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CENTROAFFINE DIFFERENTIAL GEOMETRY AND 

ITS RELATIONS TO HORIZONTAL SUBMANIFOLDS 

Luc VRANCKEN 

ABSTRACT. We relate centroaffine immersions f : M” — R®”+! to horizontal immer- 
sions g of M™ into sent? (1) or HZ"*1(—1). We also show that f is an equiaffine 
sphere, i.e. the centroaffine normal is a constant multiple of the Blaschke normal, if 
and only if g is minimal. 

1. INTRODUCTION 

In the present paper, we study centroaffine spheres M” in R"+! and ‘horizontal’ 
immersions M" in $2%1(1) and H2"+1(—1). The basic existence and uniqueness 
theorems for those submanifolds together with the necessary preliminaries are de- 
rived in Sections 2 and 3. As it turns out, both are essentially determined by a 
symmetric tensor field on M” satisfying certain properties. In Section 5, under the 
additional assumption that M™” is simply connected, we use then these existence 
and uniqueness theorems to relate the two types of submanifolds. This allows us to 
translate theorems obtained about centroaffine spheres to corresponding theorems 
about horizontal immersions. 

In particular for surfaces M? we obtain a relation between negative definite 
centroaffine spheres with vanishing Tchebychev form (elliptic affine spheres in the 
terminology of [LSZ]) and minimal horizontal isometric immersions of M? in $3(1). 
Notice that, from the basic formulas derived in Section 3, such immersions always 
have ellipse of curvature a circle. However, as in shown in [KSV], also arbitrary 
minimal immersions with ellipse of curvature a circle in $3(1) play a role in affine 
differential geometry. These can be used to construct 3-dimensional elliptic affine 
spheres. 

2. CENTROAFFINE DIFFERENTIAL GEOMETRY 

First, we recall the basic facts about centroaffine hypersurfaces. However, in 
order to obtain in the definite case always a positive definite metric, we slightly 
deviate from the standard approach. For more details and proofs.see [SSV, Chapter 
6]. Let M be a n-dimensional C®-manifold and let f : M — R"+! be a non- 
degenerate hypersurface immersion whose position vector is nowhere tangent. Then 
f can be regarded as a transversal field along itself and we call € = —ef the 
centroaffine normal, where « = +1. Following Nomizu, we call f together with 
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this normalization a centroaffine hypersurface. We get the centroaffine structure 
equations: 

(2.1) Dx fel¥) = fal VY) + (X, YE, 
(2.2) Dx& = —ef,(X). 

Here we choose € = 1 unless the signature of the second fundamental form with 
respect to —f is less then } in which case we choose « = —1. Here D denotes 
the canonical flat connection of R°+!, V is a torsionfree connection on M, called 
the induced centroaffine connection, snd h is a non-degenerate symmetric (0,2)- 
tensor field, called the centroaffine metric. So (M, h) is a semi-Riemannian manifold 
and the signature of the metric signh satisfies signh < 3: The corresponding 
integrability conditions (equations of Gauss (2.3) and Codazzi (2.4)) are 

(2.3) R(X, Y)Z = h(Y, Z)X — h(X, ZY, 
(2.4) (Vh)(X, Y, Z) = (Vh)(Y, X, Z), 
where (Vh)(X, Y, Z) = XR(Y, Z) — h(VxY, Z) — A(Y, VxZ). If we define 

C(X,Y, Z) = (Vh)(X,Y, 2), 

we get a totally symmetric (0,3)-tensor field, called the cubic form. 
Denote by V the Levi-Civita connection of h, by R, Ric and & the curvature 

tensor, the Ricci tensor and the normalized scalar curvature of V, respectively. The 
difference tensor K, which is defined by 

(2.5) KxY = K(X,Y) =VxY —VYxyY, 

is a symmetric tensor field related to the cubic form by C(X, Y, Z) = —2h(KxY, Z). 
Hence for every X, Kx is selfadjoint with respect to h. Furthermore, we define the 
Tchebychev form r, the Tchebychev vector field T! and the Pick invariant J by 

(2.6) nT (X) = trace Kx, 

(2.7) h(T", X) =T(X), 
(2.8) 4n(n —1)J = 4h(K, K) = h(C,C). 

