
Medical Image Analysis of Gastric Cancer in
Digital Histopathology: Methods, Applications

and Challenges

vorgelegt von

Master of Technology
Harshita SHARMA

geb. in Neu Delhi, Indien

von der Fakultät IV-Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktorin der Ingenieurwissenschaften

- Dr.-Ing -

genehmigte Dissertation

Promotionsausschuss :

Vorsitzender: Prof. Dr.-Ing. Thomas SIKORA
Gutachter: Prof. Dr.-Ing. Olaf HELLWICH

Prof. Dr.-Ing. Niels GRABE
Prof. Dr. rer. nat. Peter HUFNAGL

Tag der wissenschaftlichen Aussprache: 25. April 2017

Berlin 2017





Dedicated to my family and loved ones.

“I have become my own version of an optimist. If I can’t make it through one

door, I’ll go through another door – or I’ll make a door. Something terrific will

come no matter how dark the present.”

— Rabindranath Tagore





Acknowledgements

“At times our own light goes out and is rekindled by a spark from another person. Each of
us has cause to think with deep gratitude of those who have lighted the flame within us.”

— Albert Schweitzer

The undertaking and completion of this dissertation has proved to be an eventful journey,
filled with tribulations and challenges, both professional and personal. With proper coordination
and guidance I was able to overcome the hurdles and realize my goals. Hence, it is with immense
gratitude that I acknowledge those, who have provided me with inspiration, financial and moral
support, and technical direction.

There are no words which can adequately express my gratitude for the invaluable guidance
and encouragement, which I have been extremely fortunate to receive from my supervisor Prof.
Dr. -Ing. Olaf Hellwich, Professor and Head, Computer Vision and Remote Sensing Group,
Department of Computer Engineering and Microelectronics, Technical University Berlin, Berlin,
Germany. He kindly welcomed me in his group, and guided me throughout the course of my
investigation. His generous support and stimulating suggestions have been the driving force for
me throughout my work. Besides being an excellent guide, he has been conferring valuable hints
to improve various aspects of my research. It was the inspiration provided by him that gave me
the confidence to pursue this innovative topic and work it through to a successful completion.

I am greatly indebted and express my sincere gratitude to Prof. Dr. rer. nat. Peter Hufnagl,
Professor and Head, Department of Digital Pathology and IT, Institute of Pathology “Rudolf-
Virchow-House”, Charité University Hospital, Berlin, Germany. He granted the approval to
conduct my research in collaboration with the group at Charité University Hospital, and provided
me necessary resources for the same. He offered me additional office space to perform my work
at Charité University Hospital, and has been really welcoming, encouraging and supportive
towards my ideas. His in-depth domain knowledge and consistent motivation have been most
essential for a deeper understanding of the problem and deciding the next course of action.
Furthermore, he advised me to utilize parts of his doctorate research comprising of the object-
level shape-based feature extraction for my studies, which proved an important ingredient for the
success of my work.



iv

I sincerely thank Dipl-Inf. Norman Zerbe, Project Manager, Department of Digital Pathol-
ogy and IT, Institute of Pathology “Rudolf-Virchow-House”, Charité University Hospital, Berlin,
Germany for his extremely useful suggestions during my research. His wide knowledge and
logical way of thinking have been truly inspiring. He has always been forthcoming to provide his
assistance during various steps of my research. I also thank him for his semi-automatic whole
slide image registration implementation, and for providing a subset of cell nuclei shape features.

I am immensely thankful to Prof. Dr. med. Christoph Röcken, Director, Department of
Pathology, University Medical Center Schleswig Holstein (UKSH), Campus Kiel, Kiel, Germany
for collaboration with Charité, and allowing me to acquire the necessary gastric cancer whole
slide images used in my research. A former PhD candidate under his supervision, Dr. rer.
medic. Hans-Michael Behrens, has been in direct contact with the research group at Charité,
assisted me during the data acquisition stage and provided me with the associated knowledge, to
whom I am extremely thankful.

I am grateful to Dr. med. Christine Böger, Pathologist, University Medical Center
Schleswig Holstein (UKSH), Campus Kiel, Kiel, Germany, for giving me her precious time by
performing the review of ground truth data for the cell nuclei classification step. I sincerely thank
Dr. med. Iris Klempert, Pathologist, Institute of Pathology, Charité University Hospital, Berlin,
Germany for creating the ground truth for the necrosis detection step. I am also thankful to PD
Dr. med. Fredrick Klauschen, Pathologist, Institute of Pathology, Charité University Hospital,
Berlin, Germany for introducing me to the histological architecture and various cell nuclei types
in our datasets, and also for visually identifying necrosis in the tissue.

I truly admire the support and assistance from all the members of Department of Digital
Pathology and IT, Institute of Pathology, Charité University Hospital, Berlin, Germany. Es-
pecially, I would like to thank Dr. rer. medic. Stephan Wienert, Postdoctoral Scientist, for
providing his implementation of cell nuclei segmentation as required for our H&E stained
gastric cancer images, and to introduce me to the functionality of CognitionMaster software. I
thank M.Sc. Björn Lindequist, Scientist, for his contribution in the preparatory stage and his
implementation of four object-level gray level co-occurrence matrix texture-based features. I
also thank M.Sc. Daniel Heim, Scientist, for his optimized version of AdaBoost algorithm as
required for my work. I am extremely thankful to M.Sc. Sebastian Lohmann, Scientist, to
introduce me to certain texture-based approaches such as Gabor filter-banks, and also to a few
graph-based state-of-the-art approaches. I am grateful to VMscope GmbH, Berlin, Germany,
for providing me individual licenses of two of their software tools, namely Virtual Slide Access
SDK 4.0 and VM Slide Explorer 2010, in order to access whole slide image data, as required for
this work.

My sincere thanks goes to all the members of Remote Sensing and Computer Vision Group,
Department of Computer Engineering and Microelectronics, Technical University, Berlin, Berlin
Germany. I would specially like to thank Dr.-Ing. Ronny Hänsch, Postdoctoral Scientist,
for constructive feedback and comments about my work, especially for the presentations and
dissertation. Furthermore, my sincere thanks goes to Dipl.-Ing. Wolfgang Stinner, our technical



v

colleague who provided hardware or software assistance at the office, that helped me to perform
the requisite computer-based tasks uninterruptedly in the duration of my studies.

I am indebted and filled with gratitude towards DAAD (Deutscher Akademischer Aus-
tausch Dienst: German Academic Exchange Service) for giving me this wonderful opportu-
nity to conduct my PhD studies in Berlin, Germany, and providing the requisite financial support
for the same.

I wish to thank my family for the inspirational impetus and moral support during the course
of work. A big thanks to my parents and sister, for the unconditional affection and care I received
from them in my good and bad times. My special thanks to Rahul who encouraged and supported
me throughout this journey. I also want to express gratitude towards my friends and relatives
who helped directly or indirectly for the completion of this work. Last but not the least, I would
like to express my deepest gratitude to the Almighty for showering blessings on me.

Thank you. Danke. Gracias. Grazie. Merci. Shukriya.





Medical Image Analysis of Gastric Cancer in Digital Histopathology: Methods,
Applications and Challenges

Abstract: Medical image analysis in digital histopathology is a currently expanding and exciting field of
scientific research. In this work, histopathological image analysis is extensively studied and a systematic
framework for computer-based analysis in H&E stained whole slide images of gastric carcinoma is proposed.
The exhaustive experimental study comprises of three fundamental stages, namely, preparation of materials,
image pre-analysis and analysis of cancer regions. These stages collectively incorporate the understanding,
formulation, implementation and evaluation of suitable image analysis tasks required to achieve the defined
research objectives in each stage, for example, registration and annotation transformation between whole
slide images, cell nuclei segmentation and classification, multiresolution combination of visual information
for segmentation enhancement, appearance-based necrosis detection, and cancer classification based on
immunohistochemistry. Computerized applications are also demonstrated as an outcome of the conducted
research, including computer-aided diagnosis, content-based image retrieval and automatic determination of
tissue composition.

The research focuses on the development of methods for effective representation and subsequent
classification of regions of interest in histopathological image datasets. For this purpose, two image analysis
routes, namely, traditional route and deep learning route are investigated. The traditional route consists of
handcrafted feature extraction to describe textural, color, intensity, morphological and architectural properties
of tissues followed by traditional machine learning methods including support vector machines, AdaBoost
ensemble learning and random forests. In this domain, graph-based methods are extensively explored due to
their ability to suitably represent the spatial arrangements and neighborhood relationships in tissue regions. A
novel graph-based image description method called cell nuclei attributed relational graph is proposed along
with multiple variants, for knowledge description of individual component characteristics, spatial interactions
and underlying tissue architecture in histopathological images. In the deep learning route, convolutional
neural networks are thoroughly investigated. A self-designed convolutional neural network architecture is
introduced and analyzed for cancer classification and necrosis detection, also compared with a widely-known
framework and ensemble of deep networks.

During the detailed investigation, system performance is rigorously analyzed using different experimental
aspects, for instance, algorithm parameters, feature configurations and classification strategies. The entire
proposed framework is quantitatively evaluated at each stage using a set of performance metrics. A reasonable
performance is achieved using the described methods, comparing favorably, and even outperforming the
state-of-the-art techniques in certain occasions. The empirical observations, corresponding conclusions,
scientific implications and future directions of the research are thoroughly discussed.

Collectively, the discussed histopathological image analysis methods in H&E stained gastric cancer
whole slide images aim to reduce manual preparation efforts, inspection times, and inter-and intra-observer
variability. Moreover, the developed methods can potentially improve the current state of technology through
applications such as automatic classification, content-based image retrieval, archiving, bio-banking, marker
quantification, detecting malignant changes over time, providing second opinions to pathologists, thereby
contributing towards diagnosis, prognosis, education and research in biology and medicine.

Keywords: Digital histopathology, gastric carcinoma, whole slide images, cancer classification, necrosis

detection, handcrafted feature extraction, attributed relational graphs, traditional machine learning, deep

learning, convolutional neural networks, computer-aided diagnosis.





Medizinische Bildanalyse von Magenkarzinom in der Digitalen Histopathologie:
Methoden, Anwendungen und Herausforderungen

Zussamenfassung: Medizinische Bildanalyse in der digitalen Histopathologie ist ein derzeit expandieren-
des und spannendes Forschungsfeld. In dieser Arbeit wird die histopathologische Bildanalyse umfassend
untersucht und ein systematischer Ansatz für computerbasierte Analysen H&E-gefärbter virtueller Schnitte
von Magenkarzinom vorgeschlagen. Die erschöpfende experimentelle Studie besteht aus drei grundlegenden
Stadien, nämlich Vorbereitung von Materialien, Bildvoranalyse und Analyse von Krebsregionen. Diese
Phasen umfassen das Verständnis, die Formulierung, die Implementierung und die Bewertung von geeigneten
Bildanalyseaufgaben, die erforderlich sind, um die definierten Forschungsziele in jedem Stadium zu erre-
ichen, beispielsweise die Registrierung und die Annotationstransformation zwischen virtuellen Schnitten,
Zellkernsegmentierung und Klassifikation, Kombination visueller Informationen unterschiedlicher Auflösung
zur Segmentierungsverbesserung, aussehensbasierte Nekrose-Erkennung, und Krebs-Klassifizierung auf
der Grundlage der Immunhistochemie. Als Ergebnis werden computergestützte Anwendungen der durchge-
führten Forschung gezeigt, einschließlich computergestützter Diagnose, inhaltsbasierter Bildwiedergewin-
nung und automatischer Bestimmung der Gewebezusammensetzung.

Die durchgeführte Forschung betrifft die Entwicklung von Methoden für eine effektive Darstellung
und anschließende Klassifizierung in histopathologischen Bilddatensätzen. Dazu werden zwei Bildanal-
ysewege untersucht, nämlich ein traditioneller und ein Deep Learning Ansatz. Der traditionelle Ansatz
besteht aus einer Merkmalsextraktion, um Textur, Farbe, Intensität, morphologische und architektonis-
che Eigenschaften von Geweben zu beschreiben, gefolgt von traditionellen maschinellen Lernmethoden,
einschließlich der Support Vector Maschinen, AdaBoost Ensemble Learning und Random Forests. Auf
diesem Gebeit werden graphenbasierte Verfahren aufgrund ihrer Fähigkeit, die räumlichen Anordnungen
und Nachbarschaftsbeziehungen in Gewebebereichen geeignet darzustellen, umfassend erforscht. Ein neues
graphisches Bildbeschreibungsverfahren namens Cell-nuclei Attributed Relational Graph wird zusammen
mit mehrere Varianten zur Wissensbeschreibung einzelner Komponentenmerkmale, räumlicher Interaktionen
und zugrunde liegenden Gewebearchitekturen in histopathologischen Bildern vorgeschlagen. Im Deep
Learning Bereich werden Convolutional Neural Networks gründlich untersucht. Eine Convolutional Neural
Network Architektur wird eingeführt und für die Krebsanalyse und Nekrose-Detektion verwendet, und mit
einer weithin bekannten Netzwerk Architektur und Ensembln von Deep Netzwerkn vergleichen.

Während der Detailuntersuchungen wurde die Systemleistung unter unterschiedlichen Aspekten wie
Algorithmenparametern, Merkmalskonfigurationen und Klassifizierungsstrategien analysiert. Der vorgeschla-
gene Ansatz wird in jedem Stadium quantitativ unter Verwendung eines Satzes von Leistungsmetriken
bewertet. Mit den entwickelten Methoden wird eine Leistung erzielt, die den Stand der Technik erreicht oder
besser ist. Die empirischen Beobachtungen, die entsprechenden Schlussfolgerungen, die wissenschaftlichen
Implikationen und die zukünftigen Forschungsrichtungen werden eingehend erörtert.

Zusammenfassend kann festgestellt werden, dass die diskutierten histopathologischen Bildanalysev-
erfahren in H& E-gefärbten virtuellen Schnitten von Magenkrebs manuelle Vorbereitung, Prüfzeiten und
Ergebnisvariabilität reduzieren. Darüber hinaus können die entwickelten Methoden den aktuellen Stand der
Technik durch Anwendungen, wie beispielsweise automatische Klassifizierung, inhaltsbasierte Bildsuche,
Archivierung, Bio-Banking und Marker-Quantifizierung verbessern. Bei der Analyse, bösartiger Veränderun-
gen im Zeitverlauf bieten sie eine zweite Meinung zu der der Pathologen, und dadurch einen Beitrag zur
Diagnose und Prognose in Biologie und Medizin.

Schlüsselwörter: Digitale Histopathologie, Magenkarzinom, Virtuelle Schnitte, Krebs-Klassifikation,

Nekrose-Erkennung, Merkmalsextraktion, Attributierte Relationale Graphen, Maschinelles Lernen, Deep

Learning, Convolutional Neural Networks, computergestützte Diagnose.
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1.1 Background

Histological images are the magnified images of tissues of an organism’s body. These are a
special kind of medical images, which contain various complex structures and the underlying
semantic knowledge pertaining to different biological conditions of the organism. Histopathology
is the field of examining tissue specimen by medical specialists (pathologists) to determine
the presence and extent of abnormal conditions, especially tumors and cancers. Generally, a
pathological test is recommended after observing physiological symptoms of a subject, and
performed by acquiring histopathological specimens from the human body through biopsy or
surgical resection [Weidner 2009]. The tissue specimens are mounted on glass slides and treated
with detailed preparation procedure before viewing [Rolls 2011]. This includes a staining process
with special chemicals in order to improve contrast and visibility of particular histological and
cellular structures as required for observation. Conventional viewing and examination of glass
slides is performed using diverse microscopy techniques [Rochow 1994].

Digital pathology as a sub-branch of pathology involves the use of digitized histological
images for observation and analysis. Glass slides are first scanned using sophisticated equipment
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such as advanced microscope cameras or whole slide scanners, as a result of which high resolution
whole slide images (WSI) are obtained. These images are stored on local computers or remote
servers, observed on screens using viewing programs, and archived into large databases for
future references. They provide a comprehensive view of the tissue architecture, allowing the
pathologists to form opinions about the underlying disease conditions. Several benefits of digital
pathology have been identified, the most apparent being convenient slide navigation, efficient
data handling, parallel viewing at distinct locations (telepathology), parallel viewing of different
stains and positions, reduction in glass archives and glass transportation, and simplicity to handle
pathologists’ annotations [Sucaet 2014].

Medical image analysis techniques are being developed to automate the process of extracting
meaningful information from whole slide images for clinical routine practice and research in
digital pathology. Majority of the research in this direction has been aimed towards developing
computer-aided diagnostic methods in order to automatically predict tissue regions of interest
(ROI) as healthy or cancerous, benign or malignant, or one of the tumor grades or types. Less
critical applications are also being explored that can potentially improve the current state of
technology in this field, for instance, content-based image retrieval of interest regions from
whole slide image data, archiving and bio-banking of large databases, marker quantification
and detecting malignant changes over time, thereby, contributing directly or indirectly towards
diagnosis, prognosis, education and research in biology and medicine. The developed computer-
based tools and techniques provide assistance to pathologists by reducing their time inputs,
manual efforts and subjective variations. Nevertheless, pathologists’ experience and expertise are
most valuable and essential for the development of these image processing and analysis software,
as well as for the validation of obtained results.

1.2 Study Objectives

In this study, the prime objective is recognized as the development of a fully-automated systematic
framework to perform medical image analysis of tissue regions in whole slide images of gastric
cancer. The sub-objectives of the research are described as the following.

1. The comprehensive research goal is to explore suitable medical image analysis algorithms,
leading to efficient knowledge description and representation of meaningful visual information
for automatic categorization and retrieval in histopathological whole slide images of gastric
cancer. This demands the study and modifications of existing methods, and the proposal
of novel approaches with theoretical descriptions and experimental evidence for further
enhancement in current state of technology.

2. In this work, a prime objective is the analysis of cancer-affected tissue regions using the H&E
stain based on HER2 immunohostochemical response in gastric cancer whole slide images.
H&E stained images need to be thoroughly analyzed in order to determine whether these are
sufficient for cancer characterization on the basis of HER2 immunohistochemistry, and to
establish if any visible correlations exist between the two stains. Thus, computer-based image
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analysis of gastric cancer in H&E stain requires to be pursued in depth through traditional
methods as well as deep learning methods in digital histopathology.

3. During the research tasks, related goals have been discovered, namely, computer-based
exclusion of necrotic tissue regions and effective cell nuclei segmentation. For necrosis
detection, an adequate and timely solution needs to be devised. Also, the H&E stain has
the property to distinctly stain the cell nuclei in the tissue specimen, so, for the automatic
isolation of cell nuclei, a segmentation algorithm is required to be extensively evaluated. This
involves determining the working magnification and image resolution suitable for optimum
image analysis. Further, a multiresolution approach needs to be explored for enhancement of
segmentation results compared to individual magnifications.

4. Computerized applications corresponding to the above defined problems can greatly assist pro-
fessionals in routine and research, thus, a part of this study is dedicated towards contribution
of application-specific software tools. This includes demonstrating example applications such
as computer-aided diagnosis, automatic necrosis detection, tissue composition determination
and content-based image retrieval in H&E stained gastric cancer whole slide images.

1.3 Motivations

In the current scenario, pathologists mostly examine collections of large-sized whole slide images
(or glass slides) using visual inspection, which is a tedious and time-consuming process that
requires to be automated. Therefore, the significance of histological image analysis has been
recognized by the scientific community to a great extent worldwide. However, compared to other
types of medical images, research on histological images is somewhat limited. This is because
histological images have typical characteristics which set them apart from other types of images.
These include diverse magnifications, complex appearances, large image resolutions, highly
specialized acquisition process, specific staining methods and the corresponding differences in
semantic interpretations. Furthermore, there is always a possibility of human errors in analyzing
histological images due to high subjectivity and observer variations during interpretation owing
to a high visual similarity of such images, which may subsequently affect the selection of an
appropriate treatment method. Most visual observations vary from person to person and time
to time, leading to inter- and intra-observer variability and ambiguities in the decision-making
process. Hence, there is clearly a need for developing computer-aided methods to introduce
objectivity, which is a strong motivation behind this work.

Gastric cancer is the fourth most common cancer and the third most common cause of
cancer-related deaths in the world. According to the WHO, gastric cancer accounts for around
800,000 deaths worldwide annually [Rugge 2015]. Computer-aided analysis of gastric cancer
histological images is still in its early stages of development and an actively emerging topic of
research. In literature, a few studies have been performed in the direction of gastric tissue image
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analysis in digital histopathology 1. However, to the best of the author’s knowledge, no previous
study focuses on the specified research objectives as described in this work. This motivated the
author to proceed in the direction of medical image analysis in gastric cancer histopathology.

Haematoxylin and eosin (H&E) stain is routinely used in histopathological examinations as it
provides a detailed view of tissue components, is easy to apply and less costly. In contrast, HER2
immunohistochemical staining is not commonly applied in laboratory practice and involves
higher costs. For this study, both HER2 and H&E stained sections were available but H&E
stain has been analyzed because of its wider usability and lower preparation costs. When HER2
sections are observed by pathologists using optical microscopy techniques, cancer categories
are mostly visually distinguishable. However, while observing H&E stained tissue sections,
pathologists require a greater time and effort to identify the corresponding malignancy levels due
to very subtle differences, hence, immunostaining is often suggested. One of the main motivations
of this study is to discriminate between cancer types using computer-based image analysis in the
H&E stained tissue regions based on HER2 immunohistochemistry, with the assumption that
minor deviations in the texture, color, morphological, neighborhood and architectural properties
of tissues that may be difficult and laborious to recognize barely with the human eye, can allow
sophisticated computerized methods to make desired decisions.

One of the most promising approaches for histological image analysis is the use of graph-
based techniques [Sharma 2015a]. Graphs are effective and flexible representation structures and
have lately been of major interest to the computer vision and image analysis fields due to their
expressive ability to model topological and relational information between image components.
Moreover, histological image data is visually observed and interpreted by pathologists by
considering the architectural characteristics, neighborhood relationships and spatial arrangements
between tissue components, and graphs have proved to be able to quantitatively represent the
visual information cues acquired and processed by pathologists from histological images. Hence,
in the thesis, the author is motivated to explore fully automated handcrafted graph-based methods
for computerized analysis of histopathological images.

Another motivation is to explore the potential of deep learning methods in digital histopathol-
ogy. Most importantly, deep learning has recently gained popularity in various research domains
and achieved breakthrough results. But deep learning has not been explored so far for H&E
stained histopathological whole slide images of gastric cancer for the specified goals. Particu-
larly, the deep convolutional neural networks aim towards replacing hand-engineering of image
descriptions in traditional methods with end-to-end learning algorithms. This work attempts to
further investigate this hypothesis and the overall prospective capabilities of deep learning for
the mentioned problems.

1The terms histology, pathology and histopathology are interchangeably used throughout the thesis, referring to
the same underlying concept.
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1.4 Contributions

The study contributes towards the scientific domain of histological image analysis, and can be
used for diverse application areas in the field of digital histopathology, in the following ways.

1.4.1 Scientific Contributions

The proposed systematic framework for medical image analysis of gastric cancer images in digital
histopathology offers novel and constructive ideas, methods, experimental results, observations
and conclusions, which can be valuable for the scientific community. The salient scientific
contributions of this work are highlighted as follows.

One of the most prominent scientific contributions includes the design, implementation and
variation in a novel graph-based method called cell nuclei attributed relational graph for effective
representation and subsequent classification of histological regions in gastric cancer whole slide
images. The graph-based approach attempts to capture and quantify the visual characteristics of
individual cell nuclei, their spatial interactions with neighbors and the global tissue architecture.
Eight variants of the proposed cell nuclei attributed relational graph are conceived, engineered
and computationally analyzed. The hand-engineered graph-based features are quantitatively
evaluated with comparisons among themselves and several well-known state-of-the-art feature
extraction methods in digital histopathology.

An original self-designed deep convolutional neural network architecture is contributed after
a thorough empirical investigation, to attain the defined objectives of medical image analysis
of gastric cancer in digital histopathology. The deep learning method follows a supervised
approach for classifying image regions, and its performance is quantitatively evaluated, sug-
gesting comparable results to handcrafted features and traditional machine learning methods.
The developed architecture is studied along with its relative performance to AlexNet frame-
work [Krizhevsky 2012] which is extremely successful in general object categorization. An
ensemble of the two networks is further explored to reduce individual variations.

The detailed experimental results confirm the hypothesis that a fair visual correspondence
exists between H&E stain and HER2 immunohistochemical stain, thereby suggesting that in
general, automatic image analysis is possible in the more routinely used H&E stain based on
HER2 immunohistochemical response. Computer-based methods have been able to achieve
favorable results, sometimes even better than humans, by considering the subtle details which
are usually not clearly distinguishable by the human visual system.

The other scientific contributions worth mentioning include the development of suitable
approaches for necrosis detection, cell nuclei classification, multiresolution combination of
visual information for segmentation enhancement, and a comprehensive comparative scheme for
the purpose of performance evaluation.
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1.4.2 Application Areas

The developed methods can potentially be adapted to the following application areas for practical
usability. These have been briefly introduced below, and demonstrated in detail in Section 6.5
and Section 7.5 respectively.

1.4.2.1 Automatic Necrosis Detection

While examining the whole slide gastric cancer image datasets, medical experts have discovered
that some of the images contain small necrotic areas. These regions must be excluded before
proceeding with the image analysis of cancer regions, as these act as noisy areas and interfere
with the available useful information. As a result, an automatic necrosis detection application is
developed for this purpose. This method is performance and time efficient, and can be potentially
utilized for detecting necrosis in other tissue types.

1.4.2.2 Automatic Determination of Histological Tissue Composition

The process for multiresolution segmentation enhancement includes an automatic cell nuclei
classification stage. This stage can be used independently for determining the types of cell
nuclei in tissue regions, and assist in revealing histological composition in gastric cancer for
heterogeneous datasets. Such tissue composition measurements can possibly assist pathologists
in computer-aided diagnosis by providing a basis for automatic differentiation between tumor
and non-tumor compartments of the tissue to resolve the cancer type, grade or extent. So, the
tissue compositions determined in this way have been used later for the analysis of cancer regions
in this work.

1.4.2.3 Computer-aided Diagnosis: Immunohistochemistry-based Cancer Classification

Immunohistochemical staining is used in practice by pathologists to determine extent of malig-
nancy, however, it is laborious to visually discriminate the corresponding malignancy levels in
the more commonly used H&E stain. This computer-based application attempts to solve the
problem that may seem manually tedious by classifying unlabeled data in large-sized whole
slide images. It can assist pathologists in diagnosis and prognosis, reducing preparation and
inspection times as well as inter and intra-observer variabilities.

1.4.2.4 Content-based Image Retrieval

Suitable hand-engineered representations of tissue images can be further utilized for content-
based image retrieval (CBIR) of desirable image regions from the database having visual and
semantic contents similar to a query image. Based on this premise, an introductory CBIR
application has been developed and tested for the available gastric cancer datasets in this work.
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1.5 Challenges in Study

As discussed before, computer-based analysis of histological images is being actively explored
worldwide. However, complete dissemination of computerized methods in practical or clinical
environments is still a prospective challenge, mainly due to lower reliability compared to
pathologists’ verdicts. Pathologists’ experience and expertise have been acquired through a
specialized long-term training process, and they diagnose diverse cases on day-to-day basis.
Along with assessment of visual appearance of tissues, pathologists also consider additional
clinical information such as patient history and etiological agents, which makes the decision-
making process more complicated and difficult to formalize. Also, the image analysis software
developed till date is specific to certain pathological disorders, and not able to handle exceptional
cases. In general, the extent of usability and deployment of image analysis applications in a
clinical setting is a challenge for the technical developers. Nevertheless, these can be used
as bases for further scientific research to optimally achieve the desired objectives. Additional
considerations before computer-based systems are adopted into routine diagnostics include the
size of the programs, ease of use, robustness, time requirements and data storage required for
successful application. Strict regulations and financial issues add to the challenges, making their
routine adoption difficult. The regulatory standards and guidelines are expected to become more
distinct and unambiguous in future advancements in the field of digital pathology. However, even
at present, such computer-based methods can assist medical professionals by automating several
less serious tasks, e.g. providing additional opinions to pathologists, bio-banking, archiving,
content-based image retrieval and so on.

The image acquisition process is not ideal in most cases, hence the quality of the acquired
digital images is also a current question of discussion among pathologists worldwide. During
the process of image acquisition, several problems may occur such as non-uniform cutting and
staining of tissue specimens, touching or overlapping of samples, unclear separation, existence
of stain artifacts and inhomogeneity in the tissues. As a result, segmentation of the tissue in
order to identify exact boundaries of its components may become complex and suboptimal. This
effect is also observed in this research, and was overcome by exploring different ways (such as
re-scanning slides with different scanners and designing a multiresolution combination approach)
to improve the results of a suitable segmentation algorithm. The methods have been tailored for
the specific whole slide image datasets of gastric cancer in order to address the issues related to a
non-ideal acquisition process.

Medical image interpretation is a complex and poorly understood process. It requires
a consistently active communication channel between the computer vision researchers and
the physicians for proper understanding of the images, so that it is ensured that the research
is streamlined in the correct direction and is able to deliver as promised. This interaction
requirement proves a bottleneck mainly due to strict time schedules on both sides. Creating or
reviewing of ground truth data is performed by pathologists which is manually demanding and
time-consuming in high resolution images, so acquiring medical expert knowledge is one of
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the most challenging aspects of this study. Considering the complexity involved into acquiring
and annotating histological image data, our method is currently limited to experimentation
with the described gastric cancer whole slide image datasets. Moreover, reproducibility of
developed methods is demanding due to the existing variablilities at several levels. For the
same tissue type, these include biological heterogeneity, varying tissue thickness, different
scanner properties and stain variations during the acquisition process. Most of these factors are
considered in this research and also require to be addressed for future extensions. The usability
of developed methods can further be extended for multiple tissue types, however, the challenge
will be enhanced and is a future prospect of this study.

In general, there do not exist common public benchmark databases for many typical patho-
logical problems that are are highly specific to certain populations owing to several factors like
geographical location, lifestyle, gender and biological agents. The study and analysis of the
patterns, causes and effects of health and disease conditions in a defined population are subject
of a separate branch of science called Epidemiology [Morabia 2013]. As a result, availability of
large-scale disease-specific data is limited by such factors. Moreover, the situation is complicated
by legal restrictions such as access permissions and ethical issues for usage and distribution
of human data in the existing datasets or their expansion. Access to most histopathological
datasets is restricted largely to the organizations holding their license, and patient data is either
pseudonymized and (or) proper permission is sought for research purpose. The author and
associated research groups have acquired and analyzed the available whole slide image datasets
according to the ethical and usage guidelines prescribed by the source of the gastric cancer
histopathological data [Warneke 2013].

1.6 Organization of Thesis

The thesis is organized as follows. Chapter 2 presents a theoretical background about the various
methods explored in digital histopathology, including the domain description, widely known
state-of-the-art feature extraction techniques and machine learning methods, which are studied
and applied for comparative evaluations in the next chapters. Chapter 3 emphasizes the related
work in literature for the investigated methods in the field of digital histopathology. Chapter 4
describes a brief overview of the proposed scientific framework showing the process pipeline of
the conducted experiments. Chapters 5, 6 and 7 explain in detail, the design, implementation,
analysis and implication of the explored methods in the three main stages of the experimental
framework. In Chapter 8, the quantitative evaluation of performance of the proposed techniques
along with comparative analysis with the established methods demonstrates the accomplishments
and scrutinizes the shortcomings and challenges in experimentation. Chapter 9 discusses the
statistical aspects in datasets in reference to the stains and its consequences. Chapter 10 summa-
rizes the studies by concluding the findings, suggesting the important prospective directions of
research and providing useful recommendations in the field of digital histopathology.
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Theoretical Background
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2.1 Introduction

In this chapter, firstly the important principles of digital histopathology are described, including
an overview of the preparation and image acquisition procedures and a background of the gastric
tissue. Next, the most widely applied feature extraction and image description methods in
digital histopathology are introduced. A part of these methods describing the state-of-the-art
high-level (architectural) feature extraction in Section 2.3.3 were published by the author in a
review article [Sharma 2015a]. Finally, the machine learning algorithms explored in the study
are briefly discussed.

9
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2.2 Domain Description

2.2.1 Overview of Digital Histopathology

2.2.1.1 Introduction

Histology, a compound of the Greek words histo-tissue and logos-study, is the branch of science
comprising the study of microscopic structures and functions of tissues of plants and animals.
Pathology is another compound of the Greek words patho-suffering and logos-study, relating
to the causal study of diseases. The term histopathology is derived from the fusion of the
branches histology and pathology, and defined as the study of microscopic diseased tissues,
where pathologists examine tissue specimens and provide diagnostic inferences based on their
professional medical knowledge, experience and observations. Histopathology lays down the
scientific foundation for disease diagnosis, prognosis, clinical decision-making, research and
education in medicine and biology.

2.2.1.2 Tissue Specimen Preparation

Microscopic analysis of tissue specimens requires their preparation using a complex sample prepa-
ration procedure for subsequent observation of tissue components [Hunter 1972], [Rolls 2011].
A schematic overview of the general process of tissue specimen preparation is illustrated in
Figure 2.1. Initially, a tissue specimen is extracted from the corresponding body part of the
subject. The tissue specimen submitted for pathological analysis can be broadly classified into
two main categories, namely, biopsy and surgical resection.

1. Biopsy: A biopsy [Zerbino 1993] is a small tissue sample acquired mostly for the purpose of
rendering a definitive diagnosis.

2. Surgical resection: This type of tissue specimen [Tjandra 2006] is obtained by the therapeu-
tic surgical removal of the whole disease-affected tissue region or organ(s). Such a specimen
is usually acquired in order to provide definitive treatment of a disease when the diagnosis is
already known or strongly suspected.

Fig. 2.1 A schematic overview of tissue specimen preparation
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After acquiring the tissue specimen from the organism’s body, it is required to be chemically
fixed to prevent decay and preserve the constituent cells. The most popular fixing agent is
formaldehyde, usually in the form of a phosphate-buffered solution, often referred as formalin.
Following the fixation, the tissue specimens are processed in automated instruments called tissue
processors, which allow the specimens to be infiltrated with a sequence of different solvents
finishing in molten paraffin wax to provide support during cutting. Embedding procedure results
in a tissue block ready for section cutting. Sections are cut on a precision instrument called
microtome using extremely fine steel blades at a thickness of 3 - 5 µm, ensuring that only a
single layer of cells makes up the section. This step produces very thin, high quality sections
called slices. The slices are then mounted on glass slides and appropriately stained in order to
improve contrast of specific tissue components, demonstrating normal and abnormal structures.
A professional visually inspects the sections under an optical microscope. Moreover, a set of
digital images called whole slide images can be acquired to be further processed or analyzed in
digital pathology.

2.2.1.3 Virtual Microscopy and Whole Slide Imaging

Recent advancements in technology have led to the development of a set of modern methods
called virtual microscopy [Weinstein 2009] including whole slide imaging, that incorporate the
use of technical equipment such as whole slide scanners and high-performance computers to
facilitate digitization of glass slides. The resulting whole slide images (WSI) usually have
Gigapixel resolutions. Virtual microscopy methods also aid in digital viewing at several magnifi-
cations, storage and transmission of histological WSI over computer networks. Hence, virtual
microscopy can be seen as an integration of optical microscopy and digital technologies, and an
advanced alternative to examining glass slides under the light microscope. The general virtual
microscopy pipeline including whole slide imaging is shown in Figure 2.2. The procedure for
histological image analysis usually starts with the acquisition and labeling of the digital whole
slide images using virtual microscopy techniques.

Fig. 2.2 Pipeline of virtual microscopy. Adapted from [Saeger 2009].
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The virtual microscope functions in similar way to optical microscope. Magnification and
resolution are the two main characteristics to be considered in this regard. Magnification is
the ability to make the objects appear larger, and measured in terms of magnifying power
(represented by a number followed by ×), which denotes how many times the object is magnified.
The conventional notation in optical microscopy for compound microscopes uses only the
magnification provided by the objective lens, i.e. varying with each instrument, and usually a
fixed magnification of the eye piece i.e. 10×. For example, a magnification of a× means that
the optical lens magnifies the object a times, followed by a 10 times magnification of eye piece,
leading to a final effective 10a magnification of the object. Such notation is extended to virtual
microscopes, and also considered in this work. Resolution is the ability to distinguish between
two points and determines the amount of details that can be observed. It measured in terms
of resolving power as the smallest distance between objects that can be distinguished. For the
human eye, it is around 0.1 mm. For digitized microscopic images, it is usually measured in
µm/pixel representing the distance resolved by each pixel, thus, smaller the quantity, higher is
the resolving power. This notation has been used later in the thesis. Usually, the WSI scanner
resolution is sufficient to present all relevant magnifications on the monitor, and the size or
scale of the physiological structures to be viewed in the slide determines the choice of working
magnification of histological images to be analyzed.

2.2.2 Introduction to Gastric Histopathology

2.2.2.1 Anatomy of the Stomach

The stomach is a muscular organ situated in the left upper abdominal side of the body that
secretes acids and enzymes for digesting food. Anatomically, the stomach is divided into four
sections [Moore 2011], each of which has different types of cells and functions. The sections
are Cardia where the contents of the esophagus empty into the stomach, Fundus formed by the
upper curvature, Body or Corpus is the main central region and Pylorus is the lower section
that empties the contents into the small intestine via duodenum. The stomach wall is folded
into Rugae to provide higher absorption area. Histologically, the wall consists of four layers of
lining [Sorenson 2008] as the following.

1. Mucosa: It consists of the epithelium and the lamina propria (loose connective tissue), with a
thin smooth muscle layer called muscularis mucosa which separates it from the next layer.

2. Submucosa: It is the next layer after mucosa and comprises of the fibrous connective tissue.

3. Muscularis Externa: It comprises of the muscular layers which lie beneath the submucosa. It
is unique from other organs of the gastrointestinal tract and consists of three layers, namely,
the inner oblique layer, the middle circular layer and the outer longitudinal layer.

4. Serosa: It consists of layers of the connective tissue continuous with the peritoneum.

The columnar epithelium of the mucosa forms invaginations called gastric pits [Sorenson 2008].
The lamina propria contains gastric glands opening into the bases of the gastric pits, which
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Fig. 2.3 Pictorial representation of the stomach. Source: [Wikipedia 2017]

produce and secrete gastric juices. Different types of cells are found at different parts of these
glands. A pictorial representation of stomach is shown in Figure 2.3.

2.2.2.2 Gastric Carcinoma

Gastric cancer is a leading cancer type that can be subdivided into different gastric malignan-
cies. Among these, gastric adenocarcinoma is the most common gastric malignancy (90-95%),
followed by lymphomas (1-5%), gastrointestinal stromal tumor (2%), carcinoids (1%), adenoa-
canthomas (1%) and squamous cell carcinomas (1%) [DeVita 2010]. Histopathologically, gastric
carcinoma is classified according to Lauren classification [Lauren 1965] into intestinal type and
diffuse type.

Gastric adenocarcinoma is the stomach malignancy studied in this work. It is defined as a
malignant epithelial tumor that originates from glandular epithelial tissue in the mucosa layer of
the stomach, and aggressively spreads by infiltrating the submucosa and muscularis externa of the
gastric wall. Gastric adenocarcinoma can be subclassified according to histological description of
the predominant structures as tubular, papillary, mucinous and poorly cohesive [Bosman 2010].

2.2.2.3 Associated Staining Methods

Staining is a technique that can be used to better visualize cells and other tissue components under
a microscope. By using different stains, one can preferentially stain certain cellular components,
such as a nucleus or a cell wall, or the entire cells. Some commonly used stains for this purpose
are Haematoxylin & Eosin (H&E), Feulgen, Schiff, Wright, Ki-67 protein, Toluidine blue and
immunohistochemical stains [Pawlina 2006]. The author describes two of the many staining
techniques, namely, HER2 immunohistochemical stain and H&E stain, because these two stains
have been applied in the whole slide image data of the subsequent experiments.

Immunohistochemical (IHC) staining (or immunostaining) is a group of staining methods
used in histopathological diagnostics of cancer [Ramos-Vara 2014]. An example of immunos-
taining is the HER2 staining. The human epidermal growth factor receptor 2 (Her2) gene is
a proto-oncogene whose high amplification causes a protein overexpression in cell membrane
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of a malignant cell, leading to abnormal cell division and growth [Chua 2012]. It has been
most widely studied in breast cancers. Neu is a protein which is encoded by the Her2 gene in
humans. Her2/neu (or simply HER2) has been recently introduced as a predictive biomarker
for the treatment of gastric cancer with trastuzumab. Trastuzumab is an antibody targeting
HER2 and is applied in combination with chemotherapy for the treatment of HER2 positive
advanced gastric cancer [Warneke 2013]. The HER2 status is assessed by pathologists using
tumor tissue obtained by biopsy or surgical resection and immunohistochemistry along with
in-situ hybridization. A gastric cancer is HER2 positive when a strong circumferential, lateral
or basolateral immunostaining is shown by ≥10% of the tumor cells in the tissue, or when
weak to moderate circumferential, lateral or basolateral immunostaining is shown by ≥10%
of the tumor cells in combination with HER2 gene amplification, also called the 10% cut-off
rule [Behrens 2015].

Hematoxylin-Eosin (H&E) staining is an example of staining method that has been used by
pathologists for over a hundred years because it provides a detailed view of the tissue by clearly
staining the tissue components. Hematoxylin stains the cell nucleus and other acidic structures,
such as RNA-rich portions of the cytoplasm and the matrix of hyaline cartilage with blue color.
In contrast, eosin stains the cytoplasm and collagen with pink color. Hence, the image analysis of
H&E stained images would mainly emphasize on cell nuclei, cytoplasm and other stained tissue
component characteristics. H&E stain is the most widely used stain in histological diagnosis and
is often a basis for primary diagnosis in the field of histopathology.

As stated earlier, HER2 immunohistochemical staining is a more complex staining procedure
involving higher preparation costs, and is still not common in laboratory practice. Haema-
toxylin and eosin (H&E) stain, in contrast, is routinely used in histological examinations due
to clear staining of cell nuclei, easy application, lower preparation costs and wider usabil-
ity [Bancroft 2008]. However, pathologists find difficulty in visually differentiating between
corresponding malignancy levels in H&E stain, the reason that H&E is used initially and HER2
immunohistochemical staining is subsequently recommended to reveal the details of malignancy.
Due to its advantages, the H&E stain has been preferably analyzed in this work.

2.3 Feature Extraction in Digital Histopathology

In computer vision and image processing, a feature can be defined as a set of values derived
from the higher dimensional image data that can be useful and informative for a given task,
for example, image recognition, object detection and content-based image retrieval. Features
are required to be appropriately engineered for sophisticated image analysis such as machine
learning and classification. The process of computing features from the image is known as feature
extraction, and considered as a dimensionality reduction, because the salient characteristics in
the image are represented by a lower dimensional feature vector. The systematic procedure to
make image data more accessible, leading to a relevant computer interpretation is referred as
image representation, and the process of quantification as image description. In the field of
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digital histopathology, the established and frequently studied handcrafted feature extraction and
image description methods are broadly divided into three groups, namely, low-level (pixel-based)
methods, object-level methods and high-level (architectural) methods [Gurcan 2009].

In this section, the three groups (and contained methods) considered as state-of-the-art for
extracting suitable features from tissue images in digital histopathology are briefly introduced.
A subset of these methods has been applied in our experiments as a baseline for quantitative
comparisons with the proposed methods and also during the image pre-analysis stage.

2.3.1 Low-level (Pixel-based) Methods

These methods incorporate detection of features through individual pixels in the image, and do
not include morphological or architectural properties of tissue components. Research in this
area mainly includes approaches for extracting meaningful information in the form of texture,
intensity, color and frequency-based features directly from the image pixels. In literature, these
methods have been applied on various types of histological images for several applications like
cancer classification, grading, tissue classification and content-based retrieval, discussed in detail
in Section 3.2.1.

2.3.1.1 Texture Descriptors

Texture is the most frequently used tissue characteristic in histopathological image analysis.
This is primarily because the working magnification in histological WSI (5× to 40× objective
magnification) makes it possible to distinguish the variations in histological components purely
on the basis of textural differences. Some of the most popular texture descriptors are explained
as follows.

Gray Level Co-occurrence Matrix Statistics

The commonly used features in this group consist of statistics [Haralick 1973] computed after
deriving a gray level co-occurrence matrix (GLCM) for each image. The GLCM is used for
a series of second order statistical calculations, measuring the relationship between the gray
levels of neighboring pixels in the original image. The GLCM is denoted by G, with dimension
Ng × Ng, where Ng is the number of gray levels in the image. Each element of G is computed by
counting the number of times Ni,j a pixel with value i is adjacent to a pixel with value j and then
dividing the entire matrix by the total number of such comparisons. Each entry is considered
as the probability that a pixel with value i will be found adjacent to a pixel of value j. p[i, j] is
given in equation 2.1 as the probability of co-occurrence of pixels with values i and j.

p[i, j] = Ni,j∑Ng−1
j=0

∑Ng−1
i=0 Ni,j

(2.1)

The common statistical features extracted from the GLCM are defined in Ta-
ble 2.1 [Haralick 1973].
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Table 2.1 GLCM statistical descriptors

Statistical quantity Expression Remarks
Angular Second Moment

∑
i

∑
j [p(i, j)]2 Also called Energy or Uniformity

Contrast
∑Ng−1

n=0 n2∑Ng

i=1
∑Ng

j=1 p(i, j) n = |i − j|

Correlation
∑

i

∑
j
(ij)p(i,j)−µxµy

σxσy

µx and µy are mean values σx and
σy are standard deviations of par-
tial PDFs of x,y

Entropy −
∑

i

∑
j p(i, j)log[p(i, j)] –

Inverse Difference Mo-
ment

∑
i

∑
j

p(i,j)
1+(i−j)2

Similar to (or referred as) Homo-
geneity

Sum of Squares: Variance
∑

i

∑
j(i − µ)2p(i, j) –

Sum Average
∑2Ng

i=2 ipx+y(i)

x and y are coordinates of an entry
in G and px+y(i) is the probability
of the co-occurence of coordinates
x + y

Sum Entropy −
∑2Ng

i=2 px+y(i)log[px+y(i)] –
Sum Variance

∑2Ng

i=2 (i − SE)2px+y(i) SE refers to sum entropy
Difference Entropy −

∑Ng−1
i=0 px−y(i)log[px−y(i)] –

Difference Variance
∑Ng−1

i=0 i2px−y(i) –

First Information Measure HXY −HXY 1
max(HX,HY )

HXY is Entropy, HX and
HY are entropies of partial
PDFs px,py and HXY 1 =
−
∑

i

∑
j p(i, j)log[px(i)py(j)]

Second Information Mea-
sure

√
1 − e[−2(HXY 2−HXY )]

HXY 2 =
−
∑

i

∑
j px(i)py(j)log[px(i)py(j)]

Maximal Correlation Co-
efficient

√
second largest eigenvalue of Q Q(i, j) =

∑
k

p(i,k)p(j,k)
px(i)py(k)

Gabor Filter-bank Responses

Gabor filters are considered good approximations of the receptive fields of simple cells in
primary visual cortex of mammalian brain [Marčelja 1980]. [Daugman 1985]. Gabor filter-bank
features can be selected for simulating the human visual detection abilities, as frequency and
orientation representations of Gabor filter are similar to response of human visual system. A two-
dimensional Gabor filter is a band-pass filter with impulse response h(x, y) in the spatial domain
as the multiplication of two functions, a complex sinusoidal carrier s(x, y) and a Gaussian
envelope gr(x, y) and denoted by equation 2.2 [Bovik 1990], [Movellan 2002].

h(x, y) = s(x, y) · gr(x, y) (2.2)

The sinusoidal carrier in spatial domain in the Cartesian coordinate system is shown in equa-
tion 2.3, where U and V are spatial frequency and φ is the phase of the sinusoid.

s(x, y) = exp(j(2π(Ux + V y) + φ)) (2.3)
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It can be inferred from above that, s(x, y) can be represented as equation 2.4 in the polar
coordinate system, where F =

√
U2 + V 2 is the magnitude and ω0 = tan−1(V/U) is the

direction.
s(x, y) = exp(j(2πF (xcosω0 + ysinω0) + φ)) (2.4)

The Gaussian envelope in spatial domain is expanded in equation 2.5, where K is the scale of the
magnitude, σx and σy are asymmetric spread of the Gaussian, x0 and y0 are locations of peaks, r

specifies rotational operation, and θ is the rotation angle.

gr(x, y) = K exp
(

−1
2

(
(x − x0)2

r

σ2
x

+ (y − y0)2
r

σ2
y

))
(2.5)

(x − x0)r = (x − x0)cosθ + (y − y0)sinθ (2.6)

(y − y0)r = −(x − x0)sinθ + (y − y0)cosθ (2.7)

Example of a Gabor filter-bank consisting of twelve two-dimensional Gabor filters with three
frequencies and four orientations is shown in Figure 2.4. When an image is filtered with a set of
filter-banks at different frequencies, orientations and standard deviation combinations, their filter
responses are considered as powerful texture discriminators [Fogel 1989]. The Gabor filter bank
responses can be used as effective texture features in histopathological image analysis.

Fig. 2.4 Example of Gabor filter-bank with varying frequencies and orientations
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Local Binary Patterns

The process of generating Local Binary Patterns (LBP) labels the pixels of an image by thresh-
olding the neighborhood of each pixel and considers the result as a binary number [Ojala 1996].
A LBP histogram can be computed and found effective to represent textures. The LBP texture
operator has recently become popular approach for texture classification because of high distin-
guishing potential and computational simplicity, and has been applied in several applications
such as face recognition [Ahonen 2006] and moving object detection [Heikkilä 2006].

The LBP operator first divides the image into windows of smaller size, and compares the
intensity of each center pixel c to its p-nearest neighbors, generating a 0 or 1 as the result of each
comparison. This operation gives a p-digit binary number corresponding to the pixel, which is
then converted to an equivalent decimal value called the LBP code. The resulting LBP image
Lc,p(x, y) is shown in equation 2.8, where Ic is the intensity of the considered pixel and s is a
sign function mapping to 1 if the difference is greater than or equal to 0, and 0 otherwise. An
example of the process of generation of the LBP code is illustrated in Figure 2.5.

Lc,p(x, y) =
p−1∑
k=0

2ks(Ik − Ic) (2.8)

Fig. 2.5 The LBP code generated from an example image

The LBP image Lc,p(x, y) can be obtained, and its histogram for ith LBP code with total
N = 2p codes is defined in equation 2.9.

Hi =
∑
x,y

f{Lc,p(x, y) = i}, i = 0, 1, ...N − 1 (2.9)

where, f{P} is a conditional operator which gives 1 where predicate P is true, else 0. The
classical LBP operator uses eight nearest neighbors. As a result, for each window, a histogram
of the frequency of each number occurring can be computed as a 256-dimensional feature
vector, and can be optionally normalized and concatenated over the image. Several exten-
sions of LBP have also been explored [Mäenpää 2003], such as the use of different sizes of
neighborhood [Ojala 2002].
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Varma-Zisserman Textons

Varma-Zisserman texture classification approach [Varma 2002], [Varma 2005] is also a popular
method for extracting texture features in digital histopathology. It makes use of maximum
response 8 (MR8) filters to generate filter responses of images selected randomly from each
class. The MR8 filter bank consists of 38 filters derived from a common Root Filter Set
(RFS), but only eight filter responses are used, as the filters are at multiple orientations but
their outputs are reduced by considering the maximum filter response across all orientations
for rotational invariance. The filters used in the Varma-Zisserman approach from the RFS are
edge filters at 3 scales with 6 orientations at each scale, bar filters at the same 3 scales with 6
orientations at each scale, a Gaussian and a Laplacian of Gaussian both with σ=10 which are
rotationally symmetric. The RFS filter bank generated using the open-source MATLAB filter
implementation [Varma 2002] is shown in Figure 2.6.

Fig. 2.6 The RFS filter-bank to obtain MR8 filter responses in the Varma-Zisserman approach. Con-
structed using the open-source MATLAB filter implementation in [Varma 2002]

.
Filter responses of sample images are aggregated and texton cluster centers are then collected

into a texton dictionary using the K-means clustering algorithm [Hartigan 1979]. For each image,
its filter responses are also generated and labeled with the texton closest to it in the filter response
space. A histogram of textons showing the frequency of occurrence of each texton in the image
is computed as the feature vector representing its textural characteristics.

2.3.1.2 Color and Intensity Descriptors

Color and intensity based features play a significant role in histopathological image analysis
since different requirement-specific staining techniques are applied to stain the tissue sections in
order to highlight specific components. Approaches in various color spaces [Tkalčič 2003], e.g.
RGB, HSV and L*a*b* can be utilized to extract features for particular regions of interest. A few
commonly used color and intensity-based features in digital histopathology are described below.

Intensity Histogram

Intensity or gray level histogram is the simple histogram of pixel intensity values. It contains
the number of pixels in an image at each of the different intensity values found in that image.
For an 8-bit grayscale image there are 256 different possible intensities, and so the histogram
will consist of 256 bins showing the distribution of pixels among those grayscale values. For
an M × N sized image I(x, y) with total L intensity levels, intensity histogram for ith intensity
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level can be defined as equation 2.10.

Hi = 1
MN

∑
x,y

f{I(x, y) = i}, i = 0, 1, ...L − 1 (2.10)

RGB Histogram

This histogram can be considered as the extension of intensity histogram for color images in
the RGB color space. Either individual intensity histograms of red, green and blue channels
can be considered, or a three-dimensional histogram can be produced, with the three axes
representing the red, blue and green color channels. The component (or channel) histograms can
be concatenated to generate a single feature vector. This histogram represents the distribution of
colors in the image.

(a)

(b)

(c) (d)

Fig. 2.7 Example showing (a) an image (b) gray model and image gray histogram (c) RGB color model
and image component histograms (d) HSV color model and image component histograms (generated in
MATLAB)
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HSV Histogram

HSV stands for hue, saturation and value, and is also alternatively called HSB (B: brightness). It
is a common cylindrical-coordinate representation of points in the RGB color model. Hue is the
characteristic of a visual sensation by virtue of which a stimulus is described as similar to one
of the perceived colors, namely, red, yellow, green and blue, or their combinations. Saturation
represents the degree of colorfulness of a stimulus relative to its own brightness. Value (or
brightness) is the measure of a visual sensation according to which a stimulus is considered
to emit certain degree of light. Transformation of an image from RGB to HSV color space
can reveal additional details from the different color components. These color models and an
example image with the respective intensity, RGB and HSV histograms are shown in Figure 2.7.

