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Abstrakt

Bisher ist wenig über das Zusammenspiel von Kern-Quanten-Fluktuationen (QNFs) und
starken anharmonischen Effekten bei Berechnungen der Wärmeleitfähigkeit bekannt:
Störungsformalismen berücksichtigen typischerweise QNFs, berücksichtigen aber nur die
führende anharmonische Ordnung und sind daher vermutlich nur im Tieftemperaturbereich
gültig. Umgekehrt umfassen die üblichen Molekulardynamikansätze (MD) alle klassisch
zugänglichen Ordnungen der Anharmonizität, ignorieren aber die QNFs. In dieser Arbeit
quantifizieren wir die klassischen und quantitativen anharmonischen Beiträge zur Kernbe-
wegung, indem wir ab initio MD- und ab initio path-integral MD (PIMD)-Simulationen
im Hinblick auf ein Anharmonizitätsmaß analysieren. Zu diesem Zweck haben wir das
Anharmonizitätsmaß auf den pfadintegralen Formalismus erweitert. Unsere Berechnungen
zeigen, dass weder QNFs noch anharmonische Effekte im Allgemeinen vernachlässigbar
sind, insbesondere im Fall von weichen Bindungen. Wir beginnen die Diskussion, indem wir
unseren Ansatz an Lennard-Jones-Argon und Tersoff-Silizium testen. Dies ermöglicht nicht
nur ein schnelles Prototyping, sondern auch den Vergleich, wie Quantenkernfluktuationen
die Anharmonizität in hoch anharmonischen bzw. harmonischen Systemen verändern.
Weitere ab initio-Berechnungen werden für Lithiumhydrid und Dünnschicht-Pentacen
durchgeführt, die nicht nur wegen der hohen Schwingungsfrequenzen, sondern auch wegen
ihrer industriellen Relevanz ausgewählt wurden. Diese Beispiele zeigen, dass anharmonische
Beiträge, die ausschließlich von QNFs stammen, weit über die Raumtemperatur hinaus
relevant sein können. Darüber hinaus führt eine große Nullpunktsbewegung zu starken
anharmonischen Effekten, die über den Bereich der Störungstheorie hinausgehen, selbst bei
0 K. Tiefere qualitative Einblicke werden durch die Untersuchung der frequenzaufgelösten
Anharmonizität gewonnen. Dabei zeigt sich, dass QNFs die Anharmonizität vor allem
bei niederfrequenten Moden erhöhen. Anschließend erörtern wir die Auswirkungen dieser
Erkenntnisse auf zuverlässige Wärmeleitfähigkeitsberechnungen. Schließlich leiten wir
den Wärmestrom für (Thermostatted) Ring Polymer Dynamics und Centroid Molecular
Dynamics ab und schlagen mögliche Verfeinerungsstrategien vor.
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Abstract

To date, little is known about the interplay of nuclear-quantum fluctuations (QNFs) and
strong anharmonic effects in thermal conductivity calculations: Perturbative formalisms
typically account for QNFs, but consider only the leading anharmonic order, and are thus
supposed to be valid in the low-temperature limit. Conversely, usual molecular dynamics
(MD) approaches include all classical accessible orders of anharmonicity, but ignore QNFs.
In this work, we quantify classical and quantum anharmonic contributions to nuclear
motion by analyzing ab initio MD and ab initio path-integral MD (PIMD) simulations
in terms of an anharmonicity measure [112]. To this end, we extended the anharmonicity
measure to the path-integral formalism. Our calculations reveal that neither QNFs nor
anharmonic effects are generally negligible, particularly in the case of soft bonding. We start
the discussion by testing our approach on Lennard-Jones Argon and Tersoff Silicon. This
not only allows for rapid prototyping but also allows for the comparison of how quantum
nuclear fluctuations change the anharmonicity in highly anharmonic and harmonic systems
respectively. Further ab initio calculations are performed for Lithium Hydride and thin-film
Pentacene, chosen not only for the high vibrational frequencies but also the industrial
relevance. These examples reveal that anharmonic contributions coming solely from QNFs
can be relevant well beyond room temperature. Furthermore, large zero-point motion
induces strong anharmonic effects beyond the realm of perturbation theory even at 0 K.
Deeper qualitative insights are gained by investigating the frequency-resolved anharmonicity.
This reveals that QNFs increase the anharmonicity dominantly at low-frequency modes. We
then discuss the implications of these findings for reliable thermal conductivity calculations.
Finally, we derive the heat flux for (Thermostatted) Ring Polymer Dynamics and Centroid
Molecular Dynamics and suggest possible refinement strategies.
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1 Introduction

Materials science is a key field in today’s world that lays the foundation for enabling better
or even completely new technologies. Examples cover nearly all aspects of our life and
include emissive display technologies, based on organic light-emitting diodes (OLED) [151],
as well as fundamental advances that are crucial for the transport industry as a whole, such
as thermal barrier coating, which is necessary for the development of efficient turbines [5]
in airplanes. Substantial efforts have also been made toward the recuperation of electric
energy from otherwise wasted heat via the thermoelectric effect [4].
To this end, computational materials science has become a key ingredient to achieving these
goals. In particular, high-throughput formalisms that enable scanning over material space
in an efficient fashion, i.e., without requiring a tedious syncretization of the compounds
of interest, have gained a lot of traction in this regard. This led to the advent of large
material databases like the Materials Project or NOMAD-Repository. At the core is
the Findable, Accessible, Interoperable, and Re-purposable (FAIR) paradigm, to facilitate
cooperation progress across the entire field of material research. This is achieved by making
the data platform-agnostic, thus removing the barrier artificially imposed by different
standards, and easy to understand and use. Furthermore, this search can nowadays be
further accelerated by machine-learning-based algorithms. Such ML methods can be
trained on the existing data present in the aforementioned databases. In turn, even
faster predictions that largely avoid running first-principles calculations could be achieved.
Descriptor-based approaches like sure independence screening and sparsifying operator [7]
(Sisso) for example, have successfully been applied in the classification of Perovskites [7]
of Oxides and Halides. Conversely, Neural Networks allow for accurate representations
of interatomic potentials [9]. Other approaches to learning interatomic potentials rely
on Kernel-Ridge Regression [10] and show great enough accuracy to reliably predict the
thermal conductivity of Zirconia.

For the challenges outlined above, it is essential that the employed computational techniques
achieve predictive accuracy in the prediction of macroscopic material properties. This
includes not only accurately describing electronic properties like band structures, which
are essential to the description of optical properties, but also an accurate description of
the nuclear dynamics. The latter determines many essential material properties. For
instance, the specific heat measures the temperature increase due to the supplied energy
per unit mass. This increases the system’s internal energy which increases the nuclear
displacements. If a compound exhibits multiple minima at different nuclear configurations,
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1 Introduction

different structures can be observed. Additionally, the nuclear motion weakens chemical
bonds and thus causes the crystal lattice to expand. The instantaneous energy of an atom
is also not constant but changes with time, i.e., energy is transported through the crystal.
This causes an energy flux in the crystal, which can be visualized in frequency space as the
Fourier transform of its autocorrelation function.

In this field, substantial progress has been made over the last decades, in particular, this
holds for two at first sight subtle, but in practice very important effects: Anharmonic and
Quantum-Nuclear Fluctuations, as summarized below.

Anharmonicity In the harmonic approximation, the potential-energy surface is approxi-
mated by a Taylor expansion truncated at the second order, whereby this expansion is done
in terms of the atomic displacements around their equilibrium positions. In Fourier space
the associated equations of motion analytically reduce to an eigenvalue problem, which is
solved by the eigenfrequencies of the system. The vibrational modes are given by sine and
cosine functions for which the time evolution is fully determined by the initial conditions
of the equations of motion. Accordingly, we easily can find analytical expressions for the
vibrational spectra, specific heat capacity, free energy, and entropy. Importantly, these
analytical expressions are not only known for classical but also for quantum harmonic
oscillators. That, together with the comparatively low computational cost and availability
of packages [91] to extract the necessary constants from standard density functional theory
(DFT), made the harmonic approximation a widely used tool to investigate the dynamics
of the nuclei.

However, not all material properties can be accurately captured by harmonic calcula-
tions. Additionally, phase transitions, temperature-dependent renormalizations, and other
phenomena cannot be described by the harmonic approximation directly. However many
mechanisms are even impossible to capture by describing the dynamics solely in terms of the
harmonic approximation. These include thermal expansion, reaction rates, or heat trans-
port. In these cases, additional orders in the Taylor expansion, i.e., 3rd and higher-order
contributions to the PES description, need to be accounted for. In some cases, this even
requires disregarding a Taylor expansion completely and to describe the dynamics of the
PES exactly, e.g., by ab initio molecular dynamics methods. For instance, thermodynamic
integration allows the calculation of the free-energy differences between two different states
describes by the potentials V1 and V2 via the relation:

∆F (T ) =
w 1

0
〈V2 − V1〉Tdλ. (1.1)

Here λ is the coupling between both potentials V (λ) = V1+λ(V2−V1). Since the free energy
determines the relative stability of different phases of matter, this approach naturally lends
itself to the calculation of phase diagrams.
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In this work, we will particularly focus on the problem of describing vibrational heat
transport. The underlying physics cannot be described in the harmonic approximation
alone, a fact that even eluded Erwin Schrödinger [1]. He was eventually proven wrong by
Rudolf Peierls [2], who demonstrated that accounting for anharmonic effects is necessary
to describe heat transport, i.e., the capability of a specific solid to conduct heat. Formally,
it is described by the thermal conductivity tensor κ, which is defined through Fourier’s
Law [107]:

J = −κ∇T . (1.2)

Here, κ serves as a proportionality constant between the temperature gradient ∇T and the
heat flux J, which naturally develops to contrast the temperature gradient and works to
reestablish thermodynamic equilibrium.1 Macroscopically, the heat flux is directly linked
to the time-dependent occupation number of each vibrational mode. However, in the
harmonic approximation, the occupation number is constant for all times and by extension
the heat flux too. Accordingly, there can be no exchange of heat between modes in the
harmonic approximation. However, any anharmonic contribution can be treated as a
small perturbation to the harmonic system which forms the basis of some widely used
methods to predict the thermal conductivity. By assuming that the occupation obeys the
linearized Boltzmann transport equation [107] we can use the aforementioned perturbative
approach to extract κ. In practise [92], the linearized Boltzmann transport equation is often
approximated as a decay rate problem but iterative solvers and a recently published direct
solution have also been described [108]. Perturbative methods are often the most accessible,
despite the increased computational effort compared to the harmonic approximation, since
the general approach to extracting the necessary constants is largely the same as in the
harmonic approximation. Its cost can also be greatly alleviated by exploiting available
degrees of symmetry. However, such an approach is insufficient especially for highly
anharmonic materials which require a molecular dynamics approach. Here the fluctuation-
dissipation theorem can be exploited to relate the heat flux autocorrelation to the thermal
conductivity via the Green-Kubo relations [96, 97]. While this approach was long unfeasible
via any DFT-based approach due to the prohibitively long time scales at which phonons
decay. However recent break troughs made a DFT Green-Kubo implementation possible [95]
by extrapolating to longer time scales and larger systems.

For the latter case, let us emphasize that such strongly anharmonic effects are often assumed
to be only relevant at very high temperatures. This follows the argument that close to
equilibrium, i.e., whenever the nuclear displacements are small, approximating the PES
with a Taylor expansion (with or without higher-order corrections) should largely hold.
While this qualitative argument is certainly true, little is known about its quantitative
relevance in practical calculations. In other words, it is unclear how small the nuclear
displacements have to be for this argument to hold, when and how this approximation
1While in general lattice vibrations, electron transport, mass transport, and photons each contribute to the
thermal conductivity κ, κvibration, i.e., the lattice thermal conductivity that stems from the vibration of
the nuclei is by far dominant in semiconductors and insulators at non-incandescent temperatures [106].
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1 Introduction

breaks down, and how this varies across materials.

Quantum Nuclear Fluctuations Also due to their Fermionic character, electrons are often
used as textbook examples for quantum-mechanical particles. Conversely, nuclei are often
described classically, since the (thermal) de Broglie wavelength,

λ = 2π~
p

(1.3)

of an electron is 200 orders of magnitudes larger than the wavelength of the proton,
which allows taking such an approximation in many cases. Nonetheless, quantum-nuclear
fluctuations play a decisive role in solids when it comes to describing their dynamics. For
instance, the specific heat is constant for classical nuclei while quantum-nuclear fluctuations
lead to the characteristic T 3 dependence at lower temperatures. While this effect can be
rationalized in the harmonic approximation, a concurrent description of quantum-nuclei
and anharmonic effects is much more challenging. In the 1980s, path integral-based [68]
approaches have been developed and successfully applied where QNFs and anharmonicity
are equally important. Here a natural isomorphism between the classical partition function
of a ring polymer and the quantum partition function is used. In practice, this requires
running multiple classical or ab initio molecular dynamics simulations. For instance, such
path integral methods have successfully been used to predict reaction rates [75] or diffusion
coefficients [76].

Let us emphasize that generally quantum-nuclear fluctuations are regarded as being
most important at low temperatures, at which the thermal de Broglie wavelength is
larger. As is the case for the anharmonicity, such a qualitative argument certainly holds.
Quantitatively, however, little is known to which extent QNFs remain relevant even at
elevated temperatures and how this varies across different materials and compounds,
especially in solids. In that case, the relevant quantity is not only the mass but also the
strength of the interaction, which determines the shape of the vibrational potential. For
instance, it was recently shown that such QNFs can affect the relative stability of polymers
in molecular crystals [123].

As summarized above, QNFs are often assumed to be important in the low-temperature
regime, but negligible at higher temperatures. Conversely, anharmonic effects are often
thought to be essential to describe the high-temperature limit but to be irrelevant at low
temperatures. In this work, we systematically explore to which extent these assumptions
hold in realistic materials. A particular focus is laid on identifying those thermodynamic
regions for which both QNFs and anharmonic effects are non-negligible and to discuss
how the interplay of these two effects affects the prediction of macroscopic properties, in
particular heat transport.
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2 Theory

The quantum mechanical behavior of a non relativistic material with Nel electrons (r =
r1, · · · , rNel) and N nuclei (R = R1 · · ·RN ) is described by the Schödinger Equation:

Ĥ(r,R)Ψ(r,R) = EΨ(r,R). (2.1)

Here, Ψ(r,R) is the many-body wavefunction of the combined electronic-nuclear systems,
E(r,R) its energy, and H(r,R) the Hamiltonian describing the behavior of the nuclei and
the electrons [13]:

Ĥ(r,R) = T̂el + T̂nuc + V̂el-nuc(r,R) + V̂el-el(r) + V̂nuc-nuc(r,R) . (2.2)

Tel and Tnuc are the kinetic energies of the electrons and the nuclei. With me and MI

being the respective masses (in contrast to the nuclei the electron mass is identical for all
electrons and thus has no index). The real space expression of the kinetic energy operators
is given by:

T̂el = −1
2
∑

i

∇2
rI

me
and T̂nuc = −1

2
∑

I

∇2
RI

MI
. (2.3)

The electrostatic electron-nuclei, electron-electron, and nuclei-nuclei interactions are de-
scribed by the potential energy operators Vel-nuc(r,R), Vel-el(r), and Vnuc-nuc(R) defined in
real space by:

V̂el-nuc(r,R) = −
∑

i,I

ZI
|ri −RI |

(2.4)

V̂el-el(r) = 1
2
∑

i,j

1
|ri − rj |

(2.5)

V̂nuc-nuc(R) = 1
2
∑

I,J

ZIZJ
|RI −RJ |

. (2.6)

Here ri is the position of the ith electron, and RI denotes the one of the Ith nucleus
with charge ZI . The combined electronic-nuclear systems is fully characterized through
the solution of Eq. (2.1) given by the function Ψ(r,R). Solving Eq. 2.1, is however a
formidable problem due to the coupling of the fast (electron) and slow (nuclei) degrees of
freedom. Due to the much larger mass of the nucleus compared to the electrons (MI � me)
one can, in many cases, assume that the dynamics of the nuclei and electrons occur at
different time scales. This should by no means imply that no (notable) exceptions [110,
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2 Theory

111, 115, 116] exist in which this assumption is not valid. This is called the Born-
Oppenheimer approximation [12] and it implies that the electrons adapt to every movement
of the nucleus instaneously, which allows to treat the electronic Ψel(r, {R}) and the
nuclear system Ψnuc(R) consecutively by approximating the full state in a product ansatz
Ψ(r,R) ≈ Ψel(r, {R})Ψnuc(R). The curved brackets {} denote that the positions of the
nuclei enter the electronic wavefunction Ψel(r, {R}) only parametrically. Accordingly, two
seperated Schrödinger equations emerge, one governing the electronic degrees of freedom:

(T̂el + V̂el-nuc(r, {R}) + V̂el-el(r))︸ ︷︷ ︸
Hel

Ψel(r, {R}) = Eel({R})Ψel(r, {R}) . (2.7)

The energy obtained from the clectronic Schrödinger equation Eel({R}) subsequently
determines the potential for the second Schrödinger equation describing the dynamics of
the nuclei:

(Tnuc + Vnuc-nuc(R) + Eel({R}))︸ ︷︷ ︸
Hnuc

Ψnuc(R) = EnucΨnuc(R) . (2.8)

Numerical approaches to solve these equations are discussed in the following sections (elec-
trons: Sec. 2.1.2; nuclei: Sec. 2.2).

2.1 Assessing and Describing the Potential-Energy Surface

The relevant equation describing the nuclear dynamics of solids is the nuclear Schrödinger
Equation as presented in Eq. (2.8). However, this requires sufficient knowledge of the so-
called potential-energy surface (PES) and thus of the solution of the electronic Schrödinger
Equation (2.7). While the Born-Oppenheimer approximation significantly reduces the
degrees of freedom, directly solving the electronic Schrödinger equation still presents a
formidable task. Accordingly, further approximations are typically made which differ in ac-
curacy and computational cost. Two different approaches will be used for different purposes
in this work. Firstly semi-empirical potentials colloquially referred to as "force fields" (FFs),
which approximate the potential-energy surface using analytical expressions depending
on sets of material-specific parameters resulting in comparatively low computational cost.
Accordingly, force fields allow the sampling of larger systems on long-time scales and, in the
scope of this work, are utilized for prototyping and validation. Secondly, ab initio methods,
in which the potential-energy surface is calculated by approximately solving Eq. (2.7) offer
generally higher accuracy compared to force fields at significantly higher computational
cost, restricting simulations to smaller systems and shorter time scales. However, due to
their superior accuracy, ab initio methods are employed in this work to investigate Lithium
Hydride and thin-film Pentacene.
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2.1 Assessing and Describing the Potential-Energy Surface

2.1.1 Analytical Models for the Potential-Energy surface: Semi-Empirical
Force Fields

In contrast to ab-initio methods, semi-empirical force-fields (FFs), solely describe the nuclei.
Instead of generating the PES by solving the electronic problem for different configurations,
semi-empirical force fields have a predefined functional form with free parameters. These
parameters can then be determined from higher-level computational methods or experiments.
The force fields relevant for this work are the Lennard-Jones potential, to describe solid
Argon and the Tersoff potential to model diamond Silicon.

Lennard-Jones Potential

The Lennard-Jones Potential [51] certainly is one of the most studied and widely known
force fields. It consists of an attractive term introduced by van der Waals interaction which
leads to a functional form proportional to 1

R6 (for a more comprehensive explanation please
see sec 2.1.3) and repulsive term due to the Pauli exclusion principle. In contrast to the
attractive term, the functional form of the repulsive term is somewhat arbitrary, any term
proportional to 1

Rn>6 would suffice, however historically n = 12 is typically chosen and
thus is proportional to 1

R12 . Completely assembled the Lennard-Jones potential can be
written as:

ELJ = 4ε
∑

I

(
σ12

|RI |12 −
σ6

|RI |6

)
. (2.9)

Here ε and σ are free parameters with the dimensions of energy and position respectively.
The Lennard-Jones potential is designed for systems composed of atoms with closed shells,
i.e. noble gases that bond almost exclusively through van der Waals interactions (exceptions
such as Helium Hydrate exist). The numerical values to model Lennard-Jones argon were
measured multiple times over the years for this work we used ε = 0.0103 eV and σ = 3.405 Å
taken from Ref. [128].

Tersoff Potential

Another well-established potential is the Tersoff potential [52] which was designed to describe
covalent systems, specifically group IV semiconductors and their binaries [53]. Later it
was also successfully parametrized for different group III-V compound semiconductors,
notably gallium arsenide and indium arsenide [54]. Unlike the Lennard-Jones potential, the
Tersoff potential is not a pure two-body potential but also includes three-body interactions,
additionally accounting for bond order, however, interactions beyond the nearest-neighbor
shell are neglected. Its functional form as implemented in the LAMMPS Molecular
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2 Theory

Dynamics Simulator [143] is given by:

ETersoff = 1
2
∑

I

∑

J 6=I
VIJ

VIJ = fC(rIJ + δ)[fR(rIJ + δ) + bIJfA(rIJ + δ)]

fC =





1, r < R−D
1
2 − sin(π(r−R)

2D ), R−D < r < R +D

0, r > R+D

fR = Ae−λ1r

fA = −Be−λ2r

bIJ = (1 + βnζnIJ)−
1

2n

ζIJ =
∑

K 6=I,J
(fC(rIK + δ)g[ΘIJK(rIJ , rIK)]eλn3 (rIJ−rIK)m

g(Θ) = γIJK(1 +
(
c

d

)2
−
(

c2

d2 + (cos(Θ)− cos(Θ0))2

)
(2.10)

The two Morse potentials describe the pairwise attractive and repulsive interactions fR
and fA while the bond-order term bIJ weakens the attraction, taking bonding as well
as anti-bonding orbitals into account. However, it fails to describe conjugated bonding
partially caused by restricting all interactions to the nearest neighbor shell [55]. In total
the Tersoff potential depends on 12 parameters which have to be fitted to experiments or ab
initio calculations. For this work the parameters were taken from Ref. [53] as implemented
into LAMMPS [143] to model the behavior of diamond Silicon. Most parameters are
either only relevant for two-body, n,β,λ1,2

(
in 1

units of length

)
, A (in units of energy), and

B (in units of energy) or three-body m (either 1 or 3),γ,λ3(in 1
units of length),c,d, and Θ0

interactions. Conversely R and D (both in units of length) define the cutoff distance and
enter all interaction terms.

Other Force Fields

The Lennard-Jones and Tersoff potentials are by far not the only known force fields
and the development of new ones remains an active field of research. Accordingly, over
time, a large variety of different potentials has been published, each with varying degrees
of accuracy, computational demand, and applicability. Especially the last point can
present a major hurdle, for example, the REBO potential [55] improves on the Tersoff
potential to better describe small hydrocarbon molecules however it lacks the capability
to describe intermolecular interactions. To address this van der Waals interactions and
torsion can be included which improves the accuracy for molecular crystals but decreases
the accuracy for group IV semiconductors leading to "adequate" performance [56]. However,
different increasingly complex force fields can indeed describe vastly different molecules
and materials.
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2.1 Assessing and Describing the Potential-Energy Surface

A notable example is ReaxFF [57], which not only offers high accuracy but is also capable
of simulation bond breaking. However, this leads to a comparatively complex functional
form. Driven by advances in the field of machine learning and artificial intelligence, other
new force fields have been developed in recent years. Potential benefits include that the
functional form does not have to be predetermined and increasing accuracy as the field
matures. Gaussian Approximation Potentials (GAP) [58], for instance, employ Gaussian
basis functions to approximate the potential energy surface. Recently the developers of
the popular LAMMPS packages have begun implementing neural network interatomic
potentials [59] which makes this approach readily available. Other implementations based
on Kernel-Ridge Regression [10] and artificial neural networks [9] were successfully used
in conjunction with ab initio methods to access time and size scales at or near ab initio
accuracy. The Kernel-Based method has been implemented directly into the VASP [10] ab
initio simulation package.

2.1.2 Numerically determining the Potential-Energy Surface: First-Principles
Methods

In contrast to semi-empirical force fields ab-initio methods do not require the use of free
parameters. Rather the electronic eigenvalue problem in Eq. (2.7) is solved under controlled
approximations to obtain the forces.

Exchange and Correlation Energy

Two important concepts are those of exchange and correlation interactions. Exchange
interaction arises due to the exchange symmetry of the wave function. A closed expression
can be derived from the Fock space representation of Vel-el by truncating the correlation
expansion at the second-order or by equivalently approximating the eigenfunctions of the
electronic Hamiltonian (Eq. (2.7)) by a single Slater determinant:

Vel-el ≈
1
2

w n(r)n(r̂)
|r− r̂| drdr̂︸ ︷︷ ︸

Hartree energy

− 1
2

Nel∑

i,j

w ψ∗i (r)ψj(r)ψ∗j (r̂)ψi(r̂)
|r− r̂| drdr̂

︸ ︷︷ ︸
exact exchange

. (2.11)

Here n(r) is the electron density and ψi an eigenfunction of the free Hamiltonian. The
Hartree energy is the classical Coulomb interaction and does not account for the Pauli
exclusion principle. Conversely, the exact exchange interaction includes the Pauli ex-
clusion. Correlation interaction is often defined as all interactions not included in the
exact exchange1. See Eq. (2.28) and following for a more in-depth analysis of these
effects.
1The exact exchange includes spin correlation.
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Density Functional Theory

The ab-initio method of choice for this work is Density-Functional Theory (DFT). The
original idea was developed by Walter Kohn and Pierre Hohenberg in the early 1960s.
They found that the electronic ground state of a system is fully described by the respective
electronic density

n(r) = Nel
w
|Ψ(r, r2, ..., rNel)|2dr2...drNel , (2.12)

which only depends on three cartesian coordinates. Formally, this massively reduces the
complexity of the problem.

The essence of DFT is captured in the two Hohenberg-Kohn theorems [15]:

Theorem 2.1.1 (First HK-Theorem). For any system of interacting particles in an external
potential exists a bijection between the density and the external potential.

Theorem 2.1.2 (Second HK-Theorem). A functional Eel[n] of the density exists, the
density which minimizes this functional is the ground state density, and the minimum of
this functional is the ground state energy.

The functional Eel[n] can be written as:

Eel[n] = Eext[n] + F [n] (2.13)

Here, F [n] is the functional that contains all interactions between the electrons V [n] as
well as their kinetic energy T [n] and takes the form

F [n] = T [n] + V [n]. (2.14)

Finally Eext[n] is the interaction energy with an external potential. In our specific case, it
is given by Vel-nuc of Eq. (2.6)

Eext[n] =
w
vext(r)n(r)dr = −

∑

I

w ZI n(r)
|r−RI |

dr . (2.15)

Although formally exact, DFT is not particularly useful in this formulation, given that
no closed analytical expression for F [n] has been found so far, accordingly different
approximations are developed to this day. Interestingly though the earliest examples, most
notably the Thomas-Fermi [18, 19] (TF) and von Weizäcker [20] (vW) functionals derived
in 1925 and 37 respectively, actually predate the discovery of the HK theorems. While both
sought a solution to the electronic problem, their focus was on finding an approximation
to the kinetic energy functional. Llewellyn Thomas and Enrico Fermi both independently
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2.1 Assessing and Describing the Potential-Energy Surface

derived their functional by assuming a free-electron gas model in which the density is only
slowly varying in space:

TTF = c0
w
n

5
3dr. (2.16)

The vW functional is a generalization of the TF functional and was derived from a spatially
linearized one-electron wave function leading to a functional depending on the density
gradient:

TvW = −1
2

w
∇√n · ∇√ndr. (2.17)

Direct approaches to numerically solve Eq. 2.14 are called orbital-free DFT. In practice this
requires approximations to the unknown kinetic energy functional, however, the TF and vW
functionals suffer from poor accuracy [21, 22]. More recent approximations are often based
on perturbation theory2 [24] or explicitly including non-locality [25]. Still even the most
advanced functionals are only reliable for light metal alloys [24]. As discussed in the next
section, these problems can be partially circumvented in the Kohn-Sham formalism [17].
This, however, requires dropping the formally appealing description in terms of an electron
density and to reintroduce individual electronic states.

