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We show that amplitude-mediated phase chimeras and amplitude chimeras can occur in the same net-
work of nonlocally coupled identical oscillators. These are two different partial synchronization pat-
terns, where spatially coherent domains coexist with incoherent domains and coherence/incoherence
referring to both amplitude and phase or only the amplitude of the oscillators, respectively. By chang-
ing the coupling strength, the two types of chimera patterns can be induced. We find numerically that
the amplitude chimeras are not short-living transients but can have a long lifetime. Also, we observe
variants of the amplitude chimeras with quasiperiodic temporal oscillations. We provide a qualitative
explanation of the observed phenomena in the light of symmetry breaking bifurcation scenarios. We
believe that this study will shed light on the connection between two disparate chimera states hav-
ing different symmetry-breaking properties. Published by AIP Publishing. https://doi.org/10.1063/1.
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Chimera states are emergent dynamical patterns in
networks of coupled oscillators where coherent and
incoherent domains coexist due to spontaneous symmetry-
breaking. In oscillators that exhibit both phase and
amplitude dynamics, two types of distinct chimera pat-
terns exist, namely, amplitude-mediated phase chimeras
(AMCs) and amplitude chimeras (ACs). In the AMC state
coherent and incoherent regions are distinguished by dif-
ferent mean phase velocities: all coherent oscillators have
the same phase velocity, however, the incoherent oscilla-
tors have disparate phase velocities. In contrast to AMC,
in the AC state, all the oscillators have the same phase
velocity, however, the oscillators in the incoherent domain
show periodic oscillations with randomly shifted center of
mass. Surprisingly, in all the previous studies on chimeras,
a given network of continuous-time dynamical systems
seems to show either AMC or AC: they never occur in the
same network. In this paper, for the first time, we iden-
tify a network of coupled oscillators where both AMC and
AC are observed in the same system, and we also pro-
vide a qualitative explanation of the observation based on
symmetry-breaking bifurcations.

I. INTRODUCTION

The chimera state is a counterintuitive spatiotemporal
pattern in oscillator networks that has been in the center of
active research over the past decade.!? This state is generated
by the spontaneous breaking of symmetry in the population of
coupled identical oscillators. As a result, the network spon-
taneously splits into at least two incongruous domains, in
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one domain, the neighboring oscillators are synchronized,
whereas in the other domain, the oscillators are desynchro-
nized. After its discovery in phase oscillators by Kuramoto
and Battogtokh,® many theoretical studies'>*> established the
existence of this state. A series of experimental observation
of chimera states established that this state is robust in natu-
ral and man-made systems. The first experimental observation
of chimeras was reported in optical systems® and chemical
oscillators.” Later, chimeras have been observed experimen-
tally in mechanical systems,®® electronic,'®!! optoelectronic
delayed-feedback!>'3 and electrochemical'#'% oscillator sys-
tems, and Boolean networks.!” Control methods to stabilize
chimera have recently been proposed.'®?! Recent studies,
both analytical and experimental, explored the occurrence of
chimeras in smaller networks.”>>’ The notion of chimeras
has recently been extended to noise-induced chimera states,?®
and chimera patterns in two- and three-dimensional regu-
lar arrays have been explored.””* Chimera patterns have
been found in diverse models in nature, such as ecology,**’
SQUID metamaterials,*®* neuronal systems,*® and quantum
systems.*! Recently, chimera states have been identified in
continuous media with local coupling,*> which opens up the
connection of chimeras with fluid dynamics.

After their discovery in phase oscillators,® several other
types of chimera states have been discovered in systems with
coupled phase and amplitude dynamics, but all those chimera
patterns are variants of two general chimera states, namely,
amplitude-mediated phase chimeras®® and pure amplitude
chimeras.** In amplitude-mediated phase chimeras (AMCs),
incoherent fluctuations occur in both the phase and the ampli-
tude in the incoherent domain; also, in the incoherent domain,
the temporal evolution of the oscillators is chaotic. On the
other hand, amplitude chimeras (ACs) were discovered by
Zakharova et al,***® where all the oscillators have the
same phase velocity but they have uncorrelated amplitude

Published by AIP Publishing.
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fluctuations in the incoherent domain; also, unlike AMC
(or classical phase chimera), the dynamics of all the oscillators
in the AC state is periodic.

Surprisingly, in all the previous studies on chimeras,
AMC and AC have not been observed in the same continuous-
time network of coupled identical oscillators: a given network
seems to show either AMC or AC. For example, AMC have
been observed in complex Ginzburg-Landau oscillators under
nonlocal coupling,** van der Pol oscillators,*’ FitzHugh-
Nagumo models,*®**° and oscillators showing excitability of
type-I°" under nonlocal coupling, but no AC patterns appear
in those systems. On the other hand, AC appear in nonlo-
cally coupled Stuart-Landau oscillators?!*#3!-52 and ecologi-
cal oscillators,*37 but AMCs have not been observed in those
networks. Previously, the possibility of observing two types
of chimera states, amplitude and phase chimeras, has been
reported for coupled chaotic maps,’>>* while for continuous-
time chaotic systems, only amplitude chimeras have been
detected. It has been shown that amplitude chimeras and
phase chimeras can switch in time for a network of nonlo-
cally coupled logistic maps> and Henon maps>® operating in
the chaotic regime.