2.3.1.3 Frequency-based Descriptors

There are additional feature extraction methods, including the measurements in the frequency
domain, however, these are outside the scope of this study. Although the frequency-based features
have not been widely explored in histology, they have been of interest in a few studies. The feature
space can be expanded to other domains beyond the spatial domain (where the features of previous
sections are computed). Basic image transforms such as Fourier transform [Gonzales 2009]
and Wavelet transform [Antonini 1992] can be efficiently calculated from the raw image, and
a set of the most representative coefficients are selected as image descriptors. A few more
image transforms include the Chebyshev transform [Mukundan 2000] where a set of orthogonal
polynomials are applied to approximate a smooth function, the Radon transform [Fiddy 1985]
projecting pixel intensities onto a radial line and the Curvelet transform [Candes 2000] which
is a two-dimensional extension of wavelet transform at multiple scales and angles. Feature
extraction algorithms may also be applied to the transformed image, further expanding the
representations in the alternate domain. The combinations of different image transforms have
also been introduced as image descriptors. For instance, image transforms and their compositions
for image classification in fluorescence microscopy images and other image types have been
explored in [Orlov 2008].

2.3.2 Object-level Methods

Features based on image objects are also used frequently in digital histopathology. Pathologists
usually describe object characteristics in terms of their structural appearance, where an object is
defined as a connected group of pixels satisfying a similarity criterion, for instance, cell nucleus,
vessel or gland [Gurcan 2009]. Fundamentally, object-level analysis methods depend on an
underlying segmentation mechanism that detects the required objects in the image. Therefore,
this research direction makes use of image analysis techniques for description and representation
of constituent image objects in the regions of interest.

Object-level features can be categorized into one of four groups, namely, morphological,
radiometric and densitometric, texture, and chromatin-specific [Gurcan 2009]. While the ra-
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diometric and densitometric, texture, and chromatin-specific features are low-level features
extracted from local neighborhoods, morphological measures are the most predominant and
distinct object-level features. The common features in this group include area, perimeter, contour
properties, bounding ellipsoid properties, convex hull properties, and lengths and orientations of
the axes through the centroid [Hufnagl 1984]. Many of these cell nuclei morphological metrics
have been applied in the proposed methods, hence, defined later in the thesis.

2.3.3 High-level (Architectural) Methods

The state-of-the-art pixel-based methods may be inadequate for solving certain problems in
histological image analysis since they do not incorporate high-level topological information,
neighborhood relationships and tissue architecture, which are essential characteristics for distin-
guishing between healthy and abnormal tissues. The main objective of this group of methods is
to model the spatial interactions and arrangements between histological objects. Segmentation
is a prerequisite for majority of these methods. Graph-based techniques are a subset of the
high-level methods, involving extraction of discriminative structural features from tissues by
first constructing representative graphs on tissue objects. This study explores such graph-based
methods for analyzing histopathological images.

Graph is a data structure consisting of a finite set of points called nodes (or vertices) and
a set of edges (or arcs) which link the vertices with each other based on predefined criteria.
Mathematically, a graph is a tuple G(V, E) containing the set of vertices V and edges E ⊆ V ×V .
An edge in E connects two vertices in V . A graph is planar if it can be embedded in the plane, in
other words, it can be depicted on the plane such that its edges do not cross one another except
only at their endpoints, otherwise it is a non-planar graph. A graph is undirected if the edges have
no orientation. A directed graph (digraph) is the one where each edge has a direction associated
with it, connecting an ordered pair of vertices. The following sections discuss some commonly
used graph-based methods in digital histopathology [Sharma 2015a].

2.3.3.1 Voronoi Diagram, Delaunay Triangulation and Related Graphs

The first formal definitions of Dirichlet tessellation and Voronoi diagram were proposed by
Dirichlet [Dirichlet 1850] and Voronoi [Voronoi 1907] respectively. Let V = {v1, v2....vn} be
a set of n points (or vertices) in a plane and d denotes distance between two given points. It is
assumed that no three points are collinear and no four points are co-circular. The planar graphs
Voronoi diagram, Delaunay triangulation and related graphs are defined using these definitions
and assumptions. These graphs are included in the larger group called proximity graphs, also
called neighborhood graphs, in which two vertices are linked by an edge if and only specific
geometric requirements are satisfied by the vertices [Toussaint 1991]. Proximity graphs are
defined with reference to various metrics, however Euclidean metric is the most commonly used.
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Voronoi Diagram

Let two points (or sites) vi and vj be connected by the line segment vivj and its perpendicular
bisector B(vi, vj) divides the plane between the two sites into two half planes. The half plane of
site vi with respect to vj is denoted by H(vi, vj) and contains the set of points given by,

H(vi, vj) = {x | d(vi, x) < d(vj, x)} (2.11)

The Voronoi region (or Voronoi polygon) VP (vi) for the site vi is given by equation 2.12. VP (vi)
is a convex polygon which may be unbounded.

VP (vi) = ∩n
j=1,j ̸=iH(vi, vj) (2.12)

Hence, VP (vi) contains all such points in the plane closer to site vi than to any other site vj . The
Voronoi diagram of the set of V sites is obtained by using equation 2.13.

V D(V ) = ∪n
i=1VP (vi) (2.13)

Voronoi diagram performs a nearest site proximity partitioning of the plane. It is illustrated
in Figure 2.8. Using planarity and Euler’s formula, the Voronoi polygons always follow the
conditions given in equations 2.14 [Rozenberg 1993].

Number of Voronoi polygons = n

Number of polygon edges ≤ 3n − 6
Number of polygon vertices ≤ 2n − 5 (2.14)

Fig. 2.8 Voronoi Diagram of a set of random points

Delaunay Triangulation

The Delaunay triangulation, also called Delaunay graph, was first defined by Delaunay in
1934 [Delaunay 1934]. It is obtained by connecting pair of points vi and vj in the plane such
that the triangle formed by joining three non-collinear points with one side as vivj is a Delaunay
triangle, and is enclosed within a circumcircle with no other point vk ∈ V − {vi, vj} inside
this circle, called empty circle property. Delaunay triangulation is depicted in Figure 2.9.
Delaunay triangulation is the dual of Voronoi diagram, as the centroids of Voronoi polygons
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correspond to the vertices in Delaunay triangulation. The duality property is also shown in
Figure 2.9, and as a result of this property, the conditions in equation 2.14 are also satisfied by
Delaunay triangulation with the following modification given in equation 2.15 [Rozenberg 1993].
Subgraphs of Delaunay triangulation can be generated from Delaunay graph and explained next.

Number of Delaunay vertices = n

Number of Delaunay edges ≤ 3n − 6
Number of Delaunay triangles ≤ 2n − 5 (2.15)

Fig. 2.9 Delaunay Triangulation corresponding to the Voronoi diagram in Figure 2.8 showing empty
circle and duality properties

Gabriel Graph

Gabriel graph [Gabriel 1969] is a subgraph of Delaunay graph and an edge exists between
vertices vi and vj if they are least square adjacent, i.e. if for all other vertices vk ∈ V − {vi, vj}
the condition given in equation 2.16 is satisfied [Matula 1980].

d2(vi, vj) < d2(vi, vk) + d2(vj, vk) (2.16)

Gabriel graph can be derived from Delaunay graph by retaining all the edges of the graph such
that each edge is the diameter of a circle centered on the point halfway between its endpoints
that has empty circle property. Formally, line segment vivj is a Gabriel graph edge for all points
vk ∈ V −{vi, vj} if the circle with diameter vivj does not contain vk. It is depicted in Figure 2.10.

Fig. 2.10 Gabriel Graph corresponding to Delaunay graph in Figure 2.9 showing empty circle property

Relative Neighborhood Graph

Relative neighborhood graph (RNG) is a subgraph of the Delaunay graph and Gabriel graph. In
this graph, two vertices are connected by an edge if there is no other vertex closer to both than
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they are to each other [Toussaint 1980]. An edge exists between vertices vi and vj if for all other
vertices vk ∈ V − {vi, vj} the condition in equation 2.17 is satisfied.

d(vi, vj) ≤ max{d(vi, vk), d(vj, vk)} (2.17)

In other words, vivj is an RNG edge, if for all points vk ∈ V − {vi, vj}, vivj is not the longest
edge of triangle (vi, vj, vk). It can be derived from Gabriel graph by retaining only those edges
vivj for which lune(vi, vj) is empty, where lune(vi, vj) is the intersection of two circles centered
at vi and vj , each with radius vivj . RNG corresponding to the given set of points along with the
empty lune property is represented in Figure 2.11.

Fig. 2.11 Relative Neighborhood Graph corresponding to Delaunay graph in Figure 2.9 showing empty
lune property

Euclidean Minimum Spanning Tree

A tree is a obtained from an undirected graph by eliminating cycles, such that any two vertices
are connected by exactly one path. A spanning tree of a graph is a tree including all its vertices. A
minimum spanning tree (MST) [Graham 1985] is the spanning tree whose sum of edge weights
is less than or equal to the sum of edge weights of every other spanning tree. It is called Euclidean
minimum spanning tree (EMST) when each edge weight is the Euclidean distance between the
two vertex-coordinates [Czumaj 2008]. EMST can be derived from the Relative Neighborhood
Graph such that edge vivj is retained which is not the longest edge of a cycle in the RNG. It is
shown in Figure 2.12.

Fig. 2.12 Euclidean minimum spanning tree corresponding to Delaunay graph in Figure 2.9

Nearest Neighbor Graph

Nearest Neighbor Graph [Preparata 1985] can be defined as a directed graph where vivj is a
directed edge from vi to vj if for all vertices vk ∈ V − {vi, vj}, the condition in equation 2.18 is
satisfied. It is depicted in Figure 2.13 for the given set of points.

d(vi, vj) ≤ d(vi, vk) (2.18)
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Nearest Neighbor Graph, when considered as an undirected graph is a subgraph of Delaunay
triangulation and can be obtained from Euclidean minimum spanning tree by retaining the edge
for each vertex to the closest neighbors.

Fig. 2.13 Nearest Neighbor Graph corresponding to Delaunay graph in Figure 2.9

Several algorithms exist in literature for generation of Voronoi diagram, Delaunay triangula-
tion and its subgraphs. A summary of the popular algorithms, with their associated complexities
is given in Table 2.2, where a graph with n vertices are considered. Many authors have also
proposed time-efficient versions of the existing algorithms with improvement in complexities.

Table 2.2 Summary of popular algorithms for constructing Voronoi diagram, Delaunay triangulation and
its subgraphs

Graph type Associated algorithms Time complexity
Voronoi diagram Fortune’s sweepline algorithm [Fortune 1987] O(nlog(n))

Divide and conquer algorithm [Shamos 1975] O(nlog(n))
Incremental algorithm [Green 1978] O(n2)
Naïve algorithm [Okabe 2009] O(n2log(n))
Lloyd’s algorithm [Lloyd 1982] O(nlog(n))

Delaunay triangula-
tion

Bowyer-Watson algorithm [Bowyer 1981],
[Watson 1981]

O(nlog(n)) to O(n2)

Lawson’s flip algorithm [Lawson 1977] O(n2)
Lifting or projection algorithm
[Zimmer 2005]

O(nlog(n))

Gabriel graph From Delaunay graph [Matula 1980] O(n)
Relative neighbor-
hood graph

From Delaunay graph [Lingas 1994] O(n)

Euclidean min-
imum spanning
tree

From Delaunay graph [Eppstein 1999] O(nlog(n))

Nearest neighbor
graph

From Delaunay graph [Edelsbrunner 1987] O(nlog(n))

Ulam Tree

Ulam Tree is a also derived from the Voronoi diagram. It is a mathematical object growing in
space and time according to certain rules [Ulam 1966]. It is generated from the Delaunay graph
in such a way that the tree branches traverse only those Voronoi polygons which are not traversed
by any other branch of the tree. Marginal polygons are not considered during traversal. However,
there is not sufficient theoretical explanation or experimental evidence for this derivative in
previous literature. It is depicted in Figure 2.14 (with start point S).
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Fig. 2.14 A Voronoi diagram and its corresponding Ulam Tree

2.3.3.2 β-Skeleton

In [Kirkpatrick 1985], Kirkpatrick and Radke have defined a parameterized group of proximity
graphs known as β skeletons, β being the parameter. The neighborhood of vertices vi and vj

is defined by Ni,j(β) for a fixed β. The β skeleton is an undirected graph, where two vertices
vi and vj are connected by an edge if and only if no other point is located in Ni,j(β). A sphere
centered at point p and radius r is denoted as S(p, r).

For 0 < β ≤ 1, vertices vi and vj are β-neighbors if and only if the neighborhood defined
by the intersection of the two spheres each of radius d(vi, vj)/2β which pass through points
vi and vj in their boundary, contains no point vk ∈ V − {vi, vj}. In this case, the lune-based
and circle-based neighborhoods are identical. For 1 < β < ∞, there are two definitions for β

skeletons, as follows.

Lune-based β Skeleton

Points vi and vj are lune-based β-neighbors if an only if the lune Ni,j(β) defined by the intersec-
tion of the spheres in equation 2.19 contains no other point vk ∈ V − {vi, vj}.

Ni,j(β) = S

((
1 − β

2

)
vi + β

2 vj,
β

2 d(vi, vj)
)

∩ S

((
1 − β

2

)
vj + β

2 vi,
β

2 d(vi, vj)
)

(2.19)

Circle-based β Skeleton

Points vi and vj are circle-based β-neighbors if and only if the neighborhood defined by the union
of the two spheres each of radius β

2 d(vi, vj) passing through points vi and vj in their boundary,
contains no point vk ∈ V − {vi, vj}.

β neighborhoods with diverse values of β are shown in Figure 2.15. It can be seen that
β-skeletons contain both relative neighborhood graphs and Gabriel graphs as special cases.
Gabriel graph can be defined as lune-based and circle-based 1-skeleton (β = 1) and the relative
neighborhood graph as lune-based 2-skeleton (β = 2) [Jaromczyk 1992].
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(a) (b) (c) (d)

Fig. 2.15 β neighborhoods (shaded regions) with different values of β.(a) Lune-based and circle-based
β = 0.5 (b) Lune-based and circle-based β = 1 (c) Lune-based β = 2 (d) Circle-based β = 2

2.3.3.3 Johnson-Mehl Tessellation

Visualization of growth models is essential in many technical processes, including histological
changes. For representing such phenomena, spatial patterns obtained from simple growth
processes can be used. The Johnson-Mehl model [Johnson 1939] is defined as a Poisson-Voronoi
growth model showing growth of particle aggregates, where a Poisson point process is applied to
generate nuclei asynchronously, and the nuclei grow at the same radial speed [Anton 2009]. The
ith generator Pi = (pi, ti) is defined by a planar position vector pi and associated appearance
time ti. The Johnson-Mehl tessellation can be viewed as comparable to a dynamic version of an
additively weighted Voronoi diagram [Anton 1998], in which the weights indicate the associated
appearance times of particles in R2 [Okabe 2009]. In stochastic geometry, the Johnsons-Mehl
model is constructed to measure arbitrarily distributed geometrical properties.

The generation of Johnson-Mehl tessellation is explained in [Anton 2009]. After appearance
of a new nucleus the tessellation changes, as the incoming nucleus is inserted with a new Voronoi
region and the neighboring Voronoi polygons are changed. The sizes of the associated spheres
of nuclei are increased by the growth proportional to the time interval between the previous
appearance and current one (ti − tj). This type of spatial growth uses a Poisson point process,
defined according to two cases of radial speed in [Anton 2009], namely, time homogeneous
Poisson point process and time inhomogeneous Poisson point process. An example of Johnson-
mehl tessellation for a random set of points at two time instants is shown in Figure 2.16.

2.3.3.4 O’Callaghan Neighborhood Graph

An alternate definition of the neighborhood of a point manifested by O’Callaghan neighorhood
graphs in [O’Callaghan 1975] has been applied to histopathological images. For the histological
context, O’Callaghan neighborhood graphs have been discussed in detail in [Kayser 1987], where
vertices are defined as structures. Two types of constraints apply to the neighborhood, namely
distance constraint and direction constraint. Two structures are neighbors if they are located
within a certain distance (distance constraint), and not hidden behind other points classified as
neighbors (direction constraint). It is shown in Figure 2.17, where v1, v2, v3 are neighbors of vi,



2.3 Feature Extraction in Digital Histopathology 29

(a) (b)

Fig. 2.16 Johnson-Mehl tessellation for a set of random points (a) growth of particles at t = t1 (b)
growth of particles at t = t1 + 50

however v4 is not a neighbor of vi. All distances di1 to di3 are below the upper distance threshold.
Direction constraint is not fulfilled by v4, as v4 is hidden behind v2.

Fig. 2.17 O’Callaghan neighborhood graph

2.3.3.5 Cell Graph

As the name suggests, cell graphs are formed by considering cells or cell clusters as vertices,
and relationships between them as edges using certain predefined linking rules. Cell graphs
are non-planar graphs as crossing of edges are allowed. The authors introducing cell graphs
initially define the linking probabilities using the Waxman model [Gunduz 2004]. However, in
subsequent works like [Bilgin 2007], three different variations of cell graphs are defined. These
are depicted in Figure 2.14 using available histological images. Figure 2.18(a) and Figure 2.18(b)
are created with 400 times magnification, whereas Figure 2.18(c) with 100 times magnification
for clarity.

Simple Cell Graph

In simple cell graph, an edge exists between given two vertices vi and vj if and only if the
Euclidean distance de between the vertices is less than a predefined threshold D, which is defined
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according to the characteristics of the tissue architecture.

de(vi, vj) < D (2.20)

Probabilistic Cell Graph

In probabilistic cell graph, edges are assigned to vertices depending on the distance between
vertices, by using a probability function which can be defined according to the tissue being
analyzed. One such probability function used in literature is given by:

P (vi, vj) = de(vi, vj)−α (2.21)

where vi and vj are two vertices and de denotes the Euclidean distance between them. α is an
experimental parameter which determines the rate at which probability of a link decreases with the
increase in distance between vertices, hence, controls the graph density. The edges are defined by
a binary relation E on V for all pair of vertices vi and vj , such that E = {(vi, vj) : P (vi, vj) > r},
r being a real number between 0 and 1. With such construction, the vertices closer to each other
are more likely to be linked compared to vertices farther away, however it is not necessary that
a link will be formed even if the distance between vertices is small, and will depend on the
parameter α.

Hierarchical Cell Graph

Hierarchical graph is generated by connecting smaller subgraphs representing cell clusters
together to form the larger graph on the image. The clusters are identified as cell groups
exceeding a threshold of the number of cells in a given region, defined by placing a grid on top
of the image. Hierarchical graphs are built using these clusters as vertices, where each vertex
represents a simple cell graph on the cells included in the cluster. The same linking rules are
applied as for probabilistic cell graphs.

(a) (b) (c)

Fig. 2.18 Representative cell graphs for small regions of H&E stained images (a) Simple cell graph with
D = 200 for gastric tissue region (b) Probabilistic cell graph with α = 2 for gastric tissue region (c)
Hierarchical cell graph for breast tissue where each vertex represents a cell cluster with a corresponding
simple cell graph built on the constituent cells (denoted by rectangle)
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2.3.3.6 Attributed Relational Graph

A graph G is an Attributed relational graph (ARG) when its vertices and the edges contain
associated attributes. The vertex attributes for vi are denoted as a vector ai = [a(k)

i ], (k =
1, 2, 3, ..., K), where K is the number of vertex attributes, and the edge attributes (or weights)
for ej by the vector denoted as bj = [b(m)

j ], (m = 1, 2, 3, ..., M), where M is the number of edge
attributes [Sharma 2012]. In Figure 2.19, ARG with vertex attribute vectors ai, i = 1, 2, 3 and
edge attribute vectors bj, j = 1, 2, 3 is shown. Vertex attributes represent object properties like
size, position, shape and color whereas edge attributes define relationships between vertices such
as the distance, common boundary and dissimilarity between objects. Linking between vertices
may be based on the selected neighborhood condition (e.g. O’Callaghan, proximity graph).

Fig. 2.19 Attributed Relational Graph

2.3.3.7 Global Graph Features

When the graphs have been constructed for images using the above described methods, the
next step in image analysis is to extract appropriate features from these graphs. One way of
achieving this is to define a set of global graph measures. There are many graph-based metrics
and measures which can be derived from graph representations. Definitions of several measures
can be found in [Wallis 2010]. Some of the most commonly used global graph features in image
analysis are described as follows:

1. Graph size: Graph size represents the span and extent of a graph, and can be measured by
counting the total number of vertices, total number of edges and total number of trees in the
graph.

2. Degree: Degree of a vertex is defined as the number of neighbors of a vertex, or number of
vertices linked to the given vertex by edges. Average degree Dav of graph G with n vertices
and degree Di of the ith vertex vi is calculated as below, and suitable for representing the
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relative density or sparsity of the graph.

Dav = 1
n

n∑
i=1

Di (2.22)

3. Clustering coefficient: Clustering coefficient is the measure of the extent to which vertices
in a graph have a tendency to cluster together. For a given vertex vi, let the neighboring
vertices be contained in the neighborhood set Ni defined as,

Ni = {vj ∈ V ∀ vj ̸= vi, (vi, vj) ∈ E} (2.23)

For an undirected graph, clustering coefficient Ci for vertex vi is computed by,

Ci = 2|ejk|
Di(Di − 1) : vj, vk ∈ Ni; ejk ∈ E (2.24)

where, Di is the degree of vertex vi and |ejk| is the total number of edges between the
neighbors of vi. It can be noted that 0 ≤ Ci ≤ 1 . The average clustering coefficient Cav for
the graph can be calculated as,

Cav = 1
n

n∑
i=1

Ci (2.25)

4. Eccentricity: The eccentricity ϵi of a graph vertex vi is the maximum distance between vi

and any other vertex vj in V . It can be considered as the measure of how far a vertex is
from the vertex most distant from it in the graph. The vertices of a disconnected graph are
said to have infinite eccentricity [West 2000]. The minimum graph eccentricity is called the
graph radius and the maximum eccentricity of graph is called the graph diameter. Average
eccentricity of the graph can be calculated as,

ϵav = 1
n

n∑
i=1

ϵi (2.26)

5. Path length: A path in a graph or tree is a finite or infinite sequence of edges which connects
a sequence of vertices. Edges can be part of a path only once. The minimum, average and
maximum path lengths of the graph can be calculated. Let d(vi, vj), where vi, vj ∈ V denote
the shortest distance between vi and vj , assuming that d(vi, vj) = 0 if vi cannot be reached
from vj . Average path length lav for an undirected graph can be defined as [Tomassini 2010],

lav = 2
n(n − 1)

∑
i̸=j

d(vi, vj) (2.27)

6. Connected Component Ratio: A connected component (or just component) of an undirected
graph is a subgraph in which any two vertices are connected to each other by paths, and which
is not connected to additional vertices in the supergraph. The connected component ratio
for a connected component in the supergraph is defined in equation 2.28, where nvc is the
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number of vertices in the given connected component and n is the total number of vertices in
the supergraph.

CCR = nvc

n
(2.28)

7. Cyclomatic number: A cycle is a path where the start vertex is also the end vertex. Cyclo-
matic number or circuit rank γ of a graph is the minimum number of edges which must be
removed in order to eliminate all cycles from the graph [Volkmann 1996]. Considering a
graph with n vertices, ne edges and nc connected components, γ is given by,

γ = ne − n + nc (2.29)

8. Statistical descriptors: For Voronoi diagrams and Delaunay triangulations, there can be
certain measures such as area and perimeter associated with the individual Voronoi polygons
and Delaunay triangles respectively. For ARGs, there can be several attributes associated
with vertices and edges. Statistical descriptors can be used for globally describing these
attributes of individual vertices and edges. These include mean, standard deviation, minimum
to maximum ratio, disorder, skewness, kurtosis and higher-order descriptors. For these graphs,
co-occurrence matrix can also be constructed and statistical features [Haralick 1973] can also
be extracted from them. These statistical descriptors are capable to represent several diverse
properties of entire graphs and their variations quantitatively.

9. Spectral descriptors: Spectral features include properties extracted from the matrices used
to describe the graph, such as adjacency matrix and Laplacian matrix, and their study is
called spectral graph theory [Brouwer 2011]. Some of the frequently used features include
eigenvalues, spectral radius, eigen exponent, Cheeger constant, eigenmode perimeter, eigen-
mode volume and so on [Wilson 2005], [Luo 2003] These spectral features have the ability
to indicate various fundamental properties of the graph.

2.4 Machine Learning in Digital Histopathology

Machine learning is the branch of computer science which includes development of algorithms
using which computers can learn from empirical data without the requirement of explicit pro-
gramming. The spectrum of machine learning methods ranges from artificial neural networks
to decision trees, ensemble learning and most recently deep learning. Many machine learning
methods have been employed for several image analysis applications, e.g. semantic segmentation,
region classification, cell nuclei classification and content-based retrieval in the field of digital
histopathology. Four popular machine learning methods have been explored in this work for the
specified image analysis tasks on the gastric cancer datasets, namely, support vector machines,
AdaBoost ensemble learning, random forests as traditional methods and convolutional neural
networks as deep learning methods. These four methods are briefly introduced in this section,
and described later in the respective sections of the thesis.
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2.4.1 Support Vector Machines

Support vector machines (SVM) is a group of non-probabilistic supervised learning methods. An
SVM is a discriminative classifier formally defined by a separating hyperplane, i.e., given labeled
training data consisting of handcrafted features, the algorithm outputs an optimal hyperplane
which categorizes new incoming examples. The learning phase generates non-linear classifiers
using maximum margin hyperplanes after applying the kernel trick [Boser 1992] in order to
discriminate between non-linearly separable data. The current standard SVM algorithm was
proposed in [Cortes 1995], however, its variations have been successfully applied to diverse clas-
sification and regression analysis tasks in pattern recognition and computer vision [Byun 2002].
A few drawbacks of SVM include lower robustness to irrelevant descriptors leading to the
requirement of feature selection [Chen 2006], and also the overhead of exhaustive parameter
selection of multiple parameters. Details of the SVM algorithm applied in this work is given in
Section 6.2.4.1.

2.4.2 AdaBoost Ensemble Learning

Ensemble learning [Rokach 2010] is a set of machine learning methods which use a collection
of classifiers or learners and obtain a joint classification decision by combining their predictions.
AdaBoost [Freund 1995] or adaptive boosting is a well-known ensemble learning approach that
allows adding a sequence of weak learners to the algorithm until a desired low training error is
achieved. The strong learner is assembled through a weighted majority voting scheme on the
weak learners. AdaBoost is the most widely used form of boosting, as a boosting algorithm like
AdaBoost involving a combination of classifiers is proposed as a new direction for improving
the performance of individual classifiers like kNN, Naive Bayes and SVM [Kotsiantis 2007].
AdaBoost is also found to be easier to implement than other maximal margin classifiers like SVM.
These reasons give AdaBoost an edge over other traditional machine learning approaches for
supervised classification, and has been explored in the research. However, AdaBoost also suffers
from some limitations such as high sensitivity towards noise and outliers, and high computational
requirements due to an ensemble of classifiers. The details of the specific AdaBoost algorithm is
provided in Section 6.4.2.2.

2.4.3 Random Forests

Random forest [Breiman 2001] is also a popular ensemble learning method which constructs
many decision trees during the training phase. The final class is voted by the individual trees
during classification. Like the SVM and AdaBoost methods, training a random forest also
requires prior computation of suitable handcrafted features from the corresponding data to
represent their characteristics. Random forests improve the classification by individual decision
trees which are weak learners through ensemble learning, and is considered as good as AdaBoost
in terms of prediction power, even sometimes better by its authors. Furthermore, it is faster than
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bagging and boosting, simple to implement and interpret, and can be easily parallelized. It is also
described relatively robust to outliers and redundant variables, and is able to efficiently handle
large databases and missing data. Therefore, random forests have been selected as one of the
traditional machine learning methods, details of which are described in Section 7.4.1.3.

2.4.4 Deep Convolutional Neural Networks

Deep learning is a subset of a larger group of machine learning methods, which comprises
of algorithms with hierarchical processing layers performing non-linear transformations to
represent and learn data characteristics effectively [LeCun 2015]. Deep learning methods are
currently being explored in various fields such as computer vision, audio and speech processing,
natural language processing, information retrieval and bioinformatics [Deng 2014]. Several deep
learning architectures, for example, convolutional neural networks, deep belief networks and
recurrent neural networks have been introduced [Deng 2012], and have reported to achieve state-
of-the-art results in a number of tasks. The goodness of data representation notably affects the
performance of machine learning algorithms. Specifically, the existence of large-scale data has
been recognized as a prerequisite for the success of majority of deep learning applications, leading
to a convergence between the fields of deep learning and big data analytics [Najafabadi 2015].

One of the most frequently used methods of deep learning for two- dimensional data is
the deep convolutional neural networks (CNN). These networks consist of interconnections
emulating the arrangements in visual cortex in animals, like individual neurons are organized in
a manner to respond to the overlapped tessellations comprising the visual field [Hinton 2005].
The principle transformations in deep CNNs mainly consist of combinations of convolutional,
pooling and fully connected layers, and their parameters are trained using backpropagation
through these layers [Ciregan 2012]. Deep learning using convolutional neural networks does
not necessarily require prior computation of handcrafted features, and directly processes raw
input images to compute self-derived and learned features during the training process. In recent
years, CNNs have achieved breakthrough performance due to the availability of large-scale
training data and huge parallelization using graphics processing units (GPU) to speed up the
application i.e. training and deployment process [Strigl 2010]. This has led to development of
a number of time-efficient GPU-based frameworks [Jia 2014] for deep learning which can be
applied for various image analysis tasks. All these recent advancements have led to the choice of
deep learning to explore their potential for image analysis in digital histopathology.

The above machine learning methods have been selected due to mutually distinct and unique
properties, for instance, traditional machine learning versus deep learning, single classifiers ver-
sus ensemble of classifiers, probabilistic versus deterministic algorithms, and different paradigms
involved in learning such as margin maximization, boosting, decision trees or neural networks,
that can facilitate an exhaustive comparison, along with corresponding observations and conclu-
sions in the undertaken study.
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2.5 Summary

This chapter provides the description of related medical concepts in the histopathological domain,
theoretical background of the state-of-the-art and widely known image analysis techniques
including feature extraction and machine learning in digital pathology. The useful methods
related to this work have been introduced and defined in the chapter, unless otherwise described
later in the corresponding sections of the thesis.
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3.1 Introduction

This chapter discusses the recent studies in literature that are related to the work demonstrated in
this research, for image analysis in the field of digital histopathology. These are organized in the
sequence starting with the feature extraction methods followed by the machine learning methods
and finally the research related to analysis of gastric cancer. A section of the literature review,
especially relating to the feature extraction methods, was published by the author in a review
article [Sharma 2015a] during her studies.

37
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3.2 Feature Extraction in Digital Histopathology

3.2.1 Low-level (Pixel-based) Methods

Previous literature in this area mainly includes approaches for extracting information in the form
of textural, color and intensity, and frequency-based features, for example, GLCM statistics,
Gabor filter-banks, LBP histograms, Varma-Zisserman textons, color and intensity measurements.
These methods have been applied on several types of histological images for applications such
as cancer classification, tumor grading, tissue categorization and content-based image retrieval.

Texture has been recognized as a highly significant group of low-level features to characterize
histological images. GLCM texture features are extracted in [Walker 1994] to determine if cervi-
cal cell nuclei are normal or abnormal. Texture analysis using optical density, GLCM and gray
level run-lengths is used in [Hamilton 1997] to classify colorectal mucosa images into normal and
adenomatous (dysplastic). Studies described in [Shuttleworth 2002a] and [Shuttleworth 2002b]
use texture features from co-occurrence matrices in distinct color spaces for classifying colon
cancer images. In [Zhao 2005], Gabor filter-bank based texture features are applied to clas-
sify histological images into different tissue types depending on their organs or parts of body.
Another study using Gabor filters is presented in [Yu 2008] for analyzing semantic content in
gastrointestinal tract histological images. GLCM along with Gabor filter-bank responses are
used for feature extraction in [Thomas 2008], a prototype method to transform the appearance of
irregular tissues to frieze-like patterns in one dimension. Local binary pattern texture features are
applied for automated identification of epithelium and stroma in tissue microarrays of colorectal
cancer in [Linder 2012]. Local binary patterns are also explored for stromal area removal in
Ki-67 stained histological images in [Alomari 2012]. Co-occurrence features along with local
binary patterns are used for classifying neuroblastoma images in [Sertel 2009]. Varma-Zisserman
texton approach has been used in histological image analysis tasks and performed well such
as in [Khurd 2010] for automatic Gleason grading of H&E images of prostate cancer. Several
filter-banks such as Gabor and Maximum Response filters used in the Varma-Zisserman approach
have also been applied in a similar texton histogram approach for classification in breast cancer
tissue microarray samples in [Yang 2009].

Color and intensity-based features have been widely explored in digital pathology. Early
works include the computation of gray-level features in [Wong 1983] for parallel classification
of muscle tissue images. More recently, analysis of stain components has been performed using
color-based SIFT features in H&E stained skin biopsy [Díaz 2010]. Histological specimens
stained with H&E are segmented in original color space using a supervised color normalization
and classification scheme in [Kothari 2011]. In additional related works, color and intensity
features are used in conjunction with the other low-level feature groups (mentioned later under
hybrid approaches).

Frequency-based features include the deployment of spectral bands, Fourier transforms
and wavelets among others. Applications utilizing multiple spectral bands for analysis in-
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clude [Roula 2002] and [Rajpoot 2003]. Wavelets have also been proved as powerful low-level
features e.g. in [De Wouwer 2000], [Jafari-Khouzani 2003] and [Qureshi 2008] for breast can-
cer, prostate cancer and meningioma classification respectively.

Hybrid methods with different combinations of low-level features have also been explored in
the past. Integration of texture and intensity-based features has been popularly used in different
applications. For example, GLCM features are studied in combination with intensity-based
features in [Esgiar 1998] for classifying colon mucosa as normal or cancerous. In [Doyle 2006],
texture features obtained from co-occurrence matrices and Gabor filters are used with intensity-
based features for detecting prostatic adenocarcinoma. Other approaches using combination
of texture and intensity-based features include [Wiltgen 2003] and [Kong 2009] for analysing
melanoma and neuroblastoma respectively. A work combining frequency-based features with
texture properties can be found in [Orlov 2008]. A hybrid low-level method proposed as a part
of this research in [Sharma 2016] combines texture and color features.

Content-based retrieval of histological images has been investigated in previous literature
using low-level methods. A work for retrieval of skin cancer images using texture features is
described in [Chung 2001]. A CBIR system for retrieving visually similar and pathologically
relevant images from a database of cervicographic specimens has been proposed in [Xue 2007],
where color features, texture features, size of lesion and spatial location features are first extracted
from the image regions, and distance measures are defined to establish similarity to a query region
marked by the user. In [Caicedo 2011], the authors perform retrieval of basal-cell carcinoma
images using an example image as query, where a set of global texture and intensity features is
applied, followed by a kernel-based semantic image annotation strategy, facilitating automatic
annotation of images in large collections. A semi-automatic method using a combination of
low-level features, namely, color, intensity, orientation and texture from tissue images is proposed
in [Romo 2011] for automatic selection of regions of interest for further diagnosis. A multi-
tiered CBIR system for microscopic images of several tissues (follicular lymphoma slides with
three sub-types and neuroblastoma slides with four sub-types) is described in [Akakin 2012],
where the authors extract color and texture features and perform slide-level image retrieval using
multi-image query.

3.2.2 Object-level Methods

This group of methods predominantly includes the extraction of shape-based or morphological
features of image objects. These features have been extensively studied in histological image
analysis. The dissertation [Hufnagl 1984] explores the mathematical modeling of cell nuclei
in histological images using object-level metrics, which has built the premise for an essential
part of this research. Moreover, in [Hamilton 1987], H&E stained colorectal epithelium images
are analyzed using morphological features followed by discriminant analysis that classifies
images as normal and malignant. In [Hamilton 1994], cytometric features based on cell mor-
phology are used for classifying fine needle aspiration cytology breast specimens into benign
and malignant by constructing Bayesian belief networks. Anderson et al. [Anderson 1997]
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use morphological features of glandular tissue components (ducts and lumens) to discriminate
breast tissue images into ductal hyperplasia and ductal carcinoma in situ. In [Farjam 2007],
morphological features are extracted to classify prostate biopsy samples into benign and ma-
lignant. An application called FatFind [Goode 2007] considers the property of perfect round
shape of adipocytes for their automatic counting. Other morphological studies in histology in-
clude [Deligdisch 1993], [Thiran 1996] and [Nedzved 2007] for analyzing ovarian cancer, lungs
and digestive tract, and multiple kinds of tumors respectively.

Several studies also exhibit a fusion of the low-level and object-level methods. Papanico-
laou smears of cervical epithelial lesions are analyzed using texture, color and shape features
in [Stenkvist 1987]. An application of CBIR with histopathological images using color and
morphological characteristics and property concept frame representation based on fuzzy logic is
described in [Jaulent 2000]. A combination of texture and morphological features is explored
in [Spyridonos 2001] for bladder carcinoma, and morphological and colorimetric features are
combined in [Zhou 2002] for the analysis of lung cancer images. Tissue composition in prostate
neoplasia using GLCM-based texture and morphology is determined in [Diamond 2004]. A
multiresolution approach developed as a part of this work also uses object-level texture, intensity
and morphological features for automatic classification of cell nuclei of gastric cancer tissue
in [Sharma 2015b].

3.2.3 High-level (Architectural) Methods

Graphs constitute an interesting area of research for analysis of histological image data, due to
their ability to efficiently represent tissue architecture in suitable ways. High-level or architectural
feature extraction methods are being increasingly developed to characterize tissues using spatial
distribution and neighborhood properties by constructing representative graphs and calculating
a set of appropriate local and global graph-based metrics from respective image descriptions.
As stated before, a comprehensive literature survey of graph-based methods for image analysis
in digital histopathology performed as part of this research is presented in [Sharma 2015a],
discussing the progress of exciting developments and applications in this field.

Graph-based methods for histological images were initially explored in the direction of syn-
tactic analysis. Syntactic methods based on neighborhood conditions in pattern recognition were
introduced in [Fu 1974]. Following this, a relatively new technique was introduced in diagnostic
quantitative pathology called syntactic structure analysis, which was believed to provide quanti-
tative information on tissue architecture [Van Diest 1995]. The earliest work in this direction is
presented by Prewitt et al. [Prewitt 1978] for characterizing epithelial tissues of urinary bladder
mucosa, where measurements are performed using an interactive digital image processing and
decision-making system called PEEP/DECIDE/GRAPH [Prewitt 1977] to automate diagnostic
procedures. Features are extracted from haematoxylin stained cells representing intensity, texture,
shape, differentiation and structure, and from tissue regions quantifying spatial distributions and
tissue organization. Graphs and grammars in histology are formally defined in [Prewitt 1979],
where a graph-theoretic model and syntactic pattern recognition are introduced for tissues using
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two random spatial structures, namely, Dirichlet tessellation and Delaunay tessellation as the
unique topological planar dual graph of the Dirichlet tessellation. These structures are used to
obtain a unique, invertible, relational and attributed graph representation of histological sections.
The work also suggests that Dirichlet’s domain can be extended to a more general Johnsons-Mehl
domain. Another early application of the technique is found in [Sanfeliu 1981] for analyzing
muscle tissue patterns using a distance measure between graphs. The syntactic structure analysis
approach though theoretically powerful, has limited usage in practical applications of the present
times due to its extensive computational requirements, which was also experimentally observed
by scientists later. Subsequently, with development of digital pathology techniques, some more
efficient graph-based methods were analyzed.

The commonly used graph-theoretic methods in histopathology are Voronoi diagrams, De-
launay triangulations and related graphs, cell graphs and attributed relational graphs. It has been
stated in [Gurcan 2009] that a total of approximately 150 spatial-relational features have been
extracted from all graph structures for histological images.

The most abundantly applied graph-theoretic techniques for representation and analysis
of histological images till date are the Voronoi diagram, Delaunay graph and related graphs.
Voronoi diagrams and Dirichlet domains have been explored in [Darro 1993] for growth as-
sessment of degrees of differentiation in terms of cell population dynamics in Feulgen stained
colorectal neoplastic cell colonies growing on histological slides, by studying the structure of
clones in 11 different media. The authors in [Keenan 2000] describe a graph-based approach
for analysis of H&E stained images of Cervical Intraepithelial Neoplasia, where Delaunay
triangulation mesh is first computed on a region and 18 quantitative features are extracted.
Discriminant analysis is applied to categorize image regions into normal or one of the three
cancer grades. Minimum spanning tree has been used abundantly for quantitative representation
of tissue architecture. For instance, H&E stained tissue sections of colorectal adenomas are
analyzed in [Meijer 1992] using MST features to differentiate between three grades of dysplasia.
In [vanDiest 1992], the authors analyze invasive breast cancer tissue images using 10 syntactic
structure features extracted from corresponding MST of each H&E stained breast tissue region. A
method for detecting lymphocytic infiltration in HER2 positive breast cancer images is described
in [Basavanhally 2010] using features derived from Voronoi diagrams, Delaunay triangulations
and minimum spanning trees.

Cell graphs have been introduced and extensively studied in [Gunduz 2004], [Demir 2004],
[Demir 2005a], [Demir 2005b] and [Gunduz-Demir 2007] for analysis of H&E stained brain
cancer (glioma) biopsy samples. In [Bilgin 2007], the authors use hierarchical cell graphs to
model H&E stained breast tissue images. H&E stained histopathological images of bone tissue
samples are analyzed using advanced version of cell graphs called ECM-aware cell graphs
in [Bilgin 2010]. In the cell graph methods, the authors have used low magnification (80-100
times) tissue images to construct representative graphs, global graph metrics (e.g. average degree,
clustering coefficient, average eccentricity, eigenvalues of graph) are extracted, and the images
are classified with the help of neural networks or SVM classification methods. The cell graph
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representation is a flexible method for histological images due to advantages over other geometric
graph-based techniques, especially the use of fewer geometrical constraints for cancer tissue
modeling. However, it has limitations when highly magnified histological images need to be
analyzed, and are addressed later in the thesis.

Attributed relational graphs (ARG) are emerging as an appealing topic of interest for re-
searchers in this field. Attributed minimum spanning trees are explored for representing Feulgen
stained soft tissue tumors (malignant fibrous histiocytoma, fibrosarcoma, rhabdomyosarcoma,
osteosarcoma and Askin tumor) in [Kayser 1991], where a basic graph is first constructed ac-
cording to the neighborhood condition of O’Callaghan [O’Callaghan 1975]. Nuclear features
related to morphometry and DNA-content are attributed to the vertices, and the differences
between features of connected vertices are attributed to the corresponding edges. Resulting
MST is decomposed into clusters using a suitable decomposition function on the edges, and
clusters of distinct nuclear orientation are detected. Then a cluster tree is constructed by defining
the geometric center of a cluster as a new vertex and by computing the neighborhood of the
cluster vertices. Another study employing regional adjacency graphs using the ARG principle
for content-based retrieval of H&E stained breast tumor tissue images is given in [Sharma 2012].
The authors have represented segmented tissue images using ARG, where nodes are centroids
of tissue regions having attributes as a label from the segmentation and morphological features
of the associated segment. Edges connect neighboring segments and are characterized by edge
attributes which are Euclidean distance and perimenter of the common boundary between con-
necting nodes. A* based graph matching algorithm is employed to retrieve the image regions
most similar to a given query region. In the study [Arslan 2013], attribute relational graphs
are applied for model-based segmentation of cell nuclei in flourescence microscopy images of
hepatocellular carcinoma, where primitives are defined and the ARG is constructed on these
on the basis of a set of rules. In [Sharma 2016], a part of this work has been described, with
introduction of the cell nuclei attributed relational graphs for automatic classification of H&E
stained gastric cancer regions into malignancy levels based on HER2 immunohistochemistry.
In [Sharma 2017a], the work is extended using a comparative study of developed variations in
the proposed graph-based method.

Other less popular graph-based methods include O’ Callaghan neighborhood graphs
[Kayser 1986], [Kayser 1988], cell cluster graphs [Ali 2013] and cell webs [Ficsor 2008]. Hy-
brid methods combining architectural information with low-level features have also been in-
troduced in literature quite early such as [Kayser 1989] and [Kayser 1990]. A related work
is [Weyn 1999], where Feulgen stained tissue sections of malignant mesothelioma, hyperplastic
mesothelium and pulmonary adenocarcinoma are analyzed where a total of 82 features including
texture features, morphometric features, densitometry features and graph-based features based
on Voronoi diagram, Gabriel graph and MST are extracted from histological sections. Another
recent study is found in [Doyle 2008], where H&E stained breast biopsy images are studied.
A total of 3400 textural and architectural features are extracted. Texture features include gray
level statistical features, Haralick features and Gabor features, and architectural features include
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Voronoi diagram, Delaunay graph and MST-based features. In [Chekkoury 2012], H&E stained
breast biopsy images are classified into cancerous and non-cancerous using morphometric,
Fourier-based, Hessian-based, Varma-Zisserman textons and graph-based features.

Summarizing the evolution of graphs for image description in digital histopathology, the
earliest methods range from the mathematically complex but less efficient tessellations like
Dirichlet and Johnson Mehl tessellations, followed by studies on proximity graphs, especially
Delaunay graphs and their subgraphs. Subsequently, graphs based on alternative neighborhood
conditions like O’Callaghan and zone of influence were explored, promising an edge over the
Voronoi-based graphs. Meanwhile, there was also an increased interest in syntactic pattern recog-
nition methods deriving quantitative information from graph representations, mostly utilizing
minimum spanning trees. However, with further developments in virtual microscopy techniques,
a paradigm shift has occurred from the constrained (or geometric) methods utilizing proximity
graphs to more relaxed (or flexible) application-specific graphs, for example cell graphs and
attributed relational graphs applied on different types of tissues. Many authors have also used a
combination of the low-level methods and high-level graph-based methods for analysis tasks.
It can be concluded that graph-based techniques comprise an important direction in the field
of histopathogical image analysis, and can provide the basis for developing various automatic
applications and tools to retrieve and classify tissue sections in a reliable way.

3.3 Machine Learning in Digital Histopathology

In this section, prominent literature in digital histopathology that incorporate image analysis
using the four selected machine learning methods, namely, support vector machines, AdaBoost
ensemble learning, random forests and deep convolutional neural networks are reported.

3.3.1 Support Vector Machines

Support vector machines have been explored extensively for supervised learning tasks in his-
tological image analysis. Different SVM kernels such as linear, Gaussian and polynomial
have been compared for optimizing SVM classification performance of hyper-spectral colon
tissue [Rajpoot 2004]. Diagnosis of prostate cancer and Gleason grading in H&E stained histo-
logical images has been attempted using object-based features and supervised learning methods
including SVM [Tabesh 2007]. Another work is described in [Altunbay 2010] using Delaunay
graph representation followed by SVM to classify H&E stained colon tissue images into normal,
low-grade and high-grade cancer. A pre-analysis component of this research involves the auto-
matic detection of necrotic areas in H&E stained gastric cancer images, performed using textural
features with SVM learning using discriminative thresholds is explained in [Sharma 2015c].
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3.3.2 AdaBoost Ensemble Learning

AdaBoost ensemble learning is explored in [Doyle 2006] for classifying H&E prostate adenocar-
cinoma images by extracting texture and intensity features and training based on AdaBoost and
decision tree classifiers. In [Yang 2009], breast cancer tissue microarray samples are classified
using texture features, along with comparison of classical AdaBoost with its variations such as
gentle AdaBoost, LogitBoost and other classifiers like Bayesian classifiers and SVM. Prostate
cancer is also analyzed in a multiresolution approach by describing texture features of tissue
images with AdaBoost ensemble learning in [Doyle 2012]. Automatic detection and grading
in prostate cancer histopathological images is performed in [Gorelick 2013] using two stages
of AdaBoost classification algorithm. Related to this work, cell nuclei classification in H&E
stained gastric cancer images is studied using morphological characteristics and AdaBoost
classifiers in [Sharma 2015b]. Additionally, gastric carcinoma images are classified on the basis
of immunohistochemical response using a range of low-level and graph-based features along
with their combinations followed by AdaBoost ensemble learning in [Sharma 2016].

3.3.3 Random Forests

Handcrafted image features can be used in conjunction with random forests in a supervised
learning approach for various classification and detection tasks in digital histopathology. An
example includes [DiFranco 2011], where co-occurrence color texture features and random
forest feature selection and ensemble learning are applied for classification of prostate carcinoma
in histological sections from radical prostatectomy. In [Sommer 2012], hierarchical learning
workflow is proposed using random forest classifiers for automated mitosis detection in breast
cancer images. Neutrophils are identified in H&E stained histological images by first con-
structing Voronoi diagrams followed by random forest binary classification in [Wang 2014].
In [Sharma 2017b], random forests are applied as the traditional machine learning method for
comparative evaluation with deep learning, and in [Sharma 2017a], random forests hierarchical
classification is performed for image analysis in H&E stained gastric cancer WSI.

3.3.4 Deep Convolutional Neural Networks

Deep learning using convolutional neural networks (CNN) is presently receiving tremendous
attention in diverse fields of image analysis [LeCun 2015]. Earliest applications of deep convo-
lutional neural networks include handwritten character recognition [LeCun 1989], [Lecun 1998]
and general object categorization [Krizhevsky 2012], that are now expanding in different fields
of image analysis.

Several recent advances have been proposed by scientists in the field of digital histopathology
relating to deep learning methods. The introduction of deep learning in this area was enabled
initially by application-specific challenges where large-scale labeled datasets have been made
available publicly, for instance, the mitosis detection challenge in breast cancer [Veta 2015] and
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gland segmentation challenge in colon histology images [Sirinukunwattana 2017]. In literature,
a few examples of widely known studies of digital pathology using deep convolutional neural
networks are as follows. The work [Cireşan 2013] shows highly favorable result for mitosis
detection in breast cancer images using deep neural networks. A CNN method is proposed
in [Cruz-Roa 2014] for classification of invasive ductal carcinoma in breast cancer WSI with
results superior to handcrafted features. U-nets have recently become very popular for biomedical
image segmentation [Ronneberger 2015]. These are fully convolutional neural networks, com-
posed of a convolution block followed by a deconvolution block to generate segmented images
as the output. The approach was initially used for segmenting neuronal structures in electron mi-
croscopy stacks, and was further applied to transmitted light microscopy images to perform cell
tracking, depicting most superior results in the ISBI cell tracking challenge [ISBI 2016]. A patch-
based convolutional neural network approach is examined in [Hou 2015], for discriminating
glioma and non-small-cell lung carcinoma into respective subtypes in histological WSI. A com-
parative study of deep CNN architectures with handcrafted methods for classification of stromal
and epithelial histological images of breast cancer and colorectal cancer is given in [Xu 2016].
The study [Sirinukunwattana 2016] describes a spatially constrained convolutional neural net-
work for cell nuclei detection and classification in colon cancer images. Fully convolutional
networks have been developed in [Chen 2016a], and this method won the MICCAI gland segmen-
tation challenge [Sirinukunwattana 2017]. More research in this area includes [Spanhol 2016]
for classification in breast cancer histopathological images, and [Litjens 2016] for prostate cancer
classification in biopsy specimens and breast cancer metastasis detection in sentinel lymph nodes.

A part of this research has been presented in [Sharma 2017b] to contribute to this field by
analysis of gastric cancer WSI, where a novel CNN architecture is proposed, quantitatively
compared with handcrafted features followed by traditional machine learning and also with the
AlexNet deep convolutional framework.

3.4 Image Analysis in Gastric Cancer

Medical image analysis of gastric cancer has not been extensively explored in previous literature
of digital histopathology. Recent studies comprising of related work illustrate application-specific
techniques for automatically analyzing the gastric tissue. For instance, gastric atrophy is quanti-
tatively analyzed in H&E stained sections using syntactic structure methods in [Zaitoun 1998].
Image regions depicting normal mucosa, gastritis and adenocarcinoma in H&E stained histologi-
cal sections are distinguished by use of cytometric measurements in [Ficsor 2006]. The ability
of image processing methods to allow differentiation between normal and cancerous tissues in
gastric cancer using confocal endomicroscopy has been strengthened in [Kakeji 2006]. A semi-
supervised approach for detection and diagnosis of gastric cancer is described in [Cosatto 2013]
using multiple instance learning in H&E stained tissue images. A multiresolution approach
introduced in this work to improve cell nuclei segmentation of gastric cancer is explained
in [Sharma 2015b]. The author has also explored necrosis detection in gastric carcinoma using
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textural features and SVM-based classification in [Sharma 2015c]. The work in [Sharma 2016]
involves graph-based analysis of H&E stained gastric carcinoma WSI based on their HER2 im-
munohistochemistry, with a comparative study with variations in [Sharma 2017a]. Additionally,
the problem of cancer classification and necrosis detection are further addressed using deep
convolutional neural networks in [Sharma 2017b].

3.5 Summary

This chapter mentions the related work in past and recent literature regarding medical image
analysis in digital histopathology, especially, in the domains of feature extraction and image
description methods, machine learning approaches and histopathological image analysis of
gastric cancer.
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4.1 Introduction

In this chapter, an overview of the workflow of the proposed research methodology and conducted
experiments is presented, which allows the readers to attain a clear understanding of the following
chapters. The schematic overview of the experimental pipeline is demonstrated in Figure 4.1. It
consists of three main stages (or phases) named as preparation of materials, image pre-analysis
and analysis of cancer regions. These are briefly described in the next sections and extensively
discussed in the following chapters.

4.2 Stage 1: Preparation of Materials

In the first stage, histopathological whole slide image data is acquired and processed for sub-
sequent image analysis tasks. It begins with the precise procedures for acquisition of tissue
specimens from relevant sources, followed by the scanning process to generate digitized whole
slide images. The next step includes image data labeling by expert pathologists for different
modules of the framework, in order to create the gold standard or ground truth datasets. This
stage also comprises intermediate steps such as visual quality assessment and whole slide image
registration required to generate consistent image databases necessary for the succeeding analysis
experiments.

47



48 CHAPTER 4. Overview of Research Methodology

Fig.4.1
Schem

atic
overview

ofthe
experim

entalpipeline



4.3 Stage 2: Image Pre-analysis 49

4.3 Stage 2: Image Pre-analysis

As the name suggests, this stage incorporates certain image processing and analysis tasks which
are a prerequisite before proceeding with the primary research objectives of this study. The
necessity of these tasks arises out of thorough examination of the acquired whole slide image
data, and the evaluation of classical image processing steps followed by refinements according
to the particular nature of the histopathological images of gastric cancer.

A few challenges are observed during this stage, which are required to be addressed by
suitable methods. These are as follows.

1. Necrosis was identified by expert pathologists in a small part of the acquired whole slide
image data. So, these necrotic areas are required to be detected and excluded from the final
working datasets before continuing with the analysis of cancer.

2. The working magnification is needed to be finalized in order to achieve optimal results for
cell nuclei segmentation and subsequent image analysis tasks. This requires an elaborate
multiresolution evaluation and may potentially lead to combination of information.

