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Überbli
k
In der statistis
hen Analyse von ho
hdimensionalen Daten geht es darum, Zusam-menhänge zwis
hen einer groÿen Menge p an Variablen mit Hilfe einer begrenztenAnzahl n an Beoba
htungen zu modellieren. Gemeinsam sind allen Analyseme-thoden die beiden folgenden Ziele. Zum einen ist es wi
htig, (latente) Struk-turen in den Daten zu erkennen, um so eine handhabbare, niedrigdimensionaleRepräsentation zu gewinnen. Zum anderen ist es oft von groÿer Wi
htigkeit,verständli
he und lei
ht zu interpretierende Modelle zu entwi
keln. Die hohe Di-mensionalität der Daten führt oft zu groÿen Problemen, denn für p ≫ n versagendie traditionellen statistis
hen Verfahren. Zudem ist die Struktur der Daten oftkomplexer. Die beoba
hteten Gröÿen sind ni
ht � wie in der klassis
hen Statis-tik übli
h � Vektoren in einem endli
hdimensionalen Vektorraum, sondern zumBeispiel Funktionen. Beispiele für diese Art von Datenstrukturen sind Zeitreihenoder Messungen in der Nah-Infrarot-Spektroskopie. In dieser Arbeit soll die Ana-lyse von ho
hdimensionalen und komplexen Daten mit Hilfe von zwei Verfahrenuntersu
ht werden: Partial Least Squares und Boosting in Funktionenräumen.Partial Least Squares (PLS) modelliert den Zusammenhang zwis
hen vers
hiede-nen Blö
ken von Variablen mit Hilfe sogenannter latenter Variablen. Im Fall vonmehr als zwei Blö
ken werden die PLS-Verfahren au
h als Pfadmodelle bezei
hnetund können als eine Erweiterung der Kanonis
hen Korrelationsanalyse angesehenwerden. Die mathematis
hen Eigens
haften von PLS-Pfadmodellen sind zumgroÿen Teil no
h unerfors
ht. Zum Beispiel ist weder klar, ob die Algorithmen zurBere
hnung der latenten Variablen im Pfadmodell numeris
h konvergieren, no
h,ob sie � falls sie konvergieren � Lösungen von sinnvollen Optimierungsproblemendarstellen. In dieser Arbeit wird ein sauberes mathematis
hes Gerüst für dieBes
hreibung der Pfadmodelle aufgestellt. Es wird gezeigt, dass zu einem groÿenTeil der PLS-Algorithmen (derjenigen mit mindestens einem Blo
k im ModusA) tatsä
hli
h kein zweimal di�erenzierbares Optimierungsproblem existiert. Zu-iii



dem wird anhand von simulierten Daten gezeigt, dass für die PLS-Algorithmenim Modus B die Verfahren nur zu einer lokalen Lösung eines Optimierungsprob-lems konvergieren können.PLS kann au
h in Regressionsproblemen eingesetzt werden, in dem man die erklä-renden und die abhängigen Variablen als jeweils einen Blo
k au�asst. In diesemFall ermögli
ht PLS zudem eine Dimensionsreduktion der Daten, die wiederumho�entli
h zu besseren Vorhersagen führt. In dieser Arbeit wird eine Erweiterungvon PLS um einen Strafterm vorgestellt und auf die S
hätzung von generali-sierten additiven Modellen (GAM's) angewandt. Es zeigt si
h, dass insbeson-dere für ho
hdimensionale Daten dieser Ansatz eine gute Alternative zu klassis-
hen GAM-Verfahren ist. Ausgehend von der bereits bekannten Verbindung vonPLS und dem Konjugierten-Gradienten-Verfahren (aus der numeris
hen linearenAlgebra) wird gezeigt, dass PLS mit Strafterm äquivalent zu einem vorkondi-tionierten Konjugierten-Gradienten-Verfahren ist. Die Konditionierungsmatrixwird dabei dur
h den Strafterm bestimmt. Im Ans
hluss werden die Beziehun-gen zwis
hen der linearen Algebra und PLS ausgenutzt, um die sogenannten�Shrinkage�-Eigens
haften von PLS empiris
h zu untersu
hen. Darüber hinauswird ein unverzerrter S
hätzer für die Freiheitsgrade von PLS ermittelt.Boosting ist ein Verfahren aus dem Berei
h des Mas
hinellen Lernens. Diegrundlegende Idee ist, vers
hiedene einfa
he Vorhersagemodelle so zu kombinieren,dass diese Kombination zu sehr viel besseren Vorhersagen führt. In dieser Arbeitwerden Boostingverfahren für komplizierte Datenstrukturen entwi
kelt. Dabeiinteressiert uns vor allen Dingen der Fall, in dem die beoba
hteten Ein�ussgröÿenFunktionen bzw. diskrete Messungen von Funktionen sind. Die gängigen Boosting-Methoden basieren implizit auf der Annahme, dass die Ein�ussvariablen Wertein einem endli
hdimensionalen Vektorraum annehmen. Es wird gezeigt, dass dieErweiterung auf unendli
hdimensionale Funktionenräume ohne Weiteres mögli
hist. Zudem wird illustriert, wie man mit Hilfe von Boostingverfahren wi
htigeCharakteristika der Funktionen aufde
kt und wie man damit lei
ht interpretier-bare und visualisierbare Modelle erzeugt. Dies ges
hieht dur
h eine Transforma-tion der Ausgangsdaten mit Hilfe von Wavelet- bzw. Fouriertransformationen.
iv



Outline
The 
ru
ial task in the statisti
al analysis of high-dimensional data is to modelrelationships between a large amount p of variables based on a small number nof observations. Quite generally, we pursue two goals. On the one hand, it isimportant to dete
t (latent) stru
tures in the data in order to obtain a feasible,low-dimensional representation. On the other hand, we often need simple and
omprehensible models that 
an be interpreted. The high-dimensionality of thedata often forms an obsta
le, as for p ≫ n, the traditional statisti
al te
hniquesfail to produ
e satisfa
tory results. Furthermore, the stru
ture of the data 
an be
omplex. The observed variables are not � as usually assumed in 
lassi
al statis-ti
s � elements of a �nite-dimensional ve
tor spa
e, but , for instan
e, fun
tions.Examples for this type of data are times series or experiments from the �eld ofnear-infra-red spe
tros
opy. In this work, we investigate high-dimensional and
omplex data with the help of two methods: Partial Least Squares and Boostingfor fun
tional data.Partial Least Squares (PLS) models the relationship between di�erent blo
ks ofvariables in terms of so-
alled latent variables. In the 
ase of more than twoblo
ks, the PLS-te
hniques are also 
alled path models and 
an be seen as a gen-eralization of Canoni
al Correlation Analysis. The mathemati
al properties ofPLS are for the most parts not yet established. For example, it is neither knownwhether the PLS algorithms 
onverge numeri
ally, nor � in the 
ase that they
onverge � if they produ
e solutions of a sensible optimization 
riterion. In thiswork, we establish a sound mathemati
al framework for the des
ription of PLSpath models. We show that for a large part of the PLS algorithms (those with atleast one blo
k in mode A), there is indeed no twi
e-di�erentiable optimizationproblem. Furthermore, we show on simulated data that the PLS algorithms inmode B 
an 
onverge only to a lo
al solution of an optimization problem.v



PLS 
an also be used to solve regression problems. In this 
ase, it leads toa substantial redu
tion of the dimension of the data, whi
h hopefully leads tobetter predi
tion rules. In this work, we present an extension of PLS using pe-nalization te
hniques. This method is then used to estimate generalized additivemodels (GAM's). This approa
h turns out to be a good alternative to traditionalGAM-methods in the 
ase of high-dimensional data. Based on the well-knownrelationship between PLS and the 
onjugate gradient te
hnique (a method fromthe �eld of numeri
al linear algebra), we prove that penalized PLS is equal to apre
onditioned 
onjugate gradient te
hnique. Here, the pre
onditioner is deter-mined by the penalty term. Subsequently, we exploit the 
onne
tions betweenPLS and linear algebra to investigate empiri
ally the so-
alled shrinkage proper-ties of PLS. In addition, we derive an unbiased estimate of the degrees of freedomof PLS.Boosting has its seed in the ma
hine learning 
ommunity. The basi
 idea isto 
ombine several, simple models in su
h a way that their 
ombination leads tobetter predi
tion rules. In this work, we develop Boosting algorithms for 
omplexdata stru
tures. Our fo
us is on data that are (dis
rete) measurements of 
urves.The established Boosting methods impli
itly assume that the observed variableslie in a �nite-dimensional ve
tor spa
e. We show that an extension of Boosting toin�nite-dimensional fun
tion spa
es is straightforward. Furthermore, we illustratehow to dete
t relevant features of the investigated fun
tions and how to produ
esimple and interpretable models. This is done by applying wavelet or Fouriertransformations to the data and by then applying suitable Boosting algorithms.
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Chapter 1
Preliminaries
This 
hapter serves as a referen
e for some basi
 
on
epts that are essential forthe rest of this work.
1.1 Notation and GuidelineMatri
es are denoted by bold upper 
ase letters X, A, U , . . . and ve
tors are de-noted by bold lower 
ase letters v, y, . . .. This rule is also valid if we use Greekletters. The transpose of a matrix or a ve
tor is indi
ated by a supers
ript tas in At and vt. The Moore-Penrose inverse of a matrix A is denoted by A−.Spa
es are either in 
alligraphi
 style (X ,Y ,F , . . .) or in bla
kboard bold style(R, N, Z, F, . . .). Fun
tions are usually denoted by lower 
ase letters as f, g, h, . . ..The 
ovarian
e and varian
e of random variables are denoted by Cov and Var.Their respe
tive empiri
al 
ounterparts are denoted by 
ov and var.The table of 
ontents hopefully reveals the rough stru
ture of this work. Let usremark that Chapters 1, 2 and 8 serve as summaries of well-known 
on
epts anddo not 
ontain any fundamentally new ideas. Before starting to read further,it might be bene�
ial to have a look at Chapter A in the appendix. There, we
olle
t some basi
 mathemati
al prin
iples that 
onstantly emerge in this work.All experiments and simulations are performed in R (R Development Core Team2005). 1



2 CHAPTER 1. PRELIMINARIES1.2 Learning from DataLet us introdu
e the general learning problem. We 
onsider two random variables
X and Y whi
h de�ne a random variable Z = X × Y on a produ
t spa
e X ×Y .We assume that there is a relationship between X and Y in the sense that given
X, we 
an predi
t the out
ome of Y with a high a

ura
y. We do not know thedistribution of Z, but we observe a �nite set

S = {(x1, y1), . . . , (xn, yn)} ⊂ X × Yof observations. This set is 
alled the sample. We assume that the observationsare drawn independently from Z = X × Y . The 
lassi
al statisti
al approa
h isto identify the pro
ess Z that generates the sample. Assuming a 
lass of modelsthat is appropriate to des
ribe Z, the model parameters of Z are estimated withthe help of S. From this, we 
an infer the 
onditional distribution of Y given X.In order to �nd an estimate f̂ of a fun
tion
F : X → Y (1.1)that predi
ts an out
ome y for a �xed value x ∈ X via f̂(x), we have to evaluatethe de
ision f̂(x) if the 
orre
t out
ome is y. This is done via a loss fun
tion

L : Y × Y → R , (1.2)and the risk at a 
ertain point z = (x, y) is de�ned as L(y, f̂(x)). The optimalfun
tion is the one that minimizes the expe
ted risk
R(f) = EX×Y [L(Y, f(X))] . (1.3)over all fun
tions f . If the distribution of Z is known, the optimal fun
tion 
anoften be determined expli
itly. For example, if we 
onsider regression problems(that is Y = R) and L is the quadrati
 loss fun
tion

L(y, y′) = (y − y′)
2

, (1.4)the optimal fun
tion is the 
onditional expe
tation f(x) = E[Y |X = x].In 
ontrast, statisti
al learning theory fo
uses on mimi
king the underlying pro-



1.3. THE REGRESSION MODEL 3
ess. The primary task is to �nd a fun
tion that minimizes (1.3) and not toidentify the whole pro
ess Z. As the distribution of Z is not known, it is notpossible to minimize (1.3). As a 
onsequen
e, we have to estimate the optimalfun
tion based on the available sample S. A popular approa
h is to �x a 
lass offun
tions F and to minimize the empiri
al risk
R̂(f) =

1

n

n∑

i=1

L(yi, f(xi)) (1.5)over all elements f ∈ F . The quantity R̂(f) is also 
alled the training error.Sometimes, a regularization term r(f) is added to (1.5). This strategy is 
alled(regularized) empiri
al risk minimization. A 
ombination of a loss fun
tion, a
lass of fun
tions and a regularization term de�nes a strategy to estimate (1.1).Depending on the s
ienti�
 
ommunity, a strategy is 
alled a model, an algorithm,a �tting method or a learner. In this work, we use these terms more or lesssynonymously. A more pre
ise spe
i�
ation of a learning strategy is given inChapter 2. Some remarks on the term �model� are however ne
essary. In theliterature, it is used to des
ribe two di�erent aspe
ts of learning from data. Onthe one hand, a model is a des
ription of how the data is generated. E.g. inthe learning task (1.1), we 
an determine the stru
ture of the fun
tion F (linear,polynomial) or assume that Z belongs to a 
ertain 
lass of distributions. On theother hand, a model is a strategy how to estimate the generation of the data.This refers to the des
ription of a learning strategy des
ribed above. For everysample S and every learning strategy, we obtain an estimate of the fun
tion F ,whi
h we denote by f̂ .1.3 The Regression ModelIn this work, we are mainly 
on
erned with multivariate regression problems thathave a one-dimensional response. That is we assume that Y = R and X = Rp.In statisti
s, regression problems are usually modeled in the following way:
Yi = F (Xi) + εi, i = 1, . . . , n .The predi
tor X is a multivariate, p−dimensional random variable. From now on,the predi
tors are assumed to be deterministi
 and only the response is assumedto be sto
hasti
. In addition, we 
laim that the error terms are un
orrelated



4 CHAPTER 1. PRELIMINARIESwith zero mean and equal varian
e. In 
ompa
t form, the regression model 
andetermined via
Yi = F (xi) + εi, i = 1, . . . , n , (1.6)with

E [εi] = 0and Cov (Y1, . . . , Yn) = σ2In . (1.7)Here, In is the identity matrix of dimension n. It follows immediately that
E [Yi] = F (xi) . (1.8)Let us now 
onsider multivariate linear regression problems. If the fun
tion Fin (1.6) is assumed to be linear, the regression model 
an be represented by themultivariate linear regression model
Yi = xt

iβ + εi . (1.9)Given data S, the estimation of (1.6) is transformed into the estimation β̂ of theregression ve
tor β. Re
all that the number of variables is p and that the numberof examples is n . We set
X =




xt
1

. . .

xt
n


 ∈ R

n×p, y =




y1

. . .

yn


 ∈ R

n .An inter
ept β0 
an be in
luded into (1.9) by atta
hing an additional 
olumn that
onsist of 1's. Another possibility is to estimate (1.9) based on 
entered data.For this reason, we require that both X and y are 
entered.
The Ordinary Least Squares (OLS) estimator β̂OLS is the solution of the opti-



1.3. THE REGRESSION MODEL 5mization problemargmin
β

n∑

i=1

(
yi − xt

iβ
)2

= argmin
β

‖y − Xβ‖2 .Note that this equals the minimization of the empiri
al risk R̂ (β) de�ned (1.5) forthe quadrati
 loss fun
tion (1.4) and F equal to the spa
e of all linear fun
tions.If we di�erentiate the empiri
al risk with respe
t to β, we realize that the solution
β̂OLS must ful�ll

X tXβ̂OLS = X ty .There is always a solution, as X ty lies in the spa
e spanned by the 
olumns of
X tX. However the solution is not unique if X tX does not have full rank. Thisis for example the 
ase if there are more variables than observations. If there isno unique solution, we de�ne the OLS estimator as the solution with minimaleu
lidean norm. It follows from proposition A.14 that

β̂OLS =
(
X tX

)−
X ty .We now use the singular value de
omposition

X = V ΣU tof X that is de�ned in (A.8). Furthermore, Λ = Σ
t
Σ is the matrix of eigenvaluesof X tX. Set

s = ΣV ty . (1.10)In this work, we use one of the following representations of the OLS estimator:
β̂OLS =

(
X tX

)−
X ty = UΛ

−s =

rk(X)∑

i=1

vt
iy√
λi

ui =

rk(X)∑

i=1

zi , (1.11)with
zi =

vt
iy√
λi

ui .The OLS estimator usually performs poorly on new data if the number of exam-



6 CHAPTER 1. PRELIMINARIESples is small 
ompared to the number of observations or if X is highly 
ollinear.Both phenomena lead to a 
ovarian
e matrix (1/n)X tX that is (almost) singu-lar, whi
h a�e
ts the statisti
al properties of the estimator. This is dis
ussed ingreat detail in Se
tion 7.1.1.4 Duality and Kernel MethodsIn this se
tion, we brie�y re
apitulate the 
on
ept of dual representations and thekernel tri
k. Let us 
onsider the following example. In Se
tion 1.3, we introdu
edthe linear regression model (1.9). For any estimate β̂ of β, we 
an predi
t thevalue of y for a new observation xnew via the linear fun
tion
ŷnew = xt

newβ̂ =
〈
xnew, β̂

〉
. (1.12)Now suppose that we want to transform the original data X before applyingOLS. One reason to do so is to model nonlinear relationships between predi
torvariables and response. If we have e.g. p = 2 predi
tor variables and we want toestimate a fun
tion (1.1) with F assumed to be a polynomial of degree ≤ 2. How
an we use a method that is designed for linear regression problems (e.g. OLS)to solve this problem? We simply transform the data via a map

Φ (x, x′) =
(
1,
√

2x,
√

2x′,
√

2xx′, x2, x′2
) (1.13)and apply the linear algorithm to y and Φ (X). A transformation is also ne
-essary if the observed data are not yet embedded in an eu
lidean spa
e. If forinstan
e, the variables are on a nominal s
ale, we have to transform the vari-ables into dummy variables and then plug the transformed data into any learningmethod designed for estimating linear relationships.The transformation map

Φ : X → F (1.14)is 
alled the feature map. The spa
es X and F are 
alled input spa
e and featurespa
e respe
tively. In order to apply a linear algorithm in F, it is often ne
essaryto assume that F is a Hilbert spa
e. An important observation is the following.In a lot of 
ases, the ve
tor β̂ that de�nes the linear fun
tion in (1.12) is a linear
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ombination of the data points,̂
β =

n∑

i=1

αiΦ (xi) . (1.15)The 
oe�
ients αi are 
alled dual variables. If we plug (1.15) into 〈Φ(xnew), β̂〉,we realize that the linear fun
tion only depends on inner produ
ts between trans-formed data points,
f(x) = 〈Φ(x), β̂〉 =

n∑

i=1

αi 〈Φ(x), Φ(xi)〉 .In this 
ase, the estimation of the dual variables 
an be done by using the n × nGram matrix
K = (〈Φ(xi), Φ(xj)〉)i,j=1,...,n

.Note that 
ondition (1.15) holds for the OLS estimate. This follows e.g. from(1.11), as the ve
tors ui are a basis of the row spa
e of X. (Re
all the singularvalue de
omposition (A.8) of X.) de Bie et al. (2005) des
ribe various multivari-ate methods in terms of their primal and dual representation.As we only need inner produ
ts in the dual representation, we do not have to mapthe data points expli
itly to a feature spa
e, it su�
es to 
ompute the fun
tion
k : X ×X → R (1.16)with

k(x, z) = 〈Φ(x), Φ(z)〉 . (1.17)The estimated fun
tion is
f(x) =

n∑

i=1

αik(x, xi) .The fun
tion k is 
alled a kernel. Note that in example (1.13),
k(x, z) = (1 + 〈x, z〉)2 .



8 CHAPTER 1. PRELIMINARIESThe repla
ement of the usual inner produ
t by the inner produ
t in some featurespa
e is 
alled the kernel tri
k. Note that we do not even require the input spa
eto be an inner produ
t spa
e at all. Literature on the kernel tri
k and its appli-
ations is abundant. A detailed treatise of the subje
t 
an be found in S
hölkopf& Smola (2002).So instead of de�ning a feature map, we de�ne an admissible kernel fun
tion,that is, a fun
tion (1.16) whi
h 
an be de�ned via a map (1.14) su
h that (1.17)holds. The 
hoi
e of the optimal kernel is part of the model sele
tion pro
edurethat is illustrated in Chapter 2. What are the merits of this dual representation?We already mentioned the extension to nonlinear models. Furthermore, from ate
hni
al point of view, if p ≫ n, the 
omputation in the dual representationis usually faster than the 
omputation in the primal representation. Finally, we
an extend the whole multivariate ma
hinery to spa
es X of in�nite dimension orwith a 
omplex stru
ture by de�ning an appropriate inner produ
t. An importantexample is the analysis of fun
tional data, that is, X is a spa
e of fun
tions oversome domain. This subje
t will be treated in more detail in Chapter 8.



Chapter 2
Model Sele
tion
We now re
apitulate the main tools to evaluate the performan
e of a learningmethod. The 
ontents of this 
hapter are a summary of the 
orresponding 
hap-ter in Hastie et al. (2001). As des
ribed in Chapter 1, we estimate the relationship(1.1) by applying an appropriate �tting method. Normally, we we do not �t asingle model but a group of models and have to 
hoose the best model. This isusually 
alled model sele
tion. We therefore need a strategy how to sele
t thebest model out of a pool of models. After the best model is 
hosen, we have toevaluate its quality. This is 
alled model validation. Re
all that we evaluate amodel in terms of its expe
ted risk (1.3). As this quantity is usually unknown, weneed a good estimate. In what follows, we fo
us on model sele
tion and remarkthat the risk of the sele
ted model should be estimated on a test set that wasneither involved in the �tting pro
ess nor in the sele
tion pro
ess.In the rest of the 
hapter, we 
onsider the general regression model (1.6). Givendata, we �t a model and 
all the �tted fun
tion f̂ . In order to evaluate the qualityof the �tting method, we start by 
omputing the expe
ted risk of f̂ at a point xi,

R
(
f̂(xi)

)
= EY new

[
L
(
Y new, f̂(xi)

)]
. (2.1)Here, Y new is a new observation at point xi. Note that the quantity R

(
f̂(xi)

)depends on the sample S that is used to estimate f̂ . If we use the quadrati
 loss9
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tion (1.4), the expe
ted risk of f̂ at xi equals
R
(
f̂(xi)

)
= EY new

[(
Y new − f̂(x0)

)2
]

= EY new

[(
Y new − E[Y new] + E[Y new] − f̂(xi)

)2
]

(1.8)
= EY new

[
(Y new − E[Y new])2 +

(
F (xi) − f̂(xi)

)2
]

= σ2 +

[(
F (xi) − f̂(xi)

)2
]

. (2.2)The term σ2 is 
alled the irredu
ible error. The se
ond term depends on the datathat we used to �t the model. If we are interested in the quality of our learningstrategy that is used to obtain the estimate f̂ , we 
ompute the expe
ted value of
R
(
f̂(xi)

) with respe
t to the data Y (n) = (Y1, . . . , Yn). For the quadrati
 loss,we yield
EY (n)EY new

[(
Y new − f̂(xi)

)2
]

= σ2 + bias2 (f̂(xi)
)

+ Var(f̂(xi)
)

.We expe
t the bias to de
rease for more 
omplex models and the varian
e toin
rease. If we 
hoose a very simple model with a low varian
e, we might fail to
apture the relevant stru
ture of the data. If we �t a very 
omplex model thatis almost unbiased, we have a good explanation of the available sample but willprobably fail to predi
t on new observations. The latter phenomenon is 
alledover�tting. In Se
tion 7.1, we study this bias-varian
e trade-o� in more detail forlinear shrinkage estimators.Let us return to the essential question of this 
hapter. How do we sele
t a model?Let us assume that we have a lot of data at hand. In this 
ase, we 
an pro
eedin the following way. We split the data set into two parts: a training set anda validation set. We �t the models on the training set. We then 
ompare theirperforman
e on the validation set. Note however that in most situations, theamount of available data is limited and we 
annot a�ord to ex
lude a fra
tionof the data from model estimation. We therefore need di�erent strategies toestimate the risk of a model. Roughly, we distinguish two di�erent approa
hes.In the �rst approa
h, we repeat a random splitting into training and test setseveral times. This is 
alled 
ross-validation and is dis
ussed in Se
tion 2.1. Inthe se
ond approa
h, that is presented in Se
tion 2.3, we use the fa
t that the



2.1. CROSS VALIDATION 11risk of a model 
an be estimated in terms of its empiri
al risk and its 
omplexity.More pre
isely, the 
omplexity 
an be expressed in terms of degrees of freedom.2.1 Cross ValidationThe 
ross-validation te
hnique (Stone 1974, Stone 1977) produ
es estimates ofthe risk R(f̂) of a model f̂ . Re
all that in order to sele
t the best model, it issuggested to split the data into a training set and a validation set. The model is�tted on the training set and its performan
e is estimated on the validation set.As in a lot of 
ases, we do not have enough data at hand, a more re�ned strategyis pursued. We randomly split the data into K parts of roughly the same size.For k = 1, . . . , K, we remove the kth blo
k from the data and �t the model tothe remaining K − 1 parts. The kth blo
k is used as a test set. That is, for ea
hblo
k k, we obtain an estimate of the risk of the model that was �tted on theother K − 1 blo
ks. Finally, we average these K estimates. More formally, thefun
tion
κ : {1, . . . , n} → {1, . . . , K}assigns to the ith example its blo
k membership. We denote by f̂−k the fun
tionthat was �tted on all but the kth blo
k.De�nition 2.1. The K-fold 
ross-validation error isCV(f̂) =

1

n

n∑

i=1

L(yi, f̂
−κ(i)(xi)) . (2.3)For K = n, this is 
alled the leave-one-out error.Let us note that the 
omputational 
osts of K-fold 
ross-validation 
an be
omevery high if K is large. In this 
ase, we have to �t the models several times, whi
h
an be very time-
onsuming.2.2 Degrees of FreedomAs already mentioned above, the quality of a model or a fun
tion f̂ is measuredin terms of its expe
ted risk (1.3). As this risk 
annot be 
omputed, we needa good estimate. The empiri
al risk (1.5) of f̂ is obviously not a good estimate



12 CHAPTER 2. MODEL SELECTIONof (1.3). We expe
t the empiri
al risk to be lower than the true risk, as we usethe same data set to �t the model f̂ and to asses its performan
e. If we use thetraining data for model assessment, this leads to overoptimisti
 estimates of therisk. The gap between empiri
al and test error is usually parti
ularly large forvery 
omplex models. In order to get a good estimate of the expe
ted risk, wehave to measure the gap between empiri
al error and the expe
ted risk.Re
all the general regression model (1.6). Note that we de�ned the expe
tedrisk of f̂ at a data point xi in (2.1). The estimated fun
tion f̂ depends onthe sample S, that is it depends on Y (n) = (Y1, . . . , Yn). If we average over allpoints x1, . . . , xn and 
ompute the expe
tation with respe
t to Y (n), we obtainthe expe
ted in-sample risk of our strategy,
Rin = Rin(x1, . . . , xn) = EY (n)

[
1

n

n∑

i=1

R
(
f̂(xi)

)]
.The di�eren
e between Rin and the expe
ted empiri
al risk is 
alled the optimism:op = Rin − EY (n)

[
R̂(f̂)

]
= EY (n)

[
1

n

n∑

i=1

{
R
(
f̂(xi

)
− R̂

(
f̂(xi

)}]
.The key point is to �nd a good estimate ôp of op. We 
an then estimate thein-sample risk of a model in the following way:

R̂in = R̂ + ôp . (2.4)Proposition 2.2. For the quadrati
 loss fun
tion (1.4), the optimism of a �ttingmethod is
op =

2

n

n∑

i=1

Cov(f̂(xi), Yi

)
. (2.5)

Proof. It follows from (2.2) that
Rin = σ2 +

1

n

n∑

i=1

EY (n)

(
F (xi) − f̂(xi)

)2

.



