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Abstract

Modern data analysis programs often consist of complex operations. They combine multiple

heterogeneous data sources, perform data cleaning and feature transformations, and apply

machine learning algorithms to train models on the preprocessed data. Existing systems can

execute such end-to-end training pipelines. However, they face unique challenges in their

applicability to large scale data. In particular, current approaches either rely on in-memory

execution (e.g., Python Pandas and scikit-learn) or they do not provide convenient programming

abstractions for specifying data analysis programs (e.g., Apache Flink and Spark). Moreover,

these systems do not support optimizations across operations in these pipelines, which also

limits their e�cient execution. In this thesis, we present our contributions towards a more

e�cient execution of end-to-end machine learning pipelines for model training. In particular,

we discuss the following three contributions:

In our �rst contribution, we propose a programming abstraction in the dynamic language R on

top of the distributed data�ow engine Apache Flink. Our abstraction scales to large amounts

of data but also hides system speci�cs of the data�ow engine. We integrate R and the system

language Java in a shared runtime to alleviate the performance overhead of current solutions

for language integration in case of complex user-de�ned functions. In our second contribution,

we introduce an intermediate representation for data analytics programs, which allows us to

optimize the complete training pipeline. We base our approach on a low-level intermediate

representation that provides access to the whole program and augments two abstractions on

top of it: a layer that uni�es the application of user-de�ned functions enables operator fusion

and pushdown; a high-level representation of the operations enables plan variant selection. In

our third contribution, we propose a new context-aware operator for data�ow engines, which

directly creates an e�cient partitioning schema for matrices from normalized data sources. The

operator decouples the evaluation of the join predicate from the materialization of the result.

This minimizes data shu�ing in distributed settings and enables the operator to choose the

materialization strategy depending on the shape of the input relations.

In summary, we conclude that we need a holistic system design that covers all tiers – pro-

gramming abstraction, intermediate representation, and execution backend – to overcome the

scalability challenges of large-scale data analysis programs.
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Zusammenfassung

Programme zur Datenanalyse vereinigen häu�g komplexe Operationen. Sie verknüpfen verschie-

denste heterogene Datenquellen, entfernen fehlerhafte Datenpunkte und transformieren deren

Darstellung, bevor Modelle mit Verfahren des maschinellen Lernens auf diesen vorverarbeite-

ten Daten trainiert werden. Obwohl existierende Systeme solche sogenannten Ende-zu-Ende

Pipelines ausführen können, stellt sie deren Anwendbarkeit auf großen Datenmengen vor neue

Probleme und Herausforderungen. So sind bisherige Ansätze entweder auf die Ausführung in-

nerhalb des verfügbaren Speichers limitiert (z. B.: Python Pandas und scikit-learn), oder es fehlen

geeignete Programmierabstraktionen, um vollständige Analyse Pipelines auszudrücken (z. B.:

Apache Flink und Spark). Weiterhin bieten diese Systeme keine übergreifenden Optimierungen

an, welche die verschiedenen Operationen innerhalb dieser Pipelines einheitlich betrachten.

Ausgehend von diesen Herausforderungen, stellen wir im folgenden unsere Forschungsbeiträge

zur e�zienteren Ausführung von Ende-zu-Ende Pipelines für maschinelles Lernen vor:

Innerhalb des ersten Beitrags stellen wir eine Programmierabstraktion für die dynamische Spra-

che R vor, welche auf dem verteilten Daten�uss System Apache Flink ausgeführt wird. Unsere

Implementierung stellt eine benutzerfreundliche Abstraktion bereit, welche die Skalierbarkeit

auf große Datenmengen ermöglicht und gleichzeitig die Komplexität des Daten�usssystems

verbirgt. Dabei integriert unsere Lösung R und die Systemsprache Java in einer gemeinsamen

Laufzeitumgebung. Hierdurch ist eine e�ziente Ausführung möglich, welche insbesondere

bei komplexen, benutzerde�nierten Funktionen eine Herausforderung darstellt. Innerhalb des

zweiten Beitrags führen wir einen Zwischencode für die Repräsentation von Datenanalysepro-

grammen ein, der es ermöglicht, über die komplette Analyse Pipeline zu optimieren. Unser

Ansatz verwendet dazu drei verschiedene Darstellungsschichten: eine feingranulare Schicht er-

möglicht den Zugri� auf alle Details des Programms – inklusive Daten- und Kontroll�uss – und

dient als Basis für die zwei darüber liegenden Schichten. Die einheitliche Darstellung von benut-

zerde�nierten Funktionen ermöglicht deren Zusammenführung und e�ziente Ausführung. Die

Darstellung der einzelnen Operationen auf hohem Abstraktionsniveau ermöglicht die Selektion

von äquivalenten Planvarianten. In unserem dritten Forschungsbeitrag stellen wir einen neuen,

kontextsensitiven Operator für Daten�usssysteme vor, welcher Matrizen auf e�ziente Weise

aus normalisierten Daten erstellt – ein häu�ger Teilschritt innerhalb von Ende-zu-Ende Pipeli-

nes. Der Operator entkoppelt die Evaluation des Join-Prädikates von der Materialisierung des

Ergebnisses. Dies führt zur Minimierung der notwendigen Datenkommunikation und erlaubt

eine von der Bescha�enheit der Daten abhängige Wahl der Datenmaterialisierung.
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1

Introduction

Requirements for data analytics have changed drastically over the last decade. Traditionally,

companies used Extract, Transform, and Load (ETL) procedures to move raw data into data

warehouses, and analysts focused on aggregation queries over this structured data, e.g., for

reporting and online analytical processing (OLAP). The ever growing size of data and the

increasing number of domains in which practitioners apply machine learning (ML), e.g., business

intelligence [CCS12], recommendations [SKKR01], natural language processing [MMS99], and

speech recognition [HAS
+

14], have blurred the lines between data preprocessing and analytics.

Today, data scientists do in-situ analysis on dirty and unstructured data [R
+

11]: they pre-

pare diverse data sources, such as log �les and clickstreams, with relational operators and

user-de�ned functions (UDFs) before they mine the preprocessed data with statistical and

ML methods [ZKR16, BFG
+

17]. Preprocessing is an essential requirement that includes data

cleaning and de-normalization, but also feature engineering and selection. The applied prepro-

cessing methods depend on the respective algorithm used to train and evaluate ML models

in so called end-to-end machine learning pipelines [STH
+

15, KMNP15, BBC
+

17, ZKR14]. These

pipelines are re�ned multiple times to obtain the most promising con�guration of features, ML

algorithms, and hyperparameters [SHG
+

15].

Data scientists can choose from a variety of tools and languages to implement such end-to-end

pipelines. The formerly dominant relational database management systems (RDBMSs) have

limited support for complete pipelines: complex UDFs and iterative ML algorithms are hard to

express in SQL [PPR
+

09]. Unstructured data must be loaded and transformed before analysis

to bene�t from e�cient execution. Dynamic general-purpose programming languages (GPLs),

such as Python and R, are a popular choice for exploratory data analysis [Smi17]. They are

user-friendly and provide fast development cycles due to dedicated libraries for collection

processing [McK12] and machine learning [PVG
+

11, T
+

15]. However, dynamic languages are

designed for in-memory processing, which prevents out-of-the-box scaling to large amounts

of data [HNP09]. The dedicated libraries optimize domains in isolation, which requires ma-

terialization of intermediate results [PTS
+

17]. General-purpose data�ow engines, such as

MapReduce [DG04] and more recently Apache Spark [ZCF
+

10] and Flink [ABE
+

14], scale

seamlessly to large numbers of homogeneous compute nodes. Their �exible application pro-

gramming interfaces (APIs) are based on second-order functions to transform collections with

1



1.1 Problem Description

arbitrary types using UDFs. The separation of program speci�cation and execution enables

out-of-core processing on dedicated execution engines. However, the implementation of ML

algorithms in this collection-centric APIs is cumbersome and requires domain and system

expertise. Therefore, ML algorithms are hard-coded by experts and provided as library func-

tions [MBY
+

16, DDGR07, LYF
+

10]. Dedicated systems and libraries for distributed machine

learning [GKP
+

11] and more recently deep learning [CLL
+

15, ABC
+

16] provide convenient

programming abstractions and e�cient execution for ML. In contrast, they do not support

general collection processing and thereby lack generality, e.g., to implement user-de�ned feature

transformations.

In summary, all presented approaches are best suited to a particular area in practice. However,

none of them addresses all requirements we deem crucial to implement and execute end-to-

end machine learning pipelines for model training in an e�cient manner: despite their close

relationship, none of them examine preprocessing and ML holistically. Dedicated systems and

APIs do not incorporate data exchange and format requirements of subsequent systems in their

optimization decisions. This separation ultimately complicates the implementation of such

training pipelines and prevents holistic optimizations over both domains.

1.1 Problem Description

End-to-end pipelines ML pipelines blur the lines between data preprocessing and analytics.

Data sources and prerequisite transformations are determined by the particular feature set

required by the ML algorithm and often need to be changed ad hoc. Thus, end-to-end pipelines

interleave (i ) relational operators to join data sources, (ii ) UDFs for feature extraction and

vectorization, and (iii ) linear algebra operations for model training and evaluation.

Dynamic languages, such as Python and R, have gained much traction in recent years [IEE17,

Smi17] and are the tools of choice for prototyping such pipelines. On the one hand, this is due

to their language features: dynamic languages are easy to learn and require less boilerplate code

(e.g., no typing and straight forward I/O) compared to typed system languages, such as C++ and

Java. On the other hand, Python and R o�er popular libraries for dataset manipulations (e.g.,

Pandas [McK12] and dataframes [Lan13]) and machine learning (e.g., scikit-learn [PVG
+

11]

and matrices [Lan13]). On the downside, dynamic languages and their libraries operate in-

memory and cannot scale to large amounts of data out-of-the-box [PTN
+

18]. The transition

to systems that can cope with large amounts of data requires a system expert. Data scientists

are often unfamiliar with the systems’ native language and programming abstraction, which is

crucial for achieving reasonable performance [AKK
+

15].

To overcome this problem, databases and data�ow engines started to provide guest language
extensions for dynamic languages, which build on familiar library abstractions [Smi17, VYL

+
16].

While these approaches work well for prede�ned library functions and relational operators,

custom transformations speci�ed as UDFs in second-order functions, such as map and reduce,

are not handled ideally: (i ) UDFs are executed via inter-process communication (IPC) between

2



1.1 Problem Description

the system and an external guest language process. IPC introduces large performance overheads

compared to the native API; (ii ) source-to-source translation (STS) to the native API overcomes

the performance disadvantages of IPC. STS only supports a subset of the guest language and

thus, does not support general UDFs. Preprocessing in end-to-end ML pipelines for model

training relies on non-trivial functions to transform data into a suitable form for model training.

Examples are bag-of-words representations, such as n-grams [CT
+

94], word-embeddings, such

as word2vec [MCCD13], or conversion of categorical features by one-hot-encoding [HH10].

Systems should provide convenient APIs that hide system speci�cs and scale seamlessly to large
amounts of data. The APIs should also support a rich set of language features and complex UDFs
that do not degrade the systems’ performance.

Dedicated libraries for collection processing and ML in dynamic languages provide a high

abstraction level but are executed as is, without any further optimizations [GW14]. As described

above, language integrations on dedicated systems mitigate some of the shortcomings, e.g.,

out-of-core processing and optimizations. End-to-end pipelines are composed of relational

operators, UDFs, and linear algebra. Using multiple systems or libraries to express end-to-end

pipelines enforces staging of intermediate results [PTS
+

17]. Composing the whole pipeline

within a single system is challenging. Typically, systems tightly couple their domain-speci�c

language (DSL) and intermediate representation (IR) with their domain. RDBMSs enable the

declarative speci�cation of analytics over normalized data. They can integrate UDFs but their

IR is based on relational algebra, and they do not consider external UDFs during optimization.

Data�ow systems provide e�cient collection processing and rich support for UDFs. Their

type-based DSLs defer execution to build an operator graph as IR, which they use to parallelize

the execution of second-order functions. This IR enables speci�c physical optimizations, such as

choosing the implementation for join operators, but black-box UDFs prevent optimizations that

require schema information, e.g., operator reorder and pushdown. In contrast to RDBMSs, the

�exible schema-on-the-�y model of data�ow engines allows to retro�t ML algorithms as UDFs

over collections, but again, black-box UDF prevent optimizations. Dedicated systems for ML

optimize for e�cient execution of linear algebra but only provide limited support for collection

processing with UDFs, e.g., transform methods in SystemML
1

and Tensor�ow.
2

To enable holistic optimizations over end-to-end pipelines, an IR has to provide (i ) types for relational
and linear algebra, e.g., to reason about physical operator implementations, (ii ) white-box UDFs
to enable operator fusion and pushdown, and (iii ) control �ow to optimize over iterative algorithms.

Preprocessing, including de-normalization, data cleaning, and feature engineering, is commonly

executed on row-wise partitioned data. Linear algebra operations can also be expressed over

row-wise partitioned data [KNP15, CKNP17], but block-partitioned matrices allow to execute

linear algebra operations more e�ciently [GKP
+

11, KTF09, HBY13, LHKK79]. Thus, in the

1
https://apache.github.io/systemml/dml-language-reference.html#data-pre-processing-built-in-functions

2
https://www.tensor�ow.org/tfx/transform

3

https://apache.github.io/systemml/dml-language-reference.html#data-pre-processing-built-in-functions
https://www.tensorflow.org/tfx/transform


1.2 Contributions

context of end-to-end pipelines for model training, systems have to combine both partitioning

schemata and provide e�cient conversion methods between them.

An execution backend should not only provide dedicated operators for both schemata, but also
e�cient conversions between them. Context-aware operators at the intersection of relational and
linear algebra can prevent unnecessary staging and re-partitioning of intermediate results.

1.2 Contributions

End-to-end machine learning pipelines for model training change the requirements in all

layers of systems design. Diverse data formats, in-situ processing, and the strong connection

between preprocessing and model training introduce new challenges for the speci�cation,

optimization, and execution of such pipelines. In the following, we give an overview of our

research contributions to each particular area.

Scaling Dynamic

Languages

Optimizing End-to-End

Pipelines

Fused Operator

Pipelines

�

Dataflow Engine

Shared Runtime

 !"!

IRIR

Scaling Dynamic Languages – In Chapter 3, we introduce a Dataframe API in R, which is

translated to data�ow programs that run on Apache Flink. The process is transparent to the

user and combines a well-known API and language with e�cient distributed execution on

large scale data. In contrast to previous approaches, we focus on the e�cient execution of

arbitrary, complex UDFs where we achieve comparable performance to the systems native

API. The content described in this chapter was published in [KSB
+

18].

Optimizing ML Training Pipelines – In Chapter 4, we propose an embedded DSL for the

declarative speci�cation of end-to-end training pipelines based on domain-speci�c types for

collections and matrices. Our IR allows the system to examine the types for collections and

matrices, control- and data-�ow, and UDFs. Two additional abstractions on top of the IR

enable various optimizations: (i ) a functional view enables operator fusion and pushdown

across type boundaries; (ii ) A high-level view captures the semantics of both domains

and optimized data access and validation of ML algorithms. The content described in this

chapter was published in [KAKM16] and [KKS
+

19].

4



1.3 Publications

Fused Operator Pipelines – In Chapter 5, we propose fused operators at the intersection

of linear and relational algebra operators. In particular, we describe a distributed join

algorithm that produces block-partitioned matrices from normalized data. It uses an index-

join to create the required matrix partitioning information without materializing the join

result. Based on the partitioning information, our algorithm selects the most e�cient

block materialization strategy based on the shape of the normalized data. Thus, it avoids

unnecessary data shu�ing and is resistant to data skew. The content described in this

chapter was published in [KKS
+

17].
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1.4 Outline

The remainder of the thesis is structured as follows: in Chapter 2, we give an overview of

end-to-end ML pipelines for model training and explain the critical concepts and systems used

throughout the rest of the thesis. Chapters 3, 4, and 5 describe our main contributions to enable

e�cient speci�cation and execution of end-to-end machine learning pipelines. Each chapter

also contains the relevant related work, a speci�c conclusion, and directions for future work.

In Chapter 6, we revisit our contributions and discuss their limitations and drawbacks. Finally,

we provide broader directions for future work.
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2

Background

There are multiple options to implement end-to-end machine learning pipelines, from libraries

over general data�ow systems to dedicated systems. On the one hand, the amount of data that

needs to be processed determines this choice heavily. On the other hand, there is also a strong

correlation between the implementation of the DSL to specify pipelines and the opportunities

to optimize the system, which ultimately determines the e�ciency and amount of data that can

be processed. This chapter introduces the necessary preliminaries relevant to all chapters.

First, we give an introduction to end-to-end machine learning pipelines and describe the core

components, namely preprocessing, model training, and model evaluation in Section 2.1. Next, we

provide a timeline and overview of systems that have been proposed to implement such pipelines

in Section 2.2. Starting with the motivation, architecture, and design principles of distributed

data�ow systems, we introduce specialized systems that build and extend the concepts of

data�ow systems. Finally, we showcase di�erent approaches to implement DSLs and their

respective connection to the described systems in Section 2.3.

2.1 End-to-EndMachine Learning Pipelines forModel Training
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Figure 2.1: General schema of an end-to-end ML pipeline for model training.

End-to-end ML pipelines for model training combine data gathering and preparation, as well as

model training and validation. To execute such a pipeline, we need to combine relational and

linear algebra operators with UDFs and control �ow. Figure 2.1 depicts these core components

of a training pipeline. It combines multiple data items using relational operators, performs data
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cleaning and feature engineering with complex UDFs, and validates a trained ML model using

iterative algorithms and linear algebra operators. Often, di�erent feature sets and hyperparam-

eters are evaluated to derive the best-suited model for prediction. In the following, we discuss

these components in detail.

2.1.1 Preprocessing

The term data preprocessing describes the steps necessary to bring data in a suitable form for

the model training performed in later stages of the pipeline. RDBMSs are well suited for de-

normalization and aggregation queries over structured data that already resides in the system,

but (i ) they provide limited capabilities for in-situ processing, (ii ) they su�er from the restricted

expressiveness of SQL [PPR
+

09] in case of UDFs. To exemplify these limitations, we examine

the SQL query depicted in Listing 2.1, which combines two relations Products and Reviews

and returns only those tuples that exceed a speci�c price.

SELECT p.rating, p.category, p.price, r.review

FROM Products p, Reviews r

WHERE p.product_id == r.product_id and p.price >= 100

Listing 2.1: Example SQL query to extract certain product reviews.

(i ) In the context of end-to-end pipelines, one deals with diverse data sources and formats,

such as semi-structured click-logs (e.g., in comma-separated values (CSV) �les), unstructured

text (e.g., websites or comments), and dense and sparse matrix formats (e.g., the MatrixMarket

formats [BBR96] and libsvm [CL11]).

Ingesting such raw data formats in databases is usually done with ETL processes that perform

the translation to the relational format, which is optimized for the expected query pattern. In

exploratory data analysis pipelines, the executed data transformations and sometimes even the

set of data points (i.e., the features set) changes depending on the ML algorithm. The feature set

is a tuning parameter itself and static ETL processes delay model validation by data ingestion,

especially for large amounts of data [BYM
+

14]. In-situ processing of raw data �les, i.e., without

having to import the data into the system, overcomes this problem. Often RDBMS allow queries

over raw data but use it mostly for data ingestion. Distinguishing features of RDBMS, such as

e�cient indexing and statistics, are thereby unavailable [ABB
+

12].

(ii ) Besides in-situ processing, preprocessing adds another new aspect to end-to-end pipelines.

The so-called feature transformations bring the data in a suitable form for the ML algorithms.

The values that are returned by our example SQL query are not yet in a suitable form. Most ML

algorithms require normalized, numerical features.

Thus, we require algorithms to convert categorical features [SMYT14] to numerical features

(cf. Listing 2.1, the category attribute), normalize [Gru15] numerical features (cf. Listing 2.1,

the price attribute), and bring text into vectorized form [CT
+

94] (cf. Listing 2.1, the review

attribute). Analysts have to implement such complex algorithms as external UDFs in RDBMSs.

In contrast, UDF-centric data�ow engines and dataframe libraries provide APIs and UDF

support in GPLs, as discussed in Section 2.2. A common format to describe feature transfor-

mations are pipelines of fit and transform methods, adopted by scikit-learn [PVG
+

11] and

8
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Figure 2.2: Fit and transform step for one-hot-encoding.

MLlib [MBY
+

16].
1

In the initial fit phase, the necessary intermediate data is gathered, e.g.,

aggregates and statistics of the values, before the actual feature transformation is applied based

on the gathered data in the transform phase. For example, one-hot encoding [HH10] creates a

sparse vector representation from categorical values, as depicted in Figure 2.2. In the �t phase,

the algorithm builds a dictionary that maps each distinct value in a column c to a sequential

index. In the transform phase, one-hot-encoding replaces the categorical values with sparse

vectors of length |c | that have a 1 at the position corresponding to the index of the category and

a 0 elsewhere. It is important to note that the dictionary is not only required to transform the

features for training, but also to transform the test data for model validation. Another common

transformation is feature scaling. It scales numerical features to a speci�c range, e.g., normal-
ization [Gru15] rescales the values to have zero mean and standard deviation of one – as in a

standard normal distribution. This is very important for ML algorithms that use gradient-based

methods to achieve fast convergence, such as logistic regression [HJLS13] and support-vector

machines (SVMs) [SS02].

2.1.2 Model Training

After the data is in a suitable form, a particular ML algorithm is trained based on the required use

case. The community distinguishes between supervised and unsupervised algorithms depending

on the data they use for training, as depicted in Figure 2.3.

Supervised Learning. Algorithms that require annotated or labeled data for training (i.e., data

points for which the correct answer is known) are guided in their learning process. For example,

to predict the cost of houses based on their features, e.g., size and neighborhood, a supervised

learning algorithm is trained with a dataset of houses and their corresponding prices. Within the

class of supervised learning, we can distinguish between regression and classi�cation algorithms.

Regression is used to predict continuous outputs, such as the previously mentioned cost of

a house. A widespread example is linear regression. In practice, Data Scientists often train

supervised learning algorithms using iterative optimization algorithms. Gradient-based methods

are prevalent, as they are easy to implement and computationally not complex.

They often add a regularization term to their loss function. Regularization adjusts the impact of

certain features to avoid over�tting towards the training data [MRT18]. Two important methods

are the L1 (e.g., in lasso regression) and L2 norm (e.g., in ridge regression).

Analysts use classi�cation to predict the particular instance of a �nite set of labels or classes a

data point belongs to. The set of possible labels can be two (e.g., to predict whether an email is

1
https://scikit-learn.org/stable/data_transforms.html
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Figure 2.3: Classi�cation of ML algorithms.

or is not spam). In which case, the problem is called binary classi�cation. Logistic regression is a

well-known algorithm for binary classi�cation. Even though there are more evolved algorithms,

data scientists often use logistic regression in practice due to its simplicity and convex cost

function. If we expand the set of possible labels to more than two, e.g., to detect characters, we

call the problem multi-class classi�cation. Common methods to solve multi-class classi�cation

include multinomial logistic regression, decision trees, ensemble learning such as random forest,

and deep learning based approaches [MRT18]. It is also possible to apply binary classi�cation

algorithms by using the one-vs-all method [Aly05].

Unsupervised Learning. Algorithms that detect patterns or structure without guidance by a

pre-annotated dataset for training are called unsupervised learning algorithms. The nowadays

widely discussed idea of general arti�cial intelligence would be an instance of unsupervised learn-

ing in the most general case. Apart from this somewhat hypothetical application, analysts often

use unsupervised learning in the two bound problem spaces of clustering and dimensionality
reduction. Cluster algorithms assign data points to clusters without any prior structural knowl-

edge. A typical example is the k-means algorithm [JD88], which assigns points to k centroids

based on a distance metric. After selecting random data points as initial centroids, the algorithm

iteratively recomputes the centroids and the data points that belong to them. Dimensionality

reduction algorithms are used to reduce the number of features in a dataset, e.g., to reduce the

feature space and detect dependencies with principal component analysis (PCA) [Jac05].

2.1.3 Model Evaluation

Model evaluation is critical to determine whether an ML model is capable of making reliable

predictions on unseen data. There is a multitude of options to tune for, including the ML

algorithm itself, its hyperparameters, and the set of features used to train it. For example, let’s

take a regression model trained by linear regression. We have several options to choose from:

�rstly, we have to decide on a particular regularization, e.g., lasso or ridge. Secondly, we have

to pick hyperparameters for the algorithm, e.g., the regularization parameter λ or the intercept.

Finally, we have to decide on a set of features to use, e.g., by feature selection with PCA.

A popular method to validate a particular combination of hyperparameters and features for

supervised learning algorithms, such as the described linear regression, is k-fold cross-validation
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Figure 2.4: Schema of 3-fold cross-validation. The �gure is based on [Ras18].

(CV) [Koh95]. Figure 2.4 depicts its general idea. The algorithm divides the dataset and the

corresponding labels horizontally into k disjoint splits. Then, it executes the algorithm under

evaluation k times. In each of the k iterations, CV uses another single split as the test set, and

the remaining k −1 splits as the training set. The upper part of Figure 2.4 depicts this process for

k = 3. In each iteration, CV trains a model based on the current training set and hyperparameters

(cf. Figure 2.4, bottom left). After training, CV validates the model based on the test set. These

predictions can now be compared with the actual labels from the test split to calculate a score
for the current iteration (cf. Figure 2.4, bottom right). Standard measures for classi�cation are

precision, recall, and the F1 score, while the mean absolute error and the mean squared error are

common for regression analysis [Mur12]. CV calculates the overall score as average overall

scores of a model for the di�erent training and test set combinations. Based on the overall

score, di�erent hyperparameters can be tested to perform a so-called hyperparameter-tuning.

In the most basic form, data scientists perform a grid search over the space de�ned by the set

of hyperparameters. More sophisticated methods use pruning techniques and heuristics, e.g.,

Bayesian optimization and multi-armed bandits to reduce the search space [BB12].
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2.2 Distributed Data�ow Systems

Even though research on parallel RDBMSs [DGG
+

86, DG92] was already adopted commercially

in the 1980s [DS08], they were not considered to be well suited for the demands of web-scale

data processing [Bre05]. In addition to the strong ACID guarantees, parallel databases provide

consistency (C) and high availability (A) in terms of the CAP-Theorem for distributed data

stores. In scenarios where mostly read-only queries are executed, these strong consistency

guarantees, i.e., commits are atomic across the entire distributed system, have been dropped in

favor of partition tolerance.

For example, the novel way to calculate the page rank [PBMW99] of web pages introduced

by Google uses the link structure of web pages. It required fast sequential read access on

unstructured data to build what is essentially an inverted index over the web pages crawled.

This approach does not �t well in the architecture of traditional data management systems,

which require structured data and therefore in this scenario, costly data ingestion. This mismatch

ultimately led to the development of the Google File System (GFS) [GGL03] and MapReduce

(MR) [DG04] – distributed storage and processing for shared-nothing clusters of thousands of

nodes with commodity hardware. Since then, these concepts have been adopted in open-source

implementations and inspired the development of several new systems for large scale data.

2.2.1 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) [B
+

08] is an open-source implementation of

the GFS and part of Apache Hadoop, a collection of open-source software.
2

It is designed to

store large scale data on large clusters of commodity hardware. This results in the following

assumptions and goals: (i) the system is highly fault-tolerant. Due to commodity hardware, it

treats hardware failures as the norm, not as an exception; (ii) applications are expected to access

data in a streaming fashion – the system does not support random-access. Thus, it provides high

throughput but no low latency; (iii) applications are expected to have a write once – read-many
access pattern to the data stored in HDFS. Modi�cations to existing data are not possible.

HDFS implements a driver-worker architecture for shared-nothing clusters. A dedicated driver

node, called NameNode, is responsible for the �le system namespace and manages opening,

closing, and renaming of �les and directories. The NameNode has a transaction log, called

EditLog, that persistently records every change to the �le system metadata, e.g., �le creation

or renaming. The �le system namespace is persisted in a �le called FSImage. The worker

nodes, called DataNodes, are responsible for storing the actual data in �xed-size blocks (64MB

per default). HDFS uses these blocks as the basis for replication and distributes them among

di�erent DataNodes. With the default replication factor of three, HDFS replicates a block on a

di�erent physical node in the same rack and on a node in a di�erent rack to handle failures or

network outages of full racks. Blocking and replication enable concurrent read access. While

the NameNode validates �le access and manages user rights, the DataNodes handle all read and

write operations on the data blocks. So, even though HDFS tolerates network partitioning for

2
https://hadoop.apache.org/
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the DataNodes, the NameNode must be reachable in order to acquire the block locations upon a

read request and thus, is the single point of failure in the system.
3

HDFS prioritizes local access

to blocks, but the actual access method (e.g., network or disk) is transparent to the user.

