Technische Universitdat Berlin

Forschungsberichte
der Fakultat IV — Elektrotechnik und Informatik

Modeling with Plausibility Checking:
Inspecting Favorable and Critical Signs
for Consistency between Control Flow

and Functional Behavior

Claudia Ermel’
Jurgen Gall’
Leen Lambers?
Gabriele Taentzer®

'"Technische Universitat Berlin, Germany
claudia.ermel@tu-berlin.de, jgall@cs.tu-berlin.de

’Hasso-Plattner-Institut fiir Softwaresystemtechnik, Potsdam, Germany
leen.lambers@hpi.uni-potsdam.de

*Philipps-Universitat Marburg, Germany
taentzer@mathematik.uni-marburg.de

Bericht-Nr. 2011 — 02
ISSN 1436-9915

mailto:jgall@cs.tu-berlin.de
mailto:leen.lambers@hpi.uni-potsdam.de

Modeling with Plausibility Checking:
Inspecting Favorable and Critical Signs
for Consistency between Control Flow

and Functional Behavior

Claudia Ermel!, Jiirgen Gall!, Leen Lambers®* and Gabriele Taentzer?

1 Technische Universitit Berlin, Germany
claudia.ermel@tu-berlin.de, jgall@cs.tu-berlin.de

2 Hasso-Plattner-Institut fiir Softwaresystemtechnik, Potsdam, Germany
leen.lambers@hpi.uni-potsdam.de

3 Philipps-Universitat Marburg, Germany
taentzer@informatik.uni-marburg.de

Abstract. UML activity diagrams are a common modelling technique
to capture behavioral aspects of system models. Usually, pre- and post-
conditions of activities are described in natural language and are not for-
mally integrated with the static domain model. Hence, early consistency
validation of activity models is difficult due to their semi-formal nature.
In this paper, we use integrated behavior models that integrate activity
diagrams with object rules defining sets of actions in simple activities.
We formalize integrated behavior models using typed, attributed graph
transformation. It provides a basis for plausibility checking by static con-
flict and causality detection between specific object rules, taking into
account their occurrence within the control flow. This analysis leads to
favorable as well as critical signs for consistency of the integrated behav-
ior model. Our approach is supported by ACTIGRA, an ECLIPSE plug-in
for editing, simulating and analyzing integrated behavior models. It vi-
sualizes favorable and critical signs for consistency in a convenient way
and uses the well-known graph transformation tool AGG for rule appli-
cation as well as static conflict and causality detection. We validate our
approach by modeling a conference scheduling system.
*The work of this author was partially funded by the Deutsche Forschungsgemeinschaft

in the course of the project - Correct Model Transformations - see http://www.hpi.uni-
potsdam.de/giese/projekte/kormoran.html?L=1.

1 Introduction

In model-driven software engineering, models are key artifacts which serve as ba-
sis for automatic code generation. Moreover, they can be used for analyzing the
system behavior prior to implementing the system. In particular, it is interesting to
know whether integrated parts of a model are consistent. For behavioral models, this
means to find out whether the modeled system actions are executable in general or
under certain conditions only. For example, an action in a model run might prevent
one of the next actions to occur because the preconditions of this next action are
not satisfied any more. This situation is usually called a conflict. Correspondingly,
it is interesting to know which actions do depend on other actions, i.e. an action
may be performed only if another action has occurred before. We call such situa-
tions causalities. The aim of this paper is to come up with a plausibility checking
approach regarding the consistency of the control flow and the functional behavior
given by actions bundled in object rules. Object rules define a pre-condition (which
object pattern should be present) and a post-condition (what are the local changes).
Intuitively, consistency means that for a given initial state there is at least one model
run that can be completed successfully.

We combine activity models defining the control flow and object rules in an
integrated behavior model, where an object rule is assigned to each simple activity
in the activity model. Given a system state typed over a given class model, the
behavior of an integrated behavior model can be executed by applying the specified
actions in the pre-defined order. The new plausibility check allows us to analyze an
integrated behavior model for favorable and critical signs concerning consistency.
Favorable signs are e.g. situations where object rules are triggered by other object
rules that precede them in the control flow. On the other hand, critical signs are e.g.
situations where an object rule causes a conflict with a second object rule that should
be applied after the first one along the control flow, or where an object rule depends
causally on the effects of a second object rule which is scheduled by the control flow
to be applied after the first one. An early feedback to the modeler indicating this
kind of information in a natural way in the behavioral model is desirable to better
understand the model.

For integrated behavior models, sufficient consistency criteria have been devel-
oped already in [I0]. The analysis consists of generating sets of rule sequences,
describing potential model runs, and investigate them with respect to their applica-
bility to initial states in a static way. The advantage thereof is that it is possible to
declare consistency of a behavioral model without having to simulate each potential
model run. However, especially for an infinite set of potential runs (in case of loops),
this technique may lead to difficulties. Moreover, it is based on sufficient criteria

leading to false negatives. In this paper, we follow a different approach, focusing
on plausibility reasoning on integrated behavior models and convenient visualiza-
tion of the static analysis results. This approach is complementary to [10], since we
opt for back-annotating light-weight static analysis results allowing for plausibility
reasoning, also in case of lacking consistency analysis results from [10].

The light-weight analysis results do not only visualize the reason for successful
consistency analysis with more elaborated analysis techniques as presented in [10].
In addition, the visualization of these light-weight results allows for plausibility rea-
soning on the integrated behavior model also in case of potential inconsistencies
or false negatives. To this end, we determine conflicts and existing as well as non-
existing causalities between object rules depending on the control flow. On the one
hand they can lead to the detection of potential inconsistencies in the integrated
behavior model, and on the other hand they can lead to a better understanding
of the reasons for model consistency. By inspecting these potential conflicts and
causalities, the modeler can reason about the plausibility of the model and possi-
bly decide to adapt it. This light-weight technique seems to be very appropriate
to allow for early plausibility reasoning during development steps of integrated be-
havior models. As long as no better static analysis techniques as presented in [10]
or whenever no more detailed models (using e.g. object flow) are available, such a
combination of lightweight static analysis with visual back-annotation allowing for
semi-formal plausibility reasoning seems the appropriate way to go. We visualize the
results of our plausibility checks in an integrated development environment called
ACTIGRAE|. Potential inconsistencies and reasons for consistency are directly visual-
ized within integrated behavior models, e.g. as colored arcs between activity nodes
and by detailed conflict and causality views.

Structure of the paper: presents our running example. In [Section 3| we
introduce our approach to integrated behavior modeling and review the underlying
formal concepts for static analysis based on graph transformation as far as needed.
Different forms of plausibility checking are presented in [Section 4] where we validate
our approach checking a model of a conference scheduling system.

A section on related approaches (Section 5|) and conclusions including directions
for future work (Section 6)) close the paperP}

4 http://tfs.cs.tu-berlin.de/actigra
5 This technical report is an extended version of our contribution to FASE 2010 [4].

2 Case Study: A Conference Scheduling System

This case studyﬂ models planning tasks for conferences. Its class model is shown
in (a). A Conference contains Persons, Presentations, Sessions and Slots.
A Person gives one or more Presentations and may chair arbitrary many Sessions.
Note that a session chair may give one or more presentations in the session he or
she chairs. A Presentation is in at most one Session and scheduled in at most one
Slot. Slots are linked as a list by next arcs and used by Sessions.

