
On the Formal Foundations of PUFs
and Related Primitives

vorgelegt von
Ulrich Rührmair, MSc.,

geb. in München

von der Fakultät IV — Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuss:

Vorsitzende: Prof. Anja Feldmann, PhD
Gutachter: Prof. Dr. Jean-Pierre Seifert
Gutachter: Prof. Marten van Dijk, PhD
Gutachter: Prof. Srinivas Devadas, PhD
Gutachter: Prof. Dr. Marc Fischlin

Tag der wissenschaftlichen Aussprache: 30. Juni 2016

Berlin 2016

2

On the Formal Foundations of PUFs
and Related Primitives

Ulrich Rührmair

October 19, 2016

4

To my parents
and family

6

Like the legend of the phoenix
All ends with beginnings
What keeps the planet spinning
The force from the beginning

We’ve come too far to give up who we are
So let’s raise the bar and our cups to the stars

She’s up all night to the sun
I’m up all night to get some
She’s up all night for good fun
I’m up all night to get lucky

We’re up all night to the sun
We’re up all night to get some
We’re up all night for good fun
We’re up all night to get lucky

We’re up all night to get lucky
We’re up all night to get lucky
We’re up all night to get lucky
We’re up all night to get lucky

Repeat and fade...

Get Lucky
DAFT PUNK FEAT. PHARELL
WILLIAMS & NILE RODGERS

8

Contents

I Introduction and Overview 11

1 Primer and Formalities 13

2 Introduction to PUFs and Related Primitives, Or: Security Based on
Physical Unclonability and Disorder 23

II Physical Unclonable Functions as an Advanced
Cryptographic Primitive 71

3 Oblivious Transfer Based on Physical Unclonable Functions 73

4 Practical Security Analysis of PUF-based Two-Player Protocols 85

5 An Attack on PUF-based Session Key Exchange and a
Hardware-Based Countermeasure: Erasable PUFs 105

6 PUFs in Security Protocols: Attack Models and Security Evaluations 123

III Formalization of Physical Unclonable Functions and
Unique Objects 141

7 On the Foundations of Physical Unclonable Functions 143

8 Physical Turing Machines and the Formalization of Physical
Cryptography 165

IV Summary and Future Research 223

V Appendix 231

A Complete Publication List 233

9

10

Part I

Introduction and Overview

11

Chapter 1

Primer and Formalities

1.1 Motivation and Contextualization
In the year 2005, the ACM president at the time, David A. Patterson, proposed within
the Communications of the ACM the so-called “SPUR manifesto” [43]. Its aim was to
guide the computer and communication (C&C) research at the brink from the 20th to
the 21st century. Together with usability and reliability, he identified security&privacy
as one of three major topics in future C&C studies, stating that

“In my view, we have taken ideas from the 1970s and 1980s to their log-
ical extreme, providing remarkably fast and cheap C&C to hundreds of
millions of people. But we now are all painfully aware of the drawbacks of
20th century C&C. [...] We must protect the security and privacy of C&C
users from criminals and terrorists while preventing the Orwellian vision
of Big Brother. C&C in the 21st century should be as safe as 20th century
banking.”

Around the same time, in a completely independently vein of activities, a novel
approach in cryptography and security began to gain popularity under the name of
a “physical unclonable function” or “PUF”, for short [41, 42, 22]. In a nutshell,
a PUF is a (partly) disordered physical system, which exhibits some form of “input-
output” or “challenge-response” functionality. Each response of the PUF to an applied
challenge thereby is a function of both the unique physical disorder in the PUF and of
the challenge itself.

Due to their randomly disordered small-scale structure, PUFs cannot be physically
copied or cloned exactly in practice, even if their entire structure is known to the adver-
sary. This is in stark contrast to a classical cryptographic key, or to the architecture of
a standard digital circuit, which can both be duplicated easily once they have become
known. Their hybrid nature between physics and mathematics allows qualitatively new
security applications, for example identification schemes that operate without digital,
permanent keys in the hardware of the prover.

Interestingly, PUFs exactly follow the paradigms of the SPUR manifesto, as cited
above: They extend the digital and logical concepts of standard security techniques,

13

which are based on digital keys and mathematical assumptions. They instead explore
new approaches and assumptions in the physical domain. And, finally, they bear the
promise of not just delivering fast and cheap C&C, but also inexpensive, lightweight
security to millions of users.

For these and other reasons, PUFs have undergone a tremendous development
within the scientific community in the last decade (compare [52, 53]), and have become
one of the most prospering subfields of cryptography and hardware security in general.
Instead of giving a comprehensive history of the field, which has been done elsewhere
[53], let us merely illustrate this rapid development by a few stunning, exemplary facts
[52]: The two root papers of the area by Pappu et al. [42] and Gassend et al. [22] to
date have been quoted around 800 times according to Google scholar. PUF-papers have
appeared at every flagship venue of the wider cryptography and security community,
including EUROCRYPT [40], CRYPTO [6] ASIACRYPT [1, 17], ACM CCS [72, 83],
IEEE S&P [2, 60], the Journal of Cryptology [37], IEEE T-IFS [11, 36, 76], and ACM
TISSEC [23]. CHES and HOST, the two major hardware security conferences, have
continuously hosted one or even two dedicated PUF sessions in each year since 2010
[79, 80]. Also the circuit design community has become strongly engaged in the topic;
for example, one of its premium events DATE achieved an all-time record of eleven
dedicated PUF papers in one single conference in 2014 [81].

Given this remarkable expansion, however, the foundations of the field have in-
creasingly moved into focus. Especially in the early days, many PUF works solely
focused on implementational and hardware aspects. Different PUF types were often
not explicitly distinguished, and the security properties required in a certain application
were not worked out clearly. This sometimes made it hard to judge new implementa-
tions or applications for their viability. Furthermore, it made communication between
the different disciplines involved in PUF-research unnecessarily difficult; sometimes
it even prevented a sound and timely proliferation of the seminal ideas that underlie
PUF-research into the neighboring communities.

For a healthy long-term development, it therefore seems both pressing and indis-
pensible to lay the area’s theoretical foundations solidly. This necessity has already
been subsumed in the context of classical cryptography in a picturesque manner by
Oded Goldreich, who quotes his father in saying that

“It is possible to build a cabin with no foundations, but not a lasting build-
ing.” [25]

Following this credo, our thesis is wholeheartedly devoted to the foundations of
PUFs and related disorder-based primitives within the area of so-called “physical cryp-
tography” [66, 58]. Among others, we investigate the following rich and diverse top-
ics: Formal definitions and classifications of PUFs; security proofs for disorder-based
primitives such as UNOs; novel Turing machine models that can incorporate physical
actions of the adversary; the potential of PUFs in advanced cryptographic and security
protocols; and the effective practical security of PUF-schemes under realistic attack
models.

We stress, however, that our thesis does not solely focus on isolated or overly theo-
retical results. Rather, it places great emphasis on the correct translation of theoretical

14

findings into “real” application scenarios, revealing a number of shortcomings and vul-
nerabilities of previous works in this direction. Overall, we sincerely hope to have
sustainably advanced the foundations of the area, contributing to a sound basis for its
long-term development.

In the context of the overall thesis, this first chapter thereby mainly provides a brief
overview and settles some necessary formalities. Section 1.1 gives a short motivation
and contextualization: Section 1.2 subsumes our original contributions; Section 1.3
comprehensively lists all publications that are used as chapters of this thesis, and also
details the author’s individual contributions to these publications, as required by the
dissertation statutes of the TU Berlin; and Section 1.4 provides a short outline and a
guide to the reader. The main technical contributions are then being made afterwards,
namely in Chapters 2 to 8. Readers mostly interested in the latter are encouraged to
jump directly to these chapters, perhaps after reading the guidelines in Section 1.4.

1.2 Original Contributions of this Thesis

Being a cumulative thesis, this work contains as its chapters several publications of the
candidate in their original, published form. These papers make (or have made at the
time of their appearance) the following original contributions:

• We investigate the formal foundations and correct classification of PUFs and
related primitives. The paper presented in Chapter 7 [74] was the historically first
dedicated publication on this topic in 2009. It formally specifies the concepts
of a “Strong PUF” and of an “Obfuscating PUF” or “Weak PUF”, using the
ever first game-theoretic definitions of PUF security. Among other things, the
chapter also investigates the maximal information content or entropy in a PUF,
and discusses formal issues with asymptotic PUF definitions that existed at the
time of its publication. The core of the paper goes back to an invited talk of the
candidate at a workshop in Dagstuhl in 2008 [45]. This part of our work arguably
inspired a number of follow-up activities on the foundations of PUFs, including
works at major conferences like IEEE S&P [2]. It is the most often quoted paper
of this thesis, with around 70 quotations at the time of the submission of this
thesis in 2014, and over 100 citations today (status: September 26, 2016). The
survey paper presented in Chapter 2 follows the same route and classifies and
differentiates several disorder-based primitives.

• We explicitly consider Strong PUFs as an advanced cryptographic primitive (as
opposed to a mere security tool for key storage). Along these lines, we are the
first to actually realize PUF-based oblivious transfer in 2010 [47], showing the
strong potential along these lines. The corresponding paper is given in Chapter
3. Via a number of well-known reductions, this proves that Strong PUFs can,
in principle, implement any secure multi-party computation, key exchange, or
bit commitment protocols. As above, this work arguably inspired a large num-
ber of follow-up works at major conferences, including CRYPTO 2011 [6] and
EUROCRYPT 2013 [40].

15

• We investigate the concrete security of advanced PUF protocols in realistic appli-
cation scenarios, discovering attacks on several, previously secure schemes. We
start in Chapter 4 by an analysis of oblivious transfer (OT) and bit commitment
(BC) protocols by Brzuska et al. from CYPTO 2011 [6], and show the existence
of quadratic attacks on these protocols. While such attacks usually are consid-
ered a nuisance in asymptotic frameworks, we illustrate that they do have an
effect in the context of concrete PUF implementations: They make the OT and
BC protocols insecure if they are implemented via optical PUFs, as suggested
explicitly in the original paper at CRYPTO 2011 [6]. This means that the pro-
tocols cannot be used securely in practice in the way suggested in the original
paper [6]. The paper underlying Chapter 4 was published at CHES 2012, and
was voted one of the best papers of the conference; it was subsequently invited
for submission at the Journal of Cryptographic Engineering.

• We continue by analyzing a PUF-scheme by Tuyls and Skoric from 2007 [86] in
Chapter 5. It employs a PUF on a bank card to exchange a session key between
the bank on the one hand and the card (or a terminal where the card is inserted)
on the other hand. We show, however, that adversaries with multiple access to the
PUF on the card can derive previous session keys. Since bank cards are usually
employed multiple times in various terminals, this appears as a very natural and
realistic attack scenario.

• Partly generalizing from the concrete attack on the scheme by Tuyls and Skoric,
we semi-formally specify two general new adversarial models for Strong PUF
protocols: The so-called “bad PUF model” and the “PUF re-use model” [18,
60] in Chapter 6. 1 We show that a large number of existing, advanced PUF
protocols are not secure in these attack models, including the schemes for OT,
BC and key exchange by Brzuska et al. from CRYPTO 2011 [6], and partly also
from Ostrovsky et al. from EUROCRYPT 2013 [40]. It must be stressed that our
attack models lie outside the original security models of these papers, but that
they appear highly realistic, and that PUF protocols would be faced with them
when used in practice. The paper underlying Chapter 6 was published at the
IEEE Symposium on Security and Privacy, the top conference in the entire area
of computer security and cryptography.

• As countermeasures to the bad PUF model and the PUF re-use model, we intro-
duce the novel PUF-concepts of a “Certifiable PUF” and an “Erasable PUF”
in Chapters 5 and 6. They could restore the security of advanced PUF protocols
in practical settings.

We also make the first steps towards the hardware implementation of Erasable
PUFs via so-called crossbar nano-structures and ALILE diodes [64] in Chapter
5, including proof-of-concept fabrication and measurement of such diodes. They

1We remark that one of these two models, namely the bad PUF model has been discussed completely
independently and around the same time as the work of the candidate by Ostrovsky et al. under the term
“malicious PUFs” (compare [18] and [39]). The PUF re-use model, however, is solely the work of the
candidate, and has not been touched upon by other authors.

16

show the large variations in the diodes, and prove the possibility for erasing their
information content by applying a certain threshold voltage.

• In Chapter 8, we finally develop a new Turing machine model that can explic-
itly deal with physical objects, so-called “physical Turing machines”. The novel
model allows us lead the first formal security proof in the PUF area that explic-
itly and directly includes physical features, such as the physical unclonability of
PUFs and related primitives. The proof also was the first formal proof on so-
called “unique objects (UNOs)” (see Chapters 2 and 8), and the first asymptotic
security proof in the PUF area at the time of its publication in 2011. 2

1.3 Relevant Publications and Individual Contributions
of the Candidate

In compliance with the doctoral statutes of the TU Berlin, we below list the seven
scientific publications of the candidate that are used as the chapters of this cumulative
thesis, and explicitly describe the candidate’s individual contributions to each single
publication.

According to Google scholar [26], these publications altogether have been quoted
around 330 times by September 26, 2016, with the candidate being the first author or
sole author of all of them. We also provide the latest citation numbers of each single
paper for the same cutoff date below, again according to Google scholar [26].

• CHAPTER 1 has been solely written by the candidate.

• CHAPTER 2 uses the publication

– U. Rührmair, S. Devadas, F. Koushanfar: Security based on Physical Un-
clonability and Disorder. In: Introduction to Hardware Security and Trust,
M. Tehranipoor and C. Wang (Eds.), pp. 65-102, Springer, 2012,

which is a book chapter with Sections 4.1 – 4.7. The candidate’s contributions
are as follows: He initated and conceptualized the publication, and mainly de-
vised its structure, including the classification of disorder-based primitives into
unique objects, Weak PUFs, Strong PUFs, and Controlled PUFs. He wrote the
largest parts of Sections 4.1, 4.2, and 4.4, and substantial fractions of Sections
4.6. Parts of Sections 4.3 were contributed by him, too.

According to Google scholar, this work has been cited 52 times to this date [26].

2We would like to mention for completeness that the manuscript in fact dates back much further to 2006,
having been distributed to a number of colleagues at the time, including Stefan Katzenbeisser, Sven Kosub
and Helmut Veith, but that it was only put online in 2011.

17

• CHAPTER 3 employs the publication

– U. Rührmair: Oblivious Transfer Based on Physical Unclonable Functions.
TRUST 2010, Lecture Notes in Computer Science, Vol. 6101, pp. 430-440,
Springer, 2010.

It is a single author paper of the candidate.

According to Google scholar, it has been cited 44 times to this date [26].

• CHAPTER 4 utilizes the publication

– U. Rührmair, M. van Dijk: Practical Security Analysis of PUF-based Two-
Player Protocols. Cryptographic Hardware and Embedded Systems (CHES
2012), Lecture Notes in Computer Science, Vol. 7428, pp. 251-267, Springer,
2012.

The candidate initialized and conceptualized this paper. Apart from Lemma 3 in
Section 3, the publication is essentially due to him. He discovered the quadratic
attack, developed the interactive hashing based alternative protocols, and con-
ducted all necessary security analyses and most of the writing.

According to Google scholar, it has been cited 23 times to this date [26]. It was
selected one of the best papers at CHES 2012 and invited for submission to the
Journal of Cryptographic Engineering.

This created the following, related publication, which is explicitly not used in
this cumulative thesis:

– U. Rührmair, M. van Dijk: On the practical use of physical unclonable
functions in oblivious transfer and bit commitment protocols. Journal of
Cryptographic Engineering 3(1), pp. 17-28, 2013.

• CHAPTER 5 consists of the publication

– U. Rührmair, C. Jaeger, M. Algasinger: An Attack on PUF-Based Session
Key Exchange and a Hardware-Based Countermeasure: Erasable PUFs.
Financial Cryptography and Data Securiy (FC 2011), Lecture Notes in
Computer Science, Vol. 7035, pp. 190-204, Springer, 2012.

As above, the candidate initialized and conceptualized the paper. The attack
on the session key exchange protocol is due to him, and so is the concept of
an “Erasable PUF” put forward in the paper. Sections 1, 2, 3, 4, and 7 were
written by the candidate. The physical experiments reported in Section 5 and 6
are due to his co-authors, while the writing of Sections 5 and 6 has mainly been
accomplished by the candidate.

According to Google scholar, it has been cited 29 times to this date [26].

18

• CHAPTER 6 uses the publication

– U. Rührmair, M. van Dijk: PUFs in Security Protocols: Attack Models and
Security Evaluations. IEEE Symposium on Security and Privacy 2013, pp.
286-300, 2013.

As above, this paper has been initiated and led by the candidate. The described
attack models and presented attacks are due to him. Apart from parts of Section
III.E, the paper has been written by the candidate.

This work was published at the premium venue in cryptography and security, the
IEEE Symposium on Security and Privacy, with an acceptance rate of only 12%
in 2013. According to Google scholar, it has been cited 52 times to this date
[26].

Two related existing papers, which explicitly have not been used in this cumula-
tive thesis, are

– M. van Dijk, U. Rührmair: Physical Unclonable Functions in Crypto-
graphic Protocols: Security Proofs and Impossibility Results. IACR Cryp-
tology ePrint Archive, Report 2012/228, 2012.

– M. van Dijk, U. Rührmair: Protocol attacks on advanced PUF protocols
and countermeasures. Design, Automation and Test in Europe (DATE
2014), pp. 1-6, 2014.

• CHAPTER 7 utilizes the publication

– U. Rührmair, J. Sölter, F. Sehnke: On the Foundations of Physical Unclon-
able Functions. IACR Cryptology ePrint Archive, Report 2009/277, 2009.

Again, the paper was initiated, conceptualized and led by the candidate. Apart
from the machine learning results in the appendix, the main contributions and
writing are due to him, including the differentiation and classifications of PUF
variants, the adversarial models and PUF-definitions, the information-theoretic
analysis of the maximal entropy in a PUF, and the discussion of previous PUF
definitions.

According to Google scholar, it has been cited 102 times to this date [26]. This
makes it the most quoted work of this thesis.

• CHAPTER 8 uses the publication

– U. Rührmair: Physical Turing Machines and the Formalization of Physical
Cryptography. IACR Cryptology ePrint Archive, Report 2011/188, 2011.

It is a single author paper by the candidate.

According to Google scholar, it has been cited 6 times to this date [26].

19

We explicitly remark that the above publications do not constitute the complete publi-
cation list of the candidate. A number of other works has been used for a second thesis
entitled “Disorder-based Security Hardware”, which has been submitted to the TU
München for the degree of a “Dr.-Ing.”. That second thesis concentrates on hardware-
related and implementational work, and employs a fully disjoint set of publications
and different scientific methodologies. It has been clearly demarcated from this thesis,
which focuses on theoretical and foundational aspects.

1.4 Guide to the Reader and Thesis Outline
We conclude this introductory chapter by a compact overview of the thesis’ organiza-
tion, including some guidelines and hints for readers.

PART I of the thesis, which contains Chapters 1 and 2, gives an introduction to and
overview of the topic:

• We start in this Chapter 1 by a brief motivation and contextualization of our
work, clarifying a number of technacalities and formalities.

• In Chapter 2, we then present a more detailed introduction to the area, specifying
various PUF-like primitives like physically obfuscated keys (POKs) or Weak
PUFs, Strong PUFs, and unique objects (UNOs). Readers getting in touch with
PUFs for the first time might want to at least skim through Chapter 2 in order to
prepare them for the more advanced topics in later chapters.

PART II, which consists of Chapters 3 to 6, then investigates the fundamental usability
of Strong PUFs in cryptographic protocols:

• To start with, Chapter 3 shows that in theory oblivious transfer (OT) can be real-
ized by PUFs — at least in stand-alone settings and under certain assumptions on
the used PUF, which must be secure and non-manipulated (compare Chapter 6).
This reveals a previously unexpected power of Strong PUFs as a cryptographic
tool, as a very large number of other cryptographic protocols can be based on OT
[29].

• Chapter 4 subsequently analyzes the practical security of PUF protocols for OT
and bit commitment (BC) that have been proposed at Crypto 2011 [6]. We show
that these protocols are not secure if optical PUFs are employed, as explicitly
suggested in [6]. Our interactive hashing based OT-protocol of Chapter 3 [47]
comparably has got better security.

• Chapter 5 continues our practical security analyses, and investigates a session
key exchange protocol by Tuyls and Skoric from 2007 [86]. The protocol has
been suggested for key exchange between a bank card/terminal/PUF on the one
hand and the bank headquarters on the other hand. We are able to show that it is
vulnerable if an adversary gets access to the PUF on the bank card mutiple times.

20

• Chapter 6 subsequently generalizes our earlier observations, concluding the strand
of work on PUF protocols in the second part of this thesis. We first formally
introduce two formal, general adversarial models, the so-called “PUF re-use
model” and the “bad PUF model”, which are close to practical Strong PUF us-
age scenarios. We then demonstrate vulnerabilities of a considerable number of
recent Strong PUF schemes in the two models, including protocols published
by Brzuska et al. at Crypto 2011 [6], and partly also by Ostrovsky et al. from
Eurocrypt 2013 [40]. Both Chapters 5 and 6 suggest countermeasures against
these alarming vulnerabilities, introducing the concepts of “Erasable PUFs” and
“Certifiable PUFs”. Efficient implementation of these new types of PUFs would
restore the usability of Strong PUFs as a universal tool in advanced cryptographic
protocols. Chapter 5 reports first steps towards the physical implementation of
Erasable PUFs by nanoscale crossbar architectures.

PART III of the thesis, which comprises of Chapters 7 and 8, then deals with the math-
ematical formalization of PUFs and related pritimitives:

• Chapter 7 takes a dedicated look at the foundations of PUFs, and classifies dif-
ferent PUF types with respect to their security features. The chapter also inves-
tigates the soundness of several earlier PUF definitions, and points to a number
of problems.

• Chapter 8 continues this line of investigations, refining it yet further: We in-
troduce a new Turing machine model, so-called physical Turing machines, and
lead the very first formal security proof based on this new model. One explicit
advantage of physical Turing machines is that they allow full asymptotic treat-
ment of PUFs and related primitives like UNOs. Another upside is that they
allow a direct formalization of the physical unclonability of PUFs and UNOs, in
opposition to all earlier PUF definitions.

PART IV, finally, concludes the thesis. It summarizes its main content in condensed
form, and provides an outlook on promising future research topics in the field.

We remark that wherever possible, the thesis has beeen written in a modular fash-
ion, enabling readers to easily jump between different parts. To make this yet simpler,
every chapter begins with a short description and contextualization of the following
publication, contextualizing its role within the entire thesis. Further, all included arti-
cles are self-contained by their very nature. The resulting modular accessibility could
even be seen as a general advantage of cumulative theses.

Finally: Enjoy reading!

21

22

Chapter 2

Introduction to PUFs and
Related Primitives, Or:
Security Based on Physical
Unclonability and Disorder

After the general overview of Chapter 1, this second chapter finally starts the sequence
of technical contributions. It surveys the area of PUFs and related primitives, all of
which utilize the phenomena of physical disorder and physical unclonability in one
way or the other for security purposes. The actual primitives that we discuss include
so-called unique objects (UNOs), Weak PUFs, Strong PUFs, Public PUFs, and SIMPL
systems. We survey and categorize the existing literature, provide brief definitions
and specifications of said primitives, discuss their possible implementation via optical,
silicon or radio-frequency techniques, and present common application scenarios. We
also give a detailed outlook on future research opportunities. In doing so, the chapter
explicitly and significantly contributes to the foundations of the area, which are our
unifying theme in this thesis.

The chapter is particularly targeted for readers who are getting in touch with the
PUF-area and its underlying concepts for the first time. It equips them with the nec-
essary background for the upcoming parts of this thesis. The concrete paper that we
employ is

• U. Rührmair, S. Devadas, F. Koushanfar: Security based on Physical Unclonabil-
ity and Disorder. In: Introduction to Hardware Security and Trust. M. Tehra-
nipoor and C. Wang (Eds.), pp. 65-102, Springer, 2012.

According to Google scholar, it has been cited 73 times to this date [26].
The candidate would like to express his gratitude to have one of the founding fathers

of the field as a co-author in this publication.

23

Security based on Physical Unclonability

and Disorder

Ulrich Rührmair†,1, Srinivas Devadas2, Farinaz Koushanfar†,3

†These two authors have equally contributed to this book chapter

1Computer Science, Technische Universität München
2Electrical Engineering and Computer Science, Massachusetts Institute of Technology

3Electrical and Computer Engineering, Rice University

Abstract. Identification, authentication, and integrity checking are im-
portant tasks for ensuring the security and protection of valuable objects,
devices, programs, and data. The utilization of the microscopic, random
and unclonable disorder of physical media for such security tasks has re-
cently gained increasing attention. Wherever applicable, the harnessing
of disorder can lead to intriguing advantages: First, it can avoid the per-
manent storage of digital secret keys in vulnerable hardware, promising
to make the resulting systems more resilient against invasive and mal-
ware attacks. Second, random physical disorder has the natural feature
of being very hard to clone and to forge: Fully controlling the micro-
and nanoscale fabrication variations in physical media is extremely dif-
ficult and, even if possible, prohibitively expensive. Third, utilization of
the natural disorder and entropy in physical systems can sometimes en-
able cryptographic protocols whose security does not rest on the usual
unproven number-theoretic assumptions like factoring and discrete log,
creating an alternate foundation for cryptography. Physical Unclonable
Functions or PUFs are perhaps the best known representative of this
new class of “disordered” cryptoprimitives, but there are also others.
In this chapter, we provide a classification for past and ongoing work
in physical disorder based security alongside with security analyses and
implementation examples. We will also outline some open problems and
future research opportunities in the area.

1 Introduction

Since the number of networked smart objects, programs, and data is
constantly increasing, there is an equally growing demand to ensure
the security and reliability of these units. Since they are pervasive in
our daily lives, this issue has become a significant societal challenge.
One central task lies in realizing secure and reliable identification,
authentication, and integrity checking of these systems.

Traditional security methods based on secret digital keys often
do not provide adequate solutions for this purpose. One major point
of vulnerability relates to their hardware implementations and key
storage: A whole host of attacks for extracting, estimating, or cloning
secret keys that are stored digitally in non-volatile memory have been
developed and reported over the past several years. The situation is
especially problematic for embedded and mobile low power devices
with a small form factor, where the adversaries can often gain full
and direct access to the device. For many FPGA-based reconfig-
urable devices, which are increasingly growing in market share, the
permanent storage of secret keys can be a problem: Integrating se-
cure non-volatile memory (NVM) on FPGAs incurs additional costs
and fabrication overhead and, thus, it is often not included. There-
fore, keys have to either be stored in external memory, where they
are highly vulnerable, or an additional back-up battery to power on-
chip volatile storage must be used, which increases cost and system
complexity. We refer interested readers to Chapter 6 of this book for
a full discussion of FPGA vulnerabilities and security.

Over recent years, an alternative security approach has therefore
emerged, which is based on the inherent, hard-to-forge and unique
disorder of physical objects. It constitutes a promising alternative
which can address the standing challenges of classical security that
were described above. Two major classes of disorder-based security
systems that have been proposed are Unique Objects (UNOs) and
Physical Unclonable Functions (PUFs). A Unique Object is a phys-
ical system that, upon measurement by an external apparatus, ex-
hibits a small, fixed set of inimitable analog properties that are not
similar to any other objects. It shall be impossible to intentionally
fabricate a second object with the same properties, even if the prop-
erties and exact structure of the original object are known. Such
properties can be referred to as the “fingerprint” of a unique ob-
ject for obvious reasons. We discuss several media that exhibit such
unique disorder, including paper, fibers, magnetic disks, radiowave
scatterers, and optical tokens.

PUFs are the second important class of disordered systems that
can be employed for reliable identification, authentication, key stor-
age, and other security tasks. The term and acronym “PUF” for
denomination of this class first appeared in [1]. In a nutshell, a PUF

is a disordered physical system S that, when interrogated by a chal-
lenge (or input, stimulus) denoted by Ci, generates a unique device
response (or output) denoted by RCi

. This response shall depend on
the applied challenge and on the specific disorder and device struc-
ture of the PUF. The unclonability requirement in the PUF defini-
tion is that it should be intractable for an adversary with physical
access to create a physical or software clone of a PUF.

Both the challenge-response pairs of PUFs and the fingerprints
of Unique Objects have the purpose of uniquely identifying any de-
vice with high probability. In order to realize this in practice, we
need stable repeated measurements, and must be able to cope with
noise and varying operational conditions. In such scenarios, error
correcting codes may be used to ensure the desired operability and
robustness of the system [2–7]. Other options are averaging or cali-
brating the device’s operational conditions [8, 9].

Two important metrics that are typically applied to categorize
the uniqueness and robustness of PUF responses and UNO finger-
prints are inter-device and intra-device distances. Inter-device dis-
tance is often quantified as the average Hamming distance between
the responses to the same challenge obtained from two different
PUFs/UNOs, or the average distance between the fingerprints of
two unique objects measured in the same conditions. Intra-device
distance is the average Hamming distance between the responses to
the same challenge applied at different times and environmental con-
ditions to the same PUF/UNO, or the average distance between the
repeatedly measured fingerprint(s) of a unique object. Ideal PUFs
and UNOs should lead to large inter-device and small intra-device
distances. Another key requirement for PUFs and unique objects is
the entropy of the resulting responses or fingerprints. The entropy
quantifies the number of independent IDs that can be generated by
the same device architecture.

Despite the similarities between UNOs and PUFs, there are sev-
eral important differences between them that distinguish these two
security primitives (and their subclasses) from each other. This chap-
ter provides a conceptual categorization and summary of the field
of physical disorder based cryptography and security, also termed
physical cryptography in [10]. Whenever applicable, the concepts are
interleaved with examples from the contemporary literature and im-

plementation details. A number of surveys on the PUF subject are
already existent, for example, [11] and a recent book with several
chapters dedicated to PUFs [12]. We will cite these review articles
whenever applicable, and emphasize that the concepts in this chapter
are complementary to the contemporary literature in this area.

Fig. 1. Organization of the Chapter.

Organization of this chapter. Figure 1 gives an overview of the
classes of physical disorder based security tokens discussed in this
chapter. Each of the discussed subjects are shown as a branch in
the chart. The next section reviews UNOs including paper-based
(fiber-based) fingerprints, magnetic signatures, and RF-based Cer-
tificates of Authenticity. Section 3 discusses the weak PUF class
including Physically-Obfuscated Keys, SRAM-PUFs, and butterfly
PUFs. Strong PUFs are the subject of Section 4. Examples of PUF
structures that can provide building blocks for Strong PUFs include
optical PUFs, arbiter PUFs, XOR arbiter PUFs, and analog cellular
arrays. Emerging PUF designs and research challenges are presented
in Section 6. We conclude the chapter in Section 8.

2 Unique Objects

Extracting an objects’s fingerprint based on its random physical dis-
order has been exploited for more than three decades. In absence of
an established common term, we call this class of structures “Unique
Objects (UNOs)”.

A Unique Object is a physical entity that exhibits a small, fixed
set of unique analog properties (the “fingerprint”) upon being mea-
sured by an external equipment. It should be possible to measure
the fingerprint quickly and preferably by an inexpensive device. The
“fingerprint” should be specific to the object such that it is practi-
cally infeasible to find or build another instance of the object with
the same specs, even if the object’s fingerprint and its detailed struc-
ture are known (see also [13]).

More precisely, a Unique Object and its fingerprint should meet
the following properties:

1. Disorder. The fingerprint should be based on the unique disorder
of the physical object.

2. Operability. The fingerprint should be adequately stable over
time, and must be robust to aging, environmental conditions, and
repeated measurements. It must be possible to fabricate other in-
stances of the measurement equipment with similar characteriza-
tion capability. The measurement and characterization cost and
time should be practically and economically viable.

3. Unclonability. It should be prohibitively expensive or impractical
for any entity (including the manufacturer) to produce another
object that presents the same unique fingerprint characteristics
when queried by the measurement device.

Figure 2 demonstrates the scenario. It is assumed that each
Unique Object in the figure has an unclonable fingerprint that is
specific to it. Also, it is assumed that both measurement equipment
are able to characterize the object’s fingerprint at the desired level
of resolution and accuracy. In other words, the UNO shall be the
unique and unclonable part of the system, while the measurement
device can be mass-produced with the same functionality.

2.1 History and Examples of Unique Objects

Using biometrics for fingerprinting dates back to the 19th century.
Although human hand fingerprints and other biometric entities are
closely related to Unique Objects, a discussion of biometrics finger-
printing is outside the scope of this chapter. We refer the interested
readers to comprehensive books on the subject [14, 15].

Fig. 2. Two Unique Objects (based on paper structures in this example), and two fin-
gerprint measurement devices. The cloning of a Unique Object should be prohibitively
costly, while it should be possible to mass-manufacture large numbers of measurement
devices that can characterize the fingerprints at the desired level of accuracy.

Fig. 3. (a) A thin, random layer of light scattering particles sprayed on the missiles.
(b) Illuminating the surface from different angles would generate different inference
patterns.

Sprayed random surfaces. Perhaps the earliest reported usage of
Unique Objects for security was proposed by Bauder during the cold
war for use in nuclear weapons treaties [16, 17]. To tag the nuclear
missiles unforgeably, a thin, random layer of light scattering parti-
cles was sprayed onto the missiles. The layer was illuminated from
various angles, and images of the resulting interference patterns were
recorded by an inspector. On later inspections, the interference pat-
terns could be measured anew, and compared to the record of the
inspector. An example is shown in Figure 3.

The scheme was assumed secure even if an adversary would know
the (relatively few) illumination angles and the resulting patterns
used by the inspector, and even if he had access to the unique layer
for a long time period and could investigate its structure. Even un-
der these circumstances, it was presumed infeasible to produce a
second layer which generated the same speckle pattern. Of course,
if an adversary knows all illumination angles and the resulting pat-
terns used by the inspector, this system cannot be used for remote
authentication, since an adversary can merely replay back the digi-
tized responses/images upon receiving a challenge. Furthermore, the
scheme can only be used by an inspector who carries trusted mea-
surement equipment and uses it on the Unique Object directly, which
was presumably the usage model of the system during the cold war.

Fiber-based random surfaces. Other early implementations of
Unique Objects were based on randomly distributed fibers in solid-
state objects, for example, paper fibers in banknotes [18], or metallic
fibers in a thin substrate on bank cards measured by a magnetic
reader [19]. A seminal reference that discusses Unique Objects from
a more fundamental cryptographic perspective is [20], which was
later extended by [21]. [20] is, to our knowledge, the first academic
source that suggests the combined use of Unique Objects and digital
signatures to create offline verifiable labels.

Several seeds laid in this early work were followed up in later
research. Firstly, surface irregularities in paper or other materials
were further investigated by [22–28]. The authors of [23, 24] create
unforgeable postal stamps and document authenticators from pa-
per irregularities and digital signatures; [22] shows that the paper

surface fingerprints are robust to soaking and a number of other
transformations;

Fig. 4. (a) Scanner produces different images of the paper surface based on the page
orientation. The light seen at the sensor depends on the angle between the surface
normal and the light source; (b) A region of the document can be scanned from top-
to-bottom; and (c) The same document region can be scanned from left-to-right. The
3D texture can be estimated by combining (b) and (c) (Figure inspired by studies in
[28]).

[26] investigates the use of surface-based labels in developing
countries and rural regions; [27] deals with database and error cor-
recting algorithms for surface-based identification; and [28] offers a
detailed treatment centering around inexpensive measurement meth-
ods for paper surfaces by commodity scanners as demonstrated in
Figure 4. The complex reflective behavior of surfaces has even led to
commercially available security systems [29] [30].

Secondly, the use of randomly disordered fibers contained in a
fixing matrix was described in [31–34]. [32, 33] use light conducting
optical fibers, and measure the individual light transfer via these
fibers into various spatial segments of the matrix. Each instance is
created as a collection of fibers randomly positioned in an object
by a transparent gluing material that permanently fixes the fibers’
positions. Readout of the random structure of a fiber-based note is
performed using the following fact: if one end of a fiber is illuminated,
the other end will also be lit as shown in Figure 5.

[31] employs randomly distributed metal particles, and measures
their scattering behavior by a near-field read-out. [34] pours ultra-
violet fibers into a paper mixture and measures the optical response.

Fig. 5. Examples of randomly placed, fixed-length fibers. The square demonstrates the
embedding substrate. Three fibers lit by spot illumination light as described in [33].

Unique Objects and digital rights management. An observa-
tion that further propelled the field was that common data carriers
such as (again) paper, but also ICs, CDs, and DVDs can have unique
features. Sometimes their unique properties arise just in the very pro-
cess of writing or imprinting data onto them. One early reference in
this context is [35]. There, the unique irregularities in CD-imprinting
(such as individual height, shape and length of the bumps) are used
to secure the CD’s digital content that is stored in exactly these
bumps. Conceptually the same suggestion is made in [36] and [37],
yet at a much greater level of scientific detail. For more information
on optical media (CD) fingerprints, we refer interested readers to
[12]. The irregularities in letters printed on paper have been sug-
gested to secure paper documents in [38]. Finally, several methods
for uniquely identifying and authenticating chips will be described
in the remainder of this chapter.

Other implementations of Unique Objects. Other studies pro-
posed novel classes of unique structures, and can be best categorized
according to the employed read-out technique. A number of Unique
Objects with radio wave read-out in the (relative) far field were sug-
gested in the commercial sector [39–44]. For most of them, doubts
have been raised with respect to their unclonability [13]. Another ra-
dio wave approach measures the unique RF signals created by higher
harmonic oscillations [45]. Unique Objects with magnetic read-out
have been investigated in [46]. Alternative optical concepts that dig
deeper into physics and utilize more complex effects and structures

have been suggested in [47]. They include photonic crystals and reso-
nant energy transfer between optically-active particles. Surprisingly,
there is little work on Unique Objects with electrical read-out, even
though this would promise particularly simple and inexpensive mea-
surement. One recent source is [10], where the unique current-voltage
characteristics of imperfect diodes are exploited. Finally, even DNA-
based approaches have been suggested [48], and made it to the mar-
ketplace some time ago [49].

Finally, the question of error correction of the measured unique
signals is treated en passant in most of the above publications, in-
cluding [27, 28, 32, 34]. References solely dedicated to error correction
include [50–52].

2.2 Protocols and Applications of Unique Objects

The natural application of Unique Objects is to label items of value
(such as commercial products, bank cards, banknotes, passports, ac-
cess cards, etc.) in an unforgeable manner. Proving authenticity is
particularly useful as losses due to counterfeiting of digital goods and
physical objects amount to worldwide losses in a three-digit billion
dollar range [53]. Two basic approaches can be applied.

(i) In one classic and straightforward approach, the Unique Object
is physically attached to the item it protects, or consists of a
measurable unique characteristic of the protected item itself. The
Unique Object’s fingerprint is stored in a central database. When
authentication is needed, the object’s fingerprint is measured and
compared to the stored value in the database. The requirements
for this protocol include existence of a central database and an
authenticated online connection to the database.

(ii) An alternative approach has been pioneered, to our knowledge,
in [20], and has been termed Certificate of Authenticity (COA)
in [31]. Again, the Unique Object is physically attached to the
protected item (or is a measurable unique characteristic of the
protected item itself). In addition to the Unique Object, comple-
mentary information is stored directly on the item, for example
via a printed barcode. The information includes a numerical en-
coding of the fingerprint, error-correcting codes [52], item-related

information I (such as the origin of the item), and most impor-
tantly, a digital signature of the fingerprint and I. In order to
verify the validity of the label/the item, a verification device does
the following: It reads the complementary information from the
item, and verifies the validity of the digital signature by use of a
public verification key stored in the device. Secondly, it measures
the fingerprint of the label/the item by a trusted measurement
apparatus, and verifies if it matches the fingerprint given and
signed in the complementary information.

The advantage of the approach (ii) is that it does not need a con-
nection to a database and that it can work offline. Neither the label
nor the testing apparatus needs to contain secret information of any
sort. This leads to the strong asset that neither tampering with a
label nor with any of the widespread testing apparatuses can lead
to secret key extraction and a global failure of the system through
one extracted key. The measurement apparatus has to be trusted to
work correctly.

Variants and combinations of the two basic protocols above have
been proposed in Unique Objects literature, e.g., [35–37].

2.3 Security Features

No secret information in hardware. The most striking feature
of Unique Objects is that they contain no piece of information that
must remain secret, and which would have to be protected by costly
and laborious means. Their security rests not on the assumption that
some key or some other information about their structure remains
secret; rather, it is built on the hypothesis that it is infeasible to build
a clone of the object even if all its internal details are known. It is
based directly on the limitations of current nano-scale fabrication
methods.

Furthermore, a COA can even be verified for validity without
possession of any secret keys; any verifying party merely must hold
a public key to check the digital signature contained in the COA.
This allows the widespread distribution of labels and testing appa-
ratuses, without risking a global security break through secret key
compromise in either the labels or apparatuses, which is significant.

The only secret key that is required can be stored at the authority
that creates the signatures, where it can usually be protected much
better. The authenticated communication required in classic proto-
col (i) above can be established by typical cryptographic methods.
At the same time, parties using the system must rely on the integrity
of the measurement apparatus. This implies that remote authentica-
tion to a central authority by an untrusted terminal is not possible,
and therefore limits applicability of Unique Objects.

Structural sensitivity as a security benchmark. One critical
measure for the security of Unique Objects is their structural sen-
sitivity: How much are the output signal and the unique measured
fingerprints of the object affected if we change its inner structure
slightly, by a factor of δ, say? This parameter determines the level
of exactness that an adversary has to reproduce the Unique Object
in order to remain undetected. It can be employed as a benchmark
to rank competing candidates of Unique Objects.

Attacks on Unique Objects. The main attack on Unique Objects
is refabrication or cloning. It is not necessary to rebuild the original
with perfect precision; merely, a second structure needs to be fabri-
cated that generates the same measured fingerprint as the original
from the view of the measurement apparatus. This structure could
in principle have a totally different size, lengthscale, or appearance;
it might even be a smart, reactive system that artificially synthesizes
the correct response. Note that purely numerical modeling attacks
such as the ones executed on PUFs [54] are pointless and not appli-
cable to Unique Objects. Such attacks can help a fraudster to nu-
merically predict the (numerical) response of a PUF to a randomly
chosen challenge. But in case of UNOs, the attacker is assumed to
know these responses anyway; his task lies in fabricating a clone
that produces the same analog response upon measurement with an
external apparatus that he/she cannot influence. This is foremost a
physical manufacturing challenge, not a question of modeling.

Quantum systems vs. Unique Objects. Quantum systems, such
as polarized photons, were among the first systems whose inherent

physical features have been suggested for security systems [55] [56].
It is long known that the laws of quantum physics forbid the cloning
of a quantum system with an unknown state, for example of a photon
with an unknown polarization. Could a polarized photon hence be
interpreted as a specific object according to our definition, with its
unique property being the polarization angle? This is not the case:
One condition of the Unique Object definition is that the adver-
sary knows the unique properties of a Unique Object. But once the
polarization of the photon is known, many photons with the same
polarization state can be generated. Unique Objects thus relate on
a different type of unclonability than quantum systems.

3 Weak Physical Unclonable Functions
(Weak PUFs)

One class of Physical Unclonable Functions based on inherent device
variations are Weak PUFs. They exploit the disordered, unique, in-
ternal structure of the underlying fabric as a non-volatile memory for
storing the secret keys. In an ideal case, the volatile keys generated
by Weak PUFs upon power-up cannot be determined by external
and invasive attacks due to construction or tamper-proof properties
of the pertinent structure. Weak PUFs are also known under the
name of Physically Obfuscated Keys (POKs) [2].

The term Weak PUF was coined in [57] to refer to PUFs with
a limited number of challenge-response pairs (CRPs) in contrast to
Strong PUFs that contain many CRPs. The following specification
has it in greater detail.

1. Challenge-Response Pairs. A Weak PUF can be interrogated by
one (or a very small number of) fixed challenge(s) Ci, upon which
it generates response(s) RCi

that depends on its internal physical
disorder.

2. Key Derivation. The response(s) RCi
from a Weak PUF is (are)

exploited by the device for deriving a standard digital key that
can be used for security applications.

3. Practicality and operability. The generated response RCi
should

be sufficiently stable and robust to environmental conditions and
multiple readings.

Weak PUFs vs. UNOs. It is important and necessary to differ-
entiate Weak PUFs from Unique Objects: Applications of Unique
Objects require an adversarial model where Eve has time to inspect
all features of the Unique Object, and will often know its internal
structure and unique fingerprint. Furthermore, these unique prop-
erties are measured by an external apparatus. The exact opposite
holds for Weak PUFs: Their responses are measured internally, and
the derived key is kept secret in the embedding hardware.

3.1 History and Implementation Examples

Fig. 6. Array of ICID transistors producing a sequential random voltage proposed in
[58].

ICID PUFs. ICID is the first proposed and designed circuit struc-
ture for generating a Weak PUF (or random chip ID) based on pro-
cess variations [58]. They devised an array of addressable MOSFETs
(shown in Figure 6), with common gate and source and sequentially
selected drains driving a resistive load. Because of device thresh-
old voltage mismatches (resulting from process variation) the drain
currents are randomly different. Therefore, at each die, a unique se-
quence of random voltages would be generated at the load. ICID
exploits these unique sequences of random but repeatable voltages

to construct unique identification. In 0.35μm technology, the authors
reported about 10% false positive and false negative results for re-
peating random bits on their test circuits. Identification capability
can be improved by increasing the bit length.

Physically Obfuscated Keys (POKs). Under the name of a
Physically Obfuscated Key (POK), Gassend proposed a type of
Weak PUF that was built from the first integrated Strong PUF (see
Figure 8 in Section 3.2 for the architecture, and see Section 4 for
Strong PUF) [2]. The POK/Weak PUF would only utilize one (or a
small subset) of all possible challenges for a Strong PUF. This allows
using them exactly as a digital key that is more resistant to physical
attack, because it extracts its information from a complex physical
system.

SRAM-based PUFs. A commonly used candidate structure for a
Weak PUF exploits the positive feedback loop in an SRAM or an
SRAM-like structure. If a write operation is used, the cross-coupled
device starts transitioning to the inserted value, and the transition is
sped up by the positive feedback loop in the structure. When no write
operation is in place and the system is not in any of the states (initial
power up), the inherent small transistor threshold mismatches and
thermal and shot noise trigger the positive feedback loop so the
state would be in one of its two possible stable points (0 or 1). The
effects of common mode process variations including lithography,
and common mode noise (e.g., substrate temperature and supply
fluctuations) is similar on the differential device structure and does
not strongly impact the transition.

The idea of fingerprinting of semiconductor integrated circuits
using SRAM was originally suggested in a 2002 patent, but no ex-
perimental implementation data were included [59]. The work in [60]
constructed a custom-built array of SRAM-like cells that generated
random values based on threshold mismatches in 0.13μm technol-
ogy (Figure 7). Their experiments have shown a close to uniform
distribution of the bits (close to Normal distribution of Hamming
distances) and more than 95% bit stability. The work in [61] showed
that initialization of SRAM can produce a physical fingerprint for

Fig. 7. The positive feedback loop created by the cross-coupled NOR (NAND) gates
is used for storing a 0 or a 1 in SRAM-like memory structures.

each chip. They have also shown that the fingerprints can pass the
standard NIST randomness tests for runs [61]. The authors in [57]
also exploit the initial state of the SRAMs in an FPGA to extract
IDs based on differential device mismatches. They coined the term
intrinsic PUF to refer to structures that do not need additional
circuitry for embedding the PUF.

Since not all FPGAs have SRAMs built in them, the work in [5]
proposed butterfly PUFs based on reconfiguring the FPGA cells to
construct two back-to-back NAND gates (in positive feedback mode)
similar to the SRAM structure. Note that the Butterfly PUF cannot
be considered intrinsic, since it should be custom configured the same
way as any other logic circuitry can be made on a reconfigurable
fabric.

Coating PUFs. Another construction of a Weak PUF is a coating
PUF that provides a practical implementation of read-proof hard-
ware. A read-proof hardware device has the property that once con-
structed, no outside entity can read (extract) information on the
data stored in the device. The authors in [62] introduced coating
PUFs as form of a protective coating that can be sprayed on the IC
and cover its surface. The coating is composed of a matrix material
doped with random dielectric particles (i.e., different kinds of par-
ticles of random shape, size and location with a relative dielectric
constant differing from the coating matrix’s dielectric constant). The

top metal layer of the IC contains an array of sensors that are used
to measure the local capacitance values of the coating.

One central property of a Coating PUF is their purported tamper
sensitivity: It is assumed that any tampering with the coating (such
as invasive penetration, or removal from the covered IC) strongly and
irrecoverably changes its properties. [62] has positively evaluated the
resilience of coating PUFs against some optical and invasive attacks.

Resistive PUFs. Another instance of silicon-based PUFs are based
on power distribution and resistance variation of chips that have
appeared in recent literature [63, 64].

3.2 Protocols, Applications, and Security

Secret key generation and storage. Weak PUFs provide a
method for secret key generation and storage based on random disor-
dered physical medium fluctuations. Therefore, any security protocol
that leverages the storage of a secret key can utilize a Weak PUF
in its flow. To our knowledge, the earliest security protocols and IP
protection applications based on Weak PUFs/POKs were presented
in [2, 65]. Other protocols and applications including metering and
RFID protection based on Weak PUFs were presented in [62, 66, 57,
5, 67].

Fig. 8. A POK built by using a Strong PUF proposed in [2].

IP protection application. Weak PUFs were proposed for pro-
tecting hardware IP and ICs against piracy. A proposed system for

protecting programmable hardware IP against piracy is shown in
Figure 8 taken from [2]. Assume that the design is a microcontroller
with a compression algorithm stored in ROM. A Strong PUF is hard-
wired with other functions on the chip to generate a k-bit keyK that
is the same for all chips to mitigate the cost. The challenges to the
PUF are also hardwired to be fixed. That PUF response is combined
with the contents of burned on-chip fuses through an exclusive-or op-
eration to produce K. A decoder uses K to decrypt the ROM con-
tent. By selecting the fuse bits one can generate the same decrypting
key K on all chips. The response never leaves the chip during the
decryption operation. Even if the state of all the fuses are discovered,
the key would remain secret.

Secure processor. Suh [65] describes how a Weak PUF can be em-
bedded in a secure processor which then can be used for applications
such as certified execution and software licensing. In one design, the
weak PUF is used to generate a seed for a public/private key pair.
The seed and private key are never exposed and the public key is
published and certified by a certification authority. In another, the
seed is used as a symmetric key to encrypt a secondary symmetric
key that is known to the user of the processor. Again, the seed re-
mains unknown, and is only used to encrypt a given secondary key
and decrypt the secondary key for internal use in secure execution.

Active IC metering. Another usage of Weak PUFs was for active
IC metering that protects the hardware against foundry piracy (over-
building) [66]. Here, the functional specification of the design in the
finite state machine (FSM) domain was modified. The alteration was
such that an exponential number of states were added to the design
with a low overhead. Hiding a state in the large state-space of the
FSM was later shown to be an instance of a provably obfuscatable
general output multi-point function. It was shown that the transi-
tions from the hidden state cannot be found by having access to the
layout and even access to the register’s contents that store the state.
Upon fabrication at the foundry, based on the Weak PUF’s response,
the design would be in one of the hidden obfuscatable states that
is called a locked state. This locked state can be read out by every-
body, but the passkeys to the functional (unlocked) state can only

be provided by the original designer who has access to the modified
FSM.

Security analysis. Weak PUFs are commonly attributed three ad-
vantages:

(1) They are harder to read-out than standard digital keys that are
stored permanently in non-volatile memory (NVM) since keys
only exist when the chip is powered.

(2) They can possess some natural tamper sensitivity, meaning that
any tampering with the device, or even with the hardware system
that embeds the PUF, alters the physical features of the device
and the key derived from them.

(3) They save on costs, since they avoid the process steps necessary
to include NVM in hardware systems.

Some of these assets must be analyzed further. Let us start with
advantage (1): Weak PUFs clearly avoid the long-term presence of
digital keys in NVM. But the security of a Weak PUF based hard-
ware still depends on the secrecy of a single digital key derived from
the Weak PUF, which is present for at least a short period after
its derivation from the PUF’s responses. This creates a single digi-
tal point of failure for the system. Weak PUFs furthermore cannot
alleviate the permanent presence of secret information in the hard-
ware in general: If an adversary knows the disorder or fabrication
mismatches that determine the responses of the Weak PUF, he may
simulate and derive these responses.

Further, Weak PUF based hardware may suffer from similar weak
spots as other systems built on standard binary keys. Side channel or
emanation analysis may be possible; and since the device will apply
some standard cryptoprimitives to K, its security will thus depend
on the same unproven computational assumptions as any classical
system built on digital keys.

Regarding the above asset (3), it must be stressed that error
correcting information is vital for Weak PUFs; any single bit flips
make the system not applicable any more. This necessitates the use
of accompanying error correcting information, which must be stored
in NVM of some form. To the asset of Weak PUFs, this storage can

be external and/or public; further, it need not be implemented in
the hardware that contains the Weak PUF.

4 Strong Physical Unclonable Functions
(Strong PUFs)

Immediately after the introduction of Weak PUFs or POKs, a second
class of PUFs was put forward [68, 69, 1, 70]. They have later often
been referred to as Strong PUFs, for example in [57, 71, 72].

In a nutshell, a Strong PUF is a disordered physical system with
a very complex input-output behavior that depends on its disorder.
The system must allow very many possible inputs or challenges,
and must react with outputs or responses that are a function of the
applied challenge and of the specific disorder present in the system.
The input/output behavior should be so complex that it cannot be
imitated numerically or by any other device.

More specifically, a Strong PUF is a disordered physical system
S with the following features:

1. Challenge-Response Pairs. The Strong PUF can be interrogated
by challenges Ci, upon which it generates a response RCi

that
depends on its internal physical disorder and the incident chal-
lenge. The number of CRPs must be very large; often (but not
always) it is exponential with respect to some system parameter,
for example with respect to the number of components used for
building the PUF.

2. Practicality and operability. The CRPs should be sufficiently sta-
ble and robust to environmental conditions and multiple readings.

3. Access mode. Any entity that has access to the Strong PUF can
apply multiple challenges to it and can read out the corresponding
responses. There is no protected, controlled or restricted access
to the PUF’s challenges and responses.

4. Security.Without physically possessing a Strong PUF, neither an
adversary nor the PUF’s manufacturer can correctly predict the
response to a randomly chosen challenge with a high probability.
This shall hold even if both parties had access to the Strong PUF
at an earlier time for a significant period, and could make any

reasonable physical measurements on the PUF, including (but
not limited to) determination of many CRPs.

The definition above is more qualitative than quantitative in or-
der to remain intuitive; a more formal and thorough definition can
be found in [72].

Unique vs. Weak vs. Strong. While a Unique Object must always
possess an external and a Weak PUF always an internal measure-
ment equipment, this is left open for Strong PUFs; both variants are
possible and have been realized in practice (see [68, 69] for an opti-
cal PUF with an external and [1, 73] for an electrical PUF with an
internal measurement apparatus). Unique Objects require a trusted
measurement apparatus whereas Strong PUFs once “bootstrapped”
(cf. Section 4.2) can be remotely authenticated with an untrusted
measurement apparatus. Another difference between Strong PUFs
and Unique Objects lies in the exact adversarial model and the rel-
evant security properties: While the adversary’s aim in the case of
Unique Objects lies in physically fabricating a clone device with the
same properties, his goal in the case of Strong PUFs is to learn
how to predict the input/output behavior of the Strong PUF. The
latter is a mixture of numerical assumptions and physical hypothe-
ses. This fact does not exclude that the same structure can be used
as a Unique Object and as a Strong PUF under different read-out
schemes, for example; but not every Unique Object is a Strong PUF
and vice versa.

Weak PUFs possess only a small number of fixed challenges,
whereas Strong PUFs have a very large number of challenges. In
Weak PUFs, the responses remain secret and internal. To the con-
trary, Strong PUFs allow free querying of their responses.

4.1 History and Examples of Strong PUFs

Optical PUF. The first implementation of a Strong PUF has been
suggested in [68] [69], albeit under the different name of a physical
one-way function. It consists of a transparent plastic token which
contains a large number of randomly distributed glass spheres as
shown in Figure 9. We call this implementation an optical PUF. An
individual, unclonable token is illuminated under different angles

Fig. 9. A 3D inhomogeneous transparent plastic token being optically challenged (il-
luminated under different angles and points of incidents) and produces an output in
form of an interference pattern. The output is hashed to produce a 2D image, which is
in turn filtered by a multiscale Gabor transform to produce a 1D key as proposed in
[69].

and points of incidence (which are regarded as the challenges of the
system), and produces an interference pattern, which is considered
the response of the system. We draw the reader’s attention to the
similarity in Figures 3 and 9. The main difference is a usage one:
optical PUFs are assumed to have a large number of challenges, and
a secret set of challenge-response pairs is stored in a central database.
Thus, optical PUFs can be remotely authenticated.

This construction is presumably secure (no attacks are known to
this date), but the measurement apparatus is external and relatively
large, potentially leading to practicality issues and stability problems
when the token is measured by different apparatuses at different
locations.

Arbiter PUF. Almost simultaneously to optical PUFs, the first
integrated electrical Strong PUFs including “Arbiter PUFs” were
put forward in [1] [73]. [1] is also the first publication that uses the
term PUF as a common abbreviation for the expressions Physical
Random Function and Physical Unclonable Function. Unlike optical

Fig. 10. (a) Demonstration of an arbiter’s operation: the relative time of signal arrival
at Line1 and Line2 would determine the value of the output bit; (b) Demonstration of a
selector’s operation: the selector bit would decide if the top and bottom lines continue
in the same order, or they switch places; (c) An arbiter PUF with 128 challenge bits
c0, . . . , c127 applied as the selectors to the switches. The switch selectors dynamically
configure two parallel paths with random delay differences that would form the response
generated by the arbiter [74]).

PUFs, silicon PUFs do not require external measurement equipment.
They are based on the runtime delay variations in electrical circuits.

In one implementation, an electrical signal is split into two par-
allel signals, which race against each other through a sequence of k
electrical components, for example, k multiplexers. This architecture
is shown in Figure 10. As shown in the figure, the challenges are ap-
plied to the selectors of the multiplexers. The exact signal paths are
determined by these challenge bits b1, . . . , bk applied at the multi-
plexers. At the end of the k components, an arbiter element decides
which of the two signals arrived first and correspondingly outputs a
zero or a one, which is regarded as the system’s response.

It was clear from the beginning that these first electrical candi-
dates were prone to modeling attacks as mentioned in [1]. Attacks
using machine learning algorithms have been carried out, see Section
4.2. In these attacks, the adversary collects many challenge-response
pairs (CRPs), and uses them to derive the runtime delays occur-
ring in the subcomponents of the electrical circuit. Once they are
known, simple simulation and prediction of the PUF becomes pos-
sible, breaking its security. One reason why these attacks worked so
well lies in the fact that plain Arbiter PUFs have relatively simple

linear models, in which the delay of each of the two signals can be
approximated as the linear sum of the delays in the subcomponents.
This makes standard machine learning algorithms applicable to the
problem.

Fig. 11. (a) An arbiter PUF wtih added XORing of two arbiter outputs; (b) Feedfor-
ward PUF.

Variants of the Arbiter PUF. The above issues naturally led
to the introduction of non-linear electrical PUFs, for example, XOR
arbiter PUFs, Lightweight Secure PUFs and Feedforward Arbiter
PUFs [11, 75, 76, 74]. In an XOR arbiter PUF, multiple arbiter out-
puts are XOR’ed to form a response. In Figure 11(a), an example is
shown where two arbiter outputs are XOR’ed. In the Feedforward
Arbiter PUF, the output of intermediate multiplexer(s) on the signal
paths are input to so called Feedforward arbiter(s). The Feedforward
arbiter output is then fed to the input of another multiplexer forward
on the signal path. In Figure 11(b), an example of a Feedforward
arbiter structure is shown. All of the aforementioned structures em-
ploy the basic Arbiter PUF architecture, but refine its architecture
by introducing additional, non-linearities. These structures showed a
significantly higher resilience against machine learning attacks, but
still could be attacked up to a certain level of size and complexity
[77, 54].

Arbiter PUFs and their variants have been shown to have small
and stable integrated electrical implementations and have been com-
mercialized [78].

Legacy PUFs. [80] has proposed using the ICs’ timing path signa-
tures that are unique for each state-of-the-art CMOS chip (because

Fig. 12. The glitch PUF architecture samples the glitches on the path and the arrival
of a glitch compared to a clock signal generates the response bits in the FFs [79].

of process variations) as a PUF. The work in [81, 82] has shown that
all ICs that are fabricated in new CMOS process nodes that contain
nontrivial process variations have a unique signature that can be
extracted using noninvasive methods by the structural side channel
tests such as IDDT, IDDQ, or delay tests. They have shown a uni-
fied gate-level characterization of the signatures for all side-channels
that could be used as a compact representation. It was shown that
statistical signal processing methods can be adopted for ensuring
rapid and robust characterization [83–87]. The interesting aspect of
this line of work is that the signatures are intrinsic to all legacy ICs,
and there is no need for insertion of additional circuits or structures
by the manufacturer or other parties who are interested in verifying
the chip’s authenticity by its specific signature. Therefore, it can be
readily used for digital rights management of integrated circuits in
the supply chain and for anti-counterfeiting protection.

Analog PUF family. New, recent suggestions for Strong PUFs
have tried to exploit the analog characteristics of electrical signals,
such as in analog cellular arrays [88]. The system suggested in [88]
imitates optical wave propagation in an electrical cellular non-linear
network, transferring the known complexity of optical PUFs into
electrical circuits. Another non-linear electrical suggestion is [79]
that is based on the nonlinear propagation of glitches on a logic
path. Figure 12 demonstrates the architecture of the glitch PUF
system, where the glitches based on the delay difference between
the signal path and the clock signal are stored in the response FFs.

Finally, integrated optical PUFs have been proposed [89], but their
security seems suspect if merely linear scattering media are used (see
appendix of [90]).

4.2 Protocols, Applications, and Security

Protocols and applications. The archetypical application of
Strong PUFs is the identification and authentication of hardware
systems (or other security tokens such as credit cards) [69] [68] [1].
The corresponding protocols are usually run between a central au-
thority (CA) and a hardware/token carrying a Strong PUF S. One
assumes that the CA had earlier access to S, and could establish
a large, secret list of challenge-response-pairs (CRPs) of S using a
trusted external measurement apparatus in the case, for example, of
an optical PUF. This step is usually referred to as bootstrapping.
Whenever the hardware, possibly at a remote location, wants to iden-
tify itself to the CA at some later point in time, the CA selects some
CRPs at random from this list, and sends the challenges contained in
these CRPs to the hardware in the clear. The hardware applies these
challenges to S, and sends the obtained responses to the CA, also in
the clear. If these responses closely match the pre-recorded responses
in the CRP-list, the CA believes the identity of the hardware. Note
that each CRP can only be used once, whence the CRP-list shrinks
over time, and needs to be large. As noted above, an exact match
is not required, and a certain level of noise in the responses can be
tolerated.

Another application that has been mentioned is key exchange or
key establishment based on Strong PUFs [69]; a formal protocol has
been given in [89]. However, it has been shown in [91] that such key
exchange protocols can suffer from problems regarding their forward
secrecy and their repeated use for session key exchange. [91] also
proposed a new type of PUF that can fix this issue, called erasable
PUFs. We note that this new type of erasable PUFs is different than
the earlier FPGA PUFs that could be configured and erased for each
authentication session [77, 92].

The above protocols give Strong PUFs broad cryptographic ap-
plicability. They can be employed for any application which requires

the above cryptographic tasks, often without storing explicit digital
keys in the hardware containing the PUF.

Security features and Attacks. Attacks on Strong PUFs will
either try to build a physical clone, i.e., a second physical system
that behaves indistinguishably from the original PUF, or a digital
clone, i.e., a computer algorithm that imitates the PUF’s challenge-
response behavior.

It has been rightfully stressed in early publications on Strong
PUFs [68, 69] that they can avoid the classical, well-known number-
theoretic assumptions in cryptographic protocols. But is the security
of Strong PUFs entirely free of computational assumptions, and can
it merely be built on their internal entropy and randomness? It is
known that the maximal amount of randomness or entropy in a phys-
ical system is polynomially bounded in the size of the system [93,
71, 72]. This implies that the overall number of possible challenges
of many PUFs is larger than their entropy. In particular, this obser-
vation necessarily holds for any PUFs with an exponential number
of challenges.

An adversary therefore often merely needs to gather a small sub-
set of all CRPs of a Strong PUF to obtain (at least indirect) knowl-
edge about all CRP-relevant information/entropy contained in the
PUF. Once he has gathered such a subset, it is merely a computa-
tional assumption that he cannot derive an internal PUF model from
it which allows PUF prediction. For example, he could set up a sys-
tem of (in-)equations from the CRP subset, whose variables describe
the inner PUF structure. If he can solve this system of (in-)equations
efficiently, he can break the PUF. The hypothesis that he will not
be able to do so is just another type of unproven computational
assumption.

This perhaps surprising observation is not just a theoretical con-
cern. The modeling attacks presented in [2, 75, 94–96, 71, 77, 54] are
practical, and prove the basic feasibility and effectiveness of such
attacks. They also exhibit that such attacks reach their limits when
the involved computations become too complex; for example, the au-
thors of [54] could not attack XOR arbiter PUFs with k > 6 XORs
because the complexity grew exponentially in k.

