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Abstract

In this thesis we examine how to recover continuous systems from discrete systems,
i.e. differential equations from difference equations. In particular, we are interested in
equations with a variational (Lagrangian) structure and the transferal of this structure
from the discrete to the continuous.

In the context of numerical integration, the differential equation corresponding to
a given difference equation is known as its modified equation. Studying the modified
equation to learn about a numerical integrator is a form of backward error analysis.
It is well known that for a symplectic integrator applied to a Hamiltonian system, the
modified equation is again a Hamiltonian equation. We will prove the corresponding
result on the Lagrangian side: the modified equation for a variational integrator applied
to a Lagrangian system is Lagrangian.

In the context of integrable systems, discrete models are often better understood than
their continuous counterparts, so continuum limits are a useful tool to construct and
study integrable hierarchies of differential equations. Over the last decade, a variational
perspective on integrable systems has been developed, known as pluri-Lagrangian or
Lagrangian multiform theory. It has analogous continuous and discrete versions. We will
discuss how to take the continuum limit of a pluri-Lagrangian lattice equation to obtain
a hierarchy of differential equations, together with its pluri-Lagrangian structure. We
will apply this to most of the lattice equations of the ABS list and to some members of
the lattice GD hierarchy. This way, we obtain many previously unknown examples of
continuous pluri-Lagrangian systems, including a multi-component system.
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Zusammenfassung

Diese Arbeit behandelt die Frage, wie man kontinuierliche Systeme aus diskreten Syste-
men herleiten kann, d.h. Differentialgleichungen aus Differenzengleichungen. Insbesonde-
re sind wir an Gleichungen mit einer variationellen (Lagrangeschen) Struktur interessiert,
und an der Frage wie diese Struktur vom Diskreten ins Kontinuierliche übertragen werden
kann.

Im Bereich der numerischen Integration nennt man die Differentialgleichung, die mit
einer gegebenen Differenzengleichung übereinstimmt, die modifizierte Gleichung. Einen
numerischen Integrator mittels seiner modifizierten Gleichung zu untersuchen, ist eine
Form der Rückwärtsanalyse. Es ist bekannt, dass die modifizierte Gleichung für einen
symplektischen Integrator, angewandt auf eine Hamiltonsche Gleichung, auch eine Ha-
miltonsche Gleichung ist. In dieser Arbeit leiten wir die entsprechende Aussage auf der
Lagrangeschen Seite her: die modifizierte Gleichung für einen variationellen Integrator,
angewandt auf eine Lagrangesche Gleichung, ist wieder eine Lagrangesche Gleichung.

Im Bereich der integrablen Systemen sind diskrete Gleichungen oft leichter zu ver-
stehen als ihre kontinuierliche Ebenbilder. Deswegen sind stetige Limes ein hilfreiches
Werkzeug um Hierarchien integrabler Gleichungen herzuleiten und ihre Eigenschaften zu
erforschen. Im letzten Jahrzehnt ist eine variationelle Theorie für integrablen Systeme
entwickelt worden: die Theorie der Pluri-Lagrangeschen Systeme, oder auch der Lagran-
geschen Multiformen. Diese Theorie hat analoge Versionen auf der diskreten und der
kontinuierlichen Ebene. In dieser Arbeit zeigen wir, wie man den stetigen Limes eines
Pluri-Lagrangeschen Systems bildet. Das Ergebnis ist eine Hierarchie integrabler Diffe-
rentialgleichungen, inklusive der Pluri-Lagrangeschen Struktur. Dieses Verfahren wenden
wir auf die meisten diskreten Gleichungen der ABS-Liste und auf einigen Gleichungen
der diskreten GD-Hierarchie an. Auf diese Weise finden wir verschiedene neue Beispiele
kontinuierlicher Pluri-Lagrangescher Systeme, insbesondere auch ein Mehrkomponenten-
system.
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Preface

Why variational systems?

Physicists have long ago realized the danger of assuming that nature works in the way we
like to think about the world. The earth is not the center of the universe, even though
we see everything else rotate around us. A feather will fall just as fast as a hammer,
provided we eliminate wind resistance. There is no clear distinction between particles
and waves, even though they seem completely different. Applying your experience in
daily life to the fundamentals of physics is a fallacy.

It is tempting to think that mathematicians are immune to this fallacy. After all,
mathematical truth should not depend on any physical reality, should it? But even if we
are fully convinced that it shouldn’t, the way we view the world certainly influences which
mathematical tools we consider most natural. Take the notion of time for example. In
our real-world experience, time flows steadily forward. This makes it seem most natural
to describe dynamical processes by differential equations. Understanding nature in this
mathematical language was Isaac Newton’s great achievement.

Time progressed, and Newton’s era made way to that of minds like Euler, Lagrange,
and later Hamilton. They realized that there is more structure to the world than can
be understood through the differential equations themselves. Out of their insights (and
those of many others) two mostly equivalent concepts arose, which we now refer to as
Lagrangian and Hamiltonian mechanics.

The Hamiltonian formalism constructs differential equations with powerful geometric
properties. Even though this geometry is not obvious in our experience of the world,
the fact that differential equations lie at the heart of the Hamiltonian picture fits very
well with our intuition of forward flowing time. In contrast, the Lagrangian formalism
looks at the system at all moments in time at once by requiring that the action, which
is an integral over time, takes a critical value. Of course differential equations can be
derived from this principle as well, but the fundamental idea is at odds with our human
experience of time. It seems to involve looking both at the past and at the future to
determine how the system evolves at any given time. Perhaps this is why the Hamiltonian
theory is more developed in many areas of mathematical physics than the Lagrangian
one.

The Lagrangian point of view, often referred to as the principle of least action, can
seem like magic. It sounds like a teleological principle, where the universe is consciously
trying to extremize its action. The philosophical aspects of the Lagrangian formalism
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Preface

have puzzled researchers and laymen alike. The principle of least action has not just
inspired scientific research, but pretty much everything from philosophical treatises to
science fiction stories.

It is important to realize that the objection about the apparent teleological nature of
the least action principle might have more to do with our experience of the world than
with nature itself. Ted Chian’s short story “Story of Your Life” imagines an intelligent
alien species – called heptapod because of their seven-fold rotational symmetry – that
does not observe the arrow of time. For a heptapod, time isn’t flowing steadily forward.
For them, it’s just an additional dimension. Because of this, heptapods consider the
principle of least action completely natural. On the other hand, they might see the
Hamiltonian formalism as a mathematical trick invented by heptapod physicists.

Though fiction, “Story of Your Life” is a wonderful illustration of how our understand-
ing of nature is shaped by our human experience. Our physics, and even our mathematics,
might not be as universal as we like to think.

Aside from philosophical considerations, there are several solid arguments why the
Lagrangian point of view should not be neglected. In some contexts, for example in
fully discrete models, there is no way to consider a continuously flowing time. Here the
Lagrangian perspective is more natural. By extension, if one wants to study connections
between discrete systems and their continuous counterparts, it is probably a good idea
to have a Lagrangian point of view on both sides.

Another area where the Lagrangian point of view is extremely valuable are Lorentz-
invariant theories, which are much more naturally expressed in Lagrangian terms than in
Hamiltonian terms. This is why Lagrangian formulations are commonplace in quantum
field theory, even though quantum mechanics is traditionally a very Hamiltonian busi-
ness. Back in 1933, Dirac himself suggested that the Lagrangian formulation of quantum
mechanics is more natural [24].

I do not claim that the Lagrangian point of view is superior in general. It very much
depends on the problem under investigation – and arguably on the taste of the researcher
– which formalism is more suitable. What I am claiming is that the Lagrangian point of
view is neglected in some areas. There is a gap in the scientific literature when it comes
to Lagrangian theories. This thesis provides a little bit of material to help fill that gap.

Aims of this thesis

Variational principles are a powerful tool in physics and mathematics. One of their many
appealing features is that they can be applied with equal ease in both continuous and
discrete contexts. One obvious area where this is of use is numerical integration. Numer-
ical methods for solving Lagrangian differential equations that discretize the variational
principle rather than the equations themselves are known as variational integrators. For
mechanical systems, where the Legendre transform allows us to switch between the La-
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grangian and the Hamiltonian points of view, variational integrators are equivalent to
symplectic integrators.

Most of the literature on geometric numerical integration seems to prefer the symplectic
perspective over the variational one, even when this is somewhat unnatural. Consider
for example the famous long-term near conservation of energy for symplectic integrators.
This is proved using the fact that symplectic maps are interpolated by Hamiltonian
systems. Looking at interpolating systems is a form of backward error analysis, known
by the term modified equations. Powerful as the results are, comparing symplectic maps
to continuous Hamiltonian flows is somewhat unsatisfactory. On the discrete side the
symplecticity is the key notion, whereas on the continuous side the symplecticity usually
appears as a consequence of the Hamiltonian form of the equations. If instead we look
on the Lagrangian side, the fundamental property is the action principle, which is the
same in both the continuous and the discrete world. Therefore it is worth investigating
the story of modified equations from the variational perspective. Can we construct a
Lagrangian for the modified equation for a given variational difference equation? That
is the central question of the first part of this thesis.

A numerical integrator is consistent if its error converges to zero for decreasing step
size, that is, if its continuum limit is again the original equation. This notion of con-
tinuum limit essentially means setting the step size equal to zero and looking at the
surviving leading order term of the modified equation. It destroys all information about
the integrator, except for whether or not it is consistent. What if we look beyond this
leading order interpretation of continuum limit?

For generic difference equations, a higher order term in the modified equation does not
have an interpretation independent of the other terms. However, that changes if we start
with a difference equation that is integrable in the sense of multidimensional consistency.
This means that we can consistently impose copies of the difference equation in a higher-
dimensional lattice. If this is the case, and if we choose a suitable parameterization of
the difference equation, then the terms in the power series defining the modified equation
become compatible differential equations. This way a single integrable difference equation
can produce a hierarchy of commuting differential equations. We consider this whole
hierarchy to be the continuum limit of the difference equation.

This idea of continuum limits – embedding the discrete system in a clever way in the
continuous hierarchy – goes back to Miwa [55] and we will refer to the suitable embedding
by his name. The main theme of part II of this thesis is to combine this kind of continuum
limit with a variational notion of integrability, that of pluri-Lagrangian (or Lagrangian
multiform) systems. Just like in the case of modified equations, we will show that the
variational nature of the equations is preserved when moving from discrete to continuous.

The concept of pluri-Lagrangian systems is quite new. Looking through the literature
on integrable systems, there is a staggering absence of variational principles. Even though
many integrable systems do posses a Lagrangian, this is not a sufficient requirement
for integrability, just as having a Hamiltonian does not suffice for integrability. But
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while an important way of characterizing integrability is the existence of many Poisson-
commuting Hamiltonians, there is no well-established definition of integrability in terms
of Lagrangians.

The pluri-Lagrangian notion of integrability has its roots in the theory of multidimen-
sionally consistent lattice equations. A classification of such equations on quadrilateral
lattices was given by Adler, Bobenko and Suris [4]. All of these ABS equations have
a variational formulation. The pluri-Lagrangian formulation combines the variational
nature of an equation with its multidimensional consistency. It was first proposed by
Lobb and Nijhoff [47].

An appealing feature of the pluri-Lagrangian principle is that it applies in a perfectly
analogous way to both difference equations and differential equations. This raises the
question how the two worlds are related. How to take the continuum limit of a discrete
pluri-Lagrangian system? Answering this is the main goal of the second part of this thesis.
In addition, we aim to give an accessible introduction to the topic of pluri-Lagrangian
systems.
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Part I.

Variational principles in numerical
integration
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1. Variational integrators and modified
equations

Chapters 1 and 2 are an adaptation of [90]

An important technique to study the long-time behavior of numerical integrators is back-
ward error analysis. This consists in finding a modified equation, a perturbation of the
original differential equation whose solutions exactly interpolate the numerical solutions.
When a modified equation has been found, one can study the behavior of the numerical
solutions by comparing two differential equations, rather than comparing a differential
equation with a difference equation.

It is a well-known and essential fact that if a symplectic integrator is applied to a
Hamiltonian equation, then the resulting modified equation is Hamiltonian as well. This
strongly suggests that when a variational integrator is applied to a Lagrangian system,
the resulting modified equation is Lagrangian as well. The aim of Part I of this thesis
is to confirm this. In this introductory chapter we review the essentials of variational
integrators on the one hand, and modified equations on the other.

1.1. Variational integrators

In this section we give a concise introduction to variational integrators, inspired on Hairer,
Lubich, and Wanner [35, Section VI.6]. For a detailed overview of the concept and an
extensive bibliography, we refer to Marsden and West [52].

A continuous Lagrangian or variational system on the Euclidean space RN is described
by a smooth function L : TRN ∼= RN × RN → R and the corresponding action integral

S(x) =

∫ b

a
L(x(t), ẋ(t)) dt. (1.1)

A smooth curve x : [a, b]→ RN : t 7→ (x1(t), . . . , xN (t)) is a solution of the system if and
only if it is a critical point of the action S in the set of all smooth curves with the same

3



1. Variational integrators and modified equations

endpoints x(a) and x(b). Formally, this condition can be written as

0 = δS(x) =

∫ b

a
δL(x(t), ẋ(t)) dt =

∫ b

a

N∑

i=1

(
∂L
∂xi

δxi +
∂L
∂ẋi

δẋi

)
dt

=

∫ b

a

N∑

i=1

(
∂L
∂xi
− d

dt

∂L
∂ẋi

)
δxi dt. (1.2)

When integrating by parts to obtain the last equality we could ignore the boundary
term because the boundary values of the curve are fixed, hence δx(a) = δx(b) = 0. Since
Equation (1.2) holds for any such variation δx, the criticality of the action is characterized
by the conditions

∂L
∂xi
− d

dt

∂L
∂ẋi

= 0 for i = 1, . . . , N,

which are known as the Euler-Lagrange equations. We will usually write them as a single
vector-valued equation,

∂L
∂x
− d

dt

∂L
∂ẋ

= 0. (1.3)

In general this is a second order differential equation. We will assume that the Lagrangian
is regular, i.e. det ∂

2L
∂ẋ2
6= 0. Then the Euler-Lagrange equation can always be solved for

ẍ.
One approach to discretizing the Euler-Lagrange equation (1.3) is to discretize the

action integral (1.1) and to consider discrete curves that are a critical points of this
discrete action. Usually, one looks for a discrete Lagrangian, which is a smooth function
Ldisc : RN × RN × (0,∞)→ R, and defines the discrete action as

Sdisc,h

(
(xj)j∈{0,...,n}

)
=

n∑

j=1

hLdisc(xj−1, xj , h).

A discrete curve x = (x0, . . . , xn) is a critical point of Sdisc,h in the set of all discrete
curves with the same endpoints x0 and xn if and only if it satisfies the discrete Euler-
Lagrange equation

D2Ldisc(xj−1, xj , h) + D1Ldisc(xj , xj+1, h) = 0 for j = 1, . . . , n− 1, (1.4)

where D1Ldisc and D2Ldisc denote the vectors of partial derivatives of Ldisc with respect
to the first and second entry, respectively.

The discrete Lagrangian can be seen as a generating function for a symplectic map
(xj , pj) 7→ (xj+1, pj+1), determined by

pj = −D1Ldisc(xj , xj+1, h) and pj+1 = D2Ldisc(xj , xj+1, h). (1.5)

4



1.1. Variational integrators

In this way, a variational integrator for L leads to a symplectic integrator for the corre-
sponding Hamiltonian system

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

, (1.6)

where p = ∂L
∂ẋ and the Hamilton function is given by H = 〈p , ẋ〉 − L, considered as a

function of x and p. The brackets 〈· , ·〉 denote the standard scalar product on RN .

Example 1.1. There are many ways to obtain a discrete Lagrangian Ldisc from a given
continuous Lagrangian L. Some examples are:

(a) Ldisc(xj , xj+1, h) = L
(
xj + xj+1

2
,
xj+1 − xj

h

)
,

in which case the symplectic map (1.5) is the one obtained by applying the implicit
midpoint rule to (1.6).

(b) Ldisc(xj , xj+1, h) =
1

2
L
(
xj ,

xj+1 − xj
h

)
+

1

2
L
(
xj+1,

xj+1 − xj
h

)
,

in which case the symplectic map (1.5) is the one obtained by applying the Störmer-
Verlet method to (1.6), assuming L is separable. The Störmer-Verlet is a prime
example of a geometric numerical integrator, as it can be used to illustrate many
different concepts of geometric integration [34].

(c) Ldisc(xj , xj+1, h) = L
(
xj ,

xj+1 − xj
h

)

or

(d) Ldisc(xj , xj+1, h) = L
(
xj+1,

xj+1 − xj
h

)
,

for which the symplectic maps (1.5) are the ones obtained by applying the two
variants of the symplectic Euler method to (1.6).

The very least one can expect from a good numerical integrator is that the local error
converges to zero as the step size gets smaller. If we could apply it with a step size of
zero, we would get an exact solution. This is called consistency, but the actual definition
we use for it is slightly more technical:

Definition 1.2. (a) A smooth function Φ :
(
RN
)2 × (0,∞) → R is a consistent dis-

cretization of a smooth function g : TRN → R if there exist smooth functions
gi :

(
RN
)ni → R such that for any smooth curve x and for sufficiently small h there

holds

Φ(x(t), x(t+ h), h) = g(x(t), ẋ(t)) +
∞∑

i=1

higi[x(t)],

5



1. Variational integrators and modified equations

where the square brackets denote dependence on x and an arbitrary number of its
derivatives, gi[x(t)] = gi(x(t), ẋ(t), . . . , x(ni)(t)). If x or Φ is not analytic this should
be interpreted as an asymptotic expansion.

(b) Consider a smooth function g : T (2)RN → R, where T (2)RN is the second order
tangent bundle of RN . A smooth function Φ : (RN)

3 × (0,∞) → R is a consistent
discretization of g if there exist smooth functions gi :

(
RN
)ni → R such that for any

smooth curve x and for sufficiently small h there holds

Φ(x(t− h), x(t), x(t+ h), h) = g(x(t), ẋ(t), ẍ(t)) +

∞∑

i=1

higi[x(t)].

If x or Φ is not analytic this should be interpreted as an asymptotic expansion.

In both cases Definition 1.2 implies that a consistent discretization Φ of g, evaluated
as in the definition, satisfies Φ = g +O(h) as h→ 0.

Proposition 1.3. If Ldisc :
(
RN
)2 × (0,∞) → R is a consistent discretization of L :

TRN → R, then the left hand side of the discrete Euler-Lagrange equation (1.4) is a
consistent discretization of the left hand side of the continuous Euler-Lagrange equation
(1.3).

Proof. Fix a point t in time. From the definition of consistency it follows that there exist
functions gi such that

Ldisc(x(t), x(t+ h), h) = L(x(t), ẋ(t)) +
∞∑

i=1

higi[x(t)]

for any smooth curve x. Taking a constant variation of the curve, δx(s) = 1, we find

D1Ldisc(x(t), x(t+ h), h) + D2Ldisc(x(t), x(t+ h), h)

=
∂L
∂x

(x(t), ẋ(t)) +

∞∑

i=1

hi
∂gi[x(t)]

∂x(t)
.

(1.7)

Taking a linear variation δx(s) = s− t we find

hD2Ldisc(x(t), x(t+ h), h) =
∂L
∂ẋ

(x(t), ẋ(t)) +
∞∑

i=1

hi
∂gi[x(t)]

∂ẋ(t)
, (1.8)

hence there exist ḡi[x(t)] such that

∞∑

k=2

(−h)k

k!

dk

dtk
(D2Ldisc(x(t), x(t+ h), h)) =

∞∑

i=1

hiḡi[x(t)]. (1.9)
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1.2. Modified equations

Combining the last three equations, (1.7) − d
dt(1.8) + (1.9), we find that

D1Ldisc(x(t), x(t+ h),h) + D2Ldisc(x(t− h), x(t), h)

=
∂L
∂x

(x(t), ẋ(t))− d

dt

∂L
∂ẋ

(x(t), ẋ(t))

+

∞∑

i=1

hi
(
∂gi[x(t)]

∂x(t)
− d

dt

∂gi[x(t)]

∂ẋ(t)
+ ḡi[x(t)]

)
.

We close this section by noting that many authors choose the discrete Lagrangian Ldisc

to be a consistent discretization of hL, rather than of L.

1.2. Modified equations

An important tool for studying the long-term behavior of numerical integrators is back-
ward error analysis. Instead of comparing a discrete solution (xj)j∈{0,...,n} to a solution
x : [a, b]→ RN of the continuous system, backward error analysis compares the original
differential equation to another differential equation satisfied by a curve x̃ : [a, b]→ RN
that interpolates the discrete solution. The latter differential equation is known as the
modified equation.

1.2.1. First order equations

For first order equations the notion of modified equations is well-known, see for example
[14, 32, 56, 74], [35, Chapter IX], and the references therein. Nevertheless, defining a
modified equation is a subtle matter. Let Ψ(xj , xj+1, h) = 0 be a discretization of the
differential equation. We would like to define a modified equation along the following
lines.

Pseudodefinition. A parameter-dependent differential equation ẋ = f(x, h) is a modi-
fied equation for the difference equation Ψ(xj , xj+1, h) = 0 if for any solution (xj)j∈{0,...,n}
of the difference equation, the differential equation has a solution x that satisfies x(jh) =
xj for all j.

However, we need to be more careful because the right hand side of the modified
equation will generally be a power series in h that does not converge. We write

f(x, h) = f0(x) + hf1(x) + h2f2(x) + · · · ,

and denote by Tk the operator which truncates a power series in h after order k,

Tk
( ∞∑

i=0

fih
i

)
=

k∑

i=0

fih
i.

7



1. Variational integrators and modified equations

We call this the k-th truncation of the power series. We say that two power series f and
g are equal up to order k if Tk(f) = Tk(g), hence “up to” is to be understood as “up to
and including.”

Furthermore, we will need to consider families of curves parameterized by the step-size
h, rather than just individual curves. Admissible families are those which are bounded
and whose derivatives do not blow up as h→ 0.

Definition 1.4. A family (xh)h∈(0,∞) of smooth curves xh : [ah, bh] → RN is called
admissible if there exists a hmax > 0 such that for each k ≥ 0, ‖x(k)

h ‖∞ is bounded as a
function of h ∈ (0, hmax], where ‖·‖∞ denotes the supremum norm.

Admissibility of a family of curves (xh)h∈(0,∞) guarantees that in power series expan-
sions like xh(t + h) = xh(t) + hẋh(t) + h2

2 ẍh(t) + . . . the asymptotic behavior of each
term is determined by the exponent of h in that term. This is essential in much of what
follows and would not be the case for general families of curves. Now we are in a position
to define a modified equation.

Definition 1.5. Let Ψ :
(
RN
)2 × (0,∞) → RN be a consistent discretization of some

g : TRN → R, with det ∂g∂ẋ 6= 0. The formal differential equation ẋ = f(x, h), where

f(x, h) = f0(x) + hf1(x) + h2f2(x) + · · · ,

is a modified equation for the difference equation Ψ(xj , xj+1, h) = 0 if, for every k, every
admissible family of solutions (xh)h∈(0,∞) of the truncated differential equation

ẋh = Tk (f(xh, h)) , h ∈ (0,∞),

satisfies
Ψ(xh(t), xh(t+ h), h) = O(hk+1)

as h→ 0, for all t.

Note that the discrete dynamics is invariant under scaling of Ψ by a nonzero h-
dependent factor, but the condition that Ψ(x(t), x(t + h), h) = O(hk+1) is not. This
is not a problem because the scaling is constrained by the fact that Ψ is a consistent
discretization of some function g.

Proposition 1.6. Let Ψ :
(
RN
)2 × (0,∞)→ RN be a consistent discretization of some

smooth g : TRN → RN , with det ∂g∂ẋ 6= 0. Then the difference equation Ψ(xj , xj+1, h) = 0
has a unique modified equation.

Proof. Because of the consistency, the Taylor expansion of Ψ(x(t), x(t+ h), h) takes the
form

Ψ(x(t), x(t+ h), h) = g(x, ẋ) + hg1(x, ẋ, ẍ, . . .) + h2g2(x, ẋ, ẍ, . . .) + · · · . (1.10)
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1.2. Modified equations

We look for a modified equation of the form

ẋ = f(x, h) = f0(x) + hf1(x) + h2f2(x) + · · · .
This ansatz allows us to write the higher derivatives of x as linear combinations of
elementary differentials [35, Chapter III.1],

ẋ = f,

ẍ = f ′f,

x(3) =...
f ′′(f, f) + f ′f ′f,

where a prime ′ denotes differentiation with respect to x, and the arguments x and h of
f and its derivatives are omitted. Plugging these expressions into Equation (1.10) we get

Ψ(x(t), x(t+ h), h) = g(x, f) + hg1(x, f, f ′f, f ′′(f, f) + f ′f ′f, . . .) + · · · ,
where again the arguments of f and its derivatives were omitted. By definition of modified
equation this should be zero up to any order,

g(x, f) + hg1(x, f, f ′f, f ′′(f, f) + f ′f ′f, . . .) + · · · = 0.

The hk-term of this expression is of the form

∂g

∂ẋ
fk + terms depending only on x, f0, . . . , fk−1, g, g1, . . . , gk.

Since g, g1, g2, . . . are determined by Ψ, this gives us a recurrence relation for the fk.

Some authors (e.g. Calvo, Murua, and Sanz-Serna [14], Hairer [32]) use the following
property as their definition of a modified equation.

Proposition 1.7. Consider a difference equation of the form

xj+1 = xj + hΦ(xj , xj+1)

and let (xh)h∈(0,∞) be an admissible family of solutions of the truncated modified equation
ẋh = Tk(f(xh, h)). Then

xh(t+ h) = xh(t) + hΦ(xh(t), xh(t+ h)) +O(hk+2).

Proof. The difference equation can be written as Ψ(xj , xj+1, h) = 0, where

Ψ(xj , xj+1, h) =
xj+1 − xj

h
− Φ(xj , xj+1),

which is a consistent discretization of ẋ−Φ(x, x). Hence any admissible family of solutions
(xh)h∈(0,∞) of the modified equation, truncated after order k, satisfies

xh(t+ h)− xh(t)− hΦ(xh(t), xh(t+ h)) = hΨ(xh(t), xh(t+ h), h)

= O(hk+2).

9



1. Variational integrators and modified equations

1.2.2. Second order equations

For the purposes of this thesis we need to generalize Definition 1.5. Since we want to
consider variational integrators, we need to introduce a notion of modified equations for
second order difference equations.

Definition 1.8. Let Ψ : (RN)
3 × (0,∞) → RN be a consistent discretization of g :

T (2)RN → RN , with det ∂g∂ẍ 6= 0. The formal differential equation ẍ = f(x, ẋ, h), where

f(x, ẋ, h) = f0(x, ẋ) + hf1(x, ẋ) + h2f2(x, ẋ) + · · · ,

is a modified equation for the difference equation Ψ(xj−1, xj , xj+1, h) = 0 if, for every k,
every admissible family (xh)h∈(0,∞) of solutions of the truncated differential equation

ẍh = Tk (f(xh, ẋh, h))

satisfies
Ψ(xh(t− h), xh(t), xh(t+ h), h) = O(hk+1)

as h→ 0, for all t.

As in the first order case, we have existence and uniqueness.

Proposition 1.9. Let Ψ : (RN)
3 × (0,∞)→ RN be a consistent discretization of some

smooth function g : T (2)RN → RN , with det ∂g∂ẍ 6= 0. Then the difference equation
Ψ(xj−1, xj , xj+1, h) = 0 has a unique modified equation.

Proof. The Taylor expansion of Ψ takes the form

Ψ(x(t−h), x(t), x(t+h), h) = g(x, ẋ, ẍ)+hg1(x, ẋ, ẍ, . . .)+h2g2(x, ẋ, ẍ, . . .)+· · · . (1.11)

We look for a modified equation of the form
{
ẋ = v

v̇ = f(x, v, h) = f0(x, v) + hf1(x, v) + h2f2(x, v) + · · · .

This first order formulation of the modified equation allows us to write the higher deriva-
tives of x as linear combinations of elementary differentials [35, Chapter III.2],

ẍ = f,

x(3) = fxv + fvf,

x(4) =...
fxx(v, v) + 2fxv(f, v) + fxf + fvv(f, f) + fvfxv + fvfvf,

(1.12)

10



1.2. Modified equations

where the arguments x, v, and h of f and its derivatives were omitted, and the subscripts
denote partial derivatives. Plugging these expressions into Equation (1.11) we get

0 = Ψ(x(t− h), x(t), x(t+ h), h) = g(x, ẋ, f) + hg1(x, ẋ, f, fxẋ+ fvf, . . .) + · · · ,

where the arguments x, ẋ, and h of f and its derivatives were omitted. The hk-term of
this expression is of the form

∂g

∂ẍ
fk + terms depending only on x, ẋ, f0, . . . , fk−1, g, g1, . . . , gk.

Since g, g1, g2, . . . are determined by Ψh, this gives us a recurrence relation for the fk.

Example 1.10. Consider the differential equation ẍ = −U ′(x), where U : RN → R is
some smooth potential, and its Störmer-Verlet discretization

xj+1 − 2xj + xj−1 = −h2U ′(xj).

The modified equation is of the form

ẍ = f(x, h) = f0(x, ẋ) + h2f2(x, ẋ) +O(h4).

In general we should also include odd order terms, but in this example they all vanish
because of the symmetry of the difference equation. We evaluate a smooth curve x on a
mesh of size h. In particular we consider xj = x(t) and

xj±1 = x(t± h) = x± hẋ+
h2

2
ẍ± h3

6
x(3) +

h4

24
x(4) ± h5

120
x(5) +O(h6).

We write v = ẋ, plug the above expansion into the difference equation, and replace
derivatives using Equation (1.12). This gives us

−h2U ′(x) = h2ẍ+
h4

12
x(4) +O(h6)

= h2(f0 + h2f2) +
h4

12
(f0,xx(v, v) + 2f0,xv(f0, v) + f0,xf0

+ f0,vv(f0, f0) + f0,vf0,xv + f0,vf0,vf0) +O(h6),

(1.13)

where the arguments x and v of the fi were omitted and the subscripts x and v denote
partial derivatives, for example

f0,xv(f0, v) =

N∑

i,j=1

∂2f0

∂xi∂vj
f i0v

j and f0,vf0,vf0 =

N∑

i,j=1

∂f0

∂vi
∂f i0
∂vj

f j0

where the upper indices denote the components in RN .
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1. Variational integrators and modified equations

The h2-term of Equation (1.13) gives us f0(x, v) = −U ′(x). In particular, par-
tial derivatives of f0 with respect to v are zero. The h4-term then reduces to f2 =
1
12(U (3)(x)(v, v)− U ′′(x)U(x)). We find the modified equation

ẍ = −U ′ + h2

12

(
U (3)(ẋ, ẋ)− U ′′U

)
+O(h4),

where the argument x of U and of its derivatives has been omitted.
Observe that the truncation after the second order term of this modified equation is

not an Euler-Lagrange equation because the second order term h2

12

(
U (3)(ẋ, ẋ)− U ′′U ′

)

contains first derivatives of x but no second derivative of x. However, we will see that it
can be obtained from an Euler-Lagrange equation by solving it for ẍ and truncating the
resulting power series.

Example 1.11 (Harmonic oscillator). The simplest instance of the last example is the
case that x is real-valued and U(x) = 1

2x
2, which gives us the difference equation

xj+1 − 2xj + xj−1

h2
= −xj .

The modified equation for this difference equation is of the form

ẍ = f(x, h) = f0(x) + h2f2(x) + h4f4(x) +O(h6). (1.14)

The fact that the fi do not depend on v = ẋ in this example vastly simplifies the
calculations. It should be noted that this is very atypical behavior. In almost all other
examples at least some fi do depend on v = ẋ. From Equation (1.14) we obtain the
following simplified form of the expressions in Equation (1.12)

x(3) = f ′ẋ,

x(4) = f ′′ẋ2 + f ′f,

x(5) = f (3)ẋ3 + 3f ′′fẋ+ (f ′)2ẋ,

x(6) = f (4)ẋ4 + 6f (3)fẋ2 + 5f ′′f ′ẋ2 + 3f ′′f2 + (f ′)2f,
...

where the arguments x and h of f and its derivatives were omitted. If x(t) = xj , then

xj±1 = x(t± h) = x± hẋ+
h2

2
ẍ± h3

6
x(3) +

h4

24
x(4)

± h5

120
x(5) +

h6

720
x(6) ± h7

5040
x(7) +O(h8).
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Figure 1.1. The harmonic oscillator. The right hand image is a magnification of the
time interval [80, 100]. The initial values for the differential equations are x(0) = 1 and
ẋ(0) = 0. For the difference equation we take x0 = 1 and x1 = x(1), evaluated on the
exact solution.

Dashed line: exact solution.
Bullets: solution of the Störmer-Verlet discretization with step size h = 1.
Gray solid line: solution of the modified equation truncated after order two.
Black solid line: solution of the modified equation truncated after order four.

Plugging this into the difference equation we find

−h2x = h2ẍ+
h4

12
x(4) +

h6

360
x(6) +O(h8)

= h2
(
f0 + h2f2 + h4f4

)

+
h4

12

(
f ′′0 ẋ

2 + h2f ′′2 ẋ
2 + f ′0f0 + h2f ′0f2 + h2f ′2f0

)

+
h6

360

(
f

(4)
0 ẋ4 + 6f

(3)
0 f0ẋ

2 + 5f ′′0 f
′
0ẋ

2 + 3f ′′0 f
2
0 + (f ′0)2f0

)
+O(h8).

The h2-term of this equation gives us f0(x) = −x, and hence f ′0(x) = −1 and f ′′0 (x) = 0.
The h4-term then reduces to f2(x) = −x

12 , hence f
′
2(x) = − 1

12 and f ′′2 (x) = 0. Finally, the
h6-term gives

f4(x) = − 1

12

( x
12

+
x

12

)
+

x

360
= − x

90
.

Therefore, the modified equation is

ẍ = −x− h2

12
x− h4

90
x+O(h6).

In Figure 1.1 we see that the solution of the fourth truncation of the modified equation
agrees very well with the discrete flow, even with a large step-size.
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1. Variational integrators and modified equations

Also apparent from Figure 1.1 is that the discrete system is 6-periodic for h = 1.
This can be easily verified from the difference equation as well. Of course, for generic
h no periodicity is observed, so the periodic behavior is a coincidence. Or is it? The
periodicity implies that the series 1 + 1

12 + 1
90 + · · · converges to π2

9 , which in turn is
related to the famous series 1 + 1

4 + 1
9 + · · · = π2

6 . Going into detail would lead us far out
on a tangent. We refer the reader who wants to go down this rabbit hole to [92].
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2. Modified Lagrangians

Chapters 1 and 2 are an adaptation of [90]

Given a variational integrator, we would like to find a Lagrangian that produces the
modified equation as its Euler-Lagrange equation. The idea is to look for a modified La-
grangian Lmod(x, ẋ, h) such that the discrete Lagrangian is its exact discrete Lagrangian,
i.e. ∫ h

0
Lmod(x(t), ẋ(t), h) dt = hLdisc(x0, x1, h), (2.1)

where x(t) is a critical curve for Lmod with x(0) = x0 and x(h) = x1. However, unless we
already know the modified equation, we have no idea which curves are critical for Lmod,
so we will try to realize Equation (2.1) without the assumption that x(t) is a critical
curve. Since modified equations are generally non-convergent power series in h, the best
we can hope for is to find such a modified Lagrangian up to an error of arbitrarily high
order in h. Its Euler-Lagrange equation will then agree with the modified equation up
to an error of the same order.

This chapter presents the construction of such a modified Lagrangian. The first in-
carnation of this Lagrangian, which we will construct in Section 2.2, depends on higher
derivatives of the curve instead of just on x and ẋ. Furthermore, the variational principle
that this Lagrangian represents is unconventional: one looks for critical curves in a set of
curves that need not be differentiable everywhere. In Section 2.1 we study this meshed
variational principle by itself and argue that it is natural to consider it.

In Section 2.3 we study some properties of admissible families of curves, which we
will need in Section 2.4 to make sense of variational principles involving non-convergent
power series. Once we have this understanding, we revisit the first incarnation of our
modified Lagrangian and study it in more detail in Section 2.5. This paves the way for a
simplified calculation of the modified equation in Section 2.6 and, finally, the derivation
of a modified Lagrangian depending only on x and ẋ in Section 2.7. In Section 2.8, we
clarify our approach with some examples.

The procedure presented in Section 2.2 is similar to an approach taken by Oliver and
Vasylkevych [67], who discuss the analogous problem for a variational semi-discretization
of the semi-linear wave equation. The rest of this chapter has no close relation to that
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2. Modified Lagrangians

work. For the time being, we will assume that the Lagrangians involved are nondegen-
erate. In Chapter 3 we will consider a particular class of degenerate Lagrangians.

2.1. Natural boundary conditions and meshed variational
problems

A variation of the curve x this is supported within the interval (0, h) does not affect
the right hand side of Equation (2.1), so it must also leave the action integral in the
left hand side unchanged. More generally, the modified Lagrangian will be such that
variations within any mesh interval do not affect the action, even if these variations lead
to nonsmoothness at mesh points. Before we make this claim precise, we must make
sense of variations that leave the set of smooth curves.

Definition 2.1. A classical variational problem consists in finding critical curves of some
action

∫ b
a L[x(t)] dt, where [·] denotes dependence on any number of derivatives of x, in

the set of smooth curves C∞([a, b]) with fixed boundary values.
A meshed variational problem with mesh size h consists in finding smooth curves that

for every t0 ∈ R are critical for the action
∫ b
a L[x(t)] dt in the set of piecewise smooth

curvesMt0,h whose nonsmooth points lie in the mesh t0 + hZ,

Mt0,h =
{
x ∈ C0([a, b]) | x is smooth on [a, b] \ (t0 + hZ)

}
,

again with fixed boundary values.

In other words, a smooth curve x solves the meshed variational problem if it satisfies
δ
∫ b
a L[x(t)] dt = 0 for all variations

δx ∈
⋃

t0∈R

{
v ∈ C0([a, b])

∣∣ v is smooth on [a, b] \ (t0 + hZ) and v(a) = v(b) = 0
}

=
⋃

t0∈R

(
C∞0 ([a, b]) +

∑

t∈t0+hZ

C∞0 ([t, t+ h] ∩ [a, b])

)
, (2.2)

where C∞0 denotes the space of smooth functions that are zero on the boundary. Further-
more, it is understood that each element of C∞0 ([t, t+h]∩ [a, b]) is zero on [a, b] \ [t, t+h]
and thus an element of C0([a, b]). A few of these variations are illustrated in Figure 2.1.

Consider a classical variational problem on the interval [a, b] with a Lagrange function
L[x]. The condition for criticality reads

∫ b

a

δL
δx
δx dt+

∞∑

j=0

δL
δx(j+1)

δx(j)

∣∣∣∣
b

a

= 0, (2.3)
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Figure 2.1. A smooth curve and a few of its variations for classical variational problem
(left) and a meshed variational problem (right).

where
δL
δx(j)

=
∞∑

i=0

(−1)i
di

dti
∂L

∂x(j+i)

are variational derivatives of L. Equation (2.3) is easily verified using the identity

δL
δx(j)

+
d

dt

δL
δx(j+1)

=
∂L
∂x(j)

.

We assume that each of the quantities x(a), x(b), ẋ(a), ẋ(b), ẍ(a), ẍ(b), . . . is either fixed
independently of the others or left completely free. Depending on which of those are fixed
and which are left free, the following necessary and sufficient conditions follow from (2.3):

(a)
δL
δx

= 0.

(b) ∀j ≥ 0 : if x(j)(a) is free,
δL

δx(j+1)

∣∣∣∣
t=a

= 0,

∀j ≥ 0 : if x(j)(b) is free,
δL

δx(j+1)

∣∣∣∣
t=b

= 0.

Condition (a) is the Euler-Lagrange equation. Conditions (b) are known as the natural
boundary conditions [30, Sec. 6].

Now consider a meshed variational problem on the interval [a, b] with Lagrange function
L[x]. A necessary condition for criticality is that on each interval [t, t + h] ⊂ [a, b] the
corresponding classical variational problem, with boundary conditions on x but not on
the derivatives, is solved. This gives the following conditions on the whole time interval
[a, b]:

(a)
δL
δx

= 0.

(b) ∀j ≥ 2 :
δL
δx(j)

= 0,

or equivalently: ∀j ≥ 2 :
∂L
∂x(j)

=
δL
δx(j)

+
d

dt

δL
δx(j+1)

= 0.

(2.4)
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These conditions are also sufficient, because any variation consistent with the meshed
structure can be written as the sum of a smooth variation on [a, b] and variations on
intervals [t, t + h] that vanish at the endpoints, as shown in Equation (2.2). In analogy
with the classical case we call (2.4)(b) the natural interior conditions. They can also be
seen as a higher-order version of the Weierstrass-Erdmann corner conditions [30, Sec.
15], where the time of a corner is not allowed to be varied, but every point is a corner.

Note that the conditions (2.4) are independent of h. In (2.4)(a) there is no reason to
expect h-dependence because it comes from the classical part of the variational problem.
Equation (2.4)(b) does depend on the mesh, in the sense that it applies at time t if we
can find a mesh containing t as a mesh point, but this can be achieved for any h by
setting t0 = t. In other words, since we are allowed to shift the mesh, (2.4)(b) applies
everywhere regardless of the mesh size h.

Since the Euler-Lagrange equation (2.4)(a) together with suitable boundary conditions
already determine a unique solution, meshed variational problems are overdetermined.
This should not be surprising. After all we are looking for critical curves in sets Mt0,h

of piecewise smooth curves, but at the same time require the critical curve to be in the
subset C∞ ⊂Mt0,h of smooth curves.

For general Lagrangians there is no reason to hope for the existence of a nontrivial
meshed critical curve, but for the modified Lagrangian that we are about to construct,
any solution of the classical variational problem will solve the meshed variational problem.
With this observation, to be made precise in Lemma 2.13 of Section 2.5, Equation (2.4)(b)
changes from restrictive condition into useful information.

2.2. A meshed modified Lagrangian

Here we begin the construction of a modified Lagrangian from a given discrete Lagrangian
Ldisc that is a consistent discretization of some continuous Lagrangian. Using a Taylor
expansion we can write the discrete Lagrangian Ldisc

(
x
(
t− h

2

)
, x
(
t+ h

2

)
, h
)
as a function

of a smooth curve x and its derivatives, all evaluated at time t,

Ldisc([x(t)], h) = Ldisc

(
x(t)− h

2
ẋ(t) +

1

2

(
h

2

)2

ẍ(t)− . . . ,

x(t) +
h

2
ẋ(t) +

1

2

(
h

2

)2

ẍ(t) + . . . , h

)
.

(2.5)

From Equation (2.5) we proceed by expanding Ldisc(·, ·, h) around the point (x(t), x(t))
to write Ldisc([x], h) explicitly as a power series in h.

We could also have chosen t− h
2 , t+

h
2 , or any other point in the interval

[
t− h

2 , t+ h
2

]
to

expand around. Choosing the midpoint has the computational advantage that the expan-
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2.2. A meshed modified Lagrangian

sions of some common terms like 1
h

(
x
(
t+ h

2

)
− x
(
t− h

2

))
and 1

2

(
x
(
t− h

2

)
+ x
(
t+ h

2

))

only contain even powers of h.

Proposition 2.2. If the discrete Lagrangian Ldisc is a consistent discretization of some
L(x, ẋ), then the hk-term of Ldisc can depend on x, ẋ, . . . , x(k+1), but not on higher deriva-
tives of x.

Proof. Let y = x + h2

8 ẍ + . . . and z = ẋ + h2

24x
(3) + . . .. Fix a time t0 and consider the

curve v(t) = y(t0) +
(
t− h

2

)
z(t0). Then for some functions gi (i ∈ N) there holds

Ldisc([x(t0)], h) = Ldisc

(
y(t0)− h

2
z(t0), y(t0) +

h

2
z(t0), h

)

= Ldisc(v(0), v(h), h)

= L(v(0), v̇(0)) + hg1[v(0)] + h2g2[v(0)] + . . . .

Since v is linear, we can assume the gi to depend on v and v̇ only. This means we can
also write the gi as a function of y(t0) and z(t0), say gi[v(0)] = ḡi(y(t0), z(t0)). Then

Ldisc([x(t0)], h) = L(v(0), v̇(0)) +

∞∑

i=1

hiḡi(y(t0), z(t0))

= L
(
y(t0)− h

2
z(t0), z(t0)

)
+

∞∑

i=1

hiḡi(y(t0), z(t0))

= L(y(t0), z(t0)) +

∞∑

i=1

hiĝi(y(t0), z(t0)),

where the Taylor series of L around (y(t0), z(t0)) has been absorbed into the ĝi. When
we substitute y = x + h2

8 ẍ + . . . and z = ẋ + h2

24x
(3) + . . . in this equation, the claim

follows immediately.