NamedElement 0.” IZI
Presentanon

String : name
0.° \0.”
@) r— Person U
‘cha|rs sScheduIed[n

Q' B I
nj
session 0.70.1 | iSIot 0. "l next
\—'—‘-'-/

uses
0.* '

Pe'3°“ chalrs,> : Session @‘chamﬁ : Session Person : Person
holdd /D holds| @~hol_5j old

| Presentatlon
Presentatlon : Presentation w Presenmtnonl Plresentntlonl

b hold: helds
Y ' -—Jr hja"s e Pemn
2 Person
old | m‘ holdﬁ Person
: Presentation | : Presentation

: Slot - nexi> :Sloi [‘"‘\Lﬁd'—)w—) - Slo nexi—>_ : Slo next—>| :Slo

Fig. 1. Class and instance model for the Conference Scheduling System

Figure 1| (b) shows a sample object model of an initial session plan before pre-
sentations are scheduled into time slotﬂ This object model conforms to the class
model. The obvious task is to find a valid assignment for situations like the one

in (b) assigning the presentations to available time slots such that the
following conditions are satisfied:

1. there are no simultaneous presentations given by the same presenter,
2. no presenter is chairing another session running simultaneously,
3. nobody chairs two sessions simultaneously,

6 taken from the tool contest on Graph-Based Tools 2008 [19]
7 For simplicity, we do not show name attributes here.

4

4. the presentations in one session are given not in parallel but in consecutive time
slots, and
5. unused time slots are only at the begin or end of the conference.

Moreover, it should be possible to generate arbitrary conference plans like the
one in (b). This is useful to test the assignment procedure.

3 Integrating Activity Models with Object Rules

Our approach to behavior modeling integrates activity models with object rules,
i.e. the application order of object rules is controlled by activity models. An object
rule defines pre- and post-conditions of activities by sets of actions to be performed
on object models. An object rule describes the behavior of a simple activity and is
defined over a given class model. The reader is supposed to be familiar with object-
oriented modelling using e.g. the UML [I7]. Therefore, we present our approach to
integrated behavior modeling from the perspective of its graph transformation-based
semantics. In the following, we formalize class models by type graphs and object rules
by graph transformation rules to be able to use the graph transformation theory [2]
for plausibility checking.

In [Section 3.1}, we review the basic concepts of typed attributed graph transfor-
mation systems and in the notions of conflicts and causalities that may
occur between rules [2]. - introduce well-structured activity mod-
els and the semantics of integrated behavior models. outlines the main
features of the ACTIGRA tool for integrated behavior modeling.

3.1 Graphs and Graph Transformation

Graphs are often used as abstract representation of diagrams. When formalizing
object-oriented modeling, graphs occur at two levels: the type level (defined based
on class models) and the instance level (given by all valid object models). This idea
is described by the concept of typed graphs, where a fixed type graph TG serves
as an abstract representation of the class model. Types can be structured by an
inheritance relation, as shown e.g. in the type graph for our Conference Scheduling
model in [Figure T} Multiplicities and other annotations are not formalized by type
graphs, but have to be expressed by additional graph constraints. Instance graphs
of a type graph have a structure-preserving mapping to the type graph. The sample
session plan in is an instance graph of the Conference Scheduling type
graph.

Graph transformation is the rule-based modification of graphs. Rules are ex-
pressed by two graphs (L, R), where L is the left-hand side of the rule and R is the

5

right-hand side. Rule graphs may contain variables for attributes. The left-hand side
L represents the pre-conditions of the rule, while the right-hand side R describes
the post-conditions. LN R (the graph part that is not changed) and the union LUR
should form a graph again, i.e., they must be compatible with source, target and
type settings, in order to apply the rule. Graph L\ (L N R) defines the part that is
to be deleted, and graph R\ (L N R) defines the part to be created. Furthermore,
the application of a graph rule may be restricted by so-called negative application
conditions (NACs) which prohibit the existence of certain graph patterns in the
current instance graph. Note that we indicate graph elements common to L and R
or common to L and a NAC by equal numbers.

Figure 2| shows graph rule initial-schedule modeling the scheduling of the first
presentation of some session to a slot. The numerous conditions for this scheduling
step stated in [Section 2] are modelled by 8 NACs. The NAC shown in [Figure 2 means
that the rule must not be applied if the presenter holds already another presentation
in the same slotf]

: Person : Presentation inl— I2I:|Plresentationd in— 2L |Presentation;
« e
< i 1: Session 1: Session isScheduledIn
2i:|Presentation holds —holds isScheduledIn s

:1Slo SIo uses\/ :Slo

Fig. 2. Graph rule initial-schedule

A direct graph transformation G =——> H between two instance graphs G and
H is defined by first finding a match m of the left-hand side L of rule r in the
current instance graph G such that m is structure-preserving and type-compatible
and satisfies the NACs (i.e. the forbidden graph patterns are not found in G). We
use injective matches only. Attribute variables used in graph object o € L are bound
to concrete attribute values of graph object m(o) in G. The resulting graph H is
constructed by (1) deleting all graph items from G that are in L but not also in R;
(2) adding all those new graph items that are in R but not also in L; (3) setting
attribute values of preserved and created elements.

A graph transformation (sequence) consists of zero or more direct graph trans-
formations. A set of graph rules, together with a type graph, is called a graph
transformation system (GTS). A GTS may show two kinds of non-determinism: (1)
For each rule several matches may exist. (2) Several rules might be applicable to
the same instance graph. There are techniques to restrict both kinds of choices. The

8 For the complete case study with all rules and NACs see [I].

6

choice of matches can be restricted by object flow, while the choice of rules can be
explicitly defined by control flow on activities.

3.2 Conflicts and Causalities between Rules

A reason for non-determinism of graph transformation systems is the potential exis-
tence of several matches for one rule. If two rules are applicable to the same instance
graph, they might be applicable in any order with the same result. In this case they
are said to be parallel independent.

Conflict Types. However, one rule may disable the second rule. In this case, the first
rule ry is also said to be causing a conflict with the second rule ry. The following
types of conflicts can occur:

delete/use: Applying r; deletes an element used by the match of rs.
produce/forbid: Applying m produces an element that a NAC of 7y forbids.
change/use: Applying r changes an attribute value used by the match of ry.

Causality Types. Conversely, it might be the case that one rule may trigger the
application of another rule or may be irreversible after the application of another
rule. In this case, this sequence of two rules is said to be causally dependent. The
following types of causalities can occur because rule r; triggers the application of r:

produce/use: Applying r; produces an element needed by the match of rs.
delete/forbid: Applying r; deletes an element that a NAC of ry forbids.
change/use: Applying r changes an attribute value used by the match of ry.

Moreover, the following types of causalities may occur because the application
of ro after r; makes the application of r; irreversible:

deliver/delete: The application of r delivers (i.e. preserves or produces) an ele-
ment deleted by the match of rs.

forbid /produce: A NAC of r; forbids an element which is produced by 7.
deliver /change: The application of r; delivers an attribute value changed by the
match of rs.

If 1 never triggers o and ry is always reversible after the application of r; and
ra, then ry followed by 79 are said to be sequentially independent. In this case, their
application order may be switched at all times leading to the same result. See [14]
for a formal description of this conflict and causality characterization.

7

The tool environment AGG (Attributed Graph Grammar System)P] is an estab-
lished academic tool which allows the user to specify, execute and analyse graph
transformation systems. AGG is used in the ACTIGRA-tool as underlying graph
transformation engine and for static analysis of potential conflicts and causalities
between rules. This conflict and causality analysis is based on critical pair analysis
(CPA) [2/8] and critical sequence analysis (CSA) [14], respectively. A critical pair

. . . T1,m1 T2,M2 . . .
is a pair of transformation steps G == H,, G —= H, that are in conflict in a

minimal context, identified through matches m; and msy. A critical sequence is a se-
. T1,mM1 72,M2 .
quence of transformation steps G ——= H, —— H, that are causally dependent in

a minimal context, identified through co-match m/ and ms. Intuitively, each critical
pair or sequence describes which rule elements need to overlap in order to cause a
specific conflict or causality when applying the corresponding rules.