In other words, the security of many Strong PUFs is dependent on
the underlying computational assumptions. In favor of Strong PUFs,
it must be said that these assumptions are independent of the clas-
sical number-theoretic assumptions such as the factoring or discrete
logarithm function, and that Strong PUFs can help to establish an
independent basis for cryptography and security. Furthermore, they
have other security advantages, as discussed in the remainder of this
section. The only subtype of Strong PUFs whose security is strictly
independent of computational assumptions are SHIC PUFs [10, 97,
98]. The price they pay for this feature is an intrinsically slow read-
out speed and a comparably large area consumption.

This brings us to another central point related to Strong PUF se-
curity. Strong PUFs avoid the use of explicit digital keys in hardware.
But do they avoid the presence of secret information in hardware in
general? Once the internal configuration of a Strong PUF has be-
come known, an adversary will almost always be able to predict and
hence break the PUF. To illustrate our point, consider the Arbiter
PUF and its variants: Once the internal runtime delays have become
known, the structure can be fully predicted and broken. Therefore
Strong PUFs, just like classical cryptosystems, often depend on the
assumption that some internal information remains secret. In their
favor, this information is arguably hidden better than if stored ex-
plicitly in the form of a digital key. F will usually be known to the
adversary and efficiently computable.

Security benchmarks. Natural security benchmarks for Strong
PUFs must evaluate the complexity of their challenge-response be-
havior and their resilience against modeling attacks. To this end,
various measures have been proposed: (i) Theoretical analysis of the
overall internal entropy of the PUF [69]. (ii) Theoretical analysis of
the entropy / information-theoretic independence of the CRPs [99–
101]. (iii) Empirical, statistical analysis of large CRP sets by statis-
tical tools and compression algorithms [95, 102, 103]. (iv) Empirical
analysis by assessment of machine learning curves over instances of
increasing size and complexity [95, 103].

Let us briefly discuss these approaches. One downside of (i) is
that it usually does not consider the CRP-relevant entropy, but the
general entropy of the system, which is often very much larger. (ii)

is a suitable measure. On the downside, it can be difficult to derive
theoretically, and does not take into account computational aspects.
(iii) and (iv) are easy to apply and generic tools, but do not provide
definite security guarantees. (iii) does not require an generic model of
the PUF (such as the linear additive delay model for arbiter PUFs),
while method (iv) needs such a model before it can be applied.

5 Controlled Physical Unclonable Functions
(CPUFs)

5.1 Specification of Controlled PUFs

Let us start by specifying the notion of a Controlled PUF: A Con-
trolled Physical Unclonable Function (CPUF) is a PUF that has been
bound with an algorithm in such a way that it can only be accessed
through a specific Application Programming Interface (API).

The main problem with (uncontrolled) Strong PUFs is that any-
body can query the PUF for the response to any challenge. To engage
in cryptography with a PUF device, a user who knows a CRP has
to use the fact that only he and the device know the response to
the user’s challenge. But to exploit that fact, the user has to tell the
device his challenge so that it can get the response. The challenge
has to be told in the clear because there is no key yet. Thus a man
in the middle can hear the challenge, get the response from the PUF
device and use it to spoof the PUF device.

Clearly the problem in this attack is that the adversary can freely
query the PUF to get the response to the user’s challenge. By us-
ing a CPUF in which access to the PUF is restricted by a control
algorithm, this attack can be prevented. The API through which
the PUF is accessed should prevent the man-in-the-middle attack
we have described without imposing unnecessary limitations on ap-
plications.

5.2 History and Implementation

CPUFs can perform all operations that a Strong PUF can perform.
While the details of various CPUF APIs are beyond the scope of
this paper, useful APIs have been developed [70, 104] that satisfy
the following properties:

1. Access Control. Anybody who knows a CRP that nobody else
knows, can interact with the CPUF device to obtain an arbitrary
number of other CRPs that nobody else knows. Thus users are
not limited to using a small number of digital outputs from the
PUF. Moreover, if one of these new CRPs was revealed to an
adversary, transactions that use the other CRPs are not compro-
mised. This is analogous to key management schemes that use
session keys derived from a master key.

2. Secret Sharing. Anybody can use a CRP that only they know to
establish a shared secret with the PUF device. Having a shared
secret with the PUF device enables a wide variety of standard
cryptographic primitives to be used.

3. Control Algorithm. The control algorithm is deterministic. Since
hardware random number generators are sensitive and prone to
attack, being able to avoid them is advantageous.

4. Cryptographic Primitive. The only cryptographic primitive that
needs to be built into the control algorithm is a collision resistant
hash function. All other cryptographic primitives can be updated
during the lifetime of the CPUF device.

By selecting an appropriate API, a CPUF device can be resistant
to protocol attacks. With careful design, Optical and Silicon PUFs
can be made in such a way that the chip containing the control logic
is physically embedded within the PUF: the chip can be embedded
within the bubble-containing medium of an Optical PUF, or the de-
lay wires of a Silicon PUF can form a cage on the top chip layer.
This embedding should make probing of the control logic consid-
erably more difficult, as an invasive attacker will have to access the
wires to be probed without changing the response of the surrounding
PUF medium.

The PUF and its control logic have complementary roles. The
PUF protects the control logic from invasive attacks, while the con-
trol logic protects the PUF from protocol attacks. This synergy
makes a CPUF far more secure than either the PUF or the con-
trol logic taken independently. Figure 13 demonstrates an example
architecture of how a controlled PUF can be used for improving a
PUF. A random hash function is placed before the PUF to prevent
the adversary from doing a PUF chosen challenge attack. So a model-

Fig. 13. An example architecture for a controlled PUF proposed in [70].

building adversary is prevented from selecting challenges that allow
him to extract the PUF parameters. To ensure response consistency,
an Error Correcting Code (ECC) is used. An output random hash
function is used to decorrelate the response from the actual physical
measurements, and therefore rendering a model-building adversary’s
task even harder.

5.3 Protocols, Applications, and Security

Because there is no algorithmic way to tie together all the keys pro-
duced by a device, the device will have to take an active part in
protocols like certificate verification, that would not usually need
any device involvement. This limitation is offset by a decreased vul-
nerability to invasive attacks.

There are many applications for which CPUFs can be used, and
we give two examples here. Other applications can be imagined by
studying the literature on secure coprocessors, in particular [105].
We note that the general applications for which this technology can
be used include all the applications today in which there is a single
symmetric key on a chip.

A bank could use certified execution to authenticate messages
from PUF smartcards. This guarantees that the message the bank
receives originated from the smartcard. It does not, however authen-
ticate the bearer of the smartcard. Some other means such as a PIN
number or biometrics must be used by the smartcard to determine
if its bearer is allowed to use it. If the privacy of the smartcard’s
message is a requirement, then the message can also be encrypted.

A second application is for computers that implement private
storage [106–112]. A program wishing to store encrypted data in
untrusted memory uses an encryption key which depends uniquely
on the PUF and its program hash. This requires a CPUF in order
to accomplish the unique dependency. This idea is implemented in
the AEGIS processor [112, 113].

Physically obfuscated keys generated from Weak PUFs seem to
increase the difficulty of an invasive attack, but they still have a
single digital point of failure. When the device is in use, the single
physically obfuscated master key is present on it in digital form. If
an adversary can get that key he has totally broken the device’s se-
curity. CPUFs exploit the parameterizability of the complex physical
system like Strong PUFs do. For each input to the physical system, a
different key is produced. Thus the complexity of the physical system
is exploited to the utmost.

As noted previously one difficulty with Weak PUFs is that their
output is noisy. For use in cryptography, we need error-correction
which does not compromise the security is required. For Weak PUFs
only one response has to be made noise-free, for CPUFs many re-
sponses have to potentially be corrected. We need to store an error
correcting syndrome with each challenge-response pair. Secure and
robust error correction has been considered for Weak PUFs (see [7])
but these schemes need to be efficiently generalized to CPUFs.

6 Emerging PUF Concepts

There are a number of new concepts that have emerged in the area
of PUFs, and the pace of innovation is rapid. We mention interesting
new concepts proposed in the past couple of years in this section,
and address ongoing research challenges in Section 7.

6.1 PUFs with Secret Models

In classical identification schemes based on Strong PUFs, the verifier
must possess a large list of CRPs that have been pre-measured in a
secure bootstrapping phase [68, 1]. The challenges sent to the prover
are chosen randomly from this list, and the responses obtained from
the prover are verified for correctness against this list. Since the list

must suffice for the lifetime of the device, it must be large, which
imposes uncomfortable storage requirements on the verifier.

It has been independently observed by [114, 115, 77] that such
storage requirements may be lifted if the verifier instead stores a
secret model for the PUF, by which he can simulate and predict ar-
bitrary responses of the PUF. Such secret models can furthermore
allow the offline verification of a PUF’s identity, i.e., they can enable
identification protocols that are run without an online connection to
a trusted authority holding a CRP-list. The underlying PUF primi-
tive could be called Secret Model PUF or SM PUF, for short.

Secret Model PUFs are a very useful concept that leads to im-
proved practicality features and new protocols. They do not lift two
important constraints of Strong PUFs, though: First, the model itself
must be kept secret, similar to a secret key. They therefore require
the authenticating entity to store a symmetric key to decrypt the se-
cret model stored in encrypted form on the PUF device. Second, SM
PUFs still contain some secret information, namely the information
that was used to set up the secret model (for example the internal
runtime delays). These two requirements are only overcome by the
concepts proposed in the next subsections 6.2 and 6.3.

6.2 Timed Authentication

For certain implementations of Strong PUFs, the real-time interval
in which the PUF generates its responses may be noticeably shorter
than the time that any numerical model or purported clone would
require to the same end.

In a PUF-related context, this observation has first been stated
in [77]. They noted that for certain FPGA-based PUFs, only the
authentic hardware would be able to generate the response in a min-
imum number of cycles, and that a model built based on the device
characteristics would likely be slower in finding the response to a
given challenge (compared to the original device). They proposed
an authentication protocol that exploits this unique property of the
original FPGA device: A time-bound set by the protocol for obtain-
ing the correct response after applying a random challenge ensured
that only the authentic device could respond. This scheme has been
referred to as Timed Authentication (TA) in [77].

[77] suggests an “asymmetry” in the timed computational ca-
pabilities of the authentic device compared to other entities. This
asymmetry was elaborated on for thwarting the modeling attacks.
However, the proposed protocol is a symmetric key like scheme, since
it requires a secret list of CRPs. It was noted that asymmetry can
lift the feature that the internal configuration of the PUF-hardware
must remain secret. Think of the optical PUF introduced in Sec-
tion 4.1 as an example: Even if the position of all internal scattering
elements/bubbles was known to an adversary, he would still find
it hard to simulate the complex input-output behavior of the scat-
tering medium in real-time. The same holds for the FPGA-based
implementation of TA discussed in [77].

6.3 PUFs with Public Models

Section 6.1 told us that a secret model for a Strong PUF can re-
place the CRP list. Section 6.2 described that certain Strong PUFs
operate faster than any adversarial model and emulation. Both con-
cepts can be combined to enable PUFs with simulation models that
can be made public (and hence can be simulated by everyone), but
which still operate faster than any clone or model (including the
public model, of course). The manufacturer or some other entity can
tie the model to the respective PUF, by, for example, signing the
model, or keeping it in a trusted public register. This allows every-
one to simulate the responses of the PUF with some time overhead.
Only the party holding the PUF can determine the PUF’s responses
fast, i.e., within a certain time bound, by a physical measurement
on the PUF. This allows public key like functionalities and proto-
cols. Hardware systems based on such a concept have the further
intriguing advantage that they can eradicate the presence of any
form of secret information in the cryptographic hardware, while still
being usable in typical digital network applications such as remote
identification and message authentication.

History. The concept of PUFs with public models has been in-
troduced and developed independently in several lines of research.
Under the name of a Public PUF (PPUF), this primitive has been
introduced in [116–118], building on a hardware concept that had

been published earlier [119, 120, 81, 77]. Protocols and applications
of PPUFs have since been developed [117, 118, 121]. Under the name
of a SIMPL system, the same concept was put forward completely
independently in [122, 123]. Implementations, protocols and appli-
cations of SIMPLs have been elaborated on in [124–127, 90, 128]. In
another line of research, the concept of PUFs with public models
has been made explicit with implementation results on FPGAs un-
der the name Time-Bounded Authentication (TBA) in [92, 9]; this
builds on the concept of TA treated in the last section [77].

6.4 Quantum Readout PUFs

[129] proposed modifying the challenge-response mechanism of a
PUF with quantum states, called a Quantum Readout PUF [130].
The properties of the quantum states prevent an adversary from
intercepting the challenges and responses without modifying them.
Thus, there is no need for a trusted location for bootstrapping. How-
ever, no proof-of-concept implementation or practical architecture
for this structure has been proposed to date. Finally, interfacing the
quantum readout device to the regular PUF is likely a challenge.

6.5 SHIC PUFs

A final recent concept are PUFs with Super-High Information Con-
tent, abbreviated SHIC PUFs 1 [10, 97, 98]. SHIC PUFs are Strong
PUFs whose large number of CRPs are pairwise independent in an
information-theoretic sense. Unlike other Strong PUFs, this allows
them to become independent of computational assumptions in their
security. The price they pay is a relatively large area consumption
and slow read-out speed on the order of 102 to 104 bits per second.
SHIC PUFs are unlikely to be used in low-cost commercial applica-
tions in the near future, since there are other, more favorable solu-
tions to this end. But they represent an intriguing theoretical tool,
since they are a variant of Strong PUFs with information-theoretic
security. Furthermore, investigating their optimal implementation is
rewarding from a technological perspective, since it relates to funda-
mental technological questions such as “How much random informa-
tion can we store and reliably extract from a solid-state system?”,

1 SHIC PUFs are to be pronounced as “chique PUFs” according to [10].

and “How can we make the speed in which information is released
from a solid-state system inherently slow?”.

7 Future Research Topics

7.1 Open Public PUF Questions

The main open questions related to PUFs with Public Models con-
cern their hardware realization:

– How can it be guaranteed that the model requires more time to
simulate than the PUF device requires to return a response?

– How can it be guaranteed that a well-equipped adversary for sure
takes longer than the PUF device, while any poorly equipped
honest party can simulate the response in feasible time in the
course of a communication protocol?

– Can the model be close enough to the PUF so that an adversary
finds it difficult to physically clone the PUF, but loose enough
to allow for variation due to environmental conditions of PUF
responses?

While there have been many recent proposals for timed authen-
tication, we are not aware of any implementation that definitively
settles the above questions. This leaves strong potential for future
research. If a workable, small and inexpensive implementation of
PPUFs, SIMPL systems or TBA systems is found eventually, or if
one of the existing implementations is shown to possess all necessary
properties, this would have a massive impact on the way we perform
cryptography and construct security hardware.

7.2 Efficient Hardware Implementations: Overhead
versus Security

Recent work has discussed how it could be possible to safeguard
PUFs against reverse-engineering and modeling attacks [77, 54, 88,
10, 97, 98]. However, most methods that aim at protecting against
such attacks add strongly to the power, size, delay, instability, or
cost overhead of the system. Also techniques for ensuring the tamper-
proof properties, such as inaccessibility of the Weak PUF, would re-
quire addition of tamper-proof circuitry and material to the devices.

One major future research topic is how the security of Strong PUFs
and/or the tamper sensitivity of Strong PUFs and Weak PUFs can
be realized with a minimal hardware overhead. These future research
questions naturally relate to circuit design and, concerning tamper
sensitivity, also to the material sciences.

7.3 Error Correction and Practical Operability

A suite of security applications of PUFs, such as secret key genera-
tion by Weak PUFs, require full and error-free reconstruction of the
keys. However, environmental conditions and aging may affect the
measured responses in strong ways. Methods for compensation of
such effects, such as circuit reliability enhancement techniques, error
correction and secure sketches, are being developed [2, 131, 8, 4, 5,
7]. Further development of methods that ensure robustness of PUFs
with a limited amount of leaked information is of great interest. One
key challenge is that the maximum number of unpredictable bits
should be known at the design time. If the unpredictability exceeds
the bound set at the time of design, the error correction method
would not be able to compensate for the errors. Therefore, care-
ful experimental studies for each new PUF structure are needed for
characterizing the performance under different temperature, voltage,
and/or other environmental and operational conditions, constituting
a future area of active and fruitful interplay between hardware anal-
ysis and error correction techniques.

7.4 IC Metering and Counterfeit Detection

A counterfeit product is an illegal forgery or imitation of an original
design. Because of the dominance of the contract foundry model, IP
sharing/reuse, and outsourcing, the electronic products are increas-
ingly vulnerable to piracy attack and counterfeiting. IC metering is
a set of security protocols that enable the design house (authentic IP
owner) to achieve post-fabrication control over their ICs [119, 132, 66,
133]. In passive IC metering, the IP rights owner is able to identify
and monitor the devices [119, 132]. Passive metering can be directly
enabled by certain types of PUFs. In active IP metering, in addition
to identification and monitoring, the IP rights holder can actively

control, enable/disable, and authenticate a device [66]. We refer the
interested readers to Chapter 8 of this book for a comprehensive sur-
vey of this topic. Addressing piracy attacks is notoriously hard since
the adversaries are often financially strong, technologically advanced
and informed of the design details. A set of open research questions
have to do with developing security methods, PUF architectures,
and controlled PUF protocols that can directly address the piracy
attack models and counterfeiting.

7.5 Attacks and Vulnerability Analysis

To date, a number of attacks and countermeasures for PUFs are
reported, see for example the detailed discussions in Section 4.2.
However, PUFs have yet to undergo more refined cryptanalysis and
evaluation of physical and side-channel attacks by a large community
of researchers, similar to the way many traditional cryptographic
primitives and protocols have been analyzed and attacked. For PUFs
to be widely accepted, this seems to be a central future task that
needs to be performed.

7.6 Formalization and Security Proofs

One relatively untouched area within physical cryptography and
PUFs are the foundations of these fields. Formal definitions and se-
curity proofs for PUF-based protocols are just about to develop. For
example, [71, 72] provide a thorough discussion of existing PUF def-
initions. [72] give new formal definitions for Strong PUFs that lead
to a first reductionist security proof for a Strong PUF-based identifi-
cation scheme. This type of work will likely prove essential for sound
future development of the field, and will represent one of the major
upcoming research topics within the area.

7.7 New Protocols and Applications

Up to now, PUFs and UNOs have mainly been used for authenti-
cation and identification purposes, and have mainly been seen as
a security tool. But recently, a fundamental result indicated that
PUFs possess a strong cryptographic potential: Oblivious transfer
(and all protocols that can be derived from it) can be realized by

Strong PUFs [134]. Protocol design and optimization will thus be
active future research topics.

8 Conclusion

Security and protection based on random physical media and objects
is a fast-growing field that has recently enjoyed considerable research
interest. Ensuring authenticity, security, protection, and integrity of
data, hardware and software intellectual property, computers, net-
works, identities, and cyber-physical systems is a standing challenge.
Traditional digital methods for these tasks often rely on digital la-
bels or digitally stored secret keys that are vulnerable to forging,
cloning, and other attacks. As discussed extensively in the previous
sections, the unique and unclonable character of disordered physical
structures can be exploited to address many of the vulnerabilities of
these traditional concepts.

This chapter presented a new classification for the area of physical
disorder based cryptography and security. We dealt with disorder-
based identification, authentication, and other security methods. We
then focused on four new classes of security devices based on phys-
ical disorder: Unique Objects, Weak Physical Unclonable Functions
(Weak PUFs), Strong PUFs, and Controlled PUFs. Alongside with
defining each class and discussing the history and relevant work, we
described existing hardware implementations of these novel security
primitives. We discussed emerging concepts in the area, including
Timed Authentication and Public PUFs and SIMPL systems. We
complemented the chapter by a treatment of future research chal-
lenges, which could prove helpful as a guideline to graduate students
or anyone who wants to conduct research in the area.

9 Acknowledgement

The authors would like to thank Prof. Wayne P. Burleson for his
valuable comments and suggestions. The authors would also like to
thank Azalia Mirhoseini for her help with some of the figures.

References

1. B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random
functions,” in Computer and Communication Security Conference, 2002.

2. B. Gassend, “Physical Random Functions,” Master’s thesis, Massachusetts Insti-
tute of Technology, Jan. 2003.

3. G. Suh, C. O’Donnell, and S. Devadas, “AEGIS: a Single-Chip secure processor,”
IEEE Design & Test of Computers, vol. 24, no. 6, pp. 570–580, 2007.

4. C. Yin and G. Qu, “LISA: maximizing RO PUF’s secret extraction,” in
Hardware-Oriented Security and Trust (HOST), 2010, pp. 100–105.

5. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “Extended ab-
stract: The butterfly PUF protecting IP on every FPGA,” in Hardware-Oriented
Security and Trust (HOST), 2008, pp. 67–70.

6. R. Maes, P. Tuyls, and I. Verbauwhede, “Low-overhead implementation of a soft
decision helper data algorithm for SRAM PUFs,” in Cryptographic Hardware
and Embedded Systems (CHES), 2009, pp. 332–347.

7. M.-D. M. Yu and S. Devadas, “Secure and robust error correction for physical
unclonable functions,” IEEE Design and Test of Computers, vol. 27, pp. 48–65,
2010.

8. M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using programmable
delay lines,” in IEEE Workshop on Information Forensics and Security, 2010, p.
in press.

9. M. Majzoobi and F. Koushanfar, “Time-Bounded Authentication of FPGAs,” in
Under Revision for IEEE Trans. on Information Forensics and Security (TIFS),
2011.

10. U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, and M. Stutz-
mann, “Security applications of diodes with unique current-voltage characteris-
tics,” Financial Cryptography and Data Security (FC), pp. 328–335, 2010.

11. G. Suh and S. Devadas, “Physical unclonable functions for device authentication
and secret key generation,” in Design Automation Conference (DAC), 2007, pp.
9–14.

12. A. Sadeghi and D. Naccache, Eds., Towards Hardware-Intrinsic Security:
Foundations and Practice. Springer, 2010.

13. D. Kirovski, “Anti-Counterfeiting: Mixing the Physical and the Digital World,”
in Towards Hardware-Intrinsic Security, A.-R. Sadeghi and D. Naccache, Eds.
Springer, 2010, pp. 223–233.

14. S. Li and A. Jain, Eds., Encyclopedia of Biometrics. Springer, 2009.
15. D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Fingerprint

Recognition. Springer, 2009.
16. D. Kirovski, personal communication, Dagstuhl, Germany, 2008.
17. S. Graybeal and P. McFate, “Getting out of the STARTing block,” Scientific

American (USA), vol. 261, no. 6, 1989.
18. D. Bauder, “An anti-counterfeiting concept for currency systems,” Research

report PTK-11990. Sandia National Labs. Albuquerque, NM, 1983.
19. J. Brosow and E. Furugard, “Method and a system for verifying authenticity safe

against forgery,” US Patent 4,218,674, 1980.
20. G. Simmons, “A system for verifying user identity and authorization at the point-

of sale or access,” Cryptologia, vol. 8, no. 1, pp. 1–21, 1984.
21. ——, “Identification of data, devices, documents and individuals,” in IEEE

International Carnahan Conference on Security Technology, 1991, pp. 197–218.

22. J. Buchanan, R. Cowburn, A. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson,
K. Fenton, D. Allwood, and M. Bryan, “Forgery:fingerprintingdocuments and
packaging,” Nature, vol. 436, no. 7050, p. 475, 2005.

23. J. Smith and A. Sutherland, “Microstructure based indicia,” Proceedings of the
Automatic Identification Advanced Technologies AutoID, vol. 99, pp. 79–83, 1999.

24. E. Métois, P. Yarin, N. Salzman, and J. Smith, “FiberFingerprint identification,”
in Workshop on Automatic Identification, 2002, pp. 147–154.

25. P. Seem, J. Buchanan, and R. Cowburn, “Impact of surface roughness on laser sur-
face authentication signatures under linear and rotational displacements,” Optics
letters, vol. 34, no. 20, pp. 3175–3177, 2009.

26. A. Sharma, L. Subramanian, and E. Brewer, “Secure rural supply chain man-
agement using low cost paper watermarking,” in ACM SIGCOMM workshop on
Networked systems for developing regions, 2008, pp. 19–24.

27. F. Beekhof, S. Voloshynovskiy, O. Koval, R. Villan, and T. Pun, “Secure surface
identification codes,” in Proceedings of SPIE, vol. 6819, 2008, p. 68190D.

28. W. Clarkson, T. Weyrich, A. Finkelstein, N. Heninger, J. Halderman, and
E. Felten, “Fingerprinting blank paper using commodity scanners,” in IEEE
Symposium on Security and Privacy, 2009, pp. 301–314.

29. The ProteXXion System, Bayer AG, http://www.research.bayer.com/edition-
19/protexxion.aspx and http://www.research.bayer.com/edition-
19/19 Protexxion en.pdfx.

30. Ingeniatechnology, http://www.ingeniatechnology.com/.
31. G. DeJean and D. Kirovski, “RF-DNA: Radio-frequency certificates of authen-

ticity,” Cryptographic Hardware and Embedded Systems (CHES), pp. 346–363,
2007.

32. D. Kirovski, “Toward an automated verification of certificates of authenticity,”
in ACM Electronic Commerce (EC), 2004, pp. 160–169.

33. Y. Chen, M. Mihçak, and D. Kirovski, “Certifying authenticity via fiber-infused
paper,” ACM SIGecom Exchanges, vol. 5, no. 3, pp. 29–37, 2005.

34. P. Bulens, F. Standaert, and J. Quisquater, “How to strongly link data and its
medium: the paper case,” IET Information Security, vol. 4, no. 3, pp. 125–136,
2010.

35. Y. Kariakin, “Authentication of articles,” Patent writing, WO/1997/024699,
available from http://www.wipo.int/pctdb/en/wo.jsp?wo=1997024699, 1995.

36. G. Hammouri, A. Dana, and B. Sunar, “CDs have fingerprints too,”
Cryptographic Hardware and Embedded Systems (CHES), pp. 348–362, 2009.

37. D. Vijaywargi, D. Lewis, and D. Kirovski, “Optical DNA,” Financial
Cryptography and Data Security (FC), pp. 222–229, 2009.

38. B. Zhu, J. Wu, and M. Kankanhalli, “Print signatures for document au-
thentication,” in Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS). ACM, 2003, pp. 145–154.

39. J. Collins, “RFID Fibers for Secure Applications,” RFID Journal, vol. 26, 2004.
40. RF SAW Inc., http://www.rfsaw.com/tech.html.
41. Creo Inc., http://www.creo.com.
42. Inkode Inc., http://www.inkode.com.
43. Microtag Temed Ltd, http://www.microtag-temed.com/.
44. CrossID Inc., Firewall Protection for Paper Documents,

http://www.rfidjournal.com/article/articleview/790/1/44.
45. C. Loibl, “Entwurf und Untersuchung berührungslos abfragbarer einzigartiger

Objekte,” Master’s thesis, Fachgebiet Höchstfrequenztechnik, Technische Univer-
sität München, 2009.

46. MagnePrint, http://www.magneprint.com/.

47. U. Rührmair, M. Stutzmann, P. Lugli, C. Jirauschek, K. Müller, H. Langhuth,
G. Csaba, E. Biebl, and J. Finley, “Method and system for security purposes,”
European Patent Application Nr. EP 09 157 041.6, March 2009.

48. C. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA microdots,”
Nature, vol. 399, no. 6736, pp. 533–534, 1999.

49. November AG, http://www.november.de/archiv/pressemitteilungen/
pressemitteilung/article/sichere-medikamente-dank-dna-codes-der-identif-
gmbh.html.

50. D. Kirovski, “A point-set compression heuristic for fiber-based certificates of au-
thenticity,” in Data Compression Conference (DCC), 2005, pp. 103–112.

51. ——, “Point compression for certificates of authenticity,” in Data Compression
Conference (DCC), 2004, p. 545.

52. Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data,” in Advances in cryptology-Eurocrypt
2004. Springer, 2004, pp. 523–540.

53. Alliance for Gray Market and Counterfeit Abatement (AGMA),
http://www.agmaglobal.org/.

54. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber,
“Modeling attacks on physical unclonable functions,” in ACM Conference on
Computer and Communications Security (CCS), 2010, pp. 237–249.

55. C. Bennett, G. Brassard, S. Breidbart, and S. Wiesner, “Quantum cryptogra-
phy, or unforgeable subway tokens,” in Advances in Cryptology–Proceedings of
Crypto, vol. 82, 1983, pp. 267–275.

56. C. Bennett, G. Brassard, et al., “Quantum cryptography: Public key distribution
and coin tossing,” in International Conference on Computers, Systems and Signal
Processing, vol. 175. Bangalore, India, 1984.

57. J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs and
their use for IP protection,” in Cryptographic Hardware and Embedded Systems
(CHES), 2007, pp. 63–80.

58. K. Lofstrom, W. R. Daasch, and D. Taylor, “Ic identification circuit using device
mismatch,” in ISSCC, 2000, pp. 372–373.

59. P. Layman, S. Chaudhry, J. Norman, and J. Thomson, “Electronic fingerprinting
of semiconductor integrated circuits,” US Patent 6,738,294, September 2002.

60. Y. Su, J. Holleman, and B. Otis, “A 1.6pJ/bit 96 (percent) stable chip ID gener-
ating circuit using process variations,” in IEEE International Solid-State Circuits
Conference (ISSCC), 2007, pp. 200–201.

61. D. Holcomb, W. Burleson, and K. Fu, “Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags,” in Proceedings of the Conference
on RFID Security, 2007.

62. P. Tuyls, G.-J. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, and R. Wolters,
“Read-proof hardware from protective coatings,” in Cryptographic Hardware and
Embedded Systems (CHES), 2006, pp. 369–383.

63. R. Helinski, D. Acharyya, and J. Plusquellic, “A physical unclonable function de-
fined using power distribution system equivalent resistance variations,” in Design
Automation Conference (DAC), 2009, pp. 676–681.

64. ——, “Quality metric evaluation of a physical unclonable function derived from
an IC’s power distribution system,” in Design Automation Conference, ser. DAC,
2010, pp. 240–243.

65. G. E. Suh, “AEGIS: A Single-Chip Secure Processor,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Aug 2005.

66. Y. Alkabani and F. Koushanfar, “Active hardware metering for intellectual prop-
erty protection and security,” in USENIX Security Symposium, 2007, pp. 291–
306.

67. D. Holcomb, W. Burleson, and K. Fu, “Power-up SRAM state as an identi-
fying fingerprint and source of true random numbers,” IEEE Transactions on
Computers, vol. 58, no. 9, pp. 1198–1210, September 2009.

68. R. Pappu, “Physical one-way functions,” Ph.D. dissertation, Massachusetts In-
stitute of Technology, 2001.

69. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,”
Science, vol. 297, pp. 2026–2030, 2002.

70. B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “ Controlled Physical Ran-
dom Functions ,” in Annual Computer Security Applications Conference, 2002.

71. U. Rührmair, F. Sehnke, and J. Sölter, “On the Foundations of Physical Un-
clonable Functions,” Cryptology ePrint Archive, International Association for
Cryptologic Research, Tech. Rep., 2009.

72. U. Rührmair, H. Busch, and S. Katzenbeisser, “Strong PUFs: Models, Con-
structions, and Security Proofs,” in Towards Hardware-Intrinsic Security, A.-R.
Sadeghi and D. Naccache, Eds. Springer, 2010, pp. 79–96.

73. B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Delay-Based Circuit Au-
thentication and Applications,” in Symposium on Applied Computing (SAC),
2003.

74. J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “A
technique to build a secret key in integrated circuits with identification and au-
thentication applications,” in IEEE VLSI Circuits Symposium, New-York, June
2004.

75. D. Lim, “Extracting Secret Keys from Integrated Circuits,” Master’s thesis, Mas-
sachusetts Institute of Technology, may 2004.

76. B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas, “Identification and
authentication of integrated circuits,” Concurrency and Computation: Practice
and Experience, vol. 16, no. 11, pp. 1077–1098, 2004.

77. M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design and im-
plementation of secure reconfigurable pufs,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 2, no. 1, 2009.

78. S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal, “De-
sign and Implementation of PUF-Based ”Unclonable” RFID ICs for Anti-
Counterfeiting and Security Applications,” in Proceedings of 2008 IEEE
International Conference on RFID (RFID 2008), May 2008, pp. 58–64.

79. D. Suzuki and K. Shimizu, “The Glitch PUF: A New Delay-PUF Architecture
Exploiting Glitch Shapes,” Cryptographic Hardware and Embedded Systems
(CHES), 2010, pp. 366–382.

80. S. Devadas and B. Gassend, “Authentication of integrated circuits,” US Patent
7,840,803, 2010, application in 2002.

81. Y. Alkabani, F. Koushanfar, N. Kiyavash, and M. Potkonjak, “Trusted inte-
grated circuits: A nondestructive hidden characteristics extraction approach,”
in Information Hiding (IH), 2008, pp. 102–117.

82. M. Potkonjak and F. Koushanfar, “Identification of integrated circuits,” US
Patent Application 12/463,984; Publication Number: US 2010/0287604 A1, May
2009.

83. F. Koushanfar, P. Boufounos, and D. Shamsi, “Post-silicon timing characteri-
zation by compressed sensing,” in International Conference on Computer-Aided
Design (ICCAD), 2008, pp. 185–189.

84. D. Shamsi, P. Boufounos, and F. Koushanfar, “Noninvasive leakage power tomog-
raphy of integrated circuits by compressive sensing,” in International Symposium
on Low Power Electronic Designs (ISLPED), 2008, pp. 341–346.

85. M. Nelson, A. Nahapetian, F. Koushanfar, and M. Potkonjak, “Svd-based ghost
circuitry detection,” in Information Hiding (IH), 2009, pp. 221–234.

86. S. Wei, S. Meguerdichian, and M. Potkonjak, “Gate-level characterization: Foun-
dations and hardware security applications,” in Design Automation Conference
(DAC), 2010.

87. F. Koushanfar and A. Mirhoseini, “A unified framework for multimodal submod-
ular integrated circuits trojan detection,” IEEE Trans. on Information Forensic
and Security (TIFS), 2011.

88. G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U. Schlicht-
mann, P. Lugli, and U. Ruhrmair, “Application of mismatched cellular nonlin-
ear networks for physical cryptography,” in International Workshop on Cellular
Nanoscale Networks and Their Applications (CNNA). IEEE, 2010, pp. 1–6.

89. P. Tuyls and B. Škorić, “Strong Authentication with Physical Unclonable Func-
tions,” Security, Privacy, and Trust in Modern Data Management, pp. 133–148,
2007.

90. U. Rührmair, “SIMPL Systems, Or: Can we construct cryptographic hardware
without secret key information?” in International Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM), ser. Lecture Notes in
Computer Science, vol. 6543. Springer, 2011.

91. U. Rührmair, C. Jaeger, and M. Algasinger, “An Attack on PUF-based Session
Key Exchange and a Hardware-based Countermeasure,” Financial Cryptography
and Data Security (FC), 2011, to appear.

92. M. Majzoobi, A. E. Nably, and F. Koushanfar, “FPGA Time-Bounded Authen-
tication,” in Information Hiding Conference (IH), 2010, pp. 1–15.

93. J. Bekenstein, “How does the entropy/information bound work?” Foundations of
Physics, vol. 35, no. 11, pp. 1805–1823, 2005.

94. E. Oztürk, G. Hammouri, and B. Sunar, “Towards robust low cost authentication
for pervasive devices,” in Pervasive Computing and Communications (PerCom),
2008, pp. 170–178.

95. M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing techniques for hardware
security,” in International Test Conference (ITC), 2008, pp. 1–10.

96. ——, “Lightweight secure PUF,” in International Conference on Computer Aided
Design (ICCAD), 2008, pp. 670–673.

97. U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and G. Csaba, “Appli-
cations of high-capacity crossbar memories in cryptography,” IEEE Transactions
on Nanotechnology, no. 99, p. 1.

98. C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, and M. Stutzmann, “Ran-
dom pn-junctions for physical cryptography,” Applied Physics Letters, vol. 96, p.
172103, 2010.

99. P. Tuyls, B. Skoric, S. Stallinga, A. H. M. Akkermans, and W. Ophey,
“Information-theoretic security analysis of physical uncloneable functions,” in
Financial Cryptography and Data Security (FC), 2005, pp. 141–155.

100. B. Škorić, “On the entropy of keys derived from laser speckle; statistical properties
of Gabor-transformed speckle,” Journal of Optics A: Pure and Applied Optics,
vol. 10, p. 055304, 2008.

101. B. Skoric, S. Maubach, T. Kevenaar, and P. Tuyls, “Information-theoretic analysis
of capacitive physical unclonable functions,” Journal of Applied Physics, vol. 100,
no. 2, p. 024902, 2009.

102. I. Kim, A. Maiti, L. Nazhandali, P. Schaumont, V. Vivekraja, and H. Zhang,
“From Statistics to Circuits: Foundations for Future Physical Unclonable Func-
tions,” Towards Hardware-Intrinsic Security, pp. 55–78, 2010.

103. F. Sehnke, J. Schmidhuber, and U. Rührmair, “Security Benchmarks for Strong
Physical Unclonable Functions,” 2010, in submission.

104. B. Gassend, M. van Dijk, D. Clarke, E. Torlak, S. Devadas, and P. Tuyls,
“Controlled physical random functions and applications,” ACM Transactions on
Information and System Security (TISSEC), vol. 10, no. 4, pp. 1–22, 2008.

105. B. S. Yee, “Using secure coprocessors,” Ph.D. dissertation, Carnegie Mellon Uni-
versity, 1994.

106. A. Carroll, M. Juarez, J. Polk, and T. Leininger, “Microsoft “palladium”:
A business overview,” in Microsoft Content Security Business Unit, August
2002. [Online]. Available: http://www.microsoft.com/presspass/features/2002/
jul02/0724palladiumwp.asp

107. T. Alves and D. Felton, “Trustzone: Integrated hardware and software security,”
ARM white paper, jul 2004.

108. Microsoft, “Next-Generation Secure Computing Base,”
http://www.microsoft.com/ resources/ngscb/defaul.mspx.

109. T. C. Group, “Tcg specification architecture overview revision 1.2,”
http://www.trustedcomputinggroup.com/home, 2004.

110. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, “Architectural support for copy and tamper resistant software,”
in Int’l Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), 2000, pp. 168–177.

111. D. Lie, “Architectural support for copy and tamper-resistant software,” Ph.D.
dissertation, Stanford University, Dec 2003.

112. G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “aegis: Archi-
tecture for tamper-evident and tamper-resistant processing,” in Int’l Conference
on Supercomputing (MIT-CSAIL-CSG-Memo-474 is an updated version), 2003.

113. G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas, “Design and implemen-
tation of the aegis single-chip secure processor using physical random functions,”
in International Symposium on Computer Architecture (ISCA), 2005.

114. S. Devadas, “Non-networked rfid puf authentication,” US Patent Application
12/623,045, 2008.

115. E. Oztiirk, G. Hammouri, and B. Sunar, “Towards robust low cost authentication
for pervasive devices,” in International Conference on Pervasive Computing and
Communications (PerCom), 2008, pp. 170 –178.

116. N. Beckmann and M. Potkonjak, “Hardware-based public-key cryptography with
public physically unclonable functions,” in Information Hiding. Springer, 2009,
pp. 206–220.

117. M. Potkonjak, “Secure authentication,” US Patent Application 12/464,387; Pub-
lication Number: US 2010/0293612 A1, May 2009.

118. ——, “Digital signatures,” US Patent Application 12/464,384; Publication Num-
ber: US 2010/0293384 A1, May 2009.

119. F. Koushanfar, G. Qu, and M. Potkonjak, “Intellectual property metering,” in
International Workshop on Information Hiding (IHW), 2001, pp. 81–95.

120. F. Koushanfar and M. Potkonjak, “Cad-based security, cryptography, and digital
rights management,” in Design Automation Conference (DAC), 2007, pp. 268–
269.

121. M. Potkonjak, S. Meguerdichian, and J. Wong, “Trusted sensors and remote
sensing,” in IEEE Sensors, 2010, pp. 1–4.

122. U. Rührmair, M. Stutzmann, G. Csaba, U. Schlichtmann, and P. Lugli, “Method
for security purposes,” European Patent Filings EP 09003764.9, EP 09003763.1,
EP 09157043.2, March 2009.

123. U. Rührmair, “SIMPL Systems: On a Public Key Variant of Physical Unclonable
Functions,” Cryptology ePrint Archive, International Association for Cryptologic
Research, Tech. Rep., 2009.

124. U. Rührmair, Q. Chen, M. Stutzmann, P. Lugli, U. Schlichtmann, and G. Csaba,
“Towards Electrical, Integrated Implementations of SIMPL Systems,” Cryptology
ePrint Archive, International Association for Cryptologic Research, Tech. Rep.,
2009.

125. Q. Chen, G. Csaba, X. Ju, S. Natarajan, P. Lugli, M. Stutzmann, U. Schlicht-
mann, and U. Ruhrmair, “Analog circuits for physical cryptography,” in 12th
International Symposium on Integrated Circuits (ISIC’09), Singapore, December
14 – 16, 2009. IEEE, 2009/2010, pp. 121–124.

126. U. Rührmair, Q. Chen, M. Stutzmann, P. Lugli, U. Schlichtmann, and G. Csaba,
“Towards electrical, integrated implementations of simpl systems,” in Workshop
in Information Security Theory and Practice (WISTP), 2010, pp. 277–292.

127. Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, M. Stutzmann, and U. Rührmair,
“Circuit-based approaches to SIMPL systems,” Journal of Circuits, Systems, and
Computers, vol. 20, pp. 107–123, 2011.

128. U. Rührmair, “SIMPL Systems as a Cryptographic and Security Primitive,” in
To be submitted to IEEE Trans. on Information Forensics and Security (TIFS),
2011.

129. B. Škorić, “Quantum Readout of Physical Unclonable Functions,” Progress in
Cryptology–AFRICACRYPT 2010, pp. 369–386, 2010.

130. B. koric, “Quantum readout of physical unclonable functions,” in Progress in
Cryptology (AFRICACRYPT), ser. Lecture Notes in Computer Science, D. Bern-
stein and T. Lange, Eds. Springer Berlin / Heidelberg, 2010, vol. 6055, pp.
369–386.

131. C. Bösch, J. Guajardo, A. Sadeghi, J. Shokrollahi, and P. Tuyls, “Efficient helper
data key extractor on FPGAs,” in Cryptographic Hardware and Embedded
Systems (CHES), 2008, pp. 181–197.

132. F. Koushanfar and G. Qu, “Hardware metering,” in Design Automation
Conference (DAC), ser. DAC, 2001, pp. 490–493.

133. Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of ICs for
piracy prevention and digital right management,” in ICCAD, 2007.

134. U. Rührmair, “Oblivious transfer based on physical unclonable functions (ex-
tended abstract),” in TRUST, ser. Lecture Notes in Computer Science, A. Ac-
quisti, S. W. Smith, and A.-R. Sadeghi, Eds., vol. 6101. Springer, 2010, pp.
430–440.

70

Part II

Physical Unclonable Functions
as an Advanced Cryptographic

Primitive

71

Chapter 3

Oblivious Transfer Based on
Physical Unclonable Functions

During their early years, PUFs were commonly regarded as a security tool, in partic-
ular as a novel key storage method. This second part of the thesis, which comprises
of Chapters 3 to 6, presents an extended view: It explores the theoretical and practi-
cal potential of PUFs as a novel primitive in advanced cryptographic protocols. The
surprising usefulness of PUFs in this context puts them line with other, well-known
alternative cryptographic approaches, for example the bounded storage model [38, 3],
quantum cryptography [5], noise-based cryptography [12], or also post-quantum cryp-
tography [4].

This Chapter 3 thereby shows for the first time that oblivious transfer (OT) can be
realized merely on the basis of so-called Strong PUFs and SHIC PUFs. Notably, the
PUF-based OT-protocol we present does not require any other, additional assumptions
than the unpredictability and unclonability of the PUF itself. More precisely, in the
case of Strong PUFs, our protoocl establishes computational security based on the un-
predictability of the PUF, while in the case of SHIC PUF, it even achieves information-
theoretic security; details are provided in the upcoming chapter.

It is important to recall in this context that OT is a universal cryptographic primitive
which enables a large number of other protocols, as first shown by Kilian [29] in 1988.
For this reason, the implementability (or non-implementability) of OT within a new
cryptographic model has traditionally been used as a touchstone for the model’s poten-
tial. For example, the realizability of OT in noise-based crypto [13] and the bounded
storage model [21] were early indicators of the strength of these approaches, while the
known problems with implementing OT and bit commitment in quantum cryptography
[34, 32] marked some first limitations of this technique. The fact that PUF can indeed
realize OT, at least in an isolated stand-alone setting, thus serves as a first indicator of
a large cryptographic potential of theirs.

73

The concrete paper we employ in this chapter is:

• U. Rührmair: Oblivious Transfer Based on Physical Unclonable Functions.
TRUST 2010, Lecture Notes in Computer Science, Vol. 6101, pp. 430-
440, Springer, 2010.

According to Google scholar, it has been cited 44 times to this date [26].

As an outlook, let us mention already now how the upcoming Chapters 4 to 6 continue
and complement the work of this Chapter 3.

First of all, Chapter 4 contrasts two possible approaches to PUF-security: A the-
oretical approach on the one hand, which concentrates on asymptotic security guar-
antees; and a practically motivated method on the other hand, which focuses on the
concretely achievable security in practical applications. By the example of an OT-
protocol from CRYPTO 2011 by Brzuska, Fischlin, Schröder and Katzenbeisser [6],
we demonstrate that both views can substantially differ, and that the latter method may
be preferable, at the very least for any practical and commercial PUF applications.

More specifically, we show that the abovementioned protocol from CRYPTO 2011
[6], which is secure in an asymptotic security model, is not secure in practice when
being used in connection with optical PUFs. Such use had been explicitly suggested
at CRYPTO 2011, however [6]. This illustrates that care must be taken when common
asymptotic concepts from theoretical cryptography are transfered to PUFs. The latter
are a novel and special primitive of their own also in this respect. Chapter 4 also
discusses measures to improve security, and to overcome the practical vulnerabilities
of the CRYPTO 2011 protocol. We show that our own OT-protocol from Chapter 3
has better concrete security guarantees than the protocol from Crypto 2011 [6], while
requiring more rounds of communication. Both facts result from the use of interactive
hashing as a substep in our protocol.

The subsequent Chapters 5 and 6 continue to study the practical security and ap-
plicability of PUF-protocols. They partly relativize too high hopes on the actual effec-
tiveness of PUFs in cryptographic protocols, reporting certain limitations. For exam-
ple, they illustrate that plain Strong PUF cannot directly be re-used in two consecutive
OT-protocols without endangering the security of the first OT. They also show that
malicious PUF-manufacturers can influence the security of protocols to their favor by
generating biased PUF hardware, so-called “bad PUFs”. The same holds not only for
malicious manufacturers, but also for malicious players who exchange normal, “good
PUFs” against such bad PUFs.

Concluding this outlook, we confirm nevertheless that as long as only stand-alone
scenarios with a one-time use of “good” and non-manipulated PUFs are considered,
the claims that PUFs can realize OT and may serve a universal cryptographic primitive
are maintained, as put forward in this Chapter 3.

74

Oblivious Transfer based on
Physical Unclonable Functions

(Extended Abstract)

Ulrich Rührmair

Computer Science Department
Technische Universität München
85748 Garching, Germany
ruehrmai@in.tum.de

http://www.pcp.in.tum.de

Abstract. Oblivious transfer (OT) is a simple, but powerful cryptographic prim-
itive, on the basis of which secure two-party computation and several other cryp-
tographic protocols can be realized. In this paper, we show how OT can be im-
plemented by Strong Physical Unclonable Functions (PUFs). Special attention is
thereby devoted to a recent subclass of Strong PUFs known as SHIC PUFs. Our
results show that the cryptographic potential of these PUFs is perhaps surpris-
ingly large, and goes beyond the usual identification and key exchange protocols.

1 Introduction

Motivation and Background. Electronic devices are becoming increasingly mobile,
cross-linked and pervasive, which makes them a well-accessible target for adversaries.
Mathematical cryptography offers several measures against the resulting security and
privacy problems, but they all rest on the concept of a secret binary key: They presup-
pose that the devices can contain a piece of information that is, and remains, unknown
to an adversary. This requirement can be difficult to uphold in practice: Invasive, semi-
invasive, or side-channel attacks, as well as various software attacks including viruses,
can lead to key exposure and full security breaks.
The described situation was one motivation that led to the development of Physical

Unclonable Functions (PUFs) [1]. A PUF is a (partly) disordered physical system S
that can be challenged with so-called external stimuli or challenges Ci, upon which it
reacts with corresponding responses Ri. Contrary to standard digital systems, a PUF’s
responses shall depend on the nanoscale structural disorder present in it. It is assumed
that this disorder cannot be cloned or reproduced exactly, not even by the PUF’s original
manufacturer, and that it is unique to each PUF.
Due to their complex internal structure, PUFs can often avoid some of the shortcom-

ings associated with digital keys. It is usually harder to read out, predict, or derive their
responses than to obtain the values of digital keys stored in non-volatile memory. This
fact has been exploited for various PUF-based security protocols, for example schemes
for identification [1] and key exchange [2].

Oblivious Transfer. Oblivious transfer (OT) is a two-player cryptographic primitive
which was originally introduced by [3] [4]. Several variants exist, which are reducible
to each other [5] [31]. The version considered in this paper is a one-out-of-two obliv-
ious transfer or

(
2
1

)
-OT [5]. This is a protocol with the following properties: At the

beginning of the protocol, one party Alice (the “sender”) holds two secret bits b0 and
b1 as private input, and another party Bob (the “receiver”) holds a secret choice bit c
as private input. After execution of the protocol, the following conditions must be met:
(i) Bob has learned the bit bc, i.e. those of the two bits b0 and b1 that was selected by
his choice bit c. (ii) Even an actively cheating Bob cannot derive any information about
the other bit bc⊕1 as long as Alice follows the protocol. (iii) Even an actively cheating
Alice cannot learn c if Bob follows the protocol.
Since its introduction, a large class of cryptographic schemes has been realized on

the basis of OT, including bit-commitment, zero-knowledge proofs, and general secure
multi-party computation [6] [7] [8] [9] [10]. This makes OT a very versatile and uni-
versal primitive. The fact that OT can be realized within a certain cryptographic model
is often seen as an indication of the model’s large cryptographic potential. For these
reasons, the feasibility of OT in the context of quantum cryptography [11] [12], within
the Bounded Storage Model (BSM) [14] [15], or in noise-based cryptography [16] [17],
has been well-investigated in earlier publications .

Our Contribution. In this extended abstract, we describe a protocol that implements
oblivious transfer on the basis of two types of Physical Unclonable Functions: So-called
Strong PUFs and SHIC PUFs (see Section 2). The protocol seems to indicate the large
potential of these PUFs beyond the known schemes for identification [1] and key ex-
change [2].
The protocol can be executed between two players Alice and Bob under the fol-

lowing prerequisites: (i) Bob had previous access to the Strong PUF/SHIC PUF in a
pre-setting phase. During this phase, he established a list of challenge-response-pairs
(CRPs) of the PUF, which is unknown to Alice. (ii) At the time of protocol execution,
the Strong PUF/SHIC PUF has been transfered to Alice. Only Alice has access to it and
can measure CRPs of the PUF.
Since it is known from other publications that OT is a symmetric primitive [31],

our technique allows OT in both directions under the above provisions, without re-
transferring the PUF from Alice to Bob (see Sec. 3.3).

Organization of the Paper. In Section 2, we give some background on the two specific
PUF types which are relevant for this paper (i.e., Strong PUFs and SHIC PUFs). We also
briefly discuss their implementation. In Section 3 we describe and analyze our protocol
for oblivious transfer. We conclude the paper in Section 4.

2 Background on PUFs

We now give some background on the two PUF types relevant for this paper. Since
SHIC PUFs are a special form of Strong PUFs, we start with an explanation of the
latter.

2.1 Strong PUFs

A Strong PUF 1 [18] is a (partly) disordered physical system S, which can be excited
with a finite number of external stimuli or challenges Ci, upon which it reacts with
corresponding responses RCi

2. The pairs (Ci, RCi
) are usually called the challenge-

response pairs (CRPs) of the PUF. Three security relevant properties of a Strong PUF
S are the following:

(i) Due to the disordered microstructure of S, it must be practically infeasible to fab-
ricate a physical clone S′ of S, which has the same challenge-response behavior as
S. This restriction shall even hold for the original manufacturer of S.

(ii) Due to the large number of possible challenges that can be applied to S, it must be
practically infeasible to exhaustively measure all CRPs of S within a limited time
frame on the order of weeks, months, or even years.

(iii) Due to the complicated internal interactions of S, it must be practically infeasible to
devise a computer program that correctly predicts the response of S to a randomly
chosen, previously unknown challenge with high probability. This should hold even
if many other challenge-response pairs of S are known.

Together, conditions (i) to (iii) imply that the responsesRCi
of S can be determined

correctly (with high probability) only by someone who has got direct physical access to
the single, unique PUF S. Implementation examples of Strong PUFs include complex
optical scatterers [1] or integrated circuits whose outputs depend on their internal, indi-
vidual runtimes delays [21] [22] [23]. Also analog cellular arrays have been proposed
recently [24].
It has been realized relatively early, however, that machine learning techniques are

a natural and powerful tool that can potentially challenge the above security condition
(iii). Successful attacks on several Strong PUF candidates have indeed been reported
in [20] [21] [25] [26]. To rule out a potential susceptibility to algorithmic modeling
attacks, SHIC PUFs have been introduced.

2.2 SHIC PUFs

SHIC PUFs are pronounced as “chique PUFs” and have been suggested in [27] [28]
[29]. The acronym “SHIC” stands for Super High Information Content. They are Strong
PUF (i.e. they possess the above properties (i) to (iii)) and have the following additional
features:

(iv) They contain an extraordinarily high amount of response-relevant random informa-
tion and have a very high information density.

1 Strong PUFs also have been referred to simply as PUFs [19], as Physical Random Functions
[19] [21] [22] , or, almost equivalently, as Physical One-Way Functions [1].

2 Please note that the terminology “RCi” slightly deviates from the standard terminology “Ri”
for PUFs. The new terminology is introduced here in order to make the description of Protocol
2 less ambiguous.

(v) Their read-out speed (i.e. the frequency by which they produce responses) is limited
to low values. This limitation should not be enforced by an artificially slow access
module or the like, which could potentially be circumvented or cut off by suitable
invasive means. Rather, it must be an inherent property of the PUF’s design and its
physical properties.

(vi) The CRPs of a SHIC PUF are mutually independent. The pairwise mutual informa-
tion of any two responses of theirs is zero.

SHIC PUFs can be imagined as a huge read-only memory with a very high random
information content and an intrinsically slow read-out speed. A challenge Ci to a SHIC
PUF is the analogue to the address in a classical memory, and the corresponding re-
sponse RCi

is similar to the bit-value stored under that address. A possible realization
with concrete numbers for information content, information density and read-out speed
will be discussed in Section 2.3.

Strong PUFs vs. SHIC PUFs. As emphasized earlier, all SHIC PUFs are Strong PUFs,
but they possess the further properties (iv) to (vi) above. SHIC PUFs thus have the ad-
vantage that their security does not depend on the computational power and the machine
learning capabilities of the attacker. As all their CRPs are independent of each other,
they withstand prediction even by attackers with unlimited computational power until
a complete read-out has been accomplished. Their security only depends on the CRPs
known to an adversary vs. the overall number of CRPs of the PUF.

2.3 Realization of SHIC PUFs

Even though this is not the main topic of this manuscript, we will briefly discuss the
practical realization of the theoretical concept of a SHIC PUF. One potential candidate
are ALILE-based Crossbar PUFs, which have been introduced in [27] [28] [29]. We
will only provide a short overview of this approach; much further detail can be found
in [27] [28] [29].

Generating Randomness by the ALILE Process. Any SHIC PUF must contain a
very large random information content. There are many physical processes that generate
large entropy in solid-state systems, but one example that can eventually lead to inte-
grated electrical realizations of SHIC PUFs is a process known as ALuminum-Induded
Layer Exchange (ALILE) [27] [28] [29]. It is a simple, crystallization-based method
that employs only inexpensive starting materials (amorphous silicon and aluminum). It
result in polycrystalline films with p-type conduction, which exhibit a very large level
of disorder and randomness (see Fig. 1 a). By adjusting the process parameters, the size,
number and density of the crystallites can be tuned as desired. The randomness causes
individual electrical properties in different subregions of the surface.

Crossbar-based Read-Out. One method that was investigated in [27] [28] [29] is to
read out the information from ALILE structures by so-called crossbar architectures.
Slightly simplifying, a crossbar consists of two sets of parallel wires, which are at-
tached to the top and to the bottom of the crystallized structure. The bottom set of wires

is arranged in a 90◦ angle to the top set, as shown in Figure 1. If source and drain
voltages are applied at exactly one top and one bottom wire, current flows through the
polycrystalline film area at the virtual crossing of the two wires. I(V) curves with a
strongly rectifying behavior [29] are observed, which depend on the individual, random
configuration in the polycrystalline substrate at the crossing. They can be converted into
a few bits of individual information per crossing [27] [28].
Crossbar architectures are among the simplest functional nano devices and possess

a very regular geometry. They can hence be fabricated with very small inter-wire dis-
tances, leading to high information densities. Concrete realization parameters we tried
to make plausible by measurement on single diodes and by crossbar simulations in
[28] are 105 top wires and 105 bottom wires, which leads to an information of around
1010 bits per cm2. This assumes that the footprint of one crossing is 100 nm × 100
nm [28]. A single CRP of such a structure would have a length of around around
1 + 2 · log2 105 ≈ 35 bits.

Top crossbar wires

Randomly
Crystallized
Surface

(shown as
transparent)

Bottom
crossbar
wires

b)a)

Fig. 1. a) A polycrystalline film resulting from the ALILE process, illustrating the high entropy
and disorder in the structure. The green areas are silicon crystallites, possessing a random distri-
bution and strongly irregular shape. b) The schematics of the crossbar read-out circuitry.

Inherently Slow Read-Out Speed. Up to now, we have mainly described a memory-
like structure with a high information content and density. Also large arrays of SRAM
cells or Butterfly PUFs could fulfill these criteria, albeit presumably at lower informa-
tion densities. The perhaps most unusual characteristic of Crossbar PUFs is that they
promise to guarantee an inherently slow read-out speed [28]. To achieve this property,
the Crossbar PUF must be built in one large, monolithic block, not from separate blocks
as modern semiconductor memories. The wires are intentionally designed to have only
a low, limited current-carrying capacity. Simulations conducted in [28] showed that
in such large blocks, depending on the fabrication parameters, several milliseconds
must elapse before the sense current/voltage stabilizes. This leads to read-out speeds
of around 100 bits/sec [28].
The two apparent strategies to accelerate read-out would be to increase the sense

current/voltage, or to conduct a parallel read-out at several crossings. But both ap-
proaches lead to a higher current load in the monolithic crossbar, which is proportional

to the achieved speed up. They therefore quickly overload and destroy the limited wires
[28]. Removing the original wires of the crossbar, which very densely cover the whole
crystallized system, and replacing them with a faster read-out mechanism seems prac-
tically infeasible without destroying the PUF’s structure and current-voltage character-
istics. This makes the PUF’s original responses unreadable [28].

3 The Protocol

We now provide a protocol for
(
2
1

)
-OT on the basis of Strong PUFs, which is inspired

by techniques originally presented in [14]. Since SHIC PUFs are a subclass of Strong
PUFs, the protocol works for both PUF types interchangeably — using SHIC PUFs
only causes some small advantages in the resulting security features (see section 3.3).
As a subprotocol, we employ interactive hashing [13] [14].

3.1 Interactive Hashing
In a nutshell, interactive hashing [13] is a cryptographic two-player protocol, in which
Alice has no input, and Bob’s initial input is anm-bit string S. At the end of the proto-
col, Alice knows two m-bit strings U1 and U2, with the properties that (i) Ub = S for
some bit b ∈ {0, 1}, but Alice does not know the value of b, and that (ii) the other string
Ub⊕1 is an essentially random bitstring of length m, which neither Alice nor Bob can
determine alone. A protocol for interactive hashing can be constructed as follows.

Protocol 1: INTERACTIVE HASHING
Prerequisites:
1. Alice holds no input, Bob holds anm-bit string S as input.
2. Let G be the following class of 2-universal hash functions:

G = {g(x) = a ∗ x | a is an element of the set {0, 1}m} ,
where ∗ denotes the scalar product between the vectors a and x.

Protocol:

The protocol consists of m − 1 rounds. In the j-th round, for j = 1, . . . ,m − 1, Alice
executes the following steps:
1. Alice chooses a function gj uniformly at random from the set G. Let the m-
ary binary vector aj be the description of G. If aj is linearly dependent on the
a1, . . . , am−1, then Alice repeats step 1 until aj is linearly independent.

2. Alice announces gj to Bob.
3. Bob computes bj = gj(S) = aj ∗ S and sends bj to Alice.

At the end of the protocol, Alice knows m − 1 linear equations satisfied by S. Since
the aj’s are linearly independent, there are exactly two different m-bit strings U1 and
U2 that satisfy the system of equations set up by Bob. These solutions can be found by
Alice via standard linear algebra. U1 and U2 have the property that exactly one of them
is equal to S, but obviously Alice has no chance in telling which one it is. For further
details see [13] [14].

3.2 Oblivious Transfer

Protocol 2:
(
2
1

)
-OBLIVIOUS TRANSFER BY STRONG PUFS

Prerequisites:

1. Bob holds a Strong PUF S. We assume without loss of generality that the responses
RS

C of S consist of a single bit. 3
2. Alice and Bob have agreed on an encoding scheme E(·) with the following prop-
erties:
(a) E(·) efficiently encodes finite tuples of PUF-challenges Ci of the form T =

(C1, . . . , Ck) as finite binary strings.
(b) E(·) is reversed by a decoding scheme D(·), such that E(D(T)) = T for all

tuples T of the form T = (C1, . . . , Ck) (with the Ci being challenges of S).
(c) D(·) uniquely associates a tuple T = D(x) with any finite binary string x.
Similar encoding schemes can be found, for example, in [32] or [14].

3. Alice holds two bits b0 and b1, which are unknown to Bob.
4. Bob holds a choice bit c, which is unknown to Alice.

Protocol:

1. Bob chooses a tuple of challenges T = (C1, . . . , Cn) uniformly at random, and
determines the corresponding responses RC1

, . . . , RCn
.

2. Bob sends or transfers the Strong PUF S to Alice.
3. Alice and Bob get engaged in an interactive hashing protocol, where Bob’s input is

E(T).
4. The output of this interactive hashing protocol, which is both known to Alice and
Bob, are two strings U0 and U1. One of these strings U0, U1 is equal to E(T). Let
us call the index of that string i0, i.e. Ui0 = E(T).

Note: Bob knows i0, since he knows both U0, U1 and E(T).

5. Bob sets the bit c′ = i0 ⊕ c, and sends c′ to Alice.
6. Alice determines by measurement on the PUF S the values

RZ1
, . . . , RZn

,

where the Zi are the elements of the tuple D(Uc ′) (which, by the properties of
D(·), are all challenges of S). Furthermore, she determines by measurement on S
the values

RZ1
′ , . . . , RZn

′ ,

where the Zi
′ are the elements of the set D(Uc ′⊕1).

3 If a response consists of multiple bits b1 · · · bk, we can, for example, take the XOR of all these
bits, or employ fuzzy extractors.

Note: At this point of the protocol, Alice has chosen two sets of PUF-responses
RZ1

, . . . , RZn
and RZ1

′ , . . . , RZn
′ . Bob knows exactly one of these sets, namely

the one that is equal to RC1
, . . . , RCn

. The other set is unknown to Bob. Further-
more, Alice does not know which of the two sets of responses is known to Bob.

7. Alice forms the two strings s0 and s1 according to the following rules:

s0 = b0 +RZ1
+ . . .+RZn

mod 2,

and

s1 = b1 +RZ1
′ + . . .+RZn

′ mod 2.

8. Alice sends s0 and s1 to Bob.
9. Bob obtains the bit bc he selected through his choice bit c as

bc = sc +RC1
+ . . .+RCn

mod 2.

3.3 Discussion

Security. The security of the protocol depends on the fact that Bob does not know
both sets RZ1

, . . . , RZn
and RZ1

′ , . . . , RZn
′ in step 7. If he did, then he could learn

both bits b0 and b1. This is where property (iii) (see page 3) of Strong PUFs and
SHIC PUFs becomes relevant. Due to this property, Bob cannot know all CRPs of
the Strong PUF/SHIC PUF, but only a fraction γ with 0 < γ < 1. Since one of the
sets RZ1

, . . . , RZn
and RZ1

′ , . . . , RZn
′ is chosen at random in the interactive hashing

protocol, the probability that Bob knows the corresponding CRPs is γn, i.e. it is expo-
nentially low in the security parameter n of the protocol. The fact that Alice does not
learn Bob’s choice bit c stems from the security properties of the interactive hashing
protocol, which prevents that Alice learns which of the two strings U1 or U2 is equal to
Bob’s private input S [13] [14].
The security difference in using Strong PUFs and SHIC PUFs in Protocol 2 is that

by its definition and property (vi), a secure SHIC PUF would fulfill the essential re-
quirement (iii) (see page 3) independent of the computational power of the adversary.
Secure SHIC PUFs hence could guarantee the protocol’s security also against cheating
parties with unlimited computational potential.