We call M an equiaffine sphere if and only if the Tchebychev form vanishes iden- 
tically. It is well known that in that case, the centroaffine normal is a constant 
multiple of the Blaschke equiaffine normal. It is also well known that 

(2.9)  h(KxY,Z) =R(Y,KxZ), 
(2.10) 

R(X,Y)Z = Ky KxZ— KxKyZ + €(h(¥,Z)X — h(X, Z)Y), 
(2.11) 

(VK)(X,Y, Z) = (VK)(Y, X, Z), 
(2.12) 

R=J+e— 2 h(T' Th), 
where ¢ is as defined before. Then, we have the following existence theorem: 
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mantfold with signh Let € = +1 and let K be a symmetric tensor field 
on M satisfying (2.9), (2.10), (2.11). Then there exist a centroaffine immersion 
f:M" +R" with € = —ef as affine normal, h as affine metric and V = K+Y, 
where V is the Levi Civita connection of the metric h, as induced affine connection. 
Moreover, the immersion f is unique upto centroaffine transformations. 

Theorem 2.1. Let (M,h) be an n-dimensional simply connected semi-Riemannian 
< 2 
<n 2 ° 

Proof. In order to obtain the existence part, we define a connection V on M by 

VxY =K(X,Y)+Uxy, 

where V is the Levi Civita connection of the semi-Riemannian metric h. Then, we 
have that 

(Vh)(X, Y, Z) = XH(Y, Z) — A(VxY, Z) —h(V, VxZ) 

= h(VxY, Z) + RY, VxZ) — h(K(X,Y), Z) 

~ h(VxY, Z) — A(Y, K(X, Z)) — AY, 9xZ) 
= —2h(K(X,Y), Z). 

Hence by (2.9) we deduce that (VA)(X, Y, Z) is totally symmetric. Next, we have 
that 

R(X,Y)Z = VxVyZ -VyVxZ -VixyZ, 
= K(X, VyZ) + VxVyZ—K(Y,VxZ) 

-~ 

—~ Vy VxZ — K([X,Y], Z) -— Vixy]Z 
= K(X, K(Y,Z)) — K(Y, K(X, Z))+ R(X, Y)Z 

+(VK)(X,Y, Z) — (VK)(Y,X, Z) 
= €(h(Y, Z)X — h(X, Z)Y). 

Finally, we define the affine shape operator by S = el. Applying now the general 
existence theorem of [DNV], we obtain that there exists an affine immersion f : 
M” + R"*! and a transversal vector field € such that we can write 

Dx fa¥ = faVxY + R(X, YE, 
Dx€& = —f,SX = —eX. 

Since Dx(f + «€) = 0, we obtain that if necessary by applying a translation, we 
may assume that f is centroaffine. 

Next, we show the uniqueness part. Let fi, fo: M" 3 R"+! be two immersions 
satisfying the assumptions of the theorem. Applying the uniqueness theorem [D], 
see also [DNV], we have that f, and fs are related by an affine transformation. It 
then follows from (2.1) and the definition of € that the translation component is 
zero. Hence f; and fo are related by a centroaffine transformation. 0 
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3. HORIZONTAL SUBMANIFOLDS 

We consider R2"+? be and we take p = (1, Y1,22,Y2,---52n,Yn) & point of 
R°"+?. We define a product structure P on R2"+2 | py 

P(21,%1, se -y2n415 Yn+1) = (y1, 21, oe + Un+1)Pn+1)s 

and we introduce a metric (.,.) on R2"+? by 

n+1 n+1 

(3.1) (v1, W1,--- Unda, Wn41)s (01, 1, ---,Gn41, Wn41)) = S> ViVi — > Wi Wi. 