Kohn-Sham Formalism

The central idea of the Kohn-Sham formalism [17] is the introduction of a supple-
mentary, non-interacting electronic system which can be described by single-particle
states ψ̃1(r), · · · , ψ̃Nel(r). Before we discuss the mapping of the general problem we first
illustrate the idea for a simplified non-interacting example. This constitutes a special case
for which Eq. (2.13) is known exactly and the electron density is:

ñ(r) =
Nel∑

i

|ψ̃i(r)|2dr. (2.18)

Decomposing F [ñ] using corollary 2.14 reveals:

F [ñ] = T [ñ] + V [ñ] = T̃s[ñ]. (2.19)

Here T̃s[ñ] is the kinetic energy functional of a non-interacting system. Accordingly the
electronic energy functional reduces to:

Ẽel[ñ] = Eext[ñ] + T̃s[ñ] . (2.20)

This includes only the external potential Eext[ñ], already defined in Eq. (2.15), and the
non-interacting kinetic energy T̃s (discussed in more detail below). The variational
minimum of this functional is the ground state energy of the non-interacting system and
2The zeroth and second-order of the exact perturbation expansion of T [n] are directly proportional to the
TF and vW functional respectively. However, this expansion diverges after the 6’th order.
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the corresponding density is the one of the ground state. The variational differential is
given by:

δ
(
Ẽel[ñ]− µ

[w
ñ(r)d3r −Ne

])
= 0 (2.21)

A Lagrange parameter µ was introduced to keep the number of particles fixed. This yields
the following equation:

δT̃s[ñ]
δn

+ vext = 0 . (2.22)

A direct solution would require the use of an approximate expression for the functional
derivative δT̃s[ñ]/δn. However, this can be circumvented by reintroducing the single-particle
representation, given that for this particular system the kinetic energy is determined
by the operator T̂s = −1

2
∑Nel
i ∇2 the kinetic energy functional can be rewritten as:

T̃s[ñ] = −1
2

Nel∑

i

w
ψ̃∗i∇2ψ̃idr. (2.23)

Using this form of T̃s[ñ] allows to reformulate Eq. 2.22 in terms of functional derivatives of
ψ(r):

δT̃s[ñ]
δn

= −1
2

Nel∑

i

w δψ̃∗i
δn
∇2ψ̃idr−

1
2

Nel∑

i

w
ψ̃∗i∇2 δψ̃i

δn
dr = −vext. (2.24)

This is fulfilled if all ψi3 are solutions of the Schrödinger equation

(−1
2∇

2 + vext(r))ψ̃i(r) = εiψ̃i(r), (2.25)

which can be solved at a reasonable computational cost, since the electrons are treated
independently from each other. The electronic density calculated from its eigenfunctions is
precisely the one of the systems ground state. More importantly taking the expectation
value of Eq. (2.25) reveals an exact expression of T̃s[ñ]:

∑

i

w
ψ̃∗i (T̂s + vext)ψ̃idr =

∑

i

εi

⇐⇒
∑

i

w
ψ̃∗i T̂sψ̃idr =

∑

i

εi −
∑

I

w ZI ñ(r)
r−RI

dr
︸ ︷︷ ︸

Eext[ñ]

T̃s[ñ] =
∑

i

εi − Eext[ñ]. (2.26)

Finally combining this expression with Eq. 2.20 reveals the ground state energy:

Ẽel =
∑

i

εi − Eext[ñ] + Eext[ñ] =
∑

i

εi. (2.27)

3The functional derivatives δψ̃
δn

are distributions for which the second derivatives are defined asr
ψ̃∗∇2δψ̃/δndr =

r
(∇2ψ̃∗)δψ̃/δndr
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2.1 Assessing and Describing the Potential-Energy Surface

This result might seem obvious but this could not be further from the truth. In fact,
this statement is only true since the associate Schödinger equation is a linear differential
equation4.
In the following, we now show how an interacting system can be mapped to a non-
interacting one For this purpose, the functional F [n], has to be cast in a more practical
form. Again starting from Eq. 2.14, we proceed in a similar way as before with the distinction
that we also have to account for the exchange and correlation interactions between the
electrons. Accordingly, we have to further decompose T [n] and V [n]:

F [n] = T [n] + V [n]

= T̃s[n] + EH[n] + Exc[n] (2.28)

Here the exchange correlation functional Exc[n] subsumes all exchange correlation in-
teractions form the kinetic T [n] and potential V [n] energy functionals. The remaining
contributions are the non-interacting kinetic energy T̃s[n] and electrostatic Hartree en-
ergy EH[n], describing electrostatic mean-field repulsion EH[n] = 1

2
r n(r)n(r̂)
|r−r̂| drdr̂. Inserted

into Eq. (2.13) we can write the electronic energy functional of the interacting system in
terms of an effectively non-interacting system in which Eext[n] + EH[n] + Exc[n]=̂Eeff is
identified as the external potential:

Eel[n] = T̃s[n] + Eext[n] + EH[n] + Exc[n]︸ ︷︷ ︸
Eeff[n]

. (2.29)

This system is required 5 to exhibit the exact same density as the interacting systems that
is sought after:

n(r) != ñ(r) =
Nel∑

i

w
|ψ̃i(r)|2dr . (2.30)

Minimizing this functional with respect to the density yields the following expression:

δT̃s[n]
δn

+ vext + vH + vxc︸ ︷︷ ︸
veff(r)

= 0 , (2.31)

which takes the exact same form as the respective equation for a non-interacting sys-
tem (2.22). By this means, we have found a mapping between the equation governing
an interacting system in an external potential vext and the one of a non-interacting sys-
tem in a different potential veff. Accordingly, also the non-interacting problem can be
solved by finding the solution to the single-particle, non-interacting Schrödinger equation

(−1
2∇

2 + veff(r))
︸ ︷︷ ︸

hKS

ψi(r) = εiψi(r). (2.32)

4The Hamilton operator must neither depend on its eigenfunctions nor the associated densities.
5A detailed discussion of this so called v-representability requirement and its validity can be found in
Ref. [16].
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This equation is called the Kohn-Sham (KS) equation [17]. Again, it can be solved
to determine the ground state density n(r) within reasonable computational effort. In
contrast to Eq. (2.25), however Eq. (2.32) is no longer a linear differential equation
since the density itself enters veff(r), so that a self-consistent field approach is typically
used in practical calculations: Starting from an (educated) initial guess for the density
n(0)(r), the electronic energy (see below) is minimized in i iterations by refining the
density n(i)(r) until self-consistence is numerically achieved up to a user-defined parame-
ter ε, e.g.,

r
|n(i)(r)−n(i+1)(r)|dr < ε. However any practical application again requires an

exact expression for T̃s[n], luckily the process is largely the same as for the non-interacting
system:

−
∑

i

w
ψ∗i∇ψidr =

∑

i

εi −
w
veff[nin]n(r)dr

T̃s[n] =
∑

i

εi − Eext[n]− 2EH[n]−
w
vxc[n]n(r)dr3. (2.33)

Combined with Eq. (2.29) the electronic energy reads:

Eel[n] =
occ∑

i

εi − EH[n]−
w
vxc[n]n(r)dr3 + Exc[n]. (2.34)

Please note that the electronic energy of the interacting systems is not just the sum of the
eigenvalues! For the ground-state density, this yields the potential energy surface for the
nuclei:

Etot = Eel[n] + Enuc . (2.35)

For his works with Pierre Hohehenberg and Lu Jeu Sham, Walter Kohn was ultimately
awarded the Nobel Prize for Chemistry in 1998.

Approximative Exchange-Correlation Functionals

In principle, the previously introduced Kohn-Sham formalism provides a practical route
to calculate the (exact) electronic ground state. However, a closed analytical form for
the thereto required XC functional Exc[n] is not known, so approximative XC functionals
have to be used in practical calculations instead. Different flavors with different levels
of accuracy and computational cost exist: Here, we limit ourselves to introducing the
concepts behind the approximations used for the calculations in this thesis; the influence
of the approximations on the actual computational results are discussed for the practical
examples of Lithium Hydride and thin-film Pentacene relevant for this work at a later
point.

The Local Density Approximation (LDA): In this approximation, the XC energy den-
sity εxc[n] at each point in space r is approximated by the value of the respective XC
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2.1 Assessing and Describing the Potential-Energy Surface

energy density εLDAxc [n] that a homogeneous electron gas (jellium model) would exhibit at
that density n(r) [17]:

Exc =
w
n(r)εLDAexc (n(r))dr . (2.36)

The Generalized Gradient Approximation (GGA): In the spirit of a Taylor expansion,
GGA XC functionals do not only take into account the local value of the density n(r),
but also its gradient ∇rn(r). Formally, this is achieved by introducing an enhancement
factor Fxc[n(r),∇rn(r)]:

Exc =
w
n(r)εLDAxc (n(r))Fxc(n(r),∇rn(r))dr . (2.37)

Due to the fact that some freedom exists in the definition of Fxc(n(r),∇rn(r)), many
different flavours of GGAs exist: Some, like the PBE functional [29] and its adaption for
solid materials (PBEsol [30]) are formulated to fulfill fundamental properties that the
exact XC functional is known to fulfill. Others, like BLYP are specifically constructed to
reproduce experimental data.

Hybrid XC Functionals: Both LDA and GGAs suffer from a spurious self-interaction
that results in the erroneous tendency of electrons to delocalize [31]. In part, this can be
corrected for [32] by replacing a fraction of the GGA exchange with the exact (Hartree-Fock)
exchange

EHFx = −1
2

Nel∑

i,j

w ψ∗i (r)ψj(r)ψ∗j (r̂)ψi(r̂)
r− r̂ drdr̂ . (2.38)

Popular examples for such a functionals are the PBE0 functional [32]

EPBE0
xc = 1

4E
HF
x + 3

4E
PBE
x + EPBEc (2.39)

or HSE-type functionals [34], in which the bare Coulomb interaction in Eq. (2.38) is
additionally screened.

Practical Numerical Solution and Implementation

In this section, we shortly summarize some practical aspects that need to be considered
when performing KS calculations.

Solving the KS Equations: To efficiently implement Eq. (2.32) in computer code and
exploit fast linear algebra libraries, the eigenfunctions ψi of the KS Hamiltonian are
approximated in a truncated expansion in terms of basis functions ζ:

ψi =
∑

j

cijζj(r). (2.40)
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Accordingly, Eq. (2.32) becomes a generalized eigenvalue problem:

∑

j

hlicij = εi
∑

j

olicij (2.41)

With the matrix elements of the Kohn-Sham Hamiltonian hks

hli =
w
ζl(r)hksζi(r)dr (2.42)

and the overlap integral
oli =

w
ζl(r)ζi(r)dr. (2.43)

These approximations, i.e., the convergence of the results of interest with respect to the
functional, number of basis functions included, needs to be explicitly investigated to ensure
the validity of the results.

In this particular work, the all-electron, full potential code FHI-aims [100] was used 6,
which utilizes atom-centered, numeric orbitals

ζj(r) = unl(r−Rat)
r

Ylm(Φ,Θ) (2.44)

as basis set. Here Ylm(Φ,Θ) are spherical harmonics and unl(r − Rat) are numerically
defined radial functions with Rat being the coordinates of the nucleus to which this specific
atomic orbital belongs.

Accelerating the Kohn-Sham Eigenvalue Problem: ELPA As discussed in the previous
sections, the Kohn-Sham formalism requires solving a series of eigenproblems the cost of
which scales cubically with the number of basis functions. For LDA and GGA exchange-
correlation functionals, the generalized eigenvalue problem is the largest computational
bottleneck when the number of basis functions is high. Accordingly, the development
of faster and massively parallelized eigensolvers is a major priority to speed up DFT
calculations for larger and more realistic systems. This led to a cooperation between the
Bergische University Wuppertal, Technical University Munich, and the Max Planck Society
to develop the "Eigenvalue Solvers For Petaflop Applications" (ELPA) library. It includes
the eigensolver ELPA 1 [35] and its extension ELPA 2 [36]. ELPA 1 solves the generalised
symmetric eigenvalue problem hc = εoc in four steps:

• Step 1: Decompose o into the product of a lower triangle matrix and its conjugate
transpose (Cholesky decomposition).

• Step 2: Reducing the generalised symmetric eigenvalue problem to a equivalent
symmetric eigenvalue problem using the Cholesky decomposition from Step 1.

6All-electron means that all electrons are treated on the same level. Conversely, pseudo-potential codes
only treat the core electrons approximately by effectively including them in a pseudo-potential.
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Figure 8: Accumulated runtime (in minutes) for A-DNA (see text)
in three di�erent scenarios: Using FHI-aims’ default settings, using
autotuning level MEDIUM, and using optimal settings, as if these
were known from the start. There is a clear benefit of autotuned
version over the FHI-aims default one. Moreover, if more SCF iter-
ations were done, the relative di�erence between the autotuned and
optimal version would be further reduced.

Table 3: Average runtime per SCF step for the A-DNA (77220
basis functions) and Graphene (70000 basis functions) systems for
di�erent kernels and autotuning methods. Autotuning level FAST
requires 15 SCF steps (20 steps performed in total) to identify the
optimal kernel (AVX-512), while autotuning level MEDIUM requires
150 SCF steps (160 steps performed in total). As a reference, tim-
ings for using FHI-aims’ default settings (Generic kernel) and for
using the optimal settings from the start, i.e., the ones identified by
autotuning MEDIUM, are given.

System Generic Optimal FAST MEDIUM
A-DNA 221.3 s 200.5 s 209.2 s 209.6 s
Graphene 160.8 s 137.0 s 143.5 s 144.4 s

settings, the computational savings in total runtime are in
the order of 5%. The behaviour described above is also
observed for the graphene system. In that case, the com-
putational savings using autotuning level MEDIUM are in
the order of 10% after 160 SCF steps, as summarized in
Tab. 3. A qualitative similar behaviour is also observed
when only the choice of the kernel is optimized (autotun-
ing level FAST). In this case, only 15 iterations are needed
to find the optimal kernel (AVX512).

Note that the number of SCF steps required to iden-
tify the optimal settings is rather high (150 for autotune
level MEDIUM and 15 for FAST) and thus larger than the
typical number of SCF steps (10-30 in non-problematic
systems) needed to achieve convergence in a single SCF
cycle. In this light, the computational gain achieved by
the autotuning feature for a single SCF cycle might seem
negligible. However, almost all electronic structure calcu-
lations do not only require one SCF cycle, but many. In
practice, hundreds (structure optimisations) or even sev-
eral millions (ab initio Molecular Dynamics simulations)
of SCF cycles are performed in such applications, whereby
the inspected geometry and thus the structure of the eigen-
value problem is only slightly altered between the di�erent
SCF cycles. Due to this fact, the optimal settings iden-
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Figure 9: Average and maximum runtime per SCF steps observed
for ten di�erent geometries of A-DNA (see text), as they would be
observed in structure relaxations or ab initio Molecular Dynamics
simulations. Here, we compare timings for the default and the opti-
mal settings.

tified by the autotuning are transferable across SCF cy-
cles, as demonstrated below. Accordingly, the autotuning
functionality leads to considerable performance benefits in
these applications, since the optimal settings –once they
are identified after the first SCF steps– can be applied to
all further SCF steps and cycles.

To showcase these savings, we have inspected ten ad-
ditional, slightly di�erent geometries of A-DNA, which
were generated by randomly displacing atoms by fractions
of Å [21]. Such geometries are representative for the typ-
ical variances in geometry that are observed in structure
relaxations and ab initio Molecular Dynamics simulations.
We then performed DFT calculations (one SCF cycle with
approximately 20 SCF steps) for these geometries using
(a) FHI-aims’ default settings (Generic Kernel) and (b) the
optimal settings identified by autotuning level MEDIUM
for the equilibrium geometry discussed in Fig. 8. Note that
this equilibrium geometry is not part of the ten geometries
inspected here. Fig. 9 demonstrates that the optimal set-
tings found by autotuning are indeed transferable across
SCF cycles and that the associated computational savings
are retained along multiple SCF cycles. This has been
additionally verified by running calculations with enabled
autotuning for all ten geometries. Compared to the de-
fault settings, we indeed observe average savings of approx-
imately 10% for the average and maximum run-times per
SCF step. This shows that in extended calculations featur-
ing hundreds of SCF cycles and thousands of SCF steps the
relative small overhead required by autotuning (see Fig. 8)
for identifying the optimal settings in the first few SCF
steps is indeed negligible. Once the optimal settings are
identified, they can be applied to all following SCF steps,
thus leading to significant performance gains in these ap-
plications. Similarly, this shows that also the autotuning
procedure itself can be performed over multiple SCF cy-
cles. This allows an even more extensive search for the op-
timal settings, e.g., by additionally including GPU and/or
OpenMP parallelization, in practical calculations. In these
applications, this can be straightforwardly realized by ex-

10

Figure 2.1: Accumulated run times for A-DNA for three different cases: FHI-aims
default setting, MEDIUM level autotuning, and optimal settings as
determined by autotuning.

• Step 3: Solve the symmetric eigenvalue problem.

• Step 4: Apply the inverse transformation to the eigenvectors, calculated in step 3.

For larger systems, the introduction of additional steps can be computational beneficial, as
done in ELPA 2:

• Step 2.5: Transform the symmetric eigenvalue problem to a banded form and further
into tridiagonal form.

• Step 3.5: Backtransformation of the eigenvectors.

The implementation of ELPA 1 and 2 scales exceptionally well with the number of CPU
cores, furthermore GPU acceleration is also supported. ELPA 2 was further optimized to
use the AVX instruction sets AVX, AVX2, and AVX512. Another functionality tailored to
DFT applications is the Autotuning feature, during the SCF cycle all permitted modes
are tested (e.g. ELPA 1 + GPU or ELPA 2 + AVX512) after which the most optimal
setting is used for all subsequent SCF steps. To demonstrate the potential saving we
generated ten geometries where the atomic positions were randomly displaced by fractions
of Å. This simulates the variance of positions typically encountered in ab initio Molecular
Dynamics simulations. We then performed DFT calculations using FHI-aims default setting,
autotuning with the MEDIUM preset, and the optimal settings as determined by autotuning
MEDIUM. The comparison in Fig. 2.1 demonstrates that, while autotuning introduces a
slight computational overhead at the beginning of the simulation, the relative distance
to the optimal settings becomes negligible for long simulations. We also found that the
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to search for (stable) minima and saddle points between
them or explore it dynamically via molecular dynamics
(MD) or statistical (e.g. Monte Carlo) sampling. Ac-
cordingly, a typical computational study often requires
to determine E0({R̨}) for thousands of nuclear configu-
rations {R̨}.

Computing E0({R̨}) requires to solve the quantum-
mechanical electronic-structure problem. In density-functional
theory (DFT) [9], the most wide-spread electronic-structure
formalism, this requires to identify the electronic density n(r̨)
that minimizes the convex total-energy functional E0 =
minE[n(r̨)]) for a given number of electronsN =

s
dr̨n(r̨).

In Kohn-Sham (KS) DFT [10], this variational problem is
mapped onto a series of eigenvalue problems (EVP), the so
called self-consistent field (SCF) formalism. In each step
of the SCF cycle, the EVP

H [n(r̨)]�(r̨) = Á�(r̨) with n(r̨) =
Nÿ

s=1
|�s(r̨)|2 (4)

is solved to determine the eigenstates �s. The N eigen-
states �s with the lowest eigenvalues Ás allows to com-
pute an updated and improved n(r̨), for which Eq. (4)
is then solved again. This procedure is repeated until
“self-concistency” is achieved at the end of the so called
SCF cycle, i.e., until a stationary solution with minimal
E[n(r̨)] is found. In practice, a basis set expansion �s =q

i xsiÏi(r̨), e.g., in terms of Gaussians, plane waves, nu-
merical functions, etc., is used to algebraize and solve
Eq. (4). By this means, one obtains the generalized EVP

A [n(r̨)]x = ⁄Bx , (5)

the size of which is determined by the number of basis func-
tions Ïi(r̨) employed in the expansion. Here, the Hamil-
tonian A and the overlap matrix B are given as:

Aij [n(r̨)] =
⁄

dr̨Ïú
i (r̨)H [n(r̨)] Ïj(r̨) (6)

Bij =
⁄

dr̨Ïú
i (r̨)Ïj(r̨) . (7)

5.1. Autotuning: The case of GPU o�oading
Due to the cubic scaling with system size, the gener-

alized EVP (5) quickly becomes the numerical bottleneck
in practical DFT calculations. It is thus more than desir-
able to use optimal ELPA settings (ELPA1 vs. ELPA2,
architecture-specific kernels, etc.) to utilize the computa-
tional resources in the most e�cient way so to obtain the
optimal time-to-solution. As discussed above, this is of
particular importance in first-principles simulations, which
require solving many similar eigenvalue problems, e.g., the
10-100 individual SCF steps in one SCF cycle or the thou-
sands if not millions of SCF steps performed in an itera-
tive exploration of the PES E0({R̨}). ELPA’s autotuning
feature allows to determine these optimal settings, which
depend upon both the inspected physical problem and the
used architecture, in an automated way [11].
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Figure 11: Computational time per SCF step (in seconds) as func-
tion of the numbers of basis functions employed. Solid lines de-
note ELPA1, dashed lines ELPA2 calculations. CPU-only and
CPUs+GPU calculations were performed. The shaded areas denote
which setup is fastest for di�erent system sizes. The inlet shows the
timings for system sizes at which CPU+GPU ELPA1 becomes the
fastest solver (border between blue and red marked areas).

This is particularly important for new and upcoming
architectures featuring GPUs: This is exemplified in Fig. 11,
which shows calculations performed with the FHI-aims
code [3] using ELSI [20] as interface to ELPA and the
PBE exchange-correlation functional [17] for periodic Cae-
sium Chloride crystals as function of the number of basis
functions used. For this purpose, calculations with di�er-
ent system sizes, i.e., number of atoms, were performed.
Since FHI-aims uses local atomic orbitals [3], the num-
ber of basis functions increases with the number of atoms:
For example, the smallest investigated system contains 16
atoms and thus uses 496 basis functions, while the largest
system contains 3,456 atoms and 107,136 basis functions.
For all system sizes, we benchmarked ELPA1 and ELPA2
separately; in both cases, CPU only calculations as well as
calculations using CPUs and full GPU acceleration (for the
tridiagonalization, the solution of the eigenvalue problem,
and the back transformation) were performed on four Intel
Skylake (Xeon Gold 6138) + nVidia Tesla V100 nodes with
two CPUs and GPUs each (20 cores/CPU @ 2.0 GHz).

As Fig. 11 shows, the use of GPU acceleration of-
fers a sizeable performance increase for large systems with
respect to CPU-only calculations for both ELPA1 and
ELPA2, whereby the gains are more pronounced for ELPA1.
The threshold number of basis functions for which GPUs
indeed accelerate the calculation is essentially determined
by the workload on each CPU and GPU. For too small
systems, the time spent transferring the data to the GPU
is larger than the actual computational gains due to the
GPU. In this particular case, GPUs are thus beneficial
for ELPA1 for more than 10,000 basis functions and for
ELPA2 for more than 20,000 basis functions. Overall,
CPU-only ELPA1 is the fastest solver up to 4,000 basis
functions, CPU-only ELPA2 for system between 4,000 up

9

Figure 2.2: Computational time per SCF-step with increasing numbers of basis
functions for CPU-only and CPU-GPU calculations. The shaded areas
show the fastest settings.

optimal settings are transferable across differently displaced geometries. Accordingly, the
computational overhead is negligibly compared to the performance gains [37]. Furthermore,
we found that the combined CPU+GPU implementation (only some of the steps are GPU
accelerated) leads to substantial performance gains if the number of basis functions is
large enough [38]. However, the number of basis functions at which this "break-even"
point occurs strongly depends on the number of nodes in use and decreases if fewer nodes
are used. Importantly, for the results shown in Fig. ??, GPU acceleration was used for
tridiagonalization, solution, and back transformation. For production calculations, it can
be beneficial to limit the GPU accelerated to only a smaller subset of operations, which
presents another application of autotuning. A more detailed description can be found in
the Appendix of this work.

Periodic Boundary Conditions: Obviously, performing DFT calculations for macroscopic
materials in a naive approach would be excruciatingly computationally expensive due
to the massive number of electron Nel that needs to be accounted for. For crystalline
materials with translational periodicity, this can be circumvented by applying periodic
boundary conditions: As sketched in Fig. 2.3, a crystal is thereby described by a finite
number of atoms in the primitive unit cell, which is spanned up by the lattice vectors
A = [A1,A2,A3]. This unit cell is infinitely repeated as described by the translation vector
T(n) = A · n with n = [n1, n2, n3], ni ∈ Z.
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2.1 Assessing and Describing the Potential-Energy Surface

Figure 2.3: Sketch showing how a formally infinite crystal is modeled using periodic
boundary conditions starting from a unit cell that contains basis atoms.
This unit cell is infinitely repeated in space using the lattice vectors (see
text).

Such a description in terms of periodic boundary conditions imposes restrictions on
the wave functions, too. Bloch’s theorem states that in this case the wave functions

ψi(r,k) = eik·rui(r) (2.45)

can be written as the product of a lattice-periodic function

ui(r) = ui(r + T(n)) (2.46)

and a wave vector k-dependent plane wave. In the case of periodic calculations in FHI-
aims, this is exploited by using a Bloch-like nuclear atomic orbitals that fulfill Eq. (2.45)

χj(r,k) =
∑

n
eik·T(n)ζj(r−Rat + T(n)) (2.47)

in the expansion in Eq. (2.40). Accordingly, both the KS states and KS Hamiltonian
become k-dependent. By this means, one thus formally maps the KS equation for an
infinite number of electrons onto the KS equation for the finite number of electrons
contained in a unit cell. In turn, however, this problem has to be solved for a formally
infinite set of k-vectors. Obviously, only finite k-grid are used in practical calculations.
Convergence of the quantities of interest with respect to this numerical parameter needs to
be checked.

2.1.3 Including van der Waals Interaction

Van der Waals interaction is a weak attractive force between atoms. It arises due to
quantum mechanical fluctuations of electron density inducing a momentarily existing
dipole. Whilst these dipoles average out over time they still produce an electric field
∝ 1

R3 inducing a corresponding dipole on the other atoms. The resulting interaction
between these dipoles gives rise to an attractive force. Its interaction energy is proportional
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to 1
R6 and was already introduced in Sec. 2.1.1 as the attractive term in the Lennard-

Jones potentials σ6

R6 . Due to the long-ranged nature of these interactions they are not
included in semi-local XC-functionals, which only account only for (semi-)local changes in
n(r).

Pairwise van der Waals interaction

A popular way to include vdW interaction into DFT is to add a pairwise energy term
EvdW ∝ C6

R6 to the DFT energy [101] so to approximately including the missing long-range
correlation energy. A practical form of this approximation is given by:

EvdW = −1
2
∑

AB

fdamp(RAB,RA,RB)C6AB
R6
AB

(2.48)

Here C6AB describes the pairwise interaction. Since long-range vdW interactions for
nonoverlapping densities are missing, a Fermi type dampening function fdamp is included
to eliminate spurious short-range interactions. A non-empirical way to obtain the necessary
coefficient is given by the Tkatchenko-Scheffler method [102]. This method however neglects
screening effects beyond the range of the electron density, since its two body vdW energy
originates from "atomic" dipole fluctuations [103].