2.2. DEGREES OF FREEDOM 13Next, we have
R̂(f̂) =

1

n

n∑

i=1

(
Yi − f̂(xi)

)2

=
1

n

n∑

i=1

(
Yi − F (xi) + F (xi) − f̂(xi)

)2

=
1

n

n∑

i=1

(Yi − F (xi))
2 + 2

1

n

n∑

i=1

(Yi − F (xi))
(
F (xi) − f̂(xi)

)

+
1

n

n∑

i=1

(
F (xi) − f̂(xi)

)2

.It follows that
EY (n)R̂(f̂) = σ2 − 2

n

n∑

i=1

Cov(Yi, f̂(xi)) +
1

n

n∑

i=1

EY (n)

(
F (xi) − f̂(xi)

)2

.This 
on
ludes the proof.Before pro
eeding, it is bene�
ial to introdu
e a 
ompa
t representation of a�tting method. If we denote by f̂ the �tted fun
tion that is obtained by usingthe sample S, we de�ne the following map
H : R

n → R
n ,

H(y) =
(
f̂(x1), . . . , f̂(xn)

)t

= ŷ . (2.6)Note that the fun
tion H depends on x1, . . . , xn. If this fun
tion is linear in y,we speak of a linear �tting method or a linear learner. In this 
ase, H 
an berepresented by a n × n matrix H that is 
alled the hat-matrix.De�nition 2.3 (Degrees of Freedom). The degrees of freedom of a �tting methodthat is represented by H is de�ned asdf(H) =
1

σ2

n∑

i=1

Cov(f̂(xi), Yi

)
.In parti
ular, op =

2

n
σ2df(H) .In order to �nd a better des
ription of (2.5), it is ne
essary to assume that the



14 CHAPTER 2. MODEL SELECTIONerror variables εi in (1.6) are normally distributed. The next useful lemma is dueto Stein (1981).
Lemma 2.4 (Stein's Lemma). Assume that X ∼ N(µ, σ2) is a univariate randomvariable with density fun
tion φ and that g : R → R is a di�erentiable fun
tionsu
h that

lim
x→±∞

g(x)φ(x) = 0 . (2.7)We have Cov (g(X), X) = σ2E [g′(X)] .We 
an easily extend Stein's lemma to multivariate random variables.
Lemma 2.5 (Multivariate Stein's Lemma). Assume that

X = (X1, . . . , Xn) ∼ N
(
µ, σ2In

)is a multivariate random variable with density fun
tion φ(x) =
∏p

i=1 φi(xi). Let
g = (g1, . . . , gp) : R

p → R
pbe a di�erentiable fun
tion whi
h ful�lls

lim
x→±∞

gi(x)φi(x) = 0 . (2.8)We have
n∑

i=1

Cov (gi(X), Xi) = σ2E

[tra
e( ∂

∂X
g(X)

)]
.Proof. We �x i ∈ {1, . . . , p} and set

X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xp) .
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Cov (gi(X), Xi) = EX [gi(X) (Xi − E[Xi])]

= EX−i
EXi|X−i

[gi(X) (Xi − E[Xi])]

= EX−i
EXi

[gi(X) (Xi − E[Xi])]The last equality is valid as we assume that the variables Xi are independent.In the expression EXi
[gi(X) (Xi − E[Xi])] in the last line, gi(X) only varies in

Xi and the other 
omponents are 
onsidered to be 
onstant. We 
an now applyStein's lemma 2.4 to gi(Xi) and Xi and obtain
Cov (gi(X), Xi) = σ2EX−i

EXi

[(
∂

∂Xi

gi(X)

)]
= σ2EX

[(
∂

∂Xi

gi(X)

)]
.This proves the lemma.Corollary 2.6. Assume that the fun
tion H de�ned in (2.6) is di�erentiable. If

Yi is normally distributed, Yi ∼ N(F (xi), σ
2) and H ful�lls assumption (2.8), wehave

n∑

i=1

Cov(Ŷi, Yi) = σ2E

[tra
e( ∂

∂Y (n)
H
(
Y (n)

))]
.In parti
ular,

df(H) = E

[tra
e(∂H
(
Y (n)

)

∂Y (n)

)]
.In this 
ase,

d̂f(H) = tra
e(∂H
(
Y (n)

)

∂Y (n)

) (2.9)is an unbiased estimate for the degrees of freedom of H . If the learner is linearin y, i.e. ŷ = Hy with H ∈ Rn×n, we yielddf(H) = tra
e(H) .As an illustration, let us 
onsider the OLS estimator de�ned in (1.11). The
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tion H 
orresponding to this estimator is
ŷ = X

(
X tX

)−
X ty = PXy .The tra
e of the proje
tion operator equals the dimension of the spa
e spannedby the 
olumns of X. We obtain the well-known resultdf(OLS) = rank (X) .

2.3 Information CriteriaWe now return to the estimation of the risk of the model. Information 
riteria arebased on the idea that the quality of a model depends on its training error and onits 
omplexity. Di�erent approa
hes lead to di�erent amounts of penalization ofthe 
omplexity of a model. Information 
riteria di�er in they way how mu
h theypenalize the 
omplexity of the model. We already remarked in (2.4) that we 
anestimate the in-sample risk in terms of the empiri
al risk and its 
omplexity. TheAkaike Information Criterion (AIC) (Akaike 1973) is a generalization of (2.4).It is based on a general, asymptoti
 relationship between the Kullba
k-LeiblerInformation Criterion and maximum likelihood theory. We do not want to go toomu
h into detail and refer e.g. to Burnham & Anderson (2004). In the 
ase ofnormally-distributed error terms εi, the AIC-
riterion is equivalent to (2.4),AIC(f̂) = R̂(f̂) +
2

n
df(H)σ2 .The quantity σ 
an be estimated via

σ̂2 =
1

n

n∑

i=1

(
yi − f̂(xi)

)2

.We 
hoose the model that minimizes the AIC information 
riterion
f̂AIC = argminbf AIC(f̂) .As the general AIC 
riterion only holds asymptoti
ally for large values of n, thereis a 
orre
ted version of the AIC 
riterion for small sample sizes (Hurvi
h & Tsai1989). Another 
riterion that is based on the prin
iple of minimum des
ription



2.3. INFORMATION CRITERIA 17length (Hansen & Yu 2001) and that is used in Chapter 9 is
gMDL

(
f̂
)

= log

(
n

n − df(H)
R̂(f̂)

)

+
df(H)

n

(
log

(
n∑

i=1

y2
i − nR̂(f̂)

)
− log

(
df(H)

n

n − df(H)
R̂(f̂)

))
.The last two 
riteria penalize the 
omplexity of a model more strongly than theAIC 
riterion.
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Chapter 3
Partial Least Squares Path Models
Partial Least Squares (PLS) path models (Wold 1982, Wold 1985) are a frame-work for modeling linear relationships between several blo
ks of variables. Inthis sense, they 
an be seen as a generalization and an extension of Canoni
alCorrelation Analysis (Hotelling 1936) to more than two blo
ks of variables. Therelationship between di�erent blo
ks are modeled in the following way. For ea
hblo
k of variables, we look for a latent variable � that is, a linear 
ombinationof these variables � su
h that latent variables that are assumed to be linked arehighly 
orrelated. These latent variables are estimated with algorithms that havea power method �avor.The statisti
al and mathemati
al theory of PLS path model has not been fully es-tablished. In fa
t, PLS is de�ned via algorithms as in Wold (1982) and Lohmöller(1989) and not via a statisti
al model or an empiri
al optimization problem. Somefundamental questions have not been answered. For example, it is not guaranteedthat the PLS algorithms 
onverge numeri
ally (although 
onvergen
e is alwaysobserved in pra
ti
e). More severely, for a wide 
lass of algorithms (those with atleast one blo
k in mode A), it is not known if the latent variables 
omputed byPLS are at least a stationary point of a sensible optimization problem. We showthat this is not the 
ase, if we require that the obje
tive fun
tion of the optimiza-tion problem is at least twi
e di�erentiable. For a di�erent 
lass of algorithms(those with all blo
ks in mode B), it is known (Mathes 1993) that the solutionof the PLS algorithms is a stationary point of a sensible optimization problem.It is however not known if we always obtain the optimal solution. We provide anegative answer to this problem. 19



20 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELS3.1 The Partial Least Squares FrameworkIn the PLS path model framework, we model linear relationships between di�erentblo
ks of variables. One variable is a ve
tor of length n, as we observe n examples.We have K blo
ks of variables, and ea
h blo
k 
onsists of pk variables, whi
h aresubsumed in a matrix
Xk ∈ R

n×pk , k = 1, . . . , K .In total we have
p =

K∑

k=1

pkvariables. The blo
ks of variables are 
alled manifest variables in the PLS litera-ture. The relationship between blo
ks is represented by a so-
alled inner model.Arrows between di�erent blo
ks of variables Xk indi
ate in whi
h way they arelinked (see Figure 3.1). For ea
h inner model, we 
an de�ne an undire
ted link
X1 X2

X3 X4

Figure 3.1: Illustration of a PLS path model with K = 4 blo
ks.matrix C ∈ {0, 1}K×K via
ckl =

{
1 , Xl → Xk or Xl → Xk

0 , otherwise



3.1. THE PARTIAL LEAST SQUARES FRAMEWORK 21(and ckk = 0). Furthermore, we assume that for ea
h blo
k Xk, there is a singlelatent (or hidden) variable zk ∈ Rn that represents this blo
k. This is 
alledthe outer model and is illustrated in Figure 3.2. We distinguish two types of
z1 z2

z3 z4

Figure 3.2: Illustration of the outer PLS model. Ea
h blo
k of manifest variablesis repla
ed by one latent variable.relationships between latent and manifest variables. The �rst one is the formativemodel, the se
ond one is the re�e
tive model (see Figure 3.3). In the formativemodel, we assume that the blo
k Xk of manifest variables forms the latent variable
zk. In terms of a regression model, this 
an be expressed as

zk = Xkβ + ε . (3.1)In the re�e
tive model, we assume that the manifest variables are a re�e
tion ofthe latent variable. The underlying regression model is
Xk = zkβ

t + E . (3.2)Given data, we want to estimate (1) the latent variables, (2) the relationship inthe inner model, and (3) the relations in the outer model. In order to estimate zk,we need to de�ne sensible optimality 
riteria. Ideally, these 
riteria have threefeatures: Firstly, we want to �nd estimates zk su
h that zk and zl are �
lose�if their 
orresponding blo
ks are linked. Se
ondly, we want to take into a

ount
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X1 X2

z1 z2

Figure 3.3: The di�eren
e between the two outer models. Left: The formativemodel. The manifest variables X1 form the latent variable z1. Right: There�e
tive model. The manifest variables X2 are a re�e
tion of the latent variable
z2.the dire
tions of the arrows in the inner model. Thirdly, we want to take intoa

ount the dire
tions of the arrows in the outer model.The tough part in the pro
ess is the estimation of the latent variables. On
e theyare estimated, the relationships that are indi
ated by an arrow 
an be derived byusing a least-squares estimate.In the literature on PLS, there is often a huge gap between the abstra
t model (interms of the inner and the outer model) and that what is a
tually 
omputed bythe PLS path algorithms. Normally, the PLS algorithms are presented dire
tlyin 
onne
tion with the PLS framework, insinuating that the algorithms produ
eoptimal solutions of an obvious estimation problem atta
hed to PLS. This es-timation problem is however never de�ned. Furthermore, the dire
tions of thearrows in the outer model are hoped to be taken 
are of by employing di�erent�modes�: mode A for re�e
tive blo
ks and mode B for formative blo
ks. Whilethe terms �re�e
tive blo
ks� and �formative blo
ks� refer to the des
ription of theouter model as illustrated in Figure 3.3, mode A and B 
orrespond to algorithms.It is a-priori not 
lear how the abstra
t models and the PLS path models are
onne
ted. In order to understand the mathemati
al theory behind all the for-



3.1. THE PARTIAL LEAST SQUARES FRAMEWORK 23mulas, it is indispensable to set up a general optimization strategy before derivingalgorithms that try to solve them. For this reason, in Se
tion 3.2, we start theinvestigation by presenting di�erent optimization 
riteria in order to de�ne thelatent variables zk. Afterwards, we present two algorithms in Se
tion 3.3 thattry to 
ompute the optimal solution. Only in Se
tion 3.4, we introdu
e the twoPLS algorithms � Lohmöller in mode B and Wold in mode B� and show thatthey are equal to the algorithms in Se
tion 3.3. We repeat that we always haveto keep in mind the di�eren
e between what PLS wants to model and that whatit e�e
tively models.We now try to give a general overview on di�erent types of PLS path algorithms.All terms that are now given will be de�ned in subsequent se
tions. In the PLSliterature, there are two generi
 algorithms, the Lohmöller pro
edure and theWold pro
edure. Roughly, there are the following measures of 
loseness betweenlatent variables: Horst, fa
torial and 
entroid. These measures are usually 
alleds
hemes. They have in 
ommon that they do not (!) 
onsider the dire
tions ofthe arrows in the inner model. A variant of PLS that does ful�ll this 
onditionis the �path weighting s
heme� (whi
h is not 
onsidered in this work). We re
allthat the dire
tions in the outer model are hoped to be taken 
are of by employingdi�erent �modes�: mode A for re�e
tive blo
ks and mode B for formative blo
ks.Let us 
on
lude this se
tion with some additional de�nitions. In order to simplifynotation, all variables are assumed to have zero mean. The empiri
al 
ovarian
ematrix between blo
ks of variables is denoted by
Skl =

1

n
X t

kXl ∈ R
pk×pl . (3.3)We frequently work with ve
tors and matri
es that have a blo
k stru
ture that isindu
ed by (p1, . . . , pK). The 
ovarian
e matrix S ∈ Rp×p of X 
an be partitionedinto blo
ks of the form

S =




S11 S12 . . . S1K

S21 S22 . . . S2K... ...
SK1 . . . . . . SKK




∈ R
p×p



24 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSwith Skl de�ned in (3.3). We denote this blo
k-wise stru
ture by [ ]:
S = [Skl] ∈ R

p×p .Furthermore, we need matri
es that only have entries in their diagonal blo
ks.We denote them by
SD = diag [S11, . . . , SKK] =




S11 0 . . . 0

0 S22 . . . 0... ...
0 . . . 0 SKK




∈ R
p×p

The subsript D indi
ates that we only take the diagonal blo
ks of the matrix S.Any ve
tor w ∈ Rp 
an be partitioned into
wt =

(
wt

1, . . . , w
t
K

)t
, wk ∈ R

pk . (3.4)3.2 Optimization StrategiesIn this se
tion, we abandon the PLS framework. Instead, we present di�erentoptimization 
riteria in order to de�ne latent variables zk. The general idea is toextend and generalize Canoni
al Correlation Analysis (CCA) (Hotelling 1936) tomore than two blo
ks of variables. We try to �nd latent ve
tors zk = Xkwk su
hthat zk and zl are maximally 
orrelated if the 
orresponding blo
ks are linked.In this sense, it is an extension of CCA. For two blo
ks of variables X1 and X2,CCA 
omputes arg max
w1,w2


or (X1w1, X2w2) .We 
an s
ale the weights w1, w2 without 
hanging the optimization problem, andwe obtain the equivalent optimization problemarg max
w1,w2


ov (X1w1, X2w2) ,subje
t to 1

n
‖Xiwi‖2 = 1 , i = 1, 2 .This leads to the following general de�nition.



3.2. OPTIMIZATION STRATEGIES 25Optimization Problem 3.1. For K blo
ks of variables, we de�ne the following,general optimization problem:argmax
w

∑

k,l:ckl 6=0

g (
ov(Xkwk, Xlwl)) ,subje
t to 1

n
‖Xkwk‖2 = 1 .Here, g is one of three fun
tions

g(x) =





x , Horst
x2 , fa
torial
|x| , 
entroid .

The terms �Horst�, �fa
torial� and �
entroid� are 
alled s
hemes in the PLS lit-erature. We 
all the �rst s
heme the Horst s
heme as it is equivalent to a gener-alization of CCA to more than two blo
ks that is des
ribed in Horst (1961) andHorst (1965). The terms �fa
torial� and �
entroid� stem from the PLS literature.We remark that the Horst s
heme is not used in the PLS 
ommunity, althoughit has been suggested as an alternative to the two other s
hemes by Hana� &Qannari (2005).
Let us de�ne the real-valued fun
tion

fg(w) =
∑

k,l:ckl 6=0

g (
ov(Xkwk, Xlwl)) =
K∑

k,l=1

cklg
(
wt

kSklwl

)
,with w de�ned in (3.4). The Lagrangian fun
tion asso
iated to problem 3.1 is

L(w, λ) = fg(w) − 1

2

K∑

k=1

λk

(
wt

kSkkwk − 1
) (3.5)with λ = (λ1, . . . , λK) ∈ RK the Lagrangian multipliers. The fa
tor −1/2 isadded in order to avoid a res
aling of the multipliers λi. We set

θkl = θkl(w) = 
ov (Xkwk, Xlwl) = wt
kSklwl . (3.6)



26 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSDi�erentiating the Lagrangian fun
tion (3.5), we yield
∂L

∂wk

=

K∑

l=1

cklg
′ (θkl) Sklwl − λkSkkwk , (3.7)

∂L

∂λk

= wt
kSkkwk − 1 .We set

Sg(w) = [cklg
′ (θkl) Skl] , (3.8)whi
h implies that

∂fg

∂w
(w) = Sg(w)w .These equations 
an be represented in a 
ompa
t form.Proposition 3.2. The Lagrangian equations (A.6) and (A.7) of the optimizationproblem 3.1 are

Sg(w)w = ΛSDw ,

wt
kSkkwk = 1 .The matrix Λ is a diagonal matrix that is of the form

Λ = diag [λ1Ip1, . . . , λKIpK
] ∈ R

p×p .We might think of λ = (λ1, . . . , λK) as a ve
tor of multivariate eigenvalues. Notethat in the Horst s
heme, the matrixSg(w) does not depend on w and in this 
ase,the problem is 
alled a multivariate eigenvalue problem (Chu & Watterson 1993).Remark 3.3. Of 
ourse, in the 
entroid s
heme, the fun
tion fg(w) is not dif-ferentiable on Rp. We therefore have to restri
t fg onto the open subset
M = {w ∈ R|wt

kSklwl 6= 0} .Note that we 
an de
ompose M into �nitely many disjoint open subsets
MI = {w ∈ R|sign (wt

kSklwl

)
= Ikl} . (3.9)



3.2. OPTIMIZATION STRATEGIES 27Here I ∈ {±1}K×K is a symmetri
 matrix with diagonal elements equal to 1.Whenever we speak of a derivative of fg, we impli
itly assume that fg is restri
tedto one of these subsets. Note that on any of the subsets MI , the matrix Sg(w)that is de�ned in (3.8) does not depend on w.Any solution of the equations in proposition 3.2 is � by de�nition � a stationarypoint of the optimization problem 3.1. In general, there might be more than onestationary point.Lemma 3.4. The stationary point w that is a solution of 3.1 is the one su
hthat the sum of the 
orresponding multivariate eigenvalues is maximal.Proof. We �rst note that
g′(x)x = g(x)





1, Horst, 
entroid
2, fa
torial = c̃g(x) .It follows that for all w that are stationary points,

∑

k,l

cklg (wkSklwl) = c̃
∑

k,l

cklg
′ (wkSklwl) wkSklwl

= c̃wtSg(w)w

= c̃
∑

k

λkw
t
kSkkwk

= c̃
∑

k

λk .

If we want to maximize the 
ovarian
e between latent variables instead of 
orre-lation, we have to 
hange the 
onstraints in 3.1. We obtainargmax
w

∑

k,l:ckl 6=0

g (
ov(Xkwk, Xlwl) , ) (3.10)subje
t to 1

n
‖wk‖2 = 1 ,and the 
orresponding Lagrangian equations are

Sg(w)w = Λw ,

1

n
wt

kwk = 1 .



28 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSWe 
an always transform optimization problem 3.1 into (3.10): Denote by √
Skkthe root of the positive-semide�nite matrix Skk. We set

w̃k =
√

Skkwk , (3.11)
√

SD = diag [√S11, . . . ,
√

SKK

]
, (3.12)

S̃ =
(√

SD

)−
S
(√

SD

)−
. (3.13)It follows readily from the singular value de
omposition of Xk and Xl that

Skl =
√

Skk

(√
Skk

)−
Skl

(√
Sll

)−√
Sll .We 
on
lude that optimization problem 3.1 is equivalent toargmaxew ∑

k,l:ckl 6=0

g
(
w̃t

kS̃klw̃l

)
,subje
t to 1

n
‖w̃k‖ = 1 .3.3 Multivariate Power MethodsIf we want to �nd the optimal solution of the optimization problem 3.1, we 
anpro
eed stepwise. First, we 
ompute a solution of the asso
iated Lagrangianequations. As this is a stationary point, we then have to 
he
k if this is theoptimal one. One possibility to solve eigenproblems as in proposition 3.2 is toapply a multivariate version of the power method de�ned in algorithm A.9.Algorithm 3.5 (Multivariate Power Method). After the initialization of weightve
tors w = (w1, . . . , wK) su
h that wt
kSkkwk = 1, we iteratively 
ompute

w̃(i+1) = S−
DSg

(
w(i)

)
w(i) iteration

w
(i+1)
k = w̃

(i+1)
k /

√
w̃

(i+1)
k Skkw̃

(i+1)
k , k = 1 . . . , K normalizationIf the multivariate power method 
onverges to a ve
tor w, this is obviously asolution of the Lagrangian equations 3.2. Note that in algorithm 3.5, all weightve
tors wk are updated simultaneously. There is a variation of the power method,where in ea
h round, only one weight ve
tor is updated. We 
all this algorithm amultivariate Gauss-Seidel algorithm. In order to have a 
ompa
t representation,let us de�ne the quantities θkl in a more general way. For two ve
tors w and v,
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θkl(w, v) = wt

kSklvl .We set
Sg(w, v) =

[
cklg

′ (θkl(w, v)
)
Skl

]
.Note that

θkl(w) = θkl(w, w) and Sg(w) = Sg(w, w) .Now, let us de
ompose
Sg(w, v) = U t

g(w, v) + Ug(w, v)with Ug the stri
tly upper triangular part of Sg. (Re
all that the blo
k diagonalof Sg(w, v) is zero, as ckk = 0.)Algorithm 3.6 (Multivariate Gauss-Seidel Algorithm). After the initialization ofweight ve
tors w = (w1, . . . , wK) su
h that wt
kSkkwk = 1, we iteratively 
omputefor k = 1, . . . , K

w̃(i+1) = S−
D

(
U t

g

(
w(i), w(i+1)

)
w(i+1) + Ug

(
w(i), w(i)

)
w(i)

)

wk(i + 1) = w̃
(i)
k /

√
w̃

(i)
k Skkw̃

(i)
kFor the Horst s
heme, the Gauss-Seidel algorithm is already de�ned in Chu &Watterson (1993).Proposition 3.7. If the multivariate Gauss-Seidel algorithm 
onverges to a ve
-tor w, this is a stationary point of 3.1.Proof. If w is the solution of the multivariate Gauss-Seidel algorithm, we 
on
ludethat w̃ = Λw with w̃ de�ned in algorithm 3.6. We plug this into the formula for

w̃ and obtain
SDΛw̃ = U t

g (w, w)w + Ug (w, w)w = Sg (w)w .These are the the Lagrangian equations 3.2.



30 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELS3.4 The Partial Least Squares Path AlgorithmsNow, we return to the PLS framework introdu
ed in Se
tion 3.1. There are twoimportant algorithms that try to 
ompute the latent variables in the path model- Lohmöller (Lohmöller 1989) and Wold (Wold 1985). The algorithms presentedhere are in mode B. Mode B refers to a path model where all blo
ks are sup-posed to be formative. PLS in mode A (whi
h 
orresponds to re�e
tive blo
ks)is dis
ussed in Se
tion 3.5. The 
ommon point of view is that these algorithmsare alternating algorithms in the sense that we iteratively estimate �rst the innermodel and then the outer model. We show that Lohmöller 
orresponds to themultivariate power method 3.5 and that Wold 
orresponds to the multivariateGauss-Seidel algorithm 3.6. As a 
onsequen
e we 
an 
on
lude that - if all blo
ksare formative - the PLS solutions are indeed stationary points of the optimization
riterion 3.1.Let us start with Lohmöller's algorithm.Algorithm 3.8 (Lohmöller's algorithm). After the initialization of weight ve
tor
w(0) su
h that z

(0)
k = Xkw

(0)
k has length √

n we iteratively 
ompute for all ksimultaneously
z̃

(i+1)
k =

∑K

l=1 cklg
′ (θkl(w

(i))
)
z

(i)
l inner model (environmental variable)

w̃
(i+1)
k = (X t

kXk)
−

X t
kz̃

(i+1)
k outer model in mode B

w
(i+1)
k =

√
nw̃

(i+1)
k /

∥∥∥Xkw̃
(i+1)
k

∥∥∥ normalization
z

(i+1)
k = Xkw

(i+1)
k updateWe remark that the term �environmental variable� is part of the PLS nomen-
latura.Proposition 3.9. The Lohmöller algorithm is equal to the multivariate powermethod.Proof. The proof is straightforward. Note that the formula for the environmentalvariable equals

z̃
(i)
k =

K∑

l=1

cklg
′ (θkl(w

(i))
)
z

(i)
l =

K∑

l=1

cklg
′ (θkl(w

(i))
)
Xlw

(i)
l .
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w

(i+1)
k =

(
X t

kXk

)−
X t

kz̃
(i)
k

=
1

n
(Skk)

−1

(
K∑

l=1

cklg
′ (θkl(w

(i))
)
X t

kXlw
(i)
l

)

=
1

n
(Skk)

−1

(
K∑

l=1

cklg
′ (θkl(w

(i))
)
Sklw

(i)
l

)
,whi
h equals the formula in algorithm 3.5 � up to a s
aling fa
tor.Now, we 
onsider Wold's algorithm. In this algorithm , only one blo
k is updatedin ea
h inner loop.Algorithm 3.10 (Wold's algorithm). After the initialization of weight ve
tor

w(0) su
h that z
(0)
k = Xkw

(0)
k has length √

n we iteratively 
ompute for k =

1, . . . , K

z̃
(i+1)
k =

∑k−1
l=1 cklg

′
(
w

(i)
k Sklw

(i+1)
l )

)
z

(i+1)
l inner model (environmental

+
∑K

l=k+1 cklg
′
(
w

(i)
k Sklw

(i)
l

)
z

(i)
l variable)

w̃
(i+1)
k = (X t

kXk)
−

X t
kz̃

(i+1)
k outer model in mode B

w
(i+1)
k =

√
nw̃

(i+1)
k /

∥∥∥Xkw̃
(i+1)
k

∥∥∥ normalization
z

(i+1)
k = Xkw

(i+1)
k updateIt follows readily that the Wold algorithm is the same as the multivariate Gauss-Seidel algorithm.Proposition 3.11. The Wold algorithm is equal to the multivariate Gauss-Seidelalgorithm.Proof. The proof is analogous to the proof of proposition 3.9. It follows from thede�nition of the environmental variable that

n (Skk) w̃
(i+1)
k = X t

kz̃
(i)
k

=

k−1∑

l=1

cklg
′ (θkl(w

(i), w(i+1))
)
Sklw

(i+1)
l

+

K∑

l=k+1

cklg
′ (θkl(w

(i), w(i+1))
)
Sklw

(i)
l ,and this equals (??).



32 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSThis leads to the following 
on
lusion.Proposition 3.12. Suppose that we use mode B and one of the s
hemes �Horst�,�fa
torial� or �
entroid�. If Wold's or Lohmöller's algorithm 
onverge, their re-spe
tive solutions are stationary points of optimization problem 3.1.It has already been shown in Mathes (1993) that the solution of the PLS pathalgorithms are solutions of the Lagrangian equations 3.2.We end this se
tion with a geometri
 interpretation of the PLS path model algo-rithms. In order to keep the example simple, we only 
onsider the Horst s
hemeand assume that all blo
ks are linked. The Lagrangian equations expressed interms of the latent variables zk are
λkzk = PXk

(∑

l 6=k

zl

)
.Here, λk is the normalization term. In other words, for every stationary point ofthe optimization problem, the latent variable zk equals � up to its length � theproje
tion of the sum of the other latent variables onto the spa
e spanned by the
olumns of Xk. This is the generalization of the geometri
 interpretation of CCAdes
ribed in Ko
kelkorn (2000).Finally, let us brie�y mention that we 
an apply the kernel tri
k to the PLS pathmodel framework. To do so, let us start with the remark that we 
an representany ve
tor wk ∈ Rpk by

wk = X t
kαk + w̃k , w̃k ⊥ span(Vk) .Here,

Xk = UkΣkV
t

kis the singular value de
omposition of blo
k Xk. It follows that
zk = Xkwk = Xk

(
X t

kαk + w̃k

)
= XkX

t
kαk + Xkw̃k = XkX

t
kαk .As the optimization problem 3.1 only depends on wk via zk, we 
on
lude that
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an assume that
wk = X t

kαk .Plugging this into the PLS path algorithms, we obtain a dual representation interms of the dual variables αk. A 
ombination of generalized CCA with the kerneltri
k is studied in Yamanishi et al. (2003). In this work, the Lagrangian equations3.2 for the Horst s
heme are expressed in terms of the Kernel matri
es XkX
t
k �with the (erroneous?) additional 
onstraint that all multivariate eigenvalues λiare equal.

