
Technical Report accompanying: Preserving Liveness

Guarantees from Synchronous Communication to

Asynchronous Unstructured Low-Level Languages

Nils Berg Thomas Göthel Armin Danziger Sabine Glesner

TU Berlin

Abstract

This document is an excerpt (Chapter 6) of the dissertation of Nils Berg [Ber19]. It

extends the paper Preserving Liveness Guarantees from Synchronous Communication to

Asynchronous Unstructured Low-Level Languages with detailed proofs and a complete

and formal version of the protocol constraints.

In the implementation of abstract synchronous communication in asynchronous un-

structured low-level languages, e. g., using shared variables, the preservation of safety

and especially liveness properties is a hitherto open problem due to inherently different

abstraction levels. Our approach to overcome this problem is threefold: First, we present

our notion of handshake refinement with which we formally prove the correctness of

the implementation relation of a handshake protocol. Second, we verify the soundness

of our handshake refinement, i. e., all safety and liveness properties are preserved to

the lower level. Third, we apply our handshake refinement to show the correctness

of all implementations that realize the abstract synchronous communication with the

handshake protocol. To this end, we employ an exemplary language with asynchronous

shared variable communication. Our approach is scalable and closes the verification

gap between different abstraction levels of communication.

6 Relating Abstract Communication to Low-Level

Protocols

Our second step out of two to relate CSP with a low-level language is to focus on the

low-level implementation of abstract communication. To this end, we define the notion

of handshake refinement. It is an implementation relation that allows for the implemen-

tation of abstract communication while preserving safety and liveness properties. It

relates CUC and SV, a generic low-level language we define with communication over

shared variables. SV allows for the implementation of various communication protocols.

We use a simple handshake protocol to implement the synchronous communication of

CSP/CUC with the asynchronous communication instructions provided by SV. Using

our notion of handshake refinement, we show that any SV program, which is obtained

from a CUC program using the handshake protocol, has the same safety and liveness

properties as the initial CUC program. We show this relation in a general theorem

for all such pairs of CUC and SV programs. This general theorem allows us to reduce

the proof obligations for the relation from CSP to SV to the proof obligations for the

relation from CSP to CUC, which we can prove compositionally.

In this chapter, we first present our generic low-level language with communication

over shared variables SV in Section 6.1 and then state the handshake protocol in

Section 6.2. In Section 6.3, we derive semantics with events for SV from the structure

granted by the handshake protocol, in particular a stable failures semantics for SV. We

define our notion of handshake refinement in Section 6.4, which allows us to relate the

abstract communication in CUC with implementation over shared variables in SV using

the presented handshake protocol. In Section 6.5, we show that it preserves safety and

liveness properties and finally show that the handshake protocol induces a handshake

refinement. As most proofs in this chapter consist of well-known and easy to reproduce

techniques, we give concise proofs containing the essential ideas. We published the

content of this chapter in [BGDG18].

6.1 Shared Variables (SV)

In this section, we present our generic language Shared Variables (SV) and give its

syntax and operational semantics. The intent of SV is to have a language with low-level

control flow and low-level communication. SV has a pure interleaving semantics (in

contrast to CUC) and allows us to implement synchronous communication over shared

variables. SV contains the instructions do and cbr just like CUC, but instead of the

abstract communication instruction comm, it contains the instructions needed for the

low-level implementation of communication and synchronization over shared variables:

read, write, and cas (compare-and-set). We have reasoned in Section 5.1 that we

decide to use the instruction cas to model multi-processor synchronization (instead of

load-reserve and store-conditional), as it simplifies our proofs and programs and the

semantics is similar enough for our use.

6.1.1 Semantic States and Syntax

Although SV is designed to be a generic low-level language that allows for commu-

nication via shared variables, it is intentionally similar to CUC. This facilitates the

comparison of the semantics of both languages CUC and SV. To allow for shared variable

communication, we extend the concurrent local states (σ ∈ States) with a global shared

2

6.1 Shared Variables (SV)

state Γ. The global state Γ is modeled as a data store (Γ ∈ DS). Thus, it has the same

type as the data stores σds of the local states.

Definition 6.1: SV State

GStates := DS × States

The language SV consists of five instructions (two of them stemming from CUC

and three new), which we define in Definition 6.2. The first two instructions stem from

CUC. The instruction do (non-deterministically) transforms the local state, and the

instruction cbr conditionally branches to one of two jump targets. Both are as in CUC

and restricted to interactions with the local state. The three new instructions allow for

interaction with the global state: The instructions read and write transfer data from

the shared memory to the local registers and vice versa. The atomic compare-and-set

instruction cas allows for synchronization via shared variables of multiple concurrent

components. We use γ to denote a global variable.

Definition 6.2: Instructions of SV

Instructions := do f f : DS → P(DS)

| cbr b m n b : DS → B, m, n : Labels

| read x γ x, γ : Names

| write γ x γ, x : Names

| cas r γ v1 v2 r, γ : Names, v1, v2 : Values

We skip the explanations for do and cbr, as they are already explained in Section 5.2.

They cannot modify or read from the global state. The following three instructions can

modify the global state or read from it.

read x γ reads the value of a shared variable γ into a local register x.

write γ x writes the value of a local register x into a shared variable γ.

cas r γ v1 v2 compares the value of the shared variable γ with the value v1. If they

are equal, then the value v2 is written to the shared variable γ. The result of the

comparison, i. e., true or false, is written to the local register r. The instruction cas

is atomic, i. e., nothing can (concurrently) happen between the comparison and the

possible update of the shared variable.

As in CUC, we define a local program lp to be a set of labeled instructions (Defini-

tion A.3) and a concurrent program cp to be a tree of local programs (Definition A.5).

We also require the uniqueness of labels (Assumption A.2) and that the tree structure

of a concurrent state matches the tree structure of a program (Assumption A.3). We

omit to redefine this here, as the definitions and assumptions directly apply. It will

be always clear whether we refer to a CUC or an SV program. We do not define a

structuring on SV programs, as we relate the operational semantics of CUC and SV.

Having defined semantic states and programs for SV, we proceed to define the

operational semantics of SV in the next section.

3

6.1 Shared Variables (SV)

6.1.2 Semantics

The operational semantics of SV is depicted in Definition 6.3. It contains four kinds

of rules: 1) The single steps concerned only with the local state (do, cbr), 2) the single

steps interacting with the global state (cas-t, cas-f, read, write), 3) the concurrent

steps (interleaving-left, interleaving-right), and 4) those for execution (exec-0,

exec). As in CUC, the operational semantics is defined for local programs lp ∈ LP and

concurrent programs cp ∈ CP , respectively.

The single steps concerned with the local steps (do, cbr) are exactly as in CUC.

They leave the global state Γ unchanged.

The single steps interacting with the global state (cas-t, cas-f, read, write) are

used for shared variable communication. In cas-t, the case where compared values are

equal (Γ(γ) = v1) is defined. The shared variable is updated with v2, and the result of

the comparison (true) is stored in the register r. The case where the compared values

are not equal is defined in cas-f. Here, the global state remains unchanged. In both

cases, the program counter is increased.

In read and write, the contents of registers are written from the global state to the

local state and vice versa. In read, the global state remains unchanged, in write, the

local state remains unchanged apart from the program counter. For both instructions,

the program counter is increased.

The concurrent steps in SV (interleaving-left, interleaving-right) realize a pure

interleaving semantics of the concurrent combination of the two (possibly concurrent)

programs cp1 and cp2. Accordingly, interleaving-left and interleaving-right do

not have communication interfaces to consider.

The steps for execution (exec-0, exec-τ) describe the reflexive, transitive hull of all

possible single steps.

The language SV is a suitable model for low-level languages: On one hand, it contains

only low-level instructions in contrast to CUC, which has an abstract communication

instruction. Thus, all instructions of SV can be instantiated in an actual instruction

set architecture. On the other hand, its instructions cover the three groups of low-

level instructions as described in 5.1. Thus, we can model all concepts of low-level

languages. The operational semantics of SV faithfully expresses the synchronization and

communication of multiple components (e. g., threads or processes) on a single processor.

Every process can read and write from the global memory. The true interleaving

semantics ensures that only one component can be active at the same time. In the

following, we relate the low-level communication of SV with the abstract communication

mechanism of CSP and CUC.

Observe that the semantics is not labeled, i. e., there are no events or traces attached.

In contrast to CSP and CUC, where the abstract events correspond to a step in the

semantics, in SV a synchronous abstract event can only be obtained by using the

structure and information provided by a communication protocol. To formally relate the

labeled semantics of CUC and the semantics of SV, we introduce a handshake protocol

4

6.1 Shared Variables (SV)

Definition 6.3: Operational Semantics of SV

(σpc , do f) ∈ lp σ′
ds ∈ f(σds) σ′

pc = σpc + 1

(Γ, σ) −−→lp (Γ, σ′)
do

(σpc , cbr b m n) ∈ lp σ′
ds = σds b σ ∧ σ′

pc = m ∨ ¬b σ ∧ σ′
pc = n

(Γ, σ) −−→lp (Γ, σ′)
cbr

(σpc , cas r γ v1 v2) ∈ lp
Γ(γ) = v1 Γ′ = Γ(γ := v2) σ′

ds = σds(r := true) σ′
pc = σpc + 1

(Γ, σ) −−→lp (Γ′, σ′)
cas-t

(σpc , cas r γ v1 v2) ∈ lp Γ(γ) ̸= v1 σ′
ds = σds(r := false) σ′

pc = σpc + 1

(Γ, σ) −−→lp (Γ, σ′)
cas-f

(σpc , read x γ) ∈ lp σ′
ds = σds(x := Γ(γ)) σ′

pc = σpc + 1

(Γ, σ) −−→lp (Γ, σ′)
read

(σpc , write γ x) ∈ lp Γ′ = Γ(γ := σds(x)) σ′
ds = σds σ′

pc = σpc + 1

(Γ, σ) −−→lp (Γ′, σ′)
write

interleaving-left
(Γ, σ1) −−→cp1

(Γ′, σ′
1)

(Γ, σ1 ∥ σ2) −−→cp1∥cp2
(Γ′, σ′

1 ∥ σ2)

interleaving-right
(Γ, σ2) −−→cp2

(Γ′, σ′
2)

(Γ, σ1 ∥ σ2) −−→cp1∥cp2
(Γ′, σ1 ∥ σ′

2)

(Γ, σ) =⇒cp (Γ, σ)
exec-0

(Γ, σ) =⇒cp (Γ′′, σ′′) (Γ′′, σ′′) −−→cp (Γ′, σ′)

(Γ, σ) =⇒cp (Γ′, σ′)
exec-τ

5

6.2 Handshake Protocol

send : 1 : cas hlc mc free id
2 : cbr hlc 3 1
3 : write γc xs
4 : write src ⊤
5 : cas ssc frc ⊤ ⊥
6 : cbr ssc 7 5
7 : write mc free

receive: 1 : cas ssc src ⊤ ⊥
2 : cbr ssc 3 1
3 : read xr γc
4 : write frc ⊤

Figure 1: Implementation of the Handshake Protocol: send and receive

for SV in Subsection 6.2.1, which in turn allows us to derive a labeled semantics for SV

in Subsection 6.2.2.

