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Abstract

For the first time, the Fick diffusion coefficient matrix of a quaternary liquid mixture is

sampled consistently by means of molecular dynamics simulation. The required phenomeno-

logical diffusion coefficient and thermodynamic factor matrices of the mixture water + methanol

+ ethanol + 2-propanol are determined following the Green-Kubo formalism and Kirkwood-

Buff theory. Further, a system size correction methodology for the Fick diffusion coefficient of

multicomponent mixtures is proposed. Ten compositions are studied under ambient conditions

and validated by analyzing the ternary limits of the quaternary Fick diffusion matrix. Because

of complex intermolecular interactions due to the presence of hydrogen bonding, the elements

of the Fick diffusion coefficient matrix exhibit a significant composition dependence. The

magnitude of several cross coefficients indicate important coupling effects mainly affecting

the diffusive flux of water. These effects are explained in the light of the structural infor-

mation given by the radial distribution functions of the mixture. This work that solely rests

on molecular dynamics simulation techniques to predict the Fick diffusion coefficient matrix

of quaternary mixtures is expected to be a significant step forward for the understanding of

multicomponent diffusion.
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Introduction

Multicomponent solutions are involved in the majority of mass transfer processes occurring in

nature and technical applications1. Almost all separation processes in chemical engineering, such

as distillation, absorption or extraction, are affected by multicomponent diffusion in liquids. Rate-

based methods employed for modeling, design and control of these unit operations involve mass

and energy transfer models, which require diffusion coefficient data for mixtures2.

Mass transport in multicomponent systems is complex. For instance, describing isothermal-

isobaric diffusion of a quaternary mixture by Fick’s law requires a matrix with nine different diffu-

sion coefficient elements that are composition dependent. Related experimental work is challeng-

ing not only because of the elaborate equipment that is required to distinguish between different

components, but also because of the presence of coupling effects that hinder data processing and

interpretation3. Consequently, the availability of experimental data on diffusion coefficients for

mixtures containing three or more components is very limited4. In fact, they have experimentally

been measured only for 17 quaternary mixtures5–17, but in some of these cases, only the main ele-

ments of the diffusion matrix are reported. With diffusion having entered the scientific arena in the

1850s through the contributions of Graham18 and Fick19, experimental measurements alone are

obviously not able to satisfy the growing need for accurate mass transport properties20, particularly

for liquids that are constituted of many components.

Most predictive equations for diffusion coefficients of multicomponent liquids are extensions

of the Darken relation21–23, which is not valid for mixtures with strong intermolecular interactions.

The underlying physical phenomena are not well understood and the lack of experimental data im-

pedes the development and verification of new predictive equations. On the other hand, molecular

dynamics simulation is a compelling alternative for such predictions. In fact, such simulations

have the capability to accurately predict Fick diffusion coefficients of binary24,25 and ternary mix-

tures26,27. Krishna and van Baten21 were the first to deduce the required mathematical framework

and sampled the Maxwell-Stefan diffusion coefficient matrix of quaternary n-alkane mixtures with

molecular dynamics. Later, Liu et al.22 determined the Maxwell-Stefan diffusion coefficients of
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quaternary model mixtures interacting with the Weeks-Chandler-Andersen potential. However,

none of these works predicted the Fick diffusion coefficient, perhaps because of the lack of a

mathematical framework to sample the required thermodynamic factor matrix. In a recent work

of our group28, expressions for the thermodynamic factor matrix of quaternary mixtures based on

Kirkwood-Buff theory were derived to close this gap. To the best of our knowledge, this is the

first work on the prediction of quaternary Fick diffusion coefficients solely based on molecular

dynamics simulation techniques.

The quaternary mixture water + methanol + ethanol + 2-propanol was chosen in this context

since the Fick diffusion coefficient of most of the involved subsystems has been predicted in pre-

vious work. In fact, the binary subsystems water + methanol29, water + ethanol29, methanol +

ethanol30, water + 2-propanol25, and the ternary subsystem water + methanol + ethanol26,27 have

successfully been studied in this sense.

Theory

In the framework of the generalized form of Fick’s law, the molar flux of component i in a mixture

of four components is written as a linear combination of concentration gradients ∇c j
31

Ji =−
3

∑
j=1

Di j∇c j , (i = 1,2,3) , (1)

where Dii are the main diffusion coefficients that relate the molar flux of component i to its own

concentration gradient and Di j are the cross diffusion coefficients that relate the molar flux of

component i to the concentration gradient of component j32. The Fick approach involves three

independent diffusion fluxes and a 3×3 diffusion coefficient matrix, which is generally not sym-

metric, i.e. Di j 6= D ji. Further, the numerical values of Di j depend both on the reference frame for

velocity (molar-, mass- or volume-averaged) and on the order of the components. In this work, the

molar-averaged reference frame is employed throughout.