Hence sign (.,.) = +1. It immediately follows from (3.1) that for vectors x and y 
we have that 

(3.2) (Px, Py) = — (2, y). 

In particular this implies that 

(2, Px) = ~ (Px, P*x) = — (Pz, 2). 

Hence 

(3.3) (x, Px) = 0. 

We also deduce that (Dy P)W = 0, where D is the standard connection on a. 
Let S27t"(1) and H2"+1(—1) be the spaces respectively defined by 

Sant’ (1) = {p € R"*?| (p,p) = 1} 

and 

Hp" **(-1) = {p € R°*?| (p, p) = —1}. 

It immediately follows that S2711(1) is an umbilical hypersurface of R2"+?, with 
—p as normal and that the signature of the induced metric is n+ 1. Similarly, it 
follows that also H2"+1(—1) is an umbilical hypersurface with normal p and with 
signature of the induced metric equal to n. We denote by M(1) = s2nt*(1) and 
by M(—1) = H2"+1(-1). We now say that an immersion f : M” -» M(e), where 
€ = +1, is horizontal if and only if Pf is orthogonal to fxIpM. Notice that it 
follows from (3.3) that Pf is always a tangent vector field to M(e). Decomposing 
the connection D into a tangent component, a normal component which is tangent 
to M (c) and a component in the direction of the position vector, we see that 

Dxf,Y = fi (VxY) “ a(X, Y) = (X, Y) ef, 

Dxn = — fx An X + Vx, 

where X,Y are tangent vector fields and 7 is a normal vector field to M tangent 
to M(e). The symmetric bilinear form a is the second fundamental form of the



immersion f in M(e) and V+ is the normal connection of the immersion fin M(c). 
Since for a horizontal immersion, we have that (Pf, X) = 0, for any tangent vector 
field X, we deduce that 

O= (Pf. (Y),X) + (Pf,a(X,Y)). 

From (3.2) it follows that the first term is skewsymmetric in X and Y, whereas the 
second term is symmetric. Hence we obtain that 

(Pf.(X), Y) =0, 
G4) (Pf,a(X,Y)) =0. 
Hence Ap; = 0 and P maps the tangent space into the normal space-of M in M(e). 
Therefore the normal space to M in M(e) is spanned by Pf and Pf,TM. Deriving 
the first equation of (3.4), and identifying M with its image in mea we deduce 
that 

(3.5) 0 = (PX,a(Y, Z)) — (ApxZ,Y). 

Since P is parallel with respect to D, we deduce that 

0 = (DxP)f 
= Dx Pf — PDxf 

= VxPf — PX. 

Hence 

(3.6) VxyPf = PX. 

Similarly, we get that 

0 = (DxP)Y = Dx PY — PDxY, 

= VxPY — ApyX — PVxY — Po(X,Y) + (X,Y) Pf. 

Hence, 

VxPY = PVxY — (X,Y) Pf, 
(3-7) ApyX = —Pa(X,Y). 

Finally, we recall that the equations of Gauss, Codazzi and Ricci for submanifolds 
of a semi-Riemannian space form state that 

R(X, Y)Z = E({Y, Z) X — (X, Z) Y) + Ag y,z)X — Ag(x,z)Y, 

(3.8) (Va)(X, Y, Z) = (Va)(Y, X, Z), 
(R*(X, Y)m, 2) = (An, An. X; Y) . 
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We introduce a symmetric bilinear form 2 on M by 

B(X,Y) = —Pa(X,Y) = ApyX = Apx. 
We also write Gx Y = By X = B(X,Y). From (3.5) it follows that 
(3.9) (A(X, Y), Z) is symmetric in X, Y and Z. 
It now follows from (3.6) and (3.7) that we can rewrite 