These challenges have led to the development of two main directions in the pre-analysis stage in
the experimental pipeline, namely:

1. Necrosis detection using traditional machine learning and deep learning methods.

2. Multiresolution enhancement of image segmentation, which also includes developing a
computerized cell nuclei classification procedure.

Outcomes of this stage are the procurement of histological image datasets after excluding necrotic
areas, determination of the working magnification for further image analysis tasks, procedure
for optimal isolation and categorization of cell nuclei, and the proposal of two applications in
digital histopathology, namely, automatic necrosis detection and automatic determination of
tissue composition in whole slide images of gastric cancer.

4.4 Stage 3: Analysis of Cancer Regions

In this stage, analysis of cancer regions is performed in H&E stained gastric cancer whole
slide images based on the malignancy groups defined by the corresponding HER2 immuno-
histochemical response. This is accomplished using a wide range of methods including novel
analysis approaches, comparative evaluation with existing methods as well as modifications in
the classical methods.

It starts with the generation of working datasets for region-based analysis of gastric cancer.
This is followed by the design and implementation of handcrafted features and performance
comparison with the state-of-the-art low-level and high-level features in the traditional analysis
route. Additionally, deep learning is explored by design and empirical analysis of CNNs and the
proposal of a suitable CNN architecture. The traditional machine learning and deep learning
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methods are quantitatively and comparatively assessed using a comprehensive performance
evaluation scheme for the described cancer classification problem. At the end, visual and
statistical analysis of the image data and extracted features for the two staining methods is
performed to conclude the experimental findings.

Outcomes of this stage are the accomplishment of research objectives for image analysis in
H&E stained gastric cancer whole slide images in digital histopathology, and contribution to two
additional applications, namely, computer-aided diagnosis consisting of cancer classification
based on immunohistochemistry, and content-based image retrieval of regions of interest from
WSI data.

4.5 Summary

In this chapter, the author has introduced and briefly described the three stages of the research
framework, namely, preparation of materials, image pre-analysis and analysis of cancer regions.
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5.1 Introduction

This chapter describes in detail the procedures followed to prepare the materials required
for experiments in histopathological image analysis. It includes the process of whole slide
image acquisition, expert labeling for generation of ground truth including transfer of labeled
information between the two histological stains, and organization of working datasets for
subsequent image analysis tasks comprising this study.
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5.2 Whole Slide Image Acquisition

5.2.1 Specimen Properties

Initially, twelve HER2 immunohistochemically stained and corresponding H&E stained sur-
gical specimens are selected from clinical and oncological studies on 454 cases of gastric
carcinoma [Warneke 2011], [Warneke 2013]. In the related previous studies, information from
patients with gastric cancer was retrieved from archives of the Institute of Pathology, University
Hospital Kiel, Kiel, Germany and their study cohort comprised of 454 all Caucasian patients
undergone either total or partial gastrectomy for adenocarcinoma of the stomach or esophago-
gastric junction between 1997 and 2009. The retrieved paraffin blocks were used to obtain 454
whole tissue sections. These sections are stained using the HER2 immunohistochemical method.

The prior selection of twelve whole slide sections followed by digitization was originally
performed for the study described in [Behrens 2015], and the digitized WSI data along with the
corresponding H&E glass slides were shared for this research. Hence, the selection process to
retrieve the specified tissue sections was performed remotely in the Department of Pathology,
Christian-Albrechts-University, Kiel, Germany by a group of medical experts and the author did
not participate or effect the choice of the selected twelve tissue specimens.

To summarize, twelve tissue specimens have been acquired from proximal or distal parts of
the stomach. These specimens belong to twelve patients with one specimen per patient. Tissue
specimen acquisition is followed by specimen preparation procedure similar to the process
described in Section 2.2.1.2, and glass slides are obtained using two staining methods, namely,
HER2 immunohistochemical staining and haematoxylin and eosin staining. The glass slides
were first prepared using HER2 immunohistochemical staining and non-consecutive sections
from the same tissue block were later stained with H&E stain. The approximate thickness of the
tissue sections is 4 µm. The underlying cancer grades based on HER2 immunohistochemical
response of the tissue sections are identified by expert pathologists as 0, 1+, 2+, 3+, based upon
immunostaining grades analogous to the rules described by Rüschoff et al [Rüschoff 2010].

5.2.2 Scanner Details

To digitize the acquired glass slides, two whole slide image scanners are employed. Initially,
HER2 and H&E stained glass slides were scanned using a Leica SCN400 microscopic whole-
slide scanner at its maximum, nominally 400 times magnification with pixel resolution 0.26
µm per pixel at 40× objective magnification with quadratic pixels. Images were exported
from the scanner system into files of Leica SCN format, which is a multi-image, pyramidal,
multiresolution 64-bit TIFF format. This scanning process was conducted in Christian-Albrechts-
University, Kiel, Germany and resulting digital whole slide images were shared electronically
for the research.

However, on careful visual observation of the acquired H&E WSI by the author, pathologists
and field experts along with the initial evaluation of cell nuclei image segmentation results, a few
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issues were discovered as follows. Firstly, when a tissue section is scanned using a single focal
plane, the WSI scanner focuses on one two-dimensional layer in the region of interest, however,
as the tissue section is three-dimensional, all the observed cells are not simultaneously focused
and result in unfocused neighboring cells, unclear boundaries and reduced sharpness in the digital
whole slide image. The problem is enhanced by non-uniform illumination during the image
acquisition. Due to these effects, the automatic segregation of cells is a tedious process leading to
unsatisfactory segmentation results, as observed experimentally. Therefore, a re-scanning of the
original H&E glass slides was recommended and later implemented using a more sophisticated
scanning technique, as described below.

To overcome the challenges in the original H&E WSI data, eleven H&E glass slides were
transported from Christian-Albrechts-University, Kiel, Germany to Charité University Hospital,
Berlin, Germany. One corresponding H&E glass slide could not be physically acquired. The
glass slides were re-scanned using 3DHistech Panoramic-250 whole-slide scanner, which has
a higher resolution of 0.22 µm per pixel at 40× objective magnification with quadratic pixels.
Additionally, it provides an extended depth of field [Bradley 2005] using an advanced digital
image processing technique called Focus Stacking which combines multiple images taken at
different focus distances. Hence, the resulting single in-focus whole slide image has a higher
visual quality compared to the whole slide image generated using a single focal plane. The
average size of each histopathological whole slide image is 13.65 Gigapixels. So, these WSI are
high resolution with high sharpness and good visual quality. Further, the H&E WSI database can
be called heterogeneous with variations in malignancy levels, stain intensities and inter-patient
biological characteristics.

(a) (b)

Fig. 5.1 Examples of corresponding sections in (a) HER2 and (b) H&E stains.

In conclusion, eleven H&E WSI acquired with the help of the second whole-slide scanner
are used for further experiments. HER2 stained WSI image data is used later for statistical
comparison in Chapter 9, otherwise only the pathologists’ marked annotations of HER2 stained
WSI are utilized for generating the ground truth and creating working databases in H&E stained
WSI after registration and annotation transformation procedures. An example of a WSI pair in
HER2 and H&E stain used in these studies is demonstrated in Figure 5.1.
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5.3 Annotations: HER2 whole slide images

5.3.1 Labeling Process

HER2 expression and gene amplification in the described HER2 whole slide sections is analyzed
in [Behrens 2015]. During this procedure, each HER2 immunohistochemically stained WSI is
marked by ten expert pathologists with polygon annotations following a 10% cut-off rule based
on HER2 immunohistochemical response of the tissue. The pathologists have remotely marked
annotations with the help of a virtual microscopy software [Behrens 2015]. A screenshot of the
program is depicted in Figure 5.2. It mainly consists of a viewer application to display whole
slide images with options for user interaction and assistance tools. The pathologists’ annotations
generated in this process are provided along with each HER2 WSI for this research.

Fig. 5.2 Screenshot of virtual microscopy program used by pathologists to create annotations in HER2
WSI based on immunohistochemical response

The HER2 positive tumor areas are marked according to the 10% cut-off rule [Behrens 2015],
which consist of gastric cancer grades 2+ and 3+ and are mostly visually distinguishable from
the remaining tissue due to distinct brown colored staining. Additionally, HER2 negative areas
are also marked, which consist of gastric cancer grades 0 and 1+ and don’t show a distinct
stain response, however, these are morphologically identified as tumor areas by the patholo-
gists. It can be noted that HER2 positive areas define a higher degree of malignancy, whereas
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HER2 negative areas denote a lower malignancy level. Inter- and intra-observer variability and
pathologists’ behavior for observing the HER2 stained WSI dataset has been discussed in detail
in [Behrens 2015]. The average number of pixels per annotation for HER2 positive tumor are
231.7 ×106 and for HER2 negative tumor are 1279.0×106. The distribution of number of HER2
positive and HER2 negative annotations for each expert pathologist and each slide is shown in
Table 5.1.

The HER2 WSI are converted from the scanner format into Virtual Slide Format (VSF)
which is a compressed image format consisting of a folder with several files to support a faster
access on single whole slide image. The corresponding annotations are converted to VMSM
files which are XML-formatted metafiles containing metadata about the slides including the
pathologists’ annotations. These data formats are suitable for accessing whole slide image data
and related annotations with the help of VMscope software support [VMscope 2010b]. In order
to create the ground truth using H&E stained WSI, a semi-automatic registration and annotation
transformation procedure is first applied to transform these polygon annotations from each HER2
WSI to the corresponding H&E WSI. This procedure is described in the following sections.

5.3.2 Semi-automatic WSI Registration

Image registration is a widely used digital image processing method of aligning two or more
images of the same scene. This process involves designating one image as the reference (also
called the reference image or the fixed image), and applying geometric transformations to
the other image(s) so that they align with the reference [Zitova 2003]. In this work, whole
slide image registration is required to transform annotations of pathologists from HER2 WSI
into corresponding annotations in H&E WSI for further experiments, as H&E is the working
stain for reasons explained earlier. Spatial differences in position and orientation between
corresponding whole tissue sections in two stains are not negligible, hence, WSI pairs are first
semi-automatically registered to generate spatial correspondence data between pairs of HER2
and H&E whole slide images.

The Virtual Slide Processing Environment (ViSPEe: details in Appendix A.4) was applied
for creating spatial correspondences between pairs of whole slide images of the same tissue
in different stains. The program helps the user to manually generate a set of control points
in the WSI pair, allowing visual selection of common features in each image to map to the
same pixel location. It also creates Delaunay triangulation using the selected control points as
seeds, which is utilized during annotation transformation procedure. The triangulation edges
are called smart links between control points in the same WSI, and this feature also aids the
user to visualize the relative positions of control points in order to create good distribution
indicated by equal sized Delaunay triangulations to cover the entire WSI. The output of the
process is an XML file containing correspondences in the form of pixel positions and Dealunay
triangulation information, for each pair of whole slide images. Screenshot of the ViSPEe program
for semi-automatic registration in an example WSI pair along with the selected control points
and Delaunay links is shown in Figure 5.3.
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Fig. 5.3 Screenshot of ViSPEe program for semi-automatic registration in one HER2 and H&E WSI pair

5.3.3 Annotation Transformation

Using the stored WSI registration information, source coordinates of polygon annotations of
pathologists in HER2 WSI are transformed into destination coordinates in corresponding H&E
WSI. The annotation transformation method requires a mappingf : R2 → R2 for bivariate two-
valued data. It is achieved using two transformation algorithms depending on the position of each
polygon vertex in the reference polygon annotation of HER2 WSI with respect to the Delaunay
triangulation created during the semi-automatic registration. A local affine transformation is
applied for all the polygon points inside the convex hull of the control point cloud, and global
rigid transformation is applied for all points lying on or outside the convex hull of control points,
as explained below.

5.3.3.1 Interpolation using Local Affine Transformation

If the source point lies inside one of the Delaunay triangles, it is mapped to its destination point
using an affine transformation function [Amidror 2002]. Suppose the source point P for which
we want to estimate the mapping is situated at x = (x, y), inside the Delaunay triangle with
vertices P1 at x1 = (x1, y1), P2 at x2 = (x2, y2) and P3 at x3 = (x3, y3) of the reference dataset.
The points and associated vectors can be represented in affine coordinate system as shown in
Figure 5.4a. From the figure, it can be observed that,

x = x1 + x′

= x1 + a2(x2 − x1) + a3(x3 − x1)
(5.1)

where a2, a3 are the coordinates of the point x in the new coordinate system such that 0 ≤
(a2, a3) ≤ 1. Expanding equation 5.1, we get,
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(a) (b)

Fig. 5.4 Mapping by linear triangular interpolation of (a) triangle P1P2P3 in the x, y plane to (b) triangle
Q1Q2Q3 in the u, v plane.
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Using the above equation, (a2, a3) can be obtained as

a2

a3

 =
x2 − x1 x3 − x1

y2 − y1 y3 − y1

−1x−x1

y−y1

 (5.3)

Let the mapping of the three Delaunay vertices in the destination dataset be represented by
u1 = (u1, v1), u2 = (u2, v2) and u3 = (u3, v3) in the u, v plane for the source points x1, x2

and x3 respectively. Using linear triangulation interpolation, the mapping of point x = (x, y)
will be a point u = (u, v) inside the destination Delaunay triangle, that has the same relative
coordinates a2, a3 with respect to the new coordinate system. This new point and co-ordinate
system is shown in Figure 5.4b. Using analogy with equations 5.1 and 5.2, we get,

u = u1 + a2(u2 − u1) + a3(u3 − u1) (5.4)

On expanding equation 5.4 and substituting from equation 5.3, the final value of (u, v) is obtained
as,

u

v

 =
u1

v1

+
u2 − u1 u3 − u1

v2 − v1 v3 − v1

x2 − x1 x3 − x1

y2 − y1 y3 − y1

−1x−x1

y−y1

 (5.5)
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The computation is repeated for all source polygon points lying inside the Delaunay triangulations
generated during semi-automatic registration, in order to obtain the transformed destination
polygon points.

5.3.3.2 Interpolation using Global Rigid Transformation

When a source point is not situated inside any of the Delaunay triangles in the reference dataset,
it is mapped globally with the help of rigid transformations using Singular Value Decomposition
(SVD) method [Sorkine 2009]. A very few polygon points are lying outside the boundary of the
tissue section and are situated out of the convex hull of the control point cloud (or outside the
Delaunay triangles). These points are interpolated using the global rigid transformation method,
however, it is scarcely used compared to the local affine transformation method.

Example of a WSI pair with original and resulting polygon annotations after semi-automatic
registration and annotation transformation procedure are shown in Figure 5.5. Red polygons
represent marked HER2 positive areas, and blue polygons represent marked HER2 negative areas.

Fig. 5.5 Example of HER2 and H&E WSI pair containing original and resulting pathologists’ annotations
after semi-automatic WSI registration and annotation transformation procedure

5.4 Initial Working Datasets

Initially, smaller working datasets are generated using a fraction of the available H&E WSI data
to perform image pre-analysis experiments in the second stage of the research framework, namely,
cell nuclei segmentation and evaluation, cell nuclei classification, multiresolution enhancement
and determination of tissue composition (partly in necrosis detection). The reason to generate
initial working datasets is to lower the time requirements for creating the ground truth consisting
of manual annotations by expert pathologists, and also because the involved tasks mainly require
labeling of cell nuclei as data instances, which can be obtained in sufficient quantities using
fewer large-sized WSI. Hence, five H&E stained WSI specimens are considered from the entire
available WSI data for this purpose. Regions of interest are first selected for generating image
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tessellations using the polygon annotations of pathologists, and consist of three main types of
regions based on malignancy, namely, HER2 positive tumor, HER2 negative tumor and non-tumor.
Then, these regions of interest are tessellated at different objective magnifications ranging from
10× to 40× to generate non-overlapping image tiles, with the tiles at highest magnification of
size 1024×1024 pixels. As pathologists’ annotations are not completely overlapping, the selected
tissue areas are enclosed in maximum annotations, ensuring agreement of most pathologists to
minimize inter-observer variability.

From the generated image tessellations, five image tiles are selected from each type of
malignancy region for each WSI. A total of 5(number of tiles per region type)×3(number
of region types)×5(number of WSI) = 75 image tiles comprise the initial working dataset,
where each malignancy type is represented by 25 tiles. This step results in evenly distributed
initial working datasets with one-third (33.33%) representation of each type of malignancy.
The tiles are selected such that they contain variation in stain intensity and malignancy levels,
introducing heterogeneity in the resulting image datasets. Using these initial working datasets,
two main labeling tasks are performed i.e. creating annotations for cell nuclei segmentation
evaluation and cell nuclei classification, which are later used for multiresolution enhancement
and determining tissue composition. Additionally, a part of these datasets are included for the
labeling of necrotic regions (as necrosis was initially discovered by expert pathologist in this
dataset). CognitionMaster [Wienert 2013], an object-oriented analysis framework (details in
Appendix A.4), is applied for user interaction with the tissue images for the two cell nuclei
labeling tasks.

5.4.1 Annotations for Cell Nuclei Segmentation Evaluation

For quantitatively evaluating the results of cell nuclei segmentation algorithm, non-overlapping
tiles containing unique cell nuclei are required, which are generated in the initial working
datasets. Haematoxylin-stained cell nuclei in the 75 image tiles are manually labeled using point
annotations, first on an individual basis and then presented to an expert pathologist for validation.
The labeling is performed using ROIManager, a utility plugin in the CognitionMaster program.
The point annotations are carefully created by marking the centroid of each cell nucleus. Each
image tile is annotated at highest resolution i.e. size 1024×1024 pixels. The resulting annotation
information of each image tile is saved as a text file, analyzed later during quantitative evaluation
of cell nuclei segmentation and enhancement. A screenshot of the plugin used for labeling
process, with yellow ‘+’ marks as the point annotations, is shown in Figure 5.6. A total of 25,257
manual point annotations are obtained for the 75 image tiles in the initial working datasets. Their
distribution among the three types of regions is shown in Figure 5.7.

5.4.2 Annotations for Cell Nuclei Classification

Non-overlapping image tiles containing unique cell nuclei are also required to obtain reference
data for cell nuclei classification, hence, initial working datasets are used for creating the ground
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Fig. 5.6 Screenshot of ROIManager program with cell nuclei annotations (yellow ‘+’ marks) made in an
image tile at the highest resolution

Fig. 5.7 Distribution of point annotations among the three types of regions (number and percentage of
total annotations)

truth data for this purpose. The inputs for this step are cell nuclei contours obtained the result of
automatic segmentation of the tissue images. This step involves the manual labeling of previously
segmented cell nuclei contours with one of the seven cell nuclei types or classes. The seven
cell nuclei classes have been suggested by expert pathologists and are named as epithelial cell,
leukocyte, fibrocyte (or border cell), conglomerate, fragment, other cell (including blood cell in
vessel) and artefact. Figure 5.8 illustrates the seven defined cell nuclei classes.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5.8 Defined cell nuclei classes (a) Epithelial cell (b) Leukocyte (c) Fibrocyte (d) Conglomerate (e)
Fragment (f) Other cell (including blood cell in vessel) (g) Artefact.

The defined cell nuclei classes are explained as follows. Epithelial cells are either elliptical
or round shaped, typically larger than leukocytes with a distinct texture and characteristic of
tumor-affected areas. Leukocytes are deeply stained round cells. Fibrocytes are long shaped
cells, which are generally found as border cells of vessels, and may also include smooth muscle
cells and fragments of these types of cells. Conglomerates consist of segments containing more
than one cell and badly segmented cells such as a parts of multiple cells. Fragments, as the
name suggests, are the segments which are only parts of a cell nucleus. Other cells include the
cells in the tissue which are not stained by haematoxylin, e.g. blood cells inside a vessel, hence,
not marked by point annotations. Artefacts are segments i.e. not a cell nucleus but may appear
to be like one, also not marked by point annotations.

Nearly one-half of the segmented image data from the initial working datasets is manually
labeled for creating ground truth for cell nuclei classification. This includes a total of 33 image
tiles from the five H&E WSI at 40× objective magnification. The same image tiles are also
labeled at 30× objective magnification (768×768 pixels), as this magnification shows potential of
good segmentation results which can be utilized in multiresolution combination for segmentation
enhancement (details in Section 6.3). This has resulted in manual generation of cell nuclei
annotations in a total of 66 image tiles.

Cell nuclei segments are labeled first by the author, which are later reviewed by an expert
pathologist. A plugin called Object-Manager is used in conjunction with CognitionMaster
for the manual labeling of cell nuclei segments. This program can be operated by the user in
two modes, namely, ‘classify mode’ and ‘review mode’. In the classify mode, each contour
is labeled for the first time and the resulting annotations are saved along with sample contour
information in an XML file, of the same name as the image tile, called learning sample file
(LSF). In the review mode, classes of previously labeled contours can be modified, and the
corresponding LSF is updated. A screenshot of the plugin in review mode, consisting of already
labeled contours (different colors depicting different cell nuclei classes) in an image tile at 40×
objective magnification is shown in Figure 5.9. A total of 17,516 cell nuclei segments in 30×
and 25,848 cell nuclei segments in 40× have been annotated as one of the seven categories
using the described method. The distribution of the manual annotations in various classes of the
cell nuclei segments in the three type of regions, and total annotations in each type of region
is demonstrated in Figure 5.10(a) for 30× and Figure 5.10(b) for 40× objective magnification,
respectively.
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Fig. 5.9 Screenshot of the Object-Manager program in review mode showing labeled contours in an
image tile at highest resolution

(a)

(b)

Fig. 5.10 Distribution of cell nuclei annotations for seven classes in each of the three types of regions
and total annotations at (a) 30× objective magnification (b) 40× objective magnification.
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5.5 Annotations for Necrosis Detection
One expert pathologist has observed and marked necrotic areas to create the ground truth for
necrosis detection in two distinct ways, namely, at a low magnification and at the highest
magnification. This labeled information is then used to generate three datasets for the initial
experiments consisting of non-overlapping image tiles of different sizes. The three initial working
datasets for necrosis detection are explained as follows.

1. Annotations in WSI - splitting approach: To generate the first dataset, rectangular regions
of interest (ROI) are selected in two whole slide images according to three groups, namely,
HER2 positive tumor, HER2 negative tumor and non-tumor, depending on the associated
HER2 polygon annotations. All the WSI with rectangular ROIs are presented to an expert
pathologist, who has marked polygon annotations of necrotic areas at the WSI level after
visual assessment in predefined regions of interest. On visual inspection, it is found that the
marked areas are larger and more prominent in two WSI for the given rectangular ROIs. These
larger necrotic areas and surrounding non-necrotic areas are split into non-overlapping image
tiles of specific sizes at the highest magnification. Hence, this dataset has been generated using
a splitting approach, and includes well-defined images of the two types. Average number of
pixels per polygon annotation labeling necrosis in the WSI are 48.01×106. The rectangular
regions of interest and polygon necrotic annotations are marked using the VMscope program
VM Slide Explorer [VMscope 2010b]. A screenshot of the VM Slide Explorer program and an
example WSI showing rectangular regions of interest in the three types of malignancy groups
(HER2 positive: yellow, HER2 negative: blue and non-tumor: green), and necrotic polygons
marked inside them (red) at low magnification (0.65×) is depicted in Figure 5.11(a).

2. Annotations in image tiles - merging approach: The second dataset contains image tiles
from four whole slide images, and are a subset of the initial working dataset of size 1024×1024
belonging to the three malignancy groups. The pathologist has labeled the image tiles at the
highest magnification i.e. at 40×, with each square annotation is made at the smallest size of
64×64 pixels. Labels are mapped from smaller to larger tiles using the information at the
smallest size. Class of a larger sized image tile assigned as the one with maximum instances
of constituent smaller image tiles. Hence, this dataset is created using a merging approach
and possesses a higher visual complexity. Object-Manager plugin of the Cognitionmaster
software (explained in Section 5.4.2) is applied to create annotations for this purpose. A
screenshot of the Object-Manager plugin and an example of image tile from a non-tumor
region with square annotations created at the smallest tile size is shown in Figure 5.11(b),
where necrotic tiles are marked in blue squares and non-necrotic in green squares.

3. Combined dataset: The third dataset contains the combination of first and second datasets by
blending the ground truths created by expert pathologist using two different approaches. It is
considered comprehensive as it contains heterogeneity in terms of visual distinction of image
tiles with respect to stain intensity, malignancy levels and biological variations, required in
order to develop a potentially robust necrosis detection system. Image tile sizes and number
of image tiles of each size in the respective datasets are shown in Table 5.2.
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(a)

(b)

Fig. 5.11 Screenshots of (a) VM Slide Explorer program and an example WSI showing rectangular
regions of interest in the three types of malignancy groups (HER2 positive: yellow, HER2 negative: blue
and non-tumor: green), and necrotic polygons marked inside them (red) at 0.65× objective magnification
(b) Object-Manager plugin and an example of image tile from non-tumor region with square annotations
created at the smallest tile size, where necrotic tiles are marked with blue squares and non-necrotic in
green squares at 40× objective magnification.

Table 5.2 Number of image tiles of different sizes in the three datasets for necrosis detection using
SVM-based method

Image tile size Using splitting
approach

Using merging
approach

In combined
dataset

64×64 7680 3790 11470
128×128 1920 1039 2959
256×256 480 291 771
512×512 120 78 198

1024×1024 30 18 48



66 CHAPTER 5. Stage 1: Preparation of Materials

5.5.1 Datasets for SVM-based Method

The combined dataset of image size of 512×512 pixels is used as the final working database
for necrosis detection using traditional machine learning with SVM, with a total of 198 non-
overlapping image tiles. It must be specified that the selection of this size is due to the following
reasons. Firstly, when the specified classification methods (described in Section 6.2) are applied
on the combined dataset specified in Table 5.2, most favorable results are achieved using image
sizes 512×512 and 64×64. These observations have been discussed in detail in [Sharma 2015c].
The ROC curves obtained for the combined dataset is shown in Figure 5.12(a), clearly suggesting
that the choice of the two sizes for image tessellations. As a larger field of view is always
significant and preferable for analysis of histological images, the larger size of 512×512 pixels
is considered. Another reason is the uniformity of image size for all methods, including deep
learning. The distribution of the image tiles among the three types of malignancy regions is
shown in Figure 5.12(b). It can be observed that the image tiles are generated mostly from the
HER2 negative tumor and non-tumor malignancy regions, as smaller necrotic areas have been
recognized by expert pathologist in the HER2 positive tumor regions.

5.5.2 Datasets for Deep Learning Methods

The final working database for necrosis detection using deep learning methods also consists
of image tiles of the most convenient and performance optimized pixel size i.e. 512×512
pixels. Further, the size is consistent with the deep learning method applied for the analysis
of cancer regions. The dataset has been obtained using data augmentation methods on the
existing non-overlapping images, (detail in Section 7.2). Using this process, 47,128 image tiles
are generated and their distribution among the three types of malignancy regions is shown in
in Figure 5.13. Data augmentation has been performed using the initial image tiles of size
1024×1024 to generate nearly uniform datasets with images belonging to HER2 negative tumor
and non-tumor malignancy regions, due to smaller necrotic areas in the HER2 positive tumor
regions not sufficient to create image tiles at the given pixel size.

5.6 Summary

This chapter provides a detailed description of the first stage of the research framework, i.e.,
preparation of materials. In this stage, WSI data has been acquired from relevant sources, labeled
with the help of domain knowledge of medical experts, and processed and organized into work-
able databases for subsequent image analysis experiments. It begins with the WSI acquisition
from gastric cancer tissue specimens, followed by expert labeling of polygon annotations based
on the immunohistochemical response in HER2 stained WSI, semi-automatic registration and
annotation transformation to the H&E stained WSI, and generation of the initial working datasets.
Ground truth is obtained as reference data in the form of point and contour annotations for
cell nuclei segmentation and classification procedures respectively of the image pre-analysis
stage. This stage also includes the process of labeling necrosis in the gastric cancer tissue for the
necrosis detection task.
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Fig. 5.12 (a) ROC characteristics for combined datasets using the described SVM-based method showing
comparative performance between different image tile sizes (b) Distribution of labeled image tiles for
necrotic and non-necrotic tissue in three types of malignancy regions and total image tiles in the final
dataset for SVM-based method

Fig. 5.13 Distribution of labeled image tiles for necrotic and non-necrotic tissue in HER2 negative tumor
and non-tumor types of malignancy regions and total image tiles in the final dataset for deep learning
methods
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6.1 Introduction

In general, image preprocessing includes methods for image quality improvement, for example,
image contrast enhancement and brightness correction, such that the resulting images are more
suitable for subsequent image processing and analysis. The gastric cancer WSI specimens have
been acquired in good quality using highly advanced digitization equipment. Consequently,
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improvement of image quality is not considered essential and is outside the scope of this
study. However, certain tasks can provide additional information from the images aiding further
analysis, for instance, image registration and segmentation, and can be grouped into the image
pre-analysis stage. The image pre-analysis stage in the described process pipeline is highly
specialized towards digital histopathology, and includes task-specific methods such as necrosis
detection, cell nuclei segmentation and multiresolution segmentation enhancement of the tissue
images of gastric cancer WSI datasets. Among these, image registration has been explained in
detail in Section 5.3 due to its high significance in the preparation of materials.

Relating to the necrosis detection methods described in this chapter, a preliminary fea-
sibility study using textural features and SVM machine learning to establish the choice of
appropriate patch sizes and demonstrate a suitable classification performance was published
in [Sharma 2015c]. A comparative examination of deep learning methods and traditional
random forests machine learning for this classification problem form the partial contents
of [Sharma 2017b]. Further, the multiresolution segmentation enhancement aproach was intro-
duced in [Sharma 2015b] using AdaBoost ensemble learning, but the methodology described in
this work is an extension of the initial study with required modifications (details in Section 6.4.2).

6.2 Necrosis Detection

As necrosis was visually detected in small parts of gastric cancer WSI, the first pre-analysis step
is to exclude the necrotic tissue regions using a computer-based method. This step is comparable
to noise removal in general image pre-analysis, however, the ‘noise’ here refers to entire necrotic
areas in the WSI which are undesirable for further histopathological image analysis procedures.
Hence, necrosis can be considered analogous to, but different from image noise which consists
of unwanted signals adding spurious information on the original image.

6.2.1 Background

Necrosis or necrotic cell death, is premature cell death which may occur due to several factors
such as infection, heat, mechanical injury or chemicals. According to the Nomenclature Com-
mittee on Cell Death (NCCD), necrosis is largely defined in a negative fashion as cell death
which lacks apoptotic or autophagic features [Kroemer 2009]. It is morphologically charac-
terized by cellular changes, e.g. gain in cell volume, swelling of cell organelles, rupture of
plasma membrane, moderate chromatin condensation, followed by disappearance of intracellular
contents [Kroemer 2009]. In [Majno 1995], necrosis is defined as drastic and visible changes
which appear in the tissue after cell death, which can be “hinted at by ordinary histological
techniques”. The process of necrosis in a cell is illustrated in Figure 6.1.

Necrosis occurring in tissues afflicted with malignancies is known as tumor necrosis. Tumor
necrosis is a usual feature of solid tumors caused from chronic ischemic injury owing to rapid
tumor growth [Swinson 2002], and can be classified as focal, moderate or extensive, depending
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Fig. 6.1 Schematic representation of the process of necrosis in a cell

on its occupancy in the tumor area [Pollheimer 2010]. Focal necrosis has a central appearance as
the tumor is depleted of oxygen supply, a condition called tumor hypoxia, in the central portion
of tumor. There are usually living cancer cells in neighborhood that can be further observed by
pathologists or computer-based analysis tools for diagnostic purposes and treatment planning.

In literature, necrosis has been usually studied at the cytological level by considering the cel-
lular morphology and biochemical processes. For instance, a review about necrosis and apoptosis
detection and discrimination, presenting a selection of techniques using electron and fluorescence
microscopy and different cell markers is presented in [Krysko 2008]. At the histological level, tu-
mor necrosis has been found to be an important prognostic factor. The prognostic value of tumor
necrosis in histological specimens has been quantitatively analyzed with respect to biological vari-
ables in [Leek 1999], [Muro-Cacho 2000], [Swinson 2002], [Sengupta 2005], [Langner 2006],
and [Pollheimer 2010] for breast carcinoma, gastrointestinal stromal cancer, lung cancer, renal
carcinoma, upper urinary tract carcinoma, and colorectal cancer respectively. These studies
indicate that the properties of tumor necrosis can be correlated with the type and extent of the
respective tumors, and show significant impact on tumor prognosis.

A related work for classifying histological image signatures of Glioblastoma images into
necrosis, apoptosis and viable regions has been performed in [Le 2012], but their method uses a
small set of training images (50 patches of size 80×80 pixels), and performs classification by
reconstruction from subspace analysis, which the authors state is “usually slow” and takes many
hours to learn small images, hence, not suitable for datasets containing a large number of images.
In this work, the author has implemented a fast and accurate computer-based method performing
dedicated task of necrosis detection using image analysis techniques for heterogeneous whole
slide images of gastric cancer, which can be potentially generalized for different types of tissues.

6.2.2 Motivation

Automatic detection of necrosis in histological images is an interesting problem of digital
histopathology that needs to be addressed. It may be more difficult to reach diagnostic conclusions
by observing a WSI containing necrotic regions, and manual identification of necrosis using
visual inspection can be a time-consuming task for large-sized whole slide images. Automatic
necrosis detection can provide useful information about the the type and extent of malignancy and
help in formation of prognosis, as higher necrosis may promote tumor growth and consequently
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lead to a lower possibility of survival [Vakkila 2004]. In some cancer patients, (neoadjuvant)
chemotherapy is followed by surgery and histological diagnosis, where determining the extent
of necrosis can prove useful. Moreover, the detected necrotic areas can be excluded in order
to carefully analyze the remaining living tissue. Therefore, necrosis detection can constitute a
preparatory stage that is helpful to pathologists and subsequent analysis tools for more precise
disease observation and characterization.

The prime motivation behind the step in the described experimental pipeline is, while
observing gastric cancer tissue whole slide images, few necrotic regions have been identified
visually by expert pathologist. Detection and subsequent exclusion of necrotic regions has been
recognized as a necessary task for computer-based analysis to succeed, otherwise necrosis will
distort the perceived information and will interfere in the decision-making process. Hence, these
regions are required to be excluded from the WSI datasets before performing more sophisticated
cancer analysis tasks on the remaining living tissue. So, automatic necrosis detection method
has been developed as a pre-analysis step which solves the problem in a timely manner.

6.2.3 Feature Extraction

When observed in histological slides, tumor necrosis has a patch-like appearance with contracted
or disappeared cell nuclei in the extracellular space, so it can be visually distinguished from
remaining living tissue on the basis of these typical and discernible textural characteristics.
Thus, for this study, it is hypothesized that automatic pattern recognition methods using texture
information can be suitably applied for detecting necrotic areas in histopathological images
of gastric cancer. Low-level state-of-the-art textural image features are extracted from image
patches to efficiently represent the visual characteristics of necrotic and non-necrotic areas in the
tissue, primarily because these areas can be differentiated on the basis of their textural appearance
without the knowledge of the underlying tissue architecture.

A combination of gray level co-occurrence matrix features and Gabor filter-bank texture
features is extracted from the histological image tiles comprising the necrosis detection datasets,
each at 40× objective magnification and size 512×512 pixels. This texture-based description
is used in order to achieve an optimum balance of algorithm efficiency and simplicity, as
necrosis detection is a pre-analysis step which requires to be performed using a quick and precise
implementation. The computed textural characteristics are defined as follows.

1. Gray level co-occurrence matrix features: The gray level co-occurrence matrix descriptors
include the 14 statistical features explained in detail in Section 2.3.1.1. These features belong
to the state-of-the-art texture features used frequently in digital histopathology.

2. Gabor filter-bank features: Gabor filter-banks are selected to detect necrosis for simulating
the human visual detection abilities, due to reasons discussed in Section 2.3.1.1. Image tiles
are filtered using the real parts of Gabor filter kernels of 16 different frequency, orientation and
standard deviation combinations. The first and second order statistics of the filter responses
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are derived, based on least squared error for simplicity, and a total number of 32 Gabor
filter-bank features is used to represent image texture.

An example of a pair of necrotic and non-necrotic image tile and a subset of the extracted tex-
tural features using GLCM statistics and Gabor filter-banks are pictorially depicted in Figure 6.2.
The pictorial representations show apparent differences in the texture characteristics of the two
categories, ensuring that the extracted features are potentially powerful texture discriminators
that can be utilized in combination with traditional machine learning for efficient automatic
necrosis detection in gastric cancer histopathological whole slide images.

(a) (b)

Fig. 6.2 Image tile pair and texture feature pictorial representation using (a) GLCM statistics (b) Gabor
filter kernels.

6.2.4 Machine Learning

After the extraction of a set of 46 textural features from each image tile, traditional machine
learning is performed using a supervised learning method, namely, support vector machines
followed by discriminative thresholding. Later, deep learning methods are also explored for the
problem, i.e., AlexNet CNN framework, proposed CNN architecture and ensemble of the two
CNNs. The details of machine learning algorithm are described as follows. Using the training
datasets and the method with optimal performance, necrotic areas are detected in regions of
interest in the whole slide images and excluded prior to the generation of final working datasets
for analysis of cancer regions in the third stage of research framework.
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6.2.4.1 Support Vector Machines with Discriminative Thresholds

Support vector machines (SVM) is a group of non-probabilistic supervised learning methods that
were first introduced by Boser, Guyon and Vapnik in [Boser 1992]. Like any machine learning
method, the goal of SVM is to generate a model from the training data that predicts the target
values of test data given its features or attributes. Support vector machines aim at finding an
optimal separating hyperplane using the training data to classify the incoming instances.

The classical SVM method is originally defined for binary classification. Initially, given
a training set (x1, y1), (x2, y2)...(xm, ym) of m previously seen attribute-label pairs such that
attributes x ∈ Rn and class labels y ∈ {±1}, where {x ∈ X, y ∈ Y }, the mapping X → Y

needs to be learned using a classifier y = f(x, α), where α represents the parameters of the
classifier function. The easiest approach is the use of linear classifiers, with the decision function
given by,

f(x) = w · x + b (6.1)

where w represents the weights and b is the offset (or bias). However, for complex datasets
consisting of a nonlinear feature space, linear classifiers may not be optimal. Hence, the
method is elevated to use of nonlinear classifiers which produce maximum margin hyperplanes
[Boser 1992], [Cortes 1995]. This is performed by first pre-analysis the data by mapping it to a
richer, nonlinear feature space i.e. x → φ(x) and the decision function now becomes

f(x) = w · φ(x) + b (6.2)

In the nonlinear case, the SVM requires the solution to the following quadratic optimization
problem [Boser 1992], [Cortes 1995],
Minimize:

1
2 ||w||2 + C

m∑
i=1

ξi

subject to:
yi(w · φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0 (6.3)

However, the dimensionality of φ(x) can be very high, thereby making it difficult for repre-
sentation in memory and solving it. For this purpose, a kernel trick is applied. The Representer
theorem [Kimeldorf 1970] shows that (for SVM as a special case), w can be represented as a
linear combination,

w =
m∑

i=1
αiφ(xi) (6.4)
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Hence, instead of optimizing w, αi can be optimized. After substituting w, the decision rule now
becomes:

f(x) = w · φ(x) + b (6.5)

=
m∑

i=1
αiφ(xi)φ(x) + b (6.6)

=
m∑

i=1
αiK(xi, x) + b (6.7)

where, K(xi, x) = φ(xi)φ(x) represents the kernel function. Several kernels have been proposed
by researchers over the past few years, however, the most popular ones are, for instance, linear,
sigmoid, Gaussian and polynomial kernels [Scholkopf 2001].

Gaussian or radial basis function (RBF) [Vert 2004] is used as the kernel function for the
necrosis detection task and is defined below as,

K(xi, x) = e−γ(||xi−x||2), γ > 0 (6.8)

where γ = 1
2σ2 and ||xi − x|| denotes Euclidean distance between the attributes. The choice

of RBF kernels is suitable for the necrosis datasets as they can non-linearly map samples into
a higher dimensional space. The two experimental parameters required to be pre-selected for
SVM training and classification are c and γ [Chapelle 2002], where c > 0 controls the trade-off
between margin maximization and error minimization and γ is the kernel parameter respectively.
Parameter selection of optimum parameters c and γ is performed using a grid search with k-fold
cross validation (k = 5) [Chang 2011], where all (c, γ) parameter combinations from a specified
grid of parameter values are exhaustively applied, and the one with the best cross validation
accuracy is selected. The result of grid search for the given training samples is depicted in
Figure 6.3, where optimal parameters c = 8 and γ = 0.5 are applied for further analysis.

Fig. 6.3 Parameter selection using grid search for necrosis detection using SVM
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During the classification process, probability estimates are also generated along with each
prediction [Wu 2004], [Chang 2011]. The predicted label is obtained as the one with the largest
value of probability estimate. A detailed observation of the predicted labels and probability
estimates on the training dataset confirms that there are some patches with borderline proba-
bility estimates classified as the opposite class. Hence, thresholds on probability estimates are
introduced as additional experimental parameters, known as discriminative thresholds. These
parameters aim to reduce confusion of the learning method, where a higher confusion to classify
into a given category is associated with lower probability estimate values. Based on the discrimi-
native thresholds and probability estimate value of each instance, final class labels are assigned
according to the following:

Li =

yij, if P (yij|X) ≥ Tj

1 − yij, otherwise .
(6.9)

where Li is the final class label of instance i with original class labels yij ∈ {0, 1} of class j given
observation X . Tj denotes the threshold on class j. Selection of discriminative thresholds is
performed using an iterative refinement procedure to achieve optimum classification performance
on the training data using a k-fold cross validation (k = 5) in the range [0.5, 1] at discrete
intervals of 0.05. The threshold search is shown in Figure 6.4 as a color scale representation
using blue to red for lower to higher values of classification error rates. The values with least
classification error rate can be observed for T1 = 0.55 and T2 = 0.6. This method provides
flexibility in classification of doubtful cases and takes into consideration the heterogeneous
nature of the whole slide images.

Fig. 6.4 Selection of discriminative thresholds for SVM classification

After observing the experimental results on final working datasets from Section 8.2, it can be
seen that using textural features and support vector machines with discriminative thresholds, a
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satisfactory value of average overall and balanced classification accuracy is achieved as 87.66%,
suggesting that the described classes are easily distinguished by the classifiers.

Due to a satisfactory cross validation performance using the above described features and
machine learning method for necrosis detection in gastric cancer WSI, more complex traditional
machine learning methods using ensemble learning are not further explored. It should be
emphasized that, as this stage still being the pre-analysis stage, the primary goal is to perform the
required tasks using a fast and accurate algorithm, which has already been achieved. However,
convolutional neural networks are additionally explored due to the novelty of the research
problem with respect to deep learning methods. Additionally, it is performed to examine the
generalizability of the proposed CNN architecture, that was originally designed for the analysis
of cancer regions but can theoretically achieve accurate classification by directly using the
image knowledge without any prior requirement of handcrafted features. Hence, subsequent
experiments are performed for necrosis detection using deep convolutional neural networks,
which are described in detail in the following section.

6.2.4.2 Deep Learning

Deep learning methods have been explored for detecting necrosis in gastric cancer histopatho-
logical images. A significant interest has been shown lately in the image analysis field for deep
convolutional neural networks, due to their ability to replace the requirement of hand-engineered
image descriptions with direct processing, representation and learning from raw images. This
property has been exploited for necrosis detection without any prior extraction of handcrafted
features. The widely known AlexNet CNN [Krizhevsky 2012] and a self-designed CNN archi-
tecture have been trained from scratch and deployed to study the performance of convolutional
neural networks for the necrosis detection problem. An ensemble of the two CNNs is also tested
for this purpose. Due to requirement of large-scale datasets in deep learning, data augmentation
is performed (discussed in Section 7.2.2). The proposed CNN architecture applied to necrosis
detection is shown in Figure 6.5. The selection of experimental parameters, as well as training
and deployment have been performed using an elaborate process, described later in Section 7.4.2.
Examples of learning curves are demonstrated in Figure 6.6 for randomly selected training round
using the AlexNet CNN framework and the proposed CNN architecture.

Fig. 6.5 Proposed CNN architecture for necrosis detection



78 CHAPTER 6. Stage 2: Image Pre-analysis

(a) (b)

Fig. 6.6 Examples of learning curves of random training rounds for necrosis detection using (a) AlexNet
CNN framework (b) proposed CNN architecture.

As observed in the experimental results of Section 8.2, cross validation yields an overall
and balanced classification accuracy for AlexNet CNN method as 99.71%. For the proposed
CNN architecture, these are calculated as 93.56%. An ensemble of the two CNNs provides
improvement in performance compared to the individual CNNs, with balanced classification
accuracy as 99.89%. A high cross validation accuracy with lower false positives highlights a
successful classification of necrotic and non-necrotic tissue in gastric cancer histopathological
images using deep learning methods.

There is a minor difference in detection rates of the explored machine learning methods, which
shows that necrosis detection is a fairly simple classification problem compared to the cancer
analysis problem considered later, due to a distinct appearance characteristics of necrotic versus
non-necrotic or living areas. One drawback of the described analysis is, due to a limited amount
of training data consisting of visual information from four WSI, a possibility of misclassification
may exist among the regions of WSI from unknown patients, that are not learned by the classifiers.
This can be attributed to the heterogeneity among tissue characteristics of individual patients,
owing to biological variance in a population. In the worst case, necrotic regions which need
to be excluded from further examination are misclassified as non-necrotic, and the final goal
may not be completely achieved. To prevent this effect during the creation of the final working
datasets comprising information of the seven non-labeled WSI for the analysis of cancer regions,
it is atleast safe to exclude the automatically classified necrotic regions from further analysis.
Additionally, a brief visual inspection of the non-necrotic classified regions follows the automatic
necrotic detection in order to ensure that the false negative necrotic regions are not included
in the final working datasets for analysis of cancer regions. The detailed experimental results
and observations for these methods are discussed in Section 8.2 and associated computational
requirements are summarized in Appendix A.5.
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6.3 Cell Nuclei Segmentation and Evaluation

After exclusion of necrotic regions, the next step is to isolate the cell nuclei in the H&E stained
tissue images using appropriate segmentation methods. Segmentation is a crucial and challenging
step in most histological image analysis problems, and performance of subsequent tasks like
feature extraction and classification largely depends on the results of the segmentation algorithm.
It is difficult mainly due to the complex appearance of cells due to unclear cell boundaries
and overlaps, hence, manual and automatic segregation of cell nuclei is a tedious process. A
recently developed and advanced computerized cell nuclei segmentation algorithm is used for
this purpose, and its segmentation results are utilized to perform analysis of cancer regions in the
subsequent stages of the research work.

6.3.1 Segmentation Algorithm

The cell nuclei segmentation algorithm [Wienert 2012] explored in the study is a minimum-
model method as it requires minimal apriori information to detect contours of cell nuclei in
H&E stained tissue images. It is a fully-automatic approach and has been applied on the gastric
cancer image tiles to discern the constituting cell nuclei. The cell nuclei segmentation algorithm
consisting of six main steps is defined as follows.

The algorithm starts with the detection of all possible closed contours regardless of their size,
shape or intensity in the grayscale-transformed image using a gradient-based technique. It uses
a conventional contour tracing approach for binary images [Hufnagl 1983], extended for the
use of grayscale images. Each row is a one-dimensional function of intensity I(x) and contour
pixels are recognized as those at which gradient between pair of neighbors is maximum and
these pixel positions are stored. Subsequently, 8-connected neighbors of the stored positions
are scanned to find all possible contours. A valid contour is the one where start and end pixels
are the same. This step results in multiple overlapping contours, which are evaluated based on
gradient features of the input image in the second step.

In the next step, contour evaluation is performed by computing a metric called Contour Value
to select contours that best represent image objects. It is defined as the combination of two
contour-based features, namely, mean contour gradient that measures the relative importance
of objects in a group of overlapping objects, and gradient fit that determines which of several
alternative contours best represents a certain object. For this purpose, firstly a Sobel operated
image S is computed by convolving the image I with 3×3 Sobel filter operators Gx and Gy.
This is given as,

|S| =
√

(I ∗ Gx)2 + (I ∗ Gy)2 (6.10)
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where, Sobel filter operators Gx and Gy are [Gonzales 2009],

Gx =


−1 0 1
−2 0 2
−1 0 1

 Gy =


−1 −2 −1
0 0 0
1 2 1

 (6.11)

From the Sobel image |S|, the mean contour gradient MGi for the ith contour Ci ,where pij

represents the jth contour pixel, is calculated by,

MGi =
∑

j |S(pij)|
|Ci|

(6.12)

Also, gradient fit GFi which represents the relative number of contour pixels which have local
maxima of gradient is measured as,

GFi =
∑

j pmax
ij

|Ci|
(6.13)

where,

pmax
ij =

1, if max{|S(pab)|} = |S(pij)| ∀ (a, b) s.t. xj−1 ≤ a ≤ xj+1 ∧ yj−1 ≤ b ≤ yj+1

0, otherwise
(6.14)

Contour value CVi will then be computed as

CVi = MGi · GFi (6.15)

In the third step, a non-overlapping segmentation is generated where the enclosed areas of
the ranked contours are labeled in a two-dimensional map of the same size as the original image
in descending order of contour values, and blocking overwriting of already assigned pixels.

Subsequently, the segmentation produced is improved using a novel contour optimization
method involving elimination of non-compact pixels which do not belong to the object using
Manhattan metric. A distance d is defined for testing the compactness of object pixels, and a
pixel pi with di < d is compact if connected to another pixel pj with dj = d over d − di edges.
Pixels connected over more than d − di edges are removed, and this results in compact objects.

An optional cluster separation step involves detection and separation of concave objects by
removing pixels around a cutting line passing through the concavity. Finally, cell nuclei are
detected by assessing nucleus-specific Hematoxylin within each contour area. Hematoxylin
strength is found by color deconvolution [Ruifrok 2001] and all objects with intensity greater
than a predefined threshold [Otsu 1979] are selected as cell nuclei objects.

A set of optimal parameters for cell nuclei segmentation in H&E images of gastric cancer is
selected after visual inspection of results for a wide range of involved algorithm parameters. The
definitions and optimal values of parameters are shown in Table 6.1.
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Table 6.1 Parameter selection in cell nuclei segmentation algorithm

Name of parameter Definition Optimum value for gas-
tric cancer H&E images

minContourLength
Minimum length of acceptable
contours

50

maxContourLength
Maximum length of acceptable
contours

500

distance
d defined for testing compactness
of object pixels

3

mindepthabs
Minimum absolute depth of con-
cavity during concave object sep-
aration

0

mindepthrel
Minimum relative depth of con-
cavity during concave object sep-
aration

0.3

recursive

Boolean value whether the
concave object separation step
should be repeated until no
concave objects are found

TRUE

A segmentation map is a data structure that is used to store spatial positions of image objects
after segmentation. It encapsulates a two-dimensional array of unsigned integers that has the size
of the input image, where the unsigned integers are the identifiers of the corresponding segment
of a given pixel. For each image tile, its corresponding segmentation map is generated and stored.
Cell nuclei segmentation of gastric cancer image tiles yields a result similar to the one shown in
Figure 6.7. The yellow outlines are the resulting contours of segments obtained after the cell
nuclei segmentation is executed.

(a) (b)

Fig. 6.7 Cell nuclei segmentation result example at 25× objective magnification (a) Original image (b)
Processed image showing resulting cell nuclei segments.
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6.3.2 Segmentation Evaluation

The initial working dataset consisting of 75 image tiles is used in order to evaluate the perfor-
mance of the cell nuclei segmentation algorithm at different magnifications. The cell nuclei are
first manually located with point annotations at highest resolution (40×) to create the ground
truth which is validated by an expert pathologist (details in Section 5.4.1).

It is intuitive that highest amount of useful information should be contained in higher
magnifications, but it is also important to observe the ratio between the relevant and irrelevant
information and how to differentiate between them. So different resolutions are simultaneously
considered and visual and quantitative assessment is performed to verify this assumption. Each
image tile is first automatically segmented with the help of the described cell nuclei segmentation
algorithm at the selected magnifications of 10×, 15×, 20×, 25×, 30× and 40×, hence, a total of
450 segmented image tiles are generated. Following segmentation, the results are quantitatively
compared against the ground truth information containing positions of cell nuclei as point
annotations. The total number of point annotations Np are defined as,

Np =
Nim40x∑

i=1
npi (6.16)

where npi represents the number of point annotations in the ith image tile and Nim40x is the total
number of image tiles at 40× magnification. Also, for a given magnification, the total number of
segments obtained Ns are denoted by,

Ns =
Nimx∑
i=1

nsi (6.17)

where nsi represents the number of segments found in the ith image tile and Nimx is the total
number of image tiles at magnification X. The following quantities are measured and compared
for each of the six magnifications.

1. The percentage of correctly detected cell nuclei can be calculated as the fraction of all the
point annotations which are enclosed inside a cell nuclei segment, represented as,

Pd =
 1

Np

Nimx∑
i=1

npi∑
j=1

f{pj(x, y) ∈ Si}

× 100 (6.18)

where pj(x, y) denotes the jth point annotation in the ith image tile containing a set Si of
two-dimensional spatial point coordinates lying inside or on all the detected segments. f{P}
is a conditional operator which gives 1 when P is true, and 0 other wise. Hence, a cell nucleus
is considered as detected if its associated point annotation is inside or on any of the detected
segments, so it is marked as a cell nucleus in the ground truth data. Since the segments are
non-overlapping, each cell nucleus will be detected only once at maximum.
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2. The percentage of segments not cell nuclei, denoting the amount of oversegmentation, can
be calculated as the fraction of the total number of segments which do not contain any point
annotation i.e.,

Pos =
 1

Ns

Nimx∑
i=1

nsi∑
j=1

f{np(sj) = 0}

× 100 (6.19)

where where np(sj) represents the number of point annotations lying inside or on the jth

segment sj , and the summation term denotes the total number of segments not representing
actual cell nuclei in the images. This percentage denotes the segments representing false
positive instances, which mostly constitute smaller fragments of cell nuclei and other tissue
components.

3. The percentage of conglomerates is computed by finding all those segments which contain
more than one point annotation as a fraction of the total number of segments, and represents
the number of cell nuclei clusters, i.e., segments containing more than one cell nucleus.

Pc =
 1

Ns

Nimx∑
i=1

nsi∑
j=1

f{np(sj) > 1}

× 100 (6.20)

(a) (b) (c) (d) (e) (f)

Fig. 6.8 Example of cell nuclei segmentation results of an image at different objective magnifications for
visual inspection (a) 10× (b) 15× (c) 20× (d) 25× (e) 30× (f) 40×.

