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Uberblick

In der statistischen Analyse von hochdimensionalen Daten geht es darum, Zusam-
menhénge zwischen einer groken Menge p an Variablen mit Hilfe einer begrenzten
Anzahl n an Beobachtungen zu modellieren. Gemeinsam sind allen Analyseme-
thoden die beiden folgenden Ziele. Zum einen ist es wichtig, (latente) Struk-
turen in den Daten zu erkennen, um so eine handhabbare, niedrigdimensionale
Reprisentation zu gewinnen. Zum anderen ist es oft von grofer Wichtigkeit,
verstandliche und leicht zu interpretierende Modelle zu entwickeln. Die hohe Di-
mensionalitit der Daten fiihrt oft zu grofen Problemen, denn fiir p > n versagen
die traditionellen statistischen Verfahren. Zudem ist die Struktur der Daten oft
komplexer. Die beobachteten Gréfien sind nicht — wie in der klassischen Statis-
tik {iblich — Vektoren in einem endlichdimensionalen Vektorraum, sondern zum
Beispiel Funktionen. Beispiele fiir diese Art von Datenstrukturen sind Zeitreihen
oder Messungen in der Nah-Infrarot-Spektroskopie. In dieser Arbeit soll die Ana-
lyse von hochdimensionalen und komplexen Daten mit Hilfe von zwei Verfahren

untersucht werden: Partial Least Squares und Boosting in Funktionenrdumen.

Partial Least Squares (PLS) modelliert den Zusammenhang zwischen verschiede-
nen Blécken von Variablen mit Hilfe sogenannter latenter Variablen. Im Fall von
mehr als zwei Blocken werden die PLS-Verfahren auch als Pfadmodelle bezeichnet
und konnen als eine Erweiterung der Kanonischen Korrelationsanalyse angesehen
werden. Die mathematischen Eigenschaften von PLS-Pfadmodellen sind zum
grofsen Teil noch unerforscht. Zum Beispiel ist weder klar, ob die Algorithmen zur
Berechnung der latenten Variablen im Pfadmodell numerisch konvergieren, noch,
ob sie — falls sie konvergieren — Losungen von sinnvollen Optimierungsproblemen
darstellen. In dieser Arbeit wird ein sauberes mathematisches Geriist fiir die
Beschreibung der Pfadmodelle aufgestellt. Es wird gezeigt, dass zu einem grofen
Teil der PLS-Algorithmen (derjenigen mit mindestens einem Block im Modus

A) tatséichlich kein zweimal differenzierbares Optimierungsproblem existiert. Zu-
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dem wird anhand von simulierten Daten gezeigt, dass fiir die PLS-Algorithmen
im Modus B die Verfahren nur zu einer lokalen Losung eines Optimierungsprob-

lems konvergieren konnen.

PLS kann auch in Regressionsproblemen eingesetzt werden, in dem man die erkla-
renden und die abhingigen Variablen als jeweils einen Block auffasst. In diesem
Fall ermoglicht PLS zudem eine Dimensionsreduktion der Daten, die wiederum
hoffentlich zu besseren Vorhersagen fiihrt. In dieser Arbeit wird eine Erweiterung
von PLS um einen Strafterm vorgestellt und auf die Schitzung von generali-
sierten additiven Modellen (GAM’s) angewandt. Es zeigt sich, dass insbeson-
dere fiir hochdimensionale Daten dieser Ansatz eine gute Alternative zu klassis-
chen GAM-Verfahren ist. Ausgehend von der bereits bekannten Verbindung von
PLS und dem Konjugierten-Gradienten-Verfahren (aus der numerischen linearen
Algebra) wird gezeigt, dass PLS mit Strafterm #quivalent zu einem vorkondi-
tionierten Konjugierten-Gradienten-Verfahren ist. Die Konditionierungsmatrix
wird dabei durch den Strafterm bestimmt. Im Anschluss werden die Beziehun-
gen zwischen der linearen Algebra und PLS ausgenutzt, um die sogenannten
“Shrinkage”-Figenschaften von PLS empirisch zu untersuchen. Dariiber hinaus

wird ein unverzerrter Schitzer fiir die Freiheitsgrade von PLS ermittelt.

Boosting ist ein Verfahren aus dem Bereich des Maschinellen Lernens. Die
grundlegende Idee ist, verschiedene einfache Vorhersagemodelle so zu kombinieren,
dass diese Kombination zu sehr viel besseren Vorhersagen fiihrt. In dieser Arbeit
werden Boostingverfahren fiir komplizierte Datenstrukturen entwickelt. Dabei
interessiert uns vor allen Dingen der Fall, in dem die beobachteten Einflussgréfien
Funktionen bzw. diskrete Messungen von Funktionen sind. Die gangigen Boosting-
Methoden basieren implizit auf der Annahme, dass die Einflussvariablen Werte
in einem endlichdimensionalen Vektorraum annehmen. Es wird gezeigt, dass die
Erweiterung auf unendlichdimensionale Funktionenrdume ohne Weiteres méoglich
ist. Zudem wird illustriert, wie man mit Hilfe von Boostingverfahren wichtige
Charakteristika der Funktionen aufdeckt und wie man damit leicht interpretier-
bare und visualisierbare Modelle erzeugt. Dies geschieht durch eine Transforma-

tion der Ausgangsdaten mit Hilfe von Wavelet- bzw. Fouriertransformationen.
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Outline

The crucial task in the statistical analysis of high-dimensional data is to model
relationships between a large amount p of variables based on a small number n
of observations. Quite generally, we pursue two goals. On the one hand, it is
important to detect (latent) structures in the data in order to obtain a feasible,
low-dimensional representation. On the other hand, we often need simple and
comprehensible models that can be interpreted. The high-dimensionality of the
data often forms an obstacle, as for p > n, the traditional statistical techniques
fail to produce satisfactory results. Furthermore, the structure of the data can be
complex. The observed variables are not — as usually assumed in classical statis-
tics — elements of a finite-dimensional vector space, but , for instance, functions.
Examples for this type of data are times series or experiments from the field of
near-infra-red spectroscopy. In this work, we investigate high-dimensional and
complex data with the help of two methods: Partial Least Squares and Boosting

for functional data.

Partial Least Squares (PLS) models the relationship between different blocks of
variables in terms of so-called latent variables. In the case of more than two
blocks, the PLS-techniques are also called path models and can be seen as a gen-
eralization of Canonical Correlation Analysis. The mathematical properties of
PLS are for the most parts not yet established. For example, it is neither known
whether the PLS algorithms converge numerically, nor — in the case that they
converge — if they produce solutions of a sensible optimization criterion. In this
work, we establish a sound mathematical framework for the description of PLS
path models. We show that for a large part of the PLS algorithms (those with at
least one block in mode A), there is indeed no twice-differentiable optimization
problem. Furthermore, we show on simulated data that the PLS algorithms in

mode B can converge only to a local solution of an optimization problem.



PLS can also be used to solve regression problems. In this case, it leads to
a substantial reduction of the dimension of the data, which hopefully leads to
better prediction rules. In this work, we present an extension of PLS using pe-
nalization techniques. This method is then used to estimate generalized additive
models (GAM’s). This approach turns out to be a good alternative to traditional
GAM-methods in the case of high-dimensional data. Based on the well-known
relationship between PLS and the conjugate gradient technique (a method from
the field of numerical linear algebra), we prove that penalized PLS is equal to a
preconditioned conjugate gradient technique. Here, the preconditioner is deter-
mined by the penalty term. Subsequently, we exploit the connections between
PLS and linear algebra to investigate empirically the so-called shrinkage proper-

ties of PLS. In addition, we derive an unbiased estimate of the degrees of freedom
of PLS.

Boosting has its seed in the machine learning community. The basic idea is
to combine several, simple models in such a way that their combination leads to
better prediction rules. In this work, we develop Boosting algorithms for complex
data structures. Our focus is on data that are (discrete) measurements of curves.
The established Boosting methods implicitly assume that the observed variables
lie in a finite-dimensional vector space. We show that an extension of Boosting to
infinite-dimensional function spaces is straightforward. Furthermore, we illustrate
how to detect relevant features of the investigated functions and how to produce
simple and interpretable models. This is done by applying wavelet or Fourier

transformations to the data and by then applying suitable Boosting algorithms.
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Chapter 1
Preliminaries

This chapter serves as a reference for some basic concepts that are essential for
the rest of this work.

1.1 Notation and Guideline

Matrices are denoted by bold upper case letters X, A, U, ... and vectors are de-
noted by bold lower case letters v,y,.... This rule is also valid if we use Greek
letters. The transpose of a matrix or a vector is indicated by a superscript t
as in A" and v'. The Moore-Penrose inverse of a matrix A is denoted by A~.
Spaces are either in calligraphic style (X, ), F,...) or in blackboard bold style
(R,N,Z,F,...). Functions are usually denoted by lower case letters as f, g, h, .. ..
The covariance and variance of random variables are denoted by Cov and Var.

Their respective empirical counterparts are denoted by cov and var.

The table of contents hopefully reveals the rough structure of this work. Let us
remark that Chapters 1, 2 and 8 serve as summaries of well-known concepts and
do not contain any fundamentally new ideas. Before starting to read further,
it might be beneficial to have a look at Chapter A in the appendix. There, we

collect some basic mathematical principles that constantly emerge in this work.

All experiments and simulations are performed in R (R Development Core Team
2005).
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1.2 Learning from Data

Let us introduce the general learning problem. We consider two random variables
X and Y which define a random variable Z = X x Y on a product space X x ).
We assume that there is a relationship between X and Y in the sense that given
X, we can predict the outcome of Y with a high accuracy. We do not know the

distribution of Z, but we observe a finite set

S={(x1,11), -, (Xp,yn)} CTX XY

of observations. This set is called the sample. We assume that the observations
are drawn independently from Z = X x Y. The classical statistical approach is
to identify the process Z that generates the sample. Assuming a class of models
that is appropriate to describe Z, the model parameters of Z are estimated with
the help of §. From this, we can infer the conditional distribution of Y given X.

In order to find an estimate ]?of a function

F: XY (1.1)

~

that predicts an outcome y for a fixed value z € X via f(z), we have to evaluate

~

the decision f(z) if the correct outcome is y. This is done via a loss function

L:Yx)Y — R, (1.2)

~

and the risk at a certain point z = (z,y) is defined as L(y, f(x)). The optimal

function is the one that minimizes the expected risk

R(f) = Exxv [L(Y, f(X))]. (1.3)

over all functions f. If the distribution of Z is known, the optimal function can
often be determined explicitly. For example, if we consider regression problems
(that is Y = R) and L is the quadratic loss function

Ly.y) = (y—vy)°, (1.4)

the optimal function is the conditional expectation f(z) = E[Y|X = z].

In contrast, statistical learning theory focuses on mimicking the underlying pro-
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cess. The primary task is to find a function that minimizes (1.3) and not to
identify the whole process Z. As the distribution of Z is not known, it is not
possible to minimize (1.3). As a consequence, we have to estimate the optimal
function based on the available sample S. A popular approach is to fix a class of

functions F and to minimize the empirical risk

RU) = 3 L fw) (1.5

~

over all elements f € F. The quantity R(f) is also called the training error.
Sometimes, a regularization term r(f) is added to (1.5). This strategy is called
(regularized) empirical risk minimization. A combination of a loss function, a
class of functions and a regularization term defines a strategy to estimate (1.1).
Depending on the scientific community, a strategy is called a model, an algorithm,
a fitting method or a learner. In this work, we use these terms more or less
synonymously. A more precise specification of a learning strategy is given in
Chapter 2. Some remarks on the term “model” are however necessary. In the
literature, it is used to describe two different aspects of learning from data. On
the one hand, a model is a description of how the data is generated. E.g. in
the learning task (1.1), we can determine the structure of the function F' (linear,
polynomial) or assume that Z belongs to a certain class of distributions. On the
other hand, a model is a strategy how to estimate the generation of the data.
This refers to the description of a learning strategy described above. For every
sample S and every learning strategy, we obtain an estimate of the function F',
which we denote by ]?

1.3 The Regression Model

In this work, we are mainly concerned with multivariate regression problems that
have a one-dimensional response. That is we assume that ) = R and X = RP.

In statistics, regression problems are usually modeled in the following way:
Y;‘ = F(XZ)—FZEZ,Z:L,TL

The predictor X is a multivariate, p—dimensional random variable. From now on,
the predictors are assumed to be deterministic and only the response is assumed

to be stochastic. In addition, we claim that the error terms are uncorrelated
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with zero mean and equal variance. In compact form, the regression model can

determined via
Y, = F(z)+e,i=1,...,n, (1.6)

with

and
Cov (Y1,...,Y,) = o°I,. (1.7)
Here, I, is the identity matrix of dimension n. It follows immediately that
EY] = F(z). (1.8)

Let us now consider multivariate linear regression problems. If the function F
in (1.6) is assumed to be linear, the regression model can be represented by the

multivariate linear regression model
Y = xiB+e;. (1.9)

Given data S, the estimation of (1.6) is transformed into the estimation B of the
regression vector 3. Recall that the number of variables is p and that the number

of examples is n. We set

x| U1
X=|..]|1eR” y=| ... | eR".

Ly, Yn

An intercept (3 can be included into (1.9) by attaching an additional column that
consist of 1’s. Another possibility is to estimate (1.9) based on centered data.

For this reason, we require that both X and y are centered.

The Ordinary Least Squares (OLS) estimator B’OLS is the solution of the opti-
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mization problem
argmlnz —wtﬁ —argmén ly — X8>

Note that this equals the minimization of the empirical risk R (8) defined (1.5) for
the quadratic loss function (1.4) and F equal to the space of all linear functions.
If we differentiate the empirical risk with respect to 3, we realize that the solution
BOLS must fulfill

X'XBors = X'y.

There is always a solution, as X'y lies in the space spanned by the columns of
X'X. However the solution is not unique if X*X does not have full rank. This
is for example the case if there are more variables than observations. If there is
no unique solution, we define the OLS estimator as the solution with minimal

euclidean norm. It follows from proposition A.14 that
BOLS = (XtX)_Xty-
We now use the singular value decomposition
X = VU’

of X that is defined in (A.8). Furthermore, A = X'3 is the matrix of eigenvalues
of X'X. Set

s = SViy. (1.10)

In this work, we use one of the following representations of the OLS estimator:

N B . S B _rk(X) fy A—rk(X) |
BOLS—(XX) X'y =UA S_Z uZ—ZzZ, (1.11)
= VA o

with
vy

Novia

The OLS estimator usually performs poorly on new data if the number of exam-

Zi



6 CHAPTER 1. PRELIMINARIES

ples is small compared to the number of observations or if X is highly collinear.
Both phenomena lead to a covariance matrix (1/n)X*X that is (almost) singu-
lar, which affects the statistical properties of the estimator. This is discussed in

great detail in Section 7.1.

1.4 Duality and Kernel Methods

In this section, we briefly recapitulate the concept of dual representations and the
kernel trick. Let us consider the following example. In Section 1.3, we introduced
the linear regression model (1.9). For any estimate B of B, we can predict the

value of y for a new observation x,.,, via the linear function

~

/y\new = mf—bew/@ = <$newaﬁ> . (]-]-2)

Now suppose that we want to transform the original data X before applying
OLS. One reason to do so is to model nonlinear relationships between predictor
variables and response. If we have e.g. p = 2 predictor variables and we want to
estimate a function (1.1) with F" assumed to be a polynomial of degree < 2. How
can we use a method that is designed for linear regression problems (e.g. OLS)

to solve this problem? We simply transform the data via a map
¢ (x,2') = (1, V2, V21 2! 22, x’z) (1.13)

and apply the linear algorithm to y and ® (X). A transformation is also nec-
essary if the observed data are not yet embedded in an euclidean space. If for
instance, the variables are on a nominal scale, we have to transform the vari-
ables into dummy variables and then plug the transformed data into any learning

method designed for estimating linear relationships.

The transformation map
®: X —F (1.14)

is called the feature map. The spaces X and F are called input space and feature
space respectively. In order to apply a linear algorithm in T, it is often necessary
to assume that F is a Hilbert space. An important observation is the following.

In a lot of cases, the vector B that defines the linear function in (1.12) is a linear
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combination of the data points,
B = > ad(z). (1.15)

The coefficients «; are called dual variables. If we plug (1.15) into (@(mnew),,@>,
we realize that the linear function only depends on inner products between trans-

formed data points,
fl@) = (B@).B) = o (), D)

In this case, the estimation of the dual variables can be done by using the n x n

Gram matrix

K = (<(I)(wi)7q)(wj)>)i,j:1 n

aaaa

Note that condition (1.15) holds for the OLS estimate. This follows e.g. from
(1.11), as the vectors u; are a basis of the row space of X. (Recall the singular
value decomposition (A.8) of X.) de Bie et al. (2005) describe various multivari-

ate methods in terms of their primal and dual representation.

As we only need inner products in the dual representation, we do not have to map

the data points explicitly to a feature space, it suffices to compute the function
E:XxX — R (1.16)

with
k(x,z) = (P(z),P(2)) . (1.17)

The estimated function is
flx) = Zaik(w, x;) .
i=1
The function k is called a kernel. Note that in example (1.13),

k(z,z) = (1+(x,2))°.
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The replacement of the usual inner product by the inner product in some feature
space is called the kernel trick. Note that we do not even require the input space
to be an inner product space at all. Literature on the kernel trick and its appli-
cations is abundant. A detailed treatise of the subject can be found in Scholkopf
& Smola (2002).

So instead of defining a feature map, we define an admissible kernel function,
that is, a function (1.16) which can be defined via a map (1.14) such that (1.17)
holds. The choice of the optimal kernel is part of the model selection procedure
that is illustrated in Chapter 2. What are the merits of this dual representation?
We already mentioned the extension to nonlinear models. Furthermore, from a
technical point of view, if p > n, the computation in the dual representation
is usually faster than the computation in the primal representation. Finally, we
can extend the whole multivariate machinery to spaces X of infinite dimension or
with a complex structure by defining an appropriate inner product. An important
example is the analysis of functional data, that is, X is a space of functions over

some domain. This subject will be treated in more detail in Chapter 8.



Chapter 2

Model Selection

We now recapitulate the main tools to evaluate the performance of a learning
method. The contents of this chapter are a summary of the corresponding chap-
ter in Hastie et al. (2001). As described in Chapter 1, we estimate the relationship
(1.1) by applying an appropriate fitting method. Normally, we we do not fit a
single model but a group of models and have to choose the best model. This is
usually called model selection. We therefore need a strategy how to select the
best model out of a pool of models. After the best model is chosen, we have to
evaluate its quality. This is called model validation. Recall that we evaluate a
model in terms of its expected risk (1.3). As this quantity is usually unknown, we
need a good estimate. In what follows, we focus on model selection and remark
that the risk of the selected model should be estimated on a test set that was

neither involved in the fitting process nor in the selection process.

In the rest of the chapter, we consider the general regression model (1.6). Given
data, we fit a model and call the fitted function ]? In order to evaluate the quality
of the fitting method, we start by computing the expected risk of fat a point x;,

R(f(xl-)) = Byoeu [L (Y"ew,f(xi))]. (2.1)

Here, YY" is a new observation at point x;. Note that the quantity R <f(xz))

~

depends on the sample S that is used to estimate f. If we use the quadratic loss

9
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function (1.4), the expected risk of fat x; equals

R(fw)) = By (Y"ew_f(xo)ﬂ

BEynew | (Y™ — E[Y"])* + <F (;) — fi (M))Q}

~ 2 {(F(xi)— A(xi))z} | (2.2)

The term o2 is called the irreducible error. The second term depends on the data
that we used to fit the model. If we are interested in the quality of our learning
strategy that is used to obtain the estimate ]/f\, we compute the expected value of

R <f(xl)> with respect to the data Y™ = (Y1,...,Y,). For the quadratic loss,
we yield

Ey ) Eynew [(Y"ew — f(xl)>2] = 02 + bias® (]?(xl)) + Var <f(xz)) :

We expect the bias to decrease for more complex models and the variance to
increase. If we choose a very simple model with a low variance, we might fail to
capture the relevant structure of the data. If we fit a very complex model that
is almost unbiased, we have a good explanation of the available sample but will
probably fail to predict on new observations. The latter phenomenon is called
overfitting. In Section 7.1, we study this bias-variance trade-off in more detail for

linear shrinkage estimators.

Let us return to the essential question of this chapter. How do we select a model?
Let us assume that we have a lot of data at hand. In this case, we can proceed
in the following way. We split the data set into two parts: a training set and
a validation set. We fit the models on the training set. We then compare their
performance on the validation set. Note however that in most situations, the
amount of available data is limited and we cannot afford to exclude a fraction
of the data from model estimation. We therefore need different strategies to
estimate the risk of a model. Roughly, we distinguish two different approaches.
In the first approach, we repeat a random splitting into training and test set
several times. This is called cross-validation and is discussed in Section 2.1. In

the second approach, that is presented in Section 2.3, we use the fact that the
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risk of a model can be estimated in terms of its empirical risk and its complexity.

More precisely, the complexity can be expressed in terms of degrees of freedom.

2.1 Cross Validation

The cross-validation technique (Stone 1974, Stone 1977) produces estimates of
the risk R(]?) of a model ]? Recall that in order to select the best model, it is
suggested to split the data into a training set and a validation set. The model is
fitted on the training set and its performance is estimated on the validation set.
As in a lot of cases, we do not have enough data at hand, a more refined strategy
is pursued. We randomly split the data into K parts of roughly the same size.
For k = 1,..., K, we remove the kth block from the data and fit the model to
the remaining K — 1 parts. The kth block is used as a test set. That is, for each
block k, we obtain an estimate of the risk of the model that was fitted on the
other K — 1 blocks. Finally, we average these K estimates. More formally, the

function
k:{l,....,n} — {1,...,K}

assigns to the ith example its block membership. We denote by f"‘“ the function
that was fitted on all but the kth block.

Definition 2.1. The K-fold cross-validation error is
n 1 - k(i
eV (F) = DLl F 0. (2.3)
i=1

For K = n, this is called the leave-one-out error.

Let us note that the computational costs of K-fold cross-validation can become
very high if K is large. In this case, we have to fit the models several times, which

can be very time-consuming.

2.2 Degrees of Freedom

As already mentioned above, the quality of a model or a function fis measured
in terms of its expected risk (1.3). As this risk cannot be computed, we need

a good estimate. The empirical risk (1.5) of fis obviously not a good estimate
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of (1.3). We expect the empirical risk to be lower than the true risk, as we use
the same data set to fit the model fand to asses its performance. If we use the
training data for model assessment, this leads to overoptimistic estimates of the
risk. The gap between empirical and test error is usually particularly large for
very complex models. In order to get a good estimate of the expected risk, we

have to measure the gap between empirical error and the expected risk.

Recall the general regression model (1.6). Note that we defined the expected
risk of ]? at a data point x; in (2.1). The estimated function ]? depends on
the sample S, that is it depends on Y™ = (Y1,...,Y},). If we average over all
points zy,...,x, and compute the expectation with respect to Y, we obtain

the expected in-sample risk of our strategy,

n

E3 ()|

i=1

Rin - Rin(xla cee ,ZL‘n) = EY(")

The difference between R;, and the expected empirical risk is called the optimism:

L3 {n () - (7))

1=

~

op = Rin, — By [ﬁ( )} = Eym)

The key point is to find a good estimate op of op. We can then estimate the

in-sample risk of a model in the following way:

Ry, = R+ap. (2.4)

Proposition 2.2. For the quadratic loss function (1.4), the optimism of a fitting

method is

op = %i Cov (f(xl),Yz> : (2.5)

Proof. Tt follows from (2.2) that

Ry = o+ % Z; By <F(xi) - f(.a%-))2 .
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Next, we have

RGP = 23 (Y- )

_ % Z (yz — F(x;) + F(a) — A(x,))z
= S v P 2 S P (P - F)

It follows that

A~ o~

EymR(f) = o ——ZCOU Yz,f x;)) ZEy(n)( f( ))2

This concludes the proof. O

Before proceeding, it is beneficial to introduce a compact representation of a
fitting method. If we denote by fthe fitted function that is obtained by using
the sample S, we define the following map

H:R" — R",
~ —~ t
Note that the function H depends on xy,...,z,. If this function is linear in y,

we speak of a linear fitting method or a linear learner. In this case, H can be

represented by a n X n matrix H that is called the hat-matrix.