R(X, Y)Z = €((Y,Z) X — (X,Z)¥) — Apany 2X + Apap. s¥ 
= €((Y, Z) X —(X, Z)Y — ApyApyZ + Apy ApxZ 

= €((Y¥, Z) X — (X, Z)Y) — 8(X, B(Y, Z)) + BUY, B(X, Z)) 
(3.10) = €((Y, Z) X — (X,Z)Y) — [Bx, By]Z, 
From (3.6), (3.7) and the Codazzi equation it follows that 

(V8)(X,¥, Z) = VxA(Y, Z) - B(VxY, Z) ~ B(X, VyZ) 
= —VxPalY, Z) + Pa(VxY, Z) + PalY, VxZ) 

= —PVxa(Y, Z) + €(X, PalY, Z)) f + Pa(VxYZ) + PalY, VxZ) 
(3.11) = —P(Va)(X,Y, Z) — €(PX,alY, Z)). 
Since (PX, a(Y, Z)) = (X, B(Y, Z)) is totally symmetric in X, Y and Z, we deduce 
that V is totally symmetric if and only if Va is totally symmetric. We now can 
formulate the basic existence and uniqueness theorems for horizontal submanifolds. 
Theorem 3.1. Let f,, f2.M 3 M(e) be two isometric horizontal ammersions. Sup- 
pose that Bf: = Bf. Then there exists an tsometry A of M(e) such that Af; = fo. 
Proof. Let p € M. We define an isometry A, of M (€) by 

Apfi(p) = fa(p), 

Ap fix(X (p)) = fox(X(p)), 
ApP fi(p) = Pfa(p), 

ApP fis(X(p)) = P fox(X(p)). 
Now, we show that A is independent of the choice of p. Using the previous equations, 
it follows that 

(Dx A) fi = Dx(Afi) — ADx fi 
= Dx fo — Afi.X = 0, 

(Dx A)(Pfi) = Dx(P fo) - AD x (Pf) 
= Pfo,X — APfi,X = 0, 

(Dx A)(fix(Y)) = Dx foxY — ADx fisY | 
= fos(VxY) + a? (X,Y) — Afta(VxY) — Aol (X,Y) 

= —P fox (8! (X,Y)) + AP fia(O(X, Y)) =0, 
(Dx A)(PfixsY) = Dx P fos(Y) — ADx Pf1,¥ 

= PDx fax(Y) — APDx fisY 

= Pal? (X,Y) — APal'(X,Y) 

= — fox GB? (X,Y) + Afi. Gh (X,Y) =0. 
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This completes the proof of the theorem. O 

Theorem 3.2. Let (M,(.,.)) be a simply connected semi-Riemannian manifold. 
Let B be a symmetric bilinear vector valued 2 form on M such that 

(1) (G(X, Y), Z) is totally symmetric, 
(2) VG is totally symmetric, : 

(3) R(X,Y)Z = e((Y, 2) X — (X, Z)Y) — [6x, By]Z. 
Then there exists a horizontal isometric immersion f : M — M(e) with second 
fundamental form a such that B(X,Y) = —Pa(X,Y). 

Proof. We define a bundle NM over M by NM = TM @ROR and we define a 

mapping P:TM@NM—TM@NM by 

P(X, 0, 0,0) = (0, X, 0, 0) 

P(0, X, 0,0) = (X, 0,0, 0) 

P(0,0,1,0) = (0,0, 0, 1) 

P(0, 0,0, 1) = (0,0, 1, 0), 

a section f =0@0@61 of NM. We introduce a metric on NM by 

(PX, PY) = — (X,Y) (PX, f)=0 (X, Pf) =0, 

(X, f) =0 (PX,Pf)=0 (X,PY)=0, 
(Pf, Pf) =e (Pf,fy=0 (ff) =e. 

Next, we define a connection V+ on NM by 

VxPY = PVxY — (X,Y) Pf, 

Vxf =0, 

VxPf = PX. 