The main shortcoming of Fick’s law is the fact that concentration gradients are not the true
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thermodynamic driving forces for diffusion, which are rather given by chemical potential gradi-

ents. Maxwell-Stefan theory follows this path, assuming that chemical potential gradients ∇µi are

balanced by friction forces between the components that are proportional to their mutual velocity

(uuui−uuu j)
33

4

∑
j 6=i=1

x j(uuui−uuu j)

Ði j
=− 1

kBT
∇µi (i, j = 1, ...,4) , (2)

where x j is the mole fraction of component j, kB Boltzmann’s constant and T the temperature. The

Maxwell-Stefan diffusion coefficient Ði j plays the role of an inverse friction coefficient between

components i and j34. Its matrix does not depend on the component order and is symmetric so that

it has only six independent elements.

Maxwell-Stefan diffusion coefficients are associated with chemical potential gradients and thus

cannot directly be measured in the laboratory. However, they are accessible with equilibrium

molecular simulation techniques, i.e. the Green-Kubo formalism35,36 or the Einstein approach37.

For multicomponent mixtures, Fick and Maxwell-Stefan diffusion coefficients are related by33

D = B−1 ·ΓΓΓ , (3)

in which all three symbols represent 3×3 matrices and the elements of B are given by21

Bii =
xi

Ði4
+

4

∑
j 6=i=1

x j

Ði j
, Bi j =−xi

(
1

Ði j
− 1

Ði4

)
. (4)

Fick diffusion coefficients can be calculated from the Maxwell-Stefan diffusion coefficients if the

thermodynamic factor matrix ΓΓΓ

Γi j = δi j + xi
∂ lnγi

∂x j

∣∣∣∣
T,p,xk,k 6= j=1...3

, (5)

is known. Therein, δi j is the Kronecker delta function and γi the activity coefficient of component

i. The partial derivative has to be evaluated at constant temperature, pressure and mole fraction of
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all other components.

Ternary limits of quaternary Fick diffusion coefficients

The consistency of the present simulation results can be assessed by analyzing the asymptotic

behavior of quaternary diffusion coefficients when approaching the ternary limits. This type of

analysis has been developed for ternary mixtures27,38 and is expanded here to quaternary mixtures.

Following the previously outlined procedure27, the asymptotic behavior of some elements of the

quaternary Fick diffusion coefficient matrix in the molar-averaged reference frame can be obtained.

When the water content of the studied quaternary mixture water (1) + methanol (2) + ethanol (3)

+ 2-propanol (4) vanishes, ∇x1 → 0, the mixture approaches its ternary subsystem methanol +

ethanol + 2-propanol. By comparing the diffusive flux equations of the quaternary and ternary

mixtures, it follows that

Dquat
22 → Dtern

11 , Dquat
23 → Dtern

12 , Dquat
32 → Dtern

21 , Dquat
33 → Dtern

22 , (6)

where Dquat
i j and Dtern

i j denote the respective elements of the quaternary and ternary Fick diffusion

coefficient matrices.

From a similar analysis for vanishing methanol content, x2→ 0, it follows for the ternary limit

water + ethanol + 2-propanol that

Dquat
11 → Dtern

11 , Dquat
13 → Dtern

12 , Dquat
31 → Dtern

21 , Dquat
33 → Dtern

22 . (7)

Analogously, when ethanol disappears from the mixture, x3→ 0, the asymptotic behavior to-

wards the ternary limit water + methanol + 2-propanol is given by

6



Dquat
21 → Dtern

21 , Dquat
22 → Dtern

22 , Dquat
11 → Dtern

11 , Dquat
12 → Dtern

12 . (8)

The behavior of quaternary diffusion when approaching the ternary subsystem water + methanol

+ ethanol, x4→ 0, requires some transformation of the expressions for the diffusive fluxes. Em-

ploying x1 + x2 + x3 + x4 = 1 and ∇x3 =−∇x1−∇x2−∇x4, it follows that

(
Dquat

11 −Dquat
13

)
→ Dtern

11 ,
(

Dquat
12 −Dquat

13

)
→ Dtern

12 ,(
Dquat

21 −Dquat
23

)
→ Dtern

21 ,
(

Dquat
22 −Dquat

23

)
→ Dtern

22 . (9)

A detailed derivation of Eqs. (6) to (9) is given in the supplementary material.

Methods

The Fick diffusion coefficient matrix of quaternary and ternary mixtures was calculated from Eqs.

(3) to (5) and matrices B and ΓΓΓ that were sampled exclusively by means of equilibrium molecular

dynamics simulation techniques.