2.2.2 Hadoop MapReduce

Next to HDFS, Apache Hadoop also provides an open-source implementation of MapReduce. It

is a parallel data�ow engine with a static execution model that processes UDFs based on the

semantics provided by the second-order functions map and reduce. MapReduce has a shared-

nothing architecture and facilitates data-parallel execution by reading data blocks in parallel

from a distributed �le system (e.g., HDFS). Therefore, its worker nodes typically run the same

nodes as HDFS to bene�t from local data access.

MR represents data as key-value pairs (k,v ), where k and v can be arbitrary types. For instance,

it reads a text document as (Inteдer , Strinд) pairs, where the key represents the o�set and the

value the corresponding line in the document. The semantics of the map second-order function

ensure that the UDF is executed independently on each key-value pair of the input and emits 0,

1 or n key-value pairs per input:map : (k1,v1) → list (k2,v2).
4

Thus, the number of key-value

pairs de�nes the theoretical upper bound for the degree-of-parallelism (DOP). In practice, MR

consumes all key-value pairs of a block in a single task and thus worker node.

After the map phase, MR shu�es the output: it partitions the key-value pairs by their keys (MR

uses hash-partitioning by default). The tasks that execute the reduce function fetch all key-value

pairs for their particular key. This pull-based mechanism ensures fault-tolerance, a new task

can process a partition if the original task fails. The user-de�ned aggregate function (UDAF) of

the reduce function receives a key-value pair (k2, list (v2)) with all values that share the same

key and returns a list of aggregated values: reduce : (k2, list (v2)) → list (v3). The number of

distinct keys k2 emitted by the map functions thereby de�nes the theoretical maximum for the

degree of parallelism.

The programming model of MR enables distributed execution without writing parallel code. The

user provides sequential implementations for map and reduce. The framework takes care of the

distributed execution. The expressiveness of the high-level general-purpose programming lan-

guage for the UDFs eases implementation of complex analytical queries, e.g., pattern-matching

and document clustering. Thus, Hadoop represents an open-source analysis system for user-

de�ned function-centric tasks on schema-less data. MR has been the subject of many discussions.

Critics doubt the novelty and usefulness of the proposed model, and they described ML as a

major step backwards [DS08]. They use (parallel) RDBMS for comparison and complain about

the absence of indexes, the missing declarative programming model, and the schema-less design

of MR. Despite all the criticism, MR became immensely popular and initiated the development

of a new generation of data�ow systems that address its shortcomings.

3
Since version 3.x, NameNodes can be replicated to eliminate the single point of failure.

4
Actually, these are the semantics of a flatmap function, but MR does not provide a dedicated map function,

which has exactly one output kv-pair per input kv-pair.
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2.2.3 Beyond MapReduce

As the �eld of applications expanded, the shortcomings of MRs became more prevalent. Its

static computation model is limited to a map followed by an reduce function, which requires

multiple, successive MR jobs for complex analytics. The absence of relational operators forces

users to hard-code them as UDFs (e.g., joins) and, therefore, prevents optimizations. Iterative

algorithms, commonly found in ML and graph algorithms, have to stage intermediate data in

the distributed �le system.

These limitations led to the development of data�ow systems with support for arbitrary, directed

acyclic graph (DAG) structured operator graphs. Apache Flink [CKE
+

15, ABE
+

14] extends the

available operators in MR by relational operators, e.g., join and filter. Flink applies established

database optimizations in the context of data�ow systems, e.g., physical operator selection

for joins. Flink’s API is based on the DataSet abstract data type that represents a distributed

collection. A dedicated operator for iterations avoids re-deployment of iterative programs

and e�cient caching of intermediate results [ETKM12]. Apache Spark [ZCF
+

10] provides a

�uent API to express transformations on distributed collections, called resilient distributed

dataset (RDD) and tracks data provenance to compute iterative algorithms in memory.

In addition to the evolution of the execution backends of data�ow engines, their programming

abstractions evolved with regards to the application domains. The API of Spark mimics collection

transformations in functional languages and shaped the look and feel of today’s data�ow engines

for general processing. Flinks API o�ers a special tuple element type (with �xed arity and

typing of the �elds), together with an extended set of operators. This enables a more declarative

speci�cation of the execution pipelines, e.g., explicit join operator vs. user-de�ned join logic in

MR. Spark also added a typed DataSet API, which introduces a schema for its elements. The

DataFrame represents a special DataSet with named columns as elements. Its design closely

follows the API of the Pandas library from Python. The demand for declarative, relational-

like DSLs with �rst-class support for UDFs on large-scale data initiated the development of

specialized APIs, systems, and �le formats. Pig Latin [ORS
+

08], Hive [TSJ
+

09], Impala [KBB
+

15],

and SparkSQL [AXL
+

15] extend data�ow systems with SQL-like APIs to query data maintained

by system catalogs. Specialized �le-formats for semi-structured data, such as RCFile [HLH
+

11]

and Parquet [Voh16], store nested data in columnar formats organized in row groups and enable

�lter-pushdown and indexing. Systems, such as Pregel [MAB
+

10] and GraphLab [LGK
+

12], are

used to explore and analyze data structured in graphs, i.e., follower graphs in web-applications.

Their vertex-centric APIs provide vertices and edges as �rst-class constructs to specify graph

analysis and exploration algorithms, e.g., connected components and node rankings. The

research and open-source community proposed several libraries to ease the development of

machine learning algorithms on data�ow systems [MBY
+

16, SVK
+

17]. These libraries provide

ML algorithm implementations on top of data�ow systems and relieve users from the error-

prone task of expressing ML algorithms as transformations over collections. SystemML [BDE
+

16,

GKP
+

11] provides an R-like DSL to specify ML algorithms as linear algebra over matrices and

vectors. SystemML optimizes programs logically and physically before it executes them either

on a single node, distributed on a data�ow engine or in a hybrid execution mode. The execution
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backend depends on the size of the input and intermediates, as well as the sparsity of the data.

Even though modern, general-purpose data�ow systems, such as Flink and Spark, support

iterative algorithms, they follow a bulk synchronous parallel (BSP) execution model to ensure

consistent state: a new iteration step is only started when all parallel instances of the previous

iteration step are �nished. Therefore, the slowest parallel working instance determines the over-

all execution time of an iteration step (or epoch). This synchronization barrier after each epoch

leads to degradation of the execution time in case of stragglers (i.e., worker instances that execute

signi�cantly slower than an average worker, e.g., due to skewed data). GraphLab [LGK
+

12], a

framework for distributed graph processing, alleviates these shortcomings by an asynchronous

execution model, but lacks elasticity and �ne-grained fault-tolerance. Hogwild! [RRWN11] over-

comes this problem by introducing asynchronous processing in the particular case of stochastic

gradient descent, and the authors prove that the algorithm still converges. The parameter server

architecture [LZY
+

13] generalizes asynchronous computation in driver-worker architectures for

e�cient distributed ML algorithms. Worker nodes own certain parts of the data, while the driver

nodes maintain the global state, e.g., a machine learning model. Worker nodes communicate

with the driver nodes asynchronously to receive the latest, globally aggregated state, i.e., the

model. SystemML implements the parameter servers model on top of Spark (with BSP and

asynchronous parallel execution model) for mini-batch ML algorithms. Mxnet [CLL
+

15] and

TensorFlow [ABC
+

16] are the latest evolution towards e�cient large-scale machine learning

with a focus on deep neural networks. The previously described parameter server inspired

their computation model, which enables updates to shared models and parameters. Their APIs

combine state and operator de�nition in an operator graph, which they use to execute on CPU,

GPU, and specialized devices, such as Tensor Processing Units (TPUs) [JYP
+

17].

2.3 Language Implementation Approaches

The implementation approach of DSLs for libraries and systems heavily in�uences the range of

applicable optimizations. Next to standalone implementations, programmers often embedded

DSLs as guest language on top of an already existing host language. Thereby, the existing

infrastructure of the host language, such as its compiler infrastructure, can be leveraged, which

reduces the implementation e�ort and enables users to take advantage of existing developer

tools of the host language, e.g., integrated development environments (IDEs). The embedding

approach directly determines the expressiveness and optimization capabilities of the DSL.

2.3.1 Shallowly-Embedded Libraries

Many general-purpose programming languages provide dedicated libraries for di�erent domains,

such as collection processing and ML. In particular scripting languages such as Python and R,

provide popular libraries for data processing. Prominent examples are Python’s Pandas [McK12]

and scikit-learn [PVG
+

11]. These libraries are embedded shallowly [GW14] in the host language

(e.g., Python) and executed as is, i.e., without further optimizations except for those hard-coded

in the algorithms or performed by the GPL interpreter/compiler.
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2.3.2 Type-Based DSLs

Type-based DSLs use operations de�ned on a type (e.g., the RDD in Spark) to construct an

operation graph, rather than directly executing the operations. Speci�c operations trigger the

evaluation of the built operator graph, which then can be analyzed and optimized before the

actual execution. Examples are the APIs of data�ow engines, such as Spark [ZCF
+

10] and

Flink [ABE
+

14], as well as ML systems, such as MXNet [CLL
+

15] and Tensor�ow [ABC
+

16].

Type-based DSLs enable several optimizations on the operator graph, which is treated as IR for

optimization. For example, logical join operators can be replaced by the best-suited physical

implementation, e.g., hash or sort-merge joins, and speci�c operators can be chained together.

However, the IR only re�ects the operators de�ned on the type. Guest language UDFs speci�ed

in second-order functions, such as map and reduce, are generally treated as black-boxes.
5

Black-

box UDFs prevent operator reordering, such as �lter pushdown. The system can not determine

whether attributes are modi�ed in a UDF and therefore not ensure correct semantics for operator

reorders. To provide more semantics to the optimizer, type-based DSLs often allow developers

to specify user-de�ned logic in a restricted subset of the host language, e.g., via strings as

ds.filter("a < 10") in Flink. Such a restricted language for UDFs enables optimizations, such

as �lter-pushdown, but limits the expressiveness to the de�ned language subset and prevents

detection of type errors and typos at compile time.

Furthermore, control �ow constructs, such as loop constructs and if statements, are not

visible in the IR. Thus, the optimizer cannot reason about control �ow, which prevents certain

optimizations, such as caching, compression, and partitioning of loop invariant data, because

each iteration de facto builds a new operator graph. Specialized loop constructs address this

problem partially [YAB
+

18, ETKM12], as the DSL can represent them in the operator graph.

They still hinder linguistic reuse [RAM
+

12] of the language’s native control �ow.

2.3.3 Quotation-Based DSLs

While shallow-embedded and type-based DSL can be implemented on any GPL, quotation-based

DSLs [NLSW16] rely on meta programming capabilities of the guest language [SBO13, TS97] to

access the Abstract Syntax Tree (AST) that represents a program. Examples for quotation-based

DSLs are LINQ [Mei11], LMS [RO10], and Squid [PVSK18].

Quotation allows reusing the syntax and type system of the host language and gives access to

the program’s AST during compilation and runtime. In contrast to the previously presented

approaches, quotation gives access to the entire AST of the GPL, including types, UDFs, and

control �ow. The AST can then be altered and optimized before execution.

As the AST is too detailed and ine�cient for domain-speci�c optimizations, DSLs typically

provide an IR with a higher abstraction level that re�ects the domain and types of the user-facing

API. Such an IR enables optimizations based on domain-knowledge while providing control �ow

and white-box UDFs. Thus, quotation-based DSLs overcome the limitations of the previously

presented approaches, but require a careful design of domain-speci�c IRs [AKM19].

5
A notable exception is the detection of read-write sets at the byte-code level [HPS

+
12].
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2.3.4 Standalone DSLs

Standalone DSLs, such as SQL and SystemML’s DML [GKP
+

11] overcome the problems stated

above. They provide a full-�edged compiler infrastructure, and the optimizer can re�ect all

language features. However, a programmer has to develop this infrastructure (together with

libraries and development tools) from scratch, and support for complex UDFs written in GPLs

is hard to achieve [PPR
+

09]. Another major problem is user acceptance: it is hard to convince

programmers to learn and adapt to a new language. Often, standalone DSLs try to ease the

transition by staying close to the syntax of an existing language, e.g., R in case of SystemML.
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3

Scaling Dynamic Languages

Extracting value from data is a very important, but complex task. Typically, data analysts rely

on complex execution pipelines composed of several stages, (e.g., data cleansing, transformation,

and preparation) that need to be executed before the actual analysis or machine learning

algorithm can be applied [ZKR16]. Often, these pipelines are repeatedly re�ned to obtain the

best-suited subset of data for prediction and analysis. Therefore, programming languages with

rich support for data manipulation and statistics (provided as library functions), such as R and

Python, have become increasingly popular [IEE17]. More recently, such languages also started

receiving increased attention in other domains such as enterprise software ecosystems [Smi17].

While these languages are convenient for non-expert programmers, they are typically designed

for single-machine and in-memory usage. Thus, they run out of memory if data exceeds the

available capacity and cannot scale-out without signi�cant implementation e�orts.

In contrast, parallel data�ow engines, such as Apache Flink [ABE
+

14] and Spark [ZCF
+

10], are

able to handle large amounts of data. However, data scientists are often unfamiliar with the

systems’ native language and programming abstraction, which is crucial to achieve good perfor-

mance [AKK
+

15]. To overcome this barrier, data�ow engines provide additional programming

interfaces in guest languages, such as R and Python, which build on familiar abstractions, e.g.,

dataframes. Current state-of-the-art solutions integrate guest languages in two fundamental

ways. They either use inter-process communication (IPC) or source-to-source translation (STS).

Inter-process communication: In this approach, the guest language runtime runs in a separate

process. Input and output data has to be exchanged via IPC between the process running the

data�ow engine and the process running the guest language. IPC supports any valid code in

the guest language but can incur major performance overhead in the form of data exchange
between the processes and serialization to a format readable by both languages.

Source-to-source translation: In this approach, guest language code is translated to host language

code, e.g., to the data�ows’ native API. While STS achieves competitive performance, as the

translation happens before program execution, it is limited to a restricted set of functions and

library calls. Support for a rich set of language features would require a full-�edged compiler.

The impact on the execution time for both methods is demonstrated in Figure 3.1, by comparing

SparkR [VYL
+

16], which supports STS and IPC. In this case, the execution of a simple UDF
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Figure 3.1: R function call overhead compared to the native execution on the data�ow system.

STS and IPC are compared to Spark. Our approach, called ScootR, is compared to Flink.

via IPC is more than 100× slower compared to STS.
1

Thus, current approaches either yield

sub-optimal performance or restrict the set of usable guest language features.

Research Contribution. In this chapter, we introduce ScootR, a novel language integration

approach based on an e�cient IR for both the guest and the host language.
2

We focus on the

execution of UDF heavy pipelines – the bottleneck in current state-of-the-art solutions – and

provide a dataframe-centric R API for transformation, aggregation, and application of UDFs

with minimal overhead. Using a common IR, ScootR avoids the data exchange and serialization

overheads introduced by IPC. ScootR extends on STS by using the existing compiler infras-

tructure and back-end of the host language to support a rich set of language features and

pre-compiled modules. ScootR is based on a tight integration of the fastR [SWHJ16] language

runtime with the Java Virtual Machine (JVM) responsible for executing Flink data processing

pipelines. fastR is a GNU-R compatible R language runtime based on the Tru�e [WWS
+

12]

language implementation framework and the Graal dynamic compiler [WWS
+

12, WWW
+

13]

for the JVM. Thus, ScootR e�ciently executes a rich set of R UDFs within the same runtime

and completely avoids IPC. By harnessing Tru�e’s e�cient language interoperability system,

ScootR accesses Flink data types directly inside the R UDFs, avoiding data materialization and

unnecessary data copying due to marshalling. Our experiments show that ScootR achieves

comparable performance to STS and outperforms IPC based approaches by up to an order

of magnitude while supporting a rich set of language features. Analytics pipelines written

in ScootR can either be executed on a single local machine, utilizing multi-threaded execu-

tion or distributed in a cluster, using both intra-node multi-threading and inter-node parallelism.

In summary, we make the following contributions:

• We present a new integration technique that enables seamless, low-overhead, interoper-

ability between the fastR R language runtime and the Flink data�ow engine. Our approach

avoids the overhead of IPC and serialization present in state-of-the-art solutions.

• We describe how we enable e�cient exchange and access of data structures between fastR

and Flink with minimal overhead and why it is necessary to achieve good performance.

• We compare our implementation in an experimental study against the current state-of-

the-art, as well as native execution in R and fastR.

1
The full benchmark is discussed in detail in Section 3.3.2.

2
This chapter is based on [KSB

+
18].
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Figure 3.2: Data bu�er �ow in Apache Flink.

3.1 Background

In this section, we provide the necessary background to the systems used in ScootR. First, we

describe the language interoperability features of Tru�e that we use to achieve e�cient data

exchange between R and the Flink execution engine. Second, we explain the available options

for language integration in detail.

3.1.1 Graal, Tru�le, and FastR

Tru�e [WWS
+

12] is a language implementation framework. It is used to develop high-perfor-

mance language runtimes by means of self-optimizing AST interpreters. These ASTs collect

pro�ling information at runtime and specialize their structure accordingly. Examples for such

specializations include elision of unnecessary type conversions as well as the removal of com-

plex method dispatch logic. Tru�e provides interoperability features to e�ciently exchange

data and access functions between languages build on top of it [GSS
+

15].

Graal [WWW
+

13] is a dynamic compiler that has special knowledge of Tru�e ASTs and can

produce highly-optimized machine code by means of (automatic) partial evaluation: as soon

as a Tru�e AST self-optimizes itself by reaching a stable state, Graal assumes its structure to

be constant and generates machine code for it. De-optimizations and speculation failures are

handled automatically by Graal by transferring execution �ow back to the AST interpreter.

fastR is a high-performance GNU-R compatible R language runtime implemented using Tru�e

that relies on the Graal dynamic compiler for runtime optimization. It is open-source, and is

available as one of the default languages of the GraalVM multi-language runtime [GSS
+

15,

WWW
+

13]. GraalVM can execute Java applications and Tru�e-based language runtimes such

as JavaScript, Ruby, Python, and LLVM on top of the HotSpot JVM [PVC01].

3.1.2 Guest Language Integration

In this section, we discuss di�erent approaches to call R code from within Java. While we focus

on integrating R in a data�ow engine, the presented approaches apply to other programming

languages as well. In the following examples, we concentrate on the task of evaluating a UDF,
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Figure 3.3: IPC between Java and an external R process.

written in R, within a worker node of a data�ow engine, e.g., Apache Flink or Apache Spark.

Figure 3.2 depicts the general �ow of a data bu�er in Flink, which contains the elements to

process. UDFs are executed in Tasks of the Flink TaskManager, which resides on a worker node.

Binary data bu�ers arrive over the network in the operation system memory space. Java’s

network layer copies the binary data bu�er to the JVM memory space (i.e., the managed JVM

heap). The binary data has to be de-serialized to plain old java objects (POJOs) before it is fed

to the Task that executes the UDF. Flink sends the output in the very same sequence over the

network, only in reversed order. In the following descriptions, we focus on the data exchange

between Java and R, and neglect the process of data de-serialization.

Inter-Process Communication

In the IPC approach, the worker node sends and receives elements from an R process, which

evaluates the function within the native R interpreter as depicted in Figure 3.3. The numbers

show the data �ow of the tuples during execution. The approach introduces three drawbacks:

(i ) The data in Java has to be serialized to a format suitable for exchange and deserialization in

R. (ii ) Additional communication overhead is introduced, as data is exchanged either through a

(local) socket or a (memory-mapped) �le, shared between the two communicating processes.

(iii ) In resource restricted environments, Java and R have to compete for the available memory,

due to their isolated address spaces. Despite the presented drawbacks, IPC is used by several

systems [YZP14, GHR
+

12, DSB
+

10], as it only requires basic I/O facilities.

Source-to-Source Translation

STS tackles the problem from a completely di�erent direction as the previously presented

approach based on IPC. Instead of exchanging data between the processes, the execution of R

code is avoided altogether by executing a (semantically-equivalent) translation of the UDF to a

programming language natively supported by the data�ow engine.

As an example, Figure 3.4 shows how the R source code of a user-de�ned function is translated

to equivalent Java source code, before the actual execution of the data�ow program takes place.

Once the translation is done, there is no interaction with R during program execution and STS

translation o�ers native performance. STS is often restricted to a domain-speci�c subset of the

guest language (e.g., library functions that can be directly translated to the target language)

to reduce the implementation e�ort. Extensive support of guest language features essentially

requires a full-�edged compiler and yield a huge e�ort.
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Figure 3.4: STS of R to Java, followed by the execution in the native data�ow API.

Hybrid Approach

The R integration in Apache Spark [ZCF
+

10], called SparkR [VYL
+

16], builds on a hybrid

approach, combining STS and IPC. R language constructs that can be directly mapped to Spark’s

native dataframe API are source-to-source translated, as described in the previous Section. These

constructs are limited to a subset of �lter predicates (e.g., >, <, =, etc.), column manipulations

and transformations (e.g., arithmetic operators, string manipulations, etc.), and library function

calls. For instance, in the following example, an R filter function selects all tuples in the

dataframe df that have the value "english" in their language column:

df <- filter(df, df$language == "english")

The R filter function can be translated to the following filter operator in Spark’s native

Scala dataframe API, including the user-de�ned predicate:

val df = df.filter($"language" === "english")

To run arbitrary UDFs, the user can specify functions on partitions of the dataframe, analogous

to the apply function in R, and grouped data for aggregation. Here, STS cannot be used anymore

and SparkR falls back to the previously presented approach based on IPC (cf. Section 3.1.2).

Thus, SparkR combines both presented approaches. It achieves near native performance for a

subset of operators via STS, but falls back to IPC in case of general user-de�ned functions.

Common Intermediate Representation

To avoid IPC while supporting a rich set of language features, one can de�ne a common IR for

both languages. The IR is then interpreted and/or just-in-time (JIT) compiled on a common

runtime or compiled to machine code, as depicted in Figure 3.5. Implementing such a compiler

is a big e�ort. Translating high-level languages to an existing compiler infrastructure reduces

this implementation e�ort, increases portability, and facilitates the reuse of compiler back-end

components, e.g., to generate e�cient machine code through a Virtual Machine (VM). Prominent

examples are the Java Virtual Machine, which uses byte code as IR, and LLVM [LA04], which

uses, e.g., bitcode.

As described in Section 3.1.1, the GraalVM provides Tru�e, a language implementation frame-

work. Languages implemented in Tru�e are automatically optimized and JIT compiled by the

Graal compiler. GraalVM runs on the HopSpot runtime and therefore, can run and access Java

seamlessly. In the next section, we describe how ScootR uses GraalVM to provide e�cient

execution of R code within the worker nodes of data�ow systems.
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Figure 3.5: A common runtime for the intermediate representations of both languages.

3.2 ScootR

In this section, we describe our approach to execute R code in Apache Flink. We �rst provide

an overview of all the components in general, before we discuss each step in detail. The focus

of Lara is the e�cient execution of UDFs, as they introduce a big performance overhead in

currently available solutions (cf. Section 3.1.2).

3.2.1 Overview

We base our approach on fastR, the R implementation on top of the GraalVM. As introduced

in Section 3.1.1, GraalVM is a language execution runtime capable of running multiple lan-

guages – including R and Java – in the same virtual machine instance. GraalVM enables seamless

interoperability between all of its supported languages and provides e�cient language interop-
erability [GSS

+
15] capabilities. ScootR builds on such capabilities to expose Flink’s internal data

structures to the fastR engine. We distinguish between two main phases: the plan generation
phase and the plan execution phase. Figure 3.6 details the components of each phase.

Plan Generation Phase

GraalVM

Job
Manager Java            R

Task Manager

Plan Execution Phase

R

UDF Support

Runtime Type Analysis

Data Access & Exchange

fastR

Type & Function Mapping

Dataframes to Datasets

R Functions to Operators

A

B

Figure 3.6: The two main phases in ScootR.

In the plan generation phase, described in Section 3.2.2, ScootR builds a Flink operator plan

from R source code, which is later executed by the data�ow engine. Similar to Flink’s native

APIs, the dataframe API of ScootR is evaluated lazily. Calls to the API trigger no execution, but

build a Flink operator graph until a materialization point – a sink in the graph – is reached.

Section 3.2.2 A explains the necessary steps for the Type and Function Mapping. ScootR de�nes

the correct mapping of R dataframes to Flink’s DataSet abstraction. Based on this mapping, R

functions are translated to their corresponding Flink operators as de�ned by ScootR’s function

implementations in fastR. We detail the necessary steps to enable e�cient execution of UDFs
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in Section 3.2.2 B (UDF Support). First, we show how ScootR determines the result types

of UDFs via runtime type analysis. Second, we describe how ScootR achieves e�cient data

exchange between Java and R and why it is necessary to provide access to Flink’s underlying

data structures.

After the operator plan is created, it is deployed on the Flink cluster and executed during the

plan execution phase described in Section 3.2.3. R UDFs are executed in parallel by each worker

node. ScootR’s integration with the GraalVM ensures that each UDF is automatically optimized

by the Graal JIT compiler.

Running Example. Listing 3.1 gives an example of an R application, which makes use of

the ScootR dataframe API. We use it as running example throughout the rest of this Section.

In Line 1 – 2, we specify the Flink cluster we execute on and its DOP. In Line 4 – 8, we read an

input �le and convert it to a dataframe. Next, we project the flight_id and miles columns

(cf. Line 10) and create a new column km by applying the UDF in Line 11. Finally, we retrieve

the �rst �ve entries of the dataframe in Line 12.

1 flink.init(host, port)

2 flink.parallelism(dop)

3

4 df <- flink.readdf(

5 "hdfs://some/input/file",

6 list("flight_id", "distance", ...),

7 list("integer", "integer", ...)

8 )

9

10 df <- flink.select(df, flight_id, miles)

11 df$km <- df$miles * 1.6

12 df$head(5)

Listing 3.1: Code snippet for the running example in ScootR.

3.2.2 Plan Generation Phase

A : Mapping R Data Frames to Flink DataSets. Dataframes are a popular abstraction to

represent tabular data in languages such as Python and R and used in many libraries. As ScootR’s

API is built around dataframes, it is crucial to provide a valid and e�cient mapping from an R

dataframe to a data type suitable for processing in Flink. While Flink can work with arbitrary

Java data types, it provides special facilities for instances of its TupleN type, where N speci�es

the tuple’s �xed arity. The �elds of a tuple are typed and can be compared to a row in a database

table or an entry in a dataframe. Thus, we can de�ne a mapping from an R dataframe df with N

columns and types t1, t2, ..., tN to a Flink dataset ds with element type TupleN<t1, t2, ..., tN >. As

individual dataframe columns can be accessed either by index or name, we maintain a mapping

of the dataframe column names to their respective tuple indexes in our dataframe wrapper class

for the dataset.
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A : De�ning R Functions for Flink Operators. During lazy evaluation, an R program using

ScootR’s API is translated to a Flink operator plan. To generate such a plan from the R source

code, ScootR introduces new Tru�e AST nodes (called RBuiltinNode) that correspond to new

built-in functions available to the R user. Some important functions in ScootR are depicted

in Table 3.1. Listing 3.2 shows a snippet for the flink.select built-in function used in Line 10 of

our running example in Listing 3.1. The speci�cation of Tru�e nodes relies on annotations, while

the actual code for the AST nodes is generated during compilation by the Tru�e framework.

The flink.select built-in expects a dataframe df and a variable length argument (indicated by

three dots) representing the columns to project (cf. Line 2). The behavior of the node is de�ned

by methods annotated with @Specialization. For example, the behavior of the flink.select

node in our snippet is de�ned in the select method in Line 5. It extracts the projected columns

and adds the according Flink project operator to the execution graph.

1 @RBuiltin(name = "flink.select",
2 parameterNames = {"df", "..."})
3 abstract class FlinkSelect extends RBuiltinNode.Arg2 {
4 @Specialization
5 DataFrame select(DataFrame df, RArgsValuesAndNames fields) {
6 // determine projected columns
7 // add Flink `ProjectOperator` to Execution Plan
8 }
9 }

Listing 3.2: Simpli�ed snippet of the flink.select RBuiltin.

A : Functions without User-De�ned Code. R functions that do not involve user-de�ned

code are directly mapped to their counterpart operators de�ned by the Flink dataset API. For

instance, the flink.select function from the running example (cf. Listing 3.1, Line 10) is

directly mapped to the project operator from Flink’s DataSet API, as described in the previous

paragraph. ScootR performs the entire mapping of R functions without user-de�ned code during

the plan generation phase and, therefore, they introduce no runtime overhead.