We have written the discrete Lagrangian as a function of a continuous curve and found
Ldisc([x(t)], h), but as the subscript indicates it is still very much a discrete quantity from
the variational point of view. The action is still a sum,

Sdisc,h =

n∑

j=1

hLdisc(x(jh− h), x(jh), h) =
n∑

j=1

hLdisc

([
x
(
jh− h

2

)]
, h
)
.

We want to write this action as an integral. To do this we require a lemma, based on
the Euler-Maclaurin Formula.
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2. Modified Lagrangians

Lemma 2.3. For any smooth function f : R→ RN we have

n∑

j=1

hf

(
jh− h

2

)
'
∫ nh

0

( ∞∑

i=0

h2i
(
21−2i − 1

) B2i

(2i)!
f (2i)(t)

)
dt,

where Bi are the Bernoulli numbers. The symbol ' denotes an asymptotic expansion for
h→ 0. In general, the power series in the right hand side does not converge.

Remark. The first few terms can easily be obtained by Taylor expansion. We have
∫ h

0
f(t) dt =

∫ h

0
f
(
h
2

)
+
(
t− h

2

)
f ′
(
h
2

)
+

1

2

(
t− h

2

)2
f ′′
(
h
2

)
+O(t3) dt

= hf
(
h
2

)
+
h3

24
f ′′
(
h
2

)
+O(h4)

= hf
(
h
2

)
+

∫ h

0

h2

24
f ′′
(
h
2

)
dt+O(h4)

= hf
(
h
2

)
+

∫ h

0

h2

24
f ′′(t) dt+O(h4),

which gives the result up to order 2 after summation:

n∑

j=1

hf

(
jh− h

2

)
=

∫ nh

0
f(t)− h2

24
f ′′(t) dt+O(nh4).

We could prove the general statement by an iteration of this procedure, but that would
reinventing the wheel; a wheel known as the Euler-Maclaurin formula.

Proof of Lemma 2.3. The Euler-Maclaurin formula [1, Sec. 23.1] gives the asymptotic
expansion

n−1∑

j=1

g(j) '
∫ n

0
g(t) dt− 1

2
(g(0) + g(n)) +

∞∑

i=1

B2i

(2i)!

(
g(2i−1)(n)− g(2i−1)(0)

)

for any smooth function g : R→ RN . If we double n in this formula, we get

2n−1∑

j=1

g(j) '
∫ 2n

0
g(t) dt− 1

2
(g(0) + g(2n)) +

∞∑

i=1

B2i

(2i)!

(
g(2i−1)(2n)− g(2i−1)(0)

)
.

If we double the the argument of g instead, we get

n−1∑

j=1

g(2j) '
∫ n

0
g(2t) dt− 1

2
(g(0) + g(2n)) +

∞∑

i=1

22i−1 B2i

(2i)!

(
g(2i−1)(2n)− g(2i−1)(0)

)
.
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2.2. A meshed modified Lagrangian

Taking the difference yields

n∑

j=1

g(2j − 1) '
∫ n

0
g(2t) dt+

∞∑

i=1

(
1− 22i−1

) B2i

(2i)!

(
g(2i−1)(2n)− g(2i−1)(0)

)
,

hence
n∑

j=1

g(2j − 1) '
∫ n

0

(
g(2t) +

∞∑

i=1

(
2− 22i

) B2i

(2i)!
g(2i)(2t)

)
dt.

Now set f(t) = g
(

2
h t
)
. Then

n∑

j=1

f

(
hj − h

2

)
'
∫ n

0

(
f(ht) +

∞∑

i=1

(
2− 22i

) B2i

(2i)!

(
h

2

)2i

f (2i)(ht)

)
dt,

which is equivalent to the claimed result.

Definition 2.4. We call the formal power series

Lmesh([x(t)], h) =
∞∑

i=0

(
21−2i − 1

) h2iB2i

(2i)!

d2i

dt2i
Ldisc([x(t)], h)

= Ldisc([x(t)], h)− h2

24

d2

dt2
Ldisc([x(t)], h) +

7h4

5760

d4

dt4
Ldisc([x(t)], h) + · · ·

the meshed modified Lagrangian of Ldisc.

Note that the higher order terms of the meshed modified Lagrangian do not contribute
to the Euler-Lagrange equations because they are time derivatives. However, they do
contribute to the natural interior conditions. Furthermore, they are needed to have
(formal) equality between the discrete and the meshed modified action,

Sdisc,h

(
(x(t0 + jh))j∈{0,...,n}

)
=

n∑

j=1

hLdisc

([
x
(
t0 + jh− h

2

)]
, h
)

'
∫ t0+nh

t0

Lmesh([x(t)], h) dt

for any piecewise smooth curve x ∈ Mt0,h. This implies that if x is a curve such that
(x(t0 + jh))j is critical for the discrete action, then x formally solves the meshed varia-
tional problem for Lmesh. To state properties like this in an analytically meaningful way,
we need to introduce a few new concepts. This will be done in the next two sections.
Once we have those tools at our disposal, we will work towards constructing a classical,
first-order Lagrangian Lmod : TRN → R for the modified equation.
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2. Modified Lagrangians

2.3. Properties of admissible families of curves

Recall from Definition 1.4 that a family of curves in RN is called admissible if the curves
and their derivatives of any order are bounded as h → 0. An admissible family of
real valued curves (i.e. with N = 1) is called an admissible family of functions. In
particular, for a family of Lagrangians (Lh)h∈(0,∞) that is given by a power series in h and
an admissible family of curves (xh)h∈(0,∞), the compositions Lh[xh] form an admissible
family of functions.

Let us list a few useful lemmas. The first two follow immediately from the definition
of admissibility.

Lemma 2.5. If (xh)h∈(0,∞) is an admissible family of curves, then for every k ∈ N the
family of derivatives (x(k)

h )h∈(0,∞) is admissible as well.

Lemma 2.6. If (xh)h∈(0,∞) is an admissible family of curves, then for a suitable hmax >
0, the family (xh)h∈(0,hmax] is equicontinuous.

The next lemma states that if an admissible family of functions tends to zero, then so
does the family of their derivatives. The proof is an ε-δ-argument, but the idea behind it
is very simple: if the functions get smaller but their derivatives do not, then they must
be oscillating faster and faster, which leads to a blow up of the second derivative.

Lemma 2.7. Let (fh)h∈(0,∞) be an admissible family of functions on the same domain
[a, b] and let (hk)k∈N be a sequence with hk → 0. If limk→∞ fhk = 0, then limk→∞ f ′hk = 0.

(And hence limk→∞ f
(n)
hk

= 0 for all n.)

Because we are considering equicontinuous functions on a compact domain, the point-
wise limit limk→∞ fhk(t) = 0 is equivalent to the uniform limit limk→∞ ‖fhk‖∞ = 0, so
the potential ambiguity in the notation above is irrelevant.

Proof of Lemma 2.7. Suppose towards a contradiction that there exists an ε > 0 and a
t ∈ [a, b] such that |f ′h`(t)|> ε for all members of a subsequence of (hk)k∈N. Without loss
of generality we can assume ε < 1. Since lim`→∞ fh` = 0, for every j ∈ N we can find a
k ∈ N such that for all ` ≥ k there holds ‖fh`‖∞< 1

8ε
j+1.

We claim that for every ` ≥ k there exists an s` ∈
[
t− 1

2ε
j , t
]
such that |f ′h`(t) −

f ′h`(s`)| ≥ ε
2 . Indeed, if this were not the case there would hold that

∣∣fh`(t)− fh`
(
t− 1

2ε
j
)∣∣ ≥ εj

2
inf

τ∈[t− 1
2
εj ,t`]

∣∣f ′h`(τ)
∣∣

>
εj

2

(∣∣f ′h`(t)
∣∣− ε

2

)
>
εj+1

4
,

which contradicts the fact that ‖fh`‖∞< 1
8ε
j+1.
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2.3. Properties of admissible families of curves

Since such an s` exists, we can find an r` ∈ [s`, t] ⊂
[
t− 1

2ε
j , t
]
such that |f ′′h`(r`)|>

ε
2/

εj

2 = ε1−j . It follows that lim sup`→∞‖f ′′h`‖∞≥ limj→∞ ε1−j = ∞, which contradicts
the assumption that (fh)h∈(0,∞) is admissible.

Lemma 2.7 can be extended to include the rate of convergence. The following lemma
states this both for families on a constant domain and for families on a shrinking domain.

Lemma 2.8. (a) Let (fh)h∈(0,∞) be an admissible family of functions on the same do-
main [a, b]. If fh = O(h`), then for all k ∈ N there holds f (k)

h = O(h`).

(b) Let (fh)h∈(0,∞) be an admissible family of functions on a shrinking domain [ah, bh] =

[ah, ah + h]. If fh = O(h`), then for all k ∈ N there holds f (k)
h = O(h`−k).

Proof. (a) Since the derivatives of an admissible family of functions form an admissible
family, it is sufficient to show this for k = 1.

Assume towards a contradiction that f ′h is not O(h`). Then there exists a sequence
(hj)j∈N with hj → 0 such that ‖f ′hj‖∞> jh`. Hence

lim
j→∞

fhj

‖f ′hj‖∞
= 0.

Lemma 2.7, applied to the family
(
fh/‖f ′h‖∞

)
h∈(0,∞)

, implies that

lim
j→∞

f ′hj
‖f ′hj‖∞

= 0,

but since pointwise and uniform convergence are equivalent (see Lemma 2.6), this
leads to a contradiction:

1 = lim
j→∞

∥∥∥∥∥
f ′hj
‖f ′hj‖∞

∥∥∥∥∥
∞

= 0,

(b) Consider the functions gh : [0, 1]→ RN defined by rescaling fh:

gh(t) = fh(ah + ht).

Then ‖g(k)
h ‖∞ = hk‖f (k)

h ‖∞, so the gh form an admissible family. Hence from part
(a) it follows that hkf (k)

h = O(h`).

The final lemma of this section makes precise the fact that a function must be small
if the average of any two nearby evaluations is small.
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2. Modified Lagrangians

Lemma 2.9. Let (fh)h∈(0,∞) be an admissible family of functions on the same domain
[a, b]. If for every t ∈ [a, b− h] there holds fh(t) + fh(t+ h) = O(h`), then fh = O(h`).

Proof. We proceed by induction on `. If ` = 0 the claim follows from the definition of
admissibility. Assume the statement holds for `−1. Observe that fh(t+h)−fh(t) = O(h),
so fh(t) + fh(t + h) = O(h`) implies fh(t) = O(h). By Lemma 2.8(a) this implies that
f

(k)
h = O(h) for every k. Therefore

(
1
hfh
)
h∈(0,∞)

is an admissible family of functions.
Since 1

hfh(t) + 1
hfh(t + h) = O(h`−1), the induction hypothesis implies that 1

hfh =
O(h`−1).

Studying meshed variational problems for admissible families of curves instead of in-
dividual piecewise smooth curves is much more subtle. The reason for this is that the
higher derivatives of variations on a mesh interval [t, t+h] tend to increase without bound
as h→ 0. Such variations take us outside the set of admissible families and are therefore
not allowed. The next section provides us with the tools to avoid this.

2.4. k-critical families of curves

Modified equations generally are nonconvergent power series and so are modified La-
grangians. To make sense of these analytically we need to truncate the power series. It
will be useful to allow an unspecified truncation error in the notion of a critical curve.

Definition 2.10. In all three cases below we assume that a full set of boundary conditions
is provided and that the variations respect these boundary conditions.

(a) An admissible family (xh)h∈(0,∞) of curves xh : [a, b]→ R is k-critical for a family of
actions Sh =

∫ b
a Lh dt if for every admissible family of smooth variations δxh there

holds
δSh = O(hk+1 ‖δxh‖1).

The set of k-critical families of curves is denoted by Ck(Lh).

(b) An admissible family (xh)h∈(0,∞) of curves xh : [a, b] → R is meshed k-critical for
a family of actions Sh =

∫ b
a Lh dt if for every admissible family of variations δxh ∈

Mth,h (i.e. δxh piecewise smooth with nonsmooth points in a mesh of size h) there
holds

δSh = O(hk+1 ‖δxh‖1).
The set of meshed k-critical families of curves is denoted by CMk (Lh).

(c) A family (xh)h∈(0,∞) of discrete curves xh = (xh,j)j∈{0,...,nh}, where nh ∼ h−1, is
k-critical for a family of actions Sdisc,h =

∑
j hLdisc(·, ·, h) if for every family of
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2.4. k-critical families of curves

variations δxh = (δxh,j)j∈{0,...,nh} there holds

δSdisc,h = O(hk+1 ‖δxh‖disc),

where ‖δxh‖disc=
∑

j h|δxh,j |.

Note that the scaling of the norm in the discrete case is such that for any smooth
variation δx there holds

‖δx‖1= (1 +O(h))‖(δx(jh))j∈{0,...,nh}‖disc.

The following Lemma characterizes k-critical families of curves by a natural relaxation
of the usual criticality conditions.

Lemma 2.11. (a) An admissible family (xh)h∈(0,∞) of curves xh : [a, b]→ R is k-critical
for the family of actions Sh =

∫ b
a Lh dt if and only if it satisfies the corresponding

Euler-Lagrange equations with a defect of order O(hk+1):

δLh
δx

= O(hk+1). (2.6)

(b) An admissible family (xh)h∈(0,∞) of curves xh : [a, b] → R is meshed k-critical for
the family of actions Sh =

∫ b
a Lh dt if and only if it satisfies

δLh
δx

= O(hk+1) and
∂Lh
∂x(`)

= O(hk+`+1) for all ` ≥ 2. (2.7)

(c) A family (xh)h∈(0,∞) of discrete curves xh = (xh,j)j∈{0,...,nh} is k-critical for the
family of actions Sdisc,h =

∑
j hLdisc(xh,j , xh,j+1, h) if and only if it satisfies the

corresponding discrete Euler-Lagrange equations with a defect of order O(hk+1):

D2Ldisc(xh,j−1, xh,j , h) + D1Ldisc(xh,j , xh,j+1, h) = O(hk+1).

Proof. (a) Consider a family of Lagrangians Lh and a smooth curve x. It is sufficient to
consider variations that have a fixed 1-norm, say ‖δxh‖1= 1. For any such family of
variations (δxh)h∈(0,∞) we have

δSh =

∫ b

a

δLh
δx

δxh dt.

It follows that Equation (2.6) holds if and only if δSh = O(hk+1) = O(hk+1‖δxh‖1)
for all families of variations with ‖δxh‖1= 1.
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2. Modified Lagrangians

(b) Any variation can be written as the sum of variations supported on single mesh
intervals and a smooth variation, as in Equation (2.2). It is sufficient to look at
these types of variations separately. Smooth variations are treated as in (a). For a
variation supported on a mesh interval [t0, t0 + h] we find

δSh =

∫ t0+h

t0

δLh
δx

δxh dt+

∞∑

i=2

i−2∑

j=0

(−1)j
dj

dtj
∂Lh
∂x(i)

δx
(i−j−1)
h

∣∣∣∣
t0+h

t0

.

Note that we did not include j = i−1 in the summation range, because the variation
δxh must vanish at the endpoints t0 and t0 +h. If ‖δxh‖1= O(h`+1) for some `, then
‖δxh‖∞= O(h`), hence by Lemma 2.8(b) we have ‖δx(i−j−1)

h ‖∞ = O(h`−i+j+1).
Then the conditions (2.7) imply that δSh = O(hk+`+2). Since ‖δxh‖1= O(h`+1),
this is sufficient for meshed k-criticality.

By considering smooth variations as in part (a), we can conclude that also in this
case the Euler-Lagrange equations up to order k are necessary conditions. More
subtle to show is the necessity of the natural interior conditions. The difficulty is
that the higher derivatives of variations supported on a mesh interval [t, t + h] are
usually unbounded as h → 0, so the set of admissible families of such variations is
rather small.

We will use induction on m to show that

∀m ≥ 0 : ∀k ≥ 0 : ∀` ≥ 2 :
∂Lh
∂x(`)

= O(hk+`+1 + hm) on k-critical families.

For m = 0 this follows from the admissibility of the family of curves.

Now fix some M and suppose the claim holds for m = M − 1. Take any k ≥ 0
and ` ≥ 2. To construct admissible variations we consider the family of polynomials
p`,h(t) of degree ` in t, parameterized by h ∈ (0,∞), that satisfies

p`,h(0) = p`,h(h) = 0,

p′`,h(0) = p′`,h(h), p′′`,h(0) = p′′`,h(h), . . . p
(`−2)
`,h (0) = p

(`−2)
`,h (h),

p
(`)
`,h ≡ 1.

For each ` and h these conditions uniquely define a polynomial because they are
equivalent to ` + 1 independent linear equations in the coefficients of p`,h. Note
that these polynomials satisfy the scaling relation p`,h(ht) = h`p`,1(t), from which it
follows that max[0,h] |p(j)

`,h| = O(h`−j). In particular, we have that p(`−1)
`,h (t) = t− h

2 .

Fix a family of real numbers (th)h∈(0,∞). Consider the family of variations

δxh(t) = p`,h(t− th)1[th,th+h](t) v,
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2.4. k-critical families of curves

where 1A denotes the indicator function of A and v ∈ RN is a constant vector. Note
that δxh ∈ C∞0 ([th, th +h]), so it is compatible with the meshed variational problem.
Since max[0,h]|p`,h|= O(h`) we have ‖δxh‖1= O(h`+1), hence for meshed k-critical
families of curves there holds that

δSh =

∫ th+h

th

∑̀

i=0

∂Lh
∂x(i)

δx
(i)
h dt

=

∫ th+h

th

∑̀

i=0

(−1)i
di

dti
∂Lh
∂x(i)

δxh dt+
∑̀

i=2

i−2∑

j=0

(−1)j
dj

dtj
∂Lh
∂x(i)

δx
(i−j−1)
h

∣∣∣∣
th+h

th

(2.8)

= O(hk+`+2),

where we could limit the summation range to i ≤ ` because higher derivatives of the
variation δxh vanish. We have already established that δLh

δx = O(hk+1) on meshed
k-critical families and the induction hypothesis implies that ∂Lh

∂x(i)
= O(hk+1 +hM−1)

for i ≥ 2 on meshed k-critical families. It follows that
∫ th+h

th

∑̀

i=0

(−1)i
di

dti
∂Lh
∂x(i)

δxh dt = O(hk+`+2 + hM+`),

hence Equation (2.8) implies

∑̀

i=2

i−2∑

j=0

(−1)j
dj

dtj
∂Lh
∂x(i)

δx
(i−j−1)
h

∣∣∣∣
th+h

th

= O(hk+`+2 + hM+`). (2.9)

Using the fact that ‖δx(i−j−1)
h ‖∞ = O(h`−i+j+1) and the induction hypothesis, we

find that for all i and j in the range of this sum, except (i, j) = (`, 0),

dj

dtj
∂Lh
∂x(i)

δx
(i−j−1)
h = O(hk+`+2 + hM+1),

hence

(−1)j
dj

dtj
∂Lh
∂x(i)

δx
(i−j−1)
h

∣∣∣∣
th+h

th

= O(hk+`+2 + hM+1).

Equation (2.9) now implies that the term with (i, j) = (`, 0) satisfies the same order
condition:

h

2

(
∂Lh
∂x(`)

∣∣∣∣
th

+
∂Lh
∂x(`)

∣∣∣∣
th+h

)
= O(hk+`+2 + hM+1).

By Lemma 2.9 it follows that

∂Lh
∂x(`)

= O(hk+`+1 + hM ).

27



2. Modified Lagrangians

This concludes the induction step and thus the proof that the interior conditions, up
to the appropriate order, are necessary for k-criticality.

(c) If the family (xh)h∈(0,∞) of discrete curves is k-critical, then

∑

j

h (D2Ldisc(xh,j−1, xh,j , h) + D1Ldisc(xh,j , xh,j+1, h)) δxh,j = δSdisc,h

= O(hk+1‖δxh‖disc).

For some index `, set δxh,` = 1
h and δxh,j = 0 for j 6= `, then ‖δxh‖disc= 1. It follows

that
D2Ldisc(xh,`−1, xh,`) + D1Ldisc(xh,`, xh,`+1) = O(hk+1).

On the other hand, for any family of variations (δxh)h∈(0,∞) with norm ‖δxh‖disc= 1
we have

|δSdisc,h| ≤
∑

j

h|(D2Ldisc(xh,j−1, xh,j) + D1Ldisc(xh,j , xh,j+1)) δxh,j|

≤
(∑

j

h|δxh,j |
)

max
j

(|D2Ldisc(xh,j−1, xh,j) + D1Ldisc(xh,j , xh,j+1)|)

= max
j

(|D2Ldisc(xh,j−1, xh,j) + D1Ldisc(xh,j , xh,j+1)|).

Hence
(
(xh,j)j∈{0,...,nh}

)
h∈(0,∞)

is k-critical if the discrete Euler-Lagrange equations
are satisfied up to order k.

2.5. Properties of the meshed modified Lagrangian

Now that we have established the analytic framework, it is time to list some important
properties of the meshed modified Lagrangian.

Lemma 2.12. Let Ldisc be a consistent discretization of a regular Lagrangian L(x, ẋ).
Then the zeroth order term of the modified Lagrangian is the original continuous La-
grangian, i.e. Lmesh([x], h) = L(x, ẋ) +O(h).

Proof. We have

Lmesh([x(t)], h) = Ldisc([x(t)], h) +O(h2)

= Ldisc

(
x
(
t− h

2

)
, x
(
t+ h

2

)
, h
)

+O(h2)

= L(x(t), ẋ(t)) +O(h).
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An essential property of the meshed modified Lagrangian is that any curve that
solves the Euler-Lagrange equations automatically satisfies the natural interior condi-
tions. Hence for this particular class of Lagrangians, the natural interior conditions are
not a additional restrictions compared to the classical variational problem, but instead
they provide us with useful information about critical curves.

Lemma 2.13. If a family of curves (xh)h∈(0,∞) satisfies the Euler-Lagrange equations of
Lmesh up to order k then it satisfies the natural interior conditions

∂Lmesh

∂x(`)
= O(hk+`+1) for all ` ≥ 2.

In other words, for Lmesh every k-critical family of curves is also meshed k-critical,
CMk (Lmesh) = Ck(Lmesh).

Proof. Consider the same family of polynomials p`,h(t) as in the proof of Lemma 2.11(b)
and the corresponding family of variations δxh(t) = p`,h(t − t0)1[th,th+h]v. Since these
variations do not affect the discrete action

Sdisc,h =
∑

j

Ldisc(xh(th + (j − 1)h), xh(th + jh), h),

there holds for every curve that

∫ b

a

∑̀

i=0

∂Lmesh

∂x(i)
δx

(i)
h dt ' δSdisc,h = 0.

In particular this implies Equation (2.8). Since the Euler-Lagrange equations are satisfied
up to order k, we can proceed exactly as in the proof of Lemma 2.11(b).

The modified Lagrangian depends on fewer derivatives of x than Ldisc (cf. Proposition
2.2):

Proposition 2.14. For ` ≥ 1 the h`-term of Lmesh (as a power series in h) can depend
on x, ẋ, . . . , x(`), but not on higher derivatives of x.

Proof. Any admissible family of curves satisfies the Euler-Lagrange equations up to order
−1:

δLmesh

δx
= O(1).

Hence it follows from Lemma 2.13 that for all ` ≥ 2:

∂Lmesh

∂x(`)
= O(h`),

which implies that x(`) can only occur in Lmesh in terms of order at least h`.
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2.6. The modified equation

From Lemma 2.13 it follows that k-critical families of curves for Lmesh satisfy the Euler-
Lagrange equation

∂Lmesh

∂x
− d

dt

∂Lmesh

∂ẋ
= O(hk+1)

even though Lmesh depends on higher derivatives of x. By Proposition 2.14, this equation
takes the form

E0(x, ẋ, ẍ) + hE1(x, ẋ, ẍ)

+ h2E2(x, ẋ, ẍ, x(4)) + . . .+ hkEk(x, ẋ, . . . , x(2k)) = O(hk+1).
(2.10)

If we replace the error term by an exact zero, this is a singularly perturbed equation,
whose solutions in general have increasingly steep boundary layers as h → 0. However,
the condition that (xh)h∈(0,∞) is an admissible family of curves excludes this behavior
and allows us to write Equation (2.10) as a second order differential equation with an
O(hk+1) defect. This is done by a simple recursion.

If Ldisc is a consistent discretization of some regular continuous Lagrangian, then for
sufficiently small h we can solve E0(x, ẋ, ẍ) + hE1(x, ẋ, ẍ) = O(h2) for ẍ, say

ẍ = F1(x, ẋ, h) +O(h2).

Now suppose we know that Equation (2.10) implies ẍ = Fk(x, ẋ, h) + O(hk+1). Then
there exist functions F 2

k , F
3
k , . . . : TR× (0,∞)→ R such that

ẍ = F 2
k (x, ẋ, h) +O(hk+1) = Fk(x, ẋ, h) +O(hk+1),

x(3) = F 3
k (x, ẋ, h) +O(hk+1),

x(4) = F 4
k (x, ẋ, h) +O(hk+1),

...

Then Equation (2.10) (with k replaced by k + 2) implies

E0(x, ẋ, ẍ) + hE1(x, ẋ, ẍ)

+
(
h2E2(x, ẋ, ẍ, x(4)) + . . .+ hk+2Ek(x, ẋ, . . . , x(2k+2))

)∣∣∣
x(j)=F jk (x,ẋ,h)

= O(hk+3).

After making the replacements, the terms between the parentheses only depend on x and
its first derivative. Hence we can solve this equation for ẍ to find an expression of the
form ẍ = Fk+2(x, ẋ, h) +O(hk+3).

Note that each step of this recursion increases the order of accuracy by two. This is
the case because we only replace derivatives in terms of second and higher order.

Alternatively, we could start from Ldisc, because it differs from Lmesh by a time deriva-
tive. In that case we do not have the property that the Euler-Lagrange equations imply
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2.7. A classical modified Lagrangian

the natural interior conditions, so we cannot truncate the variational derivative. Hence
we should start from the equation

δLdisc

δx
= O(hk+1).

2.7. A classical modified Lagrangian

Definition 2.15. The modified Lagrangian is the formal power series

Lmod(x, ẋ, h) = Lmesh([x], h)
∣∣∣
ẍ=f(x,ẋ,h), x(3)= d

dt
f(x,ẋ,h), ...

,

where ẍ = f(x, ẋ, h) is the modified equation. The k-th truncation of the modified
Lagrangian is denoted by Lmod,k,

Lmod,k(x, ẋ, h) = Tk(Lmod(x, ẋ, h)) = Tk
(
Lmesh([x], h)

∣∣∣
x(j)=F jk−2(x,ẋ,h)

)
,

where Tk denotes truncation after the hk-term.

From the definition it follows that Lmod,k(xh, ẋh, h) = Lmesh([xh], h) + O(hk+1) for
families of curves (xh)h∈(0,∞) that are k-critical for Lmesh. Since this does not hold for
general curves, it does not immediately imply that the Euler-Lagrange equations of both
Lagrangians agree up to order k. Indeed, to get the Euler-Lagrange equations we need
to take arbitrary variations, which take us away from critical curves. Nevertheless, this
property holds true.

Lemma 2.16. The meshed modified Lagrangian Lmesh([x], h) and the first-order modified
Lagrangian Lmod,k(x, ẋ, h) have the same k-critical families of curves.

Proof. We proceed by induction. Since Lmesh([x], h) = Lmod,0(x, ẋ, h) + O(h) they
have the same 0-critical families of curves, C0(Lmesh) = C0(Lmod,0). Now suppose that
Ck−1(Lmesh) = Ck−1(Lmod,k−1). Since k-critical families of curves are also (k−1)-critical,
this set contains all k-critical families of curves of both Lmesh and Lmod,k.

For every family of curves in Ck−1(Lmesh), or even in Ck−2(Lmesh), Lemma 2.13 implies
that ∂Lmesh

∂x(`)
= O(hk+1) for ` ≥ 2, and there holds that x(j) = F jk−2(x, ẋ, h) + O(hk−1).

Therefore,

∂Lmod,k

∂x
=
∂Lmesh

∂x
+

∞∑

`=2

∂Lmesh

∂x(`)

∣∣∣∣
x(j)=F jk−2(x,ẋ,h)

∂F `k−2(x, ẋ, h)

∂x
+O(hk+1)

=
∂Lmesh

∂x
+O(hk+1)
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and

∂Lmod,k

∂ẋ
=
∂Lmesh

∂ẋ
+
∞∑

`=2

∂Lmesh

∂x(`)

∣∣∣∣
x(j)=F jk−2(x,ẋ,h)

∂F `k−2(x, ẋ, h)

∂ẋ
+O(hk+1)

=
∂Lmesh

∂ẋ
+O(hk+1),

hence
∂Lmod,k

∂x
− d

dt

∂Lmod,k

∂ẋ
=
∞∑

`=0

(−1)`
d`

dt`
∂Lmesh

∂x(`)
+O(hk+1),

which shows that Ck(Lmesh) = Ck(Lmod,k).

We now arrive at our main result: up to truncations, the modified equation is La-
grangian in the classical sense.

Theorem 2.17. For a discrete Lagrangian Ldisc that is a consistent discretization of a
regular Lagrangian L, the k-th truncation of the Euler-Lagrange equation of the modified
Lagrangian Lmod,k(x, ẋ, h), solved for ẍ, is the k-th truncation of the modified equation.

Proof. Let (xh)h∈(0,∞) be an admissible family of solutions of the k-th truncation of
the Euler-Lagrange equation for Lmod,k. Then (xh)h∈(0,∞) is k-critical for the family
of actions

∫ b
a Lmod,k(x, ẋ, h) dt. Consider the family of discrete curves (zh)h∈(0,∞) with

zh,j = xh(jh), an admissible family of variations δxh of xh, and the corresponding family
of variations δzh with δzh,j = δxh(jh). Then ‖δxh‖1= (1 +O(h))‖δzh‖disc.

By Lemma 2.16, the family (xh)h∈(0,∞) is k-critical for Lmesh. By construction, the
actions

∑
j hLdisc(y(jh), y((j+ 1)h), h) and

∫ b
a Lmesh([y(t)], h) dt are (formally) equal for

any smooth curve y. Therefore

δSdisc,h(zh) = δ
∑

j

hLdisc(xh(jh), xh((j + 1)h), h)

' δ
∫ b

a
Lmesh([xh(t)], h)dt = O(hk+1‖δxh‖1) = O(hk+1‖δz‖disc),

so the family of discrete curves zh is k-critical for the family of discrete actions Sdisc,h.
Hence the zh,j = xh(jh) satisfy the discrete Euler-Lagrange equation up to order hk, i.e.

D2Ldisc(xh(t− h), xh(t), h) + D1Ldisc(xh(t), xh(t+ h), h) = O(hk+1).

By Proposition 1.3 the left hand side of this expression is a consistent discretization of
the continuous Euler-Lagrange equation, so this order condition is the one defining a
modified equation as in Definition 1.8.
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Theorem 2.17 provides an alternative proof of the following well-known result [35,
Chapter IX.3].

Corollary 2.18. If a symplectic method is applied to a Hamiltonian system with a regular
Hamiltonian H(p, q), then any truncation of the resulting modified equation, written in
its first order form ṗ = . . ., q̇ = . . ., is Hamiltonian.

Proof. Fix any truncation order k. By applying the Legendre transformation we ob-
tain a Lagrangian system with regular Lagrangian. We can apply Theorem 2.17 to this
Lagrangian to find a modified Lagrangian Lmod,k(x, ẋ, h). For sufficiently small h, the
modified Lagrangian is regular as well. Therefore we can take the Legendre transforma-
tion again and obtain a modified Hamiltonian Hmod,k. Its equations of motion

ṗ = −∂Hmod,k

∂q
, q̇ =

∂Hmod,k

∂p

agree with the modified equation up to order k. Hence its k-th truncation Tk(Hmod,k) is
a Hamiltonian for the k-th truncation of the modified equation

ṗ = Tk
(
−∂Hmod,k

∂q

)
, q̇ = Tk

(
∂Hmod,k

∂p

)
.

2.8. Examples

2.8.1. Störmer-Verlet discretization of mechanical Lagrangians

A Lagrangian L : TRN → R is called separable if there exists functions K and U such
that L(x, ẋ) = K(ẋ)− U(x). The Euler-Lagrange equation of such a Lagrangian is

∂2K(ẋ)

∂ẋ2
ẍ = −∂U(x)

∂x
.

If L is separable, then the discrete Lagrangians (b), (c), and (d) from Example 1.1 are
equivalent (but their discrete Legendre transforms are different). A separable Lagrangian
with K(ẋ) = 1

2 |ẋ|2 is called a mechanical Lagrangian.

Second order

We consider some mechanical Lagrangian L(x, ẋ) = 1
2 |ẋ|2−U(x) and use the Störmer-

Verlet discretization, whose discrete Lagrangian is given in Example 1.1(b),

Ldisc(xj , xj+1, h) =
1

2

∣∣∣∣
xj+1 − xj

h

∣∣∣∣
2

− 1

2
U (xj)−

1

2
U (xj+1) .
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2. Modified Lagrangians

Its Euler-Lagrange equation is

xj+1 − 2xj + xj−1

h2
= −U ′(xj).

We have

Ldisc([x], h) =
1

2

∣∣∣∣ẋ+
h2

24
x(3) + . . .

∣∣∣∣
2

− 1

2
U

(
x− h

2
ẋ+

h2

8
ẍ− . . .

)

− 1

2
U

(
x+

h

2
ẋ+

h2

8
ẍ+ . . .

)

=
1

2
|ẋ|2−U +

h2

24

(
〈ẋ , x(3)〉 − 3U ′ẍ− 3U ′′(ẋ, ẋ)

)
+O(h4),

where the argument x of U and of its derivatives has been omitted. Note that U (k) is a
symmetric k-tensor, hence the notations U ′ẍ and U ′′(ẋ, ẋ).

From Ldisc([x], h) we calculate the meshed modified Lagrangian as follows:

Lmesh([x], h) = Ldisc([x], h)− h2

24

d2

dt2
Ldisc([x], h) +O(h4)

=
1

2
|ẋ|2−U +

h2

24

(
〈ẋ , x(3)〉 − 3U ′ẍ− 3U ′′(ẋ, ẋ)

)

− h2

24

(
|ẍ|2+〈ẋ , x(3)〉 − U ′ẍ− U ′′(ẋ, ẋ)

)
+O(h4)

=
1

2
|ẋ|2−U +

h2

24

(
−|ẍ|2−2U ′ẍ− 2U ′′(ẋ, ẋ)

)
+O(h4). (2.11)

Only one of the natural interior conditions for Lmesh is nontrivial at this truncation order,
it reads

0 =
∂L
∂ẍ

=
h2

12
(−ẍ− U ′) +O(h4).

As predicted by Lemma 2.13, this is a consequence of the Euler-Lagrange equation.
The modified equation up to second order is then obtained from

O(h4) =
∂Lmesh

∂x
− d

dt

∂Lmesh

∂ẋ
= −ẍ− U ′ + h2

12

(
U ′′ẍ+ U (3)(ẋ, ẋ)

)
.

We solve this recursively for ẍ. In the leading order we have ẍ = −U ′, the original
equation, so in the second order term we can substitute ẍ = −U ′. Hence the modified
equation is

ẍ = −U ′ + h2

12

(
U (3)(ẋ, ẋ)− U ′′U ′

)
+O(h4), (2.12)

as we already found in Example 1.10.
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To obtain the classical modified Lagrangian we need to replace higher derivatives in
the meshed modified Lagrangian (2.11) using the modified Equation (2.12). In fact, to
get the modified Lagrangian up two order two, we only need the leading order term
ẍ = −U ′ of the modified equation. We find

Lmod,3(x, ẋ, h) =
1

2
|ẋ|2−U +

h2

24

(∣∣U ′
∣∣2 − 2U ′′(ẋ, ẋ)

)
. (2.13)

Observe that the modified Lagrangian Lmod,3(x, ẋ, h) is not separable for general U
because the term U ′′(ẋ, ẋ) depends on both x and ẋ. The Euler-Lagrange equation of
Lmod,3 is

−ẍ− U ′ + h2

12

(
U ′′U ′ + U (3)(ẋ, ẋ) + 2U ′′ẍ

)
= 0.

Note that this equation does not contain an error term. However when we solve it for
ẍ we again get (2.12), including the O(h4) error term. In other words, ẍ = −U ′ +
h2

12

(
U (3)(ẋ, ẋ)− U ′′U ′

)
is not the Euler-Lagrange equation for Lmod,3, but it is O(h4)-

close to it.

Fourth order

We extend the calculations of Section 2.8.1 to include the h4-terms. We find

Ldisc([x], h) =
1

2
|ẋ|2−U +

h2

24

(
−3U ′′(ẋ, ẋ)− 3U ′ẍ+ 〈ẋ , x(3)〉

)

+
h4

5760

(
−45U ′′(ẍ, ẍ)− 90U (3)(ẍ, ẋ, ẋ)− 60U ′′(x(3), ẋ)

+5|x(3)|2 − 15U (4)(ẋ, ẋ, ẋ, ẋ)− 15U ′x(4) + 3〈ẋ , x(5)〉
)

+O(h6)

and

Lmesh([x], h) =
1

2
|ẋ|2−U +

h2

24

(
−2U ′′(ẋ, ẋ)− 2U ′ẍ− |ẍ|2

)

+
h4

720

(
3U ′′(ẍ, ẍ) + 6U (3)(ẍ, ẋ, ẋ) + 4U ′′(x(3), ẋ) + 2|x(3)|2

+ U (4)(ẋ, ẋ, ẋ, ẋ) + U ′x(4) + 〈ẍ , x(4)〉
)

+O(h6).

To eliminate higher derivatives of x in the h4-term we can use ẍ = −U ′+O(h2) as before.
To do this in the h2-term, the second order term of the modified equation (2.12) is also
necessary. We apply it repeatedly until all higher derivatives are eliminated. We find

Lmod,5(x, ẋ, h) =
1

2
|ẋ|2−U +

h2

24

(∣∣U ′
∣∣2 − 2U ′′(ẋ, ẋ)

)

+
h4

720
(3U ′′(U ′, U ′)− 6U (3)(U ′, ẋ, ẋ)− 2U ′′(U ′′ẋ, ẋ) + U (4)(ẋ, ẋ, ẋ, ẋ)).
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Remark. The derivatives of U should be considered as covariant, contravariant, or mixed
tensors depending on the context. For example:

U (3)(U ′, ẋ, ẋ) =
∑

i,j,k

∂3U

∂xi∂xj∂xk

∂U

∂xi
ẋj ẋk,

U ′′(U ′′ẋ, ẋ) =
∑

i,j

∂2U

∂xi∂xj

(∑

k

∂2U

∂xi∂xk
ẋk

)
ẋj .

The fourth truncation of the modified equation is most easily found from the meshed
modified Lagrangian. We have

∂Lmesh

∂x
− d

dt

∂Lmesh

∂ẋ
= −ẍ− U ′ + h2

12

(
U ′′ẍ+ U (3)(ẋ, ẋ)

)

+
h4

240

(
− 6U (4)(ẍ, ẋ, ẋ)− 3U (3)(ẍ, ẍ)

− 4U (3)(x(3), ẋ)− U ′′x(4) − U (5)(ẋ, ẋ, ẋ, ẋ)
)

+O(h6).

Equating this to zero and solving for ẍ we obtain the modified equation

ẍ = −U ′ + h2

12

(
U (3)(ẋ, ẋ)− U ′′U ′

)

+
h4

720

(
20U (3)(U ′′ẋ, ẋ)− 8U ′′(U ′′U ′) + 18U (4)(U ′, ẋ, ẋ)

− 9U (3)(U ′, U ′)− 3U (5)(ẋ, ẋ, ẋ, ẋ)
)

+O(h6).

2.8.2. Comparison with the modified Hamiltonian

We consider the symplectic Euler discretization of a mechanical Lagrangian. Its discrete
Lagrangian is given in Example 1.1(c),

Ldisc(xj , xj+1, h) =
1

2

∣∣∣∣
xj+1 − xj

h

∣∣∣∣
2

− U(xj).

The discrete Euler-Lagrange equation is

xj+1 − 2xj + xj−1

h2
= −U ′(xj).

Since we are dealing with a separable continuous Lagrangian, this is the same difference
equation as the one obtained by the Störmer-Verlet method.

For this discretization we have

Ldisc([x], h) =
1

2
|ẋ|2−U +

h

2
U ′ẋ+

h2

24

(
〈ẋ , x(3)〉 − 3U ′ẍ− 3U ′′(ẋ, ẋ)

)
+O(h3)
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and

Lmesh([x], h) =
1

2
|ẋ|2−U +

h

2
U ′ẋ− h2

24

(
|ẍ|2+2U ′ẍ+ 2U ′′(ẋ, ẋ)

)
+O(h3).

The second truncation of the modified Lagrangian is

Lmod,2(x, ẋ, h) =
1

2
|ẋ|2−U +

h

2
U ′ẋ+

h2

24

(
|U ′|2−2U ′′(ẋ, ẋ)

)
. (2.14)

Note that the first order term h
2U
′ẋ = d

dt

(
h
2U
)
does not contribute to the Euler-Lagrange

equations, hence this Lagrangian is equivalent to the corresponding modified Lagrangian
(2.13) of the Störmer-Verlet method.

We compare this to the symplectic Euler discretization of the Hamiltonian system
with Hamiltonian H(x, p) = 1

2 |p|2+U(x). The modified Hamiltonian for this system,
truncated after order 2, is

Hmod,2(x, p, h) = H− h

2
HxHp +

h2

12
(Hpp(Hx,Hx) +Hxx(Hp,Hp) + 4Hpx(Hx,Hp))

=
1

2
|p|2+U − h

2
U ′p+

h2

12
(|U ′|2+U ′′(p, p)). (2.15)

Its derivation can be found for example in [35, Example IX.3.4].
Now we take the Legendre transformation of the modified Lagrangian (2.14). We have

p =
∂Lmod,2

∂ẋ
= ẋ+

h

2
U ′ − h2

6
U ′′ẋ

and hence

ẋ = p− h

2
U ′ +

h2

6
U ′′p+O(h3).

The Hamiltonian corresponding to Lmod,2 is

(〈p , ẋ〉 − Lmod,2)
∣∣∣
ẋ=p−h

2
U ′+h2

6
U ′′p+O(h3)

= Hmod,2 +O(h3).

We see that, up to a truncation error, the modified Lagrangian (2.14) and the modified
Hamiltonian (2.15) are obtained from one another by Legendre transformation.

2.8.3. A non-separable Lagrangian

Our approach is not limited to separable Lagrangians. It can be applied whenever the
Lagrangian is regular.

As an example we consider an anisotropic harmonic oscillator, which has a Lagrangian
of the form

L(x, ẋ) =
1

2
〈ẋ ,Mẋ〉+

1

2
〈x , (J+ + J−)ẋ〉+

1

2
〈x ,Ax〉 ,
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2. Modified Lagrangians

where the matrices A, J+, and M are symmetric, and J− is antisymmetric. Its Euler-
Lagrange equation is

−Mẍ+ J−ẋ+Ax = 0.

We use the discrete Lagrangian from Example 1.1(d),

Ldisc(xj , xj+1, h) = L
(
xj+1,

xj+1 − xj
h

)

=
1

2

〈
xj+1 − xj

h
,M

xj+1 − xj
h

〉

+
1

2

〈
xj+1 , (J+ + J−)

xj+1 − xj
h

〉
+

1

2
〈xj+1 , Axj+1〉 .

Its discrete Euler-Lagrange equation is
(
M +

h

2
J+

) −xj+1 + 2xj − xj−1

h2
+ J−

xj+1 − xj−1

2h
+Axj = 0.

Note that this depends on J+, even though the continuous Euler-Lagrange equation does
not. We have

Ldisc([x], h) = L
(
x+

h

2
ẋ, ẋ

)
+O(h2)

= L+
h

2

〈
∂L
∂x

, ẋ

〉
+O(h2)

=
1

2
〈ẋ ,Mẋ〉+

1

2
〈x , (J+ + J−)ẋ〉+

1

2
〈x ,Ax〉

+
h

2

〈
1

2
(J+ + J−)ẋ+Ax , ẋ

〉
+O(h2).

Up to first order, the meshed modified Lagrangian is equal to Ldisc,

Lmesh([x], h) =
1

2
〈ẋ ,Mẋ〉+

1

2
〈x , (J+ + J−)ẋ〉+

1

2
〈x ,Ax〉

+
h

2

(
1

2
〈ẋ , J+ẋ〉+ 〈ẋ , Ax〉

)
+O(h2).

