
Contributions to the Potential Theoretic Approach

to Metastability

with Applications to the

Random Field Curie-Weiss-Potts Model

vorgelegt von

Diplom-Physiker

Martin Slowik

aus Berlin-Pankow

Von der Fakultät II – Mathematik und Naturwissenschaften

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Reinhold Schneider

Berichter: Prof. Dr. Anton Bovier

Berichter: Prof. Dr. Dmitry Ioffe

Tag der wissenschaftlichen Aussprache: 24.02.2012

Berlin 2012
D 83





Contents

Preface v

Motivation v

An outline of this thesis ix

Acknowledgements xi

Chapter 1. Basic ingredients of the potential theoretic approach 1

1.1. Introduction 2

1.2. Boundary value problems 4

1.3. Laplace equation and Poisson equation 8

1.4. Green function and Green’s identities 9

1.5. Connection between equilibrium potential, capacity, and mean hitting times 11

1.6. The Dirichlet and Thomson principle: a dual variational principle 14

1.7. The Berman-Konsowa principle: a variational principle for the lower bound 17

1.8. Renewal equation 18

1.9. Almost ultrametricity of capacities 21

Chapter 2. Coupling arguments and pointwise estimates 25

2.1. Introduction 26

2.2. Construction of the Coupling 28

2.3. Bounds on harmonic functions and local recurrence 33

2.4. Cycle decomposition of σ-paths 34

2.5. Bounds on the mean hitting time and the Laplace transform 38

Chapter 3. Metastability 41

3.1. Introduction 42

3.2. Ultrametricity 44

3.3. Sharp estimates on mean hitting times 46

3.4. Asymptotic exponential distribution 50

Chapter 4. Metastability and Spectral Theory 55

4.1. Introduction 55

4.2. Rough localization of eigenvalues 60

4.3. Characterization of small eigenvalues 64

Chapter 5. Random field Curie–Weiss–Potts model 71

5.1. Introduction 72

5.2. Induced measure and free energy landscape 77

5.3. Upper bounds on capacities 86

5.4. Lower bounds on capacities 97

5.5. Sharp estimates on metastable exit times and exponential distribution 116

Bibliography 119

iii





Preface

Man schreibt nicht, weil man etwas zu sagen hat, sondern

weil man Lust hat, etwas zu sagen.

—Emile M. Cioran

This text is my PhD thesis. It is concerned with several aspects of metastability in stochastic

dynamics with a particular focus on the dynamical behavior of disordered mean field spin

systems at finite temperature.

Motivation

Phenomenology. Metastable behavior of a complex system, either natural or artificial, is

causal for a number of interesting phenomena as diverse as delayed freezing of super cooled

liquids, folding of large bio-molecules, kinetics of chemical reactions, changes in global cli-

mate systems, apparent stability of stock markets, to name but a few. Despite such a diversity

of scientific areas ranging from physics, chemistry, biology to economics in which metastable

behavior can be observed, the common feature of all these situations is the existence of mul-

tiple, well separated time scales. On the corresponding short time scales, the system can only

explore at limited part of the available state space. Depending on the time scale under consid-

eration, the state space can be decomposed into several disjoint regions, in which the system

is effectively trapped. Within such a region, that may be viewed as metastable set to which

one may associate a metastable state, the system appears to be in a quasi-equilibrium. At larger

time scales, rapid transitions between metastable states occur which are induced by random

fluctuations. The main mathematical task we want to address is to analyse such a system on

long time scales. In particular, we need some understanding of how the process manages to

escape from a metastable state.

In order to illustrate the phenomenon of metastability in more detail, let us consider the

dynamical behavior of a ferromagnet close to its first order phase transition, see [97, 94]. In

the framework of equilibrium statistical mechanics, the defining characteristic of a first-order

phase transition is a discontinuity in an extensive variable, such as the magnetization, as a

function of an intensive variable, for instance the magnetic field.

It is well known that for a ferromagnet above the critical temperature, Tc, there exists an

unique paramagnetic phase. Experimentally, one observes that the magnetization m(h) van-

ishes when switching off the external magnetic field h, i.e. m(h) → 0 as h → 0. Below Tc
the behavior of the system is markedly different. Depending on whether the external field

approaches zero from below or from above there exist two different phases that can be distin-

guished by their different magnetization,

lim
h↓0

m(h) = m+ > 0, lim
h↑0

m(h) = m− < 0.

This phenomenon is called spontaneous magnetization. Now, consider the following exper-

iment. Suppose the system is prepared in such a way that it reveals the magnetization

m(0) = m+. After switching on a small negative magnetic field |h| < hc, one may observe that

instead of undergoing a rapid phase transition the system remains in an apparently stationary

state for a (macroscopic) long time that is characterized by a positive magnetization m(h) > 0.

v
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This situation corresponds to a metastable state. In contrast to that, the magnetization of the

equilibrium state has the same sign as the external field h < 0.

In order to avoid the impression that a metastable behavior can be described only by con-

sidering static aspects, e.g. an analytic continuation of the critical curves in the phase diagram,

let us stress the fact that metastability is a dynamical phenomenon.

For this reason, let us now describe the dynamical behavior of a magnetic system in a

metastable state. On a microscopic level, the magnetization of an individual (classical) spin

can change its sign from +1 to −1 and vice versa induced by internal thermal perturbations.

For this reason, at any time small droplets of downward pointing spins appear in a ”sea of

upward-pointing spins”. While the spins in the bulk of such a droplet become aligned with

the external field, spins at the surface feel both the negative external field and an positive

field coming from spins outside the droplet. In other words, there is a competition between

the gain of energy in the bulk of a droplet and the loss of energy at its surface. This causes

the dissolution of small droplets whereas a large droplet, once created, can be seen as a gate

through which the system escapes rapidly from the metastable to the stable equilibrium state.

However, the spontaneous formation of a sufficiently large droplet is a rather rare event which

may be seen as an explanation that an escape from a metastable state can only be observed on

macroscopic time scales.

Metastability and diffusions. From a mathematical point of view, ”Kramers’ equation has

become the paradigm of metastability” 1. For this reason, we describe in the sequel briefly

some aspects of its derivation and some of the rigorous mathematical tools that have been

invented in order to study it. Due to the interdependence between experimental observations,

rigorous/non-rigorous theoretical analysis and computer simulations of metastable systems,

it is rather challenging to give proper credit to the people involved. In particular, the review

presented below is far from being complete. For more a detailed review and an outlook of

future challenges, we refer to the recent papers [12, 99].

The origin of this equation can be traced back to the study of kinetic of chemical reactions.

In most real-world applications, metastable systems are described by many-particle systems.

Since the dynamics of a many-particle system is very difficult to analyse either analytically

or numerically, model reductions play an important role. For instance, the full phase space

of a system describing the dynamics of a chemical reaction has ∼ 1023 degrees of freedom.

Therefore, instead of studying the dynamics on the high-dimensional surface in the full phase

space Σ, one of the first model reduction steps is to consider the dynamics only along the

so-called reaction path χ = (Xt, Ẋt) ∈ Σ in an effective potential that takes into account

the interaction with the (thermal) reservoir. As a consequence of such a projection from Σ

to χ, the resulting dynamics is in general described by a non-Markovian process [57, 58].

Assuming additionally that the noise correlation times in the reservoir are extremely short,

one can further use a Markovian approximation for the reduced dynamics [116].

These reduction steps lead to the first mathematical model for metastability proposed in

1940 by Kramers [78] in order to describe a chemical reaction. It consists of a classical particle

of mass one moving in an one-dimensional asymmetric double-well potential U under the

influence of Gaussian white noise and friction with coefficient γ which models effectively the

thermal reservoir at temperature T . Its equation of motion is given by

γ−1Ẍt = −Ẋt − U ′(Xt) +
√
2ε Ḃt,

where the parameter ε ≡ ε(T ) is temperature dependent and tends to zero when T approaches

the absolute zero. In the limit when the friction becomes infinitely strong, this equation results

1Bovier [12, p.2]
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in the simple, one-dimensional diffusion equation

dXt = b(Xt) dt+
√
2εdBt (0.1)

to which we refer to as Kramers’ equation, where b(x) = −U ′(x) and Bt is assumed to be

a Brownian motion. Notice that local minima of U correspond to metastable states/points

in this model. Kramers studied various interesting questions in the context of this model.

In particular, he identified the mechanism of noise-assisted reactions and derived an explicit

formula, also called Kramers formula, for the averaged transition time from the local minimum

a to the global minimum b passing through the maximum z that lies in between them,

Ea

[
τb
]
=

2π√
U ′′(a)|U ′′(z)|

exp
(
ε−1

(
U(z)− U(a)

)) (
1 + Oε(1)

)
. (0.2)

Based on experimental data, Arrhenius had already suggested in 1889 that the reaction-rates

are proportional to the inverse of the temperature on logarithmic scales [2]. The exponential

term in (0.2) reflects Arrhenius’ law. Let us now have a look at the prefactor. In comparison

with a sharply-peaked maximum, it is more likely that the particle, when slightly passing by a

flat maximum, returns to its starting well. On the other hand, in a flat minimum the particle

gets less often close to the barrier than in a peaked one. This explains why a smaller curvature

of the local minimum as well as the maximum leads to a larger averaged transition time.

Let us remark that, in the context of reaction rate theory, Eyring had given previously a

heuristic derivation of the prefactor based on quantum and classical statistical mechanics com-

putations expressing the prefactor as the ratio of the partition function of the reactants and

the ”activated complex”, respectively, [47]. For a discussion of past and possible future devel-

opments in the reaction rate theory we refer the reader to the review by Hänngi, Talkner and

Borkovec [61] and the recent paper by Pollak and Talkner [99].

In the context of randomly perturbed dynamical systems, generalizing Kramers’ equation

to higher dimensions, various dynamical aspects concerning the exit problem of a domain

were first analysed rigorously in the seminal work by Freidlin and Wentzell [111, 51]. They

invented the idea to use large deviations in path space as well as to consider a Markov chain

with exponential small transitions to model effectively the jumps between different attractors.

Let us denote by Γ the set of all path, γ : [0, T ] → Rd with arbitrary T . Employing large

deviation principles in path space, one can control the probability that the process, {Xt}, stays

close to a given path γ ∈ Γ over a time interval [0, T ], in the sense that

ε lnP
[
supt∈[0,T ] ‖Xt − γt‖ ≤ δ

]
= −I(γ) + Oε(1), (0.3)

for δ > 0 and I : Γ → R+ a lower semi-continuous function with compact level sets. For

studying a transition between the disjoint neighbourhood A,B of two different local minima,

the task is to compute the optimizer of the variational problem infγ:A→B I(γ) and to analyze its

properties. Notice the analogy, at least to some extend, between this approach and the reaction

path considered previously. Various interesting aspects of metastability, e.g. properties of the

typical exit path and the asymptotic exponential distribution of exit times, was later proven

for random perturbations of dynamical systems of Freidlin-Wentzell type in finite dimensions

[52], infinite dimensions [24, 48, 20] and on Riemannian manifolds [107] by means of large

deviations in path space. This method has been proven to be robust and rather universal

applicable in many different model contexts [77, 92, 93]. For an in-depth overview we refer

to a recent monograph by Olivieri and Vares [94].

A limitation of large deviation methods is its precision. It allows to compute for instance

mean exit times only up to an multiplicative error of order exp(Oε(1)). For this reason, it is

not possible to resolve the behavior of the process near the saddle point. However, this is an

essential task in order to derive rigorously the prefactor in the Eyring-Kramers formula, the
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higher-dimensional analog of (0.2). An alternative to the method of large deviations in path

space, yielding more precise results beyond logarithmic equivalence, is the potential theoretic

approach to metastability, systematically developed by Bovier and co-authors, see [10, 11] for

a detailed introduction. Its key idea is to express probabilistic quantities of interest in terms

of capacities and use variational principles to compute the latter. In particular, for reversible

diffusion processes of Freidlin-Wentzell type, Bovier, Eckhoff, Gayrard and Klein demonstrated

in [17] that sharp estimates of capacities can be easily obtained. As a consequence, they gave a

first rigorous proof of the prefactor in the classical Eyring-Kramers formula for dimension d ≥ 1

and sharp asymptotic estimates of the exponentially small eigenvalues. Later, Berglund and

Gentz relaxed the assumptions on the relevant saddle point allowing certain non-degeneracies

[56].

Recently, Helffer, Nier and Klein have developed a new analytic approach based on hypo-

elliptic techniques initially developed for the regularity analysis of partial differential equations

[63]. In the reversible diffusion setting and under suitable assumptions on the potential U ,

they derived rigorously a complete asymptotic expansion of the mean hitting times in powers

of ε using the so-called Witten complex [62].

Metastability and model from statistical mechanics. In the sequel, we will give some

more points of the enormous work on metastability that has been done in the past 40 years. In

contrast to the diffusion setting, where metastable states corresponds to local minima of the

potential U , in models coming from statistical mechanics the question of how to characterize

metastable states, and how to identify them in a given model context is really an issue.

A first rigorous formulation of metastable states, taking the dynamical aspect into account,

dates back to the work of Penrose and Lebowitz in 1971 on the van der Waals limit of

Kac potentials [96, 97]. Subsequently, early results on the metastable behavior of the two-

dimensional Ising model were obtained by Capocaccia, Cassandro and Olivieri [22].

In [23] Cassandro, Galves, Olivieri and Vares proposed a different approach to metastability

that is based on the pathwise analysis of the dynamics. As a first examples, they demonstrated

the efficiency of this concept in the Curie-Weiss model describing its dynamical properties.

In the sequel, this approach was successfully applied to more realistic models. In the pio-

neering works [89, 90], Neves and Schonmann studied the metastable behavior of the two-

dimensional Ising model under Glauber dynamics in finite volume and very low temperature.

This work was later extended to higher dimensions [3, 25], infinite volume but low temper-

ature [32, 33], infinite volume and fixed temperature but vanishing external field [105] and

probabilistic cellular automata [28]. In contrast to Glauber dynamics, Kawasaki dynamics is

conservative, i.e. the total number of particles is fixed. In a series of papers den Hollander et

al. [35, 34] and Gaudillière et al. [54] investigated in the nucleation and metastability for

particle systems under Kawasaki dynamics in a large box in two and three dimensions at low

temperature and low density.

A more recent approach to metastability was developed by Bovier, Eckhoff, Gayrard and

Klein [15, 16]. Based on techniques from potential theory, this approach allows to compute

sharp estimates for metastable exit times and their asymptotic exponential distribution. More-

over, it establishes quantitatively precise relations between small eigenvalues of the generator

associated to the dynamics and mean exit times of metastable domains. In the stochastic Ising

model at low temperature, it yields sharp results that go far beyond the logarithmic equiva-

lence obtained by the pathwise approach [19]. This technique was also used to sharpen the

previously obtained results on the Kawasaki dynamics in the low temperature regime in a

finite box [13] and to prove the first rigorous results in the case of growing boxes [14].

Beside spin systems at very low temperature, the investigation in the dynamical behavior of

disordered mean field systems is of particular interests. One of the simplest model, from a static



AN OUTLINE OF THIS THESIS ix

point of view, that has been studied intensively in the past, is the random field Curie–Weiss

model at finite temperatures. Mathieu and Picco [85] and Fontes, Mathieu and Picco [50] first

analyzed the long-time behavior of this model in the case where the random field can take only

two values ±ε. By using spectral methods, they obtained the leading exponential asymptotics

for metastable exit times. Based on the potential theoretic approach Bovier, Eckhoff, Gayrard

and Klein [15] improved the previous results by establishing sharp estimates of transition

times between metastable states. They consider the case where the distribution of the random

field is discrete but assumes finitely many values. As long as the random field assumes arbi-

trary values in a finite set, the dynamical behavior of this model can be described effectively

by a Markovian dynamics on a lower-dimensional state space. Finally, in two recent papers

[6, 5], Bianchi, Bovier and Ioffe analyzed first the metastable behaviour of the Curie-Weiss

model at finite temperature in the case of random fields with continuously distributions. By

exploiting a dual variational representation of capacities in terms of unit flows, due to Berman

and Konsowa [4], they derived in [6] first sharp estimates on averaged metastable exit times

including an explicit expression for the prefactor. Secondly, by means of coupling techniques,

they showed in [5] that mean metastable exit times are almost constant as functions of the

starting configuration within well chosen sets. Additionally, they proved the convergence of

the law of normalized metastable exit times to an exponential distribution.

An outline of this thesis

By now, we have reached a fairly comprehensive understanding of metastable phenomena

in at least two different settings: stochastic dynamics of spin systems in the low temperature

regime and mean field models at finite temperature. A crucial feature of models at very low

temperature is that i) metastable states correspond to local minima of the Hamiltonian and ii)

the entropy of paths does not play a role, i.e. the transition between metastable states A,B is

realized by microscopic paths in a arbitrary small tube around the optimal microscopic path

that is given as the minimizer in the variational problem infγ:A→B I(γ). On the other hand,

in stochastic spin systems at finite temperature the entropy of paths really matters. Namely,

not only individual microscopic paths have a vanishing small probability but their probability

of stay, say, in a tube with radius δ > 0 around a given microscopic path is very small. For

this reason, one has to lump enormously many paths together in order to be able to describe

a transition between metastable states. This is usually done by introducing a macroscopic

variable and analyzing the dynamical properties of the resulting process. A characteristic

feature of mean field models is that the induced dynamics on the coarse-grained level is still

Markovian. In such a case, i) metastable states correspond to local minima of the free energy.

More important is the fact that ii) by means of the macroscopic variable the dimension of the

state space underlying the induced dynamics is diminished, i.e. it remains to study essentially

the metastable behavior of a random walk in the free energy landscape. To some extend, this

reduction procedure leads to a setting comparable with a low temperature regime where the

role of the temperature, however, is replaced by the volume.

The purpose of this thesis is to study metastability for a class of stochastic spin systems at

finite temperature which are not exactly reducible to a low-dimensional model via lumping

techniques. Our main objective is to extend the potential theoretic approach to metastability

for such kind of models by identifying key ingredients for deriving sharp estimates on

• the expected time of a transition from a metastable to a stable state,

• the distribution of the exit time from a metastable state,

• small eigenvalues of the generator.
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While the first four chapters of this thesis focus on the general concepts of this approach, a real

test of these ideas comes with chapter 5, where we apply this approach to a simple disordered

spin system.

Chapter 1 is concerned with some aspects of the profound connection between Markov

processes and potential theory that serves as a basis for the potential approach to metastability.

The main idea of this approach to express probabilistic objects, e.g. mean hitting times, first

in terms of solutions of boundary value problems. Instead of trying to solve approximately

the resulting equations, the second idea is to characterize the solution in terms of capacities

and equilibrium potentials. Notice that in the setting, we are interested in, the formula for the

mean hitting time of a set B when starting from A is only useful if A,B are sufficiently large.

However, in such a situation, strict renewal equation breaks down that are crucial to control

the equilibrium potential. One of the main objectives in the first chapter is the derive various

averaged renewal equations that will be important in later chapters. In order to emphasis the

link between probability and potential theory, we give for every statement both a probabilistic

and two different analytic proofs.

Chapter 2 is mainly dedicated to establish pointwise estimates of various probabilistic ob-

jects. In situations where the process returns very often to the starting set A before escaping

to the set B, one expects that the mean hitting time of B is almost constant as a function of

a starting configuration σ ∈ A. In a recent paper [5], Bianchi, Bovier and Ioffe addressed

this question for a class of Markov chains with state space {−1,+1}N by means of coupling

and splitting techniques. The main objective in the second chapter is to generalize the cou-

pling construction to a class of Markov chains with state space {1, . . . , q}N . In particular, we

demonstrate that the splitting techniques, introduced in [5], are rather universal applicable.

As a byproduct, we obtain rough estimates on the oscillations of harmonic functions within

certain sets. Let us point out that these estimates are the second key ingredient in order to

derive sharp bounds on mean hitting times.

In Chapter 3 we introduce the notion of a set of metastable sets. This definition is a natural

generalization of the set of metastable points, first introduced in [15], and will be the start-

ing point for our further investigations. Notice that in the context of reversible diffusions a

similar generalization of metastable points was already discussed in [10]. One advantage of

the potential theoretic approach to metastability is that it suffices to establish sharp bounds

on capacities and to derive rough bounds on the corresponding equilibrium potentials in or-

der to compute precisely metastable exit times, see [9, 11]. The later is previously done by

means of exact renewal equations. Equipped with the results obtained in the first two chap-

ters we demonstrate how averaged renewal equations combined with the rough estimates on

the regularity of harmonic functions can be used to compute precisely the mean exit time

from a metastable set and to prove the convergence of normalized metastable exit times to an

exponential distribution. Notice that similar ideas were already used in [17] and [5].

In Chapter 4 we investigate the relation between small eigenvalues of the generator and

mean hitting times of certain metastable sets. Previously, in the study of reversible diffusions

on Rd or Markov chains on finite state spaces, a sharp link between metastable points and

small eigenvalues of the generator could be established [18, 16]. Let us stress the fact that

the method used in [18] is based on regularity properties of eigenfunctions. However, in

the setting we are interested in, such sufficient control of the oscillations of eigenfunctions

within certain sets is still be missing. For this reason, we invent a different approach that

is based on an a posteriori error analysis and pointwise estimates of equilibrium potentials.

Assuming that there are at most as many low-lying eigenvalues as metastable sets and taking

a non-degeneracy condition into account, this approach allows to associate to each metastable

set one simple eigenvalue of the generator. Moreover, every such eigenvalue is equal to the

inverse of the mean exit time from this set up to exponentially small errors.
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As an application of the theory developed above, we study in the final Chapter 5 the dy-

namical behavior of the random field Curie-Weiss-Potts model at finite temperature and with

a continuous distribution of the random field. This model belongs to the class of disordered

mean-field spin systems that cannot be reduced exactly to a lower-dimensional system. Since

the free energy landscape in the thermodynamic limit is deterministic, from a static point of

view, is model is one of the less disordered. The author’s contribution in this chapter is to gen-

eralize the results that were previously obtained in the study of the random-field Curie-Weiss

model, see [6].
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CHAPTER 1

Basic ingredients of the potential theoretic approach

In this first chapter, we present some aspects of the profound connection between Markov

processes and potential theory. These serve as a basis for the potential theoretic approach to

metastability developed systematically by Bovier, Eckhoff, Gayrard and Klein in [15, 16]. In

later applications, we are mainly interested in the metastable behavior of processes coming

from statistical mechanics. Typically, the state space for such kind of processes is large but

finite. For this reason, we focus our attention to the study of stochastic processes on finite

state spaces and in discrete time throughout this thesis. Let us emphasize that the potential

theoretic approach to metastability is neither limited to finite state spaces nor to processes in

discrete time. For instance, in the study of local Kawasaki dynamics in finite volumes with

open boundary conditions [13] and in volumes that are growing to infinity [14] this approach

was successfully applied to Markov chains in continuous time. In the context of diffusion

processes in Rd, the first rigorous proof of the classical Eyring-Kramers formula [17] and the

precise control of the small eigenvalues of the associated generator [18, 45] rely as well on

this method.

This chapter is organized as follows. In Section 1.1, after giving a brief introduction to

classical potential theory and explaining its relation to probability theory, we specify the setting

that is actually used in later applications. In Section 1.2, we treat the Dirichlet problem of

finding a function which solves a Feynman-Kac-Poisson equation in a given region and assumes

the values of a prescribed function at the boundary. Markov chains can be used to characterize

the solution of such a Dirichlet problem and to prove existence and uniqueness. Various

applications of this probabilistic representation are given in Section 1.3. A different way to

represent the solution of a Dirichlet problem is in terms of the Green function that will be

introduced in Section 1.4. As presented in Section 1.5, one major achievement of the potential

theoretic approach is the observation that instead of searching for an approximate solution to

a Dirichlet problem, the solution can alternatively be represented in terms of capacities which

satisfy variational principles. As we will see in Section 1.6 and 1.7, the formulation in terms of

dual variational principles leads to the derivation of upper and lower bounds for the solution

of the Dirichlet problem. The final Sections 1.8 and 1.9 deal with averaged versions of renewal

equations and the almost ultrametricity of capacities which will be important in later chapters.

Contributions in this chapter. Most of the material presented in this chapter is of prepara-

tory value for subsequent chapters. In this respect, this chapter does not contain major new

contributions to the understanding of the fundamentals of the potential theoretic approach.

Nevertheless, the author contributes some, to the best of our knowledge, novel pieces to this

subject:

• three different proofs of a lemma that allows to split the mean hitting time of a set B

starting in A into the contributions coming from the returns to the set A and the time

it takes in average to hit B without returning to A, see Lemma 1.14;

• three different proofs of an averaged renewal equation for hitting probabilities and

for the Laplace transform of hitting times, see Section 1.8.

1



2 1. BASIC INGREDIENTS OF THE POTENTIAL THEORETIC APPROACH

• a generalization of the statement about almost ultrametricity of capacities, see Lemma

1.26, and a purely analytic proof thereof.

Smaller bits and pieces are:

• a presentation of a simple proof of the Dirichlet principle based on the Cauchy-

Schwarz inequality and a slightly generalization of the Thomson principle in terms

of super-harmonic functions, see Section 1.6.

1.1. Introduction

One of the fundamental problems in potential theory is the classical Dirichlet problem. It

originates from the study of physical questions coming from electrostatics. The investigation

in existence and uniqueness of solutions to it has a long and venerable history which can be

traced back e.g. to the work of Dirichlet [38], Poincaré [98], Kellogg [75], Lebesgue [80].

Various analytic methods have been invented to construct a solution: Schwarz alternating

method, variational methods to name only two of them. The idea of Schwarz’s alternating

method is to decompose first the domain into two or more sub domains having a non-empty

intersection. In a second step, similar Dirichlet problems are solved alternately on these sub

domains, those values on the additional boundaries are given by the previous solution. In

comparison to the Schwarz alternating method, the variational method is based on the fact

that the solution of the Dirichlet problem assuming certain values at the boundary is also given

as the minimizer of an appropriate energy functional.

Notice that, in general, the Dirichlet problem is not always solvable without assuming a

certain regularity of the domain’s boundary. This fact was observed at an early stage by con-

sidering the example of an punctured sphere or a sharp inward-pointing cups (Lebesgue’s

thorn).

A first probabilistic solution to the classical Dirichlet problem was given by Kakutani [72].

His pioneering work and the extensive study by Doob [41] and Hunt [67, 68, 69] established

the profound connection between potential theory and Markov processes. To some extend

these two theories are mathematically equivalent. This allows to translate a proof of a result

in one theory into a proof of a corresponding result in the other theory, which we will demon-

strate in Section 1.5 and 1.8. There is now a large literature on (transient) potential theory

and Markov processes, including books e.g. by Blumenthal and Getoor [8], Port and Stone

[101], Karatzas and Shreve [73, chap. 4] and the comprehensive treatment by Doob [43]. A

nice introduction into this topic can be found in [102] and [27].

In the context of Markov chains on finite or denumerable state spaces, the connection to

(recurrent) potential theory was developed by Doob [42] and Kemeny, Knapp and Snell [76].

While classical potential theory had already been well understood before its connection to

Brownian motion was discovered, Markov chains and discrete potential theory were more or

less simultaneously studied. Historically, in his famous paper ”Random walks and electric

currents in networks” [88], Nash-Williams first linked the property of transience or reccurence

of an irreducible reversible Markov chain to structural properties of the underlying electric

network. While Pólya [100] first proved by using purely probabilistic arguments that a simple

random walk on Zd returns to its starting position with probability 1 if and only if d ≤ 2, Nash-

Williams showed that this reccurrence holds on graphs if and only if the effective resistance

between the starting position and infinity of the corresponding electric network is infinite.

Although the discrete potential theory has proven to be a robust tool to study properties of

Markov chains, its application attracted new attention with the beautiful elementary book by

Doyle and Snell [44]. Since that time various aspects of Markov chains have been studied

exploiting the interdependence between probabilistic objects and its analytic counterparts and
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there is now a large literature on this topic including books e.g. by Woess [114], Telcs [108],

Levin, Peres and Wilmer [82], Lyons and Peres [83].

The potential theoretic approach to metastability is based on the observation that most

quantities of physical interest can be represented as solutions of certain Dirichlet problems with

respect to the generator of the dynamics. More important is the fact that the corresponding

solutions can be expressed in terms of capacities which satisfy variational principles. With

proper physical insight, these variational principles allow us to derive reasonable upper and

lower bounds on capacities.

Since various notions used in the potential theoretic approach are borrowed from electro-

statics we will now explain briefly their physical background. For more details, we refer to the

classical physical literature on this subject, see [71, 106].

Electrostatic interpretation. Many problems in electrostatics appearing in practical appli-

cations concern finite regions of space, i.e. bounded connected open subsets D ⊂ Rd having a

smooth boundary ∂D with surface measure S, with or without charges inside D and with pre-

described values given by a function on the bounding surfaces ∂D. The connection between

a distribution of free charges q(dx) inside D and the values of the electric displacement D on

∂D is given by Gauss’s law. The latter states that the flux of the electric displacement across

the boundary is proportional to the sum of free charges enclosed by D. Hence, by Gauss’

divergence theorem,
∫

D

divD(x) dx =

∫

∂D

〈D(x),n(x)〉S(dx) =

∫

D

q(x) dx, (1.1)

where we assume that the signed measure q(dx) has a density, i.e. q(dx) = q(x) dx. Here,

n(x) denotes the outwardly directed surface normal of unit length for the surface ∂D at x. In

the absence of a dielectric material, the constitutive relation between the electric field E and

the electric displacement D is given by D(x) = ε0 E(x), where ε0 > 0 is the permittivity of

free space.

On the other hand, Faraday’s law of induction in its differential form relates the curl of the

electric field to the time rate of change of the magnetic flux that vanishes in a static situation.

Thus, this leads to the Maxwell equations

divD(x) = q(x) and rotE(x) = 0, x ∈ D (1.2)

which imply that there exists a potential ϕ : D → R such that E = −∇ϕ. One of the common

problems in electrostatic arising from (1.2) is the determination of the potential ϕ in a vacuum

given a charge distribution q inside of D and a function u specifying the values of the potential

at the boundary, i.e. to solve the Dirichlet problem
{

∆ϕ(x) = − 1
ε0
q(x), x ∈ D

ϕ(x) = u(x), x ∈ ∂D.
(1.3)

Originally derived by Green [59] in 1828, an immediate consequence of the divergence theo-

rem applied to ϕ∇ψ, where ϕ, ψ ∈ C2(D), is Green’s first identity
∫

D

(
ϕ(x)∆ψ(x) + 〈∇ϕ(x),∇ψ(x)〉

)
dx =

∫

∂D

ϕ(x) ∂nψ(x)S(dx),

where ∂nϕ(x) = 〈∇ϕ(x),n(x)〉 denotes the normal derivative of ϕ on ∂D. Green’s second

identity is obtained by interchanging ϕ and ψ and subtracting, i.e.
∫

D

(
ϕ(x)∆ψ(x) − ψ(x)∆ϕ(x)

)
dx =

∫

∂D

(
ϕ(x) ∂nψ(x) − ψ(x) ∂nϕ(x)

)
S(dx).
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Resulting from Green’s second identity, an integral representation of the solution to (1.3) is

given by

ϕ(x) =
1

ε0 ωd−1

∫

D

q(z)GD(x, z) dz − 1

ωd−1

∫

∂D

u(z) ∂nGD(x, z)S(dz) (1.4)

where ωd−1 = 2 πd/2/Γ(d2 ) is the surface area of a (d − 1)-sphere in Rd. GD(x, y) is called

the Green function that is, for any y ∈ D̄, the fundamental solution in distributional sense of

∆GD(x, y) = −ωd−1 δ(x − y) on D that vanishes on ∂D.

Of particular interest is the situation where the boundary of the region D consists of two

separate conducting surfaces ∂A and ∂B which are hold at potential ϕA = 1 and ϕB = 0,

respectively, while the region D is free of electrical charges. The capacity, C, of this capacitor

is defined by C := QA/(ϕA − ϕB) = QA where

QA = −ε0
∫

∂A

〈E(x),n(x)〉S(dx) = ε0

∫

∂A

∂nϕ(x)S(dx) (1.5)

is the total charge on ∂A. Notice that Green’s first identity immediately gives rise to the

following representation of the capacity as a quadratic form

C = QA = ε0 ϕA

∫

∂A

∂nϕ(x)S(dx) + ε0 ϕB

∫

∂B

∂nϕ(x)S(dx)

= ε0

∫

∂D

ϕ(x) ∂nϕ(x)S(dx) − ε0

∫

D

ϕ(x)∆ϕ(x) dx = ε0

∫

D

‖∇ϕ(x)‖2 dx.

The advantage of this representation is that it allows to establish dual variational principles as

we will see in Section 1.6.

Setting. In what follows, let (Ω,F ,P) be a probability space and {Ft}t∈N0 be an increasing

sequence of sub-σ-algebras of F , which are fixed. Further, let (SN ,BN ) be a measurable

space where SN is assumed to be a finite set. The cardinality of SN depends on an addition

parameter N and will diverge as N tends to infinity. Elements of SN are denoted by Greek

letters σ, η and called configurations. We consider a Markov chain {σ(t)}t∈N0 on SN with

transitions probabilities pN (σ, η). Assume that the dynamics is irreducible and reversible with

respect to a unique invariant measure µN . In particular, the transition probabilities satisfy

the detailed balance condition µN (σ) pN (σ, η) = µN (η) pN (η, σ) for all σ, η ∈ SN . By LN we

denote the generator which acts on functions f : SN → R as

(
LNf

)
(σ) =

∑

η∈SN

pN (σ, η)
(
f(η)− f(σ)

)
. (1.6)

Further, we denote by Pν the law of the Markov chain given that it starts with initial distribution

ν and by Eν the expectation with respect to Pν . If the initial distribution is concentrated on a

single configuration η, we write simply Pη and Eη, respectively. For any A ⊂ SN , let τA be the

first hitting time of the set A after time zero, i.e.

τA := inf
{
t > 0

∣∣ σ(t) ∈ A
}
.

When the set A is a singleton {η} we write simply τη instead of τ{η}.

1.2. Boundary value problems

In this section, we turn our attention to the discrete analog of the classical Dirichlet boundary

value problem. That is, given a non-empty subset D ⊂ SN , measurable functions g, k : Dc → R
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and a measurable function u : D → R, the task is to find a (bounded) function f : SN → R

which satisfies
{ (

LNf
)
(σ) − k(σ) f(σ) = −g(σ), σ ∈ Dc

f(σ) = u(σ), σ ∈ D,
(1.7)

where Dc = SN \ D. Provided that such a function f exists, it will be called solution to the

Dirichlet problem.

While the probabilistic solution of (1.7) in the discrete-time setting is well established in

cases where the function k vanishes or is identical to a constant, see for instance [91], we

could not find a reference dealing with the probabilistic representation in the discrete-time

context for general function k, although we expect that it exists. For this reason and for later

reference, we will give below a proof of the corresponding statement.

Based on the deep connection between Markov processes and martingales, the probabilistic

method allows to write down immediately a very likely candidate for a solution of (1.7). While

uniqueness is obtained by applying Doob’s optional stopping theorem to a suitable martingale,

the proof of existence is in general more subtle, since the smoothness of a solution nearby and

at the boundary of the domain depends itself on the regularity of the boundary. In the context

of a discrete-time Markov chain on a finite state space the problem concerning the regularity

of a solution at the boundary of the domain is not an issue and the existence can be easily

achieved by using the Markov property.

To start with, consider a Markov chain {σ(t)} in discrete-time with generator LN . Then, for

all (bounded) measurable functions f , it holds that

f
(
σ(t)

)
−

t−1∑

s=0

(
LNf

)(
σ(s)

)
(1.8)

is a martingale with respect to Pσ for all σ ∈ SN . The following lemma provides us a useful

equivalence to (1.8) being a martingale.

Lemma 1.1. Let {Ft} be a filtration such that the Markov chain {σ(t)} on SN is adapted. Let

f, k : SN → R be (bounded) measurable functions. Further suppose that the function k satisfies

minη∈SN k(η) > −1. Then, for all σ ∈ SN , (1.8) is a Pσ-martingale if and only if

Mt = f
(
σ(t)

) t−1∏

s=0

1

1 + k
(
σ(s)

) +

t−1∑

s=0

(
k
(
σ(r)

)
f
(
σ(r)

)
−
(
LNf

)(
σ(r)

)) s∏

r=0

1

1 + k
(
σ(r)

)

(1.9)

is a Pσ-martingale.