The primary requirement for this task is the availability of molecular models that mimic the in-

termolecular interactions adequately. In this work, rigid and non-polarizable force fields of united-

atom type were employed, which account for these interactions by a set of Lennard-Jones sites and

point charges which may or may not coincide with respect to their site positions. The molecular

models for the three alcohols were developed by our group based on quantum chemical calcu-

lations and parameter optimization to experimental vapor-liquid equilibrium and, in the case of

2-propanol, also to self-diffusion data25,39–41. For water, the TIP4P/2005 model by Abascal and

Vega39 was employed. This force field was found to predict the transport properties of water and

aqueous alcoholic mixtures with a better accuracy than other commonly used non-polarizable force

7



fields29. The interested reader is referred to the original publications25,39–41 for detailed informa-

tion about the four molecular pure substance models and their parameters. It has been shown that

all molecular models are suitable for the prediction of structural, thermodynamic and transport

properties of the corresponding pure substances25,29,30 as well as four of the binary25,26,30 and one

of the ternary26,27 subsystems of the regarded quaternary mixture.

To define a molecular model for a mixture on the basis of pairwise additive pure substance

models, only the unlike interactions have to be specified. In case of the point charges, this can

straightforwardly be done with Coulomb’s law. However, for the unlike Lennard-Jones parameters,

there is no physically sound approach so that combining rules have to be employed. The simple

Lorentz-Berthelot combining rules were chosen here, i.e., σab = (σaa+σbb)/2 and εab =
√

εaaεbb,

so that the present mixture data are strictly predictive.

Phenomenological coefficients

Transport data were sampled by equilibrium molecular dynamics simulation and the Green-Kubo

formalism35,36 based on the net velocity auto-correlation function to obtain the 4×4 phenomeno-

logical coefficient matrix21

Li j =
1

3N

∫
∞

0
dt
〈 Ni

∑
k=1

vi,k(0) ·
Nj

∑
l=1

vj,l(t)
〉
. (10)

Here, N is the total number of molecules, Ni the number of molecules of component i and vi,k(t)

the center of mass velocity vector of the k-th molecule of component i at time t. The brackets <...>

denote the canonical (NV T ) ensemble average and Eq. (10) corresponds to a reference frame in

which the mass-averaged velocity of the mixture is zero21.

With the phenomenological coefficients Li j, the elements of a 3×3 matrix ∆∆∆ can be defined21

∆i j = (1− xi)

(
Li j

x j
− Li4

x4

)
− xi

4

∑
k=16=i

(
Lk j

x j
− Lk4

x4

)
, (11)

This matrix can be directly employed in Eq. (3), since it is related to the matrix B by its inverse,
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B = ∆∆∆
−1.

System size corrections

It has been shown that under periodic boundary conditions, long-range interactions can lead to

an important dependence on system size inducing systematic errors on the calculation of the self-

diffusion or intra-diffusion coefficients42–45. Yeh and Hummer43 found that hydrodynamic self-

interactions in finite periodic systems are mainly responsible for system size effects and derived

a correction term based on the shear viscosity η and the edge length of the simulation volume L,

i.e. 2.837297 · kBT/(6πηL). Later on, Heyes et al.44 performed an investigation of hard sphere

fluids over a wide range of thermodynamic conditions and concluded that the Yeh and Hummer

correction term is not always adequate and that a more complex density dependence is needed.

Recently, Jamali et al.46 proposed a correction for the Maxwell-Stefan diffusion coefficient based

on the Yeh and Hummer43 term and the thermodynamic factor, but this correction is only valid for

binary mixtures. To the best of our knowledge, there has been no attempt to perform any system

size corrections for mutual diffusion coefficients of multicomponent mixtures.

Instead of applying the system size corrections directly to the Maxwell-Stefan or Fick diffusion

coefficients, they were rather applied here to the phenomenological coefficients Li j, cf. Eq. (11).

Once their system size effects were assessed, corrected values of the phenomenological coefficients

were employed in Eq. (3) to obtain the corresponding Fick diffusion coefficients. For this purpose,

simulations were performed for nine system sizes containing between 512 and 6000 molecules for

compositions of the present mixture with the lowest and highest molar density. The normalized

simulation results were then plotted over 1/N1/3 to asses the system size dependence. For all

phenomenological cross coefficients Li j, no clear system size dependence could be inferred, which

might be due to their large statistical uncertainty, so that no corrections were made. In the case

of the four main coefficients Lii, a significant system size dependence was observed. A straight

line fitted to these data was extrapolated to infinite size, 1/N1/3→ 0. Very similar size corrections

for all Lii coefficients were found. Consequently, all main coefficients were normalized with the
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results for 6000 molecules and plotted together in Figure 1. The resulting intercept of a single

linear fit was then employed to obtain the relative size correction for all sampled main coefficients

Lii. Note that no density effects were observed. The size correction calculated in this way led to

an increase of the phenomenological coefficients Lii by approximately 6%. A correction following

Yeh and Hummer would have led to around 15% larger corrections.

Figure 1: System size dependence of the main phenomenological coefficients Lii of the quaternary
mixture x1 = 0.5 mol mol−1, x2 = 0.125 mol mol−1 and x3 = 0.125 mol mol−1 at 298.15 K and 0.1
MPa.