3.3 Integrated behavior models

As in [I1], we define well-structured activity models as consisting of a start activity
s, an activity block B, and an end activity e such that there is a transition between
s and B and another one between B and e. shows the visual appearance
of activity model building blocks.

I] C _< >_
? é rule name [activityDiagram name]

start end simple | complex loop

O L) b

decision / merge fork / join

Fig. 3. Visual appearance of activity model building blocks

An activity block can be a simple activity, a sequence of blocks, a fork-join struc-
ture, decision-merge structure, and loop. In addition, we allow complex activities
which stand for nested well-structured activity models. In this hierarchy, we forbid
nesting cycles. Activity blocks are connected by transitions (directed arcs). Decisions
have an explicit if-guard and implicit else-guard which equals the negated if-guard,
and loops have a loop-guard with corresponding implicit else-guard.

9 AGG: http://tfs.cs.tu-berlin.de/agg

http://tfs.cs.tu-berlin.de/agg

In our formalization (see [Section A]), an integrated behavior model is a well-
structured activity model A together with a type graph such that each simple activity
a occurring in A is equipped with a typed graph transformation rule r, and each if
or loop guard is either user-defined or equipped with a typed guard pattern. We
have simple and application-checking guard patterns: a simple guard pattern is a
graph that has to be found; an application-checking guard pattern is allowed for a
transition entering a loop or decision followed by a simple activity in the loop-body
or if-branch, respectively, and checks the applicability of this activity; it is formalized
by a graph constraint 7] and visualized by the symbol [x]. User-defined guards are
evaluated by the user at run time to true or false. An initial state for an integrated
behavior model is given by a typed instance graph.

Ezxample 1. Let us assume the system state shown in as initial state of our
integrated behavior model. The activity diagram ScheduleControl is shown in the
left part of (please disregard the colors for now). Its first step performs

the initial scheduling of sessions and presentations into time slots by applying rule

initial-schedule (see |[Figure 2)) as long as possible.

2{:|Presentation

uscszenl< H e
3:Sessionjl< chairs— 6: Person |—holds isScheduledIn

4:Presentation 4: Presentation
in) in~
3 Session 3:Session .
isScheduledin

uses| uses l
Uses

= - \
5: Slot anew 5: Slot |——next-—> :|Slo

Fig. 4. Activity model ScheduleControl and rule scheduleAfter

ulefter

sched

scheduleBefore

As second step, two loops are executed taking care of grouping the remaining
presentations of a session into consecutive time slots, i.e. a presentation is scheduled
in a free time slot either directly before or after a slot where there is already a
scheduled presentation of the same session. Rule scheduleAfter is shown in the right
part of Rule scheduleBefore looks quite similar, only the direction of the
next edge between the two slots is reversed. Both rules basically have the same NACs
as rule initialSchedule ensuring the required conditions for the schedule (see [1]). The
NAC shown here ensures that the session chair does not hold a presentation in the
time slot intended for the current scheduling.

As in [1I] we define a control flow relation on integrated behavior models["]
Intuitively, two activities or guards (a, b) are control flow-related whenever b is per-
formed or checked after a. Moreover, we define an against-control flow relation which
contains all pairs of activities or guards that are reverse to the control flow relation.

The control flow relation CFR, of an activity model A contains all pairs (z,y)
where z and y are activities or guards such that (1)-(4) holds:

(1) (x,y) € CFR, if there is a transition from activity x to activity y.
(2) (x,y) € CFR, if activity « has an outgoing transition with guard y.
(3) (x,y) € CFR, if activity y has an incoming transition with guard z.
(4) If (z,y) € CFR4 and (y, z) € CFRy, then also (x,z) € CFR4.

The against-control flow relation ACFR, of an activity model A contains all pairs
(z,y) such that (y,x) is in CFR4.

3.4 Simulation of Integrated Behavior Models

The semantics Sem(A) of an integrated behavior model A consisting of a start
activity s, an activity block B, and an end activity e is the set of sequences Sp, where
each sequence consists of rules alternated with graph constraints (stemming from
guard patterns), generated by the main activity block B (for a formal definition of
the semantics see Section E For a block being a simple activity a inscribed by rule
re, Sp = {ra}. For a sequence block B = X — Y, we construct Sp = Sx seq Sy, i.e.
the set of sequences being concatenations of a sequence in Sy and a sequence in Sy-.
For decision blocks we construct the union of sequences of both branches (preceded
by the if guard pattern and the negated guard pattern, respectively, in case that
the if guard is not user-defined); for loop blocks we construct sequences containing
the body of the loop i times (0 < ¢ < n) (where each body sequence is preceded by
the loop guard pattern and the repetition of body sequences is concluded with the
negated guard pattern in case that the loop guard is not user-defined). In contrast
to [11], we restrict fork-join-blocks to one simple activity in each branch and build a
parallel rule from all branch rules [1412] [We plan to omit this restriction however,
when integrating object flow [I1] into our approach, since then it would be possible
to build unique concurrent rules for each fork-join-branch. For B being a complex
activity inscribed by the name of the integrated behavior model X, Sp = Sem/(X).

10 In contrast to [I1], we include guards into the control flow relation.

1 Note that Sem(A) does not depend on the initial state of A. Moreover, we have a slightly more general
semantics compared to [II], since we do not only have rules in the sequences of Sg, but also graph
constraints.

12 This fork-join semantics is slightly more severe than in [11], which allows all interleavings of rules from
different branches no matter if they lead to the same result.

10

Given s € Sem(A) a sequence of rules alternated with graph constraints and
a start graph S, representing an initial state for A. We then say that each graph
transformation sequence starting with .S, applying each rule to the current instance
graph and evaluating each graph constraint to true for the current instance graph in
the order of occurrence in s, represents a complete simulation run of A. An integrated
behavior model A is consistent with respect to a start graph S, representing an initial
state for A, if there is a sequence s € Sem(A) leading to a complete simulation run.
In particular, if A contains user-defined guards, usually more than one complete
simulation run should exist.

3.5 The AcTiGRA tool

From the modeler’s view, the main components of ACTIGRAE are the following
views which are organized as a special ECLIPSE perspective, shown in

1. The Tree View | 1| gives an overview of all elements of an ACTIGRA, as usual in
EcLIPSE applications. This view offers support to add / delete elements such as
object graphs, graph constraints or rules, and to edit element names. By double
clicking on an element, the visual view for this type of element is opened.

2. The Type Graph View |2 |visualizes a type graph and supports free-hand editing
of node types, edge types, generalization edges and multiplicities. The palette on
the right-hand side contains the drawing tools.

3. The Instance Graph View |3 |visualizes an instance graph and supports free-hand
editing of instance graphs. The palette on the right-hand side contains tools to
draw nodes and edges of the corresponding types.

4. The Activity Diagram View is a visual editor for well-structured activity
diagrams. The panel contains all activity diagram elements. Simple activities
contain the name of a rule which is applied when the corresponding activity is
executed.

5. The Rule View is a multi-view editor consisting of editor panels for a rule’s
left- and right-hand sides (LHS, RHS) and (optionally) for one or more negative
application conditions (NACs). Editing is supported like in the instance graph
view, but in addition, mappings from the LHS to the RHS and to the NACs can
be defined to identify common graph nodes. Mappings are visualized by equal
node numbers and node colors. The mappings between edges can be inferred
from the node mappings.