Here we use the convention that empty products, i.e. products where the upper index is

smaller than the lower one, are equal 1 and empty sums are equal 0.

Proof. In order to simplify notations and for later reference, we set

Xt := f
(
σ(t)

)
−

t−1∑

s=0

(
LNf

)(
σ(s)

)
and Vt :=

t−1∏

s=0

1

1 + k
(
σ(s)

)

Notice that the process {Vt} is previsible and, due to the assumption on k, locally bounded.

Thus, for all σ ∈ SN , the theorem of discrete stochastic integrals implies that {Xt} is a Pσ-

martingale if and only
{(
V •X

)
t

}
is a Pσ-martingale. On the other hand, a straight forward
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computation shows that

(
V •X

)
t
=

t∑

s=1

Vs
(
Xs −Xs−1

)
=

t∑

s=1

Vs

(
f
(
σ(s)

)
− f

(
σ(s− 1)

)
−
(
LNf

)(
σ(s− 1)

))

= Vt f
(
σ(t)

)
− V1 f

(
σ(0)

)
+

t−1∑

s=1

(
Vs − Vs+1

)
f
(
σ(s)

)
−

t−1∑

s=0

Vs+1

(
LNf

)(
σ(s)

)

= Mt − f
(
σ(0)

)
. (1.10)

Since f
(
σ(0)

)
is a constant under Pσ, we conclude the proof of this lemma. �

The martingale (1.9) is the key ingredient to prove existence and uniqueness.

Proposition 1.2. Let k : Dc → R be a bounded function. Suppose that minη∈Dc k(η) > −1 and

set κ := 1 + minη∈Dc k(η). Further assume that for some σ ∈ Dc

1

κ
· lim sup

s→∞

(
psD(σ,D)

)1/s
< 1 (1.11)

where pD(σ, η) denotes the transition probabilities of a sub-Markov chain that is stopped at the

arrival of D. Then,

f(σ) = Eσ

[
u
(
σ(τD)

) τD−1∏

s=0

1

1 + k
(
σ(s)

) +

τD−1∑

s=0

g
(
σ(s)

) s∏

r=0

1

1 + k
(
σ(r)

)
]

(1.12)

for every σ ∈ Dc and f ≡ u on D is a solution of the Dirichlet problem (1.7). In particular, the

solution is unique.

Remark 1.3. First of all notice that if (1.11) is satisfied for some σ ∈ Dc and η ∈ D, then, by

irreducibility, it holds simultaneously for all σ ∈ Dc and η ∈ D. Moreover, provided that the

function k has the property that k(η) > 0 for all η ∈ Dc then (1.11) is immediately satisfied.

Proof. First, let us consider a function f that solves (1.7), i.e.
(
LNf

)
− kf = −g on Dc.

Further, it is seen from Lemma 1.1 that

M τD
t := f

(
σ(t ∧ τD)

)t∧τD−1∏

s=0

1

1 + k
(
σ(s)

) +

t∧τD−1∑

s=0

g(σ(s))

s∏

r=0

1

1 + k
(
σ(r)

)

is a local martingale up to time τD. Given a localizing sequence τnD ↑ τD of stopping time, we

construct another localizing sequence by

τn := τnD ∧ inf
{
t > 0

∣∣ Vt > n
}
. (1.13)

This implies that for each n there exists Kn <∞ such that

Vτn =
Vτn−1

1 + k
(
σ(τn − 1)

) ≤ max
η∈Dc

n

1 + k(η)
≤ Kn, (1.14)

where we exploit the assumption on the function k. In view of the martingale transform

(1.10), (1.14) allows us to bound
∣∣M τn(ω)

t −M
τn(ω)
t−1

∣∣ ≤ 2 max
η∈SN

|f(η)|Kn < ∞

uniformly for all t ∈ N0 and ω ∈ Ω. Since the dynamics is assumed to be irreducible and the

state space is finite, it holds that Eσ[τD] < ∞. Hence, an application of the optional stopping

theorem to the localization sequence τn reveals

f(σ) = Eσ

[
u
(
σ(τn)

) τn−1∏

s=0

1

1 + k
(
σ(s)

) +

τn−1∑

s=0

g
(
σ(s)

) s∏

r=0

1

1 + k
(
σ(r)

)
]
, (1.15)
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for all σ ∈ Dc. The assertion (1.12) now follows provided we can interchange the limit n→ ∞
and the expectation value. Notice that the random variable involved in the expectation (1.15)

is bounded from above by

max
η∈D

|u(η)| + τD(ω) · max
σ∈Dc

|g(η)| or

(
max
η∈D

|u(η)| +
1

1− κ
· max
σ∈Dc

|g(η)|
)
κ−τD(ω),

for Pσ-a.a. ω ∈ Ω depending on whether κ ≥ 1 or κ < 1. In the later, due to the irreducibility

and the assumption (1.11)

Eσ

[
κ−τD

]
=

∞∑

s=1

κ−s psD(σ,D) < ∞, ∀σ ∈ Dc. (1.16)

Hence, we can apply Lebesque’s dominated convergence theorem. This proves the uniqueness

of representation (1.12). On the other hand, by using the Markov property, a straight forward

computation shows that for any σ ∈ Dc

(
PNf

)
(σ) = Eσ

[1τD≤1 u
(
σ(τD)

)]

+
(
1 + k(σ)

)
Eσ

[1τD>1 Eσ(1)

[
u
(
σ(τD)

)
VτD +

τD−1∑

s=1

g
(
σ(s)

)
Vs+1

]]

=
(
1 + k(σ)

)
f(σ) − g(σ).

This complete the proof. �

Remark 1.4. Concerning the function k, a natural question to ask is what is the reason behind

the fact that the probabilistic representation (1.12) is infinite as soon as k(σ) = −1 for some

σ ∈ Dc. A closer look at (1.11) and (1.16) reveals that the finiteness of (1.12) is related to

the fact that κ is within the radius of convergence of the corresponding Neumann series. In

order to illustrated this fact, consider for simplicity the Dirichlet problem for vanishing u and

constant function k. We denote by LD the restriction of the generator to Dc, i.e. LD(σ, η) =

LN(σ, η) for σ, η ∈ Dc and by PD the corresponding restriction of the transition matrix PN . If

LD − k · I is regular, the analytic solution to (1.7) is given by f = (k · I − LD)
−1g. On the

other hand, provided that 1
1+k ‖PD‖ < 1, we can represent the inverse in terms of a Neumann

series, i.e.

(
k · I − LD

)−1
= 1

1+k

(
I − 1

1+k PD

)−1

=

∞∑

s=0

(
1

1+k

)−(s+1)

P s
D (1.17)

The right-hand side of (1.17) correspond to the probabilistic representation, see (1.31).

Remark 1.5. Let us briefly comment on the similarities and differences in the probabilistic

representation of a solution to the Dirichlet problem in discrete-time compared to the one in

continuous-time. The latter in given by

f(σ) = Eσ

[
u
(
σ(τD)

)
e−

∫ τD
0 k(σ(s)) ds +

∫ τD

0

g
(
σ(s)

)
e−

∫ s
0

k(σ(r)) dr ds

]
. (1.18)

If k ≥ 0 and LN ≡ 1
2∆, the Feyman-Kac formula (1.18) can be interpreted as a Brownian

motion with killing of particles at the same rate k that is stopped at the arrival of the boundary

of D. In particular, the probability that a particle survives up to time t, conditioned on the

path {σ(s)}0≤s≤t, is equal to exp
(
−
∫ t

0
k(σ(s)) ds

)
. In discrete-time, (1.12) suggests that the

situation is equivalent to a random walk with killing where the conditional survival probability

of a particle up to time t is then
∏t

s=0 1/(1 + k(σ(s))).

In the case when −1 < k ≤ 0, (1.12) can be seen as a random walk of particles that

branches of with the same rate k, and an analog interpretation can be given to the Feyman-Kac

formula in the continuous-time setting. For obvious reasons, the solution may explosion in
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finite time such that we have to impose conditions on the function k. Further we want to

stress that if k < −2, the probabilistic representation (1.12) is finite and has no counterpart in

the continuous-time setting.

Remark 1.6. Consider the case that the function k vanishes onDc. Then the Dirichlet problem

(1.7) is known as Laplace equation and Poisson equation, respectively, depending on whether

either g ≡ 0 or u ≡ 0. In the case k 6≡ 0, (1.7) is also called Feynman-Kac or Feynman-Kac-

Poisson equation.

1.3. Laplace equation and Poisson equation

Proposition 1.2 is a crucial element in the theory since it allows us to compute many interest-

ing expectation values for Markov chains by solving an appropriate boundary value problem.

In the sequel, we will consider various corresponding applications.

The key quantity in the potential theoretic approach is the λ-equilibrium potential, hλA,B. In

order to define it, consider a capacitor, (A,B), build up by two disjoint subsets A,B ⊂ SN .

Then, hλA,B is defined as the solution of the Dirichlet problem (1.7) with g ≡ 0 and k ≡ eλ − 1,

for λ ≥ 0, subject to the boundary condition given by the indicator function 1A on the set A.

The corresponding boundary value reads

{ (
LNf

)
(σ) −

(
eλ − 1

)
f(σ) = 0, σ ∈ (A ∪B)c

f(σ) = 1A(σ), σ ∈ A ∪B.
(1.19)

A related quantity is the λ-equilibrium measure, eλA,B, which is defined through

eλA,B(σ) := −
(
Lλ
Nh

λ
A,B

)
(σ), ∀σ ∈ SN , (1.20)

where we introduce the operator Lλ
N := LN −

(
eλ − 1

)
to shorten notation. In case λ = 0, we

simply write hA,B and eA,B instead of h0A,B and e0A,B.

Clearly, the equilibrium measure is non-vanishing only on the boundary of the sets A and

B. An immediate consequence of Proposition 1.2 is that the equation (1.19) has a unique

solution for all λ ≥ 0. Moreover, in view of (1.12), the function hλA,B describes the following

probabilistic objects. Namely, in the case λ > 0 the λ-equilibrium potential, hλA,B, represents

the Laplace transform of the hitting time, τA, of the set A taking into account that the Markov

chain {σ(t)} starting in σ gets kill at the arrival of B. For λ = 0, the equilibrium potential has a

natural interpretation in terms of hitting probabilities. Beside hλA,B the λ-equilibrium measure

has as well a probabilistic representation that can be derived by using the Markov property.

All in one, we have for λ ≥ 0

Eσ

[
e−λτA 1τA<τB

]
=





hλA,B(σ), σ 6∈ A ∪B,
1− e−λ eλA,B(σ), σ ∈ A,

− e−λ eλA,B(σ), σ ∈ B.

(1.21)

Notice that in the case λ = 0, by distinguish two cases, (1.21) implies that for all σ ∈ A ∪B

eA,B(σ) = −
(
LNhA,B

)
(σ) =

(
LNhB,A

)
(σ) = −eB,A(σ). (1.22)

A further object of interest is the Laplace transform of the hitting time of a set D ⊂ SN ,

which is the solution of a Feynman-Kac equation similar to (1.19). More precise, if we denote

by wλ
D = Eσ

[
e−λτD

]
, for σ ∈ Dc, then wλ

D is the solution of the Dirichlet problem (1.7) with

g ≡ 0, k ≡ eλ − 1, for λ ≥ 0, subject to the boundary condition 1 on the set D.
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Let us now turn our attention to the Poisson equation. If the functions k and u vanish, the

boundary value problem (1.7) reduces to
{ (

LNf
)
(σ) = −g(σ), σ ∈ Dc

f(σ) = 0, σ ∈ D.
(1.23)

In view of Proposition 1.2, the solution of the Poisson equation has the representation

f(σ) = Eσ

[
τD−1∑

s=0

g
(
σ(s)

)
]
, ∀σ ∈ Dc, (1.24)

which can be interpreted as average cost accumulated along a path of the Markov chain,

{σ(t)}, before hitting the set D. Of particular interest is the mean hitting time of the set D

which is obtained by choosing g ≡ 1 on Dc. Denoting the corresponding solution by wB we

have

wD(σ) = Eσ

[
τD
]
, ∀σ ∈ Dc. (1.25)

Let us now consider two disjoint subsets A,B ⊂ SN . We will be interested in the mean hitting

time of A starting the Markov chain in a configuration σ 6∈ A∪B that gets killed at the arrival

of B. To start with, let us denote by wA,B the solution of the Poisson equation (1.23) for the

choice D = A ∪B and g = hA,B. In this case (1.24) reads

wA,B(σ) = Eσ

[
τA∪B−1∑

s=0

hA,B(σ)

]
, ∀σ 6∈ A ∪B. (1.26)

The following lemma shows that wA,B is indeed the object we are interested in.

Lemma 1.7. Let A,B ⊂ SN be two disjoint subsets of the finite state space SN . Then,

wA,B(σ) = Eσ

[
τA 1τA<τB

]
, ∀σ 6∈ A ∪B. (1.27)

Proof. Recall that hA,B is harmonic in
(
A ∪ B

)c
. As a consequence of the discrete martingale

problem Xt := hA,B

(
σ(t)

)
−∑t−1

s=0

(
LNhA,B

)(
σ(s)

)
is a martingale and it holds that Xt =

hA,B

(
σ(t)

)
as long as t < τA∪B provided the Markov chain is started in σ 6∈ A ∪ B. Since the

process Ht = t is previsible and locally bounded, Mt :=
(
H •X

)
t

is a martingale that vanishes

in zero. In particular, Mt is a local martingale up to time τA∪B. By applying the optional

stopping theorem with a localizing sequence τn ↑ τA∪B of stopping times we obtain

0 = Eσ

[
(H •X)0

]
= Eσ

[
(H •X)τn

]
= Eσ

[
τn hA,B

(
σ(τn)

)
−

τn−1∑

s=0

hA,B

(
σ(s)

)]
. (1.28)

Since Eσ[τB] <∞, Lebesque’s dominated convergence theorem implies that, for all σ 6∈ A∪B,

wA,B(σ) = Eσ

[
τA∪B hA,B

(
σ(τA∪B)

)]
= Eσ

[
τA 1τA<τB

]
(1.29)

where we used that the hA,B(σ) = 1A(σ) for σ ∈ A ∪B. This completes the proof. �

1.4. Green function and Green’s identities

Let us now focus on a specific Feynman-Kac-Poisson equation that is given by the Dirichlet

problem (1.7) with the choice of vanishing function u and k ≡ eλ − 1, for λ ≥ 0, i.e.
{ (

LNf
)
(σ) −

(
eλ − 1

)
f(σ) = −g(σ), σ ∈ Dc

f(σ) = 0, σ ∈ D.
(1.30)



10 1. BASIC INGREDIENTS OF THE POTENTIAL THEORETIC APPROACH

The stochastic representation (1.12) for a solution of (1.30) can be written in the form

f(σ) = Eσ

[
τD−1∑

s=0

e−λ(s+1) g
(
σ(s)

)
]

=
∑

η 6∈D

Gλ
D(σ, η) g(η) ∀σ ∈ Dc, (1.31)

where Gλ
D : SN × SN → R is called the Green function, which is defined through

Gλ
D(σ, η) :=

∞∑

s=0

e−λ(s+1) Pσ
[
σ(s) = η, s < τD

]
, ∀σ, η ∈ Dc (1.32)

and

Gλ
D(σ, η) := 1σ=η ∀σ, η ∈ D, and Gλ

D(σ, η) := 0, otherwise. (1.33)

In the case λ = 0, the Green function represents the expected number of visits in η starting the

Markov chain, {σ(t)}, in σ before hitting the set D. Moreover, we denote by

psD(σ, η) := Pσ
[
σ(s) = η, s < τD

]
< psN (σ, η) (1.34)

the transition function of a process that is absorbed in D. Notice that psD(σ, · ) are sub-

probabilities distributions. Since the dynamics is assumed to be reversible, we have

µN (σ)Gλ
D(σ, η) = µN (η)Gλ

D(η, σ). (1.35)

Notice that the λ-equilibrium potential has an immediate representation in terms of the Green

function. Namely, for all σ ∈ Bc it holds that

hλA,B(σ) =
∑

η∈A

Gλ
B(σ, η) e

λ
A,B(η). (1.36)

For later reference, the representation of wD via the Green function is given by

wD(σ) =
∑

η 6∈D

GD(σ, η). (1.37)

An important formula is the discrete analog of the first and second Green’s identity. Let us

emphasis the fact that reversibility of the dynamics implies that the (discrete) generator, LN ,

is self-adjoint on L2(SN , µN ). As a consequence, we have

Proposition 1.8 (First Green’s identity). Let f, g ∈ L2(SN , µN ). Then,

1

2

∑

σ,η∈SN

µN (σ) pN (σ, η)
(
f(σ) − f(η)

) (
g(σ) − g(η)

)
= −

∑

σ∈SN

µN (σ) f(σ)
(
LNg

)
(σ).

(1.38)

Proof. By expanding the left-hand side of (1.38) and using the detailed balance condition the

assertion is immediate. �

Corollary 1.9 (Second Green’s identity). Let A ⊂ SN and f, g ∈ L2(SN , µN ). Then,
∑

σ∈A

µN (σ)
(
f(σ)

(
LNg

)
(σ) − g(σ)

(
LNf

)
(σ)
)

=
∑

σ∈Ac

µN (σ)
(
g(σ)

(
LNf

)
(σ) − f(σ)

(
LNg

)
(σ)
)
. (1.39)

Remark 1.10. In the context of reversible diffusion processes in Rd, studied in [17, 18],

Green’s identities were crucial to derive various estimates. Emphasizing this link, we will

refer to (1.39) as second Green’s identity, although it is a simple rewriting of 〈f, LNg〉µN =

〈LNf, g〉µN in the discrete setting.
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Remark 1.11. While the discrete analogue of Green’s first identity is well known and its

application can be found at various places in the literature, the strength of Green’s second

identity, i.e. the systematic exploit of the reversibility, seems to be overlooked in the past.

We turn now our attention to the Feynman-Kac equation which is given by the Dirichlet

problem (1.7) with vanishing function g and k ≡ eλ − 1, for λ ≥ 0. It reads
{ (

LNf
)
(σ) −

(
eλ − 1

)
f(σ) = 0, σ ∈ Dc

f(σ) = u(σ), σ ∈ D.
(1.40)

Our aim is to derive a representation of the solution operator, Hλ
D, associated to the Feynman-

Kac equation in terms of the Green function to which we will refer to as Poisson kernel. In

order to do so, suppose that f solves (1.30). Further, for any fixed σ ∈ Dc an application of

the second Green’s identity to the functions f and Gλ
D(·, σ) reveals immediately that

f(σ) =
∑

η∈D

µN (η)

µN (σ)

(
Lλ
NG

λ
D

)
(η, σ)u(η), (1.41)

where we used that, for all η ∈ Dc,
(
Lλ
NG

λ
D

)
(η, σ) = −1η=σ and

(
Lλ
Nf
)
(η) = 0. Recall that

Lλ
N = LN − (eλ − 1). In view of the probabilistic representation (1.12), we have

Hλ
D(σ, η) =

µN (η)

µN (σ)

(
Lλ
NG

λ
D

)
(η, σ) = Eσ

[
e−λτD 1σ(τD)= η

]
, ∀σ ∈ Dc, η ∈ D, (1.42)

while otherwise we set Hλ
D(σ, η) = 0. As an application, we obtain for the λ-equilibrium

potential the following representation

hλA,B(σ) =
∑

η∈A

µN (η)

µN (σ)

(
Lλ
NG

λ
A∪B

)
(η, σ), ∀σ 6∈ A ∪B. (1.43)

1.5. Connection between equilibrium potential, capacity, and mean hitting times

In this section, we will introduce the main object of the potential theoretic approach. Here,

we restrict our attention to the case λ = 0. The capacity of the capacitor (A,B) with equilib-

rium potential one on A and zero on B is defined through

cap(A,B) :=
∑

σ∈A

µN (σ) eA,B(σ). (1.44)

Let us denote by 〈·, ·〉µN the scalar product in L2(SN , µN ). The energy associated to the pair

(PN , µN ) is defined for any function f on SN by

E(f) := 〈−LNf, f〉µN . (1.45)

An immediate consequence of the first Green’s identity is that

E(f) =
1

2

∑

σ,η∈SN

µN (σ) pN (σ, η)
(
f(σ) − f(η)

)2
. (1.46)

Due to the detailed balance condition, the factor 1/2 ensure that each pair of configuration

(σ, η) contributes to the energy only once. Inspecting the definition of the capacity reveals that

cap(A,B) = E(hA,B). In particular, we obtain that

cap(A,B) =
1

2

∑

σ,η∈SN

µN (σ) pN (σ, η)
(
hA,B(σ) − hA,B(η)

)2
. (1.47)

Moreover, the capacity has a probabilistic interpretation in terms of escape probabilities, namely

PµA

[
τB < τA

]
= cap(A,B)/µN [A], where µA(σ) = µN [σ|A], for σ ∈ A, stand for the reversible

measure conditioned on the set A.
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So far, we have seen that the mean hitting time, Eσ

[
τB
]
, of a set B, has an analytic coun-

terpart, wB , that solves a certain Poisson equation. However, in most applications an exact

solution of the corresponding boundary value problem can not be achieved. The first impor-

tant ingredient of the potential theoretic approach to metastability is a formula for the average

mean hitting time when starting the Markov chain in the so called last exit biased distribution

on a set A that connects it to the capacity and the equilibrium potential. For any two disjoint

subsets A,B ⊂ SN this distribution is defined through

νA,B(σ) =
µN (σ) Pσ

[
τB < τA

]
∑

η∈A µN (η) Pη
[
τB < τA

] =
µN (σ) eA,B(σ)

cap(A,B)
∀σ ∈ A. (1.48)

Notice that νA,B is concentrated on those starting configurations η ∈ A that are at the bound-

ary of this set.

Proposition 1.12. Let A,B ⊂ SN with A ∩B = ∅. Then

EνA,B [τB ] =
1

cap(A,B)

∑

σ 6∈B

µN (σ)hA,B(σ). (1.49)

Remark 1.13. We are typically interested in mean hitting times of the set B starting the pro-

cess in a single configuration σ ∈ A. For this reason, it appears appealing to replace in (1.49)

the subset A by the singleton {σ}. However, this results in the challenging task of computing

precisely the capacity cap({σ}, B) between a configuration and a set, and in most applications

this cannot be achieved. On the other hand, we are able to establish sharp estimates on the

right-hand side of (1.49), and hence on an averaging of mean hitting times with respect to

νA,B, in situations when the sets A and B are sufficiently large. In the next chapter, we derive

pointwise estimates on the mean hitting times by controlling the fluctuations of Eσ[τB] within

A.

We present three different proofs of this proposition. While the first one, which can be found

in [53], uses purely probabilistic arguments, the second proof relies on the Green function

representation (1.36). It was first given in [14]. The third one is as well a rather simple proof

bases on Green’s second identity.

Proof of Proposition 1.12 via last exit decomposition. First, let us define the last exit time LA,B

from A before hitting B as

LA,B := sup
{
0 ≤ t < τB

∣∣ σ(t) ∈ A
}
. (1.50)

Then we have for all η 6∈ B,

µN (η) Pη
[
τA < τB

]
= µN (η) Pη

[
LA,B > 0

]

=
∞∑

s=1

∑

σ∈A

µN (η) Pη
[
LA,B = s, σ(s) = σ

]

=

∞∑

s=1

∑

σ∈A

µN (η) Pη
[
σ(s) = σ, s < τB

]
Pσ
[
τB < τA

]
, (1.51)

where we used the Markov property in the last step. By reversibility, we have that

µN (η) Pη
[
σ(s) = σ, s < τB

]
= µN (σ) Pσ

[
σ(s) = η, s < τB

]
. (1.52)

In view of (1.48), this implies that

EνA,B

[
τB−1∑

s=0

1σ(s)=η

]
− µN (η) Pη

[
τB < τA

]

cap(A,B)
1η ∈A =

µN (η) Pη
[
τA < τB

]

cap(A,B)
(1.53)

By summing over all configurations η outside B, we obtain (1.49). �
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Proof of Proposition 1.12 via Green function. For any σ ∈ A, multiply the representation (1.37)

of the mean hitting time wB by µN (σ) eA,B(σ). Summing over all σ ∈ A gives

∑

σ∈A

µN (σ) eA,B(σ)wB(σ) =
∑

σ∈A

∑

η 6∈B

µN (σ)GB(σ, η) eA,B(σ)

=
∑

σ∈A

∑

η 6∈B

µN (η) eA,B(σ)GB(η, σ) =
∑

η 6∈B

µN (η)hA,B(η),

(1.54)

where we used (1.35) in the second step and the representation (1.36) of the equilibrium

potential, hA,B, via the Green function in the third step. Normalizing the measure on the

left-hand side yields the assertion. �

Proof of Proposition 1.12 via Green’s second identity. By applying the second Green’s identity to

the functions wB and hA,B, we obtain

∑

σ∈A

µN (σ) eA,B(σ)wB(σ) =
∑

σ 6∈B

µN (σ)hA,B(σ). (1.55)

Normalizing the measure on the left-hand side immediately yields the assertion. �

We will now prove a splitting lemma which will be important in the investigation of the

distribution of normalized hitting times.

Lemma 1.14. Let A,B ⊂ SN with A ∩B = ∅. Then

EνA,B

[
τB
]
=

EµA

[
τA 1τA<τB

]
+ EµA

[
τB 1τB<τA

]

PµA

[
τB < τA

] . (1.56)

We give three proofs, one purely probabilistic and two purely analytic.

Proof of Lemma 1.14 via strong Markov property. By using that 1 = 1τB<τA + 1τA<τB together

with the strong Markov property, we obtain

EµA

[
τB
]
= EµA

[
τB 1τB<τA

]
+ EµA

[1τA<τB Eσ(τA)

[
τA + (τB − τA)

]]

= EµA

[
τB 1τB<τA

]
+ EµA

[
τA 1τA<τB

]
+
∑

η∈A

Pσ
[
τA < τB , σ(τA) = η

]
Eη

[
τB
]
.

As a consequence of the reversibility of the dynamics, we have that
∑

σ∈A

µN (σ) Pσ
[
τA < τB, σ(τA) = η

]
= µN (η) Pη

[
τA < τB

]
, ∀ η ∈ A. (1.57)

Combining the last two equations and solving for Eσ[τB] yields

1

µN [A]

∑

η∈A

µN (η) Pη

[
τB < τA

]
Eη

[
τB
]
= EµA

[
τB 1τB<τA

]
+ EµA

[
τA 1τA<τB

]
(1.58)

which, together with the definition of the last exit distribution, is equivalent to (1.56). This

completes the proof. �

Proof of Lemma 1.14 via Green’s function. Our starting point is the representation of wB in

terms of the Green function as given in (1.37), which we rewrite as

wB(σ) =
∑

η∈A

GB(σ, η) +
∑

η 6∈A∪B

GB(σ, η)
(
hA,B(η) + hB,A(η)

)
, (1.59)
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taking advantage of the fact that hA,B(η) + hB,A(η) = Pη[τA < τB ] + Pη[τB < τA] = 1, for all

η 6∈ A ∪B. Multiplying both sides with µN (σ) eA,B(σ) and summing over all σ ∈ A gives
∑

σ∈A

µN (σ) eA,B(σ)wB(σ) = µN [A] +
∑

σ∈A
η 6∈A∪B

eA,B(σ)µN (η)GB(η, σ)
(
hA,B(η) + hB,A(η)

)
,

(1.60)

where we used (1.35) as well as the representation, (1.36), of the harmonic function hA,B via

the Green’s function. Exploiting that, for all σ 6∈ A ∪ B, the function wA,B solves the Poisson

equation
(
LNwA,B

)
(σ) = −hA,B(σ) subject to zero boundary condition of A ∪ B, we can

replace the harmonic function hA,B in (1.60) by the left-hand side of the Poisson equation. By

applying Green’s second identity to the functions wA,B and GBc( · , σ) with σ ∈ A we have
∑

η 6∈A∪B

µN (η)GB(η, σ)
(
LNwA,B

)
(η) = −

∑

η∈A

µN (η)GB(η, σ)
(
LNwA,B

)
(η), (1.61)

whereas the same holds true when wA,B is replaced by wB,A. Carrying out the summation

over σ ∈ A and taking into account (1.36), yields
∑

σ∈A

µN (σ) eA,B(σ)wB(σ) =
∑

η∈A

µN (σ)
(
1 +

(
LNwA,B

)
(η) +

(
LNwB,A

)
(η)
)

(1.62)

=
∑

η∈A

µN (η)
(
Eη

[
τA 1τA<τB

]
+ Eη

[
τB 1τB<τA

])
.

The last step relies on the probabilistic interpretation of the involved analytic quantities and

the boundary ofA. Namely, for all η ∈ A it holds that Eη

[
τB 1τB<τA

]
= eA,B(η)+

(
LNwB,A

)
(η)

and Eη

[
τA 1τA<τB

]
= 1− eA,B(η) +

(
LNwA,B

)
(η). Normalizing the measure on the left-hand

side completes the proof. �

Proof of Lemma 1.14 via second Green’s formula. By applying Green’s second identity to the

functions wA,B and hA,B gives
∑

σ∈A

µN (σ)
(
LNwA,B

)
(σ) =

∑

σ 6∈A∪B

µN (σ)h2A,B(σ), (1.63)

whereas its application to the functions wB,A and hA,B leads to
∑

σ∈A

µN (σ)
(
LNwB,A

)
(σ) =

∑

σ 6∈A∪B

µN (σ)hA,B(σ)hB,A(σ). (1.64)

Adding up the last two equations, yields
∑

σ∈A

µN (σ)
((
LNwA,B

)
(σ) +

(
LNwB,A

)
(σ)
)

=
∑

σ 6∈A∪B

µN (σ)hA,B(σ). (1.65)

By comparing this equation with (1.55), we immediately recover (1.62) and the remaining

part of the proof follows the arguments given in the previous proof. �

1.6. The Dirichlet and Thomson principle: a dual variational principle

The power of Proposition (1.12) is that it represents the mean hitting time in terms of a

capacity that is a positive-definite quadratic form, as it can be seen from (1.47). Whenever

a object of interests can be expressed as a positive-definite quadratic form, it is often possi-

ble to establish dual variational principles from which upper and lower bound for it can be

constructed. Notice that many variational methods are based on this tool. Our presentation

follows in parts the one given by Lieberstein [64] in the context of partial differential equa-

tions.
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The bilinear form E(g, h) associated to the Dirichlet form E(g) is given by

E(g, h) =
1

2

∑

σ,η∈SN

µN (σ) pN (σ, η)
(
g(σ)− g(η)

) (
h(σ)− h(η)

)
. (1.66)

An immediate consequence of the Cauchy-Schwarz inequality is that

E(g, h)2 ≤ E(g) E(h). (1.67)

Recall that the equilibrium potential, hA,B, is defined as the solution of the Laplace equation
{ (

LNf
)
(σ) = 0, σ ∈ (A ∪B)c

f(σ) = 1A(σ), σ ∈ A ∪B.
(1.68)

If a function h ∈ L2(SN , µN ) has the property that h = 1A on A ∪ B, then by Green’s first

identity

E(hA,B, h) = −
∑

η∈SN

µN (η)h(η)
(
LNhA,B

)
(η) =

∑

η∈A

µN (η) eA,B(η) (1.69)

In view of (1.44) and (1.47), for such a function h, by (1.67), we have that cap(A,B) ≤ E(h).
Since equality is obtains, if we choose for h the equilibrium potential, we have proven the well

known

Proposition 1.15 (Dirichlet principle). For any non-empty disjoint sets A,B ⊂ SN ,

cap(A,B) = min
h∈HA,B

E(h) (1.70)

where HA,B :=
{
h : SN → [0, 1]

∣∣ h|A ≡ 1, h|B ≡ 0
}

.

Remark 1.16. The importance of the Dirichlet principle is that it yields computable upper

bounds for capacities by choosing suitable test functions h. As we will see in chapter 5, with

proper physical insight, it is often possible to guess a reasonable test function.

Remark 1.17. An immediate corollary of the Dirichlet principle is Rayleigh’s monotonicity law.

It allows to derive a lower bound for capacities by using the monotonicity of the Dirichlet form

in the transition probabilities to compare the original process with a simplified one. This is

well known in the language of electrical networks, see [44].

Instead of considering a function h which coincides with hA,B on A ∪ B, suppose that

h ∈ L2(SN , µN ) is super-harmonic on Bc, i.e.
(
LNh

)
(σ) ≤ 0 for all σ ∈ Bc. Then by Green’s

first identity

E(hA,B, h) = −
∑

η∈SN

µN (σ)hA,B(σ)
(
LNh

)
(σ) ≥ −

∑

η∈A

µN (σ)
(
LNh

)
(σ), (1.71)

where we used in the second step that on (A ∪ B)c the equilibrium potential is non-negative.

Hence, from (1.67), we get that

cap(A,B) ≥

(∑
η∈A µN (η)

(
LNh

)
(η)
)2

E(h) (1.72)

where equality is obtain for h = hA,B. Further, notice that the value of the right-hand side of

(1.72) is invariant with respect to multiplication of h by a constant. This allows to choose h is

such a way that the numerator of (1.72) is equal to 1. Thus, we have proven a version of Sir

William Thomson’s (Lord Kelvin’s) principle
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Proposition 1.18. For any non-empty disjoint sets A,B ⊂ SN ,

cap(A,B) = max
h∈HA,B

(∑
η∈A µN (η)

(
LNh

)
(η)
)2

E(h) . (1.73)

where HA,B :=
{
h :SN → [0, 1]

∣∣ (LNh)(η) ≤ 0, ∀ η 6∈ B
}

.

The Thomson principle is well known in the context of random walks and electrical net-

works. However, in that language it is differently formulated in terms of unit flows, see

[44, 83]. For this reason, we will briefly discuss the connection between these formulations.

Definition 1.19. Given two non-empty disjoint sets A,B ⊂ SN , and a map f : SN × SN → R

such that, for all σ, η ∈ SN , f(σ, η) = −f(η, σ) and pN (σ, η) = 0 implies f(σ, η) = 0.

(a) The map f is a flow from A to B, if it satisfies Kirchhoff’s law in (A ∪B)c, that is

∑

η∈SN

f(σ, η) =
∑

η∈SN

f(η, σ), ∀σ ∈ (A ∪B)c. (1.74)

(b) The map f is a unit flow from A to B, if it is a flow and the strength of f is equal to

1, that is

∑

σ∈A

∑

η∈SN

f(σ, η) = 1 =
∑

η∈SN

∑

σ∈B

f(η, σ). (1.75)

With this definition of flows on the network given by
(
p(σ, η)

)
in mind, let us rewrite the

bilinear form E(g, h) as

E(g, h) =
1

2

∑

σ,η∈SN

1

µN (σ) pN (σ, η)

(
µN pN∇g

)
(σ, η)

(
µN pN∇h

)
(σ, η), (1.76)

where we introduced the notation
(
µN pN∇g

)
(σ, η) := µN (σ) pN (σ, η)

(
g(σ) − g(η)

)
. Now

observe that if the function g is harmonic then µN pN∇g is a flow. Thus, in view of (1.76),

given two flows f, φ we define a bilinear form through

D(f, φ) :=
1

2

∑

σ,η∈SN

1

µN (σ) pN (σ, η)
f(σ, η)φ(σ, η), D(f) := D(f, f). (1.77)

In particular, D(µN pN∇hA,B) = cap(A,B). Since for any unit flow f ,

D(µN pN∇hA,B, f) =
1

2

∑

σ,η∈SN

(
hA,B(σ)− hA,B(η)

)
f(σ, η) =

∑

σ∈A

∑

η∈SN

f(σ, η) = 1

(1.78)

an application of Cauchy-Schwarz’s inequality reveals that cap(A,B) ≥ 1/D(f), whereas

equality holds for the unit flow which is given in terms of the harmonic function. Thus, we

have proven

Proposition 1.20 (Thomson principle). For any non-empty disjoint sets A,B ⊂ SN ,

cap(A,B) = max
f∈UA,B

1

D(f)
, (1.79)

where UA,B denotes the space of unit flows from A to B.
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1.7. The Berman-Konsowa principle: a variational principle for the lower bound

The variational principles, we have presented in the previous section, rely on the application

of the Cauchy-Schwarz inequality to the bilinear form E(g, h) and D(f, φ), respectively. We will

now describe a little-known variational principles for capacities that does not use (1.67). It

was first proven by Berman and Konsowa in [4]. Our presentation will follow the arguments

first given in [6] and then in [14].

