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Abstract

In this paper we use preferred and quasi-preferred bases of generalized eigenspaces

associated with the spectral radius of nonnegative matrices to analyze the existence

and uniqueness of a variant of the Jordan canonical form which we call Frobenius-

Jordan form. It is a combination of the classical Jordan canonical form in the part

associated with the eigenvalues that are different from the spectral radius, while it is

like the Frobenius normal form in the part associated with the spectral radius. Based

on the Frobenius-Jordan form, spectral and combinatorial properties of nonnegative

matrices are discussed. In particular, we analyze the existence of nonnegative graph

representations of the generalized eigenspace associated with the spectral radius.
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1 Introduction

In this paper we discuss several open questions concerning the relation between the spectral

and combinatorial properties of nonnegative matrices. It is well-known that for the invariant

subspace associated with the spectral radius of a nonnegative matrix there exist several types
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of nonnegative bases which have a nice combinatorial structure, see [2, 6, 7, 8, 9, 10, 12, 13,

14, 15, 16, 17], called preferred basis and quasi-preferred basis. In this paper we use these

bases to analyze the existence and uniqueness of a variant of the Jordan canonical form

named Frobenius-Jordan form which is a combination of the classical Jordan canonical form

[5] in the part associated with the eigenvalues that are different from the spectral radius,

while it is like the Frobenius normal form [4] in the part associated with the spectral radius.

The paper proceeds as follows. Section 2 contains some notation and preliminary results

mostly introduced in [8]. In Section 3 we introduce the Frobenius-Jordan form of a matrix

and show the existence and uniqueness (up to similarity transformation) of such a form

for nonnegative matrices. Furthermore, we investigate some graph theoretical properties of

nonnegative matrices with the help of the Frobenius-Jordan form. In Section 4 we consider

the special so called graph-representations of nonnegative bases for nonnegative matrices.

We derive necessary conditions for the existence of such graph bases and show that they

need not always exist. We conclude with a summary and some further open questions.

2 Notation and Preliminaries

This section contains the basic notation that is used in this paper and some preliminary

results, mostly from [8]. We denote the set t1, 2, . . . , nu by   n ¡. For a real n�m matrix

A � rai,js and an n-vector x � rxis, we use the following terminology and notation.

� A ¥ 0 (A is nonnegative ) if ai,j ¥ 0, for all i P  n ¡, j P  m ¡.

� A ¡ 0 (A is semipositive) if A ¥ 0 and A � 0.

� A " 0 (A is strictly positive) if ai,j ¡ 0, for all i P  n ¡, j P  m ¡.

For a real n� n matrix A � rai,js we denote

� by σpAq the spectrum of A;

� by ρpAq � maxλPσpAqt|λ|u, the spectral radius of A;

� by NpAq the nullspace of A, and by npAq the nullity of A, i. e., its dimension;

� by indλpAq the size of the largest Jordan block associated with the eigenvalue λ;

� by EλpAq, the generalized eigenspace of A corresponding to the eigenvalue λ, i. e.,

NppλI � Aqnq.
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Definition 2.1 An n � n matrix A is said to be reducible if there exists a permutation

matrix Π such that

ΠAΠT �

�
B C

0 D

�
, (2.1)

where B and D are square matrices or in the case that n � 1 and A � 0. Otherwise A is

called irreducible.

If A is a reducible and in the form (2.1), and if a diagonal block is reducible, then this block

can be reduced further via permutation similarity. If this process is continued, then finally

there exists a suitable permutation matrix Π such that ΠAΠT is in block triangular from

ΠAΠT �

�
�����
A11 A12 . . . A1p

0 A22 . . . A2p

...
...

. . .
...

0 0 . . . App

�
����� , (2.2)

where each block Ai,i is square and is either irreducible or a 1 � 1 null matrix. This block

triangular form is called the Frobenius normal form of A. An irreducible matrix consists of

one block in the Frobenius normal form.

If A � rAi,js is an n� n nonnegative matrix in Frobenius normal form with p block rows

and columns, and when discussing matrix-vector multiplication with A or the structure of

eigenvectors of A, we partition vectors b analogously in p vector components bi conformably

with A, and we define the (block) support of b via blocksupppbq � ti P  p ¡: bi � 0u.

To the Frobenius normal form (2.2) of A we associate the directed reduced graph RpAq

of A with p vertices, and a directed edge from i to j if and only if Ai,j � 0. Note that due

to the block triangular structure of A, RpAq may contain loops but no other cycles.

Definition 2.2 Let A be an n � n matrix in Frobenius normal form (2.2). For any two

vertices i and j in RpAq we say that j has access to i if j � i or if there is a path in the

reduced graph from j to i. In this case we write j Ñ i. Otherwise, we write j Û i.