Definition 2.3 (Degrees of Freedom). The degrees of freedom of a fitting method
that is represented by H is defined as

In particular,

In order to find a better description of (2.5), it is necessary to assume that the
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error variables ¢; in (1.6) are normally distributed. The next useful lemma is due
to Stein (1981).

Lemma 2.4 (Stein’s Lemma). Assume that X ~ N(u,0?) is a univariate random
variable with density function ¢ and that g : R — R s a differentiable function
such that

lim g(x)p(r) = 0. (2.7)

We have

Cov(g(X),X) = o"Eg'(X)].

We can easily extend Stein’s lemma to multivariate random variables.

Lemma 2.5 (Multivariate Stein’s Lemma). Assume that
X =(Xy,...,X,) ~ N(p,oL)
is a multivariate random variable with density function ¢(x) = [[%_, ¢i(x;). Let
g=1(91,---,9p) + RF R

be a differentiable function which fulfills
lim g;(x)¢i(x) = 0. (2.8)

r—+00

We have
gCOU (9:(X),X;) = o°E {tmce (%g(}())] ,

Proof. We fix i € {1,...,p} and set

X—i = (le“‘7Xi—laXi+17”‘;Xp)'
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We have

Cov (g:(X), X;) = Exl[g:(X)(X; — E[X;])]
= Ex_Ex,x_, [9:(X) (Xi — E[Xi])]
= EX—iEXi [gz(X) (XZ - E[Xz])]
The last equality is valid as we assume that the variables X; are independent.
In the expression El, [¢:(X) (X; — E[X;])] in the last line, g;(X) only varies in

X, and the other components are considered to be constant. We can now apply
Stein’s lemma 2.4 to ¢;(X;) and X; and obtain

Cov (g;(X), X;) = 0*Ex_,Ex, {(aiXigi(X))] = 0’FEx Ka%,igi()())} :

This proves the lemma. O

Corollary 2.6. Assume that the function H defined in (2.6) is differentiable. If
Y; is normally distributed, Y; ~ N(F(x;),0%) and H fulfills assumption (2.8), we

have
iC’ov(}Af- Y;) = 0?F |trace LH (Y(”))
- 2y 11 aY(n) .

In particular,

df(H) = E

OH (Y™)
trace W .

In this case,

~ (n)
df(H) = trace (%) (2.9)

is an unbiased estimate for the degrees of freedom of H. If the learner is linear
iny, ie y=Hy with H € R"" we yield

df(H) = trace(H).

As an illustration, let us consider the OLS estimator defined in (1.11). The
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function H corresponding to this estimator is
=X (X'X) X'y="Pxy.

The trace of the projection operator equals the dimension of the space spanned

by the columns of X. We obtain the well-known result

df(OLS) = rank(X).

2.3 Information Criteria

We now return to the estimation of the risk of the model. Information criteria are
based on the idea that the quality of a model depends on its training error and on
its complexity. Different approaches lead to different amounts of penalization of
the complexity of a model. Information criteria differ in they way how much they
penalize the complexity of the model. We already remarked in (2.4) that we can
estimate the in-sample risk in terms of the empirical risk and its complexity. The
Akaike Information Criterion (AIC) (Akaike 1973) is a generalization of (2.4).
It is based on a general, asymptotic relationship between the Kullback-Leibler
Information Criterion and maximum likelihood theory. We do not want to go too
much into detail and refer e.g. to Burnham & Anderson (2004). In the case of

normally-distributed error terms ¢;, the AIC-criterion is equivalent to (2.4),

~

AIC(f) = E(f)+%df(ﬂ)a2.

The quantity o can be estimated via

1 & ~ 2
o - n Z (yl f(xz)) .
We choose the model that minimizes the AIC information criterion
.]/l\.AIC = argmin AIC(]?) :
f

As the general AIC criterion only holds asymptotically for large values of n, there
is a corrected version of the AIC criterion for small sample sizes (Hurvich & Tsai

1989). Another criterion that is based on the principle of minimum description
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length (Hansen & Yu 2001) and that is used in Chapter 9 is

A~

gMDL <f) — log (#ﬂmﬁ(]ﬂ

) (mg (Z v - nf%(f)) ~log (dﬂmﬁmﬁ(ﬂ)) '

The last two criteria penalize the complexity of a model more strongly than the
AIC criterion.
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Chapter 3

Partial Least Squares Path Models

Partial Least Squares (PLS) path models (Wold 1982, Wold 1985) are a frame-
work for modeling linear relationships between several blocks of variables. In
this sense, they can be seen as a generalization and an extension of Canonical
Correlation Analysis (Hotelling 1936) to more than two blocks of variables. The
relationship between different blocks are modeled in the following way. For each
block of variables, we look for a latent variable — that is, a linear combination
of these variables — such that latent variables that are assumed to be linked are
highly correlated. These latent variables are estimated with algorithms that have

a power method flavor.

The statistical and mathematical theory of PLS path model has not been fully es-
tablished. In fact, PLS is defined via algorithms as in Wold (1982) and Lohmoller
(1989) and not via a statistical model or an empirical optimization problem. Some
fundamental questions have not been answered. For example, it is not guaranteed
that the PLS algorithms converge numerically (although convergence is always
observed in practice). More severely, for a wide class of algorithms (those with at
least one block in mode A), it is not known if the latent variables computed by
PLS are at least a stationary point of a sensible optimization problem. We show
that this is not the case, if we require that the objective function of the optimiza-
tion problem is at least twice differentiable. For a different class of algorithms
(those with all blocks in mode B), it is known (Mathes 1993) that the solution
of the PLS algorithms is a stationary point of a sensible optimization problem.
It is however not known if we always obtain the optimal solution. We provide a

negative answer to this problem.

19
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3.1 The Partial Least Squares Framework

In the PLS path model framework, we model linear relationships between different
blocks of variables. One variable is a vector of length n, as we observe n examples.
We have K blocks of variables, and each block consists of p, variables, which are

subsumed in a matrix
X, €¢ R¥Pr k=1,... K.

In total we have

variables. The blocks of variables are called manifest variables in the PLS litera-
ture. The relationship between blocks is represented by a so-called inner model.
Arrows between different blocks of variables X, indicate in which way they are

linked (see Figure 3.1). For each inner model, we can define an undirected link

X1 X2

X3 = X4

Figure 3.1: Illustration of a PLS path model with K = 4 blocks.

matrix C € {0, 1}5*K via

1 y Xl—>XkOI" Xl—>Xk
Ckl =

0 , otherwise
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(and ¢gx, = 0). Furthermore, we assume that for each block X, there is a single
latent (or hidden) variable z, € R™ that represents this block. This is called
the outer model and is illustrated in Figure 3.2. We distinguish two types of

7]

Z3

. \/

Figure 3.2: Illustration of the outer PLS model. Each block of manifest variables
is replaced by one latent variable.

relationships between latent and manifest variables. The first one is the formative
model, the second one is the reflective model (see Figure 3.3). In the formative
model, we assume that the block X}, of manifest variables forms the latent variable

zr. In terms of a regression model, this can be expressed as
Zp = Xk,B—i—s (31)

In the reflective model, we assume that the manifest variables are a reflection of

the latent variable. The underlying regression model is

Given data, we want to estimate (1) the latent variables, (2) the relationship in
the inner model, and (3) the relations in the outer model. In order to estimate 2y,
we need to define sensible optimality criteria. Ideally, these criteria have three
features: Firstly, we want to find estimates z; such that z, and z; are “close”

if their corresponding blocks are linked. Secondly, we want to take into account
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X1 X2

<1 <2

Figure 3.3: The difference between the two outer models. Left: The formative
model. The manifest variables X; form the latent variable z;. Right: The
reflective model. The manifest variables X5 are a reflection of the latent variable
zZ9.

the directions of the arrows in the inner model. Thirdly, we want to take into

account the directions of the arrows in the outer model.

The tough part in the process is the estimation of the latent variables. Once they
are estimated, the relationships that are indicated by an arrow can be derived by

using a least-squares estimate.

In the literature on PLS, there is often a huge gap between the abstract model (in
terms of the inner and the outer model) and that what is actually computed by
the PLS path algorithms. Normally, the PLS algorithms are presented directly
in connection with the PLS framework, insinuating that the algorithms produce
optimal solutions of an obvious estimation problem attached to PLS. This es-
timation problem is however never defined. Furthermore, the directions of the
arrows in the outer model are hoped to be taken care of by employing different
“modes” mode A for reflective blocks and mode B for formative blocks. While
the terms “reflective blocks” and “formative blocks” refer to the description of the
outer model as illustrated in Figure 3.3, mode A and B correspond to algorithms.
It is a-priori not clear how the abstract models and the PLS path models are

connected. In order to understand the mathematical theory behind all the for-
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mulas, it is indispensable to set up a general optimization strategy before deriving
algorithms that try to solve them. For this reason, in Section 3.2, we start the
investigation by presenting different optimization criteria in order to define the
latent variables z,. Afterwards, we present two algorithms in Section 3.3 that
try to compute the optimal solution. Only in Section 3.4, we introduce the two
PLS algorithms — Lohmoller in mode B and Wold in mode B- and show that
they are equal to the algorithms in Section 3.3. We repeat that we always have
to keep in mind the difference between what PLS wants to model and that what

it effectively models.

We now try to give a general overview on different types of PLS path algorithms.
All terms that are now given will be defined in subsequent sections. In the PLS
literature, there are two generic algorithms, the Lohmoller procedure and the
Wold procedure. Roughly, there are the following measures of closeness between
latent variables: Horst, factorial and centroid. These measures are usually called
schemes. They have in common that they do not (!) consider the directions of
the arrows in the inner model. A variant of PLS that does fulfill this condition
is the “path weighting scheme” (which is not considered in this work). We recall
that the directions in the outer model are hoped to be taken care of by employing

different “modes”: mode A for reflective blocks and mode B for formative blocks.

Let us conclude this section with some additional definitions. In order to simplify
notation, all variables are assumed to have zero mean. The empirical covariance

matrix between blocks of variables is denoted by
1 t X
S = —X X, € RPe7PL (3.3)
n

We frequently work with vectors and matrices that have a block structure that is
induced by (p1, ..., pk). The covariance matrix S € RP*P of X can be partitioned

into blocks of the form

Su S ... Sik

S91 S» ... S
g _ .21 22 ?K c RP<P

SK1 SKK
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with Sy, defined in (3.3). We denote this block-wise structure by [ |:
S = [Skl] c RP*P,

Furthermore, we need matrices that only have entries in their diagonal blocks.
We denote them by

S 0 0
. 0 522 0
Sp = diag[S11,...,Skr| = | . , € RP*P

The subsript D indicates that we only take the diagonal blocks of the matrix S.

Any vector w € RP can be partitioned into

w' = ('w’i, o ,wﬁ()t , wy € RPF, (3.4)

3.2 Optimization Strategies

In this section, we abandon the PLS framework. Instead, we present different
optimization criteria in order to define latent variables z;. The general idea is to
extend and generalize Canonical Correlation Analysis (CCA) (Hotelling 1936) to
more than two blocks of variables. We try to find latent vectors z, = X, w;, such
that z; and z; are maximally correlated if the corresponding blocks are linked.
In this sense, it is an extension of CCA. For two blocks of variables X; and X,
CCA computes

arg max cor (Xjwy, Xowy) .
wi,w2

We can scale the weights w;, wy without changing the optimization problem, and

we obtain the equivalent optimization problem

arg max cov (Xjwy, Xow,)
w1,w2

1
subject to  — || Xwi||*=1,i=1,2.
n

This leads to the following general definition.
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Optimization Problem 3.1. For K blocks of variables, we define the following,

general optimization problem:

arg max Z g (cov(Xpwy, Xywy)) |
bt k,l:ckﬁéO

1
subject to  —|| X wi||* =1.
n

Here, g is one of three functions

x , Horst
g(x) = 2?2, factorial -
|x| , centroid

The terms “Horst”, “factorial” and “centroid” are called schemes in the PLS lit-
erature. We call the first scheme the Horst scheme as it is equivalent to a gener-
alization of CCA to more than two blocks that is described in Horst (1961) and
Horst (1965). The terms “factorial” and “centroid” stem from the PLS literature.
We remark that the Horst scheme is not used in the PLS community, although
it has been suggested as an alternative to the two other schemes by Hanafi &

Qannari (2005).

Let us define the real-valued function

K
fow) =" g(cov(Xpwy, Xowr)) = > crg (w}Suwy) |
k,l:ckﬁéo k,lzl

with w defined in (3.4). The Lagrangian function associated to problem 3.1 is

1

L(w’A) = fg(w)__

[M] =

k=1

with A = (A1,...,A\g) € R¥ the Lagrangian multipliers. The factor —1/2 is

added in order to avoid a rescaling of the multipliers \;. We set

le = Okl(w) = COV (kak, Xlwl) = w,’iSkl'wl . (36)
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Differentiating the Lagrangian function (3.5), we yield

dL &
owy ; cxtg’ (O) Srwr — ApSprwy, (3.7)
oL
a—)\k = wZSkkwk —1.
We set
Sy(w) = [crg (Or) Skl (3.8)
which implies that
9fy

w) = S,(ww.

These equations can be represented in a compact form.

Proposition 3.2. The Lagrangian equations (A.6) and (A.7) of the optimization

problem 3.1 are

Sy(ww = ASpw,

The matrix A is a diagonal matrix that is of the form
A = diag[\I,,, ..., A\l ] € RPP.

We might think of A = (A1, ..., Ag) as a vector of multivariate eigenvalues. Note
that in the Horst scheme, the matrix Sy(w) does not depend on w and in this case,

the problem is called a multivariate eigenvalue problem (Chu & Watterson 1993).

Remark 3.3. Of course, in the centroid scheme, the function f,(w) is not dif-

ferentiable on RP. We therefore have to restrict f, onto the open subset
M = {'lU c R|w,§5klwl 7& 0} .
Note that we can decompose M into finitely many disjoint open subsets

Mz = {'w S R|Slgn (w,’iSklwl) = Ik;l} . (39)
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Here Z € {+1}X*K is a symmetric matrix with diagonal elements equal to 1.
Whenever we speak of a derivative of f,, we implicitly assume that f,, is restricted
to one of these subsets. Note that on any of the subsets Mz, the matrix S,(w)
that is defined in (3.8) does not depend on w.

Any solution of the equations in proposition 3.2 is — by definition — a stationary
point of the optimization problem 3.1. In general, there might be more than one

stationary point.

Lemma 3.4. The stationary point w that is a solution of 3.1 is the one such

that the sum of the corresponding multivariate eigenvalues is mazximal.

Proof. We first note that

1, Horst, centroid
=cg(x).
2, factorial

It follows that for all w that are stationary points,

> cug (WpSwwy) = T crg (wiSkw;) wiSyw,

k,l k,l
= w'S,(w)w

k
k
U

If we want to maximize the covariance between latent variables instead of corre-

lation, we have to change the constraints in 3.1. We obtain

arg max Z g (cov(Xpwg, X,wy) ,) (3.10)

w

1
subject to  —[Jw|* =1,
n
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We can always transform optimization problem 3.1 into (3.10): Denote by \/Skx

the root of the positive-semidefinite matrix Sy,. We set

VSp = diag [E@] (3.12)
S = (@>_S(¢?)_. (3.13)

It follows readily from the singular value decomposition of X and X, that

Su = VS (V) Su(VSu) VSu.

We conclude that optimization problem 3.1 is equivalent to
argmax ) g (@i&r@) :
k,l:ci; 70

1, -
subject to  —|lw|| =1.
n

3.3 Multivariate Power Methods

If we want to find the optimal solution of the optimization problem 3.1, we can
proceed stepwise. First, we compute a solution of the associated Lagrangian
equations. As this is a stationary point, we then have to check if this is the
optimal one. One possibility to solve eigenproblems as in proposition 3.2 is to

apply a multivariate version of the power method defined in algorithm A.9.

Algorithm 3.5 (Multivariate Power Method). After the initialization of weight

vectors w = (wy, ..., wg) such that wiSywy = 1, we iteratively compute
@i+ = S§;8, (w(i)) w® iteration
wgﬂ) = ’lB,(:Jrl)/\/'lE](jJrl)Skk'lE](jJrl) Jk=1...,K  normalization

If the multivariate power method converges to a vector w, this is obviously a
solution of the Lagrangian equations 3.2. Note that in algorithm 3.5, all weight
vectors wy, are updated simultaneously. There is a variation of the power method,
where in each round, only one weight vector is updated. We call this algorithm a
multivariate Gauss-Seidel algorithm. In order to have a compact representation,

let us define the quantities 6; in a more general way. For two vectors w and v,
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we define
Op(w,v) = w.Syv.
We set
Sy(w,v) = [cug (Ou(w,v)) Sk -
Note that

Op(w) = Oy(w,w) and S,(w) = S,(w,w).

Now, let us decompose

Sy(w,v) = Uj(w,v)+ Uy(w,v)

with U, the strictly upper triangular part of S,. (Recall that the block diagonal

of S,(w,v) is zero, as g, = 0.)

Algorithm 3.6 (Multivariate Gauss-Seidel Algorithm). After the initialization of
weight vectors w = (wy, ..., wg) such that w;Swy = 1, we iteratively compute

fork=1,...,K

B = Sy (U (w®, w ) w4+ U, (w®, w®) w)

For the Horst scheme, the Gauss-Seidel algorithm is already defined in Chu &
Watterson (1993).

Proposition 3.7. If the multivariate Gauss-Seidel algorithm converges to a vec-

tor w, this is a stationary point of 3.1.

Proof. 1f w is the solution of the multivariate Gauss-Seidel algorithm, we conclude
that w = Aw with w defined in algorithm 3.6. We plug this into the formula for

w and obtain
SpAw = U, (w,w)w + Uy (w,w)w = Sy (w) w.

These are the the Lagrangian equations 3.2. O
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3.4 The Partial Least Squares Path Algorithms

Now, we return to the PLS framework introduced in Section 3.1. There are two
important algorithms that try to compute the latent variables in the path model
- Lohmoller (Lohmoller 1989) and Wold (Wold 1985). The algorithms presented
here are in mode B. Mode B refers to a path model where all blocks are sup-
posed to be formative. PLS in mode A (which corresponds to reflective blocks)
is discussed in Section 3.5. The common point of view is that these algorithms
are alternating algorithms in the sense that we iteratively estimate first the inner
model and then the outer model. We show that Lohmdller corresponds to the
multivariate power method 3.5 and that Wold corresponds to the multivariate
Gauss-Seidel algorithm 3.6. As a consequence we can conclude that - if all blocks
are formative - the PLS solutions are indeed stationary points of the optimization

criterion 3.1.
Let us start with Lohmdller’s algorithm.

Algorithm 3.8 (Lohméller’s algorithm) After the initialization of weight vector
w® such that z,go kak has length \/n we iteratively compute for all k

simultaneously
2 — K g (O (w®)) 2" inner model (environmental variable)
](;“) = (X} X)) X};%fjﬂ) outer model in mode B
'w/(f - \/ﬁ@,(f“)/ HXk'tTJ,EfH) normalization
2 = Xt update

We remark that the term “environmental variable” is part of the PLS nomen-

clatura.

Proposition 3.9. The Lohmdller algorithm is equal to the multivariate power
method.

Proof. The proof is straightforward. Note that the formula for the environmental

variable equals

Ck;lg Okl ) X 'lUl( D .

Mx

K
gl(g) = Z Cr1g (le
=1

=1
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It follows that
P = et

= Skk (Z Cklg ekl ) X Xlwl( )>
= Skk (Z g (Ou(w?)) )) Siw; )> ;

which equals the formula in algorithm 3.5 — up to a scaling factor. U

Now, we consider Wold’s algorithm. In this algorithm , only one block is updated

in each inner loop.

Algorithm 3.10 (Wold’s algorithm). After the initialization of weight vector
w© such that z,io) X wk) has length \/n we iteratively compute for k =

1,...,K
gliwrl) — Zz 1 Crg’ <wk Sklw(”l))) zl(iﬂ) inner model (environmental
+ Zl:kH crg’ ('w,(g )Skl'wl(i)> zl(i) variable)
’lB;(jH) = (X.X.)~ X}igffﬂ) outer model in mode B
wgﬂ) = \/ﬁﬁgﬂ)/ HkatB,(:H) normalization
zliiﬂ) = kagﬂ) update

It follows readily that the Wold algorithm is the same as the multivariate Gauss-
Seidel algorithm.

Proposition 3.11. The Wold algorithm is equal to the multivariate Gauss-Seidel

algorithm.

Proof. The proof is analogous to the proof of proposition 3.9. It follows from the

definition of the environmental variable that

(Skk) Z+1) — X]iz’](gz)

k-1
_ g (@;z(’w(i), ,w(i-i—l))) Sklwl(i-i-l)
I=1
K .
+ Y eug Ora(w®, wt ) Suw,”
I=k+1

and this equals (77). O
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This leads to the following conclusion.

Proposition 3.12. Suppose that we use mode B and one of the schemes “Horst”,
“factorial” or “centroid”. If Wold’s or Lohmdller’s algorithm converge, their re-

spective solutions are stationary points of optimization problem 5.1.

It has already been shown in Mathes (1993) that the solution of the PLS path

algorithms are solutions of the Lagrangian equations 3.2.

We end this section with a geometric interpretation of the PLS path model algo-
rithms. In order to keep the example simple, we only consider the Horst scheme
and assume that all blocks are linked. The Lagrangian equations expressed in

terms of the latent variables z; are

/\ka = PXk <ZZ[> .

14k

Here, A\, is the normalization term. In other words, for every stationary point of
the optimization problem, the latent variable z; equals — up to its length — the
projection of the sum of the other latent variables onto the space spanned by the
columns of X,. This is the generalization of the geometric interpretation of CCA
described in Kockelkorn (2000).

Finally, let us briefly mention that we can apply the kernel trick to the PLS path
model framework. To do so, let us start with the remark that we can represent

any vector wy € RP* by
wy, = Xjop+w, , wry L span(Vy).
Here,
X, = UX V!
is the singular value decomposition of block X. It follows that
zi = Xpwy, = Xy, (Xjop + W) = Xp X[ o + Xpwi = X X o

As the optimization problem 3.1 only depends on wy via z;, we conclude that
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we can assume that
w — )(20%.

Plugging this into the PLS path algorithms, we obtain a dual representation in
terms of the dual variables ;. A combination of generalized CCA with the kernel
trick is studied in Yamanishi et al. (2003). In this work, the Lagrangian equations
3.2 for the Horst scheme are expressed in terms of the Kernel matrices X X} —
with the (erroneous?) additional constraint that all multivariate eigenvalues \;

are equal.

3.5 No Smooth Optimality Criterion for Mode A

We now describe why mode B is supposedly related to formative blocks of vari-
ables and present a heuristic how to adapt the algorithms for reflective blocks.
In the estimation of the outer model in the PLS algorithms, the unstandardized

weight vectors
0D — (xtx,)” xtz0+D
Wy, = (X Xy) Xiz

can be interpreted as the OLS regression coefficients of the linear regression model
(3.1) (with the latent variable replaced by the environmental variable). For this
reason, it is argued that the algorithms in mode B (3.8 and 3.10 respectively)
refer to formative blocks. The heuristic is now as follows. For any reflective block
of variables, we first estimate the coefficients 3 of the linear regression model
(3.2) that refers to reflective blocks. If we use OLS, we obtain

~ 1

t~
/6 = "’t—"’szk
212k

This implies that

—~

X, = 208 . (3.14)

Given the manifest variables X}, we now have to estimate the latent variable z;

based on (3.14). That is, we have to find the solution zj of the over-determined
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equations
~t
Xk = Zk,B .

We obtain the estimate

1 -~
ZL = Xkﬂ

PPN
Note that the scale of z; is not important, as all latent variables are normalized.
To summarize, for all blocks k that are reflective, we replace the estimation of

wy, in the outer model by
wit = xiziY (3.15)

This estimation mode is called mode A. We do not discuss the validity of this

heuristics.

