it is not hard to show that the complement of this neighbourhood w.r.t. Dp is contained
in the section of the annulus

{n'zp ( Z?jz ) € ]Rz}p €[1—€g,1] and v € {g—%, g—l—%} with sin~y.=¢ s.t. nw(l, g:l:%> =$e}.

Thus, representing the integral over this annulus section in the polar coordinate system (p,v) and
defining nj, := ng(y) := (cos~,sin~y) gives (cf. (B.4.52))

2 Vafd) ‘log’n'—l/'H 1
F(n' (1, ) e % dypde| < ¢ dn’
e 1—n2
llog‘n'—u’H 1 ,

</ | ST e
T o2& 1

log|png — || p
+ + dpd-.
c<0/ > / |pn6—V/‘ 11— 2 pdy

S+ve 1—¢€r

Since |y — /2] > 7. > 0 and v/ = n{(7/2), it is easily seen that |log|png — v'||/|png — v'| < ce in the
second integral on the right-hand side. Therefore,

™ _
2

1

Ve 27 1
llog|png —v'|| / p a (L)
(0/+/> / oty — 7] 1_p2dpd7§27rc€ 71_p2dp—(9 77
Zen

iy, 1-ér 17
such that
27 Yr(¢) ¢ 1—n2 | / / ) 1
0 4(e) —¢\/0-en)—nZ

e V1+&-n2
< c/ / L g | R S (L)
: W] VI-WE RT)
TC\/1-83—n2

Using (3.3.36), (3.3.37) and (3.3.38) from the proof of Lemma 3.11 with €, = € and ¢, = €g, it is easily
shown that

21 Yr(P) e V 1+1/R3_"%
| Forwe) e avas < [
0 ¥(e) —€/1-1/R3—n2

wlw

|1og‘n’—u"| 1

[ =v'| /T = 7]

1

2
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1/33( )2 1/R3 1/R3
log t, / 1 c / 1
< dt —dty, + —+ —dt, + O
<c [ Bt [ e PRV
0
1/R?
1 1 c 1 1
SC/t—%dty+2CR3/2+6 R1/2+O<E>
0 Yy
1
“o ()
R
proving the lemma. u

For the integrand of Js5 (cf. (B.4.47)) it is easily seen that the assumptions of Lemma B.4 are
satisfied, since Vi f¢ j(n/, n.) has at most a logarithmic singularity, while the cut-off function x ensures
that 1/|n’| > 1/|m/| < oo, such that the integrand can be bounded by c| log |n' (v, ¢) —v'||/In/ (¥, ) — 1/
at n’ = /. The lemma thus shows that

Js0=0 (}%) (B.4.53)

In the following, the integrals Js.5 and Js 4 will be examined similarly to Js.9. For Js.5 (cf. B.4.48)
it will be shown that the integrand satisfies the assumptions of Lemma B.4. Indeed, since f;; is a
bounded function and the cut-off function x removes the singularity at |n'(v, ¢)| = 0, it follows that
X' (¥, 9)]) fe (' (¥, §), nL(, 9))/ I (¥, ¢)|* is bounded. Moreover, since [v'| =1, |n'(¢,¢)| < 1 and

ng(’l/),d)) = - 1- |7’L/(’l/},¢))|27

wwwwmm@—ﬂ W¢‘ |nw¢—w\nw¢\:1—ww¢\

|”'(¢,¢)—V'| |n/ ¢¢—V\ |n/ ¢¢—V|
/|2
v = In', o)l = ¢ < oo (B.4.54)
|V’|2 (1, 9)|”
Hence the integrand of .J5 3 is absolutely bounded from above by
¢ e llog |n/ (v, ¢) — /||
| (. ) = v/| (@, ¢) v
for ¢ € [¥(¢),1] and ¢ € [0, 27|, such that Lemma B.4 can be applied, giving
Jos o~ (B.4.55)
s3=0( g | 4.

To consider the asymptotic behaviour of J3 4 (cf. (B.4.49)), the integral is split into

2 1
j Joi (' (W, 0), 02, 0) ) ' (0, 0) -/ nZ(0,9)
Jaa= 1 //XU”/W,@I) “( ) 5 RV do) dp
0 (o) ’n/(¢7¢) - I/" ‘n’(w,qﬁ)‘
1 7%(@ (In'( sb)l)f&j(n/(w’@’n;w’@) WY, ¢) - mni(y,9) HRY dp dg. (B.4.56)
- " . P )
Y i) ' | 0/, 6) — V| | (0, )| ‘

The asymptotic behaviour of the second integral on the right-hand side is easily proven, since the
estimates done for Js 3 (e.g. (B.4.54)) show that the integrand is uniformly bounded for all ¢ € [¢)(¢), 1]
and ¢ € [0,27]. Moreover, by undoing the substitution (4.2.22) for this bound and introducing polar
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coordinates to the new domain of integration Dg, which is the annulus with the radii 1 — € and 1, it
follows that

27 1/JR(¢)
f@,’ n/(¢7¢)7n2(¢7¢) nl(d]7¢) mln§(¢7¢) .

X(ln/(d],¢ J( ‘n/(w ¢) - V)/‘ ‘n/(d} ¢)|2 eZka d’lﬁ d¢
0 ¥(¢) ’ ’

27 Yr(P) ) 1

p
< cdypdp=c [ —dn' = 2mc dpz(’)( 3)
O/ww) D/R " 1_4 -

Hence, (cf. (B.4.56))

Js.a =

2 1
| e (0 (0, 6) 02 (0,6) ) W', 0) - ' w(1,6) |
(1n'(, ) oo (1)
[ [ (6, 8) — | [ (.0 R

z

0 (e)

Next, the remaining integral is integrated by parts w.r.t. ¢, leading to (cf. x(|n’(1,¢)]) = 0 and
In'(1(8),9)l = 1)

i 7ﬂxwwwwwaw@@0mwwwwwwwww>

KRY(®) §
ikRm. [0/ (¥(6), 9) — V'] ‘ ¢

j3.4 = -

0
2 1
| fes (n'(6.0). 02 (0,9)) ' (0,0) -/ (6, 0) |
. 9y |x(In' (. 9)]) e dyp dg,
M&WZ%éw[ [/ (,6) = /| ' (,6)]

‘o <%> (B.4.57)

To get the asymptotic behaviour of the second integral on the right-hand side, it is necessary to analyse
the singular behaviour of the derivative, i.e. of

Jes (0 (0, 0), 0 (1,0) ) ' (1, 9) - 2 (45, 6)
', 6) = v/| ' (0, 9)|” ]
_l%wwﬁyMwﬁkﬂﬂwﬁmﬁAWW¢WﬁWﬁ»WWﬁWm%ﬂ%@
2 (0. 9)] ' (1, 6) — v'| | (), 6)|”
Ouit" (,6) - Vfog (1 (0, 0),m2(0,0) ) W' (6,0) - ' nE (16, )
', 6) = v/| ' (4, 0)|”
fe (0 (0,0),m2 (4, 9)) Oy [0’ (,9)] - m' nL (¥, 9)
(@, 6) = /| | (0, 9)|”
Jes (0 (0, 0), 206, 0)) 0/ (1,0) - ' O [ (1, 0)]
(@, 6) = /| [ (0, 9)|”
Fo (1 (0, 6), 02 (,0)) 0 (6, 0) - 10/ 1L(0.0) 0, ! (1, 6) - (! (5, 6) — V')
'@, ¢) = v/[* (v, )| [/ (. 9) V|
Je (06, 0), 2 (6, 0) ) 1/ (6, 0) -1/ 0L (8,6) 9, (1, 6) - (15, )
[ (v,0) = v/ (. 0)]*

Oy {x(ln’(wﬁ)l)

+x(In (¥, 9)1)

+x(In (¥, 9)1)

+x(In (¥, 9)1)

= x(In'(4, 9)])