Since second and higher derivatives of x do not occur in these terms, the classical modified
Lagrangian Lmod,1(x, ẋ, h) is obtained by simply truncating Lmesh([x], h) after the first
order term. Its Euler-Lagrange equation is

−Mẍ+ J−ẋ+Ax− h

2
J+ẍ = 0.
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Solving for ẍ we find the modified equation

ẍ = M−1(J−ẋ+Ax)− h

2
M−1J+M

−1(J−ẋ+Ax) +O(h2)

We see that the first order term of the modified equation depends on J+, even though the
original Euler-Lagrange equation does not. This example illustrates how different but
equivalent continuous Lagrangians lead to different discretizations and different modified
Lagrangians. However, the leading order term of the modified equation is the same for
all of them. This term is just the original Euler-Lagrange equation.
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3. The case of degenerate Lagrangians
linear in velocities

This chapter is an adaptation of [91]

In Chapter 2 we considered modified equations for variational integrators in the case of
non-degenerate Lagrangians. We gave a construction for a modified Lagrangian, which
produces the modified equation as its Euler-Lagrange equation up to a truncation error
of arbitrarily high order. Although the construction was new, the claim that modified
equations for variational integrators are Lagrangian was not. This follows by Legendre
transformation from the well-known fact that modified equations for symplectic integra-
tors are Hamiltonian. In this chapter we extend our previous construction to the case of
degenerate Lagrangians that are linear in velocities. In this context the Legendre trans-
formation is not invertible, so the fact that the modified equation is Lagrangian cannot
be inferred in the same way from the theory of symplectic integrators.

We consider Lagrangians L : TRN ∼= R2N → R of the form

L(q, q̇) = 〈α(q) , q̇〉 −H(q), (3.1)

where α : RN → RN , H : RN → R, and the brackets 〈 , 〉 denote the standard scalar
product. Variational integrators for such Lagrangians were studied for example in [76]
and [87]. An important role will be played by the matrices

A(q) = α′(q) =

(
∂αi(q)

∂qj

)

i,j=1,...,N

and Askew(q) = A(q)T −A(q). (3.2)

We assume that Askew(q) is invertible, then the Euler-Lagrange equation for L is given
by

q̇ = Askew(q)−1H ′(q)T , (3.3)

where H ′(q) is the row vector of partial derivatives of H with respect to the column
vector q = (q1, . . . , qN )T . In contrast to the case of non-degenerate Lagrangians, this is
a first order ODE.

A well-known example where a Lagrangian of the form (3.1) arises is the dynam-
ics of point vortices in the plane. We will discuss this example in detail in Section
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3. The case of degenerate Lagrangians linear in velocities

3.5.2. Another reason to study this class of Lagrangians is that its extension to PDEs
covers several important equations. For example, the nonlinear Schrödinger equation
[25, 78] is the Euler-Lagrange equation of a Lagrangian whose kinetic term is linear
in the time-derivatives. Perhaps the most general application of Lagrangians that are
linear in velocities is the variational formulation in phase space of mechanics, where
L : TT ∗R ∼= R4N → R is given by

L(p, q, ṗ, q̇) = 〈p , q̇〉 −H(p, q).

Its Euler-Lagrange equations are Hamilton’s canonical equations

q̇ =

(
∂H

∂p

)T
and ṗ = −

(
∂H

∂q

)T
.

Note that even though A =
(

0 0
I 0

)
is singular in this case, the assumption that Askew is

invertible still holds. Like many concepts in classical mechanics, the variational principle
in phase space dates back to the 19th century [72, Chapter XXIX]. A modern treatment
can be found for example in [31, Section 8–5], and an application to geometric integration
in [45].

The construction of modified Lagrangians for variational integrators from Chapter 2
carries over to the case of degenerate Lagrangians that are linear in velocities. However,
there is a catch. The original differential equation is of first order for the Lagrangians
considered here, but the difference equation produced by a variational integrator is of
second order. Hence in this context variational integrators are two-step methods and
parasitic solutions can occur. These are solutions of the difference equation that exhibit
large spurious oscillations, see for example [35, Chapter XV]. To capture this behavior,
an extended version of the notion of modified equations is needed.

In Section 3.1 we present two variational integrators which we will be the protagonists
of all examples throughout this work. In Section 3.2 the essentials of the theory of
modified equations for multi-step methods are presented. In Section 3.3 we summarize
the construction of modified Lagrangians from Chapter 2 and in Section 3.4 we will
present a method to extend it to the full system of modified equations. In Section 3.5
we look at some example systems.

A note on notation. As mentioned before we use the convention that the derivative of
a scalar with respect to a column vector yields a row vector. In particular, this means
that the derivative of the scalar product of two column vectors is calculated as

〈x , y〉′ =
(
xT y

)′
= xT y′ + yTx′.

Later on we will be taking higher derivatives of vectors with respect to other vectors,
resulting in a zoo of tensors. We want to avoid heavy notations using indices, like

∑

a

Aax
a,

∑

a,b

Ba,bx
ayb,

∑

a,b,c

Ca,b,cx
aybzc, · · · . (3.4)
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3.1. Variational integrators are 2-step methods

If the tensor involved is symmetric, we will use the notations

A(x), B(x, y), C(x, y, z), · · ·
instead. If the tensor is of first or second order, we will often write these expressions as
matrix multiplication,

Ax and xTBy.

We will also use the inner product notation
〈
AT , x

〉
as an alternative to Ax. This allows

us to emphasize one particular pairing in a product of more than two tensors.
Using these notations interchangeably allows us to write equations in an intuitive form

and avoid the heavy notation of (3.4). The downside is that such inconsistent notation
could be a source of confusion for the reader. We hope this note is enough to avoid that.

3.1. Variational integrators are 2-step methods

For Lagrangians that are linear in the velocities, the continuous Euler-Lagrange equation
(3.3) is of first order. However, the discrete Euler-Lagrange equation,

D2Ldisc(qj−1, qj , h) + D1Ldisc(qj , qj+1, h) = 0,

still involves three points, i.e. it is of second order. This means that we are dealing with
two-step methods. The difference equation needs one more point of initial data than
the differential equation. Heuristically speaking, the initial data must be compatible
with the underlying first order equation. If they are not compatible, the numerical
solution will oscillate around the desired solution. For many methods these oscillations
grow exponentially. Hence, even if we start with perfect initial data, rounding errors
will explode over time and give rise to parasitic oscillations which destroy the numerical
approximation. It is important that this behavior is captured by the modified equation.
To do so, it has to grow into a system of modified equations, where the additional
equations in the system encode the parasitic oscillations.

In the present context we will discuss two variational integrators in detail. Both are
obtained by using a simple quadrature rule to approximate the exact discrete Lagrangian

Lexact(qj , qj+1, h) =

∫ (j+1)h

jh
L(q, q̇) dt,

where q(jh) = qj , q((j + 1)h) = qj+1, and q solves the Euler-Lagrange equations.

Midpoint rule

Using qj+1−qj
2 to approximate q̇ and the average qj+qj+1

2 to approximate q in the integrand,
we find the discrete Lagrangian

Ldisc(qj , qj+1, h) =

〈
α

(
qj + qj+1

2

)
,
qj+1 − qj

h

〉
−H

(
qj + qj+1

2

)
(3.5)
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3. The case of degenerate Lagrangians linear in velocities

with discrete Euler-Lagrange equation

1

2

(
qj − qj−1

h

)T
α′
(
qj−1 + qj

2

)
+

1

2

(
qj+1 − qj

h

)T
α′
(
qj + qj+1

2

)

− 1

h
α

(
qj + qj+1

2

)T
+

1

h
α

(
qj−1 + qj

2

)T
− 1

2
H ′
(
qj−1 + qj

2

)
− 1

2
H ′
(
qj + qj+1

2

)
= 0.

In case α is linear, α(q) = Aq, this simplifies to

qj+1 − qj−1

2h
= A−1

skew

(
1

2
H ′
(
qj−1 + qj

2

)T
+

1

2
H ′
(
qj + qj+1

2

)T)
,

where Askew is defined in Equation (3.2). In the case of a non-degenerate Lagrangian
this discretization would lead to a variational integrator that is equivalent to the implicit
midpoint rule applied to the corresponding symplectic system. Also in the present context
we will refer to it as the midpoint rule.

Trapezoidal rule

To obtain the second discretization we use the trapezoidal quadrature rule to approximate
the exact discrete Lagrangian: we take the average of the integrand evaluated with q = qj
and q = qj+1, while still using qj+1−qj

2 to approximate the derivative q̇. We find the
discrete Lagrangian

Ldisc(qj , qj+1, h) =

〈
1

2
α(qj) +

1

2
α(qj+1) ,

qj+1 − qj
h

〉
− 1

2
H(qj)−

1

2
H(qj+1) (3.6)

with discrete Euler-Lagrange equation

(
qj+1 − qj−1

2h

)T
α′(qj)−

α(qj+1)T − α(qj−1)T

2h
−H ′(qj) = 0.

In case α is linear, α(q) = Aq, this simplifies to

qj+1 − qj−1

2h
= A−1

skewH
′(qj)T .

This discretization is sometimes called the explicit midpoint rule, but we will not use
this name to avoid confusion with the previous method. Instead we call this method the
trapezoidal rule. In the case of a non-degenerate Lagrangian the trapezoidal rule would
lead to the Störmer-Verlet method.
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3.2. Modified equations for multistep methods

3.2. Modified equations for multistep methods

The classical theory of modified equations does not capture parasitic solutions of multi-
step methods. An extension of this theory for linear multistep methods was developed
by Hairer [33]. (See also [35, Chapter XV].) Here we mention some of the main results,
restricted to the case of two-step methods.

For a first order ODE q̇ = f(q), consider the linear two-step method

a0qj + a1qj+1 + a2qj+2

h
= b0f(qj) + b1f(qj+1) + b2f(qj+2). (3.7)

We call the method (3.7) symmetric if a0 = −a2, a1 = 0, and b0 = b2. We say that
it is stable if all roots of the polynomial ρ(ζ) = a0 + a1ζ + a2ζ

2 satisfy |ζ|≤ 1 and the
roots with |ζ|= 1 are simple. A method is stable if and only if the numerical solution
for q̇ = 0 is bounded for any initial condition. The method (3.7) is called consistent if
a0 + a1 + a2 = 0 and a2 − a0 = b0 + b1 + b2 6= 0, i.e. if it converges to the ODE q̇ = f(q)
as h → 0. Note that the trapezoidal rule is a stable symmetric linear two-step method,
but that the midpoint rule is not of the form (3.7).

The theory of modified equations for one-step methods is easily extended to yield the
following.

Proposition 3.1 (Special case of [35, Theorem XV.3.1]). Consider a consistent method
of the form (3.7). Then there exist unique h-independent functions (fn(q))n∈N such that
for every truncation index k, every solution of

q̇ = f(q) + hf1(q) + h2f2(q) + . . .+ hkfk(q) (3.8)

satisfies

a0q(t) + a1q(t+ h) + a2q(t+ 2h)

h
= b0f(q(t)) + b1f(q(t+ h)) + b2f(q(t+ 2h))

+O(hk+1).

We will call the formal differential equation

q̇ = f(q) + hf1(q) + h2f2(q) + . . . (3.9)

the principal modified equation. Up to truncation errors, every solution of the principal
modified equation gives a solution of the difference equation when evaluated on a mesh
t0 +hZ. However, not every solution of the difference equation can be obtained this way.
The solutions that are missed are exactly the parasitic solutions.

Proposition 3.2 (Special case of [35, Theorem XV.3.5]). Assume that the method
(3.7) is stable, consistent, and symmetric. Then there exist h-independent functions
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3. The case of degenerate Lagrangians linear in velocities

(fn(x, y))n∈N and (gn(x, y))n∈N such that for every truncation index k, for every solution
of

ẋ = f0(x, y) + hf1(x, y) + . . .+ hkfk(x, y) (3.10)

ẏ = g0(x, y) + hg1(x, y) + . . .+ hkgk(x, y), (3.11)

with y(0) = O(h), the function q(t) = x(t) + eiπt/hy(t) satisfies

a0q(t) + a1q(t+ h) + a2q(t+ 2h)

h
= b0f(q(t)) + b1f(q(t+ h)) + b2f(q(t+ 2h))

+O(hk+1).

We will call the corresponding system of formal differential equations

ẋ = f0(x, y) + hf1(x, y) + h2f2(x, y) + . . . , (3.12)

ẏ = g0(x, y) + hg1(x, y) + h2g2(x, y) + . . . , (3.13)

the full system of modified equations. We call Equation (3.13) the parasitic modified
equation.

If y = 0, then Equation (3.12) reduces to the principal modified equation (3.9) and
Equation (3.13) reads ẏ = 0. Hence to determine whether parasitic solutions become
dominant over time we need to determine the stability of the invariant manifold y = 0
of the system (3.12)–(3.13).

In general, even if the difference equation is not of the form (3.7), we have the following
definition.

Definition 3.3. Let Φ(qj−1, qj , qj+1, h) be a consistent discretization of some function
F (q, q̇).

(a) Equation (3.9) is the principal modified equation for the difference equation

Φ(qj−1, qj , qj+1, h) = 0 (3.14)

if for every truncation index k, every solution of the truncated equation (3.8) satisfies

Φ(q(t− h), q(t), q(t+ h), h) = O(hk+1) (3.15)

at all times t.

(b) The system of equations (3.12)–(3.13) is the full system of modified equations for
the Equation (3.14) if for every truncation index k, for every solution (x, y) of the
truncated system (3.10)–(3.11), the function q(t) = x(t)+eiπt/hy(t) satisfies Equation
(3.15) at all times t.
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3.3. A Lagrangian for the principal modified equation

In Chapter 2 we constructed a modified Lagrangian in the case of non-degenerate La-
grangian systems. A straightforward adaptation of this construction will give us a La-
grangian for the principal modified equation. We repeat the outline of the method,
adapted to the present context of Lagrangians linear in velocities.

We identify points qj of a numerical solution with step size h with evaluations q(jh) of
an interpolating curve. Using a Taylor expansion we can write the discrete Lagrangian
Ldisc : RN ×RN ×R>0 → R as a function of the interpolating curve q and its derivatives,
all evaluated at the point jh− h

2 ,

Ldisc([q], h) = Ldisc

(
q − h

2
q̇ +

1

2

(
h

2

)2

q̈ − . . . , q +
h

2
q̇ +

1

2

(
h

2

)2

q̈ + . . . , h

)

= Ldisc(qj−1, qj , h),

where the square brackets denote dependence on q and any number of its derivatives.
We want to write the discrete action

Sdisc((qj)j∈{0,...,n}, h) =

n∑

j=1

hLdisc(qj−1, qj , h) =

n∑

j=1

hLdisc

([
q
(
jh− h

2

)]
, h
)

as an integral. This can be done using the Euler-Maclaurin formula. We obtain the
meshed modified Lagrangian

Lmesh([q(t)], h) =
∞∑

i=0

(
21−2i − 1

) h2iB2i

(2i)!

d2i

dt2i
Ldisc([q(t)], h)

= Ldisc([q(t)], h)− h2

24

d2

dt2
Ldisc([q(t)], h) +

7h4

5760

d4

dt4
Ldisc([q(t)], h) + . . . ,

where B2i are the Bernoulli numbers. The power series defining Lmesh generally does not
converge. Formally, it satisfies

Sdisc((q(jh))j∈{0,...,n}, h) =

∫
Lmesh([q(t)], h) dt.

In the meshed variational problem, non-differentiable curves are admissible as long as
their singular points are consistent with the mesh, i.e. if they occur at times that are
an integer multiple of h away from each other. This imposes additional conditions on
critical curves, which we called natural interior conditions,

∀` ≥ 2 :
∂L
∂q(`)

(t) = 0. (3.16)
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3. The case of degenerate Lagrangians linear in velocities

Because the action integral of Lmesh equals the discrete action, variations supported on
a single mesh interval (i.e. in between consecutive points of the discrete curve) do not
change the action integral of Lmesh. This implies that the natural interior conditions are
automatically satisfied on solutions of the Euler-Lagrange equation (for the particular
Lagrangian Lmesh, but not in general).

Consider the Euler-Lagrange equation of Lmesh,

∞∑

j=0

(−1)j
dj

dtj
∂Lmesh

∂q(j)
= 0.

Because the natural interior conditions (3.16) are automatically satisfied on critical
curves, it is equivalent to

∂Lmesh

∂q
− d

dt

∂Lmesh

∂q̇
= 0.

This equation is of the form

E0(q, q̇) + hE1(q, q̇, q̈) + hE2(q, q̇, q̈, q(3)) + . . . = 0.

Assuming that the derivatives of q are bounded as h → 0, we can write this as a first
order differential equation, say

q̇ = F (q, h). (3.17)

Then expressions for all higher derivatives follow by differentiation and substitution,

q̈ = F2(q, h), q(3) = F3(q, h), · · · . (3.18)

Using (3.17) and (3.18) we can replace second and higher derivatives in the meshed
Lagrangian to find a first order modified Lagrangian,

Lmod(q, q̇, h) = Lmesh([q], h)
∣∣∣
q(j)=Fj(q,h), ∀j≥2

.

Or, avoiding formal power series, a truncated modified Lagrangian

Lmod,k(q, q̇, h) = Tk
(
Lmesh([q], h)

∣∣∣
q(j)=Fj(q,h), ∀j≥2

)
,

where Tk denotes truncation of the power series after order k. In general the replacements
q(j) = Fj(q, h) would change the Euler-Lagrange equations, but because of the natural
interior conditions (3.16) this is not the case here. Indeed, one finds

∂Lmod,k

∂q
= Tk

(
∂Lmesh

∂q
+

∞∑

`=2

∂Lmesh

∂q(`)

∂F`(q, h)

∂q

)
= Tk

(
∂Lmesh

∂q

)
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3.3. A Lagrangian for the principal modified equation

and
∂Lmod,k

∂q̇
= Tk

(
∂Lmesh

∂q̇

)
.

It follows that

∂Lmod,k

∂q
− d

dt

∂Lmod,k

∂q̇
= Tk



∞∑

j=0

(−1)j
dj

dtj
∂Lmesh

∂q(j)


 ,

so up to a truncation error, both Lagrangians yield the same Euler-Lagrange equations.
Note that the natural interior conditions do not imply that ∂Lmesh/∂q̇ = 0, so replacing
first derivatives using q̇ = F (q, h) is not allowed!

The details presented in Chapter 2 carry over to the degenerate case and yield the
following result.

Theorem 3.4. Consider a discrete Lagrangian that is a consistent discretization of a
Lagrangian of the form (3.1). Let L be either Lmesh, or Lmod,k, derived from this discrete
Lagrangian. Solve the equation

∂L
∂q
− d

dt

∂L
∂q̇

= 0

for q̇, and truncate the resulting power series after order k. The result,

q̇ = f(q) + hf1(q) + h2f2(q) + . . .+ hkfk(q),

is a truncation of the principal modified equation.

Midpoint rule

From the discrete Lagrangian (3.5) we find

Ldisc([q], h) = Ldisc

(
q − h

2
q̇ +

h2

8
q̈ − . . . , q +

h

2
q̇ +

h2

8
q̈ + . . . , h

)

=

〈
α

(
q +

h2

8
q̈ + . . .

)
, q̇ +

h2

24
q(3) + . . .

〉
−H

(
q +

h2

8
q̈ + . . .

)

= 〈α(q) , q̇〉 −H(q) +
h2

24

(
〈α(q) , q(3)〉+ 3

〈
α′(q)q̈ , q̇

〉
− 3H ′(q)q̈

)
+O(h4).

It follows that

Lmesh([q], h) = 〈α , q̇〉 −H

+
h2

24

(
2 〈Askewq̇ , q̈〉 −

〈
α′′(q̇, q̇) , q̇

〉
− 2H ′q̈ +H ′′(q̇, q̇)

)
+O(h4),
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3. The case of degenerate Lagrangians linear in velocities

where the argument q of Askew, α, H, and their derivatives are omitted. From this
expression we obtain Lmod,3 by replacing all second derivatives of q using the derivative
of the leading order equation,

q̈ =
d

dt

(
Askew(q)−1H ′(q)T

)
+O(h2).

In case that α is linear we have

q̈ = A−1
skewH

′′q̇ +O(h2) (3.19)

and we find the following expression for the modified Lagrangian (truncated after h3):

Lmod,3 = q̇TAq −H +
h2

24

(
−q̇TH ′′q̇ − 2H ′A−1

skewH
′′q̇
)
.

Trapezoidal rule

From the discrete Lagrangian (3.6) we find

Ldisc([q], h) =

〈
1

2
α

(
q − h

2
q̇ +

h2

8
q̈

)
+

1

2
α

(
q +

h

2
q̇ +

h2

8
q̈

)
, q̇ +

h2

24
q(3)

〉

− 1

2
H

(
q − h

2
q̇ +

h2

8
q̈

)
− 1

2
H

(
q +

h

2
q̇ +

h2

8
q̈

)
+O(h4)

= 〈α , q̇〉 −H

+
h2

8

(
1

3
〈α , q(3)〉+

〈
α′q̈ , q̇

〉
+
〈
α′′(q̇, q̇) , q̇

〉
−H ′q̈ −H ′′(q̇, q̇)

)
+O(h4)

and

Lmesh([q], h) = 〈α , q̇〉 −H +
h2

12

(
〈Askewq̇ , q̈〉+

〈
α′′(q̇, q̇) , q̇

〉
−H ′q̈ −H ′′(q̇, q̇)

)
+O(h4).

Again we assume that α is linear. Using Equation (3.19) we find the modified Lagrangian

Lmod,3 = q̇TAq −H +
h2

12

(
−2q̇TH ′′q̇ −H ′A−1

skewH
′′q̇
)
.

3.4. The full system of modified equations

For linear symmetric two-step methods (3.7), Proposition 3.2 describes the full system of
modified equations. Here we will show that for variational integrators, without assuming
linearity, the full system of modified equations is of the same form. In order to construct
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3.4. The full system of modified equations

the system of modified equations, we split the variable qj of the discrete system in two
parts,

qj = xj + (−1)jyj .

The motivation for this is that we want to use one variable, xj , to encode the principal
behavior and the other, yj , for the parasitic behavior. This is inspired by the formula
q(t) = x(t) + eiπt/hy(t) from Proposition 3.2.

3.4.1. The Lagrangian approach

A key property of this doubling of variables is that the extended system is still variational.

Proposition 3.5. The discrete curve (xj , yj)j∈{0,...,n} is critical for

L̂(xj , yj , xj+1, yj+1, h) =
1

2
L(xj + yj , xj+1 − yj+1, h) +

1

2
L(xj − yj , xj+1 + yj+1, h),

if and only if the discrete curves (q+
j )j∈{0,...,n} and (q−j )j∈{0,...,n}, defined by q±j = xj ±

(−1)jyj, are critical for L(qj , qj+1, h).

Proof. The discrete Euler-Lagrange equations for L̂(xj , yj , xj+1, yj+1, h) are

1

2
D2L(xj−1 + yj−1, xj − yj , h) +

1

2
D2L(xj−1 − yj−1, xj + yj , h)

+
1

2
D1L(xj + yj , xj+1 − yj+1, h) +

1

2
D1L(xj − yj , xj+1 + yj+1, h) = 0

and

−1

2
D2L(xj−1 + yj−1, xj − yj , h) +

1

2
D2L(xj−1 − yj−1, xj + yj , h)

+
1

2
D1L(xj + yj , xj+1 − yj+1, h)− 1

2
D1L(xj − yj , xj+1 + yj+1, h) = 0.

Taking the sum resp. the difference of these equations we find

D2L(xj−1 − yj−1, xj + yj , h) + D1L(xj + yj , xj+1 − yj+1, h) = 0,

D2L(xj−1 + yj−1, xj − yj , h) + D1L(xj − yj , xj+1 + yj+1, h) = 0.

Depending on the parity of j, either the first or the second of those equations is

D2L(q+
j−1, q

+
j , h) + D1L(q+

j , q
+
j+1, h) = 0.

The other one is
D2L(q−j−1, q

−
j , h) + D1L(q−j , q

−
j+1, h) = 0.

Hence (xj , yj)j∈{0,...,n} satisfies the Euler-Lagrange equations for L̂(xj , yj , xj+1, yj+1, h)

if and only if (q+
j )j∈{0,...,n} and (q−j )j∈{0,...,n} satisfy the Euler-Lagrange equation for

L(qj , qj+1, h).
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3. The case of degenerate Lagrangians linear in velocities

Theorem 3.6. Let

ẋ = f0(x, y) + hf1(x, y) + . . .+ hkfk(x, y)

ẏ = g0(x, y) + hg1(x, y) + . . .+ hkgk(x, y),
(3.20)

be the k-th truncation of the principal modified equation for the difference equation de-
scribed by the discrete Lagrangian L̂ from Proposition 3.5. Then (3.20) is the k-th trun-
cation of the full system of modified equations for the variational integrator described by
L.

Proof. Let (x(t), y(t)) be a solution of the system (3.20). By definition of the principal
modified equation, the discrete curve

(x(jh), y(jh))j∈{0,...,n}

satisfies the discrete Euler-Lagrange equations for L̂ up to a truncation error. Hence, by
Proposition 3.5, the discrete curve

(x(jh) + (−1)jy(jh))j∈{0,...,n}

satisfies the discrete Euler-Lagrange equations for L up to a truncation error. This is
exactly the defining property of the system of modified equations.

Corollary 3.7. Up to a truncation error of arbitrarily high order, the full system of
modified equations (3.20) for a variational integrator is Lagrangian.

Let us illustrate this construction by applying it to the two methods and, for compar-
ison, to a non-degenerate Lagrangian.

Midpoint rule

We have

L̂disc(xj , yj , xj+1, yj+1, h) =
1

2

〈
α

(
xj + yj + xj+1 − yj+1

2

)
,
xj+1 − yj+1 − xj − yj

h

〉

+
1

2

〈
α

(
xj − yj + xj+1 + yj+1

2

)
,
xj+1 + yj+1 − xj + yj

h

〉

− 1

2
H

(
xj + yj + xj+1 − yj+1

2

)

− 1

2
H

(
xj − yj + xj+1 + yj+1

2

)
.
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3.4. The full system of modified equations

Hence

L̂disc([x, y], h) =
1

2

〈
α

(
x− h

2
ẏ

)
, ẋ− 2

h
y

〉
+

1

2

〈
α

(
x+

h

2
ẏ

)
, ẋ+

2

h
y

〉
−H(x) +O(h)

= 〈α(x) , ẋ〉+
〈
α′(x)ẏ , y

〉
−H(x) +O(h).

This is also the leading order term of the modified Lagrangian, L̂mod,0(x, y, ẋ, ẏ, h). If α
is linear, its Euler-Lagrange equations are

ẋ = A−1
skewH

′(x)T +O(h),

ẏ = 0 +O(h).
(3.21)

Since y is constant in leading order, we need to look at higher order terms to determine
whether parasitic solutions occur.

Proposition 3.8. If α is linear, the higher order terms of the system of modified equa-
tions (3.21) do not contain y and are of even combined degree in the derivatives ẏ, ÿ, . . ..

Proof. Assume for now that H = 0. Then the discrete Lagrangian is

L̂disc(xj , yj , xj+1, yj+1, h) =
1

2
〈A(xj + xj+1) , xj+1 − xj〉+

1

2
〈A(yj+1 − yj) , yj + yj+1〉 ,

leading to the Euler-Lagrange equations

xj+1 = xj−1 and yj+1 = yj−1.

Hence in this case the system of modified equations is

ẋ = 0 and ẏ = 0.

This implies that also for nonvanishing H, the kinetic term of the Lagrangian does not
contribute to the higher order terms of the system of modifies equations. It is easy to
see that the series expansion of the H-terms in L̂,

−1

2
H

(
x− h

2
ẏ +

h2

8
ẍ− . . .

)
− 1

2
H

(
x+

h

2
ẏ +

h2

8
ẍ+ . . .

)
,

contains derivatives of y but not y itself. Furthermore, since the Lagrangian L̂ is invariant
under the transformation y 7→ −y, these derivatives must occur with an even combined
degree in the expansion.

In other words, no higher order terms of the modified Lagrangian contain y itself, and
those terms that contain derivatives of y are at least quadratic in the derivatives of y.
This implies that the Euler-Lagrange equation with respect to y contains a derivative of
y in every higher order term. Since we already know that ẏ = 0 + O(h), we can now
recursively deduce that ẏ = 0 +O(hk) for any k.

In conclusion, the parasitic modified equation is ẏ = 0 to any order of accuracy. Hence
if the initialization of the discrete system is close to a solution of the principal modified
equation, then the discrete solution will remain close to it.
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3. The case of degenerate Lagrangians linear in velocities

Trapezoidal rule

We have

L̂disc(xj , yj , xj+1, yj+1, h) =
1

4

〈
α(xj + yj) + α(xj+1 − yj+1) ,

xj+1 − yj+1 − xj − yj
h

〉

+
1

4

〈
α(xj − yj) + α(xj+1 + yj+1) ,

xj+1 + yj+1 − xj + yj
h

〉

− 1

4
H(xj + yj)−

1

4
H(xj+1 − yj+1)

− 1

4
H(xj − yj)−

1

4
H(xj+1 + yj+1).

Hence

L̂disc([x, y], h) =
1

4

〈
α

(
x+ y − h

2
ẋ− h

2
ẏ

)
+ α

(
x− y +

h

2
ẋ− h

2
ẏ

)
, ẋ− 2

h
y

〉

+
1

4

〈
α

(
x− y − h

2
ẋ+

h

2
ẏ

)
+ α

(
x+ y +

h

2
ẋ+

h

2
ẏ

)
, ẋ+

2

h
y

〉

− 1

2
H(x+ y)− 1

2
H(x− y) +O(h)

=
1

4

〈
α(x+y)− h

2
α′(x+y)(ẋ+ ẏ) + α(x−y) +

h

2
α′(x−y)(ẋ− ẏ) , ẋ− 2

h
y

〉

+
1

4

〈
α(x−y)− h

2
α′(x−y)(ẋ− ẏ) + α(x+y) +

h

2
α′(x+y)(ẋ+ ẏ) , ẋ+

2

h
y

〉

− 1

2
H(x+ y)− 1

2
H(x− y) +O(h)

=
1

2
〈α(x+ y) , ẋ〉+

1

2
〈α(x− y) , ẋ〉+

1

2

〈
α′(x+ y)(ẋ+ ẏ) , y

〉

− 1

2

〈
α′(x− y)(ẋ− ẏ) , y

〉
− 1

2
H(x+ y)− 1

2
H(x− y) +O(h).

This is also the leading order term of the modified Lagrangian, L̂mod,0(x, y, ẋ, ẏ, h). If α
is linear, α(q) = Aq, then we find

L̂mod(x, y, ẋ, ẏ, h) = 〈Ax , ẋ〉+ 〈Aẏ , y〉 − 1

2
H(x+ y)− 1

2
H(x− y) +O(h).

Its Euler-Lagrange equations are

ẋ = A−1
skew

(
1

2
H ′(x+ y)T +

1

2
H ′(x− y)T

)
+O(h),

ẏ = A−1
skew

(
−1

2
H ′(x+ y)T +

1

2
H ′(x− y)T

)
+O(h).

54



3.4. The full system of modified equations

We linearize the second equation around y = 0 and find

ẏ = −A−1
skewH

′′(x)y +O(|y|2+h). (3.22)

Heuristically we would expect exponentially growing parasitic solutions if the matrix
−A−1

skewH
′′(x) has at least one eigenvalue with positive real part. However, since this

matrix is not constant it is difficult to give a general condition for the occurrence of
exponentially growing parasites. This has to be investigated on a case-by-case basis.

A non-degenerate Lagrangian

For comparison, consider a discretization of a non-degenerate mechanical Lagrangian,

Ldisc(qj , qj+1, h) =
1

2

(
qj+1 − qj

h

)2

− U(qj , qj+1).

In this case, both the continuous and the discrete system are of second order. They both
need two points of initial data, so unlike in the case of linear Lagrangians, there is no
additional initial datum in the discrete case that could cause parasitic oscillations. Nev-
ertheless, we could also double the variables in the current system, because Proposition
3.2 makes no assumption on the form of the Lagrangian. We find

L̂disc(xj , yj , xj+1, yj+1, h) =
1

4

(
xj+1 − yj+1 − xj − yj

h

)2

+
1

4

(
xj+1 + yj+1 − xj + yj

h

)2

− 1

2
U(xj + yj , xj+1 − yj+1)− 1

2
U(xj − yj , xj+1 + yj+1),

hence

L̂disc([x, y], h) =
1

4

(
ẋ− 2

h
y

)2

+
1

4

(
ẋ+

2

h
y

)2

+O(1) =
2

h2
y2 +O(1).

and also L̂mod,−1([x, y], h) = 2
h2
y2. In the leading order we find the Euler-Lagrange

equation y = 0 + O(h2). Similar to the case of the midpoint rule, we can iteratively
increase the order of this equation to find that y = 0 to any order. In other words, the
parasitic variable is identically zero, leaving only the principal variable x. Doubling the
dimension was pointless in this case.

3.4.2. The direct approach

If one is not interested in the Lagrangian structure of the problem, it might be preferable
to calculate the modified equation directly from the difference equation, ignoring the
Lagrangian. We demonstrate this method in the case of linear α for our two integrators.
For a more detailed discussion we refer to [33].
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3. The case of degenerate Lagrangians linear in velocities

Midpoint rule

In the difference equation

qj+1 − qj−1

2h
= A−1

skew

(
1

2
H ′
(
qj−1 + qj

2

)T
+

1

2
H ′
(
qj + qj+1

2

)T)

we set qj = x(t) + (−1)jy(t) and

qj±1 = x(t± h) + (−1)j±1y(t± h)

=

(
x(t)± hẋ(t) +

h2

2
ẍ(t)± . . .

)
− (−1)j

(
y(t)± hẏ(t) +

h2

2
ÿ(t)± . . .

)
.

It follows that
qj+1 − qj−1

2h
= ẋ(t)− (−1)j ẏ(t) +O(h2)

and

H ′
(
qj + qj±1

2

)
= H ′

(
x± h

2
ẋ± h

2
(−1)j+1ẏ

)
+O(h2)

= H ′(x)± h

2
H ′′(x)

(
ẋ+ (−1)j+1ẏ

)
+O(h2).

Hence

ẋ− (−1)j ẏ = A−1
skew

(
H ′(x) +

h

4
H ′′(x)

(
ẋ+ (−1)j+1ẏ

)
− h

4
H ′′(x)

(
ẋ+ (−1)j+1ẏ

))T

+O(h2)

= A−1
skewH

′(x)T +O(h2).

Separating the alternating terms from the rest, we find

ẋ = A−1
skewH

′(x)T +O(h2)

ẏ = 0 +O(h2).

Unsurprisingly, we find the same system of modified equations as with the Lagrangian
method.

Trapezoidal rule

Now we consider the difference equation

qj+1 − qj−1

2h
= A−1

skewH
′(qj)T
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3.5. Examples

and make the same identifications as before. We find

ẋ+−(−1)j ẏ = A−1
skewH

′(x+ (−1)jy)T +O(h2)

= A−1
skewH

′(x)T + (−1)jA−1
skewH

′′(x)y +O(|y|2+h2).

If we assume that y = O(h), then in the leading order the system of modified equations
is

ẋ = A−1
skewH

′(x)T +O(h2)

ẏ = −A−1
skewH

′′(x)y +O(h2).

3.5. Examples

To illustrate the theory above, we apply our two integrators to two examples. Since the
calculations tend to be quite long in real-world problems, we start with a minimal toy
problem. After that, we discuss the dynamics of point vortices in the plane.

3.5.1. Toy Problem

Consider the Lagrangian

L(p, q, ṗ, q̇) =
1

2
(pq̇ − qṗ)− U(p)− V (q)

on TR2. Its Euler-Lagrange equations are

ṗ = −V ′(q) and q̇ = U ′(p).

As a concrete example, the choice V (q) = − cos(q) and U(p) = 1
2p

2 describes the pendu-
lum.

Midpoint rule

We have

Ldisc(pj , qj , pj+1, qj+1, h) =
1

2

(
pj + pj+1

2

qj+1 − qj
h

− qj + qj+1

2

pj+1 − pj
h

)

− U
(
pj + pj+1

2

)
− V

(
qj + qj+1

2

)
.

This corresponds to the following system of difference equations:

qj+1 − qj−1

2h
=

1

2
U ′
(
pj−1 + pj

2

)
+

1

2
U ′
(
pj + pj+1

2

)
,

pj+1 − pj−1

2h
= −1

2
V ′
(
qj−1 + qj

2

)
− 1

2
V ′
(
qj + qj+1

2

)
.
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3. The case of degenerate Lagrangians linear in velocities

By Taylor expansion we obtain

Ldisc([p, q], h) = L(p, q, ṗ, q̇)

+
h2

24

(
1

2

(
pq(3) + 3p̈q̇ − 3ṗq̈ − p(3)q

)
− 3U ′p̈− 3V ′q̈

)
+O(h4).

It follows that

Lmesh([p, q], h) = L(p, q, ṗ, q̇) +
h2

24

(
2p̈q̇ − 2ṗq̈ − 2U ′p̈+ U ′′ṗ2 − 2V ′q̈ + V ′′q̇2

)
+O(h4).

Hence the modified equations are

0 =
∂Lmesh

∂p
− d

dt

∂Lmesh

∂ṗ
= q̇ − U ′ + h2

24

(
2q(3) − U (3)ṗ2 − 4U ′′p̈

)
+O(h4),

0 =
∂Lmesh

∂q
− d

dt

∂Lmesh

∂q̇
= −ṗ− V ′ + h2

24

(
−2p(3) − V (3)q̇2 − 4V ′′q̈

)
+O(h4).

These imply that

q̇ = U ′ − h2

24

(
U (3)V ′2 + 2U ′′V ′′U ′

)
+O(h4),

ṗ = −V ′ + h2

24

(
V (3)U ′2 + 2V ′′U ′′V ′

)
+O(h4).

Eliminating higher derivatives in Lmesh we find

Lmod(p, q, ṗ, q̇, h) = L(p, q, ṗ, q̇) +
h2

24

(
−V ′′q̇2 − U ′′ṗ2 + 2U ′V ′′q̇ − 2V ′U ′′ṗ

)
+O(h4).

As discussed in the previous section we do not expect parasitic solutions with this method
(see Figure 3.1).

Trapezoidal rule

We have

Ldisc(pj , qj , pj+1, qj+1, h) =
1

2

(
pj + pj+1

2

qj+1 − qj
h

− qj + qj+1

2

pj+1 − pj
h

)

− 1

2
U(pj)−

1

2
U(pj+1)− 1

2
V (qj)−

1

2
V (qj+1).

The corresponding discrete Euler-Lagrange equations are

qj+1 − qj−1

2h
= U ′(pj),

pj+1 − pj−1

2h
= −V ′(qj).

58



3.5. Examples

By Taylor expansion we obtain

Ldisc([p, q], h) = L(p, q, ṗ, q̇)

+
h2

24

(
1

2

(
pq(3) + 3p̈q̇ − 3ṗq̈ − p(3)q

)
− 3U ′p̈− 3U ′′ṗ2 − 3V ′q̈ − 3V ′′q̇2

)

+O(h4).

It follows that

Lmesh([p, q], h) = L(p, q, ṗ, q̇) +
h2

12

(
p̈q̇ − ṗq̈ − U ′p̈− U ′′ṗ2 − V ′q̈ − V ′′q̇2

)
+O(h4).

Hence the modified equations are

0 =
∂Lmesh

∂p
− d

dt

∂Lmesh

∂ṗ
= q̇ − U ′ + h2

12

(
q(3) + U (3)ṗ2 + U ′′p̈

)
+O(h4),

0 =
∂Lmesh

∂q
− d

dt

∂Lmesh

∂q̇
= −ṗ− V ′ + h2

12

(
−p(3) + V (3)q̇2 + V ′′q̈

)
+O(h4).

These imply that

q̇ = U ′ − h2

6

(
U (3)V ′2 − U ′′V ′′U ′

)
+O(h4),

ṗ = −V ′ + h2

6

(
V (3)U ′2 − V ′′U ′′V ′

)
+O(h4).

Eliminating higher derivatives in Lmesh we find

Lmod(p, q, ṗ, q̇, h) = L(p, q, ṗ, q̇) +
h2

12

(
−2V ′′q̇2 − 2U ′′ṗ2 + U ′V ′′q̇ − V ′U ′′ṗ

)
+O(h4).

For the pendulum, V (q) = − cos(q) and U(p) = 1
2p

2, we have

A =
1

2

(
0 1
−1 0

)
and H ′′ =

(
U ′′(p) 0

0 V ′′(q)

)
=

(
1 0
0 cos(q)

)
,

hence the matrix in Equation (3.22) is

−A−1
skewH

′′ =
(

0 − cos(q)
1 0

)
.

This matrix has a pair of real eigenvalues if cos(q) < 0 and a pair of purely imaginary
eigenvalues if cos(q) > 0. This suggests (but doesn’t prove; q is not constant) that
exponentially growing parasites occur in the regions where cos(q) < 0.

59



3. The case of degenerate Lagrangians linear in velocities
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Figure 3.1. Pendulum with midpoint rule (left) and trapezoidal rule (right), both with
step size h = 0.35 and initial point either (3, 0) (top) or (1.5, 0) (bottom).

Dashed curve: exact solution.
Bullets: discrete solution.
Solid curve: solution of the principal modified equation, truncated after the second order
term.
Line segments: visualization of parasitic oscillations

In the top right image of Figure 3.1 one clearly observes parasitic solutions for this
method. Note the growth of the parasites, is mostly concentrated around |q|≈ 3, where
cos(q) is negative and near its minimum. In the region where |q|< π

2 there is no notice-
able growth in the amplitude of the oscillations. Instead we observe a rotation in the
direction of the oscillations, as expected when the eigenvalues are purely imaginary. This
is visualized in Figure 3.1 by line segments connecting the points of the discrete solution
with the corresponding points on the solution of the principal modified equation.

When the initial conditions are chosen such that q remains in the stable region |q|< π
2

no parasites are observed (bottom right image of Figure 3.1), even if the simulation is
continued for many periods (not pictured).
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3.5. Examples

3.5.2. Point vortices

Our second example involves vortices on a planar surface. If all vorticity is contained in
a finite number of points, then the movement of those points is described by first order
ODEs [59, 76]. To be precise, the dynamics of N point vortices in the (complex) plane
is described by the Lagrangian

L(z, ż) =

N∑

j=1

Γj Im(zj żj)−
1

π

N∑

j=1

j−1∑

k=1

ΓjΓk log |zj − zk|

=
N∑

j=1

iΓj
2

(zj żj − zj żj)−
1

2π

N∑

j=1

j−1∑

k=1

ΓjΓk log ((zj − zk)(zj − zk)),

where zj and Γj are the position and circulation of the j-th vortex, and the bar denotes
the complex conjugate. The equations of motion are

żj =
i

2π

∑

k 6=j

Γk
zj − zk

for j = 1, . . . , N.

It follows that

z̈j =
i

2π

∑

k 6=j

−Γk

(zj − zk)2

(
żj − żk

)

Midpoint rule

We have

Ldisc([z], h) = L(z, ż)

+
h2

24




N∑

j=1

Γj Im
(

3żj z̈j + z
(3)
j zj

)
−

N∑

j=1

j−1∑

k=1

3ΓjΓk
π

Re

(
z̈j − z̈k
zj − zk

)
+O(h4)

and

Lmesh([z], h) = L(z, ż)

+
h2

24


4

N∑

j=1

Γj Im
(
żj z̈j

)
−

N∑

j=1

j−1∑

k=1

ΓjΓk
π

Re

(
2
z̈j − z̈k
zj − zk

+

(
żj − żk
zj − zk

)2
)
+O(h4).

(3.23)
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3. The case of degenerate Lagrangians linear in velocities

To obtain the modified Lagrangian we evaluate the second derivatives in Lmesh using the
modified equation. We find

N∑

j=1

Γj Im
(
żj z̈j

)
=

N∑

j=1

∑

k 6=j
Γj Im

(
żj

i

2π

Γk
(zj − zk)2

(żj − żk)
)

+O(h2)

=

N∑

j=1

∑

k 6=j

ΓjΓk
2π

Re

(
żj

żj − żk
(zj − zk)2

)
+O(h2)

=

N∑

j=1

∑

k 6=j

ΓjΓk
4π

Re

(
(żj − żk)2

(zj − zk)2

)
+O(h2)

and

N∑

j=1

j−1∑

k=1

ΓjΓk Re

(
2
z̈j − z̈k
zj − zk

)
= 2

N∑

j=1

∑

k 6=j
ΓjΓk Re

(
z̈j

zj − zk

)
+O(h2)

= 2

N∑

j=1

∑

k 6=j

∑

`6=j
ΓjΓk Re

(
−i
2π

Γ`(żj − ż`)
(zj − zk)(zj − z`)2

)
+O(h2)

=
1

π

N∑

j=1

∑

k 6=j

∑

`6=j
ΓjΓkΓ` Im

(
(żj − ż`)

(zj − zk)(zj − z`)2

)
+O(h2).

Therefore,

Lmod(z, ż, h) = L(z, ż) +
h2

24


 1

2π

N∑

j=1

∑

k 6=j
ΓjΓk Re

((
żj − żk
zj − zk

)2
)

− 1

π2

N∑

j=1

∑

k 6=j

∑

6̀=j
ΓjΓkΓ` Im

(
(żj − ż`)

(zj − zk)(zj − z`)2

)
+O(h4).

