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Überblik
In der statistishen Analyse von hohdimensionalen Daten geht es darum, Zusam-menhänge zwishen einer groÿen Menge p an Variablen mit Hilfe einer begrenztenAnzahl n an Beobahtungen zu modellieren. Gemeinsam sind allen Analyseme-thoden die beiden folgenden Ziele. Zum einen ist es wihtig, (latente) Struk-turen in den Daten zu erkennen, um so eine handhabbare, niedrigdimensionaleRepräsentation zu gewinnen. Zum anderen ist es oft von groÿer Wihtigkeit,verständlihe und leiht zu interpretierende Modelle zu entwikeln. Die hohe Di-mensionalität der Daten führt oft zu groÿen Problemen, denn für p ≫ n versagendie traditionellen statistishen Verfahren. Zudem ist die Struktur der Daten oftkomplexer. Die beobahteten Gröÿen sind niht � wie in der klassishen Statis-tik üblih � Vektoren in einem endlihdimensionalen Vektorraum, sondern zumBeispiel Funktionen. Beispiele für diese Art von Datenstrukturen sind Zeitreihenoder Messungen in der Nah-Infrarot-Spektroskopie. In dieser Arbeit soll die Ana-lyse von hohdimensionalen und komplexen Daten mit Hilfe von zwei Verfahrenuntersuht werden: Partial Least Squares und Boosting in Funktionenräumen.Partial Least Squares (PLS) modelliert den Zusammenhang zwishen vershiede-nen Blöken von Variablen mit Hilfe sogenannter latenter Variablen. Im Fall vonmehr als zwei Blöken werden die PLS-Verfahren auh als Pfadmodelle bezeihnetund können als eine Erweiterung der Kanonishen Korrelationsanalyse angesehenwerden. Die mathematishen Eigenshaften von PLS-Pfadmodellen sind zumgroÿen Teil noh unerforsht. Zum Beispiel ist weder klar, ob die Algorithmen zurBerehnung der latenten Variablen im Pfadmodell numerish konvergieren, noh,ob sie � falls sie konvergieren � Lösungen von sinnvollen Optimierungsproblemendarstellen. In dieser Arbeit wird ein sauberes mathematishes Gerüst für dieBeshreibung der Pfadmodelle aufgestellt. Es wird gezeigt, dass zu einem groÿenTeil der PLS-Algorithmen (derjenigen mit mindestens einem Blok im ModusA) tatsählih kein zweimal di�erenzierbares Optimierungsproblem existiert. Zu-iii



dem wird anhand von simulierten Daten gezeigt, dass für die PLS-Algorithmenim Modus B die Verfahren nur zu einer lokalen Lösung eines Optimierungsprob-lems konvergieren können.PLS kann auh in Regressionsproblemen eingesetzt werden, in dem man die erklä-renden und die abhängigen Variablen als jeweils einen Blok au�asst. In diesemFall ermögliht PLS zudem eine Dimensionsreduktion der Daten, die wiederumho�entlih zu besseren Vorhersagen führt. In dieser Arbeit wird eine Erweiterungvon PLS um einen Strafterm vorgestellt und auf die Shätzung von generali-sierten additiven Modellen (GAM's) angewandt. Es zeigt sih, dass insbeson-dere für hohdimensionale Daten dieser Ansatz eine gute Alternative zu klassis-hen GAM-Verfahren ist. Ausgehend von der bereits bekannten Verbindung vonPLS und dem Konjugierten-Gradienten-Verfahren (aus der numerishen linearenAlgebra) wird gezeigt, dass PLS mit Strafterm äquivalent zu einem vorkondi-tionierten Konjugierten-Gradienten-Verfahren ist. Die Konditionierungsmatrixwird dabei durh den Strafterm bestimmt. Im Anshluss werden die Beziehun-gen zwishen der linearen Algebra und PLS ausgenutzt, um die sogenannten�Shrinkage�-Eigenshaften von PLS empirish zu untersuhen. Darüber hinauswird ein unverzerrter Shätzer für die Freiheitsgrade von PLS ermittelt.Boosting ist ein Verfahren aus dem Bereih des Mashinellen Lernens. Diegrundlegende Idee ist, vershiedene einfahe Vorhersagemodelle so zu kombinieren,dass diese Kombination zu sehr viel besseren Vorhersagen führt. In dieser Arbeitwerden Boostingverfahren für komplizierte Datenstrukturen entwikelt. Dabeiinteressiert uns vor allen Dingen der Fall, in dem die beobahteten Ein�ussgröÿenFunktionen bzw. diskrete Messungen von Funktionen sind. Die gängigen Boosting-Methoden basieren implizit auf der Annahme, dass die Ein�ussvariablen Wertein einem endlihdimensionalen Vektorraum annehmen. Es wird gezeigt, dass dieErweiterung auf unendlihdimensionale Funktionenräume ohne Weiteres möglihist. Zudem wird illustriert, wie man mit Hilfe von Boostingverfahren wihtigeCharakteristika der Funktionen aufdekt und wie man damit leiht interpretier-bare und visualisierbare Modelle erzeugt. Dies geshieht durh eine Transforma-tion der Ausgangsdaten mit Hilfe von Wavelet- bzw. Fouriertransformationen.
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Outline
The ruial task in the statistial analysis of high-dimensional data is to modelrelationships between a large amount p of variables based on a small number nof observations. Quite generally, we pursue two goals. On the one hand, it isimportant to detet (latent) strutures in the data in order to obtain a feasible,low-dimensional representation. On the other hand, we often need simple andomprehensible models that an be interpreted. The high-dimensionality of thedata often forms an obstale, as for p ≫ n, the traditional statistial tehniquesfail to produe satisfatory results. Furthermore, the struture of the data an beomplex. The observed variables are not � as usually assumed in lassial statis-tis � elements of a �nite-dimensional vetor spae, but , for instane, funtions.Examples for this type of data are times series or experiments from the �eld ofnear-infra-red spetrosopy. In this work, we investigate high-dimensional andomplex data with the help of two methods: Partial Least Squares and Boostingfor funtional data.Partial Least Squares (PLS) models the relationship between di�erent bloks ofvariables in terms of so-alled latent variables. In the ase of more than twobloks, the PLS-tehniques are also alled path models and an be seen as a gen-eralization of Canonial Correlation Analysis. The mathematial properties ofPLS are for the most parts not yet established. For example, it is neither knownwhether the PLS algorithms onverge numerially, nor � in the ase that theyonverge � if they produe solutions of a sensible optimization riterion. In thiswork, we establish a sound mathematial framework for the desription of PLSpath models. We show that for a large part of the PLS algorithms (those with atleast one blok in mode A), there is indeed no twie-di�erentiable optimizationproblem. Furthermore, we show on simulated data that the PLS algorithms inmode B an onverge only to a loal solution of an optimization problem.v



PLS an also be used to solve regression problems. In this ase, it leads toa substantial redution of the dimension of the data, whih hopefully leads tobetter predition rules. In this work, we present an extension of PLS using pe-nalization tehniques. This method is then used to estimate generalized additivemodels (GAM's). This approah turns out to be a good alternative to traditionalGAM-methods in the ase of high-dimensional data. Based on the well-knownrelationship between PLS and the onjugate gradient tehnique (a method fromthe �eld of numerial linear algebra), we prove that penalized PLS is equal to apreonditioned onjugate gradient tehnique. Here, the preonditioner is deter-mined by the penalty term. Subsequently, we exploit the onnetions betweenPLS and linear algebra to investigate empirially the so-alled shrinkage proper-ties of PLS. In addition, we derive an unbiased estimate of the degrees of freedomof PLS.Boosting has its seed in the mahine learning ommunity. The basi idea isto ombine several, simple models in suh a way that their ombination leads tobetter predition rules. In this work, we develop Boosting algorithms for omplexdata strutures. Our fous is on data that are (disrete) measurements of urves.The established Boosting methods impliitly assume that the observed variableslie in a �nite-dimensional vetor spae. We show that an extension of Boosting toin�nite-dimensional funtion spaes is straightforward. Furthermore, we illustratehow to detet relevant features of the investigated funtions and how to produesimple and interpretable models. This is done by applying wavelet or Fouriertransformations to the data and by then applying suitable Boosting algorithms.
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Chapter 1
Preliminaries
This hapter serves as a referene for some basi onepts that are essential forthe rest of this work.
1.1 Notation and GuidelineMatries are denoted by bold upper ase letters X, A, U , . . . and vetors are de-noted by bold lower ase letters v, y, . . .. This rule is also valid if we use Greekletters. The transpose of a matrix or a vetor is indiated by a supersript tas in At and vt. The Moore-Penrose inverse of a matrix A is denoted by A−.Spaes are either in alligraphi style (X ,Y ,F , . . .) or in blakboard bold style(R, N, Z, F, . . .). Funtions are usually denoted by lower ase letters as f, g, h, . . ..The ovariane and variane of random variables are denoted by Cov and Var.Their respetive empirial ounterparts are denoted by ov and var.The table of ontents hopefully reveals the rough struture of this work. Let usremark that Chapters 1, 2 and 8 serve as summaries of well-known onepts anddo not ontain any fundamentally new ideas. Before starting to read further,it might be bene�ial to have a look at Chapter A in the appendix. There, weollet some basi mathematial priniples that onstantly emerge in this work.All experiments and simulations are performed in R (R Development Core Team2005). 1



2 CHAPTER 1. PRELIMINARIES1.2 Learning from DataLet us introdue the general learning problem. We onsider two random variables
X and Y whih de�ne a random variable Z = X × Y on a produt spae X ×Y .We assume that there is a relationship between X and Y in the sense that given
X, we an predit the outome of Y with a high auray. We do not know thedistribution of Z, but we observe a �nite set

S = {(x1, y1), . . . , (xn, yn)} ⊂ X × Yof observations. This set is alled the sample. We assume that the observationsare drawn independently from Z = X × Y . The lassial statistial approah isto identify the proess Z that generates the sample. Assuming a lass of modelsthat is appropriate to desribe Z, the model parameters of Z are estimated withthe help of S. From this, we an infer the onditional distribution of Y given X.In order to �nd an estimate f̂ of a funtion
F : X → Y (1.1)that predits an outome y for a �xed value x ∈ X via f̂(x), we have to evaluatethe deision f̂(x) if the orret outome is y. This is done via a loss funtion

L : Y × Y → R , (1.2)and the risk at a ertain point z = (x, y) is de�ned as L(y, f̂(x)). The optimalfuntion is the one that minimizes the expeted risk
R(f) = EX×Y [L(Y, f(X))] . (1.3)over all funtions f . If the distribution of Z is known, the optimal funtion anoften be determined expliitly. For example, if we onsider regression problems(that is Y = R) and L is the quadrati loss funtion

L(y, y′) = (y − y′)
2

, (1.4)the optimal funtion is the onditional expetation f(x) = E[Y |X = x].In ontrast, statistial learning theory fouses on mimiking the underlying pro-



1.3. THE REGRESSION MODEL 3ess. The primary task is to �nd a funtion that minimizes (1.3) and not toidentify the whole proess Z. As the distribution of Z is not known, it is notpossible to minimize (1.3). As a onsequene, we have to estimate the optimalfuntion based on the available sample S. A popular approah is to �x a lass offuntions F and to minimize the empirial risk
R̂(f) =

1

n

n∑

i=1

L(yi, f(xi)) (1.5)over all elements f ∈ F . The quantity R̂(f) is also alled the training error.Sometimes, a regularization term r(f) is added to (1.5). This strategy is alled(regularized) empirial risk minimization. A ombination of a loss funtion, alass of funtions and a regularization term de�nes a strategy to estimate (1.1).Depending on the sienti� ommunity, a strategy is alled a model, an algorithm,a �tting method or a learner. In this work, we use these terms more or lesssynonymously. A more preise spei�ation of a learning strategy is given inChapter 2. Some remarks on the term �model� are however neessary. In theliterature, it is used to desribe two di�erent aspets of learning from data. Onthe one hand, a model is a desription of how the data is generated. E.g. inthe learning task (1.1), we an determine the struture of the funtion F (linear,polynomial) or assume that Z belongs to a ertain lass of distributions. On theother hand, a model is a strategy how to estimate the generation of the data.This refers to the desription of a learning strategy desribed above. For everysample S and every learning strategy, we obtain an estimate of the funtion F ,whih we denote by f̂ .1.3 The Regression ModelIn this work, we are mainly onerned with multivariate regression problems thathave a one-dimensional response. That is we assume that Y = R and X = Rp.In statistis, regression problems are usually modeled in the following way:
Yi = F (Xi) + εi, i = 1, . . . , n .The preditor X is a multivariate, p−dimensional random variable. From now on,the preditors are assumed to be deterministi and only the response is assumedto be stohasti. In addition, we laim that the error terms are unorrelated



4 CHAPTER 1. PRELIMINARIESwith zero mean and equal variane. In ompat form, the regression model andetermined via
Yi = F (xi) + εi, i = 1, . . . , n , (1.6)with

E [εi] = 0and Cov (Y1, . . . , Yn) = σ2In . (1.7)Here, In is the identity matrix of dimension n. It follows immediately that
E [Yi] = F (xi) . (1.8)Let us now onsider multivariate linear regression problems. If the funtion Fin (1.6) is assumed to be linear, the regression model an be represented by themultivariate linear regression model
Yi = xt

iβ + εi . (1.9)Given data S, the estimation of (1.6) is transformed into the estimation β̂ of theregression vetor β. Reall that the number of variables is p and that the numberof examples is n . We set
X =




xt
1

. . .

xt
n


 ∈ R

n×p, y =




y1

. . .

yn


 ∈ R

n .An interept β0 an be inluded into (1.9) by attahing an additional olumn thatonsist of 1's. Another possibility is to estimate (1.9) based on entered data.For this reason, we require that both X and y are entered.
The Ordinary Least Squares (OLS) estimator β̂OLS is the solution of the opti-



1.3. THE REGRESSION MODEL 5mization problemargmin
β

n∑

i=1

(
yi − xt

iβ
)2

= argmin
β

‖y − Xβ‖2 .Note that this equals the minimization of the empirial risk R̂ (β) de�ned (1.5) forthe quadrati loss funtion (1.4) and F equal to the spae of all linear funtions.If we di�erentiate the empirial risk with respet to β, we realize that the solution
β̂OLS must ful�ll

X tXβ̂OLS = X ty .There is always a solution, as X ty lies in the spae spanned by the olumns of
X tX. However the solution is not unique if X tX does not have full rank. Thisis for example the ase if there are more variables than observations. If there isno unique solution, we de�ne the OLS estimator as the solution with minimaleulidean norm. It follows from proposition A.14 that

β̂OLS =
(
X tX

)−
X ty .We now use the singular value deomposition

X = V ΣU tof X that is de�ned in (A.8). Furthermore, Λ = Σ
t
Σ is the matrix of eigenvaluesof X tX. Set

s = ΣV ty . (1.10)In this work, we use one of the following representations of the OLS estimator:
β̂OLS =

(
X tX

)−
X ty = UΛ

−s =

rk(X)∑

i=1

vt
iy√
λi

ui =

rk(X)∑

i=1

zi , (1.11)with
zi =

vt
iy√
λi

ui .The OLS estimator usually performs poorly on new data if the number of exam-



6 CHAPTER 1. PRELIMINARIESples is small ompared to the number of observations or if X is highly ollinear.Both phenomena lead to a ovariane matrix (1/n)X tX that is (almost) singu-lar, whih a�ets the statistial properties of the estimator. This is disussed ingreat detail in Setion 7.1.1.4 Duality and Kernel MethodsIn this setion, we brie�y reapitulate the onept of dual representations and thekernel trik. Let us onsider the following example. In Setion 1.3, we introduedthe linear regression model (1.9). For any estimate β̂ of β, we an predit thevalue of y for a new observation xnew via the linear funtion
ŷnew = xt

newβ̂ =
〈
xnew, β̂

〉
. (1.12)Now suppose that we want to transform the original data X before applyingOLS. One reason to do so is to model nonlinear relationships between preditorvariables and response. If we have e.g. p = 2 preditor variables and we want toestimate a funtion (1.1) with F assumed to be a polynomial of degree ≤ 2. Howan we use a method that is designed for linear regression problems (e.g. OLS)to solve this problem? We simply transform the data via a map

Φ (x, x′) =
(
1,
√

2x,
√

2x′,
√

2xx′, x2, x′2
) (1.13)and apply the linear algorithm to y and Φ (X). A transformation is also ne-essary if the observed data are not yet embedded in an eulidean spae. If forinstane, the variables are on a nominal sale, we have to transform the vari-ables into dummy variables and then plug the transformed data into any learningmethod designed for estimating linear relationships.The transformation map

Φ : X → F (1.14)is alled the feature map. The spaes X and F are alled input spae and featurespae respetively. In order to apply a linear algorithm in F, it is often neessaryto assume that F is a Hilbert spae. An important observation is the following.In a lot of ases, the vetor β̂ that de�nes the linear funtion in (1.12) is a linear



1.4. DUALITY AND KERNEL METHODS 7ombination of the data points,̂
β =

n∑

i=1

αiΦ (xi) . (1.15)The oe�ients αi are alled dual variables. If we plug (1.15) into 〈Φ(xnew), β̂〉,we realize that the linear funtion only depends on inner produts between trans-formed data points,
f(x) = 〈Φ(x), β̂〉 =

n∑

i=1

αi 〈Φ(x), Φ(xi)〉 .In this ase, the estimation of the dual variables an be done by using the n × nGram matrix
K = (〈Φ(xi), Φ(xj)〉)i,j=1,...,n

.Note that ondition (1.15) holds for the OLS estimate. This follows e.g. from(1.11), as the vetors ui are a basis of the row spae of X. (Reall the singularvalue deomposition (A.8) of X.) de Bie et al. (2005) desribe various multivari-ate methods in terms of their primal and dual representation.As we only need inner produts in the dual representation, we do not have to mapthe data points expliitly to a feature spae, it su�es to ompute the funtion
k : X ×X → R (1.16)with

k(x, z) = 〈Φ(x), Φ(z)〉 . (1.17)The estimated funtion is
f(x) =

n∑

i=1

αik(x, xi) .The funtion k is alled a kernel. Note that in example (1.13),
k(x, z) = (1 + 〈x, z〉)2 .



8 CHAPTER 1. PRELIMINARIESThe replaement of the usual inner produt by the inner produt in some featurespae is alled the kernel trik. Note that we do not even require the input spaeto be an inner produt spae at all. Literature on the kernel trik and its appli-ations is abundant. A detailed treatise of the subjet an be found in Shölkopf& Smola (2002).So instead of de�ning a feature map, we de�ne an admissible kernel funtion,that is, a funtion (1.16) whih an be de�ned via a map (1.14) suh that (1.17)holds. The hoie of the optimal kernel is part of the model seletion proedurethat is illustrated in Chapter 2. What are the merits of this dual representation?We already mentioned the extension to nonlinear models. Furthermore, from atehnial point of view, if p ≫ n, the omputation in the dual representationis usually faster than the omputation in the primal representation. Finally, wean extend the whole multivariate mahinery to spaes X of in�nite dimension orwith a omplex struture by de�ning an appropriate inner produt. An importantexample is the analysis of funtional data, that is, X is a spae of funtions oversome domain. This subjet will be treated in more detail in Chapter 8.



Chapter 2
Model Seletion
We now reapitulate the main tools to evaluate the performane of a learningmethod. The ontents of this hapter are a summary of the orresponding hap-ter in Hastie et al. (2001). As desribed in Chapter 1, we estimate the relationship(1.1) by applying an appropriate �tting method. Normally, we we do not �t asingle model but a group of models and have to hoose the best model. This isusually alled model seletion. We therefore need a strategy how to selet thebest model out of a pool of models. After the best model is hosen, we have toevaluate its quality. This is alled model validation. Reall that we evaluate amodel in terms of its expeted risk (1.3). As this quantity is usually unknown, weneed a good estimate. In what follows, we fous on model seletion and remarkthat the risk of the seleted model should be estimated on a test set that wasneither involved in the �tting proess nor in the seletion proess.In the rest of the hapter, we onsider the general regression model (1.6). Givendata, we �t a model and all the �tted funtion f̂ . In order to evaluate the qualityof the �tting method, we start by omputing the expeted risk of f̂ at a point xi,

R
(
f̂(xi)

)
= EY new

[
L
(
Y new, f̂(xi)

)]
. (2.1)Here, Y new is a new observation at point xi. Note that the quantity R

(
f̂(xi)

)depends on the sample S that is used to estimate f̂ . If we use the quadrati loss9



10 CHAPTER 2. MODEL SELECTIONfuntion (1.4), the expeted risk of f̂ at xi equals
R
(
f̂(xi)

)
= EY new

[(
Y new − f̂(x0)

)2
]

= EY new

[(
Y new − E[Y new] + E[Y new] − f̂(xi)

)2
]

(1.8)
= EY new

[
(Y new − E[Y new])2 +

(
F (xi) − f̂(xi)

)2
]

= σ2 +

[(
F (xi) − f̂(xi)

)2
]

. (2.2)The term σ2 is alled the irreduible error. The seond term depends on the datathat we used to �t the model. If we are interested in the quality of our learningstrategy that is used to obtain the estimate f̂ , we ompute the expeted value of
R
(
f̂(xi)

) with respet to the data Y (n) = (Y1, . . . , Yn). For the quadrati loss,we yield
EY (n)EY new

[(
Y new − f̂(xi)

)2
]

= σ2 + bias2 (f̂(xi)
)

+ Var(f̂(xi)
)

.We expet the bias to derease for more omplex models and the variane toinrease. If we hoose a very simple model with a low variane, we might fail toapture the relevant struture of the data. If we �t a very omplex model thatis almost unbiased, we have a good explanation of the available sample but willprobably fail to predit on new observations. The latter phenomenon is alledover�tting. In Setion 7.1, we study this bias-variane trade-o� in more detail forlinear shrinkage estimators.Let us return to the essential question of this hapter. How do we selet a model?Let us assume that we have a lot of data at hand. In this ase, we an proeedin the following way. We split the data set into two parts: a training set anda validation set. We �t the models on the training set. We then ompare theirperformane on the validation set. Note however that in most situations, theamount of available data is limited and we annot a�ord to exlude a frationof the data from model estimation. We therefore need di�erent strategies toestimate the risk of a model. Roughly, we distinguish two di�erent approahes.In the �rst approah, we repeat a random splitting into training and test setseveral times. This is alled ross-validation and is disussed in Setion 2.1. Inthe seond approah, that is presented in Setion 2.3, we use the fat that the



2.1. CROSS VALIDATION 11risk of a model an be estimated in terms of its empirial risk and its omplexity.More preisely, the omplexity an be expressed in terms of degrees of freedom.2.1 Cross ValidationThe ross-validation tehnique (Stone 1974, Stone 1977) produes estimates ofthe risk R(f̂) of a model f̂ . Reall that in order to selet the best model, it issuggested to split the data into a training set and a validation set. The model is�tted on the training set and its performane is estimated on the validation set.As in a lot of ases, we do not have enough data at hand, a more re�ned strategyis pursued. We randomly split the data into K parts of roughly the same size.For k = 1, . . . , K, we remove the kth blok from the data and �t the model tothe remaining K − 1 parts. The kth blok is used as a test set. That is, for eahblok k, we obtain an estimate of the risk of the model that was �tted on theother K − 1 bloks. Finally, we average these K estimates. More formally, thefuntion
κ : {1, . . . , n} → {1, . . . , K}assigns to the ith example its blok membership. We denote by f̂−k the funtionthat was �tted on all but the kth blok.De�nition 2.1. The K-fold ross-validation error isCV(f̂) =

1

n

n∑

i=1

L(yi, f̂
−κ(i)(xi)) . (2.3)For K = n, this is alled the leave-one-out error.Let us note that the omputational osts of K-fold ross-validation an beomevery high if K is large. In this ase, we have to �t the models several times, whihan be very time-onsuming.2.2 Degrees of FreedomAs already mentioned above, the quality of a model or a funtion f̂ is measuredin terms of its expeted risk (1.3). As this risk annot be omputed, we needa good estimate. The empirial risk (1.5) of f̂ is obviously not a good estimate



12 CHAPTER 2. MODEL SELECTIONof (1.3). We expet the empirial risk to be lower than the true risk, as we usethe same data set to �t the model f̂ and to asses its performane. If we use thetraining data for model assessment, this leads to overoptimisti estimates of therisk. The gap between empirial and test error is usually partiularly large forvery omplex models. In order to get a good estimate of the expeted risk, wehave to measure the gap between empirial error and the expeted risk.Reall the general regression model (1.6). Note that we de�ned the expetedrisk of f̂ at a data point xi in (2.1). The estimated funtion f̂ depends onthe sample S, that is it depends on Y (n) = (Y1, . . . , Yn). If we average over allpoints x1, . . . , xn and ompute the expetation with respet to Y (n), we obtainthe expeted in-sample risk of our strategy,
Rin = Rin(x1, . . . , xn) = EY (n)

[
1

n

n∑

i=1

R
(
f̂(xi)

)]
.The di�erene between Rin and the expeted empirial risk is alled the optimism:op = Rin − EY (n)

[
R̂(f̂)

]
= EY (n)

[
1

n

n∑

i=1

{
R
(
f̂(xi

)
− R̂

(
f̂(xi

)}]
.The key point is to �nd a good estimate ôp of op. We an then estimate thein-sample risk of a model in the following way:

R̂in = R̂ + ôp . (2.4)Proposition 2.2. For the quadrati loss funtion (1.4), the optimism of a �ttingmethod is
op =

2

n

n∑

i=1

Cov(f̂(xi), Yi

)
. (2.5)

Proof. It follows from (2.2) that
Rin = σ2 +

1

n

n∑

i=1

EY (n)

(
F (xi) − f̂(xi)

)2

.