Practicality. The communication and storage requirements are mild: Bob must store
only n CRPs, and the protocol has around m rounds for the interactive hashing. The
latter can be reduced to a constant the techniques described in [15].
In order to cope with potential noise in the PUF responses, presumably standard

PUF error correction such as helper data (see [2] [27] and references therein) could be
used. In that case, a few steps of the protocol should be adjusted. Firstly, Bob measures
and stores noisy data RCi

in Step 1. Alice likewise obtains noisy responses RZi
and

RZi
′ in Step 6 of the protocol, and extracts helper data WZi

and WZi
′ , together with

secrets SZi
and SZi

′ . In Step 7, Alice uses the secrets SZi
and SZi

′ (instead of the
values RZi

and RZi
′) to “encrypt” the bits b0 and b1. In Step 8, she transmits the

corresponding helper dataWZi
andWZi

′ together with the strings s0 and s1. Of these
two sets of helper data, Bob uses the one that matches his data set RCi

. He derives
identical secrets as Alice from the RCi

, and uncovers the bit bc from si0⊕c.

Symmetry. Oblivious transfer is known to be a symmetric primitive [31]: Given an
OT protocol where Alice is the sender and Bob is the receiver, one can construct the
“reverse” OT protocol where Alice acts as receiver and Bob as sender. The construction
of [31] is generic, and independent of the concrete implementation of the OT.
Therefore, Protocol 2 can also be used to implement OT in the other direction,

i.e. from Bob to Alice, without re-transferring the PUF from Alice to Bob. This is an
important practicality asset: In many applications, the physical transfer of the PUF in
one direction is executed naturally (e.g. in a hardware shipped from a manufacturer
to a customer, or on a bank card carried to an automated teller machine (ATM) by
a customer). Once accomplished, this allows oblivious transfer in both directions and
secure two-party computations, e.g. between the manufacturer and the hardware.

4 Summary

We discussed a protocol for oblivious transfer on the basis of Strong PUFs and SHIC
PUFs. It allows OT and secure two-party computation between two players, provided
that (i) Player A had previous access to the PUF, and (ii) only Player B holds physical
possession of the PUF at the time of the protocol execution. These circumstances occur
frequently in practice, for example between a central authority on the one hand and
mobile hardware systems, decentral terminals, or security tokens (including bank cards,
ID cards, access cards, and the like) on the other hand. The protocol does not use any
computational assumptions other than the security of the PUF.

References

1. R. Pappu, B. Recht, J. Taylor, N. Gershenfeld: Physical One-Way Functions, Science, vol.
297, pp. 2026-2030, 20 September 2002.

2. P. Tuyls, B. Skoric: Strong Authentication with Physical Unclonable Functions. In: Security,
Privacy and Trust in Modern Data Management, M. Petkovic, W. Jonker (Eds.), Springer,
2007.

3. M. O. Rabin: How to exchange secrets by oblivious transfer. Technical Report TR-81, Har-
vard University, 1981.

4. S. Even, O. Goldreich, A. Lempel: A randomized protocol for signing contracts. In: Proc.
CRYPTO 82 (R. L. Rivest, A. Sherman, S. Chaum, Eds.), pp. 205-210, Plenum Press, 1983.

5. C. Crepeau: Equivalence between two flavors of oblivious transfer. CRYPTO ’87 (C. Pomer-
ance, Ed.), LNCS Vol. 293, pp. 350–354, Springer, 1988.

6. A. C.-C. Yao: How to generate and exchange secrets. Proc. of the 27th IEEE Symposium on
the Foundations of Computer Science (FOCS), pp. 162–167, 1986.

7. O. Goldreich, S. Micali, A. Widgerson: How to play any mental game, or a completeness
theorem for protocols with honest majority. Proc. of the 19th Annual Symposium on the
Theory of Computing (STOC), pp. 218–229, 1987.

8. O. Goldreich, R. Vainish: How to solve any protocol problem – an efficiency improvement.
CRYPTO 87 (C. Promenance, Ed.), LNCS Vol. 293, pp. 73-86, Springer 1988.

9. J. Kilian: Founding cryptography on oblivious transfer. Proceedings, 20th Annual ACM
Symposium on the Theory of Computation (STOC), 1988.

10. C. Crepeau, J. van de Graaf, A. Tapp: Committed oblivious transfer and private multi-party
computations. CRYPTO 95, LNCS Vol. 963, pp. 110-123, Springer 1995.

11. G.P. He, Z.D. Wang: Oblivious transfer using quantum entanglement. Physical Review A
2006, VOL 73; NUMB 1; PART A, pages 012331.

12. S. Wehner, C. Schaffner, B.M. Terhal, Cryptography from noisy storage. Phys Rev Lett. 2008
Jun 6;100(22):220502.

13. M. Naor, R. Ostrovsky, R. Venkatesan, M. Yung: Perfect zero-knowledge arguments for NP
using any one-way function. Journal of Cryptology 11 (1998), no. 2, 87–108.

14. C. Cachin, C. Crepeau, J. Marcil: Oblivious transfer with a memory-bounded receiver. Pro-
ceeding of the 39th Annual Symposium on Foundations of Computer Science, 1998.

15. Y.Z. Ding, D. Harnik, A. Rosen, R. Shaltiel: Constant-Round Oblivious Transfer in the
Bounded Storage Model. Journal of Cryptology, 2007.

16. C. Crepeau: Efficient cryptographic protocols based on noisy channels. EUROCRYPT 97
(Walter Fumy, Ed.), LNCS Vol. 1233, pp. 306–317, Springer, 1997.

17. Jürg Wullschleger: Oblivious Transfer from Weak Noisy Channels. TCC 2009: 332-349
18. Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, Pim Tuyls: FPGA Intrinsic PUFs

and Their Use for IP Protection. CHES 2007: 63-80
19. Blaise Gassend, Physical Random Functions, MSc Thesis, MIT, 2003.
20. Daihyun Lim: Extracting Secret Keys from Integrated Circuits.MSc Thesis, MIT, 2004.
21. B. Gassend, D. Lim, D. Clarke, M. v. Dijk, S. Devadas: Identification and authentication of

integrated circuits. Concurrency and Computation: Practice & Experience, pp. 1077 - 1098,
Volume 16, Issue 11, September 2004.

22. J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas. A technique to
build a secret key in integrated circuits with identification and authentication applications.
In Proceedings of the IEEE VLSI Circuits Symposium, June 2004.

23. M. Majzoobi, F. Koushanfar, M. Potkonjak: Lightweight Secure PUFs. IC-CAD 2008.
24. G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U. Schlichtmann, P. Lugli, U.

Rührmair: Application of Mismatched Cellular Nonlinear Networks for Physical Cryptogra-
phy. IEEE CNNA, 2010.

25. M. Majzoobi, F. Koushanfar, M. Potkonjak: Testing Techniques for Hardware Security. IEEE
International Test Conference, 2008.

26. U. Rührmair, F. Sehnke, J. Soelter, S. Devadas, J. Schmidhuber:Modeling Attacks on Physi-
cal Unclonable Functions. Submitted, 2010.

27. U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, M. Stutzmann: Security Ap-
plications of Diodes with Random Current-Voltage Characteristics. Financial Cryptography
and Data Security, 2010.

28. U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and G. Csaba: Applications of
High-Capacity Crossbar Memories in Cryptography. To appear in IEEE Transactions on
Nanotechnology, 2010.

29. C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, M. Stutzmann: Random pn-junctions for
physical cryptography. To appear in Applied Physics Letters, 2010.

30. G. E. Suh, S. Devadas: Physical Unclonable Functions for Device Authentication and Secret
Key Generation. DAC 2007: 9-14

31. S. Wolf, J. Wullschleger: Oblivious Transfer Is Symmetric. EUROCRYPT 2006: 222-232
32. T. M. Cover: Enumerative Source Encoding. IEEE Transactions on Information Theory 19

(1973), No. 1, pp. 73 – 77.

Chapter 4

Practical Security Analysis of
PUF-based Two-Player
Protocols

In classical cryptography, security proofs are often led in an asymptotic framework,
where the differentiation between exponential and polynomial complexities plays a
crucial role. This formalism has been applied successfully for several decades in clas-
sical cryptography. This makes it tempting to directly transfer this formalism to PUFs.

On closer inspection, however, such a step turns out to be problematic. The most
obvious concern is that PUFs are finite physical systems, which cannot be scaled in-
definitely due to size, cost, and stability constraints. Take Pappu et al.’s well-known
optical PUF as an example: If its size of 1cm×1cm was scaled by a factor of 10 on
each side, it already would become unusable for most standard applications, for exam-
ple for bank cards and smart cards. Furthermore, if its thickness was scaled too much,
not enough light would leave the structure any longer, making it difficult or even infea-
sible to collect stable responses. Similar considerations apply to other, electrical PUFs:
Scaling the size too strongly is infeasible for several practical reasons, and may also
have a comparably small additional effect on the security level. Consequentially, the
constants in the security guarantees suddenly matter when we consider PUFs, at least
much more strongly than in classical, complexity-based mathematical cryptography.

This chapter illustrates that these observations are not just of theoretical concern,
but that a pure focus on asymptotics can lead to PUF schemes that are provable secure
in theory, but demonstrably insecure in practice. More precisely, we show that proto-
cols for oblivious transfer (OT) and bit commitment (BC) suggested by Brzuska, Fis-
chlin, Schröder and Katzenbeisser at CRYPTO 2011 [6] allow quadratic attacks. These
attacks are obviously not relevant in a typical asymptotic, polynomial-vs.-exponential
framework. But they do make the protocol insecure in practice when it is used in con-
nection with optical PUFs, as suggested explicitly at CRYPTO 2011 [6]. Our attacks
hence constitutes a real security concern that is not monitored by current, asymptotic
PUF formalisms.

85

We subsequently observe that our earlier OT-protocol from Chapter 3, which uti-
lized interactive hashing as a substep, can be used with a higher security level. Along
these lines, we present a simplified and shortened version of the OT-protocol in this
chapter.

The employed paper in this chaper is:

• U. Rührmair, M. van Dijk: Practical Security Analysis of PUF-based Two-
Player Protocols. Cryptographic Hardware and Embedded Systems (CHES 2012),
pp. 251-267, Lecture Notes in Computer Science Springer, Vol. 7428, 2012.

The work has been selected as one of the best papers of CHES 2012, and was
invited for a journal version at the Journal of Cryptographic Engineering. According
to Google scholar, it has been cited 23 times to this date [26].

The candidate would again like to express his gratitude to have one of the founding
fathers of PUFs as his co-author in this paper.

86

Practical Security Analysis of PUF-Based
Two-Player Protocols

Ulrich Rührmair1 and Marten van Dijk2

1 Technische Universität München, 80333 München, Germany
ruehrmair@in.tum.de

2 RSA Laboratories, Cambridge, MA, USA
marten.vandijk@rsa.com

Abstract. In recent years, PUF-based schemes have not only been suggested for
the basic tasks of tamper sensitive key storage or the identification of hardware
systems, but also for more complex protocols like oblivious transfer (OT) or bit
commitment (BC), both of which possess broad and diverse applications. In this
paper, we continue this line of research. We first present an attack on two re-
cent OT- and BC-protocols which have been introduced at CRYPTO 2011 by
Brzuska et al. [1,2]. The attack quadratically reduces the number of CRPs which
malicious players must read out in order to cheat, and fully operates within the
original communication model of [1,2]. In practice, this leads to insecure pro-
tocols when electrical PUFs with a medium challenge-length are used (e.g., 64
bits), or whenever optical PUFs are employed. These two PUF types are currently
among the most popular designs. Secondly, we discuss countermeasures against
the attack, and show that interactive hashing is suited to enhance the security of
PUF-based OT and BC, albeit at the price of an increased round complexity.

Keywords: Physical Unclonable Functions (PUFs), Cryptographic Protocols,
Oblivious Transfer, Bit Commitment, Security Analysis, Interactive Hashing.

1 Introduction

Today’s electronic devices are mobile, cross-linked and pervasive, which makes them
a well-accessible target for adversaries. The well-known protective cryptographic tech-
niques all rest on the concept of a secret binary key: They presuppose that devices store
a piece of digital information that is, and remains, unknown to an adversary. It turns out
that this requirement is difficult to realize in practice. Physical attacks such as invasive,
semi-invasive or side-channel attacks carried out by adversaries with one-time physical
access to the devices, as well as software attacks like application programming interface
(API) attacks, viruses or Trojan horses, can lead to key exposure and security breaks.
As Ron Rivest emphasized in his keynote talk at CRYPTO 2011 [22], merely calling a
bit string a “secret key” does not make it secret, but rather identifies it as an interesting
target for the adversary.

Indeed, one main motivation for the development of Physical Unclonable Functions
(PUFs) was their promise to better protect secret keys. A PUF is an (at least partly)
disordered physical system P that can be challenged with so-called external stimuli or

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 251–267, 2012.
c© International Association for Cryptologic Research 2012

252 U. Rührmair and M. van Dijk

challenges c, upon which it reacts with corresponding responses r. Contrary to standard
digital systems, these responses depend on the micro- or nanoscale structural disorder
of the PUF. It is assumed that this disorder cannot be cloned or reproduced exactly,
not even by the PUF’s original manufacturer, and that it is unique to each PUF. Any
PUF P thus implements a unique and individual function fP that maps challenges c to
responses r = fP (c). The tuples (c, r) are called the challenge-response pairs (CRPs)
of the PUF.

Due to its complex internal structure, a PUF can avoid some of the shortcomings of
classical digital keys. It is usually harder to read out, predict, or derive PUF-responses
than to obtain digital keys that are stored in non-volatile memory. The PUF-responses
are only generated when needed, which means that no secret keys are present perma-
nently in the system in an easily accessible digital form. Finally, certain types of PUFs
are naturally tamper sensitive: Their exact behavior depends on minuscule manufactur-
ing irregularities, often in different layers of the IC, and removing or penetrating these
layers will automatically change the PUF’s read-out values. These facts have been ex-
ploited in the past for different PUF-based security protocols. Prominent examples in-
clude identification [21,9], key exchange [21], and various forms of (tamper sensitive)
key storage and applications thereof, such as intellectual property protection or read-
proof memory [11,14,29].

In recent years, also the use of PUFs in more advanced cryptographic protocols to-
gether with formal security proofs has been investigated. In these protocols, usually
PUFs with a large challenge set and with a freely accessible challenge-response inter-
face are employed.1 The PUF is used similar to a “physical random oracle”, which is
transferred between the parties, and which can be read-out exactly by the very party
who currently holds physical possession of it. Its input-output behavior is assumed to
be so complex that its response to a randomly chosen challenge cannot be predicted
numerically and without direct physical measurement, not even by a person who had
physical access to the PUF at earlier points in time. In 2010, Rührmair [23] showed
that oblivious transfer (OT) can be realized between two parties by physically trans-
ferring a PUF in this setting. He observed that via the classical reductions of Kil-
ian [13], this implies PUF-based bit commitment and PUF-based secure multi-party
computations. In the same year, the first formal security proof for a PUF-protocol
was provided by Rührmair, Busch and Katzenbeisser [24]. They presented definitions
and a reductionist security proof for PUF-based identification protocols. At CRYPTO
2011 Brzuska et al. [1] adapted Canetti’s universal composition (UC) framework [3]
to include PUFs. They gave PUF-based protocols for oblivious transfer (OT), bit
commitment (BC) and key exchange (KE) and proved them to be secure in their
framework.

The investigation of advanced cryptographic settings for PUF makes sense even
from the perspective of a pure practitioner: Firstly, it clarifies the potential of PUFs
in theory, a necessary prerequisite before this potential can be unleashed in commer-
cial applications without risking security failures. Secondly, BC and OT protocols are

1 This type of PUF sometimes has been termed Physical Random Function [9] or Strong PUF
[11,26,25,24] in the literature. We emphasize that the Weak/Strong PUF terminology intro-
duced by Guajardo et al. [11] is not to be understood in a judgemental or pejorative manner.

PUF-Based Two-Player Protocols 253

extremely versatile cryptographic primitives, which allow the implementation of such
diverse tasks as zero-knowledge identification, the enforcement of semi-honest behavior
in cryptographic protocols, secure multi-party computation (including online auctions
or electronic voting), or key exchange. If these tasks shall be realized securely in prac-
tice by PUFs, a theoretical investigation of the underlying primitives — in this case BC
and OT — is required first.

In this paper, we continue this line of research, and revisit the use of PUFs in OT-
and BC-protocols. Particular emphasis is placed on the achievable practical security
if well-established PUFs (like electrical PUFs with 64-bit challenge lengths or optical
PUFs) are used in the protocols. We start by observing an attack on the OT- and BC-
protocols of Brzuska et al. [1,2] which quadratically reduces the number of responses
that a malicious player must read out in order to cheat. It works fully in the original
communication model of Brzuska et al. and makes no additional assumptions. As we
show, the attack makes the protocols insecure in practice if electrical PUFs with medium
bitlengths around 64 bits are used, and generally if optical PUFs are employed. This has
a special relevance since the use of optical PUFs for their protocols had been explicitly
proposed by Brzuska et al. (see Section 8 of [2]). Secondly, we investigate countermea-
sures against our attack, and show that interactive hashing can be used to enhance the
security of PUF-based OT and BC protocols.

Our work continues the recent trend of a formalization of PUFs, including proto-
col analyses, more detailed investigations of non-trivial communication settings, and
formal security proofs. This trend will eventually lay the foundations for future PUF
research, and seems indispensible for a healthy long-term development of the field. It
also combines protocol design and practical security analyses in a novel manner.

Organization of this Paper. In Section 2 we present the protocols of Brzuska et al. in
order to achieve a self-contained treatment. Section 3 gives our quadratic attack. Section
4 discusses its practical effect. Section 5 discusses countermeasures. We conclude the
paper in Section 6.

2 The Protocols of Brzuska et al.

Our aim in this paper is to present a quadratic attack on two recent PUF-protocols for
OT and BC by Brzuska et al. [1,2] and to discuss its practical relevance. In order to
achieve a self-contained treatment, we will now present these two protocols. To keep
our exposition simple, we will not use the full UC-notation of [1], and will present the
schemes mostly without error correction mechanisms, since the latter play no role in
the context of our attack.

The protocols use two communication channels between the communication part-
ners: A binary channel, over which all digital communication is handled. It is
assumed that this channel is non-confidential, but authenticated. And secondly an in-
secure physical channel, over which the PUF is sent. It is assumed that adversaries
can measure adaptively selected CRPs of the PUF while it is in transition over this
channel.

254 U. Rührmair and M. van Dijk

2.1 Oblivious Transfer

The OT protocol of [1] implements one-out-of-two string oblivious transfer. It is as-
sumed that in each subsession the sender Pi initially holds two (fresh) bitstrings s0, s1 ∈
{0, 1}λ, and that the receiver Pj holds a (fresh) choice bit b.

Brzuska et al. generally assume in their treatment that after error correction and the
application of fuzzy extractors, a PUF can be modeled as a function PUF : {0, 1}λ →
{0, 1}rg(λ). We use this model throughout this paper, too. In the subsequent protocol of
Brzuska et al., it is furthermore assumed that rg(λ) = λ, i.e., that the PUF implements
a function PUF : {0, 1}λ → {0, 1}λ (compare [1,2]).

Protocol 1: PUF-BASED OBLIVIOUS TRANSFER ([1], SLIGHTLY SIMPLIFIED DE-
SCRIPTION)

External Parameters: The protocol has a number of external parameters, including the
security parameter λ, the session identifier sid, a number N that specifies how many
subsessions are allowed, and a pre-specified PUF-family P , from which all PUFs which
are used in the protocol must be drawn.

Initialization Phase: Execute once with fixed session identifier sid:

1. The receiver holds a PUF which has been drawn from the family P .
2. The receiver measures l randomly chosen CRPs c1, r1, . . . , cl, rl from the PUF, and

puts them in a list L := (c1, r1, . . . , cl, rl).
3. The receiver sends the PUF to the sender.

Subsession Phase: Repeat at most N times with fresh subsession identifier ssid:

1. The sender’s input are two strings s0, s1 ∈ {0, 1}λ, and the receiver’s input is a bit
b ∈ {0, 1}.

2. The receiver chooses a CRP (c, r) from the list L at random.
3. The sender chooses two random bitstrings x0, x1 ∈ {0, 1}λ and sends x0, x1 to the

receiver.
4. The receiver returns the value v := c ⊕ xb to the sender.
5. The sender measures the responses r0 and r1 of the PUF that correspond to the

challenges c0 := v ⊕ x0 and c1 := v ⊕ x1.
6. The sender sets the values S0 := s0 ⊕ r0 and S1 := s1 ⊕ r1, and sends S0, S1 to

the receiver.
7. The receiver recovers the string sb that depends on his choice bit b as sb = Sb ⊕ r.

He erases the pair (c, r) from the list L.

Comments. The protocol implicitly assumes that the sender and receiver can interrogate
the PUF whenever they have access to it, i.e., that the PUF’s challenge-response inter-
face is publicly accessible and not protected. This implies that the employed PUF must
possess a large number of CRPs. Using a PUF with just a few challenges does not make
sense: The receiver could then create a full look-up table for all CRPs of such a PUF

PUF-Based Two-Player Protocols 255

before sending it away in Step 3 of the Initialization Phase. This would subsequently
allow him to recover both strings s0 and s1 in Step 6 of the protocol subsession, as
he could obtain r0 and r1 from his look-up table. Similar observations hold for the
upcoming protocol 2. Indeed, all protocols discussed in this paper require PUFs with
a large number of challenges and publicly accessible challenge-response interfaces.
These PUFs have sometimes been referred to as Physical Random Functions or also
as Strong PUFs in the literature [11,26,25].

Furthermore, please note that no physical transfer of the PUF is envisaged during
the subsessions of the protocol. According to the model of Brzuska et al., an adversary
only has access to it during the initialization phase, but not between the subsessions.
This protocol use has some similarities with a stand-alone usage of the PUF, in which
exactly one PUF-transfer occurs between the parties.

2.2 Bit Commitment

The second protocol of [1] implements PUF-based Bit Commitment (BC) by a generic
reduction to PUF-based OT. The BC-sender initially holds a bit b. When the OT-
Protocol is called as a subprotocol, the roles of the sender and receiver are reversed:
The BC-sender acts as the OT-receiver, and the BC-receiver as the OT-sender. The de-
tails are as follows.

Protocol 2: PUF-BASED BIT COMMITMENT VIA PUF-BASED OBLIVIOUS TRANS-
FER ([1], SLIGHTLY SIMPLIFIED DESCRIPTION)

Commit Phase:

1. The BC-sender and the BC-receiver jointly run an OT-protocol (for example Proto-
col 1).

(a) In this OT-protocol, the BC-sender acts as OT-receiver and uses his bit b as the
choice bit of the OT-protocol.

(b) The BC-receiver acts as OT-sender. He chooses two strings s0, s1 ∈ {0, 1}λ at
random, and uses them as his input s0, s1 to the OT-protocol.

2. When the OT-protocol is completed, The BC-sender has learned the string v := sb.
This closes the commit phase.

Reveal Phase:

1. In order to reveal bit b, the BC-sender sends the string (b, v) (with v = sb) to the
BC-receiver.

Comments. The security of the BC-protocol is inherited from the underlying
OT-protocol. Once this protocol is broken, also the security of the BC-protocol is lost.
This will be relevant in the upcoming sections.

256 U. Rührmair and M. van Dijk

3 A Quadratic Attack on Protocols 1 and 2

We will now discuss a cheating strategy in Protocols 1 and 2. Compared to an attacker
who exhaustively queries the PUF for all of its m possible challenges, we describe an
attack on Protocols 1 and 2 which reduces this number to

√
m. As we will argue later

in Section 4, this has a particularly strong effect on the protocol’s security if an optical
PUF is used (as has been explicitly suggested by [2]), or if electrical PUFs with medium
challenge lengths of 64 bits are used.

Our attack rests on the following lemma.

Lemma 3. Consider the vector space ({0, 1}λ,⊕), λ ≥ 2, with basis B = {a1, . . . ,
a�λ/2�, b1, . . . , b�λ/2�}. Let A be equal to the linear subspace generated by the vectors
in BA = {a1, . . . , a�λ/2�}, and let B be the linear subspace generated by the vectors
in BB = {b1, . . . , b�λ/2�}. Define S := A ∪B. Then it holds that:

(i) Any vector z ∈ {0, 1}λ can be expressed as z = a ⊕ b with a, b ∈ S, and this
expression (i.e., the vectors a and b) can be found efficiently (i.e., in at most poly(λ)
steps).

(ii) For all distinct vectors x0, x1, v ∈ {0, 1}λ there is an equal number of combina-
tions of linear subspaces A and B as defined above for which x0 ⊕ v ∈ A and
x1 ⊕ v ∈ B.

(iii) S has cardinality |S| ≤ 2 · 2�λ/2�.

Proof. (i) Notice that any vector z ∈ {0, 1}λ can be expressed as a linear combination
of all basis vectors: z =

∑
uiai +

∑
vjbj , i.e., z = a⊕ b with a ∈ A and b ∈ B. This

expression is found efficiently by using Gaussian elimination.
(ii) Without loss of generality, since x0, x1 and v are distinct vectors, we may choose

a1 = x0⊕v �= 0 and b1 = x1⊕v �= 0. The number of combinations of linear subspaces
A and B is independent of the choice of a1 and b1. (Notice that if x0 �= x1 but v = x0,
then the number of combinations is twice as large.)

(iii) The bound follows from the construction of S and the cardinalities of A and B,
which are |A| = 2�λ/2� and |B| = 2�λ/2�.

An Example. Let us give an example in order to illustrate the principle of Lemma 3.
Consider the vector space ({0, 1}λ,⊕) for an even λ, and choose as subbases BA0 =
{e1, . . . , eλ/2} and BB0 = {eλ/2+1, . . . , eλ}, where ei is the unit vector of length λ
that has a one in position i and zeros in all other positions. Then the basis BA0 spans the
subspace A0 that contains all vectors of length λ whose second half is all zero, and BB0

spans the subspace B0 that comprises all vectors of length λ whose first half is all zero.
It then follows immediately that every vector z ∈ {0, 1}λ can be expressed as z = a⊕b
with a ∈ A0 and b ∈ B0, or, saying this differently, with a, b ∈ S and S := A0 ∪ B0.
It is also immediate that S has cardinality |S| ≤ 2 · 2λ/2.

Relevance for PUFs. The lemma translates into a PUF context as follows. Suppose
that a malicious and an honest player play the following game. The malicious player
gets access to a PUF with challenge length λ in an initialization period, in which he
can query CRPs of his choice from the PUF. After that, the PUF is taken away from

PUF-Based Two-Player Protocols 257

him. Then, the honest player chooses a vector z ∈ {0, 1}λ and sends it to the malicious
player. The malicious player wins the game if he can present the correct PUF-responses
r0 and r1 to two arbitrary challenges c0 and c1 which have the property that c0⊕c1 = z.
Our lemma shows that in order to win the game with certainty, the malicious player
does not need to read out the entire CRP space of the PUF in the initialization phase; he
merely needs to know the responses to all challenges in the set S of Lemma 3, which
has a quadratically reduced size compared to the entire CRP space. This observation is
at the heart of the attack described below.

In order to make the attack hard to detect for the honest player, it is necessary that the
attacker chooses random subspaces A and B, and does not use the above trivial choices
A0 and B0 all the time. This fact motivates the random choice of A and B in Lemma 3.
The further details are as follows.

The Attack. As in [1,2], we assume that the PUF has got a challenge set of {0, 1}λ.
Given Lemma 3, the OT-receiver (who initially holds the PUF) can achieve a quadratic
advantage in Protocol 1 as described below.

First, he chooses uniformly random linear subspaces A and B, and constructs the set
S, as described in Lemma 3. While he holds possession of the PUF before the start of
the protocol, he reads out the responses to all challenges in S. Since |S| ≤ 2 · 2�λ/2�,
this is a quadratic improvement over reading out all responses of the PUF.

Next, he starts the protocol as normal. When he receives the two values x0 and x1 in
Step 3 of the protocol, he computes two challenges c∗0 and c∗1 both in set S such that

x0 ⊕ x1 = c∗0 ⊕ c∗1.

According to Lemma 3(i), this can be done efficiently (i.e., in poly(λ) operations).
Notice that, since the receiver knows all the responses corresponding to challenges in
S, he in particular knows the two responses r∗0 and r∗1 that correspond to the challenges
c∗0 and c∗1.

Next, the receiver deviates from the protocol and sends the value v := c∗0 ⊕ x0 in
Step 4. For this choice of v, the two challenges c0 and c1 that the sender uses in Step 5
satisfy

c0 := c∗0 ⊕ x0 ⊕ x0 = c∗0

and
c1 := c∗0 ⊕ x0 ⊕ x1 = c∗0 ⊕ c∗0 ⊕ c∗1 = c∗1.

By Lemma 3(ii), Alice cannot distinguish the received value v in Step 4 from any ran-
dom vector v. In other words, Alice cannot distinguish Bob’s malicious behavior (i.e.,
fabricating a special v with suitable properties) from honest behavior. As a consequence,
Alice continues with Step 6 and transmits S0 = s0 ⊕ r∗0 and S1 = s1 ⊕ r∗1 . Since Bob
knows both r∗0 and r∗1 , he can recover both s0 and s1. This breaks the security of the
protocol.

Please note the presented attack is simple and effective: It fully works within the
original communication model of Brzuska et al. [1,2]. Furthermore, it does not require
laborious computations of many days on the side of the attacker (as certain modeling
attacks on PUFs do [25]). Finally, due to the special construction we proposed, the

258 U. Rührmair and M. van Dijk

honest players will not notice the special choice of the value v, as the latter shows no
difference from a randomly chosen value.

Effect on Bit Commitment (Protocol 2). Due to the reductionist construction of Protocol
2, our attack on the oblivious transfer scheme of Protocol 1 directly carries over to the
bit commitment scheme of Protocol 2 if Protocol 1 is used in it as a subprotocol. By
using the attack, a malicious sender can open the commitment in both ways by reading
out only 2 ·2�λ/2� responses (instead of all 2λ responses) of the PUF. On the other hand
it can be observed easily that the hiding property of the BC-Protocol 2 is unconditional,
and is not affected by our attack.

4 Practical Consequences of the Attack

What are the practical consequences of our quadratic attack, and how relevant is it
in real-world applications? The situation can perhaps be illustrated via a comparison
to classical cryptography. What effect would a quadratic attack have on schemes like
RSA, DES and SHA-1? To start with RSA, the effect of a quadratic attack here is rather
mild: The length of the modulus must be doubled. This will lead to longer computation
times, but restore security without further ado. In the case of single-round DES, how-
ever, a quadratic attack would destroy its security, and the same holds for SHA-1. The
actual effect of our attack on PUF-based OT and BC has some similarities with DES or
SHA-1: PUFs are finite objects, which cannot be scaled in size indefinitely due to area
requirements, arising costs, and stability problems. This will also become apparent in
our subsequent discussion.

4.1 Electrical Integrated PUFs

We start our discussion by electrical integrated PUFs, and take the well-known Arbiter
PUF as an example. It has been discussed in theory and realized in silicon mainly for
challenge lengths of 64 bits up to this date [9,10,15,28]. Our attack on such a 64-bit
implementation requires the read-out of 2 · 232 = 8.58 · 109 CRPs by the receiver. This
read-out can be executed before the protocol (i.e., not during the protocol), and will
hence not be noticed by the sender. Assuming a MHz CRP read-out rate [15] of the
Arbiter PUF, the read-out takes 8.58 · 103 sec, or less than 144min.

Please note that the attack is independent of the cryptographic hardness of the PUF,
such as its resilience against machine learning attacks. For example, a 64-bit, 8-XOR-
Arbiter PUF (i.e., an Arbiter PUF with eight parallel standard 64-bit Arbiter PUFs
whose single responses are XORed at the end of the structure) is considered secure
in practice against all currently known machine learning techniques [25]. Nevertheless,
this type of PUF would still allow the above attack in 144min.

Our attacks therefore enforce the use of PUFs with a challenge bitlength of 128 bits
or more in Protocols 1 and 2. Since much research currently focuses on 64-bit im-
plementations of electrical PUFs, publication and dissemination of the attack seems
important to avoid their use in Protocols 1 and 2. Another aspect of our attack is that it
motivates the search for OT- and BC-protocols that are immune, and which can safely

PUF-Based Two-Player Protocols 259

be used with 64-bit implementations. The reason is that the usage of 128-bit PUFs
doubles the area consumption of the PUF and negatively affects costs.

4.2 Optical PUFs

Let us now discuss the practical effect of our attack on the optical PUF introduced by
Pappu [20] and Pappu et al. [21]. The authors use a cuboid-shaped plastic token of
size 1 cm × 1 cm × 2.5 mm, in which thousands of light scattering small spheres are
distributed randomly. They analyze the number of applicable, decorrelated challenge-
response pairs in their set-up, arriving at a figure of 2.37 · 1010 [21]. Brzuska et al.
assume that these challenges are encoded in a set of the form {0, 1}λ, in which case
λ = �log2 2.37 · 1010
 = 35. If this number of 235 is reduced quadratically by virtue
of Lemma 3, we obtain on the order of 2 · 218 = 5.2 · 105 CRPs that must be read
out by an adversary in order to cheat. It is clear that even dedicated measurement set-
ups for optical PUFs cannot realize the MHz rates of the electrical example in the last
section. But even assuming mild read-out rates of 10 CRPs or 100 CRPs per second, we
still arrive at small read-out times of 5.2 · 104 sec or 5.2 · 103 sec, respectively. This is
between 14.4 hours (for 10 CRPs per second) or 87 minutes (for 100 CRPs per second).
If a malicious receiver holds the PUF for such a time frame before the protocol starts
(which is impossible to control or prevent for the honest players), he can break the
protocol’s security.

Can the situation be cleared by simply scaling the optical PUF to larger sizes? Un-
fortunately, also an asymptotic analysis of the situation shows the same picture. All
variable parameters of the optical PUF [21,20,16] are the x-y-coordinate of the incident
laser beam and the spatial angle Θ under which the laser hits the token. This leads to
a merely cubic complexity in the three-dimensional diameter d of the cuboid scattering
token. 2 Given our attack, this implies that the adversary must only read out O(d 1.5)
challenges in order to cheat in Protocols 1 and 2. If only the independent challenges
are considered, the picture is yet more drastic: As shown in [31], the PUF has at most a
quadratic number of independent challenges in d. This reduces to a merely linear num-
ber of CRPs which the adversary must read out in our attack. Finally, we remark that
scaling up the size of the PUF also quickly reaches its limits under practical aspects:
The token considered by Pappu et al. [21,20] has an area of 1 cm × 1 cm. In order to
slow down the quadratic attack merely by a factor of 10, a token of area 10 cm × 10 cm
would have to be used. Such a token is too large to even fit onto a smart card.

Overall, this leads to the conclusion that optical PUFs like the ones discussed in
[20,21,16] cannot be used safely with the Protocols 1 and 2 in the face of our attack. Due
to their low-degree polynomial CRP complexity, and due to practical size constraints,
simple scaling of the PUFs constitutes no efficient countermeasure. This distinguishes
the optical approach from the electrical case of the last section. This observation has a
particular relevance, since Brzuska et al. had explicitly suggested optical PUFs for the
implementation of their protocols (see Section 8 of [2]).

2 Please note in this context that the claim of [2] that the number of CRPs of an optical PUF is
super-polynomial must have been made erroneously or by mistake; our above brief analysis
shows that it is at mostly cubic. The low-degree polynomial amount of challenges of the optical
PUF is indeed confirmed by the entire literature on the topic, most prominently [21,20,31].

260 U. Rührmair and M. van Dijk

5 Potential Countermeasures

5.1 Additional PUF Transfers and Time Constraints?

Can we bind the time in which the malicious player has got access to the PUF in order
to prevent our attack? The current Protocols 1 and 2 obviously are unsuited to this end;
but could there be modifications of theirs which have this property? A simple approach
seems the introduction of one additional PUF transfer from the sender to the receiver in
the initialization phase. This assumes that the sender initially holds the PUF, transfers it
to the receiver, and measures the time period within which the receiver returns the PUF.
The (bounded) period in which the receiver had access to the PUF can then be used to
derive a bound on the number of CRPs the receiver might know. This could be used
to enforce security against a cheating receiver. Please note that a long, uncontrolled
access time for the sender is no problem for the protocol’s security, whence it suffices
to concentrate on the receiver.

On closer inspection, however, there are significant problems with this approach. In
general, each PUF-transfer in a protocol is very costly. One PUF-transfer per protocol
seems acceptable, since it is often executed automatically and for free, for example by
consumers carrying their bank cards to cash machines. But having two such transfers in
one protocol, as suggested above, will most often ruin a protocol’s practicality.

A second issue is that binding the adversarial access time in a tight manner by two
consecutive PUF transfers is very difficult. How long will one physical transfer of the
PUF take? 1 day? If the adversary can execute this transfer a few hours faster and
can use the gained time for executing measurements on the PUF, our countermeasure
fails. The same holds if the adversary carries out the physical transfer himself and can
measures the PUF while it is in transit.

In summary, enforcing a tight time bound on the receiver’s access time by two PUF
transfers or also by other measures will be impossible in almost any applications. The
above idea may thus be interesting as a theoretical concept for future PUF-protocol
design, but cannot be considered a generally efficient and practically relevant counter-
measure.

5.2 Interactive Hashing

Let us now discuss a second and more effective countermeasure: The employment of
interactive hashing (IH) as a substep in OT protocols. As we will show, protocols based
on IH can achieve better security properties than Protocol 1. The idea of using IH in the
context of PUFs has been first been suggested by Rührmair in 2010; his OT-protocol
was the first published PUF-based two-player protocol [23]. The following approach is
a simplified version of his original scheme. We also give (for the first time) a security
analysis of the protocol. Via the general reduction of BC to OT presented in Protocol 2,
our construction for OT can also be used to implement PUF-based BC.

5.2.1 Interactive Hashing as a Security Primitive
Interactive hashing (IH) is a two-player security primitive suggested by [18,17]. It has
been deployed as a protocol tool in various contexts, including zero-knowledge proofs,

PUF-Based Two-Player Protocols 261

bit commitment and oblivious transfer (see references in [17]. The following easily
accessible and application-independent definition of IH has been given in [4]; for more
a formal treatment see [27].

Definition 4 (Interactive Hashing (IH) [4]). Interactive Hashing is a cryptographic
primitive between two players, the sender and the receiver. It takes as input a string
c ∈ {0, 1}t from the sender, and produces as output two t-bit strings, one of which is
c and the other c′ �= c. The output strings are available to both the sender and the
receiver, and satisfy the following properties:

1. The receiver cannot tell which of the two output strings was the original input. Let
the two output strings be c0, c1, labeled according to lexicographic order. Then if
both strings were a priori equally likely to have been the sender’s input c, then they
are a posteriori equally likely as well.

2. When both participants are honest, the input is equally likely to be paired with any
of the other strings. Let c be the sender’s input and let c′ be the second output of
interactive hashing. Then provided that both participants follow the protocol, c′

will be uniformly distributed among all 2t − 1 strings different from c.
3. The sender cannot force both outputs to have a rare property. Let G be a subset of

{0, 1}t representing the sender’s “good set”. Let G be the cardinality of G and let
T = 2t. Then if G/T is small, the probability that a dishonest sender will succeed
in having both outputs c0, c1 be in G is comparably “small”.

One standard method to implement IH is by virtue of a classical technique by Naor et
al. [17]. To achieve a self-contained treatment, we describe this technique in a variant
introduced by Crepeau et al. [4] below. In the protocol below, let c be a t-bit string that
is the input to sender in the interactive hashing. All operations take place in the binary
field F2.

Protocol 5: INTERACTIVE HASHING [4]

1. The receiver chooses a (t− 1)× t matrixQ uniformly at random among all binary
matrices of rank t− 1. Let qi be the i-th query, consisting of the i-th row ofQ.

2. For 1 ≤ i ≤ t− 1 do:
(a) The receiver sends query qi to the sender.
(b) The sender responds with vi = qi · c.
(c) GivenQ and v ∈ {0, 1}t−1 (the vector of the sender’s responses), both parties

compute the two values of c ∈ {0, 1}t consistent with the linear systemQ ·c =
v. These solutions are labeled c0, c1 according to lexicographic order.

The following theorem, which is taken from [4,27], tells us about the security of the
above scheme. It relates to the security definition 4.

Theorem 6 (Security of Protocol 5). Protocol 5 satisfies all three information theo-
retic security properties of Definition 4. Specifically, for Property 3 of Definition 4, it
ensures that a dishonest sender can succeed in causing both outputs to be in the “good
set” G with probability at most 15.6805 ·G/T , where G = |G| and T = 2t.

262 U. Rührmair and M. van Dijk

5.2.2 Oblivious Transfer
We are now presenting a PUF-based oblivious transfer protocol that uses IH as a sub-
step. It bears some similarities with an earlier protocol of Rührmair [23] in the sense
that it also uses interactive hashing, but is slightly simpler.

Protocol 7: PUF-BASED 1-OUT-OF-2 OBLIVIOUS TRANSFER WITH INTERACTIVE

HASHING

1. The sender’s input are two strings s0, s1 ∈ {0, 1}λ and the receiver’s input is a bit
b ∈ {0, 1}.

2. The receiver chooses a challenge c ∈ {0, 1}λ uniformly at random. He applies c to
the PUF, which responds r. He transfers the PUF to the sender.

3. The sender and receiver execute an IH protocol, where the receiver has input c.
Both get outputs c0, c1. Let i be the value where ci = c.

4. The receiver sends b′ := b⊕ i to the sender.
5. The sender applies the challenges c0 and c1 to the PUF. Denote the corresponding

responses as r0 and r1.
6. The sender sends S0 := s0 ⊕ rb′ and S1 := s1 ⊕ r1−b′ to receiver.
7. The receiver recovers the string sb that depends on his choice bit b as Sb ⊕ r =

sb ⊕ rb⊕b′ ⊕ r = sb ⊕ ri ⊕ r = sb.

5.2.3 Security and Practicality Analysis
We start by a security analysis of Protocol 7 in the so-called “stand alone, good PUF
model”, which was introduced by van Dijk and Rührmair in [6]. In this communication
model, the following two assumptions are made: (i) the PUF-protocol is executed only
once, and the adversary or malicious players have no access to the PUF anymore after
the end of the protocol; (ii) the two players do not manipulate the used PUFs on a
hardware level. We stress that whenever these two features cannot be guaranteed in
practical applications, a number of unexpected attacks apply, which spoil the security
of the respective protocols. Even certain impossibility results can be shown under these
circumstances; see [6] for details.

In the following analysis in the stand alone, good PUF model, we assume that the
adversary has the following capabilities:

1. He knows a certain number of CRPs of the PUF, and has possibly used them to
build an (incomplete) predictive model of the PUF. In order to model this ability,
we assume that there is a proper subset S � C of the set of all challenges C
such that the adversary knows the correct responses to the challenges in S with
probability one. The cardinality of S depends on the previous access times of the
adversary to the PUF and the number of CRPs he has collected from other sources,
for example protocol eavesdropping. It must be estimated by the honest protocol
users based on the given application scenario. Usually |S| � |C|.

2. Furthermore, we assume that the adversary can correctly guess the response to a
uniformly and randomly chosen challenge c ∈ C \ S with probability at most
ε, where the probability is taken over the choice of c and over the adversary’s

PUF-Based Two-Player Protocols 263

random coins. Usually ε will be significantly smaller than one. To name two exam-
ples: In the case of a well-designed electrical PUF with single-bit output, ε will be
around 0.5; in the case of a well-designed optical PUF [20,21] with multi-bit im-
ages as outputs, ε can be extremely small, for example smaller than 2−100. Again,
the honest protocol users must estimate ε based on the circumstances and the em-
ployed PUF.

Assuming the above capabilities and using Theorem 6, the probability that the receiver
can cheat in Protocol 7 is bounded above by

15.6805 · |S|/|C|+ ε,

a term that will usually be significantly smaller than one.
Under the presumption that this cheating probability of the receiver is indeed smaller

than one, the security of Protocol 7 can be further amplified by using a well-known
result by Damgard, Kilian and Savail (see Lemma 3 of [5]):

Theorem 8 (OT-Amplification [5]). Let (p, q)-WOT be a 1-2-OT protocol where the
sender with probability p learns the choice bit c and the receiver with probability q
learns the other bit b1−c. Assume that p + q < 1. Then the probabilities p and q can
be reduced by running k (p, q)-WOT-protocols to obtain a (1 − (1 − p)k, qk)-WOT
protocol.

In the case of our OT-Protocol 7 it holds that p = 0, whence the technique of Damgard
et al. leads to an efficient security amplification, and to a (0, qk)-WOT protocol. The
PUF does not need to be transferred k times, but one PUF-transfer suffices. We remark
that the probability amplification according to Theorem 8 is not possible with Protocol
1 after our quadratic attack, since the attack leads to a cheating probability of one for
the receiver, i.e., p+ q ≥ 1 in the language of Theorem 8.

Let us quantatively illustrate the security gain of Protocol 7 over Protocol 1 via a
simplified back-of-the-envelope calculation: We argued earlier that via our quadratic
attack, a malicious receiver who has read out 2 · 218 CRPs from an optical PUF can
cheat with probability 1 (= with certainty) in Protocol 1. Let us compare this to the case
that an optical PUF is used in the IH-based Protocol 7. Let us assume that the adversary
has collected the same number of CRPs (= 2 · 218 CRPs) as in the quadratic attack,
and that the (multi-bit) response of the optical PUF on the remaining CRPs is still hard
to preduct, i.e., it cannot be predicted better than with probability ε ≤ 2−100. Then by
Theorem 6 and by our above analysis, the adversary’s chances to break Protocol 7 are
merely around 15.6805 · 219 · 2−35 + 2−100 ≈ 0.00024. This probability can then be
exponentially reduced further via Theorem 8.

On the downside, however, the IH-Protocol 5 has a round complexity that is linear
(i.e., equal to λ − 1) in the security parameter λ. This is relatively significant for the
optical PUF (where λ = 35) and electrical PUFs with medium bitlengths (where λ =
64). One possible way to get around this problem is to use the constant round interactive
hashing scheme by Ding et al. [7]. However, this scheme has slightly worse security
guarantees than the IH scheme of the last sections. Future work will analyze the exact
security loss under the use of the IH scheme of Ding. A first analysis to this end can be
found in van Dijk and Rührmair [6].

264 U. Rührmair and M. van Dijk

To summarize the discussion in this section, interactive hashing can restore the secu-
rity of PUF-based OT protocols even for small sized PUFs with 64-bit challenge lengths
and for optical PUFs in the stand alone, good PUF model. Via the general reduction of
BC to OT given in Protocol 2, this result can be used to securely implement PUF-based
BC in this model, too. However, the use of IH leads to an increased number of com-
munication rounds that is about equal to the (binary) challenge length of the PUF, i.e.,
around 64 rounds for the integrated PUFs with 64 bit challenges, and around 35 rounds
for optical PUFs of size 1 cm2 [21]. It must be decided on the basis of the concrete
application scenario whether such a number of rounds is acceptable.

6 Summary and Conclusions

We revisited PUF-based OT- and BC-protocols, including the recent schemes of Rühr-
mair from Trust 2010 [23] and Brzuska et al. from Crypto 2011 [1,2]. We placed spe-
cial emphasis on the security which these protocols achieve in practice, in particular
when they are used in connection with widespread optical and 64-bit electrical PUF-
implementations. Our analysis revealed several interesting facts.

First of all, we described a simple and efficient method by which the OT- and BC-
protocol of Brzuska et al. can be attacked with probability one in practice if electrical
PUFs with 64-bit challenge lengths are used, or whenever optical PUFs are employed.
Since much research focuses on 64-bit implementations of electrical PUFs [9,10,15],
and since Brzuska et al. had explicitly suggested optical PUFs for the implementation of
their protocols (see Section 8 of [2]), the publication and dissemination of our quadratic
attack seems important to avoid their use in Protocols 1 and 2. Please note that our
attack is independent of the cryptographic hardness of the PUF, and is merely based on
its challenge size.

Secondly, we discussed an alternative class of protocols for oblivious transfer that are
based on interactive hashing techniques. They are inspired by the earlier OT-protocol of
Rührmair [23]. We argued that these protocols lead to better security in practice. They
can be used safely with 64-bit electrical PUFs. When used with optical PUFs, they
lead to better security than the protocols of Brzuska et al., but the security margins are
tighter than in the 64-bit case. In both cases, a well-known result by Damgard, Kilian
and Savail [5] can be used in order to reduce the cheating probabilities exponentially.

Our discussion shows once more that PUFs are quite special cryptographic and secu-
rity tools. Due to their finite nature, asymptotic constants that might usually be hidden
in O(·)- and Θ(·)-notations become relevant in practice and should be discussed ex-
plicitly. Furthermore, their specific nature often allows new and unexpected forms of
attacks. One of the aims of our work is to bridge the gap between PUFs in theory and
applications; reconciling these two fields seems a necessary prerequisite for a healthy
long-term development of the field. We hope that the general methods and the approach
of this paper can contribute to this goal.

Recommendations for Protocols Use and Future Work. Let us conclude the paper with
a condensed recommendation for the practical implementation of PUF-based OT and
BC protocols, and by a discussion of future work. Firstly, it is clear from our results that

PUF-Based Two-Player Protocols 265

the protocol of Brzuska et al. cannot be used safely with optical PUFs a la Pappu (i.e.,
with non-integrated optical PUFs that have only a small or medium sized challenge set),
or with electrical PUFs with challenge lengths around 64 bits.

Secondly, we showed that Protocols based on interactive hashing (IH) can achieve
better security. These protocols can be employed safely with optical PUFs and with
electrical PUFs of challenge length 64. Furthermore, Damgard et al.’s [5] amplification
technique can be applied in order to bring the cheating probabilities arbitrarily close to
zero. Nevertheless, we would like to stress once more to practical PUF-users that this
analysis only applies if the protocols are employed in the stand alone, good PUF model
(see Section 5.2.3 and [6]). As soon as the features of this model cannot be enforced in a
given application (for example by certifying a PUF, or by erasing PUF responses at the
protocol end [6]), certain new attacks apply, which spoil both the security of IH-based
protocols and of the protocols of Brzuska et al. These attacks are not the topic of this
publication, but have been described in all detail in [6].

If a PUF has challenge length of 128 bits or more, it seems at first sight that the proto-
cols of Brzuska et al. could be used safely in the stand alone, good PUF model, too, but
we stress that this recommendation is yet to be confirmed by full formal analysis. One
issue is that the PUF security feature required by the protocols of Brzuska et al. is (in a
nutshell) that the adversary must be unable to select two PUF-challenges with a given
distance d such that he knows the two corresponding responses. This security property
of a PUF is new in the literature and should yet be further investigated in future work
before final recommendations are being made. In particular, it does not seem simple or
straightforward to judge in practice whether a given PUF fulfills this property.

A second topic for future research is how the round complexity of the IH-based
protocols can be reduced. Some steps to this end have been made by van Dijk and
Rührmair in [6], where the constant-round interactive hashing scheme of Ding et al. [7]
is applied to obtain contant-round PUF-based OT and BC protocols.

Acknowledgements. The authors would like to thank Stefan Wolf and Jürg Wullschleger
for enjoyable discussions, and Stefan Wolf for suggesting the example in Section 3, page
256 to us. Part of this work was conducted within the physical cryptography project at
the TU München.

References

1. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically Uncloneable Func-
tions in the Universal Composition Framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 51–70. Springer, Heidelberg (2011)

2. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physical Unclonable Functions in
the Universal Composition Framework. Full version of the paper. Available from Cryptology
ePrint Archive (2011) (downloaded on February 28, 2012)

3. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. In: FOCS 2001, pp. 136–145 (2001); Full and updated version available from Cryptol-
ogy ePrint Archive

4. Crépeau, C., Kilian, J., Savvides, G.: Interactive Hashing: An Information Theoretic Tool
(Invited Talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 14–28. Springer,
Heidelberg (2008)

266 U. Rührmair and M. van Dijk

5. Damgård, I., Kilian, J., Salvail, L.: On the (Im)possibility of Basing Oblivious Transfer and
Bit Commitment on Weakened Security Assumptions. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

6. van Dijk, M., Rührmair, U.: Physical Unclonable Functions in Cryptographic Protocols: Se-
curity Proofs and Impossibility Results. Cryptology ePrint Archive, Report 228/2012 (2012)

7. Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious transfer in the
bounded storage model. Journal of Cryptology 20(2), 165–202 (2007)

8. Gassend, B.: Physical Random Functions. MSc Thesis. MIT (2003)
9. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random functions. In:

ACM Conference on Computer and Communications Security 2002, pp. 148–160 (2002)
10. Gassend, B., Lim, D., Clarke, D., van Dijk, M., Devadas, S.: Identification and authentication

of integrated circuits. Concurrency and Computation: Practice & Experience 16(11), 1077–
1098 (2004)

11. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and Their Use
for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
63–80. Springer, Heidelberg (2007)

12. Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of One-Way Permuta-
tions. In: STOC 1989, pp. 44–61 (1989)

13. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)
14. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The Butterfly PUF: Protecting

IP on every FPGA. In: HOST 2008, pp. 67–70 (2008)
15. Lee, J.-W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique to

build a secret key in integrated circuits with identification and authentication applications.
In: Proceedings of the IEEE VLSI Circuits Symposium (June 2004)

16. Maes, R., Verbauwhede, I.: Physically Unclonable Functions: a Study on the State of the Art
and Future Research Directions. In: Naccache, D., Sadeghi, A.-R. (eds.) Towards Hardware-
Intrinsic Security, sec. 1. Springer (2010)

17. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero- knowledge arguments
for NP using any one-way permutation. Journal of Cryptology (1998); Preliminary version
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 196–214. Springer, Heidelberg
(1993)

18. Ostrovsky, R., Venkatesan, R., Yung, M.: Fair games against an all-powerful adversary. In:
AMS DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 155–
169 (1993); Preliminary version in SEQUENCES 1991

19. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight Secure PUFs. In: IC-CAD 2008,
pp. 607–673 (2008)

20. Pappu, R.: Physical One-Way Functions. PhD Thesis, Massachusetts Institute of Technology
(2001)

21. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way Functions. Science 297,
2026–2030 (2002)

22. Rivest, R.: Illegitimi non carborundum. Invited keynote talk, CRYPTO 2011 (2011)
23. Rührmair, U.: Oblivious Transfer Based on Physical Unclonable Functions. In: Acquisti, A.,

Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 430–440. Springer,
Heidelberg (2010)

24. Rührmair, U., Busch, H., Katzenbeisser, S.: Strong PUFs: Models, Constructions and Secu-
rity Proofs. In: Sadeghi, A.-R., Tuyls, P. (eds.) Towards Hardware Intrinsic Security: Foun-
dation and Practice. Springer (2010)

25. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling Attacks
on Physical Unclonable Functions. In: ACM Conference on Computer and Communications
Security (2010)

PUF-Based Two-Player Protocols 267

26. Rührmair, U., Sölter, J., Sehnke, F.: On the Foundations of Physical Unclonable Functions.
Cryptology e-Print Archive (June 2009)

27. Savvides, G.: Interactive Hashing and reductions between Oblivious Transfer variants. PhD
thesis, McGill University, Montreal (2007)

28. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication and Secret
Key Generation. In: DAC 2007, pp. 9–14 (2007)

29. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-Proof
Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

30. Tuyls, P., Škorić, B.: Strong Authentication with Physical Unclonable Functions. In:
Petkovic, M., Jonker, W. (eds.) Security, Privacy and Trust in Modern Data Management.
Springer (2007)

31. Tuyls, P., Škorić, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: Information-Theoretic
Security Analysis of Physical Uncloneable Functions. In: Patrick, A.S., Yung, M. (eds.) FC
2005. LNCS, vol. 3570, pp. 141–155. Springer, Heidelberg (2005)

104

Chapter 5

An Attack on PUF-based
Session Key Exchange and a
Hardware-Based
Countermeasure: Erasable
PUFs

One of the earliest cryptographic protocols for Strong PUFs that went beyond simple
identification is a combined authentication and session key exchange method by Tuyls
and Skoric [86] from 2007. It is designed for a PUF that is contained on a bank card
and used in several automated teller machines (ATMs) on the one side, and the bank
headquarters or bank server on the other side. In practical applications, is natural to
assume that this protocol is executed multiple times in various ATMs. This implies
that adversaries may gain access to the PUF several times and between the execution
of different protocol sessions. Since a Strong PUF has a publicly readable, unprotected
challenge-response-interface (see Chapter 2), this allows adversaries to read out PUF-
CRPs of their choice on multiple occasions.

We show in this chapter that the protocol is not secure in such natural settings, and
that already twofold access allows adversaries to derive earlier session keys. Subse-
quently, we turn to potential countermeasures. How could the security problems arising
from multiple adversarial access be overcome? We argue briefly that such countermea-
sures must likely be found on the hardware side (i.e., on the side of the PUF) and not on
the protocol side. Next, we suggest a new PUF-primitive that possesses the necessary
features to thwart our attack, namely so-called “Erasable PUFs”. These are Strong
PUFs with the additional feature that arbitrary single responses can be erased without
affecting any other responses.

Besides identifying and defining this new primitive, we also make first steps to-
wards its implementation: We present real measurement data from random silicon

105

diodes, so-called “ALILE diodes”, which possess a particularly large variation in the
I(V)-curves compared to other Strong PUFs. The measurement data shows that the
random information in the diodes can be changed or “erased” by applying a current
above a certain threshold, while not completely burning and destroying the diode, at
least rudimentarily maintaining its functionality.

The paper used in this chapter is

• U. Rührmair, C. Jaeger, M. Algasinger: An Attack on PUF-Based Session Key
Exchange and a Hardware-Based Countermeasure: Erasable PUFs. Financial
Cryptography and Data Securiy (FC 2011), Lecture Notes in Computer Science,
Vol. 7035, pp. 190-204, Springer, 2012.

As an outlook, we remark that the observation that Strong PUF protocols may be
vulnerable under multiple PUF access later will lead to the formal introduction of the
so-called “PUF re-use model” in Chapter 6; the current Chapter 5 prepares the stage
for this follow-up work.

According to Google scholar, the work underlying this chapter has been cited 29
times to this date [26].

106

An Attack on PUF-based Session Key Exchange and a
Hardware-based Countermeasure: Erasable PUFs

Ulrich Rührmair † �, Christian Jaeger
, and Michael Algasinger

†Computer Science Department
�Walter Schottky Institut

Technische Universität München
85748 Garching

ruehrmair@in.tum.de,
{christian.jaeger,michael.algasinger}@wsi.tum.de

http://www.pcp.in.tum.de

Abstract. We observe a security issue in protocols for session key exchange that
are based on Strong Physical Unclonable Functions (PUFs). The problem is il-
lustrated by cryptanalyzing a recent scheme of Tuyls and Skoric [1], which has
been proposed for use in a bank card scenario. Under realistic assumptions, for
example that the adversary Eve can eavesdrop the communication between the
players and gains physical access to the PUF twice, she can derive previous ses-
sion keys in this scheme. The observed problem seems to require the introduction
of a new PUF variant, so-called “Erasable PUFs”. Having defined this new prim-
itive, we execute some first steps towards its practical implementation, and argue
that Erasable PUFs could be implemented securely via ALILE-based crossbar
structures.

1 Introduction

Motivation and Background. Electronic devices have pervaded our everyday life,
making them a well-accessible target for adversaries. Classical cryptography offers sev-
eral measures against the resulting security and privacy problems, but they all rest on
the concept of a secret binary key: They presuppose that the electronic devices can con-
tain a piece of information that is, and remains, unknown to an adversary. However,
this requirement can be difficult to uphold in practice: Physical attacks such as invasive,
semi-invasive, or side-channel attacks, as well as software attacks like API-attacks and
viruses, can lead to key exposure and security breaks.
The described situation was one motivation that led to the development of Physi-

cal Unclonable Functions (PUFs). A PUF is a (partly) disordered physical system S
that can be challenged with so-called external stimuli or challenges Ci, upon which it
reacts with corresponding responses Ri. Contrary to standard digital systems, a PUF’s
responses shall depend on the nanoscale structural disorder present in it. It is assumed
that this disorder cannot be cloned or reproduced exactly, not even by the PUF’s original
manufacturer, and that it is unique to each PUF. This means that any PUF S implements
� Corresponding author.

2 U. Rührmair, C. Jaeger, M. Algasinger

an individual function FS mapping challenges Ci to responses Ri. The tuples (Ci, Ri)
are thereby often called the challenge-response pairs (CRPs) of the PUF.
Due to its complex internal structure, a PUF can avoid some of the shortcomings

associated with digital keys. It is usually harder to read out, predict, or derive its re-
sponses than to obtain the values of digital keys stored in non-volatile memory. This
fact has been exploited for various PUF-based security protocols. Prominent examples
include schemes for identification [2], key exchange [1], or digital rights management
purposes [3] [5]. Another advantage of (Strong) PUFs is that they can lead to protocols
whose security does not depend on the usual, unproven number theoretic assumptions
(such as the factoring or discrete logarithm problem), but rests on independent hypothe-
ses.

Strong PUFs and Weak PUFs. Two important subtypes of PUFs, which must explic-
itly be distinguished in this paper, are Strong PUFs 1 andWeak PUFs 2. This distinction
has been made first in [4] [3], and has been elaborated on further in [6] [7] [8].

Strong PUFs are PUFs with a very large number of possible challenges. The adversarial
ability to apply challenges to them and to read out their responses from them is usually
not restricted. Their central security features are: (i) It must be impossible to physically
clone a Strong PUF, i.e. to fabricate a second system which has the same challenge-
response-behavior as the original PUF. This restriction must hold even for the original
manufacturer of the PUF. (ii) Due to the very large number of possible challenges and
the PUF’s finite read-out rate, a complete measurement of all challenge-response pairs
(CRPs) within a limited time frame (such as several days or even weeks) must be im-
possible. (iii) It must be difficult to numerically predict the response Ri of a Strong
PUF to a randomly selected challenge Ci, even if many other challenge-response pairs
are known.
A complete formal specification of Strong PUFs is laborious and besides the scope

of this paper, but can be found in [7]. Examples of candidates for Strong PUFs are
complex optical scatterers [2] or special, delay-based integrated circuits [9] [10] [11]
(albeit several of the latter have been broken up to a certain size in recent machine
learning attacks [6]). Also analog circuits have been proposed recently [12].

Weak PUFs may have very few challenges — in the extreme case just one, fixed chal-
lenge. Their response(s) Ri are used to derive a standard secret key, which is subse-
quently processed by the embedding system in the usual fashion, e.g. as a secret input
for some cryptoscheme. Contrary to Strong PUFs, the responses of a Weak PUF are
never meant to be given directly to the outside world.
Weak PUFs essentially are a special form of non-volatile key storage. Their advan-

tage is that they may be harder to read out invasively than non-volatile memory like

1 Strong PUFs have also been referred to as Physical Random Functions [9] [10], or (almost
equivalently) as Physical One-Way Functions [2] in the literature.

2 Weak PUFs have also been referred to as Physically Obfuscated Keys (POKs) [4]. Note that
the predicate “Weak” is not meant to state that these PUFs are “bad” in any sense, we just
follow the terminology introduced in [3].

An Attack on PUF-based Session Key Exchange and a Hardware Countermeasure 3

EEPROM. Typical examples of Weak PUFs are the SRAM PUF [3], Butterfly PUF [5]
and Coating PUF [13].

Applications of Strong PUFs. We are mostly concerned with Strong PUFs and vari-
ants thereof in this paper, whence we focus on them from now on. The archetypical
application of Strong PUFs is the identification of entities over insecure networks. It
has already been suggested in the first PUF publication [2] by the example of a bank
card scenario, and works along the following lines. Each customer’s bank card contains
an individual Strong PUF. Before issuing the card, the bank measures several of the
PUF’s CRPs, and stores them secretly on its server. When the customer inserts his card
into a terminal, the terminal contacts the bank. The bank chooses at random several
challenges Ci from its secret CRP list, and sends them to the terminal. The terminal
obtains the corresponding responses Ri from the PUF, and returns them to the bank.
If they match the values in the CRP list, the bank considers the card as genuine. The
scheme has the upsides of circumventing the need for secret keys or secret information
on the vulnerable bank cards, and of avoiding the usual, unproven complexity theoretic
assumptions of classical identification protocols.
A second, central application of Strong PUFs, which also has already been sug-

gested in [2] (page 2029), and which has been worked out in greater detail in [1], is the
distribution of a secret key between different parties, for example the terminal and the
bank. We are mainly concerned with this second application in this paper.