Fig. 6.9 Cell nuclei segmentation performance at individual magnifications
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Example of cell nuclei segmentation results of an image at different objective magnifications
for visual inspection is depicted in Figure 6.8. The overall result showing the three performance
quantities at each magnification can be summarized in Figure 6.9. From the outcome of the
described coarse-to-fine segmentation analysis using visual and quantitative assessment, it is
observed that the percentage of correctly detected cell nuclei increases with magnification. Also,
oversegmentation (segments not cell nuclei) increases with magnification. No oversegmentation
for 10× and 15× magnifications indicates that the number of annotated cell nuclei are equal
to or greater than the number of segments, which means that each segment corresponds to one
or more cell nuclei point annotations. The number of conglomerates decrease with increase in
magnification. In order to preserve the finer details in the tissue images and capture maximum
number of correctly detected cell nuclei, one choice is the highest magnification 40×. However,
to deal with the problem of oversegmentation caused due to nuclear fragmentation evident mostly
in 40×, it may be combined with a lower magnification to achieve more accurate results.

For identifying which of the lower magnifications is suitable for combining with 40×
objective magnification, a pairwise comparison is performed between segmentation results of
40× and each of the lower magnifications. The goal is to find the percentage of correctly
segmented nuclei in lower magnifications which can additionally contribute to the total correctly
segmented nuclei with 40×, and is calculated as Padx by,

Padx =
(

Ndx − Ndc

Np

)
× 100 (6.21)

where Ndx denotes the number of correctly detected cell nuclei found at magnification X and
Ndc is the number of correctly segmented nuclei common in both magnifications X and 40×.
It is found almost equal (≈ 5%) for magnifications between 15× to 30×. It is lower for 10×
(≈ 4%). The other factor used for deciding the other magnification is clustering which leads to
formation of conglomerates. It is already seen that clustering decreases with magnification, thus,
in order to minimize it, the next magnification with minimum conglomerates (2.8%) i.e. 30× is
selected. Hence, after evaluating the results of nuclei segmentation algorithm it is concluded
that segmentation information at 30× and 40× objective magnifications will be utilized for
segmentation enhancement.

6.4 Multiresolution Segmentation Enhancement

6.4.1 Background

As observed after the detailed evaluation of segmentation results, it is clear that visual information
contained in more than one resolutions needs to be combined to achieve desired results for further
analysis of cancer regions. Therefore, an appropriate improvement in this direction can be the
use of multiresolution methods. In previous literature, there have been a few studies relating
to multiresolution analysis in digital histopathology. For instance, a multiresolution texture
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analysis technique is used in [Shuttleworth 2002b] for classifying colon cancer images that
focuses on varying distances of texture co-occurrence matrix instead of spatial resolution, and
does not include isolation of nuclei before classification. A multiresolution approach is also
reported in [Kong 2009] for neuroblastoma images where higher magnification is considered
only when the results from lower magnifications are unsatisfactory, using a feedback loop
involving pathologists. Another work related to cell classification reports a multi-class and
two-stage categorization of Wright stained WBCs [Ramesh 2012]. In the first stage, cells are
classified as ones with segmented and non-segmented nucleus, and in the second stage as one
of the five subtypes. In the author’s paper [Sharma 2015b], a part of the work including cell
nuclei segmentation evaluation, cell nuclei classification (using AdaBoost ensemble learning)
and resulting multiresolution segmentation enhancement have been published.

6.4.2 Cell Nuclei Classification

Combining information at the level of segmentation itself is a non-trivial task, due to which
automatic classification of cell nuclei segments is required to be performed. This work empha-
sizes on object-level classification of cell nuclei segments in gastric cancer images based on their
morphological, texture, and color and intensity characteristics. The seven cell nuclei classes
have been suggested by expert pathologists and are named as epithelial cell, leukocyte, fibrocyte
(or border cell), conglomerate, fragment, other cell (including blood cell in vessel) and artefact
(details in Section 5.4.2).

Initial working datasets are used to generate ground truth data and performance evaluation.
As explained in Section 5.4.2, 33 tiles were initially selected at 30× and 40× objective magnifi-
cations to generate the ground truth annotations, however, after performing necrosis detection,
labeled segments from 24 tiles at 40× magnification have been retained for the final training
sample as remaining tiles contain total or partial necrotic regions. A balanced dataset has been
created for training purpose containing equal number i.e. 400 samples per category, depending
on the relative availability of training samples of each class in the labeled data, hence, a total of
2,800 samples are employed for training the classifiers using the supervised traditional machine
learning methods.

In [Sharma 2015b], two different classification approaches have been explored. In the first
approach, single-stage classification of segments is performed into eight predefined classes.
However, in later experiments, a modification i.e. combination of clusters and badly segmented
cells as conglomerates has been introduced. In the second approach, hierarchical classification
is executed, where, in first stage, segments are classified into three broad classes, namely,
compact objects (including epithelial nuclei, leukocytes, fibrocytes/border cells, other nuclei
and nuclei fragments), conglomerates (including clusters of nuclei and badly segmented nuclei)
and artefacts, and in the second stage, each class objects are further classified into one of the
respective subclasses. Hierarchical classification is avoided in the described experiments because
this approach does not result in any significant improvement as noted in [Sharma 2015b], hence,
unwanted addition to the complexity of the algorithm is prevented. However, the explored
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traditional machine learning methods are expanded from just AdaBoost in [Sharma 2015b]
to SVM and random forests for further investigations. Another modification is the exclusion
of 30× labeled samples in the set of training samples, again after the initial observations
in [Sharma 2015b], suggesting lower classification rates. Hence, for quantitative evaluation and
classification of unknown objects, only labeled samples at the highest resolution are used in the
training dataset to reduce time and space requirements of the proposed method.

6.4.2.1 Feature Extraction

In this step, object-level feature extraction is performed where numerical features are computed
on the cell nuclei segments. A feature vector of 32 cell nuclei features based on morphology,
texture, color and intensity are extracted from segments, as described below. A listing of the 32
cell nuclei features with their mathematical descriptions is summarized in Table 6.4.2.1.

1. Morphological features: Shape or morphological properties are used by pathologists to
identify or distinguish between different types of nuclei components. The following mor-
phological features are applied, namely, Object Pixels, Minimum Distance to Tessellation
Border, Pixels at Layer Border, Maximum Distance to Border, Aspect Ratio of Bounding
Ellipsoid, Minor Axis of Bounding Ellipsoid, Major Axis of Bounding Ellipsoid, Angle
of Bounding Ellipsoid, Form Factor of Contour, Convexity of Contour, Length of Contour,
Area of Contour, Form Factor of Convex Hull, Length of Convex Hull, Area of Convex
Hull [Hufnagl 1984], Feret, Minimal Radius of Enclosing Centered Circle, Maximal Radius
of Enclosed Centered Circle, Roundness and Form Factor [Zerbe 2008]. For the subset of
feature definitions from [Hufnagl 1984], the axes projections and Freeman code is given in
Figure 6.10.

(a) (b)

Fig. 6.10 Morphological feature definitions of a contour (a) Axes projections (b) Freeman code. Adapted
from [Hufnagl 1984].

In addition, the fractal dimension of an object is also used as a morphological feature. It is
a ratio determining the complexity of a given object or pattern by comparing the changes
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in the pattern to the scale of measurement. It was first used for the idea of self-similarity
of objects in [Mandelbrot 1967], [Mandelbrot 1983]. Fractal dimension has been recognised
as an important tool for cancer analysis [Baish 2000]. For example, it has been proved
in [Simeonov 2006], that fractal dimension can play a role in differentiating between tumor
cells in mammary glands in cytological specimens. For a Euclidean space Rn, fractal dimen-
sion is measured as Minkowski dimension or box-counting dimension [Falconer 2004]. It is
calculated by using the box-counting algorithm, where a uniform grid is considered on the
object with each box of side ϵ. The number of boxes covering the object will be N(ϵ), as this
number will grow as (1/ϵ)d when ϵ → 0, i.e. when the box size is reduce by making the grid
finer. Hence,

N(ϵ) = lim
ϵ→0

(1
ϵ

)d

(6.22)

d = lim
ϵ→0

logN(ϵ)
−logϵ

(6.23)

The fractal dimension d has been estimated in this work in two steps, by first counting the
number of filled boxes N(ϵ) in a cell nuclei segment at each corresponding ϵ in a predefined
range, and then solving linear regression using least-squares method [Intriligator 1978].

2. Color and intensity features: Color and intensity features are important for histological
images due to the specific stains used. The features used to characterize the intensity of
segments in this work include Mean Intensity, Mean Intensity on Contour, Standard Deviation
of Intensity, Standard Deviation of Intensity on Contour [Hufnagl 1984], Contour Value and
Gradient Fit [Wienert 2012]. Mean Chromaticity is also calculated, where chromaticity for
ith RGB pixel pi is defined as the minimum euclidean distance dmin between pixel RGB
value and points on the diagonal where each point pd is defined by RGB value R = G =
B = x, x ∈ {0, 1, ..255}. In other words, it is the minimum euclidean distance of a pixel to a
grey pixel value.

dmin(pi, pd) = min(∥pi − pd∥) pi, pd ∈ IR3 (6.24)

3. Texture features: Texture is also a widely used characteristic in histological image analysis,
and varies with different tissue components. Four features based on gray level co-occurrence
matrix [Haralick 1973], namely contrast, entropy, energy and homogeneity have been selected
to represent the visual characteristics of cell nuclei segments. Contrast denotes variation in
pixel intensities, entropy is a statistical measure of randomness, energy measures repetitiveness
of texture patterns and homogeneity quantifies extent of similarity in the image. For high
computational efficiency in the image pre-analysis stage, these features are considered to be a
representative subset of the set of GLCM features.
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Table 6.2 List of object-level features computed for cell nuclei classification

Feature name Feature definition Remarks
Minimum Distance to Tessel-
lation Border

Min{di from border of image}
di : distance of ith pixel of the object to
image border

Pixels at Layer Border
Number of pixels in the object at the
border of the image

Maximum Distance to Bor-
der

Max{di from border of image}

Object Pixels |Sj |
Sj is the set of two-dimensional point coor-
dinates constituting the jth object

Minor Axis of Bounding El-
lipsoid

Length of minor axis of circumscrib-
ing ellipse

Major Axis of Bounding El-
lipsoid

Length of major axis of circumscrib-
ing ellipse

Aspect Ratio of Bounding El-
lipsoid

1000(Major Axis of Bounding Ellipsoid)
Minor Axis of Bounding Ellipsoid

Angle of Bounding Ellipsoid
Angle between major axis of circum-
scribing ellipse and the horizontal
plane

Length of Contour
Numerical contour length+(

√
2 −

1)SKP

SKP: Number of contour points with a
skewed (odd) Freeman direction

Form Factor of Contour 10(Length of Contour)2

Geometric area of segment

Convexity of Contour 100·2(Dx+Dy+Dm+Dp)
3(Numerical contour length)+SKP

Numerical contour length is the number
of points in the contour of the object and
Dy, Dx, Dm, Dp are the total number of
contour points in Freeman directions except
in x, y, x+y and x-y axes respectively.

Area of Contour
Number of pixels inside contour (ex-
cluding contour pixels)

Length of Convex Hull
Number of pixels at boundary of
convex hull

Convex hull is the convex envelope of Sj is
the smallest convex set of points that con-
tains Sj .

Form Factor of Convex Hull 10(Length of Convex Hull)2

Geometric area of convex hull

Area of Convex Hull Number of pixels in convex hull

Feret
Max{Euclidean distance between
two points in an object}

Minimal Radius of Enclos-
ing Centered Circle

Radius of smallest circle enclosing
the object

Maximal Radius of Enclosed
Centered Circle

Radius of largest circle enclosed by
the object

Roundness 4(Area of Contour)
π(Feret)2

Form Factor 4π(Area of Contour)
(Numerical contour length)2

Fractal Dimension d = limϵ→0
logN(ϵ)
−logϵ

ϵ is the length of box side, N(ϵ) is the num-
ber of boxes covering the object in box-
counting algorithm

Mean Intensity 1
n

∑n
i=1 Ii

Ii is the intensity of the ith pixel and n is
the number of pixels in the object
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Mean Intensity on Contour 1
nc

∑nc

i=1 Ii

Ii is the intensity of the ith pixel and nc is
the number of pixels in the contour of the
object

StdDev Intensity
√

1
n

∑n
i=1(Ii − µ)2 µ is Mean Intensity of object

StdDev Intensity on Contour
√

1
nc

∑nc

i=1(Ii − µc)2 µc is Mean Intensity on Contour of object

Mean Chromaticity
1
n

∑n
i=1 di,min , di,min(pi, pd) =

min(∥pi − pd∥)

Minimum euclidean distance di,min for
ith RGB pixel pi in segment where pd

is a diagonal RGB point where pd(R) =
pd(G) = pd(B).

Gradient Fit
∑

j
pmax

ij

|Ci|
Details in Section 6.3.1

Contour Value MGi · GFi
MGi is mean gradient of ithobject, details
in Section 6.3.1

Contrast GLCM
∑N−1

i=0
∑N−1

j=0 |i − j|2p(i, j)
p(i, j) is the (i, j) value of GLCM and N

is the number of gray levels in the image

Entropy GLCM
∑N−1

i=0
∑N−1

j=0 p(i, j)ln(p(i, j))
Energy GLCM

∑N−1
i=0

∑N−1
j=0 [p(i, j)]2

Homogeneity GLCM
∑N−1

i=0
∑N−1

j=0
p(i,j)

1+|i−j|

6.4.2.2 Machine Learning

After the feature extraction process, each of the cell nuclei objects are represented by a set of 32
derived object-level measures. The cell nuclei balanced dataset consisting of learning samples
is used in a supervised approach. Three machine learning methods, namely, support vector
machines, AdaBoost and random forests are comparatively analyzed for the classification of
cell nuclei objects into one of the seven predefined classes. Cross validation methods such as
k-fold stratified shuffled split and leave-a-sample-out are applied to quantitatively evaluate the
classification performance of the various machine learning methods. The calculated performance
metrics, results and observations for each method are discussed in detail in Section 8.3. Using the
selected learning samples and the machine learning method with optimal performance, unknown
cell nuclei objects can be automatically classified into one of the seven different classes.

Support Vector Machines

Training and deployment of SVM is similar to the approach elaborated in Section 6.2.4 us-
ing Gaussian kernels. However, in this case, the SVMs are trained for a multi-class classi-
fication problem instead of a binary one, which is implemented using the one-against-one
approach [Knerr 1990], [Chang 2011]. Discriminative thresholds are avoided to prevent com-
plexity due to multiple classes. The parameter selection process for SVM, as previously discussed,
is used to determine two experimental parameters c and γ for optimum training. Parameter selec-
tion is performed using grid search on the training samples with k-fold cross validation (k = 5),
and the pictorial result of the grid search is depicted in Figure 6.11. Optimal parameters c = 512
and γ = 0.125 are selected and applied for cross validation using the entire training dataset.
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Fig. 6.11 Parameter selection using grid search for multi-class SVM classification of cell nuclei

After quantitative assessment of classification performance, the average overall cross validation
accuracy achieved is 60.39% and average balanced cross validation accuracy is 60.41% using
support vector machines as the machine learning method.

AdaBoost Ensemble Learning

A multi-class AdaBoost classification algorithm has been developed for cell nuclei classification
task. AdaBoost [Freund 1995] or Adaptive Boosting is the most widely used form of boosting,
and involves ensemble learning where a collection of component classifiers or learners is
used and a joint decision is taken by combining their predictions. AdaBoost allows adding a
sequence of weak learners to the algorithm, until a desired low training error is achieved. Each
weak learner consists of decision stumps. The ensemble of weak learners can be defined as
hk(x), k = 1, 2, ..., Kmax. Kmax is an experimentally determined parameter of the algorithm,
and as expected, higher the value of Kmax, higher is the time complexity of the algorithm. The
strong learner is assembled from all weak learners through a weighted majority voting scheme.
The binary AdaBoost algorithm [Bishop 2006] is explained as follows.
Input: Consider N input vectors x1...xN comprising the training data.
Output: Binary variables yn ∈ {−1, +1} ∀ n ∈ {1, 2, ...N}
Steps:

1. Initialize weights by setting: w(1)
n = 1/N ∀n ∈ {1, 2, ...N}

2. For k = 1...Kmax :

(a) Train classifier hk(x) on training data by minimizing the weighted error function given
as:

Ek =
N∑

n=1
w(k)

n ×

 1 hk(xn) ̸= yn

0 otherwise
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(b) Evaluate: ϵk = Ek∑N

n=1 w
(k)
n

(c) Evaluate: αk = ln [ 1−ϵk

ϵk
]

(d) Update weights as:

w(k+1)
n = w(k)

n ×

 eαk hk(xn) ̸= yn

1 otherwise

3. Final vote of the test point x is given by: H(x) = sgn[∑Kmax
k=1 αkhk(x)]

The binary classification algorithm is extended to multi-class by considering the final vote as
the class with majority votes of weighted binary learners. In general, boosting involves the
sequential minimization of an exponential error function given as [Bishop 2006],

E =
N∑

n=1
w(k)

n e− 1
2 ynαkhk(xn) (6.25)

The parameter Kmax has been experimentally determined by using an exhaustive search
that calculates classification error on randomly selected parts of the training data, for each
value of Kmax in a predefined range until no further improvement is observed. Figure 6.12
shows the result of the parameter search for Kmax ∈ [1, 50]. It can be observed that the global
minima of classification error is obtained for Kmax = 7 after which classification error increases
non-uniformly with less significant drops at other values like 10 and 14. To minimize the
computational requirements and optimize classification accuracy, Kmax = 7 is selected for
AdaBoost ensemble learning. After quantitative evaluation of the multi-class classification
performance, the average overall cross validation accuracy achieved is 63.38% and average
balanced cross validation accuracy is 63.89% using AdaBoost ensemble learning as the machine
learning method.

Fig. 6.12 Parameter selection for multi-class AdaBoost classification of cell nuclei
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Random Forests

The latest successful traditional machine learning method for supervised classification after
prior computation of suitable handcrafted features is the random forest. A decision tree or
classification tree [Rokach 2014] is a predictive model that grows by using a series of binary
splits called recursive splitting (or partitioning), until terminal nodes called leaves are reached,
which are the decision nodes and dominated by one of the classes in the classification process.
Decision trees have several advantages, such as easy interpretation, ignoring redundant variables,
handling of missing data and good performance with large datasets. Several ensemble classifiers
are constructed with more than one decision trees, for instance, random forests, bagging trees,
boosted trees, and rotation forests.

Random forests operate by constructing multiple decision trees during the training phase,
and the classification result is the mode of the classes predicted by constituent decision trees
[Breiman 2001]. During the training phase, the random forest grows many classification trees,
where each constituent decision tree of the random forest grows by selecting a random sample m

out of M input variables (or features) at each node and splitting the node using best split on these
variables. During the classification phase, the input feature vector is passed through each of the
decision trees in the random forest. Each decision tree predicts a class, and the class with the
majority votes is the final result. In this work, instead of majority voting of individual decision
trees, their probabilistic classification scores pk are averaged [Pedregosa 2011] to obtain class
probabilities P for an input x and number of trees Nt, as below.

P (x) = 1
Nt

Nt∑
k=1

pk(x) (6.26)

Random forests are superior to decision trees as they prevent overfitting and also enhance the
estimation ability of individual trees. The variance among decision trees is also decreased due to
the averaging operation.

The random forest algorithm requires a prior selection of two experimental parameters,
namely, number of trees Nt and number of features m to consider for best split. Examples of
frequently used values of m are

√
M and log2M . For the described classification experiments,

these are estimated internally, during the run using bootstrap aggregation, where each new
decision tree is fit from a bootstrap sample of the training observations zi = (xi, yi). An out-
of-bag (OOB) error is computed as the average error for each sample zi using predictions from
the trees that do not contain zi in their respective bootstrap sample [Friedman 2001]. The OOB
error is computed for each value of Nt in a predefined range and each number of features i.e.
square root, log2 or all of the total features to approximate a suitable value of Nt at which
the error stabilizes. Figure 6.13 shows the result of the parameter search for Nt ∈ [1, 1500],
where minimum and more stable values of OOB error are seen for square root of features for
Nt ≥ 1000. In order to reduce the trade-off between time complexity and classification accuracy,
lowest possible number of trees, i.e. Nt = 1000 with features as square root for best split, are
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Fig. 6.13 Parameter selection for multi-class random forest classification of cell nuclei

selected for further experiments in cell nuclei classification using random forests. Quantitative
evaluation of classification performance of random forests shows the average overall cross
validation accuracy as 64.01% and average balanced cross validation accuracy as 63.99%.

To summarize, it is observed that both the ensemble learning probabilistic methods have a
superior classification performance over support vector machines for the classification problem
of multiple categories of cell nuclei objects in the histopathological images. The performance of
the described methods is comparable to each other, with an overall precedence of random forests
as a result of highest average classification accuracies and a greater number of diagnostically
relevant classes achieving better detection rates. Due to a satisfactory performance and higher
computational efficiency, random forests machine learning method is selected for cell nuclei
classification in order to accomplish multiresolution enhancement of segmentation, and determi-
nation of tissue composition in histological images. The overall achieved classification accuracies
are reasonable, however, not exceptionally superior, the prime reason being a difficult multi-class
problem at hand to classify the cell nuclei segments into one of the seven defined classes, some of
which do not show consistent behavior in visual appearance across the tissue images, especially
the tumor-affected epithelial cells. The detailed results, observations and implications of cell
nuclei classification step are discussed in Section 8.3. Also, the computational complexity and
associated implementation details of the described attribute calculation and machine learning
methods are summarized in Appendix A.5.

6.4.3 Multiresolution Combination

To combine the segmentation results of different magnifications, the procedure depicted in
Figure 6.14 is used. Firstly, the lower magnification (30×) contours are upscaled using nearest
neighbor interpolation [Gonzales 2009] to obtain cell nuclei objects and respective set of 32 cell
nuclei features at the highest resolution. Next, the learning samples at the highest resolution
are used in a training procedure to learn random forest classifiers, which are then deployed for
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Fig. 6.14 Flowchart for multiresolution combination of cell nuclei segmentation

Table 6.3 Relevance scores assigned to classified cell nuclei objects

Type of objects 30× 40×
All cells 200 150
Conglomerates 100 100
Fragments 80 50
Artefacts 0 0

classification of unknown cell nuclei objects from the two resolutions. Following the automatic
classification, a relevance score is assigned to each classified cell nuclei object depending on
its predicted class. This scoring is relative, depending on which information is visually more
significant for diagnostic purpose and for subsequent analysis of cancer regions, as given in
Table 6.3. The cell nuclei and fragments at 30× magnification are given a higher relevance
than the corresponding segments at 40×, due to a better visual quality at 30× and to reduce
oversegmentation which is mainly found at 40× objective magnification. No relevance is given
to artefacts and they are completely eliminated from the combined results as desired.

A new segmentation map is created at the highest resolution where cell nuclei segments from
individual constituent magnifications are added according to their visual importance. Hence, by
using the classification results of segments at different magnifications, a more accurate combined
segmentation result is obtained, containing more useful information than individual ones. The
approach can potentially lead to enhancement of cell nuclei segmentation results from individual
magnifications.

The outcome of multiresolution combination is quantitatively evaluated using the method
described in Section 6.3.2. The overall combination result is summarized in Figure 6.15.
From the quantitative and visual evaluation of the segmentation results after multiresolution
combination, it can be observed that these are superior to individual magnifications 30× and
40×, with desired characteristics of both individual magnifications. Correctly detected cell nuclei
segments are almost maintained to the percentage in 40× magnification which has the highest
quantity. Oversegmentation i.e. the percentage of segments not cell nuclei is reduced from 40×
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Fig. 6.15 Cell nuclei segmentation performance after multiresolution combination

magnification by ≈ 4%, and clustering i.e. the percentage of conglomerates is also reduced from
30× magnification by ≈ 1.5%. By visual assessment of combined results, we find that some
cell nuclei fragments of 40× have been replaced with corresponding whole cell nuclei of 30×.
Similarly, some conglomerates of 30× are replaced with individual nuclei of 40×. Hence, the
multiresolution segmentation result combines the characteristics at individual magnifications.

However, one effect to be carefully analyzed is the slight reduction in the number of correctly
detected cell nuclei compared to 40× magnification, as theoretically, should be higher than
individual magnifications to realize the true advantage of multiresolution approach by combining
their individual contributions. A prime reason for this observation is misclassification during the
cell nuclei classification stage, which leads to a few higher precedence segments being replaced
by other segments (e.g. fragments) that are misclassified, resulting in decline in the number of
correctly detected nuclei. So the combined result is closer to 40×, but a better version due to
lower oversegmentation. Hence, it can be concluded that the multiresolution combination has
caused an enhancement of segmentation properties in histopathological images of gastric cancer
and a more meaningful segmentation has been achieved, containing diagnostically relevant visual
information compared to individual magnifications.

6.5 Applications

6.5.1 Automatic Necrosis Detection

The primary requirement of the pre-analysis step is a high algorithmic performance and efficiency
with lower time and space requirements, which has been fulfilled using textural features and
SVM classification with discriminative thresholds (details of computational requirements in
Appendix A.5). Hence, this method is retained and applied for classification of unknown
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(a) (b) (c)

Fig. 6.16 Results for application of automatic necrosis detection on gastric cancer WSI datasets in (a)
HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor.

histological regions as necrotic or non-necrotic, using the labeled images from the training
datasets. For the studied WSI datasets, the result of necrosis detection after applying the
automatic process is shown in Figure 6.16. As expected, the percentage of necrotic areas is found
lower than non-necrotic areas in the three malignancy regions, which coincides with pathologists’
observations during creation of ground truth. It also corresponds with the underlying diagnostic
hypothesis according to which the tumor is in the early stages, hence, necrosis is not widespread
in the tissue. The resulting necrosis classified regions are excluded from subsequent image
analysis tasks in the research pipeline.

Therefore, necrosis detection can be a useful preparatory step for pathologists and automatic
analysis tools for accurate disease observation and characterization. The proposed computer-
based method is a promising tool to detect necrosis in heterogeneous haematoxylin and eosin
stained whole slide images with variation in malignancy levels, stain intensity and biological
characteristics among patients. The experimental results on the gastric cancer WSI datasets
are encouraging and show robustness of the method to varying visual appearances. The novel
proposed necrosis detection application can act as a standalone program or as a pre-analysis step
in digital histopathology.

6.5.2 Automatic Determination of Histological Tissue Composition

Histological composition of tissues for diagnostic purpose is currently determined by pathologists
using visual inspection in routine and research, which is a tedious and time-consuming process.
The cell nuclei classification step can be used as an automatic application to determine histo-
logical composition of gastric cancer tissues. Such tissue composition analysis can potentially
assist pathologists in computer-assisted diagnosis of gastric cancer. The method also provides a
basis for automatic differentiation between tumor and non-tumor compartments of the tissue and
determination of cancer type, grade or extent (also considered for this work in Chapter 7). In this
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section, a prototype application for automatic determination of histological tissue composition is
described and its preliminary results are illustrated using a pilot dataset, which can be extended
to larger datasets consisting of non-overlapping tiles from larger regions of interest in the H&E
stained WSI.

Cell nuclei classification has been comparatively analyzed for three machine learning meth-
ods in Section 6.4.2, and random forests are selected for classifying unknown cell nuclei samples.
The initial working dataset consisting of 75 image tiles is first used to create an enhanced
segmentation result using the multiresolution combination approach, including automatic classi-
fication of unlabeled cell nuclei segments using random forest classifiers. The combined result is
quantitatively analyzed to determine the proportion of each cell category in the three types of
malignancy regions, namely, HER2 positive tumor, HER2 negative tumor and non-tumor. This
information can provide diagnostically relevant cues for subsequent visual or computational
analysis.

(a) (b)

(c)

Fig. 6.17 Example results of prototype application for automatic determination of tissue composition in
(a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor.
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The measured tissue composition for the three types of regions is shown in Figure 6.17.
It can be observed that the two type of tumors have similar tissue compositions, which are
visibly different from non-tumor. HER2 positive areas consist of the highest ratio of cell nuclei
fragments, epithelial cells and fibrocytes and lowest percentage of leukocytes compared to other
two types of regions, as expected. Also, HER2 negative regions have intermediate properties
in terms of percentage of epithelial cells, leukocytes, fibrocytes and fragments, and consist of
largest amount of conglomerates among the three malignancy types. Non-tumor, in contrast, has
the maximum proportion of leukocytes and lower quantities of cell nuclei fragments, epithelial
cells, fibrocytes and conglomerates.

Therefore, the automatically determined tissue composition resonates with the tissue com-
position expected pathologically in the corresponding malignancy areas. The results are also
in synchronization with the actual composition of the labeled data comprising part of initial
working datasets at 40× magnification, shown in Figure 5.10(b). A few differences arise due to
the error in the classification of cell nuclei, and multiresolution combination, leading to lower
fragment and conglomerate percentages in the resulting segmentation.

6.6 Summary

In this chapter, the second stage of the proposed framework, including the necessary image
pre-analysis methods, is defined. The stage incorporates the essential steps for processing
the current image datasets as required for favorable image analysis of gastric cancer. Firstly
automatic detection and exclusion of necrotic areas is performed such that the final datasets
consist of non-necrotic regions. Moreover, a cell nuclei segmentation algorithm is applied,
evaluated and segmentation results are enhanced using a novel multiresolution combination
approach. This stage also contributes towards two applications, namely, automatic necrosis
detection and automatic determination of histological tissue composition in microscopic images
using supervised learning and classification methods. The result of this stage is attainment of
necrosis-free histopathological image data consisting of additional information from the isolated
cell nuclei segments for subsequent analysis of cancer regions.
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7.1 Introduction

In this chapter, systematic procedures designed and implemented for analyzing histopathological
whole slide images of gastric cancer are described in detail. Two research directions are pursued,
namely, traditional methods and deep learning methods for efficient image representation and
automatic classification of malignancy levels in H&E whole slide images of gastric cancer
tissues, based on their HER2 immunohistochemical response. Most essentially, among the
traditional methods, a novel graph-based technique is handcrafted for knowledge discovery
from tissue regions, followed by traditional machine learning algorithms. Deep learning using
convolutional neural networks is also explored by empirical analysis, formulation, realization and
investigation of appropriate network architecture. In each direction, comparisons are established
using quantitative evaluations with the state-of-the-art traditional methods and deep learning
methods.

The image analysis tasks are performed in the more widely used haematoxylin and eosin stain
using the malignancy information from the immunohistochemical counterparts. Pathologists
in routine practice visually navigate and inspect glass slides or WSI to identify and analyze
abnormalities in the immunohistochemical stain as malignancy levels are mostly visually distin-
guishable. However, visual discrimination of the corresponding malignancy levels in the more
commonly used H&E stain will be a more prolonged and tedious process. Moreover, even in
the more advanced immunohistochemical stain, inter-and intra-observer variability has been
observed and formally studied for the described gastric cancer datasets in [Behrens 2015], sug-
gesting subjectivity in the visual examination process. This study attempts to address the above
challenges by developing automated image analysis techniques for computer-based classification
in the H&E stained tissue regions that can enable automatic analysis to make desired decisions,
but may be difficult to visually discern in H&E stain.

The primary goal is to enable speedy and accurate computer-aided characterization from the
routinely used H&E stained slides without the requirement of immunohistochemical staining.
Analysis of cancer regions can potentially assist pathologists in understanding of the disease in
the more common H&E stain, thereby, reducing costs and efforts in preparation and inspection,
and observer variability. A few results obtained on smaller representative datasets after applying
part of the methods described in the chapter, consisting of the initial proposal of the high-level
handcrafted features and comparison with low-level and high-level state-of-the-art methods with
AdaBoost ensemble learning has been published by the author in [Sharma 2016]. Similarly, the
section of the chapter discussing image analysis of gastric cancer regions using deep learning
and relative evaluation with low-level state-of-the-art features followed by traditional machine
learning with random forests has been explored by the author in detail in [Sharma 2017b]. Lastly,
the design and implementation of hand-engineered graph-based variants explained in this chapter,
and subsequent random forests hierarchical classification have been discussed [Sharma 2017a].
In this work, the author has attempted to present a comprehensive analysis by understanding,
extending, modifying and comparing the developed methods for optimal performance, and
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demonstrating the all-inclusive outcomes in depth, using the available WSI datasets of gastric
cancer.

7.2 Ground Truth Dataset Generation

The gastric cancer WSI datasets used in this study consist of 11 digitized whole slide images
of surgical gastric tissue sections, prepared using HER2 immunohistochemical techniques
and H&E stain, described in detail in Section 5.2. The pathologists have marked polygon
annotations using specialized computer software, where annotations consist of HER2 positive
areas according to 10% cut-off rule and HER2 negative areas morphologically identified as
tumor, hence, pathologists used their expert knowledge to visually discriminate between the
two tumor classes in the HER2 immunohistochemical stain. Details of labeling annotations in
HER2 WSI datasets are provided in Section 5.3. Therefore, the HER2 positive areas define a
high degree of malignancy, whereas HER2 negative areas denote a lower malignancy level.

7.2.1 Datasets for Traditional Machine Learning Methods

To create the ground truth dataset, H&E WSI are tessellated at highest resolution (40× objective
magnification), with each image tile of size 1024×1024 pixels. Non-overlapping image tiles
are selected from areas inside polygon annotations considering regions of agreement of most
pathologists, and labeled as HER2 positive tumor or HER2 negative tumor, depending on
the corresponding region in the HER2 WSI. Non-tumor category comprises of image tiles
tessellated from regions lying outside both types of polygon annotations. To generate the final
working datasets, necrotic areas are excluded using automatic necrosis detection procedure
described in detail in Section 6.2, and visual inspection follows to further eliminate any falsely
classified necrotic image tile and tiles containing more empty areas compared to tissue. Hence,
the experiments are performed on large ROIs containing vast context information at highest
magnification. A representative example of image tiles from each category is shown in Figure 7.1.

(a) (b) (c)

Fig. 7.1 Representative examples of image tiles from the same WSI of the defined malignancy levels at the
highest resolution for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor
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A total of 795 labeled image tiles have been generated according to the immunohistochemical
response of the tissue to conduct experiments for exploring different image descriptions followed
by traditional machine learning methods. The distributions of the image tiles showing the number
and proportion of the image tiles for individual patients (denoted by S) in each of the three
type of regions is illustrated in Figure 7.2(a). The number of image tiles in these datasets is not
as high as the datasets used for deep learning, because traditional machine learning methods
do not require large-scale datasets compared to deep learning methods to optimize predictive
performance. Furthermore, the selected tiles are large-sized and non-overlapping, and obtained
from regions of agreements of most pathologists to create an accurate ground truth, which are
limited by inter-observer variability in annotations. Another reason for the smaller number is to
achieve balance among the three types of classes, especially because HER2 positive class has
smaller annotated areas compared to the HER2 negative tumor class.

A subset of experiments using traditional methods described in the thesis also examine
the performance using a dataset comprising of smaller image tiles of 512×512 pixels, with a
total of 3,153 images. This is created as it is an interesting observation to determine if there
is a deterioration in the system performance by using smaller sized image tiles (observations
mentioned briefly later). This dataset has also been utilized for the CBIR prototype application
explained in Section 7.5.2. The distributions of the image tiles of the smaller size showing the
number and proportion of the image tiles in this dataset for individual patients (denoted by S) in
each of the three type of regions is illustrated in Figure 7.2(b).

7.2.2 Datasets for Deep Learning Methods

In the studies related to deep learning methods, dataset augmentation is recognized as a prior
requirement to expand a comparatively smaller amount of labeled WSI data, owing to many of the
recent successes of deep learning algorithms with massive datasets [Deng 2014]. Standard data
augmentation methods are used to generate large number of image tiles, each of size 512×512
pixels at highest magnification, from the WSI regions annotated by expert pathologists. The
prime reason for the use of 512×512 image size, which is quite reasonable for the existing
deep learning methods, is the memory limitations of the GPU during practical implementation
of convolutional neural networks, as current capabilities of the specified single GPU are not
sufficient for the study of deep architectures with larger sized images (e.g. 1024×1024). An
advantage of using the smaller image size is larger datasets are generated which can potentially
lead to a more reliable evaluation of classification performance for deep learning methods.

The data augmentation methods include overlapping tiles by a factor of 0.3, and affine
transformations such as rotations with 10 degree intervals, reflection, rotation after reflection and
shear by a factor of 0.1. Brightness, contrast and intensity adjustments, and significant geometric
deformations are not applied in order to preserve the salient texture, color and morphological
properties of the original H&E stained tissue images. For the analysis of cancer regions, a total
of 21,000 images from each WSI are generated, thus, a large-scale balanced dataset containing
231,000 images is obtained. The size of datasets depends on the availability of corresponding
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(a)

(b)

Fig. 7.2 Distribution of labeled image tiles among the patients in HER2 positive tumor, HER2 negative
tumor and non-tumor types of malignancy regions and total image tiles for analysis of cancer regions
using traditional methods (a) at 1024×1024 pixel size (b) at 512×512 pixel size.

ground truth marked by medical experts. To speed up the reading process during training of
convolutional neural networks, image datasets are first converted into lightning memory-mapped
databases (LMDB) [Chu 2011] storing images and corresponding labels. For the described
experiments, data augmentation is performed offline to organize the databases among different
cross validation rounds and to use them for comparative analysis using two CNN architectures.
However, it is possible to perform this step online for speedup, as achieved in many previous
works such as [Krizhevsky 2012]. Using the same technique, a dataset containing a total of
47,128 images has been generated for necrosis detection tasks of Section 6.2. The process of
dataset generation and augmentation is demonstrated in Figure 7.3, where an H&E WSI with five
annotations of HER2 positive tumor marked by expert pathologists (one color per pathologist) in
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Fig. 7.3 Example of H&E WSI with (a) a few annotations of HER2 positive tumor marked by expert
pathologists in the corresponding HER2 WSI (b) a low magnified (5×) region of agreement of most
pathologists (c) example images after data augmentation at highest magnification (40×).

the corresponding HER2 slide, is shown in Figure 7.3(a), a low magnified region (5×) containing
areas of agreement of most pathologists for the given class in Figure 7.3(b), and a few image
tiles after data augmentation in Figure 7.3(c).

The distributions of the image tiles in each of the three type of regions for individual patients
(denoted by S) are given in Figure 7.4, showing completely balanced large-scale datasets for
exploring deep learning methods. Only the deep learning methods are studied in conjunction
to the large-scaled datasets described in this section, mainly in order to reduce space and time
complexity of the entire framework. Hence, smaller datasets described in Section 7.2.1 are
utilized for image analysis using the traditional machine learning methods.

Fig. 7.4 Distribution of labeled image tiles among the patients in HER2 positive tumor, HER2 negative
tumor and non-tumor types of malignancy regions and total image tiles for analysis of cancer regions
using deep learning methods
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7.3 Image Description Methods

7.3.1 Low-level State-of-the-art Features

The low-level methods refer to the group of image description methods applied directly on
individual image pixels. Research in this area mainly includes approaches for extracting in-
formation in the form of texture, intensity, color, and frequency-based features. In literature,
these methods have been applied on various types of histological images for several applications
like cancer classification, grading, tissue classification and content-based retrieval. The most
frequently used state-of-the-art low-level methods in digital histopathology have been described
in detail in Section 2.3.1. The studied low-level feature groups include texture descriptors such
as gray level co-occurrence matrix statistics, Gabor filter-bank responses, local binary patterns,
Varma-Zisserman textons and color and intensity descriptors such as gray histograms, RGB
histograms, HSV histograms and other color-based measurements. These specific feature groups
have been explored for analysis of cancer regions in gastric carcinoma histological datasets
for the purpose of comparative evaluations with the high-level state-of-the-art and handcrafted
features in conjunction with traditional machine learning methods, along with the deep learn-
ing methods. The computation of the low-level state-of-the-art image descriptors utilized in
experiments is described in the following sections, however, their theoretical background and
mathematical details are provided earlier in Section 2.3.1.

7.3.1.1 Texture Descriptors

Texture-based image descriptors have been very frequently used in digital histopathology since
many years, due to their ability to quantify the visual appearance of images on the basis of pixel
quantities in local neighborhoods, without requiring the knowledge of high-level tissue architec-
ture. In this work, the following state-of-the-art texture-based features have been extracted from
gastric cancer tissue images.

GLCM Statistics

These are computed as the 14 texture features described using the same procedures as for necrosis
detection in Section 6.2.3, after deriving a gray level co-occurrence matrix for each image tile.
The extracted GLCM statistics are Angular Second Momentum, Contrast, Correlation, Sum of
Squares, Inverse Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Dif-
ference Variance, Difference Entropy, First Information Measure, Second Information Measure
and Maximal Correlation Coefficient.

Gabor Filter-bank Responses

Corresponding to the textural feature extraction step of the necrosis detection process in Sec-
tion 6.2.3, real parts of Gabor filter kernels of 16 different frequency, orientation and standard
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deviation combinations are applied to filter each image in the datasets and a set of 32 Gabor
filter-bank features is obtained.

Local Binary Patterns

In the experiments, LBP histograms are generated by considering 8-nearest neighbors of each
pixel, hence, LBP codes are generated in the range 0-255 depending on the intensity of each
center pixel. From the LBP-coded image, 256-bin LBP histograms are computed and normalized
to obtain feature vectors of 256 values.

Varma-Zisserman Textons

Using the Varma-Zisserman (VZ) texton approach, maximum response 8 filters are applied to
generate filter responses of images selected randomly from each class. A set of 50 texton cluster
centers is selected to represent the texture corresponding to each malignancy level and included
in the texton dictionary using the K-means clustering algorithm. A histogram of VZ textons of
length 150 is used as the feature vector for each labeled image.

7.3.1.2 Color and Intensity Descriptors

Color and intensity are crucial characteristics in histological image analysis due to specific
staining of different tissue components. In the cancer analysis experiments, RGB color space
is used. Again, the following color and intensity descriptors are theoretically described in
Section 2.3.1.

Gray Histograms

Gray level histograms are computed from each image tile to give rise to 256-length feature
vectors. These features represent the intensity distributions in gray-level images.

Color Histograms

The computed color histograms include HSV histograms and RGB histograms from each image
tile to yield 692- and 768-length feature vectors respectively. These histograms can accurately
depict the color distributions of different channels in H&E stained histological images using
HSV and RGB color spaces respectively.

Other Color-based Measurements

Other color-based measurements include six quantities namely mean red, mean green, mean blue,
mean intensity, standard deviation of intensity and mean chromaticity (defined in Table 6.4.2.1).
Some features in this feature group have been introduced as a subset of object-level features for
cell nuclei classification, and extended to image regions.
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7.3.2 High-level State-of-the-art Features

The well-known graph-based method in histopathological image analysis is known as proximity
graph, also sometimes called neighborhood graph. Proximity graphs are planar graphs consisting
of vertices linked by an edge if and only if specific geometric requirements are satisfied by the ver-
tices [Toussaint 1991]. Proximity graphs are defined with reference to various metrics, however
the Euclidean metric is the most commonly used. Voronoi diagram and its dual Delaunay trian-
gulation are two types of proximity graphs widely studied in digital pathology [Sharma 2015a],
hence, these can be considered as state-of-the-art for high-level feature extraction. Voronoi
diagram [Voronoi 1907] creates a nearest site proximity partitioning of a plane consisting of
a set of points (sites) into Voronoi polygons. Delaunay triangulation [Delaunay 1934] (also
called Delaunay graph) is the dual of Voronoi diagram. A number of related graphs have been
introduced in literature, and explained in Section 2.3.3.1.

In order to facilitate a quantitative comparison of the handcrafted high-level graph-based
features with high-level state-of-the-art features, the author has described a set of feature com-
putations using the most common Voronoi-Delaunay representation. Other proximity graphs
discussed in Section 2.3.3.1 are not studied in the comparative analysis, as most of these are
related or derived from the Voronoi diagram and Delaunay triangulation, hence, will not have
significant additional contribution to the originally existing graph information. In the subsequent
experiments, a Voronoi diagram is constructed with the corresponding Delaunay triangulation
for each image, where centroids of each of the cell nuclei segments are considered as the set
of proximity points in the Euclidean plane. Global graph features namely, moments of vertex
degree, clustering coefficient, eccentricity, area, perimeter and number of faces in corresponding
Voronoi polygon, mean area and mean perimeter of neighboring triangles for each vertex and
Euclidean distances between neighboring Delaunay vertices, along with size-based graph fea-
tures are extracted from each Voronoi-Delaunay representation, leading to a feature vector of 61
features per image (Global graph features are discussed in detail in Section 7.3.3.4). Example of
an image tile from the cancer analysis datasets depicting a HER2 negative image region with
corresponding cell nuclei segments after performing cell nuclei segmentation procedure, and the
resulting Voronoi diagram and associated Delaunay triangulation are illustrated in Figure 7.5.

Fig. 7.5 Example of a HER2 negative tumor image tile, cell nuclei segments after segmentation procedure
and the resulting Voronoi diagram and Delaunay triangulation for high-level state-of-the-art feature
extraction
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However, it should be emphasized that for describing the tissue images in the complex
histological gastric carcinoma image dataset, Voronoi-Delaunay graphs have certain limitations,
such as a geometrically constrained nature, planar properties and only one connected component.
Some of these limitations are also noted by authors of cell graphs [Bilgin 2010]. For instance,
Voronoi-Delaunay method only expresses geometric relations between vertices, where the
vertices are simply point coordinates, and it also imposes certain geometric constraints during
construction. Furthermore, since the Delaunay triangulation is planar, it consists of edges only
between adjacent vertices and captures spatial relationships within a small vicinity, however,
no evidence justifies such a restriction in architecture of tissues. Also, Delaunay graphs are
always a single connected component, hence, cannot be effectively used for representing sparse
tissues. Moreover, the length of shortest path in Delaunay triangulation is always three and does
not depend on spatial distribution in the tissue. Due to these reasons, features derived from
Voronoi and Delaunay representations are not considered sufficient to discriminate between the
malignancy levels in histopathological regions of gastric cancer, and this statement will also be
validated by the experimental results in next sections.

7.3.3 High-level Handcrafted Features

The main objective of this group of methods is to model the spatial relationships and architectural
properties between histopathological tissue components using innovative handcrafted techniques.
To outline the procedure, cell nuclei are first isolated at high magnification using the automatic
cell nuclei segmentation strategy, followed by construction of cell nuclei attributed relational
graphs of the tissue regions. These graphs represent tissue architecture comprehensively, as they
contain information about cell nuclei characteristics as vertex attributes, along with knowledge
of neighborhood in the form of edge linking and edge attributes. Global graph measurements
are derived and used to discriminate between the different types of malignancy levels in H&E
images based on HER2 immunohistochemistry. The developed graph-based techniques can be
included in the category of high-level (architectural) feature extraction methods, as they involve
extraction of suitable topological features from tissue images by first constructing representative
graphs on the underlying tissue objects.

7.3.3.1 Motivation

Despite of several widely known low-level state-of-the-art methods, the author firmly believes,
and this phenomenon has also been observed in past studies for histopathological image analysis,
that most of the described pixel-based methods are not self-sufficient to effectively represent
the malignancy properties in histological images, since they do not incorporate other significant
characteristics such as architectural information and neighborhood relationships of the tissue
components. Therefore, the author has proposed a set of solutions using high-level image
description involving hand-engineered image analysis techniques for modeling and quantifying
tissue components and relations between them. For this purpose, a novel graph-based method
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is developed for graph construction in histopathological image analysis called cell nuclei at-
tributed relational graphs (cell nuclei ARG), which can be potentially designed to represent the
knowledge in tissue regions in an effective way. In the proposed approach, numerical attributes
are assigned to the graph vertices i.e. cell nuclei and graph edges, representing morphological
and spatial neighborhood properties of the cell nuclei in the tissue. The author is motivated to
explore the strengths and weaknesses of the cell nuclei ARG method due to several reasons.

To the best of author’s knowledge, mostly the graph-theoretic techniques explored for
histological image analysis have been applied on standard sized individual regions of smaller
dimensions and low resolutions. With the rapid advancement in hardware and software equipment
in the field of digital pathology in the past few years, glass slides are now available as high
resolution digital images i.e. WSI ready to be analyzed. The histopathological community has
observed the need of developing analysis techniques applicable to WSI datasets, and not only to
some specific regions. The previous solutions using graphs are computationally expensive to
be applied on such high resolution WSI. Another limitation of many of the earlier graph-based
approaches is their semi-automatic nature, as cells or other interesting objects have been mostly
interactively marked with their boundaries before graph construction, which also makes the
process time consuming. For some other graph-based methods, the corresponding tessellations
provide cell boundaries which may not coincide with the actual cell boundaries. Sometimes
simpler and more general segmentation algorithms like thresholding and k-means algorithm
have been applied, leading to blob-like appearance of cells and cell clusters which can clearly
affect the accuracy of subsequent analysis. Hence, there is a requirement to include automatic
segmentation for isolating the different tissue components before the use of graphs.

Moreover, the resultant cell nuclei ARGs are topologically different from proximity graphs,
as these are generated using non-planar linking of vertices in a region of interest. The cell nuclei
ARGs are more appropriate graph-based method for the given classification problem, as they
contain more comprehensive information about the tissue architecture due to vertex and edge
attribute assignment, compared to proximity graph which only expresses the geometric relation
between a given set of Euclidean points as vertices. Also, as mentioned earlier, proximity graphs
have geometric constraints so they can only capture spatial relationships between cell nuclei
within a small vicinity, whereas cell nuclei ARGs are constructed depending on the spatial
arrangements of the cell nuclei, hence, can be used for representing dense or scattered tissue
components. Furthermore, unlike the Delaunay triangulation, cell nuclei ARGs can contain more
than one connected component. These properties provide a greater flexibility to cell nuclei ARGs
for modeling diverse types of tissues based on the tissue topology.

Cell graphs [Gunduz 2004] have been an inspiration for the commencement of the novel
graph-based handcrafting procedure. Cell graphs are described by their authors as more suitable
for representing cancer tissue characteristics compared to proximity graphs due to the above
advantages, especially due to less geometrical constraints for cancer tissue modeling. This
has provided a higher clarity to the author in general, as the proposed cell nuclei ARG and its
variants have been conceptualized with fewer linking constraints keeping the heterogeneous
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structural properties of the tumor in consideration. However, the cell nuclei ARG are distinct
from cell graphs, as they have been developed as more detailed graph constructions at higher
image resolutions and tissue magnifications by computing visual characteristics of individual
cell nuclei (instead of single points), their neighborhoods and relational information between
neighbors, using different edge linking rules and additional edge information. The overall global
graph feature extraction is also distinct from the cell graph method.

Therefore, the author investigates the power of handcrafted graph-based approaches for the
classification of gastric carcinoma, and also examines the performance with respect to the most
widely used state-of-the-art low-level and high-level image description methods. Variations in the
cell nuclei attributed relational graphs are also extensively studied and comparatively analyzed
for effective knowledge description and classification in H&E stained whole slide images of
gastric cancer. The comparative evaluation between the different tiers of feature extraction
methods can emphasize whether the primary basis of the author’s hypothesis is true, and is an
interesting aspect of research in this direction further leading to hybrid approaches to combine
the salient visual information.

7.3.3.2 Cell Nuclei Attributed Relational Graphs

A graph is a mathematical structure consisting of a finite set of points (or objects) known as
vertices that are linked to each other by a set of edges using a predefined criteria. Attributed
Relational Graph (ARG) is a graph G(V, E, A, B) consisting of vertices and edges along with
their associated attributes [Sharma 2012]. The vertex attributes for a vertex vi ∈ V are included
in a vector ai = [a(p)

i ], (p = 1, 2, 3, ..., P, ai ∈ A), where P is the length of vector ai, and
the edge attributes for edge eij ∈ E between vertices vi and vj ∈ V are described by vector
bij = [b(q)

ij ], (q = 1, 2, 3, ..., Q, bij ∈ B), where Q is the length of vector bij. In the proposed
method, cell nuclei ARGs are constructed by considering the cell nuclei segments as graph
vertices, which are connected by the following linking rule. A vertex vj is included in the
neighborhood Ni,j of vertex vi if and only if it is located inside a disc of radius r centered at
the vertex centroid, which is referred as the maximum spanning edge length. In other words, a
vertex vj is included the neighborhood Ni,j of vertex vi if and only if the following linking rule
is satisfied.

de(i, j) ≤ r (7.1)

where de(i, j) denotes the Euclidean distance between the centroids of vertex vi and vj . The
concave object separation step of cell nuclei segmentation procedure [Wienert 2012] ensures
that the resultant cell nuclei segments are mainly convex, however, they may consist of smaller
concave subregions. Thus, centroids are mostly located inside or on the cell nuclei segments.
The resulting cell nuclei ARGs are undirected and non-planar. The schematic diagram of cell
nuclei ARG is shown in Figure 7.6. After identifying the vertices and linking the edges between
neighboring vertices, attribute vectors are assigned to each vertex and each edge, and defined as
follows.
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Fig. 7.6 Schematic diagram of cell nuclei ARG

1. Vertex attributes: An attribute vector ai of 29 attributes are assigned to each cell nuclei
ARG vertex vi ∈ V . The two subsets of attributes associated with the vertices are:

(a) Object-level attributes: The properties of individual cell nuclei are important indicators in
detecting malignant changes in tissues. A set of 25 object-level attributes is used for repre-
senting the visual characteristics of each cell nuclei segment. These include morphological
or shape-based attributes of cell nuclei and characteristics of their contour intensities.
The shape-based attributes are Object Pixels, Minimum Distance to Tessellation Border,
Pixels at Layer Border, Maximum Distance to Border, Aspect Ratio of Bounding Ellipsoid,
Minor Axis of Bounding Ellipsoid, Major Axis of Bounding Ellipsoid, Angle of Bounding
Ellipsoid, Form Factor of Contour, Convexity of Contour, Length of Contour, Area of
Contour, Form Factor of Convex Hull, Length of Convex Hull, Area of Convex Hull, Feret,
Minimal Radius of Enclosing Centered Circle, Maximal Radius of Enclosed Centered
Circle, Roundness and Form Factor. Additionally, fractal dimension of each contour is also
computed using the box counting algorithm for Minkowski’s dimension [Falconer 2004].
Attributes based on contour intensities are Mean Intensity on Contour, Standard Deviation
of Intensity on Contour, Contour Value and Gradient Fit. These have been explained in
Table 6.4.2.1, and are a subset of the cell nuclei segment features applied for cell nuclei
classification.

(b) Neighborhood attributes: These include the neighborhood characteristics of each vertex
and include vertex degree, vertex clustering coefficient, vertex eccentricity and mean
euclidean distance of a vertex to its neighbors. Vertex degree is the number of number of
vertices linked to it by edges. Vertex clustering coefficient is the measure of the extent of
the tendency of a vertex to cluster with other vertices. Vertex eccentricity is the measure
of how far a vertex is from the most distant vertex from it in the graph. Their numerical
definitions are presented in Section 2.3.3.7. The measure of mean distance of a vertex to
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all its neighbors is indicative of cell nuclei density of a region and inversely proportional
to it, as a higher value represents cell nuclei scattered more sparsely and a smaller value
denotes a cluster of closely spaced cell nuclei. These neighborhood attributes collectively
quantify the interactions between cell nuclei with their neighbors, thereby characterizing
the spatial relationships between tissue components in the overall tissue architecture.