2.2. DEGREES OF FREEDOM 13Next, we have
R̂(f̂) =

1

n

n∑

i=1

(
Yi − f̂(xi)

)2

=
1

n

n∑

i=1

(
Yi − F (xi) + F (xi) − f̂(xi)

)2

=
1

n

n∑

i=1

(Yi − F (xi))
2 + 2

1

n

n∑

i=1

(Yi − F (xi))
(
F (xi) − f̂(xi)

)

+
1

n

n∑

i=1

(
F (xi) − f̂(xi)

)2

.It follows that
EY (n)R̂(f̂) = σ2 − 2

n

n∑

i=1

Cov(Yi, f̂(xi)) +
1

n

n∑

i=1

EY (n)

(
F (xi) − f̂(xi)

)2

.This onludes the proof.Before proeeding, it is bene�ial to introdue a ompat representation of a�tting method. If we denote by f̂ the �tted funtion that is obtained by usingthe sample S, we de�ne the following map
H : R

n → R
n ,

H(y) =
(
f̂(x1), . . . , f̂(xn)

)t

= ŷ . (2.6)Note that the funtion H depends on x1, . . . , xn. If this funtion is linear in y,we speak of a linear �tting method or a linear learner. In this ase, H an berepresented by a n × n matrix H that is alled the hat-matrix.De�nition 2.3 (Degrees of Freedom). The degrees of freedom of a �tting methodthat is represented by H is de�ned asdf(H) =
1

σ2

n∑

i=1

Cov(f̂(xi), Yi

)
.In partiular, op =

2

n
σ2df(H) .In order to �nd a better desription of (2.5), it is neessary to assume that the



14 CHAPTER 2. MODEL SELECTIONerror variables εi in (1.6) are normally distributed. The next useful lemma is dueto Stein (1981).
Lemma 2.4 (Stein's Lemma). Assume that X ∼ N(µ, σ2) is a univariate randomvariable with density funtion φ and that g : R → R is a di�erentiable funtionsuh that

lim
x→±∞

g(x)φ(x) = 0 . (2.7)We have Cov (g(X), X) = σ2E [g′(X)] .We an easily extend Stein's lemma to multivariate random variables.
Lemma 2.5 (Multivariate Stein's Lemma). Assume that

X = (X1, . . . , Xn) ∼ N
(
µ, σ2In

)is a multivariate random variable with density funtion φ(x) =
∏p

i=1 φi(xi). Let
g = (g1, . . . , gp) : R

p → R
pbe a di�erentiable funtion whih ful�lls

lim
x→±∞

gi(x)φi(x) = 0 . (2.8)We have
n∑

i=1

Cov (gi(X), Xi) = σ2E

[trae( ∂

∂X
g(X)

)]
.Proof. We �x i ∈ {1, . . . , p} and set

X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xp) .



2.2. DEGREES OF FREEDOM 15We have
Cov (gi(X), Xi) = EX [gi(X) (Xi − E[Xi])]

= EX−i
EXi|X−i

[gi(X) (Xi − E[Xi])]

= EX−i
EXi

[gi(X) (Xi − E[Xi])]The last equality is valid as we assume that the variables Xi are independent.In the expression EXi
[gi(X) (Xi − E[Xi])] in the last line, gi(X) only varies in

Xi and the other omponents are onsidered to be onstant. We an now applyStein's lemma 2.4 to gi(Xi) and Xi and obtain
Cov (gi(X), Xi) = σ2EX−i

EXi

[(
∂

∂Xi

gi(X)

)]
= σ2EX

[(
∂

∂Xi

gi(X)

)]
.This proves the lemma.Corollary 2.6. Assume that the funtion H de�ned in (2.6) is di�erentiable. If

Yi is normally distributed, Yi ∼ N(F (xi), σ
2) and H ful�lls assumption (2.8), wehave

n∑

i=1

Cov(Ŷi, Yi) = σ2E

[trae( ∂

∂Y (n)
H
(
Y (n)

))]
.In partiular,

df(H) = E

[trae(∂H
(
Y (n)

)

∂Y (n)

)]
.In this ase,

d̂f(H) = trae(∂H
(
Y (n)

)

∂Y (n)

) (2.9)is an unbiased estimate for the degrees of freedom of H . If the learner is linearin y, i.e. ŷ = Hy with H ∈ Rn×n, we yielddf(H) = trae(H) .As an illustration, let us onsider the OLS estimator de�ned in (1.11). The



16 CHAPTER 2. MODEL SELECTIONfuntion H orresponding to this estimator is
ŷ = X

(
X tX

)−
X ty = PXy .The trae of the projetion operator equals the dimension of the spae spannedby the olumns of X. We obtain the well-known resultdf(OLS) = rank (X) .

2.3 Information CriteriaWe now return to the estimation of the risk of the model. Information riteria arebased on the idea that the quality of a model depends on its training error and onits omplexity. Di�erent approahes lead to di�erent amounts of penalization ofthe omplexity of a model. Information riteria di�er in they way how muh theypenalize the omplexity of the model. We already remarked in (2.4) that we anestimate the in-sample risk in terms of the empirial risk and its omplexity. TheAkaike Information Criterion (AIC) (Akaike 1973) is a generalization of (2.4).It is based on a general, asymptoti relationship between the Kullbak-LeiblerInformation Criterion and maximum likelihood theory. We do not want to go toomuh into detail and refer e.g. to Burnham & Anderson (2004). In the ase ofnormally-distributed error terms εi, the AIC-riterion is equivalent to (2.4),AIC(f̂) = R̂(f̂) +
2

n
df(H)σ2 .The quantity σ an be estimated via

σ̂2 =
1

n

n∑

i=1

(
yi − f̂(xi)

)2

.We hoose the model that minimizes the AIC information riterion
f̂AIC = argminbf AIC(f̂) .As the general AIC riterion only holds asymptotially for large values of n, thereis a orreted version of the AIC riterion for small sample sizes (Hurvih & Tsai1989). Another riterion that is based on the priniple of minimum desription



2.3. INFORMATION CRITERIA 17length (Hansen & Yu 2001) and that is used in Chapter 9 is
gMDL

(
f̂
)

= log

(
n

n − df(H)
R̂(f̂)

)

+
df(H)

n

(
log

(
n∑

i=1

y2
i − nR̂(f̂)

)
− log

(
df(H)

n

n − df(H)
R̂(f̂)

))
.The last two riteria penalize the omplexity of a model more strongly than theAIC riterion.
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Chapter 3
Partial Least Squares Path Models
Partial Least Squares (PLS) path models (Wold 1982, Wold 1985) are a frame-work for modeling linear relationships between several bloks of variables. Inthis sense, they an be seen as a generalization and an extension of CanonialCorrelation Analysis (Hotelling 1936) to more than two bloks of variables. Therelationship between di�erent bloks are modeled in the following way. For eahblok of variables, we look for a latent variable � that is, a linear ombinationof these variables � suh that latent variables that are assumed to be linked arehighly orrelated. These latent variables are estimated with algorithms that havea power method �avor.The statistial and mathematial theory of PLS path model has not been fully es-tablished. In fat, PLS is de�ned via algorithms as in Wold (1982) and Lohmöller(1989) and not via a statistial model or an empirial optimization problem. Somefundamental questions have not been answered. For example, it is not guaranteedthat the PLS algorithms onverge numerially (although onvergene is alwaysobserved in pratie). More severely, for a wide lass of algorithms (those with atleast one blok in mode A), it is not known if the latent variables omputed byPLS are at least a stationary point of a sensible optimization problem. We showthat this is not the ase, if we require that the objetive funtion of the optimiza-tion problem is at least twie di�erentiable. For a di�erent lass of algorithms(those with all bloks in mode B), it is known (Mathes 1993) that the solutionof the PLS algorithms is a stationary point of a sensible optimization problem.It is however not known if we always obtain the optimal solution. We provide anegative answer to this problem. 19



20 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELS3.1 The Partial Least Squares FrameworkIn the PLS path model framework, we model linear relationships between di�erentbloks of variables. One variable is a vetor of length n, as we observe n examples.We have K bloks of variables, and eah blok onsists of pk variables, whih aresubsumed in a matrix
Xk ∈ R

n×pk , k = 1, . . . , K .In total we have
p =

K∑

k=1

pkvariables. The bloks of variables are alled manifest variables in the PLS litera-ture. The relationship between bloks is represented by a so-alled inner model.Arrows between di�erent bloks of variables Xk indiate in whih way they arelinked (see Figure 3.1). For eah inner model, we an de�ne an undireted link
X1 X2

X3 X4

Figure 3.1: Illustration of a PLS path model with K = 4 bloks.matrix C ∈ {0, 1}K×K via
ckl =

{
1 , Xl → Xk or Xl → Xk

0 , otherwise



3.1. THE PARTIAL LEAST SQUARES FRAMEWORK 21(and ckk = 0). Furthermore, we assume that for eah blok Xk, there is a singlelatent (or hidden) variable zk ∈ Rn that represents this blok. This is alledthe outer model and is illustrated in Figure 3.2. We distinguish two types of
z1 z2

z3 z4

Figure 3.2: Illustration of the outer PLS model. Eah blok of manifest variablesis replaed by one latent variable.relationships between latent and manifest variables. The �rst one is the formativemodel, the seond one is the re�etive model (see Figure 3.3). In the formativemodel, we assume that the blok Xk of manifest variables forms the latent variable
zk. In terms of a regression model, this an be expressed as

zk = Xkβ + ε . (3.1)In the re�etive model, we assume that the manifest variables are a re�etion ofthe latent variable. The underlying regression model is
Xk = zkβ

t + E . (3.2)Given data, we want to estimate (1) the latent variables, (2) the relationship inthe inner model, and (3) the relations in the outer model. In order to estimate zk,we need to de�ne sensible optimality riteria. Ideally, these riteria have threefeatures: Firstly, we want to �nd estimates zk suh that zk and zl are �lose�if their orresponding bloks are linked. Seondly, we want to take into aount



22 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELS
X1 X2

z1 z2

Figure 3.3: The di�erene between the two outer models. Left: The formativemodel. The manifest variables X1 form the latent variable z1. Right: There�etive model. The manifest variables X2 are a re�etion of the latent variable
z2.the diretions of the arrows in the inner model. Thirdly, we want to take intoaount the diretions of the arrows in the outer model.The tough part in the proess is the estimation of the latent variables. One theyare estimated, the relationships that are indiated by an arrow an be derived byusing a least-squares estimate.In the literature on PLS, there is often a huge gap between the abstrat model (interms of the inner and the outer model) and that what is atually omputed bythe PLS path algorithms. Normally, the PLS algorithms are presented diretlyin onnetion with the PLS framework, insinuating that the algorithms produeoptimal solutions of an obvious estimation problem attahed to PLS. This es-timation problem is however never de�ned. Furthermore, the diretions of thearrows in the outer model are hoped to be taken are of by employing di�erent�modes�: mode A for re�etive bloks and mode B for formative bloks. Whilethe terms �re�etive bloks� and �formative bloks� refer to the desription of theouter model as illustrated in Figure 3.3, mode A and B orrespond to algorithms.It is a-priori not lear how the abstrat models and the PLS path models areonneted. In order to understand the mathematial theory behind all the for-



3.1. THE PARTIAL LEAST SQUARES FRAMEWORK 23mulas, it is indispensable to set up a general optimization strategy before derivingalgorithms that try to solve them. For this reason, in Setion 3.2, we start theinvestigation by presenting di�erent optimization riteria in order to de�ne thelatent variables zk. Afterwards, we present two algorithms in Setion 3.3 thattry to ompute the optimal solution. Only in Setion 3.4, we introdue the twoPLS algorithms � Lohmöller in mode B and Wold in mode B� and show thatthey are equal to the algorithms in Setion 3.3. We repeat that we always haveto keep in mind the di�erene between what PLS wants to model and that whatit e�etively models.We now try to give a general overview on di�erent types of PLS path algorithms.All terms that are now given will be de�ned in subsequent setions. In the PLSliterature, there are two generi algorithms, the Lohmöller proedure and theWold proedure. Roughly, there are the following measures of loseness betweenlatent variables: Horst, fatorial and entroid. These measures are usually alledshemes. They have in ommon that they do not (!) onsider the diretions ofthe arrows in the inner model. A variant of PLS that does ful�ll this onditionis the �path weighting sheme� (whih is not onsidered in this work). We reallthat the diretions in the outer model are hoped to be taken are of by employingdi�erent �modes�: mode A for re�etive bloks and mode B for formative bloks.Let us onlude this setion with some additional de�nitions. In order to simplifynotation, all variables are assumed to have zero mean. The empirial ovarianematrix between bloks of variables is denoted by
Skl =

1

n
X t

kXl ∈ R
pk×pl . (3.3)We frequently work with vetors and matries that have a blok struture that isindued by (p1, . . . , pK). The ovariane matrix S ∈ Rp×p of X an be partitionedinto bloks of the form

S =




S11 S12 . . . S1K

S21 S22 . . . S2K... ...
SK1 . . . . . . SKK




∈ R
p×p



24 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSwith Skl de�ned in (3.3). We denote this blok-wise struture by [ ]:
S = [Skl] ∈ R

p×p .Furthermore, we need matries that only have entries in their diagonal bloks.We denote them by
SD = diag [S11, . . . , SKK] =




S11 0 . . . 0

0 S22 . . . 0... ...
0 . . . 0 SKK




∈ R
p×p

The subsript D indiates that we only take the diagonal bloks of the matrix S.Any vetor w ∈ Rp an be partitioned into
wt =

(
wt

1, . . . , w
t
K

)t
, wk ∈ R

pk . (3.4)3.2 Optimization StrategiesIn this setion, we abandon the PLS framework. Instead, we present di�erentoptimization riteria in order to de�ne latent variables zk. The general idea is toextend and generalize Canonial Correlation Analysis (CCA) (Hotelling 1936) tomore than two bloks of variables. We try to �nd latent vetors zk = Xkwk suhthat zk and zl are maximally orrelated if the orresponding bloks are linked.In this sense, it is an extension of CCA. For two bloks of variables X1 and X2,CCA omputes arg max
w1,w2

or (X1w1, X2w2) .We an sale the weights w1, w2 without hanging the optimization problem, andwe obtain the equivalent optimization problemarg max
w1,w2

ov (X1w1, X2w2) ,subjet to 1

n
‖Xiwi‖2 = 1 , i = 1, 2 .This leads to the following general de�nition.



3.2. OPTIMIZATION STRATEGIES 25Optimization Problem 3.1. For K bloks of variables, we de�ne the following,general optimization problem:argmax
w

∑

k,l:ckl 6=0

g (ov(Xkwk, Xlwl)) ,subjet to 1

n
‖Xkwk‖2 = 1 .Here, g is one of three funtions

g(x) =





x , Horst
x2 , fatorial
|x| , entroid .

The terms �Horst�, �fatorial� and �entroid� are alled shemes in the PLS lit-erature. We all the �rst sheme the Horst sheme as it is equivalent to a gener-alization of CCA to more than two bloks that is desribed in Horst (1961) andHorst (1965). The terms �fatorial� and �entroid� stem from the PLS literature.We remark that the Horst sheme is not used in the PLS ommunity, althoughit has been suggested as an alternative to the two other shemes by Hana� &Qannari (2005).
Let us de�ne the real-valued funtion

fg(w) =
∑

k,l:ckl 6=0

g (ov(Xkwk, Xlwl)) =
K∑

k,l=1

cklg
(
wt

kSklwl

)
,with w de�ned in (3.4). The Lagrangian funtion assoiated to problem 3.1 is

L(w, λ) = fg(w) − 1

2

K∑

k=1

λk

(
wt

kSkkwk − 1
) (3.5)with λ = (λ1, . . . , λK) ∈ RK the Lagrangian multipliers. The fator −1/2 isadded in order to avoid a resaling of the multipliers λi. We set

θkl = θkl(w) = ov (Xkwk, Xlwl) = wt
kSklwl . (3.6)



26 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSDi�erentiating the Lagrangian funtion (3.5), we yield
∂L

∂wk

=

K∑

l=1

cklg
′ (θkl) Sklwl − λkSkkwk , (3.7)

∂L

∂λk

= wt
kSkkwk − 1 .We set

Sg(w) = [cklg
′ (θkl) Skl] , (3.8)whih implies that

∂fg

∂w
(w) = Sg(w)w .These equations an be represented in a ompat form.Proposition 3.2. The Lagrangian equations (A.6) and (A.7) of the optimizationproblem 3.1 are

Sg(w)w = ΛSDw ,

wt
kSkkwk = 1 .The matrix Λ is a diagonal matrix that is of the form

Λ = diag [λ1Ip1, . . . , λKIpK
] ∈ R

p×p .We might think of λ = (λ1, . . . , λK) as a vetor of multivariate eigenvalues. Notethat in the Horst sheme, the matrixSg(w) does not depend on w and in this ase,the problem is alled a multivariate eigenvalue problem (Chu & Watterson 1993).Remark 3.3. Of ourse, in the entroid sheme, the funtion fg(w) is not dif-ferentiable on Rp. We therefore have to restrit fg onto the open subset
M = {w ∈ R|wt

kSklwl 6= 0} .Note that we an deompose M into �nitely many disjoint open subsets
MI = {w ∈ R|sign (wt

kSklwl

)
= Ikl} . (3.9)



3.2. OPTIMIZATION STRATEGIES 27Here I ∈ {±1}K×K is a symmetri matrix with diagonal elements equal to 1.Whenever we speak of a derivative of fg, we impliitly assume that fg is restritedto one of these subsets. Note that on any of the subsets MI , the matrix Sg(w)that is de�ned in (3.8) does not depend on w.Any solution of the equations in proposition 3.2 is � by de�nition � a stationarypoint of the optimization problem 3.1. In general, there might be more than onestationary point.Lemma 3.4. The stationary point w that is a solution of 3.1 is the one suhthat the sum of the orresponding multivariate eigenvalues is maximal.Proof. We �rst note that
g′(x)x = g(x)





1, Horst, entroid
2, fatorial = c̃g(x) .It follows that for all w that are stationary points,

∑

k,l

cklg (wkSklwl) = c̃
∑

k,l

cklg
′ (wkSklwl) wkSklwl

= c̃wtSg(w)w

= c̃
∑

k

λkw
t
kSkkwk

= c̃
∑

k

λk .

If we want to maximize the ovariane between latent variables instead of orre-lation, we have to hange the onstraints in 3.1. We obtainargmax
w

∑

k,l:ckl 6=0

g (ov(Xkwk, Xlwl) , ) (3.10)subjet to 1

n
‖wk‖2 = 1 ,and the orresponding Lagrangian equations are

Sg(w)w = Λw ,

1

n
wt

kwk = 1 .



28 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSWe an always transform optimization problem 3.1 into (3.10): Denote by √
Skkthe root of the positive-semide�nite matrix Skk. We set

w̃k =
√

Skkwk , (3.11)
√

SD = diag [√S11, . . . ,
√

SKK

]
, (3.12)

S̃ =
(√

SD

)−
S
(√

SD

)−
. (3.13)It follows readily from the singular value deomposition of Xk and Xl that

Skl =
√

Skk

(√
Skk

)−
Skl

(√
Sll

)−√
Sll .We onlude that optimization problem 3.1 is equivalent toargmaxew ∑

k,l:ckl 6=0

g
(
w̃t

kS̃klw̃l

)
,subjet to 1

n
‖w̃k‖ = 1 .3.3 Multivariate Power MethodsIf we want to �nd the optimal solution of the optimization problem 3.1, we anproeed stepwise. First, we ompute a solution of the assoiated Lagrangianequations. As this is a stationary point, we then have to hek if this is theoptimal one. One possibility to solve eigenproblems as in proposition 3.2 is toapply a multivariate version of the power method de�ned in algorithm A.9.Algorithm 3.5 (Multivariate Power Method). After the initialization of weightvetors w = (w1, . . . , wK) suh that wt
kSkkwk = 1, we iteratively ompute

w̃(i+1) = S−
DSg

(
w(i)

)
w(i) iteration

w
(i+1)
k = w̃

(i+1)
k /

√
w̃

(i+1)
k Skkw̃

(i+1)
k , k = 1 . . . , K normalizationIf the multivariate power method onverges to a vetor w, this is obviously asolution of the Lagrangian equations 3.2. Note that in algorithm 3.5, all weightvetors wk are updated simultaneously. There is a variation of the power method,where in eah round, only one weight vetor is updated. We all this algorithm amultivariate Gauss-Seidel algorithm. In order to have a ompat representation,let us de�ne the quantities θkl in a more general way. For two vetors w and v,



3.3. MULTIVARIATE POWER METHODS 29we de�ne
θkl(w, v) = wt

kSklvl .We set
Sg(w, v) =

[
cklg

′ (θkl(w, v)
)
Skl

]
.Note that

θkl(w) = θkl(w, w) and Sg(w) = Sg(w, w) .Now, let us deompose
Sg(w, v) = U t

g(w, v) + Ug(w, v)with Ug the stritly upper triangular part of Sg. (Reall that the blok diagonalof Sg(w, v) is zero, as ckk = 0.)Algorithm 3.6 (Multivariate Gauss-Seidel Algorithm). After the initialization ofweight vetors w = (w1, . . . , wK) suh that wt
kSkkwk = 1, we iteratively omputefor k = 1, . . . , K

w̃(i+1) = S−
D

(
U t

g

(
w(i), w(i+1)

)
w(i+1) + Ug

(
w(i), w(i)

)
w(i)

)

wk(i + 1) = w̃
(i)
k /

√
w̃

(i)
k Skkw̃

(i)
kFor the Horst sheme, the Gauss-Seidel algorithm is already de�ned in Chu &Watterson (1993).Proposition 3.7. If the multivariate Gauss-Seidel algorithm onverges to a ve-tor w, this is a stationary point of 3.1.Proof. If w is the solution of the multivariate Gauss-Seidel algorithm, we onludethat w̃ = Λw with w̃ de�ned in algorithm 3.6. We plug this into the formula for

w̃ and obtain
SDΛw̃ = U t

g (w, w)w + Ug (w, w)w = Sg (w)w .These are the the Lagrangian equations 3.2.



30 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELS3.4 The Partial Least Squares Path AlgorithmsNow, we return to the PLS framework introdued in Setion 3.1. There are twoimportant algorithms that try to ompute the latent variables in the path model- Lohmöller (Lohmöller 1989) and Wold (Wold 1985). The algorithms presentedhere are in mode B. Mode B refers to a path model where all bloks are sup-posed to be formative. PLS in mode A (whih orresponds to re�etive bloks)is disussed in Setion 3.5. The ommon point of view is that these algorithmsare alternating algorithms in the sense that we iteratively estimate �rst the innermodel and then the outer model. We show that Lohmöller orresponds to themultivariate power method 3.5 and that Wold orresponds to the multivariateGauss-Seidel algorithm 3.6. As a onsequene we an onlude that - if all bloksare formative - the PLS solutions are indeed stationary points of the optimizationriterion 3.1.Let us start with Lohmöller's algorithm.Algorithm 3.8 (Lohmöller's algorithm). After the initialization of weight vetor
w(0) suh that z

(0)
k = Xkw

(0)
k has length √

n we iteratively ompute for all ksimultaneously
z̃

(i+1)
k =

∑K

l=1 cklg
′ (θkl(w

(i))
)
z

(i)
l inner model (environmental variable)

w̃
(i+1)
k = (X t

kXk)
−

X t
kz̃

(i+1)
k outer model in mode B

w
(i+1)
k =

√
nw̃

(i+1)
k /

∥∥∥Xkw̃
(i+1)
k

∥∥∥ normalization
z

(i+1)
k = Xkw

(i+1)
k updateWe remark that the term �environmental variable� is part of the PLS nomen-latura.Proposition 3.9. The Lohmöller algorithm is equal to the multivariate powermethod.Proof. The proof is straightforward. Note that the formula for the environmentalvariable equals

z̃
(i)
k =

K∑

l=1

cklg
′ (θkl(w

(i))
)
z

(i)
l =

K∑

l=1

cklg
′ (θkl(w

(i))
)
Xlw

(i)
l .
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w

(i+1)
k =

(
X t

kXk

)−
X t

kz̃
(i)
k

=
1

n
(Skk)

−1

(
K∑

l=1

cklg
′ (θkl(w

(i))
)
X t

kXlw
(i)
l

)

=
1

n
(Skk)

−1

(
K∑

l=1

cklg
′ (θkl(w

(i))
)
Sklw

(i)
l

)
,whih equals the formula in algorithm 3.5 � up to a saling fator.Now, we onsider Wold's algorithm. In this algorithm , only one blok is updatedin eah inner loop.Algorithm 3.10 (Wold's algorithm). After the initialization of weight vetor

w(0) suh that z
(0)
k = Xkw

(0)
k has length √

n we iteratively ompute for k =

1, . . . , K

z̃
(i+1)
k =

∑k−1
l=1 cklg

′
(
w

(i)
k Sklw

(i+1)
l )

)
z

(i+1)
l inner model (environmental

+
∑K

l=k+1 cklg
′
(
w

(i)
k Sklw

(i)
l

)
z

(i)
l variable)

w̃
(i+1)
k = (X t

kXk)
−

X t
kz̃

(i+1)
k outer model in mode B

w
(i+1)
k =

√
nw̃

(i+1)
k /

∥∥∥Xkw̃
(i+1)
k

∥∥∥ normalization
z

(i+1)
k = Xkw

(i+1)
k updateIt follows readily that the Wold algorithm is the same as the multivariate Gauss-Seidel algorithm.Proposition 3.11. The Wold algorithm is equal to the multivariate Gauss-Seidelalgorithm.Proof. The proof is analogous to the proof of proposition 3.9. It follows from thede�nition of the environmental variable that

n (Skk) w̃
(i+1)
k = X t

kz̃
(i)
k

=

k−1∑

l=1

cklg
′ (θkl(w

(i), w(i+1))
)
Sklw

(i+1)
l

+

K∑

l=k+1

cklg
′ (θkl(w

(i), w(i+1))
)
Sklw

(i)
l ,and this equals (??).



32 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSThis leads to the following onlusion.Proposition 3.12. Suppose that we use mode B and one of the shemes �Horst�,�fatorial� or �entroid�. If Wold's or Lohmöller's algorithm onverge, their re-spetive solutions are stationary points of optimization problem 3.1.It has already been shown in Mathes (1993) that the solution of the PLS pathalgorithms are solutions of the Lagrangian equations 3.2.We end this setion with a geometri interpretation of the PLS path model algo-rithms. In order to keep the example simple, we only onsider the Horst shemeand assume that all bloks are linked. The Lagrangian equations expressed interms of the latent variables zk are
λkzk = PXk

(∑

l 6=k

zl

)
.Here, λk is the normalization term. In other words, for every stationary point ofthe optimization problem, the latent variable zk equals � up to its length � theprojetion of the sum of the other latent variables onto the spae spanned by theolumns of Xk. This is the generalization of the geometri interpretation of CCAdesribed in Kokelkorn (2000).Finally, let us brie�y mention that we an apply the kernel trik to the PLS pathmodel framework. To do so, let us start with the remark that we an representany vetor wk ∈ Rpk by

wk = X t
kαk + w̃k , w̃k ⊥ span(Vk) .Here,

Xk = UkΣkV
t

kis the singular value deomposition of blok Xk. It follows that
zk = Xkwk = Xk

(
X t

kαk + w̃k

)
= XkX

t
kαk + Xkw̃k = XkX

t
kαk .As the optimization problem 3.1 only depends on wk via zk, we onlude that



3.5. NO SMOOTH OPTIMALITY CRITERION FOR MODE A 33we an assume that
wk = X t

kαk .Plugging this into the PLS path algorithms, we obtain a dual representation interms of the dual variables αk. A ombination of generalized CCA with the kerneltrik is studied in Yamanishi et al. (2003). In this work, the Lagrangian equations3.2 for the Horst sheme are expressed in terms of the Kernel matries XkX
t
k �with the (erroneous?) additional onstraint that all multivariate eigenvalues λiare equal.