Thermodynamic factor

The thermodynamic factor of the quaternary mixture was estimated from information on the mi-

croscopic structure given by radial distribution functions gi j(r) based on Kirkwood-Buff theory.

Kirkwood-Buff integrals Gi j are defined in the grand canonical (µV T ) ensemble47 by

Gi j = 4π

∫
∞

0

(
gi j(r)−1

)
r2dr. (12)
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When the canonical (NV T ) ensemble is employed to sample this type of property, convergence

issues are possible48 so that corrections are required. In this context, the truncation and correc-

tion method developed by Krüger et al.49, that allows to obtain Kirkwood-Buff integrals from

simulations in the NV T ensemble, was applied here. Moreover, corrections of the radial distri-

bution functions are required. Therefore, Kirkwood-Buff integrals were calculated based on the

methodology proposed by Ganguly and van der Vegt50, which was found to be the most adequate

in previous work51. Extrapolation to the thermodynamic limit was not necessary because of the

rather large ensemble size N = 6000.

Expressions for the thermodynamic factor matrix of quaternary mixtures were derived in recent

work28 based on Ben-Naim’s formalism to determine particle number derivatives of the chemical

potential from Kirkwood-Buff integrals52. These lengthly equations have recently been published

elsewhere28 are not repeated here.

Results and Discussion

Predictive equilibrium molecular dynamics simulations of diffusion coefficients and the thermo-

dynamic factor of the quaternary mixture water (1) + methanol (2) + ethanol (3) + 2-propanol (4)

and its pure, binary and ternary and subsystems were carried out at 298.15 K and 0.1 MPa for the

compositions depicted in Figure 2. A total of ten quaternary compositions of this mixture, that lay

on the mole fraction plane x4 = 0.25 mol mol−1, are discussed in this work.

To validate the simulation results from Kirkwood-Buff theory for the quaternary mixture, the

thermodynamic factor of all six binary subsystems was analyzed. For this purpose, additional

simulations were performed to sample the thermodynamic factor for all involved binary subsys-

tems and compared with the values obtained from a classical approach, i.e. a fit of the Wilson

excess Gibbs energy model53 to experimental vapor-liquid equilibrium data. A good agreement

was found between simulation and the classical approach, suggesting the trustworthiness of the

employed simulation methodology to access the chemical potential derivatives of the quaternary

11



Figure 2: Sampled compositions of the quaternary mixture water (1) + methanol (2) + ethanol (3)
+ 2-propanol (4) at 298.15 K and 0.1 MPa. The surface delimited by red lines indicates the plane
with a constant 2-propanol mole fraction x4 = 0.25 mol mol−1.
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mixture. Moreover, the Wilson model53 was fitted to data of the binary subsystems and the ob-

tained binary parameters were employed to predict the quaternary thermodynamic factor matrix for

the studied compositions. The resulting Wilson-based quaternary thermodynamic factor matrix is

shown in comparison with the one sampled directly with molecular dynamics for selected compo-

sitions in Figure 3. More comparisons of this type are provided in the supplementary material. A

good agreement was found especially for the main elements of this matrix with a relative averages

deviations between 2.3 and 3.6%.

Figure 3: Elements of the thermodynamic factor matrix Γi j for three selected quaternary compo-
sitions; left: x1 = 0.125 mol mol−1, x2 = 0.125 mol mol−1 and x3 = 0.5 mol mol−1; center: x1 =
0.25 mol mol−1, x2 = 0.125 mol mol−1 and x3 = 0.375 mol mol−1; right: x1 = 0.5 mol mol−1, x2 =
0.125 mol mol−1 and x3 = 0.125 mol mol−1. Present quaternary results based on Kirkwood-Buff
integration (red symbols) are compared with Γi j calculated with the Wilson excess Gibbs energy
model fitted to binary simulation results (blue symbols). The statistical uncertainties are within
symbol size.

The main element Γ11 of the thermodynamic factor matrix related to water evidences the high-

est non-ideality, yielding values that are considerably lower than unity, while the other two main

elements attain values close to unity. The cross elements of the thermodynamic factor matrix can

be of either sign and have values ranging from -0.2 to 0.2 for the studied compositions, cf. Figure 3.

The Fick diffusion matrix calculated with Eq. (3) for ten compositions of the quaternary mix-
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ture is given in Table 1. Its main elements are positive and have values between 3.7 and 12.7×10−10

m2 s−1. Further, the main element related to methanol is the highest and that related to water the

lowest, i.e. D22 > D33 > D11. Lower values for the main diffusion coefficients of water can be

associated with the presence of clustering, exerted by strong hydrogen bonding networks, which

hinders diffusion.