(3.24)

Trapezoidal rule

For the Trapezoidal rule, we find in the same way that

Lmesh([z], h) = L(z, ż)

+
h2

24


4

N∑

j=1

Γj Im
(
żj z̈j

)
− 2

N∑

j=1

j−1∑

k=1

ΓjΓk
π

Re

(
z̈j − z̈k
zj − zk

−
(
żj − żk
zj − zk

)2
)
+O(h4)

(3.25)
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3.5. Examples
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Figure 3.2. Leapfrogging vortex pairs with the midpoint rule. No parasitic behavior is
visible.
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Figure 3.3. Leapfrogging vortex pairs with the trapezoidal rule. One observes parasitic
oscillations.
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Figure 3.4. Enlarged versions of the right hand sections of Figures 3.2 and 3.3: midpoint
rule (left) and trapezoidal rule (right).

Legend: Dashed curves exact solution.
Bullets discrete solution.

Solid curves solution of the principal modified equation,
truncated after the second order term.

Parameters: Initial positions (1, 1), (1,−1), (2, 1), and (2,−1).
Vortex strengths 1, −1, 2, −2, respectively.

Time interval 0 ≤ t ≤ 80.
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3. The case of degenerate Lagrangians linear in velocities

and

Lmod(z, ż, h) = L(z, ż) +
h2

24


 2

π

N∑

j=1

∑

k 6=j
ΓjΓk Re

((
żj − żk
zj − zk

)2
)

− 1

π2

N∑

j=1

∑

k 6=j

∑

6̀=j
ΓjΓkΓ` Im

(
(żj − ż`)

(zj − zk)(zj − z`)2

)
+O(h4).

(3.26)

In Figures 3.2–3.4 we observe parasitic solutions for the trapezoidal rule, but not for
the midpoint rule, where the solution of (the second-order truncation of) the principal
modified equation shows excellent agreement with the discrete solution. In the numer-
ical experiment the second truncations of the modified equations were calculated form
Equations (3.23) and (3.25) using

∂Lmesh

∂q
− d

dt

∂Lmesh

∂q̇
= O(h4).

Note that Equations (3.23)–(3.26) are Lagrangians for the principal modified equation,
not for the full system. In the context of Figures 3.2–3.4 they describe the solid curves as
perturbation of the dashed curves. Whether or not the discrete solution oscillates around
the solution of the principal modified equation cannot be seen form the calculations in
this section, but it follows from the discussion in Section 3.4. There we showed that
the midpoint rule does not suffer from parasitic solutions, but for the trapezoidal rule
parasites can be expected, exactly as we see in Figures 3.2–3.4.
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4. Application to numerical precession in
the Kepler problem

This chapter is an adaptation of [88]

The Kepler problem models a point mass moving in a classical gravitational potential.
Its Lagrangian is

L(x, ẋ) =
1

2
|ẋ|2+

1

|x| ,

where |x| denotes the Euclidean norm on RN . The equations of motion are

ẍ = − x

|x|3 . (4.1)

It is well known that the orbits of the Kepler problem with negative energy are ellipses
with one of their foci at the origin (a property known as Kepler’s first law). Since every
orbit lies in a plane, it is sufficient to study this problem in R2.

Very good integrators for the Kepler problem are already available, see for example
[18] and the references therein. The goal of this chapter is to illustrate how modified
Lagrangians can be used to analyze and improve numerical integrators. We focus on
ideas instead of performance and start with very simple methods. They are far from
competitive compared to other known methods. Even the improved methods we construct
will not be competitive compared to specialized methods available in the literature.

Central in our treatment will be the precession or perihelion advance of the numerical
orbits, i.e. the slow rotation of the ellipse that the solution traces. For the exact solution
there is no precession, but no common numerical method integrates the Kepler problem
without precession. Using modified Lagrangians and a version of Noether’s theorem to
analyze the perturbation, we will provide leading order estimates of the precession for the
Störmer-Verlet method and the implicit midpoint rule. We will use those estimates to
construct some new methods which are superior for the Kepler problem. This procedure
is similar in spirit to the concept of modifying integrators [16], which are numerical
methods that start by perturbing the differential equation in a way that cancels the
discretization error up to a certain order.
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4. Application to numerical precession in the Kepler problem

We start by mentioning a few well-known properties of the Kepler problem that will
be useful later on. A thorough analytical study of the Kepler problem, including proofs
of these properties, can be found for example in [31, Chapter 3].

Proposition 4.1. The angular momentum L = x1ẋ2 − ẋ1x2 and the total energy E =
1
2 |ẋ|2− 1

|x| are constants of motion of the Kepler problem in R2. Furthermore, the angular
momentum satisfies

L2 = |x|2|ẋ|2−〈x , ẋ〉2 ,
where the brackets 〈· , ·〉 denote the standard scalar product on R2.

Proposition 4.2. Let a and b denote the lengths of the semimajor and semiminor axes
of an orbit respectively. Let θ denote the angle between the major axis and the location x
of the point mass. Then

(a) the eccentricity of the orbit is e =

√
1− b2

a2
and there holds |x|−1=

a

b2
(1 + e cos θ),

(b) the energy equals E =
−1

2a
,

(c) the square of the angular momentum equals L2 = |x|4θ̇2 =
b2

a
(Kepler’s second law),

(d) the period equals T = 2πa3/2 (Kepler’s third law).

4.1. Noether’s theorem with perturbations

The modified equation of a numerical integrator for the Kepler problem describes a per-
turbed Kepler problem. Perturbed Kepler problems are very relevant in celestial mechan-
ics. In particular, one of the classical tests of general relativity is that its perturbation
in the Kepler potential accounts for the precession of the orbit of the planet Mercury
[95] (along with perturbations caused by the gravitational pull of the other planets). A
Hamiltonian treatment of perturbed Kepler problems can be found for example in [31]
or [18]. Here we will study it from the Lagrangian point of view.

The key observation in our study of the perturbed Kepler problem is that Noether’s
theorem [66, 68] can be extended to describe how perturbations affect conserved quanti-
ties.

Theorem 4.3. Consider a Lagrange function L : TR2 → R and a horizontal vector field
ξ on TR2, i.e. ξ = ξ1

∂
∂x1

+ ξ2
∂
∂x2

with coefficients ξi that are functions TR2 → R. Let

ξ(1) =
2∑

i=1

(
ξi
∂

∂xi
+ ξ̇i

∂

∂ẋi

)
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4.1. Noether’s theorem with perturbations

be the first prolongation of ξ, evaluated on solutions of the Euler-Lagrange equations, i.e.
with

ξ̇i =

〈
∂ξi
∂x

, ẋ

〉
+

〈
∂ξi
∂ẋ

,

(
∂2L
∂ẋ2

)−1(
∂L
∂x
− ∂2L
∂x∂ẋ

ẋ

)〉
.

If

ξ(1)L =
dG

dt
+ εF

for some functions F : TR2 → R and G : R2 → R, and a (small) parameter ε ∈ R, then
on solutions of the Euler-Lagrange equations we have

d

dt

(〈
∂L
∂ẋ

, ξ

〉
−G

)
= εF,

where by abuse of notation ξ = (ξ1, ξ2). In particular, if εF = 0, we have a conserved
quantity A = ∂L

∂ẋ1
ξ1 + ∂L

∂ẋ2
ξ2 −G.

Proof. We have

d

dt

(〈
∂L
∂ẋ

, ξ

〉
−G

)
=

〈
d

dt

∂L
∂ẋ

, ξ

〉
+

(
ξ(1)L −

〈
∂L
∂x

, ξ

〉)
− dG

dt

= ξ(1)L − dG

dt
−
〈
∂L
∂x
− d

dt

∂L
∂ẋ

, ξ

〉
= εF.

4.1.1. The Laplace-Runge-Lenz vector

Following [46] we consider the Kepler problem and the vector field ξ defined by

ξ1 = −1

2
x2ẋ2 and ξ2 = x1ẋ2 −

1

2
ẋ1x2. (4.2)

On solutions we have

ξ̇1 = −1

2
ẋ2

2 +
1

2

x2
2

|x|3 and ξ̇2 =
1

2
ẋ1ẋ2 −

1

2

x1x2

|x|3 .

A straightforward calculation then shows that

ξ(1)L =

〈
∂L
∂x

, ξ

〉
+

〈
∂L
∂ẋ

, ξ̇

〉
=
ẋ1

|x| −
〈x , ẋ〉x1

|x|3 =
d

dt

(
x1

|x|

)
.

Hence we can apply the unperturbed Noether theorem (i.e. εF = 0) with G(x) = x1
|x| and

find that
A(x, ẋ) = −ẋ1x2ẋ2 + x1ẋ

2
2 −

x1

|x| = |ẋ|2x1 − 〈x , ẋ〉 ẋ1 −
x1

|x|
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4. Application to numerical precession in the Kepler problem

is a conserved quantity.
The conserved quantity A is the first component of the Laplace-Runge-Lenz (LRL)

vector, which points from the gravitational center to the perihelion and has a magnitude
equal to the eccentricity e of the orbit. The second component of the LRL vector is

B(x, ẋ) = |ẋ|2x2 − 〈x , ẋ〉 ẋ2 −
x2

|x|

and can be obtained by setting ξ1 = x2ẋ1 − 1
2x1ẋ2 and ξ2 = −1

2x1ẋ1. We denote by
ω = arctan

(
B
A

)
the angle of the LRL vector with the first coordinate axis.

Remark. The existence of this conserved quantity is related to the fact that the 3-
dimensional Kepler problem possesses an SO(4)-symmetry, rather than just the obvious
SO(3)-symmetry. In suitable coordinates a solution can be “rotated” into other solutions
with the same energy but different angular momentum [57, 75].

4.1.2. Precession in the perturbed Kepler problem

Now consider the perturbed Kepler problem, L = 1
2 |ẋ|2+ 1

|x| + εL(x, ẋ). Note that this

also induces a perturbation in the prolonged vector field, which now reads ξ(1) + εξ(1)

because the quantities ξ̇1 and ξ̇2 contain second derivatives which are evaluated using
the perturbed equations of motion. The perturbation term is

ξ(1) =

〈
∂ξ1

∂ẋ
,EL(L)

〉
∂

∂ẋ1
+

〈
∂ξ2

∂ẋ
,EL(L)

〉
∂

∂ẋ2
+O(ε),

where

EL(L) =
∂L
∂x
− d

dt

∂L
∂ẋ

is the Euler-Lagrange expression for L. We call the change in angle of the LRL vector
over one period of the unperturbed system the precession rate.

Proposition 4.4. It the major axis of an orbit is O(ε)-close to the x2-axis, then the
precession rate is given by

∆ω = −2εT

e

[〈
EL(L) , ξ

〉]
+O(ε2), (4.3)

where T is the period of the unperturbed orbit, ξ = (ξ1, ξ2) is defined by Equation (4.2),
and [ · ] denotes the average over one period.

Note that Equation (4.3) is not invariant under rotations because we use a fixed vector
field ξ, corresponding to the first component of the LRL vector. Hence the condition on
the orientation of the orbit.
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4.1. Noether’s theorem with perturbations

Proof of Proposition 4.4. Set G = x1
|x| , then

(
ξ(1) + εξ(1)

) (
L+ εL

)
=

dG

dt
+ ε

(
ξ(1)L+ ξ(1)L

)
+O(ε2),

where ξ(1)+εξ(1) is the first prolongation of ξ on solutions of the Euler Lagrange equations
of the perturbed Lagrangian L+ εL. Hence by Theorem 4.3 it follows that

d

dt

(〈
∂(L+ εL)

∂ẋ
, ξ

〉
−G

)
= ε

(
ξ(1)L+ ξ(1)L

)
+O(ε2),

from which we conclude that

dA

dt
= ε

(
ξ(1)L+ ξ(1)L − d

dt

〈
∂L
∂ẋ

, ξ

〉)
+O(ε2). (4.4)

Now observe that

ξ(1)L − d

dt

〈
∂L
∂ẋ

, ξ

〉
=

〈
∂L
∂x

, ξ

〉
+

〈
∂L
∂ẋ

, ξ̇

〉
− d

dt

〈
∂L
∂ẋ

, ξ

〉

=
〈
EL(L) , ξ

〉
+O(ε),

where the error term comes from the fact that ξ̇ is evaluated on the unperturbed system.
We also have that

ξ(1)L =

〈
∂ξ1

∂ẋ
,EL(L)

〉
ẋ1 +

〈
∂ξ2

∂ẋ
,EL(L)

〉
ẋ2 =

〈
∂ξ1

∂ẋ
ẋ1 +

∂ξ2

∂ẋ
ẋ2 ,EL(L)

〉
+O(ε).

For our choice of ξ, defined in Equation (4.2), we have ∂ξ1
∂ẋ ẋ1 + ∂ξ2

∂ẋ ẋ2 = (ξ1, ξ2) = ξ,
hence Equation (4.4) simplifies to

dA

dt
= 2ε

〈
EL(L) , ξ

〉
+O(ε2).

The change in angle of the Laplace-Runge-Lenz vector is given by

ω̇ =
d

dt

(
arctan

B

A

)
=

1

A2 +B2

(
A

dB

dt
−BdA

dt

)
.

Choose a coordinate system such that A = O(ε) and B ≥ 0. Then B approximately
equals the eccentricity e and the derivative of the angle of the LRL vector is

ω̇ = − 1

B

dA

dt
+O(ε2) = −2ε

e

〈
EL(L) , ξ

〉
+O(ε2).
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4. Application to numerical precession in the Kepler problem

4.2. Modified Lagrangians for two common integrators

Let us make things more concrete. We look at two simple variational integrators, calculate
their modified Lagrangian, and have a first look at their numerical performance.

4.2.1. Störmer-Verlet method

The Störmer-Verlet (SV) discretization with step size h of a second order differential
equation ẍ = f(x) is

xk+1 − 2xk + xk−1 = h2f(xk).

If f(x) = − d
dxU(x), this is the discrete Euler-Lagrange equation for

LSV (xk, xk+1) =
1

2

∣∣∣∣
xk+1 − xk

h

∣∣∣∣
2

− 1

2
U(xk)−

1

2
U(xk+1).

The modified Lagrangian of second order accuracy is given by Equation (2.13),

Lmod,2(x, ẋ) =
1

2
|ẋ|2−U(x) +

h2

24

(
|U ′(x)|2−2

〈
ẋ , U ′′(x)ẋ

〉 )
.

In the particular case of the Kepler problem this becomes

Lmod,2(x, ẋ) =
1

2
|ẋ|2+

1

|x| +
h2

24

(
1

|x|4 − 2
|ẋ|2
|x|3 + 6

〈x , ẋ〉2
|x|5

)
. (4.5)

Its Euler-Lagrange equation agrees with the modified equation with a defect of order
O(h4). A comparison of the numerical solution and the solution of this truncation of the
modified equation is shown in Figure 4.1.

4.2.2. Implicit midpoint rule

The second order formulation of the implicit midpoint rule (MP) applied to the differen-
tial equation ẍ = f(x) is

xk+1 − 2xk + xk−1 =
h2

2
f

(
xk + xk+1

2

)
+
h2

2
f

(
xk−1 + xk

2

)
.

If f(x) = − d
dxU(x), this is the discrete Euler-Lagrange equation for

LMP (xk, xk+1) =
1

2

∣∣∣∣
xk+1 − xk

h

∣∣∣∣
2

− U
(
xk + xk+1

2

)
.
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4.3. Numerical precession

For this discrete Lagrangian we have

Ldisc([x], h) =
1

2
|ẋ|2+

h2

24

(
〈x(3) , ẋ〉 − 3

〈
U ′(x) , ẍ

〉 )
+O(h4)

=
1

2
|ẋ|2+

h2

24

(
〈x(3) , ẋ〉+ 3|U ′(x)|2

)
+O(h4),

from which we need to subtract

h2

24

d2

dt2
L(x, ẋ) =

h2

24

(
〈x(3) , ẋ〉+ |ẍ|2−

〈
U ′(x) , ẍ

〉
−
〈
ẋ , U ′′(x)ẋ

〉 )
+O(h4)

=
h2

24

(
〈x(3) , ẋ〉+ 2|U ′(x)|2−

〈
ẋ , U ′′(x)ẋ

〉 )
+O(h4)

to get the modified Lagrangian of second order accuracy. We find

Lmod,2(x, ẋ) =
1

2
|ẋ|2−U(x) +

h2

24

(
|U ′(x)|2+

〈
ẋ , U ′′(x)ẋ

〉 )
.

For the Kepler problem we have

Lmod,2(x, ẋ) =
1

2
|ẋ|2+

1

|x| +
h2

24

(
1

|x|4 +
|ẋ|2
|x|3 − 3

〈x , ẋ〉2
|x|5

)
.

A comparison of the numerical solution and the solution of the modified equation of
second order accuracy is shown in Figure 4.2.

4.3. Numerical precession

We now apply Proposition 4.4 to the modified Lagrangians from Section 4.2. This gives
us a leading order estimate of the precession rates of the integrators.

4.3.1. Störmer-Verlet scheme

The perturbation term of the truncated modified Lagrangian (4.5) is

εL =
h2

24

(
1

|x|4 − 2
|ẋ|2
|x|3 + 6

〈x , ẋ〉2
|x|5

)
.

In the following we identify ε = h2

24 . We want to evaluate Equation (4.3). Using the
leading order equations of motion (4.1), which are valid up to an error of order O(h2),
we find

EL(L) = 4
x

|x|6 − 6
|ẋ|2x
|x|5 + 30

〈x , ẋ〉2 x
|x|7 − 12

〈x , ẋ〉 ẋ
|x|5 +O(h2).
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4. Application to numerical precession in the Kepler problem
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Figure 4.1. Störmer-Verlet method with 1000 steps of size h = 0.5.
Left: numerical solution.
Right: solution of the modified equation truncated after the second order term.
In each image the dashed ellipse is the exact solution. The initial values are chosen as
described in Subsection 4.5.1.
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Figure 4.2. Implicit midpoint rule with 1000 steps of size h = 0.5.
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4.3. Numerical precession

Using the fact that 〈x , ξ〉 = 1
2(x1ẋ2 − ẋ1x2)x2 = 1

2Lx2 and 〈ẋ , ξ〉 = Lẋ2, the leading
order equations of motion, and Proposition 4.1 we obtain

[〈
EL(L) , ξ

〉]
=

[
2
x2

|x|6 − 3
|ẋ|2x2

|x|5 + 15
〈x , ẋ〉2 x2

|x|7 − 12
〈x , ẋ〉 ẋ2

|x|5

]
L +O(h2)

=

[
30

x2

|x|6 + 24E
x2

|x|5 − 15L2 x2

|x|7 + 4
d

dt

ẋ2

|x|3
]
L +O(h2). (4.6)

The average [·] is taken along the unperturbed orbit, which is periodic, so
[

d
dt

ẋ2
|x|3
]

= 0.
For the other terms we have the following Lemma, which corresponds to the computation
of the Cn(e) of [18].

Lemma 4.5. On solutions of the unperturbed Kepler problem, with the LRL vector along
the negative x2-axis, there holds

(a)

[
x2

|x|5
]

=
a

b5
e,

(b)

[
x2

|x|6
]

=
a2

b7

(
3

2
e+

3

8
e3

)
,

(c)

[
x2

|x|7
]

=
a3

b9

(
2e+

3

2
e3

)
,

where a and b are the lengths of the semimajor and semiminor axes of the orbit respec-
tively, and e is the eccentricity.

Proof. Introduce polar coordinates x1 = −r sin θ, x2 = r cos θ, where θ = 0 corresponds
to the positive x2-axis. We have

[
x2

|x|k
]

=

[
cosθ

|x|k−1

]
=

1

T

∫ T

0

cosθ

|x|k−1
dt.

Following [20] we use the identities from Proposition 4.2 ((a), (c), and (d)) to rewrite
this as

[
x2

|x|k
]

=
b5−2k

πa4−k

∫ π

0
(1 + e cos θ)k−3 cos θ dθ

=
b5−2k

πa4−k

∫ π

0

∑

j

(
k − 3

j

)
ej cosj+1 θ dθ.

Whenever, j is even, we have
∫ π

0 cosj+1 θ dθ = 0. For j = 1 and j = 3 we find∫ π
0 cos2 θ dθ = π

2 and
∫ π

0 cos4 θ dθ = 3π
8 . Hence

[
x2

|x|k
]

=
b5−2k

πa4−k

(
π

2

(
k − 3

1

)
e+

3π

8

(
k − 3

3

)
e3 + . . .

)
.
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4. Application to numerical precession in the Kepler problem

The claims now follow by evaluating this expression for k = 5, 6, 7.

We can use Proposition 4.2 ((b) and (c)) and Lemma 4.5 to write Equation (4.6) in
terms of a and b. Using Proposition 4.4 we then find the precession per revolution:

− 4πa3/2h
2

24

(
30
a2

b7

(
3

2
+

3

8
e2

)
+ 24

−1

2a

a

b5
− 15

b2

a

a3

b9

(
2 +

3

2
e2

))
b√
a

sgn(L) +O(h4)

= −4πab
h2

24

(
30
a2

b7

(
15

8
− 3

8

b2

a2

)
− 12

b5
− 15

a2

b7

(
7

2
− 3

2

b2

a2

))
sgn(L) +O(h4)

= −πh
2

24

(
15
a3

b6
− 3

a

b4

)
sgn(L) +O(h4),

assuming the major axis of the orbit is O(h2)-close to the x2-axis. However, since both
this expression and the perturbed Kepler problem are rotationally symmetric, we can
conclude that statement holds regardless of the orientation of the major axis.

In summary we have the following:

Theorem 4.6. The numerical precession rate of the Störmer-Verlet method with step
size h is

− sgn(L)
π

24

(
15
a3

b6
− 3

a

b4

)
h2 +O(h4),

where a and b denote the semimajor and semiminor axes of the orbit of the exact solution
and sgn is the sign function. In particular, the precession and the motion are in opposite
directions.

For the example shown in Figure 4.1, the precession rate predicted by Theorem 4.6 is
0.067 radians per revolution and the observed numerical precession rate is 0.064 radians
per revolution.

4.3.2. Implicit midpoint rule

In exactly the same way as for the Störmer-Verlet method, we obtain the following result:

Theorem 4.7. The numerical precession rate of the midpoint rule with step size h is

sgn(L)
π

12

(
15
a3

b6
− 3

a

b4

)
h2 +O(h4).

In particular, the precession is in the same direction as the motion.

Note that in the leading order this expression differs by exactly a factor −2 from the
expression for the Störmer-Verlet method. We will exploit this in the next section to
construct new integrators.

For the example shown in Fig. 4.2, the precession rate predicted by Theorem 4.7 is
−0.13 radians per revolution and the observed numerical precession rate is −0.16 radians
per revolution.
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4.4. New integrators

4.4. New integrators

Based on Theorems 4.6 and 4.7 we propose three new integrators. They all have a
precession rate of order O(h4) instead of O(h2).

4.4.1. Linear combination of the Lagrangians

Consider the discrete Lagrangian

L(xj , xj+1) =
2

3
LSV (xj , xj+1) +

1

3
LMP (xj , xj+1)

=
1

2

∣∣∣∣
xj+1 − xj

h

∣∣∣∣
2

− 1

3
U(xj)−

1

3
U(xj+1)− 1

3
U

(
xj + xj+1

2

)
.

Its Euler-Lagrange equations define an implicit method,

xj+1 − 2xj + xj−1 = −2h2

3
U ′(xj)−

h2

6
U ′
(
xj−1 + xj

2

)
− h2

6
U ′
(
xj + xj+1

2

)
.

We refer to this integrator as the mixed Lagrangian (ML) method. By construction, this
is a variational integrator.

4.4.2. Lagrangian Composition

Consider the discrete Lagrangians

Lj(xk, xk+1) =





LMP (xk, xk+1) =
1

2

∣∣∣∣
xk+1 − xk

h

∣∣∣∣
2

− U
(
xk + xk+1

2

)
if 3|j,

LSV (xk, xk+1) =
1

2

∣∣∣∣
xk+1 − xk

h

∣∣∣∣
2

− 1

2
U(xk)−

1

2
U(xk+1) otherwise.

We look for a discrete curve (xj)j∈Z that extremizes the action

N∑

j=1

Lj(xj−1, xj) = LSV (x0, x1) + LSV (x1, x2) + LMP (x2, x3) + . . . .

This gives us three different Euler-Lagrange equations which are applied for different
values of j mod 3. Indeed D2Lj(xj−1, xj) + D1Lj+1(xj , xj+1) simplifies to





xj+1 − 2xj + xj−1 = −h
2

2
U ′
(
xj−1 + xj

2

)
− h2

2
U ′(xj) if j ≡ 0 mod 3,

xj+1 − 2xj + xj−1 = −h2U ′(xj) if j ≡ 1 mod 3,

xj+1 − 2xj + xj−1 = −h
2

2
U ′
(
xj + xj+1

2

)
− h2

2
U ′(xj) if j ≡ 2 mod 3.
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4. Application to numerical precession in the Kepler problem

Hence to determine the evolution we alternate between the Störmer-Verlet method (for
j ≡ 1 mod 3) and two new difference equations. We refer to this integrator as the
Lagrangian composition (LC) method. Strictly speaking the LC method should be con-
sidered as an integrator with step size 3h, but for fair comparison with the other methods
we will still refer to the internal step h as the step size.

This method of composing variational integrators is equivalent to composing the cor-
responding symplectic maps [52, Sect. 2.5].

4.4.3. Composition of the difference equations

Alternatively we can compose the difference equations obtained by the implicit midpoint
rule and the Störmer-Verlet method respectively,



xj+1 − 2xj + xj−1 = −h

2

2
U ′
(
xj−1 + xj

2

)
− h2

2
U ′
(
xj + xj+1

2

)
if j ≡ 2 mod 3,

xj+1 − 2xj + xj−1 = −h2U ′(xj) otherwise.

We refer to this integrator as the difference equation composition (DEC) method. Just
like for the LC method, we will abuse terminology and call the internal step h the step
size.

It is not clear if this construction yields a variational method, but numerical experi-
ments show long-term near-conservation of energy and angular momentum. This seems
to be a general phenomenon: also for other potentials U and other variational integra-
tors, the corresponding DEC method shows the long-term behavior one expects from a
variational integrator.

4.5. Numerical results

In this section we compare the new methods of Section 4.4 numerically with the Störmer-
Verlet scheme, the implicit midpoint rule, and two fourth order symplectic methods:
the well-known integrator of Forest and Ruth [26] and Chin’s “C” algorithm which is
especially well-suited for the Kepler problem [17, 19].

4.5.1. Choice of initial values

In all our examples we use the initial values

x(0) = (−3, 0) and ẋ(0) = (0, 0.45).

For the discretizations we need specify x0 = x(0) and x1 ≈ x(h). Our convention is to
choose x1 such that the discrete momentum p0 = −D1L(x0, x1) equals the initial velocity
ẋ(0).
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Figure 4.3. Precession rate in radians per revolution for the different methods with step
sizes h = 0.0625, h = 0.125, h = 0.25 and h = 0.5.

For the composition of difference equations no discrete Lagrangian and hence no dis-
crete momentum is known. To determine the second initial point x1 in this case we
use the momentum p0 corresponding to the Störmer-Verlet method, because this is the
method we would have used to calculate x1 if x0 was not the first point.

The choice of the initial value x1 does not affect the precession behavior. However, it
can have a significant effect on the error over time. If the initial condition has a slightly
wrong energy, then the period of the numerical solution will have a slight error as well.
This will cause a linearly growing phase shift.

4.5.2. Precession

Figure 4.3 shows the precession rates on a logarithmic scale for all five methods and a
few choices of step size. It shows that the precession rates of the new methods behave
like h4, compared to h2 for the methods from Section 4.2.

As for the three new methods, the mixed Lagrangian method beats the Lagrangian
composition method, but the surprising winner is the composition of difference equations.

All our new methods have smaller precession rates than the fourth order symplectic
integrator of Forest and Ruth [26]. On the other hand, Chin’s fourth order symplectic
“C” algorithm [17, 19] outperforms our methods.
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4. Application to numerical precession in the Kepler problem

4.5.3. Total error

The precession rate is not as closely related to the total error as one might expect. In
many cases the numerical solution has a phase shift which contributes significantly to
the total error. For the composition methods LC and DEC this phase shift is highly
dependent on the step size and the initial conditions. Hence the total error growth for
these methods is also sensitive to the choice of step size and initial condition. This can be
seen by comparing Figures 4.4 and 4.5. In these figures we show a long time calculation
with a large step size, leading to large errors. This means that the result is useless for
practical purposes, but it allows us to visualize the rate of error growth of the different
methods relative to each other.

4.5.4. Speed

To give a rough comparison of the computational effort required for the different methods,
we list the relative running times of a long time calculation (20 000 steps):

Störmer-Verlet (SV) 0.67s Mixed Lagrangian (ML) 23s
MidPoint rule (MP) 22s Difference Equation composition (DEC) 7.9s
Forest-Ruth (FR) 2.0s Lagrangian Composition (LC) 8.2s

Chin C (C) 2.2s

We made a limited effort towards optimizing our implementation, so the given running
times should only be taken as a rough indication. As expected the explicit methods
SV, FR, and C are the fastest. Between those, SV is about three times faster than the
other two, which have internal steps increasing their computational complexity. For the
composition methods DEC and LC only one out of every three steps is implicit, hence
they are roughly three times faster than the fully implicit methods MP and ML.
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Figure 4.4. Error in position over a time interval of length 3000 with step size h = 0.45,
smoothed by taking a moving maximum over one period. The markers are only for the
purpose of identifying the methods, they do not correspond to individual time steps.
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5. Summary and outlook: variational
principles in numerical integration

We addressed the question whether modified equations for variational integrators are
Lagrangian. In a strict sense the answer is no: truncations of the modified equations
are not Euler-Lagrange equations. However, they can be turned into Euler-Lagrange
equations by adding higher-order corrections, or by considering the full formal power
series. We have proved this constructively and without a detour to the Hamiltonian side,
where the corresponding property is well-known.

Starting from the discrete Lagrangian of the numerical method, we first constructed
continuous Lagrangians Ldisc[x] and Lmesh[x] satisfying unconventional action principles
and depending on higher derivatives. Using the peculiarities of the meshed action princi-
ple and the relation of Lmesh[x] to the discrete Lagrangian, we managed to eliminate all
higher derivatives and obtained the modified Lagrangian Lmod(x, ẋ). From each of these
three Lagrangians the modified equation can be calculated.

Degenerate Lagrangians do not pose a fundamental obstruction to our method. In
the case of Lagrangians linear in velocities, the main issue is that variational integrators
are two-step methods and parasitic solutions can occur. To deal with this we used the
trick of doubling the variables. Since this doubling preserves the variational nature of
the system, it does not interfere with the construction of a modified Lagrangian.

As an application of modified Lagrangians we studied the precession rates of the im-
plicit midpoint rule and the Störmer-Verlet method applied to the Kepler problem.
The Lagrangian point of view lends itself perfectly to the use of a perturbed version
of Noether’s Theorem. The leading order estimates of the precession rate motivated the
construction of three new integrators. They are significantly better than the methods
we started from, but still they are outperformed by specialized methods. Our main goal
was to elucidate methodology, rather than to obtain competitive methods. The tech-
niques we used to analyze the integrators can be applied to any variational integrator
and generalized to any order. However, it is not clear to which extend to constructions
of improved integrators can be generalized. Hence further research is needed in order to
convert these ideas into a scheme to produce competitive numerical methods.

Our discussion of the Kepler problem is one illustration of how modified equations
can be used to construct better numerical integrators. More generally, there is a class
of improved numerical methods known as modifying integrators [16]. These integrators
involve a procedure which can be though of as the inverse of calculating a modified
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5. Summary and outlook: variational principles in numerical integration

equation, where the differential equation is perturbed before applying the integrator
to cancel the error up to a certain order. Building on our construction of a modified
Lagrangian, the same idea has been applied in [22] on the level of Lagrangians. Based
on the modified Lagrangian they construct a surrogate Lagrangian, which is a continuous
Lagrangian with a perturbation that counteracts the discretization error. This approach
looks especially promising in the context of optimal control [21].

On the theoretical side some interesting questions remain open. Can the method of
modified Lagrangians be extended to systems subject to external forces or constraints,
in particular nonholonomic ones? Can it be used for Lagrangian PDEs? In the end one
would always like to get rigorous long-time conservation results from modified equations.
Such results often rely on optimal truncation of the power series in the absence of fast
oscillations. It is unclear whether the Lagrangian approach can improve known results
of that type, but the heuristic wisdom that “criticality implies regularity” suggests that
it might.
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Part II.

Variational principles in discrete
and continuous integrable systems
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6. Pluri-Lagrangian systems

This chapter is mostly a review of the existing lit-
erature. This includes the paper [81] based on the
author’s master thesis. The only original result in
this chapter is in Section 6.5.3.

Even more than geometric numerical integration, the literature on integrable systems
tends to prefer the Hamiltonian point of view over the Lagrangian one. In mechanics,
complete integrability is usually understood as Liouville-Arnold integrability, which is
a quintessentially Hamiltonian condition [8] [7, Chapter 10]. Also in the context of
soliton equations, and the KdV equation in particular, Hamiltonians have been present
since the early days of the modern study of integrability [29, 99]. By virtue of bi-
Hamiltonian structures [50] they have become one of the most important tools in the
theory of integrable PDEs. A very rich source on Hamiltonian methods for integrable
PDEs is the monograph [23].

Over the past decade, in [47, 97, 80, 81] and other works, a variational perspective of
integrability has been developed. The notion of pluri-Lagrangian or Lagrangian multiform
systems centers around an unconventional variational principle. A major advantage of
the variational point of view is that it can be applied in the discrete as well as the
continuous case. This raises the question of how to relate those two cases. How to
discretize such systems? Or take continuum limits of them? The first question seems
impossible to answer in general. Answering the second is exactly the aim of Part II of
this thesis.

Consider a hierarchy of integrable Hamiltonian differential equations, like the KdV
hierarchy. Usually, each individual equation will also have a Lagrangian description,
even though the Legendre transformation might not be invertible or even well-defined.
In such a case one needs to be creative, for example by replacing the field variable
with a potential and some educated guesswork, but it seems that somehow a variational
description can always be found. Also, the Lax formulation can help to find a Lagrangian
[100].

From the Hamiltonian point of view, what makes a hierarchy integrable is the fact that
the Hamilton functions of the individual equations are in involution with respect to a
Poisson bracket. What could be the Lagrangian equivalent of this statement? Suppose we
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6. Pluri-Lagrangian systems

embed our hierarchy in a higher-dimensional space, where each equation has its own time
variable. In the case of the KdV hierarchy, we have coordinates t1 = x, t2, t3, . . . , tN and
for each ti with i ≥ 2 there is a PDE expressing the ti-derivative in terms of x-derivatives.
Each equation has a Lagrangian; we denote these by L12, . . . ,L1N . A solution to the
hierarchy will deliver critical values of the action

∫

Γ1j

L1j dt1 ∧ dtj (6.1)

for each plane Γ1j that is tangent to the t1 and tj directions.
In the pluri-Lagrangian context the Lagrange-function is replaced by a 2-form L =∑
i,j Lij dti ∧ dtj . The pluri-Lagrangian principle requires that the action

∫

Γ
L =

∫

Γ

∑

i,j

Lij dti ∧ dtj (6.2)

is critical on every 2-manifold Γ simultaneously. The coefficients L1j usually are the
Lagrangians of the individual equations, but the additional coefficients Lij with i, j > 1
do not correspond to any classical action principle. By choosing a coordinate plane for
Γ we can recover the actions (6.1), but for other surfaces the criticality of the action
(6.2) leads to Euler-Lagrange equations that are not implied by the classical variational
principle.

At this point one may wonder if the pluri-Lagrangian principle really characterizes
integrability. One might also doubt that there are nontrivial examples of pluri-Lagrangian
systems. Even if we know a Lagrangian for each individual equation, finding suitable
Lij with i, j > 1 is a nontrivial task. As we will see, the Euler-Lagrange equations
describing a pluri-Lagrangian system are massively overdetermined. On the bright side,
being overdetermined suggests that if there are nontrivial examples, they probably belong
to the realm of integrable systems. For the KdV hierarchy, a pluri-Lagrangian structure
was found in [82].

The relation between pluri-Lagrangian structures and other notions of integrability is
a subject of active investigation. This is beyond the scope of this thesis. Let us just
mention a few relevant works on such connections. The relation of pluri-Lagrangian
systems to variational symmetries is explored in [71] and [81], some initial links to the
Hamiltonian theory of integrability are discussed in [80] and at the end of [82], and it is
worth pointing out the example of pluri-Harmonic functions [11] [77, Section 4.4], which
inspired the name.

Crucially, the pluri-Lagrangian principle can also be used for lattice systems. In fact
the notion was born in the context of difference equations on quadrilateral graphs. The
idea is perfectly analogous to the continuous one. The role of the Lagrangian is played
by a discrete differential form, which is integrated over an arbitrary discrete surface in a
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6.1. Meet our protagonists: the ABS list

higher-dimensional lattice. A solution must be a critical point of the action for all choices
of the discrete surface.

Respecting the history of the pluri-Lagrangian concept – young as it may be – and
general theme of this thesis, we will start our discussion with the discrete version of the
theory before we move on to its continuous counterpart. First, let us have a look at the
kind of equations that it applies to.

6.1. Meet our protagonists: the ABS list

Multidimensionally consistent quad equations, equations on quadrilateral graphs, were
classified by Adler Bobenko and Suris in [4]. The list of equations they found is widely
known as the ABS list. It classifies equations of the form

Q(U,U1, U2, U12, α1, α2) = 0,

where subscript of the field U : Z2 → C denote lattice shifts,

U = U(m,n), U1 = U(m+ 1, n), U2 = U(m,n+ 1), U12 = U(m+ 1, n+ 1),

and αi ∈ C are parameters associated to the lattice directions. Two quad equations are
considered equivalent if they are related by a transformation of the parameters and a
Möbius transformation of the fields.

The following properties are imposed on Q.

Linearity. We require that Q is affine in each of the fields, i.e.

∂2Q

∂U2
=
∂2Q

∂U2
1

=
∂2Q

∂U2
2

=
∂2Q

∂U2
12

= 0.

This guarantees that the equation can be solved for any of the fields, given the
other three.

Symmetry. The equation Q = 0 should be invariant under the symmetries of the square,

Q(U,U1, U2, U12, α1, α2) = ±Q(U,U2, U1, U12, α2, α1) = ±Q(U1, U, U12, U2, α1, α2).

Multidimensional consistency. This is the property that makes our quad equations in-
tegrable. Even though the equations live on Z2 (or more generally on a planar quad
graph), we require that we can consistently implement them on every square in a
higher-dimensional lattice Zd. A necessary and sufficient condition for this is that
the equation is consistent around the cube :

Given lattice parameters α1, α2, and α3 and field values U , U1, U2, and U3, we can
use the equations

Q(U,Ui, Uj , Uij , αi, αj) = 0, 1 ≤ i < j ≤ 3
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U1

U13

U3

U

U12

U123U23

U2

α1

α2

α3

Figure 6.1. A quad equation is consistent around the cube if U123 can be uniquely
determined from U , U1, U2 and U3. If in addition U123 is independent of U , then the
equation satisfies the tetrahedron property.

to determine U12, U13, and U23. Then we can use each of the three equations

Q(Ui, Uij , Uik, Uijk, αj , αk) = 0, (i, j, k) ≡ (i, i+ 1, i+ 2) mod 3

to determine U123. If these three values agree (for all initial conditions U , U1, U2,
and U3 and all parameters α1, α2, and α3), then the equation is called consistent
around the cube.

Tetrahedron property. If a quad equation is consistent around the cube, the value of
U123 can be considered as a function of U , U1, U2, U3, and the lattice parameters,

U123 = z(U,U1, U2, U3, α1, α2, α3).

If this function z does not depend on U we say that the equation has the tetrahedron
property. (The corners of the cube corresponding to U123, U1, U2, and U3 form a
regular tetrahedron.)

A sufficient condition for the tetrahedron property is that the equation can be
written in a three-leg form,

Q(U,U1, U2, U12, α1, α2) = Ψ(U,U1, α1)−Ψ(U,U2, α2) + Φ(U,U12, α1, α2).

Indeed, by symmetry this implies that up to sign

Q(U,Ui, Uj , Uij , αi, αj) = Ψ(Uij , Uj , αi)−Ψ(Uij , Ui, αj) + Φ(Uij , U, αi, αj)

and summing up the three instances on the cube of this equation that contain U123,
we find

Φ(U123, U3, α1, α2) + Φ(U123, U1, α2, α3) + Φ(U123, U2, α3, α1) = 0.

Assuming we can solve this for U123 we obtain the tetrahedron property.
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6.1. Meet our protagonists: the ABS list

Some years after the original ABS paper, the same authors published a classification
of type Q equations (see below) where the assumptions symmetry and the tetrahedron
property were dropped [5]. In addition it was no longer assumed that the equations on
different faces of the cube are the same up to the parameter values.

Already in the original ABS paper [4] Lagrangians were given for each of the equations
in the classification. However, it was some years later that Lobb and Nijhoff [47] formu-
lated the variational structure in a multidimensional setting, giving rise to what we here
call pluri-Lagrangian structures.

Below we list all the ABS equations. We postpone the presentation of their Lagrangians
until we are ready to discuss their continuum limits.

6.1.1. Type Q

An important role in the classification of integrable quad equations is played by the six
biquadratics corresponding to the equation Q = 0:

∂Q

∂U

∂Q

∂U1
−Q ∂2Q

∂U∂U1
,

∂Q

∂U

∂Q

∂U2
−Q ∂2Q

∂U∂U2
,

∂Q

∂U

∂Q

∂U12
−Q ∂2Q

∂U∂U12
,

∂Q

∂U1

∂Q

∂U2
−Q ∂2Q

∂U1∂U2
,

∂Q

∂U1

∂Q

∂U12
−Q ∂2Q

∂U1∂U12
,

∂Q

∂U2

∂Q

∂U12
−Q ∂2Q

∂U2∂U12
.

Due the the linearity assumption on Q, each of these is a quadratic function of two of
the four field variables. A quad equation is said to be of type Q if all its biquadratics
are nondegenerate, i.e. if they do not have a linear factor depending on only one of the
variables. Furthermore, it is noteworthy that for all ABS equations of type Q a three-leg
form can be found where the functions of the long and short legs coincide, Ψ = Φ.

The ABS equations of type Q are:

Q1 α1(U − U2)(U1 − U12)− α2(U − U1)(U2 − U12) + δ2α1α2(α1 − α2) = 0. (6.3)

With δ = 0, it is known as the cross-ratio equation or the lattice Schwarzian KdV
equation, see for example [60].

Q2 α1α2(α1 − α2)(U + U1 + U2 + U12)− α1α2(α1 − α2)(α2
1 − α1α2 + α2

2)

+α1(U − U2)(U1 − U12)− α2(U − U1)(U2 − U12) = 0.
(6.4)

It seems that this equation has only appeared in the literature in the context of
the ABS list.

Q3 (α2
2 − α2

1)(UU12 + U1U2) + α2(α2
1 − 1)(UU1 + U2U12)

− α1(α2
2 − 1)(UU2 − U1U12)− δ2

4α1α2
(α2

1 − α2
2)(α2

1 − 1)(α2
2 − 1) = 0.

(6.5)
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A closely related lattice equation, now known as the NQC equation, first appeared
in [64]. An explicit transformation between the NQC equation and Q3 with δ = 0
is given in [62].

Q4 A((U − b)(U2 − b)− (a− b)(c− b))((U1 − b)(U12 − b)− (a− b)(c− b))
+B((U − a)(U1 − a)− (b− a)(c− a))((U2 − a)(U12 − a)− (b− a)(c− a))

= ABC(a− b),
(6.6)

where

(a,A) =
(
℘(α1), ℘′(α1)

)

(b, B) =
(
℘(α2), ℘′(α2)

)

(c, C) =
(
℘(α2 − α1), ℘′(α2 − α1)

)

are points on the elliptic curve {A2 = 4a3 − g2a − g3}, i.e. ℘ is the Weierstrass
elliptic function. This equation first appeared in [2] in a rational parameterization.
The formulation (6.6) in terms of an elliptic curve was introduced in [63].

Q4 is variously known as the lattice Krichever-Novikov equation, the Adler equation,
and the integrable master equation. The last name is justified the following diagram
of degenerations, as well as by its connection to several semi-discrete and continuous
systems with a parameter on an elliptic curve [3].

Q3δ=1 Q3δ=0

Q4

Q2 Q1δ=1 Q1δ=0

6.1.2. Type H

H1 (U − U12)(U1 − U2) + α2 − α1 = 0. (6.7)

Known as the lattice potential KdV equation, H1 is one of the oldest and most
widespread of the ABS equations, going back at least as far as [64, 73]. Even
earlier, a lattice version of the non-potential KdV equation was given by Hirota
[39]. Using a non-autonomous transformation V (n,m) = U(n,m)+nλ1 +mλ2 and
the reparameterization αi = λ2

i , it takes the form

(λ1 + λ2 + V − V12)(λ2 − λ1 + V1 − V2)− λ2
1 + λ2

2 = 0,

in which it was studied in detail for example in [94] and [60].
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6.2. The discrete pluri-Lagrangian principle

H2 (U − U12)(U1 − U2) + (α2 − α1)(U + U1 + U2 + U12) + α2
2 − α2

1 = 0. (6.8)

It seems that this equation has only appeared in the literature in the context of
the ABS list.