For be a set W of vertices in the vertex set V pAq of RpAq we introduce the following sets.

belowpW q � ti P V pAq : there exists j P W such that iÑ ju;

abovepW q � ti P V pAq : there exists j P W such that j Ñ iu;

toppW q � ti P W : there exists j P W, such that iÑ j implies i � ju;

bottompW q � ti P W : there exists j P W, such that j Ñ i implies i � ju.

Important objects that we will use in this paper to combine the spectral and combinatorial

structure of nonnegative matrices are the level and height characteristics.
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Definition 2.3 Let A be an n� n matrix in Frobenius normal form (2.2).

piq A vertex i in RpAq is called a singular vertex (or a basis vertex of ρpAqI � A) if Ai,i

is singular. We denote the set of all singular vertices of RpAq by HpAq. We define the

singular graph SpAq associated with RpAq as the graph with vertex set HpAq and pi, jq

is an edge if and only if i � j or there is a path from i to j.

piiq The level of a singular vertex i in RpAq, denoted by levelpiq, is the maximal number of

singular vertices on a path in RpAq that terminates at i.

piiiq Let x be a block-vector with q blocks, partitioned according to the Frobenius normal

form of A. The level of x, denoted by levelpxq, is defined to be maxtlevelpiq : i P

blocksupppxqu.

pivq For a vector x � 0 in the eigenspace E0pAq, we define the height of x, denoted by

heightpxq, to be the minimal nonnegative integer k such that Akx � 0.

Let m be the maximal level of a singular vertex in RpAq. The level characteristic λpAq

of A is defined to be the tuple pλ1, . . . , λmq, where λk is the number of singular vertices of

RpAq of level k.

If A is singular, then let t be the maximal positive integer such that npAtq ¡ npAt�1q. We

define the height characteristic ηpAq of A to be the tuple pη1, . . . , ηtq, where ηk � npAkq �

npAk�1q.

The other essential objects in our analysis are appropriately chosen sets of basis vectors for

the eigenspace associated with the spectral radius.

Definition 2.4 Let A be a square matrix in Frobenius normal form (2.2), and let HpAq �

tα1, . . . , αqu, with α1   . . .   αq be the set of singular vertices in RpAq.

A set of vectors x1 � rx1
i s, . . . , x

q � rxqi s ¥ 0 is called a quasi-preferred set for A if

xij " 0 if j Ñ αi, and xij � 0 if j Û αi

for all i � 1, . . . , q and j � 1, . . . , p.

If in addition we have

�Axi �
q̧

k�1

ci,kx
k, i � 1, . . . , q,

where the ci,k satisfy

ci,k ¡ 0 if αi Ñ αk, i � k; and ci,k � 0 if αk Û αi or i � k

for all i, k � 1, . . . , q, then the set of vectors x1, . . . , xq is said to be a preferred set for A.

A (quasi-)preferred set that forms a basis for E0pAq is called (quasi-)preferred basis for

A.
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In the following we often make use of the interplay of a nonnegative matrix A and the

M -matrix M � ρpAqI � A.

Definition 2.5 An n�n matrix M is called an M -matrix if it can be written as M � sI�A,

where A ¥ 0 and s ¥ ρpAq.

The following results are well-known.

Theorem 2.6 [8] Let M be an M-matrix. If x is a nonnegative vector in E0pMq, then

heightpxq � levelpxq.

Theorem 2.7 [8] (Preferred Basis Theorem) If M is an M-matrix, then there exists a

nonnegative preferred basis for the generalized eigenspace E0pMq of M .

After having introduced the basic concepts, in the next section we introduce the Frobenius-

Jordan form of a nonnegative matrix.

3 The Frobenius Jordan Form of a Nonnegative matrix

In this section we prove the existence of a Frobenius-Jordan form for a nonnegative matrix

and discuss the combinatorial properties.

Theorem 3.1 Let A be an n� n nonnegative matrix with the spectral radius ρ. Then there

exists a nonsingular matrix T � rT1 T2s such that the columns of T1 form a quasi-preferred

basis of EρpAq and such that

T�1AT �

�
ZF ZFJ

0 ZJ

�
� Z, (3.1)

where AT1 � T1ZF , ZF is nonnegative, in block upper-triangular form

ZF �

�
�����
ρIn1 Z1,2 . . . Z1,t

0 ρIn2

. . .
...