In order to visualize and test the consistency of the calculated Fick quaternary diffusion coeffi-

cient matrix, selected elements were plotted when the mole fraction of two species is kept constant

in the mixture. Exemplarly, Figure 4 shows the composition dependence of main and cross ele-

ments together with their expected asymptotic values, cf. Eqs. (6) to (8). Additional figures are

presented in the supplementary material. In most cases, the elements of the Fick diffusion coeffi-

cient matrix behave as expected, i.e. the sampled quaternary data converge to the projected value

when one species vanishes. This trend is clear for the main coefficients, but the cross coefficients

scatter, which may be a consequence to their inherently larger statistical uncertainties.

The main diffusion coefficient related to water D11 increases with increasing methanol con-

tent. This can be explained by the disturbance of the microscopic water-water structure through

the presence of water-methanol hydrogen bonding and is evidenced by changes in the magnitude

and location of the first and second peaks of the center of mass water-water radial distribution

function g11(r), cf. Figure 5. A similar observation was made for the somewhat weaker increase

of D11 with rising ethanol content; the corresponding radial distribution functions are shown in the

supplementary material.

The decrease of D22 and D33 with rising water content is consistent with the presence of water-

methanol and water-ethanol networks, which can be also deduced from the corresponding radial

distribution functions g12(r) and g13(r). When the water content is kept constant, the main coeffi-

cient related to ethanol D33 decreases with rising ethanol mole fraction due to a strengthening of

the ethanol-ethanol hydrogen bonding network, cf. Figure 4. A small decrease of D22 with rising

ethanol mole fraction was also observed for a constant water content, which suggests an increase

of the presence of methanol-ethanol networks when the number methanol molecules available for

14



Table 1: Fick diffusion coefficient matrix and its three eigenvalues of the quaternary mix-
ture water (1) + methanol (2) + ethanol (3) + 2-propanol (4) at 298.15 K and 0.1 MPa. The
numbers in parentheses indicate the uncertainty in the last given digit.

x1 x2 x3 D D̂
mol mol−1 10−10m2s−1 10−10m2s−1

0.125 0.125 0.5

 7.1(2) −1.0(3) −0.7(1)
0.0(2) 10.9(3) 0.3(1)
0.2(2) −0.7(4) 8.9(2)

  7.1
10.8

8.9


0.125 0.25 0.375

 7.9(2) −1.0(2) −0.4(2)
0.4(2) 10.8(2) −0.2(2)
−0.4(2) −0.3(3) 9.2(2)

  7.8
10.7
9.3


0.125 0.375 0.25

 8.6(2) −1.2(2) −0.7(2)
0.1(3) 12.7(2) −0.1(2)
0.0(2) −0.7(2) 11.0(2)

  8.6
12.7
11.0


0.125 0.5 0.125

 9.8(2) −0.9(2) −0.7(2)
0.0(2) 12.6(2) −0.6(3)
−0.3(2) −0.6(1) 11.3(2)

  9.6
12.8
11.3


0.25 0.125 0.375

 5.8(1) −0.9(3) −0.5(2)
1.3(1) 10.3(2) −0.1(1)
−0.5(1) −1.5(3) 7.9(1)

  6.1
10.2
7.7


0.25 0.25 0.25

 6.3(1) −1.5(2) −0.6(2)
0.7(1) 10.4(2) −0.1(2)
0.0(1) −0.6(2) 8.5(2)

  6.6
10.1
8.4


0.25 0.375 0.125

 7.2(1) −1.3(2) −0.6(3)
−0.4(1) 11.2(2) −0.5(3)

0.9(1) −0.8(1) 9.1(2)

  7.4
11.5
8.6


0.375 0.125 0.25

 4.3(1) −1.6(3) −1.1(2)
1.3(1) 9.0(2) −0.1(1)
−0.28(8) −0.7(2) 7.4(2)

  4.8
8.7
7.2


0.375 0.25 0.125

 5.1(1) −2.0(3) −1.1(3)
0.1(1) 10.2(2) 0.1(2)
0.97(7) −0.4(1) 8.0(2)

  5.5
10.1
7.6


0.5 0.125 0.125

 3.7(1) −2.3(3) −0.8(3)
0.55(6) 8.6(2) −0.3(2)
0.41(5) −0.3(1) 6.6(1)

  4.2
8.5
6.2


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Figure 4: Main and cross elements of the Fick diffusion coefficient matrix as a function of methanol
mole fraction for selected compositions with x1 = 0.125 mol mol−1 and x4 = 0.25 mol mol−1.
Simulation results for the quaternary mixture (blue symbols) are shown together with the results
of the diffusion matrix of the ternary subsystem where x2→ 0 (green symbol) and the predictive
equations by Allie-Ebrahim et al.23 (red symbols).
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Figure 5: Water-water radial distribution function g11(r) for varying water mole fraction x1 = 0.125
mol mol−1 (black line), 0.25 mol mol−1 (blue line), 0.375 mol mol−1 (red line) and 0.5 mol mol−1

(green line) with constant x3 = 0.125 mol mol−1 and x4 = 0.25 mol mol−1.
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self-association is reduced. This explanation is in line with the changes observed for the radial

distribution function g23(r), i.e. an increase of the radii of the first and second coordination shells,

cf. supplementary material.