Many Body Dispersion

Including long-range screening effects is especially important for solids (and large molecules)
since the electrostatic interaction between distant fluctuating dipoles decays not exponen-
tially but via a power law. A method accounting for short and long-range screening is given
by the Many-Body Dispersion [103, 104] extending the previously discussed Tkatchenko-
Scheffler method. This is accomplished by modeling the surrounding of an atom as a
dipole field and obtaining the polarizability matrix Alm(ω) = δlmαl(ω). Here αl(ω) are
frequency-dependent effective atomic polarizabilities. Finally, the long-range correlation
energy can be calculated as:

Ec,MBDrsSCS = 1
2π

w
Tr(ln(1−A(ω)TLR)dω (2.49)

Where TLR is the long-range dipole interaction tensor describing the strength of the
interaction between different dipoles.

2.2 Nuclear Motion

Until this point we mainly focused on how solve the electronic problem (Eq. (2.7)) using
DFT. However our goal is to explore the PES. Accordingly we need the forces acting on
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2.2 Nuclear Motion

the nuclei, which are given by the first derivative of the total energy Etot. In DFT they
can be obtained using the Hellman-Feynman Theorem.

FI = −dEtot
dRI

= −∂Etot
∂RI

−
∑

i

∂Etot
∂χi

∂χi
∂RI

−
∑

ij

∂Etot
∂cij︸ ︷︷ ︸
=0

∂cij
∂RI

. (2.50)

As highlighted by the notation ∂/∂RI for the partial derivatives, the first term describes the
direct dependence of the total energy on the nuclear degrees of freedom. The second term,
the so called Pulay term [39], captures the dependence of the total energy on the basis set
chosen for the expansion in Eq. (2.44). The last term vanishes, since the ground state total
energy constitutes a variational minimum with respect to the expansion coefficients cij .
For higher order derivatives of the total energy, e.g., the Hessian,

d2Etot
dRIdRJ

= − d

dRJ
FI (2.51)

= − ∂FI

∂RJ
−
∑

i

∂FI

∂χi

∂χi
∂RJ

−
∑

ij

∂FI

∂cij︸ ︷︷ ︸
6=0

∂cij
∂RJ

,

the problem gets more complex, since the forces are not variational with respect to the
expansion coefficients cij . Accordingly, a calculation of the Hessian does not only require the
analytical derivatives appearing in the first two terms, but also the response of the expansion
coefficients to a nuclear displacement ∂cij/∂RJ . Formally, the (2n+ 1) theorem [46], i.e., a
generalization of Hellman-Feynman theorem [47], shows that knowledge of the n-th order
response (i.e. the n-th order total derivative) of the electronic structure with respect to a
perturbation is required to determine the respective (2n+ 1)-th total derivatives of the
total energy [46]. These response quantities are, however, not directly accessible within
DFT: They can be either computed by application of first order perturbation theory [87]
or by evaluating the Hessian numerically with finite differences:

d2Etot
dRIdRJ

≈ −FI(∆RJ)
∆RJ

(2.52)

Conversely when using semi-empirical force fields (FF) the forces, and all other derivatives,
can be obtained analytically. Often, however, interactions are formulated in curvilinear
coordinates, accordingly, the derivatives become more complex7.

2.2.1 The Harmonic Approximation

The harmonic approximation is the most well-known and most used technique to describe
and interpret the motion of the nuclei, especially in solid-state theory. To start, the PES
7All force-fields are Riemann manifolds (including RN ) which require the use of covariant derivatives.
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Figure 2.4: Left: Sketch showing a potential energy surface (red) that is approximated
in the harmonic approximation (red) around the equilibrium position.
Right: Sketch of a supercell, the red arrows mark two periodic images
that are connected to the respective primitive atom in the supercell via
lattice vectors (see text)

is approximated by expanding it into a Taylor series around its minimum, i.e., the 0K equilib-
rium positions Req shown in Fig. (2.4), truncated at the second order.

Ehatot ≈ Etot +
���

��
∑

I,α

FαI u
α
I + 1

2
∑

I,J,α,β

ΦαβIJ u
α
I u

β
J . (2.53)

Here, the uαI = Rα
I −Rα,eq

I are the displacements of the atoms around their equilibrium
positions. Please note that the static term Etot is the total energy in equilibrium and that
the linear term vanishes due to the fact that the forces FαI vanish in equilibrium. The
Hessian (or harmonic force constants)

ΦαβIJ = ∂2Etot

∂RαI ∂R
β
J

(2.54)

introduced in Eq. (2.53) above do not anish (see Fig. 2.4). The ansatz

uαI = A√
MI

εαI (q, s)ei(q·RI−ωt) , (2.55)

the physical interpretation of which is discussed below, separates and solves the equation
of motion in this approximate potential. In this context, it is useful to express the index of
the I-th atom using periodic boundary conditions as I → nĨ, where Ĩ denotes the Ĩ-th
atom in the primitive unit cell and n denotes that this is its n-th periodic image shifted by
a lattice translation vector T(n) (see Sec. 2.1.2). In this notation, the equations of motion
become an eigenvalue problem

D(q)ε(q) = ω2(q)ε(q) with Dαβ

ĨJ̃
(q) =

∑

n

Φαβ(0Ĩ)(nJ̃)√
MĨMJ̃

eiq·(R(nJ̃)−R(0Ĩ)) . (2.56)
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2.2 Nuclear Motion

Here, D(q) is the dynamical matrix, i.e., the Fourier transform of the mass-scaled force
constants Φ with respect to the distance of periodic replicas. In practice, the sum can be
truncated after a sufficiently high value for n since the interaction decays with the order
O(1/R2). This is done by constructing a supercell containing n images of the unit cell. The
number of as well as which q-points are accounted for is directly linked to the size of the
supercell8. Accordingly, only phonon wavelengths commensurate (or more intuitively that
fit into the supercell) with the supercell are included. The supercell is repeated periodically
(see Fig. (2.4)). For a system with N atoms in the unit cell, we thus get 3N eigenvalues
and -vectors at each reciprocal space point q. Accordingly, the solution of the equations of
motion is a superposition of harmonic oscillations

RI(t) = Req
I + Re

(∑

q,s

As(q)√
MI

εI,s(q)ei(q·RI−ωs(q)t)
)

(2.57)

with the complex amplitudes As(q) and the wavevector q. Please note that the amplitudes
As(q) and the respective occupation numbers ns(q) = A2

s(q) are not time-dependent and
fully determined by the initial conditions, so that the individual oscillations are completely
independent and decoupled. Accordingly, the motion is completely characterized by the
eigenvectors and eigenfrequencies, i.e., the dispersion ωs(q), which describes how the
frequency of the phonon mode depends on its wavevector. Please note that also the
derivative, i.e., the phonon group velocity

vs(q) = ∂ωs(q)
∂q = 1

2ω 〈εs(q)| ∂D(q)
∂q |εs(q)〉 (2.58)

can be calculated directly from the dynamical matrix. An example for a phonon-band
structure is given in Fig. 2.5. Here, the group velocity corresponds to the slope of the band
structure.

Given that Eq. (2.56) is the analytic solution for the nuclear dynamics in the harmonic
potential, also the thermodynamic partition function of the system

Z =
∏

q,s

e
− ~ωs(q)

kBT

1− e−
~ωs(q)
kBT

(2.59)

can be calculated. From this expression quantities such as the free energy [91]

F ha = −kBT ln(Z) = 1
2
∑

q,s
~ωs(q) + kBT

∑

qs
ln(1− e−

~ωs(q)
kBT ) (2.60)

and the specific heat CV

CV = 1
V

(
∂Eha

∂T

)

V

= 1
V

∑

q,s
~ωs(q)∂n

eq
s (q)
∂T

= 1
V

∑

q,s
cs(q) (2.61)

8For example the primitive unit cell contains exactly one q-point at Γ .
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Figure 2.5: This figure shows an example of a phonon band structure with the
corresponding density of states of Lithium Hydride, calculated using the
PBEsol XC-functional.
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Figure 2.6: Vibrational free energy, entropy, and heat capacity of Lithium Hydride in
the harmonic approximation, calculated using the PBEsol XC-functional.
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can be calculated with Eha being the harmonic energy

Eha =
∑

q,s
~ωs(q)

(1
2 + neqs (q)

)
. (2.62)

It is important to note that phonons, since they are bosonic quasi particles, obey the
Bose-Einstein distribution

neqs (q) = 1

e
~ωs(q)
kBT − 1

. (2.63)

At low temperatures, this causes the typical T 3 behavior of the specific heat (see Fig. (2.6)).
At elevated temperatures, CV then approaches the classical, constant Dulong-Petit value 3Nkb [106].

Most efficiently, equations such as (2.60) and (2.61) are numerically evaluated by introducing
the phonon density of states

g(ω) = 1
Ω

∑

s

w

BZ
δ(ω − ωs(q))dq , (2.64)

in which Ω denotes the volume of the Brillouin Zone. The thermodynamic expectation
value Π for any operator π(ωs(q)) that only implicitly depends on the wavevector q can
then be immediately evaluated using

Π = 1
Ω

∑

s

w

BZ
πs(q)dq =

w
π(ω)g(ω)dω . (2.65)

Fig. 2.5 also includes an example of a phonon density of states, the peaks occur at the
frequencies where the band structure is most dense, e.g. in the case of localized flat
modes.

Despite its usefulness, the harmonic approximation has severe limits. Due to the fact
that the real PES is approximated close to the 0K equilibrium positions (see Fig.( 2.4)),
anharmonic effects become notable at higher temperatures when large displacements from
equilibrium occur. Obviously, this is highly material dependent and one question answered
in this thesis is exactly the quantification of anharmonicity for systems with pronounced
quantum nuclear fluctuations e.g. at low temperatures.
Many effects are not described by the harmonic approximation at all, for example, the
temperature-dependent renormalization of the phonon frequencies. For this reason, several
methods to correct the shortcomings of the harmonic approximation have been devel-
oped.

• The Quasi Harmonic approximation: The quasi-harmonic approximation augments
the harmonic approximation by explicitly accounting for the volume dependency of
the Hessian [86]. This naturally leads to a renormalization of the band structure. It
is the computational least expensive method and allows for the inclusion anharmonic
effects such as thermal expansion. However, it is limited as for example the thermal
conductivity cannot be directly extracted from it.
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• Truncating the Taylor series at a higher order: This is the most obvious step to include
anharmonicity. Higher-order force constants can either be determined from finite
differences or in the case of DFT, from perturbation theory. While it is computational
more expensive compared to the quasi-harmonic approximation its computational
cost can be kept comparatively low for systems with higher symmetry. However it is
limited to the order at which the series is truncated, most commonly the third [92].
Higher-order force constants can be calculated with rapidly increasing computational
cost as the number of force evaluations increases with the order of the force constants.

• Self Consistent Phonon Theory: In Self Consistent Phonon Theory (SCPT) the
phonon frequencies are corrected by self consistently solving the Dyson equation [60].
However, this requires computing the fourth-order force constants making it com-
putationally expensive. Furthermore, higher-order anharmonicity is only implicitly
accounted for. Accordingly, this approach does not include all accessible degrees of
anharmonicity.

• Temperature-Dependent Effective Potentials: Temperature-Dependent Effective Po-
tentials (TDEP) is mathematically equivalent to the SCPT. Here the force constants
are fitted to anharmonic forces obtained from sampling the PES at a finite tempera-
ture. This can be either accomplished using harmonic sampling or other methods. It
is applicable to ab-initio methods or semi-empirical FFs. Fitting only the hessian
ΦIJ leads to a renormalization of the force constants by implicitly including higher
orders of anharmonicity. Higher-order Force Constants may also be obtained in this
way. While this does formally not require knowledge about the fourth-order force
constants it otherwise suffers from the same drawbacks as SCPT [40].

• Outlook: As we will discuss later molecular dynamics methods allow us to account for
all orders of anharmonicity. However, this makes it highly computationally demanding.
Accordingly performing molecular dynamics simulations using first principle methods
is restricted to comparatively short time lengths and small supercells.

2.2.2 Anharmonic Effects

Anharmonic Effects: Lattice Expansion

In the static limit of immobile nuclei, the equilibrium volume V0 and the respective lattice
constants are defined via the minimum of the total energy of the system V0 = minV Etot(V ).
At finite temperatures, however, the respective thermodynamic potential e.g., the Helmholtz
free energy, has to be minimized:

dF = −SdT − PdV +
∑

I

µINI . (2.66)
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Here µ is the chemical potential, S the entropy, and P the pressure. Naturally, this
introduces a temperature dependence in the equilibrium volume

V0(T ) = min
V

F (T, V ). (2.67)

By neglecting electronic contributions9, the Helmholtz free energy can be expressed in the
harmonic approximation as F (T, V ) ≈ Etot(V ) + F ha(T ) using the definition of F ha(T )
given in Eq. (2.60). However, F ha(T ) does not depend on the volume, so no lattice
expansion (or contraction) occurs in this approximation. Accordingly, to assess and
understand temperature-dependent volumes and lattice constants anharmonic effects have
to be accounted for. In the most intuitive approach, anharmonic effects are effectively
introduced by explicitly accounting for the volume dependence of the force constants ΦαβIJ →
ΦαβIJ (V ). In this so-called quasi-harmonic approximation [86], both the total energy Etot(V )
and the phonon calculations ΦαβIJ (V ) are performed for a set of different volumes. The
temperature-dependent volume V0(T ) and/or lattice constants are then determined by
minimizing the resulting Helmholtz free energy

F (T, V ) ≈ Etot(V ) + F qha(T, V ) with F qha(T, V ) = F ha(T, ΦαβIJ (V )), (2.68)

as shown in Fig. 2.7. The obtained equilibrium volumes V0(T ) then allow to compute the
volume expansion coefficient

α(T ) = 1
3V0(T )

(
∂V0(T )
∂T

)

V
(2.69)

Beside some notable exceptions (see Ref. [86]), α(T ) is typically positive (lattice ex-
pansion): Larger volumes imply larger nearest neighbor distances and thus a smaller
interaction (smaller force constants ΦαβIJ ). In turn, this leads to lower eigenfrequen-
cies ωs(q) and thus to lower Helmholtz free energies due to entropic contributions. More
insight can be gained by explicitly writing down the minimization problem in Eq. (2.67)
as:

dF

dV
= 0→ −P = 0. (2.70)

This demonstrates that minimizing the volume is equivalent to vanishing external pressure.
As will be explained later, this can be used to calculate the fully anharmonic thermal
expansion.

Anharmonic Effects: Lattice Thermal Transport

The thermal conductivity tensor καβ, which describes the the capability of a material
to conduct heat, is another prominent example of a physical quantity that can only be
9In solids with finite band gaps as the semiconductors of interest in this work, electronic contributions to
the free energy are generally negligible [106].
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Figure 2.7: Birch-Murnaghan Equations in the quasi-harmonic approximation at dif-
ferent temperatures: The blue squares mark the volumes which minimize
the free energy.

understood if anharmonic effects are taken into account. Formally, the thermal conductivity
is defined through Fourier’s law [107]

Jα = −καβ∇βT , (2.71)

as the proportionality constant between the cartesian components of the applied tem-
perature gradient ∇T and the heat flux J, which naturally develops to act against the
temperature gradient and to re-establish equilibrium. Generally, the thermal conductivity
consists of three different contributions

κ = κphonon + κelectron + κphoton . (2.72)

In this work, we limit ourselves to dicuss the lattice or phonon thermal conductivity κphonon,
since it is the dominant [106] contribution for semiconductors and insulators at non-
incandescent temperatures.

The fact that heat transport phenomena cannot occur within a purely harmonic ap-
proximation becomes obvious one investigates the heat-flux in the phonon picture [107]

J = (2π)3∑

s

w
~ωs(q)ns(q, t)vs(q)dq ≈ 1

V0

∑

q,s
~ωs(q)ns(q, t)vs(q) . (2.73)

Here V0 denotes the volume of the unit cell. In this expression, each of the modes
with occupation number ns(q) contribute to the heat flux, since they travel with the
group velocity vs(q) and carry the energy ~ωs(q). In the harmonic approximation,
however, all quantities that enter Eq. (2.73) stay constant over time: Even the occupa-
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tion numbers ns(q, t) = neqs (q) are constant in time since all modes are decoupled (see
Sec. 2.2.1). Accordingly, the heat flux J in equilibrium vanishes in the harmonic approx-
imation as the group velocity is the only antisymmetric quantity entering the heat-flux.

ωs(q) = ωs(−q) and ns(q, t) = ns(−q, t) but vs(q) = −vs(−q) . (2.74)

Hence, Eq. (2.71) cannot be fulfilled in a purely harmonic system.

Accordingly, it is necessary to include anharmonic effects explicitly to assess the ther-
mal conductivity. This can be achieved by investigating the dynamics on the anhar-
monic potential energy surface using molecular dynamics approaches [95] or perturba-
tively [92].

Perturbative Thermal conductivity

This approach is often favored as it allows for relatively rapid calculations of the thermal
conductivity. For simplicities sake, we restrict the derivation to the cubic isotropic case
which allows us to write κ = κxx = κyy = κzz. A more general and detailed derivation can
for instance be found in Ref. [107] and references therein.

To account for anharmonic effects, we first introduce the non-equilibrium occupation
numbers ns(q) by introducing a mode specific deviation ξs(q):

ns(q) = 1

e
~ωs(q)
kBT

−ξs(q) − 1

≈ neqs (q) + kBT
2

~ωs(q)
∂neqs (q)
∂T

ξs(q) . (2.75)

When performing the Taylor expansion around equilibrium in the second step, we inherently
assume that the deviations from equilibrium are small compared to the actual occupation
numbers in equilibrium. Accordingly, the non-equilibrium occupation numbers ns(q) must
fulfill the linearized Boltzmann equation

vs(q) · ∇T ∂n
eq
s (q)
∂T

=
(
∂ns(q)
∂t

)

scatt
(2.76)

in the steady state. Here, the left hand side (drift term) describes the evolution of the
non-equilibrium population due to a temperature gradient in the absence of phonon-phonon
interaction. Conversely, the right hand side counterbalance this drift due to scattering
processes. To describe them, the single mode relaxation time approximation is commonly
employed: This implies that explicit correlations between the non-equilibrium occupation
numbers of the different modes can be neglected, so that the scattering of one specific
mode (s′,q′) can be determined by assuming all other modes to follow the respective
equilibrium distribution: ns(q) = neqs (q) for all (s,q) 6= (s′,q′). In this approach, the right
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hand side of Eq. (2.76) can be approximated as
(
∂ns(q)
∂t

)

scatt
≈ −ξs(q)

τs(q)
kBT

2

~ωs(q)
∂neqs (q)
∂T

(2.77)

whereby the mode specific relaxation times τs(q) have been introduced. Combining
Eq. (2.76) and Eq. (2.77) yields an expression for ξs(q) and thus for the ns(q) defined in
Eq. (2.75) that can be inserted into Eq. (2.73):

J = − 1
V0kBT 2

∑

sq
~ωs(q)∂n

eq
s (q)
∂T

τs(q)vs(q)(vs(q) · ∇T ) . (2.78)

For the isotropic case, a comparison with Fourier’s law (2.73) yields:

κ = 1
3V0

∑

q,s

vs(q)2cs(q)τs(q) . (2.79)

Most of the quantities (vs(q), cs(q)) entering κ as defined in Eq. (2.79) can be readily
computed in the harmonic approximation. The lifetime τs(q), however, is infinite in this
approximation, due the absence of scattering ns(q) = neqs (q) discussed before. Formally,
the thermal conductivity is thus also infinite in this approximation.

If anharmonic effects are taken into account, the lifetimes can be determined via [109]

τs(q) = 1
2Γs(q) , (2.80)

from the imaginary part of the self energy Γs(q). If only the third order force-constants ΨαβγIJK

are taken into account, this self-energy is given by [109]:

Γs(q) = 18π
~2

∑

q′s′,q′′s′′
|Ψs,s′,s′′(q,q′,q′′)|2[(neqs′ (q

′) + neqs′′(q
′′) + 1)δ(ω − ωs′(q′)− ωs′′(q′′))

+(neqs′ (q
′)− neqs′′(q′′))(δ(ω + ωs′(q′)− ωs′′(q′′))− δ(ω − ωs′′(q′) + ωs′′(q′′)))].(2.81)

The Ψ(qs,q′s′,q′′s′′) are the Fourier transformed third order force constants ΨαβγIJK :

Ψs,s′,s′′(q,q′,q′′) = 1
3!
√
N0

∑

IJK,αβγ

εαI,s(q)εβJ,s′(q
′)εγK,s′′(q

′′)

×
√

~
2MIωs(q)

√
~

2MJωs′(q′)

√
~

2MKωs′′(q′′, s′′)

× ΨαβγIJKe
iq·RIeiq

′·RJ eiq
′′·RK∆(q + q′ + q′′) (2.82)

Here, the factor ∆(q +q′+q′′) ensures momentum conservation and is thus 1 if q +q′+q′′

corresponds to a reciprocal lattice vector and 0 otherwise. Please note that the expres-
sions (2.80)-(2.82) can be derived directly in a quite lengthy process from the third-order
Hamiltonian, as detailed in Ref. [109].
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The described approach has so far been used successfully in a series of studies [93, 92], but
fails for moderately anharmonic materials as only the leading anharmonic order is included.
As explained in Sec. 2.2.1, this can be mitigated to a certain extent, by renormalizing
the force constants at finite temperatures, effectively accounting for higher orders of
anharmonicity, or by truncating the Taylor series at higher orders.

Outlook: Fully Anharmonic Thermal Conductivity

However, no approach introduced until this point captures all accessible degrees of anhar-
monicity Using molecular dynamics methods in conjunction with the Green-Kubo rela-
tions [72] one can account for all accessible orders of anharmonicity in the thermal conductiv-
ity. This however requires a suitable representation of the heat flux:

J = d

dt

∑

I

RIEI

=
∑

I

vIEI
︸ ︷︷ ︸

Convective Heat Flux

+
∑

I

RIĖI

︸ ︷︷ ︸
Conductive Heat Flux

(2.83)

The convective heat flux arises due to mass transport while the conductive heat flux is
due to energy transport. In solids the conductive heat flux is the major contribution and
the convective heat flux is negligible [73].
Furthermore the given conductive heat flux is well defined since it depends on energy
derivatives. After some algebra the expression for the conductive heat flux can be
rewritten in terms of forces instead of per atom energies (see Sec. ?? for the deriva-
tion).

J =
∑

IJ

(RJ −RI)(
∂VJ
∂RI

· pI
m′I

) (2.84)

Using the virial stress

σI =
∑

I<J

(RJ −RI)(
∂VJ
∂RI

, (2.85)

the conductive heat flux can thus be rewritten as:

J =
∑

I

σIvI (2.86)

J is now uniquely determined. Finally the thermal conductivity is related to the autocor-
relation function of the heat flux via the Green-Kubo relations [96] and can be calculated
by evaluating the integral:

κ = lim
t0,Λ→∞

V

kBT 2t0

w Λ

0

w t0−Λ

0
J(t)J(t0 + t)dt. (2.87)
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Furthermore the average vibrational lifetime can be calculated from the autocorrelation
function too:

τ = lim
t0,Λ→∞

r Λ
0

r t0−Λ
0 J(t)J(t0 + t)dt

var(J) (2.88)

2.2.3 Equilibrium Molecular Dynamics: The Nuclei as a Classical Particle

The most straightforward way to access the anharmonic parts of the PES is by sampling it
directly using Molecular Dynamics (MD). Here the propagation of the nuclei is directly
simulated by Newton’s equations of motion:

FI(t) = MIR̈I(t). (2.89)

which are stepwise integrated t → t + ∆t for a finite timestep ∆t starting from a cho-
sen initial condition for the positions RI(t0) and the velocities ṘI(t0). A prominent
example for an algorithm to perform this numerical integration is the Velocity Verlet
algorithm [49]:

RI(t+∆t) = RI(t) + ṘI(t)∆t+ FI(t)
2MI

∆t2 (2.90)

ṘI(t+∆t) = ṘI(t) + FI(t) + FI(t+∆t)
2MI

∆t. (2.91)

It is in use up to this day due to its high numerical accuracy up to an order of O(t4) and
an only minimal increase in computational cost compared to earlier examples (e.g. the
Verlet algorithm which only has an accuracy of O(t2) [49]). Additionally, the velocity
Verlet algorithm is also symmetric under time reversal. Directly evaluating the dynamics
of the nuclei has the added benefit that phase space integrals do not have to be evaluated
directly since the ergodic hypothesis postulates that ensemble averages equal time aver-
ages. Phase space is defined as a smooth manifold that is equipped with the canonical
symplectic form, i.e., the Poisson brackets that define the time evolution of an observable
as:

dA(R, Ṙ)
dt

= {H,A}

= ∂H

∂R
∂A

∂Ṙ
− ∂A

∂R
∂H

∂Ṙ
. (2.92)

Here H is the Hamilton function. Importantly, the Verlet algorithm is symplectic, i.e.,
it preserves the symplectic form. To sample different thermodynamic ensembles, the
algorithm can be augmented by attaching so-called thermostats [48, 49]. Thermostats
emulate the behavior of a given thermodynamic ensemble at a constant temperature (more
detailed explanations can be found in the appendix) For this work the micro- (NVE)
and canonical-ensembles (NVT/NPT) are relevant. Their statistics (and generally the
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statics of any equilibrium ensemble) are defined by the partition function Z defined
by:

Z =
w
ρ(H(R),p)dRdp. (2.93)

It defines the probability distribution ρ = (H(R),p)
Z , from which the equilibrium expectation

value of a thermodynamical observable A(R,p) can be calculated:

〈A〉 =
w
ρ(R,p)A(R,p)dRdp. (2.94)

The meaning of "Classical" in Molecular Dynamics

At this point an important distinction between classical MD and classical nuclei must
be made as this can lead to confusion. Classical MD usually (and also in this work)
refers to MD simulations where the forces to propagate the nuclei are generated from
semi-empirical potentials, MD simulations based on DFT (or other ab initio methods) is
referred to ab-initio MD. However, in both cases the nuclei are treated as classical particles,
obeying the Newtonian equations of motion. Accordingly, the degrees of anharmonicity
accessible by classical and ab initio MD are referred to as "classical accessible degrees of
anharmonicity".

The Micro-Canonical Ensemble

The microcanonical ensemble is characterized by the conservation of the number of particles
(N), volume (V), and energy (E). Accordingly, its dynamics are fully described by the
Newtonian equations of motions and their initial conditions (R,p). Usually, these are
obtained from snapshots of the system, which is thermalized in the canonical ensemble.
The partition function of the micro-canonical ensemble is given by:

ZNVE = N
w
δ(H(R),p)− E)dRdp. (2.95)

Here N is a normalization constant. While the partition function includes all information
about the system solving the integral directly is not practicable. Accordingly, the PES is
explored using for example the velocity Verlet algorithm.