B : Runtime Type Analysis. R does not require explicit type ascription for UDFs. In contrast,

Flink requires the input and output types of operators to build the operator plan. While the

container type is �xed to TupleN, the arity N and the types of the �elds may change when the

UDF is applied. Thus, ScootR needs to execute the R UDF to determine its result type before the

corresponding Flink operator, which calls the function at runtime, is created. Since the data

might reside in a distributed �le system, such as HDFS [SKRC10], we avoid taking a sample

of the actual data to determine the data types due to performance considerations. Therefore,

the current implementation requires to specify the data types in the R API when reading �les

(cf. Listing 3.1, Line 7). The result types of all other operators in the pipeline are determined

automatically by ScootR. The result type of non-UDF operators is de�ned by their semantics.

In the case of UDF operator, the R function is executed during the plan generation phase, while

the operator graph is created. We instantiate temporary tuples with �eld values based on the
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Table 3.1: Examples from the ScootR API.

Function Example Description

�ink.select flink.select(df, x = COL1, COL2) Project (and rename) the speci�ed set of columns

← df$new ← (COL1 / COL2) * 0.1 Create (Override) column by applying the UDF on each row

�ink.apply flink.apply(df, func) Apply func on each row.

flink.apply(df, key = COL1, func) Group by COL1 column and apply func on each group

�ink.groupBy max ← flink.groupBy(df, ’COL1’) Group by COL1 for further aggregation, e.g., max

�ink.collect fastr_df ← flink.collect(df) Collect a distributed dataframe df on the driver

runtime type inference of the previous operator, call the function with them, and thereby

determine the result type of the UDF. Thus, ScootR keeps track of the current tuple type until

the operator graph is built. In case the UDF does not return results for the temporary tuple used

(e.g., it requires a speci�c number range), ScootR throws an exception during compilation and

requests an explicit type annotation.

B : Data Access and Exchange. An important aspect in ScootR is the e�cient access to Java

data types in R and vice versa. As we operate in the context of data�ow engines, the R UDFs

are on the hot path and get called for each processed data item in the worst case, e.g., for the

map operator. Thus, e�cient data exchange and access between Java and R is crucial. Figure 3.7

depicts the data �ow during the execution of a Flink operator. The unoptimized data �ow is

shown on the left side of Figure 3.7. Even though ScootR avoids data exchange due to the shared

runtime, it still has to apply type conversion and introduces materialization points. The right

side depicts the optimized version. Due to the direct access of Java types in R (and vice versa),

as well as access to Flink’s abstract data types, we avoid type conversion and materialization.

In the next paragraphs, we show how ScootR achieves these optimizations.

1 : Java to R. In the context of dataframes, e�cient access to the processed elements means

fast access to Flink Tuples (representing rows) and their �elds (representing columns). ScootR

distinguishes operators by their expected input – single or multiple tuples per function call:

Single Tuple: The �rst case are tuple-at-a-time operators, e.g., map or flatmap. A naïve solution

is to determine the columns that are accessed in the UDF and to expose them as explicit

function arguments. This is achieved, by wrapping the UDF in an R function which expects

the column values required by the UDF as arguments. For example, the ← apply function

from Listing 3.1, Line 11, expecting one argument for the values of the miles column, is wrapped

into following function: function(miles) miles * 1.6

In general, multiple columns are accessed in the UDF and their values have to be extracted in

a loop before being passed to the R function in the naïve solution. To avoid this scenario and

be able to call the function directly with the tuple instance, ScootR makes use of the Tru�e

language interoperability features, a message-based approach to gain access to foreign objects

internals, called dynamic access [GSS
+

15]. It enables a guest language (e.g., R) to e�ciently

access objects from another language (e.g., Java) running in the same GraalVM instance.
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Figure 3.7: Data�ow of an Flink operator without (left) and with (right) optimizations.

Access to foreign objects is based on language-independent messages, e.g., read or write, which

an object needs to implemented with corresponding methods. For instance, the Read (tr ec , tid )

message provides access to �elds or elements tid of an object or array tr ec .
3

Tru�e replaces

foreign object access (e.g., to a Java object) in the AST of the guest language (e.g., R) with a

language-independent message node, which is ultimately replaced by the message implementa-

tion provided by the foreign object. ScootR integrates Flink’s tuple type in the Tru�e framework

and thus, directly passes tuples as arguments to R functions, which can access their �elds as

they would be dataframe columns.

Multiple Tuples: The second case are operators that expect multiple tuples per function call, e.g.,

a mapPartitions operator. Flink provides access to all tuples expected by the function (e.g.,

all tuples contained in a partition) by an iterator. Using the aforementioned interoperability

features, we provide direct access to the Flink iterator in the R UDF. As the iterator itself returns

tuples, ScootR can access them directly as described before. Without this optimization, ScootR

would need to materialize all tuples contained in the partition before passing them to the R UDF,

e.g., as an RList. Therefore, it would introduce a pipeline barrier in the normally streaming

execution, as all tuples have to be materialized before the R function can be called.

2 : R to Java. Likewise, an R UDF returns results that are passed back to the calling Flink

operator for further processing in the operator pipeline. Therefore, ScootR also needs an e�-

cient mechanism to access results of an R UDF in Flink. The R return type has to be handled

di�erently depending on the higher-order operator that calls the R function:

Single Value: The simplest type is a map operator that returns exactly one value per input tuple.

ScootR guarantees this case by the semantics of the← apply function (cf. Table 3.1). In this

case, a new tuple is created after the R function execution, either appending a new column or

replacing an existing one with the new values.

Single Vector: In the general apply function (cf Table 3.1), the UDF returns a vector of length N ,

which represents the output tuple (aka. row in a dataframe). Since fastR provides wrappers for

all primitive type lists in R, the result vector can be accessed with similar methods as provided

3
Tru�e keeps arrays from managed languages in the JVM heap to trace their references and restricts pointer

arithmetics in unmanaged languages (e.g., C).
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Figure 3.8: Creating a Flink tuple in the R UDF vs. creating the tuple from an RList in Java.

Purple depicts the time spent in the function call, pink the time for type conversion.

by Java’s List type
4
. While these wrappers grant access to the values in Java, we still have to

convert the R vector to a TupleN for further processing in Flink. To avoid this type conversion,

ScootR provides built-in functions (cf. Section 3.2.2 A ) to create Flink tuples directly in the R

function. Thus, instead of returning an R vector, the function is rewritten to create and return

instances of the corresponding tuple type directly using the built-in functions. Figure 3.8 shows

the execution time of a general apply function that does nothing except returning a small

(cf. Figure 3.8a) and a large tuple (cf. Figure 3.8b). We can observe that the function execution

(purple bars) itself is about 15 percent faster when we create the Flink tuples directly in the R

function. In addition, when an R list is returned, it still has to be converted into the equivalent

tuple class, indicated by the pink bars in Figure 3.8. Overall, ScootR achieves 1.75× better

performance by instantiating the tuples directly in the R UDF in this micro-benchmark.

Multiple Values: Finally, ScootR needs to handle the case where higher-order functions return

multiple values per input tuple, e.g., the flatmap operator. To this end, Flink provides an

additional Collector class as argument, which collects the results of the function. Again, we

provide direct access to the Collector from R. This avoids returning a list containing the results

of the UDF, which would require an additional pass over the results to insert the values into

the Collector in Java. Figure 3.9 shows the time to execute a flatmap operator returning a

list of lists (the inner lists representing the tuples), a list of tuples, and �nally directly using the

Collector class in the R function. The function just returns 3 tuples with arity 2 (cf. Figure 3.9a)

and 20 tuples with arity 19 (cf. Figure 3.9b) for each input tuple. We can observe that ScootR

achieves 1.3× speedup when using the Collector directly. Interestingly, the function call takes

almost twice as long using the Collector. This is due to increased complexity, as the collector

stores the output using Flink’s internal bu�er management in the function call. Returning a list,

the tuples have to be inserted after the function execution as depicted by the pink bars.

3.2.3 Plan Execution Phase

After ScootR successfully generated the operator graph for the pipeline, it forwards it to the

JobManager, which schedules its execution. During this process, the JobManager also sends

the serialized R code to the responsible TaskManagers. The ScootR operator implementations

evaluate the R UDFs upon their �rst use. Since a TaskManager can execute the same function

simultaneously in its available task slots, ScootR caches the code and shares it between exe-

4
R lists are backed by a Java array and provide constant-time random access.
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Figure 3.9: flatmap using Flink’s Collector directly, returning an RList with RList as

elements, and returning a RList of Tuples. Purple depicts the time spent in the function call,

pink the time for type conversion.

cutions. Initially, the UDF is interpreted, however, as it gets hot, the JIT compiler will produce

an e�cient compiled version of it, which is executed for every subsequent call. The result of

the job can either be directed to an output �le or the user can collect it on the driver node via

the flink.collect operator. If it is collected, ScootR passes the result as a dataframe to fastR,

which can then be used for further local processing.

3.2.4 Illustrative Rewrite for the Running Example

Figure 3.10 shows the succession of R functions used and their corresponding Flink operators

to represent the running example from Listing 3.1. Only the apply function includes user-

de�ned code which has to be called and executed at runtime. All other functions can be replaced

with the corresponding Flink operators during the plan generation phase. In the following, we

describe the necessary modi�cations to the← apply function before job execution.

Since the UDF is executed on every row in the example dataframe, a Flink map operator is

generated. To determine the result type of the function, we execute it during the plan generation

phase with a Tuple2in : (lonд, lonд) instantiated with random instances (1.1, 0.3), based on the

�eld types de�ned by the previous operator. The operator then calls the R function during the

execution of each input tuple and has the following signature:

Tuple2in : (lonд, lonд) 7→ Tuple3out : (lonд, lonд, lonд)

The additional �eld in the return value results from the extension of the dataframe with the

km column (cf. Line 11 in Listing 3.1). Furthermore, given the mapping from column names to

tuple indexes, the access to the miles column is replaced with a tuple index access:
5

function(tuple) tuple[[2]] * 1.6

3.2.5 Implementation

We implemented ScootR in Flink without any changes to its existing codebase. Thus, it bene�ts

from new features introduced by new versions of Flink. All functions of ScootR’s API are

represented via RBuiltin nodes. ScootR does not alter R UDFs, and relies on Tru�e to perform

optimizations such as dead code elimination and common subexpression elimination. In addition,

5
The tuple �elds indexes are 1 based in R.
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Figure 3.10: Mapping an R script (cf. Listing 3.1) to the corresponding Flink execution plan.

all internal data structures that are accessible inside R UDFs are provided as TruffleObjects.

This enables, e.g., direct access to the Java tuples and their �elds in R, without data exchange,

as described in Section 3.2.2 B § Data Access and Exchange.

Library Support. R packages are one of the reasons for R’s popularity and used very frequently,

e.g., for statistics and ML. Many packages use the native language extensions of R to call C

implementations internally to achieve good performance. fastR implements the C API of GNU-

R using Graal’s native function interface [GRS
+

13] and therefore can execute packages and

external libraries that use the natural language extensions. While this works for most of the

popular packages, some rely on GNU-R internals (e.g., data structures of the interpreter), which

complicates the integration in fastR. fastR is continuously improved and more packages are

added, which are then directly available in ScootR too. Project Sulong [RGM16] creates a

Tru�e AST from LLVM [LA04] bitcode, i.e., it provides LLVM as yet another language on top

of the Tru�e framework. Libraries using the native language extensions can be compiled to

LLVM bitcode. Thus, the fastR AST and the AST of the native language extensions bitcode can

exploit the dynamic access capabilities of Tru�e (cf. Section 3.2.2), which alleviates crossing

the language barrier from R to C.

3.3 Evaluation

In this section, we compare ScootR against the previously presented approaches by evaluating

both micro-benchmarks and operator pipelines using real-world datasets.

3.3.1 Experimental Setup

Cluster Setup. We conducted our experiments on a four-node cluster. Each node features an

Intel E5530 processor (2.4GHz, 8 cores), and 24GB main memory. The nodes are connected via

a 1GBit Ethernet connection. We used Spark v2.2.0, Flink v1.3.1, and Hadoop v2.7.1 for our

distributed experiments. Furthermore, we use GNU-R v3.2.3 [T
+

15], the latest versions of fastR
6

and Graal
7

available while conducting the experiments, and JVMCI v0.33, based on the JDK

v1.8.0_141. We execute each experiment 7 times and report the median time with error bars.

6
https://github.com/graalvm/fastr, commit: 72b868a

7
https://github.com/graalvm/graal, commit: 7da41b3
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Datasets. We used two real-world datasets for our evaluation. The �rst dataset is the Airline On-
Time Performance Dataset8

, which is also used to evaluate SparkR [VYL
+

16] and dplyr [W
+

17].

It contains JavaScript Object Notation (JSON)-formatted arrival data for �ights in the USA with

detailed information such as departure time, origin and destination, etc. We cleaned the data and

reduced it to 19 columns per record (many of the original dataset columns contain no entries

for 99.9% of the rows). As parsing JSON infers a high overhead in data�ow systems [LKC
+

17],

we converted the dataset to the CSV format. The resulting �le size, containing data from the

years 2005 – 2016, is 9.5GB. The second dataset is the Reddit Comments9
dataset, which contains

JSON entries of user comments on the news aggregator website www.reddit.com. In addition to

the actual text of the comment, it contains further meta-information, such as the author name,

up and downvotes, category, etc. Similarly to the �rst dataset, we cleaned and converted the

data to CSV in a preprocessing step. The raw data is provided as separate �les for each month

and we use the �rst 4 consecutive months starting from 2016. Each month amounts to roughly

33GB of raw data, resulting in about 14GB per month for the CSV used as input.

Benchmark Overview. We evaluated our approach for single and multi-node execution,

comparing against GNU-R, fastR, and SparkR. We also compare SparkR and ScootR against the

standard data�ow APIs in the system language, which we call native APIs.
First, we conducted a set of micro-benchmarks for (i) operators without user-de�ned code

(e.g., select), and (ii) operators with user-de�ned code (e.g., map and flatmap). Here, we also

compare the execution of SparkR with STS against the IPC approach. The goal of this set of

micro-benchmarks is to highlight the bene�ts from the e�cient execution of UDFs in ScootR.

Second, in order to show the relevant performance impact of e�cient UDFs in the context of

real-world applications, we evaluated benchmarks consisting of operator pipelines. To this end,

we chose to evaluate an ETL (i.e., preprocessing) pipeline on the airline dataset proposed by

Oscar D. Lara et al. [YZP14],
10

a MapReduce-style aggregation pipeline, and a mixed pipeline

with a multi-threaded ETL phase and successive, single-threaded model training in R.

3.3.2 Micro-Benchmarks

In this section, we present micro-benchmarks for several operators in isolation. For non-UDF

operators, both ScootR and SparkR achieve almost the same performance compared to the native

data�ow API. This is expected, as the operators can be translated before execution. Compared

to standalone GNU-R and fastR, SparkR and ScootR are up to 20× faster on a single node (using

8 cores) and up to 46× for distributed execution (4 nodes × 8 cores).

The micro-benchmarks for operators with user-de�ned code show that ScootR and SparkR with

STS achieve almost equal performance compared to their respective native API. It is important

to note that ScootR achieves this even though the R UDF is executed. Benchmarks using IPC in

SparkR, and thereby executing the R UDF, reveal its performance drawbacks as it fails to execute

on the airline dataset within the set experiment timeout of 4 hours. Experiments on 10% of the

8
https://www.transtats.bts.gov/Tables.asp?DB_ID=120

9
http://�les.pushshift.io/reddit/comments/

10
The pipeline reports the maximum arrival delay per destination for �ights from NY.
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Figure 3.11: Micro-benchmark for a single select function.

original data show up to a magnitude slower execution times for SparkR with IPC compared to

ScootR. The benchmarks also show the importance of direct access to internal data-structures to

avoid additional cost due to materialization barriers. The benchmarks for 1:N output operators,

e.g., flatmap, verify our assumptions that direct access to the Flink Collector class in R yields

comparable performance to the native API.

Non-UDF Operator. In this �rst micro-benchmark, we project three columns from the air-

line dataset and write the result to a �le. Figure 3.11a depicts the results on a single node

and Figure 3.11b on the four nodes cluster. SparkR (STS) re�ects the result for SparkR with

source-to-source translation.

As expected, SparkR (STS) and ScootR achieve almost the same performance as the R select

function is mapped to the project operator of the native APIs of the benchmarked systems.

SparkR (STS) is about 1.15× slower than native Spark and ScootR about 1.13× slower than Flink.

In contrast to GNU-R and fastR, which materialize the input data in memory before applying

the select function, Flink and Spark stream the input data directly to the project operator.

This results in a speedup of about 3× for both SparkR and ScootR compared to GNU-R for single-

threaded execution. With increasing DOP, the speedup increases further to about 20× on a

single node with DOP 8 (cf. Figure 3.11a) and up to 46× for the fully distributed execution on 32

cores (cf. Figure 3.11b). This result is expected, as the project operator is embarrassingly parallel.

Interestingly, fastR is by a factor of 1.06× slower than GNU-R. We attribute this behavior to a

more e�cient implementation of the read.csv function in GNU-R.

UDF Operator with 1:1 Output. In this micro-benchmark, we compare the execution of an

← apply function similar to the one in the running example (cf. Line 11 in Listing 3.1). It

multiplies the distance column by a constant factor and appends the result as a new column to

the dataframe. The function is executed in ScootR via a map operator, as detailed in Section 3.2.4.

SparkR (STS) uses source-to-source translation.

Figure 3.12a depicts the result of the benchmark on a single node. Both SparkR (STS) and ScootR
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Figure 3.12: Micro-benchmark for the apply function from Listing 3.1, Line 11.

achieve almost the performance of their respective implementations in the native APIs. ScootR

is at most 1.15× slower than Flink, while SparkR (STS) is about 1.07× slower respectively. These

results are expected for SparkR (STS), as the UDF is translated to the native API. For ScootR,

these results validate our expectations that we can achieve comparable performance to the

native API even though the R function is executed in a map operator. GNU-R is outperformed

by fastR (1.5×), and by both SparkR (STS) (up to 15×) and ScootR (up to 25×). Again, this is

mainly due to the streaming facilities in Spark and Flink. In contrast to the previous benchmark,

fastR is able to outperform GNU-R due to the more e�cient execution of the apply function.

Figure 3.12b depicts the same experiment, but now we distribute the computation on up to 4

nodes. Again, ScootR (1.1× for a DOP of 32) and SparkR (STS) (around 1.08× for a DOP of 32)

introduce only a small overhead compared to their respective native APIs.

To determine the cost of IPC, we implemented the UDF using the dapply function of SparkR,

which internally executes the UDF in a mapPartitions operator. For a fair comparison, we

implemented the UDF using the general apply in ScootR, shown as ScootR (MP), which internally

also uses a mapPartitions operator. SparkR (IPC) failed to execute the function within the set

experiment timeout of 4 hours for DOPs up to 32. In comparison, ScootR (MP) is competitive

(around 1.1× overhead) to the← apply function, due to direct access to Flink’s data structures.

To obtain results for SparkR (IPC), we sampled the airline dataset from 9.5GB down to roughly

100MB. Figure 3.13 shows the results for single-node execution with increasing DOP using the

down-sampled airline dataset. For single-thread execution, SparkR (IPC) takes ∼50 minutes

to complete the task compared to 30 seconds for Spark (STS). Using the 8 available cores,

SparkR (IPC) executes in ∼7 minutes. Both versions of ScootR are about 1.8× slower than

native Flink, while SparkR (IPC) is about 170× slower than native Spark. This performance

overhead is due to the drawbacks of IPC discussed in Section 3.1.2, namely serialization and

data transfer. In addition, the dapply function in SparkR (IPC) uses Spark’s mapPartitions

operator to execute the UDF. The operator provides all tuples contained in the partition via an

iterator to the UDF. As SparkR cannot provide access to the iterator in the R UDF, all tuples
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with a 10% sample of the original data. The y-axis is in log scale.
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Figure 3.14: Cluster micro-benchmark for calculating the N-grams in the body column of the

Reddit comments dataset. The data is scaled according to the number of used nodes.

in the iterator have to be materialized in the mapPartitions function and are provided as

dataframe to the R UDF. This introduces a materialization barrier in the streaming execution and

causes additional performance overhead. ScootR (MP) also uses the mapPartitions operator

of Flink, but has access to the iterator via the language interoperability features described

in Section 3.2.2 B § Data Access and Exchange. Thus, ScootR does not have to materialize and

can directly access the tuples in a streaming fashion via the iterator in the R UDF.

UDF Operator with 1:N Output. The next micro-benchmark executes a more complex UDF,

where we generate all 2-grams within the body column of the Reddit comments dataset. Com-

pared to the previous benchmarks, the UDF is compute-heavy and second, the function is called

within a flatmap operator. As the body has N 2-grams per comment, the function may emit

0, 1, ...,N elements per input tuple. The ScootR function used in the experiment is detailed

in Listing 4 on Page 104. As described in Section 3.2.2 B § Data Access and Exchange, ScootR

has direct access to the Flink Collector class, which collects the output directly in the R UDF.

Figure 3.14 depicts the result of the benchmark. The data size is increased alongside with
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Figure 3.15: Benchmark for the ETL pipeline shown in Listing 1 on Page 103.

the number of nodes and we use 1, 2, and 4 months of data. We observe that ScootR is only

about a factor of 1.15× slower than Flink. As we can access the Collector class and create the

Flink tuples directly inside the R function, we avoid the materialization and type conversion

of the returned result. We report the execution times without access to the Collector as

ScootR (List) to show the bene�t of direct access to Flink’s data structures. As discussed

in Section 3.2.2 B § Data Access and Exchange, the necessary additional pass over the List and

the type conversion results in 1.2× slower execution compared to ScootR with direct access.

SparkR with IPC failed to execute within the set experiment timeout of 4 hours. The UDF cannot

be expressed in SparkR with STS.

3.3.3 Results for Operator Pipelines

In this section, we provide benchmarks for operator pipelines. The �rst benchmark shows an

ETL pipeline composed of several operators. It validates the results from the previous micro-

benchmarks and shows competitive performance for ScootR and SparkR compared to their

respective system’s native APIs. Both outperform GNU-R and fastR by up to 2.5× for single-

threaded and up to 20× for distributed execution. Again, while SparkR uses STS, ScootR achieves

this while executing the UDFs. The second benchmark shows a classical MapReduce pipeline.

The runtime of ScootR and SparkR is on par with the native API. The third benchmark shows

a mixed pipeline combining preprocessing and model training. It shows the bene�ts of the

seamless integration of ScootR, as we collect the distributed data for further local processing in

the same R script (cf. Listing 3 on Page 104). Thereby, we can achieve up to 12× performance

improvement compared to executing the complete pipeline in fastR as the majority of the time

is spent for preprocessing. In the following paragraphs, we describe each benchmark in detail.

ETL Pipeline. In this experiment, we execute the pipeline described by Oscar D. Lara et

al. [YZP14]. The ScootR code for the pipeline is depicted in Listing 1 on Page 103. The goal of

this pipeline is categorizing the delay of �ights by two carriers in the airline dataset.
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Figure 3.16: Benchmark for the MapReduce pipeline shown in the Listing 2 on Page 103.

Figure 3.15a depicts the results for the execution on a single node and Figure 3.15b the four

nodes cluster. SparkR (STS) is around 1.2× slower than Spark and ScootR is up to 1.4× slower

than Flink in the worst case. Both outperform GNU-R and fastR by 2.5× for single-threaded and

up to 20× for distributed execution. GNU-R is only 1.05× slower than fastR. This is mostly due to

the high selectivity of the filter operator at the beginning of the pipeline, which signi�cantly

reduces the amount of data. Thus, the data that has to be processed by the two successive UDFs

is reduced signi�cantly.

MapReduce Pipeline. So far, the benchmarks did not involve aggregations. Therefore, we

designed a MapReduce-style aggregation pipeline to determine the largest arrival delay per

destination for �ights that started from New York. The ScootR code for the pipeline is depicted

in Listing 2 on Page 103.

Figure 3.16a depict the results for the benchmark on a single node and Figure 3.16b the four

nodes cluster. ScootR is up to 1.3× slower than Flink and SparkR (STS) up to 1.15× than Spark.

While both translate the aggregation function to a native API call, ScootR directly executes the

R predicate for the filter function. Even though the data size is reduced signi�cantly by the

filter operation, the aggregation, due to the necessary shu�e step, together with the initial

reading of the data is still responsible for the majority of the execution time.

Mixed Pipeline. In this experiment, we evaluate a mixed pipeline. We use Flink to perform

the initial data preprocessing and gather its result on the driver node. The result is then

used for further analysis as in-memory dataframe. Speci�cally, we train a generalized linear

model [NW72] with the glm function provided in R and show the model description with the

summarize function. The ScootR code for the pipeline is depicted in Listing 3 on Page 104.

Figure 3.17 depicts the results for the described pipeline. We can observe that most of the

execution time is spent in the ETL phase, which reduces the initial Airline dataset from 9.5GB

to approximately 90MB. While all of the systems spend the majority of the time in the ETL

phase, we can decrease its duration signi�cantly by using ScootR, even in the single-threaded
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Figure 3.17: Benchmark for the mixed pipeline shown in Listing 3 on Page 104. The fraction

of time spent for the glm function is indicated in dark blue.

execution case. Compared to GNU-R, ScootR is about 3.6× faster for single-threaded execution,

and 12.3× faster when using 8 cores. The performance drawbacks of fastR and GNU-R result

from the initial dataset reading and materialization costs.

3.3.4 Discussion

The main goal of our evaluation was to highlight our two main contributions: (i ) The integration

of an R language API based on a common runtime to avoid data exchange, while supporting

a rich set of language features. (ii ) The necessity of our applied optimizations to share data

structures between the guest- and the host language to provide fast data access and avoid type

conversion. To this end, we conducted benchmarks comparing ScootR, SparkR, fastR, and GNU-

R for both single operators and operator pipelines for single node and cluster con�gurations.

The non-UDF micro-benchmark functions clearly show that ScootR and SparkR provide reliable

mapping of R functions to their respective native data�ow engine API calls, with below 1.2×

overhead. For functions calling R UDFs, ScootR can compete with SparkR’s STS approach, even

though ScootR executes the R function in the fastR language runtime. In contrast, when SparkR

has to fall back to IPC, its performance degrades by an order of magnitude compared to ScootR.

The benchmarks for 1:N operators show that direct access to data structures is necessary to

avoid data materialization and therefore achieve comparable performance to the native API of

the data�ow engine. The benchmarks for operator pipelines, validate the assumptions behind

the micro-benchmark experiments, and show very small performance overheads of up to 1.2×

for SparkR (STS) and 1.4× for ScootR. Both SparkR and ScootR outperform GNU-R and fastR.

37



3.4 Related Work

3.4 Related Work

In this section, we discuss related work on DSL language compilers, parallelization based on

existing data�ow systems, and parallelization packages for the R programming language itself.

Compiler-based Approaches. Weld [PTS
+

17] o�ers a functional IR based on nested parallel

loops and builders that specify what should be computed. Libraries and functions represent their

operations using this IR to avoid materializing/copying of intermediate results, which is normally

required when data is passed from one library to another. Weld applies optimizations such as

loop tiling and vectorization and generates code for diverse processors including CPUs and GPUs.

Tupleware [CGD
+

15] is a distributed analytics system that focuses on the e�cient execution

of UDF-centric work�ows. It provides an IR based on the LLVM compiler framework [LA04],

which can be targeted by any language that emits LLVM code. Tupleware applies high-level

optimizations, such as predicate pushdown or join reordering, as well as low-level optimizations,

such as reordering of the program structure and vectorization. Pydron [MAAC14] parallelizes

sequential Python code to execute on multi-core, cloud, and cluster infrastructures. It is based

on two Python decorators, one to mark functions to parallelize and another one to mark side-

e�ect free functions. Functions annotated for parallelization are translated to an intermediate

representation. Pydron applies several optimizations based on this IR, including control �ow

and scheduling decisions for its parallelization.

All of the systems mentioned above provide a familiar interface to the programmer, while they

achieve e�cient execution by carefully applied optimizations or parallelized execution. ScootR

shares this goal, but incorporates R into an existing data�ow system without changing it. It

achieves this by relying on the GraalVM, a JVM-compatible language runtime that enables

multi-language execution. The approach is not restricted by an IR specially designed for the

systems optimization goals. Thus, ScootR pro�ts directly from the ongoing e�orts to advance

the performance of Graal, and can be easily extended with support for new languages and

diverse processors, e.g., GPUs [FSSD17].

Parallelism based on Data�ow engines. Hadoop’s Streaming utility is used as a common

basis for IPC in several frameworks. It allows specifying executables and scripts that are called

in the map and reduce functions. Here, scripts receive data via stdin while results are emitted via

stdout. RHadoop is a collection of tools to work with the Hadoop ecosystem within R. Likewise,

R Revolution, now called Microsoft R Open and Server (commercial version), provides the

option to run R on top of Hadoop. All the presented systems inherit the drawbacks of IPC,

namely communication overhead, serialization, and data-processing pipeline disruption, as

discussed in Section 3.1.2.