3.5 No Smooth Optimality Criterion for Mode AWe now des
ribe why mode B is supposedly related to formative blo
ks of vari-ables and present a heuristi
 how to adapt the algorithms for re�e
tive blo
ks.In the estimation of the outer model in the PLS algorithms, the unstandardizedweight ve
tors
w̃

(i+1)
k =

(
X t

kXk

)−
X t

kz̃
(i+1)
k
an be interpreted as the OLS regression 
oe�
ients of the linear regression model(3.1) (with the latent variable repla
ed by the environmental variable). For thisreason, it is argued that the algorithms in mode B (3.8 and 3.10 respe
tively)refer to formative blo
ks. The heuristi
 is now as follows. For any re�e
tive blo
kof variables, we �rst estimate the 
oe�
ients β of the linear regression model(3.2) that refers to re�e
tive blo
ks. If we use OLS, we obtain

β̂ =
1

z̃t
kz̃k

X t
kz̃k .This implies that

X̂k = z̃kβ̂
t
. (3.14)Given the manifest variables Xk, we now have to estimate the latent variable zkbased on (3.14). That is, we have to �nd the solution zk of the over-determined
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Xk = zkβ̂

t
.We obtain the estimate

zk =
1

β̂
t
β̂

Xkβ̂ .Note that the s
ale of zk is not important, as all latent variables are normalized.To summarize, for all blo
ks k that are re�e
tive, we repla
e the estimation of
w̃k in the outer model by

w̃
(i+1)
k = X t

kz̃
(i+1)
k . (3.15)This estimation mode is 
alled mode A. We do not dis
uss the validity of thisheuristi
s.Let us de�ne

S̃D = diag [D̃i

]
, D̃i =





Ipk
, k of mode A

Skk , k of mode B
.

Proposition 3.13. If we repla
e the estimation of the weights in the outer modelin algorithms 3.8 and 3.10 by (3.15) for all re�e
tive blo
ks, any solution of theLohmöller and the Wold algorithm ful�lls
Sg(w)w = ΛS̃Dw , (3.16)

wt
kSkkwk = 1 . (3.17)Proof. The proof follows immediately from the de�nition of the algorithms. Weonly prove the statement for the Lohmöller algorithm. The result for the Woldalgorithm follows in the same way. Analogously to the proof of proposition 3.9,we have

z̃
(i)
k =

K∑

l=1

cklg
′ (θkl(w

(i))
)
Xlw

(i)
l .
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w̃

(i+1)
k =

(
D̃k

)−
X t

kz̃
(i)
k

=
(
D̃k

)−
(

K∑

l=1

cklg
′ (θkl(w

(i))
)
X t

kXlw
(i)
l

)

=
(
D̃k

)−
(

K∑

l=1

cklg
′ (θkl(w

(i))
)

Sklw
(i)
l

)
.Repla
ing w

(i)
k and w̃

(i)
k by their respe
tive limits wk and w̃k, the proof is 
om-plete.Equations (3.16) and (3.17) do not yet have the form of Lagrangian equations(A.6) and (A.7), as the 
onstraints (3.17) do not �t to the right hand side of(3.16). In order to obtain a valid form, we have to multiply ea
h side of (3.16)with

SD = diag [Di

]
, Di =





Skk , k of mode A

Ipk
, k of mode B

.This yields
SD (Sg(w))w = ΛSDw , (3.18)

wt
kSkkwk = 1 . (3.19)These 
annot be the Lagrangian equations of any twi
e di�erentiable optimizationproblem.Theorem 3.14. Suppose that at least one blo
k is of mode A. For almost all datasets X, the equations (3.18) and (3.19) are not the Lagrangian equations of anoptimization problem (A.3) and (A.4), where the obje
tive fun
tion f in (A.3) istwi
e-di�erentiable.The term �for almost all data sets� refers to the fa
t that the set of matri
es Xfor whi
h the above statement does not hold, has measure zero.Proof. Suppose that (3.18) and (3.19) are the Lagrangian equations of an opti-mization problem as in (A.3) and (A.4). This implies that SD (Sg(w))w is the�rst derivative of the obje
tive fun
tion (A.3). It follows that the Hessian matrix
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tive fun
tion is
∂

∂w
SD (Sg(w))w = SD

∂

∂w
(Sg(w)w) = SDHg(w) (3.20)The matrix Hg(w) is the Hessian matrix of fg. It follows from the Theorem ofS
hwartz A.4 that (3.20) is a symmetri
 matrix. We have

(
SDHg(w)

)t
= (Hg(w))t

(
SD

)t
= Hg(w)SDand 
onsequently, the matrix Hg(w)SD is symmetri
 if and only if the two ma-tri
es 
ommute,

Hg(w)SD = SDHg(w) . (3.21)This is in however in general not the 
ase. To see this, we have to 
ompute theHessian matrix of fg for the respe
tive s
hemes. If we 
onsider the Horst s
heme,we have
∂2fg

∂2w
=

∂(Sg(w)w)

∂w
= Sg(w) ,as the matrix Sg(w) does not depend on w. For the 
entroid s
heme, we restri
tthe fun
tion on one of the open subsets MI de�ned in (3.9). As the matrix Sg(w)does not depend on w on this subset, we have

∂2fg|MI

∂2w
= [cklIklSkl] .It follows that for the Horst s
heme or the 
entroid s
heme, 
ondition (3.21) isequivalent to the following equations. If the blo
ks k and l are linked, we have

SklSll = SkkSkl , k and l of mode A ,

SklSll = Skl , k of mode A, l of mode B .These 
onditions are in general not ful�lled. For the fa
torial s
heme, the equa-tions be
ome more 
ompli
ated, but is still possible to show that 
ondition (3.21)is not ful�lled. Re
all (3.8) from whi
h follows that the �rst derivative of fg is ablo
k ve
tor with the kth entry equal to
K∑

l=1

ckl

(
wt

kSklwl

)
wl .
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t to wl, we obtain
Hg(w) = Sg(w) +

[
cklSklwlw

t
kSkl

]
.We 
on
lude that if the blo
ks k and l are linked, 
ondition (3.21) is equivalentto

(Skl + Sklwlw
t
kSkl)Sll = Skk (Skl + Sklwlw

t
kSkl) , k and l of mode A ,

(Skl + Sklwlw
t
kSkl)Sll = (Skl + Sklwlw

t
kSkl) , k of mode A, l of mode B .These equations are in general not ful�lled.As a 
onsequen
e, we advo
ate to be 
autious to use mode A. Suppose thatthe algorithm is applied to di�erent start ve
tors and that the resulting weightve
tors are di�erent. There is no way to de
ide whi
h one of them is better, aswe do not know of any optimality 
riterion atta
hed to mode A. Note that theabove des
ribed s
enario is not hypotheti
al. We show in Se
tion 3.6 that thealgorithms in mode B do not ne
essarily 
onverge to the solution of 3.1.Note furthermore that we 
an easily modify the PLS algorithms in mode A su
hthat their solutions are stationary points of sensible optimization problems. Letus assume that all blo
ks are of mode A. We repla
e the normalization step ofthe weight ve
tors by

w
(i+1)
k =

1

n‖w̃(i+1)
k ‖

w̃
(i+1)
k .It is straightforward to show that any solution of the PLS path algorithms ful�llsthe Lagrangian equations asso
iated to (3.10). In other words, by modifying thenormalization step in mode A, we obtain a stationary point of the optimizationproblem atta
hed to maximizing 
ovarian
es instead of 
orrelations.3.6 No Convergen
e to the Optimum for Mode BThe numeri
al 
onvergen
e of the algorithms is only proven for the Horst s
heme(Chu & Watterson 1993). Re
ently, Hana� (2006) showed that the Wold algo-rithm in mode B 
onverges monotoni
ally. That is, for the sequen
e of weightve
tors w(i) 
omputed by this algorithm, the real-valued sequen
e fg

(
w(i)

) ismonotoni
ally in
reasing and bounded. Even if the algorithms 
onverge, it is not



38 CHAPTER 3. PARTIAL LEAST SQUARES PATH MODELSguaranteed that the obtained ve
tor w is the solution of the optimization problem3.1. Chu & Watterson (1993) present a 
ounter example for the Horst s
heme ifwe apply the multivariate power algorithm. It is shown that the solution of themultivariate power algorithm depends on the starting value and that it is likelythat the algorithm 
onverges to a lo
al solution. Hana� (2006) present a 
ounterexample for the 
entroid s
heme. In this se
tion, we present a 
ounter examplefor both the fa
torial and the 
entroid s
heme and for the both PLS algorithms� Lohmöller and Wold. For the obvious reason, we only 
onsider mode B.We present two examples. Let us start with the remark that the se
ond 
ounterexample is not 
hosen be
ause it re�e
ts any real world situation, but in orderto make the results reprodu
ible. In fa
t, 
ounter examples 
an be found easily,and the 
onvergen
e to lo
al optima seems to be the �generi
� 
ase (at least forthe 
entroid s
heme) if the manifest variables are not highly 
orrelated. Thisis shown in the �rst example. In both examples, we use K = 3 blo
ks of vari-ables. Ea
h blo
k 
onsists of pk = 4 variables. This implies that the matrix
X = (X1, X2, X3) 
onsists of 4 × 3 = 12 
olumns.We assume that all blo
ks are
onne
ted.We 
onsider both PLS algorithms � Wold and Lohmöller �in the fa
torial s
hemeand the 
entroid s
heme respe
tively. This yields four di�erent variants. Werun these four di�erent algorithms 500 times. In ea
h iteration, the standardizedstarting ve
tors w

(0)
k are drawn randomly.Fairly realisti
, but not exa
tly reprodu
ible exampleThe number of examples is n = 50. Ea
h row of X is a sample of a multivariatenormal distribution with zero mean and the 
ovarian
e matrix equal to the iden-tity matrix. In order to save 
omputational time, we �rst transform the data asdes
ribed in (3.11),(3.12) and (3.13). In this example, the two algorithms in thefa
torial s
heme always 
onverge to the set of multivariate eigenvalues

λ1 = 0.19735 λ2 = 0.0741 λ3 = 0.27133
∑

λi = 0.54278 .As this is the only solution out of the 500 experiments, this indi
ates that it isthe global optimum.
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heme Algorithm Global Optimum Lo
al Solutionfa
torial Wold 100 % 0 %Lohmöller 100 % 0%
entroid Wold 46.8 % 53.2%Lohmöller 54 % 46 %Table 3.1: Results for the �rst exampleFor the 
entroid s
heme, we �rst remark that � given the same start ve
tor � theLohmöller and the Wold algorithm 
an produ
e di�erent results. In this example,di�erent results are observed in 16.4 % of the 
ases. For the 
entroid s
heme, thealgorithms 
onverged to one of the two sets of multivariate eigenvaluesSolution 1 λ1 = 0.59238 λ2 = 0.50684 λ3 = 0.60448
∑

λi = 1.70370 .Solution 2 λ1 = 0.53533 λ2 = 0.42023 λ3 = 0.66051
∑

λi = 1.61607 .The se
ond one is only a lo
al solution. As we only observe these two solutions,we 
onje
ture that the �rst one is the global optimum.For ea
h algorithm and ea
h s
heme, we 
ount the number of experiments inwhi
h the algorithms 
onverged to the respe
tive solutions. Table 3.1 illustratesthat both algorithms have a substantial 
han
e to 
onverge to the lo
al optimum.
Unrealisti
, but reprodu
ible exampleThe number of examples is n = 12. We de�ne the 12 × 12 matrix X =

(X1, X2, X3) in the following way:
Xi,j =





1 , i = j, j = i + 1

0 , otherwise .We 
enter the 
olumns of the matrix X. In this example, we observe a 
onver-gen
e to lo
al solutions in both s
hemes.Exa
tly as in the �rst example, the Lohmöller and the Wold algorithms sometimesprodu
e di�erent results. This happens in 17% of the 
ases for the fa
torial s
hemeand in 23% of the 
ases for the 
entroid s
heme. Se
ondly, the result depends on
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heme Algorithm Global Optimum Lo
al Optimumfa
torial Wold 87.4 % 12.6 %Lohmöller 80.4 % 19.6 %
entroid Wold 42.8 % 57.2 %Lohmöller 57.4 % 42.6 %Table 3.2: Results for the se
ond examplethe starting ve
tor. For the fa
torial s
heme, the algorithm 
onverges to one ofthe two sets of multivariate eigenvaluesSolution 1 λ1 = 0.74718 λ2 = 0.99703 λ3 = 0.39944
∑

λi = 2.14365 ,Solution 2 λ1 = 0.47979 λ2 = 0.48329 λ3 = 0.53733
∑

λi = 1.50041 .The latter solution is only a lo
al solution and we 
onje
ture that the �rst solu-tion is the global optimum. The result is similar for the 
entroid s
heme. Thealgorithms 
onverged to one of the two sets of multivariate eigenvalues.Solution 1 λ1 = 1.13148 λ2 = 1.31360 λ3 = 0.97503
∑

λi = 3.42011 ,Solution 2 λ1 = 1.00000 λ2 = 1.00000 λ3 = 1.00000
∑

λi = 3.00000 .Again, for ea
h algorithm and ea
h s
heme, we 
ount the number of experimentsin whi
h the algorithms 
onverge to the respe
tive solutions. Table 3.2 illustratesthat both algorithms have a substantial 
han
e to 
onverge to the lo
al optimum.
3.7 Con
lusionIn the PLS literature, there has been a lot of obs
urity regarding the mathe-mati
al ba
kground of the path modeling algorithms. In this 
hapter, we havehopefully shed some light into this subje
t. To summarize, we showed two results.Firstly, we proved that the PLS path algorithms in mode A produ
e algebrai
equations that are not linked to any su�
iently smooth optimization problem.This marks a severe setba
k in the sear
h of a justi�
ation of mode A in terms ofoptimality 
riteria. What 
on
lusions 
an be drawn from this result? Note thatin prin
iple, it might still be possible to derive optimization problems atta
hedto mode A that are not twi
e di�erentiable. But we strongly advise a di�erentmodus operandi. Instead of �rst de�ning algebrai
 equations and then sear
h-ing for asso
iated optimization problems, we should rather �rst set up a sensible



3.7. CONCLUSION 41optimization problem and then sear
h for algorithms that solve it. We pointedout that if we maximize 
ovarian
es instead to 
orrelations, we yield equationsquite similar to the ones of mode A. Se
ondly, for those PLS algorithms that doprodu
e 
riti
al points of optimization problems, we showed that the algorithmsdo not ne
essarily 
onverge to the maximum. As a 
onsequen
e, every algorithmshould be run several times in order to dete
t possible other solutions.
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Chapter 4
Partial Least Squares for Regression
If there are more variables than examples, the usual linear regression tools su
has ordinary least squares (OLS) regression 
annot be applied sin
e the p× p ma-trix X tX is singular. From a te
hni
al point of view, we 
an solve this problemby repla
ing the inverse of X tX by a generalized inverse as des
ribed in Se
-tion 1.3. However, if p > n, OLS �ts the training data perfe
tly and we 
annotexpe
t this method to perform well on a new data set. Partial Least SquaresRegression (PLSR) (Wold 1975, Wold et al. 1984) is an alternative regressiontool whi
h is espe
ially appropriate in the 
ase of highly 
orrelated predi
torsand high-dimensional data. PLSR is a standard tool for analyzing 
hemi
al data(Martens & Naes 1989), and in re
ent years, the su

ess of PLSR has lead toappli
ations in other s
ienti�
 �elds su
h as physiology (Rosipal et al. 2003) orbioinformati
s (Boulesteix & Strimmer 2006), to name but a few.PLSR 
an handle multivariate responses. We now give a general introdu
tion andthen fo
us on univariate responses. Quite generally, PLSR tries to model linearrelationships between two blo
ks of variablesX and Y in terms of latent variables.In this sense, it �ts into the PLS path model framework that is investigated inChapter 3. Note however that in 
ontrast to the two PLS path model algorithms(Lohmöller and Wold), the relationship between X and Y is not symmetri
 andthat we usually 
onsider more than one latent variable. Although extensions ofPLS path models to more than one latent variable per blo
k are possible, it israther 
onfusing to des
ribe PLSR as a spe
ial 
ase of PLS path models. Wetherefore give a self-
ontained introdu
tion.43



44 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSION4.1 NIPALS and SIMPLSThere are quite a few versions of PLSR. Mainly, they di�er in the way in whi
hthe latent variables are extra
ted from the data. It is not our aim to explain allvariants, and we will fo
us on two versions. For a general overview on di�erentforms of PLSR see Rosipal & Krämer (2006).The main idea is to build a few orthogonal 
omponents t1, . . . , tm from the origi-nal predi
tors X. A 
omponent is a linear 
ombination of the original predi
torsthat hopefully re�e
ts the relevant stru
ture of the data. We use these latent
omponents as regressors in a least squares regression in pla
e of X. PLSR issimilar to Prin
ipal Components Regression (PCR). The di�eren
e is that PCRextra
ts 
omponents that explain the varian
e in the predi
tor variables whereasPLSR extra
ts 
omponents that have a large 
ovarian
e with Y .We now formalize this idea. A latent 
omponent t is a linear 
ombination t =

Xw of the predi
tor variables. The ve
tor w is usually 
alled the weight ve
tor.We want to �nd a 
omponent with maximal 
ovarian
e to Y , that is we want tomaximize
‖
ov (Xw, Y )‖2 = wtX tY Y tXw .We have to 
onstrain w in order to obtain identi�ability, 
hoosingargmax wtX tY Y tXw , (4.1)subje
t to ‖w‖ = 1 . (4.2)Let us remark that (4.1) and (4.2) are equivalent to

max
wtX tY Y tXw

wtw
. (4.3)The solution of (4.3) is only unique up to a s
alar. The normalization of theweight ve
tors w to length 1 is not essential for the PLSR algorithm (expe
t for
omputational 
onsiderations as e.g. numeri
al stability) and PLSR algorithmsdi�er in the way they s
ale the weight ve
tors and 
omponents. In this paper,we do not s
ale the ve
tors, in order to keep the notation as simple as possible.



4.1. NIPALS AND SIMPLS 45We 
on
lude that the solution w1 is the eigenve
tor of the matrix
B = X tY Y tX (4.4)that 
orresponds to the largest eigenvalue of B. This eigenve
tor is usually 
om-puted in an iterative way, e.g. by using the power algorithm that is de�ned in A.9.Subsequent 
omponents t2, t3, . . . are 
hosen su
h that they maximize the squared
ovarian
e to Y and that all 
omponents are mutually orthogonal. In PLSR, thereare di�erent te
hniques to extra
t subsequent 
omponents, and we now presenttwo of them. On the one hand, for the ith 
omponent, we 
ompute
max wtX tY Y tXw , (4.5)subje
t to ‖w‖ = 1 , (4.6)

Xw ⊥ tj , j < i . (4.7)This task is 
alled SIMPLS (de Jong 1993). On the other hand, we 
an de�atethe original predi
tor variables X. That is, we only 
onsider the part of X thatis orthogonal on all 
omponents tj , j < i:
Xi = X − Pt1,...,ti−1

X .We then repla
e X by Xi in (4.1). This task is 
alled the NIPALS method andis des
ribed in Wold (1975). The two methods are equivalent if Y is univariatein the sense that we end up with the same 
omponents ti . We present a proof in
orollary 6.4.To summarize, the PLSR algorithm is of the following form.Algorithm 4.1 (NIPALS). After setting X1 = X, the weight ve
tors wi and the
omponents ti of PLSR are determined by iteratively 
omputing
wi = dominant eigenve
tor of X t

i Y Y tX t
i weight ve
tor

ti = Xiwi 
omponent
Xi+1 = Xi − Pti

Xi de�ationPLSR used to be overlooked by statisti
ians and was 
onsidered an algorithmrather than a sound statisti
al model. This attitude is to some extent under-



46 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONstandable, as in the early literature on the subje
t, PLSR was explained solelyin terms of formulas as in algorithm 4.1. Due to its su

ess in appli
ations,the interest in the statisti
al properties of PLSR has risen. It 
an be relatedto other biased regression te
hniques su
h as Prin
ipal Components Regressionand Ridge Regression and these methods 
an be 
ast under a unifying frame-work (Stone & Brooks 1990). The shrinkage properties of PLSR have been stud-ied extensively (Frank & Friedman 1993, de Jong 1995, Goutis 1996, Butler &Denham 2000) and are also dis
ussed in Chapter 7. Furthermore, it 
an be shownthat PLSR is 
losely 
onne
ted to Krylov subspa
es and the 
onjugate gradientmethod (Helland 1988, Phatak & de Hoog 2002). In Chapter 6, we establisha similar 
onne
tion between penalized PLSR (introdu
ed in Chapter 5) and apre
onditioned 
onjugate gradient method.Finally, let us remark that in many arti
les on PLSR, both X and Y are de�atedwith respe
t to ti:
Xi+1 = X −Pt1,...,tiX , Yi+1 = Y − Pt1,...,tiY .If we are only interested in the latent 
omponents ti, this is however not ne
essary.To see this, we use the fa
t (see proposition A.10) that
(In − Pt1,...,ti

) = (In − Pt1,...,ti
) (In − Pt1,...,ti

) .We 
on
lude that
X t

i+1Yi+1 = X t (In −Pt1,...,ti
) (In −Pt1,...,ti

) Y = X t (In − Pt1,...,ti
) Y = X t

i+1Y .If the response Y = y is univariate, PLSR is sometimes refered to as PLS1. Inthis 
ase, the 
omputation of the weight ve
tors is very easy. Let us de�ne the
p-dimensional ve
tor

b = X ty .It follows that the �rst eigenve
tor of the matrix B = bbt (de�ned in (4.4)) equals
b. To summarize, the univariate PLS algorithm is of the following form.Algorithm 4.2 (Univariate NIPALS). After setting X1 = X, the weight ve
-tors wi and the 
omponents ti of univariate PLSR are determined by iteratively
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omputing
wi = X t

i y weight ve
tor
ti = Xiwi 
omponent

Xi+1 = Xi −Pti
Xi de�ationIn the next se
tion, we list some properties of PLSR and show how to derive anestimate β̂ from the latent 
omponents.4.2 Basi
 Properties of Partial Least Squares Re-gressionWe set

T = (t1, . . . , tm) .As already mentioned, the original predi
tors X are repla
ed by T and the re-sponse is then regressed onto the 
olumns of T . The �tted response is
ŷ = PTy = T (T tT )−1T ty . (4.8)In order to predi
t the response for new observations, we have to determine theve
tor of regression 
oe�
ients,

ŷ = Xβ̂ .Therefore, a representation of the 
omponents ti = Xiwi as a linear 
ombinationof the original predi
tors X is needed. In other words, we have to derive weightve
tors w̃i with
Xw̃i = Xiwi .They are in general di�erent from the �pseudo� weight ve
tors wi that are 
om-puted by the NIPALS algorithm. Before stating this result, it is bene�
ial to 
astthe PLSR method in a broader framework.PLSR is an iterative pro
ess. In ea
h step, we 
ompute weight ve
tors wi andthen de�ate X with respe
t to the latent 
omponents ti = Xiwi. For anyalgorithm that produ
es a weight ve
tor w (probably depending on the data Xand y) , we 
an de�ne a generi
 latent 
omponent regression algorithm in the



48 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONfollowing way.Algorithm 4.3 (Generi
 Latent Component Regression). After setting X1 =

X, the weight ve
tors wi and the 
omponents ti are determined by iteratively
omputing
wi weight ve
tor
ti = Xiwi 
omponent

Xi+1 = Xi − Pti
Xi de�ationThe response y is then regressed onto the latent 
omponents t1, . . . , tm as in (4.8).What are the merits of this generi
 approa
h? Let us emphasize that we do notwant to introdu
e yet another unifying framework that 
omprises all kinds of re-gression methods. The reason is that in fa
t, a lot of properties of PLSR be
omemu
h 
learer if we 
onsider the general framework. For example, most of theproperties of PLSR do not depend on the parti
ular method for 
omputing theweight ve
tors, but on the fa
t that the latent 
omponents are mutually orthogo-nal. Papers on PLSR tend to be rather te
hni
al and proofs are sometimes hardto follow. We now present some alternative proofs that only rely on algorithm4.3 and exploit some basi
 properties of proje
tions. As a ni
e side-e�e
t, we 
anapply these results (with no extra e�ort) to other multivariate regression tools asContinuum Regression (Stone & Brooks 1990) or the penalized PLSR approa
hintrodu
ed in Chapter 5.Set

T = T (m) = (t1, . . . , tm) and W = W (m) = (w1, . . . , wm) .These are the matri
es of 
omponents and weight ve
tors respe
tively that arede�ned in algorithm 4.3. We �x m and omit the supers
ript for the sake ofreadability. We re
all that for k < i

Xi =
i−1∏

j=k

(
In − Ptj

)
Xk =

(
In −Ptk ,...,ti−1

)
Xk . (4.9)The last equality follows from the fa
t that the 
omponents ti are mutually or-thogonal. In parti
ular

Xi =
(
In −Pt1,...,ti−1

)
X . (4.10)



4.2. BASIC PROPERTIES OF PARTIAL LEAST SQUARES REGRESSION49If not stated otherwise, the following results hold for the Generi
 Latent Compo-nents (GLC) Regression approa
h introdu
ed in algorithm 4.3.Lemma 4.4. We have
Xiwj = 0for j < i.Proof. The 
ondition j < i implies (re
all (4.9))

Xi = Xj − Ptj ,...,ti−1
Xj ,and 
onsequently

Xiwj = Xjwj −Pt1,...,ti−1
Xjwj

= tj − Pt1,...,ti−1
tj

j≤i−1
= tj − tj = 0 .Corollary 4.5. The weight ve
tors w1, . . . , wm de�ned by univariate NIPALSare mutually orthogonal.Proof. It follows from the de�nition of the PLSR weight ve
tors that for i > j

〈wi, wj〉 =
〈
X t

i y, wj

〉
= ytXiwj = yt

0 = 0 .We now return to the generi
 latent 
omponents approa
h and set
R = T tX W ∈ R

m×m .Proposition 4.6. The matrix R is upper triangular, that is
rij = tt

iXwj = 0 , (4.11)if i < j. The matrix R is invertible. Furthermore, we have
XW = T diag( 1

tt
1t1

, . . . ,
1

tt
mtm

)
R . (4.12)
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ualar, the 
olumns of T and the 
olumns of XW span the same spa
e.Proof. First note that (4.10) is equivalent to
X = Xj + Pt1,...,tj−1

X .It follows that
Xwj =

(
Xj + Pt1,...,tj−1

X
)
wj

= Xjwj + Ptj ,...,tj−1
X wj

= tj +

j−1∑

i=1

tt
iXwj

tt
iti

ti . (4.13)As all 
omponents ti are mutually orthogonal, we 
on
lude that
tt
iXwj =





tt
iti 6= 0 , i = j

0 , i > j

tt
iXwj , i<j .We 
on
lude that R is an upper triangular matrix with all diagonal elements 6= 0.Next, note that (4.13) is equivalent to

Xwj =
rjj

tt
jtj

tj +

j−1∑

i=1

rij

tt
iti

ti .This equals (4.12).We 
an now determine the regression 
oe�
ients for the generi
 latent regressionapproa
h.Proposition 4.7. The regression ve
tor β̂ of the generi
 latent 
omponents(GLC) approa
h de�ned in algorithm 4.3 is
β̂ = W

(
W tX tXW

)−
W tX ty . (4.14)In parti
ular, the generi
 latent 
omponent (GLC) estimator is the solution of
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onstrained minimization problem
min
β

‖y − Xβ‖subje
t to β ∈ span {w1, . . . , wm} . (4.15)Proof. We dedu
e from (4.12) that the 
olumns of XW span the same spa
eas the 
olumns of T . As GLC is simply ordinary least squares regression withpredi
tors t1, . . . , tm, we have
ŷ = PTy = PXWy = XW