6. In the ACTIGRA Toolbar , buttons are provided to execute simulation runs on
selected activity models. Current activities are highlighted during simulation, and

13 http://tfs.cs.tu-berlin.de/actigra

11

Conference-Scheduling
I, Conference-Schedul
*Q initialization

scheduleS

[3

'9' rescheduleUnuse:
'9' assignmentl
'?' assignment2
’2‘ newActivityDiagr
; instanceGraphWi
& newObjectGraph
; instanceGraph

» Rule initialSchedule

> ':3'2 createTimeSlot

» Rule AddTimeSlot

» FUe deleteUnusedSlof

» RU addSlotAtStart

» Rule addSlotAtEnd
R“"e changeSchedule

createPaper

createPerson

b Rule
v

., Rule

>

['3'“ linkPersonPaper

» RUE createSession

» R4 linkPersonPaperC

» U scheduleAfter

b "“"e scheduleBefore

b R“" CopyOfinitialSch

b Qz:e empty

s 11

i,g“ <add timeslot>
5. <add a new Pape

ls’,g: <add a new pres

,;'g; <add session cha

,g,g: <add a new sessi

_‘-1. Type Graph

A— next> : Slo

Sessmn

*.M—ﬂ—m%H

Q- A~ vl o m i (B ActiGra |
- = = 053 o mw J
fo|x|@al e n st O ER et & - &

) ;TypeGraph % =g \'?‘sc[Start Simulation hPresenta!ions 2 =0
| e &
NamedElement 0. | B q
String : name B

<« [m | » < (m | »
: instanceGraph 52 . 3 = 0 (Rule createSession "Rule initialSchedule 1 4 Iw
— q q
: Person holds B M

: Person N Ber
hold\gf : Presentation Presentatio|
Ihold }chalr : Presentation J 1:Sess
4 1:8ess| isScheduledin
| n
uses]
: Presentation Session /
A Presentation
me Hr : Slo -
=3 Slof

Slo

Fig.5. The ACTIGRA perspective

the completion of simulation runs is indicated. User-defined guards are evaluated
interactively. If a simulation run cannot be completed, an error message tells the
user which activity could not be executed.

The Graph Constraint View (not shown in [Figure 5)) is a visual editor for graph

constraints which are used as guards for decision or loop activities. The execution
of such an activity checks the guard on the current object graph and chooses the
corresponding branch if the graph constraint is fulfilled, or the alternative branch
if it is violated.

12

4 Plausibility Checks for Integrated Behavior Models

We now consider how to check plausibility regarding consistency of the control flow
and the functional behavior given by actions bundled in object rules. Thereby, we
proceed as follows: We characterize desired properties for an integrated behavior
model and its initial state to be consistent. We determine the favorable as well as
critical signsﬂ for these properties to hold, show, how the checks are supported by
AcCTIGRA and illustrate by our case study which conclusions can be drawn by the
modeler to validate our approach.

For the plausibility checks we wish to detect potential conflicts and causalities
between rules and guards occurring in the sequences of Sem(A). Since in A simple
activities, fork/joins as well as simple guard patterns correspond to ruleﬂ we just
call them rules for simplicity reasons. Thereby, we disregard rules stemming from
simple activities belonging to some fork/join block, since they do not occur as such
in Sem(A). Instead, the corresponding parallel rule for the fork/join is analyzed.
As an exception to this convention, the plausibility check in inspects
consistency of fork/joins and analyzes also the enclosed simple activities.

4.1 Inspecting Initialization

If for some sequence in Sem(A) the first rule is applicable, then the correspond-
ing sequence can lead to a complete simulation run. Otherwise, the correspond-
ing sequence leads to an incomplete run. Given an integrated behavior model A
with initial state S, the first plausibility check computes automatically for which
sequences in Sem(A), the first rule is applicable to S. The modeler then may
inspect the simulation run(s) that should complete for correct initialization (de-
sired property). We identify the favorable signs as the set of possible initializations:
Faly = {r|r is first rule of sequence in Sem(A) and r is applicable to S}. We iden-
tify the critical signs as the set of impossible initializations:

Crly = {r|r is first rule of a sequence in Sem(A) and r is not applicable to S}. [

14 In most cases, these favorable and critical signs merely describe potential reasons for the property to
be fulfilled or not, respectively. For example, some critical pair describes which kind of rule overlap
may be responsible for a critical conflict. By inspecting this overlap, the modeler may realize that the
potential critical conflict may actually occur and adapt the model to avoid it. On the other hand, he
may realize that it does not occur since the overlap corresponds to an invalid system state, intermediate
rules deactivate the conflict, etc.

For each simple guard pattern we can derive a guard rule (without side-effects) for the guarded branch
and a negated guard rule for the alternative branch (as described in [II]). Application-checking guard
patterns are evaluated for simulation but disregarded by the plausibility checks, since they are not
independent guards but check for the application of succeeding rules only.

If a rule belongs to Fala, then the initialization criterion as presented in [I2] as one of the sufficient
criteria used for determining consistency [10] is satisfied. In case that each sequence in Sem(A) starts

16

13

ACTIGRA visualizes the result of this plausibility check by highlighting the ele-
ments of Faly in green. Rules belonging to Crls are highlighted in reﬂ.

Ezample 2. Let us assume the system state in (b) as initial state.

shows the initialization check result for activity model ScheduleControl. We have
Falschequiecontror = {initialSchedule} and Crils.peguiccontror = {scheduleAfter, sched-
uleBefore}.

Thus, complete simulation runs on our initial state never start with scheduleAfter
or scheduleBefore, but always with initialSchedule.

4.2 Inspecting Trigger Causalities Along Control Flow Direction

If rule a may trigger rule b and b is performed after a, then it may be advanta-
geous for the completion of a corresponding simulation run. If for some rule b no
rule a is performed before b that may trigger b, this may lead to an incomplete
simulation run and the modeler may decide to add some triggering rule or adapt
the post-condition of some previous rule in order to create a trigger for b. Alterna-
tively, the initial state could be adapted such that b is applicable to the start graph.
Given an integrated behavior model A with initial state S, this plausibility check
computes automatically for each rule a in A, which predecessor rules may trigger
a. The modeler may inspect each rule a for enough predecessor rules to trigger a
then (desired property). We identify the favorable signs as the set of potential trigger
causalities for some rule a along control flow: FaTrAls(a) = {(b,a)|(b,a) €CFR4
such that b may trigger a}. We say that FaTrAly = {FaTrAls(a) |a is a rule in A}
is the set of potential trigger causalities in A along control flow. We identify the
critical signs as the set of non-triggered rules along control flow that are not ap-
plicable to the initial state: CrNonTrAly = {ala is rule in A such that FaTrAls(a)
= () and a is not applicable to S}. H

AcTIGRA visualizes the result of this plausibility check by displaying dashed
green arrows from b to a selected rule a for each pair of rules (b, a) in FaTrAls(a). If
no rule is selected, then all pairs in FaTrAl are displayed by dashed green arrows.
Clicking on such an arrow from b to a opens a detail view, showing the reason(s)

with a rule in Crla, the initialization error criterion as presented in [12] is fulfilled for each sequence
in Sem(A) such that A is not consistent w.r.t. S [10].

7 Concerning fork/join blocks in Fals or Crlia,ACTIGRA colors the fork bar (see |Example 7| in|Section B.l[).

18 The knowledge whether a rule is applicable to the initial state together with the knowledge of the
triggering causalities in FaTrAls helps to understand why the enabling predecessor criterion as presented
in [I2] as one of the sufficient criteria used for determining consistency [10] is satisfied. Conversely, for
each rule a in CrNonTrAlas not applicable to the initial state, the no enabling predecessor criterion as
presented in [12] is fulfilled. If each sequence in Sem(A) contains a rule belonging to CrNonTra in red,
then A is not consistent w.r.t. S [10].

14

why b may trigger a as discovered by CSA. Conversely, ACTIGRA highlights each
rule belonging to CrNonTrAls in red.

FExample 3. Consider activity model GenConfPlans in for generating con-
ference plans, assuming an empty initial state. The set of potential trigger causalities
along control flow for createSession is given by FaTrAlgenconfpians (createSession) =
{(createPerson + createPaper, createSession), (createPerson, create Session)}.

