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Abstract

In this paper we use preferred and quasi-preferred bases of generalized eigenspaces
associated with the spectral radius of nonnegative matrices to analyze the existence
and uniqueness of a variant of the Jordan canonical form which we call Frobenius-
Jordan form. It is a combination of the classical Jordan canonical form in the part
associated with the eigenvalues that are different from the spectral radius, while it is
like the Frobenius normal form in the part associated with the spectral radius. Based
on the Frobenius-Jordan form, spectral and combinatorial properties of nonnegative
matrices are discussed. In particular, we analyze the existence of nonnegative graph

representations of the generalized eigenspace associated with the spectral radius.
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1 Introduction

In this paper we discuss several open questions concerning the relation between the spectral
and combinatorial properties of nonnegative matrices. It is well-known that for the invariant

subspace associated with the spectral radius of a nonnegative matrix there exist several types
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of nonnegative bases which have a nice combinatorial structure, see [2, 6, 7, 8, 9, 10, 12, 13,
14, 15, 16, 17], called preferred basis and quasi-preferred basis. In this paper we use these
bases to analyze the existence and uniqueness of a variant of the Jordan canonical form
named Frobenius-Jordan form which is a combination of the classical Jordan canonical form
[5] in the part associated with the eigenvalues that are different from the spectral radius,
while it is like the Frobenius normal form [4] in the part associated with the spectral radius.

The paper proceeds as follows. Section 2 contains some notation and preliminary results
mostly introduced in [8]. In Section 3 we introduce the Frobenius-Jordan form of a matrix
and show the existence and uniqueness (up to similarity transformation) of such a form
for nonnegative matrices. Furthermore, we investigate some graph theoretical properties of
nonnegative matrices with the help of the Frobenius-Jordan form. In Section 4 we consider
the special so called graph-representations of nonnegative bases for nonnegative matrices.
We derive necessary conditions for the existence of such graph bases and show that they

need not always exist. We conclude with a summary and some further open questions.

2 Notation and Preliminaries

This section contains the basic notation that is used in this paper and some preliminary
results, mostly from [8]. We denote the set {1,2,...,n} by <n >. For a real n x m matrix

A = |a;;] and an n-vector x = [x;], we use the following terminology and notation.
e A >0 (Aisnonnegative ) if a;; > 0, for all i e<n >, je<m >.
e A>0 (A is semipositive) if A >0 and A # 0.
o A>» 0 (A is strictly positive) if ¢, ; > 0, for all i e<n >, je<m >.
For a real n x n matrix A = [a; ;] we denote
e by o(A) the spectrum of A;

e by p(A) = maxye,(a){|A|}, the spectral radius of A;

by N(A) the nullspace of A, and by n(A) the nullity of A, i. e., its dimension;

by ind,(A) the size of the largest Jordan block associated with the eigenvalue A;

by E)(A), the generalized eigenspace of A corresponding to the eigenvalue A, i. e.,
N((AT = A)™).



Definition 2.1 An n x n matriz A is said to be reducible if there exists a permutation

matriz I1 such that
B C

0 D

IMAII" = : (2.1)

where B and D are square matrices or in the case that n = 1 and A = 0. Otherwise A is

called irreducible.

If A is a reducible and in the form (2.1), and if a diagonal block is reducible, then this block
can be reduced further via permutation similarity. If this process is continued, then finally

there exists a suitable permutation matrix IT such that ITAII” is in block triangular from

All A12 Alp
0 A A

mAnt = | 7 T T (2.2)
0 0 ... Ay

where each block A;; is square and is either irreducible or a 1 x 1 null matrix. This block
triangular form is called the Frobenius normal form of A. An irreducible matrix consists of
one block in the Frobenius normal form.

If A=[A,;;]is an n x n nonnegative matrix in Frobenius normal form with p block rows
and columns, and when discussing matrix-vector multiplication with A or the structure of
eigenvectors of A, we partition vectors b analogously in p vector components b; conformably
with A, and we define the (block) support of b via blocksupp(b) = {i e< p >: b; # 0}.

To the Frobenius normal form (2.2) of A we associate the directed reduced graph R(A)
of A with p vertices, and a directed edge from ¢ to j if and only if A;; # 0. Note that due

to the block triangular structure of A, R(A) may contain loops but no other cycles.