2. Edge attributes: The relationships between linked vertices are described using edge attributes.
For an edge eij ∈ E between vertices {vi, vj} ∈ V such that vj ∈ Ni,j , the edge attribute
vector vector bij consisting of 26 attributes is computed. It includes the euclidean edge length,
where centroids of vertices vi and vj are given as (xi, yi) and (xj, yj) respectively, and the
difference between the corresponding object-level vertex attributes as shown in the following
equations.

b1
ij =

√
(xi − xj)2 + (yi − yj)2 (7.2)

bk
ij = |a(k−1)

i − a
(k−1)
j |, k = 2, 3, ...25 (7.3)

An additional edge attribute is orientation, defined as the gradient of the edge line connecting
the two vertices.

b26
ij = yi − yj

xi − xj

(7.4)

This attribute is only indicative of the underlying open, closed or dense arrangements of cells
and its usage and significance is explored later while computing the global graph features.

7.3.3.3 The Variants of Cell Nuclei Attributed Relational Graphs

The basic construction principles described above have been utilized to generate eight different
kinds or variants or cell nuclei ARG, representing diversity in the contained knowledge of the
corresponding image regions and their malignancy levels. The two variables used for designing
the variants of cell nuclei ARGs are linking rule to determine r and ARG construction method
based on vertex information.

Linking Rule: Determining r

There are two different ways in which the maximum spanning edge length r has been assigned.
Different types of cell nuclei ARGs are generated, with one of the variables being the linking
rule used for determining r. The linking rules are as follows.

1. Fixed r (rF): In this type of linking rule, the maximum spanning edge length r is set to a
fixed value that is independent of the cell nuclei density of each image. In other words, r

is empirically predetermined for an effective representation of spatial arrangements of cell
nuclei in the corresponding image regions, and kept constant for all types of regions. An
advantage of using fixed r (denoted by rF ) irrespective of image or region type, is that an
accurately estimated and sufficiently large value of rF ensures that the cell nuclei segments
are connected to all their ‘closer’ neighbors included in a group of cells in the tissue, leading
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to formation of connected components which represent the histological architecture and
spatial relationships within the tissue in an effective manner. Also, an increase in maximum
spanning edge length rF means a higher number of edges and associated edge attributes,
leading to denser cell nuclei ARGs, and vice-versa. The value of rF is decided after visual and
experimental investigation for a set of different values while construction of the cell nuclei
ARG.

2. Adaptive r (rA): A cell nuclei ARG with adaptive maximum spanning edge length r is
constructed using a dynamic value of r (denoted by rA) to perform the edge linking in each
cell nuclei ARG individually. In this case, the edge linking parameter rA is not kept constant
for all regions, and computed for each region of interest depending on the number of cell
nuclei in the image, ensuring that these are connected to their closer neighbors.

For computation of rA, an imaginary regular grid consisting of equal sized rectangular
grid cells is placed on each image tile and it is assumed that the cell nuclei segments are
uniformly spaced such that each grid cell consists of a cell nuclei centroid at its center. The
maximum spanning edge length rA is now set to the maximum distance between the given cell
nuclei centroid and its 8-neighbors. The uniform grid assumption is depicted in Figure 7.7.
Let the length of the image tile be represented by l and its breadth be represented by b in

Fig. 7.7 Uniform grid assumption for cell nuclei ARG with adaptive r

pixels. For a regular grid placed on the image tile with each grid cell consisting of a cell nuclei
centroid, there are Nl number of grid cells in each row and Nb number of grid cells in each
column. Horizontal distance between two consecutive grid centers will be l/Nl and vertical
distance will be b/Nb. Hence, the maximum distance of a given grid cell center (coinciding
with a cell nuclei centroid) with its 8-neighbors will be the diagonal distance given by,

dm =

√√√√( l

Nl

)2

+
(

b

Nb

)2

(7.5)

For a square image tile, l = b and Nl = Nb = N . The distance now becomes,

dm =
√

2l2

N2 =
√

2l√
Nv

(7.6)
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where, N2 defines the total number of grid cells in a square grid. Also, according to the
assumption, each grid cell consists of a cell nuclei centroid, so the value N2 is the total number
of vertices Nv in the corresponding cell nuclei ARG. To obtain the maximum spanning edge
length rA for an image tile, dm is rounded off to the nearest higher integer.

The main advantage of the dynamic linking approach is the elimination of the prerequisite
of empirically fixing r as it is automatically calculated for each cell nuclei ARG during graph
construction. This calculation of a dynamic rA is more flexible depending on the type of
malignancy, and increases the probability that a cell nuclei segment is connected to its nearest
neighbors irrespective of their actual distance in the tissue. The edge linking method used
in this graph can be considered similar to proximity graphs due to the imposed geometrical
constraints. However, it is less constrained compared to the Voronoi-Delaunay representations
because the computation is performed for determining the maximum spanning edge length
instead of actual positions of the cell nuclei centroids, so all the edges having a value less
than the calculated rA will still be present in the resulting cell nuclei ARG.

For the computation of rA as above, a uniform distribution assumption considering equally
spaced cell nuclei segments is not always indicative of the tumor tissue because in the
real case, cells are not uniformly spaced and can lead to multiple connected components.
However, it should be specified that the ideal case assumption is not determining actual edge
lengths but only putting a threshold to determine the connectivity between tissue components.
The approach can result in multiple connected components representing cell neighborhoods
in tissues, and the true tissue architecture.

One limitation of the adaptive r technique described above, similar to Voronoi-Delaunay
representations, it is constrained by a dynamic value of r, so in some cases the graph may not
fully represent the global arrangements of cell nuclei in the tissue. Nevertheless, it will be
interesting to observe the behavior of dynamically and automatically calculated rA without the
prerequisite of estimating it, and compare the performance of the two edge linking approaches.

A grid-based approach for cell graphs is described in [Demir 2004], [Demir 2005a],
[Bilgin 2007], [Gunduz-Demir 2007]. However, it is different from the linking method de-
scribed above, as in that approach, in order to construct cell graphs, grids of specific sizes
(e.g. 4, 8, 10 pixels) are considered and the probability values for existence of a cell node
is determined by averaging their binary pixel values inside a grid cell during the node iden-
tification of cells or cell clusters. In the above described approach, an imaginary grid has
been used only to calculate the maximum spanning edge length during the edge linking phase,
where grid size is not constant and depends on the number of cell nuclei using the uniform
distribution assumption.

On comparing the computational complexities of the two linking approaches, if the empirical
analysis part is ignored, fixed r method has lower costs as it doesn’t require the r calculation
step for each image. On the other hand, accuracy of the assumption of r affects the subsequent
classification performance, hence, should be carefully determined using experimental evidence,
which increases the overheads related to fixed r method.
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ARG Construction Method based on Vertex Information

The second variable to develop variants of cell nuclei ARG is the construction method to include
and represent vertex information. There are four ways in which this has been accomplished.

1. Generic cell nuclei ARG construction (gARG): As the name suggests, a generic cell
nuclei ARG is constructed by considering all the cell nuclei segments comprising the image
tile as its vertices, irrespective of their individual classes or types. The resulting cell nuclei
ARG considers all the vertex and edge attributes as described in Section 7.3.3.2.

2. Nuclei-specific ARG construction (nsARG): A nuclei-specific ARG is constructed by
considering all the cell nuclei of one type (or class) in question. The class for each cell
nuclei segment is automatically computed using the cell nuclei classification step described in
Section 6.4.2. For each image tile, one nuclei-specific ARG is used to represent the spatial
arrangements of each of the following cell nuclei classes, namely, epithelial cells, leuko-
cytes, fibrocytes and conglomerates. The other three types of cell nuclei segments, namely,
fragments, other cells and artefacts have not been considered in constructing nuclei-specific
ARG due to insignificant impact on the malignancy characteristics of tissue regions. Hence, a
maximum of four nuclei-specific ARGs are generated for each region of interest. The vertex
attributes of nuclei-specific ARGs do not include the morphological and contour intensity-
based measures because these have been previously utilized during cell nuclei classification
stage as a subset of the cell nuclei features. Hence, such a construction emphasizes purely on
the neighborhood relationships among cell nuclei of the same type in a given ROI.

3. Nuclei-composite ARG construction (ncARG): A nuclei-composite ARG takes into ac-
count all the cell nuclei segments in an image, along with their individual identities. Here
also, the class for each cell nuclei segment is automatically determined as one of the seven
types using the cell nuclei classification step described in Section 6.4.2, however, there is only
a single nuclei-composite ARG generated for each image. The vertex attributes of nuclei-
composite ARGs do not include the morphological and contour intensity-based measures
because of the same reason described for nuclei-specific ARG, but there is an additional
vertex attribute denoting the category of each cell nuclei segment. Another difference from
the nuclei specific construction is the consideration of different types of cell nuclei in the
same ARG, emphasizing on the inter-class interactions in the neighborhood.

4. Nuclei-composite ARG construction with additional vertex attributes (ncARGv+):
This is constructed similar to nuclei-composite ARG, however, it also takes into account
the morphological and contour intensity-based vertex attributes along with the class of each
vertex. This can be seen as a repetition using the same information of vertex attributes twice,
once during cell nuclei classification and once during graph-based region analysis, however,
it may be argued as a method for information recycling in order to enrich the knowledge from
the tissue image.

In terms of space and time complexity, the generic cell nuclei ARG construction has the lowest
requirements due to its simplistic and straightforward implementation. Nuclei-composite ARG
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construction has intermediate requirements due to additional step of cell nuclei classification prior
to graph construction. For the construction with additional vertex attributes, space requirement is
higher than the former counterpart. Nuclei-specific ARG construction is the most computationally
intensive as it consumes around four times more execution time due to multiple graphs generated
for each image and more space when the corresponding graphs need to be explicitly saved, also
requiring additional time due to the intermediate cell nuclei classification step.

Eight Resulting Cell Nuclei ARG Variants

Based on the combinations of the above two variables, the eight different versions (or variants) of
the cell nuclei ARG developed and explored in the subsequent experiments, described as follows.
The cell nuclei ARG variants are assigned the respective acronyms to easily refer to these in the
following text.

1. gARG[rF]: The generic cell nuclei ARG and fixed r variant is the most elementary and
intuitive type, and has also been extensively explored in [Sharma 2016]. For the described
experiments, r is empirically determined and then fixed prior to graph construction.

2. gARG[rA]: A generic cell nuclei ARG with adaptive r is constructed by using the generic
construction method and the adaptive edge linking method to compute individual values of r

for each image.

3. nsARG[rF]: Nuclei-specific ARG and fixed r uses the nuclei-specific ARG construction
method such that values of rk, k = {1, 2, 3, 4} are empirically determined for the four types
of cell nuclei. It is intuitive that these values will be greater than r determined for generic
cell nuclei ARG, as the latter considers more closely spaced cell nuclei segments of all types
instead of one specific type of cell nuclei segments.

4. nsARG[rA]: Nuclei-specific ARG with adaptive r is constructed for each category of cell
nuclei separately and maximum spanning edge length r is dynamically calculated for a
region of interest considering only the particular cell nuclei category of the corresponding
nuclei-specific ARG.

5. ncARG[rF]: Nuclei-composite ARG and fixed r uses the nuclei-composite ARG construc-
tion method using all the cell nuclei segments with identities, and a predetermined value of r

for all the images.

6. ncARG[rA]: Nuclei-composite ARG and adaptive r is constructed using all the cell nuclei
segments with their identities, and r is dynamically calculated for each image.

7. ncARGv+[rF]: Nuclei-composite ARG with additional vertex attributes and fixed r are
obtained by considering all cell nuclei segments, their vertex identities, along with shape and
contour intensity-based vertex attributes and fixing the value of r .

8. ncARGv+[rA]: Nuclei-composite ARG with additional vertex attributes and adaptive r use
the same construction method as above, though edge linking is performed using the adaptive
r linking method.
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An example of a smaller image tile from a larger region (same image tile shown in Figure 7.5),
corresponding segmentation and the cell nuclei ARG representations of the eight types of variants
are shown in Figure 7.8.

In Table 7.1, visible characteristics in H&E stained images for the three malignancy types on
the basis of HER2 immunohistochemistry, and the corresponding architectural properties of the
resulting cell nuclei ARG are summarized. Figure 7.9 shows typical examples of each type of
region from the same WSI, overlay with the constructed gARG[rF ] where r = 50 and illustrates
majority of the properties listed in the table. These properties, along with other subtle changes not
clearly visible to human eyes, are extracted using the various self-designed handcrafted features
of the different attributed relational graphs to facilitate an accurate automatic differentiation of
the types of cancer regions.

Table 7.1 Cancer interpretation based on graphs: summary of visible characteristics and corresponding
cell nuclei ARG properties

Type of malignancy
region (based on
HER2 IHC)

Visible characteristics of region Architectural properties of resulting cell
nuclei ARG

HER2 positive tumor

Cells are mostly large, long and oval Large vertex size and distinct morphologi-
cal properties

Cellular density is very high Dense graphs
Intercellular distance is very less Highly clustered graphs
Cell boundaries are overlapping Many vertices are large conglomerates
Cells have a clustered appearance Few large and dense connected components
Cells are either randomly accumu-
lated or arrange in dense patterns

Random or globular arrangements in the
graph

HER2 negative tumor

Partly, the areas contain large cells
and partly contain small cells

Intermediate vertex sizes and morphologi-
cal properties

Cellular density is medium or high Medium or high graph density
Intercellular distance is medium Intermediate clustering in graphs
Some cell boundaries are not clear Many vertices are small conglomerates
Cells can be scattered or clustered Intermediate connected components
Cells just started to arrange in closed
patterns by forming a single ring

Distinct closed patterns (including single
layers) in the graph

Non-tumor

Cells are usually small and round Small vertex size and distinct morphologi-
cal properties

Density of cells is medium or low Sparse graphs
Intercellular distance is highest Scattered graphs over whole image
Cells are distinct and boundaries are
not overlapping

More number of isolated vertices or lower
vertex degrees

Cells are scattered in connective tis-
sue

Many connected components, each of small
size

No distinct arrangements or group-
ing of cells

Fewer closed patterns and more open struc-
tures in the graph
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(a) (b) (c)

Fig. 7.9 Typical example of malignancy regions overlay with their gARG[rF ], r = 50 showing visible
characteristics for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor

7.3.3.4 Global Graph Features

After design and construction of the cell nuclei ARGs for each region of interest, a method is
required to extract global quantitative information describing the overall characteristics of each
graph. The applied method uses averaging techniques on vertex and edge attributes giving rise
to moment-based features, along with additional computation of measurements based on graph
size, explained as follows.

Moment-based Features

These features include first, second and higher order moments of the vertex and edge attributes of
each cell nuclei ARG. They are calculated as mean, variance, skewness and kurtosis. Minimum
and maximum values of the attributes in the cell nuclei ARG are also included in this feature set.
Their definitions are shown as follows, where a

(p)
i represents the pth vertex attribute for the ith

vertex. Similar computations are also made for each edge attribute e
(q)
ij in the cell nuclei ARG

containing Nv vertices and Ne edges.
Mean:

µ{a(p)} = 1
Nv

Nv∑
i=1

a
(p)
i (7.7)

Variance:

σ2{a(p)} = 1
(Nv − 1)

Nv∑
i=1

(a(p)
i − µ{a(p)})2 (7.8)

Skewness:

s{a(p)} = 1
σ3(Nv − 1)

Nv∑
i=1

(a(p)
i − µ{a(p)})3 (7.9)

Kurtosis:

κ{a(p)} = 1
σ4(Nv − 1)

Nv∑
i=1

(a(p)
i − µ{a(p)})4 (7.10)
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Maximum:
m1{a(p)} = max

1≤i≤Nv

{a
(p)
i } (7.11)

Minimum:
m2{a(p)} = min

1≤i≤Nv

{a
(p)
i } (7.12)

For the orientation edge attribute, moment-based features defined above are not calculated.
Instead, one feature called total orientation is obtained as the sum of the orientations of all the
edges in the cell nuclei ARG. The feature will vary with rotation for open structures, but the
author wants to specify that it is mainly introduced in order to differentiate between single closed
layer (or ring) of cells found mostly in HER2 negative tumor which will have lower value of this
feature, compared to dense group of cells in HER2 positive tumor which will have intermediate
and higher values of this feature. For non-tumor, due to scattered and more isolated cells, even
when the structures are open, the value will tend to remain lower compared to the values for
HER2 positive tumor. Hence, the feature can differentiate between a few distinct patterns in
the cell nuclei ARG, such as isolated cells or small open structures (non-tumor), closed circular
arrangements in single layer (HER2 negative tumor) and dense groups of cells (HER2 positive
tumor).

In addition, the two nuclei-composite ARG constructions, namely, ncARG and ncARGv+,
use seven additional global graph features related to vertex identities. As vertex identity is a
vertex attribute in nuclei-composite ARGs, computation of the total number of vertices belonging
to each cell nuclei category in the ARG give rise to seven numeric values which are included in
the global graph features.

Size-based Features

These features include number of vertices, number of edges, number of connected components,
cyclomatic number, graph density, graph irregularity and number of triangles in each cell nuclei
ARG. A connected component of an undirected graph is a subgraph containing vertices connected
to each other by paths, but it is not connected to any other additional vertex in the supergraph.
Connected components are computed using a depth-first search procedure [Hopcroft 1973]. A
cycle is a path where the start vertex is same as the end vertex. Cyclomatic number (also called
circuit rank) γG of a graph G is the minimum number of edges which must be removed in order
to eliminate all cycles from G [Volkmann 1996]. Considering a graph with Nv vertices, Ne

edges and Nc connected components, γG is given by,

γG = Ne − Nv + Nc (7.13)

The density of a graph G, denoted as DG measures ratio of edges in E compared to the
maximum possible number of edges between vertices in V . Graph density is calculated us-
ing [Coleman 1983],

DG = 2Ne

Nv(Nv − 1) (7.14)
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Graph irregularity [Albertson 1997] IG denotes the imbalance of all edges and is calculated by,

IG =
∑

eij∈E

|Di − Dj| (7.15)

where Di represents the degree of vertex vi and |Di − Dj| is defined as the imbalance of edge
eij . Number of triangles in the graph is measured by [Alon 1997].

∆G = tr(A3)
6 (7.16)

where A represents the adjacency matrix of the graph and tr represents trace of a matrix.

As a result, from each gARG construction, a feature vector of 332 global graph features are
extracted. The number of features extracted from individual nsARG construction vary for each
image depending on the existence of a particular type of cell nuclei and (or) links between them,
yielding upto a maximum of four graphs and 188 features per graph. Thus, from the combined
set of four nuclei-specific ARGs, a total of 752 (188*4) global graph features are extracted for
each image. The missing global features in a small fraction of samples are substituted to zero
for simplicity and to further emphasize on the missing feature values of certain cell nuclei types
(especially in the non-tumor class). Furthermore, for the ncARG construction, a set of 195
(188+7) features, and for the ncARGv+ construction, 339 (332+7) global graph features are
extracted from each image.

7.3.4 Combination of Features

In order to achieve optimum classification performance, a hybrid approach is used to combine the
information contributed by different feature groups, thereafter relevant information is selected.
Firstly, a hybrid low-level feature set is generated by combining specific low-level features.
Furthermore, the extracted high-level cell nuclei ARG features from its effective variants and
low-level features are also concatenated to obtain a richer hybrid feature set for each image region.

To overcome the curse of dimensionality [Hughes 1968] due to a very large number of
features, each combination of features is reduced to a smaller dimension using a feature selection
process. Feature selection is defined as the process of selecting a subset of relevant features that
can be utilized in subsequent machine learning and classification [Guyon 2003]. The primary
reason for using a feature selection for the cancer classification problem in conjunction with
dimensionality reduction, is that the image data may contain features that are either redundant or
irrelevant, that may be removed without incurring loss of meaningful information or influencing
the classification performance significantly.

The feature selection approach applied on the combinations of feature vectors for
analysis of cancer regions simply makes use of correlation analysis. The procedure applied
evaluates the degree of association between each pair of features x and y using the Pearson’s
correlation function [Pearson 1895], [Fisher 1921]. Pearson’s correlation coefficient for features
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x = {x1, x2, ...xn} and y = {y1, y2, ..yn} for n instances with means x̄ and ȳ and standard
deviations sx and sy is shown in equation 7.17 as,

rxy =
∑n

i=1 (xi − x̄)(yi − ȳ)
(n − 1)sxsy

(7.17)

where,

x̄ = 1
n

n∑
i=1

xi (7.18)

and

sx =
√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2 (7.19)

For m features, this procedure generates an m × m correlation matrix, and highly correlated
features (rxy ≥ 0.9) are discarded. Removing the correlated attributes can avoid redundancy
during prediction as these attributes usually show similar effect on the classifiers. Such a selected
subset of features also leads to a higher time and space efficiency. The procedure is applied on
the set of hybrid low-level features and the set of hybrid low-level and high-level features to
obtain the respective selected subsets of features.

The feature groups initially considered for combination and lengths of feature vectors before
and after performing correlation analysis are provided in Table 7.2. Generally, the individual
feature groups represent unique information in the image. Specifically, among the low-level
features, RGB histograms are included from the three types of color histograms due to most
satisfactory classification performance during experiments, and because other color histograms
have long lengths of the corresponding feature vectors but may contain potentially correlated
color information. Also, among the high-level features, ncARGv+[rF ] variant of the cell nuclei
ARG is selected as it contains composite knowledge about the underlying graphs.

Table 7.2 Results for feature selection based on correlation analysis after combination of features

Combination
type

Feature groups considered
for combination

Original
length of fea-
ture vectors

Length of fea-
ture vectors af-
ter feature selec-
tion

Correlated features
removed as percent-
age of total from re-
spective group

Hybrid low-
level features

GLCM statistics, Ga-
bor filter-bank response,
LBP histograms, Varma-
Zisserman textons, RGB
histograms and other
color-based measurements

1225 351
35.71%, 84.38%,
33.20%, 34.67%,
91.15%, 83.33%

Hybrid low-
level and
high-level
features

GLCM statistics, Ga-
bor filter-bank response,
LBP histograms, Varma-
Zisserman textons, RGB
histograms, other color-
based measurements and
ncARGv+[rF ] global graph
features

1564 534

35.71%, 84.38%,
33.20%, 34.67%,
91.15%, 83.33%,

46.31%
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As observed in Table 7.2, the highest percentage (>=50%) of correlated features have been
removed from RGB histograms, Gabor filter-bank features and other color-based measurements.
Therefore, there are a few discriminative but correlated features (e.g. RGB histograms) that
are excluded after feature selection, which is the probable explanation of hybrid approaches
performing similar to, or sometimes slightly worse than the best performing individual feature
extraction methods, as observed later in the experimental results. Furthermore, since it was
noted in the studies in [Sharma 2016], the performance difference between hybrid features
without feature selection, and after correlation analysis based feature selection is very low and
insignificant (≈2%), hence, only the subset of hybrid features selected after correlation analysis
have been considered in this study to lower the computational requirements.

Dedicated feature selection methods, also called embedded methods, use a specific learning
algorithm to perform feature selection and classification simultaneously, e.g. simulated annealing
and genetic algorithm [Hamon 2013]. The author wants to specify that such complex methods
are not considered in the experiments, mainly due to the reason that features should not be
specifically selected for a particular classification algorithm as multiple traditional machine
learning methods are simultaneously evaluated. Hence, an independent method is required,
and correlation-based feature selection is a generic approach that simply removes the highly
correlated features without giving preference to any classification algorithm. Additionally, due
to lower computational requirements, it economically integrates with all the other steps of the
process pipeline.

7.4 Machine Learning Methods

7.4.1 Traditional Methods

After the elaborate procedure of representing histopathological images using a wide range
of low-level and high-level descriptors, the next logical step is to select suitable machine
learning methods to facilitate automatic classification of the H&E stained tissue image tiles into
appropriate category, based on the malignancy levels which are defined by the corresponding
HER2 immunohistochemical stain. The selected traditional machine learning methods include
support vector machines, AdaBoost ensemble learning and random forests for the classification
experiments, due to their wide acceptability and success in various fields of pattern recognition,
specifically in the domain of image analysis in digital histopathology. Their individual benefits
and limitations, leading to their choice for subsequent research are provided in Section 2.4.

7.4.1.1 Support Vector Machines

The first widely known traditional machine learning method applied for cancer classification
after feature extraction is support vector machines. The algorithmic details of the support vector
machines learning and classification are provided in Section 6.2.4, and subsequent extension
to multi-class classification in Section 6.4.2.2. For classification of cancer regions based on
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malignancy, a similar approach using support vector machines is deployed. Each image is
represented by a set of features from one of the low-level or high-level graph-based feature
groups, or a combination of features after feature selection. Gaussian or radial basis function
kernels, showing a desirable classification performance in necrosis detection and cell nuclei
classification are also employed for the analysis of cancer regions. Training and deployment of
SVM is similar to the approach elaborated in Section 6.4.2.2, and again discriminative thresholds
are avoided to prevent complexity due to multiple classes. The parameter selection procedure for
SVM predicts the experimental parameters c and γ using grid search on the training samples with
k-fold cross validation (k = 5). Due to 21 feature configurations used for SVM machine learning
(Table 8.2), the parameter selection process is carried out separately for each configuration,
yielding various pairs of c, γ. Optimal parameters are selected and applied for different cross
validation strategies using the quantitative comparative evaluation scheme for a comprehensive
analysis, discussed in Section 8.4.1.1.

7.4.1.2 AdaBoost Ensemble Learning

AdaBoost or adaptive boosting is another supervised machine learning method from the realm of
conventional approaches where handcrafted feature extraction is a prerequisite before training
the models for classification. Handcrafted low-level and high-level features, either self-designed
or state-of-the-art, are used in conjunction with AdaBoost ensemble learners during the train-
ing phase. The trained classifiers predict the malignancy levels of unknown samples through
a classifier combination and weighted majority voting scheme. Again, for the mathematical
interpretation and parameter selection of AdaBoost ensemble learning algorithm, Section 6.4.2.2
can be referred. A set of values of Kmax after parameter search for each classification con-
figuration with different input feature groups is obtained. These are then applied in several
experiments using AdaBoost ensemble learning and classification in the comparative evaluation
scheme (Table 8.2).

7.4.1.3 Random Forests

As discussed earlier, random forests are a popular ensemble learning method which constructs
many decision trees and the final class is majority voted by the individual trees. It involves the
experimental parameters number of trees Nt and number of features for best split m. In order to
approximate suitable values Nt and m at which the error stabilizes, the OOB error is computed
for each Nt in a predefined range (Nt ∈ [1, 1500]), and each m, where m is considered as

√
M ,

log2M and M , M being the total number of features. Example of the estimated parameters has
been discussed for cell nuclei classification in Section 6.4.2.2 and similar procedure has been
applied for the analysis of cancer regions. Hence, for each configuration involving different
kind of image descriptors of the histopathological datasets, the two parameters Nt and m are
predicted using the bootstrapping procedure, and OOB error estimates are calculated from the
resulting random forest.
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7.4.2 Deep Convolutional Neural Networks

Deep learning using convolutional neural networks has gained a lot of positive attention from
researchers due to its achievements in various image analysis tasks. In recent years, it has
achieved breakthrough performance due to availability of large-scale training data and huge
parallelization using GPUs. However, it is still in its early stages of development and needs to
be extensively studied in order to be successful in digital histopathology. The author’s research
in deep learning [Sharma 2017b] is an attempt to contribute to this field by the experiments
on gastric cancer WSI for two classification problems, namely, analysis of cancer regions and
necrosis detection. This is achieved by developing a self-designed CNN architecture for gastric
cancer image analysis, and comparing its performance with previously derived handcrafted
features followed by traditional machine methods, AlexNet CNN framework which is successful
in general object categorization and an ensemble of the two deep networks. The motivations,
developed methodology and experimental setup are discussed in the following sections.

7.4.2.1 Motivation

There are several motivations to explore deep learning in this work. In the knowledge of the
author, deep learning methods have not been studied until now for the specified classification
problems, namely, the analysis of cancer regions based on immunohistochemistry and necrosis
detection in H&E stained histopathological WSI of gastric cancer. One of the most significant
promises of deep convolutional neural networks is to replace the requirement of handcrafted
feature design and extraction with efficient task-specific learning algorithms. Such algorithms
have even shown to outperform many hand-engineered features in several fields [Razavian 2014],
including studies in histopathological image analysis. Until the emergence of deep learning
methods, the most important and demanding component for image analysis using traditional
methods in digital pathology has been the suitable design and selection of handcrafted features
describing the complex tissue images, so the author is highly motivated to explore this potential of
deep learning. Additionally, as training and classification based on deep learning includes direct
processing of image regions, it eliminates the requirement of image segmentation. Thereby, the
classification performance is not limited by the quality of results of the cell nuclei segmentation
and the optional cell nuclei classification algorithms, an advantage compared to the high-level
handcrafted features discussed in Section 7.3.3. Most of the previous deep learning methods
in histopathology consider smaller image sizes for training the deep networks, however, in the
described experiments, high resolution (512×512 pixels) provides a larger field of view that is
preferable for analysis of histological images, as it helps acquiring context information such as
neighborhood properties and tissue architecture at higher magnification (40×), but not widely
explored due to memory restrictions. The author has used the same CNN architecture for two
distinct purposes, namely, cancer classification based on IHC and necrosis detection, in order to
explore another quality promised by deep learning i.e. generalizability, where the same general
purpose learning machine can be applied for a wide range of tasks.
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7.4.2.2 AlexNet: A Well-known CNN Architecture for General Image Characterization

The AlexNet CNN framework [Krizhevsky 2012] is a widely known and accepted deep learning
algorithm due to its tremendous accomplishment in general image categorization of ILSVRC
challenge for the ImageNet database [Deng 2009]. This CNN framework has performed reason-
ably well for general images containing 1000 categories, such as Airplane, Bird, Cat, Dog and so
on. The AlexNet CNN is a complex, deep and wide CNN architecture that contains several layers
of computation. Because of the higher computational complexity and memory requirements of
AlexNet, the authors of AlexNet have wisely implemented the architecture using two parallel
GPUs. It is one of the earliest deep networks with favorable outcomes, so it is considered as
baseline or state-of-the-art in the development of deep learning methods for image classification.
Hence, for the analysis of malignancy levels according to immunohistochemical response, the
proposed CNN method is comparatively evaluated with AlexNet CNN framework for the gastric
cancer histological datasets. AlexNet CNN has also been used for quantitatively comparisons
in the necrosis detection task of the image pre-analysis stage. The AlexNet CNN architecture
implemented for cancer classification in gastric cancer WSI datasets is illustrated in Figure 7.10.

Fig. 7.10 AlexNet CNN architecture implemented for cancer classification in gastric cancer WSI datasets.
Adapted from [Krizhevsky 2012]

Regarding the comparative evaluation of classification performance using the AlexNet
CNN framework on gastric cancer datasets, the input histological images used for training
and classification are cropped to size 227×227 from the center, similar to the original images
in AlexNet framework. The learning properties are also aligned with the experiments in the
original framework in [Krizhevsky 2012]. However, the number of training rounds and batch
sizes are tuned according to the gastric cancer histological datasets, and only one GPU is used
for implementation of both CNN architectures in this work.

7.4.2.3 Empirical Analysis of CNN Architectures

Different CNN architectures are empirically studied to observe the behavior of variation in model
characteristics (e.g. network depth, layer properties, training parameters etc.) by training from
scratch on a representative subset of the entire whole slide image data for cancer classification.
For this purpose, a smaller dataset from five WSI is first created where image tiles are generated
from three WSI for training the empirical CNN configurations, one WSI for validation phase and
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one WSI for test phase. This empirical analysis acts as a pilot study, as it allows establishment of
the feasibility of deep learning methods for the described image analysis problems, considering
a high visual complexity of gastric cancer histopathological images. It further facilitates basic
understanding of the behavior of deep convolutional neural network architectures and economical
utilization of time and space by first reading only a part of the available WSI image data.

The details and results for the empirically evaluated CNN architectures are summarized in
Table 7.3. The last shown CNN network is the AlexNet CNN introduced in [Krizhevsky 2012].
There exist possibilities to extend the number of CNN architectures for analysis by using more
combinations of connected variables, however, performing an exhaustive evaluation is highly time
consuming and restricted by the available hardware, so a few elementary CNN architectures are
considered at this stage. A few variants of the reported architectures are also tested without any
further improvement in accuracy. On observing the classification performance for both validation
and test WSI, learning curves and overall learning behavior with respect to cancer classification,
the CNN architecture with nine layers (three convolutional layers, three pooling layers and three
fully connected layers) achieves most accurate results for all the three malignancy levels on the
representative dataset, and will tentatively improve by using more abundant examples. Based
on empirical analysis and insight to accurately model the characteristics of histological images,
this self-designed CNN architecture with the best performance on the representative dataset is
selected for further evaluation with entire available WSI data. Later, the proposed CNN is also
applied for necrosis detection (details in Section 6.2.4.2).

It is observed that for gastric cancer images in general, convolution layers with larger kernels
followed by smaller ones lead to a better training procedure with a lower training loss and higher
accuracies. Similar relative convolutional kernel sizes are adapted by AlexNet and other popular
CNN architectures. Additionally, an architecture with smaller convolutional kernels followed
by larger ones was also tested, but it produced reasonable accuracies for only two classes and

Table 7.3 Details of most successful empirically evaluated CNN architectures for cancer classification on
gastric cancer representative datasets

Model
number

Total
number
of layers

Number
of convolu-

tion
layers

Kernel
sizes: con-
volution
layers

Number
of feature

maps

Kernel
sizes:

pooling
layers

Number
of fully

connected
layer

outputs

Average
multi-class

accuracy (cancer
classification)

Validation
WSI

Test
WSI

1 6 2 3, 3 16, 16 3, 3 128, 3 0.3235 0.3333
2 6 2 7, 3 16, 16 2, 2 256, 4 0.5208 0.5140
3 7 2 9, 9 16, 16 3, 3 128, 128, 3 0.6025 0.5417
4 7 2 7, 5 16, 16 2, 2 256, 128, 3 0.6000 0.5432
5 9 3 7, 5, 3 24, 16, 16 2, 2, 2 256, 128, 3 0.6056 0.5571

6 10 4 9, 7, 5, 3 32, 128,
128, 128 3, 3, 3 2048, 2048,

3 0.5951 0.4376

7 11 5 11, 5, 3, 3,
3

96, 256,
384, 384,

256
3, 3, 3 4096, 4096,

3 0.3948 0.3948
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completely failed to classify the HER2 negative tumor class, indicating the importance of larger
neighborhoods in histopathological images. Poor performance was also observed in another
model with hinge loss function, whereas softmax loss is used in the architectures mentioned in
Table 2.1, thus, found more suitable for learning. Reasons for testing moderately deep networks in
our experiments are the limited availability of training data (especially for necrosis detection) and
system memory. Higher network depths would cause a rise in the number of network parameters
leading to non-optimal learning with smaller datasets (overfitting), and also result in higher
space and time complexity. However, a more detailed study of the CNN architectural design to
determine the relationship between design parameters is a future direction of our research, and
can plausibly lead to an improvement of results obtained so far in these experiments.

Another option was to fine-tune a pre-trained CNN, but was intuitively skipped due to the
following reasons. As the name suggests, fine-tuning of a pre-trained network is generally
performed when the network trained successfully with visually very similar images. For ex-
ample, AlexNet was originally tested on general object categorization with ILSVRC dataset
in [Krizhevsky 2012], and was later fine-tuned for Flickr style images in [Xia 2015]. Such
fine-tuning of AlexNet does not appear useful for the entire complex histological gastric cancer
data. Furthermore, the classification results even after training AlexNet from scratch during
empirical analysis on a smaller representative dataset are not sufficiently adequate. For the
selected CNN architecture as well, it is considered more reliable to train from scratch with
the entire WSI data. Therefore, for the purpose of completeness, the performance of AlexNet
and proposed CNN architecture are comparatively evaluated using the same cross validation
strategies for both approaches and training from scratch on the entire WSI data.

7.4.2.4 Proposed Convolutional Neural Network Architecture

The self-designed CNN architecture with the best empirical performance for cancer classification
is a purely supervised feed forward network shown in Figure 7.11. This preliminary convolutional
neural network consists of nine stages, where the first six stages comprise of convolution,
non-linearities and pooling operations, and the last three stages are fully connected layers
such as in regular neural networks. A batch size of 8 is used during training phase and 10
during deployment phase to improve efficiency using batch processing. Image mean values
are calculated and subtracted from the images during both phases, such as in the AlexNet
framework [Krizhevsky 2012]. The detailed descriptions of the various layers are as follows.

Fig. 7.11 Proposed CNN architecture for cancer classification in gastric cancer WSI
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Convolutional Layer

In each convolutional layer, first the output of previous layers is convolved with multiple learned
weight matrices called filter masks or learned kernels. Then the result is processed by a non-
linear operation to generate the layer output. The linear operation in the kth convolution layer,
whose input is denoted by xk−1 (output of the [k − 1]th layer) comprises of a two-dimensional
convolution [Podlozhnyuk 2007] as shown in equation 7.20.

ok[m, n] = xk−1[m, n]∗W k[m, n]+ bk =
∞∑

u=−∞

∞∑
v=−∞

xk−1[u, v]W k[m−u, n−v]+ bk (7.20)

where, W k denotes the learned weight matrix and bk denotes bias or offset of the kth convolution
layer. For our experiments, three convolutional layers are used with filter sizes 7×7, 5×5 and
3×3 and 24, 16 and 16 feature maps respectively. The size of learned filters should be similar
to the size of patterns to be detected. This decision is task-dependent and in the described
classification problems, subtle details between the cancer regions need to be resolved in contrast
to large objects in general image analysis, which explains the choice of filter sizes. These
sizes are also restricted by the GPU configuration as convolution is a computationally intensive
operation efficiently executed on the GPU. Further, the weight initialization is performed using
Gaussian functions with standard deviation 0.01, and bias is kept constant at 0.1.

The outputs ok are applied to an operation which improves the learning process by increasing
non-linear properties of the network, and rectified linear units (ReLU) are selected due to benefits
explained in [Krizhevsky 2012]. These are non-saturating activation functions where piece-wise
linear tiling can be achieved. The basic ReLU operation is given by equation 7.21. The cascade
of operations in the convolutional layer are depicted in Figure 7.12.

xk = max(0, ok) (7.21)

Fig. 7.12 Cascade operations in the kthconvolutional layer

Pooling Layer

Subsampling (or down-sampling) refers to reducing the overall size of a signal. In the domain of
two-dimensional filter outputs, it can additionally increase the position invariance of filters. For
this purpose, a pooling layer performing max-pooling [Krizhevsky 2012] is applied after each
convolutional layer. Max-pooling involves splitting the filter output matrix into non-overlapping
grids and taking the maximum value in each grid as the value in the reduced matrix. Hence, it
combines responses at different locations and adds robustness to small spatial variations, thereby
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increasing translational invariance, along with reducing spatial resolution. We use a kernel size
2×2 and stride two for maxpooling operation after each convolutional layer.

Fully-connected Layer

After the convolutional and pooling layers, the fully-connected layers implement high-level rea-
soning in the convolutional neural network. In the fully-connected layer, neurons are connected
to the neurons in previous and next layers, such as in conventional neural networks [Kröse 1993].
In the proposed CNN, three fully connected layers are used with 256, 128 and three (or two)
outputs respectively, as the number of outputs in last layer depends on the classification problem
at hand. Bias is set to 0.01.

Dropout method [Srivastava 2014] assists in reducing overfitting, especially when the avail-
able training data is limited such as the WSI data. During each iteration, individual nodes along
with incoming and outgoing edges are removed from the network, and are later returned along
with their initial weights. In our approach, after each of the first two fully-connected layers, the
dropout ratio i.e. the probability of dropping any input for both stages is set to 0.25.

Learning Properties

Learning of the convolutional neural network is based on measuring a loss function (also called
objective function, error function, cost function) that indicates the error of learned network
parameters. The learning objective is to compute the parameters to minimize the loss function.
Softmax function [Bishop 2006] (equation 7.22) is the probability of class ci given input X ,
where zi represents the score for ith class among total C classes. The softmax loss E is calculated
as negative log likelihood of the softmax function (equation 7.23), where N denotes the length
of the class vector.

P (ci|X) = ezi∑C
j=1 ezj

(7.22)

E = − 1
N

N∑
n=1

log(P (cn|X)) (7.23)

The method used for optimizing the loss minimization is called Stochastic Gradient Descent with
Momentum [Sutskever 2013], [Bottou 2012]. For the tth iteration, the update process is denoted
by equation 7.24 [Jia 2014], [Bottou 2012], where θt denotes the current weight update, θt−1 is
the previous weight update, w represents the weights, E is the average loss over the dataset,
∇E(w) is negative gradient, η is the learning rate and µ ∈ [0, 1] represents momentum used for
speeding up the convergence of gradient and preventing oscillations.

θt = µθt−1 − η∇E(wt−1)
wt = wt−1 + θt (7.24)

In the learning phase, the two hyperparameters η and µ are required to be experimentally
determined. After the empirical analysis stage, η has been set to 0.001 initially, and is decreased
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by a factor of 0.1 after every 20,000 iterations, and µ is fixed at 0.9. Around eight training epochs
are performed during each training phase after initial experimental analysis of training curves on
our datasets.

Visualizing Outputs of CNN Layers

The outputs of the each layer of the CNN can be visualized in order to determine the image
characteristics highlighted and learned by the layers. The two-dimensional outputs of the three
convolutional layers of the proposed CNN architecture are visually analyzed by forward passing
example image tiles of each malignancy level through a pre-trained CNN model, and viewing the
outputs of the filters. Similarly, the output of pooling layers can also be visualized. Examples of
outputs of the constituent filters in three convolutional layers of the proposed CNN architecture
are shown in Table 7.4.

In Table 7.4, the corresponding raw image features captured by each convolutional layer
are clearly evident through the example image tiles. Most significantly, it can be observed that
the knowledge from the first convolutional layer provides an overall view of the tissue image,
including inter-cellular texture along with spatial distributions and architectural properties of
tissue components. The filters in the second convolutional layer strongly respond to the darker
objects in the image, thereby, highlighting the deeply stained haematoxylin cells which are
found more in the tumor classes compared to non-tumor. The third layer generates negative
responses to the cell nuclei (haematoxylin) and positive to cytoplasm (eosin), that is similar

Table 7.4 Examples of two-dimensional outputs in the three convolutional layers of the proposed CNN
architecture

Tumor type Convolution layer 1 Convolution layer 2 Convolution layer 3
HER2 positive

tumor

HER2 negative
tumor

Non-tumor
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to a cell nuclei segmentation result, and helps the deep network to locate the cell nuclei and
learn their morphological properties in the tissue image. This visualization indicates the main
advantage of deep learning, that the salient characteristics in H&E stained gastric cancer images
can be directly learned by deep networks using end-to-end training without the requirement of
handcrafting adequate features before the training process.

7.4.2.5 Summary of Experimental CNN Parameters

It can be observed from the description of convolutional neural networks, that the design and
development of a suitable convolutional neural network architecture is a complicated process, and
requires the selection of a large number of experimental parameters for an optimal performance.
This section summarizes the parameter settings for the proposed CNN architecture, selected for
classification of gastric cancer histological datasets. Table 7.4.2.5 shows the names, descriptions,
allowed values, and selected values for each experimental parameter. The architecture design
and parameter definitions refer to the Caffe deep learning framework [Jia 2014].

Table 7.5 Summary of parameter selection for the proposed CNN architecture

Type
Name of

parameter
Definition Allowable values

Selection for
proposed CNN

Input param-
eters and
transforma-
tions

Batch size
(training)

Number of training images
to process at one time

Depends on GPU
memory

8

Batch size
(testing)

Number of test images to
process at one time

Depends on GPU
memory

10

Crop size
Size of the image to consider
for cropping from the centre

Positive integer 512

Scale
A number for mapping of
intensities in predefined

range
Real number 1

Type of
database

Way in which data is entered
into the network

LEVELDB,
LMDB,raw images,

directly from
memory or HDF5
from files on disk

LMDB

Convolutional
layer param-
eters

Number of
outputs

Number of convolutional
filters

Depends on network
architecture

24,16,16

Kernel size
Specifies height and width

of each filter
Depends on network

architecture
7,5,3

Weight filler
type

Type of weight initialization
used

Constant, Gaussian,
Positive Unitball,
Uniform, Xavier,
Bilinear, MSRA

Gaussian

Weight filler
value

Initialization value Real number 0.01

Bias term
Specifies whether to learn
and apply a set of additive
biases to the filter outputs

True, false TRUE
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Bias type Type of bias used

Constant, Gaussian,
Positive Unitball,
Uniform, Xavier,
Bilinear, MSRA

Constant

Convolutional
layer param-
eters

Bias value Value of bias used Real number 0.1

Pad
Number of pixels to

(implicitly) add to each side
of the input

Positive integer 0

Stride
Intervals at which to apply

the filters to the input
Positive integer 1

Group

The input and output
channels are separated into g

groups, such that ith output
group channels will be only
connected to the ith input

group channels.

Positive integer 1

Pooling layer
parameters

Pooling
method

Method for pooling
Maximum, Average,

or Stochastic
Maximum

Pad
Number of pixels to

(implicitly) add to each side
of the input

Positive integer 0

Stride
Intervals at which to apply

the filters to the input
Positive integer 2

Activation
layer param-
eters

Type of
activation

Helps in selecting from one
of the activation functions

ReLU, Sigmoid,
TahH, Absolute

value, Power,
Binomial normal log

likelihood

ReLU

Fully con-
nected layer
parameters

Number of
outputs

Number of filters Positive integer 256,128,3 (or 2)

Weight filler
type

The type of weight
initialization used

Constant, Gaussian,
Positive Unitball,
Uniform, Xavier,
Bilinear, MSRA

Gaussian

Weight filler
value

Initialization value Real number 0.005,0.005, 0.01

Bias term
specifies whether to learn
and apply a set of additive
biases to the filter outputs

True, false TRUE

Bias type Type of bias used

Constant, Gaussian,
Positive Unitball,
Uniform, Xavier,
Bilinear, MSRA

Constant

Bias value Value of bias Real number 0.1
Dropout pa-
rameters

Dropout ratio
Ratio of samples to be left

out
[0,1] 0.25
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Loss layer
parameters

Type of loss
Way to compute the loss

function

Softmax, Euclidean,
Hinge, Information

Gain, Sigmoid Cross
Entropy

Softmax

Solver pa-
rameters

Solver type
Type of back propagation
algorithm used to train the

network

Stochastic Gradient
Descent, AdaDelta,
Adaptive Gradient,
Adam, RMSprop,

Nesterov’s
Accelerated Gradient

Stochastic
Gradient Descent

Test iterations
Number of test iterations

should occur per test interval
Positive integer

168,000 (or
2,000)

Test interval
Number of times the test

phase of the network will be
executed

Positive integer
20,000 (or
10,000)

Base learning
rate

Initial learning rate of the
network

Real number 0.001

Learning rate
policy

Way in which learning rate
should change over time

Step, Multistep,
Fixed, Exponential,

Polynomial, Sigmoid
Step

Gamma
Value by which the learning

rate should change every
time

Real number 0.1

Step size
Number of iterations

between each step
Positive integer 20,000

Maximum
iterations

Number of iterations when
the network should stop

training
Positive integer

210,000 (or
60,000)

Momentum
Momentum for gradient

descent
[0,1] 0.9

Weight decay
Factor of (regularization)

penalization of large weight
[0,1] 0.001

Solver mode
Whether training will be

performed on CPU or GPU
CPU,GPU GPU

7.4.2.6 Ensemble of Convolutional Neural Networks

Ensemble learning is a technique where a collection of classifiers or learners can be used to obtain
a joint classification decision by combining their predictions. For instance, among the traditional
machine learning methods, AdaBoost and random forests have been applied as ensembles of
individual classifiers. Similarly, an ensemble of convolutional neural networks [Chen 2016b]
is a scheme where the outputs of independently-trained CNNs can be combined to obtain the
final prediction. Consider an ensemble E of M networks {n1, n2, ..nM} ∈ E, where Pj(ci|X)
represents the softmax probability for an instance of class ci given input X for network nj .
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Hence, the final prediction probability PE of the ensemble E for that instance will be given by,

PE(ci|X) = 1
M

M∑
j=1

Pj(ci|X) (7.25)

An ensemble of CNNs can allow a combination of diverse model properties, thereby, reducing
anomalies related to overfitting of the training data. An ensemble of CNNs can also promote
a better generalization of classifiers, thereby, leading to a higher accuracy of prediction than
the individual CNN classifiers under investigation. Usually, ensembles of multiple trained
models of the same CNN architecture are studied in previous literature. However, in this study,
after observing the results of the two different CNN architectures, namely, AlexNet framework
and the proposed CNN architecture, it will be interesting to consider an ensemble of the two
convolutional neural networks as a part of the described experiments.

7.4.3 Classification Strategies

In order to attain optimum classification performance in analysis of cancer regions, two classi-
fication strategies are explored for the traditional machine learning methods, i.e. single-stage
classification and hierarchical classification. The first strategy performs a classification of tissue
regions directly into one of the three malignancy classes. In the second strategy, a two-stage clas-
sification is performed. The first stage classifies the regions into two broad classes namely tumor
containing HER2 positive tumor and HER2 negative tumor, and non-tumor. In the second stage,
regions classified as tumor class are further classified into one of the respective sub-classes. The
two classification strategies are shown in Figure 7.13. These have been experimented using the
low-level state-of-the-art features, high-level state-of-the-art features and high-level handcrafted
features with traditional machine learning methods. Due to higher time complexity involved
in training from scratch for hierarchical classification, only the first strategy i.e. single-stage
classification is applied to the deep learning experiments using convolutional neural networks.

(a) (b)

Fig. 7.13 Classification strategies for cancer classification (a) Single-stage classification (b) Hierarchical
classification.
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7.5 Applications

7.5.1 Computer-aided Diagnosis: Cancer Classification based on Im-
munohistochemistry

It is already known that H&E staining is a routinely applied technique, but immunohistochemical
staining is a specialized procedure in histopathology. So immunohistochemical stains generally
involve a higher expenditure and are less common than H&E stain. Especially the HER2 stain
has been recently introduced as a biomarker for gastric cancer [Behrens 2015]. HER2 and H&E
stained WSI are available but H&E stain is analyzed due to ease of use and lower preparation
costs. Pathologists are able to mostly discriminate between malignancy levels by visually
observing HER2 stained slides using optical or virtual microscopy methods. However, while
observing H&E stained slides, they require a greater time and effort to identify the corresponding
tumor areas. Moreover, even in the more distinct HER2 stain, inter-and intra-observer variability
were noted for the observations made by ten pathologists in [Behrens 2015] using the same WSI
data, prior to being provided for this research. Therefore, a computerized application performing
such cancer discrimination can act as the potential solution to these difficulties, more so in the
H&E stained tissue regions, and can assist pathologists in computer aided diagnosis of gastric
cancer.

The best overall performance for the stage involving analysis of cancer regions is observed
with combination of high-level handcrafted and low-level state-of-the-art features. This con-
figuration along with the training samples can be utilized in a computerized application for
automatic classification of unknown regions of interest in the H&E stained gastric cancer WSI
into one of the three malignancy levels based on their HER2 immunohistochemistry. The infor-
mation obtained after automatic analysis of gastric cancer can assist pathologists in diagnostic
and prognostic tasks. Although the method does not assure perfect accuracy, it can definitely
reduce the efforts in specialized staining and manual analysis, as well a inter-and intra-observer
variability. As stated before, a limitation of the described methods is the availability of few
labeled WSI data that can be overcome by creating annotations on multiple WSI by medical
experts covering large-scale biological variations in the population. However, the results are
particularly promising when partially labeled data in large-sized single or multiple WSI of the
same patient is available for training purpose.

Deep learning methods can also be applied for the described CAD application, due to their
reasonable performance compared to traditional machine learning methods. A pre-trained CNN
can be deployed to determine the cancer-based categories of unlabeled constituent regions in
the WSI. This has been demonstrated by generating a probability map for each category of
cancer classification at the WSI-level as follows. During classification of an unknown image
tile, the prediction probability estimate of each class can be expressed using a color scale from
blue to red representing values in range [0,1]. The probability representations of constituent
non-overlapping image tiles overlay the original H&E WSI to generate a probability map for
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each tumor class. For visualization purpose, the probability map depicts which tissue areas in
the WSI have a higher probability of the existence of a particular malignancy level according to
its immunohistochemistry, showing the more and the less likely regions belonging to a particular
class. An example for cancer classification of one of the H&E WSI is shown in Figure 7.14. Fig-
ure 7.14(a) depicts the original WSI with pathologists’ annotations showing HER2 positive areas
with red and HER2 negative areas with yellow polygons. Figures 7.14(b), 7.14(c) and 7.14(d) are
the probability maps for HER2 positive, HER2 negative and non-tumor using the proposed CNN
architecture. Because of very high resolution of the WSI, the constituent image tiles appear as
small colored pixels at a lower magnification (0.3×). The results obtained are mostly consistent
with expert annotations made in the corresponding HER2 WSI, indicating desirable behavior
of the proposed CNN method for analysis of H&E stained gastric cancer WSI based on their
HER2 immunohistochemistry. Higher confusion and prediction error is observed mainly in the
lower south-eastern part of the WSI, especially in the tumor classes. Around 75% of the WSI is
correctly predicted, which is consistent with the experimental results.

(a) (b) (c) (d)

Fig. 7.14 Illustrative examples of classification result (a) Original H&E WSI with pathologists’ annota-
tions for cancer classification based on IHC, and corresponding probability maps using proposed CNN
architecture for (a) HER2 positive tumor (b) HER2 negative tumor (c) non-tumor at a low magnification
(0.3×).

7.5.2 Content-based Image Retrieval

Content-based Image Retrieval (CBIR) consists of a group of methods for retrieving relevant
digital images by their visual content. The horizon of CBIR systems includes all methods ranging
from image similarity functions to highly complex image annotation systems [Datta 2008]. A
general CBIR algorithm is composed of two main steps. Firstly, a signature calculation is
performed to mathematically describe images based on the characteristics of their visual content,



138 CHAPTER 7. Stage 3: Analysis of Cancer Regions

Fig. 7.15 Schematic diagram of a CBIR system

and includes intensity, color, texture, shape, size, location, or their mixtures. The second step
assesses the similarity between the query and database images, and generates a similarity score
by comparing image descriptors of the query image and those of each of the database images.
Finally, the database images with highest similarity score are returned as retrieval results. A
typical CBIR system is demonstrated in Figure 7.15.