...
. . . . . . Zt�1,t

0 . . . . . . ρInt

�
����� , (3.2)

σpZF q � tρu, ρ R σpZJq, and ZJ is in Jordan canonical form. If, furthermore, for j �

1, . . . , t � 1, none of the blocks Zj,j�1 has a zero column, then the block-sizes n1, . . . , nt are

invariants.
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Proof. Consider the M -matrix M � ρI � A. Without loss of generality, we may assume

that M is in Frobenius normal form (2.2), and let α1   α2   . . .   αq be the singular

vertices of M . Since M is an M -matrix, by Theorem 2.7 it follows that M has a preferred

basis tx1, x2, . . . , xqu for the generalized eigenspace E0pMq, with Mxi � �
q̧

k�1

ĉk,ix
k, so that

Axi � ρxi �
q̧

k�1
k�i

ĉk,ix
k, (3.3)

where the ĉk,i satisfy ĉk,i ¡ 0 if αk Ñ αi, and ĉk,i � 0 if αk Û αi for i, k P t1, . . . , qu, i � k.

If we set T̂1 � rx1, . . . , xqs, then equation (3.3) implies that AT̂1 � T̂1Ĉ with

Ĉ �

�
�����
ρ ĉ12 . . . ĉ1q

0 ρ . . . ĉ2q

...
...

. . . ĉq�1,q

0 0 . . . ρ

�
����� ,

nonnegative and we can determine a permutation matrix Π1 such that AT1 � T1ZF , with

T1 � T̂1Π1 and ZF � ΠT
1 ĈΠ is as in (3.2). Since the columns of T1 are linearly independent,

we can extend them to a basis of the space T
1

� rT1 T
1
1s and, thus, we obtain

AT
1

� T
1

�
ZF Z12

0 Z2

�

for some matrices Z12 and Z2. Let V2 be a nonsingular matrix such that V �1
2 Z2V2 � ZJ is

in Jordan canonical form and consider the matrix

T � T
1

diagpI, V2q � rT1 T2s.

Then T�1AT is as in (3.1) and the fact that ρ R σpZJq is clear by construction.

It remains to show that the block-sizes n1, . . . , nt of ZF are invariant if none of the blocks

Zi,i�1 in (3.2) has a zero column. Set m0 � 0,mi � n1� . . .�ni and X i � rxmi�1�1, . . . , xmis,

for i � 1, 2, . . . , t. Let pλ1, . . . , λ`q be the level characteristics of A, with ` being the length

of the longest chain in A.

We first prove by induction on i that for i P t1, . . . , tu we have heightpxjq � i, for all

j P tmi�1 � 1, . . . ,miu. For j P  n1 ¡, we have Mxj � 0, due to (3.1) and the fact

that the columns x1, . . . , xq of T1 form a quasi-preferred basis for E0pMq. This shows that

heightpxjq � 1, for j P  n1 ¡.

Now assume that for any i with i   k ¤ `, we have heightpxjq � i, for all j P

tmi�1 � 1, . . . ,miu. Thus, we have M iX i � 0 and the columns of M i�1X i are nonzero.
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But then AT1 � T1ZF implies that �MXk � X1Z1,k � . . . � Xk�1Zk�1,k. Multiplying

with Mk�1 and Mk�2 respectively from the left, we obtain MkXk � 0 and Mk�1Xk ��
Mk�2Xk�1

�
Zk�1,k � 0, see Lemma 19 in [3], as each column of both the nonnegative ma-

trices Zk�1,k and �Mk�2Xk�1 is nonzero, since either Mk�2Xk�1 or �Mk�2Xk�1 must be

nonnegative. This shows that heightpxjq � k, for all j P tmk�1 � 1, . . . ,mku. As a con-

sequence of this and Theorem 2.6, we conclude that for i P t1, . . . , tu, levelpxjq � i for all

j P tmi�1 � 1, . . . ,miu. Thus, we have ni � λi and t � `.

We call a matrix Z as defined in Theorem 3.1 a Frobenius-Jordan form of A and ZF the

leading diagonal block of this form.

The following example shows that, without further requirements, the Frobenius-Jordan

form may not be unique.

Example 3.2 Let

A �

�
���������

2 2 1 1 0 0

2 2 1 1 0 0

0 0 0 4 0 1

0 0 4 0 1 0

0 0 0 0 2 2

0 0 0 0 2 2

�
���������

Then ρpAq � 4 and E4pMq � Npp4I � Aq3q � tx � rxis P R6,1 : x1 � x2, x3 � x4, x5 � x6u

with M � 4I � A. Consider the quasi-preferred bases spanned by the columns of X �

rx1 x2 x3s and Y � ry1 y2 y3s, with x1 � r1 1 0 0 0 0sT , x2 � r1 1 1 1 0 0sT , x3 �

r1 1 1 1 1 1sT , and y1 � x1; y2 � 2x2; y3 � 4x3. Then we have

AX � X

�
�� 4 2 1

0 4 1

0 0 4

�
�� � XZF1 , AY � Y

�
�� 4 4 4

0 4 2

0 0 4

�
�� � Y ZF2 .

