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Abstract
Miquel dynamics was introduced by Ramassamy as a discrete time evolution of square
grid circle patterns on the torus. In each time step every second circle in the pattern is
replaced with a new one by employing Miquel’s six circle theorem. Inspired by this
dynamics we consider the local Miquel move, which changes the combinatorics and
geometry of a circle pattern. We prove that the circle centers under Miquel dynamics
are Clifford lattices, an integrable system considered by Konopelchenko and Schief.
Clifford lattices have the combinatorics of an octahedral lattice, and every octahedron
contains six intersection points of Clifford’s four circle configuration. The Clifford
move replaces oneof these circle intersectionpointswith the opposite one.Weestablish
a newconnection between circle patterns and the dimermodel: If the distances between
circle centers are interpreted as edge weights, theMiquel move preserves probabilities
in the sense of urban renewal.

Keywords Miquel dynamics · Circle patterns · Clifford lattices · Dimer model ·
Urban renewal

1 Introduction

Miquel dynamics was first introduced by Ramassamy following an idea of Kenyon,
see [11] and references therein. In each time step, this discrete dynamical system
replaces every second circle of a square grid circle pattern. If the circle pattern is doubly
periodic, it is conjectured that these dynamics feature a form of discrete integrability
and that they are related to dimer statistics or dimer integrable systems [4]. First
progress toward integrability has been made by Glutsyuk and Ramassamy in [5] for
the case of the doubly periodic 2 × 2 grid.

In Theorem 3.1 we show that the collection of circle centers under Miquel dynam-
ics form a special case of Clifford lattices, a discrete integrable system studied by
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Konopelchenko and Schief [8]. We introduce the geometric star-ratio function, and
the centers of circle patterns are exactly the Clifford lattices with real star-ratios. If the
star-ratios are real and positive, we say a circle pattern is Kasteleyn. To a Kasteleyn
circle pattern we associate a dimer model with edge weights equal to the distances of
circle centers. We show in Theorem 3.4 that the Miquel move induces urban renewal
on the associated dimer model. This proves that under Miquel dynamics the star-ratios
transform exactly as the face weight coordinates of the discrete cluster integrable sys-
tem as introduced by Goncharov and Kenyon [4]. We want to stress that all our proofs
are of a local nature. This has the advantage that the theory is not restricted to Z

2

combinatorics.
Very recently a preprint by Kenyon et al. [7] has appeared that also shows how to

realize circle patterns with given star-ratios.
The structure of the paper is as follows: In Sect. 2 we revisit the definition of

dimer statistics and introduce notation for the graphs, circle patterns and the star-
ratios considered throughout this paper. We also define both the local Miquel and the
local Clifford move. After stating the two main Theorems 3.1 and 3.4 in Sect. 3 we
introduce in Sect. 4 the Möbius geometric mutation map which underlies both the
Clifford and the Miquel move. We also calculate the transformation formulas for star-
ratios under the Möbius mutation map. In Sect. 5 we study the Clifford configuration,
giving a geometric construction of the Möbius mutation map and relating it to work
of Konopelchenko and Schief [8]. Additionally, we derive several useful lemmas by
investigating the relation between the Clifford configuration, integrable cross ratio
systems and integrable circle patterns as defined by Bobenko, Mercat and Suris [2].
Finally, we assemble the pieces in Sect. 6 to relate star-ratios with the Miquel move
thereby proving the two main theorems. Even though we prove everything locally, it
is interesting how this translates to the setting of lattice dynamics, which we briefly
outline in Sect. 7.

2 Preliminaries

2.1 Dimer statistics

Given a graph G = (V , E) we call a function ω : E → R+ an edge weight function,
where R+ is the set of strictly positive reals. Equivalently, we write ω ∈ R

E+ and call
ω the edge weights. A simple graph is a graph without loops or multi-edges.

Definition 2.1 A perfect matching of a simple graph G = (V , E) is a subset M ⊂ E
of the edge set such that each vertex of the graph is incident to exactly one edge in M .
We denote the set of perfect matchings of a graph by M(G). The weight ω(M) of a
perfect matching M with respect to edge weights ω is:

ω(M) =
∏

e∈M
ω(e) (2.1)
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The dimer partition function ZG is defined as:

ZG : RE+ → R+, ω �→
∑

M∈M(G)

ω(M) (2.2)

The probability Pω(M) of a perfect matching is proportional to its weight with the
partition function as normalization constant:

Pω(M) = ω(M)

ZG(ω)
(2.3)

2.2 Bipartite surface graphsG

We start by defining the class G of bipartite surface graphs for which we prove our
lemmas and theorems.

Definition 2.2 A graph G = (V , E) embedded in an oriented and closed surface is in
the class of bipartite surface graphs G if:

• The complement of G is a collection F of disjoint open disks, and (V , E, F) is a
locally finite CW-decomposition of the surface.

• G is bipartite, that is the set of verticesV is the disjoint union of the two independent
sets V+ and V−.

• Every vertex in V has degree at least 3 and every face has degree at least 2.

In order to simplify notation we assume that we can identify an edge e ∈ E with
its two incident vertices v and v′ and therefore write e = (v, v′). Similarly for dual
edges e∗ ∈ E∗ we write e∗ = ( f , f ′) where f and f ′ are the two faces incident to
e. We usually consider edges at some distinct face f0, and the cyclic order of edges
around f0 will usually clear up any confusion.

We also use a standard orientation of the edges of both G and the dual G∗. An edge
e = (v−, v+) is always incident to a vertex v+ ∈ V+ and a vertex v− ∈ V−, and
we orient that edge as pointing from v− to v+. Each dual edge e∗ is oriented such
that it crosses the oriented primal edge e from the left to the right. As a consequence,
the dual edges are oriented counter clockwise around vertices in V+ and clockwise
around vertices in V−. For an example of the standard orientation see Fig. 1.

Definition 2.3 Let G ∈ G and let f ∈ F be a quadrilateral with the four neighbors
f1, f2, f3, f4. Then we define the edge neighborhood N f of f as the set of edges
that are not incident with any other face except f1, f2, f3, f4 or f . The dual edge
neighborhood N∗

f is the set of edges dual to edges in N f .