6.2 Handshake Protocol

In this section, we present a simple handshake protocol to implement abstract syn-

chronous communication with shared variables. To ensure that the CUC programs

allow for the implementation with the simple handshake protocol, we consider a subset

of CUC by restricting the communication capabilities from multi-way synchronization

to unidirectional communication. In general, many protocols realizing synchronous

communication can be implemented in SV (e. g., unidirectional communication, bidirec-

tional communication, multi-way synchronization). However, our focus is on the formal

implementation relation which relates the abstract communication with its implementa-

tion. To investigate how to formally verify such a communication protocol ensuring the

preservation of safety and liveness properties, we use a simple handshake protocol to

reduce the overhead of the protocol. When defining the handshake refinement in 6.4,

we sketch how to apply our approach to other protocols.

First, we introduce the handshake protocol in Subsection 6.2.1. Second, we present

how to restrict a CUC program to unidirectional communication with two participants

in Subsection 6.2.2.

6.2.1 Description of the Handshake Protocol

The handshake protocol we consider realizes synchronous communication between a

sender and a receiver over a channel . The protocol consists of two parts: a protocol send

for the sender, and a protocol receive for the receiver. The channel c is a “namespace”

in the shared memory. A channel is formed by the following four shared variables:

A mutex variable mc to lock the channel, two signal variables src (start reading) and

frc (finished reading) for synchronization, and a shared variable γc to store the value.

Additionally, two local variables belong to a channel c, which store the results of the

cas instructions: hlc (has lock) indicates whether the sender has locked the mutex. ssc
(signal set) indicates whether the signal the sender or the receiver are waiting for has

been set to ⊤.

send and receive are implemented in SV by the constructs shown in Figure 1.

The general idea is that send locks the channel c to protect the shared variable, and

synchronizes over signals with receive. The protocol flow is illustrated in detail in

Figure 2 on page 17 when we define the handshake refinement. We explain the details

of the implementations of the sender and the receiver line by line; line numbers in

parenthesis are followed by a description.

6

6.2 Handshake Protocol

send : (1) The sender checks if the mutex mc is free, and if it is, writes its id to

it. The result is stored in hlc. (2) If it is not free, it checks again (with a busy loop).

Otherwise it proceeds to (3) write the data value to be sent from the local register xs to

the shared variable γc. Afterwards, it realizes a synchronization with the read process:

To this end, it (4) sets the signal src. Then it (5, 6) waits with a busy loop for the signal

frc and finally (7) releases the mutex. It stores the result of the cas instruction in line 5

in ssc.

receive: (1,2) waits with a busy loop for the signal src to be ⊤. If it received the

signal, it (3) reads the value from the shared variable and then (4) sets the signal frc to

⊤.

Observe that deadlocks in abstract synchronous communication, e. g., in CUC that

are due to missing communication partners are implemented as livelocks in SV: send

cannot exit the busy loop (Lines 5, 6) without a receiver on the same channel, and

receive cannot exit the loop (Lines 1, 2) without a sender in the channel. As both,

deadlocks and livelocks, do not provide communication capabilities, we preserve the

offered events, and thereby the liveness properties.

6.2.2 Restriction of CUC

Having introduced the handshake protocol and its implementation in SV, we proceed

to discuss the different models of choices of CUC compared to CSP. CUC has non-

determinism in the form of the instruction do. However, it does not have an internal

choice per se. This stems from the fact that internal choice is an abstract modeling

construct, and CUC is very close to the implementation level, i. e., we assume that

non-determinism was resolved on the CSP level.

CUC has external choice in the form of the abstract communication instruction comm.

The instruction comm can model even so-called mixed choice, offering both input and

output on different channels (see Example A.3). Synchronous communication where

the sender can choose between several channels to output its communication requires

output guards. Output guards prevent the sender from committing to a channel without

a receiver present, which would block the sender, possibly indefinitely. The same is

true for the choice of the receiver between multiple, synchronous inputs: input guards

are needed. The implementation of guards in general requires that components can

register and unregister from a channel. Only if enough participants are registered, the

communication takes place. Until the communication takes place, all components can

unregister from the channel. As mixed choice offers both choices at the same time, it

requires both input and output guards to prevent blocking, but it also requires breaking

of symmetries to avoid the indefinite search for an available communication partner.

The implementation of mixed choice with synchronous communication is considered

e. g., by Bougé [Bou88] in form of the leader election problem.

The simple handshake protocol we consider does not support choices, so it neither

needs input nor output guards. We point out where guards fit in for future extensions

of our formal implementation relation in Subsection 6.4. The protocol supports syn-

chronous, uni-directional communication over a channel with two participants: Sending

a value over a channel and synchronizing with any one receiver ready to receive the value.

Thus, to use the handshake protocol as implementation of abstract communication, we

need to restrict the use of the communication of CUC from synchronous, multi-way

7

6.2 Handshake Protocol

communication to synchronous, uni-directional communication over a channel. To this

end, we introduce ids for components, define two instantiations of comm, namely a sender

and a receiver, and we exclude communication with the abstract environment.

We assign each component an identifier id . Let ID be the set of all component

ids. As the tree structures for concurrent states and concurrent programs are the same

(Assumption A.3), we can define the same function for concurrent states and concurrent

programs, which maps the position in the concurrent tree to an id. We write σid to

obtain the id of a local state. We write σid or cpid to select a specific local state or

program with id id from a concurrent state σ or concurrent program cp. Finally, let

ids map from a concurrent (sub-) tree to all contained ids.

Definition 6.4: Component Identifier

ID (the set of component ids)

σid : LStates → ID

σid : States × ID → LStates

cpid : CP × ID → LP

ids(cp) : CP → P(ID)

We define a sender comms and a receiver commr in CUC as follows.

Definition 6.5: comms and commr

Let c be a channel, xs and xr local registers, and id the component id of the current

component . The event c.s.r.v is composed of the channel name c, the ids of the

sender s and the receiver r, and the transferred data value v of type T. Finally, let
val(c.s.r.v) = v extract the data value of an event.

comms c xs := comm
(
λσ. {c.σid .r.σds(xs) | r ∈ ID ∧ r ̸= σid}

)(
λev σ. σ

)
commr c xr := comm

(
λσ. {c.s.σid .v | s ∈ ID ∧ s ̸= σid ∧ v ∈ T}

)(
λev σ. σ[xr := val(ev)]

)
comms offers events on its channel c, using its own id σid as sender, and all possible ids

but its own as receiver. The data value is the value of its local storage at xs. After

successful communication, the sender does not change its local state. commr offers events

on its channel c, using its own id σid as a receiver, all possible ids but its own as sender,

and all possible data values. After successful communication, the receiver updates

its local storage at xr to the value of the communicated event. By using events that

explicitly contain the component id of the sender or the receiver respectively, we are

able to enforce that senders cannot communicate among one another and the same for

receivers.

In contrast to CSP and CUC, there is no environment in low-level shared variable

communication. Thus, a single comm instruction without a communication partner in

CUC should not synchronize with the environment but block. To enforce this in CUC,

we only consider concurrent programs with at least two components that are combined

with the alphabetized parallel operator. Using the communication interfaces of the

alphabetized parallel operator, we ensure that every component may only engage in

events that the component’s id is part of, expressed by s ∈ ids(cpi) ∨ r ∈ ids(cpi) in

8

6.3 Definitions and SV Semantics with Events

the communication interface defined below where s is short for sender and r is short for

receiver. Additionally, each component may not communicate with itself, expressed by

s ̸= r. The (maximal) communication interface of each concurrent program cpi is then

given by

αi = {c.s.r.v ∈ Σ | (s ∈ ids(cpi) ∨ r ∈ ids(cpi)) ∧ s ̸= r}.

Assumption 6.1 ensures that only comms and commr are used for communication and

that all concurrent components are combined with the aforementioned communication

interfaces αi. As a single component does not require a concurrent composition (and in

turn would not be restricted by the communication interface), we require that every

program consists of at least two concurrent components. For the rest of this chapter, we

assume the following restrictions to hold for CUC programs.

Assumption 6.1: Restrictions to CUC

(I) All instances of comm are either comms or commr.

(II) All concurrent CUC programs have at least two components and use communi-

cation interfaces that are a subset of the above defined αi.

With the restrictions of CUC and the component ids defined, we can give an

alternative definition of stable states for CUC, which focuses on the instructions instead

of the labels. We define the stable states for SV in a similar way. As the only two

instructions in CUC that produce the event τ are do and cbr, we can define stable

states alternatively as states pointing to comm or outside of the code. The following

definition is equivalent to Definition A.14.