H3 α1(UU1 + U2U12)− α2(UU2 + U1U12) + δ(α2
1 − α2

2) = 0. (6.9)

The full equation H3 first appeared in the ABS list. For δ = 0 we can do a
nonautonomous transformation U(n,m) 7→ in+mU(n,m) to obtain

α1(UU1 − U2U12)− α2(UU2 − U1U12) = 0, (6.10)

which is known as the lattice modified KdV equation [60].

An additional transformation, U(n,m) 7→ U(n,m)(−1)m , which breaks the symme-
try, turns Equation (6.10) into the lattice sine-Gordon equation, which dates back
to [40].

6.1.3. Type A

For the sake of completeness, we include the equations of type A. However, both of them
can be reduced to a type Q equation by a nonautonomous change of variables. For this
reason we will not consider A1 and A2 in the rest of this work

A1 α1(U + U2)(U1 + U12)− α2(U + U1)(U2 + U12)− δ2α1α2(α1 − α2) = 0.

A1 is related to Q1 by U(n,m) 7→ (−1)n+mU(n,m).

A2 (α2
2 − α2

1)(UU1U2U12 + 1) + α2(α2
1 − 1)(UU2 + U1U12)

− α1(α2
2 − 1)(UU1 + U2U12) = 0.

A2 is related to Q3 with δ = 0 by U(n,m) 7→ U(n,m)(−1)n+m .

6.2. The discrete pluri-Lagrangian principle

Consider the lattice ZN with basis vectors e1, . . . , eN . To each lattice direction we asso-
ciate a parameter αi ∈ C. The equations we are interested in involve the values of a field
U : ZN → C on elementary squares in this lattice, or more generally, on d-dimensional
plaquettes. Such a plaquette is a 2d-tuple of lattice points that form an elementary
hypercube. We denote it by

�i1,...,id(n) =
{
n + ε1ei1 + . . .+ εdeid

∣∣∣ εk ∈ {0, 1}
}
⊂ ZN ,
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6. Pluri-Lagrangian systems

Figure 6.2. Visualization of a discrete 2-surface in Z3.

where n = (n1, . . . , nN ). Plaquettes are considered to be oriented; an odd permuta-
tion of the directions i1, . . . , id reverses the orientation of the plaquette. We will write
U(�i1,...,id(n)) for the 2d-tuple

U(�i1,...,id(n)) =
(
U(n), U(n+ ei1), U(n+ ei2), . . . , U(n+ ei1 . . .+ eid)

)
.

Occasionally we will also consider the corresponding “filled-in” hypercubes in RN ,

�i1,...,id(n) =
{
n+ η1ei1 + . . .+ ηdeid

∣∣∣ ηk ∈ [0, 1]
}
⊂ RN ,

on which we consider the orientation defined by the volume form dti1 ∧ . . . ∧ dtid .
The role of a Lagrange function is played by a discrete d-form

L(U(�i1,...,id(n)), αi1 , . . . , αid),

which is a function of the values of the field U : ZN → C on a plaquette and of the
corresponding lattice parameters, where

L
(
U
(
�σ(i1),...,σ(id)(n)

)
, ασ(i1), . . . , ασ(id)

)
= sgn(σ)L(�i1,...,id(n), αi1 , . . . , αid)

for any permutation σ of {i1, . . . , id}. In other words, L is skew-symmetric with respect
to the orientation of the plaquette.

Consider a discrete d-surface Γ = {�α} in the lattice, i.e. a set of d-dimensional
plaquettes, such that the union of the corresponding filled-in plaquettes

⋃
α�α is an

oriented topological d-manifold (possibly with boundary). The action over Γ is given by

SΓ =
∑

�i1,...,id
(n)∈Γ

L(U(�i1,...,id(n)), αi1 , . . . , αid).

The field U is a solution to the discrete pluri-Lagrangian problem if it is a critical point
of SΓ (with respect to variations that are zero on the boundary of Γ) for all discrete
d-surfaces Γ simultaneously.
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6.2. The discrete pluri-Lagrangian principle

U−1

U

U2

+

U2

U

U1

=
U−1

U

U1

Figure 6.3. A straight segment of a discrete curve is the sum of two corners.

For d = 1 we have

SΓ =
∑

{n,n+ei}∈Γ

L(U(n), U(n + ei), αi).

The Euler-Lagrange equations at general elementary corners,
∂

∂U(n)

(
L(U(n± ei), U(n), αi) + L(U(n), U(n± ej), αj)

)
= 0,

are sufficient conditions for U to be a solution to the pluri-Lagrangian problem. Indeed,
any discrete curve locally consists of such corners. We can even restrict our attention
to true corners, with i 6= j, because a straight segment can be considered as the sum of
oriented corners, as in Figure 6.3.

For d = 2 we have

SΓ =
∑

{n,n+ei,n+ej ,n+ei+ej}∈Γ

L(U(n), U(n + ei), U(n + ej), U(n + ei + ej), αi, αj).

Since every discrete surface can be constructed out of corners of cubes, as illustrated in
Figure 6.4, it is sufficient to determine the Euler-Lagrange equations on these elementary
building blocks. They are

∂

∂U

(
L(U,Ui, Uj , Uij , αi, αj) + L(U,Uj , Uk, Ujk, αj , αk)

+ L(U,Uk, Ui, Uik, αk, αi)
)

= 0, (6.11)

∂

∂Ui

(
L(U,Ui, Uj , Uij , αi, αj)− L(Ui, Uij , Uik, Uijk, αj , αk)

+ L(U,Uk, Ui, Uik, αk, αi)
)

= 0, (6.12)

∂

∂Uij

(
L(U,Ui, Uj , Uij , αi, αj)− L(Ui, Uij , Uik, Uijk, αj , αk)

− L(Uj , Ujk, Uij , Uijk, αk, αi)
)

= 0, (6.13)

∂

∂Uijk

(
−L(Uk, Uik, Ujk, Uijk, αi, αj)− L(Ui, Uij , Uik, Uijk, αj , αk)

− L(Uj , Ujk, Uij , Uijk, αk, αi)
)

= 0. (6.14)
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+
U

U3

U−1,3

U−1

U−1,2
U2

U23

U1

U13

U3

U

U23

U2
U12

U−1,−2 U−2

U−2,3

U

U3U−1,3

U−1

U−2,3

U−2 U1,−2

U1

U13U3

U

=

U−1,−2 U−2 U1,−2

U1
U

U−1

U−1,2 U2 U1,2

Figure 6.4. A planar segment of a discrete surface is the sum of four corners. The
marked vertices are those entering the Euler-Lagrange equations around U for a La-
grangian in triangle form, which leads to two copies of the quad equation in three-leg
form.

These corner equations are necessary and sufficient conditions for U to be a solution to
the pluri-Lagrangian problem. Often, L can be written in a triangle form

L(U,Ui, Uj , Uij , αi, αj) = A(U,Ui, αi)−A(U,Uj , αj) +B(Ui, Uj , αi − αj),

which renders the first and last corner equations, Equations (6.11) and (6.14), trivial.
The triangle form of the Lagrangian is closely related to the three-leg form of the quad
equation.

Example 6.1. Consider the following Lagrangian for H1, aka. the lattice potential KdV
equation, aka. Equation (6.7),

L(U,Ui, Uj , Uij , αi, αj) = UUi − UUj − (αi − αj) log(Ui − Uj).

This Lagrangian was found in [15], but its multi-dimensional interpretation came much
later [47]. Because of the triangle form, we only need to look at two of the corner
equations. Equation (6.12) yields

(
U − αi − αj

Ui − Uj
− Uij

)
+

(
Uik − U +

αk − αi
Uk − Ui

)
= 0
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and Equation (6.13) gives
(
−Ui +

αj − αk
Uij − Uik

+ Uijk

)
−
(
Uijk − Uj +

αk − αi
Ujk − Uij

)
= 0.

In both of these corner equations we recognize two copies of Equation (6.7). Hence the
Euler-Lagrange equations follow from the quad equation, but are not equivalent to it.
This is the case for all ABS equations.

For the sake of brevity we will not give a more detailed overview of the theory of
discrete pluri-Lagrangian systems here. Instead we refer to the groundbreaking paper
[47], which introduced the pluri-Lagrangian (or Lagrangian multiform) idea, and to the
reviews [13], [38, Chapter 12], and the references therein.

6.3. Continuous pluri-Lagrangian systems

6.3.1. A typical integrable hierarchy of PDEs

At first glance it is far from obvious what the continuous counterparts of the quad
equations from the ABS list might be. One way to connect the discrete and continuous
worlds is the observation that many quad equations arise as compatibility conditions
of Bäcklund transformations for integrable differential equations, see for example [38,
Section 2.5]. On the other hand, for some equations of the ABS list it is well-known
that they produce certain integrable hierarchies of PDEs in a suitable continuum limit,
but a systematic study of these continuum limits seems to be absent from the literature.
Chapter 7 will provide such an overview, although its main goal will be to provide
continuum limits of the pluri-Lagrangian structures involved.

The hierarchies we encounter are typically of the form

ut2 = f2(u, ux, uxx, . . .),

ut3 = f3(u, ux, uxx, . . .),
...

where we identify x = t1. A typical example is the potential Korteweg-de Vries hierarchy

ut2 = 0,

ut3 = 3u2
x + uxxx,

ut4 = 0,

ut5 = 10u3
x + 5u2

xx + 10uxuxxx + uxxxxx,
...
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6. Pluri-Lagrangian systems

In this hierarchy all equations for even-numbered time-variables are trivial and one could
choose to omit them. However, they reflect the construction of the hierarchy through Lax
pairs of pseudo-differential operators (see Section 9.1), and we will see the same pattern
come out of the continuum limit.

The Korteweg-de Vries hierarchy has been central in the development of the modern
theory of integrable systems. Solitons where first observed in the context of this equation,
it was the first system the inverse scattering method was applied to, it was one of the
first for which a bi-Hamiltonian structure was given, and so on. The history of the KdV
equation has been discussed on every street corner of the integrable systems literature,
for example in [42, 58, 70], so we will not go into detail here.

6.3.2. The continuous pluri-Lagrangian principle

In analogy to the discrete case, we define a continuous pluri-Lagrangian system as follows.

Definition 6.2. Let

L[u] =
∑

i1<...<id

Li1,...,id [u] dti1 ∧ . . . ∧ dtid .

be a d-form in RN , depending on a field u : RN → C and any number of its derivatives.
The field u solves the continuous pluri-Lagrangian problem for L if for any d-dimensional
oriented submanifold Γ ⊂ RN and any variation δu that vanishes near the boundary ∂Γ,
there holds

δ

∫

Γ
L[u] = 0.

Some authors include in the definition that the pluri-Lagrangian form must be closed
when evaluated on solutions. That would be equivalent to requiring that the action
is not just critical on every surface, but even takes the same value on every surface
with the same boundary and topology. In this perspective, one can take variations of the
geometry as well as of the fields. We choose not to include the closedness in our definition,
because we will obtain a slightly weaker property as a consequence of our definition in
Proposition 6.4. Most of the authors that include closedness in the definition use the
term “Lagrangian multiform”, so one could argue that a Lagrangian multiform system is
a pluri-Lagrangian system that satisfies the closedness property, giving the two names a
marginally different meaning.

The first question about continuous pluri-Lagrangian systems is to find a set of equa-
tions characterizing criticality in the pluri-Lagrangian sense. We will call these equations
the multi-time Euler-Lagrange equations. They were derived in [82] for d = 1 and d = 2
by approximating an arbitrary given curve or surface by a stepped curve or stepped
surface, which are piecewise flat with tangent spaces spanned by coordinate directions.
In Section 6.5 we will take a more intrinsic approach, which is less suited to deriving
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the equations from scratch, but very powerful to verify that they imply criticality. This
approach relies on the variational bicomplex, which we introduce below.

6.4. The variational bicomplex

We allow the Lagrangian form L[u] to depend on any combination of partial derivatives
of the field u, i.e. on the infinite jet of u. We will use a multi-index notation for partial
derivatives of u. An N -index I is a N -tuple of non-negative integers. There is a natural
bijection between N -indices and partial derivatives of u : RN → C. We denote by uI the
mixed partial derivative of u, where the number of derivatives with respect to each ti is
given by the entries of I. Note that if I = (0, . . . , 0), then uI = u.

We will often denote a multi-index suggestively by a string of ti-variables, but it should
be noted that this representation is not always unique. For example,

t1 = (1, 0, . . . , 0), tN = (0, . . . , 0, 1), t1t2 = t2t1 = (1, 1, 0, . . . , 0).

In this notation we will also make use of exponents to compactify the expressions, for
example

t32 = t2t2t2 = (0, 3, 0, . . . , 0).

The notation Itj should be interpreted as concatenation in the string representation,
hence it denotes the multi-index obtained from I by increasing the j-th entry by one.
Finally, if the j-th entry of I is nonzero we say that I contains tj , and write I 3 tj .

We consider the function u : RN → C as a section of the trivial fiber bundle RN × C.
This bundle has coordinates (t1, . . . , tN , u). The derivatives of u are contained in the
infinite jet bundle J∞(RN × C), with coordinates (ti, u, uti , utitj , . . .)i,j,...∈{1,...,N}. To
facilitate the variational calculus in the pluri-Lagrangian setting, it is useful to consider
the variation operator δ as an exterior derivative, acting in the fibers of the jet bundle.
We call δ the vertical exterior derivative and d, which acts in RN , the horizontal exterior
derivative. Together they provide a double grading of the space Ω(J∞(RN × C)) of
differential forms on the jet bundle. An (a, b)-form is a differential (a+b)-form structured
as

ωa,b =
∑

fI1,...,Ia,j1,...,jb [u] δuI1 ∧ . . . ∧ δuIa ∧ dtj1 . . . ∧ dtjb .

We denote the space of (a, b)-forms by Ω(a,b) ⊂ Ωa+b(J∞(RN × C)). We call elements
of Ω(0,b) horizontal forms and elements of Ω(a,0) vertical forms. The Lagrangian is a
horizontal d-form, L ∈ Ω(0,d) ⊂ Ωd(J∞(RN × C)).

The spaces Ω(a,b) are related to each other by d and δ as in the following diagram,
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known as the variational bicomplex :

...
...

...
...

Ω(2,0) Ω(2,1) · · · Ω(2,n−1) Ω(2,n)

Ω(1,0) Ω(1,1) · · · Ω(1,n−1) Ω(1,n)

Ω(0,0) Ω(0,1) · · · Ω(0,n−1) Ω(0,n)

d

δ

d

δ

d d

δ δ

d

δ

d

δ

d d

δ δ

d

δ

d

δ

d d

δ δ

The horizontal and vertical exterior derivatives are characterized by the anti-derivation
property,

d (ωp1,q11 ∧ ωp2,q22 ) = dωp1,q11 ∧ ωp2,q22 + (−1)p1+q1 ωp1,q11 ∧ dωp2,q22 ,

δ (ωp1,q11 ∧ ωp2,q22 ) = δωp1,q11 ∧ ωp2,q22 + (−1)p1+q1 ωp1,q11 ∧ δωp2,q22 ,

and by the way they act on (0, 0)-forms, and basic (1, 0) and (0, 1)-forms:

df =
∑

j

Djf dtj , δf =
∑

I

∂f

∂uI
δuI ,

d(δuI) = −
∑

j

δuIj ∧ dtj , δ(δuI) = 0,

d(dtj) = 0, δ(dtj) = 0,

where Dj = d
dtj

. As a simple but important example, note that

d(f [u] δuI) =
N∑

j=1

Djf [u] dtj ∧ δuI − f [u] δuItj ∧ dtj =
N∑

j=1

−Dj(f [u] δuI) ∧ dtj .

One can verify that d + δ : Ωa+b → Ωa+b+1 is the usual exterior derivative and that

δ2 = d2 = δd + dδ = 0.

Furthermore, for any vertical vector field V =
∑

I v
[I] ∂
∂uI

, there holds

ιV d + dιV = 0.

More on the variational bicomplex can be found in [23, Chapter 19]. A slightly different
version of the variational bicomplex – using contact forms instead of vertical forms –
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is discussed in [6]. We will not discuss the rich algebraic structure of the variational
bicomplex here.

For a horizontal (0, d)-form L[u], the variational principle

δ

∫

Γ
L[u] = δ

∫

Γ

∑

i1<...<id

Li1,...,id [u] dti1 ∧ . . . ∧ dtid = 0

can be understood as follows. For every vector field V = v(t1, . . . , ta)
∂
∂u that vanishes

near the boundary ∂Γ, its prolongation

prV =
∑

I

vI
∂

∂uI

must satisfy
∫

Γ
ιprV δL =

∫

Γ

∑

i1<...<id

ιprV (δLi1,...,id [u] ∧ dti1 ∧ . . . ∧ dtid) = 0.

Note that the integrand is a horizontal form, so the integration takes place on Γ ⊂
RN , independent of the bundle structure. This formulation in itself might not be a
terribly convenient characterization of criticality, but it provides a stepping stone toward
a powerful tool, which we call pluri-variational calculus.

6.4.1. Pluri-Variational calculus

Just like total derivatives play in important role in the classical variational principle,
exterior derivatives can be used to characterize criticality in the pluri-Lagrangian sense.

Proposition 6.3. The field u is a critical point of the action
∫

Γ L[u] for all Γ if and
only if locally there exists a (1, d− 1)-form Θ such that δL[u] = dΘ.

Proof. Assume such a (1, d− 1)-form Θ exists. Since the horizontal exterior derivative d
anti-commutes with the interior product operator ιprV for the prolongation of a vertical
vector field V , it follows that for any variation V of the field u that is zero near the
boundary of a manifold Γ:

∫

Γ
ιprV δL = −

∫

Γ
d (ιprV Θ) = −

∫

∂Γ
ιprV Θ = 0.

Conversely, let L be evaluated on a critical field, and let Γ = ∂Bd+1 be a small d-sphere.
Then for any prolonged vector field prV there holds

∫

Bd+1

d(ιprV δL) =

∫

Γ
ιprV δL = 0.
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Since the ball Bd+1 can be arbitrarily chosen, it follows that d(ιprV δL) = 0. Hence,
locally, we can find a (0, d− 1)-form Ω(prV ), depending on the vector field, such that

ιprV δL = dΩ(prV ).

Since Ω(prV ) is linear in prV , it has to be of the form Ω(prV ) = ιprV Θ for some
(1, d− 1)-form Θ. It follows that

ιprV δL = d(ιprV Θ) = −ιprV dΘ,

hence δL = −dΘ.

If we are dealing with a classical Lagrangian problem from mechanics, L = L(u, ut)dt,
we have Θ = ∂L

∂ut
δu, which is the pull back to the tangent bundle of the canonical 1-

form
∑

i pidqi on the cotangent bundle. In first order field theory Θ is the Cartan form
[53]. In the pluri-Lagrangian context the form Θ can be used to show that multi-time
Euler-Lagrange equations are indeed sufficient for criticality.

As mentioned in Section 6.3, we would like the Lagrangian form to be closed when
evaluated on solutions. We did not include this in the definition of a pluri-Lagrangian
system, because our definition already implies a slightly weaker property.

Proposition 6.4. The horizontal exterior derivative dL of a pluri-Lagrangian form is
constant on connected components of the set of critical fields for L.

Proof. Critical points satisfy locally

δL = dΘ ⇒ dδL = 0 ⇒ δdL = 0.

Hence for any vertical variation V the infinitesimal change of dL along V is ιprV δ(dL) =
0.

Often the well-posedness of an initial or boundary value problem for the system of
multi-time Euler-Lagrange equations implies that the set of critical points is connected.
Then dL is constant on the set of all critical fields. Furthermore, for many examples we
have a simple vacuum solution, which we can use to verify that this constant is zero.

6.4.2. Discrete analogues

Let us have a closer look at discrete differential forms. Our discussion can be considered
as a minimal version of the theory presented in [41, 51].

A discrete d-form is a skew-symmetric function η of the field variables and lattice
parameters on a d-dimensional plaquette,

η
(
�σ(i1),...,σ(id)(n), ασ(i1), . . . , ασ(id)

)
= sgn(σ) η(�i1,...,id(n), αi1 , . . . , αid).
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6.4. The variational bicomplex

The analogy between discrete and continuous differential forms goes much deeper than
this. Also for discrete differential forms there is an exterior derivative. Let Ωd(ZN )
denote the space of discrete d-forms in the lattice ZN . Then ∆ : Ωd−1(ZN )→ Ωd(ZN ) is
defined by

∆η(�i1,...,id(n), αi1 , . . . , αid)

=
d∑

k=1

(−1)k
(
η
(
�j1,...,ĵk,...,jd

(n)
)
− η
(
�j1,...,ĵk,...,jd

(n + ek)
))

,

where the hat denotes and missing index and the parameters αi1 , . . . , α̂ik , . . . , αid have
been omitted from the right hand side. Note that the sum is taken over set of (d−1)-faces
of the of the d-dimensional cube �i1,...,id(n), with the induced orientation. Applying the
discrete exterior derivative twice always yields zero. Indeed, we have

∆∆η(�i1,...,id(n), αi1 , . . . , αid)

=
d∑

k=1

(−1)k
(

∆η
(
�j1,...,ĵk,...,jd

(n)
)
−∆η

(
�j1,...,ĵk,...,jd

(n + ek)
))

=
d∑

k=1

d∑

`=1

(−1)k+` sgn(k − `)
(
η
(
�j1,...,ĵk,ĵ`,...,jd

(n)
)
− η
(
�j1,...,ĵk,ĵ`,...,jd

(n + ek)
)

− η
(
�j1,...,ĵk,ĵ`,...,jd

(n + e`)
)

+ η
(
�j1,...,ĵk,ĵ`,...,jd

(n + ek + e`)
))

.

If we interchange k and ` in this expression, only the sign function sgn(k − `) changes,
so the double sum evaluates to zero. Geometrically speaking, each (d − 2)-face forms
the boundary between two of the (d − 1)-faces and hence occurs twice with opposite
orientation.

Proposition 6.5. For every discrete (d − 1)-form η, the discrete d-form L = ∆η is a
null Lagrangian, i.e. every field ZN 7→ C solves the pluri-Lagrangian problem for L.

Proof. Just like in the continuous case, the discrete integral of ∆η only depends on the
boundary. Indeed, for any discrete d-surface Γ the contributions on interior (d− 1)-faces
cancel in the sum

∑

Γ

∆η =
∑

�j1,...,jd (n)∈Γ

d∑

k=1

(−1)k
(
η
(
�j1,...,ĵk,...,jd

(n)
)
− η
(
�j1,...,ĵk,...,jd

(n + ek)
))

,

so the action
∑

Γ ∆η is always critical with respect to variations that vanish on the
boundary of Γ.
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6. Pluri-Lagrangian systems

In the discrete setting we have sums instead of integrals, so to arrive at a discrete
analogue of Proposition 6.3 we would have to discretize the horizontal differential forms in
the variational bicomplex and replace the horizontal operator d by ∆. However, a discrete
version of this result would not be very useful. The discrete variational problem is much
easier than the continuous one, because in the discrete case it is possible to take partial
derivatives with respect to the value of the field at each lattice site independently. Hence
using a discrete version of Proposition 6.3 to derive Euler-Lagrange equations would be
much more complicated than a direct calculation. On the other hand, Proposition 6.5,
which can be considered as a special case of such a result, will be useful in Chapter 8 to
prepare discrete Lagrangians for the continuum limit procedure.

6.5. Multi-time Euler-Lagrange equations

In this section we discuss the multi-time Euler-Lagrange equations, which characterize
fields that are critical in the pluri-Lagrangian sense. We start with the cases of 1-forms
and 2-forms, before generalizing the discussion to d-forms for arbitrary d. We will only
prove that the proposed equations are sufficient for criticality. For d = 1 and d = 2, a
proof that they are necessary was given in [82].

6.5.1. One-forms

Consider the pluri-Lagrangian 1-form

L =

N∑

j=1

Lj [u] dtj ,

depending on an arbitrary but finite number of derivatives of u.

Theorem 6.6. The multi-time Euler-Lagrange equations are

δjLj
δuI

= 0 ∀j, ∀I 63 tj , (6.15)

δjLj
δuItj

− δ1L1

δuIt1
= 0 ∀j ≥ 2, ∀I, (6.16)

where δj
δuI

denotes the variational derivatives in the direction of tj with respect to uI ,

δj
δuI

=
∂

∂uI
−Dj

∂

∂uItj
+ D2

j

∂

∂uItjtj
− · · · .

Equations (6.15) and (6.16) where originally derived in [82] by approximating any given
curve by a stepped curve, i.e. a piecewise straight curve with all pieces in coordinate
directions. Here we will only prove that they are sufficient for criticality in the pluri-
Lagrangian sense, using Proposition 6.3 instead of a stepped surface approximation.
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6.5. Multi-time Euler-Lagrange equations

Proof of sufficiency. We calculate the vertical exterior derivative δL of the Lagrangian
1-form modulo Equations (6.15) and (6.16),

δL =
N∑

j=1

∑

I

∂Lj
∂uI

δuI ∧ dtj

=

N∑

j=1

∑

I

(
δjLj
δuI

+ Dj
δjLj
δuItj

)
δuI ∧ dtj

=
N∑

j=1


∑

I 63tj

δjLj
δuI

δuI ∧ dtj +
∑

I

(
δjLj
δuItj

δuItj ∧ dtj +

(
Dj

δjLj
δuItj

)
δuI ∧ dtj

)
 .

On solutions of Equation (6.16), we can define the generalized momenta

pI =
δjLj
δuItj

.

Using Equations (6.15) and (6.16) it follows that

δL =
N∑

j=1

∑

I

(
pIδuItj ∧ dtj +

(
Djp

I
)
δuI ∧ dtj

)
= −d

(∑

I

pIδuI

)
.

This implies by Proposition 6.3 that Equations (6.15) and (6.16) are indeed sufficient for
the action to be critical.

6.5.2. Two-forms

Consider the pluri-Lagrangian 2-form

L =
∑

i<j

Lij [u] dti ∧ dtj ,

depending on an arbitrary but finite number of derivatives of u.

Theorem 6.7. The multi-time Euler-Lagrange equations are

δijLij
δuI

= 0 ∀I 63 ti, tj , (6.17)

δijLij
δuItj

− δikLik
δuItk

= 0 ∀I 63 ti, (6.18)

δijLij
δuItitj

+
δjkLjk
δuItjtk

+
δkiLki
δuItkti

= 0 ∀I, (6.19)
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6. Pluri-Lagrangian systems

for i, j, and k distinct, where

δij
δuI

=
∞∑

α,β=0

(−1)α+βDα
i Dβ

j

∂

∂u
Itαi t

β
j

This theorem was proved in [82], analogous to the 1-form case, by approximating any
given surface with a stepped surface.

Proof of sufficiency. We calculate the vertical exterior derivative δL modulo Equations
(6.17)–(6.19). We temporarily break the symmetry and make t1 a distinguished coordi-
nate. Set

pIj =
δ1jL1j

δuIt1
for I 63 tj ,

πIj =
δ1jL1j

δuIt1tj
.

Since the coefficients Lij are anti-symmetric, we have that pI1 = πI1 = 0.
We could also leave out the restriction I 63 tj in the definition of pIj , and write pItjj

instead of πIj . However, in our notation the pIj are variational derivatives that occur
in Equation (6.18), and the πIj occur in Equation (6.19). It is helpful to reflect this
distinction in the notation.

We have

δL =
∑

i<j

∑

I

∂Lij
∂uI

δuI ∧ dti ∧ dtj

=
∑

i<j

∑

I

(
δijLij
δuI

+ Di
δijLij
δuIti

+ Dj
δijLij
δuItj

+ DiDj
δijLij
δuItitj

)
δuI ∧ dti ∧ dtj

Modulo the multi-time Euler-Lagrange equations this becomes

δL =
1

2

N∑

i,j=1

[ ∑

I 63ti,tj

δijLij
δuI

δuI ∧ dti ∧ dtj

+
∑

I 63tj

(
pIj δuIti ∧ dti ∧ dtj + Dip

I
j δuI ∧ dti ∧ dtj

)

−
∑

I 63ti

(
pIi δuItj ∧ dti ∧ dtj + Djp

I
i δuI ∧ dti ∧ dtj

)

+
∑

I

(
(πIj − πIi ) δuItitj ∧ dti ∧ dtj + Dj(π

I
j − πIi ) δuIti ∧ dti ∧ dtj

+ Di(π
I
j − πIi ) δuItj ∧ dti ∧ dtj + DiDj(π

I
j − πIi ) δuI ∧ dti ∧ dtj

)]
.
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6.5. Multi-time Euler-Lagrange equations

Using Equation (6.17) and the anti-symmetry, we can write this as

δL =

N∑

i,j=1

[∑

I 63tj

(
pIj δuIti ∧ dti ∧ dtj + Dip

I
j δuI ∧ dti ∧ dtj

)

+
∑

I

(
πIj δuItitj ∧ dti ∧ dtj + Djπ

I
j δuIti ∧ dti ∧ dtj

+ Diπ
I
j δuItj ∧ dti ∧ dtj + DiDjπ

I
j δuI ∧ dti ∧ dtj

)]

=

N∑

j=1

[∑

I 63tj
−d
(
pIj δuI ∧ dtj

)
+
∑

I

−d
(
πIj δuItj ∧ dtj + Djπ

I
j δuI ∧ dtj

)
]
.

The claim now follows by Proposition 6.3.

Example 6.8. A pluri-Lagrangian 2-form for the potential KdV hierarchy was first given
in [82] and an equivalent form will be derived in Chapter 8. Restricting the latter form
to a minimal example we have

L13 = −2u3
1 − u1u111 + u1u3,

L15 = −5u4
1 + 10u1u

2
11 − u2

111 + u1u5,

which are the classical Lagrangians of the potential KdV hierarchy. However, their
classical Euler-Lagrange equations give the hierarchy only in a differentiated form,

u13 = 6u1u11 + u1111,

u15 = 30u2
1u11 + 20u11u111 + 10u1u1111 + u111111,

The pluri-Lagrangian 2-form also contains a coefficient L35, which does not have a clas-
sical interpretation. (Skip ahead to Table 8.14 for an expression for L35.) However, it
contributes meaningfully in the pluri-Lagrangian formalism. In particular, the multi-time
Euler-Lagrange equations

δ13L13

δu1
+
δ35L35

δu5
= 0 and

δ15L15

δu1
− δ35L35

δu3
= 0

yield the KdV equations in their evolutionary form,

u3 = 3u2
1 + u111,

u5 = 10u3
1 + 5u2

11 + 10u1u111 + u11111.

All other multi-time Euler-Lagrange equations are consequences of the hierarchy in this
evolutionary form.
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6. Pluri-Lagrangian systems

6.5.3. d-forms

To state the multi-time Euler-Lagrange equations for general d, we introduce some com-
binatorical notations. Consider the set

Cn,m = {σ : Zm → Zn | σ(1) < . . . < σ(m)}

of combinations of m elements from {1, 2, . . . , n}. We will also need nested combinations,
where we first choose m elements from n and then ` from those m:

Cn,m,` = {σ : Zm → Zn | σ(1) < . . . < σ(`) and σ(`+ 1) < . . . < σ(m)}.

Consider the pluri-Lagrangian d-form

L =
∑

i1<...<id

Li1...id [u] dti1 ∧ . . . ∧ dtid ,

depending on an arbitrary number of derivatives of u. A multi-time Euler-Lagrange
equation involves d + 1 indices, i1 . . . id+1, and ` ≤ d + 1 terms, which each contain
exactly d of the indices,

i1, . . . ik−1, îk, ik+1, . . . , id+1 for k ≤ `,

where the hat denotes the missing index. We will use the following abbreviated notation
for the relevant variational derivatives:

δ
i1...id
Ij1...jk

=
δi1...idLi1...id
δuItj1 ...tjk

.

Theorem 6.9. For all ` ∈ {1, . . . d+ 1} and for all σ ∈ CN,d+1,` consider the equations

∑̀

k=1

(−1)kδ
σ(1)...σ̂(k)...σ(d+1)

Iσ(1)...σ̂(k)...σ(`)
= 0 ∀I 63 tσ(`+1), . . . , tσ(d+1). (6.20)

All together, these equations are sufficient for criticality in the pluri-Lagrangian sense.

Before we proceed with the proof, a few comments are in order.

• To state one of the multi-time Euler-Lagrange equations (6.20), first fix the number
of terms ` ≤ d + 1, then choose d + 1 indices that will occur in the equation, and
finally pick ` of those that will be absent in one of the terms. This choice is
represented by σ ∈ CN,d+1,`.

• The condition on I can be memorized as follows: if an index is present both in
I and in the coefficients of the Lagrangian, then it must be one of the indices
σ(1), . . . , σ(`) that do not occur in every term.
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6.5. Multi-time Euler-Lagrange equations

• If ` = 1 we have only one term and the index σ(1) is absent. This yields an
Euler-Lagrange equation of classical type,

δ
σ(2)...σ(d+1)
I =

δLσ(2)...σ(d+1)

δuI
= 0, ∀I 63 tσ(2), . . . , tσ(d+1).

• Conjecturally, Equations (6.20) are also necessary for criticality. In any case they
are a natural generalization of the multi-time Euler-Lagrange equations for d = 1
and d = 2.

Proof of Theorem 6.9. First observe that partial derivatives can be represented as sums
of variational derivatives:

∂Li1...id
∂uI

=

1∑

ε1,...,εd=0

Dε1
i1
. . .Dεd

id δ
i1...id
Ii
ε1
1 ...i

εd
d

,

where the index iε is ignored if ε = 0 (and of course equal to i if ε = 1). Alternatively,
we can write this as

∂Li1...id
∂uI

=
d∑

`=0

∑

σ∈Cd,`
Diσ(1) . . .Diσ(`) δ

i1...id
Iiσ(1)...iσ(`)

.

It follows that the vertical derivative of the Lagrangian d-form can be written as

δL =
∑

σ∈CN,d

∑

I

∂Lσ(1)...σ(d)

∂uI
δuI ∧ dtσ(1) ∧ . . . ∧ dtσ(d)

=

d∑

`=0

∑

σ∈CN,d,`

∑

I

(
Dσ(1) . . .Dσ(`) δ

σ(1)...σ(d)
Iσ(1)...σ(`)

)
δuI ∧ dtσ(1) ∧ . . . ∧ dtσ(d). (6.21)

We claim that this is equivalent to

δL =
d∑

`=0

∑

σ∈CN,d,`

∑

I 63tσ(`+1),...,tσ(d)

Dσ(1) . . .Dσ(`)

(
δ
σ(1)...σ(d)
Iσ(1)...σ(`) δuI

)
∧ dtσ(1) ∧ . . . ∧ dtσ(d).

(6.22)
To see the equivalence of Equations (6.21) and (6.22), observe that the expansion using
the Leibniz rule of Dσ(1) . . .Dσ(`)

(
δ
σ(1)...σ(d)
Iσ(1)...σ(`) δuI

)
in Equation (6.22) yields terms from

Equation (6.21), that none of those terms occur more than once in Equation (6.22), and
that all of the terms in Equation (6.21) occur in the expansion of Equation (6.22).

Consider the special case of Equation (6.20), where σ(1) = 1, with ` replaced by `+ 1:

−δσ(2)...σ(d+1)
Iσ(2)...σ(`+1) +

`+1∑

k=2

(−1)kδ
1σ(2)...σ̂(k)...σ(d+1)

I1σ(2)...σ̂(k)...σ(`+1)
= 0.
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After relabeling, it follows that

δ
σ(1)...σ(d)
Iσ(1)...σ(`) =

∑̀

k=1

(−1)k+1δ
1σ(1)...σ̂(k)...σ(d)

I1σ(1)...σ̂(k)...σ(`)
, (6.23)

where σ ∈ CN,d,` and 1 6∈ {σ(1), . . . , σ(d)}. However, if 1 ∈ {σ(1), . . . , σ(d)} in Equation
(6.23), only the term where σ(k) = 1 will be nonzero in the right hand side and the
identity holds trivially.

By virtue of equation (6.23), Equation (6.22) is equivalent to

δL = −
d∑

`=0

∑

σ∈CN,d,`

∑

I 63tσ(`+1),...,tσ(d)

Dσ(1) . . .Dσ(`)

(∑̀

k=1

(−1)k+1δ
1σ(1)...σ̂(k)...σ(d)

I1σ(1)...σ̂(k)...σ(`)
δuI

)
∧ dtσ(1) ∧ . . . ∧ dtσ(d).

In each term there is now a special index j = σ(k), which occurs in the sequence of
derivatives Dσ(1) . . .Dσ(`), but not in the string of indices σ(1) . . . σ(d). We rearrange the
sum to highlight the role of this index,

δL =
d∑

`=0

∑

σ∈CN,d−1,`−1

∑

I 63tσ(`),...,tσ(d−1)

N∑

j=1

−DjDσ(1) . . .Dσ(`−1)

(
δ

1σ(1)...σ(d−1)
I1σ(1)...σ(`−1) δuI

)
∧ dtj ∧ dtσ(1) ∧ . . . ∧ dtσ(d).

There is no need to specify in this sum that j 6∈ {σ(1), . . . , σ(d)}, because terms that
violate this condition vanish due to the skew-symmetry of the wedge product. We now
recognize that δL is a horizontal exterior derivative,

δL =
d∑

`=0

∑

σ∈CN,d−1,`−1

∑

I 63tσ(`),...,tσ(d)

d
(

Dσ(1) . . .Dσ(`−1)

(
δ

1σ(1)...σ(d−1)
I1σ(1)...σ(`−1) δuI

)
∧ dtσ(1) ∧ . . . ∧ dtσ(d)

)
,

hence Proposition 6.3 implies that the pluri-Lagrangian principle is satisfied.
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7. Continuum limits of pluri-Lagrangian
systems

This chapter is an adaptation of [89]

7.1. Miwa variables

To motivate our approach to the continuum limit, we start by considering the opposite
direction1. The problem of integrable discretization has been studied at impressive length
in the monograph [79]. Let us briefly summarize the “recipe” for discretizing Toda-type
systems from Section 2.9 of that work. It starts from an integrable ODE with a Lax
representation of the form

Lt = [L, π+(f(L))] (7.1)

in a Lie algebra g = g+ ⊕ g−, where π+ denotes projection onto g+ and f : g → g is
an Ad-covariant function. Here L denotes the Lax operator, not to be confused with a
Lagrangian. Such an equation is part of an integrable hierarchy, given by

Ltk =
[
L, π+(f(L)k)

]
. (7.2)

A related integrable difference equation can be formulated in the corresponding Lie group
G, with subgroups G+ and G− having Lie algebras g+ and g− respectively. Any element
x ∈ G close to the unit Id ∈ G can be factorized as x = Π+(x)Π−(x), where Π±(x) ∈ G±.
The difference equation is given by

L̃ = Π+(F (L))−1 LΠ+(F (L)), (7.3)

where the tilde ·̃ denotes a discrete time step and F : g→ G approximates L 7→ exp(λL)
for some small parameter λ. In particular, if G is a matrix group we can set

F (L) = Id + λf(L).

1This motivation was suggested by Yuri Suris.
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Solutions of the differential equation (7.1) are given by

L(t) = Π+

(
etf(L0)

)−1
L0 Π+

(
etf(L0)

)
.

A simultaneous solution to the whole hierarchy (7.2) takes the form

L(t1, t2, . . .) = Π+

(
et1f(L0)+t2f(L0)2+...

)−1
L0 Π+

(
et1f(L0)+t2f(L0)2+...

)
. (7.4)

A solution of the discretization (7.3) is given by

L(n) = Π+(Fn(L0))−1 L0 Π+(Fn(L0))

= Π+

(
en log(1+λf(L0))

)−1
L0 Π+

(
en log(1+λf(L0))

)

= Π+

(
enλf(L0)−n

2
λ2f(L0)2+...

)−1
L0 Π+

(
enλf(L0)−n

2
λ2f(L0)2+...

)
. (7.5)

Comparing equations (7.4) and (7.5), it is natural to identify a discrete step n 7→ n + 1
with the continuous time shift

(t1, t2, . . . , ti, . . .) 7→
(
t1 + λ, t2 −

λ2

2
, . . . , ti + (−1)i+1λ

i

i
, . . .

)
.

This gives us a map from the discrete space ZN (n1, . . . , nN ) into the continuous multi-
time RN (t1, . . . , tN ): we associate a parameter λi to each lattice direction and set

ti = (−1)i+1

(
n1
λi1
i

+ . . .+ nN
λiN
i

)
.

Note that a single step in the lattice (changing one nj) affects all the times ti, hence we
are dealing with a very skew embedding of the lattice. We will also consider a slightly
more general correspondence,

ti = (−1)i+1

(
n1
cλi1
i

+ . . .+ nN
cλiN
i

)
+ τi, (7.6)

where constants c, τ1, . . . , τN describe a scaling and a shift of the lattice. The variables
nj and λj are known in the literature as Miwa variables and have their origin in [55]. In
the context of continuum limits we call the λj lattice parameters.

We call Equation (7.6) the Miwa correspondence. Let λ = (λ1, . . . , λN ) and consider
the N ×N matrix

Mλ =

(
(−1)i+1

λij
i

)N

i,j=1

.
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7.1. Miwa variables

Then we can write the Miwa correspondence as

t = cMλn + τ ,

where t = (t1, . . . , tN )T , n = (n1, . . . , nN )T , and τ = (τ1, . . . , τN )T . In other words, we
consider the mesh ZN under the affine transformation

Ac,λ,τ : RN → RN : t 7→ cMλt + τ . (7.7)

We will use the Miwa correspondence (7.6) even if the discrete system is not generated
by the recipe described above. In many cases one can justify this in a similar way by
considering plane wave factors, which are solutions of the linearized system. For more
on this perspective, see e.g. [60, 64, 94] and [38, Chapter 5]. For a completely different
motivation for Miwa variables, note that for N distinct parameter values λ1, . . . , λN the
corresponding vectors

ν(λ) =

(
cλ,−cλ

2

2
, . . . , (−1)N+1 cλ

N

N

)

are linearly independent. Up to projective transformations, ν is the only curve with that
property. It is known as the rational normal curve [36].

To perform the continuum limit of a difference equation involving U : ZN → C, we
associate to it a function u : RN → C that interpolates it:

U(n) = u(Ac,λ,τ (n)) ∀n ∈ ZN .

We denote the shift of U in the i-th lattice direction by Ui. If U(n) = u(t1, . . . , tN ), it is
given by

Ui = U(n + ei) = u

(
t1 + cλi, t2 −

cλ2
i

2
, . . . , tn − (−1)N

cλNi
N

)
,

which we can expand as a power series in λi. The difference equation thus turns into
a power series in the lattice parameters. If all goes well, its coefficients will define
differential equations that form an integrable hierarchy.

Note that such a procedure is strictly speaking not a continuum limit ; sending λi → 0
would only leave the leading order term of the power series. A more precise formulation
is that the continuous u interpolates the discrete U (with a defect of sufficiently high
order in λi), where U is defined on a mesh that is embedded in RN using the Miwa
correspondence. Since λi is assumed to be small, it makes sense to think of the outcome
as a limit, but it is essential that higher order terms are not disregarded.
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7. Continuum limits of pluri-Lagrangian systems

7.2. Continuum limits of Lagrangian forms

7.2.1. Modified Lagrangians in the classical variational problem

In Chapter 2 we performed a continuum limit on Lagrangian systems in the context
of variational integrators for ODEs. Given a discrete Lagrangian, we constructed a
continuous modified Lagrangian whose critical curves interpolate solutions of the discrete
problem. A similar approach can be used in the context of pluri-Lagrangian systems, but
first we present the relevant ideas in the context of the classical variational formulation
of a partial difference equation. Here we use a fixed lattice Zd ⊂ Rd. In Section 7.2.2
we will introduce parameters in the Lagrangian, transform the lattice according to the
corresponding Miwa embedding, and consider the pluri-Lagrangian problem.

In the classical discrete variational principle we consider elementary plaquettes of full
dimension, so it is sufficient to label them only by position, �(n), leaving out the sub-
scripts denoting the direction. We consider Lagrangians Ldisc(U(�(n))) depending on
the values of the field U : Zd → C on a plaquette �(n).

We identify points of a discrete solution with evaluations of an interpolating field
u : Rd → C, where we use a mesh size of 1 in all directions, i.e. U(n) = u(n) for
n ∈ Zd. Using a Taylor expansion we can write the discrete Lagrangian Ldisc(U(�(n)))
as a function of the interpolating field u and its derivatives,

Ldisc[u]
∣∣∣
t

= Ldisc

({
u(t + ε1e1 + . . .+ εded)

∣∣∣ ε1, . . . , εd ∈ {0, 1}
})

= Ldisc

({
u+

d∑

k=1

εkutk +
1

2

d∑

k=1

d∑

`=1

εkε`utkt` + . . .