Then we define a second fundamental form 

y:TMxTM —- NM: (X,Y) (X,Y) = —PB(X,Y) + (X,Y) ef 

with corresponding Weingarten operators given by 

ApxY a R(X, Y), 

ApsY == {), 

AsY = -Y, 

for X,Y tangent to M. 

A straightforward computation then shows that the Gauss, Codazzi and Ricci 

equations are satisfied and hence by the existence and uniqueness theorem for im- 

mersions into real space forms, there exist an isometric immersion g : M" —> Ra 
with (.,.) as induced metric and a bundle isomorphism such that we can identify 
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NM with the normal bundle of g in R717. Since Dx(g— f) = 0, we see that after 
applying a translation, we may assume that g = f. Hence 

(9,9) = (f, f) =«, 

and g(M") c M(e). Since g = f is normal to M (€), we deduce that the second 
fundamental form a of M” in M(e) is given by a(X,Y) = —P(X,Y). 

Finally, in oder to show that M” is horizontal, it is sufficient to show that the 

mapping P, defined in the beginning of the proof, is parallel along M". We have 

(DxP)Y = Dx PY — PDxY 

= VxPY — Apy X — PVxY — P7(X,Y) 

= —€(X,Y) Pf — B(X,Y) + B(X,Y) +€(X,Y) Pf, 

(DxP)PY = DxY — PDx PY 

= P(PDxY — DxPY) 
= —P(DxP)Y =0, 

(DxP)f =DxPf —PDxf 
= PX —PX =0, 

(Dx P)Pf = —P(DxP)f =0. Oo 

4. A CORRESPONDENCE THEOREM 

In this section, we relate the two types of submanifolds studied in the previous 
sections. First, we show: 

Theorem 4.1. Let M be a simply connected manifold. Let f : M" > R"+! be 
a centroaffine sphere with difference tensor K and induced metric h. Then there 
exists a unique isometric horizontal immersion g : (M",h) —> M(e) with second 
fundamental form a(X,Y) = —PK(X,Y). 

Proof. The uniqueness part follows immediately from Theorem 3.1. To obtain the 
existence, we notice that (2.9), (2.10) and (2.11) state that K is asymmetric bilinear 
form on the semi-Riemannian manifold (M, h) satisfying the conditions of Theorem 
3.2. O | 

The converse is stated in the next theorem: 

Theorem 4.2. Let M be a simply connected manifold. Let g : (M™,(..)) + M(e) 
be a horizontal isometric immersion with second fundamental form a. Assume that 
index {.,.) < 3: Then there exist a unique f : M — R"*t! centroaffine sphere such 

that the difference tensor K satisfies K = —Pa. 

Proof. The uniqueness part is clear from Theorem 2.1, whereas the existence part 

follows by combining (3.9), (3.10) and (3.11) with Theorem 2.1. O 

Form the above theorems and (2.6) it is clear that f is an equiaffine sphere if and 

only if g is minimal. Applying the above theorems now for example to the results 

of [VLS] and [LSZ, Theorem 2.4.8], we obtain the following corollaries: 
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Corollary 4.1. Let (M, (.,.)) be a Riemannian manifold and let g : M™ + S27 4*(1) 
be an isometric horizontal minimal immersion. If M™ has constant sectional cur- 
vature, then M” is totally geodesic. 

Corollary 4.2. Let (M, (.,.)) be a complete Riemannian manifold and g : M" > 
seont*() a minimal isometric horizontal immersion. Then M™ is totally geodesic. 

Corollary 4.3. Let (M, (.,.) be a Riemannian manifold and g : M" > H2"+1(-1) 
a minimal isometric horizontal immersion. Assume that M” has constant sectional 
curvature. Then either 

(1) M” is totally geodesic, 
(2) g(M™) is congruent to an open part of 

(sinh wu, cosh w,..-, sinh un, cosh up, sinh —(uy + +--+ Un), cosh —(uy +--+ + Up)). 
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