3.5 No Smooth Optimality Criterion for Mode AWe now desribe why mode B is supposedly related to formative bloks of vari-ables and present a heuristi how to adapt the algorithms for re�etive bloks.In the estimation of the outer model in the PLS algorithms, the unstandardizedweight vetors
w̃

(i+1)
k =

(
X t

kXk

)−
X t

kz̃
(i+1)
kan be interpreted as the OLS regression oe�ients of the linear regression model(3.1) (with the latent variable replaed by the environmental variable). For thisreason, it is argued that the algorithms in mode B (3.8 and 3.10 respetively)refer to formative bloks. The heuristi is now as follows. For any re�etive blokof variables, we �rst estimate the oe�ients β of the linear regression model(3.2) that refers to re�etive bloks. If we use OLS, we obtain

β̂ =
1

z̃t
kz̃k

X t
kz̃k .This implies that

X̂k = z̃kβ̂
t
. (3.14)Given the manifest variables Xk, we now have to estimate the latent variable zkbased on (3.14). That is, we have to �nd the solution zk of the over-determined
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Xk = zkβ̂

t
.We obtain the estimate

zk =
1

β̂
t
β̂

Xkβ̂ .Note that the sale of zk is not important, as all latent variables are normalized.To summarize, for all bloks k that are re�etive, we replae the estimation of
w̃k in the outer model by

w̃
(i+1)
k = X t

kz̃
(i+1)
k . (3.15)This estimation mode is alled mode A. We do not disuss the validity of thisheuristis.Let us de�ne

S̃D = diag [D̃i

]
, D̃i =





Ipk
, k of mode A

Skk , k of mode B
.

Proposition 3.13. If we replae the estimation of the weights in the outer modelin algorithms 3.8 and 3.10 by (3.15) for all re�etive bloks, any solution of theLohmöller and the Wold algorithm ful�lls
Sg(w)w = ΛS̃Dw , (3.16)

wt
kSkkwk = 1 . (3.17)Proof. The proof follows immediately from the de�nition of the algorithms. Weonly prove the statement for the Lohmöller algorithm. The result for the Woldalgorithm follows in the same way. Analogously to the proof of proposition 3.9,we have

z̃
(i)
k =

K∑

l=1

cklg
′ (θkl(w

(i))
)
Xlw

(i)
l .
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w̃

(i+1)
k =

(
D̃k

)−
X t

kz̃
(i)
k

=
(
D̃k

)−
(

K∑

l=1

cklg
′ (θkl(w

(i))
)
X t

kXlw
(i)
l

)

=
(
D̃k

)−
(

K∑

l=1

cklg
′ (θkl(w

(i))
)

Sklw
(i)
l

)
.Replaing w

(i)
k and w̃

(i)
k by their respetive limits wk and w̃k, the proof is om-plete.Equations (3.16) and (3.17) do not yet have the form of Lagrangian equations(A.6) and (A.7), as the onstraints (3.17) do not �t to the right hand side of(3.16). In order to obtain a valid form, we have to multiply eah side of (3.16)with

SD = diag [Di

]
, Di =





Skk , k of mode A

Ipk
, k of mode B

.This yields
SD (Sg(w))w = ΛSDw , (3.18)

wt
kSkkwk = 1 . (3.19)These annot be the Lagrangian equations of any twie di�erentiable optimizationproblem.Theorem 3.14. Suppose that at least one blok is of mode A. For almost all datasets X, the equations (3.18) and (3.19) are not the Lagrangian equations of anoptimization problem (A.3) and (A.4), where the objetive funtion f in (A.3) istwie-di�erentiable.The term �for almost all data sets� refers to the fat that the set of matries Xfor whih the above statement does not hold, has measure zero.Proof. Suppose that (3.18) and (3.19) are the Lagrangian equations of an opti-mization problem as in (A.3) and (A.4). This implies that SD (Sg(w))w is the�rst derivative of the objetive funtion (A.3). It follows that the Hessian matrix
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∂

∂w
SD (Sg(w))w = SD

∂

∂w
(Sg(w)w) = SDHg(w) (3.20)The matrix Hg(w) is the Hessian matrix of fg. It follows from the Theorem ofShwartz A.4 that (3.20) is a symmetri matrix. We have

(
SDHg(w)

)t
= (Hg(w))t

(
SD

)t
= Hg(w)SDand onsequently, the matrix Hg(w)SD is symmetri if and only if the two ma-tries ommute,

Hg(w)SD = SDHg(w) . (3.21)This is in however in general not the ase. To see this, we have to ompute theHessian matrix of fg for the respetive shemes. If we onsider the Horst sheme,we have
∂2fg

∂2w
=

∂(Sg(w)w)

∂w
= Sg(w) ,as the matrix Sg(w) does not depend on w. For the entroid sheme, we restritthe funtion on one of the open subsets MI de�ned in (3.9). As the matrix Sg(w)does not depend on w on this subset, we have

∂2fg|MI

∂2w
= [cklIklSkl] .It follows that for the Horst sheme or the entroid sheme, ondition (3.21) isequivalent to the following equations. If the bloks k and l are linked, we have

SklSll = SkkSkl , k and l of mode A ,

SklSll = Skl , k of mode A, l of mode B .These onditions are in general not ful�lled. For the fatorial sheme, the equa-tions beome more ompliated, but is still possible to show that ondition (3.21)is not ful�lled. Reall (3.8) from whih follows that the �rst derivative of fg is ablok vetor with the kth entry equal to
K∑

l=1

ckl

(
wt

kSklwl

)
wl .



3.6. NO CONVERGENCE TO THE OPTIMUM FOR MODE B 37If we di�erentiate this expression with respet to wl, we obtain
Hg(w) = Sg(w) +

[
cklSklwlw

t
kSkl

]
.We onlude that if the bloks k and l are linked, ondition (3.21) is equivalentto

(Skl + Sklwlw
t
kSkl)Sll = Skk (Skl + Sklwlw

t
kSkl) , k and l of mode A ,

(Skl + Sklwlw
t
kSkl)Sll = (Skl + Sklwlw

t
kSkl) , k of mode A, l of mode B .These equations are in general not ful�lled.As a onsequene, we advoate to be autious to use mode A. Suppose thatthe algorithm is applied to di�erent start vetors and that the resulting weightvetors are di�erent. There is no way to deide whih one of them is better, aswe do not know of any optimality riterion attahed to mode A. Note that theabove desribed senario is not hypothetial. We show in Setion 3.6 that thealgorithms in mode B do not neessarily onverge to the solution of 3.1.Note furthermore that we an easily modify the PLS algorithms in mode A suhthat their solutions are stationary points of sensible optimization problems. Letus assume that all bloks are of mode A. We replae the normalization step ofthe weight vetors by

w
(i+1)
k =

1

n‖w̃(i+1)
k ‖

w̃
(i+1)
k .It is straightforward to show that any solution of the PLS path algorithms ful�llsthe Lagrangian equations assoiated to (3.10). In other words, by modifying thenormalization step in mode A, we obtain a stationary point of the optimizationproblem attahed to maximizing ovarianes instead of orrelations.3.6 No Convergene to the Optimum for Mode BThe numerial onvergene of the algorithms is only proven for the Horst sheme(Chu & Watterson 1993). Reently, Hana� (2006) showed that the Wold algo-rithm in mode B onverges monotonially. That is, for the sequene of weightvetors w(i) omputed by this algorithm, the real-valued sequene fg

(
w(i)

) ismonotonially inreasing and bounded. Even if the algorithms onverge, it is not



38 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSguaranteed that the obtained vetor w is the solution of the optimization problem3.1. Chu & Watterson (1993) present a ounter example for the Horst sheme ifwe apply the multivariate power algorithm. It is shown that the solution of themultivariate power algorithm depends on the starting value and that it is likelythat the algorithm onverges to a loal solution. Hana� (2006) present a ounterexample for the entroid sheme. In this setion, we present a ounter examplefor both the fatorial and the entroid sheme and for the both PLS algorithms� Lohmöller and Wold. For the obvious reason, we only onsider mode B.We present two examples. Let us start with the remark that the seond ounterexample is not hosen beause it re�ets any real world situation, but in orderto make the results reproduible. In fat, ounter examples an be found easily,and the onvergene to loal optima seems to be the �generi� ase (at least forthe entroid sheme) if the manifest variables are not highly orrelated. Thisis shown in the �rst example. In both examples, we use K = 3 bloks of vari-ables. Eah blok onsists of pk = 4 variables. This implies that the matrix
X = (X1, X2, X3) onsists of 4 × 3 = 12 olumns.We assume that all bloks areonneted.We onsider both PLS algorithms � Wold and Lohmöller �in the fatorial shemeand the entroid sheme respetively. This yields four di�erent variants. Werun these four di�erent algorithms 500 times. In eah iteration, the standardizedstarting vetors w

(0)
k are drawn randomly.Fairly realisti, but not exatly reproduible exampleThe number of examples is n = 50. Eah row of X is a sample of a multivariatenormal distribution with zero mean and the ovariane matrix equal to the iden-tity matrix. In order to save omputational time, we �rst transform the data asdesribed in (3.11),(3.12) and (3.13). In this example, the two algorithms in thefatorial sheme always onverge to the set of multivariate eigenvalues

λ1 = 0.19735 λ2 = 0.0741 λ3 = 0.27133
∑

λi = 0.54278 .As this is the only solution out of the 500 experiments, this indiates that it isthe global optimum.



3.6. NO CONVERGENCE TO THE OPTIMUM FOR MODE B 39Sheme Algorithm Global Optimum Loal Solutionfatorial Wold 100 % 0 %Lohmöller 100 % 0%entroid Wold 46.8 % 53.2%Lohmöller 54 % 46 %Table 3.1: Results for the �rst exampleFor the entroid sheme, we �rst remark that � given the same start vetor � theLohmöller and the Wold algorithm an produe di�erent results. In this example,di�erent results are observed in 16.4 % of the ases. For the entroid sheme, thealgorithms onverged to one of the two sets of multivariate eigenvaluesSolution 1 λ1 = 0.59238 λ2 = 0.50684 λ3 = 0.60448
∑

λi = 1.70370 .Solution 2 λ1 = 0.53533 λ2 = 0.42023 λ3 = 0.66051
∑

λi = 1.61607 .The seond one is only a loal solution. As we only observe these two solutions,we onjeture that the �rst one is the global optimum.For eah algorithm and eah sheme, we ount the number of experiments inwhih the algorithms onverged to the respetive solutions. Table 3.1 illustratesthat both algorithms have a substantial hane to onverge to the loal optimum.
Unrealisti, but reproduible exampleThe number of examples is n = 12. We de�ne the 12 × 12 matrix X =

(X1, X2, X3) in the following way:
Xi,j =





1 , i = j, j = i + 1

0 , otherwise .We enter the olumns of the matrix X. In this example, we observe a onver-gene to loal solutions in both shemes.Exatly as in the �rst example, the Lohmöller and the Wold algorithms sometimesprodue di�erent results. This happens in 17% of the ases for the fatorial shemeand in 23% of the ases for the entroid sheme. Seondly, the result depends on



40 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSSheme Algorithm Global Optimum Loal Optimumfatorial Wold 87.4 % 12.6 %Lohmöller 80.4 % 19.6 %entroid Wold 42.8 % 57.2 %Lohmöller 57.4 % 42.6 %Table 3.2: Results for the seond examplethe starting vetor. For the fatorial sheme, the algorithm onverges to one ofthe two sets of multivariate eigenvaluesSolution 1 λ1 = 0.74718 λ2 = 0.99703 λ3 = 0.39944
∑

λi = 2.14365 ,Solution 2 λ1 = 0.47979 λ2 = 0.48329 λ3 = 0.53733
∑

λi = 1.50041 .The latter solution is only a loal solution and we onjeture that the �rst solu-tion is the global optimum. The result is similar for the entroid sheme. Thealgorithms onverged to one of the two sets of multivariate eigenvalues.Solution 1 λ1 = 1.13148 λ2 = 1.31360 λ3 = 0.97503
∑

λi = 3.42011 ,Solution 2 λ1 = 1.00000 λ2 = 1.00000 λ3 = 1.00000
∑

λi = 3.00000 .Again, for eah algorithm and eah sheme, we ount the number of experimentsin whih the algorithms onverge to the respetive solutions. Table 3.2 illustratesthat both algorithms have a substantial hane to onverge to the loal optimum.
3.7 ConlusionIn the PLS literature, there has been a lot of obsurity regarding the mathe-matial bakground of the path modeling algorithms. In this hapter, we havehopefully shed some light into this subjet. To summarize, we showed two results.Firstly, we proved that the PLS path algorithms in mode A produe algebraiequations that are not linked to any su�iently smooth optimization problem.This marks a severe setbak in the searh of a justi�ation of mode A in terms ofoptimality riteria. What onlusions an be drawn from this result? Note thatin priniple, it might still be possible to derive optimization problems attahedto mode A that are not twie di�erentiable. But we strongly advise a di�erentmodus operandi. Instead of �rst de�ning algebrai equations and then searh-ing for assoiated optimization problems, we should rather �rst set up a sensible



3.7. CONCLUSION 41optimization problem and then searh for algorithms that solve it. We pointedout that if we maximize ovarianes instead to orrelations, we yield equationsquite similar to the ones of mode A. Seondly, for those PLS algorithms that doprodue ritial points of optimization problems, we showed that the algorithmsdo not neessarily onverge to the maximum. As a onsequene, every algorithmshould be run several times in order to detet possible other solutions.
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Chapter 4
Partial Least Squares for Regression
If there are more variables than examples, the usual linear regression tools suhas ordinary least squares (OLS) regression annot be applied sine the p× p ma-trix X tX is singular. From a tehnial point of view, we an solve this problemby replaing the inverse of X tX by a generalized inverse as desribed in Se-tion 1.3. However, if p > n, OLS �ts the training data perfetly and we annotexpet this method to perform well on a new data set. Partial Least SquaresRegression (PLSR) (Wold 1975, Wold et al. 1984) is an alternative regressiontool whih is espeially appropriate in the ase of highly orrelated preditorsand high-dimensional data. PLSR is a standard tool for analyzing hemial data(Martens & Naes 1989), and in reent years, the suess of PLSR has lead toappliations in other sienti� �elds suh as physiology (Rosipal et al. 2003) orbioinformatis (Boulesteix & Strimmer 2006), to name but a few.PLSR an handle multivariate responses. We now give a general introdution andthen fous on univariate responses. Quite generally, PLSR tries to model linearrelationships between two bloks of variablesX and Y in terms of latent variables.In this sense, it �ts into the PLS path model framework that is investigated inChapter 3. Note however that in ontrast to the two PLS path model algorithms(Lohmöller and Wold), the relationship between X and Y is not symmetri andthat we usually onsider more than one latent variable. Although extensions ofPLS path models to more than one latent variable per blok are possible, it israther onfusing to desribe PLSR as a speial ase of PLS path models. Wetherefore give a self-ontained introdution.43



44 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSION4.1 NIPALS and SIMPLSThere are quite a few versions of PLSR. Mainly, they di�er in the way in whihthe latent variables are extrated from the data. It is not our aim to explain allvariants, and we will fous on two versions. For a general overview on di�erentforms of PLSR see Rosipal & Krämer (2006).The main idea is to build a few orthogonal omponents t1, . . . , tm from the origi-nal preditors X. A omponent is a linear ombination of the original preditorsthat hopefully re�ets the relevant struture of the data. We use these latentomponents as regressors in a least squares regression in plae of X. PLSR issimilar to Prinipal Components Regression (PCR). The di�erene is that PCRextrats omponents that explain the variane in the preditor variables whereasPLSR extrats omponents that have a large ovariane with Y .We now formalize this idea. A latent omponent t is a linear ombination t =

Xw of the preditor variables. The vetor w is usually alled the weight vetor.We want to �nd a omponent with maximal ovariane to Y , that is we want tomaximize
‖ov (Xw, Y )‖2 = wtX tY Y tXw .We have to onstrain w in order to obtain identi�ability, hoosingargmax wtX tY Y tXw , (4.1)subjet to ‖w‖ = 1 . (4.2)Let us remark that (4.1) and (4.2) are equivalent to

max
wtX tY Y tXw

wtw
. (4.3)The solution of (4.3) is only unique up to a salar. The normalization of theweight vetors w to length 1 is not essential for the PLSR algorithm (expet foromputational onsiderations as e.g. numerial stability) and PLSR algorithmsdi�er in the way they sale the weight vetors and omponents. In this paper,we do not sale the vetors, in order to keep the notation as simple as possible.



4.1. NIPALS AND SIMPLS 45We onlude that the solution w1 is the eigenvetor of the matrix
B = X tY Y tX (4.4)that orresponds to the largest eigenvalue of B. This eigenvetor is usually om-puted in an iterative way, e.g. by using the power algorithm that is de�ned in A.9.Subsequent omponents t2, t3, . . . are hosen suh that they maximize the squaredovariane to Y and that all omponents are mutually orthogonal. In PLSR, thereare di�erent tehniques to extrat subsequent omponents, and we now presenttwo of them. On the one hand, for the ith omponent, we ompute
max wtX tY Y tXw , (4.5)subjet to ‖w‖ = 1 , (4.6)

Xw ⊥ tj , j < i . (4.7)This task is alled SIMPLS (de Jong 1993). On the other hand, we an de�atethe original preditor variables X. That is, we only onsider the part of X thatis orthogonal on all omponents tj , j < i:
Xi = X − Pt1,...,ti−1

X .We then replae X by Xi in (4.1). This task is alled the NIPALS method andis desribed in Wold (1975). The two methods are equivalent if Y is univariatein the sense that we end up with the same omponents ti . We present a proof inorollary 6.4.To summarize, the PLSR algorithm is of the following form.Algorithm 4.1 (NIPALS). After setting X1 = X, the weight vetors wi and theomponents ti of PLSR are determined by iteratively omputing
wi = dominant eigenvetor of X t

i Y Y tX t
i weight vetor

ti = Xiwi omponent
Xi+1 = Xi − Pti

Xi de�ationPLSR used to be overlooked by statistiians and was onsidered an algorithmrather than a sound statistial model. This attitude is to some extent under-



46 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONstandable, as in the early literature on the subjet, PLSR was explained solelyin terms of formulas as in algorithm 4.1. Due to its suess in appliations,the interest in the statistial properties of PLSR has risen. It an be relatedto other biased regression tehniques suh as Prinipal Components Regressionand Ridge Regression and these methods an be ast under a unifying frame-work (Stone & Brooks 1990). The shrinkage properties of PLSR have been stud-ied extensively (Frank & Friedman 1993, de Jong 1995, Goutis 1996, Butler &Denham 2000) and are also disussed in Chapter 7. Furthermore, it an be shownthat PLSR is losely onneted to Krylov subspaes and the onjugate gradientmethod (Helland 1988, Phatak & de Hoog 2002). In Chapter 6, we establisha similar onnetion between penalized PLSR (introdued in Chapter 5) and apreonditioned onjugate gradient method.Finally, let us remark that in many artiles on PLSR, both X and Y are de�atedwith respet to ti:
Xi+1 = X −Pt1,...,tiX , Yi+1 = Y − Pt1,...,tiY .If we are only interested in the latent omponents ti, this is however not neessary.To see this, we use the fat (see proposition A.10) that
(In − Pt1,...,ti

) = (In − Pt1,...,ti
) (In − Pt1,...,ti

) .We onlude that
X t

i+1Yi+1 = X t (In −Pt1,...,ti
) (In −Pt1,...,ti

) Y = X t (In − Pt1,...,ti
) Y = X t

i+1Y .If the response Y = y is univariate, PLSR is sometimes refered to as PLS1. Inthis ase, the omputation of the weight vetors is very easy. Let us de�ne the
p-dimensional vetor

b = X ty .It follows that the �rst eigenvetor of the matrix B = bbt (de�ned in (4.4)) equals
b. To summarize, the univariate PLS algorithm is of the following form.Algorithm 4.2 (Univariate NIPALS). After setting X1 = X, the weight ve-tors wi and the omponents ti of univariate PLSR are determined by iteratively



4.2. BASIC PROPERTIES OF PARTIAL LEAST SQUARES REGRESSION47omputing
wi = X t

i y weight vetor
ti = Xiwi omponent

Xi+1 = Xi −Pti
Xi de�ationIn the next setion, we list some properties of PLSR and show how to derive anestimate β̂ from the latent omponents.4.2 Basi Properties of Partial Least Squares Re-gressionWe set

T = (t1, . . . , tm) .As already mentioned, the original preditors X are replaed by T and the re-sponse is then regressed onto the olumns of T . The �tted response is
ŷ = PTy = T (T tT )−1T ty . (4.8)In order to predit the response for new observations, we have to determine thevetor of regression oe�ients,

ŷ = Xβ̂ .Therefore, a representation of the omponents ti = Xiwi as a linear ombinationof the original preditors X is needed. In other words, we have to derive weightvetors w̃i with
Xw̃i = Xiwi .They are in general di�erent from the �pseudo� weight vetors wi that are om-puted by the NIPALS algorithm. Before stating this result, it is bene�ial to astthe PLSR method in a broader framework.PLSR is an iterative proess. In eah step, we ompute weight vetors wi andthen de�ate X with respet to the latent omponents ti = Xiwi. For anyalgorithm that produes a weight vetor w (probably depending on the data Xand y) , we an de�ne a generi latent omponent regression algorithm in the



48 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONfollowing way.Algorithm 4.3 (Generi Latent Component Regression). After setting X1 =

X, the weight vetors wi and the omponents ti are determined by iterativelyomputing
wi weight vetor
ti = Xiwi omponent

Xi+1 = Xi − Pti
Xi de�ationThe response y is then regressed onto the latent omponents t1, . . . , tm as in (4.8).What are the merits of this generi approah? Let us emphasize that we do notwant to introdue yet another unifying framework that omprises all kinds of re-gression methods. The reason is that in fat, a lot of properties of PLSR beomemuh learer if we onsider the general framework. For example, most of theproperties of PLSR do not depend on the partiular method for omputing theweight vetors, but on the fat that the latent omponents are mutually orthogo-nal. Papers on PLSR tend to be rather tehnial and proofs are sometimes hardto follow. We now present some alternative proofs that only rely on algorithm4.3 and exploit some basi properties of projetions. As a nie side-e�et, we anapply these results (with no extra e�ort) to other multivariate regression tools asContinuum Regression (Stone & Brooks 1990) or the penalized PLSR approahintrodued in Chapter 5.Set

T = T (m) = (t1, . . . , tm) and W = W (m) = (w1, . . . , wm) .These are the matries of omponents and weight vetors respetively that arede�ned in algorithm 4.3. We �x m and omit the supersript for the sake ofreadability. We reall that for k < i

Xi =
i−1∏

j=k

(
In − Ptj

)
Xk =

(
In −Ptk ,...,ti−1

)
Xk . (4.9)The last equality follows from the fat that the omponents ti are mutually or-thogonal. In partiular

Xi =
(
In −Pt1,...,ti−1

)
X . (4.10)



4.2. BASIC PROPERTIES OF PARTIAL LEAST SQUARES REGRESSION49If not stated otherwise, the following results hold for the Generi Latent Compo-nents (GLC) Regression approah introdued in algorithm 4.3.Lemma 4.4. We have
Xiwj = 0for j < i.Proof. The ondition j < i implies (reall (4.9))

Xi = Xj − Ptj ,...,ti−1
Xj ,and onsequently

Xiwj = Xjwj −Pt1,...,ti−1
Xjwj

= tj − Pt1,...,ti−1
tj

j≤i−1
= tj − tj = 0 .Corollary 4.5. The weight vetors w1, . . . , wm de�ned by univariate NIPALSare mutually orthogonal.Proof. It follows from the de�nition of the PLSR weight vetors that for i > j

〈wi, wj〉 =
〈
X t

i y, wj

〉
= ytXiwj = yt

0 = 0 .We now return to the generi latent omponents approah and set
R = T tX W ∈ R

m×m .Proposition 4.6. The matrix R is upper triangular, that is
rij = tt

iXwj = 0 , (4.11)if i < j. The matrix R is invertible. Furthermore, we have
XW = T diag( 1

tt
1t1

, . . . ,
1

tt
mtm

)
R . (4.12)



50 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONIn partiualar, the olumns of T and the olumns of XW span the same spae.Proof. First note that (4.10) is equivalent to
X = Xj + Pt1,...,tj−1

X .It follows that
Xwj =

(
Xj + Pt1,...,tj−1

X
)
wj

= Xjwj + Ptj ,...,tj−1
X wj

= tj +

j−1∑

i=1

tt
iXwj

tt
iti

ti . (4.13)As all omponents ti are mutually orthogonal, we onlude that
tt
iXwj =





tt
iti 6= 0 , i = j

0 , i > j

tt
iXwj , i<j .We onlude that R is an upper triangular matrix with all diagonal elements 6= 0.Next, note that (4.13) is equivalent to

Xwj =
rjj

tt
jtj

tj +

j−1∑

i=1

rij

tt
iti

ti .This equals (4.12).We an now determine the regression oe�ients for the generi latent regressionapproah.Proposition 4.7. The regression vetor β̂ of the generi latent omponents(GLC) approah de�ned in algorithm 4.3 is
β̂ = W

(
W tX tXW

)−
W tX ty . (4.14)In partiular, the generi latent omponent (GLC) estimator is the solution of



4.2. BASIC PROPERTIES OF PARTIAL LEAST SQUARES REGRESSION51the onstrained minimization problem
min
β

‖y − Xβ‖subjet to β ∈ span {w1, . . . , wm} . (4.15)Proof. We dedue from (4.12) that the olumns of XW span the same spaeas the olumns of T . As GLC is simply ordinary least squares regression withpreditors t1, . . . , tm, we have
ŷ = PTy = PXWy = XW

(
W tX tXW

)−1
W tX ty .The seond statement an be proven by noting that the onstrained minimizationproblem is equivalent to an unonstrained minimization problem for β = Wαwith α ∈ Rm. If we plug this into the formula for the OLS estimator, we obtain(4.14).The formulas in proposition 4.7 are bene�ial for theoretial purposes, but theyare omputationally ine�ient. For PLSR, the alulation an be done in areursive and faster way. The key point is to �nd �primal� weight vetors w̃i suhthat for every i

ti = Xiwi = Xw̃i . (4.16)This an be done by exploiting relationship (4.12) and the fat that R is bidiag-onal for PLSR.Proposition 4.8. For PLSR, the matrix R = T T XW is upper bidiagonal, thatis
rij = tt

iXwj = 0 ,if i < j or i + 1 > j.This result is already shown in Manne (1987). In order to avoid redundany, wedefer the proof until Chapter 5.Proposition 4.9. The primal weight vetors w̃i and the regression vetor of theunivariate NIPALS algorithm are determined by setting w̃0 = 0 and β̂
(0)

