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ABSTRACT

Cryptocurrencies such as Bitcoin or Ethereum promise to establish
themselves as decentralized alternatives to financial infrastructures that
so far have been reliant on centralized trust models. These decentral-
ized blockchain networks are built around the foundational principles
introduced with Bitcoin’s consensus protocol, in which a peer-to-peer
network manages a globally distributed ledger of transactions—the
blockchain. While this new and rather unorthodox approach to achieve
Byzantine agreement in open and decentralized networks offers a num-
ber of promising properties and features, it suffers from very limited
throughput scalability. As distributed systems under the pressure to
scale are often at risk of neglecting other essential qualities, improving
scalability while considering resilience and decentralization poses a
fundamental challenge for the research on open blockchain networks
today.

This thesis is therefore dedicated to the study of blockchain scalability
from a computer networking perspective. In this regard, we focus on
the two main approaches towards blockchain scalability—on-chain
and off-chain scaling—, study the currently deployed state-of-the-art
protocols and architectures, and propose improvements that consider
decentralization, security, and privacy first-class design goals.

As on-chain scalability has been previously shown to be highly depen-
dent on the reliability and performance of the underlying networking
layer, the first part of this thesis studies the peer-to-peer networks uti-
lized for block and transaction propagation. To this end, we research
the Bitcoin and Zcash networks through longitudinal measurement
studies and enable their model-based evaluation through the intro-
duction of a network-centric simulation framework. Furthermore, we
present Kadcast, a new transport protocol based on a structured overlay
network. We show that Kadcast enables faster and more efficient block
and transaction propagation while maintaining decentralization.

In the second part, we direct our attention to the notion of payment
channel networks, which promise to improve scalability by processing
most transactions off-chain. To this end, we study the provisionings
and characteristics of Bitcoin’s Lightning Network and analyze its re-
silience to random failures and targeted attacks. Moreover, we study
the feasibility of timing attacks on privacy and show how on-path ad-
versaries benefiting from network centralization may compromise user
privacy. Furthermore, we study possible attachment strategies accord-
ing to which new nodes may join the network and how they impact the
network’s topology and efficiency long-term.
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Lastly, we show how the foundational principles of blockchain net-
works may be applied beyond cryptocurrencies in order to create decen-
tralized infrastructures with improved security properties and reduced
trust requirements. To this end, we introduceWebchain, a decentralized
system enabling reference verifiability for the World Wide Web.
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ZUSAMMENFASSUNG

Kryptowährungen wie Bitcoin oder Ethereum versprechen sich als
dezentrale Alternativen zu den bisher zentral organisierten Finanzin-
frastrukturen zu etablieren. Diese dezentralen Blockchain Netzwerke
basieren auf den fundamentalen Prinzipien von Bitcoins Konsenspro-
tokoll, in welchem ein Peer-to-Peer Netzwerk ein dezentrales Konten-
buch aller Transaktionen, die Blockchain, verwaltet. Auch wenn dieser
neue und tendenziell unorthodoxe Ansatz byzantinischen Konsens in
offenen und dezentralen Netzwerken herzustellen einige vielverspre-
chende Eigenschaften und Vorzüge bietet, so leidet er doch unter der
begrenzten Transaktionsdurchsatzskalierbarkeit. Da verteilte Systeme
unter Skalierungsdruck oft dazu neigen andere essentielle Qualitäten
zu vernachlässigen, stellt derzeit die Frage wie man die Skalierbarkeit
verbessern und zugleich die Resilienz und Dezentralität berücksich-
tigen kann eine fundamentale Aufgabe für die Forschung an offenen
Blockchain Netzwerken dar.

Diese Dissertation is daher dem Studium der Skalierbarkeit von
Blockchain-basierten Systemen aus der Perspektive der Computernetz-
werke gewidmet. Dahingehend konzentrieren wir uns auf die zwei
zentralen Ansätze für Blockchainskalierbarkeit (on-chain und off-chain
Skalierung), untersuchen den Zustand der derzeitig verwendeten Pro-
tokolle und Architekturen, und machen Verbesserungsvorschläge, die
Dezentralität, Sicherheit und Privatheit berücksichtigen.

Vorherige Arbeiten haben bereits die Abhängigkeit der on-chain
Skalierbarkeit von der Leistungsfähigkeit und der Zuverlässigkeit der
Netzwerkschicht gezeigt. Der erste Abschnitt der Dissertation befasst
sich daher mit den Peer-to-Peer Netzwerken, die bei der Transaktions-
und Blockverteilung Verwendung finden. In dieser Hinsicht erforschen
wir Netzwerke von Bitcoin und Zcash durch langfristige Messstudien
und ermöglichen ihre modellbasierte Untersuchung durch die Entwick-
lung einer netzwerkzentrierten Simulationssoftware. Darüberhinaus
präsentieren wir Kadcast, ein neues Transportprotokoll welches auf
einem strukturierten Overlaynetzwerk basiert. Wir zeigen, dass Kadcast
schnellere Block- und Transaktionsverteilung ermöglicht und dennoch
die Dezentralität des Netzwerkes gewährleistet.

Im zweiten Abschnitt richten wir unsere Aufmerksamkeit auf das
Konzept der Payment Channel Networks, welche eine Verbesserung der
Skalierbarkeit ermöglichen da sie die meisten Transaktionen off-chain
verarbeiten. Dahingehend untersuchen wir die Charakteristiken des
Bitcoin Lightning Netzwerks und analysieren seine Resilienz gegen-
über zufälligen Ausfällen sowie zielgerichteten Angriffen. Außerdem
untersuchenwir dieMöglichkeit von zeitbasierten Angriffen auf die Pri-
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vatheit und zeigen, dass ein auf dem Übertragungspfad positionierter
Angreifer die Nutzerprivatheit kompromittieren kann. Darüberhinaus
betrachten wir verschiedene Strategien gemäß denen sich neue Knoten
zum Netzwerk verbinden können, sowie ihre langfristigen Auswirkun-
gen auf die Eigenschaften der Netzwerktopologie.

Zuletzt zeigen wir, wie die fundamentalen Prinzipien von Blockchain
Netzwerken auch über das Anwendungsfeld von Kryptowährungen
zum Einsatz kommen können um dezentrale Infrastrukturen mit ver-
besserten Sicherheitseigenschaften und reduzierten Vertrauensanfor-
derungen zu entwerfen. Dahingehend stellen wir Webchain vor, ein
dezentrales System das Referenzverifizierbarkeit für das World Wide
Web ermöglicht.
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1
INTRODUCT ION

1.1 motivation

Ever since the introduction of the Bitcoin peer-to-peer electronic cash
system by Satoshi Nakamoto in 2008 [Nak08], the notion of blockchain
networks has spawned a movement towards a novel, steadily growing
ecosystem of decentralized infrastructures. At the same time, the under-
lying protocol architecture could also establish itself as a viable solution
to achieve state replication in open computer networks. In thisNakamoto
consensus protocol, all network participants maintain a shared ledger of
transactions, which is segmented into blocks—the blockchain. As new
transactions are introduced to the network, they are collected by min-
ers, secured through a cryptographic proof-of-work scheme, and the
resulting blocks are disseminated in the network. Since all nodes upon
receipt can independently verify the validity of these updates to the
local blockchain state, the protocol enables verifiably secure transaction
processing without the necessity to trust any central authority. While
previously distributed systems based on classical consensus algorithms
faced many limitations in open and Byzantine network settings [FR03],
the seemingly unorthodox approach introduced by the Nakamoto con-
sensus protocol was able to stir up the field of distributed computing
by challenging a number of certainties that were deemed unshakable
before.

In particular, ever since Fischer et al. [FLP85] gave the first proof that
achieving binary consensus in the presence of failures is impossible in
asynchronous message passing systems and Lamport et al. [LSP82]
showed that agreement cannot be reached in networks with more than
one third Byzantine nodes, the theoretical guarantees provided by dis-
tributed systems seemed severely limited. In order to overcome these
theoretical boundaries, previous approaches such as Practical Byzan-
tine Fault Tolerance (PBFT) [CL99] rely on strongly identified sets of
validators and apply weakened liveness requirements in order to enable
Byzantine consensus in real-world network settings. In contrast, the
Nakamoto consensus protocol combines relaxed consistency assump-
tions with a proof-of-work leader election scheme based on economic
incentives, enabling it to reach Byzantine consensus in open and de-
centralized network settings even without presupposed knowledge of
strong participant identities.

Just as the Nakamoto consensus protocol in this regard can be con-
sidered a breakthrough in the field of distributed systems, the emerg-
ing decentralized blockchain networks promise to hold the potential
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1.2 challenges and objectives 2

to revolutionize the financial sector and other areas today reliant on
centralized trust models for secure transaction processing. However,
the actual utility of these new peer-to-peer networks is currently still
severely restricted by bottlenecks inherent to their design: as the proto-
col requires that blocks are produced in roughly regular intervals, the
maximum feasible block size is limited by the amount of data that can
be disseminated to network participants before a consistency bound is
reached. To this end, the Nakamoto protocol has been proven to achieve
consistency and liveness in bounded-delay networks, i. e., only under
the assumption of a partial-synchronous network model in which mes-
sage delivery between participants is bounded by such an upper delay
limit [GKL15; GKL20; KRS18; PSS17].

Since the size of a block also linearly corresponds with the number
of included transactions, the possible transaction throughput of the
Bitcoin system is severely limited [Cro+16]. As this renders block space
a scarce resource that is heavily competed for during peak times, it may
furthermore lead to high transaction fees [@Blo21b] and confirmation
times [@Blo21a]. Similar limitations are shared by all popular cryptocur-
rencies based around the principles of Nakamoto-like proof-of-work
consensus such as, for instance, the Ethereum network [@But14]. As
of April 2021, Ethereum is regularly facing heavy congestion resulting
from its inability to process transactions fast enough to keep up with
user demands [@Eth21]. As a consequence, transaction confirmation
may be delayed and fees spike, i. e., the network likewise exhibits tem-
porarily degraded consistency properties, which lead to increased costs
and an impaired user experience.

1.2 challenges and objectives

Given the increased interest that is driven by the advancing real-world
adoption of cryptocurrency systems, improving transaction throughput
is currently a central goal for research on blockchain networks. How-
ever, distributed systems under the pressure to scale are often at risk
to resort to centralized trust models in order to account for increased
performance requirements [Tro+17]. Therefore, improving scalability
while maintaining or even increasing resilience and decentralization
poses a fundamental challenge for open blockchain networks.Moreover,
as decentralization of the trust models underlying distributed systems
does not guarantee—and in some casesmay even be detrimental to—the
privacy of network participants [Tro+17], the need for private trans-
action processing has to be considered an additional challenge when
designing scalability solutions for decentralized blockchain networks.

There are twomain approaches to increase the scalability of decentral-
ized blockchain networks: on-chain and off-chain scaling. The on-chain
approach aims to alleviate inefficiencies in the blockchain protocol stack
in order to push the performance of these systems as close as possible
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towards their theoretic boundaries, so thatmore transactions per second
can be processed. To this end, proposed improvements on the consen-
sus protocol for instance include a decoupling of the leader election
process from transaction serialization [Eya+16] or applying alternate
chain selection rules [SZ15]. However, previous work has also shown
the securely achievable throughput of the blockchain protocol to be
heavily dependant on properties of the networking layer [DW13; ES14;
Ger+16]. The first part of this thesis is therefore dedicated to the study
of currently deployed blockchain peer-to-peer networks, how they can
be adequately measured and modelled, and how the information dis-
semination process in these networks can be implemented in a more
efficient manner without relinquishing decentralization.

On the other hand, the off-chain scaling approach follows the idea
that—by introducing another level of indirection—not all transactions
have to be immediately processed by the consensus layer. Instead, trans-
actions may be securely offloaded to a second-layer protocol that op-
erates on top of the consensus layer and relies on it for conflict resolu-
tion. While a number of such protocols have been proposed in recent
years [Gud+20], the notion of payment channel networks (PCNs) is
among the most promising solutions to scale decentralized blockchain
networks through a second layer. In PCNs such as Bitcoin’s Lightning
Network [PD16], payment channels are established between network
nodes, which then can be used by the involved parties to process most
transactions locally rather than requiring global agreement on a shared
ledger state.While this approach generally allows formuch higher trans-
action throughput, a novel set of challenges arises from this system
model: as PCNs form dedicated overlay networks over which payments
are routed in a multi-hop fashion, it is unclear which impact the emerg-
ing network structures and the utilized network algorithms have on the
payment properties PCNs can provide to their user base. The objective
of the second part of this thesis is therefore to study how the employed
algorithms and topological properties influence payment efficiency and
success, as well as how network centralization influences the resilience
and privacy guarantees of payment channel networks.

While blockchain technology in recent years established itself as a
dedicated area of research, it stands on the shoulder ofmany giants from
the fields of distributed computing and cryptography. Even though
to date the primary use cases for blockchain technology are financial
applications such as cryptocurrency networks, some of the novel ideas
coming from blockchain research may be applied to improve decentral-
ization and security of distributed systems’ design overall. However,
adopting such concepts without necessarily also carrying over some
of the underlying assumptions on economic incentives can prove to
be quite challenging. To this end, the third part of this thesis explores
how some of the foundational principles and building blocks of block-
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chains can be reasonably adopted to build resilient and decentralized
distributed systems for use cases beyond cryptocurrencies.

In summary, the objective of the present thesis is to study and improve
the challenge of blockchain scalability from a networking perspective,
with a particular focus on decentralization, resilience, and privacy.

1.3 contributions

The main contributions of this thesis can be summarized as follows:

• We conduct a longitudinal measurement study on the Bitcoin
peer-to-peer network and extract essential parameters to create
a geographically clustered model of its overlay topology. On the
basis of this model, we implement bns, a new network-centric
simulation framework that enables the empirical analysis of large-
scale blockchain network scenarios. We validate the simulation
against relatedwork and real-worldmeasurements, and show that
the utilized protocols aswell asminers’ geographic location have a
significant impact on the performance and security of blockchain
networks (Chapter 3).

• We expose the Zcash network through the first longitudinal mea-
surement study on its peer-to-peer networking layer. Our study
captures key metrics spanning multiple protocol update cycles.
Moreover, we present an inference method based on the timing
of block arrivals that allows to determine the interconnections of
nodes. We furthermore evaluate and verify this method through
simulations and real-world experiments (Chapter 4).

• We present Kadcast, a new transport protocol for the propaga-
tion of blocks and transactions in blockchain networks. Kadcast
is based on a structured overlay topology that enables faster and
more efficient broadcast operations. We analyze Kadcast’s reli-
ability, security, and privacy properties and evaluate its perfor-
mance, efficiency, and security through extensive network sim-
ulations utilizing the bns framework. Furthermore, we confirm
its superior performance through the comparative deployment of
a QUIC-based prototype implementation in a large-scale cloud-
based testbed (Chapter 5).

• We analyze the topology of Bitcoin’s Lightning Network through
graph-theoretic measures and show that it can be classified as
a small-world and scale-free network. Moreover, we investigate
its resilience to random failures and targeted attacks. In this re-
gard, we introduce the notions of channel exhaustion and node
isolation and show that the network is susceptible to these kinds
of attacks. In particular, we show that the network’s tendency
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towards centralization may enable network partitioning attacks
run by a strategic adversary (Chapter 7).

• We explore what payment success could be gained if PCNs would
follow amulti-path route selection approach. To this end, wemod-
el payments as network flows and identify that routing multiple
concurrent payments is reducible to the multi-commodity flow
problem. Moreover, we discuss the possibility of a distributed
routing algorithm that takes multiple routing demands into ac-
count (Chapter 8).

• We show that the privacy guarantees of the Lightning Network
may be subverted by an on-path adversary conducting timing at-
tacks on the HTLC state negotiationmessages. To this end, we pro-
vide estimators that enable an adversary to reduce the anonymity
set and infer the likeliest payment endpoints. We show attack fea-
sibility through a proof-of-concept implementation and evaluate
the adversarial success in model-based network simulations. We
find that controlling a small number of central malicious nodes
is sufficient to observe a large share of all payments and that
adversaries of different magnitudes could employ timing-based
attacks to deanonymize payment endpoints with high precision
and recall (Chapter 9).

• We provide an empirical study on the impact of various attach-
ment strategies for payment channel networks. To this end, we
introduce candidate strategies from the field of graph theory and
analyze them with respect to their computational complexity as
well as their repercussions for end users and service providers.
Moreover, we evaluate their long-term impact on the decentral-
ization and performance of the PCN topology (Chapter 10).

• We introduce Webchain, a new distributed system enabling ref-
erential and citation provenance for the World Wide Web. The
Webchain architecture adapts essential concepts from blockchain
technologies to facilitate the verifiably of online sources. To this
end, we integrate a distributed timestamping scheme and ana-
lyze Webchain’s security properties in the face of forging attacks.
Moreover, we provide a working prototype implementation of
the Webchain system and utilize it to evaluate Webchain’s fault
tolerance and attestation delay in emulated network scenarios
(Chapter 11).

In addition to these main contributions, we discuss the state of PCN
research in Chapter 6 and now turn the attention to the state of research
on blockchain networks in the following Chapter 2.



Part I

NETWORK ING IN BLOCKCHAIN SYSTEMS



2
STATE OF BLOCKCHAIN NETWORKS

In 2008, Satoshi Nakamoto introduced the Bitcoin peer-to-peer elec-
tronic cash system [Nak08]. While transaction systems that facilitate
the electronic and private transfer of money have been explored in
literature at least since the 1980’s [Cha85; CFN88; Dai98; Fin04; Sza05],
approaches that predate the introduction of Bitcoin were deemed im-
practical at the time or relied on the existence of trusted intermediaries.
The central novel concept introduced by Bitcoin is the blockchain, a chain
of cryptographically linked blocks that implement a shared ledger in
which an account of all conducted transactions is kept. This shared
ledger is replicated to all network participants and functions as a com-
mon and independently verifiable source of truth.

In the years since then, a variety of blockchain architectures and con-
sensus protocols have been proposed and implemented, most of which
are however descendant from the ideas introduced by Bitcoin. In this
chapter, we therefore elucidate the basic functionality of blockchain
networks by reference to the foundational principles of the Nakamoto
consensus protocol. Moreover, we present a taxonomy on the parts com-
posing the peer-to-peer network layer underlying blockchain systems,
and introduce specifics and advancements of the networking stacks
found as part of the Bitcoin implementation. Finally, we discuss pre-
vious work from literature related to our contributions towards the
blockchain networking layer.

2.1 the nakamoto consensus protocol

One of themajor issues arising in digital currencies is the double-spending
problem: as data can be easily copied, any naïve form of electronic cash
faces the issue that digital “coins” representing a certain value may be
duplicated and spent more than once. This kind of counterfeiting leads
inevitably to the inflation and devaluation of the currency. The primary
function of the Nakamoto consensus protocol is therefore to enable
the network participants to eventually agree on a shared and verifiable
view of a global ledger that records the ownership and transfer of funds,
thereby mitigating the possibility of counterfeit.

2.1.1 Addresses and Transactions

In this regard, the Nakamoto consensus protocol introduces the notion
of addresses that can be used to transfer funds by means of transactions
between them. A user can be in control of many Bitcoin addresses and
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2.1 the nakamoto consensus protocol 8

is able to send transactions secured by the use of a digital signature
scheme. In particular, Bitcoin addresses are derived from the public
part of an ECDSA secp256k1 [Bro10] key pair, and spending any funds
belonging to an address requires a corresponding signature.

As Bitcoin follows the so-called Unspent Transaction Output (UTXO)
model, transactions have a number of inputs that reference previously
unspent (i. e., locked) funds and outputs that allow anyone with the re-
quired secret key material to unlock and spend these funds by supplying
a matching digital signature. To this end, Bitcoin implements an im-
perative programming language that enables the processing of simple
stack-based scripts allowing for signature verification. As a consequence
of the UTXO model, funds may only be merged by referencing them
in the same transaction and divided by reallocating them to different
outputs. When the transactions are processed by the Bitcoin system, the
consensus rules enforce that the sum of the funds spent in output scripts
has to be less or equal to the sum of the unlocked funds referenced by
the transaction’s inputs. As furthermore any difference of input and
output funds is regarded as a transaction fee, additional outputs that
redirect the change towards addresses controlled by the user have to
be provided, if not the entirety of input funds should be spent.

Since the transaction ledger is public data, sending transactions over
and over from the same address would make it trivial for anyone to
monitor the entire transaction history of a user. It is therefore considered
best practice to keep user addresses as private as possible and always
use freshly generated addresses for change. However, as the usage
of change addresses is a standardized transaction pattern, this does
not provide a high level of obfuscation. In fact, given that the Bitcoin
transaction scheme in its current state can only provide pseudonymity
rather than true anonymity to their users [PK00], literature has shown
that user entities can successfully be re-identified based on the patterns
of the public transaction graph [Mei+13; RH13].

2.1.2 Blocks, Blockchain, and Mining

In order to increase network synchronicity, new transactions are not
individually included in the global ledger state, but are first collected
in blocks. These blocks are regularly appended to the blockchain data
structure representing the ledger, which essentially implements a dis-
tributed timestamping scheme [HS91; MAQ99]. As shown in Figure 2.1,
blocks are composed of two parts: the header and the body. The transac-
tions are stored in the block body and are secured against manipulation
by the use of cryptographic hash pointers. In the case of Bitcoin, each
transaction is hashed twice with SHA-256 [FIP15] and inserted into a
Merkle tree [Mer87] structure that yields a single root hash securing
the entirety of the block’s transactions. The root hash is included in
the block header which also encompasses among other vital fields a
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Figure 2.1: New blocks are appended to the blockchain.

hash pointer reference to the previous block in the blockchain and a
verifiable solution to a cryptographic puzzle.

In this regard, Bitcoin applies a proof-of-work scheme similar to the
Hashcash algorithm [Bac02], the purpose of which is to ascertain that
only entities that invested a certain amount of computational resources
gain the right to append to the blockchain. This part of the consensus
protocol therefore on the one hand functions as a distributed leader
election algorithm, but at the same time is an effective and decentralized
mechanism for mitigating Sybil attacks [Dou02] in open networks with-
out access control based on strong identities. To this end, the consensus
algorithmdictates that the nonce given as part of the block header solves
a hash puzzle according to a certain difficulty target (cf. Figure 2.1), i. e.,
it fulfills the equation 𝐻(HDR) < diff. The difficulty is a network-wide
consensus parameter that every participant client re-adjusts based on
historic data every 2016 blocks, so that on average every 10 minutes one
solution is found. Due to the avalanche effect [Fei73] of cryptographic
hash functions, the miners searching for the next block solution have
no other option than to hash the block header with many different
nonce values, and test whether the result conforms to the consensus
requirement. This brute-force mining process is therefore completely
random and memoryless [Ros11].

Once a solution is found, a new block is created and propagated in
the network by the miner. As other peers receive this block, they verify
its validity according to the consensus rules and append it to their local
state of the blockchain. Since blocks may be mined simultaneously, two
blocks may end up referencing the same predecessor in the chain. This
introduces the notion of a blockchain fork which is resolved eventually by
the algorithm through application of the longest chain rule: whichever of
the competing branches is extended first wins, while all other branches
are discarded. Previous work has shown the longest chain rule to make
reverting a previously included block exponentially harder, the more
blocks are appended in its succession. As a consequence, double spend-
ing attacks become highly infeasible, as long as no single party controls
more than 50% of the network’s hash rate [Ros12].
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2.1.3 Consensus Security and the Network Layer

The central idea that an honest majority of peers individually validating
local state transistions facilitates a global agreement is however based on
the assumption that peers receive new blocks soon after their creation.
In this regard, recent analytical works focusing on the consensus layer
proved that the consistency guarantees of the Nakamoto consensus
protocol only hold when blocks are delivered faster than a certain delay
limit [GKL15; GKL20; KRS18; PSS17]. Otherwise occurring inconsis-
tencies are undesirable, because they facilitate attacks such as double
spending [Ger+16; SZ15].

In an early study, Decker and Wattenhofer highlighted the impor-
tance of the block propagation delay for the security of the Bitcoin
system [DW13]. They showed that block propagation in Bitcoin’s un-
structured overlay network follows a long-tailed distribution in which
at the time 5% of the peers had to wait more than 40 seconds to receive
newlymined blocks. The authors also showed that the propgation delay
increases the probability of blockchain forks.

Eyal and Sirer discovered the feasibility of selfish mining attacks on
the Bitcoin protocol [ES14]. They show that a malicious miner could
gain an advantage by withholding mined blocks. The main idea is to let
other miners “waste” their computational power on an old block, while
the selfish miner (secretly) mines a new block. When other miners find
and propagate a block solution, the selfish miner quickly broadcasts
its secret block and therefore still has a chance to “win the race” for
the longest chain. The authors show that with this strategy, a selfish
miner can increase its block reward, relative to the actual fraction of
mining power it contributes to the system. The success of this attack,
however, heavily depends on the attacker’s mining power and the share
of the network it can reach with its secretly mined block first. Improving
the performance of the networking layer therefore reduces the attack
surface for selfish mining attacks, as the time window for the successful
publication of selfishly mined blocks shrinks.

More recently, the impact of block propagation on Bitcoin’s resilience
towards selfish mining and double spending [KAC12] attacks was
further investigated by Gervais et al. [Ger+16]. The authors show that
the occurrence of stale blocks, i. e., blocks that do not get included in the
final longest chain and therefore do not contribute to its security, can
have severe negative consequences for the performance and the security
of proof-of-work-based blockchain networks. Their results suggest that
the stale block rate is influenced by the block propagation delay, and
that it heavily depends on the employed network-layer protocols.

We therefore conclude that theNakamoto consensus protocol ensures
eventual consistency and liveness properties, if blocks and transactions
are propagated promptly to all network participants. This emphasizes
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the integral role of the different properties and aspects of blockchain
networking layer, to which we turn our attention in the following.

2.2 networking layer taxonomy

In terms of a localization in an overall model of computing architec-
ture, blockchains are located on the application layer. The networking
stack of blockchain systems is therefore situated at the lower end of
the application layer with some overlap to the layers beneath. As every-
thing below the networking layer may have a significant impact on its
performance and behavior, we in the following ascend the stack and
discuss how patterns, technologies, and design choices are relevant to
blockchain networking in general and our work in particular.

membership management Blockchain networks may be differen-
tiated based on their approach to membership management. While
open networks allow everyone willing to participate, closed networks
are access-controlled and only allow a limited set of nodes. Moreover,
different systems may employ different protocols for neighbor discovery
and neighbor selection. While some systems randomly choose neighbors
uniformly from all available peer addresses, others do so based on va-
riety of different rules, e. g., limiting the share of chosen nodes from
each autonomous system (AS). This functions as a basic form of Sybil
prevention [Dou02], a field of research with much relevance to open
blockchain networks [Bor06; VCS03].

network conditions Each blockchain network operates based on
different pre-determined conditions regarding the underlying network
infrastructure. The networks deviate in the geographical distribution of
their nodes around the globe, andhence exhibit a number of regionally de-
pendent properties, such as inter-peer latencies, provisioned bandwidths,
and routing particularities. Moreover, the reliability or average uptime
of peers, i. e., the existence of a core infrastructure with a low churn rate,
has a tremendous impact on network stability [Imt+19; SR06]. In our
work, we study the empirical network conditions of Bitcoin (Chapter 3)
and Zcash (Chapter 4).

overlay network topology The network topology emerging from
the chosen peer-to-peer protocol has significant consequences regard-
ing the efficiency and performance of the blockchain networking layer.
While Bitcoin introduced the prevalent paradigm in which nodes form
an unstructured overlay topology by establishing connections to ran-
domly drawn neighbor nodes, other interconnectionmodels, such as for
example the introduction of supernodes, have been studied in peer-to-
peer literature [YG03]. Similarly, currently deployed block distribution
networks, such as Bitcoin FIBRE [@FIB21] resort to federated network
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structures and recent works discuss the possibility of location-based
node clustering [BYZ18; SOA17a]. Moreover, our work presented in
Chapter 5 studies the benefits of a structured overlay topology.

transport protocol How the data is transmitted between nodes is
up to the transport protocol. While the connection-based TCP is currently
the default way of ensuring reliable transmission over the unreliable
internet, some protocols [@FIB21; Kla+] opt for the more lightweight
datagram-based UDP protocol in combination with forward error correc-
tion (FEC). The QUIC transport protocol [Lan+17] is also a promising
candidate for fast an reliable communications in blockchain networks,
a notion which we explore further in Chapter 5.

dissemination scheme While in blockchain networks generally
most data items have to be delivered to all nodes in the network, the
specifics are determined by the respective dissemination protocol. For
example, while in the case of Bitcoin transactions are propagated using
the diffusion spreading protocol [FV17], block announcements are cur-
rently simply flooded in its unstructured overlay network. More recent
works in literature have however proposed dissemination schemes that
improve transaction privacy [Fan+18; VFV17], and we explore a more
efficient block dissemination protocol in Chapter 5.

messaging pattern Communication between peer-to-peer network
nodes may be classified according to the applied patterns, such as
unsolicited message propagation, request/response, or publish/subscribe
schemes. Messaging patterns specific to the domain of blockchain net-
works entail improved relaying schemes based on probabilistic set
reconciliation [@Cor16; Nau+19; Ozi+19]. In this regard, our work
studies how messaging patters can impact the network utilization and
propagation delay (Chapter 3 and Chapter 5).

Based on this general taxonomy of blockchain networks, we now turn
our attention to the concrete implementation of these concepts in the
currently implemented networking stack implemented by Bitcoin.

2.3 the bitcoin networking protocol

The backbone of the Bitcoin network is comprised of nodes that form
an open and unstructured peer-to-peer overlay network: everyone who
wants to participate in the network can setup a so-called full node, i. e.,
run a software which implements the Bitcoin peer-to-peer protocol and
replicates the entire blockchain. While there are a number of projects
that implement the Bitcoin protocol to some degree, we base our ac-
count of the protocol on the behavior of the reference client, Bitcoin
Core [@Bit19].
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The Bitcoin peer protocol is an unencrypted TCP-based network pro-
tocol in which nodes pick their neighbors in a randomized fashion:
every node by default establishes 8 outgoing connections and, if reach-
able and configured, accepts up to 117 incoming connections, resulting
in amaximum connection count of 125. By convention, nodes that accept
incoming connections from other peers are called servers, and clients, if
they only establish outgoing connections. The Bitcoin software keeps a
local database of known peer addresses from which it randomly draws
candidates for outgoing connections. If this database is empty, e. g.,
when the software is started for the first time, it is bootstrapped by
querying a number of community-run DNS servers whose addresses
are hard-coded in the client software. They return peer IP addresses as
the contents of SRV resource records. Peer addresses are also gossiped
to network neighbors and can likewise be requested by and from each
network participant.

After a TCP connection is established, the nodes exchange version
and verack messages which transport crucial peer data and addition-
ally serve as basic handshake messages. Moreover, the exchange of
peer address data, transaction forwarding, and block propagation is
initiated. Every network participant may insert new transactions to the
network, which are then propagated via Bitcoin’s gossip protocol and
are validated by every full node along the way. In particular, new trans-
actions are first announced to neighboring nodes through inv (read:
inventory) messages, which in this case are only sent after an exponen-
tially distributed delay for privacy reasons. As mentioned before, this
propagation scheme is known as diffusion spreading [FV17].

Transactions are validated, collected, and bundled into blocks by
miner nodes which start mining the block, i. e., start calculating the
solution to a cryptographic puzzle whose difficulty parameter is set
based on network consensus. Once a solution is found, the new block is
disseminated in the peer-to-peer network. In earlier versions of the Bit-
coin protocol, blocks were announced via immediately forwarded inv

messages, and receiving nodes would request blocks and headers inde-
pendently with getheaders and getdata requests. These would then
again get answered by corresponding headers and block messages.

However, since protocol version 70012 was introduced with Bitcoin
Core v0.12.0, the default block propagation scheme changed [@Daf15]:
blocks are announced directly by sending headers messages, which
reduce the propagation delay. Yet, when more than one block has to be
announced, the client falls back to the inv-based announcement scheme.
Nodes enable this newprotocol by sending a sendheadersmessage after
the initial handshake. In addition, a scheme for compact block relay was
introduced [@Cor16], which allows to send block announcements in a
more bandwidth efficient way. In particular, it allows Bitcoin nodes to
only retrieve the transaction data they are missing from an announced
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block, which can severely reduce the bandwidth overhead of block
propagation, but is prone to induce an additional latency overhead.

While other blockchain networks may exhibit their own idiosyn-
crasies, they often coincide with Bitcoin’s general networking paradigm,
i. e., block and transaction propagation through broadcast in an unstruc-
tured overlay topology. For example, even though Ethereum’s [@But14]
peer discovery is based on a Kademlia [MM02] overlay construction,
the actual eth propagation protocol follows a schematism similar to
that of Bitcoin [@Eth19a; Hen+19]. However, at the time of writing, it
chooses to forgo the request-response scheme over unsolicited block
propagation and also does not implement discussed protocol exten-
sions, such as a compact block relay mechanism [Kim+18]. Likewise,
as the reference client of Zcash [@Ele21] was previously forked from
Bitcoin Core, its network currently still operates on what is essentially
an older version of the Bitcoin networking stack.1

2.4 related work

In the following, we discuss work related to our contributions towards
the field of blockchain networking.

2.4.1 Network Measurement and Inference

A large body of literature has previously studied various individual
properties of real-world blockchain networks. While early entries were
mainly concerned with the network topology and block propagation be-
havior [DW13;DPH14],more recent contributionsmeasured the latency
and bandwidth provisionings [Gen+18; Neu19], the mining power dis-
tributions [Ger+14; WCY19; WL15], as well as the node churn [Imt+19;
Neu19] and transaction propagation behavior [Pap+18] of the Bitcoin
network. Moreover, the peer-to-peer networks of Ethereum [Gen+18;
Kim+18; Sil+20] and Monero [Cao+20] have been explored in litera-
ture. However, most entries do not entail recent measurement results
that consider the current state of blockchain network provisioning. To
this end, our work introduced in Chapter 3 provides a comprehensive
model of the Bitcoin network based on an updated data set.

Beyond these blockchain networks, the Zcash [Ben+14a; @Ele21]
cryptocurrency exhibits similar properties to Bitcoin, but provides addi-
tional privacy guarantees byutilizing zero-knowledge proofs [Ben+14b]
to enable anonymous transaction processing. While most prior work on
Zcash focuses on the anonymity aspects [Kap+18; Que17], our work
presented in Chapter 4 introduces the first measurement study of the
Zcash peer-to-peer network and explores methods to discover its topol-

1 Notably however, the roadmap for a new implementation and networking stack has
recently been announced by the Zcash foundation [@Val20].



2.4 related work 15

ogy. Previous entries in literature studied the possibility of topology
inference of blockchain networks based protocol details such as peer an-
nouncements [Mil+15] or transaction propagationmechanics [GNH18].
Notably, Neudecker et al. [NAH16] introduced a method to infer the
topology of the Bitcoin network by analyzing the timing behavior of
transaction propagation. Our work is fundamentally based on this con-
cept, but extends this approach by translating it to the Zcash network
setting and utilizing a more robust and finer-grained model based on
the block propagation timing behavior.

2.4.2 Models and Simulators

In order to analyze their behavior, blockchain networks may be studied
based on broad spectrum of models, tools, and simulations, reaching
from testbeds with actually deployed prototypes to highly-abstracted
simulated processes. Previously, Miller and Jansen [JH12; MJ15] pro-
posed a simulator based on the actual Bitcoin Core source code, while
abstracting lower-level network behavior. While this approach promises
to closely model application behavior, its high complexity requirements
tend to limit the size of the simulated scenarios. Contrastingly, the
BlockSim simulator [AM18] highly abstracts from the application and
network behavior, promising a lightweight simulation based on aver-
age delay values configurable by the end-user. The contributions most
closely related to the simulation framework introduced in our work, are
the Bitcoin network simulator by Gervais et al. [Ger+16], as well as the
SimBlock [Aok+19; BS19; NBS20] simulator. While similarly to our ap-
proach the former makes use of the discrete-event network simulation
provided by the ns-3 [@ns-21] framework, it relies on a simplifiedmodel
of the network topology, such as establishing network links based on a
random graph model congruent to the Bitcoin node’s TCP connections.
It thereby tends to yield idealized results. While SimBlock on the other
hand adopts a more realistic geographical distribution of nodes and
implements more recent protocol updates, such as compact blocks, it
abstracts from the lower-level network protocols. In this regard, both
entries do not allow to consider more complex network effects, such as
congestion with resulting queuing delays and packet losses. In contrast,
the bns simulation framework we introduce in Chapter 3 builds upon
the ns-3 simulator and models the link, network, transport, and appli-
cation layers of blockchain nodes independently, allowing to study a
larger variety of (often interdependent) effects.

2.4.3 Network-Layer Improvements

In recent years, many contributions proposed changes to the network-
layer protocols for transaction and block propagation in order to im-
prove the resulting performance and privacy aspects.
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For instance, schemes for improved transaction and block relaying
have been discussed repeatedly in literature. Ozisik et al. [Ozi+19]
proposed a more efficient block transmission protocol based on Bloom
filters and Invertible Bloom Lookup Tables (IBLTs). This scheme aug-
ments the concept of compact block relaying [@Cor16] to enable higher
bandwidth utilization by only retrieving transactions missing from the
transaction memory pool, which however accepts the possibility of an
increasedworst-case block propagation delay. Similarly,multiple entries
are concerned with enabling a more bandwidth-efficient transaction
dissemination [Han+20; Nau+19], as well as utilizing forward error
correction (FEC) in order to reduce bandwidth requirements of block
propagation [Cha+19; ZWL21]. While improving on some aspects—
such as the messaging overhead—these protocols do not fundamentally
change the prevalent network and propagation models. In particular,
they do not address issues that are inherent to unstructured overlay
networks. In contrast, the Kadcast protocol we introduce in Chapter 5
tackles these issues by fundamentally rethinking the overlay structure
as well as the dissemination protocol.

While furthermore a number of entries suggest to optimize neighbor
selection with regard to propagation latency [Mao+20] or geographic
proximity [SOA16; SOA17a; SOA17b], such approaches could lead to
more centralized network topologies with unknown consequences
for fairness and privacy. Third-party relay networks, such as the FI-
BRE [@FIB21] or bloXroute [Kla+] networks, are supposed to improve
the distribution of blocks and transactions.While the emergence of these
proposals clearly show the urgency of the problem, we deem them or-
thogonal to the goal of improving the peer-to-peer networks themselves.
Moreover, first results from previous works suggest [Ger+16] that a
separate relay network has a negligible effect over switching to a faster
block propagation scheme. Since such federated relay networks also re-
quire central and manual coordination, they likewise do not necessarily
align with the aspired design goals regarding decentralization.

While initiallymost research on the privacy of cryptocurrency transac-
tions focused on the consensus layer [Mei+13; RS13], more recent work
discussed deanonymization attacks on the peer-to-peer layer [BKP14;
KKM14] and analyzedwhat privacy properties it provides [FV17]. Very
recently, Tramèr et al. have shown that timing-based side-channel infor-
mation and traffic analysis may be used to attack the privacy guarantees
of Zcash and Monero cryptocurrency transactions [TBP20].

In order to mitigate privacy threats arising from the networking
layer, a number of contributions deal with private transaction relaying.
For example, Venkatakrishnan et al. and Fanti et al. propose protocol
redesigns that improve anonymity of transaction propagation in the
Bitcoin network [Fan+18; VFV17]. These designs utilize a new propa-
gation method called “diffusion-by-proxy”, which divides transaction
propagation in two phases: first, in the “anonymity phase”, transac-
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tions carry out a random walk in the network. Then, in the “spreading
phase”, the endpoint of the random walk starts performing the usual
broadcast utilizing Bitcoin’s diffusion spreading technique. While pri-
vacy aspects are not the main focus of the Kadcast protocol introduced
in Chapter 5, techniques such as diffusion-by-proxy spreading may be
easily integrated in its design in order to improve transaction privacy.
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Given the complex effects and behaviors emerging in large-scale peer-
to-peer networks, network-layer properties are often studied best in
controlled environments such as network simulations or experimental
testbeds. Establishing adequate simulation models however requires
access to comprehensive empirical datasets on the grounds of which
reasonable assumptions and input parameters can be determined. As
prior studies on the Bitcoin network often focused on a number of
individual aspects of the network, we in the following present an up-
dated, comprehensive measurement study capturing a wide array of
parameters. From the captured data set, we extract a networkmodel that
builds the foundation for realistic network simulations. We furthermore
present bns, a modular simulation framework for blockchain networks
that implements this model and allows for experimentation based on
configurable networking stacks. Lastly, we validate the proposed simu-
lation model by reference to third-party network measurements, and
by comparison to related work.

3.1 bitcoin measurement study

In order to characterize the network conditions currently found in the
Bitcoin network, we conducted a network measurement study that al-
lows us to categorize the network peers along the lines of seven regional
clusters: NorthAmerica (NA), SouthAmerica (SA), Europe (EU),Ocea-
nia (OC), Asia (AS), Africa (AF), and China (CN).1 In the following,
we present and discuss the applied methodology and the measurement
results.

3.1.1 Data Rates

In order to be able to characterize how fast Bitcoin network peers are
able to propagate blocks, starting from April 1, 2020, we conducted
a longitudinal measurement study recording the bandwidth distri-
bution in the Bitcoin peer-to-peer network. In particular, since it is
typically the limiting factor of internet access, we are interested in the
upload bandwidth of Bitcoin nodes. For this, we developed a measure-
ment utility that was deployed on seven nodes as close as possible to
the geographical center of the seven regional clusters. In particular,

1 The existence of a separate cluster for China is justified on the basis of earlier research
that highlights its special role for blockchain networks [DRT19; Ger+14; KJL18].
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Figure 3.1: Measured Data Rates per Region

we deployed nodes at the following Amazon AWS regions: us-west-
1 (NA), sa-east-1 (SA), eu-central-1 (EU), ap-southeast-2 (OC),
ap-south-1 (AS), me-south-1 (AF), and ap-east-1 (CN).