In this paper, we ask the following question: Can both
kind of chimeras (i.e., AMC and AC) be observed in the
same system? This is a fundamental question in the study
of symmetry-breaking in coupled oscillators because of the
following facts: (i) Unlike AMC, AC has a connection with
the oscillation death state, which is a symmetry-breaking
state in a network of coupled oscillators where oscillators
split into different branches of inhomogeneous steady states.>’
This connection discovered by Zakharova et al.** is medi-
ated by the “chimera death” state in which the population of
oscillators splits into distinct coexisting domains of spatially
coherent oscillation death and spatially incoherent oscilla-
tion death (i.e., where the sequence of populated branches
of neighboring nodes is completely random in the inhomo-
geneous steady state).** The above distinction has a broad
significance in the context of self-organized states in coupled
oscillators out of equilibrium. According to the notion intro-
duced by Prigogine’®>° there exists four fundamental types
of “dissipative structures” in physical and biological systems,
namely, multistability, temporal dissipative structures (in the
form of sustained oscillations), spatial dissipative structures
(known as Turing patterns), and spatiotemporal structures (in
the form of propagating waves). Out of these four dissipa-
tive structures, AMC belongs to the spatiotemporal structure
and it has no connection with the spatial dissipative structure
(or Turing-type bifurcation). On the other hand, although AC
belongs to the spatiotemporal structure, it has a connection
to the spatial dissipative structure, namely, “chimera death.”
Therefore, AC has relevance where inhomogeneity arises out
of homogeneity, which is believed to be the underlying mech-
anism for morphogenesis and cellular differentiation.®"¢!
However, the AMC state may account for the observation
of partial synchrony in neural activity, like unihemispheric
sleep of dolphins and certain migratory birds,>%>%* ventricu-
lar fibrillation,® and power grid networks.®® (ii) In the context
of symmetry, these two chimeras are distinct. The underlying
type of symmetry-breaking in the case of AMC has recently
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been explored for four globally coupled oscillators (and also
verified for optoelectronic oscillators) by Kemeth et al.®’
They have identified that AMC arises due to the emergence
of the reduced symmetry state S) x 8%, where S, denotes the
permutation symmetry (i and a denote instantaneous and aver-
age, respectively, see Ref. 67 for details). On the other hand,
it is well known that AC arises due to the breaking of continu-
ous rotational symmetry.** Therefore, from very fundamental
point of view, AMC and AC have different origins, and thus
their appearance in the same system is quite significant.

In this paper, we discover that AMC and AC can indeed
both occur in a network of nonlocally coupled Rayleigh oscil-
lators. This model was proposed by Lord Rayleigh in 1883
to model the appearance of sustained vibrations in acoustics,
e.g.,in a clarinet.?® Later, it has been found to be relevant
for modeling human limb movement and was used widely in
robotics to simulate locomotion.®® Remarkably, in our net-
work, we not only observe the simultaneous occurrence of
AMC and AC, but a direct transition from AMC to AC is
observed with increasing coupling strength for small cou-
pling range. We further numerically assert that, contrary to the
Stuart-Landau model, in the Rayleigh model, AC is not a tran-
sient state, but it is a stable spatiotemporal pattern. Also, we
observe an interesting variant of the AC state with quasiperi-
odic or chaotic temporal oscillations. These findings bridge
two apparently disconnected chimera patterns, namely, AMC
and AC, and establish AC as a stable chimera pattern.

IIl. NETWORK OF RAYLEIGH OSCILLATORS

We consider a ring network of N identical Rayleigh
oscillators®® coupled through a nonlocal matrix coupling. The
mathematical model of the network reads

. o itP
X = wy; + ﬁjgpall(xj —x;) +an(y; —y), (1a)

Vi = —ox;+8(1 = y)y;

e it
+ 55 Z an (g —x) +an(;—y),  (1b)
Jj=i—P
where x;,y; € R, i=1,...,N, and all indices are taken as

modulo N, w is the linear angular frequency, and § > 0 gov-
erns the nonlinear friction. The coupling strength is denoted
by ¢ > 0, and P € N represents the number of coupled neigh-
bors to each side. The rotational coupling matrix is defined as
A= (Z; ZZ) = (—Csolifb zz)r;i) with the coupling phase
¢. For ¢ =m/2, ie., ajg =a»n =0, a;; = —ax; =1, the
nodes are connected by a pure conjugate coupling, and for
¢ =0, ie., ag=apn =1, ap =ay =0, the Coupling is
diagonal through similar variables. This type of coupling
with a coupling phase is relevant in neuronal and mechani-
cal systems’” and was considered earlier in Refs. 48 and 50 to
observe chimeras.

Following the argument in Ref. 48, i.e., a phase reduction
of Eq. (1) for small coupling strength, and comparison with
the phase lag parameter of coupled Kuramoto phase oscilla-
tors, we choose the coupling phase in the rest of the paper as



113124-3

Banerjee et al.

(b)1
S VAAYA
-1

990 995 1000

t
(C)1
-1 0 1 990 995 1000
x t

FIG. 1. A single Rayleigh oscillator given by Eq. (1) with ¢ = 0. (a) Phase
portrait of the limit cycle attractor and (b) and (c) time-series of x and y.
Parameters are o = 2 and § = 1.

¢ = /2 — 0.1, which is favorable for chimeras and was used
earlier in Refs. 48, 50, and 71.

lll. RESULTS AND ANALYSIS

A single Rayleigh oscillator [Eq. (1) with & = 0] exhibits
a limit cycle oscillation. The frequency and amplitude are
determined by w and & (see Ref. 69). The limit cycle is
illustrated in Fig. 1 forw =2 and § = 1.