Our Contributions. Our first contribution is to observe a problem in the repeated use
of PUF-based session key exchange protocols. We illustrate this problem by the exam-
ple of a recent protocol by Tuyls and Skoric [1], which has originally been suggested
for use in a bank card scenario. We show how to cryptanalyze this protocol under the
presumptions that an adversary can eavesdrop the communication between the terminal
and the bank, that he has got access to the PUF more than once, and that no secret digi-
tal information can be stored on the card. These presumptions seem very natural, even
more so in the original application scenario of bank cards or credit cards (see section
2). The problem which our attack exploits is that the CRP-information used to derive a
key remains present in the PUF after the completion of the key exchange protocol.
Second, we reason that the described problem cannot be solved via protocol or

software measures, and also not on the basis of current PUF architectures. Resolution
seems to require the introduction of a new PUF variant, so-called Erasable PUFs. They
are a special type of Strong PUF, with the additional feature that the value of single
responses can be erased or altered without affecting the value of all other responses. We
specify this new primitive, and show how it can be used to fix the above security issues.
Third, we suggest one possible implementation strategy for Erasable PUFs: Large,

monolithic crossbar arrays of diodes with random current-voltage characteristics. It has
already been demonstrated in earlier work that such crossbar arrays can act as secure
Strong PUFs [14] [15] [16]. We now show that the information stored in the diodes
of the crossbar can be erased individually: By applying dedicated voltage pulses to
selected crossbar wires, the current-voltage curve of any single diode can be altered in-
dividually, and without affecting the other diodes in the array. We present measurement

4 U. Rührmair, C. Jaeger, M. Algasinger

data from single ALILE-diodes fabricated in our group that supports the feasibility of
the described approach.

Related Work. There is no related work concerning the cryptanalysis of the Strong
PUF-based session key exchange protocol by Tuyls and Skoric. In general, the crypt-
analysis of PUF-based protocols appears to be a relatively recent field. Previous PUF
attacks mainly focused on breaking the security properties of PUFs themselves (for
example by modeling Strong PUFs via machine learning techniques [6]), but not on
analyzing PUF protocols.
With respect to Erasable PUFs, there is obviously a large body of work on Strong

PUFs and Weak PUFs, but none of them explicitly considered the property of erasing
individual CRPs without affecting other CRPs. The category of PUFs which comes
closest to Erasable PUFs are Reconfigurable PUFs (r-PUFs) [17], but the previously
proposed optical, scattering-based implementation of r-PUFs has the property that in-
evitably all CRPs are altered by the reconfiguration operation. No erasure or alteration
on a single CRP level is enabled. See also section 4 for a further discussion.

Organization of the Paper. In Section 2, we illustrate a security problem occurring
in PUF-based key establishment protocols. Section 4 discusses the implementation of
Erasable PUFs via crossbar structures. Section 4 describes a few obstacles in the prac-
tical realization of Erasable PUFs. Section 5 gives some background on the recent
concept of a Crossbar PUF. Section 6 describes how information can be erased from
Crossbar PUFs, implementing Erasable PUFs. We conclude the paper in Section 7.

2 A Problem with PUF-based Session Key Establishment

2.1 The Protocol of Tuyls and Skoric

A specific Strong PUF-based protocol for combined identification and session key es-
tablishment has been suggested recently in [1]. It is illustrated in Fig. 1. The protocol
is run between a Bank on the one hand and an Automated Teller Machine (ATM) plus
a security token carrying the Strong PUF on the other hand. It presumes that all in-
volved parties have knowledge of a public one-way hash function h, and of a publicly
known error correction scheme, which is used to derive secrets S from a given noisy
PUF-response R and helper dataW .
The protocol presupposes a set-up phase, in which the bank has got direct access

to the Strong PUF. The bank first of all establishes a (large) secret list of the form
{Ci,Wi, S

′
i}. Thereby the Ci are randomly chosen challenges,Wi denotes helper data

that is generated by the bank from the corresponding (noisy) responses Ri of the PUF,
and S′

i refers to secret information that is derived from the noisy response by use of the
helper data. Furthermore, the bank chooses a secret numerical value x at random, and
writes h(x) onto the card. After that, the card is released to the field.
Each subsequent execution of the protocol is run between the bank and the ATM/PUF.

At the beginning of the protocol, the token stores the number n of previous protocol exe-
cutions, the valuem = hn(x), and an identification number of the Strong PUF, denoted
as IDPUF .

An Attack on PUF-based Session Key Exchange and a Hardware Countermeasure 5

The Bank initially holds a list of the form {Ci,Wi, S
′
i} that is stored together with

IDPUF in the Bank’s database. The value n′ says how often the Bank has been engaged
in a session key exchange protocol with the PUF, and m′ = hn′

(x). The rest of the
protocol is described in Fig. 1, which is essentially taken from [1]. At the end of the
protocol, the Bank and the ATM/PUF have established a joint session keyK.

Bank ATM + PUF

(1) Generate random α.

Set K1 = h(m, IDPUF)

(2) Check n = n’.

Set M = hn-n’(m’)

Set K1’ = h(m, IDPUF)

Randomly select

challenge Ci.

Generate random β. (3) Check MAC.

Measure PUF response

and extract bitstring S.

Set K = h(K1, S).

(4) Set K’ = h(K1’, S’).

Check MAC.

(5) Set n’ -> n+1, m’ = h(M) (6) Set n -> n+1, m -> h(m)

Remove C from database.

IDPUF, n‘, m‘, {Ci, Wi, Si’} IDPUF, n, m = hn(x)

α, n, IDPUF

E & MAC K1‘ (α, C, W, β)

MAC K (β)

Use K = K‘ as session key

Fig. 1. A protocol for combined identification and session key exchange based on Strong PUFs,
which has been suggested by Tuyls and Skoric in [1].

2.2 Problems Arising from Repeated Access to the PUF

We will now present an attack on the repeated use of the above protocol, which allows
Eve to derive previous session keys.
The attack makes the following assumptions: (A) Eve can eavesdrop the communi-

cation between the bank and the ATM/PUF. (B) No secret digital numbers (e.g., hash
values, secret keys) can be stored safely in a non-volatile fashion on the security to-
ken. (C) Eve gains access to the security token at least twice, and can measure selected
CRPs from the Strong PUF on the token. All of these assumptions are relatively well
motivated: If a secure channel would be at hand, which cannot be eavesdropped by Eve,
then no complicated session key exchange protocol is necessary. The secret keys could

6 U. Rührmair, C. Jaeger, M. Algasinger

simply be exchanged by sending them over this channel. Likewise, if we were to as-
sume that secret digital keys (or other secret digital numbers) could be stored safely on
the token, then the use of PUFs is unnecessary: The token could execute all necessary
communication securely via classical, secret key based cryptography. Finally, assump-
tion (C) is straightforward: For example in a bank card scenario, where an adversary
might operate with faked terminals/readers that are under his control, and where the
card is inserted multiple times into these terminals/readers. Again, if we do not allow
an adversary to obtain physical access to the card, then the use of PUFs is unnecessary
in the first place.

Eve’s attack works in three successive phases executed at times T1, T2 and T3.3 In the
first phase at time T1, we presume that Eve has got access to the token according to
assumption (C). By assumption (B), she can read the current values of n andm at time
T1 from the token, denoted by n(T1) andm(T1).
In the second attack phase at time T2, we assume that Eve eavesdrops a session

key establishment protocol between the bank and the ATM/PUF. This is possible ac-
cording to assumption (A). From the first message sent in the protocol, which we
denote by α(T2), n(T2), IDPUF , Eve learns the current counter value n(T2). Since
Eve already knows n(T1) and m(T1) from phase 1, she can deduce the current state
m(T2) = hn(T2)(x) = hn(T2)−n(T1)(m(T1)). This allows her to derive the value of the
preliminary keyK1 at time T2 by settingK1(T2) = h(m(T2), IDPUF). Now, when the
bank sends the protocol message E&MACK′

1(T2)(α(T2), C(T2), W (T2), β(T2)), Eve
can remove the encryption, because she knows K1(T2) = K ′

1(T2). She learns C(T2)
and the helper data W (T2). This closes Eve’s contribution in the second attack phase.
In the further course of the protocol (and without Eve’s involvement), the ATM/PUF
measures the PUF and extracts a secret bitstring S(T2) from its responses. Finally, the
ATM/PUF sets the session key to beK(T2) = h(K1(T2), S(T2)).
In the third attack phase at time T3, we assume that Eve has got access to the se-

curity token and the Strong PUF, and that she can measure CRPs of the Strong PUF.
This is in accordance with assumption (C). Eve uses this ability to measure the PUF’s
responses R(T2) that correspond to the challenge(s) C(T2). Note that the Strong PUF’s
responses are time invariant and are not actively altered by any protocol participant.
Hence Eve can determine R(T2), even though the time has progressed to T3 at this
point. Eve also knowsW (T2), whence she can derive S(T2) from the responsesR(T2).
This enables her to compute K(T2) = h(K1(T2), S(T2)), since she knows K1(T2)
already. In other words, Eve obtains the session key K(T2) that was derived and used
at time T2, breaking the protocol’s security.

2.3 Consequences for CRP Refreshment and Identification

It has been suggested in [1] that a session key K established via the protocol of Fig.
1 could be used to achieve CRP refreshment between the ATM and the Bank. To that
3 In the description of our attack, we will need to consider the value of various protocol param-
eters, such as n,m, orK1, at different points in time. To avoid confusion, we use the notation
n(T),m(T),K1(T) (or similar expressions) to denote the values of n,m orK1 at time T .

An Attack on PUF-based Session Key Exchange and a Hardware Countermeasure 7

end, the ATM would, in regular intervals, execute the following steps: (i) Measure new
data of the form {Ci(Tj),Wi(Tj), S

′
i(Tj)} (where Tj can be an arbitrary point in time).

(ii) Exchange a session key K(Tj) via the protocol of Fig. 1. (iii) Send the encrypted
messageE&MACK(Tj){Ci(Tj), Wi(Tj), S

′
i(Tj)} to the Bank. (iv) The Bank decrypts

this message, and adds {Ci(Tj),Wi(Tj), S
′
i(Tj)} to its CRP list. This process is termed

CRP refreshment. This method allows shorter CRP lists and saves storage requirements
on the bank.
But in the attack scenario described in section 2.2, i.e. under the provisions (A) to

(C), Eve can break this scheme. First, she can apply the attack described in section 2.2 to
obtainK(Tj). She can then decrypt the messageE&MACK(Tj){Ci(Tj),Wi(Tj), S

′
i(Tj)},

and hence learns the values {Ci(Tj),Wi(Tj), S
′
i(Tj)} that were intended for CRP re-

freshment. This enables her to impersonate the PUF in subsequent identification proto-
cols that are built on these CRP values. For example, it allows her to build faked bank
cards.

2.4 Generality and Difficulty of the Problem

The problem we observed in the previous sections does not only apply to the protocol of
Fig. 1. It could be argued that any PUF-based protocol for key establishment between a
central authority and decentral principals (terminals, hardware, etc.) involves, explicitly
or implicitly, the basic procedure that is shown in Fig. 2.

Central Authority (CA) Decentral Principal + PUF

(Terminal, Hardware etc.)

(1) Choose random Cj, Wj, Sj

from CRP list

Derive key K from Sj (2) Measure Rj from PUF

Obtain Sj from Rj (by use

of helper data Wj)

Derive key K from Sj

CRP List {Ci, Wi, Si}

Cj, Wj

Use K as joint secret key

Fig. 2. The “raw”, basic building block for PUF-based key exchange. In practice, it can and will
usually be accompanied by other measures, such as message authentication or authentication of
the physically transferred PUF.

Any protocol of this form is prone to the type of attack described in section 2.2.
Considering the protocol of Fig. 2 sheds light on the heart of the problem: Eve can
break the protocol by firstly eavesdropping the Cj ,Wj . Subsequent one-time access to
the PUF allows her to measure the corresponding Rj and to derive the corresponding
Sj . This enables her to obtainK. We will not give a full formal proof of this statement,
but believe that adapted variants of this simple attack can be mounted on any Strong
PUF-based session key exchange. One example for such an adapted attack on a much

8 U. Rührmair, C. Jaeger, M. Algasinger

more complicated protocol was given in Sec. 2.2. The key issue in all cases seems that
the response information used for the derivation ofK is still extractable from the Strong
PUF at later points in time.
It would be hence necessary to “erase” the responses Rj from the Strong PUF after

they have been used for key derivation. Note that in such an “erasure” operation, all
other responses Ri (with i �= j) must remain unchanged: If they were altered, the list
{Ci,Wi, Si} stored at the central authority would no longer be valid. It could neither
be used for further key establishment protocols of the above type, nor for the typical
PUF-based identification schemes (see Sec. 1).

3 Erasable PUFs

We will now make some first steps work towards a hardware-based solution of the
above security problem, introducing a new variant of Strong PUFs: So-called Erasable
PUFs. For reasons of clarity and unambiguity, we slightly deviate from the established
notation for PUFs in the following specification, and denote the response of a PUF S to
a challenge C by RS

C .

Specification 1 (ERASABLE PUFS). A physical system S is called an ERASABLE PUF
if it is a Strong PUF with the following additional properties:

– There is a special, physical erasure operation ER(·). It takes as input a challenge
C0 of S. It turns S into a system S′ with the following properties:

• S′ has got the same set of possible challenges as S.
• For all challenges C �= C0, it holds that RS′

C = RS
C .

• Given S′ and C0, it is impossible to determine RS
C0
with a probability that is

substantially better than random guessing.

Note that Specification 1 is not meant to be a full-fledged formal definition, but shall
mainly express the properties of Erasable PUFs in a compact, semi-formal manner. Its
style follows [7].

Given the discussion of the previous sections, it is now relatively straightforward to fix
the security issues of the protocols of Fig. 1 and 2.

1. PROTOCOL OF FIG. 1: Use an Erasable PUF in the protocol, and add the erasure
operation ER(C) at the end of step (3).

2. PROTOCOL OF FIG. 2: Use an Erasable PUF in the protocol, and add the erasure
operations ER(Cj) to the end of step (2).

These steps disable the attacks that have been presented in the previous sections:
When Eve has got access to the PUF at a later point in time, she can no more determine
the PUF responses used for previous key derivation, as the responses have been erased
from the system.

An Attack on PUF-based Session Key Exchange and a Hardware Countermeasure 9

4 Obstacles in the Implementation of Erasable PUFs

The implementation of Erasable PUFs on the basis of established PUF architectures
turns out to be intricate; we will summarize the occurring difficulties in this section. One
reason for the appearing problems is that Erasable PUFs must combine the following
properties:

(i) They must be Strong PUFs, i.e. they must have very many possible challenges, and
must be able to withstand full read-out for long time periods, i.e. weeks or months.

(ii) They must allow the erasure or alteration of single responses, without affecting
other responses.

These properties rule out Weak PUFs and their current implementation candidates
[3] [5] [13] from the start, since they simply do not fulfill condition (i) above, i.e. they
are no Strong PUFs.
An alternative approach would be to modify Strong PUF architectures in order to

obtain Erasable PUFs. The erasure operation could, for example, alter some internal
components of a Strong PUF. But unfortunately, all popular candidates for Strong PUFs
[2] [9] [10] [11] [12] create their responses in a complex interplay of many or even
all internal components. Altering one single component will not only change a single
response, but will affect many other responses, too. Their responses cannot be altered
individually, i.e. with single CRP granularity.
Another, straightforward idea would be to attach an access control module to a

Strong PUF. The module could store a list of “forbidden” challenges and prevent the
application of these challenges to the Strong PUF. But this approach is costly in prac-
tice: It requires non-volatile memory, which must store potentially large amounts of
challenges. Furthermore, it cannot reach ultimate security levels: The control module
might be circumvented or cut off by a well-equipped attacker, and the content of the
memory (i.e. the forbidden challenges) might be manipulated.
The existing concept that presumably comes closest to Erasable PUF are Recon-

figurable PUFs (r-PUFs), which were introduced in [17]. By definition, each r-PUF
possesses a reconfiguration operation, in which all CRPs of the r-PUF can be changed.
However, the currently suggested optical implementation of r-PUFs has the property
that all responses are altered by the reconfiguration operation, disabling it as an Erasable
PUF. For electrical implementations of r-PUF based on phase-change materials, which
are only briefly mentioned asides in [17], it is yet unclear whether they would be Strong
PUFs at all, i.e. whether they could be designed to withstand full read-out in short time.
Eventually, there is one recent Strong PUF candidate that seems appropriate to im-

plement Erasable PUFs: So-called Crossbar-based PUFs. They have originally been
introduced in [14] [15] [16], and will be treated in the next section.

5 Strong PUFs based on Crossbar Structures

Recent work [14] [15] [16] investigated the realization of a special type of Strong PUF
(so-called “SHIC PUFs” 4). These are Strong PUFs with the additional following prop-
erties:
4 SHIC abbreviates the term “Super-High Information Content”, and is pronounced as “chique”.

10 U. Rührmair, C. Jaeger, M. Algasinger

(i) The PUF possesses maximal information content and density, with all CRPs being
mutually (i.e. pairwise) information-theoretically independent.

(ii) The PUF can only be read out at slow rates.

The motivation behind investigating this type of Strong PUFs was to protect PUFs
against any modeling attacks. Such attacks use known CRPs in order to extrapolate
the PUF’s behavior on new CRPs, and constitute a serious challenge for the security
of Strong PUFs [6]. SHIC PUFs are automatically invulnerable against such modeling
attempts, since all of their CRPs are information-theoretically independent: Knowing a
subset of CRPs hence does not allow conclusions about other CRPs.
Concrete target parameters for the construction of SHIC PUFs discussed in [14]

[15] [16] were an information content of up to 1010 bits and read-out speeds of 102
to 103 bits per second. As argued in [15], such relatively slow read-out speeds are no
problem in many typical applications of Strong PUFs, such as bank card identification,
key exchange, or also oblivious transfer [18]. On the upside, the combination of slow
read out and high information content can potentially immunize the PUF against full
read-out for up to month or years of uninterrupted, unnoticed adversarial access [15].
For comparison, several known Strong PUF architectures with a MHz read-out rate can
be modeled (and hence broken) via a number of CRPs that can be read out in a few
seconds [6].
It has been shown in [14] [15] [16] that SHIC PUFs can be realized by large, mono-

lithic crossbar architectures. At each crosspoint of the crossbar, a diode with a random
current-voltage characteristic is present. The necessary random variation in the diodes
is generated by a random crystallization technique known as ALILE process. We will
review the necessary basics of this approach in this section; much further detail can be
found in [14] [15] [16].

ALILE Crystallization. In order to construct a Strong PUF with the above properties,
one first requires a solid-state fabrication process that generates a maximal amount of
entropy in the PUF. The authors of [14] [15] [16] turned to crystallization processes to
this end, since the crystallization step amplifies minuscule variations in the starting con-
ditions (such as atomic-scale roughness) to larger, stable variations in the system (for
example the shape, size and position of the crystallites). Among many possible crys-
tallization processes, they eventually selected the so-called aluminum-induced layer
exchange (ALILE) process [20] [21], since it is a simple crystallization process that
involves few production steps and inexpensive starting materials. It results in polycrys-
talline films with p-type conduction [22], and creates a highly disordered and random
structure comprising of crystallized silicon grains (Si) and aluminum (Al). Fig. 3 a de-
picts the top view onto a crystallized system, illustrating the occurring randomness. By
changing the process parameters, the size and density of the grains can be tuned as
desired.

Diodes and Crossbar Read-Out. In order to read out the information contained in the
system, a circuit architecture known as crossbars can be employed. It consists of two
sets of parallel wires, one of them applied on the top, the other one at the bottom of the
structure. Both sets are arranged orthogonally to each other. The basic schematics are

An Attack on PUF-based Session Key Exchange and a Hardware Countermeasure 11

a)a)

Bit lines

Word lines

Forward biased

Reverse biased

Zero biased

Zero/Reverse
biased

+ V /2dd

- V /2dd + V /2dd - V /2dd

b)

Fig. 3. (a) Randomly shaped and located Si crystallites (top view, showing the extension in x-y-
directions). (b) Schematic illustration of the crossbar architecture and the diodes at the crossings.
Also read-out process, i.e. the selection of a bit line and a word line in order to address and read
out a single diode, is illustrated.

illustrated in Fig. 3 b. Due to the p-n-type cross section of the entire system (the film
of p-type conduction is generated on an n-type wafer to this end), each virtual crossing
of the crossbar acts like a p-n-diode, with rectification rates of up to 107 [16]. Its I(V)
curve can be read out by applying a voltage at two chosen crossbar wires (bit and word
lines, in analogy to a memory), as illustrated in Fig. 3 b [15]. Due to the random nature
of the ALILE crystallization process, the diodes show current-voltage curves which are
very irregular and individual in shape. The individual curves differ in their currents by
up to four decimal orders of magnitude, but are still stable against aging and multiple
measurement [14] [16]. As shown in [14], at least three bits of information can be
extracted reliably from each crossing.

Information Content and Inherently Slow Read-Out Speed. Using crossbar architec-
tures has two advantages. First, they can reach ultimate information densities due to
their very simple architecture of parallel wires. The information density and content
targeted in [15] were 1010 bits per cm2. Secondly, they can be designed with an inher-
ently limited read-out speed. To achieve this, the Crossbar PUF is built in one large,
monolithic block, not from separate blocks as modern semiconductor memories, and is
made from wires that have only finite current-carrying capacity. Simulations conducted
in [15] showed that in such large monolithic blocks, several milliseconds must elapse
before the sense current/voltage stabilizes. This results in read-out speeds of around 100
bits/sec. Any faster read-out attempts would overload and destroy the wires, leaving the
remaining structure unusable [15].

6 Erasing Information from Crossbar Structures

We now investigate if – and how – information can be erased from Crossbar PUFs.
Since the information is contained in the diodes’ current-voltage characteristics, any

12 U. Rührmair, C. Jaeger, M. Algasinger

erasure operation must target the diodes, changing their I(V)-curves irreversibly. We
could not build a device with 1010 crossings within the scope of this paper, but argue
on the basis of measurement curves obtained from stand-alone fabricated in our group.
The fact that the behavior of these single diodes scales very well to the operation of
large, monolithic blocks of diodes has been proven in all detail in earlier work [15].
The “erasure operation” works as follows. A specific diode in the crossbar array

is chosen by selecting the corresponding bit and word lines of the crossbar structure,
similar to the read-out procedure for the crossbars. Then a short voltage pulse of 4 V to
5 V is applied in reverse direction to the diode. This induces a breakdown in the ALILE
diode, which destroys the individual information present in the I(V) curve, and makes
all curves after erasure “standardized” and very similar in shape.
This effect has been observed by us in all measured diodes; three illustrative exam-

ples for I(V)-curves before and after breakdown are shown in Fig. 4. While the large
variations in the original curves range over four orders of magnitude, there is little in-
dividuality left after breakdown. The curves after breakdown also differ strikingly from
the original curves. Considering the development of the relative positions of the curves
over the full voltage range shows that not even the relative positioning of the curves is
preserved.

Fig. 4. The curves of three exemplary diodes (red, blue and green) before and after breakdown.

The fact that the new curves are uncorrelated to the old ones is a consequence of the
physical effect behind the breakdown of the diodes. Our explanation of this mechanism
is the presence of a thin natural oxide film between the p- and n-layers, effectively re-
sulting in a p-i-n-structure. Such an additional i-layer would strongly reduce the tunnel-
ing current in reverse direction (as observed by us), which otherwise had to be expected
to be high due to the large hole carrier concentration in the ALILE layers (up to 1019
cm−3) [16]. The assumption of an intermediate oxide layer is further supported by the
fact that diodes which were exposed to hydrofluoric acid (HF) vapor prior to the depo-

An Attack on PUF-based Session Key Exchange and a Hardware Countermeasure 13

sition of the ALILE layers did not show comparable rectification rates; the HF vapor
is known to remove Si-oxide, leading to a destruction of the possible p-i-n -structure
[23]. The described voltage pulse in reverse direction then simply burns and removes
this i-layer.
This physical mechanism behind the erasure supports the security of our construc-

tion, for the following reasons: First, the destruction of the thin, irregular oxide film
cannot be reversed physically by Eve. Second, after the oxide layer has been removed,
independent and secondary features of the structure dominate the I(V) curve (whereby
their effect on the randomness of the curve is by far not as strong as the original configu-
ration, see Fig. 4). From knowing the new curves after breakdown, it is therefore impos-
sible to conclude backwards on the shape of the original I(V) curves before breakdown.
Finally, please note that the operational voltage for measurement of the diodes in

the crossbar structure lies between -2V and +2V. The erasure operation hence is just a
factor of around 2 away from the standard operation of the crossbar. This is compatible
with the use of wires with finite current-carrying capacity, which was indispensable to
enforce the slow read-out rate of the crossbar (see Section 5, page 11, and [15]).

7 Summary

We made the following contributions in this paper. First, we observed a security prob-
lem in a recently published session key exchange protocol by Tuyls and Skoric [1],
which is based on Strong Physical Unclonable Functions (PUFs). We cryptanalyzed the
protocol under the relatively mild presumptions that the adversary gains access to the
PUF twice, that she can eavesdrop the communication between the involved parties,
and that no secret information can be stored on the card. As discussed earlier, these
presumptions are well-motivated, for example in the bank card scenario in which the
protocol had been proposed originally. Our attack has severe consequences for the se-
curity of the proposed bank card application. The noted security problem seems to be
general, applying to any comparable session key exchange based on Strong PUFs.
Second, we introduced a new PUF variant, so-called Erasable PUFs, in order to

resolve the described security issue. These are special Strong PUFs, with the additional
property that the information stored in single responses of theirs can be irreversibly
erased without changing any other response values. As we argued, currently known PUF
architectures are unsuited to this end: They either are no Strong PUFs in the first place.
Or, they have many interplaying components, which prevents that a single response
can be changed without affecting the other responses. The latter problem holds for all
delay-based PUFs, but also for the current, optical implementations of Reconfigurable
PUFs.
We therefore, thirdly, investigated new architectures for implementing Erasable

PUFs. We suggested the use of crossbar structures with randomly crystallized ALILE-
diodes. It was known from recent work [14] [15] [16] that such “Crossbar PUFs” can act
as Strong PUFs with very high information content and densities and inherently slow
read-out speed. We now discussed how the information stored in the ALILE-diodes of
the crossbar can be erased individually. Our erasure process works by applying a rela-
tively small threshold current to selected bit and word lines of the crossbar. This induces

14 U. Rührmair, C. Jaeger, M. Algasinger

a “breakdown” in the diode, as it burns intermediate oxide layers. The process is irre-
versible, and transforms the individual I(V) curve of any diode into an uncorrelated,
new one. The threshold current is low enough to be compatible with the finite current
carrying capacity of the crossbar wires and the read-out mechanism of the crossbar ar-
ray. We supported our proposal by measurements on single, stand alone ALILE-diodes
fabricated in our group. It had been shown in extensive simulations in previous work
[15] that the behavior of such diodes scales to large diode arrays.

Acknowledgements

This work was conducted in the course of the Physical Cryptography Project at the TU
München, with support by the Institute for Advanced Study (IAS) and International
Graduate School of Science and Engineering (IGSSE) at the TU München. We would
like to thank Paolo Lugli, Martin Stutzmann, György Csaba, Ahmed Mahmoud and
Michael Scholz for useful discussions.

References

1. P. Tuyls, B. Skoric: Strong Authentication with Physical Unclonable Functions. In: Security,
Privacy and Trust in Modern Data Management, M. Petkovic, W. Jonker (Eds.), Springer,
2007.

2. R. Pappu, B. Recht, J. Taylor, N. Gershenfeld: Physical One-Way Functions, Science, vol.
297, pp. 2026-2030, 20 September 2002.

3. Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, Pim Tuyls: FPGA Intrinsic PUFs
and Their Use for IP Protection. CHES 2007: 63-80

4. Blaise Gassend, Physical Random Functions, MSc Thesis, MIT, 2003.
5. Sandeep S. Kumar, Jorge Guajardo, Roel Maes, Geert Jan Schrijen, Pim Tuyls: The Butterfly
PUF: Protecting IP on every FPGA. HOST 2008: 67-70

6. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber:Modeling Attacks on
Physical Unclonable Functions. Accepted at ACM Conference on Computer and Communi-
cations Security, 2010. Previous versions available from Cryptology ePrint Archive, Report
251/2010, 2010.

7. U. Rührmair, H. Busch, S. Katzenbeisser: Strong PUFs: Models, Constructions and Security
Proofs. To appear in A.-R. Sadeghi, P. Tuyls (Editors): Towards Hardware Intrinsic Security:
Foundation and Practice. Springer, 2010.

8. U. Rührmair, J. Sölter, F. Sehnke: On the Foundations of Physical Unclonable Functions.
Cryptology e-Print Archive, June 2009.

9. B. Gassend, D. Lim, D. Clarke, M. v. Dijk, S. Devadas: Identification and authentication of
integrated circuits. Concurrency and Computation: Practice & Experience, pp. 1077 - 1098,
Volume 16, Issue 11, September 2004.

10. J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas. A technique to
build a secret key in integrated circuits with identification and authentication applications.
In Proceedings of the IEEE VLSI Circuits Symposium, June 2004.

11. M. Majzoobi, F. Koushanfar, M. Potkonjak: Lightweight Secure PUFs. IC-CAD 2008: 607-
673.

An Attack on PUF-based Session Key Exchange and a Hardware Countermeasure 15

12. G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U. Schlichtmann, P. Lugli, U.
Rührmair: Application of Mismatched Cellular Nonlinear Networks for Physical Cryptogra-
phy. IEEE CNNA - 12th International Workshop on Cellular Nonlinear Networks and their
Applications, 2010.

13. Pim Tuyls, Geert Jan Schrijen, Boris Skoric, Jan van Geloven, Nynke Verhaegh, RobWolters
Read-Proof Hardware from Protective Coatings. CHES 2006: 369-383

14. U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, and M. Stutzmann: Security
Applications of Diodes with Unique Current-Voltage Characteristics. Financial Cryptogra-
phy and Data Security, 2010.

15. U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and G. Csaba: Cryptographic
Applications of High-Capacity Crossbar Memories. IEEE Transactions on Nanotechnology,
99,1, 2010.

16. C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, M. Stutzmann: Random pn-junctions for
physical cryptography. Applied Physics Letters, Vol. 96, 172103, 2010.

17. K. Kursawe, A.-R. Sadeghi, D. Schellekens, B. Skoric, P. Tuyls: Reconfigurable Physical
Unclonable Functions – Enabling Technology for Tamper-Resistant Storage. HOST 2009:
22-29

18. U. Rührmair: Oblivious Transfer based on Physical Unclonable Functions (Extended Ab-
stract). TRUST Workshop on Secure Hardware, Berlin (Germany), June 22, 2010. Lecture
Notes in Computer Science, Volume 6101, pp. 430 - 440. Springer, 2010.

19. G. E. Suh, S. Devadas: Physical Unclonable Functions for Device Authentication and Secret
Key Generation. DAC 2007: 9-14

20. O. Nast and S.R. Wenham: Elucidation of the layer exchange mechanism in the formation
of polycrystalline silicon by aluminum-induced crystallization. Journal of Applied Physics,
Vol. 88, pp. 124-132, 2000.

21. O. Nast and A.J. Hartmann: Influence of interface and Al structure on layer exchange during
aluminum-induced crystallization of amorphous silicon. Journal of Applied Physics, Vol. 88,
pp. 716-724, 2000.

22. T. Antesberger, C. Jaeger, M. Scholz and M. Stutzmann: Structural and electronic properties
of ultrathin polycrystalline Si layers on glass prepared by aluminum-induced layer exchange.
Appl. Phys. Lett. 2007, Vol. 91, Page 201909.

23. R. J. Carter and R. J. Nemanich: HF vapour cleaning of oxide on c-Si. Properties of Crys-
talline Silicon, EMIS Datareviews Series No 20, University of Virginia, USA, 1999.

24. G. Majni and G. Ottaviani: Growth kinetics of (111)Si through an Al layer by solid phase
epitaxy. Journal of Crystal Growth 46, 119, 1979.

25. Daihyun Lim: Extracting Secret Keys from Integrated Circuits. MSc Thesis, MIT, 2004.
26. M. Majzoobi, F. Koushanfar, M. Potkonjak: Testing Techniques for Hardware Security. IEEE

International Test Conference, 2008.

122

Chapter 6

PUFs in Security Protocols:
Attack Models and Security
Evaluations

The sixth chapter of this thesis concludes our practical security analyses of advanced
PUF-protocols, and constitutes perhaps the most elaborate work of ours in this di-
rection. Inspired by the previous chapters, and in partly generalizing on them, we
introduce two formal attack models for advanced PUF protocols: The “PUF re-use
model” and the “bad PUF model”. Both directly arise from practical PUF application
scenarios.

In short, the PUF re-use model assumes that each PUF is used more than once
in different protocols, and that therefore also adversaries may gain access to the PUF
more than once, for example during different protocols executions. From a practical
perspective, such an attack model seems rather inevitable, as a one-time use (and sub-
sequent destruction) of PUFs is not very economic. Still, such one-time use scenarios
have been considered and modeled in several recent theory works, including the work
of Bruzska, Fischlin, Schröder and Katzenbeisser at CRYPTO 2011 [6], and another
publication by Ostrovsky, Scafuro, Visconti and Wadia at EUROCRYPT 2013 [40].

The bad PUF model, on the other hand, assumes that also the manufacturer of a
PUF may act maliciously, and might not fabricate a PUF in the foreseen way. Rather,
he could manipulate or bias the PUF, or even replace it with an entirely different circuit
with hidden properties. As electrical Strong PUFs only communicate with honest users
via a digital input-output interface, such bad PUF attacks are very hard to detect for
honest users. How could they verify what lies behind the digital interface, without
opening and inspecting it physically?

We show in this chapter that many existing PUF-protocols for tasks like oblivious
transfer or key exchange are indeed vulnerable in one of the above two attack scenarios,
rendering them unusable without amendments in practical applications. We stress in
this context that basic PUF schemes like Strong PUF based identification (see Chapter
8) or PUF based key storage appear generally less affected by our two attack models.

123

Their exact effect remains to be determined in future works.
The chapter then discusses two hardware-based countermeasures, namely so-called

“Erasable PUFs” (see also Chapter 5) and “Certifiable PUFs”. Their area and cost
efficient implementation would restore the general and practical usability of PUFs in
advanced cryptographic protocols, and is posed as an important future, but non-trivial
challenge to the PUF community.

The paper that we use in this chapter is:

• U. Rührmair, M. van Dijk: PUFs in Security Protocols: Attack Models and
Security Evaluations. IEEE Symposium on Security and Privacy 2013, pp. 286-
300, 2013.

The work has been published at the premium cyptography and security venue, the
IEEE Symposium on Security and Privacy, with an acceptance rate of 12% in 2013.
According to Google scholar, it has been cited 52 times to this date [26].

Again, the candidate would like to express his gratitude to have one of the founding
fathers of PUFs as a co-author in this paper.

124

PUFs in Security Protocols: Attack Models and Security Evaluations

Ulrich Rührmair
Computer Science Department

Technische Universität München
80333 München, Germany

ruehrmair@in.tum.de

Marten van Dijk
CSAIL
MIT

Cambridge, Massachusetts
marten@mit.edu

Abstract—In recent years, PUF-based schemes have not
only been suggested for the basic security tasks of tamper
sensitive key storage or system identification, but also for
more complex cryptographic protocols like oblivious transfer
(OT), bit commitment (BC), or key exchange (KE). In these
works, so-called “Strong PUFs” are regarded as a new, fun-
damental cryptographic primitive of their own, comparable to
the bounded storage model, quantum cryptography, or noise-
based cryptography. This paper continues this line of research,
investigating the correct adversarial attack model and the
actual security of such protocols.

In its first part, we define and compare different attack
models. They reach from a clean, first setting termed the
“stand-alone, good PUF model” to stronger scenarios like the
“bad PUF model” and the “PUF re-use model”. We argue why
these attack models are realistic, and that existing protocols
would be faced with them if used in practice. In the second part,
we execute exemplary security analyses of existing schemes in
the new attack models. The evaluated protocols include recent
schemes from Brzuska et al. published at Crypto 2011 [1]
and from Ostrovsky et al. [18]. While a number of protocols
are certainly secure in their own, original attack models, the
security of none of the considered protocols for OT, BC, or KE
is maintained in all of the new, realistic scenarios.

One consequence of our work is that the design of advanced
cryptographic PUF protocols needs to be strongly reconsidered.
Furthermore, it suggests that Strong PUFs require additional
hardware properties in order to be broadly usable in such
protocols: Firstly, they should ideally be “erasable”, meaning
that single PUF-responses can be erased without affecting other
responses. If the area efficient implementation of this feature
turns out to be difficult, new forms of Controlled PUFs [8] (such
as Logically Erasable and Logically Reconfigurable PUFs [13])
may suffice in certain applications. Secondly, PUFs should be
“certifiable”, meaning that one can verify that the PUF has been
produced faithfully and has not been manipulated in any way
afterwards. The combined implementation of these features
represents a pressing and challenging problem, which we pose
to the PUF hardware community in this work.

Keywords-(Strong) Physical Unclonable Functions; (Strong)
PUFs; Attack Models; Oblivious Transfer; Bit Commitment;
Key Exchange; Erasable PUFs; Certifiable PUFs

I. INTRODUCTION

Today’s electronic devices are mobile, cross-linked and
pervasive, which makes them a well-accessible target for
adversaries. The well-known protective cryptographic tech-
niques all rest on the concept of a secret binary key: They

presuppose that devices store a piece of digital information
that is, and remains, unknown to an adversary. It turns
out that this requirement is difficult to realize in practice.
Physical attacks such as invasive, semi-invasive or side-
channel attacks carried out by adversaries with one-time
access to the devices, as well as software attacks like
application programming interface (API) attacks, viruses or
Trojan horses, can lead to key exposure and security breaks.
As Ron Rivest emphasized in his keynote talk at CRYPTO
2011 [21], merely calling a bit string a “secret key” does
not make it secret, but rather identifies it as an interesting
target for the adversary.

Indeed, one main motivation for the development of
Physical Unclonable Functions (PUFs) was their promise
to better protect secret keys. A PUF is an (at least partly)
disordered physical system P that can be challenged with so-
called external stimuli or challenges c, upon which it reacts
with corresponding responses r. Contrary to standard digital
systems, these responses depend on the micro- or nanoscale
structural disorder of the PUF. It is assumed that this disorder
cannot be cloned or reproduced exactly, not even by the
PUF’s original manufacturer, and that it is unique to each
PUF. Any PUF P thus implements a unique and individual
function fP that maps challenges c to responses r = fP (c).
Thereby the tuples (c, r) are usually called the challenge-
response pairs (CRPs) of the PUF.

Due to its complex internal structure, a PUF can avoid
some of the shortcomings of classical digital keys. It is usu-
ally harder to read out, predict, or derive PUF-responses than
to obtain digital keys that are stored in non-volatile memory.
The PUF-responses are only generated when needed, which
means that no secret keys are present permanently in the
system in an easily accessible digital form. Finally, certain
types of PUFs are naturally tamper sensitive: Their exact
behavior depends on minuscule manufacturing irregularities,
often in different layers of the IC. Removing or penetrating
these layers will automatically change the PUF’s read-out
values. These facts have been exploited in the past for
different PUF-based security protocols. Prominent examples
include identification [20], [9], key exchange [20], and vari-
ous forms of (tamper sensitive) key storage and applications
thereof, such as intellectual property protection or read-proof

memory [11], [15], [32].
In recent years, however, also the use of PUFs in more ad-

vanced cryptographic protocols together with formal security
proofs has been investigated. In these protocols, PUFs with
a very large challenge set and a freely accessible challenge-
response interface are employed. This type of PUF some-
times has been referred to as Physical Random Function [9]
or Strong PUF [11], [30], [29], [23] in the literature (see
also Appendix A). 1 The (Strong) PUF is used similar to a
“physical random oracle” in these protocols, which is passed
on between the parties, and which can be read-out exactly by
the very party who currently holds physical possession of it.
Its input-output behavior is assumed to be so complex that its
response to a randomly chosen challenge cannot be predicted
numerically and without direct physical measurement, not
even by a person who had physical access to the Strong
PUF at earlier points in time.

In 2010, Rührmair [22] showed that oblivious transfer
can be realized between two parties by physically trans-
ferring a Strong PUF in this setting. He observed that via
the classical reductions of Kilian [14], this implies PUF-
based bit commitment and PUF-based secure multi-party
computations. In the same year, the first formal security
proof for a Strong PUF protocol was provided by Rührmair,
Busch and Katzenbeisser [23]. They present definitions and
a reductionist security proof for Strong PUF based identifica-
tion. In 2011, Rührmair, Jaeger and Algasinger [27] discuss
an attack on a PUF-based session key exchange scheme
of Tuyls and Skoric [33], in which the scheme is broken
under the provision that it is executed several times and
that the adversary gains access to the PUF more than once.
Their attack motivated our PUF re-use model. At CRYPTO
2011 Brzuska, Fischlin, Schröder and Katzenbeisser [1]
adapted Canetti’s universal composition (UC) framework
[3] to include PUFs, giving PUF-protocols for oblivious
transfer (OT), bit commitment (BC), and key exchange (KE).
At CHES 2012, Rührmair and van Dijk [25] presented a
quadratic attack on Brzuska et al.’s OT- and BC-protocols,
showing that their security is not maintained if optical PUFs
or electrical PUFs with challenge length of 64 bits are
used in their implementation. Two very recent eprint papers
continue this general line of work: Ostrovsky, Scafuro,
Visconti and Wadia [18] 2 investigate the use of so-called
“malicious PUFs”, and furthermore extend Brzuska et al.’s
communication model in the UC framework.In independent
and simultaneous work, van Dijk and Rührmair proposed a
model equivalent to “malicious PUFs” under the name “bad
PUF model”, and a new attack model termed “PUF re-use
model”. The authors devise the first impossibility results for

1We stress that the Weak/Strong PUF terminology, which was originally
introduced by Guajardo, Kumar, Schrijen and Tuyls [11], is certainly not
meant or to be misunderstood in a judgemental or pejorative manner.

2This paper has been accepted at Eurocrypt 2013 very recently, but we
had only access to the eprint version [18] at the time of writing.

PUF-protocols in these two models [6].
While the body of work on (Strong) PUFs in crypto-

graphic protocols is obviously growing, most papers use
different implicit attack models, making it difficult to com-
pare their results. There are situations where practically
relevant attacks exist on protocols that are provably secure
in other, perhaps mainly theoretical models. This motivates
a comparative, systematic study of attack models.

Scope of this Work: This paper continues the above
line of research. It investigates the UC-models of Brzuska
et al. [1] and Ostrovsky et al. [18], and introduces several
other, practically relevant attack scenarios. These include the
“stand-alone, good PUF model”, the “bad PUF model”,
and the “PUF re-use model”:

1) In the stand-alone, good PUF model, we assume that
there is only one single, isolated protocol execution,
and that all parties faithfully generate and never ma-
nipulate PUF hardware.

2) In the PUF re-use model, we extend this setting, and
allow adversaries multiple access to PUFs. Its mildest
form is the so-called one-time posterior access model
(PAM), which allows one-time access to the PUF after
a given protocol, and delimits the adversary to mere
CRP-measurement on the PUF.

3) In the bad PUF model, we allow fraudulent parties and
adversaries to manipulate PUF hardware and to use so-
called “bad PUFs”. These are PUFs which look like a
normal PUF from the outside, having a standard CRP-
interface etc., but which have extra properties that
allow cheating. A scenario equivalent to the bad PUF
model has been introduced under the name “malicious
PUFs” by Ostrovsky, Scafuro, Visconti and Wadia in
an eprint paper [18], their work being independent and
simultaneous to the first publication of the bad PUF
model by van Dijk and Rührmair in another eprint [6].

In order to illustrate the effect of the new models, we
carry out exemplary security analyses of several protocols
of Brzuska et al. [1] and Ostrovsky et al. [18] in the bad
PUF and PUF re-use model.

Our Results: Our analyses of existing protocols show
the following outcome.

1) A recent OT protocol of Brzuska et al. [1] is insecure
in the PUF re-use model and in the bad PUF model.
The attacks are presented in Sections III-A and III-B.

2) A recent KE-protocol of Brzuska et al. [1] is insecure
in the PUF re-use model and in the combined PUF
re-use, bad PUF model. The respective attacks are
presented in Sections III-C and III-D.

3) A recent BC-protocol of Ostrovsky et al. [18] has
certain vulnerabilities in the bad PUF model and in
the combined PUF re-use, bad PUF model. This topic
is discussed in Section III-E.

The above, exemplary security evaluations are carried out in
full detail. In addition to that, we observe that several other

known PUF-protocols are insecure in the bad PUF and the
PUF re-use model. Since the attacks are very similar to the
abovementioned, we merely sketch them for space reasons
in Section III-F. They include the following:

4) An early OT-protocol of Rührmair [22] and an early
KE-protocol by van Dijk [5] are insecure in the bad
PUF and the PUF re-use model (see Section III-F).

5) An OT-protocol of Ostrovsky et al. [18] is insecure in
the bad PUF and the PUF re-use model (see Section
III-F).

6) Two special BC-protocols of Ostrovsky et al. [18],
and consequently their construction for UC-secure
computation built on these two protocols, are inse-
cure in the bad PUF model, too (see Section III-F).
The attacks require the use of more complex bad
PUF constructions such as Communicating PUFs and
Marionette PUFs, though (see Section II-E for an
explanation of the latter two).

Two important aspects should not go unnoticed. First,
apart from the vulnerability in Ostrovsky et al.’s BC protocol
mentioned in item 3 above, all of the presented attacks are
outside the original attack models of the respective papers.
However, we argue in great detail in Section II why the
new attack scenarios must be considered realistic, and why
the protocols would be faced with them in any practically
relevant settings.

Secondly, our attacks in the bad PUF model require only
very mild forms of bad PUFs. The attack in item 3 utilizes
a bad PUF that implements a simple linear function (see
Section III-E). Furthermore, the attacks of items 1, 2, 4
and 5, merely require so-called Challenge-Logging PUFs
and Simulatable PUFs. The only exception is the attack
mentioned in item 6: It requires a more sophisticated type
of PUFs, namely Communicating PUFs (or special variants
of it, such as Marionette PUFs); see Section II-E.

Besides the above new findings, two already published
results should be added to complete the picture:

7) A PUF-based session key exchange protocol by
Tuyls and Skoric [33] has already been attacked by
Rührmair, Algasinger and Jaeger [27] under conditions
similar to the PUF re-use model (without explicitly
using this term). Their attack partly motivated the
formal introduction of the PUF re-use model in this
paper.

8) There are quadratic attacks on the security of the OT-
and BC-protocol of Brzuska et al. [1] which have been
presented at CHES 2012 by Rührmair and van Dijk
[25]. They show that the security of these protocols
is not maintained if optical PUFs or electrical PUFs
with challenge length of 64 bits are used in their
implementation.

As indicated by the above items (1) to (8), our analysis
focuses on the impact of our attack models for “advanced”

PUF protocols like OT, BC and KE. The elementary PUF use
as internal key storage element and in simple identification
protocols [19], [20] appears less affected (see Section V).

Consequences: The findings of our analysis are some-
what alarming. They suggest that attack models and pro-
tocol design for “advanced” Strong PUF protocols should
be strongly reconsidered. As PUFs are hardware systems
that can have hidden extra features, new strategies become
necessary here.

One possible countermeasure is to (i) allow additional
computational assumptions in the protocols; (ii) assume that
the PUFs can be shielded during the course of the protocol
in order to prevent communication between the bad PUF
and malicious parties; and (iii) to use each PUF only once,
destroying it at the end of the protocol in order to prevent
access by adversaries after the protocol. This path is taken by
Ostrovsky et al. in their work [18]. However, there are some
downsides associated with this approach: The introduction
of additional computational assumption takes away some
of the appeal of Strong PUFs as a new, independent cryp-
tographic primitive. The effective shielding of PUFs until
their destruction is hard to achieve in concurrent, complex
environments. And, perhaps most importantly, the one-time
use and destruction of the used PUFs after each protocol
execution is extremely costly in practice. It constitutes a
theoretically viable, but practically and commercially essen-
tially infeasible measure.

A second option to encounter our attacks is to add two
new hardware features to Strong PUFs. Firstly, one can
require that Strong PUF’s responses should be “erasable”,
meaning that single responses can be “erased” (made unread-
able for good). Ideally this erasure should not affect other
responses; if this requirement is hard to realize in practice,
then also concept similar to the logical reconfigurability
of PUFs [13] may be applicable in certain settings (see
Section IV). This step immunizes Strong PUF protocols
against PUF re-use attacks. Secondly, Strong PUFs should
be “certifiable”, meaning that parties holding a Strong PUF
can verify that the PUF has been produced faithfully and has
not been manipulated in any way afterwards. This guarantees
security in the bad PUF model. The combination of both
features can fully restore the applicability of Strong PUFs
in concurrent, complex application environments without
further restrictions (such as the above one-time use of PUFs).
The implementation of these features, however, constitutes
a challenging open problem that we pose to the community
in this work.

Organization of this paper: In Section II we discuss
and introduce various attack models for Strong PUF pro-
tocols. In Section III, we evaluate the security of several
existing protocols in the new attack models. Section IV
discusses the consequences of our work, in particular the
need for Erasable PUFs and Certifiable PUFs. Section V
summarizes the paper.

The appendix provides extra information: In Appendix A
we give background on Strong PUFs to the readers who are
not familiar with this concept. In Appendices B, C and D we
provide some of the analyzed PUF-protocols from Brzuska
et al. and Ostrovsky et al. for the convenience of the readers.

II. ATTACK MODELS FOR STRONG PUF PROTOCOLS

Building on the general description of Strong PUF pro-
tocols in the introduction and also in Appendix A, we will
now describe a number of attack scenarios for Strong PUF
protocols.

A. The Stand-Alone, Good PUF Model

In the stand-alone, good PUF model, we make the fol-
lowing assumptions:

1) The protocol is executed only once in a stand-alone
setting, meaning that the protocol is never re-run, also
not any (sub-)sessions of it. The employed PUF(s)
cannot be accessed or communicated with after the
end of the protocol.

2) The employed PUFs are all “good PUFs”, meaning
that are drawn faithfully from a previously specified
distribution of PUFs and are not modified in any
way afterwards, neither by malicious players nor by
external adversaries. They only have the properties
and functionalities expected by the honest protocol
participants.

It seems that several early Strong PUF protocols were
more or less implicitly designed for a stand-alone, good PUF
setting, for example van Dijk’s key exchange scheme [5]
and Rührmair’s OT protocol [22]. The stand-alone model
will neither be realistic nor efficiently realizable in most
practical PUF-applications, but makes a clean first scenario
for studying the security of PUF-protocols. For practical
appliances it needs to be extended, as described below.

B. The UC-Model of Brzuska et al.

In order to model the execution of multiple PUF proto-
cols, Brzuska, Fischlin, Schröder and Katzenbeisser [1], [2]
proposed one possible method how Canetti’s UC-framework
[3] can be adapted to PUFs. For a detailed treatment we refer
the readers to the original papers [1], [2], but summarize the
features of their model that are most relevant for us below.

1) It is assumed that all used PUFs are drawn faithfully
from a previously specified distribution of PUFs, a
so-called “PUF-family”, and are not modified in any
way afterwards, neither by malicious players nor by
external adversaries. They only have the properties and
functionalities that honest protocol participants expect
from them. This feature is in common with the above
stand-alone, good PUF model.

2) Only one PUF can be used per protocol session sid.
The PUF is bound to this protocol session and cannot
be used in another session.

3) The adversary does not have physical access to the
PUF between the different subsessions ssid of a
protocol.

For completeness we indicate where the above features
are specified in [2]: Features 1 and 2 directly follow from
the specification of the ideal PUF-functionality FPUF, in
particular the first and third dotted item of Fig. 2 of [2].
Regarding feature 2, the functionality initPUF specifies that
FPUF turns into the waiting state if the session sid already
contains a PUF. And the functionality handoverPUF specifies
that sid remains unchanged in the handover, i.e., the PUF
remains in the same session sid after the handover process.
Feature 3 follows from the treatment of the subsessions ssid
throughout their paper [2]. Examples include Figs. 3 to 8,
the protocols given in Figs. 3 and 7, or the proof of Theorem
7.1, where the adversary is only allowed to access the PUF
in the set-up phase, but not during or between the different
subsessions.

Please note that the above features are not rudimentary
aspects of the model of [1], [2], but are central to the security
of their protocols and the validity of their security proofs.

C. The UC-Model of Ostrovsky et al.

Ostrovsky, Scafuro, Visconti and Wadia modify the UC-
model of Brzuska et al. in a number of aspects in a recent
eprint [18]. Among other things, they suggest an attack
scenario termed “malicious PUFs”. It is equivalent to the
“bad PUF model” proposed independently by van Dijk and
Rührmair [6], which is detailed in Section II-E of this paper;
both models seem to have been developed independently and
simultaneously.

The two author groups use their equivalent models for
different purposes, though: Ostrovsky et al. give several
protocols that are purportedly still secure under use of
malicious/bad PUFs. Most of their constructions employ
three extra assumptions: (i) they use additional, classical
computational assumptions alongside with PUFs; (ii) they
assume that the bad PUFs do not communicate with the
malicious parties (compare Section II-E); and (iii) they
assume that the PUFs are used only once, and can be kept
away for good from the adversary or destroyed afterwards.
On the other hand, van Dijk and Rührmair show that if one
wants to design PUF-protocols that solely rest on the security
of the employed PUFs, i.e., without additional computational
assumptions, then the existence of malicious/bad PUFs leads
to hard impossibility results.

We remark that in practice, the above assumption (iii)
would have to be realized by destroying the PUF after each
protocol, or by locking it away for good. In commercial
applications, such a measure would probably be too costly
and economically infeasible. The PUF re-use model in the
next Section II-D investigates the consequences if it cannot
be realized in practice.

D. The PUF Re-Use Model

Let us now step by step extend the model of Brzuska et
al. [1], [2], and partly also of Ostrovsky et al. [18]. One
implicit assumption of Brzuska et al. is that the adversary
cannot access the PUF between different (sub-)sessions, and
that the PUF is never re-used in another protocol session (see
Section II-B). However, this assumption seems difficult to
guarantee in many natural PUF appliances.

To see this, consider the well-established application
scenario of a PUF on a bank card, which has been issued
by a central authority CA and is subsequently used in
different terminals [20], [19]. To be more concrete, let us
assume that the PUF is repeatedly employed for a session
key exchange between the CA and the smart-card/terminals.
Since an adversary could set up fake terminals, add fake
readers to the card slots of terminals, or gain temporary
possession of the bank card when it is employed in different
contexts (for example when the user is paying with it), a
realistic assumption is that an adversary will have repeated
temporary physical access to the PUF between the different
key exchange (sub-)sessions. However, such access is not
foreseen in the models and protocols of Brzuska et al.

The example illustrates that in practice, adversaries and
malicious players may gain access to the PUF at least oc-
casionally between different (sub-)sessions. This constitutes
a new, relevant attack point and motivates an extension of
the model of Brzuska et al. [1]. Ostrovsky et al. [18] deal
with this observation in their own manner: As described
in Section II-C, they implicitly assume a one-time use of
the PUF. Such one-time use, and subsequent destruction
or locking away of the PUF, results in substantial practical
costs, however. It constitutes a theoretically acceptable, but
at the same time commercially somewhat infeasible measure.
These considerations motivate the following attack model:

The PUF Re-Use Model: We assume that at least a
subset of the PUFs employed in the original protocol is used
on more than one occasion, i.e., not all PUFs are used only
once and destroyed immediately afterwards. The adversary
or malicious parties have access to the PUF more than once,
for example before, after or between different protocols or
protocol (sub-)sessions (if there are any).

The description leaves some detail open, the simple reason
being that many differing variants of the PUF re-use model
are possible. For example, one can distinguish between the
type of adversarial access: (i) full physical access, where the
adversary can attempt arbitrary actions on the PUF, including
arbitrary measurements or active physical modification of
the PUF, or (ii) CRP access, where the adversary’s actions
are limited to the mere measurement of CRPs. One can also
differentiate the number of occasions on which access is
possible; or the relative time of the access, such as before
or after the attacked protocol; or the number of CRPs the
adversaries can read out during his access time. One can

further distinguish between different types of re-use: Is the
PUF re-used by the same parties in another instance of
the same protocol, or by entirely new parties in a different
protocol? Instead of declining through all possible scenarios
formally here, we suggest that such differentiation should
be made in the respective security analyses directly.

There is only one specific instantion we would like to
define explicitly here, since it has special relevance for us.

The One-Time Posterior Access Model (PAM): In the
PAM, we assume that the adversary has got access to at
least a subset of all PUFs employed in the original protocol
on exactly one occasion after the end of the protocol (or
protocol (sub-)session, if there are any), and is furthermore
limited to the measurement of standard CRPs.

Please note that the PAM is arguably the mildest possible
form of the PUF re-use model. Still, it suffices to success-
fully attack many existing schemes (see Section III).

E. The Bad PUF Model

One other central assumption in the UC-model of Brzuska
et al. is that the players are not allowed to use “bad”, fraud-
ulent PUF-hardware with properties beyond the expected
PUF functionality. This assumption can again be difficult
to uphold in practice, as has been observed independently
by Ostrovsky et al. [18] (see Section II-C).

To motivate bad PUFs, consider once more the earlier
smart-card example. Let us assume that the CA issues the
card that carries the PUF, and that the CA and the smart-
card/terminals want to run an OT protocol in this setting.
We must assume that the CA is not fully trusted by the
smart-card/terminals (note that if the CA was fully trusted,
then the smart-card/terminals would not require an OT
implementation). However, a malicious CA can cheat easily
in this scenario by putting a malicious PUF-hardware (a “bad
PUF”) instead of a normal PUF on the smart card. To name
one example, the CA could replace the normal PUF by a
pseudo random function (PRF) or a pseudo-random number
generator (PRNG) with a seed s known to the CA. If the
PRF will have the same, digital input-output interface as
the normal PUF, such a step will remain unnoticed. Still, it
enables the CA to simulate and predict all responses of this
“bad PUF” without being in physical possession of it, and
breaks one of the essential security features of the purported
“PUF” on the bankcard, namely its unpredictability. It is not
too difficult to see that under the assumption that the CA
replaces the PUF by a PRF with a seed known to the CA,
the well-known OT protocols of Rührmair [22] and Brzuska
et al. [1] are no longer secure. If the CA acts as OT-receiver,
for example, it can learn both bits of the OT-sender (see
Section III-B for details).

Abstracting from this specific example, the general prob-
lem is that in a typical two-party protocol, one of the parties
can fabricate the PUF, while the other party may only

use the PUF “from the outside” via a (digital) challenge-
response interface. It is hard to verify that there is no
unexpected, malicious functionality on the other side of the
interface. From a practical perspective, this observation is
most severe for electrical Strong PUFs, which are the most
widely distributed Strong PUFs today. But it also holds for
integrated optical PUFs as given by Tuyls and Skoric [33].

This motivates a systematic study of bad PUF attacks.
Generally, we denote by the term “bad PUF” a hardware
system that looks like a proper PUF from the outside,
exhibiting a input-output behavior indistinguishable from a
proper PUF, but which possesses secret, additional properties
that allow cheating. Its assumed similar input-output behav-
ior shall make it infeasible to distinguish a bad PUF from
a proper PUF by digital challenge-response measurements.
In order to detect bad PUFs, honest parties would need to
physically open the PUF-hardware and to inspect it thor-
oughly, as a regular and dedicated step of the protocol. While
detection of bad PUFs would not even be guaranteed by such
a step (adversaries would presumably develop obfuscation
techniques), it would surely destroy the opened PUF, even
if it was non-manipulated. In addition, the inspection step
would be beyond the capabilities of an average user.

This makes bad PUFs a very simple and effective way to
cheat. From an abstract perspective, bad PUFs exploit the
fact that PUFs are real physical objects. Unlike the clean bi-
nary strings exchanged in classical cryptographic protocols,
these objects may bring about unwanted properties. They can
act as real, physical “Trojans” and other malicious hardware.

Even though there is a practically infinite number of possi-
bilities how Strong PUFs can act, two types of bad PUFs that
we focus on in this paper are (i) PUFs that are numerically
simulatable by their manufacturer (but by no one else),
and (ii) bad PUFs that “log” or record all challenges that
have been applied to them. Both are particularly easy to
implement, but suffice for attacks on existing protocols.

Simulatable Bad PUFs (SIM-PUFs): A simulatable
PUF (or SIM-PUF, for short) is a hardware system that looks
like a PUF, having a challenge-response interface etc., but
which possesses a simulation algorithm Sim. Sim takes as
input any challenge c, and computes in polynomial time the
corresponding response r. It is assumed that Sim has been
derived during the fabrication of the simulatable PUF via
the special construction of the PUF. External parties who
merely have access to the simulatable PUF after fabrication
are not able to derive a simulation model.

In practice there are several possibilities for implementing
simulatable PUFs. A straightforward and very efficient way
is to use a trapdoor one-way permutation or pseudo random
function gs based on a short digital seed s. The hardware
of the simulatable PUF simply implements gs. Whenever
the PUF is interrogated over the digital interface with a
challenge c, the hardware outputs the response r = gs(c).

The party who manufactured the PUF knows both g as

well as seed s and can easily simulate the input-output be-
havior of the PUF. Furthermore, if a cryptographically hard
pseudo-random function is used, it is practically infeasible
for the honest parties to distinguish the bad PUF from a
proper PUF with a real, random output. 3

Challenge-Logging Bad PUFs (CL-PUFs): A second
feature that bad PUFs may possess is challenge-logging.
A challenge-logging PUF (CL-PUF for short) with secret
challenge c∗, also called the access challenge, is a malicious
piece of hardware that looks like a proper PUF from the
outside (with a challenge-response interface etc.), but which
possesses the following properties:

1) Except for one input challenge c∗, the challenge-
response behavior of a CL-PUF is exactly like that of
an underlying, “normal” PUF. Whenever a challenge
c unequal to c∗ is applied to the CL-PUF via its
interface, the challenge is passed on to the underlying
PUF. The corresponding response r is obtained from
the latter, and the CL-PUF uses this response r as its
output.

2) The CL-PUF has a non-volatile memory (NVM) mod-
ule in which it automatically records all challenges that
have been applied to it.

3) When challenge c∗ is applied to the CL-PUF, it
does not pass on this challenge to the underlying
PUF as usual. Instead, the CL-PUF outputs the entire
content of the non-volatile memory module (i.e., all
challenges that have previously been applied to it)
via the challenge-response interface, and erases the
content of the NVM module.

If the PUF has a large, preferably exponential challenge
set, then the probability that someone by chance inputs c∗

and detects the challenge-logging feature is negligibly small.
Please note that many alternative ways for activating the
output mode of the challenge-logger are conceivable, such
as radiowave triggering etc., and even entirely other forms
of logging and read-out “modes” of the logger are possible
(see below).

CL-PUFs can be implemented particularly easily in any
integrated optical or electrical PUFs. But even for Pappu’s
optical, non-integrated PUF [20] challenge logging appears
feasible. Imagine a special, transparent, additional layer on
top of Pappu’s light scattering token, which is altered by
the incoming laser light. The alteration of the layer would

3The replacement of the internals of a PUF by a pseudo-random
function is particularly hard to detect for any integrated PUFs (be they
optical or electrical), since they communicate with external parties only
via their integrated, digital CRP-interface; the PUF is never measured
directly by the external parties. Such integrated PUFs constitute the clear
majority of currently investigated PUFs. But even for Pappu’s optical PUF,
simulatability can be an issue: It is by no means ruled out that the adversary
builds a light scattering token that has a particular, well-ordered structure,
which leads to simple and simulatable outputs. Current protocols would not
even detect if the adversary used an “empty” plastic token, which did not
contain any scatterers at all, and which was trivially simulatable.

not necessarily be visible by the sheer eye, but could reveal
itself only under UV-light or other special illumination. Such
a sensitive layer would indicate the point of incidence (and
perhaps even the angle) of the challenge, i.e., it would show
some form challenge logging.

Finally, we observe that there are two fundamentally
different types of CL-PUFs: PUFs that have been malicously
constructed with a challenge-logger from the start; and CL-
PUFs where a logger-module has been added externally
by malicious parties after their construction. The former
seem yet more easy to implement, but also the second type
is a viable attack strategy. In any way, CL-PUFs act as
real, physical Trojans: They record and store security-critical
information and pass it on to the adversary when he holds
possession of the PUF again.

Discussion of Potential Countermeasures: A straight-
forward countermeasure against bad PUFs seems to “authen-
ticate” or “certify” the PUF in one way or the other in order
to detect bad PUFs. For example, a trusted authority (TA)
could send a list of CRPs as a “fingerprint” of a genuine
PUF to the players before any protocol execution. On closer
inspection, however, this countermeasure turns out to be very
problematic, and pretty much falls apart.

First of all, the use of a TA that needs to be called in
every single protocol session would make the use of PUFs in
security protocols obsolete. The aspired functionalities could
then be implemented in a much simpler fashion directly
via the TA, avoiding the significant effort of physically
transferring a PUF during the protocol. Secondly, CRP-based
authentication does not rule out externally added malicious
hardware, such as external challenge loggers. The latter do
not affect the CRP-behavior of an existing (and previously
certified) PUF.

Meaningful “certification” of a PUF hence requires not
only to “identify” a PUF. It also must (i) exclude that
external parts have been added to the PUF or that the
PUF-hardware has been manipulated; and (ii) it should
work offline, i.e., it must avoid calling a central TA in
every execution of the protocol. Currently, no protocols
or PUF implementations that realize these two properties
have been considered in the literature. Given the current
state of the field, it seems hard to design such methods,
even more so at low costs. Physical inspection of the inner
configuration of the PUF as a regular protocol step seems no
viable possibility, as discussed in the previous paragraphs.
Furthermore, if efficient methods for certifying the integrity
of (PUF-)hardware existed, then the same methods could be
applied to protect security modules built on classical keys,
making PUFs obsolete. Once more, this makes bad PUFs a
realistic and efficient method to cheat.