Here, we learn that we need at least one execution of a loop containing rule
createPerson (a rule with an empty left-hand side) to ensure a complete simulation
run containing createSession.

<add a new Presentation> R
M¢ Berson ;|Person
\/<add Session Chair> A

createPerson

chairs
createTimeSlot v
createPaper createPerson
Q‘ad_d a new Session> 2dd timeslot>
__________________ . o ¥ - Rule
"""""" 2| createSession AddTimeSlot createSession
\ y.

Fig. 6. Potential trigger causalities along control flow in activity model GenConf-
Plans

Person2Pres

The detail view for this potential trigger causality (createPerson, createSession)
(see informs us that we here have a produce-use-dependency, i.e. rule
createPerson may produce a node of type Person that is used by rule createSession
to link it to a new Session node.

4.3 Inspecting Conflicts Along Control Flow Direction

If rule @ may disable rule b, and b is performed after a, then this may lead to an
incomplete simulation run. On the other hand, if for some rule a no rule b performed
before a exists that may disable rule a, then the application of a is not impeded.
Given an integrated behavior model A with initial state S, this plausibility check
computes automatically for each rule a in A, which successor rules b in A may
be disabled by a. The modeler then may inspect each rule a in A for the absence
of rules performed before a disabling rule a (desired property). We identify the

15

0:|Person

Inamel:=lpersonNamel

: Sessi
0:|Person 0:|Person| : ession
chairs>Ehame:-|sessionName
iname}:=IpersonName} iname}:=IpersonName]

OL:jPerson;

[namefzlnilpersonNameN28personName]

Fig. 7. Detail View of the potential trigger causality (createPerson, createSession)

from |Figure 6

critical signs as the set of potential conflicts along control flow caused by rule a:
CrDisAly(a) = {(a,b)|a,b are rules in A, (a,b) € CFR, and a may disable b}. We
say that CrDisAly = {CrDisAls(a) |a is a rule in A} is the set of potential conflicts
along control flow in A. We identify the favorable signs as the set of non-disabled
rules along control flow: FaNonDisAly = {a|a in A and A(b,a) € CrDisAls }[

AcCTIGRA visualizes the result of this plausibility check by displaying faint red
arrows from a to b for each pair of rules (a, b) in CrDisAl,. If rule a is selected, a bold
red arrow from a to b for each pair of rules (a,b) in CrDisAly(a) is shown. Clicking
on such an arrow opens a detail view, showing the reason(s) why a may disable b
as discovered by CPA. Each rule a in A belonging to FaNonDisAl, is highlighted in
green.

Example 4. Consider activity model SchedulingControl in (a). Here, the
set of potential conflicts along control flow caused by rule initialSchedule is given by
CrDisAlschedutingControl (1nitialSchedule) = {(initial Schedule, initial Schedule), (init-
ialSchedule, scheduleAfter), (initialSchedule, scheduleBefore)}El. This gives the mod-

19 1f OrDisAla is empty, then each rule sequence in Sem(A) satisfies the no-impeding predecessor criterion
as presented in [12] as one of the sufficient criteria used for determining consistency [10].

20 Note that one pair in this set may indicate more than one conflict potentially occurring between the
corresponding rules.

16

eler a hint that in fact a scheduling might not terminate successfully in the case that
rule initialSchedule creates a situation where not all remaining presentations can be
scheduled in a way satisfying all conditions. The detail view of potential conflicts for
pair (initialSchedule, schedule A fter) in (b) shows e.g. a potential produce-
forbid conflict where rule initialSchedule (Figure 2|) produces an edge from 2:Pres to
0:Slot, and rule scheduleAfter then must not schedule 4:Pres to 0:Slot because of the

NAC shown in
" /‘ '\

EDL

initialSchedule F=——
- -

—<O~®
scheduleBefore |

4 : Presentation | 6: Person l—hg[d5—> 2{:|Presentation ™ 1: Session
H—\ —_—

(b) . - = name := name1
n chairs| isScheduledIn -
© - uses

! [
3 : Session uses—> 5 Slot next :1Slo:
H_‘ =l

Fig. 8. (a) Potential conflicts along control flow caused by rule initialSchedule;
(b) Detail view of potential conflict of rule initialSchedule with rule scheduleAfter.

4.4 Inspecting Trigger Causalities Against Control Flow Direction

If rule @ may trigger rule b and b is performed before a, then it might be the case that
their order should be switched in order to obtain a complete simulation run. Given an
integrated behavior model A with initial state S, this plausibility check automatically
computes for each rule a in A, which successor rules of @ may trigger a. The modeler
then may inspect for each rule a in A that no rule performed after a exists that
needs to be switched to a position before a in order to trigger its application (desired
property). We identify the critical signs as the set of potential causalities against
control flow triggered by a: CrTrAga(a) = {(a,b)|a,brules in A and (a,b) € ACFR4
such that a may trigger b}. We say that CrTrAgs = {CrTrAga(a) |a is a rule in A}
is the set of potential trigger causalities against control flow in A. We identify the
favorable signs as the set of rules not triggered against control flow: FaNoTrAg, =

{ala is rule in A and #(b,a) €CrTrAg, }.

17

ACTIGRA visualizes the result of this plausibility check by displaying a dashed
red arrow from a selected rule a to b for each pair of rules (a,b) in CrTrAga(a). If
no rule in particular is selected, then all pairs in CrTrAg, are displayed by dashed
red arrows. Clicking on such an arrow from a to b opens a detail view, showing the
reason(s) why a may trigger b as discovered by CSA. Conversely, each rule belonging
to FaNoTrAg, is highlighted in green.

Example 5. In activity diagram GenConfPlan in[Figure 9, we get the set of potential
causalities against control flow CrTrAggencontrian = {(createSession, Person2Pres),
(createPerson, Person2Pres)}. On selecting activity createSession, the red dashed
arc representing the potential causality (createSession, Person2Pres) is highlighted
(see. We have several rules highlighted in green (being not triggered against
control flow): FaNoTrAggenconfpian = {createPerson + createPaper, createPerson,
createSession}, where the first rule is constructed as parallel rule of the fork/join
branch rules createPerson and createPaper.

Rule Person2Pres:
<add a new Presentation> “1 Pe-rs.o“——n holds|
\ N
(add Session Chair> 1: Presentation

[createPerson] [createPaper] createPerson M :|Person
holds
1: Presentation | 1: Presentation li

in

[SPETE IS

<add a new Session>

............... createSession

Person2Pres

Fig. 9. Trigger causality against control flow (createSession, Person2Pres)

The detail view of the potential causality (createSession, Person2Pres) is shown
in Here, the user sees that there would be a causality if rule createSession
generated exactly the session node that would be used by rule Person2Pres to
schedule a presentation in. Hence, causality (createSession, Person2Pres) indicates
that rule Person2Pres might be modelled too early in the control flow since rule
createSession might be needed to trigger rule Person2Pres completely.

18

0:|Rerson
0:|Person 3:/Session chairs—@inamel:=lpersonName]
namel:=[sessionName!

inamej:ZlpersonName} sessionNam:

N
A 1:Person 1:Person

holds|

b

0:|Person
1:Personl . namel:zlnilipersonNamel
31:|Session| chairs

Izi:lprese"mm"i Inamel:=TnilsessionName)

m

Fig. 10. Detail view of the trigger causality against control flow (createSession,

Person2Pres) in

4.5 Inspecting Causalities in Fork/Joins

We may not only consider the consistent sequential composition of rules as before,
but consider also the parallel application of rules as specified by fork/join activi-
ties. Whenever a rule pair (a,b) belonging to the same fork/join may be causally
dependent, then it is not possible to change their application order in any situation
without changing the result. However, the parallel application of rules (a, b) implies
that their application order should not matter.