= 2x(In' (¥, 9))
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Here x(|n’ (1, #)|) and x'(|n’ (1, #)|) cut off the singularity of 1/|n(1, )| at n’ (¢, ¢) = (0,0) T and of

sin acos f — (cos acos 3 cos ¢ — sin Fsin @) \/w—
1—y2

Dy ft” (1, ) = < gjg%’z; ) — | sinasing— (cosasinﬁcosqﬁ—i—cosﬁsin@\/i?
cosa—i—smacos¢m

at 1 = 1. As stated before, the gradient of fy ; has at most a logarithmic singularity (cf. Lemma B.2).
With this, it is not hard to show that

fei (n’w, @), (4, ¢>) W0 m (. 9) ]| Jlogn'(,0) ~ V|
S C
' (4, 0) — /| |0 (v, )| ' (1, 0) — v/

xX(In' (¥, 9)1)

for all ¥ € [¢(¢),1] and ¢ € [0,2n]. Thus, by undoing the coordinate transformation (1, ¢), it can be
shown, very similar to the beginning of the proof of Lemma B.4, that the Riemann-Lebesgue lemma
can be applied to the second term on the right-hand side of (B.4.57). Hence, it is shown that the term
decays faster than 1/R as R tends to infinity. It remains to examine

g 7’fe,j(n'<¢<¢>,¢>,n;<w<¢>,¢>)n'<w<¢>,¢>-m’n;<w<¢>,¢>

, 1

RRU(S) g + (_)

e 0 .
[n'(¥(9), ¢) —v'| R
To determine the asymptotic behaviour of the remaining integral, the goal is to apply the Riemann-
Lebesgue lemma once again. To realise this, the continuous function (¢) (cf. (4.2.28) and Figure B.2)
has to be substituted. Recall that 1(¢) is strictly monotonic for ¢ € [0,7] and ¢ € [7,27] with the
range [—sin «, sin«]. Thus (cf. (B.4.7))

g (W0, 0, 0(0)) G () 0w
J34 = _ikRmzs‘i{a ‘n/(¢,¢(w)) — I/" 10) (¢)€ dy
ikémz | feg (n’w, 2r—¢(v)), nZ(¥, 2w—¢(¢))) n' (0, 2 —p(eh)) - m’

nL(Y,2r=¢(v) i 1
[ (6, 27—5(0)) - V,’¢ () e ka}dw—i—o (}—%),

since ¥(¢) = Y21 — ¢) for ¢ € [m,2n] and where ¢'(v)) (cf. (B.4.21)) is weakly singular for ¢ = 7
and thus ¢y = —sina. Since f; and nl(¢, p(¥))/|n (¢, ¢(¥)) — V'] (cf. (B.4.54)) are bounded, the
Riemann-Lebesgue lemma directly gives that

= 1
hi=o(3)

for R — oo. In total (cf. (B.4.45), (B.4.46), (B.4.53) and (B.4.55))

= _ =2
Jy = / fe; (1 — €r)ng, \/2€r — &%) oik(1—Er) Rnfym’ jikRm. /28r &3, do +o 1 (B.4.58)
szmz |(1—€ér)ngy — V'] R

for m'/|m’/| # v/

B.4.3.2 J,

The asymptotic behaviour of Jy (cf. (B.4.41)) is determined next. Note that using the fact that x(p)
is identically equal to one in a neighbourhood of pn{, = v/, it was already shown in Subsection B.3.1.1
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that (cf. (B.3.11))

T [ X !
Juste O’M){Ipné—ﬂl \/(1—P)2+(¢_¢0)2}

is finite at pnj = v/. Thus the integrand of J; (cf. (B.4.41)) is uniformly bounded by a constant ¢ for
all p € [1 —€g, 1] and ¢ € [¢p9 — 7, ¢ + 7. Furthermore, it was shown that locally (cf. (B.3.22))

o x(p) !
0, [fe,;(p 0: V1= p?) g~ AP+ (& ¢o)2H ‘
14 2 2 c
< \/17_—/)2 llog(\/(l—p) +(¢—¢0) )’ +

VA=p)2+(6—¢0)?
After applying integration by parts w.r.t. p, this will be used to show that all occurring terms decay
faster than 1/R. Consider, (cf. (B.4.41) and x(1 — €r) = 1)

1 po+m

e [{ [ st [ 1

ikpRng-m’ d¢
e

oy =71~ =P+ (o w]

1—€r “po—7

o]
) ¢o+m 1 1
_ ™ 0 _ ikRng-m’d
ikRm. / Je.a(no, 0) [lng — V| |¢—¢o|} ‘ i
po—T
1 po+m 1 1
- / Fo (1= Er)nb, \/26m — &) _ S
szmzq5 { J 0 BT = ér)nly — v/ &+ (¢ — ¢o)?
0—T

eik(léR)Rng.m'} do eikRmz\/QéRféf?

do+m

1
+ik1;mz /{ / aplf@,j(pna, 1—p2)[ x(p)
12

_ 1 ikpRnf)»m'd
P T

po—T
szmz\/ }dp
po+m
N 1 / 7 fe.i(pnb, /1 — p?) X(p)mp -’ no etkpBngm’ g4
me J S =T T2+ (6 ooP
—€R 0—T

eikRmz\/ 1—p2 } dp

In view of (B.3.18) and ég = 1/R® = o(1/R), and since f%—” |log((1—p)?

by 2 f¢o+7r

+ (¢ — ¢0)?)| do is bounded
Po—

[log |¢ — ¢o|| do for p € [1 — €R, 1], it is easily seen that the sum of the absolute values of all

integrals on the right-hand side, except the second, are bounded by (cf. (B.3.36) and (B.4.39))
1 ¢otm

1 ¢o+m
Wcmz/ /\/(1—;))21 d¢dp+—/ /

ol +(p—¢0)? kR

1
2 /
+CM / 1dp+0<l>
m, R

1—€Rr

|log((1—p)*+(¢—¢0)?)| do *dp
1—€r ¢po—7 p2
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5 1 ¢o+m 1 5 1 Po+m
c c p
< 2 dodp+ | do [ floglo—ulld
kBm. / ¢/ VA=p?+(6—0)? kRm ] 1=
—€R 0 —€R 0—T

()

1

2c ¢ - i X
fr . D) 2 _ . c3 5 1
KRm. / ‘log(w—f— (1-p) +7r) log(1 p)‘dp—i— = 2eR+eR+O<R>

1—ég
f 1
g% 1dp—|—— / |log(1 — )|dp—|—0(R>
1—€Rr —€Rr
< 2¢ ’—N +logeér€ ‘—l—o 1
~ kRm, R BERCR R
(L
= %)
In total,
po+m
Ji= g [ ualQ = enm en =0 | 1
= ; — € n, ER — € -
* ikRmz¢ b ROV ST ER (1= Er)ngy — v/ &+ (¢ — o)’
0—T
eik(léR)Rn(,.m'}dq5 eikRmz\/2er—¢% _'_0(%)' (B.4.59)
B.4.3.3 Js

To obtain the asymptotic behaviour of .J5, recall that (cf. (B.4.42))

1 ¢o+m

. ff, pn07 ) ff, ( ) ik Rn{-m’ ikRm /1
Js = szmz / / 7 )2+(¢—¢;)2 i asy "

1—€r ¢po—7

As for J, the singular behaviour of the integrand was already examined in a previous section. It was
shown in Subsection B.3.1.2 that (cf. (B.3.31))

fei(pno, /1 = p?) — fo;(V',0)
V(I =p)? + (¢ — ¢0)?
for any fixed p € [1 — €g, 1] and thus that the integrand of Js is absolutely integrable. Moreover the

derivative w.r.t. p of the quotient is bounded by ¢| log((1—p)2+(d—d0)?)| p/l/1—p2\/(1—p)2+ (¢ — ¢0)?]
(cf. (B.3.35)). Integration by parts w.r.t. p is used once more, and

< Jlog((1 = p)* + (¢ — ¢0)?)| (B.4.60)

po+m , ,
Js = —- 1 / fe.5(n6,0) — fo(v ao)eikRng-m’ de
ikRm,

|¢ — oo
po—m
po+m B _ _
/ fei (A — 63)”67 V/2€r — f%z) — fe;(V,0) eik(1—&r)Rng-m’ do pikBm:\/28r—E3
szmz + (6 — 60)?

1 po+m
/1 — p2) — (! P .
/ / [f&] pnOu 1-p ) f&](u 70) eikpRnO»m d¢eszmz\/1—p2 dp

e =07+ (6 007
1—€r ¢po—7
1 ¢o+m , 5 ,
+ (n/o . m/) ff,j(pnOv V 1—p ) - flﬁj(y 70) eikpRn6~m’ d¢eikRmz\/lfp2 dp

m. J V=P + (65— 0P

1—€r ¢po—7
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With the bounds of (B.4.60), the absolute value of Js minus the second integral on the right-hand side
can then be estimated as (cf. (B.3.34), (B.3.35) and (B.3.36))

1 ¢otm

c [log((1—p)+(¢—¢0)?)| p
[ ——

kRleng s VI=p)2+ (¢—¢o)? \/—pQ
1 ¢ot+m

* TI”CL / / log((1—p)*+(—¢0)?)| dédp+ o (%)
B

c 1
wm | | T e g

1—€ér ¢po—7

1 ¢o+m
+ = / /1d¢|lo(1—)|d +o(L
— g1 -p)ldp+o 5

z
1—€r po—7

1 ¢otm
c p
- log 1=p)7+72) +log(1-p) | [log(1 - p)| — L= d
wme | [ {oslr e VEZPTR) wios1-) a1 = )L 0
1—€r po—7
2 1
+ 7771:0 ér|l —logégr] +o (}—%)
2 h 1
c 2 P
C 2 [ o o (3)
kRm. / [ N R)
1-ég I=r
since |log(1 — p)| = —log(1 — p) for p € [1 — €g, 1] and R sufficiently large. Furthermore, substituting
U = v 1- p27
1 V2er—2,
1 2 p 1 2
= / [log(1 — p)] 17_1)2 dp = = / [log(l —V1- uz)} du
1-eR 0
\/26r—é%
< % / [logu]2du
0

C2 ~ -
< =,/2R — &2

!