Brzuska et al. [1] indeed assume certification of the PUF,
but do not give protocols or methods how it can be achieved.
For the above reasons, we believe that efficient certification
is currently infeasible in practice. This holds even more

if malicious players, and not only external adversaries,
generate and use manipulated PUFs. We comment that in
a typical two-party protocol, a PUF originating from a
malicious party must be considered as nothing else than an
untrusted piece of hardware that stems from the adversary.

Advanced Bad PUFs: How “bad” can a PUF be?
Having focused on simple features in the last section (which
still suffice to attack many existing protocols), we will play
with a number of more sophisticated properties now. The
purpose of our discussion is to complement the picture; we
will not fully work out every construction in detail.

To start with, it is of course possible to imagine bad
PUFs that communicate information (e.g., wirelessly) to
the malicious party. Such a “Communicating PUF” could
transmit the challenge, the response, or both, to fraudulent
parties. The transmission could be carried out in real time, or
may be delayed to later, when the PUF is released from the
control of the honest parties. It is relatively straightforward
that such a feature destroys the security of all existing
protocols. Necessary, but also very costly countermeasures
were shielding the PUF during the protocol and destroying
them immediately afterwards.

Another advanced bad PUF example is a PUF which
transmits all challenges to the malicious party in real-time;
waits for the malicious party to individually select and return
a response Rbad; and then outputs Rbad (as if it was the
natural response of the PUF itself). The latter type of PUF
could be called the Marionette PUF for obvious reasons.
It seems clear that there is no security benefit of using
PUFs in cryptographic protocols if the adversary can use
Marionette PUFs. Their employment makes PUFs useless,
in the sense that for any protocol that uses PUFs and which
securely implements a task T even if Marionette PUFs are
employed, there will be a protocol that securely implements
T and does not use the (Marionette) PUFs at all. Therefore
the existence and use of Marionette PUFs must be ruled
out in most advanced Strong PUF protocols such as OT,
BC and KE by whatever means. One potential, but again
costly countermeasure to prevent Marionette PUFs would
be the shielding of the PUF during the entire course of the
protocol.

A third example are bad PUFs that adapt or alter their
response behavior over time. This adaption could be a func-
tion of the challenge that is applied to them, or a function
of all previous challenges. Other variants of adaptive bad
PUF behavior include the following: (i) The PUF could
automatically alter its response behavior after a certain time
period t0. This means that the malicious party can influence
the protocol by delaying the protocol; note that this is
explicitly allowed in the UC-model. (ii) The PUF could
change its CRPs upon a wireless triggering signal it receives.
(iii) The PUF could even change upon a certain, triggering
challenge that is applied to it. This allowed the malicious
party to influence the bad PUF even while it is not in her

possession, simply by causing the honest party to apply a
certain challenge to the PUF.

A final example are bad PUFs that implement arbitrary
digital functions f with special, fraudulent properties. Sim-
ulatable PUFs (where f is simulatable and the simulation
code is known to the malicious party) are one special case
of this approach. But the function f could have other handy
properties for the adversary. For example, it might be a
function for which the computation of inverses is simple.
This case is actually relevant for our attack in Section III-E.

Many other examples of advanced bad PUFs are conceiv-
able. Actually, any such bad PUF types have to be taken
into consideration when the security of a PUF protocol is
analyzed. But since the earlier, simpler types of SIM-PUFs
and CL-PUFs already suffice for attacking many protocols,
we will not deal too much with advanced bad PUFs further
in this paper.

A Final Thought on Bad PUFs: Let us conclude this
section by a general thought. Why are bad PUFs so power-
ful? Consider the following line of thought: Suppose that a
PUF-protocol utilizes some property P of the employed PUF
to achieve its security. Then there will (almost with certainty)
be a bad PUF which is hard to recognize from the outside,
but which does not possess the property P . The security of
the protocol and the validity of the proof will no longer be
guaranteed if the adversary uses this bad PUF not possessing
P . This makes bad PUF a broadly applicable method of
cheating. The cost of implementing the imagined bad PUF
type determines how practically relevant the resulting attack
is; we focused on relatively easily implementable variants
of bad PUFs in this paper.

III. SECURITY EVALUATIONS IN THE PUF RE-USE AND
BAD PUF MODEL

We will now conduct three detailed, exemplary security
analyses in the new attack models. We selected the PUF-
based OT- and KE-protocol of Brzuska et al. from Crypto
2011 [1] and the recent BC-protocol by Ostrovsky et al. [18]
to this end. The protocols are given in a simplified form in
Appendices B, C and D for the convenience of the readers.
The notation employed in our attacks actually refers to these
appendices. We would like to stress that the first two protocol
by Brzuska et al. are secure in their own, original attack
model (apart from a recent attack on Brzuska’s OT-Protocol
by Rührmair and van Dijk [25]). But, as argued earlier, the
protocols would likely be faced with the PUF re-use model
and the bad PUF model once they were used in practice.
In opposition to this, the BC-protocol of Ostrovsky et al.
is actually attacked in their own, original “malicious” PUF
model.

A. OT-Protocol of Brzuska et al. in the PUF Re-Use Model

We start by analyzing the OT-Protocol of Bruzska et al.
[1] (see Protocol 1 in Appendix B) in the PUF re-use model,

or, to be more precise, in the mildest form of the PUF
re-use model, the PAM. Our attack rests on the following
assumptions:

1) After the initialization phase of the OT-Protocol 1, dif-
ferent subsessions of the protocol are run. We assume
that there is a subsession ssid with the following
properties:
• Eve was able to eavesdrop the binary communi-

cation between the sender and the receiver in the
subsession ssid.

• Eve can read-out CRPs from the PUF after the
end of the subsession ssid, for example before
a new subsession ssid′ is started. (Note that this
assumption is derived from the PAM.)

Under these provisions, Eve can learn both bits s0 and s1
used by the sender in subsession ssid. This breaks the
security of this subsession. The attack works as follows:

1) When the subsession ssid is run, Eve eavesdrops the
messages in Steps 3, 4 and 6. She therefore learns
the values x0, x1, v (:= c⊕ xb), S0 (:= s0 ⊕ r0) and
S1 (:= s1 ⊕ r1). Thereby r0 and r1 are the responses
to the challenges c0(:= v ⊕ x0) and c1(:= v ⊕ x1).

2) When Eve has got physical access to the PUF after the
subsession ssid, she computes the challenges c0 :=
v ⊕ x0 and c1 := v ⊕ x1 herself. She applies these
challenges to the PUF, and obtains the responses r0
and r1.

3) Eve derives s0 and s1 by computing the values S0⊕r0
= s0⊕ r0⊕ r0 = s0 and S1⊕ r1 = s1⊕ r1⊕ r1 = s1.

This breaks the security of the subsession ssid.
Please note that the role of Eve can also be played by a

malicous receiver. Interestingly, an attacker cannot learn the
receiver’s choice bit b by a similar attack, since the secrecy
of the choice bit is unconditional and does not rest on the
employed PUF.

B. OT-Protocol of Brzuska et al. in the Bad PUF Model

Let us now describe an attack on the OT-Protocol of
Brzuska et al. [1] (see Protocol 1 in Appendix B) in the
bad PUF model, which works under the following single
assumption:

1) The receiver can hand over a simulatable bad PUF
instead of a normal PUF in the initialization phase,
and furthermore possesses a simulation algorithm for
this PUF.

The attack itself works as follows:
1) The receiver follows Protocol 1 as specified, and

carries out a subsession sid.
2) When the subsession is completed, the receiver com-

putes the two challenges c0 := v⊕x0 and c1 := v⊕x1.
He can do so since he knows v, x0 and x1 from earlier
protocol steps.

3) The receiver uses his simulation algorithm in order
to compute the two responses r0 and r1 which corre-
spond to the challenges c0 and c1.

4) The receiver derives both values s0 and s1 by com-
puting S0 ⊕ r0 = s0 ⊕ r0 ⊕ r0 = s0 and S1 ⊕ r1 =
s1⊕r1⊕r1 = s1. He can do so since he knows S0, S1

from step 6 of the OT-protocol.
The Sender hence learns both strings s0 and s1, breaking the
security of the protocol. We comment that the attack only
requires the use of simulatable PUFs by the receiver, which
are particularly easy to implement.

C. KE-Protocol of Brzuska et al. in the PUF Re-Use Model

We describe below how the KE-Protocol of Brzuska et al.
[1] (see Protocol 2 in Appendix C) can be attacked in the
PUF re-use model, or more, precisely, in its mildest form,
the PAM. The attack is quite straightforward and rests on
the following assumptions:

1) After the initialization phase of Protocol 2, different
subsessions of the protocol are run. We assume that
there is a subsession ssid with the following proper-
ties:
• Eve was able to eavesdrop the binary commu-

nication between the Alice and the Bob in the
subsession ssid.

• Eve can read-out CRPs from the PUF after the
end of the subsession ssid, for example before a
new subsession ssid′ is started.

Under these provisions, Eve can learn the exchanged key K.
The attack is relatively obvious and works as follows:

1) When the subsession ssid is run, Eve eavesdrops step
2 and learns the values c and d.

2) When Eve has got physical access to the PUF after
subsession ssid, she applies the challenge c to the
PUF, measures the (noisy) response r′, and derives
the secret st from r′ by the help of d.

As st = K in subsession ssid, this breaks the security of
this subsession.

D. KE-Protocol of Brzuska et al. in the Combined PUF Re-
Use and Bad PUF Model

Let us continue examining the security of the KE-Protocol
of Brzuska et al. [1] (Protocol 2 in Appendix C). Since in a
simple stand-alone scenario neither Alice nor Bob have an
incentive to use bad PUFs, this is a welcome opportunity to
illustrate the impact of a combined attack model: namely a
combination of the PUF re-use and the bad PUF model.

We make the following assumptions:
1) The KE protocol is executed between Alice and Bob

(including an initialization phase and an arbitrary
number of subsessions), and later between Bob and
Claire (again including an initialization phase with the
same PUF and later subsessions).

2) Alice plays maliciously, and uses a challenge-logging
PUF in her initialization phase.

Under this assumption, Alice can learn the key exchanged
by Bob and Claire as follows:

1) When the PUF is in transition from Bob to Claire
in step 3 of the initialization phase of their protocol,
Alice gains physical access to the PUF.

2) Alice reads out the last previously applied challenge
c, applies it to the PUF, and obtains response r.

3) In the next subsession phase, Alice intercepts the
helper data d that is sent from Bob to Claire in step
2.

4) Alice utilizes her knowledge of r and d to infer st =
K.

Alice hence learns the key K exchanged by Bob and
Claire, breaking the protocol. Let us mention a few simple
modifications of the attack: Alice could alternatively use a
simulatable PUF (instead of a CL-PUF), leading to a similar
attack. If the PUF is obtained by Alice from a third party
manufacturer, then the manufacturer can mount the same
attack by using CL- or simulatable PUFs. Finally, if an
external adversary Eve is able to add a challenge logger
while the PUF is in transit from Alice to Bob, then she
can derive both Alice’s and Bob’s key as well as Bob’s and
Claire’s key by reading out the challenge logger when the
PUF is in transit from Bob to Claire. The details of these
variants are similar to the attack above and are left to the
reader.

E. An Unconditional BC-Protocol of Ostrovsky et al. in the
Bad PUF Model

Ostrovsky et al. [18] describe in Fig. 6 of their paper (see
Protocol 3 in Appendix D) an unconditional BC-protocol
(i.e., one that does not use any additional computational
assumptions) which is designed to be secure under the use
of malicious/bad PUFs. It uses a PUF that maps inputs of
length n to outputs of length 3n.

We present an attack which works in the original com-
munication scenario of Ostrovsky et al. [18], where the
correct lengths of the strings y and q, representing the out-
put/response and input/challenge, are not explicitly verified.
Including such a check in the protocol is an essential step
for achieving security in the bad PUF model. Likely such
a check was implicitly assumed by Ostrovsky et al. in their
protocol without making this explicit.

We describe below a relatively simple bad PUF type that
allows cheating in the protocol where the input/challenge to
output/response message expansion is not verified. We use a
bad PUF which (i) has equal input/output lengths (instead of
being length expanding), (ii) implements a permutation on
the challenge space, and (iii) has outputs that are computa-
tionally easy to invert. Our attack then makes the following
single assumption:

1) The committer Cuncon uses/initializes a bad PUF in
the protocol instead of a good PUF. For some fixed
value X ∈ {0, 1}3n, this bad PUF implements a linear
permutation f : {0, 1}3n → {0, 1}3n, mapping each
challenge C to the response R := C ⊕X .

The attack subsequently proceeds as follows:
1) The committer Cuncon initializes the above bad PUF

in the beginning of the protocol.
2) The committer can then cheat in the decommitment

phase as follows: In order to deliberately open the
commitment to bit b = 0, he sends the challenge st⊕
X . In order to open it to bit b = 1, he sends the
challenge r⊕ st⊕X . In the first case, the (bad) PUF
outputs st ⊕ X ⊕X = st, meaning that the receiver
accepts the decommitment for b = 0. In the second
case, the (bad) PUF outputs r⊕ st⊕X⊕X = r⊕ st,
implying that the receiver accepts the decommitment
for b = 1.

It is not too difficult to see that other attacks exist in
the bad PUF model or in the combined PUF re-use, bad
PUF model, i.e., if one leaves the original communication
scenario of Ostrovsky et al. For example, the protocol
is vulnerable if a bad PUF that communicates with the
committer or the receiver is used. The receiver can use this
communication channel to learn the committed bit previous
to the reveal phase; and the committer can use the channel to
alter the behavior of the PUF and open the commitment to
his like. The same holds if a malicious receiver has equipped
the PUF with a challenge-logger at an earlier occasion;
this allows him to learn the committed bit previous to the
reveal phase. Given our other discussions in this section, the
details here are relatively straightforward and are omitted
for space reasons. We stress again that while the three latter
attacks go beyond Ostrovsk et al.’s original communication
scenario, they still represent practically relevant strategies in
our opinion (see Sections II-C to II-E). Further aspects will
be discussed an extended version of this paper [26].

F. Security of Other Protocols in the PUF Re-Use Model
and Bad PUF Model

For reasons of brevity, we focused on the three above
protocols in our detailed security analysis. Other Strong PUF
protocols for OT, BC or KE can be attacked in similar
manners. Since the attacks are analog to the work in the
above sections, we merely sketch and summarize them in
the following list:

1) The OT-protocol of Rührmair [22] is no longer secure
in the bad PUF and PUF re-use model, and similar
considerations hold for the key exchange protocol of
van Dijk [5]. This can be seen relatively easily, since
the attacks are essentially equivalent to the attacks in
the last subsections on Brzuska et al.’s OT and KE
protocol.

2) It is not too difficult to see that the unconditional OT-
protocol of Ostrovsky et al. for honest PUFs (see Fig.
7 of [18]) is not secure in the PUF re-use model. If the
receiver of the protocol gets access to the used PUFs
after the end of the protocol, he can learn both strings
s0 and s1.
Furthermore, if the sender uses bad, challenge-logging
PUFs instead of honest PUFs as sidS1, . . . , sid

S
2k, then

he can obviously learn the value of the bi, which
allows him to derive the the choice bit b from the
values b′ij which he receives in step 4 of the protocol.
Actually, even something weaker suffices: If only one
of the PUFs sidSj for j ∈ S is challenge logging, then
b is revealed. Since S ⊂ [2k] is a randomly chosen
subset of size k, the latter condition can be enforced
by merely making k + 1 of the 2k PUFs challenge
logging. In other words, the attack also works if only
a strict subset of all PUFs are bad.

3) The statistically hiding, straight-line extractable bit
commitment scheme of Fig. 10 of Ostrovsky et al.
[18], and the statistically binding, straight-line ex-
tractable equivocal commitment scheme of Fig. 11 of
the same paper, can be attacked by communicating
bad PUFs, which maliciously transfer the challenges
applied to the PUF in the commit phase to the receiver.
This allows the receiver to learn the committed bit
before the reveal phase.
We stress once more that Ostrovsky et al. seem to
implicitly assume that there is no communication
between the malicious party and the PUF, i.e., we are
again extending the original attack model of Ostrovsky
et al. here. However, as discussed earlier, Communi-
cating PUFs seem hard to prevent in certain settings. If
they are considered realistic, then also the construction
for UC-secure computation of Ostrovsky et al., which
is built on the commitment schemes in Figs. 10 and
11 of [18], breaks down.

G. Summary of Our Security Discussion

To summarize, all Strong PUF protocols for OT, BC and
KE examined in this paper can be attacked in variants of the
PUF re-use model, the bad PUF model, or the combined
PUF re-use, bad PUF model. Only one of these attacks
(see item 3 of Section III-F above) requires Communicat-
ing PUFs, which are somewhat complex. The majority of
attacks, however, can be carried out in simple variants of
the bad PUF model, using simulatable or challenge-logging
PUFs, or straight away in the ordinary PUF re-use model.

We stress again that most of the attacks work outside the
attack scenarios and communication models of the original
papers, but we argued in Section II why we consider the
new models realistic. One notable exception is the attack
on Ostrovsky’s unconditional bit commitment scheme in the

malicous PUF model (see Section III-E), which actually
works in the original attack model of Ostrovsky et al.

The authors of this paper are not aware of any PUF
protocols for OT, BC or KE which can withstand all
said attack models, and in which (i) plain Strong PUFs
with no additional hardware properties are used, (ii) no
additional assumptions (set-up assumptions, classical com-
putational assumptions, etc.) apart from the security (i.e.,
unpredictability) of the Strong PUF are made. This illustrates
the acuteness of re-thinking current PUF protocol design.

IV. CONSEQUENCES, OR: THE NEED FOR ERASABLE
AND CERTIFIABLE PUFS

What are the consequences of the observations of the last
sections? The first and foremost implication is that attack
models for PUF protocols should be reconsidered. PUFs are
different from other cryptographic primitives in that they are
real pieces of hardware that can have all kinds of malicious
properties. Future protocol design and security analyses must
take this into account.

One potential route to evade some of our attacks has
been considered by Ostrovsky et al. in [18]. They combine
three steps to construct secure PUF-protocols in the presence
of malicious/bad PUFs: (i) They allow additional, standard
computional assumptions in the protocols. (ii) They assume
that the PUF cannot communicate with the malicious party,
in particular, that the PUF is no Marionette PUF and no
Communicating PUF. (iii) They assume a strict one-time
use of the PUF; potentially malicious parties must be kept
away from the PUF after it has been used. Measures (ii)
and (iii) essentially must be realized by effectively shielding
the PUF continuously until it is destroyed at the end of
its one-time use. These are certainly very costly and non-
trivial measures. They lead us to the question whether other
approaches for fighting the PUF re-use model and bad PUFs
exist in practice.

Erasable and Certifiable PUFs: Two other, direct coun-
termeasures against the PUF re-use model and bad PUFs are
so-called Erasable and Certifiable PUFs. Erasable PUFs are
Strong PUFs with the additional feature that single responses
can be erased from the PUF (i.e., made impossible to read
out forever) without affecting any of the other responses.
Erasable PUFs have been considered for the first time by
Rührmair, Algasinger and Jaeger in [27], who also suggest
an implementation based on so-called crossbar structures.
This implementation is very area consuming, however. Area
efficient implementations have not been suggested up to
this date. In order to better understand the challenges and
the novelty behind Erasable PUF design, consider two of
the currently most established Strong PUF designs: Arbiter
PUFs [31] and optical PUFs [20]. In both designs, many
subparts of the PUF interact in order to generate a response.
If one response shall be altered or erased, at least one of the
subparts must be changed. In the example of optical PUFs,

certain subparts of the scattering platelet would need to be
modified; in the case of the Arbiter PUF, at least one internal
delay value would need to be altered. But this will necessar-
ily also affect and modify other responses, contradicting the
requirements of an Erasable PUF. Reconfigurable PUFs [16]
are unsuited as Erasable PUFs for the same reason: Their
reconfiguration operation by definition alters all responses of
the PUF in one step. This makes any previously collected
CRPs of the PUF invalid.

If the area efficient, direct implementation of Erasable
PUFs remains difficult in the future, then an alternative
strategy could be equipping Strong PUFs with a surrounding
control logic. This logic is supposed to guard and regulate
the access to the Strong PUF’s challenge-response interface;
such constructions are also known as Controlled PUFs [8].
Along these lines, one could construct “Logically Erasable”
PUFs by letting the control logic maintain some record of the
previously applied and of the erased challenges (e.g., in the
form of an authenticated hash tree). Also Logically Recon-
figurable PUFs (LR-PUFs) as introduced by Katzenbeisser
et al. [13] can be an option in this context. They allow the
manufacturer of the PUF to collect a CRP-list that remains
valid even after many reconfiguration operations. This may
suffice to ensure the security of certain protocols in the
PUF re-use model. We remark, however, that such versions
of Controlled PUFs introduce additional assumptions, for
example that it is impossible to circumvent, modify or
tamper the control logic around the underlying Strong PUF.

Certifiable PUFs, on the other hand, are PUFs that allow
an offline certification of the fact that they have only those
properties that the honest parties expect from them. It is
possible to verify that they have been drawn faithfully from
the expected PUF distribution, and that they have not been
modified by anyone in any way afterwards. We argued
already in Section II-E why it is important that such a
certification can be carried out offline: Communication with
a trusted authority upon every protocol execution (in order to
certify the PUF) makes the use of PUFs obsolete. One could
then implement the desired functionalities easier by using
the trusted authority itself. Currently, however, no measures
whatsoever have been considered in the literature how such
authentication can be achieved.

The combination of certifiability and erasability (or vari-
ants such as logical erasability/reconfigurability) in a single
piece of hardware therefore poses a highly relevant, but very
challenging open problem to the PUF hardware community.
It should be resolved in order to restore the full applicability
of Strong PUFs as a general, broadly, and efficiently usable
cryptographic tool. It would allow PUF protocols in complex
environments without additional computational assumptions,
and without an economically unrealistic one-time use of
PUFs.

V. SUMMARY AND FUTURE WORK

We introduced a number of new attack models for Strong
PUF protocols in this paper, including the “PUF re-use
model” and the “bad PUF model”. These models, so we
argued, constitute practically relevant and hard-to-detect
attack strategies, and are strongly relevant for practical PUF
usage scenarios.

We then illustrated the power of the new models by
analyzing the security of several known protocols. The
results were already summarized in detail in Section I. In
short, all analyzed oblivious transfer (OT), bit commitment
(BC) and key exchange (KE) protocols for Strong PUFs can
be attacked successfully in the bad PUF model and/or the
PUF re-use model. This includes schemes by Rührmair [22],
van Dijk [5], Brzuska et al. presented at Crypto 2011 [1],
and Ostrovsky et al. [18]. With one exception, where so-
called Communicating PUFs are required, all attacks in the
bad PUF model only utilize very simple types of bad PUFs,
such as simulatable PUFs and challenge-logging PUFs. The
attacks in the ordinary PUF re-use model are even simpler
to execute, and do not require physical modification of PUFs
at all.

We remark once more that our attacks leave the original
attack models of the protocols (with the single exception of
the vulnerability of Section III-E). Still, our attack models
seem realistic, and indeed closely follow practical usage
scenarios of PUFs. Depending on the exact application, the
protocols would likely be faced with them once they were
used in practice. This implies that current attack models and
design strategies for advanced PUF protocols such as OT,
BC or KE must strongly be re-thought.

Two potential classes of countermeasures against our
attacks were analyzed in Section IV: The first is the employ-
ment of classical computational assumptions in combination
with a strict one-time use of PUFs and shielding of the PUFs
against communication with the malicious party until its
destruction [18]. This step maintains the usability of standard
Strong PUFs in advanced settings and in the presence of bad
PUFs, but is economically very costly and also difficult to
realize in practice. Furthermore, the combination of PUFs
and classical computational assumptions takes away some of
the appeal of PUFs as a new, independent, and post-quantum
cryptographic primitive that enables advanced protocols.

A second possibility, that would restore the usability of
PUFs in complex application settings without any restric-
tions, is the use of Certifiable and Erasable PUFs. These are
PUFs which can be certified offline for their genuineness,
and for the fact that they have no other features than those
expected by the honest parties (“certifiability”); and PUFs
that allow the selective erasure of single PUF responses with-
out affecting other responses (“erasability”). Without pre-
senting a formal proof of this claim in this paper, they seem
to allow efficient and secure PUF protocols whose security

is built on the unpredictability of the PUF alone, without
requiring additional computational assumptions. These novel
PUF types could maintain the status of Strong PUFs as
a general, new cryptographic primitive. If Erasable PUFs
maintain hard to realize in practice, then also variants such as
logical erasability/reconfigurability [13] could be interesting
in our context. In order to fight both the bad PUF and the
PUF re-use model, however, erasability (or variants of it)
and certifiability have to be combined in a single piece of
hardware. No strategies for this exist in the current literature.

Relation to PUF-Based Key Storage and Strong PUF-
based Identification: Apart from their use in basic crypto-
graphic protocols, a second established application of PUFs
is their usage as (tamper-sensitive) key storage element.
This application has at times been termed a “physically
obfuscated key” or POK [7], sometimes also a “Weak PUF”
[11]. We stress that this application scenario is not the topic
of our paper. Independent of whether such an assumption is
considered realistic or not, POKs explicitly suppose that the
PUF’s responses remain internal forever, and can only be
accessed by the system itself to derive an internal secret
key. This makes this PUF-type unusable for the type of
protocols considered in this paper; and at the same time,
it makes the attacks in the PUF re-use model meaningless.
Also the bad PUF model seems obsolete: PUF-based key
storage assumes that the manufacturer in a secure set-up
phase can read out the key derived from the PUF, and uses
it later on in communication with the PUF. This presupposes
some basic trust in the manufacturer in the first place, since
the secret key is shared with him from the beginning. The
exact relation between POKs and the bad PUF model will
be the topic of future analysis.

Something similar holds for the common Strong PUF
based identification protocol by Pappu et al. [20], [19]. The
use of bad PUFs here appears less relevant, and the PUF
re-use model does not seem to pose a significant threat.
On the other hand, a manufacturer who uses a simulatable
PUF can later impersonate the PUF-carrying hardware.
The exact implications of our attack models on PUF-based
identification were not the topic of this paper, and are left
for future investigations.

Future Work: We expect two strands of substantially
new research to emerge from our findings. The first will
be concerned with the theory behind Strong PUF proto-
cols: New attack models and security definitions must be
developed, for example in the context of the UC-framework.
They could include the formal definition of Erasable PUFs
(and variants such as Logically Erasable/Reconfigurable
PUFs) and Certifiable PUFs, and the investigation of “PUF
attestation” as standard protocol step. New security proofs
will need to be led in these environments. Finally, the exact
implications of our attack models for other PUF applications
than OT, BC and KE must be determined.

The second strand of research regards PUF hardware, and

concerns the development of efficient Erasable and Certifi-
able PUFs. As briefly addressed in Section IV, combining
these two features in a single piece of hardware seems highly
non-trivial. The same holds for combinations of logical
erasability/reconfigurability and certifiability. We would like
to pose these problems as central future challenges to the
PUF hardware community in this work.

ACKNOWLEDGEMENTS

The authors would like to thank Jürg Wullschleger for
his contributions on the bad PUF model and on challenge-
logging PUFs, and Marc Fischlin for his comments on
our attack on Ostrovsky et al.’s bit commitment protocol
presented in Section III-E.

REFERENCES

[1] C. Brzuska, M. Fischlin, H. Schröder, S. Katzenbeisser:
Physical Unclonable Functions in the Universal Composition
Framework. CRYPTO 2011.

[2] C. Brzuska, M. Fischlin, H. Schröder, S. Katzenbeisser:
Physical Unclonable Functions in the Universal Composition
Framework. Full version of the paper. Cryptology ePrint
Archive, Report 2011/681, 2011. Downloaded March 2012.

[3] R. Canetti: Universally Composable Security: A New
Paradigm for Cryptographic Protocols. FOCS 2001: 136-145.

[4] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, U. Rührmair:
The Bistable Ring PUF: A new architecture for strong Phys-
ical Unclonable Functions. HOST 2011: 134-141

[5] M. van Dijk: System and method of reliable forward secret
key sharing with physical random functions. US Patent No.
7,653,197, October 2004.

[6] M. van Dijk, U. Rührmair: Physical Unclonable Functions in
Cryptographic Protocols: Security Proofs and Impossibility
Results. Cryptology ePrint Archive, Report 2012/228, 2012.
Downloaded April 2012.

[7] B. Gassend, Physical Random Functions. MSc Thesis, MIT,
2003.

[8] B. Gassend, M. van Dijk, D.E. Clarke, E. Torlak, S. Devadas,
P. Tuyls: Controlled physical random functions and applica-
tions. ACM TISSEC 10(4), 2008.

[9] B. Gassend, D. E. Clarke, M. van Dijk, S. Devadas: Silicon
physical random functions. ACM CCS 2002.

[10] B. Gassend, D. Lim, D. Clarke, M. van Dijk, S. Devadas:
Identification and authentication of integrated circuits. Con-
currency and Computation: Practice & Experience, 2004.

[11] J. Guajardo, S. S. Kumar, G. J. Schrijen, P. Tuyls: FPGA
Intrinsic PUFs and Their Use for IP Protection. CHES 2007.

[12] D. E. Holcomb, W. P. Burleson, K. Fu: Initial SRAM state as
a fingerprint and source of true random numbers for RFID
tags. RFID Security, 2007.

[13] S. Katzenbeisser, Ü. Koçabas, V. van der Leest, A.-R.
Sadeghi, G. J. Schrijen, C. Wachsmann: Recyclable PUFs:
Logically Reconfigurable PUFs. Journal of Cryptographic
Engineering 1(3): 177-186 (2011)

[14] J. Kilian: Founding cryptography on oblivious transfer.
STOC, 1988

[15] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, P. Tuyls:
The Butterfly PUF: Protecting IP on every FPGA. HOST
2008: 67-70

[16] K. Kursawe, A. R. Sadeghi, D. Schellekens, P. Tuyls, B. Sko-
ric: Reconfigurable physical unclonable functions – Enabling
technology for tamper-resistant storage. HOST 2009: 22-29.

[17] J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated
circuits with identification and authentication applications. In
Proceedings of the IEEE VLSI Circuits Symposium, 2004.

[18] R. Ostrovsky, A. Scafuro, I. Visconti, A. Wadia: Universally
Composable Secure Computation with (Malicious) Physically
Uncloneable Functions. Cryptology ePrint Archive, Report
2012/143, 2012. First version downloaded in April 2012.
Throughout our paper, we refer to the numbering of figures
and protocols of the latest version of Ostrovsky et al. that was
available at the time of preparing our camera ready paper.
This latest version stems from Nov. 14, 2012.

[19] R. Pappu: Physical One-Way Functions. PhD Thesis, Mas-
sachusetts Institute of Technology, 2001.

[20] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld: Physical One-
Way Functions, Science, vol. 297, 2002.

[21] R. Rivest: Illegitimi non carborundum. Invited keynote talk,
CRYPTO 2011.

[22] U. Rührmair: Oblivious Transfer based on Physical Unclon-
able Functions. TRUST 2010, pp. 430 - 440, Springer 2010.

[23] U. Rührmair, H. Busch, S. Katzenbeisser: Strong PUFs:
Models, Constructions and Security Proofs. In A.-R. Sadeghi,
P. Tuyls (Editors): Towards Hardware Intrinsic Security:
Foundation and Practice. Springer, 2010.

[24] U. Rührmair, S. Devadas, F. Koushanfar: Security based on
Physical Unclonability and Disorder. In: M. Tehranipoor and
C. Wang (Editors): Introduction to Hardware Security and
Trust. Springer, 2011

[25] U. Rührmair, M. van Dijk: Practical Security Analysis of
PUF-based Two-Player Protocols. Cryptographic Hardware
and Embedded Systems (CHES 2012), Springer, 2012.

[26] U. Rührmair, M. van Dijk: PUFs in Security Protocols: Attack
Models and Security Evaluations. Cryptology ePrint Archive,
2013. To be submitted.

[27] U. Rührmair, C. Jaeger, M. Algasinger: An Attack on PUF-
based Session Key Exchange and a Hardware-based Coun-
termeasure: Erasable PUFs. Financial Cryptography, 2011.

[28] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, G.
Csaba: Applications of High-Capacity Crossbar Memories in
Cryptography. IEEE Transactions on Nanotechnology, 2011.

[29] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas,
J. Schmidhuber: Modeling Attacks on Physical Unclonable
Functions. ACM CCS, 2010.

[30] U. Rührmair, J. Sölter, F. Sehnke: On the Foundations of
Physical Unclonable Functions. Cryptology ePrint Archive,
Report 2009/277, 2009.

[31] G. E. Suh, S. Devadas: Physical Unclonable Functions for
Device Authentication and Secret Key Generation. DAC 2007.

[32] P. Tuyls, G. J. Schrijen, B. Skoric, J. van Geloven, N.
Verhaegh, R. Wolters Read-Proof Hardware from Protective
Coatings. CHES 2006.

[33] P. Tuyls, B. Skoric: Strong Authentication with Physical
Unclonable Functions. In: Security, Privacy and Trust in
Modern Data Management, M. Petkovic, W. Jonker (Eds.),
Springer, 2007.

APPENDIX

A. Strong PUFs

Different subtypes of PUFs exist (see [29], [30], [24]),
each with their own security properties and applications.
Strong PUFs are an important and central of these subtypes.
They have also been called Physical Random Functions due
to their similarity with the more classical Pseudo-Random
Functions [10]. A Strong PUF is a PUF with the following
features (for formal definitions see [30], [23], [1]):

1) Public CRP interface: Its challenge-response mech-
anism is publicly accessible. Everyone who holds a
Strong PUF can apply challenges to it and read out
the corresponding responses.

2) Large CRP set: It has a very large number of chal-
lenges, ideally exponentially many in some system
parameter, such as the system’s physical size or the
challenge length. Together with the finite read-out
speed of the Strong PUF, the large number of chal-
lenges makes it impossible to read out all CRPs in a
limited time, such as days or even weeks.

3) Unpredictability: The CRP-behavior of Strong PUFs
is so complex that it cannot be modeled or machine
learned or otherwise predicted. An adversary who
knows a large subset of all CRPs nevertheless cannot
build a model that allows him to correctly predict the
response to a randomly chosen, previously unknown
challenge with high probability.

The above features imply that only the very party who
currently holds possession of a Strong PUF can determine
the correct response to a randomly chosen challenge with
high probability, even if the PUF has been in the possession
of other parties before. This observation can be exploited
cryptographically in various ways, as we will see later in

this paper. Typical examples of Strong PUFs are given in
[19], [20], [9], [31], [28], [4]. Modeling attacks on Strong
PUFs have been reported, among other places, in [29].

One advantage of Strong PUFs over other types of PUFs
(such as Weak PUFs/POKs, see again [29]) is that their
responses do not need to remain secret, and do not require
protection inside the embedding hardware.

B. OT-Protocol of Brzuska et al.

The OT protocol of Brzuska et al. [1] implements one-out-
of-two string oblivious transfer. It is assumed that in each
subsession the sender Pi initially holds two (fresh) bitstrings
s0, s1 ∈ {0, 1}λ, and that the receiver Pj holds a (fresh)
choice bit b.

Brzuska et al. generally assume in their treatment that
after error correction and the application of fuzzy extractors,
a PUF can be modeled as a function PUF : {0, 1}λ →
{0, 1}rg(λ). We often use this model throughout this paper,
too. In the upcoming protocol, they furthermore assume
that rg(λ) = λ, i.e., that the PUF implements a function
PUF : {0, 1}λ → {0, 1}λ (compare [1], [2]).

Protocol 1: PUF-BASED OT BY BRZUSKA ET AL. ([1],
SIMPLIFIED DESCRIPTION)

External Parameters: The protocol has a number of
external parameters, including the security parameter λ, the
session identifier sid, a number N that specifies how many
subsessions are allowed, and a pre-specified PUF-family
P , from which all PUFs used in the protocol must be drawn.

Initialization Phase: Execute once with fixed session iden-
tifier sid:

1) The receiver holds a PUF which has been drawn from
the family P .

2) The receiver measures l randomly chosen CRPs
c1, r1, . . . , cl, rl from the PUF, and puts them in a list
L := (c1, r1, . . . , cl, rl).

3) The receiver sends the PUF to the sender.

Subsession Phase: Repeat at most N times with fresh
subsession identifier ssid:

1) The sender’s input are two strings s0, s1 ∈ {0, 1}λ,
and the receiver’s input is a bit b ∈ {0, 1}.

2) The receiver chooses a CRP (c, r) from the list L at
random.

3) The sender chooses two random bitstrings x0, x1 ∈
{0, 1}λ and sends x0, x1 to the receiver.

4) The receiver returns the value v := c⊕xb to the sender.
5) The sender measures the responses r0 and r1 of the

PUF that correspond to the challenges c0 := v ⊕ x0
and c1 := v ⊕ x1.

6) The sender sets the values S0 := s0 ⊕ r0 and S1 :=
s1 ⊕ r1, and sends S0, S1 to the receiver.

7) The receiver recovers the string sb that depends on his
choice bit b as sb = Sb ⊕ r. He erases the pair (c, r)
from the list L.

Comments: The protocol implicitly assumes that the
sender and receiver can interrogate the PUF whenever they
have access to it, i.e., that the PUF’s challenge-response
interface is publicly accessible and not protected. This im-
plies that the employed PUF must possess a large number of
CRPs. Using a PUF with just a few challenges does not make
sense: The receiver could then create a full look-up table for
all CRPs of such a PUF before sending it away in Step 3 of
the Initialization Phase. This would subsequently allow him
to recover both strings s0 and s1 in Step 6 of the protocol
subsession, as he could obtain r0 and r1 from his look-up
table. Similar observations hold for the upcoming protocols:
Indeed, all protocols discussed in this paper do require PUFs
with a large number of challenges, a publicly accessible
challenge-response interfaces, and an unpredictable CRP-
behavior (or, in other words, Strong PUFs).

Further, please note that no physical transfer of the PUF
and no adversarial access is envisaged during the subsessions
of the protocol, as already indicated in Section II-B.

C. KE-Protocol of Brzuska et al.

Together with CRP-based identification, key exchange
(KE) was among the first security applications suggested
for PUFs. Pappu et al. were the first to mention “key
establishment” as a potential PUF application [20], and van
Dijk gives the first concrete protocol in a patent writing [5].
The KE protocol of Brzuska et al. [1] picks up these known
approaches. We again describe it in a simplified form.

Protocol 2: PUF-BASED KEY EXCHANGE ([1], SIMPLI-
FIED DESCRIPTION)

External Parameters: The protocol has a number of
external parameters, including the security parameter λ, the
session identifier sid, a number N that specifies how many
subsessions are allowed, and a pre-specified PUF-family
P , from which all PUFs used in the protocol must be drawn.

Initialization Phase: Execute once with fixed session iden-
tifier sid:

1) Alice holds a PUF which has been drawn from the
family P .

2) Repeat N times:
• Choose a challenge c at random, measure the

response r of the PUF, create helper data d,
and extract a secret st from r. Add the tuple
(c, r, st, d) to the list L.

3) Alice sends the PUF to Bob.

Subsession Phase: Repeat at most N times with fresh
subsession identifier ssid:

1) Alice picks a tuple (c, r, st, d) from the list L at
random.

2) Alice sends (c, d) to Bob over the authenticated binary
channel.

3) Bob measures a (possibly noisy) response r′ to the
challenge c. He uses the helper data d to recover the
same secret st as the Server.

4) Both Alice and Bob set their key K = st. Alice erases
the tuple (c, r, st, d) from the list L.

Comments: For the same reasons as discussed in
Section B, the above KE protocols assumes (and indeed
requires) a Strong PUF. If the PUF has only got a small CRP-
set, then the adversary can fully read out all CRPs when
the PUF is in transition from Alice to Bob. Furthermore,
no adversarial access is foreseen or allowed between the
different subsessions of the protocol.

D. An Unconditional BC-Protocol of Ostrovsky et al. in the
Malicious/Bad PUF Model

Ostrovsky et al. [18] give an unconditional BC-protocol
(i.e., one that does not use computational assumptions) in
Fig. 6 of their paper. The protocol is intended to be secure
in the malicious PUF model. The protocol assumes a PUF
with challenge length n and response length l = 3n.

Protocol 3: PUF-BASED BC IN THE MALICIOUS PUF
MODEL BY OSTROVSKY ET AL. [18]

Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

1) Cuncon ⇒ Runcon : Committer sends
(initPUF, normal, sid,Cuncon) to FPUF and
obtains response (initializedPUF, sid). Committer
uniformly selects a query q ∈ {0, 1}n and sends
(evalPUF, sid,Cuncon, q) and receives response
(responsePUF, sid, q, a). Committer obtains
(st, p) ← FuzGen(a), and sends p to Runcon.
Committer sends (handoverPUF, sid, Cuncon, Runcon)
to FPUF.

2) Cuncon ⇐ Runcon : Receiver receives p′ from the com-
mitter and (handoverPUF, sid,Cuncon) from FPUF. It
uniformly chooses r ∈ {0, 1}l and sends it to the
committer.

3) Cuncon ⇒ Runcon : If b = 0, committer sends y = st
to the receiver. Else it sends y = r ⊕ st.

Decommitment Phase
1) Cuncon ⇒ Runcon : Committer sends (b, q) to receiver.
2) Cuncon ⇐ Runcon : Receiver receives (b′, q′) from the

committer and sends (evalPUF, sid,Runcon, q
′) to FPUF

and obtains (responsePUF, sid,q
′, a′). It then computes

st′ ← FuzRep(a′, p′). If b = 0, it checks if st′ = y.
Else, it checks if st′ = y ⊕ r. If the check passes, it
accepts, else it rejects.

140

Part III

Formalization of Physical
Unclonable Functions and

Unique Objects

141

Chapter 7

On the Foundations of Physical
Unclonable Functions

Having analyzed the usability (and non-usability) of PUFs in advanced cryptographic
protocols in Part II, we now turn to foundational aspects of PUFs and their formaliza-
tion in this third part. Among other things, we deal with the differentiation of various
PUF-like primitives, their mathematical, formal definition, and the completion of for-
mal security proofs for PUF protocols.

We start our considerations in this Chapter 7 with the paper:

• U. Rührmair, J. Sölter, F. Sehnke: On the Foundations of Physical Unclonable
Functions. Cryptology e-Print Archive, Report 2009/277, 2009.

Said work of the candidate is one of the first publications on the formal foundations
of PUFs, arguably the first paper solely dedicated to this topic. 1 It extends work that
was firstly presented by the candidate in an invited talk at Dagstuhl in 2008 [45].

Among other things, we observe certain conceptual problems with existing PUF
definitions in our paper. One of the main issues is the use of asymptotic notions (such
as polynomial time) in connection with a single, finite PUF. Secondly, we introduce
a game-theoretic approach in formal PUF definitions, which specifies the task of an
adversary as a game, and thereby implicitly stipulates an adversarial model. This new
approach has been continued in other PUF-definitions, for example by Armknecht et
al. in 2011 at the IEEE Symposium on Security and Privacy [2], or by Rührmair et
al. in 2010 [55]. We also analyze the entropy and information content in PUFs from
a fundamental physical perspective, showing that PUFs cannot contain an amount of
entropy that is exponential in their size. Finally, one of our main contributions in this

1We emphasize, however, that some early PUF works did contain discussions of certain formal PUF
aspects, making some first contributions to the foundations of PUFs: For example, R. Pappu proposes PUF-
definitions in his PhD thesis in 2001 [41], and so does B. Gassend in his MSc thesis in 2003 [24]. Also
Guajardo et al. lead a semi-formal discussion which touches upon the foundations of PUFs in 2007 [27].
However, it seems fair to say that none of these early works focused solely or in the same level of detail on
PUF-foundations as we do in this chapter. Furthermore, we analyze said earlier definitions closely in this
chapter, working out a number of problematic aspects of theirs.

143

paper is to argue that certain subclasses of PUFs should be distinguished in formal
treatments. It seems fair to say that this distinction between Weak PUFs and Strong
PUFs has made its way into the PUF community in the meantime, and is used in a
large number of PUF papers at this date.

According to Google scholar, the work has been cited 102 times to this date [26].
This makes it the most quoted paper of this thesis.

144

On the Foundations of Physical Unclonable Functions

Ulrich Rührmair Jan Sölter Frank Sehnke

June 10, 2009

Abstract

We investigate the foundations of Physical Unclonable Functions from several perspectives.
Firstly, we discuss formal and conceptual issues in the various current definitions of PUFs. As
we argue, they have the effect that many PUF candidates formally meet no existing definition.
Next, we present alternative definitions and a new formalism. It avoids asymptotic concepts
like polynomial time, but is based on concrete time bounds and on the concept of a security
experiment. The formalism splits the notion of a PUF into two new notions, Strong t-PUFs and
Obfuscating t-PUFs.

Then, we provide a comparative analysis between the existing definitions and our new no-
tions, by classifying existing PUF implementations with respect to them. In this process, we
use several new and unpublished machine learning results. The outcome of this comparative
classification is that our definitions seem to match the current PUF landscape well, perhaps
better than previous definitions. Finally, we analyze the security and practicality features of
Strong and Obfuscating t-PUFs in concrete applications, obtaining further justification for the
split into two notions.

1 Introduction

Physical One-Way Functions (POWFs), Physical Random Functions (PRFs), and Physical Unclon-
able Functions (PUFs) are emerging as a new type of cryptographic primitive [1, 2, 3, 5, 6, 7, 10, 4].
While the two former terms have been coined first, today mainly the expression Physical Unclone-
able Function or PUF is in use. In a nutshell, a PUF is a mathematical function that is derived
from the behaviour of a complex physical object or device. The object can be excited with many
possible stimuli Ci, upon which it reacts with corresponding responses Ri. This allows to regard
the object’s behavior as a function that maps stimuli Ci to responses Ri. Typical applications of
PUFs lie in security tasks such as tamper protection, intellectual property protection, read-proof
memory, and key obfuscation. They can also be used for classical cryptographic protocols such as
key distribution [1] or bit commitment [2].

Despite their broad application spectrum, there are yet no definitions that capture the notion
of a PUF consistently and in a contradiction-free manner. Most existing formalizations exhibit
problems on the formal and/or on the conceptual side, as we will argue later. Furthermore, it
seems that currently more than one concept or notion goes under the term of a “PUF”: On the one
hand, structures with a highly complex input-output behavior and very many challenges, such as
the optical PUF of [1]. On the other hand, structures that have essentially one challenge [6, 10],
and which are mainly used for key obfuscation applications or as so-called “POKs” [3].

1

We take this situation as a reason to investigate the foundations of PUFs further. We start
by a thorough formal analysis of currently existing PUF-definitions (section 2). Some problematic
aspects are revealed, which are in part caused by the application of concepts like polynomial time
and negligible information in the context of PUFs. Subsequently, we propose a new formalism and
new definitions (sections 3 and 4). We suggest that the current concept of a PUF should be split
into two distinct notions: Strong PUFs and Obfuscating PUFs. Our definitions avoid asymptotic
notions, and are based on concrete time bounds and the concept of a security experiment. They
build upon several previously existing concepts and definitions [2, 3, 10].

We then go on to classify current PUF implementations with respect to our two new definitions,
and also with respect to the previously existing definitions (section 5). In this process, we use sev-
eral new and unpublished machine learning results that were recently obtained in our group. They
show that not only the arbiter PUF, but also improved variants (XOR Arbiter [5, 7], Lightweight
PUF [12] and Feed-Forward Arbiter [5]) can all be broken by ML techniques. The resulting classi-
fication suggests that our definitions can map the current PUF landscape well, perhaps even more
consistently than previous approaches.

Finally, we argue that also from an application perspective, it makes sense to maintain the
suggested split into two new notions (section 6). To that end, we analyze the differing security
and practicality features that occur in the application of strong and obfuscating PUFs for entity
identification. In section 7, we argue that a general emulation of strong PUFs is possible on the
basis of obfuscating PUFs, but at the cost of reduced security and practicality. Once more, this
strengthens the case for our distinction between strong and obfuscating PUFs. We conclude the
publication by a summary in section 8.

2 Problems with Existing Definitions of PUFs

Let us analyze the formal definitions/specifications of PUFs that have been published up to date. For
the convenience of the reader, these definitions are provided in the Appendices A, B and C. Please
note that each of these definitions possesses its own individual merits, and that they are significant
pieces of scientific work. Our discussion merely would like to point at the non-trivial obstacles that
naturally and necessarily occur in the formulation of a consistent and workable definition of PUFs.

2.1 Physical One-Way Functions

We start with the definition of physical one-way functions [2], which is given in Appendix A. It
certainly owns the merit of being the first formalization in the field. But there are some problematic
aspects, both on the formal/logical and on the conceptual side, which we list below.

Asymptotic concepts vs. finite function. The definition employs the concept of polynomial
resources and of negligible probability, which are familiar from the formalization of mathematical
cryptography, for example from the definition of (mathematical) one-way functions [17]. However,
these concepts can only be applied in an asymptotic framework, that is, when they are considered
for functions with an infinite domain, or for an infinite family of finite functions. If the concepts
are applied in finite contexts, logical contradiction arise.

In particular, Definition A.2 considers only one single function f with a finite domain. This
has the consequence that no function at all can formally fulfill Definition A.2, as the following
logical argument shows: Let f be an arbitrary mathematical functions, and suppose, for the sake of
contradiction, that f meets Definition A.2. As the definition considers only finite functions, f must

2

be finite, with a finite domain and range. This implies that an algorithm Af with the following
properties can be constructed: (i) Af incorporates a full look-up table for f . (ii) Af inverts f by
exhaustive search through the domain of the look-up table. (iii) Af works within a constant time
bound (which is essentially the time it takes to browse the look-up table). However, the existence
of Af violates item 2 of the Def. A.2, whence f does not meet the definition, contradiction. This
means that no Physical One-Way Function in the sense of Definition A.2 exists.

Functions with small ranges are excluded. Def. A.2 excludes functions with small ranges, for
example with the binary output range {0, 1}. Such functions can be inverted in the sense of item 2
of the definition, as some pre-image for one of the two possible function values can be found easily.
Many prominent examples of electrical PUFs (arbiter PUF [7], ring oscillator PUF [7], etc.) belong
to this class of PUFs, and are excluded by the definition.

Non-invertability is not the relevant security property. Another conceptual argument is
that the non-invertability of f is not required in order to make the standard applications of physical
one-way functions secure. As an example, consider the two main applications proposed in [1],
the forgery-proof labeling of bankcards and key distribution. Speaking in the language of [2] and
Notation A.1, they merely require that an adversary without access to the physical system Σ cannot
give the correct function value f(X,Pz) for a randomly chosen z, even if he has had previous access
to the system Σ for some time.

2.2 Physical Random Functions

Let us now elaborate on the definition of Physical Random Functions (see Appendix B) for com-
parison. It is certainly very compact and intuitively appealing, and also includes some sort of
asymptotic treatment: The notions polynomial and negligible are taken to be relative to the size of
the system (see Appendix B). But the definitin nevertheless touches upon some problematic issues.

PUFs with polynomially many challenges are excluded. Definition B.1 allows an adversary
to measure polynomially many challenge response pairs (CRPs). This has the consequence that
several of the most prominent examples of PUFs will not meet the definition: Since they only
possess polynomially many challenges at all, an adversary can create a full look-up table without
breaking the polynomial CRP bound, and subsequently use the table for correct PUF prediction.
This applies to the ring oscillator PUF proposed in [7], which has only a quadratic number of
challenges. It surprisingly holds for the optical PUF of [1], too: Its number of CRPs is directly
proportional to the x and y dimensions of the scattering token, multiplied by a constant factor
for the finite number of distinct laser angles realizable by the limited measurement set up (this
latter number does not grow with the token size). Excluding these PUFs for formal reasons, while
especially the optical PUF seems secure by all practical standards, seems problematic.

Information content of physical systems is polynomially bounded. It is worth noting in
this context that the amount of information (measured in bits) that can maximally be stored in
any physical system S is always polynomially bounded in the size of the system. This can be seen
in two ways. Firstly by some simple heuristic: The amount of atoms (or electrons or quarks etc.)
in a physical system is polynomially related to the volume. If each of these particles can store a
constant number of bits, the information content is polynomial. Even if we speculate that each
particle could store a constant (or even a polynomial!) number of bits in its precise relation to each

3

of the other, polynomially many particles (for example by coupling), the overall number of stored
bits would still remain polynomial.

There is, however, also a more fundamental argument to the same end. It has been known for a
few years that the generalized second law of thermodynamics can be used to derive bounds on the
maximal entropy (or information content) of a finite, isolated system. The two most famous bounds
are the Bekenstein bound and the holographic bound by t’Hooft and Susskind [20]. The latter states
that for any isolated physical system S which fits into a sphere of radius R, the maximal entropy
or information content HS of S is bounded by

HS ≤ πc3R2 / �G. (1)

Thereby c denotes the speed of light, G is Newton’s constant, and � is the Planck constant. The
equation establishes the polynomial upper bound that we sought.

If the maximal information content of any physical system is upper bounded polynomially in
its size (volume/area), however, this makes it questionable whether the usual polynomial/super-
polynomial distinction is the right measure to characterize PUFs.

2.3 Physical Unclonable Functions

Another characterization of PUFs was given in [10] (see Description C.1 in Appendix C). It is not
formally stated as a definition in the original text, whence we term it as a description. It has the
great benefit of introducing aspects like measurement noise and also tamper sensitivity. But there
are a few problematic aspects related to its specifications.

Asymptotic concepts vs. finite function. It seems reasonable to conclude that a PUF im-
plemented by a finite device is indeed a finite function. This means that in Description C.1, the
asymptotic concepts of negligible probability and the notion of a finite function are again mixed. By
a similar argument as carried out full detail in section 2.1, this has the consequence that formally
no physical unclonable function in the sense of Description C.1 can exist.

Functions with small ranges are excluded. Item 2 of the description states that it must be
impossible to come up with the response to a random challenge, except with negligible probability.
However, most known electrical PUFs only have one single bit as oputput (e.g. ring oscillator and
arbiter PUFs, and also any variants of the arbiter PUF such as feed-forward arbiter, XOR arbiter,
or leigthweight PUFs). Hence, an adversary can always guess their output with probability 1/2.
This means that all of these PUFs are excluded by the description, which is not desired.

Strong PUFs in the sense of Description C.1 cannot exist. As argued in detail in section
2.2, the information content of an isolated physical system is bounded polynomially in its size
(volume/surface area). This means that a strong PUF with an exponential number of challenges
in the sense of Description C.1 cannot exist. This is shown by the following argument: Suppose,
for the sake of contradiction, that a strong PUF according to Description C.1 exists. As stipulated
by the description, such a PUF must possess an exponential number of challenges. At the same
time, item 1 of the description states that the responses only give a pairwise negligible information
about each other. This implies that the CRPs extract an exponential amount of information from
a system that maximally can contain a polynomial amount of information, contradiction. Hence,
no strong PUF in the sense of Description C.1 can exist.

4

Weak PUFs in the sense of Description C.1 are a very restrictive notion. Weak PUFs
in the sense of Description C.1 may well exist, but the concept of a weak PUF may turn out to be
quite a restrictive notion. As our previous discussion indicates, the only known candidates for a
weak PUF are coating PUF and SRAM-based PUFs [6, 10]. Similar to our above discussion, Arbiter
PUFs and Ring Oscillator PUFs do not fulfill the requirement that their challenges merely reveal a
negligible amount of information about each other, and cannot be weak PUFs.

2.4 Summary

The current definitions of PUFs exhibit problems, which mainly arise from the use of notions like
polynomial time or negligible probability in the context of PUFs. Our discussion suggests that these
measures should be avoided. They also have problems in formally expressing the unclonability of
the system underlying the PUF. In consequence, many current PUF candidates meet none of the
existing definitions in a formal manner (see also section 5.1).

3 Strong t-PUFs

This section covers the first of the two new notions suggested in this paper, Strong t-PUFs. We
start by some notation.

Notation 3.1 (Measurements). We use the following notation in order to describe the measurement
of an apparatus M on a physical system S: Ci denotes the stimulus or challenge which the measuring
apparatus applies to the system. MCi or MS

Ci
denotes the measurement result or the response that is

obtained by the apparatus in dependency on C. CM denotes the finite set of all possible challenges
Ci which M can apply to S.

Definition 3.2 (Strong t-PUFs). Let S be a physical system and M be a measuring apparatus,
which may be integrated into the system. S is called a strong t-PUF or simply a t-PUF with
respect to M if the following holds:

1. It is practically infeasible for the original manufacturer of S to produce another system S′ with

MS
C = MS′

C for all C ∈ CM .

2. It is practically infeasible for any cryptographic adversary Eve, who may execute any physical
action allowed by the current state of technology and any practically feasible Turing computa-
tion, to succeed in the following experiment with a probability greater than 90%:

(a) Eve is given the system S and the measurement apparatus M for a time period t.
(b) Eve is also granted access for time t to a “time-faithful” oracle O, which outputs values

MS
C on input C. Time-faithful means that O produces its output in the same time span

that would be required for measuring the response MS
C on the real system S via use of M .

(c) At the end of the period of length t, Eve must output a physical system S′, and access to
O is withdrawn from her.

(d) Subsequently, a measurement parameter C0 is chosen uniformly at random from the set
CM , and is given to Eve. After that, she must answer with a numerical value VEve.

The experiment is called successful if the following holds:

5

(i) VEve = MS
C0
.

(ii) For all C ∈ CM it holds that
MS

C = MS′
C .

Thereby the probability is taken over the uniformly random choice of the challenge C0, and the
random choices or procedures that Eve might employ during steps 2a to 2d.

Eve’s task in the security experiment is depicted schematically in Figure 1. In order to achieve ease
of use of our terminology, we will specify a default value for the parameter t.

Eve

O, S’

C

VEve = S

C
M ?

O, M, S

Figure 1: Eve’s task in the security experiment of Definition 3.2. She is treated as a black box, and
only her input-output behavior is specified.

Notation 3.3 (PUFs). If S is a strong t-PUF with respect to some measuring apparatus M and
with respect to a time period t ≥ 1 day, then we will often call S simply a strong PUF or just a
PUF.

3.1 Discussion

Let us discuss the central features of the definition.

Why S and S’? The reader may ask why we stipulated that Eve must output a system S′ after
a time period t. It might seem more suggestive to replace item 1. of Definition 3.2 by the following
item 1.′:

1.′ Eve is given the system S and the measurement apparatus M for a time period t. At the end
of that period, Eve must hand back the system S.

Such a statement assumes that Eve leaves the system unchanged, however, thus making a very
strong assumption about her internal behavior. Otherwise, i.e. if we formally denote a strongly
altered system with different response values still as S, we run into the logical contradiction that
MS

C �= MS
C (for at least some C ∈ C). The cleanest solution to our taste is to differentiate between

the input and output object, and to demand that MS
C = MS′

C for all p ∈ PM . Please note that this
also condition also must be met by Eve in practical attacks, if she wants her presence to remain
undetected.

6

Why a success probability of 90%? This allows the use of systems with a binary output (that
is, 0 or 1) as strong PUFs, since the chance of guessing a single bit value correctly is always at least
1/2. Also, it gives credit to the fact that the natural manufacturing variations in certain systems
are not big enough as to change 50% of all responses [4]. Choosing the value 90% instead of 75%,
say, is to some extent arbitrary.

Purpose of the oracle O. The main reason for including the oracle O in the definition is to
distinguish strong PUFs from systems whose security stems from an access restriction of any kind.
Such access restrictions are, for example, present in controlled PUFs, or also in coating PUFs or
related systems, where the responses cannot be measured from the outside without tampering the
structure. In contrast to that, the security of strong PUFs should only lie in the high physical
complexity or disorder of the structure underlying the PUF. PUFs which are secure in the face of
such oracle attacks are also automatically secure against any side channel attacks.

All statements relative to M . Our definition stresses the central role of a measuring apparatus
in connection with strong PUFs. Being a strong PUF is not a property of the system alone, but of
the system and the method or apparatus by which the system is measured. This also allows us to
easily include the unclonability of a strong PUF in the definition.

Secret key based systems are excluded. Please note that by the manufacturer resistance
condition in item 1 of the definition, tamper sensitive systems which contain a secret binary key
and use this classical key to generate a complex input-output behavior, are excluded from the
definition.

Implications of the Definition. The reader can verify easily that several natural properties
of PUFs follow from the definition. For example, the set CM must have large cardinality, since
otherwise Eve could perform a complete read-out and create a full look-up table even for small
values of t. Furthermore, Eve must be unable to machine learn the system, or to clone it physically,
in the sense that she can output a second system S∗ such that MS

C = MS∗
C for at least 90% of all

C ∈ CM .

4 Obfuscating t-PUFs

PUFs have also been suggested for a second type of application, which has been termed “key obfus-
cation” [3, 6]. The idea is to use the disordered, unique internal structure of a PUF as a non-volatile
storage of a secret binary key, whose content can hardly be determined through external, invasive
attacks due to its irregular and disordered nature. Typical representatives of this class are PUFs
based on SRAM-cells [10] and coating PUFs [6]. Please note that these two PUFs are neither strong
PUFs in the sense of Definition 3.2, nor Physical One-Way Functions, Physical Random Functions,
or strong Physical Unclonable Functions in the sense of the respective Definitions A.2, B.1, C.1.
Therefore we introduce obfuscating PUFs. The previous notions that come closest to obfuscating
PUFs are weak Physical Unclonable Functions (Definition C.1) and Physically Obfuscated Keys [3].

Definition 4.1 (Obfuscating PUFs). Let S be a physical system, and M be a measuring apparatus
with only one measurement parameter, that is, CM = {C∗}. S is called an obfuscating t-PUF

for a binary key KS relative to M if the following holds:

1. MS
C∗ = KS.

7

2. The value of KS results, at least in part, from random, uncontrollable manufacturing varia-
tions.

3. It is infeasible for Eve to succeed in the following experiment with a probability greater than
(0.9)|KS |:

(a) Eve is given S and M for a time period t. She is allowed any action on the systems S
and M permitted by current technology.

(b) At the end of that period, Eve must output a binary value VEve.

(c) The experiment is called successful if VEve = KS.

Thereby the probability is taken over the random choices or procedures that Eve employed
during steps 3a and 3b.

Eve’s task is illustrated in Figure 2. In order to achieve an easy notation, we introduce the following
notational convention.

Notation 4.2 (Obfuscating PUFs, POKs). If S is an obfuscating t-PUF with respect to some
measuring apparatus M and with respect to a time period t ≥ 1 day, then we will often call S simply
an obfuscating PUF or a POK.

Eve
V =

Eve S
K ?

M, S, C*

Figure 2: The task that Eve needs to accomplish in order to break the security of an obfuscating
PUF

4.1 Discussion

Manufacturer Resistance. We would like to emphasize that we stipulated different types of
’manufacturer resistance’ in Definitions 3.2 and 4.1. The requirement expressed in item 1 of Defi-
nition 3.2 does not make sense for obfuscating PUFs: Their information content is not necessarily
very high. This may allow the manufacturer to fully characterize the system, and/or to extract
the obfuscated key KS during a certain substep of the manufacturing process. Subsequently, he
may construct another piece of hardware S′, which simply stores KS in classical, non-volatile form.
This system will behave indistinguishably from the original S, violating the original manufacturer
resistance stated in item 1 of 3.2. Therefore another type of manufacturer resistance had to be
expressed in Def. 4.1.

8

Only one challenge. Definition 4.1 stipulates that an obfuscating PUF must only have one mea-
surement parameter. The reason is that in practical applications, the hardware system containing
the obfuscating PUF always uses it to derive the same key (or the same small set of keys), and
proceeds these keys by further cryptoschemes. This implies that some form of fixed challenge must
be hardwired into the system. The definition pays respect to this fact.

Distinction to systems with binary keys. The type of manufacturer resistance expressed in
item 2 of the definition also distinguishes obfuscating PUFs from classical, tamper sensitive systems
that store a protected, secret key. Such systems do not, and should not, meet the definition.

5 Classification

We will now try to classify the main Physical Unclonable Functions that have been proposed to
date with respect to our two new notions. Please note that – similar to classical cryptography – we
cannot formally prove that a certain candidate meets one of the definitions, we can only disprove
it. For brevity, we only sketch the respective arguments.

Optical PUF. Due to its high internal complexity and in lack of a known method to reverse
engineer or machine learn it, the optical PUF of [1] is a good candidate for a strong PUF (in the
sense of Def. 3.2. Since the measurement apparatus and also the measurement process can be
observed by Eve, she can derive the measurement angle(s) and point(s) of incidence that are used
for the derivation of a potentially obfuscated key KS . The optical PUF hence does not seem suitable
as obfuscating PUF, as long as it is not integrated.

Optical Integrated PUF. An integrated optical PUF has been proposed in [8] Its internal
complexity is substantial, but does not seem to be as outstanding as in the case of the original
optical PUF [8]. In lack of a proven method to attack it, it must be regarded as a candidate for a
strong PUF. Due to its integrated nature, it is also a candidate for an obfuscating PUF.

Ring Oscillator PUF. A ring oscillator PUF (RO PUF) [7] with n ring oscillators can be fully
characterized with n · logn bits of information (i.e. via a list that sorts the n oscillators in ascending
order with respect to their frequencies). If the challenges are chosen carefully, a set of challenge-
response-pairs of comparable cardinality suffices in order to derive this list. In any case, the maximal
set of all possible CRPs has only cardinality O(n2), making even a full read-out practically feasible.
Thus, the RO PUF is no strong PUF. At the same time, it is a candidate for an obfuscating PUF.