Once started, the measurement tool connects to one Bitcoin peer at
a time and requests as many blocks as possible in a given time frame.
In order to ensure bandwidth saturation, we configured the client to
establish three concurrent connections to each of the node addresses
publicly available from the Bitnodes [@Bit21b] database. After an initial
offset to account for connection establishment, the download traffic was
recorded and analyzed for five minutes utilizing libpcap [@Gro20],
before moving on to the next address. During the overall runtime of
around one month, each of the seven measurement nodes processed
the node list in a randomized order to ensure we operate as close to line
speed as possible as well as to minimize the risk of our study interfering
with regular network operation. In order to approximate the upload
speed of each peer, we processed the incoming data in intervals of 30ms
and recorded peak data rates. Moreover, the addresses were clustered
based on the GeoLite2 [@Max21] geolocation database.

Every measurement node initiated connections to an average of 4,155
peers that could be successfully reached (from a total of 7,111 known
peers). The resulting data rates are shown in Figure 3.1 for each peer
region and in dependence of the measurement region. We observe that
generally the data rates follow a wide spread of up to 740Mbit/s as
well as down to close to 0Mbit/s. Moreover, the measured network
bandwidth in NA, SA, EU, and AS regions are highest and similarly
distributed, as they exhibit average peak rates of around 200Mbit/s,
222Mbit/s, 218Mbit/s, and 224Mbit/s, respectively. This suggests that
peers in these regions supply the core infrastructure of the Bitcoin peer-
to-peer network. The peers in the AF and OC regions are fewer and
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Figure 3.2: Measured Inter-regional Latencies

not as well connected, featuring average peak rates of 161Mbit/s and
144Mbit/s. Interestingly, the measured rates of peers located in the
CN region are lowest with a mean peak rate of only around 106Mbit/s.
This observation is particularly notable as the regional distribution
of blockchain networks have been discussed in literature for quite a
while [DRT19; Ger+14] and these measurement results are in line with
prior research that suggests that the so-called “Great Firewall” of China
may pose a significant bandwidth bottleneck, which the authors link to
detrimental miner behavior, such as creating empty blocks [KJL18].

3.1.2 Latencies

Besides bandwidth, inter-peer latencies have a major impact on the
characteristics of message propagation in peer-to-peer networks. There-
fore, we conducted an extensive measurement study with the goal
of capturing latency distributions between the different geographical
regions of the Bitcoin network. In April 2020, we therefore deployed
seven additional measurement nodes in the NA, SA, EU, AF, AS, CN,
and OC regions. After deployment, each measurement node ran a
script sending 100 ICMP ping requests to each of the publicly available
IP addresses of Bitcoin nodes and recorded the average encountered
round-trip time (RTT) value. Afterwards, we collected the results and
grouped them according to their source-destination regions i. e., from
where the measurement was conducted andwhere the measured nodes
were located.

From the 7,121 queried IP addresses, 2,519 did not respond to the
ping requests on average, be it because they were not online anymore,
or were blocking ICMP requests. This leaves us with measurement
results for 4,602 Bitcoin peers. The measured average RTT values are
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Table 3.1: Regional Peer and Mining Distribution

Region EU NA AS OC SA CN AF

Peer Share (%) 49.1 41.4 4.7 1.8 1.3 1.0 0.6
Mining Share (%) 85.2 10.1 0.8 0.0 0.0 3.9 0.0

shown in Figure 3.2: we observed a mean RTT of 180ms, which how-
ever exhibits a large standard deviation of 92ms, as values range from
less than 1ms to the maximum outliers well surpassing 1,000ms. We
attribute measurements close to 0ms to nodes in physical proximity
(maybe even in the same data center). Moreover, peers located in the
EU and NA regions are reachable the quickest, both featuring an over-
all mean RTT of 176ms, while AF peers are the slowest to respond
as they do so within 304ms on average. In contrast to the bandwidth
measurements, the latency of peers located in the CN region are not
exhibiting significantly sub-par performance. However, our observa-
tion that ICMP packets seem not to experience similar effects actually
further supports the hypothesis that the low data rates shown before
are caused by the performance deficits induced by the Great Firewall’s
deep packet inspection.

3.1.3 Peer and Mining Distribution

In order to investigate the current regional distributions of network
peers and mining power, a Bitcoin node was deployed in the network
of TU Berlin. It was configured to run a modified version of the Bitcoin
Core software that allowed for an unbound number of incoming and
outgoing node connections. We let this node run for several days to
acquire a high number of connected neighbor nodes, which eventually
fluctuated around 2,500 connections, thus covering a large share of
the Bitcoin network. From September 1, 2020 to September 30, 2020,
we recorded incoming block announcements from all neighbor nodes.
Given the good connectivity of our measurement node, we assume the
node receives new block announcements from the miner directly or
from a source close to the miner. Hence, we attribute the first observed
announcement of a new block to the geographic region associated with
the IP address we received it from, which corresponds to a first-spy
estimator [VFV17].

As can be seen in Table 3.1, the distribution of network peers over
the regional clusters is heavily skewed, as the highest share of peers is
located in the EU region with 49.1%, while the lowest share is located in
the AF region with only 0.6% of peers. The result also reveal a mining
power distribution which is even more skewed than the peer distribu-
tion. Notably, the EU region provides 85.2% of observed blocks, while
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Figure 3.3: Observed Block Sizes and Validation Delays

only 49.1% are located in this region. Moreover, the CN region exhibits
an overproportional share of mining power of 3.9%, while providing
only 1.0% of network nodes. The current picture is however a rather
big change from a pilot study following the same methodology we
conducted in the end of 2019, in which we observed an even more dras-
tic inequality in mining power distribution: in November 2019, peers
from the CN region still provided 77.6% of mined blocks, while only
accounting for 3.9% of the network. While we observe this significant
change, we currently have no clear indication on what exactly led to
the shift of mining power distribution.

3.1.4 Block Sizes and Validation Delay

In order to get an understanding on how much data the network needs
to process during block propagation, starting September 1, 2020, we
utilized our measurement node to record newly published blocks over
a period of one month. During this time, 4,087 blocks were published,
for which the sizes can be seen in Figure 3.3. While the range of block
sizes spanned everything from 200 bytes to 2.09MB, the mean observed
block size was 1.17MB, which shows that the network is currently not
constantly hitting its capacity limit.

Moreover, as each node only forwards new blocks after it validated its
transactions and the proof-of-work, we recorded the time our measure-
ment node took for validation. As seen in Figure 3.3, we observed a lin-
ear correlation between block size and validation delay.We furthermore
validated this using Pearson’s product-moment correlation test, which
yielded a correlation coefficient 𝑟 = 0.41 and 𝑝 < 2.2𝑒 − 16 ≪ 0.05,
which allows us to reject the null hypothesis, i. e., suggests that there
is indeed a significant correlation between block size and validation
delay.



3.2 modelling and simulating the bitcoin network 23

3.1.5 Data Set and Measurement Ethics

We make the source code of our measurement tools, the measure-
ment data, and the inferred regionally clustered model accessible to
the public.2 Note that some of the recorded data, such IP addresses,
are most likely also available from other public sources such as Bitn-
odes [@Bit21b]. However, for the sake of measurement ethics and in
accordance with the Menlo report [Bai+12], we try to minimize our
interference with the live network and hence treat such potentially iden-
tifying information as sensitive data. We therefore refrain from pub-
lishing the raw data set and instead publish data only in pre-processed
form.

In summary, our measurements allow us to infer a comprehensive
model of the Bitcoin network behavior, which we discuss in the follow-
ing.

3.2 modelling and simulating the bitcoin network

In the following, we methodically model blockchain networks based
on our measurements of the Bitcoin network.

3.2.1 The bns Simulation Framework

In order to capture the complex networking effects and behaviors of
blockchain networks, we implemented bns, a new blockchain network
simulation framework whose architecture is able to incorporate inter-
changeable networking modules and network topology models. The
simulation is based on the ns-3 network simulator [@ns-21; Hen+08],
whose discrete-event based architecture enables realistic and time-
independent simulations of large computer networks. While the bns

simulator follows amodular approach that allows for expandability and
customizability of the networking stack, the default implementation is
oriented towards the paradigmatic Bitcoin node logic and, as a baseline,
currently implements a TCP-based networking stack that resembles Bit-
coin’s unstructured peer-to-peer overlay for block propagation. The bns
codebase is open source and has been used by numerous researchers
since its publication.3

architecture The main component of bns is implemented as a
C++ program that creates different network scenarios using the ns-3
simulator. To this end, it spawns a configurable number of ns3::Node
objects and configures network links between them. On each node, a
blockchain-specific ns3::Application is installed, which is then run
during the simulation process. As the different layers closely resemble

2 See the companion repository: https://git.tu-berlin.de/rohrer/blz-data
3 The source code is accessible under: https://git.tu-berlin.de/rohrer/bns-public

https://git.tu-berlin.de/rohrer/blz-data
https://git.tu-berlin.de/rohrer/bns-public
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the real internet architecture, and all nodes and applications behave as
independent actors, this simulation method captures detailed network
effects and dynamics. In particular, and in contrast to previous works,
TCP streams flow over shared links, thereby inducing queueing delays,
and possibly even network congestion leading to dropped packets and
retransmissions.

configurability and parametrization The simulator can be
parametrized to reflect different blockchain systems and in order to
experiment with different parameter sets. We chose the default param-
eter set of bns in reference to the Bitcoin network which therefore is
able to mimic its wire protocol, i. e., it implements the inventory and
header-based announcement schemes, as well as a stochastic model for
block propagation based on compact blocks.

In order to provide a unified and controlled simulation environment,
we base the parametrization of the simulator on the network model
derived from our measurement study presented in Section 3.1. Specifi-
cally, simulated block sizes are sampled from our measurements and
are optionally multiplied with a block size factor in order to simulate
different block sizes. Likewise, blocks are only forwarded after a vali-
dation delay Δ𝑣 calculated based on their size 𝐵𝑠 corresponding to the
linear equation

Δ𝑣 = 𝛼 + 𝛽𝐵𝑠,

where 𝛼 and 𝛽 are taken from the measured validation delays, as dis-
cussed in Section 3.1.4.

Similarly, each miner schedules block generation events based on her
hash power, overall resulting in a Poisson process spawning a block
every ten minutes on average. Again, this may be modified by applying
a block interval factor, e. g., a factor of 0.025 would result in Ethereum’s
15 second target interval. As default, we simulate 10 mining pools
that together provide nearly the entire hash power of the Bitcoin net-
work [@Blo19]. To this end, bns currently supports the simulation of
block propagation in two different network topologies, which we de-
scribe in the following.

3.2.2 Topology Models

hub & spoke topology model As a baseline model for protocol
evaluation, bns implements a Hub & Spoke topology where all nodes
are connected to one central node representing “the Internet”. In this
model, our assumption is that the internet is not a bottleneck and there-
fore we set the hub’s default link capacities to 100Gbps and client
bandwidth to 50Mbps. Moreover, we sample link latencies from the
publicly available data set of measured end-to-end median latencies
in the Bitcoin network [@Tec20]. The Hub & Spoke model is a typical



3.2 modelling and simulating the bitcoin network 25

NA

SA

EU

AF

AS

CN

OC
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associated peers.

setup for the assessment of peer-to-peer overlays, and while it captures
rudimentary network effects, it does not rely on additional assumptions
about the underlying topology. This creates an idealized simulation
scenario that gives us the capability to assess the networking stacks
based on a neutral, common ground.

geographic topology model In order to capture the protocol
behavior in complex and more realistic settings, we employ a regionally
clustered network model derived from the measured data set, i. e.,
recreate a network topology in the ns-3 simulator that relies on the
seven regional node clusters. As can be seen in Figure 3.4, each of the
clusters follows a Hub & Spoke model in which nodes are arranged
around one of the region hubs, which in turn are fully interconnected.

The regional distribution of peers and miners is conducted according
to our previously discussed findings. Moreover, data rates of nodes
are drawn from a piecewise-linear distribution created based on our
measurements, while inter-hub links are not assumed to be bottlenecks,
i. e., are provisioned with really high data rates.

However, since our network measurements were conducted end-
to-end, they already capture the inter- as well as intra-regional parts
of the latencies. In order to be able to parametrize all segments of a
peer-to-peer path, we therefore first create individual piecewise-linear
distributions for each regional combination. We then establish intra-
regional links in each region 𝑟 and estimate individual link latencies
̂𝑙𝑟,𝑖 by sampling from the intra-regional distribution, divided by four.

In the next step, we then need to create a model for each of the inter-
regional links between all regions 𝑟0 and 𝑟1. For this, we first calculate
the means of the provisioned intra-regional latencies 𝐿𝑟, as well as the
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Figure 3.5: Simulated latencies for different network sizes in comparison to
measured values.

mean measured peer-to-peer inter-regional latencies 𝐿𝑟0,𝑟1. We then
calculate the estimated inter-regional link latency as

̂𝑙𝑟0,𝑟1 =
𝐿𝑟0,𝑟1

2 − 𝐿𝑟0 − 𝐿𝑟1,

which is finally assigned to the corresponding edge.

3.3 network experiments

In the following we present empirical experiments showing the validity
of the introduced network model as well as the capabilities of the bns
simulation framework.

3.3.1 Latency Model Validation

In order to investigate whether the results gathered from simulated
network scenarios of different magnitudes still fit the real-world condi-
tions, we validate the latency model of the bns simulation framework.
To this end, we implemented a ping application that was deployed on
random nodes in each of the seven regions of the geographic topology
model. Each instance of the application was configured to retrieve la-
tency measurements to random nodes located in all seven regions, a
process which was repeated fifty times for each regional combination
and fifty times overall in order to ensure the statistical significance of the
results. The simulations were furthermore run in scenarios of different
magnitudes, i. e., in networks with 500, 5,000, and 10,000 peers.

The simulation results are shown in Figure 3.5 in comparison to the
real-world latencies we retrieved as part of our measurement study.
We observe that in all cases the latency distribution is very stable and
independent of the number of network peers. This indicates that the
bns simulation framework is able to yield expressive results, even when
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Figure 3.6: Block propagation times as simulated by bns in comparison to real-
world measurements and results by other blockchain simulators.

only smaller scenarios are considered. Moreover, the simulated latency
distribution fits the measured real-world distribution very well, with
means diverging only about 1-6ms in most cases.

3.3.2 Propagation Model Validation

To further investigate whether the simulated geographically clustered
network topology is able to produce valid results that closely resemble
the properties of real-world blockchain networks, we compare block
propagation times of bns with related work as well as independent
real-world data. To this end, we simulated network scenarios with 500
nodes utilizing bns, the SimBlock [Aok+19] simulator, as well as the
simulator introduced by Gervais et al. [Ger+16].Wemoreover retrieved
block propagation data collected by Neudecker [Neu19; @Tec20] as
ground truth.

Figure 3.6 shows the simulation results in logarithmic scale as cumu-
lative distribution function, which allows a visual comparison of the
data. In order to quantify howwell the simulated data sets approximate
themeasured data, we additionally calculated the root mean squared error
(RMSE). We observe that SimBlock (RMSE: 3,345ms) yields results
very similar to bns (RMSE: 3,590ms) when the header-based propaga-
tion method is used. However, when compact block relaying is enabled,
bns resembles the measured real-world data most closely, resulting in
an RMSE of 1,415ms. This does not come as a surprise, since Bitcoin’s
introduction of compact blocks [@Cor16] indeed reduced the average
block propagation delay. The characteristics of the data retrieved from
Gervais et al.’s simulator diverge from the real-world data set the most
(RMSE: 20,066ms). We conclude that the network model underlying
the bns simulator enables valid simulations of blockchain network be-
havior.
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Figure 3.7: Rate of stale blocks in dependence of block size and propagation
method.

3.3.3 Impact of Network Utilization

We furthermore investigate what impact different block sizes and prop-
agation schemes have on the network utilization and the resulting block
propagation process. To this end, we simulated the compact block and
header-based propagation of 1, 2, 4, 8, and 16MB blocks in scenarios
with 500 nodes and analyzed the block propagation delay.

As to be expected, the average block propagation delay increases with
the size of transferred blocks and is significantly decreased when com-
pact block relaying is enabled. Starting from 4MB, we observe a high
network utilization for header-based relaying that increasingly leads to
network congestion and in turn induces further packet losses and re-
transmits. Especially in edge cases and for lower-bandwidth peers, this
leads to higher delays until blocks are received, which is reflected by
increased standard deviations of the average block propagation delays.
This behavior is of particular relevance, because when miners receive
new blocks too late, they waste their mining power on producing stale
blocks, which has been shown to negatively impact the security of the
consensus layer [Ger+16]. Figure 3.7 therefore shows the rates of stale
blocks, i. e., blocks that are finally not included in the blockchain, in
dependence of the block size and propagation method. While the stale
rate for header-based propagation remains negligible for 1 and 2MB
blocks, it rises for block sizes of 4MB and above. Stemming from the
high network utilization observed for 16MB blocks, the average stale
rate even surpasses 6%.

While these results show that the Bitcoin network currently could not
handle header-based propagation of larger blocks without incurring
security penalties, they also highlight that compact block propagation
significantly improves the block propagation delay and network utiliza-
tion. As shown in Figure 3.7, the simulation results indicate that Stale
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rates can in fact kept negligible for sizes of up to 16MB and beyond,
when these blocks are propagated through the compact block scheme.

3.3.4 Regional Influence on Block Propagation

In order to evaluate the regional influence, we configured bns with
parameters in accordance to Bitcoin, i. e., with block size factor set to one,
and simulated scenarios inwhich singleminerswere deployed in each of
the regional hubs. These simulationswere run in network scenarioswith
500 peers and were repeated 150 times to ensure statistical significance.

Figure 3.8 shows the incurred delay in order to disseminate a new
block to 90% of network peers in dependence of the miner’s geographi-
cal location. Not surprisingly, miners in the EU, NA, and AS regions are
able to propagate their blocks the quickest, exhibiting an average delay
of 3.5 s, 5.7 s, and 5.7 s, respectively. In comparison, miners located in
the AF, SA, and CN regions take more than 84% longer than EU miners
to propagate their blocks in the network. Miners located in the OC re-
gion take the longest to propagate their blocks, resulting in an average
block propagation delay of 8.5 s, 133% longer than miners in the EU
region.

These results clearly show that the provisioned bandwidth and ge-
ographical location have a significant impact on miners’ block prop-
agation times. As such specific network characteristics may only be
simulated based on a fine-grained network model, this scenario high-
lights the capabilities of the bns framework.
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The Zcash [@Ele21] project is a privacy-focused cryptocurrency that
implements the Zerocash [Ben+14a] protocol, which enables trans-
action anonymity on the consensus layer through the application of
zero-knowledge proofs [Ben+14b]. While the network is online since
October 2016, no prior work explored the conditions found in the Zcash
peer-to-peer network. To this end, we present in the following the first
longitunidal measurement study on the peer-to-peer networking layer
of the Zcash cryptocurrency. Moreover, we study whether the topology
of the network can be inferred based on a passive timing analysis of
network message exchanges.

4.1 zcash measurement study

The goal of this investigation is to illuminate network characteristics
on a global scale. To this end, the empirical data covers two main cate-
gories: data about individual nodes and about information propagation
between nodes. In particular, we show the worldwide interest in Zcash
and present insights on network size and stability, geographic node
distribution, software deployment and lifecycles, origin of blocks, block
propagation time, as well as mining centralization.

4.1.1 Measurement Setup

In order to characterize the Zcash network, we deployed a Zcash refer-
ence client for data collection as an observation point. The client was
run on a virtual machine in our university network (TU Berlin, IPv4).
However, minor client modifications were necessary to ensure a reliable
measurement setup that avoids unwanted side-effects and yields repre-
sentative results. For example, in order to get a comprehensive overview,
it is necessary that the observation point is connected to as many peers
as possible. We therefore increased the maximum number of outbound
connections and allowed for 873 simultaneous connections, which is
the upper limit provided by the reference client on a Linux machine.
Moreover, we disabled the sending of block inventory messages that
announce new blocks to peers. We however recorded arrival times of
block inventory messages from neighboring peers to get an overview of
the block propagation times in the network. Additionally, we recorded
information about connected peers and the mining difficulty. In our
measurements, we omitted all data points recorded during the initial
blockchain download, because this is a one-time phase and therefore

30
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Figure 4.1: Distribution of announced version strings in the Zcash peer-to-peer
network.

does not represent normal operation. The described methodology is on
par with other measurement studies [Neu19].

We recorded data snapshots about peers and blocks every five min-
utes and twominutes, respectively.While a time interval of twominutes
does not guarantee to record every single block, it should capture the
vastmajority of blocks1. In addition to the application layer data, we sent
ICMP ping messages to the connected peers, which serve as a baseline
and help to reveal networking problems during the measurements.

Our measurement period spans from July 2, 2018 until November 12,
2018. It thus captures the time after Zcash’s first network upgrade called
“Overwinter” [@Ele19]. During the measurements, we upgraded the
client twice to include new functionalities and to ensure compatibility
after Zcash’s second network upgrade called “Sapling” [@Ele19]. Ac-
cordingly, client versions MagicBean 1.1.1, 1.1.2, and 2.0.0 were utilized.

4.1.2 Measuring Network Size and Client Versions

To begin with, we are interested in the network size and the number of
nodes running a specific software version. In order to estimate these
numbers, we count the number of network peers that were connected
to our measurement node over time.

The number of simultaneous connections held by our vantage point
and the distribution of client versions are shown in Figure 4.1. As the
number of observed simultaneous connections never exceeds this range,
we estimate the size of the network to be around 300 to 350 nodes. Note
however that we observed 4,208 distinct IP addresses which established
a connection to our vantage point at least once. In total, the address

1 At the time of writing, Zcash’s block interval time is 2.5 minutes
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manager of our node learned from exchanged address information
about around 25,000 IP addresses. We assume that this high number of
(stale) IP addresses stems from a small number of network peers that
constantly change their IP address.

As a side note, on November 11, we observed 117 simultaneous con-
nections coming from the same IP address. These 117 connections were
open for approximately 30 minutes but did not send any data. The
version name of this client was “xbadprobe”, which suggests that this
may have been an attempt to occupy the node’s inbound connections.

The reference client provided by the Zcash developer team uses the
string “MagicBean” followed by a version number as the client name.
While it is possible to modify the client software without changing the
announced version string, we consider this a negligible side-effect and
use the strings to account for different client versions. Likewise, the data
shows that only a small fraction of clients use custom version strings or
minor versions. We therefore only consider major client versions and
categorize minor versions (e. g., 2.0.1-rc1) and custom version strings
as “other clients” in the following.

Since client version 1.0.9, each reference client comes with an End-
of-Support (EoS) period, which causes the client software to halt after
the EoS period has expired. At the time of writing, the period is set to
be 64,512 blocks or approximately 16 weeks. Visually, we can clearly
identify the EoS periods in Figure 4.1. For example, we captured the
complete 16 week lifecycle for client version 1.1.2, showing the adop-
tion of and transition to other versions. Moreover, client versions older
than 1.1.0 are no longer supported after the second network upgrade.
Connections to these outdated clients are therefore dropped after the
version handshake. Nevertheless, our data reveals that some clients
were still active with older client versions, even though they no longer
supported the consensus. However, the client versions 1.1.0 and 1.1.1
included a configuration option which disabled the automatic halt after
the EoS period, which explains why the observed drop in numbers for
those versions is not as entire as for version 1.1.2. The introduction of
EoS periods is an interesting and clearly effective approach to ensure
that all users update their client software and obsolete versions leave
the network in a timelymanner. This reduces the threat that bugs persist
even after they were already fixed, which in turn bears the danger to
undermine the trust in the currency.

4.1.3 Measuring Geographical and Mining Distribution

In Figure 4.2, we show the country distribution of observed IP addresses
and block origins during our measurement period, which provides
insights on Zcash’s global adoption and mining power distribution. We
used GeoIP [@Max21] to map the IP addresses from our data set to
countries. If a country had less than 30 IP addresses it is grouped as



4.1 zcash measurement study 33

“other”. We further assume that the host which first announces the
block is also the block’s miner.

We generally can see that the Zcash network spreads over all northern
continents. From a country perspective, the clients are mainly present
in Russia and the United States. From a continent perspective, however,
the network is evenly distributed over Europe, America, and Asia. Only
a small number of nodes are located in the southern continents.

In contrast, the mining power distribution clearly shows a skewed
distribution, suggesting an immense centralization of mining power.
We observe that around 51% of the blocks are created by 16 miners, out
of which ten are located in China. Overall, 53% of all observed blocks
originate from China, 10% from France, 9% from the United States,
5% from Germany, and 4% from the Netherlands. The remaining 19%
are from different countries. Notably, while we observed only seven
IP addresses from Ireland, the country contributes 3% of all blocks.
It should also be mentioned that we found some nodes that did not
announce any blocks.

We also observed a quadruplication in the difficulty during our mea-
surements, resulting from an increased mining power, which effectively
raises the bar to start mining blocks in the Zcash network. This increase
in mining power hence makes it unlikely that the country distribution
of miners will change in the near future. As new Equihash-capable
ASIC mining hardware was introduced in mid 2018, the increase in
mining power is likely a result of a gradual change from GPU mining
to ASIC mining.

In general, geographical centralization of mining power in one ju-
risdictional area creates the risk of interference by a state actor. The
centralization of mining power in China we observed is in line with
results from other cryptocurrencies, e. g., Bitcoin [KJL18].

4.1.4 Measuring Block Propagation

In order to determine the time it takes for a block to propagate in the
network, wemeasured the time it takes until a block is announced by all
neighbors of our vantage point. Figure 4.3 accordingly shows the time
differences as a mass function of the first and all following observed
block announcements (i. e., arrival of block inventory messages). In
order to estimate when the neighbor peers learned about the blocks,
the shown times are adjusted by subtracting half RTT retrieved from
Zcash’s keep-alive messages. The RTT is estimated using the exponen-
tial weighted moving average (EWMA) approach known from TCP
(cf. [Pax+11]).

We note that block propagation follows a long-tailed distribution,
where a considerable number of inventory messages take significantly
longer. After 690ms, 50% of all block inventory messages have arrived.
And after two seconds, 90% of all nodes know the block. Furthermore,
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it takes a small number of nodes a really long time to retrieve and
propagate new blocks. Interestingly, this is in accordance with similar
observations (≈ 2 𝑠 for 90% coverage) made in [Neu19] for the Bitcoin
network, even though the latter is considerably larger (at the time of
this paper: ≈ 350 vs. ≈ 10.000 nodes).

In general, we can say the network needs around 700 ms for a block
to be known by most peers and roughly two seconds to spread the
information in the whole network. However, this delay does not seem
to have a significant negative impact on consensus. From the 57,365 ob-
served block hashes, only 297 are not included in the Zcash blockchain,
yielding a stale block rate of 0.337%. This measurement is comparable
to the stale rates found in other cryptocurrency networks like Bitcoin
or Litecoin, which according to [Ger+16] exhibited around 0.41% and
0.273% stale blocks, respectively.

4.1.5 Measuring Network Stability

Lastly, we are interested in the network load and stability. Figure 4.4
shows the median latencies to all connected nodes over time. As a base-
line, we additionally measured ICMP ping times and compare them
to the Zcash ping measurements. The Zcash ping is a keep-alive mes-
sage, scheduled every two minutes, which is send to all neighbors via
the respective TCP connection and is usually processed with all other
exchanged messages. This leads to head-of-line blocking during trans-
action and block relay, whereby the Zcash ping messages are delayed.
In comparison to the more reliable ICMP ping, it therefore rather serves
as an indicator of a node’s activity.

The ICMP ping’s median values vary between 45ms and 55ms and
are lower and less fluctuating than Zcash pings. From October 18, the
median ICMP ping and Zcash ping latencies increased. This behavior
could be a reaction to the second upgrade (“Sapling”). In this upgrade,
the performance of the so-called shielded transactions was improved,
which might have made them more attractive and could have lead to
increased usage. The increase of the ICMP ping could also be due to
network interferences in the University network.

As in any other open peer-to-peer network, nodes in the Zcash net-
work can join and leave at any time, which results in an ever-changing
topology. In order to assess the network stability, we analyzed the life-
time of connections. In order to circumvent artificial spikes in our data
set stemming from our own client updates, we only consider the time
after we updated our measurement node to client version 2.0.0.

We generally observed that around 50% of connections remained
active for at least 50 minutes. Moreover, around 20% of connections
lasted longer than a day, while 10%were active for more than four days,
and 1% have even remained active since the beginning of our study.
We also observed around 24% of short-lived connections, which were
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active less than five minutes. In summary, we could see that a good part
of the network consists of long-lived stable peers. This core network can
certainly become a reasonable target for topology inference.

4.2 topology inference

In the following, we aim to infer the interconnectivity of Zcash net-
work peers by conducting a passive timing analysis, which allows us
to incrementally uncover the topology of the peer-to-peer network. To
this end, we build upon and extend the inference model developed by
Neudecker et al. [NAH16; NH19]. We however replace the employed
active transaction measurements with passive block measurements,
which, as we will see, has a number of advantages. In a nutshell, the
goal is to infer the connection between two peers by monitoring when
they emit inventory messages announcing new blocks. The model con-
centrates on detecting connections between peers adjacent to mining
nodes, which can be used to reveal security-critical information of the
network.

4.2.1 Inference Model

Let us assume a source node 𝑆, which we consider the origin of a block,
and a relay node 𝑅. Moreover, assume that node 𝑆 and 𝑅 are both
interconnected and also connected to a measurement node 𝑀.

A schematic of this three-node scenario is shown in Figure 4.5. While
numbered arrows indicate the order and direction in which messages
are sent, dashed arrows indicate further protocol messages that are how-
ever only shown for completeness, but do not influence the inference
model. Hence, a block relay in Zcash consists of a three-way message
exchange (announce, request, response): An inventory message an-
nounces a block, a getdata message requests the block, and a block

message transmits the actual block data.
From the perspective of 𝑀, we have knowledge about the time node

𝑆 and 𝑅 announced a specific block to node 𝑀. We also know the round-
trip times 𝑅𝑇𝑇𝑀𝑆 and 𝑅𝑇𝑇𝑀𝑅 between nodes 𝑀 and 𝑆, as well as
nodes 𝑀 and 𝑅, respectively. The measured arrival times consist of
at least a delay introduced by the latency between 𝑆 and 𝑅 and the
processing delay of 𝑅. Since the measurements are conducted on 𝑀,
the measured time includes 𝑅𝑇𝑇𝑀𝑆/2 as well as 𝑅𝑇𝑇𝑀𝑅/2, which we
subtract once prior to the following calculations. Note that if the latency
difference is “small enough”, 𝑆 and 𝑅 are directly connected with a
high probability.

The message exchange for four nodes (i. e., two hop inference) can be
seen in Figure 4.6. In this case, 𝑅𝑇𝑇𝑀𝑅2/2 is subtracted from the mea-
sured time (instead of 𝑅𝑇𝑇𝑀𝑅1/2 only). Figure 4.7 shows inference
scenarios for distances of up to three hops from the source 𝑆. While
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not shown in the figure, all nodes can have connections to other nodes.
In particular, the masurement node 𝑀 would be connected to many
more nodes. We take this as the basis for our timing analysis. In the
following, we will derive our model in detail.

When we assume that the link latency between any two peers follows
the same distribution 𝜆 and a node’s processing delay can be described
as 𝑑, then the probability of a time difference 𝑡 with ℎ edges in between
the two reference nodes is given by

𝑃(Δ = 𝑡|𝐻 = ℎ) = (𝜆∗ℎ ∗ 𝑑∗ℎ)(𝑡), (4.1)
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which is adopted from [NH19]. Please note that the ∗-operator denotes
a convolution; accordingly,𝜆∗ℎ and𝑑∗ℎ denote theℎ convolution power.
To infer the topology, we have to calculate the probability of ℎ edges
assuming a time difference 𝑡. This is possible using Bayes’ Theorem,

𝑃(𝐻 = ℎ|Δ = 𝑡) = 𝑃(Δ = 𝑡|𝐻 = ℎ) ⋅ 𝑃(𝐻 = ℎ)
𝑃(Δ = 𝑡) . (4.2)

The probability that an inventory message arrives after time 𝑡, 𝑃(Δ =
𝑡), can be calculated according to the law of total probability. The prob-
ability 𝑃(Δ = 𝑡|𝐻 = ℎ) is given by Equation (4.1). The probability of ℎ
edges between the two reference nodes, 𝑃(𝐻 = ℎ), can be calculated by
assuming an Erdős-Rényi random graph model, where the probability
of an edge is calculated based on the mean degree. Hence, given a mean
degree 𝑑𝑒𝑔 and 𝑁 nodes, the probability 𝑃(𝐻 = ℎ) can be derived as

𝑃(𝐻 = ℎ) = [1 − ( 𝑑𝑒𝑔
𝑁 − 1)]

ℎ−1
⋅ ( 𝑑𝑒𝑔

𝑁 − 1), (4.3)

where we take the probability of not being connected to the power of
ℎ − 1 multiplied by the probability of being connected.

For our model, we assume that the link latency distribution 𝜆 is a
result of the three-way message exchange to relay a block. Furthermore,
we assume that this latency distribution follows a normal distribution,
i. e., 𝜆(𝑥) = 𝒩(𝑥; 𝜇𝜆, 𝜎2

𝜆). The expected propagation time is pre-
sumed to depend on the geolocation of 𝑆 and 𝑅. While this is a very
simplifying assumption as latencies may depend on many factors, in-
cluding AS and peering relationships, country-basedmeasurements are
already available and/or easier to obtain in decent quality. Themean 𝜇𝜆
and variance 𝜎2

𝜆 values of the normal distribution can accordingly be
estimated by using RTT measurements for the respective geolocations,
multiplied by a factor of 1.5 to mind three-way message exchange.

We define a node’s processing delay 𝑑 as the sum of transmission
delay, queuing delay, and block verification time.While the transmission
delay can have a significant impact for very large block sizes, we assume
the block verification time to be the dominating factor. We therefore
assume the network-based delays to be adequately captured by the link
latency and leave the development of an advanced transmission model
as an open question for future research. Furthermore, we generally
assume a linear correlation between the time it takes to validate a new
block and the number of included transactions, i. e., the block size 𝑠𝑏.
However, since the network peers run on equipment of varying power,
the appropriate validation factor is not necessarily a global constant. To
account for variations, we model the processing delay 𝑑 as a normal
distribution, i. e., 𝑑(𝑥) = 𝒩(𝑥; 𝜇𝑑, 𝜎2

𝑑). The resulting function is

𝑃(𝑡 − 𝜖 ≤ 𝑡 ≤ 𝑡 + 𝜖|𝐻 = ℎ) = ∫
𝑡+𝜖

𝑡−𝜖
𝒩(𝑡; 𝜇, 𝜎2)𝑑𝑡 (4.4)

with 𝜇 = ℎ ⋅ (𝜇𝜆 + 𝜇𝑑), 𝜎2 = ℎ ⋅ (𝜎2
𝜆 + 𝜎2

𝑑). Here 𝜖 is a tolerance
variable adjusting for the possibility of measurement errors. Given the



4.3 evaluation 39

complexity of this model, the selection of reasonable mean and variance
values is important to reach an adequate degree of accuracy.

4.2.2 Parametrization

The inference model requires a number of parameters which have an
impact on the accuracy of the resulting estimations. These parameters
include the normal distributions for the latency 𝜆 and the processing
delay 𝑑, as well as the value for the tolerance variable 𝜖.

For the latency distribution 𝜆, different data sources are possible. We
consider the iPlane dataset [@iPl19], which provides publicly available
data of global latency measurements, as a viable data source. Admit-
tedly, the data is somewhat outdated but still fits the purpose. It con-
sist of pairs of globally distributed IP addresses and a corresponding
RTT value measured on a specific point in time. As an alternative data
source, we suggest to conduct ICMP ping measurements from the ob-
servation points or to directly utilize the Zcash ping measurements (cf.
Figure 4.4).

Values for the validation time can also be acquired through different
means. We consider the evaluation constant from [Ger+16] as a reason-
able estimation for 𝜇𝑑. Unfortunately, in this case we must make some
assumptions on the variance. Alternatively, 𝜇𝑑 and 𝜎2

𝑑 can be acquired
experimentally, i. e., by averaging the processing time of a local Zcash
node. We compare both approaches in our evaluation.

Varying the tolerance parameter 𝜖 should generally have no signifi-
cant influence on the measurement results. However, larger values for
𝜖 increase the influence of the likelihood 𝑃(𝑡 − 𝜖 ≤ 𝑡 ≤ 𝑡 + 𝜖|𝐻 = ℎ)
and therefore decrease the influence of the prior probability 𝑃(𝐻 = ℎ)
on the posterior probability.

4.3 evaluation

We evaluate our inference model using two different ways: through a
simulation scenario and a real world measurement test with two Zcash
nodes.

4.3.1 Methodology

In order to facilitate the simulation-based evaluation scenario, we cre-
ated an undirected graph with a certain amount of vertices utilizing the
Boost Graph Library [@Jer19]. Every vertex represents a Zcash network-
ing node and creates 8 edges to randomly selected vertices, representing
the 8 outgoing connections the reference client tries to establish. The
mean degree of the random topology is therefore 16. We assign a coun-
try to each vertex and draw an according link latency value for each
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edge from a normal distribution that was parametrized with the iPlane
data set [@iPl19]. As discussed before, we multiply this latency value
by factor 1.5 to mind the entire three-way message exchange. Moreover,
we simulate our vantage point which is connected to all other vertices
and therefore able to observe the simulated propagation behavior in its
entirety.

Given this network graph, we can deduce simulated time difference
measurements by traversing the shortest path between any node and
our vantage point, accumulating the edge weights accordingly. In order
to retrieve statistically significant results, we repeated this process 50
times for varying edge weights and applied our topology inference
model for each of the measurements. Each time, we calculated the
probability under a tolerance of 𝜖 = 5 𝑚𝑠 for possible hop counts
ℎ of 1 to 9 and finally calculated the mean value for each distance.
From this, we deem the value with highest mean probability as the
likeliest estimated distance. Aswe are in full knowledge of the simulated
topology, this scenario allows us to exactly determine the precision and
recall of our model under the influence of different parametrizations
for the processing time distribution 𝑑 = 𝒩(𝑥; 𝜇𝑑, 𝜎2

𝑑) and block sizes
𝑠𝑏. The validation constants 𝑘𝜇 and 𝑘𝜎2 determine the distribution
parameters as 𝜇𝑑 = 𝑘𝜇 ⋅ 𝑠𝑏 and 𝜎2

𝑑 = 𝑘𝜎2 ⋅ 𝑠𝑏.
Theoretically, our model could predict the probability of ℎ up to

the network diameter. However, our model becomes less accurate for
distances above three, since path lengths larger than two exhibit an
increased possibility for parallel running paths. Therefore, our model
is suited best to infer individual connections one by one. Additionally,
as our model utilizes assumptions about the geographic locations of
network peers to determine their edge latencies, inaccuracies in the
geographic clustering can result in high amount of false positives for
certain peer connections. For example, if we assume a scenario in which
two nodes located in Germany are connected via a third node located in
Russia, our model could predict a distance of five (low latency) edges,
even though the simulated path consists only of three (high latency)
links.

In our simulation, we considered topologies with 300 nodes, which
resembles the measured network size. Furthermore, we evaluate our
model in the simulation for distances up to three. For the geographic dis-
tribution, we chose two countries each from America and Europe, and
three countries from Asia, whereby we aim to represent the northern
Hemisphere. The distribution assigned as follows: 30% United States,
20% in Russia, 10% Canada, 10% China, 10% France, 10% Germany,
and 10% Japan.
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Figure 4.8: Precision and Recall for different block sizes, different variances
and 300 nodes located in 7 different countries.

4.3.2 Simulation Results

We use a simulation scenario to evaluate different parametrizations
of the processing time distribution 𝑑. That is, we evaluated precision
and recall of our model for different block sizes 𝑠𝑏 assuming the vali-
dation constants 𝑘𝜇 = 0.3796 𝜇𝑠/𝐵 and 𝑘𝜎2 = 0.552049 𝜇𝑠2/𝐵 taken
from [Ger+16]. We also ran the simulations for three different degrees
of latency standard deviation: “small”, “medium” and “large”, assum-
ing 10%, 30%, and 50% of the mean, respectively.

The simulation results presented in Figure 4.8 show that the model
generally performs betterwith larger block sizes,which yield a precision
of up to 40% and recall of up to 100%. Surprisingly, the precision for
a direct connection is slightly higher for a 1MB block than for a 2MB
block. However, the validation time seems to be a good indicator for
the number of hops, since the precision for distances two and three
are above 50% Moreover, the larger the block sizes, the higher are
the estimated processing times. Hence, the lower is the share of the
estimated latency, which makes the model less dependent on accurate
latency estimations.
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Table 4.1: Real-world measurement results.

Model of [Ger+16] Test net. Main net.
𝑘𝜇 0.38 𝜇𝑠/𝐵 8.55 𝜇𝑠/𝐵 12.74 𝜇𝑠/𝐵
𝑘𝜎2 0.55 𝜇𝑠2/𝐵 345.1 𝜇𝑠2/𝐵 2128.16 𝜇𝑠2/𝐵

True Positive 18 30 33
False Positive 18 26 33
False Negative 22 10 7
Precision 50 % 53.5 % 50 %
Recall 45 % 75 % 82.5 %

4.3.3 Real-World Experiments

In the real-world evaluation scenario, we deployed two nodes in the
peer-to-peer network over the course of one week. One node functioned
as the measurement node and recorded the arrival time of all block
inventory messages. Moreover, as a point of reference, the relay node
recorded its connections over the time of measurement.