2
2 —2log\/2ér — €% + [logw/QéR—'éQR]

such that
bo+m B _ _
Jo— 1 / fe; (1 — €r)nl, \/26r — €%) — fo,;(v',0) &R Ry’ ikRm./2en—8, | (l)
e &+ (0~ o)? R
0— T
(B.4.61)
B.4.3.4 Jg

Next, the asymptotic behaviour of Jg is derived. Recall that (cf. (B.4.43))

= fe;(V',0) P e ™ 1 ot ikRm./1—p?
J6 — _ ZR ) / / > - et Rng-m d¢ ap et Rm_./1—p }dp
i V(1 =p)?+ (& — ¢o)

1—€r ¢o—m
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As in the previous subsections, Jg is integrated by parts w.r.t. p, resulting in

v oy T —iken R
~ . TURER . — . . = =
Js = fe (V ;0) € 0 1 eszng-m/ de eikRm./2ép—E%

itkRm, ol /& + (b — do)?

1 0
M Enl m! eik(P—l)Rngvm' .
+ 1km, [ / {Z g =M \/(1—p)2+(¢—¢0)2 (B.4.62)

-1 |:eik(p—1)Rn6-m/ _ 1}
_ (p ) eikRng-m' d(b eikRmz\/ 1—p? dp,
)

RVO=p2 + (@ =02

where it is easily shown that
ik(lfp)Rnfym’ -1
R\/(1 = p)?+ (¢ — ¢0)?

is bounded uniformly for all p, ¢ and R, such that

eik(pfl)Rnﬁm’ (p — 1) |:eik(1—p)Rn6»m' — 1}
ikng - m/ - <

VA=pP+ @ =002  RYVOA=p2+ (=007 | VI=pP+(6—0)?

With this and keeping in mind that |log(1 — p)| = —log(1 — p) for all p € [1 — €g, 1] and R sufficiently
large, the absolute value of the second integral on the right-hand side of (B.4.62) is bounded by
(cf. (B.4.39))

|f€;mizo / /\/1— 0o W

1 ¢otm
[fe.s (', 0)] 1
= Q¢ ded
cC kmz 1_/€R QZ \/(1 _ p)2 + (¢ _ ¢0)2 (b p
1
(0
= 20% / log(w ++v([1=p)2+ 7T2) —log(1 —p)dp
1=

1
(V.0 _ (V0
< 207|fe’;€(mz ) log(2m)ér — 26% / log(1 — p)dp

1761?‘

- (R)+2 [£es(,0)l 1—5R10g(€R)—1+€R]

km,,
_ (1
= =)

po+m

v —ikér Rn)y-m’ __

j6 _ fliaJ(V 70) / e R 0 1 sznO m’ d(b ikRm,/2ég— ER +0< ) (B463)
ikRm, + (¢ — )2 R

Therefore,
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B.4.3.5 Jr
To obtain the asymptotic behaviour of .J7, the integral has to be split. Recall that (cf. (B.4.44))

1 ¢otm

ik Rny-m/ P ikRm.\/1—p?
Jr = fo;(V,0) / / kRnom” g L ekRm=v1=p" 4,
7 VI =)+ (¢ — ¢o)? 1—p?

1—€r po—7

The goal is to get an integral w.r.t. ¢ that can be evaluated explicitly. For this, the exponent nj-m’ =
|m’| cos(¢ — ¢1) has to be transformed to a linear function of ¢ and the domain of integration has to
be extended to R. To linearise the exponent, the Taylor expansion of cos(¢ — ¢1) at ¢ = ¢ is used.

For sin(¢g — ¢1) # 0,
ngy -m' = |m’|cos(do— 1) —|m’[sin(do — ¢1) (— po) — |m/[sin(go — ¢1) R1(¢— o) (¢— o),
where

B N Ao Y°
Ra(w) = sin gbo—gbl Z (o+2)!

o= 0

and a, := (—1)°/?*! cos(¢g — ¢1) if 0 is even and a, := (—1)©°"1/2 sin(¢y — ¢1) otherwise, such that
|ao| < 1. Similarly, for sin(¢g — ¢1) =0,

= feos(bo ) ~ L) cos(0 — 1) (6 o)+ [ [cos (o — 1) Ra ((6—0)°) ()"
where
N e Y
Ra(v) := oz::o(_l) ot a

Note that the case sin(¢g — ¢1) = 0 corresponds to either m//|m/| = —v/ or m’/|m’| = v/, where the
latter was already examined in Section B.4.2, such that only the case of m’/|m’| = —/ remains to be
analysed. It is easily seen, that Ry, Ro and their derivatives are continuous functions. Defining the

constants a := —k|m/| sin(¢o — ¢1) and b := k|m’| cos(¢do — ¢1), and substituting ¢ = ¢ — ¢ such that

mgw_¥+ﬁj”“wfg?“w%‘W¢Q, (B.45)
b—5¢° +bRa(v?) Y%, if sin(¢o —¢1) =0
the integral J7 can be split as
Jr = Jos,0) (Jhy = Fo+ Jhy) e (B.4.65)
for sin(¢p — ¢1) # 0. Here,
Jh = / / \/a% elaRv dw\/%_/ﬂe“mmzﬂ dp, (B.4.66)

1o 1 plaR Y szmz\/ﬁ
7 /(/j) . b @aon

J3 / / Y dy —— e*fm-V1=r" qp, B.4.68
e m \/— ( )
1— €R IR,
In the same way, for m’/|m/| = -/,

o= fes,0) (Jy = TRy + J2y) R, (1.4.69)
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where
IR Ra(v?) 9t _ 1 _
J2, = —iGRY? gy L cikRmay/1-07 g (B.4.70)
V(1 =p)2+ 1/)2 1—p2?
1—€érp —7
1 _;b 2 P ; _ 2
J2 / [+ / L umvigy L Rm /TR, BATI
2 ( /(1_p)2+¢2 1/} /1_p2 P ( )
12en
T2, = e 18RV qyp L ikRma/1-0 g (B.4.72)
' A vA@—=p)2+ 1/)2 1—p2?
€R

Obviously, in this case, the exponent of e~*38%” is not linear. This will be resolved in the corresponding
subsections by introducing an additional substitution of variable.

B.4.3.5.1 J},

Again, to examine the asymptotic behaviour of j711 (cf. (B.4.66)), integration by parts w.r.t. p is used.
For this, note that a ¢ > 0 exists such that

claRRi() ¥ _ q

elaRR1($)* _ q
R\/(1-p —l—wz

uniformly for all p € [1 — €g, 1], ¢ € [-7,7] and R > 1. Hence, the absolute value of J}, minus the
boundary term at the lower bound from integrating by parts w.r.t. p is bounded by (cf. (B.3.48) and
(B.3.52))

(1—p) < l-p

<c< oo

R?