RHIPE [Guh10] is also based on Hadoop and uses IPC while exchanging data via Google’s

ProtocolBu�ers, a language- and platform-neutral mechanism for serializing structured data.
11

RHive allows for easy use of HSql, the query language of Hive [TSJ
+

09], in R. Also, UDFs and

UDAF can be speci�ed in R, which are executed via IPC with an external R process. RHIPE has

11
https://developers.google.com/protocol-bu�ers/
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a more e�cient data exchange format compared to Hadoop Streaming, but it still inherits the

drawbacks of IPC, as the executables run in separated processes.

Ricardo [DSB
+

10] was developed by IBM and executes Jaql [BEG
+

11] queries on top of Hadoop.

Beside Jaql functions that do not involve user-de�ned code, users can specify R UDFs, which are

executed in an external R process. Thus, it provides a hybrid approach as discussed in Figure 3.1.2.

Ricardo inherits the drawbacks from IPC when executing UDFs, but it provides so-called trading
that allows for mixed R and Hadoop execution. Preprocessing can be executed in Hadoop before

the results are fetched in R and can be used as input to the manifold libraries in R. ScootR is

in�uenced by the trading concept, but does not have to fall back to IPC in case of UDFs.

Big R [YZP14] is based on IBM BigInsights and uses a restricted, overloaded set of R operations

and transformations speci�ed in Jaql that can be executed on top of Hadoop. The results are

returned as a dataframe, which is used for further processing in R. In contrast to Big R, ScootR

is not restricted to a limited set of operators and executes arbitrary R functions.

SparkR [VYL
+

16] provides a dataframe-centric programming abstraction in R. As described

in Section 3.1.2, SparkR avoids IPC by applying source-to-source translation for a subset of

operations and library calls. In case the source-to-source compiler cannot translate the R

program, SparkR falls back to use an external R process by IPC. This fall back causes large

performance penalties. ScootR builds upon the ideas of SparkR for non-UDF operators, while

improving execution time for arbitrary UDFs. Spark also provides a programming abstraction

for Python, called PySpark. While the underlying concepts are the same as in SparkR, there

is an ongoing e�ort to integrate Apache Arrow [Apa18]. Apache Arrow’s goal is to provide a

common in-memory data representation that provides e�cient access and APIs in Python, C,

and Java. Therefore, it improves data exchange between Spark and Python, while also providing

more e�cient access for the popular Python pandas dataframes. While Arrow looks promising,

data needs to be serialized to and de-serialized from the binary format of Arrow.

SystemML [BDE
+

16] is a system for the e�cient execution of linear algebra programs on Apache

Spark written in a DSL based on R’s matrix abstraction. While its focus is clearly on linear

algebra, it provides basic facilities to transform input data with a restricted set of operations and

prede�ned functions. SciDB [Bro10] is an array database that focuses on the e�cient execution

of array manipulation and linear algebra. SciDB provides an R abstraction in addition to its

native API. Both systems do not focus on UDF and are therefore orthogonal to ScootR.

R Parallelization Packages. Explicit parallelization packages, such as Snow [TRLS16] and

Snowfall [Kna15], provide parallel versions of the apply* methods. In addition, there are

packages based on parallelized versions of the foreach construct [MW17, Wes17] for di�erent

back-ends, such as Sockets, Message Passing Interface (MPI), and Parallel Virtual Machine (PVM).

These packages focus on parallelizing computation heavy, splittable tasks, but not on large

amounts of data. They o�er no facilities to read distributed �les but re�ect the scatter/gather

model from MPI. ScootR focuses on parallelizing computations on large amounts of data.
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3.5 Conclusion

In this chapter, we presented ScootR, a novel approach to execute R user-de�ned functions in

data�ow systems with minimal overhead. Existing state-of-the-art systems, such as SparkR, use

source-to-source translation to the systems’ native API to achieve competitive performance for

a restricted subset of UDFs. When running arbitrary UDFs, their performance may degrade by

a factor of up to 170×, as they have to fall back to inter-process communication. This overhead

is due to the necessary data serialization and data transfer imposed by IPC.

ScootR avoids such overheads by tightly integrating the data�ow engine with the R language

runtime, using the Tru�e framework and the Graal compiler. By making Flink abstract data

types accessible to the R user-de�ned functions, ScootR avoids type conversion as well as

intermediate result duplication and copies. Our experimental study shows that ScootR achieves

comparable performance to systems based on STS, even though ScootR executes the UDF in an

R language runtime. When SparkR has to fall back to inter-process communication, ScootR has

up to an order of magnitude higher performance.

Future Work. The techniques and approaches presented in this chapter are general and can

be applied to other data�ow systems as well. With possibly few exceptions, most of the existing

systems provide a relational-style API based on typed, �xed-length tuples. For instance, one

could provide a similar abstraction implemented on top of the Spark Dataset and/or Dataframe

abstractions, following the approach outlined in this chapter. Another interesting extension

would be the integration of other Tru�e-based (dynamic) languages such as JavaScript or

Python. To this end, a small language agnostic and data-processing centric Tru�e API could be

de�ned and used as a common abstraction by di�erent language runtimes.

One goal of ScootR was to realize a guest language integration without changes to the existing

code base of the data�ow engine. Deeper integration of Tru�e and the runtime would yield

further potential for optimizations: ScootR does not exploit the self-optimizing capabilities of

Tru�e, as Flink (and all other data�ow engines implemented in typed languages) requires typed

UDFs. A data�ow engine that is implemented as Tru�e AST nodes (e.g., its operators, internal

data structures, etc.) could exploit the self-specializing capabilities of Tru�e to optimize itself

to the data at runtime.

This provides several opportunities: First, the internal data structures can use specialized

variants for certain types, e.g., to provide specialized hash tables for joins and sorting. Second,

the pro�ling facilities of Tru�e can be used to gather statistics during runtime. Third, type

sizes can be changed gradually during runtime, e.g., a numeric can be represented as 4-byte

integer and converted to an 8-byte long once a number-over�ow is detected. Such behavior

would be especially interesting in streaming settings with longstanding queries.
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Optimizing ML Training Pipelines

Modern data analysis pipelines often include preprocessing steps, such as data cleaning and

feature transformation, as well as feature engineering and selection [SHG
+

15, STH
+

15, KMNP15,

BFG
+

17, BBC
+

17]. Once data is in an appropriate shape, machine learning models are trained

and evaluated. These training and model evaluation cycles are repeated several times to �nd the

most suitable con�guration of di�erent features, ML algorithms, and hyperparameters. To build

such training pipelines, data scientists can choose from a variety of tools and languages. Python

and R o�er popular libraries that are easy to use and provide fast development cycles. These

libraries are embedded shallowly [GW14] in the host language, i.e., they are executed as-is,
without any inter-library optimizations and support for large data [PTN

+
18]. General-purpose

data�ow systems [ZCF
+

10, ABE
+

14] provide second-order functions (e.g., map and reduce) to

transform collections via UDFs. They defer program execution by providing a type-based DSL

that builds an associated operator graph. This operator graph is optimized and executed on

a dedicated data�ow engine. In order to develop ML algorithms in such DSLs, linear algebra

operations have to be retro�tted as UDFs on (distributed) collections. As a result, ML algorithms

are hardcoded by experts and provided as library functions with �xed data representations and

execution strategies. Thus, the semantics of linear algebra operations are concealed behind UDFs,

which are treated as black boxes by optimizers [HPS
+

12]. In contrast, dedicated systems for

ML, such as SystemML [BDE
+

16] and Tensor�ow [ABC
+

16] provide linear algebra operations.

However, it is di�cult to express pipelines that include preprocessing and data transformation

in these systems, as they lack dedicated types for collection processing.

In summary, dedicated systems with type-based DSLs provide advantages over shallowly em-

bedded libraries, but still su�er from three major problems in the context of end-to-end pipelines

for model training: (i ) Development, maintenance, and debugging of end-to-end pipelines is a

tedious process in dedicated systems, and limits optimization potential and e�cient execution.

(ii ) Preprocessing and ML are often executed in di�erent systems in practice [SBJ
+

18], which

prevents optimizations across linear and relational algebra. (iii ) Neither shallowly embedded

libraries nor type-based DSLs can reason about native UDFs and control �ow.
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Research Contributions. To address these issues, we propose Lara, a DSL that combines

collection processing and machine learning.
1

Lara is based on Emma [AKK
+

15, ASK
+

16], a

quotation-based DSL [NLSW16] for (distributed) collection processing. Emma’s DataBag alge-

braic data type enables declarative program speci�cation based on for-comprehensions, a native

language construct in Scala. In contrast to type-based DSLs, quotation provides access to the

AST of the whole program, allowing us to inspect and rewrite UDFs and native control �ow.

Emma’s IR is based on monad comprehensions [GS99] and enables operator fusion and implicit

caching. Lara extends Emma with Matrix and Vector data types in its API and IR to execute

pipelines for model training on single machines. It provides two views on the IR to perform

diverse optimizations: the monadic view represents operations on both types, DataBag and

Matrix, as monad comprehensions in the IR. This common representation enables operator

fusion and pushdown of UDFs across type boundaries, e.g., �lter pushdown from a Matrix to

a DataBag. Access to the control �ow allows Lara to reason about operator fusion over loop

boundaries, e.g., feature transformations that are iteratively applied over column ranges. The

combinator view captures high-level semantics of relational and linear algebra operators as

single entities in operator trees similar to relational algebra trees. It enables data-dependent

selection of specialized physical operators and implicit data layout conversions based on inter-

esting properties [GM93]: similar to interesting properties of relational operators, e.g., sorted

data for joins, linear algebra operators have preferred data access pattern, e.g., row-wise or

column-wise.

In summary, we make the following contributions:

• We propose Lara, a quotation-based DSL for end-to-end model training pipelines with

dedicated types for collections and matrices (Section 4.1).

• We discuss our IR, which has access to the whole AST of the pipeline, and two views on

top of it: A view based on monad comprehensions and a view based on the high-level

semantics of operators (Section 4.1 and 4.2).

• We discuss the extensibility of our approach by introducing a custom high-level op-

erator and optimizations for k-fold cross-validation, a widely used technique to select

hyperparameters for ML models (Section 4.2.4).

• We conduct experiments on a typical preprocessing pipeline, and show the e�ects of data

layout and cross-validation optimizations on selected ML algorithms for dense and sparse

data. The experiments achieve speedups of up to an order of magnitude (Section 4.3).

4.1 Language and IR

In this section, we provide an overview of important design decisions based on an introductory

example. Next, we describe the IR of Lara and introduce two views on top of the IR, which are

used to perform the diverse optimizations showcased in Section 4.2.

1
This chapter is based on [KAKM16] and [KKS

+
19].
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4.1.1 Language Design Decisions

We identi�ed several shortcomings in current solutions, which led to the design of Lara. It

extends the API and IR of Emma [AKK
+

15, ASK
+

16], a quotation-based DSL for collection pro-

cessing, with support for matrices and vectors. Users can express preprocessing and successive

model training in the same program, which is re�ected in a common IR. The following Lara

code excerpt highlights these design decisions.

1 @lib def vectorizeComment(c: Comment) = { /* UDF */ }

2 @lib def vectorizeUser(u: User) = { /* UDF */ } 1
3

4 optimize { 2
5 // Join "Comments" and "Users" and vectorize the result

6 val features = for {

7 c <- Comments // DataBag[Comment]

8 u <- Users // DataBag[User]

9 if u.user_id == c.user_id

10 } yield vectorizeComment(c) ++ vectorizeUser(u)

11 // Convert the DataBag "features" into matrix "X"

12 val X = Matrix(features) 3
13 // Filter rows that have values > 10 in the third column

14 val M = X.forRows(row => row(2) > 10) 4
15 // Calculate the mean for each column

16 val means = M.forCols(col => mean(col)) 5
17 // Deviation of each cell of "M" to the cell's column mean

18 val U = M - Matrix.fill(M.numRows, M.numCols)((i,j) => means(j))

19 // Compute the covariance matrix

20 val C = 1 / (U.numRows - 1) * U ** U.t 6
21 }

Lara enables the declarative speci�cation of relational operators via Emma’s DataBag data

type with for-comprehensions. Line 6 – 9 illustrate a join between two datasets Users and

Reviews. ML pipelines are expressed as high-level linear algebra operators. For example, a

matrix multiplication is speci�ed using the ** method in Line 20. Operators of both domains

can be interleaved with calls to user-de�ned (aggregate) functions: the tuples resulting from

the join are converted to vectors in Line 10, followed by a �lter predicate, which is applied to

the rows of matrix X in Line 14. Separate types with dedicated syntax in the user-facing API

reduce the impedance mismatch between relational and linear algebra, e.g., users do not have

to specify linear algebra in terms of for-comprehensions over collections.

1 – UDFs for the second-order functions of the DataBag (e.g., map or fold) and Matrix (e.g.,

forRows and forCols) are de�ned as closures (cf. Line 14) or provided as library functions

(cf. Line 1 & 2). The body of library functions is inlined in case they are called within a pipeline

(e.g., Line 10 and Line 16) and considered during optimization.

2 – DataBag, Matrix, and Vector types can be used without further optimization. This is

useful to debug and test pipelines during development. To enable optimization, the very same

pipeline is quoted by surrounding the code with an optimize macro [Bur13] (cf. Line 4).
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3 – Type conversion methods (cf. Line 12) in the API and the IR track data provenance, i.e.,

which �eld of a DataBag element corresponds to a given column in a Matrix and vice versa.

It decouples the speci�cation and execution of relational and linear algebra and enables joint

optimization.

4 – Type and operator choices in the user-facing API do not enforce a particular physical

execution backend. A uni�ed representation of both types in a common formal representation

in the IR enables operator pushdown and fusion of UDFs over type boundaries. For instance,

the �lter UDF applied on each row of the matrix X in Line 14 can be pushed to the DataBag and

fused with the vectorize UDFs applied in a map on the join result in Line 10.

5 – White-box UDFs in the IR enable reasoning about read and write accesses to the processed

elements (e.g., �elds, rows, and columns). In combination with access to the control �ow in

the IR, this provides opportunities to fuse UDF applications that are executed iteratively in a

loop, if their read/write set are disjoint. The iterative calculation of the mean in Line 16 can be

optimized. Instead of executing the mean function for each column separately, it is executed for

all columns at once.

6 – High-level linear algebra operators in the API (cf. Line 20) and an IR that captures the

domain-speci�c semantics of operators enable the selection of specialized operator implemen-

tations, e.g., BLAS [LHKK79] instructions for linear algebra.

4.1.2 Intermediate Representation

In this section, we describe how Lara’s IR facilitates the design decisions described in the

previous section. First, we introduce the low-level intermediate representation (LIR) provided

by Emma, a normalized representation of the Scala AST in let-normal form (LNF) [App98].

Then, we present two higher-level views on top of the LIR. The monadic view represents monad

comprehensions [GS99] over the DataBag and Matrix types. The combinator view represents

high-level operators (e.g., matrix multiplication) as single entities or combinators [Gru99] in an

operator tree.

Low-Level Intermediate Representation. Emma uses the meta-programming features of

Scala [Bur13] to access the AST of a quoted program. In an initial step, Emma transforms the orig-

inal AST into LNF, a functional representation of static single assignment form (SSA) [App98],

to overcome several shortcomings of Scala’s AST. LNF o�ers a normalized representation that

encodes data�ow and control �ow information directly. LNF guarantees that variables are

de�ned only once, i.e., the single static assignment property. Thus, def-use chains [AK01] can

be implemented e�ciently. This property eases data dependency analysis, most notably the

detection of dependencies across control constructs, e.g., between iterations of loops. The LIR is

used as the basis for the views, which we introduce in the next paragraphs. The views combine

expressions of the LIR that represent an operation in their higher abstraction, e.g., a matrix

multiplication, and make their semantics available for reasoning. The LIR augments the views

by providing e�cient data and control �ow analysis.
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Monadic View. Monad comprehensions [GS99] on the Bag monad provide a concise and

declarative way to specify collection transformations with �rst-class support for user-de�ned

(aggregation) functions, as shown in the introductory example (cf. Listing 4.1.1, Line 10). Matrices

and vectors can also be represented as a Set monad {(i,a)} of index-value tuples, where i is a

singular index in case of a vector and a tuple (row-index,column-index) in case of a matrix [FM00].

Writing linear algebra operators as monad comprehensions at the user-level is tedious and error

prone. As a consequence, Lara o�ers high-level operators for linear algebra in its API.

Monad comprehensions in the IR enable Lara to examine and optimize applications of UDFs, e.g.,

fusion and pushdown. These optimizations are not bound to the concrete monad instance but

rely on the general properties of monads. In Section 4.2.1 and 4.2.2, we showcase optimizations

on monads and their interplay with control �ow analysis. Lara extends the monad representation

of the DataBag in Emma with the Matrix and Vector monad. A traversal over the LIR converts

all explicit second-order functions on a DataBag to monad comprehensions (e.g., a map is

converted to the corresponding comprehension). Calls to linear algebra methods and second-

order functions of the Matrix type are replaced by their corresponding monad comprehensions.

For instance, element-wise addition of two vectors is written as x + y in the API and represented

as following AST nodes in the LIR: Apply(Select(Ident("x"), "$plus"), Ident("y")).

In the monadic view, element-wise addition is represented as following monad comprehension:
2

for {

(idx_x, val_x) <- x // generator

(idx_y, val_y) <- y // generator

if idx_x == idx_y // guard

} yield (idx_x, val_x + val_y) // head

The comprehension contains two generators, which bind each (index, value) pair of the two

vectors x and y. The head expression is called for each combination of pairs that satis�es the

guard expression. The values of all pairs that have the same index are added and form a new

vector for the result of the addition.

Combinator View. The monadic view allows Lara to apply fusion over UDFs based on the

properties of monads. In order to apply domain-speci�c optimizations and trace operator trees,

data types and their respective high-level operations need to be represented explicitly in the

IR [TER18]. Comprehension combinators [Gru99] can be leveraged to represent high-level,

logical operators whose semantics are not present in the monadic view. At the combinator

view, relational operators, such as join, and linear algebra operations, such as a matrix multi-

plication are captured as single entities and the program is viewed as a call or operator tree of

these entities. This enables optimizations known from relational query processing (e.g., join

reordering or the choice of di�erent physical operator implementations). At the same time, it

enables optimizations on the semantics of linear algebra. Logical operators can be replaced with

specialized physical implementations, e.g., BLAS sub-routines [LHKK79]. Moreover, operators

can propagate interesting properties to their child nodes, such as row- or column-wise access

patterns to their operands. Based on these properties, di�erent plan variants are generated.

2
Fegaras et al. provide a list of linear algebra operators and their corresponding monad comprehensions [FM00].
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The combinator view for the computation of the gram matrix X>X is illustrated in Figure 4.1a.

Figure 4.1b depicts the operator tree with propagated access patterns – from the root expression

to the sources. The matrix-multiplication (**) prefers fast access to the rows (dotted lines) of

its left operand and the columns (snake lines) of its right operand. The physical row-wise data

layout of the source matrix X is depicted in brackets in the Figure. Figure 4.1c represents a

physical plan variant. The matrix-multiplication is replaced by a specialized BLAS instruction

called dgemm, which requests column-wise partitioned input. An convert enforcer [GM93]

establishes the data layout desired by the dgemm instruction for its second operand. We provide

a detailed discussion in Section 4.2.3 and 4.2.4.

Data Access Pattern:

row-wise

column-wise

X X

>

**

(a)

[X, row] [X, row]

>

**

(b)

[X, row] [X, row]

convert>

dgemm

(c )

Figure 4.1: Combinator view for gram matrix X>X.

4.2 Optimizing End-to-End Pipelines

Listing 4.1 depicts our running example of an end-to-end ML pipeline for model training, which

leverages historical data about clicks on advertisements to predict the number of future clicks

on other advertisements using a regression model. First, we preprocess input data to obtain a

dataset of labels and numerical features (cf. Lines 3 to 9). Next, we learn and validate regression

models with di�erent hyperparameters on the resulting dataset (cf. Line 11 to 27).

The pipeline showcases common user-de�ned feature transformations. We omit the imple-

mentation of the UDFs for the sake of space. The categorical features in columns 11 to 15 are

dummy-encoded [HH10] as sparse vectors in Line 4. The numerical features in columns 1 to

10 are normalized [Gru15] to have zero mean and unit variance in Line 9. We concatenate the

numerical features in Line 5 and combine them with the dummy encoded features in Line 6, in

order to end up with one vector per input record. After preprocessing, we evaluate di�erent

candidates for the hyperparameter lambda with cross-validation [Koh95] on the normalized

feature matrix X. Lara provides cross-validation as utility method, similar to popular ML li-

braries such as scikit-learn.
3

The learning algorithm supplied to the cross-validation is executed

k times – for k di�erent combinations of training sets and test sets obtained from the feature

matrix X and target vector y. This example trains a ridge regression model in Line 17 – 20, and

calculates its test error in Line 22 – 23.

3
http://scikit-learn.org/stable/modules/cross_validation.html
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1 // Column 0 contains the target variable, columns 1-10 contain
2 // numerical and columns 11-15 contain categorical features
3 val dataset = readAndClean("/path/to/data")
4 val encoded = dummyEncode(dataset, 11 to 15)
5 val vectors = concatNumericalFeatures(encoded, 1 to 10)
6 val features = concatVectors(vectors)
7 // y = 0: extract 1st column as target vector y
8 val (M, y) = Matrix(features, y = 0)
9 val X = Matrix.normalize(M, 1 to 10)

10 // Grid search over hyperparameter candidates
11 val regCandidates: Seq[Double] = // ...
12 for (lambda <- regCandidates) {
13 // 3-fold cross-validation for the hyperparameter lambda
14 val errors = ML.crossValidate(3, X, y) {
15 (X_train, X_test, y_train, y_test) =>
16 // Ridge regression
17 val reg = Matrix.eye(X_train.numCols) * lambda // diag(lambda)
18 val XtX = X_train.t ** X_train + reg
19 val Xty = X_train.t ** y_train
20 val w = XtX \ Xty // solve(XtX, Xty)
21 // Calculate mean squared error on test set
22 val residuals = y_test - (X_test ** w)
23 residuals.map(r => r * r).agg(_ + _) / y_test.size
24 }
25 // Print mean error for chosen hyperparameter
26 println(errors.sum / k)
27 }

Listing 4.1: An end-to-end training pipeline in Lara.

Overview of Lara’s Optimizations. In the next sections, we showcase how our IR enables

di�erent optimizations and present the LIR’s interplay with the monadic and combinator view.

To this end, Section 4.2.1 describes how the monadic view enables the pushdown of Matrix

UDFs to the DataBag. Section 4.2.2 discusses how the monadic representation enables operator

fusion across loop boundaries. Subsequently, we describe how to choose data layouts based

on interesting properties, by using the combinator view and its domain-speci�c semantics

in Section 4.2.3. Finally, Section 4.2.4 highlights the integration of cross-validation into the IR

and introduces optimizations for the applied learning algorithm based on its semantics in the

combinator view.

4.2.1 Operator Pushdown

Users can apply UDFs on Lara’s DataBag and Matrix types. However, this does not enforce

the concrete execution of the program, i.e., a UDF called in a Matrix operator can be rewritten

to a DataBag operation and vice versa. For instance, consider the normalization of columns

1 – 10 in Listing 4.1, Line 9. Even though the user implements the normalization on the Matrix

representation, it is bene�cial to push the operation to the DataBag representation.
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Analogous to many other common feature transformations (such as dummy or tf-idf [LRU14]

encoding), normalization is performed in two steps. These two steps are often called �t and

transform, e.g., in scikit-learn and Spark MLlib. The �t step computes an aggregate over the

feature column in a fold, e.g., the mean and variance in case of the normalize function. The

successive transform step changes the values of the feature column based on the aggregation

result of the �t step in a map, e.g., by subtracting the mean and dividing by the variance in case

of the normalize function. These steps are then repeated for all columns 1 – 10. In our running

example, the normalization is de�ned on the Matrix – after all features are combined in a single

sparse vector. Both functions, the fold and the map, call their UDF separately for each row.

Thus, if the functions are executed on a Matrix in Compressed Sparse Row (CSR) format (as in

our running example), the UDF performs the element-wise lookup of the column value on a

sparse vector, which has logarithmic complexity in the number of non-zero values (NNZ).

However, the numerical features are separate entries in the array elements (which provides

constant time access) of the DataBag before they are combined with the categorical features

in Line 5 & 6. In the following, we detail how Lara can push UDF applications from one type

to another in the IR. To this end, we �rst introduce conversion methods, which allow Lara to

track data provenance across type conversions, i.e., how and where features are stored in both

types. We then describe how a uni�ed representation of DataBag and Matrix as monads in the

IR enables the desired pushdown of UDFs.

TA TB

UA UB

mapf

ηA ηB
mapf

(a) TA→ UB

BagA Bag i,B

Set i,B

idx

ηB

(b) BagA→ Set i,B

Figure 4.2: Natural Conversion (a) and modi�ed conversion method in Lara (b).

Background: Conversion Methods. Generic type conversions correspond to a categorical

concept called natural transformations [ML13]. Natural transformations are polymorphic func-

tions ηA : TA→ UA which change the container type from T to U (e.g., from from Bag to Set)
irrespective of the element type A. Their characteristic property states that application of ηA
commutes with application of map f for all f , as depicted in Figure 4.2a. Unfortunately, this is

not the case when converting a DataBag to a Matrix. In this case, the container type, from Bag to

Set, and the type changes, from A to (i,A), introducing the index i of the matrix/vector. To over-

come this problem, the conversion methods (cf. Listing 4.1, Line 8) accept only DataBags with

instances of Lara’s vector type as elements or expect an index function of form idx : A→ (i,B),

as depicted in Figure 4.2b. Lara’s vector type provides instances for Product, Array, and Vector

in the moment. Therefore, Lara can track data provenance, i.e., how the access to a matrix

cell ((i, j ),value ) commutes with access to a (i,vector ) element in a DataBag, which enables

operator pushdown. Conversion methods are represented as monad comprehensions in the

monadic view, as depicted in Figure 4.3 (top arrows). In a �rst conversion step, the row index
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[0.0, 0.1]

[1.0, 1.1]

(0, [0.0, 0.1])

(1, [1.0, 1.1])

((0,0), 0.0) ((0,1), 0.1)

((1,0), 1.0) ((1,1), 1.1)

zipWithIndex()

project(value)

flatmap()

groupBy(row-index)
.project((column-index, v))

DataBag[Array] DataBag[(Int, Array)] Set[((Int, Int), Double)]

Figure 4.3: Conversion between DataBag and Matrix.

i is created on the unordered DataBag with a zipWithIndex method. Second, the indexed

elements are split up in a flatmap, which emits ((i, j ),value ) tuples that represent the cells of

the matrix. With this explicit representation of the conversion methods and types as monad

comprehensions, we can de�ne a mapping for the second-order functions that apply UDFs from

the Matrix type to the DataBag. A natural barrier for the pushdown of a function f , applied

on columns c , is any previously applied function д, which is applied on the same columns c

and has no inverse function. For instance, a function that is applied to a particular column

can not be pushed before the feature hashing [WDL
+

09] function that created the numerical

representation of this column.

Pushing down Bulk Operations. The uni�ed representation as monads (and the correspond-

ing conversions) enables us to reason about push downs of bulk operations (i.e., operations

that apply UDFs to all the rows/columns of a DataBag/Matrix) in a sound way. For instance,

consider the method forRows(udf: Vector => Double), which applies an aggregation function

to all rows of a Matrix. Intuitively, the UDF can be executed in a map on the DataBag, as its

elements represent rows. The monad comprehensions for the forRows method exemplify this

intuition:

1 for { rowCells <- M.groupBy(cell => cell.index.rowIndex) }

2 yield {

3 val rowVector = for { elem <- rowCells.values }

4 yield (elem.index.colIndex, elem.value)

5 val aggregate = udf(rowVector)

6 (rowCells.key, aggregate)

7 }

The Matrix cells are grouped by their rowIndex in Line 1. Next, all values in a group (i.e., all

cells of a row) are converted to a row vector {(colIndex ,value )} in Line 3 – 4 and then passed

to the UDF in Line 5.

The groupBy and the conversion to a vector (project) revert the conversion method depicted

in Figure 4.3 (bottom). Thus, if we pushdown the forRows UDF through the conversion method,

only the application of the UDF is left, which can be simply executed in a map on the DataBag.

Table 4.1 depicts mappings for all bulk-operations on rows of a matrix after pushdown. Using the

same mechanisms, we can execute bulk-operations de�ned over all columns, but need to convert

to a DataBag of columns. For instance, executing the operation forCols(a: Vector => Double)
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Table 4.1: Operator pushdown between DataBag and Matrix.