= 0 and



52 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONby omputing iteratively
w̃i = wi −

w̃t
i−1X

tXwi

w̃t
i−1X

tXw̃i−1
w̃i−1 ,

β̂
(i)

= β̂
(i−1)

+
w̃t

iX
ty

w̃t
iX

tXw̃i

w̃i .Proof. We proof the statements via indution. For i = 1, we have w̃1 = w1 as
X1 = X and

ŷ = Pt1y = Xw1

(
Xw1w

t
1X

t
)−1

wt
1X

ty = X
w̃t

1X
ty

w̃t
1X

tXw̃1
w̃1 .For a general i, we have

ti+1 = Xi+1wi+1 = (X −Pt1,...,ti
X) wi+1 = Xwi+1 −Pti

Xwi+1 .The last equality holds as R = T tXW is bidiagonal. Using formula (A.9) forthe projetion operator and the indution hypothesis (4.16), it follows that
ti+1 = Xwi+1 − Xw̃i

(
w̃t

iX
tXw̃i

)−1
wt

iX
tXwi+1 .We onlude that

w̃i+1 = wi+1 −
w̃t

iX
tXwi+1

w̃t
iX

tXw̃i

w̃i .The regression estimate after i steps is
Xβ̂

(i)
= Pt1,...,ti

y

= Pt1,...,ti−1
y + Pti

y

= Xβ̂
(i−1)

+ Pti
y

= Xβ̂
(i−1)

+ X
w̃t

iX
ty

w̃t
iX

tXw̃i

w̃i .This onludes the proof.4.3 The Degrees of Freedom of Partial Least SquaresThe number m of PLSR omponents is an additional model parameter that hasto be determined. In most appliations, this is done by omputing the ross-



4.3. THE DEGREES OF FREEDOM OF PARTIAL LEAST SQUARES 53validated error. In Chapter 2, we disussed a di�erent strategy for model seletionthat involves the omputation of the degrees of freedom. Note that the PLSRestimate (4.8) is not a linear funtion of y. Hene, we an only estimate thedegrees of freedom using equation (2.9). As a onsequene, we have to omputethe �rst derivative of the PLSR estimator. This has been done before. Phataket al. (2002) ompute the �rst derivative of β̂
(m)

PLS in order to obtain asymptotiresults on the variane of the estimator. In that work, some general rules onmatrix di�erential alulus are applied to the formula in proposition 4.7. It turnsout that the alulation of the �rst derivative of PLSR is not only numeriallyinstable, it is also time-onsuming. The reason is that the formula for the �rstderivative of β̂ involves matries of order (mn)×n. We therefore hoose a di�erentapproah. Serneels et al. (2004) use a reursive formula for β̂
(m)

PLS that is equivalentto algorithm proposition 4.9 and derive a fast algorithm for the �rst derivativePLSR. We now show how to ompute the derivative of PLSR estimate ŷ in areursive way. We start with the remark that by de�nition,
Xi = Xi−1 − Pti−1

X .Using the de�nition of the weight vetors of PLSR, we onlude that
wi = X t

i y = wi−1 − X tPti−1
y .Let us de�ne the modi�ed latent omponents

ti = Xwi .We onlude that
ti = ti−1 − XX tPti−1

y .Furthermore, we onlude from proposition 4.9 that
ti = Xw̃i = X

(
wi −

w̃t
i−1X

tXwi

w̃t
i−1X

tXw̃i−1
w̃i−1

)
= ti −

tt
i−1ti

tt
i−1ti−1

ti−1 = ti − Pti−1
ti .Finally,

ŷ(i) = ŷ(i−1) + Pti
y .This leads to the following reursive algorithm for the omputation of ŷ.



54 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONAlgorithm 4.10. We de�ne K = XX t. After setting
t0 = t0 = ŷ(0) = 0 ,we iteratively ompute the PLSR estimates ŷ via

tm =





Ky m = 1

tm−1 − KPtm−1y m > 1
modi�ed latent omponents

tm = tm −Ptm−1tm latent omponents
ŷ(m) = ŷ(m−1) + Ptm

y preditionIn order to to ompute the �rst derivative of ŷ, we have to alulate the �rstderivative of the projetion operator. The formula an be found in propositionA.11 in the appendix.Algorithm 4.11 (First derivative of PLSR). After setting
t0 = t0 = ŷ(0) = 0 and dt1 = dt1 = K ,the �rst derivative of the PLSR estimator an be obtained by iteratively omputing

tm =





Ky m = 1

tm−1 − KPtm−1y m > 1
modi�ed latent omponents

∂tm

∂y
= ∂tm−1

∂y
− K

(
∂Ptm−1y

∂y

) derivative of tm

tm = tm −Ptm−1tm latent omponents
∂tm

∂y
= ∂tm−1

∂y
− ∂Ptm−1tm

∂y
derivative of tm

ŷ(m) = ŷ(m−1) + Ptm
y predition

∂by(m)

∂y
= ∂by(m−1)

∂y
+ ∂Ptmy

∂y
derivative of ŷWe an now de�ne the estimated degrees of freedom of PLSR with m omponentsvia d̂f(PLSR, m) = trae(∂ŷ(m)

∂y

)
.This is � by de�nition � an unbiased estimate of the degrees of freedom of PLSRin the ase of normally distributed error terms. Although its omputation is on-siderably faster than the one proposed in Phatak et al. (2002), it still su�ers fromnumerial instability. This leads to peuliar and sometimes apparently wrong
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Figure 4.1: The estimated degrees of freedom of PLSR as a funtion of the numberof omponents.results. This is illustrated with the following example. We onsider the linearregression model
y = Xβ + εwith p = 20 preditor variables and n = 500 examples. First, we hoose thepreditor matrix X from a multivariate normal distribution with zero mean andovariane matrix S equal to

sij =





1 , i = j

0.7 , i 6= j
.This leads to highly ollinear data X. The regression vetor β is a randomly ho-sen vetor β ∈ {0, 1}20. We assume that the error terms are normally distributedwith σ = 8. We ompute the degrees of freedom for all 20 omponents. Figure4.1 shows the peuliar behavior of the estimated degrees of freedom. We expetthe degrees of freedom to be upper-bounded by p = 20 � the number of preditorvariables. This is indiated by the dashed line. Note however that after a fewomponents (m ≥ 9), the estimated degrees of freedom exeed this value. Thefuntion displayed in Figure 4.1 still inreases and has the form of a jagged line.This phenomenon persistently ours for other data sets. We onjeture that



56 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONalgorithm 4.11 runs into serious numerial problems. Therefore, we reommendto be autious to implement the algorithm in its urrent form.



Chapter 5Penalized Partial Least SquaresNonlinear regression e�ets may be modeled via additive regression models of theform
Y = β0 + f1(X1) + · · · + fp(Xp) + ε , (5.1)where the funtions f1, . . . , fp have unspei�ed funtional form. An approahwhih allows a �exible representation of the funtions f1, . . . , fp is the expansionin B-Splines basis funtions (Hastie & Tibshirani 1990). To prevent over�tting,there are two general approahes. In the �rst approah, eah funtion fj is thesum of only a small set of basis funtions,

fj(x) =

Kj∑

k=1

βkjBkj(x) . (5.2)The basis funtions Bkj are hosen adaptively by a seletion proedure. The se-ond approah irumvents the problem of basis funtion seletion. Instead, weallow a generous amount Kj ≫ 1 of basis funtions in the expansion (5.2). Asthis usually leads to high-dimensional and highly orrelated data, we penalize theoe�ients βjk in the estimation proess (Eilers & Marx 1996). However, if thenumber p of preditors is large ompared to the number n of observations in theavailable sample, these methods are impratiable.Quite generally, a di�erent approah to deal with high dimensionality is to usedimension redution tehniques suh as Partial Least Squares Regression (PLSR)whih is presented in Chapter 4. In this hapter, we suggest an adaptation of thepriniple of penalization to PLSR. More preisely, we present a penalized version57



58 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESof the optimization problem (4.3) attahed to PLSR. Although the motivationstems from its use for B-splines transformed data, the proposed approah is verygeneral and an be adapted to other penalty terms or to other dimension redu-tion tehniques suh as Prinipal Components Analysis. It turns out that thenew method shares a lot of properties of PLSR and that that its omputation re-quires virtually no extra osts. Furthermore, we show that this new penalizationtehnique is losely related to the kernel trik that is illustrated in Setion 1.4.We show that penalized PLSR is equivalent to ordinary PLSR using a generalizedinner produt that is de�ned by the penalty term. In the ase of high-dimensionaldata, the new method is shown to be an attrative ompetitor to other tehniquesfor estimating generalized additive models. In Chapter 6, we highlighten the loseonnetion between penalized PLSR and preonditioned linear systems.This hapter is joint work with Anne-Laure Boulesteix and Gerhard Tutz.
5.1 Penalized Regression SplinesThe �tting of generalized additive models by use of penalized regression splines(Eilers & Marx 1996) has beome a widely used tool in statistis. The basi ideais to expand the additive omponent of eah variable Xj in basis funtions as in(5.2) and to estimate the oe�ients by penalization tehniques. As suggestedin Eilers & Marx (1996), B-splines are used as basis funtions. Splines are one-dimensional pieewise polynomial funtions. The points at whih the piees areonneted are alled knots or breakpoints. We say that a spline is of order d ifall polynomials are of degree ≤ d and if the spline is (d − 1) times ontinuouslydi�erentiable at the breakpoints. A partiular e�ient set of basis funtions areB-splines (de Boor 1978). An example of B-splines is given in Figure 5.1.The number of basis funtions depends on the order of the splines and the numberof breakpoints. For a given variable Xj, we onsider a set of orresponding B-splines basis funtions B1j , . . . , BK . These basis funtions de�ne a nonlinear map

Φj(x) = (B1j(x), . . . , BK(x))t .By performing suh a transformation on eah of the variables X1, . . . , Xp, the
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observation vetor xi turns into a vetor

zi = (B11(xi1), . . . , BK1(xi1), . . . , B1p(xip), . . . , BKp(xip))
t (5.3)

= Φ(xi) .of length pK. Here
Φ : R

p → R
pK ,

Φ(x) = (Φ1(x1), . . . , Φp(xp)) ,is the funtion de�ned by the B-splines. The resulting data matrix obtained bythe transformation of X has dimensions n× pK and will be denoted by Z in therest of the hapter. In the examples in Setions 5.5 and ??, we onsider the mostwidely used ubi B-splines, i.e. we hoose d = 3.The estimation of (5.1) is transformed into the estimation of the pK-dimensionalvetor β that onsists of the oe�ients βjk:
βt = (β11, . . . , βK1, . . . β12, . . . , βKp) =

(
βt

(1), . . . , β
t
(p)

)
.



60 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESAs explained above, the vetor β determines a nonlinear, additive funtion
f(x) = β0 +

p∑

j=1

fj(xj) = β0 +

p∑

j=1

K∑

k=1

βkjBkj(xj) = β0 + Φ(x)tβ .As Z is usually high-dimensional, the estimation of β by minimizing the squaredempirial risk
R̂(β) =

1

n

n∑

i=1

(yi − f(xi))
2 =

1

n
‖y − β0 − Zβ‖2usually leads to over�tting. Following Eilers & Marx (1996), we use for eahvariable many basis funtions, say K ≈ 20, and estimate by penalization. Theidea is to penalize the seond derivative of the funtion f ,

∫
(f ′′(x))

2
dx .Eilers & Marx (1996) show that the following di�erene penalty term is a goodapproximation of the penalty on the seond derivative of the funtions fj ,

P (β) =

p∑

j=1

m∑

k=3

λj(∆
2βkj)

2 .Here λj ≥ 0 are smoothing parameters that ontrol the amount of penalization.These are also alled the seond-order di�erenes of adjaent parameters. Thedi�erene operator ∆2βkj has the form
∆2βkj = (βkj − βk−1,j) − (βk−1,j − βk−2,j)

= βkj − 2βk−1,j + βk−2,j.This penalty term an be expressed in terms of a penalty matrix P . We denoteby DK the (K − 1) × K matrix
DK =




1 −1 . . .

. 1 −1 . .

. . . . .

. . . 1 −1






5.2. DIMENSION REDUCTION FOR B-SPLINES TRANSFORMATIONS 61that de�nes the �rst order di�erene operator. Setting
K2 = (DK−1DK)tDK−1DK ,we onlude that the penalty term equals

P (β) =

p∑

j=1

λjβ
t
(j)K2β(j) = βt(∆λ ⊗ K2)β .Here ∆λ is the p × p diagonal matrix ontaining λ1, . . . , λp on its diagonal and

⊗ is the Kroneker produt. The generalization of this method to higher-orderdi�erenes of the oe�ients of adjaent B-splines is straightforward. We simplyreplae K2 by
Kq = (DK−q+1 . . . DK)t(DK−q+1 . . .DK) .To summarize, the penalized least squares riterion has the form
R̂P (β) =

1

n
‖y − β01 − Zβ‖2 + βtPβ (5.4)with Z the transformed data that is de�ned in ( 5.3) and the penalty matrix Pde�ned as

P = ∆λ ⊗ Kq . (5.5)This is a symmetri matrix that is positive semide�nite.5.2 Dimension Redution for B-Splines Transfor-mationsAs a linear approah, PLSR might fail to yield high predition auray in thease of nonlinear relationships between preditors and responses. The idea totransform the original preditors using splines funtions preliminarily to PLSR inorder to inorporate suh nonlinear strutures has been proposed by Durand &Sabatier (1997) and Durand (1993) in di�erent variants. The method proposed byDurand & Sabatier (1997) is based on a variant of PLSR that may be omputedvia an iterative algorithm. They suggest an approah that inorporates splinestransformations of the preditors within eah iteration of the iterative algorithm.In ontrast, the method proposed by Durand (2001) is global. The preditors are



62 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARES�rst transformed using splines basis funtions as a preliminary step, then PLSRis performed on the transformed data matrix. The hoie of the degree d of thepolynomial piees and of the number of knots is performed by an either asendingor desending searh proedure that is not automati.For large numbers of variables, this searh proedure is omputationally intensive.We suggest an alternative approah based on the penalty strategy of Eilers &Marx (1996). In the next setion, we show how the penalty sheme of Eilers &Marx (1996) an be mapped into the PLSR dimension redution framework.
5.3 Partial Least Squares and PenalizationWe now present a general framework to ombine PLSR with penalization terms.We remark that this is not limited to spline transformed variables or the thespeial shape of the penalty matrix P that is de�ned in (5.5). For this reason,we present the new method in terms of the original data matrix X and we onlydemand that P is a symmetri matrix suh that Ip + P is positive de�nite.We start with a general response Y and then fous on univariate responses. Wemodify the optimization riterion (4.3) of PLS in the following way. The �rstomponent t1 = Xw1 is the solution of the problemargmax

w

wtX tY Y tXw

wtw + wtPw
. (5.6)Using Lagrangian multipliers and realling the de�nition

B = X tY Y tX ,we dedue that the solution must ful�ll
Bw1 = ν (Ip + P )w1 , ν ∈ R .For a general Y , this is alled a generalized eigenvalue problem. If Y = y isunivariate, we have B = bbt and the solution is

w1 = (Ip + P )−1
b .



5.3. PARTIAL LEAST SQUARES AND PENALIZATION 63We set
M = (Ip + P )−1 . (5.7)From now on, we only onsider univariate responses. Subsequent weight vetorsand omponents are omputed by de�ating X as desribed in Setion 4.1 andthen maximizing (5.6) with X replaed by Xi. In partiular, we an ompute theweight vetors and omponents of penalized PLSR by simply replaing wi = X t

i yby
wi = MX t

i yin algorithm 4.2. The following generalization of proposition 4.8 holds.Proposition 5.1. For penalized PLS, the matrix R = T tXW is upper bidiago-nal.The proof an be found in hapter 6. This proposition an be used for an e�ientomputation of the regression vetor. This is a generalization of proposition 4.9.Algorithm 5.2 (Penalized PLSR). For a penalty matrix P , we de�ne M =

(Ip + P )−1. After setting X1 = X, w̃0 = 0 and β̂
(0)

= 0, the weight vetors
wi, w̃i, the omponents ti and the regression vetors β̂

(i) of penalized PLSR aredetermined by iteratively omputing
wi = MX t

i y weight vetor
w̃i = wi −

ewt
i−1XtXwiewt

i−1XtX ewi−1
w̃i−1 primal weight vetor

β̂
(i)

= β̂
(i−1)

+
ewt

iX
tyewt

iX
tX ewi

w̃i regression vetor
ti = Xiwi omponent

Xi+1 = Xi −Pti
Xi de�ationNote that we de�ned penalized PLSR only in terms of the NIPALS algorithm.It is however straightforward to adapt the SIMPLS algorithm to the penalizationapproah. For a univariate response, we show their equivalene in orollary 6.4.As the two methods di�er for multivariate responses in the ase of PLSR, weexpet them to be di�erent for the penalized version as well.



64 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESIn the next setion, we derive a representation of penalized PLSR in terms of aKernel matrix and illustrate the geometri intuition behind the penalty term.
5.4 Kernel Penalized Partial Least SquaresThe omputation of the penalized PLSR estimator as presented in algorithm 5.2involves matries and vetors of dimension p × p and p respetively. If the num-ber of preditors p is very large, this leads to high omputational osts. In thissetion, we show that we an represent the penalized PLSR algorithm in termsof matries and vetors of dimension n × n and n respetively.Let us de�ne the n × n matrix K via

K = KM = (〈xi, xj〉M) = XMX t .This matrix is the Gram matrix or the kernel matrix of X if we use the innerprodut 〈·, ·〉M de�ned by M . In order to apply the kernel trik desribed in Se-tion 1.4, we have to show that the penalized PLSR estimator an be representedin terms of dual variables,
β̂

(m)
= MX tα(m) ,

α(m) ∈ R
n .To show this, we �rst reall equation (4.10) from whih follows that

X t
i y = X t

(
In − Pt1,...,ti−1

)
y = X t

(
y − ŷ(i−1)

)
.We onlude that the weight vetors wi of penalized PLSR are simply

wi = MX ty
(i)
res , y

(i)
res = y − ŷ(i−1) .Plugging this into proposition 4.9, we also obtain a dual representation of themodi�ed weight vetors

w̃i = MX tα̃i



5.4. KERNEL PENALIZED PARTIAL LEAST SQUARES 65by iteratively omputing
w̃i = wi −

w̃t
i−1X

tXwi

w̃t
i−1X

tXw̃i−1
w̃i−1

= MX ty(i)
res −

α̃
t
i−1XMX tXMX ty

(i)
res

α̃
t
i−1XMX tXMX tα̃i−1

MX tα̃i−1

= MX t

(
yres − α̃

t
i−1K

2
My

(i)
res

α̃
t
i−1K

2
Mα̃i−1

α̃i−1

)
.This leads in turn to a dual representation of the regression vetor β̂

(i). We annow state algorithm 5.2 in terms of the Kernel matrix KM and the responsevetor y.Algorithm 5.3. For a penalty term P , we de�ne M = (Ip + P )−1 and KM =

XMX t. After setting
α(i) = α̃i = 0 ,the dual representation of the penalized PLSR estimator an be omputed itera-tively via

y
(i)
res = y − ŷ(i−1) residuals
α̃i = y

(i)
res −

fαt

i−1K2
M

y
(i)
resfαt

i−1K2
M
fαi−1

α̃i−1 primal weight vetor
α(i) = α(i−1) +

fαt

iKM yfαt

iK
2fαi

α̃i regression vetor
ti = KMα̃i omponent

ŷ(i+1) = ŷ(i) + Pti
y estimation of yA Kernel version of PLSR has already been de�ned in Rännar et al. (1994) inorder to speed up the omputation of PLSR. The importane of this �dual� rep-resentation beomes apparent if we want to extend PLSR to nonlinear problemsby using the kernel trik. We already disussed this aspet in Setion 1.4. Anonlinear version of PLSR using the kernel trik is presented in Rosipal & Trejo(2001). Note that ordinary Kernel PLSR applied to the transformed data (5.3)is in fat Kernel PLSR with the feature map Φ de�ned by the B-splines.If we represent penalized PLSR in terms of the kernel matrix KM, we realizethat penalized PLSR is losely onneted to the kernel trik in other respets.It follows immediately from algorithm 5.3 that penalized PLSR is equivalent to



66 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESPLSR with the usual inner produt replaed by the inner produt
〈x, z〉M = xtMz .Why is this a sensible inner produt? Let us onsider the eigen deomposition ofthe penalty matrix P ,

P = SΘSt .We prefer diretion s suh that stPs is small, that is we prefer diretions thatare de�ned by eigenvetors si of P with a small orresponding eigenvalue θi. Ifwe represent the vetors x and z in terms of the eigenvetors of P ,
x̃ = Stx , z̃ = Stz ,we onlude that

〈x, z〉M = x̃t (Ip + Θ)−1
z̃ =

p∑

i=1

1

1 + θi

x̃iz̃i .This implies that diretions si with a small eigenvalue θi reeive a higher weight-ing than diretions with a large eigenvalue. This allows an intuitive geometriinterpretation of the penalty term.5.5 Example: Birth Data SetIn this setion, we analyze a real data set desribing pregnany and delivery for 42infants who were sent to a neonatal intensive are unit after birth. The data aretaken from the R software pakage exatmaxsel and are introdued in Boulesteix(2006). Our goal is to predit the number of days spent in the neonatal inten-sive are unit (y) based on the following preditors: birth weight (in g), birthheight (in m), head irumferene (in m), term (in week), age of the mother (inyear), weight of the mother before pregnany (in kg), weight of the mother be-fore delivery (in kg), height of the mother (in m), time (in month). Some of thepreditors are expeted to be strongly assoiated with the response (e.g., birthweight, term), in ontrast to poor preditors like time or height of the mother.The parameter settings are as follows. We make the simplifying assumption that
λ = λ1 = . . . = λp, whih redues the problem of seleting the optimal smoothing



5.5. EXAMPLE: BIRTH DATA SET 67parameter to a one-dimensional problem. As already mentioned above, we useubi splines. Furthermore, the order of di�erene of adjaent weights is set to 2.The shape of the �tted funtions fj depends on the two model parameters λand m. We �rst illustrate that the number m of penalized PLSR omponentsontrols the smoothness of the estimated funtions. For this purpose, we onlyonsider the preditor variable �weight�. Figure 5.2 displays the �tted funtionsobtained by penalized PLSR for λ = 2000 and 4 di�erent numbers of omponents
m = 1, 5, 9, 13. For small values of m, the obtained funtions are smooth. For
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Figure 5.2: Fitted funtion for the preditor variable �weight� using penalizedPLSR. The value of λ is 2000 and the numbers of omponents are 1, 5 (top) and
9, 13 (bottom).higher values of m, the funtions adapt themselves more and more to the datawhih leads to over�tting for high values of m.We ompare our novel method to PLSR without penalization as desribed inDurand (2001) and the gam() pakage in R. This is the implementation of anadaptive seletion proedure for the basis funtions in (5.2). More details an befound in Wood (2000) and Wood (2006). This is the standard tool for estimat-ing generalized additive models. In order to assess the performane of the threemethods, we randomly split the data into a training set of size 32 and a test setof size 10. The optimal parameter values are hosen by minimizing the leave-one-out error on the training set. The optimal model is then evaluated at the test set.



68 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESWe remark that the split into training and test set is done before transformingthe original preditors using B-splines. This random splitting is repeated 50 times.In order to have omparable results, we normalize the response. i.e. var(y) = 1.A boxplot of the test error for the three methods is displayed in Figure 5.3.
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Figure 5.3: Boxplot of the 50 test errors for the three methods GAM, penalizedPLSR and PLSR without penalization.The median of the test errors and the optimal parameter values (estimated onthe omplete data set via leave-one-out) an be found in Table 5.1. Furthermore,we ondut a Wiloxon rank sum test to test the alternative hypothesis that thetest error of penalized PLSR is lower than the test error of GAM and PLSRrespetively. The p-values an also be found in Table 5.1. Penalized PLSR is themedian test error mopt λopt p-valuesGAM 0.139 � � 0.089penalized PLSR 0.090 2 330 �PLSR 0.145 8 � 0.004Table 5.1: Comparison of GAM, penalized PLS and PLS. The �rst three olumnsdisplay the median test error and optimal model parameters for the birth data setand normalized response. The last olumn displays the p-value of the Wiloxonrank sum test.best out of the three method. In partiular, it reeives a onsiderably lower errorthan PLSR without penalization.