∣∣∣∣ ε1, . . . , εd ∈ {0, 1}
})∣∣∣∣∣

t

,

where the square brackets denote dependence on u and any number of its partial deriva-
tives, e1, . . . , eN are the unit vectors in the lattice ZN , and |t indicates that all fields in
the expression are evaluated at times t = (t1, . . . , td).

So far we have only written the discrete Lagrangian as a function of the continuous
field. The corresponding action is still a sum:

S =
∑

n∈Zd
Ldisc(U(�(n))) =

∑

n∈Zd
Ldisc[u(n)].

We want to write the action as an integral. This can be done using the Euler-Maclaurin
formula [1, Sec. 23.1] (compare to Lemma 2.3),

m−1∑

k=0

F (a+ k) =

∫ a+m

a
F (t) dt+

∞∑

i=1

Bi
i!

(
F (i−1)(a+m)− F (i−1)(a)

)

=

∫ a+m

a

( ∞∑

i=0

Bi
i!
F (i)(t)

)
dt,
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7.2. Continuum limits of Lagrangian forms

where Bi denote the Bernoulli numbers 1,−1
2 ,

1
6 , 0,− 1

30 , 0, · · ·. This idea of turning sums
into integrals was dubbed anti-Taylor expansion in [97]. Applying this to Ldisc in each
of the lattice directions, we obtain the meshed modified Lagrangian

Lmesh[u] =
∞∑

i1,...,id=0

Bi1 . . . Bid
i1! . . . id!

Di1
t1
. . .Did

td
Ldisc[u].

The series in the Euler-Maclaurin Formula generally does not converge. The same is true
for the series defining Lmesh. Formally, it satisfies

S =

∫

Rd
Lmesh[u(t)] dt1 ∧ . . . ∧ dtd.

This property also holds locally,

Ldisc(U(�(n))) =

∫

�(n)
Lmesh[u(t)] dt1 ∧ . . . ∧ dtd. (7.8)

Due to the absence of lattice parameters, it is not straightforward to use truncation and
the notion of k-criticality to avoid convergence issues, as we did in Chapter 2. However,
once we switch from the straight lattice to a Miwa embedding, this strategy will be
available again.

The word meshed refers to the fact that the discrete system provides additional struc-
ture for the continuous variational problem. In the meshed variational problem, non-
differentiable fields are admissible as long as their singular points are consistent with
the mesh, i.e. if they only occur on the boundaries of mesh cells. This imposes addi-
tional conditions on critical curves. In Chapter 2 these conditions were used to turn the
meshed modified Lagrangian into a true modified Lagrangian which does not depend on
higher derivatives. In the present context these conditions are less important, because we
will find that the pluri-Lagrangian structure provides us with simpler tools to eliminate
unwanted derivatives.

7.2.2. From discrete to continuous pluri-Lagrangian structures

In the pluri-Lagrangian context we consider a discrete Lagrangian d-form in a higher
dimensional lattice ZN , N > d. The Lagrangian depends on lattice parameters, which
are interpreted as Miwa variables. Consider N pairwise distinct lattice parameters λ =
(λ1, . . . , λN ) and denote by e1, . . . , eN the unit vectors in the lattice ZN . The (differential
of) the Miwa correspondence (7.6) maps them to linearly independent vectors in RN :

ei 7→ vi = cMλei =

(
cλi,−

cλ2
i

2
, . . . , (−1)N+1 cλ

N
i

N

)T
.
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◦
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◦
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◦

U : ZN → C ũ = u ◦Ac,λ,τ : RN → C u : RN → C

L(U(�(n))) = · · · = Ldisc[u]
∣∣∣
Ac,λ,τ (n)

∑
L(U(�)) =

∫

Γ
Lmesh[ũ] dti1 ∧ . . . ∧ dtid =

∫

Ac,λ,τ (Γ)
LMiwa[u] ηi1 ∧ . . . ∧ ηid

Figure 7.1. Visualisation of the lattice, the straight embedding from Section 7.2.1, and
the skew embedding by the Miwa correspondence.

We calculate the modified Lagrangian in the transformed coordinate system. We have

Ldisc([u], λ1, . . . , λd)
∣∣∣
t

= Ldisc

({
u(t + ε1v1 + . . .+ εdvd)

∣∣∣ ε1, . . . , εd ∈ {0, 1}
}
, λ1, . . . , λd

)

= Ldisc

({
u+

d∑

k=1

εk∂ku+
1

2

d∑

k=1

d∑

`=1

εkε`∂k∂`u+ . . .

∣∣∣∣ εi ∈ {0, 1}
}
, λ1, . . . , λd

)∣∣∣∣∣
t

,

where now the differential operators correspond to the lattice directions under the Miwa
correspondence,

∂k =

N∑

j=1

(−1)j+1 cλ
j
k

j
Dtj .

Interpreted as vector fields, we can identify ∂k = vk and Dtk = ek, the former being the
pushforward by Ac,λ,τ of the latter.

The meshed modified Lagrangian in Miwa coordinates is given by

LMiwa([u], λ1, . . . , λd)
∣∣∣
t

= Lmesh([ũ], λ1, . . . , λd)
∣∣∣
A−1
c,λ,τ (t)

=
∞∑

i1,...,id=0

Bi1 . . . Bid
i1! . . . id!

∂i11 . . . ∂idd Ldisc([u], λ1, . . . , λd)
∣∣∣
t
.

The relation between U , ũ and u is illustrated in Figure 7.1. Note that, although
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7.2. Continuum limits of Lagrangian forms

ũ|A−1
c,λ,τ (t) = u|t, no such equality holds for derivatives, hence

[ũ]
∣∣∣
A−1
c,λ,τ (t)

6= [u]
∣∣∣
t
.

Due to the λ-dependence of the operators ∂1, . . . , ∂N , we can again use truncation of the
power series in λ to obtain analytically meaningful results. However, it is convenient to
keep working with formal series for the time being.

Lemma 7.1. Consider a filled-in plaquette of the embedded lattice, Ac,λ,τ (�i1,...,id(n)),
and let ηk be the 1-forms dual to the Miwa shifts,

ηk = (A−1
c,λ,τ )∗dtk,

where ∗ denotes the pullback. Then LMiwa formally satisfies
∫

Ac,λ,τ (�i1,...,id (n))
LMiwa([u], λi1 , . . . , λid)ηi1∧. . .∧ηid = Ldisc(U(�i1,...,id(n)), λi1 , . . . , λid).

Proof. In Equation (7.8) we have the corresponding result for Lmesh, so the proof is a
simple change of variables. With ũ = u ◦Ac,λ,τ , we have

∫

Ac,λ,τ (�i1,...,id (n))
LMiwa([u], λi1 , . . . , λid)

∣∣∣
t
ηi1 ∧ . . . ∧ ηid

=

∫

Ac,λ,τ (�i1,...,id (n))
Lmesh([ũ], λi1 , . . . , λid)

∣∣∣
A−1
c,λ,τ (t)

(A−1
c,λ,τ )∗(dti1 ∧ . . . ∧ dtid)

=

∫

�i1,...,id (n)
Lmesh([ũ], λi1 , . . . , λid)

∣∣∣
t

dti1 ∧ . . . ∧ dtid

= Ldisc(U(�i1,...,id(n)), λi1 , . . . , λid).

We want to use this result for plaquettes in arbitrary directions. This suggests the
Lagrangian d-form

∑

1≤i1<...<id≤N
LMiwa([u], λi1 , . . . , λid) ηi1 ∧ . . . ∧ ηid .

Up to a truncation error, this d-form can be written in a much more convenient way. Let
TN denote truncation of a power series after degree N in each variable,

TN
( ∞∑

i1,...,id=1

λi11 . . . λ
id
d fi1,...,id

)
=

N∑

i1,...,id=1

λi11 . . . λ
id
d fi1,...,id .
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7. Continuum limits of pluri-Lagrangian systems

Lemma 7.2. Assume that every term in the power series LMiwa is of strictly positive
degree in each λi,

LMiwa([u], λ1, . . . , λd) =
∞∑

i1,...,id=1

(−1)i1+...+idcd
λi11
i1

. . .
λidd
id
Li1,...,id [u], (7.9)

then

∑

1≤j1<...
<jd≤N

TN(LMiwa([u], λj1 , . . . , λjd)) ηj1 ∧ . . . ∧ ηjd =
∑

1≤i1<...
<id≤N

Li1,...,id [u] dti1 ∧ . . . ∧ dtid .

Note in Equation (7.9) that the factors (−1)i1+...+idcd
λ
i1
1
i1
. . .

λ
id
d
id

are terms of (d × d)-
minors of the transformation matrix cMλ.

Proof of Lemma 7.2. First observe that, just like the original discrete Lagrangian, the La-
grangian LMiwa([u], λi1 , . . . , λid) is skew-symmetric as a function of (λi1 , . . . , λid). There-
fore, the coefficients Li1,...,id [u] are skew-symmetric as a function of (i1, . . . , id).

We pair the form

L =
∑

1≤i1<...<id≤N
Li1,...,id [u] dti1 ∧ . . . ∧ dtid

=
1

d!

N∑

i1,...,id=1

Li1,...,id [u] dti1 ∧ . . . ∧ dtid

with a d-tuple of vectors (vj1 , . . . , vjd) = (cMλej1 , . . . , cMλejd):

〈L, (vj1 , . . . , vjd) 〉 =
1

d!

N∑

i1,...,id=1


Li1,...,id [u]

∑

σ∈Sd

(
sgn(σ)

d∏

k=1

〈
dtiσ(k) , vjk

〉)

 .

Due to the skew-symmetry of Li1,...,id [u], this can be written as

〈L, (vj1 , . . . , vjd) 〉 =
1

d!

N∑

i1,...,id=1

∑

σ∈Sd

(
Liσ(1),...,iσ(d) [u]

d∏

k=1

〈
dtiσ(k) , vjk

〉)
.

Since the first sum is over all d-tuples (i1, . . . , id) with strictly positive integer entries,
permuting (i1, . . . , id) yields a different term of this sum. Hence the additional summation
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7.2. Continuum limits of Lagrangian forms

over permutations σ ∈ Sd amounts to multiplication by d!. We find

〈L, (vj1 , . . . , vjd) 〉 =
N∑

i1,...,id=1

Li1,...,id [u]
d∏

k=1

〈dtik , vjk〉

=
N∑

i1,...,id=1

Li1,...,id [u]
d∏

k=1

(−1)ikc
λikjk
ik

= TN(LMiwa([u], λj1 , . . . , λjd)).

In contrast to Chapter 2, the discrete Lagrangian is not a consistent numerical dis-
cretization of some continuous function. Indeed, its leading terms are of the order
λj1λ

2
j2
. . . λdjd . Therefore we need a slightly different definition of k-criticality. Instead of

requiring consistency, we now state the order condition relative to the magnitude of the
action

Definition 7.3. Let Γ be a finite discrete surface in ZN . A discrete field U : ZN 7→ C is
k-critical for the action

S =
∑

�i1,...,id (n)∈Γ

L(U(�i1,...,id(n)), λi1 , . . . , λid).

if for any n ∈ ZN there holds
∂S

∂U(n)
= O((λk+1

1 + . . .+ λk+1
N )|S|).

On the continuous side we do not need to rephrase the definition of k-criticality. In
fact we will not need any notion of k-criticality on the continuous side, because we do not
want the lattice parameters to survive in the continuum limit. And if u does not depend
on the λj , then being k-critical for any nonnegative k implies being exactly critical.

Now that we have updated our understanding of k-criticality, we are finally ready
to prove that a pluri-Lagrangian d-form can be constructed from the coefficients of the
power series LMiwa.

Theorem 7.4. Let Ldisc be a discrete Lagrangian d-form, such that every term in the
corresponding power series LMiwa is of strictly positive degree in each λi, i.e. such that
LMiwa is of the form (7.9). Consider the differential d-form

L[u] =
∑

1≤i1<...<id≤N
Li1,...,id [u] dti1 ∧ . . . ∧ dtid ,

built out of the coefficients of LMiwa. Then a field u : RN → C is a solution to the
continuous pluri-Lagrangian problem for L[u] if and only if the corresponding discrete
fields

Uτ : ZN → C : n 7→ u(Ac,λ,τ (n)), τ ∈ RN ,
are N -critical for the discrete pluri-Lagrangian problem for Ldisc.
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7. Continuum limits of pluri-Lagrangian systems

Proof. Consider a bounded d-surface Γ in RN that does not depend on λ. We can
approximate it by an image of a discrete surface Γ under the Miwa embedding, with an
error of order O(λ1 + . . .+ λN ),

∫

Γ
L[u] =

∫

Ac,λ,τ (Γ)
L[u] +O(λ1 + . . .+ λN ). (7.10)

This idea of approximating any given surface by a stepped surface was used in [82] to
derive the multi-time Euler-Lagrange equations.

We have∫

Ac,λ,τ (Γ)
L[u] =

∑

�i1,...,id (n)∈Γ

Ldisc(Uτ (�i1,...,id(n)), λi1 , . . . , λid)+O(λN+1
1 + . . .+λN+1

N ),

(7.11)
hence if the continuous field u is critical, then the discrete field Uτ is N -critical.

From Equations (7.10) and (7.11) it follows that
∫

Γ
L[u] = Ldisc(Uτ (�i1,...,id(n)), λi1 , . . . , λid) +O(λ1 + . . .+ λN ).

Now assume that the discrete field is 0-critical. Then for any λ-independent variation of
u that is zero near the boundary of Γ, we have that

δ

∫

Γ
L[u] = O(λ1 + . . .+ λN ).

Since the left hand side is independent of λ, it must be exactly zero. Hence u is a critical
field.

Note that we did not just prove that discrete N -criticality is equivalent to continuous
criticality, but also that discrete 0-criticality implies continuous criticality. Hence if a
discrete field, obtained from a λ-independent continuous field u by the relation Uτ (n) =
u(Ac,λ,τ (n)), is just 0-critical, then it is automatically N -critical. Of course this does
not hold for arbitrary discrete fields.

7.2.3. Eliminating alien derivatives

Unlike in the classical Lagrangian framework, Euler-Lagrange equations in the pluri-
Lagrangian context are often evolutionary, i.e. of the form

utk = fk[u] for k ∈ {d, d+ 1, . . . , N}
for a pluri-Lagrangian d-form in RN , where the fk only depend on derivatives with respect
to t1, . . . , td−1. If this is the case, then the differential consequences of the multi-time
Euler-Lagrange equations can be written in a similar form,

uI = fI [u] with I 3 tk for some k ∈ {d, d+ 1, . . . , N}, (7.12)
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where the I in fI is a label, not a partial derivative. In this context it is natural to
consider the first d−1 coordinates t1, . . . , td−1 as space coordinates and the others as time
coordinates. If the multi-time Euler-Lagrange equations are not evolutionary, Equation
(7.12) still holds for a slightly smaller set of multi-indices I.

Definition 7.5. A mixed partial derivative uI is called {i1, . . . , id}-native if each indi-
vidual derivative is taken with respect to one of the ti1 , . . . , tid or with respect to one of
the space coordinates t1, . . . , td−1, i.e. if

tk ∈ I ⇒ k ∈ {1, . . . , d− 1, i1, . . . , id}.

If uI is not {i1, . . . , id}-native, i.e. if there is a k 6∈ {1, . . . , d − 1, i1, . . . , id} such that
tk ∈ I, then we say uI is {i1, . . . , id}-alien.

If it is clear what the relevant indices are, for example when discussing a coefficient
Li1,...,id , we will use native and alien without mentioning the indices.

We would like the coefficient Li1,...,id to contain only native derivatives. A naive ap-
proach would be to use the multi-time Euler-Lagrange equations (7.12) to eliminate alien
derivatives. Let Ri1,...,id denote the operator that replaces all {i1, . . . , id}-alien derivatives
for which the multi-time Euler-Lagrange equations provide an expression. We denote the
native version of the pluri-Lagrangian coefficients by

Li1,...,id = Ri1,...,id(Li1,...,id)

and the d-form with these coefficients by L. A priori there is no reason to believe that
the d-form L will be equivalent to the original pluri-Lagrangian d-form L. For example,
the 1-dimensional Lagrangian L(u, ut, utt) = 1

2uutt leads to the Euler-Lagrange equation
utt = 0, but any curve is critical for the Lagrangian L(u, ut, utt) = 0. However, in many
cases the pluri-Lagrangian structure guarantees that L and L have the same critical
fields.

Theorem 7.6. Assume that Ri1,...,id commutes with the operators Dti1
, . . . ,Dtid

. If either

• d = 1 and L1[u] does not depend on any alien derivatives, or

• d = 2 and for all j the coefficient L1j [u] does not contain any alien derivatives,

then every critical field u for the pluri-Lagrangian d-form L is also critical for L.

In particular, the commutativity condition holds if the equations in the hierarchy
are evolutionary, or more generally, if none of their left hand sides are a mixed partial
derivative. The condition for d = 2 might seem restrictive, but given a Lagrangian 2-form,
we can often find an equivalent one with coefficients L1j [u] that satisfy this condition by
inspection.
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7. Continuum limits of pluri-Lagrangian systems

Proof of Theorem 7.6. In this proof we consider the variation operator δ as the vertical
exterior derivative in the variational bicomplex, see Section 6.4.

First we consider the case d = 1. Let

Fi,J [u] = Ri(uJ),

i.e. Fi,J is obtained from uj by eliminating as many alien derivatives as possible. Note
that Dti and Ri commute, hence DtiFi,J = Fi,Jti . We have

δL =
∑

1≤i≤N

∑

J

Ri

(
∂Li
∂uJ

)
δFi,J ∧ dti

=
∑

1≤i≤N

∑

J

Ri

(
δiLi
δuJ

+ Dti

δiLi
δuJti

)
δFi,J ∧ dti

=
∑

1≤i≤N


∑

J 63ti
Ri

(
δiLi
δuJ

)
δFi,J +

∑

J

Dti

(
Ri

(
δiLi
δuJti

)
δFi,J

)
 ∧ dti.

Hence on solutions of the pluri-Lagrangian problem for L there holds that

δL =
∑

1≤i≤N

(
Dti

∑

J

δ1L1

δuJt1
δFi,J

)
∧ dti.

Using the assumption that no alien derivatives occur in L1, we can simplify this to

δL =
∑

1≤i≤N
Dti

( ∞∑

α=0

∂L1

∂utα+1
1

δutα1

)
∧ dti = d

(
−
∞∑

α=0

∂L1

∂utα+1
1

δutα1

)
.

By Proposition 6.3, the fact that δL is exact with respect to d implies that u is a solution
to the pluri-Lagrangian problem for L.

Now we consider the case d = 2. Let Fij,J = Rij(uJ), then

δL =
∑

1≤i<j≤N

∑

J

Rij

(
∂Lij
∂uJ

)
δFij,J ∧ dti ∧ dtj

=
∑

1≤i<j≤N

∑

J

Rij

(
δijLij
δuJ

+ Dti

δijLij
δuJti

+ Dtj

δijLij
δuJtj

+ DtiDtj

δijLij
δuJtitj

)
δFij,J ∧ dti ∧ dtj

=
∑

1≤i<j≤N

( ∑

J 63ti,tj
Rij

(
δijLij
δuJ

)
δFij,J +

∑

J 63tj
Dti

(
Rij

(
δijLij
δuJti

)
δFij,J

)

+
∑

J 63ti
Dtj

(
Rij

(
δijLij
δuJtj

)
δFij,J

)
+
∑

J

DtiDtj

(
Rij

(
δijLij
δuJtitj

)
δFij,J

))
∧ dti ∧ dtj .
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On solutions of the pluri-Lagrangian problem for L there holds that

δL =
∑

1≤i<j≤N

(∑

J 63tj
Dti

(
δ1jL1j

δuJt1
δFij,J

)
−
∑

J 63ti
Dtj

(
δ1iL1i

δuJt1
δFij,J

)

+
∑

J

DtiDtj

((
δ1jL1j

δuJt1tj
− δ1jL1i

δuJt1ti

)
δFij,J

))
∧ dti ∧ dtj .

Since the L1j do not contain any alien derivatives, only terms where J is {i, j}-native
can be nonzero, so in all nonvanishing terms we find Fij,J = uJ . Therefore,

δL =
∑

1≤i<j≤N


Dti

(∑

J 63tj

δ1jL1j

δuJt1
δuJ +

∑

J

Dtj

(
δ1jL1j

δuJt1tj
δuJ

))

−Dtj

(∑

J 63ti

δ1iL1i

δuJt1
δuJ +

∑

J

Dtj

(
δ1iL1i

δuJt1ti
δuJ

))
 ∧ dti ∧ dtj

= d


 ∑

1≤j≤N


∑

J 63tj

δ1jL1j

δuJt1
δuJ +

∑

J

Dtj

(
δ1jL1j

δuJt1tj
δuJ

)
 ∧ dtj


 .

Hence u is a solution to the pluri-Lagrangian problem for L.

7.3. Example: the Toda lattice

We begin our list of examples with the 1-form case and discuss the continuum limit of
the discrete Toda lattice. The Toda lattice [84, 85] consists of a number of particles on
a line with an exponential nearest-neighbor force. We denote the displacement of the
particles from their equilibrium positions by

q(t) =
(
q[0](t), q[1](t), . . . , q[N ](t)

)
.

Their motion is described by the equation

d2q[k]

dt2
= exp

(
q[k+1] − q[k]

)
− exp

(
q[k] − q[k−1]

)
.

There are two common conventions regarding boundary conditions: periodic (formally
q[N+1] ≡ q[1]) and open-end (formally q[0] ≡ +∞ and q[N+1] ≡ −∞). An integrable
discretization of the Toda lattice is given by (see e.g. [79, Chapter 5])

1

λi

(
exp
(
Q[k]

i −Q[k]
)
− exp

(
Q[k] −Q[k]

−i
))

+ λi
(
exp
(
Q[k] −Q[k−1]

i

)
− exp

(
Q[k+1]

−i −Q[k]
))

= 0,

(7.13)
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7. Continuum limits of pluri-Lagrangian systems

where the subscripts i and −i denote forward and backward shifts respectively and λi is
a lattice parameter.

The second order difference equation (7.13) can be written as a first order difference
equation in a position-momentum formulation. Hence it defines a map from the phase
space to itself. Two such maps for different paramters λi and λj commute, hence Equation
(7.13) can be called a multidimensionally consistent equation.

We use the Miwa correspondence (7.6) with c = 1 to identify discrete steps with
continuous time shifts

Q[k] = q[k](t1, t2, t3, . . .),

Q[k]

i = q[k]
(
t1 + λi, t2 −

λ2
i

2
, t3 +

λ3
i

3
, . . .

)
,

Q[k]

−i = q[k]
(
t1 − λi, t2 +

λ2
i

2
, t3 −

λ3
i

3
, . . .

)
.

We plug these identifications into Equation (7.13) and perform a Taylor expansion in λi:
(
− exp

(
q[k+1] − q[k]

)
+ exp

(
q[k] − q[k−1]

)
+ q[k]11

)
λi

+
(
exp
(
q[k+1] − q[k]

)
q[k+1]

1 − exp
(
q[k] − q[k−1]

)
q[k−1]

1 + q[k]1 q
[k]

11 − q[k]12

)
λ2
i = O(λ3

i ),

where the subscripts 1 and 2 are a shorthand for t1 and t2 and denote partial derivatives.
As long as one remembers that discrete fields are printed in upper case, continuous fields
in lower case, and parameters are denoted by greek letters, then there should be no
confusion between partial derivatives, lattice shifts, and labels. In the leading order term
we recognize the first Toda equation

q[k]11 = exp
(
q[k+1] − q[k]

)
− exp

(
q[k] − q[k−1]

)
. (7.14)

Using this equation, we find that the coefficient of λ2
i is

exp
(
q[k+1] − q[k]

)
q[k+1]

1 − exp
(
q[k] − q[k−1]

)
q[k−1]

1 + q[k]1 q
[k]

11 − q[k]12

= exp
(
q[k+1] − q[k]

) (
q[k+1]

1 − q[k]1

)
− exp

(
q[k] − q[k−1]

) (
q[k−1]

1 − q[k]1

)
+ 2q[k]1 q

[k]

11 − q[k]12

= Dt1

(
exp
(
q[k+1] − q[k]

)
+ exp

(
q[k] − q[k−1]

)
+
(
q[k]1

)2 − q[k]2

)
.

Under the differentiation one can recognize the second Toda equation

q[k]2 =
(
q[k]1

)2
+ exp

(
q[k+1] − q[k]

)
+ exp

(
q[k] − q[k−1]

)
. (7.15)

Similarly, the higher order terms correspond to the subsequent equations of the Toda
hierarchy.
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It is not a coincidence that the equations found at second and higher orders can be
integrated with respect to t1. Without such integration we would get a hierarchy of the
form

q11 = F (q), q12 = G(q, q1), · · · . (7.16)

On solutions of such a hierarchy we have

∂F (q)

∂q
q2 = q112 =

∂G(q, q1)

∂q
q1 +

∂G(q, q1)

∂q1
F (q).

Hence, if ∂F (q)
∂q is invertible,

q2 =

(
∂F (q)

∂q

)−1(∂G(q, q1)

∂q
q1 +

∂G(q, q1)

∂q1
F (q)

)
.

Thus, under mild nondegeneracy conditions, a hierarchy of the form (7.16) can be refor-
mulated as a hierarchy where only the first equation is of second order.

A pluri-Lagrangian structure for the discrete Toda equation was studied in [12]. The
Lagrangian is given by

L(Q,Qi, λi) =
1

λi

∑

k

(
exp
(
Q[k]

i −Q[k]
)
− 1−

(
Q[k]

i −Q[k]
))

− λi
∑

k

exp
(
Q[k] −Q[k−1]

i

)
.

(7.17)

Performing a Taylor expansion and applying the Euler-Maclaurin formula as in Section
7.2.2, we obtain

LMiwa([q], λ) =
∞∑

j=1

(−1)j+1λ
j

j
Lj [q]

with coefficients

L1 =
∑

k

(
1

2

(
q[k]1

)2 − exp
(
q[k] − q[k−1]

))
,

L2 =
∑

k

(
q[k]1 q

[k]

2 −
1

3

(
q[k]1

)3 −
(
q[k]1 + q[k−1]

1

)
exp
(
q[k] − q[k−1]

))
,

L3 =
∑

k

(
− 1

4

((
q[k+1]

1

)2
+ 4q[k+1]

1 q[k]1 +
(
q[k]1

)2
+ q[k+1]

11

)
exp
(
q[k+1] − q[k]

)

+
1

4

(
−q[k+1]

11 + q[k]11 − 3q[k]2 − 3q[k+1]

2

)
exp
(
q[k+1] − q[k]

)

+
1

8

(
q[k]1

)4 − 3

4

(
q[k]1

)2
q[k]2 −

1

8

(
q[k]11

)2
+

3

8

(
q[k]2

)2
+ q[k]1 q

[k]

3

)
,

...
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7. Continuum limits of pluri-Lagrangian systems

By Theorem 7.4, these are the coefficients of a pluri-Lagrangian 1-form L =
∑

i Li dti
for the Toda hierarchy (7.14), (7.15), · · ·.

Note that L2 contains derivatives with respect to t1, which are alien. However, there
is no equation in the hierarchy that can be used to eliminate these derivatives. In this
example we have to tolerate the alien derivative q[k]1 . The next coefficient, L3, contains
second derivatives with respect to t1 and derivatives with respect to t2. We replace these
using the first and second Toda equation and find

L3 =
∑

k

(
− 1

4

(
q[k]1

)4 −
((
q[k+1]

1

)2
+ q[k+1]

1 q[k]1 +
(
q[k]1

)2)
exp
(
q[k+1] − q[k]

)

+ q[k]1 q
[k]

3 − exp
(
q[k+2] − q[k]

)
− 1

2
exp
(
2(q[k+1] − q[k])

))
.

Similarly one can obtain Li for i ≥ 4. By Theorem 7.6, the corresponding 1-form L is
equivalent to L. The Lagrangian 1-form L is identical to the one that was found in [71]
using the variational symmetries of the Toda lattice.

7.4. Example: a linear quad equation

As the first example for d = 2 we discuss a linear quad equation. This will help us
understand how to proceed for the non-linear quad equations that follow in Chapter 8.
Consider the equation

(α1 − α2)(U − U12) = (α1 + α2)(U1 − U2). (7.18)

It is a discrete analogue of the Cauchy-Riemann equations [11] and also the linearization
of the lattice potential KdV equation, which will be discussed in Section 8.3.1. Therefore
all the results in this section are consequences of those in Section 8.3.1. Nevertheless,
this simple quad equation is a good subject to illustrate some of the subtleties of the
continuum limit procedure.

To get meaningful equations in the continuum limit, we need to write the quad equation
in a suitable form. Since in the Miwa correspondence the parameter enters linearly in
the t1-coordinate and with higher powers in the other coordinates, the leading order of
the expansion of the shifts of U will only contain derivatives with respect to t1. Other
derivatives enter at higher orders. Since we want to obtain PDEs in the continuum limit,
not ODEs, we require that the leading order of the expansion yields a trivial equation.

Written in terms of difference quotients, Equation (7.18) reads

U1 − U2

α1 − α2
=
U − U12

α1 + α2
.
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Setting U = u(t1, . . .), Ui = u(t1 +αi, . . .), etc., this would yield ut1 = −ut1 in the leading
order of the expansion. In order to avoid this, we introduce new parameters λi = α−1

i .
Then Equation (7.18) reads

(
1

λ1
− 1

λ2

)
(U − U12)−

(
1

λ1
+

1

λ2

)
(U1 − U2) = 0. (7.19)

or, equivalently,
λ2

1 − λ2
2

λ1λ2

(
U1 − U2

λ1 − λ2
− U12 − U
λ1 + λ2

)
= 0.

Inside the brackets we find ut1 = ut1 in the leading order if we set U = u(t1, . . .),
Ui = u(t1 + λi, . . .), etc., which is trivial as desired.

We use the Miwa correspondence (7.6) with c = −2. This choice will give us a nice
normalization of the resulting differential equations. We apply the Miwa correspondence
to Equation (7.19) and expand to find a double power series in λ1 and λ2,

∑

i,j

4(−1)i+j

ij
Fij [u]λi1λ

j
2 = 0,

where Fji = −Fij . The factor (−1)i+j 4
ij is chosen to normalize the F0j , but does not

influence the final result. The first few of these coefficients are

F01 = ut2 ,

F02 = −ut1t1t1 +
3

2
ut1t2 + ut3 ,

F03 = −4

3
ut1t1t1t1 +

4

3
ut1t3 + ut2t2 + ut4 ,

F04 = −ut1t1t1t1t1 −
5

3
ut1t1t1t2 +

5

4
ut1t2t2 +

5

4
ut1t4 +

5

3
ut2t3 + ut5 ,

...

Setting all coefficients equal to zero, we obtain the continuum limit hierarchy. We see
that the equations corresponding to even times are trivial. In the odd orders we find a
hierarchy of linear equations,

ut2 = 0, ut3 = ut1t1t1 , ut4 = 0, ut5 = ut1t1t1t1t1 , · · · .

For i ≥ 1, the equations Fij = 0 are consequences of these equations.
The linear quad equation (7.18) possesses a pluri-Lagrangian structure [11, 43],

L(U,Ui, Uj , Uij , αi, αj) = U(Ui − Ui)−
1

2

αi + αj
αi − αj

(Ui − Uj)2. (7.20)

The following Lemma will help us put this Lagrangian in a more convenient form.
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7. Continuum limits of pluri-Lagrangian systems

Lemma 7.7. L0(U,Ui, Uj , Uij , αi, αj) = (U +Uij)(Ui−Uj) is a null Lagrangian (i.e. its
multi-time Euler-Lagrange equations are trivially satisfied)

Proof. Consider the discrete 1-form given by η(U,Ui) = UUi and η(Ui, U) = −UUi. Its
discrete exterior derivative is

∆η(U,Ui, Uij , Uj) = UUi + UiUij − UijUj − UjU = L0.

By Proposition 6.5, this implies that L0 is a null Lagrangian.

Using Lemma 7.7, we see that the Lagrangian (7.20) is equivalent to (denoted with =
by abuse of notation)

L(U,Ui, Uj , Uij , αi, αj) =
1

2
(Ui − Uj)(U − Uij)−

1

2

αi + αj
αi − αj

(Ui − Uj)2,

or, in terms of the parameters λk = α−1
k ,

L(U,Ui, Uj , Uij , λi, λj) =
1

2
(Ui − Uj)(U − Uij) +

1

2

λi + λj
λi − λj

(Ui − Uj)2.

Since the Taylor expansion of (Ui − Uj)2 contains a factor λi − λj , the expansion of the
Lagrangian does not contain any negative order terms. In fact all zeroth order terms
vanish as well, which can easily be checked by setting one of the parameters equal to
zero. Hence Theorem 7.4 applies: the coefficients of the power series

LMiwa([u], λ1, λ2) =
∞∑

i,j=1

4(−1)i+j

ij
Lij [u]λi1λ

j
2

define a pluri-Lagrangian 2-form

L =
∑

1≤i<j≤N
Lij dti ∧ dtj .

We find

L12 = ut1ut2 ,

L13 = −ut1ut1t1t1 +
3

4
u2
t2 + ut1ut3 ,

L23 = −ut1ut1t1t2 + ut1t1ut1t2 − 2ut1t1t1ut2 − 3ut1t2ut2 − 3ut1ut2t2 + ut2ut3 ,...

We will not study this example in more detail. Instead we move on to its non-linear
cousins in the ABS list. They make up Chapter 8.
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8. Limit hierarchies of the ABS
equations

Most of the material in this chapter has not yet been
published, except the results on H1 and Q1, which
are contained in [89].

The computations in this chapter were performed
in the SageMath software system [83]. The code
is available at https://github.com/mvermeeren/
pluri-lagrangian-clim.

8.1. A bit of clairvoyance: the limit equations

The continuum limit of a single quad equation is a hierarchy of differential equations. To
identify such a hierarchy, it is sufficient to look at its leading equation. As we will see,
the most general equation occurring in the leading order of the continuum limit of ABS
equations is the Krichever-Novikov (KN) equation [44, 63]

vt = vxxx −
3

2

v2
xx

vx
+

3

8

Q(v)

vx
, (8.1)

where Q(v) = 4v3 + g2v + g3. Even more generally, one can replace Q by any fourth
degree polynomial, but this can be reduced by a Möbius transformation to the cubic
form. Another useful form of this equation is found by setting v = ℘(u), where ℘ is the
Weierstrass elliptic function, which satisfies (℘)′2 = Q(℘). The transformed equation
reads

ut = uxxx −
3

2

u2
xx − 1

4

ux
− 3

2
℘(2u)u3

x. (8.2)

An introduction to elliptic functions tailored to their use in (discrete) integrable systems
can be found in [38, Appendix B].

In the leading order of the continuum limit of all ABS equations of type Q we will find
the KN equation or degenerations thereof, by which we mean a particular choice of Q in
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8. Limit hierarchies of the ABS equations

equation (8.1) or of the periods of ℘ in Equation (8.2). For example, for Q = 0 we find
the Schwarzian KdV equation

vt = vxxx −
3

2

v2
xx

vx
. (8.3)

Alternatively the SKdV equation can be written as vt
vx

= Sv, where S denotes the
Schwarzian derivative, which is invariant under Möbius transformations. See [69] for an
introduction to this lovely little operator.

For the equations of type H we will encounter the potential KdV equation

vt = vxxx − 3v2
x (8.4)

and its modified version.
Table 8.1 provides a sneak preview of what is to come in this chapter. We list the

leading order equations of the continuum limits of (most of) the ABS equations. In the
rest of this chapter we look at the quad equations individually and study their continuum
limits as a hierarchy with a pluri-Lagrangian structure. In the cases H2 and H3δ=1 we
will give an informal discussion of the obstructions facing a continuum limit.

8.2. Type Q

All equations of type Q can be prepared for the continuum limit in the same way, based
on their particularly symmetric three leg form. In the following subsection we present this
general strategy, but on first reading it might be preferable to skip ahead to Subsection
8.2.2, where we give a presentation of the continuum limit of Q1δ=0 independent of this
general framework.

8.2.1. Three leg forms and Lagrangians

All quad equations Q(V, V1, V2, V12, α1, α2) = 0 from the ABS list have a three leg form:

Q(V, V1, V2, V12, α1, α2) = Ψ(V, V1, α1)−Ψ(V, V2, α2)− Φ(V, V12, α1 − α2).

For the equations of type Q, the function Φ on the long (diagonal) leg is the same as the
function Ψ on the short legs:

Q(V, V1, V2, V12, λ1, λ2) = Ψ(V, V1, λ
2
1)−Ψ(V, V2, λ

2
2)−Ψ(V, V12, λ

2
1 − λ2

2),

where we introduced new parameters by λ2
i = αi. Suitable leg functions Ψ were listed

in [10]. For the purposes of a continuum limit, it is useful to reverse one of the time
directions, i.e. to consider

Q(V, V−1, V2, V−1,2, λ1, λ2) = Ψ(V, V−1, λ
2
1)−Ψ(V, V2, λ

2
2)−Ψ(V, V−1,2, λ

2
1 − λ2

2).
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8.2. Type Q

Quad Leading equation
equation of the continuum limit Identification

Q1δ=0 v3 = v111 −
3

2

v2
11

v1
SKdV

Q1δ=1 v3 = v111 −
3

2

v2
11 − 1

4

v1
KN with ℘ = 0

Q2 v3 = v111 −
3

2

v2
11 − 1

4

v1
− 3

2

v3
1

v2
KN with ℘ =

1

v2

Q3δ=0 v3 = v111 −
3

2

v2
11 − 1

4

v1
+

1

2
v3

1 KN with ℘ = −1

3

Q3δ=1 v3 = v111 −
3

2

v2
11 − 1

4

v1
+

1

2
v3

1 −
3

2

v3
1

sin(v)2
KN with ℘ =

1

sin(v)2
− 1

3

Q4 v3 = v111 −
3

2

v2
11 − 1

4

v1
− 3

2
℘(2v)v3

1 KN – general case

H1 v3 = v111 + 3v2
1 pKdV

H2 –

H3δ=0 v3 = v111 +
1

2
v3

1 pmKdV

H3δ=1 –

Table 8.1. Overview of limit equations for the ABS list. We use the subscript i as a
shorthand for ti to denote partial derivatives of v.

Towards the continuum limit it is more suitable to write the Ψ in terms of difference
quotients. We will introduce a function

ψ(v, v′, λ, µ) = ψ1(v, λ, µ) + ψ2(v′, λ, µ)

of the continuous variables, from which we can recover Ψ(V,W, λµ) by plugging in suitable
approximations to v and v′. Note that Ψ takes only one parameter, which is the product
of the two parameters of ψ. For all of the ABS equations we will use c = −2 in the Miwa
correspondence, which means that the derivative v′ = v1 is approximated by difference
quotients such as V−1−V

2λ1
and V−V2

2λ2
. We identify

Ψ(V,W, λµ) = ψ

(
V +W

2
,
V −W

2λ
, λ, µ

)
.
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All equations of the Q-list can be written in the form

Q(V, V−1, V2, V−1,2, λ1, λ2) = ψ

(
V + V−1

2
,
V − V−1

2λ1
, λ1, λ1

)

− ψ
(
V + V2

2
,
V − V2

2λ2
, λ2, λ2

)

− ψ
(
V + V−1,2

2
,
V − V−1,2

2(λ1 − λ2)
, λ1 − λ2, λ1 + λ2

)
.

(8.5)

As suggested by the symmetry of the quad equation, we require that

ψ1(v,−λ, µ) = −ψ1(v, λ, µ),

ψ2(−v′, λ, µ) = −ψ2(v′, λ, µ),

ψ2(v′,−λ, µ) = ψ2(v′, λ, µ).

Furthermore, we require that ψ(v, v′, 0, 0) = 0.
We would expect the first nonzero terms in the series expansion at first order in λ1, λ2,

but we find

Q(V, V−1, V2, V−1,2, λ1, λ2)

= −ψ
(
V + V−1

2
,
V−1 − V

2λ1
,−λ1, λ1

)
− ψ

(
V + V2

2
,
V − V2

2λ2
, λ2, λ2

)

+ ψ

(
V + V−1,2

2
,
V−1,2 − V
2(λ1 − λ2)

,−λ1 + λ2, λ1 + λ2

)

= −ψ
(
v + λ1v1, v1 +

λ1

2
(v11 − v2),−λ1, λ1

)
− ψ

(
v − λ2v1, v1 −

λ2

2
(v11 + v2), λ2, λ2

)

+ ψ

(
v + (λ1 − λ2)v1, v1 +

λ1 − λ2

2
v11 −

λ1 + λ2

2
v2,−λ1 + λ2, λ1 + λ2

)

+O(λ2
1 + λ2

2)

= O(λ2
1 + λ2

2).

This is the leading order cancellation required to obtain PDEs in the continuum limit:
at the first order, where generically we would get only derivatives with respect to t1, we
get nothing at all.

Equation (8.5) also reveals a reason for considering the three-leg form with a “down-
ward” diagonal leg, as in Figure 8.1(b): the difference quotient V−1,2−V

2(λ2−λ1) can be expanded

in a double power series, but its “upward” analogue V1,2−V
2(λ1+λ2) cannot.

To find a Lagrangian for Equation (8.5), we follow [4, 10] and integrate the leg function
ψ. We take

χ1(v, λ, µ) =
2

λ

∫
ψ1(v, λ, µ) dv and χ2(v′, λ, µ) = 2

∫
ψ2(v′, λ, µ) dv′.
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8.2. Type Q

(a) (b) (c) (d)

Figure 8.1. The stencils on four adjacent quads for (a) the three-leg form in the usual
orientation, (b) the three-leg form after time-reversal, (c) the triangle form for the La-
grangian, and (d) the Euler-Lagrange equations in a planar lattice.

Then

χ1(v,−λ, µ) = χ1(v, λ, µ),

χ2(−v′, λ, µ) = χ2(v′,−λ, µ) = χ2(v′, λ, µ),

and χ = χ1 + χ2 satisfies

λ

2

∂

∂v
χ(v, v′, λ, µ) +

1

2

∂

∂v′
χ(v, v′, λ, µ) = ψ(v, v′, λ, µ).

Now
Λ(V,W, λ, µ) = λχ

(
V +W

2
,
V −W

2λ
, λ, µ

)

gives the terms of the Lagrangian in triangle form:

L(V, V1, V2, λ1, λ2) = Λ(V, V1, λ1, λ1)− Λ(V, V2, λ2, λ2)− Λ(V1, V2, λ1 − λ2, λ1 + λ2)

= λ1χ

(
V + V1

2
,
V − V1

2λ1
, λ1, λ1

)
− λ2χ

(
V + V2

2
,
V − V2

2λ2
, λ2, λ2

)

− (λ1 − λ2)χ

(
V1 + V2

2
,
V1 − V2

2(λ1 − λ2)
, λ1 − λ2, λ1 + λ2

)
.

(8.6)

Note the symmetries of Λ:

Λ(V,W, λ, µ) = Λ(W,V, λ, µ) = Λ(V,W,−λ, µ).

In some cases we will rescale Λ and hence L by a constant factor. This is purely for
esthetic reasons and does not affect the multi-time Euler-Lagrange equations.

Proposition 8.1. Solutions of the quad equation Q = 0 in the plane, with Q given by
Equation (8.5), are critical fields for the action of the Lagrangian given by Equation (8.6).
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Proof. We have

∂

∂V
L(V, V1, V2, λ1, λ2) = λ1

∂

∂V
χ

(
V + V1

2
,
V − V1

2λ1
, λ1, λ1

)

− λ2
∂

∂V
χ

(
V + V2

2
,
V − V2

2λ2
, λ2, λ2

)

=
λ1

2
χ′1

(
V + V1

2
, λ1, λ1

)
+

1

2
χ′2

(
V − V1

2λ1
, λ1, λ1

)

− λ1

2
χ′1

(
V + V2

2
, λ2, λ2

)
− 1

2
χ′2

(
V − V2

2λ2
, λ2, λ2

)

= ψ

(
V + V1

2
,
V − V1

2λ1
, λ1, λ1

)
− ψ

(
V + V2

2
,
V − V2

2λ2
, λ2, λ2

)

= Ψ(V, V1, λ
2
1)−Ψ(V, V2, λ

2
2).

Similarly, we have
∂

∂V1
L(V, V1, V2, λ1, λ2) = Ψ(V1, V, λ

2
1)−Ψ(V1, V2, λ

2
1 − λ2

2)

and
∂

∂V2
L(V, V1, V2, λ1, λ2) = −Ψ(V2, V, λ

2
1)−Ψ(V2, V1, λ

2
1 − λ2

2).

Summing up all derivatives of the action in the plane with respect to the field at one
vertex, and using the symmetry of the quad equation, we find two shifted copies of
Equation (8.5), arranged as in Figure 8.1(d).

Note that the opposite implication does not hold: not all solutions of the Euler-
Lagrange equations solve the quad equation.

The Lagrangian constructed this way is suitable for the continuum limit procedure, as
the following proposition establishes.

Proposition 8.2. Every term of L is of at least first order in both parameters, L =
O(λ1λ2).