(
W tX tXW

)−1
W tX ty .The se
ond statement 
an be proven by noting that the 
onstrained minimizationproblem is equivalent to an un
onstrained minimization problem for β = Wαwith α ∈ Rm. If we plug this into the formula for the OLS estimator, we obtain(4.14).The formulas in proposition 4.7 are bene�
ial for theoreti
al purposes, but theyare 
omputationally ine�
ient. For PLSR, the 
al
ulation 
an be done in are
ursive and faster way. The key point is to �nd �primal� weight ve
tors w̃i su
hthat for every i

ti = Xiwi = Xw̃i . (4.16)This 
an be done by exploiting relationship (4.12) and the fa
t that R is bidiag-onal for PLSR.Proposition 4.8. For PLSR, the matrix R = T T XW is upper bidiagonal, thatis
rij = tt

iXwj = 0 ,if i < j or i + 1 > j.This result is already shown in Manne (1987). In order to avoid redundan
y, wedefer the proof until Chapter 5.Proposition 4.9. The primal weight ve
tors w̃i and the regression ve
tor of theunivariate NIPALS algorithm are determined by setting w̃0 = 0 and β̂
(0)

= 0 and
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omputing iteratively
w̃i = wi −

w̃t
i−1X

tXwi

w̃t
i−1X

tXw̃i−1
w̃i−1 ,

β̂
(i)

= β̂
(i−1)

+
w̃t

iX
ty

w̃t
iX

tXw̃i

w̃i .Proof. We proof the statements via indu
tion. For i = 1, we have w̃1 = w1 as
X1 = X and

ŷ = Pt1y = Xw1

(
Xw1w

t
1X

t
)−1

wt
1X

ty = X
w̃t

1X
ty

w̃t
1X

tXw̃1
w̃1 .For a general i, we have

ti+1 = Xi+1wi+1 = (X −Pt1,...,ti
X) wi+1 = Xwi+1 −Pti

Xwi+1 .The last equality holds as R = T tXW is bidiagonal. Using formula (A.9) forthe proje
tion operator and the indu
tion hypothesis (4.16), it follows that
ti+1 = Xwi+1 − Xw̃i

(
w̃t

iX
tXw̃i

)−1
wt

iX
tXwi+1 .We 
on
lude that

w̃i+1 = wi+1 −
w̃t

iX
tXwi+1

w̃t
iX

tXw̃i

w̃i .The regression estimate after i steps is
Xβ̂

(i)
= Pt1,...,ti

y

= Pt1,...,ti−1
y + Pti

y

= Xβ̂
(i−1)

+ Pti
y

= Xβ̂
(i−1)

+ X
w̃t

iX
ty

w̃t
iX

tXw̃i

w̃i .This 
on
ludes the proof.4.3 The Degrees of Freedom of Partial Least SquaresThe number m of PLSR 
omponents is an additional model parameter that hasto be determined. In most appli
ations, this is done by 
omputing the 
ross-
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ussed a di�erent strategy for model sele
tionthat involves the 
omputation of the degrees of freedom. Note that the PLSRestimate (4.8) is not a linear fun
tion of y. Hen
e, we 
an only estimate thedegrees of freedom using equation (2.9). As a 
onsequen
e, we have to 
omputethe �rst derivative of the PLSR estimator. This has been done before. Phataket al. (2002) 
ompute the �rst derivative of β̂
(m)

PLS in order to obtain asymptoti
results on the varian
e of the estimator. In that work, some general rules onmatrix di�erential 
al
ulus are applied to the formula in proposition 4.7. It turnsout that the 
al
ulation of the �rst derivative of PLSR is not only numeri
allyinstable, it is also time-
onsuming. The reason is that the formula for the �rstderivative of β̂ involves matri
es of order (mn)×n. We therefore 
hoose a di�erentapproa
h. Serneels et al. (2004) use a re
ursive formula for β̂
(m)

PLS that is equivalentto algorithm proposition 4.9 and derive a fast algorithm for the �rst derivativePLSR. We now show how to 
ompute the derivative of PLSR estimate ŷ in are
ursive way. We start with the remark that by de�nition,
Xi = Xi−1 − Pti−1

X .Using the de�nition of the weight ve
tors of PLSR, we 
on
lude that
wi = X t

i y = wi−1 − X tPti−1
y .Let us de�ne the modi�ed latent 
omponents

ti = Xwi .We 
on
lude that
ti = ti−1 − XX tPti−1

y .Furthermore, we 
on
lude from proposition 4.9 that
ti = Xw̃i = X

(
wi −

w̃t
i−1X

tXwi

w̃t
i−1X

tXw̃i−1
w̃i−1

)
= ti −

tt
i−1ti

tt
i−1ti−1

ti−1 = ti − Pti−1
ti .Finally,

ŷ(i) = ŷ(i−1) + Pti
y .This leads to the following re
ursive algorithm for the 
omputation of ŷ.



54 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONAlgorithm 4.10. We de�ne K = XX t. After setting
t0 = t0 = ŷ(0) = 0 ,we iteratively 
ompute the PLSR estimates ŷ via

tm =





Ky m = 1

tm−1 − KPtm−1y m > 1
modi�ed latent 
omponents

tm = tm −Ptm−1tm latent 
omponents
ŷ(m) = ŷ(m−1) + Ptm

y predi
tionIn order to to 
ompute the �rst derivative of ŷ, we have to 
al
ulate the �rstderivative of the proje
tion operator. The formula 
an be found in propositionA.11 in the appendix.Algorithm 4.11 (First derivative of PLSR). After setting
t0 = t0 = ŷ(0) = 0 and dt1 = dt1 = K ,the �rst derivative of the PLSR estimator 
an be obtained by iteratively 
omputing

tm =





Ky m = 1

tm−1 − KPtm−1y m > 1
modi�ed latent 
omponents

∂tm

∂y
= ∂tm−1

∂y
− K

(
∂Ptm−1y

∂y

) derivative of tm

tm = tm −Ptm−1tm latent 
omponents
∂tm

∂y
= ∂tm−1

∂y
− ∂Ptm−1tm

∂y
derivative of tm

ŷ(m) = ŷ(m−1) + Ptm
y predi
tion

∂by(m)

∂y
= ∂by(m−1)

∂y
+ ∂Ptmy

∂y
derivative of ŷWe 
an now de�ne the estimated degrees of freedom of PLSR with m 
omponentsvia d̂f(PLSR, m) = tra
e(∂ŷ(m)

∂y

)
.This is � by de�nition � an unbiased estimate of the degrees of freedom of PLSRin the 
ase of normally distributed error terms. Although its 
omputation is 
on-siderably faster than the one proposed in Phatak et al. (2002), it still su�ers fromnumeri
al instability. This leads to pe
uliar and sometimes apparently wrong
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Figure 4.1: The estimated degrees of freedom of PLSR as a fun
tion of the numberof 
omponents.results. This is illustrated with the following example. We 
onsider the linearregression model
y = Xβ + εwith p = 20 predi
tor variables and n = 500 examples. First, we 
hoose thepredi
tor matrix X from a multivariate normal distribution with zero mean and
ovarian
e matrix S equal to

sij =





1 , i = j

0.7 , i 6= j
.This leads to highly 
ollinear data X. The regression ve
tor β is a randomly 
ho-sen ve
tor β ∈ {0, 1}20. We assume that the error terms are normally distributedwith σ = 8. We 
ompute the degrees of freedom for all 20 
omponents. Figure4.1 shows the pe
uliar behavior of the estimated degrees of freedom. We expe
tthe degrees of freedom to be upper-bounded by p = 20 � the number of predi
torvariables. This is indi
ated by the dashed line. Note however that after a few
omponents (m ≥ 9), the estimated degrees of freedom ex
eed this value. Thefun
tion displayed in Figure 4.1 still in
reases and has the form of a jagged line.This phenomenon persistently o

urs for other data sets. We 
onje
ture that



56 CHAPTER 4. PARTIAL LEAST SQUARES FOR REGRESSIONalgorithm 4.11 runs into serious numeri
al problems. Therefore, we re
ommendto be 
autious to implement the algorithm in its 
urrent form.



Chapter 5Penalized Partial Least SquaresNonlinear regression e�e
ts may be modeled via additive regression models of theform
Y = β0 + f1(X1) + · · · + fp(Xp) + ε , (5.1)where the fun
tions f1, . . . , fp have unspe
i�ed fun
tional form. An approa
hwhi
h allows a �exible representation of the fun
tions f1, . . . , fp is the expansionin B-Splines basis fun
tions (Hastie & Tibshirani 1990). To prevent over�tting,there are two general approa
hes. In the �rst approa
h, ea
h fun
tion fj is thesum of only a small set of basis fun
tions,

fj(x) =

Kj∑

k=1

βkjBkj(x) . (5.2)The basis fun
tions Bkj are 
hosen adaptively by a sele
tion pro
edure. The se
-ond approa
h 
ir
umvents the problem of basis fun
tion sele
tion. Instead, weallow a generous amount Kj ≫ 1 of basis fun
tions in the expansion (5.2). Asthis usually leads to high-dimensional and highly 
orrelated data, we penalize the
oe�
ients βjk in the estimation pro
ess (Eilers & Marx 1996). However, if thenumber p of predi
tors is large 
ompared to the number n of observations in theavailable sample, these methods are impra
ti
able.Quite generally, a di�erent approa
h to deal with high dimensionality is to usedimension redu
tion te
hniques su
h as Partial Least Squares Regression (PLSR)whi
h is presented in Chapter 4. In this 
hapter, we suggest an adaptation of theprin
iple of penalization to PLSR. More pre
isely, we present a penalized version57



58 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESof the optimization problem (4.3) atta
hed to PLSR. Although the motivationstems from its use for B-splines transformed data, the proposed approa
h is verygeneral and 
an be adapted to other penalty terms or to other dimension redu
-tion te
hniques su
h as Prin
ipal Components Analysis. It turns out that thenew method shares a lot of properties of PLSR and that that its 
omputation re-quires virtually no extra 
osts. Furthermore, we show that this new penalizationte
hnique is 
losely related to the kernel tri
k that is illustrated in Se
tion 1.4.We show that penalized PLSR is equivalent to ordinary PLSR using a generalizedinner produ
t that is de�ned by the penalty term. In the 
ase of high-dimensionaldata, the new method is shown to be an attra
tive 
ompetitor to other te
hniquesfor estimating generalized additive models. In Chapter 6, we highlighten the 
lose
onne
tion between penalized PLSR and pre
onditioned linear systems.This 
hapter is joint work with Anne-Laure Boulesteix and Gerhard Tutz.
5.1 Penalized Regression SplinesThe �tting of generalized additive models by use of penalized regression splines(Eilers & Marx 1996) has be
ome a widely used tool in statisti
s. The basi
 ideais to expand the additive 
omponent of ea
h variable Xj in basis fun
tions as in(5.2) and to estimate the 
oe�
ients by penalization te
hniques. As suggestedin Eilers & Marx (1996), B-splines are used as basis fun
tions. Splines are one-dimensional pie
ewise polynomial fun
tions. The points at whi
h the pie
es are
onne
ted are 
alled knots or breakpoints. We say that a spline is of order d ifall polynomials are of degree ≤ d and if the spline is (d − 1) times 
ontinuouslydi�erentiable at the breakpoints. A parti
ular e�
ient set of basis fun
tions areB-splines (de Boor 1978). An example of B-splines is given in Figure 5.1.The number of basis fun
tions depends on the order of the splines and the numberof breakpoints. For a given variable Xj, we 
onsider a set of 
orresponding B-splines basis fun
tions B1j , . . . , BK . These basis fun
tions de�ne a nonlinear map

Φj(x) = (B1j(x), . . . , BK(x))t .By performing su
h a transformation on ea
h of the variables X1, . . . , Xp, the
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observation ve
tor xi turns into a ve
tor

zi = (B11(xi1), . . . , BK1(xi1), . . . , B1p(xip), . . . , BKp(xip))
t (5.3)

= Φ(xi) .of length pK. Here
Φ : R

p → R
pK ,

Φ(x) = (Φ1(x1), . . . , Φp(xp)) ,is the fun
tion de�ned by the B-splines. The resulting data matrix obtained bythe transformation of X has dimensions n× pK and will be denoted by Z in therest of the 
hapter. In the examples in Se
tions 5.5 and ??, we 
onsider the mostwidely used 
ubi
 B-splines, i.e. we 
hoose d = 3.The estimation of (5.1) is transformed into the estimation of the pK-dimensionalve
tor β that 
onsists of the 
oe�
ients βjk:
βt = (β11, . . . , βK1, . . . β12, . . . , βKp) =

(
βt

(1), . . . , β
t
(p)

)
.



60 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESAs explained above, the ve
tor β determines a nonlinear, additive fun
tion
f(x) = β0 +

p∑

j=1

fj(xj) = β0 +

p∑

j=1

K∑

k=1

βkjBkj(xj) = β0 + Φ(x)tβ .As Z is usually high-dimensional, the estimation of β by minimizing the squaredempiri
al risk
R̂(β) =

1

n

n∑

i=1

(yi − f(xi))
2 =

1

n
‖y − β0 − Zβ‖2usually leads to over�tting. Following Eilers & Marx (1996), we use for ea
hvariable many basis fun
tions, say K ≈ 20, and estimate by penalization. Theidea is to penalize the se
ond derivative of the fun
tion f ,

∫
(f ′′(x))

2
dx .Eilers & Marx (1996) show that the following di�eren
e penalty term is a goodapproximation of the penalty on the se
ond derivative of the fun
tions fj ,

P (β) =

p∑

j=1

m∑

k=3

λj(∆
2βkj)

2 .Here λj ≥ 0 are smoothing parameters that 
ontrol the amount of penalization.These are also 
alled the se
ond-order di�eren
es of adja
ent parameters. Thedi�eren
e operator ∆2βkj has the form
∆2βkj = (βkj − βk−1,j) − (βk−1,j − βk−2,j)

= βkj − 2βk−1,j + βk−2,j.This penalty term 
an be expressed in terms of a penalty matrix P . We denoteby DK the (K − 1) × K matrix
DK =




1 −1 . . .

. 1 −1 . .

. . . . .

. . . 1 −1



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e operator. Setting
K2 = (DK−1DK)tDK−1DK ,we 
on
lude that the penalty term equals

P (β) =

p∑

j=1

λjβ
t
(j)K2β(j) = βt(∆λ ⊗ K2)β .Here ∆λ is the p × p diagonal matrix 
ontaining λ1, . . . , λp on its diagonal and

⊗ is the Krone
ker produ
t. The generalization of this method to higher-orderdi�eren
es of the 
oe�
ients of adja
ent B-splines is straightforward. We simplyrepla
e K2 by
Kq = (DK−q+1 . . . DK)t(DK−q+1 . . .DK) .To summarize, the penalized least squares 
riterion has the form
R̂P (β) =

1

n
‖y − β01 − Zβ‖2 + βtPβ (5.4)with Z the transformed data that is de�ned in ( 5.3) and the penalty matrix Pde�ned as

P = ∆λ ⊗ Kq . (5.5)This is a symmetri
 matrix that is positive semide�nite.5.2 Dimension Redu
tion for B-Splines Transfor-mationsAs a linear approa
h, PLSR might fail to yield high predi
tion a

ura
y in the
ase of nonlinear relationships between predi
tors and responses. The idea totransform the original predi
tors using splines fun
tions preliminarily to PLSR inorder to in
orporate su
h nonlinear stru
tures has been proposed by Durand &Sabatier (1997) and Durand (1993) in di�erent variants. The method proposed byDurand & Sabatier (1997) is based on a variant of PLSR that may be 
omputedvia an iterative algorithm. They suggest an approa
h that in
orporates splinestransformations of the predi
tors within ea
h iteration of the iterative algorithm.In 
ontrast, the method proposed by Durand (2001) is global. The predi
tors are



62 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARES�rst transformed using splines basis fun
tions as a preliminary step, then PLSRis performed on the transformed data matrix. The 
hoi
e of the degree d of thepolynomial pie
es and of the number of knots is performed by an either as
endingor des
ending sear
h pro
edure that is not automati
.For large numbers of variables, this sear
h pro
edure is 
omputationally intensive.We suggest an alternative approa
h based on the penalty strategy of Eilers &Marx (1996). In the next se
tion, we show how the penalty s
heme of Eilers &Marx (1996) 
an be mapped into the PLSR dimension redu
tion framework.
5.3 Partial Least Squares and PenalizationWe now present a general framework to 
ombine PLSR with penalization terms.We remark that this is not limited to spline transformed variables or the thespe
ial shape of the penalty matrix P that is de�ned in (5.5). For this reason,we present the new method in terms of the original data matrix X and we onlydemand that P is a symmetri
 matrix su
h that Ip + P is positive de�nite.We start with a general response Y and then fo
us on univariate responses. Wemodify the optimization 
riterion (4.3) of PLS in the following way. The �rst
omponent t1 = Xw1 is the solution of the problemargmax

w

wtX tY Y tXw

wtw + wtPw
. (5.6)Using Lagrangian multipliers and re
alling the de�nition

B = X tY Y tX ,we dedu
e that the solution must ful�ll
Bw1 = ν (Ip + P )w1 , ν ∈ R .For a general Y , this is 
alled a generalized eigenvalue problem. If Y = y isunivariate, we have B = bbt and the solution is

w1 = (Ip + P )−1
b .
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M = (Ip + P )−1 . (5.7)From now on, we only 
onsider univariate responses. Subsequent weight ve
torsand 
omponents are 
omputed by de�ating X as des
ribed in Se
tion 4.1 andthen maximizing (5.6) with X repla
ed by Xi. In parti
ular, we 
an 
ompute theweight ve
tors and 
omponents of penalized PLSR by simply repla
ing wi = X t

i yby
wi = MX t

i yin algorithm 4.2. The following generalization of proposition 4.8 holds.Proposition 5.1. For penalized PLS, the matrix R = T tXW is upper bidiago-nal.The proof 
an be found in 
hapter 6. This proposition 
an be used for an e�
ient
omputation of the regression ve
tor. This is a generalization of proposition 4.9.Algorithm 5.2 (Penalized PLSR). For a penalty matrix P , we de�ne M =

(Ip + P )−1. After setting X1 = X, w̃0 = 0 and β̂
(0)

= 0, the weight ve
tors
wi, w̃i, the 
omponents ti and the regression ve
tors β̂

(i) of penalized PLSR aredetermined by iteratively 
omputing
wi = MX t

i y weight ve
tor
w̃i = wi −

ewt
i−1XtXwiewt

i−1XtX ewi−1
w̃i−1 primal weight ve
tor

β̂
(i)

= β̂
(i−1)

+
ewt

iX
tyewt

iX
tX ewi

w̃i regression ve
tor
ti = Xiwi 
omponent

Xi+1 = Xi −Pti
Xi de�ationNote that we de�ned penalized PLSR only in terms of the NIPALS algorithm.It is however straightforward to adapt the SIMPLS algorithm to the penalizationapproa
h. For a univariate response, we show their equivalen
e in 
orollary 6.4.As the two methods di�er for multivariate responses in the 
ase of PLSR, weexpe
t them to be di�erent for the penalized version as well.



64 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESIn the next se
tion, we derive a representation of penalized PLSR in terms of aKernel matrix and illustrate the geometri
 intuition behind the penalty term.
5.4 Kernel Penalized Partial Least SquaresThe 
omputation of the penalized PLSR estimator as presented in algorithm 5.2involves matri
es and ve
tors of dimension p × p and p respe
tively. If the num-ber of predi
tors p is very large, this leads to high 
omputational 
osts. In thisse
tion, we show that we 
an represent the penalized PLSR algorithm in termsof matri
es and ve
tors of dimension n × n and n respe
tively.Let us de�ne the n × n matrix K via

K = KM = (〈xi, xj〉M) = XMX t .This matrix is the Gram matrix or the kernel matrix of X if we use the innerprodu
t 〈·, ·〉M de�ned by M . In order to apply the kernel tri
k des
ribed in Se
-tion 1.4, we have to show that the penalized PLSR estimator 
an be representedin terms of dual variables,
β̂

(m)
= MX tα(m) ,

α(m) ∈ R
n .To show this, we �rst re
all equation (4.10) from whi
h follows that

X t
i y = X t

(
In − Pt1,...,ti−1

)
y = X t

(
y − ŷ(i−1)

)
.We 
on
lude that the weight ve
tors wi of penalized PLSR are simply

wi = MX ty
(i)
res , y

(i)
res = y − ŷ(i−1) .Plugging this into proposition 4.9, we also obtain a dual representation of themodi�ed weight ve
tors

w̃i = MX tα̃i
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omputing
w̃i = wi −

w̃t
i−1X

tXwi

w̃t
i−1X

tXw̃i−1
w̃i−1

= MX ty(i)
res −

α̃
t
i−1XMX tXMX ty

(i)
res

α̃
t
i−1XMX tXMX tα̃i−1

MX tα̃i−1

= MX t

(
yres − α̃

t
i−1K

2
My

(i)
res

α̃
t
i−1K

2
Mα̃i−1

α̃i−1

)
.This leads in turn to a dual representation of the regression ve
tor β̂

(i). We 
annow state algorithm 5.2 in terms of the Kernel matrix KM and the responseve
tor y.Algorithm 5.3. For a penalty term P , we de�ne M = (Ip + P )−1 and KM =

XMX t. After setting
α(i) = α̃i = 0 ,the dual representation of the penalized PLSR estimator 
an be 
omputed itera-tively via

y
(i)
res = y − ŷ(i−1) residuals
α̃i = y

(i)
res −

fαt

i−1K2
M

y
(i)
resfαt

i−1K2
M
fαi−1

α̃i−1 primal weight ve
tor
α(i) = α(i−1) +

fαt

iKM yfαt

iK
2fαi

α̃i regression ve
tor
ti = KMα̃i 
omponent

ŷ(i+1) = ŷ(i) + Pti
y estimation of yA Kernel version of PLSR has already been de�ned in Rännar et al. (1994) inorder to speed up the 
omputation of PLSR. The importan
e of this �dual� rep-resentation be
omes apparent if we want to extend PLSR to nonlinear problemsby using the kernel tri
k. We already dis
ussed this aspe
t in Se
tion 1.4. Anonlinear version of PLSR using the kernel tri
k is presented in Rosipal & Trejo(2001). Note that ordinary Kernel PLSR applied to the transformed data (5.3)is in fa
t Kernel PLSR with the feature map Φ de�ned by the B-splines.If we represent penalized PLSR in terms of the kernel matrix KM, we realizethat penalized PLSR is 
losely 
onne
ted to the kernel tri
k in other respe
ts.It follows immediately from algorithm 5.3 that penalized PLSR is equivalent to



66 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESPLSR with the usual inner produ
t repla
ed by the inner produ
t
〈x, z〉M = xtMz .Why is this a sensible inner produ
t? Let us 
onsider the eigen de
omposition ofthe penalty matrix P ,

P = SΘSt .We prefer dire
tion s su
h that stPs is small, that is we prefer dire
tions thatare de�ned by eigenve
tors si of P with a small 
orresponding eigenvalue θi. Ifwe represent the ve
tors x and z in terms of the eigenve
tors of P ,
x̃ = Stx , z̃ = Stz ,we 
on
lude that

〈x, z〉M = x̃t (Ip + Θ)−1
z̃ =

p∑

i=1

1

1 + θi

x̃iz̃i .This implies that dire
tions si with a small eigenvalue θi re
eive a higher weight-ing than dire
tions with a large eigenvalue. This allows an intuitive geometri
interpretation of the penalty term.5.5 Example: Birth Data SetIn this se
tion, we analyze a real data set des
ribing pregnan
y and delivery for 42infants who were sent to a neonatal intensive 
are unit after birth. The data aretaken from the R software pa
kage exa
tmaxsel and are introdu
ed in Boulesteix(2006). Our goal is to predi
t the number of days spent in the neonatal inten-sive 
are unit (y) based on the following predi
tors: birth weight (in g), birthheight (in 
m), head 
ir
umferen
e (in 
m), term (in week), age of the mother (inyear), weight of the mother before pregnan
y (in kg), weight of the mother be-fore delivery (in kg), height of the mother (in 
m), time (in month). Some of thepredi
tors are expe
ted to be strongly asso
iated with the response (e.g., birthweight, term), in 
ontrast to poor predi
tors like time or height of the mother.The parameter settings are as follows. We make the simplifying assumption that
λ = λ1 = . . . = λp, whi
h redu
es the problem of sele
ting the optimal smoothing



5.5. EXAMPLE: BIRTH DATA SET 67parameter to a one-dimensional problem. As already mentioned above, we use
ubi
 splines. Furthermore, the order of di�eren
e of adja
ent weights is set to 2.The shape of the �tted fun
tions fj depends on the two model parameters λand m. We �rst illustrate that the number m of penalized PLSR 
omponents
ontrols the smoothness of the estimated fun
tions. For this purpose, we only
onsider the predi
tor variable �weight�. Figure 5.2 displays the �tted fun
tionsobtained by penalized PLSR for λ = 2000 and 4 di�erent numbers of 
omponents
m = 1, 5, 9, 13. For small values of m, the obtained fun
tions are smooth. For
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Figure 5.2: Fitted fun
tion for the predi
tor variable �weight� using penalizedPLSR. The value of λ is 2000 and the numbers of 
omponents are 1, 5 (top) and
9, 13 (bottom).higher values of m, the fun
tions adapt themselves more and more to the datawhi
h leads to over�tting for high values of m.We 
ompare our novel method to PLSR without penalization as des
ribed inDurand (2001) and the gam() pa
kage in R. This is the implementation of anadaptive sele
tion pro
edure for the basis fun
tions in (5.2). More details 
an befound in Wood (2000) and Wood (2006). This is the standard tool for estimat-ing generalized additive models. In order to assess the performan
e of the threemethods, we randomly split the data into a training set of size 32 and a test setof size 10. The optimal parameter values are 
hosen by minimizing the leave-one-out error on the training set. The optimal model is then evaluated at the test set.



68 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARESWe remark that the split into training and test set is done before transformingthe original predi
tors using B-splines. This random splitting is repeated 50 times.In order to have 
omparable results, we normalize the response. i.e. var(y) = 1.A boxplot of the test error for the three methods is displayed in Figure 5.3.
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Figure 5.3: Boxplot of the 50 test errors for the three methods GAM, penalizedPLSR and PLSR without penalization.The median of the test errors and the optimal parameter values (estimated onthe 
omplete data set via leave-one-out) 
an be found in Table 5.1. Furthermore,we 
ondu
t a Wil
oxon rank sum test to test the alternative hypothesis that thetest error of penalized PLSR is lower than the test error of GAM and PLSRrespe
tively. The p-values 
an also be found in Table 5.1. Penalized PLSR is themedian test error mopt λopt p-valuesGAM 0.139 � � 0.089penalized PLSR 0.090 2 330 �PLSR 0.145 8 � 0.004Table 5.1: Comparison of GAM, penalized PLS and PLS. The �rst three 
olumnsdisplay the median test error and optimal model parameters for the birth data setand normalized response. The last 
olumn displays the p-value of the Wil
oxonrank sum test.best out of the three method. In parti
ular, it re
eives a 
onsiderably lower errorthan PLSR without penalization.