Definition 2.4 Given G ∈ G and a quadrilateral f ∈ F we denote by mut f G ∈ G
the graph resulting from the 4-mutation at f . It differs from G by a local change of
combinatorics centered at f . We will write G̃ = mut f G and G̃ = (Ṽ , Ẽ, F̃). The
face set is invariant under mutation F̃ = F , and therefore, it is easiest to describe the
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Fig. 1 An excerpt of a circle pattern z ∈ Ĉ
G◦ , G ∈ G. The vertices in V+ (V−) are colored black (white),

and the circle centers which correspond to faces of G are colored gray. Edges of G are drawn with black
arrows and edges of G∗ with gray arrows

Fig. 2 The local configurations at a face f with four neighbors. The black edges are the edges in N f
of the primal graph G ∈ G. The gray arrows are the edges of the dual graph G∗. In each column the
bottom configuration is the mutation of the upper one and vice versa. Under mutation the set of faces of
G is preserved, while the set of vertices changes. The boundary vertices of the above configurations are
identified before and after mutation

change in combinatorics with respect to the dual of G:

Ẽ∗ = E∗ � {( f1, f2), ( f3, f2), ( f3, f4), ( f4, f1)} (2.4)

where � denotes the symmetric difference operator. The mutation is an involution:
G = mut f G̃.

Figure 2 shows the possible local configurations and their relation by mutation. The
term mutation is borrowed from the theory of cluster algebras, where the 4-mutation
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corresponds to the mutation at a degree four vertex. Indeed, both dimer statistics and
Miquel dynamics may be formulated in the language of cluster algebras. We refrain
from doing so because we do not need to use any results from the theory of cluster
algebras in this paper.

2.3 Urban renewal

Becausemutation at a quadrilateral f only affects the edges in N f , the complementary
sets N c

f and Ñ c
f can be identified. Therefore, we are able to compare a matching

M0 ∈ M(G)with amatchingM fromM(G) orM(G̃) by comparing their restrictions
to N c

f . If M0 and M agree on N c
f , we write M0 ∼ f M .

Definition 2.5 Fix a quadrilateral f ∈ F and consider two edge weight functions
ω ∈ R

E+ and ω̃ ∈ R
Ẽ+ on the edge sets of G and G̃ = mut f G, respectively. We say

they are related by urban renewal at f if the following two conditions are satisfied:

(i) For all e ∈ N c
f : ω(e) = ω̃(e)

(ii) For any fixed matching M0 ∈ M(G):

∑

M∈M(G)
M∼ f M0

Pω(M) =
∑

M∈M(G̃)
M∼ f M0

Pω̃(M) (2.5)

Urban renewal was originally defined explicitly for the edge weights ofG [10]. Our
definition does not uniquely define the edge weights, only the face weights, which is
sufficient for our purposes.

Definition 2.6 For a graphG ∈ G we define the faceweight function τ as an alternating
ratio of the edge weights as follows:

τ : RE+ → R
F+, (τ (ω))( f ) =

∏

e∈E
e∗=( f , f ′)

ω(e)
∏

e∈E
e∗=( f ′, f )

(ω(e))−1 (2.6)

The first product is over the edges whose duals point into f and the second product is
over edges whose duals point away from f , where we use the orientation of the dual
edges described in Definition 2.2.

The next lemma relating urban renewal and face weights is well known [4,10].

Lemma 2.7 Let G ∈ G and f ∈ F be a quadrilateral. Consider two edge weight

functions ω ∈ R
E+ and ω̃ ∈ R

Ẽ+ that agree on all e ∈ N c
f . Adopt the following

abbreviations: τ f = (τ (ω))( f ) and τ̃ f = (τ (ω̃))( f ). Then ω and ω̃ are related by
urban renewal at f if and only if the face weights τ before and the face weights τ̃

after mutation are related as follows:
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τ̃ f ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ−1
f ′ f ′ = f

τ f ′(1 + τ f ) ( f ′, f ) ∈ E

τ f ′(1 + τ−1
f )−1 ( f , f ′) ∈ E

τ f ′ else

(2.7)

2.4 Circle patterns

Definition 2.8 Let G be a simple graph and z : VG → Ĉ. Then we call z a vertex
drawing of G if no two adjacent vertices are mapped to the same point. Similarly, if
G is embedded in a surface and y : FG → Ĉ is a map such that no two adjacent faces
are mapped to the same point we call y a face drawing of G.

We work with circles in Ĉ = C∪{∞}, which encompass both the Euclidean circles
and straight lines. We call the image of ∞ under the inversion in a circle the circle
center. Therefore, the center of a straight line is ∞.

Definition 2.9 Let z be a vertex drawing of G ∈ G. We call z a circle pattern if the
following two conditions are fulfilled:

(i) For each face f ∈ F , the vertices incident to f are mapped to a common circle
in Ĉ. This allows us to define a map z∗ ∈ Ĉ

F that maps each face of G to the
corresponding circle center in Ĉ.

(ii) z∗ is a face drawing of G∗, i.e., circles of neighboring faces have different centers.
We denote the set of circle patterns of G by ĈG◦ .

For an example of a circle pattern see Fig. 1.

Definition 2.10 LetG ∈ G, then the star-ratio sr is amap from the set of face drawings
to ĈF :

sr : ĈF → Ĉ
F , (sr(y))( f ) = −

∏
( f ′, f )∈E (y( f ′) − y( f ))

∏
( f , f ′)∈E (y( f ′) − y( f ))

(2.8)

For computations we will also sometimes write:

sr(y; y1, y2, y3, y4) = − (y1 − y)(y3 − y)

(y2 − y)(y4 − y)
(2.9)

where y, y1, y2, y3, y4 are all in Ĉ.

In this definition infinities and zeros cancel and division by zero yields infinity and
vice versa.

Lemma 2.11 Given G ∈ G and a circle pattern z ∈ Ĉ
G◦ , the star-ratios of the dual

drawing z∗ ∈ Ĉ
F are real. That is:

∀ f ∈ F : (sr(z∗))( f ) ∈ R (2.10)
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Fig. 3 On the left we have two examples of configurations before (on top) the Miquel move and after
(below) the Miquel move. The edges of G are drawn in black, note that the quadrilaterals have a different
set of legs, while the circles remain the same. On the right side we see two examples of the Clifford move,
where the arrows indicate the oriented dual edges

Proof Observe that the intersection points of z are reflected about the dual edges. The
above equation is the closing condition. �
Definition 2.12 We call a circle pattern z ∈ Ĉ

G◦ of G ∈ G Kasteleyn if and only if all
the star-ratios of z∗ ∈ Ĉ

F are real positive.