Thus, the leading diagonal block of a Frobenius-Jordan form (and hence the Frobenius-

Jordan form) of a nonnegative matrix is not unique.

Our next theorem shows that any two Frobenius-Jordan forms of a matrix A are related by

a similarity transformation via a block upper triangular matrix.

Theorem 3.3 Let

ZF �

�
�����
ρIn1 Z1,2 . . . Z1,t

0 ρIn2 . . . Z2,t

...
...

. . . Zt�1,t

0 0 . . . ρInt

�
�����
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and

Z̃F �

�
�����
ρIn1 Z̃1,2 . . . Z̃1,t

0 ρIn2 . . . Z̃2,t

...
...

. . . Z̃t�1,t

0 0 . . . ρInt

�
�����

be the leading diagonal blocks corresponding to two Frobenius-Jordan forms of a nonnegative

matrix A. Then there exist a block upper triangular matrix F � rFi,js with the same block

structure and the blocks F1,1, . . . , Ft,t are diagonal with positive diagonal entries, such that

Z̃F � F�1ZFF,

where

F �

�
�����
F1,1 F1,2 . . . F1,t

0 F2,2 . . . F2,t

...
...

. . . Ft�1,t

0 0 . . . Ft,t

�
����� (3.4)

In particular, we have Z̃i,i�1 � F�1
i,i Zi,i�1Fi�1,i�1.

Proof. By possibly permuting rows and the corresponding columns of the matrix A we may

assume that A has the form �
�����
A1,1 A1,2 . . . A1,t

0 A2,2 . . . A2,t

...
...

. . . At�1,t

0 0 . . . At,t

�
����� ,

where for each i � 1, . . . , t, Ai,i is the submatrix of A associated with the classes of level i.

Let HpMq � tα1, . . . , αqu, with α1   α2   . . .   αq be the set of singular vertices in

RpMq with M � ρI � A. Let ZF and Z̃F be the leading diagonal blocks of two Frobenius-

Jordan forms of A corresponding to the nonsingular matrices T � rT1 T2s and T̃ � rT̃1 T̃2s,

so that the columns of T1 � rx1 . . . xqs and T̃1 � rx̃1 . . . x̃qs both form quasi-preferred bases,

respectively, with AT1 � T1ZF and AT̃1 � T̃1Z̃F . Since both T1 and T̃1 are bases for the

generalized eigenspace of M � ρI �A, there exists a nonsingular matrix F P Rq,q such that

T̃1 � T1F with F � rfi,js, where q is the algebraic multiplicity of the eigenvalue 0. Thus, for

any i P  q ¡ we have

x̃i � f1,ix
1 � f2,ix

2 � . . .� fk,ix
k. (3.5)

Let i P  q ¡ and consider the set V � tαj P HpMq : fj,i � 0u. We now show that

V � belowpαiq.
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Suppose first that αj P toppV q but αj R belowpαiq. Then xiαj
� 0 � x̃iαj

, but αj P toppV q

implies that fj,i � 0, and if fr,i � 0 and αj Ñ αr (in which case xrαj
" 0), then r � j.

Thus from equation (3.5) we obtain x̃iαj
� fj,ix

j
αj

which implies that fj,i � 0, which is a

contradiction. Hence, we have toppV q � belowpαiq.

Suppose next that αj P V z toppV q. Then there exists αr P toppV q such that αj Ñ αr

and j � r, which implies that αj P belowpαiq, because toppV q � belowpαiq. This shows that

V � belowpαiq, i. e., fj,i � 0 if αj Û αi.

Since A is in Frobenius normal form with irreducible diagonal blocks, it follows that F

can be partitioned into the form (3.4), where each Fi,i is corresponding to level i. Since

AT̃1 � T̃1Z̃F and T̃1 � T1F , it follows that T1ZFF � T1FZ̃F , which implies that ZFF �

FZ̃F .

One may raise the question whether every possible Jordan form as in (3.1) with a nonnegative

basis T1 stems from a quasi-preferred basis. This is not the case as the following example

shows.

Example 3.4 The matrix

A �

�
��

2 0 0

0 1 1

0 1 1

�
��

has ρpAq � 2. Consider the nonnegative basis of E2pAq spanned by the columns of T �

rx1 x2s, with x1 � r1 1 1sT , x2 � r2 3 3sT . Then Arx1 x2s � rx1 x2s

�
2 0

0 2

�
� TZ, where

Z � 2I is the leading block of Frobenius-Jordan form of A, but the columns of T do not

form a quasi-preferred basis for A. Note that in this example ind2pAq � 1.

