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Preface

Man schreibt nicht, weil man etwas zu sagen hat, sondern
weil man Lust hat, etwas zu sagen.
—FEmile M. Cioran

This text is my PhD thesis. It is concerned with several aspects of metastability in stochastic
dynamics with a particular focus on the dynamical behavior of disordered mean field spin
systems at finite temperature.

Motivation

Phenomenology. Metastable behavior of a complex system, either natural or artificial, is
causal for a number of interesting phenomena as diverse as delayed freezing of super cooled
liquids, folding of large bio-molecules, kinetics of chemical reactions, changes in global cli-
mate systems, apparent stability of stock markets, to name but a few. Despite such a diversity
of scientific areas ranging from physics, chemistry, biology to economics in which metastable
behavior can be observed, the common feature of all these situations is the existence of mul-
tiple, well separated time scales. On the corresponding short time scales, the system can only
explore at limited part of the available state space. Depending on the time scale under consid-
eration, the state space can be decomposed into several disjoint regions, in which the system
is effectively trapped. Within such a region, that may be viewed as metastable set to which
one may associate a metastable state, the system appears to be in a quasi-equilibrium. At larger
time scales, rapid transitions between metastable states occur which are induced by random
fluctuations. The main mathematical task we want to address is to analyse such a system on
long time scales. In particular, we need some understanding of how the process manages to
escape from a metastable state.

In order to illustrate the phenomenon of metastability in more detail, let us consider the
dynamical behavior of a ferromagnet close to its first order phase transition, see [97, [94]. In
the framework of equilibrium statistical mechanics, the defining characteristic of a first-order
phase transition is a discontinuity in an extensive variable, such as the magnetization, as a
function of an intensive variable, for instance the magnetic field.

It is well known that for a ferromagnet above the critical temperature, 7., there exists an
unique paramagnetic phase. Experimentally, one observes that the magnetization m(h) van-
ishes when switching off the external magnetic field h, i.e. m(h) — 0 as h — 0. Below T,
the behavior of the system is markedly different. Depending on whether the external field
approaches zero from below or from above there exist two different phases that can be distin-
guished by their different magnetization,

1}%?(} m(h) = my > 0, 1hl’rr% m(h) = m_ < 0.

This phenomenon is called spontaneous magnetization. Now, consider the following exper-
iment. Suppose the system is prepared in such a way that it reveals the magnetization
m(0) = m. After switching on a small negative magnetic field || < h., one may observe that
instead of undergoing a rapid phase transition the system remains in an apparently stationary
state for a (macroscopic) long time that is characterized by a positive magnetization m(h) > 0.
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This situation corresponds to a metastable state. In contrast to that, the magnetization of the
equilibrium state has the same sign as the external field h < 0.

In order to avoid the impression that a metastable behavior can be described only by con-
sidering static aspects, e.g. an analytic continuation of the critical curves in the phase diagram,
let us stress the fact that metastability is a dynamical phenomenon.

For this reason, let us now describe the dynamical behavior of a magnetic system in a
metastable state. On a microscopic level, the magnetization of an individual (classical) spin
can change its sign from +1 to —1 and vice versa induced by internal thermal perturbations.
For this reason, at any time small droplets of downward pointing spins appear in a ”sea of
upward-pointing spins”. While the spins in the bulk of such a droplet become aligned with
the external field, spins at the surface feel both the negative external field and an positive
field coming from spins outside the droplet. In other words, there is a competition between
the gain of energy in the bulk of a droplet and the loss of energy at its surface. This causes
the dissolution of small droplets whereas a large droplet, once created, can be seen as a gate
through which the system escapes rapidly from the metastable to the stable equilibrium state.
However, the spontaneous formation of a sufficiently large droplet is a rather rare event which
may be seen as an explanation that an escape from a metastable state can only be observed on
macroscopic time scales.

Metastability and diffusions. From a mathematical point of view, "Kramers’ equation has
become the paradigm of metastability” []. For this reason, we describe in the sequel briefly
some aspects of its derivation and some of the rigorous mathematical tools that have been
invented in order to study it. Due to the interdependence between experimental observations,
rigorous/non-rigorous theoretical analysis and computer simulations of metastable systems,
it is rather challenging to give proper credit to the people involved. In particular, the review
presented below is far from being complete. For more a detailed review and an outlook of
future challenges, we refer to the recent papers [12} [99].

The origin of this equation can be traced back to the study of kinetic of chemical reactions.
In most real-world applications, metastable systems are described by many-particle systems.
Since the dynamics of a many-particle system is very difficult to analyse either analytically
or numerically, model reductions play an important role. For instance, the full phase space
of a system describing the dynamics of a chemical reaction has ~ 10?3 degrees of freedom.
Therefore, instead of studying the dynamics on the high-dimensional surface in the full phase
space 3, one of the first model reduction steps is to consider the dynamics only along the
so-called reaction path x = (X;, X;) € ¥ in an effective potential that takes into account
the interaction with the (thermal) reservoir. As a consequence of such a projection from X
to x, the resulting dynamics is in general described by a non-Markovian process [57, 58].
Assuming additionally that the noise correlation times in the reservoir are extremely short,
one can further use a Markovian approximation for the reduced dynamics [116].