Definition 2.2 Let A be an n x n matriz in Frobenius normal form (2.2). For any two
vertices i and j in R(A) we say that j has access to i if j = i or if there is a path in the
reduced graph from j to i. In this case we write 7 — i. Otherwise, we write j — i.

For be a set W of vertices in the vertex set V(A) of R(A) we introduce the following sets.

= {ieV(A): there exists j € W such that i — j};
= {ieV(A): there exists j € W such that j — i};
= {ie W : there exists j € W, such that i — j implies i = j};
= {ie W : there exists j € W, such that j — i implies i = j}.

Important objects that we will use in this paper to combine the spectral and combinatorial

structure of nonnegative matrices are the level and height characteristics.
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Definition 2.3 Let A be an n x n matriz in Frobenius normal form (2.2).

(i) A wvertex i in R(A) is called a singular vertex (or a basis vertex of p(A)l — A) if A;;
is singular. We denote the set of all singular vertices of R(A) by H(A). We define the
singular graph S(A) associated with R(A) as the graph with vertex set H(A) and (i, 7)

1s an edge if and only if 1 = 5 or there is a path from v to j.

(i7) The level of a singular vertex i in R(A), denoted by level(i), is the mazimal number of

singular vertices on a path in R(A) that terminates at i.

(1ii) Let x be a block-vector with q blocks, partitioned according to the Frobenius normal
form of A. The level of x, denoted by level(z), is defined to be max{level(i) : i €
blocksupp(x)}.

(iv) For a vector x # 0 in the eigenspace Eg(A), we define the height of x, denoted by

height(z), to be the minimal nonnegative integer k such that AFx = 0.

Let m be the mazimal level of a singular vertex in R(A). The level characteristic A\(A)
of A is defined to be the tuple (Ai,..., A\p), where A is the number of singular vertices of
R(A) of level k.

If A is singular, then let t be the maximal positive integer such that n(A') > n(A"™1). We
define the height characteristic n(A) of A to be the tuple (m1,...,n:), where ny = n(A*) —
n(A*F1).

The other essential objects in our analysis are appropriately chosen sets of basis vectors for

the eigenspace associated with the spectral radius.

Definition 2.4 Let A be a square matriz in Frobenius normal form (2.2), and let H(A) =
{ar,...,q.}, with a; < ... < a, be the set of singular vertices in R(A).

A set of vectors = [x}],..., 29 = [z] = 0 is called a quasi-preferred set for A if

l‘; » 0 if j — andm§=0 if 1
foralli=1,...,qand j=1,...,p.
If in addition we have
q
— Az’ = Z cirr® i=1,...,q,
k=1
where the c;, satisfy

Cip>0ifa; > ap,t#k; andcip, =0 if p » s ori =k

L. ., 2% is said to be a preferred set for A.

foralli,k =1,...,q, then the set of vectors x
A (quasi-)preferred set that forms a basis for Eyg(A) is called (quasi-)preferred basis for

A.



In the following we often make use of the interplay of a nonnegative matrix A and the
M-matrix M = p(A)I — A.

Definition 2.5 An nxn matriz M is called an M-matrix if it can be written as M = sl — A,
where A =0 and s = p(A).

The following results are well-known.

Theorem 2.6 [8] Let M be an M-matriz. If x is a nonnegative vector in Eo(M), then
height(x) = level(z).

Theorem 2.7 [8] (Preferred Basis Theorem) If M is an M-matriz, then there exists a

nonnegative preferred basis for the generalized eigenspace Eo(M) of M.

After having introduced the basic concepts, in the next section we introduce the Frobenius-

Jordan form of a nonnegative matrix.

3 The Frobenius Jordan Form of a Nonnegative matrix

In this section we prove the existence of a Frobenius-Jordan form for a nonnegative matrix

and discuss the combinatorial properties.