Since not every nonnegative basis with columns that satisfy condition (3.1) in Theorem 3.1

is a quasi-preferred basis one may ask whether there is a weaker relation.

Example 3.5 The matrix

A �

�
�����

2 0 0 1

0 1 1 0

0 1 1 0

0 0 0 2

�
�����

has ρpAq � 2 and E2pAq � tx � rxis P R4 : x2 � x3u.

Consider the nonnegative basis of E2pAq spanned by the columns of T � rx1 x2 x3s with

x1 � r1 0 0 0sT , x2 � r1 1 1 0sT , x3 � r0 1 1 1sT . Then,

AT � T

�
�� 2 0 1

0 2 0

0 0 2

�
�� �: TZF ,
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where ZF is the leading diagonal block of a Frobenius-Jordan form of A. Here we have

x3
1 � 0 but 1 Ñ 3, x2

1 ¡ 0 but 1 Û 2.

In Theorem 3.3 we have shown that Frobenius-Jordan forms of a nonnegative matrix may

not be unique, but any two Frobenius-Jordan forms are related via a block-upper triangular

similarity transformation with diagonal blocks. In our next theorem we will show that such

matrices can be connected by a continuous path.

Let Ckprs0, s1s,Rn,nq denote the set of k-times continuously differentiable functions from

the real interval rs0, s1s to Rn,n. Then for k ¥ 0 and s0   s1   8, two matrix functions

A,B P Ckprs0, s1s,Rn,nq are called k-smoothly similar, if there exists a pointwise nonsingular

matrix T P Ckprs0, s1s,Rn,nq such that T�1psqBpsqT psq � Apsq for all s P rs0, s1s. This

property is characterized by the following Theorem.

Theorem 3.6 [18] Let A P Ckprs0, s1s,Rn,nq with k ¥ 0 and s0   s1   8 and let ∆pλ, sq �

detpλI�Apsqq be the characteristic polynomial of the matrix Apsq. If the multiplicity m of the

distinct roots of ∆pλ, sq remains constant for all s P rs0, s1s, then there exists an enumeration

λ1psq, . . . , λmpsq of the roots of ∆pλ, sq such that λj P Ckprs0, s1s,Rq, for j � 1, . . . ,m.

Furthermore, if Apsq is similar to a matrix Jpsq, in which each eigenvalue λjpsq, j �

1, . . . ,m is in a constant number of Jordan blocks of Jpsq with a dimension that is constant

in s, then Apsq is k-smoothly similar to Jpsq.

Theorem 3.7 All possible Frobenius-Jordan forms of a nonnegative matrix can be connected

by a convex combination.

Proof. Let A be a nonnegative matrix and without loss of generality we assume that A is

in Frobenius normal form having p diagonal blocks and algebraic multiplicity q. Let Z1 and

Z2 be the two Frobenius-Jordan forms of A and let ZF1 and ZF2 be the respective leading

diagonal blocks. Then by Theorem 3.3, there is a block upper-triangular invertible matrix

F such that ZF2 � F�1ZF1F .

Consider now the linear matrix valued function Z : r0, 1s Ñ Rn,n defined by

Zpsq � sZF1 � p1� sqZF2

Observe that Zpsq is similar to ZF1 for all s P r0, 1s. So, if J is the Jordan matrix of ZF1 ,

i. e., V �1ZF1V � J , then for all s P r0, 1s, Zpsq is similar to the Jordan matrix J , which is

independent of s. Thus, by Theorem 3.6, there exists a smooth matrix valued function Upsq

satisfying U�1psqZpsqUpsq � J .

The Sylvester equation ZF1F psq � F psqZpsq has the general solution F psq � V XU�1psq,

where X is the general solution of the Sylvester equation JX � XJ . Then F has the same
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smoothness as U�1 and for all s P r0, 1s, with T psq � T1F psq, we have AT psq � T psqZpsq.

In order to characterize different Frobenius-Jordan forms of the same matrix A, we study a

Frobenius-Jordan where the leading block has the maximal number of nonzeros. We denote

this leading block by ZF,max.

Remark 3.8 Since ZF,max contains the maximal number of nonzero entries, it follows that

if we replace ZF1 by ZF,max in the proof of Theorem 3.7, then we can perform a convex

combination between any leading diagonal block and ZF,max and between any other leading

blocks with fewer nonzeros, we have a way to get all possible zeros in the leading diagonals

of a Frobenius-Jordan matrices of the nonnegative matrix A.

Corollary 3.9 Let A be a nonnegative matrix and let T be invertible such that Z � T�1AT ,

as in (3), has a leading block ZF,max that has a maximal number of nonzeros. Then there is

no other Frobenius-Jordan form with leading block ZF and maximal number of nonzeros but

with different positions for the zero elements.