From the perspective of histological image analysis, manual selection of regions of interest
similar to a query region, in collections of large-sized WSI is an uphill task that can be automated
using an appropriate CBIR system. Such a system facilitates automatic retrieval of groups of
image regions sharing common visual and diagnostic characteristics to a query ROI. It can poten-
tially contribute towards diagnosis, prognosis, teaching and research in the field of histopathology.
It can be applied in clinical environments to assist pathologists for inspection and diagnosis of
typical regions in a given WSI data, additionally serving as a basis for selecting the relevant
treatment method. It can also assist in disease prognostics, allowing pathologists to predict
which patients may be susceptible to a specific disease, and also predicting disease outcome,
recurrence and survival. Moreover, the system can be useful as a training tool for medical
students, researchers and instructors to search large educational repositories of disease-specific
histological WSI image data for interesting ROIs. It may help them to visually inspect desirable
regions and compare their interpretations with the automatic classification. CBIR system will not
only allow the retrieval of cases with patients having similar diagnosis but also cases with visual
similarity but different diagnoses, which can be subject to further research. Some examples
of previous literature for CBIR in digital pathology is given in [Yang 2007], [Sharma 2012]
and [Sridhar 2015].

Specifically in our experiments involving the analysis of cancer regions in H&E stained tissue
using HER2 immunohistochemistry, traditional methods can be utilized by extracting suitable
handcrafted features to find image regions from the WSI dataset similar to the query region, based
on its underlying malignancy level. A simple prototype CBIR application has been demonstrated
based on malignancy levels in the gastric cancer WSI datasets, using the features extracted prior
to traditional machine learning, namely, RGB histograms as low-level state-of-the-art features,
Voronoi diagrams and Delaunay triangulation as high-level state-of-the-art features, gARG[rF ]
as high-level handcrafted features and selected subset of the combined features of RGB histogram
and gARG[rF ] graphs. The idea involves a similarity calculation of respective feature vectors
between query image and all the database images. Different distance metrics are evaluated for
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this purpose, namely, Euclidean distance, Manhattan distance, Chebyshev distance, Bray-Curtis
distance, Cosine distance and Correlation distance [McCune 2002] and resulting performance
measures are relatively observed. Due to the most superior behavior with the Manhattan distance
metric, the experimental results depicted in this section are only based on this metric.

The image datasets consisting of non-overlapping image tiles size 512×512 pixels (as
described in Section 7.2.1) are used for demonstrating this application. A set of query images are
selected randomly from the dataset with 15 images per slide and 55 images per malignancy level,
making a total of 165 query images. The remaining 2,988 image are used as the database. Each
query image is sequentially fed into the application and similar images are retrieved from the
database along with a matching score, which is used to sort the retrieved images in decreasing
order of their detected similarity to the input query image. The matching score sq,d between a
query image q and a database image d is computed as the reciprocal of the Manhattan distance
between their feature vectors fa and fb each of length K, given by,

sq,d = (
K∑

k=1
|fq,k − fd,k|)−1 (7.26)

For evaluating any CBIR system, a set of performance measures are commonly applied
[Makhoul 1999]. The widely used performance measures include precision, recall and F-score.
Precision is the fraction of retrieved images that are also relevant, recall is the fraction of the
relevant images that are successfully retrieved and F-score is the harmonic mean of precision and
recall. Below are the mathematical definitions of precision P , recall R and F-score F , where
Nrr is the number of relevant retrieved images, Nt is the total number of retrieved images and
Nr is the total number of relevant images.

P = Nrr

Nt

(7.27)

R = Nrr

Nr

(7.28)

F = 2PR

P + R
(7.29)

For the described CBIR system, the image is considered relevant if it belongs to a given
reference category i.e. malignancy level based on the HER2 immunohistochemical response.
The numerical results are generated by averaging the calculated performance measures over all
the query images. For evaluation purpose, this procedure is repeated for multiple rounds and
the overall results are recorded. Illustrative experimental results of the prototype application
are depicted as precision-recall (P-R) curves in Figure 7.16 and values at Nt = 10, 50, 100 in
Table 7.6, for the computed features and Manhattan distance metric.

The experimental results show a reasonable shape of overall P-R curves for most feature
extraction methods. As observed for analysis of cancer regions, higher precision is achieved for
non-tumor and tumors, but lower among the two tumor subclasses. Familiar trends are seen for the
three malignancy levels, where non-tumor queries receive best matches from the WSI database,
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(a) (b)

(c) (d) (e)

Fig. 7.16 Illustrative experimental results of prototype CBIR application as P-R curves for categories (a)
Non-tumor (b) Tumors (c) HER2 positive tumor (d) HER2 negative tumor and (e) overall result using the
Manhattan distance metric.

Table 7.6 Per-class experimental results showing performance measures for the prototype CBIR applica-
tion

Performance measure Method Non-
tumor Tumors HER2+

tumor
HER2-
tumor

Precision (10)

Voronoi-Delaunay method 66.70 73.08 37.89 29.87
gARG[rF ] method 72.64 84.97 55.13 40.85
RGB histograms 86.16 88.95 63.31 56.44
Selected subset of hybrid
features 75.88 86.85 57.84 45.89

Precision(50)

Voronoi-Delaunay method 63.33 72.71 42.08 32.42
gARG[rF ] method 69.00 84.07 53.16 38.26
RGB histograms 77.52 84.56 57.86 48.89
Selected subset of hybrid
features 67.06 84.46 53.35 40.12

Precision(100)

Voronoi-Delaunay method 62.46 72.93 42.39 32.58
gARG[rF ] method 66.82 83.63 52.10 36.68
RGB histograms 74.43 82.16 54.14 44.73
Selected subset of hybrid
features 62.11 83.35 50.98 38.23

F-Score(P ≤ 0.5)

Voronoi-Delaunay method 54.03 76.09 44.96 35.23
gARG[rF ] method 52.42 75.93 56.15 47.20
RGB histograms 53.01 75.76 54.56 49.24
Selected subset of hybrid
features 36.82 75.93 42.33 35.80
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followed by HER2 positive tumor and then HER2 negative tumor. As expected, the Voronoi-
Delaunay method is not as effective as the other feature groups in all the cases. Especially for the
tumors, the gARG[rF ] handcrafted features are the most effective representation compared to
the other feature types showing their unique ability to describe tumors. In the overall result, RGB
histograms outperform gARG[rF ] at lower recalls, whereas gARG[rF ] graph-based method
outperforms RGB histograms at higher recalls. The selected subset of hybrid features has an
intermediate precision at lower recalls, but degrades more steeply than the other two methods,
especially because of its unsatisfactory performance for the non-tumor class. Furthermore, the
F-scores of the RGB histograms and gARG[rF ] graph-based individual methods are also higher
as compared to Voronoi-Delaunay method and hybrid feature subset, proving superiority of the
former two feature extraction techniques for the CBIR application.

An interesting observation is lower precision of the CBIR application compared to the
supervised traditional machine learning methods using identical feature extraction approaches,
which can be attributed to two main reasons. Firstly smaller image size (512×512 pixels) is
considered for a larger database, that was also observed to perform less favorably using traditional
machine learning methods due to restricted field of view and neighborhood information. Secondly,
no intelligent machine learning algorithm is applied and simply distance metrics are calculated
in an unsupervised clustering-like process. Nevertheless, the results highlight the capabilities of
the state-of-the-art and handcrafted image description methods, highlighting their discriminative
power for retrieving images appearing similar to a query image of particular malignancy levels
in the WSI database, at smaller image sizes and without any supervised learning.

7.6 Summary

In this chapter, the third stage of the proposed framework is described, which involves the image
analysis of gastric cancer in H&E stained WSI, based on the HER2 immunohistochemical re-
sponse of the tissue. In this stage, firstly, appropriate histological datasets are created for studying
a vast range of analysis methods in digital histopathology. Following the dataset generation, two
main routes of image analysis are investigated, namely, the traditional route with methods for
image description and representation followed by traditional machine learning methods, and the
deep learning route including the study of convolutional neural networks. Among these, novel
methodologies are proposed by the author, most significantly, a cell nuclei ARG graph-based
method along with eight variants and a self-deigned CNN architecture after extensive empirical
analysis. Furthermore, the well known state-of-the-art methods for histopathological image
analysis are quantitatively compared with the proposed methods using an elaborate scheme of
comparative evaluation. Finally, this stage contributes towards two practical applications, namely,
CAD using automatic cancer classification and CBIR in gastric cancer WSI datasets.
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8.1 Introduction

Performance evaluation of developed methods is a significant process in any scientific envi-
ronment. Especially, in digital histopathology, quantitative evaluation of performance of the
proposed image analysis methods can facilitate observation, verification and validation to estab-
lish their feasibility, efficiency, reproducibility and practical usability in routine and (or) research
settings.

A challenge for the performance evaluation of image analysis tasks, is the existence of
biological variances among patients in a given population, as every patient has individual
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characteristics in their cellular composition which are reflected in the tissue images and are
impossible to avoid. So the image datasets should ideally include diverse patients incorporating a
broad range of biological variations in any given population. The problem of limited availability
of labeled WSI data may be a bottleneck for comprehensive performance evaluation. As stated
earlier, the datasets used in the described experiments contains eleven whole slide images of
gastric cancer, each from a different patient. As a result, these datasets are heterogeneous in
nature, so in order to evaluate the robustness of the proposed system, special cross validation
methods have been employed. Heterogeneity also prevails in terms of H&E stain intensity and
malignancy levels in the WSI, further testing the reproducibility of the developed methods.

Quantitative evaluation is performed at every stage of the proposed framework, in order to
observe the performance of the various feature extraction, automatic detection and classifica-
tion algorithms in the experimental pipeline. Comparative analysis of the novel approaches
provides a relative measure of their performance with respect to the existing and widely known
state-of-the-art methods. The chapter first describes the performance evaluation methods and
related performance metrics. Then it provides the details of comparative analysis in the various
stages of the research framework and also discusses the corresponding observations, causes and
implications. The results are further elaborated and can be referred from Appendix B.

8.1.1 Evaluation Methods

The most widely used methods for evaluation of the predictive performance of automatic
detection and classification approaches belong to the category of Cross Validation. Cross
validation is a model validation technique for assessing how the results of a statistical analysis
will generalize to an independent data set [Fukunaga 2013]. It is mainly used to estimate how
accurately a predictive model will perform in practice. The main goal of cross validation is to
evaluate the predictive performance of a classification algorithm while minimizing overfitting by
not allowing overlap between training and testing dataset.

Each round of cross validation involves partitioning a dataset into complementary subsets,
performing the learning on one subset, called the training set, and validating on the other
subset called the validation set or test set. To reduce variability, multiple rounds of cross
validation are performed using different partitions and results are averaged over the rounds.
Cross validation is a powerful technique recognized as a fair way to properly estimate model
prediction performance [Seni 2010]. Three types of cross validation strategies are used to
quantitatively evaluate the various parts of the proposed framework.

8.1.1.1 k-fold Stratified Shuffled Split Cross Validation

A k-fold cross validation divides all the samples in k groups of samples, called folds, of nearly
equal sizes. The prediction function is learned using k − 1 folds, and the fold left out is used
for test. Hence, each model is trained using (k − 1)n/k samples and tested using n/k samples.
The k-fold stratified shuffled split cross validation is a variation of k-fold cross validation that
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performs training and testing of k stratified folds, i.e. the folds are made by preserving the
percentage of samples for each class, hence, called ‘stratified’. Samples are randomly shuffled
before splitting, hence, the word ‘shuffled’ is used. Also, the test folds are non-overlapping with
each other. Stratification has been previously established as a better approach than regular cross
validation by [Kohavi 1995], hence, selected as an evaluation method.

This type of cross validation has been applied for evaluation of the automatic classification
experiments in the second stage of image pre-analysis, namely, necrosis detection and cell nuclei
classification, as well as all the classification tasks in the third stage i.e. analysis of cancer
regions. In most of the described experiments, k = 3 or k = 10 is used. The choice of k is
an important factor to observe the classification performance, as a lower value of k will have
lower computational requirements and lower variance between rounds but may lead to higher
bias in the trained models, and a higher value of k will have reverse implications, i.e. more
computationally expensive due to more rounds, higher variance between rounds and lower bias in
the trained models. However, in order to reduce variance and not increase bias, cross validations
with a lower k can be repeated multiple times as it will lead to different random folds, and their
observations can be averaged. Especially for datasets with several categories, using lower k

with repeated runs has been proved as a better approach [Kohavi 1995]. Therefore, k = 3 has
been selected for the multi-class cell nuclei classification with seven categories in the datasets
during image pre-analysis stage, and averaged for many runs. Furthermore, for the necrosis
detection, k = 10 is selected for traditional machine learning using SVM with discriminative
thresholds due to smaller datasets and lower computational requirements, whereas k = 3 is used
for deep learning methods as these are more expensive in terms of computational and memory
requirements. Stratified 10-fold cross validations are recommended in general [Kohavi 1995],
so k = 10 is also applied for the analysis of cancer in the third stage using traditional machine
learning methods. For deep learning methods in this stage, k = 3 is retained for the same reasons
as explained before. The final results for all the described methods are obtained by averaging
over multiple experiments.

8.1.1.2 Leave-a-sample-out Cross Validation

Leave-a-sample-out, more popularly called Leave-One-Out (LOO) is a simple cross-validation
method where each learning set is created by taking all the samples except one, the test set
being the sample left out. Thus, for n total samples, n different training sets and n different
test sets are obtained, and each model is trained on n − 1 samples leading to n cross validation
rounds. Assuming k < n, LOO is more computationally expensive than k-fold cross validation.
Also, in terms of accuracy, LOO often results in high variance as an estimator for the test
error [Breiman 1992]. Hence, in the experiments, though LOO is used to additionally validate
the performance of the classification methods in some settings, k-fold stratified shuffled split is
preferred over LOO to comparatively analyze and select the most efficient strategy. The LOO
cross validation has been applied for the cell nuclei classification experiments in the second
stage, however, skipped for the image datasets of necrosis detection and cancer analysis due
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to higher computational requirements, especially because deep learning is explored for these
problems leading to a high learning phase complexity in addition to large-scale training datasets.

8.1.1.3 Leave-a-patient-out Cross Validation

Cross validations are also performed using the leave-a-patient-out strategy, where in each round,
the samples belonging to one patient are excluded from the training process and classifiers
are trained by using the samples of remaining patients. The excluded patient’s samples are
used for validation. This cross validation strategy is used in order to study the robustness and
practical usability of the described methods when samples from unknown patients need to
be predicted. Intuitively, the resulting prediction rates will be lower than the other two cross
validation strategies as in each round, the model has not learned the individual characteristics
of the test patient, thus, it is more difficult to predict without any prior visual patient-specific
knowledge. This effect is predominantly due to the existing biological variations between
individual patients in a population, which is further enhanced by inter-WSI variations in stain
intensities and malignancy levels. Hence, this type of cross validation is the most indicative of
the performance of the classifiers in practical settings and has been applied in all the experiments
in the key stage of this research involving analysis of cancer regions. Due to limited datasets
from only four and five WSI during pre-analysis procedures of necrosis detection and cell nuclei
classification respectively, leave-a-patient-out is not applied for these experiments.

8.1.2 Performance Metrics

The quantitative metrics used for evaluation of the cross validation performance are described
below.

8.1.2.1 Confusion Matrix and Related Quantities

Confusion Matrix

A confusion matrix for multiple classes is computed during each cross validation round. This
is defined as a C × C matrix M when the actual (or reference) data consists of C number of
classes, with element mij, i, j ∈ {1, 2, ...C} as the number of samples of actual class i predicted
as class j. A strong classifier results in large values of diagonal elements in the confusion matrix.
Also, classifier confusion between two or more classes can be analyzed by observing the entries
of this matrix. A confusion matrix is shown in Table 8.1. An accuracy confusion matrix A can
be computed from the number confusion matrix M by dividing each element by the total number
of samples in each class, i.e.,

aij = mij∑C
k=1 mik

(8.1)
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Table 8.1 Elements in the confusion matrix M
PPPPPPPPP

Actual
Predicted 1 2 . . . C

1 m11 m12 . . . m1C

2 m21 m22 . . . m2C

. . . . . . .

. . . . . . .

. . . . . . .
C mc1 mc2 . . . mcc

Per-class Classification Accuracy

This value denotes how well the samples of each class have been classified, and for the ith class,
it can be obtained as the ith diagonal element of the accuracy confusion matrix A. It can be
defined as,

PCi = mii∑C
k=1 mik

(8.2)

Overall Classification Accuracy

The overall classification accuracy OCA is calculated from the confusion matrix M as the
fraction of the total number of correct predictions as,

OCA = 1
N

C∑
i=1

mii (8.3)

where N is the total number of samples in the test dataset and can be obtained as,

N =
C∑

i=1

C∑
j=1

mij (8.4)

Balanced Classification Accuracy

The balanced classification accuracy BCA is calculated from the confusion matrix as the average
of per class accuracy over the number of classes, and defined as,

BCA = 1
C

C∑
i=1

PCi (8.5)

The balanced accuracy avoids bias in case of unbalanced number of samples for each class in the
dataset, hence, it provides a better estimation of the classification algorithm compared to overall
classification accuracy [Brodersen 2010].
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8.1.2.2 Means and Standard Deviations

The overall mean and standard deviation of the mean for a test configuration {xyz} over multiple
cross validation rounds can be obtained from the above defined classification accuracy metrics
for each round. The mean accuracy is calculated by,

µxyz = 1
K

K∑
k=1

Pk (8.6)

The standard deviation of mean accuracy (also called standard error) is obtained as [Everitt 2006]:

σxyz = σ/
√

K (8.7)

=

√√√√ 1
K(K − 1)

K∑
k=1

(Pk − µxyz)2 (8.8)

where σ represents sample standard deviation, K is the total number of cross validation rounds
and Pk is a given performance metric (per-class accuracy, overall accuracy or balanced accuracy)
computed for the kth cross validation round in any given cross validation strategy. Means and
standard errors are demonstrated using bar diagrams.

8.1.2.3 Box and Whisker Diagrams

These graphical plots are primarily generated in order to visually observe the performance
variation of the classification algorithm between multiple cross validation rounds in each of the
cross validation strategies. In the experiments the data series depicted using box and whisker
diagrams consists of the per-class accuracy percentage over each of the cross validation rounds.
A schematic example of the box and whisker plot is shown in Figure 8.1. In general, these
diagrams are a simple and convenient way of representing statistical distributions, in which a
rectangle is drawn to represent the first and third quartiles, usually with a line to indicate the
median value. A point marker shows the mean value of the statistical distribution. Whiskers
denote the minimum and maximum values on each side of the rectangle. The spacing between
the different parts of the box indicate the degree of dispersion and skewness in the achieved
classification rates over multiple cross validation rounds of the same cross validation strategy.

Box and whisker diagrams have been generated for the individual cross validation strategies
such as k-fold stratified shuffled split and leave-a-patient-out in order to indicate inter-round
variations in classification performance, however, the process is computationally intensive to
accomplish using leave-a-sample-out cross validation due to a vast number of training and
deployment rounds same as the number of samples, and only one classification per round. Hence,
box and whisker diagrams are not demonstrated for this type of cross validation strategy.
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Fig. 8.1 Schematic example of box and whisker plot

8.2 Comparative Evaluation: Necrosis Detection

The overall mean and standard error of classification accuracies, namely, per-class, overall and
balanced classification accuracy averaged over multiple experiments in necrosis detection are
graphically depicted in Figure 8.2 using k-fold stratified shuffled split cross validation, where
k = 10 for traditional methods using SVM with discriminative thresholds, and k = 3 for deep
learning methods. The table for average balanced classification accuracy shows the comparison
after averaging over multiple cross validation experiments. The detailed cross validation results
including average accuracy confusion matrices for each classification method and comparative
box and whisker diagrams for each class are illustrated in Sections B.1.1 and B.2.1.

(a)
Method SVM with discriminative thresholds AlexNet CNN framework Proposed CNN architecture Ensemble of CNNs

Average BCA 87.66% 99.71% 93.56% 99.89%

(b)

Fig. 8.2 Overall mean and standard error of classification accuracy for necrosis detection experiments
using (a) k-fold stratified shuffled split cross validation (b) Average BCA for all methods over both cross
validations.
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Leave-a-patient-out cross validation is not performed for necrosis detection, as the necrosis
datasets have been generated using maximum available labeled areas in four WSI, which are not
sufficient to incorporate the biological heterogeneity among all the patients. The author believes
that leave-a-patient-out cross validation may not provide adequate evaluation, as labeled data is
available for only four whole slide images which may introduce a learning bias during the training
phase that adversely affects the classification of incoming samples from the unknown patient.
This effect was experimentally observed and the leave-a-patient-out cross validation results are
reported in [Sharma 2017b], however, not presented here due to few difficult WSI leading to
complexities in individual characteristics of necrotic areas. Furthermore, leave-a-sample-out
cross validation is also not applied here due to extremely high computational requirements,
owing to very large datasets and long learning times of convolutional neural networks in deep
learning methods.

From the mean and standard deviations of classification accuracy using k-fold cross
validations, it can be observed that all the three methods achieve good classification rates
(>85%) for both categories in the necrosis detection task. The overall and balanced mea-
sures yield closely similar values because of nearly balanced number of samples for each
category in the binary classification task. Summarizing the experimental results for necro-
sis detection, it can be observed that ensemble of CNNs has the best classification perfor-
mance (average OCA = BCA = 99.89%), followed by AlexNet CNN framework (average
OCA = BCA = 99.71%), the proposed CNN architecture (average OCA = BCA = 93.56%)
and the traditional method involving texture feature extraction followed by SVM classification
and discriminative thresholding (average OCA = 87.58%, BCA = 87.66%). On comparing
the classification performance of traditional machine learning method versus the deep learning
methods, it is clearly observed that for necrosis detection, deep learning methods outperform
traditional machine learning method. A similar effect has been observed after addressing the
problem with random forest machine learning compared to deep learning in [Sharma 2017b].

Furthermore, the accuracies are slightly higher for necrotic class compared to non-necrotic
class, suggesting its distinct appearance in human tissues, which is reinforced by observing the
confusion matrices in Appendix B.1.1. A lower detection rate in the SVM-based traditional
method is mainly seen for the non-necrotic class, which is not harmful as such false positives
can be safely excluded with the correctly classified necrotic data. However, false negative rate
should not be high due to possibility of inclusion in the final working datasets, which is fulfilled
by all the described methods (average false negative rate= 3.29%). From Figure 8.2 and the box
and whisker diagrams in Appendix B.2.1, it is evident that the traditional method shows larger
variations between learning rounds followed by proposed CNN architecture and minimum for
AlexNet CNN framework. Hence, for the necrosis detection task, traditional textural method
using SVM machine learning can be selected for fewer computational requirements during
training, and deep learning methods for a more accurate classification performance but are more
computationally intensive during the training process. The selected method can be applied
for classifying unknown regions as demonstrated in the second stage of the process pipeline,
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(a)

(b)
Method SVM AdaBoost Random forest

Average BCA 60.41% 63.89% 63.99%

(c)
Fig. 8.3 Overall mean and standard error of classification accuracy for cell nuclei classification experi-
ments using (a) k-fold stratified shuffled split and (b) leave-a-sample-out cross validations (c) Average
BCA for all methods over both cross validations.

allowing exclusion of visual information of necrotic areas before further image analysis in the
third stage of research.

8.3 Comparative Evaluation: Cell Nuclei Classification

The overall mean and standard deviation of classification accuracies, namely, per-class, overall
and balanced classification accuracy averaged over multiple cross validation experiments, are
graphically depicted in Figure 8.3(a) using k-fold stratified shuffled split (k = 3) and Figure 8.3(b)
using leave-a-sample-out cross validations in cell nuclei classification experiments. The table for
average balanced classification accuracy presents overall comparison after averaging over both
the cross validation methods. The detailed cross validation results including average accuracy
confusion matrices for each classification method and comparative box and whisker diagrams
for each class using individual cross validation strategies are shown in Sections B.1.2 and B.2.2.
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Leave-a-patient-out cross validation is not performed in these experiments during image
pre-analysis stage, as labeled data from the smaller initial working datasets in a few image tiles
selected from five out of eleven WSI is available, hence, this cross validation method will not
give a correct estimation of the existing inter-patient variance for small subset of the entire
whole slide image data. In contrast, leave-a-sample-out cross validation is considered as a more
appropriate method for quantitative analysis of cell nuclei classification due to the study of only
traditional machine learning algorithms which don’t have a high computational requirement in
their training procedure compared to deep learning methods.

From the mean and standard error bar diagrams, it is observed that among the seven classes,
the recognition rates using all the machine learning methods is highest for fibrocytes, followed
by leukocytes, and then conglomerates, artefacts and fragments, validating the ability of the
classification methods to strongly distinguish cell nuclei of these classes based on the extracted
cell nuclei features. Especially, fibrocytes show the highest classification accuracy due to their
distinct ‘long and thin’ appearance. However, a lower performance is observed for the class other
cell, which can be explained as this class contains cell nuclei that are either not visually distinct or
not clearly stained in the H&E images, hence, difficult to be distinguished into any specific class,
and also include blood cells in vessels, which have a very low occurrence. So this class is not
compact due to inconsistent intra-class characteristics. An intermediate accuracy for epithelial
cells is because of a varying appearance among the three types of cancer regions, as these cells
are mostly affected by cancer proliferation and change appearance with the malignancy levels.
The difficulty of classifying fragments is due to the lack of a well-defined visual appearance
or structure, and these are available in different shapes and sizes and some may resemble other
cell types. From the confusion matrices in Appendix B.1.2, it can be noted that the highest
classification confusions are between artefacts, fragments and other cells.

On comparing the classification performance of the three machine learning methods, it can
be seen that, for most classes and both cross validations, random forests have highest multi-class
classification rates (average OCA = 64.01%, BCA = 63.99%) followed by AdaBoost (average
OCA = 63.38%, BCA = 63.89%) and then SVM (average OCA = 60.39%, BCA = 60.41%).
However, it has slightly lower recognition rates than the other two classification methods for
classes conglomerates and intermediate performance for fragments and other cell classes. The
trends of per-class, overall and balanced classification accuracies correspond for both cross
validation strategies with minor differences. The overall and balanced classification accuracies
are almost equal due to the balanced nature of the cell nuclei dataset over cross validation rounds.
Also, standard error for leave-a-sample-out cross validation are low due to lower variance between
corresponding trained models in multiple experiments, as inter-round computation is not feasible
for each round with only one prediction. Due to a superior classification performance, high
predictability and lower inter-round variations as seen from the graphical results, random forests
machine learning method has marginally surpassed the other two traditional machine learning
methods, hence, selected for the cell nuclei classification of unknown samples. The result of
classification using random forests are utilized for subsequent steps, namely, multiresolution
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enhancement of segmentation results and determination of tissue composition in the second stage,
as well as parts of region analysis based on cancer in the third stage of the research pipeline.

8.4 Comparative Evaluation: Analysis of Cancer Regions

8.4.1 Concept of Comparative Evaluation

8.4.1.1 Scheme for Comparative Evaluation

An extensive quantitative comparison is performed using traditional methods and deep learning
methods for the analysis of cancer regions in H&E stained gastric cancer image WSI based on
HER2 immunohistochemistry. Among the traditional methods, individual feature groups in the
three image description categories are considered, namely, low-level state-of-the-art features
including GLCM statistics, Gabor filter-bank responses, local binary patterns, Varma-Zisserman
textons, gray histograms, HSV histograms, RGB histograms and other color-based measurements;
high-level state-of-the-art features including Voronoi diagram and Delaunay triangulation; and
high-level handcrafted features including the eight variants of the cell nuclei ARG. Furthermore,
object-level features are considered using only the vertex attributes in the cell nuclei ARG which
include global morphological and contour intensity-based features of the cell nuclei segments.
Tissue composition is another candidate using the vertex identities in the cell nuclei ARG as a
result of cell nuclei classification in each region of interest. These two cases are taken as a part of
the high-level handcrafted features as they are derived from the cell nuclei ARG, and examined to
establish the significance of neighborhood relationships and spatial arrangements between tissue
components. Two combinations of feature groups in the form of hybrid features are also included
in the comparative evaluation. Among the deep learning methods, performance is assessed for
AlexNet CNN framework, proposed CNN architecture and ensemble of the two networks. The
scheme for comparative evaluation is shown in Table 8.2. The detailed experimental results with
pictorial representations, observations and discussion for the analysis of cancer regions using
the scheme of comparative evaluation can be found in this section, and are elaborated further
in Sections B.1.3 and B.2.3 in the form of confusion matrices and box and whisker diagrams
respectively. Additionally, the computational requirements of proposed methods using traditional
machine learning and deep learning are given in Appendix A.5.

8.4.1.2 Implications from Results of Comparative Evaluation

The overall observations are presented in Section 8.4.7, which can be referred in order to facilitate
further discussion about the implications of results during analysis of caner regions, including
relative advantages and limitations of the described methods.

From the experimental experience of the above described methods, one apparent advantage
of using handcrafted features followed by traditional machine learning is their enhanced scope
of interpretation in histological images possessing unique characteristics, including large WSI
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Table 8.2 Scheme of comparative evaluation of studied methods for analysis of cancer regions

Level of feature extraction Contained feature groups Machine learning method

Low-level state-of-the-art fea-
tures

GLCM statistics

Traditional methods

Gabor filter-bank responses
Local binary patterns
Varma-Zisserman textons
Gray histograms
RGB histograms
HSV histograms
Other color-based measurements

Support vector machines

High-level state-of-the-art fea-
tures

Voronoi diagrams and Delaunay
triangulation

AdaBoost ensemble learningHigh-level handcrafted features

Object-level features: only vertex
attributes

Random forests

Tissue composition: only vertex
identities
gARG[rF ]
gARG[rA]
nsARG[rF ]
nsARG[rA]
ncARG[rF ]
ncARG[rA]
ncARGv+[rF ]
ncARGv+[rA]

Combination of features

Selected subset of hybrid low-
level features
Selected subset of hybrid low-
level and high-level features

Raw images
-

Deep learning methods
AlexNet CNN framework
Proposed CNN architecture
Ensemble of CNNs

sizes, multiple resolutions and complex appearances. Such interpretations have been established
in Table 7.1 based on visual appearance of the tissues in this study, using high-level architectural
information including cell structures, arrangements and topology. However, complete control
over extracted features is not achieved by the convolutional neural networks as internal abstrac-
tions in its layers are not easily understood. This requires an extensive study of the design
parameters during the CNN architecture design phase. The requirement has led to the empirical
analysis of CNN architectures to determine an optimal framework for the histopathological
problems using several permutations and combinations in this work. However, an exhaustive
study is a highly time-consuming process and limited by GPU specifications, so currently a
few intuitively designed CNN architectures are explored and optimized for the cancer analysis
problem. The selected CNN architecture is later applied for detecting necrosis to explore gener-
alizability of CNNs and shows a reasonable performance in both applications. Other possible
task-specific deep networks can be studied in future which were limited now due to time and
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hardware requirements, including the architectures optimized for necrosis detection. The second
bottleneck observed for deep learning methods like all other deep learning applications so far, is
the requirement of large-scale datasets containing thousands of images for training unlike the
traditional methods. This problem is currently addressed by data augmentation on the available
WSI datasets, but it will be a more appropriate direction to expand the available ground truth by
using a larger number of patients. It can be emphasized that the extension of current ground truth
data with more patients and lower number of images per patient for training, can provide more
robust classification algorithms. The third point in favor of traditional machine learning is the
currently a lower computational complexity compared to deep learning, that allows traditional
methods to be executed in acceptable times on the CPU, however, deep learning using CNNs
requires longer training times that are not suitable for CPU execution due to the high algorithm
complexity. Lastly, implementing traditional machine learning algorithms require selection
of few experimental parameters, in contrast to deep learning where many parameters must be
decided before the training phase, as seen in Table 7.4.2.5.

Nevertheless, the traditional methods also exhibit drawbacks compared to deep learning
methods. Especially, for the high-level handcrafted feature extraction using graph-based methods,
the following challenges are confronted. Firstly, the cell nuclei segmentation algorithm has not
achieved best results due to a non-ideal acquisition process. The segmentation has been optimized
for gastric cancer images using a multiresolution combination approach and the combined results
are enhanced compared to individual magnifications. However, during segmentation evaluation,
still some cell nuclei are not correctly detected and this effect can lead to the construction of
cell nuclei ARGs with a few missing cell nuclei. Moreover, the cell nuclei contours even in
the constituent resolutions are not always accurately estimated, hence, after multiresolution
combination, such contours will not be depicting the true cell boundaries that may distort
the object-level features of cell nuclei segments, which are important vertex attributes in the
cell nuclei ARG. The third disadvantage of the proposed high-level method is that cell nuclei
classification shows high discrimination complexity of the cell categories, which introduces
additional errors in the nsARG, ncARG and ncARGv+ variants of the cell nuclei ARGs. All
the errors of the cell nuclei segmentation and classification in the image pre-analysis stage
prior to graph construction can propagate in the cancer classification process leading to possible
misclassifications. In contrast, deep learning uses raw images directly, thereby, eliminating the
requirement of the two steps of the image pre-analysis stage, namely cell nuclei segmentation and
classification. This further leads to a general advantage of deep learning versus all the traditional
methods that is the absence of handcrafted feature design and extraction stage, thereby, saving
time and effort for this purpose.

As specified in Section 7.2.1, two image tile sizes i.e. 512×512 and 1024×1024 have been
tested with the preference to the larger size due to additional contextual information. To verify
this assumption, a subset of the experiments using handcrafted high-level features was performed
for both sizes and comparatively evaluated using the two datasets described in Section 7.2.1.
The calculated metrics show more favorable results for the larger image size as large ROIs
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contain more context information with larger fields of view at a high magnification. Specifically,
using the gARG[rF ] handcrafted graph-based method, followed by random forest single-stage
classification, average BCA for the smaller tile size shows a reduction by ≈ 8%. Hence, the
result for smaller image size have not been expanded for traditional machine learning methods to
reduce space and time complexity and allow a clear visualization of optimal results. However, an
apparent observation in favor of deep learning methods over handcrafted features and traditional
machine learning methods, is the use of the smaller 512×512 image size due to GPU memory
restrictions generating similar classification accuracies. The smaller size provides comparable
results for deep learning, to those obtained for larger size and superior than the same size in
traditional machine learning. This is a very interesting and encouraging observation in favor of
deep convolutional neural networks, and suggests that the raw images contain rich information
and are processed by the several layers of CNN which have the potential to extract meaningful
discriminative knowledge required for accurate prediction. Moreover, the input image size can
be increased to larger ones, e.g. 1024×1024 pixels, with the deployment of cascaded or upgraded
GPUs, however, it remains a future prospect of the research.

On comparing the computational complexities, it can be observed in Appendix A.5 that
among traditional methods, the non-optimized graph construction algorithm for cell nuclei ARG
depends on tissue complexity and leads to higher computational requirements compared to
state-of-the-art feature extraction methods. Also, the feature combination in hybrid methods
causes a high dimensional feature space that increases the time complexity and space require-
ments for learning and classification for traditional machine learning methods, especially for the
AdaBoost ensemble learning algorithm, where a non-optimized code is being used. Among the
deep learning methods, the training phase using the proposed CNN, even with a fast (although
not optimized) implementation on the GPU, requires around two days for the current datasets. In
contrast, AlexNet requires a few hours due to an optimized implementation. Furthermore, an
optimized implementation of traditional machine learning methods requires relatively smaller
duration to complete training, even for same-sized data [Sharma 2017b]. More details on com-
putational requirement are discussed in Appendix A.5. Improving computational requirements
for the non-optimized algorithms is essential and will be addressed in the future.

In the following sections, the overall mean and standard error of classification accuracies,
namely, per-class, overall and balanced classification accuracy averaged over multiple cross
validation experiments, are graphically shown and observations are discussed for each evalua-
tion configuration using k-fold stratified shuffled split (k = 10) and leave-a-patient-out cross
validations for analysis of cancer regions. An overall comparison of the balanced classification
accuracy averaged over both the cross validation methods is also depicted in tabular form. The
detailed cross validation results including average accuracy confusion matrices (using the most
successful classification method), and comparative box and whisker diagrams for each class are
shown in Sections B.1.3 and B.2.3 for the two individual cross validation strategies.

In general, from the quantitative evaluation of classification performance, it can be observed
that mostly, non-tumor and tumors are easily discriminated from each other (in first stage of
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hierarchical classification strategy), followed by HER2 positive tumor, and then HER2 negative
tumor. Furthermore, from the assessment of leave-a-patient-out cross validation results, it is
found that its overall performance is lower than the performance reported using k-fold stratified
shuffled split cross validation, along with a higher deviation for all the methods. These two effects
are explained in the overall observations in Section 8.4.7.1 showing class-wise and evaluation
method-wise comparisons, after the experimental results of individual methods. The leave-a-
patient-out performance is a measure of the robustness and practical usability of the system,
hence, can be given precedence over k-fold stratified shuffled split to decide the comprehensive
accomplishment of a given method.

8.4.2 Low-level State-of-the-art Features

These features include the state-of-the-art pixel-based feature extraction methods, namely, GLCM
statistics, Gabor filter-bank responses, local binary patterns, Varma-Zisserman textons, gray
histograms, HSV histograms, RGB histograms and other color-based measurements.

8.4.2.1 GLCM Statistics

The k-fold stratified shuffled split (k = 10), leave-a-patient-out and overall performance for
GLCM based features is shown in Figure 8.4. The SVM hierarchical classification shows most
favorable overall results in k-fold stratified shuffled split (average OCA = 82.04%, BCA =
81.73%) and leave-a-patient-out (average OCA = 52.88%, BCA = 51.32%) cross validations.
Next best are random forests single-stage, SVM single-stage and random forest hierarchical
strategies, which are followed by AdaBoost with a higher difference. In general, GLCM statistics
prove to be a powerful feature as a low number of features have been able to provide a reasonable
and comparable performance using k-fold stratified shuffled split cross validation. However,
there is a large gap in performance using these features in leave-a-patient-out cross validation,

(a) (b)

Method
SVM

(single-stage)

SVM

(hierarchical)

AdaBoost

(single-stage)

AdaBoost

(hierarchical)

Random forest

(single-stage)

Random forest

(hierarchical)

Average BCA 61.97% 66.53% 57.38% 57.01% 62.05% 60.38%

(c)
Fig. 8.4 Overall mean and standard error of classification accuracy for cancer classification experiments
for GLCM statistics using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation (c)
Average BCA for all methods over both cross validations.
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i.e. significant when compared to observations of subsequent experiments with handcrafted
graph-based feature extraction methods and deep learning methods, indicating that GLCM-based
features are less robust to biological variations compared to high-level traditional methods and
deep learning methods explored later. From the confusion matrices in Appendix B.1.3, it is
interesting to notice higher confusion of HER2 negative class with HER2 positive class, but
lower confusion vice-versa, which is also observed for other methods mentioned in the following
sections, suggesting that HER2 positive tumor is easier to recognize by trained classifiers
compared to HER2 negative tumor.

8.4.2.2 Gabor Filter-bank Responses

The k-fold stratified shuffled split (k = 10), leave-a-patient-out and overall classification perfor-
mance for Gabor filter-bank features is depicted in Figure 8.5. The average BCA obtained using
Gabor filters is systematically lower compared to GLCM statistics, showing their limited descrip-
tive power for the described problem. Lowest overall errors are achieved using SVM hierarchical
classification in k-fold stratified shuffled split (average OCA = 79.87%, BCA = 79.71%) and
leave-a-patient-out (average OCA = 45.58%, BCA = 42.80%), followed by SVM single-stage
and random forests hierarchical classification. A noticeable decline is again seen for AdaBoost
machine learning method. Furthermore, for the GLCM statistics, large differences are observed
between the two types of cross validations. Particularly, the leave-a-patient-out accuracies are
extremely low, depicting a lower robustness of Gabor features to heterogeneity among patients
leading to less suitability for the cancer classification problem.

(a) (b)

Method
SVM

(single-stage)

SVM

(hierarchical)

AdaBoost

(single-stage)

AdaBoost

(hierarchical)

Random forest

(single-stage)

Random forest

(hierarchical)

Average BCA 60.86% 61.26% 53.51% 53.70% 58.66% 60.07%

(c)

Fig. 8.5 Overall mean and standard error of classification accuracy for cancer classification experiments
for Gabor filter-bank responses using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross
validation (c) Average BCA for all methods over both cross validations.



8.4 Comparative Evaluation: Analysis of Cancer Regions 159

8.4.2.3 Local Binary Patterns

The k-fold stratified shuffled split (k = 10), leave-a-patient-out and overall classification perfor-
mance for local binary patterns is presented in Figure 8.6. At a glance, LBP histograms show

(a) (b)

Method
SVM

(single-stage)

SVM

(hierarchical)

AdaBoost

(single-stage)

AdaBoost

(hierarchical)

Random forest

(single-stage)

Random forest

(hierarchical)

Average BCA 62.74% 60.33% 58.20% 58.50% 58.27% 57.93%

(c)

Fig. 8.6 Overall mean and standard error of classification accuracy for cancer classification experiments
for LBP histograms using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation (c)
Average BCA for all methods over both cross validations.

intermediate classification performance between the previously evaluated features, namely,
GLCM statistics and Gabor filter-bank responses for the computer-based analysis of gas-
tric cancer. SVM single-stage classification has best overall results with k-fold stratified
shuffled split (average OCA = 79.70%, BCA = 79.03%) and leave-a-patient-out (average
OCA = 49.10%, BCA = 46.45%) cross validations. Next best classification is achieved by
SVM and AdaBoost in hierarchical strategy with close similarities. Random forests also have a
similar performance to AdaBoost ensemble learning. Again, like GLCM and Gabor filters, the
leave-a-patient-out accuracies are especially not satisfactory for the two tumor classes, suggesting
a low competence of local binary patterns for the specific cancer analysis task.

8.4.2.4 Varma-Zisserman Textons

Figure 8.7 presents the k-fold stratified shuffled split (k = 10), leave-a-patient-out and average
classification accuracy using Varma-Zisserman texton-based approach. The Varma-Zisserman
texton-based approach shows the most promising results compared to the state-of-the-art low-
level features discussed so far using k-fold stratified shuffled split, suggesting its higher popularity
in histological image analysis. Most superior classification performance is achieved by SVM
single-stage method in k-fold stratified shuffled split (average OCA = 89.56%, BCA = 89.06%)
and leave-a-patient-out (average OCA = 48.65%, BCA = 44.30%) cross validations, followed
by SVM hierarchical method. The other two classification methods show a wider difference to
SVM, as random forests and AdaBoost in order. One prominent observation is the huge gap
between the two types of validation results especially in the two tumor classes, with a highly
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(a) (b)

Method
SVM

(single-stage)

SVM

(hierarchical)

AdaBoost

(single-stage)

AdaBoost

(hierarchical)

Random forest

(single-stage)

Random forest

(hierarchical)

Average BCA 66.68% 66.51% 61.67% 60.15% 62.54% 61.20%

(c)

Fig. 8.7 Overall mean and standard error of classification accuracy for cancer classification experiments
for Varma-Zisserman textons using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross
validation (c) Average BCA for all methods over both cross validations.

favorable random stratified shuffled split performance but comparatively low leave-a-patient-
out response. This effect can be attributed to two main reasons. The unusually high former
metric may represent an over-fitting of trained classifiers (especially seen in SVM methods), and
lower leave-a-patient-out accuracies depict poor robustness of the texton-based features towards
biological variations in population.

8.4.2.5 Gray Histograms

The k-fold stratified shuffled split (k = 10), leave-a-patient-out and overall classification perfor-
mance for gray histograms is shown in Figure 8.8. From the above observations, it can be seen that

(a) (b)

Method
SVM

(single-stage)

SVM

(hierarchical)

AdaBoost

(single-stage)

AdaBoost

(hierarchical)

Random forest

(single-stage)

Random forest

(hierarchical)

Average BCA 68.11% 68.08% 65.99% 64.60% 69.06% 68.94%

(c)

Fig. 8.8 Overall mean and standard error of classification accuracy for cancer classification experiments
for gray histograms using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation (c)
Average BCA for all methods over both cross validations.
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gray histograms have performed superior to all the state-of-the-art low-level methods discussed
before. Among the classification methods, random forests single-stage method has highest clas-
sification accuracy in k-fold stratified shuffled split (average OCA = 82.65%, BCA = 81.73%)
and leave-a-patient-out (average OCA = 61.28%, BCA = 56.39%) cross validations. This is
followed by random forest hierarchical classification, SVM and AdaBoost in single-stage and
hierarchical strategies respectively. It can be noted that the leave-a-patient-out cross validation
shows better performance compared to LBP histograms and Varma-Zisserman textons, hence,
the features can be considered more robust to the inter-patient variability in a given population.
Therefore, gray histograms prove to be more useful low-level features in the analysis of H&E
stained images, and the corresponding intensity distributions obtained due to H&E staining
contribute in providing effective visual characteristics to the tissue regions according to the given
malignancy levels.

8.4.2.6 HSV Histograms

The k-fold stratified shuffled split (k = 10), leave-a-patient-out and overall classification
performance for HSV histograms is given in Figure 8.9. For the HSV histograms, it is ob-
served that overall, HSV based features are even more effective than the gray histograms,
and show superior performance for the given classification task. We observe that HSV his-
togram contains a large number of features and interestingly, the AdaBoost ensemble learning
method has the highest accuracy in single-stage classification strategy with k-fold stratified
shuffled split (average OCA = 89.33%, BCA = 88.79%) and leave-a-patient-out (average
OCA = 65.45%, BCA = 60.98%) cross validations, followed by SVM, AdaBoost and random
forest in hierarchical counterparts. Random forest single-stage classification show an abruptly
low leave-a-patient-out accuracy for HER2 negative tumor class. The success of AdaBoost
algorithm for this case is mainly due to a larger number of features, as AdaBoost provides each
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Fig. 8.9 Overall mean and standard error of classification accuracy for cancer classification experiments
for HSV histograms using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation (c)
Average BCA for all methods over both cross validations.
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feature incrementally to the weak learners in order to improve its current decision of the ensemble
of classifiers. This effect will also be observed in the subsequent experiments dealing with longer
feature vectors. Again, due to higher leave-a-patient-out performance, HSV histograms have
proved to be more robust to the heterogeneous nature of our WSI datasets as compared to the
previous low-level state-of-the-art feature extraction approaches, thus, constituting a stronger
feature set for describing the tissue regions for the cancer classification problem.

8.4.2.7 RGB Histograms

Figure 8.10 presents the k-fold stratified shuffled split (k = 10), leave-a-patient-out and average
classification accuracy using RGB histograms. It can be observed that the RGB histograms
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Fig. 8.10 Overall mean and standard error of classification accuracy of cancer classification experiments
for RGB histograms using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation
(c) Average BCA for all methods over both cross validations.

can provide powerful and descriptive features for discrimination between the three malignancy
levels based on HER2 immunohistochenical response. Until now, these features have the most
successful classification performance among all the other state-of-the-art low-level feature
extraction methods, as they even outperform gray and HSV histograms. SVM hierarchical
classification method shows an overall improvement in k-fold stratified shuffled split (average
OCA = 91.77%, BCA = 92.03%) and leave-a-patient-out (average OCA = 62.45%, BCA =
59.28%) cross validations, and SVM and AdaBoost single-stage approaches are closest in
performance. AdaBoost classification is ranked higher than random forests, which can be
attributed to a larger number of extracted features as observed in HSV histograms. The highest
leave-a-patient-out accuracy so far suggests that the features have better practical usability for
completely unlabeled patient WSI data.
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8.4.2.8 Other Color-based Measurements

Figure 8.11 presents the k-fold stratified shuffled split (k = 10), leave-a-patient-out and average
classification accuracy using the other color-based measurements. From the results, it is evident
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Fig. 8.11 Overall mean and standard error of classification accuracy for cancer classification experiments
for other color-based measurements using (a) k-fold stratified shuffled split and (b) leave-a-patient-out
cross validation (c) Average BCA for all methods over both cross validations.

that the low-level color-based features, although few in number with six features, show discrimi-
native potential for histological images. These are not as efficient as the histograms explored
earlier, however, perform more reasonably compared to other low-level state-of-the-art features
such as Gabor filter-bank responses and LBP histograms, especially showing superior leave-a-
patient-out accuracies. The most successful classification method is random forest single-stage
classification with k-fold stratified shuffled split (average OCA = 79.53%, BCA = 78.42%)
and leave-a-patient-out (average OCA = 55.15%, BCA = 49.51%), and SVM single-stage and
random forest hierarchical classification follow closely. It can also be observed from the bar
diagrams, that the AdaBoost method in both strategies has the most favorable leave-a-patient-out
performance. Hence, the combination of the features with AdaBoost can be considered robust to
heterogeneity among patients in contrast to some of the other low-level state-of-the-art features.

8.4.3 High-level State-of-the-art Features

In this section, experiments are performed to analyze the graph-based methods involving prox-
imity graphs, specifically Voronoi Diagrams and Delaunay Triangulation. In literature, these
graph and their derivatives have shown success in various histopathological problems in digital
pathology [Sharma 2015a], hence, can be considered as high-level state-of-the-art methods in
histological image analysis. They are comparatively evaluated with the other state-of-the-art
low-level and the proposed handcrafted high-level features. The k-fold stratified shuffled split
(k = 10), leave-a-patient-out and overall classification performance of the Voronoi-Delaunay
method is shown in Figure 8.12. It can be observed that for the gastric cancer images, the
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Fig. 8.12 Overall mean and standard error of classification accuracy for malignancy region classification
experiments for Voronoi-Delaunay method using (a) k-fold stratified shuffled split and (b) leave-a-patient-
out cross validation (c) Average BCA for all methods over both cross validations.

Voronoi-Delaunay method has comparable performance to some of the low-level feature extrac-
tion approaches such as Gabor filter-bank responses and LBP histograms, however, is inferior
to other state-of-the-art methods. Random forest single-stage classification gives most supe-
rior results in k-fold stratified shuffled split (average OCA = 66.15%, BCA = 64.80%) and
leave-a-patient-out (average OCA = 58.89%, BCA = 57.56%). Next best are random forest
in single-stage and SVM in hierarchical strategy. These features show more promising results
using leave-a-patient-out cross validation, however, the stratified shuffled split performance is
not as satisfactory as previously studied low-level methods, and presents potential scope of
improvements. In the later experiments using the proposed handcrafted methods, a desirable
enhancement of classification performance can be further noticed. Interestingly, a favorable
characteristic of this method is a lower gap between corresponding accuracy using the two cross
validation approaches, indicating strength of features to handle biological variations.

8.4.4 High-level Handcrafted Features

These include the self-designed graph-based features for analysis of cancer regions including
generic cell nuclei ARG, nuclei-specific ARG, nuclei-composite ARG and nuclei composite
ARG with additional vertex attributes, each with fixed and adaptive r. Only vertex attributes are
also considered with and without the identities of vertices representing tissue composition and
object-level features respectively.
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8.4.4.1 Object-level Features: Only Vertex Attributes

This section evaluates the classification performance when only the vertex attributes of proposed
cell nuclei ARG are considered, and represent the individual cell nuclei object-level properties,
without the associated edge attributes and neighborhood information. The overall k-fold stratified
shuffled split (k = 10), leave-a-patient-out and overall classification performance is shown in
Figure 8.13. The best classifier is obtained using random forest hierarchical method with k-fold
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Fig. 8.13 Overall mean and standard error of classification accuracy for region classification experiments
for only vertex attributes using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation
(c) Average BCA for all methods over both cross validations.

stratified shuffled split (average OCA = 74.95%, BCA = 74.72%) and leave-a-patient-out
(average OCA = 57.61%, BCA = 58.21%), closely followed by its single-stage counterpart.
SVM and AdaBoost show similar performance with slight precedence of the former. It is
interesting to see that this feature extraction method already outperforms a section of the
individual low-level and high-level state-of-the-art methods discussed earlier. This strongly
suggests the discriminative strength of cell nuclei characteristics based on morphology and
contour intensity using H&E stained images due to the distinct staining of the cell nuclei, that
would have been difficult to achieve in other stains such as HER2. It is even more exciting to
observe later, that most of the proposed cell nuclei ARG methods perform superior to the method
comprising only vertex attributes and reflects the importance of neighborhood relationships and
spatial arrangements to describe the tissue in addition to individual characteristics of cell nuclei.

8.4.4.2 Tissue Composition: Only Vertex Identities

In this method, cell nuclei are first automatically classified using the cell nuclei classification
method, and the result of this step are utilized to obtain the tissue composition as the fraction
of each type of cell nuclei segment in each region of interest. The overall k-fold stratified
shuffled split (k = 10), leave-a-patient-out and average accuracy is shown in Figure 8.14.



166 CHAPTER 8. Performance Evaluation

Overall superior result are attained by SVM single-stage classification using k-fold stratified
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Fig. 8.14 Overall mean and standard error of classification accuracy for region classification experiments
for only vertex identities using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation
(c) Average BCA for all methods over both cross validations.

shuffled split (average OCA = 75.87%, BCA = 74.77%) and leave-a-patient-out (average
OCA = 53.90%, BCA = 53.02%) cross validations followed by random forest hierarchical
classification. It is surprising to see that only the seven features related to the tissue composition
of each image tile are capable of generating a good classification performance, reflecting a high
importance of tissue composition for such discrimination. These features show the potential to be
more powerful and improve accuracy when combined with the edge-based and size-based global
graph features of a few variants of the cell nuclei ARGs, as it will be observed in subsequent
experiments. The performance of this method is lower than raw vertex attributes (especially
using leave-a-patient-out), mainly because additional error may be introduced during the cell
nuclei classification step.

8.4.4.3 Generic Cell Nuclei ARG and Fixed r: gARG[rF]

The k-fold stratified shuffled split (k = 10), leave-a-patient-out and overall classification perfor-
mance of the gARG[rF ] graph-based method is shown in Figure 8.15. The best classification
performance is observed uniformly by SVM single-stage method in both cross validations, i.e.
k-fold stratified shuffled split (average OCA = 79.02%, BCA = 77.94%) and leave-a-patient-
out (average OCA = 64.48%, BCA = 63.61%), followed by SVM and random forests in
hierarchical strategy respectively. As observed in experiments of all the earlier image description
methods, non-tumor is the most correctly classified class, followed by HER2 positive tumor and
then HER2 negative tumor. HER2 negative tumor is least correctly classified due to its interme-
diate properties, with highest confusion with the other tumor class. Hierarchical classification
strategy shows an improvement compared to single-stage classification strategy for AdaBoost
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Fig. 8.15 Overall mean and standard error of classification accuracy for malignancy region classification
experiments for gARG[rF ] using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross
validation (c) Average BCA for all methods over both cross validations.

and random forests which have the highest classification rate for HER2 negative tumor compared
to other classification methods, but these are attained at the cost of higher classification error
in non-tumor class. The handcrafted graph-based method has superior performance compared
to only vertex attributes, which reinforces the requirement of neighborhood interactions and
architectural characteristics of the tissue components.