For most of the studied compositions, the cross elements Di j are not zero, i.e. there is an

influence of the concentration gradient of another species on the diffusion of component i. In fact,

both cross coefficients related to water have the same order of magnitude as the main coefficient

D11, which might lead to important coupling effects when a significant concentration gradient

of the corresponding alcohol is present. The ratio between cross and main elements of the Fick

diffusion coefficient matrix |Di j/Dii| provides a characterization of coupling effects. Figure 6

shows the composition dependence of this ratio for the water-related cross coefficients when the

mole fraction of two alcohols remains constant. In general, |D12/D11| increases with water content,

which suggests important water clustering around methanol by hydrogen bonding. In the case of

the cross coefficient D13, the tendency is not that clear, although a moderate increase with water

mole fraction can be inferred. Further, the influence of the concentration gradient of methanol on

water diffusion is greater than that of ethanol. This observation could be explained by the larger

hydrophobic tail of ethanol molecules, which reduce the occurrence and size of mixed water-

ethanol clusters.

In order to demonstrate the relationship between the microscopic structure and the coupling

effects, the average number of water(1) molecules in the first solvation shell of both alcohols ki1 =

4πxiρ
∫ rc

0 gi j(r)r2dr was calculated. Therein, i stands for the methanol or ethanol site surrounded

by water, ρ is the mixture density and rc is the radius of the first coordination shell, i.e. the location

of the first minimum of gi1 at rc ∼ 3.6 Å. These results are shown together with those from the

ratio |Di j/Dii| in Figure 6. It is clear that the coupling effects are related to the average number

of water molecules located in the first solvation shell of methanol or ethanol, i.e. water molecules

are transported together with methanol or ethanol molecules when a mass flux of either alcohol is

given.

On the other hand, most cross coefficients related to D22 and D33 are relatively small and the
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Figure 6: Ratio between cross and main elements of the Fick diffusion coefficient matrix |Di j/Dii|
(top) and average number of water molecules in the first solvation shell of methanol or ethanol
(bottom) as a function of water mole fraction for selected quaternary compositions with x2 = 0.125
mol mol−1 and x4 = 0.25 mol mol−1 (left) as well as x3 = 0.125 mol mol−1 and x4 = 0.25 mol
mol−1 (right).
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Fick matrix eigenvalues approach the values of the main coefficients, nearly implying an indepen-

dence of the diffusion fluxes of methanol and ethanol on the concentration gradients of the other

species, cf. Table 1.

The intra-diffusion coefficients of the four species in the mixture were sampled simultaneously

with the phenomenological diffusion coefficients. These data, together with the thermodynamic

factor, were employed to test the Darken-based predictive equations by Liu et al.22 and Allie-

Ebrahim et al.23 on their ability to reproduce the Fick diffusion coefficients calculated in this work.

While the predictive equation by Liu et al.22 was not able to return acceptable results, the equations

of Allie-Ebrahim et al.23 are in very good agreement with the present results for the main elements

of the Fick diffusion matrix with relative average deviations below 10%, cf. Figure 4. Further, in

most cases there is also an agreement for the cross elements within the statistical uncertainties of

the simulation data.

Conclusions

Diffusion processes in multicomponent liquid mixtures are of great importance in science and

engineering research. However, because of the serious difficulties associated with the measurement

of transport diffusion coefficients, the data availability for mixtures with three or more components

is very poor. Molecular dynamics simulation has been identified as an alternative to mitigate

data shortage for ternary mixtures. For the first time, as a powerful approach to Fick diffusion

coefficients of real quaternary liquid mixtures is presented here.

The Fick diffusion coefficient matrix of the strongly non-ideal liquid mixture water + methanol

+ ethanol + 2-propanol at 298.15 K and 0.1 MPa was sampled for ten compositions along the

plane with constant 2-propanol mole fraction, x4 = 0.25 mol mol−1. The required phenomenologi-

cal coefficient matrix was calculated with the Green-Kubo formalism35,36 and the thermodynamic

factor matrix employing Kirkwood-Buff theory. Because of the lack of experimental data, only

consistency tests were made to verify the sampled Fick diffusion coefficients. However, present
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predictions are expected to be accurate because convincing results were obtained in previous work

for four binary and one of the ternary subsystems on the basis of the same molecular models.

The asymptotic behavior of the elements of the quaternary Fick diffusion coefficient matrix was

analyzed and found to agree within the statistical uncertainties with the values of the ternary sub-

systems.

From the analysis of the Fick diffusion matrix, significant coupling effects were found mainly

for the diffusive flux for water, which were related to water-alcohol hydrogen bonding networks.