Definition 6.6: Stable States in cuc

A state σ is stable in a CUC program cuc (σ↓cuc) if all components either point

outside the code, to comms, or to commr. Formally:

σ↓cuc:= ∀ id.
(
̸ ∃ ins. (σid

pc , ins) ∈ cucid
)

∨
(
∃ c. (σid

pc , comms id c xs) ∈ cucid

∨ (σid
pc , commr id c xr) ∈ cucid

)
In this section, we have defined a handshake protocol to implement abstract syn-

chronous communication in our low-level language SV. Furthermore, we have defined

restrictions to CUC to ensure that the CUC programs allow for the implementation

with the presented handshake protocol. The use of the handshake protocol allows us to

talk about the concept of abstract synchronous communication in the context of SV.

This enables us to formally relate CUC and SV. In the next section, we define a labeled

semantics for SV and related constructs based on the handshake protocol.

6.3 Definitions and SV Semantics with Events

In this section, we lay the foundations to relate CUC and SV programs. Based on the

handshake protocol that we defined in the last section, we define several notions to relate

different aspects of a CUC program cuc and an SV program sv where sv results from

replacing the abstract communication in cuc with the handshake protocol. The program

9

6.3 Definitions and SV Semantics with Events

label map (Definition 6.7) relates the syntactic instructions of cuc and sv . Similarity

(Definition 6.10) defines how we relate local states of cuc and sv . Finally, we define a

labeled semantics for SV (Definition 6.12), which allows us to define the operational

characterization of traces and stable failures semantics for SV (Definitions 6.14 and 6.17).

Those semantics allow for comparison of behaviors, especially with respect to safety

and liveness properties. All the concepts defined in this section are used in Section 6.4

to define our notion of handshake refinement.

To formally capture that a CUC and an SV program are syntactically the same

apart from the implementation of the abstract communication, we define the program

label map in Definition 6.7. Each abstract communication instruction in cuc (comms or

commr) is related to all the instructions of its protocol implementation.

Definition 6.7: Program Label Map

A program label map ψ injectively maps a program label in a CUC program cuc to

a corresponding program label in an SV program sv. The formal requirements, defined

below, state that do in the component id of cuc is in a one-to-one correspondence

to do in the component id of sv . The same holds for cbr. The instruction comms is

related to all instructions of send , which implies that the existence of any instruction

of send implies the existence of the other instructions around it. The same holds

true for commr and receive.

(ℓ, do f) ∈ cucid ⇐⇒
(
ψ(ℓ), do f

)
∈ sv id ∧ ψ(ℓ+ 1) = ψ(ℓ) + 1

(ℓ, cbr b m n) ∈ cucid ⇐⇒
(
ψ(ℓ), cbr b ψ(m) ψ(n)

)
∈ sv id

(ℓ, comms c xs) ∈ cucid ⇐⇒
(
ψ(ℓ) + 0, cas mc free id) ∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 1, cbr hlc (ψ(ℓ) + 2) ψ(ℓ)

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 2, write γc xs

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 3, write src ⊤

)
′′ ⇐⇒

(
ψ(ℓ) + 4, cas frc ⊤ ⊥) ∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 5, cbr ssc (ψ(ℓ) + 6) (ψ(ℓ) + 4)

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 6, write mc free

)
∈ sv id

′′ =⇒ ψ(ℓ+ 1) = ψ(ℓ) + 7

(ℓ, commr c xr) ∈ cucid ⇐⇒
(
ψ(ℓ) + 0, cas src ⊤ ⊥) ∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 1, cbr ssc

(
ψ(ℓ) + 2

)
ψ(ℓ)

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 2, read xr γc

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 3, write frc ⊤

)
∈ sv id

′′ =⇒ ψ(ℓ+ 1) = ψ(ℓ) + 4

Using the definition of the program label map, we can define when a CUC program

and an SV program fit together.

10

6.3 Definitions and SV Semantics with Events

Definition 6.8: Fitting Program

We say that an SV program sv fits a CUC program cuc, if there is a program label

map ψ, mapping all the instructions from cuc to sv . Furthermore, we require the

state transforming functions f of do f to only modify the variables available in cuc

(i. e., not hlc and ssc). Similarly, the boolean conditions b of cbr instructions in cuc

may only depend on variables present in cuc.

Given a program label map ψ, it can statically be checked by going through both

programs whether two programs cuc and sv are fitting. To relate semantic states of

CUC and SV we consider the local (concurrent) states and ignore variables that were

added for bookkeeping in the handshake protocol. We define the notion of channel

constituents to group all variables that belong to a channel.

Definition 6.9: Channel Constituents

The following local registers belong to a channel c: hlc and ssc. The following

shared variables belong to a channel c: mc, γc src, and frc.

To exclude other components or instructions from changing the values stored in the

channel constituents, we assume in the following that channel constituents are unique

for each channel.

Assumption 6.2: Uniqueness of Channel Constituents

All channel constituents from all channels are unique.

It follows from the uniqueness that in a program sv fitting cuc, channel constituents

are only changed from within send and receive of the channel.

Lemma 6.1: Proper Access to Channel Constituents

All channel constituents of a channel c can only be changed by the send or receive

of the channel c.

Proof

Fitting implies a program label map ψ which only allows instructions mapped to

comms or commr to contain channel constituents.

The registers that belong to a channel are exactly the registers that are present in

sv but not in cuc. Thus, when comparing the local state of cuc and sv , we ignore those

registers. We can now define similarity of local states, which we use to relate CUC

states and SV states.

11

6.3 Definitions and SV Semantics with Events

Definition 6.10: Similarity with Respect to Channel Constituents

Let σ, σ̂ ∈ CStates be concurrent local states of a CUC program and an SV program,

respectively. Let σ =̂ σ̂ denote that σ and σ̂ are equal for all local registers that do

not belong to a channel. This equality also does not include the program counters.

We say σ is similar to σ̂.

Note that =̂ does include the register into which receive writes the value read from the

shared variable. Thus, receiving a value is visible to the =̂ relation.

Our aim is to show that a program sv fitting a program cuc preserves the safety and

liveness properties of cuc. To express safety and liveness properties in SV, we define a

semantics with events, stable states, and refusal sets. To this end, we first define an

event labeling and an operational semantics for SV with events. Then we define traces

and stable failures semantics for SV via an operational characterization. This enables

us to show a stable failures refinement between cuc and sv in the next section. Observe

that all definitions regarding the traces and stable failures semantics are very similar to

the respective definitions of CUC. This facilitates showing the relation between CUC

and SV.

The idea of stable states is that communication is offered in a stable way. This is

defined in CSP/CUC as the inability to perform internal steps (τ) as this might disable

the communication capabilities. However, CSP/CUC has abstract communication,

thus events do not need to be “prepared” to occur. Using the handshake protocol in

SV, “administrative” steps happen before and after the visible event occurs. Thus,

when labeling the steps of SV, we use a different label for “administrative” steps than

for the usual internal steps. We label invisible instructions of the implementation

of communication with τc. This allows us to define stable states as the inability to

perform internal steps, but allowing the “administrative” steps of the communication

to be enabled. This way, we can define stable states before the execution of the

protocol implementation, but let the refusal sets refer to events during the execution

of the protocol implementation. This enables us to bridge the gap between abstract

synchronous semantics where the event coincides with both the decisions who is the

sender and who is the receiver, and the low-level asynchronous semantics where the

event happens after the sender and the receiver are consecutively decided.

To define a stable failures semantics for SV, we define a labeling function mapping

transitions in sv to events. Transitions are identified by the starting state and the

executed instruction. Only read is mapped to a visible event. The invisible instructions

of the implementation of the communication are mapped to τc. All other instructions

(do and cbr) are invisible and mapped to the usual τ .

12

6.3 Definitions and SV Semantics with Events

Definition 6.11: Event Labeling for sv

Let EL be a function from state, id of the component executing the next instruction,

and its next instruction to events of cuc, τ , or τc.

EL : GStates× ID × Instructions → Σ ∪ {τ, τc}
EL

(
(Γ,), id , read γc

)
:= c.s.r.v where s = Γ(mc), r = id , v = Γ(γc)

EL(, , ins) := τc if ins is part of send or receive (see Fig. 1)

EL(, ,) := τ otherwise

Note that the labeling function requires the information about send and receive, which

are directly tied to the abstract communication instructions comms and commr and the

handshake protocol. Using the labeling function EL, we can derive an SV semantics

with visible events:

Definition 6.12: SV Semantics with Events

(Γ, σ)
ev−→sv (Γ′, σ′) :⇔ (Γ, σ) −−→sv (Γ′, σ′) ∧

(
∃ id ins. ev = EL

(
(Γ, σ), id , ins

))
Here, the active component id can be determined by the component whose program

counter changed, and ins is the instruction the program counter of the active component

points to. To ensure that every executed instruction changes the program counter, we

require that no cbr instruction jumps to its own label.

Assumption 6.3: No Self Loops

∀ id ℓ b m n. (ℓ, cbr b m n) ∈ cucid ∨ (ℓ, cbr b m n) ∈ sv id =⇒ ℓ ̸= m ∧ ℓ ̸= n

Having labeled single steps, we can now define execution semantics labeled with the

visible trace.

Definition 6.13: Operational Traces Semantics of SV

exec-0

(Γ, σ)
⟨⟩
=⇒cp (Γ, σ)

exec-ev

(Γ, σ)
tr′
=⇒cp (Γ′′, σ′′) (Γ′′, σ′′)

ev−→cp (Γ′, σ′) tr′⌢⟨ev⟩ = tr ev /∈ {τ, τc}

(Γ, σ)
tr
=⇒cp (Γ′, σ′)

exec-τ

(Γ, σ)
tr
=⇒cp (Γ′′, σ′′) (Γ′′, σ′′)

ev−→cp (Γ′, σ′) ev ∈ {τ, τc}

(Γ, σ)
tr
=⇒cp (Γ′, σ′)

The visible traces neither contain τ nor τc. Visible events are appended at the end

of traces. We proceed and define the traces semantics Tsv for SV via an operational

characterization. It captures all traces that are possible, starting in σ.