T JiaRR 2
1 /6 1(¥) ¥ _1eiaR¢d1/)
kRm. ||
zaRR (w)w _ ) )
k / / ! 13 elaR’l/} dw eszvnz\/l—p2 dp
m, / p)2 + 1/}2

—ER -7

<27‘rc/1d+ 1_ 1
= T, PTO\R) " °\R)

1—€r

such that, undoing the substitution ¢ = ¢ — ¢y,

po+m
- 1 iaRR1(p—¢0) (d—¢0)® _ 1 ) _ 1
J71.1 _ — e _ - emR(cb*%) do eszmz\/2eRfEf2 +o (E) (B.4.73)
T N ()

0—

B.4.3.5.2 JZ2,

Considering integral J2, (cf. (B.4.70)), similar to J , it is not hard to shown that a constant 0 < ¢ < oo
exists such that

bRR2(v?) 9t 1-p eszRz(wz)w“ ~1
< 5 <eg,
RO pR+ 42 Ry

for p € [1 — €g, 1] and ¢ € [~7,n]. With this, the asymptotic behaviour of J2 | is easily estimated by
integrating by parts w.r.t. p, such that the absolute value of J2, minus the boundary term at the lower

(1-p)
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bound from integrating by parts w.r.t. p is bounded by (cf. (B.3.57) and (B.3.60))

1 ] ePRR2 () v* _ 1 SRR gy
kRm. 0] ‘

T

DR R2 (%) 9t _ _ .
/ / 1— 2 1 7Z%R’¢'2 dw eszmz\/17p2 dp
e Ry/(T=p) + 47

<27TC/1d+171
“wm. ) PT\R)T\R)

—€Rr

kmz

which, undoing the substitution ¢ = ¢ — ¢y, leads to

bo+m
1 bRR2((¢—0)?) (9=d0)* _ 1 oy
e 71 R(¢p— d)o d¢ eZkRmz 26p— ER + o0 (R) . (B474)

j721 =
. ikRmz¢ /g% + (¢ — )2

B.4.3.5.3 J},
Next, integral J2 , (cf. (B.4.67)) is examined. Recall that

71 iaRw ikRm,+/1—p?
Jro = szmz / (/ / ,71 — T dy 9, [e }dp.

1—€érp o0

First, the integral w.r.t. p is integrated by parts, giving

B 1 " 1 .
Jl I o zaRwd
"2 = T iRRm. (/ +7)|w|e v
1 r 1 ia R 1) ikR 28R —&2
- Y £ % d ikRm ErR—€L
+m(ﬁ/ L s ap e

1 -7
1 1-— . )
4 / / +/ P . elaRw dd} eZkRmz\/17P2 dp,
tkRm, (T—p)2 +¢2?

1—ér >

where, since 1 — p < ég

/(/ / \/1—7% G g M T | JL +D|¢| dy dp

—&pn 00
=2
_ €R 1Y\ 1
o (w) o (x)
Hence, in view of (B.3.69) and undoing the substitution ¥ = ¢ — ¢o,

Po— [e’e]
~ . . — 1
1 ZU«R(¢—¢0)d ikRm,/26g—&2 = B.A4.
o= mRmz</ /) NGESCET: N 1 ) RCRED

AN
=9
—
\|
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B.4.3.5.4 J2,
The asymptotic behaviour of j722 (cf. (B.4.71)) is just as easily shown. Integration by parts w.r.t. p

gives

o

Jra = szmz / /\/1—7+1/)2

1—-ér 7™

2 1 —ib R 2
= —— - —_ g d
ikRmz/|1/)|e ’ ¥

—igRuﬁ dip 8p pikRm/1-p2 dp

2 T 1 Y e
i3 d 1kRm ER—€ER
+z’kRmz/ ,/g%_i_wze ve
1 e’}

+ / / LR g ke g,
(3 m _ 2 2
ARV )

where the last integral on the right hand side can be estimated the same as for J}, (cf. (B.4.75)).
Furthermore, (B.3.84) can be used to estimate the first integral on the right-hand side such that,
undoing the substitution ¢ = ¢ — ¢y,

po— 00
. e iBR(6-00)° 4o oikEm-Zn G L o (L) (B4
J7o = ZkRmz ( / / ) <Z5 V& + (6 — ¢0)? i ve e (R - (A7)

B.4.3.5.5 Jl,

Finally the asymptotic behaviour of .J} , (cf. (B.4.68)) is determined. Recall that

1 iaR 1 14 ikR 1—p2?
— vy Lt mzy/1—p dp.
/ R/ V=2 Vi=p?
e

The integral w.r.t. ¢ can be evaluated in the sense of a Fourier transform (cf. (B.3.71)). Furthermore,
the resulting integral

1
J7.3 -

—

7 P ikRm,+/1—p2
Ha=2 [ Ko(alR(1 - p) L Vi dp
1—ég L=
is split into the two integrals
Jo =1t + 13, B.4.78
7.3 1 2

where

2 1 — o2
A p

1
B2 [ [Kouam(l —o)+ log('“'Ru - p>) ¥ :y] P iRy,

1
s ] (e n) o e
1—€r

_p2
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to separate the logarithmic singularity of Ko. The integral I is evaluated using integration by parts.
Given (B.3.73),

1 2

Bt / Kallal (1 )+ g (5 (1= ) 45| 0, [V g

2 . —
= |:K0(|CL|R€R) +log(%R€R) +”~y} ethlim=/2en =,

ikRm,
2al | 1
_ 2a B _ ikRm./1—p?

—€R

where (cf. [1, Eqns. 9.6.10 and 9.6.11, p. 119]) |K1(Ja|R(1—p))—1/(Ja|R(1—p))| < cfor all p € [1 —€R, 1]
and R > 1, which leads to

2 . —
L= o {Ko(|a|R€R)+1og<%RgR> +ﬂ eiRRm=\/26r=E 4 O (p). (B.4.79)

Consider I} and substitute u = /1 — p2

1 1
2 ) )
I3 [log(MR> + ,7] / ap [elkRmz\/17P2:| dp — 2 / log(l _ p) P eszmzﬁ/1,p2 dp
—¢r

27 ikRm. 2 1— 2
—€R 1
log(‘%‘R) +7 2n—th
—2— [1 - ehRme V2R | / log(1 — v/1 — u2) eFRm=u dy, (B.4.80)
ikRm,
0

To evaluate the remaining integral, first note that employing [32, Eqn. 106, p. 27 and 82] and [1,
Eqns. 5.2.8, 5.2.9, 5.2.34 and 5.2.35, p. 60 and 61] gives

1

) 1
/1oga: eleRe dg = [:y +log(cR) — Ci(cR) — ¢ Si(cR)] R
0

- [ﬁ/-}-]()g(cR) - zg} % +o (%) (B.4.81)

Moreover, it is used that

1—v1—u? 1
g e - V) 2] = (1) < () = e

With this, (B.4.81), defining dr := \/2ér — € = O(1/R) and using integration by parts for the
remaining integral on the right-hand side of (B.4.80), it follows that

dr

/log(l —v1- u2) eihRmau 4y,

(=)

dr dn
= /[log(l —v1- u2) — 210gu} etFRm=w qy 4 2/logue“€Rmzu du
0 0

dr
logép —210g(dr) irrm.an , 1082 1 / kR
= ikEm.dz = 0w [log(1 = V1= 1) — 2logu] /-4
ikRm. t kRm, ~ ikRm. o8 u?) —2logu] e “
0

1 1
+ 2log(dr) dr / eFRmedrt gy 4 2dp / log u e?kBm=dru gy,
0 0



APPENDIX B. ASYMPTOTICS FOR SINGULARITIES ON THE UNIT CIRCLE
B.4.3 Reflection direction not in singularity direction

194
_ logér —2log(dr) ikRrm.dn + log 2 _ u eikRmzu 4.,
1kRm, tkRm, ikRm, ) V1 —u21++vV1—u?
0
log(dr) dr [ ikrm.dn dr ~ T 1
O8\IR) AR [ikRmadr _ | 27[ log(kRm.d ——} -
o Rmdn |+ 2 Ry, 1+ loskRmedr) —ig | +o{ 5
102€R  ikRm.dn log 2 ¥ +log(kRm.) —i% 1
— SR gikRm. —). B.4.82
kRm, * Rm. ikRm, TR (B-4.82)
Hence,
log(‘%"R) —7 10%(‘%"351%) +7 log2  log(kRm.) —iZ 1
I} =2 _9 ikRm.\/2en—&, _ 9 982 4108 z 5 1
2 ikRm., kRm,  * * T 2k Rm, wkm,  T°\R)
and (cf. (B.4.78) and (B.4.79))
~ 2 Ty —= logla| — 2log2 — log R — 2log(km.) — 4 + i7 1
Jl _ K, R ikRm,+/2ér—€% ) -
73 = i, Rollalfter) e + ikRm, T \R)

where (cf. (B.3.71))
¢laR (#=0) 4.

1
2Ko(|la|Rer) =
o(la e R/ T

In total, (cf. (B.4.65), (B.4.64) (B.4.73) and (B.4.76))

7 fe j (y/7 0) ¢0+TreiR[b+a (p—d0)+ R1(d—0) (6—b0)*] _ etRlb+a (¢—¢o)] d
"7 ikRm. / 2+ (60— 00)° g
Po—T
$o—m oo
/ / 'LR[bJ"a (¢ ¢0) / b+a (¢ ¢0)] ¢ eikRmzm
o ok ER+ (b (bO ER+ ¢ ¢0
log |a| — 2log2 — log R — 2log(km.) — % +i7 ;4 1
. ! d JR—
+2fe;(v',0) TkRm. e’ 4o 7

szng-m/ d(b eikRmz \/2€R—€%

fg)j V 0 /
ikRm, \ /g%;z ¢ ¢0)?
1og|a| —2log2 —log R — 2log(km,) — 4 +im 1
92 i bR — ).

