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Abstract  

In this paper we present several statistic gradient algorithms from literature to solve the Principal Component Analysis 

(PCA) problem. We used a linear artificial neural network forming the basis of the implemented algorithms which is a 

neat way for on-line computation of the PCA expansion. As convergence is a key-aspect of these algorithms and is cru-

cial for the usefulness in particular applications, we compared the different learning rules with respect to their suitability 

in ECG signal processing. Recent studies have shown, that a surrogate respiratory signal can be derived from single-lead 

ECGs by applying PCA. Since the traditionally applied closed-form computations of PCA are numerically demanding, it 

seems promising to resort to an adaptive approach when dealing with changing environments like the ECG. 

 

1 Introduction 

Principal Component Analysis has become an important 

technique in statistical data analysis with respect to dimen-

sion reduction, feature extraction, data-decorrelation and 

whitening [1]. It was also shown, that even from a single 

lead ECG, valuable information like morphologic variabil-

ity, ventricular repolarization, atrial fibrillation or myocar-

dial ischemia can be extracted by PCA [2]. Langley et al. 

have successfully used PCA by eigenvalue and eigenvector 

decomposition to extract an ECG-Derived Respiration fea-

ture from a single lead ECG [3]. The PCA Problem can be 

stated as follows: Find an orthogonal transformation ma-

trix A such that the elements of a centered measurement 

vector x become uncorrelated: 

 

      (1) 

 

Thus, the covariance matrix of the transformed dataset y is 

diagonal. It can be shown that PCA is equivalent to vari-

ance maximization of the principal components (PC), 

which are represented by the elements of y and that the so-

lution of maximizing the variance is given by the unit-

length Eigenvectors of the covariance matrix    of x [1]. 

Following this approach it would be necessary to re-

estimate    and re-calculate the eigenvectors periodically, 

which can be critical when high speed processing of on-

line arriving data samples is needed. This makes adaptive, 

computationally efficient on-line learning algorithms very 

attractive. Gradient algorithms based on neural networks 

learning rules allow the estimation of eigenvectors without 

using second-order-statistics (SOS) at all [4]. 

 

In the first part of Section 2 we depict the underlying PCA 

layer. In the second part we give a brief overview of the 

different gradient ascent algorithms and their learning rules 

whereas in the third part we introduce the datasets and how 

they are applied to them. Section 3 presents the obtained 

results and Section 4 finishes with a short discussion and 

summarized conclusions. 

2 Methods 

2.1 PCA Neural Network 
A neural network has been proposed as an adaptive system 

that receives streaming-data and estimates the principal 

components by Oja [5]. This idea has led us to implement 

a linear PCA layer as shown in figure 1 which is used by 

the learning algorithms described in the next subsection. 

 

 
 

Fig 1 PCA NN Layer used by learning algorithms 

 

2.2 Learning Algorithms 
The learning algorithms work as an iteration process on the 

dataset where the weight-vectors    are adjusted in each 

step and finally converge to the corresponding eigenvec-

tors. The gradient algorithm finds the local minima in a 

multidimensional contrast function      with the help of 

an update rule (Eq. 2). The value of the function alpha 

specifies the learning rate. 

 

                 
     

  
  (2) 

 

In the scope of this study we have implemented Oja’s Rule 

and Stochastic Gradient Ascent (SGA) [5], a modification 

of the generalized Hebbian algorithm (GHA) [6], Adaptive 

Principal Component Extraction (APEX) [7], the Projec-

tion Approximation Subspace Tracking (PASTd) [8] and a 

fast online algorithm for PCA (RTpca) proposed by [9]. 

All considered algorithms have linear complexity. The 

point of interest then focuses on the estimated eigenvectors 

which are compared against those, gained by classical 

closed-form computation of the covariance matrix   .  
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At this stage all algorithms have been implemented in 

MATLAB although no sophisticated functions have been 

used so that porting them to C should be an easy task. 

 

2.3 Dataset 
The single lead channels used in the datasets were obtained 

from Fantasia Database of Physiobank ATM which con-

tains a single channel ECG and a respiratory signal sam-

pled with 250 Hz [10]. With the help of the supplied data-

base-ECG-annotations 161 samples including P-wave, 

QRS-complex and T-Wave have been extracted, thus ob-

taining N beats of N consecutively following QRS com-

plexes of one specific dataset. A 161xN input matrix X is 

then built by these N beats according to [3]. Finally the al-

gorithms are consecutively supplied with vector-samples 

x(i) from X.  

 

3 Results 

To evaluate the performance of the stated algorithms the 

main criterion has been the convergence of the estimated 

eigenvectors with respect to their length and angle as they 

become orthonormal and tend to the theoretically correct 

eigenvectors [4]. These vectors are compared to those 

computed by eigenvector decomposition of the covariance 

matrix   .  

 

Figure 2 a) shows the process of convergence of the abso-

lute value of the first four weight-vectors computed by the 

RTpca algorithm. Similar results are obtained for the first 

two eigenvectors by the other algorithms. However, not 

all algorithms estimated the minor components accurately 

as can be seen in figure 2 b). This could be improved by 

more sophisticated learning rate adjustments [4]. First ex-

periments showed that at least 100 QRS complexes which 

is still less than two minutes should be taken into account 

to achieve a reasonable foundation for stable conver-

gence. 

  

 
 

Fig 2 Convergence of the first PCs for a) RTpca- and  

b) the SGA-algorithm 

 

According to [3] respiration can be found in the third or 

fourth component of the ECG. This could be confirmed 

by the results of our implementations. Figure 3 shows the 

estimated fourth principal component, the recorded res-

piratory signal and their cross-correlation (bottom). 

 

 
Fig 3 Recorded respiratory signal and fourth PC (top), 

Correlation (bottom) of the offset corrected signals 

 

The main peak in the cross-correlation at zero shows the 

strong correlation between the estimated fourth compo-

nent and respiratory activity. 

 

4 Conclusion 

Using several NN based adaptive algorithms we were able 

to successfully estimate principal components from the 

ECG. While all algorithms were able to estimate the first 

and second PCs, some algorithms failed in estimating the 

minor PCs. It should be remarked, that most successful 

estimations of the third and fourth eigenvectors were 

achieved by the RTpca algorithm for the ECG data sets. 

However, optimizing the learning rate, a crucial and also 

delicate factor in all online learning algorithms, seems 

promising to improve the results for the less successful 

ones. We were also able to show a distinct correlation in 

one of the minor components with respiratory activity, 

thus confirming the results from [3] with our approaches. 

An automatic and robust classification of the correspond-

ing principal component containing respiratory activity 

has to be implemented in future work. 

 

As there are no annotations with on-line obtained data, it 

should be mentioned, that this approach will always de-

pend on the quality of the preceding QRS-complex detec-

tion algorithm. This could become a difficult task when 

artifact contaminated signals are processed and only lim-

ited processing power is available. Especially signals like 

the ECG, acquired in ambulatory situations are very liable 

towards artifact components arising from environmental 

and experimental factors [11]. 

  

The on-line algorithms themselves are quite efficient and 

not very resource demanding, making them attractive for 

implementations on low performance systems like mobile 

sensor-nodes. A more sophisticated study is planned on 

data acquired by a wireless Body-Sensor-Network devel-

oped at our department, where a respiratory signal and 

ECG can be simultaneously recorded in home-monitoring 

[12]. 
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