Proof. Taking the limit λ1 → 0 the Lagrangian vanishes:

L(V, V, V2, 0, λ2) = −λ2χ

(
V + V2

2
,
V − V2

2λ2
, λ2, λ2

)
+ λ2χ

(
V + V2

2
,
V − V2

−2λ2
,−λ2, λ2

)

= 0.

Similarly, for λ2 → 0 we have

L(V, V1, V, λ1, 0) = λ1χ

(
V + V1

2
,
V − V1

2λ1
, λ1, λ1

)
− λ1χ

(
V1 + V

2
,
V1 − V

2λ1
, λ1, λ1

)

= 0.
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8.2.2. Cross-ratio equation (Q1δ=0)

The general procedure outlined above can be carried out for the cross-ratio equation with
the specific choices listed in Table 8.2. However, it is instructive to forget about the ideas
of Section 8.2.1 for a moment and try to figure out the continuum limit starting from
Equation (6.3) itself. We would like to view it as a consistent numerical discretization
of some differential equation. To achieve this, we identify α1 = λ2

1 and α2 = λ2
2. Then

Equation (6.3) is equivalent to

V1 − V
λ1

V12 − V2

λ1
− V2 − V

λ2

V12 − V1

λ2
= 0, (8.7)

which is equivalent to the three-leg form

λ2
1

V − V1
− λ2

2

V − V2
− λ2

1 − λ2
2

V − V12
= 0.

For the continuum limit we use the the Miwa correspondence (7.6) with c = −2. A
Taylor expansion of (8.7) yields

∑

i,j

4(−1)i+j

ij
Fij [v]λi1λ

j
2 = 0

with

F01 = v1v2,

F02 =
3

2
v2

11 − v1v111 +
3

2
v1v12 +

3

2
v11v2 +

3

8
v2

2 + v1v3,

F03 =
8

3
v11v111 −

4

3
v1v1111 + 4v11v12 +

4

3
v1v13 +

4

3
v111v2 + 2v12v2 + v1v22 +

4

3
v11v3

+
2

3
v2v3 + v1v4,

F04 = −10

9
v2

111 −
5

3
v11v1111 + v1v11111 +

5

3
v1v1112 − 5v11v112 −

10

3
v111v12 −

5

2
v2

12

− 5

4
v1v122 −

10

3
v11v13 −

5

4
v1v14 −

5

6
v1111v2 −

5

2
v112v2 −

5

3
v13v2 −

5

4
v11v22

− 5

8
v2v22 −

5

3
v1v23 −

10

9
v111v3 −

5

3
v12v3 −

5

18
v2

3 −
5

4
v11v4 −

5

8
v2v4 − v1v5,

...

where once again we use the subscript i rather than ti to denote partial derivatives of
v. We assume that v1 6= 0. Then we see that the flows corresponding to even times are
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8. Limit hierarchies of the ABS equations

Q = λ2
1(V2 − V )(V12 − V1)− λ2

2(V1 − V )(V12 − V2)

Ψ(V,W, λ2) =
λ2

V −W

ψ(v, v′, λ, µ) =
µ

2v′

χ(v, v′, λ, µ) = µ log(v′)

Λ(V,W, λ, µ) = λµ log

(
V −W

2λ

)

Table 8.2. Q1δ=0 fact sheet. See Section 8.2.1 for the meaning of these functions.

trivial and in the odd orders we find the hierarchy of Schwarzian KdV equations,

v2 = 0,

v3

v1
= −3v2

11

2v2
1

+
v111

v1
,

v4 = 0,

v5

v1
= −45v4

11

8v4
1

+
25v2

11v111

2v3
1

− 5v2
111

2v2
1

− 5v11v1111

v2
1

+
v11111

v1
,

...

(8.8)

For i ≥ 1, the equations Fij = 0 are differential consequences of these equations.
A Pluri-Lagrangian description of Equation (6.3) was found in [47],

L = αi log(V − Vi)− αj log(V − Vi)− (αi − αj) log(Vi − Vj). (8.9)

It is equivalent to

L = λ2
i log

(
V − Vi
λi

)
− λ2

j log

(
V − Vj
λj

)
− (λ2

i − λ2
j ) log

(
Vi − Vj
λi − λj

)
.

Each term of the series LMiwa constructed form this discrete Lagrangian contains strictly
positive powers of both λi and λj . Thus by Theorem 7.4 we can identify the coefficients
of this power series with the coefficients of a pluri-Lagrangian 2-form. The first few
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coefficients of the form L1j are

L12 = − v11

2v1
− v2

4v1
,

L13 =
v111

4v1
− 3v12

8v1
+

3v11v2

8v2
1

+
3v2

2

16v2
1

− v3

4v1
,

L14 =
v3

11

3v3
1

− v11v111

3v2
1

+
v112

3v1
− v11v12

6v2
1

− v13

3v1
+
v2

11v2

6v3
1

− v111v2

6v2
1

+
v12v2

4v2
1

− v11v
2
2

4v3
1

− v3
2

8v3
1

+
v11v3

3v2
1

+
v2v3

3v2
1

− v4

4v1
.

In the final step we eliminate the alien derivatives. We are free to add terms that attain
a double zero on solutions. This allows us to eliminate all products of time derivatives,
e.g. v2

2, v12v2, v2v3, · · ·. The remaining alien derivatives (which must occur linearly) can
be eliminated by adding a suitable exact form d

(∑
j cjdtj

)
. In this case we take

∑

j

cjdtj =
1

2
log(v1)dt2 −

2v11 − 3v2

8v1
dt3 +

(
v2

11 − v11v2

6v2
1

− v12 − v3

3v1

)
dt4 + · · · .

This was chosen to eliminate alien derivatives from the first row of coefficients L1j . Then
by Theorem 7.6 all alien derivatives in other coefficients can be killed by adding double
zeros. Some of the coefficients, after eliminating alien derivatives, are given in Table 8.3.

There are too many multi-time Euler-Lagrange equations to list them all. Arguably
the most interesting ones are those of the form

δ1jL1j

δv1
=
δijLij
δvi

for i 6= j 6= 1.

They require that, ignoring the diagonal entries, all rows are equal in the infinite matrix
(
δijLij
δvi

)

i,j∈N
=




0 v2
4v21

v211
2v31
− v111

2v21
+ v3

4v21

v4
4v21

9v411
4v51
− 21v211v111

4v41
− 2v11111−v5

4v21
+

3v2111+4v11v1111
2v31

1
4v1

0
v211
8v31
− v111

4v21
0

27v411
32v51

− 17v211v111
8v41

− v11111
4v21

+
7v2111+6v11v1111

8v31
1

4v1
0 0 0

27v411
32v51

− 17v211v111
8v41

− v11111
4v21

+
7v2111+6v11v1111

8v31
1

4v1
0

v211
8v31
− v111

4v21
0

27v411
32v51

− 17v211v111
8v41

− v11111
4v21

+
7v2111+6v11v1111

8v31
1

4v1
0

v211
8v31
− v111

4v21
0 0

. . .
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8. Limit hierarchies of the ABS equations

L12 = − v2

4v1

L13 =
v2

11

4v2
1

− v3

4v1

L14 = − v4

4v1

L15 =
3v4

11

16v4
1

− v2
111

4v2
1

− v5

4v1

L23 =
v2

11v2

8v3
1

+
2v11v12 − v111v2

4v2
1

L24 = 0

L25 =
27v4

11v2

32v5
1

− 2v111v112 − 2v1111v12 + v11111v2

4v2
1

− 8v11v111v12 − 7v2
111v2 − 6v11v1111v2

8v3
1

+
6v3

11v12 − 17v2
11v111v2

8v4
1

L34 = −v
2
11v4

8v3
1

− 2v11v14 − v111v4

4v2
1

L35

= −v
2
1111 − v111v11111 + 2v111v113 − 2v1111v13 + 2v11v15 + v11111v3 − v111v5

4v2
1

− 7v3
111 − 6v11v111v1111 + 3v2

11v11111 + 8v11v111v13 − 7v2
111v3 − 6v11v1111v3 + v2

11v5

8v3
1

+
19v2

11v
2
111 + 6v3

11v1111 + 12v3
11v13 − 34v2

11v111v3

16v4
1

− 3
(
19v4

11v111 − 9v4
11v3

)

32v5
1

+
45v6

11

64v6
1

L45 =
27v4

11v4

32v5
1

− 2v111v114 − 2v1111v14 + v11111v4

4v2
1

− 8v11v111v14 − 7v2
111v4 − 6v11v1111v4

8v3
1

+
6v3

11v14 − 17v2
11v111v4

8v4
1

Table 8.3. Coefficients Lij for Q1δ=0, after eliminating alien derivatives.
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8.2. Type Q

In each column, except the first one, this condition immediately gives a member of the
SKdV hierarchy (8.8). All other multi-time Euler-Lagrange equations are differential
consequences of the hierarchy. In particular, the classical variational principle,

δ1jL1j

δv
= 0,

yields only a consequence of the hierarchy:

0 = − v12

2v2
1

+
v11v2

2v3
1

0 =
3v3

11

2v4
1

+
v1111 − v13

2v2
1

− 4v11v111 − v11v3

2v3
1

0 = − v14

2v2
1

+
v11v4

2v3
1

0 =
45v5

11

4v6
1

− 30v3
11v111

v5
1

+
v111111 − v15

2v2
1

− 10v111v1111 + 6v11v11111 − v11v5

2v3
1

+
15
(
4v11v

2
111 + 3v2

11v1111

)

4v4
1...

The even-numbered times correspond to trivial equations, vt2i = 0, restricting the
dynamics to a space of half the dimension. We can also restrict the pluri-Lagrangian
formulation to this space:

L =
∑

i<j

L2i+1,2j+1 dt2i+1 ∧ dt2j+1

is a pluri-Lagrangian 2-form for the hierarchy of nontrivial SKdV equations,

v3

v1
= −3v2

11

2v2
1

+
v111

v1
,

v5

v1
= −45v4

11

8v4
1

+
25v2

11v111

2v3
1

− 5v2
111

2v2
1

− 5v11v1111

v2
1

+
v11111

v1
,

...

On the level of equations we could have restricted to the odd-numbered coordinates
t1, t3, . . . from the beginning. However, on the level of Lagrangians we need to consider
the even-numbered coordinates as well, at least in the theoretical arguments, because
otherwise there is no interpretation for the (generally nonzero) coefficients of λ2i

1 λ
j
2 and

λi1λ
2j
2 in the power series LMiwa.
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8. Limit hierarchies of the ABS equations

8.2.3. Q1δ=1

We apply the procedure of Section 8.2.1 to find a suitable Lagrangian for Q1δ=1. The
intermediate steps are given in Table 8.4. We find the discrete Lagrangian

L(V,V1, V2, λ1, λ2)

= Λ(V, V1, λ1, λ1)− Λ(V, V2, λ2, λ2)− Λ(V1, V2, λ1 − λ2, λ1 + λ2)

= (V − V1 + λ2
1) log (V − V1 + λ2

1)− (V − V1 − λ2
1) log (V − V1 − λ2

1)

− (V − V2 + λ2
2) log (V − V2 + λ2

2) + (V − V2 − λ2
2) log (V − V2 − λ2

2)

− (V1 − V2 + λ2
1 − λ2

2) log (V1 − V2 + λ2
1 − λ2

2)

+ (V1 − V2 − λ2
1 + λ2

2) log (V1 − V2 − λ2
1 + λ2

2).

In the continuum limit of the equation we find

v2 = 0,

v3 = v111 −
3

2

v2
11 − 1

4

v1
,

v4 = 0,

v5 = −45v4
11

8v3
1

+
25v2

11v111

2v2
1

− 5v2
111

2v1
− 5v11v1111

v1
+ v11111 +

25v2
11

16v3
1

− 5v111

8v2
1

− 5

128v3
1

,

...

The first nontrivial equation of this hierarchy is the Krichever-Novikov equation (8.2)
with ℘ = 0.

Some coefficients of the continuous pluri-Lagrangian 2-form are given in Table 8.5. We
have only included coefficients corresponding to odd-numbered coordinates.
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Q = λ2
1(V2 − V )(V12 − V1)− λ2

2(V1 − V )(V12 − V2) + λ2
1λ

2
2(λ2

1 − λ2
2)

Ψ(V,W, λ2) = log

(
V −W + λ2

V −W − λ2

)

ψ(v, v′, λ, µ) = log

(
2v′ + µ

2v′ − µ

)

χ(v, v′, λ, µ) = (2v′ + µ) log(2v′ + µ)− (2v′ − µ) log(2v′ − µ)

Λ(V,W, λ, µ) = (V −W + λµ) log(V −W + λµ)− (V −W − λµ) log(V −W − λµ)

Table 8.4. Q1δ=1 fact sheet. See Section 8.2.1 for the meaning of these functions.

L13 = − v3

2v1
+

4v2
11 + 1

8v2
1

L15 = −v
2
111

2v2
1

− v5

2v1
+

48v4
11 − 40v2

11 − 1

128v4
1

L35 = −v21111−v111v11111+2v111v113−2v1111v13+2v11v15+v11111v3−v111v5
2v21

− 28v3111−24v11v111v1111+12v211v11111+32v11v111v13−28v2111v3−24v11v1111v3+4v211v5−3v11111−v5
16v31

+
76v211v

2
111+24v311v1111+48v311v13−136v211v111v3−27v2111−6v11v1111−20v11v13+10v111v3

32v41

− 912v411v111−432v411v3−328v211v111+120v211v3+25v111−3v3
256v51

+
5(576v611−304v411+44v211−1)

2048v61

Table 8.5. Coefficients Lij for Q1δ=1, in the space spanned by odd-numbered times,
after eliminating alien derivatives.
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8.2.4. Q2

The general strategy of Section 8.2.1 works with the choices in Table 8.6. The continuum
limit hierarchy is

v2 = 0,

v3 = v111 −
3

2

v2
11 − 1

4

v1
− 3

2

v3
1

v2
,

v4 = 0,

v5 = −45v5
1

8v4
+

15v3
1v11

v3
+

15v1v
2
11

4v2
− 45v4

11

8v3
1

− 15v2
1v111

2v2
+

25v2
11v111

2v2
1

− 5v2
111

2v1

− 5v11v1111

v1
+ v11111 +

5v1

16v2
+

25v2
11

16v3
1

− 5v111

8v2
1

− 5

128v3
1

,

...

The first nontrivial equation is the Krichever-Novikov equation with ℘ = 1
v2
. A few

coefficients of the pluri-Lagrangian 2-form are given in Table 8.7.
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Q = λ2
1(V

2
2 − V 2)(V 2

12 − V 2
1 )− λ2

2(V
2

1 − V 2)(V 2
12 − V 2

2 )

+ λ2
1λ

2
2(λ

2
1 − λ2

2)(V
2 + V 2

1 + V 2
2 + V 2

12 − λ4
1 + λ2

1λ
2
2 − λ4

2)

Ψ(V,W, λ2) = log

(
(V +W + λ2)(V −W + λ2)

(V +W − λ2)(V −W − λ2)

)

ψ(v, v′, λ, µ) = log

(
(2v + λµ)(2v′ + µ)

(2v − λµ)(2v′ − µ)

)

χ(v, v′, λ, µ) =
1

λ
(2v + λµ) log(2v + λµ) + (2v′ + µ) log(2v′ + µ)

− 1

λ
(2v − λµ) log(2v − λµ)− (2v′ − µ) log(2v′ − µ)

Λ(V,W, λ, µ) = (V +W + λµ) log(V +W + λµ) + (V −W + λµ) log

(
V −W
λ

+ µ

)

− (V +W − λµ) log(V +W − λµ)− (V −W − λµ) log

(
V −W
λ

− µ
)

Table 8.6. Q2 fact sheet. See Section 8.2.1 for the meaning of these functions.

L13 =
3v2

1

2v2
− v3

2v1
+

4v2
11 + 1

8v2
1

L15 =
15v4

1

8v4
− v2

111

2v2
1

− v5

2v1
− 5

(
12v2

11 − 1
)

16v2
+

48v4
11 − 40v2

11 − 1

128v4
1

L35 =
45v61
32v6
− 9v41v11

4v5
+

3(v2111+18v11v1111−2v1v11111−20v11v13+10v111v3−6v1v5)
8v2

− v21111−v111v11111+2v111v113−2v1111v13+2v11v15+v11111v3−v111v5
2v21

− 324v311−312v1v11v111+48v21v1111+120v1v11v3−65v11
16v3

− 28v3111−24v11v111v1111+12v211v11111+32v11v111v13−28v2111v3−24v11v1111v3+4v211v5−3v11111−v5
16v31

− 5(132v211v111−12v211v3+7v111−v3)
32v2v1

+
3(84v21v

2
11−24v31v111+200v31v3−45v21)

128v4

+
76v211v

2
111+24v311v1111+48v311v13−136v211v111v3−27v2111−6v11v1111−20v11v13+10v111v3

32v41

+
15(528v411−136v211+1)

512v2v21
− 912v411v111−432v411v3−328v211v111+120v211v3+25v111−3v3

256v51

+
5(576v611−304v411+44v211−1)

2048v61

Table 8.7. Coefficients Lij for Q2 after eliminating alien derivatives.

141



8. Limit hierarchies of the ABS equations

8.2.5. Q3δ=0

Starting from Q3 in the form of Equation (6.5), we need to do some preparatory work
before unleashing the procedure of Subsection 8.2.1. The reason is that a three-leg form
is only known for versions of Q3 where the field has been transformed. We choose
to set U = exp(iV ). In addition to that transformation of the field, we simplify the
parameterization of the equation. If we divide it by α1α2 its coefficients become

α1 −
1

α1
, α2 −

1

α2
, and

α1

α2
− α2

α1
.

Now set αi− 1
αi

= sin(λ2
i ). Then by the addition formula for the sine function one quickly

verifies for λ2
1, λ

2
2 <

π
2 that α1

α2
− α2

α1
= sin(λ2

1− λ2
2), hence the equation can be written as

sin(λ2
1)
(
eiV eiV1 + eiV2eiV12

)
− sin(λ2

2)
(
eiV eiV2 + eiV1eiV12

)

− sin(λ2
1 − λ2

2)
(
eiV eiV12 + eiV1eiV2

)
= 0.

Starting from this form of the equation, and transforming the three-leg form found in [4]
accordingly, the strategy of Section 8.2.1 works as outlined in Table 8.8. The continuum
limit hierarchy is

v2 = 0,

v3 = v111 −
3

2

v2
11 − 1

4

v1
+

1

2
v3

1,

v4 = 0,

v5 =
3

8
v5

1 −
5

4
v1v

2
11 +

5

2
v2

1v111 −
5

48
v1 −

45v4
11

8v3
1

+
25v2

11v111

2v2
1

− 5v2
111

2v1
− 5v11v1111

v1

+ v11111 +
25v2

11

16v3
1

− 5v111

8v2
1

− 5

128v3
1

,

...

The first nontrivial equation is the Krichever-Novikov equation with the ℘ = −1
3 .

Note on dilogarithms

The expression for the function χ contains dilogarithms. The dilogarithm is given by

Li2(z) =
∞∑

n=1

zn

n2
for |z|< 1

and by analytic continuation for other z ∈ C \ [1,∞). There exists a staggering amount
of beautiful identities for the dilogarithm, see for example [98]. We are mostly interested
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Q = sin(λ2
1)
(
eiV eiV1 + eiV2eiV12

)
− sin(λ2

2)
(
eiV eiV2 + eiV1eiV12

)

− sin(λ2
1 − λ2

2)
(
eiV eiV12 + eiV1eiV2

)

Ψ(V,W, λ2) = log

(
eiλ

2
eiV − eiW

eiV − eiλ2eiW

)

= log

(
sin

(
V −W + λ2

2

))
− log

(
sin

(
V −W − λ2

2

))

ψ(v, v′, λ, µ) = log

(
sin

(
λv′ +

λµ

2

))
− log

(
sin

(
λv′ − λµ

2

))

χ(v, v′, λ, µ) =
i

λ

(
−2λ2µv′ + Li2

(
ei(2λv

′+λµ)
)
− Li2

(
ei(2λv

′−λµ)
))

Λ(V,W, λ, µ) = λµ(V −W )− Li2

(
ei(V−W+λµ)

)
+ Li2

(
ei(V−W−λµ)

)

Table 8.8. Q3δ=0 fact sheet. See Section 8.2.1 for the meaning of these functions.

L13 = −1

4
v2

1 −
v3

4v1
+

4v2
11 + 1

16v2
1

L15 = − 1

16
v4

1 +
5

8
v2

11 −
v2

111

4v2
1

− v5

4v1
+

48v4
11 − 40v2

11 − 1

256v4
1

− 5

96

L35 = 1
64v

6
1 − 17

64v
2
1v

2
11 + 7

32v
3
1v111 − 5

32v
3
1v3 + 91

768v
2
1 − 1

16v
2
111 − 9

8v11v1111 + 1
8v1v11111

+ 5
4v11v13 − 5

8v111v3 + 3
8v1v5 +

660v211v111−60v211v3+35v111−5v3
192v1

+ 5
1024v21

− 330v411−85v211+32v21111−32v111v11111+64v111v113−64v1111v13+64v11v15+32v11111v3−32v111v5
128v21

− 28v3111−24v11v111v1111+12v211v11111+32v11v111v13−28v2111v3−24v11v1111v3+4v211v5−3v11111−v5
32v31

+
76v211v

2
111+24v311v1111+48v311v13−136v211v111v3−27v2111−6v11v1111−20v11v13+10v111v3

64v41

− 912v411v111−432v411v3−328v211v111+120v211v3+25v111−3v3
512v51

+
2880v611−1520v411+220v211−5

4096v61

Table 8.9. Coefficients Lij for Q3δ=0, in the space spanned by odd-numbered times,
after eliminating alien derivatives.
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8. Limit hierarchies of the ABS equations

in its derivative, which is
d

dz
Li2(z) = − log(1− z)

z
.

This can be used to integrate log ◦ sin, which occurs in the leg function Ψ,
∫

log(sin z)) dz =
i

2

(
−z2 + Li2

(
e2iz
))
− z log(−2i) + c.

In the continuum limit procure we need a series expansion of Li2(ex). For small x this
seems problematic, since Li2(z) has a branch point at z = 1. The way to handle this is
to carry along this branch point in the formal series expansion

Li2(ex) = Li2(1)− x log(−x) + x− x2

4
− x3

72
+ . . . , (8.10)

where the first term famously equals Li2(1) = π2

6 . To derive this expansion, calculate

d

dx
Li2(ex) = − log(1− ex) = − log

(
−x− x2

2
− x3

6
− . . .

)

= −
(

log(−x) + log

(
1 +

x

2
+
x2

6
+ . . .

))

= −
(

log(−x) +
x

2
+
x2

24
+ . . .

)

and integrate this to obtain Equation (8.10).

144



8.2. Type Q

8.2.6. Q3δ=1

Starting from Equation (6.5) with δ = 1, we perform the same transformation on the
parameters as for δ = 0 above, but we now transform the fields as U = cos(V ). The
general strategy of Section 8.2.1 applies to this transformed equation with the choices in
Table 8.10. The continuum limit hierarchy is

v3 = v111 −
3

2

v2
11 − 1

4

v1
+

1

2
v3

1 −
3

2

v3
1

sin(v)2
,

v5 =
3

8
v5

1 −
5

4
v1v

2
11 +

5

2
v2

1v111 +
15v5

1

4 sin (v)2 +
15v3

1v11 cos (v)

sin (v)3 − 5

48
v1 −

45v4
11

8v3
1

+
25v2

11v111

2v2
1

− 5v2
111

2v1
− 5v11v1111

v1
+ v11111 −

45v5
1

8 sin (v)4 +
15v1v

2
11

4 sin (v)2 −
15v2

1v111

2 sin (v)2 +
25v2

11

16v3
1

− 5v111

8v2
1

+
5v1

16 sin (v)2 −
5

128v3
1

,

...

and v2k = 0. The leading equation is the Krichever-Novikov equation with ℘ = 1
sin(v)2

− 1
3 .

Q = sin(λ2
1) (cos(V ) cos(V1) + cos(V2) cos(V12))

− sin(λ2
2) (cos(V ) cos(V2) + cos(V1) cos(V12))

− sin(λ2
1 − λ2

2)
(
cos(V ) cos(V12) + cos(V1) cos(V2)− sin(λ2

1) sin(λ2
2)
)

Ψ(V,W, λ2) = log

(
sin

(
V −W + λ2

2

)
sin

(
V +W + λ2

2

))

− log

(
sin

(
V −W − λ2

2

)
sin

(
V +W − λ2

2

))

ψ(v, v′, λ, µ) = log

(
sin

(
λv′ +

λµ

2

)
sin

(
v +

λµ

2

))

− log

(
sin

(
λv′ − λµ

2

)
sin

(
v − λµ

2

))

χ(v, v′, λ, µ) =
i

λ

(
−2λ2µv′ + Li2

(
ei(2λv

′+λµ)
)
− Li2

(
ei(2λv

′−λµ)
))

− i

λ

(
−2λµv + Li2

(
ei(2v+λµ)

)
− Li2

(
ei(2v−λµ)

))

Λ(V,W, λ, µ) = λµ(V −W )− Li2

(
ei(V−W+λµ)

)
+ Li2

(
ei(V−W−λµ)

)

+ λµ(V +W )− Li2

(
ei(V+W+λµ)

)
+ Li2

(
ei(V+W−λµ)

)

Table 8.10. Q3δ=1 fact sheet. See Section 8.2.1 for the meaning of these functions.
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8. Limit hierarchies of the ABS equations

L13 = −1

4
v2

1 −
v3

4v1
+

3v2
1

4 sin (v)2 +
4v2

11 + 1

16v2
1

L15 = − 1

16
v4

1 +
5

8
v2

11 −
5

12
vv13 −

5

12
v1v3 −

v2
111

4v2
1

− v5

4v1

+
15v4

1

16 sin (v)4 −
20v4

1 + 60v2
11 − 5

32 sin (v)2 +
48v4

11 − 40v2
11 − 1

256v4
1

L35 = 23
192v

6
1 − 57

64v
2
1v

2
11 + 61

96v
3
1v111 − 55

96v
3
1v3 − v61

64 sin(v)2
+

3v41v11 cos(v)

8 sin(v)3
+ 211

768v
2
1 −

105v411
64v21

+
35v211v111

16v1
+ 17

48v
2
111− 9

8v11v1111 + 1
8v1v11111 + 5

4v11v13 +
15v211v3

16v1
− 35

24v111v3− 5
12vv33

+ 3
8v1v5 +

15v61
64 sin(v)4

+
39v21v

2
11

32 sin(v)2
− 17v31v111

16 sin(v)2
− 5v31v3

16 sin(v)2
− 9v41v11 cos(v)

8 sin(v)5
− 81v311 cos(v)

8 sin(v)3

+ 39v1v11v111 cos(v)

4 sin(v)3
− 3v21v1111 cos(v)

2 sin(v)3
− 15v1v11v3 cos(v)

4 sin(v)3
+

25v211
128v21

+
45v611
64v61

+ 95v111
192v1

− 57v411v111
32v51

+
19v211v

2
111

16v41
− 7v3111

8v31
+

3v311v1111
8v41

+ 3v11v111v1111
4v31

− v21111
4v21
− 3v211v11111

8v31
+ v111v11111

4v21
− v111v113

2v21

+
3v311v13

4v41
− v11v111v13

v31
+ v1111v13

2v21
− v11v15

2v21
− 65v3

192v1
+

27v411v3
32v51

− 17v211v111v3
8v41

+
7v2111v3

8v31

+ 3v11v1111v3
4v31

− v11111v3
4v21

− v211v5
8v31

+ v111v5
4v21

+
45v61

64 sin(v)6
+

63v21v
2
11

64 sin(v)4
− 9v31v111

32 sin(v)4
+

75v31v3

32 sin(v)4

− 15v21
128 sin(v)2

+
495v411

64v21 sin(v)2
− 165v211v111

16v1 sin(v)2
+

3v2111
16 sin(v)2

+ 27v11v1111
8 sin(v)2

− 3v1v11111
8 sin(v)2

− 15v11v13
4 sin(v)2

+
15v211v3

16v1 sin(v)2
+ 15v111v3

8 sin(v)2
− 9v1v5

8 sin(v)2
+ 65v11 cos(v)

32 sin(v)3
+ 55

1024v21
− 95v411

256v61
+

41v211v111
64v51

− 27v2111
64v41

− 3v11v1111
32v41

+ 3v11111
32v31

− 5v11v13
16v41

− 15v211v3
64v51

+ 5v111v3
32v41

+ v5
32v31
− 135v21

256 sin(v)4
− 255v211

128v21 sin(v)2

− 35v111
64v1 sin(v)2

+ 5v3
64v1 sin(v)2

+
55v211

1024v61
− 25v111

512v51
+ 3v3

512v51
+ 15

1024v21 sin(v)2
− 5

4096v61

Table 8.11. Coefficients Lij for Q3δ=1, in the space spanned by odd-numbered times,
after eliminating alien derivatives.
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8.2.7. Q4

We make the transformation U = ℘(V ), which turns Equation (6.6) into

A((℘(V )− b)(℘(V2)− b)− (a− b)(c− b))((℘(V1)− b)(℘(V12)− b)− (a− b)(c− b))
+B((℘(V )− a)(℘(V1)− a)− (b− a)(c− a))((℘(V2)− a)(℘(V12)− a)− (b− a)(c− a))

= ABC(a− b),

where

(a,A) =
(
℘(λ2

1), ℘′(λ2
1)
)
,

(b, B) =
(
℘(λ2

2), ℘′(λ2
2)
)
,

(c, C) =
(
℘(λ2

2 − λ2
1), ℘′(λ2

2 − λ2
1)
)
.

The continuum limit hierarchy is

v3 = −6v3
1℘(2v)− 3v2

11

2v1
+ v111 +

3

8v1

v5 = −90v5
1℘(2v)2 + 144v5

1℘(v)2 − 24v5
1℘
′′(v) +

60v3
1v11℘(2v)℘′′(v)

℘′(v)
− 60v3

1v11℘(v)℘′′(v)

℘′(v)

+ 60v3
1v11℘

′(v) + 15v1v
2
11℘(2v)− 30v2

1v111℘(2v) +
5

4
v1℘(2v)− 45v4

11

8v3
1

+
25v2

11v111

2v2
1

− 5v2
111

2v1
− 5v11v1111

v1
+ v11111 +

25v2
11

16v3
1

− 5v111

8v2
1

− 5

128v3
1...

and v2k = 0. As the first nontrivial equation we recognize the Krichever-Novikov equation
in its full generality. To simplify these equations we used the doubling formula for the
Weierstrass function,

℘(2v) = −2℘(v) +

(
℘′′(v)

2℘′(v)

)2

.

In Table 8.12, which gives an overview of the construction of a suitable discrete La-
grangian, a few additional functions and constants appear. These are the Weierstrass
functions σ and ζ, with the same periods as ℘, and the invariants g2 and g3 of the
℘-function. They satisfy

ζ =
σ′

σ
, g2 = 12℘2 − 2℘′′,

ζ ′ = −℘, g3 = −8℘3 + 2℘′′℘− (℘′)2.
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8. Limit hierarchies of the ABS equations

Additionally, for the series expansion of ψ we use

σ(z) =

∞∑

m,n=0

am,n

(g2

2

)m
(2g3)n

z4m+6n+1

(4m+ 6n+ 1)!
,

where the first coefficients are a0,0 = 1, a1,0 = −1, and a0,1 = −3. These and many more
identities involving the Weierstrass elliptic functions can be found in [1, Chapter 18].
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8.2. Type Q

Q = A((℘(V )− b)(℘(V2)− b)− (a− b)(c− b))
((℘(V1)− b)(℘(V12)− b)− (a− b)(c− b))

+B((℘(V )− a)(℘(V1)− a)− (b− a)(c− a))

((℘(V2)− a)(℘(V12)− a)− (b− a)(c− a))

−ABC(a− b),

Ψ(V,W, λ2) = log

(
σ(V +W + λ2)σ(V −W + λ2)

σ(V +W − λ2)σ(V −W − λ2)

)

ψ(v, v′, λ, µ) = log

(
σ(2v + λµ)σ(2λv′ + λµ)

σ(2v − λµ)σ(2λv′ − λµ)

)

=

(
2ζ(2v)λµ− 1

3
℘′(2v)λ3µ3 +

1

5
(℘(2v)℘′(2v))λ5µ5 + . . .

)

+

(
log(2v′ + µ)− g2(2λv′ + λµ)4

240
− g3(2λv′ + λµ)6

840
+ . . .

)

−
(

log(2v′ − µ)− g2(2λv′ − λµ)4

240
− g3(2λv′ − λµ)6

840
+ . . .

)

χ(v, v′, λ, µ) =
1

λ

(
2 log(σ(2v))λµ− 1

3
℘(2v)λ3µ3 − 1

10
℘(2v)2λ5µ5 + . . .

)

+

(
(2v′ + µ)(log(2v′ + µ)− 1)− g2(2λv′ + λµ)5

1200λ
+ . . .

)

−
(

(2v′ − µ)(log(2v′ − µ)− 1)− g2(2λv′ − λµ)5

1200λ
+ . . .

)

Λ(V,W, λ, µ) = 2 log(σ(V +W ))λµ− 1

3
℘(V +W )λ3µ3 − 1

10
℘(V +W )2λ5µ5 + . . .

+ (V −W + µλ)

(
log

(
V −W
λ

+ µ

)
− 1

)
− g2(V −W + λµ)5

1200
+ . . .

− (V −W − µλ)

(
log

(
V −W
λ

− µ
)
− 1

)
+
g2(V −W − λµ)5

1200
+ . . .

Table 8.12. Q4 fact sheet. See Section 8.2.1 for the meaning of these functions.
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8. Limit hierarchies of the ABS equations

L13 = 3v2
1℘(2v)− v3

4v1
+

4v2
11 + 1

16v2
1

L15 = 15v4
1℘(2v)2 − 24v4

1℘(v)2 + 4v4
1℘
′′(v)− 15

2
v2

11℘(2v)

− v2
111

4v2
1

− v5

4v1
+

48v4
11 − 40v2

11 − 1

256v4
1

+
5

8
℘(2v)

L35 = 45v6
1℘(2v)3 + 216v6

1℘(2v)℘(v)2 − 288v6
1℘(v)3 − 36v6

1℘(2v)℘′′(v)

+ 72v6
1℘(v)℘′′(v)− 36v6

1℘
′(v)2 − 18v4

1v11℘(2v)℘′(v) + 63
4 v

2
1v

2
11℘(2v)2

− 9
2v

3
1v111℘(2v)2 + 75

2 v
3
1v3℘(2v)2 − 54v2

1v
2
11℘(v)2 + 36v3

1v111℘(v)2 − 60v3
1v3℘(v)2

+ 9v2
1v

2
11℘
′′(v)− 6v3

1v111℘
′′(v) + 10v3

1v3℘
′′(v)− 135

16 v
2
1℘(2v)2 + 51

2 v
2
1℘(v)2

− 81
2 v

3
11℘
′(v) + 39v1v11v111℘

′(v)− 6v2
1v1111℘

′(v)− 15v1v11v3℘
′(v) + 3

4v
2
111℘(2v)

+ 27
2 v11v1111℘(2v)− 3

2v1v11111℘(2v)− 15v11v13℘(2v) + 15
2 v111v3℘(2v)

− 9
2v1v5℘(2v)− 17

4 v
2
1℘
′′(v) + 65

8 v11℘
′(v)− 5(132v211v111−12v211v3+7v111−v3)℘(2v)

16v1

− (144v41v11℘(2v)−144v41v11℘(v)+324v311−312v1v11v111+48v21v1111+120v1v11v3−65v11)℘(2v)℘′′(v)

8℘′(v)

− (−324v311+312v1v11v111−48v21v1111−120v1v11v3+65v11)℘(v)℘′′(v)

8℘′(v)

+
(7920v411−2040v211+15)℘(2v)

256v21

+
−v21111+v111v11111−2v111v113+2v1111v13−2v11v15−v11111v3+v111v5

4v21

− 28v3111−24v11v111v1111+12v211v11111+32v11v111v13−28v2111v3−24v11v1111v3+4v211v5−3v11111−v5
32v31

+
76v211v

2
111+24v311v1111+48v311v13−136v211v111v3−27v2111−6v11v1111−20v11v13+10v111v3

64v41

− 912v411v111−432v411v3−328v211v111+120v211v3+25v111−3v3
512v51

+
5(576v611−304v411+44v211−1)

4096v61

Table 8.13. Coefficients Lij for Q4, in the space spanned by odd-numbered times, after
eliminating alien derivatives.
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8.3. Type H

For quad equations of type H we do not have a general strategy to find a suitable form.
This has to be investigated on a case-by-case basis.

8.3.1. Lattice potential KdV (H1)

We would like write the lpKdV equation in terms of difference quotients. To achieve this,
we identify α1 = −λ−2

1 and α2 = −λ−2
2 . Then Equation (6.7) is equivalent to

U12 − U
λ1 + λ2

U2 − U1

λ2 − λ1
=

1

λ2
1λ

2
2

.

The left hand side is now a product of meaningful difference quotients, but the right
hand side explodes as the parameters tend to zero. (Setting αi = −λ2

i instead would
cause a contradiction in the leading order, just like in the first attempt of Section 7.4.)
To avoid this we make a nonautonomous change of variables

U(n1, . . . , nN ) = V (n1, . . . , nN ) +
n1

λ1
+ . . .

nN
λN

.

Then the lpKdV equation takes the form
(

1

λ1
+

1

λ2
+ V12 − V

)(
1

λ2
− 1

λ1
+ V2 − V1

)
=

1

λ2
2

− 1

λ2
1

. (8.11)

Up to a transformation of the paramters (usually p = ±λ−1
1 and q = ±λ−1

2 ), this is the
form in which the lpKdV equation is most commonly stated, see [60] for an overview.

To see that the necessary leading order cancellation occurs, we write the equation in
terms of difference quotients,

V12 − V
λ1 + λ2

− V2 − V1

λ2 − λ1
− λ1λ2

V12 − V
λ1 + λ2

V2 − V1

λ2 − λ1
= 0.

If we identify V = v(t1, . . .), Vi = v(t1 + cλi, . . .), etc., in the leading we find the tauto-
logical equation vt1 − vt1 = 0. The last equation is only stated to check the leading order
cancellation. Because the quotient V12−V

λ1+λ2
does not allow a double series expansion, we

use Equation (8.11) to calculate the continuum limit.
Again we use the Miwa correspondence (7.6) with c = −2. From Equation (8.11) we

find a double power series in λ1 and λ2,

∑

i,j

4(−1)i+j

ij
Fij [v]λi1λ

j
2 = 0,
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8. Limit hierarchies of the ABS equations

where Fji = −Fij . The first few of these coefficients are

F01 = v2,

F02 = −3v2
1 − v111 +

3

2
v12 + v3,

F03 = −8v1v11 − 4v1v2 −
4

3
v1111 +

4

3
v13 + v22 + v4,

F04 = −5v2
11 −

20

3
v1v111 − 10v1v12 − 5v11u2 −

5

4
v2

2 +
10

3
v1v3 − v11111

− 5

3
v1112 +

5

4
v122 +

5

4
v14 +

5

3
v23 + v5,

...

We see that the flows corresponding to even times are trivial. In the odd orders we find
the potential KdV equations,

v2 = 0,

v3 = 3v2
1 + v111,

v4 = 0,

v5 = 10v3
1 + 5v2

11 + 10v1v111 + v11111,
...

For i ≥ 1, the equations Fij = 0 are consequences of these equations.
A pluri-Lagrangian description of Equation (6.7) was found in [47], the Lagrange func-

tion itself goes back to [15]. It reads

L(U,Ui, Uj , Uij , αi, αj) = U(Ui − Uj)− (αi − αj) log(Ui − Uj).

Using Lemma 7.7, we see that this Lagrangian is equivalent to (denoted with “=” by
abuse of notation)

L(U,Ui, Uj , Uij , αi, αj) =
1

2
(U − Uij)(Ui − Uj) + (αi − αj) log(Ui − Uj).

In terms of V and λ it is (up to a constant)

L(V, Vi, Vj , Vij , λi, λj) =
1

2

(
V − Vij − λ−1

i − λ−1
j

)(
Vi − Vj + λ−1

i − λ−1
j

)

+
(
λ−2
i − λ−2

j

)
log

(
1 +

Vi − Vj
λ−1
i − λ−1

j

)
.

Lemma 8.3. L0(V, Vi, Vj , Vij , αi, αj) = (λ−1
i + λ−1

j )(Vi − Vj) + (λ−1
i − λ−1

j )(V − Vij) is
a null Lagrangian.
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8.3. Type H

Proof. Consider the discrete 1-form η defined by η(V, Vi, λi) = λ−1
i (V + Vi), hence by

skew-symmetry η(Vi, V, λi) = −λ−1
i (V + Vi). Its discrete exterior derivative is

∆η(V, Vi, Vij , Vj , λi, λj) =
V + Vi
λi

+
Vi + Vij
λj

− Vij + Vj
λi

− Vj + V

λj
= L0.

Lemma 8.3 implies that L is equivalent to

L(V, Vi, Vj , Vij , λi, λj) =
1

2

(
V − Vij − 2λ−1

i − 2λ−1
j

)
(Vi − Vj)

+
(
λ−2
i − λ−2

j

)
log

(
1 +

Vi − Vj
λ−1
i − λ−1

j

)
.

(8.12)

To see why this Lagrangian is preferable, do a first order Taylor expansion of the log-
arithm and admire the cancellation. Thanks to this cancellation we avoid terms of
nonpositive order in the series expansion.

Applying the Miwa correspondence (7.6) with c = −2, a Taylor expansion, and the
Euler-Maclaurin formula to the Lagrangian (8.12), we obtain a power series

LMiwa([v], λ1, λ2) =
∞∑

ij=1

4(−1)i+j

ij
Lij [v]λi1λ

j
2,

whose coefficients define a continuous pluri-Lagrangian 2-form for the KdV hierarchy.
The first row of coefficients reads:

L12 = v1v2,

L13 = −2v3
1 − v1u111 +

3

4
v2

2 + v1v3,

L14 = −4v2
1v2 −

4

3
v1v112 −

2

3
v11v12 −

2

3
v111v2 +

4

3
v2v3 + v1v4,

L15 =
10

3
v1v

2
11 −

5

2
v1v

2
2 −

10

3
v2

1v3 +
5

9
v11v1111 +

1

9
v1v11111 −

10

9
v1v113 −

5

6
v2

12

− 5

12
v1v122 −

5

9
v11v13 −

5

6
v112v2 −

5

12
v11v22 −

5

9
v111v3 +

5

9
v2

3 +
5

4
v2v4 + v1v5,

...

Note that we can get rid of the alien derivatives in each L1j by adding a total derivative
Dt1cj and discarding terms that have a double zero on solutions. To make sure we get an
equivalent Lagrangian 2-form, we also add Dticj to the coefficients Lij , which amounts
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8. Limit hierarchies of the ABS equations

L12 = v1v2

L13 = −2v3
1 − v1v111 + v1v3

L14 = v1v4

L15 = −5v4
1 + 10v1v

2
11 − v2

111 + v1v5

L23 = −3v2
1v2 − v1v112 + v11v12 − v111v2

L24 = 0

L25 = −10v3
1v2 + 20v1v11v12 − 5v2

11v2 − 10v1v111v2 − 2v111v112 + 2v1111v12 − v11111v2

L34 = 3v2
1v4 + v1v114 − v11v14 + v111v4

L35 = 6v5
1 − 15v2

1v
2
11 + 20v3

1v111 − 10v3
1v3 + 7v2

11v111 + 6v1v
2
111 − 12v1v11v1111

+ 3v2
1v11111 + 20v1v11v13 − 5v2

11v3 − 10v1v111v3 + 3v2
1v5 − v2

1111

+ v111v11111 − 2v111v113 + v1v115 + 2v1111v13 − v11v15 − v11111v3 + v111v5

L45 = −10v3
1v4 + 20v1v11v14 − 5v2

11v4 − 10v1v111v4 − 2v111v114 + 2v1111v14 − v11111v4

Table 8.14. Coefficients Lij for H1, after eliminating alien derivatives.

to adding the exact form d
(∑

j cjdtj

)
to L. In this particular example we take

∑

j

cjdtj =

(
4

3
v1v12 −

2

3
v11v2

)
dt4

+

(
10

3
v2

1v11 −
4

9
v11v111 −

1

9
v1v1111 +

10

9
v1v13 +

5

12
v1v22 −

5

9
v11v3

)
dt5

+ . . . .

Now that we have disposed of the alien derivatives in the L1j , we can use Theorem 7.6 to
eliminate the remaining alien derivatives in all other Lij . For i < j ≤ 5, the coefficients
obtained this way are displayed in Table 8.14.

Again we can restrict the pluri-Lagrangian formulation to a space of half the dimension:
the 2-form

∑

i<j

L2i+1,2j+1 dt2i+1 ∧ dt2j+1

154



8.3. Type H

is a pluri-Lagrangian structure for the hierarchy of nontrivial pKdV equations,

v3 = 3v2
1 + v111,

v5 = 10v3
1 + 5v2

11 + 10v1v111 + v11111,
...