The lowest values for the main coefficient of water and its decrease with rising water content were

explained with the presence of water clusters.

Two Darken-based predictive models were tested and the predictive equations of Allie-Ebrahim

et al.23 were found to be in very good agreement with the Fick diffusion matrix predicted in this

work.
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Ternary limits of quaternary Fick diffusion coefficients

Here we present a complete analysis of the asymptotic behavior of diffusion coefficients for

quaternary mixtures. The three independent diffusive fluxes in the molar-averaged frame of

reference can be written as

−J1/ρ = Dquat
11 ∇x1 +Dquat

12 ∇x2 +Dquat
13 ∇x3 , (1)

−J2/ρ = Dquat
21 ∇x1 +Dquat

22 ∇x2 +Dquat
23 ∇x3 , (2)

−J3/ρ = Dquat
31 ∇x1 +Dquat

32 ∇x2 +Dquat
33 ∇x3 . (3)

When the water content of the studied quaternary mixture water (1) + methanol (2) +

ethanol (3) + 2-propanol (4) vanishes, so does its as mass flux i.e., ∇x1 → 0 and J1 → 0.

Then, from Eq. (1) it follows that Dquat
12 ∇x2 + Dquat

13 ∇x3 → 0. Since ∇x2 and ∇x3 are

independent variables Dquat
12 → 0 and Dquat

12 → 0. Further, Eqs. (2) and (3) can be written

as

−J2/ρ→ Dquat
22 ∇x2 +Dquat

23 ∇x3 , (4)

−J3/ρ→ Dquat
32 ∇x2 +Dquat

33 ∇x3 . (5)

The two independent diffusive fluxes for the ternary mixture methanol (2) + ethanol (3) +

2-propanol (4) are

−J2/ρ = Dtern
11 ∇x2 +Dtern

12 ∇x3 , (6)

−J3/ρ = Dtern
21 ∇x2 +Dtern

22 ∇x3 . (7)
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From the comparison of Eq. (4) with Eq. (6) as well as Eq. (5) with Eq. (7), it follows that

Dquat
22 → Dtern

11 , Dquat
23 → Dtern

12 , Dquat
32 → Dtern

21 , Dquat
33 → Dtern

22 , (8)

A similar analysis can be done for x2 → 0 and x3 → 0. However, the asymptotic behavior

for x4 → 0 requires a slightly different approach. If x4 → 0, it follows from the condition

x1 + x2 + x3 + x4 = 1 that ∇x3 → −∇x1 −∇x2 and the expressions for the diffusive fluxes

JV
1 and JV

2 take the form

−J1/ρ→
(
Dquat

11 −Dquat
13

)
∇x1 −

(
Dquat

11 −Dquat
13

)
∇x2 , (9)

−J2/ρ→
(
Dquat

21 −Dquat
23

)
∇x1 −

(
Dquat

22 −Dquat
23

)
∇x2 . (10)

Taking into account the two independent diffusive fluxes for the ternary mixture water (1)

+ methanol (2) + ethanol (3) leads to

−J1/ρ = Dtern
11 ∇x1 +Dtern

12 ∇x2 , (11)

−J1/ρ = Dtern
21 ∇x1 +Dtern

22 ∇x2 .. (12)

Applying the same logic as above, it follows that

Dquat
11 −Dquat

13 → Dtern
11 , Dquat

12 −Dquat
13 → Dtern

12 , (13)

Dquat
21 −Dquat

23 → Dtern
21 , Dquat

22 −Dquat
23 → Dtern

22 . (14)

S3



Simulation details

Molecular dynamics simulations were performed with the program ms21 in two steps: First,

a simulation in the isobaric-isothermal (NpT ) ensemble was carried out to calculate the

density at the desired temperature, pressure and composition. In the second step, a canonic

(NV T ) ensemble simulation was performed at the corresponding thermodynamic conditions

to simultaneously determine the phenomenological coefficient and thermodynamic factor ma-

trices. Newton’s equations of motion were solved with a fifth-order Gear predictor-corrector

numerical integrator and the temperature was controlled by velocity scaling. Throughout,

the integration time step was 0.93 fs. The simulations contained 6000 molecules and were

carried out in a cubic volume with periodic boundary conditions, where the cut-off radius

was set to rc = 24.5 Å. Lennard-Jones long range interactions were considered using an-

gle averaging.2 Electrostatic long-range corrections were approximated by the reaction field

technique with conducting boundary conditions (εRF =∞).