5.6. CONCLUSION 695.6 Con
lusionIn this 
hapter, we proposed an extension of Partial Least Squares Regressionusing penalization te
hniques. Apart from its 
omputational e�
ien
y (it is vir-tually as fast as PLSR), it also shares a lot of mathemati
al properties of PLSR.This will be stressed further in the next 
hapter. There, we prove that penalizedPLSR is equal to a pre
onditioned 
onjugate gradient des
ent. Our new methodalso obtains good results in appli
ations. In the example that is dis
ussed in Se
-tion 5.5, PLSR 
learly outperforms PLSR without penalization. Furthermore,the results indi
ate that it is a 
ompetitor of gam() in the 
ase of very high-dimensional data.We might think of other penalty terms. Kondylis & Whittaker (2006) 
onsidera pre
onditioned version of PLSR by giving weights to the predi
tor variables.Higher weights are given to those predi
tor variables that are highly 
orrelatedto the response. These weights 
an be expressed in terms of a penalty matrix.Goutis & Fearn (1996) 
ombine PLS with an additive penalty term to data de-rived from near infra red spe
tros
opy. The penalty term 
ontrols the smoothnessof the regression ve
tor.The introdu
tion of a penalty term 
an easily be adapted to other dimensionredu
tion te
hniques. For example, for Prin
ipal Components Analysis, the pe-nalized optimization 
riterion is
max

w

var(Xw)

wtw + wtPw
.The novel penalized PLSR approa
h has however one drawba
k. The amountof smoothness used for any of the additive 
omponents fj is the same. Usingdi�erent values λj for ea
h 
omponent leads to a model sele
tion problem thatinvolves a high-dimensional model parameter λ = (λ1, . . . , λp). This is ofteninfeasible. In Se
tion 5.5, we illustrated that the amount of smoothness 
an alsobe 
ontrolled in terms of the number m of 
omponents. In order to obtain more�exibility, it might be possible to assign di�erent numbers of 
omponents to ea
hpredi
tor variable. An elegant way to do so is the Boosting framework that isintrodu
ed in Chapter 9. We dis
uss a possible 
ombination of penalized PLSRand Boosting in Chapter 10.
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Chapter 6
From Linear Regression to LinearAlgebra
As already mentioned in Se
tion 1.3, the OLS estimator β̂OLS is the solution ofargmin

β
‖y − Xβ‖ . (6.1)This problem is equivalent to 
omputing the solution of the normal equations

Aβ = b , (6.2)with
A = X tX and b = X ty .Using the Moore-Penrose inverse of A, it follows that � as displayed in (1.11) �

β̂OLS = A−b =

rk(X)∑

i=1

zi .We already mentioned in Se
tion 1.3 that in the 
ase of high-dimensional data,the matrix A is (almost) singular and that the OLS estimator performs poorlyon new data sets. A popular strategy is to regularize the least squares 
riterion(6.1) in the hope of improving the performan
e of the estimator. This often
orresponds to �nding approximate solutions of the normal equations (6.2). Forexample, Ridge Regressionargmin
β

{
‖y − Xβ‖2 + λ‖β‖2

}
, λ > 0 .71
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orresponds to the solution of the modi�ed normal equations
(A + λIp) β = b .Here λ > 0 is the Ridge parameter. Prin
ipal Components Regression uses theeigen de
omposition of A,

A = UΛU t =

p∑

i=1

λiuiu
t
i ,and approximates A and b via the �rst m eigenve
tors

A ≈
∑m

i=1 λiuiu
t
i , b ≈

∑m

i=1 (ut
ib)ui .The Prin
ipal Component Regression (PCR) estimator is then de�ned as

β̂PCR =
m∑

i=1

zi .Here zi is the 
omponent of β̂OLS along the ith prin
ipal 
omponent. It 
an beshown that the PLSR algorithm 4.2 for a univariate response y is equivalent tothe 
onjugate gradient method (Hestenes & Stiefel 1952). This is a pro
edure thatiteratively 
omputes approximate solutions of (6.2) by minimizing the quadrati
fun
tion
φ(x) =

1

2
βtAβ − βtb =

1

2
〈β, Aβ〉 − 〈β, b〉 (6.3)along dire
tions that are A-orthogonal. (A pre
ise de�nition of the algorithm isgiven below.) Re
all that two ve
tors x and x′ are A-orthogonal if

〈x, x′〉A = xtAx′ = 0 .The approximate solution of the 
onjugate gradient method obtained after msteps is equal to the PLSR estimator obtained after m iterations. The 
onjugategradient algorithm is in turn 
losely related to Krylov subspa
es and the Lan
zosalgorithm (Lan
zos 1950). The latter is a method for approximating eigenvalues.The 
onne
tion between PLSR and these methods is well-elaborated in Phatak &de Hoog (2002). We now establish a similar 
onne
tion between penalized PLSR



73and the above mentioned methods. Set
AM = MA and bM = Mb .Here, M is the matrix (5.7) that is de�ned by the penalty term P of penalizedPLSR. We now illustrate that penalized PLSR �nds approximate solutions of thepre
onditioned normal equation

AMβ = bM . (6.4)We remark that the following results are also valid for PLSR by setting M = Ip.De�nition 6.1. For every ve
tor c ∈ Rd and every matrix C ∈ Rd×d, we 
all theset of ve
tors
c, Cc, . . . , Cm−1cthe Krylov sequen
e of length m. The spa
e spanned by this Krylov sequen
e is
alled the Krylov spa
e of C and c and is denoted by K(m)(C, c).Let us start with the following observation.Lemma 6.2. The spa
e spanned by the weight ve
tors w1, . . . , wm of penalizedPLSR equals the Krylov spa
e K(m)(AM, bM). The spa
e spanned by the penalizedPLSR 
omponents t1, . . . , tm equals the Krylov spa
e K(m)(KM, KMy).This is the generalization of a result for PLSR. Re
all that KM = XMX t.Proof. This 
an be shown via indu
tion. For m = 1, we know that w1 = bMand t1 = XbM = XMX ty = KMy. For a �xed m > 1, we 
on
lude fromthe indu
tion hypothesis and (4.12) that every ve
tor s that lies in the span of

t1, . . . , tm is of the form
s = Xv , v ∈ span{w1, . . . , wm} = K(m) (AM, bM) .We 
on
lude that

wm+1 = MX t
m+1y = MX ty − MX tPt1,...,tm

y = Mb − MX tXs .This implies that
wm+1 = bM − AMs ∈ K(m+1) (AM, bM) .
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K(m) (KM, KMy) = XK(m) (AM, bM) .It follows that

tm+1 = Xm+1wm+1 = Xwm+1 − Pt1,...tm
Xwm+1︸ ︷︷ ︸

∈K(m)(KM ,KM y)

∈ K(m+1) (KM, KMy) .This 
on
ludes the proof.Corollary 6.3. The penalized PLSR estimator obtained after m steps is equal tothe solution of the 
onstrained minimization problemargmin
β

‖y − Xβ‖2su
h that β ∈ K(m) (AM, bM)Proof. This follows immediately from proposition 4.7.Corollary 6.4. For univariate penalized PLSR, the 
omponents derived by theNIPALS algorithm are (up to the sign) equal to the 
omponents derived by SIM-PLS de�ned in equations (4.5), (4.6) and (4.7).The equivalen
e of both methods for PLSR is shown in de Jong (1993).Proof. We show via indu
tion that the 
omponents t1, . . . , tm derived from SIM-PLS span the spa
e K(m) (KM, KMy). For m = 1, this is obviously true, as
t1 = KMy. The Lagrangian fun
tion asso
iated to the optimization problem ofSIMPLS is

L(w) = wtb − λ
(
wtw + wtPw − 1

)
−

m∑

i=1

µiw
tX tti .Computing the �rst derivative, we obtain the equation

b − 2λ (Ip + P )wm+1 −
m∑

i=1

µiX
tti = 0 .This implies that

wm+1 ∼ (Ip + P )−1

(
b −

m∑

i=1

µiX
tti

)
= bM −

m∑

i=1

µiMX tti .



75Using the indu
tion hypothesis, we 
on
lude that
tm+1 ∼ XbM −

m∑

i=1

µiXMX tti = KMy −
m∑

i=1

µiKMti ∈ K(m+1) (KM, KMy) .

Finally, we show the following result.Proposition 6.5. The weight ve
tors w1, . . . , wm of penalized PLS are mutually
M−1-orthogonal. The matrix R = T tXW is upper bidiagonal.Proof. It follows from the de�nition of the penalized PLS weight ve
tors andlemma 4.4 that for i > j

〈wi, wj〉M−1 =
〈
MX t

i y, wj

〉
M−1 = ytXiMM−1wj = ytXiwj = yt

0 = 0 .Furthermore,
ti ∈ K(m)(KM, KMy) = XK(m)(AM, bM) = Xspan (w1, . . . , wi) .We 
an 
on
lude that

MX tti ∈ MX tXK(i)(AM, bM)

= AMK(i)(AM, bM)

⊂ K(i+1)(AM, bM)

= span (w1, . . . , wi+1) .In parti
ular,
MX tti =

i+1∑

k=1

αkwk . (6.5)Now re
all that the weight ve
tors are M−1-orthogonal. We 
on
lude that for
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j > i + 1

tt
iXwj = 〈MX tti, wj〉M−1

(6.5)
= 〈

i+1∑

k=1

αkwk, wj〉M−1

=

i+1∑

k=1

αk〈wk, wj〉M−1

= 0

6.1 Pre
onditioned Conjugate Gradient MethodsWe now present the 
onjugate gradient method for the pre
onditioned normalequation (6.4). The 
onjugate gradient method is normally applied if the involvedmatrix is symmetri
. Note that in general, the matrix AM is not symmetri
 withrespe
t to the 
anoni
al inner produ
t, but with respe
t to the inner produ
t
〈x, x′〉M−1 = xtM−1x′de�ned by M−1, as

〈x, AMx′〉M−1 = xtM−1MAx′ = xtAx′ = xtAtM tM−1x′ = 〈AMx, x′〉M−1 .We 
an rewrite the quadrati
 fun
tion φ de�ned in (6.3) as
φ(β) =

1

2
〈β, AMβ〉M−1 − 〈β, bM〉M−1 .We repla
e the 
anoni
al inner produ
t by the inner produ
t de�ned by M−1and minimize this fun
tion iteratively along dire
tions that are AM-orthogonal.De�nition 6.6. We say that two ve
tors x and x′ are AM orthogonal withrespe
t to the inner produ
t de�ned by M−1 if

〈x, AMx′〉M−1 = xtM−1AMx′ = xtAx′ = 0 .



6.1. PRECONDITIONED CONJUGATE GRADIENT METHODS 77We start with an initial guess β0 = 0 and de�ne
d0 = r0 = bM − AMβ0 = bM .The quantity dm is the sear
h dire
tion and rm = bM −AM is the residual. Fora given dire
tion dm, we have to determine the optimal step size, that is we haveto �nd
am = argmin

a
φ (βm + adm) .It is straightforward to 
he
k that

am =
〈dm, rm〉M−1

〈dm, AMdm〉M−1

.The new approximate solution is then
βm+1 = βm + amdm .After updating the residuals via

rm+1 = bM − AMβm+1,we de�ne a new sear
h dire
tion dm+1 that is AM -orthogonal to the previoussear
h dire
tions. This is ensured by proje
ting the residual rm onto the spa
ethat is AM-orthogonal to d0, . . . , dm. We obtain
dm+1 = rm+1 −

m∑

i=0

〈rm+1, AMdi〉M−1

〈di, AMdi〉M−1

di .Algorithm 6.7 (Pre
onditioned 
onjugate gradient method). After setting β0 =

0 and d0 = r0 = bM , the approximate solutions βm of the pre
onditioned linearsystem (6.4) are determined by iteratively 
omputing
βm+1 = βm +

〈dm,rm〉
M−1

〈dm,AM dm〉
M−1

dm step size
rm+1 = bM − AMβm+1 residuals
dm+1 = rm+1 − 〈rm+1,AM dm〉

M−1

〈dm,AM dm〉
M−1

dm sear
h dire
tionIn the rest of this se
tion, we prove the following result.Theorem 6.8. The penalized PLSR algorithm is equivalent to the pre
onditioned
onjugate gradient algorithm 6.7 for the pre
onditioned system (6.4).



78 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRAThe following lemma follows almost immediately from the de�nition of the algo-rithms and 
an be proven via indu
tion.Lemma 6.9. We havespan {d0, . . . , dm−1} = span {r0, . . . , rm−1} = span {β1, . . . , βm} = K(m)(AM, bM) .Lemma 6.10. We have
βm =

m−1∑

i=0

〈di, bM〉M−1

〈di, AMdi〉M−1

di .Proof. This 
orresponds to the iterative de�nition of βm. We only have to showthat
〈di, ri〉M−1 = 〈di, bM〉M−1 .Note that

ri = bM −
i−1∑

j=0

ajAMdj .As � by de�nition � di is AM-orthogonal with respe
t to M−1 onto all dire
tions
dj , j < i, the proof is 
omplete.Now we are able to proof the equivalen
e of penalized PLSR and the pre
ondi-tioned 
onjugate gradient method.Proof of theorem 6.8. As the sear
h dire
tions di span the Krylov spa
e K(m)(AM, bM)(see lemma 6.9), we 
an repla
e the matrix W in formula (4.14) of the penalizedPLSR estimator by the matrix D = (d0, . . . , dm−1). As the sear
h dire
tions are
AM -orthogonal, we have

β̂
(m)

= D
(
DtAD

)−1
Dtb

= D
(
DtM−1AMD

)−1
DtM−1bM

=
m−1∑

i=0

〈di, bM〉M−1

〈di, AMdi〉M−1

di .and this equals the formula in lemma 6.10.



6.2. WHY KRYLOV SUBSPACES? 79Corollary 6.11. The length of the regression ve
tor β̂ of penalized PLSR ismonotoni
ally in
reasing, if we use the norm de�ned by M−1

‖β̂(1)‖M−1 ≤ ‖β̂(2)‖M−1 ≤ . . . ≤ ‖β̂(p)‖M−1 .Proof. In the spe
ial 
ase of PLSR (that is M = Ip), this result is alreadyknown (de Jong 1995) and 
an be proven by using the equivalen
e of PLSR andthe 
onjugate gradient method. Repla
ing the usual inner produ
t by the innerprodu
t de�ned by M−1 in the proof in Phatak & de Hoog (2002), we obtain theresult for penalized PLSR. As this general result is not needed in the rest of thework, we omit the details for the sake of briefness.6.2 Why Krylov Subspa
es?Krylov spa
es are 
losely 
onne
ted to the Lan
zos algorithm (Lan
zos 1950), amethod for approximating eigenvalues or the generalized inverse of a symmetri
matrix A. We approximate the eigenvalues or the inverse of A by restri
ting themap that is de�ned by A onto a Krylov subspa
e K(m)(A, b) de�ned by A and aright-hand side b. A priori, this does not make sense, as for a ve
tor v that lies in
K(m), the ve
tor Av does not ne
essarily lie in K(m). We therefore de�ne the map
A restri
ted to K(m) in the following way. Let us assume that the 
olumns of thematrix W form an orthonormal basis of K(m). In parti
ular, we 
an represent vas v = Wu. After applying the linear map A to v, we proje
t Av onto K(m).The proje
tion onto K(m) is WW t, hen
e the image of AWu is

WW tAWu .It follows that (in terms of the basis W ), the map A|K(m) that is de�ned as
K(m)(A, b)

A−→ K(m+1)(A, b)
P
K(m)−→ K(m)(A, b)is

D(m) = W tAW ∈ R
m×m . (6.6)The eigenve
tors and eigenvalues of D(m) are 
alled ritz pairs.



80 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRAThe inverse of A is then approximated by W (W tAW )
−1

W t. An approximatesolution of the normal equations (6.2) is
β̂

(m)
= W

(
W tAW

)−1
W tb .Note that this equals the formula for the PLSR estimator presented in (4.14), aswe showed in lemma 6.2 and proposition 4.5 that the PLS weight ve
tors W �if they are standardized to length 1 � form an orthonormal basis of the Krylovspa
e K(m).In general, Krylov methods �nd approximate solutions of (6.2) by sear
hing forsolutions in Krylov spa
es and we showed that the PLSR estimator is an ap-proximate OLS solution in a Krylov subspa
e. Why is this a sensible idea? Thefollowing lemma shows that for a 
ertain 
lass of matri
es A, the ve
tor A−bis an element of a Krylov spa
e de�ned by A and b. Hen
e there is a naturalrepresentation of A−b in terms of the Krylov sequen
e and we hope that we 
an�nd an approximate solution in a Krylov subspa
e of low dimension.Proposition 6.12. If A ∈ Rp×p is symmetri
 or if A is regular, there is apolynomial π ∈ R[X] of degree ≤ p − 1 su
h that

A− = π(A) .In parti
ualar
A−b ∈ K(p)(A, b)for any ve
tor b.For a general matrix A, it 
an be shown (Ibsen & Meyer 1998) that the samestatement is true if we repla
e the Moore-Penrose inverse by the Drazin inverse(Drazin 1968).Proof. For a symmetri
 matrix A = UΛU t, let us de�ne the polynomial π viathe at most p equations

π(λi) =





1
λi

λi 6= 0

0 λi = 0
.



6.2. WHY KRYLOV SUBSPACES? 81In matrix notation, this equals π(Λ) = Λ
−. This polynomial 
orresponds to thede�nition of the Moore-Penrose inverse of a symmetri
 matrix that is presentedin proposition A.13. It follows that

π(A) = A− .If A is regular, we 
an use the Theorem of Caley-Hamilton whi
h states that
χA(A) = 0 .Here,

χA(λ) =

p∑

i=0

ciλ
iis the 
hara
teristi
al polynomial of A. As A is regular, we have c0 6= 0. Fromthis we 
an 
on
lude that

Ip = A

(
− 1

c0

p−1∑

i=0

ci+1A
i

)

︸ ︷︷ ︸
=π(A)

.As the degree of π is p − 1, the proof is 
omplete.If we transfer this into the 
ontext of linear regression estimators, we obtain thefollowing two 
orollaries.Corollary 6.13. After at most p iterations, the PLSR estimator equals the OLSestimator.This result is well-known and is usually proven using a geometri
 argument.Proof. This follows immediately from 
orollary 6.3 whi
h states that the PLSRestimator after m steps is equivalent to the OLS estimator under the additional
onstraint that is an element of the Krylov spa
e K(m)(A, b).Corollary 6.14. Suppose that A = X tX is regular. After at most p iterations,the penalized PLSR estimator equals the OLS estimator.Proof. If A is invertible, it follows from proposition 6.12 that
A−1

MbM = π (AM) bM .
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A−1

MbM = (MA)−1
Mb = A−1M−1Mb = A−1b = β̂OLS .We 
an 
on
lude that the OLS estimator is an element of a Krylov spa
e thatis de�ned by AM and bM . Now the statements follows readily from 
orollary6.3.From now on, we only 
onsider PLSR and abbreviate

K(m) = K(m)(A, b), .As already mentioned above, PLSR tries to �nd an approximation of β̂OLS in aKrylov spa
e of low dimension. The properties of Krylov spa
es determine someof the statisti
al properties of the 
orresponding estimator. This is dis
ussed inmore detail in Chapter 7. There, we need a formula for the smallest dimension
m∗ su
h that the OLS estimator lies in the Krylov spa
e K(m∗). Re
all the eigende
omposition

A = UΛU tof A and set s = Ub. We de�ne
M = {λi|si 6= 0} , m∗ = |M| .The quantity m∗ is 
alled the grade of A with respe
t to b.Proposition 6.15. We have

dimK(m) =





m m ≤ m∗

m∗ m > m∗
.In parti
ular

dimK(m∗) = dimK(m∗+1) = . . . = dimK(p) = m∗ . (6.7)Proof. This is a well-know result. We �rst show that dimK(m∗) = m∗. Suppose
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m∗−1∑

j=0

γjA
jb = 0for some γ0, . . . , γm∗−1 ∈ R. Setting f(λ) =

∑
γiλ

i and using the eigen de
om-position of A , this equation is equivalent to
f (Λ) s = 0It follows that f(λi)si = 0 for i = 1, . . . , p. Hen
e, ea
h element λi ∈ M is azero of the polynomial f(λ). This is a polynomial of degree ≤ m∗ − 1 . As it has

m∗ = |M| di�erent zeroes, it must be trivial, i.e. γj = 0.Next, we show that if m > m∗, we have dimK(m) = m∗ . It is 
lear that
dimK(m) ≥ m∗ as K(m∗) ⊂ K(m) . Let S be any set of m∗ + 1 ve
tors in theKrylov sequen
e. Set

I = {i ∈ {1, . . .m}|Ai−1b ∈ S} .Hen
e |I| = m∗ + 1. The 
ondition that S is linear dependent is equivalent tothe following. There is a nontrivial polynomial
g(λ) =

∑

i∈I

γiλ
isu
h that g (λi) = 0 for λi ∈ M. As the polynomial g is of degree |I| = m∗ + 1and |M| = m∗, there is always a nontrivial polynomial g that ful�lls g (λi) = 0for λi ∈ M.If A and b represent normal equations, we have s = ΣV ty and

M = {λi 6= 0|vt
iy 6= 0} .It follows from its de�nition that

m∗ ≤ rk(A) .The inequality is stri
t if A has non-zero eigenvalues of multipli
ity > 1 or ifthere is a prin
ipal 
omponent vi that is not 
orrelated to y, i.e. vt
iy = 0 .



84 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRA6.3 A Polynomial RepresentationIn the last se
tion, we showed that the PLSR estimator obtained after m stepslies in a Krylov subspa
e of dimension m. Hen
e there is a polynomial π(m) ofdegree ≤ m − 1 su
h that
β̂

(m)

PLS = π(m) (A) b .This polynomial depends on the matrix D(m) de�ned in (6.6) and determinesthe shrinkage properties of PLSR that are illustrated in Chapter 7. In order toshow that the degree of the polynomial is exa
tly m− 1, we need to 
olle
t somewell-known properties of the matrix D(m).Proposition 6.16. The matrix D(m) is symmetri
 and positive semide�nite.Furthermore, D(m) is tridiagonal, that is dij = 0 for |i − j| ≥ 2.Proof. The �rst two statements are obvious. Let i ≤ j − 2. As wi ∈ K(i) , theve
tor Awi lies in the subspa
e K(i+1). As j > i + 1, the ve
tor wj is orthogonalon K(i+1), in other words 〈wj, Awi〉 = 0. As D(m) is symmetri
, we also have
〈wi, Awj〉 = 0 whi
h proves the assertion.De�nition 6.17. We say that a symmetri
 tridiagonal matrix D is unredu
edif all subdiagonal entries are non-zero, i.e. di,i+1 6= 0 for all i.Proposition 6.18. If dimK(m) = m, the matrix D(m) is unredu
ed. More pre-
isely, all subdiagonal elements are > 0.Proof. Set pi = Ai−1b and denote by w1, . . . , wm the basis of PLS weight ve
tors.Its existen
e is guaranteed as we assume that dimK(m) = m. We have to showthat the subdiagonal elements 〈wi, Awi−1〉 are >0. As the length of wi doesnot 
hange the sign of this expression, we 
an assume that the ve
tors wi arenot normalized to have length 1. As the weight ve
tors lie in the Krylov spa
e
K(m) and are mutually orthogonal (re
all proposition 4.5), we 
on
lude that theweight ve
tors w1, . . . , wm are equal to the Gram-S
hmidt basis obtained from
p1, . . . , pm. This implies

wi = pi −
i−1∑

k=1

〈pi, wk〉
〈wk, wk〉

wk . (6.8)As the ve
tors wi are pairwise orthogonal, it follows that
〈wi, pi〉 = 〈pi, pi〉 > 0 . (6.9)
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on
lude that
〈wi, Awi−1〉

(6.8)
=

〈
wi, A

(
pi−1 −

i−2∑

k−1

〈pi−1, wk〉
〈wk, wk〉

wk

)〉

Api−1=pi
= 〈wi, pi〉 −

i−2∑

k=1

〈pi−1, wk〉
〈wk, wk〉

〈wi, Awk〉prop.6.16
= 〈wi, pi〉

(6.9)
= 〈pi, pi〉 > 0 .Proposition 6.19. The eigenvalues of an unredu
ed matrix are distin
t.The proof van be found in ?.Remark 6.20. All eigenvalues of D(m∗) are eigenvalues of A.Proof. Re
all that D(m∗) represents the map

A|K(m∗) : K(m∗) A−→ K(m∗+1) = K(m∗) .with respe
t to the basis W (m∗). As any eigenvalue of A|K(m∗) is obviously aneigenvalue of A, the proof is 
omplete.Proposition 6.21. If dimK(m) = m, we have det
(
D(m)

)
6= 0.Proof. Let us start with the remark that the 
hara
teristi
al polynomials χ(m) of

D(m) are related in the following way,
χ(m) (λ) = (dm,m − λ)χ(m−1) (λ) − d2

m−1,mχ(m−2) (λ) . (6.10)Here, di,j is the (i, j) entry of the matrix D(m). Furthermore, both χ(m−1) and
χ(m−2) are polynomials with non-negative zero's. The two polynomials must havea di�erent sign on {x ≤ 0}. Suppose that m is the smallest number su
h that
D(m) is not regular. This implies that 0 is an eigenvalue of D(m). Plugging λ = 0into (6.10), we obtain

dm,mχ(m−1) (0) = d2
m−1,mχ(m−2) (0) .As the signs of χ(m−1) (0) and χ(m−2) (0) 
annot be equal and χ(m−1) (0) 6= 0, thisis only possible if dm−1,m = 0. Now re
all proposition 6.18 whi
h implies that

dm−1,m = 0 is only possible if m > m∗.



86 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRADenote the m di�erent eigenvalues of D(m) by
µ

(m)
1 > . . . > µ(m)

m > 0 . (6.11)These eigenvalues are 
alled ritz values. Set
f (m)(λ) = 1 −

m∏

i=1

(
1 − λ

µ
(m)
i

)
. (6.12)This is a polynomial of degree m. As f (m) = 0, there is a polynomial π(m) ofdegree m − 1 su
h that

f (m)(λ) = λπ(m)(λ) . (6.13)Proposition 6.22 ((Phatak & de Hoog 2002)). Suppose that m ≤ m∗. We have
β̂

(m)

PLS = π(m)(A)b ,with the polynomial π(m) de�ned in (6.13).Proof. The polynomial π(m) is simply the polynomial representation of the inverseof D(m)

(
D(m)

)−1
= π(m)

(
D(m)

)
.This follows from (6.13). We plug this into the formula of proposition 4.7 andobtain

β̂
(m)

PLS = W (m)π(m)
((

W (m)
)t

AW (m)
) (

W (m)
)t

b .Re
all that the 
olumns of W (m) form an orthonormal basis of K(m). It followsthat W (m)
(
W (m)

)t is the operator that proje
ts on the spa
e K(m). In parti
ular
W (m)

(
W (m)

)t
Ajb = Ajbfor j = 1, . . . , m − 1. This implies that

β̂
(m)

PLS = π(m)(A)b .



Chapter 7
Shrinkage Properties of PartialLeast Squares
In this 
hapter, we study the shrinkage properties of PLS regression. It is wellknown (Frank & Friedman 1993) that we 
an express the PLSR estimator ob-tained after m steps in the following way:

β̂
(m)

PLS =

rk(X)∑

i=1

f (m)(λi)zi ,where zi is the 
omponent of the Ordinary Least Squares (OLS) estimator alongthe ith prin
ipal 
omponent of the 
ovarian
e matrix X tX and λi is the 
orre-sponding eigenvalue. The quantities f (m)(λi) are 
alled shrinkage fa
tors. Weshow that these fa
tors are determined by the tridiagonal matrix D(m) de�ned in(6.6). Combining the results of Butler & Denham (2000) and Phatak & de Hoog(2002), we give a simpler and 
learer proof of the shape of the shrinkage fa
torsof PLSR and derive some of their properties. In parti
ular, we reprodu
e thefa
t that some of the values f (m)(λi) are greater than 1. This was �rst proved byButler & Denham (2000).We argue that these �pe
uliar shrinkage properties� (Butler & Denham 2000) donot ne
essarily imply that the Mean Squared Error (MSE) of the PLSR estimatoris worse 
ompared to the MSE of the OLS estimator. In the 
ase of deterministi
shrinkage fa
tors, i.e. fa
tors that do not depend on the response y, any value∣∣f (m) (λi)
∣∣ > 1 is of 
ourse undesirable. But in the 
ase of PLSR, the shrinkagefa
tors are sto
hasti
 � they also depend on y . In parti
ular, bounding the ab-87



88CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESsolute value of the shrinkage fa
tor by 1 might not automati
ally yield a lowerMSE, in disagreement to what is 
onje
tured e.g. in Frank & Friedman (1993).Having issued this warning, we explore whether bounding the shrinkage fa
torsleads to a lower MSE or not. It is very di�
ult to derive theoreti
al results, asthe quantities of interest - β̂
(m)

PLS and f (m)(λi) respe
tively - depend on y in a
ompli
ated, nonlinear way. As a substitute, we study the problem on severalarti�
ial data sets and one real world example. It turns out that in most 
ases,the MSE of the bounded version of PLSR is indeed smaller than the one of PLSR.During the rest of the 
hapter we o

asionally make the assumption that
dimK(m) = m . (7.1)The maximal number for whi
h this holds is m∗ (see proposition 6.15). Notehowever that

K(m∗−1) ⊂ K(m∗) = K(m∗+1) = . . . = K(p)(see (6.7)) and the PLSR solutions do not 
hange anymore.7.1 What is Shrinkage?We have presented two estimators for the regression parameter β � OLS and(penalized) PLSR � whi
h also de�ne estimators for Xβ via
ŷ = Xβ̂ .One possibility to evaluate the quality of an estimator is to determine its MeanSquared Error (MSE). In general, the MSE of an estimator θ̂ for a ve
tor-valuedparameter θ is de�ned asMSE(θ̂) = E

[tra
e(θ̂ − θ
)(

θ̂ − θ
)t
]

= E

[(
θ̂ − θ

)t (
θ̂ − θ

)]

=
(
E
[
θ̂
]
− θ

)t (
E
[
θ̂
]
− θ

)
+ E

[(
θ̂

t − E
[
θ̂
])t (

θ̂
t − E

[
θ̂
])]

.