The Canonical-Ensemble

In the canonical ensemble the conserved quantities (N) (number of particles), (V/P) (volume
or pressure), and (T) (Temperature). Focusing on preserving the volume the partition
function of the canonical ensemble can be written as

Z =
w
e−βH(R,p)dRdp. (2.96)
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Here β = 1
kBT

is the inverse temperature. The exponential form of the distribution function
can be derived in different ways. Most straightforward if one embeds a micro-canonical
ensemble within a second micro-canonical ensemble and only allows for energy transfer
between them, hereby the second ensemble acts as a heat bath keeping the first one at a
constant temperature. An exact derivation is shown for example in Ref [49]. Again solving
the integral in Eq. 2.96 directly is only possible for a small number of systems e.g. for a
harmonic potential however for general systems it remains not feasible. To sample the
canonical ensemble regardless, the equations of motion can be coupled to a thermostat. A
selection of which is presented in the appendix of this work.

Why are we not always using MD ?

(Ab-initio) Molecular Dynamics enables us to sample all classical accessible degrees of
anharmonicity from which theoretically all anharmonic effects can be calculated with much
higher qualitative accuracy compared to the previously introduced methods. However at
least in ab-initio MD we are still limited to comparatively small supercells and short time
scales, accordingly, long-wavelength phonons are often not accounted for. Furthermore,
to obtain statistically reliable results, multiple trajectories are required, making ab-initio
MD computationally expensive. A more severe drawback of classical and ab-initio MD
is that the nuclei are treated as classical particles which is a good approximation for
many materials, but not for all. Especially describing organic crystals and molecules
requires the inclusion of quantum nuclear fluctuations to access all degrees of anharmonic-
ity10 [123].

2.2.4 The Quantum Canonical-Ensemble

Similar to the classical canonical ensemble we can define a partition function to calculate
the expectation value of observables. For this purpose the operator trace and the density
matrix ρ = ∑

I pI |ΨI〉 〈ΨI | need to be introduced:

〈Â〉 = Tr(Âρ̂) = Tr
(∑

I

pI |ΨI〉 〈ΨI | Â
)
. (2.97)

Here pI is the probability associated with the state |ΨI〉. In the quantum canonical
ensemble the partition function is replaced by the trace of the canonical density ma-
trix

ρ̂ = e−βĤ (2.98)

10This is not limited to organic compounds a prominent example is "classical" water which would be
poisonous [124]
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and thus defined as:

Z = Tr(ρ). (2.99)

This makes the expectation value of an operator in the canonical ensemble

〈A〉 = Tr(Ae−βH)
Tr(ρ) (2.100)

Evaluating this expression however requires solving the Hamiltonian from Eq. 2.8 which
is prohibitively expensive. However, it is possible to reformulate the quantum canonical
partition function in terms of an imaginary time path integral [63, 67]

2.2.5 The Path Integral Formalism

The original motivation behind the path integral formalism was to find the quantum
mechanical correspondence to the principle of least action in classical mechanics [62].
Accordingly, the roots of the path integral formalism are found in classical physics. The
principle of least action requires that any particle takes the path, which requires the least
amount of energy. Mathematically this means that the action functional must be stationary.
Formally the action functional is defined as:

S =
w t1

t0
L(R(t), Ṙ(t), t)dt (2.101)

(2.102)

Here R(t) are the positions, Ṙ the velocities, and the Lagrange function. The Lagrange
function is determined by the kinetic energy T and potential energy V and is typically
given by:

L(R(t), Ṙ(t), t) = T (Ṙ)− V (R). (2.103)

Mathematically it describes a surface, determining all possible configurations of the
system11. In classical mechanics the only relevant path is the one for which the action S is
stationary:

δS = 0. (2.104)

In 1933 Paul Dirac attempted to generalize this principle to the then-new field of quantum
mechanics [62] by extending Norbert Wiener’s description of Brownian motion. He found
that a quantum state q at different times t and T can be written as:

〈qt|qT 〉 =
w
e
i
h
F . (2.105)

11Please note that the Lagrange function can also depend on higher-order derivatives, the most prominent
example is the Einstein-Hilbert action.
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Point A at time t

Point B at time T

Figure 2.8: This figure illustrates the paths a particle traveling from point A to
B can take. The red line is the most likely path at which the action
is stationary, blue lines are the probable paths that contribute to the
probability amplitude, and orange lines are paths that generally cancel
each other out.

Here F is a function depending on qt, q1, ..., qT and h the Planck constant. In the h→ 0
limit, the classical principle of least action (Eq. 2.104) is recovered. The implications might
not be obvious at first glance but Eq. (2.105) demonstrates that the principle of least
action in classical mechanics is deeply connected to quantum mechanics. However, Dirac
did not show how to recover the Schrödinger equation nor did he provide a way to sum
over all possible paths. Richard Feynman addressed these open questions in his Ph.D.
thesis. Mathematically he derived the path integral from the time evolution operator, as
described in the next section. He came to the conclusion that the probability amplitude of
a particle traveling from point A to B is given by the sum of all possible amplitudes. [63]
Theoretically, this also includes paths that go to the end of the universe but by summing
over all paths they cancel each other out, and only the most probable paths contribute to
the result. This is illustrated in Fig.2.8.

Imaginary Time: Wick Rotation

As mentioned above Feynman derived the path integral from the time evolution opera-
tor:

Û(t) = e−
itĤ
~ . (2.106)

Here Ĥ is the Hamilton operator. The time evolution operator is linked to the canonical
density matrix Eq. (2.98) via the Wick rotation [64]. Originally developed as a tool in
relativistic quantum field theory to map problems that are difficult to solve in Minkowski
to Euclidian space12, the Wick rotation is also widely used in statistical physics where it is
12A Minkowski space is characterized by the signature of its (pseudo)metric (-1,1,1,1), conversely, the

metric of a Euclidian space has the signature (1,1,1,1).
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Re

Im

Time

Imaginary 
Time

Figure 2.9: The Wick rotation maps time from the real to the imaginary axis

defined as:

it

~
= β (2.107)

This transforms time by a π/2 rotation from the real axis to the imaginary axis, as illus-
trated in Fig. 2.9. Applied to the time evolution operator we find that

e−
itĤ
~

Wick rotation−−−−−−−−→ e−βĤ , (2.108)

the canonical density matrix, as defined in Eq. 2.98, is exactly the Wick rotated time
evolution operator, in which the imaginary unit in the exponent is replaced by a real
number. Deriving the path integral from the canonical density matrix instead of the time
evolution operator has many advantages for statistical physics, both mathematically and
computationally, as shown at the end of the section.

Derivation of the Imaginary Time Path Integral

To derive the path integral formulation of the quantum canonical partition function, from
Eq. 2.99, one starts by writing the corresponding density matrix in position space:

ρ̂(R) = 〈R| e−βĤ |R〉 . (2.109)
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Since the kinetic and potential energy operators do not commute, the density operator
cannot be factorized in the potential and kinetic energy part. However, since the Hamilton
operator is (essentially) self-adjoined [66] the canonical density matrix can be can be
written as:

e−β(T+V ) = lim
P→∞

(
e
−βV

2P e
−βT
P e

−βV
2P
)P

(2.110)

Here we used the Trotter product formula [65], importantly the error introduced by this
factorization decreases quadratically with P . Using this result we can reformulate Eq. 2.109
as a product of exponential operators, which only depend on the kinetic and potential
energy operators, respectively:

ρ(R) = lim
P→∞

〈R|
(
e
−βV

2P e
−βT
P e

−βV
2P
)P
|R〉 (2.111)

To evaluate the resulting expression we introduce the resolution of identity:

1 =
w
|Rα〉 〈Rα| dRα. (2.112)

Inserting the resolution of identity into Eq. 2.111, one obtains:

ρ(R = R1) = lim
P→∞

w
〈R1| e

−βV
2P e

−βT
P e

−βV
2P |RP 〉 〈RP | e

−βV
2P e

−βT
P e

−βV
2P |RP−1〉

... 〈R2| e
−βV

2P e
−βT
P e

−βV
2P |R1〉

P∏

α=2
dRα. (2.113)

Given that we expanded the identity operator in eigenfunctions of the position operator,
we can evaluate the exponential operator of the potential energy:

〈Rα+1|
(
e
−βV

2P e
−βT
P e

−βV
2P
)
|Rα〉 = e

−βV (Rα+1)
2P 〈Rα+1| e

−βT
P |Rα〉 e

−βV (Rα)
2P . (2.114)

This only leaves the kinetic energy part to be evaluated. To this end, the unity opera-
tor is again inserted, but since the kinetic energy operator depends on the momentum
operator the unity operator, has to be written in terms of eigenstates of the momentum
operator:

1 =
w
|pα〉 〈pα| dpα. (2.115)

Using this representation the kinetic term of Eq. (2.114) can be evaluated:

〈Rα+1| e−βPT |Rα〉 =
w
〈Rα+1|pα+1〉 〈pα+1| e−βPT |Rα〉 dpα+1

=
w
e−βPT (pα+1) 〈Rα+1|pα+1〉 〈pα+1|Rα〉 dpα+1. (2.116)
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Ψ

Figure 2.10: The imaginary time path integral relates the statistical properties of a
quantum mechanical system to that of classical ring polymer.

For the sake of readability, we defined βP = β
P . All terms in this equation are known:

〈Rα+1|pα+1〉 = 1√
2π~

eipα+1Rα+1/~ (2.117)

〈pα+1|Rα〉 = 1√
2π~

e−ipα+1Rα/~. (2.118)

Inserting these results into Eq. 2.116 we find

〈Rα+1| e−βPT |Rα〉 = 1
2π~

w
e−βPT (pα+1)ei

pα+1(Rα+1−Rα)
~ dpα+1

=
√

m

2πβP~2 e
−
βPMω2

P
2 (Rα+1−Rα)2 (2.119)

Here we have defined ωP = 1
βP ~ .

Combining Eq. 2.114 with Eq. 2.119 one can hence write the exact partition function, by
evaluating the trace of Eq. 2.113, as:

Z = lim
P→∞

(
M

2πβP~2

)P/2 w
e
−βP

∑P

α

(
−
Mω2

P
2 (Rα+1−Rα)2+V (Rα)

)
P∏

α=1
dRα. (2.120)

This is the main result of the (imaginary time) path integral formalism, it defines an
isomorphism between the (discrete) quantum canonical partition function and the partition
function of a ring polymer coupled by harmonic springs vibrating with the frequency
ωP [67]. This relationship is shown schematically in Fig 2.10. The index α represents the
alpha’th replica. Different from Feynmans’ formulation, the path integral in Eq. 2.120
sums over all possible closed paths in configuration space instead of real space. The
generalization to three dimensions simply requires adding the corresponding Cartesian
indices and is straightforward. In theory, the limit P → ∞ has to be evaluated to
obtain the exact result. However, the error in the factorization of Eq. 2.110 decreases
as O(1/P 2), so in practice, finite, sufficiently high, values of P are chosen. However,
what “sufficiently high” means is highly problematic, i.e. temperature and material,
dependent in our case. Light elements, for instance, often exhibit strong quantum nuclear
fluctuations even at elevated temperatures, which become more pronounced at lower
temperatures.
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Why not use Real-Time Path Integrals ?

Feynmans’ original real-time path integral uses a slightly different form compared to the
imaginary time path integral:

U = lim
P→∞

(
MP

2πit~2

)P/2 w
e
i

~P
∑P

α

(
−M

2P2
2t (Rα+1−Rα)2−tV (Rα)

)
P∏

α=1
dRα. (2.121)

The differences to the imaginary time path integral in Eq. (2.120) are that the prefactor in
the exponent is imaginary and that the exponent is a Lagrangian type function (T − V )
instead of a Hamiltonian one (T+V). Therefore the real-time path integral is not positive
definite and thus does not define a probability measure. Accordingly, all paths apriori
have to be taken as equally possible, requiring the evaluation of all possible paths (as
sketched in Fig. 2.8). In practical calculations and simulations this leads to what is called
the "sign problem" [69] causing, amongst others, uncontrollable noise. Conversely, the
imaginary time path integral meets the criteria of a probability measure and naturally
assigns a probability weight to all paths allowing for numerically efficient implementations.
Furthermore, for many potentials, the real-time path integral (in the limit P →∞) does
not even exist and requires the introduction of a "pseudo time" [70].

Observables in the Path Integral Formalism

Using the density matrix the expectation value of an operator is given by Eq. 2.100. A
path integral formulation of the same operator A is called an estimator. If the operator
Â only depends on the position its estimator can be derived easily by keeping it on
the left side during the path integral derivation. This yields a function A(R1) and
since all replicas are equivalent the estimator can be written as the average over all
replicas:

〈A〉P =
r
e
−βP

∑P

α

(
−
βPMω2

P
2 (Rα+1−Rα)2+V (Rα)

)
∑P

α
A(Rα)
P

∏P
α=1 dRα

r
e
−βP

∑P

α

(
−
βPMω2

P
2 (Rα+1−Rα)2+V (Rα)

)
∏P
α=1 dRα

. (2.122)

Probably the most obvious examples are the position and potential energy estimators:

RC = 1
P

P∑

α

Rα (2.123)

V (R) = 1
P

P∑

α

V (Rα) (2.124)

An important side note is that the variable RC corresponds to the center of mass of
the replica chain and is called the path centroid. Estimators, which depend only on
individual replicas, as the position and potential energy, are called local. This is however
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not the case if the operator depends also on the momentum. A simple example is the
energy, in its most bare bone form the energy estimator can be directly derived from the
partition function in Eq. 2.120 via E = ∂ln(Z)

∂β . This yields the thermodynamic energy
estimator:

ETD = P

2β −
1
P

P∑

α

M

2ω2
P

(Rα −Rα+1) + 1
P

P∑

α

V (Rα) (2.125)

It is easy to distinguish between the potential energy estimator

V = 1
P

P∑

α

V (Rα) (2.126)

and the kinetic energy estimator:

TTD = P

2β −
1
P

P∑

α

M

2ω2
P

(Rα −Rα+1)2 (2.127)

It is immediately evident that the kinetic energy does not only depend on individual
replicas but also on cross-correlations between them. Thus this is called a non-local
estimator.

Sampling the Phase Space using Path Integral Molecular Dynamics

There are two established methods to evaluate the integral in Eq. 2.120. One is Path
Integral Monte Carlo (PIMC), where the PES is explored by generating random samples,
distributed according to the probability distribution:

e
−βP

∑P

α

(
−
Mω2

P
2 (Rα+1−Rα)2+V (Rα)

)

. (2.128)

The other method is Path Integral Molecular Dynamics (PIMD) [68]. PIMD uses the
prefactor of Eq. 2.120 to reintroduce momenta:

√
2πM
β

=
w

R
e−β

p2
2M . (2.129)

Accordingly Eq. (2.120) can be rewritten as:

Z = lim
P→∞

( 1
2π~2

)P w
e
−βP

∑P

α

(
p2
α

2MI
−
βPMω2

P
2 (Rα+1−Rα)2+V (Rα)

)
P∏

α=1
dRα

P∏

α=1
dpα.(2.130)

This yields an effective Hamiltonian

HP =
∑

α

(
p2
α

2M −
βPMω2

P

2 (Rα+1 −Rα)2 + V (Rα)
)
, (2.131)
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that effectively describes a ring-polymer of P classical systems coupled by harmonic
springs. Accordingly, the system can be evolved using the Hamiltons’ equation of mo-
tion:

ṗα = M

β2
P~2 (2Rα −Rα−1 −Rα+1)− ∂V (Rα)

∂Rα
(2.132)

Ṙα = pα
M

(2.133)

The dynamics generated by these equations of motion provide an ingenious way to evaluate
the integral from Eq. 2.120. However one needs to keep in mind that the introduced momenta
are purely fictitious and were only introduced as sampling devices. Accordingly, they do
not have a strict physical meaning and the trajectories produced are purely statistical. One
might say that PIMD is only a clever Monte Carlo scheme.

The Normal Mode Representation

An important technical concept in obtaining an efficient implementation of PIMD is the
normal mode representation of Eq. (2.131). For that purpose the ring polymer Hamiltonian
is rewritten in matrix form:

HP =
∑

αI

(pαI · pαI
2MI

+ 1
2RTα

I SαI Rα
I + V ({Rα})

)
. (2.134)

Here S denotes the matrix that couples the different replicas to each other. Using periodic
boundary conditions in the ring polymer (e.g. if the ring polymer has P replicas the replica
number P+1 is identical to the first replica), the components of the matrix S can be
written as

SαI := ω2
P

2MI
(2δαα − δαα−1 − δαα+1) (2.135)

This is a tri-diagonal matrix with additional elements on the corners which account for
the periodic boundary conditions. It takes the form:

S = ω2
P

MI




2 −1 0 · · · −1
−1 2 −1 0 · · ·
0 . . . . . . . . . . . .
... · · · −1 2 −1
−1 0 · · · −1 2
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Mathematically S describes a closed chain of P harmonic oscillator with nearest-neighbor
coupling. The transformed momenta and position can be written as:

p̃ν =
∑

α

pαCαν (2.136)

qν =
∑

α

RαCαν . (2.137)

The exact form of the transformation matrix C can be found in Ref. [49] Note that the
index ν indicates a vibrational mode and not a specific replica index. Finally, we find the
diagonalised matrix elements for the coupling matrix S:

ων = 2ωP sin(νπ/P ). (2.138)

Inserting the results into Eq. (2.134) yields the ring polymer Hamiltonian in normal mode
coordinates:

HP =
∑

νI

(
p̃νI · p̃νI
2MI

+ Mω2
ν

2 q2
νI + V ({Rν(q)})

)
. (2.139)

This representation of HP offers insight into the centroid which corresponds to the mode
ν = 0 where the ring polymer contribution Mω2

ν
2 q2

νI vanishes since omega0 = 0. Accordingly,
the centroid can be regarded as more “classical” compared to the ring polymer mode
ν > 0

Alternatives to PIMD

While PIMD and PIMC are the most commonly used (and fastest) methods to sample
the PES including quantum nuclear fluctutions they are not the only ones. Finding
(approximate) solutions of Eq. 2.8 is an active field of research. Two prominent examples
are the Vibrational Configuration Interaction [43, 44, 45] (VCI) and Vibrational Coupled
Cluster [41] (VCC) methods which are inspired by their electronic structure counterparts.
Accordingly, both approximate the exact wave function of the nuclear Hamiltonian in
Eq. 2.8 to include correlation effects. Besides scaling to the order of (O)(ND) where N is
the number of basis functions per mode and D the tensor dimensionality, VCI and VCC
require a dense representation of the PES increasing the computational cost significantly.
This makes VCI and VCC only suitable for molecules but not solids which is the focus of
this work.

2.2.6 Sampling he Potential Energy Surface by Chance: Harmonic Sampling

The MD/PIMD methods for sampling the PES introduced until this point are highly accu-
rate, but also computational demanding. Since Molecular Dynamics (ab initio and classical)
samples the PES by propagating the nuclei in time which requires momenta. Conveniently
the cost can be alleviated by using Monte Carlo sampling generating displacements based
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on the harmonic approximation [83]. This method uses the canonical probability density
of an approximated harmonic system to generate weighted displacements to solve Eq. 2.94.
Accordingly the canonical partition function in Eq. 2.96 for a system with N particles can
be simplified to:

Z =
w
e
−β
(∑

I

pI ·pI
2MI

+V (R)
)
dpdR

=
√

2π3∗N

β

w
e−βV (R)dR (2.140)

This is analytically possible since the canonical probability distribution of the kinetic
energy is a Gaussian function. Another Monte Carlo method was already introduced
in Since the potential is harmonic V (R) = 1

2
∑
I,J,α,β Φ

αβ
IJ u

α
I u

β
J we can easily see that

the harmonic displacements obey a normal distribution. Using the harmonic positions,
defined in Eq. 2.57, we can calculate the necessary expectation values to write the finite
temperature form of the harmonic displacements. For that purpose Eq. 2.57 is rewritten
using real functions:

RI(t)−Req
I = +Re

(∑

q,s

As(q)√
MI

εI,s(q)ei(q·RI−ωs(q)t)
)

uI(t) = Re
(∑

q,s

As(q)√
MI

εI,s(q)ei(φs(q)−ωs(q)t)
)

=
∑

q,s

As(q)√
MI

εI,s(q)cos(φs(q)− ωs(q)t). (2.141)

From this we find that the mode resolved energy in the harmonic approximation is:

Es(q) = ω2
s(q)
2 A2

s(q). (2.142)

Classical Harmonic Sampling

From the equipartition theorem we know that the energy per mode in a harmonic potential13

is 〈Es(q)〉 = kBT = ω2
s(q)
2 〈A2

s(q)〉 defining the expectation value of the mean square
displacement. The mean square displacement can be used to define the expectation value
of the amplitude as:

〈As(q)〉 =
√
〈A2

s(q)〉

〈As(q)〉 =
√
kBT2
ω2
s(q) (2.143)

Based on this result, the harmonic displacements are constructed by replacing the time
modulation with normally distributed random numbers. This method was first proposed
13More general formulations exist e.g. for anharmonic potentials of the form EPot = a1 ∗ R2 −∑

n>1 anu
2n [133]
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in Ref. [83]. To obtain normally distributed random numbers a Box-Muller transfor-
mation [84] is applied to two uniformly distributed mode-dependent random numbers
ξs and φs:

Zs =
√
−2ln(ξs)cos(2πφs) (2.144)

ζs =
√
−2ln(ξs)sin(2πφs) (2.145)

Zs and ζs are then independent, normally distributed random numbers. Based on this
result, we can write the harmonic displacements as:

uI =
∑

sq
εI,s(q)

√
2kBT

MIω2
s(q)

√
−2ln(ξs)cos(2πφs). (2.146)

Importantly this preserves all expectation values and the displacements vanish in the limit
t→ 0 K, as expected for classical nuclei.

Quantum Harmonic Sampling

To account for quantum nuclear fluctuations the Bose-Einstein distribution is used instead
of the equipartition theorem. The general idea however is largely the same and only
requires finding the appropriate form of 〈As(q). This is again drawn from the square root
of the mean square displacements and is give by:

〈As(q)〉 =
√

~(ns(q) + 2)
2MIωs(q) (2.147)

Using the same technique as before we can write the quantum harmonic displacements
as:

uI =
∑

sq
εI,s(q)

√
~(ns(q) + 2)

2MIωs(q)

√
−2ln(ξs)cos(2πφs). (2.148)

Again all expectation values are preserved, accordingly, the displacements remain finite even
in the t→ 0 K limit due to the zero point or vacuum energy. Using Eq. 2.148 to calculate
the expectation value

√
〈A2

s(q)〉 = 〈As(q)〉 for T = 0 K we find:

〈As(q)〉 =
√

~
MIωs(q) (2.149)

Advantages and Disadvantages of Harmonic Sampling

Harmonic sampling as discussed above rapidly produces uncorrelated configurations for
which fully anharmonic energies and forces can be calculated for semi-empirical force fields
and ab-initio methods alike. However, the harmonic nature of the displacements still
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presents an approximation, in which the displacements are always normally distributed.
Additionally, quantum nuclear fluctuations can also only be accounted for within the limits
of the harmonic approximation only changing the displacements’ variance or "spread"
by changing the amplitudes from Eq. 2.147. Accordingly tunneling and other QNFs are
not present. of the displacements. which can lead to erroneous results which will be
demonstrated in chapter 3.

2.2.7 Real Time Correlation Functions

In the previous section, the discussion revolved around how to evaluate the static expectation
values of classical and quantum mechanical observables. However many statistical processes
are time-dependent. An important case, and the one we shall examine here, is the correlation
function of two observables A and B.

Classical Real-Time Correlation Function

The classical real-time correlation function of two observables A and B in the canonical
ensemble is given by

GCl
AB =

w
e−βH(R,p)A(Rt,pt)B(R,p)dRdp. (2.150)

It describes how the microscopic values of A and B are related at different times. Note that
the classical correlation function is symmetric under time reversion, complex conjugation,
and under both operations combined [49].

Quantum Real-Time Correlation Function

The quantum real-time correlation function of two operators A and B is again defined
using the canonical density matrix introduced in Eq. 2.98 and reads:

GAB =
Tr
(
e−βHAe iHt~ Be−iHt~

)

Z
(2.151)

However, an alternative formulation exists, i.e. the Kubo-transformed correlation func-
tion [72]:

G̃AB = 1
βZ

w
Tr
(
e−(β−λ)HAe−λHe

iHt
~ Be

−iHt
~
)
dλ (2.152)

Both correlation functions are related through their Fourier transforms:

GAB(ω) =
w

R
GAB(t)e−iωtdt (2.153)

G̃AB(ω) = FT (G̃AB(t)) (2.154)
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Variables R, p of Extended Phase  
Space Evolve in Time 

Centroid Variables RC, pC  
Evolve in Time

Figure 2.11: Schematics of how the phase space variables evolve in time in Ring
Polymer Molecular Dynamics and Centroid Molecular Dynamics.

By evaluating the traces in Eq. 2.151 and 2.152 using the Hamiltonians eigenstates one
can show that both correlation functions are related by:

GAB(ω) = β~ω
1− e−βω~ G̃AB(ω) (2.155)

However, it can be debated which of the two correlation functions is the true analog
to the classical correlation function. A case can be made that the Kubo-transformed
correlations functions are more closely related to classical correlation functions as they
also full fill the same symmetries, whereas the quantum real-time correlation functions do
not [49].

Approximating the Quantum Real Time Correlation Function

However, evaluating any of the real-time quantum correlation functions requires solving
the nuclear Hamiltonian in Eq. 2.8 or evaluating the real-time path integral in Eq. 2.121.
To avoid these numerical intensive tasks, approximations, in terms of classical trajectories,
similar to static PIMD, are sought, to account for quantum nuclear dynamics in the
calculation of spectra, transport properties, and reaction rates.

Centroid Molecular Dynamics

One of the earliest approximations is Centroid Molecular Dynamics [79, 80] (CMD). It
should be noted that CMD is an ad-hoc defined method and no rigorous derivation for
CMD existed until recently. It was shown that CMD can be derived from Matsubara
dynamics [82]14. CMD approximates the Kubo transformed correlation function by evolving
the centroid in the potential of mean force generated by the replica, which in normal mode
coordinates has the form:

UC(q̃0) = − 1
β
ln
(w ∏

α=1
dp̃αdq̃αe

−βP
(∑P−1

α=1
p̃α·p̃α
2mα

+
∑P−1

α=1
mαω

2
α

2 q̃2
α+
∑P−1

α=0 V (Rα(q̃))
))
(2.156)

14Matsubara dynamics is a higher level approximation with a rigorous derivation. However, its immense
computational demand currently prohibits any application.
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Accordingly the correlation function of two observables A andB is given by

〈AB〉 = 1
ZCMD

w
e−βP (TC+UC)AC(RC)BC(R(t)C)dRCdpC , (2.157)

Here the subscript C denotes centroid properties. Technically the potential of mean force
is obtained by integrating over all internal ring-polymer modes except the centroid mode.
Effectively this is archived by decreasing the mass of the ring-polymer replicas, which
increases their frequencies. This leads to an adiabatic decoupling of the centroid- and all
other ring-polymer modes. CMD has many desirable qualities [78]:

• It fulfills the same symmetries as the Kubo transformed correlation function

• It is exact in the harmonic approximation for linear position-dependent observables.

• It is exact in the limit t→ 0 for linear-position dependent observables

However, this method also has its caveats.

• CMD suffers from the "curvature" problem since the centroid can move into un-
physical positions. In practice, this is known as a shift and broadening in the peaks
of spectras [81]

• The time steps have to be chosen small enough for the centroid to follow the changes
in the effective potential. This leads to higher computational costs compared to the
alternatives below.

• While CMD is exact in the harmonic approximation it is less accurate for highly
anharmonic potentials [82].

• CMD also does not include quantum coherence effects

• Nonlinear and momentum-dependent estimators can be problematic.