Proof. Suppose there would be two leading blocks ZF1 , ZF2 of a Frobenius-Jordan form with

the same maximal number of nonzeros, but with different zero/nonzero patterns. Connecting

ZF1 , ZF2 via a convex combination, implies that at least one zero has to become nonzero,

and one nonzero has to become zero, which is not possible for a convex combination of two

nonnegative matrices.

Corollary 3.10 Let A be a nonnegative matrix and let T be invertible such that Z � T�1AT ,

as in (3), has a leading block ZF,max that has a maximal number of nonzeros. Then each

column of ZF,max also contains a maximal number of nonzeros.

Proof. Suppose that there would be a leading block ZF of a Frobenius-Jordan form which

has a column that contains more nonzeros than that of ZF,max. Connecting ZF and ZF,max

via a convex combination, implies that the corresponding column of the resulting leading

block contains more nonzeros than that of ZF,max, whereas other nonzeros of the resulting

leading block will be in the same positions as that of in ZF,max. But this contradicts the

maximality of ZF,max.

Example 3.11 In Example 3.2, ZF1 and ZF2 both contain a maximal number of nonzeros

and they are not permutationally similar, whereas they are diagonally similar.
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Example 3.12 Let

A �

�
�����������������

0 4 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

1 1 2 0 2 0 0 0 0

1 1 1 1 2 0 0 0 0

1 1 3 1 0 0 0 0 0

0 1 0 0 0 0 3 0 0

1 0 0 0 0 4 1 0 0

0 0 0 0 0 2 2 2 2

0 0 0 0 0 0 2 2 2

�
�����������������

.

It is easy to check that ρpAq � 4 and for M � 4I � A we have indpMq � 3, and

E4pAq � NpM3q

�
 
x � rxis P R9,1 | x1 � x2; x3 � x5 � x6; 28x6 � 21x7 � x1;

4px8 � x9q � 9x7 � 10x6u .

Consider the two preferred bases spanned by the columns of X � rx1 x2 x3 x4s and Y �

ry1 y2 y3 y4s, where

x1 � r7 7 1 1 1 1 1 1 5
4
sT , y1 � r1 1 1 1 1 11

14
1 1 5

7
sT ,

x2 � r0 0 1 1 1 0 0 0 0sT , y2 � x2,

x3 � r0 0 0 0 0 21 28 11 1
2
sT , y3 � r0 0 0 0 0 3

4
1 1

2
1
8
sT ,

x4 � r0 0 0 0 0 0 0 1 1sT , y4 � x4.

We have AX � XZFX
and AY � Y ZFY

with

ZFX
�

�
����

4 0 0 0

14 4 0 0
2
7

0 4 0
19
14

0 77 4

�
���� , ZFY

�

�
����

4 0 0 0

2 4 0 0
8
7

0 4 0
17
7

0 11
4

4

�
���� .

If ZFX
and ZFY

were diagonally similar and D � diagpd1, d2, d3, d4q such that ZFX
D � DZFY

,

then D would have to satisfy the homogeneous linear system 7d1 � d2, d1 � 4d3, 19d1 � 34d4,

28d3 � d4, which however only has the trivial solution, and, hence, ZFX
and ZFY

are not

diagonally similar.

In our next theorem we show that the subgraph of A corresponding to the leading block

of any leading block in a Frobenius-Jordan form is a subgraph of ZF,max. For this we will

make use of the following lemma.
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Lemma 3.13 [6] Let A P Rn,n be in Frobenius normal form (2.2) and let x P Rn be parti-

tioned analogously. Then blocksupppAxq � belowpblocksupppxqq.

Lemma 3.14 Let A P Rn,n be a nonnegative matrix in Frobenius-Jordan form (3.1) with

leading block ZF � rz1, . . . , zqs that corresponds to the quasi-preferred basis spanned by the

columns of T1 � rx1, . . . , xqs. Let M � ρI � A and let HpMq � tα1, . . . , αqu, with α1  

. . .   αq be the set of singular vertices in RpMq. Then, for any i P  q ¡, blocksupppziq �

belowpαiq.

Proof. Let ZF � rzi,js. Then AT1 � T1ZF implies that

Axi � ρxi �
i�1̧

k�1

zk,ix
k, i � 1, . . . , q. (3.6)

We have to show that for every i P  q ¡ the inclusion blocksupppziq � belowpαiq holds,

which is equivalent to toppblocksupppziqq � belowpαiq.

Let αk P toppblocksupppziqq. Then (3.6) implies that

pAxiqαk
� ρxiαk

� zαk,ix
k
αk
. (3.7)

If pAxiqαk
� ρxiαk

, then zαk,i � 0, which is a contradiction. So we must have that αk P

blocksuppppρI � Aqxiq and so by Lemma 3.13 we have αk P blocksupppxiq. Then from the

definition of the quasi-preferred basis it follows that αk P belowpαiq.