A. Spatiotemporal dynamics: Chimera patterns and
their characterization

To demonstrate the observed results clearly, we choose
a coupling range P = 5 and consider two exemplary values
of coupling strengths: ¢ = 0.8 for which we observe an AMC
state, and ¢ = 2 for which we observe an AC state. Figure 2(a)
illustrates the space-time pattern of the AMC state for P = 5
and ¢ = 0.8. One observes two incoherent domains sepa-
rated by two coherent regions. To ensure that the observed
spatiotemporal pattern is indeed an AMC state, we use the
following characteristic measures: (i) the mean phase veloc-
ity profile (£2;), (ii) the measure of the local curvature (L;)
(iii) the measure of correlation in space (gp), and (iv) the
measure of correlation in time (/g); the latter three measures
were recently introduced by Kemeth er al.’””> as quantitative
measures of diverse chimera patterns. In the next few para-
graphs, we will briefly define and review the properties of
these quantities. We define the phase of the i-th oscillator as

¥;(t) = arctan (%) The mean phase velocity profile of each

oscillator is a good indicator of an AMC state*® given by
Q,’ = (2)

where M; denotes the number of periods of the i-th oscillator
in the time interval AT. Typically, for an AMC state, €2; is flat
in the coherent zones and arc-shaped in the incoherent zones.
Figure 2(b) shows that in the incoherent domain, the mean
phase velocity of the oscillators is less than that in the coherent
domain, with an arc-shaped profile indicating the occurrence
of AMC.

According to Ref. 72, to find the local curvature at each
node i at time ¢, we apply the discrete Laplacian operator Lon
each snapshot {;} that is given by

Lypi(t) = Y1) (1) = 2950) + i) (0. 3
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FIG. 2. Amplitude-mediated phase chimera (AMC) for P =5 and ¢ = 0.8.
(a) Space-time diagram of y;. (b) Mean phase velocity profile €2;. (c) Space-
time diagram of local curvature L;. (d) Measures of spatial correlation (go) and
temporal correlation (/) (see text). For clarity only, the last 50 time steps are
shown (¢ = 10°). Other parameters are = 2 and § = 1, ¢ = /2 — 0.1.

If the i-th node populates the synchronous cluster, Eq. (3)
yields |Ly;()] = 0, but in the case of incoherent cluster,
|i1//,~(t)| is finite. In the incoherent cluster, depending on
the phase difference of the neighboring oscillators, \Lyi (1)
fluctuates between 0 < |Zl/f,'(l‘)| < L,ax, where the maximum
local curvature Ly, is the curvature of nodes having two near-
est neighbors with maximum phase shift. Figure 2(c) shows
the spatiotemporal variation of L; corresponding to Fig. 2(a):
it can be seen that in the incoherent domain, L; fluctuates
randomly with values L; € (0, 6], however, in the coherent
domains, it attains a zero value. At each time step, g(|i| =0)
measures the relative size of the spatially coherent regions,
where g represents the normalized probability density func-
tion of |i|. In a fully synchronized system, g(|i| =0)=1,
but in the case of a completely incoherent system, g(L| =
0) = 0.”2 Thus, any intermediate value of g(|L| = 0) = g,
0 < gm < 1 indicates the coexistence of synchronous and
asynchronous oscillations. Since spatial coherence and inco-
herence can only be defined within a certain numerical inac-
curacy, we consider a threshold value &, = 0.01L,,0"* to
characterize the coherence or incoherence. Therefore, the
spatial correlation measure with the threshold value §, is
defined as

S
g = Y g(Lyi0). )
Ly (1)]=0

To calculate the temporal correlation, we consider the pair-
wise correlation coefficients’? defined as

(Wi — W) (W5 — (¥3))
(P2) — (i)D"

ple h 1727 (5)

W = ()

here i # j and (-) denotes the temporal mean. With the nor-
malized distribution function h(|p|) one can characterize a
static [A(|p;] ~ 1) > 0] and traveling (or non-static) [h(|po;]
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~ 1) = 0] spatiotemporal state. The percentage of time-
correlated oscillators is defined as

172

1
ho=| > hph| - (©)

lpl=y

We consider two oscillators as correlated if | ;| > 0.99 = y.
Figure 2(d) gives the variation of gy and & for the AMC state
of Fig. 2(a): go < | ensures the occurrence of chimeras in
the network and %y > 0O indicates that the resulting chimera
is static in nature.

Next, we demonstrate the occurrence of AC in the net-
work. Figure 3(a) shows the spatiotemporal pattern of AC
for P =5 and ¢ = 2 and Fig. 3(b) shows the corresponding
snapshot of y;. The main characteristic feature of an AC is
that oscillators exhibit limit cycles with shifted center of mass
of the oscillation. This is shown in Fig. 3(c) using an (x;, y;)
phase portrait for a few representative oscillators selected
from the incoherent and the coherent regions, respectively.
Figure 3(d) gives the corresponding time series of y;. From
the figures, it is clear that all the oscillators perform limit cycle
oscillations with the same frequency but different amplitudes.
As a quantitative measure of the AC state, we compute the
center of mass of each oscillator** defined by

1 T
cm; = idt, 7
Yemi = 7 /0 y (7
where y; represents the state of the i-th oscillator and T is a
sufficiently large time. The quantity y.,, gives a measure of
the shift of the limit cycle from the origin. Figure 4(a) shows
Ye.m; Of each oscillator, corresponding to Fig. 3(b): we observe