DataBag (row-wise) Matrix

B
u

l
k

-
O

p
e
r
a
t
i
o

n
s

map(m:Vector => Vector) forRows(m:Vector => Vector)
map(a:Vector => Double) forRows(a:Vector => Double)
withFilter(f:Vector => Boolean) forRows(f:Vector => Boolean)

flatmap : split in (colIdx, (rowIdx, value))

forCols(m:Vector => Vector)
forCols(a:Vector => Double)
forCols(f:Vector => Boolean)

.groupBy : group by colIdx

.map : (rowIdx, value) : values as vector

+ .map(m) or .map(a) or .withFilter(f)

R
a
n

g
e
s

withFilter(index:Int) row(index:Int)

flatmap : split in (colIdx, (rowIdx, value))

.groupBy : group by colIdx

.withFilter : select column with index

.map : (rowIdx, value) : values as vector column(index:Int)

on a DataBag requires the following comprehensions: flatmap.groupBy.map.withFilter(a) as

listed in Table 4.1. The flatmap splits the row-wise partitioned DataBag into separate cells. Then,

the cells that share the same column index are grouped and combined to a vector representation,

before the �lter UDF a can be applied.

Pushing down Row/Column Range Access. UDFs are often applied to particular row or col-

umn ranges. An example is the normalization in Line 9 of Listing 4.1, where the �rst 10 columns

are normalized. Selection of a row in a Matrix is pushed to the DataBag as a withFilter

method. A particular column is accessed via the M.column(index) method, which corresponds

to the following monad comprehensions:

1 for { colCells <- M.groupBy(cell => cell.index.colIndex)

2 if colCells.key == index

3 } yield {

4 for { elem <- colCells.values } yield {

5 (elem.index.colIndex, elem.value)

6 }

7 }

The guard (i.e., �lter predicate) in Line 2 selects the group that matches the requested column

index. Pushing the column selection to a DataBag, requires us to repartition its elements by

their column index, as depicted in Table 4.1.

4.2.2 Operator Fusion

As discussed in Section 4.2.1, feature transformations apply two consecutive steps: the �t
step aggregates column values (e.g., the mean and variance for normalization) in a fold. The

transform step changes the column values based on the aggregate in a map. If the feature

transformation is applied on multiple disjoint columns, Lara can fuse the consecutive fold and

map applications. This allows us to share a given pass over the data, and only requires a single
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fold and map operation, independent of the number of transformed columns. We brie�y discuss

operator fusion techniques, before we introduce the necessary control �ow and dependency

analysis which Lara applies to verify the applicability of operator fusion.

Background: Fold-Fusion. Fusion is based on two core operations of an algebraic data type T

with element type A: the function application on each element:

T[A].map[B](f: A => B): T[B]

and the generic structural recursion:

T[A].fold[B](zero: B)(init: A => B, plus: (B, B) => B): B

Function composition has been applied on several types [Wad88, CLS07]. It fuses consecutive

applications of UDFs in map second-order functions into a single, composed function call:

T.map(f1).map(...).map(fN ) = T.map(fN ◦ . . . ◦ f1)

Fold-fusion combines multiple fold applications on a type to a single fold. In the following

example code, the mean over a DataBag[Int] is calculated by computing the sum and the

count of its elements:

val sum = bag.fold(0)(e => e, (s1, s2) => s1 + s2)

val count = bag.fold(0)(e => 1, (c1, c2) => c1 + c2)

val mean = sum / count

The banana-split [BdM96] law states that pairs of folds that is applied on the same data type

can be fused into a single fold, resulting in following code:

val (sum, count) = bag.fold((0, 0)){ // zero

e => (e, 1), // init

((s1, c1), (s2, c2)) => (s1 + s2, c1 + c2)} // plus

val mean = sum / count

The cata-fusion [BdM96] law enables us to fuse map and filter operations into a consecutive

fold application. Lara leverages the fusion capabilities of Emma [AKM19], and applies them to

the monad representations of Matrix and Vector.

Operator Fusion over Loops. We demonstrate operator fusion on the dummyEncode method

of our running example (cf. Listing 4.1, Line 4), which is implemented as follows. For simplicity,

we hide the implementation details and only show the input parameters.

1 def dummyEncode(bag: DataBag[Array[Any]], columns: Seq[Int]) = {

2 var encoded = bag

3 for (columnIndex <- columns) {

4 // Fit: build a dictionary of column values

5 val dictionary = encoded.fold(zero)(vec => init(columnIndex), plus)

6 // Transform: create encoding in sparse vector

7 encoded = encoded.map(vec => createVectors(vec, columnIndex, dictionary))

8 }

9 encoded

10 }
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Line 5 and 7 depict the dummy encoding for a single column, which is applied iteratively for

all columns de�ned by the columns. The fold creates a dictionary that maps each distinct

column value to a unique index. The consecutive map replaces the categorical values by sparse

vectors containing a single non-zero entry at the index obtained by a dictionary lookup. A naïve

execution of the code (i.e., independently on each column) is suboptimal, as it requires two

passes over the data per column. In order to fuse the UDFs and save multiple passes over the

data, Lara performs (i ) a dependency analysis of the loop variable columnIndex, and (ii ) an

analysis of the UDFs to determine their access patterns to the elements of the DataBag.

Dependency Analysis. At �rst glance, it is not obvious that the operators can be fused. The

fold appears to be a fusion barrier, as the built dictionary is required to perform a lookup in

the successive map operator. A closer look reveals that the code accesses only a distinct feature

column within each iteration. Thus, when we would unroll the loop, the consecutive fold

applications could be fused (cf. Background: Fold-Fusion), if disjoint columns are accessed.

Analogously, we could combine all map applications.

val columnIterator = columns.toIterator
@whileLoop def WHILE(encoded: DataBag[Array[Any]]) = {
val hasNext = columnIterator .hasNext
if ( hasNext ) LOOP_BODY() else LOOP_SUFFIX()

@loopBody def LOOP_BODY() = {
val columnIndex = columnIterator .next()
val dictionary = encoded.fold(zero)( init , plus)
val updatedEncoded = encoded.map( createVectors )
WHILE(updatedEncoded)

}
@suffix def LOOP_SUFFIX() = { encoded }

}
WHILE(data)

Listing 4.2: Simpli�ed LIR of the loop in the dummyEncode method.

columnIterator

columnIterator

columnIterator

hasNext
hasNext

columnIndex
initdictionary

createVectorscreateVectors

de f
use

Lara analyses the loop based on the direct style control �ow representation of the LIR. It

validates that no loop-carried dependencies [AK01] exist and that the read and write accesses to

the array elements inside the UDFs are conducted with the columnIndex loop variable. The

code snippet in Listing 4.2 depicts the loop of the dummyEncode method in the LIR. We hide the

implementations of the UDFs in the fold and map in order to increase readability. The snippet

highlights the direct style control �ow representation, i.e., loops are replaced by recursive calls

to the WHILE, LOOP_BODY, and LOOP_SUFFIX methods. All native loop primitives supported in

Lara are translated to this canonical form and annotated (e.g., @whileLoop) to avoid ambiguity

during the analysis. The highlighted variables show the 1:N def-use chains [AK01] of the loop

variable columnIndex from the sequence iterator to the access in the UDF of the fold and the

map functions. The use-def chain of the dictionary created by the fold shows the dependency

52



4.2 Optimizing End-to-End Pipelines

val createVectors = (array: Array[Any]) => {
val columnValue = array.apply( columnIndex )
val index = dictionary .get(columnValue)
val dimensions = dictionary .size
// Create sparse, dummy encoded vector
val vector = SparseVector.apply(index, 1.0, dimensions)
val _ = array.update( columnIndex , vector)
array

}

Listing 4.3: Simpli�ed LIR of the createVectors UDF of the dummyEncode method.

to the map function. Direct edges between de�nition and usage of the columnIndex ensure that

a new value is taken from the iterator. To validate that the column index is not modi�ed, the

UDFs have to be inspected.

The code snippet in Listing 4.3 depicts the UDF createVectors of the map in the dummyEncode

method, which is called for each Array[Any] element of the DataBag. Direct access to the

columnIndex ensures that the read and write accesses to the array elements of the DataBag use

the exact values from the iterator. Read-only access to the dictionary validates that its values

are not modi�ed. Thus, Lara can verify that each consecutive iteration step reads and writes on

disjoint columns, if the values of the loop variable are known at compile time (as in our running

example which uses the constant sequence 11 to 15) or the function semantics guarantee

disjoint access (e.g., all Bulk-Operations in Table 4.1). Lara analyzes the UDFs executed in the

fold analogously.

Fusion. After the dependencies have been evaluated successfully, Lara unrolls loops to enable

operator fusion. First, we leverage the banana-split [BdM96] rule to combine the UDFs executed

in the fold operations, as they are applied on the same dataset; all dictionaries are created by

executing a single combined fold only (cf. Background: Fold-Fusion). Second, the successive

transformations to sparse vectors in the mapUDFs are fused, in order to apply all transformations

in a single map operation. Thus, the optimized code executes a single fold and a single map

only, independent of the number of transformed columns.

columnIndex

columnIndex

dictionary
dictionary

In general, operator fusion is always limited by pipeline breakers [Neu11], i.e., (aggregated)

data, which is required by a successive operator and thus, has to be materialized. While Lara

can not overcome this inherent limitation, it can fuse multiple folds that are applied on the

same data and thus, reduce the cost to a single pass over the data. Similar fusion techniques

have been proposed in the Stubby optimizer for MR [LHB12]. Horizontal packing combines

map (or reduce) functions from multiple jobs that use the same data set, which corresponds to

the described function composition for map and banana-split for fold functions. Lara leverages

white-box UDFs and control �ow analysis to ensure disjoint �eld access an thus enables these

techniques over loop boundaries. In the moment, Lara requires direct access to the loop variable

in its dependency analysis and does not support complex index expressions.

Type-based DSLs (e.g., in Spark and Flink) must execute the loop as-is, which is suboptimal as

it prevents pipelining and fusion. Their IR can only reason about the operators, e.g., the fold
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fold map fold map fold map

Evaluation Barrier Evaluation Barrier Evaluation Barrier

Iteration 1 Iteration 2 Iteration 3

Figure 4.4: Evaluation barriers due to lazy evaluation in type-based DSLs.

and map higher-order functions in the example. Control �ow and UDFs are not visible, which

prevents the required dependency analysis. Figure 4.4 depicts the evaluation barriers introduced

by the fold for the dummyEncode method. The fold triggers the evaluation and execution of

the the operator graph.

SystemML avoids dependency analysis and provides a transform function, which can apply

multiple pre-de�ned transformations on a dataset. Thus, it can automatically apply transforma-

tions over multiple columns as their semantics are known, but does not support user-de�ned

transformation functions.

4.2.3 Choosing a Data Layout

Choosing e�cient physical operators for linear algebra operations, such as matrix-matrix

multiplications, can have a huge impact on the runtime of ML pipelines [TK18]. We leverage

the combinator view to choose appropriate physical implementations of operators based on

the layout of the data. Figure 4.5 depicts three plan variants for the ridge regression algorithm

(Listing 4.1, Line 17 – 20) in the combinator view. Operators are represented as single entities in

an operator graph (e.g., ** denotes matrix multiplication). Similarly to query optimization on

relational algebra trees [GM93], Lara applies the following optimizations: (i ) expressions (i.e.,

sub-graphs) are transformed into equivalent expressions based on algebraic rules, (ii ) logical

operators are replaced by physical operator implementations and (iii ) the desired physical data

layouts are established by enforcers [GM93] based on interesting properties.

Transformation Rules. Lara provides an extensible set of rules to check for the applicability

of backend speci�c operators. We de�ne transformation rules to replace our default implemen-

tations of linear algebra operations in Scala. Lara applies these transformations for BLAS level

2 (i.e., matrix-vector) and level 3 (i.e., matrix-matrix) operations on dense data.
4

For instance

Lara replaces the whole subtree for X>X + I ∗ λ with a general level 3 BLAS matrix-matrix

multiplication dgemm (Figure 4.5b). Similarly, the general BLAS matrix-vector multiplication

dgemv is used to multiply X>y.

Physical Properties. Access patterns (row-, column-, or element-wise) of linear algebra opera-

tors and implementations can di�er per operand. For example, a sparse matrix multiplication has

fast access to the rows of the left operand and fast column-wise access to the right operand in the

best case. Matching those access patterns has a large impact on the performance. For instance,

suboptimal access pattern to Compressed Sparse Column (CSC) or CSR formats increases the

4
http://www.netlib.org/blas/#_blas_routines
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Data Access Pattern:
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[X, row] [X, row]
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[eye, ∅] [λ, const]
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>
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[y, ∅]

dgemv

\

(c)

Figure 4.5: (a) the combinator view for ridge regression (cf. Listing 4.1, Line 17 – 20) with

default operators, (b) replaced sub-trees with equivalent BLAS instructions, and (c ) an enforcer

convert for the interesting properties of plan variant (b).
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asymptotic complexity from constant to logarithmic in the number of non-zero values.

To overcome this problem, we annotate the edges of plan variants with the access pattern

of operators in a top-down traversal, similar to interesting properties in Volcano [GM93]. For

instance, the default Scala implementation of a matrix-matrix multiplication (**) in Figure 4.5a

yields the best performance in case of fast row-wise access to the left and fast column-wise

access to the right operand. In contrast, BLAS sub-routines expect column-wise partitioned

inputs, shown in Figure 4.5b for dgemm and dgemv. Lara considers the initial data format of

matrices (depicted in brackets next to the matrices) to create plan variants by implicitly inserting

conversion operators. Enforcers establish a certain data format, if the sources do not match

the propagated access pattern. Furthermore, certain operator implementations can produce

di�erent output formats, which allows us to choose the format depending on the properties

of the parent node. Consider the plan variant in Figure 4.5b as an example. Remember that

dgemv and dgemm expect column-oriented inputs, while the matrix X is in a row-wise format.

The interesting properties of the dgemv BLAS instruction match: the transposition > inverts

the column-wise properties, matching the original row-wise format of X. The same happens

to the dgemm BLAS instruction: the layout of matrix X matches the expectation of the �rst

operand of dgemm, but not the second (i.e., X has to be converted to a column-wise layout).

Figure 4.5c depicts a plan variant with an enforcer to convert X to a column-wise data layout.

The eye method, which creates an identity matrix, can produce the requested column-wise

format seamlessly.

Rule-Based Plan Selection. Lara currently employs a heuristic plan selection strategy which

is based on rules derived from the results of micro-benchmarks for operators. In case of dense

data, we observe that BLAS instructions heavily outperform our self-implemented operators.

Therefore, we greedily select the plan that replaces the highest number of operators with the

lowest numbers of BLAS instructions, i.e., we promote the usage of BLAS instructions that

cover the largest sub-trees. In case of sparse data, the layout choice has a major impact on the

performance, and we choose plan variants that match the desired properties with enforcers.

Note that we leave building a cost-model as well as a cost-based optimizer for future work. A

cost model would require access to statistics, e.g., about the shape of input data and cardinality

estimates, at compile-time to apply optimizations accordingly. Thus, we would rely on some

kind of meta-data, which stores such statistics over multiple program runs. Another interesting

strategy would be to implicitly ingest pro�ling functions (e.g., as map functions that are fused

with other UDFs) that gather statistics during the execution of the pipeline, e.g. statistics of

intermediate results and number of non-zeros. These runtime statistics can then be used to

re-optimize at run-time after natural execution barriers, e.g., after conversion to a matrix or

after data aggregations.

Compile-Time vs. Run-Time Code Analysis. Run-time statistics could also be used to over-

come the limitations of static code analysis. At the moment, Lara has to decide upfront which

matrix representation to choose – dense or sparse – as the optimization is done during compile-

time. While the best representation can often be determined for the initial data sources (e.g.,
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Figure 4.6: Cross-validation for ridge regression. Steps 1 and 2 depict the naïve execution with

redundant computations. Steps A, B and C depict the optimized execution, which computes

partial results outside the cross-validation loop.

due to user-de�ned formats in feature transformation methods or input �les), the best format

for intermediate results has to be chosen at runtime. Another drawback of static code analysis

is that it prevents the evaluation of dynamic control �ow predicates and thus, selection of the

best access pattern in such cases. The access patterns in the following listing are dependent on

dynamic control �ow:

var X = Matrix(someDataSet)

val Y = Matrix.rand(...)

if (sum(X)) // sum of all elements

X = X.t

println(X ** Y)

Lara cannot evaluate the predicate sum(X) during compile-time. Thus, Lara ignores variables dur-

ing the data layout optimizations that are modi�ed in dynamic if-else branches. Optimization

during run-time (e.g., after evaluation of the predicate) could overcome this problem.

4.2.4 Cross-Validation

Lara enables the integration of new high-level operators into its API and the de�nition of

additional optimizations based on their semantics. To showcase this feature, we introduce

an optimization for k-fold cross-validation [Koh95], which is a common technique in ML

pipelines to select well-working hyperparameters for models. Lara pre-computes linear algebra

operations on the individual training set splits outside of the validation loop to avoid redundant

computations.

Language Integration. K-fold cross-validation provides robust estimates of the generalization

error of a model for a given hyperparameter and ensures that every data point is in the test set

once. We implement cross-validation as utility function (Listing 4.1, Line 14). In our running

example, we use cross-validation to select a regularization constant lambda for the ridge
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Table 4.2: Linear algebra operations and their respective cost in the cross-validation method.

⊕ stands for element-wise operations.

Operation Time Complexity

Baseline Pre-Computation Per-Iteration Baseline Pre-Computation Per-Iteration Ratio

X>X ∀i, 0 < i 5 k : X∗i = X>i Xi
∑k−1

i=1
X∗i (k − 1)mn2 mn2 (k − 1)kn2

1 : (k − 1)

XX> ∀i, 0 < i 5 k : X∗i = XiX> concat X∗
[i ..k]

kn(m − m
k )

2 m2n (k − 1)m2
1 : (k − 2)

X>y ∀i, 0 < i 5 k : y∗i = X>i yi
∑k−1

i=1
y∗i (k − 1)mn mn (k − 1)kn 1 : (k − 1)

Xy ∀i, 0 < i 5 k : y∗i = Xiy concat y∗
[i ..k]

kn(m − m
k ) mn (k − 1)m 1 : (k − 1)

X ⊕ X ∀i, 0 < i 5 k : y∗i = Xi ⊕ Xi concat X∗
[i ..k]

(k − 1)mn mn (k − 1)mn k : (k − 1)

regression model.
5

Its execution is illustrated on the left side of Figure 4.6. Step 1 is independent

of the validation algorithm and partitions the speci�ed feature matrix X and target vector y into

k splits. In Step 2 , the ridge regression algorithm is executed k times. For k = 3, the algorithm

is executed once with X1 as test set and X2,3 as training set, next with X2 test set and X3,1 as

training set, and �nally with X3 as test set and X1,2 as training set.

Lara leverages the semantics of cross-validation to execute certain linear algebra operations

more e�ciently. We concentrate our detailed discussion on model training and, without loss of

generality, leave the calculation of the test error in Line 22 – 23 out of the discussion.

Detecting Redundant Computations. If we look carefully at the execution of the learning

algorithm in Figure 4.6, we observe that each feature matrix and target vector split is used twice

(k − 1 times in general) as part of the training set. Thus, the training algorithm is executed

k − 1 times on each split. This overlap poses potential for optimization: we can avoid redundant

computations by (partially) pre-computing the algorithm on the individual splits outside of the

validation loop.

The semantics of cross-validation guarantee that the individual splits do not overlap. Therefore,

we can treat the splits as block-wise partitioning of the feature matrix X with size m × n into k

matrix blocks X1 . . .Xk with size
m
k × n. Block-partitioned matrices can be multiplied when

they have conformable partitions [Eve80], i.e., the block matrix itself and the individual blocks

obey the rules of matrix multiplication. For example, X>X can be calculated as sum over its

k splits (i.e., matrix blocks X1 . . .Xk ) using the distributive law:

∑k
i=1

X>i Xi . This allows us

to pre-compute the matrix multiplication of the individual splits X>i Xi once outside of the

cross-validation loop (Figure 4.6, Step B ). In each particular iteration, the pre-computed results

of the test-set splits have to be added to calculate the �nal result (Figure 4.6, Step C ). The

time complexity for X>X for a matrix with m rows and n columns is O (n ∗m ∗ n). Under

regular execution, the multiplication has to be executed for each training set with m − m
k

rows and n columns. Thus, the overall complexity for all k iterations in the regular execution

is O (k[n ∗ (m − m
k ) ∗ n]) ≡ O ((k − 1)mn2). In the optimized execution, the multiplication

is performed once for all individual splits in Step B . Each split has
m
k rows and n columns,

5
Ridge regression is used for presentation reasons only – other algorithms, e.g., generalized linear models are

supported as well.
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Figure 4.7: Optimized combinator tree for ridge regression under cross-validation.

resulting in the complexity of O (k[nm
k n]) ≡ O (mn2) for all k splits. In each iteration k we only

have to add (k − 1) pre-calculated partitions of size n × n, resulting in the overall complexity of

O (k[(k − 1)nn]) for all iterations.

Cost Improvements. ML algorithms are composed of several operators for which we also

exploit the data redundancy introduced by cross-validation. Table 4.2 (Time Complexity) shows a

cost comparison for matrix-matrix, matrix-vector and element-wise operations. The calculation

depicts the overall cost of executing the operator k times during cross-validation on a feature

matrix X withm rows and n columns. X is divided into k splits and each split has
m
k rows and

n columns. This results inm − m
k rows per training set. Baseline shows the combined cost to

execute the operator for all training sets, i.e., the overall cost for using the operator in standard

k-fold cross-validation. Pre-Computation is the one-time cost for the part of the operator that

can be pre-calculated statically on each split. Per-Iteration is the combined cost to calculate

the �nal result based on the statically pre-computed values for all cross-validation iterations

for the particular operator. Ratio depicts the ratio between the complexity of the baseline and

the optimized version, e.g., 1 : (k − 1) means the baseline has (k − 1) × more time complexity.

Such cost computations can also be applied to estimate the additional memory required to store

pre-computed results.

Eliminating Redundant Computations. We introduced the cross-validation function in

Lara’s IR. Lara pattern matches calls to the cross-validation function and uses the combinator

view to represent the linear algebra operations of the cross-validation UDF. It then traverses the

combinator view of the UDF in post-order (i.e., from the sources) and checks if rewrites can be

applied based on the rules of the currently traversed operator node. Matching operator nodes

are split and the algorithm extracts operator trees for the pre-computation. The former sub-trees

in the original tree are replaced with calls to their results, as depicted in Figure 4.7 for the ridge

regression example. Two trees for the Pre-Computation are created, which calculate the matrix-

matrix multiplication for X>X and matrix-vector multiplication X>y for the individual splits.

The sub-trees extracted from the original tree are replaced with the Per-Iteration operation

of the sub-tree root node operation. An additional optimization pass eliminates remaining

shortcomings once the optimization for the cross-validation body is �nished, e.g., dead code

elimination and Common Subexpression Elimination (CSE) [AK01]. For instance, after the two

trees for the Pre-Computation are created, the transposition (>) of the splits X[1..k] would be

calculated for each tree separately. After CSE, the transposition is executed only once. Often,
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cross-validation is also part of an outer loop (e.g., when di�erent hyperparameter candidates

are validated). In such cases, Lara moves loop-invariant Pre-Computations out of the loop.

As a result, the Pre-Computation is computed only once in our example and we improve the

performance by a factor of 1 : (k − 1) ∗ h compared to naive execution, where h denotes the

number of hyperparameter candidates.

4.3 Evaluation

We implemented Lara and the outlined optimizations in Scala, based on Emma v0.2.3.
6

Opera-

tions on collections are backed by Scala Streams. The matrix/vector types apply netlib-java v1.1.2

for native BLAS routines in case of dense data and ScalaNLP Breeze v0.13.1 for sparse data.

Experiment Setup. We conducted our experiments on a server node with an Intel E5530

processor (2.4GHz, 8 cores), and 48GB main memory. We run on Oracle Java 8 VM (build

1.8.0_72-b15, -Xmx40g) and use Scala version 2.11.11.

Datasets. We conducted our experiments on synthetic data and two real world datasets: (i )

the Criteo
7

dataset contains click feedback of display ads. (ii ) The Reddit8
dataset contains

comments of the news aggregator website reddit.com.

Overview. We evaluate the optimizations for the preprocessing pipelines based on the intro-

ductory example (cf. Section 4.1.1) and our running example (cf. Listing 4.1) and validate the

importance of operator pushdown in Section 4.3.1 and 4.3.2. We measure the impact of data

layout optimizations on ML algorithms for dense and sparse data in Section 4.3.3. We benchmark

the optimizations for cross-validation and hyperparameter tuning in Section 4.3.4 and 4.3.5.

4.3.1 Preprocessing

In this experiment, we evaluate the presented optimizations on the preprocessing pipeline

of our running example depicted in Listing 4.1, Line 3 – 9. We conducted the benchmark on

di�erently sized samples of the Criteo dataset. We evaluate the impact of operator fusion

and pushdown on each of the three preprocessing steps in Figure 4.8. Figure 4.8a depicts the

runtime without pushing the normalization to the array representation of the data, while

the pushdown is performed in the experiment represented in Figure 4.8b. Encode includes

reading and converting the lines of the raw data�le to an array representation, as well as

dummy encoding the categorical features to sparse vectors (cf. Listing 4.1, Line 4). Normalize
transforms the numerical features to have zero mean and unit variance (cf. Listing 4.1, Line 9).

Concat combines the numerical and the dummy encoded features in a single sparse vector

(cf. Listing 4.1, Line 5 – 6). In Figure 4.9, we compare Lara to scikit-learn, Spark, and Tensor�ow

Transform on di�erent data sizes.

6
http://emma-language.org/

7
http://labs.criteo.com/2013/12/download-terabyte-click-logs-2/

8
http://�les.pushshift.io/reddit/comments/
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Discussion. Baseline shows the runtime for the pipeline executed without any optimizations.

Lara depicts the results with operator fusion and function composition (cf. Section 4.2.2).

Figure 4.8a depicts the results without operator pushdown for the normalization. Thus, the

normalization is executed on sparse vectors. Under baseline execution, (i ) the encoding is

conducted for each column separately, requiring 5 ∗ 2 passes over the data. (ii ) the value

concatenation is executed in two separate map operators, and (iii ) the normalization is applied

to each column separately, requiring 10 ∗ 2 passes over the data. Lara enables the following

optimizations: (i ) Instead of separately encoding each column, a single fold creates all column

dictionaries and then leverages these for encoding the column values in a single map operation.

This reduces the complexity to two passes, independent of the number of encoded columns.

(ii ) Lara fuses the two map UDFs for concatenating the vector into a single map, which reduces

the number of functions calls. (iii ) The normalization bene�ts in the same way as the encoding,

and reduces the number of passes to two. As the normalization is not pushed to the array

representation, access to the numerical features in the UDFs su�ers from the slow element-wise

access of the sparse vectors: element-wise access requires a binary search with a cost that is

logarithmic in the number of non-zero values of the row. Figure 4.8b depicts the results with

operator pushdown in the baseline and Lara. As the elements are still stored in an array, read

and write access to the features has constant cost. The scaling benchmarks in Figure 4.9 show

that Lara and Spark scale linear with the increasing data size. Both execute in a streaming

fashion and thus, are not a�ected by growing data sizes. Scikit-learn loads the whole dataset in

memory, which leads to degrading performance for larger data sizes and out of memory errors.

Results. The baseline without pushdown of the feature normalization takes 5.75× longer than

Lara without pushdown and 16.1× than the completely optimized version. Overall, the baseline

with pushdown is 7.3× slower than Lara. Lara improves the runtime for encoding by 4.7×

compared to the baseline as the number of passes over the data is independent from the number

of encoded features. Normalization with pushdown is 12.5× faster. This is roughly twice as

much improvement compared to the encoding. This is expected as twice as much columns are

normalized. Even though the access to the columns in logarithmic time degrades the overall

runtime of Lara without pushdown, it is still 6.2× faster than the baseline without pushdown.

Concatenation of the features to a single sparse vector requires no data materialization, as only

map operators are used. Thus, the baseline and Lara can both stream data, and the function

composition applied by Lara does not yield signi�cant bene�ts. Figure 4.9 shows that scikit-

learn initially outperforms single core Spark but degrades heavily and fails to execute for the

25GB sample due to out-of-memory errors. It already uses 15GB of memory for the smallest

sample. For the 15GB sample, scikit-learn uses the whole 48GB main-memory available on

the cluster node, which leads to 10.7× worse performance compared to the initial data sample.