Afterwards, we apply our model to infer if a direct connection be-
tween the different block creators and the relay node existed in the
given time frame. We calculated RTT estimations using the EWMA
approach.

In the measurement period, we estimate the network size to be
316 nodes of which 87 nodes sent at least five blocks. Overall, we
recorded 4,160 blocks with an average block size of 15, 678 𝐵 and 21
stale blocks. We also recorded the average validation times our client
exhibited during the verification of 5,000 blocks from the Zcash main
network. Resulting from this, we set the estimated validation constants
to 𝑘𝜇 = 12.7357 𝜇𝑠/𝐵 and 𝑘𝜎2 = 2128.16 𝜇𝑠2/𝐵.

For the further evaluation, we only consider direct connections with
the (mining) nodes that announced at least five blocks.

As shown in Table 4.1, even despite the low block sizes, our model
is able to achieve a precision of 50% and a recall of 82.5% under the
discussed parametrization.

4.3.4 Discussion

This real-world evaluation scenario shows that we can consider half of
the inferred connections as correct and only a small amount of direct
connections as missing. The results support the general validity of our
inference model. Considering the deliberate simplifying assumptions,
the approach seems to be a promising step for inferring the topology
of many cryptocurrencies similar to Bitcoin. Furthermore, countermea-
sures for our method—e. g., artificially delaying block relays—would
increase the probability of stale blocks, whichweakens the system.How-
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ever, it may be possible to limit the reliability of the inference model by
producing particularly small blocks yielding a decreased processing
delay. As this also impairs the functionality of the Zcash network, it
becomes clear that our method will remain usable in the future.

Moreover, it should be possible to improve the precision of the cur-
rent model by acquiring more diversified latency measurements and
considering additional information about the client location, like the
AS number. For higher block sizes, a better modeling of the validation
time and the transmission delay could also improve the results. Fur-
thermore, it is known that blocks of the same size can have different
validation time depending on the complexity, e. g., number of shielded
transactions vs. number of transparent transactions.

Furthermore, the calculation of the probability of a certain amount
of edges between nodes (𝑃(𝐻 = ℎ)) is calculated based on an Erdős-
Rényi model, which is a random topology. However, it is unlikely that
nodes are connected randomly in a peer-to-peer network in which
certain nodes have a higher uptime than others. It is more likely that
some central nodes have more than 16 connections, especially nodes of
the core network. We leave these ideas open for future research.
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As we have seen in prior chapters, current implementations of block-
chain peer-to-peer networks typically rely on an unstructured overlay
construction for block and transaction dissemination. While this ap-
proach is relatively robust, it however still may not be favorable for
these kinds of operations. For instance, broadcast in unstructured over-
lays potentially suffers from a high messaging overhead, as duplicates
are introduced to the system. To reduce the load, many networks have
to reconcile these drawbacks by gossiping messages only to a subset
of neighbors or by introducing advanced messaging patterns (cf. Sec-
tion 2.2), both techniques which in the worst case might introduce
additional propagation delays.

We however argue that many issues can be efficiently resolved by re-
thinking the networking architecture from first principles. In particular,
the introduction of a structured overlay topology promises to address
many of the shortcomings of the current networking layer. To this end,
we present Kadcast, a new networking protocol for the strucutured
dissemination of information in blockchain peer-to-peer networks.

5.1 the kadcast protocol

Kadcast is based on Kademlia [MM02], a DHT design that is typically
used for efficient lookup procedures. Kadcast, however, makes use of
Kademlia’s overlay structure to enable an efficient broadcast opera-
tion. In the following, we describe the overlay construction and the
broadcast algorithm as the two main building blocks of our approach.
Moreover, we introduce means to improve the performance, reliability,
and resilience of Kadcast.

5.1.1 Overlay Construction

Kademlia is a UDP-based peer-to-peer protocol in which nodes form
a structured overlay network. Nodes in the network are addressed by
unique 𝐿-bit binary node identifiers, in the following denoted as ID,
which are generated upon joining the network. The ID determines a
node’s position in a binary routing tree that builds the foundation
of Kademlia’s overlay. An example of such a tree for a 4-bit address
space is shown in Figure 5.1. Please note that this tree is never actually
constructed and serves as a mental model only. Peers, however, still
use their local state to traverse the network structure efficiently, yield-

44
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Figure 5.1: Fully populated overlay structure for a 4-bit address space and
space covered by the buckets of node 1111.

ing a message complexity of 𝒪(log𝑁). To this end, nodes maintain
routing state and organize known nodes in so-called 𝑘-buckets, storing
triplets (ip_addr, port, ID). Each bucket is a list of the 𝑘 least recently
seen nodes that have a certain distance, in relation to the node identi-
fier ID. The factor 𝑘 is a system-wide parameter which determines the
routing state and the lookup complexity.

Characteristically, Kademlia’s notion of distance is based on the non-
euclidean XOR-metric, calculated by applying the ⊕-operation on two
node identifiers and interpreting the result as an integer number, i. e.,

𝑑(𝑥, 𝑦) = (𝑥 ⊕ 𝑦)10.

This means, that for node identifiers of length 𝐿, a node ID0 holds buck-
ets 𝐵𝑖, 𝑖 = 0 … 𝐿 − 1, whereby bucket 𝐵𝑖 holds the node information
of 𝑘 nodes with ID𝑗 so that 2𝑖 ≤ 𝑑(ID0, ID𝑗) < 2𝑖+1. It follows that the
node space covered by each bucket is exponential with 𝑖. This can be
illustrated by that fact that, since the XOR-metric is unidirectional, the
bucket 𝐵0 only holds one specific node of distance one, while 𝐵𝐿−1
covers a possible node space of 2𝐿−1 nodes. The buckets can be thought
of holding up to 𝑘 nodes belonging to a series of subtrees with identi-
fiers whose binary prefixes do not match the nodes’ prefix, i. e., also
not containing the node itself. For example, given the fully populated
tree shown in Figure 5.1, the 4 buckets of node ID0 = 1111 would hold
nodes from the ranges 1110, 110*, 10**, and 0***, respectively. If a node
wants to add a new entry to a given bucket that already holds 𝑘 entries,
it employs a least recently used (LRU) drop policy. Before dropping an
entry from the list, the peer will send a PING message (see Figure 5.2)
to see whether the respective node is still reachable. Only if the node is
not reachable anymore, it will be dropped. This way, the protocol favors
older, more stable nodes over fresh ones. It thereby also circumvents an
eviction bias towards fresh, potentially malicious peers, which hardens
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Figure 5.2: Kadcast message types.

the network against security issues, such as the eclipse attacks described
in [Hei+15].

When a node first joins the network, it has to know the address
of at least one bootstrapping node. It therefore sends PING messages
to known nodes to check whether they are actually online. Addition-
ally, PING transmits the sending node’s routing information to the re-
cipient, thereby distributing its existence in the network. In fact, similar
patterns can be found throughout the protocol, where every seen mes-
sage updates not only the sender’s but also the recipient’s buckets. This
soft-state protocol design allows for a very lightweight overlay member-
ship management that keeps the footprint of the required information
base to a minimum.

After the initial bootstrapping step, each Kadcast node begins discov-
ering the network to update its routing information, which it repeats
periodically throughout its lifetime. Initially, the joining node looks
up its own ID, which returns a set of nodes closely positioned to its
own network location. Moreover, each node periodically refreshes every
bucket it has not seen some activity from in the last hour: for each such
bucket, it picks a random ID with appropriate distance and performs a
look up to populate its buckets with fresh routing information.

The lookup procedure allows a node to retrieve a set of 𝑘 nodes closest
to a specific ID in the address space. The procedure of finding the 𝑘
closest nodes is carried out by iteratively narrowing down the search
space and issuing FIND_NODE messages (see Figure 5.2) to nodes which
are closer to the ID. To this end, (1) the node looks up the 𝛼 closest nodes
regarding the XOR-metric in its own buckets. (2) It queries these 𝛼
nodes for the ID by sending FIND_NODEmessages. (3) The queried nodes
respond with a set of 𝑘 nodes they believe to be closest to ID. (4) Based
on the acquired information, the node builds a new set of closest nodes
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Figure 5.3: Example broadcast initiated by node 1111 (𝛽 = 1). Colors indicate
node distances in the spanning tree, relative to the initiator.

and iteratively repeats steps (1)-(3), until an iteration does not yield
any nodes closer than the already known ones anymore.

Like the bucket size 𝑘, 𝛼 is a globally known parameter determining
the redundancy (and hence also the overhead) of the lookup procedure.
At the same time, these parameters influence the lookup latency, as the
parallel nature of the lookup procedure optimizes the needed delay.
Typical parameter values are 𝑘 ∈ [20, 100] and 𝛼 = 3. As the Kadcast
protocol is not used to store and retrieve values, it does not incorporate
other message types found in Kademlia.

5.1.2 Message Propagation

As described before, most blockchain networks rely on TCP-based trans-
port protocols for block and transaction propagation, which ensure the
reliable transmission of arbitrarily large data by retransmitting miss-
ing segments in case of packet loss. This method implicitly assumes
long-lived connections and requires additional state-keeping in terms
of connection management and is therefore less scalable. Retransmis-
sions and head-of-line blocking might introduce additional delays and
unpredictable message overhead. In contrast, transport protocols such
as UDP or QUIC [Lan+17] enable a more scalable and dynamic ap-
proach with short-lived, low-cost transmissions, which complement
Kadcast’s design. While this allows for a lightweight protocol design
with reduced state-keeping and tunable per-link message complexity,
it also entails handling data serialization and reliable transmission on
the application layer.
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Algorithm 1 Redundant broadcasting algorithm.
broadcast height ℎ,

chunk data 𝑐,
set of known chunks 𝐶,
redundancy factor 𝛽
function broadcast_chunk(ℎ, 𝑐, 𝐶, 𝛽)

if 𝑐 ∈ 𝐶 then abort

𝐶 ← 𝐶 ∪ {𝑐}
for 𝑖 = 0 → ℎ − 1 do ▷ For all buckets up to height ℎ − 1

𝑅 ← randomly_select (𝛽, 𝐵𝑖) ▷ Choose 𝛽 random bucket entries
for all 𝑟 ∈ 𝑅 do

send_chunk(𝑟, 𝑐, 𝑖) ▷ Send chunk 𝑐 to peer 𝑟
end for

end for
end function

Therefore, when the propagation of a block or a transaction is initi-
ated, Kadcast first segments its data in packet-sized chunks that are then
distributed in the network via corresponding messages (see Figure 5.2)
and according to the broadcast procedure (cf. Algorithm 1), which is a
modified version of the algorithm in [CH13].

Kademlia’s bucket logic partitions the identifier space in subtrees
whose sizes depend on their distance to the current node. The Kad-
cast protocol makes use of this fact to generate a spanning tree that
allows for an efficient broadcast operation: the algorithm delegates
broadcast responsibilities for subtrees with decreasing height ℎ to other
nodes, which recursively repeat the process within their delegated area.
Therefore, when a miner initiates the broadcast, it is responsible for
the entire tree with height ℎ = 𝐿. The miner picks a random peer from
each bucket and delegates broadcast responsibilities by sending CHUNK

messages, which carry the data and her routing information. It assigns
a new height ℎ, which effectively determines the receiver’s broadcast
responsibility. When a node receives a CHUNK, it repeats the process in
a store-and-forward manner: it buffers the data, picks a random node
from its buckets up to (but not including) height ℎ, and forwards the
CHUNK with a smaller value for ℎ accordingly.

This means, with every step, another set of nodes is designated to
be responsible for chunk delivery in their respective subtrees. A sim-
ple example for 𝐿 = 4 can be seen in Figure 5.3: node ID0 = 1111

initiates a broadcast in the network, and sends four CHUNK messages
with heights ℎ = 0 … 3 to one random node picked from each of the
respective buckets 𝐵𝑖, 𝑖 = 0 … 3. The receiving nodes repeat this proce-
dure, again issuing messages to nodes from bucket numbers less then
their assigned height. Hence, the broadcast operation is performed
on decreasing subtree sizes, and therefore guaranteed to terminate in
𝒪(log𝑛) steps. Upon receipt of all chunks required to rebuild a block
or transaction message, the node follows Bitcoin’s typical verification
procedure before continuing the broadcast operation.



5.1 the kadcast protocol 49

5.1.3 Reliability of UDP-based Message Delivery

If we assume constant transmission times, honest network participants,
and no packet loss in the underlying network, the propagation method
just discussed would result in an optimal broadcast tree. In this sce-
nario, every node receives the required data exactly once and hence
no duplicate messages would be introduced by this broadcasting op-
eration. Unfortunately, we cannot make these assumptions and have
to consider packet losses, as well as adversarial and random failures
during transmission.

In the example of Figure 5.3, if a chunk on its way to node 0000 is
corrupted or this node refuses to forward a chunk, the whole bucket 𝐵3,
i. e., the right half of the tree, would not receive the corresponding mes-
sage. That is, in the worst case, a single transmission failure caused
by the unreliable UDP transport protocol could result in a network
coverage of fifty percent only. Therefore, the broadcast algorithm is im-
proved and secured by two different approaches, which both introduce
redundancy.

First, instead of having a single delegate per bucket, we select 𝛽 dele-
gates. This severely increases the probability that at least one out of the
multiple selected nodes is honest and reachable. It therefore protects
the broadcasting operation against random and adversarial node fail-
ures on the propagation path. Moreover, this parallelized broadcasting
method improves the propagation performance in terms of latency:
nodes with the best connection receive the transmitted chunk first and
will proceed to propagate the chunks in the bucket. As this repeats on
every hop, and Kadcast nodes ignore duplicate chunks, only the fastest
routes are used for message delivery.

Secondly, Kadcast has to consider transmission failures due to cor-
rupted and/or dropped packets on every hop of the propagation. When
Kadcast is implemented on top of an unreliable transport protocol, such
as UDP, it therefore needs to increase the reliability of the transmis-
sion and hence employs a forward error correction scheme based on
RaptorQ [Lub+11] codes. The adoption of this scheme allows Kadcast
nodes to recover transmitted block data after the reception of any 𝑠
source symbols out of 𝑛 encoding symbols, which are transmitted via
CHUNK messages. As this results in more transmitted data overall, an
overhead of 𝑛 − 𝑠 additionally transmitted symbols per transmission is
introduced. The FEC overhead factor can be adjusted through the pa-
rameter 𝑓 = 𝑛−𝑠

𝑠 . Utilizing FEC gives the receiver the ability to correct
errors without the need for retransmissions, which lead to additional
delay. We therefore optimize our protocol in terms of latency and accept
an additional overhead. However, in order to allow nodes to recover
from the rare case that message delivery fails entirely, and to enable
the initial bootstrapping of the blockchain, the Kadcast protocol incor-
porates a simple REQUEST message (cf. Figure 5.2) that allows nodes to
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query others for specific blocks or transactions, and is answered by the
corresponding CHUNK messages.

In the following, we analyze and discuss our methods for improved
broadcast reliability.

5.1.4 Analysis of Parallelized Broadcast

Kadcast implements broadcast redundancy by parallelizing the algo-
rithm. To this end, we introduce the system parameter 𝛽, which de-
scribes how many distinct delegates per bucket should be selected (and
thus how many nodes per bucket should receive a copy of the mes-
sage). This improved algorithm can be seen in Algorithm 1. Please note
that for 𝛽 = 1, Algorithm 1 describes the “optimal” broadcast from
Section 5.1.2.

Along the lines of [CH13], wemodel the propagation reliability as the
expected node coverage of the broadcast operation, which is based on
the average probability of transmission failures. Thus, given the failure
probability 𝜖 and 𝛽 = 1, a single broadcast chunk would reach its next
hopwith probability 𝑝 = 1−𝜖. The expected number of nodes receiving
this chunk can therefore be expressed by 𝑀 = (1 + 𝑝)𝐿, assuming a
balanced distribution tree of height 𝐿, which is highly plausible due to
the uniform random distribution of node identifiers. It follows that the
ratio of covered nodes is

𝑚 = 𝑀
2𝐿 = (1 + 𝑝

2 )
𝐿

.

Note however that this expression models the transmission of a single
chunk without redundancy only. In order to express the coverage of a
redundant broadcast, we need to extend this model.

Therefore, we model the parallel execution of our algorithm as the
probability that at least one of the redundantly sent chunks is success-
fully delivered, i. e., 𝑝𝛽 = 1 − 𝜖𝛽. Moreover, let 𝑋 be a random variable
expressing the number of received chunks. The probability that we re-
ceive all 𝑠 chunks of a block or transaction is thus 𝑝𝑏 = 𝑃(𝑋 = 𝑠) = 𝑝𝑠,
which induces a failure probability of 𝜖𝑏 = 1−𝑝𝑏. Accordingly, the prob-
ability to deliver amessagewith redundancy 𝛽 is given by 𝑝𝑏,𝛽 = 1−𝜖𝛽

𝑏 .
These observations yield an expected coverage ratio of

𝑚𝑏,𝛽 = ⎛⎜
⎝

1 + 𝑝𝑏,𝛽
2

⎞⎟
⎠

𝐿

.

Based on this model, we first analyze the transaction broadcast relia-
bility. As transactions typically fit in a single UDP packet, redundancy is
best introduced through increasing broadcast parallelization. Figure 5.4
shows the achieved network coverage in dependence of an assumed
packet loss rate and the redundancy factor 𝛽. We observe that the cov-
erage quickly drops if no redundancy is introduced (𝛽 = 1), but that,
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Figure 5.4: Transaction broadcast reliability (𝐿 = 160).

even in the face of considerable packet losses, a reliable broadcast can
be achieved for 𝛽 > 1.

However, as the transmission of blocks is only successful, if all chunks
are received, the propagation of entire blocks is not as reliable. To this
end, we analyze the expected UDP-based block broadcast coverage
in the face of different packet loss rates, 𝛽 ∈ {1, 3}, and an assumed
block size of 1MB. The results are shown in the upper part of Figure 5.5:
again we observe that without redundancy even the smallest packet
loss makes the probability of delivering a block drop immediately,
hence rendering the chance of covering the entire network virtually
impossible. While a redundancy factor 𝛽 = 3 has a positive impact on
the block propagation, it is not sufficient on its own to guarantee the
reliable transmission of entire blocks over a lossy channel. However,
the parallelized broadcast is still necessary either way to compensate
adversarial and random node failures, and to improve the propagation
performance, as discussed before.

In order to further increase the block transmission reliability, a Kad-
cast node employing the RaptorQ forward error correction has to suc-
cessfully receive 𝑠 or more arbitrary symbols out of the 𝑛 transmitted
in order to recover a full block, an event which can be modeled by a
binomial distribution, i. e.,

𝑝𝑏,𝑓 = 𝑃(𝑋 ≥ 𝑠) = 1 − 𝑃(𝑋 < 𝑠) = 1 −
𝑠−1
∑
𝑖=0

𝑝.

Figure 5.5 clearly shows the improved transmission reliability offered
by introducing forward error correction with 15% redundancy (𝑓 =
0.15): this approach ensures that broadcasted blocks reach full network
coverage for packet loss rates up to around 9%. This is quite a number
for Internet standards and is even enough to cover the large packet loss
rates exhibited by connections towards mainland China.1 However, this
can still be improved by combining the FEC approach with redundancy,

1 Kaiser et al. describe that, induced by the Chinese “Great Firewall”, connections exhibit
6.9% packet loss, which leads to artificially delayed block propagation of Chinese
Bitcoin miners [KJL18].
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Figure 5.5: Reliability of UDP-based block propagation over unreliable chan-
nels (block size of 1MB, 𝐿 = 160, and FEC overhead factor
𝑓 = 0.15).

i. e.,𝛽 > 1. In this case, the success probability is 𝑝𝑏,𝛽,𝑓 = 1−(1−𝑝𝑏,𝑓)𝛽,
which is shown for 𝛽 = 3 in Figure 5.5 as well. The combination of FEC
and parallelization ensures full network coverage, even if on average
12% packets are lost during transmission.

The analysis results highlight that FEC is a favorable way to ensure
reliable transmission of data over an unreliable network infrastructure:
it allows to significantly increase the reliability of the broadcast while
introducing a relatively small linear overhead. In contrast, the overhead
introduced with increasing the replication factor 𝛽 introduces a larger
increase in messaging complexity. However, broadcast redundancy is
still required in cases where the weak point is not just an unreliable
network link, but a malicious node obstructing block or transaction
delivery.

5.2 kadcast security and privacy

As discussed earlier, fast and fair block propagation may be considered
security-critical for the consensus layer of blockchain-based systems.
However, the peer-to-peer network and the block propagation mecha-
nism may also become themselves subject to attacks on security and
privacy. In the following, we therefore discuss the security properties
of the Kadcast network protocol.
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5.2.1 Threat Model and Mitigation Strategies

The Kadcast design is based on the well-studied and widely-used struc-
tured network design of Kademlia [MM02]. Numerous previous entries
study Kademlia’s security properties, its behavior when attacked by
a range of adversaries, and designs improving on its security [BM07;
CCF09; KLR09; Loc+10; SEB07; UPS11;Wan+08;Wan+13].We now dis-
cuss the most prevalent adversarial threats to the security of blockchain
peer-to-peer networks in general and Kadcast in particular.

5.2.1.1 Sybil attacks

threat: The notion of a Sybil attack [Dou02] describes the possibility
of a single adversary to embody a large number of network entities by
forging additional identities. By doing so, the adversary aims to outnum-
ber the honest nodes participating in a distributed system, effectively
increasing the share of malicious nodes in the system. Moreover, a Sybil
attack is especially enticing when the forged identities can be used to
trick the system and enable unwanted behavior. In systems based on
the Kademlia overlay, Sybil attacks may be used to generate a lot of
identities that can fill up a victim’s buckets [KLR09; SEB07]. The ability
to run this kind of attack is often a prerequisite to be able to run Eclipse
attacks (see next section) on Kademlia-based systems.

In the case of Kadcast, if an adversary can forge arbitrary IDs and po-
sition herself close to a target, she may be able to increase the likelihood
of receiving lookups and broadcasts from this node. This may enable
the adversary to simply refuse block delivery and thereby obstruct the
block propagation, which we discuss further in Section 5.2.3. Hence,
we observe that the ability to create valid node identifiers at arbitrary
positions in the network is detrimental to the security of the system.

countermeasures: The Kadcast protocol employs a number of
countermeasures in order to increase its resilience to Sybil attacks.

For one, the Kadcast protocol can easily be extended to incorporate
cryptographic puzzles as Sybil protection, similar to [BM07; Bor06;
VCS03]. Along the lines of proof-of-work mining, Kadcast follows a
simple scheme: a joining node has to find a nonce, so that the hash of
concatenation of its identifier and nonce adheres to a certain difficulty
level. This is, the binary value of the hash has to be less than the chosen
difficulty target, i. e., 𝐻(ID || ID_NONCE) < 𝑡𝑑𝑖𝑓 𝑓, where 𝑡𝑑𝑖𝑓 𝑓 is a global
parameter of the system. Every node that receives a new node identifier
validates this property before it inserts the new node to its buckets.
It can run the validation quickly, while the node generation can take
quite some time, depending on the chosen parameter 𝑡𝑑𝑖𝑓 𝑓. Thereby,
the inclusion of this hash puzzle scheme seriously impairs the ability
of an adversary to quickly generate a large number of node identifiers.
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Moreover, additional effective countermeasures encompass stricter
bucket policies which enforce a certain degree of diversity from an
AS-level and/or subnet perspective [AZV17; FSW14].

5.2.1.2 Eclipse attacks

threat: All peer-to-peer networks rely on some kind of routing
scheme that allow nodes to decide where to forward data or which
nodes to query for a specific data item. However, these routing deci-
sions are made on the basis of an underlying data structure, the routing
table. Eclipse attacks describe a family of attacks on peer-to-peer net-
works in which the adversary manipulates the routing tables of its
targets to contain only nodes controlled by the adversary. Once she
isolated her target from the rest of the network, the adversary is in
full control of the data streams coming from and to the target node.
This may be used by the adversary to completely block data delivery,
selectively obstruct data transmission, or even foist spurious data.

In blockchain networks, Eclipse attacks are a serious threat, since they
could be used to monopolize the connections of a target node and then
further exploit the protocol. They have been shown to enable double-
spending and selfish-mining attacks [Hei+15; MHG18]. In the past, the
feasibility of Eclipse attacks on the Kademlia protocol have been studied
in literature [KLR09; Loc+10; SEB07]. These studies show that, if an
adversary would come to control a large number of node identifiers,
she may try to flood all buckets of a target node with addresses of nodes
in her control. This technique could be used to isolate Kadcast nodes
from the rest of the network.

countermeasures: The Kadcast protocol includes Sybil protection
to hinder an adversary from attaining control of an unlimited number
of nodes. Moreover, Kadcast follows a bucket eviction policy which
favors older, more stable nodes over newly acquired node addresses.
This policy hinders the adversary from supplying all nodes known to
the victim. In order to furthermore impede the adversary’s capability
of foreseeing and exploiting a target node’s bucket layout, we intro-
duce temporary identifier space randomization on a per-broadcast level,
which is further discussed in Section 5.2.2. In conclusion, by safeguard-
ing the node identifiers through the means of cryptographic puzzles
and applying techniques such as identifier space randomization, as well
as enforcing rigorous bucket policies, Kadcast follows best practices for
Sybil and Eclipse protection [MHG18].

5.2.1.3 Denial-of-Service attacks

threat: Broadcast protocols aim to distribute information to all
nodes in the network. This inherent asymmetry immediately raises
the question on whether they allow an adversary to flood the network
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with arbitrary data, i. e., how susceptible they are to denial-of-service
(DoS) attacks.

countermeasures: In order to avoid these kind of attacks, block-
chains like Bitcoin employ a store-and-forward propagation policy: each
block a node receives is first stored and validated (i. e., check the proof
of work), before it is announced to neighbors. This way, an adversary
trying to flood the network with fake block data would have to solve a
proof-of-work hash puzzle for each of the forged blocks, making it a
very unattractive attack vector. The Kadcast protocol adapts this DoS
protection: every node first validates received blocks before they are
forwarded in the broadcast tree.

Additionally, previous work [VTM14] highlighted that node oper-
ators have become targets of DDoS in the past. In the worst case, this
results to a node failure, which possibly impairs the broadcast oper-
ation, as we discuss further through our analysis of obstructed block
delivery in Section 5.2.3.

5.2.1.4 Attacks on Transaction Privacy

threat: Previous works also highlighted that the propagation of
messages on the network layer may compromise user privacy. In par-
ticular, it has been shown that malicious nodes may passively monitor
the network and link transaction data to identifying information such
as IP addresses, thereby possibly deanonymizing their origin [BKP14;
FV17; KKM14]. Furthermore, the notion of AS-level adversaries mon-
itoring the data flows of blockchain networks has been discussed in
literature [AZV17; FSW14]. Such passive attacks on privacy are a threat
to the Kadcast network protocol in particular, since broadcast messages
include a height field, which is additional information that may allow
an adversary monitoring transaction propagation to infer her distance
from the transaction’s origin.

countermeasures: Kadcast implements a number of measures to
mitigate network-level threats to transaction privacy. Firstly, as previ-
ously discussed, the Kadcast protocol implements identifier space ran-
domization which impedes an adversary’s capability of learning and ex-
ploiting the network topology. Moreover, Kadcast intends for messages
to be encrypted at the transport layer [RM12],which hinders anAS-level
adversary from passively monitoring the network traffic. In this regard,
we suggest to implement a trust-on-first-sight public key pinning pol-
icy and to derive the node identifiers from the corresponding public
keys, which is an easy way to bind protocol to cryptographic identities
without necessitating a dedicated (possibly centralized) public-key
infrastructure (PKI). Finally, Kadcast adapts a two-phase transaction
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propagation scheme similar to the Dandelion [VFV17] protocol, which
we further describe and analyze in Section 5.2.4.

5.2.2 Identifier Space Randomization

As just discussed, it is essential for network security and privacy to
impair an adversary’s capability to determine and exploit a node’s posi-
tion in any distribution graph for a given block or transaction broadcast.
In particular, an adversary should not be able to pre-populate nodes’
buckets with pre-calculated identifiers in a targeted fashion. To this
end, Kadcast employs identifier space randomization in order to facilitate
distribution graphs that cannot be easily anticipated by an adversary.
However, a complete randomization of the identifier space would aban-
don the network structure and hence also render Kadcast’s efficient
broadcast algorithm based on the XOR-metric non-deterministic. We
therefore implement pseudo-randomized views of the identifier space
for each broadcast operation. In this regard, additional temporary rout-
ing tables are created for each block or transaction broadcast, in which
buckets are populated based on a salted distance metric

𝑑𝑠(𝑥, 𝑦) = (𝑥 ⊕ 𝑦 ⊕ 𝑠)10,

where 𝑠 describes a salt value derived from the message data to be
propagated, e. g., the hash of the corresponding block or transaction
message. By applying such a temporary transformation to the node
identifier space, we make sure that, on the one hand, node locations
cannot be predicted by any adversary, but that on the other hand the
network view of all nodes remains the same on a per-broadcast basis.

5.2.3 Obstruction of Block Delivery

The reliablity of Kadcast depends on the responsiveness and compli-
ance of delegate nodes. An adversary however may have an interest
to obstruct the block delivery. To this end, she could position herself
on the distribution path during the broadcast operation, and refuse to
comply when chosen as delegate. In the following, we will elaborate
and analyze this general attack vector.

First, an adversary may try to prevent a specific node from publishing
a new block. In order to intercept outgoing blocks generated by a target
node, an adversary needs to fill every bucket of the targetwithmalicious
nodes. We assume that an adversary is able to spawn 𝑀 out of 𝑁 nodes,
but cannot foresee or cheat the placement mechanism, i. e., has to hash
node identifiers like everyone else, resulting in a uniform coverage of
the randomized identifier space. In fact, this is a set of very conservative
assumptions, since we neglect the previously discussed bucket filling
and eviction policies that would heavily skew this towards stable and
honest nodes. Moreover, for the sake of censoring outgoing blocks, all
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Figure 5.6: Markov chain model.

buckets are equally attractive targets, since the covered space does not
only determine the amount of affected nodes, but in equal manner
the probability to be selected by the target’s broadcast operation. For
example, as the bucket size in a network of 𝑁 nodes can be estimated
to be

𝑏𝑠,𝑖 = ⌊ 2𝑖

2𝐿 ⋅ 𝑁⌋ ,

a successful attack on the transmission to bucket 𝐵𝐿−1 may lead to
only a coverage of 𝑁/2 nodes. However, the required number of nodes
in this bucket space is also proportionally harder to acquire for the
adversary. Due to Kadcast’s parallel route selection, it becomes highly
unlikely that all 𝛽 nodes per bucket are picked from the adversary’s
pool. In particular, when the adversary can acquire control of 𝑀 nodes,
we can assume that the same share, 𝜖 = 𝑀/𝑁, describes the situation
in every bucket and hence determines the failure probability of a single
broadcast operation. Accordingly, this would result in a parallelized
broadcast failure probability of 𝑝𝜖 = (𝑀/𝑁)𝛽, which exponentially
decreases with the redundancy factor 𝛽, as we discussed and analyzed
in Section 5.1.3.

The more interesting case is an adversary trying to interfere with the
block delivery to a specific node. As discussed before, a true Eclipse
attack is unfeasible in the Kadcast network, since it strictly applies best
practices as well as identifier space randomization. However, in the
following we analyze security of block delivery when faced with an
adversary that is able to spawn a certain amount of network nodes,
i. e., attempting a Sybil attack. In order to calculate the probability of
successful block delivery in face of such an attacker, we model the
broadcast operation as a simple Markov chain, which is depicted in
Figure 5.6. The block propagation starts in an arbitrary distance 𝑖 from
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Table 5.1: Markov Simulation Results

Parameters Results

𝑁 𝑀 𝜖 𝛽 𝑝𝜖 𝑝𝑑

11,000 1,000 0.09 3 0.00075 0.993
12,000 2,000 0.16 3 0.0046 0.957
13,000 3,000 0.23 3 0.0122 0.888
13,000 3,000 0.23 5 0.00065 0.994
15,000 5,000 0.33 5 0.0041 0.963

the target. For instance, if the origin would fall in bucket 𝐵2, the model
only needs to consider the operations in height two or smaller. The
broadcast operation succeeds, when the block is delivered to the target
node, and only honest nodes were visited during path traversal.

The initial state in the Markov model is 𝑠𝑖, and without loss of gener-
ality we can assume it to start at 𝑠𝐿−1, the state representing broadcast
in the largest bucket. From state 𝑖, the Kadcast algorithm can delegate
the targeted node directly and transition to the success state 𝑠𝑑 with
probability

𝑝𝑑,𝑖 = 1 − (
𝑏𝑠,𝑖 − 1

𝑏𝑠,𝑖
)

𝛽
.

Alternatively, the algorithm chooses some other node in the bucket with
probability 𝑝𝑑,𝑖. The chosen node may be either honest or malicious.
If it is honest (again, probability 𝑝ℎ = 1 − 𝑝𝜖 = 1 − (𝑀/𝑁)𝛽), the
broadcast operation continues and the model transitions to state 𝑠𝑖−1.
If it is malicious, it would obstruct the block delivery, and hence the
model transitions to the fail state 𝑠𝑓 with probability 𝑝ℎ = 1 − 𝑝ℎ. Once
in the success or fail state, the fate of the broadcast operation is decided,
hence the Markov model reaches a steady state after a maximum of
𝐿 − 1 state transitions.

We implemented the Markov chain model utilizing the R package
markovchain [Spe17], and simulated the success probability of block
propagation for different shares of malicious nodes 𝜖 and redundancy
factors 𝛽. As these simulations assume the source to be in the bucket
of highest distance (𝐿 − 1), they yield worst-case estimations for the
steady-state success probability. The results are shown in Table 5.1; even
for adversaries that control 9% of network nodes, Kadcast delivers
block with more than 99% probability. Moreover, by adjusting the
redundancy factor, Kadcast is able to deliver blocks with more than
96% probability in a highly adversarial environment where 33% of
nodes are controlled by the adversary.
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5.2.4 Privacy of Transaction Propagation

In the following, we discuss what privacy Kadcast can provide during
transaction propagation and what improvements to the baseline proto-
col should be considered in other to further mitigate the possibility for
attacks on user privacy.

5.2.4.1 Prepending a Random Walk

As the Kadcast protocol is designed with privacy in mind, its protocol
messages generally do not include unnecessary information that may be
utilized by an adversary in order to gain additional knowledge on their
origin. However, one necessary exception to this rule is the height field
that is part of the broadcast messages carrying block and transaction
data. As this field is initialized with value 𝐿 and is decreased with every
subsequent forward, an adversary receiving a broadcast message is able
to infer her distance from the broadcast originator in the propagation
graph. This is particular worrisome on the first hop, as an adversary
receiving a message with height 𝐿 − 1 would be able to conjecture
that the sender of this message is also its origin. While this may be no
issue in the case of block propagation—which can be assumed to be
not privacy-critical—it may be very detrimental to user’s privacy in the
case of transaction propagation.

Borrowing from the idea of the Dandelion protocol [Fan+18; VFV17],
Kadcast therefore improves the privacy of transaction propagation by
prepending the spreading process with a privacy phase, i. e., introduc-
ing an initial random walk. To this end, the originator of a transaction
broadcast initially sets the height field to an otherwise unused magic
number (e. g., 𝐿 + 1) in order to signal that the broadcast is still in the
privacy phase and sends corresponding messages to 𝛽 initial peers.
After receiving these messages, each of these peers reads the height
field and throws a weighted coin in order to decide whether to continue
the random walk, i. e., forward the message to a single other peer, or
immediately initiate the spreading of the transaction message as dis-
cussed above. It follows that the expected length of the random walk
can easily be adjusted through the weight parameter of the coin toss.

5.2.4.2 Resilience to Passive Attacks on Privacy

In order to study the privacy that Kadcast can provide, we in the fol-
lowing assume scenarios in which an adversary controls an embedding
of 𝑀 out of 𝑁 nodes that passively monitor the network for propa-
gated transactions. We furthermore assume that the adversary has no
knowledge of additional information that would allow her to infer the
propagation path, but is only capable of passively recording fromwhich
node the controlled observation points received a transaction. That is,
the adversary classifies observations according to a so-called first-spy
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Figure 5.7: Probability of detection with and without a prepended privacy
phase in dependence of the share of malicious nodes and the par-
allelization factor 𝛽 (𝐿 = 160).

estimator model and assumes the first encounter to be the transaction’s
origin [VFV17]. As additional confounding factors—such as consider-
ing varying verification times, link latencies, or bandwidths—would
only increase entropy and hence reduce an adversary’s capabilities, we
omit modelling any message delivery timings, but assume that network
messages arrive in the order in which they were initially sent.

As a consequence, the adversary estimates the correct transaction
origin, if any of the 𝑀 malicious nodes receive a propagated message
first, i. e., it is selected by the origin as one of the 𝛽 ⋅ (𝐿 − 1) initial
bucket delegates. This probability of detection is the probability that at
least on malicious node is initially chosen, i. e.,

𝑝𝑚 = 𝑝ℎ = 1 − (𝑁 − 𝑀
𝑁 )

𝛽(𝐿−1)
.

By utilizing the privacy phase, the number of delegates directly con-
tacted by the originator is reduced from 𝛽 ⋅ (𝐿 − 1) to 𝛽, hence yielding
a modified probability of detection

𝑝′
𝑚 = 1 − (𝑁 − 𝑀

𝑁 )
𝛽

.

Figure 5.7 shows the probability of detection with and without a
prepended privacy phase in dependence of the parallelization factor 𝛽.
We observe that in the baseline Kadcast protocol, an adversary would
indeed have a really high probability of guessing the originator of a
transaction correctly. However, we also can see that the privacy phase
immensely improves this and depending on the degree of paralleliza-
tion may even come close to the optimal probability proportional to the
share of malicious nodes 𝑀/𝑁. Finally, we observe that there is a trade-
off between privacy and reliability: on the one hand, the more nodes 𝛽
the transaction originator initially contacts, the higher is the probability
that a passive adversary gains information on the transaction’s origin.
On the other hand, as we previously explicated, a too low 𝛽 value may
leave the broadcast operation open for censorship attacks.
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5.3 evaluation: network simulations

In this section, we evaluate the block distribution performance, the
broadcast reliability and efficiency, as well as the security impact of the
Kadcast protocol on an empirical basis. For this, we gathered data from
a comprehensive network simulation study, which are discussed in the
following.

5.3.1 Simulation Model

Our network simulation study utilizes the bns blockchain simulation
framework introduced previously. The parameters that fuel our block-
chain simulation are therefore mainly chosen in reference to the Bitcoin
network, as discussed in Section 3.2.

While our evaluation is based on a number of different setups, the
results described in the following are based on scenarios simulating
the mining process in networks with 𝑁 = 500 nodes. Every scenario
was repeated 30 times for different seed values to ensure statistical
significance of the conducted measurements. During the three hour
simulation time, theminers generated blocks and initiated broadcast op-
erations employing one of the networking stacks, i. e., the unstructured
Vanilla baseline or the Kadcast protocol. We furthermore implemented
and evaluated the impact of different messaging patterns, i. e., header,
cmpctblock, and unsolicited block propagation for the Vanilla stack, as
well as cmpctblock and unsolicited propagation for Kadcast. In the Kad-
cast case, if not stated otherwise, the results are based on the default
parameters 𝐿 = 64, 𝑘 = 100, 𝛼 = 3, 𝛽 = 3, and an FEC overhead factor
𝑓 = 0.05.

In order to analyze the protocol behavior under different network
conditions, we furthermore evaluated all protocol variants in the Hub &
Spoke, as well as in the geographic topology models (cf. Section 3.2.2).
The Hub & Spoke model is a typical setup for the assessment of peer-
to-peer overlays, and while it captures some network effects, it does not
rely on additional assumptions about the underlying topology. As it
furthermore assumes the Internet connectivity to not be a bottleneck,
it creates an idealized simulation scenario that gives us the capability
to assess the networking stacks based on a neutral, common ground.
The geographic topology model however captures a heterogeneous
and partly resource-restricted environment that enables simulations in
more complex network scenarios, which incorporate a high degree of
network effects.

5.3.2 Protocol Evaluation

In order to show the benefits of the Kadcast protocol in different en-
vironments, we created simulation scenarios with parametrizations
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Figure 5.8: Block propagation delay for a different parametrizations in the
Hub & Spoke model.

mimicking Bitcoin (10 min. block interval and 1MB block size limit)
and Ethereum (15 sec. block interval, proportionally smaller block size
limit of 25KB [@Eth19b]). Moreover, in light of the debates on block
size limits in the Bitcoin community, we additionally analyzed the block
propagation for increased block size limits of 4, 8, and 16MB.

5.3.2.1 Block Propagation Delay

As a first study, we investigated the performance of Kadcast compared
to different instantiations of Vanilla broadcasting. Figure 5.8 shows the
block propagation delay to reach 90% of all nodes as cumulative distri-
bution functions 𝐹(𝑥): as expected, the block distribution time heavily
depends on the block size and block intervals, as well as the employed
messaging pattern. The Kadcast protocol, however, delivers blocks sig-
nificantly faster compared to Vanilla in all cases. For example, Kadcast
exhibits a mean propagation time of 436ms to deliver compact blocks
with a 1MB block size limit (Bitcoin-like scenario, upper plot), which is
close to twice as fast as Vanilla with enabled compact blocks. The mean
propagation delay for unsolicited Kadcast propagation is 2,349ms, 63%
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Figure 5.9: Stale rates for different parametrizations in theHub&Spokemodel.

faster than header-based, and even 70% faster than unsolicited Vanilla
propagation in Bitcoin-like scenarios.