@.14 "y, 14

—
X105 —

—— 1.4 -
p— 1 100 200
— 1.3 : (c)
——
p——
— -

O [ — =0

a ——

; —
i
o
A,.... -1.3 :
p— 1.3 (d)
=
p—

6 — | — CATACMTA A

—_
—

-1.3
00 200 999900 999910
l

time

FIG. 3. Amplitude chimera (AC) for P =5 and ¢ = 2. (a) Space-time dia-
gram of y;. (b) Snapshot of y; at r = 5 x 10°. (c) Phase portrait in the (x;, ;)
plane of a few selected oscillators: largest cycle (in cyan color) is for an
oscillator in the coherent domain, the others are from the incoherent domain.
(d) Corresponding time series of y;. Other parameters are = 2, § = 1, and
¢ =m/2—-0.1.
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FIG. 4. (a) Center of mass (y..»,) of each oscillator corresponding to Fig. 3(a).
Note that in the incoherent domains, it shows a random sequence of shifts
into the upper and lower halfplane, respectively. (b) Temporal evolution of
the spatial correlation measure go. For clarity only, the last 50 time steps
are shown (f; = 10%); go < 1 indicates a stable amplitude chimera. Other
parameters as in Fig. 3.

that in the incoherent region, the center of mass of the oscil-
lators exhibit a random sequence, however, in the coherent
region, all oscillators have zero center of mass.

A significant observation is that, unlike in previous cases,
the amplitude chimera is not a short-living spatiotemporal pat-
tern, rather it has a long lifetime. We check the result for
simulation times of 107 and find that the AC pattern does not
vanish. We assert that this long lifetime is not a numerical
artifact: the same long-living pattern of AC is observed using
another integrator that uses the fifth-order Dormand-Prince
method of adaptive step size taking absolute tolerance of 10~°
and relative tolerance 10~8. This long lifetime is supported by
the characteristic measure gy shown in Fig. 4(b), which does
not reveal any jump of gy to a value 1, rather it fluctuates
around 0.7 for the total time span of our simulation [For clar-
ity only, the last 50 time steps are shown (#; = 10%)]. To test
whether this long-living AC results from the particular initial
condition we have used or whether it is a general result of this
network, we verify this result for completely random initial
conditions (see Appendix A) and find that the AC emerging
in this network is indeed a long-living spatiotemporal pattern.

For higher values of the coupling range (P), the direct
transition from AMC to AC does not occur anymore, instead
a multistable state of synchronized oscillations (SYNC)
and coherent traveling waves (TWs) appears between the
AMC and the AC state in parameter space. Furthermore,
we observed that the AMC state for the higher P is an
imperfect AMC, i.e., the incoherent domain shows random
lateral motion in its spatiotemporal evolution.?%7374

All the above prominent spatiotemporal patterns are
mapped in the diagram of dynamic regimes in Fig. 5(a) in
the (P, ¢) plane. To identify different zones in the phase dia-
gram, we follow the criteria shown in Table I. Here (y.,,) is
defined as

N
Zi:] |yC.m,' |

max{n, 1} ’

<yc.m) = (8)
where y.,, is given by Eq. (7), N is the total number of
nodes, n is the number of nodes with shifted center of mass
of the oscillation (i.e., the number of nodes in the incoher-
ent region). Note that for an AC state (y.,,) > 0, whereas
(Yen) = 0 for the AMC and synchronized or coherent trav-
eling wave (SYNC/TW) states. As for a chimera state gg < 1
and for a globally synchronized state gop = 1, we distinguish
chimera and SYNC/TW states by using go. However, since for
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FIG. 5. (a) Dynamic regimes in the (P, ¢) parameter space for N = 200.
AMC, amplitude-mediated phase chimera, AC, amplitude chimera, SYNC
and TW, synchronized and/or coherent traveling wave solution; AMC (Mul-
tistable), AMC state coexists with SYNC and TW. [J and A denote the
parameter values used in Fig. 2 (for the AMC state) and Fig. 3 (for the
AC state), respectively. 4 indicates the pitchfork bifurcation points (PB1 and
PB2) computed using XPPAUT (see Sec. III B for a detailed discussion). The
light blue dots on the edges of the AC region indicate the threshold values
of ¢ and P with (y.,,) > 0 and gomar < 1. (b) Mean center of mass coordi-
nate (y.,,) and spatial correlation measure go,u,, for N =200 and P =5, i.e.,
along the vertical dashed line of (a). See Table I and text for details. Other
parameters are w = 2,8 = 1,and ¢ = /2 —0.1.

chimera states gy shows fluctuation around an average value,
to avoid any ambiguity we use the maximum value of g
denoted as gouq,. From the phase diagram, it is observed that
for a given coupling range (P), AMC occurs at a lower cou-
pling strength ¢ and with increasing €, beyond a certain value
of &, AC emerges. Significantly, for a lower value of P, we
observe a direct transition from AMC to AC with increasing ¢.
This may be due to the fact that typically in a network, larger P
favors multistability, therefore, an increase in P may promote
the region of multistability by suppressing the pure AMC
region, making it difficult to observe direct transitions from
AMC to AC.” The phase diagram of Fig. 5(a) demonstrates
that the direct transition occurs for P < 5. This direct tran-
sition from AMC to AC and then to SYNC/TW is illustrated
clearly in Fig. 5(b) for P = 5. With increasing ¢, for ¢ < 1.35,
(yen) = 0 indicating that all the oscillators are oscillating
around the origin, however, gomuq: < 1 indicates that it is a
chimera state: therefore, in this region, the system shows an
AMC state. In the range 1.35 < ¢ < 2.25, the system has
(Ye.n) > 0 indicating the presence of shifted center of mass

TABLE I. Criteria for identifying different dynamic regimes in Fig. 5.