7.1. WHAT IS SHRINKAGE? 89This is the well-known bias-varian
e de
omposition of the MSE. The �rst part isthe squared bias and the se
ond part is the varian
e term.We start by investigating the 
lass of linear estimators, i.e. estimators thatare of the form θ̂ = Hy for a matrix H that does not depend on y. It followsimmediately from the regression model (1.9) and (1.7) that for a linear estimator,
E
[
θ̂
]

= HXβ , Var [θ̂] = σ2tra
e (HH t) .The OLS estimators are linear, as
β̂OLS = (X tX)

−
X ty , ŷOLS = X (X tX)

−
X ty .Note that the estimator of ŷOLS is simply the proje
tion PX onto the spa
e thatis spanned by the 
olumns of X. The estimator ŷOLS is unbiased as

E [ŷOLS] = PXXβ = Xβ .The estimator β̂OLS is only unbiased if β ∈ range (X tX)
− .

E
[
β̂OLS

]
= E

[(
X tX

)−
X ty

]
=
(
X tX

)−
X tE [y] =

(
X tX

)−
X tXβ = β .Let us now have a 
loser look at the varian
e term. It follows dire
tly fromtra
e(PXP t

X) = rk(X) thatVar (ŷOLS) = σ2rk(X) .For β̂OLS we have
(
X tX

)−
X t
((

X tX
)−

X t
)t

=
(
X tX

)−
X tX

(
X tX

)−
=
(
X tX

)−
= UΛ

−U t ,hen
e Var(β̂OLS

)
= σ2

rk(X)∑

i=1

1

λi

. (7.2)We 
on
lude that the MSE of the estimator β̂OLS depends on the non-zero eigen-values of A = X tX. Small eigenvalues of A 
orrespond to dire
tions in X thathave a low varian
e. Equation (7.2) shows that if some eigenvalues are small, the



90CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESvarian
e of β̂OLS is very high, whi
h leads to a high MSE.One possibility to (hopefully) de
rease the MSE is to modify the OLS estima-tor by shrinking the dire
tions of the OLS estimator that are responsible fora high varian
e. This of 
ourse introdu
es bias. We shrink the OLS estimatorin the hope that the in
rease in bias is small 
ompared to the de
rease in varian
e.In general, a shrinkage estimator for β is of the form
β̂shr =

rk(X)∑

i=1

f(λi)zi ,where f is some real-valued fun
tion. The values f(λi) are 
alled shrinkage fa
-tors. Examples are Prin
ipal Component Regression
f(λi) =





1 ith prin
ipal 
omponent in
luded
0 otherwiseand Ridge Regression

f(λi) =
λi

λi + λ
,with λ > 0 the Ridge parameter. We illustrate in Se
tion 7.2 that PLSR is ashrinkage estimator as well. It turns out that the shrinkage behavior of PLSRregression is rather 
ompli
ated.Let us investigate in whi
h way the MSE of the estimator is in�uen
ed by theshrinkage fa
tors. If the shrinkage estimators are linear, i.e. the shrinkage fa
torsdo not depend on y, this is an easy task. Let us �rst write the shrinkage estimatorin matrix notation. We have

β̂shr = Hshry = UΣ
−DshrV

ty .The diagonal matrix Dshr has entries f(λi). The shrinkage estimator for y is
ŷshr = XHshry = V ΣΣ

−DshrV
ty .



7.1. WHAT IS SHRINKAGE? 91We 
al
ulate the varian
e of these estimators.tra
e (HshrH
t
shr

)
= tra
e (UΣ

−DshrΣ
−DshrU

t
)

= tra
e (Σ−DshrΣ
−Dshr

)

=

rk(X)∑

i=1

(f (λi))
2

λiand tra
e (XHshrH
t
shrX

t
)

= tra
e (V ΣΣ
−DshrΣΣ

−DshrV
t
)

= tra
e (ΣΣ
−DshrΣΣ

−Dshr

)

=

rk(X)∑

i=1

(f (λi))
2 .Next, we 
al
ulate the bias of the two shrinkage estimators. We have

E [Hshry] = HshrXβ = UΣDshrΣ
−U tβ .It follows thatbias2 (β̂shr

)
= (E [Hshry] − β)t (E [Hshry] − β)

=
(
U tβ

)t (
ΣDshrΣ

− − Ip

)t (
ΣDshrΣ

− − Ip

) (
U tβ

)

=

rk(X)∑

i=1

(f(λi) − 1)2 (
ut

iβ
)2

.Repla
ing Hshr by XHshr it is easy to show thatbias2 (ŷshr) =

p∑

i=1

λi (f(λi) − 1)2
(
ut

iβ
)2

.Proposition 7.1. For the shrinkage estimator β̂shr and ŷshr de�ned above wehave
MSE

(
β̂shr

)
=

rk(X)∑

i=1

(f(λi) − 1)2 (
ut

iβ
)2

+ σ2

rk(X)∑

i=1

(f (λi))
2

λi

,

MSE (ŷshr) =

rk(X)∑

i=1

λi (f(λi) − 1)2 (
ut

iβ
)2

+ σ2

rk(X)∑

i=1

(f (λi))
2 .



92CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESIf the shrinkage fa
tors are deterministi
, i.e. they do not depend on y, any value
f(λi) 6= 1 in
reases the bias. Values |f(λi)| < 1 de
rease the varian
e, whereasvalues |f(λi)| > 1 in
rease the varian
e. Hen
e an absolute value > 1 is alwaysundesirable. The situation might be di�erent for sto
hasti
 shrinkage fa
tors. Wedis
uss this in the following se
tion.Note that there is a di�erent notion of shrinkage, namely that the L2- norm ofan estimator is smaller than the L2-norm of the OLS estimator. Why is thisa desirable property? Let us again 
onsider the 
ase of linear estimators. Set
θ̂i = Hiy for i = 1, 2. We have

∥∥∥θ̂i

∥∥∥
2

2
= ytH t

i Hiy .The property that for all y ∈ Rn

∥∥∥θ̂1

∥∥∥
2

≤
∥∥∥θ̂2

∥∥∥
2is equivalent to the 
ondition that H t

1H1 − H t
2H2 is negative semide�nite. Thetra
e of negative semide�nite matri
es is ≤ 0. Furthermore tra
e (H t

i Hi) =tra
e (HiH
t
i ), so we 
on
lude thatVar(θ̂1

)
≤ Var(θ̂2

)
.We already remarked in Chapter 6 that

‖β̂(1)

PLS‖2 ≤ ‖β̂(2)

PLS‖2 ≤ . . . ≤ ‖β̂(m∗)

PLS‖2 = ‖β̂OLS‖2 .

7.2 The Shrinkage Fa
tors of Partial Least SquaresIn this se
tion, we give a simpler and 
learer proof of the shape of the shrinkagefa
tors of PLSR. Basi
ally, we 
ombine the results of Butler & Denham (2000)and Phatak & de Hoog (2002). In proposition 6.22, we derived a formula for thePLSR estimator in terms of the ritz values of A. From this, we 
an immediately
on
lude the following 
orollary.Corollary 7.2 ((Phatak & de Hoog 2002)). Suppose that dimK(m) = m. If we



7.2. THE SHRINKAGE FACTORS OF PARTIAL LEAST SQUARES 93denote by
zi =

vt
iy√
λi

uithe 
omponent of β̂OLS along the ith eigenve
tor of A, then
β̂

(m)

PLS =

rk(X)∑

i=1

f (m)(λi)zi ,with f (m)(λ) is de�ned in (6.13).Proof. This follows immediately from proposition 6.22. We have
β̂

(m)

PLS = π(m)(A)b

= Uπ(m)(Λ)ΣV ty

=

rk(X)∑

i=1

π(m)(λi)
√

λiv
t
iyui

=

rk(X)∑

i=1

π(m)(λi)λi

1√
λi

vt
iyui

(6.13)
=

rk(X)∑

i=1

f (m)(λi)zi .

The following theorem is a spe
ial form of the Cau
hy Interla
e Theorem. In thisversion, we use a general result from Parlett (1998) and exploit the tridiagonalstru
ture of D(m).Theorem 7.3. Ea
h interval
[
µ

(m)
m−j , µ

(m)
m−(j+1)

]

(j = 0, . . . , m− 2) 
ontains an eigenvalue of D(m+k)) (k ≥ 1). In addition, thereis an eigenvalue of D(m+k) outside the open interval (µ
(m)
m , µ

(m)
1 ) .This theorems ensures in parti
ular that there is an eigenvalue of A in the interval[

µ
(m)
k , µ

(m)
k−1

]. Theorem 7.3 holds independently of assumption (7.1).



94CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESProof. By de�nition, for k ≥ 1

D(m+k) =




D(m−1) •t 0

• ∗ ∗
0 ∗ ∗


 .Here • = (∗, . . . , 0, 0), so

D(m) =

(
D(m−1) •t

• am

)
.An appli
ation of theorem 10.4.1 in Parlett (1998) gives the desired result.We now show that some of the shrinkage fa
tors of PLSR are 6= 1 .Theorem 7.4 ((Butler & Denham 2000)). For ea
h m ≤ m∗, we 
an de
omposethe interval [λp, λi] into m + 1 disjoint intervals1

I1 ≤ I2 ≤ . . . ≤ Im+1su
h that
f (m) (λi)




≤ 1 λi ∈ Ij and j odd
≥ 1 λi ∈ Ij and j even .Proof. Set

g(m)(λ) = 1 − f (m)(λ) .It follows from (6.12) that the zero's of g(m)(λ) are µ
(m)
m , . . . , µ

(m)
1 . As D(m) isunredu
ed, all eigenvalues are distin
t. Set µ

(m)
0 = λ1 and µ

(m)
m+1 = λp. De�ne

Ij =]µ
(m)
i , µ

(m)
i+1[ for j = 0, . . . , m .By de�nition, g(m)(0) = 1. Hen
e g(m)(λ) is non-negative on the intervals Ij if

j is odd and g(m) is non-positive on the intervals Ij if j is even. It follows fromtheorem 7.3 that all intervals Ij 
ontain at least one eigenvalue λi of A .In general, we 
annot 
on
lude that f (m)(λi) 6= 1 for all λi and m = 1, . . . , m∗ .However, in pra
ti
al appli
ations, the shrinkage fa
tors seem to be 6= 1 all of1We say that Ij ≤ Ik if sup Ij ≤ inf Ik .
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Figure 7.1: An illustration of the shrinkage behavior of PLSR. The number ofvariables is p = 8. The eigenvalues of X tX are enumerated in de
reasing order,
λ1 ≥ λ2 ≥ . . .. The shrinkage fa
tors f (m)(λi) are plotted as a fun
tion of ifor di�erent values of m. The amount of absolute shrinkage ∣∣1 − f (m)(λi)

∣∣ isparti
ularly prominent if m is small.the time. Figure 7.1 illustrates the shrinkage behavior of PLSR. This example istaken from Butler & Denham (2000). Using some of the results of Se
tion 6.3 andthe fa
t that the eigenvalues of D(m∗−1) and D(m∗) are distin
t (Parlett 1998),we 
an dedu
e that some fa
tors are indeed 6= 1. Details 
an be found in Butler& Denham (2000) and Krämer (2006). Furthermore, using theorem 7.3, morepre
isely λp ≤ µ
(m)
i ≤ λi, it is possible to bound the terms

1 − λi

µ
(m)
i

.Based on these bounds, it is possible to derive bounds on the shrinkage fa
tors.We will not pursue this further, readers who are interested in the bounds should
onsult Lingjaerde & Christopherson (2000). Instead, we have a 
loser look atthe MSE of PLSR.In Se
tion 7.1, we showed that a value |f (m)(λi)| > 1 is not desirable, as both thebias and the varian
e of the estimator in
reases. Note however that in the 
aseof PLSR, the fa
tors f (m)(λi) are sto
hasti
; they depend on y � in a nonlinear



96CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESway. The varian
e of the PLS estimator for the ith prin
ipal 
omponent isVar(f (m)(λi)
(vi)

t
y√

λi

)
,with both f (m)(λi) and vt

iy√
λi

depending on y.
Among others, Frank & Friedman (1993) propose to trun
ate the shrinkage fa
-tors of the PLSR estimator in the following way. Set

f̃ (m)(λi) =





+1 f (m)(λi) > +1

−1 f (m)(λi) < −1

f (m)(λi) otherwise ,and de�ne a new estimator̂
β

(m)

TRN :=

rk(X)∑

i=1

f̃ (m)(λi)zi . (7.3)If the shrinkage fa
tors are numbers, this surely improves the MSE (as shown inSe
tion 7.1). But in the 
ase of sto
hasti
 shrinkage fa
tors, the situation mightbe di�erent. Let us suppose for a moment that f (m)(λi) =
√

λi

vt
iy
. It follows that

0 = Var(f (m)(λi)
vt

iy√
λi

)
≤ Var(f̃ (m)(λi)

vt
iy√
λi

)
,so it is not 
lear whether the trun
ated estimator TRN leads to a lower MSE,whi
h is 
onje
tured in e.g. Frank & Friedman (1993).

The assumption that f (m)(λi) =
√

λi

vt
iy

is of 
ourse purely hypotheti
al. It is not
lear whether the shrinkage fa
tors behave this way. It is hard if not infeasibleto derive statisti
al properties of the PLSR estimator or its shrinkage fa
tors, asthey depend on y in a 
ompli
ated, nonlinear way. As an alternative, we 
omparethe two di�erent estimators on di�erent data sets.



7.3. SIMULATIONS 977.3 SimulationsIn this se
tion, we explore the di�eren
e between the methods PLSR and trun-
ated PLSR (TRN). We investigate several arti�
ial data sets, and in the nextse
tion, we 
onsider a real world example.We 
ompare the MSE of the two methods - PLSR and trun
ated PLSR - on27 di�erent arti�
ial data sets. We use a setting similar to the one in Frank &Friedman (1993). For ea
h data set, the number of examples is n = 50. We
onsider three di�erent number of predi
tor variables:
p = 5, 40, 100 .The input data X is 
hosen a

ording to a multivariate normal distribution withzero mean and 
ovarian
e matrix C . We 
onsider three di�erent 
ovarian
ematri
es:

C1 = Ip ,

(C2)ij =
1

|i − j| + 1
,

(C3)ij =

{
1 , i = j

0.7 , i 6= j
.The matri
es C1, C2 and C3 
orrespond to no, moderate and high 
ollinearityrespe
tively. The regression ve
tor β is a randomly 
hosen ve
tor β ∈ {0, 1}p .In addition, we 
onsider three di�erent signal-to-noise ratios:stnr =

√var (Xβ)

σ2
= 1, 3, 7 .We yield 3×3×3 = 27 di�erent parameter settings. For ea
h setting, we estimatethe MSE of the two methods: For k = 1, . . . , K = 200 we generate y a

ordingto (1.9) and (1.7). We determine for ea
h method and ea
h m the respe
tiveestimator β̂

(m)

k and de�ne
M̂SE

(
β̂

(m)
)

=
1

K

K∑

k=1

(
β̂

(m)

k − β
)t (

β̂
(m)

k − β
)

.If there are more predi
tor variables than examples, this approa
h is not sensible,



98CHAPTER 7. SHRINKAGE PROPERTIES OF PARTIAL LEAST SQUARESas the true regression ve
tor β is not identi�able. This implies that di�erentregressions ve
tors β1 6= β2 
an lead to Xβ1 = Xβ2. Hen
e for p = 100, we onlyestimate the MSE of ŷ for the two methods. We display the estimated MSE of
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Figure 7.2: MSE-RATIO for p = 5 . The �gures show the averaged MSE-RATIO for di�erent parameter settings. Left: Comparison for high (straight line),moderate (dotted line) and no (dashed line) 
ollinearity. Right: Comparison forstnr 1 (straight line), 3 (dotted line) and 7 (dashed line).the method TRN as a fra
tion of the estimated MSE of the method PLSR, i.e.for ea
h m we display
MSE − RATIO =

M̂SE
(
β̂

(m)

TRN

)

M̂SE
(
β̂

(m)

PLS

) .As already mentioned, we display the MSE-RATIO for ŷ in the 
ase p = 100.The results are displayed in Figures 7.2, 7.3 and 7.4. In order to have a 
ompa
trepresentation, we 
onsider the averaged MSE-RATIOS for di�erent parametersettings. For example, we �x a degree of 
ollinearity (say high 
ollinearity) anddisplay the averaged MSE-RATIO over the three di�erent signal-to-noise ratios.The results for all 27 data sets are shown in the tables in the appendix.There are several observations. The MSE of trun
ated PLSR is lower almostall of the times. The de
rease of the MSE is parti
ularly large if the number of
omponents m is small, but > 1 . For larger m, the di�eren
e de
reases. This
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Figure 7.3: MSE-RATIO for p = 40.is not surprising, as for large m, the di�eren
e between the PLSR estimator andthe OLS estimator de
reases. Hen
e we expe
t the di�eren
e between TRN andPLSR to be
ome smaller. The redu
tion of the MSE is parti
ularly prominent in
omplex situations, i.e. in situations with high 
ollinearity in X or with a lowsignal-to-noise-ratio.Another feature, whi
h 
annot be dedu
ed from Figures 7.2, 7.3 and 7.4 but fromthe tables in the appendix, is the fa
t that the optimal number of 
omponents
mopt

PLS = argminM̂SE
(
β̂

(m)

PLS

)

mopt
TRN = argminM̂SE

(
β̂

(m)

TRN

)are equal almost all of the times. This is also true if we 
onsider the MSE of
ŷ. We 
an bene�t from this if we want to sele
t an optimal model for trun
atedPLSR. We return to this subje
t in Se
tion 7.5.7.4 Example: Te
ator Data SetIn this example, we 
onsider near infrared spe
tra (NIR) of n = 171 meat samplesthat are measured at p = 100 di�erent wavelengths from 850 � 1050 nm. Thisdata set is taken from the StatLib datasets ar
hive and 
an be downloaded from
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Figure 7.4: MSE-RATIO for p = 100. In this 
ase, we display the MSE-RATIOfor ŷ instead of β̂. Only the �rst 20 
omponents are displayed.http://lib.stat.
mu.edu/datasets/te
ator. The task is to predi
t the fat
ontent of a meat sample on the basis of its NIR spe
trum. We 
hoose this dataset as PLSR is widely used in the 
hemometri
s �eld. In this type of appli
ations,we usually observe a lot of predi
tor variables whi
h are highly 
orrelated. Weestimate the MSE of the two methods PLSR and trun
ated PLSR by 
omputingthe 10fold 
ross-validated error of the two estimators. The results are displayedin Figure 7.5.Again, trun
ated PLSR is better almost all of the times, although the di�eren
eis small. Note furthermore that the optimal number of 
omponents are almostidenti
al for the two methods: We have mopt
PLS = 15 and mopt

TRN = 16.7.5 Con
lusionWe illustrated in Se
tion 7.3 that bounding the absolute value of the PLSR shrink-age fa
tors by one seems to improve the MSE of the estimator. So should we nowdis
ard PLSR and always use trun
ated PLSR instead? There might be (at least)two obje
tions. Firstly, it would be very lightheaded if we relied on results of asmall-s
ale simulation study. Se
ondly, TRN is 
omputationally more extensivethan PLSR. We need the full singular value de
omposition of X . In ea
h step,
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Figure 7.5: 10fold 
ross-validated test error for the Te
ator data set. The straightline 
orresponds to PLSR, the dashed line 
orresponds to trun
ated PLSR.we have to 
ompute the PLSR estimator and adjust its shrinkage fa
tors �byhand�. However, the experiments suggest that it 
an be worthwhile to 
omparePLSR and trun
ated PLSR. We pointed out in Se
tion 7.3 that the two methodsdo not seem to di�er mu
h in terms of optimal number of 
omponents. In orderto redu
e the 
omputational 
osts of trun
ated PLSR, we therefore suggest thefollowing strategy. We �rst 
ompute the optimal PLSR model on a training setand 
hoose the optimal model with the help of a model sele
tion 
riterion. In ase
ond step, we trun
ate the shrinkage fa
tors of the optimal model. We thenuse a validation set in order to quantify the di�eren
e between PLSR and TRNand 
hoose the method with the lower validation error.
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Chapter 8Fun
tional Data AnalysisIn the pre
eding 
hapters, we introdu
ed Partial Least Squares for Regressionand two of its variants � penalized PLSR and trun
ated PLSR. We investigatedtheir mathemati
al and statisti
al properties. In parti
ular, we measured theirperforman
e in terms of a low test error and a mean squared error respe
tively.One important feature of a �tting method � apart from its predi
tive power - isits interpretability. This aspe
t has been negle
ted so far and we illustrate thatthe understandability of PLSR 
an be limited. In the remaining two 
hapters, wepropose a di�erent approa
h that is based on Boosting methods and that exploitsthe spe
ial type of data that is 
ommon in a lot of PLSR appli
ations: The datathat we observe are fun
tions.8.1 Example: Bis
uit Dough Data SetThe following example is des
ribed in detail in Osborne et al. (1994) and isalso used in Brown et al. (2001). The data 
an be downloaded from http://www.stat.tamu.edu/~mvannu

i/webpages/
odes.html. The task is to pre-di
t with high a

ura
y the amount of fat in bis
uit dough. As the dire
t mea-surement of fat is 
ostly and time-
onsuming, we use NIR (near infra red) spe
-tros
opy instead. For ea
h of the n = 39 training examples of bis
uit dough,the amount of fat and the re�e
tan
e of NIR light for di�erent wavelengths ismeasured. In this example, p = 700 equidistant wavelengths in the range from1100 to 2398 nanometers are used. For ea
h example, we obtain a fun
tion of there�e
tan
e, whi
h is 
alled a spe
trum. The 39 spe
tra are depi
ted in Figure8.1. The task is to predi
t the amount of fat of a new sample after observing itsspe
trum. 103
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wavelengthFigure 8.1: The n = 39 NIR spe
tra of the bis
uit dough.
We already mentioned that a very popular method in the 
hemometri
s �eld isPLSR. Let us investigate its performan
e on this parti
ular data set. We estimatethe optimal number of latent 
omponents using the leave-one-out error. The riskof this model is estimated on a test set that 
onsists of 31 examples. The min-imal leave-one-out error is obtained with mopt = 13. A widely used diagnosti
tool is the plot of the standardized regression 
oe�
ients as a fun
tion of thewavelength. That is, for ea
h of the 700 variables Xi, we divide the estimatedregression 
oe�
ient β̂i by the standard deviation of Xi and plot these valuesinto a 
oordinate system. This is done in Figure 8.2. One desirable feature isthe dete
tion of regions of relevant wavelengths. In this parti
ular example, theregression 
oe�
ients are however very hard to interpret. We 
annot dete
t anytype of pattern, as the regression 
oe�
ients look rather like white noise. There-fore, a 
hemometri
ian is willing to sa
ri�
e some predi
tive power in order tohave an interpretable model. But even the standardized regression 
oe�
ients ofa model with m = 3 latent 
omponents do not dis
lose any valuable information.Note that ea
h example xi, whi
h 
onsists of p = 700 measurements, is in fa
t adis
retized 
urve. Instead of regarding these data points xi as ve
tors in a high-dimensional spa
e Rp, we 
an also view them as elements of a spa
e of real-valuedfun
tions.
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Figure 8.2: Standardized PLSR regression 
oe�
ients as a fun
tion of the wave-length. Left: PLSR model with 13 
omponents. Right: PLSR model with 3
omponents.8.2 Example: Spee
h Re
ognition Data SetThis example is taken from Biau et al. (2005). The data 
onsists of 48 re
ordingsof the word �Yes� and 52 re
ordings of the word �No�. One re
ording is repre-sented by a dis
retized time series of length 8192. The data 
an be downloadedfrom http://www.math.univ-montp2.fr/~biau/bbwdata.tgz. Two re
ordingsare displayed in Figure 8.3. The task is to �nd a 
lassi�
ation rule that assignsthe 
orre
t word to ea
h time series. At �rst glan
e, the 
lassi�
ation problemseems 
ompli
ated, due to the high amount of variables 
ompared to the numberof examples. If we regard one re
ording as one fun
tion rather than measurementsof 8192 variables, we 
an however exploit the spe
ial stru
ture of this problem.In this parti
ular example, it is possible to des
ribe the important informationthat is en
oded in the fun
tions in terms of their os
illations. The 
lassi�
ationrule 
an then be learned using these extra
ted features.Fun
tional data analysis deals with learning from data that are 
urves. In thefollowing two se
tion, whi
h are 
ondensed from Ramsay & Silverman (2005), wepresent its main ideas.
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Figure 8.3: Two examples of the spee
h re
ognition data. Left: One re
ording ofthe word �Yes�. Right: One re
ording of the word �No�.8.3 From Observations to Fun
tionsWe speak of fun
tional data if the variables that we observe are 
urves. Let us�rst 
onsider the 
ase that only the predi
tor samples xi are 
urves, that is
xi ∈ X = {x : T → R} .We usually assume that the fun
tions ful�ll a regularity 
ondition, and in the restof the 
hapter, we 
onsider the Hilbert spa
e X = L2(T ) of all square-integrablefun
tions T → R. In our examples, T is a subset of R.In most appli
ations, we do not measure a 
urve xi(t), but dis
rete values
xi = (xi(t1), . . . , xi(tp))

tof a 
urve. An important step in the analysis of fun
tional data is thereforethe transformation of the dis
retized obje
ts to smooth fun
tions. The generalapproa
h is the following. We represent ea
h example as a linear 
ombination
xi(t) =

Kx∑

l=1

cilφl(t) (8.1)
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tions φ1, . . . , φKx
. Ea
h example xi(t) is represented by itsve
tor

ci = (ci1, . . . , ciKx
) ∈ R

Kxof 
oe�
ients. This 
oe�
ient ve
tor is estimated by applying the (regularized)empiri
al risk minimization prin
iple des
ribed in Se
tion 1.2. If we use thequadrati
 loss fun
tion and represent the values of the base fun
tions φl at mea-surement points tj by
Φ = (φl(tj)) ∈ R

p×Kx ,the penalized least squares 
riterion isargmin
ci

{
‖xi − Φci‖2 + r(ci)

}
.Here, r is a regularization term that e.g. 
ontrols the smoothness of the fun
tion

xi(t). Regularization might be ne
essary if the measurements of xi(t) are noisy orif the points tj are not equidistant. There are some natural 
andidates for the setof basis fun
tions. We introdu
ed the widely-used B-splines in Chapter 5. If thedata have a periodi
 stru
ture, this 
an be re�e
ted e�
iently with an expansionin terms of Fourier fun
tions. They are de�ned as
φ2i−1(t) = sin (iωt) ,

φ2i(t) = cos (iωt) ,and are illustrated in Figure 8.4. Other basis fun
tions are polynomials and �more importantly - wavelets. Wavelets are families of orthogonal basis fun
tions.These bases are generated by 
hoosing a so-
alled mother-wavelet Φ and and then
omputing all translations and dilatations
φjk(x) = 2

j
2 Φ
(
2jx − k

)
.The mother wavelet is 
hosen in a way that all fun
tions are mutually orthogonal.In most appli
ations, the mother wavelet has a 
ompa
t support. An examplefor a mother wavelet is the Haar wavelet. Some translations and dilatations ofthis wavelet are shown in Figure 8.5. Wavelets are able to represent a fun
tion f
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Figure 8.4: The �rst three Fourier basis fun
tions.with sharp lo
al behavior in a very e�
ient way, as most wavelet 
oe�
ients γjkin
f(x) =