13

6.3 Definitions and SV Semantics with Events

Definition 6.14: Traces Semantics for SV

tr ∈ Tsv (Γ, σ) := ∃Γ′ σ′. (Γ, σ)
tr
=⇒sv (Γ′, σ′)

Next, we define stable states, refusal sets, and stable failures for sv . The stable

states and failures are similar to the definitions for cuc. The refusal sets differ, as

they need to account for the invisible execution steps of the handshake protocol.

Definition 6.15: Stable States in sv

A state (Γ, σ) is stable in sv ((Γ, σ)↓sv) if all components either point outside the

code or to the first instruction of send or receive. Formally:

(Γ, σ)↓sv := ∀ id .
(
̸ ∃ ins. (σid

pc , ins) ∈ sv id)
∨
(
∃ c. (σid

pc , cas mc free id) ∈ sv id

∨ (σid
pc , cas src ⊤ ⊥) ∈ sv id)

The stable states in sv coincide with the stable states in cuc (pointing to comms, commr
or outside of the code). They can neither make a visible event step nor a τ step, but

might be able to make a τc step. As the visible event (labeling read) occurs only in

the middle of the execution of the handshake protocol, a finite number of τc-steps are

allowed before the visible event in order to consider it “enabled”. Assuming fairness,

i. e., at any point for any component, there is a finite number of steps after which the

component will make a step, possible communication happens after a finite number of

τc-steps. Conversely, if communication is not possible, i. e., a deadlock occurs in the

synchronous setting, the implementation of the handshake protocol will stay in a busy

loop. Thus, the visible event is not reachable. In the following definition of refusal sets

let
τc−→∗

sv denote zero or more τc steps.

Definition 6.16: Refusal Set in sv

A state refuses a set of visible events in sv , if they are not reachable after a finite

number of τc steps. Let X ⊆ Σ.

(Γ, σ) refsv X := ∀ a ∈ X. ̸ ∃Γ′ σ′. (Γ, σ)
τc−→∗

sv
a−→sv (Γ′, σ′)

Having defined stable states and refusal sets for SV, we can finally define stable

failures for SV.

Definition 6.17: Stable Failures of SV

A stable failure is a pair of a trace tr and a refusal set X. It denotes that there is

a stable state (Γ′, σ′) which can be reached from the initial state σ via the trace tr

and refuses X.

(tr,X) ∈ SF sv (Γ, σ) := ∃(Γ′, σ′). (Γ, σ)
tr
=⇒sv (Γ′, σ′) ∧ (Γ′, σ′)↓sv ∧ (Γ′, σ′) refsv X

14

6.4 Handshake Refinement

This concludes the definition of the SV semantics with events. In this section, we

have defined which CUC and SV programs to relate to each other (fitting), how states

will be compared (similar), and a stable failures semantics for SV. In the next section,

we define our notion of handshake refinement to formally relate CUC and SV programs.

We use the stable failures semantics to show that the handshake refinement ensures

that safety and liveness properties are preserved.

6.4 Handshake Refinement

In this section, we define our notion of handshake refinement to relate abstract commu-

nication and its low-level implementation with a handshake protocol. The idea of the

handshake refinement is to extend usual behavioral relations of two states or processes

(as in bisimulations or refinements) with a third element (the channel-state X) to track

the progress of the protocol executions for each channel. This enables us to relate SV

states at different stages of the protocol execution to the same CUC state. During

the execution of each individual protocol, as first the sender and then the receiver

are determined, the possible events offered by the SV state may be fewer than those

offered by the related CUC state, where neither the sender nor the receiver are yet

determined. The channel-state enables different treatment in the relation of the same

CUC state at different stages of the protocol execution. We use the channel-state to

indicate which possible events of the CUC state need to be answered by the SV state.

The channel-state X is a function from channel names to the states of the channels. If

the channel c is clear from the context, we only talk about “the channel-state” and omit

“of channel c”. Let ⊎ denote a disjoint set union.

X : Channels → {free} ⊎ ID in ⊎ (ID × ID)in ⊎ (ID × ID)un ⊎ IDun

Each channel can be in one of five states: It can be free, a sender or both a sender

and a receiver are in the channel, and after the communication happened, the channel

will be eventually unlocked, first with both a sender and a receiver still in the channel,

then only a sender. The states of the channel-state X (c) for the considered channel

c within the protocol flow are illustrated in Figure 2 in the rectangular boxes in the

middle column. Figure 2 illustrates the protocol flow for a sender and receiver on a

single channel. For each channel, the SV states and possible transitions of send (S, S1

to S6; on the left) and receive (R, R1 to R3; on the right) are depicted. In the upper

right corner, also those of do (D) and cbr (C) are depicted, as well as those pointing

outside the code (O). N (for non-protocol state) is a placeholder for O, D, C, S, or R,

thus, all states which do not occur within1 the execution of the handshake protocol.

Dotted lines indicate the boundaries between channel-states. The dashed line marks the

moment where the communication happens, i. e., all states above are in a relation to

the CUC state before the communication, and those below to the CUC state after the

communication has happened. The arrows over (S1), (S5’), and (R2) denote whether

cbr will jump back to the first label or forward to the second label, based on the cas

instruction before. Note that the transitions of send from S4 to S4’ and S5 to S5’

happen without a step from the sending component, but correspond to the transition

of receive on the same channel from R2 to R3. We define the following shorthands

to talk about ids that do not appear in the channel-state at all and completely free

1We do not treat S and R as states that occur within the execution of the protocol. The idea is that
leaving the state S or R starts the execution of the protocol.

15

6.4 Handshake Refinement

channel-states.

Definition 6.18: id not in the Channel-State

id /∈ X := ∀ c id′.X (c) /∈
{
idin , (id, id

′)in , (id
′, id)in , (id, id

′)un , (id
′, id)un , idun

}
We call a channel-state empty, it if is free for all channels:

X = ∅ := ∀ c. X (c) = free

Having introduced the channel-state X , we define the handshake refinement in

Definition 6.19. It is a relation parametrized over two programs cuc and sv fitting

with ψ. The elements are triplets consisting of a concurrent CUC state σ, a channel-

state X , and pair of global state Γ and concurrent local SV states σ̂. Our handshake

refinement consists of two properties describing the states, and three describing the

possible transitions. In each triplet, the CUC states and the local SV states are similar

(as defined in Definition 6.10). Furthermore, they fulfill the protocol constraints Pcuc,sv,ψ,

which constrain the possible SV states and their relation to CUC states. The protocol

constraints Pcuc,sv,ψ are defined separately in Definition 6.20 and explained below. The

possible transitions within the handshake refinement are described by the down-, up-,

and unlocking-simulation. The down-simulation relates transitions in cuc to one or

more transitions in sv . Observe that visible events only need to be answered if the

channel is free. This precludes triplets where the sender in sv is already decided but

the CUC state still could choose a different sender. It is sound to ignore those SV states

in the down-simulation, as we are only interested if the implementation (as a whole)

allows and offers the same events. Although there is no “equivalent” state in cuc, all

other senders that were possible in sv right before this choice of a particular sender are

considered by the down-simulation. Note that we allow any number of “administrative”

events τc even when answering a τ step, although one could think that the internal τ

steps do not require the consideration of the communication protocol. This is necessary,

as the τ steps do not have an associated channel and, thus, the corresponding channel

state cannot be checked if it is free. Therefore, if the event before the τ step was a

visible step, it is possible that the communication protocol for that event is not yet

finished, however the related CUC state is already “after communication”. Finishing

the communication protocol results in τc steps that must occur before the considered

τ step can happen. The up-simulation relates transitions in sv to transitions in cuc.

The “administrative” event τc is related to zero transitions in cuc, all other events to

one. Finally, the unlocking-simulation ensures (assuming fairness) that, after the

communication has happened, the channel will be freed eventually. This allows the

down-simulation to only consider states where the channel is free.

In Definition 6.20 we define the protocol constraints Pcuc,sv,ψ, which are specific

to the handshake protocol at hand. The protocol constraints ensure a) that only SV

states reachable by the execution of the handshake protocol execution are included, and

b) that the channel-state reflects the current progress of the protocol execution. The

overall definition is that for every channel, if the channel-state is free, the belonging

signals must be ⊥, and for each component with id id the disjunction Pidcuc,sv,ψ, which
is also defined in Definition 6.20, must hold. The disjuncts of Pidcuc,sv,ψ (O, D, . . . , R3)

16

6.4 Handshake Refinement

S←−
S1

cas mc = false

cbr

−→
S1

cas mc = true

S2

cbr

S3

write γc

S4

write src

←−
S5

cas frc = false

cbr

R

←−
R1

cas src = false

cbr

−→
R1

cas src = true

R2

cbr

R3

read γc

N

write frc

S4’
←−
S5’

cbr

−→
S5’

cas frc = true

S6

cbr

N

write mc free

X (c) ̸= free

X (c) = free

X (c) = sin

X (c) = (s, r)in

X (c) = (s, r)un

b
ef
or
e
co
m
m
u
n
ic
at
io
n

af
te
r
co
m
m
u
n
ic
at
io
n

X (c) = sun

X (c) = free

O D

N

do

N

do

N

do

C

N

cbr

Figure 2: The Flow of the Handshake Protocol

17

6.4 Handshake Refinement

Definition 6.19: Handshake Refinement Bcuc,sv,ψ

Let a CUC program cuc and an SV program sv be fitting with a program label map
ψ. A handshake refinement is a ternary relation Bcuc,sv,ψ over CUC states (cuc),
channel-states (X), and SV states

(
(Γ, σ̂)

)
, which fulfills the following properties.

∀
(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ. (ev can be visible or τ)

Similar local states: σ =̂ σ̂

Protocol constraints: Pcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
(see Definition 6.20)

Down-simulation:

∀ ev σ′. ev ̸= τ ∧ X (chan(ev)) = free ∧ σ ev−→cuc σ
′ =⇒ ∃Γ′ σ̂′ ids idr X ′.