8.4.4.4 Generic Cell Nuclei ARG and Adaptive r: gARG[rA]

The k-fold stratified shuffled split (k = 10), leave-a-patient-out cross validation and overall
performance of the gARG[rA] approach is shown in Figure 8.16. Overall, SVM single-stage and
random forest hierarchical classification are most accurate, with SVM outperforming in k-fold
stratified shuffled split (average OCA = 78.90%, BCA = 77.73%) and leave-a-patient-out
(average OCA = 60.53%, BCA = 59.46%). Next best classification methods include random
forest single-stage and both strategies using AdaBoost ensemble learning. As seen for gARG[rF ]
method, the random forest hierarchical classification has the highest classification rate for HER2
negative class (average 57.56%) compared to all other classification methods, however, leads to
slightly lower accuracy for the non-tumor class. Furthermore, the performance is slightly lower
for this approach compared to the gARG[rF ] counterparts, especially for leave-a-patient-out
cross validation strategy. The most probable reason for this effect is the automatic calculation of
r using a uniform grid assumption, which may not always give optimum values representing
tumor tissues accurately.



168 CHAPTER 8. Performance Evaluation

(a) (b)

Method
SVM

(single-stage)

SVM

(hierarchical)

AdaBoost

(single-stage)

AdaBoost

(hierarchical)

Random forest

(single-stage)

Random forest

(hierarchical)

Average BCA 68.60% 62.37% 65.04% 65.93% 67.43% 68.58%

(c)

Fig. 8.16 Overall mean and standard error of classification accuracy for malignancy region classification
experiments for gARG[rA] using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross
validation (c) Average BCA for all methods over both cross validations.

8.4.4.5 Nuclei-specific ARG and Fixed r: nsARG[rF]

The overall results for k-fold stratified shuffled split (k = 10), leave-a-patient-out cross validation
and overall performance using the nsARG[rF ] graph-based handcrafted features is shown in
Figure 8.17. Out of the various classification methods, again SVM single-stage classification
outperforms others in k-fold stratified shuffled split (average OCA = 72.43%, BCA = 70.73%)
and leave-a-patient-out (average OCA = 57.49%, BCA = 53.89%) cross validations, followed
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Fig. 8.17 Overall mean and standard error of classification accuracy for malignancy region classification
experiments for nsARG[rF ] using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross
validation (c) Average BCA for all methods over both cross validations.
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by random forests hierarchical classification. AdaBoost lags behind the other two machine
learning methods in both strategies. The classification performance for this case is consistently
and significantly lower compared to both the generic cell nuclei ARG approaches and also
the nuclei composite ARG approaches observed later, which is most prominently seen in the
two tumor classes. This effect can be attributed to three main reasons. Firstly, morphological
and contour intensity based vertex attributes of cell nuclei have been omitted due to their prior
application in cell nuclei classification step, which depletes the global graph features of useful
information about individual vertices (cell nuclei) and affects decision-making process. Secondly,
this ARG construction takes into account only selective interactions between the cell nuclei of
each type and later combines them, which may not be as meaningful representation of tumors as
compared to considering the arrangements of all types of cell nuclei in a neighborhood. Finally,
the cell nuclei classification is non-ideal (as seen in previous observations) which may lead to
error propagation in construction of nuclei-specific ARGs. However, from the detailed results in
Appendix B.1.3, it can be seen that there is an improvement (> 3%) in the classification rate
for leave-a-patient-out cross validation in the non-tumor class. This is due to the decision of
using imputation (with zero) for a fraction of samples for a uniform feature length, which mostly
belong to non-tumor due to absence of certain type of cell nuclei, and this contributes to unique
class characteristics resulting in a lower error rate.

8.4.4.6 Nuclei-specific ARG and Adaptive r: nsARG[rA]

The classification performance using k-fold stratified shuffled split (k = 10), leave-a-patient-out
cross validation and overall performance for the nsARG[rA] graph-based method is illustrated in
Figure 8.18. The SVM hierarchical classification method has an overall best performance using k-
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Fig. 8.18 Overall mean and standard error of classification accuracy for malignancy region classification
experiments for nsARG[rA] using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross
validation (c) Average BCA for all methods over both cross validations.
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fold stratified shuffled split (average OCA = 73.43%, BCA = 72.81%) and leave-a-patient-out
(average OCA = 57.57%, BCA = 55.51%) cross validations, especially showing improvement
in classification of HER2 negative tumor class over other strategies. The performance is compara-
ble to nsARG[rF ] approach with similar degradation from generic ARG variants, due to reasons
discussed for nsARG[rF ]. One diversion from earlier behavior is the slight improvement using
adaptive r compared to fixed r for the nuclei-specific ARG construction, however, the difference
is not significant for apparent reasoning. From the confusion matrices in Appendix B using
hierarchical approach, the confusion between the two tumor classes in the second stage can be
clearly seen higher as compared to the classes in the first stage of classification, especially for
leave-a-patient-out cross validation.

8.4.4.7 Nuclei-composite ARG and Fixed r: ncARG[rF]

The classification performance using k-fold stratified shuffled split (k = 10), leave-a-patient-
out cross validation and overall performance for the ncARG[rF ] method is illustrated in Fig-
ure 8.19. The SVM single-stage classification outperforms other methods in k-fold stratified
shuffled split (average OCA = 77.29%, BCA = 76.03%) and leave-a-patient-out (average
OCA = 64.50%, BCA = 63.20%) cross validations, closely followed by random forest hier-
archical classification method. This graph-based approach shows superior results compared to
the nuclei-specific construction and those comparable to the generic graph gARG[rF ] approach.
This is a favorable observation as lower number of global graph features are considered com-
pared to generic cell nuclei ARG construction by excluding the object-level features as vertex
attributes and considering tissue composition. The main reason for this behavior is the ability
to enhance the useful information by combining individual class identities of each vertex (cell
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Fig. 8.19 Overall mean and standard error of classification accuracy for region classification experiments
for ncARG[rF ] using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation (c)
Average BCA for all methods over both cross validations.



8.4 Comparative Evaluation: Analysis of Cancer Regions 171

nucleus), along with the neighborhood vertex attributes, edge attributes representing spatial
relational characteristics as well as size-based graph features. Hence, the ncARG graphs are
truly ‘composite’ due to an amalgamation of the underlying tissue composition and spatial ar-
rangements. However, this improvement in result presents a trade-off between the computational
complexity and classification performance, as it demands higher computational requirements
than the generic cell nuclei ARGs due to the additional step for cell nuclei classification. The
ncARG[rF ] graph-based method has a better performance compared to the tissue composition
combining only vertex identities without edge linking and edge attributes, that determines the
high-level spatial relations between the components can enhance the derived information.

8.4.4.8 Nuclei-composite ARG and Adaptive r: ncARG[rA]

The classification performance using k-fold stratified shuffled split (k = 10), leave-a-patient-out
cross validation and overall performance for the ncARG[rA] method is shown in Figure 8.20.
Again, the method has close performance using all machine learning approaches, especially
it is difficult to decide between SVM single-stage and random forest hierarchical methods,
both showing upper hand in classification accuracy compared to the other listed methods. The
marginally higher random forest hierarchical accuracies in k-fold stratified shuffled split (average
OCA = 74.80%, BCA = 74.95%) and leave-a-patient-out (average OCA = 59.21%, BCA =
59.82%) cross validations depict that there is degradation of performance in the nuclei composite
construction as compared to fixed r, which is consistent with the generic ARG results, and
strengthens the premise that empirically selected r kept fixed for all types of regions leads to
more suitable edge linking compared to a dynamic linking rule.
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Fig. 8.20 Overall mean and standard error of classification accuracy for region classification experiments
for ncARG[rA] using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation (c)
Average BCA for all methods over both cross validations.
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8.4.4.9 Nuclei-composite ARG with Additional Vertex Attributes and Fixed r:
ncARGv+[rF]

The overall results for k-fold stratified shuffled split (k = 10), leave-a-patient-out cross validation
and overall performance using the ncARGv+[rF ] handcrafted features is shown in Figure 8.21.
Among the classification methods, SVMs in both strategies are superior to random forests and
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Fig. 8.21 Overall mean and standard error of classification accuracy for region classification experiments
for ncARGv+[rF ] using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation (c)
Average BCA for all methods over both cross validations.

AdaBoost, with SVM single-stage classification leading in k-fold stratified shuffled split (average
OCA = 79.35%, BCA = 78.23%) and leave-a-patient-out (average OCA = 63.94%, BCA =
63.14%) cross validations, followed by random forest hierarchical method. The ncARGv+[rF ]
shows an improvement (≈ 1 − 2%) over ncARG[rF ] with highly similar performance trends.
On careful observation, it can be concluded that the additional vertex attributes already utilized
in cell nuclei classification step when applied for a second time during global graph feature
extraction from the cell nuclei ARG lead to only a minor enhancement in the recognition rates,
hence, can be avoided without any significant loss.

8.4.4.10 Nuclei-composite ARG with Additional Vertex Attributes and Adaptive r:
ncARGv+[rA]

The overall results for k-fold stratified shuffled split (k = 10), leave-a-patient-out cross val-
idation and overall performance using the ncARGv+[rA] handcrafted features is shown in
Figure 8.22. SVM single-stage classification has best average results, with k-fold stratified
shuffled split (average OCA = 80.15%, BCA = 79.08%) and leave-a-patient-out (average
OCA = 58.99%, BCA = 57.51%) cross validations. Random forests and SVM in in hi-
erarchical strategy have the next best performance. It can be specifically observed that the
leave-a-patient-out accuracies are lower for adaptive r compared to fixed r for this type of ARG
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Fig. 8.22 Overall mean and standard error of classification accuracy for region classification experiments
for ncARGv+[rA] using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross validation c)
Average BCA for all methods over both cross validations.

construction, which indicates that fixed r is consistently a better edge linking approach compared
to an automatically determined r. There is also no significant improvement from the ncARG[rA]
counterpart, even a lower leave-a-patient-out performance, again suggesting that the identities of
cell nuclei segments along with global information derived from edge attributes with size based
features is sufficient for similar classification performance, with the advantage of a shorter length
of the feature vectors and lower computational complexity.

8.4.5 Combination of Features

In this section, the classification experiments performed using the selected subset of hybrid low-
level features and the selected subset of hybrid low-level and high-level features are comparatively
evaluated with respect to individual feature groups, and each other. The combined or hybrid
feature sets are reduced using correlation analysis, followed by the traditional machine learning
and classification.

8.4.5.1 Selected Subset of Hybrid Low-level Features

Figure 8.23 presents the k-fold stratified shuffled split (k = 10), leave-a-patient-out and average
classification accuracy using the selected subset of hybrid low-level features. It can be noted here,
that SVM hierarchical classification method outperforms other methods with k-fold stratified
shuffled split (average OCA = 93.23%, BCA = 93.49%) and leave-a-patient-out (average
OCA = 58.58%, BCA = 57.17%), followed by SVM and AdaBoost in single-stage strategies.
Random forests are not as successful as the other two methods. As remarked in Section 7.3.4,
it was expected that when automatic correlation analysis is applied, correlated but meaningful
features may also be removed during feature selection process, and this leads to a slight decline in
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Fig. 8.23 Overall mean and standard error of classification accuracy for cancer classification experiments
for selected subset of hybrid low-level features using (a) k-fold stratified shuffled split and (b) leave-a-
patient-out cross validation (c) Average BCA for all methods over both cross validations.

classification accuracy compared to the best performing individual methods. This effect is evident
while using the selected subset of hybrid low-level features, which compare favorably to almost
all the low-level state-of-the-art features, however, have slightly lower performance compared
to the most successful RGB histograms, especially in the leave-a-patient-out cross validation.
Similar phenomenon was observed in [Sharma 2016], where a comparison between hybrid
features before and after correlation analysis has been drawn using AdaBoost classification,
revealing that correlation analysis leads to a slightly lower performance due to a reduced feature
set. Such a comparison is not made for the configurations described here, as the length of feature
vectors will be extremely long without correlation analysis that becomes unmanageable with
extensive time requirements. Hence, it can be concluded that, correlation based-feature extraction
can be primarily applied to reduce the length of combined feature vectors, without significantly
compromising the classification performance.

8.4.5.2 Selected Subset of Hybrid Low-level and High-level Features

The k-fold stratified shuffled split (k = 10), leave-a-patient-out and average classification
accuracy using the selected subset of hybrid low-level and high-level features is shown in
Figure 8.24. Among the machine learning methods, the SVM method is most successful in
both strategies, followed by AdaBoost due to a larger number of image descriptors, and then
random forests. The SVM single-stage classification method has the highest rates with k-fold
stratified shuffled split (average OCA = 92.26%, BCA = 91.67%) and leave-a-patient-out
(average OCA = 64.10%, BCA = 61.09%). The average balanced classification accuracies for
the combination of high-level and low-level features are consistently higher for all traditional
machine learning methods compared to those for the combination of only low-level features.
This observation is strongly evident of the potential of object-based, graph-based, structural and
architectural information in histopathological image analysis, and proves that the handcrafted
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(a) (b)

Method
SVM

(single-stage)

SVM

(hierarchical)

AdaBoost

(single-stage)

AdaBoost

(hierarchical)

Random forest

(single-stage)

Random forest

(hierarchical)

Average BCA 76.38% 76.32% 74.61% 74.06% 72.48% 73.78%

(c)

Fig. 8.24 Overall mean and standard error of classification accuracy for cancer classification experiments
for selected subset of hybrid low-level and high-level features using (a) k-fold stratified shuffled split and
(b) leave-a-patient-out cross validation (c) Average BCA for all methods over both cross validations.

high-level features lead to additional performance enhancement over the state-of-the-art low-level
features. Furthermore, the improvement is more significantly shown in the leave-a-patient-out
cross validation, suggesting higher robustness of the hybrid subset for high-level and low-
level features towards inter-patient variations. Although, a few configurations with individual
handcrafted graph-based methods such as ncARG[rF ] and ncARGv+[rF ] show higher leave-
a-patient-out accuracies compared to hybrid features, the degradation mainly attributed to
information loss during feature selection.

8.4.6 Deep Learning Methods

Using deep learning methods, firstly, several CNN architectures are empirically investigated
to determine a suitable design for learning significant characteristics of histological images. A
preliminary CNN architecture is proposed and applied for two classification problems, namely,
cancer classification based on immunohistochemical response and necrosis detection. The
performance of the designed CNN is quantitatively evaluated and compared with the AlexNet
CNN framework which is popular in deep learning for general object classification. Ensemble of
the two CNNs is also quantitatively analyzed.

The overall results for k-fold stratified shuffled split (k = 3) and leave-a-patient-out cross
validation using the three deep learning methods, namely, AlexNet CNN framework, proposed
CNN architecture and ensemble of CNNs, is comparatively illustrated in Figure 8.25.

It can be noted that using all the three methods, accuracies are higher when trained with the
entire available WSI dataset, unlike the initial empirical experiments. This behavior was expected
because of subsequent use of augmented datasets built from the entire available WSI data, hence,
the networks are trained with large-scale visual information with diverse examples to classify
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(a) (b)

Method
AlexNet CNN

framework

Proposed CNN

architecture
Ensemble of CNNs

Average BCA 73.23% 70.57% 73.43%

(c)

Fig. 8.25 Overall mean and standard error of classification accuracy for region classification experiments
for deep learning methods using (a) k-fold stratified shuffled split and (b) leave-a-patient-out cross
validation (c) Average BCA for all methods over both cross validations.

the unknown images more effectively. Also, overall and balanced classification accuracies are
identical due to uniform distribution of samples in the three classes.

From the above graphical representations, on comparing the two CNN architectures, it can
be clearly observed that the k-fold stratified shuffled split performance of AlexNet (average
OCA = BCA = 96.74%) is superior to the proposed CNN (average OCA = BCA = 84.41%)
in contrast to the leave-a-patient-out where the observation is reversed with the proposed CNN
performing better (average OCA = BCA = 56.72%) than the AlexNet CNN framework
(average OCA = BCA = 49.73%). In the k-fold stratified shuffled split cross validations,
samples in the training and validation dataset may belong to the same patient, hence, superior
performance of AlexNet CNN framework is not a clear indicative of a more suitable model
for the described problem. On the other hand, a better leave-a-patient-out performance is a
more recommendable characteristic for practical application of the method in a clinical setting
where unknown samples need to be automatically classified with trained networks of previous
cases, and this requirement is better achieved using the proposed CNN architecture. The
higher leave-a-patient-out performance of the proposed CNN suggests its higher robustness to
biological variations among patients, with lower standard deviations, especially with a desirable
improvement in the classification accuracy of HER2 positive and HER2 negative tumor. Its
per-class and overall classification accuracies also correspond to the other results obtained using
handcrafted and state-of-the-art features in traditional machine learning, thereby, reducing the
possibility of any anomaly, which may have occurred during AlexNet training in k-fold stratified
shuffled split classification due to a high numerical gap in the two types of cross validation
accuracies.

When ensemble of CNNs is compared to individual CNNs, it is seen that intermediate results
are obtained in both types of cross validations, with k-fold stratified shuffled split (average
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OCA = BCA = 94.40%) and leave-a-patient-out (average OCA = BCA = 52.46%), leading
to an overall best performance by slightly outperforming the individual methods. This is due to
the ability to reduce individual errors of each network, by averaging the output of both networks
and causing performance enhancement. However, in few leave-a-patient-out experiments, the
ensemble shows a decrease in accuracy compared to individual methods due to borderline
Softmax probabilities associated with the correctly predicted class, leading to misclassification
on averaging. This decline is mainly observed for the HER2 negative tumor class.

From the box and whisker diagrams in Appendix B.2.3, it is evident that for a few difficult
WSI during leave-a-patient-out classification, the CNNs completely fail to classify either HER2
positive, HER2 negative or non-tumor class, hence, showing high variations in classification
accuracy between cross validation rounds. This effect is more prominent for two to three specific
WSI of the eleven WSI. Such low per-class accuracy reflects on a negative aspect of the deep
learning methods compared to traditional machine learning methods, where such an effect is
seldom observed. Due to complicated abstractions in the CNN layers, the cause is not fully
explainable, most probably, the data representations in the CNN do not lead to an appropriate
learning process during the leave-a-patient-out configuration for a few patients, due to high
inter-patient variability. The most feasible solution is a richer dataset from larger number of
patients.

8.4.7 Overall Observations

In summary, on carefully investigating the experimental results, it can be concluded that the pro-
posed methods including the handcrafted graph-based features with traditional machine learning,
and the novel self-designed CNN architecture provide promising results that compare favorably
with established methods for the computer-based analysis of H&E stained histopathological
images of gastric cancer. Overall observations showing comparisons based on different criteria
is provided in the following section.

8.4.7.1 Performance Summary: Class-wise and Evaluation Method-wise Comparison

The average performance of all the image analysis methods in the cancer analysis stage, with
respect to the different cancer categories in the two types of cross validation evaluation methods
is shown in Figure 8.26.

It has been observed in the experimental results earlier, that the per-class accuracies using
the six traditional machine learning strategies and deep learning methods show similar trends
between the three types of malignancy levels. From Figure 8.26, it is evident that the higher-level
classes tumors and non-tumor show the most superior prediction rates compared to the two tumor
subclasses. The class-wise results indicate that it is comparatively easier to distinguish non-tumor
class (average 88.43%) from both the tumor classes (average 91.60%) by the trained classifiers
due to distinct visual appearances, however, more difficulty is experienced to discern between
the two tumor types, namely, HER2 positive tumor and HER2 negative tumor. HER2 positive
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Fig. 8.26 Overall mean and standard error of per-class classification accuracy for all the methods over
both cross validations

tumor has intermediate recognition rates (average 71.61%) and discrimination from other two
tumor types. HER2 negative tumor has the least accurate classification (average 62.02%) for all
methods, that was expected as HER2 negative tumor represents tissue regions where tumor is
partially developed, hence there is also less or no immunohistochemical response from cells lying
in these regions. This class denotes the beginning of tumor proliferation or an intermediate stage
between no malignancy (non-tumor) and and high malignancy levels (HER2 positive tumor).
Visually, this tumor class has a blurred definition compared to the other two malignancy levels
in H&E stain, and shows highest classification confusion with the HER2 positive tumor type,
(observed in confusion matrices in Appendix B.1.3). Resolving this confusion was proved as
the main challenge to obtain good identification rates for both the tumor classes in H&E stained
tissue images.

Moreover, while comparing the two types of evaluation methods, it is observed that the
k-fold stratified shuffled split cross validation results are consistently more promising compared
to leave-a-patient-out cross validations. In the k-fold stratified shuffled split cross validation,
variations in entire sample population have been utilized for a better performance. Hence, these
results ensure highly desirable outputs in scenarios where partially annotated data in single or
multiple large-sized WSI of same patient is available for training purpose. In contrast, a lower
leave-a-patient-out performance, mostly seen for the two tumor subclasses, is predominantly
due to the biological variation between the limited number of available cases, which is further
enhanced by inter-WSI heterogeneity in stain intensity and malignancy levels. It leads to different
appearance-based characteristics for each tissue, thus, is more difficult for the classifiers to learn
characteristics of the patient being classified without any prior visual knowledge specific to
them. The effect has been more prevalent in a few (2-3) difficult WSI that are observed to show
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poor recognition rates, which adversely influences the overall classification measurements of
the system using all the described traditional machine learning and deep learning methods. This
inter-patient variability also accounts for the higher standard deviations of classification accuracy
compared to the other type of cross validation, that can be further noted in the box and whisker
diagrams in Appendix B.2.3. In order to improve leave-a-patient-out accuracies, learning needs
to be based on more extensive WSI datasets of diverse cases, which are currently limited.

8.4.7.2 Performance Summary: Feature-wise and Strategy-wise Comparison in Tradi-
tional Machine Learning

The magnified plots of the overall classification performance of the various feature extraction
approaches followed by traditional machine learning methods is provided in Figure 8.27. The
resulting line diagram shows the average balanced classification accuracies using both types
of cross validations, for 21 different configurations during comparative evaluation, in the order
given in Table 8.2. This chart emphasizes on the relative performance of each machine learning
strategy with respect to the characteristics of each feature group, and typical trends are observed.

Fig. 8.27 Magnified line diagram showing average BCA for the different feature groups and corresponding
traditional machine learning strategies

First and foremost, all the individual curves (each representing a traditional machine learning
strategy) have similar trends over the different feature extraction methods. This observation
proves that classification performance is more dependent to the suitability of the selected image
description method to represent the histological images effectively, as compared to the choice
of the traditional machine learning method. Secondly, it can be summarized that, as already
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observed in the sections showing experimental results for individual configurations, peaks can
be seen in a few feature groups, especially, the hybrid approach for combination of knowledge
using low-level state-of-the-art and high-level handcrafted features exhibit the highest prediction
performance, followed by hybrid low-level features, state-of-the-art color histograms (RGB and
HSV) and high-level handcrafted graph-based features using gARG[rF ], ncARGv+[rF ] and
ncARG[rF ] variants of the cell nuclei ARG. Hence, the proposed novel cell nuclei ARG graph-
based method compares favorably to most of the state-of-the-art feature extraction approaches.
High-level state-of-the-art features using Voronoi diagrams and Delaunay triangulation don’t
perform satisfactorily, further, nsARG variant of the cell nuclei ARG is observed to be less
suitable for the image analysis of gastric cancer regions.

Additionally, from the Figure 8.27, it is difficult to say which of the two classification
strategies, namely, single-stage classification or hierarchical classification has led to a better
classification. There cannot be certain answer as both the strategies perform comparable,
however, hierarchical strategy for two-stage categorization is more successful than the single-
stage differentiation mainly of the two tumor classes. Among the traditional machine learning
methods, SVM in single-stage strategy and random forest in hierarchical strategy tend to be most
superior, and their other counterparts have an intermediate performance. AdaBoost ensemble
learning in both strategies is seen inferior to other methods. Specifically, AdaBoost algorithm
shows an enhancement compared to other methods with a larger number of extracted features,
prominently seen using the hybrid feature sets and the two color histograms, and opposite effect
is seen for the smaller feature vectors, for example, GLCM statistics and Gabor filter-bank
responses. Such a dependence to the number of derived features is less obvious for SVM and
random forest machine learning methods, making them relatively more reliable than AdaBoost.

8.4.7.3 Performance Summary: Method-wise Comparison of Traditional Machine
Learning and Deep Learning

As observed in Figure 8.27, the three traditional machine learning methods show similar behavior
with few variations for each feature configuration. This observation for traditional methods
enforces that designing meaningful features to effectively describe the histological images for
estimating appearance-based characteristics of the tissues including texture, color, structure,
morphology, architecture and topology, are more significant to accurately discriminate between
the cancer categories instead of the selected machine learning method, and careful parameter
selection of classifiers can further lead to performance optimization.

An overall comparison of the machine learning methods by averaging the corresponding
balanced classification accuracy in the traditional route (with hybrid features) and deep learning
route is shown in Figure 8.28 to facilitate a comparison between the two routes.

Among the traditional machine learning methods, SVM shows the most favorable perfor-
mance over AdaBoost ensemble learning and random forests. A superior performance of the
SVM method proves that the derived image descriptors are relevant and good quality, a prereq-
uisite for this machine learning algorithm to perform well. The three deep learning methods
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Fig. 8.28 Overall mean and standard error of balanced classification accuracy for traditional machine
learning (using hybrid features) and deep learning methods

also have comparable recognition rates, where AlexNet framework has slight better performance
than proposed CNN architecture and ensemble learning outperforms both the individual CNN
architectures. The proposed CNN architecture shows higher robustness to AlexNet due to a better
leave-a-patient-out performance both in empirical analysis (Table 7.4.2.5) and experimental
evaluation (details in Section 8.4.6).

Om comparing the traditional versus deep learning methods, very small difference is ob-
served between the quantitative performances. SVM has best overall prediction rates followed by
AdaBoost, ensemble of CNNs, AlexNet CNN framework, random forests and the proposed CNN
architecture. So, it can be concluded that the three deep learning methods have a comparable per-
formance to handcrafted features and traditional machine learning methods, and can adequately
represent H&E stained histopathological images of gastric cancer without the requirement of
hand-engineered features. The significant overall observation suggests that the choice of suitable
image description among the traditional methods, and careful network architectural design
among deep learning methods are important requisites for successful realization of the image
analysis objectives in digital histopathology.

One interesting observation is that some traditional machine learning methods perform better
than deep learning methods for the cancer classification problem. On the other hand, for necrosis
detection, deep learning outperforms SVM traditional machine learning. This can be explained
by two main reasons. Firstly, as necrosis detection is a textural problem, low-level features
using GLCM statistics and Gabor filter-banks have been extracted for the same, however, the
results reported for cancer classification in Figure 8.28 are based on combined feature sets using
a more comprehensive high-level and low-level information. If the same low-level textural
features used in necrosis detection are applied for cancer classification, the performance of
traditional machine learning methods will be lower compared to deep learning methods, and
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has been already observed in Figure 8.27. Such high-level image description is not possible in
necrosis detection as cell nuclei shrink or disappear in necrotic tissues, making segmentation
and cell nuclei ARG construction very difficult. Secondly, image tile size in the cancer analysis
stage for traditional machine learning is larger (1024×1024 pixels) compared to deep learning
(512×512 pixels), but identical (512×512 pixels) for necrosis detection. This larger size for
automatic cancer analysis is an advantage to traditional methods due to availability of higher
context information, and may have contributed to better performance of SVM and AdaBoost
methods. This effect demonstrates the potential ability of deep learning methods and suggests
possible performance improvement with future enhancement of GPU capabilities such that
deeper network architectures can be investigated with larger image sizes.

8.5 Summary

In this chapter, the results and observations for the conducted experiments in image pre-analysis
stage, namely, necrosis detection and cell nuclei classification, and those for analysis of cancer
regions using handcrafted features and traditional machine learning methods as well as deep
learning methods, are described in detail.

For the pre-analysis stage, results are usually satisfactory for both necrosis detection and cell
nuclei classification. The deep learning methods have a favorable performance for automatic
detection of necrosis. Similarly, for classifying the cell nuclei segments, handcrafted features
with random forests show reasonable detection rates, though lower than necrosis detection due
to a more complex multi-class problem.

For the analysis of cancer regions, more favorable performance is achieved using k-fold
stratified shuffled split compared to leave-a-patient-out cross validation. Among the traditional
methods, high-level handcrafted graph-based features outperform majority of the state-of-the-art
features, and a hybrid feature set after combining low-level and high-level information shows
most desirable accuracies. Furthermore, the SVM method has overall superior results than ran-
dom forests and AdaBoost. The deep learning methods compare favorably to traditional methods,
with ensemble of CNNs showing best performance followed by the individual approaches, and
self-deigned CNN architecture is found more robust than AlexNet CNN framework.
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9.1 Introduction

In this chapter, image data and feature spaces in the HER2 and H&E stains are comparatively
visualized in order to obtain clearer insights to the observations of the conducted experiments.
Firstly, a representative image dataset in the HER2 stain is generated in a way similar to the H&E
datasets, corresponding to the three malignancy levels based on immunohistochemical response.
A set of low-level texture and intensity-based features are extracted from HER2 images and their
heatmaps are generated for a better visualization among the three malignancy levels. This process
is repeated for H&E images along with additional heatmaps for the high-level state-of-the-art
and handcrafted features. The observations of this section assist in further understanding of the
image statistics in both HER2 and H&E stains, the related complexity of the described problem
and the challenges faced to develop reasonable solutions in the H&E stain.

183
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9.2 Visualizing Image Statistics: HER2 Stain

In order to visualize the nature of images in the three malignancy levels for HER2 stain, a set of
five image tiles per class per patient are selected, totaling to 165 image tiles for the WSI dataset.
For a fair comparison, the HER2 stained WSI are also tessellated at 1024×1024 pixel size with
40× objective magnification, similar to the H&E images used in traditional machine learning
methods. Firstly, a visual inspection of available ground truth WSI data is performed in order to
analyze the regions in the defined malignancy levels. Following this, state-of-the-art low-level
feature extraction methods, namely, GLCM statistics, LBP histograms, HSV histograms and
RGB histograms, are applied to the images, and corresponding feature heatmaps are generated.
As cell nuclei segmentation and subsequent graph-based methods are developed specifically
for the H&E images, hence, the high-level graph-based feature extraction is not feasible for the
HER2 image dataset. Cell nuclei segmentation is much easier in H&E stain compared to HER2
stain, due to the characteristic properties of the former stain, which distinctly marks the cell
nuclei along with their boundaries in blue color and the cytoplasm in pink color, so the cell nuclei
can be separated from the remaining tissue regions. Such nuclei segregation is not observed
using HER2 stain due to different staining properties, thus, developing an automatic cell nuclei
segmentation procedure is highly challenging for the HER2 stain and outside the scope of the
undertaken image analysis goals focusing on the H&E stain.

9.2.1 Visual Inspection

The HER2 immunohistochemically stained WSI image data is carefully observed using visual
inspection of the available ground truth. A few representative examples of image tiles from
the three predefined malignancy levels in the HER2 stain are shown in Figure 9.1. On visually
exploring the WSI data in the three malignancy classes, distinct characteristics of the tissue
regions can be observed as follows. The tissue areas in non-tumor class contain smaller and
rounder cells of dark gray or bluish color, scattered in a gray or off-white intercellular fluid
with a meshy appearance. In HER2 positive tumor regions, cells are usually larger, elongated
and oval-shaped, are stained light blue-gray with dark blue nuclei and one or more cells are
surrounded by brown bubble-like structures. Intercellular fluid is mostly dark brown in color,
and intercellular distance is very less due to overlapping cells. Furthermore, cells arrange in
dense patterns, and show mitosis as they contain more than one cell nucleus. Intracellular fluid
can also be seen inside the cells, that is granular and gray-blue with white spaces in between
and cell boundaries are mostly not distinct. The HER2 negative tumor class consists of light
gray cells with dark gray nucleus in a gray and granular intercellular fluid. The most evident
difference of this category with the HER2 positive tumor is the absence of brown colored regions.
Other properties such as intercellular distance, cell size, mitosis occurrence, cellular patterns and
arrangements, and cellular density are intermediate in nature compared to the other two classes.

Therefore, visual inspection of the three tumor types itself suggests that the discrimination
between these regions in HER2 stain is a fairly simple task due to mostly unique visual charac-
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(a) (b) (c)
Fig. 9.1 Representative examples of images in three malignancy levels using HER2 stain (a) HER2
positive tumor (b) HER2 negative tumor (c) Non-tumor.

teristics. Also, the computer-aided categorization of malignancy levels in HER2 stain can be
achieved with good precision using the established low-level feature extraction methods, further
demonstrated in the next section.

9.2.2 Feature Heatmaps

The feature heatmaps generated for HER2 representative dataset corresponding to their GLCM
statistics, LBP histograms, HSV histograms and RGB histograms are shown in Figure 9.2. Blue,
yellow and pink represent the classes non-tumor, HER2 positive tumor and HER2 negative tumor
respectively, and each column represents one feature vector corresponding to each sample. The
numeric values of the variables are represented from green to red representing smallest to largest.

(a) (b)

(c) (d)
Fig. 9.2 Heatmaps of the extracted feature vectors showing image statistics in the HER2 stain (a) GLCM
statistics (b) LBP histograms (c) HSV histograms (d) RGB histograms.
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It can be easily observed from the feature heatmaps for the extracted low-level features, that
clear distinctions are visible among the image statistics for the three malignancy levels and show
clusters of feature vectors of the same malignancy class. A higher similarity can be seen between
non-tumor and HER2 negative tumor classes due to absence of the distinct HER2 staining of the
tissue, as the HER2 immunohistochemical stain is most prominent in the HER2 positive tumor
regions. These feature maps also confirm the analysis during visual inspection. This may lead
to the conclusion that the described problem of computer-based classification for analysis of
cancer regions is much easier to solve in the original HER2 stain compared to H&E stain, and
will result in higher classification performance using the described traditional machine learning
and deep learning methods.

9.3 Visualizing Image Statistics: H&E Stain

The final working datasets used for experiments with traditional machine learning methods
are also utilized for the visualization purpose, by using visual observation and generation of
corresponding feature heatmaps for low-level state-of-the-art features including GLCM statistics,
LBP histograms, HSV histograms, RGB histograms and Varma-Zisserman textons, high-level
state-of-the-art features i.e. Voronoi diagram and Delaunay triangulation, high-level handcrafted
cell nuclei ARG-based features and the selected subset of hybrid features.

9.3.1 Visual Inspection

A few representative examples of image tiles from the three predefined malignancy levels in the
H&E stain are shown in Figure 9.3. On the visual inspection of image regions in the H&E stain,
the following is observed. The non-tumor regions consist of smaller cells mostly stained in dark
purple color with deep pink intercellular spaces. Cellular density is lower as cells are scattered
in the connective tissue with a higher intercellular distance and no distinct arrangements. In
contrast, HER2 positive tumor regions consist of deeply stained large and elongated cells with a
very high cellular density and low intercellular distance, gathered in groups and arranged densely
with highly overlapping cell boundaries. Sometimes, only cell nuclei are stained dark purple
with a granular light purple cytoplasm, and the intercellular spaces are largely light-to-medium
purple. Some cells also show mitosis with multiple nuclei. Most of these observations are similar
to those observed in HER2 stain for both classes, with the exception of absence of distinct
staining of HER2 positive regions. Moreover, HER2 negative tumor regions usually show
intermediate properties, however, unlike in the HER2 stain, there is no clear distinction with
HER2 positive tumor in terms of staining of cells. Also, these areas partly contain elongated
larger cells, and partly rounded smaller cells. Cellular arrangements are also beginning to arrange
in patterns. The tissue composition of each type of malignancy, along with interactions between
the different types of cell nuclei varies. These properties, along with other subtle changes not
distinctly noticeable in H&E stain, are attempted to be represented by suitable hand-engineered
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features to facilitate an accurate automatic classification using traditional machine learning
methods and appropriate deep CNN architectures. An example of such correspondence between
tissue malignancy levels and respective cell nuclei ARG has been established in Section 7.3.3.3
(Table 7.1).

(a) (b) (c)

Fig. 9.3 Representative examples of images in three malignancy levels using H&E stain (a) HER2 positive
tumor (b) HER2 negative tumor (c) Non-tumor.

9.3.2 Feature Heatmaps

The feature heatmaps generated for the H&E stained image dataset corresponding to their
GLCM statistics, LBP histograms, HSV histograms, RGB histograms, Varma-Zisserman textons,
Voronoi diagram and Delaunay triangulation based features, nsARG[rF ] handcrafted graph-
based features and selected hybrid feature set are shown in Figure 9.4.

From the heatmaps of H&E images using all the mentioned state-of-the-art and handcrafted
features, differences in the three types of malignancy levels are visualized mainly for the non-
tumor class, with higher similarities in the two tumor classes, namely, HER2 negative tumor
and HER2 positive tumor. Such visualization is quite consistent with the visual inspection
and observations attained using experiments in traditional machine learning and deep learning
methods, showing greater confusion to classify the two tumor classes in general. The image
statistics of the two tumor classes in H&E stain show higher closeness with subtler differences not
clearly visible in the heatmaps. In some cases such as RGB histograms and graph-based method,
the extracted feature vectors are long and their heatmaps require to be magnified to observe the
smaller details. On combining low-level and high-level features followed by feature selection,
the hybrid feature set shows higher distinction compared to individual features which is also
suggested by the classification performance. However, the heatmaps are not always indicative
of the final classification accuracy, especially for LBP histograms, and Voronoi diagram and
Delaunay Triangulation where higher visual distinction but a lower performance is observed, so,
the classification performance finally depends on the overall prediction process after complex
learning by classifiers using traditional machine learning approaches.

Therefore, all the feature heatmaps are vividly indicative of the complexity to distinguish
between HER2 negative and HER2 positive tumor classes in the H&E stained images resulting
in higher prediction confusion of the automatic classification methods. This complexity is also
confirmed by the visual inspection of the H&E stained images in the three malignancy levels.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9.4 Heatmaps of the extracted feature vectors showing image statistics in the HER2 stain (a) GLCM
statistics (b) LBP histograms (c) HSV histograms (d) RGB histograms (e) Varma-Zisserman textons (f)
Voronoi diagram and Delaunay triangulations (g) nsARG[rF ] features (h) selected subset of hybrid
features.
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9.4 Summary

In this chapter, the three defined immunohistochemistry-based malignancy levels are observed
with the help of visual inspection, in addition to visualization of generated heatmaps of the
respective feature vectors in both HER2 and H&E stains. It is clearly observed that the underlying
image statistics of the HER2 stain are quite distinct for the given malignancy regions, however,
in the H&E stain, higher similarities are observed especially for the two tumor classes. Such
nature of image data presented a strong challenge in this work during the analysis of cancer
regions to perform automatic immunohistochemistry-based classification in the H&E stain that
led to the development of sophisticated methods for performance optimization. The chapter is
also able to highlight the main reasons behind lower classification accuracy for HER2 negative
tumor class, which in turn lowers the overall and balanced accuracy of the developed image
analysis framework. It can be concluded that due to higher complexity of information in H&E
images, the performance (in terms of achieved precision) of the developed methods for the given
problem is ultimately limited by the tissue characteristics of the malignancy types in H&E stain.
Nevertheless, the proposed handcrafted features with traditional methods and deep learning
methods have been specifically designed to capture the finer visual details in the three classes,
as discussed in the previous chapters. The results and observations of the developed methods
establish that computer-based analysis of gastric cancer tissues is feasible in the more routinely
used H&E stain.





CHAPTER 10

Summary

Contents
10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.2 Future Work and Recommendations . . . . . . . . . . . . . . . . . . . . . 195

10.2.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.2.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.1 Conclusions

In the current practice of medicine, visual examination of tissue slides is the routinely used
method for diagnosis and prognosis of diseases in histopathology, as the disease characteristics
can be identified mainly from tissue appearance. Histological images are inherently complex
in nature and contain a wide variety of visual information with different stains, magnifications,
tissue types and methods of acquisition. Computer-based analysis of histological images is
a primary focus of research in the upcoming domain of digital pathology. Recent literature
in this area consists of a wide range of analysis techniques developed for addressing diverse
histopathological questions related to specific disease conditions. The main objective of these
methods is to assist pathologists in diagnostic and routine tasks, and aid further research in
biology and medicine.

Gastric cancer is a major cause of cancer-related deaths in the world. Histopathological
observations in gastric cancer tissues is routinely made by pathologists using visual inspection
of microscopic slides which requires prolonged manual efforts. Computer-based analysis of
gastric cancer whole slide images is an interesting field of research in digital pathology. The
research work presented here provides a comprehensive account of the medical image analysis
methods studied, modified and developed for effective knowledge representation and description,
categorization in multiple scenarios, and applications in histopathological whole slide images of
gastric cancer. The study concentrates on the more widely used H&E stain and is largely based
on the underlying HER2 immunohistochemical information in the cancer-affected tissue regions.
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Each of the three analysis stages, namely, preparation of materials, image pre-analysis and
analysis of cancer regions are described in detail with their individual contributions, accomplish-
ments and shortcomings. In the preparatory stage, expert knowledge of pathologists has been
utilized to generate the required image datasets for pre-analysis and cancer analysis stages. Semi-
automatic registration, annotation transformation between stains and ground truth generation
using virtual microscopy tools has been demonstrated for this purpose.

In the image pre-analysis stage, tasks have been undertaken to simplify the process pipeline,
specifically the subsequent cancer analysis problem, by exploring techniques mainly for necrosis
detection, cell nuclei segmentation, cell nuclei classification and segmentation enhancement. An
automatic method using textural analysis with traditional SVM-based learning and deep learning
has been proposed for detecting necrosis in histological whole slide images. After quantitative
and visual assessment of results, it can be concluded that the necrosis detection method identifies
target areas in the selected regions of interest in an effective and timely manner. These smaller
necrotic areas have been excluded before analysis of cancer regions. Additionally, in this stage,
an advanced fully automatic cell nuclei segmentation method has been applied to isolate cell
nuclei followed by multiresolution analysis and segmentation enhancement using a cell nuclei
classification approach. The cell nuclei segments are favorably identified as one of the seven
categories using object-level features followed by random forest machine learning. Improved cell
nuclei segmentation results have been achieved using a multiresolution approach by combining
diagnostically useful and eliminating undesirable information from individual magnifications.
Such visual information fusion has further assisted computer-aided analysis of cancer regions
in the next stage. The tasks in this stage have been adapted and demonstrated as applications,
namely, automatic necrosis detection and automatic determination of tissue composition, by
deploying the developed methods on unlabeled data that show correspondences to the ground
truth generated by expert pathologists. These can be utilized by professionals and computer tools
in diagnostic and prognostic tasks.

The cancer analysis stage emphasizes on methods for automatic categorization of the ma-
lignancy levels in H&E stained gastric cancer microscopic images based on their HER2 im-
munohistochemical response. It is difficult to visually differentiate the tumor classes in H&E
stain, the reason that H&E is used for primary diagnosis and immunohistochemical staining is
subsequently examined. However, there are characteristics not easily discernible by human eyes
but can be exploited by automatic analysis systems, and this idea forms the main motivation
behind this stage of research. For this purpose, traditional methods and deep learning methods
are explored. Among traditional methods, low-level and high-level image descriptors have
been studied, followed by traditional machine learning and classification. For the high-level
handcrafted feature extraction, a novel approach is developed in the form of cell nuclei attributed
relational graphs for knowledge description in gastric cancer, and extensively studied with varia-
tions in design and implementation to obtain multiple graph variants. The graph-based methods
in general show an overall reasonable performance compared to the state-of-the-art texture,
color and intensity-based features, and are especially superior to the morphological features
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and identities of individual cell nuclei, reflecting the importance of spatial neighborhoods and
topological properties of the tissue. These hand-engineered features are also found to be more
informative representations of the cancer tissue compared to the most widely used proximity
graphs, leading to better classification accuracy in acceptable computational times. The cell
nuclei attributed relational graphs can provide a comprehensive knowledge of tissue architecture
by combining properties of individual cell nuclei with their neighborhood interactions and global
arrangements. The results based on high-level methods also suggest that perfect segmentation is
not a prerequisite for good image classification. It can be stated that the handcrafted graph-based
method has proved its ability as potentially powerful tool for describing and analyzing tissue
architectures in digital histopathology. Also, combinations of the state-of-the-art and handcrafted
features enhance the individual classification rates due to more extensive tissue information,
as demonstrated by the hybrid features. The classification accuracy has been improved by
increasing image tile size, thereby, enhancing the associated context information with larger
fields of view at the highest magnification.

After the feature extraction methods, different traditional machine learning approaches
are applied. A comparative analysis between six different classification strategies using three
algorithms, namely, support vector machines, AdaBoost ensemble learning and random forests
has been made. The classification strategies show similar trends in classification accuracy that
vary with the configuration of handcrafted features, reflecting that effective and powerful image
representation and description is the most crucial prerequisite before applying any traditional
machine learning method. From experimental evidence, the final choice of the machine learning
algorithm does not have a major implication, but support vector machines show more suitability
in most of the experiments, ensuring that the extracted features are largely relevant. AdaBoost
ensemble learning has a superior performance with larger features sets, however, SVM and
random forests are quite robust and not particularly affected by the number of features. Hence,
the quality of image features contributes more to the overall classification performance of the
system compared to the choice of traditional machine learning method. This phenomenon
possibly explains the reason why the principle focus of previous and current research related to
image analysis in digital histopathology is on the description of tissues and their components in
a meaningful manner.

Deep learning methods are also explored in the cancer analysis stage. Firstly, several CNN
architectures are empirically investigated to determine a suitable design for learning significant
characteristics of histological images. A preliminary self-designed CNN architecture is proposed
and applied for two classification problems, namely, cancer classification based on HER2
immunohistochemical response and necrosis detection. The proposed CNN is quantitatively
compared with the AlexNet framework which is popular for general object classification, as well
as ensemble of the two CNNs. The deep networks are evaluated for necrosis detection to ensure
their generalizability. To the satisfaction of the author, deep learning methods are able to keep up
the promise of performing well for both the classification problems without the requirement of
hand-engineering features. These methods compare favorably and even outperform handcrafted
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features followed by traditional machine learning for a subset of experiments, however, these are
also superseded by a few traditional methods in other occasions. It can be concluded that, for
both the classification problems, the empirically selected and studied deep networks adequately
represent H&E stained histopathological images of gastric cancer at high magnification with
varying stain intensities and malignancy levels, even for smaller image sizes than traditional
methods for one of the problems. Ensembles of these networks further help in combining
individual contributions and reducing system variance. Therefore, deep learning is promising
and has the potential of understanding and representing histopathological images in a way similar
to human visual system and derived handcrafted descriptors.

As described in this study, a part of the undertaken classification tasks are clearly distin-
guishable by the human visual cortex, namely, necrosis detection and cell nuclei classification.
However, the task of cancer classification in H&E stained gastric carcinoma WSI based on
HER2 immunohistochemistry is more complex to be visually accomplished, and computerized
methods can achieve even superior discrimination rates to human observation showing inter-and
intra-observer variability, an important finding which may be fascinating for future researchers.
Experimental results in the analysis of cancer regions in H&E stain consistently show that
non-tumor can be easily distinguished from tumor, but it is more difficult to distinguish the two
tumor classes. Especially HER2 positive tumor is also better distinguishable from the other two
types, however, HER2 negative tumor has highest prediction error due to intermediate properties.
Nevertheless, the observations based on automatic analysis in H&E stain are highly encouraging,
while compared to the manual expert investigation in the more conveniently visualized HER2
stain showing significant subjective variability of observers, already reported in [Behrens 2015].

In the described experiments, the gastric cancer WSI datasets are considered heterogeneous
due to the following reasons. Firstly, polygon areas are marked by expert pathologists using
HER2 immunohistochemical staining which define varying levels of malignancy in the tissue.
Secondly, the WSI datasets also exhibit different degrees of H&E stain. Thirdly, each WSI is
acquired from the specimen of one patient, thus, the datasets contain inter-patient biological
variability. The encouraging results obtained during the evaluation phase represent the robustness
of the proposed framework to heterogeneous WSI data, and its potential ability to be adopted in
practical environments. Therefore, the comprehensive goals of this studies to achieve effective
computer-based histological image analysis using the routinely examined H&E stained WSI of
gastric cancer has been satisfactorily accomplished.
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10.2 Future Work and Recommendations

The future directions and outlook of this research, and the useful recommendations are as follows.

10.2.1 Future Work

The future work should chiefly focus on optimizing system performance and computational
requirements, and expanding the current database, as explained in the following sections.

10.2.1.1 Performance Optimization

Optimization of the system performance must be pursued in future for both traditional route and
deep learning route as follows.

1. Handcrafted features and traditional machine learning: The current handcrafted feature
extraction and traditional machine learning methods provide satisfactory results, however,
there is still scope of improvement, especially in the third stage for analysis of cancer regions.
Refining the current image analysis methods to reduce the confusion between tumor types is
recognized as the main future direction of this study. This can be attempted by the design
of further suitable hand-engineered features followed by exhaustive comparative evaluation
with the currently developed and state-of-the-art methods. A refinement of categories in the
malignancy levels and a more elaborate classification hierarchy of gastric malignancies at
the cellular and tissue levels after reassessment with expert pathologists is also advisable for
improved performance.

2. Deep learning: The next steps of study will be to enhance the proposed CNN architecture by
designing deeper and wider convolutional neural networks for achieving higher classification
accuracy for the mentioned classification problems. This can be made possible in the future
with an advancement of GPU hardware architectures or using cascades of GPU. This will
ensure higher availability of system resources for allowing design and implementation of
complex networks and higher resolution images. The proposed CNN architecture will also
be applied on other diverse classification problems in histology, to further investigate its
generalizability. Other interesting directions include comparative evaluation with successful
CNNs in digital histopathology, for example, U-Nets [Ronneberger 2015] have gained recent
attention for their accomplishment in histological segmentation that can be extended in H&E
WSI based on immunohistochemistry, and ensemble learning can be examined in detail to
combine multiple popular networks. Reverse analysis of representations inside the deep
networks to identify the particular characteristics that allow the CNNs to make accurate
decisions and to understand better why some architectures perform better than others, is also
an exciting future research prospect.

Classifiers based on traditional machine learning and deep learning can be integrated in future,
in order to harmonize their individual strengths. Traditional methods can be combined with deep
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learning by first performing handcrafted feature extraction along with location information to
be learned by layers of convolutional neural networks. A reverse approach leading to feature
extraction using representations in layers of deep networks and classification by traditional
methods can also be investigated in this direction.

10.2.1.2 Computational Optimization

Optimizing computational requirements is one of the most essential measures in order to make a
system operable in practical environments, for instance, use in online computer-aided diagnosis
and content-based image retrieval software. Attempts towards algorithm optimization in histo-
logical image analysis directly at the WSI level can prove pivotal in shaping the future of digital
pathology. An approach based on parallel processing frameworks for sharpness adjustment of
WSI using distributed computing mechanisms is presented in [Zerbe 2011], and this system can
be further explored to process and analyze entire whole slide images. Such parallelization of
operations to generate, process and merge the constituent image tiles (or regions) at different
magnifications, and yield the resulting classified WSI in real-time may be complex using the
present state of technology but can be surely achieved with enhancement of computational
power and use of advanced devices for graphics processing such as the GPU in the near future.
Therefore, it is advisable that the developed algorithms are modified for real-time analysis of
large-sized WSI using advanced parallel processing techniques.

In this work, most of the tasks have low computational requirements, however, can be further
optimized using algorithm optimization methods. Among the handcrafted feature extraction
approaches, the aim will be to optimize program execution especially for the current graph
constructions with corresponding global measures and some of the self-implemented state-of-
the-art features. Implementations of the traditional machine learning methods have already been
optimized over the past several years through a number of libraries and frameworks developed
for data mining in various programming languages. These have been made available as open-
source toolkits, for example, OpenCV for C++ [Bradski 2013], SciKit-Learn [Pedregosa 2011]
for Python and WEKA [Hall 2009] for JAVA. This work mostly uses optimized programs to
implement traditional machine learning, except AdaBoost ensemble learning which has been
partly optimized in C# in the Charité working group, but is slower than the other machine
learning methods as discussed in Appendix A. Hence, further optimization of AdaBoost is also a
prospective research direction.

Among the deep learning methods, training the convolutional neural networks from scratch
using the faster implementations on the GPU requires around two days for the proposed CNN
architecture and 9 hours for AlexNet CNN framework in the current experimental setup. On the
other hand, an optimized implementation of feature extraction followed by traditional machine
learning for same sized data requires relatively smaller duration, of the order of a few minutes
or hours, to complete the training process even on the CPU. Hence, there is a considerable
difference of time requirements for the two distinct learning routes. In this work, performance
using deep learning is found comparable to traditional machine learning, and shows potential of
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significantly outperforming state-of-the-art technology in future. The trade-off between accuracy
versus time efficiency requires further experimental evidence to ensure an upper hand of deep
learning algorithms in digital histopathology. Hence, a future consideration will be to optimizing
the deep learning algorithms, especially to reduce the present time requirements in the training
phase. Space requirements can also be reduced by on-the-fly data generation and augmentation
before batch input to the training process.

10.2.1.3 Database Expansion

In the preparatory stage of the process pipeline, ground truth has been generated by expert
pathologists by marking manual annotations in the high resolution WSI. Annotating the datasets
to generate accurate ground truth is a tedious and exhausting process, therefore, the current
experimental setup has been tested on a small number of WSI. Moreover, in the author’s
knowledge, there are no existing publicly available labeled datasets for the explored research
problems. In general, for most of the classification configurations in the cancer analysis stage,
more favorable performance is achieved when a few labeled tiles of the same patient are
utilized by the system to learn unique biological characteristics of a patient. Additionally, in the
presently developed deep learning methods, large number of images are generated using dataset
augmentation, however, the size of image datasets for successful training is an experimental
question to be further investigated. Hence, extension of the current reference WSI datasets to
take into account more biological variations among patients, can facilitate large-scale training to
enhance the prediction capabilities and increase the robustness of the proposed system. In order
to ensure higher practical operability, the proposed methods should be investigated using more
extensive and varied WSI datasets from a larger number of patients.

The proposed histopathological image analysis framework can be tested on other types of
tissue images in digital pathology. With data acquisition from different sources including multiple
WSI scanners or laboratories, there is a possibility of variations in stain properties between
samples. With expanded WSI datasets acquired from several sources in future, a preprocessing
step using stain normalization methods [Khan 2014] can be introduced to the current process
pipeline. This challenge has not been considered in the present research due to WSI data
uniformly acquired from the same WSI scanner and laboratory, and original correlations between
the two stain properties (HER2 and H&E) required to be investigated without disturbing their
mutual and independent distributions. Other reasons are reduced system complexity, and the
initial objective to develop more robust algorithms for heterogeneous datasets with variations to
stain distributions.