Arbiter PUF. Arbiter PUFs [7] have an exponential number (in the number of stages) of possible
challenges, meaning that full read-out of all CRPs is impossible. Nevertheless, machine learning of
their behavior has been carried out successfully by standard ML methods (support vector machines
[5] and even perceptrons [4]). This means that they are no strong PUFs, but they could be used as
obfuscating PUFs.

XOR Arbiter PUF. XOR Arbiter PUFs [5, 7] consist of a number of k independent Arbiter
PUFs, each with the same number of stages. The same challenge Ci is applied to all of them, and

9

their responses R1
i , . . . , R

k
i are XORed with each other to obtain the overall response Ri. 1 They

have been introduced to make the known ML attacks on Arbiter PUFs more difficult. One obvious
disadvantage is that their read-out stability decreases exponentially in k. Recently, our group has
carried out ML experiments on XOR Arbiter PUFs with 4 XORed arbiters. The methods we applied
was logistic regression with Rprop gradient descent. The data samples (training set, test set) were
generated by an additive linear delay model. As described in greater detail in Appendix C, we
achieved prediction rates of 99 %, meaning that the XOR Arbiter PUF can be fully broken by this
type of ML attack. Hence, it is no strong PUF, but a candidate for an obfuscating PUF.

Lightweight PUFs. Lightweight PUFs (LW PUFs) have been introduced in [12]. They are, in
fact, a special sort of XOR arbiter PUFs, with the only difference that the wiring of the external
challenge bits to the internal challenges that are applied to the k arbiters is non-trivial. Several
wiring architectures are conceivable, and one particular example is described in [12]. Nevertheless,
we could show (see Appendix D) that LW PUFs can be broken by essentially the same methods as
XOR arbiter PUFs, namely logistic regression with Rprop gradient descent. Our experiments also
proved that not only the original wiring of [12] can be learned, but also random wirings or mappings
between the external input and the internal challenges to the k arbiters. This suggests that LW
PUFs in their current form are not secure as strong PUFs. They remain candidates for obfuscating
PUFs, though.

Feed-Forward Arbiter PUF. Feed-Forward Arbiter PUFs (FF-Arb PUFs) have been intro-
duced, too, to make ML attacks more difficult [5, 7]. Again, one of their disadvantages is their
decreased stability; for example, the stability of a FF-Arb PUF with seven FF-loops decreases to
90.16 % if considered over a temperature variation of 45◦ C [5]. Despite the fact that perceptrons
and SVM fail to learn these structures, more involved machine learning techniques are capable of
attacking them. Some very recent ML-experiments conducted in our group suggest that FF-Arb
PUFs are vulnerable to so-called evolutionary algorithms. These are particularly suited for our
task, since they naturally allow us to “feed” or “include” our knowledge about the internal layout
or wiring of the PUF in the fitness evaluation step of the ML algorithm. The CRP-data samples
were again generated via a linear additive delay model. This means that even FF-Arb PUFs are no
strong PUFs, but that they can mainly serve as obfuscating PUFs.

Coating PUF. Coating PUFs [6] are no strong PUFs according to Definition 3.2: Eve can query
the oracle that she is provided with for all possible challenge-response-pairs of the coating PUF
within very short time (there is essentially just one CRP, which gives the local capacitances deter-
mined by all sensors). Please note that without the oracle, Eve would find it hard to determine
these capacitances: Any invasive attack would change the capacitance and destroy the responses.
In order words, coating PUFs nicely illustrate why it is important to include the oracle access of
Eve in Definition 3.2. Coating PUFs are no strong PUFs, but constitute the archetypical candidate
of an obfuscating PUF.

1Please note that the other obvious option to set up an XOR-based arbiter PUF, namely to apply independent
challenges C1

i , . . . , C
k
i at the k arbiters, does not make sense: In this case, we can fix all challenges apart from those

challenges applied to one of the k arbiters. This creates a structure that behaves essentially like a single arbiter.
Then, we can machine learn the behavior of this single arbiter by the known methods [5]. Subsequently, we can go
on to fix other challenges and vary the single challenges applied to another arbiter, etc., until we have successively
machine learned the behavior of the whole structure.

10

SRAM-based PUF/Butterfly PUF. By the very same argument as above, SRAM-based
PUFs/Butterfly PUFs [10, 11] are no strong PUFs, but candidates for obfuscating PUFs.

Summary. The following table summarizes our findings. As noted earlier, we cannot positively
prove that one of the listed PUFs actually is an obfuscating or strong PUF according to Definitions
3.2 and 4.1. They can merely have the status of candidates. On the other hand, one can disprove
that a PUF fulfills Definitions 3.2 or 4.1, leading to “no”-entries in the table. The table shows that
with one exception, all currently existing “PUFs” are either candidates for strong PUFs or obfuscat-
ing PUFs, but not for both, and that also every known PUF is a candidate for at least one of the
two notions.

Opt. Int.Opt. R.Osc. Arb. XOR LW FF Coat. SRAM
Obf. PUF No Cand. Cand. Cand. Cand. Cand. Cand. Cand. Cand.
Str. PUF Cand. Cand. No No No No No No No

5.1 Comparison with Previous Notions

For comparison, we also provide a classification of current PUF candidates with respect to the
previous notions of Physical One-Way Functions (POWF, Def. A.2), Physical Random Function
(PRF, Def. B.1), Strong Physical Unclonable Functions (Strong PUF as in Def. C.1) and Weak
Physical Unclonable Functions (Weak PUF, Def. C.1). As the reader may verify relatively easily,
the entries in the following table follow from the discussions in section 2 and 5, and from the new
machine learning results presented in Appendix D.

Please note that it is not fully clear how Def. B.1 should be interpreted with respect to Coating
PUFs and SRAM-based PUFs, whence we leave the respective classification open.

Opt. Int.Opt. R.Osc. Arb. XOR LW FF Coat. SRAM
POWF No No No No No No No No No
PRF No Cand. No No No No No ?? ??
Strong PUF No No No No No No No No No
Weak PUF No No No No No No No Cand. Cand.

The two last tables seem to support our proposed formalism of strong t-PUFs and obfuscating
t-PUFs, and the split of PUFs into two different notions.

6 Differing Security and Practicality Features in Applications

We will now analyze the differing properties of strong PUFs and obfuscating PUFs in a concrete
security application. We chose an identification-like scenario that was among the first applications
ever suggested for PUFs [1, 2]. Strong PUFs and obfuscating PUFs have notable differences therein.

6.1 Setting

The situation we consider is as follows: Alice wants to identify herself towards a central server via
a certain physical token that she holds. The token is put into a terminal, which communicates with
the server. This basic setting applies in many practical situations, for example bank cards, branded
products, identity cards, access cards, etc. [1, 2]. The application of PUFs to both scenarios has
been described intensively in the literature.

11

6.2 Review of Basic PUF-Protocols for Identification and Labeling

Before we analyse the differences, we will quickly repeat the basic protocols and schemes for the
convenience of the reader. Readers familar with the protocols may skip to section 6.3.

If strong PUFs are applied to the above identification setting, the protocol works as follows [1]:
The central server must know a list of CRPs. It sends randomly chosen challenges Ci from the list
to the terminal, which returns the responses MCi obtained from the label. These are compared to
the CRPs in the server’s list. Any CRP cannot be used more than once in this setting, meaning
that the server must have a very large list on stock. In order to reduce the storage requirements,
protocols that allow refreshment of the CRPs at the central server are possible [8].

In the case of an obfuscating PUF S that contains a key KS , two possibilities are conceivable.
Option one is that the central server stores KS , and that the central server executes a symmetric
identification protocol on the basis of KS with the labeled item. The communication between them
is executed via the terminal.

Option two is that the labeled item stores a public key/private key pair (pk, sk). The private
key sk is encrypted with the obfuscated key KS via a one time pad scheme, and the encrypted value
Enc(sk) is stored on the labeled item. The public key pk is stored in plain.

In order to authenticate (pk, sk), the public key pk must be signed (or ’tagged’) by some trusted
authority CA via its key SigKey TA. The terminal holds the corresponding public verification key
V erKey TA. The verification of a label by the terminal proceeds in two steps: (i) The labeled item
passes on the CA’s ’tag’ and the key pk to the terminal. (ii) The terminal verifies the tag via use of
V erKey TA. (iii) The terminal executes an asymmetric identification protocol with the labeled item
on the basis of pk. During this protocol, the labeled item decrypts Enc(sk), and uses sk to generate
its responses. This setting allows even offline-verification of the label, i.e. without a connection to
a central server.

6.3 Practicality Features

We will now illustrate the different practicality features of Strong and Obfuscating PUFs in the
above example application.

Strong PUFs. Strong PUFs only allow secure labeling in connection with a central server, which
must store a very large number of CRPs. The computational load on the labeled item is essentially
zero, meaning that very cheap labels can be generated. Error correction on the measurement values
can be carried out by the terminal.

Refreshment of CRPs is possible via a protocol given in [8], which reduces the storage require-
ments on the server. However, the protocol comes at the cost of reduced security properties (see
section 6.4).

Obfuscating PUFs. Obfuscating PUFs allow verification of the label via a central server, too,
but advantageously on the basis of one single short bitstring stored on the server. This string can
be used multiple times and does not need to be refreshed. The label must execute a symmetric
identification scheme, imposing some computational load on it. Alternatively, as described in section
6.1, even offline verification of the labels is possible. In this case, however, asymmetric schemes must
be executed by the label itself, leading to a strong computational load on a mobile system.

6.4 Security Features

The different security features of Strong and Obfuscating PUFs in the above appliance are as follow.

12

Strong PUFs. Strong PUFs lead to secure labeling under the mere assumptions that the under-
lying PUF is secure. The scheme remains secure even if Eve has physical access to the labeled item
and the PUF contained therein multiple times.

If the CRPs at the server are refreshed via the protocol of [8], one necessary assumption is
again the security of the underlying strong PUF. The protocol brings about a number of additional
assumptions, however: Firstly, unproven computational assumptions on the security of the cipher
employed in the protocol (see [8]). Secondly, it can be shown that the protocol is not secure against
an adversary who (i) eavesdrops the communication between the item, the terminal and the server,
and who (ii) gains physical access to the PUF more than once. This enforces the slightly unrealistic
assumption that Eve must not have access to the PUF more than once.

Obfuscating PUFs. Obfuscating PUFs allow secure labeling only under a number of additional
assumptions, which go beyond the mere security of an obfuscating PUF. Let us start with the case of
a central sever which stores KS : We firstly must assume that the underlying MAC is computationally
secure. Next, we face two hardware assumptions on the labeled item: We must suppose that the
transfer from the key KS to the unit where the MAC is computed on the item can be carried
out securely, without allowing Eve invasive, semi-invasive or side channel attacks. Finally, we must
assume that the MAC is not only computationally secure, but that it is also implemented securely in
hardware on the item, and that no power analysis, emanation analysis or other side channel attacks
are possible. This host of assumptions arises because obfuscating PUFs eventually are nothing else
than a secure form of secret key storage. Their practical use has to be complemented by classical
mathematical cryptoschemes, which bring about the standard, well-known attacks.

The security analysis in the case of offline labeling, where we do not use a central server, but
employ a central tagging authority and a public key/private key pair stored on the item, is similar.

6.5 Summary of Practicality and Security

Strong PUFs can lead to very nice security properties under very few security assumptions. Ob-
fuscating PUFs, to the contrary, require more security assumptions, and can lead to a signficant
computational load on mobile systems. On the good side, they sometimes offer practicality advan-
tages, such as offline label verification in our above example. Our discussion reassures the differences
of strong and obfuscating PUFs also on the application side.

7 General Emulation: Strong from Obfuscating?

Let us discuss one final aspect in the relation between strong and obfuscating PUFs. It seems at first
glance that a strong t-PUF S′ can be constructed from an obfuscating t-PUF S in the following way:
S′ includes S as a subsystem. Whenever S′ is presented with a challenge C, it derives the key KS

from S. Then, it computes and outputs PRNG(C,KS), for some suitably chosen and implemented
pseudo-random number generator PRNG.

The construction seems to bring about a general simulation theorem, but nevertheless, there
are a few problems associated it. First of all, it requires a number of additional assumptions. They
have already been touched on in section 6.4:

1. The PRNG must be computationally secure (as a mathematical function).

2. The PRNG must be implemented physically in a secure manner. In particular, no side channel
attacks must be possible (power consumption, emanation, or timing analysis, etc).

13

3. The on-circuit transport of KS from the obfuscating PUF to the PRNG must be handled
securely.

4. The underlying obfuscating PUF must be secure according to Def. 4.1.

Furthermore, from a formal perspective, the construction does not fulfill the manufacturer re-
sistance condition in item 1 of Def. 3.2. The manufacturer could read out KS , copy it and use it in
several systems, which would show indistinguishable behavior.

Finally, the above construction requires that the PUF can handle the computational load of the
PRNG. This practicality restriction, together with the above list of additional assumptions and the
mentioned definitional issues, makes it preferable in any case to directly construct strong PUFs, even
though our construction shows that they can to some extent be derived from obfuscating PUFs.

8 Summary and Conclusions

Our topics in this paper have been as follows:

(i) We discussed some logical and conceptual issues in the existing definitions of PUFs.

(ii) We proposed to split the current notion of a PUF into two new notions, strong PUFs and
obfuscating PUFs. Strong PUFs try to express the original concept of a POWF/PRF in a
consistent manner [2, 3], while the purpose of obfuscating PUFs is to pinpoint those properties
relevant for key obfuscation [3].

(iii) We suggested a new framework for these two notions, and presented corresponding formal
definitions.

(iv) We provided classifications of existing PUFs with respect to our new framework and with
respect to previous definitions.

(v) In this classification, we used some new machine learning results of our group. For the first
time, these results show that XOR-Arbiter and Feed-Forward Arbiter PUFs can be attacked
on large scales.

(vi) We illustrated important security and practicality differences between strong PUFs and ob-
fuscating PUFs in practical applications.

(vii) We discussed an emulation strategy by which strong PUFs can (or cannot) be constructed
from obfuscating PUFs.

Our findings also point to the fact that even though strong PUFs are a powerful and elegant security
tool, currently no integrated electrical implementations exist. The investigation of such structures
seems to be a rewarding future research goal.

Acknowledgements

The authors would like to thank Qingqing Chen, György Csaba, Jon Finley, Stefan Katzenbeisser,
Heike Busch, Paolo Lugli, Christian Osendorfer, Jürgen Schmidhuber, Ulf Schlichtmann, Vera Stoy-
anova, Martin Stutzmann, and Ju Xueming for enjoyable and helpful discussions.

14

References

[1] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical One-Way Functions, Science, vol. 297,
pp. 2026-2030, 20 September 2002.

[2] R. Pappu, Physical One-Way Functions, PhD Thesis, MIT, 2001.

[3] Blaise Gassend, Physical Random Functions, MSc Thesis, MIT, 2003.

[4] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, Srinivas Devadas: Identifi-
cation and authentication of integrated circuits. Concurrency and Computation: Practice &
Experience, pp. 1077 - 1098, Volume 16, Issue 11, September 2004.

[5] Daihyun Lim: Extracting Secret Keys from Integrated Circuits. MSc Thesis, MIT, 2004.

[6] Pim Tuyls, Geert Jan Schrijen, Boris Skoric, Jan van Geloven, Nynke Verhaegh, Rob Wolters
Read-Proof Hardware from Protective Coatings. CHES 2006: 369-383

[7] G. Edward Suh, Srinivas Devadas: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. DAC 2007: 9-14

[8] P. Tuyls, B. Skoric. Strong Authentication with PUFs. In: Security, Privacy and Trust in
Modern Data Management, M. Petkovic, W. Jonker (Eds.), Springer, 2007.

[9] P. Tuyls, B. Skoric, T. Kevenaar (Eds.): Security with Noisy Data. Springer 2007.

[10] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, Pim Tuyls: FPGA Intrinsic PUFs
and Their Use for IP Protection. CHES 2007: 63-80

[11] Sandeep S. Kumar, Jorge Guajardo, R. Maes, Geert Jan Schrijen, Pim Tuyls: The Butterfly
PUF: Protecting IP on every FPGA. HOST 2008: 67-70.

[12] Mehrdad Majzoobi, Farinaz Koushanfar, Miodrag Potkonjak: Lightweight secure PUFs. IC-
CAD 2008: 670-673.

[13] T. Bäck: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary
programming, genetic algorithms. Oxford University Press, USA, 1996.

[14] H.P. Schwefel: Evolution and optimum seeking. Wiley, New York, 1995.

[15] I. Rechenberg: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der bi-
ologischen Evolution. Fromman-Holzboog, Stuttgart, Germany, 1973.

[16] H.-P. Schwefel: Numerical Optimization of Computer Models. John Wiley and Sons, LTD, 1981.

[17] O. Goldreich, The Foundations of Cryptography. Volume 1 & 2, ISBNs: 0-521-79172-3 (Vol.
1)& 0-521-83084-2 (Vol. 2), Cambridge University Press, 2001/2004.

[18] M. Riedmiller, H. Braun: RPROP-A fast adaptive learning algorithm. Proc. of ISCIS VII),
Universitat, 1992

[19] C.M. Bishop: Patern recognition and machine learning. Springer New York, 2006

[20] Jakob D. Bekenstein: How does the Entropy/Information Bound Work? Foundations of
Physics, vol. 35, issue 11, pp. 1805-1823. Latest version also from http://arxiv.org/abs/quant-
ph/0404042.

15

A Physical One-Way Functions

The notion of a “Physical One-Way Function” has been defined by R. Pappu in [2]. It definitely
owns the merit of being the first formalization attempt in the field. Before giving his definition,
Pappu introduces some notation, which was developed with hindsight to his optical PUF [1, 2].

Notation A.1 (Notation for Physical One-Way Functions, as in [2]). Let Σ be a physical system
in an unknown state X ∈ {0, 1}l. X could also be some property of the physical system. l is a
polynomial function of some physical resource such as volume, energy, space, matter, et cetera.

Let z ∈ {0, 1}k be a specific state of a physical probe P such that k is a polynomial function of some
physical resource. Henceforth, a probe P in state z will be denoted by Pz.

Let y = f(X,Pz) ∈ {0, 1}n be the output of the interaction between system Σ containing unknown
state X and probe Pz.

On the basis of this notation, [2] devises the following definition.

Definition A.2 (Physical One-Way Functions, as in [2]). f : {0, 1}l × {0, 1}k → {0, 1}n is a
physical one-way function if

• ∃ a deterministic physical interaction between P and Σ which outputs y in O(1), i.e. constant,
time.

• Inverting f using either computational or physical means requires Ω(exp(l)) queries to the
system Σ.

This may be restated in the following way: The probability that any probabilistic polynomial
time algorithm or physical procedure A′ acting on y = f(X,Pr), where y ∈ {0, 1}n is drawn
from a uniform distribution, is able to output X or Pr is negligible. Mathematically,

Pr[A′(f(X,Pr)) outputs X or Pr] <
1

p(l)

where p() is any positive polynomial. The probability is taken over several realizations of r.

We also stipulate that for any physical one-way function f

• Simulating y, given X and P , requires either O(poly(l)) or O(exp(l)) in time/space resources
depending on whether f is a weak or strong physical one-way function.

• Materially constructing a distinct physical system Σ′ such that its unknown state X ′ = X is
hard.

B Physical Random Functions

Gassend [3] provides another definition, which does not emphasize the non-invertability of PUFs,
but their unpredictability or “randomness”.

Definition B.1 (Physical Random Functions, quoted from [4]). A physical random function

(PUF) is a function that maps challenges to responses, that is embodied by a physical device, and
that verifies the following properties:

16

1. Easy to evaluate: The physical device is easily capable of evaluating the function in a short
amount of time.

2. Hard to predict: From a polynomial number of plausible physical measurements (in particular,
determination of chosen challenge-response pairs), an attacker who no longer has the device,
and who can only use a polynomial amount of resources (time, matter, etc.) can only extract
a negligible amount of information about the response to a randomly chosen challenge.

In the above definition, the terms short and polynomial are relative to the size of the device.

C Physical Unclonable Functions

Finally, Tuyls et al. give a third specification of PUFs [10]. It is not marked as a definition in their
text, whence we quote it as a “description” here.

Description C.1 (Physical Unclonable Functions, quoted from [10]). Physical Unclonable Func-
tions consist of inherently unclonable physical systems. They inherit their unclonability from the
fact that they consist of many random components that are present in the manufacturing process
and can not be controlled. When a stimulus is applied to the system, it reacts with a response. Such
a pair of a stimulus C and a response R is called a challenge-response pair (CRP). In particular, a
PUF is considered as a function that maps challenges to responses.

The following assumptions are made on the PUF:

1. It is assumed that a response Ri (to a challenge Ci) gives only a negligible amount of infor-
mation on another response Rj (to a different challenge Cj) with i �= j.

2. Without having the corresponding PUF at hand, it is impossible to come up with the response
Ri corresponding to a challenge Ci, except with negligible probability.

3. Finally, it is assumed that PUFs are tamper evident. This implies that when an attacker tries
to investigate the PUF to obtain detailed information of its structure, the PUF is destroyed.
In other words, the PUF’s challenge – response behavior is changed substantially.

We distinguish between two different situations. First, we assume that there is a large number of
challenge response pairs (Ci, Ri), i = 1, . . . , N, available for the PUF; i.e. a strong PUF has so
many CRPs such that an attack (performed during a limited amount of time) based on exhaustively
measuring the CRPs only has a negligible probability of success and, in particular, 1/N ≈ 2−k for
large k ≈ 100. We refer to this case as strong PUFs. If the number of different CRPs N is rather
small, we refer to it as a weak PUF. Due to noise, PUFs are observed over a noisy measurement
channel i.e. when a PUF is challenged with Ci a response R′

i which is a noisy version of Ri is
obtained.

D Machine Learning Attacks on Physical Unclonable Functions

It has long been known that PUFs can potentially be attacked via machine learning (ML) techniques.
In these attacks, an adversary collects many CRPs from the PUF and uses them to train an ML
algorithm. If successful, the trained algorithm can subsequently imitate the PUF, thereby breaking
its security. For example, it has been shown relatively early that perceptrons [4] and Support Vector
Machines (SVMs) [5] suffice to break standard arbiter PUFs.

17

In order to avoid these attacks, strengthened versions of the arbiter PUF have been suggested:
XOR arbiter PUFs [5, 7], lightweight PUFs [12] and feed-forward arbiter PUFs [5, 7]. Nevertheless,
we were able to successfully break all these variants by suitable ML techniques.

Logistic Regression, XOR Arbiters and Lightweight PUFs. Logistic regression is a well
established, generic ML method [19]. As our recent efforts show, it can be applied successfully to
the cryptanalysis of the XOR arbiter and the lightweight PUF.

As a starting point, we used the standard linear model of the arbiter PUF described in [5]. In
this model, it is assumed that the challenge 	C of a b-stage arbiter PUF is a string from the set
{−1, 1}b (instead of {0, 1}b). Correspondingly, the arbiter output is encoded into a binary response
t ∈ {−1, 1} (instead of {0, 1}). Under these provisions, the final output t can – in dependence of
the final propagation delay difference Δ at the end of the sequence of multiplexers – be written as

t = sgn(Δ) = sgn(wT 	P), (2)
where P i =

∏b
j=iC

j , 	P = (P 1, P 2, . . . , Pn, 1)T , (3)

and where the parameter vector 	w is a direct function of the (unknown) inner subdelays of the PUF.
For the details, see [5].

In order to apply the above model to an XOR-arbiter structure, in which the final output txor
is computed as the parity of k single arbiter outputs, one writes:

txor = sgn(
k∏

r=1

tr) = sgn(
k∏

r=1

Δr) = sgn(
k∏

r=1

	wT
r
	Pr). (4)

From the above formalism, we can derive an obvious ML decision boundary by

k∏
r=1

	wT
r
	Pr = 0. (5)

Logistic regression now progresses by optimizing the vectors 	wr in (5) such that the likelihood of
observing the CRPs of a training set M

p(M|	w) =
∏

m∈M
σ(tm ·

k∏
r=1

	wT
r
	Pm
r) (6)

becomes maximal. There are various methods to carry out this optimization. Our experiments
showed that Rprop gradient descent [18] performs best, and that standard gradient descent and
also iterative reweighted least squares do not work for the considered problem.

This leads to a prediction rate on test sets of 99% for arbiter PUFs, provided that the vectors
	wr have been well trained on sufficiently large training sets. Empirically, a first estimate for the
required number of CRPs is 50 · k · (b+1) or O(kb) (as above, k denotes the number of arbiters and
b the arbiter length). The vectors 	wr are considered as well trained if the corresponding decision
boundary (5) correctly classifies over 99% of the training set.

However, the algorithm does not yield well trained vectors for every initial choice of the 	wr.
Therefore it has to be evaluated repeatedly on the training set, with randomly initialized parameter
vectors 	wr, until an adequate solution is found. By this approach the security of the XOR Arbiter
PUF and/or the Lightweight PUF with different internal wirings can be broken, as shown below in
Table 1. All described PUFs are of type 4-XOR, 64 bit.

18

equal random lightweight
challenges challenges challenges

training set size [CRPs] 19000 19000 49000
mean computing time [min] 0.7 58.5 12
prediction rate on test set 99.1% 98.9% 98.7%

Table 1: Performance of the logistic regression approach for different XOR and Lightweight PUFs.
The examined PUFs are all XOR-arbiter type PUFs, but differ by the precise mapping of the
external challenge to the internal challenges applied at the individual internal arbiter PUFs. In the
case of equal challenges, the challenge for all the individual internal arbiter PUFs is the same as
the external challenge. For random challenges, the overall, external challenge is (pseudo) randomly
transformed to individual challenges of the 4 internal arbiters. The mapping of the lightweight PUF
is described in [12]. The mean computing time was determined on a standard quad core PC.

Evolution Strategies and Feed-Forward Arbiters. Evolution Strategies (ES) [14] belong to a
class of ML techniques called Evolutionary Algorithms. They are inspired by the biological evolution
of a population of individuals under certain environmental conditions. The population repeatedly
undergoes the evolutionary steps of evaluation, environment selection, partner selection, recombi-
nation and mutation, until inividuals are found which match some previously fixed environmental
conditions very well.

In our case, an individual is given by a concrete instantiation of the runtime delays in a PUF
(or by the vector 	w from equation (5)). The environmental fitness is determined by how well
this individual (re-)produces the correct CRPs of the target PUF as output. The outputs of the
individual are computed by a linear additive delay model from its subdelays (or from 	w), and
are compared to several known outputs of the target PUF structure. The best individuals are
selected. In the following recombination step, the remaining individuals mutually exchange part
of their ’genome’/their individual subdelays, in order to form descendants. In the final mutation
step, some of the subdelays are varied randomly, and the process starts anew, producing more and
more ’generations’ of the population. Evolutionary algorithms bear the advantage that our full
knowledge of the PUF architecture can be exploited by building a corresponding model into the
fitness evaluation step.

We used a standard implementation of ES with the ES standard meta-parameters [13]: Popu-
lation size of (6,36), comma-best-selection, and a global mutation operator of τ = 1√

(n)
. As the

training data underlying the experiments, we used a set of 50.000 CRPs with random subsets of
2.000 CRPs for the evaluation step of the individuals. These CRPs were generated on the basis
of a linear additive delay model. The subdelays in the stages were drawn according to a uniform
distribution with parameters motivated by the standard fabrication delays that may occur in such
a structure. The architecture of the examined structures is shown in Figure 3.

Our ML results are depicted in Figure 4. For each FF-Arb PUF, it shows the best out of 10
runs that were conducted on the structure. The x-axis displays the number of generations, the y
axis the prediction error. As shown, in all but one case we have been able to successfully learn the
PUFs with rates better than 95 % in only 600 generations. Since ES are a probabilistic method,
additional runs can be expected to yet further improve the prediction accuracy. Also other meta-
parameters like bigger population sizes, more generations or smaller τ can optimize the performance
further. Please note that our accuracy is significantly better than the stability of a FF-arbiter with
7 FF-loops under a temperature variation of 45◦C, which is only 90.16 % [5]. In this sense, our
experiments indicate that the FF arbiter can be fully broken by ES.

19

Figure 3: The feed-forward architectures we used
in our learning experiments.

Figure 4: The best of 10 runs on each of the
architectures.

20

Chapter 8

Physical Turing Machines and
the Formalization of Physical
Cryptography

Some previous work on the formalization of PUFs by Rührmair, Busch and Katzen-
beisser [55] assumes that any adversaries who hold physical possession of the PUF are
limited to reading out challenge-response pairs; this assumption is called the “digital
attack model” (DAM) in [55]. The DAM is indeed well motivated by situations where
the PUF can only be accessed via its CRP interface, and where this interface cannot be
circumvented due to the PUF’s natural tamper-sensitivity, as argued in [55].

In practice, however, it is very well conceivable that sophisticated attackers will
make arbitrary physical measurements on the PUF, which might be vastly more pow-
erful than mere CRP measurements. This particularly applies to PUFs that do not
have a dedicated CRP-interface (such as optical PUFs), or to situations in which well-
equipped adversaries can tamper the PUF and circumvent the CRP-interface. It also
holds whenever attackers can make side-channel measurements on the PUFs, i.e., when-
ever they extract helpful information beyond standard CRPs. In fact, the practical vi-
ability of such measurements has recently been demonstrated in silicon PUFs [78]. In
such scenarios, the DAM from the last chapter is no longer sufficient. From a strictly
fundamental perspective, this observation actually points to a gap in the DAM as well
as in the PUF-formalisms suggested recently by other authors at major conferences like
CRYPTO 2011 and EUROCRYPT 2013 [6, 40].

The above problem is non-trivial to overcome, though. In order to resolve it, a
new, formal computational model must be developed, which allows the adversaries
and honest users to carry out arbitrary physical actions on the PUF — a fact that ren-
ders the classical Turing machine model unsuited. At the same time, the new model
must have enough structure to allow formal security proofs, in particular reduction-
ist security proofs. The approach taken by Armknecht, Maes, Sadeghi, Standaert, and
Wachsmann at IEEE S&P 2011 [2], where no such model for the adversary is specified,
to us therefore appears insufficient to this end.

165

This chapter now presents a method to resolve the above problems. It introduces
a formal computational model that can incorporate arbitrary physical actions, namely
so-called “physical Turing machines (PhTMs)”, and uses them for a truly “physical”
security proof of a certain example scheme. This scheme is not directly based on PUFs,
but on unique objects (UNOs) as introduced in Chapter 2.

The choice of UNOs as an example primitive in this chapter has three reasons:
Firstly, and perhaps most importantly, the exact security features of UNOs are much
stronger related to their physical unclonability than in the case of PUFs, where, for
example, also purely numeric and digital modeling attacks pose a threat to security.
The same type of purely numeric attack is useless in the case of UNOs; the only vi-
able adversarial strategy for them is to fabricate a true physical clone of some sort.
Secondly, our choice allows us to illustrate the effectiveness of our techniques in an ex-
tended context beyond classical PUFs, showing that the areas of physical cryptography
and disorder-based security are larger than just PUFs. Finally, the presented labeling
scheme is a typical example where classical computational assumptions (namely the
security of the employed digital signature scheme) and physical assumptions (namely
the unclonability of the employed unique object) are combined. PhTMs shine partic-
ularly in such a context, since they have the unique feature that they can capture and
formalize both types of asymptotic assumptions in one machine model.

We believe that the suggested concepts of a physical Turing machine and of a “tech-
nology” on which it operates will prove useful beyond PUFs, for example in the formal
treatment of other hardware security features. The chapter thus presents a potential
outlook on future PUF formalization, making a well-suited concluding chapter of the
technical part of this thesis.

The paper that we use in this chapter is:

• U. Rührmair: Physical Turing Machines and the Formalization of Physical Cryp-
tography. IACR Cryptology ePrint Archive, Report 2011/188, 2011.

According to Google scholar, it has been cited 6 times to this date [26].

166

Physical Turing Machines and the Formalization of
Physical Cryptography

Ulrich Rührmair
Technische Universität München

80333 München, Germany
ruehrmair@in.tum.de

September 18, 2006

(With Revisions in Introductions and Summary in 2011 and 2014)

1

Contents

1 Introduction and Overview 3

2 Background and Motivation 7
2.1 The Purpose of Formalizing Cryptography 7
2.2 The Turing Machine and the Foundations of Cryptography 8
2.3 Physical Cryptography . 9

2.3.1 Unique Objects and Certificates of Authenticity 10
2.3.2 Physical Unclonable Functions 11

2.4 Summary . 14

3 Physical Turing Machines 15
3.1 Informal Description . 15
3.2 Definition of Physical Turing Machines 16
3.3 Discussion . 20
3.4 Probabilistic and Oracle Physical Turing Machines 22
3.5 Object Generators and Measuring Devices 24

4 Physical Security of Standard Cryptography 26

5 Unique Objects 29
5.1 Informal Description of Unique Objects 29
5.2 Definition of Unique Objects . 30

6 Labeling Schemes 38
6.1 Definitions . 38
6.2 Standard Labeling by Unique Objects and Digital Signatures 39
6.3 Security Proof for the Standard Labeling Scheme 41

7 Summary 52

2

Abstract

In this paper, we discuss how physical actions of cryptographic adversaries
and physical features of security hardware can be formally modeled, and how
mathematical proofs involving such physical security features can be led. To this
end, we introduce two new concepts: Firstly, the notion of a “physical Turing
machine” (PhTM), which is a classical Turing machine with the amended ability
to process and to act upon physical objects. Secondly, the concept of a “technol-
ogy”, which is a set of admissible physical actions that the PhTM can execute.
The power of a PhTM is, in other words, subject to the technology upon which
it operates — similar to the power of real-world adversaries, which depends on
the technology and machinery that they have available.

We then illustrate the usefulness of our new concepts by two examples: Firstly,
we briefly sketch their application in a comprehensive formal treatment of classi-
cal cryptography, where they can model adversaries that use inherently physical
computations to attack security schemes, for example quantum computers [35],
optical techniques [34, 17], or similar physical methods that might outperform
classical Turing machines. The current formalization of classical cryptography,
which is merely based on standard Turing machines, does not sufficiently include
such adversaries, so we argue. We sketch how this conceptual gap can be closed
by use of PhTMs and technologies.

Secondly, we deal in greater detail with the application of PhTMs to so-called
physical unclonable functions and variants thereof; this application is actually the
main topic of our paper. In this context, we lead a reductionist security proof for
a recent method of creating forgery-proof physical “labels” or “tags” ’ for valuable
items. This method combines disordered, unclonable physical structures with
classical digital signatures to create unforgeable “labels” that (unlike RFID-tags)
do not contain any secret keys. We formally show by a reductionist method
that the labels are secure as long as the employed digital signature scheme is
secure, and as long as the used disordered structures are unclonable. Prior to the
proof, we formally express all relevant features and notions, such as the concept
of a unique, unclonable physical object, or of a “labeling scheme”, via the use of
PhTMs, illustrating their power and broad applicability.

We believe that the concepts of PhTMs and technologies will have widespread
other applications beyond the two above examples. They could be used for for-
mally expressing side channel resilience and other physical features of classical
security systems, or for the development of a form of “physical” structural com-
plexity theory relative to an available physical technology.

1 Introduction and Overview

One recently emerging trend in cryptography and security is to use disordered, ran-
domly structured physical systems in security applications. The approach has often
been referred to as “physical unclonable functions (PUFs)” [12], sometimes also as
“disorder-based security” [26] or “physical cryptography” [28]. It is driven by the in-
sight that not only the mathematical properties of certain functions (such as non-
invertability, pseudo-randomness, etc.) can be exploited cryptographically, but also
the analog properties of certain physical objects [22, 12].

3

One central concept in the area is the phenomenon of “physical unclonability”,
i.e., the observation that the inevitable, random variations and imperfections in each
mesoscopic and macroscopic physical object cannot be cloned or reproduced perfectly.
Interestingly, this does not only hold for (well-equipped) adversaries, but even for the
original manufacturer of the object: Even he cannot produce two specimen that are
exactly the same. This allows new identification mechanisms for secure hardware, or
new methods for the unforgeable tagging of valuable items [12, 22, 14].

A second example concept is that certain randomly disordered physical objects can
contain a very high information content or entropy. If suitably fabricated, solid-state
objects may even contain so much random information that it is impossible to read-
out this information completely [29]. Everyone holding the object can only read-out
and henceforth know a small, individual fraction of the information. This situation of
partial knowledge can then be exploited cryptographically, for example in the context
of secure multi-party computation or oblivious transfer [24].

It is well-known that the above disorder-based approach has a number of potential
upsides [26]. First of all, it can allow a better protection of secret cryptographic
keys in secure hardware. Instead of storing the keys in standard digital memory,
they are derived from, or hidden in, the complex analog characteristics of a randomly
structured medium. This can make them harder to read out or otherw ise obtain
for the adversary [26]. Secondly, the utilization of physical disorder can sometimes
avoid standard unproven assumptions in cryptographic protocols, such as the assumed
hardness of factoring and computing discrete logarithms. The latter are substituted by
alternative hypotheses on the employed physical objects, for example their information
content/entropy, their unclonability, or the complexity of their input/output behavior.
This creates an alternative fundament for cryptography, one that is independent from
the abovementioned classical assumptions. In this sense, disorder-based cryptography
could be seen in alignment with other, well-known alternative approaches, for example
quantum cryptography [4], post-quantum cryptography [7], noise-based cryptography
[20], or the bounded storage model [19]. In this context, disorder-based schemes for
oblivious transfer, key exchange, bit commitment, and multi-party computation have
been suggested and analyzed [24, 5, 21].

In recent years, the mathematical formalization of PUFs and disorder-based ap-
proaches has attracted increasing attention within the community, leading to pub-
lications at major conferences such as CRYPTO, EUROCRYPT, IEEE S&P, and
elsewhere [25, 2, 5, 21, 27]. It seems generally understood that a solid formalization
is necessary for a sound long-term development of the area. Formal definitions for
certain disorder-based primitives have been developed in the abovementioned works,
in particular for so-called “Strong PUFs”. They are based on the conditional entropy
and mutual independence of PUF-responses [5, 21], and/or on the unpredictability of
unknown PUF-responses from a set of known responses [25, 2].

However, none of the existing works has developed a formal machine model that
could at the same time:

1. Model physical security features and the physical capabilities of an attacker
(e.g., capture the physical unclonability and other physical features of PUFs

4

and related primitives).

2. Model computational securiy features and the computational capabilities of an
attacker (e.g., express the computational security of classical schemes like digital
signatures, or express the computational independence of PUF-CRPs).

3. Be employed in formal, mathematical security proofs (e.g., reductionist ap-
proaches).

For comparison, the information-theoretic formulation of PUF-security by Brzuska
et al. [5], which has been continued by Ostrovsky et al. [21], only addresses the mutual,
information-theoretic independence of a PUF’s challenge-response pairs (CRPs). It
is not built on an underlying physical machine model, and does not formally model
the physical unclonability of the PUF. It also does not include physical attacks on
the PUF that go beyond mere CRP-measurements. However, the relevance of such
extended, physical adversarial methods has just recently been proven by a number of
side channel attacks on Arbiter PUFs and variants [18, 32, 33]. The attacks use extra
side channel information beyond PUF-CRPs, and break XOR Arbiter PUFs of sizes
and complexities that are not attackable by mere CRP measurements and subsequent
numerical modeling attacks [30]. This shows a gap in the formalism, a gap that is
obviously not just theoretically, but also practically relevant. Furthermore, the formal
framework of Armknecht et al. [2] does not stipulate a machine model upon which
formal security proofs could be based. For this reason their definitions indeed have
not been used in any formal security proofs up to this date.

This stresses the need for new, extended definitions in the area. The formal de-
velopment of such definitions, however, requires a new machine model, one that can
incorporate general physical actions of the adversary like side channel measurements.

Our Contributions. We make three main contributions in this work. First of all,
we develop a new machine model called physical Turing machines (or PhTMs, for
short). PhTMs are quite similar to standard Turing machines, but have the addi-
tional capability to process real physical objects as inputs and outputs. Together
with PhTMs, we introduce the concept of a “technology”, i.e., of a set of admissible
actions upon which the PhTM operates. PhTMs and technologies allow us to model
cryptographic parties that use physical approaches in one way or the other.

Secondly, we briefly discuss how Physical Turing Machines can be applied to the
formalization of classical, computational complexity based cryptography. We argue
that the current formalization in this area, which uses standard Turing machines
(TMs), does not include atackers that use inherently physical methods and computa-
tions. Examples include adversaries that employ optical or quantum computations in
attacking a given encryption or signature scheme. At the same time, we observe that
simply replacing standard TMs by quantum TMs in existing definitions will not be
satisfactory, since this would overestimate the real-world power of quantum comput-
ers, and formally render many schemes unjustifiedly insecure. We argue why shelter
can be found in the use of our novel concepts of PhTMs and technologies.

5

Thirdly and mainly, we exemplarily apply PhTMs to a well-known scheme from
the area of disorder-based security and PUFs, lead a full-fledged, detailed reductionist
security proof on the basis of PhTMs. The scheme concerns a method for the secure
labeling of valuable goods (such as pharmaceuticals, passports, banknotes, etc.) that
combines a digital signature with a unique, non-clonable physical object, a so-called
“unique object (UNO)” [26]. In this context, we first formalize various variants of
the notion of a unique, unclonable object, and show relations between the different
notions. We then prove that the above scheme is secure under the provisions that the
employed object is unique and that the used digital signature scheme is secure. The
proof is carried out by a a reductionist technique, and uses PhTMs as the underlying
machine model.

One Caveat. We would like to delimit too excessive expectations already at this
early point: The aim of this paper is not to clarify in a strict and absolute sense which
physical actions are practically possible and which are not. This needs to be resolved
by physicists, not mathematicians and computer scientists. As can be seen by the
examples of current computational complexity theory and the still unresolved P vs.
NP question, such a hope would be indeed unreasonably high. Instead, we would
like to enable security proofs of the form “if primitives A and B are secure, then so is
scheme C”, where A, B and C can include both computational and physical staments,
in opposition to the traditional Turing formalism. As it turns out, this goal of our
work is intricate, but also rewarding enough in itself.

Organization of this Manuscript. We take some time in Section 2 in order to pre-
pare the stage for our new machine model and its applications. We review the general
purpose of formalizing cryptographic schemes in Section 2.1, and explain a (slightly
provoking) conceptual gap in the current, Turing machine based formalization of cryp-
tography in Section 2.2. Then, we will take a brief look at Physical Cryptography in
Section 2.3, which illustrates our main motivation for the new, extended machine
model. We conclude by a summary in Section 2.4.

The technical contributions of the paper are presented in Sections 3 to 6. In Sec-
tion 3, we introduce Physical Turing Machines as a formal “computational” model
that allows both numeric computations and physical actions (measurement, genera-
tion, manipulation, etc. of physical objects). In Section 4, we briefly discuss the ap-
plication of PhTMs to the formalization of classical, computational complexity based
cryptography. In Section 5, we formalize the concept of unique objects (UNOs) in
various ways, and lead a few first proofs in order to get used to our formalism. In
Section 6, we deal with one of the main applications of unique objects, which is their
use as unforgeable “labels” (or markers or tags) for security tokens and goods of value.
We formalize the notion of a secure labeling scheme, and prove by a reductionist tech-
nique that secure labeling schemes can be constructed from secure digital signature
schemes and unique objects. This technical proof is one of the main contributions of
the paper. Finally, we conclude the paper in Section 7 by a summary.

6

2 Background and Motivation

We take the time to gently motivate our approach and PhTMs in this section, and
to integrate them into a bigger picture within classical and physical cryptography.
We also provide some background on physical cryptography, PUFs, unique objects,
and COAs in Section 2.3. The latter has been included with particular hindsight to
readers who encounter PUFs for their first time.

2.1 The Purpose of Formalizing Cryptography

In order to motivate and also to contextualize our PhTMs, it is useful to review some
of the basics of theoretical cryptography. One central aim of the latter is to formally
prove the security of certain cryptographic schemes. We can distinguish between three,
not totally disjoint steps related to this task:

1. Build a mathematical security model. In this step a mathematical formalism
is set up that models the real-world situation in which a given cryptographic
scheme is applied.

2. Conditionally prove the security of cryptographic schemes in the security model.
This step consists of mathematically proving the security properties defined in
step 1 under the premise that some additional, unproven assumptions hold.

3. Uncoditionally prove the security of cryptographic schemes in the security model.
The aim of this step is to prove the security properties expressed in step 1 without
making additional, unproven assumptions.

A couple of non-trivial points need to be made. First of all, note that basically any
security model is itself subject to implicit and unprovable assumptions. Hence, any
result proven in step 2 and 3 is necessarily subject to these assumptions (and, in a
strict sense, could never be called unconditional).

Then, note that it is hard to find a formal criterion that distinguishes the assump-
tions made in step 1 and 2. Associating assumptions to one of the steps seems a matter
of human intuition and reasoning, not so much a matter of formal distinguishability.
Consider as an example the familiar formalization of complexity based cryptography.
As implicit in the security definitions, it is assumed there that the adversary can-
not execute any other than polynomially time-bounded Turing computations. This
assumption is commonly associated to step 1. The assumption that the adversary
cannot factor numbers quickly, however, is regarded as part of step 2. This choice is
to some extent arbitrary; from a purely formal perspective, both assumptions could
be attributed to the respective other step, too.

Third, it is important to realize that it can be nontrivial to decide whether an
unconditional proof of the security properties of some scheme (i.e. step 3) is possible
at all in the mathematical formalism provided by step 1. There could be formalisms in
which we have to confine ourselves with step 2, because step 3 is generally impossible.
Once more, this may hold in particular for the current complexity-based formalization

7

of cryptography: We do not know whether the underlying problem of NP vs. P is
independent of the axioms of set theory (ZFC, more specifically); see, for example, [1].
Consequentially we cannot say whether the formal security of many cryptographic
schemes, whose unconditional proof would imply that NP 6= P , is independent of
ZFC. In any case it is obvious that step 3 has currently not been completed in the
standard formalization of complexity based cryptography.

But — is there any value in a framework which currently or forever confines us to
steps 1 and 2? Again, it can be observed by the example of present cryptography that
there is – recall that as it stands, the current theory of complexity based cryptography is
nothing more than a large network of reductions. Its value is nevertheless undisputed
within the community.

This justifies to accept mathematical frameworks which initially merely allow for
step 2, and in which step 3 seems either very remote or even problematic in principle.
We will come back to this conclusion in Section 3 in order to justify our new Turing
model. For now, let us turn to one particular aspect of the standard mathematical
framework of complexity based cryptography in the next section.

2.2 The Turing Machine and the Foundations of Cryptography

The Turing machine formalism has traditionally been used as the foundation of com-
putability and complexity theory, and consequently also in the formalization of complexity-
based cryptography. This makes two implicit assumptions, as pointed out in [36]. First
of all, both computability theory and complexity theory often implicitly assume the
validity of the well-known Church-Turing Thesis (CT) [36]. Secondly, complexity the-
ory in large parts also assumes the (perhaps less well known) Extended Church-Turing
Thesis (ECT), which can be formulated like this [36]:

Extended Church-Turing Thesis (ECT): Any function on the natu-
rals that is computable efficiently (i.e. in polynomial time) in some intu-
itively reasonable sense can also be computed efficiently (i.e. in polynomial
time) in the Turing machine formalism. In particular, any function that
can be computed in polynomial time by some physical hardware system
can be computed in polynomial time by a Turing machine.

As complexity theory and the Turing machine formalism are the main tools in the
formalization of complexity based cryptography, CT and ECT are implicit, but of-
ten overlooked assumptions in that area. Quite unfortunately, there is some evidence
that ECT could be false, as factoring can be done in polynomial time on a quantum
computer, but, many suspect, not on a Turing machine. This makes the following
future scenario possible: While we can prove unconditionally that breaking RSA can-
not be done in polynomial time on a Turing machine, we can at the same time factor
efficiently in practice by the use of quantum computers. RSA would then be un-
conditionally and provably secure in theory according to our current formalization
standards, while it was obviously insecure in practice. This seems to indicate that
the current foundations of cryptography exhibit a conceptual gap when it comes to

8

computations that are executed by real world physical systems and not by Turing
machines; the attempt to close this gap seems reasonable.

One obvious, very rigid approach countermeasure would be to substitute quantum
Turing machines instead of ordinary TMs in all definitions and proofs. Unfortunately,
not many popular asymmetric cryptographic schemes are left secure when we make
that step, and most proofs break down. Also, it seems far away from practice, as at
the moment quantum computers are just able to factor low-range two digit numbers.

Do we have other, more realistic alternatives? It seems that our only option was
to ignore the gap, adopting the position that it is practically irrelevant. However, lack
of practicality is an argument that at times has been used unrightfully against the
foundations of cryptography as a whole; it does not feel appropriate to turn it the
other way, and to use it against a correct objection to the current standards within
the foundations of cryptography. We believe that there is no use in pursuing the
foundations of cryptography half-heartedly; if we take the soundness of cryptography
serious, if we really are to “build a long-lasting building and not a cabin”, then we
should include quantum attacks into our model.

Still, this leaves us with the question how this can be done. Ideally we would like
to set up a computational model similar to the Turing formalism, in which we can
express and prove security properties at least conditionally, possibly even uncondi-
tionally. This formalism should include quantum and other physical computations in
order to avoid the conceptual gap described earlier. On the other hand, it must not
allow quantum attacks way beyond current technology, as otherwise many asymmetric
cryptographic schemes of interest become unrealistically insecure in our model. The
only way out of this dilemma seems a formalism that can somehow include the current
state of technology, while still enabling (at least conditional) security proofs.

2.3 Physical Cryptography

Besides the potential gap in the current formalization of classical cryptography that
we addressed in the last section, there is a second, and perhaps yet more important,
motivation for the introduction of physical Turing machines. This motivation is is
related to some recent developments in security, in which disordered, practically un-
clonable physical systems are used in cryptography and security. The probably best
known concepts from this area are physical unclonable functions (PUFs) [22, 12] and
certificates of authenticity (COAs) [10], but there are also others; a good overview is
given in [26]. As mentioned in the introduction, the corresponding research area could
be (and has been) termed “physical cryptography” [28] or “disorder-based security” [26].

The explicit use of physical structures in cryptography and security makes PhTMs
useful in at least two respects: Firstly, in the formal definition of those security features
that are required from PUFs, for example, in a certain application. Secondly, in formal
proofs that show the security of, for example, a given PUF-based or COA-based scheme
under certain assumptions.

In order to achieve a relatively self-contained treatment, we will familiarize readers
with two example schemes from physical cryptography, one of them relating to COAs,
the other to PUFs. The former scheme, which is based on so-called “unique objects”

9

[26] plays a key role for our paper, as it will be treated and proven formally in Sections
5 and 6.

2.3.1 Unique Objects and Certificates of Authenticity

Following [26, 10], unique objects (UNOs) are physical systems or objects that exhibit
a set of analog properties which cannot be copied, reproduced, or manufactured by
intent. These properties should be detectable reliably by some external measurement
apparatus, and they should be expressible in a relatively short binary string (a rule
of thumb would be a size below 10 kB [26]). Even if the analog properties and the
details of the measurement apparatus are given to an adversary, he shall be unable to
fabricate a second object that exhibits the same properties upon measurement with
the apparatus. Under these circumstances, we also call said properties the unique
properties of the unique object.

Unique properties often occur due to uncontrollable variations in the manufactur-
ing process. One easy conceptual example of a unique object is a random distribution
of (possibly only a few) optically active particles. Such a distribution is hard to re-
produce or to produce on intent. The unique properties, which could be measured by
an external measurement apparatus, could consist of the individual position of each
single particle. 1 A second example is a paper surface, in which the so-called paper
fibers take random, interwoven, three-dimensional positions (compare [6]).

Let us now consider one typical application of unique objects: The generation of
unforgeable and machine-testable labels (tags/markers) for any products or goods of
value.

Application: Labeling of valuable objects. To label products unforgeably is
a problem of high theoretical appeal and also of economic relevance. Even Newton
reportedly dealt with the generation of forgery-proof coins in his position of the Master
of the Mint in the early 18th century. Nowadays, it has been estimated that the world-
wide economical damage caused by faked brand products amounts to several hundred
billion Dollars per year [14]. The basic task can be described as follows: Given a
valuable product, generate a physical token – the label – that can be applied to the
product such that the following conditions are met:

1. The validity of the label can be tested by an automatized device.

2. The label cannot be faked or counterfeited.

Unique systems suggest themselves as unforgeable labels, as they have properties that
cannot be copied or reproduced. However, the propery of being unreproduceable also
leads to problems: All labels that are applied to different specimen of the same product
differ and are subject to random production variations. How shall the testing device

1Please note that this is in opposition to the approach of optical PUFs of Pappu et al. [22], where
the measured speckle pattern is a function of the positions of all particles, and does not directly
measure the position of individual, single particles.

10

distinguish a ‘random’ label that has been produced by the legitimate company from
a ‘random’ label produced by a fraudster? The idea is to use a standard technique
from mathematical cryptography, namely digital signatures, in connection with unique
objects. The combined labeling scheme works as follows:

1. Produce a (random) unique object, and measure its unique properties P1, . . . , Pn.

2. Create a digital signature S def
= SigK(P1, . . . , Pn) for these properties by use of

some secret key K.

3. Apply the (numerical) signature, the (numerical) description of the properties
P1, . . . , Pn and the (physical) unique object to the product.

4. All testing devices are equipped with the public verification key P that corre-
sponds toK. If a labeled product is inserted into some testing device, it executes
the following procedure:

(a) Check if the signature S is a valid signature for the properties P1, . . . , Pn

listed on the product. To that end, use the public verification key P .

(b) Test if the unique physical system contained on the product has the prop-
erties P1, . . . , Pn listed on the product.

If this is the case, the testing device regards the label as valid, otherwise as
faked.

Intuitively, this labeling technique seems secure provided that the physical system
really is unique and that the digital signature scheme is secure. But — can we prove
that? How could we set up a formal framework in which such a proof can be con-
ducted?

The difficulty of this task lies in the fact that attacks on the labeling scheme
can be executed on two levels: First of all on a binary level by faking the digital
signature. Another possibility, however, is to attack the scheme on a physical level
by trying to copy the unique physical system. Therefore modelling the attacker as
a standard Turing machine will not suffice. Instead, we should use a machine model
which combines the ability for Turing computation with the capability to process
physical objects; this model could have some ‘Turing part’ and some ‘physical part’.
Again, the capabilities of the physical part should realistically operate only within
the limits of current technology, which is a condition that we have encountered before
(Section 2.2), but do not know how to meet yet.

2.3.2 Physical Unclonable Functions

A physical unclonable function (PUF) is a physical system S which possesses a cer-
tain level of disorder or randomness in its micro- or nanoscale structure. S can be
excited with so-called external stimuli or challenges Ci, upon which it reacts with
corresponding responses RCi . These must be a function of the applied challenge and

11

of the structural disorder that is present in the PUF. The responses are supposed to
be stable over time and multiple measurement, and the tuples (Ci, RCi) are commonly
called the challenge-response pairs (CRPs) of the PUF (see [22, 12, 26]).

It is usually assumed that a PUF cannot be cloned or reproduced exactly, not even
by its original manufacturer. This well established assumption is not based on a fun-
damental physical theorem, such as the no cloning theorem in quantum mechanics.
Instead, it is viable in practice due to the inherent limitations of current nanofab-
rication techniques. These are unable to position molecules or atoms with arbitrary
precision in three dimensions [22], and hence cannot reproduce the small-scale disorder
and structural randomness of the PUF exactly.

So-called Strong PUFs have a second important property: They allow a very large
number of applicable challenges and possess a complex, inimitable challenge-response
behavior. It is assumed that their responses cannot be predicted numerically, but
can only be obtained by a physical measurement on the unique and unclonable PUF
itself. This must hold even if an adversary had access to the PUF at earlier points in
time, could freely apply challenges to the PUFs, and could measure the corresponding
responses. In other words, even if a large number of challenge-response pairs of a
Strong PUF are known, the challenge-response behavior cannot be machine learned or
modelled well enough to allow the certain numerical prediction of the responses to new,
randomly chosen challenges. This property could be referred to as the unpredictability
or non-learnability of a Strong PUF [26, 25, 31].

In a nutshell, the difference between unique objects and Strong PUFs lies in the
large number of CRPs a Strong PUF allows, and in the fact that the measurement
signal of a unique object is analog and determined by an external apparatus, while
the CRPs of a Strong PUF may be digital and may be determined by an integrated
measurement apparatus. Furthermore, a unique object must remain secure even if its
the unique properties are given to the adversary. More details can be found in [26].

Application: Secret Key Exchange by Physical Unclonable Functions (PUFs).
(Strong) PUFs are a very powerful cryptographic tool: They allow identification, key
exchange, oblivious transfer and other applications [24, 5, 21]. In the following, we
sketch a variant of a key exchange protocol on the basis of Strong PUFs.

We assume that:

1. Alice holds a genuine Strong PUF S at the beginning of the protocol, which has
been fabricated by herself or by a trusted manufacturer.

2. Alice and Bob have an authenticated (but non-confidential) binary channel and
a fully insecure physical channel at hand.

3. The protocol is executed only once, and no one has got access to the Strong
PUF anymore after the end of the protocol.

Our focus thereby is not on describing all formal details such as error correction
(compare [5]), but on providing the reader with the basic idea of the scheme. The

12

explicit step for authenticatiog the sent PUF (Step 5 in the protocol) is new compared
to existing schemes [5].

The key exchange scheme works as follows:

1. Alice chooses random challenges C1, . . . , C2k. She measures the PUF S in order
to determine the responses RC1 , . . . , RC2k

.

2. Alice sends the Strong PUF S over the physical channel to Bob.

3. Bob receives an object S′, which is not necessarily equal to S (recall that it could
have been exchanged by the adversary, since the physica channel is insecure).

4. Bob sends the message “I got an object!” over the authenticated binary channel
to Alice.

5. Alice and Bob check that S is equal to S′. That is, they check that Bob re-
ceived the object that was sent away by Alice, and that the object has not been
exchanged or manipulated while it was sent. To that aim, they execute the
following subprotocol:

(a) Alice sends the values C1, . . . , Ck to Bob.

(b) Bob measures the object S′ with the parameters C1, . . . , Ck and receives
the values V1, . . . , Vk, which he sends to Alice.

(c) Alice checks if the values she got from Bob match the values she measured
herself in step 1. That is, she checks if Vi = RCi for i = 1, . . . , k. If this
is the case, she sends the message “Ok.” over the binary channel to Bob.
Otherwise, she sends “Stop!” over the binary channel, and Alice and Bob
abort the protocol.

6. Alice sends the values Ck+1, . . . , C2k over the binary channel to Bob.

7. Bob determines the values RCk+1
, . . . , RC2k

by measurement on the PUF.

8. Alice and Bob extract their secret binary key from the values RCk+1
, . . . , RC2k

,
which is known to both of them.

Why is the above scheme secure? We can argue informally in favor of its security as
follows. By the properties of the (Strong) PUF, an adversary Eve who might have
access to the PUF while it is delivered physically from Alice to Bob cannot fully
read out all CRPs, cannot clone the PUF, and cannot build a numerical simulation
model of the PUF. Hence, the probability that Eve by chance reads out a piece of
information of the system that is later used to build the secret key is very small;
using privacy amplification techniques when extracting the key from the bit sequence
RCk+1

, . . . , RC2k
can make it arbitrarily small.

Again this leaves us with the question how can we prove the security properties in a
formal way. Apparently, an adversarial model designed for that purpose once more has
to include both capabilities for binary information processing and for physical attacks.

13

These physical attacks may include attempts to copy, photograph, scan, imprint the
PUF into a suitable material to form a negative copy of it, or to otherwise physically
process the PUF. Therefore a standard Turing machine again will not suffice as a
model for the attacker. Also an oracle Turing machine which models the PUF by an
oracle that can be presented with a challenge C and returns the value RC will not do.
The same holds for mere information-theoretical Strong PUF definitions as the ones
presented in [5]. All of these formal approaches cannot model general physical attacks
such as those listed above.

Hence, just as in the case of the labeling scheme, the model for formalizing PUFs
must include capabilities for Turing computation as well as for the general processing
of physical objects. In any realistic model those physical capabilities must be subject
to the state of technology, an expression beginning to sound familiar.

2.4 Summary

We have covered a range of topics in the introduction that spans from the purpose of
formalizing cryptography to new approaches in cryptography. The following conclu-
sions, which will be relevant in the upcoming parts, can be drawn from the presented
material:

1. The purpose of formalization in cryptography does not only lie in enabling un-
conditional security proofs. Formal reductions among cryptographic notions and
conditional security proofs are other sufficient goals. Hence, models which do
not allow for unconditional proofs now or in principle should not be discarded
for that fact.

2. We discussed a conceptual gap in the current foundations of cryptography that
should ideally be closed. This gap relates to physical attacks in general, and
more specifically to (i) physical computations like quantum computations that
might eventually outperform classical computers, and (ii) to physical attacks
on cryptographic hardware like invasive attacks or side channels. Closing the
gap could only be done by introducing a machine model which combines the
capabilities for Turing and for physical computation and which also models
physical actions on hardware systems. Furthermore, we observed that it seemed
reasonable to limit the physical computations in that model by the state of
current technology (for example when it comes to including quantum computers
in the picture), but we did not know how to achieve this yet.

3. We presented some new developments in cryptography, including PUFs, COAs
and other structures, which we subsumed under the name “physical cryptog-
raphy” or “disorder-based security”. These approaches use the analog physical
properties of disordered physical systems for cryptographic purposes. A strict
formalization of this area would make it necessary to add the ability to pro-
cess physical objects to the capabilities of standard Turing machines. Current
formalization attempts in the area have not yet addressed this problem.

14

The above conclusions motivate the following tasks of research: First, introduce a new
machine model that includes the potential for physical actions on physical objects, and
a way to formalize the notion of “current technology”. Second, reformulate the security
properties of standard binary cryptoschemes and also the corresponding security proofs
in that new model, thereby addressing the potential gap in the current formalization
of cryptography. Third, define the security-relevant properties of physical systems
that are applied in physical cryptography in the new model. Fourth, conditionally
prove the security properties of schemes of physical cryptography in the new security
model. The aim of this paper is to cover some aspects of this new line of research.

3 Physical Turing Machines

3.1 Informal Description

This section is devoted to an informal description of the physical Turing machine
model; a more formal presentation will be given in section 3.2. Put in one sentence,
the aim of physical Turing machines is to model computations that are executed by
human beings with the help of physical systems. We imagine the situation as follows:

The human being holds paper and pencil in order to make some private notes or
private computations. He has a finite number of finite physical systems or machines
S1, . . . , Sn under his control, which he can let perform computational tasks for him.
These computational tasks can take numbers and/or physical objects as input, and
produce numbers and/or physical objects as output. In order to enable information
exchange between the systems and the human being, we envision that the each system
has got a digital interface, into which the human being can type information, and
through which the human being can receive information.

Whenever the human being wants one physical system to perform a certain numer-
ical computation, he types the numerical input of that computation into the interface.
After some computation time, he gets the numerical result of that computation, com-
municated over the interface.

Whenever the human being wants one physical system to perform some action on
one or more given physical objects, we imagine that the human being presents the
objects to the system by placing them in some specific position relative to the system.
These positions also impose an order on the input objects. Then, the human being
uses the interface in order to provide the physical system with some accompanying
numerical input. That input can, for example, describe how the system should process
the object, but is not limited to that purpose. After some computation time, the
human being gets in return one numerical string communicated by the interface, and
possibly one or more processed objects, which are placed in some specific positions
relative to the system. Again, positioning places an order on the returned objects.

We assume that a human equipped as described can perform certain tasks that
we subsume under the term computation. The tasks to be performed are presented
to him in the form of an input, consisting of a binary number and/or a finite number
of physical objects. The solution to the task is presented by the human being as a

15

certain output, again consisting of a binary number and/or a finite number of physical
objects. Hence, the actions of the human being can be seen as the computation of a
function F , whose domain and range are the set of finite tuples that consist of a finite
binary string and a finite number of physical objects. As computation time we can
naturally regard the time interval experienced by the human being between the two
events of being presented with the input and presenting the output.

That rough model seems generally fine, but one aspect needs further consideration. As
the physical systems S1, . . . , Sn employed by the human being during a computation
are finite, they can in general only deal with a finite range of inputs and outputs. We
would, however, like to be able to compute infinite functions in our formalism. Hence,
the physical systems S1, . . . , Sn in general should be able to deal with an unrestricted
input and output range. This is a contradiction and raises a problem.

In the informal setting just described, our (idealized) human being could practically
encounter this problem by building the physical systems that support his computation
bigger and bigger, adjusting to the growing size of the input. We will model this
behavior as follows: Each of the above ‘machines’ S1, . . . , Sn is represented in our
model by an infinite sequence of machines,

Si = S1
i , S

2
i , S

3
i , . . . , for i = 1, . . . , n.

There, each single machine Sj
i is required to have finite mass, but within any sequence

Si the masses of the single machines may grow beyond any threshhold to adjust to
more complex inputs.

In any one given physical Turing machine computation, then, the physical Turing
machine is allowed to use precisely one machine from each infinite sequence Si. These
nmachines must be selected deterministically by a previously specified choice function,
which may only depend on the length of the binary input and the weigth of the physical
input. This mechanism is reminiscent of the choice mechanism in the computational
model of polynomial size circuits. It can be formalised conveniently as specified in
Definition 3.5, after a norm on mixed numerical/physical inputs has been introduced.