The improved propagation speed is also reflected by an overall faster
network coverage: while it takes Vanilla in the Bitcoin case with enabled
compact blocks 1,133ms to reach 90% of the network, Kadcast is able
to reach the same number of nodes around 22% faster. Unsolicited
propagation via Kadcast reaches 90% coverage even respectively 53%
and 60% faster than header-based and unsolicited propagation in the
unstructured Vanilla networking layer.

Furthermore, as shown in the bottom-left of Figure 5.8, Kadcast’s
performance is competitive with Vanilla’s in the case of smaller inter-
vals and smaller block sizes: in the Ethereum-like scenario, unsolicited
Kadcast is able to deliver blocks on average more than 60% faster than
the unsolicited Vanilla baseline, and even 66% faster than the header-
based propagation. However, Vanilla performs slightly better in the
compact block case, in which it is around 7% faster than Kadcast. For
the larger block sizes of 4MB, 8MB, and 16MB (cf. the bottom-right
plot), Kadcast is on average also able to consistently deliver blocks more
than 50% faster.

These results highlight on the one hand the messaging pattern has
a significant impact on the performance of block propagation. On the
other hand, we conclude that Kadcast is able to immensely speed up the
block distribution and may be beneficial to a wide variety of blockchain
networks.

5.3.2.2 Impact on Consensus Stability

The effect of quicker block propagation is also reflected in the median
stale rate, i. e., rate of blocks that are mined, but do not become part of
the final blockchain. As increased blockchain forks and wasted mining
power weaken consensus security, the stale rate is an indicator for how
the networking layer impacts security [Ger+16].
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The boxplots in Figure 5.9 show the stale rate in dependence of the
applied messaging pattern and different choices for the redundancy
parameter𝛽: in the Bitcoin-like scenario Kadcast achieves amedian stale
rate of zero, barring the occasional outliers. This is comparable to the
Vanilla cases, which exhibit similar behavior. However, in the case of a
decreased block interval, the ratio of propagation delay to block interval
gets much larger, resulting in an overall increased stale rate of around 1-
2%. In this Ethereum-like scenario, again the influence of the messaging
pattern is clearly visible, as compact block based propagation beats
unsolicited and header-based propagation every time. In accordance
with the results of the previous section, the compact block based Vanilla
variant achieves the lowest median stale rate of 1.3%.

The simulations with compact block relaying of larger blocks indicate
that the additional stress on the network layer negatively impacts con-
sensus security: while Vanilla and Kadcast can mostly retain a median
stale rate of zero, the number of outliers increase in both cases. Though,
in the case of the 16MB block size limit, a clear difference becomes
apparent, as Kadcast can retain an average stale rate of 1.6% versus
Vanilla’s 6%.

In summary, the improved block propagation of Kadcast leads to
a median stale rate that is comparable and often better than Vanilla.
This indicates that the consensus security of blockchain systems could
benefit from employing the Kadcast protocol. Moreover, since blocks
reach a larger share of the network much faster, the adoption of Kadcast
could help to mitigate time-dependent adversarial mining strategies,
such as selfish mining [ES14].

5.3.2.3 Broadcast Efficiency

In order to confirm the adjustability and efficiency of the Kadcast pro-
tocol, we recorded the total amount of traffic 𝑡total produced during
our simulation time. Furthermore, we accumulated the block sizes of
all blocks generated during this time, 𝑡blocks. As all blocks need to be
transmitted to each node at least once, the minimum amount of traffic
for the broadcast operation can be calculated as 𝑁 ⋅ 𝑡blocks. Accordingly,
we define the overhead ratio as 𝑟𝑜 = (𝑡total − 𝑁 ⋅ 𝑡blocks)/(𝑁 ⋅ 𝑡blocks),
which describes how much additional traffic was generated during a
simulation run, including all signaling messages.2

Figure 5.10 shows the resulting overhead ratios in dependence of
the applied messaging patterns and different parametrizations of the
redundancy parameters 𝛽 and 𝑓. Firstly, we observe that Kadcast’s over-
head immensely depends on the applied messaging pattern and that
it increases linearly with the redundancy factors 𝛽 and 𝑓. As expected,

2 Note, that since we only consider block propagation for the traffic estimation and due
to the existence of stale blocks, the overhead ratio may assume values below 1 or even
0, which however does not impair the validity of this metric.
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Figure 5.10: Overhead ratios in dependence of applied messaging pattern and
parametrizations for 𝑓 and 𝛽.

unsolicited block propagation overall results in a significantly higher
overhead than the propagation through headers or compact blocks. We
moreover note that throughout all parametrizations, Kadcast’s overhead
remains below its Vanilla counterpart: for 𝛽 = 1, Kadcast even with un-
solicited block relay results in an overhead ratio below the header-based
and compact block variants of Vanilla, and for 𝛽 = 5, it is comparable
to unsolicited Vanilla propagation. In the bottom half of Figure 5.10,
we can finally observe that the overhead of compact block propagation
through Kadcast is consistently below the Vanilla counterpart. This
shows the adjustability of the Kadcast approach, which allows for a fast
block relay with low and controllable overhead.

5.3.3 Protocol Behavior under Attack

We moreover empirically evaluated how the Kadcast protocol fares in
the face of an adversary obstructing block delivery. For this, we set up
simulation scenarios in which a fraction 𝜖 of nodes were marked as
adversarial and henceforth would cease to forward blocks. The upper
part of Figure 5.11 shows the network coverage in dependence of 𝜖 and
𝛽: while Kadcast of course reaches 100% network coverage for 𝜖 = 0,
its block propagation is severely hindered when malicious nodes are
introduced and no redundancy exists (𝛽 = 1). However, the effect of
the redundancy factor 𝛽 is also clearly visible, ensuring 99% coverage
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Figure 5.11: Network coverage and stale rate, when a share 𝜖 of adversarial
nodes is introduced to the network.

for 𝛽 = 3 when 𝜖 ≤ 0.3 and for 𝛽 = 5, when the share of malicious
nodes would be even higher.

Interestingly, while Vanilla’s network coverage is not impaired by the
introduction of adversarial nodes, it does exhibit degraded propaga-
tion performance due to the almost fragmented network. In fact, the
resulting stale rates of both protocols are very similar, when confronted
with such a powerful adversary (cf. lower part of Figure 5.11). The
results show that, with a reasonably chosen set of parameters, Kadcast
is resilient to a large amount of adversarial nodes and compares to the
currently deployed Vanilla networking layer.

5.3.4 Protocol Behavior in Heterogeneous and Resource-Restricted Environ-
ments

Additionally, in order to evaluate the Kadcast protocol in more het-
erogeneous networking environments, we reproduced the previously
introduced scenarios in the resource restricted geographic topology
model. Due to the lower bandwidths, larger latencies, packet losses,
and more complex structure of this model, much more network effects
come into play here. However, the results shown in Figure 5.12 follow
the same tendencies as discussed before: in general, Kadcast provides
faster block propagation than Vanilla. And again, it does so especially
when compact block relaying is enabled.

Nevertheless, the results also show that the UDP-based Kadcast im-
plementation may exhibit degraded performance when facing slower
or more congested networking environments. In the case of unsolicited
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Figure 5.12: Block propagation delays and stale rates for different parametriza-
tions in the geographic topology model.

block propagation through Kadcast, we can already see the first signs
of congestion: even though the average propagation delays are compa-
rable with Vanilla, the propagation delay distribution exhibits a longer
tail. The degraded network performance is also reflected by higher stale
rates for 𝛽 > 1. As the effect is only exhibited with unsolicited block
propagation, enabling compact block relaying ascertains low stale rates
even in the face of these restricted and heterogeneous environments.

However, as the results highlight the robustness of the TCP-based
Vanilla in comparison to the UDP approach of this Kadcast implemen-
tation in heavily congested networks, we consider the implementation
of Kadcast on the basis of a suitable congestion control mechanism to
be a logical next step. As our simulation results furthermore show that
degraded performance may be mitigated by compact block relaying
schemes, more blockchain networks should consider adopting such
a beneficial messaging pattern. This could help to further alleviate
network bottlenecks in heterogeneous environments and hence foster
decentralization.

5.4 evaluation: testbed deployment

In the following, we evaluate the properties of the Kadcast protocol
through the deployment of a prototype implementation in a large-scale
testbed.



5.4 evaluation: testbed deployment 68

5.4.1 Kadcast-NG: A QUIC-based Prototype Implementation

In order to enable testing and evaluation in real-world networks, we
developed kadcast-ng, a prototypical node implementation of the Kad-
cast protocol written in Rust [@Tea21].3 Following the separation of
concerns principle and for the sake of comparability, kadcast-ng is
designed to run on top of the Bitcoin Core [@Bit19] reference imple-
mentation of the vanilla Bitcoin protocol. To this end, the prototype
leaves the enforcement of the consensus protocol to bitcoind, with
which it interacts through the RPC [@Bit21a] and ZeroMQ [@The21]
interfaces. This allows kadcast-ng to merely act as a relay node that
receives and submits transaction and block data which it (de-)serializes
using the rust-bitcoin [@Rus21] library implementation.4

As we have seen in the previous section, Kadcast may exhibit de-
graded performance in congested network settings when it is imple-
mented on top of the unreliable UDP transport protocol. We there-
fore base the kadcast-ng prototype implementation on the reliable
QUIC [Lan+17] transport protocol, which fits the Kadcast use case very
well: QUIC features data transmission via multiple concurrent streams,
which eliminates head-of-line blocking and therefore reinforces the
benefits of Kadcast’s parallelized broadcast operation. In contrast to
the comparatively slow TCP handshake, QUIC furthermore facilitates
connection establishment in one or even zero round-trip times (RTTs).
This is an important feature, since it enables kadcast-ng to continue
to follow the lightweight soft-state approach in which short-lived con-
nections are only established when they are needed. Moreover, QUIC
is an encrypted and authenticated transport protocol which provides
many benefits to the security and privacy of the Kadcast protocol, as
discussed in Section 5.2. In this regard, the kadcast-ng prototype uti-
lizes the asynchronous Quinn [@Dir21] library implementation of the
QUIC protocol and establishes an encrypted overlay network based on
a trust-on-first-sight principle.

5.4.2 Testbed Setup

In accordance with real-world blockchain networks, we create a testbed
scenario that enable the evaluation based on a large and distributed
network setting. To this end, we deployed 1,000 instances of type e2-
small in different regions of the Google Compute Cloud. In particular,
we follow the previously measured node distribution and deploy the in-
stances close to the regional center of the geographic topologymodel (cf.

3 The kadcast-ng codebase is open source and publicly available under: https://git.
tu-berlin.de/rohrer/kadcast-ng-public

4 At the time of writing, rust-bitcoin does not (yet) support Bitcoin’s compact
blocks [@Cor16]. The kadcast-ng prototype implementation is therefore currently
also limited to unsolicited block and transaction propagation.

https://git.tu-berlin.de/rohrer/kadcast-ng-public
https://git.tu-berlin.de/rohrer/kadcast-ng-public
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Figure 5.13: Block propagation delays for the QUIC-based kadcast-ng proto-
type and Bitcoin Core in a testbed of 1,000 nodes.

Chapter 3), i. e., in the regional zones: us-west1-a (NA), southamerica-
east1-a (SA), europe-west3-a (EU), asia-south1-a (AS), australia-
southeast1-a (OC), and asia-east2-a (CN).

All node instances are provisioned with Ubuntu Linux 20.10, Bitcoin
Core in regtestmode, and kadcast-ng. Of all deployed nodes, 15 nodes
are chosen as “miners” based on the geographic mining distribution.
They are then configured with a certainmining rate, which denominates
at which exponentially distributed rate they should produce blocks to
induce a network-wide average block interval of 10 minutes. According
to this parameter, new blocks are generated through the invocation
of bitcoind’s generatetoaddress remote procedure call, which in the
regtest mode allows to instantaneously create blocks, i. e., simulate
the mining process without actually searching for a proof-of-work solu-
tion. In order to fill the blocks, new transactions are created based on a
transaction rate parameter, which we assume to be uniformly distributed
over all nodes. To this end, on average a total of 2,000 transactions
should be created for every block interval through the distributed in-
vocation of the sendtoaddress RPC. This parameter corresponds to
the current average number of transactions per block in the Bitcoin
network [@Blo21c]. To enable this distributed issuance of transactions,
we deploy a pre-generated blockchain and funded wallets to each indi-
vidual node during provisioning.

As before, we configure kadcast-ng with the default parameters
𝑘 = 100 and 𝛽 = 3, and employ an initial waiting period to en-
sure that all nodes have finished their initial bootstrapping before the
experiment’s measurement period of 24 hours starts.
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5.4.3 Block Propagation Performance

In order to study the block propagation performance of the kadcast-
ng prototype, we evaluated its unsolicited broadcast in comparison to
the Bitcoin Core baseline with and without compact block [@Cor16]
relaying enabled. Over the measurement period of 24 hours an average
of 143 blocks were produced and propagated in the described testbed
scenarios of 1,000 nodes, each of which recorded the time each of the
blocks arrived from the ZeroMQ interface. When evaluating the Bitcoin
Core scenarios, block and transaction propagation via Kadcast were
disabled, but themeasurementswere still conducted via the kadcast-ng
node in an identical fashion in order to ensure optimal comparability.

The results are shown in Figure 5.13: firstly, we observe that the char-
acteristics of the block propagation behavior concur with the simulated
scenarios, thereby validating our prior results. Moreover, we observe
that also in the testbed deployment Kadcast is able to show its benefits,
resulting a block delivery time that is on average 43% faster than the
header-based propagation of Bitcoin Core, and even still 27% faster
than the case with enabled compact block relay.

The evaluation of the QUIC-based kadcast-ng prototype implemen-
tation therefore does not only show the general feasibility of a large-scale
deployment of the Kadcast protocol, but also once more underlines
its significant impact on the block propagation performance in many
scenarios.
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6
STATE OF PAYMENT CHANNEL NETWORKS

So far, we studied properties of real-world blockchain networks, dis-
cussed the limitations inherent to their design, and presented new
networking layer protocols that improve on-chain scalability. We now
turn our attention to the possibility of off-chain scaling, i. e., the notion
that transactions can be securely processed on a second layer, which
promises to improve transaction throughput, latency, and privacy.

Second-layer solutions, such as Bitcoin’s Lightning Network [PD16]
or Ethereum’s Raiden [@Rai20] promise tomitigate the shortcomings of
the base layers by establishing a network of off-chain payment channels.
Payment channels enable rapid payment processing between the two
channel endpoints without consulting the blockchain every time. That
is, incremental updates are negotiated locally instead of requiring a
global agreement. Local transactions are not only much faster, but also
do not leak information to noninvolved third parties. However, this
local negotiation is only possible in a secure manner, because the parties
deposit a collateral during the initial channel establishment. In the
following, we give a primer on the principles enabling transaction
processing in the Lightning Network and discuss work related to our
contributions towards this field of research.

6.1 lightning network primer

The Lightning Network is the most prevalent payment channel network
(PCN) to date, i. e., it is a network of payment channels which are estab-
lished between two endpoints by locking a certain amount of funds (the
channel capacity) on-chain. The transfer of funds over a channel is per-
formed through updating the individual channel allocations, i. e., the
respective channel balances (see Figure 6.1a), which can be negotiated
rapidly between the two involved parties. Payments can also be routed
over multiple intermediate channels, which allows to send funds to
remotely connected receivers (see Figure 6.1b). This multi-hop payment
process is secured through the application of a Hashed Time-Locked Con-
tract (HTLC) protocol. The HTLC protocol ensures that a intermediary
node forwarding a payment is reimbursed in the case of success, and
in case of a payment failure may still retrieve its locked funds after the
time-lock delta safety period has passed.

72
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Figure 6.1: Visualization of payment channels and payment channel networks

6.1.1 Connection and Channel Establishment

A new peer joining the Lightning Network has first to establish a net-
work connection to a node connected to Lightning’s TCP-based peer-
to-peer overlay network. Since every node in the network holds an
associated long-term secp256k1 ECDSA public key [Bro10] by which
it is identified, all inter-peer communications following the initial key
exchange handshake are authenticated and encrypted based on the
Noise [@Per18] protocol framework.

In order to initiate the establishment of a new payment channel to
a neighboring node, the peer sends an open_channel message that is
typically answered by an accept_channel message, through both of
which the channels parameters—in particular the channel capacity
and initial balances—are negotiated. Using the exchanged information,
the initiating peer is then able to issue a funding transaction which
it broadcasts in the Bitcoin network. After the funding transaction is
confirmed on-chain, the channel is established and may be used for
payment processing. Furthermore, if the new peer wants to act as pay-
ment hub, i. e., forward payments for others, it can announce the node’s
and channel’s existence to the network by disseminating the respective
node_announcement and channel_announcement messages in the peer-
to-peer network. As these messages also contain the necessary routing
information, such as the channel capacity and associated routing fees,
they are broadcasted in Lightning’s overlay network. These messages
also include the cltv_expiry_delta parameter, which allows a node
to declare the maximum time it is willing to have its funds locked up in
case an HTLC is not fulfilled in an orderly fashion.

6.1.2 Payment Routing

Let us assume that Alice already connected her node 𝐴 to the network
and established at least one channel over which she is able to send and
receive payments. If she now wants to send a payment to a destination
node 𝐶, she has to first find a suitable path in the network and then has
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Figure 6.2: Message exchange during payment routing.

to setup the corresponding HTLC to conduct the payment. In order to
illustrate this example, the sequence of exchanged messages is shown
in Figure 6.2.

Initially, it is required for𝐴 and𝐶 to have some out-of-bounds commu-
nication channel over which 𝐶 can supply an invoice to 𝐴 that includes,
without limitation, its identifying public key, the amount to be paid, as
well as the payment hash, i. e., the hash 𝐻(𝑟) of a random secret 𝑟. Based
on the publicly available routing information, 𝐴 then employs source
routing in order to determine a path to 𝐶 that has sufficient capacity
to possibly be able to route her payment. While the behavior of the
source routing algorithm is not specified as part of the BOLT specifica-
tions [@Dev20c], typically a modified version of Dijkstra’s shortest path
algorithm [Dij59] that considers routing fees and past payment success
is utilized for route selection. Note that this algorithm might fail, if
there is no path of sufficient capacity available. However, let’s assume
without loss of generality that this is not the case and the algorithm
yields a path over the intermediate node 𝐵.

Given the discovered path, Alice is able to initiate the HTLC con-
struction, i. e., a number of conditional payments that either may be
redeemed by producing the pre-image 𝑟 to the challenge𝐻(𝑟), orwould
time out after a certain lock-time. In order to facilitate the payment, 𝐴
calculates two essential values for each respective hop:

1. the amount this hop should forward, which is calculated by
adding the accruing fees for each respective hop to the payment
amount, which is hence decreasing towards the destination.

2. the necessary remaining time-lock value for the outgoing hop,
which is increasing towards the destination.
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Alice then encodes this information in an onion routed packet cor-
responding to the Sphinx packet scheme [DG09]. That is, the packet
is constructed through multiple layers of encryption, each wrapping
information identifying the next hop, the amount to forward, as well
as the remaining lock-time value. She then initiates the payment by
sending an update_add_htlcmessage carrying the payment hash 𝐻(𝑟)
as well as the onion packet (represented as ⊚) to the next hop, i. e.,
𝐵. The latter, as each intermediate node along the payment path, is
then able to decrypt the packet to receive its payload and forward the
HTLC offer to the next hop. However, 𝐵 only proceeds after the new
conditional payment based on the challenge 𝐻(𝑟) is incorporated in
the state of the affected payment channel and this state change is ir-
revocably committed through a handshake of commitment_signed and
revoke_and_ack messages.

After the pending state updates have been negotiated, 𝐶 forwards
the HTLC by attaching the remaining part of the onion packet to an
update_add_htlc message sent to the next hop, which proceeds in the
sameway. In case any of the intermediary nodes does not agree with the
payment, e. g., when the channel does not hold a sufficient balance or the
fee and time-lock values determined by𝐴do notmeet their expectations,
theymay fail theHTLC by replyingwith an update_fail_htlcmessage
carrying failure message that is onion-encrypted and propagated back
along the path to the origin node 𝐴. As this may happen at any point in
time, Lightning does not provide any guarantees on payment reliability
and hence can be classified as a best-effort network.

Once the HTLC construction reaches the final destination, 𝐶 sup-
plies the solution 𝑟 to the payment hash challenge 𝐻(𝑟) via a corre-
sponding update_fulfill_htlc message, which is propagated back
on the inverse payment path, allowing intermediary nodes to redeem
their conditional payments. Thereby, they settle the pending HTLC
and gain the determined fee. Note that while the commitment_signed
and revoke_and_ack messages are only exchanged between immediate
neighbors, the respective update_add_htlc, update_fulfill_htlc, and
update_fail_htlcmessages are forwarded back and forth the payment
path, which makes them observable by intermediate nodes.

6.2 related work

6.2.1 Channel Design and Payment Routing

Payment channels were introduced to scale cryptocurrencies to high
transaction rates. To this end, several channel designs have been pro-
posed over the past years [DRO18; DW15; GM17; Hei+17; Mil+19].
While some designs are restricted to single-hop payments, others sup-
port multi-hop payments and may therefore be used in payments chan-
nel networks. The LightningNetwork [PD16] for Bitcoin and the Raiden
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Network [@Rai20] for Ethereum are the most widely used channel im-
plementations to date. A further overview of the PCN design space is
provided by Gudgeon et al. [Gud+20].

Besides themakeup of the payment channels themselves, the question
how payments can be routed efficiently and securely has recently been a
focus area of PCN research. Prior contributions introduced algorithms
beyond the currently utilized source-routing, for example landmark-
based [Pri+16; Wan+19] and distributed [Roo+18; Yu+18] routing
algorithms have been explored. As our work introduced in Chapter 8
showed, the network may be utilized more efficiently when larger pay-
ments are split up and routed over multiple payment paths. To this
end, algorithms considering multi-path routing [BNT20; Siv+18] and
payment splitting [Eck+20; PN18] have been discussed in literature.

6.2.2 Network Graph Properties and Creation

In recent years, a number of works analyzed the Lightning Network
graph and discussed the resulting decentralization and reliability of
payment routing [Lin+20; Ser+19; WH20], as well as possible conse-
quences with regard to payment privacy [BSB19a; MF20]. Our work
presented in Chapter 7 introduced the first study to analyze graph-
theoretic properties of the Lightning Network’s channel topology and
highlighted its vulnerability to targeted attacks.

While most of these entries take the network topology as a given,
few entries study how the network structure emerges and which al-
gorithms for graph creation are preferable. To this end, prior entries
showed that centralized structures can make the network more efficient
and stable [Ava+20; Rin+20; SZ20]. Most related to our work study-
ing attachment strategies for payment channel networks (Chapter 10),
Ersoy et al. [ERE20b] introduce a strategy aiming for profit maximiza-
tion of payment providers. As the utilized approximation algorithm is
however very costly, our work deliberately opts to implement a more
practical approach and explores a broader range of strategies and de-
sign goals. Related to our work are moreover approaches for optimal
channel balance calculation [LMZ20], rebalancing [KG17; PN20], as
well as algorithms considering the network demand [Aum+20; KR21].

6.2.3 Attacks on Security and Privacy

More and more works study the possibility of attacks on the security
and privacy of second-layer solutions in general and payment channel
networks in particular. Our analysis presented in Chapter 7 showed that
the Lightning Network is vulnerable to channel exhaustion and node
isolation attacks, both of which are particularly dangerous if the adver-
sary can leverage payment griefing in order to keep its stakes low.Mizrahi
and Zohar showed that the network in similar fashion may suffer from
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congestion attacks [MZ20]. Moreover, Tochner et al. showed how the
routing algorithms employed by PCNs may be manipulated in order
to facilitate inclusion of a malicious node in the payment path, thereby
increasing the danger of denial-of-service attacks [TSZ19]. Additionally,
previous entries showed the HTLC constructions to be susceptible to
bribing [KNW20; TYE20] and flooding attacks [HZ20].

Furthermore, recent entries have discussed the possibility of dis-
covering the private channel balances by probing [Dam+20; Her+19;
Tik+20] and analyzed how much privacy could be retained, if noisy
channel balances were to be made public [Tan+20]. Similarly, Béres
et al. [BSB19a] and Tikhomirov et al. [TMM20] empirically analyzed
the privacy properties of PCNs with the assistance of model-based
traffic simulation. While both of these entries discuss the possibility of
deanonymization attacks, they essentially apply a variant of the first-
spy estimator, i. e., estimate immediate predecessors and successors to
be senders/receivers. Concurrently to our work of Chapter 9, Kappos
et al. [Kap+20] refined prior approaches of traffic simulation and intro-
duce a probabilistic model based on observed path lengths in order to
estimate probable payment endpoints. Moreover, while a recent entry
by Nisslmueller et al. [Nis+20] mentioned the possibility of timing
attacks, their investigation remained in a preliminary state. To the best
of our knowledge, our work presented in Chapter 9 is therefore the
first to study the impact and feasibility of timing attacks on privacy in
payment channel networks in depth.

Orthogonally to this work, a growing body of contributions aims to
improve the privacy guarantees of second-layer solutions. While some
designs allow to anonymously transact over payment hubs [GM17;
Hei+17], privacy-preserving routing mechanisms [Mal+17a; Maz+20;
Roo+18] promise to enable anonymous transactions over multiple
intermediaries, i. e., payment channel networks. Malavolta et al. pro-
posed provably secure payment protocols [Mal+17b] and introduced a
Lightning-compatible anonymous lockingmechanism based on ECDSA
signatures that allows for the decorrelation of payment paths [Mal+19].
While the adoption of such improved protocols would likely not entirely
mitigate the possibility of attacks on privacy, they would force an adver-
sary to take additional error-prone measures for payment correlation.
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In this chapter, we analyze the Lightning Network’s topology and pro-
vide details on the network’s properties, as well as its resilience towards
random failures and targeted attacks. To this end, we introduce the
notions of channel exhaustion and node isolation attacks, and evaluate
the feasibility of a series of adversarial strategies. Most notably, we
show that the Lightning Network is susceptible to these attacks and
can indeed be disrupted.

7.1 lightning network analysis

In the Lightning Network, every node has a global view of the payment
channel network (PCN) topology and is responsible for finding routes
on the basis of this data set, i. e., conducting source routing. However,
mainly due to privacy reasons, actual channel balances are not included
in this routing information. As a consequence, it cannot be predeter-
mined whether sufficient funding is available to route a payment. In
case of a failed payment attempt, the client needs to repeat the process
until successfully completed.

The payment channel design of the Lightning Network ensures bal-
ance security for multihop payments through the use of hash time
locked contracts (HTLCs). We can see that HTLC processing requires
all participants to be online and responsive. Otherwise, if a node goes
offline, funds may be locked for an extended time period. In the worst
case, it is even possible that an adversary publishes outdated states,
effectively stealing coins. The robustness of the PCN topology therefore
is the baseline for the resilience of the Lightning Network, e. g., to node
failures due to DoS attacks. In the following, we evaluate metrics like
the betweenness centrality, clustering coefficient, and degree distribu-
tion to draw conclusions on whether the topology exhibits properties
similar to small-world or scale-free networks. These common properties
provide insights on the degree of centralization and the sensitivity to
random failures as well as targeted attacks.

7.1.1 Data Collection and Methodology

Over the span of twomeasurement periods (Oct.–Nov. 2018 and Jan.–Feb.
2019), we gathered information on the Lightning Network’s topology.
To this end, we used two virtual machines based on Ubuntu Server
18.04, which run bitcoind and lnd, respectively. We utilized the RPC
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Figure 7.1: Time series showing the Lightning Network’s number of nodes
and its total capacity (i. e., sum of all payment channel capacities).

describegraph to retrieve the topology and regularly store snapshots
in a .json file. For the data analysis we developed a python evaluation
script, using the networkx [HSS08] and powerlaw [ABP14] libraries.
Our code and all data sets are available online.1

In general, a node’s view of the topology depends on the informa-
tion it gets from its neighbors. Moreover, not all channels have to be
announced publicly. Therefore, there is no guarantee to have a complete
view of the network. However, we assume that the publicly available
data characterizes the network’s essential traits. While the network has
immensely grown in terms of the number of nodes as well as in total
capacity over the past months (see Figure 7.1), we can observe that the
topology’s characteristics have not changed significantly. The follow-
ing analysis is based on a data set which was captured on Feb. 1, 2019
0:00AM.

7.1.2 Graph Measures and Metrics

We consider the PCN topology as a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is
the set of nodes and 𝐸 the set of edges, i. e., payment channels. The
degree 𝑑𝑒𝑔(𝑣) of a vertex 𝑣 is defined as the number of its channels. A
channel between node 𝑣𝑖 and node 𝑣𝑗 is denoted as 𝑒𝑖𝑗. A path between
two nodes consists of one or more channels. The distance between two
nodes is defined as the shortest path between these nodes. The diameter
is the longest distance between any two nodes in the network. Similar to
the diameter, the average path length is defined as the average distance
between any two nodes.

1 https://git.tu-berlin.de/rohrer/discharged-pc-data

https://git.tu-berlin.de/rohrer/discharged-pc-data
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Table 7.1: Comparison of graph measures for different graph types.

PCN Scale-free Random

Node count 2400 2400 2400
Edge count 13884 11975 13941
Diameter 6 5 6
Average distance 2.92 3.25 3.45
Central point dominance 0.16 0.09 0.005

Betweenness is a metric for centrality [Fre77a]. The betweenness of
a node is the number of shortest paths between any two nodes in the
network that pass through the node. The betweenness centrality 𝑐𝐵(𝑣)
of a node 𝑣 is given by

𝑐𝐵(𝑣) = ∑
𝑠,𝑡∈𝑉

𝜎(𝑠, 𝑡|𝑣)
𝜎(𝑠𝑡) ,

where 𝜎(𝑠𝑡) is the number of all shortest paths between 𝑠 and 𝑡, and
𝜎(𝑠, 𝑡|𝑣) is the number of all shortest paths between 𝑠 and 𝑡 that include
𝑣. To normalize the value such that 𝑐𝐵 ∈ [0, 1], 𝑐𝐵 is divided by the
number of all pairs of nodes that do not include 𝑣, that is, (𝑛 − 1)(𝑛 −
2)/2 for undirected graphs with 𝑛 being the total number of nodes.
Accordingly, it describes the share of shortest paths that pass this node.
In general, betweenness centrality is an indicator of how much control
a node has over the network.

A subgraph 𝐺′ = (𝑉 ′, 𝐸′) where 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸 is called con-
nected component if any node 𝑣′ ∈ 𝑉 ′ can be reached by any other
node in 𝑉 ′. A graph is biconnected if it is still connected after removing
any arbitrary node. A biconnected component is a largest possible bicon-
nected subgraph. If a node is member of more than one biconnected
component, it is called an articulation point or cut vertex. As the re-
moval of nodes that have a high betweenness and/or are articulation
points may have an increased impact on network connectivity, they are
potential targets of directed attacks.

Graph metrics typically gain meaning only in comparison to other
graphs of the same size. In Table 7.1 we compare the PCN graph to
a random Erdös-Renyi graph [ER59] and a scale-free Barabasi-Albert
graph [BA99]. Note that while the graphs share similar parameters,
the scale-free graph has less edges due to the method of preferential
attachment.

From the comparison, we can observe that currently all three graph
types share a diameter of 5–6 hops. At the same time, though, the PCN
graph has the lowest average distance, which is a favorable property
for users as it reduces the failure probability and saves routing fees. In
terms of centrality, we compared the central point dominance, defined
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as the maximum betweenness centrality of all nodes. We can see that
the PCN and the scale-free graph have a central point dominance more
than ten times as high as the random graph’s. The result suggests that
the Lightning Network relies on few central nodes in order to process
payments.

7.1.3 Small-World Analysis

Small-world networks are characterized by nodes that tend to cluster
and have a high density of edges. More formally, the diameter grows
logarithmically with the number of nodes. In order to test the “small-
world-ness” of the Lightning Network, we use the method introduced
in [HG08]. It is based on comparing the clustering coefficient to a
clustering coefficient of a random graphwith similar parameters, which
serves as a reference.

While different definitions of the global clustering coefficient exist,
we use the transitivity definition [Boc+06]. Accordingly, the clustering
coefficient 𝐶 is defined as

𝐶 = 3 ⋅ number of triangles
number of paths of length 2 .

Note, a factor of 3 is used to compensate that each triangle has three
paths of length 2. Thus, 𝐶 = 1 for cliques.

Now, let 𝐿𝑔 and 𝐿𝑟 denote the mean shortest path length of the
PCN graph 𝐺 and a random Erdös-Renyi graph 𝑅, respectively. Like-
wise, let 𝐶𝑔 and 𝐶𝑟 describe the clustering coefficient. In accordance
with [HG08], we consider a network as small-world if 𝑆 ≫ 1, where

𝑆 =
𝛾𝑔
𝜆𝑔

with 𝛾𝑔 =
𝐶𝑔
𝐶𝑟

and 𝜆𝑔 =
𝐿𝑔
𝐿𝑟

.

Applying the described method to our empirical data yields 𝐶𝑔 =
0.085 and 𝐿𝑔 = 2.92 for the PCN graph and 𝐶𝑟 = 0.005 and 𝐿𝑟 = 3.45
for the random graph.We can already see that the Lightning Network is
more clustered and yields on average shorter distances.We can conclude
that the Lightning Network can be classified as a small-world network,
as 𝑆 = 19.439 ≫ 1.

7.1.4 Scale-Free Analysis

Scale-free networks are characterized by a few nodes having a very
high degree and many nodes having low degrees. More specifically, the
degree distribution is similar to a power law distribution, where the
fraction of nodes 𝑃(𝑘) having a degree 𝑘 is described as 𝑃(𝑘) ∼ 𝑘−𝛼

with 𝛼 typically ranging between 2 and 3 [CSN09].
Scale-free networks emerge if a new node can choose its neighbors

freely and prefers well-connected nodes. In the Lightning Network, we
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Figure 7.2: Degree distribution of the Lightning Network. The log-log plot
additionally shows the fitted power-law distribution.

have a comparable situation. New nodes have an incentive to preferably
open channels to highly connected nodes, hence reaching a larger share
of the network with fewer hops. In comparison to random graphs, scale-
free networks are generally robust to random failures, as the chance of a
critical amount of high-degree nodes failing concurrently is very small.
However, since a few nodes have high degrees, scale-free networks are
prone to targeted attacks.

In Figure 7.2, we show the degree distribution of the 100 nodes with
highest degree in the Lightning Network: the initial impression makes
the hypothesis of a power-law distribution, i. e., scale-free network, plau-
sible. To examine whether the Lightning Network is actually scale-free,
we investigate the degree distribution along the lines of [CSN09]. The
empirical data are plotted in a log-log plot in Figure 7.2. On the x-axis
we show the node degree 𝑘 and on the y-axis the probability for a certain
node degree 𝑃(𝑘). For a power law distribution we expect a negative
linear trend, where the slope determines the scaling factor 𝛼. However,
this alone is not sufficient to draw conclusions. To get sound results,
we additionally perform a power-law fit using a maximum likelihood
estimator. More specifically, we use the Kolmogorov-Smirnov (KS) dis-
tance [Mas51] to determine the difference between the actual data and
a proposed power-law fit. By minimizing the KS distance for 𝑥, we
retrieve an 𝑥𝑚𝑖𝑛.

With 𝛼 and 𝑥𝑚𝑖𝑛, we can derive a power-law distribution, but to
draw conclusions it requires a goodness-of-fit test. Based on a number
of synthetic data sets and respectively fitted distribution parameters
(derived from the regression model), it generates a 𝑝-value, which
we use to accept or reject the hypothesis of a power-law distribution.
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Table 7.2: Average number of connected components after random failures for
differen graph types.

Failures Lightning Network Scale-free Random

1 1.13 1.00 1.00
2 1.20 1.00 1.00
3 1.61 1.00 1.00
5 2.86 1.00 1.01
10 3.66 1.00 1.00
50 14.00 1.00 1.03

The authors of [CSN09] suggest to use synthetic data sets with a high
number of samples (ideally 10, 000 samples) and to reject the scale-free
hypothesis if 𝑝 ≤ 0.1.

Applying this method to the empirical PCN data yields an 𝛼 = 2.18
and an 𝑥𝑚𝑖𝑛 = 16. For the goodness-of-fit test we created 10, 000 data
sets, that in sum yielded a 𝑝-value of 𝑝 = 0.3314, clearly substantiating
the scale-free hypothesis.

In conclusion, the degree distribution of the Lightning Network can
be classified as power-law distributed, suggesting a scale-free network
structure overall. Therefore, the network may benefit from the robust-
ness property of scale-free networks against random failures.

7.1.5 Robustness Analysis

To draw conclusions about the robustness of the Lightning Network,
we again compare it to other graph types (Table 7.2). We randomly
removed a certain amount of nodes to simulate random failures. Each
time, the simulation was run 100 times for the Lightning Network, a
scale-free Barabasi-Albert graph [BA99], and a random Erdös-Renyi
graph [ER59], respectively. The random removal of nodes has nearly
no impact on the random graph and the scale-free graph but separates
the PCN graph. The isolated components mostly consist of one and two
nodes and therefore will barely affect routing efficiency. Yet, the graph
separates and a random failure is very likely to separate at least one
node from the network. In conclusion, the impact of random failures
on the routing efficiency is very low. Nevertheless, the prospects of
targeted attacks seems promising. Based on this insight, we discuss
several attack vectors and their impact on the network in the following
sections.
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7.2 attacking the lightning network

As we have seen in the previous section, the Lightning Network is
actually rather centralized and exhibits a heavily skewed degree distri-
bution. This raises the question how the network topology copes with
attacks that target specific points of interest. In the following, we present
specific attack vectors, including channel exhaustion and node isolation
attacks, and discuss a number of feasible attack strategies. Moreover, we
introduce metrics that allow us to quantify the adversarial advantage
of each strategy.

7.2.1 Adversary Model

With its growing success, the Lightning Network becomes an increas-
ingly interesting target for different kinds of adversaries. We assume an
active adversary that may participate in the peer-to-peer network, or
attack its topology from the outside. At this point, we do not make any
assumptions about the adversary’s resources as this will be a parameter
of our evaluation. In general, we assume however that the adversary is
always eager to act as efficiently as possible, i. e., minimizing resources
to maximize its adversarial advantage.

The adversary’s motivation (or goal) may vary and therefore deter-
mines the attack vectors and strategies. For example, an adversary may
be interested in eliminating single nodes, e. g., to impede or censor their
participation in the network. She could also be interested in disrupting
the network as a whole and aim for a partitioning attack that could
impair the payment processing or even inhibit it entirely. Lastly, the
adversary may be a “selfish” node in the Lightning Network, e. g., a
payment hub, and interested in increasing her fee gain by sabotaging
competing nodes and payment paths.

7.2.2 Attack Vectors

denial of service We consider denial-of-service (DoS) attacks as a
general attack vector to disrupt a node’s connection to the Lightning
Network by using “external” means, i. e., not directly speaking the
Lightning protocol. DoS attacks are typically mounted by flooding
nodes with superfluous requests to overload their system. We however
also include a broader range of DoS attack techniques, such as BGP
hijacking to make nodes unreachable.

In general, a DoS attack on specific nodes in the Lightning Network
allows an adversary to inhibit these nodes from partaking in regular
payment processing. This attack vector usually requires a reasonably
strong adversary controlling a botnet or having access to the Internet
backbone. In March 2018, the Lightning Network was reportedly hit
by a DDoS attack that took 20% of nodes offline [@Tru]. This incident
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shows that DoS is not a mere theoretical threat, but a feasible attack
vector that has to be taken into account.

channel exhaustion Each payment channel in the Lightning Net-
work has a certain capacity and can therefore only route payments
up to this capacity. We argue that this fact provides an attack vector:
an attacker with sufficient funds is able to exhaust, i. e., block, a pay-
ment channel by routing a payment over the targeted channel in the
respective direction. The attacker may not be able to infer the current
channel balance as nodes only announce a channel’s initial capacity. She
therefore may need to route multiple payments to eventually exhaust a
channel. To this end, the attacker could perform a binary search, starting
with the maximum channel capacity and trying to route this volume.
In order to not waste funds, the attacker is able to route funds back to
herself, in which case only marginal routing fees accrue.

Using this technique, an adversary is able to disturb the payment
flow in the network and manipulate it to its advantage. In particular,
this attack may be used to cut parts off the network graph, leaving it in
decomposed state.

payment griefing The threat of channel exhaustion can currently
be elevated by combining it with an attack vector called payment grief-
ing [@Fou; Rob19]: as there is currently no fee on failed routing requests,
the adversary may initiate an arbitrary number of HTLC payments to
a node under her control. This node may then simply ignore incom-
ing HTLC requests, forcing the involved nodes to wait for the time
locks to expire. Upon expiry, the entire state is rolled back, circumvent-
ing fee deduction. Therefore, payment griefing allows an adversary to
temporarily claim channel capacity free of charge.

Channel exhaustion in general and payment griefing in particular
can be amplified by choosing longer payments paths. In this case, the
adversary’s stake is able to exhaust/lock funds along the path. With
payment griefing, though, we can eliminate specific edges and paths in
the PCN topology.

node isolation By deliberately exhausting all channels of a node,
we can isolate this node completely and effectively hinder it from par-
ticipating. As shown in Figure 7.3, a malicious node 𝐸 can zero all
outbound channel balances of a target node 𝐴. The attack requires 𝐸
to first open a channel with a capacity that is equal or greater than
the total balance of 𝐴’s outbound channels (cf. Figure 7.3b). Since the
Lightning Network implements source routing, the attacker is able to
determine routes and exhaust each channel by issuing a number of pay-
ments with respective payment volumes (cf. Figure 7.3c). Of course, to
improve efficiency, the attacker can also make use of payment griefing.
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Figure 7.3: Node Isolation: the adversary 𝐸 establishes a sufficiently large
payment channel to the target node 𝐴. It then exhausts all outgoing
capacity of 𝐴 and closes her channel.