An option for expanding the scope of different aspects of the framework is to use open-source
benchmark datasets made available for specific applications in different challenges, for instance,
Mitosis Detection Challenge [Veta 2015] for mitosis detection in breast cancer histopathology
images, Camelyon Challenge [ISBI 2016] for automated detection of metastases in H&E stained
WSI of lymph node sections, Cell Tracking Challenge [Maška 2014] for tracking moving cells
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and Glas Challenge [Sirinukunwattana 2017] to isolate tissue glands in colon cancer images.
Such large-scale datasets are currently being developed to facilitate research in deep learning.

10.2.2 Recommendations

A few additional recommendations for image analysis in digital histopathology are as follows.
There is a need to consider the information at different magnifications of a whole slide image in
order to capture properties at both cellular and histological levels. Navigating a WSI using virtual
microscopy software [VMscope 2010b] is made possible at different magnifications using a
hierarchical file storage structure. A multi-scale framework using parallel processing techniques
is presented in [Huang 2011], where sparse coding and GPU programming are explored and
dynamic sampling techniques are used to rapidly identify fields of interest and analyze breast
biopsy histopathological whole slide images. The authors report their computational times on
WSI comparable to processing times of pathologists. Furthermore, a multiresolution approach to
combine visually significant information at different magnifications to improve segmentation
results in gastric cancer images has been presented in the pre-analysis stage of this work.
For future research, the author recommends analysis of multiresolution or hierarchical data
representations, because it has already been observed that different resolutions can provide
complimentary information, playing a substantial role to obtain more desirable outcomes than a
single resolution.

Deep learning in digital histopathology is still in its early stages of development, and needs to
be extensively studied. Presently, it faces a few apparent challenges. For instance, classification
problems in histology are hard and diverse with various types of tissues, tumor classes and
stains and high similarities in appearance. Further, to train a network for dedicated supervised
classification problems, experiments should be performed with vast problem-specific image
datasets. This big data requirement can address the challenge of limited availability of ground
truth in digital pathology, as the demand from deep learning can positively encourage the scientific
community to establish large-scale open-source histopathological repositories for research. A
few repositories have already been introduced in academic, industrial and independent areas
listed at [DPA 2016] and can be used for this purpose.

Usually, large fields of view are investigated to capture the associated context information,
so training deep networks for tissue images can have higher time and space requirements on
the GPU. Limited memory configuration of the state-of-the-art graphics cards may restrict
GPU-based computation for digital pathology applications. The experimental evidence on the
gastric cancer WSI datasets shows comparable description and classification power of deep
learning methods versus traditional machine learning methods, so it is still early to predict if
deep learning derived abstractions will be able to completely replace handcrafted features in
the future of digital pathology. Undoubtedly, in the past years there has been more emphasis on
handcrafted features due to certain unique characteristics of tissue images, and deep learning is
fairly recently introduced in this field. However, the hardware developments seem promising and
may lead to application of wider and deeper networks, the effect of which is still to be examined.



10.2 Future Work and Recommendations 199

The phenomenon of rapid GPU development has been actively discussed [Needham 2016]. We
have also seen that theoretically there are immense possibilities of the number of different deep
network architectures that can be designed due to the involvement of several design parameters.
Therefore, as the GPU capabilities grow with time, we may soon witness breakthroughs in this
area of research.

Other recommendations for future include extending to video or spatio-temporal domain
where time is an additional dimension accounting for motion, deformation or changes in the
appearance of disease. Three-dimensional data also proves useful for volumetric analysis of
cancers, using reconstructions and depth information in thick tissues obtained from surgical
resections. Combining information from different modalities, as well as additional knowledge
from signals, metadata and other semantic sources may prove beneficial for extracting compre-
hensive knowledge for more informed diagnostic decisions and treatment planning. This calls
for development of sophisticated algorithms to facilitate multimodal analysis of images that have
some common characteristics. It is an interesting field where different advanced technologies
can be employed to acquire complete information from various sources regarding a particular
condition such as different types of microscopic techniques.
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A.1 Hardware Specifications

The processes of the proposed image analysis framework have been implemented using two
computers and GPU of one of the computers. The first computer has Intel Core i7-3700 processor
at 3.40 GHz with 16 GB RAM and Microsoft Windows operating system. It is used for accessing
the WSI data, creation of image datasets in the preparatory stage, all the procedures of the
pre-analysis stage, state-of-the-art and handcrafted feature extraction followed by traditional
machine learning methods during the analysis of cancer regions, and quantitative and comparative
evaluation of methods at each stage.

The second computer mostly implements the deep learning modules because of availability
of desired GPU. The system specifications for this computer are Intel Core i7-4790 processor at
3.60 GHz with 15 GB RAM and Ubuntu 14.04 operating system. The available GPU hardware
is NVIDIA GeForce GTX 660 with 2GB memory. Training and testing of the convolutional
neural networks is performed using GPU programming to achieve higher time efficiency over
CPU [Strigl 2010].
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A.2 Operating Systems

As discussed above, one computer has Microsoft Windows while the other computer (with
GPU) has Ubuntu 14.04 as the operating system. The reasons for working with two different
operating systems are as follows. Firstly, Microsoft Windows is widely incorporated for routine
practice and research in the current medical environments. Hence, the developed methodology
and applications are convenient and feasible to use for the medical professionals, scientists,
students and persons with limited technical knowledge due to familiarity and user-friendly
interface. Moreover, the second computer has been mainly used for implementing deep learning
methods, which were (at the time of research) and are still at early stages of development. The
documentation of the related software frameworks were observed to be more advanced, flexible
and up-to-date for the Linux-based operating systems compared to Windows systems, thus, it was
less challenging to organize the deep learning experiments using the second machine. However,
with introduction of newer software packages in Windows recently, the deep learning methods
can be transferred and adapted to Windows-based machines for practical usability in the medical
community.

A.3 Programming Languages

The programming languages considered for implementation of various modules of this re-
search are C#, MATLAB, and Python. However, majority of the modules are written in C#.
C# is intended to be a simple, modern, general-purpose, object-oriented programming lan-
guage [ECMA 2006] and enables developing secure and robust applications, especially for .NET
framework. C# and .NET are usually preferred in digital histopathology due to the following
reasons. Firstly, several libraries for accessing histological whole slide image data are available
in C#, giving ease of access to the large-sized WSI and corresponding annotation data. Also,
C# is easy to integrate with Microsoft’s technologies which is an important consideration, as
Microsoft Windows is the most commonly used operating system for the deployment of medical
image processing and analysis applications in practical settings. Additionally, VMscope GmbH,
the company providing software for WSI image access in this work, is a certified Microsoft
partner and has C# modules for reading the WSI data and basic slide level operations, thus,
the subsequent analysis methods and applications are also mostly developed in C#. This lan-
guage is used for most of the process pipeline including the procedures of the preparatory stage,
cell nuclei segmentation and feature extraction followed by multiresolution enhancement in
the image pre-analysis stage, state-of-the-art and handcrafted feature extraction and AdaBoost
ensemble learning method during the analysis of cancer regions, and the generation of all the
evaluation results in the research. The integrated development environment (IDE) selected for
implementation in C# is Microsoft Visual Studio 2012.

MATLAB (R2010a) is the second programming platform applied in the study, specifically for
implementation of Varma-Zisserman texton-based state-of-the-art feature extraction, SVM-based
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traditional machine learning method with and without discriminative thresholds, and generation
of certain diagrams, e.g. ROC curves and P-R curves, for clear visualization. MATLAB
is primarily selected because of the availability of corresponding time-efficient open-source
modules using the platform. In general, MATLAB offers several advantages such as built-in
mathematical operations on arrays which is suitable for two-dimensional data leading to fewer
lines of code, and optimized generation of graphical outputs. An additional reason for using
MATLAB especially for SVM learning is its low computational requirements of the program,
and also facilitates the comparison of computational times with the other two traditional machine
learning methods using the other two selected programming languages.

Python programming is used for implementation of a few methods, especially Gabor filter-
bank feature extraction and grid-based parameter selection in SVM learning, random forests
machine learning, and deep learning methods. The prime reason for selecting this language for
developing the deep learning methods is due to the availability of suitable and well-documented
open-source software framework for Linux-based system in Python. Random forests are explored
using Python libraries again to facilitate comparison in computational times with the other
traditional machine learning methods using other programming languages. Python’s main
advantages are straightforward syntax, fast speed and availability of large number of resources
for developers. The IDEs in which the Python modules are written include JetBrains PyCharm
and IDLE.

A.4 Supporting Software

The supporting software, libraries and frameworks utilized for different stages of the histological
image analysis are described as below, in sequence of their usage.

1. VM Slide Explorer 2010: It is a virtual microscopy application that allows viewing and
navigating virtual slides efficiently on the monitor [VMscope 2010b]. It is mostly used for
viewing the annotation marked by expert pathologists on HER2 immunohistochemically
stained WSI, and the corresponding selection of regions of agreement from H&E stained WSI.
Also, the reference data for necrosis detection using the splitting approach was generated by
expert pathologist from the WSI with the help of this utility. It is proprietary software, and its
license is provided by VMscope GmbH.

2. Virtual Slide Access SDK 4.0: This toolkit allows users to add own functionalities and to
use existing image analysis tools in the virtual microscope. The basic functionality of a virtual
microscope such as opening of several image formats, navigation, annotations etc., is provided
[VMscope 2010a]. The modules of this toolkit are used in C# for accessing WSI data for
the succeeding image processing and analysis. It is proprietary software, and its license is
provided by VMScope GmbH.

3. CognitionMaster: It is open-source software that offers object-level image analysis
[Wienert 2013]. It allows straightforward development of object-related interactive or fully
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automated image analysis solutions. ROIManager is a plugin developed for use with Cog-
nition Master, specifically for ease of annotations in virtual slides, that is also open-source.
This software is used in the preparatory stage for generating and reviewing of ground truth
annotations for cell nuclei segmentation evaluation, cell nuclei classification and necrosis
detection using the merging approach.

4. ViSPEe:Virtual Slide Processing Environment(ViSPEe) provides tools specifically for as-
sisting analysis from remote locations. Image data is stored on a remote server and a web
provider is used for accessing it. It is written in Java and being used with Eclipse environment.
One of its applications is creating different kinds of annotations for an image, e.g. points,
lines and polygons. The annotation data is stored in an XML file. It has been extended for
creating correspondences between pairs of slides, where one XML file containing registration
data is stored for a pair of images. This software is applied during semi-automatic registration
between the two stains in the preparatory stage. The utility was developed during Virtual
Specimen Scout [VSS 2010] project. It is used by collaborating partners of Charité University
Hospital, and not available commercially.

5. LIBSVM: LIBSVM [Chang 2011] library is applied for the SVM-based operations. LIBSVM
is an open-source library written in C++ and has MATLAB and Python extensions. It provides
the options of different SVM kernels supporting classification and regression. Specifically, in
this work, its Python tool is used for parameter selection using grid search, and MATLAB
modules for SVM training and classification.

6. Python SciKits: SciKits (SciPy Toolkits) are open-source add-on packages for
SciPy [Jones 2015] consisting of implementation of different scientific tools. A SciKits tool
is applied from SciKit-Image [vanderWalt 2014] package for computing state-of-the-art low-
level Gabor filter-bank features. Other modules are used from SciKit-Learn [Pedregosa 2011]
package for random forest machine learning and classification.

7. OpenCV (EmguCV): OpenCV (Open-source Computer Vision) [Bradski 2008] is an open-
source library written in C/C++, containing programming functions for computer vision
and image analysis. EmguCV wrapper [Shi 2013] is a cross platform .NET wrapper to
the OpenCV image processing library. Among state-of-the-art feature extraction methods,
HSV histograms are computed and Voronoi-Delaunay graph construction is performed using
EmguCV library in C#.

8. Accord.NET framework: Accord.NET [Souza 2014] is a framework for scientific comput-
ing in .NET, consisting of audio processing, image processing and machine learning libraries
written in C#. These libraries are employed for state-of-the-art low-level feature extraction of
GLCM measures and LBP histograms.

9. AForge.NET framework: AForge.NET [Kirillov 2013] is a .NET framework for computer
vision and artificial intelligence written in C#. Its utilities are used to generate a few state-of-
the-art low-level features such as RGB histograms and gray histograms in timely manner.

10. RapidMiner Studio: RapidMiner is a cross-platform software mainly for data mining,
machine learning and analytics [Hofmann 2013]. The basic version of the software is freely
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available. It has been utilized for correlation analysis on hybrid feature vectors, followed by
removal of correlated features for testing combination of low-level and high-level methods.

11. Caffe framework: Caffe [Jia 2014] is an open-source C++ based library with Python and
MATLAB bindings for training and deploying CNNs, and also contains reference models
such as AlexNet [Krizhevsky 2012] for experimentation. Conversion of augmented image
datasets into LMDB, computations of image means and implementation of the proposed
CNN architecture are performed using the modules in Caffe framework. The reference
implementation of AlexNet is directly utilized from Caffe.

12. Qlucore Omics Explorer 3.2: Qlucore is a bioinformatics software [Qlucore 2008], and
popular in biotechnology due to its ability to handle large number of samples. It is a proprietary
software, and its licensed version has been used. It has been applied for generation of feature
heatmaps for visualization purpose, and obtaining statistical inferences for the two stains,
HER2 and H&E.

A.5 Computational Requirements

The computational requirements of the crucial program modules in each stage of the image anal-
ysis framework are presented in Table A.5 using the hardware mentioned in Section A.1, along
with the most important supporting software in their implementation. The modules implemented
with assistance of group members in Charité University Hospital have been explicitly cited or
mentioned in the remarks (with individual contributions mentioned in the Acknowledgments
section). The time requirements are indicative of the average duration and may vary with data
characteristics (e.g. image complexity, image size, number of cell nuclei etc.). Also, the time
indicated does not include the time required for accessing data, for instance, reading and writing
WSI or image tiles from or to hard drives, but only the computational time required to perform
the specified algorithms.

Table A.1 Important program modules, supporting software and computational requirements of the
proposed framework

Stage Program module
Supporting
software

Programming
platform

Computational
requirements

Remarks

Stage 1:
Preparation
of materials

WSI semi-automatic
registration

ViSPEe JAVA

Time depends on the
user to manually gener-
ate control points. Tri-
angulation is generated
in real-time.

Implemented
by group mem-
bers as a part
of the project
Virtual Spec-
imen Scout
[VSS 2010].
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WSI annotation trans-
formation

Library
WsiRegLib
as part
of Virtual
Slide Ac-
cess SDK
4.0

C#
Average time is ca. 11.5
minutes per annotation
transformation.

Implemented
with group
members.

WSI tessellations

Virtual
Slide Ac-
cess SDK
4.0

C#
Average time is ca. 0.5
seconds per image tile.

–

Stage 2:
Image pre-
analysis

Necrosis detection:
textural feature
extraction

Accord.NET
and SciKit-
Image

C# and
Python

Average time for 11,470
images of smallest size
(64×64 pixels) is ca. 5
minutes.

Partly im-
plemented
with group
members.

Necrosis detection:
SVM machine
learning with discrim-
inative thresholds

LibSVM MATLAB

Average time for train-
ing phase is ca. 2.21
seconds for the de-
scribed datasets and
classification is ca. 75
milliseconds per image.

–

Necrosis detec-
tion: AlexNet CNN
framework

Caffe Python

Each training iteration
requires 0.15 seconds.
Average time for train-
ing phase is ca. 2.5
hours for the described
datasets and deploy-
ment is ca. 0.05 sec-
onds per image.

AlexNet
framework is
provided in
Caffe.

Necrosis detection:
proposed CNN
architecture

Caffe Python

Each training iteration
requires 0.65 seconds.
Average time for train-
ing phase is ca. 11.7
hours for the described
datasets and deploy-
ment is ca. 0.25 sec-
onds per image.

–

Necrosis detection:
ensemble of CNNs

Caffe
Python and
C#

Average classification
time is ca. 0.32 mil-
liseconds per image.

Computation
of ensemble
results is per-
formed in
C#.

Cell nuclei segmenta-
tion algorithm

Library
CellSegLib
of Cogni-
tionMaster

C#

Average time for
each image of size
1024×1024 pixels is ca.
23 seconds.

Implementation
used from
[Wienert 2012].
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Stage 2:
Image pre-
analysis

Cell nuclei feature ex-
traction

Most fea-
tures (27)
from li-
braries of
Cognition-
Master

C#
Average time for each
cell nucleus (sample) is
ca. 12.5 milliseconds.

Implementation
mostly from
[Hufnagl 1984]
and
[Zerbe 2008].

Cell nuclei classifica-
tion: SVM

LibSVM MATLAB

Average time for train-
ing phase is ca. 0.5 sec-
onds for the described
datasets and classifica-
tion is ca. 2 millisec-
onds per sample.

–

Cell nuclei classifica-
tion: AdaBoost

– C#

Average time for train-
ing phase is ca. 51
seconds per sample and
classification is ca. 2.7
milliseconds per sam-
ple.

AdaBoost
implementa-
tion by group
member.

Cell nuclei classifica-
tion: random forests

SciKit-
Learn

Python

Average time for train-
ing phase is ca. 1.8 sec-
onds for the described
datasets and classifica-
tion is ca. 0.35 seconds
per sample.

–

Multiresolution
enhancement

– C#

Upscaling lower reso-
lution segmentation re-
quires ca. 0.15 seconds
per image and multires-
olution combination re-
quires ca. 0.2 seconds
per image.

–

Stage 3:
Analysis
of cancer
regions

Dataset augmentation

Virtual
Slide Ac-
cess SDK
4.0

C#
Around 80 images are
generated each minute.

–

Low-level state-
of-the-art feature
extraction: GLCM
statistics, LBP
histograms, gray
histograms, HSV
histograms, RGB
histograms

Accord.NET
and
Aforge.NET

C#

Average time is ca. 1.41
seconds per image, and
individual times 0.26,
1.58, 0.02, 5.14, 0.03
seconds per image re-
spectively.

–

Low-level state-
of-the-art feature
extraction: Gabor
filter banks

SciKit-
Image

Python
Average time is ca. 0.42
seconds per image.

–
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Low-level state-
of-the-art feature
extraction: Varma-
Zisserman textons

Open-
source RFS
filter bank
implemen-
tation from
[Varma 2002]

MATLAB

Average time required
for generation of texton
dictionary is ca. 4.79
hours, and for feature
extraction is ca. 1.7
minutes per image.

RFS implemen-
tation is used
from available
code, genera-
tion of texton
dictionary
and feature
extraction are
implemented
by self.

Low-level state-
of-the-art feature
extraction: other
color-based measure-
ments

– C#
Average time is ca. 4.56
seconds per image.

Mean chro-
maticity
concept of
group member.

High-level state-
of-the-art feature
extraction: Voronoi-
Delaunay Graphs
graph construction

EmguCV C#
Average time is 0.25
seconds per image.

Voronoi-
Delaunay graph
construction
is used from
library, global
feature ex-
traction is
implemented
by self.

Stage 3:
Analysis
of cancer
regions

High-level state-
of-the-art feature
extraction: Voronoi-
Delaunay Graphs
global feature extrac-
tion

– C#
Average time is ca. 2.28
seconds per image.

–

High-level hand-
crafted feature
extraction: cell nuclei
ARG variants graph
construction

A part of
object-level
vertex
attributes
from li-
braries of
Cognition-
Master

C#

Average time is ca. 20
seconds per image but
varies with choice of r

when fixed.

Additional
space re-
quirement for
storing graph
image and data
(optional).

High-level hand-
crafted feature
extraction: cell nuclei
ARG variants global
feature extraction

– C#
Average time is ca. 8.28
seconds per image for
gARG construction.

Global graph
feature extrac-
tion times for
other construc-
tions are similar.
Variation in in-
dividual times
is observed due
to graph density
and image
complexity.
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Feature correlation
analysis

RapidMiner –

Average time required
is ca. 5 seconds for cor-
relation analysis for hy-
brid set of features.

–

Region classification:
SVM

LibSVM MATLAB

Average time for train-
ing phase is ca. 0.19
seconds for described
datasets and classifica-
tion is ca. 0.43 millisec-
onds per image.

–

Region classification:
AdaBoost ensemble
learning

– C#

Average time for train-
ing phase is ca. 35.23
minutes for described
datasets and classifica-
tion is ca. 2.91 millisec-
onds per image

AdaBoost
implementa-
tion by group
member. Time
requirements
depend on num-
ber of features
(details later).

Stage 3:
Analysis
of cancer
regions

Region classification:
Random forests

SciKit-
Learn

Python

Average time for train-
ing phase is ca. 11.61
seconds for described
datasets and classifica-
tion is ca. 3.48 millisec-
onds per image.

–

Region classification:
AlexNet CNN frame-
work

Caffe Python

Each training iter-
ation requires 0.15
seconds. Average time
for training phase is
ca. 8.75 hours for
described datasets and
deployment is ca. 0.05
seconds per image.

–

Region classification:
proposed CNN archi-
tecture

Caffe Python

Each training iter-
ation requires 0.65
seconds. Average time
for training phase is
ca. 40.8 hours for
described datasets and
deployment is ca. 0.25
seconds per image.

–

Region classification:
ensemble of CNNs

Caffe
Python and
C#

Average classification
time is ca. 0.52 mil-
liseconds per image.

Computation
of ensemble
results is per-
formed in
C#.
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CBIR application – C#
One round of retrieval
requires ca. 0.4 sec-
onds.

–

Result evalu-
ation

Cell nuclei segmenta-
tion evaluation

ROIManager
of Cogni-
tionMaster

C#

The evaluation metrics
for described datasets
are calculated in ca. 5.5
seconds. The process
depends mostly on the
time taken for ground
truth data generation.

–

Evaluation strategies:
k-fold stratified shuf-
fled split, leave-a-
sample-out and leave
one patient out

– C#
Vary with the number of
sample in training and
classification phases.

–

Image statistics: fea-
ture heatmaps

Qlucore
Omics
Explorer
3.2

–
Each feature heatmap is
generated in real-time
i.e. less than 2 seconds.

–

It may be specified that the cell nuclei ARG graph-based methods developed for the two steps,
namely, graph construction and global graph feature extraction can be concatenated into a single
program as an online procedure, without explicitly saving the graph-based representations of
each image and the associated data offline, in order to to lower the time and space requirements.
These steps have been performed separately in this study to visualize the graphs and organize the
computed features from WSI datasets depending on the different types of evaluation methods.
Similarly, comprehensive models of trained classifier can be saved offline, and the feature
extraction followed by classification of unlabeled input image data can be combined into a single
executable application.

The computational requirements for the gARG[rF ] method has been discussed in detail
by the author in [Sharma 2016], comparing them with the optimized proximity graph method
as follows. The average execution time requirements for constructing the Voronoi-Delaunay
graph and cell nuclei ARG for selected image tiles in the WSI histological dataset is shown in
Fig. A.1. This time represents the computational time required to identify the graph vertices
after segmentation, linking them with edges and also assigning attributes to each vertex and edge
for each cell nuclei ARG. It can be noted that the Voronoi-Delaunay algorithm is optimized
(EmguCV implementation), thus, the time required is lowest in this case (average 0.25 seconds).
Higher computational requirements for the cell nuclei ARG are mainly due to additional attribute
calculations for vertex and edges, a geometrical unconstrained nature and a non-optimized
algorithm. Further, as the number of vertices increases, time requirements increase for both
graph-based representations, with a visibly greater rate for the cell nuclei ARG. This rate also
increases with the increase in the assigned values of maximum spanning edge length r. A higher
r means more edges and edge attributes, thereby leading to increase in run-time. The time
duration does not include global graph feature extraction, which in turn depends on the density
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Fig. A.1 Average execution time requirements of graph-based constructions for Voronoi-Delaunay and
gARG[rF ] graphs and variations with the number of graph vertices

Fig. A.2 Average execution time requirements (log-linear plot) of traditional machine learning methods
and variations with number of features during training

of the cell nuclei ARG or Voronoi-Delaunay graph, as the complexity in computation of the
graph size-based features increases with increase in the number of vertices and edges.

The computational requirements for different traditional machine learning methods during
analysis of cancer regions can be comparatively summarized and demonstrated in Figure A.2.
The time is measured in seconds, and is shown in logarithmic scale (base 10) for better compari-
son. The average times for one training phase (using fixed number of images) of single-stage
classification using three traditional machine learning methods, namely, SVM, AdaBoost and
random forests, and the variations with the number of features are depicted. As SVM and random
forests implementations have been applied using optimized programs from highly developed
machine learning libraries, whereas AdaBoost has been programmed by members in Charité, it
can be observed that the SVM and random forests are faster compared to AdaBoost ensemble
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learning. SVM is the fastest, followed by random forests and then AdaBoost. Also, the depen-
dence of time requirements on the number of features is more prominent in AdaBoost, compared
to random forests and SVM, as the current AdaBoost implementation compares the values of
each feature incrementally in the classifier, so the time rapidly increases with the number of
features. This insists on a need for code optimization to be addressed in the future studies. On the
other hand, during the classification stage, AdaBoost has lower average requirements compared
to optimized random forest implementation.

A.6 Examples of Metadata Screenshots

Metadata means data about data, in this case, refers to the data that is generated during certain
processes on the tissue images, such as corresponding control points generated manually for
semi-automatic registration between WSI, point annotations for segmentation evaluation, contour
annotations for creation of ground truth of cell nuclei classification and polygon annotations for
necrosis detection. In this section, examples of screenshots of the metadata prepared or generated
for a few representative processes in the preparatory and pre-analysis stages are demonstrated.
These processes include the semi-automatic WSI registration (XML file), annotations for cell
nuclei segmentation evaluation (ROI file), and features with class labels for cell nuclei classifica-
tion (XML learning sample file) for the specified AdaBoost ensemble learning implementation.
Such representative examples of metadata screenshots are shown in Figure A.3. XML learning
sample files similar to Figure A.3(c) have also been generated for the region-based samples in the
third stage of the framework for analysis of cancer regions using the different feature extraction
methods with AdaBoost ensemble learning and classification.

(a)
Fig. A.3 Representative examples of metadata screenshots generated during (a) semi-automatic WSI
registration (XML file) (b) annotations for cell nuclei segmentation evaluation (ROI file) (c) annotations
and features for cell nuclei classification (XML learning sample file)
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(b) (c)
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Detailed Experimental Results
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B.1 Confusion Matrices

The accuracy confusion matrix A averaged over multiple cross validation experiments is demon-
strated in the following tables. A color scale is associated with the magnitudes of the matrix
starting from lowest values as red and highest as green, in discrete steps of 0.1. The color scale is
depicted in Figure B.1. A and P refer to the actual and predicted categories. The last row of each
confusion matrix gives the overall classification accuracy (OCA) and balanced classification
accuracy (BCA) for the corresponding experimental configuration.

Fig. B.1 Color scale for values in confusion matrices

B.1.1 Comparative Evaluation: Necrosis Detection

Tables B.1 represent the confusion matrices obtained for necrosis detection, where Table B.1(a)
shows the results of traditional methods using textural characteristics and SVM classification with

215
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discriminative thresholds evaluated by k-fold stratified shuffled split cross validations (k = 10).
Tables B.1(b), B.1(c) and B.1(d) show the corresponding results using deep learning methods,
namely, AlexNet CNN framework, proposed CNN architecture and ensemble of CNNs(k = 3).
Nonnec. refers to the non-necrotic category.

Table B.1 Average accuracy confusion matrix using k-fold stratified shuffled split cross validation for
(a) SVM with discriminative thresholds (b) AlexNet CNN framework (c) Proposed CNN architecture (d)
Ensemble of CNNs

(a)
❍❍❍

❍❍A
P Necrotic Nonnec.

Necrotic 0.9367 0.0633
Nonnec. 0.1840 0.8160

OCA = BCA=0.8766

(b)
❍❍❍

❍❍A
P Necrotic Nonnec.

Necrotic 0.9985 0.0015
Nonnec. 0.0043 0.9957

OCA = BCA=0.9971
(c)

❍❍❍
❍❍A

P Necrotic Nonnec.

Necrotic 0.9337 0.0663
Nonnec. 0.0626 0.9374

OCA = BCA=0.9356

(d)
❍❍❍

❍❍A
P Necrotic Nonnec.

Necrotic 0.9991 0.0009
Nonnec. 0.0014 0.9986

OCA = BCA=0.9989

B.1.2 Comparative Evaluation: Cell Nuclei Classification

Tables B.2 and B.3 represent confusion matrices for SVM classification method using the two
cross validation strategies, namely k-fold stratified shuffled split (k = 3) and leave-a-sample-out
cross validations. Tables B.4 and B.5 contain the confusion matrices for the AdaBoost ensemble
classification method, and Tables B.6 and B.7 for random forest classification method. Epithelial.
and conglomer. refer to epithelial cell and conglomerate class respectively.

Table B.2 Average accuracy confusion matrix for SVM classification method using k-fold stratified
shuffled split cross validation
❍❍

❍❍❍A
P Epithelial. Leukocyte Fibrocyte Conglomer. Fragment Other cell Artefact

Epithelial. 0.5575 0.0700 0.1420 0.0150 0.1210 0.0815 0.0130
Leukocyte 0.0400 0.7210 0.0195 0.0285 0.0340 0.1450 0.0120
Fibrocyte 0.1135 0.0045 0.6945 0.0170 0.0755 0.0795 0.0155
Conglomer. 0.0280 0.0340 0.0310 0.6255 0.0195 0.0840 0.1780
Fragment 0.1495 0.0400 0.1105 0.0360 0.5945 0.0550 0.0145
Other cell 0.0987 0.1413 0.1423 0.1142 0.0496 0.3878 0.0661
Artefact 0.0230 0.0170 0.0235 0.2585 0.0115 0.0679 0.5988

OCA=0.5971, BCA=0.5973
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Table B.3 Average accuracy confusion matrix for SVM classification method using leave-a-sample-out
cross validation
❍❍❍

❍❍A
P Epithelial. Leukocyte Fibrocyte Conglomer. Fragment Other cell Artefact

Epithelial. 0.5633 0.0575 0.1300 0.0167 0.1458 0.0817 0.0050
Leukocyte 0.0350 0.7425 0.0217 0.0283 0.0267 0.1358 0.0100
Fibrocyte 0.0950 0.0042 0.7142 0.0158 0.0758 0.0875 0.0075
Conglomer. 0.0350 0.0325 0.0292 0.6333 0.0200 0.0783 0.1717
Fragment 0.1492 0.0417 0.0867 0.0350 0.6208 0.0525 0.0142
Other cell 0.0977 0.1461 0.1289 0.1076 0.0452 0.4015 0.0731
Artefact 0.0254 0.0135 0.0254 0.2657 0.0085 0.0601 0.6015

OCA=0.6106, BCA=0.6110

Table B.4 Average accuracy confusion matrix for AdaBoost ensemble classification using k-fold stratified
shuffled split cross validation
❍❍❍

❍❍A
P Epithelial. Leukocyte Fibrocyte Conglomer. Fragment Other cell Artefact

Epithelial. 0.5235 0.0630 0.0995 0.1805 0.0160 0.1110 0.0065
Leukocyte 0.0485 0.6885 0.0150 0.0340 0.0290 0.1750 0.0100
Fibrocyte 0.0685 0.0040 0.7640 0.0780 0.0070 0.0760 0.0025
Conglomer. 0.1460 0.0355 0.0985 0.6395 0.0175 0.0605 0.0025
Fragment 0.0250 0.0370 0.0245 0.0270 0.5360 0.1180 0.2325
Other cell 0.0827 0.1216 0.0847 0.0620 0.0842 0.4638 0.1009
Artefact 0.0188 0.0137 0.0188 0.0137 0.2291 0.0884 0.6176

OCA=0.6109, BCA=0.6114

Table B.5 Average accuracy confusion matrix for AdaBoost ensemble classification using leave-a-sample-
out cross validation
❍❍

❍❍❍A
P Epithelial. Leukocyte Fibrocyte Conglomer. Fragment Other cell Artefact

Epithelial. 0.5260 0.0622 0.1014 0.1807 0.0171 0.1049 0.0077
Leukocyte 0.0500 0.6850 0.0250 0.0300 0.0325 0.1625 0.0150
Fibrocyte 0.1104 0.0000 0.7397 0.0962 0.0126 0.0379 0.0032
Conglomer. 0.1331 0.0333 0.0906 0.6673 0.0185 0.0573 0.0000
Fragment 0.0325 0.0275 0.0250 0.0300 0.5400 0.1050 0.2400
Other cell 0.1042 0.1302 0.0608 0.0556 0.1137 0.4497 0.0859
Artefact 0.0100 0.0190 0.0090 0.0220 0.2480 0.0950 0.5970

OCA=0.6633, BCA=0.6719

Table B.6 Average accuracy confusion matrix for random forest classification using k-fold stratified
shuffled split cross validation
❍❍

❍❍❍A
P Epithelial. Leukocyte Fibrocyte Conglomer. Fragment Other cell Artefact

Epithelial. 0.5459 0.0692 0.1188 0.1925 0.0050 0.0687 0.0000
Leukocyte 0.0536 0.7514 0.0221 0.0236 0.0221 0.1228 0.0045
Fibrocyte 0.0867 0.0000 0.8331 0.0356 0.0000 0.0446 0.0000
Conglomer. 0.1639 0.0326 0.1258 0.6231 0.0115 0.0431 0.0000
Fragment 0.0241 0.0261 0.0296 0.0266 0.5624 0.0992 0.2321
Other cell 0.0996 0.1657 0.0899 0.0442 0.1189 0.4202 0.0615
Artefact 0.0188 0.0391 0.0371 0.0099 0.1939 0.0732 0.6281

OCA=0.6238, BCA=0.6236
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Table B.7 Average accuracy confusion matrix for random forest classification using leave-a-sample-out
cross validation
❍❍❍

❍❍A
P Epithelial. Leukocyte Fibrocyte Conglomer. Fragment Other cell Artefact

Epithelial. 0.6042 0.0675 0.1067 0.1292 0.0075 0.0800 0.0050
Leukocyte 0.0350 0.7392 0.0250 0.0308 0.0225 0.1442 0.0033
Fibrocyte 0.0450 0.0000 0.8833 0.0442 0.0042 0.0233 0.0000
Conglomer. 0.1792 0.0292 0.1008 0.6308 0.0150 0.0450 0.0000
Fragment 0.0300 0.0367 0.0400 0.0192 0.5983 0.0800 0.1958
Other cell 0.0988 0.1296 0.0739 0.0548 0.1221 0.4684 0.0523
Artefact 0.0192 0.0201 0.0201 0.0100 0.2107 0.0493 0.6706

OCA=0.6563, BCA=0.6564

B.1.3 Comparative Evaluation: Analysis of Cancer Regions

The following tables represent the average accuracy confusion matrices for the best performance
classification method using both cross validation strategies, namely, k-fold stratified shuffled
split (k = 10) and leave-a-patient out cross validations. The classification method with highest
performance is specified in the respective table captions. A pair of confusion matrices are
presented for each configuration in comparative scheme of evaluation (please refer Table 8.2) for
analysis of cancer regions. HER2+ refers to HER2 positive tumor, HER2- to HER2 negative
tumor and NonT. to non-tumor.

B.1.3.1 Low-level State-of-the-art Features

Table B.8 Average accuracy confusion matrix for GLCM statistics with SVM hierarchical classification
(each stage) using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)

Stage
1(A|P) NonT. Others Stage

2(A|P) HER2+ HER2-

NonT. 0.9373 0.0627 HER2+ 0.7940 0.2060
Others 0.0417 0.9583 HER2- 0.2168 0.7832

OCA=0.8204, BCA=0.8173
(b)

Stage
1(A|P) NonT. Others Stage

2(A|P) HER2+ HER2-

NonT. 0.7418 0.2582 HER2+ 0.5566 0.4434
Others 0.1554 0.8446 HER2- 0.6154 0.3846

OCA=0.5288, BCA=0.5132
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Table B.9 Average accuracy confusion matrix for Gabor filter-bank responses with SVM hierarchical
classification (each stage) using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)

Stage
1(A|P) NonT. Others Stage

2(A|P) HER2+ HER2-

NonT. 0.8993 0.1007 HER2+ 0.7603 0.2397
Others 0.0491 0.9509 HER2- 0.1920 0.8080

OCA=0.7987, BCA=0.7971
(b)

Stage
1(A|P) NonT. Others Stage

2(A|P) HER2+ HER2-

NonT. 0.6634 0.3366 HER2+ 0.4503 0.5497
Others 0.2434 0.7566 HER2- 0.5747 0.4253

OCA=0.4558, BCA=0.4280

Table B.10 Average accuracy confusion matrix for local binary patterns with SVM single-stage classifi-
cation using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7514 0.1733 0.0753
HER2- 0.1174 0.7455 0.1372
NonT. 0.0595 0.0660 0.8745

OCA=0.7970, BCA=0.7903

(b)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.4413 0.2794 0.2794
HER2- 0.4008 0.2355 0.3636
NonT. 0.1340 0.1405 0.7255

OCA=0.4910, BCA=0.4645

Table B.11 Average accuracy confusion matrix for Varma-Zisserman textons with SVM single-stage
classification (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.8826 0.1020 0.0154
HER2- 0.1091 0.8364 0.0545
NonT. 0.0111 0.0359 0.9529

OCA=0.8956, BCA=0.8906

(b)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.4130 0.4291 0.1579
HER2- 0.4463 0.2479 0.3058
NonT. 0.0425 0.2124 0.7451

OCA=0.4865, BCA=0.4430

Table B.12 Average accuracy confusion matrix for gray histograms with random forests single-stage
classification (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7816 0.1712 0.0472
HER2- 0.1633 0.7425 0.0942
NonT. 0.0400 0.0323 0.9277

OCA=0.8265, BCA=0.8173

(b)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.5101 0.3401 0.1498
HER2- 0.3471 0.4215 0.2314
NonT. 0.0654 0.0784 0.8562

OCA=0.6128, BCA=0.5639
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Table B.13 Average accuracy confusion matrix for HSV histograms with AdaBoost single-stage classifi-
cation using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.8493 0.1285 0.0222
HER2- 0.0947 0.8474 0.0578
NonT. 0.0126 0.0225 0.9649

OCA=0.8933, BCA=0.8879

(b)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.6235 0.2996 0.0769
HER2- 0.3388 0.4174 0.2438
NonT. 0.0686 0.0523 0.8791

OCA=0.6545, BCA=0.6098

Table B.14 Average accuracy confusion matrix for RGB histograms with SVM hierarchical classification
using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)

Stage
1(A|P) NonT. Others Stage

2(A|P) HER2+ HER2-

NonT. 0.9719 0.0281 HER2+ 0.9210 0.0790
Others 0.0143 0.9857 HER2- 0.1069 0.8931

OCA=0.9177, BCA=0.9203
(b)

Stage
1(A|P) NonT. Others Stage

2(A|P) HER2+ HER2-

NonT. 0.7810 0.2190 HER2+ 0.6903 0.3097
Others 0.1493 0.8507 HER2- 0.4378 0.5622

OCA=0.6245, BCA=0.5928

Table B.15 Average accuracy confusion matrix for other color-based measurements with random forests
single-stage classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7592 0.2024 0.0384
HER2- 0.1967 0.6792 0.1242
NonT. 0.0303 0.0555 0.9142

OCA=0.7953, BCA=0.7842

(b)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.5749 0.3320 0.0931
HER2- 0.4380 0.2727 0.2893
NonT. 0.0458 0.1830 0.7712

OCA=0.5515, BCA=0.4951

B.1.3.2 High-level State-of-the-art Features

Table B.16 Average accuracy confusion matrix for Voronoi-Delaunay method with random forest single-
stage classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍
❍❍❍❍A

P HER2+ HER2- NonT.

HER2+ 0.6856 0.2384 0.0760
HER2- 0.3500 0.4617 0.1883
NonT. 0.1000 0.1032 0.7968

OCA=0.6615, BCA=0.6480

(b)
❍
❍❍❍❍A

P HER2+ HER2- NonT.

HER2+ 0.6194 0.2794 0.1012
HER2- 0.3967 0.3678 0.2355
NonT. 0.1144 0.1275 0.7582

OCA=0.5889, BCA=0.5756
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B.1.3.3 High-level Handcrafted Features

Table B.17 Average accuracy confusion matrix for only vertex attributes (object-level features) of cell
nuclei ARG with random forest hierarchical classification (each stage) using (a) k-fold stratified shuffled
split (b) leave-a-patient-out cross validation

(a)

Stage 1(A|P) NonT. Others Stage 2(A|P) HER2+ HER2-
NonT. 0.8742 0.1258 HER2+ 0.7262 0.2738
Others 0.0531 0.9469 HER2- 0.2892 0.7108

OCA=0.7495, BCA=0.7472
(b)

Stage 1(A|P) NonT. Others Stage 2(A|P) HER2+ HER2-
NonT. 0.8039 0.1961 HER2+ 0.5149 0.4851
Others 0.0798 0.9202 HER2- 0.5550 0.4450

OCA=0.5761, BCA=0.5821

Table B.18 Average accuracy confusion matrix for only vertex identities (tissue composition) of the
cell nuclei ARG with SVM single-stage classification using (a) k-fold stratified shuffled split (b) leave-a-
patient-out cross validation

(a)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7490 0.2186 0.0324
HER2- 0.2397 0.6107 0.1496
NonT. 0.0261 0.0902 0.8837

OCA=0.7587, BCA=0.7477

(b)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.4818 0.4453 0.0729
HER2- 0.4628 0.3182 0.2190
NonT. 0.0458 0.1993 0.7549

OCA=0.5390, BCA=0.5302

Table B.19 Average accuracy confusion matrix for handcrafted gARG[rF ] method with SVM single-stage
classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7765 0.1895 0.0340
HER2- 0.2669 0.6405 0.0926
NonT. 0.0693 0.0111 0.9196

OCA=0.7902, BCA=0.7794

(b)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.6154 0.3320 0.0526
HER2- 0.4132 0.4421 0.1446
NonT. 0.0294 0.1405 0.8301

OCA=0.6448, BCA=0.6361

Table B.20 Average accuracy confusion matrix for handcrafted gARG[rA] method with SVM single-stage
classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7555 0.2073 0.0372
HER2- 0.2587 0.6521 0.0893
NonT. 0.0131 0.0627 0.9242

OCA=0.7890, BCA=0.7773

(b)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.5709 0.3522 0.0769
HER2- 0.4256 0.4132 0.1612
NonT. 0.0490 0.1634 0.7876

OCA=0.6053, BCA=0.5946
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Table B.21 Average accuracy confusion matrix for handcrafted nsARG[rF ] method with SVM single-
stage classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.6510 0.3077 0.0413
HER2- 0.3149 0.5463 0.1388
NonT. 0.0170 0.0588 0.9242

OCA=0.7243, BCA=0.7073

(b)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.4858 0.4534 0.0607
HER2- 0.5083 0.3058 0.1860
NonT. 0.0229 0.1111 0.8660

OCA=0.5749, BCA=0.5389

Table B.22 Average accuracy confusion matrix for handcrafted nsARG[rA] method with SVM hierar-
chical classification (each stage) using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross
validation

(a)

Stage 1(A|P) NonT. Others Stage 2(A|P) HER2+ HER2-
NonT. 0.9062 0.0938 HER2+ 0.7176 0.2824
Others 0.0711 0.9289 HER2- 0.3159 0.6841

OCA=0.7343, BCA=0.7281
(b)

Stage 1(A|P) NonT. Others Stage 2(A|P) HER2+ HER2-
NonT. 0.7908 0.2092 HER2+ 0.5622 0.4378
Others 0.1125 0.8875 HER2- 0.5408 0.4592

OCA=0.5757, BCA=0.5551

Table B.23 Average accuracy confusion matrix for handcrafted ncARG[rF ] method with SVM single-
stage classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7466 0.2065 0.0470
HER2- 0.2711 0.6174 0.1116
NonT. 0.0209 0.0621 0.9170

OCA=0.7729, BCA=0.7603

(b)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.6113 0.3279 0.0607
HER2- 0.4298 0.4215 0.1488
NonT. 0.0458 0.1078 0.8464

OCA=0.6450, BCA=0.6320

Table B.24 Average accuracy confusion matrix for handcrafted ncARG[rA] method with random forest
hierarchical classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)

Stage 1(A|P) NonT. Others Stage 2(A|P) HER2+ HER2-
NonT. 0.8297 0.1703 HER2+ 0.7643 0.2357
Others 0.0510 0.9490 HER2- 0.2752 0.7248

OCA=0.7480, BCA=0.7495
(b)

Stage 1(A|P) NonT. Others Stage 2(A|P) HER2+ HER2-
NonT. 0.8197 0.1803 HER2+ 0.5872 0.4128
Others 0.0757 0.9243 HER2- 0.6095 0.3905

OCA=0.5921, BCA=0.5982
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Table B.25 Average accuracy confusion matrix for handcrafted ncARGv+[rF ] method with SVM single-
stage classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7733 0.1951 0.0316
HER2- 0.2579 0.6521 0.0901
NonT. 0.0105 0.0680 0.9216

OCA=0.7935, BCA=0.7823

(b)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.6194 0.3279 0.0526
HER2- 0.4298 0.4256 0.1446
NonT. 0.0327 0.1438 0.8235

OCA=0.6394, BCA=0.6314

Table B.26 Average accuracy confusion matrix for handcrafted ncARGv+[rA] method with SVM single-
stage classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.7684 0.1927 0.0389
HER2- 0.2405 0.6760 0.0835
NonT. 0.0111 0.0610 0.9279

OCA=0.8015, BCA=0.7908

(b)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.5668 0.3482 0.0850
HER2- 0.4711 0.3595 0.1694
NonT. 0.0492 0.1574 0.7934

OCA=0.5899, BCA=0.5751

B.1.3.4 Combination of Features
Table B.27 Average accuracy confusion matrix for selected subset of hybrid low-level features with SVM
hierarchical classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)

Stage 1(A|P) NonT. Others Stage 2(A|P) HER2+ HER2-
NonT. 0.9843 0.0157 HER2+ 0.9224 0.0776
Others 0.0135 0.9865 HER2- 0.0776 0.9224

OCA=0.9177, BCA=0.9203
(b)

Stage 1(A|P) NonT. Others Stage 2(A|P) HER2+ HER2-
NonT. 0.8105 0.1895 HER2+ 0.6228 0.3772
Others 0.1575 0.8425 HER2- 0.5754 0.4246

OCA=0.5858, BCA=0.5717

Table B.28 Average accuracy confusion matrix for selected subset of hybrid low-level and high-level
features with SVM single-stage classification using (a) k-fold stratified shuffled split (b) leave-a-patient-out
cross validation

(a)
❍
❍❍❍❍A

P HER2+ HER2- NonT.

HER2+ 0.8964 0.0931 0.0105
HER2- 0.0992 0.8636 0.0372
NonT. 0.0000 0.0098 0.9902

OCA=0.9226, BCA=0.9167

(b)
❍
❍❍❍❍A

P HER2+ HER2- NonT.

HER2+ 0.6397 0.3401 0.0202
HER2- 0.4091 0.3471 0.2438
NonT. 0.0163 0.0948 0.8889

OCA=0.6410, BCA=0.6109
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B.1.3.5 Deep Learning Methods
Table B.29 Average accuracy confusion matrix for AlexNet CNN framework in single-stage classification
using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍
❍❍❍❍A

P HER2+ HER2- NonT.

HER2+ 0.9625 0.0349 0.0026
HER2- 0.0355 0.9541 0.0104
NonT. 0.0034 0.0116 0.9850

OCA = BCA=0.9674

(b)
❍
❍❍❍❍A

P HER2+ HER2- NonT.

HER2+ 0.5422 0.3581 0.0997
HER2- 0.3183 0.3679 0.3138
NonT. 0.1184 0.2999 0.5817

OCA = BCA=0.4973

Table B.30 Average accuracy confusion matrix for proposed CNN architecture in single-stage classifica-
tion using (a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.8381 0.1427 0.0191
HER2- 0.1779 0.7701 0.0519
NonT. 0.0178 0.0585 0.9237

OCA = BCA=0.8441

(b)
❍❍

❍❍❍A
P HER2+ HER2- NonT.

HER2+ 0.5577 0.3798 0.0624
HER2- 0.3615 0.4163 0.2223
NonT. 0.0486 0.2237 0.7277

OCA = BCA=0.5672

Table B.31 Average accuracy confusion matrix for ensemble of CNNs in single-stage classification using
(a) k-fold stratified shuffled split (b) leave-a-patient-out cross validation

(a)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.9281 0.0360 0.0358
HER2- 0.0457 0.9127 0.0416
NonT. 0.0050 0.0115 0.9835

OCA = BCA=0.9440

(b)
❍❍❍

❍❍A
P HER2+ HER2- NonT.

HER2+ 0.5870 0.3253 0.0877
HER2- 0.4063 0.2908 0.3029
NonT. 0.0731 0.2308 0.6961

OCA = BCA=0.5246

B.2 Box and Whisker Diagrams

The box and whisker diagrams of average per-class classification accuracy presenting a compari-
son of classification performance of the methods explored in the various stages of the research
pipeline, are illustrated in the following sections.

B.2.1 Comparative Evaluation: Necrosis Detection

The box and whisker diagrams of average per-class classification accuracy, comparatively
depicting the classification performance of the three methods, namely, the traditional method
using textural feature extraction followed by SVM classification with discriminative thresholds,
and deep learning methods i.e. Alexnet CNN framework, proposed CNN architecture and
ensemble of CNNs are summarized in Figure B.2. The performance is quantitatively evaluated
using k-fold stratified shuffled split (k = 10 for SVM-based method and k = 3 for deep learning)
cross validation.
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(a) (b)

Fig. B.2 Box and whisker diagrams of average per-class classification accuracy for necrosis detection
experiments using k-fold stratified shuffled split cross validation for (a) necrosis (b) non-necrosis.

B.2.2 Comparative Evaluation: Cell Nuclei Classification

The box and whisker diagrams of average per-class classification accuracy showing a comparison
of classification performance of the three machine learning methods i.e. SVM classification
method, AdaBoost method and random forests, evaluated using k-fold stratified shuffled split
cross validation (k = 3) are given in Figure B.3.

(a) (b) (c) (d)

(e) (f) (g)

Fig. B.3 Box and whisker diagrams of average per-class classification accuracy for cell nuclei classifica-
tion experiments using k-fold stratified shuffled split cross validation for a) epithelial cell (b) leukocyte (c)
fibrocyte (or border cell) (d) conglomerate (e) fragment (f) other cell (including blood cell in vessel) (g)
artefact.
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B.2.3 Comparative Evaluation: Analysis of Cancer Regions

The box and whisker diagrams of average per-class classification accuracy for each configuration
in the scheme of evaluation (please refer Table 8.2), showing a comparison of the classification
performance of the traditional machine learning methods i.e. SVM, AdaBoost and random forests,
evaluated using k-fold stratified shuffled split (k = 10) and leave-a-patient-out cross validations
are shown below. SC, HC refer to single-stage classification and hierarchical classification, and
AB, RF are AdaBoost and random forests respectively.

B.2.3.1 Low-level State-of-the-art Features

(a) (b) (c)

(d) (e) (f)

Fig. B.4 Box and whisker diagrams of average per-class classification accuracy of GLCM statistics for
(a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified shuffled split and
(d),(e),(f) using leave-a-patient-out cross validations.
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(a) (b) (c)

(d) (e) (f)

Fig. B.5 Box and whisker diagrams of average per-class classification accuracy of Gabor filter-bank
responses for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified
shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.6 Box and whisker diagrams of average per-class classification accuracy of local binary patterns
for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified shuffled split
and (d),(e),(f) using leave-a-patient-out cross validations.
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(a) (b) (c)

(d) (e) (f)

Fig. B.7 Box and whisker diagrams of average per-class classification accuracy of Varma-Zissserman
textons for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified shuffled
split and (d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.8 Box and whisker diagrams of average per-class classification accuracy of gray histograms for
(a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified shuffled split and
(d),(e),(f) using leave-a-patient-out cross validations.
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(a) (b) (c)

(d) (e) (f)

Fig. B.9 Box and whisker diagrams of average per-class classification accuracy of HSV histograms for
(a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified shuffled split and
(d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.10 Box and whisker diagrams of average per-class classification accuracy of RGB histograms for
(a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified shuffled split and
(d),(e),(f) using leave-a-patient-out cross validations.
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(a) (b) (c)

(d) (e) (f)

Fig. B.11 Box and whisker diagrams of average per-class classification accuracy of other color-based
measurements for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified
shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.

B.2.3.2 High-level State-of-the-art Features

(a) (b) (c)

(d) (e) (f)

Fig. B.12 Box and whisker diagrams of average per-class classification accuracy for the Voronoi-
Delaunay method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.
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B.2.3.3 High-level Handcrafted Features

(a) (b) (c)

(d) (e) (f)

Fig. B.13 Box and whisker diagrams of average per-class classification accuracy for only vertex attributes
of cell nuclei ARG for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.14 Box and whisker diagrams of average per-class classification accuracy for only vertex identities
(or tissue composition) of cell nuclei ARG for (a) HER2 positive tumor (b) HER2 negative tumor (c)
Non-tumor using k-fold stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.
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(a) (b) (c)

(d) (e) (f)

Fig. B.15 Box and whisker diagrams of average per-class classification accuracy for handcrafted
gARG[rF ] method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.16 Box and whisker diagrams of average per-class classification accuracy for handcrafted
gARG[rA] method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.
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(a) (b) (c)

(d) (e) (f)

Fig. B.17 Box and whisker diagrams of average per-class classification accuracy for handcrafted
nsARG[rF ] method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.18 Box and whisker diagrams of average per-class classification accuracy for handcrafted
nsARG[rA] method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.
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(a) (b) (c)

(d) (e) (f)

Fig. B.19 Box and whisker diagrams of average per-class classification accuracy for handcrafted
ncARG[rF ] method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.20 Box and whisker diagrams of average per-class classification accuracy for handcrafted
ncARG[rA] method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.
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(a) (b) (c)

(d) (e) (f)

Fig. B.21 Box and whisker diagrams of average per-class classification accuracy for handcrafted
ncARGv+[rF ] method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.22 Box and whisker diagrams of average per-class classification accuracy for handcrafted
ncARGv+[rA] method for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold
stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.
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B.2.3.4 Combination of Features

(a) (b) (c)

(d) (e) (f)

Fig. B.23 Box and whisker diagrams of average per-class classification accuracy of selected subset of
hybrid low-level features for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using
k-fold stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.

(a) (b) (c)

(d) (e) (f)

Fig. B.24 Box and whisker diagrams of average per-class classification accuracy of selected subset
of hybrid low-level and high-level features for (a) HER2 positive tumor (b) HER2 negative tumor (c)
Non-tumor using k-fold stratified shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.
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B.2.3.5 Deep Learning Methods

(a) (b) (c)

(d) (e) (f)

Fig. B.25 Box and whisker diagrams of average per-class classification accuracy for deep learning
methods for (a) HER2 positive tumor (b) HER2 negative tumor (c) Non-tumor using k-fold stratified
shuffled split and (d),(e),(f) using leave-a-patient-out cross validations.
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