In any case, the described choice mechanism forces the physical Turing machine
to merely use a finite number of computing machines (and not the whole infinite
sequences Si) in each computation, which is desirable.

3.2 Definition of Physical Turing Machines

The informal discussion of the previous section gives rise to the following sequence of
formal definitions, which eventually lead to the notion of a physical Turing machine.
We start by defining the physical stage on which physical Turing machines live, which
we call a ‘universe’.

Definition 3.1 (Deterministic Universes). A (deterministic) universe U is a 4-tuple
U = (O,M,F ,m) with the following properties:

1. O is an arbitrary set called the set of possible objects.

16

2. M is an arbitrary subset of O called the set of possible machines.

3. m : O → N is a mapping called the mass.

4. F : M −→ Func
(
{0, 1}∗ × O∗ → {0, 1}∗ × O∗ × N

)
is a mapping called the

behavior function ofM.

5. Both O and M contain a distinguished object λO called the emtpy object, for
which it holds that m(λO) = 0.

Definition 3.2 (Notational Conventions for Universes). We make the following no-
tational conventions:

1. The set O∗ denotes the set of finite tupels of elements of O. Whenever we refer
to an element X of some set S×O∗, we often write X = (s,O1, . . . , On) instead
of X = (s, (O1, . . . , On)).

2. For every M ∈ M, F(M) is a mapping, which we often denote by FM . That
mapping can be split up in three components FM = (F1

M ,F2
M ,F3

M), where F i
M

def
=

Πi(FM) with Πi denoting the projection onto the i-th coordinate.

Before we finally define physical Turing machines, we have to sort out two more formal
details.

Definition 3.3 (Physical and Binary Tapes and Their Content). Let U = (O,M,F ,m)
be a universe. A physical tape (in U) is a half-sided infinite tape whose cells can con-
tain any object from the set O. A physical tape is said to be empty if all cells contain
the empty object. Further, its cells are labeled by natural numbers in increasing order,
starting with the number ‘one’ at the end of the tape. The content of a physical tape is
a (finite or infinite) sequence O1, O2, . . . where the objects Oi of the sequence are the
objects contained in the cells of the tape, in increasing order of the labels of the cells,
omitting all empty objects contained in the cells. If the content is a finite sequence,
we can write it as tuple (O1, . . . , Ok).
A binary tape (in U) is a standard, half-sided binary Turing tape, whose cells can
contain the symbols zero and one and the symbol ‘blank’. The tape is empty when all
its cells contain the blank symbol. The content of a binary tape is the finite or infite
sequence of bits contained in the cells, omitting blanks. If that sequence is finite, we
can write it as a finite binary string x.

As the input and output of a PhTM are a mixture of numbers and physical objects,
we should define a norm on such inputs.

Definition 3.4 (Input and Output Norm). Let U = (O,M,F ,m) be a universe. We
define a norm ‖·‖ on all elements X = (x, (O1, . . . , On)) of the set {0, 1}∗ ×O∗ by

‖X‖ def
= max{length(x),Σk

i=1m(Oi)}

where length(·) denotes the length of a binary string.

17

Now we are in a position to define physical Turing machines.

Definition 3.5 (Physical Turing Machines). Let U = (O,M,F ,m) be a universe.
A physical Turing machine or ϕ-Turing machine M in U consists of a Turing pro-
gramm P together with n infinite sequences M1, . . . ,Mn of machines in U , where
Mi = (M0

i ,M
1
i ,M

2
i , . . .) for i = 1, . . . , n.

M has got five tapes: Two internal tapes, two external tapes, and one switching tape.
One of the internal tapes is a binary and the other one is a physical tape; the same
holds for the external tapes; the switching tape is binary. Further, a PhTM has got a
counter, which cannot be accessed or deliberately altered by the PhTM during compu-
tation. The counter shows the value 0 at the beginning of each computation.
The internal tapes and the switching tape are initially empty. The content x of the
binary external tape and the content (O1, . . . , On) of the physical external tape at the
beginning of the computation are called the binary respectively physical input of M ;
the string X def

= (x,O1, . . . , On) is the (overall) input of M .
M further has got n+1 distinguished states termed the calling states Call 1, Call 2,

..., Call n and the swapping state. Suppose that when M switches into a calling state
Call i, the overall input of the computation was X, and that at the time of switching
the content of the binary external tape was x and the content of the physical external
tape was (O1, . . . , Ok). Then, the following happens within one Turing step:

1. The content of the binary external tape is erased and replaced by

F1

M
‖X‖
i

(x,O1, . . . , Ok).

2. The content of the physical external tape is erased and replaced by

F2

M
‖X‖
i

(x,O1, . . . , Ok).

3. The counter of the PhTM is increased by the value

F3

M
‖X‖
i

(x,O1, . . . , Ok).

Likewise, we describe what happens when the physical Turing machine switches into
the swapping state. We distinguish between two cases:

1. When M switches into the swapping state, the content of the swapping tape is
of the form (x, y), where x and y are natural numbers (assuming a previously
specified encoding scheme). Then, the content of cell x of the external physical
tape is exchanged with the content of cell y of the internal physical tape, and the
swapping tape is erased. This takes one Turing step.

2. The content of the swapping tape is not of that form. Then nothing happens.
Again, this takes one Turing step.

18

The output of a Turing machine is the content of the external tapes when it switches
into an end state, with the numerical output being the content of the binary tape, and
the physical output being the content of the physical tape. The computation time of a
Turing machine is the number of Turing steps plus the content of the counter of the
Turing machine when the Turing machine switches into an end state.

Before we can briefly discuss the definition of a PhTM in the next subsection, there
are a few more things that need to be said. First of all, we will introduce a formal
notation for the output of a PhTM.

Notation 3.6 (Output of physical Turing machines). Let M be a PhTM and X ∈
{0, 1}∗×O∗. The output of M on input X is denoted by OutM (X). Unless otherwise
stated, we often write M(X) instead of OutM (X).

The next definition states what it means for a PhTM to be ressource efficient; as
usual, ressource efficiency is taken as being polynomially bounded in some way.

Definition 3.7 (Polynomial PhTMs). Let U be a universe, and letM = (P,M1, . . . ,Mn)
be a PhTM of U . The we define the following notions:

1. M is called a polynomial time ϕ-TM if there exists a polynomial p such that for
any X ∈ {0, 1}∗ × O∗, the computation time of M on input X is less or equal
to p(‖X‖).

2. M is called a polynomial mass PhTM is there exists a polynomial p such that
m(Mk

i) ≤ p(k) for all natural numbers k and 1 ≤ i ≤ n.

3. M is called a polynomial PhTM if is both a polynomial time and a polynomial
mass PhTM.

Finally, a computation executed by a PhTM M is called a polynomial time or polyno-
mial mass or polynomial computation if M is a polynomial time or polynomial mass
or polynomial PhTM, respectively.

Now we can state an important feature of PhTMs, namely that they can be customized
with respect to a certain ‘state of knowledge’ or ‘state of technology’ in a universe.
Intuitively, a state of technology should be given by the machines that can (in practice,
not in principle) be built in a certain universe; hence it is suggestive to consider a state
of technology to be a subset of the set of all possible machines. This motivates the
next definition.

Definition 3.8 (State of Technology). Let U = (O,M,F ,m) be a universe. Any set
T that is a subset of M is called a state of technology (in U); whenever the universe
is clear from the context, we drop it. If a machine M is contained in T , we also say
that M is a machine of T .

We can now say what it means that a PhTM respects a state of technology.

19

Definition 3.9 (PhTMs Respecting a State of Technology). Let U be a universe, and
T be a state of technology in U . Let M = (P,M1, ...,Mn) be a PhTM in U . We say
that M respects T , or that M is a PhTM in T , if all elements of the sequences Mi

are machines of T .

This, for the moment, completes the definition of the concepts that we had been asking
for: We have formally defined what a physical Turing machine is, we have found a
way to express the informal phrase ‘state of technology’, and we have defined how a
state of technology may influence the power of a Turing machine. Our definitions will
be discussed briefly in the next subsection.

3.3 Discussion of Physical Turing Machines

There is one obvious objection that can be raised against physical Turing machines:
Their definition does not specify which machines respectively which functions can be
employed to support the standard Turing machine computation. Hence, their precise
computational power remains unclear and seems basically undefined. There are vari-
ous ways to encounter this objection.

First of all, we remark that PhTMs were introduced in order to reformulate com-
plexity based cryptography and to provide a formal basis for physical cryptography,
among other reasons. As discussed at length in section 2.1, it suffices for that purpose
if PhTMs can be used for the following purposes: First, to relate the security of dif-
ferent cryptographic schemes and primitives to each other; second, to lead conditional
security proofs. To that aim no precise definition of the power of the computational
model is necessary, as we will see in detail in the upcoming sections 6.3. Rather, a
framework with the following properties is needed: First, it can be used to express
certain assumptions about the security of cryptographic schemes; second, it is general
enough to capture all conceivable attacks; finally, it has enough internal structure to
allow reductions between different cryptographic objects. These properties are met
by PhTMs, and, when it comes to the second aspect, even more than by standard TMs.

Second, there is no reason why in principle and in practice it should not be possible
to fully determine the set of physical systems and corresponding functions that can be
employed in a PhTM computation. It is well conceivable that as the state of knowledge
in theoretical physics progresses, the notion of a physical system can be formalized well
enough in order to fully determine the behavior of physical systems. Together with
specifying a decent input - output formalism, this might lead to a full characterization
of the finite functions that can be computed by finite physical systems according to
the currently most advanced physical theory. More precisely, it is conceivable to apply
the most advanced physical theory (which today would be quantum or string theory)
to the physical parts of any PhTM in order to restrict

(A) the set of possible objects and possible machines in the universe U , from which
a PhTM might draw its physical parts.

20

(B) the technology T from which a PhTM might draw its physical parts.

That means that there is some good reason to assume that at least potentially
and in principle we can fully determine the computational power of PhTMs, or of
polynomial PhTMs, as our state of knowledge progresses. Please note that nothing
more can be said, in fact, about the status of classical TM or classical polynomial-time
TM computations. Deciding whether a function is Turing computable is not Turing
computable; further, we do not know how to resolve the NP vs P question, left alone
that we cannot say whether this question can in principle be decided in ZFC. This is
not held against the Turing formalism, and we feel it should also not be held against
our formalism.

One other important aspect follows: Had we applied one specific physical the-
ory in the definition of PhTMs, then this theory might be subject to change or even
replacement over time. The general formalism provided by PhTMs, however, can
persist independent of such change: We simply determine the universes U in which
the PhTMs operate, or the technologies T they respect, by application of the new
physical theory instead of the old one. This seems to further stress the generality
of our approach to physical computation: PhTMs can persist while physical theories
change.

Fourth, one interesting historical reference ought to be made in this context. When
he introduced the Turing machine (respectively LCM, as called then), Turing’s aim
was obviously not to introduce a complete computational model that covers any com-
putation executable by a physical machine. Rather, he intended to formalize any
‘mechanical’ procedure that could be carried out by a human being. This approach
was motivated by his goal to apply the Turing machine to Hilbert’s Entscheidungs-
problem, which asked for a humanly executable procedure of a certain, ‘mechanical’
sort, where ‘mechanical’ has some specific meaning that deviates from our everyday
language. Turing was to show that there was no such procedure in the case of pred-
icate logic, and the Turing machine was tailored for just this case. Indeed, Turing
often spoke of the Turing machine as of a “human computer”, or stated that “a man
provided with paper, pencil and rubber, and subject to strict discipline, is in effect
a universal Turing machine”. Perhaps even more strikingly to the point, Wittgen-
stein wrote: “Turing’s ‘Machines’. These machines are humans who calculate.” The
approach we took seems to fit well with these statements: First of all, they confirm
that it seems necessary to specifically introduce physical systems if we want to go
beyond the human-oriented power of the Turing machine. Second, given Turing’s and
Wittgenstein’s views, it seems suggestive to model a human being utilizing physical
systems for computation as a Turing machine with access to physical systems, just as
we did.

Fifth, we would like to comment briefly on the related notion of oracle Turing
machines. Our physical Turing machines can be seen as similar to oracle Turing ma-
chines that draw their oracles from a predetermined set of functions. There are some

21

differences, however: First of all, standard oracle machines do not operate on physical
objects. Second, standard oracle machines have their oracle fixed for all inputs and do
not choose the computational power of the oracle in dependence of the input length.
This property of physical Turing machines rather is reminiscent of computational cir-
cuits. Third, there is no additional component in the answer of a standard oracle
that could be taken as a counterpart to the physical computation time that is added
on the counter of a PhTM. Obviously, these differences could have been overcome by
adapting the oracle machine framework, but we felt that this might have overstretched
this concept a little. Nevertheless, similarities remain, and – another historical remark
– there is some resemblence also between our approach and Turing’s O-machines, in-
troduced in chapter four of his PhD-Thesis.

Finally, we would like to conclude by once more stressing the necessity to include
physical aspects in any computational model that claims to be complete in some sense.
One purely mathematically motivated definition alone cannot do, as computation in
the end is something physical, not mathematical. In particular, any model used as a
fundament in cryptography should be able to include any efficient physical computa-
tions, which is what our model attempts to perform.

3.4 Probabilistic and Oracle Physical Turing Machines

We will introduce two variants of PhTMs in this subsection: Probabilistic physical
Turing machines and oracle physical Turing machines. Both will be important for
formulating concepts in cryptography and physical cryptography; in fact, physical
probabilistic Turing machines will be more important for that purpose than (standard)
physical Turing machines. Oracle physical Turing machines are probabilistic PhTMs
equipped with an oracle; they will, for example, play a role in definition of the physical
security of digital signature schemes.

Formulating the concept of physical probabilistic Turing machines makes it nec-
essary to quickly review some concepts from probability theory, and to introduce the
concept of a probabilistic universe.

Definition 3.10 (σ -Algebras). Let Ω be an arbitrary set. A family A of subsets of
Ω is called a σ-Algebra in Ω, if the following holds:

1. Ω ∈ A.

2. If A ∈ A, then Ac ∈ A.

3. If A1, A2, A3, . . . ∈ A, then
⋃∞

i=1Ai ∈ A.

Notation 3.11. It can be shown that for any given subset S of Ω there is a smallest
σ-algebra in Ω which contains S. This σ-algebra will be denoted by A(S) in the sequel.

Definition 3.12 (Probability Spaces). A probability space P is a triple P = (Ω,A, P)
consisting of a non-empty set Ω, a σ-algebra A in Ω and a mapping P : A → [0, 1]
called the probability measure. P has the following properties:

22

1. P (A) ≥ 0 for all A ∈ A.

2. P (Ω) = 1.

3. For all disjoint A1, A2, . . . ∈ A it holds that

P

(∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai).

Definition 3.13 (Random Variables in Probability Spaces). Let P = (Ω,A, P) be a
probability space, and let P ′ = (Ω′,A′) be a tuple consisting of an arbitrary set Ω′ and
a σ-algebra A′ in Ω′ (such a tuple is commonly referred to as ‘measurable space’). A
mapping f : Ω→ Ω′ is called a random variable if

f−1(A′) ∈ A for all A′ ∈ A′.

Please note that the corresponding definitions for discrete probability spaces and ran-
dom variables are much simpler; however, we cannot assume that the object set on
which the PhTMs operate is countable. This enforces the more general treatment.

We can now ‘randomize’ our universes, allowing physical processes to be proba-
bilistic. This change will be reflected through altering the behavior function: It will no
more map physical systemsM to a function fM , but to a probability space (Ω,A, PM).
These probability space have in common that the sets Ω and the σ-algebras A are the
same for any two physical system M1 and M2 in M. Only the probability measure
PM : A → [0, 1] varies in dependance of M .

Definition 3.14 (Probabilistic Universes). A probabilistic universe U is a 4-tuple
U = (O,M,F ,m) with the following properties: O is an arbitrary set called the set of
possible objects,M is an arbitrary subset of O called the set of possible machines and
m : O → N is a mapping called the mass. Further, F is a mapping called the behavior
function, which has the following property:

F :M−→





(Ω,A, PM)

∣∣∣∣∣∣∣

Ω = {0, 1}∗ ×O∗ × {0, 1}∗ ×O∗ × N
A = A

(
{F | F is a finite subset of Ω}

)

(Ω,A, PM) is a probability space





Notation 3.15. The probability space that is associated with a machine M ∈ M is
often termed PM instead of F(M). Further, as already implicit in the above definition,
the probility measure of that probability space will be referred to as PM .

We can now use the probability space PM in order to define the output and the
computation time of M as random variables on that probability space. In a similar
manner, probabilistic Physical Turing Machines and their output distribution can be
defined. We leave this as an exercise to the reader.

We will conclude this subsection by a definition of physical probabilistic oracle Turing
machines, or PhPOTMs.

23

Definition 3.16 (Physical Probabilistic Oracle Turing Machines). Let f : {0, 1}∗ →
{0, 1}∗ be a function. An physical probabilistic oracle Turing machine or PhPOTM
M with an oracle for f is a PhPTM with an additional binary tape, the oracle tape,
and one additional state, the oracle state. Let x be the content of the oracle tape when
M switches ino the oracle state. Then, the following happens within one Turing step:
The content of the binary oracle tape is erased and replaced with the value f(x). The
function f is also called the oracle function.

The definition of oracles for PhPTM is basically as the same as for standard TMs.
The familiar terms ‘oracle call’ and ‘number of oracle calls’ can be used for PhPOTMs
in the straightforward way.

3.5 Object Generators and Measuring Devices

We will introduce two special types of PhTMs in this section, which are called object
generators (or simply generators) and measuring devices. We will also specify some
notation in connection with these devices that is going to make life easier in the
upcoming sections.

Intuitively, an object generator should be a PhTM which ‘generates’ an object:
It should take as input a binary string and produce as output one physical object,
optionally plus a binary string.

Likewise, the natural purpose of a measuring device is to ‘measure’ objects: That
means it should take as input one physical object, optionally plus a string, and output
a binary string plus the unchanged object. We do not allow a measuring device to
indicate a possible failure by a special output, though. It is sufficient for our further
considerations if the measuring device simply outputs a default value together with
the unchanged object in that case.

Definition 3.17 (Object Generators). Let U be a probabilistic universe, and T be a
technology in U . A probabilistic PhTM OG in T is called an object generator in T , if

FOG : {0, 1}∗ → {0, 1}∗ ×O.

Definition 3.18 (Measuring Devices). Let U be a probabilistic universe, and T be a
technology in U . A deterministic PhTM M in T is called a measuring device in T , if

FM : DM → {0, 1}∗ ×O, with DM ⊆ {0, 1}∗ ×O,

and for all (p,O) ∈ DM :
Π2(OutM (p,O)) = O.

Definition 3.19 (Measurement Parameters and Results). Let M be a measuring
device with domain DM ⊆ {0, 1}∗ ×O. Then, the set Π1(DM) ⊆ {0, 1}∗ is called the
set of measurement parameters or measurement vectors of M , and is often denoted by
D1

M . The elements of Π1(DM) are called measurement parameters or measurement
vectors of M , and are mostly denoted by the terms p or pi. For any (p,O) ∈ DM the
value Π1(OutM (p,O)) is called the measurement result of the measurement on O that
is executed by M and characterized by p, or simply the measurement result.

24

Please note that the expression Πi denotes the projection of a tuple or a cartesian
product set onto its i-th coordinate. Therefore the second condition in definition 3.18
says that the object O is left identical respectively unaltered through the measuring
process. This implies that the measurement can be repeated to obtain the same result,
which is a key property for later applications.

Obviously this assumption presupposes that only stable classical properties are
measured, and that these properties are unchanged through measurement. This is
certainly an approximation, but one that seems justified in the realm of our consider-
ations. Further, it excludes quantum measurements. As the systems we consider are
non-quantum, this does not harm our framework, though.

Before we proceed to the next section, we will introduce a compact notation for ex-
pressions related to measuring devices and measurement results. This notation will
make life much easier in the upcoming sections.

Notation 3.20 (Notational Conventions for Measuring Devices). Let M be a mea-
suring device and p1, . . . , pn be measurement parameters of M . For notational ease,
we introduce the following abbreviations:

M(p,O)
def
= Π1(OutM (p,O)) (∗)

p
def
= (p1, . . . , pn)

pi
def
= (p(i,1), . . . , p(i,ni))

M(p,O)
def
= (M(p1, O), . . . ,M(pn, O))

M(pi, O)
def
= (M(p(i,1), O), . . . ,M(p(i,ni), O))

P (O)
def
= (p,M(p,O)

P i(O)
def
= (pi,M(pi, O)

= (p(i,1), . . . , p(i,ni),M(p(i,1), O), . . . ,M(p(i,ni), O))

Two comments are in order. First, please recall that in Notation 3.6 we introduced a
short form M(X) for the notation OutM (x), saying that this short form would apply
“unless otherwise stated”. Equation (∗) is the only notable case in which we deviate
from the general habit and do state otherwise. This is reasonable as we are only
interested in the numerical outcome of a measurement, not in the physical part of the
output. The introduction of a physical output of the measuring device was mainly a
technical condition used to assure that the measured object is not changed through
measurement.

Second, please note that the introduced abbreviations in fact “hide” some of the
parameters they depend upon. For example, the notational term p does not formally
exhibit the parameter n any more, in relation to which it is defined. In the same sense,
the notational term P (O), which depends on the parameter n, the set of measuring
vectors p and the measuring device M , does not contain any of these terms. This ob-
viously achieves notational compactness, but might appear slightly confusing or even
formally incorrect at first glance. We stress, however, that the introduced notation is

25

not to be taken in the sense of a formal definition, but as an abbreviation and simpli-
fication. It is to be understood quite mechanical in the sense that any appearance of
P (O), for example, must in principle be replaced by the longer terms p, M(p,O) or
even (p1, . . . , pn,M(p1, O), . . . ,M(pn, O)).

We will illustrate the intended replacement character of our abbreviations by two
examples. If the terms P (O1) and P (O2) are used in one mathematical expression,
then they refer to the same set of measuring vectors p and the same measuring de-
vice M . The terms P 1(O1) and P 2(O4), however, refer to the possibly different sets
of measuring vectors p1 = (p(1,1), . . . , p(1,n1)) and p2 = (p(2,1), . . . , p(2,n2)), the pos-
sibly different objects O1 and O4, but still the same measuring device M . Similar
considerations apply to the use of the abbreviations p, pi and pj .

4 Physical Security of Standard Cryptography

We will now try to formulate the security of standard digital signature schemes on
the basis of physical Turing machines. The resulting security notion will be called
ϕ-security. The advantage of ϕ-security obviously is that it includes physical attacks
in its security model. One necessary consequence, as discussed at length in the in-
trouction, is that we have to include the current state of technology in our framework.
This makes the ϕ-security of any given cryptographic signature scheme subject to this
state of technology. That fact seems unusual at first glance, but indeed reflects the
state of affairs for most cryptographic algorithms: They rely on the intractability of
factoring or discrete logarithm problem, and could, in principle, be attacked by quan-
tum algorithms; what saves their practical security is the current state of technology,
not a formal mathematical or Turing-machine based argument.

For the convenience of the reader, we start by recollecting some well-known definitions
from classical, digital cryptography (see [15]).

Definition 4.1 (Signature Schemes [15]). A digital signature scheme is a triple (G,Sig, Ver)
of probabilistic polynomial-time (Turing) algorithms satisfying the following two con-
ditions:

1. On input 1n, algorithm G (called the key generator) outputs a pair of bit strings.

2. For every pair (s,v) in the range of G(1n), and for every α ∈ {0, 1}∗, algorithms
Sig (signing) and Ver (verification) satisfy

Pr [Ver(v, α, Sig(s, α)) = 1] = 1,

where the probability is taken over all the internal coin tosses of algorithms Sig
and Ver.

Definition 4.2 (Secure Signature Schemes [15]). A public key signature scheme is
secure if for every probabilistic polynomial time oracle machine M , every polynomial
p and all sufficiently large n, it holds that

26

Pr

[
Ver(v, α, β) = 1 and α /∈ QSs

M (v),
where (s, v)← G(1n) and (α, β)←MSs(v)

]
< p(n),

where the probability is taken over the coin toses of algorithms G, M and Ver as well
as over the coin tosses of machine M.

It is well known that secure signature schemes can be constructed under the assump-
tion that factoring large integers is hard. More precisely, the following holds.

Definition 4.3 (Intractability Assumption for Factoring (IAF) [16]). Let

Hk
def
= {n = p · q | |p| = |q| = k, p ≡ 3 mod 8, q ≡ 7 mod 8}.

Then, the following statement ist called the intractability assumption for factoring:
For all probabilistic polynomial Turing machines M there is a negligible function ν
such that for all sufficiently large k,

Pr

[
M(n) outputs a nontrivial

divisor of n
n is sampled uniformly at
random from the set Hk

]
< ν(k).

Now we can state the following theorem by Goldwasser et al. [16].

Theorem 4.4 (Secure Signatures from the IAF [16]). If the IAF holds, then there is
a secure signature scheme.

Adopting the view discussed in the introduction (section 2.1), we can state that the last
theorem makes a conditional statement about the existence of secure signature schemes
in the standard security model of complexity based cryptography, whose relevant parts
were briefly reviewed preceeding the theorem. This framework, however, does not
include computations executed by physical systems. As announced in the introduction,
our aim is therefore to transfer Theorem 4.4 into a corresponding statement that
involves physical Turing machines. We will not fully complete all steps that are
necessary to do so, in particular we skip the corresponding proof of the ϕ-equivalent of
Theorem 4.4. However, we sketch the basic outline by giving the required definitions
and theorems, which will provide the reader with a general idea of the direction we
are trying pursue.

We start by extending the definition of the security of a (standard) signature
scheme through allowing physical oracle Turing machines instead of standard oracle
Turing machines in the definition. This approach has the advantage of taking attacks
by physical computation machines into account; at the same time it makes necessary
to introduce universes and technologies into the picture, relative to which our new
notion of security is defined, as discussed in the introduction and section 3.3. The
resulting notion of security is called ϕ-security, and we will generally use the prefix “ϕ”
in order to denote any concepts or definitions that arise from classical cryptography
and security by adding a physical dimension to it.

27

Definition 4.5 (ϕ-Secure Signature Schemes). Let U = (O,M,F ,m) be a probabilis-
tic universe, and let T be a technology in that universe. A signature scheme is called
ϕ-secure in T if for every probabilistic polynomial physical oracle machine M in T ,
every polynomial p and all sufficiently large n, it holds that

Pr

[
Ver(v, α, β) = 1 and α /∈ QSs

M (v),
where (s, v)← G(1n) and (α, β)←MSs(v)

]
< p(n),

where the probability is taken over the random variables G, M and Ver.

If we are to transfer Theorem 4.4 to the realm of ϕ-security, then we have to reformu-
late the IAF in the context of PhTMs.

Definition 4.6 (ϕ-Intractability Assumption for Factoring (ϕ-IAF)). Let U = (O,M,F ,m)
be a probabilistic universe, and let T be a technology in that universe. Let further

Hk
def
= {n = p · q | |p| = |q| = k, p ≡ 3 mod 8, q ≡ 7 mod 8}.

Then, the following statement ist called the ϕ-intractability assumption for factoring
in T : For all probabilistic polynomial physical Turing machines M in T there is a
negligible function ν such that for all sufficiently large k,

Pr

[
M(n) outputs a nontrivial

divisor of n
n is sampled uniformly at
random from the set Hk

]
< ν(k)

where the probability is taken over the uniform choice of n and the random variable
M(n).

Now we can also transfer Theorem 4.4.

Theorem 4.7 (ϕ-Secure Signatures from the ϕ-IAF). Let U = (O,M,F ,m) be a
probabilistic universe, and let T be a technology in that universe. If the ϕ-IAF holds
in T , then then there is a ϕ-secure signature scheme in T .
Indeed, the author conjectures that the proof of the theorem in the standard setting
carries over basically immediately to the ϕ-setting, but the proof has not been led yet.

This sequence of definitions and theorems illustrates one aim of PhTMs that we already
emphasized in the introduction: To reformulate the security of standard cryptographic
schemes with respect to physical computations. Please note that the introdunction
of technologies and universes does not much delimit the relevance of our statements:
Provided that both the security assumptions and the security statement are formulated
according to the same universe and technology, which is very reasonable in practice,
the assumptions basically ‘cancel out’. We arrive at statements of the following type:
Provided that you live in a world with a state of technology that does not allow you to
break the ϕ-IAF, then there are ϕ-secure signature schemes in your world. This seems
a reasonable class of statements, whose generality is certainly not decreased through
reference to the notion of a ‘technology’. We hope that this can give a first impression
of the application of PhTMs to standard cryptography. We will proceed with the
application of PhTMs to physical cryptography, where the property of PhTMs to
process physical objects becomes important.

28

5 Unique Objects

5.1 Informal Description of Unique Objects

In the current section we will introduce the notions of unique objects and verifiably
unique objects by giving an informal description; formal definitions will follow in the
next section.

Intuitively it seems suggestive to call an object unique if it exists only once. Or,
more precisely, if the object possesses some unique properties which at a certain time-
point of reference are shared by no other existing object. If unique objects shall be
relevant for cryptographic purposes, however, then their uniqueness should not only
hold for the moment, but should prevail for some foreseeable time in the future. This
should hold even if a unique object and its properties become known to the general
public and are subject to active refabrication attempts by fraudsters. That implies
that the unique properties of the object should be impossible to refabricate by means
of current technology, while, at the same time, it should obviously be possible to
produce unique objects by means of current technology. This seems contradictory.

The contradiction can be resolved by emplyoing random processes in the produc-
tion of unique objects. These processes each time exert a different influence on the
produce, making each object unique. Suitable random processes may, for example, be
given by the fabrication variations that inevitably and uncontrollably occur in many
nanoscale manufacturing processes.

In the sequel, we will find it convenient to formally distinguish between two different
types of unique objects: Standard unique objects and verifiably unique objects.

Standard unique objects (or simply: unique objects) are designed for a situation
in which the honest parties have control over the manufacturing process of the object,
and compete with an external adversary who attempts to copy it. This situation
occurs, for example, if unique objects are used as unforgeable labels for banknotes
or other valuable goods. In situations of the like, the focus obviously lies on the
uncopyability of the object after its production.

Verifiably unique objects, in turn, are utilized in more complex situations, where
the honest party does not have control over the manufacturing process of the object,
and the manufacturer is regarded as potentially malicious, too. Under such circum-
stances it does not suffice, roughly speaking, that unique objects are uncopyable for
external fraudsters. It becomes also relevant whether the manufacturer himself could
have produced more than one specimen of a given object, for example by applying
a novel, unexpected trick during the production. In situations of the like, the focus
lies on the unreproducibility of the object uring and after the production process. To
the honest user who receives the readily produced objects form the possibly dishonest
manufacturer, the desired conclusion for uncopyability is an ex post conclusion taking
place after the object has been generated.

The feature of verifiability becomes relevant, for example, when we present a novel
method to distribute copy protected digital content over online connections.

29

5.2 Definition of Unique Objects

In a formal definition of the notions of unique objects and verifiably unique objects,
the details will be more involved than the introductory characterisations presented
in section 5.1. The bottleneck will be the formalisation of vague expressions such
as the terms “cannot be reproduced”, “properties” or “identical properties”. Further,
we will have to define our two notions in some probabilistic framework, as the above
statements only make sense if small error probabilities are allowed; for example, we
have to take the possibility into account that a fraudster produces a copy of some
unique object by an extreme amount of sheer luck.

This formalisation will make it necessary to rely on some established asymptotic
concepts from complexity theory, such as the distinction between polynomial and
super-polynomial time. Therefore, our definitions of unique objects and their variants
further have to be asymptotic, too.

This can be achieved by considering so-called unique object systems instead of
single unique objects. These are systems which can generate and measure infinitely
many “unique objects” in relation to a growing input parameter 1k.

We start by defining the underlying general notion of an object system.

Definition 5.1 (Object Systems). Let U be a universe, and let T be a technology in U .
Let OG be a polynomial object generator in T , and let M be a polynomial measuring
device in T . The tuple (OG,M) is called an object system in T if there is a function
L ∈ O(n) such that

OG :
{

1k
∣∣∣k ∈ N

}
−→

{
(P (O), O)

∣∣∣ O ∈ O and
∣∣P (O)

∣∣ ≤ L(k)
}
.

We will make a few comments on Definition 5.1. First of all, please note that the
definition makes use of the abbreviations introduced in Notation 3.20. In particular,
it relies on the replacement character of the abbreviations, as clarified in the discus-
sion following Notation 3.20. As elaborated there, the abbreviation P (O) is to be
understood as being equal to p,M(p,O), which clarifies the dependence of any object
system on the measuring device M . If further explanation on the used abbrevations
is required, the reader is referred again to Notation 3.20.

Then, please note that the definition uses the notion of a measuring device precisely
as introduced in Definition 3.18, but employs the notion of object generators in an
altered fashion, requiring that they have to meet the described constraints on their
domain and range. In particular, we required that the object generators employed in
an object system output a set of properties P (O) together with the object O, such
that P (O) is of linear size in the input parameter k. This is demanded with an eye
on future applications, where the unique properties of the generated object should be
compact and not too long for practicality reasons.

Third, note that any object system can produce infinitely many objects, and is
parametrised by a parameter k which is presented to the object generator in unary
notation.

30

The definition of object systems states nothing about any security aspects, however.
These will be dealt with in the upconing definitions, where we specify the notion of a
unique object system and, eventually, of a verifiably unique object system.

Definition 5.2 (Unique Object Systems). Let U be a probabilistic universe, and let
T be a technology in that universe. Let (OG,M) be an object system in T . (OG,M)
is called a unique object system in T if the following uncloneability condition holds:
For any polynomial ϕ-TM CLONE in T with

CLONE :
{

(1k, P (O), O)
∣∣∣ O ∈ O and p ∈ (D1

M)∗
}
−→ O2,

for any polynomial p and for any sufficiently large k,

Pr



P (O) = P (O1) = P (O2)

where (O1, O2)← CLONE (P (O), O)

and (P (O), O)← OG(1k)


 ≤ 1/p(k)

where the probability is taken over the random outputs of CLONE and OG.

Again, some comments follow. Definition 5.2 is obviously an asymptotic definition
in the sense that the PhTMs OG, M and CLONE operate on infinite domains.
Like in Definition 5.1, this asymptiticity is achieved by a unary parameter k, which
parametrizes the output of OG and is provided to both OG and CLONE as input.

This asymptotic construction is necessary for a number of reasons: First of all and
most obviously, because we want to apply the asymptotic concepts of polynomial time
and polynomial mass.

There is a more subtle, second reason, too: If OG would operate on a finite
domain and hence a finite range, only, then there could be a finite machine CLONE
respecting T which had ‘on hold’ or ‘on store’ all finitely many possible outputs of
OG. This machine would be suitable as cloning machine: On input (P (O), O) it
would simply search for an object O′ with P (O′) = P (O) among the objects it has
‘on hold’, and output this object. Provided that the objects are ordered according to
their properties, this search could presumably be carried out quickly. Hence, we need
to restrict the size of the physical systems that are employed by PhTM CLONE , so
that they can only have some small fraction of all possible outcomes of OG ‘on hold’.
A proper choice for that restriction of size is the notion of polynomial mass. Again,
this presumes an asymptotic treatement, and also implicitely assumes that OG(1k)
can produce super-polynomially (in k) many different objects.

Finally, please note that Definition 5.2 perhaps surprisingly says nothing about
the ‘uniqueness’ of the generated objects, but only states some ‘uncloneability condi-
tion’. The next propositition shows, however, that some sort of uniqueness property
is already implicit in the uncloneability condition.

Proposition 5.3. Let U be a universe, T be a technology, and OS = (OG,M) be a
unique object system in T . Let further p and q be polynomials, and let OG1, . . . , OGp(k)

be object generators in T . Then, the following holds:

31

1. For all polynomials r and for all sufficiently large k,

Pr

[
∃ i 6= j : P i(Oi) = P j(Oj)

where
(
P i(Oi), Oi

)
← OG(1k) for i = 1, . . . , q(k)

]
≤ 1/r(k).

2. For all polynomials r and for all sufficiently large k,

Pr



∃ (i,m) 6= (j, l) : P (i,m)(O(i,m)) = P (j,l)(O(j,l))

where
(
P (j,l)(O(j,l)), O(j,l)

)
← OGj(1

k)

for j = 1, . . . , p(k) and l = 1, . . . , q(k).


 ≤ 1/r(k).

Proof. We will only show the first statement; the proof of the second statement is
similar. For the sake of contradiction, we make the following assumption:

Contradiction Assumption: OS is a unique object system, but for some poly-
nomial r and for infinitely many k it holds that

Pr

[
∃ i 6= j : P j(Oj) = P i(Oi)

where
(
P i(Oi), Oi

)
← OG(1k) for i = 1, . . . , q(k)

]
> 1/r(k).

Then, we construct a PhPTM CLONE as follows:

Machine CLONE :

Input
(
1k, P (O), O

)

Set
(
P i(Oi), Oi

)
← OG(1k) for i = 1, . . . , q(k)

If @ i : P i(Oi) = P (O)

then output “failure” and abort.

Output
(
P (O1), O1, P (O2), O2

)

By the construction of CLONE and statement 1 it is clear that for any polynomial p
and for any sufficiently large k,

Pr



P (O) = P (O1) = P (O2)

where (O1, O2)← CLONE (P (O), O)

and (P (O), O)← OG(1k)


 > 1/r(k)

where the probability is taken over the random outputs of CLONE and OG.
This contradicts the assumption that (OG,M) was a unique object system, and

completes the proof.

32

We will now turn to the definition of verifiably unique object systems, and start by a
thorough demarcation to the notion of unique object systems.

The definition of unique object systems asserts that there is no external machine
which clones the objects after they have been produced, and it also asserts by Propo-
sition 5.3 that the very object generator OG of the unique object system (OG,M)
produces two identical objects with negligibly small probability only. Further, Propo-
sition 5.3 asserts that any other object generator, too, has got a very small probability
to reproduce by chance an object that has earlier been produced by OG. Definition
5.2 does not guarantee, however, that there might not be another object generator
OG′ different from OG which can produce objects of similar type as OG, but which
is capable of generating more than one specimen of each produced object! Any such
specimen produced by OG′ would by itself look like a unique object to an external
observer, while, in fact, the manufacturer holds possession of a “twin” with identical
properties.

Let us further clarify the difference between our hypothetical machine OG and
the attacker CLONE as specified in the uncloneability condition of Definition 5.2:
The machine CLONE arbitrary object produced by someone else, namely the object
generator OG, and attempts to copy it. Our hypothetical machine OG′, however,
generates the objects by itself, and tries to design the production process in such a
way that two or more identical objects result, each of which on its own looks like
a unique object. Hence, Definition 5.2 forbids the existence of a succesful attacker
CLONE , but does not rule out the existence of the described object generator OG′.

It is important to state that this problem is far from trivial or merely theoretical.
It appears in any application where the user of some unique object does not trust the
manufacturer of the object, and wants to be sure that no other person, including the
manufacturer, can possess or produce an identical object. The definition of unique
object systems cannot be used to account for these cases, as it merely provides security
guarantees against external fraudsters. We need a new notion, which we call verifiably
unique object systems, and a new definition.

If that new definition is to make sense, it has to include a mechanism by which
the honest user can actually check that a given, supposedly unique object really is
unique. We hence have to select a form that this check is supposed to take. There are
two suggestive choices: The honest user could try to check the uniqueness by some
physical actions, like inspection of the object. Or, alternatively, by merely elaborat-
ing on the numerical properties of the object, without physical inspection. The latter
choice is more convenient, as it allows the practically advantageous possibility that
the numerical properties of the object are measured by another party instead of the
honest user.

The following definition formally expresses the properties of verifiably unique object
systems as discussed.

Definition 5.4 (Verifiably Unique Object Systems). Let U be a probabilistic universe,
and let T be a technology in that universe. Let (OG,M) be an object system in T .
(OG,M) is called a verifiably unique object system in T if the following two conditions

33

are met:

1. Manufacturer Resistancy Condition: For any polynomial PhTM TWIN in T
with

TWIN :
{

1k
∣∣ k ∈ N

}
−→

{ (
P (O1), O1, P (O2), O2

) ∣∣ O1, O2 ∈ O, p ∈ (DP
M)∗

}
,

for any polynomial p and for all sufficiently large k, it holds that

Pr



P (O1) = P (O2) and(
P (O1), O1

)
,
(
P (O2), O2

)
∈ Range(OG) \ {(λ, λO)}

where
(
P (O1), O1, P (O2), O2

)
← TWIN (1k)


 ≤ 1/p(k)

where the probability is taken over the random output of TWIN .

2. Verifiability Condition: There is a polynomial time probabilistic Turing machine
OV , called the object verifier, which decides membership in

Π1(Range(OG)) \
{

(λ, λO)
}
.

That is, given a string x ∈ {0, 1}∗, OV decides in probabilistic polynomial time
whether there is an object O ∈ O such that

(x,O) ∈ Range(OG) \
{

(λ, λO)
}
.

Once more, some comments follow. We will start with some formalities: First, note
again that again that the abbreviations introduced in Notation 3.20 are used exten-
sively in the definition. If anything is doubtful, we refer again to Notation 3.20.

Then, it is obvious that the definition just like the previous definitions is asymp-
totic, and that the behavior of OG is asymptotically parametrised throughthe security
parameter k. This parameter is also presented to the adversarial machine TWIN .

Coming to more substantial issues, we would like to re-emphasize the two different
parts of Definition 5.4, which relate to the two basic properties of verifiably unique ob-
ject systems. Part one expresses the manufacturer resistance condition, which states
the requirement that there is no alternative production process that generates the
same objects as OG, but which is capable of manufacturing two or more identical
specimen of each produced object. In part two, the verifiability condition asserts that
the manifacturer resistance can be efficiently verified by a user by merely juding the
numerical properties of the produced objects.

It is interesting to state in this context that the formal expression of the property
of manufacturer resistance as in Definition 5.4 answers an issue left open in [12, 11],
where the property of manufacturer resistance is introduced informally and used sub-
sequently without a formal definition.

We would like to remark in this context, however, that we feel that the practi-
cal relevance of the notion of manufacturer resistance is significantly decreased if it

34

used without a corresponding verifiability condition as in Definition 5.4. Any user
distrusting the manufacturer must be able to verify by himself that a given object
was produced in a manufacturer resistant way, as he apparently will not be willing to
trust the manufacturer’s assertion that this was the case. This, then, requires some
verification mechanism. If, on the other hand, the manufacturer is trusted by the user,
no manufacturer resistance property is needed in the first place. This problem of veri-
fying manufacturer resistance in modern PUF-protocols has just recently been picked
up again by Rührmair and van Dijk at Oakland 2013 in introducing the so-called “bad
PUF model” [27].

We suggest therefore contrary to [12], that the notion of manufacturer resistance
should in general only be used in connection with a corresponding verifiability con-
dition, and did not define manufacturer resistance or manufacturer resistant object
systems, as independent notions of their own.

There is another issue about the manufacturer resistance condition that is worth
discussing: Why do we exclude the output (λ, λO) from the range of OG?

The reason lies in the probabilistic nature of the production process executed by
OG. Recall that the aim of OG is to produce an object which is unique and cannot be
reproduced. By sheer bad luck, however, it could be the case that the manufactured
object happens to be trivial and easy to reproduce. In that case, a natural response
of OG would simply be to repeat the production process. However, there again is
a small probability that the result is unsatisfactory, and with very small probability,
OG could even be unable to generate a satisfactory object within the prespecified
polynomial time bound.

In that case, OG simply generates the failure output (λ, λO), that is, it halts with
its binary and its physical tape being empty. This output then certainly is trivial to
reproduce and has to be excluded from the allowed outputs of TWIN in order not to
spoil the definition. If it was not excluded, then TWIN could on any input 1k produce
the output (λ, λO, λ, λO), thereby breaking any verifiably unique object system.

Likewise, if we do not allow OG to produce a failure output that is excluded from
the allowed range of TWIN , then there might be easy-to-reproduce objects in the
range of OG, and TWIN could confine itself to generating two copies of one of these
easy-to-reproduce objects. Thereby it could break the supposedly verifiably unique
object system (OG,M).

The notion of being a verifiably unique object system seems stronger than being a
unique object system. Intuitively one would assume that the former implied the latter
in some sense; this is stated more precisely and proved in the upcoming proposition.

Proposition 5.5 (Verifiably Unique Object Systems are Unique Object Systems).
Let U be a universe, and let T be a technology. Let (OG,M) be a verifiably unique
object system in T . Then (OG,M) is also a unique object system in T .

Proof (Sketch). We argue by contradiction, assuming the following:

35

Contradiction Assumption: (OG,M) is a verifiably unique object system in T ,
but not a unique object system in T .

By the definition of a unique object system, the latter part of the contradiction as-
sumption implies the following:

Statement 1: There is a polynomial PhPTM CLONE such that for infinitely many
k and a fixed polynomial p∗ it holds that

Pr



P (O) = P (O1) = P (O2)

where (O1, O2)← CLONE (P (O), O)

and (P (O), O)← OG(1k)


 > 1/p∗(k),

where the probability is taken over the random outputs of CLONE and OG.

The machine CLONE can then be used in order to build a PhPTM TWIN which
violates the property that (OG,M) is a unique object system. We define TWIN as
follows:

Machine TWIN :

Input 1k

Set
(
P (O), O

)
← OG(1k)

Set (O1, O2)← CLONE
(
1k, P (O), O

)

Output
(
P (O1), O1, P (O2), O2

)

It is obvious from the definition of TWIN that if CLONE , OG andM are polynomial
PhPTM in T , then so is TWIN . Further, one can see that due to the properties of
CLONE and OG one can derive from statement 1 thatit holds for infinitely many k
and the polynomial P ∗ from statement 1 that

Pr

[
P (O1) = P (O2)

where
(
P (O1), O1, P (O2), O2

)
← TWIN (1k)

]
> 1/p∗(k).

This implies that (OG,M) violates the manufacturer resistance condition and hence is
no verifiably unique object system. This is at odds with the contradiction hypothesis
and completes the proof.

An obvious question to ask is whether the converse of Proposition 5.5 also holds. This
question is not straightforward to answer.

Intuitively, one would (probably) regard verifiably unique object systems a stronger
notion than unique object systems, suspecting that there are unique object systems
which are not verifiably unique object systems. However, it seems very hard with

36

current techniques to prove this assumption uncoditionally, because this would imply
an unconditional proof that some system is a unique object system in the first place.
Such proofs – like proofs that a given function is a one-way function – seem to be
beyond the current knowledge in theoretical computer science, if led unconditionally
and without restricting the universes or technologies artificially.

Still, one can (without proof) imagine some unique object systems which are likely
not to meet the manufacturer resistance condition of verifiably unique object systems.
This backs the assumption that the two notions are different. As an example, take as
OG a machine which produces on input 1k a unique, random mask. Further, imagine
that OG subsequently uses that mask in order to manufacture one physical object in
such a way that its properties are a deterministic and repeatable outcome of the mask
structure. Examples might include the printing masks used for banknotes, which are
unique in their microstructure, or lithographic masks in semiconductor technology. To
complete the object system, take as measuring deviceM some PhTM which measures
the properties of the manufactured systems.

Then, it is obvious under these premises that we could just as well build an object
generator OG′ which works as OG, but uses the mask to produce two or even more
objects with identical properties. Hence, (OG,M) does not meet the manufacturer
resistance condition and is no verifiably unique object system.

Further, note that given one object produced by either OG or OG′, it is impos-
sible to tell by whether it was produced by OG or OG′, whence necessarily also the
verifiability condition is violated.

Another, quite convincing example arises in the context of chemistry. Consider a
very complex chemical or biochemical solution, for example a complex, randomly
produced DNA-solution. Such random, highly entropic solutions have been suggested
recently in the context of DNA-based cryptography, for example in Nature magazine
and elsewhere [9, 13, 8]. By stirring the solution carefully in order to achieve an
isotropic distribution of the constituents, and by subsequently extracting equal parts
of the volume, one gets “little identical copies” of the original solution. These “little
copies” share the same relative distribution of constituents as the original solution.
Hence, on seeing a randomly looking DNA-solution, there is no way to tell whether this
volume was once part of a larger solution with an identical constituent distribution,
or whether this volume is already the whole original and randomly produced solution.

Therefore an object system producing such random DNA-solution is a convincing
candidate for a unique object system which is no verifiably unique object system. Its
practical implementation seems quite realistic, as the relative concentrations of the
constituents can be tested reliably by established biochemical techniques, for example
by use of DNA-chips.

The example of complex DNA-solutions can hence be used to maintain that the
notions of uniqueness and verifiably uniqueness as defined earlier are different, and
that using two different definitions is well justified also from a practical point of view.

37

6 Labeling Schemes

6.1 Definitions

In the sequel, we will deal with one of the main applications of unique object systems,
which is the unforgeable labeling of valuable goods. We imagine that this task is
executed by two machines with the following subtasks:

Machine 1, which is capable of producing physical tokens, the labels.

Machine 2, which is capable of deciding whether a given physical token is a valid
label produced by Machine 1, or not.

Further, we can imagine that a third machine plays a role, which produces a secret
key by which the other two machines can be configured or personalised.

Machine 3, which can produce some binary information by which Machine 1 and
Machine 2 can be configured or personalised, respectively, for different users.

This leads to the following definition:

Definition 6.1 (Labeling Schemes). Let U be a probabilistic universe and T a tech-
nology in U . A labeling scheme in T is a triple (C,LG, T) of probabilistic polynomial
mass PhTMs in T with the following properties:

1. C, called the configurator, runs in polynomial time. It produces on input 1k a pair
of binary strings (p, t) as output. Thereby p is the configurating information that
is later provided to the producer, and t is the configurating information provided
to the tester.

2. LG, called the label generator, runs in polynomial time. It produces on input
(1k, p) an output (x,O) ∈ {0, 1}∗ × O. The output (x,O) is called a label, and
often denoted by the letter L.

3. T is called the tester and runs in polynomial time. It takes as input a triple
(t, x,O) from the set {0, 1}∗×O and produces a binary output with the property
that for every k and for every pair (p, t) in the range of C(1k),

Pr [T (t, LG(1k, p)) = 1] = 1,

where the probability is taken over the random output of LG and T .

Note that this definition for the first time uses the capability of PhTMs to process
physical objects as input and output. It says nothing about the security properties
of labeling schemes, though; these are dealt with in the next definition. The security
model formulated there is reminiscent of the security of digital signatures under known
message attack: We assume that the attacker gets a polynomial number of t valid
labels L1, . . . , Lt as input, and is asked to produce t + 1 valid labels L′1, . . . , L′t+1 as
output. Put differently, he has to produce one more label than he was presented with,
and the new labels can differ from the old ones, as long as they are recognized by the
tester as valid. The following definition says this more formally.

38

Definition 6.2 (Secure Labeling Schemes). Let U be a universe and T be a technology
in U , and let (C,LG, T) be a labeling scheme in T . (C,LG, T) is called a secure
labeling scheme in T if for any probabilistic polynomial PhTM FAKE in T and for
any polynomial p there is a negligible function ν such that

Pr



T (t, L′i) = 1 for i = 1, . . . , p(k) + 1

where (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(1k, p), . . . , Lp(k) ← LG(1k, p) and (p, t)← C(1k)


 < ν(k).

The probability is taken over the random outputs of C, LG, T and FAKE .

After we have presented the necessary definitions of labeling schemes and secure la-
beling schemes, we will show how a labeling scheme can be based on unique object
systems and digital signatures.

6.2 Standard Labeling by Unique Objects and Digital Signatures

It seems suggestive to use unique objects as unforgeable labels, as they fulfill the
uncloneability condition of Definition 5.2. Nevertheless, there is a problem with this
approach: All objects produced by a UOS are different and ‘random’ in some way; how
shall the tester make a difference between a random object produced by a fraudster
and a random object generated by the legitimate manufacturer?

This question can be resolved by combining a standard approach from math-
ematical cryptography with our new notion of unique objects; such hybrid tech-
niques are rather typical for ϕ-cryptography. The idea is as follows: The legiti-
mate manufacturer is given a secure signature scheme (G,Sig, Ver) and a unique
object system (OG,M). He uses OG to produce a unique object together with
some measuring vectors p1, . . . , pn, and obtains some corresponding measuring results
M(O, p1), . . . ,M(O, pn). Then, he uses his secret signature key to sign the properties
of the unique object, which proves that this very object originated from him, not from
the fraudster. The details are as follows.

Construction 6.3 Labeling Schemes from Signature Schemes and Object Systems

Let DSS = (G,Sig, Ver) be a signature scheme, and OS = (OG,M) be an object
system. We construct a labeling system LS = (C,LG, T) from DSS and OS as
follows:

Configurator C: We take as configurator C the key generator G of the signature
scheme. Hence, C(1k) = (p, t)

def
= G(1k) = (s, v) for all k ∈ N.

Label Generator P : The Label Generator LG is constructed from the object
generator OG of the object system and the measuring apparatusM of the object
system in the following way: LG takes as input p (the partial output of the
configurator). Then, it runs OG(1k). This produces an output (P (O), O). Then,
the Label Generator produces a digital signature string S = Sig(s, P (O)). It
outputs the label L = (x,O)

def
= (P (O), S,O).

39

Tester T : The tester is constructed from the measuring device M of the object
system and the verifier V from the signature scheme. Given a label L of the
form L = (P (O)′, S′, O′), where P (O)′ is of the form P (O)′ = p ′,M(p,O)′, it
proceeds as follows:

(a) It checks whether Ver(t, P (O)′, S′) = 1.
(b) It examines by use of M whether M(p,O)′ = M(p ′, O′).

If conditions (a) and (b) are met, then the tester regards the label as valid and
outputs “1”, otherwise it outputs “0”.

As the above construction will be used often, we give an own name to it.

Definition 6.4. Let OS be an object system, and DSS be a signature scheme. Then
we denote the labeling scheme LS constructed from OS and DSS as described in the
previous construction 6.3 as SL(OS,DSS), and call it the standard labeling scheme
(constructed) from OS and DSS.

Before we turn to the proof of security of the standard labeling scheme, we will describe
how the scheme is used in practice. This protocol will say nothing new compared to
construction 6.3, but it will bring some practical aspects of the standard labeling
scheme illustratively to the point.

Protocol 6.5: Offline Labeling via Unique Objects

Prerequisites and Situation:

1. There is an institution CA (the ‘Central Authority’) which issues the labels.

2. The CA holds a presumed unique object system (OG,M), and a presumed secure
signature scheme (G,Sig, Ver).

3. The CA is capable of storing digital information on a physical object, for example
by using a barcode-like encoding technique or by an RFID-chip.

4. There are a number of testing devices T1, . . . , Tn, whose purpose is to decide
whether a given label is genuine. Each of these devices contains a measuring
device Mi, which is “equivalent” to the measuring apparatus M : It can execute
the same measurements and will obtain the same results as M .

5. Each of the testing devices is equipped with machinery to read out information
that was stored on a physical object by the CA.

6. The CA has chosen security parameters l and m by which it runs the unique
object system and the signature scheme.

7. The CA has run the key generator G of the signature algorithm in order to
produce a key pair (s, v) ← G(1l). The key s is secret and only known to the
CA; the key v is public and has been distributed to all testing devices.

40

Scheme for Labeling a Product P :

1. The CA runs the machine OG of the object system with input 1m to produce
an output OG(1m) = (p,M(p,O), O).

2. The CA signs the information p,M(p,O), PD by the signing algorithm of the
signature scheme and the signing key s. Here, PD denotes some further product
data useful for handling or shipping the product. Thereby it creates a string

S
def
= Sig(s, p,M(p,O), PD).

3. The CA sticks the object O to the product. Further, it stores the information
p,M(p,O), PD, S on the product.

Scheme for Testing a Label:

1. Some tester Ti is presented with a product that contains a label consisting of
the following items:

(a) A physical object O’.

(b) Some numerical data of the form p ′,M(p,O)′, PD′, S′.

If the testing device finds that the label does not have this form, then it concludes
that the label is faked and aborts.

2. The tester checks whether the signature S′ is valid by testing if

Ver(v, (p ′,M(p,O)′, PD′), S′) = 1.

3. The tester uses the measuring device M to check if

M(p ′, O′) = M(p,O)′

4. The tester regards the label as valid if and only if the checks described in the
last two steps were positive.

This concludes our description of the standard labeling scheme. In the next section we
will present a formal proof of the security of the standard labeling scheme. That proof
will be led in the formal framework that we have developed over the last sections.

6.3 Security Proof for the Standard Labeling Scheme

We start by a notational convention.

41

Notation 6.6. Let L =
(
p,M(p,O), Sig(s, p,M(p,O)), O

)
be a label generated by

some standard labeling scheme LS = SL(OS,DSS). Then we introduce the following
notations:

Obj(L)
def
= O

Par(L)
def
= p

Pro(L)
def
= (p,M(p,O))

=
(
Par(L),M(Par(L), O)

)
(∗)

Sig(L)
def
= Sig

(
s, p,M(p,O)

)

The following, basically simple observation will be one of the keys to the proof.

Lemma 6.7 (One Faked Label means One New Signature or One Cloned Object).
Let LS = SL(OS,DSS) = (C,LG, T) be some standard labeling scheme, and let
L1, . . . , Lm and L′1, . . . , L

′
n with m < n be “valid labels” of LS. That is, for some

(s, v) ∈ Range (G), where G is the generator of DSS,

T (v, Li) = 1 for i = 1, . . . ,m, and
T (v, L′i) = 1 for i = 1, . . . , n.

Then, at least one of the following two statements holds:

(1) The labels L′1, . . . , L
′
n contain two identical “copies” of one certain object con-

tained in the labels L1, . . . , Lm.
Or, more formally: ∃ i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} :
M (Par(Lk),Obj(L′i)) = M (Par(Lk),Obj(L′j)) = M (Par(Lk),Obj(Lk)).

(2) One of the labels L′1, . . . , L
′
n contains a “new” valid digital signature that is not

contained in any of the labels L1, . . . , Lm.
Or, more formally: ∃ i ∈ {1, . . . , n} : Ver (v,Pro(L′i),Sig(L′i)) = 1
and @ j ∈ 1, . . . , k : Pro(L′i) = Pro(Lj)

Proof. We lead the proof by considering two sets PRO and PRO′. These sets are
defined as follows:

PRO
def
= {Pro(Li) | i = 1, . . . ,m},

and
PRO′ def

= {Pro(L′i) | i = 1, . . . , n}.

In other words: PRO is the set of the properties of the objects contained in the labels
L1, . . . , Lm, and likewise for PRO′ with the labels L′1, . . . , L′n.

We distinguish between two cases:

42

Case 1: PRO ⊇ PRO′. As m < n, this implies that there must be indices i, j ∈
{1, . . . , n} such that Pro(L′i) = Pro(L′j), and that there must be a further index
k ∈ {1, . . . ,m} such that Pro(Lk) = Pro(L′i) = Pro(L′j). This implies by the
definition of Pro (equation (∗) in Notation 6.6) that

Par(Lk) = Par(L′i) = Par(L′j),

and that

M(Par(Lk),Obj(Lk)) = M(Par(L′i),Obj(L
′
i)) = M(Par(L′j),Obj(L

′
j)).

Together, this implies that

M(Par(Lk),Obj(L′i)) = M(Par(Lk),Obj(L′j)) = M(Par(Lk),Obj(Lk)).

Hence, statement (1) of the lemma holds.

Case 2: PRO (PRO′. Then there is a label L′i in PRO′ such that Pro(L′i) 6=
Pro(Lj) for all j = 1, . . . ,m. As T (v, L′i) = 1, it holds due to the construction of
labels and the tester T of the standard labeling scheme that Ver(v,Pro(L′i),Sig(L′i)) = 1.
Therefore, statement (2) of the lemma is fulfilled.

As the cases cover all possibilities, this shows that under the given premises at least
one of the statements (1) and (2) holds. This completes the proof.

Before we tackle the Main Theorem, we will prove another lemma. It states that a
generalization of the notion of a unique objects system is equivalent to the original
definition. We start by defining the generalization.

Definition 6.8 (p-Unique Object Systems). Let U be a universe, and let T be a
technology. Let OS = (OG,M) be an object system, and p be a polynomial. OS is
called a p-unique object system in T , if the following holds: For any polynomial ϕ-TM
p-CLONE in T , for all polynomials q and for all sufficiently large k,

Pr




∃ i 6= j, l : P l(O
′
i) = P l(O

′
j) = P l(Ol)

and ∀ l ∃ i : P l(Ol) = P l(O
′
i)

where (O′1, . . . , O
′
p(k)+1)

← p-CLONE
(
1k, P 1(O1), O1, . . . , P p(k)(Op(k)), Op(k)

)

and (P i(Oi), Oi)← OG(1k) for i = 1, . . . , p(k)



≤ 1/q(k)

The probability is taken over the random outputs of p-CLONE and OG.

It can be seen easily that the notion of a p-UOS includes the notion of a UOS; indeed,
a UOS is nothing more than a 2-UOS, where the polynomial p is equal to the constant
2. The other direction will be shown in the next lemma, proving that the two notions
coincide.

43

Lemma 6.9 (Equivalence of UOS and p-UOS). Let U be a universe and T be a
technology. Let further OS be an object system in T . Then, the following statements
are equivalent:

1. OS is a unique object system in T .

2. OS is a p-unique object system in T for all polynomials p with
p(n) ≥ 2 ∀n ∈ N.

Proof. The implication “⇐” is clear from the two respective definitions (Def. 5.2 and
6.8): Simply take p(n) = const. = 2 for all n ∈ N.

The other direction “⇒” needs more elaboration. Let OS be an object system in T .
We lead the proof by contradiction, making the following assumption:

Contradiction Assumption: OS is a unique object system in T , but for some
polynomial p with

(
p(n) ≥ 2 for all n ∈ N

)
, OS is not a p-unique object system

in T .

The contradiction assumption implies the following:

Statement (1): There is a polynomial PhTM p-CLONE such that for the poly-
nomial p from the contradiction assumption, some polynomial q and infinitely
many k,

Pr




∃ i 6= j, l : P l(O
′
i) = P l(O

′
j) = P l(Ol)

and ∀ l ∃ i : P l(Ol) = P l(O
′
i)

where (O′1, . . . , O
′
p(k)+1)

← p-CLONE
(

1k, P 1(O1), O1, . . . , P p(k)(Op(k)), Op(k)

)

and
(
P i(Oi), Oi

)
← OG(1k) for i = 1, . . . , p(k)



> 1/q(k),

where the probability is as taken over the random outputs of p-CLONE and
OG.

The physical Turing machine p-CLONE addressed in statement (1) “clones” for in-
finitely many k with non-negligible probability one of the p(k) input objects. If we
could use p-CLONE to set up a second physical TM CLONE that does the same
for one input object, then OS could be no unique object system. This would provide
the sought contradiction and complete the proof.

The rest of the proof basically consists in unfolding this simple thought, which will
require some technical elaboration. First of all, we need to find an appropriate way to
construct the algorithm CLONE ; then, we need to prove that the success probability
of that algorithm is non-negligible.

We start by defining CLONE. It depends on the polynomial p whose existence is
guaranteed by statement (1), and the PhTM p-CLONE.

44

Machine CLONE :

Input
(
1k, P (O), O

)

Choose i0 uniformly at random from {1, . . . , p(k)}
Set

(
P (Oi0), Oi0)

)
←
(
P (O), O

)

Set
(
P (Oi), Oi

)
← OG(1k) for i = 1, . . . , i0 − 1, i0 + 1, . . . , p(k)

Set
(
P (O′1), O

′
1, . . . , P (O′p(n)+1), O

′
p(n)+1

)

← p-CLONE
(
P (O1), O1, . . . , P (Op(n)), Op(n)

)

If
(∃ i 6= j ∈ {1, . . . , p(n) + 1}, k ∈ {1, . . . , p(n)} :

i0 = k and P k(O′i) = P k(O′j) = P k(Ok)

)

then proceed, else output “failure” and abort.

Output P (Oi0), O′i, O
′
j

We would now like to calculate the probability that CLONE is “successful” for a cer-
tain input (1k, P (O), O). Obviously we cannot determine that probability in an abso-
lute sense, but only in relation to the “success probability” of the algorithm p-CLONE.
To that aim, we introduce a random variable CopInd as follows:

CopInd : DCopInd −→ N0

(P (O1), O1, . . . , P (Ot), Ot)

7−→ min




l

∣∣∣∣∣∣∣

∃i 6= j : P l(O
′
i) = P l(O

′
j) = P l(Ol),

where (P 1(O
′
1), O

′
1, . . . , P (O′t+1), Ot+1)

← p-CLONE (P 1(O1), O1, . . . , P (Ot+1), Ot+1)





Note that CopInd is defined in terms of the random variable p-CLONE(·). As
min(∅) = 0, it can be seen rather easily that for the polynomial p and any objects
O1, . . . , Op(k),

Pr
[
CopInd(P 1(O1), O1, . . . , P p(k)(Op(k), Op(k)) 6= 0

]
= (1)

= Pr

[
∃ i 6= j, l : Pro(O′i) = Pro(O′j) = Pro(Ol),

where (P
′
1(O

′
1), O

′
1, . . . , P

′
p(k)+1(O

′
p(k)+1)← p-CLONE (O1, . . . , Op(k))

]

We can now calculate the success probability of CLONE in the following way.