(Γ, σ̂)
τc−→∗

sv
ev−→sv (Γ

′, σ̂′) ∧ X ′(chan(ev)) = (ids, idr)un ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

∀σ′. σ
τ−→cuc σ

′ =⇒ ∃Γ′ σ̂′ X ′. (Γ, σ̂)
τc−→∗

sv
τ−→sv (Γ

′, σ̂′) ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Up-simulation:

∀(Γ′, σ̂′). (Γ, σ̂)
τc−→sv (Γ

′, σ̂′) =⇒ ∃X ′.
(
σ,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

∀ ev (Γ′, σ̂′). (Γ, σ̂)
ev−→sv (Γ

′, σ̂′) =⇒ ∃σ′ X ′. σ
ev−→cuc σ

′ ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Unlocking-simulation:

∃ c ids. X (c) = (ids)un ∨
(
∃ idr. X (c) = (ids, idr)un

)
=⇒

∃Γ′ σ̂′ X ′. (Γ, σ̂)
τc−→∗

sv (Γ
′, σ̂′) ∧ X ′ = X [c := free] ∧

(
σ,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

correspond to the states with the same names in the protocol flow in Figure 2. The

disjuncts describe triplets (cuc,X , sv), consisting of a CUC state cuc, a channel-state X ,

and an SV state sv . They provide sufficient conditions to the SV state to be reachable

by the execution of the protocol. They constrain the program counters and channel

related variables, and thereby relate the SV state via the program label map ψ with

the CUC state and the appropriate channel-state. In Pidcuc,sv,ψ, the channel-state also

“synchronizes” the different components, i. e., excludes illegal state combinations of

different components, e. g., two components having a lock on the same channel. It

follows a description of the disjuncts, from which we provide two formally. A complete

formal definition of the protocol constraints can be found in the Appendix A.2 in

Definition A.15.

Although we have presented our method for a concrete (handshake) protocol, it

provides the foundation for a more generalized notion of relations between abstract

synchronous and concrete asynchronous communication based on other communica-

tion/synchronization protocols. The presented protocol can be divided into four phases

18

6.4 Handshake Refinement

Definition 6.20: Protocol Restrictions

Pcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
:=
(
∀ c.X (c) = free =⇒ ¬Γ(src) ∧ ¬Γ(frc)

)
∧ ∀ id.Pidcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
Pidcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
:= O∨D∨C∨S∨S1∨S2∨S3∨S4∨S5∨S4′∨S5′∨S6∨R∨R1∨R2∨R3

O, D, C Have a direct counterpart in CUC, channel variables are not a concern, id /∈ X
D do f instruction
C cbr
S At the beginning of send , id /∈ X
S1 Branch according to result of cas in S. If the component now has the mutex, than

also the signals must be inactive.
S2 From now on in this execution of the protocol, the id of the component is stored in

the mutex of the channel and in the channel-state.
S3 The data value to be communicated is stored in the shared variable.
S4 The first row of the following formula ensures that the SV state is mapped to a CUC

state where the pc points to the appropriate comm. The second row ensures that mutex
is locked by the considered component, the value of the shared variable is the value to
be sent, and the signal indicating that reading is finished (frc) is not set. The third row
describes the signal src and the channel-state. Start reading was set to ⊤ from S3 to
S4. If the receiver did start reading, then start reading will remain ⊥ from now on. In
the first case the channel-state only contains the sender, in the second also the receiver.

(σidpc, comms id c xs) ∈ cucid ∧ (σ̂idpc, cas ssc frc⊤⊥) ∈ sv id ∧ ψ(σidpc) + 4 = σ̂idpc
∧ Γ(mc) = id ∧ Γ(γc) = σ̂idds(xs) ∧ ¬Γ(frc)
∧

(
Γ(src) ∧ X (c) = idin ∨ ¬Γ(src) ∧ (∃ idr.X (c) = (id, idr)in)

)
S5 Branch back to S4, as the communication has not happened yet.
S4’ From now on, the communication already has happened. The channel-state is now

set to unlocking. Observe that now the SV state is in a relation with the CUC state
that occurs after the communication. Therefore we need to subtract 1 from the
program counter of the SV state, to map with ψ to comm.

(σidpc −1, comms id c xs) ∈cucid ∧ (σ̂idpc, cas ssc frc⊤⊥) ∈ sv id ∧ ψ(σidpc −1) + 4 = σ̂idpc
∧ Γ(mc) = id ∧ ¬Γ(src)
∧

(
Γ(frc) ∧ X (c) = idun ∨ ¬Γ(frc) ∧ (∃ idr.X (c) = (id, idr)un)

)
S5’ Branch according to the result of cas in S4’.
S6 The signals are ⊥, in the next step the mutex and the channel-state will be free.
R At the beginning of receive, id /∈ X
R1 Branch according to result of cas in R. If the component is now a receiver, both

sender and receiver ids are in the channel-state of the channel. The state of the
signals is already fixed in the disjunct of the sender where both are in the channel-state.

R2 The channel-state contains the sender and the receiver about to communicate.
R3 The channel-state still contains the sender and the receiver, but is now about to

unlock the channel. The SV state is now in a relation with the CUC state after the
communication.

19

6.5 Preservation of Safety and Liveness Properties

(which match with the four non-FREE channel-states): 1) registration, 2) before com-

munication, 3) after communication, 4) unregistration. This is also the structure the

handshake refinement relies upon. As the presented handshake protocol is intentionally

simple, the phases are very short. Our approach can be extended to other protocols

that fit in those four phases, e. g., to verify a protocol which supports a “selection on

channels” (external choice in CSP). This “selection”, i. e., finding a channel with a

present communication partner, would happen in Phase 1. This way, input and output

guards could be supported.

In this section, we have presented our notion of handshake refinement. It is an

asymmetric implementation relation. The focus of our handshake refinement is on the

implementation of abstract communication. Outside of the implementation of abstract

communication, it is defined like a strong bisimulation. In the next section, we show

that our notion of handshake refinement implies a stable failures refinement. Thus, the

handshake refinement preserves safety and liveness properties.

6.5 Preservation of Safety and Liveness Properties

In this section, we prove that every SV program sv fitting a CUC program cuc preserves

all safety and liveness properties of cuc. To this end, we first show that the handshake

refinement relation preserves safety and liveness properties. Second, we show that all

pairs of fitting CUC and SV programs are in a handshake refinement relation.

6.5.1 Handshake Refinement preserves Safety and Liveness Proper-

ties

In this subsection, we first show the preservation of safety properties, and then the

preservation of liveness properties.

We capture safety properties using the traces semantics. To show the preservation of

safety properties, we show that every trace of sv is also a trace of cuc. To this end, we

show that starting with a triplet
(
σ0, ∅, (Γ0, σ̂0)

)
∈ Bcuc,sv,ψ, every trace in T (Γ0, σ̂0)sv

leads to a triplet in Bcuc,sv,ψ and the same trace is in T (σ0)cuc leading to the same

triplet:

Lemma 6.2: All sv Traces and Their cuc Counterparts are in Bcuc,sv,ψ

(
σ0, ∅, (Γ0, σ̂0)

)
∈ Bcuc,sv,ψ ∧ (Γ0, σ̂0)

tr
=⇒sv (Γ, σ̂)

=⇒ ∃σ X ′.
(
σ,X ′, (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ σ0

tr
=⇒cuc σ

Proof

Using induction of the up-simulation.

We can directly conclude the preservation of safety properties: All traces of sv are also

traces of cuc.

20

6.5 Preservation of Safety and Liveness Properties

Theorem 6.1: Preservation of Safety Properties

(
σ, ∅, (Γ, σ̂)

)
∈ Bcuc,sv,ψ =⇒ T (Γ, σ̂)sv ⊆ T (σ)cuc

Proof

Using the Definitions A.13 and 6.14 of the operational characterizations of the traces

semantics of CUC and SV, respectively, and Lemma 6.2.

Having shown that our handshake refinement preserves safety properties, we proceed

to show that it also preserves liveness properties. We capture liveness properties

using the notion of stable failures. To this end, we show that the stable failures of sv

are included in the stable failures of cuc. Thus, all liveness properties from cuc are

preserved in sv . To show the preservation of liveness properties, we first show two

lemmas: Lemma 6.3 shows that stable states in sv imply stable states in cuc. Lemma 6.4

shows that refusals of sv imply refusals of cuc.

Lemma 6.3: Stable States in sv Imply Stable States in cuc and X = ∅

(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂)↓sv =⇒ σ↓cuc ∧ X = ∅

Proof

As Bcuc,sv,ψ is a handshake refinement, Pcuc,sv,ψ

(
σ,X , (Γ, σ̂)

)
holds. In Pcuc,sv,ψ the

cases where (Γ, σ̂)↓sv holds imply σ↓cuc and X = ∅.

The key lemma to prove the theorem of preservation of liveness states that in a triplet

in a handshake refinement, if the sv state is stable, then any events the sv state can

refuse can also be refused by the cuc state.

Lemma 6.4: Refusals in sv Imply Refusals in cuc

(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂)↓sv =⇒ (Γ, σ̂) refsv X =⇒ σ refcuc X

Proof

Using Lemma 6.3, we have X = ∅ and can apply the down-simulation. The down-

simulation ensures that the SV program sv has at least the communication capabilities

of the CUC program cuc. It follows that the refusals of sv are included in the refusals

of cuc. A more technical proof is in the Appendix A.4.

Now, we can show the preservation of liveness properties, i. e., the inclusion of stable

failures.