This attack vector can be considered a generalization of the channel
exhaustion, described previously.

Node isolation leaves the target node unable to route outbound pay-
ments. While the node can of course still receive payment requests, it
is unable to fulfill them because all of its funds have been shifted to
the adversary’s channel (cf. Figure 7.3d). In this situation, both sides
can decide to close the channel, which would return the funds to the
target node on-chain. Note that this would additionally deter the target
node from using the funds for 1–2 block intervals, i. e., 10–20 minutes.
The adversary however could also leave the channel open and refuse to
process payment requests at which point the target node is forced to
close the channel unilaterally. In this case, the settlement transaction
can only be redeemed after the expiration a of the lock time, which
adds a delay that is typically larger than 1–2 block intervals.

This attack vector effectively incapacitates the node from functioning
as a payment hub, i. e., it eliminates the node from the routable network
graph. In order to recover from this state, the target node needs to
open at least one newly funded channel. As its old funds can only
be reused after the closing channel was successful settled, it has to
invest additional funds to be able to start rebalancing its channels and
eventually regain its routing capabilities. Note that this comes with an
additional overhead for the target node, since it has to pay fees for the
funding transaction in the Bitcoin network.

To conclude, even by design, it is possible to remove edges and nodes
from the routable Lightning Network. However, depending on the
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utilized attack vector, the adversary may have to provide more or less
resources to carry out the attack.

7.2.3 Attack Strategies

Equipped with the means to remove edges and nodes, the adversary
may try to cause maximum damage along the lines of the previously
discussed adversary goals. Depending on these goal, however, she may
choose a different strategy, i. e., a different set of nodes and edges to
attack. In the following we discuss a number of attack strategies.

highest degree/betweenness/eigenvector centrality nodes
An adversary aiming to damage the network as a whole might try to
destabilize or even partition the network graph, effectively impeding
oder hindering cross-network payment routing. For this, the adversary
might try to remove the participants according to their importance in
the network. Promising strategies therefore prioritize central nodes
with respect to some kind of centrality metric. Therefore, as an initial
strategy, we propose that the attacker may target nodes based on their
degree in descending order.

Moreover, the attacker may target nodes based on the previously
mentioned betweenness centrality [Fre77a] or their eigenvector central-
ity [Gou67], which can consider not only the topological location, but
also the edge capacities of a node.

highest ranked minimum cut sets A minimum cut set of a graph
is a set of edges with minimal accumulated capacity that, when re-
moved, partitions the graph. Therefore, minimum cuts are prime target
when an adversary aims for network partitioning. However, not all cuts
are created equal: while some may partition the network quite effec-
tively, others may only cut off a single node. Given that the adversary
has only limited resources at her disposal, it is important to prioritize
the targeted minimum cuts according their importance in real world
payment scenarios. Therefore, we propose to calculate a high number
of potential (𝑠, 𝑡)-cuts for randomly picked terminals 𝑠 and 𝑡, and rank
the individual cuts by the number of their occurrences. By targeting the
highest-ranked cuts, the adversary focuses on the network bottlenecks
hindering payment processing first.

highest ranked parallel paths An adversary that participates
in the network as a payment hub may be interested in increasing her
revenue by eliminating competitors. Of course, the adversarymay again
target competing hubs by their importance in the network, e. g., by node
degree. However, such a strategy would not consider how payments
are routed in the Lightning Network. Therefore, we propose to simulate
random payments and record the resulting payment paths. Excluding
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the paths involving the adversary’s hub, nodes can be ranked according
to their involvement in the remaining payment paths. Accordingly, the
adversary eliminates nodes that are part of many competing routes
with the intention to increase her fees by processing more payments.

7.2.4 Quantifying Adversarial Success

In the following, we propose a number of metrics that allow us (and the
adversary for that matter) to quantify the impact of an attack strategy.
To provide an overall metric, we define the adversary’s advantage of
an adversary, i. e., success of the attack, as the relative decrease in the
respective metric concerning the a priori measurement 𝑚 and the a
posteriori measurement 𝑚′:

Δ𝑚 = ∣𝑚 − 𝑚′

𝑚 ∣ = ∣1 − 𝑚′

𝑚 ∣ .

The higher Δ𝑚 becomes the higher the adversary’s success according
to metric 𝑚 will be. It generally provides a way to relatively compare
the prospect of different attack strategies from different perspectives.

An attacker may try to partition the network into a number of sub-
graphs. While the impact of such an attack is limited when the ad-
versary is only excluding single nodes, it may be much more severe
if she can cut off larger segments of the network. A sound measure
for general network robustness should capture the share of nodes that
are disconnected from the network graph. We therefore propose the
number of reachable nodes 𝑟 as a metric. Given all connected components
𝐶𝑖, we define the largest connected component 𝐶1 to be the Lightning
Network. Accordingly, we can calculate 𝑟 as the network’s node car-
dinality 𝑟 = |𝐶1|. This metric can be used to calculate the adversarial
advantage Δ𝑟 as defined above.

However, as some nodes are more central and provide a larger share
of the network’s total capacity than others, the impact of node isola-
tion on the liquidity of the network may vary heavily depending on
the target. To quantify the impact, we propose the average maximum
flow as another metric: for 𝑛 rounds, we draw a pair of nodes 𝑠𝑖, 𝑡𝑖 ∈
𝑉, 𝑖 ∈ {1 … 𝑛} by uniform random sampling and calculate the max-
imum flow 𝐹𝑖(𝑠𝑖, 𝑡𝑖) along the lines of [FF56; GT88a]. The average
maximum flow is then given by

𝐹 =

𝑛
∑
𝑖=1

𝐹𝑖(𝑠𝑖, 𝑡𝑖)

𝑛

and can be used to calculate the adversarial advantage Δ𝐹.
While the average maximum flow is a good indicator of the routable

capacity in the network, it does not necessarily reflect the actual ex-
pected payment success, since currently the Lightning Network only
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uses single-path routing to fulfill payments. Therefore, we additionally
introduce the expected payment success ratio 𝑠 as a metric for how likely
payments can be processed by the network. To get a sound estimation,
we simulate a high number of transactions between random nodes and
calculate the success ratio as

𝑠 = #successful payments
#attempts .

Accordingly, the adversarial advantage is given by Δ𝑠. As the validity of
thismeasure heavily depends on the transactionmodel, it will especially
benefit from parametrization based on empirical data.

In order to quantify the potential success of an internal adversary
aiming for increased revenue, we propose to simulate a high number
of payments and accumulate the fee gain 𝑔𝑖,ℎ𝑡 for the adversary’s hub
ℎ𝑎 that accrues over all simulated payments 𝑖 ∈ {1 … 𝑛}. The average
fee gain

𝑔ℎ =

𝑛
∑
𝑖=1

𝑔𝑖,ℎ𝑎

𝑛

may then be used to indicate the adversary’s success.

7.3 evaluation

7.3.1 Proof of Concept

In order to validate the feasibility of our node isolation attack, we built
a simple toy scenario mimicking the attack shown in Figure 7.3. We ran
five independent lnd instances, which were connected to the Bitcoin
testnet. The target node 𝐴 established three channels with outbound
capacities set to 75,000, 100,000, and 125,000 satoshis, respectively. The
attacker 𝐸 established a channel with a total capacity of 400,000 satoshis
to 𝐴, which is sufficient to exhaust 𝐴’s channels and therefore hinder
any other node from routing through 𝐴. In our example, we repeatedly
sent payments of declining size until 𝐴 was able to route no more than
100 satoshis (currently ≈ 0.0037 USD), at which point we considered
the attack to be successful.

7.3.2 Evaluation Model

The following evaluation of topology-based attacks on the Lightning
Network is based on simulations we implemented using the python
library networkx [HSS08]. As before, the snapshot from Feb. 1, 2019 is
used as our reference dataset. While the dataset provides real-world
data on nodes, edges, and edge capacities, it does not include the actual
channel balances. We therefore assumed the given capacities to be the
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Figure 7.4: Node removal according to different attack strategies.

balance both ways, likely resulting in an overestimation of the routable
funds, i. e., yielding a best-case estimation for the considered metrics.

The proposedmetrics and attack strategies rely on the availability of a
solid payment model that reflects how transactions of a certain volume
traverse the network. Due to the lack of real-world transaction data of
the Lightning Network we draw source and target nodes uniformly
at random from the network nodes. By doing this, we refrain from
introducing unnecessary complex and artificial assumptions. We also
assume a single-path routing scheme as currently implemented by the
Lightning Network: each payment is processed by first excluding all
edges with insufficient capacities from the routable network graph. On
the remaining graph, shortest path routing is performed.

As our data base for payment volumes, we collected real world pay-
ment data from the Ripple network [@Pro]. For this, we retrieved all
XRP transactions that occurred at our reference date Feb. 1, 2019 and
converted it to the respective values in satoshis. The transaction volumes
are chosen by uniform random sampling from this data set.

All algorithms are repeated 1,000 times to ensure statistical signifi-
cance. Furthermore, to ensure the reproducibility of the appliedmetrics,
we opted to fixate the pseudorandom number generator’s seed value
for each round of simulation. Thereby, the same input data is utilized
by all metrics, improving the comparability between measurements.

7.3.3 Partitioning Attacks

Aswe have seen, a capable adversarymay isolate single nodes in the net-
work. In the following, we analyze the Lightning Network’s resilience
to an adversary aiming for maximal damage to the network, i. e., net-
work partitioning. To this end, we assume that the attacker is capable
of removing a certain number of nodes from the routable network
graph, e. g., by the means of DoS attacks or node isolation attacks. We
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Figure 7.5: Adversary’s advantage for success ratio, reachability, and average
maximum flow after the removal of 𝑛 nodes according to different
attack strategies.

simulated the previously introduced attack strategies and recorded
the network state before (a priori) and after (a posteriori) the attack:
removing nodes by decreasing degree, by decreasing betweenness and
eigenvector centrality, and by highest ranked minimum cuts. Moreover,
we evaluated uniform random node removal as a baseline.

As an initial measure, Figure 7.4a shows the payment success ratio
𝑠 before (horizontal line) and after the respective attacks happened.
Notably, even before the attack only 675 out of the 1,000 tried payments
succeeded. Moreover, we can see that the strategies work out quite
differently, with degree-based removal and betweenness-based removal
resulting in a steep decrease of the success ratio (down to around
10% success), while the random and minimum cut strategies measure
around the baseline. Accordingly, the adversary’s advantage for the
success rate Δ𝑠 is the highest for the former strategies, as shown in
Figure 7.5. Similar results can be seen for the reachability, where the
degree and betweenness strategies achieve Δ𝑟 values of larger than 0.5,
i. e., cutting off more than half of the network.

Moreover, the average maximum flow of the network is heavily im-
paired when removing central nodes. Here, the eigenvector strategy
is superior until it is outperformed by the degree and betweenness
strategies. The latter two eventually lead to a near-total collapse of
the maximum flow, i. e., Δ𝐹 ≈ 1.0, rendering the remaining network
useless.

So far, targeting nodes based on their centrality seems to be the most
promising strategy for an adversary that is capable of eliminating a cer-
tain number of nodes. However, as we see in Figure 7.4b, the centrality-
based strategies also require the largest budget to successfully mount
node isolation attacks, while the minimum cut strategy exhibits really
low budget requirements. In the following, we therefore evaluate the
efficiency of our attack strategies.



7.3 evaluation 92

0 200
Adversarial budget (BTC)

0.0

0.2

0.4

0.6

0.8

1.0

Δ
𝑠

Random
Degree
Betweenness
Eigenvector
Cuts

0 200
Adversarial budget (BTC)

0.0

0.2

0.4

0.6

0.8

1.0

Δ
𝑟

0 200
Adversarial budget (BTC)

0.0

0.2

0.4

0.6

0.8

1.0

Δ
𝐹

Figure 7.6: Attainable adversary’s advantage depending on her budget for
node isolation attacks.

7.3.4 Efficiency of Node Isolation Attacks

In order to evaluate the efficiency of the attack strategies, we assigned
each adversary a budget and then analyzed the “damage” it can cause.
In particular, we simulate a node isolation only, if the attacker’s (re-
maining) budget is large enough to remove all edges. Otherwise, the
simulation skips the node and tries to utilize the available funds on
the next target proposed by the respective strategy. Likewise, we only
remove complete cuts. As a consequence, the minimum cut strategy
does not always consume the full budget.

The results are shown in Figure 7.6: independently of the strategy,
we observe that it requires high budgets to give the adversary the
power to reliably disturb all payment attempts, which would result in
a high advantage score Δ𝑠. Notably, the previously underperforming
minimum cuts and random node removal strategies exhibit the best
efficiency properties, e. g., an adversary could attain an advantage of
Δ𝑠 = 0.4 when spending around 200 BTC. Similar behaviour can
be seen for the impact on the adversary’s advantage in terms of the
reachability Δ𝑟 and average maximum flow Δ𝐹. While some strategies
seem to be subject to fluctuations, which do not always allow to infer a
clear ordering in efficiency, the highest ranked minimum cut strategy
again clearly stands out as the most efficient in terms of the Δ𝑟 and Δ𝐹,
exhibiting values above 0.5 in both cases. This is not surprising, since
the maximum cut strategy targets the connecting edges and nodes first,
whose removal has a significant impact on graph connectivity and the
available network capacity.

7.3.5 Fee Gain

In contrast to disrupting the network, an adversary might be interested
in increasing its ownprofit by strategically eliminating competing nodes.
We assumed that this adversary is an established payment hub in the
network (amongst the top 10 nodes ranked by total capacity). According
to our strategies,most notable highest rankeddegree and highest ranked
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parallel paths, we eliminated up to 30 nodes. We used the average fee
gain as metric to quantify the adversary’s success. While the adversary
can indeed profit from eliminating nodes, we cannot observe a clear
trend. In fact, we believe that node-based elimination strategies are too
coarsely grained. Instead, we argue that an channel-based elimination
strategy might be superior, which we intend to investigate in the future.

7.3.6 Discussion

In our analysis, we assume that each node functions as a payment
hub, i. e., accepts incoming payment channels. Moreover, the attacker is
assumed to find an adequate endpoint with sufficient capacity to route
payments. This is especially important if the attacker does not execute
payment griefing attacks, but needs to route payments back to herself.
In this case, the attacker has to ensure that some nodes in the network
first establish channels of sufficient volume to her secondary node, i. e.,
her target node is connected with high enough inbound capacity.

In order to mitigate the possibility of node isolation attacks, the client
software should employ rate limiting techniques to limit the number of
incoming channels and incoming channel volume. This would make it
harder for an adversary to quickly establish high-volume channels from
an advantageous position in the topology. However, a client probably
cannot mitigate the risk of node isolation attacks entirely, since the
attacker may circumvent simple rate limiting strategies by splitting the
funds over multiple identities and channels.

Moreover, network partitioning attacksmay be counteracted by the so-
called autopilot algorithms responsible for automated payment channel
creation. This may be achieved by monitoring previously discussed
metrics and restructuring the topology accordingly to make it less
susceptible to targeted attacks.
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In order to facilitate multi-hop payment routing, the Lightning Net-
work pursues a source routing paradigm in which payment senders
individually select routes with reference to a global information base.
However, as we have seen so far, the lack of coordination may lead to a
variety of detrimental effects, such as network congestion and payment
failures. In particular the fact that currently only a single path is used to
route payments limits payments’ sizes and the probability of success.

To this end, we now study how much efficiency could be gained
by utilizing a multi-path routing approach in which payments are
considered network flows. Moreover, we identify that routing multiple
concurrent flows is reducible to the multi-commodity flow problem
and explore the possibility of a distributed routing algorithm that takes
multiple routing demands into account.

8.1 payments as flows

In the following, we model PCNs as flow networks and consider pay-
ments flows. Such a payment flow describes a flow of units between
pairs of nodes in a payment channel network. Figure 8.1 shows a mock
example of a payment channel network in which node 𝑠 wants to send
a payment to node 𝑡. We consider the payment channel network as a
peer-to-peer network in which nodes communicate directly with each
other and build an overlay network congruent with the PCN topology.

In order to process the payment, a path between 𝑠 and 𝑡 must exist.
Every path is a concatenation of payment channels. Since payment
channels have a capacity, as indicated by the edge labeling in Figure 8.1,
a path’s transaction volume is limited by the smallest payment channel
capacity of this path. While we cannot eliminate this limit, we can use
multiple paths, which in sum provide a higher transaction volume.

Determining the maximum transferable amount poses a challenge.
For example, simply finding all paths from source to sink and summing
up their respective capacities does not suffice; paths may have common
edges and thus need to share the respective capacities. For the exam-
ple in Figure 8.1, this naive approach would violate payment channel
capacities.

94
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Figure 8.1: Payment channel network example.

8.1.1 The Push-Relabel Algorithm

The problem of finding the largest payment flow between two nodes
𝑠 and 𝑡 in a capacitated flow network is known as the maximum-flow
problem. Several algorithmic solutions to the maximum-flow problem
exist. In the following, we elaborate on the efficient and well-studied
push-relabel [GT88b] algorithm and adopt it for the route selection of
payment flows in payment channel networks. The push-relabel algo-
rithm is based on the notion of pre-flows, which are pushed from node to
node through the network. The algorithm assigns a height to every node
and tries to exhaust the capacities of outgoing edges towards smaller
heights. If capacities of a node’s outgoing edges are exhausted and it
still holds excess flow, the overflow is pushed back towards the source.
The overflow may then be used by other candidate paths.

Intuitively, this can be thought of as a flow of water running through
a network of reservoirs of varying height that are connected by pipes
with different capacities. Water entering the network at the source will
flow downhill towards the sink as far as it can and thereby saturate the
pipes’ capacities in the process. Overflowing water will be held back
in the reservoirs and it may even flow back towards the source, if it is
indeed positioned lower. When the water flow stops, we can lift up a
reservoir, until the water starts flowing downhill again. By repeating
this process, we will eventually distribute the water flow to the pipe
system in a way that maximizes the water throughput. For a further
description of the push-relabel algorithm, additional terminology is
needed.

We consider a network of payment channels as a directed graph
𝐺 = (𝑉, 𝐸) and a non-negative function 𝑐 ∶ 𝑉 × 𝑉 → ℝ≥0. We call 𝑐
the capacity function, which determines a channel’s capacity 𝑐(𝑢, 𝑣)
with 𝑢, 𝑣 ∈ 𝑉 and (𝑢, 𝑣) ∈ 𝐸. Moreover, nodes 𝑠 and 𝑡 are the source
and sink of the flow. The resulting network 𝐹 = (𝐺, 𝑐, 𝑠, 𝑡) is called a
flow network.
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Definition 1 (pseudo-flow, pre-flow, feasible flow). A pseudo-flow on
the capacitated graph (𝐺, 𝑐) is a mapping 𝑓 ∶ 𝑉 × 𝑉 → ℝ with the properties:

𝑓 (𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣), ∀(𝑢, 𝑣) ∈ 𝐸 (capacity constraint)
𝑓 (𝑢, 𝑣) = −𝑓 (𝑣, 𝑢), ∀(𝑢, 𝑣) ∈ 𝐸 (skew symmetry)

Note that pseudo-flows do not require incoming and outgoing flows of a
node to be equal. Therefore, nodes can hold excess flow, denoted by

𝑥𝑓(𝑢) = ∑
𝑣∈𝑉

𝑓 (𝑣, 𝑢) − ∑
𝑣∈𝑉

𝑓 (𝑢, 𝑣).

A pre-flow and a feasible flow are special kinds of pseudo-flows with one of the
following constraints. A pre-flow requires

𝑥𝑓(𝑣) ≥ 0, ∀𝑣 ∈ 𝑉 {𝑠, 𝑡} (non-negativity constraint)

and a feasible flow requires

𝑥𝑓(𝑣) = 0, ∀𝑣 ∈ 𝑉 {𝑠, 𝑡} (conservation constraint).

Definition 2 (residual capacity and residual graph). The residual ca-
pacity 𝑐𝑓 with regard to the pseudo-flow 𝑓 of an edge (𝑢, 𝑣) ∈ 𝐸 is defined as
the difference between the edge’s capacity and its flow:

𝑐𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) − 𝑓 (𝑢, 𝑣).

Then, the residual graph 𝐺𝑓(𝑉, 𝐸𝑓) indicates when changes can be made
to flow 𝑓 in the network 𝐺(𝑉, 𝐸), where

𝐸𝑓 = {(𝑢, 𝑣) ∈ 𝑉 × 𝑉 ∶ 𝑐𝑓(𝑢, 𝑣) > 0}.

Note that edges (𝑢, 𝑣) do not have to be in the original set of edges 𝐸.

Definition 3 (height function). A mapping ℎ ∶ 𝑉 → ℕ is a height
function for the push-relabel algorithm, if

ℎ(𝑠) = |𝑉|, ℎ(𝑡) = 0, ℎ(𝑢) ≤ ℎ(𝑣) + 1, ∀(𝑢, 𝑣) ∈ 𝐸𝑓.

At the beginning, the generic push-relabel algorithm initializes node
heights and flow excess, as well as the edge pre-flow values with 0.
Please note that source node 𝑠, in contrast to all other nodes, is set to a
height |𝑉|. Moreover, 𝑠’s outgoing edges are saturated according to the
height function’s third condition. After these initialization steps, the
algorithm repeatedly selects a node 𝑢 as active node and applies one
of the two basic operations push and relabel. Both operations have
mutually exclusive conditions, which ensure that either push or relabel
is applicable at a time.

The push procedure (cf. Algorithm 2) tries to push an excess 𝛿 from
node 𝑢 towards a neighbor 𝑣 with a smaller height. The maximum
possible 𝛿 is determined as the minimum between the excess flow and



8.1 payments as flows 97

Algorithm 2 push(u,v)

Ensure: 𝑥𝑓(𝑢) > 0, 𝑐(𝑢, 𝑣) > 0, ℎ(𝑢) = ℎ(𝑣) + 1
𝛿 ∶= min( 𝑥𝑓(𝑢), 𝑐𝑓(𝑢, 𝑣) )
𝑓 (𝑢, 𝑣) ∶= 𝑓 (𝑢, 𝑣) + 𝛿; 𝑓 (𝑣, 𝑢) ∶= 𝑓 (𝑣, 𝑢) − 𝛿
𝑥𝑓(𝑢) ∶= 𝑥𝑓(𝑢) − 𝛿; 𝑥𝑓(𝑣) ∶= 𝑥𝑓(𝑣) + 𝛿

Algorithm 3 relabel(u)
Ensure: 𝑥𝑓(𝑢) > 0, ∀(𝑢, 𝑣) ∈ 𝐸 ∶ ℎ(𝑢) ≤ ℎ(𝑣)

ℎ(𝑢) ∶= 1 + min ( ℎ(𝑣) ∶ (𝑢, 𝑣) ∈ 𝐸 )

the residual capacity of edge (𝑢, 𝑣). Accordingly, edge capacities and
excess values are updated to reflect flow changes in the residual graph.
The procedure requires that 𝑢 has excess flow and that an unsaturated
edge (𝑢, 𝑣) to a neighbor 𝑣 one level below 𝑢 exists.

Eventually, node 𝑢 will saturate all outgoing edges that lead to neigh-
bors on a lower level. In this case, the relabel procedure (cf. Algo-
rithm 3) “raises” node 𝑢 to a higher level. The procedure calculates the
minimal height of its neighbor nodes and sets 𝑢’s height to the level
above this minimum. Therefore, the excess of node 𝑢 is guaranteed to
be “pushable” in the next step.

The generic push-relabel algorithms continues until the conditions
fail for all nodes. That means, the highest possible transaction volume
has been pushed to the sink 𝑡 and all network excess has been pushed
back to the source, i. e., 𝑥𝑓(𝑣) = 0, ∀𝑣 ∈ 𝑉. At this point, the push-
relabel algorithm has transformed the pre-flow into a maximum flow
and hence solved the maximum-flow problem.

8.1.2 Feasible Flows

In a payment channel network, however, it is often not necessary to
know the maximum transaction volume. Rather, we want to find a
payment flow that can process a certain amount only. This is a slightly
different problem, which is known as the feasible-flow problem. Fortu-
nately, the push-relabel can easily be modified to solve the feasible-flow
problem: in order to find a payment flow from source 𝑠 to sink 𝑡 with
a transaction volume 𝑑, we can simply insert a new (virtual) node to
the payment network. We call it the pre-source 𝑠′, with a single edge
(𝑠′, 𝑠) and capacity 𝑐(𝑠′, 𝑠) = 𝑑. The virtual edge caps the transferable
amount at exactly 𝑑. Note that this slight modification of the input data
enables the push-relabel algorithm, as described before, to find feasible
flows in the network.

So far, we assumed only one instance of the push-relabel algorithm. If
multiple flows ought to be found subsequently in the same network, the
initial flow of one instance is the result of the last instance. A generaliza-
tion for subsequent flows, however, is easily possible. This subsequent
approach can be used to find payment flows in a centralized or fed-



8.2 concurrent and distributed payment flows 98

erated fashion. The following section is dedicated to show how the
push-relabel algorithm can be adapted to enable route selection for
concurrent and distributed payment flows.

8.2 concurrent and distributed payment flows

The push-relabel algorithm can find a single feasible flow in a payment
channel network. However, in a real-world payment network, there
may be multiple concurrent flows that need to be considered during
route selection at any given time. To this end, simply running multiple
instances of the push-relabel algorithm in parallel is not enough: one
instance for flow 𝑓1, for example, could consume the reverse edges’
residual capacity that belong to another instance for flow 𝑓2. We call
this issue capacity stealing. Capacity stealing may ultimately prevent
𝑓2’s instance from pushing back its flow excess to the source, which
violates the termination criteria (𝑥𝑓(𝑣) = 0, ∀𝑣 ∈ 𝑉 {𝑎, 𝑏}). Thus, the
traditional push-relabel algorithm does not (and does not intend to)
guarantee correctness and termination in the face of concurrent flows.

The problem domain of finding flows 𝑓1, … , 𝑓𝑘 for 𝑘 commodities
with source-sink pairs (𝑠1, 𝑡1), … , (𝑠𝑘, 𝑡𝑘) that meet the total capacity
constraint

𝐹(𝑢, 𝑣) =
𝑘

∑
𝑖=1

𝑓𝑖(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣), ∀(𝑢, 𝑣) ∈ 𝐸,

are known as multi-commodity flow problems.

8.2.1 Capacity Locking

As our main contribution, we propose a modified push-relabel algo-
rithm that allows to find feasible flows in a concurrentmulti-commodity
scenario. To this end, we introduce the concept of capacity locking: flow
volumes are accounted for every commodity independently, while still
respecting each payment channel’s total capacity constraint. The capac-
ities on the reverse edges created by a flow 𝑓1 are therefore locked for
another flow 𝑓2, which prevents capacity stealing.

Definition 4 (locked capacities and new residual capacity). Let the
locked capacity and total locked capacity of flow 𝑓𝑖 on edge (𝑢, 𝑣) be

𝑙𝑖(𝑢, 𝑣) = max(0, 𝑓𝑖(𝑢, 𝑣)) and 𝐿(𝑢, 𝑣) =
𝑘

∑
𝑖=1

𝑙𝑖(𝑢, 𝑣).

Accordingly, the residual capacity is redefined as

𝑐𝑖(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) − 𝐿(𝑢, 𝑣) + 𝑙𝑖(𝑣, 𝑢),

which yields an individual residual graph 𝐺𝑖(𝑉, 𝐸𝑖) for each commodity 𝑖.
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Algorithm 4 locked-push(i,u,v)

Ensure: 𝑥𝑖(𝑢) > 0, 𝑐𝑖(𝑢, 𝑣) > 0, ℎ𝑖(𝑢) > ℎ𝑖(𝑣)
𝑙𝑖(𝑢, 𝑣) ∶= max(0, 𝑓𝑖(𝑢, 𝑣)); 𝑙𝑖(𝑣, 𝑢) ∶= max(0, 𝑓𝑖(𝑣, 𝑢))
𝑐𝑖(𝑢, 𝑣) ∶= 𝑐(𝑢, 𝑣) − 𝐿(𝑢, 𝑣) + 𝑙𝑖(𝑣, 𝑢)
𝛿 ∶= min(𝑥𝑖(𝑢), 𝑐𝑖(𝑢, 𝑣))
𝑓𝑖(𝑢, 𝑣) ∶= 𝑓𝑖(𝑢, 𝑣) + 𝛿; 𝑓𝑖(𝑣, 𝑢) ∶= 𝑓𝑖(𝑣, 𝑢) − 𝛿
𝐿(𝑢, 𝑣) ∶= 𝐿(𝑢, 𝑣) + 𝛿; 𝐿(𝑣, 𝑢) ∶= 𝐿(𝑣, 𝑢) − 𝛿
𝑥𝑖(𝑢) ∶= 𝑥𝑖(𝑢) − 𝛿; 𝑥𝑖(𝑣) ∶= 𝑥𝑖(𝑣) + 𝛿

Definition 4 ensures that there is always enough residual capacity
on the reverse edges available to push the existing excess back to the
source. Except for this augmented definition of the residual capacity, the
locked-push procedure (cf. Algorithm 4) is similar to the original push
procedure. Note, however, that the modified push-relabel algorithm
does not necessarily yield optimal flows in the multi-commodity sce-
nario. It guarantees validity, though, which makes it superior compared
to other approaches from this domain [AL94].

In the following, we prove validity for our proposed algorithm. As
the skew-symmetry and flow-conservation constraints follow directly
from the definition of the algorithm, it suffices to show that it yields
flows that respect the total capacity constraint.

Lemma 1. The total capacity constraint 𝐹(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣), ∀(𝑢, 𝑣) ∈ 𝐸
is never violated.

Proof. For a locked-push of commodity 𝑖 on edge (𝑢, 𝑣), the change
in flow volume 𝛿 is always chosen to be at maximum the remaining
residual capacity of the flow on this edge. Accordingly, lock 𝑙𝑖(𝑢, 𝑣)
cannot be greater than 𝛿. Therefore, the locked capacity never exceeds
the edge capacity for each individual edge. It follows that the total
capacity constraint is never violated:

𝐹(𝑢, 𝑣) =
𝑘

∑
𝑖=1

𝑓𝑖(𝑢, 𝑣)

≤ 𝐿(𝑢, 𝑣) =
𝑘

∑
𝑖=1

𝑙𝑖(𝑢, 𝑣)

≤
𝑘

∑
𝑖=1

𝑐𝑖(𝑢, 𝑣)

≤ 𝑐(𝑢, 𝑣).

8.2.2 Towards Distributed Route Selection

In order to execute the modified algorithm in a distributed scenario,
the asynchronous distributed algorithm, introduced in [GT88b], is
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Figure 8.2: Mean success rate over 10 runs in dependence of the number of
flows. Error bars show the 95% confidence interval.

adapted to our needs: each node maintains a local view on flow states,
channel capacities, and its neighbors’ height. Furthermore, each node
maintains routing information and its own height. Then, every node
𝑢 with positive excess tries to push its excess along an unsaturated
outgoing edge to a neighbor 𝑣 of smaller height. A locked-push can
only be committed, if 𝑣 acknowledges 𝑢 that it is has indeed a smaller
height. Alternatively, 𝑣 can reject the locked-push and respond with its
actual height. This way, 𝑢 learns its neighbors’ height and can trigger
relabel, if necessary. After relabeling, 𝑢 sends height updates to its
neighbors. The source and sink node can determine the termination of
the algorithm and communicate the result to finalize route selection.
The payment flow, i. e., the selected multi path, is secured with Hashed
Timelock Contracts (HTLC) in the sameway as a single path. Therefore,
the payment flow can be atomically resolved.

8.3 evaluation

In order to evaluate our approach in a controlled and reproducible en-
vironment, we construct a Watts-Strogatz graph [WS98] with 𝛽 = 0.5,
𝑛 = 200, and a node degree of 10. Channel capacities are generated
by uniform random sampling from [0, 10]. In the following, we com-
pare the sequential (seq., cf. Section 8.1) and the concurrent (conc.,
cf. Section 8.2) algorithm. Moreover, we contrast our results with the
capabilities of single-path routing approaches.

8.3.1 Payment Success

First, we are interested in the number of flows that each algorithm can
handle. To this end, we sampled the transaction volume from [0, 20]
and calculated the mean success rate over 10 runs, i. e., the share of
successfully found flows. The results, shown in Figure 8.2, indicate that
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Figure 8.3: Mean success rate over 10 runs in dependence of transaction vol-
ume. Error bars show the 95% confidence interval.

both algorithms are able to find a large number of flows (relative to the
network size). At some point, when network capacities are exhausted,
the success rate eventually drops. However, The concurrent execution
and the concomitant locked capacities clearly lead to an earlier exhaus-
tion of the capacities and thus to an earlier drop in the success rate.

Single-path approaches, in contrast, achieve in the best case a 0.5
success rate (cf. horizontal line in the plot): while themaximum channel
capacity is 10, on average every second transaction volume is in (10, 20]
and therefore not feasible with a single path. Effectively, this reduces
the utilization of the available capacities by 50%.

8.3.2 Routable Volume

Second, we are interested in the transaction volume that we can achieve
by aggregatingmultiple paths. To this end,we set the number of flows to
128, increased the transaction volume, and calculated the mean success
rate. The results, in Figure 8.3, suggest that again both variations are
able to route relatively large volumes. In more than 50% of the cases,
the concurrent algorithm still manages to process all 128 flows for up
to a volume of 15 each. This is especially noteworthy, as a single-path
approach would not be able to route a single payment with a volume
exceeding 10 in our scenario (cf. vertical line in the plot).

In summary, these first results illustrate that single-path source rout-
ing approach currently deployed by PCNs is detrimental to the net-
work’s efficiency and severely limits the capacity of transactions, as
well as their success probability. To this end, our approach emphasizes
the need for a multi-path routing algorithm with improved payment
coordination.
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As previously discussed, payment channel networks enable rapid pay-
ment processing between any two channel endpoints, without consult-
ing the blockchain every time. To this end, incremental channel updates
are negotiated locally instead of requiring a global agreement, which is
not only much faster, but also does not leak information to noninvolved
third parties. In an attempt to furthermore avoid unnecessary informa-
tion leakage to intermediate nodes, all messages exchanged during the
processing of multi-hop payments are encrypted according to an onion
routing scheme; more specifically, the Sphinx mix packet construction
is applied [DG09].

In the following, we however show that the privacy guarantees of
the Lightning Network may be subverted by an adversary conducting
timing attacks on the message exchange during payment processing.
In particular, an on-path adversary may reduce the anonymity set of
potential sender and receiver nodes based on the payment amount
and the HTLC’s time-lock delta value. Following this initial reduction
of privacy, the adversary may apply timing-based estimators to infer
the likeliest payment path, potentially deanonymizing the sender and
receiver of a payment.

9.1 model

In the following, we introduce the models and notations that serve as
the basis for the further analysis in this chapter.

9.1.1 Network Model

As discussed in Chapter 6, PCNs typically exhibit multiple layers: while
inter-peer communication is handled by the peer-to-peer network layer,
the payments themselves are sent and forwarded in the network of
payment channels. While peers may join the peer-to-peer network with-
out establishing payment channels, peers with an established payment
channel have to be connected in the peer-to-peer network. We in the
following assume the peer-to-peer network to be congruent with the
channel layer and build a unified model based on the public network
of payment channels.

A PCN can therefore be modeled as a single graph 𝐺 = (𝒱, ℰ, 𝜙),
where 𝒱 = {𝑣0, … , 𝑣𝑛} is the set of the network’s nodes and ℰ =
{𝑒0, … , 𝑒𝑚} represent the set of edges, i. e., payment channels. Since

102
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every node may have multiple payment channels to any other node,
𝐺 is a loopless multigraph and 𝜙 ∶ ℰ → {{𝑢, 𝑣} ∣ 𝑢, 𝑣 ∈ 𝒱 ∧ 𝑢 ≠ 𝑣}
associates the set of edges with their endpoint nodes.

In each direction, an edge 𝑒 is associated with a balance bal(𝑒, 𝑢, 𝑣)
that denotes the available balance from 𝑢 to 𝑣 on channel 𝑒, where 𝑢, 𝑣 ∈
𝜙(𝑒). Edges also have an associated fee function, defined by fee(𝑎|𝑒, 𝑢, 𝑣)
that takes the payment amount 𝑎 as a parameter and yields the fees that
accrue when forwarding over this channel. Note that during routing
directionality matters and hence balance and fee functions are asym-
metric. That is, generally bal(𝑒, 𝑢, 𝑣) ≠ bal(𝑒, 𝑣, 𝑢) and fee(𝑎|𝑒, 𝑢, 𝑣) ≠
fee(𝑎|𝑒, 𝑣, 𝑢). In contrast, the edge capacity is symmetric and defined
as the sum of balances, i. e., cap(𝑒) = bal(𝑒, 𝑢, 𝑣) + bal(𝑒, 𝑣, 𝑢). Fur-
thermore, associated with the edges are the respective time-lock delta
values Δ𝑡𝑙(𝑒, 𝑢, 𝑣) that indicate the maximum time in block height the
forwarding node is willing to have its funds locked in case an HTLC
fails. And lastly, the function lat(𝑒) assigns a latency distribution to each
network edge that represents the network and processing delays, which
are induced when messages traverse the edge in the underlying peer-
to-peer network. Note that while balances and latencies are changing
frequently and are only known locally, fees, capacities, and time-lock
requirements are considered static and are publicly accessible by all
nodes in order to enable the source routing process. We denote this
public graph information as 𝐺𝑝𝑢𝑏 = (𝐺, cap, fee, Δ𝑡𝑙).

Based on this model of payment channel networks, we can now
introduce the following definitions.

Definition 5 (Payment). A payment is defined as the tuple

(𝑠, 𝑡, 𝑎, Δ𝑚𝑎𝑥),

where 𝑠 and 𝑡 respectively denote the origin and destination nodes, 𝑎 is the
amount sent by 𝑠, and Δ𝑚𝑎𝑥 signifies the maximal total time the payment
amount may be locked.

Definition 6 (Path Validity). A path from node 𝑠 to node 𝑡 in the network
is a sequence of connecting edges, denoted as a tuple

𝑝 = (𝑒0, 𝑒1, … , 𝑒𝑙),

where 𝜙(𝑒0) = {𝑠, 𝑣1}, 𝜙(𝑒1) = {𝑣1, 𝑣2}, … , 𝜙(𝑒𝑙) = {𝑣𝑙, 𝑡}.
A path 𝑝 is called timelock-valid w.r.t. a total time-lock delta Δ𝑚𝑎𝑥, if

the remaining time the payment might be locked is smaller than the time the
forwarding node would be willing to accept, i. e.,

∀𝑒𝑖 ∈ 𝑝, 𝑢𝑖, 𝑣𝑖 ∈ 𝜙(𝑒𝑖) ∶ Δ𝑡𝑙(𝑒𝑖, 𝑢𝑖, 𝑣𝑖) ≥ Δ𝑚𝑎𝑥 −
𝑖−1
∑
𝑗=0

Δ𝑡𝑙(𝑒𝑗, 𝑢𝑗, 𝑣𝑗)

Furthermore, a path 𝑝 is capacity-valid w.r.t. an amount 𝑎, if all edges have
capacities higher than the forwarding amount including accruing fee, i. e.,

∀𝑒𝑖 ∈ 𝑝, 𝑢𝑖, 𝑣𝑖 ∈ 𝜙(𝑒𝑖) ∶ cap(𝑒𝑖) ≥ f𝑖,
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where f𝑖 is defined recursively as f𝑙 = 𝑎 and f𝑖−1 = fi + fee(f𝑖|𝑒𝑖, 𝑢𝑖, 𝑣𝑖).
Note that a path 𝑝 being capacity-valid for amount 𝑎 does not necessarily imply
that a payment of size 𝑎 can actually be routed over 𝑝.
A payment can be routed only if the path does not only exhibit sufficient

capacities, but also balances to forward the respective amount,

∀𝑒𝑖 ∈ 𝑝, 𝑢𝑖, 𝑣𝑖 ∈ 𝜙(𝑒𝑖) ∶ bal(𝑒𝑖, 𝑢𝑖, 𝑣𝑖) ≥ f𝑖,

in which case we call it balance-valid or 𝑎-routable.
Independently of this special case, however, we call a payment path generally

valid or just valid, if it is timelock-valid and capacity valid. Note that therefore
path validity describes if a path could potentially be used to route a payment
with respect to the parameters, not if it actually may be used or is being used.

Definition 7 (Routing Algorithm). A routing algorithm ℜ is a function
that takes a payment 𝑥 = (𝑠, 𝑡, 𝑎, Δ𝑚𝑎𝑥) and the public graph information
𝐺𝑝𝑢𝑏 = (𝐺, cap, fee, Δ𝑡𝑙) as arguments and outputs a valid payment path,
i. e.,

ℜ(𝑥|𝐺𝑝𝑢𝑏) → 𝑝,

where 𝑝 is a capacity-valid and timelock-valid path from 𝑠 to 𝑡.

Definition 8 (Reachability). In the graph 𝐺, a node 𝑡 is reachable from a
node 𝑡 if there is a path between them. Similarly, we call 𝑡 capacity-reachable,balance-
reachable, or timelock-reachable from 𝑠, if there exists respectively a capacity-
valid, balance-valid, or timelock-valid path from 𝑠 to 𝑡, w.r.t. a given payment
(𝑠, 𝑡, 𝑎, Δ𝑚𝑎𝑥).