Lara outperforms scikit-learn by 2.1 and 7.3×. Lara consistently executes around 3× faster

than single threaded execution in Spark. Spark with 8 parallel executors outperforms Lara

(on a single core) by a factor of 2.2×. Tensor�ow Transform only supports the unoptimized

DirectRunner and Google Data�ow as execution backends of Apache Beam in the moment,

Tensor�ow runs on Apache Beam, but only supports Google Data�ow and the unoptimized
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Figure 4.8: Preprocessing steps in detail on a 5GB sample.

Figure 4.9: Preprocessing on di�erent data sizes and systems.

DirectRunner as back-ends in the moment. We ran Tensor�ow Transform (TFT) on our cluster

node with the DirectRunner, which failed with an realloc error after successfully applying

the preprocessing for the 5GB sample. It fails to execute on the larger samples.

4.3.2 Operator Pushdown

In this experiment series, we evaluate the e�ects of operator pushdown based on Line 6 – 14

in the introductory example in Section 4.1.1, which applies a �lter on the third column of the

vectorized join result. The baseline executes the pipeline as speci�ed, applying the �lter on

the matrix type. Lara pushes the �lter application to the DataBag representation, before it is

converted to a matrix. We conduct the experiments on a normalized version of the Reddit

dataset with 1.4 million users and 31 million comments. The vectorize UDFs extract the id,

down-votes, up-votes, and perform feature-hashing [WDL
+

09] of the n-grams obtained from

the user-name (n = 2) and comment-text (n = 10) to a sparse vector space of 10000 and 50000.

Discussion. As described in Section 4.3.1, the element type of the DataBag representation

(product types for user and comment) provides constant time access. The �lter UDF of the

forRows method is called for each row of the CSR matrix. Element-wise access to a particular

value in the sparse row vector has logarithmic complexity. In a CSC matrix, the �lter UDF could

be evaluated for all non-zero values of the vector that represents the �ltered column but would
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Table 4.3: Benchmarks on data access patterns.

Algorithm Variant

Feature Layout

column-wise row-wise

Ridge Regression

Scala 22.81 ± 0.155 s 56.57 ± 0.346 s

BLAS 0.44 ± 0.272 s 0.46 ± 0.072 s

BLAS+Convert 0.63 ± 0.003 s 0.64 ± 0.097 s

Logistic Regression w/ BGD

1 Iteration

Breeze 1.36 ± 0.074 s 1.53 ± 0.075 s

Breeze+Convert 0.09 ± 0.002 s 0.07 ± 0.003 s

BLAS 0.02 ± 0.001 s 0.02 ± 0.001 s

Logistic Regression w/ BGD

100 Iterations

Breeze 130.37 ± 2.579 s 168.99 ± 8.080 s

Breeze+Convert 0.92 ± 0.143 s 0.87 ± 0.041 s

BLAS 1.42 ± 1.514 s 1.69 ± 0.693 s

require a conversion beforehand. It is important to note that the pushdown is only possible

because the �lter is applied to the numerical feature down-votes. An inherent barrier for the

pushdown of a function f , applied on columns c , is any previously applied function д, which is

applied on the same columns c and has no inverse function. The feature hashing applied on the

user-name and comment-text has no inverse and would prevent the �lter pushdown.

Results. Lara takes 120.60 ± 7.30 seconds to create the matrix representation of the �ltered

join result, while it takes 881.41 ± 27.95 seconds to run the pipeline without �lter pushdown.

Thus, �lter pushdown achieves an performance improvement of 7.3×.

4.3.3 Data Layout

In this experiment series, we benchmark the impact of the matrix data layout on the performance

of ML algorithms. We �rst evaluate ridge-regression as shown in Listing 4.1, Line 17 – 20. It

calculates the solution directly using a solver. Next, we evaluate logistic regression with batch

gradient descent (BGD). The algorithm calculates the model iteratively over a �xed number of

iterations. An implementation in Lara is depicted in Listing 4.4. We evaluate both algorithms

on synthetic datasets with 10000 rows and 1000 columns. We use sparse data with 10 percent

non-zero values for the logistic regression experiments.

Discussion. All results are depicted in Table 4.3. Ridge regression is conducted on dense data

with row- and column-wise formats of feature matrix X. Scala depicts the result for our own

Scala implementations of dense linear algebra operators. BLAS depicts the results with BLAS

instructions. BLAS+Convert depicts the results with BLAS and enforcers that establish the

desired data layout for the dgemm instruction. Scala executes the plan depicted in Figure 4.5a

for row-wise and column-wise features. BLAS executes the variant shown in Figure 4.5b for

both layouts. For row-wise features, BLAS+Convert executes the plan shown in Figure 4.5c. For

column-wise features, BLAS+Convert executes a plan variant that converts the input to the

transpose (>), both for the dgemm and dgemv instruction, to achieve a compliant data layout.
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1 var weights = Vector(...) // initialize weight vector
2 for (_ <- 0 until Iterations) {
3 val hyp = X ** w
4 val exp = hyp.map(value => 1 / (1 + math.exp(-1 * value)))
5 val loss = exp - y
6 weights = weights - alpha * ((X.t ** loss) / X.numRows)
7 }

Listing 4.4: Logistic regression with BGD in Lara.

The results for logistic regression are conducted on sparse data (10 percent non-zero values)

and we ran 1 and 100 iterations. Analogous to the ridge regression example, we conducted the

experiments on row- and column-wise features X. Breeze depicts the results for Lara, which

internally uses the Breeze library to execute sparse linear algebra on matrices in compressed

sparse row (CSR) and column (CSC) layout. Breeze+Convert depicts the results when an enforcer

establishes the desired data layouts of the operators (Listing 4.4): for row-wise features, Breeze+
Convert converts the feature matrix X used in the multiplication with the loss vector X.t **

loss (cf. Listing 4.4, Line 6); for column-wise features, Breeze+Convert introduces an enforcer

for X read in the multiplication with the weight vector X ** w (cf. Listing 4.4, Line 3). BLAS
represents the results for dense matrix representation.

Results. The benchmarks for ridge regression on dense data show the importance of spe-

cialized physical operators. Using the BLAS subroutines is 51.8× faster for column-wise and

122× faster for row-wise features compared to the native Scala implementation. For the Scala

implementation, the column-wise layout matches the properties of the operators (cf. Figure 4.5a)

and is 2.4× faster than the row-wise layout. Converting the matrix for the BLAS instructions

(BLAS+Convert) introduces a performance overhead of 1.43× for column and 1.39× for row-

wise features: faster execution of the BLAS instructions can not overcome the overhead that is

introduced by the layout conversion.

The experiments for sparse data show the importance of choosing the best-suited data format.

The initial feature layout only satis�es the access pattern of one of the two matrix-vector

multiplications. Column-wise partitioned features are slightly faster, as the loss vector used in

X.t ** loss is larger than the weight vector (by factor 10 in our experiments). The variants

that introduce an enforcer to satisfy the desired access pattern of the operators increase the

performance by a factor of 15.1× for 1 and up to 141.7× for 100 iterations in case of column-wise

partitioned features. An enforcer for row-wise partitioned features brings the execution time

on par with the column-wise features and achieves an up to 194× performance improvement

for 100 iterations. This is due to the asymptotic access cost, which changes from logarithmic

to constant. The execution on a dense format using BLAS instructions is faster for 1 iteration,

but its performance degrades for 100 iterations and is 1.54× slower for column-wise and 1.9×

slower for row-wise features compared to the sparse implementation. This is due to the sparsity

of the data, which results in faster execution for sparse formats in case the right access patterns

are established.
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Figure 4.10: Cross-validation with ridge regression.

4.3.4 Cross-Validation

In this experiment series, we evaluate the impact of the proposed rewrites for cross-validation.

We �rst evaluate ridge-regression as shown in Listing 4.1, Line 17 – 20. Next, we evaluate

logistic regression with batch gradient descent (BGD) that calculates the model iteratively over

a �xed number of iterations (cf. Listing 4.4). Both algorithms are evaluated on synthetic datasets.

Each �gure depicts the results for a �xed number of columns (1000) and folds (5 and 10). The

number of rows in the dataset is scaled on the x-axis.

Ridge Regression Discussion. Figure 4.10 depicts the results for dense data. The Baseline
implementation executes the algorithm without the proposed optimizations for cross-validation

described in Section 4.2.4. Lara executes the matrix-matrix and matrix-vector multiplications

in a Pre-Computation step on each split before the cross-validation iterations are executed.

Table 4.2 shows the time complexity for operations in the baseline and Lara.

Ridge Regression Results. Lara is up to 65× faster than the Baseline for �ve folds and up

136× faster for ten folds. This heavily exceeds the expected ratio from the cost estimation

in Table 4.2. We relate this to the very small intermediate result for the Pre-Computation of

X>X. The intermediate results for the individual splits have the size n×n, where n is the number

of columns in the training matrix X. Thus, Lara enables users to explore up to a magnitude

more models in the same time, which potentially results in better models.

Logistic Regression Discussion. Figure 4.11a and 4.11b depict the results on dense data,

while Figure 4.11c and 4.11d depict the results for sparse data. The experiment setup matches

the previous experiment series on ridge regression. In the Baseline, the two most expensive

operations are the multiplication Xw of the feature matrix X with the weight vector w , and the

multiplication X>loss of the transposed feature matrix with the loss vector loss to calculate

the gradient. Lara is able to extract these operations to lower the computational complexity, as

described in Section 4.2.4. The Pre-Computation of the hypothesis hyp can now be calculated

in a single matrix multiplication XkW by stacking all weight vectors wk into a matrix W.
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Figure 4.11: Cross-validation with logistic regression.

Logistic RegressionResults. On dense data, Lara is up to 4.8× faster for 5 folds and 8.6× faster

for 10 folds than the baseline (Figure 4.11a and 4.11b). The impact of the redundant computations

in the baseline grows with the number of rows in the training set. Additionally, Lara bene�ts

from the more e�cient execution that leverages a single matrix-matrix multiplication instead of

multiple matrix-vector multiplications in the baseline. On sparse data, Lara achieves a speedup

of up to 1.2× for 5 folds and 1.4× for 10 folds compared to the baseline (Figure 4.11c and

4.11d). The cross-validation optimization is only bene�cial once the number of rows is larger

than 50000 rows. In contrast to the dense implementation, the Pre-Computations for sparse

data cannot leverage more e�cient instructions, and the speedup is solely based on the cross-

validation optimization. To summarize, Lara also achieves considerable speedups in case of

iterative algorithms due to the CV optimizations.

4.3.5 Hyperparameter Tuning

In this experiment series, we evaluate the performance impact of our proposed rewrites for the

cross-validation utility function with hyperparameter tuning. First, we evaluate hyperparameter

tuning for ridge regression. We evaluate di�erent λ values for the regularization matrix reg as

hyperparameters, as shown in the running example. Next, we evaluate logistic regression with

BGD in a second experiment series. Here, we evaluate di�erent initializations of the weight
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Figure 4.12: Hyperparameter tuning for ridge regression.

vector w . The feature matrix has 1000 columns in both experiment series, while we scale the

number of rows. We tune for 5 and 10 di�erent hyperparameters and validate them with 5 and

10 fold CV. The logistic regression with BGD runs for a �xed amount of 100 iterations.

Ridge Regression Discussion. Figure 4.12 depicts the results of the benchmark. The Baseline
executes the cross-validation and hyperparameter loop without rewrites but uses BLAS instruc-

tions. We provide experiments for two optimization variants: Lara (CV only) depicts the results

of the cross-validation optimizations without removing loop invariant code. Lara depicts the

results after the loop invariant code is pulled out of the hyperparameter loop (cf. Section 4.2.4).

Ridge Regression Results. The baseline implementation takes 5× and 10× longer than the

single cross-validation (cf. Section 4.3.4), because it is executed for 5 and 10 hyperparameters.

Lara (CV only) is up to 141× faster than the baseline, which is analogous to the improvements

for a single cross-validation. Lara with all optimizations achieves up to 800× speedups compared

to the baseline and is up to 8× faster than Lara (CV only).

Logistic Regression Discussion. We evaluate the hyperparameter tuning for logistic regres-

sion on dense and sparse matrix representation with 10 percent non-zero values. Figure 4.13

depicts the results for dense matrix representation and Figure 4.14 depicts the result for sparse

matrix representation of the benchmark. The baseline executes the cross-validation and hy-

perparameter loop without rewrites but uses BLAS instructions. We provide results for an
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Figure 4.13: Hyperparameter tuning for logistic regression in dense matrix representation.

implementation that uses batching as additional baseline (similar to the approach presented

in TuPaQ [STH
+

15]) to provide a reference point for our optimization. Batching reduces the

number of times the dataset has to be read from n times (i.e., for each hyperparameter indi-

vidually) to one time. It batches the model training by combining the weight vectors w (i.e.,

the hyperparameters) into a matrix W, and thereby replaces n matrix-vector multiplications

h = Xw with a single matrix-matrix multiplication Y = XW. Lara applies the optimizations

presented in Section 4.2.4. The hyperparameter loop adds an additional nesting layer: we do

not use a single weight vector w per fold k , but a matrix W, which contains all the weight

candidates (hyperparameters) as columns, thus hyp = [W0, ...,Wk ]. Therefore, the resulting

Pre-Computation for the individual folds involves k2
iterations, as depicted in Listing 4.5.

Logistic Regression Results. Batching outperforms the baseline by up 5× for 10 hyperparam-

eters. Lara achieves speedups of up to 8× compared to the baseline. Up to 10000 rows, Lara

and batching provide comparable performance. For larger number of rows, Lara outperforms

batching by up to 1.8×. Batching performs better with increasing numbers of hyperparameters,

whereas Lara gains a performance advantage for an increasing number of folds for the CV.

For the sparse matrix representation, we can observe that the baseline outperforms batching and

Lara until a scaling factor of 50000 rows. For a small number of rows, the baseline is up to 1.5×

faster. Until 10000 rows, Lara and batching provide comparable performance. Batching performs

best with a large number of hyperparameters and a small number of folds in comparison to
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Figure 4.14: Hyperparameter tuning for logistic regression in sparse matrix representation.

the other approaches: it slightly outperforms Lara by 1.1× and the baseline by 1.3× for 10

hyperparameters and 5-fold CV. In contrast, Lara achieves its best performance with a small

number of hyperparameters and a large number of folds: it outperforms batching by 1.2×

and the baseline by 1.5× for 5 hyperparameters and 10-fold CV. We account the loss in Laras

performance for smaller data sizes to the management and access cost of the weight matrices for

the di�erent hyperparameters. Even though batching does not require additional data structures,

it can not exploit a more e�cient instruction for the multiplication of the feature matrix with

the weight matrix. In future work, we plan to integrate batching as a rewrite rule for tuning

large a large number of hyperparameters.

for (i <- 0 until k) {
for (j <- 0 until k) { // Wj from hyp-list
val h = X_traini ** Wj
val exp = h.map(value => 1 / (1 + math.exp(-1 * value)))
val loss = exp - y_traini
val si, j = X_traini.t ** loss

}
}

Listing 4.5: Pre-Computation for logistic regression with hyperparameter tuning.
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4.4 Related Work

ML Libraries & Languages. SystemML [BBE
+

14] and Mahout Samsara [SPQ
+

16] have R-like

linear algebra abstractions and execute locally or distributed on Hadoop and Spark. They

apply pattern-based rewrites and inter-operator optimizations such as operator fusion, and

SystemML’s execution strategy is based on cost estimates. Mahout Samsara does not provide

substantial relational algebra capabilities. SystemML provides a transform function to apply

pre-de�ned feature engineering methods, such as dummy encoding, binning, and missing

value imputation, to raw datasets. SystemML can fuse the speci�ed transformations, as their

semantics guarantee disjoint column access. In contrast to Lara, users can not specify their own

transformation UDFs in SystemML.

Delite [CSB
+

11] is a compiler framework for DSLs providing a staged IR based on higher-

order functions. OptiML [SLB
+

11] is a DSL for machine learning based on the Delite [CSB
+

11]

framework. It shares a lot of ideas with Lara, as it provides pattern-based rewrites for linear

algebra operations and operator fusion to avoid intermediate results. OptiML does not provide

optimizations based on control �ow analysis and is restricted to linear algebra operations.

KeystoneML [SVK
+

17] executes ML pipelines on Apache Spark, automatically chooses solvers,

and selects data materialization strategies. Due to its type-based DSL, KeystoneML can not

apply operator re-ordering and fusion.

To the best of our knowledge, Lara is the �rst language to combine linear and relational algebra,

which is at the same time able to reason and optimize across the two algebraic abstractions,

control �ow and UDFs.

ML Speci�c Optimizations. Kumar et al. [KNP15] propose learning of linear models on data

in relational databases, which was later extended to linear algebra operators [CKNP17]. In this

work, linear algebra operations can be pushed down to relations in databases, similar to [CS94].

control �ow, UDFs and general preprocessing pipelines are not considered.

SystemML provides a ParFOR [BTR
+

14] primitive which, depending on the access patterns to the

data, executes the task de�ned in the body of the loop in parallel. It applies several optimizations

for e�cient execution in both single-node and distributed environments. Similar to this work,

Lara IR allows to detect task-parallelism. The loop fusion presented in Section 4.2.2 detects

independent tasks (e.g., the encoding of distinct columns), but fuses them instead of executing

them in parallel. Executing those in parallel is left for future work. Furthermore, SystemML

introduced operator fusion [ELB
+

17, BRH
+

18], which generates linear algebra kernels based on

skeleton classes. During a cost-based selection, the best plan with regards to fusion and caching

for pipeline breakers is chosen. While the fusion techniques used in SystemML are superior to

those presented in this work, SystemML does not consider collection processing for fusion.

Yuan Yu et al. [YAB
+

18] extend TensorFlow with support for dynamic control �ow, but, to the

best of our knowledge, do not perform control �ow and UDFs analysis to apply rewrites such as

operator fusion. TuPaQ [STH
+

15] is a framework for automated model training and supports

custom optimizations such as batching to train multiple hyperparameters for linear models in

parallel, which can be integrated in Lara. MLBase [KTD
+

13] provides high-level abstractions for
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ML tasks and basic support for relational operators. Its optimizer can choose between di�erent

ML algorithm implementations. In contrast to Lara, it does not consider relational operators

during optimization and thus provides no capabilities for holistic optimizations.

Execution Engines. Weld [PTS
+

17] provides a functional IR and a lazily evaluated runtime

API, which is used to collect operator code from di�erent libraries, e.g., Python Pandas and scikit-

learn. Its optimizations focus on e�cient data movement of data-parallel operators between

di�erent libraries. Domain-speci�c optimizations such as reordering linear algebra and operator

pushdown are not supported. Scalable linear algebra on a relational database system [LGG
+

18]

proposes a system to e�ciently execute and optimize linear algebra over a parallel relational

DBMS. It uses the foreign function interface of the DBMS to execute UDFs and complex linear

algebra operations, which prohibits holistic optimizations and requires data movement in

case of end-to-end pipelines. Meta-Data�ows [FCW
+

18] proposes a framework for exploratory
execution of data�ows. It provides a high-level API with ML algorithms as function calls and

does not focus on optimizing pipelines including UDFs.

TensorDB [KC14] extends the array database SciDB [Bro10] with tensor-algebraic operations

for tensor decomposition and users can interleave relational and tensor operators. TensorDB

implements tensor decompositions in the database and thus, can decompose tensors that exceed

the available main memory. It focuses on mixed relational and tensor operators and to the best

of our knowledge does not support complex UDFs, e.g., for feature transformations.

4.5 Conclusion

In this chapter, we present Lara, a DSL for end-to-end machine learning pipelines for model

training. We based Lara on three key requirements that a DSL design should adhere to, in order to

enable holistic optimizations: (i ) The user-facing API should be declarative and provide dedicated

types for both domains – the execution order and operator implementation is independent

of the program speci�cation. (ii ) The complete pipeline should be visible by the optimizer –

next to the data types and operations, UDFs and control �ow have to be analyzed to perform

certain optimizations. (iii ) The IR should provide di�erent levels of abstraction for diverse

optimizations – a uni�ed representation of types is required to reason about operator fusion

and pushdown, while domain-speci�c optimizations require a high-level representation of

operator semantics. We showcase such a DSL and IR and presented concrete optimizations on

the example of an end-to-end ML pipeline that yield speedups of up to an order of magnitude.

Limitations & Future Work. Our prototype is not integrated into a dedicated runtime nor

uses code-generation at the moment. This would alleviate several shortcomings of our current

implementation: we did not yet implement a robust caching mechanism, e.g., to test di�erent

models on the same feature set. Memory-safe caching requires runtime support; simply caching

data in the JVM heap is subject to out-of-memory errors. Emma supports caching for the DataBag

type, but Lara misses a robust implementation for matrices in the moment. The common view as

monads enables the fusion of linear algebra operators with applications of UDFs. Lara currently
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4.5 Conclusion

does not apply fusion of linear algebra operators and UDFs applications, as our current dense

(BLAS) and sparse (Breeze) backends do not support fused operators. Future work could extend

our optimizations on data layout access patterns to generate kernels for sparse linear algebra

operations with UDF support and hardware-e�cient code by integrating ideas from recent

work [KKC
+

17, BRH
+

18, KKS
+

17]. Furthermore, one could extend the combinator view by

integrating more data representations (e.g., block-wise or compressed [EBH
+

16]). To apply the

layout optimizations also to intermediate results, it is essential to extend Lara to support run-

time code analysis and a cost-based optimizer. Furthermore, we restricted the scope of this work

to single-node execution and focus on the performance impact of our holistic optimizations.

We think that hybrid parallelization and distribution strategies inspired by the hybrid approach

of SystemML are other interesting directions for future work.
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5

Fused Operator Pipelines

Requirements for data analytics applications based on machine learning techniques have

changed over the last years. End-to-end ML pipelines nowadays go beyond pure linear al-

gebra and often also include data preparation and transformation steps (ETL) that are best

de�ned using relational algebra operators. Data scientists construct feature-vector represen-

tations for training ML models by �ltering, joining, and transforming datasets from diverse

data sources [ZKR16] on a daily basis. This process is often repeated many times in an ad-hoc
fashion, as a variety of features are explored and selected for optimal predictive performance.

Such pipelines are most conveniently expressed in languages with rich support for both ETL

and ML tasks, such as Python or R, but these implementations do not scale. In enterprise setups,

the source data usually resides in a data warehouse. One possible strategy in such situations

is to run the ETL part of the pipeline in situ, and the ML part in a specialized engine such as

SciDB [Bro10] or RasDaMan [BDF
+

98]. This approach has two drawbacks. First, moving data

between engines is an expensive operation that is frequently repeated as the pipeline is re�ned.

Second, it does not allow to easily join warehouse and external data sources without support

by the system [TÖZ
+

16].

Parallel data�ow engines such as Spark [ZCF
+

10] or Hadoop [Apa] o�er a more �exible execu-

tion infrastructure that does not su�er from the problems outlined above. Initially developed for

ETL-like workloads, these systems have been increasingly used by practitioners to implement

ML algorithms [MBY
+

16, BDE
+

16, SPQ
+

16]. To support scalable execution of ML workloads, the

functionality of established libraries for scalable linear algebra, such as ScaLAPACK [CDPW92],

is being implemented on top of parallel data�ow systems by projects like SystemML [GKP
+

11],

MLlib [MBY
+

16], Apache Mahout Samsara [SPQ
+

16], and Pegasus [KTF09]. A common run-

time engine avoids data transfer, but the mismatch in data representation still manifests itself

when executing mixed analytics pipelines. While data�ow engines typically row-partition large

datasets, scalable linear algebra operators are implemented on top of block-partitioned, or

blocked matrices. The di�erence in the partitioning assumptions results in a re-partitioning

barrier whenever a linear algebra operator follows a relational one. The data�ow engine has to

re-partition the entire row-partitioned dataset into a block-partitioned matrix. One possible

solution would be to execute linear algebra operators on row-partitioned matrices. Although

this performs well for operations that access one row at a time (e.g., to calculate the sum for

73



each row), superlinear operations, such as matrix multiplication that consume multiple rows

and/or columns become very ine�cient [GKP
+

11]. For computational and storage e�ciency,

the majority of scalable linear algebra frameworks perform matrix multiplications on blocked

matrices [GKP
+

11, HBY13, KTF09].

Research Contribution. In this chapter, we demonstrate the optimization potential of fus-

ing relational and linear algebra operators.
1

As a �rst step, we focus on a common pattern

– a relational join, followed by a per-element transformation for feature extraction and vec-

torization, and a subsequent matrix conversion. To reduce the total shu�ing costs of this

operator chain, we propose BlockJoin, a specialized distributed join algorithm that consumes

row-partitioned relational data and directly produces a block-partitioned matrix. We focus on

the major drawback posed by an independent operator chain: The intermediate result of the

join, row-wise partitioned by the join key, is discarded immediately to form a block-partitioned

matrix. This materialization implies the risk of heavy load data on a few nodes for skewed data,

which results in performance degradation. Even more important, it results in an unnecessary

shu�e operation for the join in general. BlockJoin avoids the materialization of the interme-

diate join result by applying the vectorization function and the successive block partitioning

independently to both relations. Analogous to joins that have been proposed for columnar

databases [LR99, BMK99, THS
+

09, AMH08], BlockJoin builds on two main concepts: index joins
and late materialization. More speci�cally, we �rst identify the matching tuple pairs and their

corresponding row indexes in the matrix by performing a join on the keys and tuple-ids of the

two relations (analogous to TID-Joins [MR94]). Based on the gathered metadata, we apply the

vectorization function separately to the matching tuples of both relations, and repeat this for

the block partitioning, without having to materialize the intermediate join result. Therefore, we

can apply di�erent materialization strategies for the matrix blocks based on the shape of the

input relations, namely Early and Late materialization. Our experiments show that BlockJoin

performs up to 6× faster than the state-of-the-art approach of conducting a row-wise join

followed by a block-partitioning step.

In summary, we make the following contributions:

• We demonstrate the need for implementing relational operators producing block-parti-

tioned datasets (cf. Section 5.1.2).

• We propose BlockJoin, a distributed join algorithm which produces block-partitioned

results for workloads mixing linear and relational algebra operations. To the best of our

knowledge, this is the �rst work proposing a relational operator for block-partitioned

results (cf. Section 5.2).

• We provide a reference implementation of BlockJoin based on Apache Spark with two

di�erent block materialization strategies (cf. Section 5.3).

1
This chapter is based on [KKS

+
17].
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• We provide a cost model to select the best-suited materialization strategy based on the

shape of the input tables (cf. Section 5.2.4).

• We experimentally show that BlockJoin outperforms the baseline approach in all scenarios

and, depending on the size and shape of the input relations, is up to 6× faster. Moreover,

we show that BlockJoin is skew resistant and scales gracefully in situations when the

state-of-the-art approach fails (cf. Section 5.4).

5.1 Background

In this section, we introduce the blocked matrix representation. We also discuss a running

example we will use throughout the chapter and discuss the state-of-the-art implementation

for data�ow systems.

5.1.1 Block-Partitioned Matrix Representation

Distributed data�ow systems use an element-at-a-time processing model in which an element

typically represents a line in a text �le or a tuple of a relation. Systems that implement matrices in

this model can choose among a variety of partitioning schemes (e.g., cell-, row-, or column-wise)

for the matrix. For common operations such as matrix multiplications, all of these represen-

tations incur huge performance overheads [GKP
+

11]. Block-partitioning the matrix provides

signi�cant performance bene�ts. This includes a reduction in the number of tuples required to

represent and process a matrix, block-level compression, and the optimization of operations

like multiplication on a block-level basis. These bene�ts have led to the widespread adoption

of block-partitioned matrices in parallel data processing platforms [GKP
+

11, HBY13, KTF09].

A blocked representation splits the matrix into sub-matrices of �xed size, called blocks, as

depicted in Figure 5.1. These blocks become the processing elements in the data�ow system.

Fixed-sized blocks greatly simplify the necessary join operations in distributed systems for

element-wise and matrix-multiplication. Fixed-sized squared blocks simplify the combination

of blocks using di�erent dimensions for the join predicate, e.g., to join two matrices A and B on

A.block-row-index = B.block-column-index for matrix-multiplication.

0 1 2 3

0 1.1 1.2 1.3 1.4

1 2.1 2.2 2.3 2.4

2 3.1 3.2 3.3 3.4

3 4.1 4.2 4.3 4.4

(a) 4 × 4 matrix

0 1

0

1

1.1 1.2

2.1 2.2

1.3 1.4

2.3 2.4

3.1 3.2

4.1 4.2

3.3 3.3

4.3 4.4

(b) 2 × 2 blocked matrix

Figure 5.1: Block-wise matrix partitioning.
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Figure 5.2: The baseline implementation for our running example. We prepare the data in

order to learn a Spam classi�er in an e-commerce use case: 1 we perform a distributed join of

Products and Reviews, 2 call user code to transform the join result into feature vectors, and

3 a assign consecutive rows indexes to the resulting feature vectors, 3 b create partial blocks

per partition, and 3 c merge them into a blocked matrix.