Let us define

~ ' ~ ~ I, .k ofmodeA
Sp = diag [DZ] , D; = .
Syt ,k of mode B

Proposition 3.13. If we replace the estimation of the weights in the outer model
in algorithms 3.8 and 3.10 by (3.15) for all reflective blocks, any solution of the
Lohmdller and the Wold algorithm fulfills

S,(w)w = ASpw, (3.16)

Proof. The proof follows immediately from the definition of the algorithms. We
only prove the statement for the Lohmoller algorithm. The result for the Wold
algorithm follows in the same way. Analogously to the proof of proposition 3.9,

we have
K

518) = Z Cklg, (le(w(l))) Xl'wl(z) .

=1
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It follows that
w}(jﬂ) _ <
~ - K . 3
- < ’f) (chzgl (ekl(w(z)))X’inwl(l)>
=1
~ - K . 3
- <D’f) (Zcmg' (Ora(w)) S ’“Zwl(Z)) |

=1

Wl

k)_ X!z

>

Replacing 'w,(:) and ’lB,(;

plete. O

) by their respective limits wj and wy, the proof is com-

Equations (3.16) and (3.17) do not yet have the form of Lagrangian equations
(A.6) and (A.7), as the constraints (3.17) do not fit to the right hand side of
(3.16). In order to obtain a valid form, we have to multiply each side of (3.16)
with

Sir Kk of mode A

§D = dlag [EZ} s EZ = .
I, ,kofmodeBB
This yields

Sp(S,(w)w = ASpw, (3.18)

These cannot be the Lagrangian equations of any twice differentiable optimization

problem.

Theorem 3.14. Suppose that at least one block is of mode A. For almost all data
sets X, the equations (3.18) and (3.19) are not the Lagrangian equations of an
optimization problem (A.3) and (A.4), where the objective function f in (A.3) is

twice-differentiable.

The term “for almost all data sets” refers to the fact that the set of matrices X

for which the above statement does not hold, has measure zero.

Proof. Suppose that (3.18) and (3.19) are the Lagrangian equations of an opti-
mization problem as in (A.3) and (A.4). This implies that Sp (S,(w)) w is the

first derivative of the objective function (A.3). It follows that the Hessian matrix
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of this objective function is

2 o (Syw)w = Sy

. (S,(w)w) = SpH,(w)  (3.20)

9
ow
The matrix H,(w) is the Hessian matrix of f,. It follows from the Theorem of

Schwartz A.4 that (3.20) is a symmetric matrix. We have

(SpH,(w))' = (Hy(w))' (Sp)" = Hy(w)Sp

and consequently, the matrix Hg('w)gD is symmetric if and only if the two ma-

trices commute,
H,(w)Sp = SpH,(w). (3.21)

This is in however in general not the case. To see this, we have to compute the
Hessian matrix of f, for the respective schemes. If we consider the Horst scheme,
we have )

0%w ow AR
as the matrix Sy(w) does not depend on w. For the centroid scheme, we restrict
the function on one of the open subsets Mz defined in (3.9). As the matrix S,(w)

does not depend on w on this subset, we have

a2f9\MZ

0%w

= [Cklzklskl] .

It follows that for the Horst scheme or the centroid scheme, condition (3.21) is

equivalent to the following equations. If the blocks k£ and [ are linked, we have

Sleu = SkkSkl s k and | of mode A,
SMSU = Sk;l s k of mode A, 1 of mode B.

These conditions are in general not fulfilled. For the factorial scheme, the equa-
tions become more complicated, but is still possible to show that condition (3.21)
is not fulfilled. Recall (3.8) from which follows that the first derivative of f, is a
block vector with the kth entry equal to

K
Z Crl (w,’iSklwl) w; .
=1
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If we differentiate this expression with respect to w;, we obtain

Hg(w) = SQ(W)+ [cleklwl'w};Skl] .
We conclude that if the blocks & and [ are linked, condition (3.21) is equivalent
to

(Sk;l + Sklwlw};Skl) Sy = Sik (Skl + Sklwl'w,thkl) , kand 1 of mode A,
(Sk;l + Sklwlw};Skl) S; = (Sk;l + Sklwlw,f;Skl) .k of mode A, 1 of mode

These equations are in general not fulfilled. O

As a consequence, we advocate to be cautious to use mode A. Suppose that
the algorithm is applied to different start vectors and that the resulting weight
vectors are different. There is no way to decide which one of them is better, as
we do not know of any optimality criterion attached to mode A. Note that the
above described scenario is not hypothetical. We show in Section 3.6 that the

algorithms in mode B do not necessarily converge to the solution of 3.1.

Note furthermore that we can easily modify the PLS algorithms in mode A such
that their solutions are stationary points of sensible optimization problems. Let
us assume that all blocks are of mode A. We replace the normalization step of

the weight vectors by

(i+1) 1 —(i+1)
w = — .
~(2+1 k

nllwy |

It is straightforward to show that any solution of the PLS path algorithms fulfills
the Lagrangian equations associated to (3.10). In other words, by modifying the
normalization step in mode A, we obtain a stationary point of the optimization

problem attached to maximizing covariances instead of correlations.

3.6 No Convergence to the Optimum for Mode B

The numerical convergence of the algorithms is only proven for the Horst scheme
(Chu & Watterson 1993). Recently, Hanafi (2006) showed that the Wold algo-
rithm in mode B converges monotonically. That is, for the sequence of weight
vectors w? computed by this algorithm, the real-valued sequence f; (w®) is

monotonically increasing and bounded. Even if the algorithms converge, it is not
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guaranteed that the obtained vector w is the solution of the optimization problem
3.1. Chu & Watterson (1993) present a counter example for the Horst scheme if
we apply the multivariate power algorithm. It is shown that the solution of the
multivariate power algorithm depends on the starting value and that it is likely
that the algorithm converges to a local solution. Hanafi (2006) present a counter
example for the centroid scheme. In this section, we present a counter example
for both the factorial and the centroid scheme and for the both PLS algorithms

— Lohmdéller and Wold. For the obvious reason, we only consider mode B.

We present two examples. Let us start with the remark that the second counter
example is not chosen because it reflects any real world situation, but in order
to make the results reproducible. In fact, counter examples can be found easily,
and the convergence to local optima seems to be the “generic” case (at least for
the centroid scheme) if the manifest variables are not highly correlated. This
is shown in the first example. In both examples, we use K = 3 blocks of vari-
ables. Each block consists of p, = 4 variables. This implies that the matrix
X = (X1, X2, X3) consists of 4 x 3 = 12 columns.We assume that all blocks are

connected.

We consider both PLS algorithms — Wold and Lohmoller —in the factorial scheme
and the centroid scheme respectively. This yields four different variants. We
run these four different algorithms 500 times. In each iteration, the standardized

starting vectors w,go) are drawn randomly.

Fairly realistic, but not exactly reproducible example

The number of examples is n = 50. Each row of X is a sample of a multivariate
normal distribution with zero mean and the covariance matrix equal to the iden-
tity matrix. In order to save computational time, we first transform the data as
described in (3.11),(3.12) and (3.13). In this example, the two algorithms in the

factorial scheme always converge to the set of multivariate eigenvalues
A1 =0.19735 Xy = 0.0741 A3 =0.27133 > \; = 0.54278.

As this is the only solution out of the 500 experiments, this indicates that it is

the global optimum.



3.6. NO CONVERGENCE TO THE OPTIMUM FOR MODE B 39

Scheme | Algorithm | Global Optimum | Local Solution

factorial Wold 100 % 0%
Lohmdller 100 % 0%

centroid Wold 46.8 % 53.2%
Lohmdller 54 % 46 %

Table 3.1: Results for the first example

For the centroid scheme, we first remark that — given the same start vector — the
Lohmoller and the Wold algorithm can produce different results. In this example,
different results are observed in 16.4 % of the cases. For the centroid scheme, the

algorithms converged to one of the two sets of multivariate eigenvalues

Solution 1 A; = 0.59238 Ay = 0.50684 A3 =0.60448 >\, = 1.70370.
Solution 2 A; = 0.53533 Ay = 0.42023 A3 = 0.66051 >\, = 1.61607.

The second one is only a local solution. As we only observe these two solutions,

we conjecture that the first one is the global optimum.

For each algorithm and each scheme, we count the number of experiments in
which the algorithms converged to the respective solutions. Table 3.1 illustrates

that both algorithms have a substantial chance to converge to the local optimum.

Unrealistic, but reproducible example

The number of examples is n = 12. We define the 12 x 12 matrix X =
(X1, X3, X3) in the following way:

1 Ji=j,j=i+1
X, = S .
0 ,otherwise

We center the columns of the matrix X. In this example, we observe a conver-

gence to local solutions in both schemes.

Exactly as in the first example, the Lohmoller and the Wold algorithms sometimes
produce different results. This happens in 17% of the cases for the factorial scheme

and in 23% of the cases for the centroid scheme. Secondly, the result depends on
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Scheme | Algorithm | Global Optimum | Local Optimum

factorial Wold 87.4 % 12.6 %
Lohmoller 80.4 % 19.6 %

centroid Wold 42.8 % 57.2 %
Lohmoller 57.4 % 42.6 %

Table 3.2: Results for the second example

the starting vector. For the factorial scheme, the algorithm converges to one of

the two sets of multivariate eigenvalues

AL =0.74718 Xy = 0.99703 A3 =0.39944 >\, = 2.14365,
A1 =047979 Ay = 0.48329 A3 =0.53733 > A, = 1.50041.

Solution 1

Solution 2

The latter solution is only a local solution and we conjecture that the first solu-
tion is the global optimum. The result is similar for the centroid scheme. The

algorithms converged to one of the two sets of multivariate eigenvalues.

A1 = 113148 X\ = 1.31360 A3 = 0.97503 > \; = 3.42011,
A1 = 1.00000 Ag = 1.00000 A3 = 1.00000 > A; = 3.00000.

Solution 1

Solution 2

Again, for each algorithm and each scheme, we count the number of experiments
in which the algorithms converge to the respective solutions. Table 3.2 illustrates

that both algorithms have a substantial chance to converge to the local optimum.

3.7 Conclusion

In the PLS literature, there has been a lot of obscurity regarding the mathe-
matical background of the path modeling algorithms. In this chapter, we have
hopefully shed some light into this subject. To summarize, we showed two results.
Firstly, we proved that the PLS path algorithms in mode A produce algebraic
equations that are not linked to any sufficiently smooth optimization problem.
This marks a severe setback in the search of a justification of mode A in terms of
optimality criteria. What conclusions can be drawn from this result? Note that
in principle, it might still be possible to derive optimization problems attached
to mode A that are not twice differentiable. But we strongly advise a different
modus operandi. Instead of first defining algebraic equations and then search-

ing for associated optimization problems, we should rather first set up a sensible
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optimization problem and then search for algorithms that solve it. We pointed
out that if we maximize covariances instead to correlations, we yield equations
quite similar to the ones of mode A. Secondly, for those PLS algorithms that do
produce critical points of optimization problems, we showed that the algorithms
do not necessarily converge to the maximum. As a consequence, every algorithm

should be run several times in order to detect possible other solutions.
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Chapter 4

Partial Least Squares for Regression

If there are more variables than examples, the usual linear regression tools such
as ordinary least squares (OLS) regression cannot be applied since the p x p ma-
trix XX is singular. From a technical point of view, we can solve this problem
by replacing the inverse of X'X by a generalized inverse as described in Sec-
tion 1.3. However, if p > n, OLS fits the training data perfectly and we cannot
expect this method to perform well on a new data set. Partial Least Squares
Regression (PLSR) (Wold 1975, Wold et al. 1984) is an alternative regression
tool which is especially appropriate in the case of highly correlated predictors
and high-dimensional data. PLSR is a standard tool for analyzing chemical data
(Martens & Naes 1989), and in recent years, the success of PLSR has lead to
applications in other scientific fields such as physiology (Rosipal et al. 2003) or

bioinformatics (Boulesteix & Strimmer 2006), to name but a few.

PLSR can handle multivariate responses. We now give a general introduction and
then focus on univariate responses. Quite generally, PLSR tries to model linear
relationships between two blocks of variables X and Y in terms of latent variables.
In this sense, it fits into the PLS path model framework that is investigated in
Chapter 3. Note however that in contrast to the two PLS path model algorithms
(Lohmoller and Wold), the relationship between X and Y is not symmetric and
that we usually consider more than one latent variable. Although extensions of
PLS path models to more than one latent variable per block are possible, it is
rather confusing to describe PLSR as a special case of PLS path models. We

therefore give a self-contained introduction.

43
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4.1 NIPALS and SIMPLS

There are quite a few versions of PLSR. Mainly, they differ in the way in which
the latent variables are extracted from the data. It is not our aim to explain all
variants, and we will focus on two versions. For a general overview on different
forms of PLSR see Rosipal & Kréamer (2006).

The main idea is to build a few orthogonal components ¢4,...,t,, from the origi-
nal predictors X. A component is a linear combination of the original predictors
that hopefully reflects the relevant structure of the data. We use these latent
components as regressors in a least squares regression in place of X. PLSR is
similar to Principal Components Regression (PCR). The difference is that PCR
extracts components that explain the variance in the predictor variables whereas

PLSR extracts components that have a large covariance with Y.

We now formalize this idea. A latent component ¢ is a linear combination ¢ =
Xw of the predictor variables. The vector w is usually called the weight vector.
We want to find a component with maximal covariance to Y, that is we want to

maximize
[cov (Xw, Y)|° = w'X'YY'Xw.
We have to constrain w in order to obtain identifiability, choosing

argmax w'X'YY'Xw, (4.1)
subject to  ||lw| =1. (4.2)

Let us remark that (4.1) and (4.2) are equivalent to

w XYY Xw
wlw ’

(4.3)

max

The solution of (4.3) is only unique up to a scalar. The normalization of the
weight vectors w to length 1 is not essential for the PLSR algorithm (expect for
computational considerations as e.g. numerical stability) and PLSR algorithms
differ in the way they scale the weight vectors and components. In this paper,

we do not scale the vectors, in order to keep the notation as simple as possible.
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We conclude that the solution w; is the eigenvector of the matrix
B = X'YY'X (4.4)

that corresponds to the largest eigenvalue of B. This eigenvector is usually com-

puted in an iterative way, e.g. by using the power algorithm that is defined in A.9.

Subsequent components ¢, t3, . . . are chosen such that they maximize the squared
covariance to Y and that all components are mutually orthogonal. In PLSR, there
are different techniques to extract subsequent components, and we now present

two of them. On the one hand, for the ith component, we compute

max w'X'YY'Xw, (4.5)
subject to  |lw| =1, (4.6)
Xw Lt j<i. (4.7)

This task is called SIMPLS (de Jong 1993). On the other hand, we can deflate
the original predictor variables X. That is, we only consider the part of X that

is orthogonal on all components &;, j < :

Xi = X =Py, .4, X.

i—1

We then replace X by X in (4.1). This task is called the NIPALS method and
is described in Wold (1975). The two methods are equivalent if Y is univariate
in the sense that we end up with the same components ¢;. We present a proof in

corollary 6.4.

To summarize, the PLSR algorithm is of the following form.

Algorithm 4.1 (NIPALS). After setting X, = X, the weight vectors w; and the

components t; of PLSR are determined by iteratively computing

w; = dominant eigenvector of X!YY'X!  weight vector
t, = Xw; component
Xi—i—l = Xz - Ptl-Xz deﬂation

PLSR used to be overlooked by statisticians and was considered an algorithm

rather than a sound statistical model. This attitude is to some extent under-
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standable, as in the early literature on the subject, PLSR was explained solely
in terms of formulas as in algorithm 4.1. Due to its success in applications,
the interest in the statistical properties of PLSR has risen. It can be related
to other biased regression techniques such as Principal Components Regression
and Ridge Regression and these methods can be cast under a unifying frame-
work (Stone & Brooks 1990). The shrinkage properties of PLSR have been stud-
ied extensively (Frank & Friedman 1993, de Jong 1995, Goutis 1996, Butler &
Denham 2000) and are also discussed in Chapter 7. Furthermore, it can be shown
that PLSR is closely connected to Krylov subspaces and the conjugate gradient
method (Helland 1988, Phatak & de Hoog 2002). In Chapter 6, we establish
a similar connection between penalized PLSR (introduced in Chapter 5) and a

preconditioned conjugate gradient method.

Finally, let us remark that in many articles on PLSR, both X and Y are deflated
with respect to t;:

Xin=X =Py X , Yipn =Y =Py 4,

If we are only interested in the latent components ¢;, this is however not necessary.

To see this, we use the fact (see proposition A.10) that

seeey b

We conclude that

XerlY;-Jrl = X! (In - Ptl ----- ti) (In - Ptl

......

If the response Y = y is univariate, PLSR is sometimes refered to as PLS1. In
this case, the computation of the weight vectors is very easy. Let us define the

p-dimensional vector
b = X'y.

It follows that the first eigenvector of the matrix B = bb’ (defined in (4.4)) equals

b. To summarize, the univariate PLS algorithm is of the following form.

Algorithm 4.2 (Univariate NIPALS). After setting X; = X, the weight vec-

tors w; and the components t; of univariate PLSR are determined by iteratively
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computing
w, = Xly weight vector
t, = Xw; component
X = X,—P, X, deflation

In the next section, we list some properties of PLSR and show how to derive an

estimate B from the latent components.

4.2 Basic Properties of Partial Least Squares Re-

gression

We set
T = (t,...,t,) .

As already mentioned, the original predictors X are replaced by T and the re-

sponse is then regressed onto the columns of T'. The fitted response is
g = Pry=T(T'T) 'T'y. (4.8)

In order to predict the response for new observations, we have to determine the

vector of regression coefficients,

Therefore, a representation of the components £, = X,;w; as a linear combination
of the original predictors X is needed. In other words, we have to derive weight

vectors w; with

They are in general different from the “pseudo” weight vectors w; that are com-
puted by the NIPALS algorithm. Before stating this result, it is beneficial to cast
the PLSR method in a broader framework.

PLSR is an iterative process. In each step, we compute weight vectors w; and
then deflate X with respect to the latent components t; = X,w;. For any
algorithm that produces a weight vector w (probably depending on the data X

and y) , we can define a generic latent component regression algorithm in the
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following way.

Algorithm 4.3 (Generic Latent Component Regression). After setting X, =

X, the weight vectors w; and the components t; are determined by iteratively

computing
w; weight vector
t, = X,w; component
X = X,—P, X, deflation
The response y is then regressed onto the latent components ¢4, ..., t,, asin (4.8).

What are the merits of this generic approach? Let us emphasize that we do not
want to introduce yet another unifying framework that comprises all kinds of re-
gression methods. The reason is that in fact, a lot of properties of PLSR become
much clearer if we consider the general framework. For example, most of the
properties of PLSR do not depend on the particular method for computing the
weight vectors, but on the fact that the latent components are mutually orthogo-
nal. Papers on PLSR tend to be rather technical and proofs are sometimes hard
to follow. We now present some alternative proofs that only rely on algorithm
4.3 and exploit some basic properties of projections. As a nice side-effect, we can
apply these results (with no extra effort) to other multivariate regression tools as
Continuum Regression (Stone & Brooks 1990) or the penalized PLSR approach
introduced in Chapter 5.

Set
T = T™ = (t,...,t,) and W = WM = (w,...,w,).

These are the matrices of components and weight vectors respectively that are
defined in algorithm 4.3. We fix m and omit the superscript for the sake of
readability. We recall that for k < i

i—1

Xz‘ = H (In - Pt]-) Xk; = (In — Ptk ..... ti—1) Xk- (49)

j=k

The last equality follows from the fact that the components ¢; are mutually or-

thogonal. In particular

Xi = (In—Pyoti,) X. (4.10)
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If not stated otherwise, the following results hold for the Generic Latent Compo-

nents (GLC) Regression approach introduced in algorithm 4.3.

Lemma 4.4. We have
Xi'wj =0

for j <.

Proof. The condition j < i implies (recall (4.9))

and consequently

Xi'wj = Xj'lUj — Ptl _____ ti—Iijj
= t;—Pu,.tiit
j<i—1
=t —t,=0

O

Corollary 4.5. The weight vectors ws, ..., w,, defined by univariate NIPALS

are mutually orthogonal.

Proof. Tt follows from the definition of the PLSR weight vectors that for ¢ > j

(w;, w;) = (X}y,w;) =y'X;w; =y'0=0.

O
We now return to the generic latent components approach and set
R = T'X W ¢ R™™,
Proposition 4.6. The matriz R is upper triangular, that is
ri; = tiXw; =0, (4.11)

if i < 7. The matriz R is invertible. Furthermore, we have

1 1
XWwW = Tdiag( . )R. (4.12)

ttl—tl,. ’—tgntm
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In particualar, the columns of T and the columns of X W span the same space.

Proof. First note that (4.10) is equivalent to

It follows that

J=1 4
t X w,
=ty Ay (4.13)

As all components t; are mutually orthogonal, we conclude that
tt, 40 Li=j
tXw; = <0 P>

th'lU] 1<

We conclude that R is an upper triangular matrix with all diagonal elements # 0.
Next, note that (4.13) is equivalent to

7—1
X’lUj = %t] —+ tZJ tz .
tit; Z“ i

This equals (4.12). O

We can now determine the regression coefficients for the generic latent regression

approach.

Proposition 4.7. The regression vector B of the generic latent components

(GLC) approach defined in algorithm 4.3 is
B = W (WIXIXW) W'X'y. (4.14)

In particular, the generic latent component (GLC) estimator is the solution of
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the constrained minimization problem

min |y — X2
B
subject to B € span{wy, ..., w,} . (4.15)
Proof. We deduce from (4.12) that the columns of XW span the same space

as the columns of T'. As GLC is simply ordinary least squares regression with

predictors tq,...,t,,, we have
Yy =Pry =Pxwy = XW (VV";XU(VV)_1 WiX'y.

The second statement can be proven by noting that the constrained minimization
problem is equivalent to an unconstrained minimization problem for 8 = W«
with a € R™. If we plug this into the formula for the OLS estimator, we obtain
(4.14). O

The formulas in proposition 4.7 are beneficial for theoretical purposes, but they
are computationally inefficient. For PLSR, the calculation can be done in a
recursive and faster way. The key point is to find “primal” weight vectors w; such

that for every ¢

This can be done by exploiting relationship (4.12) and the fact that R is bidiag-
onal for PLSR.

Proposition 4.8. For PLSR, the matriz R =TT XW is upper bidiagonal, that

18
Tij = th’lUj:O,
ifi<jori+l>j.

This result is already shown in Manne (1987). In order to avoid redundancy, we

defer the proof until Chapter 5.

Proposition 4.9. The primal weight vectors w; and the regression vector of the
_ ~(0
univariate NIPALS algorithm are determined by setting wy = 0 and ,6( - 0 and
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by computing iteratively

_ w! X' Xw; _
w; = WwW; ——=< ~ W;—1,
’wt 1)(1‘/)(11]Z 1 !
~(i ~(i—1 wt Xt "
6() _ ﬁ( ) _ i y~ @
w! Xt X w;

Proof. We proof the statements via induction. For i = 1, we have w; = w; as
X; =X and

"“tXt
§=Puy = Xw (Xww X)) wiX'y=X—2>Y .
Yy tY w1 ( w1 w, ) w, Yy wiXtle wq

For a general ¢, we have

tiyn = Xipwip = (X — Py, tiX> Wiy = Xwip — Py, Xwiy .

.....

The last equality holds as R = T* X W is bidiagonal. Using formula (A.9) for
the projection operator and the induction hypothesis (4.16), it follows that

ti+1 = XwiJrl - X’IEZ (ﬁthX’IBZ)il watX'wiH .