These reduction steps lead to the first mathematical model for metastability proposed in
1940 by Kramers [[78]] in order to describe a chemical reaction. It consists of a classical particle
of mass one moving in an one-dimensional asymmetric double-well potential U under the
influence of Gaussian white noise and friction with coefficient v which models effectively the
thermal reservoir at temperature 7'. Its equation of motion is given by

771X = —X - U'(Xy) + V2e By,

where the parameter ¢ = £(7) is temperature dependent and tends to zero when 7" approaches
the absolute zero. In the limit when the friction becomes infinitely strong, this equation results

IBovier [12] p.2]
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in the simple, one-dimensional diffusion equation

dX; = b(X,)dt +v2edB, (0.1)
to which we refer to as Kramers’ equation, where b(z) = —U’(x) and B; is assumed to be

a Brownian motion. Notice that local minima of U correspond to metastable states/points
in this model. Kramers studied various interesting questions in the context of this model.
In particular, he identified the mechanism of noise-assisted reactions and derived an explicit
formula, also called Kramers formula, for the averaged transition time from the local minimum
a to the global minimum b passing through the maximum z that lies in between them,

2m 1

TS (5 (U(2) U(a))) (14 0:(1)). (0.2)
Based on experimental data, Arrhenius had already suggested in 1889 that the reaction-rates
are proportional to the inverse of the temperature on logarithmic scales [2]. The exponential
term in reflects Arrhenius’ law. Let us now have a look at the prefactor. In comparison
with a sharply-peaked maximum, it is more likely that the particle, when slightly passing by a
flat maximum, returns to its starting well. On the other hand, in a flat minimum the particle
gets less often close to the barrier than in a peaked one. This explains why a smaller curvature
of the local minimum as well as the maximum leads to a larger averaged transition time.

Let us remark that, in the context of reaction rate theory, Eyring had given previously a
heuristic derivation of the prefactor based on quantum and classical statistical mechanics com-
putations expressing the prefactor as the ratio of the partition function of the reactants and
the "activated complex”, respectively, [47]]. For a discussion of past and possible future devel-
opments in the reaction rate theory we refer the reader to the review by Hinngi, Talkner and
Borkovec [61] and the recent paper by Pollak and Talkner [[99]].

In the context of randomly perturbed dynamical systems, generalizing Kramers’ equation
to higher dimensions, various dynamical aspects concerning the exit problem of a domain
were first analysed rigorously in the seminal work by Freidlin and Wentzell [111}, [51]]. They
invented the idea to use large deviations in path space as well as to consider a Markov chain
with exponential small transitions to model effectively the jumps between different attractors.
Let us denote by I' the set of all path, v : [0,7] — R? with arbitrary 7. Employing large
deviation principles in path space, one can control the probability that the process, { X;}, stays
close to a given path v € T" over a time interval [0, T, in the sense that

E, [Tb} =

€ ln]P’[supte[O’T] I1X: — %l <] = —I(y)+ o(1), (0.3)

for § > 0and I : T' — R, a lower semi-continuous function with compact level sets. For
studying a transition between the disjoint neighbourhood A, B of two different local minima,
the task is to compute the optimizer of the variational problem inf.. 4, 5 () and to analyze its
properties. Notice the analogy, at least to some extend, between this approach and the reaction
path considered previously. Various interesting aspects of metastability, e.g. properties of the
typical exit path and the asymptotic exponential distribution of exit times, was later proven
for random perturbations of dynamical systems of Freidlin-Wentzell type in finite dimensions
[52], infinite dimensions [24, 48}, 20] and on Riemannian manifolds [107]] by means of large
deviations in path space. This method has been proven to be robust and rather universal
applicable in many different model contexts [[77), 92} [93]]. For an in-depth overview we refer
to a recent monograph by Olivieri and Vares [[94].

A limitation of large deviation methods is its precision. It allows to compute for instance
mean exit times only up to an multiplicative error of order exp(o.(1)). For this reason, it is
not possible to resolve the behavior of the process near the saddle point. However, this is an
essential task in order to derive rigorously the prefactor in the Eyring-Kramers formula, the
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higher-dimensional analog of (0.2). An alternative to the method of large deviations in path
space, yielding more precise results beyond logarithmic equivalence, is the potential theoretic
approach to metastability, systematically developed by Bovier and co-authors, see [10, [11] for
a detailed introduction. Its key idea is to express probabilistic quantities of interest in terms
of capacities and use variational principles to compute the latter. In particular, for reversible
diffusion processes of Freidlin-Wentzell type, Bovier, Eckhoff, Gayrard and Klein demonstrated
in [[17] that sharp estimates of capacities can be easily obtained. As a consequence, they gave a
first rigorous proof of the prefactor in the classical Eyring-Kramers formula for dimension d > 1
and sharp asymptotic estimates of the exponentially small eigenvalues. Later, Berglund and
Gentz relaxed the assumptions on the relevant saddle point allowing certain non-degeneracies
156].

Recently, Helffer, Nier and Klein have developed a new analytic approach based on hypo-
elliptic techniques initially developed for the regularity analysis of partial differential equations
[63]. In the reversible diffusion setting and under suitable assumptions on the potential U,
they derived rigorously a complete asymptotic expansion of the mean hitting times in powers
of ¢ using the so-called Witten complex [62].

Metastability and model from statistical mechanics. In the sequel, we will give some
more points of the enormous work on metastability that has been done in the past 40 years. In
contrast to the diffusion setting, where metastable states corresponds to local minima of the
potential U, in models coming from statistical mechanics the question of how to characterize
metastable states, and how to identify them in a given model context is really an issue.

A first rigorous formulation of metastable states, taking the dynamical aspect into account,
dates back to the work of Penrose and Lebowitz in 1971 on the van der Waals limit of
Kac potentials [96, [97]. Subsequently, early results on the metastable behavior of the two-
dimensional Ising model were obtained by Capocaccia, Cassandro and Olivieri [22].

In [23] Cassandro, Galves, Olivieri and Vares proposed a different approach to metastability
that is based on the pathwise analysis of the dynamics. As a first examples, they demonstrated
the efficiency of this concept in the Curie-Weiss model describing its dynamical properties.
In the sequel, this approach was successfully applied to more realistic models. In the pio-
neering works [89, [90], Neves and Schonmann studied the metastable behavior of the two-
dimensional Ising model under Glauber dynamics in finite volume and very low temperature.
This work was later extended to higher dimensions [3], [25], infinite volume but low temper-
ature [32] [33], infinite volume and fixed temperature but vanishing external field [105] and
probabilistic cellular automata [28]. In contrast to Glauber dynamics, Kawasaki dynamics is
conservative, i.e. the total number of particles is fixed. In a series of papers den Hollander et
al. [35}[34] and Gaudilliere et al. [54] investigated in the nucleation and metastability for
particle systems under Kawasaki dynamics in a large box in two and three dimensions at low
temperature and low density.