Ring Polymer Molecular Dynamics

Another popular method to calculate real-time quantum correlation functions is Ring
Polymer Molecular Dynamics (RPMD) [74]. Similar to CMD, RPMD is an Ad-Hoc defined
method and can only be derived from Matsubara dynamics [82] In contrast to CMD,
RPMD emulates a microcanonical ensemble. Accordingly, the internal modes of the ring
polymer are not thermalized and the replica masses are equal to the physical masses.
RPMD is based on the observation that if one tries to calculate the static expectation
values of two position-dependent estimators AP (R) and BP (R) using PIMD the resulting
expression

〈AB〉P = 1
(2π~)PZP

w
e−βPHPAP (R)BP (R(t))dRdp, (2.158)
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yields the t→ 0 limit of the Kubo-transformed correlation function (Eq. 2.152). Further-
more, Eq. 2.158 not only shares the same symmetries as the Kubo-transformed correlation
function but is also exact in the classical limit and the harmonic approximation for linear
position-dependent estimators. Identical to PIMD the equations of motions are generated
by the ring polymer Hamiltonian 2.131 and are given by Eq. (2.132). Accordingly, the time
steps do not have to be reduced in contrast to CMD. RPMD has successfully been applied
to calculate reaction rates [75] and transport coefficients, such as diffusion coefficients [76].
However, the method also suffers from certain drawbacks:

• Does not include quantum coherence effects

• Problematic for highly anharmonic potentials

• Problematic for nonlinear and momentum-dependent estimators

• Ring Polymer modes can erroneously resonate with physical modes [81], leading to
spurious splitting of peaks in spectra.

• Harmonic springs coupling the replicas stiffen thus RPMD is highly non-ergodic and
requires many trajectories.

Thermostatted Ring Polymer Molecular Dynamics

Thermostatted Ring Polymer Molecular Dynamics (TRPMD) is an extension of RPMD
and bridges the gap between it and CMD. The motivation to do so was to address RPMD’s
resonance and CMD’s curvature problem. By demonstrating that CMDs’ curvature problem
originates from decreasing the masses [77], since (T)RPMD uses the physical masses instead
neither exhibits the curvature problem [77]. The spurious resonance is removed by attaching
a path integral Langevin thermostat (PILE) [167] to the internal ring polymer modes [77],
thus dampening their vibrations. For the free ring polymer the dampening parameters γ
are given by:

γα>0 = 2ωα (2.159)

γ0 = 1
τ0
. (2.160)

Here α numerates the ring polymer modes ωα and τ0 the relaxation time. Importantly,
this approach retains all features proven about RPMD, which means that estimators
derived for RPMD can also be applied to TRPMD. Furthermore, the practical application
of TRPMD is straightforward since the thermostat can easily be detached from the
centroid mode by choosing a sufficiently high relaxation time. An additional advantage of
attaching a thermostat to the internal ring polymer modes is that the resulting dynamics
are significantly more ergodic compared to RPMD. However, the thermostat can lead to
an artificial peak broadening in vibration spectra. How the PILE thermostat works are
explored in more detail in appendix D.2.
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2.3 Measuring Anharmonicity

So far we mainly discussed MD/PIMD methods that allow to inclusion anharmonic effects.
However, how pronounced the anharmonic effects are in different materials at different
temperatures. To this end, an anharmonicity measure was recently introduced [112].
The basic idea is to sample the PES at a finite temperature and use the forces to mea-
sure to which extent the PES is anharmonic. However, since results obtained from the
bare forces would not be comparable for different materials a normalization scheme was
developed. The normalization schemes is derived from the thermodynamic average of
the force components 〈FI,a〉 and the associated associated probability density function
ρ(F ):

∑

I,a

〈FI,a〉 = 1
NI

w

R
Fρ(F )dF. (2.161)

The probability density function ρ(F ) can be represented using the Dirac delta distribution
and takes the form:

ρaI (F ) = 1
Nt

∑

t

δ(F − F aI (t)) (2.162)

ρ(F ) = 1
3NI

∑

I,a

ρaI (F ), (2.163)

where Nt is the number of time steps, t the time, NI the number of nuclei, and F the
forces. We can generalize the rest of the original definition, shown in Ref. [112], to PIMD.
The required force estimator can easily be derived from the PIMD equations of motion in
Eq. 2.132 and takes the form:

FC
I = 1

P

∑

α




MI

β2
P~2 (2RI,α −RI,α−1 −RI,α+1)
︸ ︷︷ ︸

FRP
I,α

−∂V (RI,α)
∂RI,α




(2.164)

Here FRP
I,α describes the ring-polymer forces between nuclei in neighbouring replicas,

−∂V (RI,α)
∂RI,α

the physical forces within each replica, P is the number of replicas in the
ring-polymer, and α ∈ [0, P ] are the replica indices. The forces FC

I are also referred to as
the centroid forces. Once the sum in Eq. 2.164 is carried we find that the contribution
from the ring-polymer forces vanishes, due to its cyclic boundary conditions P + 1 = 1.
We use the definition of FI,α in Eq. 2.164 to generalize Eq. 2.162 to PIMD, which takes
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the form:

ρaI,α(F ) = 1
Nt

∑

t

δ(F − FαI,a(t)) (2.165)

ρ(F ) = 1
3NI

∑

I,a

∑

α

ρaα,I(F ). (2.166)

In Ref. [112] the standard deviation σ(F ) =
√r
R F

2ρ(F ) was identified as the natural
scale of the forces. Based on the force estimator presented in Eq. 2.164, we can write the
natural scale for the forces to PIMD as:

σ(F ) =
√w

R
F 2ρ(F )dF (2.167)

=
√√√√ 1

3NIP 2
∑

I,a

〈(FαI,a)2〉. (2.168)

This will become relevant shortly, Based on this the anharmonicity is measured as:

σA =

√√√√
∑
I,a〈(FA

I,a,α)2〉
∑
I,a〈(FαI,a)2〉 . (2.169)

Here FαI are the purely anharmonic centroid forces defined as:

Fα
I = Fα

I − Fα
I (2.170)

The harmonic centroid force FC-HA are obtained from the displacements around the
equilibrium positions and are given by:

Fα
I =

∑

J

ΦIJ · uJα. (2.171)

Accordingly, Eq. 2.169 measures the contribution of anharmonicity relative to the forces
F by subtracting the harmonic contribution of the force from the full force. In the
publication, it is suggested to categorize materials as harmonic if the anharmonicity
score at a given temperature is less than 0.3. While this statement is true, the next
chapter will show that materials with σA ≈ 0.3 can already exhibiting strongly anharmonic
dynamics.

Harmonic Analysis

The completeness of the eigenvectors εs(q) of the dynamical matrix defined in Eq. (2.56)
allows to analyze (PI)MD trajectories on a qualitative level by projecting it onto the
eigenmodes of the dynamical matrix thus allowing mode-specific resolution of atom specific
quantities. Note that, the projection of a (PI)MD trajectory implicitly includes higher
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orders of anharmonicity. The implementation is straightforward and only requires the
Hessian and basically relies on inverting the ansatz to solve the harmonic equations of
motion in Eq. (2.55), Two important examples are the displacements of the atoms around
their equilibrium position and the velocities. Their projections, in a finite size super cell
are given by:

uS(t) = 1
N

∑

I

εIS · uI(t) (2.172)

vS(t) = 1
N

∑

I

εIS · vI(t). (2.173)

Here N is the number of atoms in the supercell, I the I’th atom in the supercell, εIS
the eigenvector of the dynamical matrix, and S one of the 3N vibrational modes that
are commensurate with the supercell. The projected displacements and velocities can be
mapped back into the first Brillouin zone. For that it is useful to express the index I using
periodic boundary conditions as I → nÎ, where Î is the Î’th atom in the primitive unit cell
and n the n’th periodic image shifted by the translation vector Tn. The commensurate
wave vectors q and Tn determine the phase factor e−iq·Tn . The mapping of the projected
displacements and velocities is given by:

us(q, t) = 1
N̂

∑

nÎ

e−iq·TnεÎs(q) · unÎ(t) (2.174)

vs(q) = 1
N̂

∑

nÎ

e−iq·TnεÎs(q) · vnÎ(t). (2.175)

Here N̂ is the number of atoms in the primitive unit cell and s denotes the 3N̂ vibrational
modes. The tuple (q, s) is equivalent to the mode index S from Eq. 2.172 and 2.173. As is
proven in App. B this is also applicable to PIMD:

uαs (q, t) = 1
N̂

∑

nÎ

e−iq·TnεÎs(q) · uα
nÎ

(t) (2.176)

vαs (q) = 1
N̂

∑

nÎ

e−iq·TnεÎs(q) · vα
nÎ

(t). (2.177)

Here α denotes the α’th ring-polymer replica.
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Mode Resolved Anharmonicity Score

The completeness of the eigenvectors εs(q) of the dynamical matrix defined in Eq. (2.56)
also allows for mode-resolved analysis of (PI)MD forces:

Fs(q) = 1
N

∑

nÎ

1
MÎ

e−iq·TnεÎs(q) · FnÎ(t). (2.178)

This allows to calculate a mode-resolved anharmonicity score, its functional form is very
similar to σAs (q) as defined in Eq. 2.169:

σAs (q) =
√
〈(Fs(q)− FHA

s (q))2〉
〈F2

s(q)〉 . (2.179)

In Ref. [112] σA was defined even more generally by the formula:

σA =
√∑

Iα〈(FIαX − FHA
IαX)2〉∑

Iα〈F2
IαX〉

. (2.180)

Here X can by either a vibrational mode n, a group of atoms, or even a single atom [112].
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3 The Interplay of Quantum Nuclear and
Anharmonic Fluctuations

To this day, the impact of quantum nuclear fluctuations (QNFs) on the degree of anhar-
monicity is still not widely understood. For instance, it is still common to assume that
quantum nuclear fluctuations are only important at low temperatures and that anharmonic
effects are negligible at these temperatures. Similarly, it is often assumed that the clas-
sical, i.e. T → ∞, limit is generally applicable at elevated temperatures. A number of
publications suggest that a complex interplay between quantum nuclear fluctuations and
anharmonic effects exists, e.g. for the thermal expansion [122], for the relative stability
of different structural phases [123], and for the thermal conductivity [121, 120]. However,
most of these studies focus on a specific observable and material. Here we establish a
more general picture by quantifying the degree of anharmonicity first. To this end, we
generalized the definition of the anharmonicity measure [112], introduced in Sec. 2.3, to
path integral MD (PIMD). Finally, we analyze the implication of our findings for thermal
conductivity.

3.1 Validation of the Anharmonicity Score

For validation of the generalized anharmonicity score, we chose solid Lennard-Jones Argon
and Tersoff Silicon from 0 to 60 and 700 Kelvin respectively. Both force fields are well
understood, and well-performing implementations for both are readily available as part of
LAMMPS [143]. Most importantly Tersoff Silicon and Lennard-Jones Argon are examples
of highly harmonic and anharmonic materials, respectively. Before proceeding, both systems
will be discussed briefly to establish a baseline, comparing predictions obtained from the
toy models to experiments as well as a selection of different DFT XC functionals using
the FHI-aims ab initio materials simulation package [100]. For that purpose, the phonon
band structures [91] and thermal expansion coefficients were calculated for both systems
using the Tersoff and Lennard-Jones potentials respectively. As explained in Sec. 2.2.1
calculating this, requires the harmonic force constants ΦαβIJ , i.e., the Hessian of the potential
energy surface. In this work, a finite difference approach, as proposed by Parlinski, Li,
and Kawazoe [90] and implemented in the phonopy package [91], was used. From the
forces FI(∆RJ) acting on the individual atoms I under a small displacement ∆RJ of
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Figure 3.1: Phonon band structures (left) and thermal expansion coefficients (right)
for diamond silicon. The band structure was calculated using the Tersoff
potential (red) and DFT PBEsol (magenta), PBE (blue), and PW-
LDA (cyan) XC-functionals. Neutron scattering experiments taken from
Ref. [125] (open maroon circles) are shown as well. The thermal expansion
coefficient was extracted from the quasi-harmonic approximation (all
methods), classical MD (black squares, Tersoff only), and PIMD (orange
squares, Tersoff only) and compared to Twyman-Green interferometry
(violet triangles [126]) and X-ray diffraction (blue triangles [127]).

atom J from its equilibrium position the Hessian is calculated by evaluating the forward
finite difference:

ΦαβIJ = ∂E

∂RαI ∂R
β
J

= ∂FαI

∂RβJ
≈ FαI (δRβJ)

δRβJ
. (3.1)

The thermal expansion was calculated based on the quasi-harmonic approximation [86]
and fully anharmonic NPT cl and PIMD simulations using the I-PI (PI)MD code [142]. In
the latter cases, the nuclei were propagated in 1 fs steps, to which a stochastic velocity
re-scaling thermostat was used [61]. The results are then compared to different XC-
functionals and van der Waals correction schemes (Silicon: PW-LDA [28], PBE [29], and
PBEsol [30]; Argon: TS@PBE [102] and MBD@PBE [103, 104]) as well as experimental
results.

3.1.1 Vibrational Properties of Tersoff Silicon

As discussed in Sec. 2.1.1, the necessary parameters to model silicon using the Tersoff
potential are provided as part of the LAMMPS package [143] but were first introduced
in Ref. ??. For all Tersoff simulations, a cubic 6× 6× 6 supercell containing 1728 atoms
was used while all DFT simulations were performed in a cubic 2 × 2 × 2 containing 64
atoms as well as a dense 6 × 6 × 6 k-grid. The phonon band structures and thermal
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expansion coefficients are shown in Fig. 3.1. Both properties are relevant for this work
since high-frequency phonons can indicate active quantum nuclear fluctuations at elevated
temperatures while the thermal expansion allows for (limited) insight into the degree of
anharmonicity.
While, Silicon exhibits high frequent optical modes it only exhibits a small thermal ex-
pansion, due to its highly harmonic nature. Qualitatively, the results are the same for all
levels of theory. Both PIMD and the quasi-harmonic approximation predict a nonlinear
temperature-dependent function for the thermal expansion due to the inclusion of QNFs par-
ticularly zero-point motion which induces a renormalization of the temperature-dependent
lattice constants at lower temperatures. Conversely, the thermal expansion obtained from
classical MD is almost constant since the classical lattice expands completely linearly.
However comparing all predictions, obtained from the Tersoff potential, to experimental
results uncovers that both the phonon dispersion relation, especially at high frequencies, as
well as the thermal expansion, are highly overestimated, furthermore the Tersoff potential
fails to predict the negative thermal expansion at low temperatures. Conversely, DFT
results for the phonon dispersion relation and thermal expansion, are generally in much
better agreement with the experimental results for example correctly modeling the negative
thermal expansion at low temperatures. However this should not insinuate that choice
of the functional is irrelevant, on the contrary, pw-LDA, PBE, and PBEsol predictions
still differ quite drastically. While the predicted band structures agree with experimental
results (with a slight bias towards pw-LDA), the thermal expansion coefficients, calculated
using the pw-LDA and PBE XC-functionals respectively, are in better agreement with the
experiment below 200 K compared to PBEsol. Conversely, PBEsol results are in better
agreement with experimental results above 200 K.

3.1.2 Vibrational Properties of Solid Lennard-Jones Argon

Since the outer shell of argon atoms is completely filled it usually neither forms ionic nor
covalent bonds1. Accordingly, the atoms in an Argon crystal do not form chemical bonds
and are held together by van der Waals interactions described by a pairwise Lennard-Jones
potential. We use the Lennard-Jones parameters introduced in Ref [128] (ε = 0.010325 (eV),
σ = 3.405 (Å)) and a 13 (Å) cutoff radius for the interactions. As explained in Sec. 2.1.3
semi-local XC-functionals do not account for the long-range nature of van der Waals
interactions. Accordingly, correction schemes have to be applied to most DFT calculations.
For purposes of comparison, both the Tkatchenko-Scheffler (TS) and many-body dispersion
(MBD) correction schemes were used on top of the PBE XC-functional. The results are
shown in Fig. 3.2. In contrast to the previously discussed silicon, the phonon band structures
obtained using either TS@PBE or MBD@PBE are not more accurate compared to the
band structure calculated using the Lennard-Jones potential which appears to agree best
1While only some compounds have been synthesized successfully e.g. argon hydrofluoride [129] which
exhibits weak chemical bonds, CCSD(T) and MP2 calculations predict the existence of different
carbon/silicon-argon compounds [130].
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Figure 3.2: The left image shows the phonon band structure of solid Argon obtained
from the Lennard-Jones potential (red), DFT@PBE@mbd (magenta),
and DFT@PBE@TS (blue) in comparison with experimental results [131]
(open black circles) obtained from neutron scattering. The right image
shows the corresponding thermals expansion coefficients calculated from
the quasi-harmonic approximation (the same color coding as for the band
structures applies), classical MD (black squares and line), and PIMD
(orange squares and line) in comparison with experimental results [132]
(violet triangles) using a parallel-plate capacitance dilatometer

with the experimental results. Conversely, the results of the quasi-harmonic approximation,
based on DFT, appear to be in better agreement with the experimental results compared
to the quasi-harmonic results obtained from the Lennard-Jones potential. However, this
also illustrates the shortcomings of the quasi-harmonic approximation, while it serves as a
useful approximation even for highly anharmonic materials as it does include high orders of
anharmonicity, it is still only an extension of the harmonic approximation. This is evident
if the Lennard-Jones PIMD results are taken into account which agree much better with
the experimental results. However, this does not indicate that the quasi-harmonic thermals
expansion obtained from MBD@PBE and TS@PBE is meaningless. Quite on the contrary,
the quasi-harmonic thermal expansion based on TS@PBE seems to diverge above 50 (K)
while MBD@PBE predicts a decrease in the thermal expansion. This can be an indication
of a phase transition that would be roughly in line with the melting temperature of solid
Argon at 83 (K). The same behavior can also be observed in the Lennard-Jones based
quasi-harmonic results above 60 (K).

3.1.3 The Anharmonicity Score Tested on Tersoff Silicon and Lennard-Jones
Argon

To test its PIMD formulation and also illustrate the methods used, the anharmonicity
scores for Lennard-Jones argon and Tersoff silicon were calculated using different methods
for exploring the PES. We used classic and quantum harmonic sampling, (classical)MD,
and PIMD. Additionally, we calculated the anharmonicity score along multiple harmonic
PIMD trajectories, calculating the anharmonic forces from uncorrelated snapshots using
the Lennard-Jones and Tersoff potentials. This is mathematically equivalent to quantum
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3.1 Validation of the Anharmonicity Score

Figure 3.3: The images show the anharmonicity score of Lennard-Jones Argon (left)
and Tersoff Silicon (right) computed from harmonic sampling using the
Bose-Einstein distribution (solid red line) or equipartitioning (solid blue
line), classical MD (solid black line and triangles) and PIMD (orange
solid line with triangles squares indicate harmonic PIMD) together with
the difference between harmonic and anharmonic sampling.

harmonic sampling and thus presents an valuable tool for validation, since the average
anharmonicity score must be the same for both methods. The results are sown in Fig. 3.3
for Lennard-Jones Argon and Tersoff Silicon.

Tersoff Silicon

For Tersoff Silicon we find that the anharmonicity score extracted along clMD trajectories
σAclMD, increases approximately proportional to

√
T across the entire temperature range.

This is a direct consequence of the
√
T temperature dependence of the atomic displacements

in the harmonic approximation.

Theorem 3.1.1. Let the interatomic force FI be n + 1 times differentiable and n > 2
always be an odd integer. Also, let all non-harmonic contributions be small compared to the
harmonic contribution. Then σA ∼

√
T in first-order perturbation theory and for classical

nuclei.

Proof. Since the inter atomic force FI are n+ 1 times differentiable we can expand them
in a Taylor polynomial:

FI =
∑

IJ

ΦIJuJ +
∑

JK

ΨIJKuJuK +O(u3) (3.2)

Here ΦIJ and ΨIJK are the second and third-order force constants respectively and uI the
displacements of the I’th atom. In first-order perturbation theory, the displacements are
taken to be harmonic. Thus we can assume that the equipartition theorem holds true and
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

that 〈
√

u2
I〉 ∼

√
T . Accordingly, for the anharmonicity score we find that:

√∑
I〈(FI − FHA

I )2〉
√∑

I〈F2
I〉

=
√∑

I〈(
∑
JK ΨIJKuJuK +O(u3))2〉√∑

I〈(
∑
J ΦIJuJ +O(u2))2〉 (3.3)

∼ O(T )
O(
√
T )

(3.4)

= O(
√
T ). (3.5)

Accordingly, σA is approximately proportional to
√
T

Comparing the results for σAclMD to the anharmonicity scores obtained from classical
harmonic sampling σAclHA, reveals that σAclMD = σAclHA, which demonstrates the highly
harmonic nature of Tersoff Silicon. Using the same line of thought as in proof 3.1.3 we find
that Accounting for quantum-nuclear through quantum-harmonic sampling leads to an
increase of the anharmonicity σAqmHA up to 400 K. Above 500 K the increase due to QNFs
is still visible but less pronounced compared to lower temperatures since we approach the
classical limit. This is confirmed by calculating the anharmonicity score σAPIMD from PIMD,
which serves as a first conformation for the generalization of σA to PIMD. The increase in
anharmonicity is driven by the zero-point motion since there are no differences between
PIMD and quantum-harmonic sampling. Importantly zero-point motion also leads to a finite
anharmonicity at 0 K. Additionally, we find that the classical limit is recovered by σAPIMD
above 500 K. In contrast to σAclMD/clHA the functional form of σAPIMD/qmHA is proportional
to
√

(n+ 1/2) where n is the Bose-Einstein distribution.

Lennard-Jones Argon

In Lennard-Jones Argon we again see the same approximate
√
T temperature dependence

of σAclHA. However, it is immediately clear that Lennard-Jones Argon is highly anharmonic,
since σAclHA(T > 30K) > 0.3. This is confirmed by comparing σAclHA and σAclMD, which
shows that classical harmonic sampling significantly overestimates the anharmonicity
above 20 K. We also see that the difference σAclHA − σAclMD exhibits a linear temperature
dependency and vanishes below 5 K. Quantum nuclear fluctuations then increase the
anharmonicity for temperatures below 60 K, becoming more pronounced as the temperature
decreases. Thus the highest increase due to QNFs is observed in the T → 0 K limit,
where Lennard-Jones Argon exhibits an anharmonicity score between 0.35-0.40 due to
zero-point motion. Accordingly, Lennard-Jones Argon cannot be regarded as harmonic
at any temperature. Similar to classical harmonic sampling, we observe that quantum
harmonic sampling overestimates the anharmonicity compared to PIMD. However, QNFs
lead to an overestimation at all investigated temperatures, including the low-temperature
limit. Finally the difference σAqmHA − σAPIMD no longer exhibits a linear temperature
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3.1 Validation of the Anharmonicity Score

dependence but becomes constant below 20 K, only exhibiting a linear temperature-
dependence above 20 K. This serves as the basis for another test to validate σAPIMD by
propagating the nuclei in a harmonic potential, using PIMD, one can generate samples
that are mathematically equivalent to those generated by quantum harmonic sampling. By
calculating the anharmonic forces at uncorrelated snapshots along the trajectory, σAqmHA is
recovered using our σAPIMD implementation. Importantly, we see that the values of σAclMD
and σAclHA are both recovered by σAPIMD in the Lennard-Jones and harmonic potentials
respectively.

The Road so Far : These two examples not only served to test the applicability and
implementation of σAPIMD, but also establish whether there is any knowledge to be gained.
Indeed we find that accounting for quantum nuclear fluctuations leads to an increased
anharmonicity in Tersoff Silicon and Lennard-Jones Argon. The inclusion of zero-point
motion alone causes a finite degree of anharmonicity even at 0 K. In Tersoff Silicon
we see that quantum harmonic sampling yields the same results as PIMD and that at
0 K σAqmHA = σAPIMD = 0.13. While quantum nuclear fluctuations remain visible even
at high temperatures quantum harmonic sampling and PIMD remain indistinguishable.
Conversely, in Lennard-Jones Argon the 0 K anharmonicity is larger than 0.35 making it
highly anharmonic at all temperatures. This limits the applicability of harmonic sampling
techniques which overestimate the anharmonicity in Lennard-Jones Argon. If the nuclei
are treated as classical particles this overestimation increases linearly due to anharmonic
effects, however, if quantum nuclear fluctuations are accounted for that overestimation
is constant up to 20 K. Accordingly, we can conclude that the temperature-independent
zero-point motion dominates the nuclear motion up to 20 K. However, anharmonic effects
also influence the zero-point motion, which is fully accounted for in PIMD but not at all in
quantum harmonic sampling. Fortunately, the anharmonic displacement probability density
can be written down explicitly in terms of a Gram-Charlier expansion of the harmonic
displacement probability density [162]2:

〈ρHA(u)〉 =
∑

I

1
(2πvar(uI))3/2 exp

(
−−

∑
J u2

J

2var(uI)

)
. (3.6)

The anharmonic displacement probability density is then given by:

〈ρ(u)〉 =
[
1 + 1

2!C
ab ∂2

∂ua∂ub
+ ...

]∑

I

1
(2πvar(uI))3/2 exp

(
−−

∑
J u2

J

2var(uI)

)
. (3.7)

The displacements are expanded around the harmonic probability distribution, which is
always normally distributed. Conversely, the anharmonic corrections are given by Hermite
polynomials and, in the lowest order, enter via the coefficient Cab. Accordingly, the zero-
2Here we assumed a cubic symmetry with space group 225 in which all odd terms are zero. A Gram-
Charlier expansion cannot reliably be applied to highly anharmonic materials since the magnitude of
the coefficients C has to decrease compared to all previous orders.
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Figure 3.4: This image shows the Anharmonicity Score for Lennard-Jones Argon
(left) and Tersoff Silicon (right) without thermal expansion for classical
MD and PIMD (denoted as triangles). Compared to results accounting
for thermal expansion (denoted as circles).

point motion is proportional to 1√
ω

+ Cab
2ω + ..., which is accounted for in PIMD but not

in quantum harmonic sampling for which Cab = 0. In the case of Lennard-Jones Argon,
this results in an overestimated anharmonicity, which demonstrates that quantum nuclear
fluctuations and anharmonic effects cannot always be investigated separately. Conversely,
above 20 K we see that the overestimation by quantum and classical harmonic sampling
becomes indistinguishable. However, until this point thermal expansion was neglected, yet
including it is paramount if real materials are to be investigated. Furthermore as shown
in Sec. 3.1.1 and 3.1.2, the inclusion of quantum nuclear fluctuations has a pronounced
effect on the thermal expansion leading to a renormalization of the lattice parameters.