We conclude that

@Zt-XtXwiJrl ~

Wit = Win = "Xt xw,
7 (3

The regression estimate after i steps is

(@)

X,@ - Ptl ..... tiy

= Ptl ----- t, Y+ Ptiy
~(i—1

_ Xﬁ( ) + Py
~(i—1) wi X'y

= X X—— —w;
P w! Xt X w;

This concludes the proof. O

4.3 The Degrees of Freedom of Partial Least Squares

The number m of PLSR components is an additional model parameter that has

to be determined. In most applications, this is done by computing the cross-
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validated error. In Chapter 2, we discussed a different strategy for model selection
that involves the computation of the degrees of freedom. Note that the PLSR
estimate (4.8) is not a linear function of y. Hence, we can only estimate the
degrees of freedom using equation (2.9). As a consequence, we have to compute
the first derivative of the PLSR estimator. This has been done before. Phatak
et al. (2002) compute the first derivative of BEZZ)S in order to obtain asymptotic
results on the variance of the estimator. In that work, some general rules on
matrix differential calculus are applied to the formula in proposition 4.7. It turns
out that the calculation of the first derivative of PLSR is not only numerically
instable, it is also time-consuming. The reason is that the formula for the first
derivative of,/B\ involves matrices of order (mn)xn. We therefore choose a different
approach. Serneels et al. (2004) use a recursive formula for B;";’S that is equivalent
to algorithm proposition 4.9 and derive a fast algorithm for the first derivative
PLSR. We now show how to compute the derivative of PLSR estimate gy in a

recursive way. We start with the remark that by definition,
X, = Xi1—P, X
Using the definition of the weight vectors of PLSR, we conclude that
w; = Xfy = W;—1 — titi,ly-
Let us define the modified latent components
t, = Xw;.

We conclude that
fi = Zi,1 — XXtPtFly .

Furthermore, we conclude from proposition 4.9 that

W X Xw,
W X' Xw;

. . -t - _
tizxwi:X(wi_ wil):ti_ tz ! i1 =1t — P i

Finally,
g(i) — g(ifl) + Py

This leads to the following recursive algorithm for the computation of y.
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Algorithm 4.10. We define K = X X'. After setting
to=t=9" =0,

we iteratively compute the PLSR estimates y via

_ Ky m=1 A
t, = < _ modified latent components
t = tn— P, tm latent components

gm = g 4P, y prediction

In order to to compute the first derivative of g, we have to calculate the first
derivative of the projection operator. The formula can be found in proposition

A.11 in the appendix.

Algorithm 4.11 (First derivative of PLSR). After setting
to :Zozg(o)zo and dtlzdﬂ:K,

the first derivative of the PLSR estimator can be obtained by iteratively computing

_ Ky m= .
m = §_ modified latent components
tm—l — Kpt Yy o m > 1
86?—; - 8%,«;1 - K <8Ptény_1y) derivative of t,,
t = tn— P, tm latent components
8;;” = aié”y_l - Wt’g;ltm derivative of t,,
gm = g P, y prediction
8%(;) = 6@((;2,_1) + agtgy derivative of Yy

We can now define the estimated degrees of freedom of PLSR with m components

via

~ o™
df(PLSR,m) = trace ( Y ) :
oy
This is — by definition — an unbiased estimate of the degrees of freedom of PLSR
in the case of normally distributed error terms. Although its computation is con-
siderably faster than the one proposed in Phatak et al. (2002), it still suffers from

numerical instability. This leads to peculiar and sometimes apparently wrong
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Figure 4.1: The estimated degrees of freedom of PLSR as a function of the number
of components.

results. This is illustrated with the following example. We consider the linear

regression model
y = XB+e

with p = 20 predictor variables and n = 500 examples. First, we choose the
predictor matrix X from a multivariate normal distribution with zero mean and

covariance matrix S equal to

1 =
0.7 i)

Sij =

This leads to highly collinear data X. The regression vector 3 is a randomly cho-
sen vector 3 € {0,1}?°. We assume that the error terms are normally distributed
with 0 = 8. We compute the degrees of freedom for all 20 components. Figure
4.1 shows the peculiar behavior of the estimated degrees of freedom. We expect
the degrees of freedom to be upper-bounded by p = 20 — the number of predictor
variables. This is indicated by the dashed line. Note however that after a few
components (m > 9), the estimated degrees of freedom exceed this value. The
function displayed in Figure 4.1 still increases and has the form of a jagged line.

This phenomenon persistently occurs for other data sets. We conjecture that
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algorithm 4.11 runs into serious numerical problems. Therefore, we recommend

to be cautious to implement the algorithm in its current form.



Chapter 5
Penalized Partial Least Squares

Nonlinear regression effects may be modeled via additive regression models of the

form

Y o= Bot+ fi(Xy) 4o+ fp(Xp) e, (5.1)
where the functions fi,..., f, have unspecified functional form. An approach
which allows a flexible representation of the functions fi,..., f, is the expansion

in B-Splines basis functions (Hastie & Tibshirani 1990). To prevent overfitting,
there are two general approaches. In the first approach, each function f; is the

sum of only a small set of basis functions,

fi(x) = ) BiBi(e). (5.2)

The basis functions By; are chosen adaptively by a selection procedure. The sec-
ond approach circumvents the problem of basis function selection. Instead, we
allow a generous amount K; > 1 of basis functions in the expansion (5.2). As
this usually leads to high-dimensional and highly correlated data, we penalize the
coefficients ;5 in the estimation process (Eilers & Marx 1996). However, if the
number p of predictors is large compared to the number n of observations in the

available sample, these methods are impracticable.

Quite generally, a different approach to deal with high dimensionality is to use
dimension reduction techniques such as Partial Least Squares Regression (PLSR)
which is presented in Chapter 4. In this chapter, we suggest an adaptation of the

principle of penalization to PLSR. More precisely, we present a penalized version

S7
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of the optimization problem (4.3) attached to PLSR. Although the motivation
stems from its use for B-splines transformed data, the proposed approach is very
general and can be adapted to other penalty terms or to other dimension reduc-
tion techniques such as Principal Components Analysis. It turns out that the
new method shares a lot of properties of PLSR and that that its computation re-
quires virtually no extra costs. Furthermore, we show that this new penalization
technique is closely related to the kernel trick that is illustrated in Section 1.4.
We show that penalized PLSR is equivalent to ordinary PLSR using a generalized
inner product that is defined by the penalty term. In the case of high-dimensional
data, the new method is shown to be an attractive competitor to other techniques
for estimating generalized additive models. In Chapter 6, we highlighten the close

connection between penalized PLSR and preconditioned linear systems.

This chapter is joint work with Anne-Laure Boulesteix and Gerhard Tutz.

5.1 Penalized Regression Splines

The fitting of generalized additive models by use of penalized regression splines
(Eilers & Marx 1996) has become a widely used tool in statistics. The basic idea
is to expand the additive component of each variable X; in basis functions as in
(5.2) and to estimate the coefficients by penalization techniques. As suggested
in Eilers & Marx (1996), B-splines are used as basis functions. Splines are one-
dimensional piecewise polynomial functions. The points at which the pieces are
connected are called knots or breakpoints. We say that a spline is of order d if
all polynomials are of degree < d and if the spline is (d — 1) times continuously
differentiable at the breakpoints. A particular efficient set of basis functions are

B-splines (de Boor 1978). An example of B-splines is given in Figure 5.1.

The number of basis functions depends on the order of the splines and the number
of breakpoints. For a given variable X, we consider a set of corresponding B-

splines basis functions By;, ..., Bg. These basis functions define a nonlinear map
Qi(x) = (Bi(z),..., BK(x))t )

By performing such a transformation on each of the variables X;,...,X,, the
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Figure 5.1: Illustration of a basis of B-splines of order 3.

observation vector x; turns into a vector

zZ; = (Bll(l"il)y ey BKl(l'il)a N Blp(l‘z‘p)y ey BKp(l'ip))t (53)

of length pK. Here

d:RF — RPE
Olx) = (Pi(z1),..., Pp(zp)) ,

is the function defined by the B-splines. The resulting data matrix obtained by
the transformation of X has dimensions n X pK and will be denoted by Z in the
rest of the chapter. In the examples in Sections 5.5 and 7?7, we consider the most

widely used cubic B-splines, i.e. we choose d = 3.

The estimation of (5.1) is transformed into the estimation of the p/K-dimensional

vector 3 that consists of the coefficients 3y

ﬁt: (ﬁlla"'75K17~”ﬁ12a"'7ﬁKp) - (ﬁzl)vaﬁzp)) .
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As explained above, the vector 3 determines a nonlinear, additive function

p P K
f@) =00+ Y filws) =Bo+ Y Y BriBri(a;) = Bo+ ().
j=1 j=1 k=1
As Z is usually high-dimensional, the estimation of 3 by minimizing the squared

empirical risk

n

S~ (@0 =~y — b~ 2B

i=1

1
n

usually leads to overfitting. Following Eilers & Marx (1996), we use for each
variable many basis functions, say K = 20, and estimate by penalization. The

idea is to penalize the second derivative of the function f,

[ @y,

Eilers & Marx (1996) show that the following difference penalty term is a good

approximation of the penalty on the second derivative of the functions f;,

p m

P(B) = Y ) N(A%By)*.

j=1 k=3

Here A\; > 0 are smoothing parameters that control the amount of penalization.
These are also called the second-order differences of adjacent parameters. The

difference operator A?y; has the form

A?Br; = (Brj— Br-1) — (Br-1j — Br—2;)
= Brj — 28p—1,; + Br—2,;-

This penalty term can be expressed in terms of a penalty matrix P. We denote
by D the (K — 1) x K matrix

Dy =
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that defines the first order difference operator. Setting
K, = (Dx_1Dg)' D1 Dy,

we conclude that the penalty term equals
p
P(B) =) N\iB(;) KBy =B'(A) @ K2)B.
j=1

Here Ay is the p x p diagonal matrix containing Ay, ..., A, on its diagonal and
® is the Kronecker product. The generalization of this method to higher-order
differences of the coefficients of adjacent B-splines is straightforward. We simply
replace K, by

K,=(Dg_411-.-Dg)(Dg_y11-..Dxg).

To summarize, the penalized least squares criterion has the form

~

Re(8) = ~lly— i1~ ZBI + 8'PY (5.4

with Z the transformed data that is defined in ( 5.3) and the penalty matrix P
defined as

P = A\®K,. (5.5)

This is a symmetric matrix that is positive semidefinite.

5.2 Dimension Reduction for B-Splines Transfor-

mations

As a linear approach, PLSR might fail to yield high prediction accuracy in the
case of nonlinear relationships between predictors and responses. The idea to
transform the original predictors using splines functions preliminarily to PLSR in
order to incorporate such nonlinear structures has been proposed by Durand &
Sabatier (1997) and Durand (1993) in different variants. The method proposed by
Durand & Sabatier (1997) is based on a variant of PLSR that may be computed
via an iterative algorithm. They suggest an approach that incorporates splines
transformations of the predictors within each iteration of the iterative algorithm.

In contrast, the method proposed by Durand (2001) is global. The predictors are
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first transformed using splines basis functions as a preliminary step, then PLSR
is performed on the transformed data matrix. The choice of the degree d of the
polynomial pieces and of the number of knots is performed by an either ascending

or descending search procedure that is not automatic.

For large numbers of variables, this search procedure is computationally intensive.
We suggest an alternative approach based on the penalty strategy of Eilers &
Marx (1996). In the next section, we show how the penalty scheme of Eilers &
Marx (1996) can be mapped into the PLSR dimension reduction framework.

5.3 Partial Least Squares and Penalization

We now present a general framework to combine PLSR with penalization terms.
We remark that this is not limited to spline transformed variables or the the
special shape of the penalty matrix P that is defined in (5.5). For this reason,
we present the new method in terms of the original data matrix X and we only

demand that P is a symmetric matrix such that I, + P is positive definite.

We start with a general response Y and then focus on univariate responses. We
modify the optimization criterion (4.3) of PLS in the following way. The first

component t; = X w; is the solution of the problem

w! XYY Xw
arg max

. 5.6
w  wtw + wtPw (5.6)

Using Lagrangian multipliers and recalling the definition
B = X'YY'X,
we deduce that the solution must fulfill
Bw, = v(I,+ P)w;,,veR.

For a general Y, this is called a generalized eigenvalue problem. If Y = y is

univariate, we have B = bb' and the solution is

w, = (I,+P)'b.
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We set
M = (I,+P)". (5.7)

From now on, we only consider univariate responses. Subsequent weight vectors
and components are computed by deflating X as described in Section 4.1 and
then maximizing (5.6) with X replaced by X;. In particular, we can compute the
weight vectors and components of penalized PLSR by simply replacing w; = X!y
by

in algorithm 4.2. The following generalization of proposition 4.8 holds.

Proposition 5.1. For penalized PLS, the matrix R = T'XW is upper bidiago-

nal.

The proof can be found in chapter 6. This proposition can be used for an efficient

computation of the regression vector. This is a generalization of proposition 4.9.

Algorithm 5.2 (Penalized PLSR). For a penalty matriz P, we define M =
~ (0 .

(Ip+P)_1. After setting X1 = X, wyg = 0 and B( . 0, the weight vectors

w;, w;, the components t; and the regression vectors B(l) of penalized PLSR are

determined by iteratively computing

w;,; = MXly weight vector
w;, = w;— mzﬂ primal weight vector
i i ,wzt_lxtx,wi_l i—1
(i) SG-1) | atxty .
— 2 .
B =3 e xa, Wi regression vector
t, = X,w; component
X = Xi—P X, deflation

Note that we defined penalized PLSR only in terms of the NIPALS algorithm.
It is however straightforward to adapt the SIMPLS algorithm to the penalization
approach. For a univariate response, we show their equivalence in corollary 6.4.
As the two methods differ for multivariate responses in the case of PLSR, we

expect them to be different for the penalized version as well.



64 CHAPTER 5. PENALIZED PARTIAL LEAST SQUARES

In the next section, we derive a representation of penalized PLSR in terms of a

Kernel matrix and illustrate the geometric intuition behind the penalty term.

5.4 Kernel Penalized Partial Least Squares

The computation of the penalized PLSR estimator as presented in algorithm 5.2
involves matrices and vectors of dimension p X p and p respectively. If the num-
ber of predictors p is very large, this leads to high computational costs. In this
section, we show that we can represent the penalized PLSR algorithm in terms

of matrices and vectors of dimension n X n and n respectively.

Let us define the n x n matrix K via

This matrix is the Gram matrix or the kernel matrix of X if we use the inner
product (-, -)ps defined by M. In order to apply the kernel trick described in Sec-
tion 1.4, we have to show that the penalized PLSR estimator can be represented

in terms of dual variables,

B(m) _ M_Xta(m),
a™ e R".

To show this, we first recall equation (4.10) from which follows that
Xy=X"(I,—Po v.,)y=X"(y—g"").
We conclude that the weight vectors w; of penalized PLSR are simply
w, = MX'yl | ylds = y—gty.

Plugging this into proposition 4.9, we also obtain a dual representation of the

modified weight vectors
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by iteratively computing

_ w! X' Xw; _
G T e X X,
= MX'yl — aleMXtXMXty%)S MX'a; ,
& XMX'XMX'ey
- aax (g Skt )
az'flK]2\/Iai*1

This leads in turn to a dual representation of the regression vector B(Z). We can
now state algorithm 5.2 in terms of the Kernel matrix Kp; and the response

vector y.

Algorithm 5.3. For a penalty term P, we define M = (I, + P and Ky =
XMX?t. After setting

a(i):aizo,

the dual representation of the penalized PLSR estimator can be computed itera-

tively via

Y = gy —gGl-n residuals
~ ; ol K240 ~ ‘ .
a = yl— Wﬁ%ai_l primal weight vector

. . v ~ .

al) = -1 4 %al regression vector

t, = Kyao; component
g = O 4Py estimation of y

A Kernel version of PLSR has already been defined in Rénnar et al. (1994) in
order to speed up the computation of PLSR. The importance of this “dual” rep-
resentation becomes apparent if we want to extend PLSR to nonlinear problems
by using the kernel trick. We already discussed this aspect in Section 1.4. A
nonlinear version of PLSR using the kernel trick is presented in Rosipal & Trejo
(2001). Note that ordinary Kernel PLSR applied to the transformed data (5.3)
is in fact Kernel PLSR with the feature map ® defined by the B-splines.

If we represent penalized PLSR in terms of the kernel matrix Kp;, we realize
that penalized PLSR is closely connected to the kernel trick in other respects.
It follows immediately from algorithm 5.3 that penalized PLSR is equivalent to
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PLSR with the usual inner product replaced by the inner product
(,2)py ="Mz .

Why is this a sensible inner product? Let us consider the eigen decomposition of
the penalty matrix P,
P=S0S5".

We prefer direction s such that s'Ps is small, that is we prefer directions that
are defined by eigenvectors s; of P with a small corresponding eigenvalue 6;. If

we represent the vectors & and z in terms of the eigenvectors of P,
- t > t
r=8 , z=5"z,

we conclude that

1

p
(@, 2) =2 (I,+0©) 2=
i=1

This implies that directions s; with a small eigenvalue 6; receive a higher weight-
ing than directions with a large eigenvalue. This allows an intuitive geometric

interpretation of the penalty term.

5.5 Example: Birth Data Set

In this section, we analyze a real data set describing pregnancy and delivery for 42
infants who were sent to a neonatal intensive care unit after birth. The data are
taken from the R software package exactmaxsel and are introduced in Boulesteix
(2006). Our goal is to predict the number of days spent in the neonatal inten-
sive care unit (y) based on the following predictors: birth weight (in g), birth
height (in cm), head circumference (in cm), term (in week), age of the mother (in
year), weight of the mother before pregnancy (in kg), weight of the mother be-
fore delivery (in kg), height of the mother (in ¢cm), time (in month). Some of the
predictors are expected to be strongly associated with the response (e.g., birth

weight, term), in contrast to poor predictors like time or height of the mother.

The parameter settings are as follows. We make the simplifying assumption that

A = A1 = ... = \,, which reduces the problem of selecting the optimal smoothing
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parameter to a one-dimensional problem. As already mentioned above, we use

cubic splines. Furthermore, the order of difference of adjacent weights is set to 2.

The shape of the fitted functions f; depends on the two model parameters A
and m. We first illustrate that the number m of penalized PLSR components
controls the smoothness of the estimated functions. For this purpose, we only
consider the predictor variable “weight”. Figure 5.2 displays the fitted functions
obtained by penalized PLSR for A = 2000 and 4 different numbers of components

m = 1,5,9,13. For small values of m, the obtained functions are smooth. For
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Figure 5.2: Fitted function for the predictor variable “weight” using penalized
PLSR. The value of A is 2000 and the numbers of components are 1,5 (top) and
9,13 (bottom).

higher values of m, the functions adapt themselves more and more to the data

which leads to overfitting for high values of m.

We compare our novel method to PLSR without penalization as described in
Durand (2001) and the gam() package in R. This is the implementation of an
adaptive selection procedure for the basis functions in (5.2). More details can be
found in Wood (2000) and Wood (2006). This is the standard tool for estimat-
ing generalized additive models. In order to assess the performance of the three
methods, we randomly split the data into a training set of size 32 and a test set
of size 10. The optimal parameter values are chosen by minimizing the leave-one-

out error on the training set. The optimal model is then evaluated at the test set.
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We remark that the split into training and test set is done before transforming

the original predictors using B-splines. This random splitting is repeated 50 times.

In order to have comparable results, we normalize the response. i.e. var(y) = 1.

A boxplot of the test error for the three methods is displayed in Figure 5.3.
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Figure 5.3: Boxplot of the 50 test errors for the three methods GAM, penalized
PLSR and PLSR without penalization.

The median of the test errors and the optimal parameter values (estimated on
the complete data set via leave-one-out) can be found in Table 5.1. Furthermore,
we conduct a Wilcoxon rank sum test to test the alternative hypothesis that the
test error of penalized PLSR is lower than the test error of GAM and PLSR
respectively. The p-values can also be found in Table 5.1. Penalized PLSR is the

‘ median test error ‘ Meopt ‘ Aopt ‘ p-values

GAM 0.139 - - 0.089
penalized PLSR 0.090 2 ]330 -
PLSR 0.145 8 - 0.004

Table 5.1: Comparison of GAM, penalized PLS and PLS. The first three columns
display the median test error and optimal model parameters for the birth data set
and normalized response. The last column displays the p-value of the Wilcoxon
rank sum test.

best out of the three method. In particular, it receives a considerably lower error
than PLSR without penalization.
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5.6 Conclusion

In this chapter, we proposed an extension of Partial Least Squares Regression
using penalization techniques. Apart from its computational efficiency (it is vir-
tually as fast as PLSR), it also shares a lot of mathematical properties of PLSR.
This will be stressed further in the next chapter. There, we prove that penalized
PLSR is equal to a preconditioned conjugate gradient descent. Our new method
also obtains good results in applications. In the example that is discussed in Sec-
tion 5.5, PLSR clearly outperforms PLSR without penalization. Furthermore,
the results indicate that it is a competitor of gam() in the case of very high-

dimensional data.

We might think of other penalty terms. Kondylis & Whittaker (2006) consider
a preconditioned version of PLSR by giving weights to the predictor variables.
Higher weights are given to those predictor variables that are highly correlated
to the response. These weights can be expressed in terms of a penalty matrix.
Goutis & Fearn (1996) combine PLS with an additive penalty term to data de-
rived from near infra red spectroscopy. The penalty term controls the smoothness

of the regression vector.

The introduction of a penalty term can easily be adapted to other dimension
reduction techniques. For example, for Principal Components Analysis, the pe-

nalized optimization criterion is

var(Xw)
w wlw + wtPw

The novel penalized PLSR approach has however one drawback. The amount
of smoothness used for any of the additive components f; is the same. Using
different values \; for each component leads to a model selection problem that
involves a high-dimensional model parameter A = (Ay,...,\,). This is often
infeasible. In Section 5.5, we illustrated that the amount of smoothness can also
be controlled in terms of the number m of components. In order to obtain more
flexibility, it might be possible to assign different numbers of components to each
predictor variable. An elegant way to do so is the Boosting framework that is
introduced in Chapter 9. We discuss a possible combination of penalized PLSR
and Boosting in Chapter 10.
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Chapter 6

From Linear Regression to Linear
Algebra

As already mentioned in Section 1.3, the OLS estimator BOLS is the solution of

i —X3|. 6.1
argmén |y | (6.1)

This problem is equivalent to computing the solution of the normal equations
AB = b, (6.2)
with
A = X!'X and b = Xly.
Using the Moore-Penrose inverse of A, it follows that — as displayed in (1.11) —
rk(X)

BOLS =Ab= Z zZ; .
i=1

We already mentioned in Section 1.3 that in the case of high-dimensional data,
the matrix A is (almost) singular and that the OLS estimator performs poorly
on new data sets. A popular strategy is to regularize the least squares criterion
(6.1) in the hope of improving the performance of the estimator. This often
corresponds to finding approximate solutions of the normal equations (6.2). For

example, Ridge Regression

g {[ly = X/ + A8} 3> 0.

71
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corresponds to the solution of the modified normal equations
(A+X,)B = b.

Here A > 0 is the Ridge parameter. Principal Components Regression uses the

eigen decomposition of A,
p
A = UAU' =Y Nugal,
i=1

and approximates A and b via the first m eigenvectors
A = Y huwul b~ YT (ulb)u;.

The Principal Component Regression (PCR) estimator is then defined as

m
Brcr = Zzi~
=1

Here z; is the component of BOLS along the ith principal component. It can be
shown that the PLSR algorithm 4.2 for a univariate response y is equivalent to
the conjugate gradient method (Hestenes & Stiefel 1952). This is a procedure that
iteratively computes approximate solutions of (6.2) by minimizing the quadratic

function

o(@) = LB AB—B'b = (8, AB) — (B.b) (6.3

along directions that are A-orthogonal. (A precise definition of the algorithm is

given below.) Recall that two vectors  and @’ are A-orthogonal if
(,x'Ya=x'Ax' = 0.

The approximate solution of the conjugate gradient method obtained after m
steps is equal to the PLSR estimator obtained after m iterations. The conjugate
gradient algorithm is in turn closely related to Krylov subspaces and the Lanczos
algorithm (Lanczos 1950). The latter is a method for approximating eigenvalues.
The connection between PLSR and these methods is well-elaborated in Phatak &
de Hoog (2002). We now establish a similar connection between penalized PLSR
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and the above mentioned methods. Set

Here, M is the matrix (5.7) that is defined by the penalty term P of penalized
PLSR. We now illustrate that penalized PLSR finds approximate solutions of the

preconditioned normal equation

ApB = bar. (6.4)

We remark that the following results are also valid for PLSR by setting M = I,,.

Definition 6.1. For every vector ¢ € R? and every matrix C € R%?, we call the

set of vectors
c,Cec,...,C" ¢

the Krylov sequence of length m. The space spanned by this Krylov sequence is
called the Krylov space of C and ¢ and is denoted by K™ (C, ¢).