5.6. CONCLUSION 695.6 ConlusionIn this hapter, we proposed an extension of Partial Least Squares Regressionusing penalization tehniques. Apart from its omputational e�ieny (it is vir-tually as fast as PLSR), it also shares a lot of mathematial properties of PLSR.This will be stressed further in the next hapter. There, we prove that penalizedPLSR is equal to a preonditioned onjugate gradient desent. Our new methodalso obtains good results in appliations. In the example that is disussed in Se-tion 5.5, PLSR learly outperforms PLSR without penalization. Furthermore,the results indiate that it is a ompetitor of gam() in the ase of very high-dimensional data.We might think of other penalty terms. Kondylis & Whittaker (2006) onsidera preonditioned version of PLSR by giving weights to the preditor variables.Higher weights are given to those preditor variables that are highly orrelatedto the response. These weights an be expressed in terms of a penalty matrix.Goutis & Fearn (1996) ombine PLS with an additive penalty term to data de-rived from near infra red spetrosopy. The penalty term ontrols the smoothnessof the regression vetor.The introdution of a penalty term an easily be adapted to other dimensionredution tehniques. For example, for Prinipal Components Analysis, the pe-nalized optimization riterion is
max

w

var(Xw)

wtw + wtPw
.The novel penalized PLSR approah has however one drawbak. The amountof smoothness used for any of the additive omponents fj is the same. Usingdi�erent values λj for eah omponent leads to a model seletion problem thatinvolves a high-dimensional model parameter λ = (λ1, . . . , λp). This is ofteninfeasible. In Setion 5.5, we illustrated that the amount of smoothness an alsobe ontrolled in terms of the number m of omponents. In order to obtain more�exibility, it might be possible to assign di�erent numbers of omponents to eahpreditor variable. An elegant way to do so is the Boosting framework that isintrodued in Chapter 9. We disuss a possible ombination of penalized PLSRand Boosting in Chapter 10.
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Chapter 6
From Linear Regression to LinearAlgebra
As already mentioned in Setion 1.3, the OLS estimator β̂OLS is the solution ofargmin

β
‖y − Xβ‖ . (6.1)This problem is equivalent to omputing the solution of the normal equations

Aβ = b , (6.2)with
A = X tX and b = X ty .Using the Moore-Penrose inverse of A, it follows that � as displayed in (1.11) �

β̂OLS = A−b =

rk(X)∑

i=1

zi .We already mentioned in Setion 1.3 that in the ase of high-dimensional data,the matrix A is (almost) singular and that the OLS estimator performs poorlyon new data sets. A popular strategy is to regularize the least squares riterion(6.1) in the hope of improving the performane of the estimator. This oftenorresponds to �nding approximate solutions of the normal equations (6.2). Forexample, Ridge Regressionargmin
β

{
‖y − Xβ‖2 + λ‖β‖2

}
, λ > 0 .71



72 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRAorresponds to the solution of the modi�ed normal equations
(A + λIp) β = b .Here λ > 0 is the Ridge parameter. Prinipal Components Regression uses theeigen deomposition of A,

A = UΛU t =

p∑

i=1

λiuiu
t
i ,and approximates A and b via the �rst m eigenvetors

A ≈
∑m

i=1 λiuiu
t
i , b ≈

∑m

i=1 (ut
ib)ui .The Prinipal Component Regression (PCR) estimator is then de�ned as

β̂PCR =
m∑

i=1

zi .Here zi is the omponent of β̂OLS along the ith prinipal omponent. It an beshown that the PLSR algorithm 4.2 for a univariate response y is equivalent tothe onjugate gradient method (Hestenes & Stiefel 1952). This is a proedure thatiteratively omputes approximate solutions of (6.2) by minimizing the quadratifuntion
φ(x) =

1

2
βtAβ − βtb =

1

2
〈β, Aβ〉 − 〈β, b〉 (6.3)along diretions that are A-orthogonal. (A preise de�nition of the algorithm isgiven below.) Reall that two vetors x and x′ are A-orthogonal if

〈x, x′〉A = xtAx′ = 0 .The approximate solution of the onjugate gradient method obtained after msteps is equal to the PLSR estimator obtained after m iterations. The onjugategradient algorithm is in turn losely related to Krylov subspaes and the Lanzosalgorithm (Lanzos 1950). The latter is a method for approximating eigenvalues.The onnetion between PLSR and these methods is well-elaborated in Phatak &de Hoog (2002). We now establish a similar onnetion between penalized PLSR



73and the above mentioned methods. Set
AM = MA and bM = Mb .Here, M is the matrix (5.7) that is de�ned by the penalty term P of penalizedPLSR. We now illustrate that penalized PLSR �nds approximate solutions of thepreonditioned normal equation

AMβ = bM . (6.4)We remark that the following results are also valid for PLSR by setting M = Ip.De�nition 6.1. For every vetor c ∈ Rd and every matrix C ∈ Rd×d, we all theset of vetors
c, Cc, . . . , Cm−1cthe Krylov sequene of length m. The spae spanned by this Krylov sequene isalled the Krylov spae of C and c and is denoted by K(m)(C, c).Let us start with the following observation.Lemma 6.2. The spae spanned by the weight vetors w1, . . . , wm of penalizedPLSR equals the Krylov spae K(m)(AM, bM). The spae spanned by the penalizedPLSR omponents t1, . . . , tm equals the Krylov spae K(m)(KM, KMy).This is the generalization of a result for PLSR. Reall that KM = XMX t.Proof. This an be shown via indution. For m = 1, we know that w1 = bMand t1 = XbM = XMX ty = KMy. For a �xed m > 1, we onlude fromthe indution hypothesis and (4.12) that every vetor s that lies in the span of

t1, . . . , tm is of the form
s = Xv , v ∈ span{w1, . . . , wm} = K(m) (AM, bM) .We onlude that

wm+1 = MX t
m+1y = MX ty − MX tPt1,...,tm

y = Mb − MX tXs .This implies that
wm+1 = bM − AMs ∈ K(m+1) (AM, bM) .



74 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRANote that
K(m) (KM, KMy) = XK(m) (AM, bM) .It follows that

tm+1 = Xm+1wm+1 = Xwm+1 − Pt1,...tm
Xwm+1︸ ︷︷ ︸

∈K(m)(KM ,KM y)

∈ K(m+1) (KM, KMy) .This onludes the proof.Corollary 6.3. The penalized PLSR estimator obtained after m steps is equal tothe solution of the onstrained minimization problemargmin
β

‖y − Xβ‖2suh that β ∈ K(m) (AM, bM)Proof. This follows immediately from proposition 4.7.Corollary 6.4. For univariate penalized PLSR, the omponents derived by theNIPALS algorithm are (up to the sign) equal to the omponents derived by SIM-PLS de�ned in equations (4.5), (4.6) and (4.7).The equivalene of both methods for PLSR is shown in de Jong (1993).Proof. We show via indution that the omponents t1, . . . , tm derived from SIM-PLS span the spae K(m) (KM, KMy). For m = 1, this is obviously true, as
t1 = KMy. The Lagrangian funtion assoiated to the optimization problem ofSIMPLS is

L(w) = wtb − λ
(
wtw + wtPw − 1

)
−

m∑

i=1

µiw
tX tti .Computing the �rst derivative, we obtain the equation

b − 2λ (Ip + P )wm+1 −
m∑

i=1

µiX
tti = 0 .This implies that

wm+1 ∼ (Ip + P )−1

(
b −

m∑

i=1

µiX
tti

)
= bM −

m∑

i=1

µiMX tti .



75Using the indution hypothesis, we onlude that
tm+1 ∼ XbM −

m∑

i=1

µiXMX tti = KMy −
m∑

i=1

µiKMti ∈ K(m+1) (KM, KMy) .

Finally, we show the following result.Proposition 6.5. The weight vetors w1, . . . , wm of penalized PLS are mutually
M−1-orthogonal. The matrix R = T tXW is upper bidiagonal.Proof. It follows from the de�nition of the penalized PLS weight vetors andlemma 4.4 that for i > j

〈wi, wj〉M−1 =
〈
MX t

i y, wj

〉
M−1 = ytXiMM−1wj = ytXiwj = yt

0 = 0 .Furthermore,
ti ∈ K(m)(KM, KMy) = XK(m)(AM, bM) = Xspan (w1, . . . , wi) .We an onlude that

MX tti ∈ MX tXK(i)(AM, bM)

= AMK(i)(AM, bM)

⊂ K(i+1)(AM, bM)

= span (w1, . . . , wi+1) .In partiular,
MX tti =

i+1∑

k=1

αkwk . (6.5)Now reall that the weight vetors are M−1-orthogonal. We onlude that for
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j > i + 1

tt
iXwj = 〈MX tti, wj〉M−1

(6.5)
= 〈

i+1∑

k=1

αkwk, wj〉M−1

=

i+1∑

k=1

αk〈wk, wj〉M−1

= 0

6.1 Preonditioned Conjugate Gradient MethodsWe now present the onjugate gradient method for the preonditioned normalequation (6.4). The onjugate gradient method is normally applied if the involvedmatrix is symmetri. Note that in general, the matrix AM is not symmetri withrespet to the anonial inner produt, but with respet to the inner produt
〈x, x′〉M−1 = xtM−1x′de�ned by M−1, as

〈x, AMx′〉M−1 = xtM−1MAx′ = xtAx′ = xtAtM tM−1x′ = 〈AMx, x′〉M−1 .We an rewrite the quadrati funtion φ de�ned in (6.3) as
φ(β) =

1

2
〈β, AMβ〉M−1 − 〈β, bM〉M−1 .We replae the anonial inner produt by the inner produt de�ned by M−1and minimize this funtion iteratively along diretions that are AM-orthogonal.De�nition 6.6. We say that two vetors x and x′ are AM orthogonal withrespet to the inner produt de�ned by M−1 if

〈x, AMx′〉M−1 = xtM−1AMx′ = xtAx′ = 0 .



6.1. PRECONDITIONED CONJUGATE GRADIENT METHODS 77We start with an initial guess β0 = 0 and de�ne
d0 = r0 = bM − AMβ0 = bM .The quantity dm is the searh diretion and rm = bM −AM is the residual. Fora given diretion dm, we have to determine the optimal step size, that is we haveto �nd
am = argmin

a
φ (βm + adm) .It is straightforward to hek that

am =
〈dm, rm〉M−1

〈dm, AMdm〉M−1

.The new approximate solution is then
βm+1 = βm + amdm .After updating the residuals via

rm+1 = bM − AMβm+1,we de�ne a new searh diretion dm+1 that is AM -orthogonal to the previoussearh diretions. This is ensured by projeting the residual rm onto the spaethat is AM-orthogonal to d0, . . . , dm. We obtain
dm+1 = rm+1 −

m∑

i=0

〈rm+1, AMdi〉M−1

〈di, AMdi〉M−1

di .Algorithm 6.7 (Preonditioned onjugate gradient method). After setting β0 =

0 and d0 = r0 = bM , the approximate solutions βm of the preonditioned linearsystem (6.4) are determined by iteratively omputing
βm+1 = βm +

〈dm,rm〉
M−1

〈dm,AM dm〉
M−1

dm step size
rm+1 = bM − AMβm+1 residuals
dm+1 = rm+1 − 〈rm+1,AM dm〉

M−1

〈dm,AM dm〉
M−1

dm searh diretionIn the rest of this setion, we prove the following result.Theorem 6.8. The penalized PLSR algorithm is equivalent to the preonditionedonjugate gradient algorithm 6.7 for the preonditioned system (6.4).



78 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRAThe following lemma follows almost immediately from the de�nition of the algo-rithms and an be proven via indution.Lemma 6.9. We havespan {d0, . . . , dm−1} = span {r0, . . . , rm−1} = span {β1, . . . , βm} = K(m)(AM, bM) .Lemma 6.10. We have
βm =

m−1∑

i=0

〈di, bM〉M−1

〈di, AMdi〉M−1

di .Proof. This orresponds to the iterative de�nition of βm. We only have to showthat
〈di, ri〉M−1 = 〈di, bM〉M−1 .Note that

ri = bM −
i−1∑

j=0

ajAMdj .As � by de�nition � di is AM-orthogonal with respet to M−1 onto all diretions
dj , j < i, the proof is omplete.Now we are able to proof the equivalene of penalized PLSR and the preondi-tioned onjugate gradient method.Proof of theorem 6.8. As the searh diretions di span the Krylov spae K(m)(AM, bM)(see lemma 6.9), we an replae the matrix W in formula (4.14) of the penalizedPLSR estimator by the matrix D = (d0, . . . , dm−1). As the searh diretions are
AM -orthogonal, we have

β̂
(m)

= D
(
DtAD

)−1
Dtb

= D
(
DtM−1AMD

)−1
DtM−1bM

=
m−1∑

i=0

〈di, bM〉M−1

〈di, AMdi〉M−1

di .and this equals the formula in lemma 6.10.



6.2. WHY KRYLOV SUBSPACES? 79Corollary 6.11. The length of the regression vetor β̂ of penalized PLSR ismonotonially inreasing, if we use the norm de�ned by M−1

‖β̂(1)‖M−1 ≤ ‖β̂(2)‖M−1 ≤ . . . ≤ ‖β̂(p)‖M−1 .Proof. In the speial ase of PLSR (that is M = Ip), this result is alreadyknown (de Jong 1995) and an be proven by using the equivalene of PLSR andthe onjugate gradient method. Replaing the usual inner produt by the innerprodut de�ned by M−1 in the proof in Phatak & de Hoog (2002), we obtain theresult for penalized PLSR. As this general result is not needed in the rest of thework, we omit the details for the sake of briefness.6.2 Why Krylov Subspaes?Krylov spaes are losely onneted to the Lanzos algorithm (Lanzos 1950), amethod for approximating eigenvalues or the generalized inverse of a symmetrimatrix A. We approximate the eigenvalues or the inverse of A by restriting themap that is de�ned by A onto a Krylov subspae K(m)(A, b) de�ned by A and aright-hand side b. A priori, this does not make sense, as for a vetor v that lies in
K(m), the vetor Av does not neessarily lie in K(m). We therefore de�ne the map
A restrited to K(m) in the following way. Let us assume that the olumns of thematrix W form an orthonormal basis of K(m). In partiular, we an represent vas v = Wu. After applying the linear map A to v, we projet Av onto K(m).The projetion onto K(m) is WW t, hene the image of AWu is

WW tAWu .It follows that (in terms of the basis W ), the map A|K(m) that is de�ned as
K(m)(A, b)

A−→ K(m+1)(A, b)
P
K(m)−→ K(m)(A, b)is

D(m) = W tAW ∈ R
m×m . (6.6)The eigenvetors and eigenvalues of D(m) are alled ritz pairs.



80 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRAThe inverse of A is then approximated by W (W tAW )
−1

W t. An approximatesolution of the normal equations (6.2) is
β̂

(m)
= W

(
W tAW

)−1
W tb .Note that this equals the formula for the PLSR estimator presented in (4.14), aswe showed in lemma 6.2 and proposition 4.5 that the PLS weight vetors W �if they are standardized to length 1 � form an orthonormal basis of the Krylovspae K(m).In general, Krylov methods �nd approximate solutions of (6.2) by searhing forsolutions in Krylov spaes and we showed that the PLSR estimator is an ap-proximate OLS solution in a Krylov subspae. Why is this a sensible idea? Thefollowing lemma shows that for a ertain lass of matries A, the vetor A−bis an element of a Krylov spae de�ned by A and b. Hene there is a naturalrepresentation of A−b in terms of the Krylov sequene and we hope that we an�nd an approximate solution in a Krylov subspae of low dimension.Proposition 6.12. If A ∈ Rp×p is symmetri or if A is regular, there is apolynomial π ∈ R[X] of degree ≤ p − 1 suh that

A− = π(A) .In partiualar
A−b ∈ K(p)(A, b)for any vetor b.For a general matrix A, it an be shown (Ibsen & Meyer 1998) that the samestatement is true if we replae the Moore-Penrose inverse by the Drazin inverse(Drazin 1968).Proof. For a symmetri matrix A = UΛU t, let us de�ne the polynomial π viathe at most p equations

π(λi) =





1
λi

λi 6= 0

0 λi = 0
.



6.2. WHY KRYLOV SUBSPACES? 81In matrix notation, this equals π(Λ) = Λ
−. This polynomial orresponds to thede�nition of the Moore-Penrose inverse of a symmetri matrix that is presentedin proposition A.13. It follows that

π(A) = A− .If A is regular, we an use the Theorem of Caley-Hamilton whih states that
χA(A) = 0 .Here,

χA(λ) =

p∑

i=0

ciλ
iis the harateristial polynomial of A. As A is regular, we have c0 6= 0. Fromthis we an onlude that

Ip = A

(
− 1

c0

p−1∑

i=0

ci+1A
i

)

︸ ︷︷ ︸
=π(A)

.As the degree of π is p − 1, the proof is omplete.If we transfer this into the ontext of linear regression estimators, we obtain thefollowing two orollaries.Corollary 6.13. After at most p iterations, the PLSR estimator equals the OLSestimator.This result is well-known and is usually proven using a geometri argument.Proof. This follows immediately from orollary 6.3 whih states that the PLSRestimator after m steps is equivalent to the OLS estimator under the additionalonstraint that is an element of the Krylov spae K(m)(A, b).Corollary 6.14. Suppose that A = X tX is regular. After at most p iterations,the penalized PLSR estimator equals the OLS estimator.Proof. If A is invertible, it follows from proposition 6.12 that
A−1

MbM = π (AM) bM .



82 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRAFurthermore,
A−1

MbM = (MA)−1
Mb = A−1M−1Mb = A−1b = β̂OLS .We an onlude that the OLS estimator is an element of a Krylov spae thatis de�ned by AM and bM . Now the statements follows readily from orollary6.3.From now on, we only onsider PLSR and abbreviate

K(m) = K(m)(A, b), .As already mentioned above, PLSR tries to �nd an approximation of β̂OLS in aKrylov spae of low dimension. The properties of Krylov spaes determine someof the statistial properties of the orresponding estimator. This is disussed inmore detail in Chapter 7. There, we need a formula for the smallest dimension
m∗ suh that the OLS estimator lies in the Krylov spae K(m∗). Reall the eigendeomposition

A = UΛU tof A and set s = Ub. We de�ne
M = {λi|si 6= 0} , m∗ = |M| .The quantity m∗ is alled the grade of A with respet to b.Proposition 6.15. We have

dimK(m) =





m m ≤ m∗

m∗ m > m∗
.In partiular

dimK(m∗) = dimK(m∗+1) = . . . = dimK(p) = m∗ . (6.7)Proof. This is a well-know result. We �rst show that dimK(m∗) = m∗. Suppose



6.2. WHY KRYLOV SUBSPACES? 83that
m∗−1∑

j=0

γjA
jb = 0for some γ0, . . . , γm∗−1 ∈ R. Setting f(λ) =

∑
γiλ

i and using the eigen deom-position of A , this equation is equivalent to
f (Λ) s = 0It follows that f(λi)si = 0 for i = 1, . . . , p. Hene, eah element λi ∈ M is azero of the polynomial f(λ). This is a polynomial of degree ≤ m∗ − 1 . As it has

m∗ = |M| di�erent zeroes, it must be trivial, i.e. γj = 0.Next, we show that if m > m∗, we have dimK(m) = m∗ . It is lear that
dimK(m) ≥ m∗ as K(m∗) ⊂ K(m) . Let S be any set of m∗ + 1 vetors in theKrylov sequene. Set

I = {i ∈ {1, . . .m}|Ai−1b ∈ S} .Hene |I| = m∗ + 1. The ondition that S is linear dependent is equivalent tothe following. There is a nontrivial polynomial
g(λ) =

∑

i∈I

γiλ
isuh that g (λi) = 0 for λi ∈ M. As the polynomial g is of degree |I| = m∗ + 1and |M| = m∗, there is always a nontrivial polynomial g that ful�lls g (λi) = 0for λi ∈ M.If A and b represent normal equations, we have s = ΣV ty and

M = {λi 6= 0|vt
iy 6= 0} .It follows from its de�nition that

m∗ ≤ rk(A) .The inequality is strit if A has non-zero eigenvalues of multipliity > 1 or ifthere is a prinipal omponent vi that is not orrelated to y, i.e. vt
iy = 0 .



84 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRA6.3 A Polynomial RepresentationIn the last setion, we showed that the PLSR estimator obtained after m stepslies in a Krylov subspae of dimension m. Hene there is a polynomial π(m) ofdegree ≤ m − 1 suh that
β̂

(m)

PLS = π(m) (A) b .This polynomial depends on the matrix D(m) de�ned in (6.6) and determinesthe shrinkage properties of PLSR that are illustrated in Chapter 7. In order toshow that the degree of the polynomial is exatly m− 1, we need to ollet somewell-known properties of the matrix D(m).Proposition 6.16. The matrix D(m) is symmetri and positive semide�nite.Furthermore, D(m) is tridiagonal, that is dij = 0 for |i − j| ≥ 2.Proof. The �rst two statements are obvious. Let i ≤ j − 2. As wi ∈ K(i) , thevetor Awi lies in the subspae K(i+1). As j > i + 1, the vetor wj is orthogonalon K(i+1), in other words 〈wj, Awi〉 = 0. As D(m) is symmetri, we also have
〈wi, Awj〉 = 0 whih proves the assertion.De�nition 6.17. We say that a symmetri tridiagonal matrix D is unreduedif all subdiagonal entries are non-zero, i.e. di,i+1 6= 0 for all i.Proposition 6.18. If dimK(m) = m, the matrix D(m) is unredued. More pre-isely, all subdiagonal elements are > 0.Proof. Set pi = Ai−1b and denote by w1, . . . , wm the basis of PLS weight vetors.Its existene is guaranteed as we assume that dimK(m) = m. We have to showthat the subdiagonal elements 〈wi, Awi−1〉 are >0. As the length of wi doesnot hange the sign of this expression, we an assume that the vetors wi arenot normalized to have length 1. As the weight vetors lie in the Krylov spae
K(m) and are mutually orthogonal (reall proposition 4.5), we onlude that theweight vetors w1, . . . , wm are equal to the Gram-Shmidt basis obtained from
p1, . . . , pm. This implies

wi = pi −
i−1∑

k=1

〈pi, wk〉
〈wk, wk〉

wk . (6.8)As the vetors wi are pairwise orthogonal, it follows that
〈wi, pi〉 = 〈pi, pi〉 > 0 . (6.9)



6.3. A POLYNOMIAL REPRESENTATION 85We onlude that
〈wi, Awi−1〉

(6.8)
=

〈
wi, A

(
pi−1 −

i−2∑

k−1

〈pi−1, wk〉
〈wk, wk〉

wk

)〉

Api−1=pi
= 〈wi, pi〉 −

i−2∑

k=1

〈pi−1, wk〉
〈wk, wk〉

〈wi, Awk〉prop.6.16
= 〈wi, pi〉

(6.9)
= 〈pi, pi〉 > 0 .Proposition 6.19. The eigenvalues of an unredued matrix are distint.The proof van be found in ?.Remark 6.20. All eigenvalues of D(m∗) are eigenvalues of A.Proof. Reall that D(m∗) represents the map

A|K(m∗) : K(m∗) A−→ K(m∗+1) = K(m∗) .with respet to the basis W (m∗). As any eigenvalue of A|K(m∗) is obviously aneigenvalue of A, the proof is omplete.Proposition 6.21. If dimK(m) = m, we have det
(
D(m)

)
6= 0.Proof. Let us start with the remark that the harateristial polynomials χ(m) of

D(m) are related in the following way,
χ(m) (λ) = (dm,m − λ)χ(m−1) (λ) − d2

m−1,mχ(m−2) (λ) . (6.10)Here, di,j is the (i, j) entry of the matrix D(m). Furthermore, both χ(m−1) and
χ(m−2) are polynomials with non-negative zero's. The two polynomials must havea di�erent sign on {x ≤ 0}. Suppose that m is the smallest number suh that
D(m) is not regular. This implies that 0 is an eigenvalue of D(m). Plugging λ = 0into (6.10), we obtain

dm,mχ(m−1) (0) = d2
m−1,mχ(m−2) (0) .As the signs of χ(m−1) (0) and χ(m−2) (0) annot be equal and χ(m−1) (0) 6= 0, thisis only possible if dm−1,m = 0. Now reall proposition 6.18 whih implies that

dm−1,m = 0 is only possible if m > m∗.



86 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRADenote the m di�erent eigenvalues of D(m) by
µ

(m)
1 > . . . > µ(m)

m > 0 . (6.11)These eigenvalues are alled ritz values. Set
f (m)(λ) = 1 −

m∏

i=1

(
1 − λ

µ
(m)
i

)
. (6.12)This is a polynomial of degree m. As f (m) = 0, there is a polynomial π(m) ofdegree m − 1 suh that

f (m)(λ) = λπ(m)(λ) . (6.13)Proposition 6.22 ((Phatak & de Hoog 2002)). Suppose that m ≤ m∗. We have
β̂

(m)

PLS = π(m)(A)b ,with the polynomial π(m) de�ned in (6.13).Proof. The polynomial π(m) is simply the polynomial representation of the inverseof D(m)

(
D(m)

)−1
= π(m)

(
D(m)

)
.This follows from (6.13). We plug this into the formula of proposition 4.7 andobtain

β̂
(m)

PLS = W (m)π(m)
((

W (m)
)t

AW (m)
) (

W (m)
)t

b .Reall that the olumns of W (m) form an orthonormal basis of K(m). It followsthat W (m)
(
W (m)

)t is the operator that projets on the spae K(m). In partiular
W (m)

(
W (m)

)t
Ajb = Ajbfor j = 1, . . . , m − 1. This implies that

β̂
(m)

PLS = π(m)(A)b .



Chapter 7
Shrinkage Properties of PartialLeast Squares
In this hapter, we study the shrinkage properties of PLS regression. It is wellknown (Frank & Friedman 1993) that we an express the PLSR estimator ob-tained after m steps in the following way:

β̂
(m)

PLS =

rk(X)∑

i=1

f (m)(λi)zi ,where zi is the omponent of the Ordinary Least Squares (OLS) estimator alongthe ith prinipal omponent of the ovariane matrix X tX and λi is the orre-sponding eigenvalue. The quantities f (m)(λi) are alled shrinkage fators. Weshow that these fators are determined by the tridiagonal matrix D(m) de�ned in(6.6). Combining the results of Butler & Denham (2000) and Phatak & de Hoog(2002), we give a simpler and learer proof of the shape of the shrinkage fatorsof PLSR and derive some of their properties. In partiular, we reprodue thefat that some of the values f (m)(λi) are greater than 1. This was �rst proved byButler & Denham (2000).We argue that these �peuliar shrinkage properties� (Butler & Denham 2000) donot neessarily imply that the Mean Squared Error (MSE) of the PLSR estimatoris worse ompared to the MSE of the OLS estimator. In the ase of deterministishrinkage fators, i.e. fators that do not depend on the response y, any value∣∣f (m) (λi)
∣∣ > 1 is of ourse undesirable. But in the ase of PLSR, the shrinkagefators are stohasti � they also depend on y . In partiular, bounding the ab-87



88CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESsolute value of the shrinkage fator by 1 might not automatially yield a lowerMSE, in disagreement to what is onjetured e.g. in Frank & Friedman (1993).Having issued this warning, we explore whether bounding the shrinkage fatorsleads to a lower MSE or not. It is very di�ult to derive theoretial results, asthe quantities of interest - β̂
(m)

PLS and f (m)(λi) respetively - depend on y in aompliated, nonlinear way. As a substitute, we study the problem on severalarti�ial data sets and one real world example. It turns out that in most ases,the MSE of the bounded version of PLSR is indeed smaller than the one of PLSR.During the rest of the hapter we oasionally make the assumption that
dimK(m) = m . (7.1)The maximal number for whih this holds is m∗ (see proposition 6.15). Notehowever that

K(m∗−1) ⊂ K(m∗) = K(m∗+1) = . . . = K(p)(see (6.7)) and the PLSR solutions do not hange anymore.7.1 What is Shrinkage?We have presented two estimators for the regression parameter β � OLS and(penalized) PLSR � whih also de�ne estimators for Xβ via
ŷ = Xβ̂ .One possibility to evaluate the quality of an estimator is to determine its MeanSquared Error (MSE). In general, the MSE of an estimator θ̂ for a vetor-valuedparameter θ is de�ned asMSE(θ̂) = E

[trae(θ̂ − θ
)(

θ̂ − θ
)t
]

= E

[(
θ̂ − θ

)t (
θ̂ − θ

)]

=
(
E
[
θ̂
]
− θ

)t (
E
[
θ̂
]
− θ

)
+ E

[(
θ̂

t − E
[
θ̂
])t (

θ̂
t − E

[
θ̂
])]

.