We use the term Kasteleyn because if one uses the complex vectors of the oriented
differences between circle centers asweights in an adjacencymatrix, thismatrixwould
beKasteleyn-flat [6,9]. The square root of the determinant of aKasteleyn-matrix counts
weighted perfect matchings.

Definition 2.13 Let G ∈ G and y be a face drawing of G. Then we call a face f ∈ F
a valid face if the following two conditions are fulfilled:

(i) The face f has exactly four neighbors f1, f2, f3, f4, which are listed here in the
cyclic order with respect to the orientation of the graph.

(ii) No two consecutive faces are mapped to the same point, that is y( fk) �= y( fk+1)

for all four values of k, where indices are taken modulo 4.

We will now introduce the Miquel and the Clifford moves which are based on
Miquel’s six circle theorem, respectively, Clifford’s four circle theorem (see [3]). They
locally alter the geometry and are accompanied by a mutation of the combinatorics.
For examples see Fig. 3. Miquel’s six circle theorem states that given the four circles

c1, c2, c3, c4 and their four pairs of intersection points
{
Ik, Ĩk

}
= ck ∩ ck+1, then: If

the four points I1, I2, I3, I4 are on a circle c, then Ĩ1, Ĩ2, Ĩ3, Ĩ4 are on a circle c̃. The
Miquel move replaces the circle c with the circle c̃. For the definition of the Miquel
move, denote the center of c by M and the center of c̃ by M̃ .

Definition 2.14 Let G ∈ G, z ∈ Ĉ
G◦ be a circle pattern and f ∈ F a valid face with the

four neighbors f1, f2, f3, f4, such that z∗ does not map the five faces f , f1, f2, f3, f3
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to a common line. Let v1, v2, v3, v4 be the four vertices incident to f . Identify z∗( f ) =
M with the center of circle c in Miquel’s six circle theorem. Also identify z(vk) with
Ik . Then theMiquel move replaces the circle associated with f with the alternate one
that exists due to Miquel’s theorem and yields a new circle pattern on G̃ = mut f G:

miq f : ĈG◦ → Ĉ
G̃◦ , (miq f (z))(v

′) =
{
Ĩk v′ = vk

z(v′) v′ �= v
(2.11)

miq f : ĈF◦ → Ĉ
F̃◦ , (miq f (z

∗))( f ′) =
{
M̃ f ′ = f

z∗( f ′) f ′ �= f
(2.12)

Clifford’s four circle theorem considers circles c1, c2, c3, c4 that intersect in
one common point I . Let Jk,k+1 denote the other intersection points such that{
I , Jk,k+1

} = ck ∩ ck+1. There are two more intersection points Jk,k+2 = ck ∩ ck+2.
Also let c̃k be the circle through the points Jk,k+1, Jk−1,k, Jk−1,k+1. Clifford’s four
circle theorem states that all four circles c̃k intersect in one point Ĩ .

Definition 2.15 LetG ∈ G be a graph and y ∈ Ĉ
F be a face drawing ofG and f ∈ F a

valid facewith the four neighbors f1, f2, f3, f4, such that y does notmap thefivepoints
f , f1, f2, f3, f3 to a common circle. Identify y( f ) = I and y( fk) = Jk,k+1 with the
intersection points in Clifford’s four circle theorem above, then set (cli f (y))( f ) = Ĩ .
This defines the Clifford move, which takes a face drawing of G to a face drawing of
G̃ = mut f G.

cli f : ĈF → Ĉ
F̃ : (cli f (y))( f

′) =
{
Ĩ f ′ = f

y( f ′) f ′ �= f
(2.13)

Later on we will show that both the Miquel and the Clifford move are induced by
a unique Möbius map. This map can be used to continue the definition of both moves
to the degenerate cases which we excluded in the corresponding definitions above.

3 Main theorems

Theorem 3.1 Let G ∈ G be a graph, let z ∈ Ĉ
G◦ be a circle pattern of G and let

z∗ ∈ Ĉ
F be the dual drawing induced by the circle centers of z. Let f ∈ F be a valid

face. Then the Miquel move at f acts on the circle pattern such that the circle centers
change as they do under the Clifford move:

(miq f (z))
∗ = cli f (z

∗) (3.1)

It is an implication of this theorem that the change of the circle centers does not
depend on a particular choice of circleswith these circle centers. That is, if z1, z2 ∈ Ĉ

G◦
are such that z∗1 = z∗2, then:

(miq f (z1))
∗ = (miq f (z2))

∗ (3.2)
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Corollary 3.2 Consider a Clifford lattice as defined by Konopelchenko and Schief [8].
If one Z

2 slice of that lattice has only real star-ratios, then its dynamics is locally
governed by the Miquel move.

We will explain this corollary in more detail in Sect. 7.

Definition 3.3 Given a graph G ∈ G, the map ψ : ĈG◦ → R
E+ associates edge weights

with a circle pattern z ∈ Ĉ
G◦ as follows.

ψ : ĈG◦ → R
E+, (ψ(z))(e) = |z∗( f ) − z∗( f ′)| ∀e ∈ E, ( f , f ′) = e∗ (3.3)

Theorem 3.4 Let G ∈ G be a surface graph, z ∈ Ĉ
G◦ a Kasteleyn circle pattern and

f ∈ F a valid facewith the four neighbors f1, f2, f3, f4, such that z∗ does not map the
five points f , f1, f2, f3, f3 to a common line. Then the edge weights ω = ψ(z) ∈ R

E+
and ω̃ = ψ(miq f z) ∈ R

Ẽ+ are related by urban renewal at f .

We prove Theorem 3.1 by showing that both the Miquel and the Clifford move
are given by the same Möbius map. We introduce this map in Sect. 4 and show that
it coincides with the Clifford move in Sect. 5 and that it coincides with the Miquel
move in Sect. 6. Theorem 3.4 is proven by analyzing the change of star-ratios under
the Möbius map in Sect. 4, which coincides with the change of star-ratios under the
Miquel move due to Theorem 3.1.

4 The star-ratio preservingMöbius map

In this section we introduceMöbius maps that preserve star-ratios. In particular we are
interested in the following problem: Given five points y, y1, y2, y3, y4 ∈ Ĉ, where are
all the points ỹ ∈ Ĉ such that the star-ratio of y, y1, y2, y3, y4 and ỹ, y1, y2, y3, y4 are
the same? It turns out that there is at most one such ỹ �= y, and that ỹ can be expressed
as a fractional linear transform of y with coefficients consisting of y1, y2, y3 and y4.
This motivates the definition a unique non-trivial Möbius map that takes any y to ỹ
for fixed y1, y2, y3, y4.