With this lemma we can now prove the following theorem.

Theorem 3.15 All possible graphs associated with a leading block of a Frobenius-Jordan

form of A are subgraphs of the graph of ZF,max.

Proof. Consider the M -matrix M � ρI � A. Suppose that MTmax � TmaxZF,max, with

ZF,max � rẑ1, . . . , ẑqs, such that the columns of Tmax form a quasi-preferred basis. By

Theorem 2.7, there exist a preferred basis spanned by the columns of Y � ry1, . . . , yqs

for E0pMq and let MY � Y ZF with ZF � rz1, . . . , zqs be the corresponding part of

the Frobenius-Jordan form. Then by definition, for i P  q ¡ we have blocksupppziq �

belowpαiq. But by Lemma 3.14, blocksupppẑiq � belowpαiq and by Corollary 3.10, we must

have blocksupppẑiq � belowpαiq.

As a consequence of Theorem 3.15 we have that every leading block with a maximal number

of nonzeros is associated with a preferred basis, while all the leading blocks with fewer

nonzeros only are related to quasi-preferred bases.

If we perform a convex combination between ZF and ZF,max then the sign pattern will

become the sign pattern of ZF,max for any s ¡ 0. Since ZF,max corresponds to a preferred
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basis, it is likely that for every s P p0, 1s the corresponding basis is a preferred basis. We do

not know whether this is true.

In this section we have introduced Frobenius-Jordan forms and analyzed the relationship

between different such forms, in the next section we discuss special graph bases for the

generalized eigenspaces associated with ρpAq.

4 Nonnegative permuted graph basis for nonnegative

matrices

In this section we investigate the existence of a nonnegative row permuted graph basis for

the generalized eigenspace of a nonnegative matrix. Here we say that T1 associated with

the spectral radius of A is a permuted graph basis, [11], if it is of the form T1 � Π

�
I

Y

�
with a permutation matrix Π and nonsingular matrix Y . We call such a basis nonnegative

permuted graph basis if Y ¥ 0. The following example shows that this does not always exist

for every nonnegative matrix.

Example 4.1 Let

A �

�
����������������������

0 2

4 0

0 1 0 4

1 0 4 0

0 0 0 0 2 0 2

0 0 0 0 1 1 2

0 0 0 0 3 1 0

1 1 0 0 0 0 0 0 3

1 1 0 0 0 0 0 4 1

0 0 0 0 1 0 1 2 2 2 2

0 0 0 0 0 1 2 0 2 2 2

�
����������������������

Then ρpAq � 4 and for M � 4I � A we have indpMq � 2 so that

E4pAq �
 
x � rxis P R11,1 | x1 � x2 � 0, x3 � x4, x5 � x6 � x7, 21x9 � 28x8,

4x11 � x5 � 4x10 � 2x8u
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If x1, x2, x3, x4 is any quasi-preferred basis for E0pMq, then we have

x2 � r0, 0, 0, 0, ξ, ξ, ξ, 0, 0 , ω, ω �
ξ

4
sT ,

x3 � r0, 0, 0, 0, 0, 0, 0, ε,
21ε

28
, ψ �

ε

2
, εsT ,

x4 � r0, 0, 0, 0, 0, 0, 0, 0, 0, ζ, ζsT

with nonnegative ψ, ε, ζ, ξ, ω. But this implies that
ζ

ε
¥

ζ

ψ � ε
2

and
ζ

ξ
4
� ω

¤
ζ

ω
, which are

contradicting inequalities. Hence , there does not exist any nonnegative permuted graph

basis for A. Note that in this example, the level and height characteristic are different, since

λpMq � p2, 2q � ηpMq � p3, 1q.

Example 4.2 Consider the matrix

A �

�
�����

2 0 0 0

1 2 0 0

6 1 1 1

1 3 1 1

�
����� ,

with ρpAq � 2 and for M � 2I � A we have indpMq � 3, and

E2pAq �
 
x � rxis P R4 : 3x1 � x4 � x2 � x3

(
.

Here again, A does not possess any nonnegative permuted graph basis, whereas level and

height characteristic are equal, λpMq � ηpMq � p1, 1, 1q.

To obtain criteria for the existence of nonnegative permuted graph bases we have the fol-

lowing result.

Lemma 4.3 If a nonnegative matrix A possess a nonnegative permuted graph basis for the

generalized eigenspace EρpAq, then each block that corresponding to the leading diagonal of

a Frobenius-Jordan form of A in the matrix

X �

�
�����
X1

X2

...