7.1. WHAT IS SHRINKAGE? 89This is the well-known bias-variane deomposition of the MSE. The �rst part isthe squared bias and the seond part is the variane term.We start by investigating the lass of linear estimators, i.e. estimators thatare of the form θ̂ = Hy for a matrix H that does not depend on y. It followsimmediately from the regression model (1.9) and (1.7) that for a linear estimator,
E
[
θ̂
]

= HXβ , Var [θ̂] = σ2trae (HH t) .The OLS estimators are linear, as
β̂OLS = (X tX)

−
X ty , ŷOLS = X (X tX)

−
X ty .Note that the estimator of ŷOLS is simply the projetion PX onto the spae thatis spanned by the olumns of X. The estimator ŷOLS is unbiased as

E [ŷOLS] = PXXβ = Xβ .The estimator β̂OLS is only unbiased if β ∈ range (X tX)
− .

E
[
β̂OLS

]
= E

[(
X tX

)−
X ty

]
=
(
X tX

)−
X tE [y] =

(
X tX

)−
X tXβ = β .Let us now have a loser look at the variane term. It follows diretly fromtrae(PXP t

X) = rk(X) thatVar (ŷOLS) = σ2rk(X) .For β̂OLS we have
(
X tX

)−
X t
((

X tX
)−

X t
)t

=
(
X tX

)−
X tX

(
X tX

)−
=
(
X tX

)−
= UΛ

−U t ,hene Var(β̂OLS

)
= σ2

rk(X)∑

i=1

1

λi

. (7.2)We onlude that the MSE of the estimator β̂OLS depends on the non-zero eigen-values of A = X tX. Small eigenvalues of A orrespond to diretions in X thathave a low variane. Equation (7.2) shows that if some eigenvalues are small, the



90CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESvariane of β̂OLS is very high, whih leads to a high MSE.One possibility to (hopefully) derease the MSE is to modify the OLS estima-tor by shrinking the diretions of the OLS estimator that are responsible fora high variane. This of ourse introdues bias. We shrink the OLS estimatorin the hope that the inrease in bias is small ompared to the derease in variane.In general, a shrinkage estimator for β is of the form
β̂shr =

rk(X)∑

i=1

f(λi)zi ,where f is some real-valued funtion. The values f(λi) are alled shrinkage fa-tors. Examples are Prinipal Component Regression
f(λi) =





1 ith prinipal omponent inluded
0 otherwiseand Ridge Regression

f(λi) =
λi

λi + λ
,with λ > 0 the Ridge parameter. We illustrate in Setion 7.2 that PLSR is ashrinkage estimator as well. It turns out that the shrinkage behavior of PLSRregression is rather ompliated.Let us investigate in whih way the MSE of the estimator is in�uened by theshrinkage fators. If the shrinkage estimators are linear, i.e. the shrinkage fatorsdo not depend on y, this is an easy task. Let us �rst write the shrinkage estimatorin matrix notation. We have

β̂shr = Hshry = UΣ
−DshrV

ty .The diagonal matrix Dshr has entries f(λi). The shrinkage estimator for y is
ŷshr = XHshry = V ΣΣ

−DshrV
ty .



7.1. WHAT IS SHRINKAGE? 91We alulate the variane of these estimators.trae (HshrH
t
shr

)
= trae (UΣ

−DshrΣ
−DshrU

t
)

= trae (Σ−DshrΣ
−Dshr

)

=

rk(X)∑

i=1

(f (λi))
2

λiand trae (XHshrH
t
shrX

t
)

= trae (V ΣΣ
−DshrΣΣ

−DshrV
t
)

= trae (ΣΣ
−DshrΣΣ

−Dshr

)

=

rk(X)∑

i=1

(f (λi))
2 .Next, we alulate the bias of the two shrinkage estimators. We have

E [Hshry] = HshrXβ = UΣDshrΣ
−U tβ .It follows thatbias2 (β̂shr

)
= (E [Hshry] − β)t (E [Hshry] − β)

=
(
U tβ

)t (
ΣDshrΣ

− − Ip

)t (
ΣDshrΣ

− − Ip

) (
U tβ

)

=

rk(X)∑

i=1

(f(λi) − 1)2 (
ut

iβ
)2

.Replaing Hshr by XHshr it is easy to show thatbias2 (ŷshr) =

p∑

i=1

λi (f(λi) − 1)2
(
ut

iβ
)2

.Proposition 7.1. For the shrinkage estimator β̂shr and ŷshr de�ned above wehave
MSE

(
β̂shr

)
=

rk(X)∑

i=1

(f(λi) − 1)2 (
ut

iβ
)2

+ σ2

rk(X)∑

i=1

(f (λi))
2

λi

,

MSE (ŷshr) =

rk(X)∑

i=1

λi (f(λi) − 1)2 (
ut

iβ
)2

+ σ2

rk(X)∑

i=1

(f (λi))
2 .



92CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESIf the shrinkage fators are deterministi, i.e. they do not depend on y, any value
f(λi) 6= 1 inreases the bias. Values |f(λi)| < 1 derease the variane, whereasvalues |f(λi)| > 1 inrease the variane. Hene an absolute value > 1 is alwaysundesirable. The situation might be di�erent for stohasti shrinkage fators. Wedisuss this in the following setion.Note that there is a di�erent notion of shrinkage, namely that the L2- norm ofan estimator is smaller than the L2-norm of the OLS estimator. Why is thisa desirable property? Let us again onsider the ase of linear estimators. Set
θ̂i = Hiy for i = 1, 2. We have

∥∥∥θ̂i

∥∥∥
2

2
= ytH t

i Hiy .The property that for all y ∈ Rn

∥∥∥θ̂1

∥∥∥
2

≤
∥∥∥θ̂2

∥∥∥
2is equivalent to the ondition that H t

1H1 − H t
2H2 is negative semide�nite. Thetrae of negative semide�nite matries is ≤ 0. Furthermore trae (H t

i Hi) =trae (HiH
t
i ), so we onlude thatVar(θ̂1

)
≤ Var(θ̂2

)
.We already remarked in Chapter 6 that

‖β̂(1)

PLS‖2 ≤ ‖β̂(2)

PLS‖2 ≤ . . . ≤ ‖β̂(m∗)

PLS‖2 = ‖β̂OLS‖2 .

7.2 The Shrinkage Fators of Partial Least SquaresIn this setion, we give a simpler and learer proof of the shape of the shrinkagefators of PLSR. Basially, we ombine the results of Butler & Denham (2000)and Phatak & de Hoog (2002). In proposition 6.22, we derived a formula for thePLSR estimator in terms of the ritz values of A. From this, we an immediatelyonlude the following orollary.Corollary 7.2 ((Phatak & de Hoog 2002)). Suppose that dimK(m) = m. If we
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zi =

vt
iy√
λi

uithe omponent of β̂OLS along the ith eigenvetor of A, then
β̂

(m)

PLS =

rk(X)∑

i=1

f (m)(λi)zi ,with f (m)(λ) is de�ned in (6.13).Proof. This follows immediately from proposition 6.22. We have
β̂

(m)

PLS = π(m)(A)b

= Uπ(m)(Λ)ΣV ty

=

rk(X)∑

i=1

π(m)(λi)
√

λiv
t
iyui

=

rk(X)∑

i=1

π(m)(λi)λi

1√
λi

vt
iyui

(6.13)
=

rk(X)∑

i=1

f (m)(λi)zi .

The following theorem is a speial form of the Cauhy Interlae Theorem. In thisversion, we use a general result from Parlett (1998) and exploit the tridiagonalstruture of D(m).Theorem 7.3. Eah interval
[
µ

(m)
m−j , µ

(m)
m−(j+1)

]

(j = 0, . . . , m− 2) ontains an eigenvalue of D(m+k)) (k ≥ 1). In addition, thereis an eigenvalue of D(m+k) outside the open interval (µ
(m)
m , µ

(m)
1 ) .This theorems ensures in partiular that there is an eigenvalue of A in the interval[

µ
(m)
k , µ

(m)
k−1

]. Theorem 7.3 holds independently of assumption (7.1).
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D(m+k) =




D(m−1) •t 0

• ∗ ∗
0 ∗ ∗


 .Here • = (∗, . . . , 0, 0), so

D(m) =

(
D(m−1) •t

• am

)
.An appliation of theorem 10.4.1 in Parlett (1998) gives the desired result.We now show that some of the shrinkage fators of PLSR are 6= 1 .Theorem 7.4 ((Butler & Denham 2000)). For eah m ≤ m∗, we an deomposethe interval [λp, λi] into m + 1 disjoint intervals1

I1 ≤ I2 ≤ . . . ≤ Im+1suh that
f (m) (λi)




≤ 1 λi ∈ Ij and j odd
≥ 1 λi ∈ Ij and j even .Proof. Set

g(m)(λ) = 1 − f (m)(λ) .It follows from (6.12) that the zero's of g(m)(λ) are µ
(m)
m , . . . , µ

(m)
1 . As D(m) isunredued, all eigenvalues are distint. Set µ

(m)
0 = λ1 and µ

(m)
m+1 = λp. De�ne

Ij =]µ
(m)
i , µ

(m)
i+1[ for j = 0, . . . , m .By de�nition, g(m)(0) = 1. Hene g(m)(λ) is non-negative on the intervals Ij if

j is odd and g(m) is non-positive on the intervals Ij if j is even. It follows fromtheorem 7.3 that all intervals Ij ontain at least one eigenvalue λi of A .In general, we annot onlude that f (m)(λi) 6= 1 for all λi and m = 1, . . . , m∗ .However, in pratial appliations, the shrinkage fators seem to be 6= 1 all of1We say that Ij ≤ Ik if sup Ij ≤ inf Ik .
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Figure 7.1: An illustration of the shrinkage behavior of PLSR. The number ofvariables is p = 8. The eigenvalues of X tX are enumerated in dereasing order,
λ1 ≥ λ2 ≥ . . .. The shrinkage fators f (m)(λi) are plotted as a funtion of ifor di�erent values of m. The amount of absolute shrinkage ∣∣1 − f (m)(λi)

∣∣ ispartiularly prominent if m is small.the time. Figure 7.1 illustrates the shrinkage behavior of PLSR. This example istaken from Butler & Denham (2000). Using some of the results of Setion 6.3 andthe fat that the eigenvalues of D(m∗−1) and D(m∗) are distint (Parlett 1998),we an dedue that some fators are indeed 6= 1. Details an be found in Butler& Denham (2000) and Krämer (2006). Furthermore, using theorem 7.3, morepreisely λp ≤ µ
(m)
i ≤ λi, it is possible to bound the terms

1 − λi

µ
(m)
i

.Based on these bounds, it is possible to derive bounds on the shrinkage fators.We will not pursue this further, readers who are interested in the bounds shouldonsult Lingjaerde & Christopherson (2000). Instead, we have a loser look atthe MSE of PLSR.In Setion 7.1, we showed that a value |f (m)(λi)| > 1 is not desirable, as both thebias and the variane of the estimator inreases. Note however that in the aseof PLSR, the fators f (m)(λi) are stohasti; they depend on y � in a nonlinear



96CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESway. The variane of the PLS estimator for the ith prinipal omponent isVar(f (m)(λi)
(vi)

t
y√

λi

)
,with both f (m)(λi) and vt

iy√
λi

depending on y.
Among others, Frank & Friedman (1993) propose to trunate the shrinkage fa-tors of the PLSR estimator in the following way. Set

f̃ (m)(λi) =





+1 f (m)(λi) > +1

−1 f (m)(λi) < −1

f (m)(λi) otherwise ,and de�ne a new estimator̂
β

(m)

TRN :=

rk(X)∑

i=1

f̃ (m)(λi)zi . (7.3)If the shrinkage fators are numbers, this surely improves the MSE (as shown inSetion 7.1). But in the ase of stohasti shrinkage fators, the situation mightbe di�erent. Let us suppose for a moment that f (m)(λi) =
√

λi

vt
iy
. It follows that

0 = Var(f (m)(λi)
vt

iy√
λi

)
≤ Var(f̃ (m)(λi)

vt
iy√
λi

)
,so it is not lear whether the trunated estimator TRN leads to a lower MSE,whih is onjetured in e.g. Frank & Friedman (1993).

The assumption that f (m)(λi) =
√

λi

vt
iy

is of ourse purely hypothetial. It is notlear whether the shrinkage fators behave this way. It is hard if not infeasibleto derive statistial properties of the PLSR estimator or its shrinkage fators, asthey depend on y in a ompliated, nonlinear way. As an alternative, we omparethe two di�erent estimators on di�erent data sets.



7.3. SIMULATIONS 977.3 SimulationsIn this setion, we explore the di�erene between the methods PLSR and trun-ated PLSR (TRN). We investigate several arti�ial data sets, and in the nextsetion, we onsider a real world example.We ompare the MSE of the two methods - PLSR and trunated PLSR - on27 di�erent arti�ial data sets. We use a setting similar to the one in Frank &Friedman (1993). For eah data set, the number of examples is n = 50. Weonsider three di�erent number of preditor variables:
p = 5, 40, 100 .The input data X is hosen aording to a multivariate normal distribution withzero mean and ovariane matrix C . We onsider three di�erent ovarianematries:

C1 = Ip ,

(C2)ij =
1

|i − j| + 1
,

(C3)ij =

{
1 , i = j

0.7 , i 6= j
.The matries C1, C2 and C3 orrespond to no, moderate and high ollinearityrespetively. The regression vetor β is a randomly hosen vetor β ∈ {0, 1}p .In addition, we onsider three di�erent signal-to-noise ratios:stnr =

√var (Xβ)

σ2
= 1, 3, 7 .We yield 3×3×3 = 27 di�erent parameter settings. For eah setting, we estimatethe MSE of the two methods: For k = 1, . . . , K = 200 we generate y aordingto (1.9) and (1.7). We determine for eah method and eah m the respetiveestimator β̂

(m)

k and de�ne
M̂SE

(
β̂

(m)
)

=
1

K

K∑

k=1

(
β̂

(m)

k − β
)t (

β̂
(m)

k − β
)

.If there are more preditor variables than examples, this approah is not sensible,



98CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESas the true regression vetor β is not identi�able. This implies that di�erentregressions vetors β1 6= β2 an lead to Xβ1 = Xβ2. Hene for p = 100, we onlyestimate the MSE of ŷ for the two methods. We display the estimated MSE of
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Figure 7.2: MSE-RATIO for p = 5 . The �gures show the averaged MSE-RATIO for di�erent parameter settings. Left: Comparison for high (straight line),moderate (dotted line) and no (dashed line) ollinearity. Right: Comparison forstnr 1 (straight line), 3 (dotted line) and 7 (dashed line).the method TRN as a fration of the estimated MSE of the method PLSR, i.e.for eah m we display
MSE − RATIO =

M̂SE
(
β̂

(m)

TRN

)

M̂SE
(
β̂

(m)

PLS

) .As already mentioned, we display the MSE-RATIO for ŷ in the ase p = 100.The results are displayed in Figures 7.2, 7.3 and 7.4. In order to have a ompatrepresentation, we onsider the averaged MSE-RATIOS for di�erent parametersettings. For example, we �x a degree of ollinearity (say high ollinearity) anddisplay the averaged MSE-RATIO over the three di�erent signal-to-noise ratios.The results for all 27 data sets are shown in the tables in the appendix.There are several observations. The MSE of trunated PLSR is lower almostall of the times. The derease of the MSE is partiularly large if the number ofomponents m is small, but > 1 . For larger m, the di�erene dereases. This
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Figure 7.3: MSE-RATIO for p = 40.is not surprising, as for large m, the di�erene between the PLSR estimator andthe OLS estimator dereases. Hene we expet the di�erene between TRN andPLSR to beome smaller. The redution of the MSE is partiularly prominent inomplex situations, i.e. in situations with high ollinearity in X or with a lowsignal-to-noise-ratio.Another feature, whih annot be dedued from Figures 7.2, 7.3 and 7.4 but fromthe tables in the appendix, is the fat that the optimal number of omponents
mopt

PLS = argminM̂SE
(
β̂

(m)

PLS

)

mopt
TRN = argminM̂SE

(
β̂

(m)

TRN

)are equal almost all of the times. This is also true if we onsider the MSE of
ŷ. We an bene�t from this if we want to selet an optimal model for trunatedPLSR. We return to this subjet in Setion 7.5.7.4 Example: Teator Data SetIn this example, we onsider near infrared spetra (NIR) of n = 171 meat samplesthat are measured at p = 100 di�erent wavelengths from 850 � 1050 nm. Thisdata set is taken from the StatLib datasets arhive and an be downloaded from
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Figure 7.4: MSE-RATIO for p = 100. In this ase, we display the MSE-RATIOfor ŷ instead of β̂. Only the �rst 20 omponents are displayed.http://lib.stat.mu.edu/datasets/teator. The task is to predit the fatontent of a meat sample on the basis of its NIR spetrum. We hoose this dataset as PLSR is widely used in the hemometris �eld. In this type of appliations,we usually observe a lot of preditor variables whih are highly orrelated. Weestimate the MSE of the two methods PLSR and trunated PLSR by omputingthe 10fold ross-validated error of the two estimators. The results are displayedin Figure 7.5.Again, trunated PLSR is better almost all of the times, although the di�ereneis small. Note furthermore that the optimal number of omponents are almostidential for the two methods: We have mopt
PLS = 15 and mopt

TRN = 16.7.5 ConlusionWe illustrated in Setion 7.3 that bounding the absolute value of the PLSR shrink-age fators by one seems to improve the MSE of the estimator. So should we nowdisard PLSR and always use trunated PLSR instead? There might be (at least)two objetions. Firstly, it would be very lightheaded if we relied on results of asmall-sale simulation study. Seondly, TRN is omputationally more extensivethan PLSR. We need the full singular value deomposition of X . In eah step,
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Figure 7.5: 10fold ross-validated test error for the Teator data set. The straightline orresponds to PLSR, the dashed line orresponds to trunated PLSR.we have to ompute the PLSR estimator and adjust its shrinkage fators �byhand�. However, the experiments suggest that it an be worthwhile to omparePLSR and trunated PLSR. We pointed out in Setion 7.3 that the two methodsdo not seem to di�er muh in terms of optimal number of omponents. In orderto redue the omputational osts of trunated PLSR, we therefore suggest thefollowing strategy. We �rst ompute the optimal PLSR model on a training setand hoose the optimal model with the help of a model seletion riterion. In aseond step, we trunate the shrinkage fators of the optimal model. We thenuse a validation set in order to quantify the di�erene between PLSR and TRNand hoose the method with the lower validation error.
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Chapter 8Funtional Data AnalysisIn the preeding hapters, we introdued Partial Least Squares for Regressionand two of its variants � penalized PLSR and trunated PLSR. We investigatedtheir mathematial and statistial properties. In partiular, we measured theirperformane in terms of a low test error and a mean squared error respetively.One important feature of a �tting method � apart from its preditive power - isits interpretability. This aspet has been negleted so far and we illustrate thatthe understandability of PLSR an be limited. In the remaining two hapters, wepropose a di�erent approah that is based on Boosting methods and that exploitsthe speial type of data that is ommon in a lot of PLSR appliations: The datathat we observe are funtions.8.1 Example: Bisuit Dough Data SetThe following example is desribed in detail in Osborne et al. (1994) and isalso used in Brown et al. (2001). The data an be downloaded from http://www.stat.tamu.edu/~mvannui/webpages/odes.html. The task is to pre-dit with high auray the amount of fat in bisuit dough. As the diret mea-surement of fat is ostly and time-onsuming, we use NIR (near infra red) spe-trosopy instead. For eah of the n = 39 training examples of bisuit dough,the amount of fat and the re�etane of NIR light for di�erent wavelengths ismeasured. In this example, p = 700 equidistant wavelengths in the range from1100 to 2398 nanometers are used. For eah example, we obtain a funtion of there�etane, whih is alled a spetrum. The 39 spetra are depited in Figure8.1. The task is to predit the amount of fat of a new sample after observing itsspetrum. 103
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wavelengthFigure 8.1: The n = 39 NIR spetra of the bisuit dough.
We already mentioned that a very popular method in the hemometris �eld isPLSR. Let us investigate its performane on this partiular data set. We estimatethe optimal number of latent omponents using the leave-one-out error. The riskof this model is estimated on a test set that onsists of 31 examples. The min-imal leave-one-out error is obtained with mopt = 13. A widely used diagnostitool is the plot of the standardized regression oe�ients as a funtion of thewavelength. That is, for eah of the 700 variables Xi, we divide the estimatedregression oe�ient β̂i by the standard deviation of Xi and plot these valuesinto a oordinate system. This is done in Figure 8.2. One desirable feature isthe detetion of regions of relevant wavelengths. In this partiular example, theregression oe�ients are however very hard to interpret. We annot detet anytype of pattern, as the regression oe�ients look rather like white noise. There-fore, a hemometriian is willing to sari�e some preditive power in order tohave an interpretable model. But even the standardized regression oe�ients ofa model with m = 3 latent omponents do not dislose any valuable information.Note that eah example xi, whih onsists of p = 700 measurements, is in fat adisretized urve. Instead of regarding these data points xi as vetors in a high-dimensional spae Rp, we an also view them as elements of a spae of real-valuedfuntions.
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Figure 8.2: Standardized PLSR regression oe�ients as a funtion of the wave-length. Left: PLSR model with 13 omponents. Right: PLSR model with 3omponents.8.2 Example: Speeh Reognition Data SetThis example is taken from Biau et al. (2005). The data onsists of 48 reordingsof the word �Yes� and 52 reordings of the word �No�. One reording is repre-sented by a disretized time series of length 8192. The data an be downloadedfrom http://www.math.univ-montp2.fr/~biau/bbwdata.tgz. Two reordingsare displayed in Figure 8.3. The task is to �nd a lassi�ation rule that assignsthe orret word to eah time series. At �rst glane, the lassi�ation problemseems ompliated, due to the high amount of variables ompared to the numberof examples. If we regard one reording as one funtion rather than measurementsof 8192 variables, we an however exploit the speial struture of this problem.In this partiular example, it is possible to desribe the important informationthat is enoded in the funtions in terms of their osillations. The lassi�ationrule an then be learned using these extrated features.Funtional data analysis deals with learning from data that are urves. In thefollowing two setion, whih are ondensed from Ramsay & Silverman (2005), wepresent its main ideas.



106 CHAPTER 8. FUNCTIONAL DATA ANALYSIS

0 2000 4000 6000 8000

−0
.4

−0
.2

0.
0

0.
2

0.
4

YES

0 2000 4000 6000 8000

−0
.4

−0
.2

0.
0

0.
2

0.
4

NO

Figure 8.3: Two examples of the speeh reognition data. Left: One reording ofthe word �Yes�. Right: One reording of the word �No�.8.3 From Observations to FuntionsWe speak of funtional data if the variables that we observe are urves. Let us�rst onsider the ase that only the preditor samples xi are urves, that is
xi ∈ X = {x : T → R} .We usually assume that the funtions ful�ll a regularity ondition, and in the restof the hapter, we onsider the Hilbert spae X = L2(T ) of all square-integrablefuntions T → R. In our examples, T is a subset of R.In most appliations, we do not measure a urve xi(t), but disrete values
xi = (xi(t1), . . . , xi(tp))

tof a urve. An important step in the analysis of funtional data is thereforethe transformation of the disretized objets to smooth funtions. The generalapproah is the following. We represent eah example as a linear ombination
xi(t) =

Kx∑

l=1

cilφl(t) (8.1)



8.3. FROM OBSERVATIONS TO FUNCTIONS 107of a set of basis funtions φ1, . . . , φKx
. Eah example xi(t) is represented by itsvetor

ci = (ci1, . . . , ciKx
) ∈ R

Kxof oe�ients. This oe�ient vetor is estimated by applying the (regularized)empirial risk minimization priniple desribed in Setion 1.2. If we use thequadrati loss funtion and represent the values of the base funtions φl at mea-surement points tj by
Φ = (φl(tj)) ∈ R

p×Kx ,the penalized least squares riterion isargmin
ci

{
‖xi − Φci‖2 + r(ci)

}
.Here, r is a regularization term that e.g. ontrols the smoothness of the funtion

xi(t). Regularization might be neessary if the measurements of xi(t) are noisy orif the points tj are not equidistant. There are some natural andidates for the setof basis funtions. We introdued the widely-used B-splines in Chapter 5. If thedata have a periodi struture, this an be re�eted e�iently with an expansionin terms of Fourier funtions. They are de�ned as
φ2i−1(t) = sin (iωt) ,

φ2i(t) = cos (iωt) ,and are illustrated in Figure 8.4. Other basis funtions are polynomials and �more importantly - wavelets. Wavelets are families of orthogonal basis funtions.These bases are generated by hoosing a so-alled mother-wavelet Φ and and thenomputing all translations and dilatations
φjk(x) = 2

j
2 Φ
(
2jx − k

)
.The mother wavelet is hosen in a way that all funtions are mutually orthogonal.In most appliations, the mother wavelet has a ompat support. An examplefor a mother wavelet is the Haar wavelet. Some translations and dilatations ofthis wavelet are shown in Figure 8.5. Wavelets are able to represent a funtion f
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Figure 8.4: The �rst three Fourier basis funtions.with sharp loal behavior in a very e�ient way, as most wavelet oe�ients γjkin
f(x) =

∑

jk

γjkφjk(x) (8.2)are zero. More details on the theory of wavelets an be found in Daubehies(1992). If f is measured without error on p = 2L equidistant points, a disretewavelet transform (Mallat 1989) omputes the oe�ients of the wavelet repre-sentation (8.2). If the observations are noisy, there is a simple proedure thatthresholds the wavelet oe�ients (Donoho & Johnstone 1994).A di�erent possibility is to derive an orthogonal basis diretly from the data.This an be done for instane by extending Prinipal Component Analysis orPartial Least Squares Regression to funtional data.It is not always neessary or even sensible to �nd a set of basis funtion andoe�ients ci that �t the data almost perfetly. We already remarked that themeasurements of the urves may be noisy and we have to take are not to over�t.The possibility of plotting the disrete funtions and the �tted funtions is a valu-able diagnosti tool to evaluate the quality of the representation. Furthermore, itmight be su�ient to represent a funtion in terms of a few relevant basis fun-
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Figure 8.5: Some translations and dilatations of the Haar wavelet.tions, whih do not interpolate the data. This is illustrated in Setion 9.5, wherethe speeh reognition data are represented by a few Fourier basis funtions.
8.4 Learning from Funtional DataHow an we learn relationships (1.1) from funtional data? For the start, we onlyonsider linear relationships in (1.1). That is, in the regression setting (Y = R),elements f ∈ F = {X → R} are assumed to be linear (up to an interept) andontinuous. As X = L2(T ) is a Hilbert spae, it follows that any funtion f ∈ Fis of the form

f(x(t)) = β0 +

∫

T

β(t)x(t)dt . (8.3)In the two-lass lassi�ation setting (Y = {±1}), we use sign(f) instead of f . Asalready mentioned in Chapter 1, one possibility to estimate f or β is to minimizethe empirial risk (1.5). Note that this is an ill-posed problem, as there are(in general) in�nitely many funtions β(t) that �t the data perfetly. There isobviously a need for regularization, in order to avoid over�tting. We an solvethis problem by using a base expansion of both the preditor variable xi(t) as in
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β(t) =

Kβ∑

l=1

blφl(t) . (8.4)This transforms (1.5) into a parametri problem, as we need to estimate theregression oe�ients
b =

(
b1, . . . , bKβ

)t
.If we use the quadrati loss, this is a matrix problem. We set

C =




ct
1...

ct
n


 ∈ Rn×Kx and J =

(∫
T

φi(t)φj(t)dt
)
1≤i≤Kx,1≤j≤Kβ

.It follows that (for entered data)
b̂ =

(
ZtZ

)−1
Zty , (8.5)with Z = CJ . As already mentioned, we have to regularize this problem. Thereare at least three possibilities. Firstly, we onstrain the number of base funtionsin (8.4). That is, we demand that Kβ ≪ Kx. We show in Setion 9.4 that thisstrategy an lead to trivial results in the Boosting setting. The seond possibilityis to add a penalty term r(β) to the empirial risk (1.5). If we onsider funtionaldata, it is ommon to use a penalty term of the form

r(β) = λ

∫

T

(
β(k)(t)

)2
dt .Here β(k) is the kth derivative of β � provided that this derivative exists. Thehoie of k depends on the data at hand and our expert knowledge on the prob-lem. The third possibility is to apply an appropriate Boosting method. This isdone in Chapter 9.If the relationship between preditors and response are assumed to be nonlinear,there are several possibilities and we brie�y disuss two of them. On the one hand,we an apply any �tting method suited for nonlinear problems to the oe�ientsin the representation (8.1). On the other hand, we an try to apply the kernel



8.4. LEARNING FROM FUNCTIONAL DATA 111trik that is disussed in Setion 1.4. Preda (2006) study regression problems inReproduing Kernel Hilbert Spaes and Villa & Rossi (2005) use the kernel trikin order to extend the framework of Support Vetor Mahines to funtional data.It is also possible to apply linear transformations to the data prior to usinga �tting method. Villa & Rossi (2005) give an illustrative example using theTeator data set that is desribed in Chapter 7. Figure 8.6 shows the spetrafor the data set split into two parts. Spetra that orrespond to a high amountof fat tend to have two maxima instead of one. This implies that it might beworthwhile to onsider the urvature of the urves. In other words, we use theseond derivative of eah funtion.