Definition 4.1 Given four points y1, y2, y3, y4 such that yk �= yk+1, we define the
Möbius mutation map mob(y1, y2, y3, y4).

mob(y1, y2, y3, y4) : Ĉ → Ĉ, y �→ yC2 + C3

yC1 − C2
(4.1)

The coefficients are the following homogeneous polynomials in the four points yk :

C1 = y1 − y2 + y3 − y4 (4.2)

C2 = y1y3 − y2y4 (4.3)

C3 = y2y3y4 − y1y3y4 + y1y2y4 − y1y2y3 (4.4)
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Fig. 4 The octahedron which is
reflected onto itself by the
Möbius mutation map
mob(y1, y2, y1̄, y2̄)

y3̄

y1

y2

y2̄y3

y1̄

Of course, a fractional linear transform only corresponds to a Möbius map if the
determinant given by −C2

2 − C1C3 is not zero. However, the determinant is non-
vanishing because it factors as follows:

det mob(y1, y2, y3, y4) = (y1 − y2)(y2 − y3)(y3 − y4)(y4 − y1) (4.5)

Notice that the trace of theMöbius mutation map is zero, consequently it cannot be the
identity. If y1 �= y3 or y2 �= y4, then the Möbius mutation map is the unique map that
maps yk to yk+2. It is straightforward to verify that the map interchanges the points as
stated. Because we have prescribed the image of at least three points, the map is also
unique. If y1 = y3 and y2 = y4, then the mutation map is the unique involution that
has y1 and y2 as fixed points.

Lemma 4.2 Let y1, y2, y3, y4 ∈ Ĉ such that yk �= yk+1 and let y ∈ Ĉ be such that
y �= yk for any of the four points. Then the Möbius mutation map and the identity are
the unique Möbius maps M : Ĉ → Ĉ such that the following relation holds:

sr(y; y1, y2, y3, y4)
sr(M(y); y1, y2, y3, y4) = 1 (4.6)

Proof Notice that the quotient of star-ratios is decomposable into cross ratios as fol-
lows:

sr(y; y1, y2, y3, y4)
sr(M(y); y1, y2, y3, y4) = cr(y, y1, M(y), y2) cr(y, y3, M(y), y4) (4.7)

Therefore, if M satisfies Eq. (4.6), it will do so also after some other Möbius map
has been applied. Hence we can assume that no point is at infinity. In that case,
Eq. (4.6) is a quadratic equation for M(y) and a simple calculation shows that indeed
M = mob(y1, y2, y3, y4) or M is the identity. These are the only possibilities because
there are at most two solutions. �

Lemma 4.3 Consider the octahedron given by the six points y1, y2, y3, y1̄, y2̄, y3̄ ∈ Ĉ

such that

y1̄ = mob(y2, y3, y2̄, y3̄)(y1) (4.8)
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and define quantities ak

ak = (yk−1 − yk)(yk−1 − yk)

(yk+1 − yk)(yk+1 − yk)
, (4.9)

for k ∈ {1, 2, 3}. Then the following relations

ak = ak̄, ak+1 = −(1 + ak)
−1 and ak−1 = −(1 + a−1

k ) (4.10)

hold for all k ∈ {1, 2, 3}.
Proof By the definition of the Möbius mutation map we can deduce the following
symmetric action of the mutation map on the octahedron.

yk̄ = mob(yl , ym, yl̄ , ym̄)(yk) ∀k, l,m ∈ {1, 2, 3} , l �= m (4.11)

Indeed, it does not matter which two pairs of opposite points we choose to define the
mutation map.

mob(yk, yl , yk̄, yl̄) = mob(ym, yn, ym̄, yn̄) ∀k, l,m, n ∈ {1, 2, 3} , k �= l, m �= n
(4.12)

Using the symmetry a short calculation yields the desired result. �
Definition 4.4 Let G ∈ G, y a face drawing and let f ∈ F be a valid face of G.
Extend the definition of the Möbius mutation map to the setting of surface graphs and
mutations as follows:

mob f : ĈF → Ĉ
F̃ ,

(mob f (y))( f
′) =

{
mob(y( f1), y( f2), y( f3), y( f4))(y( f )) f ′ = f

y( f ′) f ′ �= f
(4.13)

Lemma 4.5 Let G ∈ G, y a face drawing and let f ∈ F be a valid face. Let the tilde
denote the quantities on the mutated graph G̃ = mut f G. Under Möbius mutation,
the star-ratios change according to the following relations:

s̃r(ỹ)( f ′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(sr(y)( f ′))−1 f ′ = f

sr(y)( f ′)(1 + sr(y)( f )) ( f ′, f ) ∈ E

sr(y)( f ′)(1 + (sr(y)( f ))−1)−1 ( f , f ′) ∈ E

sr(y)( f ′) else

(4.14)

Proof Recall the quantities ak from Lemma 4.3. We can identify a1 with the star-ratio
at f before mutation, a1̄ with the star-ratio after mutation and a2, a3 with the quotients
of the star-ratios adjacent to f before and after mutation of the graph G. �
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V12

V23

V13

V

M3

M2

M123

M1

V13

V12

V23

V34

V14
V1234V

M2

M123
M1

M124

M134M3

M234

V24

M4

Fig. 5 The Clifford configurations C3 and C4

We have shown that for four points y1, y2, y3, y4 in valid position there exists
a unique non-trivial Möbius map that preserves star-ratios with respect to the four
points, and we have shown that star-ratios under mutation transform as in Lemma 4.5.

5 Clifford configurations

The combinatorial n-hypercube Hn has as set of vertices all the subsets of {1, 2, . . . , n}.
There is an edge between I and I ′ in the hypercube if these two sets differ by exactly
one index. We call a vertex of the hypercube even (odd) if the cardinality of the
corresponding index set is even (odd). The distinction between odd and even sets
depends on what vertex has been labeled by the empty set. However, whether two
vertices belong to the same parity is independent of that choice.

Definition 5.1 The Clifford-n-circle configuration Cn is a map from the n-hypercube
Hn to points and circles in the plane Ĉ. Every even vertex is mapped to a point and
every odd one to a circle, such that a point incident to a circle in the cube is mapped
to that circle in the plane (see Fig. 5 for two examples).