Definition 1.21. Given two non-empty disjoint sets A,B ⊂ SN , a map f : SN × SN → [0,∞)

such that pN (σ, η) = 0 implies f(σ, η) = 0 for all σ, η ∈ SN . Then f is a loop-free non-negative

unit flow, if it satisfies the following properties

(i) if f(σ, η) > 0 then f(η, σ) = 0,

(ii) f satisfies Kirchhoff’s law in (A ∪B)c,

(iii) the strength of f is equal to 1,

(iv) any path, γ, from A to B such that f(σ, η) > 0 for all (σ, η) ∈ γ is self-avoiding.

Now, we will show that each loop-free non-negative unit flow f give rise to a probability

measure Pf on self-avoiding paths. For a given f we define F(σ) :=
∑

η∈SN
f(σ, η) which is

positive for all σ 6∈ B. Then Pf is the law of a Markov chain {ξ(t)} that is stopped at the arrival

of B with initial distribution Pf
[
ξ(0) = σ

]
= F(σ)1A(σ) and transition probabilities

qf (σ, η) =
f(σ, η)

F(η)
, σ 6∈ B. (1.80)

Hence, for a path γ =
(
σ0, . . . , σr

)
with σ0 ∈ A, σr ∈ B and σk ∈ SN \(A∪B), ∀ k = 1, . . . r−1

we have

Pf
[
ξ = γ

]
= F (σ0)

r−1∏

k=0

f(σk, σk+1)

F (σk)
(1.81)

where we used the convention that 0/0 = 0. By using Kirchhoff’s law, we obtain the following

representation for the probability that {ξ(t)} passes through an edge (σ, η)

Pf
[
ξ ∋ (σ, η)

]
=
∑

γ

Pf
[
ξ = γ

]1(σ,η)∈γ = f(σ, η). (1.82)

The equation (1.82) gives rise to the following partition of unity1f(σ,η)>0 =
∑

γ

Pf
[
ξ = γ

] 1

f(σ, η)
1(σ,η)∈γ (1.83)

Employing this representation, for every h ∈ L2(SN , µN) which satisfy the boundary condition

h = 1A on A ∪B, we can bound the Dirichlet form from below by

E(h) ≥
∑

(σ,η)

µN (σ) pN (σ, η)
(
h(σ)− h(η)

)2 1f(σ,η)>0

=
∑

γ

Pf
[
ξ = γ

] ∑

(σ,η)∈γ

µN (σ) pN (σ, η)

f(σ, η)

(
h(σ)− h(η)

)2
(1.84)

Let us now minimize the expressions above over all function h with h|A = 1 and h|B = 0. By

interchanging the minimum and the sum on the right-hand side of (1.84), we are left with the

task to solve optimization problems along one-dimensional path from A to B whose minimizer

are explicitly known [11]. As a result, we get

cap(A,B) ≥
∑

γ

Pf
[
ξ = γ

](∑
(σ,η)∈γ

f(σ, η)

µN (σ) pN (σ, η)

)−1

. (1.85)
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An important loop-free unit flow is the harmonic flow, fA,B, which is defined in terms of the

equilibrium potential

fA,B(σ, η) :=
µN (σ) pN (σ, η)

cap(A,B)

[
hA,B(σ)− hA,B(η)

]
+
. (1.86)

It is easy to verify that fA,B satisfies the conditions (i)–(iv). While, (i) is obvious, (ii) is a

consequence that hA,B is harmonic in (A ∪ B)c and (iii) follows from (1.44). Condition (iv)

comes from the fact that the harmonic flow only moves in directions where hA,B decreases.

Since for fA,B equality is obtained in (1.85) Pf -a.s., this proves

Proposition 1.22. (Berman-Konsowa principle) Let A,B ⊂ SN be disjoint. Then, with the

notations introduced above,

cap(A,B) = max
f∈UA,B

Ef

[(∑
(σ,η)∈γ

f(σ, η)

µN (σ) pN (σ, η)

)−1
]
, (1.87)

where UA,B denotes the space of all loop-free non-negative unit flows from A to B.

The nice feature of this variational principle is that any flow gives rise to a computable

lower bound. In order to obtain upper and lower bounds on the capacity that differs only a

little, the strategy is to find first a good approximation of the harmonic function, hA,B, by a

test function h and to construct, in a second step, a test flow f from it. By plugging f into

(1.85), the quality of the approximation can be controlled.

Remark 1.23. Given a loop-free non-negative unit flow f , then, by Jensen’s inequality

Ef

[(∑
(σ,η)∈γ

f(σ, η)

µN (σ) pN (σ, η)

)−1
]

≥
(
Ef

[∑
(σ,η)∈γ

f(σ, η)

µN (σ) pN (σ, η)

])−1

=
1

D(f)
.

(1.88)

Since the Thomson principle also holds for loop-free non-negative unit flows, this shows that

the lower bound on the capacity obtained by the Berman-Konsowa principle provides, in prin-

ciple, a better approximation compared to the Thomson principle.

1.8. Renewal equation

In earlier works, see for example [15, 16], the following renewal equations played a crucial

role in order to estimate harmonic functions or to control the Laplace transforms of hitting

times. Let σ, η ∈ SN , η 6∈ B ⊂ SN and u : R → R, then

Pσ
[
τη < τB

]
=

Pσ
[
τη < τB∪σ

]

Pσ
[
τB∪η < τσ

] and Eσ

[
e−u(λ)τB

]
=

Eσ

[
e−u(λ)τB 1τB<τσ

]

1− Eσ

[
e−u(λ)τσ 1τσ<τB

] (1.89)

where the second equation holds for all λ for which the left-hand side exists. However, as it

was pointed out in [6, 5, 14], pointwise renewal equation are of limited use in the general

context. Instead of studying the process in a given point σ, we show how an averaged version

of the standard renewal argument can be established.

Lemma 1.24. Let A,B,X ⊂ SN be mutually disjoint. Then

PνX,A∪B

[
τA < τB

]
=

PµX

[
τA < τB∪X

]

PµX

[
τA∪B < τX

] ≤ min

{
cap(X,A)

cap(X,B)
, 1

}
. (1.90)

We give three proofs, one purely probabilistic using strong Markov property and two purely

analytic ones using the Green’s function and the second Green’s identity.
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Proof of Lemma 1.24 via strong Markov property. By starting the process in the reversible mea-

sure µX , we obtain

PµX

[
τA < τB

]
= PµX

[
τA < τB∪X

]
+
∑

η∈X

PµX

[
τX < τA∪B, σ(τX) = η

]
Pη
[
τA < τB

]
(1.91)

As a consequence of the reversibility, we have that
∑

σ∈X

µN (σ) Pσ
[
τX < τA∪B, σ(τX) = η

]
= µN (η) Pη

[
τX < τA∪B

]
. (1.92)

Hence, this allows us to rewrite (1.91) as

1

µN [X ]

∑

σ∈X

µN (σ) Pη
[
τA∪B < τX

]
Pη
[
τA < τB

]
= PµX

[
τA < τB∪X

]
. (1.93)

Normalizing the measure on the left-hand side (1.93) and comparing the result with (1.48),

yields

PνX,A∪B

[
τA < τB

]
=

PµX

[
τA < τB∪X

]

PµX

[
τA∪B < τX

] ≤ PµX

[
τA < τX

]

PµX

[
τB < τX

] =
cap(X,A)

cap(X,B)
,

where we used elementary monotonicity properties in the second step and the definition of

capacities in the last step. Of course this bound is useful only if cap(X,A)/ cap(X,B) < 1. �

Proof of Lemma 1.24 via Green’s function. To start with, let us consider the so called Poisson

kernel representation of hA,B, as defined in (1.43), which reads

hA,B(σ) =
∑

η∈A∪B

µN (η)

µN (σ)
hA,B(η)

(
LNGA∪B

)
(η, σ). (1.94)

In particular, for any σ ∈ X , we get that

hA,B(σ) =
∑

η∈A∪B

µN (η)

µN (σ)
hA,B∪X(η)

(
LNGA∪B

)
(η, σ). (1.95)

By applying the second Green’s identity to the functions hA,B∪X and GA∪B( · , σ), we obtain
∑

η∈A∪B

µN (η)hA,B∪X(η)
(
LNGA∪B

)
(η, σ) =

∑

η∈X

µN (η) eB∪X,A(η)GA∪B(η, σ). (1.96)

Hence, combining (1.95) and (1.96) yields

hA,B(σ) =
∑

η∈X

µN (η)

µN (σ)
eB∪X,A(η)GA∪B(η, σ). (1.97)

Thus, if we multiply both sides with µN (σ) eX,A∪B(σ) and sum over all σ ∈ X , we get
∑

σ∈X

µN (σ) eX,A∪B(σ)hA,B(σ) =
∑

σ,η∈X

µN (η) eB∪X,A(η)GA∪B(η, σ) eX,A∪B(σ)

=
∑

η∈X

µN (η) eB∪X,A(η), (1.98)

where we used in the second step the representation (1.36) of hX,A∪B in terms of the Green

function and that hX,A∪B(η) = 1, for all η ∈ X . Dividing both sides of (1.98) by cap(X,A∪B)

and using the definition of the last exit biased distribution (1.48), we obtain

PνX,A∪B

[
τA < τB

]
=

∑
η∈X µN (η) eB∪X,A

cap(X,A ∪B)
=

PµX

[
τA < τB∪X

]

PµX

[
τA∪B < τX

] ≤ cap(X,A)

cap(X,B)
.

This concludes the proof. �
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Proof of Lemma 1.24 via second Green’s identity. By applying the second Green’s identity to the

functions hA,B and hX,A∪B, we get

−
∑

σ∈X

µN (σ)
(
LNhX,A∪B

)
(σ)hA,B(σ) =

∑

σ∈A

µN (σ)
(
LNhX,A∪B

)
(σ). (1.99)

A further application of the second Green’s identity to the functions hX,A∪B and hA,B∪X re-

veals that
∑

σ∈A

µN (σ)
(
LNhX,A∪B

)
(σ) =

∑

σ∈X

µN (σ)
(
LNhA,B∪X

)
(σ). (1.100)

Hence, by combing both equations, we obtain
∑

σ∈X

µN (σ) eX,A∪B(σ)hA,B(σ) =
∑

σ∈X

µN (σ) eB∪X,A(σ). (1.101)

By dividing both sides of (1.101) by cap(X,A ∪ B) and using the definition of the last exit

biased distribution as well as the probabilistic interpretation of the equilibrium measures

eB∪X,A(η) and eA∪B,X(η), allows to deduce (1.90). �

Our next goal is to show an averaged version of the renewal equation for the Laplace

transform. In the previous sections we already presented the profound connection between

potential theory and the Laplace transform. Given two disjoint subsets A,B ⊂ SN , our starting

point is a specific probability measure ρλ on A which is defined for any λ ≥ 0 by

ρλ(σ) =
µN (σ)

(
1− Eσ

[
e−λτA 1τA<τB

])
∑

η∈A µN (η)
(
1− Eη

[
e−λτA 1τA<τB

]) =
µN (σ) eλA,B(σ)∑
η∈A µN (η) eλA,B(η)

. (1.102)

Let us point out that ρλ is a generalization of the last exist biased distribution which can be

retrieved from ρλ by setting λ = 0.

The following renewal equation will be used in Section 3.4.

Lemma 1.25. Let A,B ⊂ SN with A ∩B 6= ∅ and ρλ as defined above. Then

Eρλ

[
e−λτB

]
=

EµA

[
e−λτB 1τB<τA

]

1− EµA

[
e−λτA 1τA<τB

] . (1.103)

Again, we give three proofs, one purely probabilistic using the strong Markov property and

two purely analytic using the Green’s function and the second Green’s identity, respectively.

Proof of Lemma 1.25 via strong Markov property. By using that 1 = 1τB<τA + 1τA<τB and the

strong Markov property, we obtain

EµA

[
e−λτB

]
= EµA

[
e−λτB 1τB<τA

]
+
∑

η∈A

EµA

[
e−λτA 1τA<τB 1σ(τA)=η

]
Eη

[
e−λτB

]
. (1.104)

Let us now consider the last term. By reversibility, it holds that
∑

σ∈A

µN (σ) Eσ

[
e−λτA 1τA<τB 1X(τA)=η

]
= µN (η) Eη

[
e−λτA 1τA<τB

]
. (1.105)

Combining (1.105) with (1.104) and solving for Eη

[
e−λτB

]
yields

1

µN [A]

∑

η∈A

µN (σ)
(
1− Eη

[
e−λτA 1τA<τB

])
Eη

[
e−λτB

]
= EµA

[
e−λτB 1τB<τA

]
.

Since λ ≥ 0, we can normalize the measure on the left-hand side. In view of (1.102), the

normalization constant is equal to µN [A]− µN [A] EµA

[
e−λτA 1τA<τB

]
and hence, (1.103) fol-

lows. �
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Proof of Lemma 1.25 via Green’s function. For any σ ∈ A consider the Poisson kernel represen-

tation of wλ
B given by

wλ
B(σ) =

∑

η∈B

µN (η)

µN (σ)

(
Lλ
NG

λ
B

)
(η, σ) =

∑

η∈B

µN (η)

µN (σ)

(
Lλ
NG

λ
B

)
(η, σ) hλB,A(η). (1.106)

Applying the second Green’s identity to the functions hλB,A and Gλ
B( · , σ), we obtain

∑

η∈B

µN (η)hλB,A(η)
(
Lλ
NG

λ
B

)
(η, σ) =

∑

η 6∈B

µN (η)Gλ
B(η, σ)

(
Lλ
Nh

λ
B,A

)
(η). (1.107)

Hence, combining (1.106) and (1.106) and exploiting that Lλ
Nh

λ
B,A vanishes on (A ∪B)c, we

get

wλ
B(σ) =

∑

η∈A

µN (η)

µN (σ)
Gλ

B(η, σ)
(
LλhλB,A

)
(η). (1.108)

Multiplying both sides with µN (σ) eλA,B(σ) and summing over all σ ∈ A, provides

∑

σ∈A

µN (σ) eλA,B(σ)w
λ
B(σ) =

∑

η,σ∈A

µN (η)
(
LλhλB,A

)
(η)Gλ

B(η, σ) e
λ
A,B(σ)

=
∑

η∈A

µN (η)
(
LλhλB,A

)
(η), (1.109)

where we used in the second step the representation (1.36) of hλA,B in terms of the Green

function and that hλA,B(η) = 1, for all η ∈ A. By normalizing the measure on the left-hand side

and using the probabilistic interpretation (1.21) of eλA,B concludes the proof. �

Proof of Lemma 1.25 via second Green’s formula. By applying the second Green’s identity to the

functions hλA,B and wλ
B, we get

∑

σ∈A

µN (σ)
(
LλhλA,B

)
(σ)wλ

B(σ) = −
∑

σ∈B

µN (σ)
(
LλhλA,B

)
(σ) (1.110)

A further application of the second Green’s identity to the functions hλA,B and hλB,A yields

∑

σ∈A

µN (σ)
(
LλhλB,A

)
(σ) =

∑

σ∈B

µN (σ)
(
LλhλA,B

)
(σ). (1.111)

Hence, by combining these equations, we obtain
∑

σ∈A

µN (σ) eλA,B(σ)w
λ
B(σ) = −

∑

σ∈A

µN (σ) eλB,A(σ). (1.112)

Finally, dividing both sides by
∑

σ∈A µN (σ) eλA,B(σ) and exploiting (1.21) as well as the defi-

nition of ρλ we conclude the proof. �

1.9. Almost ultrametricity of capacities

In order to derive general results under the definition of metastability, the almost ultra-

metricity of capacities plays a crucial role. This has been noted first in [16]. The proof given

there is purely probabilistic and relies on splitting and renewal ideas. In the following, we will

present two different proofs of a generalized statement which, in addition, allows to control

capacities between different sets. While our first proof, based heavily on analytic arguments,

is maybe less intuitive from a probabilistic point of view, it is considerably simpler than the

second one which takes advantage of the strong Markov property. The control obtained is

crucial for the investigation in the next sections.
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Lemma 1.26. Let X,Y,A ⊂ SN be mutually disjoint. Assume that there exists 0 < δ < 1
C , where

C := max

{
PνX,A

[
τA < τY

]

PνX,A∪Y

[
τA < τY

] , PνY,A

[
τA < τX

]

PνY,X

[
τA < τX

]
}

= max{C1, C2} (1.113)

such that cap(X,A) ≤ δ cap(X,Y ). Then

1− C2 δ ≤ cap(X,A)

cap(Y,A)
≤ 1

1− C1δ
. (1.114)

Proof of Lemma 1.26 via analytic arguments. An application of the second Green’s identity to

the functions hX,A and hY,A reveals
∑

σ∈X

µN (σ)
(
LhX,A

)
(σ)hY,A(σ) =

∑

σ∈Y

µN (σ)
(
LhY,A

)
(σ)hX,A(σ). (1.115)

Hence, by normalizing the measure on the left-hand side as well as the one on the right-hand

side, we immediately obtain

1− PνY,A

[
τA < τX

]
≤ cap(X,A)

cap(Y,A)
=

PνY,A

[
τX < τA

]

PνX,A

[
τY < τA

] ≤ 1

1− PνX,A

[
τA < τY

] . (1.116)

Now, the assertion of the lemma follows once we have proven that PνX,A∪Y

[
τA < τY

]
≤ δ and

PνY,X

[
τA < τX

]
≤ δ. From the renewal equation (1.90) we immediately get that

PνX,A∪Y

[
τA < τY

]
≤ cap(X,A)

cap(X,Y )
≤ δ. (1.117)

On the other hand a further application of the seconds Green’s identity to the functions hA,X

and hY,X shows that
∑

σ∈A

µN (σ)
(
LhY,X

)
(σ)hA,X(σ) =

∑

σ∈Y

µN (σ)
(
LhA,X

)
(σ)hY,X(σ) (1.118)

which is equivalent to

PνY,X

[
τA < τX

]
=

cap(X,A)

cap(X,Y )
PνA,X

[
τY < τX

]
≤ δ. (1.119)

This proves (1.114). �

Proof of Lemma 1.26 via probabilistic arguments. In order to prove the lower bound, consider

the Markov process with initial distribution µA. Then

PµA

[
τY < τA

]
= PµA

[
τY < τA, τX < τA

]
+ PµA

[
τY < τA, τA < τX

]

≤ PµA

[
τX < τA

]
+
∑

η∈Y

PµA

[
τY < τA∪X , σ(τY ) = η

]
Pη
[
τA < τX

]
. (1.120)

By reversibility, we have for all η ∈ Y that
∑

σ∈A

µN (σ) Pσ
[
τY < τA∪X , σ(τY ) = η

]
= µN (η) Pη

[
τA < τY ∪X

]
≤ µN (η) Pη

[
τA < τY

]
.

(1.121)

Hence, (1.120) can be rewritten as

PµA

[
τY < τA

]
≤ PµA

[
τX < τA

]
+

1

µN [A]

∑

η∈Y

µN (η) Pη
[
τA < τY

]
Pη
[
τA < τX

]
(1.122)

which is equivalent to

PνY,A

[
τX < τA

]
=
∑

η∈Y

µN (η) Pη
[
τA < τY

]

cap(Y,A)
Pη
[
τX < τA

]
≤ cap(X,A)

cap(Y,A)
. (1.123)
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By a similar computation, we derive that PνY,X

[
τA < τX

]
≤ cap(X,A) / cap(Y,X). Hence,

cap(X,A)

cap(Y,A)
≥ 1− PνY,A

[
τA < τX

]
≥ 1− C2

cap(X,A)

cap(Y,X)
≥ 1− C2 δ, (1.124)

where we used that cap(X,A) ≤ δ cap(X,Y ) by assumption. To obtain an upper bound on

the ratio of cap(X,A) and cap(Y,A), we repeat the computation leading to (1.123) with Y

and X interchanged. This gives

PνX,A

[
τY < τA

]
≤ cap(Y,A)

cap(X,A)
. (1.125)

On the other hand, the averaged renewal equation (1.90) implies

PνX,B∪M

[
τB < τM

]
≤ cap(X,B)

cap(M,B)
≤ δ. (1.126)

Hence, by combing (1.126) with (1.125) we finally get that

cap(X,A)

cap(Y,A)
≤
(
1− PνX,A

[
τA < τY

])−1

≤
(
1− C1 PνX,A∪Y

[
τA < τY

])−1

≤
(
1− C1 δ

)−1
.

(1.127)

This completes the proof. �

Lemma 1.27. Let X,A ⊂ SN be disjoint and Y ( X . Assume that there exists 0 < δ < 1
C with

C = PνX,A

[
τA < τY

]
/PνX\Y,Y

[
τA < τY

]
such that cap(Y,A) ≤ δ cap(Y,X \ Y ). Then

1− C δ ≤ cap(Y,A)

cap(X,A)
≤ 1. (1.128)

Proof. By applying the second Green’s identity to the functions hY,A and hX,A we get
∑

σ∈Y

µN (σ)
(
LhY,A

)
(σ) =

∑

σ∈X

µN (σ)
(
LhX,A

)
(σ)hY,A(σ).

Using the property that the harmonic function hY,A is bounded from above by one as well as

the definition of capacities, the upper bound in (1.128) is immediate. Moreover, by replacing

hY,A(σ) by Pσ
[
τY < τA

]
for all σ ∈ Y , provides the following lower bound

cap(Y,A)

cap(X,A)
≥ PνX,A

[
τY < τA

]
= 1− C PνX\Y,Y

[
τA < τY

]
.

Hence, it remains to show that PνX\Y,Y

[
τA < τY

]
≤ δ. Now, a further application of the second

Green’s identity to the functions hX\Y,Y and hA,Y shows that

∑

σ∈X\Y
µN (σ)hA,Y (σ)

(
LhX\Y,Y

)
(σ) =

∑

σ∈A

µN (σ)hX\Y,Y (σ)
(
LhA,Y

)
(σ)

which is equivalent to

PνX\Y,Y

[
τA < τY

]
=

cap(Y,A)

cap(Y,X \ Y )
PνA,Y

[
τX\Y < τY

]
≤ δ.

This completes the proof of (1.128). �

Corollary 1.28. Let X,Y,A ⊂ SN be mutually disjoint, C2 be given via (1.113) and consider

0 < δ < 1
1+C2

. Then,

cap(X,A) ≥ δ min
{
cap(X,Y ), cap(Y,A)

}
. (1.129)
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Proof. By contradiction. Assume that cap(X,A) < δ min
{
cap(X,Y ), cap(Y,A)

}
. This implies

in particular that cap(X,A) < δ cap(X,Y ). Hence, by Lemma 1.26 it holds that

cap(Y,A) ≤ 1

1− C2 δ
cap(X,A) ≤ δ

1− C2 δ
cap(Y,A)

which is in contradiction with the assumption δ < 1
1+C2

. �



CHAPTER 2

Coupling arguments and pointwise estimates

In the previous chapter we have presented the first important ingredient of the potential

theoretic approach to metastability. Namely, a formula that relates the averaged mean hitting

time of a set B when the process is started in a specific measure, νA,B, on the set A with the

capacity between these sets and the corresponding equilibrium potential. An natural question

that comes to mind is whether the mean hitting time of B really depend on νA,B.

This chapter has three main objectives. The first is to couple two versions of the Markov

chain {σ(t)}, that starts in different configurations. For later applications the coupling should

be constructed in such a way that allows to control the probability that both chains have be

merged until a given time T . For this purpose, we first describe in Section 2.1 a general setting

in which our methods can be applied. Notice that this setting is slightly more specific compared

to the one considered in the previous chapter. Afterwards, we present in Section 2.2 the actual

construction of the coupling. Let us point out that this tool is crucial in the later investigations.

In Section 2.3 we address the second objective. We prove an estimate on the oscillations of

harmonic functions within mesoscopic sets. Although the resulting bounds on equilibrium

potentials are quiet rough, they are sufficient to compute precisely e.g. averaged metastable

exit times in the next chapter. Let us point out that a rough estimate of the regularity of

harmonic functions within mesoscopic sets is the second important ingredient of our approach.

The third objective of this chapter is to derive sharp of mean hitting times and its Laplace

transform. In situations where the Markov chain returns often to a small neighborhood of

its starting point σ ∈ A before escaping to the set B, one expects that mean exit times are

almost constant as functions on the starting configuration. By taking advantage of this kind of

recurrence property, in Section 2.4 we decompose the path of a Markov chain into cycles, and

we prove as a first step a lower bound for the probability that the Markov chain returns to A

before escaping to the set B. As presented in Section 2.4 this cycle decomposition is the tool

in order to establish in a second step the desired sharp estimates.

Contributions in this chapter. In a recent paper [5], Bianchi, Bovier and Ioffe studied

some aspects concerning the regularity of harmonic functions and mean hitting times for a

certain class of Markov chains with state space {−1, 1}N . In particular, they introduced the

strategy to consider a cycle decomposition. One intention of the present chapter is to continue

these investigations and to extend the results to a class of Markov chains on SN
0 where S0 is a

finite set. The author contributes the following novel pieces:

• a different proof for an optimal coupling of two measures on a finite set, see 2.3, and

an extension of the coupling construction;

• a simple proof based on coupling methods that allows to control the tail probability

of involved coin tosses, see Lemma 2.6;

• a model independent proof that the return probability is close to one, see Lemma

2.11.

25
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2.1. Introduction

Coupling methods are well-known in all branches of probability theory and many textbooks

on stochastic processes include this useful tool [110, 82]. Since we use this method heavily in

this chapter, it might be a good idea to recall its definition.

Definition 2.1 (Coupling). A coupling of two probability distributions µ and ν is a pair of

random variables (X,Y ) defined on a single probability space (Ω,F ,P) such that the marginal

distribution of X is µ and the marginal distribution of Y is ν. That is, a coupling (X,Y )

satisfies P
[
X = σ

]
= µ(σ) and P

[
Y = η

]
= ν(η).

In particular, we will consider a Markovian coupling of two Markov chains {σ(t)} and {η(t)}
on SN , having the same transition probabilities pN (σ, η), which start in two different initial

distributions. That is, a Markov chain
{(
σ(t), η(t)

)}
on SN × SN such that the marginal

processes have transition probabilities pN(σ, η). Of course, such a coupling will only be useful

if we introduce a coupling mechanism that connects both Markov chains in a non-trivial way.

Setting. We consider a Markov chain {σ(t)}t∈N0 on a finite state space SN = {1, . . . , q}N
with transition probabilities denoted by pN . Here, N is a large parameter. We assume that

the process is irreducible and reversible with respect to the unique stationary (Gibbs) measure

µN . The transition probabilities pN are such that the chain should evolve by selecting at each

step a site i ∈ {1, . . . , N} uniformly at random and setting the corresponding spin variable

to a randomly chosen r ∈ S0 = {1, . . . , q} according to the distribution NpN (σ, σi,·) on S0.

Elements of S0 will be called colors. Moreover, we assume that there exists α > 0 such that

N pN
(
σ, σi,r

)
≥ α ∀σ ∈ SN , i ∈ {1, . . . , N} and r ∈ S0. (2.1)

Here, the configuration σi,r is obtained from σ by replacing the color σi at site i through

r ∈ S0. Again, we denote by LN the discrete generator which acts on functions f : SN → R as
(
LNf

)
(σ) =

∑

η∈SN

pN (σ, η)
(
f(η)− f(σ)

)
.

Moreover, for a given subset X ⊂ SN we introduce the notation µX(σ) = µN [σ |X ] for σ ∈ X

to denote the reversible measure, µN , conditioned on X .

Given a sequence of partitions {Λn}n∈N ≡ {Λn
1 , . . . ,Λ

n
kn
}n∈N of {1, . . . , N} having the prop-

erty that Λn+1 is a refinement of Λn, we consider a family of maps ̺n : SN → Γn ⊂ Rkn·q

̺n(σ) :=

kn∑

k=1

ek ⊗ 1

N

∑

i∈Λn
k

δσi (2.2)

where ek ∈ Rkn denotes the coordinate vector in Rkn and δx is the point-mass at x ∈ R. One

may think of the maps ̺n as a vector of averages of microscopic variables σi over blocks of

mesoscopic sizes which are decreasing in n.

Notice that the image process {̺n(σ(t))} on Γn is in general not Markovian. However, there

is a canonical Markov process {̺n(t)} with state space Γn which is reversible with respect to

the measure Qn := µN ◦ (̺n)−1 having the property that ̺n(t) = ̺n
(
σ(t)

)
in law whenever

{̺n(σ(t))} is a Markov process. Its transition probabilities are given by

rn(x,y) :=
1

Qn(x)

∑

σ∈Sn[x]

µN (σ)
∑

η∈Sn[y]

pN (σ, η), x,y ∈ Γn. (2.3)

To simplify notation, we denote by Sn[x] := (̺n)−1(x) the set-valued preimage of ̺n.

Now, the key assumption is to choose the sequence of partitions {Λn} in such a way that

the following two conditions holds true:
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(A.1) There exists ε(n) ↓ 0 as n ↑ ∞ such that for any x,y ∈ Γn with rn(x,y) > 0,

max
σ∈Sn[x], η∈Sn[y]

∣∣∣∣
pN(σ, η)

∣∣{η ∈ Sn[y] | dH(σ, η) = 1}
∣∣

rn(x,y)
− 1

∣∣∣∣ ≤ ε(n)

3
, (2.4)

(A.2) If ̺n(σ) = ̺n(η) and σi = ηi, for some i, then pN (σ, σi,r) = pN (η, ηi,r) for all r ∈ S.

Let us remark that, provided both conditions above are satisfied, the Markov process {̺n(t)}
can be seen as a good approximation of the process {̺n(σ(t))}.

Our starting point in the study of the dynamical behavior of {σ(t)} will be the following

notion of mimics a metastable situation on level n.

Definition 2.2 (Metastable situation). Let us consider two disjoint subsets A,B ⊂ SN for

which there exists n ∈ N such that A and B are given as the preimage of some A,B ⊂ Γn

under ̺n. We say that A,B mimics a metastable situation of level n if there exists constants

0 < c < C such that

(i) for all X = Sn[x] with x ∈ A

PµX

[
τB < τX

]
≤ e−CN , (2.5)

(ii) for all X = Sn[x], Y = Sn[y] with x 6= y ∈ A

PµX

[
τY < τX

]
≥ e−cN . (2.6)

In the sequel, we will make the dependence on n explicit whenever we want to stress it.

Otherwise, we will drop the superscript n, identify kn ≡ n and refer to the generic partition

Λ1, . . . ,Λn.

The challenge. In the context of stochastic spin systems, we are typically faced this the

following situation. By (2.5), the Markov chain {σ(t)} starting in σ ∈ A will spent an expo-

nential large amount of time in the neighborhood of A. On the other hand, the set A contains

an exponentially large number of configurations and for any given configurations σ, η ∈ A,

the probability of the Markov chain that starts in σ to hit η before entering in the set B is

exponential small as N → ∞. Hence, {σ(t)} visits not more than a small fraction of A. In

particular, the ,,time of thermalization”, i.e. the typical time of two consecutive visits of a sin-

gle configuration σ ∈ A before entering in the set B, is of the same order than the metastable

exit times. Thus, we can not expect that the chain equilibrates in a neighborhood of A before

reaching B. In a recent paper [5], Bianch, Bovier and Ioffe have presented a strategy to derive

pointwise estimates of mean hitting times in such a situation for a certain class of Ising-spin

system, i.e. SN = {−1, 1}N . Their approach is based on an explicit construction of a coupling

of two Markov chains {η(t)} and {σ(t)} starting in different configurations σ, η ∈ A.

In what follows, we let us present the problem, we are faced with, in the construction of a

coupling and sketch the main ideas and arguments to overcome these difficulties.

Let σ and η be two configurations with ̺n(σ) = ̺n(η). We will construct a coupling{(
σ(t), η(t)

)}
of two microscopic Markov chains starting from initial configuration σ and η,

respectively, such that {σ(t)} as well as {η(t)} are versions of the original Markov chain with

transition matrix PN . For the application, we have in mind, the coupling should have the

property that the Hamming distance between σ(t) and η(t) is non-increasing as long as both

microscopic chains have the same mesoscopic value. However, due to the assumption (A.2),

when σ, η and i, j ∈ Λk, for any k, are such that ̺n(σ) = ̺n(η) and σi = ηj then

pN (σ, σi,r) = pN (η, ηj,r) ⇐⇒ i = j. (2.7)

Hence, we cannot find a coupling which assures that both chains maintain always the same

mesoscopic value. Whenever, for the first time one chain accept the proposed single site update

while the other one does not, we will use the independent coupling afterwards.
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On the other hand, a closer look at (2.4) reveals that the difference between the proba-

bilities is quite small, in the sense that there exists n large enough such that for all σ, η with

̺n(σ) = ̺n(η) and i, j ∈ Λk, for any k ∈ {1, . . . , n}, with σi = ηj , it holds that

pN
(
η, ηj,r

)

pN
(
σ, σi,r

) ≤ eε(n), ∀ r ∈ S0. (2.8)

Clearly, our strategy should be to merge both microscopic chains as long as their mesoscopic

values coincide. But notice that such a procedure may involve an implicit sampling of η-paths

which may distort their statistical properties.

The main idea to overcome this difficulty is to separate path properties of the η-chain from

the probability to decide whether σ(t) maintain the same mesoscopic value as η(t). Moreover,

by decomposing the trajectory of {σ(t)} into cycles, we can iterate the coupling using each

time an independent copy of the η-chain.

2.2. Construction of the Coupling

Let σ and η be two configurations with ̺n(σ) = ̺n(η). Our first objective in this section

is to explain how to couple the probability distributions N pN
(
η, ηi,·

)
and N pN

(
σ, σj,·) on S0

where i, j are chosen from some Λk such that σi = ηj . Taking advantage of (2.8), the coupling

(X,Y ) is constructed in such a way that we can decide in advance by tossing a coin whether

Y realizes at least the same value as X .

Note that the actual construction of the coupling is a modification of the optimal coupling

between two probability measures on a finite state space, as given in [82], which was already

used in the easier case |S0| = 2 in [5].

Lemma 2.3. Let µ, ν ∈ M1(S0). Suppose that there exits δ ∈ (0, 1) such that δ µ(r) ≤ ν(r) for

all r ∈ S0. Then there exists an optimal coupling (X,Y ) of µ and ν with the additional property

that there exists a Bernoulli-δ-distributed random variable U independent of X such that

P
[
Y = s

∣∣U = 1, X = r
]
= 1r=s. (2.9)

Proof. To start with, choose a color r ∈ S0 randomly according to µ and set X = r. We use the

following procedure to generate Y . Since X = r implies that µ(r) > 0

p(r) =
µ(r) ∧ ν(r) − δµ(r)

(1− δ)µ(r)
(2.10)

is well defined. Now, flip a coin with probability of heads equal to δ. If the coin comes up

heads, then set Y = r. Otherwise, flip another coin with probability of heads equal to p(r). If

the second coin comes up heads, set again Y = r. If it comes up tails, choose Y according to

the probability distribution γr on S0 \ {r} given by

γr(s) =

(
ν(s)− µ(s)

)1ν(s)≥µ(s)∑
z∈S0\{r}

(
ν(z)− µ(z)

)1ν(z)≥µ(z)

. (2.11)

By this construction the additional property in the statement of the lemma is immediate. It

remains to check that Y is indeed distributed according to ν. Hence, consider

P
[
Y = r

]
= δ µ(r) + (1− δ)µ(r) p(r) +

∑

s∈S0\{r}
(1− δ)µ(s)

(
1− p(s)

)
γs(r)

= µ(r) ∧ ν(r) +
(
ν(r) − µ(r) ∧ ν(r)

) ∑

s∈S0\{r}

(
µ(s)− ν(s)

)1µ(s)≥ ν(s)∑
z∈S0\{s}

(
ν(z)− µ(z)

)1ν(z)≥ µ(z)

(2.12)



2.2. CONSTRUCTION OF THE COUPLING 29

Expressing the denominator in (2.12) in terms of the total variation distance reveals that
∑

z∈S0\{s}
ν(z)≥ µ(z)

(
ν(z)− µ(z)

)
= ‖µ− ν‖TV −

(
ν(s) − µ(s)

)1ν(s)≥µ(s). (2.13)

Thus, by distinguishing two cases, this implies that the sum in (2.12) equals

∑

s∈S0\{r}

(
µ(s)− ν(s)

)1µ(s)≥ ν(s)

‖µ− ν‖TV
= 1−

(
µ(r) − ν(r)

)1µ(r)≥ ν(r)

‖µ− ν‖TV
(2.14)

But notice that, since ν(r) − µ(r) ∧ ν(r) =
(
ν(r) − µ(r)

) 1ν(r)≥µ(r), the last term in (2.14)

vanishes. Hence the probability in (2.12) equals ν(r), as desired. In order to prove the opti-

mality of the coupling, it remains to show that P
[
X 6= Y

]
= ‖µ−ν‖TV. Note that the coupling

procedure implies that

P
[
X 6= Y

]
= 1−

∑

r∈S0

(
δ µ(r) + (1− δ)µ(r) p(r)

)
= 1−

∑

r∈S0

µ(r) ∧ ν(r) = ‖µ− ν‖TV,

(2.15)

where we used in the last step that
∑

r∈S0

µ(r) ∧ ν(r) =
∑

r∈S0

µ(r)<ν(r)

µ(r) +
∑

r∈S0

µ(r)≥ ν(r)

ν(r) = 1− ‖µ− ν‖TV. (2.16)

This completes the proof of the lemma. �

Let us now explain one step of a coupling that was used by [5] in the study of the random

field Curie-Weiss model q = 2. Note that the coupling mechanism was originally invented in

[81]. Recall that we consider σ, η with ̺n(σ) = ̺n(η).