∑

jk

γjkφjk(x) (8.2)are zero. More details on the theory of wavelets 
an be found in Daube
hies(1992). If f is measured without error on p = 2L equidistant points, a dis
retewavelet transform (Mallat 1989) 
omputes the 
oe�
ients of the wavelet repre-sentation (8.2). If the observations are noisy, there is a simple pro
edure thatthresholds the wavelet 
oe�
ients (Donoho & Johnstone 1994).A di�erent possibility is to derive an orthogonal basis dire
tly from the data.This 
an be done for instan
e by extending Prin
ipal Component Analysis orPartial Least Squares Regression to fun
tional data.It is not always ne
essary or even sensible to �nd a set of basis fun
tion and
oe�
ients ci that �t the data almost perfe
tly. We already remarked that themeasurements of the 
urves may be noisy and we have to take 
are not to over�t.The possibility of plotting the dis
rete fun
tions and the �tted fun
tions is a valu-able diagnosti
 tool to evaluate the quality of the representation. Furthermore, itmight be su�
ient to represent a fun
tion in terms of a few relevant basis fun
-
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Figure 8.5: Some translations and dilatations of the Haar wavelet.tions, whi
h do not interpolate the data. This is illustrated in Se
tion 9.5, wherethe spee
h re
ognition data are represented by a few Fourier basis fun
tions.
8.4 Learning from Fun
tional DataHow 
an we learn relationships (1.1) from fun
tional data? For the start, we only
onsider linear relationships in (1.1). That is, in the regression setting (Y = R),elements f ∈ F = {X → R} are assumed to be linear (up to an inter
ept) and
ontinuous. As X = L2(T ) is a Hilbert spa
e, it follows that any fun
tion f ∈ Fis of the form

f(x(t)) = β0 +

∫

T

β(t)x(t)dt . (8.3)In the two-
lass 
lassi�
ation setting (Y = {±1}), we use sign(f) instead of f . Asalready mentioned in Chapter 1, one possibility to estimate f or β is to minimizethe empiri
al risk (1.5). Note that this is an ill-posed problem, as there are(in general) in�nitely many fun
tions β(t) that �t the data perfe
tly. There isobviously a need for regularization, in order to avoid over�tting. We 
an solvethis problem by using a base expansion of both the predi
tor variable xi(t) as in
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tion
β(t) =

Kβ∑

l=1

blφl(t) . (8.4)This transforms (1.5) into a parametri
 problem, as we need to estimate theregression 
oe�
ients
b =

(
b1, . . . , bKβ

)t
.If we use the quadrati
 loss, this is a matrix problem. We set

C =




ct
1...

ct
n


 ∈ Rn×Kx and J =

(∫
T

φi(t)φj(t)dt
)
1≤i≤Kx,1≤j≤Kβ

.It follows that (for 
entered data)
b̂ =

(
ZtZ

)−1
Zty , (8.5)with Z = CJ . As already mentioned, we have to regularize this problem. Thereare at least three possibilities. Firstly, we 
onstrain the number of base fun
tionsin (8.4). That is, we demand that Kβ ≪ Kx. We show in Se
tion 9.4 that thisstrategy 
an lead to trivial results in the Boosting setting. The se
ond possibilityis to add a penalty term r(β) to the empiri
al risk (1.5). If we 
onsider fun
tionaldata, it is 
ommon to use a penalty term of the form

r(β) = λ

∫

T

(
β(k)(t)

)2
dt .Here β(k) is the kth derivative of β � provided that this derivative exists. The
hoi
e of k depends on the data at hand and our expert knowledge on the prob-lem. The third possibility is to apply an appropriate Boosting method. This isdone in Chapter 9.If the relationship between predi
tors and response are assumed to be nonlinear,there are several possibilities and we brie�y dis
uss two of them. On the one hand,we 
an apply any �tting method suited for nonlinear problems to the 
oe�
ientsin the representation (8.1). On the other hand, we 
an try to apply the kernel
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k that is dis
ussed in Se
tion 1.4. Preda (2006) study regression problems inReprodu
ing Kernel Hilbert Spa
es and Villa & Rossi (2005) use the kernel tri
kin order to extend the framework of Support Ve
tor Ma
hines to fun
tional data.It is also possible to apply linear transformations to the data prior to usinga �tting method. Villa & Rossi (2005) give an illustrative example using theTe
ator data set that is des
ribed in Chapter 7. Figure 8.6 shows the spe
trafor the data set split into two parts. Spe
tra that 
orrespond to a high amountof fat tend to have two maxima instead of one. This implies that it might beworthwhile to 
onsider the 
urvature of the 
urves. In other words, we use these
ond derivative of ea
h fun
tion.
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wavelengthFigure 8.6: Spe
tra of the Te
ator data set.Finally, let us brie�y mention how to model a linear relationship (1.1) if both thepredi
tor and response variables are fun
tional. We 
onsider fun
tions
f : L2(T ) → L2(T ) ,

f(x(t)) = α(t) +

∫

T

β(s, t)x(s)ds .We estimate β by expanding yi, xi, α in terms of a basis and by representing β by
β(s, t) =

K1∑

k=1

K2∑

l=1

bklφk(s)φl(t) .
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oe�
ients bkl are determined using the loss fun
tion
L(y, y′) =

∫

T

(y(t) − y′(t))
2
dt .Again, we have to regularize in order to obtain smooth estimates that do notover�t.



Chapter 9Boosting for Fun
tional DataIn this 
hapter, we �rst introdu
e the main ideas of Boosting. This introdu
tionis rather sket
hy as we only want to display those results that are needed in these
ond part of this 
hapter. There, we explain how to apply these methods tofun
tional data.9.1 A Short Introdu
tion to BoostingLet us return to the learning task des
ribed in Chapter 1. Re
all that a strategyto estimate relationship (1.1) is 
alled a learner. We repeat that the 
hoi
e of thelearner is an important issue. If the learner is too 
omplex, it adapts itself toomu
h to the data at hand. If it is too weak, it is not able to dete
t the relevantstru
ture of the data.The basi
 idea of Boosting is to pro
eed stepwise and to 
ombine weak learnersin su
h a way that the 
omposite � boosted � learner
gM(x) =

M∑

m=1

αmfm(x) (9.1)(or sign (gM) for 
lassi�
ation problems) performs better than the single weaklearners fm. The single learners are usually 
alled base learners and M is 
alledthe number of Boosting iterations. The learners fm and the weights αm are 
ho-sen adaptively from the data.A generi
 Boosting algorithm pro
eeds in the following way. In ea
h step m,113



114 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATAa weighting Dm of the sample S = {(xi, yi)|i = 1, . . . , n} is de�ned. We �t afun
tion fm by applying the weak learner to the weighted sample. Next, we de-termine an appropriate 
oe�
ient αm for the fun
tion fm. We update the weights
Dm+1(xi). The idea is to give a higher weighting to those points (xi, yi) that arepoorly approximated by fm . After a suitable stopping 
riterion is ful�lled, weoutput (9.1) or � in the 
ase of 
lassi�
ation problems � sign(gM) .The key ingredient of this Boosting pro
edure is the reweighting of the sample S.Points whi
h are hard to approximate in step m are given more emphasis in thenext iteration step. For some learners, it is not possible to 
ompute a weightedloss. Instead, in ea
h step we draw with repla
ement a sample of size n from Sand use the weights Dm as probabilities.AdaBoost (Freund & S
hapire 1997) � the �rst Boosting algorithm � is designedfor two-
lass 
lassi�
ation problems, i.e. yi ∈ {±1}. The 
oe�
ients αm aredetermined by �rst 
omputing the weighted empiri
al risk

ǫm =
1∑

i Dm(xi)

n∑

i=1

Dm(xi)I{yi 6=fm(xi)} (9.2)and then setting
αm = ln

(
1 − ǫm

ǫm

)
.The weights are updated in the following way:

Dm+1(xi) = Dm(xi) exp (−αmyifm(xi)) .The weight αm depends on the weighted error ǫm. Note that the weights αmare non-negative if and only if the weighted empiri
al error does not ex
eed 1/2.This implies that the weak learner must ful�ll the following 
ondition. For ea
hweighting of the data, it must a
hieve an empiri
al error that is slightly betterthan random. This will be formalized in de�nition 9.2.We have to determine a suitable stopping 
riterion. Some authors suggest to stopat step M , if ǫM+1 = 0. Other suggestions are to stop the Boosting algorithm ifthe empiri
al error of the Boosting 
lassi�er is 0. Experiments have shown that
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an 
ontinue to de
rease even if the empiri
alerror is already 0. This has lead to the optimisti
 assumption that Boosting doesnot over�t at all. This is however not true and we should determine M by one ofthe model sele
tion 
riteria des
ribed in Chapter 2. In most appli
ations, the testerror 
urve (as a fun
tion of the number of Boosting iterations) stays rather �ataround the optimal region. As a 
onsequen
e, the 
hoi
e of the optimal numberof iterations is usually not a 
ru
ial task.Let us now return to the de�nition of a weak learner. For any weighting D =

(D1, . . . , Dn) of the sample S and any fun
tion f ∈ F , we de�ne the weightedempiri
al risk as
ǫ(f, D) =

1∑
i Di

∑

yi 6=f(xi)

Di . (9.3)Let us start with the following de�nition.De�nition 9.1 (Baseline learner). Let D be a probability distribution on thesample S. The baseline learner is the 
onstant fun
tion
fbl (x) = sign( ∑

i:yi=+1

Di −
∑

i:yi=−1

Di

)
.The baseline learner does not depend on x for a given distribution D. It assignsthe label +1 if and only if the weighted majority of all examples in the sample Sbelongs to the 
lass +1. Consequently, the weighted empiri
al error of the baselinelearner is at most 1/2. We demand that a weak learner is always uniformly betterthan the base learner.De�nition 9.2. A �tting method (learner) is 
alled a weak learner, if thereexists 1/2 ≥ γ > 0 su
ht that for any distribution D on S, the fun
tion f that isprodu
ed by the learner ful�lls

ǫ(f, D) ≤ 1

2
(1 − γ) , .In appli
ations, the most widely used weak learner is a stump, i.e. a 
lassi�
ationtree with two �nal nodes.Re
all that the empiri
al risk de�ned in (1.5) depends on the fun
tion f eval-
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an rephrase the prin
iple of empiri
al riskminimization in the following way. The task is to minimize
R̂(u) =

1

n

n∑

i=1

L(yi, ui)with respe
t to u under the 
onstraint that ui = f(xi) for a fun
tion f ∈ F . It
an be shown (Breiman 1998, Breiman 1999) that Boosting solves this problem ina forward stage-wise manner using gradient des
ent te
hniques. More pre
isely,in ea
h step we �t a weak learner to xi and the negative gradient −∇R̂ at the
urrent estimate gm(xi). To ensure that the gradient des
ent method works well,we assume that the loss fun
tion is 
onvex and di�erentiable in the se
ond 
ompo-nent. A generi
 Boosting algorithm pro
eeds in the following way (Bühlmann &Yu 2003, Friedman 2001). Set m = 1. We �t a fun
tion f1(x) using a base learnerand set g1 = f1. Until a suitable stopping 
riterion is ful�lled, we determine thenegative gradient ve
tor of the empiri
al risk at gm(xi). It is straightforward toshow that the negative gradient is
ui = − ∂L(yi, ui)

∂ui

∣∣∣∣
ui=gm(xi)

, i = 1, . . . , n . (9.4)The best greedy step towards the minimum of R̂(u) is the negative gradientve
tor. As we restri
t ourselves to an additive expansion as displayed in (9.1),the step ve
tor must belong to the linear span of the 
lass of fun
tions F . Wehen
e have to �nd the best step dire
tion under the 
onstraint that it is a multipleof an element of F , i.e. the step dire
tion is of the form αf with α ∈ R and f ∈ F .This is done by �tting a fun
tion to the modi�ed sample {(xi, ui)} using a baselearner. If we use the quadrati
 loss, this yields (for a �xed α),
fm+1 = argmin

f∈F

n∑

i=1

(ui − αf)2 (9.5)After determining the optimal step dire
tion fm+1(x), we have to determine theoptimal step size αm+1:
αm+1 = argmin

α

n∑

i=1

L (yi, gm(xi) + αfm+1(xi)) . (9.6)
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tion
gm+1 = gm(x) + αm+1fm+1(x) ,in
rease m by one and pro
eed as des
ribed above.It 
an be shown (Friedman 2001, Hastie et al. 2001) that AdaBoost 
orrespondsto the exponential loss fun
tion

L(y, y′) = exp(−yy′) ,if we use the quadrati
 loss fun
tion (9.5) for the base learner.The 
onne
tion between Boosting and gradient des
ent methods has lead to awide range of new algorithms (Friedman 2001), notably for regression problems.Note that if we use the quadrati
 loss
L(y, y′) =

1

2
(y − y′)

2
,the negative gradient is simply the ve
tor of residuals, i.e. we iteratively �t theresiduals using a weak learner. This method is 
alled L2Boost (Bühlmann &Yu 2003, Friedman 2001). In Bühlmann (2006) and Bühlmann & Yu (2006),

L2Boost with 
omponentwise weak learners are investigated. Suppose that wehave p predi
tor variables. In ea
h Boosting iteration, out of all p variables
X(1), . . . , X(p), we sele
t the one variable that redu
es the the empiri
al risk (1.5)the most:

km = argmin
k

{
1

n

n∑

i=1

L
(
ui, H

(k)
(
x

(k)
i

))}
. (9.7)Here, H(k) is a univariate base learner that is applied to the variable X(k). Exam-ples are univariate least squares regression or univariate smoothing splines. Weestimate the regression fun
tion fm that is obtained by applying the weak learner

H(km) to xi and the residuals ui. We use the short
ut
f(x) = fH,u(x) (9.8)to indi
ate that the fun
tion f is based on the learner H applied to the response
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u. The fun
tion gm−1 is then updated by νfm(x), with 0 < ν ≤ 1 a prede�nedshrinkage parameter. Bühlmann & Yu (2006) suggest a �xed shrinkage value of
ν = 0.1. This Boosting algorithm often produ
es sparse solutions. That is, onlya small fra
tion of the predi
tor variables are in
luded in the �nal model. This
an lead to interpretable models.Boosting with the loss fun
tion

L(y, y′) = log (1 + exp(−yy′))is suited for 
lassi�
ation problems and 
alled LogitBoost (Friedman et al. 2000).Algorithm 9.3 (LogitBoost). For any sample S and any weak learner H, weinitialize the probabilities p1(xi) = 1/2, set g0(x) = 0 and iteratively 
ompute
Dm(xi) = pm(xi) (1 − pm(xi)) weights

ui = yi−pm(xi)
Dm(xi)

negative gradient
fm = fH,u fun
tion obtained by weighted weaklearner (with weights Dm(xi))

gm(x) = gm−1(x) + 1
2
fm(x) update

pm+1(xi) = (1 + exp (−2fm(xi)))−1 probabilitiesThe �nal fun
tion gM is an estimate of one-half of the log-odds ratio
1

2
log

(
P (Y = 1|X = x)

1 − P (Y = 1|X = x)

)
.As a 
onsequen
e, this 
lassi�
ation algorithm also produ
es estimates of the 
lassprobabilities P (Y = 1|X = x). This 
an be advantageous if we have non-equalmis
lassi�
ation 
osts.In the regression setting, there is only a loose de�nition of the term weak learner.We speak of a weak learner if the �tting method has a high bias 
ompared to itsvarian
e or if it only uses a few degrees of freedom.9.2 The Degrees of Freedom of BoostingLet us return to the subje
t of a suitable stopping 
riterion. One possibility is touse 
ross validation. Depending on the data, this 
an lead to high 
omputational
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osts. We 
an alternatively 
ompute the 
omplexity of the Boosting algorithmin terms of its degrees of freedom. If we use L2Boost, they 
an be 
omputede�
iently (Bühlmann & Yu 2003, Bühlmann & Yu 2006). Let us assume forsimpli
ity that all weak learners H1, . . . , Hm are linear in y. As a 
onsequen
e,the Boosting learner BM obtained after M steps is also linear in y. To show this,we �rst use the iterative de�nition of the residuals
u(m) = u(m−1) − νHmu(m−1) = (In − νHm) u(m−1) .We obtain

u(m) = (In − νHm) . . . (In − νH1)y .Setting u(0) = y, it follows that
Bmy =

m∑

i=1

Hiu
(i−1) =

m∑

i=1

Hi (In − νHi−1) . . . (In − νH1) yis the linear map that de�nes the hat matrix of L2Boost. It is straightforward toshow (Bühlmann & Yu 2006) that
Bm = In − (In − νHm) . . . . . . (In − νH1) ,and the degrees of freedom are de�ned as the tra
e of the hat-matrix Bm. Thismatrix 
an be 
omputed re
ursively by using the following relationship:
Bm+1 = In − (In − νHm+1) (In − Bm) .If the weak learners are not linear in y, it is possible to derive an unbiased estimateof the degrees of freedom by 
omputing the �rst derivative of

BM(y) =

M∑

i=1

Hi(u
(i−1))with respe
t to y and by then determining its tra
e.Bühlmann & Yu (2006) introdu
e a variant of L2Boost that is 
alled SparseL2Boost.It is based on the e�e
tive 
omputation of the degrees of freedom of Boosting. In-stead of 
hoosing the base learner (9.7) that redu
es the empiri
al risk the most,we 
hoose the base learner that redu
es an appropriate information 
riterion



120 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATAthe most. Bühlmann & Yu (2006) propose the generalized minimum des
riptionlength 
riterion that is presented in Se
tion 2.3. Note that this 
riterion dependson the response y and the learner H , that is gMDL = gMDL(y, H).Algorithm 9.4 (SparseL2Boost). For any sample S, we set g0(x) = 0, u = yand iteratively 
ompute
ui = yi − gm(xi) residuals

B
(k)
m+1 = In −

(
In − H

(k)
m+1

)
(In − Bm) Boosting operator for the kthvariable

km+1 = argmink gMDL
(
y, B

(k)
m+1

) sele
tion of the optimal variable
Hm+1 = H

(km)
m+1 optimal base learner

fm+1(x) = fHm+1,ui
(x) �tting of the residuals

gm+1(x) = gm(x) + νfm+1(x) update
Bm+1 = In − (In − νHm+1) (In − Bm) updateThe optimal number of Boosting iterations is the one for whi
h the generalizedMDL 
riterion is minimal. Note that SparseL2Boost is 
ompletely automati
 inthe sense that we do not have to sele
t any external, additional model parameters.9.3 Boosting and Partial Least SquaresBefore extending the framework of Boosting to fun
tional data, we insert a fewremarks on the 
onne
tions of Boosting and PLS regression. There have beenapproa
hes to use PLSR as a base learner for Boosting algorithms. Mevik et al.(2004) try to improve the performan
e of PLSR by averaging over several PSLRestimates that are obtained from Bootstrap samples. This general strategy isknown as Bagging (Breiman 1996). However, experiments on data show thatBagging does not improve the performan
e of PLSR. In Boulesteix (2004) PLSRis used as a base learner for 
lassi�
ation problems by means of the Boosting-by-reweighting te
hnique. It is shown on several data sets that the performan
e ofPLSR does not improve. Zhang et al. (2005) 
ombine PLSR and L2Boost in theregression setting. More pre
isely, PLSR with one latent 
omponent as a baselearner is used.Algorithm 9.5 (PLSBoost). For any sample S, we set y(res) = y. The latent
omponents and the regression estimates ŷ(m) of PLSBoost are determined by
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omputing
t(m) = XX ty(res) 
omponents
ŷ(m) = Pt(m)y(res) estimate

y(res) = y(res) − ŷ(m) residualsIn Zhang et al. (2005), this algorithm is 
ompared to PLSR on di�erent datasets. Although PLSBoost is better on all data sets, the improvement is tiny andthe marginal de
rease of test error is bought dearly with a substantial in
rease in
omputational 
osts.We now try to give a heuristi
 explanation why PLSR fails as a base learnerin the Boosting framework. The examples that are investigated in Zhang et al.(2005) are very high-dimensional data sets. As X is highly 
ollinear, the Grammatrix K = XX t is very 
lose to a rank-one matrix. It 
an be approximated bythe �rst eigenve
tor v1 of K in the following sense:
K ≈ λ1v1v

t
1 .It follows that the 
omponents t(m) are � up to a s
aling fa
tor c � approximatelyequal to v1.

t(m) = Ky(m)
res ≈ cv1 .Hen
e t(m) hardly depends on the y-residuals at all. This implies that the PLSRbase learner equals approximately the proje
tion onto the �rst eigenve
tor v1.As the residuals are almost orthogonal on v1, the empiri
al risk redu
es ex-tremely slowly. This 
an be seen in the examples given in Zhang et al. (2005).There, sometimes up to 6 000 Boosting iterations are needed until the algorithmis stopped.To summarize, for highly 
ollinear data, PLSR is not an appropriate base learnerfor L2Boost, as it is too weak. It hardly depends on the response y.9.4 Fun
tional BoostingAfter this short ex
ursion, we return to the main purpose of this 
hapter. How
an we apply Boosting te
hniques to fun
tional data? We �rst have to extend thenotion �weak learner�. In the 
lassi�
ation setting, we 
an adopt de�nition 9.2. A



122 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATAweak learner is a learner that is slightly better than random. What are examplesof weak learners? Note that it is possible to apply most of the multivariate dataanalysis tools to fun
tional data. We use a �nite-dimensional approximation asin (8.1) and simply apply any appropriate algorithm. In this way, it is possibleto use stumps (that is, 
lassi�
ation trees with one node) or neural networks asbase learners.In the regression setting, we propose the following de�nition: A weak learner is alearner that has only few degrees of freedom. Examples in
lude the two regular-ized least squares algorithms presented in Se
tion 8.3 � restri
tion of the numberof base fun
tions in (8.4) or addition of a penalty term to (1.5). Note howeverthat the �rst method leads to trivial results if we use L2Boost. The learner issimply the proje
tion of y onto the spa
e that is spanned by the 
olumns of Z(re
all (8.5)). Consequently, the y-residuals are orthogonal on Z and after onestep, the Boosting solution does not 
hange anymore.The following example of a weak learner is an extension of the 
omponentwiseweak learner introdu
ed in (9.7). It is suited for L2Boost. We �rst initialize
g0(x(t)) = 0. In ea
h Boosting step, we sele
t one basis fun
tion φk(t) of theexpansion (8.4). To sele
t this basis fun
tion, we estimate for ea
h fun
tion φkthe regression estimates of the regression model

ui = γ0 + γ1

∫

T

xi(t)φk(t)dt + εi . (9.9)This de�nes for ea
h basis fun
tion a linear weak learner H(k). In a

ordan
ewith the notation introdu
ed in (9.8), we have
fH(k),u(x(t)) = γ̂0 + γ̂1

∫

T

x(t)φk(t)dt . (9.10)We now 
hoose the basis fun
tion φk∗(t) that either minimizes the empiri
al risk(1.5) or that minimizes the generalized MDL 
riterion. If we opt for the latterapproa
h, we 
all this novel method fun
tional SparseL2Boost. The fun
tion
gm(x(t)) is then updated by a small fra
tion ν of fH(k∗),u(x(t)),

gm+1(x(t)) = gm(x(t)) + νfH(k∗),u(x(t)) .In Se
tion 9.6, we study this algorithm on the bis
uit data set introdu
ed in Se
-



9.5. EXAMPLE: SPEECH RECOGNITION 123tion 8.1.Finally, let us remark that if the response variable is fun
tional, we 
an adoptthe same de�nition of weak learner as in the regression setting: A weak learneris a learner that uses only a few degrees of freedom.9.5 Example: Spee
h Re
ognitionWe illustrate the appli
ation of Boosting methods to fun
tional data on the spee
hre
ognition data set. To this end, we �rst represent the time series xi(t) in termsof a Fourier basis expansion of dimension Kx = 100. We opt to in
lude a generous
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Figure 9.1: Representation of the fun
tions in Figure 8.3 in terms of the �rst 100Fourier basis fun
tions.amount of basis fun
tions, as experiments indi
ate that the results of LogitBoostare insensitive to the addition of possibly irrelevant basis fun
tions. We remarkthat the Fourier representation does not resemble the original data very mu
h.This is illustrated in Figure 9.1.Next, we apply the LogitBoost algorithm 9.3 to the 
oe�
ients of the Fourier ex-pansion. For the weak learner, we 
hoose a 
lassi�
ation tree with two �nal nodes.The optimal number of 
omponents is estimated using 10fold 
ross-validation(
v). The minimal 
v error over all Boosting iterations is 0.1, obtained after 24