Let us start with the following observation.

Lemma 6.2. The space spanned by the weight vectors ws, ..., w,, of penalized
PLSR equals the Krylov space K™ (A g, bag). The space spanned by the penalized
PLSR components ty,. .., t, equals the Krylov space KU (K n, Kpry).

This is the generalization of a result for PLSR. Recall that Ky; = X M X*.

Proof. This can be shown via induction. For m = 1, we know that w; = by,
and t; = Xby = XMX'y = Kpy. For a fixed m > 1, we conclude from
the induction hypothesis and (4.12) that every vector s that lies in the span of

ti,...,t,, is of the form

s = Xv , v € span{wy,...,wy,}=K™ (Ar, bas) .
We conclude that
This implies that

Wypt1 = by — Apgs € ’C(m+1) (AM, bM) .
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Note that

K™ (Kpp, Kagy) = XK™ (Apg, bag)
It follows that

tt1 = X1 Wiy = XWpqq — thl,...thwm+£ c Kb (Kn, Knvy) -

ek (Kn , Ky y)

This concludes the proof. O

Corollary 6.3. The penalized PLSR estimator obtained after m steps is equal to

the solution of the constrained minimization problem

argrr,gn ly — X8I

such that B € K™ (Anr, bag)

Proof. This follows immediately from proposition 4.7. O

Corollary 6.4. For univariate penalized PLSR, the components derived by the
NIPALS algorithm are (up to the sign) equal to the components derived by SIM-
PLS defined in equations (4.5), (4.6) and (4.7).

The equivalence of both methods for PLSR is shown in de Jong (1993).

Proof. We show via induction that the components ¢, ... t,, derived from SIM-
PLS span the space K™ (K, Kpry). For m = 1, this is obviously true, as
t; = Ky. The Lagrangian function associated to the optimization problem of
SIMPLS is

L(w) = w'b — A (w'w + w'Pw — 1) = > pw'X't;.
i=1
Computing the first derivative, we obtain the equation

b—2A(I, + P)wy — Yy _mX't;=0.
=1
This implies that

W41 ™~ (Ip + P)il (b - ZHiXtti> =by — ZNiMXttz‘ .
i=1

=1
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Using the induction hypothesis, we conclude that

tyy ~ Xbpar — ZMiXMXttz’ = Knpy — ZMz’KMti e K™ (Kar, Kny) -

i=1 =1

O

Finally, we show the following result.

Proposition 6.5. The weight vectors wy, . .., w,, of penalized PLS are mutually
M ~'-orthogonal. The matriz R =T'XW s upper bidiagonal.

Proof. Tt follows from the definition of the penalized PLS weight vectors and
lemma 4.4 that for ¢ > j

(wi, w)) 0 = (M Xy, 'wj>M*1 =y'X;MM 'w; =y'X,w; =y'0=0.
Furthermore,
t; € K™ (K, Kpy) = XK™ (Apg, bag) = Xspan (wy, ..., w;) .
We can conclude that

MX't; ¢ MX'XKY(Ap, bag)
Ap KD (A, bag)
C KUY (Apg, bar)

= span (wy,..., W) .
In particular,
i+1
MX't; = ) auwy. (6.5)
k=1

Now recall that the weight vectors are M ~!-orthogonal. We conclude that for
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g>1+1
thw] = (MXttl-,’wj>M-1

i+1

6.5
(©2) (Z QpWy, Wj) pr-1
k=1

i+1

= Zak<wk,wj>M71
k=1
= 0

6.1 Preconditioned Conjugate Gradient Methods

We now present the conjugate gradient method for the preconditioned normal
equation (6.4). The conjugate gradient method is normally applied if the involved
matrix is symmetric. Note that in general, the matrix A py is not symmetric with

respect to the canonical inner product, but with respect to the inner product

(,2)pg1 = x'M '’
defined by M1, as
(x, Appa) ppr =M T'TMAx = 2' Az’ = 2' AAM'M 'z’ = (Apz, @) 51
We can rewrite the quadratic function ¢ defined in (6.3) as

1

4(B) = 5 (8. AniB) g+ — (B bar)ag -+ -

We replace the canonical inner product by the inner product defined by M1
and minimize this function iteratively along directions that are A ps-orthogonal.
Definition 6.6. We say that two vectors @ and a’ are Aps orthogonal with

respect to the inner product defined by M1 if

(, Apgz) pp 0 = ' M " Az’ = 2" Az’ = 0.
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We start with an initial guess B, = 0 and define
do =19 =bn — ApBy = b

The quantity d,, is the search direction and r,, = by; — Ay is the residual. For

a given direction d,,, we have to determine the optimal step size, that is we have
to find

a, =argmin¢ (8,, + ad,,) .

It is straightforward to check that

<dm7 Tm>M—1 ]
<dm7 AMdm>M—1

Ay =
The new approximate solution is then

/Bm-i-l = ﬁm + apd,,
After updating the residuals via

Tmy1 = bag — AM/Bm.Ha

we define a new search direction d,,; that is Aj;-orthogonal to the previous
search directions. This is ensured by projecting the residual 7, onto the space
that is A pz-orthogonal to dy, ..., d,,. We obtain

- Pyt Anidi) pp
dm 1= Tms1 — dz .
' ! E; (di, Apedi) g

Algorithm 6.7 (Preconditioned conjugate gradient method). After setting 3, =
0 and dy = r9 = bag, the approzimate solutions B,, of the preconditioned linear

system (6.4) are determined by iteratively computing

J— <dm77ﬂm>M—l .
Pt = P @ Ay O step size
Tmi1 = byv— AnmB, 0 residuals

_ <"'m+17AMd’m>M—1 . .
dpii = Tyl — (o Ang do) o d,, search direction

In the rest of this section, we prove the following result.

Theorem 6.8. The penalized PLSR algorithm is equivalent to the preconditioned
conjugate gradient algorithm 6.7 for the preconditioned system (6.4).
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The following lemma follows almost immediately from the definition of the algo-

rithms and can be proven via induction.

Lemma 6.9. We have

span{dy, ..., dpn 1} = span{re, ..., vp_1} = span{B,,...,B,.} = IC(m)(AM, bnr) -
Lemma 6.10. We have

m—1

dzabM M1 d.
dzaAMd M-1 v

=0

Proof. This corresponds to the iterative definition of 3,,. We only have to show

that
(di,Ti)pr—1 = (di;bur)pr-
Note that .
r, = bM — ZajAMdj .
§=0

As — by definition — d; is A ps-orthogonal with respect to M ! onto all directions
d;, j <1, the proof is complete. O

Now we are able to proof the equivalence of penalized PLSR and the precondi-

tioned conjugate gradient method.

Proof of theorem 6.8. As the search directions d; span the Krylov space K™ (Apz, bas)
(see lemma 6.9), we can replace the matrix W in formula (4.14) of the penalized
PLSR estimator by the matrix D = (dy,...,d;,—1). As the search directions are

A j-orthogonal, we have

= (D M'A D) "D'M by
_ = <dzabM>M 1 d;.

0 <d17 AMdz>M—1

1=

and this equals the formula in lemma 6.10. O
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Corollary 6.11. The length of the regression vector B of penalized PLSR s

monotonically increasing, if we use the norm defined by M~!

) ~2) ~(p)
1B Mlar— <18 llarr < < IB [l ng-r -

Proof. In the special case of PLSR (that is M = I,), this result is already
known (de Jong 1995) and can be proven by using the equivalence of PLSR and
the conjugate gradient method. Replacing the usual inner product by the inner
product defined by M ~! in the proof in Phatak & de Hoog (2002), we obtain the
result for penalized PLSR. As this general result is not needed in the rest of the

work, we omit the details for the sake of briefness. O

6.2 Why Krylov Subspaces?

Krylov spaces are closely connected to the Lanczos algorithm (Lanczos 1950), a
method for approximating eigenvalues or the generalized inverse of a symmetric
matrix A. We approximate the eigenvalues or the inverse of A by restricting the
map that is defined by A onto a Krylov subspace (™ (A, b) defined by A and a
right-hand side b. A priori, this does not make sense, as for a vector v that lies in
K™, the vector Av does not necessarily lie in ™. We therefore define the map
A restricted to K™ in the following way. Let us assume that the columns of the
matrix W form an orthonormal basis of (™. In particular, we can represent v
as v = Wu. After applying the linear map A to v, we project Av onto K.
The projection onto K™ is WW?, hence the image of AW is

WW!AWu .
It follows that (in terms of the basis W), the map Ao that is defined as
K™ (A, b) <A (A, B) £ K0 (A, B)
is
D™ = W!'AW ¢ R™™, (6.6)

The eigenvectors and eigenvalues of D™ are called ritz pairs.
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The inverse of A is then approximated by W (W!AW)™" W'. An approximate

solution of the normal equations (6.2) is

3" = w(wraw) T wb.
Note that this equals the formula for the PLSR estimator presented in (4.14), as
we showed in lemma 6.2 and proposition 4.5 that the PLS weight vectors W —
if they are standardized to length 1 — form an orthonormal basis of the Krylov

space K™,

In general, Krylov methods find approximate solutions of (6.2) by searching for
solutions in Krylov spaces and we showed that the PLSR estimator is an ap-
proximate OLS solution in a Krylov subspace. Why is this a sensible idea? The
following lemma shows that for a certain class of matrices A, the vector A~b
is an element of a Krylov space defined by A and b. Hence there is a natural
representation of A~b in terms of the Krylov sequence and we hope that we can

find an approximate solution in a Krylov subspace of low dimension.

Proposition 6.12. If A € RP*P is symmetric or if A is reqular, there is a
polynomial m € R[X] of degree < p — 1 such that

In particualar

for any vector b.

For a general matrix A, it can be shown (Ibsen & Meyer 1998) that the same
statement is true if we replace the Moore-Penrose inverse by the Drazin inverse
(Drazin 1968).

Proof. For a symmetric matrix A = UAU?, let us define the polynomial 7 via

the at most p equations

A
>
N
Il
(@) 3./|*—‘
>
N
o O

S
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In matrix notation, this equals m(A) = A~. This polynomial corresponds to the
definition of the Moore-Penrose inverse of a symmetric matrix that is presented

in proposition A.13. It follows that

Here,
xa(\) = Z ci\'
=0

is the characteristical polynomial of A. As A is regular, we have ¢y # 0. From

this we can conclude that

1 —
Ip = A<_a;Ci+lAl> .

N

-~

=m(A)
As the degree of 7 is p — 1, the proof is complete. O

If we transfer this into the context of linear regression estimators, we obtain the

following two corollaries.

Corollary 6.13. After at most p iterations, the PLSR estimator equals the OLS

estimator.
This result is well-known and is usually proven using a geometric argument.

Proof. This follows immediately from corollary 6.3 which states that the PLSR
estimator after m steps is equivalent to the OLS estimator under the additional
constraint that is an element of the Krylov space K™ (A, b). O

Corollary 6.14. Suppose that A = X' X is reqular. After at most p iterations,
the penalized PLSR estimator equals the OLS estimator.

Proof. 1f A is invertible, it follows from proposition 6.12 that
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Furthermore,
Aptbpyy = (MA) ' Mb=A"M"'"Mb=A"5=0,,.

We can conclude that the OLS estimator is an element of a Krylov space that
is defined by A,; and by;. Now the statements follows readily from corollary
6.3. O

From now on, we only consider PLLSR and abbreviate
KM = KM(Ab),.

As already mentioned above, PLSR tries to find an approximation of BOLS in a
Krylov space of low dimension. The properties of Krylov spaces determine some
of the statistical properties of the corresponding estimator. This is discussed in
more detail in Chapter 7. There, we need a formula for the smallest dimension
m* such that the OLS estimator lies in the Krylov space K", Recall the eigen

decomposition
A = UAU'
of A and set s = Ub. We define
M = {Nsi #0} , m* = [M].

The quantity m* is called the grade of A with respect to b.

Proposition 6.15. We have

m m<m*
dim K™ - .
m* m>m*

In particular

dim ™) = dim K™D = = dim KP = m*. (6.7)

Proof. This is a well-know result. We first show that dim K" = m*. Suppose
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that
m*—1
> 7Ab = 0
=0

for some 7o, ..., Ym+—1 € R. Setting f(\) = >4\’ and using the eigen decom-

position of A, this equation is equivalent to
f(A)s =0

It follows that f(\;)s; = 0 for ¢ = 1,...,p. Hence, each element \; € M is a
zero of the polynomial f()). This is a polynomial of degree < m* —1. As it has

m* = | M| different zeroes, it must be trivial, i.e. 7; = 0.

Next, we show that if m > m*, we have dim K™ = m*. It is clear that
dim K™ > m* as K™ < K™ | Let S be any set of m* 4+ 1 vectors in the

Krylov sequence. Set
T = {ie{l,..m}A"'beS}.

Hence |Z| = m* 4+ 1. The condition that S is linear dependent is equivalent to

the following. There is a nontrivial polynomial

g\ = Y wuN

el

such that g (\;) = 0 for \; € M. As the polynomial g is of degree |Z| = m* +1
and |[M| = m*, there is always a nontrivial polynomial g that fulfills g (A\;) = 0
for )\z € M O

If A and b represent normal equations, we have s = XV'y and
M = {\ # 0lviy # 0}
It follows from its definition that
m* < rk(A).

The inequality is strict if A has non-zero eigenvalues of multiplicity > 1 or if

there is a principal component v; that is not correlated to y, i.e. viy =0.
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6.3 A Polynomial Representation

In the last section, we showed that the PLSR estimator obtained after m steps
lies in a Krylov subspace of dimension m. Hence there is a polynomial 7(™ of

degree < m — 1 such that

/\(m

Bprs = ™ (A)b.

This polynomial depends on the matrix D™ defined in (6.6) and determines
the shrinkage properties of PLSR that are illustrated in Chapter 7. In order to
show that the degree of the polynomial is exactly m — 1, we need to collect some

well-known properties of the matrix D™,

Proposition 6.16. The matriz D™ is symmetric and positive semidefinite.

Furthermore, D™ s tridiagonal, that is d;; = 0 for |i — j| > 2.

Proof. The first two statements are obvious. Let i < j — 2. As w; € K the
vector Aw; lies in the subspace KUV, As j > i+ 1, the vector wj is orthogonal
on KUY in other words (w;, Aw;) = 0. As D™ is symmetric, we also have

(w;, Aw;) = 0 which proves the assertion. O

Definition 6.17. We say that a symmetric tridiagonal matrix D is unreduced

if all subdiagonal entries are non-zero, i.e. d; ;41 # 0 for all i.

Proposition 6.18. If dim K™ = m, the matriz D™ is unreduced. More pre-

cisely, all subdiagonal elements are > 0.

Proof. Set p; = A" 'b and denote by w;, . .., w,, the basis of PLS weight vectors.
Its existence is guaranteed as we assume that dim ™ = m. We have to show
that the subdiagonal elements (w;, Aw,;_1) are >0. As the length of w; does
not change the sign of this expression, we can assume that the vectors w, are
not normalized to have length 1. As the weight vectors lie in the Krylov space
K™ and are mutually orthogonal (recall proposition 4.5), we conclude that the
weight vectors wq, ..., w,, are equal to the Gram-Schmidt basis obtained from

P1,...,Pm- This implies
= w
Z 5)” ,w'“ (6.8)
k=1 k> k
As the vectors w; are pairwise orthogonal, it follows that

(wi,p;) = (pi,pi) > 0. (6.9)
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We conclude that

1—2
(6.8) pz 1,’wk
z'aA i— = i) i—
(’w w 1) <w <p 1 Z wk’wk >>

k—1
A 1—2 w >
2T (wipy) — iy, (w;, Awy)
—1 wkawk>
pr0p:.6.16 <wi7 pz>
(6.9)

Proposition 6.19. The eigenvalues of an unreduced matriz are distinct.
The proof van be found in 7.

Remark 6.20. All eigenvalues of D(™") are eigenvalues of A.

Proof. Recall that D(™") represents the map

Al o) A, gt — getm)

with respect to the basis W), As any eigenvalue of A|;c(m*) is obviously an

eigenvalue of A, the proof is complete. O
Proposition 6.21. If dim K™ = m, we have det (D(m)) #0.

Proof. Let us start with the remark that the characteristical polynomials y of
D™ are related in the following way,

X)) = o = N X" V) = dp XN (6.10)

—1,m

(m-1)

Here, d, ; is the (i,) entry of the matrix D™, Furthermore, both y and

X(m72)

a different sign on {z < 0}. Suppose that m is the smallest number such that

are polynomials with non-negative zero’s. The two polynomials must have

D™ is not regular. This implies that 0 is an eigenvalue of D). Plugging A = 0
into (6.10), we obtain

QX ™V (0) = A2 X2 (0) .

As the signs of ™~ (0) and ™2 (0) cannot be equal and (™~ (0) # 0, this
is only possible if d,,_1,, = 0. Now recall proposition 6.18 which implies that
dp—1,m = 0 is only possible if m > m*. [



8 CHAPTER 6. FROM LINEAR REGRESSION TO LINEAR ALGEBRA

Denote the m different eigenvalues of D™ by

M s s s ) (6.11)

m

These eigenvalues are called ritz values. Set
Moy = 1—ﬁ I (6.12)
=1 M(m) . |

This is a polynomial of degree m. As f(™ = 0, there is a polynomial 7™ of

degree m — 1 such that
MmO = Aartmn). (6.13)

Proposition 6.22 ((Phatak & de Hoog 2002)). Suppose that m < m*. We have

~(m)

Bprs = x(m (A)b,

with the polynomial 7™ defined in (6.13).

Proof. The polynomial 7(™ is simply the polynomial representation of the inverse
of D™

(D<m>)‘1 — 7™ (D) .

This follows from (6.13). We plug this into the formula of proposition 4.7 and

obtain

~(m)

Br)e = wmgm ((Wm))t Aw<m>> (W) b

Recall that the columns of W™ form an orthonormal basis of K. It follows

that W (™) (W(m))t is the operator that projects on the space (™. In particular
W (W) Alb = ATb
for j =1,...,m — 1. This implies that

~(m)

BprLs = ™) (A)b.



Chapter 7

Shrinkage Properties of Partial

Least Squares

In this chapter, we study the shrinkage properties of PLS regression. It is well
known (Frank & Friedman 1993) that we can express the PLSR estimator ob-

tained after m steps in the following way:

rk(X

)
~(m) m
Bprs = E f( )()‘i)zia
i=1

where z; is the component of the Ordinary Least Squares (OLS) estimator along
the ith principal component of the covariance matrix X*X and ); is the corre-
sponding eigenvalue. The quantities f™();) are called shrinkage factors. We
show that these factors are determined by the tridiagonal matrix D™ defined in
(6.6). Combining the results of Butler & Denham (2000) and Phatak & de Hoog
(2002), we give a simpler and clearer proof of the shape of the shrinkage factors
of PLSR and derive some of their properties. In particular, we reproduce the
fact that some of the values f(™();) are greater than 1. This was first proved by
Butler & Denham (2000).

We argue that these “peculiar shrinkage properties” (Butler & Denham 2000) do
not necessarily imply that the Mean Squared Error (MSE) of the PLSR estimator
is worse compared to the MSE of the OLS estimator. In the case of deterministic
shrinkage factors, i.e. factors that do not depend on the response y, any value
| £t (\;)] > 1 is of course undesirable. But in the case of PLSR, the shrinkage

factors are stochastic — they also depend on y. In particular, bounding the ab-

87
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solute value of the shrinkage factor by 1 might not automatically yield a lower

MSE, in disagreement to what is conjectured e.g. in Frank & Friedman (1993).

Having issued this warning, we explore whether bounding the shrinkage factors
leads to a lower MSE or not. It is very difficult to derive theoretical results, as
the quantities of interest - BETL)S and f(™();) respectively - depend on y in a
complicated, nonlinear way. As a substitute, we study the problem on several
artificial data sets and one real world example. It turns out that in most cases,
the MSE of the bounded version of PL.SR is indeed smaller than the one of PLSR.

During the rest of the chapter we occasionally make the assumption that
dim K™ = m. (7.1)

The maximal number for which this holds is m* (see proposition 6.15). Note

however that
’C(m*fl) C K(m*) _ ’C(m*+1) S IC(p)

(see (6.7)) and the PLSR solutions do not change anymore.

7.1 What is Shrinkage?

We have presented two estimators for the regression parameter 3 — OLS and
(penalized) PLSR — which also define estimators for X 3 via

One possibility to evaluate the quality of an estimator is to determine its Mean
Squared Error (MSE). In general, the MSE of an estimator 6 for a vector-valued

parameter @ is defined as

MSE (8) = £ |trace (6-6) (8- 6) |
- £|(6-0) (6-0)]
= (e[e] o) (e [e] o)+ £ (¢ - £[6]) (@ - 2 o))
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This is the well-known bias-variance decomposition of the MSE. The first part is

the squared bias and the second part is the variance term.

We start by investigating the class of linear estimators, i.e. estimators that
are of the form 6 = Hy for a matrix H that does not depend on y. It follows

immediately from the regression model (1.9) and (1.7) that for a linear estimator,
E [5] = HXp3, Var [5} = o?trace (HH") .
The OLS estimators are linear, as
Bors = (X'X)" X'y | Jors = X (X'X) X'y,

Note that the estimator of yorg is simply the projection Px onto the space that

is spanned by the columns of X. The estimator yor g is unbiased as

Eyors] = PxXB = Xp.

The estimator BOLS is only unbiased if 3 € range (X' X)
E |Bows| = B |(X'X) X'y| = (X'X) X'E[y] = (X'X) X'Xp=5.

Let us now have a closer look at the variance term. It follows directly from
trace(PxP%) = rk(X) that

Var (gors) = o°rk(X).
For BOLS we have
(X'X)” X' ((X'X)" Xt>t — (X'X)” X'X (X'X) = (X'X) =UAU',

hence

rk(X) 1

Var (EOLS) = o Z v (7.2)

i=1

We conclude that the MSE of the estimator BOLS depends on the non-zero eigen-
values of A = X'X. Small eigenvalues of A correspond to directions in X that

have a low variance. Equation (7.2) shows that if some eigenvalues are small, the
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variance of BOLS is very high, which leads to a high MSE.

One possibility to (hopefully) decrease the MSE is to modify the OLS estima-
tor by shrinking the directions of the OLS estimator that are responsible for
a high variance. This of course introduces bias. We shrink the OLS estimator

in the hope that the increase in bias is small compared to the decrease in variance.

In general, a shrinkage estimator for 3 is of the form
rk(X)

Bshr = Z f()\z)zla
=1

where f is some real-valued function. The values f()\;) are called shrinkage fac-

tors. Examples are Principal Component Regression

1 ith principal component included
fN) =

0 otherwise

and Ridge Regression

with A > 0 the Ridge parameter. We illustrate in Section 7.2 that PLSR is a
shrinkage estimator as well. It turns out that the shrinkage behavior of PLSR

regression is rather complicated.

Let us investigate in which way the MSE of the estimator is influenced by the
shrinkage factors. If the shrinkage estimators are linear, i.e. the shrinkage factors
do not depend on y, this is an easy task. Let us first write the shrinkage estimator

in matrix notation. We have
Bshr = Hshry = UZ?Dshthy .
The diagonal matrix Dy, has entries f()\;). The shrinkage estimator for y is

gshr - XHshry = VEZ?DshTVty .
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We calculate the variance of these estimators.

trace (HshTH

shr

) = trace (UE_Dshrz_DshTUt)

= trace (E_DS;WZ_DS;W)
NGy
Ai

i=1

and

trace (X Hy, HY,, X") = trace (VIX™ D, 25" Dy, V')

= trace (XX~ Dy, XX Dy,
rk(X)

- Z (f (&'))2 :

i=1

Next, we calculate the bias of the two shrinkage estimators. We have
E [Hshry] = Hsthﬂ = UZDshrintﬂ .
It follows that

bias? (,?as,”,) = (E[Huwy) — B)' (E[Huyl - B)
= (U'B) (2D.,2 - L) (2D - 1) (U'B)

rk(X)

= > (f) = 1) (ulp)”

i=1

Replacing H,y,, by X Hg,, it is easy to show that
bias yshr Z )\ ( /6)

Proposition 7.1. For the shrinkage estimator Bshr and Y, defined above we

have
rh(X) rh(X) 2
~ i
MSE (Ba) = 30 (00 - 17 () 4oty T
rlzc(:)lf) Z:rlk(X)
MSE (o) = X (fO) = 1) (ulp)” + o

1 i=1

2
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If the shrinkage factors are deterministic, i.e. they do not depend on vy, any value
f(N\;)) # 1 increases the bias. Values |f()\;)| < 1 decrease the variance, whereas
values |f(\;)| > 1 increase the variance. Hence an absolute value > 1 is always
undesirable. The situation might be different for stochastic shrinkage factors. We

discuss this in the following section.