+2fe;(v',0) R ol 5
Thus (cf. (B.4.2), (B.4.5), (B.4.40), (B.4.58), (B.4.59), (B.4.61), (B.4.63) and a = k|m/| sin(¢o — ¢1))
21 foj(m’,m;) L 2f,.;(,0) log |a| — 21og2 — 1ogR —2log(km.) — 4 +im GO L 1
ikRm, R

S kR |m/ — /|
for sin(¢o — ¢1) # 0. Finally, (cf. (B.2.4) and (B.3.79))

21 fo,(m';mz) en , . logla] —2log2 —log R — 2log(km,) — 5 +im ;R
= =T e\, Me) 2f,;(1/,0
J kR |m/ — V| e+ 2fe;(V,0) ikRm, €
log|a] —2log2 —log R — 2log(km.) — 7 1
_9 i bR =
ffyj(yao) ikRm. e + o0 i)
(B.4.83)

21 foi(m',m:) up kR
—_ 3 Z O l rvr-m _
kR |m’ — /] +fes ', )kRmz TR

for m'/|m’| # £/, since b = k|m’| cos(¢pg — ¢1) = kv/'-m
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B.4.3.5.6 JZ,
Only the asymptotic behaviour of J2 (cf. (B.4.72)) is left to be derived. Recall that

// 5 = —igRuﬁdw 1P 2eikRmz\/l—p2dp,
/ — _|_ _p

1€RIR,

J73_

which in view of (B.3.86) transforms to

1
- b b . .
JZ, = —/ {g Yo <|4—|R(p 1) ) +ig T sen(b) Jo (|Z|R(p - 1)2) } 6133@71)2\/% etklim=n/1=0% 4,

1—€r -7
such that
J2a=I2+12 (B.4.84)
with
=g [ {50 (Re - 02) 0§ 612 ) + i sy (R - 12)
iwfim. J |12 "\ 4 4

1
2= — / 10g(%R(1 — p)2> ¢t R(p—1)? 71p > eihfim=/1-p? dp.
—p

1—€r

To determine the asymptotic behaviour of 12, the integral w.r.t. p is integrated by parts, and (cf. (B.3.88)
and [1, Eqn. 9.1.28, p. 105])

72— 7"’1 Sgn(b)
! ikRm,
1 Yo |b| “log |b|R€2 +izsgn(b) Jo MRgQ eI iR pikRm.\/2Er—&}
~ ikRm, 4 g F 2 4 R
ol bl : b
- Iy 02)-——2 i Tsenm) S (B R(p - 1)2
el [0 ){ (a2 R (-1
17€R

ez'gR(p—l)2 cikRm l—p2‘| dp

_ 2;;% /1 l(ﬂ - 1){% Yo(%R(ﬂ - 1)2) — log<%R(p —~ 1)2) + Zg sgn(b) Jo ('%'R(p B 1)2)}

—€R

ei%R(p—n? P pikRmz\/1—p? dp.
V1= p?

In view of [1, Eqns. 9.1.10 and 9.1.11, p. 104 with Eqn. 6.3.2, p. 79| for Ré% = 1/R® — 0 as R — oo, it is

easily seen that the integrands of the remaining two integrals are uniformly bounded w.r.t. p € [1—¢ég, 1]

and R > 1. These two integrals, thus, decay at least as fast as their area of integration, which decreases
with the order O(ég) = O(1/R3) = o(1/R). Consequently, (cf. (B.3.88))

1 |b| |b| T |b| ib RE2, ikRm,\/2er—¢&2
=~ szmz{_YO<4 )‘1 (sRER +izy sen(b) Jo( T RER | p el d R e VIR

LAtz sen®) (l) (B.4.85)

ikRm, R
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At last, it only remains to analyse the asymptotic behaviour of I3. The first step is to split the
integral further to obtain

1
1 b . _
I3 = - / 10g<|§|R(1 — p)2> HiR(p=1)? 0p [elkRmz Vi-p? dp

ikRm,
1-¢én
lo (MR) L
_ iRS /eiER(pfl)zap [eikRmz\/17p2:| dp
1kRm,

1
/ log(1 — Z%R(p*l)2 — 1} d, {eikRmz./l—p2 dp

szmz
-2 / log(1 — p) %fp etkRmav1=p% 4. (B.4.86)
lf‘éR

where, by integration by parts and since O(ég) = o(1/R),

lo (MR) ; lo (MR) lo (MR)
5\8 ei%R(pfl)zap[eikRmz\/lfpz}dp: 5\s _ 5\s i R, ikRm.\/2er—&

i1kRm, ikRm, tkRm,
1—€Rr

b 1og(mR) f _ .

N 2knj /(p — 1) R RmD? gikRma 1207 g

T
1og(%R) 1og(%|R) s or—- 1
_ ' _ : ezzReReszmz 25R7€R+0 — ).

ikRm.,, tkRm, R

Furthermore, integrating the second integral on the right-hand side of (B.4.86) by parts as well, gives
(cf. (B.3.93))

1

2 . i R(p—1)? _ ikRm.,
e R DA

lféR

- logér {ei%Réf? _ 1} pikRm./2er—8,
ikRm,

1
2 / i%R(p-1)> _q JikRm. e dp

+ tkRm, 1—
1—€r
b 1
+ / log(1 — p) (1 — p) ehRP—1* gikRm./1-07 4 ,
ZlféR
l0g€r [ itRe ikRim.\/2er—% 1
=922 {z eR_l}z m. ErR—&% -,
1kRm, e’ ¢ to R

since the estimates in (B.3.94) also hold for p € [1 — €g, 1]. Now only the asymptotic behaviour of the

third integral on the right-hand side of (B.4.86) remains to be determined. Here, 1/1 — p? is substituted
by w, which leads to (cf. (B.4.82))

1 dr
108(1=9) P spim. /T — i
_2/ Og(l pip eszmz 1—p2 dp — _2/10g(1_ 1_u2) eszmzu du
—p
1—égr 0

_2'10g€R gikRm.dn _ 10g2 4'7+10g.(kRmz)_i% o 1
ikRm, szmz ikRm,
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such that

122:—764 R

ikRm, ikRm,

6] =
1og(§R€?g) L RE, jikRm.\/2er—% | log |b|—5log2—3log R—4 log(km.) —45-+i 27 ‘o ( 1 )

and (cf. (B.4.84) and (B.4.85))

~ 1 b b . i . _ _
J7 g =—- {—Y(| |R )+igsgn(b)Jo(| | )}eziR%e%Rmzm

ikRm,
log |b| —5log2 — 3log R — 4log(km.) — 37 +i5 sgn(b) +i27 N ( 1 )
0 .

ikRm, R

Note that (cf. (B.3.86) and ¢ = ¢ — ¢y)

/ 1 efi%R(qbfqbo)z de eikRmz«/QéRféé
éh + (¢ — ¢0)?

b b b2 ——
_ {2 Yb(' | ) —i—z—sgn(b) JO<|T4|R€?{> } ez%Re% eszmz\/QeR—e%'

B

4 2

Using this equality, (cf. (B.4.69), (B.4.64), (B.4.74) and (B.4.77))

i fz,j(u’,o){qyﬂ R[b—§ (¢—¢0)>+b Ra((d—00)%) (¢—¢0)*] _ ,iR[b—5 (9—¢0)®]

= d
kT RN RN ’
po—
om0 L (p—90)?] iR[b—5(¢—¢0)?] _ _
/ / ¢+ d(b eszmz\/QeRfe%
RN + (¢ — ¢0)? J &+ (¢ — ¢o)?
log || — 5log2 — 3log R — 4log(km,) — 3% +iZ sgn(b) +i2m . 1
v 2 bR -
+ fe;(V',0) TRRm. "ol 5
_ fl] v O

/ 1kRn6-m’ d(b eikRmz\/QéRféf?

ikRm, \ /6R ¢ $0)2

log [b] — 5log2 — 3log R — 4log(km.) — 37 +i% sgn(b) +i2w N 1
ikRm., © TR

+f£7j(1//,0) R

Therefore, (cf. (B.4.2), (B.4.5), (B.4.40), (B.4.58), (B.4.59), (B.4.61), (B.4.63) and b = k|m/| cos(¢o—¢1)
and log| cos(¢p — ¢1)| = log1 = 0)