Given an integrated behavior model A with initial state S, this plausibility check
computes automatically for each fork/join in A, if potential causalities between
the enclosed simple activities exist. The modeler may inspect each fork/join for its
parallel execution not to be disturbed then (desired property).

We need some more elaborated considerations for this case, since we wish to ana-
lyze simple activities within a fork/join block that are normally disregarded as they
only occur in the form of the corresponding parallel rule in Sem(A). In particular,
we define a fork/join relation F'JR 4 consisting of all rule pairs (a, b) belonging to the
same fork/join block. We identify the critical signs as the set of potential causalities
between different fork/join branches: CrF'JCay = {(a,b)|(a,b) €FJR, and (a,b)

19

causally dependent})] We identify the favorable signs as the set of fork/join struc-
tures with independent branches: FaFJNoCay = {fj|fj is fork/join in A and (a,b) &
CrFJCay for each (a,b) with a,b in different branches of fj}.

AcTIGRA visualizes the result of this plausibility check by displaying in each
fork/join block a dashed red arrow from a to b for each (a,b) € CrFJCay. The detail
view shows the reason(s) why (a,b) are causally dependent , as discovered by CSA,
and why this dependency might disturb parallel execution. On the other hand, each
fork /join in FaF.JNoCay, is highlighted by green fork and join bars.

Ezample 6. The set of potential causalities between different fork/join branches de-

picted in [Figure 11 is given by {(createPerson, Person2Pres)}. We may have a
dependency (shown in the detail view) if rule createPerson creates a Person node

that is used by rule Person2Pres to link it to a Presentation node.

J{i Detail View for (createPerson, Person2Pres):

- =
ﬁ :lPIerson| 1: Presentation

createPerson - Person2Pres
\

Fig. 11. Potential causality between different fork/join branches and its detail view

5 Related Work

This paper is about formal semantics and analysis of activity models on the one
hand, and controlled graph transformation on the other hand. Our approach com-
plements existing approaches that give a denotational semantics to activity diagrams
by formal models. This semantics is used for validation purposes thereafter. For ex-
ample, Eshuis [5] proposes a denotational semantics for a restricted class of activity
models by means of labeled transition systems. Model checking is used to check
properties. Storrle [20] defines a denotational semantics for the control flow of UML
2.0 activity models including procedure calls by means of Petri nets. The standard
Petri net theory provides an analysis of properties like reachability or deadlock
freeness. Both works stick to simple activities not further refined. In [3], business
process models and web services are equipped with a combined graph transforma-
tion semantics and consistency can be validated by the model checker GROOVE.

2! Here, we do not only regard trigger causalities between a and b, but also causalities making the appli-
cation of rule a irreversible as described in [14].

20

In contrast, we take integrated behavior models and check for potential conflict and
causality inconsistencies between activity-specifying rules directly. Thus, our tech-
nique is not a “push-button” technique which checks a temporal formula specifying
a desired property, but offers additional views on activity models where users can
conveniently investigate intended and unintended conflicts and causalities between
activities. Conflicts and causalities are not just reported as such but reasons for
consistencies and inconsistencies can also be investigated in depth.

Fujaba [6], VMTS]?I and GReATF_gI are graph transformation tools for specifying
and applying graph transformation rules along a control flow specified by activity
models. However, controlled rule applications are not further validated concerning
conflict and causality inconsistencies within these tools. AGG is the only graph
transformation tool which supports critical pair analysis to detect conflicts and
causal dependencies between rules applied in control flows specified. Conflicts and
causalities of pairs of rule-specified activities have been considered in various ap-
plication contexts such as use case integration [§], feature modeling [9], model in-
consistency detection [16], and aspect-oriented modeling [I5]. Although sometimes
embedded in explicit control flow, it has not been taken into account for inconsis-
tency analysis. In this paper, we analyze potential conflict and causality inconsisten-
cies between rule-specified activities wrt. the control flow to specify their execution
order. A pair of pre- and post-conditions can be formalized as a graph transfor-
mation rule. The idea was first presented in [8] to analyze inconsistencies conflicts
and dependencies between activities during use case integration, however not taking
into account the control flow. Jayaraman et al.[9] use critical pair analysis to de-
tect dependencies and conflicts between features modeled as a graph transformation
modifying UML diagrams. This approach, however, is limited to a pairwise analysis
of transformations. No control structure such as activity diagrams are considered
for this analysis.

6 Conclusions and Future Work

Activity models are a wide-spread modeling technique to specify behavioral aspects
of (software) systems. Here, we consider activity models where activities are inte-
grated with object rules which describe pre- and post-conditions of activities based
on a structural model. These integrated behavior models are formalized on the basis
of graph transformation. Considering use case-driven system analysis and design,
behavior models can be stepwise refined by first refining a use case by a simple
activity model and then, refining activities again by activity models or describing

?2 Visual Modeling and Transformation System: |http://vmts.aut.bme.hu/
3 Graph Rewriting and Transformation: http://www.isis.vanderbilt.edu/tools/great

21

http://vmts.aut.bme.hu/
http://www.isis.vanderbilt.edu/tools/great

their pre- and post-conditions by rules over a given structural model. The integrated
specification of object rules within a control flow offers the possibility to find out
potential conflict and causality inconsistencies. Actually, we can check if the order
of rule applications specified by the control flow is plausible w.r.t. inherent poten-
tial conflicts and causalities of object rules. We determine potential critical conflicts
and causalities if the specified control flow can become inconsistent with inherent
conflicts and causalities. In contrast, we can also check for potential favorable causal-
ities to reason about the necessity of the specified control flow. The Eclipse plug-in
ACTIGRA@ prototypically implements these plausibility checks and visualizes po-
tential conflicts and causalities in different views. Please note that our approach to
plausibility reasoning can easily be adapted to any other approach where modeling
techniques describing the control flow of operations, are integrated with operational
rules like e.g. the integration of live sequence charts with object rules in [13].

As presented in [Section 3.4 the semantics of integrated behavior models can
be defined by sets of sequences consisting of graph transformation rules alternated
with graph constraints. Although the order of rule applications is determined, rule
matches still can be chosen non-deterministically. Hence, plausibility checks deter-
mine potential conflicts and causalities only. It depends on the actual rule application
whether conflicts or causalities really occur.

In addition to the plausibility checks for consistency of integrated behavior mod-
els w.r.t applicability, we plan to design plausibility checks indicating positive or
negative signs for the termination of pattern-guarded loops. Loops require partic-
ular attention, since the termination aspect needs to be regarded and because the
control flow relation as well as the against-control-flow relation contain the same set
of pairs of rules occurring within the loop body (a motivating example can be found
in Section B.).

A further refinement step in activity-based behavior modeling would be the spec-
ification of object flow between activities. Additionally specified object flow between
two activities would further determine their inter-relation. In this case, previously
determined potential conflicts and causalities might not occur anymore. Thus, the
plausibility checks would become more exact with additionally specified object flow.
A first formalization of integrated behavior models with object flow based on graph
transformation is presented in [I1]. An extension of plausibility checks to this kind
of activity models is left for future work. In [10], sufficient criteria for the applica-
tion of integrated behavior models have been presented. These criteria could also
be considerably sharpened if the object flow is additionally specified. The plausi-
bility checks are expected to support the specification of object flow. Moreover, we
plan to implement and visualize the sufficient criteria for consistency [10] in AcTI-

24 http:/ /tfs.cs.tu-berlin.de/actigra

22

GRA. To conclude, integrated behavior models head towards a better integration of
structural and behavioral modeling of (software) systems. Plausibility checks pro-
vide light-weight static analysis checks supporting the developer in constructing
consistent models. Additionally, they allow modelers to reason about the necessity
of sequencing activities.