Theorem 3.1 Let A be an n x n nonnegative matriz with the spectral radius p. Then there
exists a nonsingular matriz T = [T} Ty| such that the columns of Ty form a quasi-preferred
basis of E,(A) and such that

piar — | r A ~Z, (3.1)
0 Z

where ATy, = T\ Zr, Zr is nonnegative, in block upper-triangular form

p[m ZLQ e Zl,t
I .
Zp = 0 Pl , (3.2)
: Zi_1y
0 ... ... pl,

o(Zr) = {p}, p & o(Zy), and Z; is in Jordan canonical form. If, furthermore, for j =
1,...,t =1, none of the blocks Z; j11 has a zero column, then the block-sizes ny,...,n: are

movariants.



Proof. Consider the M-matrix M = pI — A. Without loss of generality, we may assume
that M is in Frobenius normal form (2.2), and let oy < a2 < ... < @, be the singular

vertices of M. Since M is an M-matrix, by Theorem 2.7 it follows that M has a preferred
q
basis {z!, 2%, ..., 29} for the generalized eigenspace Eo(M), with Mz' = — Z ¢, so that

k=1
. 4
Az' = px' + Z e ax®, (3.3)
k=1
ki
where the ¢, satisfy ¢, > 0 if oy, = oy, and &, = 0if ap » o for i,k e {1,...,¢}, i # k.

If we set Ty = [2', ..., 2], then equation (3.3) implies that AT} = 71C with

1% 612 élq
. 0 &
e R

: Cq—1,q

0o 0 ... p

nonnegative and we can determine a permutation matrix II; such that AT} = T1Zp, with
T, = Tll_[l and Zp = H?CA’H is as in (3.2). Since the columns of 77 are linearly independent,

we can extend them to a basis of the space T = [T} T!] and, thus, we obtain

AT =T

Zr Zio
0 2%

for some matrices Z15 and Z,. Let V5 be a nonsingular matrix such that V2’1Z2V2 = /Z;1is

in Jordan canonical form and consider the matrix
T =T diag(I,Vs) = [T} To].

Then T-'AT is as in (3.1) and the fact that p ¢ o(Z;) is clear by construction.

It remains to show that the block-sizes nq, ..., n; of Zp are invariant if none of the blocks
Ziiv1in (3.2) has a zero column. Set mg = 0,m; = ny+...+n; and X* = [a™i—1H g™,
fori=1,2,...,t. Let (A,...,Ar) be the level characteristics of A, with ¢ being the length
of the longest chain in A.

We first prove by induction on i that for i € {1,...,¢} we have height(z?) = 1, for all
je{miq1+1,...,m}. For j e< ny >, we have Mz? = 0, due to (3.1) and the fact

that the columns z',... 2% of Ty form a quasi-preferred basis for Ey(M). This shows that
height(z7) = 1, for j e< ny >.

Now assume that for any ¢ with ¢ < k < ¢, we have height(2/) = 4, for all j €
{m;_1 +1,...,m;}. Thus, we have M'X* = 0 and the columns of M !X’ are nonzero.
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But then AT} = TyZp implies that —MX* = X'Zy+ .+ inle—Lk- Multiplying
with M*~' and M*~2 respectively from the left, we obtain M*X* = 0 and M*1X* =
(M*=2X* 1) Zy 11 # 0, see Lemma 19 in [3], as each column of both the nonnegative ma-
trices Z;, 15 and £M*F"2X* =1 is nonzero, since either M*2X*=1 or —M*=2X*~1 must be
nonnegative. This shows that height(z?) = k, for all j € {mp_; + 1,...,ms}. As a con-
sequence of this and Theorem 2.6, we conclude that for i € {1,...,t}, level(2’) = i for all
je{mi; 1+ 1,...,m;}. Thus, we have n; = \; and t =¢. [

We call a matrix Z as defined in Theorem 3.1 a Frobenius-Jordan form of A and Zg the
leading diagonal block of this form.
The following example shows that, without further requirements, the Frobenius-Jordan

form may not be unique.

Example 3.2 Let

2 2]1 1]0 0
2 2(1 10 0
R EEICEE
004 0[10
0 0lo ol2 2

| 0 0(0 02 2 |

Then p(A) =4 and E4(M) = N((4I — A)?) = {x = [1;,] e R® : 21 = @, 13 = 74, T5 = 76}
with M = 41 — A. Consider the quasi-preferred bases spanned by the columns of X =
[! 22 23] and ¥V = [y' ¢? 93], with 2! = [1 1000 0%, 22 =1 1110 0], 2* =
[111111]7, and y* = 2'; y? = 22%; y® = 423, Then we have

= XZp, AY =Y =Y Zp,.