To investigate its impact on the anharmonicity scores of Lennard-Jones argon and Tersoff
silicon, the lattice parameter were relaxed in the NPT ensemble using a Langevin baro-
stat [166] and pile-l [167] thermostat for PIMD for clMD a Langevin thermostat was chosen
instead of the pile-l thermostat. All simulations ran a total of 20000 fs per temperature
of which, 10000 fs were discarded as thermalization. Due to the low computational cost
of these simulations, the timesteps were always set to 1 fs. Both the thermostat and
barostat ha using the results to calculate the matching harmonic force constants and
anharmonic forces from additional cl and PIMD trajectories. Additional clMD simulations
at PIMD lattice constants were performed to investigate how the lattice renormalization,
induced by QNFs, impacts the anharmonicity score. The resulting anharmonicity scores
are shown in fig 3.4. Thermal expansion only has a minimal impact on the anharmonicity
of Tersoff silicon. We observe the same qualitative and quantitative behavior as previously
and neither the lattice constant nor the corresponding harmonic force constants have a
pronounced influence. Conversely, thermal expansion has to be accounted for in more
anharmonic materials such as Lennard-Jones Argon, which exhibits a thermal expansion
two orders of magnitudes larger than the thermal expansion observed in Tersoff Silicon. We
immediately can see, that not accounting for thermal expansion leads to an overestimated
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3.1 Validation of the Anharmonicity Score

Figure 3.5: The anharmonicity density of states of Lennard-Jones Argon (left clMD,
right PIMD) as well as the difference between both (middle).

anharmonicity compared to clMD and PIMD simulations that include thermal expansion.
If the anharmonicity along clMD trajectories at PIMD lattice constants is calculated
using harmonic force constants at the clMD lattice constants, its shape resembles that
of the σAPIMD. Conversely, if the anharmonicity is calculated with force constants at the
PIMD lattice constants, the results are consistent with the anharmonicity along clMD
trajectories at clMD lattice constants. These two examples show that thermal expansion
has to be included for anharmonic materials such as Lennard-Jones Argon but has almost
no impact on harmonic materials like Tersoff Silicon. We also saw that the renormalization
of the lattice parameter due to quantum nuclear fluctuations does not impact the observed
anharmonicity if the force constants are consistent with the parameters. The observed
renormalization of the anharmonicity along clMD trajectories at PIMD lattice constants
is not a consequence of the renormalized lattice constant but an artifact introduce by
the harmonic force constants. Since they were calculated at the clMD lattice constants,
they were not consistent with the PIMD lattice constants. This shows that the employed
force constants have to be consistent with the lattice constants at which the cl and PIMD
trajectories are run.

The Mode-Resolved Anharmonicity Score

The anharmonicity scores of Lennard-Jones Argon and Tersoff Silicon already show that
QNFs can have a pronounced impact on the anharmonicity and vice versa. However, we
can gain a deeper understanding by investigating which modes are most influenced by
the inclusion of QNFs. This can be accomplished, by projecting the forces into reciprocal
space, as explained in Sec 2.3, from which the mode-resolved anharmonicity score in
Eq. 2.179, can be extracted. To precisely see which frequencies contribute the most to the

75



3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

Figure 3.6: The anharmonicity density of states of Tersoff Argon (left classical MD,
right PIMD) as well as the difference between both (middle).

anharmonicity, we introduce what we call the "anharmonicity density of states" defined
by:

σA(ω) = 1
Ω

∑

s

w

BZ
σAs (q)δ(ωs(q − ω))dq (3.8)

Here Ω is the Brillouin zone volume, ω the phonon frequencies, q the wave vector,
and σA( s)(vecq) the mode specific anharmonicity from Eq. 2.179. The anharmonicity
density of states σA(ω) is directly linked to the overall anharmonicity score σA via the
integral:

w
σA(ω)dω = σA. (3.9)

The impact of quantum nuclear fluctuations on the anharmonicity DOS is measured by
the difference of PIMD and clMD anharmonicity:

σADiff(ω) = σAPIMD(ω)− σAclMD(ω). (3.10)

Here σAPIMD(ω) and σAclMD(ω) are the PIMD and clMD anharmonicity density of states
respectively. The anharmonicity density of states for Lennard-Jones Argon is shown in
Fig. 3.5, the one for Tersoff Silicon in Fig. 3.6. In both materials, QNFs increase the
frequency-resolved anharmonicity, but the magnitude and temperature range are quite
different. In Lennard-Jones Argon, the increase above 20 K is most pronounced for
frequencies below 1.5 THz. However, for lower temperatures, i. e. less than 20 K, the
modes between 1.5 and 2 THz begin to contribute meaningfully to the anharmonicity.
Conversely, above 40 K we observe that σAPIMD(ω) transitions into the classical limit.
In Tersoff Silicon, quantum nuclear fluctuations increase the anharmonicity mostly for
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modes above 7 THz and below 5 THz. Accordingly, nearly all modes contribute to the
overall anharmonicity increase in σA. This remains unchanged at elevated temperatures
where σA(ω) slowly transitions into the classical limit. However, even at 600 K, quantum
nuclear fluctuations visibly increase the anharmonicity. While quantum nuclear fluctuations
increase the anharmonicity almost uniformly in Tersoff Silicon, we observed a surprising bias
towards lower frequencies in Lennard-Jones Argon. While quantum nuclear fluctuations
are normally associated with high vibrational frequencies, zero-point motion displaces
the nuclei inverse proportionally to the phonon frequency Cab

2ω2
s(q)

3, which explains the
behaviour observed in Lennard-Jones Argon. Numerically we see that the classical limit is
recovered correctly even if the forces are projected on eigenmodes of the dynamical matrix.
However, Tersoff Silicon still exhibits an increased anharmonicity at 600 K which matches
the observation from the total anharmonicity. Accordingly, subtracting the frequency-
resolved clMD anharmonicity from its PIMD counterpart is a useful metric to measure the
frequency-resolved impact QNFs have.

3.1.4 How does this Relate to the Thermal Conductivity

It has long been known that the presence of quantum nuclear fluctuations and anharmonic
effects at the same time, impacts predictions of the thermal conductivity. However, it is
seldom discussed what happens if both are also equally important. To shed some light on
this issue it is useful to investigate if there is an overlap between the modes which exhibit
an increase in anharmonicity and those, which contribute to the thermal conductivity. For
that purpose we use the thermal conductivity density of states.

κ(ω) = 1
Ω

∑

s

w

BZ
κs(q)δ(ωs(q)− ω)dq (3.11)

Furthermore, we investigate the single-mode relaxation time approximation in Eq. 2.79. In
this approximation, the only anharmonic quantity is the lifetime, while how much heat
can potentially be transported is determined by the group velocity and the mode-specific
heat, two quantities accessible in the harmonic approximation. The latter contribution is
called the transport function and is usually defined without the specific heat capacity. Here
we include it, as it is important for comparing classical and quantum nuclear dynamics.
Accordingly, the transport function (TF) is defined as:

TFCl
s (q) = vs(q)⊗ vs(q)kB (3.12)

TFQm
s (q) = vs(q)⊗ vs(q)Cs(q) (3.13)

Here ⊗ is the tensor product and Cs(q) the mode-specific heat capacity as defined in
Sec. 2.2.1. The phonon group velocity is calculated from the phonon band structure

3Here we accounted for the first anharmonic correction as present in a Gram-Charlier expansion.

77



3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

(a)

5 10 15
Freq. (THz)

100

200

300

400

500

600

Te
m

p.
 (K

)

-DOS

5 10 15
Freq. (THz)

TF-DOS

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

N
or

m
al

is
ed

 
-D

O
S/

TF
-D

O
S

Tersoff Silicon

(b)

Figure 3.7: Thermal conductivity (left) and transport function (right) density of
states as defined in Eq. 3.11 and Eq. 3.15 respectively for Lennard-Jones
Argon (a) and Tersoff Silicon (b). The densities were normed using the
Uniform norm to allow for comparisons between temperatures.
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via:

vs(q) = ∇qωs(a) (3.14)

It is the speed at which a packet of phonons propagates through a solid. To allow for
comparability the "classical" transport function was defined by replacing the mode-specific
heat capacity with its classical limit. While we have provided a very general definition of the
transport function, only its trace will be used. The corresponding density of states is defined
analogue to the thermal conductivity density of states in Eq. 3.11:

TF(ω) = 1
Ω

∑

s

w

BZ
TFs(q)δ(ωs(q)− ω)dq. (3.15)

The TF-DOS allows insights into how much heat a mode could potentially carry. The
transport function and thermal conductivity for Lennard-Jones Argon and Tersoff Silicon
were calculated on an extended 40× 40× 40 k-grid. The necessary finite displacements
calculations were generated using the phonopy and phono3py packages for the Hessian and
the 3rd order force constants respectively. For Argon we chose an 8× 8× 8 cubic supercell
with 2048 atoms and for Silicone a 6× 6× 6 supercell with 1728 atoms. For that purpose,
Fig. 3.7 shows a comparison between κ-DOS and TFQm-DOS. For Lennard-Jones Argon the
comparison reveals that both functions contain very similar qualitative information, each
revealing that the bulk of the heat is transported by modes below 1 THz for temperatures
under 20 K. This is followed by a shift to frequencies above 1 THz for higher temperatures.
Since this is present in both functions we know that it is caused by the mode-specific heat
capacity. However, the TFQm-DOS also exhibits additional peaks, especially above 20 K,
for frequencies higher than 1.5 THz, which are absent in the κ-DOS. This is due to the
1/ω2

s(q) [149] scaling of the mode resolved phonon-lifetime τs(q) and thus higher frequency
modes typically contribute less to the thermal conductivity. A similar situation can be
observed in Tersoff Silicon, both functions show that most of the heat is carried by modes
between 5 THz and 10 THz. However, the TFQm-DOS exhibits additional peaks, above 10
THz, which are again absent in the κ-DOS. While the transport function is calculated from
harmonic quantities alone, it can be combined with the frequency-resolved anharmonicity
score σA(ω). This builds on the approximation

σA(ω) ∼ 1
τ(ω) , (3.16)

which relates the frequency-resolved anharmonicity and the phonon lifetime. A more
fundamental observation was made in Ref. [112] which, reveals an inverse proportional
relationship between the thermal conductivity and overall anharmonicity σA(T ) ∼ 1

κ(T ) .
To illustrate this behavior, we follow the spirit of the single mode relaxation time
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(a)

(b)

Figure 3.8: The thermal conductivity (left), transport function (middle), and re-
constructed density of states based on the definition in Eq. 3.12 for
Lennard-Jones Argon (a) and Tersoff Silicon (b) respectively. The den-
sities were normed using the Uniform norm to allow for comparisons
between temperatures.

80



3.1 Validation of the Anharmonicity Score

approximation and introduce 1
σAPIMD(ω) as a weight for TFQm(ω):

κApp(ω) ≈ TFQm(ω)
σAPIMD(ω)

. (3.17)

In his Fig. 3.8 this approximation is compared to κ(ω) and TFQm(ω). For Lennard-
Jones Argon we observe a separation of the peaks at 0.5 THz between 5 and 20 K in
κ(ω), which is not visible in TFQm(ω). However, due to the inclusion of σAPIMD(ω) it is
reproduced by κApp(ω). In Tersoff Silicon the inclusion of σAPIMD(ω) observe a pronounced
dampening of the erroneous peaks, visible in TFQm(ω) above 7 THz, are dampened in
κApp(ω). Accordingly, we can make qualitative statements with sufficient accuracy, even
without κ-DOS, by augmenting TFQm-DOS with σ(ω). Fig. 3.9 illustrated how the
inclusion of the mode-specific heat changes the transport function density of states. Since
the classical transport function density of states is determined from the harmonic phonon
group velocities alone, it does not exhibit any temperature dependence. Thus this is
also mirrored in the results for Lennard-Jones Argon, where the TF-DOS peaks at 1.1
THz. Since the classical TF-Dos is the squared group velocity, it is directly linked to the
curvature exhibited by ωs(q) and peaks where the curvature maximizes. However, we
can also see smaller secondary peaks below 1 THz and above 1.3 THz. Conversely, the
quantum TF-Dos is weighted by the mode resolved heat capacity and thus is temperature-
dependent. Below 10 K we see that the TF-Dos peak below 0.5 THz, at 10 THz we see
that the peak switches to 1.1 THz. Since exclusively occupied modes contribute to the heat
capacity only low-frequency modes can add to the transport function at low temperatures.
The secondary peaks become only visible above 20 K when the heat capacity begins to
converge to its classical value Cs(q) = kB. Above 40 K the TF-Dos finally transitions
to its classical limit, i.e. to the classical TF-Dos and the mode-specific heat capacity
becomes constants. Similar behavior can be observed in Tersoff Silicon, where the classical
TF-Dos assumes its maximum at 6 THz with secondary peaks above 7 THz. However,
the quantum TF-Dos shows only a minor shift from 5 THz at 100 K to 5.5 THz at 200
K. The secondary peaks, however, are fully suppressed at 100 K and appear fully above
300 K. The peaks indicate the potentially heat-carrying and as such, is still massively
important in Tersoff silicon. The quantum TF-Dos reveals that higher frequency modes
only carry significant amounts of heat above 300 K. The inclusion of the mode-specific
heat capacity clearly has a pronounced impact which partially explains why at higher
temperatures the bulk of the heat is transported by higher frequency modes compared to
lower temperatures.

A comparison of the quantum TF-Dos or κ-Dos with σADiff(ω) allows us to investigate how
much QNFs can influence thermal conductivity. An example of this is shown in Fig. 3.10.
Demonstrating that in both test systems, QNFs increase the anharmonicity mostly at the
frequencies which carry the bulk of the heat. It is especially pronounced Lennard-Jones
Argon below 20 K where QNFs are most active. We see that the peaks of the κ-Dos
align close to the peaks of σADiff(ω). Since the peaks in the quantum TF-Dos are at the
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Figure 3.9: The Classical (left) and quantum (right) transport function density of
states based on the definition in Eq. 3.12 for Lennard-Jones Argon (a)
and Tersoff Silicon (b) respectively. The densities were normed using the
Uniform norm to allow for comparisons between temperatures.
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Figure 3.10: The normalized κ-DOS (left) and TF-DOS (right), both no overlaid
with the difference between the anharmonicity score 3.10 from cl and
PIMD for Lennard-Jones Argon (a) and Tersoff Silicon (b).
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

same positions a comparison with σADiff(ω) leads to the same conclusion. In Tersoff Silicon
we again see that the highest peaks in the κ-Dos align with the highest peak of σADiff(ω).
However σAω also exhibits peaks at higher frequencies which do not meaningfully contribute
to the thermal conductivity. The high-frequency peaks we observed in the TF-Dos align
with those of σADiff(ω) and cause a dampening which is seen in our approximate κ-Dos in
Fig. 3.8.

Here we have seen that the TFQm-DOS together with the anharmonicity difference σADiff(ω)
yields deep insights into the thermal conductivity. In Lennard-Jones Argon, quantum
nuclear fluctuations cause a shift in the heat-carrying modes, which is also mirrored in
the TF-Dos and also where σADiff(ω) assumes its highest values. Real Materials Tersoff
Silicon and Lennard-Jones Argon can only be considered toy models, which yields the
question of how the anharmonicity of real materials is influenced by QNFs. To this end
we investigated two industry-relevant examples, namely Lithium Hydride and thin-film
Pentacene, using the ab initio MD and ab initio PIMD implementation of the I-PI [142]
(PI)MD code to evaluate the equations of motion based on the ab initio forces provided
by FHI-aims [100]. To understand the impact quantum nuclear fluctuations have on
the degree of anharmonicity of both materials we will employ the approach detailed in
chapter 3.

3.1.5 Lithium Hydrate

The first real material investigated closely in this study is Lithium Hydrate. Originally,
Lithium Hydrate (LiH) came into the focus of researchers for its applications in nuclear
physics. For instance, Lithium Hydride and Lithium Deuteride were and sadly to this day
still are used as fuel to create an uncontrolled fusion reaction [134]. Additionally, its high
hydrogen content relative to its weight makes Lithium Hydrate well suited for example as
a shielding material for nuclear reactors, the demand for which remains strong. Ironically
the same qualities make Lithium Hydride a potential candidate for a hydrogen storage
medium [134] and also of interest to the author of this thesis. Due to both, Lithium and
Hydrogen, being light elements it is to be expected that Lithium Hydride will display high
vibrational frequencies and thus strong QNFs.

Basic properties of Lithium Hydride

In the first step, we established the basic geometric properties of Lithium Hydride, i.e.
the static equilibrium lattice constant a0, the bulk modulus B0, as well as their values
when zero-point energy effects are accounted for. The lattice constant was calculated
using symmetry constrained relaxation as implemented in FHI-Vibes [112] while the bulk
modulus was extracted by fitting the total energy at 5 different lattice constants, ±3%
around a0, to the Birch-Murnaghan [113, 114] equation of state for the pw-LDA [28],
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3.1 Validation of the Anharmonicity Score

Functional a0 (Å) aZPE0 (Å) B0 (eV/Å3) BZPE
0 (ev/Å3)

pw-LDA 3.94 4.01 0.26 0.22
PBE 4.02 4.12 0.22 0.21
PBEsol 4.00 4.10 0.23 0.21
PBE0 4.02 4.10 0.22 0.21
HSE06 4.03 4.11 0.22 0.21
Exp. 4.07a 4.08b 0.20c

Figure 3.11 & Table 3.1: Left: The Primitive unit cell of pristine lithium hy-
dride (Li purple, H white). Right: The static equilibrium
lattice constant a0 and bulk modulus B0 as well as the
renormalized lattice constant aZPE0 , and bulk modulus
BZPE

0 computed for different XC functionals.
a Ref. [146] b Ref. [145] c Ref. [148]

Egap (eV) this work from literature
LDA PBE PBEsol PBE0 PBEsol0 HSE06 Exp. [135, 136] PBE [137]

L↔ L 7.64 7.42 7.40 9.28 9.27 8.51 9.0 –
X ↔ X 2.57 3.00 2.75 4.66 4.49 4.05 4.99 3.19

Table 3.2: Values for the direct (L↔ L) and (X ↔ X) Electronic bandgaps of LiH
calculated with pw-LDA, PBE, PBEsol, PBE0, PBEsol0, and HSE06.

PBE [29], PBEsol [30], PBE0 [32], and HSE06 [34] XC-functionals. Both zero-point energy
renormalized values aZPE0 and BZPE

0 were calculated in the quasi-harmonic approximation
again for pw-LDA, PBE, PBEsol, PBE0, and HSE06. The results together with the
primitive unit cell are shown in Fig. 3.11. The static equilibrium properties suggest that
pw-LDA underestimates the lattice constant while the bulk modulus is overestimated in
line with LDAs’ "overbinding" tendency. Conversely, PBE "underbinds" and thus presents
the opposite trend, while PBEsol occupies a middle ground between LDA and PBE.
Comparing a0 and B0 to the more expensive but also more accurate PBE0 and HSE06
hybrid functionals reveals that, PBE yields the results closest with respect to PBE0 and
HSE06 calculations. With respect to experiments, which naturally include quantum nuclear
fluctuations, we have to include QNFs to draw the most accurate conclusion. While the
renormalization has a minimal impact on the bulk modulus it significantly increases the
lattice constant for all functionals. Comparing the values for aZPE0 and BZPE

0 from pw-
LDA, PBE, and PBEsol to experiments and both hybrid functionals reveals the excepted
"overbinding" and "undernbinding" tendencies of pw-LDA and PBE respectively while
PBEsol serves as a middle ground and produces the results closest to the values obtained
from experiments as well as PBE0 and HSE06. This demonstrates the importance of the
inclusion of QNFs for accurate geometric properties. Fig. 3.12 shows the electronic band
structure of lithium hydride for pw-LDA, PBE, and PBEsol in comparison with PBE0,
PBEsol0 [33], and HSE06. While all band structures look qualitatively similar it is obvious
that the band gap for pw-LDA, PBE, and PBEsol is much smaller than the band gaps
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

Figure 3.12: Electronic band structure of LiH close to the Fermi level as computed
with DFT between high-symmetry points [100] at the respective equi-
librium geometries (see Tab. 3.1) for the LDA, PBE, PBEsol (all left),
and for the PBE0,PBEsol0, and HSE06 XC-functional (right).

predicted by PBE0, HSE06, and PBEsol0 (see Tab. 3.2). A more detailed investigation
of the electronic structure in terms of a partial density of states (PDOS) 4 reveals at
least partially ionic character of the bond between lithium and hydrogen as shown in
Fig. 3.13.

Vibrational Properties of Lithium Hydride

Since this thesis is mainly focused on the influence quantum nuclear fluctuations exert
on the degree of anharmonicity and the thermal conductivity, the choice of which XC-
functional to use cannot be made from the geometric and electronic properties alone.
Accordingly, we do not only investigate the phonon spectrum for PBEsol, but also pw-LDA,
PBE, PBE0, and HSE06. The results are shown in Fig. 3.14 confirming that lithium
hydride indeed exhibits high vibrational frequencies. A direct comparison to experiments
is complicated since phonon band structure measurements are preferably conducted on
lithium deuteride due to its larger neutron scattering crossection [138] which exhibits
drastically lower frequencies in the optical modes due to the higher mass of the Deuterium.
However, it has been demonstrated that the acoustic modes barely change [139] which
is confirmed by our calculation which is in good agreement with the experiment for all
modes and also consistent with the results for Lithium Hydride. By extension, this also
demonstrates that pw-LDA, PBEsol, and PBE band structures agree with the experimental
results. Furthermore, there are only minimal differences between PBE and PBEsol in
the optical modes, only pw-LDA introduces oscillations in the optical modes near the
Γ -point. Importantly, we observe a splitting of the longitudinal and transversal optical
modes near the Γ -point. This is due to the ionic nature of the bonds between Lithium and
Hydrogen or Deuterium. Comparing the PBE0 and HSE06 phonon band structures shows
4In partial density of states the contribution of the individual atoms to the full density of states is
disentangled by performing a Mulliken population analysis, i.e., by projecting it onto individual atomic
orbitals.
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3.1 Validation of the Anharmonicity Score

Figure 3.13: Species projected electronic density of states of LiH calculated using
the PBEsol XC-functional and tetrahedron method. The total DOS is
shaded gray.
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Figure 3.14: Phonon band structure of lithium hydride, the left image shows calcula-
tions with pw-LDA (cyan), PBE (blue), and PBEsol (red) as well as
lithium deuteride (magenta, PBEsol only) compared neutron scattering
experiments for lithium deuteride taken from Ref. [138]. The right
image shows results using PBE0 (blue), HSE06 (cyan), and PBEsol
(red) for reference.
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Figure 3.15: Lattice constant (left) and thermal expansion coefficient (right) for
Lithium Hydride calculated using the quasi-harmonic approximation
(black line PBEsol, blue line PBE, and red line pw-LDA) as well as
experimental results (orange squares and circles). The experimental
data for the temperature-dependent lattice constants were obtained
by X-ray diffraction [146], the experimental expansion coefficients were
measured using dilatometric methods [145].

that both hybrid functionals produce almost identical results with negligible quantitative
differences. Conversely, the difference between all (semi-)local XC-functionals and both
hybrid functionals is more pronounced. Especially at the Γ -point pw-LDA, PBE, and
PBEsol all predict 2 (PBE) to 4 (pw-LDA and PBEsol) THz higher frequencies As previously
discussed high frequency phonons often indicate active quantum nuclear fluctuations which
is demonstrated in Fig. 3.14. It also illustrates the influence of the XC-functional on the
phonon band structure. Fig. 3.15 shows the temperature-dependent lattice constants and
thermal expansion in quasi-harmonic approximation calculated for pw-LDA, PBE, and
PBEsol. Both pw-LDA and PBEsol show similar quantitative results, however, PBEsol
more closely replicates the qualitative properties of the experimental thermal expansion
coefficient.
Fig. 3.16 also demonstrates that a perturbative approach overestimates the thermal

conductivity by up to 300 percent compared to experimental results. However, the
qualitative trend is reproduced correctly, suggesting that its density of states still offers
qualitative insights into which modes carry the bulk of the heat. Investigating the κ-DOS
suggests that heat is mostly transported by low-frequency modes (around 10 THz) which
are also apparent from the transport function DOS. However, at higher temperatures, the
TF-DOS exhibits peaks between 20 and 30 THz which are not visible in the κ-DOS. This is
due to the mode-specific heat capacity slowly converging to its classical value of kB which
is compensated for in κ-DOS since mode dependence of the relaxation time approximately
obeys the relation τ(ω) ∝ 1

σA(ω) [112].
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Figure 3.16: The thermal conductivity of Lithium Hydrate (a) obtained from third-
order perturbation theory (solid line) in the single-mode relaxation
time approximation and experiments [147] (red squares) and the κ
and TF-DOS respectively (b). The experimental data was obtained by
measuring the heat flow from the inside to the outside of a series of
stacked annular rings.
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Figure 3.17: Anharmonicity scores of Lithium Hydrate from 100 (K) to 400 (K),
using classical harmonic sampling (blue line) and quantum harmonic
sampling (red), without (dashed lines) and including (solid lines) thermal
expansion.

3.1.6 The Anharmonicity of Lithium Hydride

As demonstrated in the previous section lithium hydride not only exhibits strong quantum
nuclear fluctuations but also high thermal expansion. Based on the results shown in the
previous section we chose the PBEsol XC-functional [30] to analyze the anharmonicity of
lithium hydride using the quasi-harmonic approximation to account for thermal expansion.
Furthermore as demonstrated in Sec. 3.1.3 we can safely assume that the inclusion of QNFs
in the thermal expansion does not influence the results of classical sampling methods as
long as the lattice constants are consistent with the harmonic force constants. Due to
the high vibrational frequencies, the time steps for all ai and PIMD simulations were set
to 1 fs, for all aiMD trajectories we again chose the SVR thermostat [61]. To thermalize
the internal PIMD ring polymer modes and the centroid mode as efficiently as possible,
we chose the PILE-g [167] thermostat (see Appendix for a more in-depth explanation).
Finally, we run multiple trajectories at 300 K to converge the simulation concerning the
number of replicas. By extrapolating we found the necessary number of replicas for each
temperature to be 24@100 K, 12@200K, 8@300K, and 6@400K. The anharmonicity
score extracted from classical and quantum harmonic sampling is shown in Fig. 3.17 with
and without thermal expansion. Starting with the static lattice we find that σAclHA again
demonstrates a ∝

√
T temperature dependence. At 400 K we find that LiH exhibits an

anharmonicity of σA = 0.32 and intermediate anharmonicity between 0.15-0.25. Finally,
accounting for thermal expansion increases the anharmonicity by 0.02 at 200 K up to 0.06
at 400 K. Conversely, quantum harmonic sampling reveals that Lithium Hydride is strongly
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Figure 3.18: This figure shows the anharmonicity scores of Lithium Hydrate from
100 (K) to 400 (K) using different methods. The left image compares
the anharmonicity score obtained from harmonic sampling with (solid
line) and without (dashed line) thermal expansion.

anharmonic at all temperatures. At 0 K we observe that zero-point motion increases
the anharmonicity to σAqmHA ∼ 0.35. Similar to the previously discussed toy systems, we
observe a larger anharmonicity increase at low temperatures compared to high temperatures.
However, even at 400 K impact remains sizable since σAqmHA exhibits almost no temperature
dependence. Accordingly, the anharmonicity increase from thermal expansion is also
approximately temperature independent. Calculating the anharmonicity along different
aiMD trajectories, reveals that while at 100 K σAaiMD(T = 100) ≈ σAclHA(T = 100), harmonic
sampling overestimates the anharmonicity for all higher temperatures classical (Fig. 3.18).
The inclusion of thermal expansion slightly again increases the anharmonicity. PIMD
shows a qualitative identical anharmonicity increase compared to aiMD as we have seen in
the comparison between quantum and classical harmonic sampling. However, compared to
PIMD, quantum harmonic sampling overestimates the anharmonicity for all temperatures
by 0.05. This is also visible in the T → 0K anharmonicity which is 0.3 in PIMD. However,
since the qualitative trends are unchanged, the anharmonicity increase due to thermal
expansion remains almost temperature independent in PIMD.