References

1.

10.

Biermann, E., Ermel, C., Lambers, L., Prange, U., Taentzer, G.: Introduction to
AGG and EMF Tiger by modeling a conference scheduling system. Int. Journal
on Software Tools for Technology Transfer 12(3-4), 245-261 (2010)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science, Springer (2006)
Engels, G., Giildali, B., Soltenborn, C., Wehrheim, H.: Assuring consistency
of business process models and web services using visual contracts. In: Proc.
AGTIVE). LNCS, vol. 5088, pp. 17-31. Springer (2007)

Ermel, C., Gall, J., Lambers, L., Taentzer, G.: Modeling with plausibility check-
ing: Inspecting favorable and critical signs for consistency between control flow
and functional behavior. In: Proc. Fundamental Aspects of Software Engineering
(FASE’11). pp. 156-170. No. 6603 in LNCS, Springer (2011)

Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams.
IEEE Transactions on Software Engineering 7(30) (2004)

Fischer, T., Niere, J., Torunski, L., Ziindorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In: Proc. Theory
and Appl. of Graph Transformation. LNCS, vol. 1764, pp. 296-309. Springer
(1998)

Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19,
1-52 (2009)

Hausmann, J., Heckel, R., Taentzer, G.: Detection of conflicting functional re-
quirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: Proc. ICSE. pp. 105-115. ACM (2002)

Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composi-
tion in product lines and feature interaction detection using critical pair anal-
ysis. In: Model Driven Engineering Languages and Systems, 10th International
Conference, MoDELS 2007, Nashville, USA, September 30 - October 5, 2007,
Proceedings. LNCS, vol. 4735, pp. 151-165. Springer (2007)

Jurack, S., Lambers, L., Mehner, K., Taentzer, G.: Sufficient Criteria for Con-
sistent Behavior Modeling with Refined Activity Diagrams. In: Czarnecki, K.
(ed.) Proc. MoDELS. LNCS, vol. 5301, pp. 341-355. Springer (2008)

23

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object Flow
Definition for Refined Activity Diagrams . In: Proc. Int. Conf. on Fundamen-
tal Approaches to Software Engineering. LNCS, vol. 5503, pp. 49-63. Springer
(2009)

Lambers, L., Ehrig, H., Taentzer, G.: Sufficient Criteria for Applicability and
Non-Applicability of Rule Sequences. In: Proc. GTVMT. vol. 10. ECEASST
(2008)

Lambers, L., Mariani, L., Ehrig, H., Pezze, M.: A Formal Framework for Devel-
oping Adaptable Service-Based Applications. In: Proc. FASE. LNCS, vol. 4961,
pp. 392-406. Springer (2008)

Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D.
thesis, Technische Universitat Berlin (2009)

Mehner, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented model weav-
ing. In: Transactions on Aspect-Oriented Software Development V, LNCS, vol.
5490, pp. 235-263. Springer (2009)

Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and resolving model incon-
sistencies using transformation dependency analysis. In: Proc. MoDELS. LNCS,
vol. 4199, pp. 200-214. Springer (2006)

Object Management Group: Unified Modeling Language: Superstructure — Ver-
sion 2.3 (2010), http://www.omg.org/spec/UML/2.3/, formal/07-02-05
Pennemann, K.H.: Development of Correct Graph Transformation Sys-
tems. Ph.D. thesis, Department of Computing Science, University of Old-
enburg, Oldenburg (2009), http://formale-sprachen.informatik.uni-oldenburg.de/
~skript /fs-pub/diss_pennemann.pdf, http://oops.uni-oldenburg.de /volltexte /2009 /
948 /Electronic Dissertation

Rensink, A., Van Gorp, P. (eds.): Int. Journal on Software Tools for Technology
Transfer, Section on Graph Transf. Tool Contest 2008, vol. 12(3-4). Springer
(2010)

Storrle, H.: Semantics of UML 2.0 activity diagrams. In: Proc. Int. Conf. on
Visual Languages and Human-Centric Computing (VLHCC’04). IEEE (2004)

24

http://www.omg.org/spec/UML/2.3/
http://formale-sprachen.informatik.uni-oldenburg.de/~skript/fs-pub/diss_pennemann.pdf
http://formale-sprachen.informatik.uni-oldenburg.de/~skript/fs-pub/diss_pennemann.pdf
http://oops.uni-oldenburg.de/volltexte/2009/948/
http://oops.uni-oldenburg.de/volltexte/2009/948/

A Formalization of Integrated Behavior Models

Definition 1 (well-structured activity model). A well-structured activity model
A consists of a start activity s, an activity block B, and an end activity e such that
there is a transition between s and B and another one between B and e. An activity
block can be one of the following:

(1) empty: An empty activity block is not depicted.

(2) simple: A simple activity is an activity block.

(3) sequence: A sequence of two activity blocks A and B connected by a transition
from A to B form an activity block.

(4) decision/merge: A decision activity which is followed by two guarded transitions
leading to one activity block each and where each block is followed by a transition
both heading to a common merge activity form an activity block. One transi-
tion is explicitly guarded, called the if-guard, while the other transition carries a
predefined guard “else” which equals the negated if-guard.

(5) loop: A loop activity is followed by a guarded transition. This guard is called loop-
guard. The transition leads to an activity block with an outgoing transition to the
same loop activity as above. Considering this loop activity again, its incoming
transition from outside becomes the incoming transition of the new block. Its
outgoing transition to outside becomes the outgoing transition of the new block.
This transition carries a predefined guard “else” which equals the negated loop-
guard. The whole construct forms an activity block.

(6) fork/join: A fork activity followed by one or more branches with one simple ac-
tivity each followed by a join activity form an activity block.

In the following, our definitions are based on the definitions of typed attributed
graphs, graph transformation rules and graph constraints in [2].

Definition 2 (integrated behavior model). An integrated behavior model is a
well-structured activity model A together with a type graph such that each simple
activity a occurring in A is equipped with a typed graph transformation rule r,
and each if or loop guard g is either user-defined or equipped with a typed guard
pattern P,. We have simple and application-checking guard patterns, formalized by
graph constraints [7]: a simple guard pattern is formalized by a graph constraint of
the form AC, where C is a typed graph that may contain variables for attributes; A
typed instance graph G satisfies AC' if there exists a morphism q : C' — G, injective
on the graph part. An application-checking guard pattern is allowed for a transition
entering a loop or decision followed by a simple activity a (for which applicability is
checked) in the loop-body or if-branch, respectively, it is visualized by the symbol [x],

25

and it is formalized by a graph constraint of the form 3(L, (Niey—3n;) A dangl(r,)),
expressing that a match m : L — G for r, exists such that the negative application
conditions n; : L — N; of r, and the dangling edge condition for r, are fulﬁlled.ﬁ' A
typed instance graph G satisfies the application-checking guard pattern for the simple
activity a if and only if r, is applicable to G. User-defined quards are evaluated by
the user at run time to true or false. An initial state for an integrated behavior model
15 given by a typed instance graph.

Next, we give the semantics of integrated behavior models. As each simple ac-
tivity a is equipped with a rule r,, and each simple or application-checking guard
pattern P, is formalized by a graph constraint, we define the semantics as sequences
of rules alternated with graph constraints, where each of the sequences is determined
by the control flow of the activity model. Since loops may be guarded by guard pat-
terns, we also give a restricted semantics parametrized by a fixed number of loop
executions. Based on this restricted semantics, it may be checked if a predefined
number of loop executions is feasible in some simulation run [

Definition 3 (semantics of integrated behavior models). Given an activity
block B of an integrated behavior model, its corresponding set of rule sequences Sp

1s defined as follows.