8.3.2. H2

No continuum limit for this equation is known. In this subsection we give a heuristic
explanation of the obstruction one encounters when trying to pass to the continuum
limit.

After the change of parameters αi = λ2
i , the equation H2 reads

(U − U12)(U1 − U2) + (λ2
2 − λ2

1)(U + U1 + U2 + U12) + λ4
2 − λ4

1 = 0. (8.13)

A tempting trick would be to change the sign of the field at every other vertex, V (n,m) =
(−1)n+mU(n,m). The resulting equation

−(V − V12)(V1 − V2)± (λ2
2 − λ2

1)(V − V1 − V2 + V12) + λ4
2 − λ4

1 = 0.

has a suitable power series expansion, but the sign of the second term depends on the
location in the lattice. In other words, the equation has become nonautonomous. Though
there should not be any fundamental objection to this, the pluri-Lagrangian theory for
nonautonomous systems has not yet been developed. We mark this as a topic for future
research.

Of course the fact that one particular change of variables fails does not imply that
there is no continuum limit. A better perspective on the issue is given by background
solutions. When the zero field U ≡ 0 is a solution to the quad equation, as was the case
for H1 in the form of Equation (8.11), the continuum limit assumes the field to be small
compared to the inverse of the parameters. Fast growth of the field could lead to mixing
of orders in the power series expansion, which must be avoided. If U ≡ 0 is not a solution,
as is the case for Equation (8.13), one can look for a different simple and well-behaved
solution to expand around. Such solutions are known as background solutions. There
are two kinds of background solutions for H2 that treat both lattice directions in the
same way [37]:

U(n,m) = (λ1n+ λ2m+ c)2

and

U(n,m) =

(
1

2
(−1)nλ1 +

1

2
(−1)mλ2 + c

)2

.

Expanding around either of these solutions is equivalent to expanding around 0 after a
nonautonomous changes of variables. As in our first attempt above, and unlike in the
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8. Limit hierarchies of the ABS equations

case of H1, these changes of variables make the equation nonautonomous. Lacking the
corresponding pluri-Lagrangian theory, we do not consider these to be suitable candidates
for the continuum limit.

Since we know a form of equation Q2 which is suitable for the continuum limit, we
could also try to use the degeneration from Q2 to H2 [62] to find a suitable formulation
of H2. This too runs into the problem of nonautonomy. If we start with a well-behaved
solution of Q2, the transformed solution of H2 will be nonautonomous. In particular,
one can see in [62, Equation (5.22)] that the plane wave factors pick up an alternating
factor (−1)n+m in this degeneration. Trying to expand around such a solution will again
yield a nonautonomous quad equation.

8.3.3. H3δ=0

We start from the transformed version of H3 given by Equation (6.10). With δ = 0 it
reads

λ1(UU1 − U2U12)− λ2(UU2 − U1U12) = 0. (8.14)

If one would start instead from Equation (6.9), with plus signs within the parentheses,
there seems to be little hope of performing the continuum limit. The continuum limit of
Equation (8.14) can be taken immediately. We find

u2 = 0,

u3 = u111 − 3
u1u11

u
,

u4 = 0,

u5 = −10
u3

1u11

u3
+ 10

2u1u
2
11 + u2

1u111

u2
− 5

2u11u111 + u1u1111

u
+ u11111,

...

However, we run in to trouble on the Lagrangian level. The Lagrangian given in [47] for
H3, adapted to the case δ = 0, is

L =
1

2
log

(
UU1

λ1

)2

− 1

2
log

(
UU2

λ2

)2

+ Li2

(
λ2U1

λ1U2

)
− Li2

(
λ1U1

λ2U2

)

+ 2( log(λ1)− log(λ2)) log(U) + 2 log(λ2)( log(U1)− log(U2)),

where Li2 is the dilogarithm function. Unfortunately, the occurrence of expressions like
log(λi) prohibits a power series expansion in the parameters λi.

In order to find a better form of H3δ=0, with an expandable Lagrangian, we make the
transformation U = exp

(
i
2V
)
. Then Equation (8.14) turns in to

λ1

(
e
i
2

(V+V1) − e i2 (V2+V12)
)
− λ2

(
e
i
2

(V+V2) − e i2 (V1+V12)
)

= 0.
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8.3. Type H

Multiplying with exp
(
− i

4(V + V1 + V2 + V12)
)
turns this into

λ1 sin

(
1

4
(V + V1 − V2 − V12

)
− λ2 sin

(
1

4
(V − V1 + V2 − V12

)
= 0, (8.15)

which is the form in which H3δ=0 arises from Bäcklund transformations for the Sine
Gordon equation [38, p60]. Additionally, it is only a simple transformation removed
from the discrete Sine-Gordon equation of Hirota [40]. Using standard trigonometric
identities we can rewrite the equation as

(λ1 − λ2) tan

(
V12 − V

4

)
− (λ1 + λ2) tan

(
V1 − V2

4

)
= 0,

which we can put in a three-leg form by inspection:

arctan

(
λ1 + λ2

λ1 − λ2
tan

(
V1 − V2

4

))
=
V12 − V1

4
− V − V1

4
.

From the three-leg form we can derive a Lagrangian as in [10]. It takes the implicit form

L =
1

8
(V1 − V )2 − 1

8
(V2 − V )2 − Iλ1,λ2(V1 − V2),

where

Iλ1,λ2(x) =

∫ x

0
arctan

(
λ1 + λ2

λ1 − λ2
tan
(y

4

))
dy.

There is no need to evaluate this integral exactly. Instead one can expand the integrand
as a power series up to any desired order in y and integrate this series. This is sufficient to
write L as a power series up to the corresponding order in the parameters λi. A leading
order calculation shows that this power series does not contain any terms of nonpositive
order in either of the parameters.

In the continuum limit of Equation (8.15) we find the potential modified KdV hierarchy,

v2 = 0,

v3 = v111 +
1

2
v3

1,

v4 = 0,

v5 =
3

8
v5

1 +
5

2
v1v

2
11 +

5

2
v2

1v111 + v11111,
...

Some coefficients of the pluri-Lagrangian 2-form are given in Table 8.15.
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8. Limit hierarchies of the ABS equations

L13 =
1

16
v4

1 +
1

4
v1v111 −

1

4
v1v3

L15 =
1

32
v6

1 −
5

24
v2

1v
2
11 +

5

36
v3

1v111 +
5

36
v2

111 −
5

36
v11v1111 −

1

36
v1v11111 −

1

4
v1v5

L35 = − 3

256
v8

1 +
5

32
v4

1v
2
11 −

7

32
v5

1v111 +
3

32
v5

1v3 +
1

16
v4

11 −
7

8
v1v

2
11v111

− 3

8
v2

1v
2
111 +

3

4
v2

1v11v1111 −
1

8
v3

1v11111 +
5

36
v3

1v113 −
5

6
v2

1v11v13 +
5

8
v1v

2
11v3

+
5

8
v2

1v111v3 −
1

8
v3

1v5 +
1

4
v2

1111 −
1

4
v111v11111 −

1

36
v1v11113 −

1

9
v11v1113

+
7

18
v111v113 −

1

4
v1v115 −

19

36
v1111v13 +

1

4
v11v15 +

1

4
v11111v3 −

1

4
v111v5

Table 8.15. Coefficients Lij for H3δ=0, in the space spanned by odd-numbered times,
after eliminating alien derivatives.

8.3.4. H3δ=1

Due to difficulties analogous to those of H2, no continuum limit is known for H3δ=1. In
particular, the transformation U(n,m) 7→ in+mU(n,m) turns H3 into a nonautonomous
equation if δ 6= 0. Hence for H3 with nonzero parameter it seems impossible to get the
convenient minus signs in the parentheses as in Equation (8.14).
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8.4. Comments and connections

8.4.1. About the even-numbered times

In all the examples from this chapter, only the odd-numbered times have nontrivial equa-
tions associated to them. This is consistent with several purely continuous descriptions
of integrable hierarchies. From the perspective of continuum limits, it follows from the
fact that for all equations we dealt with, Q is an even or odd function of the parameters.

Proposition 8.4. If the difference equation Q = 0 satisfies

Q(U,U1, U2, U12, λ1, λ2) = ±Q(U,U1, U2, U12,−λ1,−λ2)

then the continuum limit hierarchy is invariant under simultaneous reversal of all even-
numbered times, t2k 7→ −t2k.
Proof. Due to the symmetry assumptions on Q, we have

Q(U,U1, U2, U12, λ1, λ2) = ±Q(U12, U2, U1, U,−λ1,−λ2).

Let u(t1, t2, . . .) be a solution to the continuum limit equations. Then

Q

(
u(t1, t2, . . .),u

(
t1 + cλ1, t2 − cλ

2
1

2 , . . .
)
, u
(
t1 + cλ2, t2 − cλ

2
2

2 , . . .
)
,

u
(
t1 + cλ1 + cλ2, t2 − cλ

2
1

2 − c
λ22
2 , . . .

)
, λ1, λ2

)
= 0

(8.16)

Now consider the same equation at times shifted once in both lattice directions, τi =

ti + (−1)i+1c
(
λi1
i +

λi2
i

)
. Due to the symmetry of Q we have that

Q

(
u(τ1, τ2, . . .),u

(
τ1 − cλ1, τ2 + c

λ21
2 , . . .

)
, u
(
τ1 − cλ2, τ2 + c

λ22
2 , . . .

)
,

u
(
τ1 − cλ1 − cλ2, τ2 + c

λ21
2 + c

λ22
2 , . . .

)
,−λ1,−λ2

)
= 0

Introducing the parameters µ1 = −λ1 and µ2 = −λ2 we find

Q

(
u(τ1, τ2, . . .),u

(
τ1 + cµ1, τ2 + c

µ21
2 , . . .

)
, u
(
τ1 + cµ2, τ2 + c

µ22
2 , . . .

)
,

u
(
τ1 + cµ1 + cµ2, τ2 + c

µ21
2 + c

µ22
2 , . . .

)
, µ1, µ2

)
= 0.

(8.17)

Comparing Equations (8.16) and (8.17), we immediately see that their series expansions
in λ1, λ2 respectively µ1, µ2 only differ by a minus sign for each derivative with respect
to an even-numbered time t2k. In other words, if we have a solution u to the continuum
limit hierarchy, then reversing all even times gives a new solution.
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8. Limit hierarchies of the ABS equations

Corollary 8.5. If the continuum limit hierarchy of the difference equation Q = 0, as in
Proposition 8.4, consists of evolutionary equations uk = fk(u, u1, u11, . . .), then for all
even k we have fk = 0.

Unfortunately, as we will see in Chapter 9, there are situations where the continuum
limit contains PDEs that are not evolutionary. Here we will see a different pattern of
trivial equations. This pattern can be understood in the framework of reductions of
the lattice KP system [27, 28], or in the context of pseudodifferential operators for the
Gelfand-Dickey hierarchy. The latter will be briefly discussed in Chapter 9.

8.4.2. The double continuum limit of Wiersma and Capel

In [94] Wiersma and Capel presented a continuum limit of the equation

(p+ q + U112 − U)(p− q + U12 − U1) = p2 − q2,

which is equivalent to lpKdV equation (8.11) under the transformation

U(n,m) = V (n−m,m)

and with p = λ−1
1 and q = λ−1

2 . Their procedure consists of two steps. First they obtain
a hierarchy of differential-difference equations. A second continuum limit, applied to
any single equation of this hierarchy, then yields the potential KdV hierarchy. Some
ideas concerning this limit procedure were already developed in [64, 73]. Here we will
summarize both limits in one step.

The limit procedure from [94] uses the lattice parameters ν = q − p and p itself.
Consider an interpolating function u. If

U(n,m) = V (n−m,m) = v(t1, t3, t5, . . .),

then after the double limit of [94], lattice shifts correspond to multi-time shifts as follows:

U1 = v

(
t1 −

2

p
, t3 −

2

3p3
, t5 −

2

5p5
, . . .

)

and

U2 = v

(
t1 + ν

2

p2
− ν2

2

2

p3
+
ν3

3

2

p4
− . . . , t3 + ν

2

p4
− ν2

2

4

p5
+
ν3

3

20

3p6
− . . . ,

t5 + ν
2

p6
− ν2

2

6

p7
+
ν3

3

14

p8
− . . . , . . .

)
.
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The series occurring here can be recognized as Taylor expansions:

U2 = v

(
t1 −

(
2

p+ ν
− 2

p

)
, t3 −

1

3

(
2

(p+ ν)3
− 2

p3

)
,

t5 −
1

5

(
2

(p+ ν)5
− 2

p5

)
, . . .

)
.

Going back to the straight lattice coordinates and the original lattice parameters p and
q = p+ ν, we find

V2 = U12 = v

(
t1 −

2

q
, t3 −

2

3q3
, t5 −

2

5q5
, . . .

)
,

V1 = U1 = v

(
t1 −

2

p
, t3 −

2

3p3
, t5 −

2

5p5
, . . .

)
.

Hence the end result of the double limit of Wiersma and Capel is the same as the limit
we obtain using the odd-numbered Miwa variables only.

The paper [94] also presents a continuum limit for the lattice modified KdV equation.
Its treatment is analogous to that of the nonmodified version. In particular, it is related
to our approach in the same way.

8.4.3. The generating PDE of Nijhoff, Hone, and Joshi

Nijhoff, Hone, and Joshi [61] introduced a nonautonomous PDE for a function zn,m(t, s)
depending on a pair of continuous variables (s, t), and a pair of parameters (m,n). They
noted that the flow of this PDE in continuous (s, t)-coordinates commutes with the
difference equations

(zn,m − zn+1,m)(zn,m+1 − zn+1,m+1)

(zn,m − zn,m+1)(zn+1,m − zn+1,m+1)
=
s

t
. (8.18)

Equation (8.18) is nothing but equation Q1δ=0. Hence it is possible to switch between
the continuous and discrete picture by reversing the roles of parameters and independent
variables.

The main feature of the PDE in question is that it generates the SKdV hierarchy1

through the identification

zn,m(t, s) = v

(
x1 +

2n

t
1
2

+
2m

s
1
2

, x3 +
2n

3t
3
2

+
2m

3s
3
2

, . . . ,

x2j+1 +
2n

(2j + 1)t
2j+1

2

+
2m

(2j + 1)s
2j+1

2

, . . .

)
.

(8.19)

1Note that there is an error in the second SKdV equation as stated in [61]: the Lagrangian is missing
the term −z2x2/z

2
x1 at the corresponding order and in the equation itself the factor 2 of the first term

should be removed.
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8. Limit hierarchies of the ABS equations

Because of this it has become known as the generating PDE [47, 96] for the SKdV
hierarchy. Renaming the parameters t = λ2

1 and s = λ2
2 we obtain once again the odd

order Miwa shifts

zn,m = v

(
x1 +

2n

λ1
+

2m

λ2
, x3 +

2n

3λ3
1

+
2m

3λ3
2

, . . . ,

x2j+1 +
2n

(2j + 1)λ2j+1
1

+
2m

(2j + 1)λ2j+1
2

, . . .

)
,

hence our continuum limit of Q1δ=0 is implicitly present in [61]. The relation between the
(nonautonomous) generating PDE, the quad equation, and the hierarchy of (autonomous)
PDEs is illustrated in the following diagram:

Generating PDE for zn,m(t, s)

Quad equation (8.18) SKdV hierarchy

role reversal (n,m)↔ (t, s) expansion by (8.19)

continuum limit
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The material in this chapter has not yet been pub-
lished.

The computations in this chapter were performed
in the SageMath software system [83]. The code
is available at https://github.com/mvermeeren/
pluri-lagrangian-clim.

There are many integrable lattice equations that do not fit in the ABS list. There are 1-
dimensional equations, i.e. integrable maps, like the discrete toda Lattice, and equations
of dimension greater than two, for example the lattice KP systems. There are also
lattice equations on a larger stencil and multi-component systems, both of which we
will encounter in this chapter, where we study continuum limits of a few Gelfand-Dickey
(GD) equations. The continuous GD hierarchy can be seen as a hierarchy of hierarchies,
the first two of which are the KdV and the Boussinesq hierarchy. For each continuous
GD hierarchy there is a corresponding lattice equation.

9.1. Continuous GD hierarchies

The Gelfand-Dickey hierarchies can be constructed by considering a differential operator

LN = ∂N + φ[N−2]∂N−2 + φ[N−3]∂N−3 + . . .+ φ[1]∂ + φ[0],

where ∂ acts on a function as ∂f = fx + f∂. The letter L is the usual choice for this
operator, honoring Peter Lax. It is not to be confused with a Lagrangian. By pairing
LN with a suitable operator PN,k we can form a Lax representation

d

dtk
LN = [PN,k, LN ]

of a system of equations for the fields φ[0], . . . , φ[N−2]. Of course this only works if the
commutator is of the form

[PN,k, LN ] = ∂N + fN−2∂
N−2 + fN−3∂

N−3 + . . .+ f1∂ + f0,
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9. Gelfand-Dickey hierarchies

which is not the case for a generic operator P .
Suitable operators PN,k can be constructed using pseudodifferential operators, which

are formal series of the form
N∑

i=−∞
fi∂

i

The powers of ∂ satisfy a generalized Leibniz rule,

∂kf =
∞∑

i=0

(
k

i

)
fxi∂

k−i,

where we have for negative as well as positive k that
(
k
i

)
= k(k−1)...(k−i+1)

i! . In the ring
of pseudodifferential operators, it is possible to consider the N -th root of LN ,

L
1/N
N = ∂ +

1

N
φ[N−2]∂−1 + · · · .

Then PN,k is defined as the nonnegetive order part of Lk/NN ,

PN,k =

((
L

1/N
N

)k)

+

,

i.e. the differential operator obtained by deleting all terms with negative powers of ∂
from L

k/N
N .

This construction does not give a nontrivial equation for all k. For k = 1 we find
PN,1 = ∂, which leads to the identification of x and t1:

d

dt1
LN = [∂, LN ] = φ[N−2]

x ∂N−2 + φ[N−3]
x ∂N−3 + . . .+ φ[1]

x ∂ + φ[0]
x =

d

dx
LN .

Furthermore, if k is a multiple of N , then PN,k is a power of LN and the commutator
[PN,k, LN ] vanishes. Hence the equations corresponding to such tk are trivial.

• For N = 2 we find the Schrödinger operator L2 = ∂2 + φ. Its square root is

L
1/2
2 = ∂ +

1

2
φ∂−1 − 1

4
φx∂

−2 + · · · .

The first operator P which leads to a nontrivial equation is

P2,3 =
(
L

3/2
2

)
+

= ∂3 +
3

2
φ∂ +

3

4
φx.

We find
φt3 = [P2,3, L2] =

1

4
φxxx +

3

2
φφx,

which is the KdV equation. With the operators (P2,2k+1)k∈N we recover the whole
KdV hierarchy.
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9.1. Continuous GD hierarchies

• For N = 3 we have L3 = ∂3 + φ∂ + χ and

L
1/3
3 = ∂ +

1

3
φ∂−1 + · · · .

In this case the first relevant operator is

P3,2 =
(
L

2/3
3

)
+

= ∂2 +
2

3
φ.

We find
[P3,2, L3] = (2χx − φxx)∂ + χxx −

2

3
φφx −

2

3
φxxx,

hence

φt2 = 2χx − φxx,

χt2 = χxx −
2

3
φφx −

2

3
φxxx.

We can eliminate χ to find a single second order equation

φt2t2 = −1

3
φxxxx −

4

3
φ2
x −

4

3
φφxx, (9.1)

which is the Boussinesq equation.

• For N = 4 we have L4 = ∂4 + φ∂2 + χ∂ + ψ, hence

L
1/4
4 = ∂ +

1

4
φ∂−1 + · · ·

and
P4,2 =

(
L1/2

)
+

= ∂2 +
1

2
φ.

The commutator is

[P4,2, L4] = (2χx − 2φxx)∂2 + (χxx + 2ψx − 2φxxx − φφx)∂

+ ψxx −
1

2
φxxxx −

1

2
φφxx −

1

2
χφx,

yielding the system of PDEs

φt2 = 2χx − 2φxx, (9.2)
χt2 = χxx + 2ψx − 2φxxx − φφx, (9.3)

ψt2 = ψxx −
1

2
φxxxx −

1

2
φφxx −

1

2
χφx. (9.4)

More on pseudodifferential operators and the continuous GD hierarchy can be found
for example in the book [23] or in the lecture notes [9] (which are mostly based on the
former).
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9. Gelfand-Dickey hierarchies

9.2. Discrete GD hierarchy

A discrete counterpart of the Gelfand-Dickey hierarchy was introduced in [65], its pluri-
Lagrangian structure in [48]. The N -th member of the hierarchy is a system of quad equa-
tions with 2N − 3 components, which we denote by V [1], . . . , V [N−2], W [1], . . . ,W [N−2],
and U = V [0] = W [0]. The equations are

V
[j+1]

2 − V [j+1]
1 =

(
1

λ1
− 1

λ2
+ U2 − U1

)
V

[j]
12 −

1

λ1
V

[j]
2 +

1

λ2
V

[j]
1 , (9.5)

W
[j+1]
2 −W [j+1]

1 = −
(

1

λ1
− 1

λ2
+ U2 − U1

)
W [j] − 1

λ2
W

[j]
2 +

1

λ1
W

[j]
1 , (9.6)

for j = 0, . . . , N − 3, and

V
[N−2]

12 −W [N−2] =

1
λN1
− 1

λN2
1
λ1
− 1

λ2
+ U2 − U1

− γN−1 +
N−3∑

i=0

N−3−i∑

j=0

γN−3−i−jV
[j]

12 W
[i]

−
N−3∑

j=0

γN−2−j(V
[j]

12 −W [j]),

(9.7)

where

γj = (−1)j

(
1

λj1
+

1

λj−1
1 λ2

+ . . .+
1

λ1λ
j−1
2

+
1

λj2

)
.

Equation (9.7) is presented here in the form it appeared in [48].
It is important to note that the variables V [N−2] and W [N−2] can be eliminated. The

reduced system consists of equations (9.5)–(9.6) for j = 0, . . . , N − 4 and the 9-point
equation

(
1

λ1
− 1

λ2
+ U122 − U112

)
V

[N−3]
1122 − 1

λ1
V

[N−3]
122 +

1

λ2
V

[N−3]
112

+

(
1

λ1
− 1

λ2
+ U2 − U1

)
W [N−3] +

1

λ2
W

[N−3]
2 − 1

λ1
W

[N−3]
1

=

1
λN1
− 1

λN2
1
λ1
− 1

λ2
+ U22 − U12

+
N−3∑

i=0

N−3−i∑

j=0

γN−3−i−j(V
[j]

122W
[i]
2 − V

[j]
112W

[i]
1 )

−
1
λN1
− 1

λN2
1
λ1
− 1

λ2
+ U12 − U11

−
N−3∑

j=0

γN−2−j(V
[j]

122 −W
[j]
2 − V

[j]
112 +W

[j]
1 ),

(9.8)

obtained by evaluating V [N−2]
122 −W [N−2]

2 − V [N−2]
112 +W

[N−2]
1 once with Equations (9.5)–

(9.6) and once with Equation (9.7).
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9.2. Discrete GD hierarchy

The Lagrangian given in [48] for the N -th lattice Gelfand-Dickey equation is

L = (−1)N+1
(

1
λN1
− 1

λN2

)
log
(

1
λ1
− 1

λ2
− U1 + U2

)

− γN−1(U2 − U1)−
N−2∑

j=0

γN−2−j(U2 − U1)V
[j]

12

−
N−2∑

j=1

N−2−j∑

i=0

γN−2−i−jW [i]

·
(
V

[j]
2 − V

[j]
1 −

(
1
λ1
− 1

λ2
− U1 + U2

)
V

[j−1]
12 + 1

λ1
V

[j−1]
2 − 1

λ2
V

[j−1]
1

)
.

Or, rearranging terms,

L = (−1)N+1
(

1
λN1
− 1

λN2

)
log
(

1
λ1
− 1

λ2
− U1 + U2

)
− γN−1(U2 − U1)

−
N−2∑

j=0

γN−2−j(U2 − U1)V
[j]

12 −
N−2∑

j=1

N−2−j∑

i=0

γN−2−i−jW [i]
(
V

[j]
2 − V

[j]
1

)

+

N−3∑

j=0

N−3−j∑

i=0

γN−3−i−jW [i]
((

1
λ1
− 1

λ2
− U1 + U2

)
V

[j]
12 − 1

λ1
V

[j]
2 + 1

λ2
V

[j]
1

)
.

Note that this Lagrangian depends on the field V [N−2] but not on W [N−2]. A more
symmetric equivalent Lagrangian is obtained by adding the exact discrete differential
form

−UV [N−2]
1 − U1V

[N−2]
12 + U2V

[N−2]
12 + UV

[N−2]
2 = ∆

(
−UV [N−2]

i

)
,

which does not change the Euler-Lagrange equations (see Proposition 6.5). The resulting
Lagrangian does not depend on V [N−2] either,

L = (−1)N+1
(

1
λN1
− 1

λN2

)
log
(

1
λ1
− 1

λ2
− U1 + U2

)
− γN−1(U2 − U1)

−
N−3∑

j=0

γN−2−j(U2 − U1)V
[j]

12 −
N−3∑

j=1

N−2−j∑

i=0

γN−2−i−jW [i]
(
V

[j]
2 − V

[j]
1

)

+

N−3∑

j=0

N−3−j∑

i=0

γN−3−i−jW [i]
((

1
λ1
− 1

λ2
− U1 + U2

)
V

[j]
12 − 1

λ1
V

[j]
2 + 1

λ2
V

[j]
1

)
.

(9.9)

Now that both variables V [N−2] and W [N−2] are absent from the Lagrangian, it becomes
clear that the variational formulation does not produce the quad version of the Equation
(9.5)–(9.7), but rather the 9-point version (9.8). In particular this means that, from the
Lagrangian perspective, the scalar form of the Boussinesq equation (N = 3) is the most
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9. Gelfand-Dickey hierarchies

natural. The first truly multi-component Lagrangian equation of the hierarchy is found
for N = 4. The continuum limit of this equation will allow us to formulate a continuous
multi-component pluri-Lagrangian system.

Note that the Lagrangian (9.9) depends on fields on a single quad and on the cor-
responding lattice parameters. Hence it fits the pluri-Lagrangian theory. The multi-
dimensional consistency of the equations can either be checked as consistency around an
elementary cube for the quad version of the equation, or in a 27-point cube for the 9-point
formulation. For the Boussinesq equation the former was explicitly done in [86] and the
latter was numerically verified in [93, Section 5.7]. The multidimensional consistency also
follows from the construction of the GD hierarchy using the direct linearization method
[65]. In this construction, lattice shifts are identified with Bäcklund transformations,
hence the permutability property implies multidimensional consistency.

9.3. Continuum limit of the lattice Boussinesq equation
(GD3)

We consider the lattice Boussinesq equation in its 9-point scalar form, i.e. Equation (9.8)
for N = 3,

1
λ31
− 1

λ32
1
λ1
− 1

λ2
+ U12 − U11

−
1
λ31
− 1

λ32
1
λ1
− 1

λ2
+ U22 − U12

− U2U122 + U1U112

+

(
1

λ1
− 1

λ2
+ U122 − U112

)
U1122 +

(
1

λ1
− 1

λ2
+ U2 − U1

)
U

−
(

2

λ1
+

1

λ2

)
(U1 + U122) +

(
1

λ1
+

2

λ2

)
(U2 + U112) = 0.

For this equation we use the Miwa correspondence (7.6) with c = −3. As always, we
perform a double series expansion of the lattice equation,

∞∑

i,j=0

Fijλi1λj2 = 0.

The first column of coefficients of this expansion is

F00 = 0,

F10 = 18v1v11 − 9
2v1111 − 3

2v22,

F20 = 81v2
11 + 81v1v111 − 81

4 v11111 − 27
4 v122 − 3v23,

F30 = −108v2
1v11 + 648v11v111 + 243v1v1111 + 54v1v112 + 54v11v12 − 18v12v2

− 9v1v22 − 54v111111 − 27
2 v11112 − 9v1122 − 12v123 − 9

2v222 − 3v24 − 4
3v33,
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9.3. Continuum limit of the lattice Boussinesq equation (GD3)

F40 = −810v1v
2
11 − 405v2

1v111 − 135v2
1v12 − 135v1v11v2 + 1215v2

111 + 6885
4 v11v1111

+ 2025
4 v1v11111 + 675

2 v1v1112 + 1215
2 v11v112 + 45v1v113 + 675

2 v111v12

− 135
2 v2

12 − 135
4 v1v122 + 45v11v13 + 135

4 v1111v2 − 135
2 v112v2 − 15v13v2

− 135
4 v11v22 − 45

4 v2v22 − 15v1v23 − 15v12v3 − 405
4 v1111111 − 621

8 v111112

− 45
4 v11113 − 15v1123 − 135

8 v1222 − 45
4 v124 − 5v133 − 45

4 v223 − 3v25 − 5
2v34,...

From F10 = 0 we get the equation

v22 = 12v1v11 − 3v1111.

Using this equation we get v23 = 0 from F20 = 0. We take the liberty of integrating this
without a constant and take v3 = 0 as the second equation in the hierarchy. We can
proceed iteratively and at each step integrate with respect to t2 to find the hierarchy

v22 = 12v1v11 − 3v1111,

v3 = 0,

v4 = −6v1v2 + 3v112,

v5 = −15v3
1 +

135

4
v2

11 + 45v1v111 −
15

4
v2

2 − 9v11111,
...

The first equation of the hierarchy is the potential Boussinesq equation. We observe
that every third equation is trivial, v3k = 0, as expected from the construction of the
hierarchy using pseudodifferential operators. Note that in this hierarchy all equations
except the first are evolutionary, analogous to the Toda hierarchy of ODEs.

The Lagrangian is

L(U,U1, U2, U12, λ1, λ2) =

(
1

λ3
1

− 1

λ3
2

)
log

(
1

λ1
− 1

λ2
− U1 + U2

)

−
(

1

λ2
1

+
1

λ1λ2
+

1

λ2
2

)
(U2 − U1) +

(
1

λ1
+

1

λ2

)
(U2 − U1)U12

+

(
1

λ1
− 1

λ2
+ U2 − U1

)
UU12 −

1

λ1
UU2 +

1

λ2
UU1.

In order to get the necessary leading order cancellation, we add the following terms to
the Lagrangian,

1

2

(
1

λ1
UU1 +

1

λ2
U1U12 −

1

λ1
U2U12 −

1

λ2
UU2

)
+

1

3
(U3

1 − U3
2 )

+
1

4

(
1

λ1
(U2

1 − U2) +
1

λ2
(U2

12 − U2
1 ) +

1

λ1
(U2

2 − U2
12) +

1

λ2
(U2 − U2

2 )

)
.
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L12 = 2v3
1 + v2

11 − 3
4v

2
2

L13 = −3
2v2v3

L14 = −4v4
1 − 12v1v

2
11 + 6vv12v2 − 4

3v
2
111 − v2

12 − 3
2v2v4

L15 = −10v3
1v2 + 10v2

1v112 − 5v2
11v2 − 5

4v
3
2 + 8

3v11v1112 − 3
2v2v5

L23 = −6v2
1v3 − 2v11v13 + 2v111v3

L24 = −16v3
1v2 − 8v1v11v12 − 4v2

11v2 + 8v1v111v2 + 2v3
2 + 6vv2v22

− 6v2
1v4 − 8

3v111v112 − 2v11v14 − 2v12v22 + 2v111v4

L25 = −16v5
1 + 60v2

1v
2
11 + 40

3 v
3
1v111 − 15v2

1v
2
2 + 4

3v
2
11v111 − 8

3v1v
2
111 − 64

3 v1v11v1111

+ 10v1v
2
12 + 10v2

1v122 − 10v11v12v2 + 5v111v
2
2 − 20v1v11v22 − 6v2

1v5

+ 16
9 v

2
1111 + 4

3v
2
112 + 8

3v11v1122 − 8
3v111v122 − 2v11v15 + 8

3v1111v22 + 2v111v5

L34 = −16v3
1v3 − 24v1v11v13 + 6vv2v23 + 12v2

11v3 + 24v1v111v3

− 8
3v111v113 + 8

3v1111v13 − 2v12v23 − 8
3v11111v3

L35 = −30v2
1v2v3 + 10v2

1v123 − 10v11v13v2 − 20v1v11v23 + 20v1v112v3 + 10v11v12v3

+ 10v111v2v3 + 8
3v11v1123 − 8

3v111v123 + 8
3v1112v13 + 8

3v1111v23 − 8
3v11112v3

L45 = 160
3 v6

1 − 160v3
1v

2
11 − 160v4

1v111 − 40v3
1v

2
2 + 76v4

11 + 176v1v
2
11v111 + 144v2

1v
2
111

+ 32v2
1v11v1111 + 160

9 v3
1v11111 − 20v2

1v
2
12 + 80v2

1v112v2 + 40v1v11v12v2

− 50v2
11v

2
2 − 20v1v111v

2
2 + 15

4 v
4
2 − 30v2

1v2v4 + 16v3
1v5 − 32

27v
3
111 + 32

9 v11v111v1111

− 32
9 v1v

2
1111 − 80

3 v
2
11v11111 − 320

9 v1v111v11111 − 56
3 v1v

2
112 + 32

3 v1v1112v12

− 64
3 v11v112v12 + 8

3v111v
2
12 + 10v2

1v124 + 24v1v11v15− 32
3 v1v11112v2 + 32

3 v11v1112v2

− 32
3 v111v112v2 − 8

3v1111v12v2 − 10v11v14v2 + 20
3 v11111v

2
2 − 20v1v11v24

− 6vv2v25 + 20v1v112v4 + 10v11v12v4 + 10v111v2v4 − 12v2
11v5 − 24v1v111v5

+ 64
27v

2
11111 − 16

9 v
2
1112 + 32

9 v11112v112 + 8
3v11v1124 + 8

3v111v115 − 8
3v111v124

+ 8
3v1112v14 − 8

3v1111v15 + 8
3v1111v24 + 2v12v25 − 8

3v11112v4 + 8
3v11111v5

Table 9.1. Coefficients Lij for the Boussinesq hierarchy, after eliminating alien deriva-
tives.
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9.4. Continuum limit of lattice GD4

These terms do not contribute to the Euler-Lagrange equations because they are the
discrete exterior derivative (see Proposition 6.5) of the 1-form

η(U,Ui, λi) =
1

2λi
UUi +

1

3
U3 +

1

4λi
(U2

i − U2).

Some coefficients of the Lagrangian 2-form are given in Table 9.1. Unfortunately, not
all alien derivatives can be eliminated. Since we do not have any equation in the hierarchy
to eliminate first derivatives with respect to t2, the derivatives v2, v12, . . . remain in place.
All other derivatives are eliminated from the coefficients where they are alien.

9.4. Continuum limit of lattice GD4

In order to get a truly multicomponent pluri-Lagrangian system we move to the next
equation of the GD hierarchy, with N = 4. In its 3-component form the discrete GD4
equation reads
(

1
λ1
− 1

λ2
+ U122 − U112

)
V1122 +

(
1
λ1
− 1

λ2
+ U2 − U1

)
W

− 1
λ1
V122 + 1

λ2
V112 + 1

λ2
W2 − 1

λ1
W1 − (V122U2 − V112U1 + U122W2 − U112W1)

−
(

1
λ1

+ 1
λ2

)
(V122 − V112 −W2 +W1)

=

1
λ41
− 1
λ42

1
λ1
− 1
λ2

+U12−U11

−
1
λ41
− 1
λ42

1
λ1
− 1
λ2

+U22−U12

−
(

1
λ1

+ 1
λ2

)
(U2U122 + U1U112)

−
(

1
λ21

+ 1
λ1λ2

+ 1
λ22

)
(U122 − U112 − U2 + U1) ,

(9.10)

V2 − V1 =
(

1
λ1
− 1

λ2
+ U2 − U1

)
U12 − 1

λ1
U2 + 1

λ2
U1, (9.11)

W2 −W1 = −
(

1
λ1
− 1

λ2
+ U2 − U1

)
U − 1

λ2
U2 + 1

λ1
U1. (9.12)

Equations (9.11) and (9.12) do not just look similar, also their expansions are nearly
identical in leading order:

(λ2 − λ1)v1 = (λ2 − λ1)u1u+
1

2
(λ2 − λ1)u11 +

1

2
(λ2 − λ1)u2 +O((λ1 + λ2)2),

(λ2 − λ1)w1 = −(λ2 − λ1)u1u−
1

2
(λ2 − λ1)u11 +

1

2
(λ2 − λ1)u2 +O((λ1 + λ2)2),

where we used the constant c = 1 in the Miwa correspondence (7.6). This gives us the
ODE v1 − w1 = 2u1u+ u11, which integrates to

v − w = u2 + u1. (9.13)
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We have omitted the integration constant because higher order terms in the expansion
force it to be zero. This relation allows us the eliminate either v or w from the continuous
system. Hence we lose one of the components in the continuum limit. For convenience
we make a change of variables in the discrete system,

V =
X + Y

2
, W =

X − Y
2

.

Then in the continuum limit the variable y can be eliminated by Equation (9.13), which
in the new variables reads

y = u2 + u1. (9.14)

One recognizes the Miura transformation [54]. For the remaining two variables we find
the hierarchy

u2 = x1, x22 = −4u11x1 − 8u1x11 − x1111,

u3 =
3

2
u2

1 +
1

4
u111 +

3

4
x2, x3 = −3u1x1 −

1

2
x111, (9.15)

u4 = 0, x4 = 0,
...

...

where, presumably, every fourth pair of equations is trivial.

9.4.1. Comparison with Section 9.1

Just as for the KdV and Boussinesq equations, the leading equation of the continuum
limit is a potential version of the GD4 equation. Additionally, we need to eliminate
one of the three variables from the system (9.2)–(9.4) to connect it to the result of the
continuum limit. Making an educated guess, we introduce the variables x and u by

φ = 4u1, χ = 2x1 + 4u11.

From Equation (9.2) we find u12 = x11, which integrates to

u2 = x1 (9.16)

From Equations (9.2)–(9.3) we find

x12 = −χ11 + 2ψ1 − φφ1.

Integrating with respect to t1 and differentiating with respect to t2 we find

x22 = −x1111 − 4x1u11 − 8x11u1. (9.17)

Equations (9.16)–(9.17) are exactly the leading order equations of the continuum limit.
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There is no obvious reason in pseudodifferential approach to eliminate one of the three
variables. On the contrary, it seems more natural to leave the system in its first-order
evolutionary form. The reduction to two variables is forced upon us by the continuum
limit, because there does not seem to be any way of performing the limit without getting
an ODE relation between the variables, as in Equation (9.13).

9.4.2. Pluri-Lagrangian structure

For N = 4 we have the Lagrangian

L(U, V,W,U1, V1,W1, U2, V2,W2, U12, V12,W12, λ1, λ2)

=

(
1

λ4
1

− 1

λ4
2

)
log

(
1

λ1
− 1

λ2
− U1 + U2

)
−
(

1

λ3
1

+
1

λ2
1λ2

+
1

λ1λ2
2

+
1

λ3
2

)
(U2 − U1)

+

(
1

λ2
1

+
1

λ1λ2
+

1

λ2
2

)
(U2 − U1)U12 −

(
1

λ1
+

1

λ2

)
(U2 − U1)V12

− U
((

1

λ1
− 1

λ2
+ U2 − U1

)
V12 −

1

λ1
V2 +

1

λ2
V1

)

−
((

1

λ1
+

1

λ2

)
U −W

)(
V2 − V1 −

(
1

λ1
− 1

λ2
+ U2 − U1

)
U12 +

1

λ1
U2 −

1

λ2
U1

)
.

(9.18)

As before, we make the change of variables

V =
X + Y

2
, W =

X − Y
2

.

In order to achieve the necessary leading order cancellation, we add to the Lagrangian
the discrete exterior derivative of the following discrete 1-form:

η(U,X, Y, Ui, Xi, Yi, λi) =
1

2λ2
i

UUi −
1

4λ2
i

(U2 − U2
i ) +

1

6λi
(UU2

i + U2Ui)

− 1

2λi
(UXi + UiX) +

1

2λi
UX − 1

2λi
UYi

− 1

8
(Y Yi −XXi −XYi −XiY )− 1

4
(U2

i X + U2Xi).

This 1-form was found by trial and error. It would be interesting to establish a general
strategy to find a Lagrangian within a given equivalence class that provides the required
cancellation. Without such a strategy, it seems infeasible to apply the continuum limit
to higher members of the Gelfand-Dickey hierarchy. Then again, judging from the com-
plexity of the pluri-Lagrangian 2-form for the continuous GD4 hierarchy, with just three
of its coefficients filling Table 9.2, it might not be very useful to find explicit expressions
for pluri-Lagrangian structures for the higher Gelfand-Dickey hierarchies.
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9. Gelfand-Dickey hierarchies
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Table 9.2. Coefficients Lij for the 4th member of the GD hierarchy
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9.4. Continuum limit of lattice GD4

Note that the Lagrangian 2-form depends on all three fields, u, x, and y. The multi-
time Euler-Lagrange equations are equivalent to Equations (9.14) and (9.15). That is,
they contain both the constraint on y and the hierarchy in u and x.

As with the Boussinesq hierarchy, the elimination of alien derivatives needs a comment.
We do not have any equation in the hierarchy to eliminate the derivatives x2, x12, . . ., so
these have to be tolerated in the coefficient L13. All other alien derivatives, in particular
those of u and y, are eliminated as usual.
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10. Summary and outlook: variational
principles in integrable systems

Variational principles and integrability are rarely seen together in the literature. Even
though many integrable systems do posses a variational structure, this fact alone is not
nearly enough to make a system integrable. To address this missing link of variational
integrability, an exotic variational principle has been developed in the last decade, mainly
by the groups of Frank Nijhoff in Leeds and Yuri Suris in Berlin. It has become known
as the theory of Lagrangian multiforms, or, of pluri-Lagrangian systems.

One of the appealing features of the pluri-Lagrangian framework is that exactly the
same idea applies both in the discrete and the continuous world. A natural question is
how to connect these two worlds. Since integrable discretization is notoriously difficult,
we opted for the route of continuum limits. For many lattice equations, continuum limits
are known, though not always easily found in the literature. One aim of this work was
to provide an accessible discussion of some of these limits, but its scientific contribution
lies in the fact that we applied the continuum limit to the pluri-Lagrangian structure
as well. This way we obtained many previously unknown pluri-Lagrangian formulations
for integrable hierarchies of PDEs, including the first instance of a continuous multi-
component pluri-Lagrangian system.

The theory of pluri-Lagrangian systems is young and in need of further development.
However, initial results show interesting connections with Emmy Noether’s classical the-
ory of variational symmetries and with the Hamiltonian formulation of integrable hier-
archies. Developing these connections is ongoing work.

Pluri-Lagrangian systems are a potentially useful tool in the field of quantum integrable
systems. Even though quantum mechanics is usually formulated as a Hamiltonian theory,
when we move to quantum field theory the Lagrangian perspective is the preferred one.
Initial steps towards a pluri-Lagrangian theory in a quantum context were made in [43].

Another big question where the pluri-Lagrangian point of view might provide some
insight, is why high-dimensional integrable systems are rare. In one dimension (ODEs
in the continuous case, or maps in the discrete case) countless integrable equations are
known, and a pluri-Lagrangian structure is often obtained from the classical variational
formulation. Indeed, a continuous pluri-Lagrangian 1-form

L =
∑

j

Lj dtj
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10. Summary and outlook: variational principles in integrable systems

is typically built out of classical Lagrangians Lj for the individual equations in the
hierarchy. For this reason we have not given much attention to 1-dimensional systems in
the present work. For a pluri-Lagrangian 2-form,

L =
∑

i,j

Lij dti ∧ dtj ,

only the coefficients in the first row, the L1j , correspond to individual equations. The
other coefficients do not have an interpretation as classical Lagrangians. These additional
coefficients are a potential obstacle to the existence of pluri-Lagrangian structure. As we
have seen, for many integrable hierarchies of (1 + 1)-dimensional PDEs this obstacle can
be overcome by constructing all coefficients as a continuum limit.

If we increase the dimension, the number of coefficients without a classical interpre-
tation grows. For 3-forms one would expect only the coefficients L12k to correspond
to a classical variational principle. The number of terms that do not correspond to
an individual equation now grows cubically with the dimension of multi-time, as op-
posed to quadratically in the two-from case. In this sense, the potential obstructions to
the existence of a pluri-Lagrangian structure increase with the dimension. This might
explain why high-dimensional integrable systems are uncommon. No continuous pluri-
Lagrangian 3-forms have been found so far. In the discrete case there is only the example
of the AKP equation [49] and its Lagrangian is somewhat unsatisfactory as it is not nat-
urally skew-symmetric. Unfortunately, so far it has also resisted our efforts to perform a
continuum limit.

Before one can use the pluri-Lagrangian formalism to attempt to answer any of these
big questions, the theory of pluri-Lagrangian systems itself needs to mature. I hope that
(part II of) this thesis has provided a small but meaningful contribution in that direction.
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