A more recent approach to metastability was developed by Bovier, Eckhoff, Gayrard and
Klein [15} [16]. Based on techniques from potential theory, this approach allows to compute
sharp estimates for metastable exit times and their asymptotic exponential distribution. More-
over, it establishes quantitatively precise relations between small eigenvalues of the generator
associated to the dynamics and mean exit times of metastable domains. In the stochastic Ising
model at low temperature, it yields sharp results that go far beyond the logarithmic equiva-
lence obtained by the pathwise approach [[19]. This technique was also used to sharpen the
previously obtained results on the Kawasaki dynamics in the low temperature regime in a
finite box [[13]] and to prove the first rigorous results in the case of growing boxes [14].

Beside spin systems at very low temperature, the investigation in the dynamical behavior of
disordered mean field systems is of particular interests. One of the simplest model, from a static
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point of view, that has been studied intensively in the past, is the random field Curie-Weiss
model at finite temperatures. Mathieu and Picco [85] and Fontes, Mathieu and Picco [50] first
analyzed the long-time behavior of this model in the case where the random field can take only
two values +e. By using spectral methods, they obtained the leading exponential asymptotics
for metastable exit times. Based on the potential theoretic approach Bovier, Eckhoff, Gayrard
and Klein [15] improved the previous results by establishing sharp estimates of transition
times between metastable states. They consider the case where the distribution of the random
field is discrete but assumes finitely many values. As long as the random field assumes arbi-
trary values in a finite set, the dynamical behavior of this model can be described effectively
by a Markovian dynamics on a lower-dimensional state space. Finally, in two recent papers
[6, [5], Bianchi, Bovier and Ioffe analyzed first the metastable behaviour of the Curie-Weiss
model at finite temperature in the case of random fields with continuously distributions. By
exploiting a dual variational representation of capacities in terms of unit flows, due to Berman
and Konsowa [4]], they derived in [6] first sharp estimates on averaged metastable exit times
including an explicit expression for the prefactor. Secondly, by means of coupling techniques,
they showed in [5] that mean metastable exit times are almost constant as functions of the
starting configuration within well chosen sets. Additionally, they proved the convergence of
the law of normalized metastable exit times to an exponential distribution.

An outline of this thesis

By now, we have reached a fairly comprehensive understanding of metastable phenomena
in at least two different settings: stochastic dynamics of spin systems in the low temperature
regime and mean field models at finite temperature. A crucial feature of models at very low
temperature is that i) metastable states correspond to local minima of the Hamiltonian and ii)
the entropy of paths does not play a role, i.e. the transition between metastable states A, B is
realized by microscopic paths in a arbitrary small tube around the optimal microscopic path
that is given as the minimizer in the variational problem inf..4_,5 I(y). On the other hand,
in stochastic spin systems at finite temperature the entropy of paths really matters. Namely,
not only individual microscopic paths have a vanishing small probability but their probability
of stay, say, in a tube with radius § > 0 around a given microscopic path is very small. For
this reason, one has to lump enormously many paths together in order to be able to describe
a transition between metastable states. This is usually done by introducing a macroscopic
variable and analyzing the dynamical properties of the resulting process. A characteristic
feature of mean field models is that the induced dynamics on the coarse-grained level is still
Markovian. In such a case, i) metastable states correspond to local minima of the free energy.
More important is the fact that ii) by means of the macroscopic variable the dimension of the
state space underlying the induced dynamics is diminished, i.e. it remains to study essentially
the metastable behavior of a random walk in the free energy landscape. To some extend, this
reduction procedure leads to a setting comparable with a low temperature regime where the
role of the temperature, however, is replaced by the volume.

The purpose of this thesis is to study metastability for a class of stochastic spin systems at
finite temperature which are not exactly reducible to a low-dimensional model via lumping
techniques. Our main objective is to extend the potential theoretic approach to metastability
for such kind of models by identifying key ingredients for deriving sharp estimates on

o the expected time of a transition from a metastable to a stable state,
e the distribution of the exit time from a metastable state,
e small eigenvalues of the generator.



X PREFACE

While the first four chapters of this thesis focus on the general concepts of this approach, a real
test of these ideas comes with chapter[5 where we apply this approach to a simple disordered
spin system.

Chapter [1] is concerned with some aspects of the profound connection between Markov
processes and potential theory that serves as a basis for the potential approach to metastability.
The main idea of this approach to express probabilistic objects, e.g. mean hitting times, first
in terms of solutions of boundary value problems. Instead of trying to solve approximately
the resulting equations, the second idea is to characterize the solution in terms of capacities
and equilibrium potentials. Notice that in the setting, we are interested in, the formula for the
mean hitting time of a set B when starting from A is only useful if A, B are sufficiently large.
However, in such a situation, strict renewal equation breaks down that are crucial to control
the equilibrium potential. One of the main objectives in the first chapter is the derive various
averaged renewal equations that will be important in later chapters. In order to emphasis the
link between probability and potential theory, we give for every statement both a probabilistic
and two different analytic proofs.

Chapter [2] is mainly dedicated to establish pointwise estimates of various probabilistic ob-
jects. In situations where the process returns very often to the starting set A before escaping
to the set B, one expects that the mean hitting time of B is almost constant as a function of
a starting configuration o € A. In a recent paper [5], Bianchi, Bovier and loffe addressed
this question for a class of Markov chains with state space {—1,+1}" by means of coupling
and splitting techniques. The main objective in the second chapter is to generalize the cou-
pling construction to a class of Markov chains with state space {1,...,¢}". In particular, we
demonstrate that the splitting techniques, introduced in [5], are rather universal applicable.
As a byproduct, we obtain rough estimates on the oscillations of harmonic functions within
certain sets. Let us point out that these estimates are the second key ingredient in order to
derive sharp bounds on mean hitting times.