Clifford’s theorem then says that given n cyclically ordered circles in the plane
all intersecting in one point, they can be extended uniquely to the whole Clifford
configurationCn . We will denote circles in a Clifford configuration by cI , intersection
points by VI and circle centers byMI . In order to facilitate notation, wewill be slightly
imprecise and identify the vertices of Hn with the corresponding intersection points or
circle centers in Ĉ. The connection of the Clifford configuration C4 to the octahedron
recurrence and the Möbius mutation map becomes apparent in the next lemma.

Lemma 5.2 Consider the Clifford configuration C4. The following two equivalent
equalities hold:

mob(V12, V23, V34, V14)(V ) = V1234 (5.1)

sr(V ; V12, V23, V34, V14) = sr(V1234; V12, V23, V34, V14) (5.2)
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Fig. 6 Menelaus’ theorem
applied to C4 with V13 sent to
infinity via a suitable Möbius
transformation

V14

V1234

V12

V23

V34

V

c134
c123

c1

c3

Proof The classicalMenelaus’ theorem (see [3]) states that given three lines with three
distinct intersection points A12, A23, A13 and an additional line intersecting the three
previous lines in the points B1, B2, B3, we have an equality for the multi-ratio of the
six points:

mr(A12, B2, A23, B3, A13, B1) := A12 − B2

B2 − A23

A23 − B3

B3 − A13

A13 − B1

B1 − A12
= −1 (5.3)

To apply this to C4 we send V13 to infinity via a Möbius transformation. As a
result the circles c1, c3, c123 and c134 are four lines with the six intersection points
V , V12, V14, V23, V34, V1234 and of course V13 at infinity, compare with Fig. 6. In this
setting Menelaus’ theorem gives the following two equalities:

m1 := mr(V34, V14, V1234, V12, V23, V ) = −1 (5.4)

m2 := mr(V14, V34, V1234, V23, V12, V ) = −1 (5.5)

Both m1 and m2 are actually Möbius invariant quantities as they can be expressed in
terms of cross ratios:

m1 = cr(V34, V14, V1234, V13) cr(V1234, V12, V23, V13) cr(V23, V , V34, V13) (5.6)

m2 = cr(V14, V34, V1234, V13) cr(V1234, V23, V12, V13) cr(V12, V , V14, V13) (5.7)

The quotient of star-ratios on the other hand can be expressed by the quantities m1
and m2

sr(V ; V12, V23, V34, V14)
sr(V1234; V12, V23, V34, V14) = m2

m1
= 1 (5.8)

Because that expression is an equation in cross ratios it is invariant under Möbius
transformations and the claim is proven. �
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Tosimplify notation, let us introduce the shift operator�J which acts as a symmetric
difference operator on the indices of the arguments of a function, that is:

�J f (xI1 , xI2 , . . . , xIm ) = f (xJ�I1 , xJ�I2 , . . . , xJ�Im ) (5.9)

I � J = (I ∪ J )\(I ∩ J ) (5.10)

Here, the x variables could be vertices V , circles c or circle centers M . Employing
this notation the Möbius mutation map acts as a shift operator on C4.

mob(V12, V23, V34, V14)(VI )=�1234VI , mob(V12, V23, V34, V14)(cI )=�1234cI
(5.11)

This tells us thatmob(V12, V23, V34, V14) acts as a total shift on the circles and intersec-
tion points of C4. However, one should be aware of the fact that the Möbius mutation
will in general not act as a shift operator on the circle centers.

In terms of shift notation it is also possible to express the invariance of the star-ratio
as follows:

sr(V ; V12, V23, V34, V14) = �1234 sr(V ; V12, V23, V34, V14) (5.12)

We translate this equality into the following lemma.

Lemma 5.3 Let G ∈ G be a graph, y a face drawing of G and let f ∈ F be a valid
face with the four neighbors f1, f2, f3, f4, such that y does not map the five points
f , f1, f2, f3, f4 to a common circle. The Clifford move (see Definition 2.15) coincides
with the Möbius mutation map.

cli f (y) = mob f (y) (5.13)

Note that mob f (y) does not require that the five points f , f1, f2, f3, f4 are not
on a common circle. Therefore it is natural to use the identity cli f (y) = mob f (y) to
extend the definition of cli f (y) also to the case where the five points f , f1, f2, f3, f4
are on a common circle. In the next section we prove a similar result for the Miquel
move, thereby proving Theorem 3.1 relating Miquel dynamics and Clifford lattices.

In order to make progress later, we will study here a few more cross ratio identities
of Clifford configurations. We borrow the following definition from Bobenko, Mercat
and Suris [2].

Definition 5.4 Given a map X : Hn → Ĉ from the hypercube Hn to the plane, we say
it is an integrable cross ratio system if and only if for any k, a, b ∈ {1, 2, . . . , n} , I ⊂
{1, 2, . . . , n}:

�k cr(XI ,�a X I ,�abX I ,�bX I ) = cr(XI ,�a X I ,�abX I ,�bX I ) (5.14)

That is, on any 3-cube in Hn the cross ratios on opposite 2-faces are the same.
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While this definition does not consider circle centers or intersection points, it can
be applied to Clifford configurations and circle patterns.

Lemma 5.5 The Cn configuration is an integrable cross ratio system.

Proof A 3-cube in Cn is simply C3 (see Fig. 5) and can be interpreted as an ideal
hyperbolic tetrahedron in the Poincaré half-space model (see [1] for a reference on
hyperbolic geometry). The circles represent the ideal boundary of the four involved
planes and the intersection points are the four ideal vertices of the tetrahedron. The
cross ratio cr(V , M1, V12, M2) has absolute value 1, and its argument is twice the
intersection angles of the circles c1 and c2. Also, it is well known that intersection
angles on opposite edges in ideal tetrahedra sum to π . Thus,

cr(V , M1, V12, M2) cr(V13, M123, V23, M3) = 1 (5.15)

⇒ cr(V , M1, V12, M2) = cr(M3, V13, M123, V23) = �3 cr(V , M1, V12, M2)

(5.16)