124 CHAPTER 9. BOOSTING FOR FUNCTIONAL DATABoosting iterations. This is the same error rate that is reported in Biau et al.(2005). There, a fun
tional k-nearest-neighbor-algorithm is applied to the data.9.6 Example: Bis
uit Dough Data SetNote that in the example of Se
tion 8.2, the Boosting algorithm returns a fun
-tion that is a linear 
ombination of many 
lassi�
ation trees. Fun
tions like thisare hard to interpret and this has sometime lead to the belief that Boosting isa �bla
k box� that is only valuable for predi
tion but not 
apable to produ
einterpretable models. This is however not true, and we now des
ribe how we 
anuse Boosting to dete
t important features of the data.In Se
tion 9.4, we introdu
ed the fun
tional SparseL2Boost algorithm. It is basedon sele
ting only one basis fun
tion in ea
h Boosting iteration. If the �nal modelin
ludes only a few basis fun
tions, it might be possible to �nd an easy interpre-tation of the regression fun
tion. Re
all that for the bis
uit dough data, our aimis to �nd regions of relevant wavelengths. This implies that the estimated regres-sion fun
tion β(t) should be 0 on a wide range of the wavelengths. To a
hievethis, we �rst represent the data in terms of basis fun
tions that have a very smallsupport. Then, we apply fun
tional SparseL2Boost to the data using the weaklearners that are de�ned in (9.10).We 
hoose Daube
hies wavelets for this appli
ation. They are illustrated inFigure 9.2. We repeat that the SparseL2Boost algorithm does not rely on anyexternal model parameters that have to be estimated. In the 
ase of fun
tionaldata, the number of basis fun
tions however 
onstitutes an additional parameter.We now show how to determine the optimal number of basis fun
tions and theoptimal number of Boosting iterations using the generalized MDL 
riterion.From a te
hni
al point of view, in order to 
ompute a wavelet transformation,it is ne
essary to have observations at 2L equidistant points. To ful�ll this re-quirement, we �t the initial p = 700 observations using a lot of B-splines basisfun
tions (in this 
ase, 65) and evaluate these fun
tions at 2L equidistant points.Afterwards, it is possible to estimate the 
oe�
ients of the wavelet transformationthat 
onstitutes of 2L wavelet basis fun
tions. Hen
e, L determines the number ofbasis fun
tions and has to be estimated from the data. This is done by running
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Figure 9.2: Daube
hies wavelet.fun
tional SparseL2Boost for di�erent values of L in the range of 3, 4, . . . , 10.The optimal number value of L is obtained by 
omparing their generalized MDL
riterion (for their respe
tive optimal number of Boosting iterations).In order to 
ompare fun
tional SparseL2Boost to PLSR, we randomly split thewhole data set (that 
onsists of 39+31 = 70 observations) into a training set of size
39 and a test set of size 31. The optimal number of PLSR 
omponents is estimatedon the training set using 5fold 
ross-validation. The optimal parameters for theBooosting algorithm (i.e. L and the number of Boosting iterations m ) are foundby minimizing the generalized MDL 
riterion on the training set. The optimalmodels are then evaluated on the test set. The random splitting is repeated 50times. The boxplot of the test errors are depi
ted in Figure 9.3. We also 
ondu
ta Wil
oxon rank sum test to test the alternative hypothesis that the test error ofthe Boosting algorithm is lower than the test error of PLSR. The median test errorfor the two methods, their optimal model parameters (estimated on the originaltraining set) and the p-value for the Wil
oxon rank sign test are displayed in Table9.1. The regression 
oe�
ients that we obtain from fun
tional SparseL2Boostare displayed in Figure 9.4. Here, we 
ompute the optimal model on the originaltraining set with the optimal model parameters that are displayed in Table 9.1.We see that the two methods are 
ompatible. We 
an 
learly distinguish a regionof relevant wavelengths in the range of ≈ 1600 − 1900 nanometers. In addition,
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Figure 9.3: Test errors for PLSR and fun
tional SparseL2Boost.median test error optimal model parameters p-valuePLSR 0.194 m = 13 0.1067Boosting 0.208 L = 7, m = 70 �Table 9.1: Median test error, optimal parameter values and p-value for the bis
uitdough data set.there is a � somewhat less pronoun
ed - region around ≈ 1400 nanometers.9.7 Con
lusionThe extension of Boosting methods to fun
tional data is straightforward. Af-ter 
hoosing a base algorithm (whi
h we 
all a weak learner), we iteratively �tthe data by either applying this algorithm to reweighted samples or by using agradient des
ent te
hnique. In many appli
ations, we use a �nite-dimensionalexpansion of the fun
tional examples in terms of base fun
tions. This �nite-dimensional representation 
an then be plugged into existing algorithms as Log-itBoost or L2Boost. In addition, it is possible to extra
t sparse models from thedata. We proposed a method that is based on an extension of Boosting algorithms(that perform variable sele
tion) to fun
tional data.
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Chapter 10Summary and OutlookIn this work, we studied di�erent methods for the analysis of high-dimensionaldata. In this 
hapter, we brie�y review the main results and dis
uss some openproblems and possible future resear
h dire
tions.We provided two negative results on Partial Least Squares path models. On theone hand, we illustrated that the PLS algorithms in mode B do not ne
essarily
onverge to the maximum of the asso
iated optimization problem. More severely,we showed that the algorithms with at least one blo
k in mode A are not even at-ta
hed to any (su�
iently smooth) optimization problem! Although we suggesteda modi�
ation of mode A, there still remain a lot of unanswered questions. Do theoptimization problems in mode B and (modi�ed) mode A really re�e
t the outerPLS model as illustrated in Figure 3.3? Whi
h s
heme is the appropriate one?How do we spe
ify the PLS model at all? There is no rule on how to determinethe presen
e or the dire
tion of the arrows in the inner model. In appli
ations,this is usually done ad-ho
. Another serious problem that is prevalent in a lotof appli
ations is the interpretation of the model. It is 
ommon to analyze thequality of the PLS model in terms of the size of the weight ve
tors and there arestatisti
al tests (based on Bootstrap te
hniques) to determine their signi�
an
e.These approa
hes are often only justi�ed by heuristi
 arguments. To summarize,we advise to meet results based on PLS path modeling te
hniques with a portionof skepti
ism.These reservations are however not valid for Partial Least Squares for Regres-sion. PLSR is in fa
t a well-founded and established tool in the analysis ofhigh-dimensional data, and it has been used su

essfully in a broad range of ap-129
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ations. It is 
omputationally fast and it 
an be easily extended to nonlinearproblems with the help of the kernel tri
k. Its 
lose 
onne
tion to methods fromlinear algebra (as illustrated in Chapter 6) has lead to further theoreti
al resultson PLSR. In parti
ular, a lot of statisti
al properties of PLSR depend on thisrelationship. As an example, we explained in Chapter 7 how to 
ompute theshrinkage fa
tors of PLSR by exploiting its relationship to Krylov methods. Theinterrelation between numeri
al linear algebra and biased multivariate regressionte
hniques is truly fas
inating. We hope that � based on this � it is possible togain additional insight into existing statisti
al methods or even to establish newones.As a matter of fa
t, we introdu
ed one new statisti
al method that 
an be justi�edin terms of numeri
al linear algebra. The penalized PLSR approa
h developedin Chapter 5 is proven to be equal to a pre
onditioned 
onjugate gradient algo-rithm. A di�erent motivation for this novel te
hnique is given in terms of thekernel tri
k. In addition, penalized PLS in 
ombination with a B-splines trans-formation 
an be su

essfully applied to the estimation of very high-dimensionalgeneralized additive models. In the examples that are presented in Chapter 5,the novel method outperforms two other methods for modeling GAM's. However,there is still spa
e for improvement. We already mentioned that in the penalizedPLSR approa
h, the degree of smoothness is the same for ea
h variable. This isa drawba
k 
ompared to other methods. Re
all that we illustrated in Se
tion 5.5that the smoothness depends on the number of penalized PLSR 
omponents thatare in
luded in the model. In order to assign di�erent degrees of smoothness toea
h variable, we might therefore allow di�erent numbers of 
omponents for ea
hvariable. As this would lead to an infeasible, high-dimensional model sele
tionproblem, we suggest a slightly di�erent approa
h based on Boosting te
hniques.In the spirit of 
omponentwise L2Boost, we pro
eed stepwise. In ea
h step, we in-
rease the number of penalized PLSR 
omponents for only one sele
ted predi
torvariable. The sele
tion might be based on the maximal redu
tion of the empiri
alrisk. If the estimation of the degrees of freedom of (penalized) PLSR in its 
urrentform was more reliable, it would even be possible to adapt SparseL2Boost to thisparti
ular problem.To 
on
lude our 
omments on Partial Least Squares, we remark that it was notour primary goal to advertise trun
ated PLSR as a pioneering new regression



131method. There have been dis
ussions in the literature whether the shrinkage be-havior of PLSR leads to inferior statisti
al properties or not, and our aim wasmainly to investigate empiri
ally these statisti
al properties.In Chapter 9, we analyzed fun
tional data with the help of Boosting te
hniques.It is perhaps not surprising that the extension of Boosting methods to fun
tionaldata is straightforward. The a
hievement of this 
hapter is not merely the 
ombi-nation of these two 
on
epts, but rather the introdu
tion of methods that produ
esparse fun
tional regression models. It is de�nitely worthwhile to study furtherthe potentials of fun
tional SparseL2Boost, and its illustration on one single dataset is surely insu�
ient. Topi
s that might be investigated are e.g. the in�uen
eof the type of basis fun
tions, the in�uen
e of the model sele
tion 
riterion andthe reliability of this method � for instan
e in terms of (Bootstrap) 
on�den
eintervals.
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Appendix AMathemati
al Ba
kgroundIn this 
hapter, we brie�y summarize some ba
kground material from mathemat-i
s that is needed throughout this work.A.1 Matrix Di�erential Cal
ulusThis se
tion 
ontains results from Magnus & Neude
ker (1988).De�nition A.1 (First derivative of ve
tor fun
tions). Let f : Rp → Rq be afun
tion and x ∈ Rp. If there is a p × q matrix A(x) su
h that for all h ∈ Rpwith ‖h − c‖ < ε

f(x + h) = f(x) + A(x)h + rx(h)and
lim
h→0

rx(h)

‖h‖ = 0 ,then f is di�erentiable at point x. The matrix A(x) is 
alled the �rst derivativeof f at x and is denoted by ∂f

∂x
(x).The linear fun
tion

df(x) : R
p → R

q

df(x)(h) =
∂f

∂x
(x)his 
alled the �rst di�erential of f at x.We now have to extend the notion of di�erentiability to fun
tions de�ned onmatrix spa
es. 141



142 APPENDIX A. MATHEMATICAL BACKGROUNDDe�nition A.2. Let A be a m×n matrix and A,j its jth 
olumn. Then ve
(A)is de�ned as the ve
tor ve
(A) =
(
At

,i, A
t
,2, . . . , A

t
,n

)tof length mn.De�nition A.3 (First derivative of matrix fun
tions). Let f : Rp×m → Rq×l be afun
tion and X ∈ Rp×m. f is di�erentiable at X if and only if the ve
tor-valuedfun
tion
F : ve
(Rp×m) → R

ql

F (ve
(X)) = ve
(f(X))is di�erentiable at ve
(X). The di�erential
df(X) : R

p×m → R
q×lof f at X is a linear fun
tion that is de�ned via the relationshipve
 (df(X)(H)) =

(
∂F

∂vec(X)
(vec(X))

)
vec(H) . (A.1)

∂F
∂vec(X)

(vec(X)) is 
alled the derivative of f at X.This theorem is needed in Chapter 3.Theorem A.4 (Theorem of S
hwartz). Suppose that f : Rp → R is twi
e di�er-entiable on an open subset U of Rp. For all x ∈ U , the Hessian matrix
Hf(x) =

∂

∂x

∂

∂x
f(x) ∈ R

p×pof f is a symmetri
 matrix.Proof. The proof 
an be found in any introdu
tory book on 
al
ulus or in Magnus& Neude
ker (1988).Most of the rules on di�erential 
al
ulus for real-valued fun
tions are also validfor matrix-valued fun
tions and we summarize some of them.Proposition A.5. Suppose that f and g are di�erentiable fun
tions.



A.2. OPTIMIZATION UNDER CONSTRAINTS 1431. (Produ
t rule)
d((fg) (x)) = (df(x))g(x) + f(x)(d(g(x)) .Here, the expression on the right hand side is a short-
ut for the map

h 7→ ((df(x))(h)) g(x) + f(x) ((d(g(x))(h)) . (A.2)2. (Di�erential of an inverse) If f(x) is a regular matrix for all x, then
d(f−1)(x) = −(f(x))−1d(f)(x)(f(x))−1 .3. (Di�erential of the transpose)

d(f t(x)) = (d(f(x)))t .These rules are needed in the proof of proposition A.11.
A.2 Optimization under ConstraintsIn this se
tion, we brie�y re
apitulate how to optimize with side 
onstraints.Suppose that we want to 
omputeargmax f(w) , (A.3)subje
t to gk(w) = 0 , k = 1 . . . , K . (A.4)Here f, g1, . . . , gk are real-valued fun
tions Rp → R. We assume that f and
g1, . . . , gK are di�erentiable. We de�ne the Lagrangian fun
tion

L(w) = f(w) −
K∑

k=1

λkgk(w) . (A.5)The values λk are 
alled Lagrangian multipliers.Proposition A.6. Any solution w∗ of (A.3) and (A.4) ful�lls the Lagrangian
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(

∂f

∂w

)
(w∗) =

k∑

i=1

λi

(
∂gi

∂w

)
(w∗) , (A.6)

gi(w
∗) = 0 . (A.7)A.3 Eigen Problems and the Singular Value De-
ompositionAny matrix X ∈ Rn×p de�nes a linear map Rp → Rn via w 7→ Xw. The singularvalue de
omposition of X is a representation of this map in terms of orthonormalbasis ve
tors for both Rp and Rn su
h that the map de�ned by X is as simple aspossible.Proposition A.7 (Singular Value De
omposition). For any matrix X ∈ Rn×p,there is an orthonormal basis u1, . . .up of Rp and a set of orthonormal ve
tors

v1, . . . , vp ∈ Rn su
h that
Xui = σivi , σi ≥ 0 .The quantities σi are 
alled the singular values of X and are numbered in de-
reasing order. In matrix notation, we have

X = V ΣU t (A.8)with
V tV = Ip and U tU = Ip .It follows immediately that the rank of X equals the number of nonzero singularvalues (
ounted with multipli
ities). We note that V is a basis of the 
olumnspa
e of X and U is a basis of the row spa
e of X. We 
an extend the ve
tors

vi to an orthonormal basis of Rn.De�nition A.8. A ve
tor u ∈ Rp \ {0} is 
alled an eigenve
tor of a quadrati
matrix A ∈ Rp×p if there is a s
alar λ ∈ R su
h that Au = λu. We 
all λ aneigenvalue of A.The eigende
omposition of A is a representation of the form
A = UΛU−1 .



A.4. PROJECTIONS 145For some matri
es, there is no eigende
omposition. If A is however symmetri
,we have an orthogonal eigende
omposition
A = UΛU t , U tU = Ip .The eigenve
tors of a symmetri
 matrix 
an be 
omputed with the help of theso-
alled power method.Algorithm A.9 (Power method). For a symmetri
 matrix A and an initialve
tor b0, the power method 
omputes iteratively

b̃k+1 = Abk matrix multipli
ation
bk+1 = 1

‖ebk+1‖
b̃k+1 normalizationThe power algorithm 
onverges to the eigenve
tor u for whi
h the 
orrespond-ing eigenvalue has the greatest absolute value, if this eigenvalue is dominant (inabsolute terms) and if the starting ve
tor b0 is not orthogonal on the eigenve
tor

u.A.4 Proje
tionsLet us 
onsider a general Hibert spa
e V. For a subspa
e U and any ve
tor v ∈ V,we de�ne the following optimization problem:argmin ‖v − u‖ ,subje
t to u ∈ U .As we assume that V is a Hilbert spa
e, the solution exists if U is a 
losed sub-spa
e. We 
all the unique solution the (orthogonal) proje
tion of v onto U anddenote it by PUv.If U is �nite-dimensional, we 
an give a short representation of the proje
tionoperator. Denote by U = (u1, . . . , uk) any set of ve
tors that generate thesubspa
e U . For any other set V = (v1, . . . , vl) of ve
tors we de�ne the k × lmatrix
〈U , V 〉 = (〈ui, vj〉) .



146 APPENDIX A. MATHEMATICAL BACKGROUNDFurthermore, we de�ne the (symboli
) multipli
ation of U with a ve
tor α ∈ Rkas
Uα =

k∑

i=1

αiui .The proje
tion map is then
PUv = U (〈U , U〉)− 〈U , v〉 . (A.9)We now list some properties of proje
tion operators.Proposition A.10. Denote by PU the proje
tion onto the subspa
e U .1. PU is a symmetri
 map.2. The proje
tion operator is idempotent, P2

U ≡ PU .3. If the spa
e U⊥ that is orthogonal on U is a 
losed subspa
e, then (IdV −P)is the proje
tion onto that spa
e.4. If V is �nite-dimensional and PU 
an be represented by a matrix P , thentra
e(P ) = dimU .In Chapter 4, we need the �rst derivative of a proje
tion operator. We nowpresent this result. Let us assume that both ve
tors v = v(y), z = z(y) ∈ Rndepend on a ve
tor y. The proje
tion of z onto v is de�ned as (see (A.9))
Pvz = v

(
vtv
)−1

vtz .For any fun
tion f that depends on y, we use df = df(y) as a short
ut. Using



A.4. PROJECTIONS 147proposition A.5, we have
d (Pvz) = d

(
v
(
vtv
)−1

vtz
)

= (dv)
(
vtv
)−1

vtz + v
(
d
(
vtv
)−1
)

vtz + v
(
vtv
)−1

d
(
vtz
)

= (dv)
(
vtv
)−1

vtz − v
(
vtv
)−1

d
(
vtv
) (

vtv
)−1

vtz

+v
(
vtv
)−1 [

d
(
vt
)
z + vtdz

]

= (dv)
(
vtv
)−1

vtz − v
(
vtv
)−1

d
(
vt
)
v
(
vtv
)−1

vtz

−v
(
vtv
)−1

vtdv
(
vtv
)−1

vtz + v
(
vtv
)−1

d
(
vt
)
z + v

(
vtv
)−1

vtdz

= (dv)
(
vtv
)−1

vtz − v
(
vtv
)−1

d
(
vt
)
Pvz −Pvdv

(
vtv
)−1

vtz

+v
(
vtv
)−1

d
(
vt
)
z + Pvdz

= (dv)
(
vtv
)−1

vtz − v
(
vtv
)−1

d (v)t Pvz − Pvdv
(
vtv
)−1

vtz

+v
(
vtv
)−1

d (v)t
z + PvdzUsing (A.2), this is equivalent to the following. For all h ∈ Rn,

(d (Pvz))h = ((dv) h)
(
vtv
)−1

vtz − v
(
vtv
)−1

(d (v) h)t Pvz

−Pv (dvh)
(
vtv
)−1

vtz + v
(
vtv
)−1

(d (v) h)t
z

+Pvdzh .This 
an be further simpli�ed by fa
toring out the expression (vtv)
−1 and rear-ranging some terms. We obtain

(d (Pvz)) h =
1

vtv

[
vtz ((dv)h) − vztP t

v ((dv) h) − vtzPv ((dv)h) + vzt ((dv)h)
]

+Pvdzh

=
1

vtv

[
vtz − vztPv − vtzPv + vzt

]
((dv) h) + Pvdzh .Finally, we use the de�nition of the �rst derivative A.1 and obtain the followingresult.

Proposition A.11. The �rst derivate of the proje
tion operator is
∂Pvz

∂y
=

1

vtv

[
vzt (I − Pv) + vtz (I −Pv)

] ∂v

∂y
+ Pz

∂z

∂y
.



148 APPENDIX A. MATHEMATICAL BACKGROUNDA.5 The Moore-Penrose InverseThe 
ontents of this se
tion 
an be found e.g. in Ko
kelkorn (2000). If a matrix
A is not quadrati
 or is not of full rank, we have to �nd a suitable surrogate forits inverse. In this work, we use the Moore-Penrose inverse.Proposition A.12 (Moore-Penrose Inverse). For any matrix A ∈ Rp×l, there isa unique matrix A− ∈ Rl×p su
h that

A = AA−A ,

A− = A−AA− ,
(
AA−)t = AA− ,
(
A−A

)t
= A−A .Proposition A.13. If A is a symmetri
 matrix with eigende
omposition

A = UΛU t ,the Moore-Penrose inverse of A is de�ned in the following way. Set
(
Λ

−)
ij

=





0 i 6= j

1
λi

i = j and λi 6= 0

0 i = j and λi = 0

.Then
A− = UΛ

−U t .Proof. It follows readily from the de�niton of Λ
− that

ΛΛ
− = Λ

−
Λ = diag( 1, . . . , 1︸ ︷︷ ︸rk(A)−times, 0, . . . , 0) .This implies that Λ

− is indeed the Moore-Penrose inverse of Λ, as the propertiesin proposition A.12 are ful�lled. It follows that
AUΛ

−U tA = UΛΛ
−
ΛU t = UΛU t = A
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UΛ

−U tAUΛ
−U t = UΛ

−
ΛΛ

−U t = UΛ
−U t .Finally, we remark that the matrix

AUΛ
−U t = UΛ

−U tA = Udiag(1, . . . , 1, 0, . . . , 0)U tis symmetri
.Proposition A.14. The system of linear equations
Ax = bhas a solution if and only if x∗ = A−b is a solution. Any solution of these linearequations has the form

x = x∗ +
(
I − A−A

)
vfor any ve
tor v. The two 
omponents of x are orthogonal.
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Appendix BResults of the Simulation StudyWe display the results of the simulation study that is des
ribed in Se
tion 7.3.The following tables show the MSE-RATIO for β̂ as well as for ŷ. In addition tothe MSE-RATIO, we display the optimal number of 
omponents for ea
h method.It is interesting to see that the two quantities are the same almost all of the times.
ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.833 0.861 0.676 0.958 1.000 0.993 1.000 0.999 1.0002 0.980 0.976 0.975 0.995 0.938 0.864 0.847 0.965 0.8663 1.000 0.993 1.001 0.969 0.960 0.993 0.954 0.980 0.9674 1.000 1.001 0.999 0.988 1.000 1.002 0.997 0.993 0.992
mopt

PLS 2 5 2 2 4 3 1 2 5
mopt

TRN 2 5 2 2 4 3 1 2 5Table B.1: MSE-RATIO of β̂ for p = 5. The �rst two rows display the setting ofthe parameters. The rows entitled 1-4 display the MSE ratio for the respe
tivenumber of 
omponents.
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ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.775 0.780 0.570 0.919 1.000 0.970 1.004 0.995 0.9992 0.978 0.972 0.9697 0.994 0.882 0.786 0.828 0.951 0.8233 1.001 0.990 1.001 0.969 0.967 0.992 0.960 0.977 0.9734 1.000 1.001 0.999 0.990 1.000 1.001 0.997 0.996 0.993
mopt

PLS 3 5 3 2 4 4 1 2 5
mopt

TRN 2 5 2 2 4 4 1 2 3Table B.2: MSE-RATIO of ŷ for p = 5.
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ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.929 0.963 0.972 0.98 0.998 0.989 1.000 1.000 1.0002 0.938 0.959 0.977 0.922 0.91 0.978 0.789 0.793 0.7923 0.907 0.952 0.981 0.875 0.91 0.945 0.849 0.843 0.8494 0.905 0.933 0.971 0.879 0.913 0.912 0.857 0.864 0.8685 0.901 0.942 0.954 0.879 0.924 0.898 0.870 0.883 0.8796 0.898 0.942 0.945 0.878 0.915 0.891 0.882 0.890 0.8937 0.892 0.926 0.949 0.887 0.906 0.891 0.891 0.895 0.8988 0.899 0.926 0.956 0.892 0.904 0.895 0.897 0.897 0.9039 0.908 0.933 0.955 0.897 0.910 0.895 0.903 0.902 0.90410 0.913 0.938 0.951 0.900 0.916 0.898 0.902 0.899 0.90111 0.913 0.937 0.947 0.902 0.919 0.907 0.906 0.901 0.90212 0.917 0.931 0.944 0.909 0.919 0.917 0.908 0.904 0.90613 0.924 0.932 0.946 0.919 0.92 0.925 0.913 0.907 0.91414 0.933 0.939 0.946 0.927 0.917 0.936 0.921 0.911 0.92215 0.94 0.945 0.95 0.933 0.916 0.936 0.928 0.916 0.93116 0.949 0.945 0.951 0.935 0.918 0.941 0.938 0.922 0.93617 0.956 0.945 0.954 0.939 0.922 0.945 0.944 0.926 0.93618 0.961 0.944 0.959 0.943 0.931 0.95 0.946 0.930 0.93519 0.968 0.946 0.964 0.946 0.934 0.958 0.953 0.939 0.93620 0.973 0.951 0.973 0.949 0.935 0.962 0.961 0.947 0.93921 0.977 0.958 0.977 0.954 0.936 0.966 0.968 0.955 0.94322 0.98 0.965 0.981 0.961 0.94 0.973 0.972 0.962 0.94823 0.984 0.97 0.984 0.968 0.945 0.98 0.976 0.967 0.95024 0.987 0.976 0.988 0.975 0.948 0.983 0.98 0.970 0.95325 0.989 0.98 0.99 0.978 0.953 0.987 0.981 0.973 0.95926 0.992 0.985 0.993 0.982 0.959 0.991 0.984 0.977 0.96627 0.994 0.989 0.996 0.986 0.966 0.992 0.987 0.981 0.97528 0.995 0.991 0.997 0.988 0.973 0.994 0.99 0.985 0.98429 0.996 0.993 0.998 0.99 0.978 0.995 0.993 0.988 0.98830 0.997 0.994 0.999 0.992 0.982 0.996 0.995 0.991 0.9931 0.998 0.995 0.999 0.994 0.985 0.997 0.996 0.992 0.99332 0.998 0.996 0.999 0.996 0.99 0.998 0.996 0.994 0.99533 0.999 0.997 1.000 0.996 0.991 0.999 0.997 0.995 0.99634 0.999 0.998 1.000 0.997 0.993 0.999 0.998 0.996 0.99735 0.999 0.999 1.000 0.999 0.994 0.999 0.998 0.997 0.99836 1.000 1.000 1.000 0.999 0.996 0.999 0.999 0.998 0.99837 1.000 1.000 1.000 0.999 0.998 1.000 0.999 0.998 0.99938 1.000 1.000 1.000 1.000 0.999 1.000 0.999 0.999 0.99939 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 1.000
mopt

PLS 1 3 5 1 2 2 1 1 1
mopt

TRN 1 3 5 1 2 2 1 1 1Table B.3: MSE-RATIO of β̂ for p = 40.



154 APPENDIX B. RESULTS OF THE SIMULATION STUDY
ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.781 0.797 0.791 0.877 0.983 0.924 1.013 1.004 1.0012 0.870 0.857 0.853 0.785 0.702 0.868 0.673 0.684 0.6803 0.853 0.899 0.914 0.776 0.818 0.853 0.778 0.772 0.7784 0.874 0.891 0.896 0.818 0.836 0.838 0.81 0.818 0.8225 0.889 0.92 0.893 0.839 0.891 0.846 0.835 0.855 0.8566 0.898 0.942 0.921 0.844 0.884 0.859 0.862 0.881 0.8817 0.897 0.938 0.929 0.876 0.902 0.88 0.886 0.898 0.8988 0.923 0.941 0.943 0.886 0.898 0.896 0.9 0.906 0.9149 0.924 0.944 0.960 0.904 0.916 0.901 0.915 0.92 0.91710 0.935 0.958 0.961 0.913 0.93 0.915 0.915 0.914 0.92111 0.943 0.967 0.959 0.922 0.937 0.916 0.924 0.92 0.92712 0.954 0.967 0.958 0.929 0.942 0.938 0.932 0.926 0.93113 0.959 0.967 0.965 0.941 0.95 0.942 0.939 0.933 0.93714 0.961 0.961 0.966 0.948 0.949 0.954 0.947 0.942 0.94215 0.97 0.969 0.977 0.954 0.953 0.96 0.953 0.948 0.94916 0.975 0.971 0.976 0.964 0.962 0.967 0.961 0.954 0.95717 0.979 0.976 0.983 0.968 0.962 0.974 0.967 0.957 0.95718 0.982 0.981 0.985 0.972 0.966 0.979 0.968 0.960 0.96619 0.986 0.985 0.988 0.976 0.969 0.980 0.974 0.965 0.97020 0.989 0.987 0.991 0.977 0.970 0.983 0.979 0.972 0.97421 0.991 0.99 0.992 0.980 0.973 0.985 0.984 0.977 0.97822 0.993 0.99 0.994 0.984 0.979 0.988 0.988 0.982 0.98123 0.995 0.992 0.996 0.987 0.98 0.991 0.990 0.986 0.98324 0.996 0.993 0.997 0.989 0.982 0.993 0.992 0.987 0.98425 0.996 0.995 0.997 0.99 0.983 0.994 0.993 0.989 0.98526 0.997 0.996 0.998 0.992 0.986 0.996 0.994 0.991 0.98727 0.998 0.997 0.999 0.994 0.990 0.997 0.995 0.993 0.98928 0.999 0.997 0.999 0.995 0.991 0.998 0.996 0.994 0.99129 0.999 0.998 0.999 0.996 0.992 0.998 0.997 0.996 0.99430 0.999 0.999 1.000 0.997 0.993 0.999 0.998 0.997 0.99431 0.999 0.999 1.000 0.998 0.994 0.999 0.998 0.997 0.99632 0.999 0.999 1.000 0.998 0.995 0.999 0.999 0.998 0.99733 1.000 0.999 1.000 0.998 0.996 0.999 0.999 0.998 0.99834 1.000 0.999 1.000 0.999 0.997 1.000 0.999 0.999 0.99835 1.000 1.000 1.000 0.999 0.998 1.000 0.999 0.999 0.99936 1.000 1.000 1.000 0.999 0.998 1.000 1.000 0.999 0.99937 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.999 0.99938 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 1.00039 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
mopt

PLS 1 3 9 1 1 2 1 1 1
mopt

TRN 1 3 4 1 2 2 1 1 1Table B.4: MSE-RATIO of ŷ for p = 40.
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ollinearity no no no med. med. med. high high highstnr 1 3 7 1 3 7 1 2 71 0.845 0.763 0.825 0.862 0.839 0.906 1.017 1.002 1.0002 0.813 0.892 0.864 0.753 0.832 0.847 0.695 0.695 0.6943 0.863 0.884 0.881 0.788 0.837 0.859 0.806 0.808 0.8124 0.908 0.898 0.918 0.852 0.852 0.864 0.866 0.861 0.8655 0.933 0.940 0.954 0.889 0.888 0.900 0.900 0.903 0.9036 0.954 0.953 0.960 0.900 0.905 0.915 0.926 0.931 0.9317 0.964 0.967 0.979 0.927 0.935 0.930 0.951 0.953 0.9538 0.976 0.972 0.988 0.942 0.942 0.950 0.968 0.968 0.9709 0.984 0.982 0.993 0.959 0.963 0.961 0.979 0.968 0.97910 0.99 0.990 0.995 0.969 0.970 0.970 0.980 0.979 0.98111 0.994 0.991 0.998 0.976 0.979 0.978 0.987 0.987 0.98812 0.996 0.994 0.998 0.982 0.987 0.984 0.991 0.992 0.99313 0.997 0.995 0.999 0.988 0.991 0.990 0.994 0.994 0.99514 0.998 0.997 0.999 0.991 0.994 0.992 0.996 0.997 0.99715 0.999 0.998 1.000 0.994 0.995 0.994 0.997 0.998 0.99816 0.999 0.999 1.000 0.996 0.997 0.996 0.998 0.998 0.99917 1.000 0.999 1.000 0.997 0.998 0.997 0.999 0.999 0.99918 1.000 0.999 1.000 0.998 0.999 0.998 0.999 0.999 0.99919 1.000 1.000 1.000 0.999 0.999 0.999 0.999 1.000 1.00020 1.000 1.000 1.000 0.999 0.999 0.999 1.000 1.000 1.000
mopt

PLS 1 2 5 1 1 2 1 1 1
mopt

TRN 1 1 3 1 1 2 1 1 1Table B.5: MSE-RATIO of ŷ for p = 100. We only display the results for the �rst20 
omponents, as the MSE-RATIO equals 1 (up to 4 digits after the de
imalpoint) for the remaining 
omponents.