In Chapter [3]we introduce the notion of a set of metastable sets. This definition is a natural
generalization of the set of metastable points, first introduced in [[15]], and will be the start-
ing point for our further investigations. Notice that in the context of reversible diffusions a
similar generalization of metastable points was already discussed in [10]]. One advantage of
the potential theoretic approach to metastability is that it suffices to establish sharp bounds
on capacities and to derive rough bounds on the corresponding equilibrium potentials in or-
der to compute precisely metastable exit times, see [9, [11]]. The later is previously done by
means of exact renewal equations. Equipped with the results obtained in the first two chap-
ters we demonstrate how averaged renewal equations combined with the rough estimates on
the regularity of harmonic functions can be used to compute precisely the mean exit time
from a metastable set and to prove the convergence of normalized metastable exit times to an
exponential distribution. Notice that similar ideas were already used in [17] and [5].

In Chapter [4 we investigate the relation between small eigenvalues of the generator and
mean hitting times of certain metastable sets. Previously, in the study of reversible diffusions
on R? or Markov chains on finite state spaces, a sharp link between metastable points and
small eigenvalues of the generator could be established [18] [16]]. Let us stress the fact that
the method used in [18] is based on regularity properties of eigenfunctions. However, in
the setting we are interested in, such sufficient control of the oscillations of eigenfunctions
within certain sets is still be missing. For this reason, we invent a different approach that
is based on an a posteriori error analysis and pointwise estimates of equilibrium potentials.
Assuming that there are at most as many low-lying eigenvalues as metastable sets and taking
a non-degeneracy condition into account, this approach allows to associate to each metastable
set one simple eigenvalue of the generator. Moreover, every such eigenvalue is equal to the
inverse of the mean exit time from this set up to exponentially small errors.
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As an application of the theory developed above, we study in the final Chapter [§ the dy-
namical behavior of the random field Curie-Weiss-Potts model at finite temperature and with
a continuous distribution of the random field. This model belongs to the class of disordered
mean-field spin systems that cannot be reduced exactly to a lower-dimensional system. Since
the free energy landscape in the thermodynamic limit is deterministic, from a static point of
view, is model is one of the less disordered. The author’s contribution in this chapter is to gen-
eralize the results that were previously obtained in the study of the random-field Curie-Weiss
model, see [6].
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CHAPTER 1

Basic ingredients of the potential theoretic approach

In this first chapter, we present some aspects of the profound connection between Markov
processes and potential theory. These serve as a basis for the potential theoretic approach to
metastability developed systematically by Bovier, Eckhoff, Gayrard and Klein in [15} [16]. In
later applications, we are mainly interested in the metastable behavior of processes coming
from statistical mechanics. Typically, the state space for such kind of processes is large but
finite. For this reason, we focus our attention to the study of stochastic processes on finite
state spaces and in discrete time throughout this thesis. Let us emphasize that the potential
theoretic approach to metastability is neither limited to finite state spaces nor to processes in
discrete time. For instance, in the study of local Kawasaki dynamics in finite volumes with
open boundary conditions [13]] and in volumes that are growing to infinity [[14]] this approach
was successfully applied to Markov chains in continuous time. In the context of diffusion
processes in RY, the first rigorous proof of the classical Eyring-Kramers formula [17] and the
precise control of the small eigenvalues of the associated generator [[18} [45] rely as well on
this method.

This chapter is organized as follows. In Section [I.1I] after giving a brief introduction to
classical potential theory and explaining its relation to probability theory, we specify the setting
that is actually used in later applications. In Section [I.2] we treat the Dirichlet problem of
finding a function which solves a Feynman-Kac-Poisson equation in a given region and assumes
the values of a prescribed function at the boundary. Markov chains can be used to characterize
the solution of such a Dirichlet problem and to prove existence and uniqueness. Various
applications of this probabilistic representation are given in Section [I.3l A different way to
represent the solution of a Dirichlet problem is in terms of the Green function that will be
introduced in Section[I.4] As presented in Section[I.5] one major achievement of the potential
theoretic approach is the observation that instead of searching for an approximate solution to
a Dirichlet problem, the solution can alternatively be represented in terms of capacities which
satisfy variational principles. As we will see in Section[I.6land 1.7} the formulation in terms of
dual variational principles leads to the derivation of upper and lower bounds for the solution
of the Dirichlet problem. The final Sections[I.8]and[1.9deal with averaged versions of renewal
equations and the almost ultrametricity of capacities which will be important in later chapters.

Contributions in this chapter. Most of the material presented in this chapter is of prepara-
tory value for subsequent chapters. In this respect, this chapter does not contain major new
contributions to the understanding of the fundamentals of the potential theoretic approach.
Nevertheless, the author contributes some, to the best of our knowledge, novel pieces to this
subject:

o three different proofs of a lemma that allows to split the mean hitting time of a set B
starting in A into the contributions coming from the returns to the set A and the time
it takes in average to hit B without returning to A, see Lemma

o three different proofs of an averaged renewal equation for hitting probabilities and
for the Laplace transform of hitting times, see Section [1.8]

1



2 1. BASIC INGREDIENTS OF THE POTENTIAL THEORETIC APPROACH

e a generalization of the statement about almost ultrametricity of capacities, see Lemma
and a purely analytic proof thereof.

Smaller bits and pieces are:

e a presentation of a simple proof of the Dirichlet principle based on the Cauchy-
Schwarz inequality and a slightly generalization of the Thomson principle in terms
of super-harmonic functions, see Section[1.6l

1.1. Introduction

One of the fundamental problems in potential theory is the classical Dirichlet problem. It
originates from the study of physical questions coming from electrostatics. The investigation
in existence and uniqueness of solutions to it has a long and venerable history which can be
traced back e.g. to the work of Dirichlet [38]], Poincaré [98]], Kellogg [75]], Lebesgue [80].
Various analytic methods have been invented to construct a solution: Schwarz alternating
method, variational methods to name only two of them. The idea of Schwarz’s alternating
method is to decompose first the domain into two or more sub domains having a non-empty
intersection. In a second step, similar Dirichlet problems are solved alternately on these sub
domains, those values on the additional boundaries are given by the previous solution. In
comparison to the Schwarz alternating method, the variational method is based on the fact
that the solution of the Dirichlet problem assuming certain values at the boundary is also given
as the minimizer of an appropriate energy functional.