Due to symmetry, this argument works for any cross ratios on pairs of opposite faces
in C3. �
Lemma 5.6 In C4 we have that

cr(VI ,�abVI ,�bcVI ,�acVI ) = �k cr(VI ,�abVI ,�bcVI ,�acVI ) (5.17)

for any a, b, c, k ∈ {1, 2, 3, 4} , I ⊂ {1, 2, 3, 4}.
Proof We are comparing two C3 configurations. As in Lemma 5.5, the two C3 config-
urations correspond to two hyperbolic tetrahedra, which we denote by H and �k H .
Also due to Lemma 5.5, we have that

cr(VI ,�i VI ,� j VI ,�i j VI ) = �k cr(VI ,�i VI ,� j VI ,�i j VI ) (5.18)

holds for any i �= j with i, j ∈ {a, b, c}. The occurring cross ratios equal intersec-
tion angles of H and �k H . The equality states that H and �3H are two hyperbolic
tetrahedra with the same intersection angles. It is well known [1] that if two hyper-
bolic tetrahedra have the same intersection angles, there exists a hyperbolic isometry,
which is a Möbius transformation of Ĉ, that maps one of the tetrahedra onto the other.
Because Möbius transformations do not change cross ratios, we obtain that

cr(VI ,�abVI ,�bcVI ,�acVI ) = �1234 cr(VI ,�abVI ,�bcVI ,�acVI ) (5.19)

holds for a, b, c, I as in the lemma. The cross ratio in the right-hand side of the lemma
is the cross ratio of the centers of the tetrahedron �3H . Therefore it remains to show
that

�1234 cr(VI ,�abVI ,�bcVI ,�acVI ) = �k cr(VI ,�i VI ,� j VI ,�i j VI ) (5.20)
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holds. In fact, a short calculation shows that in any C3 configuration

mob(�aVI ,�bVI ,�bcVI ,�acVI )(VI ) = �abcVI (5.21)

mob(�aVI ,�bVI ,�bcVI ,�acVI )(�cVI ) = �abVI (5.22)

holds. Therefore there is aMöbius transformation thatmaps the four intersection points
of a tetrahedron onto its four circle centers and therefore the cross ratio identity (5.20)
is proven as well. �

Note that even though circle centers are not invariant underMöbius transformations,
the previous lemma does indeed relate cross ratios on intersection points of a C3
configuration to the cross ratios of circle centers of that same C3 configuration. This
allows us to prove in the next lemma that star-ratios of circle centers are also preserved
under the total shift �1234.

Lemma 5.7 Assume a C4 configuration, where we picked the origin of the hypercube
at the circle center M. The following relation holds:

sr(M; M12, M23, M34, M14) = �1234 sr(M; M12, M23, M34, M14) (5.23)

Proof First, we check that this is true for the argument

arg sr(M; M12, M23, M34, M14) = arg cr(V1, V2, V3, V4) (5.24)

because each differences appearing in the cross ratio on the right hand side is orthog-
onal to a difference on the left hand side, thus contributing a factor ±i each. If the
cross ratio is negative then all factors carry the same sign and else two are negative
and two positive. Moreover

cr(V1, V2, V3, V4) = �1234 cr(V1, V2, V3, V4) (5.25)

holds, as �1234 corresponds to the action of an involution on the intersection points
of C4. Finally,

arg�1234 cr(V1, V2, V3, V4) = arg�1234 sr(M; M12, M23, M34, M14) (5.26)

holds for the same reason as in the case without the shift above, and therefore we have
shown that

arg sr(M; M12, M23, M34, M14) = arg�1234 sr(M; M12, M23, M34, M14) (5.27)
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is true. Thus it suffices to check that the quotient of the squares is equal to one. Call
this quotient S2 and decompose it into cross ratios of circle centers.

S2 :=
(

sr(M; M12, M23, M34, M14)

sr(M1234; M12, M23, M34, M14)

)2

(5.28)

= cr(M, M12, M13, M23)

cr(M1234, M34, M13, M23)

cr(M, M34, M13, M14)

cr(M1234, M12, M13, M14)

· cr(M, M34, M24, M23)

cr(M1234, M34, M24, M14)

cr(M, M12, M24, M14)

cr(M1234, M12, M24, M23)
(5.29)

Notice that each cross ratio is a cross ratio of a C3 configuration, therefore we are able
to apply Lemma 5.6. We shift each cross ratio such that we arrive at an expression in
which all the cross ratios cancel.

S2 = cr(V123, V3, V2, V1)

cr(V124, V4, V1, V2)

cr(V134, V1, V4, V3)

cr(V234, V2, V3, V4)

cr(V234, V2, V3, V4)

cr(V123, V3, V2, V1)

cr(V124, V4, V1, V2)

cr(V134, V1, V4, V3)
= 1

(5.30)

�
For the special case that the circles around a quadrilateral are part of aC4 configura-

tion, Lemma 5.7 already proves the equivalence of theMiquel move and Cliffordmove
on the circle centers. In particular, the so-called integrable circle patterns [2] consist
of Cn configurations at all faces and vertices. As a result, both the Miquel move and
the Clifford move map integrable circle patterns to integrable circle patterns. We will
prove in Sect. 6 that locally, it is possible to reduce the case of general circle patterns
to the case of an integrable cross ratio system. This will prove the correspondence
between Miquel and Clifford move in general.

6 Circle patterns andMiquel dynamics

In this section we prove the two main theorems by applying our previous results to the
Miquel move. In Lemma 2.11 we have already proven that circle patterns feature real
star-ratios, and now we show that in the case of the sphere and the plane the reverse
direction is true as well.

Lemma 6.1 Let G ∈ G such that it is a decomposition of the sphere S2 or the plane
R
2. Let y ∈ Ĉ

F be a face drawing of G such that all star-ratios of y are real. Then
there exists a two real-parameter family of drawings z ∈ Ĉ

G◦ which are circle patterns
such that z∗ = y.