The anharmonicity density of states, in Fig. 3.19, demonstrates that QNFs uniformly
increase the anharmonicity for modes up to 22 THz. Importantly σADiff(ω) remains uniformly
distributed and pronounced at elevated temperatures. Fig. 3.20 shows the thermal
conductivity and transport function densities together with σADiff(ω) taken from Fig ??.
It shows that most of the heat is transported by modes at low frequencies, i.e. below 10
THz. This agrees with the peak exhibited by σADiff(ω). Above 200 K the TF-Dos exhibits
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

Figure 3.19: This figure shows the mode resolved anharmonicity score, accounting
for thermal expansion, extracted from aiMD (left), PIMD (right), and
their difference (middle). All images are color-coded identically to allow
for comparisons.
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Figure 3.20: κ-DOS (left) and TF-DOS (right) overlaid with the difference be-
tween the PIMD and aiMD anharmonicity density of states σADiff(ω) =
σAPIMD(ω)− σAaiMD(ω).
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3.1 Validation of the Anharmonicity Score

additional peaks between 20 and 30 THz, which are dampened in the thermal conductivity
Dos.

Results LiH

In Lithium Hydride, quantum nuclear fluctuations increase the anharmonicity for all
investigated. While classical harmonic sampling exhibits the same anharmonicity as aiMD
at 200, quantum harmonic sampling overestimates the anharmonicity at every temper-
ature compared to PIMD. Thus Lithium Hydride is highly anharmonic when quantum
nuclear fluctuations are included. However, since, σAqmHA/PIMD(T ) ∼ const we conclude
that zero-point motion largely dominantes the nuclear motion, even at 400 K. Accordingly,
the frequency-resolved anharmonicity shows that QNFs increase the anharmonicity pre-
dominantly below 20 THz. Comparing σADiff(ω) to the thermal conductivity Dos shows that
the QNFs likely have a pronounced impact on heat transport. Since the anharmonicity
is not sufficiently captured by quantum harmonic sampling, a perturbative approach to
the thermal conductivity is not sufficient. This is supported by the observation that the
thermal conductivity is overestimated if only the leading anharmonic order is considered
(see Fig. 3.16b).

3.1.7 Thin Film Pentacene

The second material we investigate is thin-film pentacene. Its most ubiquitous application
is probably in the form of thin-film transistors [150], which are essential in today’s electronic
industry, where they are used for example to drive OLED displays [151], including the only
recently released flexible OLEDs [152]. Pentacene is also of massive academic relevance and
is for example used to realize masers [153, 154] which can operate at ambient conditions,
potentially paving the way to life-saving applications in medicine by increasing the precision
of magnetic resonance spectrometers [155]. Both applications are sure to generate heat,
which has to be transported away, which combined with its high vibrational frequencies
attracted our attention.

Basic Properties of Thin-Film Pentacene

All materials discussed up to this point (argon, silicon, and lithium hydride) exhibited a
cubic lattice structure with high degrees of symmetry and most importantly had atoms
as their "building block". Conversely, thin-film pentacene is a molecular crystal, with
pentacene chains (C22H14) as its building blocks. While the carbon and hydrogen atoms
enter covalent bonds the different chains are only held together by van der Waals forces [156].
Similar to most molecular crystals thin-film pentacene exhibits only minimal symmetries,
exhibiting a triclinic lattice structure. Difficulties arise from the unique properties of
thin-film materials, which are three-dimensional systems with a small finite thickness.
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

Figure 3.21: Relaxed thin film pentacene unitcell (left) and Raman spectra as a
function of films thickness measured in mono layers (ML) taken from
Ref [157]

Temp. (K) Lattice Parameters (Å) Angles
a b c α β γ

200 5.92 7.55 15.59 81.07 86.44 89.78
300 5.93 7.56 15.66 81.07 86.44 89.78
400 5.94 7.60 15.72 80.95 86.40 89.81

Table 3.3: Lattice parameters used for aiMD, PIMD, and second-order force constants.
a, b, and c denote the lattice constants and α, β, and γ the angles between
them.

Fig. 3.21 illustrates how the intensity of the peaks in Raman spectra are influenced by
the film’s thickness, measured in monolayers (1 − 2 ML ∼ 23 Å), clearly, the bulk limit
is not reached in such samples. Many theoretical studies avoid this problem by using
experimentally determined lattice parameters [159, 160, 161]. We used the same approach
and extract the lattice parameters from x-ray diffraction experiments on 500 Å thick
thin-film Pentacene presented in Ref. [163]. However as shown in Fig. 3.22 experiments
do not yield smooth curves, accordingly, we averaged over the measured values close to 300
K and 400 K respectively to obtain reliable results. To extend the temperature range we
assumed that the thermal expansion varies only minimally between 200 K and 300 K. This
is supported by the thermal expansion coefficient we calculated from the running averages
of the lattice parameters. Accordingly, we obtained a linear fit from the measured values
around 300 K and used this to extrapolate down to 200 K. The atomic positions were
subsequently relaxed using the PBE XC-functional including van dar Waals interaction via
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Figure 3.22: Experimental lattice constants of thin film pentacene measured using
grazing incidence x-ray diffraction taken from Ref. [163]. The thermal
expansion (bottom right) was calculated using the running average of
the different lattice constants (red curves).
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

Figure 3.23: Electronic band structures of thin-film pentacene close to the Fermi level
as computed with DFT for the PBE (left) and PBE0 (right) comparing
the TS and many body dispersion correction schemes.

Egap (eV) this work from literature
TS@PBE MBD@PBE TS@PBE0 MBD@PBE0 Exp [137]

Smallest Gap 0.72 0.73 1.95 1.95 1.8

Table 3.4: Values for the direct (L↔ L) and (X ↔ X) Electronic bandgaps of LiH
calculated with pw-LDA, PBE, PBEsol, PBE0, PBEsol0, and HSE06.

many-body dispersion [103, 104] and the pairwise TS-method [102]. The band structures
in Fig. 3.23 were calculated using the extrapolated 200 K structure. While PBE and PBE0
band structures are qualitatively similar we immediately see that PBE predicts a much
smaller bandgap compared to PBE0. Conversely, the difference between the TS and MBD
vdW correction schemes are negligible for both PBE and PBE0. Further substantiated by
the results shown in Tab 3.4, revealing that the band gaps predicted by TS@PBE0 and
MBD@PBE0 are practically identical. A comparison with measurements shows that the
TS/MBD@PBE0 band gap compares favorably with measurements TS/MBD@PBE exhibit
band gaps that massively underestimate its width even compared to the predictions made
for Lithium Hydride. However the hybrid XC-functional results indicate that the physics
is described correctly despite the use of measured lattice parameters. Finally, the partial
density of states in Fig. 3.24 reveals that the valence and conduction bands potentially are
sp-hybridized, which is indicative of a covalent C-H bond.

Vibrational Properties of Thin-Film Pentacene

Analyzing the phonon band structure of thin-film Pentacene allows for further comparisons
between the TS and MBD vdW correction schemes. It is shown in Fig. 3.25 and confirms
that thin-film Pentacene exhibits high-frequency vibrations up to 95 THz. We find that
most modes lay below 50 THz with an isolated band of modes above 90 THz. However,
above 20 THz modes become increasingly localized, which is confirmed by sharp peaks in the
(species projected) dos ( Fig. 3.26). Accordingly, modes above 20 THz are almost flat which
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Figure 3.24: Species projected density of stated for thin-film Pentacene calculated
using MBD@PBE. The red curve shows the Hydrogen contribution the
black line the Carbon contribution to the total DOS (grey shaded area).
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

Figure 3.25: Phonon band structure of thin-film pentacene calculated using
MBD@PBE (blue) and TS@PBE (red) and results from Raman spec-
troscopy taken from Ref. [157].

is also mirrored in the TF-DOS in Fig. 3.27. Investigating the species projected density of
states reveals that the largest contribution below 20 THz stems from the Carbon atoms.
Conversely, above 20 THz we observe an increasing contribution from Hydrogen. Finally,
above 90 THz the vibrations are almost exclusively dictated by Hydrogen. Comparing
the results of TS@PBE and MBD@PBE shows quantitative differences below 20 THz.
Conversely, at higher frequencies, both levels of theories are almost indistinguishable. Since
the individual molecules are bonded by van der Waals forces this suggests that the highly
localized modes above 20 THz are limited to the constituent molecule chains. For example
modes between 33 and 36 THz can be attributed to bending motions of the C-H bond [158].
Since Hydrogen is much lighter than Carbon which is why Hydrogen is the dominant
contributor in this frequency range. The isolated band of modes above 90 THz is almost
entirely due to stretching of the C-H bonds. Comparing the phonon band structures from
TS@PBE and MBD@PBE to experiments show that both levels of theory are consistent
with measurements. However, below 20 THz, the MBD@PBE band structure is ever so
slightly closer to experimental results. From what we have learned until this point, we can
infer that modes above 20 THz will only marginally contribute to the thermal conductivity.
Since thin-film Pentacene has no exploitable symmetries, the number of displacements
necessary to extract the third-order force constants is in the 100dres of thousands. This
makes calculating the κ-DOS prohibitively expensive. However, as we have learned in the
previous sections, the frequency-resolved anharmonicity σ(ω) and TF-DOS allow us to
proceed regardless. The approximated κ-DOS κ(ω) ∼ TF(ω)

σAPIMD(ω) in Fig. 3.28 reveals that
the heat is mostly carried by modes below 5 THz. Compared to the TF-DOS we see a
significant dampening for all higher frequency modes.

3.1.8 The Anharmonicity of Thin-Film Pentacene

For all MD simulations, we chose a 2 × 2 × 1 supercell containing 288 atoms with a
3× 3× 4 k-grid and the PBE XC-functional. The high vibrational frequencies necessitate
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3.1 Validation of the Anharmonicity Score

Figure 3.26: Vibrational species projected density of states for thin-film Pentacene
calculated using MBD@PBE. The black curve shows the contribution
from Carbon, the red curve the contribution from Hydrogen, and the
grey shaded area the total density of states.
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Figure 3.27: Thin-film pentacene transport function density of states from
MBD@PBE (full left, below 20 THz right).
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

Figure 3.28: Transport function DOS and approximate κ-DOS of thin-film Pentacene
calculated using MBD@PBE.

relatively small time steps of 1 fs for aiMD and 0.5 fs for PIMD. Due to the importance
of van der Waals interactions in this system and the better agreement with the phonon
band structure in Fig 3.25, long-range correlation effects were included using many-body
dispersion [103, 104] As expected QNFs have a pronounced effect on the degree of
anharmonicity as shown in Fig. 3.29. We again observe that the inclusion of QNFs leads to
a finite anharmonicity at 0 K. However, there are qualitative and quantitative differences
between the previously discussed materials. Most importantly, harmonic sampling now
underestimates the anharmonicity across the entire temperature range compared to aiMD
and PIMD. Above 300 K we also observe a steep anharmonicity increase in aiMD and
PIMD. Additionally, the highly anisotropic structure of thin-film Pentacene makes the
anharmonicity score direction-dependent. The direction-dependent anharmonicity is defined
as:

σAa =

√√√√√〈
(
(FI,a)− (FHA

I,a )
)2
〉

〈(FI,a)2〉 . (3.18)

Here a denotes the direction and σA is given by the trace of σAa . The anharmonicity in x, y,
and z-direction are shown in Fig. 3.30. While the values for σAx and σAy are qualitatively and
quantitatively similar, quantum nuclear fluctuations are more pronounced in the y direction.
The degree of anharmonicity along the z axis, which is roughly parallel to the molecule
chains, is smaller compared to other directions. However, it experiences the highest, relative
to the other directions, between 300 K and 400 K. The sudden anharmonicity increase
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3.1 Validation of the Anharmonicity Score

Figure 3.29: Anharmonicity score of thin-film pentacene calculated using classical
harmonic sampling (blue), quantum harmonic sampling (red), aiMD
(maroon), and PIMD (magenta).

Figure 3.30: Anharmonicity score of thin-film Pentacene in x (black), y (red), and
z-direction (blue) from aiMD (left) and PIMD (right).
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3 The Interplay of Quantum Nuclear and Anharmonic Fluctuations

Figure 3.31: Displacements of a Carbon atom in z-Direction at 400 K from PIMD
(red) and aiMD (black).
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3.1 Validation of the Anharmonicity Score

Figure 3.32: The anharmonicity density of states extracted from aiMD (left), PIMD
(right), and the difference between both (middle) up to 95 THz (top)
and below 20 THz(below).

above 300 K is caused by periodic shifts of the molecule chains in the z-direction, which
increases the atomic displacements (see Fig. 3.31). In experiments, it was shown that the α
and β angles begin to decrease above 350 K before thin-film Pentacene undergoes a phase
transition at 480 K [163]. Conversely, the γ,i.e. the angle between x and y, was shown to
remain constant up to 480 K, which is consistent with our simulations. However, at 400 K,
we also observe that aiMD and PIMD show the same anharmonicity. For deeper insights,
we investigated the anharmonicity density of states σai/PIMD(ω) and their difference, shown
in Fig. 3.32. This reveals that QNFs increase the anharmonicity mostly below 15 THz, for
all temperatures. Importantly, increased anharmonicity is significant at 400 K. Conversely,
above 15 THz, we observe frequency ranges, where aiMD exhibits a higher anharmonicity
than PIMD. This is especially pronounced for the high frequent C-H stretch above 90 THz.
However, the TF-DOS in Fig. 3.33 and the approximate κ-DOS ins Fig. 3.28 show that the
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Figure 3.33: Transport function density of states of thin-film Pentacene overlaid with
the difference between σAaiMD(ω) and σAPIMD(ω) below 20 THz.

bulk of the heat will be carried by modes below 5 THz. At this frequency range, quantum
nuclear fluctuations are highly active for all temperatures.

Results Thin-Film Pentacene

Below 400 K, zero-point motion drives the anharmonicity increased quantum harmonic
sampling since classical qualitative similar to PIMD. However, at 400 K we observe a
much more complex interplay between anharmonic and quantum nuclear fluctuations.
Here, aiMD appeared as anharmonic than PIMD, however, by investigating the frequency
revolved anharmonicity, we found that quantum nuclear fluctuations remain active at 400
K below 15 THz. Conversely, at higher frequencies, aiMD appeared as anharmonic as
PIMD. However, the frequency-resolved anharmonicity revealed that quantum nuclear
fluctuations are active at all temperatures. Comparing the modes that carry the bulk
of the heat to those that exhibit the largest increase in anharmonicity due to quantum
nuclear fluctuations demonstrates the importance QNFs have on heat transport even at
400 K.
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4 Going Beyond what is Currently Possible:
Thermal Conductivity from Path Integral
Based Methods

As the previous chapter demonstrated QNFs can have a profound impact on the degrees of
anharmonicity massively influencing the thermal conductivity. This is further supported by
a study conducted, using Temperature Dependent Effective (TDEP) Force Constants, in
which it was demonstrated that the thermal conductivity changes massively by accounting
for the zero point motion in the Force Constants [140]. While only second and third-
order Force Constants were considered, higher orders of anharmonicity are partially
accounted for due to the renormalization of Force Constants fitted at a finite temperature.
Accordingly, as a suitable (T)RPMD or CMD estimator, accounting for all accessible
degrees of anharmonicity and also including quantum nuclear dynamics QNDs beyond
ZPM, has been a topic of interest for some time. Partially successful full attempts have been
made to find a CMD estimator [?]. However, in the cases cited here, ad-hoc assumptions
have been made.

4.1 Deriving the Heat-Flux Estimator

As introduced in Sec 2.2.7, several methods exist to approximate the (Kubo-transformed)
correlation function. Likewise, some attempts have been made to find a suitable heat
flux estimator for (T)RPMD [120] and CMD [121]. However, in previous publications,
known to the author, approximations, such as ignoring all but the centroid variables [120]
in RPMD, or not properly accounting for the potential of mean force [121] in CMD. Our
focus is primarily on developing a (T)RPMD estimator but the derivation of a CMD heat
flux estimator is outlined too.

4.1.1 The Heatflux

Starting from the heat flux definition:

J = 1
V

d

dt

∑

I

RIEI . (4.1)
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4 Going Beyond what is Currently Possible: Thermal Conductivity from Path Integral Based Methods

Where RI represents the Cartesian vector of the atomic positions of atom I and EI is
formally a “per-atom” energy. Working on the chain rule of the time derivative it is easy
to see that:

J = 1
V

∑

I

vIEI
︸ ︷︷ ︸
Convective

+
∑

I

RIĖI

︸ ︷︷ ︸
Conductivie

(4.2)

The convective heat flux mainly occurs due to mass transport, conversely, the conductive
heat flux is caused by energy transport. Since the focus of this thesis is on solids the
assumption that the convective heat flux is 0 is justified as mass transport at incandescent
temperatures is negligible for most systems. Accordingly, we approximate the heat flux
as:

J ≈ 1
V

∑

I

RIĖI . (4.3)

4.1.2 The (T)RPMD Heat Flux Estimator

To derive the (T)RPMD heat flux estimator the primitive energy estimator is first written
as a per replica and (effective) per atom quantity:

EI,α = TI,α −
1
4MIω

2
P

[
(RIα −RIα+1)2 + (RIα−1 −RIα)2

]

︸ ︷︷ ︸
CI,α

+VI,α (4.4)

With the kinetic energy TI,α, the coupling energy between different replicas CI,α, and the po-
tential energy VI,α. Accordingly the complete heat flux estimator reads:

J = 1
P

∑

I,α

RI,α

(
ṪI,α − ĊI,α + V̇I,α

)
. (4.5)

Since there is no coupling between the different contributions the time derivative of each
term can be taken individually, starting with the kinetic energy:

ṪI,α = pIα
M ′I

ṗIα = pIαFI,α , (4.6)

where the force FIα is given by:

FI,α = −MIω
2
P [2RIα −RIα+1 −RIα−1]−∇RI,αVα . (4.7)

For the coupling terms featuring ωP , the time derivative yields:

ĊI,α = MI

2 ω2
P [(RIα −RIα+1)(pIα − pIα+1) + (RIα−1 −RIα)(pIα−1 − pIα)] . (4.8)
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Finally, the potential energy time derivative is:

V̇I,α =
∑

J

∂VI,α
∂RJ,α

pJα
m′

(4.9)

By inserting all derivatives into Eq. 4.5 it becomes immediately obvious that the heat flux
estimator decomposes into two main parts, the heat flux originating from the physical
potential VI,α JPhys, which describes the heat flux within each replica, and the heat
flux along with the ring polymer JRing. We start by analysing JRing by adding up the
contribution of Eq. 4.7 and 4.8 which yields:

JRing = − 1
2P

∑

Iα

ω2
P (6RIαRIα − 3RIαRIα+1 − 3RIαRIα−1 −RIα+1RIα+1

− RIα−1RIα−1 + RIα+1RIα + RIα−1RIα) · pIα (4.10)

Here we exploited the cyclic boundary conditions P + 1 = 0 of the (T)RPMD Hamiltonian
to simplify the expression for JRing.

The remaining part can be treated analogously to the classical heat flux expression and
JPhys reads:

JPhys = 1
P

∑

Iα

RIα
−∂Uα
∂RIα

· pIα
m′I

+
∑

IJα

RIα
∂UIα
∂RJα

· pJα
m′J

= 1
P

∑

IJα

(RJα −RIα)(∂UJα
∂RIα

· pIα
m′I

)

= 1
P

∑

Iα

σJαvIα (4.11)

Here we introduced the index J into the first term and thus were able to rewrite it in terms
of the virial stress σ. Finally the sum of both contribution

J = JBead + JPhys, (4.12)

yields the full heat flux. However, the contribution from the ring heat flux has to vanish.
Since the heat flux is defined via Fouriers Law

J = κ∇T, (4.13)

it is a conservative vector field. To calculate the autocorrelation function. Let φ : t→ R+

with φ ∈ [0, 2π] be a parametrisation along the ring polymer. Then we can write the
autocorrelation function of JBead as:

〈JBead(φ(t = 0)),J(φ(t))) ∝ lim
t→∞

JBead(φ(t = 0)) ·
w τ

0
JBead(φ(t)))dt = 0. (4.14)

Here we exploited that the heat flux is a conservative vector field for which any closed line
integral vanishes.
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Figure 4.1: Autocorrelation function of JPhys for Lennard-Jones argon calculated
from (T)RPMD and clMD at 10 K.

4.1.3 The CMD Heat Flux Estimator

To derive an CMD estimator for the heat flux we need to express the heat flux in terms of
the centroid variables (Rc,pc) given by.

Rc = 1
P

∑

α

Rα (4.15)

pc = 1
P

∑

α

pα (4.16)

Thus the centroid heat flux Jc = J(Rc,pc) would read

Jc =
∑

I

Rc
IĖ

c
I . (4.17)

For all (linear) position dependent quantities this is straight forward The main question
now (at least for me) is how to determine ĖcI . I start by defining the energy at the
centroid.

EcI = pcI · pcI
2mI

+ U c(Rc
I) (4.18)

Essentially following the steps from eq. 4.11

Jc =
∑

IJ

(Rc
J −Rc

I)
∂U c(Rc

J)
∂Rc

I

· Ṙc
I (4.19)

Here U c is the effective potential acting on the centroid. Note that assuming V C(RC) =
V (RC) would be a significant approximation. The derivation of the CMD heat flux presented
above does not include the actual effective potential U c but rather the physical potential
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4.1 Deriving the Heat-Flux Estimator

reevaluated at the centroid position. Thus the energy we use is:

EcI = pcI · pcI
2mI

+ V (RC
I ) (4.20)

In contrast to (T)RPMD, the relevant potential in CMD is the potential of mean force.
To write it in the simplest possible way we use the normal mode representation, introduced
in Sec 2.2.5, to write the partition function:

Z =
w
dq̃0dpce

−β(T c+Uc(q̃0)) (4.21)

Here U c(q̃0) is the mean effective potential as defined in Eq. 2.156 acting on the centroid.
We need to compute the time derivative of U c. To derive the correct CMD heat flux
estimator, we have to take the time derivative of U c(q̃0):

∂

∂t
U c(q̃0) = ∂U c(q̃0)

∂t

= ∂U c(q̃0)
∂q̃0

∂q̃0
∂t

= 1
P

∑

α

∂U(Rα(q̃))
∂q̃0

∂q̃0
∂t

= 1
P

∑

α

∂U(Rα(q̃))
∂Rα

∂Rα

∂q̃0

∂q̃0
∂t

= 1
P

∑

α

∂U(Rα(q̃))
∂Rα

CTα0
∂q̃0
∂t

= 1
P

∑

α

∂U(Rα)
∂Rα

∂Rc

∂t
(4.22)

Here CTα0 is the transposed normal mode transformation. The spring term has no
contribution to this derivative as it is taken with respect to the centroid mode alone.
Accordingly, the CMD heat flux becomes:

JC =
∑

IJ

(Rc
J −Rc

I)
1
P

∑

α

∂U(RαJ)
∂RαI

· Ṙc
I

= 1
P 3

∑

IJαβγ

(RJβ −RIβ)∂U(RαJ)
∂RαI

· ṘIγ (4.23)

4.1.4 Outlook

More information can be gathered from the heat flux variance which is roughly proportional
to the heat capacity. This is best illustrated by the already introduced microscopic heat
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flux:

J = 1
V0

∑

sq
Es(q, t)vs(q). (4.24)

.

var(J) = 1
V0

∑

sq
var(Es(q, t))vs(q)

= kBT
2

V0

∑

sq
Cs(q)vs(q)

CV (T ) ∝ var(J)
kBT 2 . (4.25)

Here the group velocity is assumed to neither depend on time nor on the temperature.
Indeed the classical heat flux exhibits the expected behavior. Conversely, the TRPMD
heat flux does not, and increases with decreasing temperature. here the group velocity is
assumed to neither depend on time nor on the temperature. Accordingly, the var(J) has a
temperature dependency proportional to the heat capacity. This is exemplified in Fig. 4.1.
Indeed the classical heat flux exhibits the expected behavior. Conversely, the TRPMD
heat flux does not, and increases with decreasing temperature. For that purpose we tested
an ad-hoc correction scheme by defining a (T)RPMD heat capacity:

kBT
2CTRPMD

V = var(TMD)
P

+ var(V ). (4.26)

Here P denotes the total number of replicas. Indeed we find that the TRPMD heat capacity
fulfills CTRPMD

V ∼ var(JTRPMD). Using the exact PIMD and our TRPMD heat capacity,
we then define the following correction scheme:

κCorrected = κTRPMD/CMD Cexact
V

C
TRPMD/CMD
V

. (4.27)

This firstly renormalizes the thermal conductivity and secondly enforces the correct
variance.

The results are shown in Fig. 4.2. We find that rescaling the thermal conductivity leads
to the correct qualitative behavior, i.e, that κ exhibits a finite maximum. However,
globally rescaling the thermal conductivity evidently is a blunt tool. Accordingly, the
development of a more precise mode-dependent correction is the way forward. The
foundation, i.e. a harmonic analysis scheme for the internal ring polymer modes, is defined
in Appendix B.
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Figure 4.2: Thermal conductivity of Lennard-Jones Argon from clMD, TRPMD, and
corrected TRPMD.
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5 Conclusion

In this work, we studied the interplay between quantum nuclear fluctuations and anhar-
monic effects as well as the possible implication for heat transfer problems. As discussed
in the introduction, see Sec. 1, quantum-nuclear effects are often assumed to be impor-
tant in the low-temperature regime, but negligible at higher temperatures. Conversely,
anharmonic effects are often thought to be essential to describe the high-temperature
limit but to be irrelevant at low temperatures. This work shows that these assumptions
are indeed qualitative correct, but that they do not imply that QNFs and anharmonic
effects are mutually exclusive. Rather, our research could show that there can be a wide
thermodynamic range in which both effects are active and non-negligible. In particular,
we could show that there can be a strong interplay between these two effects, e.g., strong
QNFs can boost the anharmonicity and vice versa.

To this end, we have used and extended the anharmonicity score σA to quantify the strength
of anharmonic effects in various solids. As discussed in detail in Sec. 2.3, the anharmonicity
measure [112] quantifies the degree of anharmonicity exhibited by a material at finite
temperatures. Its definition is derived from the probability distribution of the forces and is
the normalized root mean square error of the harmonic model compared to the observed
anharmonic forces. By subtracting the harmonic forces from the anharmonic forces In
this work, we have extended the original classical definition to also cover quantum-nuclear
effects, so as to be applicable to ab initio MD and path-integral MD simulations on equal
footing.

In a first step, we tested the developed approach using semi-empirical potentials for Tersoff
Silicon and Lennard-Jones Argon, two test cases known for being particularly harmonic and
anharmonic, respectively. For the more harmonic silicon, anharmonic effects are generally
small throughout the whole inspected temperature regime. At and below room temperature,
QNFs are significant, though, and lead to a noticeable increase in anharmonicity compared
to classical aiMD simulations. In particular, a finite anharmonicity is retained even in the
T → 0 K limit due to quantum nuclear fluctuations. In the high-temperature limit, the
classical MD and quantum-mechanical path-integral MD calculations coincide as expected
in this very harmonic system. Conversely, much more complex behavior is found for
Lennard-Jones Argon. Here, both anharmonicity and QNFs are non-negligible throughout
the whole inspected temperature range, so that MD and PIMD never coincide. In this
more anharmonic material, already the zero-point motion at 0K induces an anharmonicity
in the order of σA = 0.4, which implies that 40% of the interactions are driven by
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anharmonic effects. Even at these vanishing temperatures, at which anharmonicity would
vanish in a classical picture, QNFs lead to a strength in anharmonic effects that is
comparable with that of the harmonic ones. In turn, this suggests that perturbative
approximations for the anharmonicity – which require σA � 0.2 – are inapplicable to this
material.