Note that there is a different notion of shrinkage, namely that the L,- norm of
an estimator is smaller than the Ly-norm of the OLS estimator. Why is this
a desirable property? Let us again consider the case of linear estimators. Set
@ = H,y for i = 1,2. We have

The property that for all y € R"

|

is equivalent to the condition that H!H, — H.H, is negative semidefinite. The
trace of negative semidefinite matrices is < 0. Furthermore trace (HH;) =
trace (H; H}), so we conclude that

Var (§1> < Var <§2> .

—~ 12
6| = y'H{Hy.
2

~

6,

~

0,

< |

2 2

We already remarked in Chapter 6 that

~(1) ~(2) ~(m*) -
H/@PLSH? < ||/6PLS||2 <...< H/@PLSH? - ||/60LS||2-

7.2 The Shrinkage Factors of Partial Least Squares

In this section, we give a simpler and clearer proof of the shape of the shrinkage
factors of PLSR. Basically, we combine the results of Butler & Denham (2000)
and Phatak & de Hoog (2002). In proposition 6.22, we derived a formula for the
PLSR estimator in terms of the ritz values of A. From this, we can immediately

conclude the following corollary.

Corollary 7.2 ((Phatak & de Hoog 2002)). Suppose that dim K™ = m. If we
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denote by

the component of BOLS along the ith eigenvector of A, then

/BPLS = Zf i)Zi,

with f™(\) is defined in (6.13).

Proof. This follows immediately from proposition 6.22. We have

~(m) -
ﬂPLS = )(A)b
= U™ A=V
rk(X)

= Z " i)\/xvfyui

1

rk X)

(6.13) Z f

O

The following theorem is a special form of the Cauchy Interlace Theorem. In this
version, we use a general result from Parlett (1998) and exploit the tridiagonal

structure of D™

Theorem 7.3. Fach interval

(m)  (m)
[/‘Lm ]nu (J+1)]

(j=0,...,m—2) contains an eigenvalue of D)) (k> 1). In addition, there

is an eigenvalue of D) outside the open interval (ugﬁn),,ugm)) .

This theorems ensures in particular that there is an eigenvalue of A in the interval

[u,(gm),ugf)l]. Theorem 7.3 holds independently of assumption (7.1).
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Proof. By definition, for k£ > 1

D(mfl) o 0
DR — ° * ok
0 * %

Here @ = (x,...,0,0), so

D™ Do
_ .o

An application of theorem 10.4.1 in Parlett (1998) gives the desired result. [

We now show that some of the shrinkage factors of PLSR are # 1.

Theorem 7.4 ((Butler & Denham 2000)). For each m < m*, we can decompose

the interval [Ny, \;] into m + 1 disjoint intervals'
L <L <. . <Ih

such that

<1 N€landj odd

>1 Neljandj even
Proof. Set
g™ = 1= M),

It follows from (6.12) that the zero’s of g™ (\) are pim ,,ugm). As D™ is

unreduced, all eigenvalues are distinct. Set ,u(()m) = )\ and uml = Ap. Define

I =)™l for 5 =0,. .. m.

By definition, g™ (0) = 1. Hence g™ ()) is non-negative on the intervals I; if
j is odd and ¢ is non-positive on the intervals I; if j is even. It follows from

theorem 7.3 that all intervals I; contain at least one eigenvalue \; of A. O

In general, we cannot conclude that f(™()\;) # 1 for all \; and m = 1,...,m*.

However, in practical applications, the shrinkage factors seem to be # 1 all of

'We say that I; < I if sup I; < inf I}, .
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Figure 7.1: An illustration of the shrinkage behavior of PLSR. The number of
variables is p = 8. The eigenvalues of X*X are enumerated in decreasing order,
Al > Ay > ... The shrinkage factors f™();) are plotted as a function of i
for different values of m. The amount of absolute shrinkage }1 - f(m)()\i)’ is
particularly prominent if m is small.

the time. Figure 7.1 illustrates the shrinkage behavior of PLSR. This example is
taken from Butler & Denham (2000). Using some of the results of Section 6.3 and
the fact that the eigenvalues of D™ =1 and D) are distinct (Parlett 1998),
we can deduce that some factors are indeed # 1. Details can be found in Butler
& Denham (2000) and Kramer (2006). Furthermore, using theorem 7.3, more

(m

precisely A, < ) < \;, it is possible to bound the terms

Ai

i

1 —

Based on these bounds, it is possible to derive bounds on the shrinkage factors.
We will not pursue this further, readers who are interested in the bounds should
consult Lingjaerde & Christopherson (2000). Instead, we have a closer look at
the MSE of PLSR.

In Section 7.1, we showed that a value | f(™();)] > 1 is not desirable, as both the
bias and the variance of the estimator increases. Note however that in the case

of PLSR, the factors f(™)();) are stochastic; they depend on y — in a nonlinear
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way. The variance of the PLS estimator for the ith principal component is

Var (f(W)(A» (v:) y) ,

N

with both f(™()\;) and \”/t/\ﬂ depending on y.

Among others, Frank & Friedman (1993) propose to truncate the shrinkage fac-
tors of the PLSR estimator in the following way. Set

+1 FmN) > +1
FMO) = -1 FM) < —1,
fm();)  otherwise

and define a new estimator

(m) rk(X)
Brrn = Z f(m)()‘z‘)zi . (7.3)
i=1

If the shrinkage factors are numbers, this surely improves the MSE (as shown in
Section 7.1). But in the case of stochastic shrinkage factors, the situation might
be different. Let us suppose for a moment that f™();) = vt—\/i It follows that

vly ~ vly
0= Va (m) A)—= | < Va (m) i) —= |,
(£ 00T ) < v (7
so it is not clear whether the truncated estimator TRN leads to a lower MSE,

which is conjectured in e.g. Frank & Friedman (1993).

The assumption that f(™()\;) = % is of course purely hypothetical. It is not
clear whether the shrinkage factors behave this way. It is hard if not infeasible
to derive statistical properties of the PLSR estimator or its shrinkage factors, as
they depend on y in a complicated, nonlinear way. As an alternative, we compare

the two different estimators on different data sets.
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7.3 Simulations

In this section, we explore the difference between the methods PLSR and trun-
cated PLSR (TRN). We investigate several artificial data sets, and in the next

section, we consider a real world example.

We compare the MSE of the two methods - PLSR and truncated PLSR - on
27 different artificial data sets. We use a setting similar to the one in Frank &
Friedman (1993). For each data set, the number of examples is n = 50. We

consider three different number of predictor variables:
p = 5,40,100.

The input data X is chosen according to a multivariate normal distribution with
zero mean and covariance matrix C'. We consider three different covariance

matrices:

c = I,
(€, = ——
P i+
1, Q=
Cc,).. =
(Co); {0.7 it

The matrices Cy, Cy and C3 correspond to no, moderate and high collinearity
respectively. The regression vector 3 is a randomly chosen vector 3 € {0,1}”.

In addition, we consider three different signal-to-noise ratios:

var (X 3)

S =137,

stnr =

We yield 3 x 3 x 3 = 27 different parameter settings. For each setting, we estimate
the MSE of the two methods: For £ =1,..., K = 200 we generate y according
to (1.9) and (1.7). We determine for each method and each m the respective

estimator Bkm and define
WEE (™) - L3 (- 6) (B -6).

If there are more predictor variables than examples, this approach is not sensible,
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as the true regression vector 3 is not identifiable. This implies that different
regressions vectors 3; # 3, can lead to X3, = X3,. Hence for p = 100, we only
estimate the MSE of y for the two methods. We display the estimated MSE of

0.95 1.00
1 |

0.90
1

0.75 0.80
1 1
0.75 0.80
1 1

0.70
|
0.70
|

Figure 7.2: MSE-RATIO for p = 5 . The figures show the averaged MSE-
RATIO for different parameter settings. Left: Comparison for high (straight line),
moderate (dotted line) and no (dashed line) collinearity. Right: Comparison for
stnr 1 (straight line), 3 (dotted line) and 7 (dashed line).

the method TRN as a fraction of the estimated MSE of the method PLSR, i.e.
for each m we display

— =5 (5m)

MSE (Byoy)

MSE — RATIO m(g@s) .

As already mentioned, we display the MSE-RATIO for ¥ in the case p = 100.
The results are displayed in Figures 7.2, 7.3 and 7.4. In order to have a compact
representation, we consider the averaged MSE-RATIOS for different parameter
settings. For example, we fix a degree of collinearity (say high collinearity) and
display the averaged MSE-RATIO over the three different signal-to-noise ratios.

The results for all 27 data sets are shown in the tables in the appendix.

There are several observations. The MSE of truncated PLSR is lower almost
all of the times. The decrease of the MSE is particularly large if the number of

components m is small, but > 1. For larger m, the difference decreases. This
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Figure 7.3: MSE-RATTIO for p = 40.

is not surprising, as for large m, the difference between the PLSR estimator and
the OLS estimator decreases. Hence we expect the difference between TRN and
PLSR to become smaller. The reduction of the MSE is particularly prominent in
complex situations, i.e. in situations with high collinearity in X or with a low

signal-to-noise-ratio.

Another feature, which cannot be deduced from Figures 7.2, 7.3 and 7.4 but from

the tables in the appendix, is the fact that the optimal number of components
Opt . - S A(m)
Mprg = argmin MSE <BPLS)
mPpy = argmin M SE <B(TT2)N>
are equal almost all of the times. This is also true if we consider the MSE of

y. We can benefit from this if we want to select an optimal model for truncated
PLSR. We return to this subject in Section 7.5.

7.4 Example: Tecator Data Set

In this example, we consider near infrared spectra (NIR) of n = 171 meat samples
that are measured at p = 100 different wavelengths from 850 — 1050 nm. This

data set is taken from the StatLib datasets archive and can be downloaded from
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Figure 7.4: MSE-RATIO for p = 100. In this case, we display the MSE-RATIO
for y instead of 3. Only the first 20 components are displayed.

http://lib.stat.cmu.edu/datasets/tecator. The task is to predict the fat
content of a meat sample on the basis of its NIR spectrum. We choose this data
set as PLSR is widely used in the chemometrics field. In this type of applications,
we usually observe a lot of predictor variables which are highly correlated. We
estimate the MSE of the two methods PLSR and truncated PLSR by computing
the 10fold cross-validated error of the two estimators. The results are displayed

in Figure 7.5.

Again, truncated PLSR is better almost all of the times, although the difference
is small. Note furthermore that the optimal number of components are almost

identical for the two methods: We have m%; ¢ = 15 and m7y, = 16.

7.5 Conclusion

We illustrated in Section 7.3 that bounding the absolute value of the PLSR shrink-
age factors by one seems to improve the MSE of the estimator. So should we now
discard PLSR and always use truncated PLSR instead? There might be (at least)
two objections. Firstly, it would be very lightheaded if we relied on results of a
small-scale simulation study. Secondly, TRN is computationally more extensive

than PLSR. We need the full singular value decomposition of X . In each step,
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Figure 7.5: 10fold cross-validated test error for the Tecator data set. The straight
line corresponds to PLSR, the dashed line corresponds to truncated PLSR.

we have to compute the PLSR estimator and adjust its shrinkage factors “by
hand”. However, the experiments suggest that it can be worthwhile to compare
PLSR and truncated PLSR. We pointed out in Section 7.3 that the two methods
do not seem to differ much in terms of optimal number of components. In order
to reduce the computational costs of truncated PLSR, we therefore suggest the
following strategy. We first compute the optimal PLSR model on a training set
and choose the optimal model with the help of a model selection criterion. In a
second step, we truncate the shrinkage factors of the optimal model. We then
use a validation set in order to quantify the difference between PLSR and TRN

and choose the method with the lower validation error.
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Chapter 8
Functional Data Analysis

In the preceding chapters, we introduced Partial Least Squares for Regression
and two of its variants — penalized PLSR and truncated PLSR. We investigated
their mathematical and statistical properties. In particular, we measured their
performance in terms of a low test error and a mean squared error respectively.
One important feature of a fitting method — apart from its predictive power - is
its interpretability. This aspect has been neglected so far and we illustrate that
the understandability of PLSR can be limited. In the remaining two chapters, we
propose a different approach that is based on Boosting methods and that exploits
the special type of data that is common in a lot of PLSR applications: The data

that we observe are functions.

8.1 Example: Biscuit Dough Data Set

The following example is described in detail in Osborne et al. (1994) and is
also used in Brown et al. (2001). The data can be downloaded from http:
//www.stat.tamu.edu/ "mvannucci/webpages/codes.html. The task is to pre-
dict with high accuracy the amount of fat in biscuit dough. As the direct mea-
surement of fat is costly and time-consuming, we use NIR (near infra red) spec-
troscopy instead. For each of the n = 39 training examples of biscuit dough,
the amount of fat and the reflectance of NIR light for different wavelengths is
measured. In this example, p = 700 equidistant wavelengths in the range from
1100 to 2398 nanometers are used. For each example, we obtain a function of the
reflectance, which is called a spectrum. The 39 spectra are depicted in Figure
8.1. The task is to predict the amount of fat of a new sample after observing its

spectrum.

103
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Figure 8.1: The n = 39 NIR spectra of the biscuit dough.

We already mentioned that a very popular method in the chemometrics field is
PLSR. Let us investigate its performance on this particular data set. We estimate
the optimal number of latent components using the leave-one-out error. The risk
of this model is estimated on a test set that consists of 31 examples. The min-
imal leave-one-out error is obtained with m,, = 13. A widely used diagnostic
tool is the plot of the standardized regression coefficients as a function of the
wavelength. That is, for each of the 700 variables X;, we divide the estimated
regression coefficient B@ by the standard deviation of X; and plot these values
into a coordinate system. This is done in Figure 8.2. One desirable feature is
the detection of regions of relevant wavelengths. In this particular example, the
regression coefficients are however very hard to interpret. We cannot detect any
type of pattern, as the regression coefficients look rather like white noise. There-
fore, a chemometrician is willing to sacrifice some predictive power in order to
have an interpretable model. But even the standardized regression coefficients of

a model with m = 3 latent components do not disclose any valuable information.

Note that each example x;, which consists of p = 700 measurements, is in fact a
discretized curve. Instead of regarding these data points x; as vectors in a high-
dimensional space RP, we can also view them as elements of a space of real-valued

functions.
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Figure 8.2: Standardized PLSR regression coefficients as a function of the wave-
length. Left: PLSR model with 13 components. Right: PLSR model with 3
components.

8.2 Example: Speech Recognition Data Set

This example is taken from Biau et al. (2005). The data consists of 48 recordings
of the word “Yes” and 52 recordings of the word “No”. One recording is repre-
sented by a discretized time series of length 8192. The data can be downloaded
from http://www.math.univ-montp2.fr/~biau/bbwdata.tgz. Two recordings
are displayed in Figure 8.3. The task is to find a classification rule that assigns
the correct word to each time series. At first glance, the classification problem
seems complicated, due to the high amount of variables compared to the number
of examples. If we regard one recording as one function rather than measurements
of 8192 variables, we can however exploit the special structure of this problem.
In this particular example, it is possible to describe the important information
that is encoded in the functions in terms of their oscillations. The classification

rule can then be learned using these extracted features.

Functional data analysis deals with learning from data that are curves. In the
following two section, which are condensed from Ramsay & Silverman (2005), we

present its main ideas.
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Figure 8.3: Two examples of the speech recognition data. Left: One recording of
the word “Yes”. Right: One recording of the word “No”.

8.3 From Observations to Functions

We speak of functional data if the variables that we observe are curves. Let us

first consider the case that only the predictor samples x; are curves, that is
e X ={x:T — R}.

We usually assume that the functions fulfill a regularity condition, and in the rest
of the chapter, we consider the Hilbert space X = L?(T') of all square-integrable

functions 7" — R. In our examples, T is a subset of R.

In most applications, we do not measure a curve z;(t), but discrete values

x, = (xi(t1),... a%’(tp))t

of a curve. An important step in the analysis of functional data is therefore
the transformation of the discretized objects to smooth functions. The general

approach is the following. We represent each example as a linear combination

Ky

ni(t) = ) cudi(t) (8.1)

=1
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of a set of basis functions ¢y, ..., ¢k,. Each example z;(t) is represented by its

vector
Kx
c, = (Cila---aciKz)ER

of coefficients. This coefficient vector is estimated by applying the (regularized)
empirical risk minimization principle described in Section 1.2. If we use the
quadratic loss function and represent the values of the base functions ¢; at mea-

surement points ¢; by
® = (4i(t;)) € R,

the penalized least squares criterion is

argmin  {|l@; — ®c||* + ()} -
ci

Here, 7 is a regularization term that e.g. controls the smoothness of the function
x;(t). Regularization might be necessary if the measurements of z;(¢) are noisy or
if the points t; are not equidistant. There are some natural candidates for the set
of basis functions. We introduced the widely-used B-splines in Chapter 5. If the
data have a periodic structure, this can be reflected efficiently with an expansion

in terms of Fourier functions. They are defined as

¢9i—1(t) = sin (iwt) ,
¢9i(t) = cos(iwt) ,

and are illustrated in Figure 8.4. Other basis functions are polynomials and —
more importantly - wavelets. Wavelets are families of orthogonal basis functions.
These bases are generated by choosing a so-called mother-wavelet ® and and then

computing all translations and dilatations
djp(x) = 25 (Pz —k) .

The mother wavelet is chosen in a way that all functions are mutually orthogonal.
In most applications, the mother wavelet has a compact support. An example
for a mother wavelet is the Haar wavelet. Some translations and dilatations of

this wavelet are shown in Figure 8.5. Wavelets are able to represent a function f
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Figure 8.4: The first three Fourier basis functions.

with sharp local behavior in a very efficient way, as most wavelet coefficients ~;;,

flx) = Z%’k%k(iﬁ) (8.2)

are zero. More details on the theory of wavelets can be found in Daubechies
(1992). If f is measured without error on p = 2% equidistant points, a discrete
wavelet transform (Mallat 1989) computes the coefficients of the wavelet repre-
sentation (8.2). If the observations are noisy, there is a simple procedure that
thresholds the wavelet coefficients (Donoho & Johnstone 1994).

A different possibility is to derive an orthogonal basis directly from the data.
This can be done for instance by extending Principal Component Analysis or

Partial Least Squares Regression to functional data.

It is not always necessary or even sensible to find a set of basis function and
coefficients ¢; that fit the data almost perfectly. We already remarked that the
measurements of the curves may be noisy and we have to take care not to overfit.
The possibility of plotting the discrete functions and the fitted functions is a valu-
able diagnostic tool to evaluate the quality of the representation. Furthermore, it

might be sufficient to represent a function in terms of a few relevant basis func-
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Figure 8.5: Some translations and dilatations of the Haar wavelet.

tions, which do not interpolate the data. This is illustrated in Section 9.5, where

the speech recognition data are represented by a few Fourier basis functions.

8.4 Learning from Functional Data

How can we learn relationships (1.1) from functional data? For the start, we only
consider linear relationships in (1.1). That is, in the regression setting () = R),
elements f € F = {X¥ — R} are assumed to be linear (up to an intercept) and
continuous. As X = L?(T) is a Hilbert space, it follows that any function f € F

is of the form

flz(t) = 50+/Tﬁ(t)x(t)dt. (8.3)

In the two-class classification setting () = {£1}), we use sign(f) instead of f. As
already mentioned in Chapter 1, one possibility to estimate f or 3 is to minimize
the empirical risk (1.5). Note that this is an ill-posed problem, as there are
(in general) infinitely many functions (3(t) that fit the data perfectly. There is
obviously a need for regularization, in order to avoid overfitting. We can solve

this problem by using a base expansion of both the predictor variable z;(t) as in
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(8.1) and the function

Bt) = Zbl¢l(t)- (8.4)

This transforms (1.5) into a parametric problem, as we need to estimate the

regression coefficients
t
b = (bl,...,bKﬁ) .
If we use the quadratic loss, this is a matrix problem. We set

&1

C — c RnXKz and J = (fT gbi(t)gbj(t)dt)1§i§K$,1§j§Kﬁ .

t

Cn

It follows that (for centered data)
b = (2'2)" 7'y, (8.5)

with Z = C'J. As already mentioned, we have to regularize this problem. There
are at least three possibilities. Firstly, we constrain the number of base functions
in (8.4). That is, we demand that K3 < K,. We show in Section 9.4 that this
strategy can lead to trivial results in the Boosting setting. The second possibility
is to add a penalty term r(3) to the empirical risk (1.5). If we consider functional

data, it is common to use a penalty term of the form

Here 8% is the kth derivative of 3 — provided that this derivative exists. The
choice of k£ depends on the data at hand and our expert knowledge on the prob-
lem. The third possibility is to apply an appropriate Boosting method. This is
done in Chapter 9.

If the relationship between predictors and response are assumed to be nonlinear,
there are several possibilities and we briefly discuss two of them. On the one hand,
we can apply any fitting method suited for nonlinear problems to the coefficients

in the representation (8.1). On the other hand, we can try to apply the kernel
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trick that is discussed in Section 1.4. Preda (2006) study regression problems in
Reproducing Kernel Hilbert Spaces and Villa & Rossi (2005) use the kernel trick

in order to extend the framework of Support Vector Machines to functional data.

It is also possible to apply linear transformations to the data prior to using
a fitting method. Villa & Rossi (2005) give an illustrative example using the
Tecator data set that is described in Chapter 7. Figure 8.6 shows the spectra
for the data set split into two parts. Spectra that correspond to a high amount
of fat tend to have two maxima instead of one. This implies that it might be
worthwhile to consider the curvature of the curves. In other words, we use the

second derivative of each function.

Fat <20 % Fat >20 %
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Figure 8.6: Spectra of the Tecator data set.

Finally, let us briefly mention how to model a linear relationship (1.1) if both the
predictor and response variables are functional. We consider functions
fLX(T) — L*T),
flalt) = al)+ [ Bls.a(s)s,
T

We estimate (3 by expanding y;, z;, « in terms of a basis and by representing (3 by

K1 Ko

Bls.t) = DY budw(s)hi(t).

k=1 l=1



112 CHAPTER 8. FUNCTIONAL DATA ANALYSIS
The optimal coefficients by; are determined using the loss function
L) = [ w0 -y’
T

Again, we have to regularize in order to obtain smooth estimates that do not

overfit.



Chapter 9
Boosting for Functional Data

In this chapter, we first introduce the main ideas of Boosting. This introduction
is rather sketchy as we only want to display those results that are needed in the
second part of this chapter. There, we explain how to apply these methods to

functional data.

9.1 A Short Introduction to Boosting

Let us return to the learning task described in Chapter 1. Recall that a strategy
to estimate relationship (1.1) is called a learner. We repeat that the choice of the
learner is an important issue. If the learner is too complex, it adapts itself too
much to the data at hand. If it is too weak, it is not able to detect the relevant

structure of the data.

The basic idea of Boosting is to proceed stepwise and to combine weak learners

in such a way that the composite — boosted — learner

gu(z) = Zo‘mfm(x) (9.1)

(or sign (gar) for classification problems) performs better than the single weak
learners f,,,. The single learners are usually called base learners and M is called
the number of Boosting iterations. The learners f,, and the weights «,, are cho-

sen adaptively from the data.

A generic Boosting algorithm proceeds in the following way. In each step m,
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a weighting D,, of the sample S = {(z;,y;)|i = 1,...,n} is defined. We fit a
function f,, by applying the weak learner to the weighted sample. Next, we de-
termine an appropriate coefficient v, for the function f,,. We update the weights
Dyni1(x;). The idea is to give a higher weighting to those points (z;,y;) that are
poorly approximated by f,,. After a suitable stopping criterion is fulfilled, we

output (9.1) or — in the case of classification problems — sign(gas) .