Proof Let v0 ∈ VG be a fixed vertex, z0 ∈ Ĉ and set z(v0) = z0. We prove that we can
extend this uniquely to a circle pattern on all of G. If y = z∗ is given and z(v) is given,
then z(v′) is uniquely determined for all (v, v′) ∈ EG because z(v′) is the reflection
of z(v) about the dual edge. As G is connected, there is at most one circle pattern such
that z(v0) = z0. The fact that this construction via reflections closes around faces (and
therefore all cycles) is equivalent to real star-ratios. �
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M

V1
M14

M34

V4

M12

V2

V3

V234

V123

V134

V124

M1234

M23

M

V1

V4

V2

M23

M12 M14

M34

V234

V124

M1234

Fig. 7 The general Miquel configuration on the left and the Miquel–Menelaus configuration on the right,
where triples of circle centers are on a line

M1MM 2q1

MM1MM 3

M3MM 4

M2MM 3

V1VV

V2VV V3VV

V4VV

V1VV 3444 V1VV 23

c213

c413

q3q134

Fig. 8 The Miquel configuration as we use it in the proof of Lemma 6.3, case (ii)

Note that on surfaces like the torus, where cycles exist that are not generated by the
face cycles, there need not exist a global circle pattern even if all the star-ratios are
real. If it does exist, there will not necessarily be a two real-parameter family of circle
patterns either.

In the next step, we show that the action of the Miquel move on the circle centers
does not depend on a particular choice of circle pattern with these centers.

Lemma 6.2 If we fix the six circle centers of a Miquel configuration (see Fig. 7), one
of the circle intersection points can be chosen arbitrarily in Ĉ.

Proof The Miquel configuration is a circle pattern on S2. By the previous Lemma 6.1
one intersection point can be chosen freely without changing the circle centers. �

Therefore the construction of the sixth circle center via Miquel dynamics does not
require a realization by circles, knowing the five other circle centers is actually enough
information. The next lemma is the last piece we need to prove our main theorems.

Lemma 6.3 Consider six circles in Miquel’s configuration, then:

sr(M; M12, M23, M34, M14) = sr(M1234; M12, M23, M34, M14) (6.1)

123



Miquel dynamics, Clifford lattices and the Dimer model Page 19 of 23    61 

Proof We distinguish two cases:

(i) In the slightly degenerate case thatM is on the lineMk−1,kMk,k+1, we will employ
Menelaus’ theorem again.

(ii) If that is not the case, we show that there is a choice of circles such that the Miquel
configuration is actually a part of a C4 configuration.

For the proof of case (i), let us relabel the indices such thatM ∈ M12M23, see Fig. 7.
The first consequence of M ∈ M12M23 is that V1 = V3. The second consequence is
that thus also M ∈ M34M14. We also note that by definition V134 = V123 = V1.
As a result, the perpendicular bisectors to V124, V123, respectively, V124, V134 both
coincide with the line M12M14. The same holds for the perpendicular bisectors to
V234, V123, respectively, V234, V134, which are both the line M23M34. Finally we have
thatM1234 = M12M14∩M23M34 andwe realize that the circle centers are inMenelaus’
configuration, see Fig. 7.

InMenelaus’ configuration we can use the same argument as in Lemma 5.2 to show
that:

mr1 = mr(M1234, M23, M34, M, M14, M12) = −1 (6.2)

mr2 = mr(M1234, M34, M23, M, M12, M14) = −1 (6.3)

�⇒ mr1
mr2

= sr(M; M12, M23, M34, M14)

sr(M1234; M12, M23, M34, M14)
= 1 (6.4)

For the proof of case (ii) we show that: Given the six centers M, M12, M23, M34, M14,

M1234 of a Miquel configuration in general position, there is a choice of V1 such that
the configuration can be extended to a Clifford four circle configuration.

To show that such a choice exists, we introduce a parameter t ∈ [0, 1] moving
V1(t) along a small circle q1 centered at M12 and then use a continuity argument, see
also Fig. 8. In particular, we will show that the circles c213(t) and c

4
13(t) defined by the

point triplets V1(t), V3(t), V123(t) and V1(t), V3(t), V134(t) coincide for some t0 and
therefore the choice V1(t0) determines a C4 configuration.

Because all the intersection points are determined by reflections about lines given
by the circle centers, if V1(t) moves along a circle so do the other intersection
points. We also define the circles q3, q123, q134 as the trajectories of the points
V3(t), V123(t), V134(t). Because V123(t) is given by the successive reflections of V1(t)
about the lines M12M and M12M23 the circle q123 is in fact the same one as q1, more
so V123(t) is always a constant angle from V1(t) on q1. The circles q3 and q134, on
the other hand, cannot coincide with q1. Indeed, q3 is given by reflections about the
lines MM14 and MM34, while q134 is given by reflections about the lines MM14 and
M14M34. Therefore q3 or q134 can only coincide with q1 if M, M14 and M34 are on a
line, which we have treated in case (i). Now assume we choose the radius of q1 very
small such that from the point of view of q1 the circles q3 and q134 are very far away.
In this case at q1, the circles c413(t) look like a 1-parameter family of parallel lines.
Therefore it is clear that for very small radius of q1, as the point V1(t)winds around q1
in counter clockwise direction so does the point V123(t), while the other intersection
point of c413(t) with q1 winds around q1 in clockwise direction. Therefore there is a
t0 such that the other intersection point of c413(t) with q1 is V123(t0). Finally, because
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c213(t0) and c413(t0) have the three points V1(t0), V3(t0), V134(t0) in common they are
in fact the same.

This proves that we can choose the intersection points such thatM, M12, M23, M34,

M14, M1234 are centers of a Clifford four circle configuration and thus it proves this
case due to Lemma 5.7. �

We have now shown that indeed the Miquel move on the circle centers acts as the
Möbius mutation does. As in the previous section, let us put this into a lemma.

Lemma 6.4 Let G ∈ G be a graph, z ∈ Ĉ
G
0 be a circle pattern and let f ∈ F be a

valid face with the four neighbors f1, f2, f3, f4, such that z∗ does not map the five
faces f , f1, f2, f3, f4 to a common line. The Miquel move coincides with the Möbius
mutation map on the induced face drawing z∗:

(miq f (z))
∗ = mob f (z

∗) (6.5)

As in the case of the Clifford move, it is possible to interpret the Möbius mutation
map as the extension of the Miquel move on the circle centers to the degenerate case
that all the five centers are on a common line.

We can now proceed to prove the two main theorems. As a short reminder, Theo-
rem 3.1 states that the Miquel and the Clifford move coincide and Theorem 3.4 states
that the Miquel move behaves like urban renewal on the dimer model induced by the
dual edge lengths.