»

I
S D =
S =N
e
o O =
S =
=N

Thus, the leading diagonal block of a Frobenius-Jordan form (and hence the Frobenius-

Jordan form) of a nonnegative matrix is not unique.

Our next theorem shows that any two Frobenius-Jordan forms of a matrix A are related by

a similarity transformation via a block upper triangular matrix.

Theorem 3.3 Let

pIn1 Zl,2 e Zl,t

ZF _ 0 p[n2 Ce Zgﬂg
. Zt—l,t

0 0 ... pl,



and

PIm ZLQ . Zl,t

~ 0 p[n2 ce ZQVt
F = . .. 5

. . thl,t

0 0 ... ply,

be the leading diagonal blocks corresponding to two Frobenius-Jordan forms of a nonnegative

matriz A. Then there exist a block upper triangular matriv F' = |F; ;| with the same block

structure and the blocks F 1, ..., Fi; are diagonal with positive diagonal entries, such that
Zp=F 'ZpF,
where
Fl,l FLQ e Fl,t
0 F ... F
P %2 2t (3.4)
. thl t
0 0o ... Fy

In particular, we have Z; ;11 = E’,—ilZi,z‘Jrle‘H,iH'

Proof. By possibly permuting rows and the corresponding columns of the matrix A we may

assume that A has the form

Ay Ais oo A
0 Ays ... Ay
P Avae |
0 0 ... Ay
where for each i = 1,...,¢, A;; is the submatrix of A associated with the classes of level <.
Let H(M) = {aq,...,a,}, with o < az < ... < a, be the set of singular vertices in

R(M) with M = pI — A. Let Zp and Zp be the leading diagonal blocks of two Frobenius-
Jordan forms of A corresponding to the nonsingular matrices T = [T} T3] and T = [Tl Tg],
so that the columns of T} = [z'... 2% and T} = [&'...#7] both form quasi-preferred bases,
respectively, with AT} = T} Zr and ATy = TyZp. Since both Ty and Ty are bases for the
generalized eigenspace of M = pI — A, there exists a nonsingular matrix F' € R%9 such that
T, = T\F with F = [ fi;], where ¢ is the algebraic multiplicity of the eigenvalue 0. Thus, for
any ¢ €< ¢ > we have

i = frrt + four® o+ fraah (3.5)

Let ¢ e< ¢ > and consider the set V = {a; € H(M) : f;; # 0}. We now show that
V < below(«;).



Suppose first that a; € top(V) but a; ¢ below(a;). Then zj, = 0 = 7, , but a; € top(V)
implies that f;; # 0, and if f,; # 0 and a; — o, (in which case T, » 0), then r = j.

Thus from equation (3.5) we obtain igj = fjﬂ-xflj which implies that f;; = 0, which is a
contradiction. Hence, we have top(V') € below(«;).

Suppose next that a; € V\top(V). Then there exists a, € top(V') such that a; — a,
and j # r, which implies that a; € below(a;), because top(V') < below(c;). This shows that
V < below(w;), i. e., fj; =0if o » a;.

Since A is in Frobenius normal form with irreducible diagonal blocks, it follows that F
can be partitioned into the form (3.4), where each F;; is corresponding to level i. Since
Afl = lep and Tl = T F, it follows that T'ZpF = TlFZF, which implies that ZpF =
FZp. 0O

One may raise the question whether every possible Jordan form as in (3.1) with a nonnegative
basis 77 stems from a quasi-preferred basis. This is not the case as the following example
shows.

Example 3.4 The matrix

A=

O O N
— = O
[EEGRNE N

has p(A) = 2. Consider the nonnegative basis of FEy(A) spanned by the columns of 7' =

20
[71 2], with 21 = [1 1 1]7, 25 = [2 3 3]7. Then A[z; zo] = [z x2] 09| TZ, where

Z = 21 is the leading block of Frobenius-Jordan form of A, but the columns of T" do not
form a quasi-preferred basis for A. Note that in this example indy(A4) = 1.