The key ingredient of this Boosting procedure is the reweighting of the sample S.
Points which are hard to approximate in step m are given more emphasis in the
next iteration step. For some learners, it is not possible to compute a weighted
loss. Instead, in each step we draw with replacement a sample of size n from &

and use the weights D,, as probabilities.

AdaBoost (Freund & Schapire 1997) — the first Boosting algorithm — is designed
for two-class classification problems, i.e. y; € {£1}. The coefficients «,, are

determined by first computing the weighted empirical risk

1 n
m = = D, (x:) g, o 9.2

=1

1_
Oy = ln< €m>.
€m

The weights are updated in the following way:

and then setting

Diyi(w) = Din(i) exp (—aumyifm (i) -

The weight «,, depends on the weighted error ¢,,. Note that the weights «,,
are non-negative if and only if the weighted empirical error does not exceed 1/2.
This implies that the weak learner must fulfill the following condition. For each
weighting of the data, it must achieve an empirical error that is slightly better

than random. This will be formalized in definition 9.2.

We have to determine a suitable stopping criterion. Some authors suggest to stop
at step M, if €j;11 = 0. Other suggestions are to stop the Boosting algorithm if

the empirical error of the Boosting classifier is 0. Experiments have shown that
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the generalization error of Boosting can continue to decrease even if the empirical
error is already 0. This has lead to the optimistic assumption that Boosting does
not overfit at all. This is however not true and we should determine M by one of
the model selection criteria described in Chapter 2. In most applications, the test
error curve (as a function of the number of Boosting iterations) stays rather flat
around the optimal region. As a consequence, the choice of the optimal number

of iterations is usually not a crucial task.

Let us now return to the definition of a weak learner. For any weighting D =
(D1, ...,D,) of the sample S and any function f € F, we define the weighted

empirical risk as

e(f,D) = > D (9.3)

yﬁéf (1)

Zi
Let us start with the following definition.

Definition 9.1 (Baseline learner). Let D be a probability distribution on the

sample §. The baseline learner is the constant function

fu(2) = SIgn<Z Di— > D)

vYi wy;=—1

The baseline learner does not depend on x for a given distribution D. It assigns
the label +1 if and only if the weighted majority of all examples in the sample §
belongs to the class +1. Consequently, the weighted empirical error of the baseline
learner is at most 1/2. We demand that a weak learner is always uniformly better

than the base learner.

Definition 9.2. A fitting method (learner) is called a weak learner, if there
exists 1/2 >~ > 0 sucht that for any distribution D on S, the function f that is
produced by the learner fulfills

«(f,D) < S(1=7),.

DO | —

In applications, the most widely used weak learner is a stump, i.e. a classification

tree with two final nodes.

Recall that the empirical risk defined in (1.5) depends on the function f eval-
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uated at the points zq,...,x,. We can rephrase the principle of empirical risk

minimization in the following way. The task is to minimize
Rw) = 23 L
u) = - iy Ui
o !

with respect to w under the constraint that u; = f(z;) for a function f € F. It
can be shown (Breiman 1998, Breiman 1999) that Boosting solves this problem in
a forward stage-wise manner using gradient descent techniques. More precisely,
in each step we fit a weak learner to x; and the negative gradient —VR at the
current estimate g,,,(x;). To ensure that the gradient descent method works well,
we assume that the loss function is convex and differentiable in the second compo-
nent. A generic Boosting algorithm proceeds in the following way (Biihlmann &
Yu 2003, Friedman 2001). Set m = 1. We fit a function f;(z) using a base learner
and set g, = f;. Until a suitable stopping criterion is fulfilled, we determine the
negative gradient vector of the empirical risk at g,,(z;). It is straightforward to
show that the negative gradient is
_ OL(yi, wi)

U; = —_— a=1....n. (9.4)
Ou; Ui =gm(;)

The best greedy step towards the minimum of }A%(u) is the negative gradient
vector. As we restrict ourselves to an additive expansion as displayed in (9.1),
the step vector must belong to the linear span of the class of functions F. We
hence have to find the best step direction under the constraint that it is a multiple
of an element of F, i.e. the step direction is of the form o f with « € Rand f € F.
This is done by fitting a function to the modified sample {(z;,u;)} using a base

learner. If we use the quadratic loss, this yields (for a fixed «),

n

fms1 = argminy  (u; — af)? (9.5)
fer —

After determining the optimal step direction f,,.1(x), we have to determine the

optimal step size a,,11:

Uit = argmin Y L (i, g (25) + afrura (23)) - (9.6)

i=1
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We update the function

Im+1 = gm(x> + Qg1 g1 (:l?) )

increase m by one and proceed as described above.

It can be shown (Friedman 2001, Hastie et al. 2001) that AdaBoost corresponds

to the exponential loss function

Ly, y) = exp(—yy),

if we use the quadratic loss function (9.5) for the base learner.

The connection between Boosting and gradient descent methods has lead to a
wide range of new algorithms (Friedman 2001), notably for regression problems.

Note that if we use the quadratic loss

L) = 5-9)
the negative gradient is simply the vector of residuals, i.e. we iteratively fit the
residuals using a weak learner. This method is called LyBoost (Biihlmann &
Yu 2003, Friedman 2001). In Biihlmann (2006) and Biihlmann & Yu (2006),
LoBoost with componentwise weak learners are investigated. Suppose that we
have p predictor variables. In each Boosting iteration, out of all p variables
XM X® we select the one variable that reduces the the empirical risk (1.5)

the most:

k. = arg mkin {% i L (ui, H® <x§k)>)} : (9.7)
i=1

Here, H®) is a univariate base learner that is applied to the variable X*). Exam-
ples are univariate least squares regression or univariate smoothing splines. We
estimate the regression function f,, that is obtained by applying the weak learner

H%m) to &; and the residuals u;. We use the shortcut

f@) = fru(z) (9:8)

to indicate that the function f is based on the learner H applied to the response
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u. The function g,,_; is then updated by vf,,(z), with 0 < v < 1 a predefined
shrinkage parameter. Biihlmann & Yu (2006) suggest a fixed shrinkage value of
v = 0.1. This Boosting algorithm often produces sparse solutions. That is, only
a small fraction of the predictor variables are included in the final model. This

can lead to interpretable models.

Boosting with the loss function

L(y,y) = log(1+ exp(—yy’))

is suited for classification problems and called LogitBoost (Friedman et al. 2000).

Algorithm 9.3 (LogitBoost). For any sample S and any weak learner H, we
initialize the probabilities py(x;) = 1/2, set go(x) = 0 and iteratively compute

Do(e:) = po(e) (1= p(:)) weights
U % negative gradient
fm = fou function obtained by weighted weak

learner (with weights Dy,(x;))
gn(®) = gm-1(x) + L fun(2) update
Pmt1(zi) = (I+exp(=2fn(x;)))—1  probabilities

The final function g,; is an estimate of one-half of the log-odds ratio

1 P(Y =1|X =)
5108 (1 “P(Y =1X :g;)> ’

As a consequence, this classification algorithm also produces estimates of the class
probabilities P(Y = 1|X = z). This can be advantageous if we have non-equal

misclassification costs.

In the regression setting, there is only a loose definition of the term weak learner.
We speak of a weak learner if the fitting method has a high bias compared to its

variance or if it only uses a few degrees of freedom.

9.2 The Degrees of Freedom of Boosting

Let us return to the subject of a suitable stopping criterion. One possibility is to

use cross validation. Depending on the data, this can lead to high computational
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costs. We can alternatively compute the complexity of the Boosting algorithm
in terms of its degrees of freedom. If we use LsBoost, they can be computed
efficiently (Biithlmann & Yu 2003, Biithlmann & Yu 2006). Let us assume for
simplicity that all weak learners Hq, ..., H,, are linear in y. As a consequence,
the Boosting learner B); obtained after M steps is also linear in y. To show this,

we first use the iterative definition of the residuals
w™ =Y —yH, ™Y = (I, — vH,,) u™ .

We obtain
u™ = (I,—vH,,)...(I, —vH,)y.

Setting u®) = y, it follows that

Bmy = Z Hl-’u,(iil) = ZHZ (In — VHifl) e (In — VHl) y
i=1 i=1

is the linear map that defines the hat matrix of LyBoost. It is straightforward to
show (Bithlmann & Yu 2006) that

B, = I,—(I,—vH,)...... (I, — vH,) ,

and the degrees of freedom are defined as the trace of the hat-matrix B,,. This

matrix can be computed recursively by using the following relationship:
B,., = I,-(,—vH,,)(I,— B,,) .

If the weak learners are not linear in y, it is possible to derive an unbiased estimate

of the degrees of freedom by computing the first derivative of

M

Bu(y) =) Hi(ut")

i=1

with respect to y and by then determining its trace.

Biihlmann & Yu (2006) introduce a variant of LyBoost that is called Sparse LsBoost.
It is based on the effective computation of the degrees of freedom of Boosting. In-
stead of choosing the base learner (9.7) that reduces the empirical risk the most,

we choose the base learner that reduces an appropriate information criterion
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the most. Bithlmann & Yu (2006) propose the generalized minimum description
length criterion that is presented in Section 2.3. Note that this criterion depends
on the response y and the learner H, that is gM DL = gM D L(y, H).

Algorithm 9.4 (SparseLyBoost). For any sample S, we set go(x) =0, u =y

and iteratively compute

U = Yi— gm(x;) residuals
Bgfil = I, - (In — Hff}rl> (I, — B,,) Boosting operator for the kth
variable
kmy1 = argming gM DL (y, Br(fll> selection of the optimal variable
H,. = Hfffl) optimal base learner
fm41(®) = fHp () fitting of the residuals
Im+1(2) = gm(T) + Vfmii () update

B,., = I,-(I,-vH,,) (I, — B,,) update

The optimal number of Boosting iterations is the one for which the generalized
MDL criterion is minimal. Note that SparseL,Boost is completely automatic in

the sense that we do not have to select any external, additional model parameters.

9.3 Boosting and Partial Least Squares

Before extending the framework of Boosting to functional data, we insert a few
remarks on the connections of Boosting and PLS regression. There have been
approaches to use PLSR as a base learner for Boosting algorithms. Mevik et al.
(2004) try to improve the performance of PLSR by averaging over several PSLR
estimates that are obtained from Bootstrap samples. This general strategy is
known as Bagging (Breiman 1996). However, experiments on data show that
Bagging does not improve the performance of PLSR. In Boulesteix (2004) PLSR
is used as a base learner for classification problems by means of the Boosting-by-
reweighting technique. It is shown on several data sets that the performance of
PLSR does not improve. Zhang et al. (2005) combine PLSR and L;Boost in the
regression setting. More precisely, PLSR with one latent component as a base

learner is used.

Algorithm 9.5 (PLSBoost). For any sample S, we set y"**) = y. The latent

components and the regression estimates y™ of PLSBoost are determined by
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iteratively computing

tm = X Xtylres) components
g = Pyl estimate

y(reS) — y(res)_?’j(m) residuals

In Zhang et al. (2005), this algorithm is compared to PLSR on different data
sets. Although PLSBoost is better on all data sets, the improvement is tiny and
the marginal decrease of test error is bought dearly with a substantial increase in

computational costs.

We now try to give a heuristic explanation why PLSR fails as a base learner
in the Boosting framework. The examples that are investigated in Zhang et al.
(2005) are very high-dimensional data sets. As X is highly collinear, the Gram
matrix K = X X is very close to a rank-one matrix. It can be approximated by

the first eigenvector v; of K in the following sense:
K =~ \vvl.

It follows that the components ¢™ are — up to a scaling factor ¢ — approximately
equal to vy.
tm = Kyf,;’? S

Hence ™ hardly depends on the y-residuals at all. This implies that the PLSR
base learner equals approximately the projection onto the first eigenvector vj.
As the residuals are almost orthogonal on vy, the empirical risk reduces ex-
tremely slowly. This can be seen in the examples given in Zhang et al. (2005).
There, sometimes up to 6 000 Boosting iterations are needed until the algorithm

is stopped.

To summarize, for highly collinear data, PLSR is not an appropriate base learner

for LyBoost, as it is too weak. It hardly depends on the response y.

9.4 Functional Boosting

After this short excursion, we return to the main purpose of this chapter. How
can we apply Boosting techniques to functional data? We first have to extend the

notion “weak learner”. In the classification setting, we can adopt definition 9.2. A
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weak learner is a learner that is slightly better than random. What are examples
of weak learners? Note that it is possible to apply most of the multivariate data
analysis tools to functional data. We use a finite-dimensional approximation as
in (8.1) and simply apply any appropriate algorithm. In this way, it is possible
to use stumps (that is, classification trees with one node) or neural networks as

base learners.

In the regression setting, we propose the following definition: A weak learner is a
learner that has only few degrees of freedom. Examples include the two regular-
ized least squares algorithms presented in Section 8.3 — restriction of the number
of base functions in (8.4) or addition of a penalty term to (1.5). Note however
that the first method leads to trivial results if we use LyBoost. The learner is
simply the projection of y onto the space that is spanned by the columns of Z
(recall (8.5)). Consequently, the y-residuals are orthogonal on Z and after one

step, the Boosting solution does not change anymore.

The following example of a weak learner is an extension of the componentwise
weak learner introduced in (9.7). It is suited for L,Boost. We first initialize
go(z(t)) = 0. In each Boosting step, we select one basis function ¢ (t) of the
expansion (8.4). To select this basis function, we estimate for each function ¢y

the regression estimates of the regression model
up = Yo+m / zi(t)or(t)dt + & . (9.9)
T

This defines for each basis function a linear weak learner H®*). In accordance

with the notation introduced in (9.8), we have

fawa@®) = A0+ / ()gn(t)dt (9.10)

We now choose the basis function ¢« (t) that either minimizes the empirical risk
(1.5) or that minimizes the generalized MDL criterion. If we opt for the latter
approach, we call this novel method functional Sparsels;Boost. The function

gm(x(t)) is then updated by a small fraction v of fgs ,(z(t)),

g1 (2(t)) = gm(2(t)) + Ve W (2(1)) .

In Section 9.6, we study this algorithm on the biscuit data set introduced in Sec-
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tion 8.1.

Finally, let us remark that if the response variable is functional, we can adopt
the same definition of weak learner as in the regression setting: A weak learner

is a learner that uses only a few degrees of freedom.

9.5 Example: Speech Recognition

We illustrate the application of Boosting methods to functional data on the speech
recognition data set. To this end, we first represent the time series z;(¢) in terms

of a Fourier basis expansion of dimension K, = 100. We opt to include a generous
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Figure 9.1: Representation of the functions in Figure 8.3 in terms of the first 100
Fourier basis functions.

amount of basis functions, as experiments indicate that the results of LogitBoost
are insensitive to the addition of possibly irrelevant basis functions. We remark
that the Fourier representation does not resemble the original data very much.
This is illustrated in Figure 9.1.

Next, we apply the LogitBoost algorithm 9.3 to the coefficients of the Fourier ex-
pansion. For the weak learner, we choose a classification tree with two final nodes.
The optimal number of components is estimated using 10fold cross-validation

(cv). The minimal cv error over all Boosting iterations is 0.1, obtained after 24
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Boosting iterations. This is the same error rate that is reported in Biau et al.

(2005). There, a functional k-nearest-neighbor-algorithm is applied to the data.

9.6 Example: Biscuit Dough Data Set

Note that in the example of Section 8.2, the Boosting algorithm returns a func-
tion that is a linear combination of many classification trees. Functions like this
are hard to interpret and this has sometime lead to the belief that Boosting is
a “black box” that is only valuable for prediction but not capable to produce
interpretable models. This is however not true, and we now describe how we can

use Boosting to detect important features of the data.

In Section 9.4, we introduced the functional Sparse L,Boost algorithm. It is based
on selecting only one basis function in each Boosting iteration. If the final model
includes only a few basis functions, it might be possible to find an easy interpre-
tation of the regression function. Recall that for the biscuit dough data, our aim
is to find regions of relevant wavelengths. This implies that the estimated regres-
sion function ((t) should be 0 on a wide range of the wavelengths. To achieve
this, we first represent the data in terms of basis functions that have a very small
support. Then, we apply functional SparselL;Boost to the data using the weak
learners that are defined in (9.10).

We choose Daubechies wavelets for this application. They are illustrated in
Figure 9.2. We repeat that the SparseL,Boost algorithm does not rely on any
external model parameters that have to be estimated. In the case of functional
data, the number of basis functions however constitutes an additional parameter.
We now show how to determine the optimal number of basis functions and the

optimal number of Boosting iterations using the generalized MDL criterion.

From a technical point of view, in order to compute a wavelet transformation,
it is necessary to have observations at 2© equidistant points. To fulfill this re-
quirement, we fit the initial p = 700 observations using a lot of B-splines basis
functions (in this case, 65) and evaluate these functions at 2* equidistant points.
Afterwards, it is possible to estimate the coefficients of the wavelet transformation
that constitutes of 2 wavelet basis functions. Hence, L determines the number of

basis functions and has to be estimated from the data. This is done by running
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Figure 9.2: Daubechies wavelet.

functional Sparsel,Boost for different values of L in the range of 3,4,...,10.
The optimal number value of L is obtained by comparing their generalized MDL

criterion (for their respective optimal number of Boosting iterations).

In order to compare functional SparselL;Boost to PLSR, we randomly split the
whole data set (that consists of 39431 = 70 observations) into a training set of size
39 and a test set of size 31. The optimal number of PLSR components is estimated
on the training set using 5fold cross-validation. The optimal parameters for the
Booosting algorithm (i.e. L and the number of Boosting iterations m ) are found
by minimizing the generalized MDL criterion on the training set. The optimal
models are then evaluated on the test set. The random splitting is repeated 50
times. The boxplot of the test errors are depicted in Figure 9.3. We also conduct
a Wilcoxon rank sum test to test the alternative hypothesis that the test error of
the Boosting algorithm is lower than the test error of PLSR. The median test error
for the two methods, their optimal model parameters (estimated on the original
training set) and the p-value for the Wilcoxon rank sign test are displayed in Table
9.1. The regression coefficients that we obtain from functional SparseL;Boost
are displayed in Figure 9.4. Here, we compute the optimal model on the original
training set with the optimal model parameters that are displayed in Table 9.1.
We see that the two methods are compatible. We can clearly distinguish a region

of relevant wavelengths in the range of ~ 1600 — 1900 nanometers. In addition,
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Figure 9.3: Test errors for PLSR and functional SparseL;Boost.

‘ median test error ‘ optimal model parameters ‘ p-value
PLSR 0.194 m =13 0.1067
Boosting 0.208 L=7m=70 -

Table 9.1: Median test error, optimal parameter values and p-value for the biscuit
dough data set.

there is a — somewhat less pronounced - region around ~ 1400 nanometers.

9.7 Conclusion

The extension of Boosting methods to functional data is straightforward. Af-
ter choosing a base algorithm (which we call a weak learner), we iteratively fit
the data by either applying this algorithm to reweighted samples or by using a
gradient descent technique. In many applications, we use a finite-dimensional
expansion of the functional examples in terms of base functions. This finite-
dimensional representation can then be plugged into existing algorithms as Log-
itBoost or LyBoost. In addition, it is possible to extract sparse models from the
data. We proposed a method that is based on an extension of Boosting algorithms

(that perform variable selection) to functional data.
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Figure 9.4: Standardized regression coefficients of functional SparselLsBoost for
27 wavelet basis functions and 70 Boosting iterations.
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Chapter 10
Summary and Outlook

In this work, we studied different methods for the analysis of high-dimensional
data. In this chapter, we briefly review the main results and discuss some open

problems and possible future research directions.

We provided two negative results on Partial Least Squares path models. On the
one hand, we illustrated that the PLS algorithms in mode B do not necessarily
converge to the maximum of the associated optimization problem. More severely,
we showed that the algorithms with at least one block in mode A are not even at-
tached to any (sufficiently smooth) optimization problem! Although we suggested
a modification of mode A, there still remain a lot of unanswered questions. Do the
optimization problems in mode B and (modified) mode A really reflect the outer
PLS model as illustrated in Figure 3.37 Which scheme is the appropriate one?
How do we specify the PLS model at all? There is no rule on how to determine
the presence or the direction of the arrows in the inner model. In applications,
this is usually done ad-hoc. Another serious problem that is prevalent in a lot
of applications is the interpretation of the model. It is common to analyze the
quality of the PLS model in terms of the size of the weight vectors and there are
statistical tests (based on Bootstrap techniques) to determine their significance.
These approaches are often only justified by heuristic arguments. To summarize,
we advise to meet results based on PLS path modeling techniques with a portion

of skepticism.

These reservations are however not valid for Partial Least Squares for Regres-
sion. PLSR is in fact a well-founded and established tool in the analysis of

high-dimensional data, and it has been used successfully in a broad range of ap-

129
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plications. It is computationally fast and it can be easily extended to nonlinear
problems with the help of the kernel trick. Its close connection to methods from
linear algebra (as illustrated in Chapter 6) has lead to further theoretical results
on PLSR. In particular, a lot of statistical properties of PLSR depend on this
relationship. As an example, we explained in Chapter 7 how to compute the
shrinkage factors of PLSR by exploiting its relationship to Krylov methods. The
interrelation between numerical linear algebra and biased multivariate regression
techniques is truly fascinating. We hope that — based on this — it is possible to
gain additional insight into existing statistical methods or even to establish new

ones.

As a matter of fact, we introduced one new statistical method that can be justified
in terms of numerical linear algebra. The penalized PLSR approach developed
in Chapter 5 is proven to be equal to a preconditioned conjugate gradient algo-
rithm. A different motivation for this novel technique is given in terms of the
kernel trick. In addition, penalized PLS in combination with a B-splines trans-
formation can be successfully applied to the estimation of very high-dimensional
generalized additive models. In the examples that are presented in Chapter 5,
the novel method outperforms two other methods for modeling GAM’s. However,
there is still space for improvement. We already mentioned that in the penalized
PLSR approach, the degree of smoothness is the same for each variable. This is
a drawback compared to other methods. Recall that we illustrated in Section 5.5
that the smoothness depends on the number of penalized PLSR components that
are included in the model. In order to assign different degrees of smoothness to
each variable, we might therefore allow different numbers of components for each
variable. As this would lead to an infeasible, high-dimensional model selection
problem, we suggest a slightly different approach based on Boosting techniques.
In the spirit of componentwise L,Boost, we proceed stepwise. In each step, we in-
crease the number of penalized PLSR components for only one selected predictor
variable. The selection might be based on the maximal reduction of the empirical
risk. If the estimation of the degrees of freedom of (penalized) PLSR in its current
form was more reliable, it would even be possible to adapt SparselL;Boost to this

particular problem.

To conclude our comments on Partial Least Squares, we remark that it was not

our primary goal to advertise truncated PLSR as a pioneering new regression
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method. There have been discussions in the literature whether the shrinkage be-
havior of PLSR leads to inferior statistical properties or not, and our aim was

mainly to investigate empirically these statistical properties.

In Chapter 9, we analyzed functional data with the help of Boosting techniques.
It is perhaps not surprising that the extension of Boosting methods to functional
data is straightforward. The achievement of this chapter is not merely the combi-
nation of these two concepts, but rather the introduction of methods that produce
sparse functional regression models. It is definitely worthwhile to study further
the potentials of functional SparseLyBoost, and its illustration on one single data
set is surely insufficient. Topics that might be investigated are e.g. the influence
of the type of basis functions, the influence of the model selection criterion and
the reliability of this method — for instance in terms of (Bootstrap) confidence

intervals.
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Appendix A

Mathematical Background

In this chapter, we briefly summarize some background material from mathemat-

ics that is needed throughout this work.

A.1 Matrix Differential Calculus

This section contains results from Magnus & Neudecker (1988).

Definition A.1 (First derivative of vector functions). Let f : R? — R? be a
function and & € RP. If there is a p x ¢ matrix A(x) such that for all h € R?
with ||h —c|| <€

fle+h) = f(x)+ A(x)h+rg(h)

and

. 1z(h)
lim
h—0 |kl

=0,

then f is differentiable at point . The matrix A(x) is called the first derivative
of f at x and is denoted by g—i(w).The linear function

df(x): R? — RI

Fa@)h) = P(ah

is called the first differential of f at a.