Notice that, in general, the Dirichlet problem is not always solvable without assuming a
certain regularity of the domain’s boundary. This fact was observed at an early stage by con-
sidering the example of an punctured sphere or a sharp inward-pointing cups (Lebesgue’s
thorn).

A first probabilistic solution to the classical Dirichlet problem was given by Kakutani [72].
His pioneering work and the extensive study by Doob [41]] and Hunt [67, 68, 169] established
the profound connection between potential theory and Markov processes. To some extend
these two theories are mathematically equivalent. This allows to translate a proof of a result
in one theory into a proof of a corresponding result in the other theory, which we will demon-
strate in Section [L.5] and There is now a large literature on (transient) potential theory
and Markov processes, including books e.g. by Blumenthal and Getoor [8]], Port and Stone
[101]], Karatzas and Shreve [73| chap. 4] and the comprehensive treatment by Doob [43]]. A
nice introduction into this topic can be found in [102]] and [27].

In the context of Markov chains on finite or denumerable state spaces, the connection to
(recurrent) potential theory was developed by Doob [42] and Kemeny, Knapp and Snell [76].
While classical potential theory had already been well understood before its connection to
Brownian motion was discovered, Markov chains and discrete potential theory were more or
less simultaneously studied. Historically, in his famous paper "Random walks and electric
currents in networks” [88]], Nash-Williams first linked the property of transience or reccurence
of an irreducible reversible Markov chain to structural properties of the underlying electric
network. While Pélya [[100] first proved by using purely probabilistic arguments that a simple
random walk on Z¢ returns to its starting position with probability 1 if and only if d < 2, Nash-
Williams showed that this reccurrence holds on graphs if and only if the effective resistance
between the starting position and infinity of the corresponding electric network is infinite.
Although the discrete potential theory has proven to be a robust tool to study properties of
Markov chains, its application attracted new attention with the beautiful elementary book by
Doyle and Snell [44]. Since that time various aspects of Markov chains have been studied
exploiting the interdependence between probabilistic objects and its analytic counterparts and
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there is now a large literature on this topic including books e.g. by Woess [[114], Telcs [108]],
Levin, Peres and Wilmer [|82], Lyons and Peres [83].

The potential theoretic approach to metastability is based on the observation that most
quantities of physical interest can be represented as solutions of certain Dirichlet problems with
respect to the generator of the dynamics. More important is the fact that the corresponding
solutions can be expressed in terms of capacities which satisfy variational principles. With
proper physical insight, these variational principles allow us to derive reasonable upper and
lower bounds on capacities.

Since various notions used in the potential theoretic approach are borrowed from electro-
statics we will now explain briefly their physical background. For more details, we refer to the
classical physical literature on this subject, see [71}, [106].

Electrostatic interpretation. Many problems in electrostatics appearing in practical appli-
cations concern finite regions of space, i.e. bounded connected open subsets D C R? having a
smooth boundary 9D with surface measure .S, with or without charges inside D and with pre-
described values given by a function on the bounding surfaces 9D. The connection between
a distribution of free charges ¢(dx) inside D and the values of the electric displacement D on
0D is given by Gauss’s law. The latter states that the flux of the electric displacement across
the boundary is proportional to the sum of free charges enclosed by D. Hence, by Gauss’
divergence theorem,

/DdivD(x)dz = /6D<D(x),n(x)>5(d:r) = /Dq(z)dx, 1.1

where we assume that the signed measure g(dz) has a density, i.e. ¢(dz) = g(z)dz. Here,
n(x) denotes the outwardly directed surface normal of unit length for the surface 9D at z. In
the absence of a dielectric material, the constitutive relation between the electric field E and
the electric displacement D is given by D(x) = ¢¢ E(x), where g9 > 0 is the permittivity of
free space.

On the other hand, Faraday’s law of induction in its differential form relates the curl of the
electric field to the time rate of change of the magnetic flux that vanishes in a static situation.
Thus, this leads to the Maxwell equations

div D(z) = q(x) and rot E(x) = 0, xeD (1.2)

which imply that there exists a potential ¢: D — R such that E = —V¢. One of the common
problems in electrostatic arising from (1.2)) is the determination of the potential ¢ in a vacuum
given a charge distribution ¢ inside of D and a function u specifying the values of the potential
at the boundary, i.e. to solve the Dirichlet problem

{Aw(x) = —>q(x), =zeD

(1.3)
p(z) = u(zx), x € 0D.

Originally derived by Green [59]] in 1828, an immediate consequence of the divergence theo-
rem applied to V), where ¢, € C%(D), is Green’s first identity

[ (c@ave) + (Vole). Vo)) dr = [ o) 2u0() s(aa),

where 9, p(z) = (Ve(x),n(z)) denotes the normal derivative of ¢ on dD. Green’s second
identity is obtained by interchanging  and v and subtracting, i.e.

[ (s@)8060) = 0@ @) do = [ (ol@) du0ta) — bla) duo(o)) S(ao)
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Resulting from Green’s second identity, an integral representation of the solution to (I.3) is
given by

@) = — /D 4(2) Gp (x, 2)dz —

EoWd—-1

/ u(2) 0,Gp(x,2) S(dz) 1.4
Wd—1 JaD

where wq_1 = 27%/2/T(£) is the surface area of a (d — 1)-sphere in R?. Gp(z,y) is called
the Green function that is, for any y € D, the fundamental solution in distributional sense of
AGp(z,y) = —w4q—1d(z — y) on D that vanishes on 9D.