Since not every nonnegative basis with columns that satisfy condition (3.1) in Theorem 3.1

is a quasi-preferred basis one may ask whether there is a weaker relation.

Example 3.5 The matrix

— =|o

O O

Ol | O

oD O

0
has p(A) = 2 and Fy(A) = {z = [2;] € R* : 29 = x3}.

Consider the nonnegative basis of Ey(A) spanned by the columns of T' = [z! 2? 23] with
2 =[1000]", 2% =[1110]", 2* =[0111]". Then,



where Zp is the leading diagonal block of a Frobenius-Jordan form of A. Here we have
r3=0but 1 - 3,22 >0but 1 » 2.

In Theorem 3.3 we have shown that Frobenius-Jordan forms of a nonnegative matrix may
not be unique, but any two Frobenius-Jordan forms are related via a block-upper triangular
similarity transformation with diagonal blocks. In our next theorem we will show that such
matrices can be connected by a continuous path.

Let C*([so, s1], R™™) denote the set of k-times continuously differentiable functions from
the real interval [sg, s1] to R™". Then for £ = 0 and sy < s; < o0, two matrix functions
A, B € C*([so, s1],R™") are called k-smoothly similar, if there exists a pointwise nonsingular
matrix T € C*([so, 1], R™") such that T~1(s)B(s)T(s) = A(s) for all s € [sg,s;]. This

property is characterized by the following Theorem.

Theorem 3.6 [18] Let A € C*([so, s1], R™™) with k = 0 and sy < s1 < 00 and let A(),s) =
det(AI—A(s)) be the characteristic polynomial of the matriz A(s). If the multiplicity m of the
distinct roots of A(N, s) remains constant for all s € [sg, s1], then there exists an enumeration
A1(8), .-y Am(8) of the roots of A(N,s) such that \; € C*([so, s1],R), forj =1,...,m.
Furthermore, if A(s) is similar to a matriz J(s), in which each eigenvalue \;(s), j =
1,...,m is in a constant number of Jordan blocks of J(s) with a dimension that is constant

in s, then A(s) is k-smoothly similar to J(s).

Theorem 3.7 All possible Frobenius-Jordan forms of a nonnegative matriz can be connected

by a convexr combination.

Proof. Let A be a nonnegative matrix and without loss of generality we assume that A is
in Frobenius normal form having p diagonal blocks and algebraic multiplicity ¢q. Let Z; and
Z5 be the two Frobenius-Jordan forms of A and let Zp, and Zp, be the respective leading
diagonal blocks. Then by Theorem 3.3, there is a block upper-triangular invertible matrix
F such that Zp, = F~'Zp F.

Consider now the linear matrix valued function Z : [0, 1] — R™" defined by
Z(s) =sZp, + (1 —5s)Zp,

Observe that Z(s) is similar to Zp, for all s € [0,1]. So, if J is the Jordan matrix of Zp,
i. e,V 1ZrV = J, then for all s € [0,1], Z(s) is similar to the Jordan matrix .J, which is
independent of s. Thus, by Theorem 3.6, there exists a smooth matrix valued function U(s)
satisfying U1 (s)Z(s)U(s) = J.

The Sylvester equation Zp, F'(s) = F(s)Z(s) has the general solution F(s) = VXU™!(s),
where X is the general solution of the Sylvester equation JX = XJ. Then F has the same
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smoothness as U ! and for all s € [0,1], with T'(s) = T1F(s), we have AT(s) = T(s)Z(s).
u

In order to characterize different Frobenius-Jordan forms of the same matrix A, we study a
Frobenius-Jordan where the leading block has the maximal number of nonzeros. We denote
this leading block by Zz max-

Remark 3.8 Since Zpmax contains the maximal number of nonzero entries, it follows that
if we replace Zp, by Zpmax in the proof of Theorem 3.7, then we can perform a convex
combination between any leading diagonal block and Zp . and between any other leading
blocks with fewer nonzeros, we have a way to get all possible zeros in the leading diagonals

of a Frobenius-Jordan matrices of the nonnegative matrix A.