21

6.5 Preservation of Safety and Liveness Properties

send : 1 : cas hlc mc free taken
2 : cbr hlc 3 1
3 : write γc xs
4 : write src ⊤
5 : cas ssc frc ⊤ ⊥
6 : cbr ssc 7 5
7 : write mc free

receive: 1 : cas ssc src ⊤ ⊥
2 : cbr ssc 3 1
3 : read xr γc
4 : write frc ⊤

Figure 3: Alternative Implementation of the Handshake Protocol Without Sender Identifier
in the Mutex

Theorem 6.2: Preservation of Liveness Properties

(
σ, ∅, (Γ, σ̂)

)
∈ Bcuc,sv,ψ =⇒ SFsv(Γ, σ̂) ⊆ SFcuc(σ)

Proof

To show SFsv(Γ, σ̂) ⊆ SFcuc(σ), fix a stable failure in sv and find it in cuc, i. e., find

the same pair of trace tr and refusal set X. We show (tr,X) ∈ SFsv(Γ, σ̂) is also a

stable failure of cuc, i. e., (tr,X) ∈ SFcuc(σ), with the previous lemmas: A trace of

sv implies a trace of cuc (Lemma 6.2), the stable states in sv imply stable states in

cuc (Lemma 6.3), and the refusal sets of sv imply refusal sets of cuc (Lemma 6.4).

Having shown that the handshake refinement preserves safety and liveness properties,

we show that we need the information about the sender, which is stored in the mutex,

only for the proofs. It does not affect the semantics of the programs. To demonstrate this,

we consider a slightly different program sv ′, and show that it has the same properties.

The program sv ′ differs from sv in that it does not store the id of the component which

has the lock in the mutex, but only that the lock is taken. Figure 3 shows the program

sv ′. In sv , we store the information about the sender in the mutex to reconstruct the

sender at the time of reading the shared variable. This information is only needed for

the labeling and the proof. However, the execution of the (concurrent) program sv only

depends on the information whether the mutex was taken, not by whom. Thus, sv ′ has

exactly the same executions as sv and the following corollary holds.

Corollary 6.1: Liveness Properties Without Sender Identifier

An adaption of the handshake protocol given in Figure 3, where in the mutex

only taken is stored instead of the sender id, also preserves all safety and liveness

properties.

In this subsection, we have shown that the handshake refinement implies a stable

failures refinement, and as such, preserves safety and liveness properties. In the next

subsection, we show that when replacing all instances of comms and commr in a CUC

program cuc with send and receive according to the handshake protocol, the resulting

SV program sv is in a handshake refinement relation with cuc, and, thus, has the same

safety and liveness properties.

22

6.6 Summary

6.5.2 Fitting Programs preserve Safety and Liveness Properties

In this subsection, we show that any cuc program and fitting sv program are in a

handshake refinement relation. More specifically, we show that all sensible initial states

(as defined in Theorem 6.3) are in a handshake refinement relation. The resulting theorem

allows for a scalable approach to the verification of shared variable communication, as

we show it once for all fitting programs.

Theorem 6.3: Fitting Implies Handshake Refinement

Let sv be a program fitting cuc with the program label map ψ. Then, there is a

handshake refinement Bcuc,sv,ψ containing all initial pairs, i. e., similar CUC and SV

states where the program counters of each component match with ψ, all mutexes in

Γ are free, and all signals are inactive.

σ =̂ σ̂ ∧
(
∀ id . σ̂id

pc = ψ(σid
pc)

)
∧
(
∀ c. Γ(mc) = free ∧ ¬Γ(src) ∧ ¬Γ(frc)

)
=⇒

(
σ, ∅, (Γ, σ̂)

)
∈ Bcuc,sv,ψ

Proof: Idea

The proof can be found in Appendix A.3 and is similar to bisimilarity proofs: all

possible transitions of one part can be answered by its counterpart. An important

difference is that the down-simulation needs to be shown (answer visible events) only

in stable states.

As the handshake refinement implies preservation of safety (Theorem 6.1) and liveness

properties (Theorem 6.2), we can now conclude with Theorem 6.3 that all fitting

programs share the same safety and liveness properties.

Theorem 6.4: Fitting Implies Preservation

Let sv be a program fitting cuc with ψ. Then all safety and liveness properties from

cuc are preserved to sv .

Proof

Follows from Theorem 6.3 and Theorems 6.1 and 6.2.

In this section, we have shown that every pair of CUC and SV programs cuc and

sv , where sv can be obtained by replacing the abstract communication in cuc with

the handshake protocol, has the same safety and liveness properties. The generality

of Theorem 6.4 allows for scalability of showing the preservation of safety and liveness

properties. The next section concludes this chapter.

6.6 Summary

In this chapter, we have presented a method to relate abstract synchronous com-

munication with an asynchronous handshake implementation using shared variable

23

6.6 Summary

communication and have proven that this method preserves safety and liveness prop-

erties. To this end, we have defined our generic low-level language SV that allows for

the implementation of communication protocols using shared variables. The language

SV can be instantiated to current instruction set architectures. We have defined traces

and stables failures semantics for SV to formalize the preservation of safety and liveness

properties. To this end, we have introduced our novel notion of handshake refinement,

which is similar to strong bisimulation, apart from the protocol implementation, which

is a refinement. It explicitly captures the state of progression through the executions

of the implementations of the protocol. Moreover, we have proven in the general

Theorem 6.4 that all pairs of CUC and SV programs, where the SV program results

from the CUC program by replacing the abstract communication instructions with their

handshake implementation, have the same safety and liveness properties. The generality

of the theorem makes it independent of the number of components. Together with

our compositional method to show the preservation of safety and liveness properties

from CSP to CUC in the previous chapter, we have a compositional framework to prove

the preservation of safety and liveness properties from abstract specifications in CSP

down to low-level code, including asynchronous communication mechanisms. While

the handshake refinement, and especially the protocol constraints (Pcuc,sv,ψ), depends

on the protocol used for the implementation, it is easy to integrate other protocols.

We have given pointers how to adapt the definition for use with other protocols in

Section 6.4. In the next chapter, we demonstrate the application of our framework using

an example with n clients and an arbitrary but fixed number of servers.

24

A Appendix

A.1 Definitions from Previous Chapters

Definition A.3: Local Program lp

LP := P(Labels × Instructions)

Definition A.5: Concurrent Program cp

CP := LP | CP P(Σ)∥P(Σ) CP

Definition A.13: Operational Characterization of the Traces of CUC

The traces semantics of CUC captures all traces tr that can be observed when

running the program cuc starting in the state σ.

tr ∈ Tcuc(σ) := ∃σ′. σ
tr
=⇒cuc σ

′

Definition A.14: CSP-like Stable States of CUC

σ↓cuc:= ̸ ∃σ′. σ
τ−→cuc σ

′

Assumption A.2: Uniqueness of Labels

(ℓ, ins1) ∈ lp ∧ (ℓ, ins2) ∈ lp =⇒ ins1 = ins2

Assumption A.3: Same Tree Structure

For a given concurrent state and its associated concurrent program, we always assume

that they have the same tree structure, i. e., they are isomorphic.

Example A.3: Instantiations of comm fev fds

The instruction comm can be instantiated, e. g., to send a value stored in a variable

over channel out , to receive a value of type T over channel in and store it in a

register, or to select between sending a value on one channel or receiving a value

on another channel. Note that, as we use CSP communication, the only difference

between “sending” and “receiving” a value is in the number of offered events. In

Section 6.2, we introduce restrictions to obtain “true send/receive semantics”. As

we use the communication mechanism of CSP, we use the val function, as already

25

A.1 Definitions from Previous Chapters

Example A.3: Instantiations of comm fev fds

defined in Section 2.3, to extract the value of an event.

send x := comm (λds. {out .v | v = ds(x)}) (λds ev . ds)

receive x := comm (λds. {in.v | v ∈ T}) (λds ev . ds[x := val(ev)])

select x := comm (λds. {in.v | v ∈ T} ∪ {out .v | v = ds(x)})
(λds ev . if ev = in.v then ds[x := v] else ds)

26

A.2 Protocol Constraints

A.2 Protocol Constraints

Definition A.15 gives the complete formal definition of the protocol constraints Pcuc,sv,ψ.

We describe here the differences to Definition 6.20, where we have used mostly natural

language for the definition.

In each disjunct, the program counters, the instructions they point to, and their

relation via ψ are described, e. g., in (D):

(σidpc, do f) ∈ cucid ∧ (σ̂idpc, do f) ∈ sv id ∧ ψ(σidpc) = σ̂idpc

This information corresponds to the information from Definition 6.8 of a fitting program

label map, and is written in gray in Definition A.15. Observe that for disjuncts, where

the communication has already happened (S4’, S5’, S6, R3), we need to consider the

instruction of the previous CUC state (σidpc − 1), as ψ always maps comms and commr

to their entire implementations send and receive, respectively, regardless whether the

communication has already happened. As we only consider σidpc − 1 in parts of the

implementation of send and receive after the communication has already happened

and comms and commr increase the program counter by one, we know that the previous

instruction indeed was a comms or commr by the definition of the program label map ψ.

The conditions in black cover the channel-state and the global state, e. g., in (S2)

X (c) = idin ∧ Γ(mc) = id ∧ ¬Γ(src) ∧ ¬Γ(frc)

The channel-state X appears in each disjunct. It also “synchronizes’ the different

components, i. e., for each component we only need to describe local information and

the channel the component is currently using. As the conditions for every component

are only concerned with whether the component itself occurs in the channel-state (and

where applicable also a communication partner), the condition for free channels (that

both signals need to be ⊥) needs to occur at the top level (see the first line of the

figure).

The states of the mutex (mc), the signals (src and frc), the return registers of the cas

instructions (has lock hlc and signal set ssc), as well as the data value of the shared

variable γc are also described where necessary. Due to the “synchronization” of the

components via the channel-state X , most conditions only need to be specified in one

place, either the sender or the receiver – we chose the sender, as it comes first.