Furthermore, a frequency-resolved analysis of the anharmonicity allowed us to shed light
on the nature of these effects. While the anharmonicity in Tersoff Silicon is increased
for all modes in an almost uniform fashion, quantum nuclear fluctuations increase the
anharmonicity predominantly at low-frequency modes in Lennard-Jones Argon. This is a
consequence of the

√
1
ω frequency dependence exhibited by zero-point motion. Eventually,

a comparison with thermal conductivity calculations and the involved transport kernels,
i.e., the thermal conductivity density of states resolved by frequency, allowed us to develop
a qualitative model that allows judging when and if QNFs and the associated change in
anharmonicity influence thermal conductivity.

In a second step, we applied the developed methodology to DFT-based simulations of
Lithium Hydride and thin-film Pentacene, so to clarify if the drawn conclusions hold also for
realistic materials. For Lithium Hydride, we indeed observe a similar behavior as in Lennard-
Jones Argon: While Lithium Hydride exhibits only a moderate degree of anharmonicity
in the classical description, QNFs lead to a significant increase in anharmonicity, leading
to an anharmonicity σA > 0.2 that lies beyond the perturbative regime even for very low
temperatures. The fact that this QNF-driven increase in anharmonicity is mostly due to
those low-frequency modes that are also responsible for heat transport suggest a pronounced
impact of QNFs and anharmonicity on thermal conductivity calculations. Qualitatively,
similar observations were made also in the simulation of (thin-film) Pentacene, for which
again an overall anharmonicity increase is obtained due to quantum nuclear fluctuations.
Microscopic analysis reveals that the physical origin of these effects is remarkably different,
though. In this case, strongly anharmonic effects related to the phase transition of pentacene
at 480 K are already observed at much lower temperatures.

To summarize, these investigations have shown that quantum nuclear fluctuations and
anharmonicity can exhibit a strong interplay, both in the low and the high-temperature
regime. Particular care has thus to be taken before ruling out either one of these effects
due to simple thermodynamic arguments. This is particularly important in the calculation
of thermal conductivities since our calculations suggest that the anharmonicity of low-
frequency modes, which typically predominantly determine thermal transport, is most
affected by QNFs. In the future, this calls for the development of advanced simulation
strategies to account for strong anharmonic and quantum nuclear fluctuations on the same
footing. The first steps in this direction have been laid out in Sec. 4. There, we have derived
the necessary formulas to evaluate the heat flux in path-integral MD simulations. At the
current stage, a direct application of this formalism in fully ab initio PIMD calculations is
hindered by the huge computational cost, since it involves running several large-scale MD
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simulations concurrently for a long trajectory length. In this regard, ongoing developments
in the field of machine learning might be highly beneficial. Especially regarding machine-
learning potentials which have seen impressive results. Kernel-Based potentials have been
successfully used to access time and length scales in ab-initio simulations that allow for
accurate calculations of the thermal conductivity of PBEsol Zirconia [10]. Compared to
similarly accurate machine-learning potentials [9] based on artificial neural networks this
allows for easy error estimation. Accordingly, the adoption of the Kernel-based method
presented in Ref [10] would enable the calculation of the thermal conductivity of multiple
materials at different temperatures with near or at ab initio Green Kubo levels of accuracy.
The benefits would also extend beyond the prediction of the thermal conductivity and make
anharmonicity screening or predictions of the relative stability of polymorphs possible at a
large scale when combined with the finite time and size correction method demonstrated in
Ref. [?]. However, the artificial neural networks method proposed in Ref. [9] is reported to
be more accurate for smaller data sets and offered as a python package which means that it
would allow for a faster adoption into existing ab initio packages as FHI-aims. Especially
the small data set size required could prove beneficial and possibly open up even larger
time scales at near ab initio levels of accuracy.
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A New CV estimator

The most successful implementation of an CV estimator is the double virial estimator ??.
During our research we found a novel alternative formulation which yields the same results.
This new estimator takes the form:

kBT
2CV = var(eCV + VC) + < Tmd >

Pβ
− (< eCV > −

< Tmd >

P
) 2
β
. (A.1)

Here P is the number of beads VC = 1
P

∑
α Vα and eCV is the virial kinetic kinetic energy

estimator. In contrast to the double virial estimator no coordinate re-scaling or hessian
is required. While this formulation mimics the primitive heat capacity estimator it does
not suffer from the same variance problems. However while our new formulation converges
slower with respect to the number of replicas, it is best applied to ab-initio PIMD where
the computational impact of the coordinate re-scaling and the repeated calculation of the
hessian can lead to significant bottlenecks.
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Figure A.1: Our estimator in comparisons with Yamamotos double virial estimator
for Lennard-Jones argon and Tersoff silicon
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B Harmonic Analysis for Path Integral MD

Based on harmonic analysis, introduced in Sec. 2.3 can be generalized to be applicable
to PIMD, (T)RPMD, and other Path Integral based methods To generalize the concept
of harmonic analysis to PI and (T)RPMD it is necessary to account for the "spring"
contribution to the potential energy. To form a complete hessian of the system described by
the ring polymer Hamiltonian from Eq. 2.131 we rewrite the Hessians of the ring polymer
S and of the physical system Φ so that they both have the same dimensions of 3×N × P
SIJ = SIδIJ ring

HP =
∑

α

∑

I

pαI · pαI
2MI

+ 1
2
∑

α

∑

IJ

RTα
I

1
2S

α
IJRα

J + 1
2
∑

α

∑

IJ

RTα
I ΦαIJRα

J

=
∑

I

pαI · pαI
2MI

+
∑

α

∑

IJ

RTα
I (1

2S
α
IJ + 1

2Φ
α
IJ)Rα

J (B.1)

We now employ an ansatz similar to the one introduced in Eq. 2.55 but also account for
the coordinates of the replicas α however we intend to only Fourier transform the hessian of
the physical hessian and leaf the ring polymer hessian in real space:

Rα
nÎ

= 1√
MÎ

∑

γq
Aγ(q)eiξαγ (q)εÎαγ (q)ei(q·Tn−ωt) (B.2)

The index γ corresponds to the vibrational mode index s from the previous section
generalized to include the modes introduced by the ring polymer. Again the eigenvectors ε
and eigenvalues ω2 are determined by solving an eigenvalue problem but to account for the
"spring" contribution we define a generalised dynamical matrix.

DSαÎβĴ(q) =
∑

mn


 SαmÎβnĴ√

MÎMĴ

+
ΦαmÎβnĴ√
MÎMĴ


 eiq·(Tm−Tn)

=
∑

mn


 SαmÎβnĴ√

MÎMĴ

+
ΦαmÎβnĴ√
MÎMĴ

eiq·(Tm−Tn)


 (B.3)

Similar to the index α β denotes a replica of the classical system. Strictly speaking, β is
not completely independent of α as the interaction between different replicas is limited to
the nearest neighbor and thus β could be rewritten in terms of α using Eq. 2.135 but was
introduced nonetheless for ease of notation. Furthermore, it is imperative to realize that
while the Fourier transform acts on both Hessians (S and Φ) however as the interaction
described by S is only between different replicas and not between different nuclei within the
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Figure B.1: Both figures show the phonon band structure as obtained from the
generalized eigenvalue equation B.3 for Lennard-Jones Argon. The Solid
black curves show the results with one replica, the dashed red curves
show the results for 2 replicas, and the mixed blue curves show the results
for 4 replicas all at a temperature of 10 K. The right figure shows the
convergence of the lowest ring polymer mode for different q-points with
respect to the number of replicas also at 10 K. Black denotes two replicas,
blue denotes four, magenta eight, orange 16, and red 32. Convergence is
reached with a number of 16 replicas.
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Figure B.2: The left figure shows the phonon band structure as obtained from the
generalized eigenvalue equation B.3 for Tersoff silicon. The Solid black
curves denote the physical frequencies and the blue curves show the ring
polymer modes for a system with two replicas at 100 K. Using only two
replicas in the simulation already shows a clean separation between ring
polymer and physical modes. The right figure shows the convergence of
the lowest ring polymer mode for different q-points with respect to the
number of replicas also at 100 K. As can be seen convergence is reached
with 32 replicas.
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same replica S remains unchanged by the Fourier transform. The corresponding eigenvalue
problem now takes the form:

∑

βĴ

DSαÎβĴ(q)εβĴγ (q) = ω2
γ(q)εαÎγ (q). (B.4)

An important note about the eigenvectors of the generalized dynamical Matrix shell be
proven here

Theorem B.0.1. Any eigenvector of the generalized dynamical matrix DSαÎβĴ is also an
eigenvector of SαÎβĴ and DαÎβĴ(q).

Proof. Any two symmetric matrices that commute have the same eigenvectors that is
the case for SαÎβĴ and DαÎβĴ(q) as they both are symmetric and commute with each
other since both are acting on different domains (S describes interaction between the
same atoms in different replicas and D describes the interaction within a single replica
but between different atoms). Thus the eigenvectors of the generalized dynamical matrix
DSαÎβĴ = SαÎβĴ +DαÎβĴ(q) are also eigenvectors of SαÎβĴ and DαÎβĴ(q) �.

Corollary B.0.1.1. Using Theorem B.0.1 we can conclude that the eigenvalues of the
generalized dynamical matrix DSαÎβĴ is the sum of the eigenvalues of SαÎβĴ and DαÎβĴ (q).

Using this formulation the potential part of the Ring polymer hamiltonian can be written
as

V HA =
∑

mhatInĴ

1√
MÎMĴ

∑

γq
eiq·Tn−TnA∗γ(q)ε∗αÎγ (q)1

2SαmÎβnĴAγ(q)εβĴγ (q)

+ 1
2
∑

mÎnĴ

1√
MÎMĴ

∑

γq
eiq·Tm−TnA∗γ(q)ε∗αÎγ (q)ΦαmÎβnĴAγ(q)εβĴγ (q)

= 1
2
∑

Î Ĵ

∑

γq
A∗γ(q)ε∗αÎγ (q)DSαÎβĴ(q)As(q)εβĴγ (q)

= 1
2
∑

γq
A2
γ(q)ω2

γ(q)

(B.5)

Here ∗ denotes the complex conjugate. This provides us with a formulation in which we diag-
onalized total potential. This can largely be replicated for the kinetic energy

T (q) =
∑

nÎ

1
2MÎ

∂u∗
nÎ

∂t

∂unÎ
∂t

= 1
2
∑

γq
ω2
γ(q)A2

γ(q) (B.6)
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Accordingly the total hessian reads

H =
∑

γq
ω2
γ(q)A2

γ(q)

=
∑

γq
(ω2

Sγ + ω2
Φγ(q))(q)A2

γ(q) (B.7)

It has to be noted that the (T)RPMD energy is not given by the corresponding Hamiltonian
instead the derivative

E = ∂βZ

Z
(B.8)

Thus the energy is given by

E =
∑

γq
∂β(ω2

Sγ + ω2
γ(q))(q)A2

γ(q)

=
∑

γq
(ω2
γ(q)− ω2

Sγ)(q)A2
γ(q) (B.9)

The amplitudes are obptained in a similar way to Eq. ??

abs(uγ(q))2 + abs(vγ(q))2

ω2
γ(q) = Aγ(q)ε∗Îγ (q)e−i(q·Tm−ωγ(q)t+ξγ(q) ·Aγ(q)εÎγ(q)ei(q·Tm−ωγ(q)t+ξγ(q)

+
ω2
γ(q)As(q)ε∗Îγ (q)e−i(q·Tm−ωγ(q)t+ξγ(q) ·Aγ(q)εÎγ(q)ei(q·Tm−ωγ(q)t+ξγ(q)

ω2
γ(q)

= 2A2
γ(q)ε∗Îγ (q) · εÎγ(q) (B.10)

Again to obtain the needed we replicate the steps from Eq. ??. Again we can project the
positions and velocities along the (T)RPMD trajectory into reciprocal space similar as we
have done in Eq. 2.176 and 2.177 with only minor adjustments

uγ(q, t) =
∑

αmÎ

1√
MÎ

eiq·TmεαÎγ (q)uα
mÎ

(t) (B.11)

vγ(q, t) =
∑

αmÎ

1√
MÎ

eiq·TmεαÎγ (q)vα
mÎ

(t) (B.12)

The only difference is that one also carries the index α denoting the respective replica. has
to be taken. If we first take a look at the (T)RPMD Hamiltonian in normal mass-weighted
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(projected) modes we get

H =
∑

γq

1
2vγ(q)vγ(q) +

∑

γq

1
2ω

2
Sγuγ(q)uγ(q) +

∑

γq

1
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2
Φγ(q)uγ(q)uγ(q)

=
∑
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1
2(ω2

Sγ + ω2
Φγ(q))1

2uγ(q)uγ(q)

=
∑
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Φγ(q)
2

(
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ω2
Sγ + ω2

Φγ(q) + uγ(q)uγ(q)
)

=
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(ω2
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Φγ(q))A2

γ(q) (B.13)

The Φ and the S denote the eigenvalues denote the eigenvalues of the physical and spring
hessian respectively. The corresponding energy estimator can be obtained from Eq. ?? and
is

Eγq = ∂ββ
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Φγ(q)
2

(
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ω2
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Φγ(q) + uγ(q)uγ(q)
)

=
ω2
Sγ + ω2

Φγ(q)
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Here we have used that β∂βω2
Sγ = −2ω2

Sγ as ω2
Sγ depends inversely one β2 due to the

definition of ωP = P
~β which is always a prefactor to any eigenvalue of the spring hessian.

The single contribution to the energy can easily be decomposed into the "classical" kinetic
energy TMD

γ (q), the quantum kinetic energy TQM
γ (q), and the potential energy of the

pysical system Vγ(q). They are given by

TMD
γ (q) =

v2
γ(q)
2 (B.15)

TQM
γ (q) = −

ω2
Sγu2

γ(q)
2 (B.16)

Vγ(q) =
ω2
Φγ(q)u2

γ(q)
2 (B.17)
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B Harmonic Analysis for Path Integral MD

Using this the mode projected lifetimes were caluclated for two different cases one where
the quantum kinetic energy is included and one where it is omitted. From there we
calculated the average vibrational Lifetime to compare them to the results obtained from
the autocorrelation function of JPhys. The results are shown in Fig ?? and while the average
lifetime calculated from the energy including the quantum kinetic energy agrees well with
the average lifetime obtained from JPhys qualitative and quantitatively the average lifetime
obtained while omitting the quantum kinetic energy show major quantitative deviation
from the results based on JPhys.

Correcting the Erroneous Heat-flux Variance with Surgical Precision: A Peek into
the not so Distend Future

Using harmonic analysis the erroneous heat capacity can be corrected much more pre-
cisely.
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C.1 Optimizations of the Eigensolvers in the ELPA Library:
Testing Autotuning under Production Conditions

This publication focused on CPU and GPU optimizations of the ELPA library e.g. the
then-new Intel Xeon Skylake architecture and its AVX-512 instruction set as well as on
the redefined API which enables the user to tune many internal parameters such as the
highly hardware optimized1 ELPA 2 kernel. Additionally, the new API allowed for the
implementation of an autotuning functionality that automatically identifies the optimal
parameters on the fly by repeatedly solving similar eigenvalue problems always changing
the combination of parameters. Which parameters are tuned can either be set manually
or via predefined autotuning "levels". To showcase the performance benefits to practical
applications we performed benchmark calculations for two periodic systems,i.e. an A-DNA
double helix (unit cell with 7150 atoms, 77220 basis functions) and graphene (unit cell with
5000 atoms, 70000 basis functions) using the PBE XC-functional [29]. Two different levels
of autotuning were tested: FAST which only tunes with respect to the ELPA Kernel and
MEDIUM which also optimizes the blocking parameter of the back transformation. Since
ELPA 2 is superior for these specific problems we excluded ELPA 1 from the autotuning
procedure. The calculations were performed on 32 nodes with 2 CPUs each (20 cores per
CPU @2.4 THz). The accumulated run times for A-DNA in Fig. C.1 compare three different
scenarios, the GENERIC kernel to which FHI-aims defaults if not specified otherwise,
MEDIUM level autotuning, and the optimal setting of MEDIUM level autotuning as if they
were known from the beginning. To this end three different scenarios While autotuning
introduces a slight computational overhead at the start the overall run time is reduced
by about 5%. Similar performance gains are observed in graphene where autotuning
MEDIUM leads to a 10% reduction in run time after 160 SCF steps. Tuning only the
Kernel (autotuning FAST) leads to similar results but requires significantly fewer steps to
find the optimal settings (see Tab. C.1). However even the 15 steps necessary for FAST
autotuning makes is unsuited for most single point calculation which typically require
15-30 SCF steps. However most DFT calculation require more then just one SCF-cycle.
Relaxations typically require several 100 SCF-steps while for ab initio MD this number
can even be in the millions. Since the structure is slightly changed we used the default
1Different version exist optimized e.g. for different versions of the AVX instruction set, Nvidia/AMD
GPUs, and more
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Figure C.1: Accumulated runtime (in minutes) for A-DNA (see text) in three differ-
ent scenarios: Using FHI-aims’ default settings, using autotuning level
MEDIUM, and using optimal settings, as if these were known from the
start. There is a clear benefit of autotuned version over the FHI-aims
default one. Moreover, if more SCF iterations were done, the relative
difference between the autotuned and optimal version would be further
reduced.

Table C.1: Average runtime per SCF step for the A-DNA (77220 basis functions)
and Graphene (70000 basis functions) systems for different kernels and
autotuning methods. Autotuning level FAST requires 15 SCF steps (20
steps performed in total) to identify the optimal kernel (AVX-512), while
autotuning level MEDIUM requires 150 SCF steps (160 steps performed in
total). As a reference, timings for using FHI-aims’ default settings (Generic
kernel) and for using the optimal settings from the start, i.e., the ones
identified by autotuning MEDIUM, are given.

System Generic Optimal FAST MEDIUM
A-DNA 221.3 s 200.5 s 209.2 s 209.6 s
Graphene 160.8 s 137.0 s 143.5 s 144.4 s

134



C.1 Optimizations of the Eigensolvers in the ELPA Library: Testing Autotuning under Production Conditions

Ti
m

in
gs

 p
er

 S
C

F 
st

ep
 (s

ec
)

180

200

220

240
Maximal Time 
FHI-aims Default

Maximal Time 
 Optimal Settings

Average Time  
Optimal Settings

Average Time  
FHI-aims Default

Figure C.2: Average and maximum runtime per SCF steps were observed for ten
different geometries of A-DNA (see text), as they would be observed in
structure relaxations or ab initio Molecular Dynamics simulations. Here,
we compare timings for the default and the optimal settings.

and optimal settings to benchmark the average run times for configurations that are
typically observed in aiMD simulations (Fig. C.2). This reveals that the performance
gains stay consistent across all tested geometries demonstrating the transferability of the
autotuning results. Accordingly, the procedure is especially suited for relaxations or aiMD
simulations where 5-10% better performance quickly adds up potentially allowing for longer
trajectories.

C.1.1 A Parallel Solver for the Generalized Eigenvalue Problem: Optimized
GPU Offloading from Autotuning

In App. C.1 we demonstrated the potential performance gains that are possible with ELPAs’
Autotuning functionality on CPU nodes. However, in the past years, general-purpose
GPU (GPGPU) computing has become widely adopted in high-performance computation.
Accordingly, GPGPU compute is also an important component in ELPAs’ Autotuning
functionality. This is exemplified in Fig. C.3, which shows FHI-aims [100] calculations
for periodic Caesium Chloride crystals using the PBE XC-functional [29] with respect
to the number of basis functions used. For this purpose, we performed calculations at
different sized supercells, i.e., with differing numbers of atoms which naturally increases
the total number of basis functions since FHI-aims employ local atomic orbitals. ELPA1
and ELPA2 were tested separately at all system sizes, and for both, CPU-only calculations,
as well as calculations using CPUs and full GPU acceleration (for the tridiagonalization,
the solution of the eigenvalue problem, and the back transformation), were performed
on four Intel Skylake (Xeon Gold 6138) + Nvidia Tesla V100 nodes with two CPUs and
GPUs each (20 cores/CPU @ 2.0 GHz). Fig. C.3 shows that GPU acceleration offers a
sizeable performance increase for larger systems. However, the threshold number of basis
functions at which GPUs accelerate the calculation compared to CPU-only calculations
is essentially determined by the workload on each CPU and GPU. For too small systems
the overhead, introduced by data transfers to the GPUs, is larger than the potential
performance benefit. For this system, GPU acceleration is beneficial for ELPA1 above
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ELPA2 calculations. CPU-only and CPUs+GPU calculations were
performed. The shaded areas denote which setups is fastest for different
system sizes. The inlet shows

10000 basis functions and for ELPA2 above 20000 basis functions. We also see that for
more than 100000 basis functions GPU ELPA1 outperforms GPU ELPA2, which is inverted
when only pure CPU computations are considered. This is somewhat counterintuitive, as it
is typically assumed that ELPA2 is superior to ELPA1 for large systems, which highlights
the usefulness of Autotuning in identifying the optimal settings. We verified this by running
Autotuning for 13392 and 31477 basis functions respectively whereby the CPU Kernel was
fixed to AVX512. The results in Tab. C.2 reveals that in neither case CPU-only or full
GPU accelerations are optimal but that it is beneficial to use GPU acceleration only for
tridiagonalization and back transformation while the eigenvalue problem is best solved on
the CPU.

Number of ELPA1 ELPA1 ELPA2 ELPA2 Optimal
Basis functions CPU-only CPU+GPU CPU-only CPU+GPU

13,392 16.03s 13.29s 10.38s 12.05s 10.38s
31,744 211.40s 89.38s 110.90s 99.72s 88.73s

Table C.2: Computational time required for solving the KS equations in seconds for
ELPA1 and ELPA2 (CPU-only and CPU+GPU calculations) as well as
for the optimal settings found by ELPA’s autotuning functionality.
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D Thermostats

D.1 Classical

D.1.1 Nose-Hoover Thermostat

One successful approach is to extend the systems, Hamilton, by adding a fictitious oscillator
to the original systems hamiltonian:

HNS = H +
p2
η

2Q + 3NkBTη (D.1)

This requires a new set of equations of motion

ṘI = pI
MI

(D.2)

ṗ = FI −
pη
Q

pI (D.3)

η̇ = pη
Q

(D.4)

ṗη =
∑

I

p2
I

MI
− 3NkBT (D.5)

The momenta are damped by the fictitious oscillator. These equations are proven to
generate a canonical distribution as introduced in Eq. 2.96. This way of controlling the
temperature is not without its drawbacks. For example problems regarding ergodicity can
occur causing the system not to explore the entire phase space. Solutions for this exist,
such as attaching more fictitious oscillators. An in-depth discussion of this problem can be
found in [49].

D.1.2 Langevin Thermostat

Using the Langevin thermostat [166] the time evolution of the momentum is no longer only
determined by the equation of motion but by the Langevin equation:

MIR̈I = FI −
1
τ

ṘI +
√

2MI

τβ
dξ(t). (D.6)
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Here τ is the relaxation time of the thermostat and dξ(t) the Wiener measure. The first
part of this equation is simply the equation of motion of the system added to this is a
friction term, which exerts a dampening force on the nuclei with the frequency 1/τ . A
Langevin thermostat has certain advantages as it is ergodic and samples the canonical
ensemble. However, it strongly depends on the choice of the relaxation time τ . Additionally,
the Langevin thermostat also disturbs the dynamics of the nuclei.

D.1.3 Stochastic Velocity Rescaling Thermostat

The stochastic velocity rescaling (SVR) thermostat was introduced in 2007 by Bussi,
Donadio, and Parrinello [165]. They propose the following procedure:

• Evolve the system for a time step with the equation of motion, using for example
Velocity Verlet.

• Calculate the temperature.

• Evolve the temperature for the length of a timestep using auxiliary continuous
stochastic dynamics.

• Rescale the velocities accordingly.

The velocity rescaling factor is given by:

α =

√
T̄

T
. (D.7)

Here T is the kinetic energy and T̄ = N
2β the average kinetic energy and N the number

of degrees of freedom. In practise, α uses the target kinetic energy Tt instead of average
kinetic energy. The evolution of the kinetic energy is governed by the stochastic differential
equation:

dT =
(
T̄ − T (t)

) dt
τ
− 2

√
T (t)T̄
3Nτ dW. (D.8)

Here dW is the Wiener measure and τ is the relaxation time which determines the coupling
of the thermostat to the physical system. Compared to a Langevin thermostat, the SVR
thermostat is far less sensitive to the choice of relaxation time and also better preserves
the dynamics of the physical system.
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D.2 Quantum

D.2 Quantum

D.2.1 Path Integral Langevin Dynamics

Given that the different replicas are connected by harmonic springs a representation in
normal modes is possible. The matrix elements associated with this transformation are
given by:

Cα0 =
√

1
P

(D.9)

Cαβ<P−2
2

=
√

2
P
cos(2παβ/P ) (D.10)

CαP2
=

√
1
P

(−1)α (D.11)

Cαβ>P−2
2

=
√

2
P
sin(2παβ/P ) (D.12)

The transformation in normal modes is given by

q̃ = CR (D.13)

Here it is useful to split HP into a free and a potential part

HP = H0
P +

P∑

α

V (Rα) (D.14)

This splitting provides an easy way to integrate the equations of motion. As H0
P describes

a harmonic oscillator an exact integration scheme can be applied. The normal mode
representation of H0

P reads

H0
P =

P−1∑

α=0

(
p2
α

2m + 1
2mω

2
αq̃

2
α

)
(D.15)

Here ωα = 2ωP sin(απ/α) are the eigenfrequencies of the ring polymer. One way to integrate
the equation is by using the following algorithm:

pα −
∆t

2
∂V

∂Rα
→ pα (D.16)

Cp→ p̃, CR → q̃ (D.17)
(

cos(ωα∆t) −Mωαsin(ωα∆t)
1/Mωαsin(ωα∆t) cos(ωα∆t)

)(
p̃α

q̃α

)
→
(
p̃α

q̃α

)
(D.18)

Cp̃→ p, Cq̃→ R (D.19)

pα −
∆t

2
∂V

∂Rα
→ pα (D.20)
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This algorithm takes advantage of the splitting of the Hamiltonian in H0
P and V . First, the

momenta are evolved under the influence of the potential Hamiltonian V , after transforming
into the normal mode representation momenta and position are evolved under the influence
of the free Hamiltonian H0

P , and after transforming back the momenta are again evolved
under the influence of the potential Hamiltonian. This is essential for a generalization
of the velocity Verlet algorithm. To efficiently sample the canonical ensemble one can
introduce further steps to the algorithm before the first and after the last step. These steps
are

Cp→ p̃ (D.21)

cα1 p̃
α +

√
M

βP
cα2 ξ

α (D.22)

Cp̃→ p (D.23)

cα1 = e−(∆t/2)γα (D.24)

cα2 =
√

1− (cα1 )2 (D.25)

This is called a path integral Langevin equation (PILE) thermostat [167] and is based on a
combination of a Langevin thermostat with the velocity Verlet algorithm to sample the
classical canonical ensemble. The reason for formulating the thermostat in the normal mode
representation, is that the Langevin dynamics is that of uncoupled harmonic oscillators. Ac-
cordingly, the friction term γ = 1/τ can be determined analytically:

γα>0 = 2ωα (D.26)

γ0 = 1
τ0
. (D.27)

For the centroid mode α = 0 a special friction constant 1/τ0 needs to be defined since
2ω0 = 0. While a friction constant determined using H0

P is not exact, it is still a good
approximation since the ring-polymer mode usually vibrates at much higher frequencies
than the modes of the physical system. However, in many cases, it is advantageous to
attach a stochastic velocity rescaling thermostat, as described in App. D.1.3, to the centroid
mode with yields the PILE-g thermostat.
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