Note that these reachability notions induce subgraphs ℛcap, ℛbal, and
ℛΔ, where

𝐺 ⊇ ℛcap ⊃ ℛbal and 𝐺 ⊇ ℛΔ.

9.1.2 Adversary Model

9.1.2.1 Lightning’s Security Goals

Given payments are routed directly between source and destination
nodes, are secured by the HTLC construction, and the path is obscured
by employing the Sphinx-based onion routing scheme, the Lightning
Network aims to deliver the following security goals (cf. [Mal+17b]):

balance security: No third party should be able to steal funds, or
otherwise alter channel balances without the implicit consent of
the involved parties.

off-path local unobservability: Only nodes on the payment path
should be informed about an occurring payment.1

1 Note however that this assumes a local perspective on the network. Payment unob-
servability may not hold when we assume a more powerful attacker model, such as an
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off-path value privacy: Since all communications during payment
processing are encrypted, only on-path nodes should get to know
the amounts forwarded.

on-path sender/receiver-anonymity: Every node only knows its
immediate predecessor and successor on the payment path. That
is, it does not know the payment path’s length and its position on
the payment path and therefore should not be able to identify the
sender or receiver of a payment.

receiver’s sender-anonymity: The receiver of a payment should
not be able to identify who initiated a payment. 2

9.1.2.2 Adversarial Goals and Capabilities

While the off-path unobservability of payments could potentially be
subject of a deanonymization attack run by a global passive adver-
sary, in this work we analyze the feasibility of subverting the on-path
anonymity properties of nodes that send and receive payments. In
particular, we focus on attack vectors that allow a local adversary in-
corporating side-channel information to potentially subvert on-path
sender/receiver anonymity as well as receiver’s sender-anonymity.

To this end, we assume an internal local adversary that controls
a set 𝑀 = {𝑚0, … , 𝑚𝑘} of malicious nodes in the network that
act as payment-processing intermediaries, which in accordance with
literature may also be referred to as spies. We furthermore assume that
the adversarial nodes 𝑀 behave according to protocol and are able to
send and receive protocol-compatible messages, e. g., in order to probe
the network to build a latency model of their surroundings.

When payments are routed over an adversarial node 𝑚𝑖 ∈ 𝑀, it
keeps track of each network message msg arriving over the edge 𝑒𝑚, as
well as the corresponding timestamp, i. e., they store the datasets

𝒟𝑖 = {(𝑚𝑖, 𝑒𝑚, 𝑡msg, msg)}.

Based on themerged dataset 𝒟 = ⋃𝑖 𝒟𝑖, the public graph data 𝐺𝑝𝑢𝑏,
and the estimated link latencies l̂at, the adversary then aims to associate
any observed payments 𝑥 = (𝑠, 𝑡, 𝑎, Δ𝑚𝑎𝑥) with the respective source
node 𝑠 and destination node 𝑡. For this classification, the adversary may
apply different source and destination estimators 𝔐𝑠 and 𝔐𝑡 that given
the input data yield a respective estimation, i. e.,

𝔐𝑠(𝑥|𝒟, 𝐺𝑝𝑢𝑏, l̂at) = 𝑣̂𝑠 and 𝔐𝑡(𝑥|𝒟, 𝐺𝑝𝑢𝑏, l̂at) = 𝑣̂𝑡,

adversary that has access to large parts of the underlying network infrastructure. Such
adversaries are known to be potentially capable of advanced deanonymization attacks,
and are notoriously hard to defeat. [Joh+13]

2 Notably, the Lightning Network currently does not guarantee the inverse, i. e., the
possibility for a receiver to stay anonymous. However, this may feasible in the future,
when the currently discussed Rendez-Vous Routing proposal is implemented. [@Dec20]
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where 𝑣̂𝑠, 𝑣̂𝑡 ∈ 𝒱. For the sake of brevity, we in the following refrain
fromalways giving an exhaustive list of arguments and opt to abbreviate
notation as 𝔐𝑠(𝑥|𝒟) and 𝔐𝑡(𝑥|𝒟).

9.1.3 Anonymity Metrics

In order to quantify adversarial success and analyze the privacy prop-
erties of the network, we utilize the following privacy metrics.

Well known performance measures for the adversarial success of
estimator-based deanonymization attacks are the combination of pre-
cision and recall [Fan+18]. Assuming 𝑋 is the set of all payments and
𝐶 ⊆ 𝑋 the set of all payments observed and classified by the adversary.
Let furthermore 𝑋𝑢 ⊆ 𝑋 denote the set of all payments that originate
from (or end at, in case of destination estimation) node 𝑢 and analo-
gously 𝐶𝑢 denote the set of payments classified to originate from (end
at) node 𝑢, i. e.,

𝐶𝑢 = {𝑥 ∣ 𝔐(𝑥|𝒟) = 𝑢}.

Then the precision 𝐷 of the estimator 𝒱 is defined as the share of
classified payments that were indeed correctly classified, i. e.,

𝐷 = |𝐶𝑢 ∩ 𝑋𝑢|
|𝐶| .

The estimator’s recall 𝑅 however is the share of all payments in the
network that were correctly classified,

𝑅 = |𝐶𝑢 ∩ 𝑋𝑢|
|𝑋| .

A unified measure for the accuracy of an estimator is given by the
harmonic mean of precision and recall, also known as the 𝐹1-measure:

𝐹1 = 2 ⋅ 𝐷 ⋅ 𝑅
𝐷 + 𝑅.

9.2 timing attacks on privacy

In the following, we describe the steps necessary to conduct timing
attacks on privacy in payment channel networks.

9.2.1 Improving Topological Advantage

The attacker wants to maximize the number of payment paths it is in-
cluded in by the victim’s routing algorithm.While the client-side routing
behavior is not standardized as part of Lightning’s BOLT specifications,
most implementations of the Lightning protocol rely on modified ver-
sions of Dijkstra’s shortest path algorithm [Dij59] that consider the
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channel fees as well as other parameters. Note that, as recent literature
has observed [MZ20], more than 90% of today’s Lightning Network
nodes run the LND implementation of the Lightning protocol. In the fol-
lowing, we therefore assume LND to be the default implementation and
use it as the base of our further analysis. LND’s path finding algorithm
selects candidate edges based on a weight function 𝑤𝑒 that considers
routing fees for the routed amount 𝑎, as well as a risk factor 𝑟𝑓 that aims
to capture the worst-case lock time:

𝑤𝑒 = fee(𝑣|𝑎, 𝑒, 𝑢) + 𝑎 ⋅ Δ𝑡𝑙(𝑒, 𝑢, 𝑣) ⋅ 𝑟𝑓,

where 𝑟𝑓 = 1.5 ⋅ 10−8 is the default configuration.
Therefore, by setting time lock parameters and channel fees to the

minimal allowed values, the adversary canminimize the routingweight
function of the victim’s client software, and therebymaximize the proba-
bility that at least one of the malicious nodes is included in the payment
path. Tochner et al. [TSZ19] studied this kind of route hijacking in the
context of denial-of-service attacks. They showed that, at the time of
writing, ten nodes are part of 80% of all payment paths, and 30 nodes of
over 95% of payment paths. Furthermore, while the problem of optimal
edge additions for maximum betweenness centrality has previously
been show to be NP-hard [Ava+20; Ber+18a; ERE20a], the authors
provide a greedy algorithm with which an adversary improve its topo-
logical advantage. To this end, they were able to show that the creation
of only fifteen edges would suffice to hijack more than 80% of LND pay-
ment paths. Their observations are generally in accordance with our
findings regarding adversarial path inclusion (cf. Section 9.3.3.3) and
highlight the relevance of the on-path attacker model.

9.2.2 Building the Latency Model

As a data basis for the classification of observed payments, the adver-
sary initially has to probe the network to retrieve characteristic timing
measurements. These measurements allow her to build a model of
latencies l̂at that are encountered when payments are routed over a
specific link, which then in turn are used as a priori knowledge for the
estimators.

9.2.2.1 Retrieving Path Latency Measurements

In order to probe for the characteristic latency measurements, the ad-
versary can exploit the fact that due to Lightning’s use of the Sphinx
packet format, invalid or failing payments can only be discovered by the
node that they are actually failing at. That is, as all nodes only see the
parts of onion-routed data they are able to encrypt and do not know the
full path’s properties, they have to optimistically forward all payment
requests based on the assumption that it will succeed. Therefore, the
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adversary is able to craft payments that look valid to all intermediaries,
but are bound to fail at a specific hop along the path, e. g., because
of insufficient fees or an invalid maximum time-lock value. Utilizing
this probing method, the adversary can record the time difference be-
tween sending the initial update_add_htlc message and retrieving the
final update_fail_htlc to retrieve a measurement that encompasses
all delays that were encountered along the measured payment path.

9.2.2.2 Estimating Edge Latencies

The adversarial node utilizes the described probingmethod to retrieve a
reliable model for paths covering every link in the network. To this end,
she iteratively increases the probing path lengths and calculates link
latencies by subtracting the estimated latencies of partial paths. That is,
the adversarial node 𝑚𝑖 starts by repeatedly probing paths lengths 𝑙 = 1
that cover its immediate neighbors 𝑣𝑗, i. e., 𝑝1 = (𝑒1), 𝑚𝑖, 𝑣𝑗 ∈ 𝜙(𝑒1),
and calculates the mean 𝜇𝑒1 and standard deviation 𝜎𝑒1 values for
these links, i. e.,

𝜇̂𝑒1 =
∑𝑛

𝑖=0 probe𝑖(𝑝1)
𝑇 ⋅ 𝑛 ,

𝜎̂𝑒1 = √∑𝑛
𝑖=0(probe𝑖(𝑝1) − 𝜇̂𝑒1)2

𝑇 ⋅ 𝑛 ,

where 𝑇 is a normalizing factor accounting for the number of link traver-
sals incurred during the message exchange over the measured hop. In
this case,we assume𝑇 = 4, i. e., three traversals for the commitment_signed
and revoke_and_ackhandshake and one for update_fulfill_htlc (see
Figure 6.2).

The adversary can then increase the path lengths and iteratively build
the latency model for these longer paths 𝑝𝑙 = (𝑒1, … , 𝑒𝑙):

𝜇̂𝑒𝑙
=

∑𝑛
𝑖=0 probe𝑖(𝑝𝑙)

𝑇 ⋅ 𝑛 − 𝜇̂𝑒𝑙−1
− … − 𝜇̂𝑒1,

𝜎̂𝑒𝑙
= √∑𝑛

𝑖=0(probe𝑖(𝑝𝑙) − 𝜇̂𝑒1)2

𝑇 ⋅ 𝑛 + ... + 𝜎̂2𝑒𝑙−1
+ 𝜎̂2𝑒𝑙

.

Given these parameters, the adversary can build the normally dis-
tributed edge latency model as

l̂at(𝑒𝑖) = 𝒩(𝜇̂𝑒𝑖, 𝜎̂2
𝑒𝑖).

Note that this model does not just include the network delay, but
also incorporates any processing delays arising on the intermediate
nodes. As this unified latency model captures various side effects, we
can refrain from considering them separately in the attack estimators.

Moreover, modeling timing behavior in such an approximative way is
bound to induce a certain margin of error. This uncertainty is expressed
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Figure 9.1: Payment routed over malicious observation points.

by the variances growing with increasing lengths of the measured
paths. In the following we therefore propose a method to aggregate
the timing models from multiple malicious vantage points to increase
overall accuracy.

9.2.2.3 Model Aggregation

As the adversary may control multiple nodes in the network to increase
the probability of inclusion in payment paths, each malicious node
may create a timing model from their point of view. As the margin of
error increases with each additional hop in the measured paths, the
aggregated model should not simply average over all measurements.
Instead, it merges the individual model by applying an arithmetic mean
weighted with the reciprocal distance from the measured node, i. e.,

∀𝑚𝑖 ∈ 𝑀, 𝑣𝑖 ∈ 𝑉 ∶ 𝑤𝑖 = 1
𝑑(𝑣𝑖, 𝑚𝑖)

,

𝜇̂𝑒,𝑡𝑜𝑡 =
∑𝑛⋅|𝑀|

𝑖=0 𝑤𝑖𝜇̂𝑖,𝑒

∑𝑛⋅|𝑀|
𝑖=0 𝑤𝑖

,

𝜎̂𝑒,𝑡𝑜𝑡 =

√
√√√
⎷

∑𝑛⋅|𝑀|
𝑖=0 𝑤𝑖(𝜇̂𝑖,𝑒 − 𝜇̂𝑒,𝑡𝑜𝑡)2

∑𝑛⋅|𝑀|
𝑖=0 𝑤𝑖

.

The adversary therefore retrieves the aggregated latency model

l̂at𝑡𝑜𝑡(𝑒𝑖) = 𝒩(𝜇̂𝑒,𝑡𝑜𝑡, 𝜎̂2
𝑒,𝑡𝑜𝑡).

9.2.3 Estimator-based Deanonymization Attack

In order to be able to deanonymize the sender and receiver of a payment,
it has to be routed over at least one observation point controlled by
the adversary (see Figure 9.1). In contrast to previous approaches that
apply a First-Spy estimator that simply estimates the node adjacent
to the point of observation to be the payment’s respective endpoint,
our approach builds a maximum likelihood estimator (MLE) over all
paths the observed payment could possibly have taken. To this end,
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the malicious nodes record the time differences of interactive message
exchanges and, after reducing the candidate set by considering only
valid paths (see Definition 6), estimate the source or destination of the
payment according to the likelihood that the time differences stem from
a message exchange over this particular path.

9.2.3.1 Recording Time Differences

To utilize the timing of messages in order to estimate the source or
destination of a payment, the adversarial nodes 𝑀 have to observe end-
to-end transmitted messages belonging to the same payment at two
different points in time, i. e., 𝑡0 and 𝑡1. This allows to calculate the time
difference 𝛿𝑡 = 𝑡1 − 𝑡0 it took the observed payment to travel from the
first point of observation 𝑚0 ∈ 𝑀 to the source or destination, and back
to the second point of observation 𝑚1 ∈ 𝑀.

In particular, the malicious intermediate nodes record the point in
time 𝑡0 when they forward a payment via update_add_htlc and 𝑡1
upon receipt of the corresponding update_fulfill_htlc, which yields
a time difference 𝛿𝑡 corresponding to the distance to the payment’s
destination (cf. Figure 6.2). In this case, the adversary does not have
to interfere with the payment processing protocol in order to collect
the necessary information to conduct destination estimation. Hence,
the adversary acts in a purely honest-but-curious model, and therefore
cannot be detected by outside parties.

However, since the message exchange from the source node to the
intermediate node is non-interactive, an advanced attack strategy is
required in order to retrieve suitable timing measurements in this di-
rection. To this end, the adversary intentionally fails the first observed
payment attempt by sending an update_fail_htlc message. She also
records the current time as 𝑡0. After receiving the failure message, the
payment’s sender is forced to retry the failed attempt, which is typically
done immediately to avoid further delays. When the second payment at-
tempt is observed at time 𝑡1, the adversary can calculate the 𝛿𝑡 = 𝑡1 −𝑡0
value which corresponds to its distance from the source node.

In general, the chosen paths and points of observation may be differ-
ent, in which case the adversary has only a certain chance of observing
the second payment attempt. While this would introduce additional
uncertainty to this part of the adversarial strategy, as we discuss later
in Section 9.3.2, the adversary may force a sender to send the second
payment attempt over the same path as before, which removes this
uncertainty. This is possible in practice due to an implementation detail
of LND.

We therefore in the following assume the two observations to occur
at the same malicious node, i. e., 𝑚0 = 𝑚1. Moreover, in the case that
multiple malicious nodes are part of the payment path and observe
the payment, the source or destination estimation is based on the mea-
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Algorithm 5 Source / Destination Estimator
function estimate(𝛿𝑡, 𝑎𝑜𝑏𝑠, Δ𝑜𝑏𝑠, 𝑒𝑜𝑏𝑠, 𝐺𝑝𝑢𝑏)

remove all capacity-invalid paths from 𝐺𝑝𝑢𝑏
remove all timelock-invalid paths from 𝐺𝑝𝑢𝑏
for all 𝑣 ∈ 𝑉 do

initialize
end for
𝑣𝑓 𝑠𝑡 ← get_neighbor(𝑒𝑜𝑏𝑠) ▷ First hop is known
queue_candidate(𝑣𝑓 𝑠𝑡)
l̂at𝑓 𝑠𝑡 ← 𝑇𝑜𝑏𝑠 ⋅ l̂at(𝑒𝑜𝑏𝑠)
path_lats[𝑣𝑓 𝑠𝑡] ← {l̂at(𝑒𝑜𝑏𝑠)}
likelihood[𝑣𝑓 𝑠𝑡] ← l̂at𝑓 𝑠𝑡(𝛿𝑡)
while 𝑣𝑐𝑢𝑟 ← next_unvisited do

𝐷𝑐𝑢𝑟 ← path_lats[𝑣𝑐𝑢𝑟]
l̂at𝑐𝑢𝑟 ← ∑

𝑑𝑖∈𝐷𝑐𝑢𝑟

𝑇𝑖 ⋅ 𝑑𝑖 ▷ Aggregate dists.

𝑝𝑐𝑢𝑟 ← l̂at𝑐𝑢𝑟(𝛿𝑡)
for all 𝑣𝑛 in neighbors(𝑣𝑐𝑢𝑟) do

𝑒𝑛 ← cheapest_edge(𝑣𝑐𝑢𝑟, 𝑣𝑛)
𝐷𝑛 ← 𝐷𝑐𝑢𝑟 ∪ {l̂at(𝑒𝑛)}
l̂at𝑛 ← ∑

𝑑𝑖∈𝐷𝑛

𝑇𝑖 ⋅ 𝑑𝑖

𝑝𝑛 ← l̂at𝑛(𝛿𝑡)
𝑝𝑜𝑙𝑑 ← 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑[𝑣𝑛]
if 𝑝𝑛 ≤ 𝑝𝑐𝑢𝑟 or 𝑝𝑛 ≤ 𝑝𝑜𝑙𝑑 then ▷ Only increasing likelihood

skip
end if
likelihood[𝑣𝑛] ← 𝑝𝑛 ▷ Update candidate
path_lats[𝑣𝑛] ← 𝐷𝑛
queue_candidate(𝑣)

end for
end while
for all visited 𝑣 do

return candidate with max. likelihood
end for

end function

surements recorded by the malicious node closest to the respective
endpoint.

9.2.3.2 Source and Destination Estimation

The estimation of source and destination of a payment relies on selecting
the likeliest paths the payment could have taken before it arrived at the
observation points. Therefore, in order to reduce the initial uncertainty,
the adversary excludes paths that are capacity-unreachable or time-lock
unreachable given the observed amount 𝑎𝑜𝑏𝑠 and Δ𝑜𝑏𝑠, i. e., she only
considers nodes in

ℛcap ∩ ℛΔ ⊆ 𝐺𝑝𝑢𝑏.

The adversary then builds candidate aggregated latency distributions

l̂at𝑝 = 𝑇𝑜𝑏𝑠 ⋅ l̂at(𝑒𝑜𝑏𝑠) + ... + 𝑇𝑙 ⋅ l̂at(𝑒𝑙)
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for each candidate path 𝑝 = (𝑒𝑜𝑏𝑠, ..., 𝑒𝑙), where 𝑒𝑜𝑏𝑠 denotes the edge
the measurement was conducted through. Furthermore, the weights 𝑇𝑖
denote the number of messages that would have been exchanged over
the edge 𝑒𝑖. Note that the possibility of such an aggregation relies on the
fact that the sum of normally distributed variables may be calculated as

𝒩(𝜇1, 𝜎2
1) + 𝒩(𝜇2, 𝜎2

2) = 𝒩(𝜇1 + 𝜇2, 𝜎2
1 + 𝜎2

2).

Then, the adversary ranks all candidate paths according to the likeli-
hood that the observed time difference𝛿𝑡 was drawn from the respective
aggregated distribution, max𝑝(l̂at𝑝(𝛿𝑡)), and estimates the final hop
of the path to be the payment’s source or destination.

Therefore, the adversary generally would have to rank all possible
paths in the network. However, Algorithm 5 implements the estimators
𝔐𝑠 / 𝔐𝑡 as an iterative algorithm that traverses the graph starting from
the point of observation. During execution, it adds new candidate paths
as long as they would result in an increased likelihood of observing 𝛿𝑡,
and stops when all candidate paths have been visited.

9.3 evaluation

In the following, we evaluate the feasibility, accuracy, and reliability of
the presented attacks on privacy in payment channel networks.

9.3.1 Ethical Considerations

Research on the security and privacy of live communication systems
is always in danger of infringing on the rights of the participating
individuals. In accordance with the Menlo Report [Bai+12], we aim
to minimize our interference with the live network as well as the data
collected from unknowing parties.

That is, in order to evaluate the presented attacks on privacy in pay-
ment channel networks, we pursue a two-pronged strategy: First we
show the feasibility of the attacks through a proof-of-concept implemen-
tation that was installed on an entirely segregated part of the Lightning
Network testnet, which ensures that no involuntary parties were af-
fected by our experiments.

Second, to be able to evaluate larger attack scenarios and analyze the
effect these attacks have on the network’s privacy overall, we rely on
model-based network simulation that is not connected in any way to
unknowing individuals and hence does not raise any ethical concerns.
In particular, while the simulations utilize latency measurements that
were retrieved through external means, i. e., ICMP ping on nodes from
the public internet, we explicitly refrain from conducting internal latency
measurements as discussed in Section 9.2.2, since such measurements
could interfere with the functionality of the network.
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9.3.2 Proof-of-Concept Implementation

The described attacks on payment privacy in payment channel net-
works rely on the ability of malicious intermediary nodes to retrieve
latency measurements from the source and to the destination of an
observed payment. As a proof of concept that obtaining these mea-
surements is indeed practical, we implemented a respective plugin for
c-lightning [@c-l20].3

retrieving latencies to destination When the plugin is started
on the intermediary node, it registers to be notified of forwarded pay-
ments. In particular, it utilizes the forward_event notification to record
the times 𝑡0 HTLC payment hashes 𝐻(𝑟) are first observed, as well
as the times 𝑡1 they are marked as resolved. The plugin furthermore
records the node identifier 𝑣𝑀 of the measurement node and the iden-
tifier 𝑒𝑛𝑒𝑥𝑡 of the channel the payment was forwarded over. That is, it
records the tuple (𝐻(𝑟), 𝑢𝑀, 𝑒𝑛𝑒𝑥𝑡, 𝑡0, 𝑡1) that is then ready to be used
as input a payment destination estimator.

retrieving latencies from source Because the communication
with the payment source is non-interactive, the adversary has to rely on
observing retried payment attempts, as discussed above. To this end,
the proof-of-concept implementation makes use of the htlc_accepted
hook provided c-lightning’s plugin API in order to intercept incom-
ing update_add_htlc messages. When a payment with a previously
unobserved payment hash 𝐻(𝑟) is observed, the plugin records a cor-
responding timestamp 𝑡0 and rejects the payment attempt. As the pay-
ment is is then retried, the timestamp 𝑡1 of the second observation by
an adversarial intermediary node is recorded. This hence allows the
adversary to estimate the latency from the source and record the tuple
(𝐻(𝑟), 𝑢𝑀, 𝑒𝑝𝑟𝑒𝑣, 𝑡0, 𝑡1).

While it is not guaranteed to observe the second payment, the proof-
of-concept implementation is able to force the payment source to reuse
the same payment path by exploiting a weakness in the interplay
of Lightning’s network protocol and LND-specific application behav-
ior. That is, as channel updates may occur in the middle of a pay-
ment attempt, LND elects not to penalize intermediary nodes during
route selection, if they report a channel policy failure, i. e., fail the pay-
mentwith the failure codes amount_below_minimum, fee_insufficient,
incorrect_cltv_expiry, or channel_disabled [@Dev20a; @LND20b].
Note that LND once a minute grants such nodes a “second chance”, in-
dependently of whether the returned channel policies entail an actually
meaningful update [@LND20a]. This allows our plugin to fail the first

3 Proof-of-concept and simulator source codes, as well as utilized data sets, are pub-
licly available in our companion repository at https://git.tu-berlin.de/rohrer/
cdt-data.

https://git.tu-berlin.de/rohrer/cdt-data
https://git.tu-berlin.de/rohrer/cdt-data
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Figure 9.2: Experimental Testnet Setup

observed payment attempt with a corresponding update_fail_htlc

failure message, which prompts the LND endpoint to immediately retry
the payment over the same malicious intermediary node, effectively
enabling reliable latency measurements.4

experimental testnet setup In order to confirm the feasibility of
retrieving the required time differences, we deployed an experimental
setup on a segregated part of Lightning’s testnet network. As shown
in Figure 9.2, we deployed three nodes 𝐴, 𝐵, 𝐶 running LND and one
malicious node 𝑀 running c-lightningwith our proof-of-concept plu-
gin. Between these nodes, channels were created so that the source
node 𝐴 would have two possible paths to send payments to destina-
tion node 𝐶: one over the benign node 𝐵, and one over 𝑀. While the
channels between the benign nodes were configured with default fee
settings (base_fee = 1 and fee_rate = 0.00001), the malicious 𝑀
set its channel fees to 0 to increase its probability of payment path
inclusion.

We then sent payments in one minute intervals from node 𝐴 to node
𝐶. For all payments, node 𝐴 chose the path (𝐴, 𝑀, 𝐶), which proves
𝑀’s strategy to be successful. Moreover, as discussed above, 𝑀 would
in each case reject the first payment attempt and only proceed on the
second try, allowing it to retrieve latency measurements for both source
node 𝐴 as well as destination node 𝐶. It therefore confirms that we can
retrieve the time differences that pose the basis for our timing attacks.
As the next step, we can use the measurements to feed our estimators,
which would infer source and destination.

9.3.3 Network Simulations

9.3.3.1 Measuring Lightning’s Peer-to-Peer Network

In order to attain a reliable model for inter-peer connections, we in
the following examine Lightning’s public peer-to-peer network. To this
end, we acquired a snapshot5 of the network graph taken on March

4 Note that as of this writing, a small change in the c-lightning source code is neces-
sary to enable a plugin to return failure codes entailing a channel policy update. A
corresponding patch can be found in our companion repository.

5 https://git.tu-berlin.de/rohrer/discharged-pc-data/blob/master/

snapshots/lngraph_2020_03_26__00_00.json.zst

https://git.tu-berlin.de/rohrer/discharged-pc-data/blob/master/snapshots/lngraph_2020_03_26__00_00.json.zst
https://git.tu-berlin.de/rohrer/discharged-pc-data/blob/master/snapshots/lngraph_2020_03_26__00_00.json.zst
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Figure 9.4: Latency distribution of Lightning’s peer-to-peer network

26, 2020 00:00 UTC, extracted the 2, 679 public IPv4 addresses, and
categorized them in regional clusters based on GeoLite2 [@Max21]
geographic location database. As shown in Figure 9.3, the peer-to-peer
network spans seven regions of the globe: Europe (EU), North America
(NA), Asia (AS), Oceania (OC), South America (SA), China (CN),
and Africa (AF). The data however also shows that the network is
currently clearly dominated by the EU and NA regional clusters, which
is in accordance with the regional distribution of Bitcoin’s peer-to-peer
network [@Bit21b].

Based on this data, we setup a measurement study to infer a suit-
able latency model for Lightning’s peer-to-peer network. For this, we
deployed seven measurement nodes as close as possible to the afore-
mentioned regional clusters, i. e., in the followingAmazonAWS regions:
us-west-1 (NA), sa-east-1 (SA), eu-central-1 (EU), ap-southeast-
2 (OC), ap-south-1 (AS), me-south-1 (AF), and ap-east-1 (CN). Af-
ter initialization, each measurement node starts collecting ICMP ping

results to each of the public Lightning IP addresses. In particular, each
measurement would send 100 ping requests to each Lightning node for
100 times, which allows to build a more reliable round-trip time (RTT)
model by averaging over the results. Of the 2, 679 addresses, we found
1, 297 peers to be offline or not reachable via ICMP, which corresponds
to around 48% of the network. The regional latency distribution for the
remaining peers is shown in Figure 9.4: while there are some regional
differences and outliers, the inter-peer latencies almost all fall below
the 500ms mark, with the global median being located around 250ms.
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9.3.3.2 Simulator and Simulation Model

In order to enable a larger-scale evaluation of the feasibility and impact
of timing attacks on privacy, we developed a network simulator that
allows to simulate payment routing in the Lightning Network based on
real-world data.3

The simulator consists of around 3,000 lines of Rust code that imple-
ment the network model introduced in Section 9.1, as well as the logic
to run time-discrete simulations of multi-hop payments. To this end,
it recreates the multigraph of network nodes and edges as well as the
necessary associated data (such as capacities, balances, time-lock deltas,
etc.) from a network snapshot. Each node can queue events in simula-
tion time, i. e., a monotonically increasing clock with a resolution of 1 ns.
This allows to simulate message exchange according to times sampled
from the underlying latency model, without introducing unnecessary
side-effects, even when the events happen concurrently. The messaging
logic mimics the Lightning payment protocol, making it possible to
simulate and measure time differences in the message exchange, e. g.,
as depicted in Figure 6.2. In order to find payment paths, the simulator
adopts the weight-based variant of Dijkstra’s algorithm from the LND
implementation (see Section 9.2.1).

The latency model is based on the measurement study presented in
Section 9.3.3.1.While initializing the graphmodel, the simulator assigns
a latency distribution to each edge based on the respective geographic
regions of the connected nodes. In case a node only advertises a .onion
address, i. e., is run behind a Tor hidden service, a random geographic
location is assigned.

For the following analysis, the simulator was parametrized with a
snapshot of the Lightning Network that was retrieved on May 1, 2020.
Initial balance distributions between channel endpoints were assumed
to be a 50/50 split of channel capacities. If not stated otherwise, in
each simulated scenario 1,000 payments of varying amounts were sent
between random network nodes, and each scenario was repeated 30
times with different seed values for the simulator’s random number
generator to ensure stastistical significance.

In the following, we are considering three main adversarial scenarios:
mcentral, mrandom, and lnbig. While in the mcentral case the 𝑚 high-
est ranked nodes with respect to their betweenness centrality are under
control of the adversary, mrandom acts as a baseline in which she only
controls 𝑚 nodes chosen by uniform random sampling. A special case
is the lnbig scenario, in which we study the potential capabilities of the
26 high-capacity nodes controlled by the single entity “LNBIG.com”.

9.3.3.3 Share of Compromised Paths

In order to evaluate the relevance of the on-path adversary model, we
analyze how likely it is that paymentsmay be observed by adversaries of
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Figure 9.5: Share of compromised payment paths.

different magnitudes. In each network scenario, we simulated payments
of different amounts (1, 10, 100, 1,000, 10,000, and 100,000 satoshis)
between randomly chosen nodes and counted the times a malicious
node was part of the path returned by the routing algorithm.

Figure 9.5 shows the share of compromised paths for network scenar-
ios in which the adversary controls the 𝑚 ∈ {1, .., 30} most central or
random nodes, as well as for the lnbig scenario. As this corresponds
to the definition of betweenness centrality, it comes to no surprise that
the most central nodes observe a high and increasing number of paths.
However, it is noteworthy that the single most central node is included
in 37% to around 49% of payment paths, depending on the chosen
amount. Additionally, the share of compromised paths follows an ini-
tial steep increase, allowing an adversary in control of the four most
central nodes to already observe an average of 72%, and one in control
of 30 most central nodes to be included in 90% of payment paths.

In contrast, an adversary controlling randomly placed nodes may at
best observe an average of 5% of payments. Moreover, an adversary
controlling the 26 lnbig nodes can observe between 11% and 25% of
payments, averaging at 15%.

Generally, the payments with the highest amount result in the highest
shares of compromised paths. This ismost likely the case sincemore cen-
tral nodes tend to optimize their fee policies and are also well-connected
capacity wise, i. e., are more likely part of the few paths that can route
higher-amount payments. However, one exception to this rule can be
observed in the case of lnbig, where the 1 satoshi case yields the highest
chance of path inclusion at 25%. We assume this to be the case because
of LNBIG’s positioning in the network and since their nodes feature a
high amount of channels with base_fee set to 0, making them more
likely to be chose by the routing algorithm for low-amount payments.
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Figure 9.6: Adversarial success in dependence of number of malicious nodes.

9.3.3.4 Adversarial Success

In the case of an adversary aiming to deanonymize payments, the per-
formance with which she can correctly guess the source or destination
of amessage is also ameasure of (remaining) user privacy.We therefore
analyze how successful adversaries of different magnitudes would be
if they would run the proposed timing-based attacks by applying the
source estimator 𝔐𝑠,T and destination estimator 𝔐𝑡,T. As a baseline for
comparison, we also implemented and simulated the First-Spy estima-
tors 𝔐𝑠,FS and 𝔐𝑡,FS that respectively deem the predecessor of the first
point of observation and the successor of the last point of observation
to be source and destination of the observed payment.

The upper row of Figure 9.6 shows the success of the different estima-
tors in dependence of the evaluated scenarios and number of malicious
nodes. As can be seen in the top left plot, the precision with which
the adversary estimates the correct sources or destinations is generally
correlated with the number of controlled malicious nodes. In case of
the mcentral scenario, the precision of each estimator roughly follows a
logarithmic growth function, where the First-Spy destination estimator
𝔐𝑡,FS performs theworst ranging from 0.22 for a single controlled node
to 0.52 for 30 malicious nodes. In contrast, the timing-based destination
estimator 𝔐𝑡,T yields the highest accuracy that ranges from 0.45 to
0.75. Comparably, a potential adversary controlling the 26 lnbig nodes
would be able to correctly identify senders or receivers with a precision
ranging from 0.69 for 𝔐𝑠,FS to 0.73 for 𝔐𝑡,T. These high estimation
results can be attributed to the favorable positioning of LNBIG’s nodes
in the network topology. In similar vein, it can be observed that ran-
domly placed malicious nodes, as in the mrandom scenrio, may actually
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guess the correct senders and receivers with quite high accuracy, as
they cover the network graph more uniformly.

However, as shown in the top-middle plot of Figure 9.6, lnbig and
mrandom nodes clearly do not perform as well in terms of recall. While
the share of correctly attributed payments barely reaches 2% in the best
case (𝔐𝑡,T, 𝑚 = 30), lnbig is also only able to estimate the correct
endpoints in 10% of all payments at best. Notably, the most central
nodes have the highest recall, ranging between 7% (𝔐𝑡,FS, 𝑚 = 1) and
55% of payments. Of course, the recall is highly correlated with the
share of observed payments paths discussed in the previous subsection.

Therefore, in order to provide a unified measure that allows to an-
alyze and compare the overall accuracy of estimators, the top-right
plot of Figure 9.6 shows the corresponding 𝐹1-Measure. In all cases, it
shows that the First-Spy baseline is outperformed by the timing-based
estimators, which reach up to an 𝐹1 score of 0.62 for mcentral, 𝔐𝑡,T,
and 𝑚 = 30. It is however noteworthy that while the timing-based
source estimator always performs better than its First-Spy counterpart,
it doesn’t do so by a significant margin in some scenarios. This happens
when the malicious nodes are placed close to the source node of the
payment paths, which is generally the case for the high number of short
payment paths and the more distributed node positioning of the lnbig
scenario in particular. Interestingly, we also found that the weight-based
routing algorithm (see Section 9.2.1) puts edges to more central (hence,
in the mcentral case, more malicious) nodes at the beginning of pay-
ment paths, which increases the success cases of the First-Spy source
estimator.

In order to give a overall comparison of timing-based attacks on pri-
vacy to the First-Spy approach, we analyzed the number of payments
that were fully deanonymized, i. e., the number of payments for which
the adversary was able to correctly identify source and destination. To
this end, the bottom row of Figure 9.6 shows the precision, recall, and
𝐹1-measure with which the adversary could totally deanonymize pay-
ments given the estimators 𝔐FS and 𝔐T. Of course, as this considers a
subset of the correct results of each individual estimator, all measures
are lower. However, the results generally follow the same behavior as
just discussed. Notably, the timing-based estimator outperforms the
end-to-end deanonymization performance of the First-Spy approach
in every case of every scenario and in precision, recall, as well as 𝐹1-
measure. It does so in particular in the mcentral scenarios, in which it
attack success is reliably higher than the baseline by factor 1.5. Thereby,
our simulation results confirm the feasibility and improved adversarial
success of timing-based attacks on privacy in payment channel net-
works.
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9.4 discussion

In the following, we discuss possible steps towards attack mitigation,
the impact of upcoming changes to the Lightning protocol, as well as
avenues of future research.

9.4.1 Possible Countermeasures

The feasibility of timing attacks relies on the possibility to build a
reliable model of latencies, and on the adversary’s capability of ob-
serving and correlating of suitable interactive multi-hop message ex-
changes, such as the current update_add_htlc, update_fail_htlc, and
update_fulfill_htlc message payloads.

Therefore, in order to impair the retrieval of timing measurements,
message replies could be delayed for a random amount of time by
the Lightning nodes, along the lines of Bitcoin’s transaction trickling
scheme [FV17] or a timed mix network [KEB98; Pio+17]. However,
this would of course significantly delay payment processing and there-
fore directly conflict with Lightning’s goal of enabling quick payments.
It would furthermore counteract recent efforts to reduce end-to-end
payment latencies, such as Boomerang proposal [BNT20].

Moreover, the adversary’s capability of correlating payment observa-
tions could be impaired, e. g., by introducing a payment scheme that
does not leak identifying payment features, such as today’s payment
hash, such as anonymous multi-hop locks [Mal+19]. Note however,
that even given such a scheme, payment observations may still be cor-
related through metadata analysis, as timing and payment amounts.
Furthermore, as an individual node still needs to be able to match in-
coming and outgoing networkmessages, such decorrelationwould only
protect of re-identifying the same payment in the network, i. e., mitigate
full deanonymization. Very likely, the individual source or destination
estimators could still be applied.

9.4.2 Impact of Protocol Changes

The issue of payment path distinguishability based on time-lock deltas was
identified by the developers of the Lightning protocol some time ago,
which lead to the introduction of so-called shadow routes to the Lightning
standard [@Dev20b]. The idea behind shadow routes is to add a random
padding to the overall time-delta value of payments, so that the set of
possible destinationswould not be identified by a remaining lock time of
0. That said, different implementations of Lightning handle the random
padding differently, and, to the best of our knowledge LND currently
does not implement shadow routes [@LD18] at all. In order to estimate
what impact shadow routeswould have on the accuracy of timing-based
destination estimators 𝔐𝑡,T, we re-evaluated the scenarios discussed in
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Section 9.3.3 while disabling timelock-based anonymity set reduction.
Even though this corresponds to a worst-case estimation, we found
the decrease in precision and recall of the estimator to be only 2-3%,
indicating that most of its performance is based on the timing-based
maximum likelihood estimation.

The currently discussed proposal for Rendez-Vous Routing [@Dec20]
would allow for the creation of partial onion messages that include
the payloads for only a suffix of the payment path. These partial onion
messages could then be handed to an untrusted party, which would
be able to complete the payment path by supplying a suitable prefix
to the rendez-vous point. This construction bears resemblance to Tor’s
hidden services and would allow for receiver-anonymous payments,
i. e., would allow users to send payments whose location in the network
they are not aware of. While the implementation of this proposal would
therefore generally improve Lightning Network’s privacy, it would
likely not interfere with the feasibility of timing attacks.

As sending large payments given the current channel capacities is
often unsuccessful, schemes allowing to split payments and route them
over different paths, such as the recently implemented multi-part pay-
ments, have been discussed for some time in the Lightning community.
As each individual payment carries only part of the overall amount,
they provide increased value privacy, since the adversary is less likely
to observe all payments and cannot infer the actual transaction volume.
However, as this results in a higher number of closely correlated pay-
ments, an adversary has a higher probability to observe such payments,
whereby the sender/receiver anonymity is decreased.

9.4.3 Future Research

Our analysis of timing attacks is based on the model of public Lightning
nodes, as introduced in Section 9.1. However, the Lightning protocol
also allows for the establishment of hidden payment channels that are
only known to the adjacent neighbors and are not broadcasted in the
public peer-to-peer network. As the estimators of course presuppose
the knowledge of the underlying channel graph to be able to return the
candidate endpoint of maximum likelihood, they are bound to fail in
these circumstances. Therefore, applying methods from the research
area of topology inference [DRT19; NAH16] in order to detect hidden
channels would be an interesting avenue for future research.

In our network simulations, we furthermore observed cases in which
the timing estimators wrongly identified the endpoints of unusually
long payment paths as the candidates with maximum likelihood. This
is often the case when these paths consist of many edges with small
mean latencies, which then results in an aggregated distribution that
is closer to the measured time difference than the correct candidate.
Recently, Kappos et al. [Kap+20] proposed a model for endpoint de-
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anonymization based on a probability distribution over payment path
lengths. We think that integrating such an approach could help to ex-
clude such unusually long paths and hence further improve the results
of timing-based attacks on privacy.
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As we discussed in previous chapters, the Lightning Network currently
exhibits a high degree of centralization, which has been shown to be
detrimental with respect to security and privacy. Since it furthermore
utilizes a source-routed best-effort routing protocol to conductmultihop
payments, payment reliability is highly dependent on the connectivity
of involved nodes. Likewise, the position of routing nodes in the net-
work topology is highly correlated with their fee revenue. Therefore,
the question arises which connection points are preferable for nodes
joining the network with respect to their connectivity or revenue.

In the following, we present an empirical analysis on the local and
global impact of a variety of attachment strategies for payment channel
networks. To this end, we survey the field of graph theory for strategies
that aim to increase the joining node’s connectivity and routing revenue
and analyze their short-term and long-term impact on the network’s
efficiency and performance.