Corollary 3.9 Let A be a nonnegative matriz and let T be invertible such that Z = T~ AT,
as in (3), has a leading block Zpmax that has a mazimal number of nonzeros. Then there is
no other Frobenius-Jordan form with leading block Zr and mazimal number of nonzeros but

with different positions for the zero elements.

Proof. Suppose there would be two leading blocks Zr, , Zr, of a Frobenius-Jordan form with
the same maximal number of nonzeros, but with different zero/nonzero patterns. Connecting
Zp,, Zp, via a convex combination, implies that at least one zero has to become nonzero,
and one nonzero has to become zero, which is not possible for a convex combination of two

nonnegative matrices. [

Corollary 3.10 Let A be a nonnegative matriz and let T' be invertible such that Z = T 1 AT,
as in (3), has a leading block Zpmax that has a mazimal number of nonzeros. Then each

column of Zpmax also contains a mazximal number of nonzeros.

Proof. Suppose that there would be a leading block Zz of a Frobenius-Jordan form which
has a column that contains more nonzeros than that of Zp .. Connecting Zp and Zpmax
via a convex combination, implies that the corresponding column of the resulting leading
block contains more nonzeros than that of Zp,.x, whereas other nonzeros of the resulting
leading block will be in the same positions as that of in Zp .. But this contradicts the

maximality of Zpmax. O

Example 3.11 In Example 3.2, Zp, and Zp, both contain a maximal number of nonzeros

and they are not permutationally similar, whereas they are diagonally similar.
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Example 3.12 Let

N
I
O O Ol = ke O
OO | = =[O &
O OO0 O|lWwWw = N|IO O
o OO Ol = Ol O
OSITO OO N NI O O
O N |k OO O OO O
N NN~ WO O OO O
N N O OO O O o O
N NSO OO O OO O

=}
o

It is easy to check that p(A) =4 and for M = 41 — A we have ind(M) = 3, and

E,(4) = N(M3)
= {:c = [2:] e R | 2y = m9; w3 = 25 = w¢; 286 — 217 = 27;

4(1’8 — .739) = 9.CE7 — 101’6} .

Consider the two preferred bases spanned by the columns of X = [z! 2? 2 z%] and ¥ =

ly' v y* y*], where

et = [T7T1111112]7, y' o= [11111871128,
22 [001110000]7, 2 = a2,
28 = [00000212811 417, ¢* = [00000214 47,
28 = [000000011]7, yto= ot
We have AX = XZp, and AY =Y Zp, with
40 00 40 00
14 4 0 0 24 00
Z == y Z =
Fx 20 40 Fy £0 40
7
o 077 4 T 0 4 4

If Zp, and Zp, were diagonally similar and D = diag(dy, ds, d3, dy) such that Zp, D = DZp,,
then D would have to satisfy the homogeneous linear system 7d; = dy, dy = 4d3, 19d; = 34d,,
28ds = dy, which however only has the trivial solution, and, hence, Zp, and Zp, are not

diagonally similar.

In our next theorem we show that the subgraph of A corresponding to the leading block
of any leading block in a Frobenius-Jordan form is a subgraph of Zp .. For this we will

make use of the following lemma.
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Lemma 3.13 [6] Let A € R™™ be in Frobenius normal form (2.2) and let x € R™ be parti-
tioned analogously. Then blocksupp(Ax) < below(blocksupp(x)).

Lemma 3.14 Let A € R™" be a nonnegative matriz in Frobenius-Jordan form (3.1) with
leading block Zp = [z, ..., 24| that corresponds to the quasi-preferred basis spanned by the
columns of Ty = [z', ..., x]. Let M = pl — A and let H(M) = {o,...,q,}, with a; <
... < oy be the set of singular vertices in R(M). Then, for any i €< q >, blocksupp(z;) <

below ().

Proof. Let Zp = [z ;]. Then ATy = T1Zp implies that

i1
Ax' = px' + szﬁixk, 1=1,...,q. (3.6)
k=1
We have to show that for every i e< ¢ > the inclusion blocksupp(z;) € below(q;) holds,
which is equivalent to top(blocksupp(z;)) € below ().
Let ay € top(blocksupp(z;)). Then (3.6) implies that

(Axi)ak = pryk + Zock,ixk . (37)

ag

If (Axi)ak = prxw then z,, ; = 0, which is a contradiction. So we must have that o €
blocksupp((pI — A)z") and so by Lemma 3.13 we have ay, € blocksupp(z?). Then from the

definition of the quasi-preferred basis it follows that «y € below(w;). O

With this lemma we can now prove the following theorem.