Observations Condition

AC <y('.m> > 0 and 8omax < 1
AMC (yv.m) =0and 80max < 1
SYNC/TW <yL'.m> =0 and 80max = 1

Chaos 28, 113124 (2018)

200 99900
1 time
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FIG. 6. Variable-amplitude chimera (VAC) for P = 15 and ¢ = 1.67. (a)
Space-time diagram of y;. (b) Corresponding center of mass (y..,). (c) Phase
portrait in the (x; — y;) plane of a few selected oscillators. (d) Corresponding
time series of y;. Other parameters: w = 2,8 = 1, and ¢ = 7/2 — 0.1.

limit cycles in the spatiotemporal pattern and additionally
Zomax < 1 confirms that in this parameter regime, the system
indeed shows amplitude chimeras. Finally, for ¢ > 2.25, the
network shows (y.,,) = 0 (indicating that all the nodes are
oscillating around the origin) and gg. = 1 (indicating the
absence of the coexistence of synchrony and asynchrony),
therefore, this region belongs to the SYNC/TW state. We also
check for the presence of hysteresis during this transition from
one chimera state to another but could not detect any. For
larger coupling range (P), a traveling wave or synchronized
pattern (SYNC) is interspersed between AMC and AC. We
observe that for small ¢ and large P, the AMC state is mul-
tistable and coexists with the fully synchronized oscillations
(SYNC) or coherent traveling waves (TWs), this is shown in
Fig. 5(a).

Moreover, several other chimera patterns are observed
in narrow regions of the parameter space [not shown in
Fig. 5(a)]; the most prominent one is the variable amplitude
AC. Typically, in an AC state, all the oscillators exhibit peri-
odic limit cycle oscillations with the same phase velocity,
however, in our case, in a parameter region near the transi-
tion from AMC to AC and from AC to SYNC, we observe
quasiperiodic oscillations in the AC state. We name this state
as the variable amplitude chimera (VAC). Figure 6(a) demon-
strates the spatiotemporal pattern of the VAC for P = 15
and ¢ = 1.67, and Fig. 6(b) shows the corresponding cen-
ters of mass (y.,,;) of each oscillator. One can also visualize
the apparently quasiperiodic variation in amplitude from the
phase portrait and the corresponding time series in Figs. 6(c)
and 6(d), respectively.

B. Qualitative explanation: Symmetry-breaking
bifurcations

Next, we try to understand the observed phenomena qual-
itatively in the light of bifurcation scenarios. However, since
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we are considering a large network of coupled oscillators
with amplitude dynamics, it is difficult to reveal the com-
plete bifurcation structure in such a high dimensional phase
space, and connect it to our observations of chimera patterns.
Therefore, we start from a smaller network and then system-
atically attempt to find the connection between the observed
chimera patterns and the relevant bifurcation mechanism of
the complete network.

We start by considering two Rayleigh oscillators cou-
pled via matrix coupling, and derive the bifurcation points.
Equation (1) is rewritten for two oscillators:

X120 = wyi2 + e[an (g — x12) +an(a —yi2)],  (9a)

Y12 = —wxi2+8(1 =y ,)yi2
+ &[az (21 — x12) + an(y21 — y12)]- (%9b)

We will derive the results for the general matrix
A= < andn ) The system of equations (9) has three
azr dan

fixed points: one trivial fixed point (0,0,0,0) and a pair of
nontrivial fixed points (x*, y*, —x*, —y*) with

(a) — 286112)2
=4 | ————"y",
\/ 4a? &2

A 2ea11(8 — 2¢eax) + Qea; — w)(eay; + w)
4 2856111 '

(10a)

(10b)

The linear stability analysis of the fixed points yields that

with increasing ¢ the unstable trivial fixed point undergoes

a symmetry-breaking pitchfork bifurcation giving rise to two

additional nontrivial unstable fixed points (x*, y*) at epp1,
o—/B

EpBl = T, (11)

where o = —56111 — (a12 — 6121)0),,3 = Aa)z + [86111 + (6112 —
ax)w)?, and A = 4(ajray, — ajaz). Three fixed points (one
trivial and two nontrivial ones) collide at epgy and symmetry
reappears, where

a+ VB

A

Therefore, between epg; and epp,, a bubble-like symmetry-
breaking inhomogeneous steady states (i.e., oscillation death
state) emerges.’%"" This scenario is shown in Fig. 7(a) for two
oscillators (here we show the x variable, however, y variable
also gives the similar qualitative bifurcation structure), using
ajg = axy =cos¢g andaj; = —ay; =sing. For¢ = £ — 0.1,
§=1 and w =2, we get gpg; = 0.818 and epp, = 1.221.
Next, we search for the Hopf bifurcation points, which can be
computed from the two dominant eigenvalues of the Jacobian
of the nontrivial fixed points of (9),

—pu £/ u? — (deway)?