Xp

�
����� ,

partitioned as (2.2) with columns that form a quasi-preferred basis will contribute one row

to the identity.
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Proof. Without loss of generality we may assume that A is in block lower triangular Frobe-

nius normal form with a spectral radius of algebraic multiplicity q . Since A is a nonnegative

matrix, it has a quasi-preferred basis, given by the columns of X � rx1, . . . , xqs. Write X as

X �

�
�����
x1

1 0 . . . 0

x1
2 x2

2 . . . 0
...

...
. . .

...

x1
p x2

p . . . xqp

�
����� .

Suppose that β :� tβ1, . . . , βqu is the set of indices that are associated with the identity, i. e.,

if β̄ �  n ¡ zβ, then there exists a permutation Π � rΠT
β ,Π

T
β̄
sT defined by the indices in β

and β̄ such that Xβ :� ΠβX is invertible, and

ΠXX�1
β �

�
Xβ

Xβ̄

�
X�1
β �

�
I

Y

�
,

with Y ¥ 0.

If the assertion would not hold, then there would exist an index j P xqy such that j R β.

Let ĵ be the largest such index. Then ĵ � q because otherwise Xβ would have a zero column

which is a contradiction. If ĵ   q, then the q � ĵ � q � ĵ submatrix in the lower right

corner of Xβ is lower triangular with a zero in the first diagonal position and hence again

we have a contradiction. As a consequence there does not exist such an index and the proof

is complete.

Lemma 4.3 implies that no block in a Frobenius-Jordan form can contribute more than one

row to the identity. Thus the identity cannot be larger than the number of blocks. However,

as we have seen, there may not exist a nonnegative permuted graph basis, which means that

some blocks do not at all contribute rows to the identity.

However, if each block is to contribute exactly one row to the identity, then we must have

the following relation.

Corollary 4.4 Suppose that A is a nonnegative matrix having a nonnegative permuted graph

basis. If it has a quasi-preferred basis tx1, . . . , xqu with xi � rxijs such that there exist unique

k1, . . . , kq with min
j

�
xi�1
i

�
j

pxiiqj
�

�
xi�1
i

�
ki

pxiiqki
, then each of k1, . . . , kq will contribute a row to the

identity of the nonnegative permuted graph basis.

Proof. Consider the matrix X � rx1 . . . xqsT . Thus there exists indices j1, . . . , jq from each

block that contribute rows to the identity of the nonnegative permuted graph basis. We now

show that for each i � 1, . . . , q �
xi�1
i

�
ki

pxiiqki
¥

�
xi�1
i

�
ji

pxiiqji
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Then the result will follow from the uniqueness of the ki. Clearly for each i � 1, . . . , q

both the indices ki and ji are from the same block. Since the columns of the matrices X

and Π

�
I

Y

�
with some nonnegative Y both are bases for the generalized eigenspace, there

exists a matrix B P Rq,q such that X � Π

�
I

Y

�
B. It can be easily seen that,

B �

�
�����
px1

1qj1 0 . . . 0

px1
2qj2 px2

2qj2 . . . 0
...

...
. . .

...�
x1
q

�
jq

�
x2
q

�
jq

. . .
�
xqq
�
jq

�
�����

which implies that for each i � 1, . . . , q there exist nonnegative scalars (the elements of Y )

αi, βi such that �
xii
�
ki

� αi
�
xii
�
ji

(4.1)�
xi�1
i

�
ki

� βi
�
xi�1
i�1

�
ji�1

� αi
�
xi�1
i

�
ji

Since both βi and
�
xi�1
i�1

�
ji�1

are nonnegative, the claim follows from the equations in (4.1).

Corollary 4.4 gives a computational criterion to check the existence of nonnegative permuted

graph basis. One computes a preferred bases and checks the inequalities and their uniqueness.

If this holds then a nonnegative permuted graph basis exists, if not then it is an open problem

to guarantee the existence.

We have seen that not every nonnegative matrix possesses a nonnegative permuted graph

basis even though they possess the same level and height characteristic. It is also an open

problem to characterize the class of nonnegative matrices that have a nonnegative permuted

graph basis.

5 Conclusion

We have presented a variant of the Jordan canonical form for nonnegative matrices and

shown the uniqueness of such canonical form up to block triangular similarity transformation.

We also studied some graphical properties of nonnegative matrices with the help of this

canonical form. We have shown that all such possible canonical forms can be connected

by a linear path and that the nonzero pattern of a leading block in the Frobenius-Jordan

form is unique. Finally we have presented some necessary conditions for the existence of

nonnegative permuted graph basis for nonnegative matrices and we have demonstrated the

fact that not every nonnegative matrix has such bases by an example.
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