850 900 950 1000 1050

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Fat <20 %

wavelength

850 900 950 1000 1050

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Fat >20 %

wavelengthFigure 8.6: Spetra of the Teator data set.Finally, let us brie�y mention how to model a linear relationship (1.1) if both thepreditor and response variables are funtional. We onsider funtions
f : L2(T ) → L2(T ) ,

f(x(t)) = α(t) +

∫

T

β(s, t)x(s)ds .We estimate β by expanding yi, xi, α in terms of a basis and by representing β by
β(s, t) =

K1∑

k=1

K2∑

l=1

bklφk(s)φl(t) .



112 CHAPTER 8. FUNCTIONAL DATA ANALYSISThe optimal oe�ients bkl are determined using the loss funtion
L(y, y′) =

∫

T

(y(t) − y′(t))
2
dt .Again, we have to regularize in order to obtain smooth estimates that do notover�t.



Chapter 9Boosting for Funtional DataIn this hapter, we �rst introdue the main ideas of Boosting. This introdutionis rather skethy as we only want to display those results that are needed in theseond part of this hapter. There, we explain how to apply these methods tofuntional data.9.1 A Short Introdution to BoostingLet us return to the learning task desribed in Chapter 1. Reall that a strategyto estimate relationship (1.1) is alled a learner. We repeat that the hoie of thelearner is an important issue. If the learner is too omplex, it adapts itself toomuh to the data at hand. If it is too weak, it is not able to detet the relevantstruture of the data.The basi idea of Boosting is to proeed stepwise and to ombine weak learnersin suh a way that the omposite � boosted � learner
gM(x) =

M∑

m=1

αmfm(x) (9.1)(or sign (gM) for lassi�ation problems) performs better than the single weaklearners fm. The single learners are usually alled base learners and M is alledthe number of Boosting iterations. The learners fm and the weights αm are ho-sen adaptively from the data.A generi Boosting algorithm proeeds in the following way. In eah step m,113



114 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATAa weighting Dm of the sample S = {(xi, yi)|i = 1, . . . , n} is de�ned. We �t afuntion fm by applying the weak learner to the weighted sample. Next, we de-termine an appropriate oe�ient αm for the funtion fm. We update the weights
Dm+1(xi). The idea is to give a higher weighting to those points (xi, yi) that arepoorly approximated by fm . After a suitable stopping riterion is ful�lled, weoutput (9.1) or � in the ase of lassi�ation problems � sign(gM) .The key ingredient of this Boosting proedure is the reweighting of the sample S.Points whih are hard to approximate in step m are given more emphasis in thenext iteration step. For some learners, it is not possible to ompute a weightedloss. Instead, in eah step we draw with replaement a sample of size n from Sand use the weights Dm as probabilities.AdaBoost (Freund & Shapire 1997) � the �rst Boosting algorithm � is designedfor two-lass lassi�ation problems, i.e. yi ∈ {±1}. The oe�ients αm aredetermined by �rst omputing the weighted empirial risk

ǫm =
1∑

i Dm(xi)

n∑

i=1

Dm(xi)I{yi 6=fm(xi)} (9.2)and then setting
αm = ln

(
1 − ǫm

ǫm

)
.The weights are updated in the following way:

Dm+1(xi) = Dm(xi) exp (−αmyifm(xi)) .The weight αm depends on the weighted error ǫm. Note that the weights αmare non-negative if and only if the weighted empirial error does not exeed 1/2.This implies that the weak learner must ful�ll the following ondition. For eahweighting of the data, it must ahieve an empirial error that is slightly betterthan random. This will be formalized in de�nition 9.2.We have to determine a suitable stopping riterion. Some authors suggest to stopat step M , if ǫM+1 = 0. Other suggestions are to stop the Boosting algorithm ifthe empirial error of the Boosting lassi�er is 0. Experiments have shown that



9.1. A SHORT INTRODUCTION TO BOOSTING 115the generalization error of Boosting an ontinue to derease even if the empirialerror is already 0. This has lead to the optimisti assumption that Boosting doesnot over�t at all. This is however not true and we should determine M by one ofthe model seletion riteria desribed in Chapter 2. In most appliations, the testerror urve (as a funtion of the number of Boosting iterations) stays rather �ataround the optimal region. As a onsequene, the hoie of the optimal numberof iterations is usually not a ruial task.Let us now return to the de�nition of a weak learner. For any weighting D =

(D1, . . . , Dn) of the sample S and any funtion f ∈ F , we de�ne the weightedempirial risk as
ǫ(f, D) =

1∑
i Di

∑

yi 6=f(xi)

Di . (9.3)Let us start with the following de�nition.De�nition 9.1 (Baseline learner). Let D be a probability distribution on thesample S. The baseline learner is the onstant funtion
fbl (x) = sign( ∑

i:yi=+1

Di −
∑

i:yi=−1

Di

)
.The baseline learner does not depend on x for a given distribution D. It assignsthe label +1 if and only if the weighted majority of all examples in the sample Sbelongs to the lass +1. Consequently, the weighted empirial error of the baselinelearner is at most 1/2. We demand that a weak learner is always uniformly betterthan the base learner.De�nition 9.2. A �tting method (learner) is alled a weak learner, if thereexists 1/2 ≥ γ > 0 suht that for any distribution D on S, the funtion f that isprodued by the learner ful�lls

ǫ(f, D) ≤ 1

2
(1 − γ) , .In appliations, the most widely used weak learner is a stump, i.e. a lassi�ationtree with two �nal nodes.Reall that the empirial risk de�ned in (1.5) depends on the funtion f eval-



116 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATAuated at the points x1, . . . , xn. We an rephrase the priniple of empirial riskminimization in the following way. The task is to minimize
R̂(u) =

1

n

n∑

i=1

L(yi, ui)with respet to u under the onstraint that ui = f(xi) for a funtion f ∈ F . Itan be shown (Breiman 1998, Breiman 1999) that Boosting solves this problem ina forward stage-wise manner using gradient desent tehniques. More preisely,in eah step we �t a weak learner to xi and the negative gradient −∇R̂ at theurrent estimate gm(xi). To ensure that the gradient desent method works well,we assume that the loss funtion is onvex and di�erentiable in the seond ompo-nent. A generi Boosting algorithm proeeds in the following way (Bühlmann &Yu 2003, Friedman 2001). Set m = 1. We �t a funtion f1(x) using a base learnerand set g1 = f1. Until a suitable stopping riterion is ful�lled, we determine thenegative gradient vetor of the empirial risk at gm(xi). It is straightforward toshow that the negative gradient is
ui = − ∂L(yi, ui)

∂ui

∣∣∣∣
ui=gm(xi)

, i = 1, . . . , n . (9.4)The best greedy step towards the minimum of R̂(u) is the negative gradientvetor. As we restrit ourselves to an additive expansion as displayed in (9.1),the step vetor must belong to the linear span of the lass of funtions F . Wehene have to �nd the best step diretion under the onstraint that it is a multipleof an element of F , i.e. the step diretion is of the form αf with α ∈ R and f ∈ F .This is done by �tting a funtion to the modi�ed sample {(xi, ui)} using a baselearner. If we use the quadrati loss, this yields (for a �xed α),
fm+1 = argmin

f∈F

n∑

i=1

(ui − αf)2 (9.5)After determining the optimal step diretion fm+1(x), we have to determine theoptimal step size αm+1:
αm+1 = argmin

α

n∑

i=1

L (yi, gm(xi) + αfm+1(xi)) . (9.6)



9.1. A SHORT INTRODUCTION TO BOOSTING 117We update the funtion
gm+1 = gm(x) + αm+1fm+1(x) ,inrease m by one and proeed as desribed above.It an be shown (Friedman 2001, Hastie et al. 2001) that AdaBoost orrespondsto the exponential loss funtion

L(y, y′) = exp(−yy′) ,if we use the quadrati loss funtion (9.5) for the base learner.The onnetion between Boosting and gradient desent methods has lead to awide range of new algorithms (Friedman 2001), notably for regression problems.Note that if we use the quadrati loss
L(y, y′) =

1

2
(y − y′)

2
,the negative gradient is simply the vetor of residuals, i.e. we iteratively �t theresiduals using a weak learner. This method is alled L2Boost (Bühlmann &Yu 2003, Friedman 2001). In Bühlmann (2006) and Bühlmann & Yu (2006),

L2Boost with omponentwise weak learners are investigated. Suppose that wehave p preditor variables. In eah Boosting iteration, out of all p variables
X(1), . . . , X(p), we selet the one variable that redues the the empirial risk (1.5)the most:

km = argmin
k

{
1

n

n∑

i=1

L
(
ui, H

(k)
(
x

(k)
i

))}
. (9.7)Here, H(k) is a univariate base learner that is applied to the variable X(k). Exam-ples are univariate least squares regression or univariate smoothing splines. Weestimate the regression funtion fm that is obtained by applying the weak learner

H(km) to xi and the residuals ui. We use the shortut
f(x) = fH,u(x) (9.8)to indiate that the funtion f is based on the learner H applied to the response



118 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATA
u. The funtion gm−1 is then updated by νfm(x), with 0 < ν ≤ 1 a prede�nedshrinkage parameter. Bühlmann & Yu (2006) suggest a �xed shrinkage value of
ν = 0.1. This Boosting algorithm often produes sparse solutions. That is, onlya small fration of the preditor variables are inluded in the �nal model. Thisan lead to interpretable models.Boosting with the loss funtion

L(y, y′) = log (1 + exp(−yy′))is suited for lassi�ation problems and alled LogitBoost (Friedman et al. 2000).Algorithm 9.3 (LogitBoost). For any sample S and any weak learner H, weinitialize the probabilities p1(xi) = 1/2, set g0(x) = 0 and iteratively ompute
Dm(xi) = pm(xi) (1 − pm(xi)) weights

ui = yi−pm(xi)
Dm(xi)

negative gradient
fm = fH,u funtion obtained by weighted weaklearner (with weights Dm(xi))

gm(x) = gm−1(x) + 1
2
fm(x) update

pm+1(xi) = (1 + exp (−2fm(xi)))−1 probabilitiesThe �nal funtion gM is an estimate of one-half of the log-odds ratio
1

2
log

(
P (Y = 1|X = x)

1 − P (Y = 1|X = x)

)
.As a onsequene, this lassi�ation algorithm also produes estimates of the lassprobabilities P (Y = 1|X = x). This an be advantageous if we have non-equalmislassi�ation osts.In the regression setting, there is only a loose de�nition of the term weak learner.We speak of a weak learner if the �tting method has a high bias ompared to itsvariane or if it only uses a few degrees of freedom.9.2 The Degrees of Freedom of BoostingLet us return to the subjet of a suitable stopping riterion. One possibility is touse ross validation. Depending on the data, this an lead to high omputational



9.2. THE DEGREES OF FREEDOM OF BOOSTING 119osts. We an alternatively ompute the omplexity of the Boosting algorithmin terms of its degrees of freedom. If we use L2Boost, they an be omputede�iently (Bühlmann & Yu 2003, Bühlmann & Yu 2006). Let us assume forsimpliity that all weak learners H1, . . . , Hm are linear in y. As a onsequene,the Boosting learner BM obtained after M steps is also linear in y. To show this,we �rst use the iterative de�nition of the residuals
u(m) = u(m−1) − νHmu(m−1) = (In − νHm) u(m−1) .We obtain

u(m) = (In − νHm) . . . (In − νH1)y .Setting u(0) = y, it follows that
Bmy =

m∑

i=1

Hiu
(i−1) =

m∑

i=1

Hi (In − νHi−1) . . . (In − νH1) yis the linear map that de�nes the hat matrix of L2Boost. It is straightforward toshow (Bühlmann & Yu 2006) that
Bm = In − (In − νHm) . . . . . . (In − νH1) ,and the degrees of freedom are de�ned as the trae of the hat-matrix Bm. Thismatrix an be omputed reursively by using the following relationship:
Bm+1 = In − (In − νHm+1) (In − Bm) .If the weak learners are not linear in y, it is possible to derive an unbiased estimateof the degrees of freedom by omputing the �rst derivative of

BM(y) =

M∑

i=1

Hi(u
(i−1))with respet to y and by then determining its trae.Bühlmann & Yu (2006) introdue a variant of L2Boost that is alled SparseL2Boost.It is based on the e�etive omputation of the degrees of freedom of Boosting. In-stead of hoosing the base learner (9.7) that redues the empirial risk the most,we hoose the base learner that redues an appropriate information riterion



120 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATAthe most. Bühlmann & Yu (2006) propose the generalized minimum desriptionlength riterion that is presented in Setion 2.3. Note that this riterion dependson the response y and the learner H , that is gMDL = gMDL(y, H).Algorithm 9.4 (SparseL2Boost). For any sample S, we set g0(x) = 0, u = yand iteratively ompute
ui = yi − gm(xi) residuals

B
(k)
m+1 = In −

(
In − H

(k)
m+1

)
(In − Bm) Boosting operator for the kthvariable

km+1 = argmink gMDL
(
y, B

(k)
m+1

) seletion of the optimal variable
Hm+1 = H

(km)
m+1 optimal base learner

fm+1(x) = fHm+1,ui
(x) �tting of the residuals

gm+1(x) = gm(x) + νfm+1(x) update
Bm+1 = In − (In − νHm+1) (In − Bm) updateThe optimal number of Boosting iterations is the one for whih the generalizedMDL riterion is minimal. Note that SparseL2Boost is ompletely automati inthe sense that we do not have to selet any external, additional model parameters.9.3 Boosting and Partial Least SquaresBefore extending the framework of Boosting to funtional data, we insert a fewremarks on the onnetions of Boosting and PLS regression. There have beenapproahes to use PLSR as a base learner for Boosting algorithms. Mevik et al.(2004) try to improve the performane of PLSR by averaging over several PSLRestimates that are obtained from Bootstrap samples. This general strategy isknown as Bagging (Breiman 1996). However, experiments on data show thatBagging does not improve the performane of PLSR. In Boulesteix (2004) PLSRis used as a base learner for lassi�ation problems by means of the Boosting-by-reweighting tehnique. It is shown on several data sets that the performane ofPLSR does not improve. Zhang et al. (2005) ombine PLSR and L2Boost in theregression setting. More preisely, PLSR with one latent omponent as a baselearner is used.Algorithm 9.5 (PLSBoost). For any sample S, we set y(res) = y. The latentomponents and the regression estimates ŷ(m) of PLSBoost are determined by



9.4. FUNCTIONAL BOOSTING 121iteratively omputing
t(m) = XX ty(res) omponents
ŷ(m) = Pt(m)y(res) estimate

y(res) = y(res) − ŷ(m) residualsIn Zhang et al. (2005), this algorithm is ompared to PLSR on di�erent datasets. Although PLSBoost is better on all data sets, the improvement is tiny andthe marginal derease of test error is bought dearly with a substantial inrease inomputational osts.We now try to give a heuristi explanation why PLSR fails as a base learnerin the Boosting framework. The examples that are investigated in Zhang et al.(2005) are very high-dimensional data sets. As X is highly ollinear, the Grammatrix K = XX t is very lose to a rank-one matrix. It an be approximated bythe �rst eigenvetor v1 of K in the following sense:
K ≈ λ1v1v

t
1 .It follows that the omponents t(m) are � up to a saling fator c � approximatelyequal to v1.

t(m) = Ky(m)
res ≈ cv1 .Hene t(m) hardly depends on the y-residuals at all. This implies that the PLSRbase learner equals approximately the projetion onto the �rst eigenvetor v1.As the residuals are almost orthogonal on v1, the empirial risk redues ex-tremely slowly. This an be seen in the examples given in Zhang et al. (2005).There, sometimes up to 6 000 Boosting iterations are needed until the algorithmis stopped.To summarize, for highly ollinear data, PLSR is not an appropriate base learnerfor L2Boost, as it is too weak. It hardly depends on the response y.9.4 Funtional BoostingAfter this short exursion, we return to the main purpose of this hapter. Howan we apply Boosting tehniques to funtional data? We �rst have to extend thenotion �weak learner�. In the lassi�ation setting, we an adopt de�nition 9.2. A



122 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATAweak learner is a learner that is slightly better than random. What are examplesof weak learners? Note that it is possible to apply most of the multivariate dataanalysis tools to funtional data. We use a �nite-dimensional approximation asin (8.1) and simply apply any appropriate algorithm. In this way, it is possibleto use stumps (that is, lassi�ation trees with one node) or neural networks asbase learners.In the regression setting, we propose the following de�nition: A weak learner is alearner that has only few degrees of freedom. Examples inlude the two regular-ized least squares algorithms presented in Setion 8.3 � restrition of the numberof base funtions in (8.4) or addition of a penalty term to (1.5). Note howeverthat the �rst method leads to trivial results if we use L2Boost. The learner issimply the projetion of y onto the spae that is spanned by the olumns of Z(reall (8.5)). Consequently, the y-residuals are orthogonal on Z and after onestep, the Boosting solution does not hange anymore.The following example of a weak learner is an extension of the omponentwiseweak learner introdued in (9.7). It is suited for L2Boost. We �rst initialize
g0(x(t)) = 0. In eah Boosting step, we selet one basis funtion φk(t) of theexpansion (8.4). To selet this basis funtion, we estimate for eah funtion φkthe regression estimates of the regression model

ui = γ0 + γ1

∫

T

xi(t)φk(t)dt + εi . (9.9)This de�nes for eah basis funtion a linear weak learner H(k). In aordanewith the notation introdued in (9.8), we have
fH(k),u(x(t)) = γ̂0 + γ̂1

∫

T

x(t)φk(t)dt . (9.10)We now hoose the basis funtion φk∗(t) that either minimizes the empirial risk(1.5) or that minimizes the generalized MDL riterion. If we opt for the latterapproah, we all this novel method funtional SparseL2Boost. The funtion
gm(x(t)) is then updated by a small fration ν of fH(k∗),u(x(t)),

gm+1(x(t)) = gm(x(t)) + νfH(k∗),u(x(t)) .In Setion 9.6, we study this algorithm on the bisuit data set introdued in Se-



9.5. EXAMPLE: SPEECH RECOGNITION 123tion 8.1.Finally, let us remark that if the response variable is funtional, we an adoptthe same de�nition of weak learner as in the regression setting: A weak learneris a learner that uses only a few degrees of freedom.9.5 Example: Speeh ReognitionWe illustrate the appliation of Boosting methods to funtional data on the speehreognition data set. To this end, we �rst represent the time series xi(t) in termsof a Fourier basis expansion of dimension Kx = 100. We opt to inlude a generous
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Figure 9.1: Representation of the funtions in Figure 8.3 in terms of the �rst 100Fourier basis funtions.amount of basis funtions, as experiments indiate that the results of LogitBoostare insensitive to the addition of possibly irrelevant basis funtions. We remarkthat the Fourier representation does not resemble the original data very muh.This is illustrated in Figure 9.1.Next, we apply the LogitBoost algorithm 9.3 to the oe�ients of the Fourier ex-pansion. For the weak learner, we hoose a lassi�ation tree with two �nal nodes.The optimal number of omponents is estimated using 10fold ross-validation(v). The minimal v error over all Boosting iterations is 0.1, obtained after 24



124 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATABoosting iterations. This is the same error rate that is reported in Biau et al.(2005). There, a funtional k-nearest-neighbor-algorithm is applied to the data.9.6 Example: Bisuit Dough Data SetNote that in the example of Setion 8.2, the Boosting algorithm returns a fun-tion that is a linear ombination of many lassi�ation trees. Funtions like thisare hard to interpret and this has sometime lead to the belief that Boosting isa �blak box� that is only valuable for predition but not apable to produeinterpretable models. This is however not true, and we now desribe how we anuse Boosting to detet important features of the data.In Setion 9.4, we introdued the funtional SparseL2Boost algorithm. It is basedon seleting only one basis funtion in eah Boosting iteration. If the �nal modelinludes only a few basis funtions, it might be possible to �nd an easy interpre-tation of the regression funtion. Reall that for the bisuit dough data, our aimis to �nd regions of relevant wavelengths. This implies that the estimated regres-sion funtion β(t) should be 0 on a wide range of the wavelengths. To ahievethis, we �rst represent the data in terms of basis funtions that have a very smallsupport. Then, we apply funtional SparseL2Boost to the data using the weaklearners that are de�ned in (9.10).We hoose Daubehies wavelets for this appliation. They are illustrated inFigure 9.2. We repeat that the SparseL2Boost algorithm does not rely on anyexternal model parameters that have to be estimated. In the ase of funtionaldata, the number of basis funtions however onstitutes an additional parameter.We now show how to determine the optimal number of basis funtions and theoptimal number of Boosting iterations using the generalized MDL riterion.From a tehnial point of view, in order to ompute a wavelet transformation,it is neessary to have observations at 2L equidistant points. To ful�ll this re-quirement, we �t the initial p = 700 observations using a lot of B-splines basisfuntions (in this ase, 65) and evaluate these funtions at 2L equidistant points.Afterwards, it is possible to estimate the oe�ients of the wavelet transformationthat onstitutes of 2L wavelet basis funtions. Hene, L determines the number ofbasis funtions and has to be estimated from the data. This is done by running
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Figure 9.2: Daubehies wavelet.funtional SparseL2Boost for di�erent values of L in the range of 3, 4, . . . , 10.The optimal number value of L is obtained by omparing their generalized MDLriterion (for their respetive optimal number of Boosting iterations).In order to ompare funtional SparseL2Boost to PLSR, we randomly split thewhole data set (that onsists of 39+31 = 70 observations) into a training set of size
39 and a test set of size 31. The optimal number of PLSR omponents is estimatedon the training set using 5fold ross-validation. The optimal parameters for theBooosting algorithm (i.e. L and the number of Boosting iterations m ) are foundby minimizing the generalized MDL riterion on the training set. The optimalmodels are then evaluated on the test set. The random splitting is repeated 50times. The boxplot of the test errors are depited in Figure 9.3. We also onduta Wiloxon rank sum test to test the alternative hypothesis that the test error ofthe Boosting algorithm is lower than the test error of PLSR. The median test errorfor the two methods, their optimal model parameters (estimated on the originaltraining set) and the p-value for the Wiloxon rank sign test are displayed in Table9.1. The regression oe�ients that we obtain from funtional SparseL2Boostare displayed in Figure 9.4. Here, we ompute the optimal model on the originaltraining set with the optimal model parameters that are displayed in Table 9.1.We see that the two methods are ompatible. We an learly distinguish a regionof relevant wavelengths in the range of ≈ 1600 − 1900 nanometers. In addition,
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Figure 9.3: Test errors for PLSR and funtional SparseL2Boost.median test error optimal model parameters p-valuePLSR 0.194 m = 13 0.1067Boosting 0.208 L = 7, m = 70 �Table 9.1: Median test error, optimal parameter values and p-value for the bisuitdough data set.there is a � somewhat less pronouned - region around ≈ 1400 nanometers.9.7 ConlusionThe extension of Boosting methods to funtional data is straightforward. Af-ter hoosing a base algorithm (whih we all a weak learner), we iteratively �tthe data by either applying this algorithm to reweighted samples or by using agradient desent tehnique. In many appliations, we use a �nite-dimensionalexpansion of the funtional examples in terms of base funtions. This �nite-dimensional representation an then be plugged into existing algorithms as Log-itBoost or L2Boost. In addition, it is possible to extrat sparse models from thedata. We proposed a method that is based on an extension of Boosting algorithms(that perform variable seletion) to funtional data.
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Chapter 10Summary and OutlookIn this work, we studied di�erent methods for the analysis of high-dimensionaldata. In this hapter, we brie�y review the main results and disuss some openproblems and possible future researh diretions.We provided two negative results on Partial Least Squares path models. On theone hand, we illustrated that the PLS algorithms in mode B do not neessarilyonverge to the maximum of the assoiated optimization problem. More severely,we showed that the algorithms with at least one blok in mode A are not even at-tahed to any (su�iently smooth) optimization problem! Although we suggesteda modi�ation of mode A, there still remain a lot of unanswered questions. Do theoptimization problems in mode B and (modi�ed) mode A really re�et the outerPLS model as illustrated in Figure 3.3? Whih sheme is the appropriate one?How do we speify the PLS model at all? There is no rule on how to determinethe presene or the diretion of the arrows in the inner model. In appliations,this is usually done ad-ho. Another serious problem that is prevalent in a lotof appliations is the interpretation of the model. It is ommon to analyze thequality of the PLS model in terms of the size of the weight vetors and there arestatistial tests (based on Bootstrap tehniques) to determine their signi�ane.These approahes are often only justi�ed by heuristi arguments. To summarize,we advise to meet results based on PLS path modeling tehniques with a portionof skeptiism.These reservations are however not valid for Partial Least Squares for Regres-sion. PLSR is in fat a well-founded and established tool in the analysis ofhigh-dimensional data, and it has been used suessfully in a broad range of ap-129