2_7Tf€,j(mlvmz) ikR
ikR |m' — |

L 00) log [m/|—5log2—4log(m.)—3 [J+log(kR)| +i% cos(¢o—¢1)+i2m ik R cos(do1)

ikRm,
+o0 1
R

for m’/|m’| = —v/'. Finally, adding J2 (cf. (B.3.95)) to J1, (cf. (B.2.4))

Ji =

_2m foi(m,ms)

an 1kR
AR =] ¢TI0

- ’ ’ 1
eFBVmT <—> (B.4.87)

kRmz R

for m'/|m/| = =/, since |m/|cos(¢g — 1) =/ - m/.
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B.4.4 Normal reflection

To show the asymptotic behaviour of J; in the case that the far-field is evaluated in 'normal’ direction,
i.e. orthogonal to the z-y-plane (m’ = (0,0) "), the same substitution into spherical coordinates (¢, ¢) "
w.r.t. m, that was introduced at the beginning of Section 4.2.3 (cf. (4.2.22) and (4.2.23)), is used. For
m’ = (0,0)7, or equivalently a = 0, it follows that 19 = 0 since cosf(¢) = 0 (cf. (4.2.28)). Thus, by
applying Fubini’s theorem, (cf. (B.4.1))

B fo i (¥, ), V1 =1'(1,8)?) ikry
= [ [P e v

B foi(' (¥, 0), /1 —n'(4,9)?) kR
_/ / e dg e dy, (B.4.88)

Moreover, assuming ¢q is defined such that n’(0, ¢g) = v/, it is easily shown that (cf. 4.2.22)

In' (4, ¢) — /| = [(cosﬁcos¢ — sin Bsin ¢) /T — 2 — cos B cos ¢y + sin B sin (bor
+ [(sinﬁcos¢+cosﬁsin¢) VI =92 — sin B cos ¢ — cosﬁsin%r
= [cos /T2 — cos o]+ [sing /T~ 97 —sinn|
=2 —1? —2y/1 — 2 cos(¢ — ¢o), (B.4.89)

which is an element of C* w.r.t. ¢p € (—=1,1) and ¢ € [¢po — 7, o + 7). The corresponding Taylor-series
expansion is

G, 6) = ' (,6) — /"= Ga(, 6) + O (1 + 16~ 6ol?)°). (B.490)
Calit, ) = (6 = bo)” + 704 = 297 (6= 00)’ — 12 (6 — d0)".

The order O ((|[)]* 4 ¢ — ¢o|*)?) of the higher order terms is easily seen, since G(v, @) (cf. (B.4.89))
is an even function w.r.t. ¥ = 0 and ¢ = ¢¢, such that only even terms can appear in the Taylor
expansion. Motivated by the Taylor expansion of G, integral J; is split into

T = I+ IS+ fo;(V,0) T2, (B.4.91)
where (cf. (B.4.88))
- 1 ¢ot+m I \/I72 ) ) -
Rim [ [ s 6,0) VT=0 0007 | i - T | e
0 ¢go—7m
1 ¢o+m
jO - / / fl,j(”%d% ¢)5 V 1- ”/(1/% ¢)2) - f(y/v 0) d(beika dw (B 4 92)
R V(o =002 + 07/ a
1 ¢otm )
JY = dep eV dap. B.4.93
v/ Y G A (-4.99)

0 ¢po—m
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Applying integration by parts w.r.t. ¥ to the first integral,

do+m

JO = L (m! 1 — 1 ikR
i _iqub/ oot 1) l'ml_’/l (¢ —¢o)* +1/4 doe
o+ . .
_ ﬁd,z fei(n(0,9),0) {|n,(07¢)_y,| - |¢_¢OJ d (B.4.94)
1 1 ¢o+m X )
- (! ) 2 _ do e BY 4
lkR/ / a’l’b [ff,](n (1/)7¢)7 1 n (1/)7¢) ) ['nl(d]7¢)_yl| ((b_(b )2+1/J_4]] ¢€ 1/)7
0 ¢0*7T 0 1

since n'(v, ¢) reduces to the constant m’ for ¢» = 1. It is easy to see that the first integral on the
right-hand side exists, since the integrand is bounded for every ¢ € [pg — 7, @9 + 7]. For the remaining
two integrals, the Riemann-Lebesgue lemma is once again to be applied to show that they tend to zero
as R tends to infinity. To apply the Riemann-Lebesgue lemma, it remains to be shown that

1 1
1n/(0,0) — /| |é— o (B.4.95)

and
aw[fl’j("/(‘”"b)v L=/, 6)?) [|n/(¢al¢)—u’| B (¢—¢i>z+¢4/4 ] (B.4.96)

are absolutely integrable w.r.t. ¢. First, consider (B.4.95) by replacing |n'(v, ¢) — v'| = \/G(¥, ¢) and
using the series expansion (B.4.90)

1 1
[n/ (), ¢) =] B (p—0)2 + i¢4
_ (9—0)* + 19" — G(¢,9)
0 (1, ) =]/ (0= 60) + F 0t [/ (9= + 0t + ' (w, 9)—v|]
_ 392 (p— ¢0)? + 15 (0 — ¢o)* + O (([9]2 + [¢ — hol?)?)
VGi(W,0) + O (W1 + ¢ — do[?)3) \/ (9= 0)? + 7 ¥
1

J(6—00) + Lt + /Ca (9, 9) + O (WP + 16 — 4oPP).

Replacing (v, ¢ — ¢o) " by r (cos~,sin~), for v # 0,7, and evaluating the limit 7 — 0 will then lead to

(B.4.97)

1 1
lim

— =0. B.4.98
r=0 | [/ (¢, ) —1/| (¢_¢0)2 + i¢4 ( ( )

5607 (5n7)

The same can be done for v = 0, 7 by extending the Taylor expansion of G to sixth-order polynomials.
It can easily be shown that 97,G(0, ¢p) = 0 and

6 _ .
95G(0,¢0) = 90 Jim,
P—¢o

21 90 3544 152 1
T+ 5 T -+ =
V1 -2 V=92 J1T—92 12

is finite, which shows that the limit in (B.4.98) is uniformly bounded for v € [0,2n]. Consequently,
Lemma 4.4 proves that the difference of quotients in (B.4.98) is absolutely bounded in a neighbourhood

) cos(¢ — ¢p) = 90
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of (1,¢)" = (0,¢0)" such that (B.4.95) is uniformly bounded for all ¢ € [0,27]. Hence, the integrand
of the second integral on the right-hand side of (B.4.94) is bounded and thus absolutely integrable for
¢ € [¢o — 7, do + 7. Now examine (B.4.96), keeping in mind that (1), ) = (n/ (1), ¢), n= (1, )",

/ 1 1
6111 fé,j(n (1#, ¢)7nz(¢= ¢)) l|n/(¢7 ¢)—V’| o (¢ — ¢0)2+¢4/4‘H
S (n/ n 1 _ 1
- 3w”(¢, ¢) : Vn ff,]( ("/’u ¢)u z(wv (b)) [m/(d}’ ¢)—V’| (¢ _ ¢0)2+¢4/4 (B'4'99)
L 0,660) v ]
2 fl,]( (1/)7¢)7 2(1/}5 ¢)) |TL’(¢,¢)—V/|3 ((b — ¢0)2+w4/43

where (cf. (4.2.22) and (4.2.23) for a = 0)

—(cos B cos ¢ — sin Bsin @) m
Oy (Y, @) = (smﬁcos¢+cosﬁs1n¢)m
1

is uniformly bounded w.r.t. ¥ in a neighbourhood of iy = 0. Furthermore, the same has already been

shown above for 1/|n/(¢, ¢)—v'| — 1/4/(¢ — ¢0)?+1*/4, while Lemma B.2 states that Vi fe ;(n',n,) is

at most logarithmically singular. Similar to (B.4.97), it can also be shown that the derivative w.r.t. ¢
of (B.4.97) is absolutely integrable w.r.t. ¢. This is done by using the Taylor expansion of 0y, G (¢, ¢)
(cf. (B.4.90))

0uGl9) = ¥* = v (6= 60)” + O (1wl (1] + 16 — 60 *)?).
Thus

1

1
—2d —
Ve Voo

] (¢ — ¢0)?+ut/4

By G (1, 9) 3 ]
- (& — do)2+u/4
N RN T ’
[0uG (W, 8)) [(6 — do)2+v4/4]” — 48 (G, 9))?