Proof of Theorem 3.1 Let z be a circle pattern of G ∈ G and f be a valid face. In
Lemma 5.3 and Lemma 6.4 we have proven the following two equalities:

cli f (z
∗) = mob f (z

∗) (6.6)

(miq f (z))
∗ = mob f (z

∗) (6.7)

Together these two equations imply the theorem, namely that:

cli f (z
∗) = (miq f (z))

∗ (6.8)

�
Proof of Theorem 3.4 In the case of a Kasteleyn circle pattern z ∈ Ĉ

G◦ all the star-ratios
of z∗ ∈ Ĉ

F are real and positive. Therefore in this case, the star-ratios only depend on
the absolute values of the differences. Thus, if we consider the dimer edge weights ψ

on G given by z as in Definition 3.3, we conclude that:

(τ (ψ(z)))( f ) = (sr(z∗))( f ) ∀ f ∈ F (6.9)

Hence, the star-ratios are indeed the face weights of the associated dimer model. We
have proven that the star-ratios transform under the Miquel move as they do under the
Möbius mutation map in Lemma 4.5. In the case that the star-ratios are real, these are
indeed real formulas as well. We observe that they are exactly those of Lemma 2.7 on
the change of face weights τ in urban renewal. Thus the theorem is proven. �
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7 Lattice dynamics

Even though the new results of this paper are of local nature, we want to shortly outline
the connection to dynamics on lattices. In particular, Miquel dynamics has originally
been defined as an evolution of circle patterns on periodic Z2 lattices, and the study
of Clifford lattices has taken place on the octahedral lattice, a sublattice of Z3.

Define the parity |p| of a point p = (p1, p2, p3) ∈ Z
3 as follows:

| · | : Z3 → Z2, |p| =
3∑

k=1

pk mod 2 (7.1)

Definition 7.1 The three-dimensional octahedral lattice Z
3
0 consists of all points in

Z
3 that have even parity, together with edges between the nearest neighbors:

V
(
Z
3
0

)
=

{
p ∈ Z

3 | |p| = 0
}

(7.2)

E
(
Z
3
0

)
=

{
(p, p′) ∈ V

(
Z
3
0

)
× V

(
Z
3
0

)
| max
k=1,2,3

|pk − p′
k | = 1

}
(7.3)

Define a level slice Sk of the octahedral lattice as the vertices with third coordinate in
{k, k + 1} together with the edges of Z3

0 that connect two different layers.

V (Sk) =
{
p ∈ V

(
Z
3
0

)
| p3 ∈ {k, k + 1}

}
(7.4)

E(Sk) =
{
(p, p′) ∈ E

(
Z
3
0

)
| p, p′ ∈ V (Sk) and p3 �= p′

3

}
(7.5)

It is clear that such a level slice Sk has the combinatorics of the Z2 lattice. As such,
it can be bi-partitioned into the set of points which have p3 = k and the set of points
which have p3 = k + 1.

S0k := {p ∈ V (Sk) | p3 = k} (7.6)

S+
k := {p ∈ V (Sk) | p3 = k + 1} (7.7)

It follows that Sk and Sk+1 are two Z2 lattices that as subsets of the octahedral lattice
agree on every second point, that is S+

k = S0k+1.
Set G = Sk ∈ G considering it as a surface graph. Then the combinatorial 4-

mutation at every vertex in S0k gives a new graph G ′ isomorphic to Z
2 which we can

identify with Sk+1, such that S+
k = S0k+1 and all the vertices we mutated at are in S0k

before mutation and in S+
k+1 after mutation. In that sense mutation replaces a vertex

with the vertex two steps into the 3-direction of the octahedral lattice.
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Let z ∈ Ĉ
Vk be a drawing where Vk = V (Sk). Then by the combinatorial identifi-

cation above and the Möbius mutation map this drawing determines a unique function
z : V (

Z
3
0

) → Ĉ from the octahedral lattice to the complex plane.

z(px,y,z+1) = mob(z(px+1,y+1,z), z(px+1,y−1,z), z(px−1,y−1,z), z(px−1,y+1,z))(z(px,y,z−1))

(7.8)

Functions on octahedral lattices which are constructed as above have been character-
ized as discrete integrable systems in [8]. A system is called discretely integrable if
there exists a function on a lattice such that it satisfies a given set of local equations at
each point in the lattice.

It is clear from the construction above that this is a 3-d integrable system in the
sense that the data that determines the whole system (the Cauchy data) is 2-d, as we
can choose freely the function on all points of a given slice in the octahedral lattice.
In the case of circle patterns it is clear that we can choose as Cauchy data any circle
pattern with the combinatorics of Z2. Such a circle pattern can be constructed row
by row. Given a row, each circle center of the next row has to be on the bisector of
the two corresponding intersection points of the given row, therefore there is a one-
dimensional real degree of freedom per circle. If we are interested in Kasteleyn circle
patterns, then each circle center has to be chosen on an R

+ ray and the Cauchy data
are therefore still 2-d.

Given fixed star-ratios on Z
2 = Sk , then Lemma 4.5 asserts that we know the

star-ratios on all slices Sk′ of the octahedral lattice. However, the knowledge of all
the star-ratios on Z

2 does not fix the drawing z ∈ Ĉ
Z2 . Instead, the fixed star-ratios

determine a 2-d discrete integrable system themselves. Given the drawing z on a strip
Z×{l, l + 1}, the star-ratios determine thewhole drawing onZ2. This strip is in fact the
intersection of two level slices in two different directions. In this case, the prescription
of real star-ratios corresponds to the case of circle patterns and the prescription of real
and positive star-ratios corresponds to the case of Kasteleyn circle patterns.

An octahedral lattice constructed by the Möbius mutation from given data on Z
2

carries additional symmetry: The three space directions of the lattice are indistinguish-
able. This is a consequence of the symmetric nature of the Möbius mutation map as
explained in Sect. 4. In particular, if the star-ratios are the same on the two opposite
stars in an octahedron of the lattice, then they are equal on all three pairs of opposite
stars in that octahedron, see Lemma 4.3. Moreover, if we prescribe real star-ratios in
the given Cauchy data, then all the star-ratios of the whole lattice will be real, see
Lemma 4.5. Therefore an octahedral lattice with real star-ratios induces three fami-
lies of Z2 circle patterns, each family consisting of circle patterns related via Miquel
dynamics. However, this symmetry does not hold for Kasteleyn circle patterns. If one
level slice Sk corresponds to a Kasteleyn circle pattern, then all the parallel slices are
Kasteleyn as well, but the slices in the other directions are necessarily not Kasteleyn.
This is an immediate consequence of the identities in Lemma 4.3, which show that
positive star-ratios in one direction imply negative star-ratios in the other directions.
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