Theorem 3.15 All possible graphs associated with a leading block of a Frobenius-Jordan
form of A are subgraphs of the graph of Zpmax-

Proof. Consider the M-matrix M = pI — A. Suppose that MTy 0 = TmaxZFmax, With

ZFmax = %1, .., Z4], such that the columns of T,,,, form a quasi-preferred basis. By
Theorem 2.7, there exist a preferred basis spanned by the columns of Y = [y, ..., 9]
for Eo(M) and let MY = YZp with Zp = [21, ..., 24| be the corresponding part of

the Frobenius-Jordan form. Then by definition, for i €< ¢ > we have blocksupp(z;) =
below(c;). But by Lemma 3.14, blocksupp(Z;) < below(q;) and by Corollary 3.10, we must
have blocksupp(2;) = below(q;). [

As a consequence of Theorem 3.15 we have that every leading block with a maximal number
of nonzeros is associated with a preferred basis, while all the leading blocks with fewer
nonzeros only are related to quasi-preferred bases.

If we perform a convex combination between Zr and Zpmax then the sign pattern will

become the sign pattern of Zppax for any s > 0. Since Zpmax corresponds to a preferred
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basis, it is likely that for every s € (0, 1] the corresponding basis is a preferred basis. We do
not know whether this is true.

In this section we have introduced Frobenius-Jordan forms and analyzed the relationship
between different such forms, in the next section we discuss special graph bases for the

generalized eigenspaces associated with p(A).

4 Nonnegative permuted graph basis for nonnegative

matrices

In this section we investigate the existence of a nonnegative row permuted graph basis for

the generalized eigenspace of a nonnegative matrix. Here we say that 77 associated with

I
Y

with a permutation matrix II and nonsingular matrix Y. We call such a basis nonnegative

the spectral radius of A is a permuted graph basis, [11], if it is of the form T} = II

permuted graph basis if Y = 0. The following example shows that this does not always exist

for every nonnegative matrix.

Example 4.1 Let

"o s -
4 0
0 1(0 4
1 0(4 0
0 0j]0 02 0 2
A=100]0 0|1 1 2
0 00 0[{3 1 0
1 10 0{0 0 00 3
1 10 0{0 0 04 1
0 0[O0 0|1 O 1|2 2|2
0 00 0j]0O 1 2({0 2|2

Then p(A) =4 and for M =41 — A we have ind(M) = 2 so that

Ey(A) = {x = [z;] e R |0y = 29 = 0,23 = 24, 75 = 76 = 27,2119 = 283,

dx1) = x5 + 4110 — 2$8}
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If 21, 22, 23, 2% is any quasi-preferred basis for Ey(M), then we have

P o= 10,0,0,0,6 6600w w0t

21e €
3 o - _ T
xXr - [07 07 07 07 07 O’ 07 67 287 w+ 27 6] ?
#* = 10,0,0,0,0,0,0,0,0, ¢, ¢]"
¢ ¢

with nonnegative ¢, ¢, (, £, w. But this implies that g > ¢ - and < =, which are
€ Y+3 % +w W
contradicting inequalities. Hence , there does not exist any nonnegative permuted graph

basis for A. Note that in this example, the level and height characteristic are different, since
AM) = (2,2) #n(M) = (3,1).

Example 4.2 Consider the matrix

[ o s I )
W N O
—_ = OO
— RO O

with p(A) =2 and for M = 2] — A we have ind(M) = 3, and
Ey(A) = {z =[] e R* : 3a1 + 4 = x5 + 73} .

Here again, A does not possess any nonnegative permuted graph basis, whereas level and
height characteristic are equal, A(M) = n(M) = (1,1,1).

To obtain criteria for the existence of nonnegative permuted graph bases we have the fol-

lowing result.