(1) If B is the empty block, Sp = 0.
(2) If B consists of a simple activity a equipped with rule r,, Sgp = {r,}.
(3) If B is a sequence of block X and Y, Sp := Sx seq Sy = {sz5,|5. € Sx A5y €
Sy}
(4a) If B is a decision block on block X and block'Y with guard pattern P, as if-guard,
Sp = ({Fy,} seq Sx) U ({—F,} seq Sy)
(4b) If B is a decision block on block X and block Y with user-defined if-guard, Sg =
Sx U Sy
(5a) If B is aloop block on X with guard pattern Py as loop-guard, Sg := loop(P,, Sx) =
Uie; Sk where S = {=F,}, Sx = {P,} seq Sx seq {=F,},
S% = {P,} seq Sx seq Sk and S = {P,} seq Sx seq Sk for i > 2 such that
Sp(n) = S% denotes the semantics of loop block B with exactly n loop executions.
(5b) If B is a loop block on X with user-defined loop-guard, Sp = loop(Sx) =
Uier S, where S% =0, Sk = Sx, 5% = Sx seq Sk and S% = Sx seq S " for
1> 2.
Ws described by the so-called Deletable condition how to formalize dangl(r,). Basically, it

prohibits the existence of adjacent edges not belonging to the match for nodes that are to be deleted.
26 In [10] we considered only user-defined guards.

26

(6) If B is a fork block on simple activity blocks X; with i € I and I a finite index
set such that Sx, = {r;}, then Sp := {@,.; i} containing the parallel rule with
NACs [14)] of all 1.

The semantics Sem(A) of activity model A with start activity s, activity block B,
and end activity e is defined as the set of rule sequences Sg generated by the main
activity block B. If A contains k guarded loops, Semy, . »,(A) C Sem(A) denotes a
restricted semantics where the semantics of each guarded loop B; € A for1 < j <k
is Sp;(n;).

B Plausibility Checks of the Case Study

In this section, additional examples and more details of the plausibility checks on
the case study are discussed.

B.1 Inspecting Initialization

Example 7. Invoking the initialization check on the activity model GenConfPlan

in [Figure 12| results in green highlighting of the fork/join block, createPerson and
create TimeSlot (being first rules of rule sequences in Sem(GenConfPlan)), while rule

createSession is highlighted in red.

<add a new presentation>

P

createTimeSlot

\/<add session chair>

[createPerson] [createPaper] createPerson

kadd timeslot>

AddTimeS ot

<add a new session>

createSession
Person2Pres

Fig. 12. Possible and impossible initializations in activity model GenConfPlan

Having a closer look at rule createSession in reveals that this rule
expects a Person node as precondition to be assigned as session chair of the new
session. Thus, rule createPerson should be executed at least once before the loop
containing rule createSession is entered.

27

0:Person 0:Person

name := chairName name := chairName

Fig. 13. Rule createSession

B.2 Inspecting Trigger Causalities Along Control Flow Direction

Example 8. Consider the draft activity diagram B2 for generating conference plans
shown in . Here, the set FaTrAlgy(Person2Pres) of potential trigger causal-
ities along control flow is empty (it is highlighted in red). Moreover, this rule is not
applicable to the initial state of our model (it expects an existing person and a pre-
sentation). Hence, we run into an incomplete simulation run if guard <add a new
Presentation> is chosen by the user. One way to repair this situation is to insert
one or more triggering rules before rule Person2Pres(like e.g. in .

. Rule Person2Pres
<add a new Presentation>

. :|Person
: P
<add Session Chair> SES

Person2Pres

1: Presentation | 1: Presentation |(—ho|ds_
createPerson

Fig. 14. Non-triggered rule Person2Pres along control flow in activity model B2

B.3 Inspecting Conflicts Along Control Flow Direction

Example 9. Consider the new draft part of activity model GenConfPlan in the left-
hand side of [Figure 15 Here, the intention is to allow also (controlled) deletion
operations in the editing process of a conference plan. The editing extension is
supposed to support the user in deleting a currently created time slot before other
time slots are added and linked to the list of time slots.

A classical delete-use conflict is found for rule delete TimeSlot with add TimeSlot.
The detail view in the right part of shows the critical overlapping which
could occur if the application of rule addTimeSlot tries to insert a next edge to the
Slot node that has been deleted already by the application of rule deleteTimeSlot.
This potential conflict gives us a hint that the activity model is not optimal: we
could improve it e.g. by moving the deleteTimeSlot activity behind the add TimeSlot

28

!

createTimeSlat

<delete timeslot>

v
- "
deleteTimeSlot £] | <add timeslot>
\ y
<

~

addTimeSlot

Fig. 15. Conflict of rule deleteTimeSlot with addTimeSlot in activity model B3

activity. Of course, then rule delete TimeSlot must be adapted to reconnect also the
next links of the deleted Slot node.

B.4 Plausibility Checking for Termination of Pattern-Guarded Loops:
Motivation

In addition to the plausibility checks for consistency of integrated behavior models
w.r.t applicability, we plan to design plausibility checks indicating positive or neg-
ative signs for the termination of pattern-guarded loops. Loops require particular
attention, since the termination aspect needs to be regarded. Moreover, the con-
trol flow relation as well as the against-control-flow relation contain the same set of
pairs of rules occurring within the loop body. This is demonstrated by the following
example:

FExample 10. Consider the activity model moveEmptySlots in the left part of
ure 16, This activity model is used after the scheduling of presentations to time slots
is finished for moving slots not used for the scheduling to the beginning or the end of
the slot queue. This is realized by removing in the first step an empty slot from the
queue and re-linking its predecessor slot to its successor slot (rule delete UnusedSlot).
If such an empty slot has been found and removed from the queue, in the second
step it is added either to beginning or to the end of the queue (rules addSlotAtEnd,
addSlotAtStart). The activity deleteUnusedSlot in activity diagram moveEmpty-
Slots may be triggered along control flow by the activities addSlotAtStart as well as
addSlotAt End.

In our example, the trigger causality along control flow (addSlotAtStart, delete-
UnusedSlot) indicates a potentially unwanted behavior: we may run into an infinite

29

Rule deleteUnusedSiot with one NAC:

addSlotatEnd

deleteUnusedSiot

addSlotatStart

:Slo uses|

/

l_-*M—

next
w | M-}- 1: Slot

:1Slo

Rule addSlotAtStart with three NACs:

Razy s

M—{Et—:» 1: Slot

: Slot l—@-;» 1:siot | | | :siot '—@aw

Hi:lSloi—(Lext-a- Slo!

Fig. 16. Rule deleteUnusedSlot in activity model moveEmptySlots might be trig-
gered by rule addSlotAtStart along control flow causing an infinite loop

loop when moving unused slots to the beginning (or end) of the slot queue. Inspect-
ing the rules in the causality’s detail view (see|Figure 17)), we find that we may have
the following situation:

W@a 1: Slot

1: Slot

e et s~

Fig. 17. Detail View of the trigger causality along control flow (addSlotAtStart,

delete UnusedSlot)

30

A slot is added to the beginning of the slot queue, where we now may have
two consecutive empty slots. The second empty slot is found to be an "unused”
slot between two other slots, hence the loop is entered again, the slot is deleted
and a slot is added to the beginning of the slot queue, etc. . A way to prevent this
erroneous behavior is e.g. to mark newly added slots in rule addSlotAtStart by a
boolean attribute that is checked by rule delete UnusedSlot.

We plan to develop and implement a plausibility check indicating these kind
of critical signs for the termination of pattern-guarded loops, highlighting critical
trigger causalities between activities/guard patterns of a loop.

31

	Modeling with Plausibility Checking: Inspecting Favorable and Critical Signs for Consistency between Control Flow and Functional Behavior
	Claudia Ermel, Jürgen Gall, Leen Lambers and Gabriele Taentzer