Of particular interest is the situation where the boundary of the region D consists of two
separate conducting surfaces dA and 0B which are hold at potential p4 = 1 and ¢ = 0,
respectively, while the region D is free of electrical charges. The capacity, C, of this capacitor
is defined by C := Q4 /(pa — pB) = Q4 where

Qa = —<o [9A<E(x),n(x)>5(d$) = £ /9A Onp(x) S(dx) (1.5)

is the total charge on 9A. Notice that Green’s first identity immediately gives rise to the
following representation of the capacity as a quadratic form

C =Qa

€0 QA /{M Onp(x) S(dx) + eo v /BB One(x) S(dx)

o /a ola) dupla) S(dn) — <o /D p(@)Ap(x)dz = /L')ku)H?dx.

The advantage of this representation is that it allows to establish dual variational principles as
we will see in Section

Setting. In what follows, let (Q2, 7, P) be a probability space and {F;}+cn, be an increasing
sequence of sub-c-algebras of F, which are fixed. Further, let (Sy,Bnx) be a measurable
space where Sy is assumed to be a finite set. The cardinality of Sy depends on an addition
parameter NV and will diverge as N tends to infinity. Elements of Sy are denoted by Greek
letters o, and called configurations. We consider a Markov chain {o(¢)}:en, on Sy with
transitions probabilities py (o, 7). Assume that the dynamics is irreducible and reversible with
respect to a unique invariant measure py. In particular, the transition probabilities satisfy
the detailed balance condition uy (o) pn(o,n) = pun(n) pn(n, o) for all o,n € Sy. By Ly we
denote the generator which acts on functions f: Sy — R as

(Lnf)(0) = > pnlon) (f(n) = £(0)). (1.6)
neSn

Further, we denote by B, the law of the Markov chain given that it starts with initial distribution
v and by E,, the expectation with respect to IP,.. If the initial distribution is concentrated on a
single configuration n, we write simply P, and E,, respectively. For any A C Sy, let 74 be the
first hitting time of the set A after time zero, i.e.

Ta = inf {t > 0] 0(t) € A}.

When the set A is a singleton {n} we write simply 7, instead of ;.

1.2. Boundary value problems

In this section, we turn our attention to the discrete analog of the classical Dirichlet boundary
value problem. That is, given a non-empty subset D C Sy, measurable functions g, k: D¢ — R
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and a measurable function v: D — R, the task is to find a (bounded) function f: Sy — R
which satisfies

{ (Lnf)(o) — k(o) f(o) = —g(0), o€D° 1.7)

flo) = wu(o), oceD,

where D¢ = Sy \ D. Provided that such a function f exists, it will be called solution to the
Dirichlet problem.

While the probabilistic solution of (I.7) in the discrete-time setting is well established in
cases where the function % vanishes or is identical to a constant, see for instance [91]], we
could not find a reference dealing with the probabilistic representation in the discrete-time
context for general function k, although we expect that it exists. For this reason and for later
reference, we will give below a proof of the corresponding statement.

Based on the deep connection between Markov processes and martingales, the probabilistic
method allows to write down immediately a very likely candidate for a solution of (I.7). While
uniqueness is obtained by applying Doob’s optional stopping theorem to a suitable martingale,
the proof of existence is in general more subtle, since the smoothness of a solution nearby and
at the boundary of the domain depends itself on the regularity of the boundary. In the context
of a discrete-time Markov chain on a finite state space the problem concerning the regularity
of a solution at the boundary of the domain is not an issue and the existence can be easily
achieved by using the Markov property.

To start with, consider a Markov chain {o(¢)} in discrete-time with generator L. Then, for
all (bounded) measurable functions f, it holds that

t—1

Fle®) = (Lnf)(o(s)) (1.8)

S

Il
o

is a martingale with respect to B, for all 0 € Sy. The following lemma provides us a useful
equivalence to (I.8) being a martingale.

Lemma 1.1. Let {F;} be a filtration such that the Markov chain {o(t)} on Sy is adapted. Let
fyk: Sy — R be (bounded) measurable functions. Further suppose that the function k satisfies
min,es,y k(n) > —1. Then, for all o € Sy, is a P,-martingale if and only if

t—1 t—1 s

5 (1400 1600 = (et T 15

(1.9

=
Il
kﬁ
P
)
-
N’
—_
+
o~
—~|
S)
w
Nt
+
—
=
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is a IB,-martingale.

Here we use the convention that empty products, i.e. products where the upper index is
smaller than the lower one, are equal 1 and empty sums are equal O.

Proof. In order to simplify notations and for later reference, we set

t—1 t—1

5= o) - 3 @) amd Ve [T s

Notice that the process {V;} is previsible and, due to the assumption on %, locally bounded.
Thus, for all ¢ € Sy, the theorem of discrete stochastic integrals implies that {X;} is a P,-
martingale if and only {(V e X),} is a P,-martingale. On the other hand, a straight forward

i
=]

S
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computation shows that
t

(Vex), = YV (X~ Xor) = Vi (F(os) - Flols — 1) = (Laf) (ol — 1))

s=1 s=1
t—1 i—1
= Vi f(o(t)) — Vi f(o(0)) + Z (Vs = Vaqa) f(o(s)) — Z Veg1 (L f)(o(s))
s=1 s=0
= M, — f(o(0)). (1.10)
Since f(c(0)) is a constant under P,, we conclude the proof of this lemma. O

The martingale is the key ingredient to prove existence and uniqueness.

Proposition 1.2. Let k: D¢ — R be a bounded function. Suppose that min,cpe k(1) > —1 and
set k := 1+ mingepe k(n). Further assume that for some o € D°

1 s
= dimsup (ph (o, D))" < 1 (1.11)
K s—00

where pp(o,n) denotes the transition probabilities of a sub-Markov chain that is stopped at the
arrival of D. Then,

Tp—1 1 Tp—1 S 1
flo) = Es|u(o(r _— + o(s _ (1.12)
(o) ( (D)) £[0 1—|—kz(a(s)) ; g( ( )) EO 1—|—k:(a(r))

for every o € D¢ and f = w on D is a solution of the Dirichlet problem (I.7Z). In particular, the
solution is unique.