Lemma 4.3 If a nonnegative matriz A possess a nonnegative permuted graph basis for the
generalized eigenspace E,(A), then each block that corresponding to the leading diagonal of

a Frobenius-Jordan form of A in the matrix

partitioned as (2.2) with columns that form a quasi-preferred basis will contribute one row
to the identity.
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Proof. Without loss of generality we may assume that A is in block lower triangular Frobe-

nius normal form with a spectral radius of algebraic multiplicity ¢ . Since A is a nonnegative

matrix, it has a quasi-preferred basis, given by the columns of X = [z!,... x9]. Write X as
rr 0 ... 0
12
Ty x5 ... 0
Y 2 T3
12
T, T, ... X}

Suppose that 5 := {f1, ..., 5,} is the set of indices that are associated with the identity, i. e.,
if 3 =< n > \B, then there exists a permutation IT = [II%, HE]T defined by the indices in 3
and 3 such that Xp :=IIgX is invertible, and

X I
nxx;'=| 07 | x; = ,
X5 Y
with Y = 0.

If the assertion would not hold, then there would exist an index j € {g) such that j ¢ .
Let j be the largest such index. Then j # ¢ because otherwise X 3 would have a zero column
which is a contradiction. If j < ¢, then the ¢ — j x ¢ — j submatrix in the lower right
corner of Xz is lower triangular with a zero in the first diagonal position and hence again
we have a contradiction. As a consequence there does not exist such an index and the proof
is complete. [

Lemma 4.3 implies that no block in a Frobenius-Jordan form can contribute more than one
row to the identity. Thus the identity cannot be larger than the number of blocks. However,
as we have seen, there may not exist a nonnegative permuted graph basis, which means that
some blocks do not at all contribute rows to the identity.

However, if each block is to contribute exactly one row to the identity, then we must have
the following relation.

Corollary 4.4 Suppose that A is a nonnegative matrix having a nonnegative permuted graph

basis. If it has a quasi-preferred basis {x', ... 7} with ¥* = [x;] such that there exist unique
i—1 i1
ki, ..., kg with min — = - , then each of ki, ..., k, will contribute a row to the
i (7)) j (%)k,

identity of the nonnegative permuted graph basis.

Proof. Consider the matrix X = [z! ... 27]7. Thus there exists indices ji, ..., j, from each

block that contribute rows to the identity of the nonnegative permuted graph basis. We now

(@ ) @7,

show that for eacht=1,...,¢q
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Then the result will follow from the uniqueness of the k;. Clearly for each i = 1,...,¢q

both the indices k; and j; are from the same block. Since the columns of the matrices X

I
and II [ v ] with some nonnegative Y both are bases for the generalized eigenspace, there

I
exists a matrix B € R%? such that X =11 [ v ] B. Tt can be easily seen that,

(#1);, O ... 0

(37%)]@ (ZB%)]-Q - 0

1 2
(2);, (%2),, («4),,
which implies that for each i = 1,...,q there exist nonnegative scalars (the elements of Y)
«;, B; such that

B =

(1), = ai(al); (4.1)
(@) = Bi(ain), , +ai(@i),
Since both g; and (xfj)jiil are nonnegative, the claim follows from the equations in (4.1).
U

Corollary 4.4 gives a computational criterion to check the existence of nonnegative permuted
graph basis. One computes a preferred bases and checks the inequalities and their uniqueness.
If this holds then a nonnegative permuted graph basis exists, if not then it is an open problem
to guarantee the existence.

We have seen that not every nonnegative matrix possesses a nonnegative permuted graph
basis even though they possess the same level and height characteristic. It is also an open
problem to characterize the class of nonnegative matrices that have a nonnegative permuted

graph basis.

5 Conclusion

We have presented a variant of the Jordan canonical form for nonnegative matrices and
shown the uniqueness of such canonical form up to block triangular similarity transformation.
We also studied some graphical properties of nonnegative matrices with the help of this
canonical form. We have shown that all such possible canonical forms can be connected
by a linear path and that the nonzero pattern of a leading block in the Frobenius-Jordan
form is unique. Finally we have presented some necessary conditions for the existence of
nonnegative permuted graph basis for nonnegative matrices and we have demonstrated the

fact that not every nonnegative matrix has such bases by an example.
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