48(,()(111

Eppy = (12)

ST

Alp = (13)

where u = 4¢ea (8§ — 3ean) + 3(2ea;; — w)(2ear; + w). From

this expression using the above parameter values we have
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FIG. 7. Bifurcation diagram (using XPPAUT) of coupled Rayleigh oscillators
under matrix coupling [Eq. (1)] with coupling range P =1 for (a) N =2,
(b) N =10, (c) N =20, and (d) N = 50. Periodic orbits emanating from
subcritical Hopf bifurcations are shown in open (blue) circles for only the
first oscillator i = 1, however, the fixed point solution of all the oscillators
are shown and they are lying on top of each other. (e) (y.,..) of N = 200:
Non-zero value indicates the appearance of the AC state. Red thick lines, sta-
ble fixed points; dashed black lines, unstable fixed points; open circles (light
blue), unstable limit cycles. PB1 and PB2, Pitchfork bifurcation points; HB1
and HB2, Subcritical Hopf bifurcation points. Parameters are ¢ = % —0.1,
§=1and w = 2.

epp1 = 0.858 and epp, = 1.165, which agrees well with the
numerical bifurcation diagram of Fig. 7(a). Therefore, with
increasing ¢, beyond epp, the unstable inhomogeneous fixed
point branches are stabilized through a subcritical Hopf bifur-
cation at egp; and again become unstable at eyp, through
an inverse subcritical Hopf bifurcation. Between egp; and
enpo, these fixed points are accompanied by unstable limit
cycles with shifted center of mass of the oscillations (that
are the characteristics of amplitude chimeras), and also by
synchronous oscillations.

Now, we consider N > 2 and interestingly find that for
any N the pitchfork bifurcation points PB1 and PB2 are the
same as given by Egs. (11) and (12), respectively, as long
as we consider nearest neighbor coupling (i.e., P = 1). This
is due to the fact that an oscillator “sees” the same envi-
ronment for a nearest neighbor coupling. Figures 7(b)-7(d)
show this for N = 10,20, and 50, respectively. However, as
N increases, a large number of additional Hopf points appear
between PB1 (HB2) and HB1 (PB2), and each Hopf point
gives rise to additional unstable limit cycles around the non-
trivial fixed points. In Fig. 7(b) (N = 10), Fig. 7(c) (N = 20),
and Fig. 7(d) (N =50), we only show the unstable limit
cycles created through Hopf bifurcations at HB1 and HB2 on
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FIG. 8. Bifurcation diagram (using XPPAUT) of N = 10 coupled Rayleigh
oscillators under matrix coupling [Eq. (1)] with ¢ = % — 0.1. Red thick lines,
stable fixed points; dashed black lines, unstable fixed points; open circles
(light blue), unstable limit cycles. PB1 and PB2, Pitchfork bifurcation points;
HB Hopf bifurcation; TR, Torus bifurcation; PD, Period-doubling bifurca-
tion; PBLC, Pitchfork bifurcation of limit cycles. Periodic orbits emanating
from the Hopf bifurcation points are shown in open circles for only the first
oscillator i = 1, however, the fixed point solutions of all the oscillators are
shown and they are lying on each other. Parameters are § = 1 and w = 2.

the upper and lower branches (for clarity only, the orbits of a
single oscillator with i = 1 is shown). It is interesting to note
that the limit cycle created on the upper (lower) branch at eyp|
(left side) terminates on the lower (upper) branch at ey, (right
side). Therefore, in this system, we have a localized region
between PB1 and PB2, where a large number of unstable limit
cycles with shifted center of mass are “trapped” and there-
fore coexist in a broad region (or hypervolume) of the phase
space. Also, note that in this parameter region, (stable) limit
cycles around the trivial fixed point (which is the origin) still
coexist with the shifted limit cycles. This coexistence of limit
cycles with shifted center of mass and in-phase oscillations
without shifted center of mass may be attributed to the exis-
tence of amplitude chimeras. To demonstrate the complexity
of the dynamical behavior in the “trapped” region, we show
some representative orbits and bifurcation points in Fig. 8
for N = 10. Out of twenty-two Hopf bifurcation points which
we have identified (using XPPAUT), here we show only the
unstable orbits of the oscillator with i = 1 emanating from
the Hopf bifurcation points (shown with open circles). Addi-
tionally, the (secondary) bifurcation of limit cycles makes the
scenario much more complex; we identify torus bifurcations
(TR), period doubling bifurcations (PD), and pitchfork bifur-
cations of limit cycle (PBLC) (see Fig. 8). The presence of
torus bifurcations (TR) and period doubling bifurcations (PD)
may be responsible for the variable-amplitude AC (VAC) state
where the limit cycles with shifted center of mass are either
quasiperiodic (see Fig. 6) or higher periodic in nature.

The next question arises: is our argument that ACs always
appear in the symmetry broken “trapped” region between PB1
and PB2, also true for larger network size? We find that AC
indeed appears in the “trapped” region even for larger net-
works. This is shown in Fig. 7(e) for N =200 and P = 1:
(Ve.n.) > O indicates an AC state, which appears between €pp|
and epp, of the smaller networks with nearest neighbor cou-
pling [see Figs. 7(a)-7(d)]. We have checked this also for
much larger network sizes with N = 500 and N = 1000 and
have obtained the same result.
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In the above discussion, we have considered nearest
neighbor coupling (i.e., P = 1). Next, we extend our bifur-
cation analysis to an arbitrary coupling range P. For this, we
consider the network with N = 200 and compute the bifurca-
tion points (using XPPAUT) for different coupling ranges (P).
In this case, too, we locate two pitchfork bifurcation points
PB1 (where symmetry is broken) and PB2 (where symme-
try is restored). These points are shown in the phase diagram
of Fig. 5(a) using 4 symbols: in the phase diagram, the PB1
points are below the AC region and the PB2 points are above
the AC region. We plot the results only up to P = 12 because
for P > 10, epp; and eppy do not change appreciably with P. It
is important to note that the AC region always lies in between
PB1 and PB2 (i.e., the “trapped” region) for any coupling
range, confirming the connection of symmetry-breaking bifur-
cations with the emergence of AC. However, it is noteworthy
that the AC region is narrower inside this trapped region (spe-
cially for P > 2). This is due to the fact that the exact region of
appearance of unstable periodic orbits is governed by the Hopf
bifurcations on the symmetry-breaking fixed point branches,
and this region is narrower than the range between PB1 and
PB2. Due to the large size of the network, the continuation
package fails to provide the exact location of Hopf points
and the shape of the limit cycles emanating from those points
inside this region.