Remark 1.3. First of all notice that if (I.11) is satisfied for some ¢ € D¢ and n € D, then, by
irreducibility, it holds simultaneously for all 0 € D¢ and n € D. Moreover, provided that the
function k has the property that k(n) > 0 for all n € D¢ then (I.II) is immediately satisfied.

Proof. First, let us consider a function f that solves (L7), i.e. (Lnf)—kf = —g on D",
Further, it is seen from Lemma [1.1] that
tATp—1 1 tATp—1 s 1
MTD = o(tN\T —_— ag(s —

is a local martingale up to time 7p. Given a localizing sequence 77 1 7p of stopping time, we
construct another localizing sequence by

Tw = 7p Ainf {t >0 ‘ Vi >n}. (1.13)
This implies that for each n there exists K,, < oo such that
V-,— —1 n
V., = - < —— < K,, 1.14
" 14+ k(o(mn—1)) — 7171612135)E 1+k(n) — ( )

where we exploit the assumption on the function k. In view of the martingale transform

([@10), (T.14) allows us to bound
‘th(w) — 1\4[2§°”)\ < 2 max |f(n)| K, < o0
neESN

uniformly for all t € Ny and w € ). Since the dynamics is assumed to be irreducible and the
state space is finite, it holds that E,[rp] < co. Hence, an application of the optional stopping
theorem to the localization sequence 7,, reveals

Tn—1 s

Tn—1 1 1

f(o) = E, U(U(Tn)) H m + ZO g(a(s)) H m , (1.15)

s=0 r=0
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for all o € D¢. The assertion (L.12) now follows provided we can interchange the limit n — oo
and the expectation value. Notice that the random variable involved in the expectation (1.15)
is bounded from above by

- max
11—k oeDe

gmn)nﬂvWL

for P,-a.a. w €  depending on whether x > 1 or k < 1. In the later, due to the irreducibility
and the assumption (IT.17)

wlu(] + 7o) maclotil o (maxluto)| +

o0

B, [~ = > s *ph(0,D) < o0, VoeD" (1.16)
s=1

Hence, we can apply Lebesque’s dominated convergence theorem. This proves the uniqueness
of representation (I.T2)). On the other hand, by using the Markov property, a straight forward
computation shows that for any o € D¢

(PNf)(O') = Ea [lTpglu(o-(TD))]
+ (1 + k(g)) E, []lrp>1 Eo(1) [u(J(TD)) Vip + Z 9(0(8)) Vs+1}

= (1+k(0)) f(o) — g(o).
This complete the proof. O

Remark 1.4. Concerning the function &, a natural question to ask is what is the reason behind
the fact that the probabilistic representation (I.12) is infinite as soon as k(o) = —1 for some
o € D¢. A closer look at (I.11) and reveals that the finiteness of (I.12) is related to
the fact that x is within the radius of convergence of the corresponding Neumann series. In
order to illustrated this fact, consider for simplicity the Dirichlet problem for vanishing v and
constant function k. We denote by Lp the restriction of the generator to D¢, i.e. Lp(o,n) =
Ly(o,n) for o, € D¢ and by Pp the corresponding restriction of the transition matrix Py. If
Lp — k- I is regular, the analytic solution to (I.7) is given by f = (k- I — Lp)~'g. On the
other hand, provided that HL]C IPp|l < 1, we can represent the inverse in terms of a Neumann
series, i.e.

1

_ i (ﬁ)_(”l) P (1.17)

(k- T=Lp)™ = o (1- 5 Po)
s=0

The right-hand side of (I.17) correspond to the probabilistic representation, see (T.3T).

Remark 1.5. Let us briefly comment on the similarities and differences in the probabilistic
representation of a solution to the Dirichlet problem in discrete-time compared to the one in
continuous-time. The latter in given by

f(o) = E,|u(o(rp)) e JoPk(e() ds 4 / Z(J(s)) e~ Jo Klotm)dr qg (1.18)
0

Ifk>0and Ly = %A, the Feyman-Kac formula can be interpreted as a Brownian
motion with killing of particles at the same rate k that is stopped at the arrival of the boundary
of D. In particular, the probability that a particle survives up to time ¢, conditioned on the
path {o(s)}o<s<t, is equal to exp(—fot k(o(s))ds). In discrete-time, (I.12) suggests that the
situation is equivalent to a random walk with killing where the conditional survival probability
of a particle up to time ¢ is then [T._, 1/(1 + k(o (s))).

In the case when —1 < k < 0, (I.I2) can be seen as a random walk of particles that
branches of with the same rate k, and an analog interpretation can be given to the Feyman-Kac
formula in the continuous-time setting. For obvious reasons, the solution may explosion in
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finite time such that we have to impose conditions on the function k. Further we want to
stress that if k& < —2, the probabilistic representation (I.12) is finite and has no counterpart in
the continuous-time setting.

Remark 1.6. Consider the case that the function % vanishes on D¢. Then the Dirichlet problem
(I.7) is known as Laplace equation and Poisson equation, respectively, depending on whether
either g = 0 or u = 0. In the case k # 0, (I.7) is also called Feynman-Kac or Feynman-Kac-
Poisson equation.

1.3. Laplace equation and Poisson equation

Proposition[I.2]is a crucial element in the theory since it allows us to compute many interest-
ing expectation values for Markov chains by solving an appropriate boundary value problem.
In the sequel, we will consider various corresponding applications.