5.1.2 Motivating Example

Our running example is learning a Spam detection model, a common use case in e-commerce

applications. Assume that customers write reviews for products, some of which are Spam, and

we want to train a classi�er to automatically detect the Spam reviews. The data for products and

reviews are stored in di�erent �les in a distributed �le system. We need the attributes from both

relations to build the features for the model in our ML algorithm. Therefore, we �rst need to

join the records from these tables to obtain reviews with their corresponding products. Next, we

need to transform these product-review pairs into a suitable representation for an ML algorithm.

To this end, we apply a UDF that transforms the attributes into a vector representation. Finally,

we aggregate these vectors into a distributed, blocked feature matrix to feed them into an ML

system (e.g., SystemML). Figure 5.2 illustrates how to execute such a workload. Listing 5.1 shows

how it can be implemented in a distributed data�ow system like Spark, expressing a mixed

linear- and relational-algebra pipeline. We will refer to this as baseline implementation in the

rest of this chapter. The input data resides in the tables Products(product_no, name, price,

category) and Reviews(product_no, text, num_stars, is_spam). The following steps

are depicted in Figure 5.2 and Listing 5.1 accordingly. Step 1 performs a foreign-key join on

the product_no attribute. Step 2 applies user-de�ned vectorization functions to each row

of the join result, to transform it into vector-based features, using techniques such as feature

hashing and one-hot-encoding [Gru15]. We assume that the vector resulting from a row is a

concatenation of the vectorization of the input tuples of the participating relations. Step 3 is

split into three sub-steps that are necessary to form a block-partitioned matrix: 3 a : creates a

sequential index for the join result that is used as a row index for the matrix. This is necessary,

as data�ow engines, in contrast to database systems, do not provide a unique tuple identi�er.

3 b : builds the initial matrix blocks by splitting the rows at block boundaries. 3 c : in a �nal

aggregation step, where partially �lled blocks (which span multiple data partitions) are merged.

76



5.2 Blocking Through Joins

val Products: Dataset[Product] = // read csv...
val Reviews: Dataset[Review] = // read csv...
val JoinResult = Products.joinWith( 1

Reviews,
Products("product_no") === Reviews("product_no")

)
// Vectorize each tuple in the join result
val Vectorized = JoinResult.map { case (p, r) => 2

val pv = vectorizeProduct(p)
val rv = vectorizeReview(r)
pv ++ rv

}
// Convert `Vectorized` into blocked matrix `M`
val M = toMatrix(Vectorized) 3

Listing 5.1: Code snippet for the running example.

5.2 Blocking Through Joins

In this section, we present BlockJoin, our chained, context-aware operator, leveraging the

example of Figure 5.2. We �rst introduce a baseline implementation of independent operators

for that example, which cannot leverage join metadata for the blocking phase. We then detail

BlockJoin in Section 5.2.1 and Section 5.2.2, and discuss its improvements.

Drawbacks of an independent operator chain. The baseline implementation, which uses

independent operators, is illustrated in Figure 5.2 and proceeds as follows: We �rst partition

Products p by its primary key p.product_no and Reviews r by its foreign-key r.product_no

to execute the distributed join. After vectorizing the join result Vectorized v, we introduce a

consecutive index (e.g., by a zipWithIndex method in Spark), called row-idx, to uniquely identify

each tuple. Then, we split each v of Vectorized into its components, based on the col-idx, and

re-partition by the block index of the resulting matrix. The block index is obtained by:

block-idx (v, col-idx ) = {v .r ow -idx
block_size

, col -idx
block_size

}

The block_size represents the number of rows and columns in a block. Although matrix

blocks can have arbitrary row- or column-sizes, we use square blocks, for the sake of simplicity.

One can easily derive the function for non-square blocks by substituting block_size with the

number of rows and column per block. In general, squared blocks are more e�cient as they do

not require costly alignment when di�erent dimensions are joined as described in Section 5.1.1.

We observe that an independent operator chain (cf. Figure 5.2) has to re-partition the data twice

and materializes the join result, even though this result is split according to block boundaries

immediately after applying the index assignment in Step 3 a. Thus, the costly join is only

executed to create a sequential index for the rows of the matching tuples in the matrix. Another

danger during materialization of the join result is that the two input tables can be very wide,

and we, therefore, risk running out of memory when executing the join.
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In the following, we introduce BlockJoin and explain how it avoids materializing the intermediate

join result by introducing information exchange between the operators. We start by discussing

a simpli�ed case in Section 5.2.1, and extend our solution to the general case in Section 5.2.2.

5.2.1 BlockJoin under Simplifying Assumptions

For the sake of clear presentation, we introduce two assumptions solely to the blocking, we

drop these assumptions in the next section and describe how to apply BlockJoin for general

equi-join cases: (i ) the join keys on both relations are consecutive integers and the relations are

ordered by their keys; (ii ) there is a strict 1:1 relation between the tables, that is: they have the

same cardinality and the same values in their primary key. Joining two relations, which ful�ll

these conditions, is equivalent to concatenating the relations. Moreover, the cardinality of the

join result will be the same as the cardinality of the two joined relations. Now, suppose that

we want to block-partition the join result of the two relations. The question we are going to

answer throughout the rest of this section is:

Can we achieve joined and block-partitioned results, without �rst materializing the join result in a
row-partitioned representation?

Blocking without materializing the join result. Given our simplifying assumptions, we

can safely treat the key product_no as the unique, sequential identi�er of each tuple. Hence,

we can not only use it as join key, but but can also de�ne v .row-idx = v .product_no, to

uniquely identify the rows in the resulting matrix. Now, as we do not need to materialize

the join result to obtain the row-idx, we discuss how we apply the blocking function on both

relations independently after the vectorization. The �rst component of the block-idx function

(
v .r ow -idx
block_size

) assigns the row index of the block blk-row-idx, which the cells in a row belong to.

Due to our assumptions, matching tuples already share the same row-idx. The second component

of the block-idx function (
v .col -idx
block_size

) de�nes the column index of the block blk-col-idx, which

the cells of a rows are split across. We can use this part of the equation on the individual tables

without joining after we apply some small changes: the function has to account for the fact that

the blk-col-idx of the second relation have to be o�set by the number of columns in the �rst

relation (because the result concatenates the two relations). Thus, we add the o�set cols(pv)

(i.e., the number of columns of the vectorized version of the �rst relation p) to the column index

of the second relation.
2

Equation 5.1 shows the modi�ed block-idx function that is applied on

the vectorized tuples of the individual input relations.

block-idxP (pv, col-idx ) = {
pv .row-idx
block_size

, col -idx
block_size

}

(5.1)

block-idxR (rv, col-idx ) = { rv .row-idx
block_size

,
cols(pv) + col -idx

block_size
}

2
Section 5.3 details how we determine this value at runtime.
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Figure 5.3: Local index-join & sequential row index assignment for the running example: 1
we collect the <key, TID> pairs on the join coordinator, 2 we perform an index-join on the

collected tuples and introduce the sequential row index row-idx on the result. Afterwards, 3
we broadcast the result back to the nodes. The fetch-kernel 4 , is shown in Figure 5.4.

5.2.2 BlockJoin for the General Case

The simplifying assumption of an ordered, consecutive index on both relations from the previous

section obviously does not hold in reality. In real-world scenarios, we observe primary-key (PK)
– foreign-key (FK) or 1:N relationships, such as users and items, items and reviews, or even M:N

relations, as well as normalized database schemata [KNP15]. Therefore, we cannot use the keys

of the individual relations to determine the corresponding blocks of the tuples. Moreover, the

size of the input relations may vary compared to the join result. For instance, a Product can

match arbitrarily many Reviews. In the subsequent paragraphs, we showcase how BlockJoin

works under general conditions.

Assigning indexes to tuple pairs in the join result. BlockJoin �rst obtains a unique surro-

gate key TID from each tuple of both relations independently. The TID consists of a <relation-

id, partition-id, index-within-partition> triple as depicted in the bottom left part

of Figure 5.3 (b). The triple uniquely identi�es each row of the relations. In the next step,

we generate the unique identi�er row-idx for the rows in the resulting Matrix M. In order to

assign the identi�er to the matching tuples of both relations, we design a variant of the index-

join [DKO
+

84, MR94]. The main idea of the index-join is to project the key and TID columns of

the two relations to determine matching tuples without materializing the payload columns. As

depicted in Figure 5.3, Step 1 projects and collects the <key,TID> pairs from both relations

on the driver. Therefore, we have all keys of the two relations and execute an index-join 2 .

Based on the result, we assign the row-idx to the matching tuples. We call this phase join-kernel,
following the nomenclature of [THS

+
09]. In Step 3 , we make the metadata, which contains the

matched <key,TID> pairs and row-idx’s, available on all nodes for the subsequent fetch-kernel
phase. Based on the information in the metadata, we prune all non-matching tuples and apply

the vectorization function to the remaining tuples 4 on each relation separately. While we

can use the very same block-idx function (cf. Section 5.2.1, Equation 5.1), we elaborate on two

di�erent blocking strategies, enabled by applying the row-idx separately, in the next section.
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Figure 5.4: Block-materialization strategies. We illustrate the materialization strategies for the

Products relation on the right side of the Figure (b). Late materialization breaks the tuples into

multiple row-splits locally 5 and merges the splits of both relations after union them 6 . Early
materialization �rst range partitions the complete rows in order to group tuples belonging to

the same blocks and then performs a local sort on the row index to enable faster block creation

5 . After materializing the blocks per relations 6 , potentially partial blocks are merged 7 .

5.2.3 Block Materialization Strategies

Figure 5.4 (a) sketches the two materialization strategies for BlockJoin. Both approaches share

the initial Steps 1 to 3 from Figure 5.3, explained in the previous section. The main di�erence

stems from the block materialization strategy that we use for the values emitted in Step 4 .

Our goal now is to shu�e the row-splits of each row to the nodes responsible for the splits’

destination blocks.
3

A very important consideration is that one row-split may need to �ll

multiple rows in the same block and might be part of multiple blocks. For instance, consider

a row-split of a product which matches multiple reviews. If there are 10 matches and the

block_size is 5, that product’s row-split will have to be duplicated 10 times and, therefore,

contribute to at least 2 di�erent blocks. Duplicates can have a huge impact on the runtime of

the block materialization phase. For this reason, we devise two materialization strategies which

are detailed below.

Late Materialization. The left side of Figure 5.4 (b) depicts the execution �ow of late material-

ization. The key idea behind late materialization is to reduce the number of row-splits emitted,

by sending each split only once per destination block, even if the row-split occurs multiple times

in the respective block. The duplicates of each split are materialized on the receiver side for

each block. We can apply receiver-side materialization, as we are not forced to materialize the

join result (like in the baseline), to obtain the sequential row-idx. More speci�cally, each row

emitted from the fetch kernel 4 is split in multiple <blk-idx, row-offset, duplicates,

row-split> tuples 5 . Since there might be multiple matches for a key, we store the number

of duplicates per block, instead of materializing them early. The row-offset de�nes the

�rst row-index of the row-split in the destination block. In the destination node, we merge the

3
Given a row r , a row-split is a tuple which contains a strict subset of the columns or r . The purpose of a row-split

is to �t in a given block. For instance, given a block size of 2, a row with 6 columns will be split into 3 row-splits.
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Table 5.1: Cost model notation.

Symbol Meaning

|T | Number of rows in relation T

| |T | | Number of partitions in relation T

cols (T ) Number of columns in relation T

bytes (T ) Size (bytes) of a tuple in relation T

b Number of rows/columns per square block

P, R Input tables of the join

J Join result

row-splits of the same blk-idx and create the complete blocks by materializing their duplicates

6 . Note that we create complete blocks even in the case they contain data from both relations

in one pass (as can be seen for the green cells from the Reviews table).

Early Materialization. The right side of Figure 5.4 (b) depicts the execution �ow of early

materialization. Instead of separating the rows from the fetch kernel 4 into row splits immedi-

ately, we emit a single <row-idx, duplicates, row> tuple per row. Rows matching multiple

times are not yet materialized, and we emit one tuple for all duplicates within a block again.

In the next step, we range-partition the tuples by their row-idx and sort within each partition

5 . A custom partitioner ensures that tuples belonging to the same block end up in the same

partition. Next, we create the blocks and materialize the duplicates for each relation separately

6 . Note that we do not have to shu�e, but potentially create partial blocks (as can be seen

for the blocks with column index 1). In the last step, we union the relations and merge the

partial blocks 7 . In summary, early materialization replaces the shu�e phase for the join in

the baseline with a custom range partitioning, which establishes partitions that match the block

size. After the rows are partitioned, early materialization materializes the duplicates for each

block and merges partial blocks.

Applicability to the baseline. While we can apply the presented materialization strategies

also in the baseline, we do not gain any advantage. The main bene�t of late materialization is

the receiver-side materialization of duplicates (e.g., PK matching multiple FKs). In the baseline

though, we materialize all duplicates during the distributed join phase. As a result, we shu�e

the same amount of data as in the baseline, but with a much larger amount of tuples, as we split

the rows in late materialization. The advantage of early materialization yields from the custom

partitioner, which ensures partitions that do not span over block boundaries. In BlockJoin,

we introduce the shu�e needed for this partitioner, as we do not shu�e for the distributed

join that is required in the baseline. In the baseline, we would have to introduce the custom

partitioner after the row-index is generated for the already materialized join result. Thus, this

would introduce yet another shu�e step, making it worse than the actual baseline.
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5.2.4 Choosing a Materialization Strategy

To make these trade-o�s between late and early materialization more concrete, we compare the

two materialization strategies against the baseline implementation described in Section 5.1.2.

We base our comparison on the cost model shown below, using the symbols from Table 5.1.

For brevity and simplicity, we focus only on the amount of data exchange and the number of

tuples during the shu�ing phases, and make the simplifying assumption that all the tuples of

the two input relations survive the join, which also re�ects the worst case for our materialization

strategies. On the one hand, late materialization emits multiple row-splits per row, thus increases

the number of tuples to be shu�ed. On the other hand, early materialization emits full (and

materialized) blocks at the expense of an extra range-partitioning on complete rows and local

sorting step. Since the blocks in the early materialization schema are complete, apart from

blocks containing columns from both relations (which is equal to the number of row-wise

blocks), only those have to be considered during the merging process.

Size of Shu�led Data

baseline → |P | · bytes (P ) + |R | · bytes (R) join

+ |J | · bytes (J ) merge blocks

early → |P | · bytes (P ) + |R | · bytes (R) range-partition

+ |J | · bytes (J ) merge blocks

late → |P | · bytes (P ) + |R | · bytes (R) merge blocks

Deriving the size of shu�ed data for the baseline implementation is straightforward: we execute

a shu�e in order to perform the join (|P | · bytes (P ) + |R | · bytes (R)) and another shu�e of the

join results for block-partitioning them (|J | ·bytes (J )). The early materialization strategy has to

shu�e the input data in order to range-partition it (|P | ·bytes (P )+ |R | ·bytes (R)) and shu�e the

join result in order to merge the blocks (|J | · bytes (J )), as we might have partially �lled blocks.

Finally, the late materialization strategy only needs to shu�e once to merge all row-splits in

their corresponding block (|P | · bytes (P ) + |R | · bytes (R)). The late materialization strategy is

expected to have the least amount of data shu�ing. However, the number of tuples exchanged

di�ers among the three implementations.
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Number of Shu�led Tuples

baseline → |P | + |R | join

+
| J |
b
·
cols (J )

b
merge blocks

early → |P | + |R | range-partition

+ ( | J |
b
·
cols (J )

b
) + | J |

b
merge blocks

late → |J | · cols (J )
b

merge blocks

The number of tuples exchanged for the baseline implementation includes the relations them-

selves (|P |+ |R |), plus the total number of blocks that form the �nal matrix. The number of blocks

is de�ned by the rows in the join result divided by the block size (
| J |
b

) and the number columns,

divided by the block-size (
cols (J )

b
). The early materialization strategy will require an extra

| J |
b

for the partial blocks that span both relations (detailed in the Block Materialization paragraph

of Section 5.3). In the late materialization strategy, we emit each matching row of both relations

(|J |) multiplied by the number of splits per row (
cols (J )

b
). Intuitively, late materialization always

emits more tuples than early materialization and the baseline, because each row of the result is

split while the early materialization creates (partial) blocks before shu�ing.

Estimating Cost. Intuitively, one could only use the size of the shu�ed data to determine

the cost of the di�erent approaches. In this case, the cost model suggests that Late Materi-

alization is always the fastest approach. Our experiments revealed that the choice between

Early Materialization and Late Materialization materialization depends heavily on the shape

of the input data and the number of duplicates in the join result. Thus, our cost model also

takes the number of shu�ed tuples into account. We provide a more detailed discussion in our

experiment Section 5.4.1. A straightforward implementation of a cost estimation function would

simply calculate a linear combination of size and number of tuples and yield an estimated cost.

To this end, one can train two regression models based on our previously presented formulas for

computing data size and number of shu�ed tuples for both materialization strategies. For early

materialization, the regression re =
[
de (θ ) te (θ ) 1

]>
we predicts the runtime re . Here θ denotes

a vector that contains the data statistics from Table 5.1 for a particular join input, de (θ ) and

te (θ ) refer to the previously presented functions for computing data size and number of shu�ed

tuples for early materialization and we denotes the learned regression coe�cients. Analogously,

a regression model rl =
[
dl (θ ) tl (θ ) 1

]>
wl can be trained for predicting the runtime rl for

late materialization. The obtained regression coe�cients depend on the actual cluster settings.

Therefore, a couple of experiments must be executed to obtain a sample of di�erent runtimes

for di�erent data characteristics, before the model can be �tted. Afterwards, the prediction

model can be used to select the best suited materialization strategy for subsequent runs. We

present such an instance of a trained model in our experiments and showcase its accuracy.

Using this model requires statistics on the input tables and the join result. BlockJoin gathers this

83



5.3 Implementation Aspects

information during the join kernel phase, where it determines the shape of both input relations

and the size of the join result. One could train the described models based on this information

and the actual runtime. Once enough data is gathered, the model can predict the strategy during

runtime after the join kernel to select the appropriate fetch kernel implementation. We can also

integrate the model into an optimizer, which creates an optimized plan statically before job

execution (e.g., Catalyst in Spark), but have to integrate table statistics and estimations for the

base tables and join result to select the best strategy.

5.2.5 Extensibility

So far we have only considered equality-joins. However, BlockJoin and the general idea of

assigning unique identi�ers without materializing the intermediate join result is independent of

the actual join algorithm that runs locally. Thus, extending BlockJoin for theta and n-ary joins

boils down to implementing a variation of the index-join used to de�ne the matching tuples.

Theta joins can be implemented by a projection of the columns required for predicate evaluation

and a modi�ed version of the shared metadata, to identify matching tuples and conduct row

index assignment in the fetch-kernel. Extending BlockJoin to n-ary joins is also possible, once

we identify the join results. However, this extension requires further research regarding the

choice between multiple binary joins or a solution based on multi-way join algorithms, which

we leave to future work.

5.3 Implementation Aspects

In this section, we present important technical aspects to consider when implementing BlockJoin

in distributed data�ow systems.

Row Index Assignment. In order to block partition the join result, we need to assign consecu-

tive row indexes to the join result. In the baseline implementation, we conduct this assignment

on the distributed join result. For that, we leverage Spark’s zipWithIndex operation, which

counts the number of elements of each partition in the distributed dataset, and uses the result

to assign consecutive indexes in a second pass over the data. In BlockJoin, we create the unique

row indexes during the join-kernel based on the matching tuples and make them available

as part of the metadata. Therefore, the assignment of row indexes to emitted tuples in the

fetch-kernel phase can be done on each relation individually, without prior materialization of

the join result.

BlockMaterialization. In the baseline implementation, we create the blocks after assigning the

row index. To reduce the number of emitted partial blocks, the baseline uses a mapPartitions

function to create the matrix blocks. This function provides an iterator over the whole partition

inside the UDF. Due to the sequential row index, all rows that belong to a certain block come

one after the other, which allows us to create full blocks before emitting. Thus, we only have to

combine blocks that are split row-wise between two partitions in the succeeding merge step.
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Figure 5.5: Tuples resulting from range-partitioning the vectorized tuples of Products and

Reviews with block size 2 × 2.

As discussed in Section 5.2, we create the correct block-idx separately on both tables in the

BlockJoin. Figure 5.5 shows the assignment of the block index in detail. We create partial

blocks for the blk-col-idx 1 in both relations, as the block is split across both relations. In

the late materialization approach, we have to merge all individual tuples on the receiver-side,

which reduces the data that needs to be shu�ed but increases the number of tuples in certain

scenarios (as discussed in Section 5.2.3). In the early materialization approach, we also use

a mapPartitions function to create full blocks on the sender-side. As we can not guarantee

sorted row indexes for at least one of the relations, we would risk emitting partially �lled

blocks, as consecutive tuples might belong to di�erent blocks. Therefore, we provide a custom

partitioner, which creates partitions that do not cross block-boundaries. Next, we sort by the

row index within each partition to create consecutive blocks. Thus, we only have to merge

blocks that contain columns from both relations, e.g., for blocks with column blk-col-idx 1

in Figure 5.5.

DeterminingMatrix Dimensions. In order to assign the vectorized data to matrix blocks, it is

necessary to know the dimensionality of the vectors returned by the user-de�ned vectorization

functions upfront. One can either require the user to specify this in the vectorization functions,

or alternatively fetch a single random tuple from each relation once, apply the vectorization

function, and record the dimensionality of the resulting vector. In addition to the number of

columns that is de�ned by the vectorization function, BlockJoin gathers basic statistics during

the execution of the join-kernel. In particular, it calculates the number of rows of both input

relations and the join result. Together, these statistics are necessary to calculate the o�sets in

the fetch-kernel, the custom partitioner for the Early Materialization, and the cost model.

Sparse vs. Dense Matrix Blocks Allocation. BlockJoin allocates dense or sparse blocks de-

pending on the number of non-zero (NNZ) values, which is de�ned as a threshold upfront.

BlockJoin determines the NNZ values during the block materialization. In the Early Materi-

alization, it counts while the vectorized values are copied into the blocks. If the NNZ values

is below the set threshold, dense blocks are converted to a sparse representation. In the Late

Materialization, BlockJoin follows the same procedure during the block materialization on the

receiver node.
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Join Kernel. We execute the join kernel as shown in Figure 5.3. We collect the <key, TID>
pairs, locally identify the matching tuples, assign row indexes and �nally broadcast the resulting

metadata. This implementation requires us to send data according to a cost model shown in the

following (i.e., it re�ects the block metadata table shown in Figure 5.3):

|J | ×
[
bytes (row-index) row index

+ bytes (key) join key

+ bytes (Partition-ID) + bytes (Index-in-Partition) TID in P

+ bytes (Partition-ID) + bytes (Index-in-Partition)
]

TID in R

To make our implementation more memory e�cient and to guarantee fast access in the fetch

kernel, we implement another version of the join kernel. It solely relies on the partition-ids of a

key. Instead of materializing the whole index join result, we create a hash table that contains

all distinct matching keys and the overall occurrences in both relations (including duplicates).

Additionally, we save the row-index of the key for each partition it occurs in for both relations.

This information is enough to determine the correct row-index in the fetch kernel. This format

gives us two advantages compared to the naïve version: (i ) As we now use a hash table for the

meta-data, we also achieve constant access times to the index information in the fetch-kernel.

(ii ) In this format, the memory consumption is not proportional to the size of the join result

anymore, as shown in the cost model below. The model re�ects the worst case in which the key

occurs in each partition | |T | | and | |R | | of both relations.:

distinct |keys | ×
[
bytes (key) join key

+ bytes (countP ) # key in P

+ bytes (countR ) # key in R

+ | |P | | × bytes (o�setP ) key o�set per partition of P

+ | |R | | × bytes (o�setR )
]

key o�set per partition of R

5.4 Evaluation

In this section, we comprehensively evaluate experiments comparing BlockJoin with late and

early materialization against a baseline approach on dense and sparse data. As discussed before,

the baseline represents the current state-of-the-art: we use Spark to execute the join of the tables,

and then SystemML to create a blocked matrix representation from the join result without

staging the intermediate results on HDFS.

Sparsity mainly a�ects the data size and runtime, but not the overall performance trend for the

algorithms. For this reason, we show the results for sparse and dense data for each experiment

in the same plot. Throughout the experiments, sparse data is indicated with patched bars in the

front, whereas dense data is indicated with solid bars.
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Table 5.2: Size of dense data in gigabytes.

Cols

Rows

10K 100K 200K 500K 1M

1K 0.2 1.7 3.4 8.5 16.9

5K 0.9 8.5 16.9 42.3 84.7

10K 1.7 16.9 33.9 84.7 169.3

25K 4.2 42.3 84.6 211.6 423.2

50K 8.5 84.7 169.3 423.3 846.7

100K 16.9 169.3 338.7 846.7 1700.0

Setup. We used a local cluster with up to 20 worker nodes connected with 1 GBit Ethernet

connections. Each machine is equipped with a quad-core Intel Xeon X3450 2.67 GHz, and 16GB

of RAM. We implemented BlockJoin on Spark 1.6.2 (each Spark worker has 4 task slots, called

cores) and store the initial data in HDFS 2.4.1. Every experiment is executed seven times and we

report the median execution time. For the experiments on dense data, we use 20 worker nodes,

resulting in a DOP of 80, while we use 10 worker nodes (DOP = 40) for sparse data.

Dataset. In order to have full control of the shape, size and content of the input tables we

evaluate BlockJoin on synthetic datasets. The simulated tables, called PK and FK, have following

schema: PK (key, r1, ..., rn) and FK (fKey, s1, ..., sm). We use a vectorization function

that converts r1, ..., rn to an n-dimensional double-precision vector, and analogously s1, ..., sm to

an m-dimensional double-precision vector. We conducted the experiments for dense and sparse

(10% non zero values) vectors and vary the number of rows and columns. If not stated otherwise

in the experiments, the tables have a 1:N primary key - foreign key relation. We use squared

blocks of 1000×1000 as it was shown to make a good trade-o� between computational e�ciency

and network tra�c [GKP
+

11]. The corresponding sizes of the tables are given in Table 5.2.

In addition, we provide experiments on the publicly available Reddit Comments4
dataset. It

consists of line separated JSON entries that represent comments on the news aggregator website

www.reddit.com. Each JSON entry contains a single comment with additional information such

as the author, votes, category, etc. We split the raw data into a comment and author CSV �le, by

introducing a primary - foreign key relation author_id and use these as input to our experiments.

The �nal join input is ∼30 million comments (5.1 GB) and ∼1.5 million authors (29.9 MB).

Data Distribution. Many real-world datasets exhibit extreme skew in the distribution of data

points per object observed (e.g., reviews per product), and it has been shown that this skew

increases over time in many datasets [LKF05]. When joining with such datasets, a small number

of tuples from the skewed relation will produce a very large amount of tuples in the join result.

For this reason, we conduct experiments with uniform as well as power-law distributed foreign

keys (with α = 0.01).

4
http://�les.pushshift.io/reddit/comments/
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Figure 5.6: Scaling the number of columns in the PK table. The FK columns are �xed to 5K.

5.4.1 E�ect of Table Shape and Size

In this experiment, we evaluate the scalability of BlockJoin for di�erent numbers of columns.

We �x the rows to 100K in the PK and 1M in the FK table. All rows in the FK table match at least

one key in the PK table. Therefore, we concentrate on the e�ects of the block materialization

strategies, as BlockJoin can not gain performance by pruning non-matching tuples (an expected

e�ect of the fetch-kernel phase). Throughout the experiments, sparse data is indicated with

patched bars in the front, whereas dense data is indicated with solid bars.

Scaling PK Columns. In this experiment, we �x the number of columns in the FK table to 5K,

while we scale the PK table until it reaches the same data size as the FK table.

Figure 5.6a depicts the results for uniform distributed foreign keys. A �rst observation is that

Late Materialization scales much better and is up 2.5× faster than the baseline for sparse and

dense data. Late Materialization materializes duplicates (primary keys matching multiple foreign

keys) at the receiver side. Thus, it only needs to shu�e data equal to the size of the input tables.

In contrast, both Early Materialization and the baseline approach, materialize the duplicates (the

baseline approach in the join and Early Materialization before merging partial matrix blocks).

Therefore, they shu�e up to 847GB + 84,7GB (for 50K dense columns); roughly 10× more data

compared to Late Materialization. Even though the baseline and Early Materialization shu�e

the same amount of data, Early Materialization appears to outperform the baseline by 10%.

The faster execution of Early Materialization is due to (i) the independent blocking of the two

relations without materializing the join result, and (ii) our custom partitioner (cf. Section 5.3),

which never splits rows sharing the same blk-row-idx across di�erent partitions.