Finally, the symbol ⊻ denotes an exclusive or. a ⊻ b := a ∨ b ∧ ¬(a ∧ b)

27

A.2 Protocol Constraints

Definition A.15: Protocol Constraints (Full)

Pcuc,sv,ψ

(
σ,X , (Γ, σ̂)

)
:=

(
∀ c.X (c) = free =⇒ ¬Γ(src) ∧ ¬Γ(frc)

)
∧ ∀ id.Pidcuc,sv,ψ

(
σ,X , (Γ, σ̂)

)
Pidcuc,sv,ψ

(
σ,X , (Γ, σ̂)

)
:=

Out of code:(
̸ ∃ ins. (σidpc, ins) ∈ cucid

)
∧
(
̸ ∃ ins. (σ̂idpc, ins) ∈ sv id

)
∧ψ(σidpc) = σ̂idpc ∧ id /∈ X

(O)

do f:

∨ (σidpc, do f) ∈ cucid ∧ (σ̂idpc, do f) ∈ sv id ∧ ψ(σidpc) = σ̂idpc ∧ id /∈ X (D)

cbr:

∨
(
(σidpc, cbr bmn) ∈ cucid∧(σ̂idpc, cbr b ψ(m)ψ(n)) ∈ sv id∧ψ(σidpc) = σ̂idpc ∧ id /∈ X

(C)

send :

∨ (σidpc, comms id c xs)∈cucid∧(σ̂idpc, cas hlcmc free id)∈sv id∧ψ(σidpc) = σ̂idpc ∧ id /∈ X
(S)

∨ (σidpc, comms id c xs) ∈ cucid ∧ ψ(σidpc) + 1 = σ̂idpc ∧(
σ̂idpc, cbr hlc

(
ψ(σidpc) + 2

)
ψ(σidpc)

)
∈ sv id ∧

(
¬σ̂idds(hlc) ∧ id /∈ X ∨

σ̂idds(hlc) ∧ X (c) = idin ∧ Γ(mc) = id ∧ ¬Γ(src) ∧ ¬Γ(frc)
)

(S1)

∨ (σidpc, comms id c xs) ∈ cucid ∧ (σ̂idpc, write γc xs) ∈ sv id ∧ ψ(σidpc) + 2 = σ̂idpc

∧ X (c) = idin ∧ Γ(mc) = id ∧ ¬Γ(src) ∧ ¬Γ(frc) (S2)

∨ (σidpc, comms id c xs) ∈ cucid ∧ (σ̂idpc, write src ⊤) ∈ sv id ∧ ψ(σidpc) + 3 = σ̂idpc

∧ X (c) = idin ∧ Γ(mc) = id ∧ Γ(γc) = σ̂idds(xs) ∧ ¬Γ(src) ∧ ¬Γ(frc) (S3)

∨ (σidpc, comms id c xs) ∈ cucid ∧ (σ̂idpc, cas ssc frc⊤⊥) ∈ sv id ∧ ψ(σidpc) + 4 = σ̂idpc

∧ Γ(mc) = id ∧ Γ(γc) = σ̂idds(xs) ∧ ¬Γ(frc)∧(
Γ(src) ∧ X (c) = idin ∨ ¬Γ(src) ∧ (∃ idr.X (c) = (id, idr)in)

)
(S4)

∨ (σidpc, comms id c xs)∈cucid∧
(
σ̂idpc, cbr ssc

(
ψ(σidpc) + 6

) (
ψ(σidpc) + 4

))
∈ sv id∧

ψ(σidpc) + 5 = σ̂idpc ∧ Γ(mc) = id ∧ ¬Γ(frc) ∧ Γ(γc) = σ̂idds(xs) ∧ ¬σ̂idds(ssc)∧(
Γ(src) ∧ X (c) = idin ∨ ¬Γ(src) ∧ (∃ idr.X (c) = (id, idr)in)

)
(S5)

∨ (σidpc − 1, comms id c xs) ∈ cucid ∧ (σ̂idpc, cas ssc frc⊤⊥) ∈ sv id ∧

ψ(σidpc − 1) + 4 = σ̂idpc ∧ Γ(mc) = id ∧ ¬Γ(src)∧(
Γ(frc) ∧ X (c) = idun ∨ ¬Γ(frc) ∧ (∃ idr.X (c) = (id, idr)un)

)
(S4’)

∨ (σidpc − 1, comms id c xs) ∈ cucid ∧ ψ(σidpc − 1) + 5 = σ̂idpc ∧ Γ(mc) = id ∧ ¬Γ(src)(
σ̂idpc, cbr ssc

(
ψ(σidpc − 1) + 6

)(
ψ(σidpc − 1) + 4

))
∈ sv id ∧

(
(Γ(frc) ⊻ σ̂

id
ds(ssc))

28

A.2 Protocol Constraints

Definition A.15: Protocol Constraints (Full)

∧ X (c) = idun ∨ ¬Γ(frc) ∧ ¬σ̂idds(ssc) ∧ (∃ idr.X (c) = (id, idr)un)
)

(S5’)

∨ (σidpc − 1, comms id c xs) ∈ cucid∧(σ̂idpc, writemc free) ∈ sv id ∧ ψ(σidpc − 1) + 6 = σ̂idpc

∧ X (c) = idun ∧ Γ(mc) = id ∧ ¬Γ(src) ∧ ¬Γ(frc) (S6)

receive:

∨ (σidpc, commr id c xr)∈cucid∧(σ̂idpc, cas ssc src⊤⊥) ∈ sv id∧ ψ(σidpc) = σ̂idpc ∧ id /∈ X
(R)

∨ (σidpc, commr id c xr) ∈ cucid ∧ (σ̂idpc, cbr ssc src⊤⊥) ∈ sv id ∧ ψ(σidpc) + 1 = σ̂idpc ∧(
σ̂idds(ssc) ∧

(
∃ ids.X (c) = (ids, id)in

)
∨ ¬σ̂idds(ssc) ∧ id /∈ X

)
(R1)

∨ (σidpc, commr id c xr) ∈ cucid ∧ (σ̂idpc, readxr γc) ∈ sv id ∧ ψ(σidpc) + 2 = σ̂idpc ∧(
∃ ids.X (c) = (ids, id)in

)
(R2)

∨ (σidpc − 1, commr id c xr) ∈ cucid ∧ (σ̂idpc, write frc⊤) ∈ sv id ∧ ψ(σidpc − 1) + 3 = σ̂idpc ∧(
∃ ids.X (c) = (ids, id)un

)
(R3)

29

A.3 Proof: Fitting Implies Handshake Refinement

A.3 Proof: Fitting Implies Handshake Refinement

In this section, we prove that all fitting pairs of CUC and SV programs are in a

handshake refinement relation. First, we restate Theorem 6.3 and recall the flow of the

protocol, as it indicates the transitions between the disjuncts of Pidcuc,sv,ψ. Finally, we
restate Definition 6.19 of the handshake refinement and prove the theorem.

Theorem 6.3: Fitting Implies Handshake Refinement

Let sv be a program fitting cuc with the program label map ψ. Then, there is a

handshake refinement Bcuc,sv,ψ containing all initial pairs, i. e., similar CUC and SV

states where the program counters of each component match with ψ, all mutexes in

Γ are free, and all signals are inactive.

σ =̂ σ̂ ∧
(
∀ id . σ̂id

pc = ψ(σid
pc)

)
∧
(
∀ c. Γ(mc) = free ∧ ¬Γ(src) ∧ ¬Γ(frc)

)
=⇒

(
σ, ∅, (Γ, σ̂)

)
∈ Bcuc,sv,ψ

In Figure 4, we depict the labeled transitions of the protocol. In contrast to Figure 2,

which also depicts the flow of the protocol, we show the events as labels and not the

instructions. The figure is helpful to visualize how a component passed the disjuncts of

the protocol constraints Pidcuc,sv,ψ. We recall that (N) is the disjunction of (O), (D), (C),

(S), and (R) from the definition of Pidcuc,sv,ψ. In (N), the beginning of next instruction

implementation, the program counters match with ψ and the current id does not occur

in the lockstate (cf. Definition A.15). The arrows over (S1), (S5’), and (R1) denote

whether cbr will jump back to the first label or forward to the second label, based on

the cas instruction before. Note that send cannot progress until the end, until the

receive reads the value. The dotted transitions from (S4) to (S4’) and from (S5) to (S5’)

indicate that the applying/valid disjuncts change for the sender component, when the

receiver component takes the transition from (R2) to (R3).

O D

N

τ

N

τ

N

τ

C

N

τ

R

←−
R1

τcτc

−→
R1

τc
R2

τc
R3

a
N

τc

S

←−
S1

τcτc

−→
S1

τc
S2

τc
S3

τc
S4

τc

S5

τc
τc

S4’

←−
S5’

a

a

τc τc

−→
S5’

τc
S6

τc
N

τc

Figure 4: sv Transitions Between the Disjuncts of Pidcuc,sv ,ψ

30

A.3 Proof: Fitting Implies Handshake Refinement

Definition 6.19: Handshake Refinement Bcuc,sv,ψ

Let a CUC program cuc and an SV program sv be fitting with a program label map

ψ. A handshake refinement is a ternary relation Bcuc,sv,ψ over CUC states (cuc),

channel-states (X), and SV states
(
(Γ, σ̂)

)
, which fulfills the following properties.

∀
(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ. (ev can be visible or τ)

Similar local states: σ =̂ σ̂

Protocol constraints: Pcuc,sv,ψ

(
σ,X , (Γ, σ̂)

)
(see Definition 6.20)

Down-simulation:

∀ ev σ′. ev ̸= τ ∧ X (chan(ev)) = free ∧ σ ev−→cuc σ
′ =⇒ ∃Γ′ σ̂′ ids idr X ′.

(Γ, σ̂)
τc−→∗

sv
ev−→sv (Γ′, σ̂′) ∧ X ′(chan(ev)) = (ids, idr)un ∧

(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

∀σ′. σ
τ−→cuc σ

′ =⇒ ∃Γ′ σ̂′ X ′. (Γ, σ̂)
τc−→∗

sv
τ−→sv (Γ′, σ̂′) ∧

(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Up-simulation:

∀(Γ′, σ̂′). (Γ, σ̂)
τc−→sv (Γ′, σ̂′) =⇒ ∃X ′.