G(0,9)” [(6 - 00)2+04/4] { 0,60, 0) (6 — o P+ + 42 /C(,9) |
{07 =0 (6= 602+ O (] (1 + 16— 0f2)°) } [0 — 002 +5%/4)’
G(0,9)” [(6 - 00)2+04/4] {0,G(0,0)[6 — o P+ 7/ + 42 /C(,9) |
08 [0 = 600 + Lt = 102 (90— 60)* — & (& — 60)" +O((|w|2+|¢> a0
G(,8)" [(6 = 00)2+0/4] {0,G(,0) /(6 — 0P+ + 43 /T, 9) |
208 {1 (&= 90)2 + O (101 (1P + 16 — 6ol*)°) } [(6 — 60)* +*/4]°
Cl,0) [(6— do)2+14/4] { 0,6, 0\ = G+ 0A/E + 0 VT, 0) )
{6 — 00 +0 (10l (W2 + 16— 602)”) ) [(6 — 0)2+ut/a]°
Gl 0) [(6— 60)2+04/4] {0,G(w, 0/ (@ — 3o +A/E + v /T, 0) |
300 (60— 00 + 10T [F342 (6 - 60)* — 5 (6~ 60)' + O (WP + |0~ ul)’) ]|
Gl 8) [(6— 00)2+0%/4] {0,G(, 0)v/[@— 60) +07/L + 0 /G, 0) |
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300 [(6— 60)2 + 2] [592 (6= 60)2 — 5 (6~ 60)* + O ([0l +10 — 6uf?)*)]
B (6~ g0+ /4] {0,606/~ G A + 98 \/T.0) |
90 (302 (6 - 90)? — & (6~ 60 + O (1 +19 — 0l2)°)]
G(,0) [(6 — 00)2+04/4] {0,G(,0)/ (6 — o2+ + 03 /C(0,9) |

and, using the substitution (1, ¢ — ¢o) " = r (cos~,sin~y) as before, it can be shown that, for v # 0, 7,

0GW,0) e -
|n/(¢,¢)_y/|3 (¢—¢0)2—|—1/14/43‘| ((b ¢O) +w /4—0

Similarly, it can be shown that, for v = 0, ,

r—0

WG, 9) P?
(0, 0)—v'[° /(& = o) 2+ DA

by once more extending the Taylor expansions of G and 9, G by one order. Indeed, as mentioned before,
95,G(0, do) = 0 and [95,G(0, ¢o)| < oo. Lemma 4.4 thus proves that

(¢ — do)*+9*/4 < o0

r—0

9G¥, 9) v ]
- (¢ — o)+t /4
(.0 T G o i
is uniformly bounded in a neighbourhood of (1, ®) = (Yo, ¢o). It follows that

WG, ¢) v N 1
e R Y/ e ey SR VA R N R
for (1,¢) " — (0,¢0) ", which shows that the third integral on the right-hand side of (B.4.94) is abso-

lutely integrable w.r.t. ¢ (cf. (B.4.99)). Knowing this, the Riemann-Lebesgue lemma can be applied,
leading to

¢o+m
~O_L ) 1 1 _ 1 ikR
Jl‘ikR¢/f“(m’”hmf—wl Goorri)
7’} a0t Twea(A). @amo
" kR ea(n In'(0,0) —v'| | — o R) o

To examine J9, recall that (cf. (B.4.92))

/ / ff] ¢ ¢ 'V 1- n’(¢a¢)2) _ f(yl70) d¢eikR'¢ dw
V(6 —¢0)? + /4

Applying integration by parts w.r.t. ¢ to this integral leads to

po+m boin
70 _ L fei(m', 1) — fo ;. 0) ikR _ L fe.;(n'(0,0),0) — fo;(1,0)
ne kR J o= g +1/4 W0 R / % gu] dp (B.4.101)
1 ¢otm f 1 I(’Q/J ¢)2) f( , O)
&l _ IEA ik R
sz/ / [ (¢—¢0)2+¢4/4 ] dpe dy.

0 ¢po—m
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It is not hard to show that the first integral is finite, since no singularities occur. The second integral
is also well defined, since L’Hopital’s rule shows that the quotient behaves like dy[fr ;(n'(0, ¢),0)] in a
neighbourhood of ¢ = ¢q, which is at most logarithmically singular. To be precise,

[ fe,5(n(0,),0)] = 0y (0, $) - Vi fo,5(n (0, ), 0),

where Lemma B.2 shows that V,, f ;(n'(0, ¢),0) has at most a logarithmic singularity. Moreover, it is
easily seen that dgn’(0, ¢) (cf. (4.2.22)) is bounded in a neighbourhood of ¢ = 0. To show the absolute
integrability of the third integral, consider

fo (0 (@, 9),n- (¢, 9)) = f(V',0) | _ 0y, ) - Viafo;(n' (¥, 6), = (4, §))

V(=00 +91/4 V(@ = 60)* +41/4
_ l¢3 [fe,j(n’(lﬂ, ¢)a nz(% (b)) _Bf(l/v 0)] i (B.4.102)
2 V(6 —¢0)? +9i/4

Since the numerator of the first quotient on the right-hand side of (B.4.102) has at most a logarithmic
singularity at (¢, )" = (0,¢0) ", the quotient is absolutely integrable. It remains to show that
P* [fo;(0' (¥, 8),ns (3, 9)) = F(V,0)]
(¢ — ¢o)? + /4
is at most logarithmically singular to prove that (B.4.102) is absolutely integrable. Consider

‘w [fes(n' (%, 9)n2 (1, 8)) = £(/,0)] ‘ _ v [fes (' (,9), (8, 6) = F(', 0)|
(6 — d0)* + 91 /4 V(p—¢0)? +p1/4 V(o —¢o)? + /4
fo (0 (¥, 9),n:(¥,¢)) — f(/,0)
¢ — o ’
where applying L’Hopital’s rule shows that, for any fixed ¢ € [0, 1], the remaining quotient behaves

like Oy [fe (0 (¥, }),n-(1, #))] in a neighbourhood of ¢ = ¢y. This, however, is at most logarithmically
singular, as mentioned above. It follows that (cf. (B.4.102))

| 5 lfz,jww, 0).n:(4,6) ~ J (/. o>] og((6 — 60)* + wt/4)|

<cy

(B.4.103)

V(6 — 0)? +41/4 T V(@) +yl/4

is weakly singular and thus absolutely integrable, if first integrated w.r.t ¢ and then w.r.t. . To be
precise,

1 ¢o+w’10g((¢ B ¢0)2 n ¢4/4)’ 1 Po+m )
dody < 1 174 de¢d
0/ %/W Vo T ’”‘0/ lost#"/ )Lo/ﬂ Vo—orroa

1

=2 / log (1! /4)| [1og(ﬂ'+ 72 + ¢t /4) — log(y*/4)| dv,

0

which is obviously finite. Finally, applying the Riemann-Lebesgue lemma to the third integral on the
right-hand side of (B.4.101) leads to

Teglm' D fe (0.0) T 0)—f(v,0) 1
T2 sz/ : ¢ ¢0 J/ dpe- sz/ J |¢ ol d¢+0(ﬁ>-(‘3-4-104>

At last, (cf. (B.4.93) and (B.3.36))

1 ¢o+m

1 i
_// N CEr

0 ¢o—m
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1 1
=2 [tog (25 4 2/ T 9TT) 0 a1 [ rog e au.
0 0

Employing integration by parts to the first of these two integrals leads to

1kR7,ZJ

1
—2log(4m)—— TR

1
2/10g(27r+2\/7r2+1/)4/4) ZkR¢d1/)*2log(27T+2\/7r2+1 )
0

1
2 .
~ R /31/, [log (271' +2¢/72 + 1/14/4)]6”“&” de.
i
0
It is easily seen that

3
0y [log (27 +2¢/77 + 07/4) | = Nozmrn (2:’+ o)

is absolutely integrable w.r.t. ¢ € [0, 1]. Hence, with the Riemann-Lebesgue lemma, there holds

1
szw 1 ) 1
J9 = 21og (271' toy/mE+ 1) ) — 2log(4m)— — 4/10g1/)eZka d+ o <E>'
1
0

Using (B.4.81) then gives

sz’l/J 1 1
— 2 _ | — —_
Jo = 210g(27r+2\/7r 1/ ) — 2log(4r) kR 4[7+10g(kR) 22} ikR+O(R>'
(B.4.105)

Finally, all the terms for & = 0 can be added up, (cf. (B.4.91))
Ti=J0+ J9+ fo (0,0) 5.
Therefore, using that

po+m

1 — 2
— de = 2log (271' ro/mt 1/4)

po—T

and that m’ is a constant independent of ¢ such that

po+m
1 ikR _ foi(m',1) et
sz / fealm! ) o™ = 2 QT R
it follows that (cf. (B.4.100), (B.4.104) and (B.4.105))
1 po+m 1 1
= — . / _ d ikR
7 ikR¢/ a1 [Im’—v’l CEry vz A
0 lk}R’l/}
sz / "oy (m ¢ — fe,g(V/ ) dp ™R 1 95, (1), 0) log (2r +2v/@+1/1) =
1 e 1 1 ) 0)—£(/.0)
= . / _ Z;] v d
ide,[ o000 |~ = ] sz / g ’