10.1 preliminaries

By the beginning ofMay 2020, the LightningNetwork consisted ofmore
than 4,300 nodes and around 25,000 payment channels exhibiting a
combined capacity ofmore than 785 bitcoins (more thanUSD 8million).
We now introduce the necessary models and notations on which we
base the further analysis presented in this chapter.

10.1.1 Network Model

We model the Lightning Network as a directed multigraph 𝐺 = (𝑉, 𝐸),
where the vertex set 𝑉 constitutes the Lightning nodes and the multi-
set 𝐸 the payment channels. Every bidirectional channel is represented
by two directed edges in order to separately store the individual ca-
pacities and channel policies of both channel endpoints. Accordingly,
the edge (𝑢, 𝑣) stores how high 𝑢’s share of the total channel balance
is and which settings 𝑢 chose for the channel. As each channel locks
funds and each on-chain transaction involves costly transaction fees,
opening many channels on the Lightning Network can be expensive.
In order to reduce the number of required channels, the Lightning
Network offers multihop routing, which enables the sending of pay-
ments to non-adjacent nodes in the network. In this case, the payment is
routed over intermediate nodes along the payment path, which is deter-
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mined by the payment’s sender and secured by Hashed Time-Locked
Contract (HTLC) protocols, as discussed in Section 6.1.

The payment’s sender typically selects the most suitable route by
running an adapted version of Dijkstra’s shortest path algorithm [Dij59]
that considers channel capacities, fees and locking duration in the edge
weight calculation. That is, the algorithm first discards all candidate
edgeswith insufficient capacities and then selects the pathwithminimal
aggregated edge weights based on the intermediate nodes’ fee policies
and maximum lock-time. Such a weight-based algorithm is for example
utilized by the popular LND implementation, which accounts for more
than 90% of today’s network nodes [TSZ19]. For the calculation of the
respective transaction fees, each edge in the public network graph stores
the routing fee policies, which are composed of a base fee 𝑓 𝐵 and a
proportional fee 𝑓 𝑃. The base fee 𝑓 𝐵 is a fixed amount that has to be paid
to the routing node for every forwarded payment; the default value is
1 satoshi (= 1 ⋅ 10−8 BTC). The default value of proportional fee 𝑓 𝑃 is
1 ⋅ 10−6 satoshi, which is multiplied with the transaction amount |𝑡𝑥|
of each payment. Therefore, routing higher value payments generates
higher fees for the routing nodes. Concisely, the fee 𝑓𝑢(𝑣, |𝑡𝑥|) that has
to be paid to the routing node 𝑢 for forwarding a transaction with
amount |𝑡𝑥| to 𝑣 can be calculated accordingly as

𝑓𝑢(𝑣, |𝑡𝑥|) = 𝑓 𝐵
𝑢 (𝑣) + 𝑓 𝑃

𝑢 (𝑣) ⋅ |𝑡𝑥|.

In order to account for the weight-based routing algorithm, parts of
our graph analysis is based on the fee graph 𝐺𝐹,|𝑡𝑥|, which we obtain
through a transformation on 𝐺. This transformation allows the network
analysis to account for Lightning’s routing behavior in an approximative
fashion, even when applying standard weight-based graph algorithms.
In particular, 𝐺 is reduced to 𝐺𝐹,|𝑡𝑥| by excluding all edges of insufficient
capacities with respect to a transaction amount |𝑡𝑥|. The weights for
each edge (𝑢, 𝑣) in 𝐺𝐹,|𝑡𝑥| are set to 𝑓𝑢(𝑣, |𝑡𝑥|), i. e., they denominate
the routing fees that would arise from transferring |𝑡𝑥| through this
channel.1

10.1.2 Joining the Network

Due to the costs associated with channel establishment, a node joining
the network should follow a certain set of rules for choosing its initial
connection points according to an optimization goal. We call such an
algorithm returning a candidate node set 𝐶 ⊆ 𝑉 an attachment strategy

𝒮(𝐺, 𝑘, cap) → 𝐶,

1 Note that this approximative approach is only appliedwhennecessary for general graph
analysis or as part of the attachment algorithms. In contrast, the simulation framework
used for the evaluation of the proposed strategies follows a payment protocol that
closely resembles the real-world behavior, as will be discussed in Section 10.3.1.
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which takes as parameters the public network graph 𝐺, the number of
channels to be opened 𝑘 = |𝐶|, and the capacity cap (in satoshi) that
each of the channels should hold.

The respective optimization goal depends on the motivation for join-
ing the network. We consider the attachment strategies from the point-
of-view of three distinct perspectives:

• End-users join the network to conduct cheap, reliable, and fast
payments and therefore are interested in strategies that improve
their local connectivity to the network.

• Service providers participate as routing nodes in the network in
order to earn transaction fees. They are therefore interested in
optimizing their local node’s channel selection in order to receive
maximal profit.

• The network perspective regards the global impact of a particu-
lar strategy and considers its impact on the network’s overall
connectivity and reliability over time.

As these view points follow partly conflicting interests, they may not
easily be reconciled, but expose a fundamental trade-off between short-
term egoistical efficiency and the long-term development of the network
(cf. [WH20]). However, as different attachment strategies fall on differ-
ent points in the spectrum of this trade-off, we empirically investigate
their usefulness regarding these three view points.

The performance of each strategy of course highly depends on the
user’s behavior: if we for example assume an end-user would con-
duct frequent payments to only a single service provider, the optimal
connectivity-oriented strategy would be to establish a direct payment
channel to it. However, so far no reliable data source on user behav-
ior in payment channel networks is publicly available to the research
community, which necessitates the introduction of a number of assump-
tions with regard to the payment model. To this end, we refrain from
introducing overly complex assumptions that may act as confounding
factors to our analysis. In particular, we assume for the sake of sim-
plicity that the user plans to send payments to destinations all over
the network. Moreover, we assume that the capacity cap is the same
for all 𝑘 channels and that initial balances are split equally between
the channel endpoints. We also assume that every node in the network
agrees to open a channel, which may not be the case in the real network,
in particular since recent research found such optimistic behavior to
entail security risks [HZ20]. Finally, we assume new channels to be
established with the default fee settings. Note that in current Lightning
implementations attachment strategies are used in the so-called autopi-
lot feature that allows the client software to automatically choose and
establish new channels.
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10.2 network attachment strategies

In the following, we introduce candidate strategies for nodes joining
payment channel networks. We also provide a first assessment of their
applicability as well as their complexity in dependence of the number
of nodes 𝑛 = |𝑉| and number of edges 𝑚 = |𝐸|.

10.2.1 Random

The Random strategy is the simplest attachment strategy, in which the
attachment points are determined by uniform random sampling from
the node set 𝑉. This strategy can be quickly computed in 𝒪(𝑛) and,
while it mainly serves as a baseline for comparison, it counteracts cen-
tralizing tendencies since it does not prefer any particular connection
point.

10.2.2 Highest Degree

The Highest Degree strategy sorts all nodes 𝑉 according to their degree,
and returns the 𝑘 nodes with the highest degrees. As the number of
different neighbors is presumably more meaningful than the total num-
ber of channels a node 𝑣 has, its degree deg(𝑣) is determined in the
fee graph 𝐺𝐹, since it disregards multi-edges. The candidate set can be
computed quickly with this strategy because deg(𝑣) can be retrieved
from the adjacency lists and sorting can be done in 𝒪(𝑛 log𝑛).

Connecting to nodes with highest degrees is an extreme form of pref-
erential attachment which is known to induce a “rich-gets-richer” effect
that yields scale-free networks [BA99], and is likely responsible for the
highly centralized substructures found in the Lightning Network today.
In fact, highest-degree attachment strategies were deployed in prior
versions of LND’s autopilot feature and have been critically discussed in
the community [@Pic].

10.2.3 Betweenness Centrality

The notion of betweenness centrality [Fre77b] indicates how many short-
est paths in the network graph 𝐺 a node 𝑣 is part of. More specifically,
𝑏𝑐(𝑣) = ∑𝑠,𝑡∈𝑉

𝑠≠𝑣≠𝑡

𝜎𝑠𝑡(𝑣)
𝜎𝑠𝑡 , where 𝜎𝑠𝑡 is the total number of shortest paths

from 𝑠 to 𝑡 and 𝜎𝑠𝑡(𝑣) is the number of shortest paths from 𝑠 to 𝑡 via 𝑣.
In context of Lightning, nodes exhibiting a high betweenness cen-

trality implies that they are often chosen by the weight-based routing
algorithm and therefore are part of many payment paths. Since a large
share of the network can be reached via these nodes with minimal dis-
tance in terms of fees, they are in return promising candidates for node
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attachment. Note that this often also corresponds to overall shorter
payment paths, which improves reliability.

Consequently, the Betweenness attachment strategy elects the 𝑘 nodes
with the highest betweenness centrality values, which are calculated
via the weighted Brandes’ algorithm [Bra08] based on the fee graph 𝐺𝐹.
As the weighted version of the algorithm has a runtime complexity
in 𝒪(𝑛𝑚 + 𝑛2 log𝑛), our implementation additionally employs the
optimizations from [Bag+12], which speed up the calculation of be-
tweenness centralities (but do not change the algorithmic complexity).
Connecting to nodeswith the highest betweenness centralities is another
form of preferential attachment and likely results in further network
centralization.

10.2.4 𝑘-Center

The 𝑘-Center strategy is based on the assumption that the joining node
can improve its overall connectivity to the network by establishing chan-
nels to 𝑘 nodes such that the highest distances between them and any
other node in the network are minimized. Ideally, this would lead to
nodes in different parts of the network being chosen as the 𝑘 new neigh-
bors in order to minimize the length of the longest shortest payment
path. This likely results in faster and cheaper transactions due to fewer
nodes being part of the routes. Reducing the number of nodes and
channels contained in a payment route can also decrease the risk that a
transaction fails as there are less points of failure.

The idea for this strategy is based on the 𝑘-center problem [HS85],
which is defined as follows.

Definition 9. Given a complete undirected graph 𝐺 = (𝑉, 𝐸) in a metric
space and an integer 𝑘, a 𝑘-center is a subset of nodes 𝐶 ⊆ 𝑉 with |𝐶| ≤ 𝑘 such
that 𝑚𝑎𝑥𝑣∈𝑉𝑑(𝑣, 𝐶) is minimized, with 𝑑(𝑣, 𝐶) being the shortest distance
of 𝑣 to the closest node in 𝐶.

It was previously proven that this problem is NP-complete and that
it is NP-hard even for an 𝜖-approximation with 𝜖 < 2 [HS85]. This
means that 2-approximation algorithms, which return a solution that
is within twice the optimal solution value in polynomial time, are the
best possible algorithms for the 𝑘-center problem, unless 𝑃 = 𝑁𝑃.
Due to the fact that distances in the fee graph 𝐺𝐹 are not necessarily
symmetric, the Lightning Network unfortunately cannot be modeled
as a weighted fee graph in metric space. We therefore use the greedy
𝑘-center algorithm introduced in [Gon85] on a generated complete
distance graph to minimize the number of hops on the longest shortest
path and disregard fees or channel capacities. To this end, the joining
node first establishes a connection to the network’s highest degree
node and then executes a single-source shortest path (SSSP) search to
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retrieve the distances for the 𝑘-center algorithm. This results in a total
time complexity of 𝒪(𝑘(𝑚 + 𝑛)).

As the 𝑘-Center strategy aims to interconnect the network centers, it
should improve the network’s robustness and facilitate decentralization.

10.2.5 𝑘-Median

Besides looking at the longest shortest path to any other node in the
network, a promising strategy is to minimize the average shortest path
distance to all other nodes. Assuming that the joining node sends a
transaction to any other node with the same probability, it is very likely
favorable to require a minimal average number of hops to any other
node in order to reduce transaction fees, latencies, and failures. Hence,
we have to solve a problem that is known as the Single-Source Average
Shortest Path Distance Minimization (SS-ASPDM) problem [MT09]. It
was previously proven that an optimal solution to the SS-ASPDM prob-
lem for a node 𝑣 can be found by only adding edges incident to 𝑣 [MT09].
Thus, the problem can be utilized in our use case of the Lightning Net-
work since a joining node may only influence the opening of channels
which are incident to itself. Adopting the approach to only add edges
incident to the source node 𝑣, the SS-ASPDM problem corresponds to
the 𝑘-median problem [MT09].

In a graph context, the 𝑘-median problem can be formulated as fol-
lows.

Definition 10. Given a complete undirected graph 𝐺 = (𝑉, 𝐸) in a met-
ric space and an integer 𝑘, the 𝑘-median problem strives to find a subset
of nodes 𝐶 ⊆ 𝑉 with |𝐶| ≤ 𝑘 such that ∑𝑣∈𝑉 𝑑(𝑣, 𝐶) is minimized,
with 𝑑(𝑣, 𝐶) being the shortest distance of 𝑣 to the nearest node in 𝐶.

Again, the problem is NP-hard [CKY05] and only an approximate
solution can be found within polynomial time, unless 𝑃 = 𝑁𝑃. For
solving the 𝑘-median problem in a distance graph,we establish an initial
connection to the highest degree node and then utilize the “forward”
greedy algorithm presented in [CKY05], which results in an overall
time complexity of 𝒪(𝑘𝑛(𝑛 + 𝑚) log𝑛) when applied to the weighted
fee graph.

Similarly to the 𝑘-Center approach, the 𝑘-Median strategy promises to
improve network robustness and reduce centralization.

10.2.6 Maximum Betweenness Improvement (MBI)

A node that joins the network with the intent to act as a service provider
or routing node strives for financial profit from participating in the
Lightning Network. To this end, a routing node 𝑣 should rather focus
on optimizing its own betweenness centrality 𝑏𝑐(𝑣) than connecting to
central nodes.
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Therefore, it has to solve a problem known asMaximumBetweenness
Improvement (MBI) [Ber+18b], which is defined as follows.

Definition 11 (MBI). Given a directed graph 𝐺, a node 𝑣, and an integer 𝑘,
which set of edges 𝑆 incident to 𝑣, with |𝑆| ≤ 𝑘, should be added to 𝐺 in order
to maximize 𝑏𝑐(𝑣)?

The MBI problem has been proven to be NP-hard, but a greedy algo-
rithm that provides an approximate solution exists [Ber+18b].

ThisMBI strategy temporarily opens any channel that node 𝑣 could set
up, calculates 𝑏𝑐(𝑣), and closes the channel again. This is repeated for
all possible channels and in the end the channel generating the highest
betweenness improvement for the joining node is elected. This channel
is then established and the procedure is repeated until all 𝑘 candidates
are found, leading to an overall high time complexity in 𝒪(𝑘𝑛3).

Note that this strategy is similar to the approach found in [ERE20b],
which however also optimizes the node’s fee settings. As this results
in a further increased computational complexity over the already high
resource requirements of Bergamini et al.’s algorithm, we in lieu of
these optimizations follow the more feasible MBI strategy.

10.3 empirical analysis

In the following, we empirically analyze the performance of attachment
strategies for payment channel networks from a local perspective, i. e.,
from the view of a single end-user or service provider aiming to join
the network.

10.3.1 Network Simulator, Setup, and Methodology

As a basis for the empirical analysis, we developed a time-discrete event
simulator that implements the network multigraph model (cf. Sec-
tion 10.1.1) and allows to simulate payment processing as well as nodes
joining the network according to a given attachment strategy.2 The
simulator initially reads the network graph from a snapshot of the
Lightning Network and simulates path finding through a weight-based
route selection algorithm similar to the one found in LND. While some
aspects of the real-world payment procedure—such as the HTLC proto-
col negotiations—are omitted by our simulation model for the sake of
simplicity, the simulator was carefully implemented to approximate the
real-world behavior. To this end, transaction processing is simulated
by checking and adjusting the available balances along the payment
path. During this phase, the arising fee revenues are calculated based
on the provided fee policies and the remaining transaction value for

2 The simulator code base is publicly available in our companion repository at https:
//git.tu-berlin.de/rohrer/pcn-attachment-data.

https://git.tu-berlin.de/rohrer/pcn-attachment-data
https://git.tu-berlin.de/rohrer/pcn-attachment-data
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Figure 10.1: Transaction success rates in dependence of chosen attachment
strategy and transaction amounts.

each hop along the way. Note that consequentially and just as in the
real network, transaction success is not guaranteed even if a path is
found, as the path finding algorithm does not operate on the private
balances, but the public capacities. We base our further analysis on a
snapshot of the Lightning Network from May 1, 2020 at 10am that was
taken from the dataset [@Roh] provided by [RMT19]. At this time, the
largest connected component of the network consisted of more than
4,300 nodes connected by nearly 25,000 channels, which held an overall
capacity of more than 785 BTC.

In order to analyze their performance, we simulated the joining of
individual nodes according to the given attachment strategy, every time
establishing 𝑘 ∈ {1, … , 15} channels with sufficient capacity and de-
fault fee settings. We then evaluated the connectivity and fee revenue of
the joined node through two sets of simulated payments: one set of 1,000
transactions with the joined node as a fixed source and the destination
selected by uniform random sampling, and another set of 1,000 transac-
tions for which both source and destination were chosen randomly. The
simulations were conducted under the assumption of three different
transaction volumes: micro payments of 100 sats, medium payments of
10,000 sats, and macro payments of 1,000,000 sats (see also [ERE20b]).
If not stated otherwise, our analysis is based on the most relaxed as-
sumption of 100 sats. For every strategy, transaction value, and every
value of 𝑘, the simulations were furthermore repeated 30 times with dif-
ferent seed value inputs for the utilized random number generator. This
results in a five-digit sample size ensuring the statistical significance of
the results.

10.3.2 Transaction Success

In order to assess the impact of the attachment strategies on the connec-
tivity of the joining node, we analyzed the average transaction success
rate, i. e., the share of all transaction that actually succeeded. In Fig-
ure 10.1, the average success rate is shown in dependence of the number
of transaction amounts and channels 𝑘 that were established corre-
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sponding to the respective strategies. Moreover, the a priori network-
wide average success rate is shown for comparison, which was deter-
mined by simulating 10,000 transactions with randomly chosen sources
and destinations in the initial graph configuration.

We observe that generally node connectivity improves with the num-
ber of established channels and that all but the Random strategy tend
to result in an average success rate higher than the network average.
Moreover, strategies that prefer central connection points, such as the
Betweenness strategy, fare better than strategies that connect the periph-
ery of the network, such as 𝑘-Center. This is likely the case because
connecting to very central points in the network reduces the average
path length and thereby also the probability of routing failures due to
unavailable balances.

This is supported by the fact that the assumed transaction volume has
a big impact on the average success rate: while the network average for
micro payments is around 83% (Figure 10.1a), it drops below 34% for
medium payments (Figure 10.1b), and even to less than 4% for macro
payments (Figure 10.1c). This observation is of course in line with pre-
vious literature, in which Lightning’s limited available capacity and
the resulting low success rates for higher-volume payments have been
discussed for some time [BSB19b; RMT19; WH20]. Our results under-
line that currently only a small number of central nodes hold enough
capacity to be able to route any high-volume payments. While the heav-
ily skewed capacity distribution results in overall very low transaction
success rates, we observe that strategies that preferably connect to these
few central nodes—such as Betweenness, Highest Degree, and MBI—can
increase their lead in such high-volume payment scenarios. However,
in order to limit the impact the current capacity constraints found in
the Lightning Network have on our results, we continue our further
analysis of attachment strategies under the most relaxed assumption of
micro payments.

10.3.3 Transaction Fees

End-users joining the Lightning Network likely want to optimize their
connection point with regards to the result fees that arise from sending
payments. In Figure 10.2a the fees paid by the connecting node are
shown in dependence of the number of channels and with respect to
the chosen strategy. Again, generally all strategies result in fee costs
lower than the network average, which is even true for Random for more
than 𝑘 = 5 channels. As the fees in most cases improve linearly with
the number of established channels, it can be concluded that overall
better connectivity and the resulting increased routing opportunities
help to reduce the cost associated with sending Lightning payments.
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Figure 10.2: Transaction fees and share of routed transactions in dependence
of chosen attachment strategy.

Interestingly, the 𝑘-Median strategy is the clear favorite with regards
to fee saving, likely as it helps to increase connectivity between network
clusters and connects these as well as more centralized nodes.

10.3.4 Service Provider Revenue

Service providers join the networkwith the intend to earn themaximum
amount of profit. To this end, we analyze which attachment strategy
can help to improve their fee revenue. The share of routed transactions
(which in our case directly corresponds to the fee revenue) is shown in
Figure 10.2b.3

Independently of the strategy, the share of routed transactions im-
proveswith the overall connectivity of the joining nodes, i. e., it increases
with the number of established payment channels 𝑘, but tends to favor
strategies that improve path diversity. However, the MBI strategy is
clearly superior in this regard, allowing the joining node even to route
close to 6% of all payments conducted in the network by establishing
𝑘 = 15 channels. This comes to no surprise as this strategy is specif-
ically focused on maximizing the number of payment paths routed
through the joining node, and previous work showed the benefits of
such an approach [ERE20b]. Apart from this, the 𝑘-Median strategy is a
promising candidate, as it able to secure the service provider a routing
share of close to 3% of all payments in the case of 𝑘 = 15.



10.4 evaluating the long-term impact 133

Table 10.1: Algorithm runtimes in dependence of chosen attachment strategy
and number 𝑘 of established channels (in sec.).

𝑘 Highest Degree Betweenness 𝑘-Median 𝑘-Center MBI

1 0.25 440.00 2.70 0.51 2,784.00
2 0.25 440.00 4.70 0.59 4,834.00
3 0.25 440.00 6.40 0.63 6,965.00
4 0.25 440.00 8.50 0.66 9,232.00
5 0.25 440.00 9.70 0.67 11,429.00
6 0.25 440.00 11.30 0.72 13,938.00
7 0.25 440.00 13.30 0.75 16,478.00
8 0.25 440.00 15.00 0.81 19,371.00
9 0.25 440.00 17.10 0.88 22,294.00
10 0.25 440.00 18.20 0.81 24,634.00

10.3.5 Runtime Analysis

In order for a attachment strategy to be an actual candidate to be imple-
mented in the autopilot functionality of a Lightning client implementa-
tion, it should deliver its results in a viable amount of time. Therefore,
we measured the run times of discussed strategies under real-world
conditions. To this end, we deployed our strategy implementations on
an t2.xlarge instance (4 vCPUs based on Intel Xeon 3.3 GHz, 16 GB
memory) on Amazon Elastic Compute Cloud (EC2) running Ubuntu
Server 18.04. We then measured the execution time that it took the
algorithms to return the respective candidate sets.

The results shown in Table 10.1 generally concur with our complexity
analysis given in Section 10.2: while the Highest Degree, Betweenness and
𝑘-Center strategies remain roughly constant runtimes, 𝑘-Median and
especially MBI grow in a linear fashion with the number of established
payment channels 𝑘.

This is of particular significance, since it takes MBI between 2,000
and 2,500 seconds longer to finish for each additional channel. As this
amounts to an overall runtime of around seven hours for 𝑘 = 10, the
practicability of this strategy is heavily put under question, potentially
even given its performance benefits in terms of fee revenue.
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Figure 10.3: Long-term impact of attachment strategies on the network.

10.4 evaluating the long-term impact

So far, we analyzed the discussed attachment strategies with respect to
their local short-term impact, i. e., from the point of view of an egoistical
node joining the network. In the following, we assess the global long-
term impact of the discussed attachment strategies for payment channel
networks.

10.4.1 Simulation Setup

In order to evaluate the global long-term impact, we utilized the time-
discrete event-based network simulator from Section 10.3.1 to model
the process of 5,000 nodes sequentially joining the Lightning Network,
which corresponds to more than doubling the network size. Each node
joins the network with 𝑘 = 10 channels that are established according
to the given strategy, which is roughly the network average node degree.
While the future network development will probably not exactly follow
these assumptions, this approach allows us to compare the advantages

3 Note that our analysis compares the proportional fee revenues gained from routing in
the Lightning Network and does not consider any costs for running a routing node,
such as the on-chain fees associated with channel establishment. In order to estimate
the net. profit of a node operator, such cost would have to be known and subtracted
from the revenue.
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and drawbacks of each strategy without considering additionally in-
terfering and confounding factors. This simulation-based analysis was
conducted for all but the MBI strategy. Due to MBI’s significantly higher
computational requirements (cf. Section 10.3.5), we had to refrain from
including it in the long-term evaluation. As before, all randomized
transactions were repeated 1,000 and all simulations 30 times to ensure
statistically significant results.

10.4.2 Impact on the Network’s Topology

In order to analyze the impact each attachment strategy has on net-
work centralization over time, we analyzed the network topology in
intervals of 500 joining nodes and recorded essential network metrics.
Figure 10.3a shows the Gini coefficient of the node degree, which quan-
tifies the inequality of the degree distribution for an increasing number
of added nodes. As expected, the network exhibits initially a high Gini
value of nearly 0.75, which underlines the high degree of inequality
currently exhibited by Lightning’s network topology. Furthermore, the
results show that strategies following a preferential attachment pattern,
such as the Highest Degree or Betweenness strategies only marginally
decrease the centralization over time, while strategies that also con-
nect the fringes of the network, such as 𝑘-Center and Random have a
strong positive impact on centralization. Interestingly, we observe that
𝑘-Median tends to elect the same set of 𝑘 nodes over time. While these
𝑘 nodes increase their connectivity, it does not result in a significant
improvement with respect to the degree inequality.

Figure 10.3b shows the average network diameter, i. e., the longest
shortest path in the network, which is an indicator for the worst-case
routing complexity. Again, Random and 𝑘-Center perform best and are
able to immensely reduce the initial network diameter of 13 already
after attaching 500 nodes. Notably, the 𝑘-Center strategy quickly allows
all network nodes to reach all other nodes in just four hops. In order to
get an understanding of how the participation in routing is impacted
over time, we analyzed the inequality of betweenness centralities and
the central point dominance. The results generally concur with our
observations for node degrees. They also show that our current choice
of establishing the initial connection of the 𝑘-Center and 𝑘-Median strate-
gies to the single highest degree node results in an increased central
point dominance. While this is an implementation detail, its impact
requires further investigation in the future.

10.4.3 Impact on the Network’s Performance

In order to evaluate the performance of the network in dependence of
each attachment strategy, we analyzed the average success rate and the
arising fees by regularly simulating transactions in the network. To this
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end, we executed batches of 1,000 micro transactions with randomly
chosen sources and destinations after the addition of every 500 nodes.

As can be seen in Figure 10.3c, the average network success rate gener-
ally improves with an increasing number of nodes and the additionally
provided routing capacity. The evaluation moreover shows that again
the decentralizing strategies Random and especially 𝑘-Center benefit the
overall network connectivity the most, letting the success rate quickly
rise to close to 100%.

While this pattern is generally also reflected in the average paid
transaction fees, as shown in Figure 10.3d, the results highlight that a
high degree of centralization can be beneficial for fee costs. In particular,
while the Highest Degree strategy does generally not offer many benefits,
it does result in rather low average fee costs. This is likely due to the
short average path lengths and high efficiency of star sub-structures
(cf. [Ava+20; SZ20]). However, again the 𝑘-Center strategy proves to
be the most promising candidate to minimize fee costs for the end-user
in the long term, with 𝑘-Median being a close second.

10.4.4 Discussion

Throughout our analysis, it became apparent that the Lightning Net-
work currently is heavily restricted by its overall limited capacity and
its concentration on a few central service providers. We therefore found
that the provided quality of service and user experience would im-
mensely benefit fromany kind of higher-volume andhigher-connectivity
adoption.

We also found that from an egoistical perspective, strategies selecting
central attachment points seem to provide the best short-term perfor-
mance,with the exception of transaction fees, inwhich case the 𝑘-Median
strategy showed to be the most promising candidate. From the global
point of view, however, decentralizing strategies proved to provide the
best long-term benefits for the network overall. With regard to this con-
flict of interest, we empirically confirm the trade-off between efficiency
and decentralization [Ava+20; WH20].

However, our analysis showed two strategies to be feasible and po-
tentially capable of combining local short-term and global long-term
interests: 𝑘-Center and 𝑘-Median. While these strategies may not be the
absolute optimum from the egoistical point of view, they benefit the
long-term network development the most. It therefore remains an open
question whether users would accept non-optimal short-term strategies,
if they benefit them and the whole network in the long-term.

In order to balance this trade-off, real-world implementations should
consider to employ a set of different well-chosen strategies to establish
their channels. However, the exact choices and the share of connections
established through a particular strategy are up to further analysis.
Our implementation of the 𝑘-Center and 𝑘-Median strategies currently
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builds on an initial centralized connection. We therefore also deem
the potential of such “mixed” strategies, i. e., strategies that further
randomize and distribute these connection types, a promising subject
for future research. Furthermore, while we generally hold the inherent
conflicts of interest to be hard to reconcile, we think they should further
be discussed and addressed in the community.
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While currently the main fields of application for blockchain technolo-
gies are of financial nature, many of the underlying foundational princi-
ples can be utilized in order to build resilient distributed systems beyond
cryptocurrencies. In this regard, we in the following present Webchain,
a decentralized system inspired by blockchains and distributed times-
tamping schemes that enables source and reference verifiability for
resources on the World Wide Web.

11.1 reference rot and source verifiability in accelerated
times

In recent years, online source material and references have become
more and more prevalent, not only in journalistic writing, but also in
scientific literature. However, given the ephemeral nature of the World
Wide Web, the so-called ’reference rot’ is at the same time becoming a
more serious issue.

The availability and verifiability of internet references have been
studied in quite diverse fields of scientific literature, and most studies
found the current state to be vastly unreliable. For example, Aron-
sky et al. [Aro+07] studied the biomedical literature published in
PubMed [@Med19] in 2006 and found that, while online references
were not prevalent in this field at the time, more than 10% of references
were unavailable within two days after publication. Similarly, Dellavalle
et al. [Del+03] examined three top-tier medical journals and also found
high unavailability rates soon after publication (3.8% at 3 months, 10%
at 15 months, and 13% at 27 months after publication). Furthermore,
Bugeja and Dimitrova [BD05] uncovered that 40% of online references
were unavailable a year after publication, when they studied the state of
online references in journalism conference papers. As it is based on the
then increasingly defunct principles of replicability and reproducibility,
the vanishing of such large amounts of online references damages the
feasibility of the scientific method.

This is also observed byKarpf in [Kar12], as he notes that the ephemeral
nature of the World Wide Web is a big obstacle in the way of current
social science research. While Karpf acknowledges the existence of the
Wayback Machine of the Internet Archive [@Mac19] and deems it an ex-
ceptional research resource, he also recognizes its limits and explicitly calls
for more such “lobster traps”, i. e., public archival systems of similar
nature.

139
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Rogers [Rog15] discusses digital methods and the “messiness” of online
material with respect to the consequences that may arise for research in
the humanities. In particular, the author raises the question on which
kinds of facts research may be grounded and arrives at the conclusion
that, in absence of source and reference verifiability, digitalmethods and
online observations have to be grounded on offline data. However, he
also observes a trend in the opposite direction: more and more research
methods and journalistic investigations are conducted based on online
data.

This trend goes hand in hand with new forms of journalism, such as
citizen, data, and networked journalism. While the former two describe
that more independent citizens conduct investigations of journalistic na-
ture for their ownmerit and that this research is more often data-driven,
the latter notion tries to capture the current amalgamation of such con-
cepts: in the emerging networked journalism [VPC12], journalists work
together with independent data sources, citizen investigators, and even
base their coverage in part on crowdsourced and user-generated mate-
rials, such as photographies, videos, and textual reports. Of course, this
entails data collection from social media and other publically available
resources, also known as open-source intelligence (OSINT) [Gib04].

Given such a diverse set of sources of varying reliability, new tech-
nologies can assist with the tedious fact-checking process and allow
to automatize the formal verification of the provenance and integrity
of online sources. This kind of automatization is especially important
when the information flow is speeding up, because then journalists
are left with less time to check (online) sources, as Van der Haak et al.
stress:

“While working at Internet speed does not change the
basic principles of journalism, it does make the reflective
practice more difficult. The greater the volume of informa-
tion to be scrutinized and the faster its input is demanded
for news production, the less time is left for analytical treat-
ment and storytelling.” [VPC12]

The authors therefore arrive at the conclusion that source verification
and archival technologies allow to increase the level of automatization
in contemporary journalism while the journalists “will concentrate on
the interpretation, analysis, and storytelling of the slower and more
fundamental changes in society.” [VPC12]

In this chapter, we present Webchain, a system that aims to address
the discussed challenges: as it provides the functionality to securely ver-
ify the formal authenticity, integrity, and provenance of online sources
and references, it is suited to aid a more automatized fact-checking pro-
cess. Moreover, as it enables the verification of citation provenance even
in absence of the original source, it could be an effective tool to mitigate
the negative effects on source verifiability introduced by reference rot.
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11.2 related work

The challenging goal of digital preservation is defined as the archival of
authenticated content over time. To this end, web cache and archival sys-
tems, such as the Wayback Machine at the Internet Archive [@Mac19],
the LOCKSS system [Man+05], Perma.cc [@Per19], andWebCite [ET05]
have evolved to ensure the preservation of digital content. While these
approaches sustain availability of web pages, they do not necessarily
protect from manipulation of the archive’s contents [ANW17].

To some extent, content-addressable networks [Jac+12] in general
and the InterPlanetary File System (IPFS) [Ben14] in particular address
these issues by offering a storage layer in which data is addressed
and secured by cryptographic hashes. It requires the users, though, to
employ these systems as immediate medium of communication. For
example, the recently proposedDClaims system [SSD19] leverages IPFS
storage in combination with Ethereum smart contracts to enable the
decentralized publication and retrieval of web annotations [@W3C20b].
While this system allows to annotate articles (e. g., for the sake of fact-
checking), it does not secure the article and reference data.

On the other hand, approaches like the trusty URI scheme introduced
by Kuhn and Dumontier [KD15] aim to improve the verifiability of web
artifacts by appending hashes to the artifact URI. As the data needed
for verification is included in the URI, users receiving trusty URIs can
independently verify that the retrieved data has not been tampered
with. If an artifact secured in this way is referencing others via trusty
URIs, this approach secures the integrity of the entire reference tree, an
effect similar to the secured citation graphs of Webchain. It however
does neither ensure availability, nor non-repudiable authenticity of the
secured reference data: when the author decides to delete an artifact,
the chain of references breaks, potentially leaving previously secured
subtrees in a unverifiable state. In contrast, as Webchain is an indepen-
dent distributed system, it allows to verify the citation graphs even if
the original artifacts become inaccessible.

The field of data provenance has been explored extensively in recent
years, and standards likeW3C’s PROV have been developed [@W3C20a].
However, while recent work [Mor17] provided the necessary ground-
work in order to enable verifiable PROV documents through the appli-
cation of digital signatures, no procedures have been standardized to
this end as of yet. In [HSW09], Hasan et al. introduce the Sprov sys-
tem which provides a secure provenance scheme based on hashed and
interlinked provenance records. Therefore, their notion of provenance
chains bears some resemblance toWebchain’s citation graphs. However,
while Sprov is meant to run at the lower layers of a single machine’s
operating system,Webchain offers secure citation provenance of web ar-
tifacts and offers a decentralized trust model by applying a distributing
timestamping scheme. Moreover, it could be extended for compatibility
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with the PROV data model, once the necessary procedures have been
standardized.

To the best of our knowledge, the Webchain system is the first ap-
proach that combines content authenticity and integrity with citation
provenance and non-repudiation provided by secure timestamping.
While approaches which require complete trust in a centralized au-
thority exist [Fac+09; HM14], Webchain’s architecture distributes the
necessary trust. To this end, Webchain constructs a distributed ledger,
which borrows concepts from blockchain-based approaches such as
Bitcoin [Nak08] and directed acyclic graphs (DAGs) of blocks. How-
ever, in contrast to most blockchain systems, Webchain follows the
separation of concerns principle and distributes the data over multiple
independent ledgers.

Systems like OpenTimestamps [@Ope19] and ProvChain [Lia+17]
utilize the Bitcoin blockchain as a back-end for a secure time attestation
service. However, while the former allows for the attestation of arbitrary
file data, the latter is a system that records provenance data for files in
cloud storages. To this end, it records file operations, encodes them in
JSON format, and publishes a hash digest to the Bitcoin blockchain via
a third-party API provider in order to retrieve a secured timestamp. In
difference to these approaches, Webchain allows for the authenticated
publication and referencing of article data on the World Wide Web.

A central component of Webchain’s architecture is the timestamping
service. In order to distribute the trust, we integrate Haber and Stor-
netta’s distributed timestamping scheme [HS91]. While they assume
a static network and do not specify node addressing, we fill the gap
and develop a protocol for a dynamic overlay network, which includes
maintaining network state in a distributed environment.

11.3 system overview

Webchain enables secure author attribution and verifiable citation of
articles published on the World Wide Web, such as news articles or
blog posts.1 In the following, we give an overview of Webchain’s core
architecture, before discussing individual system components.

11.3.1 The Webchain Architecture

The backbone protocol of the Webchain architecture is inspired by
blockchain-based systems, such as Bitcoin [Nak08]. Like these systems,
Webchain draws its security and accountability from replicated data

1 Note the Webchain architecture could generally be adapted to support other means of
communication (e. g., IPFS [Ben14]) and additional data formats, such as PDF files.
This would however require specific adjustments for article normalization and the
addressing of data. We therefore focus our account on the primary use-case of articles
published on the World Wide Web.
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Figure 11.1: Webchain architecture.

structures consisting of cryptographically interlinked blocks, i. e., dis-
tributed ledgers. InWebchain however, every block represents an article
published on the WWW. Each of these blocks is linked to every block
corresponding to a cited article. Updates to a distributed ledger of blocks
are broadcast in a network of infrastructure nodes that verify and apply
them to their local ledger state. Infrastructure nodes consist of three
components (see Figure 11.1): a back-end component that manages and
provides access to the distributed ledger data, a front-end component
that integrates an author-facing content management system, and a
timestamping component that securely keeps track of block creation
(see Section 11.4).

The Webchain system knows two types of users: authors and readers.
Authors register at an infrastructure node to create and publish arti-
cles, which may cite other articles. The Webchain front-end provides
an interface which authors use to add or edit articles. The front-end
also takes care of all Webchain-related procedures. In particular, it ver-
ifies the validity of citation chains, creates a new block, and embeds
the Webchain metadata into the article, which provides a verifiable
reference to the respective block. In addition, articles are signed by the
author. We envisage that readers use a lightweight client software, im-
plemented as a browser plugin. The client scrapes visited websites for
embedded Webchain metadata, queries Webchain infrastructure nodes
for the block data, and verifies the citation chain. Therefore, the client
does not need additional external knowledge to verify block integrity
locally and in particular is not required to trust a specific infrastructure
node to be trustworthy.

11.3.2 Block Layout

A Webchain block 𝐵 is defined as the 6-tuple 𝐵 = (𝑖𝑑, 𝑓 , 𝑡, 𝑚, 𝜎𝑖𝑑, 𝐷),
which is also illustrated in Figure 11.2. A block’s main purpose is to
hold and secure a set of data entries 𝐷. In the Webchain system, we
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Figure 11.2: Webchain block layout.

differentiate two types of data entries: (i) hash values of text segments,
which are part of an article and (ii) references to other blocks’ data
entries. These entry types are stored as a list, discriminated by a pre-
ceding type header. In order to secure data entries, they are used to
construct a Merkle tree [Mer87]. As all values are incorporated in the
root value 𝑚, the Merkle root, the value 𝑚 secures the integrity of all
block data. Furthermore, Webchain adds a POSIX timestamp 𝑡 and
the block author’s fingerprint 𝑓, which is given by applying a crypto-
graphically secure hash function 𝐻 to the author’s public key 𝐾𝑎,𝑝𝑘,
i. e., 𝐻(𝐾𝑎,𝑝𝑘). A block is uniquely identified by the block identifier
𝑖𝑑 = 𝐻(𝑓 ‖ 𝑡 ‖ 𝑚), which is also recorded in a block. Finally, the author
adds her digital signature 𝜎𝑖𝑑 = sign(𝑖𝑑, 𝐾𝑎,𝑠𝑘), where 𝐾𝑎,𝑠𝑘 denotes
her private key. This cryptographic block construction ensures that
block identifiers depend on the block content as well as on the time it
was created. Therefore, the construction allows to check block integrity
by reproducing and verifying the block identifier based on the article
data itself. Since a cryptographic signature of the identifier is provided
by the author, a block’s authenticity can also be validated. We assume
that the respective key material is known by the validating party. This
can be implemented by employing a variety of well-known identity
management techniques which we discuss in Section 11.5.1.

11.3.3 Block Creation

From an author’s perspective creating a new article feels very much the
same as before: she signs in to her respective infrastructure node’s CMS
and uses the web interface to edit an article. After saving the article,
however, the infrastructure node prepares the article by subdividing
the text into text segments. The reason for this kind of segmentation
is to provide other authors the ability to cite individual text segments
rather then requiring to cite complete articles only. The segmentation
can be achieved in different ways, e. g., by subdividing HTML elements.
Alternatively, the text could be segmented based on sentence bound-
aries or semantically coherent text spans. Both are well-studied areas in
the field of natural language processing [GT94; PH97; RR97]. An addi-



11.3 system overview 145

<blockquote data-webchain-id="f115e016daad472...">

Citing an author whose ideas or information you used is paying a

debt.

-- Umberto Eco, How to Write a Thesis.

</blockquote>

Figure 11.3: Example of an embedded citation code.

tional normalization step might be necessary to yield an deterministic
segmentation.

After preprocessing, the infrastructure node applies the hash function
𝐻 to each of the article’s segments and appends the results to the data
section 𝐷 of the new block 𝐵. Given 𝐷, the node derives the Merkle root
𝑚, adds 𝑓 and 𝑡, and calculates the block identifier 𝑖𝑑, which is signed
by the author. The block identifier is then embedded in the web page
as a corresponding HTML tag.