45

Pr



P (O) = P (O1) = P (O2),

where (P (O), O1, O2)← CLONE (1k, P (O), O)
and O ← OG(1k)


 =

= Pr




CopInd(O1, . . . , Op(k)) = i0

where i0 ←u.a.r. {1, . . . , p(k)}, Oi0 ← OG(1k),
and Oi ← OG(1k) for i = 1, . . . , i0 − 1, i0 + 1, . . . , p(k)




= Pr




CopInd(O1, . . . , Op(k)) = i0

where i0 ←u.a.r. {1, . . . , p(k)}
and Oi ← OG(1k) for i = 1, . . . , p(k)




=

p(k)∑

j=1

Pr




CopInd(O1, . . . , Op(k)) = j and i0 = j

where i0 ←u.a.r. {1, . . . , p(k)}
and Oi ← OG(1k) for i = 1, . . . , p(k)




=

p(k)∑

j=1

Pr

[
i0 = j

where i0 ←u.a.r. {1, . . . , p(k)}

]
·

· Pr

[
CopInd(O1, . . . , Op(k)) = j

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

=
1

p(k)
·

p(k)∑

j=1

Pr

[
CopInd(O1, . . . , Op(k)) = j

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

=
1

p(k)
· Pr

[
CopInd(O1, . . . , Op(k)) 6= 0

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

=
1

p(k)
· Pr



∃ i 6= j, l : Pro(O′i) = Pro(O′j) = Pro(Ol),

where (O′1, . . . , O
′
p(k)+1)← p-CLONE (O1, . . . , Op(k)+1)

and Oi ← OG(1k) for i = 1, . . . , p(k)




Or, to summarize our calculation,

46

Pr



P (O) = P (O1) = P (O2),

where (P (O), O1, O2)← CLONE (1k, P (O), O)
and O ← OG(1k)


 = (2)

=
1

p(k)
· Pr



∃ i 6= j, l : Pro(O′i) = Pro(O′j) = Pro(Ol),

where (O′1, . . . , O
′
p(k)+1)← p-CLONE (O1, . . . , Op(k)+1)

and Oi ← OG(1k) for i = 1, . . . , p(k)




We further know from statement (1) that for infinitely many k and a polynomial q,

Pr



∃ i 6= j, l : Pro(O′i) = Pro(O′j) = Pro(Ol),

where (O′1, . . . , O
′
p(k)+1)← p-CLONE (O1, . . . , Op(k)+1)

and Oi ← OG(1k) for i = 1, . . . , p(k)


 > 1/q(k).

Inserting this into equation (2) we obtain that for infinitely many k a polynomial q
and a polynomial q,

Pr



P (O) = P (O1) = P (O2),

where (P (O), O1, O2)← CLONE (1k, P (O), O)
and O ← OG(1k)


 > 1/p(k) · 1/q(k).

Hence it holds that for infinitely many k and a polynomial r def
= p · q,

Pr



P (O) = P (O1) = P (O2),

where (P (O), O1, O2)← CLONE (1k, P (O), O)
and O ← OG(1k)


 > 1/r(k).

This implies by the definition of unique object systems (Definition 5.2) that OS is no
unique object system, which is at odds with the contradiction assumption. Therefore
it provides the sought contradiction and completes the proof.

We are now in a position to prove the main theorem.

Theorem 6.10 (Main Theorem). Let U be a universe, and T be a technology in that
universe. Let DSS be a ϕ-secure signature scheme in T , and let OS be a unique object
system in T . Then, the standard labeling scheme from DSS and OS, SL(OS,DSS),
is a secure labeling scheme in T .

Proof. We lead the proof by contradiction, assuming that DSS is a ϕ-secure signature
scheme in T and that OS is a unique object system in T , but that SL(OS,DSS) is not
a secure labeling system in T . By use of lemma 6.9 this is equivalent to the following
contradiction assumption:

47

Contradiction Assumption: DSS is a ϕ-secure signature scheme in T , OS is a
p-UOS in T , and LS def

= SL(OS,DSS) is not a secure labeling scheme in T .
The assumption that LS is no secure labeling scheme in T implies the following:

Statement (1): There is a probabilistic polynomial PhTM FAKE in T and poly-
nomials p, q such that for infinitely many n,

Pr



T (t, L′i) = 1 for i = 1, . . . , p(n) + 1

where (L′1, . . . , L
′
p(n)+1)← FAKE (L1, . . . , Lp(n)),

L1 ← LG(s), . . . , Lp(n) ← LG(s) and (s, v)← C(1n)


 ≥ q(n),

where the probability is taken over the random outputs of C, P , T and FAKE .

A short outline of the further proof is as follows. Lemma 6.7 tells us that if FAKE
is successful, then there is either a cloned object or a new digital signature among
the faked labels L1, . . . , Lp(n)+1. Hence, searching the output of FAKE for a cloned
object or a new signature will enable us to “break” the signature scheme DSS or the
p-unique object system OS. If either of them is broken and hence insecure, however,
then we are at odds with the contradiction assumption, which provides a contradiction
and completes the proof.

Still, the formal realization of this argument requires considerable technical effort.
One reason is that Lemma 6.7 only speaks about one single output of FAKE. Con-
trary to that, the security definitions of signature schemes and unique object systems
are asymptotic, whence we have to consider infinitely many outputs. The other rea-
son is that the adversarial models for ϕ-secure signature schemes and unique object
systems differ. In the case of signature schemes the adversary may act adaptively:
It can choose the newly queried signatures in dependence of the signatures queried
earlier. This setting enforces that the attacker is modelled as an oracle probabilistic
PhTM. In opposition to that, the input for an attack on a unique object systems
is chosen non-adaptively uniformly at random, whence the attacker is modelled as a
normal PhTM. Therefore, the earlier idea to let one single machine search the output
of FAKE and to let this machine either break the signature scheme or the unique
object system – depending on the output of FAKE – will not work. Such a machine
would either fail to meet the formal attack model for signature schemes or the attack
model for unique object system.

Hence, we will construct two separate machines SIGBR and CLONE instead (one
of them equipped with an oracle, the other one not). SIGBR will be equipped with
a signature oracle and will try to break the ϕ-security of the signature scheme DSS.
CLONE will have no signature oracle and will try to break the unique object system.
The sought contradiction will be reached if we can infer that under the premise of
statement (1), one of the machines must be successful with significant probability.
This can be achieved by application of Lemma 6.7 and some further probability anal-
ysis of SIGBR and CLONE.

48

We will now formally introduce the machines SIGBR and CLONE, starting with the
latter.

Machine CLONE :

Input
(
1k, P (O1), O1, . . . , P (Op(k)), Op(k)

)

Set (s, v)← G(1k)

Set Si ← Sig(s, P (Oi)) for i = 1, . . . , p(k)

Set Li ← (P (Oi), Si, Oi) for i = 1, . . . , p(k)

Set (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k))

If {Pro(Li) | i = 1, . . . , p(k)} = {Pro(L′i) | i = 1, . . . , p(k) + 1}
then proceed, else output “failure” and abort.

Output
(
Obj(L′1), . . . ,Obj(L

′
p(k)+1)

)

CLONE in effect does the following: It takes as input p(k) objects O1, . . . , Op(k) and
tries to produce a copy of one of these objects (recall that we are considering p-unique
object systems by virtue of Lemma 6.9). To that purpose, it wants to utilize the PhTM
FAKE trying to feed the objects Oi into FAKE in order to be copied. The problem
is, however, that FAKE takes labels, not objects as inputs. CLONE hence has to
turn the objects Oi into labels Li. This can be done by imitating the label generation
process of the standard labeling scheme: CLONE simply generates a signature key
at random and produces signatures for the properties P (Oi) of the objects Oi. Then,
it sets the labels Li

def
= (P (Oi), Sig(s, P (Oi), Oi) and feeds the generated labels into

FAKE. In return, FAKE outputs k + 1 labels L′1, . . . , L′k+1.

If they are all valid labels, then we know by Lemma 6.7 that either one new signature
for a new object has been produced by FAKE, which does not help the algorithm
CLONE, and it outputs a failure notice. Or, one of the objects O1, . . . , Ok has been
copied. This does help the algorithm CLONE, and it outputs that object together
with its copy.

The machine SIGBR whose aim is to break the signature scheme by utilizing FAKE
can be constructed along similar lines. Contrary to CLONE, however, SIGBR hopes
that the output of FAKE contains a faked signature, not a cloned object. If that is
the case, SIGBR can output a faked signature; otherwise, it outputs a failure notice.

According to the adaptive attack scenario for ϕ-secure signature schemes, SIGBR is
provided with a signing oracle Ss. For any queried string x this oracle returns the

49

string SOs(x), where SOs(x)
def
= Sig(s, x), where Sig is the signing algorithm of DSS

and s is the corresponding signing key.

Machine SIGBR:

Input (1k, v)

Set (P i(Oi), Oi)← OG(1k) for i = 1, . . . , p(n)

Set Si ← SOs(P i(Oi)) for i = 1, . . . , p(n)

Set Li ← (P i(Oi), Si, Oi) for i = 1, . . . , p(n)

Set (L′1, . . . , L
′
p(n)+1)← FAKE (L1, . . . , Lp(n))

If ∃ i0 ∈ {1, . . . , p(n)+1} :

(
Ver (v,Pro(L′i0),Sig(L′i0)) = 1

and @ j ∈ 1, . . . , p(n) : Pro(L′i0) = Pro(Lj)

)

then proceed, else output “failure” and abort

Output (Pro(L′i0),Sig(L′i0))

We will now analyse the success probabilities of SIGBR and CLONE in dependency
of the success probability of FAKE. It holds for any k ∈ N that

Pr



T (t, L′i) = 1 for i = 1, . . . , p(k) + 1

where (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)




= Pr




T (t, L′i) = 1 for i = 1, . . . , p(k) + 1
and T (t, Li) = 1 for i = 1, . . . , p(k)

where (L′1, . . . , L
′
p(n)+1) ← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)




= Pr




(∃ i 6= j, l : M
(
Par(Ll),Obj(L

′
i)
)

=
= M (Par(Ll),Obj(L

′
j)) = M

(
Par(Ll),Obj(Ll)

)
)

or
(
∃i : Ver

(
(v,Pro(L′i), Sig(L′i)

)
= 1

and @j : Pro(L′i) = Pro(Lj)

)

where (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)




(because of Lemma 6.7)

50

≤ Pr




∃ i 6= j, l : M (Par(Ll),Obj(L
′
i)) =

= M (Par(Ll),Obj(L
′
j)) = M (Par(Ll),Obj(Ll))

where (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)




+ Pr




∃i : Ver
(
(v,Pro(L′i), Sig(L′i)

)
= 1

and @j : Pro(L′i) = Pro(Lj)

where (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)




(because P (A ∪B) ≤ P (A) + P (B))

= Pr

[
CLONE

(
1k, P (O1), O1, . . . , P (Op(k)), Op(k)

)
6= “failure′′

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

+ Pr

[
SIGBR (1k, v) 6= “failure′′

where (s, v)← C(1k)

]

(because of the design of SIGBR and CLONE)

Hence, we obtain from statement (1) that there is a polynomial q such that for infinitely
many k,

Pr

[
CLONE

(
1k, P (O1), O1, . . . , P (Op(k)), Op(k)

)
6= “failure′′

where Oi ← OG(1k) for i = 1, . . . , p(k)

]

+ Pr

[
SIGBR (1k, v) 6= “failure′′

where (s, v)← C(1k)

]

≥ Pr



T (t, L′i) = 1 for i = 1, . . . , p(k) + 1

where (L′1, . . . , L
′
p(k)+1)← FAKE (L1, . . . , Lp(k)),

L1 ← LG(s), . . . , Lp(k) ← LG(s) and (s, v)← C(1k)




(by the previous calculation)

> 1/q(k)

(by statement (1)).

This implies that for infinitely many k,

51

Pr

[
CLONE (1k, P (O1), O1, . . . , P (Op(k), Op(k)) 6= “failure′′

where Oi ← OG(1k) for i = 1, . . . , p(k)

]
> 1/q(k)

or

Pr

[
SIGBR (1k, v) 6= “failure′′

where (s, v)← C(1k)

]
> 1/q(k).

Therefore we obtain by the definitions of ϕ-secure signature schemes and p-unique
object systems (Def. 4.5 and 6.8) that OS is no p-unique object system or DSS is no
secure signature scheme.

This is at odds with the contradiction assumption, which states that both OS is a
p-unique object system and DSS is a secure signature scheme. Hence it provides the
sought contradiction and completes the proof.

7 Summary

We introduced Physical Turing Machines (or PhTMs, for short) as a new formal
machine model in this paper, and discussed their applicability to the formal treatment
of classical and of physical cryptography.

We first suggested that PhTMs could be a suitable tool to formalize classical
cryptography in such a way that physical computations by the adversary (quantum,
optical, etc.) and physical attacks like side channels could be included. In this context,
we sketched a few new, adjusted definitions in order to illustrate our point, but kept
this part of our treatment relatively short, since it was not our main topic in this
paper. Future efforts will have to work out the application of PhTMs in this area in
full detail.

A topic we addressed in greater detail, and which actually was the main topic
of this paper, was the formalization of physical cryptography by use of PhTMs. In
particular, we exemplarily formalized a standard scheme from physical cryptography,
which concerns the generation of forgery proof physical labels (tags/markers) by use
of so-called unique objects in combination with digital signature schemes (compare
[10] and references therein). This example scheme was chosen by us for a number
of reasons: First of all, it is very intuitive and can be understood without a strong
background in PUFs. Secondly, the necessity of the physical unclonability of the used
unique object is obvious in the scheme (perhaps yet more than in related PUF-based
schemes), and so is the need to formalize this unclonability. Thirdly, the scheme is a
hybrid scheme in the sense that it combines a classical, complexity based tool (namely
digital signatures) with the physical feature of unclonability. The latter makes a formal
treatment particularly difficult, since the used machine model must be able to capture
both classical, asymptotic, computational aspects as well as physical aspects.

We introduced PhTMs as a solution of this problem. We showed that they can
be used for formally defining the relevant notions of a unique object system and a

52

labeling scheme, and for leading a formal reductionist security proof. PhTMs provide
the machine model for this proof, and, if you like, serve as its “formal backbone”. Our
proof shows that the security of the labeling scheme can be reduced to the assumptions
that the employed digital signature scheme and unique object system are secure.

One central further ingredient in our model besides PhTMs is the concept of a
“technology”. A technology is a set of functions that maps numbers and objects to
numbers and objects, and which subsumes the current state of human technology and
craftsmanship at a given point in time. The use of technologies in our model can help
us to find a balance between the following two extremes: (i) Allowing currently unre-
alistic actions and computations (such as practically allowing all theoretically feasible
quantum computations, which would allow for factoring arbitrarily large numbers in
polynomial time), and (ii) ignoring all physical actions and physical computations in
the formalization of cryptography. It turns out that it is not necessary in a reduction-
ist proof to exactly specify the technology. PhTM nevertheless, i.e. without such a
specification, allow proofs of statements of the following form: If scheme A is secure
against attacks with current technology, and scheme B is secure against attacks with
current technology, then so is scheme C (which is built from A and B).

Another noteworthy aspect of the presented model of PhTMs is their asymptotic
character. While the objects used in physical cryptography (such as physical unclon-
able functions (PUFs) or unique objects (UNOs)) are finite physical systems with a
finite number of atoms and a finite number of input–output pairs, the traditional
treatment of cryptographic security is based on inherently asymptotic concepts, such
as polynomial time and negligible probability. Reconciling these two finite and infinite
worlds can be difficult; it has led to formal problems in several early PUF definitions,
which have been discussed in a number of publications on the foundations of PUFs
[31, 25].

Future Work. Several suggestive lines of future work arise from the presented
material. One example would be to further investigate how PhTMs could be ap-
plied to formalize the security of hardware implementation of classical cryptographic
schemes, for example against invasive and side channel attacks. Due to their asymp-
totic nature, PhTMs could probably reconcile the gap between a finite physical sys-
tem/implementation on the one hand, and the traditionally asymptotic security no-
tions of cryptographic schemes on the other hand. They might allow us to lead
reductionist proof for the general security of hardware tokens that could both span
over the mathematical security of the implemented scheme and the physical security
of the hardware implementation.

Another natural step would be the formalization of further schemes from physical
cryptography by PhTMs. Examples could be several recent protocols for PUFs and
related primitives, including identification, message authentication, key exchange, or
oblivious transfer (compare [25, 24, 5, 21]). PhTMs appear very useful to this end.

53

References

[1] Scott Aaronson: NP-complete Problems and Physical Reality. Electronic Collo-
quium on Computational Complexity (ECCC), 026, 2005.

[2] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, François-Xavier Stan-
daert, Christian Wachsmann: A Formalization of the Security Features of Phys-
ical Functions. IEEE Symposium on Security and Privacy 2011, pp. 397-412.

[3] Nathan Beckmann, Miodrag Potkonjak: Hardware-Based Public-Key Cryptogra-
phy with Public Physically Unclonable Functions. Information Hiding 2009, pp.
206-220.

[4] Charles H. Bennett, Gilles Brassard: Quantum cryptography: Public key distri-
bution and coin tossing. Proceedings of IEEE International Conference on Com-
puters, Systems and Signal Processing. Vol. 175, No. 150, 1984.

[5] Christina Brzuska, Marc Fischlin, Heike Schröder, Stefan Katzenbeisser: Physi-
cally Uncloneable Functions in the Universal Composition Framework. CRYPTO
2011, pp. 51-70, 2011.

[6] James D. R. Buchanan et al: Fingerprinting documents and packaging. Nature
436.28 (2005): 475.

[7] Johannes Buchmann et al: Post-Quantum Signatures. IACR Cryptology ePrint
Archive 2004 (2004): 297.

[8] Jie Chen: A DNA-based, biomolecular cryptography design. ISCAS 2003.

[9] Catherine Taylor Clelland, Viviana Risca, Carter Bancroft: Hiding messages in
DNA microdots. Nature 399 (6736), pp. 533-534, 1999.

[10] Gerald DeJean, Darko Kirovski: RF-DNA: Radio-Frequency Certificates of Au-
thenticity. CHES 2007, pp. 346-363.

[11] B. Gassend, Physical Random Functions. MSc Thesis, MIT, 2003.

[12] Blaise Gassend, Dwaine E. Clarke, Marten van Dijk, Srinivas Devadas: Silicon
physical random functions. ACM Conference on Computer and Communications
Security 2002, pp. 148-160.

[13] Ashish Gehani, Thomas LaBean, John Reif: DNA-based cryptography. In: As-
pects of Molecular Computing. Springer Berlin Heidelberg, 2004, pp. 167-188.

[14] Darko Kirovski: Anti-counterfeiting: Mixing the physical and the digital world.
In: Towards Hardware-Intrinsic Security. Springer, 2010, pp. 223-233.

[15] Oded Goldreich: The Foundations of Cryptography - Volume 2, Basic Applica-
tions. Cambridge University Press 2004, ISBN 0-521-83084-2.

54

[16] Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2): 281-
308 (1988)

[17] Arjen K. Lenstra, Adi Shamir: Analysis and optimization of the TWINKLE fac-
toring device. EUROCRYPT 2000, pp. 35-52.

[18] Ahmed Mahmoud, Ulrich Rührmair, Mehrdad Majzoobi, Farinaz Koushanfar:
Combined Modeling and Side Channel Attacks on Strong PUFs. IACR Cryptology
ePrint Archive 2013: 632 (2013)

[19] Ueli M. Maurer: Conditionally-perfect secrecy and a provably-secure randomized
cipher. Journal of Cryptology 5.1 (1992): 53-66.

[20] Ueli M. Maurer: Secret key agreement by public discussion from common infor-
mation. Information Theory, IEEE Transactions on 39.3 (1993): 733-742.

[21] Rafail Ostrovsky, Alessandra Scafuro, Ivan Visconti, Akshay Wadia: Universally
Composable Secure Computation with (Malicious) Physically Uncloneable Func-
tions. EUROCRYPT 2013, pp. 702-718.

[22] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld: Physical One-Way Functions,
Science, vol. 297, pp. 2026-2030, 2002.

[23] Ulrich Rührmair: SIMPL Systems: On a Public Key Variant of Physical Unclon-
able Functions. IACR Cryptology ePrint Archive, Report 2009/255, 2009.

[24] Ulrich Rührmair: Oblivious Transfer Based on Physical Unclonable Functions.
TRUST 2010, pp. 430-440.

[25] Ulrich Rührmair, Heike Busch, Stefan Katzenbeisser: Strong PUFs: Models,
Constructions, and Security Proofs. In: Towards Hardware-Intrinsic Security,
Springer, 2010, pp. 79-96.

[26] Ulrich Rührmair, Srinivas Devadas, Farinaz Koushanfar: Security based on Phys-
ical Unclonability and Disorder. In M. Tehranipoor and C. Wang (Editors): In-
troduction to Hardware Security and Trust. Springer, 2011

[27] Ulrich Rührmair, Marten van Dijk: PUFs in Security Protocols: Attack Models
and Security Evaluations. IEEE Symposium on Security and Privacy 2013, pp.
286-300.

[28] U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, M. Stutzmann: Se-
curity Applications of Diodes with Unique Current-Voltage Characteristics. 14th
International Conference on Financial Cryptography and Data Security (FC
2010). Lecture Notes in Computer Science, Volume 6052, Springer, 2010.

[29] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, G. Csaba: Applica-
tions of High-Capacity Crossbar Memories in Cryptography. IEEE Transactions
on Nanotechnology 10(3), pp. 489-498, 2011.

55

[30] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, Jür-
gen Schmidhuber: Modeling attacks on physical unclonable functions. ACM Con-
ference on Computer and Communications Security 2010, pp. 237-249, 2010.

[31] Ulrich Rührmair, Jan Sölter, Frank Sehnke: On the Foundations of Physical
Unclonable Functions. IACR Cryptology ePrint Archive, Report 2009/277, 2009.

[32] Ulrich Rührmair, Xiaolin Xu, Jan Sölter, Ahmed Mahmoud, Farinaz Koushanfar,
Wayne Burleson: Power and Timing Side Channels for PUFs and their Efficient
Exploitation. IACR Cryptology ePrint Archive, Report 2013/851, 2013.

[33] Ulrich Rührmair, Xiaolin Xu, Jan Sölter, Ahmed Mahmoud, Farinaz Koushan-
far, Wayne Burleson: Efficient Power and Timing Side Channels for Physical
Unclonable Functions. CHES 2014, to appear.

[34] Adi Shamir: “Factoring large numbers with the TWINKLE device.” CHES 2009,
pp. 2-12.

[35] Peter W. Shor: Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM journal on computing 26.5, pp. 1484-
1509, 1997.

[36] Andrew Chi-Chih Yao: Classical physics and the Church-Turing Thesis. Journal
of the ACM 50(1), 100-105, 2003.

56

Part IV

Summary and Future Research

223

This thesis investigated the foundations of physical unclonable functions (PUFs)
and related primitives. Laying these solidly appears indispensible for a sound, long-
term development of the field, and therefore constitutes a central research task for the
entire area of PUFs. We thereby made novel contributions to the following general
research strands:

• Foundational work, including the classification and demarcation of different,
PUF-related primitives and concepts.

• Fundamental usability of PUFs in cryptographic protocols, including the theo-
retical potential of PUFs in such protocols, the correct attack models for practical
PUF appliances, and practical security analyses of existing PUF protocols.

• Mathematical formalization, including formal mathematical definitions of PUF-
related primitives, and the conductance of formal security proofs based on these
definitions.

In greater detail, our thesis contains the following original material:

• With respect to foundational work, we were the first to dedicatedly and explicitly
investigate the formal foundations of PUFs in 2008 and 2009 [45, 74], and to
semi-formally classify different PUF-primitives and their security properties in
2009 and 2011 [74, 58]. These efforts have mainly been reported in Chapters 2
and 7.

– One of our main achievements there was to formally differentiate between
UNOs, Weak PUFs, Strong PUFs, SHIC PUFs, and other disorder-based
primitives. We developed semi-formal specifications for all of them and
worked out archetypical application scenarios of theirs.

– Furthermore, we took a second look at previous PUF-definitions, noting
some problematic aspects. Some of them related to the use of asymptotic
concepts like polynomial time in connection with single PUFs, which nec-
essarily only have a finite challenge-response space.

– We were the first to define the security of PUFs as a game between the PUF
and the adversary. This application of game-theoretic concepts in the area
of PUFs has been picked up by a large number of follow-up papers at major
conferences, including Armknecht et al. at IEEE S&P 2011 [2].

– We first observed that for fundamental physical reasons, the maximal en-
tropy in a PUF can be at most polynomial in the size of the PUF. As a conse-
quence, constructing information-theoretically secure PUFs with an expo-
nential number of challenges is impossible. Besides other things, this im-
plies that Strong PUFs should ideally be modeled with computational def-
initions, not with information-theoretical ones. This observation is highly
relevant for some recent PUF-definitions and proofs, all of which, unfortu-
nately, have been lead in an information-theoretic framework [6, 40].

225

• In a second strand of original work, we dealt with the fundamental usability of
PUFs in cryptographic protocols. Among other things, we investigated the the-
oretical and practical usability of PUFs in protocols like oblivious transfer, bit
commitment, or key exchange. We thereby made the following new contribu-
tions:

– We were the first to show that so-called “Strong PUFs” have the potential
to act as a universal cryptographic primitive. More precisely, we proved
that Strong PUFs can implement oblivious transfer, at least in isolated,
stand-alone settings where the PUF is used only once, and where the PUF
is non-manipulated, possessesing only the expected security features. This
observation paved the way for several follow-up works, including papers
at CRYPTO 2011 [6] and EUROCRYPT 2013 [40]. It opened up a new
interpretation of Strong PUFs as a powerful cryptographic primitive, in
opposition to the predominant earlier understanding of (Weak) PUFs as a
mere tool for secure key storage.

– We unocvered that quadratic attacks exist on two oblivious transfer and
bit commitment protocols published by Brzuska, Fischlin, Schröder and
Katzenbeisser at CRYPTO 2011 [6]. This surprisingly makes the protocols
practically insecure when they are implemented in connection with optical
PUFs, as explicitly suggested at CRYPTO 2011 [6]. The attacks are very
effective can be mounted with very little effort in practice. Our work il-
lustrated that finite parameters do matter when PUF schemes are realized
in hardware, and arguably lead to a new understanding of PUF security:
Asymptotic concepts are likely not the right formalism to express PUF se-
curity features.

– We first revealed vulnerabilities in a session key exchange protocol by
Tuyls and Skoric [86], which is run between a bank and a bank card con-
taining the PUF. The protocol becomes insecure if adversaries have access
to the PUF on the card several times, an assumption that is highly realistic
in a setting where the bank is re-used in several terminals. Earlier session
keys can be derived under this assumption.

– We abstracted from the abovementioned analysis of Tuyls’ and Skoric’s
protocol [86], and introduced two new, general, and very fundamental at-
tack models on PUF protocols: The so-called “bad PUF model” and the
“PUF re-use model”. Again, these have led to strong follow up works
in the community at top conferences, e.g., Damgard and Scafuro at ASI-
ACRYPT 2013 [17], or Dachman-Soled, Fleischhacker, Katz, Lysyanskaya,
and Schröder at CRYPTO 2014 [16].

– We subsequently showed that protocols of Brzuska, Fischlin, Schröder and
Katzenbeisser at CRYPTO 2011 [6] and partly the protocols of Ostrovsky,
Scafuro, Visconti and Wadia at EUROCRYPT 2013 [40] are not secure in
the PUF re-use model and the bad PUF model. This delimits their usability
in practical and economically viable applications, especially in situation

226

where the PUF shall be used more than once, and shall not have to be
disposed and destroyed already after a single use.

– As hardware countermeasures, we formally introduced two novel PUF con-
cepts called “Erasable PUFs” and “Certifiable PUFs”. We took first steps
in hardware experiments and simulations to the realization of Erasable
PUFs via the use of so-called nano-scale crossbar architectures. Our con-
struction is able to establish information-theoretic security.

• Regarding the mathematical formalization of PUFs, we were the first to develop
sound formal definitions for so-called “Unique Objects” (UNOs) in 2011 [48].
The corresponding material has been given in Chapter 8. In greater detail, it
makes the following novel contributions:

– We extended existing approaches in PUF-formalization, for the first time
considering adversaries who execute arbitrary physical actions on PUFs
and UNOs, not just standard CRP-measurements. To model such adver-
saries, we introduced a new formal computational model, so-called “physi-
cal Turing machines”, and the concept of a “technology”, which stipulates
the admissible physical actions of the adversary.

– We used physical Turing machines and technologies to comprehensively
formalize and define UNOs as well as a special application of theirs, namely
the secure labeling of valuable objects and items (like branded products,
passports, banknotes, and the like).

– We led the first formal proof for UNOs, and the first security proof in the
general PUF-area that explicitly allows general physical attacks of the ad-
versary. Our proof applies to arbitrary adversaries who are only limited by
the current state of technology in their (physical) actions, and who are not
a priori bound to using the CRP-interface of the PUF or UNO, respectively.
It thereby transfers for the first time classical, reductionist techniques into
our new, physical context.

We believe that physical Turing machines and the associated concept of a “tech-
nology” will likely have applications beyond PUFs and UNOs, for example in
the formalization of arbitrary physical security features, or also in complexity
theory. They might be among the most fruitful new concepts introduced in this
thesis.

The seven papers of this cumulative thesis have partly been published at the top venues
of the community, including CHES 2012 [59] and the IEEE Symposium on Security
and Privacy 2013 [60], with the latter having an acceptance rate of merely 12%. The
paper at CHES 2012 was named as one of the best papers of the conference, and se-
lected for a special issue of the Journal of Cryptographic Engineering in 2013 [61].

All papers employed in this cumulative thesis in sum have been quoted around 330
times until September 26, 2016 according to Google Scholar (with the candidate being
first author or sole author on all of them) [26].

227

Future Research. We would like to conclude this thesis by a discussion of future
research opportunities — not just regarding the foundations of PUFs, but concerning
the wider area of PUF-research. In our opinion, the most promising fields for future
investigations will likely include the following:

• Foundations, Formalization, Classification: A continuing formalization and con-
solidation of the area remains vital for its sound future development. Among
other things, this must include an ongoing, refined specifications/definitions for
existing and future PUFs types, the identification of typical applications for these
different PUF types, as well as formal security proofs. Interestingly, such a
sound formal specification indeed seems necessary for an efficient communica-
tion within the multi-disciplinary PUF research teams: It will help to accurately
specify the tasks of the electrical engineers implementing the PUFs, as well as
those of the computer scientists and system designers that use PUFs in concrete
protocols. This area will hence remain very active in the future, building a bridge
from PUFs to the theoretical cryptography community.

• Attacks and Countermeasures: The large number of recent, successful attacks
has shown that PUFs are no magic toolbox that can miraculously create security
for free. Extending the existing hardware and protocol attacks, and possibly cre-
ating entirely new ones, will hence continue to be a prospering topic. The same
holds for the development and implementation of effective countermeasures.

• Improved, Optimized, or Novel Implementations: The general concept of PUFs
can only shine if suitable, i.e., secure and efficient, hardware realizations are
developed. Strong, continuous potential therefore lies in the improvement and
optimization of existing implementations, and in the development of new ones.
Optimizable parameters include costs, stability, PUF area and size, power con-
sumption, and security, among others. This subfield can be expected to be ex-
tremely active over the upcoming years.

• Applications of Nanotechnology and Nanomaterials: Over the last decades, both
nanotechnology and security have been two of the most successful subdisci-
plines within the sciences. PUFs lie exactly at their intersection. It seems very
likely that the already emerging merger of these two fields will continuously
gain momentum. It will almost certainly create entirely new reserach oppor-
tunities that substantially exceed the current topics in the area. Examples in-
clude new implementations of known PUF types by nanotechnology and nano-
materials, dedicated design of nano-materials with certain security properties, or
implementation of novel disorder-based primitives like SIMPL systems [46] by
nano-techniques.

• New Uses of Physical Disorder in Security, and new Disorder-Based Primitives:
Besides PUFs and related methods, there seems to be significant potential for
new, currently unseen uses of physical disorder in security. Any new discovery
will spark new research, keeping the field prospering. One recent approach in
this direction might be the Virtual Proofs of Reality of the candidate [54, 68]

228

and the use of PUF-sensors put forward by Rosenfeld et al. [44], but there are
certainly many others.

• Commercialization: One last subfield where strong activity can be expected is
the commercialization of PUFs. What are their exact use cases and unique selling
propositions compared to classical techniques that PUFs and related primitives
have to offer? What are the costs of adapting existing production lines? Do the
expected advantages outweigh these costs? How can the transfer of PUFs from
scientific theory to commercial applications be accomplished safely, i.e., without
unwanted security gaps? Since it seems hard to imagine that the current interest
in PUFs will persist over long periods without any solid commercial use cases,
finding satisfactory answers to these questions is central to the entire area, and
also affects academic PUF research in general.

Following these and other questions, we believe that the field will continue to ex-
pand and flourish in the foreseeable future. The fact that it spans from theoretical
computer science over electrical engineering to nanophysics gives it a very special ap-
peal, drawing researchers from various different disciplines into the area. Slightly over
ten years after their introduction, this currently makes PUFs one of the most thrilling
sub-topics in security and cryptographic research, a trend that will most likely continue
and even further intensify in the foreseeable future.

229

Acknowledgements
I would like to coordially thank my supervisor at TU Berlin, Prof. Dr. Jean-Pierre
Seifert, who guided this thesis in its final phase with all his enthusiasm, inspiration
and support. Nothing less can be said about the other members of my PhD commit-
tee: Prof. Dr. Marten van Dijk from the University of Connecticut and MIT, a close
collaborator and friend over the last years, MIT’s Prof. Srinivas Devadas, PhD, one of
the highly esteemed founding fathers of the entire area. I feel honored and privileged
to have them on my PhD committee. In an often highly hierarchical university system,
they are members of a rare species: They embody Humboldt’s ideal of a relationship
between professor and student, where neither the teacher should serve the pupil, nor the
pupil serve the teacher, but both serve science [31]. The common enthusiasm for the
subject, so Humboldt envisioned, would blur hierarchical borderlines, leading to the
inspirational atmosphere that enables high ranking research (in addition to making it
enjoyable). It seems to me that two centuries after its original formulation, Humboldt’s
vision continues to be of relevance, and can still serve as inspiration for a fruitful uni-
versity life.

I am also deeply grateful to many other colleagues, teachers and scientists who
crossed my path and inspired me over all the years: Wayne Burleson, Peter Clote, Josef
Friedrich, Dan Holcomb, Max Jakob, Jan Johannsen, Stefan Katzenbeisser, Darko
Kirovski, Dima Kononchuk, Sven Kosub, Farinaz Koushanfar, Mike Mosca, Andreas
Pfitzmann, Helmut Schwichtenberg, Jan Sölter, Gabrielle Stoy, Dominic Welsh, Jürgen
Wild, Stefan Wolf, Jürg Wullschleger, Xiaolin Xu, and Andreas Zumbusch (in alpha-
betical order) are all part of this necessarily incomplete list. Thanks to all of them for
all of their inspiration, their ideas, and their support! Special thanks goes to Jana Peich
and Peter Marock from TU Berlin and Wendy Williams and Fiona Spensley from the
University of Oxford. I wish all university administratives were like them!

More than to anyone else, however, I am indebted to my parents, grandparents and
family. The statement that without them, this thesis would never have been possible,
holds true in almost indefinitely many ways. Without their love, support and encour-
agement, it could never have been what it is today.

Thanks to them for the journey they gave me!

230

Part V

Appendix

231

Appendix A

Complete Publication List

Not all publications of the candidate have been used in this thesis. A comprehensive
list of his scientific publications to this date is therefore given below (status: September
26, 2016). The list is ordered chronologically and by publication medium.

Journals:

1. C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, M. Stutzmann: Random p-n-
junctions for physical cryptography. Applied Physics Letters 96, 172103, 2010.

2. U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, G. Csaba: Applica-
tions of High-Capacity Crossbar Memories in Cryptography. IEEE Transactions
on Nanotechnology 10(3), pp. 489-498, 2011.

3. H. Langhuth, S. Frederic, M. Kaniber, J. Finley, U. Rührmair: Strong Photolu-
minescence Enhancement from Colloidal Quantum Dot Near Silver Nano-Island
Films. Journal of Fluorescence 21(2), pp. 539-543, 2011.

4. Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, M. Stutzmann, U. Rührmair:
Circuit-based Approaches to SIMPL Systems. Journal of Circuits, Systems and
Computers 20(1), pp. 107-123, 2011.

5. P. Lugli, A. Mahmoud, M. Algasinger, M. Stutzmann, G. Csaba, U. Rührmair:
Physical Unclonable Functions based on Crossbar Arrays for Cryptographic
Applications. International Journal of Circuit Theory and Applications 41(6),
pp. 619-633, 2013.

6. U. Rührmair, M. van Dijk: On the Practical Use of Physical Unclonable Func-
tions in Oblivious Transfer and Bit Commitment Protocols. Journal of Crypto-
graphic Engineering 3(1), pp. 17-28, 2013.

7. U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror,
J. Schmidhuber, W. Burleson, S. Devadas: PUF Modeling Attacks on Simulated
and Silicon Data. IEEE Transactions on Information Forensics and Security
8(11), pp. 1876-1891, 2013.

233

Conferences:

8. Q. Chen, G. Csaba, X. Ju, S.B. Natarajan, P. Lugli, M. Stutzmann, U. Schlicht-
mann, U. Rührmair: Analog Circuits for Physical Cryptography. 12th Interna-
tional Symposium on Integrated Circuits (ISIC), pp. 121-124, 2009.

9. S. Zmudzinski, M. Steinebach, S. Katzenbeisser, U. Rührmair: Audio water-
marking forensics: detecting malicious re-embedding. IS&T/SPIE Electronic
Imaging Conference – Media Forensics and Security XII, 2010.

10. U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, M. Stutzmann: Se-
curity Applications of Diodes with Unique Current-Voltage Characteristics. 14th
International Conference on Financial Cryptography and Data Security (FC),
2010. Lecture Notes in Computer Science, Volume 6052, pp. 328-335, Springer,
2010.

11. G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U. Schlicht-
mann, P. Lugli, U. Rührmair: Application of Mismatched Cellular Nonlinear
Networks for Physical Cryptography. 12th IEEE International Workshop on Cel-
lular Nanoscale Networks and Their Applications (CNNA), pp. 1-6, 2010.

12. U. Rührmair, Q. Chen, M. Stutzmann, P. Lugli, U. Schlichtmann, G. Csaba: To-
wards Electrical, Integrated Implementations of SIMPL Systems. 8th Workshop
in Information Security Theory and Practice (WISTP), 2010. Lecture Notes in
Computer Science, Volume 6033, pp. 277 - 292, Springer, 2010.

13. U. Rührmair, S. Katzenbeisser, M. Steinebach, S. Zmudzinski: Watermark-Based
Authentication and Key Exchange in Teleconferencing Systems. 11th Conference
on Communications and Multimedia Security (CMS), 2010. Lecture Notes in
Computer Science, Volume 6109, pp. 75 - 80, Springer, 2010.

14. U. Rührmair: Oblivious Transfer based on Physical Unclonable Functions (Ex-
tended Abstract). 3rd International Conference on Trust and Trustworthy Com-
puting (TRUST), 2010. Lecture Notes in Computer Science, Volume 6101, pp.
430 - 440, Springer, 2010.

15. F. Sehnke, C. Osendorfer, J. Sölter, J. Schmidhuber, U. Rührmair: Policy Gradi-
ents for Cryptanalysis. 20th International Conference on Artificial Neural Net-
works (ICANN), 2010. Lecture Notes in Computer Science, Volume 6354, pp.
168-177, Springer, 2010.

16. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber: Model-
ing Attacks on Physical Unclonable Functions. 17th ACM Conference on Com-
puter and Communications Security (CCS), pp. 237-249, 2010.

17. U. Rührmair: SIMPL Systems, Or: Can We Design Cryptographic Hardware
without Secret Key Information? 37th International Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM), 2011. Lecture Notes
in Computer Science, Volume 6543, pp. 26-45, Springer, 2011.

234

18. U. Rührmair, C. Jaeger, M. Algasinger: An Attack on PUF-based Session Key
Exchange, and a Hardware-based Countermeasure: Erasable PUFs. 15th Inter-
national Conference on Financial Cryptography and Data Security (FC), 2011.
Lecture Notes in Computer Science, Volume 7035, pp. 190-204, 2012.

19. Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, U. Rührmair: The Bistable Ring
PUF: A New Architecture for Strong Physical Unclonable Functions. 4th IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
134-141, 2011.

20. Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, U. Rührmair: Characterization
of the Bistable Ring PUF. 17th Design, Automation and Test in Europe (DATE),
pp. 1459-1462, 2012.

21. U. Rührmair, M. van Dijk: Practical Security Analysis of PUF-based Two-
Player Protocols. 14th Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2012. Lecture Notes in Computer Science, Volume 7428, pp.
251-267, Springer, 2012.

22. U. Rührmair, M. van Dijk: PUFs in Security Protocols: Attack Models and
Security Evaluations. 34th IEEE Symposium on Security and Privacy (Oakland),
pp. 286-300, 2013.

23. M. van Dijk, U. Rührmair: Protocol Attacks on Advanced PUF Protocols and
Countermeasures. 17th Design, Automation and Test in Europe (DATE), pp.
1-6, 2014.

24. U. Rührmair, D.E. Holcomb: PUFs at a Glance. 17th Design, Automation and
Test in Europe (DATE), pp. 1-6, 2014.

25. U. Rührmair, U. Schlichtmann, W. Burleson: Special Session: How Secure are
PUFs Really? On the Reach and Limits of Recent PUF Attacks. 17th Design,
Automation and Test in Europe (DATE), pp. 1-6, 2014.

26. U. Rührmair, J. Sölter: PUF Modeling Attacks: An Introduction and Overview.
17th Design, Automation and Test in Europe (DATE), pp. 1-6, 2014.

27. M. van Dijk, U. Rührmair: PUF Interfaces and Their Security. IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2014.

28. U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushanfar, W.
Burleson: Efficient Power and Timing Side Channels for Physical Unclonable
Functions. CHES 2014.

29. U. Rührmair, J.L. Martinez-Hurtado, X. Xu, C. Kraeh, C. Hilgers, D. Kononchuk,
J. Finley, W. Burleson: Virtual Proofs of Reality and Their Physical Implemen-
tation. IEEE Symposium on Security and Privacy (“Oakland”), 2015.

30. R. Horstmeyer, S. Assawaworrarit, U. Rührmair, C. Yang: Physically secure and
fully reconfigurable data storage using optical scattering. HOST 2015

235

31. X. Xu, U. Rührmair, D.E. Holcomb, W.P. Burleson: Security Evaluation and
Enhancement of Bistable Ring PUFs. RFIDSec 2015.

32. Q. Chen, U. Rührmair, S. Narayana, U. Sharif, U. Schlichtmann: MWA Skew
SRAM Based SIMPL Systems for Public-Key Physical Cryptography. TRUST
2015.

33. S. Philippe, M. Kütt, M. McKeown, U. Rührmair, A. Glaser: The Application of
Virtual Proofs of Reality to Nuclear Safeguards and Arms Control Verifications.
57th Annual INMM Meeting, 24-28 July 2016, Atlanta, Georgia.

Invited Book Chapters:

34. U. Rührmair, H. Busch, S. Katzenbeisser: Strong PUFs: Models, Constructions
and Security Proofs. In: Towards Hardware Intrinsic Security. A.-R. Sadeghi, P.
Tuyls (Ed.), pp. 79-96, Springer, 2010.

35. U. Rührmair, S. Devadas, F. Koushanfar: Security based on Physical Unclon-
ability and Disorder. In: Introduction to Hardware Security and Trust, M. Tehra-
nipoor and C. Wang (Ed.), pp. 65-102, Springer, 2012.

36. U. Rührmair: SIMPL Systems as a Keyless Cryptographic and Security Primi-
tive. Cryptography and Security 2012. Lecture Notes in Computer Science, Vol.
6805, pp. 329-354, Springer, 2012.

37. U. Rührmair: Disorder-based Security Hardware: An Overview. In: Secure
System Design and Trustable Computing, M. Potkonjak and C.-H. Chang (Ed.),
Springer, 2016.

Preprints:

38. U. Rührmair: SIMPL Systems: On a Public Key Variant of Physical Unclonable
Functions. Cryptology ePrint Archive, Report 2009/255, 2009.

39. U. Rührmair, J. Sölter, F. Sehnke: On the Foundations of Physical Unclonable
Functions. Cryptology ePrint Archive, Report 2009/277, 2009.

40. U. Rührmair, Q. Chen, P. Lugli, M. Stutzmann, G. Csaba: Towards Electrical,
Integrated Implementations of SIMPL Systems. Cryptology ePrint Archive, Re-
port 2009/278, 2009.

41. G. Csaba, X. Ju, Q. Chen, W. Porod, J. Schmidhuber, U. Schlichtmann, P. Lugli,
U. Rührmair: On-Chip Electric Waves: An Analog Circuit Approach to Physi-
cal Unclonable Functions. IACR Cryptology ePrint Archive, Report 2009/246,
2009.

42. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber: Model-
ing Attacks on Physical Unclonable Functions. IACR Cryptology ePrint Archive,
Report 2010/251, 2010.

236

43. U. Rührmair: Physical Turing Machines and the Formalization of Physical Cryp-
tography. IACR Cryptology ePrint Archive, Report 2011/188, 2011.

44. U. Rührmair: SIMPL Systems as a Keyless Cryptographic and Security Primi-
tive. IACR Cryptology ePrint Archive, Report 2011/189, 2011.

45. M. van Dijk, U. Rührmair: Physical Unclonable Functions in Cryptographic
Protocols: Security Proofs and Impossibility Results. IACR Cryptology ePrint
Archive, Report 2012/228, 2012.

46. U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror,
J. Schmidhuber, W. Burleson, S. Devadas: PUF Modeling Attacks on Simulated
and Silicon Data. IACR Cryptology ePrint Archive, Report 2013/112, 2013.

47. U. Rührmair, C. Hilgers, S. Urban, A. Weiershäuser, E. Dinter, B. Forster, C.
Jirauschek: Optical PUFs Reloaded. IACR Cryptology ePrint Archive, Report
2013/215, 2013.

48. A. Mahmoud, U. Rührmair, M. Majzoobi, F. Koushanfar: Combined Modeling
and Side Channel Attacks on Strong PUFs. IACR Cryptology ePrint Archive,
Report 2013/632, 2013.

49. U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, F. Koushanfar, W. Burleson: Power
and Timing Side Channels for PUFs and their Efficient Exploitation. IACR
Cryptology ePrint Archive, Report 2013/851, 2013.

50. U. Rührmair: Virtual Proofs of Reality. IACR Cryptology ePrint Archive, Report
2014/415, 2014.

51. X. Xu, U. Rührmair, D.E. Holcomb, W.P. Burleson: Security Evaluation and En-
hancement of Bistable Ring PUFs. Cryptology ePrint Archive, Report 2015/443,
2015.

52. C. Jin, X. Xu, W.P. Burleson, U. Rührmair, M. van Dijk: PLayPUF: Programmable
Logically Erasable PUFs for Forward and Backward Secure Key Management.
Cryptology ePrint Archive, Report 2015/1052, 2015.

53. U. Rührmair: On the Security of PUF Protocols under Bad PUFs and PUFs-
inside-PUFs Attacks. Cryptology ePrint Archive, Report 2016/322, 2016.

According to Google scholar, the above publications have been quoted around 1300
times altogether (status: September 26, 2016) [26].

237

238

Bibliography

We stress again that this is a cumulative thesis. The bibliography below therefore only
contains the references used in Chapter 1 and all publications of the candidate. Any
other references are directly given at the end of the respective chapters.

[1] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, P. Tuyls: Memory Leakage-
Resilient Encryption Based on Physically Unclonable Functions. ASIACRYPT
2009, pp. 685-702, 2009.

[2] F. Armknecht, R. Maes, Ahmad-Reza Sadeghi, F.-X. Standaert, C. Wachsmann:
A Formal Foundation for the Security Features of Physical Functions. IEEE Sym-
posium on Security and Privacy 2011, pp. 397-412, 2011.

[3] Y. Aumann, Y. Z. Ding, M. O. Rabin: Everlasting security in the bounded storage
model. IEEE Transactions on Information Theory, Vol. 48(6), pp. 1668-1680,
2002.

[4] D. J. Bernstein, J. Buchmann, E. Dahmen (Ed.): Post-Quantum Cryptography.
Springer, 2009. ISBN 978-3-540-88701-0.

[5] C.H. Bennett, G. Brassard: Quantum cryptography: Public key distribution and
coin tossing. IEEE International Conference on Computers, Systems and Signal
Processing, Vol. 175(150), p. 8, 1984.

[6] C. Bruzska, M. Fischlin, H. Schröder, S. Katzenbeisser: Physical Unclonable
Functions in the Universal Composition Framework. CRYPTO 2011, pp. 51-70,
2011.

[7] Q. Chen, G. Csaba, X. Ju, S.B. Natarajan, P. Lugli, M. Stutzmann, U. Schlicht-
mann, U. Rührmair: Analog Circuits for Physical Cryptography. 12th Interna-
tional Symposium on Integrated Circuits (ISIC), pp. 121-124, 2009.

[8] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, U. Rührmair: The Bistable Ring
PUF: A New Architecture for Strong Physical Unclonable Functions. 4th IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
134-141, 2011.

239

[9] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, U. Rührmair: Characterization of
the Bistable Ring PUF. 17th Design, Automation and Test in Europe (DATE), pp.
1459-1462, 2012.

[10] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, M. Stutzmann, U. Rührmair:
Circuit-based Approaches to SIMPL Systems. Journal of Circuits, Systems and
Computers 20(1), pp. 107-123, 2011.

[11] W.E. Cobb, E.D. Laspe, R.O. Baldwin, M.A. Temple, Y.C. Kim: Intrinsic
Physical-Layer Authentication of Integrated Circuits. IEEE Transactions on In-
formation Forensics and Security, Vol. 7(1), pp. 14-24, 2012.

[12] C. Crepeau: Efficient cryptographic protocols based on noisy channels. EURO-
CRYPT 1997, pp. 306-317, 1997.

[13] C. Crepeau, K. Morozov, S. Wolf: Efficient Unconditional Oblivious Transfer
from Almost Any Noisy Channel. SCN 2004, pp. 47-59, 2004.

[14] G. Csaba, X. Ju, Q. Chen, W. Porod, J. Schmidhuber, U. Schlichtmann, P. Lugli,
U. Rührmair: On-Chip Electric Waves: An Analog Circuit Approach to Physical
Unclonable Functions. IACR Cryptology ePrint Archive, Report 2009/246, 2009.

[15] G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U. Schlichtmann, P.
Lugli, U. Rührmair: Application of Mismatched Cellular Nonlinear Networks for
Physical Cryptography. 12th IEEE International Workshop on Cellular Nanoscale
Networks and Their Applications (CNNA), pp. 1-6, 2010.

[16] D. Dachman-Soled, N. Fleischhacker, J. Katz, A. Lysyanskaya, D. Schröder: Fea-
sibility and Infeasibility of Secure Computation with Malicious PUFs. CRYPTO
2014, pp. 405-420, 2014.

[17] I. Damgard, A. Scafuro: Unconditionally Secure and Universally Compos-
able Commitments from Physical Assumptions. ASIACRYPT 2013, pp. 100-119,
2013.

[18] M. van Dijk, U. Rührmair: Physical Unclonable Functions in Cryptographic
Protocols: Security Proofs and Impossibility Results. IACR Cryptology ePrint
Archive, Report 2012/228, 2012.

[19] M. van Dijk, U. Rührmair: Protocol Attacks on Advanced PUF Protocols and
Countermeasures. 17th Design, Automation and Test in Europe (DATE), pp. 1-6,
2014.

[20] M. van Dijk, U. Rührmair: PUF Interfaces and Their Security. IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2014 (to appear).

[21] Y. Z. Ding, D. Harnik, A. Rosen, R. Shaltiel: Constant-Round Oblivious Transfer
in the Bounded Storage Model. J. of Cryptology 20(2), pp. 165-202, 2007.

[22] B. Gassend, D.E. Clarke, M. van Dijk, S. Devadas: Silicon physical random func-
tions. ACM CCS 2002, pp. 148-160, 2002.

240

[23] B. Gassend, M. van Dijk, D.E. Clarke, E. Torlak, S. Devadas, P. Tuyls: Controlled
physical random functions and applications. ACM Transactions on Information
and System Security, Vol. 10(4), 2008.

[24] B. Gassend, Physical Random Functions, MSc Thesis, MIT, 2003.

[25] O. Goldreich: Foundations of Cryptography - A Primer. Foundations and Trends
in Theoretical Computer Science 1(1), Now Publishers, 2005.

[26] See the Google scholar profile of the candidate (status: September 26, 2015):
https://scholar.google.de/citations?user=5T2i3XoAAAAJ&hl=de&oi=ao

[27] J. Guajardo, S.S. Kumar, G.J. Schrijen, P. Tuyls: FPGA Intrinsic PUFs and Their
Use for IP Protection. CHES 2007, pp. 63-80, 2007.

[28] C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, M. Stutzmann: Random p-n-
junctions for physical cryptography. Applied Physics Letters 96, 172103, 2010.

[29] J. Kilian: Founding cryptography on oblivious transfer. STOC 1988, pp. 20-31,
1988.

[30] H. Langhuth, S. Frederic, M. Kaniber, J. Finley, U. Rührmair: Strong Photolu-
minescence Enhancement from Colloidal Quantum Dot Near Silver Nano-Island
Films. Journal of Fluorescence 21(2), pp. 539-543, 2011.

[31] K.P. Liessmann: Einsamkeit und Freiheit. Zur Renaissance akademischer Bil-
dung. Lecture at the “Carl Friedrich von Siemens Stiftung”, Schloss Nymphen-
burg, München, May 12, 2014.

[32] H.-K. Lo, H. F. Chau: Why quantum bit commitment and ideal quantum coin
tossing are impossible. Physica D: Nonlinear Phenomena 120.1, pp. 177-187,
1998.

[33] P. Lugli, A. Mahmoud, M. Algasinger, M. Stutzmann, G. Csaba, U. Rührmair:
Physical Unclonable Functions based on Crossbar Arrays for Cryptographic Ap-
plications. International Journal of Circuit Theory and Applications 41(6), pp.
619-633, 2013.

[34] D. Mayers: Unconditionally secure quantum bit commitment is impossible. Phys-
ical review letters 78.17: 3414, 1997.

[35] A. Mahmoud, U. Rührmair, M. Majzoobi, F. Koushanfar: Combined Modeling
and Side Channel Attacks on Strong PUFs. IACR Cryptology ePrint Archive,
Report 2013/632, 2013.

[36] A. Maiti, I. Kim, P. Schaumont: A Robust Physical Unclonable Function With
Enhanced Challenge-Response Set. IEEE Transactions on Information Forensics
and Security, Vol 7(1), pp. 333-345, 2012.

[37] A. Maiti, P. Schaumont: Improved Ring Oscillator PUF: An FPGA-friendly Se-
cure Primitive. Journal of Cryptology, Vol. 24(2), pp. 375-397, 2011.

241

[38] U. Maurer: Conditionally-perfect secrecy and a provably-secure randomized ci-
pher. Journal of Cryptology, Vol. 5(1), pp. 53-66, 1992.

[39] R. Ostrovsky, A. Scafuro, I. Visconti, A. Wadia: Universally Composable Secure
Computation with (Malicious) Physically Uncloneable Functions. IACR Cryptol-
ogy ePrint Archive, Report 2012/143, 2012.

[40] R. Ostrovsky, A. Scafuro, I. Visconti, A. Wadia: Universally Composable Secure
Computation with (Malicious) Physically Uncloneable Functions. EUROCRYPT
2013, pp. 702-718, 2013.

[41] R. Pappu: Physical One-Way Functions. PhD Thesis, MIT, 2001.

[42] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld: Physical One-Way Functions.
Science, Vol. 297, pp. 2026-2030, 2002.

[43] David A. Patterson: 20th century vs. 21st century C&C: the SPUR manifesto.
Communications of the ACM 48(3), pp. 15-16, 2005.

[44] K. Rosenfeld, E. Gavas, R. Karri: Sensor Physical Unclonable Functions. HOST
2010, pp. 112-117, 2015.

[45] U. Rührmair: On the Formal Foundations of Physical Unclonable Functions.
Security Hardware in Theory and Practice - A Marriage of Convenience. Event
08253, Schloss Dagstuhl, Germany, 2008.

[46] U. Rührmair: SIMPL Systems: On a Public Key Variant of Physical Unclonable
Functions. Cryptology ePrint Archive, Report 2009/255, 2009.

[47] U. Rührmair: Oblivious Transfer based on Physical Unclonable Functions (Ex-
tended Abstract). TRUST 2010, pp. 430 - 440, 2010.

[48] U. Rührmair: Physical Turing Machines and the Formalization of Physical Cryp-
tography. IACR Cryptology ePrint Archive, Report 2011/188, 2011.

[49] U. Rührmair: SIMPL Systems as a Keyless Cryptographic and Security Primitive.
IACR Cryptology ePrint Archive, Report 2011/189, 2011.

[50] U. Rührmair: SIMPL Systems, Or: Can We Design Cryptographic Hardware
without Secret Key Information? 37th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM), 2011. Lecture
Notes in Computer Science, Volume 6543, pp. 26-45, Springer, 2011.

[51] U. Rührmair: SIMPL Systems as a Keyless Cryptographic and Security Prim-
itive. In: Cryptography and Security: From Theory to Applications — Essays
Dedicated to Jean-Jacques Quisquater on the Occasion of His 65th Birthday, D.
Naccache (Ed.), Lecture Notes in Computer Science, Vol. 6805, pp. 329-354,
Springer, 2012.

[52] U. Rührmair: Disorder-based Security Hardware. PhD Thesis, Technical Univer-
sity of Munich, 2014.

242

[53] U. Rührmair: Disorder-based Security Hardware: An Overview. In: Secure Sys-
tem Design and Trustable Computing, M. Potkonjak and C.-H. Chang (Ed.),
Springer, 2014/15, to appear.

[54] U. Rührmair: Virtual Proofs of Reality. IACR Cryptology ePrint Archive, Report
2014/415, 2014.

[55] U. Rührmair, H. Busch, S. Katzenbeisser: Strong PUFs: Models, Constructions
and Security Proofs. In: Towards Hardware Intrinsic Security: Foundation and
Practice, A.-R. Sadeghi, P. Tuyls (Ed.), Springer, 2010.

[56] U. Rührmair, Q. Chen, P. Lugli, M. Stutzmann, G. Csaba: Towards Electrical, In-
tegrated Implementations of SIMPL Systems. Cryptology ePrint Archive, Report
2009/278, 2009.

[57] U. Rührmair, Q. Chen, M. Stutzmann, P. Lugli, U. Schlichtmann, G. Csaba: To-
wards Electrical, Integrated Implementations of SIMPL Systems. 8th Workshop
in Information Security Theory and Practice (WISTP), 2010. Lecture Notes in
Computer Science, Volume 6033, pp. 277 - 292, Springer, 2010.

[58] U. Rührmair, S. Devadas, F. Koushanfar: Security based on Physical Unclon-
ability and Disorder. In: Introduction to Hardware Security and Trust, M. Tehra-
nipoor, C. Wang, pp. 65-102. Springer New York, 2012.

[59] U. Rührmair, M. van Dijk: Practical Security Analysis of PUF-Based Two-Player
Protocols. CHES 20120, pp. 251-267, CHES 2012.

[60] U. Rührmair, M. van Dijk: PUFs in Security Protocols: Attack Models and Secu-
rity Evaluations. IEEE Symposium on Security and Privacy 2013, pp. 286-300,
2013.

[61] U. Rührmair, M. van Dijk: On the Practical Use of Physical Unclonable Func-
tions in Oblivious Transfer and Bit Commitment Protocols. Journal of Crypto-
graphic Engineering 3(1), pp. 17-28, 2013.

[62] U. Rührmair, C. Hilgers, S. Urban, A. Weiershäuser, E. Dinter, B. Forster, C.
Jirauschek: Optical PUFs Reloaded. IACR Cryptology ePrint Archive, Report
2013/215, 2013.

[63] U. Rührmair, D.E. Holcomb: PUFs at a Glance. 17th Design, Automation and
Test in Europe (DATE), pp. 1-6, 2014.

[64] U. Rührmair, C. Jaeger, M. Algasinger: An Attack on PUF-Based Session Key
Exchange and a Hardware-Based Countermeasure: Erasable PUFs. Financial
Cryptography 2011, pp. 190-204, 2012.

[65] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, G. Csaba: Applications
of High-Capacity Crossbar Memories in Cryptography. IEEE Transactions on
Nanotechnology 10(3), pp. 489-498, 2011.

243

[66] U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, M. Stutzmann: Se-
curity Applications of Diodes with Unique Current-Voltage Characteristics. Fi-
nancial Cryptography and Data Security (FC 2010), Lecture Notes in Computer
Science, Vol. 6052, pp. 328-335, Springer Verlag, 2010.

[67] U. Rührmair, S. Katzenbeisser, M. Steinebach, S. Zmudzinski: Watermark-Based
Authentication and Key Exchange in Teleconferencing Systems. 11th Conference
on Communications and Multimedia Security (CMS), 2010. Lecture Notes in
Computer Science, Volume 6109, pp. 75 - 80, Springer, 2010.

[68] U. Rührmair, J.L. Martinez-Hurtado, X. Xu, C. Kraeh, C. Hilgers, D. Kononchuk,
J.J. Finley, W.P. Burleson:

[69] . IEEE Symposium on Security and Privacy 2015, pp. 70-85, 2015.

[70] U. Rührmair, U. Schlichtmann, W. Burleson: Special Session: How Secure are
PUFs Really? On the Reach and Limits of Recent PUF Attacks. 17th Design,
Automation and Test in Europe (DATE), pp. 1-6, 2014.

[71] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber: Model-
ing Attacks on Physical Unclonable Functions. IACR Cryptology ePrint Archive,
Report 2010/251, 2010.

[72] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber: Modeling
Attacks on Physical Unclonable Functions. ACM CCS, pp. 237-249, 2010.

[73] U. Rührmair, J. Sölter: PUF Modeling Attacks: An Introduction and Overview.
17th Design, Automation and Test in Europe (DATE), pp. 1-6, 2014.

[74] U. Rührmair, J. Sölter, F. Sehnke: On the Foundations of Physical Unclonable
Functions. Cryptology e-Print Archive, Report 2009/277, June 2009.

[75] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror,
J. Schmidhuber, W. Burleson, S. Devadas: PUF Modeling Attacks on Simulated
and Silicon Data. IACR Cryptology ePrint Archive, Report 2013/112, 2013.

[76] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror,
J. Schmidhuber, W. Burleson, S. Devadas: PUF Modeling Attacks on Simulated
and Silicon Data. IEEE Transactions on Information Forensics and Security, Vol.
8(11), pp. 1876-1891, 2013.

[77] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, F. Koushanfar, W. Burleson: Power
and Timing Side Channels for PUFs and their Efficient Exploitation. IACR Cryp-
tology ePrint Archive, Report 2013/851, 2013.

[78] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushanfar, W.
Burleson: Efficient Power and Timing Side Channels for Physical Unclonable
Functions. CHES 2014.

[79] See http://www.chesworkshop.org/former.php

244

[80] See http://www.hostsymposium.org/

[81] See http://www.informatik.uni-trier.de/ ley/db/conf/date/date2014.html

[82] F. Sehnke, C. Osendorfer, J. Sölter, J. Schmidhuber, U. Rührmair: Policy Gra-
dients for Cryptanalysis. 20th International Conference on Artificial Neural Net-
works (ICANN), 2010. Lecture Notes in Computer Science, Volume 6354, pp.
168-177, Springer, 2010.

[83] A. Sharma, L. Subramanian, E.A. Brewer: PaperSpeckle: microscopic finger-
printing of paper. ACM CCS 2011, pp. 99-110, 2011.

[84] M. Steinebach, S. Zmudsinski, S. Katzenbeisser, U. Rührmair: Audio watermark-
ing forensics: detecting malicious re-embedding. IS&T/SPIE Electronic Imaging
Conference – Media Forensics and Security XII, 2010.

[85] G. E. Suh, S. Devadas: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. DAC 2007: 9-14

[86] P. Tuyls, B. Skoric: Strong Authentication with Physical Unclonable Functions.
In: Security, Privacy and Trust in Modern Data Management, M. Petkovic, W.
Jonker (Eds.), pp. 133-148, Springer, 2007.

245

	Title Page
	Contents
	I Introduction and Overview
	Primer and Formalities
	Introduction to PUFs and Related Primitives, Or: Security Based on Physical Unclonability and Disorder

	II Physical Unclonable Functions as an Advanced Cryptographic Primitive
	Oblivious Transfer Based on Physical Unclonable Functions
	Practical Security Analysis of PUF-based Two-Player Protocols
	An Attack on PUF-based Session Key Exchange and a Hardware-Based Countermeasure: Erasable PUFs
	PUFs in Security Protocols: Attack Models and Security Evaluations

	III Formalization of Physical Unclonable Functions and Unique Objects
	On the Foundations of Physical Unclonable Functions
	Physical Turing Machines and the Formalization of Physical Cryptography

	IV Summary and Future Research
	V Appendix
	Complete Publication List

	Bibliography