To update both configurations pick a site i ∈ {1, . . . , N} uniformly at random. Whenever ηi
and σi coincides, (2.7) guaranties that there is a coupling assuring that the σ-chain maintain

the same mesoscopic values as the η-chain. On the other hand, if for some k and i ∈ Λk the

spin variables ηi and σi differs, the idea is to choose j uniformly at random among all sites in

Λk having the property that ηj 6= σj and ηi = σj and to apply Lemma 2.3 to the probability

distributions N pN
(
η, ηi,·

)
and N pN

(
σ, σj,·). By tossing a coin with success probability e−ε(n),

the coupling, used in Lemma 2.3, allows to decide in advance and independently on what

happens to the η-chain whether both chains at least maintain the property having the same

mesoscopic value.

Let us emphasis the fact that, provided the coin comes up heads, the Hamming distance

between η and σ decreases by one whenever a site i is updated where σi 6= ηi. This allows to

define an event, depending only on the filtration induced by the η-chain and the outcome of

the coin tosses, which guaranties the coalescence of both chains. However, this property is no

longer true in the general case q ≥ 3, although the coupling, described above, could also be

applied there.

In order to overcome this problem, we modify the coupling above by taking into account

a family of bijections πt between the sites in the configurations η(t) and σ(t), respectively.

Namely, for the initial configurations η and σ let π0 be a permutation of {1, . . . , N} with the

property that

(i) π0(i) = i, if and only if, σi = ηi,

(ii) π0(i) = j, if and only if, there exists k ∈ {1, . . . , n} such that i, j ∈ Λk and

ηi 6= σi ∧ ηj 6= σj ∧ ηi = σj .
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a) b)

η(t)

σ(t)

i

πt(i)

η(t+ 1)

σ(t+ 1)

η(t)

η(t+ 1)

i

πt(i)

πt+1

FIGURE 1. Illustration of an update step of η(t) and σ(t). a) Possible choice of

a bijection between sites in the η- and σ-chain and its update in cases (2). b)

Corresponding graphical representation in terms of η(t) and πt. On the event

that all coin tosses involved in the construction come up heads, a merging

of the η- and σ-chain is indicated by the fact that πt is the identity, i.e. πt is

represented only by self-loops.

Since we have assumed that ̺n(σ) = ̺n(η), π0 is well defined. Moreover, for any t > 1, the

construction of πt depends only on the filtration induced by the Markov chain started in η. In

order to see this, suppose πt is already given and at time t + 1 site i is drawn. If πt(i) = i set

πt+1 = πt. Otherwise, we have to distinguish the following four cases. If

(1) ηi(t+ 1) 6= ηπt(i)(t) and ηi(t+ 1) 6= ηπ−1
t (i)(t) set πt+1 = πt.

(2) ηi(t+ 1) = ηπt(i)(t) and ηi(t+ 1) 6= ηπ−1
t (i)(t) set

πt+1(πt(i)) = πt(i), πt+1(i) = πt
(
πt(i)

)
, πt+1(j) = πt(j), ∀ j 6= i, πt(i).

(3) ηi(t+ 1) 6= ηπt(i)(t) and ηi(t+ 1) = ηπ−1
t (i)(t) set

πt+1(i) = i, πt+1

(
π−1
t (i)

)
= πt(i), πt+1(j) = πt(j), ∀ j 6= i, π−1

t (i).

(4) ηi(t+ 1) = ηπt(i)(t) and ηi(t+ 1) = ηπ−1
t (i)(t) set

πt+1(i) = i, πt+1

(
πt(i)

)
= πt(i), πt+1

(
π−1
t (i)

)
= πt

(
πt(i)

)
,

and πt+1(j) = πt(j) for all j 6= i, πt(i), π
−1
t (i).

An illustration of construction of πt+1 from πt is given in Figure 2.2.

Now, we describe a coupling of two Markov processes starting from the initial configuration

η and σ. Recall that η and σ satisfy ̺n(η) = ̺n(σ). There are two parameters M and T

involved those values will be quantified later on. Let {V0, . . . , VM−1} be a sequence of i.i.d.

Bernoulli random variables with

P
[
Vi = 1

]
= 1− P

[
Vi = 0

]
= e−ε(n). (2.17)
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Now, set η(0) = η, σ(0) = σ, M0 = 0 and ξ = 0. The coupling during the first T -steps of its life

is given by

for t = 0, 1, . . . , T − 1 do

if ξ = 0 ∧ Mt < M then

Choose i ∈ {1, . . . , N} uniform at random.

if πt(i) = i then

Choose s ∈ S0 at random according to the distribution N pN
(
η, ηi,s

)
.

Set

σj(t+ 1) =

{
σj(t), j 6= i

s, j = i
and ηj(t+ 1) =

{
ηj(t), j 6= i

s, j = i
.

Set Mt+1 =Mt and πt+1 = πt.

else

Apply the optimal coupling, describe in Lemma 2.3, to N pN
(
η(t), η(t)i,·

)
and

N pN
(
σ(t), σ(t)πt(i),·), where VMt decides if both chains maintain at least the

same mesoscopic value.

Set Mt+1 =Mt + 1.

if VMt = 1 then

Generate πt+1 as described above.

else

Set ξ = 1.

end if

end if

else

Use the independent coupling to update η(t) and σ(t).

end if

end for

For later reference, we denote by {It}T−1
t=0 the family of independent and uniformly on

{1, . . . , N} distributed random variables describing the random experiment of choosing a site

in the algorithm. Moreover, notice that {Mt} is a process that increases by one each time a

new coin Vi is used in the coupling whereas the value ξ = 1 indicates that a coin comes up

tails.

Lemma 2.4. Let Pσ,η be the joint distribution of the processes {η(t)}, {σ(t)} and {Vi}. Then, for

all t ≤ T , the construction above is a coupling of two Markov chains starting in η and σ with

transition matrix PN .

Proof. The assertion is obvious as soon as ξ = 1 or Mt ≥ M for some t < T , since both

chains are updated independently. Hence, it remains to check that the statement holds true

when ξ = 0 and Mt < M . Due to the bijection, each lattice site is drawn in both chains with

probability 1/N . Moreover, in view of (2.7) and Lemma 2.3, we can conclude the statement

of the lemma. �

In this construction, the Hamming distance between η(t) and σ(t) is non-increasing as long

as ξ = 0 and Mt < M . Provided that for some t < T these conditions still hold and both chains

coalesce, η(t) = σ(t), then the two dynamics stay automatically together until T . As it was

pointed out in [5], conditioned on such a situation involves an implicit sampling of η-paths

which may lead to a distortion of their statistical properties.
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In order to avoid an implicit sampling of paths, we will define two independent events

which allows to conclude that a merging of the Markov chains started in η and σ, respectively,

has taken place whenever both events happen simultaneously. This strategy was successfully

demonstrated in [5]. Hence, let us consider

(i) the event that all coin tosses has come up heads, i.e.

A :=
{
Vi = 1, ∀ i ∈ {0, . . . ,M − 1}

}
. (2.18)

(ii) an event depending only on the random variables η(t) for t < T . In order to define

it, notice that for any realization of {η(t)} and given π0, which is determined by

the initial configuration σ, we can uniquely construct {πt}. Moreover, we introduce

stopping times, ti, through

ti := inf
{
t ≥ 0

∣∣ ηi(t+ 1) 6= ηi(t) ∧ ηi(t+ 1) = ηπ−1
t (i)(t) if π−1

t 6= i
}

and set t := max1≤i≤N ti. By construction, ti is the first time that the spin at site i has

been flipped to a specific or an arbitrary color depending on {πt}. Further define the

random variable

N :=

N∑

i=1

ti∑

t=0

1It = i. (2.19)

representing the total number of flipping attempts until time t. Finally, let us consider

the events

B :=
{
τB ≥ T

}
∩
{
t < T

}
∩
{
N ≤M

}
. (2.20)

An important observation is the following

Lemma 2.5. For any given value of the parameters T and M , on A∩B a merging of {η(t)} and

{σ(t)} has taken place, in the sense that

A ∩ B ⊂
{
η(T ) = σ(T )

}
. (2.21)

Proof. On the event A ∩ B, the process {η(t)} has not reached B by time T but all spins have

been flipped at least once to an arbitrary or to a specific color depending on {πt}. Notice that

whenever a site i where ηi 6= σi is flipped to the color specified by {πt}, the corresponding

spins become aligned because on A∩B all coin tosses come up heads. Since t < T this implies

that η(T ) = σ(T ). �

Further, by taking advantage of the property (2.1), we can establish a bound on the tail

probability of the random variable N .

Lemma 2.6. Let c1 > 1 + α−1 and set M = c1N . Then, it holds that

Pη
[
N > M

]
≤ e−c2N . (2.22)

with a constant c2 = −c1 ln
(
1− α2

)
− ln

(
1 + α

)
.

Proof. In view of (2.1), the idea behind the proof is to construct on some probability space(
Ω,F ,P

)
a coupling between the Markov chain {η(t)} and a sequence {ω(t)} of i.i.d. Bernoulli

random variables in such a way that we can define a random variable N depending only on

the natural filtration induced by {ω(t)} with the property that N ≤ N. Clearly, by bounding

the tail probability of N from above, we obtain an upper bound on the tail probability N .

Let us now describe one step of the actual coupling construction. At time t + 1 (t ≥ 0)

choose a site i ∈ {1, . . . , N} uniformly at random and toss a coin with probability of heads

equal to α. Depending on πt, we have to distinguish two cases:
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(1) πt(i) 6= i. If the coin comes up heads, set ω(t + 1) = 1 and ηi(t + 1) to the color

given by ηπ−1
t (i)(t). Otherwise, set ω(t + 1) = 0 and draw a r ∈ S0 according to the

distribution

γi,t(r) =





N pN
(
η(t), η(t)i,r

)
− α

1− α
, r = ηπ−1

t (i)(t)

N pN
(
η(t), η(t)i,r

)

1− α
, r 6= ηπ−1

t (i)(t),

(2.23)

(2) πt(i) = i. If the coin comes up heads, set ω(t+1) = 1 and choose a color r ∈ S0\{ηi(t)}
uniformly at random. Otherwise, set ω(t+ 1) = 0 and draw a r ∈ S0 according to the

distribution

γi,t(r) =





N pN
(
η(t), η(t)i,r

)

1− α
, r = ηi(t)

N pN
(
η(t), η(t)i,r

)
− α

q−1

1− α
, r 6= ηi(t).

(2.24)

It is easy to check that the construction above is a coupling
{(
η(t), ω(t)

)}
of the Markov chain

{η(t)}t≥1 and a sequence {ω(t)}t≥1 of independent Bernoulli-α-distributed random variables.

Further, let us introduce the stopping time

N := inf
{
s ≥ 1

∣∣∣
∑s

t=1 ω(t) = N
}
−N. (2.25)

Notice that N is negative binomial distributed to the parameters N and α and, due to the

construction above, it holds that N ≤ N + N . Hence, by standard large deviation estimates,

we obtain

Pη
[
N > c1N

]
≤ P

[
N > (c1 − 1)N

]
≤ e−NI(c1−1) ≤ e−c2N . (2.26)

The last inequality uses the fact that the entropy I is convex and for all c > α−1 it holds that

I(c) = c ln
c

1 + c
− c ln

(
1− α

)
− ln

(
1 + c

)
− lnα ≥ − ln

(
1− α2

)
c− ln

(
1 + α

)
> 0.

This completes the proof. �

2.3. Bounds on harmonic functions and local recurrence

As a first application of the coupling construction, we will show a statement about the

regularity of harmonic functions within a given set of configurations that is determined by the

same mesoscopic value.

Proposition 2.7. For any n ∈ N, let us consider two disjoint subsets X,Y ⊂ Γn and denote by

X,Y their preimages under ̺n. Further, let x ∈ Γn choose c1 > 1 + α−1. Then,

Pσ
[
τX < τY

]
≥ e−ε(n) c1N

(
Pη
[
τX < τY

]
− e−c2N

)
, ∀σ, η ∈ Sn[x], (2.27)

where c2 ≡ c2(c1) depends linearly on c1.

Proof. We will use the coupling construction where we choose the involved parameters T = ∞
and M = c1N . Further, consider the following two events

B1 :=
{
τX < t

}
∩
{
N ≤M

}
and B2 :=

{
τX ≥ t

}
∩
{
N ≤M

}
. (2.28)

Analog to Lemma 2.5, on the event A ∩ B2, the process {η(t)} has not reached X by time t

and at time t the spins at any site i with ηi 6= σi become aligned. Since the corresponding

coin tosses come up heads, this implies that η(t) = σ(t) and hence τηX = τσX . Moreover, on the

event {τηX < τηY }, it holds that τηY = τσY , since X,Y are given as preimages under ̺n.

On the event A ∩ B1, the process {η(t)} reaches X before time t. Since until time t all

necessary coin tosses come up heads, we can conclude that ̺n
(
η(t)

)
= ̺n

(
σ(t)

)
for all t ≤ τX .
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Therefore, due to the assumption on X,Y , it holds that τηX = τσX and on the event {τσX < τσY }
the η-chain can not reach Y before time τηX . Thus,

Pσ
[
τX < τY

]
≥ Pσ,η

[
τσX < τσY , A∩ B1

]
+ Pσ,η

[
τσX < τσY , A∩ B2

]

= Pσ,η
[
τηX < τηY , A∩ B1

]
+ Pσ,η

[
τηX < τηY , A∩ B2

]

≥ e−ε(n)M
(
Pη
[
τX < τY

]
− Pη

[
N > M

])
. (2.29)

Taking into account (2.22) concludes the proof of the lemma. �

Remark 2.8. Instead of (2.29), one can also consider the following lower bound which is

based on the h-transform

Pσ
[
τX < τY

]
≥ e−ε(n)M Pη

[
τX < τY

] (
1− Ph

η

[
N > M

])
.

In order to apply Lemma 2.6 to bound Ph
η

[
N > M

]
, it remains to show that N phN (σ, η) is

bounded from below by a constant which is independent of N for all σ, η with dH(σ, η) ≤ 1.

However, the only bound we can achieve is

N phN (σ, η) =
1

Pσ
[
τX < τY

] N pN(σ, η) Pη
[
τX < τY

]
≥ Pη

[
τX < τY

]

Pσ
[
τX < τY

] α ≥ α2

N
,

where we used in the last step that Pη
[
τX < τY

]
≥ pN(η, σ) Pσ

[
τX < τY

]
.

Corollary 2.9. Suppose that A,B mimics a metastable situation on level n. Let c1 > 1 + α−1

and assume that n satisfy ε(n)c1 < C. Then, there exists c3 > 0 such that, for N large enough,

Pη
[
τB < τA

]
≤ e−c3N , ∀ η ∈ A. (2.30)

Proof. Recall that the disjoint subsets A,B ⊂ SN are given as preimages of A,B ⊂ Γn under

̺n. Further, for any η ∈ A there exists x ∈ A such that η ∈ X = Sn[x]. Hence, by combining

(2.5) and (2.27), we obtain

Pη
[
τB < τX

]
≤ eε(n)c1N PµX

[
τB < τX

]
+ e−c2N ≤ e−N

(
C−ε(n)c1

)
+ e−c2N ≤ e−c3N ,

(2.31)

with a constant c3 > 0. Since Pη
[
τB < τA

]
≤ Pη

[
τB < τX

]
, we conclude the statement. �

2.4. Cycle decomposition of σ-paths

A further reason for introducing the likely event B is that it does not distort the hitting time

of the Markov chain {η(t)}. This is the statement of the following lemma.

Lemma 2.10. Uniformly for all η ∈ A, there exists a constant c4 > 0, independent of n, such

that for N large enough

Pη
[
Bc
]
≤ e−c4N (2.32)

and

Eη

[
τB 1B

]
≥ Eη

[
τB
] (

1− e−c4N
)
. (2.33)

Proof. In order to prove this lemma, we follow in parts the proof of [5, Lemma 3.3]. We will

use the coupling constructed above where we choose T = Nκ, for some κ > 2. To start with,

notice that the event Bc can be written as

Bc =
{
τB ≤ Nκ

}
∪
{
τB > Nκ

}
∩
{
t ≥ Nκ

}
∪
{
τB > Nκ

}
∩
{
t < Nκ

}
∩
{
N > M

}
.

(2.34)
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In view of (2.34), there are three terms to bound in the equations (2.32) and (2.33). Bounding

the first term of (2.33) is quite simple. Namely,

Eη

[
τB 1τB<Nκ

]
≤ Nκ Pη

[
τB < Nκ

]
. (2.35)

In order to reach B, we exploit the fact that the Markov chain {η(t)} has to make one final

excursion without returning to the starting set A and there are at most Nκ attempts. This

implies that

Pη
[
τB ≤ Nκ

]
≤ Nκ max

σ∈A
Pσ
[
τB < τA

]
≤ Nκ e−c3N (2.36)

where we used in the last step the local recurrence property (2.30). The second term of (2.32)

can be easily bounded by

Pη
[
τB > Nκ, t ≥ Nκ

]
≤ Pη

[
t ≥ Nκ

]
. (2.37)

By using the strong Markov property we can split the paths at time Nκ. By proceeding in such

a way we obtain for the second term of (2.33)

Eη

[
τB 1τB>Nκ 1t≥Nκ

]
≤
(
Nκ + max

σ∈SN

Eσ

[
τB
])

Pη
[
t ≥ Nκ

]
≤ e2c5N Pη

[
t ≥ Nκ

]
. (2.38)

Notice that, in order to obtain a rough upper bound on the mean hitting time Eσ

[
τB
]
, it is

enough to bound the corresponding capacity cap(σ,B) from below. Following [15, 11], there

exists a constant c5 > 0, independent of n, such that cap(σ,B) ≥ e−c5N . Thus, it remains to

show that the probability Pη
[
t ≥ Nκ

]
is super-exponentially small. However, at each step the

probability to flip a particular spin is bounded from below by α/N , which implies that

Pη
[
t ≥ Nκ

]
≤ N

(
1− α

N

)Nκ

≤ e−c6N
κ−1

. (2.39)

Finally, we can bound the third term by

Pη
[
τB > Nκ, t < Nκ, N > M

]
≤ Pη

[
N > M

]
(2.40)

and, proceeding similarly as in the treatment of the second term, we obtain

Eη

[
τB 1τB>Nκ 1t<Nκ 1N>M

]
≤
(
Nκ + max

σ∈SN

Eσ

[
τB
])

Pη
[
N > M

]
≤ e2c5N Pη

[
N > M

]
.

(2.41)

For M = c1N and c1 > 1 + α−1 Lemma 2.6 implies that Pη
[
N > c1N

]
≤ e−c2N . Since c2

increases linearly with c1, the right-hand side of (2.41) is exponentially small, if we choose

c1 such that c2 > 2 c5. Thus, by combining all estimates above we conclude the proof of the

lemma. �

By Lemma 2.5, we know that the Markov chains {σ(t)} and {η(t)} has merged on the event

A ∩ B by time T . While the probability of the event B is close to one, the probability of the

event A is small, namely e−ε(n)M . Hence, the occurrence of (A∩B)c is rather likely. However,

in view of (2.5) and (2.30), respectively, the σ-chain will return to the set A after time T with

a probability close to one. This allows to decompose
{
σ(t) : t ∈ [0, τσB]

}
into cycles.

Let us emphasis that the cycles decomposition, given below, goes along the lines of the

construction originally presented in [5]. To start with, we define for any η ∈ A the following

stopping times

s−1 = 0, sk := inf
{
t > sk−1 + T

∣∣ σ(t) ∈ ̺n(η)
}
, ∀ k ∈ N0, (2.42)

as well as the events

Dk :=
{
sk < τσB

}
, ∀ k ∈ N0. (2.43)

The cycle decomposition of
{
σ(t) : t ∈ [0, τσB]

}
is based on a collection of independent

copies of Markov chains starting in η,
{
ηk =

{
ηk(t) : t ∈ [0, τη,kB ]

}}
k
, and on a collection of
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i.i.d. stacks of coins
{
V k ≡ {V k

0 , . . . , V
k
M−1}

}
. The corresponding events {Ak} and {Bk} are

well defined and independent.

To start with, we focus first of all on the case ̺n(σ) = ̺n(η). In the first cycle we apply

the coupling construction to the Markov chains {σ(t)} starting in σ and {η0(t)} up to time

T . On the event A0 ∩ B0 we can update σ(t) and η(t) in such a way that σ(t) = η(t) for all

t > T . In this case the cycle decomposition terminates. On the event
(
A0 ∩ B0

)c
, we update

σ(t) and η(t) independently for all t > T . If D0 occurs, the first cycle ends at the random time

s0 whereas if (D0)c happens, the cycle decomposition terminates as well, and a merging has

not occurred.

Provided that the cycle decomposition has not terminated so far, in the (k + 1)th cycle for

(k > 1), we consider the coupling
{(
σ(sk + t), ηk(t)

)}T
t=0

of the Markov chain {σ(t)} starting

from the configuration σ(sk) and an independent copy {ηk(t)} of the η-chain starting in η

using the independent sequence of coin tosses {V k
1 , . . . , V

k
M−1} in the coupling construction.

As a consequence, we arrive at the following decomposition of the hitting time τσB in terms

of the (independent) hitting times τη,kB

τσB =
∞∑

k=0

((
sk−1 + τη,kB

)1Ak1Bk + τσB
(
1− 1Dk

) (
1− 1Ak1Bk

) ) k−1∏

l=0

1Dl

(
1− 1Al1Bl

)
.

(2.44)

In the case ̺n(σ) 6= ̺n(η) we cannot directly apply our coupling construction. Instead, we

will first update σ(t) and η(t) independently until time s0, provided that the event D0 occurs,

and we use the cycle decomposition, as described above, afterwards. Let us emphasis that in

the definition of s0 the involved parameter T is equal to zero. This implies that we have to

replace (2.44) by

τσB = τσB
(
1− 1D0

)

+

∞∑

k=1

((
sk−1 + τη,kB

)1Ak1Bk + τσB
(
1− 1Dk

) (
1− 1Ak1Bk

) )1D0

k−1∏

l=1

1Dl

(
1− 1Al1Bl

)
.

(2.45)

In (2.44) and (2.45) we used the convention that products with a negative number of terms

are equal to one.

Lemma 2.11. Suppose that A,B ⊂ SN mimic a metastable situation on level n. If n satisfies

ε(n) c1 < (C − c)/2 for some c1 > 1 + α−1, then there exists a constant c7 > 0 such that for all

σ, η ∈ A and N large enough

Pσ
[
D0
]
≥ 1− e−c7N . (2.46)

where D0 depend on the configuration η.

Proof. Let us first consider the case when ̺n(σ) = ̺n(η). To start with, fix δ = (C − c)/2 and

set X = (̺n)−1 ◦ ̺n(η) ⊂ A. Further, define

Xδ :=
{
z ∈ Γn

∣∣ PµX

[
τZ < τX

]
> e−δN , Z = Sn[z]

}

and setXδ = Sn[Xδ]∪X . Using the definition of D0 together with the strong Markov property

we obtain that

Pσ
[
s0 < τB

]
≥

∑

ξ∈Xδ

Pσ
[
σ(Nκ) = ξ

]
Pξ
[
τX < τB

]
≥ min

ξ∈Xδ

Pξ
[
τX < τB

]
Pσ
[
σ(Nκ) ∈ Xδ

]
.

(2.47)
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Hence, there remain two terms which we have to bound from below. We will first focus on the

last term in (2.47). For any Z = Sn[z] where z 6∈ Xδ it holds that PµX

[
τZ < τX

]
≤ e−δN .

Moreover,

Pσ
[
σ(Nκ) ∈ Z

]
≤ Pσ

[
τZ ≤ Nκ

]
≤ Nκ max

σ∈X
Pσ
[
τZ < τX

]
, (2.48)

where we used in the last step that the Markov chain {σ(t)} has to make one final excursion

without returning to the starting set X and that there are at most Nκ attempts. On the other

hand, Proposition 2.7 implies that

Pσ
[
τZ < τX

]
≤ eε(n)c1N PµX

[
τZ < τX

]
+ e−c2N ≤ e−N(δ−ε(n)c1) + e−c2N . (2.49)

Hence, by combining the last two estimates we obtain

Pσ
[
σ(Nκ) ∈ Xδ

]
= 1−

∑

z 6∈Xδ

Pσ
[
σ(Nκ) ∈ Sn[z]

]
≥ 1−Nnq+κ

(
e−N(δ−ε(n)c1) + e−c2N

)
.

(2.50)

Let us now focus on the first factor of the right-hand side of (2.47) for any arbitrary ξ ∈ Xδ.

Suppose that ξ ∈ Z = Sn[z] with z ∈ Xδ, then from (1.116) we have

PνZ,X

[
τB < τX

]
=

cap(B,X)

cap(Z,X)
PνB,X

[
τZ < τX

]
≤ PµX

[
τB < τX

]

PµX

[
τZ < τX

] ≤ e−N(C−δ), (2.51)

where we used (2.5) in the last step. Again, Proposition 2.7 implies that

Pξ
[
τB < τX

]
≤ eε(n)c1N PνZ,X

[
τB < τX

]
+ e−c2N ≤ e−N(C−δ−ε(n)c1) + e−c2N , (2.52)

whereas in the case when ξ ∈ X we get that

Pξ
[
τB < τX

]
≤ eε(n)c1N PµX

[
τB < τX

]
+ e−c2N ≤ e−N(C−ε(n)c1) + e−c2N . (2.53)

Thus, combining the last two estimates implies

min
ξ∈Xδ

Pξ
[
τX < τB

]
≥ 1−

(
e−N(C−δ−ε(n)c1) + e−c2N

)
. (2.54)

It remains to consider the case that ̺n(σ) 6= ̺n(η) for any σ, η ∈ A. Here, we denote by X,Y

the set-valued preimage of x = ̺n(η) and y = ̺n(σ) under ̺n. Recall that in this case the

event D0 is given by {τX < τB}. Hence, analog to (2.51) we have that

PνY,X

[
τB < τX

]
=

cap(B,X)

cap(Y,X)
PνB,X

[
τY < τX

]
≤ PµX

[
τB < τX

]

PµX

[
τY < τX

] ≤ e−N(C−c), (2.55)

where we used (2.6) in the last step. By Proposition 2.7 we obtain

Pσ
[
τB < τX

]
≤ eε(n)c1N PνY,X

[
τB < τX

]
+ e−c2N ≤ e−N(C−c−ε(n)c1) + e−c2N (2.56)

which implies that

Pσ
[
τX < τB

]
≥ 1−

(
e−N(C−c−ε(n)c1) + e−c2N

)
. (2.57)

By assumption ε(n) c1 < (C − c)/2. Hence, in view of (2.50), (2.54) and (2.57), there exists

c7 > 0 such that, for large enough N , (2.46) holds. �
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2.5. Bounds on the mean hitting time and the Laplace transform

Finally, in a situation that mimics to be metastable, we prove the following pointwise esti-

mate on metastable times.

Theorem 2.12. Suppose that A,B ⊂ SN mimics a metastable situation on level n, and assume

that n satisfies ε(n) c1 < (C − c)/4 for a given c1 > 1 + α−1. Then, there exists c0 > 0 such that,

for N large enough,

max
σ,η∈A

∣∣∣∣
Eσ[τB]

Eη[τB]
− 1

∣∣∣∣ ≤ e−c0N . (2.58)

Proof. Let Eσ,η denote the expectation with respect to Pσ,η on the enlarged probability space.

Provided that ̺n(σ) = ̺n(η) for σ, η ∈ A, by (2.44) we have

Eσ

[
τB
]
≥

∞∑

k=0

Eσ,η

[
τη,kB 1Ak1Bk

k−1∏

l=0

1Dl

(
1− 1Al1Bl

)]
(2.59)

Further, let Fsk denote the σ-algebra generated by all the events and trajectories Al,Bl,Dl, ηl

and {σ(t) : t ∈ (sl−1, sl]} for l ≤ k. Due to the independence of the copies {ηl, V l} it holds

that

Eσ,η

[
τη,kB 1Ak1Bk

∣∣Fsk−1

]
= Eη

[
τB 1A1B

]
= e−ε(n)M Eη

[
τB 1B

]
(2.60)

and for all l < k

Eσ,η

[1Dl

(
1− 1Al1Bl

) ∣∣Fsl−1

]
≥ Eη

[
1− 1A1B

]
−max

σ′∈A

(
1− Pσ′

[
D0
])

≥ 1− e−ε(n)M − e−c7N (2.61)

where we used (2.46) in the last step. By choosing M = c1N , as in Lemma 2.6, T = Nκ for

some κ > 2 and c1 > 1 + α−1 large enough to ensure that c2 > 2c5, then (2.22) and (2.33)

implies that

Eσ

[
τB
]
≥ Eη

[
τB 1B

]
e−ε(n)c1N

∞∑

k=0

(
1− e−ε(n)c1N − e−c7N

)k

≥ Eη

[
τB
] 1− e−c4N

1 + e−N(c7−ε(n)c1)
. (2.62)

If ̺n(σ) 6= ̺n(η) for σ, η ∈ A, by using (2.45), an analog computation reveals that

Eσ

[
τB
]
≥ Eη

[
τB 1B

]
e−ε(n)c1N

(
1− e−c7N

) ∞∑

k=0

(
1− e−ε(n)c1N − e−c7N

)k

≥ Eη

[
τB
] 1− e−c4N− e−c7N

1 + e−N(c7−ε(n)c1)
. (2.63)

If ε(n)c1 < (C − c)/4, we can choose c7 in such a way that c7 > (C − c)/4. Hence, there exists

a constant c0 > 0 such that Eσ

[
τB
]
≥ Eη

[
τB
] (

1− e−c0N
)

for all σ, η ∈ A and large enough N .

This concludes the proof. �

As a further application of the coupling construction and the cycle decomposition we will

prove a pointwise estimate on the Laplace transform of τB.

Proposition 2.13. Suppose A,B ⊂ SN mimic a metastable situation on level n. If n satisfy

ε(n) c1 < (C − c)/4 for some c1 > 1 + α−1 sufficiently large, then there exists c8 > 0 such that

for all λ > 0 and N large enough

max
σ,η∈A

∣∣∣∣
Eσ

[
e−

λ
T
τB
]

Eη

[
e−

λ
T τB

] − 1

∣∣∣∣ ≤ e2λ e−c8N , (2.64)
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where T = EνA

[
τB
]

for some probability measure νA on A.

Proof. Let us point out that the proof of this proposition goes along the lines of [5, Prop. 3.4].

Analog to (2.44) we have, for any σ, η ∈ A with ̺n(σ) = ̺n(η),

e−
λ
T τσ

B =
∞∑

k=0

e−
λ
T (sk−1+τη,k

B ) 1Ak1Bk

k−1∏

l=0

1Dl

(
1− 1Al1Bl

)

+
∞∑

k=0

e−
λ
T τσ

B
(
1− 1Dk

)(
1− 1Ak1Bk

) k−1∏

l=0

1Dl

(
1− 1Al1Bl

)
.

This implies that

Eσ

[
e−

λ
T τB

]
≤

∞∑

k=0

Eσ,η

[
e−

λ
T τη,k

B 1Ak1Bk

k−1∏

l=0

1Dl

(
1− 1Al1Bl

)]

+
∞∑

k=0

Eσ,η

[(
1− 1Dk

)(
1− 1Ak1Bk

) k−1∏

l=0

1Dl

(
1− 1Al1Bl

)]
. (2.65)

Analog to (2.60) and (2.61), we obtain, due to the independence of {ηl, V l},

Eσ,η

[
e−

λ
T τη,k

B 1Ak1Bk

∣∣Fsk−1

]
= Eη

[
e−

λ
T τB1A1B

]
≤ e−ε(n)M Eη

[
e−

λ
T τB

]
(2.66)

and for all l < k

Eσ,η

[1Dl

(
1− 1Al1Bl

) ∣∣Fsl−1

]
≤ Eη

[
1− 1A1B

]
= 1− e−ε(n)M Pη

[
B
]
. (2.67)

By choosing M = c1N , as in Lemma 2.6, and T = Nκ for some κ > 2 and taking into account

(2.46), we obtain for the second term in (2.65) the following upper bound

e−c7N
∞∑

k=0

(
1− e−ε(n)c1N

(
1− e−c4N

))k
≤ 2 e−N(c7−ε(n)c1)

for N large enough. Since c7−ε(n)c1 > (C−c)/4−ε(n)c1 > 0 this upper bound is exponential

small in N . Combining all the estimates above, we arrive at

Eσ

[
e−

λ
T τB

]
≤ Eη

[
e−

λ
T τB

]
e−ε(n)c1N

∞∑

k=0

(
1− e−ε(n)c1N

(
1− e−c4N

))k
+ 2 e−N(c7−ε(n)c1)

≤ Eη

[
e−

λ
T τB

] (
1 + 2 e−c4N

)
+ 2 e−N(c7−ε(n)c1). (2.68)

In the case when ̺n(σ) = ̺n(η) for σ, η ∈ A, by a similar computation we obtain

Eσ

[
e−

λ
T τB

]
≤ Eη

[
e−

λ
T τB

] (
1 + 2 e−c4N

)
+ 2 e−N(c7−ε(n)c1) + e−c7N . (2.69)

By Jensen’s inequality and (2.58), for every η ∈ A it holds that

Eη

[
e−

λ
T τB

]
≥ e−

λ
T Eη [τB] ≥ e−λ(1+e−c0N ) ≥ e−2λ (2.70)

This implies that there exists c8 > 0 such that Eσ

[
e−

λ
T τB

]
≤ Eη

[
e−

λ
T τB

](
1 + e2λ e−c8N

)
for N

large enough. �





CHAPTER 3

Metastability

We turn now to a characterization of metastability for a class of reversible Markov chains.

Our aim is to derive sharp estimates on metastable exit times both on the level of expected val-

ues and Laplace transforms by using the tools we have presented in the previous two chapters.

For this reason, we restrict ourselves to the setting introduced in Chapter 2.

Starting point of our further investigations is the definition of a set of metastable sets. As a

first step, we coarse-grain the state space by introducing a family of mesoscopic variables which

depend on an additional parameter n controlling the coarsening level. The key idea behind

our definition is that, for a fixed n, these sets are defined as preimages under the mesoscopic

map of certain single points in the coarse-grained space. In doing so, the mesoscopic points are

chosen in such a way to ensure that the process with initial distribution given by the reversible

measure conditioned on one of the corresponding sets returns very often to it before escaping

to a ”more stable” set.

The present chapter is organized as follows. In Section 3.1 we start with reviewing some

of the different definitions and approaches of metastability that have been introduced in the

past. Afterwards, we present a definition of a set of metastable sets that will be used in the

remaining part of this thesis. As an immediate consequence of this definition combined with

a rough control on the regularity of harmonic functions, we show in Section 3.2 the existence

of an ultra-metric on the set of metastable sets in the limit when N tends to infinity. As we

will further show in Section 3.3, this property allows us to derive various bounds on harmonic

functions and to prove sharp estimates for averaged mean hitting times. In the final Section 3.4

we prove the convergence of normalized metastable exit times to an exponential distribution.