The key quantity in the potential theoretic approach is the A-equilibrium potential, hﬁ, g-In
order to define it, consider a capacitor, (A, B), build up by two disjoint subsets A, B C Sx.
Then, k), p is defined as the solution of the Dirichlet problem (L.7) with g = 0 and k = ¢* — 1,
for A > 0, subject to the boundary condition given by the indicator function 1,4 on the set A.
The corresponding boundary value reads

(LNf)(a) — (e/\ — 1) flo) = 0, o€ (AUB)*¢ .
flo) = 14(0), o€ AUB. '
A related quantity is the A-equilibrium measure, eﬁxy > which is defined through
i p(0) == —(Lhap)(o), Vo €Sy, (1.20)

where we introduce the operator L}, := Ly — (e* — 1) to shorten notation. In case A = 0, we
simply write h4 p and e p instead of 1% , and € .

Clearly, the equilibrium measure is non-vanishing only on the boundary of the sets A and
B. An immediate consequence of Proposition [I.2] is that the equation has a unique
solution for all A > 0. Moreover, in view of (1.12), the function hﬁx, p describes the following
probabilistic objects. Namely, in the case A > 0 the A-equilibrium potential, hﬁ, 5, represents
the Laplace transform of the hitting time, 74, of the set A taking into account that the Markov
chain {o(t)} starting in o gets kill at the arrival of B. For A = 0, the equilibrium potential has a
natural interpretation in terms of hitting probabilities. Beside hX g the A-equilibrium measure
has as well a probabilistic representation that can be derived by using the Markov property.
All in one, we have for A > 0

hﬁ7B(J), ocd AUB,
Eole M drcry| = { 1-eed o), o €A, (1.21)
—e el 5(0), o€ b.

Notice that in the case A = 0, by distinguish two cases, (L.2I) implies that for allc € AU B
6,473(0) = —(LNhA,B) (U) = (LNhB,A) (U) = —637,4(0‘). (1.22)

A further object of interest is the Laplace transform of the hitting time of a set D C Sy,
which is the solution of a Feynman-Kac equation similar to (T.1I9). More precise, if we denote
by wp, = E,[e7*77], for ¢ € D¢, then wy, is the solution of the Dirichlet problem (L.7) with
g=0,k=e—1,for A > 0, subject to the boundary condition 1 on the set D.
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Let us now turn our attention to the Poisson equation. If the functions k£ and u vanish, the
boundary value problem (1.7) reduces to
Lyf)(o) = —g(o), o€ D¢
(LnI)( (o) (1.23)
flo) = 0, oecD.
In view of Proposition [I.2] the solution of the Poisson equation has the representation

‘I'D*l

Z g(a(s))] , Vo e D, (1.24)

s=0

f(a) = E,

which can be interpreted as average cost accumulated along a path of the Markov chain,
{o(t)}, before hitting the set D. Of particular interest is the mean hitting time of the set D
which is obtained by choosing ¢ = 1 on D¢. Denoting the corresponding solution by wgp we
have

wp(o) = E, [TD}, Yo e D°. (1.25)

Let us now consider two disjoint subsets A, B C Sn. We will be interested in the mean hitting
time of A starting the Markov chain in a configuration o ¢ A U B that gets killed at the arrival
of B. To start with, let us denote by w4 g the solution of the Poisson equation (1.23) for the
choice D = AU B and g = h . In this case (1.24) reads

Tau—1

wap(o) = Eo| Y hA,B(a)], Vo g AUB. (1.26)
s=0

The following lemma shows that w4 p is indeed the object we are interested in.
Lemma 1.7. Let A, B C Sy be two disjoint subsets of the finite state space Sy. Then,

wa,plo) = EU[TA ]lTA<TB], Vod AUB. (1.27)

Proof Recall that h 4 5 is harmonic in (4 U B). As a consequence of the discrete martingale
problem X; := ha p(o(t)) — Zi;(l) (Lnha,p)(o(s)) is a martingale and it holds that X; =
ha, B(o(t)) as long as t < 74up provided the Markov chain is started in o ¢ A U B. Since the
process H, = t is previsible and locally bounded, M, := (H e X), is a martingale that vanishes
in zero. In particular, M; is a local martingale up to time 74,5. By applying the optional
stopping theorem with a localizing sequence 7,, T Taup of stopping times we obtain

Tn—1

0 = E,[(HeX)s] = E,[(HoX),,] = Eo {TnhA,B((f(Tn)) S hA,B((;(s))] (1.28)

Since E, [T5] < oo, Lebesque’s dominated convergence theorem implies that, for all o ¢ AU B,

wa,B(o) = E, {TAUB hA,B(U(TAuB))} = Eo[7a Lri<rs) (1.29)

where we used that the h4 p(0) = 14(0) for 0 € AU B. This completes the proof. O

1.4. Green function and Green’s identities

Let us now focus on a specific Feynman-Kac-Poisson equation that is given by the Dirichlet
problem (I.7) with the choice of vanishing function v and k = e* — 1, for A > 0, i.e.

{ (LNf)(J) - (e/\ - 1) flo) = —g(o), o€ D¢

(1.30)
flo) = 0, o€D.
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The stochastic representation (I.12) for a solution of (I.30Q) can be written in the form

‘I'D*l
flo) = E, Z et g(o Z G)h(o,n)g(n) VYo e D, (1.31)
5=0 ngD

where G}) : Sy X Sy — R is called the Green function, which is defined through
G)H(o,n) = Z e At B lo(s) =n, s <7p], Yo,n € D¢ (1.32)

and
G)(o,n) = lo—y Yo,neD, and G)(o,m) == 0, otherwise. (1.33)
In the case A = 0, the Green function represents the expected number of visits in 7 starting the
Markov chain, {o(t)}, in o before hitting the set D. Moreover, we denote by
pplo,n) = By lo(s) =1, s <7p] < px(o.n) (1.34)
the transition function of a process that is absorbed in D. Notice that p$, (o, -) are sub-
probabilities distributions. Since the dynamics is assumed to be reversible, we have
pn(0) Gplo.n) = un(n) Gp(n,0). (1.35)

Notice that the M-equilibrium potential has an immediate representation in terms of the Green
function. N