If an author cites an article which is part of the Webchain ecosystem,
a respective reference has to be added to 𝐷. In this case, the client
software automatically detects and includes Webchain metadata when
copy-pasting from a web site that is part of the Webchain system. The
reference, in form of a block identifier, is also included as an HTML
attribute. An example can be seen in Figure 11.3.

When citations are translated to block references, so-called citation
chains emerge. Moreover, since various blocks can reference the same
block, multiple citation chains can form a citation graph (see Figure 11.4),
which is basically a directed acyclic graph (DAG). Of course, this graph
does not need to be fully connected, and single articles which do not
cite others even yield connected components of size one. Also note
that many independent citation graphs can coexist as blocks are not
guaranteed to reference prior blocks. This is especially noteworthy, as it
differentiates the Webchain design clearly from other blockchain-based
approaches: theWebchain systemdoes not host a single ledger of blocks,
but many ledgers that only have to be stored by the involved parties,
which follows the separation of concerns principle.

Blocks are announced in a peer-to-peer network of infrastructure
nodes. Every node receiving a new block verifies its validity before
forwarding the block to its neighbors. If one of the node’s registered
authors is associated with the block, i. e., a path between a block of
the author and the new block exists, the block is replicated by the
infrastructure node. Otherwise, the block is discarded after forwarding.

11.3.4 Block Verification

When infrastructure nodes receive a previously unknown block 𝐵0 =
(𝑖𝑑0, 𝑓0, 𝑡0, 𝑚0, 𝜎𝑖𝑑0

, 𝐷0), they perform a number of checks to verify
its validity:
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Figure 11.4: Citation graphs over time.

1. Construct a Merkle tree from 𝐷0 with its root 𝑚′
0.

2. Check that the Merkle roots match: 𝑚0 = 𝑚′
0.

3. Check the block signature: 𝑖𝑑0 = verify(𝜎𝑖𝑑0
, 𝐾𝑎0,𝑝𝑘).

Additionally, when the nodes are involved with the block’s citation
graph, they inspect 𝐷0 and recursively retrieve all referenced blocks
𝐵𝑖, 𝑖 ∈ {1 … 𝑁}, i. e., they traverse the citation graph. This enables them
to verify the citation provenance, by running additional checks:

1. Follow all references 𝑑𝑗 ∈ 𝐷𝑖, 𝑖 ∈ {0 … 𝑁} and assert that 𝑑𝑗 is
indeed included in the referenced block.

2. Assert that all referenced blocks are valid by running the validity
checks described before.

Therefore, a block is considered valid, when the integrity of the data
is confirmed through use of hashing and the Merkle tree construction.
Furthermore, citation provenance is ensured by following the crypto-
graphically secure links between blocks and verifying the existence of
data items in the cited sources.

The client software checks the accessed websites for Webchain meta-
data. When the client detects such metadata, it extracts the block iden-
tifier and retrieves the corresponding block 𝐵0 and referenced blocks
𝐵𝑖 from an infrastructure node in the background. The client applies
the segmentation and normalization algorithms to the article and ap-
plies the hash function to the text segments. If included, it also extracts
the citation information. Based on this data, the client constructs its
own local data set 𝐷′

0. In order to verify the article’s content, the client
proceeds with the following steps:

1. Calculate Merkle root 𝑚′
0 from 𝐷′

0.

2. Assert that 𝑚′
0 and the retrieved block’s 𝑚0 match.

3. Assert the validity and citation provenance of the retrieved blocks
𝐵𝑖, as described before.
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Given that blocks can only reference other blocks that already exist,
it should be the case that timestamps in each individual citation chain
follow a certain pattern. In particular, when following an individual
link from a citing block 𝐵𝑖 to a referenced block 𝐵𝑗, it should hold that
𝑡𝑗 < 𝑡𝑖. However, this property can only be guaranteed to hold, if nodes
have a meaningful way to verify timestamps for a specific block, which
then is approved or discarded accordingly.

So far, we neglected to describe how infrastructure nodes are able to
verify the timestamp information provided in the blocks. As a naive
sanity check, every node receiving a new block could verify that the
given timestamp is close to its system time and that it is larger than
the timestamps of all referenced blocks. However, this method has
several drawbacks. For once, it highly depends on the correctness of
the local clock and could thereby lead to unnecessary divergent ledger
states in the network. This verification method is also only viable for
recently authored blocks, making it unclear how to handle timestamps
of retroactively retrieved blocks. Moreover, this scheme would not pre-
vent an author from manipulating the timestamps and embezzling
blocks. Webchain addresses this issue by implementing a distributed
timestamping scheme, which is described in the following section.

11.4 distributed timestamping

Timestamping services offer their users to issue a proof of existence,
which states that a certain data item existed at a specific point in time.
The service is most commonly realized by a centralized trusted times-
tamping authority that issues such an attestation. However, we consider
this model to be unsuited for the otherwise distributed design of the
Webchain system. Therefore, timestamping in Webchain builds upon
the distributed timestamping scheme introduced by Haber and Stor-
netta in [HS91].

Distributed timestamping is based on the idea that a user should—
rather than placing trust in a single centralized authority—distribute
the trust to a whole network of timestamping authorities, which we call
timestamping validators. By cryptographically signing hashed data to-
gether with a timestamp, these validators attest that they have seen the
data at a specific point in time. Of course, it would immensely reduce
the security properties of the timestamping protocol, if an attestation
would no longer be required to come from a specific validator, but
could stem from any of the validators. Therefore, Haber and Stornetta
introduced the idea of deterministically electing 𝑘 designated times-
tamping validators based on the content of the data itself, 𝑘 being a
global constant. This is done by using the hash 𝑦 of the data (which
is in our case 𝑦 = 𝑖𝑑) as seed for a pseudorandom number generator
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(PRNG) function 𝐺, whose output sequence directly determines the 𝑘
designated validator nodes as

𝑉𝑦 = ⋃
𝑖=1…𝑘

𝐺(𝑦, 𝑖)

The hash 𝑦 is sent to each of the selected validator nodes 𝑉𝑦, which
respond with a digital signature, effectively creating a timestamp.

Verification of these timestamps is done as follows: the verifying party
hashes the data to gain 𝑦 and calculates 𝑘 executions of 𝐺 to reconstruct
the set of designated validators. The data is considered valid, if all of
the determined validators have signed the input. Thereby, the security
of this approach does not directly come from increasing the number
of validators (this only distributes the trust), but from the determin-
istic validator election. For this, it is assumed that a cryptographically
secure hash function is used (i. e., the probability of collisions can be
neglected), and that it is hard to spawn validator nodes with arbitrary
identifiers.

In order to adapt this scheme for the Webchain system, we assume
that every infrastructure node also functions as a timestamping val-
idator and holds a public-private key pair specifically for attestation
purposes. Validators are addressed by its fingerprint 𝑣𝑖 = 𝐻(𝑝𝑘𝑖) with
𝑝𝑘𝑖 being their public key. When new blocks are distributed in the net-
work, every node, including the validators, are able to calculate the set
of designated validators 𝑉𝑖𝑑 for a block identifier 𝑖𝑑. This of course also
applies to the designated validators, which issue a corresponding attes-
tation upon reception of a block they are responsible for. The validator’s
attestation is again broadcast in the network, and stored replicas of the
blocks are updated by appending the additional signatures to the field
𝜎𝑖𝑑. Blocks are considered valid, if they not only feature the author’s
signature, but also the 𝑘 validator signatures.

However, deploying the scheme found in [HS91] is not entirely fea-
sible for the Webchain system: based on the construction, it can be
assumed that the authors required a network of static nodes, which
however does not fit the dynamic design of Webchain’s network. In
Webchain, we therefore propose an extension that manages the network
state in a dynamic overlay of validators.

11.4.1 Validator Membership Management

While we can assume that Webchain infrastructure nodes are relatively
stable, the network still is of dynamic and open nature, which requires
a flexible approach for addressing and determining the designated val-
idators. We address this issue by—instead of directly using the output
sequence of the PRNG—introducing an addressing scheme based on the
XORmetric known from Kademlia [MM02]. This non-Euclidean metric
assigns a distance to two binary values, by applying the XOR operation
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𝑒0 𝑒1 𝑒2 𝑒3 …

𝑡𝑒0 𝑡𝑒1 𝑡𝑒2 𝑡𝑒3𝑡𝑔2

Δ𝑔

… … … …

Figure 11.5: Epochs define time intervals in which a specific validator set is
considered active. The validator set is secured by a Merkle root.
The grace period Δ𝑔 leaves room for data propagation but also
implies, for example, that valid announcements for 𝑒2 need a
timestamp dated before 𝑡𝑔2

.

and interpreting the result as a integer number, i. e., 𝑑(𝑥, 𝑦) = (𝑥⊕𝑦)10.
By using the XOR metric, Webchain can assign a well-defined distance
between each value from the sequence obtained by 𝐺 and all existing
validator nodes. This allows to determine the 𝑘 designated validators,
i. e., 𝑉𝑦, by selecting the 𝑘 node identifiers closest to the values obtained
from 𝐺. However, since the deterministic validator election scheme not
only depends on the data input, but also on the validator set, a node
verifying a block has to know the state of the validator network at the
time of the block’s creation.

In order to manage the network state, we divide time into epochs. In
each particular epoch, the state of validators 𝑠 builds the basis for the
respective validator election. We denote such an epoch as 𝑒𝑖 = (𝑖, 𝑠),
including a continuous epoch number 𝑖 ∈ ℕ and a value representing
the state 𝑠. When joining the network, every validator starts announcing
her participation for a future epoch. Every infrastructure node keeps
track of these announcements and thereby keeps a list of candidate val-
idators active for a specific epoch 𝑖. All infrastructure nodes should
reach consensus on which validators are considered active in a specific
epoch. However, depending on a variety of factors (e. g., network perfor-
mance), an announcement could reach some nodes in time to register
for a specific epoch, while it may reach others too late. To mitigate this
consistency problem, we use the timestamping solution itself: other
validator nodes sign announcements and broadcast the attestations in
the network. Similar to blocks, announcements are only considered
valid if they are signed by 𝑘 designated validators and received before
the epoch starts. This is, announcing nodes are then deemed active in
the respective epoch.2

In order to deal with network delays, infrastructure nodes require
that announcements have a timestamp 𝑡𝑎 that is dated at least some time
Δ𝑔 earlier than the start time 𝑡𝑒𝑖 of the respective epoch 𝑒𝑖. Therefore,

2 Note, that this introduces a bootstrapping problem: the announcements for the initial
validator set cannot get attested by a previous set of validator nodes. Therefore, we
assume a set of bootstrapping nodes for 𝑒0 to be hard-coded in the Webchain software.
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Δ𝑔 = |𝑡𝑒𝑖 −𝑡𝑔𝑖 | defines a grace period, which is illustrated in Figure 11.5.
The grace period is introduced to ensure that “fresh” announcements
and the related attestations reach all nodes in the network, before the
start of the new epoch. Therefore, we think 𝑡𝑔𝑖 should be chosen so that
Δ𝑔 is at least double the maximum expected round-trip time (RTT) in
the network, i. e.,

Δ𝑔 > 2 ⋅ 𝑅𝑇𝑇𝑚𝑎𝑥.

For practical considerations, a Δ𝑔 of around 500ms should suffice
for most network topologies. From the list of active validators, every
node builds a sorted Merkle tree, yielding a root value which suc-
cinctly and securely describes the membership state of this epoch, de-
noted as 𝑠. When new blocks are created, 𝑒𝑖 is appended to the block
and secured by the identifier hash value, now respectively denoted as
𝐵 = (𝑖𝑑, 𝑓 , 𝑡, 𝑚, 𝜎𝑖𝑑, 𝑒𝑖, 𝐷) and 𝑖𝑑 = 𝐻(𝑓 ‖ 𝑡 ‖ 𝑚‖ 𝑒𝑖). The introduction
of epochs allows to retroactively verify that a block was signed by the
correct set of validators. As a consequence, joining nodes have to re-
trieve the historical epoch data needed for verifying a particular block.
As the introduction of epochs limits the time a specific set of validators
is designated for a given input, it also increases the system security (see
Section 11.6).

11.4.2 Validator Redundancy

The described timestamping scheme allows to determine which valida-
tors are responsible for signing a specific data item in any given epoch.
However, what happens if a designated validator becomes unavailable
or maliciously refuses to issue attestations? As infrastructure nodes
only accept new blocks and announcements when they are confirmed
by 𝑘 designated nodes, refusing to attest could be an easy way to run a
Denial-of-Service (DoS) attack on the Webchain system. Fortunately,
there is an effective way to mitigate such attacks in form of validator
redundancy: infrastructure nodes do no longer check for 𝑘 attestations
of designated validators, but they check for a number

𝑘′ < 𝑘.

This solution was already proposed by Haber and Stornetta and in
our case also helps to handle validator node failure: when a validator
announces its participation in an epoch, but then fails to attest a block
or announcement, the block is still valid, if at least 𝑘′ validators are still
online.

Leaving a certain degree of freedom and accepting a smaller number
of attestations, though, inevitably reduces the security level. As we will
see in our analysis, it increases an attacker’s chances to contribute the
set of designated validators, i. e., to maintain the security level, a higher
𝑘 should be chosen.
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11.4.3 Validator Replication

As described before, infrastructure nodes replicate all citations graphs
which are connected to any articles created by their authors. But, this
also implies that only parties with some interest in the cited articles are
storing the data. In particular, since they would be the only replicating
nodes, this would enable malicious infrastructure nodes to remove
old uncited articles from the network. To mitigate such an after-the-
fact manipulation and to guarantee non-repudiation for articles in the
Webchain system,we introduce validator replication. This is, in addition
to the respective infrastructure nodes, the set of designated validators
also replicate the attested blocks. Therefore, the block data is replicated
𝑘 more times in the network, depending on its content. This ensures
that an article that is once inserted into the Webchain system cannot be
removed afterwards.

11.5 system extensions

In the following, we discuss a number of extensions to the basic Web-
chain system that are indispensable for a practical implementation of
its architecture.

11.5.1 Identity Management

The security properties of the Webchain design heavily rely on the
ability to retrieve and validate authentic key material for a given node
identity. Yet, authors may register and publish under a pseudonym, as
nodes are responsible for handling their associated author identities.

In the following, we briefly discuss candidates for node identity
management in Webchain:

hierarchical public key infrastructure (pki) The hierarchical
PKI is a time-tested concept known all too well from the X.509 Internet
Public Key Infrastructure [Coo+08]. However, utilizing a hierarchical
PKI scheme would require Webchain to rely on a rather centralized and
out-of-bound infrastructure that follows its own trust model. While it
may be a robust choice for the identity management in Webchain, it
contradicts Webchain’s distributed approach.

web of trust (wot) In contrast to the hierarchical structure of a
typical PKI, the concept of a Web of Trust allows users to infer trust in
an identity-to-key binding in a completely decentralized manner: users
validate and sign the identities of other users and thereby publicly state
their trust in an identity binding. This statement creates an edge in a
graph of trust relationships between users themselves. This graph can
then be used to create a trust relationship regarding a specific identity
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binding by traversing over multiple edges in the trust graph. Therefore,
the web of trust allows to validate identities by inferring trust from
other trusted users’ verdict. While the fully decentralized nature of
this model seems promising, it has proven to be a rather inconvenient
and hardly ever used solution in practice (e. g., in the web of trust of
OpenPGP [Cal+07]).

dns-based authentication of named entities (dane) Another
well-known method for managing the mapping of public keys to iden-
tities is DANE [HS12]. In DANE, X.509 certificates are attached to
respective entries in the domain name system (DNS) and secured via
DNSSEC [Are+05]. This allows to distribute certificate information
without the need for a central certificate authority (CA). Additionally,
bindings for storing user public keys are currently explored for the use-
case of OpenPGP public keys [Wou16]. When Webchain infrastructure
nodes—as it is usually the case on the World Wide Web—are already
addressed through DNS records, we consider DANE an appropriate
candidate for identity management that can be easily integrated in the
Webchain architecture.

decentralized identity management systems In recent years, a
number of identity management systems emerged that foster a more
decentralized trust model. For example, the CONIKS [Mel+15] system
provides end-user verifiable identity-key bindings and could be nicely
deployed in conjunction with Webchain infrastructure. However, other
proposals, such as Namecoin [@Nam19], Certcoin [FVY14], and Decen-
tralizedAnonymous Credentials [GGM14] build on existing blockchain
technologies to create a distributed ledger of identity mappings. While
generally suitable in regard to its decentralized trust assumptions, uti-
lizing these systems would introduce a lot of additional complexity and
external dependencies to the Webchain design.

11.5.2 Versioning

Given the Webchain design, we also support the ability to publish
revised versions of an article right out of the box. To this end, we extend
the block layout by a new field 𝑝, which points to the previous block
version. This block reference 𝑝 either can be left blank if the block is
the first instantiation of this article, or set to the block identifier of the
previous block. When propagating this new version of a block in the
network, infrastructure nodes need to check that the new block is signed
by the same author as previous versions, but otherwise treat the block
as usual. Since blocks are broadcast, all infrastructure nodes replicating
the previous versionwill eventually also get and replicate the new block.
They may choose to notify citing authors that a new version exists.
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11.5.3 Peer-to-Peer Network

As similar distributed ledger technologies, Webchain is built on a broad-
cast mechanism: every block, attestation, and join announcement is
propagated to every infrastructure node, which then verifies the item
according to its capabilities. This approach typically assumes an unstruc-
tured peer-to-peer network model in which every participating node
establishes connections to a random subset of neighbor nodes. While
such networks are known to be relatively robust, broadcast is an ineffi-
cient operation in this kind of networks. In proof-of-work blockchain
networks such as Bitcoin, delayed and inefficient block propagation can
have severe consequences on consensus stability [Ger+16]. However,
as Webchain uses a deterministic validator election, it does not face the
same challenge. In order to further reduce the effect of network-induced
delays, Webchain also introduces the aforementioned grace period Δ𝑔
that allows for network synchronization. Our basic prototype design
therefore implements an unstructured peer-to-peer network for block
propagation, while the Webchain systems may overall profit from a
more efficient and tunable approach, such as introduced in Chapter 5.

Moreover, the combination of deterministic validator election and
validator replication allows for a trivially improved procedure for look-
ing up specific data items in the peer-to-peer network: assuming every
infrastructure node does not only keep track of the validator identi-
fiers, but also of the respective IP addresses, it directly knows which
node to query for a specific data item. This method is in line with the
idea of distributed hash tables (DHTs), like Chord [Sto+01] or Kadem-
lia [MM02]. By trading space complexity for lookup complexity, the
algorithm allows for a 𝒪(1) lookup operation. While out of scope for
the present work, we think this extension to the Webchain protocol is a
promising direction for future research.

11.5.4 Steps Towards Deployment

As in recent years deliberate spreading of disinformation and reference
rot became more prevalent issues on the Web, authors and publishers
have an increasing incentive to increase readers’ trust in online publica-
tions. To this end, Webchain is a useful tool that provides individual
authors (e. g., bloggers and citizen journalists) as well as institutions
(such as news agencies and news sites) with the capabilities to publish
independently verifiable and authenticatable articles on the Web.

The Webchain prototype already offers a rudimentary web front-end
allowing for the editing and publication of articles. The interface is
based on Vue.js [@Vue20] and serves as an initial proof-of-concept. It
particularly shows that the Webchain architecture is able to integrate
with basic web technologies and content management systems, such
as Wordpress [@Wor19]. Many pre-existing publishing platforms and
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news outlets could therefore introduce support for the Webchain sys-
tem without much overhead, especially since the multi-ledger design
does not require all participants to process and store every piece of
data. Hence these platforms have an incentive to run Webchain nodes
themselves, which is why we envisage that the core network deploy-
ment would be made up by such hosted infrastructure nodes. However,
since Webchain is conceptualized as an open network and does not
require trust in particular nodes, enthusiasts could also opt to host their
own nodes, thereby contributing to the network’s resources and further
decentralization.3

In the following, we discuss the security properties of the Webchain
protocol and investigate what magnitude of deployment is necessary to
ensure secure timestamping even in the face of powerful adversaries.

11.6 webchain security

In the following, we discuss security-related properties of theWebchain
system and analyze the resilience of the timestamping algorithm in the
face of an attack.

11.6.1 Security Properties

Webchain provides the following security properties:

confidentiality, integrity Article content is not stored in the
Webchain system and only included as hashes, thereby keeping it confi-
dential. Hashing is also used for the construction of a block’s identifier
and Merkle root, which ensure the integrity of the given information.

availability, authenticity The availability of blocks and state data
is ensured through the validator replication scheme. The use of cryp-
tographic signatures makes sure that the authenticity of infrastructure
nodes and authors can be validated. As discussed, this also depends
on the presence of trustworthy identity management scheme.

non-repudiation, citation provenance Furthermore, the com-
bination of signatures and append-only replication allows everyone to
prove that a certain block was previously created by a specific author.
This proof of existence does not only yield non-repudiation of blocks, but
also citation provenance.

3 Note that while still capable of being run side-by-side with traditional Web server
infrastructure, the current Webchain prototype implementation (see Section 11.7.1)
already goes one step further and is able to run as a independent infrastructure node
following peer-to-peer principles.
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Figure 11.6: Number of trials needed for an adversary to find an input for
the PRNG that yields a designated validator set contained in her
fraction 𝜖 of controlled nodes.

11.6.2 Timestamping Security Analysis

In the following, we analyze the properties of the timestamping algo-
rithm in case of an attack. We assume an adversary trying to construct a
block with a forged timestamp. The adversary can spawn additional in-
frastructure nodes and hence controls a fraction 𝜖 of all active validator
nodes in a given epoch.4 In order to succeed with forging a timestamp,
the adversary can only try different combinations of input data, e. g., by
adding or varying certain parts of the content, until the deterministic
validator election yields 𝑘 validators which are exclusively controlled
by herself. As every run of the pseudorandom generator function is
statistically independent, the probability of choosing 𝑘 malicious val-
idators is 𝑝𝑘 = 𝜖𝑘. Assuming a uniform distribution of hash values, the
number of trials before succeeding can be estimated as 𝑝−1

𝑘 . However,
the distribution changes when we introduce validator redundancy 𝑟:
in case of allowing for a subset of at least 𝑘′ = 𝑘 − 𝑟 attestations, the
probability for a successful attack can be calculated as

𝑝𝑘′ =
𝑘

∑
𝑖=𝑘′

𝑃(𝑋 = 𝑖) =
𝑘

∑
𝑖=𝑘′

(𝑘
𝑖)𝜖𝑖(1 − 𝜖)𝑘−𝑖.

Section 11.6.2 shows the expected number of necessary trials for a
varying fraction of malicious active validators 𝜖 and 𝑘 ∈ {50, 100}
designated validators. For example, even when controlling a fraction
𝜖 = 0.5 of all validators, an attack is only possible after approximately
1.13 ⋅ 1015 and 1.26 ⋅ 1030 trials for 𝑘 = 50 and 𝑘 = 100, respectively.
Moreover, it is shown that redundancy significantly weakens security:

4 Note that depending on the identity management system, rate limiting node registra-
tions could mitigate spawning a large number of nodes.



11.6 webchain security 156

when allowing 𝑟 = 5 redundant validators (i. e., 𝑘′ = 𝑘 − 5), the num-
ber of trials is approximately 4.75 ⋅ 108 for 𝑘 = 50 and 1.59 ⋅ 1022 for
𝑘 = 100. As each trial involves calculating a number of hashes, these
numbers may be compared to a proof-of-work process, e. g., mining in
Bitcoin [Nak08]. As of March 2018, the biggest mining pool, BTC.com
has an aggregated hash rate of around 6⋅1018𝐻/𝑠 [@BTC18]. When we
assume these efforts to be equivalent, this would mean that the biggest
mining pool in Bitcoin could instantly run an attack on Webchain with
𝑘 = 50, given that it controls more than 50% of infrastructure nodes.
However, for the case of 𝑘 = 100, it would take such an powerful adver-
sary a much longer period of time, that is, approximately 2.10 ⋅ 1011𝑠
or around 6, 660 years. Then again, when redundancy is introduced,
this shrinks to around 45 minutes.

Clearly, there is a trade-off between the security and the reliability
of the system. Therefore, we further investigate this trade-off to infer
parameters rendering the forging attack infeasible, while still providing
an adequate level of reliability. Since the attacker has to find an appro-
priate input value before the underlying state changes at the start of
the next epoch, the time for running the attack is limited by the epoch
length. Therefore, by choosing an epoch length that is sufficiently lower
than the expected time needed for the attack, based on a given network
size 𝑘 and a desired redundancy factor 𝑟, this attack can be mitigated.

However, the shorter the epoch, the more epochs are created, hence
the higher the overhead in terms of space and message complexity.
Therefore, we propose to fixate the epoch duration at a reasonable de-
fault value, e. g., in the order of minutes to hours, and adjust 𝑟 with
respect to a given network size 𝑘. In the worst case, assume an ad-
versary with comparable computational capabilities as BTC.com and
in control of 50% of active validator nodes. Based on this adversary
model, Section 11.6.2 shows the average time needed for a successful
attack, depending on the parameters 𝑘 and 𝑟. Again, it can be seen that
the redundancy factor has a big impact on how fast the attacker can
conduct the attack. For example, if we assume a Webchain network of
just 𝑘 = 200 infrastructure nodes and a redundancy factor of 𝑟 = 20,
an attack would still take more than 4,685,000 years, well above any
reasonable epoch value. If we assume a network of 𝑘 = 150 nodes and
𝑟 = 10, timestamps would be still secure, since an attack would take
around 5,996 years. And, as mentioned before, for 𝑘 = 100 and 𝑟 = 5,
the system would still hold for approximately 44 minutes, which may
be considered insecure for an epoch length of 1 hour. Then again, given
we are considering the worst-case, five redundant validators would
probably still be fine for an epoch length of 10 minutes.

While the epoch length and 𝑟 should be adapted based on the require-
ments experienced in practice, it is expected that—if gaining traction—
theWebchain network would easily reach 100 nodes before drawing the
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Figure 11.8: Overview of implementation building blocks.

interest of a powerful attacker. Therefore, we propose an epoch length
of 10 minutes and 𝑟 = 5 as default parameters for the Webchain system.

11.7 evaluation

In the following, we introduce a prototype implementation and eval-
uate Webchain’s properties regarding resilience to node failures and
attestation delay.

11.7.1 Prototype Implementation

In order to proof the feasibility of the Webchain architecture, we im-
plemented a fully working prototype application consisting of approxi-
mately 6,000 lines of source code.5

The back-end and timestamping components are implemented in the
Go programming language [@Lan19] and utilize the LibP2P [@Sta19]
networking stack for basic peer communications. The author-facing
front-end is implemented as a browser-based web application that com-
municates and interacts with the distributed ledgers via an RESTful API

5 The source code and evaluation data are publically accessible at https://git.

tu-berlin.de/rohrer/webchain-public.

https://git.tu-berlin.de/rohrer/webchain-public
https://git.tu-berlin.de/rohrer/webchain-public
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provided by the back-end component. Section 11.7.1 gives an overview
of the implementation building blocks.

The back-end’s block service provides ledger-related functionality,
for which ECDSA cryptography based on Curve25519 [Ber06] and
SHA2-256 [FIP15] are employed. It can retrieve and verify blocks and
timestamps from the peer-to-peer network, as well as create new blocks
based on input from the WebAPI.

Timestamps are generated and validated by the timestamping service
(TSS). In order to get timestamps for new blocks, designated valida-
tors are chosen according to a random number generator based on the
ChaCha20 [NL15] algorithm. Note that the TSS itself is generally inde-
pendent of the block service implementation and can therefore issue
timestamps for arbitrary data. This allows for extended modularity,
as it only requires an adequate peer-to-peer module for membership
management functions, as well as the transmission and retrieval of
timestamping requests.

Users interact with the system via the web front-end, which interacts
with the WebAPI provided by the back-end component. The WebAPI
delegates all requests to the appropriate component and does not imple-
ment any business logic on its own. In addition to the interaction with
the citation system, it also exposes information about the underlying
peer-to-peer network. Users can view the address and public key of the
infrastructure node they are connected to, as well as information on the
neighbor nodes in the network.

The peer-to-peer module implements the aforementioned unstruc-
tured peer-to-peer overlay network to enable communication between
infrastructure nodes. In order to bootstrap the network, a list of initial
seed nodes are deployed with the prototype software. After connecting
to one or more seed nodes, joining nodes broadcast their own address
as well as a getPeers message. As an answer, they receive a list of known
nodes from the seed nodes. From this list, they randomly select 8 nodes
as their neighbors and store the other addresses for later use. If message
delivery to one of the neighbor nodes fails, nodes remove this neigh-
bor and try to connect to a new one, either from the stored addresses
or from new getPeers broadcast. To be able to quickly replace inactive
neighbors, the nodes broadcast getPeers messages in regular intervals
and store addresses they received over the network.

Based on this overlay network, the prototype implements a basic
broadcasting mechanism: in general, the network nodes forward all
received broadcast messages to each of their neighbors. However, they
keep track of seen messages and avoid duplicate transmissions. As each
the broadcast is meant to reach all nodes in the network and should do
so as fast as possible, we did not employ a time-to-live (TTL) counter
or similar limiting mechanism for the propagation of information. Nev-
ertheless, the prototype enforces a random delay for announcement
messages to reduce the load at epoch boundaries. To this end, instead
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Figure 11.9: Example Mininet topology with four infrastructure nodes N1,…,
N4.

of immediately broadcasting their announcements at the start of an
new epoch, nodes choose a random delay bounded at the maximum an-
nouncement delay. This is necessary, because otherwise all participating
nodes would broadcast their announcement at the same time, causing
an high peak load. This would be especially detrimental in an emulated
environment, where clocks are fully synchronized.

As described before, infrastructure nodes store a public-private key
pair used in the timestamping component. However, in our research
prototype implementation we opted not to predetermine a specific
identity management solution and hence chose to address and iden-
tify validators by their full public key. While this does not provide an
immediate trust relationship, it follows a trust-on-first-use model and
allows us to verify timestamping signatures without the need to resolve
identifiers to public keys.

The prototype implementation furthermore requires consistent epoch
length values in the whole network and assumes that the clocks of all
nodes are roughly synchronized in order not to be marked as failed
during validator election. As mentioned before, Webchain has a boot-
strapping problem: if no epoch state is available, no set of validators can
be chosen to sign and confirm timestamps. Because the announcements
for participation also have to be timestamped, no valid announcements
are possible in this state. This is the case for the first epoch, but also
when no, or less than 𝑘′, nodes announced their participation for any
epoch. Therefore, the prototype implementation provides an initial set
of fallback validators. If no valid announcements for an epoch are avail-
able, the epoch state is build from this set of bootstrapping peers, as if
they had announced their participation for the bootstrapping epoch.
From this point on, we require all bootstrapping peers to announce
their participation for the next epoch.

11.7.2 Evaluation Setup

In order to evaluate the Webchain prototype implementation, we cre-
ated experimentation scenarios using the Mininet [LHM10] network
emulator. Mininet allows for the creation of virtual network hosts and
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switches based on the standard Linux networking stack and utilizes the
OpenFlow [McK+08] software-defined networking (SDN) protocol,
resulting in highly realistic networking environments.

In order to recreate a networking setup capturing long distance (e. g.,
transatlantic) connections, we created a network topology following
the dumbbell model: it features two interconnected switches which
are themselves connected to a number of associated nodes that run
the Webchain prototype implementation. Latency-wise, we provision
this dumbbell topology with a large link delay between the two central
switches (40ms) and a relatively small delay (10ms) set for the links
connecting the infrastructure nodes themselves. Section 11.7.2 shows an
example of the topology with four nodes. This setup results in round-
trip times (RTTs) of approximately 120ms for long distance connections
and roughly 40ms for intracontinental connections.

Since Mininet emulates the network based on the actual application
code, all ourmeasurements are conducted based on real time. Therefore
it is of utmost importance to not introduce additional processing and
network delays by overloading the host machine running the evaluation.
Since both, the Webchain protocol and the underlying peer-to-peer
network stack utilize timeouts in various parts, artificial delays would
lead to unpredictable errors in our measurements, which could possible
distort the outcome of the evaluation. To avoid overloading, we never
fully utilize the capacity of the host machine. We furthermore limit the
CPU capacity every node is allowed to use and monitor the load while
running the evaluation.

Apart from the total number of nodes, the number of required val-
idators for each timestamp is a major limiting factor for our evaluation,
because it directly increases the number of created and verified signa-
tures, as well as the amount of necessary network traffic. While we do
not evaluate the validator performance in detail, this is backed by two
observations. First, while the cryptography used in the implementation
is considered fast (see [Ber08; Ber+11]), profiling shows, that nodes
spend a significant amount of time creating and verifying signatures.
Second, the monitored total load of the computer increases with the
number of required signatures and the total number of nodes. In a real
world deployment, those calculations would be done in parallel on a
large number of infrastructure nodes. While in our case a new process is
started for every node that allows for a certain degree of parallelism, the
extend of parallelism cannot easily be emulated on a single computer,
especially considering Mininet’s limited worker distribution capabili-
ties. Given these limitations, running on an Intel Xeon Processor 5130
with 32GB RAM, we can safely evaluate the Webchain system running
20 nodes with 𝑘 = 10 validators.

Since it is mandatory to sign timestamps by a large number of val-
idators, we need the Webchain system to be deployable in large scale.
Therefore, the system must be resilient against failing or malicious
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Figure 11.10: Timestamping errors in dependence of the number of failed
nodes. For comparison, error bars show the expected number of
errors and the associated variance.

nodes and at the same time be fast enough to be usable by a broad
user base. In the following, we therefore analyze how Webchain deals
with failing nodes given a configurable validator redundancy and what
magnitude of attestation delay we can expect from the timestamping
component for different values of required validator signatures 𝑘.

11.7.3 Resilience to Node Failures

In order to secure the Webchain system against unavailable nodes and
Denial-of-Service attacks, we introduced the concept of validator redun-
dancy. Without redundancy, a single unavailable or malicious validator
could cause an otherwise valid timestamp to fail, resulting in a times-
tamping error. With validator redundancy, a timestamp is valid if it
was signed by 𝑘′ = 𝑘 − 𝑟 instead of 𝑘 validator nodes, which allows
for 𝑟 failed validators. Note however, that even without redundancy
unavailable nodes do not necessarily cause a timestamping error in
every case, but only for the timestamps for which the unavailable nodes
are chosen as designated validators.

To evaluate whether the prototype implementation matches the ex-
pected behavior, we parametrize the system with an increasing number
of failing nodes and compare the number of failing timestamps to the
expected failure rate. To simulate a node failure, we deactivate the
Mininet link between the node and its switch, thereby removing it from
the topology. In order to determine the expected number of timestamp-
ing errors, we calculate the probability of a failed timestamp as well as
the corresponding expected value and variance for the total number
of timestamps tried. With redundancy, a timestamping error is only
possible if the number of chosen but failed validator nodes exceeds
𝑟. Defining 𝑋 as the number of chosen but failed validator nodes, the
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Figure 11.11: Attestation delay depending on the number of required validator
signatures 𝑘.

probability of a failure 𝑃(𝑋 > 𝑟) is following a hypergeometric distribu-
tion, i. e., 𝑋 ∼ 𝐻𝑦𝑝(𝑁, 𝐹, 𝑘) with 𝑁 being the number of participating
infrastructure nodes and 𝐹 number of failed validator nodes.

Section 11.7.3 shows the number of timestamping errors for an in-
creasing number of failed nodes compared to the number of expected
errors.

For every number of failed nodes, we timestamped 𝑛 = 100 random
block identifiers with 𝑘 = 10 and 𝑟 = 3. We therefore only show results
for 𝐹 ≥ 4 and until every timestamp fails with high probability (𝐹 =
14). Furthermore, an error is recorded if not all required signatures
are received by our measurement node within a timeout period of five
seconds, which is of course significantly larger than any expected and
observed delays in the network.

In Section 11.7.3, the number of errors is charted as bars, while the
expected errors and their variances for 𝑛 timestamps are shown as
dots and whiskers. We can see that the implementation behaves as
expected, as the number of errors never exceeds the bounds of the error
distribution variance. Moreover, the number of errors is lower than
expected in almost every case, indicating that Webchain’s resilience to
node failures is exceeding the expectation.

11.7.4 Attestation Delay

Every new block in the Webchain system has to be timestamped before
it is accepted by other nodes. The delay introduced by the attestation
process is therefore a major factor for the time it takes to publish new
blocks, which is an important part of the scalability and usability of
the system. It also determines the possible resolution of the times-
tamping system, since a long delay limits the time interval in which a
timestamped block can be accepted and signed by the chosen validator
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nodes. The attestation delay depends on the propagation delay and
the time of cryptographic operations. Both of these factors are however
determined by the number of required validators 𝑘. Also, choosing a
large 𝑘 value allows for longer epoch times, since the epoch time limits
the time available for an brute-force attack on the system, as discussed
in Section 11.6.

We therefore evaluate the attestation delay in dependence of different
values of 𝑘. In order to avoid interference from other timestamps and
validator announcements, we base the delay measurements off a single
epoch. Because the implementation returns a timestamp as soon as
𝑘 − 𝑟 signatures are available and we are interested in the time we
need for 𝑘 signatures, we disable validator redundancy, i. e., 𝑟 = 0. For
every value of 𝑘, 𝑛 = 100 random block identifiers were timestamped
and propagated in the network. We verified that every timestamp was
successful by validating them after the measurements were finished.
Since we evaluate with 𝑟 = 0, real-world delays are expected to be lower
in practice.

Because every time the block identifier and 𝑘 signatures are dissemi-
nated in the network, 𝑘 + 1 broadcast operations are expected. of which
𝑘 broadcasts can be done concurrently after receiving the block identi-
fier. Because of the concurrency of the broadcast, we expect the increase
in delay per additionally required validator to be subadditive. Note
however, that in contrast to a real-world deployment, the evaluation
setup cannot provide the same level of concurrency since it is limited by
the number of provisioned CPU cores and hence limits the CPU time
for each Webchain instance. This is especially important for calculating
and verifying signatures. For the evaluation we can therefore expect
an steeper increase in delay when the number of required signatures
exceeds the number of CPU cores available.

Section 11.7.4 shows the evaluation results for 𝑘 ∈ [1, 10] required
validators. The boxplot depicts the median value and the interquartile
range of measured delays, as well as maxima and minima. For com-
parison, mean values are added as dots. Note that the measurements
confirm our expectations: for values of 𝑘 smaller than the number of
available CPU cores, the additional delay increases slowly. This is fol-
lowed by a higher increase in delay for every 𝑘 after that. This can also
explain the much wider range of delays we observed for values of 𝑘
exceeding the number of CPU cores: if the CPU load gets too high,
there is a higher probability for a node to get stalled, resulting in higher
response times.

As discussed in Section 11.6, in order to resist large-scale forging
attacks, Webchain should be able to scale to 𝑘 ≥ 100. Therefore, the
observed subadditivity property is an important property of the system.
While our evaluation confirms this property for small values of 𝑘, it
also shows the limits of our evaluation setup. In order to circumvent
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such effects, future experiments should be deployed on a testbed of
peer-to-peer nodes.



12
CONCLUS ION

In this thesis, we studied blockchain scalability from a computer net-
working perspective.

In the first part, we researched the performance and reliability of the
networking layer and showed that it is deeply interconnected with the
stability and security of the consensus layer. In Chapter 3 and Chap-
ter 4, we conducted longitudinal measurement studies on real-world
peer-to-peer networks and created simulation models that enable the
in-depth analysis of these complex infrastructures. Moreover, we pro-
posed improvements to the way blockchain networks propagate block
and transaction data in Chapter 5. To this end, we could show how a
decentralized but structured approach to data dissemination can help
to increase the efficiency and performance of the networking layer.

In the secondpart,we studied payment channel networks and showed
that their performance, security, and privacy properties are closely
correlated with the characteristics of the emerging channel graph. In
Chapter 7, we studied the properties of the Lighting Network’s topol-
ogy and analyzed its resilience towards random failures and targeted
attacks. We found the network to be potentially susceptible to partition-
ing attacks by an adversary strategically targeting failure points in the
topology. Moreover, we explored the potential benefits of multi-path
route selection in Chapter 8. In Chapter 9, we studied the possibility of
timing attacks on privacy in PCNs. We showed that an on-path attacker
may exploit the timing behavior of multi-hop message exchanges in
order to infer payment endpoints with high precision and recall. This
once more emphasizes the importance of maintaining a decentralized
channel topology. To this end, we studied different attachment strate-
gies in Chapter 10. We empirically analyzed their benefits for end users
and service providers, and showed that there is an inherent conflict
of interest between the egoistical short-term view of node operators
and the overall positive long-term impact of attachment strategies that
champion decentralization.

In the third part, we explored how the foundational principles of
blockchain networks can be applied to build more resilient distributed
systems beyond the cryptocurrency use case. To this end, we showed in
Chapter 11 how a decentralized system based on peer-to-peer network
technology can be utilized to render the authenticity and provenance
of public data verifiable.

The inherent trade-offs between the scalability, resilience, privacy,
and decentralization blockchain networks have been re-emerging focus
points throughout our research. While we have seen them unfold in

165



conclusion 166

different forms and magnitudes, the consequences of these trade-offs
are often difficult to capture and determine. In this regard, the value of
decentralization seems to be particularly hard to quantify, which might
be the reason why this aspect is always in danger of being traded in
for the sake of scalability and performance. However, as we have seen
time and time again that the absence of sufficient decentralization can
have severe consequences regarding resilience and privacy, we conclude
that furthering the decentralization of distributed systems remains an
ongoing challenge for the research community.
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