In the proof we use pointwise estimates of the Laplace transforms of metastable exit times as

well as averaged renewal equations.

Contributions in this chapter. In the past ten years, substantially progress has been made

in the systematical development of the potential theoretic approach and its application by

Bovier and coworkers. A crucial observation in this theory is that rough bounds on equilibrium

potentials obtained by exact renewal equations suffice to derive sharp estimates on metastable

characteristics. In this respect, the main contribution in the present chapter is to work out the

details that in situations where exact renewal equations cannot be established it suffices to

combine averaged renewal equations with rough pointwise estimates of harmonic functions to

prove very accurate results. Beyond that, the author contributes the following bits and pieces:

• a proof how pointwise estimates together with Lemma 1.26 can be used to establish

an asymptotic ultra-metric on the set of metastable sets, see Lemma 3.5;

• a proof of various bounds on the equilibrium potential, hA,B, see Lemma 3.8, that

serves as the basis to prove sharp results for averaged mean hitting times;

• a proof of a bound on the λ-equilibrium potential, hλA,B, that shows that hλA,B is equal

to one in a neighborhood of the set A up to a small correction, see Lemma 3.17.

41
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3.1. Introduction

In the diffusion setting, metastable sets are considerable easy to identify. Namely, they

correspond to suitable chosen neighborhoods of local minima of the potential landscape. The

dynamical aspects of metastability in such a context of randomly perturbed dynamical systems

was first analyzed with mathematical rigor in the seminal work by Freidlin and Wentzell [51].

In models coming from statistical mechanics the question of how to characterize metastable

states, and how to identify them in a given model context is really an issue.

Characterization of metastability: A partial review. Lebowitz and Penrose introduced a

first dynamical approach to metastability that describes the metastable behavior of the systems

in terms of evolution of ensembles. Their theory takes into account dynamical and statical prop-

erties of the system. They characterized metastable thermodynamical states by the following

properties [96, 97]:

(i) only one thermodynamical phase is present;

(ii) if the system is isolated the lifetime of a metastable state is very large, i.e. a system

that starts in this state is likely to take a long time to get out;

(iii) the escape from a metastable state is an irreversible process, i.e. once the system has

gotten out, it is unlikely to return.

Further, they invented the idea to define a metastable state by means of restricted ensembles,

µX := µ[ · |X ], where µ is the equilibrium Gibbs measure of the system and X is a subset of the

state space. The main task is to choose X is such a way that first µX describes a pure phase

and secondly the escape rate from X at time zero is small. The latter implies that condition

(ii) is satisfied provided that the escape rate is maximal at time zero. A necessary condition

to satisfy the third criterion is to ensure that µ[X ] is negligible. For an excellent review of this

method we refer to the recent monograph by Olivieri and Vares [94].

Acting on the assumption that metastability is characterized by the existence of at least

two different time scales for the evolution, Davies [29, 30, 31] suggested to analyze the

small eigenvalues and to construct metastable sets from the corresponding eigenfunctions.

Based on the observation that a Markov process, exhibiting a metastable behavior, is almost

reducible, we can view the original, irreducible Markov process as a perturbation of a reducible

one. Assuming that the process is reducible, the theorem of Perron-Frobenius implies that

the generator has a degenerate eigenvalue zero whose multiplicity is equal to the number of

different metastable sets. Moreover, the corresponding eigenfunctions are given as indicator

functions on these sets. Provided that the perturbation is sufficiently small, this leads to a

cluster of small eigenvalues that is separated by a gap from the rest of the spectrum. This

approach has been continued by Gaveau and Schulman [55] and more recently by Huisinga,

Meyn and Schütte [66]. In particular, in the study of metastable chemical conformations of

bio-molecules Deuflhard et al. introduced a numerical algorithm to determine metastable sets

[36, 37].

From the theoretical point of view, the spectral signature of metastability is maybe the most

elegant and complete way to characterize this phenomenon in Markov processes. However,

in the majority of applications coming from statistical mechanics it is very hard to determine

both the small eigenvalues and the corresponding eigenvectors explicitly.

In a recent paper [7], Bianchi and Gaudillière presented an approach to metastability that

combines aspects of the idea of the evolution of ensembles and spectral properties. Instead of

considering the restricted ensemble µX , they suggested to characterize metastable states by the

quasi-stationary measure µ∗
X that is the left eigenvector to the principle Dirichlet eigenvalue

of the generator subject to Dirichlet boundary conditions on Xc. The advantage of choosing

µ∗
X as the initial distribution of the Markov process is that the exit times of the set X are
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exponential distributed. Provided that the ratio between the principle Dirichlet eigenvalue

and the principle eigenvalue with respect to the reflected process can be controlled, they

established sharp estimates on the mean exit times.

As it was pointed out in [23], the approach of evolution of ensembles has the drawback

that by studying the time evolution of probability distributions it is difficult to distinguish

between a smooth but very slow relaxation towards equilibrium and a typical metastable be-

havior. The latter is characterized by the fact that the process is apparently stationary for a

long period until it undergoes a rapid transition at some randomly distributed point in time

leading the system to a different state that again seems be to stationary. Based on this fact

Cassandro, Galves, Olivieri and Vares proposed a pathwise approach to metastability that uses

time averages along trajectories to single out properties of typical paths as well as their statis-

tics [23, 94]. The main tools in their approach are large deviation methods in path space and

model reduction techniques. The latter, originally introduced by Freidlin and Wentzell in the

context of randomly perturbed dynamical systems, allows to reduce the problem of describing

the long-time behavior of a process in terms of a Markov chain with exponentially small tran-

sition probabilities between metastable sets. This approach has been proven to be robust and

rather universally applicable in various model contexts.

While the pathwise approach to metastability is able to yield detailed informations, for

instance on the typical exit path, its precision to predict, e.g. the mean exit times, is limited to

logarithmic equivalence.

More recently, Bovier, Gayrard, Eckhoff and Klein introduced a potential theoretic approach

to metastability [15, 16] that was systematically developed in the sequel. Their starting point

is the definition of a set of metastable points, M, that is characterized by the ratio of two

escape probabilities. More precisely, for any σ ∈ M the probability to escape from σ to the

remaining metastable points M\ {σ} should be much smaller compared to the probability to

reach M starting from some arbitrary point in the state space outside M before returning to

it. The key idea of this approach is to express quantities of interest in terms of capacities and

use variational principles to compute the latter. Having identified the set of metastable points,

this approach allows to prove sharp estimates on mean exit times, to analyze precisely the

low-lying spectrum of the corresponding generator and to control the deviation of the law of

metastable exit times from the exponential distribution for a wide class of reversible Markov

processes. Thereby, strict renewal equations play an important role to derive various estimates.

For an introduction to the potential theoretic approach to metastability, we refer to [11].

As it was already pointed out in [9], the definition of metastable points relies crucially on

the fact that the time to reach the set of metastable points is small compared to the transition

time between different elements of this set. However, in the context of reversible diffusion

processes or spin systems at finite temperature the probability to hit a given point in finite time

is either zero or exponentially small. For diffusion processes, this problem can be overcome by

considering around each metastable point, x, a small ball, Bε(x), of radius ε > 0. In this spirit,

a definition of a set of metastable points was introduced in [10]. Based on Harnack and Hölder

inequalities, apriori estimates on the local regularity of solutions of boundary value problems

with respect to the generator of the diffusion process yield that the typical oscillations of

such functions within Bε(x) are bounded by some polynomial in ε. Provided that ε is chosen

appropriately, this allows to establish strict renewal equations e.g. for harmonic functions or

Laplace transforms of mean hitting times [17, 18].

Metastable sets and local valleys. Our starting point in the study of the dynamical behav-

ior of the Markov chain {σ(t)} is the following definition of a set of metastable sets.
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Definition 3.1. Let Mn ≡ Mn
N be a set of disjoint subsets of SN . Assume that there exists

n ∈ N such that n ≪ N and for every A ∈ Mn there exists a ∈ Γn such that A is given as the

set-valued preimage of a under ̺n, i.e. A = Sn[a]. Further, let Sn
N := {Sn[x] ⊂ SN | x ∈ Γn}.

Then, Mn is called a set of metastable sets if there exists C ≡ C(n) > 0 such that

maxA∈Mn PµA

[
τMn\A < τA

]

minX∈Sn
N\Mn PµX

[
τMn < τX

] ≤ e−CN . (3.1)

Here, µX(σ) = µN [σ |X ] for σ ∈ X ⊂ SN stands for the reversible measure, µN , conditioned

on the set X .

Remark 3.2. The definition above is a natural generalization of the one for metastable points

given in [9, 11].

Remark 3.3. Depending on the choice of C, we may find different sets Mn. Let us emphasize

the fact that, in the considered setting, the cardinality of Mn grows at most polynomial with

N . Moreover, the equation (3.1) has the pleasant feature that in the choice of the elements of

Mn we have to take into account only sufficiently ”deep minima”. This allow us to deal with

situations where an exponential large number (in N) of ”shallow local minima” are present.

Remark 3.4. In order to compute precisely e.g. metastable exit times, in the approach pre-

sented below we need as an input some estimates of the oscillations of harmonic functions

within mesoscopic sets. However, in view of (3.1), it suffice to control these oscillations on

exponential scales.

We associate to each M ∈ Mn a local valley on mesoscopic level n

Vn(M) :=
{
X ⊂ SN

∣∣∣ ∃x ∈ Γn : X = Sn[x], PµX

[
τM ≤ τX

]
≥ PµX

[
τMn\M ≤ τX

]}
.

Notice that the sets Vn(M) are not necessary disjoint. By using arguments similar to the ones

given in [16] in the case of points, we will show, see Corollary 3.7, that the set of sets which

belong to more than one local valley has a very small mass under µN . Since the conditions

above do not uniquely determine Mn, it will be reasonable to choose Mn in such a way that

for all M ∈ Mn

µN [X ] ≤ µN [M ], ∀X ∈ Vn(M). (3.2)

Furthermore, for every A ∈ Mn we denote by Mn(A) :=
{
X ∈ Mn

∣∣ µN [X ] > µN [A]
}

the

subset of “deeper” metastable sets.

3.2. Ultrametricity

Let us start with studying the capacity between different metastable sets. More precisely,

for an arbitrary M ∈ Mn and B ⊂ Mn \M our aim is to show that if X ∈ Vn(M) then either

the escape probability PµX

[
τB < τX

]
can be bounded from below, or the capacity cap(X,B)

is essentially the same as cap(M,B). The strategy to prove such a statement relies on the

ultrametricity of capacities, as specified in Lemma 1.26. In order to verify the assumptions

given there, we would like to take advantage of Proposition 2.7. However, the bounds obtained

on harmonic functions are unpleasant to derive a suitable upper bound on (1.113). For this

reason, our starting point in the proof is instead of (1.114) the equation (1.116).

Lemma 3.5. Let M ∈ Mn, B ⊂ Mn \M and X ∈ Vn(M) \M . Further, let c1 > 1 + α−1 and

choose δ1 > ε(n)c1. Suppose that C− δ1 > 0, then either

PµX

[
τB < τX

]
≥ 1

2
eN(C−δ1) max

A∈Mn
PµA

[
τMn\A < τA

]
(3.3)
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or

1− e−N(δ1−ε(n)c1) − e−c2N ≤ cap(X,B)

cap(M,B)
≤
(
1− e−N(δ1−ε(n)c1) − e−c2N

)−1

. (3.4)

Remark 3.6. Since ε(n) is decreasing in n, by choosing n in the definition of metastable sets

large enough, we can ensure that C− δ1 > 0.

Proof. First of all note that the definition of a local valley on mesoscopic level n implies that

for all X ∈ Vn(M)

PµX

[
τMn < τX

]
≤ PµX

[
τM < τX

]
+ PµX

[
τMn\M < τX

]
≤ 2 PµX

[
τM < τX

]
. (3.5)

Hence, together with the definition of metastable sets, see (3.1), we get that

max
A∈Mn

PµA

[
τMn\A < τA

]
≤ e−CN PµX

[
τMn < τX

]
≤ 2 e−CN PµX

[
τM < τX

]
(3.6)

Let us now assume that cap(X,B) > e−δ1N cap(X,M). Then, the combination of the two

equations above yields immediately (3.3). Hence, we are left with considering the remaining

case where cap(X,B) ≤ e−δ1N cap(X,M). Here, our starting point is (1.116)

1− PνM,B

[
τB < τX

]
≤ cap(X,B)

cap(M,B)
≤
(
1− PνX,B

[
τB < τM

])−1

. (3.7)

Our strategy is the following: with the help of Proposition 2.7 we replace the initial distri-

bution, νM,B, on the left-hand side of (3.7) by the distribution νM,X which has the advan-

tage that by a computation analog to (1.116) combined with the assumption cap(X,B) ≤
e−δ1N cap(X,M) we obtain immediately that

PνM,X

[
τB < τX

]
≤ cap(B,X)

cap(M,X)
≤ e−δ1N . (3.8)

On the right-hand side of (3.7) we proceed similarly and replace νX,B by νX,B∪M . Then, an

application of the averaged renewal equation for capacities (1.90) reveals that

PνX,B∪M

[
τB < τM

]
≤ cap(X,B)

cap(X,M)
≤ e−δ1N .

Let us now describe how the actual replacement of the initial distributions is done. Since

M,B as well as X are given as preimages under ̺n of certain points in Γn, Proposition 2.7 is

applicable. Hence, for all σ, η ∈M ,

Pσ
[
τB < τX

]
≤ eε(n)c1N Pη

[
τB < τX

]
+ e−c2N . (3.9)

By multiplying both sides with νM,X(η) and summing over all η ∈M , we obtain the following

upper bound

Pσ
[
τB < τX

]
≤ eε(n)c1N PνM,X

[
τB < τX

]
+ e−c2N ≤ e−N(δ1−ε(n)c1) + e−c2N , (3.10)

uniformly for all σ ∈M . By a similar computation we have that

Pσ
[
τB < τM

]
≤ eε(n)c1N PνX,B∪M

[
τB < τM

]
+ e−c2N ≤ e−N(δ1−ε(n)c1) + e−c2N , (3.11)

uniformly for all σ ∈ X . Hence, by combining (3.10) and (3.11) with (3.7) the estimate (3.4)

follows. �

A simple corollary of Lemma 3.5 shows that sets X = Sn[x] that belong to more than one

local valley, Vn(M), have a vanishing mass under the invariant measure µN .

Corollary 3.7. Consider two distinct metastable sets A,B ∈ Mn with Vn(A) ∩ Vn(B) 6= ∅.

Further, let c1 > 1 + α−1 and δ1 > ε(n)c1. If C− δ1 > 0, then for all X ∈ Vn(A) ∩ Vn(B)

µN [X ] ≤ 2 e−N(C−δ1) min{µN [A], µN [B]}. (3.12)
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Proof. Suppose that µN [B] < µN [A]. Since X ∈ Vn(A) ∩ Vn(B), (3.6) implies that

PµA

[
τB < τA

]
≤ 2 e−CN PµX

[
τA < τX

]
and PµA

[
τB < τA

]
≤ 2 e−CN PµX

[
τB < τX

]
.

(3.13)

In particular, we have that

cap(A,B) ≤ 2 e−CN µN [A]

µN [X ]
cap(B,X).

In the remaining part of the proof we have to consider two different cases. Let us first of all

assume that 2 e−CNµN [A]/µN [X ] ≤ e−δ1N . Then, by Lemma 3.5, we obtain that

cap(A,X) ≤
(
1− e−N(δ1−ε(n)c1) − e−c2N

)−1

cap(A,B). (3.14)

Hence,

µN [X ] ≤
(
1− e−N(δ1−ε(n)c1) − e−c2N

)−1 PµA

[
τB < τA

]

PµX

[
τA < τX

] µN [A]

≤ 2
(
1− e−N(δ1−ε(n)c1) − e−c2N

)−1

e−CN µN [A], (3.15)

where we used in the first step that cap(A,X) = µN [X ] PµX

[
τA < τX

]
, while in the second

step we took advantage of (3.13). On the other hand, if 2e−CNµN [A]/µN [X ] > e−δ1N the

assertion of the corollary follows easily. �

3.3. Sharp estimates on mean hitting times

In this section we demonstrate how the averaged renewal equation (1.90) and the almost

ultrametricity of capacities (1.114) combined with the coupling method can be used to prove

various estimates on harmonic functions. In particular, we derive a precise formula for mean

hitting times of metastable sets. The control obtained here is crucial for the investigation of

the distribution of metastable exit times in Section 3.4.

Let Mn be a set of metastable sets and C as defined in Definition 3.1. Let us now choose

some A ∈ Mn and let B ⊂ Mn(A). Moreover, we may rewrite

EνA,B

[
τB
]
=
∑

σ∈A

νA,B(σ) Eσ

[
τB
]
=

1

cap(A,B)

∑

x∈Γn

∑

σ∈Sn[x]

µN (σ)hA,B(σ). (3.16)

Our aim is to show that, under a non-degeneracy condition that will be specified below, the

sum on the right-hand side of (3.16) is of the order µN [A].

The following lemma provides a necessary control over the equilibrium potential, hA,B,

within the different local valleys.

Lemma 3.8. Let A ∈ Mn and B ⊂ Mn \ A. Further, suppose that c1 > 1 + α−1 is chosen in

such a way that e−c2N < PµA

[
τB < τA

]
. Then,

(i) for every M ∈ B and X ∈ Vn(M) \M
∑

σ∈X

µN (σ)hA,B(σ) ≤ 2 e−N(C−ε(n)c1)
(
1− 2 e−CN

)−1

µN [A], (3.17)

(ii) for X ∈ Vn(A) \A
∑

σ∈X

µN (σ)
(
1− hA,B(σ)

)
≤ 2 e−N(C−ε(n)c1)

(
1− 2 e−CN

)−1

µN [A], (3.18)
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(iii) for every M ∈ Mn \
(
{A} ∪B

)
and X ∈ Vn(M) either

∑

σ∈X

µN (σ)hA,B(σ) ≤ 2 e−N(C−δ1−ε(n)c1)
(
1− 2 e−N(C−δ1)

)−1

µN [A] (3.19)

or
∑

σ∈X

µN (σ)hA,B(σ)

≤ a(n,N) eε(n)c1N

(
1− a(n,N)

e−c2N

PµM

[
τB < τM

]
)−1

PµA

[
τB < τA

]

PµM

[
τB < τM

] µN [A],

(3.20)

where a(n,N)−1 = 1 − 2 e−N(δ1−ε(n)c1) and 0 < δ1 < C. Moreover, the same statement

holds for 1− hA,B except that the term PµM

[
τB < τM

]
in (3.20) has to be replaced by

the probability PµM

[
τA < τM

]
.

Proof. The idea behind the proof is based on the representation (1.116) and pointwise esti-

mates on harmonic functions (2.27). In view of the definition of metastable sets (3.1), we

obtain first of all that PµA

[
τB < τA

]
≤ e−CN PµX

[
τMn < τX

]
. Hence, for every M ∈ Mn and

X ∈ Vn(M) \M it holds that

PµA

[
τB < τA

]
≤ 2 e−CN PµX

[
τM < τX

]
(3.21)

where we used (3.6).

(i) and (ii). Due to the fact that the proof of (3.17) and (3.18) are completely similar, we

will give a detailed proof only for (i). Let us fix some M ∈ B. Since hA,B(σ) = 0 for all σ ∈ B,

it remains to consider all X ∈ Vn(M) \M . Recall that, by definition, the metastable sets are

preimages under ̺n of some points in Γn. Hence, in view of (2.27), we have that

Pσ
[
τB < τX

]
≥ e−ε(n)c1N

(
Pη
[
τB < τX

]
− e−c2N

)
(3.22)

for all σ, η ∈ X . By multiplying both sides with µN (η) and summing over all η ∈ X , we obtain

the following pointwise estimate

Pσ
[
τB < τX

]
≥ e−ε(n)c1N

cap(B,X)

µN [X ]

(
1− e−c2N

PµX

[
τB < τX

]
)
. (3.23)

On the other hand, a computation analog to (1.116) shows that

PνX,B

[
τA < τB

]
≤ cap(A,B)

cap(X,B)
=

PµA

[
τB < τA

]

PµX

[
τB < τX

] µN [A]

µN [X ]
. (3.24)

By using (3.23), we can replace the last exit biased distribution on the left-hand side of (3.24)

through the conditional reversible measure µX . Thus,

∑

σ∈X

µN (σ)hA,B(σ) ≤ eε(n)c1N
(
1− e−c2N

PµX

[
τB < τX

]
)−1 PµA

[
τB < τA

]

PµX

[
τB < τX

] µN [A] (3.25)

≤ 2 e−N(C−ε(n)c1)
(
1− 2 e−CN

)−1

µN [A], (3.26)

where we used in the last step that PµA

[
τB < τA

]
≤ 2 e−CN PµX

[
τB < τX

]
as well as the

assumption on the choice of c2. This concludes the proof of (i) and (ii).

(iii) Let X ∈ Vn(M) where M ∈ Mn \ {A}∪B. If X 6=M , an application of (3.3) for some

0 < δ1 < C reveals that PµA

[
τB < τA

]
≤ 2 e−N(C−δ1) PµX

[
τB < τX

]
. Hence, by (3.25),

∑

σ∈X

µN (σ)hA,B(σ) ≤ 2 e−N(C−δ1−ε(n)c1)
(
1− 2 e−N(C−δ1)

)−1

µN [A]. (3.27)



48 3. METASTABILITY

a)

M

B

A

b)

A

B

M

c)

A

B

M

d)

A

B

M

FIGURE 1. Illustration of various different landscapes that are excluded by

the non-degeneracy condition.

On the other hand, from (3.4), it follows that we can bound the probability PµX

[
τB < τX

]

from below by a(n,N)−1 PµM

[
τB < τM

]
. By plugging this estimate into (3.25), we obtain

(3.20) for X ∈ Vn(M) \M . Notice that (3.20) follows immediately from the equation (3.25)

in the case when X =M . The completes the proof. �

In view of Lemma 3.8, we can derive precise expressions for mean hitting times (3.16) that

involve only capacities and the invariant measure of local valleys. For simplicity, let us take

into account the following additional non-degeneracy condition:

Definition 3.9. Let A ∈ Mn and B ⊂ Mn \ A. We say that the non-degeneracy condition is

satisfied, if there exists a 0 < δ < C such that either

µN [M ] < e−δN µN [A] or PµA

[
τB < τA

]
< e−δN PµM

[
τB < τM

]
(3.28)

for all M ∈ Mn \ (A ∪B).

We can now easily prove the following

Theorem 3.10. For A ∈ Mn and B ⊂ Mn(A) assume that the non-degeneracy condition for

some 0 < δ < C is satisfied. If n ≪ N is such that ε(n)c1 < min{δ,C− δ} where c1 is chosen in

such a way that e−c2N < PµA

[
τB < τA

]
, then there exists c9 > 0 such that for N large enough

EνA,B [τB ] =
µN

[
Vn(A)

]

cap(A,B)

(
1 + e−c9N

)
. (3.29)

Proof. For δ and n as specified above, let us define

Un
δ :=

{
X ⊂ SN

∣∣∣ ∃x ∈ Γn : X = Sn[x], µN [X ] ≥ µN [A] e−δN
}
.

An obvious consequence is the following

Lemma 3.11. With the notations introduced above, it holds that
∑

X 6∈ Un
δ

∑

σ∈X

µN (σ)hA,B(σ) ≤ Nnq e−δN µN [A]. (3.30)

It remains to control the harmonic function hA,B for all configurations σ ∈ X whereX ∈ Uδ.

For this purpose, let us rewrite the neighborhood Un
δ as

Un
δ =

⋃

M∈Mn

Un
δ (M)
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where Un
δ (M) := Un

δ ∩ Vn(M) for M ∈ Mn. Notice that for M,M ′ ∈ Mn it may happen

that Un
δ (M) ∩ Un

δ (M
′) 6= ∅. We begin with controlling hA,B on Un

δ (M) for all M ∈ {A} ∪ B.

In view of Lemma 3.8 it is immediate that, for N large enough,
∑

X∈Un
δ (A)

∑

σ∈X

µN (σ)
(
1− hA,B(σ)

)
≤ Nnq e−N(C−ε(n)c1) µN [A] (3.31)

while for all M ∈ B
∑

X∈Un
δ(A)

∑

σ∈X

µN (σ)
(
1− hA,B(σ)

)
≤ Nnq e−N(C−ε(n)c1) µN [A]. (3.32)

As a next step, let us consider the contribution to (3.16) coming from the neighborhood Un
δ (M)

for M ∈ Mn \ ({A} ∪B). For this purpose, we set δ1 = δ in Lemma 3.8 (iii). Then, in the case

when cap(X,B) > e−δN cap(X,M), (3.19) implies that
∑

X∈Un
δ (M)

∑

σ∈X

µN (σ)hA,B(σ) ≤ Nnq e−N(C−δ−ε(n)c1) µN [A]. (3.33)

Hence, it remains to consider the case cap(X,B) ≤ e−δN cap(X,M). Let us point out that, as

a consequence of the non-degeneracy condition, PµA

[
τB < τA

]
≤ e−δN PµM

[
τB < τM

]
. On

the other hand, by assumption, it holds that e−c2N < PµA

[
τB < τA

]
. Therefore, in view of

(3.20),
∑

X∈Un
δ (M)

∑

σ∈X

µN (σ)hA,B(σ) ≤ Nnq e−N(δ−ε(n)c1) µN [A]. (3.34)

Now, the proof of (3.29) is an immediate consequence of (3.16) combined with (3.30) and

(3.32) – (3.34). Namely, equation (3.30) together with (3.32), (3.33) an (3.34) provide the

following upper bound
∑

σ∈SN

µN (σ)hA,B(σ)

≤
∑

X∈Vn(A)

∑

σ∈X

µN (σ) + Nnq
(
e−δN + e−c10(n)N + |Mn| e−c11(n)N

)
µN [A]

≤ µN

[
Vn(A)

]
+ Nnq

(
e−δN + e−c10(n)N + |Mn| e−c11(n)N

)
µN [A], (3.35)

where c10(n) := C− ε(n)c1 and c11(n) := min{δ,C− δ} − ε(n)c1, while, by employing (3.30)

and (3.31), the corresponding lower bound is given through
∑

σ∈SN

µN (σ)hA,B(σ) ≥
∑

X∈Vn(A)

∑

σ∈X

µN (σ) −
∑

X∈Vn(A)

∑

σ∈X

µN (σ)
(
1− hA,B(σ)

)

≥ µN

[
Vn(A)

]
− Nnq

(
e−δN + e−c10(n)N

)
µN [A]. (3.36)

Hence, there exists c9 > 0 such that for N large enough the assertion (3.29) follows. �

Corollary 3.12. For A ∈ Mn and B = Mn(A) assume that the non-degeneracy condition is

satisfied. Further, suppose that n ≪ N is such that ε(n) c1 < C/4 where c1 is chosen in such a

way that e−c2N < PµA

[
τB < τA

]
. Then the conclusions of Theorem 3.10 also hold. Moreover,

Eσ[τB] = EνA,B [τB]
(
1 +O

(
e−c0N

))
, ∀σ ∈ A. (3.37)

Proof. By inspecting the proof of Theorem 3.10, we see that in the case when B = Mn(A) it

suffices to ensure that ε(n)c1 < C. Further, recall that for any metastable sets A ∈ Mn there

exists a ∈ Γn such that A = Sn[a]. Thus, for every A ∈ Mn and B ⊂ Mn \ A the condition

(2.5) follows from (3.1), while (2.6) is redundant. Thus, as soon as ε(n)c1 < C/4, Theorem

2.12 implies the pointwise estimate. �
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3.4. Asymptotic exponential distribution

The content of this section is to show how the pointwise estimates on the Laplace trans-

form of metastable exit times, which we obtained via coupling methods, combined with the

averaged renewal equation (1.103) can be used to prove the convergence of the normalized

metastable exit times to an exponential distribution, in cases where Theorem 3.10 applies.

Theorem 3.13. For A ∈ Mn and B ⊂ Mn(A) assume that the non-degeneracy condition is

satisfied. Further, assume that n ≪ N is such that ε(n)c1 < min{δ,C/4} where δ is specified in

(3.28) and c1 is chosen in such a way that e−c2N < PµA

[
τB < τA

]
. Then, for all t ∈ R+,

Pσ
[
τB/Eσ[τB] > t

]
−→ e−t, as N → ∞ (3.38)

for all σ ∈ A.

In view of Proposition 2.13, the main step in the proof is to show the convergence of the

Laplace transform Eρλ

[
e−

λ
T τB

]
as N tends to ∞, where the probability measure ρλ is defined

in (1.102) and T ≡ EνA,B [τB ]. By Lemma 1.25, our starting point is

Eρλ

[
e−

λ
T τB

]
=

EµA

[
e−

λ
T τB 1τB<τA

]

1− EµA

[
e−

λ
T τA 1τA<τB

] . (3.39)

As a result of the representation (3.39) and the continuity theorem for Laplace transforms,

see [49, XIII.1 Theorem 2], Theorem 3.13 will follow from (2.64) and (2.58), respectively,

once we have proven the following lemma.

Lemma 3.14. Under the assumptions of Theorem 3.13, for any λ ≥ 0

lim
N→∞

EµA

[
e−

λ
T τB 1τB<τA

]

1− EµA

[
e−

λ
T τA 1τA<τB

] =
1

1 + λ
. (3.40)

Proof. The proof of this lemma comprises the following three steps.

STEP 1. First of all, we will prove a crucial bound to which we refer to as Uphill Lemma.

Lemma 3.15. [5, Lemma 4.3] Under the assumptions of Theorem 3.13, there exists c12 > 0 and

N0 ∈ N such that

EµA

[
τB 1τB<τA

]
≤ e−c12N EµA

[
τA 1τA<τB

]
, ∀N ≥ N0. (3.41)

Proof. To start with, we use the fact that

EµA

[
τA∪B

]
= EµA

[
τA 1τA<τB

]
+ EµA

[
τB 1τB<τA

]
. (3.42)

Notice that, for σ ∈ A,

Eσ

[
τA 1τA<τB

]
= Pσ

[
τA < τB

]
+
(
LwA,B

)
(σ). (3.43)

An application of the second Green’s identity to the functions wA,B and hA,B reveals that
∑

σ∈A

µN (σ)
(
LwA,B

)
(σ) =

∑

σ 6∈A∪B

µN (σ)
(
hA,B(σ)

)2
. (3.44)

Hence,

EµA

[
τA 1τA<τB

]
= PµA

[
τA < τB

]
+

1

µN [A]

∑

σ 6∈A∪B

µN (σ)
(
hA,B(σ)

)2
. (3.45)
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On the other hand, by an analog procedure, one shows that

EµA

[
τA∪B

]
= 1 +

1

µN [A]

∑

σ∈A

µN (σ)
(
LwA∪B

)
(σ) = 1 +

1

µN [A]

∑

σ 6∈A∪B

µN (σ)hA,B(σ).

(3.46)

Thus, taking into account (3.42) we can conclude that

EµA

[
τB 1τB<τA

]
=

cap(A,B)

µN [A]
+

1

µN [A]

∑

σ 6∈A∪B

µN (σ)hA,B(σ)hB,A(σ). (3.47)

Due to (3.1), the first term on the right-hand side is bounded from above by e−CN . Further,

from Lemma 3.8 together with the non-degeneracy condition we get that the second term is

as well exponentially small compared to µN [A]. Moreover, since EµA

[
τA∪B

]
≥ 1 we conclude

that EµA

[
τA 1τA<τB

]
is exponentially close to one. Hence, choosing c12 > 0 and N0 ∈ N

appropriately, we deduce (3.41). �

Corollary 3.16. With the notations introduced above, it holds that

EνA,B

[
τB
]
=

EµA

[
τA 1τA<τB

]

PµA

[
τB < τA

] (
1 + e−c12N

)
, ∀N ≥ N0. (3.48)

Proof. As an immediate consequence of Lemma 1.14 combined with (3.41), we obtain (3.48).

�

STEP 2. Using that, 1− x ≤ e−x ≤ 1 for x ≥ 0, it follows that the numerator in the renewal

equation (3.39) can be written as

PµA

[
τB < τA

]
− λ

T
EµA

[
τB 1τB<τA

]
≤ EµA

[
e−

λ
T τB 1τB<τA

]
≤ PµA

[
τB < τA

]
. (3.49)

In view of the Uphill Lemma and (3.48), we get

PµA

[
τB < τA

] (
1− λ e−c11N

)
≤ EµA

[
e−

λ
T τB 1τB<τA

]
≤ PµA

[
τB < τA

]
. (3.50)

Let us now turn to the denominator in (3.39). As a consequence of the second Green’s identity

applied to the function hA,B and hλA,B, we may rewrite it as

1− EµA

[
e−

λ
T τA 1τA<τB

]
= PµA

[
τB < τA

]
e−

λ
T +

1− e−
λ
T

µN [A]

∑

σ 6∈B

µN (σ)hA,B(σ)h
λ
A,B(σ).

(3.51)

Taking into account the representation (1.49) and using the fact that hλA,B(σ) ≤ hA,B(σ) ≤ 1

for all σ ∈ SN we get

1− EµA

[
e−

λ
T τA 1τA<τB

]
≤ PµA

[
τB < τA

] (
1 + λ

)
. (3.52)

Hence, our remaining task is to derive a lower bound that is exponentially close to the upper

bound. In order to do so, let us restrict the summation on the right-hand side of (3.51) to the

subset Aδ ⊂ Sn that is given by the union of all sets in Un
δ (A). Moreover, δ it given by the

non-degeneracy condition. This yields

1 − EµA

[
e−

λ
T τA 1τA<τB

]

≥ PµA

[
τB < τA

]
e−

λ
T

(
1 +

λ

T cap(A,B)

∑

σ∈Aδ

µN (σ)hA,B(σ)h
λ
A,B(σ)

)
(3.53)

where we used that ex − 1 ≥ x for all x ≥ 0.

STEP 3. We can conclude the proof of the Lemma 3.14, ones we have proven the following

estimate.
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Lemma 3.17. Under the assumptions of Theorem 3.13 there exists c13 > 0 and N0 ∈ N such that

∑

σ∈Aδ

µN (σ)hA,B(σ)h
λ
A,B(σ) ≥

∑

σ 6∈B

µN (σ)hA,B(σ)
(
1− λ e−c13N

)
, ∀N ≥ N0. (3.54)

Proof. The idea behind the proof is to show that hλA,B and hA,B are almost of the same size on

the subset Aδ ⊂ SN . To start with, we rewrite (3.54) as

∑

σ∈Aδ

µN (σ)hA,B(σ)h
λ
A,B(σ)

≥
∑

σ∈Aδ

µN (σ)hA,B(σ)
2 −

∑

σ∈Aδ

µN (σ)
(
hA,B(σ) − hλA,B(σ)

)
. (3.55)

In view of Lemma 3.8 and 3.11, we immediately obtain, for N large enough, that

∑

σ∈Aδ

µN (σ)hA,B(σ)
2

≥
∑

σ 6∈B

µN (σ)hA,B(σ)
(
1 − Nnq

(
e−δN + 2 e−c10(n)N + |Mn| e−c11(n)N

))
. (3.56)

Let us point out that c10(n), c11(n) > 0 provided that n is chosen large enough such that

ε(n)c1 < min{δ,C− δ}. Exploiting the probabilistic interpretation of hA,B and hλA,B, gives

hA,B(σ) − hλA,B(σ) = Eσ

[(
1− e−

λ
T τA

)1τA<τB

]
≤ λ

T
Eσ

[
τA 1τA<τB

]
(3.57)

for all σ ∈ Aδ \A, whereas the difference between hA,B and hλA,B vanishes on A. Hence,

∑

σ∈Aδ

µN (σ)
(
hA,B(σ)− hλA,B(σ)

)
≤ λ

T

∑

X∈Un
δ(A)\A

∑

σ∈X

µN (σ)wA,B(σ). (3.58)

On the other hand, let us remark that for any X ⊂ SN , an application of the second Green’s

identity to the functions wA,B and hX,A∪B yields

−
∑

σ∈X

µN (σ)
(
LhX,A∪B

)
(σ)wA,B(σ) =

∑

σ 6∈A∪B

µN (σ)hX,A∪B(σ)hA,B(σ). (3.59)

Hence, by dividing both sides by cap(X,A ∪B), we obtain

EνX,A∪B

[
τA 1τA<τB

]
=

1

cap(X,A ∪B)

∑

σ 6∈A∪B

µN (σ)hX,A∪B(σ)hA,B(σ), (3.60)

where νX,A∪B is the last exit biased distribution on X . In view of (2.27), we have for any

X ∈ Un
δ (A) \A and all σ, η ∈ X , that

Pσ
[
τA∪B < τX

]
≥ e−ε(n)c1N

(
Pη
[
τA∪B < τX

]
− e−c2N

)
. (3.61)

By multiplying both sides with µN (η) and summing over all η ∈ X , we obtain the following

pointwise estimate

Pσ
[
τA∪B < τX

]
≥ e−ε(n)c1N

cap(A ∪B,X)

µN [X ]

(
1− 2 e−CN

)
, (3.62)

since (3.1) implies that PµA

[
τB < τA

]
≤ 2 e−CN PµX

[
τA∪B < τX

]
for all X ∈ Un

δ (A) \ A.