The simulations in the NpT ensemble were equilibrated over 4× 105 time steps, followed

by a production run over 3 × 106 time steps. In the NV T ensemble, the simulations were

equilibrated over 5×105 time steps, followed by production runs of 1.4×108 time steps. The

phenomenological coefficients were calculated for up to 1.1 × 106 independent time origins

of the autocorrelation functions. The sampling length of the autocorrelation functions was

17.5 ps throughout. The separation between the time origins was chosen such that all

autocorrelation functions have decayed at least to 1/e of their normalized value to achieve

their time independence.3 The uncertainties of the predicted values were estimated with a

block averaging method.4
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Figure S1: Elements of the thermodynamic factor matrix Γij for six quaternary compositions;
a) x1 = 0.125 mol mol−1, x2 = 0.25 mol mol−1 and x3 = 0.375 mol mol−1; b) x1 = 0.125
mol mol−1, x2 = 0.375 mol mol−1 and x3 = 0.25 mol mol−1; c) x1 = 0.25 mol mol−1, x2 =
0.125 mol mol−1 and x3 = 0.375 mol mol−1; d) x1 = 0.25 mol mol−1, x2 = 0.25 mol mol−1

and x3 = 0.25 mol mol−1; e) x1 = 0.25 mol mol−1, x2 = 0.375 mol mol−1 and x3 = 0.125 mol
mol−1; f) x1 = 0.375 mol mol−1, x2 = 0.125 mol mol−1 and x3 = 0.25 mol mol−1. Present
quaternary results based on Kirkwood-Buff integration (red symbols) are compared with Γij

calculated with the Wilson excess Gibbs energy model fitted to binary simulation results
(blue symbols). The statistical uncertainties are within symbol size.
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Figure S2: Main and cross elements of the Fick diffusion coefficient matrix as a function of
water mole fraction for selected compositions with x2 = 0.125 mol mol−1 and x4 = 0.25 mol
mol−1. Simulation results for the quaternary mixture (blue symbols) are shown together with
the results of the diffusion matrix of the ternary subsystem where x1 → 0 (green symbol)
and the predictive equations by Allie-Ebrahim et al.5 (red symbols).
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Figure S3: Main and cross elements of the Fick diffusion coefficient matrix as a function of
water mole fraction for selected compositions with x3 = 0.125 mol mol−1 and x4 = 0.25 mol
mol−1. Simulation results for the quaternary mixture (blue symbols) are shown together with
the results of the diffusion matrix of the ternary subsystem where x1 → 0 (green symbol)
and the predictive equations by Allie-Ebrahim et al.5 (red symbols).

S7



Figure S4: Main and cross elements of the Fick diffusion coefficient matrix as a function
of methanol mole fraction for selected compositions with x3 = 0.125 mol mol−1 and x4 =
0.25 mol mol−1. Simulation results for the quaternary mixture (blue symbols) are shown
together with the results of the diffusion matrix of the ternary subsystem where x2 → 0
(green symbol) and the predictive equations by Allie-Ebrahim et al.5 (red symbols).
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Figure S5: Main and cross elements of the Fick diffusion coefficient matrix as a function
of ethanol mole fraction for selected compositions with x1 = 0.125 mol mol−1 and x4 =
0.25 mol mol−1. Simulation results for the quaternary mixture (blue symbols) are shown
together with the results of the diffusion matrix of the ternary subsystem where x3 → 0
(green symbol) and the predictive equations by Allie-Ebrahim et al.5 (red symbols).
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Figure S6: Main and cross elements of the Fick diffusion coefficient matrix as a function
of ethanol mole fraction for selected compositions with x2 = 0.125 mol mol−1 and x4 =
0.25 mol mol−1. Simulation results for the quaternary mixture (blue symbols) are shown
together with the results of the diffusion matrix of the ternary subsystem where x3 → 0
(green symbol) and the predictive equations by Allie-Ebrahim et al.5 (red symbols).
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Figure S7: Water-water radial distribution function g11(r) for varying water mole fraction x1
= 0.125 mol mol−1 (black line), 0.25 mol mol−1 (blue line), 0.375 mol mol−1 (red line) and
0.5 mol mol−1 (green line) with constant x2 = 0.125 mol mol−1 and x4 = 0.25 mol mol−1.
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Figure S8: Water-methanol radial distribution function g12(r) for varying water mole fraction
x1 = 0.125 mol mol−1 (black line), 0.25 mol mol−1 (blue line), 0.375 mol mol−1 (red line) and
0.5 mol mol−1 (green line) with constant x2 = 0.125 mol mol−1 and x4 = 0.25 mol mol−1.
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Figure S9: Water-methanol radial distribution function g12(r) for varying water mole fraction
x1 = 0.125 mol mol−1 (black line), 0.25 mol mol−1 (blue line), 0.375 mol mol−1 (red line) and
0.5 mol mol−1 (green line) with constant x3 = 0.125 mol mol−1 and x4 = 0.25 mol mol−1.
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Figure S10: Methanol-ethanol radial distribution function g23(r) for varying methanol mole
fraction x2 = 0.125 mol mol−1 (black line), 0.25 mol mol−1 (blue line), 0.375 mol mol−1 (red
line) and 0.5 mol mol−1 (green line) with constant x1 = 0.125 mol mol−1 and x4 = 0.25 mol
mol−1.
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