Finally, we try to understand the mechanism behind the
long lifetime of the observed AC. In the earlier cases, where
AC was observed in Stuart-Landau oscillators with nonlocal
coupling,** there exists only one symmetry breaking pitch-
fork bifurcation (PB) point beyond which symmetry breaks
(see Appendix B). In that case, the oscillations with shifted
center of mass (i.e., the incoherent oscillation) are unsta-
ble limit cycle oscillations emerging from a subcritical Hopf
bifurcation on the symmetry breaking fixed point branches
and these center of mass-shifted oscillations always coexist
with the in-phase oscillations. Therefore, if a certain node
in the network starts as a center of mass-shifted oscillator,
due to the unstable nature of the limit cycle, after a certain
time it eventually ends up with the in-phase synchronized
members of the network: this makes AC in Stuart-Landau
oscillators with nonlocal coupling** a relatively short-living
chimera pattern. The detailed study of the lifetime of AC
states in Stuart-Landau oscillators is reported in Refs. 46
and 52. Note that in the case of Stuart-Landau oscillators
with symmetry-breaking, nonlocal coupling large lifetimes
can arise for certain values of the coupling range and strength
due to the phase space structure, and they have been explained
by a Floquet stability analysis.*® In the present case, although
the center of mass-shifted limit cycles are unstable, however,
they are always trapped in between two symmetry-breaking
bifurcation points PB1 and PB2. As a result, the system has a
large number of dense unstable limit cycles concentrated in a
localized region of phase space. Therefore, if a node starts on
(or near) an unstable orbit (depending upon initial conditions),
there always exist nearby unstable orbits that act like a saddle
to force the node to stay near that trajectory. This makes the
lifetime of the center of mass-shifted limit cycle (and hence
the AC) appreciably long. Intuitively, the number of unstable
limit cycles in the “trapped” region increases with increasing
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network size, therefore, we should obtain an increasing life-
time with increasing N. In fact, we find that even with N = 20,
the resulting AC has a very long lifetime: we checked it for
a simulation time of 107 and still observed a stable AC pat-
tern (Appendix B). A long-living amplitude chimera in a small
network is itself an important observation and it supports our
argument of connection between long-living AC and the pres-
ence of localized dense unstable periodic orbit in a “trapped”
parameter region.

Therefore, based on the above observations, we make
the following two conjectures: (i) The existence of symme-
try breaking bifurcations of the fixed points and the presence
of Hopf bifurcations on the symmetry-breaking fixed-point
branches are necessary (if not sufficient) to observe an AC
state. (ii)) The existence of a large number of close dense
unstable periodic orbits in a trapped (or localized) region of
parameter space (and phase space) is crucial for the long
lifetime of an AC state.

IV. CONCLUSION

We have reported the observation of both amplitude-
mediated phase chimeras and amplitude chimeras in a sin-
gle network of coupled identical oscillators. This provides a
bridge between two distinct chimera states. We have shown
that for small coupling range, a direct transition from AMC
state to AC state occurs. We have further given evidence
that the amplitude chimera is not a short-living transient spa-
tiotemporal pattern, rather it has a long lifetime. Recently,
Gjurchinovski e al.>' have used time-delay to stabilize the
amplitude chimera state in a network of Stuart-Landau oscil-
lators, but here we do not use any control scheme, rather
the long-living amplitude chimera state appears naturally.
Also, apart from periodic temporal oscillations, we have also
found quasiperiodic (or higher periodic) oscillations in the
incoherent part of the amplitude chimera.

We have also raised the issue, why some oscillators show
amplitude-mediated phase chimeras and others exhibit ampli-
tude chimeras. Our study indicates that amplitude chimeras
occur only above a certain critical coupling strength where
symmetry-breaking pitchfork bifurcations of nontrivial inho-
mogeneous steady states take place. We further intuitively
identify the role of closely separated dense unstable orbits
trapped in a region of phase space in governing the life-
time of amplitude chimeras. This region interspersed between
two symmetry breaking bifurcations in parameter space arises
due to the interplay of the local dynamics of the Rayleigh
oscillator and the particular form of the coupling matrix. We
did not observe this type of trapped region in the case of
Rayleigh oscillators with nonlocal diffusive coupling. There-
fore, in those cases, the amplitude chimeras are found to be
short-living spatiotemporal patterns.

Since the two chimera states emerge due to different types
of symmetry-breaking phenomena,®” therefore our finding of
a continuous transition from AMC to AC will be important
to understand the connection between the two variants of
symmetry-breaking state. Also, in robotics, Rayleigh oscilla-
tors are used to model human limb movement and locomotion;
see, for example, Ref. 80, which discusses how a bipedal
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robot can be modeled by using mutually coupled Rayleigh
oscillators. Therefore, apart from improving the fundamental
understanding of the chimera state, our results may be relevant
for robotics.
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APPENDIX A: COMPLETELY RANDOM INITIAL
CONDITIONS

Here, we verify our results with completely random ini-
tial conditions and find qualitatively similar scenarios as
discussed in the main text. For an exemplary illustration, we
choose P =5 (as in Figs. 2 and 3) and consider random
initial condition uniformly distributed in x,y € (—0.5,0.5).
We observe that with increasing coupling strength ¢ the net-
work undergoes a transition from AMC to traveling wave and
finally to AC. Figure 9 shows the transition scenario AMC
(e = 0.85) [Fig. 9(a)] to TW (e = 1.3) [Fig. 9(c)] and finally
to AC (¢ = 1.58) [Fig. 9(e)]. Figures 9(b) and 9(d) depict
the plots of the local curvature L; indicating the occurrence
of AMC and TW, respectively. Also, the plot of the center
of mass (y.,,;) of each oscillator corresponding to Fig. 9(e)
is shown in Fig. 9(f) ensuring the occurrence of AC. Note
that the AMC state here is actually a traveling AMC and also
we do not find any direct transition from AMC to AC, but
rather an intermediate TW state. Nevertheless, the occurrence
of AMC and AC for completely random initial conditions
indicates the generality of the phenomenon.