Further, we used that c2 is chosen in such a way that e−c2N < PµA

[
τB < τA

]
.
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Hence, by combining the pointwise estimate with (3.60) yields

∑

σ∈X

µN (σ)wA,B(σ) ≤ eε(n)c1N
(
1− 2 e−CN

)−1 µN [X ]

cap(X,A ∪B)

∑

σ∈SN

µN (σ)hA,B(σ)

≤ 2 e−N(C−ε(n)c1)

PµA

[
τB < τA

]
(
1− 2 e−CN

)−1 ∑

σ∈SN

µN (σ)hA,B(σ). (3.63)

Finally, by plugging (3.63) into (3.58), we obtain
∑

σ∈Aδ

µN (σ)
(
hA,B(σ)− hλA,B(σ)

)
≤ λ 4Nnq e−N(C−ε(n)c1)

∑

σ 6∈B

µN (σ)hA,B(σ) (3.64)

for N large enough. Thus, by combining the estimates above concludes the proof. �

From Lemma 3.17, it follows that the denominator of (3.39) can be bounded by

(
1− λ e−CN

) (
1 + λ

(
1− λ e−c13N

))
≤

1− EµA

[
e−

λ
T τA 1τA<τB

]

PµA

[
τB < τA

] ≤ 1 + λ (3.65)

provided that N is chosen large enough. Together with (3.50) the assertion of Lemma 3.14

follows. �





CHAPTER 4

Metastability and Spectral Theory

In the present chapter we study the relation between the low-lying part of the spectrum

of −LN and the mean transition times associated to certain metastable sets in Mn. The

main objective is to show that, under some non-degeneracy condition, to each metastable set

corresponds a simple eigenvalue of −LN which is equal to the inverse of the mean exit time

from this set up to small errors. Let us point out that the methods we are going to use in the

sequel are mainly analytic.

The remainder of this chapter is organized as follows. In Section 4.1 we review first the

main ideas and methods that were used in the strong recurrent setting [16]. In particular, we

explain some of the challenges, we are faced with, and sketch a strategy to solve them. A first

observation is a relation between the eigenvalues of the generator −LN and the eigenvalues

of the generator −Gn associated to the coarse-grained Markov chain. By employing this obser-

vation, in Section 4.2 we prove a rough localization of the small eigenvalues. In the remaining

Section 4.3 we focus on improving the previously obtained estimates. Using a posteriori error

estimates based on general results due to Kato [74] and Temple [109] combined with prop-

erties of metastable sets and pointwise estimates on harmonic functions we derive upper and

lower bounds on the small eigenvalues that coincides in the limit when N tends to infinity.

Contributions in this chapter. The main contribution of the author is the development of

a strategy that allows to reduce the original eigenvalue problem on SN to the strong recurrent

setting on the coarse-grained level. A crucial step of the presented method is to establish

first a rough localization of the eigenvalues. Under the assumption that there are at most as

many small eigenvalues as metastable sets, these estimates can be used in a second step to

compute precisely the small eigenvalues. Let us point out that this approach is not limited to

the particular setting we have chosen. Beyond that, the chapter contains the following novel

pieces:

• a lower bound on the eigenvalues of the generator −LN in terms of the eigenvalues

of the generator −Gn, see Proposition 4.5;

• an upper bound on the residuum exploiting pointwise estimates on harmonic func-

tions, see Lemma 4.14;

• an analysis of the Rayleigh-Ritz values that appear in the improved upper bound, see

4.13.

4.1. Introduction

Investigations in the connection between the dynamical behavior of Markov processes and

the existence of small eigenvalues of the corresponding generators dates back at least to the

work of Wentzell [112] and Feidlin and Wentzell [51]. In the study of diffusions, they iden-

tified limε↓0 ε−1 lnλ(ε) using large deviation methods. Based on variational principles, these

estimates could be improved up to a multiplicative error first by Holley, Kusuoka and Stroock

[65] for principal eigenvalues and later for the full set of exponentially small eigenvalues by

Miclo [86] and Mathieu [84].

55



56 4. METASTABILITY AND SPECTRAL THEORY

By using potential-theoretic ideas that were already suggested in an early work by Wentzell

[113], sharp estimates on the small eigenvalues were established by Bovier, Gayrard, Klein

and Eckhoff for reversible diffusion processes [18, 45] and for Markov chains on discrete state

spaces in the reversible setting [16]. In the context of reversible Markov chains on discrete

state spaces, their starting point was the definition of a set of metastable points. Under some

non-degeneracy conditions they showed that to each metastable point corresponds a simple

eigenvalue of the discrete generator associated to the Markov chain. Moreover, each such

eigenvalue is equal to the inverse of the mean exit time from the corresponding metastable

point up to negligible error terms.

In the previous chapter we have seen, that e.g. in the context of stochastic spin systems at

finite temperature, the probability to hit a particular configuration in the state space and the

escape probability from a metastable point are of the same order. For this reason, a Markov

chain in such a setting can only be ρ-metastable in the sense of [11, Definition 4.1], if the

transition probabilities are exponentially small. For instance, this is the case if we consider

a spin system in the low temperature regime. In contrast to that, mean-field systems can be

studied as well in the finite temperature regime. The reason behind this fact is that mean-field

systems have the property that there exists a macroscopic variable such that the stochastic

process on the coarse-grained space induced by this map is still Markovian. Thus, the set

of metastable points can be defined on this lower dimensional space. A further advantage

of mean-field systems is that the spectrum of the discrete generator, −GN , associated to the

induced Markov chain on the lower-dimensional space is contained in the spectrum of −LN .

As we already mentioned in the preface, our interest in the relation between the metastable

behavior and the small eigenvalues of the generator associated to a Markov chain arises from

the study of disordered mean-field spin systems at finite temperature. In such a situation, we

cannot exactly reduce the model to a low-dimensional one via lumping techniques.

Before discussing the difficulties, we are faced with when starting from the definition of a

set of metastable sets, let us briefly sketch the main ideas of the approach, originally presented

in [16], to investigate the small eigenvalues for strongly recurrent, reversible Markov chains

on a finite state spaces. For an in-deep presentation of the connection between metastability

and small eigenvalues from a potential-theoretic point of view we refer to the lecture notes

[9, 11].

Small eigenvalues in the strong recurrent setting: A review of the methods. Let us

consider the setting that was introduced in Chapter 1, i.e. let {σ(t)} be an irreducible Markov

chain on a finite state space, SN , that is reversible with respect to a unique invariant mea-

sure µN , and assume additionally that {σ(t)} is ρ-metastable in the sense of [11, Definition

4.1]. This means that, for 0 < ρ ≪ 1, there exists a set of metastable points(!), MN ≡
{σ1, . . . , σK} ⊂ SN , such that

maxη∈MN Pη
[
τMN\{η} < τη

]

minη∈SN\MN
Pη
[
τMN < τη

] ≤ ρ.

It is well known that reversibility implies that the generator, LN , is self-adjoint on the weighted

space L2(SN , µN ). Hence, the spectrum of LN is real and we can order the eigenvalues, λi, of

−LN in increasing order. As an immediate consequence of the Theorem of Perron-Frobenius

we have that

0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λ|SN | ≤ 2.

Our main objective is to compute the first K eigenvalues of −LN . As a first step, let us

consider the eigenvalue problem for −LN subject to zero boundary conditions on a given

subset D ⊂ SN . In such a situation, the smallest eigenvalue, that we denote by λD ≡ λD1 ,

is called principal eigenvalue. Notice that, for every set D, the principal eigenvalue has the



4.1. INTRODUCTION 57

pleasant feature to give rise to an a priori estimate of the |D|+ 1 smallest eigenvalue of −LN .

Our starting point is the Theorem of Courant-Fischer. It implies that

λi ≤ λDi ≤ λi+|D|, ∀ i = 1, . . . , |SN | − |D|. (4.1)

We use this observation in the following way: Let us consider an increasing sequence of sets

D1 ⊂ D2 ⊂ . . . ⊂ DK such thatD1 and for all i ≥ 1 the differenceDi+1\Di is each a singleton.

Then (4.1) implies that

λDi ≤ λi+1 ∀ i = 1, . . . , K. (4.2)

The Equation (4.2) is one of the main ingredients to characterize completely the K smallest

eigenvalues of −LN . Note that every increasing sequence of sets {Di} can be used to derive a

lower bound on the corresponding eigenvalue. But, the quality of such lower bounds depends

crucially on the chosen sets Di. In the iteration procedure that is presented below the idea is

to construct an increasing sequence of sets from the set of metastable points.

Since the eigenvalue λ|MN |+1 is bounded from below by the principal eigenvalue of λMN ,

a next step in the analysis is to derive bounds on it. Another pleasant feature of principal

eigenvalues is that they can be easily characterized via variational principles. Consider a set

D ⊂ SN . While an upper bound on λD follows from the Rayleigh principle, that reads

λD = inf
f |D =0

‖f‖µN
=1

〈
f,−LN f

〉
µN
, (4.3)

a lower bound can be obtained by using a variational formula due to Donsker and Varadhan

[40]

λD = inf
f |D =0

‖f‖µN
=1

sup
g|Dc > 0

〈f2

g
,−LN g

〉
µN

. (4.4)

Here, we introduced the notations ‖f‖22,µN
≡ 〈f, f〉µN

:=
∑

σ∈SN
µN (σ) f(σ)2.

Let us now come back to the principal eigenvalue of −LN . An upper bound on λMN

is obtained by plugging the normalized equilibrium potential hη,MN /‖hη,MN‖22,µN
for some

η ∈ SN \ MN in the Rayleigh principle and optimizing over all η. For a lower bound, recall

that the function wMN equals Eσ

[
τMN

]
on Mc

N . In particular, for all σ 6∈ MN it holds that(
LNwMN

)
(σ) = −1. Thus, by setting g ≡ wMN the variational principle of Donsker-Varadhan

yields that

λMN ≥
(

max
σ∈SN\MN

Eσ

[
τMN

])−1

. (4.5)

This proves the following

Lemma 4.1. Let λMN denote the principal Dirichlet eigenvalue of −LN this respect to the set

MN . Then

min
σ∈SN\MN

cap(σ,MN )∥∥hσ,MN\{σ}
∥∥
1,µN

≤ λMN ≤ min
σ∈SN\MN

cap(σ,MN )
∥∥hσ,MN\{σ}

∥∥2
2,µN

. (4.6)

Having establish a lower bound for the principal Dirichlet eigenvalue, we turn, in a second

step, to a precise characterization of the eigenvalues of −LN that are strictly below λMN .

Notice that there are at most K such eigenvalues. The strategy is to consider the solution of

the Dirichlet problem
{

−
(
LNf

λ
)
(σ) − λ fλ(σ) = 0, σ ∈ SN \MN ,

fλ(σ) = φ(σ), σ ∈ MN .
(4.7)
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If λ < λMN is an eigenvalue of −LN and if we choose φλ as the eigenfunction corresponding

to this eigenvalue, then fλ equals φλ on SN . In order to see this, notice that fλ(σ)−φλ(σ) = 0

for all σ ∈ MN . Hence, the difference fλ − φλ solves a Dirichlet problem with respect to the

operator −LN − λ subject to zero boundary conditions. Due to the fact that λ < λMN , this

Dirichlet problem has a unique solution given by the zero function. This implies that fλ is

equal to the eigenfunction φλ everywhere.

Notice that by linearity of the Dirichlet problem and due to the properties of the λ-equilibrium

potential that was defined in Chapter 1, we can represent fλ as

fλ(σ) =
∑

η∈MN

cη h
λ
η,MN\η(σ), cη ∈ R. (4.8)

If for a given λ < λMN there exists a non-zero vector {cη : η ∈ MN} such that for all σ ∈ SN

−
(
LNf

λ
)
(σ) = λfλ(σ), then λ is an eigenvalue of −LN . The existence of such a vector is

equivalent to the fact that the determinant of the matrix Eλ
MN

∈ RK×K with elements
(
E

λ
MN

)
σ,η

= −
(
LNh

λ
η,MN\η

)
(σ) − λhλη,MN\η(σ), σ, η ∈ MN . (4.9)

vanishes. The next step in the analysis is to study the matrix Eλ
MN

. Although this is in general

a quite difficult task, if we assuming additionally the non-degeneracy condition (4.10), we can

compute precisely the largest eigenvalues below λMN . This is the statement of the following

Theorem 4.2 ([11, Theorem 6.8]). Assume that there exists η ∈ MN such that for 0 < δ ≪ 1

δ2
cap(η,MN \ η)
∥∥hη,MN\η

∥∥2
2,µN

≥ max
σ∈MN\{σ}

cap(σ,MN \ σ)
∥∥hσ,MN\σ

∥∥2
2,µN

. (4.10)

Then, the largest eigenvalue λη of −LN below λMN is given by

λη =
cap(η,MN \ η)
∥∥hη,MN\η

∥∥2
2,µN

(
1 +O(ρ2 + δ2)

)
=

1

Eη

[
τMN\η

] (1 +O(ρ2 + δ2)
)
. (4.11)

Based on this theorem and (4.2), we are now in the position to characterize iteratively

all eigenvalues of −LN below λMN . In order to do so, consider an increasing sequence of

metastable sets M1 ⊂ M2 ⊂ . . . ⊂ MK ≡ MN such that M1 = η1 and Mi \Mi−1 = ηi for

all 1 < i ≤ K. We assume that this increasing sequence can be constructed in such a way that

for all 1 < i ≤ K, ηi and Mi−1 satisfy the non-degeneracy condition (4.10), i.e.

δ2
cap(ηi,Mi−1)∥∥hηi,Mi−1

∥∥2
2,µN

≥ max
σ∈Mi

cap(σ,Mi \ σ)∥∥hσ,Mi\σ
∥∥2
2,µN

, ∀ i = 2, . . . , K. (4.12)

Then, −LN has exactly K eigenvalues below λMN given by

λ1 = 0, λi =
cap(ηi,Mi−1)∥∥hηi,Mi−1

∥∥2
2,µN

(
1 +O(ρ2 + δ2)

)
, ∀ i = 2, . . . , K. (4.13)

whereas the normalized eigenfunction corresponding to λi reads

φλi (σ) =
hηi,Mi−1

(σ)
∥∥hηi,Mi−1

∥∥2
2,µN

+ O(δ + ρ)
i−1∑

j=1

hηj,Mj−1
(σ)

∥∥hηj,Mj−1

∥∥2
2,µN

. (4.14)

Challenges and outline of the strategy. The starting point for our further investigations

in the small eigenvalues of the generator, −LN , is the set of metastable sets, Mn, that was

introduced in Chapter 3. In the sequel, we discuss the difficulties that arise in this setting. In

particular, we outline a strategy to overcome some of these problems.

Suppose that Mn contains K metastable sets. Let us stress the fact that, typically, the num-

ber of configurations in such metastable sets, that we denote by |Mn|, is exponentially large

in N . By (4.2), the principal eigenvalue, λM
n

, of −LN subject to zero boundary conditions on
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the set of configurations in Mn is a lower bound for λ|Mn|+1. Although we expect that there

are only K eigenvalues below λM
n

that are separated by a gap from the remaining eigenval-

ues in the spectrum, we do not have a priori such a knowledge at hand. This is the first crucial

difference compared to the strong recurrent setting. Since K ≪ |Mn|, it might be that there

are exponentially many small eigenvalues below λM
n

. Hence, even if we determine for each

metastable set M ∈ Mn an eigenvalue that is below λM
n

, we cannot characterize fully the

low-lying spectrum.

Open Problem 4.3. Prove/disprove that there exists 0 < δ < C such that e−δNλM
n

< λK+1.

Let us assume the existence of such a δ. In the sequel, we address the question of character-

izing precisely the small eigenvalues. In order to derive necessary conditions on the low-lying

spectrum of −LN , a possible strategy is to relate the small eigenvalues to a matrix that is to

leading order equal to the so-called capacitance matrix. The former is constructed as follows.

Fix an eigenvalue λ < e−δNλM
n

and denote by φλ the corresponding eigenfunction. Then, for

X,Y ∈ Mn, the entries of the matrix E (λ, φλ) ∈ RK×K are given by

(
E (λ, φλ)

)
X,Y

= −
∑

σ∈X

µN (σ)φλ(σ)
((
LNh

λ
η,MN\η

)
(σ) + λhλη,MN\η(σ)

)
. (4.15)

In contrast to (4.9), in the entries of the matrix E (λ, φλ) appear beside the eigenvalue λ, that

we want to compute, the eigenfunction φλ which we do not know a priori.

Let us point out that this approach was used in the context of reversible diffusions [18, 45].

The reason for its success in that context is based on the following observation. A regularity

analysis of the eigenfunction shows, that within balls, Bε(x), of radius ε around the metastable

point x, φλ is either almost constant and, in particular, does not change its sign or its modulus

is close to zero. Let us stress the fact that a suitable regularity theory for eigenfunctions of

spin systems is still missing. In particular, to establish that φλ does not change its sign within

a metastable set X is rather challenging. For this reason, we propose a different strategy.

As a first step, we investigate the relation between the spectrum of −LN and the spectrum

of the generator −Gn associated to a canonical Markov chain {̺n(t)} on the lower dimen-

sional state space Γn. Our goal is to find for each eigenvalue η ∈ spec(−Gn) an interval that

contains at least one eigenvalue λ ∈ spec(−LN). For this purpose, we construct an artifi-

cial Markov chain {σ(t)} on SN that is exactly lumpable, i.e. ̺n
(
σ(t)

)
is a Markov chain on

Γn that coincides in law with the Markov chain {̺n(t)}. In particular, the spectral proper-

ties of the generator associated to {σ(t)} are used to establish lower bounds on eigenvalues

λ ∈ spec(−LN).

In a second step we improve both the upper and the lower bounds for the low-lying eigen-

values. While the upper bound follows immediately by an analysis of certain Rayleigh-Ritz

values, lower bounds, that coincide with the upper bounds asymptotically, are obtained by

means of the following

Theorem 4.4 (Kato and Temple). Let u be an approximate eigenvector of unit length and

ξ = 〈u,−LNu〉µN . Assume that there exists an interval (a, b) that contains ξ and exactly one

eigenvalue λ of −LN . Then

−‖(LN + ξ)u‖22,µN

ξ − a
≤ ξ − λ ≤ ‖(LN + ξ)u‖22,µN

b− ξ
. (4.16)

Proof. See [104, Theorem 3.8]. �

A key observation, see Lemma 4.14, is that for a suitable approximated eigenfunction, u,

the residual ‖(LN + ξ)u‖ ≤ e2ε(n)c1Nξ. Note that the exponential growing factor can be

compensated by choosing n appropriately because ξ is exponentially small in N . Let us stress
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the fact that, under the assumption that eδNλM
n ≤ λK+1 and a suitable non-degeneracy

condition, the first K intervals are disjoint and contain exactly one eigenvalue of −LN .

4.2. Rough localization of eigenvalues

The main objective in this section is to derive a priori estimates on the eigenvalues of −LN .

Recall that {̺n(t)} is a Markov chain on the coarse-grained space Γn which is reversible with

respect to Qn = µN ◦ (̺n)−1. Its transition probabilities are given by

rn(x,y) =
1

Qn(x)

∑

σ∈Sn[x]

µN (σ)
∑

η∈Sn[y]

pN (σ, η)

Further, we associate to {̺n(t)} the generator, Gn, that acts on functions g : Γn → R as

(
Gn g

)
(x) =

∑

y∈Γn

rn(x,y)
(
g(y)− g(x)

)
. (4.17)

Let 〈·, ·〉Qn stands for the scalar product that is defined by

〈f, g〉Qn :=
∑

x∈Γn

Qn(x)f(x) g(x)

and we write L2(Γn,Qn) for the vector space R|Γn| equipped with the scalar product 〈·, ·〉Qn .

Since reversibility implies that the generator, Gn, is self-adjoint on L2(Γn,Qn), the spectrum

of Gn is real. Let us order the eigenvalues increasingly. An immediate consequence of the

Perron-Frobenius Theorem is that

0 = η1 < η2 ≤ η3 ≤ . . . ≤ λ|Γn| ≤ 2 (4.18)

Since we regard elements of R|Γn| as functions from Γn to R, we call eigenvectors of the matrix

Gn eigenfunctions and vice versa.

Let us now consider the following two matricesC =
(
c(σ,x)

)
, D =

(
d(σ,x)

)
∈ R|SN |×|Γn| to

which we refer to as collection matrix and distribution matrix. The elements of these matrices

are defined by

c(σ,x) := 1σ∈Sn[x], d(σ,x) :=
µN (σ)

Qn(x)
1σ∈Sn[x]. (4.19)

Taking advantage of these matrices, we have that Gn = DTLN C. Moreover, for all functions

f : SN → R and g : Γn → R it holds that

〈
g,DTf

〉
Qn =

∑

x∈Γn

Qn(x) g(x)
∑

σ∈SN

µN (σ)

Qn(x)
1σ∈Sn[x] f(σ)

=
∑

σ∈SN

µN (σ) f(σ)
∑

x∈Γn

1σ∈Sn[x] g(x) =
〈
Cg, f

〉
µN
. (4.20)

With the notations introduced above, we prove the following

Proposition 4.5. Let λi ∈ spec(−LN) and ηi ∈ spec(−Gn) sorted in increasing order. Then,

λ1 = η1 = 0, λi ≤ ηi, ∀ i = 2, . . . , |Γn|. (4.21)

Moreover, for every i = 2, . . . , |Γn| there exists ji ≥ i with ji 6= ji′ for i 6= i′ such that

e−2ε(n)N ηi ≤ λji ≤ e2ε(n)N ηi. (4.22)
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Proof. Let us start with showing the upper bound in (4.21). By exploiting the Theorem of

Courant and Fischer we immediately obtain that

ηi = min
V ⊂R

|Γn|

dimV = i

max
g ∈V
g 6=0

〈
g,−Gn g

〉
Qn〈

g, g
〉
Qn

= min
V ⊂R

|Γn|

dimV = i

max
f ∈CV
f 6=0

〈
f,−LN f

〉
µN〈

f, f
〉
µN

≥ min
W ⊂R

|SN |

dimW = i

max
f ∈W
f 6=0

〈
f,−LN f

〉
µN〈

f, f
〉
µN

= λi, (4.23)

where we used in the second step that
〈
g,Gn g

〉
Qn =

〈
C g, LN C g

〉
µN

.

Next, we focus on proving the bounds described in (4.22). Let us stress the fact that in later

applications we are particularly interested in the lower bound. To start with, let us sketch the

strategy behind our proof. The first idea is to consider an additional irreducible Markov chain

{σ̄(t)} on the state space SN whose transition probabilities p̄N are reversible with respect to

a unique invariant measure µ̄N . We denote its generator by L
n
. For a given coarsening level

n, this Markov chain is constructed in such a way that the induced process {̺n
(
σ̄(t)

)
} is a

Markov chain. As a consequence, we obtain that the eigenvalues of −Gn are contained in the

spectrum of the generator −Ln
. In a second step, we compare the eigenvalues of −LN and

−LN , by exploiting the positivity of the terms in the Dirichlet form.

In order to define the Markov chain {σ̄(t)}, we choose the transition probabilities p̄N(σ, η)

and the probability measure µ̄N (σ) for σ, η ∈ SN in the following way. For x,y ∈ Γn and

σ ∈ Sn[x], η ∈ Sn[y] set

p̄N (σ, η) =
rn(x,y)

|Ax,y(σ)|
1pN (σ,η) 6=0 and µ̄N (σ) =

Qn(x)∣∣Sn[x]
∣∣ , (4.24)

where Ax,y(σ) for σ ∈ Sn[x] is a short hand notation for the set {η ∈ Sn[y] | dH(σ, η) = 1}.

As a consequence of the single site dynamics, the cardinality of Ax,y(σ) is constant on Sn[x].

In particular, it holds, for all x,y ∈ Γn, that

∣∣Sn[x]
∣∣ ∣∣Ax,y(σ)

∣∣ =
∣∣Sn[y]

∣∣ ∣∣Ay,x(η)
∣∣ ∀σ ∈ Sn[x], η ∈ Sn[y]. (4.25)

As an immediate consequence, the detailed balance condition is satisfied. Further notice that,

∑

η∈Sn[y]

p̄N (σ, η) =
∑

η∈Sn[y]

p̄N (σ′, η) = rn(x,y), ∀σ, σ′ ∈ Sn[x]. (4.26)

Since (4.26) holds true, employing the classical theorem of Burke and Rosenblatt [21], we can

conclude that {̺n
(
σ̄(t)

)
} is a Markov chain.

Moreover, (4.26) implies that the subspace C, spanned by the columns of the matrix C, is

invariant under the linear map LN , i.e. LN C ⊂ C. Thus, spec(−Gn) ⊂ spec(−LN ). In order to

see this, notice that LN is C-invariant if and only if there exists a matrix M ∈ R|Γn|×|Γn| such

that LNC = CM . But, from this equation follows easily that Cg is an eigenfunction of LN if

g is an eigenfunction of M . Since, Gn = DTLNC = DTC = M by construction, Gn = M .

Notice that this relation between the eigenvalues was proven in [82, Lemma 12.8] by similar

arguments. Although to each η ∈ spec(−Gn) there exists an unique λ ∈ spec(−LN ), we do

not know to which eigenvalue of −LN the eigenvalue ηi ∈ spec(−Gn) belongs to. In view of

the Courant-Fischer Theorem, we have that for all i = 2, . . . , |Γn| there exists ji ≥ i such that

η1 = λ̄1 = 0, and ηi = λ̄ji , ∀ i = 2, . . . , |Γn|. (4.27)

We are left with the task to establish a relation between the eigenvalues of −LN and −LN .

Suppose that n is chosen large enough to ensure that ε(n) ≤ 3/5. Then, the assumption (2.4)
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implies that for σ ∈ Sn[x] and η ∈ Sn[y] such that pN (σ, η) > 0

e−ε(n) pN (σ, η)

p̄N (σ, η)
≤ eε(n) and e−ε(n)(N−1) ≤ µN (σ)

µ̄N (σ)
≤ eε(n)(N−1). (4.28)

Recall that the Dirichlet form, E(f), that is defined by E(f) = 〈f,−LN f〉µN , can be written as

a positive quadratic form. Hence,

〈
f,−LN f

〉
µN

≥ e−ε(n)N 1

2

∑

σ,η∈SN

µ̄N (σ) p̄N (σ, η)
(
f(σ)− f(η)

)2

= e−ε(n)N
〈
f,−LN f

〉
µN
, (4.29)

whereas 〈f, f〉µN ≤ eε(n)N 〈f, f〉µ̄N . A further application of the Courant-Fischer Theorem,

yields

λji ≥ e−2ε(n)N min
Wji

⊂R
|SN |

dimWji
= ji

max
f ∈Wi

f 6=0

〈
f,−LN f

〉
µ̄N〈

f, f
〉
µ̄N

= e−2ε(n)N λ̄ji . (4.30)

Hence, by combining (4.27) and (4.30), the lower bound in (4.22) is immediate. Moreover,

by interchanging the role of LN and LN in (4.29) we can conclude the proof. �

Remark 4.6. Notice that the bounds λi ≤ ηi ≤ λ|SN |−|Γn|+i for all i = 2, . . . , |Γn| have already

been established in [60].

Corollary 4.7. Suppose that there exists K ∈ {2, . . . , |Γn|} such that λK+1 > e2ε(n)NηK . Then,

e−2ε(n)N ηi ≤ λi ≤ ηi, ∀ i = 2, . . . , K. (4.31)

Proof. In view (4.22), every interval [e−2ε(n)Nηi, e
2ε(n)Nηi], for i = 2, . . . , |Γn|, contains at least

one eigenvalue of −LN . By inspecting the proof of Proposition 4.5, we see that the assumption

λK+1 > e2ε(n)NηK together with (4.27) implies that λ̄K = ηK . Since ji ≥ i, it follows that

λ̄i = ηi for all i = 1, . . . , K and (4.30) yields the assertion. �

Let us point out that it is a rather challenging task to prove that the number of eigenvalues

below the principal Dirichlet eigenvalue λM
n

coincide with the number of metastable sets,

say K. To our best knowledge, an answer to this problem is so far missing. Notice that

for the precise characterization of the small eigenvalues, that we present in the next section,

it suffices to know a priori that there exists δ > 0 such that e−δNλM
n ≤ λK+1. Although

differently formulated, we will assume in the sequel the existence of such a separation.

Lemma 4.8. Suppose that the set of metastable sets, Mn, contains K ≡ K(N) elements, where

K(N) grows at most sub-exponentially. Assume there exists 0 < c < C such that

min
X∈Sn

N\Mn
PµX

[
τMn < τX

]
≥ e−cN , (4.32)

where Sn
N = {Sn[x] ⊂ SN | x ∈ Γn}. Suppose that there exists 0 < δ < C− c such that

λ̄K+1 ≥ e−δN λ̄M
n

, (4.33)

where λ̄M
n

denotes the principal Dirichlet eigenvalue of the generator −LN subject to zero bound-

ary conditions on Mn. If n≪ N is chosen large enough to ensure that 2ε(n) < C− c, then

1

2KNn·q e
(C−c−δ−2 ε(n))N λK ≤ λK+1. (4.34)
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Proof. Recall that metastable sets are defined as preimages under ̺n of points m ∈ M ⊂ Γn.

As a first step we claim that λ̄M
n

= ηM , where ηM is the principal Dirichlet eigenvalue of

−Gn. Let us denote by LMn andGn
M the operators subject to zero boundary conditions on Mn

and M , respectively. We prove the claim above by contradiction. Assume that λ̄M
n

< ηM .

In view of the discussion above, we know that spec(−Gn
M ) ⊂ spec(−LMn). Hence, there

exists λ̄M
n

i ∈ spec(−LMn) with i > 1 such that λ̄M
n

i = ηM . By the Theorem of Perron-

Frobenius we know that the eigenfunctions φ1 to λ̄M
n

and g1 to ηM are strictly positive.

Since 〈φ1, φi〉µ̄N = 0, the eigenfunction to λ̄M
n

i has to be somewhere negative. Since φi is

constant for all σ ∈ Sn[x], see [82, Lemma 12.8] the eigenfunction g1 is somewhere negative.

Contradiction. Using a similar argument if ηM is assumed to be smaller than λ̄M
n

proves the

claim.

In view of (4.30) we have that

λK+1 ≥ e−2ε(n)N λ̄K+1 ≥ e−(δ+2ε(n))N ηM . (4.35)

Thus, the assertion follows once we have shown an upper bound on λK that is strictly smaller

than a lower bound for e−(δ+2ε(n))NηM . Combining (4.2) with (4.6) implies that

ηM ≥ min
x∈Γn\M

CAPn(x,M)∥∥hx,M
∥∥
1,Qn

≥ 1

Nn·q

(
min

x∈Γn\M

CAPn(x,M)

Qn(x)

)2

, (4.36)

where we used in the second step [11, Lemma 4.8]. Furthermore, from the Dirichlet principle

follows immediately that CAPn(x,M) ≥ cap(X,Mn) where X = Sn[x]. Hence,

ηM ≥ 1

Nn·q

(
min

X∈Sn
N\Mn

cap(X,Mn)

µN [X ]

)2

≥ e−cN

Nn·q min
X∈Sn

N\Mn
PµX

[
τMn < τX

]
. (4.37)

Let us now derive an upper bound for λK that is strictly smaller than the right-hand side

of (4.37). From (4.22) we already know that λK < ηK . Further, by (4.11), it holds that

ηK ≤ maxx∈M CAPn(x,M \ x)/Qn(x). However, instead of trying to bound from above the

mesoscopic capacity CAPn(x,M \ x) by the microscopic capacity cap(X,Mn \X), we present

in the sequel an alternative proof of an upper bound for λK .

Let us consider the K-dimensional subspace C of R|Sn| that is spanned by normalized equi-

librium potentials

C = span
{
hX,Mn\X

/∥∥hX,Mn\X
∥∥2
2,µN

∣∣∣ X ∈ Mn
}
.

By exploiting the Theorem of Courant and Fischer, we get

λK = min
W ⊂R

|Sn|

dimW =K

max
f ∈W
f 6=0

〈
f, −LN f

〉
µN〈

f, f
〉
µN

≤ max
f ∈C
f 6=0

〈
f, −LN f

〉
µN〈

f, f
〉
µN

= max
z ∈R

K

z 6=0

〈z,Kz〉
〈z,Bz〉 , (4.38)

where K =
(
KX,Y

)
∈ RK×K is the so-called capacitance matrix that reads

KX,Y =

〈
hX,Mn\X , −LN hY,Mn\Y

〉
µN∥∥hX,Mn\X

∥∥
2,µN

∥∥hY,Mn\Y
∥∥
2,µN

∀X,Y ∈ Mn (4.39)

while the matrix B =
(
BX,Y

)
∈ RK×K is given by

BX,Y =

〈
hX,Mn\X , hY,Mn\Y

〉
µN∥∥hX,Mn\X

∥∥
2,µN

∥∥hY,Mn\Y
∥∥
2,µN

∀X,Y ∈ Mn. (4.40)

Since both the matrix K and B are positive definite, we get that for all z ∈ RK \ {0}

〈z,Kz〉
‖z‖2 ≤ λmax(K ) ≤

K∑

i=1

λi(K ) = tr(E ) ≤ K max
X∈Mn

PµX

[
τMn\X < τX

]
, (4.41)
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where we used in the last step that ‖hX,Mn\X‖22,µN
≥ µN [X ]. Furthermore, if we denote by

λmin(B) the smallest eigenvalue of B then 〈z,Bz〉 ≥ λ1(B) ‖z‖2. By applying Gershgorin’s

Theorem, we obtain

λ1(B) ≥ min
X∈Mn

(
BX,X −

∑

Y ∈Mn\X

∣∣BX,Y

∣∣
)

≥ min
X∈Mn

(
1 −

∑

Y ∈Mn\X

〈
hX,Mn\X , hY,Mn\Y

〉
µN√

µN [X ]µN [Y ]

)
. (4.42)

Suppose that µN [X ] ≤ µN [Y ]. Otherwise, we exchange in the following argument X and

Y . In view of Lemma 3.8, we have that 〈hX,Mn\X , hY,Mn\Y 〉µN is exponentially small in N

compared to µN [X ]. Since the number of metastable sets grows at most sub-exponentially, it

holds that λ1(B) ≥ 1 − ON (1). Combining the estimates above and taking into account the

properties of metastable sets, we get

λK ≤ 2K e−CN min
X∈Sn

N\Mn
PµX

[
τMn < τX

]
(4.43)

Hence, by combining (4.35), (4.37) and (4.43), we conclude the proof. �

Remark 4.9. Suppose that we pick from each metastable set Mi a configuration ηi ∈ Mi.

Then, by (4.2), we know that λ̄M ≤ λ̄K+1 where M = {η1, . . . , ηK}. Hence, the problem

concerning the number of eigenvalues of −LN below λM
n

reduces to compare two principal

Dirichlet eigenvalues, namely λ̄M and λ̄M
n

. This has the following advantages:

1) Obviously, by Perron-Frobenius, the eigenfunction, φM , corresponding to λ̄M is strictly

positive.

2) There is a coupling of two versions of the Markov chain {σ̄(t)} starting in two differ-

ent configurations σ, η ∈ Sn[x] such that, for all later times t, ̺n
(
σ̄(t)

)
= ̺n

(
η̄(t)

)
.

Moreover, the Hamming distance between σ̄(t) and η̄(t) is non-increasing. Hence,

the distribution of the coupling time decays exponentially. This observation may be

helpful to control the oscillations of the eigenfunction, φM .