(
σ,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

∀ ev (Γ′, σ̂′). (Γ, σ̂)
ev−→sv (Γ′, σ̂′) =⇒ ∃σ′ X ′. σ

ev−→cuc σ
′ ∧

(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Unlocking-simulation:

∃ c ids. X (c) = (ids)un ∨
(
∃ idr. X (c) = (ids, idr)un

)
=⇒

∃Γ′ σ̂′ X ′. (Γ, σ̂)
τc−→∗

sv (Γ′, σ̂′) ∧ X ′ = X [c := free] ∧
(
σ,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Proof: Theorem 6.3 (Fitting Implies Handshake Refinement)

To prove Theorem 6.3, we define a relation B, show that it contains
(
σ,X , (Γ, σ̂)

)
,

and show that it is a handshake refinement (even the largest). We use

I
(
σ,X , (Γ, σ̂)

)
:= σ =̂ σ̂ ∧ Pcuc,sv,ψ

(
σ,X , (Γ, σ̂)

)
B :=

{(
σ,X , (Γ, σ̂)

) ⏐⏐⏐ I(σ,X , (Γ, σ̂))}
as an invariant and induction hypothesis. The proof consists of two parts:

1) We show that the initial states are in B.

2) We show that B is a handshake refinement, i. e., every triplet in B also satisfies

the down-, up-, and unlocking-simulations, i. e., the possible successor triplets

are again in B.

31

A.3 Proof: Fitting Implies Handshake Refinement

Proof: Theorem 6.3 (Fitting Implies Handshake Refinement)

1)
(
σ, ∅, (Γ, σ̂)

)
∈ B:

Assumptions:

I) σ =̂ σ̂

II)
(
∀ id . σ̂id

pc = ψ(σid
pc)

)
III)

(
∀ c. Γ(mc) = free ∧ ¬Γ(src) ∧ ¬Γ(frc)

)
Want to show (goal):

I
(
σ, ∅, (Γ, σ̂)

)
, i. e., σ =̂ σ̂ ∧ Pcuc,sv,ψ

(
σ, ∅, (Γ, σ̂)

)
Proof:

σ =̂ σ̂ holds by I).

To show that Pcuc,sv,ψ

(
σ, ∅, (Γ, σ̂)

)
holds, we have ¬Γ(src) ∧ ¬Γ(frc) from III) and

show Pidcuc,sv,ψ
(
σ, ∅, (Γ, σ̂)

)
for an arbitrary but fixed id .

From X = ∅ we have id /∈ X .

Together with II) we conclude that (N) holds by case distinction over the definition

of Pidcuc,sv,ψ.

So our initial triplet
(
σ, ∅, (Γ, σ̂)

)
is an element of B.

2) B is a handshake refinement:

Want to show (goal):

B fulfills the definitions of the down-, up-, and unlocking-simulation.

Proof:

We fix a component and its id and go through all cases of Pidcuc,sv,ψ. To be able

to look at each component individually, we ensure that we only write to our own

local state and that we only assign our id to X (c) if it was free, or add it as a

receiver. Also, we may only set X (c) to unlocking, if we were assigned as a receiver.

Furthermore, we may never write to a mutex that is not free (ensured by using

cas), and never write to a shared variable without having the mutex (ensured by

X (c) = own id). All these properties follow from Definition A.15. By doing so, we

ensure that no other Pid
′

cuc,sv,ψ with id′ ̸= id is changed, unless mentioned. We show,

where applicable that the down-, up-, and unlocking-simulations are satisfied, i. e.,

that the successor triplets again satisfy I, and are thereby in B. For the up- and the

down-simulation, we consider in detail that the same event can be communicated.

The up-simulation applies in every disjunct of Pcuc,sv,ψ. Most cases are simple

applications of the SV semantics. Only in (R2) we need additionally that X (c)=

(ids,)in implies that there is a sender waiting, i. e., a component for which (S4) or

(S5) holds, to show that cuc can communicate the same event.

We prove that cuc can communicate the same event:

32

A.3 Proof: Fitting Implies Handshake Refinement

Proof: Theorem 6.3 (Fitting Implies Handshake Refinement)

We consider the receiver, thus, let idr := id.

In (R2) sv communicates the event ev = c.Γ(mc).idr.Γ(γc), according to the event

labeling function (cf. Definition 6.11).

By case analysis of the induction hypothesis I, we show that X (c) = (ids,) implies

that there exists a sender ids for which (S4) or (S5) holds, and in particular Γ(γc) =

σ̂ids(xs) and
(
σidspc , comms ids c xs

)
∈ cucids .

Together with
(
σidrpc , commr idr c xr

)
∈ cucidr , we have that cuc can synchronize on

the event c.ids.idr.σ
ids(xs).

With Γ(γc) = σ̂ids(xs) from (S4) ∨ (S5) and σ =̂ σ̂ we have Γ(γc) = σids(xs).

Together with Γ(mc) = ids from (R2), we show c.Γ(mc).idr.Γ(γc) = c.ids.idr.σ
ids(xs).

Thus, σ can perform the same event as σ̂.

After the transition, (R3) holds for the receiver and (S4’) or (S5’) holds for the

sender, i. e.,, the successor state satisfies I and is in B.

The down-simulation applies only where (N) holds. In case of the visible event

(read), as both a sender ids and a receiver idr are ready, we are free to pick an

execution of the protocol, e. g., passing (S), (S1), (S2), (S3), (S4) for ids, and then

(R), (R1), (R2), (R3) for idr.

We prove that sv can communicate the same event:

From the facts that cuc communicates ev = c.ids.idr.σ
ids(xs) and the assumption

X (c) = free from the down-simulation, we conclude that (S) holds for ids as well as

(R) for idr.

Furthermore, from X (c) = free we know that the channel is free. Thus, we are free

to pick an execution of the protocol until we communicate the event. The execution

passes the disjuncts in the following sequence: (S), (S1), (S2), (S3), (S4) for ids, and

then (R), (R1), (R2), (R3) for idr. As the communication of the event transitions

(S4) to (S4’), we end up with (S4) for ids and (R2) for idr right before the event is

communicated and (S4’) and (R3) for the successor triplet. As in the up-simulation

in the case of (R2), we can show that the events communicated in sv and cuc are

the same and the successor state satisfies I and is in B.

The unlocking-simulation applies only after the visible event was communicated,

i. e., in (S4’), (S5’), (S6), (R3). Again, we are free to pick an execution of the protocol.

The transition from (R3) to (N) should be taken first.

33

A.4 Refusals imply Refusals

A.4 Refusals imply Refusals

Lemma 6.4: Refusals in sv Imply Refusals in cuc

(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂)↓sv =⇒ (Γ, σ̂) refsv X =⇒ σ refcuc X

Proof: Lemma 6.4 (Refusals in sv Imply Refusals in cuc)

(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂)↓sv =⇒ (Γ, σ̂) refsv X =⇒ σ refcuc X

Want to show: (Γ, σ̂) refsv X =⇒ σ refcuc X

Unfold refsv/cuc : ∀ a ∈ X. ¬
(
(Γ, σ̂)

τc−→∗
sv

a−→sv

)
=⇒ ∀ a ∈ X. ¬

(
σ

a−→cuc

)
If X = {}, this is true. Assume X ̸= {}.
Pick a ∈ X, insert in assumption: ¬

(
(Γ, σ̂)

τc−→∗
sv

a−→sv

)
=⇒ ¬

(
σ

a−→cuc

)
Negation: σ

a−→cuc=⇒ (Γ, σ̂)
τc−→∗

sv
a−→sv

This is implied by the down-simulation, as we have X = ∅ from Lemma 6.3.

34

References

References

[Ber19] Nils Berg. Formal Verification of Low-Level Code in a Model-Based

Refinement Process. PhD thesis, Technische Universität Berlin, 2019.

doi:http://dx.doi.org/10.14279/depositonce-8638.

[BGDG18] Nils Berg, Thomas Göthel, Armin Danziger, and Sabine Glesner. Pre-

serving liveness guarantees from synchronous communication to asyn-

chronous unstructured low-level languages. In Jing Sun and Meng Sun,

editors, Formal Methods and Software Engineering - 20th International

Conference on Formal Engineering Methods, ICFEM 2018, Gold Coast,

QLD, Australia, November 12-16, 2018, Proceedings, volume 11232 of

Lecture Notes in Computer Science, pages 303–319. Springer, 2018. doi:

10.1007/978-3-030-02450-5_18.

[Bou88] Luc Bougé. On the existence of symmetric algorithms to find leaders in

networks of communicating sequential processes. Acta Inf., 25(2):179–201,

1988. doi:10.1007/BF00263584.

35

http://dx.doi.org/http://dx.doi.org/10.14279/depositonce-8638
http://dx.doi.org/10.1007/978-3-030-02450-5_18
http://dx.doi.org/10.1007/978-3-030-02450-5_18
http://dx.doi.org/10.1007/BF00263584

	6 Relating Abstract Communication to Low-Level Protocols
	6.1 Shared Variables (SV)
	6.1.1 Semantic States and Syntax
	6.1.2 Semantics

	6.2 Handshake Protocol
	6.2.1 Description of the Handshake Protocol
	6.2.2 Restriction of CUC

	6.3 Definitions and SV Semantics with Events
	6.4 Handshake Refinement
	6.5 Preservation of Safety and Liveness Properties
	6.5.1 Handshake Refinement preserves Safety and Liveness Properties
	6.5.2 Fitting Programs preserve Safety and Liveness Properties

	6.6 Summary

	A Appendix
	A.1 Definitions from Previous Chapters
	A.2 Protocol Constraints
	A.3 Proof: Fitting Implies Handshake Refinement
	A.4 Refusals imply Refusals

	Bibliography