200

i
10
x10* g
="
N =iilli—
1 100 100 200

1 )

FIG. 9. Completely random initial condition, for coupling range P = 5: (a)
Amplitude-mediated phase chimera (traveling) and (b) its local curvature
(L;) for ¢ = 0.85. (c) Coherent traveling wave and (d) corresponding L; for
& = 1.3. (¢e) Amplitude chimera and (f) its center of mass (y.,,) for & = 1.58.
Parameters are § = 1, w = 2, and ¢ = /2 — 0.1.
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APPENDIX B: DIFFUSIVE COUPLING: A SINGLE
SYMMETRY-BREAKING BIFURCATION POINT

In the main text, we have shown that the matrix cou-
pling in a network of Rayleigh oscillators gives rise to
multiple symmetry-breaking bifurcations. In contrast, here
we will show that a diffusive coupling in Rayleigh oscil-
lators as well as Stuart-Landau oscillators gives rise to a
single symmetry-breaking bifurcation. Two Rayleigh oscilla-
tors coupled through diffusive coupling via the x variable is
given by

X120 = wyip + e — Xx12), (Bla)

Via = —wxio +8(1 — y125)yia. (B1b)

The trivial unstable fixed point is (0,0,0,0). A pair of
nontrivial unstable fixed points (x*,y*, —x*, —y*) with x* =

+24/1 = % and y* = % appears through a pitchfork
bifurcation for & > epp: epp = %; The unstable inhomoge-
neous fixed points (x*,y*, —x*, —y*) are stabilized in a sub-
critical Hopf bifurcation at eygy = %. For Stuart-Landau
oscillators under diffusive coupling, the equation reads

X0 = (1 —x2 —y?)x12 — 0y12 + () —x12), (B2a)

Via = wxio+ (1 —x7 = yHyia. (B2b)

This equation is the limiting case (i.e, N = 2 oscillator case)
of the equation studied by Zakharova et al.,** where the notion
of the amplitude chimera was discovered. Also, Eq. (B2) was
studied in detail by Koseska et al.”® and Zakharova et al.,”’
where they showed that a single symmetry-breaking bifur-
cation occurs at & = #, and the symmetry-breaking fixed
point branches are stabilized through a subcritical Hopf bifur-
cation. A detailed analytical and numerical study of large net-
works of nonlocally coupled Stuart-Landau oscillators with
symmetry-breaking coupling was performed in Ref. 79, where
a family of inhomogeneous steady states (oscillation death)
and various multicluster patterns were found.

The bifurcation scenario of two diffusively coupled
Rayleigh oscillators [Eq. (B1)] is shown in Fig. 10(a) and
that of two Stuart-Landau oscillators [Eq. (B2)] is shown
in Fig. 10(b). Both bifurcation diagrams show that after a
pitchfork bifurcation (PB), unstable limit cycles arise from
(subcritical) Hopf bifurcations. We also check our result for a
larger number of oscillators with nonlocal diffusive coupling
originally used in Ref. 44 and find that the number of pitch-
fork bifurcation points remains the same. In contrast to our
case of Rayleigh oscillators with matrix coupling [Eq. (1)], in
none of these cases, further subcritical Hopf bifurcations gen-
erating further unstable limit cycles are detected: therefore, in
these networks one does not have a region of dense localized
unstable limit cycles, and in consistency with our argument,
we obtain relatively short-living amplitude chimeras.

As mentioned in the main text, we obtain long-living
amplitude chimeras with matrix-coupled Rayleigh oscillators
[Eqg. (1)] even for small network sizes, e.g., N = 20. This is
shown in Figs. 10(c) and 10(d) with e = 1 and P = 1 (other
parameters as in Fig. 3). From the spatiotemporal plot of
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FIG. 10. Bifurcation diagram of two diffusively coupled (a) Rayleigh oscil-
lators [Eq. (B1)] and (b) Stuart-Landau oscillators [Eq. (B2)]; PB, pitchfork
bifurcation, HB, Hopf bifurcation; Red thick lines, stable fixed points; dashed
black lines, unstable fixed points; open circles (blue), unstable limit cycles. (c)
and (d) Amplitude chimeras of N = 20 Rayleigh oscillators under matrix cou-
pling of Eq. (1) for P = 1 and ¢ = 1, (c) spatiotemporal plot, (d) time series
of a few incoherent (y),10,13) and coherent (y4¢) nodes. Other parameters are
=1L, w=2,andp =7/2 —0.1.

Fig. 10(c), we observe a long-living AC (we limit our sim-
ulation time to 107). Figure 10(d) shows the representative
time series of a few incoherent nodes (i.e., oscillations with
shifted center of mass, e.g., y1,10,18) and coherent nodes (i.e.,
oscillations without shifted center of mass, e.g., y1¢), Which
characterizes the AC state in the system.
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