3) It suffices to show that there exist 0 < δ < C− 2ε(n) such that e−δN λ̄M
n ≤ λ̄M .

These observations may be helpful to prove (4.2) using only properties of metastable sets.

4.3. Characterization of small eigenvalues

In the present section we prove the main result of this chapter. Namely, starting from the

rough localization of the spectrum of −LN , we improve substantially both the upper and

lower bounds for the low-lying part of the spectrum. Moreover, we establish a relation be-

tween the low-lying eigenvalues of −LN and the metastable exit times associated to certain

metastable sets. In the sequel, we construct to each low-lying eigenvalue a pair of approximate

eigenvalue/eigenfunction. Since the eigenvalues in the low-lying part of the spectrum are ex-

ponentially small in N , the strategy of our proof to derive relative error bound that allows to

determine a posteriori the accuracy of an approximated eigenvalue.

Let us consider a set of metastable sets, Mn, as defined in Definition 3.1. Suppose that

Mn consists of K elements, i.e. Mn = {M1, . . . ,MK} with Mi ∩Mj = ∅ for i 6= j, where

K = K(N) may grow at most sub-exponential in N . In view of the discuss in the previous

section, we assume in all what follows that there exists δ > 0 such that e−δN λM
n ≤ λK+1.

Further, we take the following minimal non-degeneracy condition into account.

Assumption 4.10. Let us assume that there exists 0 < δ < C and an unique increasing sequence

of sets of sets Mn
1 ⊂ Mn

2 ⊂ . . . ⊂ Mn
K ≡ Mn such that for all i = 2, . . . , K, it holds that
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FIGURE 1. Illustration of a landscapes a) and the associated tree structure b).

Since the landscape satisfies the minimal non-degeneracy condition, we can

associate to each local minimum xi a unique saddle point zi. Moreover, the

height differences between a local minimum and its saddle point are all dis-

tinct.

(i) Mn
i−1 = Mn

i \Xi, where the set Xi ∈ Mn
i satisfies

max
M∈Mn

i−1

PµM

[
τMn

i \M < τM
]
< e−δN PµXi

[
τMn

i−1
< τXi

]
; (4.44)

(ii) either

µN [M ] < e−δN µN [Xi] (4.45)

or

PµXi

[
τMn

i−1
< τXi

]
< e−δN PµM

[
τMn

i−1
< τM

]
(4.46)

for all M ∈ Mn \Mn
i .

Remark 4.11. The asymptotic ultrametricity of metastable sets induces a tree structure, from

which the properties of the long-time behavior of the process can be read off. Notice that, by

taking into account the minimal non-degeneracy condition, we obtain a binary tree having the

property that the length of the shorter sub-trees below a branching point are all distinct. The

construction of this tree goes at follows: At the root split the tree into two sub-trees such that

the metastable set X1 is a leaf in the first and X2 is a leaf in the second sub-tree. Within each

of these two sub-trees we repeat this procedure, see Figure 4.3.

The assumption on λK+1 together with the minimal non-degeneracy condition allows to

characterize precisely the K smallest eigenvalues of −LN .

Theorem 4.12. Let us consider an increasing sequence Mn
1 ⊂ Mn

2 ⊂ . . . ⊂ Mn
K ≡ Mn that

satisfies the minimal non-degeneracy condition specified in Assumption 4.10 and assume that

there exists 0 < c < C such that

min
X ∈Sn

N\Mn
PµX

[
τMn < τX

]
≥ e−cN . (4.47)

Suppose that there exists 0 < δ < C − c such that e−δN λM
n

< λK+1. If n ≪ N is large

enough to ensure that 2ε(n)(c1 + 1) < min{C− c − δ, δ}, where c1 is chosen in such a way that

e−c2N < PµX2

[
τX1 < τX2

]
. Then, there exists c14 > 0 such that

λ1 = 0, λi =
cap(Xi,Mn

i−1)∥∥hXi,Mn
i−1

∥∥2
2,µN

(
1− e−c14N

)
, ∀ i = 2, . . . , K. (4.48)
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In particular, for all i = 2, . . . , K,

λi =
1

Eσ

[
τMn

i−1

]
(
1− e−c14N

)
, ∀σ ∈ Xi. (4.49)

Let us start with improving the upper bound given in Proposition 4.5.

Lemma 4.13. Under the assumptions of Theorem 4.12, it holds that

λ1 = 0, λi ≤ cap(Xi,Mn
i−1)∥∥hXi,Mn

i−1

∥∥2
2,µN

(
1 + e−c14N

)
, ∀ i = 2, . . . , K. (4.50)

Proof. Note that the strategy of this proof is similar to the one given in Proposition 4.8. First,

consider the vector u1, . . . , uK with ui ∈ R|SN | that are given by

u1 = 1, ui =
hXi,Mn

i−1∥∥hXi,Mn
i−1

∥∥2
2,µN

for i = 2, . . . , K. (4.51)

Further, we denote by Ci the i-dimensional subspace Ci = span{u1, . . . , ui}. Hence, for every

i = 1, . . . , K, we get

λi ≤ min
W ⊂R

|Sn|

dimW = i

max
f ∈W
f 6=0

〈
f, −LN f

〉
µN〈

f, f
〉
µN

≤ max
f ∈Ci

f 6=0

〈
f, −LN f

〉
µN〈

f, f
〉
µN

= max
z∈R

i

z 6=0

〈z,Kiz〉
〈z,Biz〉

, (4.52)

where Ki = (〈uk,−LN ul〉µN )ik,l=1 ∈ Ri×i and Bi = (〈uk, ul〉µN )ik,l=1 ∈ Ri×i. But, as a

consequence of (4.44), we have that, for any z ∈ Ri \ {0},

〈z,Kiz〉
‖z‖2 ≤ λmax(Ki) ≤ tr(Ki) ≤ cap(Xi,Mn

i−1)∥∥hXi,Mn
i−1

∥∥2
2,µN

(
1 +K e−δN

)
. (4.53)

On the other hand, 〈z,Biz〉 ≥ λmin(Bi) ‖z‖2. In order to obtain a lower bound for λmin(Bi),

we exploit again that Gershgorin’s Theorem yields

λmin(Bi) ≥ min
j=2,...,i

(
1 − ‖uj‖1,µN

‖uj
∥∥
2,µN

−
i∑

k=2
k 6=j

〈uj , uk〉
‖uj‖2,µN ‖uk‖2,µN

)

≥ min
j=2,...,i

(
1 −

∥∥hXj ,Mn
j−1

∥∥
1,µN√

µN [Xj]
−

i∑

k=2
k 6=j

〈
hXj ,Mn

j−1
, hXk,Mn

k−1

〉
µN√

µN [Xj ]µN [Xk]

)
. (4.54)

Thanks to Lemma 3.8 together with the minimal non-degeneracy condition, we get that, for

all j = 2, . . . , K, µN [Xj ] < e−δNµN [X1] and
∥∥hXj ,Mn

j−1
(σ)
∥∥
1,µN

≤
∑

M∈Mn

∑

σ∈Vn(M)

µN (σ)hXj ,Mn
j−1

(σ)

≤ Nn·q µN [Xj ]
(
1 + e−(C−ε(n)c1)N + e−(min{δ,C−δ}−ε(n)c1)N

)
. (4.55)

Since ‖hXj ,Mn
j−1

‖22,µN
≤ ‖hXj ,Mn

j−1
‖1,µN , the estimates above combined with the Cauchy-

Schwarz inequality implies that λmin(Bi) ≥ 1 − Nn·q e−δN/2 and the assertion follows imme-

diately. �

After having established an upper bound on the small eigenvalues of −LN that involves

only the capacity between metastable sets and the corresponding equilibrium potential, our

next task is to prove lower bounds that coincide in the limit N → ∞. In order to apply the

Theorem of Kato and Temple, we start with deriving an upper bound on the residual.
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Lemma 4.14. Let A = Xi and B = Mn
i−1 for i = 2, . . . , K. Further, set

ξ =

〈
hA,B, −LN hA,B

〉
µN∥∥hA,B

∥∥2
2,µN

. (4.56)

and suppose that c1 > 1 + α−1 is chosen in such a way that e−c2N < PµA

[
τB < τA

]
. Then,

∥∥(LN + ξ
)
hA,B

∥∥
2,µN∥∥hA,B

∥∥
2,µN

≤ ξ eε(n)c1N . (4.57)

Proof. Recall the properties of the equilibrium potential, hA,B, and the equilibrium measure,

eA,B, i.e. hA,B is harmonic in σ ∈ (A ∪ B)c and eA,B(σ) = −
(
LNhA,B

)
(σ) = −eB,A(σ) for

σ ∈ A ∪B. In particular, we have that

(
LN + ξ

)
hA,B(σ) =





ξ hA,B(σ), σ 6∈ A ∪B,
−eA,B(σ) + ξ, σ ∈ A,

eB,A(σ), σ ∈ B.

(4.58)

Hence,
∥∥(LN + ξ

)
hA,B

∥∥2
2,µN

=
∑

σ∈A

µN (σ)
(
eA,B(σ) − ξ

)2
+ ξ2

∑

σ 6∈A∪B

µN (σ)h2A,B +
∑

σ∈B

µN (σ) eB,A(σ)
2

= ξ2‖hA,B‖22,µN
− 2ξ cap(A,B) +

∑

σ∈A

µN (σ) eA,B(σ)
2 +

∑

σ∈B

µN (σ) eB,A(σ)
2

= ξ ‖hA,B‖22,µN

(
PνA,B

[
τB < τA

]
+ PνB,A

[
τA < τB

]
− ξ

)
. (4.59)

In view of (2.27), we have that for all σ, η ∈ A

Pσ
[
τB < τA

]
≤ eε(n)c1N Pη

[
τB < τA

]
+ e−c2N . (4.60)

By multiplying both sides with µN (η) and summing over all η ∈ A, we obtain that

Pσ
[
τB < τA

]
≤ eε(n)c1N

cap(A,B)

µN [A]

(
1 +

e−c2N

PµA

[
τB < τA

]
)

≤ 2eε(n)c1N
cap(A,B)

µN [A]
, (4.61)

where we used the assumption e−c2N < PµA

[
τB < τA

]
in the last step. A similar computation

reveals that

Pσ
[
τA < τB

]
≤ eε(n)c1N

cap(A,B)

µN [A]

(
µN [A]

µN [B]
+

e−c2N

PµA

[
τB < τA

]
)

≤ 2eε(n)c1N
cap(A,B)

µN [A]
.

(4.62)

In the last step we took into account that the assumption Mn(A) 6= ∅ implies that there exists

M ∈ Mn \ A such that µN [A] < µN [M ]. Note that (4.61) and (4.62) hold uniformly for all

σ ∈ B. Plugging (4.61) and (4.62) into (4.59) and using that ξ = cap(A,B)/‖hA,B‖22,µN
, we

get
∥∥(LN + ξ

)
hA,B

∥∥2
2,µN∥∥hA,B

∥∥2
2,µN

≤ ξ2
(
4 eε(n)c1N

‖hA,B‖22,µN

µN [A]
− 1

)
≤ ξ2 e2ε(n)c1N , (4.63)

where we used in the last step that, in view of Lemma 3.8, ‖hA,B‖22,µN
≤ KNn·q µN [A], while

the number of metastable sets in Mn grows at most sub-exponential in N . This concludes the

proof. �
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Lemma 4.15. Under the assumptions of Theorem 4.12 it holds that

λi ≥ cap(Xi,Mn
i−1)∥∥hXi,Mn

i−1

∥∥2
2,µN

(
1− e−c14N

)
, ∀ i = 2, . . . , K. (4.64)

Proof. In order to shorten notation, we set

ξi =

〈
hXi,Mn

i−1
, −LN hXi,Mn

i−1

〉
µN∥∥hXi,Mn

i−1

∥∥2
2,µN

=
cap(Xi,Mn

i−1)∥∥hXi,Mn
i−1

∥∥2
2,µN

.

Due to the fact that the assertion (4.64) is trivial if λi ≥ ξi, let us assume that λi < ξi for all

i = 2, . . . , K.

We start with proving a lower bound for λK . In order to take advantage of the upper

bound in the Theorem of Kato and Temple, we have to find an interval (aK , bK) such that

(aK , bK) ∩ spec(−LN ) = ∅, see [104, Lemma 3.2]. Since λK < ξK we set aK = ξK . Recall

that λK+1 ≥ e−(δ+2ε(n))NηM , where ηM is the principal eigenvalue of −Gn subject to zero

boundary conditions on M = ̺n(Mn). In view of (4.37) we have that

ηM ≥ e−cN

Nn·q min
X∈Sn

N\Mn
PµX

[
τMn < τX

]
≥ e(C−c)N

Nn·q ξK .

Now, if we set bK = e−(c+δ+2ε(n))N/Nn·q minX∈Sn
N\Mn PµX

[
τMn < τX

]
, the interval (aK , bK)

contains no eigenvalue of −LN . Hence, the Theorem of Kato and Temple combined with

Lemma 4.14 implies that

ξK − λK
ξK

≤ e2ε(n)c1N
ξK

bK − ξK
≤ 2Nn·q e−(C−c−δ−2ε(n)(1+c1))N , (4.65)

and, for N large enough, (4.65) is equivalent to

λK ≥ cap(XK ,Mn
K−1)∥∥hXK ,Mn

K−1

∥∥2
2,µN

(
1 − e−c14N

)
. (4.66)

We prove the lower bound for the remaining eigenvalues λK−1, . . . , λ2 inductively. Suppose

that we have already shown that λi+1 ≥ ξi+1

(
1− e−c14N

)
. Under the assumption that λi < ξi,

we set ai = ξi and bi =
1
2 ξi+1. As an immediate consequence of the minimal non-degeneracy

condition, we have that

PµXi+1

[
τMn

i
< τXi+1

]
≥ PµXi+1

[
τMn

i−1
< τXi+1

]
≥ eδN PµXi

[
τMn

i−1
< τXi

]
. (4.67)

Hence, λi+1 ≥ 1
2ξi+1 ≥ 1

2 e
δN/Nn·q ξi which shows that (ai, bi)∩spec(−LN) = ∅ for sufficiently

large N . A further application of the Theorem of Kato and Temple combined with (4.57)

reveals

ξi − λi
ξi

≤ e2ε(n)c1N
ξi

bi − ξi
≤ 4Nn·q e−(δ−2ε(n)c1)N . (4.68)

This concludes the proof. �

Proof of Theorem 4.12. From (4.50) and (4.64), (4.48) is immediate. Further, in view of

Lemma 3.8, we obtain for any i = 2, . . . , K
∥∥hXi,Mn

i−1

∥∥2
2,µN

=
∑

σ∈SN

µN (σ)hXi,Mn
i−1

(σ) −
∑

σ∈SN

µN (σ)hXi,Mn
i−1

(σ)hMn
i−1,Xi(σ)

≥
∑

σ∈SN

µN (σ)hXi,Mn
i−1

(σ)
(
1−KNn·q e−c14N

)
. (4.69)
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Since
∥∥hXi,Mn

i−1

∥∥
1,µN

≥
∥∥hXi,Mn

i−1

∥∥2
2,µN

, the estimate above yields that

λi =
1

EνXi,M
n
i−1

[
τMn

i−1

]
(
1−KNn·q e−c14N

)
(4.70)

The pointwise estimates in (4.49) follows from Theorem 2.12. �





CHAPTER 5

Random field Curie–Weiss–Potts model

The present chapter is devoted to the application of the theory developed in the previous

chapters. One particular class of models, we are interested in, are disordered mean field spin

systems. In general, despite of their lack of physical significance, mean field models serve as

a good starting point for understanding the phenomena that occur in disordered systems. As

an example, we consider the q-spin Potts model on a complete graph, also known as Curie–

Weiss–Potts model, in random fields. From a static point of view, it is one of the simplest and

less disordered model.

This chapter has two main objectives. First, we are interested in the metastable behavior of

the Curie–Weiss–Potts model in the case when the temperature is finite and the distribution of

the random field is continuous. We have already mentioned that the entropy plays a particular

role in this kind of models, but an exact reduction to a low-dimensional model via lumping

techniques is not possible. However, on a heuristic level it is believed that the dynamical

behavior on metastable time scales is well described by a diffusion in a mesoscopic potential

landscape. For this reason, we construct a family of mesoscopic variables in such a way that

the dynamics induced by them is well approximated by a family of Markov processes which

reproduce asymptotically the metastable behavior of the original dynamics. Our aim is to

compute precisely the mean exit times from a metastable set and to prove the convergence of

normalized metastable exit times to an exponential distribution.

In the Sections 1.6 and 1.7 we have seen that variational principles offer a convenient way

to derive upper and lower bounds for capacities and, hence, for mean hitting times. Beyond a

particular interest in the Curie–Weiss–Potts model, our second objective is to demonstrate how

a suitable test function and a non-negative unit flow can be constructed such that the resulting

bounds for the capacities coincide asymptotically.

The remainder of this chapter is organized as follows. In Section 5.1, we start with intro-

ducing the model and describing the mesoscopic approximation that allows us to deal with

the entropy. Afterwards, we present our results. In order to derive sharp estimates for mean

hitting times of metastable sets, a first important ingredient is a precise understanding of the

measure that is given by the push forward of the random Gibbs measure under the mesoscopic

variables. In Section 5.2, we show that the mesoscopic variables satisfy a sharp large deviation

principle. In particular, we study the behavior of the corresponding rate function in a neigh-

borhood of critical points. The core of the present chapter are the Sections 5.3 and 5.4, where

we construct upper and lower bounds for capacities. In Section 5.3 we start with constructing

a test function that is almost harmonic in a small neighborhood of relevant saddle points of

the mesoscopic free energy landscape. In view of the Dirichlet principle, this test function is

used to derive upper bounds on capacities. As we will see in Section 5.4, this test function

is also used to construct in a first step a mesoscopic unit flow. In a second step we construct

for each mesoscopic path a subordinate microscopic unit flow and show certain concentration

properties along microscopic paths. By exploiting the Berman-Konsowa principle, we obtain

in this way lower bounds on capacities. In the finial Section 5.5, the precise computation of

mean hitting times is presented.

71
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Contributions in this chapter. In the paper [6], Bianchi, Bovier and Ioffe studied the

dynamical behavior of the random field Curie–Weiss model. In this model the spin variables

can assume only two different values, namely −1 and +1. By adopting their strategy in the

construction of upper and lower bounds for capacities, we extend their results to the Curie–

Weiss–Potts model. Compared to [6], the strategy for controlling the harmonic function by

means of an averaged renewal equation combined pointwise estimates on harmonic function,

that we presented in Chapter 3, is the main contribution of the author. Beyond that, the

chapter contains the following novel bits and pieces:

• a generalization of sharp large deviation estimates to the case when the Hessian of

the free energy Fn is degenerate, see Proposition 5.7;

• a characterization of the eigenvalues of HessFn at critical points of Fn, see Lemma

5.11;

• a construction of a function that is almost harmonic in a small neighborhood of a

saddle point of Fn, see Lemma 5.20;

• a detailed study of the error propagation along a mesoscopic path, see Proposition

5.31.

5.1. Introduction

5.1.1. The model. Let h = {hi}i∈N be a sequence of independent and identical distributed

random variables defined on some probability space, say (Ω,B,P), which takes values in

span{1}⊥⊂ Rq, where 1 denotes the vector in Rq whose components are all 1. For the sake of

convenience, we will assume that the distribution, Ph = P ◦(hi)−1 has bounded support. Most

of the quantities that we are going to define depend on the realization of h.

The Curie–Weiss–Potts model is a generalization of the Ising model to q components on a

complete graph, say, on N vertices whereN will be a large parameter. Since the ferromagnetic

interaction among the spin variables is assumed to be of the same strength, the actual structure

of the graph becomes irrelevant and it suffices to consider just a labeling {1, . . . , N} of the

lattice sites. To each site i ∈ {1, . . . , N} we associate a spin variable σi taking values in

S0 := {1, . . . , q}, called the set of different colors. In doing so, the state space is given by

SN = SN
0 . Elements of SN are denoted by Greek letters σ, η and will be called configurations.

Given a realization of h, the random Hamiltonian is defined by

HN (σ) := − 1

N

N∑

i,j=1

δ(σi, σj)−
N∑

i=1

∑

r∈S0

hir δ(σi, r), σ ∈ SN , (5.1)

where δ(σi, σj), the Kronecker symbol, is equal to 1 when σi = σj and zero otherwise.

On the measurable space
(
SN ,B(SN )

)
, where SN is equipped with the product topology,

we define the finite volume Gibbs measure of this model as the random probability measure

µN (σ) :=
exp

(
−βHN (σ)

)

ZN
q−N , (5.2)

where β ≥ 0 is the inverse temperature and ZN is the normalization constant called the parti-

tion function which is defined by

ZN :=
∑

σ∈SN

exp
(
−βHN (σ)

)
q−N ≡ Eσ[N ]

[
exp(−βHN )

]
. (5.3)

Remark 5.1. In the low temperature limit, β → ∞, the Gibbs measure favors those config-

urations where the Hamiltonian is minimal. In view of (5.1), the first term, describing the

interaction among the spins, is minimal if all spins have the same color. The second term in

(5.1) represents the interaction of the spin variables and the external random magnetic field.

It is minimal if in a configuration σ each spin σi takes exactly the color corresponding to the
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maximal component of the field hi. There is a competition between the contribution coming

from the interaction among the spins and the external field, respectively.

We will study the dynamics of a discrete-time Markov chain {σ(t)}t∈N0 on the state space

SN with transition probabilities denoted by pN . Its discrete generator, LN , acts on functions

f : SN → R as

(
LNf

)
(σ) =

∑

η∈SN

pN (σ, η)
(
f(η)− f(σ)

)
. (5.4)

We assume that the process is irreducible and reversible with respect to Gibbs measure µN .

The chain, we consider, evolves by selecting at each step a vertex i ∈ {1, . . . , N} uniformly

at random, proposing a color r ∈ S0 uniformly at random among all colors and accepting

this proposal according to the probability given by the Metropolis rule. More explicitly, the

transition probabilities pN are given by

pN (σ, η) :=
1

Nq
exp
(
−β
[
HN (η) −HN (σ)

]
+

)1dH(σ,η)= 1, (5.5)

where [x]+ := max{x, 0} and dH(σ, η) = 1 denotes the Hamming distance between σ and η,

pN (σ, σ) := 1−
∑

η∈SN

pN (σ, η). (5.6)

Remark 5.2. Note that we consider a lazy version of the Metropolis dynamics since we allow

that a chosen site i can draw randomly the color σi as well. The reason behind this choice is

that there exist α > 0 such that N pN (σ, σi,r) ≥ α for all i ∈ {1, . . . , N} and r ∈ S0. Here, the

configuration σi,r is obtained from σ by replacing the color σi at site i by the color r.

5.1.2. Coarse graining and mesoscopic approximation. Since we are interested in study-

ing the model at finite temperatures, the entropy is crucial in the static and dynamic descrip-

tion. For this reason, we will investigate the model on a coarse grained scale. To start with,

we write

Mp :=
{
ν = (ν1, . . . , νq) ∈ [0, 1]q

∣∣∣
∑

k∈S0
νk = p

}
⊂ Rq

to denote the simplex in Rq, which may be identified with the set of finite measures on S0.

The relative frequencies of colors appearing in a given configuration σ are recorded by means

of the empirical spin distribution, ̺N : SN → ΓN ⊂ M1,

σ 7→ ̺N (σ) :=
1

N

N∑

i=1

δσi (5.7)

where δx is the point-mass at x ∈ R. Using that δ(σi, σj) =
∑

r∈S0
δ(σi, r) δ(r, σj) we can

rewrite the Hamiltonian (5.1) in terms of the macroscopic variable, ̺N (σ), as

HN (σ) = −N
∥∥ ̺N (σ)

∥∥2 −
N∑

i=1

〈hi, eσi〉, (5.8)

where eσi ∈ Rq denotes the coordinate vector pointing in direction σi and 〈·, ·〉 is the usual

Euclidean product in Rq. The macroscopic variables, ̺N , will act as an order parameter of

this model. We define its distribution under the random Gibbs measure, µN , by the induced

measure, QN := µN ◦ ̺−1
N .

Remark 5.3. Note that there are further ways using different representations of the Potts spins

to rewrite the Hamiltonian.
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(1) In the hyper-tetrahedral representation suggested by Wu [115], one can express

δ(σi, σj) =
1

q
+
q − 1

q
〈vσi , vσj 〉

where vr, for r ∈ S0, are unit vectors, pointing in one of the q different directions,

which span a (q − 1)-dimensional hyper-tetrahedron.

(2) In the polar representation suggested by Mittag and Stephan [87], one can write

δ(σi, σj) =
1

q

∑

r∈S0

(zσi · z̄σj )
r−1

where zr = wr with w = e2πi/q which is the qth root of unity.

Let us emphasis that, due to the random field, P-a.s., the induced process {̺N
(
σ(t)

)
}t∈N0 is

not Markovian. But, there is a canonical construction of an effective Markov chain {̺N (t)}t∈N0

on ΓN that is reversible with respect to QN having the property that ̺N (t) = ̺N
(
σ(t)

)
in

law whenever the induced process {̺N(σ(t))} is a Markovian. If the Markov chain {σ(t)} is

started in the reversible distribution µN , then a classical result of Burke and Rosenblatt [21]

implies that {̺N
(
σ(t)

)
} is Markovian if and only if for all σ, η ∈ SN with ̺N (σ) = ̺N (η) it

holds that
∑

ξ:̺N (ξ)=x pN (σ, ξ) =
∑

ξ:̺N (ξ)=x pN(η, ξ) for all x ∈ ΓN . However, this condition

is only satisfied if all hi are the same. Due to the fact that Ph is assumed to be continuous,

it can not be expected that, on the macroscopic level, the Markov chain {̺(t)} and the non-

Markovian image chain {̺
(
σ(t)

)
} have qualitatively the same long-time behavior than. For

this reason, our strategy is to construct a family of mesoscopic variables having the property

that the corresponding effective Markov chain can be seen as a perturbation of the induced

dynamics. This strategy was first used in [6].

Due to the fact that the support of the distribution of hi is bounded, given a sequence

ε(n) ↓ 0 as n ↑ ∞, we can find, for any n, a partition, Hn ≡ {Hn
1 , . . . ,Hn

kn
}, such that

supp
(
Ph

)
=

kn⋃

k=1

Hn
k , Hn

k ∩Hn
l = ∅, ∀ k 6= l

with diam(Hn
k ) ≤ ε(n). Notice that the sequence of partitions, {Hn}n∈N, can be constructed

in such a way that Hn+1 is a refinement of Hn. Hence, each realization of the random field

{hi}i∈N induces a random partition of the set {1, . . . , N} into subsets

Λn
k ≡ Λn

k,N :=
{
i ∈ {1, . . . , N}

∣∣ hi ∈ Hn
k

}
, k = 1, . . . , kn.

Let us introduce a family of maps ̺n : SN → Γn ⊂ Rkn·q,

σ 7→ ̺n(σ) ≡ ̺n
N (σ) :=

kn∑

k=1

ek ⊗ 1

N

∑

i∈Λn
k

δσi (5.9)

where ek ∈ Rkn denotes a coordinate vector in Rkn . Each map ̺n represents an averages of

microscopic variables over blocks of mesoscopic sizes which are decreasing in n. Note that the

range of ̺n is given by

Γn ≡ Γn
N :=

kn×
k=1

{
ν ∈ 1

N N
q
0

∣∣∣
∑

r∈S0
νr = πn

k

}
⊂

kn×
k=1

Mπn
k
. (5.10)

Here, for any k, πn
k ≡ πn

k,N := |Λn
k |/N is the relative frequencies that hi takes values in Hn

k

for a given realization of the random field. Note that the random variables πk concentrate

exponentially in N around their mean values E[πk] = P
[
hi ∈ Hn

k

]
=: pk.
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We adopt the notation to denote vectors x ∈ Rkn·q by bold symbols whereas its ’components’

xk for k = 1, . . . , kn are elements in Rq. Further, in Kronecker products x ⊗ y ∈ Rkn·q the first

vector x will always be an element in Rkn while the second one y will be in Rq.

The crucial feature of mean field models is that the Hamiltonian (5.1) can be rewritten as

a function of the mesoscopic variables. In order to do so, let

h̄k :=
1

|Λn
k |
∑

i∈Λn
k

hi and h̃i ≡ h̃i,k := hi − h̄k, ∀ i ∈ Λn
k (5.11)

for each k = 1, . . . , kn. Then

HN (σ) = −N E
(
̺n(σ)

)
−

kn∑

k=1

∑

i∈Λn
k

〈h̃i, eσi〉, (5.12)

where the function E : Rkn·q → R, is given by

x 7→ E(x) :=

∥∥∥∥
kn∑

k=1

xk
∥∥∥∥
2

+

kn∑

k=1

〈h̄k, xk〉. (5.13)

Notice that for a given configuration σ, the sum of the mesoscopic variables equals the corre-

sponding macroscopic variable, i.e. ̺N (σ) =
∑kn

k=1 ̺
k(σ).

Let us define the distribution of ̺n under the random Gibbs measure, µN , through

Qn ≡ Qn
N := µN ◦ (̺n)−1. (5.14)

Furthermore, we introduce the mesoscopic free energy, Fn, which is defined as Fn : Rkn·q → R,

x 7→ Fn(x) := −
∥∥∥∥

kn∑

k=1

xk
∥∥∥∥
2

−
kn∑

k=1

〈h̄k, xk〉 +
1

β

kn∑

k=1

πk I|Λk|(x
k/πk). (5.15)

The entropy or action function, I|Λk| : R
q → R, that appears in the expression of Fn is defined

as the the Legendre–Fenchel transform

I|Λk|(x) := sup
t∈Rq

(
〈x, t〉 − U|Λk|(t)

)
(5.16)

of the log–moment generating function U|Λk| : R
q → R,

t 7→ U|Λk|(t) :=
1

|Λk|
ln E

h̃
σ[|Λk|]

[
exp
(
|Λk| 〈 t, ̺|Λk|〉

)]
+

1

|Λk|
lnZ h̃

|Λk|

=
1

|Λk|
∑

i∈Λk

ln

( ∑
r∈S0

1
q exp

(
β h̃ir + tr

))
, (5.17)

where we include the constant in the definition of U|Λk| to simplify notation in the later.

The Markov chain on state space Γn which is reversible with respect to the measure Qn is

denoted by {̺(t)}t∈N0 . Its transition probabilities are given by

rn(x,y) ≡ rnN (x,y) :=
1

Qn(x)

∑

σ∈Sn[x]

µN (σ)
∑

η∈Sn[y]

pN (σ, η), x,y ∈ Γn, (5.18)

where Sn[x] := (̺n)−1(x) is the set-valued preimage of ̺n. If n is chosen such that for all

x,y ∈ Γn with rn(x,y) > 0 it holds that for β ε(n) ≤ 1, then

max
σ∈Sn[x], η∈Sn[y]

∣∣∣∣
pN(σ, η)

∣∣{η ∈ Sn[y] | dH(σ, η) = 1}
∣∣

rn(x,y)
− 1

∣∣∣∣ ≤ 3βε(n). (5.19)

In other words, the Markov chain {̺n(t)} can be seen as a good approximation of the process

{̺n
(
σ(t)

)
}. Finally, we denote by Ln the discrete generator of the Markov chain {̺n(t)}.
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In order to simplify the notation in what follows, we will frequently drop the superscript n,

identify kn ≡ n and refer to the generic partition Λ1, . . . ,Λn.

5.1.3. Main results. In the sequel, we assume that the inverse temperature β and the

distribution, Ph, of the random field are such that there exists more than one local minima

of Fn. Here, the coarsening parameter n ≪ N is arbitrary but fixed. Let m ∈ Γn be a

local minimum and let us denote by M ⊂ Γn the set of deeper local minima of Fn, i.e. let

Fn(m′) < Fn(m) for all m′ ∈ M . Further, we assume that there exists a unique relevant

saddle point, z ∈ Γn, of index one that separates m and M , i.e. Fn(z) = minγ maxx∈γ F
n(x)

where the minimum is taken over all mesoscopic paths in Γn that connects m and M . To each

critical point x ∈ Γn of Fn we associate a point x ∈ ΓN that is given by x = x(x) =
∑n

k=1 x
k.

In Lemma 5.8 we will show that x(x) 6= y(y) if the critical points x and y are distinct. Further,

we set A = Sn[m] and B = Sn[M ].

The main result of the present chapter is the following

Theorem 5.4. With the notations and assumptions introduced above, we have that Ph-almost

surely, for all but finitely many N ,

ZN cap(A,B) =
β|γ̄1|
2πN

exp
(
−βN FN (z)

)
√∣∣∣det

(
Iq − 2β

(
D(z)− Eh

[
u1(2βz) · u1(2βz)T

]))∣∣∣

(
1 + ON (1)

)
,

(5.20)

where z = z(z), D(z) = diag(z1, . . . , zq) and ui
(
2βz

)
∈ Rq is defined componentwise by

uir(t) :=
exp
(
tr + βhir

)
∑

s∈S0
exp
(
ts + βhis

) , ∀ k ∈ S0. (5.21)

Further, γ̄1 is the unique negative solution of the explicit equation that is given in (5.87), and

FN (z) =
∥∥z
∥∥2 − 1

βN

N∑

i=1

ln
(∑

r∈S0

1
q exp

(
2βzr + βhir

))
. (5.22)

For the mean exit times from A and its distribution in the random field Curie–Weiss-Potts

model we prove

Theorem 5.5. Let us consider the notation introduced above and in Theorem 5.4. Further, we

assume that there exists δ > 0 such that, for large enough N , δ < Fn(z) − Fn(m) and there is

no local minimum m′ of Fn with Fn(m′) ∈ [Fn(m), Fn(m) + δ]. Then,

(i) Ph-almost surely, for all but finitely many values of N , we have that

EνA,B

[
τB
]
=

2πN

β|γ̄1|
K(β,m, z) exp

(
βN

(
FN (z)− FN (m)

) (
1 + ON(1)

)
(5.23)

where

K(β,m, z) =

√√√√√

∣∣∣det
(
Iq − 2β

(
D(z)− Eh

[
u1(2βz) · u1(2βz)T

]))∣∣∣

det
(
Iq − 2β

(
D(m)− Eh

[
u1(2βm) · u1(2βm)T

])) . (5.24)

(ii) provided that the coarsening level n, used in the definition of A, is chosen large enough

to ensure that ε(n)c1 < (FN (z)− FN (m))/4 for a sufficiently large c1 > 1 + α−1, then

Eσ

[
τB
]
= EνA,B

[
τB
] (

1 + ON (1)
)
, ∀σ ∈ A. (5.25)

(iii) under the same assumption as in (ii), for all t ∈ R+ and σ ∈ A

Pσ
[
τB/Eσ[τB] > t

]
−→ e−t, as N → ∞. (5.26)
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5.2. Induced measure and free energy landscape

The first important ingredient to derive sharp estimates for mean hitting times is a precise

understanding of the induced measure Qn. The infinite-volume equilibrium (Gibbs) measures

of the Curie-Weiss model of Ising (q = 2) or Potts (q ≥ 3) type in the presents of a random

field and the particular influence of the disorder on the typical behavior of Gibbs measure in

large but finite volumes was analyzed in detail in [1, 79, 70]. In this section, our first aim is

to show that the mesoscopic variable, ̺n, satisfies a sharp large deviation principle under the

Gibbs measure with rate function Fn. Next, we study the behavior of the induced random

measure Qn in the neighborhood of critical points of Fn.

5.2.1. Sharp large deviation principle. Let us begin by writing for x ∈ Γn

ZN Qn(x) = exp
(
βNE(x)

) n∏

k=1

∑

σ∈S|Λk|

1̺k(σ) =xk exp
(
β
∑

i∈Λk
〈h̃i, eσi〉

)
q−|Λk|

=: exp
(
βNE(x)

) n∏

k=1

Z h̃
|Λk| E

h̃
σ[|Λk|]

[1̺|Λk| =xk/πk

]
, (5.27)

where Z h̃
|Λk| is the normalization constant of the h̃-tilted measure. It remains to control the

probability with respect to the h̃-tilted measure of the event, {̺|Λk| = x}, that the macroscopic

variable ̺|Λk| takes a given value x ∈ Γ|Λk| ⊂ M1 in the limit when N → ∞.