We now have to extend the notion of differentiability to functions defined on

matrix spaces.
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Definition A.2. Let A be a m x n matrix and A ; its jth column. Then vec(A)

is defined as the vector

vec(A) = (A4 AL, AY)

of length mn.

Definition A.3 (First derivative of matrix functions). Let f : RP*™ — R%%! be a
function and X € RP*™. f is differentiable at X if and only if the vector-valued

function

F :vec(RP*™) — R?
F(vec(X)) = vec(f(X))

is differentiable at vec(X). The differential
df (X) : RP*™ — RI¥!

of f at X is a linear function that is defined via the relationship

vec (df (X)(H)) = (%{X)(W(X))) vee(H) . (A1)

%fc?X) (vec(X)) is called the derivative of f at X.

This theorem is needed in Chapter 3.

Theorem A.4 (Theorem of Schwartz). Suppose that f : RP — R is twice differ-

entiable on an open subset U of RP. For all x € U, the Hessian matriz

0 0

Hy(z) = 9% O (z) € RP™

of f is a symmetric matriz.

Proof. The proof can be found in any introductory book on calculus or in Magnus
& Neudecker (1988). O

Most of the rules on differential calculus for real-valued functions are also valid

for matrix-valued functions and we summarize some of them.

Proposition A.5. Suppose that f and g are differentiable functions.
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1. (Product rule)

d((f9) (®)) = (df(®))g(z)+ f(z)(d(g(z)).

Here, the expression on the right hand side is a short-cut for the map

h = ((df(z))(h)) g(z) + f(2) (d(g(2))(h)) - (A-2)

2. (Differential of an inverse) If f(x) is a regular matriz for all x, then
d(f)(x) = —(f()d(f)(@)(f(x)~".
3. (Differential of the transpose)

d(f'(z)) = (d(f(z)))" .

These rules are needed in the proof of proposition A.11.

A.2 Optimization under Constraints

In this section, we briefly recapitulate how to optimize with side constraints.

Suppose that we want to compute

argmax  f(w), (A.3)
subject to  gr(w)=0,k=1... K. (A.4)
Here f,g1,...,gr are real-valued functions R? — R. We assume that f and
g1, - - -, gk are differentiable. We define the Lagrangian function
K
Lw) = f(w) =) Mgr(w). (A.5)
k=1

The values )\ are called Lagrangian multipliers.

Proposition A.6. Any solution w* of (A.3) and (A.4) fulfills the Lagrangian
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equations

(g_i) (w?) = i%‘ (gﬁ)(w*), (A.6)
gi(w’) = 0. (A7)

A.3 Eigen Problems and the Singular Value De-
composition

Any matrix X € R"*P defines a linear map R? — R" via w — X w. The singular
value decomposition of X is a representation of this map in terms of orthonormal
basis vectors for both R? and R” such that the map defined by X is as simple as
possible.

Proposition A.7 (Singular Value Decomposition). For any matriz X € R"*P,
there is an orthonormal basis wi,...u, of R? and a set of orthonormal vectors
v1,...,V, € R" such that

X’U,Z' = O'i’Ui,O'Z'EO.

The quantities o; are called the singular values of X and are numbered in de-

creasing order. In matriz notation, we have
X = VvIU' (A.8)

with

ViV = I, and UU = 1I,.
It follows immediately that the rank of X equals the number of nonzero singular
values (counted with multiplicities). We note that V' is a basis of the column
space of X and U is a basis of the row space of X. We can extend the vectors

v; to an orthonormal basis of R™.

Definition A.8. A vector u € R?\ {0} is called an eigenvector of a quadratic
matrix A € RP*P if there is a scalar A € R such that Au = Au. We call \ an

eigenvalue of A.

The eigendecomposition of A is a representation of the form

A = UAU'.
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For some matrices, there is no eigendecomposition. If A is however symmetric,

we have an orthogonal eigendecomposition
A=UAU' |, U'U=1,.

The eigenvectors of a symmetric matrix can be computed with the help of the

so-called power method.

Algorithm A.9 (Power method). For a symmetric matric A and an initial

vector by, the power method computes iteratively

Ek—f—l = Ab, matriz multiplication

= 1 b normalization

b _
kil Bkl

The power algorithm converges to the eigenvector u for which the correspond-
ing eigenvalue has the greatest absolute value, if this eigenvalue is dominant (in
absolute terms) and if the starting vector by is not orthogonal on the eigenvector

u.

A.4 Projections

Let us consider a general Hibert space V. For a subspace U and any vector v € V,

we define the following optimization problem:

argmin ||v — u,

subject to welU.

As we assume that V is a Hilbert space, the solution exists if ¢/ is a closed sub-
space. We call the unique solution the (orthogonal) projection of v onto U and

denote it by Pyv.

If U is finite-dimensional, we can give a short representation of the projection

operator. Denote by U = (uq,...,u;) any set of vectors that generate the
subspace U. For any other set V' = (vq,...,v;) of vectors we define the k x [
matrix

(U,V) = ((ui,vy)) .
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Furthermore, we define the (symbolic) multiplication of U with a vector a € R¥

as

k
Ua = ZOZZ’U,Z
i=1
The projection map is then
Puv = U ((U,U)) (U,v) . (A.9)

We now list some properties of projection operators.

Proposition A.10. Denote by Py the projection onto the subspace U.
1. Py 1s a symmetric map.
2. The projection operator is idempotent, Py = Py.

3. If the space U+ that is orthogonal onU is a closed subspace, then (Idy —P)

18 the projection onto that space.

4. If V is finite-dimensional and Py can be represented by a matriz P, then
trace(P) = dimU.

In Chapter 4, we need the first derivative of a projection operator. We now
present this result. Let us assume that both vectors v = v(y),z = z(y) € R”

depend on a vector y. The projection of z onto v is defined as (see (A.9))
Poz = v ('vt'v)*1 v'z.

For any function f that depends on y, we use df = df(y) as a shortcut. Using
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proposition A.5, we have

d(Pyz) = d ('v (v'v

)
(v'v) vz 4w ( (’Ut'v)_1> viz 4+ ('vt'v)_1 d(v'z)
)

dv

—~

)

= (dv) ('vt'v vz —w ('v 'v) d ('vt'v) ('v 'v) v'z

+o (v'o) ™ [ (v') z + v'dz]
= (dv) (’vtv) v'z —v (v 'v)_1 d(v')v (’vt'v)_1 v'z

—v ('vt'v v'dv ('vt'v) "olz 4w ('vt'v)_1 d(v') z+v ('vt'v)_1 vldz

= (dv) (’vtv) (’v’ffv)f1 d (v") Ppz — Pydv ('vt'v)f1 v'z

+v (v'v 4 ( ) z + Pydz
= (dv) ('vt'v) v'z —v (v'v) d (v)! Pz — Pydv ('vt'v)f1 v'z

+o (v'v) " d (v)' 2 + Pydz

Using (A.2), this is equivalent to the following. For all h € R™,

(d(Pyz))h = ((dv)h) ('vt'v)_1 v'z — v ('vt'v)_1 (d (v) h)' Pyz
—Py (dvh) ('vt'v)_1 vz +v ('vt'v)_1 (d(v)h) z
+Pydzh .

This can be further simplified by factoring out the expression ('v’f'v)f1 and rear-

ranging some terms. We obtain

(d(Pyz))h = 'vi ['vtz ((dv) h) — v2'"P! ((dv) h) — v'2P, ((dv) h) + v2' ((dv) h)}

+Pydzh

1
= — [v'z —v2'P, — v'2P, + v2'] ((dv) h) + Pydzh.

viv

Finally, we use the definition of the first derivative A.1 and obtain the following

result.

Proposition A.11. The first derivate of the projection operator is

ov 0z

OPyz 1
oy "oy

5y~ v [0z (I —Py) +0'2 (I —Py)]
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A.5 The Moore-Penrose Inverse

The contents of this section can be found e.g. in Kockelkorn (2000). If a matrix
A is not quadratic or is not of full rank, we have to find a suitable surrogate for

its inverse. In this work, we use the Moore-Penrose inverse.

Proposition A.12 (Moore-Penrose Inverse). For any matriz A € RP*!, there is

a unique matriz A~ € R>*P such that

A = AA A,

A" = A AA,
(Aa7) = Aaa-,
(A"A)" = AA.

Proposition A.13. If A is a symmetric matriz with eigendecomposition
A = UAU',

the Moore-Penrose inverse of A is defined in the following way. Set

0 i#j
(A_)U = /\% t=jand \; #0 .
0 i=j7and \;=0

Then
A = UA U
Proof. 1t follows readily from the definiton of A~ that

AA" =A"A=diag( 1,...,1,0,...,0).
——
rk(A)—times

This implies that A~ is indeed the Moore-Penrose inverse of A, as the properties

in proposition A.12 are fulfilled. It follows that

AUAN U'A=UAA AU'=UAU'= A
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and
UANU'AUAN U'=UANA AN U'=UANU.

Finally, we remark that the matrix
AUA U'=UA U'A = Udiag(l,...,1,0,...,0)U"

is symmetric. O

Proposition A.14. The system of linear equations
Ax = b

has a solution if and only if € = A~b is a solution. Any solution of these linear

equations has the form
x = :13*+(I—A’A)'v

for any vector v. The two components of x are orthogonal.



150 APPENDIX A. MATHEMATICAL BACKGROUND



Appendix B

Results of the Simulation Study

We display the results of the simulation study that is described in Section 7.3.
The following tables show the MSE-RATIO for ,/6\ as well as for y. In addition to
the MSE-RATIO, we display the optimal number of components for each method.

It is interesting to see that the two quantities are the same almost all of the times.

collinearity | no no no | med. | med. | med. | high | high | high
stnr 1 3 7 1 3 7 1 2 7
1 0.833 [ 0.861 | 0.676 | 0.958 [ 1.000 | 0.993 [ 1.000 | 0.999 | 1.000
2 0.980 | 0.976 | 0.975 | 0.995 | 0.938 | 0.864 | 0.847 | 0.965 | 0.866
3 1.000 | 0.993 | 1.001 | 0.969 | 0.960 | 0.993 | 0.954 | 0.980 | 0.967
4 1.000 | 1.001 | 0.999 | 0.988 | 1.000 | 1.002 | 0.997 | 0.993 | 0.992
mPg 2 5 2 2 4 3 1 2 5
mPe 2 5 2 2 4 3 1 2 5

Table B.1: MSE-RATIO of ,(Ai’ for p = 5. The first two rows display the setting of
the parameters. The rows entitled 1-4 display the MSE ratio for the respective

number of components.
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collinearity || no no no med. | med. | med. | high | high | high
stnr 1 3 7 1 3 7 1 2 7
1 0.775 | 0.780 | 0.570 | 0.919 | 1.000 | 0.970 | 1.004 | 0.995 | 0.999
2 0.978 | 0.972 | 0.9697 | 0.994 | 0.882 | 0.786 | 0.828 | 0.951 | 0.823
3 1.001 | 0.990 | 1.001 | 0.969 | 0.967 | 0.992 | 0.960 | 0.977 | 0.973
4 1.000 | 1.001 | 0.999 | 0.990 | 1.000 | 1.001 | 0.997 | 0.996 | 0.993
mer g 3 5 3 2 4 4 1 2 5
M 2 5 2 2 4 4 1 2 3

Table B.2: MSE-RATIO of y for p = 5.
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collinearity | no no no | med. | med. | med. | high | high | high
stnr 1 3 7 1 3 7 1 2 7
1 0.929 | 0.963 | 0.972 | 0.98 | 0.998 | 0.989 | 1.000 | 1.000 | 1.000
2 0.938 | 0.959 | 0.977 | 0.922 | 0.91 | 0.978 | 0.789 | 0.793 | 0.792
3 0.907 | 0.952 | 0.981 | 0.875 | 0.91 | 0.945 | 0.849 | 0.843 | 0.849
4 0.905 | 0.933 | 0.971 | 0.879 | 0.913 | 0.912 | 0.857 | 0.864 | 0.868
) 0.901 | 0.942 | 0.954 | 0.879 | 0.924 | 0.898 | 0.870 | 0.883 | 0.879
6 0.898 | 0.942 | 0.945 | 0.878 | 0.915 | 0.891 | 0.882 | 0.890 | 0.893
7 0.892 | 0.926 | 0.949 | 0.887 | 0.906 | 0.891 | 0.891 | 0.895 | 0.898
8 0.899 | 0.926 | 0.956 | 0.892 | 0.904 | 0.895 | 0.897 | 0.897 | 0.903
9 0.908 | 0.933 | 0.955 | 0.897 | 0.910 | 0.895 | 0.903 | 0.902 | 0.904
10 0.913 | 0.938 | 0.951 | 0.900 | 0.916 | 0.898 | 0.902 | 0.899 | 0.901
11 0.913 | 0.937 | 0.947 | 0.902 | 0.919 | 0.907 | 0.906 | 0.901 | 0.902
12 0.917 | 0.931 | 0.944 | 0.909 | 0.919 | 0.917 | 0.908 | 0.904 | 0.906
13 0.924 | 0.932 | 0.946 | 0.919 | 0.92 | 0.925 | 0.913 | 0.907 | 0.914
14 0.933 | 0.939 | 0.946 | 0.927 | 0.917 | 0.936 | 0.921 | 0.911 | 0.922
15 0.94 10945 | 0.95 | 0.933 | 0.916 | 0.936 | 0.928 | 0.916 | 0.931
16 0.949 | 0.945 | 0.951 | 0.935 | 0.918 | 0.941 | 0.938 | 0.922 | 0.936
17 0.956 | 0.945 | 0.954 | 0.939 | 0.922 | 0.945 | 0.944 | 0.926 | 0.936
18 0.961 | 0.944 | 0.959 | 0.943 | 0.931 | 0.95 | 0.946 | 0.930 | 0.935
19 0.968 | 0.946 | 0.964 | 0.946 | 0.934 | 0.958 | 0.953 | 0.939 | 0.936
20 0.973 | 0.951 | 0.973 | 0.949 | 0.935 | 0.962 | 0.961 | 0.947 | 0.939
21 0.977 1 0.958 | 0.977 | 0.954 | 0.936 | 0.966 | 0.968 | 0.955 | 0.943
22 0.98 | 0.965 | 0.981 | 0.961 | 0.94 | 0.973 | 0.972 | 0.962 | 0.948
23 0.984 | 0.97 | 0.984 | 0.968 | 0.945 | 0.98 | 0.976 | 0.967 | 0.950
24 0.987 | 0.976 | 0.988 | 0.975 | 0.948 | 0.983 | 0.98 | 0.970 | 0.953
25 0.989 | 0.98 | 0.99 | 0.978 | 0.953 | 0.987 | 0.981 | 0.973 | 0.959
26 0.992 | 0.985 | 0.993 | 0.982 | 0.959 | 0.991 | 0.984 | 0.977 | 0.966
27 0.994 | 0.989 | 0.996 | 0.986 | 0.966 | 0.992 | 0.987 | 0.981 | 0.975
28 0.995 | 0.991 | 0.997 | 0.988 | 0.973 | 0.994 | 0.99 | 0.985 | 0.984
29 0.996 | 0.993 | 0.998 | 0.99 | 0.978 | 0.995 | 0.993 | 0.988 | 0.988
30 0.997 | 0.994 | 0.999 | 0.992 | 0.982 | 0.996 | 0.995 | 0.991 | 0.99
31 0.998 | 0.995 | 0.999 | 0.994 | 0.985 | 0.997 | 0.996 | 0.992 | 0.993
32 0.998 | 0.996 | 0.999 | 0.996 | 0.99 | 0.998 | 0.996 | 0.994 | 0.995
33 0.999 | 0.997 | 1.000 | 0.996 | 0.991 | 0.999 | 0.997 | 0.995 | 0.996
34 0.999 | 0.998 | 1.000 | 0.997 | 0.993 | 0.999 | 0.998 | 0.996 | 0.997
35 0.999 | 0.999 | 1.000 | 0.999 | 0.994 | 0.999 | 0.998 | 0.997 | 0.998
36 1.000 | 1.000 | 1.000 | 0.999 | 0.996 | 0.999 | 0.999 | 0.998 | 0.998
37 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 1.000 | 0.999 | 0.998 | 0.999
38 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 0.999 | 0.999 | 0.999
39 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 0.999 | 1.000
my g 1 3 5 1 2 2 1 1 1
mipy 1 3 5 1 2 2 1 1 1

Table B.3: MSE-RATIO of B for p = 40.
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collinearity || no no no | med. | med. | med. | high | high | high
stnr 1 3 7 1 3 7 1 2 7
1 0.781 [ 0.797 [ 0.791 [ 0.877 [ 0.983 [ 0.924 [ 1.013 | 1.004 | 1.001
2 0.870 | 0.857 | 0.853 | 0.785 | 0.702 | 0.868 | 0.673 | 0.684 | 0.680
3 0.853 | 0.899 | 0.914 | 0.776 | 0.818 | 0.853 | 0.778 | 0.772 | 0.778
4 0.874 | 0.891 | 0.896 | 0.818 | 0.836 | 0.838 | 0.81 | 0.818 | 0.822
5 0.889 | 0.92 | 0.893 | 0.839 | 0.891 | 0.846 | 0.835 | 0.855 | 0.856
6 0.898 | 0.942 | 0.921 | 0.844 | 0.884 | 0.859 | 0.862 | 0.881 | 0.881
7 0.897 | 0.938 | 0.929 | 0.876 | 0.902 | 0.88 | 0.886 | 0.898 | 0.898
8 0.923 | 0.941 | 0.943 | 0.886 | 0.898 | 0.896 | 0.9 | 0.906 | 0.914
9 0.924 | 0.944 | 0.960 | 0.904 | 0.916 | 0.901 | 0.915 | 0.92 | 0.917
10 0.935 | 0.958 | 0.961 | 0.913 | 0.93 | 0.915 | 0.915 | 0.914 | 0.921
11 0.943 | 0.967 | 0.959 | 0.922 | 0.937 | 0.916 | 0.924 | 0.92 | 0.927
12 0.954 | 0.967 | 0.958 | 0.929 | 0.942 | 0.938 | 0.932 | 0.926 | 0.931
13 0.959 | 0.967 | 0.965 | 0.941 | 0.95 | 0.942 | 0.939 | 0.933 | 0.937
14 0.961 | 0.961 | 0.966 | 0.948 | 0.949 | 0.954 | 0.947 | 0.942 | 0.942
15 0.97 | 0.969 | 0.977 | 0.954 | 0.953 | 0.96 | 0.953 | 0.948 | 0.949
16 0.975 | 0.971 | 0.976 | 0.964 | 0.962 | 0.967 | 0.961 | 0.954 | 0.957
17 0.979 | 0.976 | 0.983 | 0.968 | 0.962 | 0.974 | 0.967 | 0.957 | 0.957
18 0.982 | 0.981 | 0.985 | 0.972 | 0.966 | 0.979 | 0.968 | 0.960 | 0.966
19 0.986 | 0.985 | 0.988 | 0.976 | 0.969 | 0.980 | 0.974 | 0.965 | 0.970
20 0.989 | 0.987 | 0.991 | 0.977 | 0.970 | 0.983 | 0.979 | 0.972 | 0.974
21 0.991 | 0.99 | 0.992 | 0.980 | 0.973 | 0.985 | 0.984 | 0.977 | 0.978
22 0.993 | 0.99 | 0.994 | 0.984 | 0.979 | 0.988 | 0.988 | 0.982 | 0.981
23 0.995 | 0.992 | 0.996 | 0.987 | 0.98 | 0.991 | 0.990 | 0.986 | 0.983
24 0.996 | 0.993 | 0.997 | 0.989 | 0.982 | 0.993 | 0.992 | 0.987 | 0.984
25 0.996 | 0.995 | 0.997 | 0.99 | 0.983 | 0.994 | 0.993 | 0.989 | 0.985
26 0.997 | 0.996 | 0.998 | 0.992 | 0.986 | 0.996 | 0.994 | 0.991 | 0.987
27 0.998 | 0.997 | 0.999 | 0.994 | 0.990 | 0.997 | 0.995 | 0.993 | 0.989
28 0.999 | 0.997 | 0.999 | 0.995 | 0.991 | 0.998 | 0.996 | 0.994 | 0.991
29 0.999 | 0.998 | 0.999 | 0.996 | 0.992 | 0.998 | 0.997 | 0.996 | 0.994
30 0.999 | 0.999 | 1.000 | 0.997 | 0.993 | 0.999 | 0.998 | 0.997 | 0.994
31 0.999 | 0.999 | 1.000 | 0.998 | 0.994 | 0.999 | 0.998 | 0.997 | 0.996
32 0.999 | 0.999 | 1.000 | 0.998 | 0.995 | 0.999 | 0.999 | 0.998 | 0.997
33 1.000 | 0.999 | 1.000 | 0.998 | 0.996 | 0.999 | 0.999 | 0.998 | 0.998
34 1.000 | 0.999 | 1.000 | 0.999 | 0.997 | 1.000 | 0.999 | 0.999 | 0.998
35 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 1.000 | 0.999 | 0.999 | 0.999
36 1.000 | 1.000 | 1.000 | 0.999 | 0.998 | 1.000 | 1.000 | 0.999 | 0.999
37 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 0.999 | 0.999
38 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 0.999 | 1.000
39 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000
my s 1 3 9 1 1 2 1 1 1
mPpN 1 3 4 1 2 2 1 1 1

Table B.4: MSE-RATIO of y for p = 40.
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collinearity | no no no | med. | med. | med. | high | high | high
stnr 1 3 7 1 3 7 1 2 7
1 0.845 [ 0.763 ] 0.825 [ 0.862 [ 0.839 [ 0.906 | 1.017 | 1.002 [ 1.000
2 0.813 | 0.892 | 0.864 | 0.753 | 0.832 | 0.847 | 0.695 | 0.695 | 0.694
3 0.863 | 0.884 | 0.881 | 0.788 | 0.837 | 0.859 | 0.806 | 0.808 | 0.812
4 0.908 | 0.898 | 0.918 | 0.852 | 0.852 | 0.864 | 0.866 | 0.861 | 0.865
5 0.933 | 0.940 | 0.954 | 0.889 | 0.888 | 0.900 | 0.900 | 0.903 | 0.903
6 0.954 | 0.953 | 0.960 | 0.900 | 0.905 | 0.915 | 0.926 | 0.931 | 0.931
7 0.964 | 0.967 | 0.979 | 0.927 | 0.935 | 0.930 | 0.951 | 0.953 | 0.953
8 0.976 | 0.972 | 0.988 | 0.942 | 0.942 | 0.950 | 0.968 | 0.968 | 0.970
9 0.984 | 0.982 | 0.993 | 0.959 | 0.963 | 0.961 | 0.979 | 0.968 | 0.979
10 0.99 | 0.990 | 0.995 | 0.969 | 0.970 | 0.970 | 0.980 | 0.979 | 0.981
11 0.994 | 0.991 | 0.998 | 0.976 | 0.979 | 0.978 | 0.987 | 0.987 | 0.988
12 0.996 | 0.994 | 0.998 | 0.982 | 0.987 | 0.984 | 0.991 | 0.992 | 0.993
13 0.997 | 0.995 | 0.999 | 0.988 | 0.991 | 0.990 | 0.994 | 0.994 | 0.995
14 0.998 | 0.997 | 0.999 | 0.991 | 0.994 | 0.992 | 0.996 | 0.997 | 0.997
15 0.999 | 0.998 | 1.000 | 0.994 | 0.995 | 0.994 | 0.997 | 0.998 | 0.998
16 0.999 | 0.999 | 1.000 | 0.996 | 0.997 | 0.996 | 0.998 | 0.998 | 0.999
17 1.000 | 0.999 | 1.000 | 0.997 | 0.998 | 0.997 | 0.999 | 0.999 | 0.999
18 1.000 | 0.999 | 1.000 | 0.998 | 0.999 | 0.998 | 0.999 | 0.999 | 0.999
19 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 0.999 | 1.000 | 1.000
20 1.000 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000
m% 1 2 5 1 1 2 1 1 1
mipy 1 1 3 1 1 2 1 1 1

Table B.5: MSE-RATIO of gy for p = 100. We only display the results for the first
20 components, as the MSE-RATIO equals 1 (up to 4 digits after the decimal

point) for the remaining components.