130 CHAPTER 10. SUMMARY AND OUTLOOKpliations. It is omputationally fast and it an be easily extended to nonlinearproblems with the help of the kernel trik. Its lose onnetion to methods fromlinear algebra (as illustrated in Chapter 6) has lead to further theoretial resultson PLSR. In partiular, a lot of statistial properties of PLSR depend on thisrelationship. As an example, we explained in Chapter 7 how to ompute theshrinkage fators of PLSR by exploiting its relationship to Krylov methods. Theinterrelation between numerial linear algebra and biased multivariate regressiontehniques is truly fasinating. We hope that � based on this � it is possible togain additional insight into existing statistial methods or even to establish newones.As a matter of fat, we introdued one new statistial method that an be justi�edin terms of numerial linear algebra. The penalized PLSR approah developedin Chapter 5 is proven to be equal to a preonditioned onjugate gradient algo-rithm. A di�erent motivation for this novel tehnique is given in terms of thekernel trik. In addition, penalized PLS in ombination with a B-splines trans-formation an be suessfully applied to the estimation of very high-dimensionalgeneralized additive models. In the examples that are presented in Chapter 5,the novel method outperforms two other methods for modeling GAM's. However,there is still spae for improvement. We already mentioned that in the penalizedPLSR approah, the degree of smoothness is the same for eah variable. This isa drawbak ompared to other methods. Reall that we illustrated in Setion 5.5that the smoothness depends on the number of penalized PLSR omponents thatare inluded in the model. In order to assign di�erent degrees of smoothness toeah variable, we might therefore allow di�erent numbers of omponents for eahvariable. As this would lead to an infeasible, high-dimensional model seletionproblem, we suggest a slightly di�erent approah based on Boosting tehniques.In the spirit of omponentwise L2Boost, we proeed stepwise. In eah step, we in-rease the number of penalized PLSR omponents for only one seleted preditorvariable. The seletion might be based on the maximal redution of the empirialrisk. If the estimation of the degrees of freedom of (penalized) PLSR in its urrentform was more reliable, it would even be possible to adapt SparseL2Boost to thispartiular problem.To onlude our omments on Partial Least Squares, we remark that it was notour primary goal to advertise trunated PLSR as a pioneering new regression



131method. There have been disussions in the literature whether the shrinkage be-havior of PLSR leads to inferior statistial properties or not, and our aim wasmainly to investigate empirially these statistial properties.In Chapter 9, we analyzed funtional data with the help of Boosting tehniques.It is perhaps not surprising that the extension of Boosting methods to funtionaldata is straightforward. The ahievement of this hapter is not merely the ombi-nation of these two onepts, but rather the introdution of methods that produesparse funtional regression models. It is de�nitely worthwhile to study furtherthe potentials of funtional SparseL2Boost, and its illustration on one single dataset is surely insu�ient. Topis that might be investigated are e.g. the in�ueneof the type of basis funtions, the in�uene of the model seletion riterion andthe reliability of this method � for instane in terms of (Bootstrap) on�deneintervals.
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Appendix AMathematial BakgroundIn this hapter, we brie�y summarize some bakground material from mathemat-is that is needed throughout this work.A.1 Matrix Di�erential CalulusThis setion ontains results from Magnus & Neudeker (1988).De�nition A.1 (First derivative of vetor funtions). Let f : Rp → Rq be afuntion and x ∈ Rp. If there is a p × q matrix A(x) suh that for all h ∈ Rpwith ‖h − c‖ < ε

f(x + h) = f(x) + A(x)h + rx(h)and
lim
h→0

rx(h)

‖h‖ = 0 ,then f is di�erentiable at point x. The matrix A(x) is alled the �rst derivativeof f at x and is denoted by ∂f

∂x
(x).The linear funtion

df(x) : R
p → R

q

df(x)(h) =
∂f

∂x
(x)his alled the �rst di�erential of f at x.We now have to extend the notion of di�erentiability to funtions de�ned onmatrix spaes. 141



142 APPENDIX A. MATHEMATICAL BACKGROUNDDe�nition A.2. Let A be a m×n matrix and A,j its jth olumn. Then ve(A)is de�ned as the vetor ve(A) =
(
At

,i, A
t
,2, . . . , A

t
,n

)tof length mn.De�nition A.3 (First derivative of matrix funtions). Let f : Rp×m → Rq×l be afuntion and X ∈ Rp×m. f is di�erentiable at X if and only if the vetor-valuedfuntion
F : ve(Rp×m) → R

ql

F (ve(X)) = ve(f(X))is di�erentiable at ve(X). The di�erential
df(X) : R

p×m → R
q×lof f at X is a linear funtion that is de�ned via the relationshipve (df(X)(H)) =

(
∂F

∂vec(X)
(vec(X))

)
vec(H) . (A.1)

∂F
∂vec(X)

(vec(X)) is alled the derivative of f at X.This theorem is needed in Chapter 3.Theorem A.4 (Theorem of Shwartz). Suppose that f : Rp → R is twie di�er-entiable on an open subset U of Rp. For all x ∈ U , the Hessian matrix
Hf(x) =

∂

∂x

∂

∂x
f(x) ∈ R

p×pof f is a symmetri matrix.Proof. The proof an be found in any introdutory book on alulus or in Magnus& Neudeker (1988).Most of the rules on di�erential alulus for real-valued funtions are also validfor matrix-valued funtions and we summarize some of them.Proposition A.5. Suppose that f and g are di�erentiable funtions.



A.2. OPTIMIZATION UNDER CONSTRAINTS 1431. (Produt rule)
d((fg) (x)) = (df(x))g(x) + f(x)(d(g(x)) .Here, the expression on the right hand side is a short-ut for the map

h 7→ ((df(x))(h)) g(x) + f(x) ((d(g(x))(h)) . (A.2)2. (Di�erential of an inverse) If f(x) is a regular matrix for all x, then
d(f−1)(x) = −(f(x))−1d(f)(x)(f(x))−1 .3. (Di�erential of the transpose)

d(f t(x)) = (d(f(x)))t .These rules are needed in the proof of proposition A.11.
A.2 Optimization under ConstraintsIn this setion, we brie�y reapitulate how to optimize with side onstraints.Suppose that we want to omputeargmax f(w) , (A.3)subjet to gk(w) = 0 , k = 1 . . . , K . (A.4)Here f, g1, . . . , gk are real-valued funtions Rp → R. We assume that f and
g1, . . . , gK are di�erentiable. We de�ne the Lagrangian funtion

L(w) = f(w) −
K∑

k=1

λkgk(w) . (A.5)The values λk are alled Lagrangian multipliers.Proposition A.6. Any solution w∗ of (A.3) and (A.4) ful�lls the Lagrangian



144 APPENDIX A. MATHEMATICAL BACKGROUNDequations
(

∂f

∂w

)
(w∗) =

k∑

i=1

λi

(
∂gi

∂w

)
(w∗) , (A.6)

gi(w
∗) = 0 . (A.7)A.3 Eigen Problems and the Singular Value De-ompositionAny matrix X ∈ Rn×p de�nes a linear map Rp → Rn via w 7→ Xw. The singularvalue deomposition of X is a representation of this map in terms of orthonormalbasis vetors for both Rp and Rn suh that the map de�ned by X is as simple aspossible.Proposition A.7 (Singular Value Deomposition). For any matrix X ∈ Rn×p,there is an orthonormal basis u1, . . .up of Rp and a set of orthonormal vetors

v1, . . . , vp ∈ Rn suh that
Xui = σivi , σi ≥ 0 .The quantities σi are alled the singular values of X and are numbered in de-reasing order. In matrix notation, we have

X = V ΣU t (A.8)with
V tV = Ip and U tU = Ip .It follows immediately that the rank of X equals the number of nonzero singularvalues (ounted with multipliities). We note that V is a basis of the olumnspae of X and U is a basis of the row spae of X. We an extend the vetors

vi to an orthonormal basis of Rn.De�nition A.8. A vetor u ∈ Rp \ {0} is alled an eigenvetor of a quadratimatrix A ∈ Rp×p if there is a salar λ ∈ R suh that Au = λu. We all λ aneigenvalue of A.The eigendeomposition of A is a representation of the form
A = UΛU−1 .



A.4. PROJECTIONS 145For some matries, there is no eigendeomposition. If A is however symmetri,we have an orthogonal eigendeomposition
A = UΛU t , U tU = Ip .The eigenvetors of a symmetri matrix an be omputed with the help of theso-alled power method.Algorithm A.9 (Power method). For a symmetri matrix A and an initialvetor b0, the power method omputes iteratively

b̃k+1 = Abk matrix multipliation
bk+1 = 1

‖ebk+1‖
b̃k+1 normalizationThe power algorithm onverges to the eigenvetor u for whih the orrespond-ing eigenvalue has the greatest absolute value, if this eigenvalue is dominant (inabsolute terms) and if the starting vetor b0 is not orthogonal on the eigenvetor

u.A.4 ProjetionsLet us onsider a general Hibert spae V. For a subspae U and any vetor v ∈ V,we de�ne the following optimization problem:argmin ‖v − u‖ ,subjet to u ∈ U .As we assume that V is a Hilbert spae, the solution exists if U is a losed sub-spae. We all the unique solution the (orthogonal) projetion of v onto U anddenote it by PUv.If U is �nite-dimensional, we an give a short representation of the projetionoperator. Denote by U = (u1, . . . , uk) any set of vetors that generate thesubspae U . For any other set V = (v1, . . . , vl) of vetors we de�ne the k × lmatrix
〈U , V 〉 = (〈ui, vj〉) .



146 APPENDIX A. MATHEMATICAL BACKGROUNDFurthermore, we de�ne the (symboli) multipliation of U with a vetor α ∈ Rkas
Uα =

k∑

i=1

αiui .The projetion map is then
PUv = U (〈U , U〉)− 〈U , v〉 . (A.9)We now list some properties of projetion operators.Proposition A.10. Denote by PU the projetion onto the subspae U .1. PU is a symmetri map.2. The projetion operator is idempotent, P2

U ≡ PU .3. If the spae U⊥ that is orthogonal on U is a losed subspae, then (IdV −P)is the projetion onto that spae.4. If V is �nite-dimensional and PU an be represented by a matrix P , thentrae(P ) = dimU .In Chapter 4, we need the �rst derivative of a projetion operator. We nowpresent this result. Let us assume that both vetors v = v(y), z = z(y) ∈ Rndepend on a vetor y. The projetion of z onto v is de�ned as (see (A.9))
Pvz = v

(
vtv
)−1

vtz .For any funtion f that depends on y, we use df = df(y) as a shortut. Using



A.4. PROJECTIONS 147proposition A.5, we have
d (Pvz) = d

(
v
(
vtv
)−1

vtz
)

= (dv)
(
vtv
)−1

vtz + v
(
d
(
vtv
)−1
)

vtz + v
(
vtv
)−1

d
(
vtz
)

= (dv)
(
vtv
)−1

vtz − v
(
vtv
)−1

d
(
vtv
) (

vtv
)−1

vtz

+v
(
vtv
)−1 [

d
(
vt
)
z + vtdz

]

= (dv)
(
vtv
)−1

vtz − v
(
vtv
)−1

d
(
vt
)
v
(
vtv
)−1

vtz

−v
(
vtv
)−1

vtdv
(
vtv
)−1

vtz + v
(
vtv
)−1

d
(
vt
)
z + v

(
vtv
)−1

vtdz

= (dv)
(
vtv
)−1

vtz − v
(
vtv
)−1

d
(
vt
)
Pvz −Pvdv

(
vtv
)−1

vtz

+v
(
vtv
)−1

d
(
vt
)
z + Pvdz

= (dv)
(
vtv
)−1

vtz − v
(
vtv
)−1

d (v)t Pvz − Pvdv
(
vtv
)−1

vtz

+v
(
vtv
)−1

d (v)t
z + PvdzUsing (A.2), this is equivalent to the following. For all h ∈ Rn,

(d (Pvz))h = ((dv) h)
(
vtv
)−1

vtz − v
(
vtv
)−1

(d (v) h)t Pvz

−Pv (dvh)
(
vtv
)−1

vtz + v
(
vtv
)−1

(d (v) h)t
z

+Pvdzh .This an be further simpli�ed by fatoring out the expression (vtv)
−1 and rear-ranging some terms. We obtain

(d (Pvz)) h =
1

vtv

[
vtz ((dv)h) − vztP t

v ((dv) h) − vtzPv ((dv)h) + vzt ((dv)h)
]

+Pvdzh

=
1

vtv

[
vtz − vztPv − vtzPv + vzt

]
((dv) h) + Pvdzh .Finally, we use the de�nition of the �rst derivative A.1 and obtain the followingresult.

Proposition A.11. The �rst derivate of the projetion operator is
∂Pvz

∂y
=

1

vtv

[
vzt (I − Pv) + vtz (I −Pv)

] ∂v

∂y
+ Pz

∂z

∂y
.



148 APPENDIX A. MATHEMATICAL BACKGROUNDA.5 The Moore-Penrose InverseThe ontents of this setion an be found e.g. in Kokelkorn (2000). If a matrix
A is not quadrati or is not of full rank, we have to �nd a suitable surrogate forits inverse. In this work, we use the Moore-Penrose inverse.Proposition A.12 (Moore-Penrose Inverse). For any matrix A ∈ Rp×l, there isa unique matrix A− ∈ Rl×p suh that

A = AA−A ,

A− = A−AA− ,
(
AA−)t = AA− ,
(
A−A

)t
= A−A .Proposition A.13. If A is a symmetri matrix with eigendeomposition

A = UΛU t ,the Moore-Penrose inverse of A is de�ned in the following way. Set
(
Λ

−)
ij

=





0 i 6= j

1
λi

i = j and λi 6= 0

0 i = j and λi = 0

.Then
A− = UΛ

−U t .Proof. It follows readily from the de�niton of Λ
− that

ΛΛ
− = Λ

−
Λ = diag( 1, . . . , 1︸ ︷︷ ︸rk(A)−times, 0, . . . , 0) .This implies that Λ

− is indeed the Moore-Penrose inverse of Λ, as the propertiesin proposition A.12 are ful�lled. It follows that
AUΛ

−U tA = UΛΛ
−
ΛU t = UΛU t = A
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UΛ

−U tAUΛ
−U t = UΛ

−
ΛΛ

−U t = UΛ
−U t .Finally, we remark that the matrix

AUΛ
−U t = UΛ

−U tA = Udiag(1, . . . , 1, 0, . . . , 0)U tis symmetri.Proposition A.14. The system of linear equations
Ax = bhas a solution if and only if x∗ = A−b is a solution. Any solution of these linearequations has the form

x = x∗ +
(
I − A−A

)
vfor any vetor v. The two omponents of x are orthogonal.
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Appendix BResults of the Simulation StudyWe display the results of the simulation study that is desribed in Setion 7.3.The following tables show the MSE-RATIO for β̂ as well as for ŷ. In addition tothe MSE-RATIO, we display the optimal number of omponents for eah method.It is interesting to see that the two quantities are the same almost all of the times.ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.833 0.861 0.676 0.958 1.000 0.993 1.000 0.999 1.0002 0.980 0.976 0.975 0.995 0.938 0.864 0.847 0.965 0.8663 1.000 0.993 1.001 0.969 0.960 0.993 0.954 0.980 0.9674 1.000 1.001 0.999 0.988 1.000 1.002 0.997 0.993 0.992
mopt

PLS 2 5 2 2 4 3 1 2 5
mopt

TRN 2 5 2 2 4 3 1 2 5Table B.1: MSE-RATIO of β̂ for p = 5. The �rst two rows display the setting ofthe parameters. The rows entitled 1-4 display the MSE ratio for the respetivenumber of omponents.
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152 APPENDIX B. RESULTS OF THE SIMULATION STUDY

ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.775 0.780 0.570 0.919 1.000 0.970 1.004 0.995 0.9992 0.978 0.972 0.9697 0.994 0.882 0.786 0.828 0.951 0.8233 1.001 0.990 1.001 0.969 0.967 0.992 0.960 0.977 0.9734 1.000 1.001 0.999 0.990 1.000 1.001 0.997 0.996 0.993
mopt

PLS 3 5 3 2 4 4 1 2 5
mopt

TRN 2 5 2 2 4 4 1 2 3Table B.2: MSE-RATIO of ŷ for p = 5.



153ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.929 0.963 0.972 0.98 0.998 0.989 1.000 1.000 1.0002 0.938 0.959 0.977 0.922 0.91 0.978 0.789 0.793 0.7923 0.907 0.952 0.981 0.875 0.91 0.945 0.849 0.843 0.8494 0.905 0.933 0.971 0.879 0.913 0.912 0.857 0.864 0.8685 0.901 0.942 0.954 0.879 0.924 0.898 0.870 0.883 0.8796 0.898 0.942 0.945 0.878 0.915 0.891 0.882 0.890 0.8937 0.892 0.926 0.949 0.887 0.906 0.891 0.891 0.895 0.8988 0.899 0.926 0.956 0.892 0.904 0.895 0.897 0.897 0.9039 0.908 0.933 0.955 0.897 0.910 0.895 0.903 0.902 0.90410 0.913 0.938 0.951 0.900 0.916 0.898 0.902 0.899 0.90111 0.913 0.937 0.947 0.902 0.919 0.907 0.906 0.901 0.90212 0.917 0.931 0.944 0.909 0.919 0.917 0.908 0.904 0.90613 0.924 0.932 0.946 0.919 0.92 0.925 0.913 0.907 0.91414 0.933 0.939 0.946 0.927 0.917 0.936 0.921 0.911 0.92215 0.94 0.945 0.95 0.933 0.916 0.936 0.928 0.916 0.93116 0.949 0.945 0.951 0.935 0.918 0.941 0.938 0.922 0.93617 0.956 0.945 0.954 0.939 0.922 0.945 0.944 0.926 0.93618 0.961 0.944 0.959 0.943 0.931 0.95 0.946 0.930 0.93519 0.968 0.946 0.964 0.946 0.934 0.958 0.953 0.939 0.93620 0.973 0.951 0.973 0.949 0.935 0.962 0.961 0.947 0.93921 0.977 0.958 0.977 0.954 0.936 0.966 0.968 0.955 0.94322 0.98 0.965 0.981 0.961 0.94 0.973 0.972 0.962 0.94823 0.984 0.97 0.984 0.968 0.945 0.98 0.976 0.967 0.95024 0.987 0.976 0.988 0.975 0.948 0.983 0.98 0.970 0.95325 0.989 0.98 0.99 0.978 0.953 0.987 0.981 0.973 0.95926 0.992 0.985 0.993 0.982 0.959 0.991 0.984 0.977 0.96627 0.994 0.989 0.996 0.986 0.966 0.992 0.987 0.981 0.97528 0.995 0.991 0.997 0.988 0.973 0.994 0.99 0.985 0.98429 0.996 0.993 0.998 0.99 0.978 0.995 0.993 0.988 0.98830 0.997 0.994 0.999 0.992 0.982 0.996 0.995 0.991 0.9931 0.998 0.995 0.999 0.994 0.985 0.997 0.996 0.992 0.99332 0.998 0.996 0.999 0.996 0.99 0.998 0.996 0.994 0.99533 0.999 0.997 1.000 0.996 0.991 0.999 0.997 0.995 0.99634 0.999 0.998 1.000 0.997 0.993 0.999 0.998 0.996 0.99735 0.999 0.999 1.000 0.999 0.994 0.999 0.998 0.997 0.99836 1.000 1.000 1.000 0.999 0.996 0.999 0.999 0.998 0.99837 1.000 1.000 1.000 0.999 0.998 1.000 0.999 0.998 0.99938 1.000 1.000 1.000 1.000 0.999 1.000 0.999 0.999 0.99939 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 1.000
mopt

PLS 1 3 5 1 2 2 1 1 1
mopt

TRN 1 3 5 1 2 2 1 1 1Table B.3: MSE-RATIO of β̂ for p = 40.



154 APPENDIX B. RESULTS OF THE SIMULATION STUDYollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.781 0.797 0.791 0.877 0.983 0.924 1.013 1.004 1.0012 0.870 0.857 0.853 0.785 0.702 0.868 0.673 0.684 0.6803 0.853 0.899 0.914 0.776 0.818 0.853 0.778 0.772 0.7784 0.874 0.891 0.896 0.818 0.836 0.838 0.81 0.818 0.8225 0.889 0.92 0.893 0.839 0.891 0.846 0.835 0.855 0.8566 0.898 0.942 0.921 0.844 0.884 0.859 0.862 0.881 0.8817 0.897 0.938 0.929 0.876 0.902 0.88 0.886 0.898 0.8988 0.923 0.941 0.943 0.886 0.898 0.896 0.9 0.906 0.9149 0.924 0.944 0.960 0.904 0.916 0.901 0.915 0.92 0.91710 0.935 0.958 0.961 0.913 0.93 0.915 0.915 0.914 0.92111 0.943 0.967 0.959 0.922 0.937 0.916 0.924 0.92 0.92712 0.954 0.967 0.958 0.929 0.942 0.938 0.932 0.926 0.93113 0.959 0.967 0.965 0.941 0.95 0.942 0.939 0.933 0.93714 0.961 0.961 0.966 0.948 0.949 0.954 0.947 0.942 0.94215 0.97 0.969 0.977 0.954 0.953 0.96 0.953 0.948 0.94916 0.975 0.971 0.976 0.964 0.962 0.967 0.961 0.954 0.95717 0.979 0.976 0.983 0.968 0.962 0.974 0.967 0.957 0.95718 0.982 0.981 0.985 0.972 0.966 0.979 0.968 0.960 0.96619 0.986 0.985 0.988 0.976 0.969 0.980 0.974 0.965 0.97020 0.989 0.987 0.991 0.977 0.970 0.983 0.979 0.972 0.97421 0.991 0.99 0.992 0.980 0.973 0.985 0.984 0.977 0.97822 0.993 0.99 0.994 0.984 0.979 0.988 0.988 0.982 0.98123 0.995 0.992 0.996 0.987 0.98 0.991 0.990 0.986 0.98324 0.996 0.993 0.997 0.989 0.982 0.993 0.992 0.987 0.98425 0.996 0.995 0.997 0.99 0.983 0.994 0.993 0.989 0.98526 0.997 0.996 0.998 0.992 0.986 0.996 0.994 0.991 0.98727 0.998 0.997 0.999 0.994 0.990 0.997 0.995 0.993 0.98928 0.999 0.997 0.999 0.995 0.991 0.998 0.996 0.994 0.99129 0.999 0.998 0.999 0.996 0.992 0.998 0.997 0.996 0.99430 0.999 0.999 1.000 0.997 0.993 0.999 0.998 0.997 0.99431 0.999 0.999 1.000 0.998 0.994 0.999 0.998 0.997 0.99632 0.999 0.999 1.000 0.998 0.995 0.999 0.999 0.998 0.99733 1.000 0.999 1.000 0.998 0.996 0.999 0.999 0.998 0.99834 1.000 0.999 1.000 0.999 0.997 1.000 0.999 0.999 0.99835 1.000 1.000 1.000 0.999 0.998 1.000 0.999 0.999 0.99936 1.000 1.000 1.000 0.999 0.998 1.000 1.000 0.999 0.99937 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.999 0.99938 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 1.00039 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
mopt

PLS 1 3 9 1 1 2 1 1 1
mopt

TRN 1 3 4 1 2 2 1 1 1Table B.4: MSE-RATIO of ŷ for p = 40.
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ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.845 0.763 0.825 0.862 0.839 0.906 1.017 1.002 1.0002 0.813 0.892 0.864 0.753 0.832 0.847 0.695 0.695 0.6943 0.863 0.884 0.881 0.788 0.837 0.859 0.806 0.808 0.8124 0.908 0.898 0.918 0.852 0.852 0.864 0.866 0.861 0.8655 0.933 0.940 0.954 0.889 0.888 0.900 0.900 0.903 0.9036 0.954 0.953 0.960 0.900 0.905 0.915 0.926 0.931 0.9317 0.964 0.967 0.979 0.927 0.935 0.930 0.951 0.953 0.9538 0.976 0.972 0.988 0.942 0.942 0.950 0.968 0.968 0.9709 0.984 0.982 0.993 0.959 0.963 0.961 0.979 0.968 0.97910 0.99 0.990 0.995 0.969 0.970 0.970 0.980 0.979 0.98111 0.994 0.991 0.998 0.976 0.979 0.978 0.987 0.987 0.98812 0.996 0.994 0.998 0.982 0.987 0.984 0.991 0.992 0.99313 0.997 0.995 0.999 0.988 0.991 0.990 0.994 0.994 0.99514 0.998 0.997 0.999 0.991 0.994 0.992 0.996 0.997 0.99715 0.999 0.998 1.000 0.994 0.995 0.994 0.997 0.998 0.99816 0.999 0.999 1.000 0.996 0.997 0.996 0.998 0.998 0.99917 1.000 0.999 1.000 0.997 0.998 0.997 0.999 0.999 0.99918 1.000 0.999 1.000 0.998 0.999 0.998 0.999 0.999 0.99919 1.000 1.000 1.000 0.999 0.999 0.999 0.999 1.000 1.00020 1.000 1.000 1.000 0.999 0.999 0.999 1.000 1.000 1.000
mopt

PLS 1 2 5 1 1 2 1 1 1
mopt

TRN 1 1 3 1 1 2 1 1 1Table B.5: MSE-RATIO of ŷ for p = 100. We only display the results for the �rst20 omponents, as the MSE-RATIO equals 1 (up to 4 digits after the deimalpoint) for the remaining omponents.