Figure 5.6b shows the same experiment for power-law distributed foreign keys. Note that

the baseline approach fails to perform the join for more than 5K columns of dense data. We

experienced an internal Spark error, while it tried to read partitions to execute the join on the

receiver side. This is due to the heavily skewed data, which results in almost all of the work

ending up in one worker node, which is unable to gather and sort the received partitions. For Late

Materialization, we can observe that the algorithm is not a�ected by data skew and outperforms
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Figure 5.7: Scaling the number of columns in the FK table. The PK columns are �xed to 5K.

the baseline by up to 4× for sparse data. The e�ect of skewed keys on Early Materialization is

not as severe as for the baseline, but the heavily increased amount of duplicates still decreases

its performance as the PK table holds the majority of the data.

Scaling FK Columns. Figure 5.7a depicts the inverse experiment with 5K in the PK table and

scaling the number of columns in the FK table. This time, Early Materialization outperforms the

Late Materialization for dense data and performs up to 2× better than the baseline. Note that in

this experiment, (i ) the FK table grows very large, up to 846.7GB for dense data, in comparison

to the previous experiment, while (ii ) the resulting matrix sizes are exactly the same. Thus,

as the PK table accounts for the duplicates, Late Materialization does not save much by late

duplicate materialization. However, the number of columns in the FK table increases, which

heavily increases the number of tuples shu�ed by Late Materialization. Late Materialization

emits up to 50M (1M rows split into 50K columns divided by 1K block size) row-splits, while

only 1M rows are exchanged by Early Materialization and the baseline. This basically serializes
the creation of all blocks that share the same block-row-index for Late Materialization: the

groupReduce function that merges the row-splits of a particular block is called 50K times –

for each individual block. In contrast, Early Materialization uses a mapPartitions function to

simultaneously create blocks for all columns in a row (cf. Section 5.3) and is called only once

per partition.

Figure 5.7b shows the experiment with power-law distributed foreign keys. For the two versions

of BlockJoin, we can observe almost the same runtime as for the uniform distributed keys, as

the data size is dominated by the FK table. Therefore, the impact of the skewed keys on Early

Materialization is minor and Late Materialization does not save much data exchange. This time,

the baseline approach fails to �nish the experiment in case of more than 25K sparse columns

due to the increased size of the FK table.

Experiment Conclusion. When the PK table size dominates the data exchange, Late Mate-

rialization performs up to 4× better than the baseline and outperforms Early Materialization.

However, when the FK table dominates data exchange and the duplication of row-splits is no
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cols(PK) >> cols(FK)

cols(PK) << cols(FK)

Figure 5.8: Estimated cost of the regression models, trained on the experiment results from Sec-

tion 5.4.1. The number of rows correspond to the experiments (100K for PK and 1M for FK). The

data points represent the experiment results for Late Materialization and Early Materialization

on dense data with 5k, 25k, and 50k columns.

longer an issue, Early Materialization can be up to 1.8× faster than Late Materialization and 2×

faster than the baseline. Finally, we were unable to conduct all experiments for the baseline in

case of skewed data and the performance of Late Materialization is generally less a�ected by

the data distribution.

Cost Model Evaluation. We trained the regression models, described in Section 5.2.3, based

on the experiment results from the previous section using dense input data. Figure 5.8 depicts

the estimated runtime in relation to the number of columns in the two input relations. The

number of rows is thereby the same as in the experiments (100K for PK and 1M for FK). We can

observe that the model re�ects the measured runtimes. While the model can serve as a binary

classi�er to select the best-suited strategy for other experiments, we are aware that we need

more data to �t the model thoroughly. Another interesting observation is that we can use the

column distribution as a simpli�ed measure to select the strategies (cols (PK ) > cols (FK ) favors

Late Materialization and vise versa). This ratio turns out to be a pretty good estimation model

and can be used as a fall-back in an optimizer, as long as not enough training data is available

to �t the model.

Detailed runtimes of the di�erent phases. In Figure 5.9 and Figure 5.10, we show the

runtime of each of the phases – vectorize, join, and blocking – for the experiments with dense

data in Figure 5.6 and Figure 5.7 respectively. Due to pipelining in Spark, we had to measure

the phases in separated jobs to obtain their individual runtime. Thus, the results are indicating

the runtimes of the di�erent phases, but do not re�ect the exact time spent.
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Figure 5.9: Split up execution times for scaling the number of columns in the PK table.
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Figure 5.10: Split up execution times for scaling the number of columns in the FK table.

Vectorize – We observe roughly equal run times, which is expected, as the same vectorization

function is performed for both the baseline and BlockJoin.

Join – We observe di�erent behavior depending on whether we scale the PK or FK columns.

Scaling the PK columns (cf. Figure 5.9), we see only a minor speedup for BlockJoin in case of

uniform distributed keys. For power-law distributed keys, the baseline fails to execute the join

after 5K columns. As expected, BlockJoin is not sensitive to skewed keys and the join times

are equal to the cases with uniformly distributed keys. Scaling the FK columns (cf. Figure 5.10),

we observe a speedup of up to 3x. Compared to Figure 5.9, we have to shu�e much more data,

as we increase the FK columns. BlockJoin degrades gracefully with an increasing number of

columns, as we have to read the data to project the join keys. Again, the baseline fails to execute

the join for power-law distributed keys, while BlockJoin is not a�ected by skew.

Blocking – We observe performance gains of up to 3x for the best-suited materialization strategy.

This applies mainly for late materialization, as the bene�ts are rather small in cases early

materialization is better. The gains in performance for early materialization are due to the
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(a) Result rows: 100K, 1:1 relation
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(b) Result rows: 200K, 1:2 relation
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(c) Result rows: 400K, 1:4 relation
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(d) Result rows: 1M, 1:10 relation

Figure 5.11: E�ect of scaling the number of columns in PK table: (a) has a 1:1 relation. (b) –

(d) depict M:N relations with 2, 4, and 10 duplicates per key.

block-size aware partitioning. Late materialization gains performance due to the receiver-side

materialization of duplicates. Thus, we observe a huge performance gain when scaling the

PK columns. The behavior re�ects the assumptions of our cost model: When scaling the PK

columns, Late Materialization is superior as it avoids the materialization of the duplicates in

the PK table and thus, shu�es considerably less data. When we scale the FK columns, Late

Materialization can not gain much from receiver-side materialization as the majority of data

resides in the FK table, but has to shu�e way more tuples. The experiments show that BlockJoin

gains performance with both, an e�cient, skew resistant join and the right choice of the

materialization strategy.

5.4.2 1:1 and M:N Relations

In this experiment, we analyze the e�ects of 1:1 and M:N relations between the keys in the

two relations. Therefore, we �x the number of rows in both tables to 100K and use sequential

keys in both relations, but vary the range we draw the keys from. Figure 5.11a depicts a 1:1

relation; each key appears once per table. Late Materialization and Early Materialization gain
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up to 2× speedup compared to the baseline (both for sparse and dense data). As there are no

duplicates, Early Materialization is only slightly slower than Late Materialization. Figure 5.11b

– Figure 5.11d illustrate M:N relations with 2, 4, and 10 duplicates per key, and therefore, 200K,

400K, and 1M rows in the matrix. Throughout the experiments, sparse data is indicated with

patched bars in the front, whereas dense data is indicated with solid bars. While the baseline has

the worst performance throughout the series, we can observe a declining performance of Early

Materialization with an increasing number of duplicates for dense data. The runtime of Late

Materialization is almost not a�ected by the number of duplicates and gains up to 4× speedup

compared to the baseline for dense and sparse data.

5.4.3 E�ect of Selectivity

In this experiment, we investigate the performance implications of the join selectivity. Therefore,

we can observe the impact of the semi-join reduction in the fetch-kernel. We start with the

same number of rows in the PK and FK table as in the previous experiment (cf. Section 5.4.1),

but we restrict the number of tuples in PK table. As a result, not all foreign keys match. This

re�ects a common use case, where only certain values, e.g., products of a given category, are of

interest. Sparse data is indicated with patched bars in the front, whereas dense data is indicated

with solid bars.

Scaling PK Columns. Figure 5.12 shows the experiment with �xed FK columns (5K) and

scaling PK columns. On the x-axis, we increase the selectivity of the �lter on the PK table.

The selectivity not only de�nes the number of rows in the PK table (from 100K to 10K rows),

but also the number of matching foreign keys, and thereby the size of the join result/matrix.

Again, Late Materialization outperforms Early Materialization, but the bene�ts of late dupli-

cate materialization decrease with increasing selectivity. Nevertheless, we achieve up to 4×

speedups, due to pruning non-matching tuples in the fetch-kernel. For power-law distributed

keys (cf. Figure 5.12b), the baseline approach fails for PK tables with more than 5K columns of

dense data and the skew resistant Late Materialization gains up to 6× speedups for sparse data.

Scaling FK Columns. Figure 5.13 depicts the experiments with a scaling number of columns

in the FK table. Again, we can observe the performance degradation of Late Materialization,

compared to the experiments in Figure 5.12, as the number of FK columns increases. Note that

increasing selectivity mitigates the performance impact of row splitting for Late Materialization

due to pruning in the fetch-kernel and we see an almost equal performance for Early Materi-

alization and Late Materialization in case of 0.1 selectivity. The semi-join reduction thereby

increases the speedups from 2× for 1.0 up to 6× for 0.1 selectivity. Figure 5.13b shows the

experiment with power-law distributed keys. While Late Materialization can outperform Early

Materialization in the smallest con�guration, pruning cannot mitigate the exploding number of

tuples for a larger number of columns in the dense case.

Experiment Conclusion. Filter predicates on the primary key table are a common use case,

e.g., to consider only a certain category of products. The meta-data in BlockJoin enables it
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Figure 5.12: E�ect of selectivity for varying number of columns in the PK table. The number

of FK columns is �xed to 5K.
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Figure 5.13: E�ect of selectivity for varying number of columns in the FK table. The number

of PK columns is �xed to 5K.
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(a) User vector dim. = 1000
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Figure 5.14: E�ect of scaling the number of columns for the comment relation.

to prune non-matching FK tuples in the fetch kernel, whereas the baseline implementation

has to shu�e all FK tuples to determine the matching tuples. Thus, the experiments show the

bene�ts of the semi-join reduction BlockJoin can perform in the fetch kernel as it does not have

to materialize the join result. This semi-join reduction improves the performance bene�ts of

BlockJoin compared to the baseline by up to 6×.

5.4.4 Reddit Comments Dataset

In this experiment, we evaluate our BlockJoin on the Reddit Comments dataset. In order to

obtain the full feature set, we join the comments and authors CSV input �les. To create a vector

representation, we apply feature hashing to the author’s name and the comments text. We split

the name by camel case, white space, and other delimiters and hash the words to a �xed size

feature space. For the comments, we split the text into words and hash them as described before.

Figure 5.14 depicts the results of the experiment. We �x the dimensions of the author name

feature vector to 1000 and 5000 and increase the dimensions of the comments vector. The �rst

observation is that the baseline implementation fails after the �rst scaling factor. This is due to

an out of memory exception in the blocking phase. The large number of comments (∼30 million

tuples) exceeds the available memory in the mapPartitions operators that create partial blocks

within each partition. This limitation in the baseline re�ects a general problem in data�ow

engines introduced by the allocation of objects in UDFs: if the memory consumption in an UDF

exceeds the available memory in the Java Heap the processing fails. This is in contrast to data

managed by the data�ow engine, e.g., to join two relations, which is gradually spilled to disk to

avoid out-of-memory errors. While we also create partial blocks in the Early Materialization

approach, we execute the blocking on the two relations separately, without prior joining. This

leads to less memory pressure, compared to the baseline. Late materialization is not a�ected

by memory pressure. This leads, in combination with the huge di�erence in the size of the

relations (1 : 30) and the relatively small sparse feature vectors, to an almost equal runtime for

Late Materialization and Early Materialization.
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5.5 Related Work

Join Optimization. Optimized join algorithms have been well studied in the area of dis-

tributed database systems [Mul90, RK91, SY93, RIKN16, AKN12] and parallel data�ow sys-

tems [PSR14, WLMO11, AU10, OR11, ZLC10] like Hadoop [Apa] and Spark [ZCF
+

10], with the

aim of reducing network tra�c and dealing with skewed data. E�cient join implementations

in main-memory databases are based on TID-joins [MR94, DKO
+

84] and late materializa-

tion [THS
+

09, LR99] to achieve cache e�ciency and to delay the materialization of the data to

the latest possible time. In BlockJoin, we apply and enhance these techniques for the domain

of distributed matrix computation by using index-joins to create the matching tuples without

re-partitioning the tables. More speci�cally, we apply a semi-join reduction to prune tuples

before creating the blocks and we introduce late materialization to avoid sending rows resulting

from duplicated join keys.

Array Databases. RasDaMan [BDF
+

98] is an array DBMS for multidimensional discrete data

with an extended SQL query language. It stores its data as tiles, i.e., possibly non-aligned sub-

arrays, as blobs in an external DBMS. While their optimizer provides a rich set of heuristic-based

rewrites, to the best of our knowledge, RasDaMan does not perform joint optimization over

relational and array backed data. SciDB [Bro10] is another array database that, in contrast

to RasDaMan, provides its own shared-nothing storage layer. This allows SciDB to store and

query tiles more e�ciently. It provides a variety of optimizations, like overlapping chunks and

compression. We see BlockJoin as complementary to the research in array databases and its

ideas could be implemented to enhance their data loading and transformation.

Algebra Unifying Approaches. Kumar et al. [KNP15] introduce learning generalized linear

models over data residing in a relational database. The authors push parts of the computation of

the ML model into joins over normalized data, similar to [CS94]. These works target generalized

linear models only, while our approach subsumes a more generic optimization that can be

used in arbitrary machine learning pipelines over normalized data. MLBase [KTD
+

13] provides

high-level abstractions for ML tasks with basic support for relational operators. Their DSL

allows the optimizer to choose di�erent ML algorithm implementations, but does not take

the relational operators into account nor does it optimize the physical representation of the

data among di�erent operators. Cohen et al. [CDD
+

09] execute linear algebra operations in a

relational database but do not present optimizations for block-partitioning the operands. Kumar

et. al [KNPZ16] discuss whether it is bene�cial to execute the join at all. They argue that the

foreign key determines the additional features in the foreign key table making them irrelevant
in certain cases. The authors propose several rules to determine the right feature set: the whole

join result, the join result without the foreign key, and the primary key table only. In BlockJoin,

the user de�nes the feature set in the user-de�ned vectorization function and thus, can remove

the foreign key.
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ML Libraries & Languages. SystemML’s DML [BBE
+

14, SSM
+

15, BDE
+

16, EBH
+

16], Ma-

hout’s Samsara [SPQ
+

16], provide R-like linear algebra abstractions. SystemML executes locally

or distributed on Hadoop and Spark, while Samsara targets Spark, Flink and H20. As there is no

dedicated support for relational operators, ETL has to be executed using a di�erent set of abstrac-

tions, and both systems lose the potential for holistic optimization. MLlib [MBY
+

16, ZMU
+

16],

MLI [STS
+

13], Cumulon [HBY13] and Pegasus [KTF09] employ di�erent strategies to e�ciently

execute matrix operations on distributed data�ow systems, but again do not target holistic

optimization over relational and linear algebra operators. We presented recently the potential

for optimizations across relational and linear algebra in the context of the Lara [KAKM16]

language, based on Emma [AKK
+

15].

5.6 Conclusion

In this chapter, we introduce a scalable join algorithm for analytics that mix relational and linear

algebra operations. Our technique reduces the re-partitioning overheads, which stem from the

di�erent physical representations of relations and matrices. To this end, we propose BlockJoin,

an optimized join algorithm, which fuses relational joins with blocked matrix partitioning,

avoiding costly re-partitioning steps. We discuss di�erent block materialization strategies of

this join operator and their cost-model driven application, depending on the shape of the input

data. In an extensive experimental evaluation, we show that BlockJoin outperforms the current

state of the art implementation for data�ow systems up to a factor of six, and demonstrated

that BlockJoin is scalable and robust on highly skewed data.

Future work. BlockJoin and other physical operators can be integrated in a common intermedi-

ate representation, e.g., as presented in Chapter 4 and [AKK
+

15, KAKM16, SHG
+

15]. Moreover,

BlockJoin can be extended to generate a variety of block-partitioned matrices for model selection

workloads that are commonly employed to �nd well-working features and hyperparameters for

machine learning models [SSM
+

15].
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6

Conclusion

In this section, we revisit our contributions before we discuss them with respect to the problems

stated in Section 1.1. To conclude, we re�ect on the possibilities for research transfer and give

pointers regarding future work in the broad �eld of optimizations over end-to-end ML pipelines.

In Chapter 3, we presented ScootR, a DSL that can be used as drop-in replacement for the

dataframe type in R. ScootR o�oads the execution of R programs to the distributed data�ow

system Apache Flink. Users can transparently scale their existing R dataframe code on large

amounts of data. The tight integration of Flink and the R language in a shared runtime provided

by the Tru�e framework and Graal compiler enables e�cient execution of complex UDFs.

Compliance with GNU-R provides a rich set of native language features. ScootR achieves

performance comparable to systems based on source-to-source translation, even though it

executes UDFs in an R language runtime. Compared to inter-process communication-based

systems, ScootR achieves up to an order of magnitude higher performance.

In Chapter 4, we presented Lara, a quotation-based DSL for ML model training pipelines. It

provides dedicated types for collections and matrices that can be interleaved with calls to UDFs.

Its IR gives access to the whole AST of the pipeline, including UDFs and native control �ow.

Two additional views on top of the low-level IR increase the abstraction level to enable diverse

optimizations: a monadic representation for both collections and matrices allows to pushdown

and fuse UDFs over type boundaries. The combinator view represents high-level operators,

e.g., joins or matrix multiplication, as single entities in an operator tree. Similar to database

optimizers, this enables the generation of logical and physical plan variants.

In Chapter 5, we presented BlockJoin, a logically fused operator chain at the intersection of row-

partitioned preprocessing and block-partitioned matrices for ML. It improves on common join-
vectorize-training patterns in end-to-end pipelines and directly creates block-partitioned results

from normalized data. BlockJoin is inspired by join techniques that use late materialization and

applies them in a distributed setting. It separates the creation of the block indexes from the

materialization of the block data. This avoids data shu�e and materialization of row-partitioned

join results and BlockJoin is thereby not a�ected by skewed data. Furthermore, this separation

enables a cost-based decision for the materialization strategy of the matrix blocks based on the

shape of the normalized input.
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6.1 Discussion

Dynamic guest languages extensions on top of data�ow engines lower the barrier to data�ow

systems for non-expert programmers. ScootR acts as a drop-in replacement for existing pre-

processing pipelines based on dataframes. ScootR supports complex UDFs, and we showed

that their integration does not necessarily introduce a signi�cant loss in performance. While

the approach can be extended to support ML algorithms (e.g., by the matrix type in R), it

still lacks a common IR to optimize over di�erent types: ScootR relies on the type-based IR of

Flink and inherits its limitations, e.g., black-box UDFs and no control �ow. To this end, holistic

optimizations rely on an IR that combines domain-speci�c optimizations for relational and

linear algebra, but also provides access to UDFs and control �ow of the host language to reason

about iterative algorithms. We showed that such an IR not only allows to reason about operator

fusion over type and loop boundaries but is also capable of optimizations that require domain

knowledge, e.g., the semantics of linear algebra. Such an IR can also be used to detect operator

patterns that one can implement as fused operators. The results that we have achieved with our

fused operator for normalized data shows that a holistic view overcomes inherent limitations

of isolated operators by applying join techniques in a distributed setting.

Research Transfer

We want to conclude with a perspective on the applicability of the presented contributions in

real-world scenarios. During the timespan of the creation of this thesis, ML and in particular

deep learning became omnipresent in almost all areas of computer science. This development

not only changed the way analytics are conducted, but also attracted a broad audience with a

diverse skill set. In the following, we describe how one could integrate our research contributions

into a system that covers the diverse demands of users:

Data Scientists. Dynamic languages, such as R and Python, are the de facto standard for data

exploration. Open-source libraries provide a rich set of prede�ned feature transformations and

machine learning algorithms that lowered the barrier for non-expert programmers signi�cantly.

Data scientists apply cascades of library functions for data transformation and model training.

To this end, an API with library support for popular preprocessing and ML algorithms in a

dynamic programming language is a crucial requirement. For e�ciency, the system must o�oad

the actual computation to an underlying execution engine written in a systems language. Thus,

a guest language integration, as described in Chapter 3 is required. We see an ongoing trend in

systems design towards code generation to complement JVM-bases systems with native kernels

for performance-critical aspects [BRH
+

18, ETD
+

18] and languages that generate machine code,

e.g., C++ and Rust [ABC
+

16, GSB
+

18, MNW
+

18]. This is due to shortcomings of the JVM, e.g.,

managed memory and limited support for modern hardware. Even though ScootR is based on

the JVM, one can integrate the described techniques into a low-level IR for hardware targeted

code, e.g., LLVM [LA04].
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Domain Experts. ML researchers provide their newest results as plug-and-play implemen-

tations in the high-level APIs of Tensor�ow and PyTorch [VBB
+

18]. Data engineers write

preprocessing pipelines as transformations on dataframes, which are adopted by most li-

braries [McK12] and systems [ZCF
+

10, CKE
+

15]. This separation prevents inter-library and

domain optimizations.

A quotation-based DSL based on a common IR representation would provide several advantages:

(i ) the DSL can reuse native control �ow and UDFs are re�ected in the IR; (ii ) a common IR

provides intra and inter-domain optimizations as discussed in Chapter 4; (iii ) it provides imper-

ative and optimized, symbolic execution. This provides fast development cycles and e�cient

debugging; (iv ) compared to a standalone DSL, quotation-based DSLs can reuse the infrastruc-

ture of the host language, e.g., IDEs and tooling. Even though we implemented our prototype in

Scala, hardware tailored languages, such as Rust, provide similar meta-programming facilities.

System Experts. ML algorithms frequently combine certain linear algebra and tensor oper-

ations. System experts hard-code such operator chains as optimized kernels to provide fast

execution [LG16]. Hard-coded kernels have two major disadvantages: (i ) system experts that

also have expertise in ML are rare, but are required to implement such kernels; (ii ) as these

operator chains are hard-coded, there is no opportunity for inter-kernel optimizations, and

experts have to implement each new operator chain from scratch.

We cannot solve the �rst problem, but a common IR can perform physical operator selection

based on the executed pipeline. Thus, system experts can provide �ne-grained physical operator

implementations, which can be integrated and combined during the plan variant generation.

6.2 Future Work

In addition to the future work mentioned in the chapters of the individual contributions, we

will now discuss some more general directions for future work:

Prediction. We restrict ourselves to pipelines for model training in this thesis. Similar ideas to

the ones presented can be applied for the prediction. Predictions pose a new set of requirements

and therefore, opportunities for holistic optimizations. The preprocessing phase of the model

training has to be applied to a new data item before it is used for prediction. In contrast to the

training phase, the preprocessing steps and model access have to be optimized for low latency –

in contrast to the high throughput required in model training. Furthermore, prediction pipelines

are likely to apply relational operators on the results retrieved from the model, e.g., to obtain

the top-k recommended items for a particular user. This presents even further potential for

inter-domain optimizations.

Hyperparameter Tuning. We did not fully investigate the possible optimizations for hyper-

parameter tuning. In automated settings, users only have to specify certain ranges for the

hyperparameters of an ML algorithm. The tuning algorithms �nd the best-suited parameter

combinations. Current solutions employ heuristics and pruning techniques to reduce the mas-

sive search space [BB12, STH
+

15, KMNP15], or use task parallelism to search for di�erent
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con�gurations in parallel [BTR
+

14]. A suitable IR can augment these optimizations to detect

loop invariant code, potential for shared intermediate data, and algorithmic optimizations

similar to our proposed optimizations for CV (cf. Section 4.2.4).

Code Generation for Modern Hardware. Modern hardware and in particular GPUs are

used to accelerate linear algebra and tensor operations. Operators are mostly implemented as

isolated kernels [GJ
+

10, LG16]. Query compilation techniques for main-memory databases on

CPUs [Neu11, HM12] have recently been extended for heterogeneous processors [BKF
+

18]. We

think that these techniques can be extended to cover end-to-end pipelines in a similar way as

we presented in Chapter 4.
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Appendix

A: ScootR

1 df <- flink.readdf(...)
2 df <- flink.filter(df, df$cancelled == 0 &&
3 df$dep_delay >= 10 && df$carrier %in% c("AA", "HA"))
4

5 df <- flink.select(df, carrier, origin, dest, dep_delay, arr_delay)
6 df$avgDelay <- (df$arr_delay + df$dep_delay) / 2
7 df$delay <-
8 if (df$avgDelay > 30) "High"
9 else if (df$avgDelay < 20) "Low"

10 else "Medium"
11

12 df$head(5)

Listing 1: Data transformation pipeline proposed in [YZP14].

1 df <- flink.readdf(...)
2 df <- flink.filter(df, df$origin == 'JFK')
3 grp <- flink.groupBy(df, 'dest')
4 max <- grp$max('arr_delay')
5 cat(max$head(5))

Listing 2: The maximal arrival delay per destination for �ights starting from New York.
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1 df <- flink.readdf(...)
2 df <- flink.filter(df, df$cancelled == 0 &&
3 df$dep_delay >= 10 && df$carrier %in% c("AA", "HA"))
4

5 df <- flink.select(df,
6 carrier, dep_delay, arr_delay, distance)
7

8 fastR_df <- flink.collect(df)
9 model <- glm(

10 arr_delay ~ dep_delay + distance,
11 data = fastR_df,
12 family = "gaussian")
13

14 summary(model)

Listing 3: A end-to-end pipeline with distributed ETL on Flink and local model training.

1 df <- flink.readdf(...)
2 ngrams <- function(tpl, collector) {
3 splits <- strsplit(tpl$body, " ")[[1]]
4 numSplits <- length(splits)
5

6 srtIdx <- 1
7 endIdx <- 2
8 while (endIdx <= numSplits) {
9 twoGram <- paste(splits[srtIdx:endIdx],

10 collapse = " ")
11 srtIdx <- srtIdx + 1
12 endIdx <- endIdx + 1
13 collector$collect(flink.tuple(twoGram, 1))
14 }
15 }
16

17 df <- flink.apply(df, ngrams)
18 flink.writedf(df, outFile)
19 flink.execute()

Listing 4: Calculating the 2-grams of the body column in the Reddit comments dataset.
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B: Lara

1 trait Matrix extends Serializable {
2 val numRows: Int
3 val numCols: Int
4 val transposed: Boolean
5

6 // element-wise M o scalar (+,-,*,/)
7 def +(that: Double): Matrix
8 // element-wise M o vector (+,-,*,/)
9 def +(that: Vector): Matrix

10 // element-wise M o M (+,-,*,/)
11 def +(that: Matrix): Matrix
12

13 // M x M -> M, M x V -> V, solve
14 def **(that: Matrix): Matrix
15 def **(that: Vector): Vector
16 def \(that: Vector): Vector
17

18 def diag(): Vector
19 def t: Matrix
20

21 def row(rowIndex: Int): Vector
22 def col(colIndex: Int): Vector
23

24 // higher-order methods on dimensions (same for columns)
25 def forRows(f: Vector => Double): Vector
26 def forRows(f: Vector => Vector): Matrix
27 def forRows(f: Vector => Boolean): Matrix
28

29 def forRows(f: Idx[Int, Vector] => Double): Vector
30 def forRows(f: Idx[Int, Vector] => Vector): Matrix
31 def forRows(f: Idx[Int, Vector] => Boolean): Matrix
32

33 // point-wise higher-order methods
34 def map(f: Double => Double): Matrix
35 def map(f: Idx[(Int, Int), Double] => Double): Matrix
36

37 def reduce(f: (Double, Double) => Double): Double
38 def fold[B](z: B)(s: Double => B, p: (B, B) => B): B
39 def fold[B](z: B)(s: Idx[(Int, Int), Double] => B, p: (B, B) => B): B
40 }

Listing 5: Important methods of Lara’s matrix type.
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1 trait Vector extends Serializable {
2 val size: Int
3

4 // element-wise vector o scalar (+,-,*,/)
5 def +(that: Double): Vector
6 // element-wise vector o vector (+,-,*,/)
7 def +(that: Vector): Vector
8 // inner product
9 def dot(that: Vector): Double

10 // outer product
11 def **(that: Vector): Matrix
12 // row vector x matrix
13 def **(that: Matrix): Vector
14

15 def diag(): Matrix
16 def t: Vector
17

18 // higher-order methods
19 def map(f: Double => Double): Vector
20

21 def reduce(f: (Double, Double) => Double): Double
22

23 def fold[B](z: B)(s: Double => B, p: (B, B) => B): B
24 def fold[B](z: B)(s: Idx[Int, Double] => B, p: (B, B) => B): B
25 }

Listing 6: Important methods of Lara’s vector type.
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