- 210g(4w)% 4fe;(V',0) [”y + log(kR) — zg} ﬁ +o <E>
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1 ¢o+m )
=5 / foi(m/, 1)md¢>eikR
Po—7
bo+m 5 szw
— fo;(V O¢[ \/¢¢0—+1 +2fg7j(1/ 0) log (27r+2\/7r +1/ )
e | | "fog 0)=£(,0)
TR /f“ -0) Lm 0.0 =] o=l } sz / |¢ 0] 49
o 1
+ fo;(V,0) B 2fe;(V,0) {2& + 2log(kR) + 10g(47r)} TR +o0 (R)
_ f@, ’(mlu 1) ekl i 2
=2 =] R 00 g
L 1 | "t 0)—=£(,0)
4 v,
Z“Z/ 1etn 0.0 | g = = ] 4 sz / e
—2f,,(/.,0) [2& +2log(kR) + 10g(47r)} % +o (;) (B.4.106)

Note that (cf. (4.2.22) with o = 0)

0. &) = cosfcos¢p —sinfBsing \ [ cos(B + ¢)
(0, ¢) = sinBcos¢ +cosfBsing )\ sin(B+¢) )’

where ¢ is measured starting not at zero degrees but at 3. Thus, 8+ ¢ is equal to a q~5 in standard polar
coordinates, which shows that n/(0, ¢) is equal to the nj, (cf. substitution in (4.2.9)) used in (B.3.104).
With this, it is easily shown that most of the terms on the right-hands side of (B.4.106) will vanish
when J; is added to J» (cf. (B.3.104)) for a = 0 or equivalently m’ = (0,0)T. To be precise,

do+m do+m
1 , 1 1 1 fe3(ng,0) — fe;(V/,0)
= — j 70 / - d +— / - - d
72 sz¢/ Ttoh0) | | Wi J ool

+2f,;(V,0) (w +2log(kR) + 10g(47r)) kiR +o (11%) ,

such that (cf. (B.2.4) and (B.4.106))

7 B fe;( / )eikR 1
j—jl+\72_2 | 7 ,| sz +ffJ(V O)kR+0 R

for m’ = (0,0)".
At last, the formulas for the four cases of m’ = (0,0)", m//|m/| # £/ (cf. (B.4.83)), m'/|m/| =/
(cf. (B.4.38)) and m'/|m/| = —v' (cf. (B.4.87)) can be put together to get

21 foi(m',ms) um 2T kR 1
= ‘e 0 — .
J ikR |m' — /| +Leg 0 0) g kRm, ¢ o R

As was already stated in the paragraph before Section B.3.1, the constant f; ;(v/,0) = fr;n(¢,0) is
zero in the case of £ > 2. Additionally, the definition of fi ;. (n',n%) (cf. (B.2.1)) gives that fi ;.(,0)
is also zero for n > 0. It follows that

2T

_ 2m ff,j(ml7mz) ikRv'-m’ 1
kRm, ¢ T \wr)

sz
= iR |m’ — ]//| +]l(1 0)([ n) fgj(l/ 0)

which concludes the proof of Theorem B.1.
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Appendix C

Definitions & Theorems

In this chapter, fundamental definitions and theorems are introduced, which are employed in this thesis.
The purpose of this is to introduce the used notation and to make the definitions and theorems easily
accessible to the reader.

Definition C.1 (Schwartz space!). The space
SR") = {f € C*(R") | lﬁm 298 f(x) = 0 for all & € INZ and for all § € ]Ng} )

where o and (3 are multi-indices such that v = ' -+ 2% and 9% = 901 --- 0P is called Schwartz
space. This space is a subspace of the space of smooth function C°°(R™), inheriting its vector space
operations, and is induced by the family of the seminorms | f||n 1= Sup,cgn maxq), <y |2* 02 f(z)|.
The elements of this space are called Schwartz functions.

Theorem C.2. The Fourier transform is a bijective mapping from S(R™) to S(R™). (cf. [39, Theorem
V.2.8))

Theorem C.3 (Lebesgue’s dominated convergence theorem?). Let (S, ¥, u) be a measure space and
T € 3 a p-measurable set. Assume all functions f1, fa,...: T — K are absolutely integrable and there
is a measurable function f : T — K with f(t) = lim,—00 fn(t), almost everywhere. If an integrable
function g : T — K exists, such that for all n € N

|fnl <g

almost everywhere, then f is integrable and
lim fndp = / fdu.

Theorem C.4 (Fubini’s theorem?®). If (X XY, M@N, u®v) is a product measure space, f : X xY — C
is M ® N -measurable and one of the integrals

[ nawe. [ [ir@plam)ao. (7@l we) e
X Y Y X

XxXY

is finite, then all integrals are finite and equal, i.e., f is p @ v-integrable, and

/(/fwde()>du /(/fxydu())du()

Lef. [39, Definition V.2.3]
2¢f. |39, Theorem A.3.2]
3¢f. [17, Theorem 2.1 in Chapter V]

is finite.
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Definition C.5 (Holomorphic functions*). A function f : D C C* — C is called holomorphic on an
open set D, if the function is continuously differentiable w.r.t. the complex variable in D.

Definition C.6 (Meromorphic functions®). A function f : D C C" — C is called meromorphic on an
open set D, if the function is holomorphic except on a set of isolated points, which are poles of f.

Theorem C.7 (Residue theorem®). Let C be a positively oriented simple closed piecewise smooth curve.
Moreover, let the function | be continuous in In(C) U C and meropmorphic on In(C), where the poles
21y .-, 2n Of f lie in the interior In(C) of C. There holds

Z=Zzj5

/f(z) dz = 27m'z Res f(z),
c J=1

where Res.—.; f(z) denotes the residue of f at point z;.

Theorem C.8 (Multinomial theorem”). For any n,m € N and z € C™,

(T1+ -+ ap)" = > (2) z°,

{aelNy | ar1+...4am=k}

AN k!
a) T arl e ap!

Theorem C.9 (Leibniz rule®). For two n-times differentiable functions f and g,

where « is a multi-index and

the multinomial coefficient.

n

(o™ =3" (”) 1) gn=a).

i=o M

Theorem C.10 (Faa di Bruno’s formula®). If f and g are functions with a sufficient number of
derivatives, then

(€] aj
d(n) n[ d(a1+”'+a") n ddt (t)
{(al ..... am)€EN, J=17 j=1 J:
Z;‘l:1jaj:’n«

Theorem C.11 (Riemann-Lebesgue lemmal®). Assuming s € R™, for any absolutely integrable func-

tion f, any fited n € N and any non-zero and real valued constant c,

lim / fz)e ™ da = 0.

l|s[l—o0

R7l
Theorem C.12 (Binomial theorem!!). For any n € N and x,y € C,

o= (1) e

n
J=0

4¢f. [8, Definition 2.2]
5¢f. [8, Definition 3.3]
6¢f. [8, Theorem 3.8]
7cf. [6, Theorem 2.2]
8cf. |3, p. 375]

9¢f. [25]

10¢f, |2, Theorem 9.9]
et [3, p. 59]
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0 (@g,ng,ngf =K/ 12
k k|l = JHo€ow - - - o o e 12
k, T 13
k. Fo b 0T o 13
27k,
€r io o BowZ Tttt 13
ki kr k= ,uoeTw2 .................................... 13
E0(2) G0tk T 13
E"(Z) E(Z) — E°(Z) for all ¥ above the interface . . . . . ... ... ... . ....... 13
DO(Z) EO(T) 13
D(Z) er(BVE(T) . - o 13
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W2k k2 R2 [k ke (kaed+hyed)— k'] 2\ T
k2k. —k2\/k2— k' |2 =n (=hokz, —kyks, = [K) 0] 18
k HOEQW =« o o e e e e e e 18
kT (kayky, =) T 18
k2 A 18
Di(3) F (ﬁd(-)) (3) o v e e e 19
52 1R 19
© EC(R3) .« 19
Cs(7) Bo(F) X [=F, 7]« o o o 20
By (T) S U I 20
& k2 — 82 — 82 20
A €7 = €0+« e e e e e e e e 21



208

fi(, )

V/

(vo, do) "
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LIST OF DEFINITIONS
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s 67
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a 2 246 _
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2
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{ulww. o) du[weeo)]}
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