For this purpose, we begin with recalling some well-known properties of the log-moment

generating function, U|Λk|, and its Legendre–Fenchel transform, I|Λk|, taken from [46, 103].

As a consequence of Hölder’s inequality, U|Λk| is a convex function on Rq. This implies, that

I|Λk| is a proper convex function and lower semi-continuous. Moreover, U|Λk| is infinitely

differentiable on Rq and the range of its gradient map coincides with the relative interior of

M1 that we denote by ri(M1).

We recall that for a convex subset C ⊆ Rq the affine hull of C, aff(C), is defined to be the

intersection of all affine sets which contain C. This concept allows us to define ri(C) as the set

of all x ∈ C for which there exists an ε > 0 such that Bε(x) ∩ aff(C) ⊂ C. Here Bε(x) denotes

an open ball in Rq around x of radius ε.

As an application of [46, Theorem VI.5.7],

ri
(
dom(I|Λk|)

)
= ri

(
M1

)
⊆ dom(I|Λk|) ⊆ M1,

while for all x ∈ Rq \ M1 the entropy I|Λk|(x) = ∞. Since U|Λk| is smooth, I|Λk| is strictly

convex on every convex subset of ri(M1). Further, notice that for all r ∈ S0

∂U|Λk|
∂tr

(t) =
1

|Λk|
∑

i∈Λk

exp
(
tr + βh̃ir

)
∑

s∈S0
exp
(
ts + βh̃is

) =:
1

|Λk|
∑

i∈Λk

ui,kr (t). (5.28)

Thus, the gradient map ∇U|Λk| is not one-to-one on Rq because for any x ∈ ri(M1) and

t∗ ≡ t∗(x) ∈ Rq such that x = ∇U|Λk|(t
∗), the one-parameter family t∗γ := t∗ + γ1 satisfies as

well x = ∇U|Λk|(t
∗
γ) for all γ ∈ R. Nevertheless, since

〈x, t∗〉 − U|Λk|(t
∗) = 〈x, t∗γ〉 − U|Λk|(t

∗
γ) ∀ γ ∈ R,

the entropy is well defined, see also [103, Theorem 26.4], and given by the formula

I|Λk|(x) = 〈x, t∗〉 − U|Λk|(t
∗). (5.29)

Note that, due to [103, Theorem 23.5], it holds that

t∗ ∈ ∂I|Λk|(x) ⇐⇒ x = ∇U|Λk|(t
∗) (5.30)
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where ∂I|Λk|(x) denotes the subdifferential of I|Λk| at x which is defined through

∂I|Λk|(x) :=
{
t ∈ Rq

∣∣ I|Λk|(z) ≥ I|Λk|(x) + 〈t, z − x〉, ∀ z ∈ Rq
}
.

For obvious reasons, ∂I|Λk|(x) is an affine subspace of Rq with difference space V0, where we

decompose Rq into a direct sum of

V0 = span{1} and V1 = V ⊥
0 . (5.31)

Moreover, a simple computation shows, see Lemma 5.6, that the log-moment generating func-

tion U|Λk|(t) is strict convex in the direction orthogonal the V0 and the leading principal minor,

which we denote by
[
HessU|Λk|(t)

]
q
, is positive definite. This implies that the entropy I|Λk|

with respect to aff(M1) is essentially smooth, i.e.

(a) I|Λk| is differentiable throughout ri(M1) and

(b) for any sequence {xi} in ri(M1) which converge to a boundary point x ∈ M1,

‖∇I|Λk|(x
i)‖ → ∞.

Lemma 5.6. For t ∈ Rq set x = ∇U|Λk|(t) ∈ M1. Then the matrix HessU|Λk|(t) has exactly

one eigenvalue zero in the direction 1 ∈ Rq. Moreover, there exists c ≡ c(t) > 0 such that

the eigenvalues corresponding to span{1}⊥, as well as, the eigenvalues of
[
HessU|Λk|(t)

]
q

are

bounded from below by c.

Proof. In view of (5.28), the symmetric matrix B ≡ HessU|Λk|(t) can be written as the differ-

ence between a diagonal matrix and a sum of rang-1 matrices, i.e.

B =
1

|Λk|
∑

i∈Λk

diag(ui,k1 , . . . , u
i,k
q ) − ui,k · (ui,k)T = diag(x1, . . . , xq) − 1

|Λk|
∑

i∈Λk

ui,k · (ui,k)T

where ui,k ≡ ui,k(t∗). Since U|Λk| is a convex function, the matrix B is positive semi–definite.

Moreover, it is easy to check that 1 is an eigenvector to the eigenvalue 0. Let us order the

eigenvalues of B such that λ1(B) ≤ λ2(B) ≤ . . . ≤ λq(B). Using the interlacing property of

symmetric matrices, we get

0 = λ1(B) ≤ λ1(A) ≤ λ2(B) ≤ . . . ≤ λq−1(B) ≤ λq−1(A) ≤ λq(B) (5.32)

where A ≡
[
HessU|Λk|(t)

]
q
. By applying Gershgorin’s Theorem, we obtain that

spec(A) ⊂
⋃

r∈S0

[
Arr −Rr, Arr +Rr

]

where

Rr :=

q−1∑

s=1
s6=r

|Ars| =
1

|Λk|
∑

i∈Λk

ui,kr

q−1∑

s=1
s6=r

ui,ks = xr −
1

|Λk|
∑

i∈Λk

ui,kr
(
ui,kq + ui,kr

)
.

Since diam(Hk) ≤ ε(n) and by (5.28), there exists a δ(t) > 0 such that the minimal component

of x is bounded from below by δ(t). Hence,

Arr −Rr =
1

|Λk|
∑

i∈Λk

ui,kr ui,kq =
1

|Λk|2
∑

i,j∈Λk

ui,kr uj,kq

ui,kq

uj,kq

≥ xr xq e
−2βε(n) ≥ c > 0

where we set c := δ(t)2 e−2βε(n). �

Now, we can state the sharp large deviation estimate for the h-tilted expectation.
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Proposition 5.7. Let y ∈ ri(M1) and consider a sequence {x|Λk|} such that x|Λk| ∈ Γ|Λk| and

‖x|Λk| − y‖2 < 1
|Λk| . Further define t|Λk| ∈ V1 ⊂ Rq through x|Λk| = ∇U|Λk|

(
t|Λk|

)
if such a t|Λk|

exists while otherwise ‖t|Λk|‖2 = ∞. Then, for all but finitely many N ,

Z h̃
|Λk| E

h̃
σ[|Λk|]

[1̺|Λk| = x|Λk|

]
=

exp
(
−|Λk| I|Λk|

(
x|Λk|

))
√(

2π|Λk|
)q−1

det
[
HessU|Λk|(t

|Λk|)
]
q

(
1 + ON (1)

)
, (5.33)

where ON (1) → 0 as N → ∞.

Proof. Sharp large deviation estimates were obtained in [26, 39] for random vectors and in

the Ising model. The proof of (5.33) modifies their strategy to the case, where the Hessian is

degenerate.

Recall that, P-a.s., |Λk| = pk
(
1 + ON (1)

)
N . Now, consider for any t ∈ Rq and x ∈ Γ|Λk|

Z h̃
|Λk| E

h̃
σ[|Λk|]

[1̺|Λk| =x

]
= e−|Λk|

(
〈x,t〉−U|Λk|(t)

)
E

h̃
σ[|Λk|]

[1̺|Λk| =x
e|Λk|〈t,̺|Λk|〉

E
h̃
σ[|Λk|]

[
e|Λk|〈t,̺|Λk|〉]

]

= e−|Λk|
(
〈x,t〉−U|Λk|(t)

)
Ê

t

σ[|Λk|]
[1̺|Λk| =x

]
.

Since y ∈ ri(M1), there exists ε > 0 such that Bε(y) ∩ aff(M1) ⊂ ri(M1). By choosing N

large enough, we can ensure that ‖x|Λk| − y‖2 < ε/2. This implies that ‖t|Λk|‖2 < ∞. Setting

t = t|Λk| and using (5.29), we obtain that

E
h̃
σ[|Λk|]

[1̺|Λk| =x|Λk|

]
= e−|Λk| I|Λk|(x

|Λk|)
Ê

t|Λk|

σ[|Λk|]
[1̺|Λk| =x|Λk|

]
. (5.34)

On the other hand, for any x ∈ Γ|Λk|, it holds1̺|Λk|(σ)= x =

q−1∏

r=1

1̺|Λk|(σ)r =xr
=

1

(2π)q−1

∫

Q

ei |Λk| 〈̺|Λk|(σ)−x,(z0)〉 dz,

where Q = [−π, π]q−1. Hence,

Ê
t|Λk|

σ[|Λk|]
[1̺|Λk| = x|Λk|

]
=

1

(2π)q−1

∫

Q

exp
(
|Λk|G|Λk|(z)

)
dz (5.35)

where

G|Λk|(z) = U|Λk|
(
t|Λk| + i

(
z
0

))
− U|Λk|

(
t|Λk|) − i 〈x|Λk|,

(
z
0

)
〉, z ∈ Rq−1.

Now, set δ = π/4. For a given γ|Λk| :=
√
Kε ln |Λk|/|Λk|, where Kε will be defined below,

there exists Nε such that γ|Λk| < δ/2 and ‖x|Λk| − y‖2 < ε/2 for all |Λk| > Nε. Moreover, we

rewrite (5.35) as

Ê
t|Λk|

σ[|Λk|]
[1̺|Λk| =x|Λk|

]
=

1

(2π)q−1

∫

Q

e|Λk|G|Λk|(z) 1‖z‖2 ≤ γ|Λk|
dz

+
1

(2π)q−1

∫

Q

e|Λk|G|Λk|(z) 1‖z‖2 >γ|Λk|
dz. (5.36)

We start with studying the asymptotics of the first integral. Since U|Λk| is holomorphic, the

following expansion is valid for all ‖z‖2 < δ

G|Λk|(z) = i 〈∇U|Λk|
(
t|Λk|),

(
z
0

)
〉 − 1

2
〈z, A z〉+R3

(
t|Λk| + i

(
z
0

))
− i 〈x|Λk|,

(
z
0

)
〉

= −1

2
〈z, A z〉+R3

(
t|Λk| + i

(
z
0

))
, (5.37)
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where A :=
[
HessU|Λk|(t

|Λk|)
]
q

and R3

(
t|Λk| + i

(
z
0

))
=
∑

|α|≥3 a
|Λk|
α (iz)α. Notice that the

coefficients in the remainder term can be bounded from above by means of Cauchy’s theorem,

∣∣a|Λk|
α

∣∣ ≤ 1

δα
sup

ξ∈cl(Pδ(t
|Λk|))

∣∣U|Λk|(ξ)
∣∣. (5.38)

Here, we denote by Pδ(t) := {z ∈ Cq | ‖t− z‖∞ < δ} ⊂ Cq the polydisc with center t ∈ Rq and

radius δ. Thus, we are left with the task to show that, for all ξ ∈ cl(Pδ(t
|Λk|)), the supremum

of
∣∣U|Λk|(ξ)

∣∣ is uniformly bounded from above for all |Λk| > Nε. Since δ = π/4, it holds for all

ξ ∈ cl(Pδ(t
|Λk|)) that

∣∣ℑ
(
U|Λk|(ξ)

)∣∣ ≤ δ. Note that for ξ1 + i ξ2 ∈ Cq,

ℜ
(
U|Λk|

(
ξ1 + i ξ2

))
− U|Λk|

(
ξ1
)

=
1

2 |Λk|
∑

i∈Λk

ln

( ∑
r,s∈S0

ui,kr
(
ξ1
)
ui,ks
(
ξ1
)
cos
(
ξ2r − ξ2s

))
,

(5.39)

which implies that
∣∣ℜ
(
U|Λk|(ξ)

)∣∣ ≤ U|Λk|
(
t|Λk|

)
+ δ for all ξ ∈ cl(Pδ(t

|Λk|)). Recall that ui(t)

is defined in (5.28). Thus,
∣∣U|Λk|(ξ)

∣∣ ≤
∣∣ℜ
(
U|Λk|(ξ)

)∣∣ +
∣∣ℑ
(
U|Λk|(ξ)

)∣∣ ≤ U|Λk|
(
t|Λk|

)
+ 2δ. It

remains to control U|Λk|
(
t|Λk|

)
. However, since

x|Λk| = ∇U|Λk|(t
|Λk|) =

1

|Λk|
∑

i∈Λk

ui,k
(
t|Λk|) ≤ uj,k

(
t|Λk|) e2βε(n) ∀ j ∈ Λk.

and, by rewriting U|Λk|, we obtain

U|Λk|
(
t|Λk|) = −1

q

∑

r∈S0

1

|Λk|
∑

j∈Λk

ln
(
uj,kr

(
t|Λk|)

)

≤ −1

q

∑

r∈S0

lnx|Λk|
r + 2βε(n) ≤ ln

2

ε
+ 2βε(n), (5.40)

where we used that t|Λk|⊥ 1, as well as, hi⊥ 1 for all i ∈ Λk and that by construction the

minimal component of x|Λk| is at least larger than ε/2. Thus, we can conclude that there exists

Mε <∞ such that, for all |Λk| > Nε, supξ∈cl(Pδ(t|Λk|))

∣∣U|Λk|
(
ξ
)∣∣ ≤Mε.

Since ‖z‖2 ≤ γ|Λk| < δ/2 for all |Λk| > Nε, the remainder can be bounded from above by

∣∣∣R3

(
t∗N + i

(
z
0

))∣∣∣ ≤ Mε
‖z‖32
δ3

∞∑

k=0

(‖z‖2
δ

)k

≤ 2Mε
‖z‖32
δ3

. (5.41)

Hence, (5.37) together with the Lemma 5.6 implies

∫

Rq−1

e|Λk|G|Λk|(z) 1‖z‖2 ≤ γ|Λk|
dz = |Λk|−

q−1
2

∫

Rq−1

e−
1
2 〈z,A z〉 1‖z‖2 ≤

√
Kε ln |Λk| dz

(
1 + ON (1)

)

=

(
2π
)q−1

√(
2π|Λk|

)q−1
det
[
HessU|Λk|(t

|Λk|)
]
q

(
1 + ON (1)

)
.

(5.42)

In order to complete the proof, it remains to show that the contribution to (5.33) coming from

the second integral in (5.36) is negligible, i.e. that the following locality condition holds

|Λk|
q−1
2

∫

Q

∣∣∣e|Λk|G|Λk|(z)
∣∣∣ 1‖z‖2 >γ|Λk|

dz = ON (1).
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By exploiting the representation (5.39), we obtain that

max
z∈Q

‖z‖2>γ|Λk|

ℜ
(
G|Λk|(z)

)
≤ 1

2 |Λk|
∑

i∈Λk

ln

(
1− 4

π2
ui,kq
(
t|Λk|) q−1∑

r=1
ui,kr

(
t|Λk|) z2r

)

≤ − 2

π2
e−2βε(n) x|Λk|

q

q−1∑

r=1

x|Λk|
r z2r

≤ − ε2

2π2
e−2βε(n) γ2|Λk|. (5.43)

In the first step, we use that 1 − cosx ≥ 2 x2/π2 for all |x| ≤ π. In the second step, we took

advantage of (5.28) and the fact that e−2βε(n) ≤ ui,kr (t)/uj,kr (t) ≤ e2βε(n) for all i, j ∈ Λk and

r ∈ S0. In the last step we used that by construction the minimal component of x|Λk| is at least

larger than ε/2. Thus, by choosing Kε =
π2

ε2 e2βε(n) q, we get

|Λk|
q−1
2

∫

Q

∣∣∣ e|Λk|G|Λk|(z)
∣∣∣ 1‖z‖2 >γ|Λk|

dz ≤ (2π)q−1 |Λk|−1/2. (5.44)

Thus, by combing (5.42) and (5.44), we conclude the proof. �

For y ∈ ri(M1)
⊗n and N large enough, let us consider x ∈ Γn with ‖xk/πk − yk‖2 < ε/2

where ε > 0 is chosen in such a way that Bε(y
k) ∩ aff(M1) ⊂ ri(M1) for all k = 1, . . . , n.

Then, in view of (5.27) and (5.33), the induced measure Qn(x) can be expressed as

ZN Qn(x) =
exp
(
−βN Fn(x)

)
n∏

k=1

(
2πN

) q−1
2

√
det
[
πk HessU|Λk|

(
t∗(xk/πk)

)]
q

(
1 + ON (1)

)
. (5.45)

Let us point out that the representation (5.45) of Qn is in particular valid for all critical points

of the free energy, Fn, since the essential smoothness of I|Λk|, for all k = 1, . . . , n, implies that

these critical points are in the relative interior of×n

k=1 Mπk
≡M .

5.2.2. Free energy landscape near the critical point. In what follows, we will precisely

compute the behavior of the measure Qn in the neighborhood of critical points of Fn. First of

all notice that the free energy is essential smooth and hence differentiable throughout ri(M).

Thus, x ∈ ri(M) is a critical point if and only if dFn(x) = 0 ∈ T ∗
xM . In this particular case,

the tangent space TxM coincides for all x ∈ M with the subspace V1 where we decompose

Rn·q into a direct sum of

V0 := span
{
e1 ⊗ 1, . . . , en ⊗ 1

}
and V1 := V ⊥

0 . (5.46)

Since M is embedded in the Euclidean space Rn·q, at a critical point x ∈ M there exists a

w ≡ w(x) ∈ Rn·q such that 0 = dFn(x)(v) = 〈w,v〉 =
∑n

k=1〈wk, vk〉 for all v ∈ V 1. This

implies that wk ∈ span{1} = V0. Recall that, for all k, the subdifferential of I|Λk| is a affine

subspace of Rq with difference space V0. Hence, a critical point is characterized by the solution

of the system of equations

span{1} ∋ −2

n∑

k=1

xk − h̄k +
1

β
∂I|Λk|(x

k/πk), ∀ k = 1, . . . , n (5.47)

Hence, for any t∗(xk/πk) ∈ ∂I|Λk| and a ∈ R

1

β
t∗(xk/πk) = 2

n∑

k=1

xk + h̄k + γ 1, ∀ k = 1, . . . , n. (5.48)
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Making again use of the fact that ∇U|Λk|
(
t∗(xk/πk)

)
= xk/πk, (5.47) is equivalent to

xk = πk ∇U|Λk|
(
2βx+ βh̄k

)
, ∀ k = 1, . . . , n with x =

n∑

k=1

xk, (5.49)

where we set for convenience γ = 0 since, by (5.28), the gradient ∇U|Λk| is constant in

direction 1 ∈ Rq. By summing over k, we see that solutions of the system of equations (5.49)

are generated by the solutions of the equation

x =

n∑

k=1

πk ∇U|Λk|
(
2βx+ βh̄k

)
(5.50)

Let us denote a solution of (5.49) and (5.50) by z and z, respectively. The observation that a

critical point z of Fn is already determined by the solution of the lower dimensional problem

(5.50) is not a coincidence.

As we will show below, the structure of the free energy landscape, Fn, is closely related to a

q−1-dimensional landscape which is given to leading order by the rate function, FN : Rq → R,

x 7→ FN (x) := −‖x‖2 + 1

β
IN (x) = −‖x‖2 + 1

β
sup
t∈Rq

(
〈t, x〉 − UN (t)

)

of 1
βN lnQN (x) where UN : Rq → R is the log-moment generating function defined by

t 7→ UN(t) :=
1

N
lnEh

σ[N ]

[
exp
(
N 〈t, ̺N 〉

)]
+ lnZh

N =
1

N

N∑

i=1

ln

( ∑
r∈S0

1
q exp

(
β hir + tr

))

As a consequence of the definition of U|Λk|, given in (5.17), and UN , the equation (5.50) is

equivalent to x = ∇UN (2βx), i.e. it has the pleasant feature to be independent of the choice

of the coarse graining. In the sequel we call FN the macroscopic free energy.

In the following lemma, we collect some fact about the connection between Fn and FN .

Lemma 5.8. The functions FN and Fn are related in the following ways.

(i) If z is a critical point of Fn, then z ≡ z(z) =
∑n

k=1 z
k is a critical point of FN .

(ii) If z is a critical point of FN , then z ≡ z(z) with components zk = πk∇U|Λk|
(
2βz+βh̄k

)

is a critical point of Fn

(iii) At a critical point z, it holds that

Fn(z) = FN

(
z(z)

)
=
∥∥z(z)

∥∥2 − 1

βN

N∑

i=1

ln
(∑

r∈S0

1
q exp

(
2βzr(z) + βhir

))
. (5.51)

(iv) For any x ∈ ri(M1),

FN (x) = inf
x∈×n

k=1 Mπk
:

∑n
k=1 xk=x

Fn(x). (5.52)

Proof. By a computation analog to the one presented in the lines (5.47) – (5.49), a critical

point of FN is determined by the solution of x = ∇UN (2βx). Hence, (i) and (ii) are an

immediate consequence of (5.49) and (5.50). In order to prove (iii), notice that (5.48) and

(5.29) implies that

I|Λk|(z
k/πk) =

β

πk
〈2z + h̄k, zk〉 − U|Λk|

(
2βz + βh̄k

)
, ∀ k = 1, . . . , n
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where z =
∑n

k=1 z
k. By combining this expression with (5.15), we obtain that

Fn(z) = −‖z‖2 −
n∑

k=1

〈h̄k, zk〉 +

n∑

k=1

(
〈2z + h̄k, zk〉 − πk

β
U|Λk|

(
2βz + βh̄k

))

= ‖z‖2 − 1

β

n∑

k=1

πk U|Λk|
(
2βz + βh̄k

)

= ‖z‖2 − 1

βN

N∑

i=1

ln

(∑
r∈S0

1
q exp

(
2βzr + βhir

))
. (5.53)

On the other hand, notice that z = ∇UN (2βz) implies that t∗(z) = 2βz + γ1. In view of

(5.29), we have that IN (z) = 2β ‖z‖2 − UN (2βz) which concludes the proof of (iii). Analog

to the considerations leading to (5.49), for a given x ∈ ri(M1) the minimum on the set{
x ∈×n

k=1 Mπk
|∑n

k=1 x
k = x

}
is attained at x(x) determined by the system of equations

xk(x) = πk ∇U|Λk|
(
β
(
2x+ h̄k + λ ξ

))
, ∀ k = 1, . . . n, (5.54)

with ξ := 1√
q (q e

q − 1) ∈ Rq. By summing over all k, we obtain that the Lagrange multiplier,

λ ≡ λ(x), solves

x =

n∑

k=1

πk ∇U|Λk|
(
β
(
2x+ h̄k + λ ξ

))
= ∇UN

(
β (2x+ λ ξ)

)
. (5.55)

By convex duality (5.30), we have that t∗
(
xk(x)/πk

)
= β (2x + h̄k + λ ξ) for all k = 1, . . . , n

and t∗(x) = β (2x+ λξ). Thus, an computation analog to (5.51) reveals that

Fn
(
x(x)

)
= −‖x‖2 +

1

β

(
〈β(2x + λ ξ), x〉 − UN

(
β (2x+ λ ξ)

))
= FN (x)

which concludes the proof. �

Remark 5.9. By the strong law of large numbers, the set of critical points of FN converge,

Ph-a.s., to the set of solutions of the equation

z∗r = E

[
exp
(
2βz∗r + βh1r

)
∑

s∈S0
exp
(
2βz∗s + βh1s

)
]

∀ r ∈ S0, (5.56)

i.e. in some sense the Curie-Weiss-Potts model in a random field is less disordered.

Remark 5.10. Let us consider a curve γ : [0, 1] → M1 in the macroscopic free energy landscape

that connects two minima and passes through the minimal saddle point between them. The

corresponding minimal energy curve γ(t) defined by (5.54) and (5.55) has the property that it

passes as well through the corresponding minima and the saddle point in the mesoscopic free

energy landscape. Suppose there exists an ε > 0 such that the minimal component of γ(t), for

all t ∈ [0, 1], is larger than ε. Then, the assumption on the random field {hi} implies that there

exists two universal constants 0 < c ≤ C <∞ such that

c πk ‖γ(t)‖ ≤
∥∥∥∥
d

dt
γ(t)k

∥∥∥∥ ≤ C πk ‖γ(t)‖, (5.57)

uniformly in N and in k = 1, . . . , n.

Next, we analyze the structure of the critical points. Mind that in a local coordinate system

(5.30) reads

Rq−1 ∋ s∗ = ∇
(
I|Λk| ◦ ψ−1

)
(y) ⇐⇒ Rq−1 ∋ y = ∇

(
U|Λk| ◦ ψ−1

)
(s∗).

Here, we choose as a chart ψ : M1 → Rq−1 the linear map ψ(x) = VTx where the columns

of the matrix V consist of the vectors of an orthonormal basis of V1. Since the gradient map
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∇U|Λk| is invariant with respect to the subspace V0, we restricted U|Λk| to aff(M1). Thus, we

get that for any x ∈ ri(M1)

Hess
(
I|Λk| ◦ ψ−1

)(
ψ(x)

)
=
(
V

T HessU|Λk|
(
t∗(x)

)
V

)−1

, ∀ k = 1, . . . , n. (5.58)

Hence, the Hessian of the free energy, Fn, at a critical point z ∈×n

k=1 Mπk
is given in a local

coordinate system, ϕ(x) = In ⊗ VT, by

A
n(z) ≡ Hess

(
Fn ◦ ϕ−1

)(
ϕ(z)

)
= 1 · 1T ⊗ (−2Iq−1) + diag(U−1

1 , . . . ,U−1
n ) (5.59)

where Iq−1 ∈ Rq−1×q−1 denotes the identity matrix and

Uk ≡ Uk

(
zk/πk

)
:= βπk V

T HessU|Λk|
(
2βz + βh̄k

)
V . (5.60)

We are interested in the behavior of Qn in a neighborhood of the critical points of Fn. Suppose

that z is a critical point of Fn. Then, for all v ∈ V 1 such that ‖vk‖ ≤ N−1/2+δ for all k

Qn(z + v)

Qn(z)
= exp

(
− βN

2 〈v, An(z)v〉
) (

1 + ON (1)
)

(5.61)

provided that N large enough to ensure that zk + vk ∈ ri(M1). This is an immediate conse-

quence of (5.45) and (5.48). Here, we set An(z) = (In ⊗ V )An(z)(In ⊗ VT).

As a next step, we describe the eigenvalues of An(z) at a critical point z of Fn. To start

with, let us denote by
{
ξ1, . . . , ξK

}
the distinct values that appear in the union of the spectrum

of Uk(z
k/πk)

−1. Since z ∈ ri(×n

k=1 Mπk
) and in view of Lemma 5.6 all ξi’s are non-zero.

Further, let φk,r the eigenvector corresponding to the eigenvalue λkr of Uk(z
k/πk)

−1 and set

κ(ξl) := {(k, r) |λkr = ξl}.

Lemma 5.11. Let z be a solution of the equation (5.50). Then γ is an eigenvalue of An(z) if and

only if either γ = ξl for all l ≤ K which satisfy

|κ(ξl)| − dim
(
span{φk,r | (k, r) ∈ κ(ξl)}

)
=: ml > 0, (5.62)

where ml is the geometric multiplicity of ξl or γ is a solution of the equation

det

(
Iq−1 − 2

n∑

k=1

(
Uk

(
zk/πk

)−1 − γ
)−1
)

= 0. (5.63)

Moreover, (5.63) has exactly one negative simple solution, i.e. γ is a simple root, if and only if, z

is a critical point of index 1.

Proof. Let ξl be such that ml > 0, if such a ξl exists. Then we will construct ml orthogonal

solutions of
(
A
n(z)− γ

)
v = −2

(
1⊗∑n

k=1 v
k
)
+ diag

(
U

−1
1 − γ, . . . ,U−1

n − γ
)
v = 0. (5.64)

with eigenvalue γ = ξl. Namely, we set 0 6= v =
∑

(k,r)∈κ(ξl)
akr (e

k ⊗ φk,r) with akr ∈ R which

implies that (5.64) is equivalent to
∑

(k,r)∈κ(ξl)
akr φ

k,r = 0. Notice that this equation has ml

orthogonal solutions. Hence, doing this for every ξl with ml > 0, we can construct altogether∑k
l=1ml = n(q − 1)−K eigenvectors of An(z).

Now, let us assume that γ is not an eigenvalue of U−1
k , i.e. γ 6∈ {ξ1, . . . , ξK}. To find an

eigenvalue of An(z), an elementary computation shows that

0 = det
(
A
n(z)− γ

)
=

n∏

k=1

det
(
U

−1
k − γ

)
· det

(
Iq−1 − 2

n∑

k=1

(
U

−1
k − γ

)−1
)
, (5.65)

Hence, (5.63) is then just the demand that the second term of (5.65) vanishes.

It remains to characterize the solutions of (5.63). Let M(γ) = Iq−1 − 2
∑n

k=1(Uk
−1 − γ)−1.

Since the matrices Uk are positive definite, the matrix M(γ) is regular if γ ∈ (−∞, 0]. Clearly,
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M(γ) converge to the identity matrix as γ tends to −∞. On the other hand, for γ1, γ2 ∈ (−∞, 0]

with γ1 < γ2 it holds that

M(γ1)−M(γ2) = 2 (γ2 − γ1)
n∑

k=1

(
Uk − γ1

)−1(
Uk − γ2

)−1
(5.66)

i.e. the matrix M(γ1)−M(γ2) is positive definite. In such a case, we also write M(γ1) ≻ M(γ2).

Let us order the eigenvalues of M(γi) in such a way that

λ1(M(γi)) ≤ λ2(M(γi)) ≤ . . . ≤ λq−1(M(γi)) for i = 1, 2.

By using the Theorem of Courant-Fischer, we obtain that M(γ1) ≻ M(γ2) implies that the

eigenvalues satisfy λr(M(γ1)) > λr(M(γ2)) for all r. Together with the fact that the eigenval-

ues depends continuously on the entries, λr(M(γ)), seen as functions of γ, is strictly monotonic

decreasing. Thus, M(γ) has exactly one negative simple eigenvalue if and only if M(0) has ex-

actly one negative eigenvalue. But due to the Theorem of Ostrowski [95], M(0) has exactly

one negative eigenvalue if and only if z is a critical point of index 1. �

Combining the previous observations, we arrive at the following proposition.

Proposition 5.12. Let {zN}N∈N be a sequence of critical points of FN which converge to a critical

point z∗ of the deterministic landscape, i.e. z∗ is the solution of (5.56). For each zN , let zN be the

corresponding critical point of Fn given by (5.50) and ẑ
N ∈ Γn its lattice point approximation.

Then, for all but finitely many values of N

ZN Qn
(
ẑN) =

exp
(
−βN FN (z)

) (
1 + ON(1)

)

n∏
k=1

(
2πN

) q−1
2

√
det
[
πk HessU|Λk|

(
2βzN + βh̄k

)]
q

. (5.67)

In particular, we have that

n∏

k=1

det
[
πk HessU|Λk|

(
2βzN + βh̄k

)]
q
=

det
(
Iq − 2β HessUN

(
2βzN

))

qn β n·(q−1) det
(
An
(
zN
)) , (5.68)

Moreover, Ph-a.s., for all but finitely many N it holds that

det
(
Iq − 2β HessUN

(
2βzN

))
= det

(
Iq − 2β

(
D(zN )− Eh

[
u · uT

])) (
1 + ON (1)

)
. (5.69)

Recall that D = diag(zN1 , . . . , z
N
q ) and u ≡ u1

(
2βzN

)
∈ Rq is defined componentwise by (5.21).

Proof. By combining (5.45) with (5.48) and (5.51), (5.67) is immediate. Hence, it remains to

show the expression for the prefactor (5.68). By an elementary computation, the determinant

of the matrix An(z) is of the following form

det
(
A
n
(
zN
))

=

n∏

k=1

det
(
U

−1
k

)
· det

(
Iq−1 − 2

n∑

k=1

Uk

)
=

det
(
Iq − 2β HessUN

(
2βzN

))
n∏

k=1

det
(
Uk

) .

(5.70)

Let W ∈ Rq−1×q−1 be the matrix consisting of the first q − 1 rows of V . Then, (5.60) and

Lemma 5.6 implies

det
(
Uk

)
=

det
(
WTUkW

)

det
(
WTW

) = q βq−1 det
[
πk HessU|Λk|

(
2βzN + βh̄k

)]
q

(5.71)

where we used that det(WTW ) = det(Iq−1 − 1
q 1 · 1T) = 1 − q−1

q = 1
q . By combining (5.70)

and (5.71), we obtain (5.68).
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As a consequence of (5.50), zN = ∇UN (2βzN). Hence,

HessUN

(
2βzN

)
= diag

(
zN1 , . . . , z

N
r

)
− 1

N

N∑

i=1

ui
(
2βzN

)
· ui
(
2βzN

)T
.

Moreover, the function Rq ∋ t 7→ 1
N

∑N
i=1 u

i(t) · ui(t)T ∈ Rq×q converge Ph-a.s. to the deter-

ministic function E
[
u(t) ·u(t)T

]
uniformly on compact subsets of Rq. Since the determinant is

a continuous function, we conclude (5.69). �

5.3. Upper bounds on capacities

In this section we derive upper bounds on capacities. For this purpose, we adapt the strategy

that was originally presented in [6]. It relies on the idea to bound the microscopic capacity

between two disjoint subsets A,B ⊂ SN in terms of the corresponding capacity of suitable sets

in the coarse grained space Γn. Proceeding this way, we reduce the problem to the construction

of a reasonable mesoscopic test function. First, we specify a function that is almost harmonic

in a small neighborhood of the relevant saddle point. As a next step, we produce a good test

function for the mesoscopic Dirichlet form from it.

5.3.1. Mesoscopic capacity and partition of the mesoscopic state space. Let us consider

two disjoint subsets A,B ⊂ Γn and set A = Sn[A] and B = Sn[B]. As an immediate

consequence of the Dirichlet principle, we can bound the microscopic capacity cap(A,B) from

above by the mesoscopic capacity CAPn(A,B)

cap(A,B) = inf
h∈HA,B

1

2

∑

σ,η∈SN

µN (σ) pN (σ, η)
(
h(σ)− h(η)

)2

≤ inf
g∈GA,B

1

2

∑

σ,η∈SN

µN (σ) pN (σ, σ′)
(
g
(
̺n(σ)

)
− g
(
̺n(η)

))2

= inf
g∈GA,B

1

2

∑

x,y∈Γn

Qn(x) rn(x,y)
(
g(x)− g(y)

)2

=: CAP
n(A,B), (5.72)

where

HA,B :=
{
h : SN → [0, 1]

∣∣ h|A ≡ 1, h|B ≡ 0
}
, (5.73)

GA,B :=
{
g : Γn → [0, 1]

∣∣ g|A ≡ 1, g|B ≡ 0
}
. (5.74)

Now, let z be a saddle point of Fn with index 1 , i.e. z is a critical point of Fn and A
n(z) has

exactly one negative eigenvalue while all other eigenvalues are strictly positive. Further let

A,B ⊂ Γn be two subsets that are strictly contained in two different connected components

of the level sets {x ∈ Γn |Fn(x) < Fn(z)}. Additionally, A,B are chosen in such a way that

there exists a path γ from A to B such that maxx∈γ F
n(x) = Fn(z).

Let us point out that only those points in x,y ∈ Γn contribute to the capacity for which

rn(x,y) > 0, the modulus of the difference of the harmonic function between x,y is large and

the induced measure, Qn(x), is not to small. In [15] it was shown that the harmonic function

typically changes from one to zero in a small neighborhood of the saddle point z, see Figure

5.3.1. Hence, for δN = c0N
−1/2+δ with c0 <∞ and δ > 0 let us consider the domain

Dn ≡ Dn(z, δN ) :=
{
x ∈ Γn

∣∣ ‖z − x‖∞ ≤ δN
}
. (5.75)
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FIGURE 1. Comparison of the free energy landscape and the harmonic func-

tion in the random field Curie-Weiss Potts model for (q = 3) with boundary

condition 1 on the shallow local minimum and 0 on the global minimum.

Here, Dn(z, δN) is a cube in Γn centered in z with side length 2δN . Further, for a fixed vector

v ∈ Γn, to be defined below, consider the subsets

W0 :=
{
x ∈ Γn

∣∣ |〈v,x− z〉| < δN
}

W1 :=
{
x ∈ Γn

∣∣ 〈v,x− z〉 ≤ −δN
}
,

W2 :=
{
x ∈ Γn

∣∣ 〈v,x− z〉 ≥ δN
}
,

(5.76)

Our strategy is to compute first an upper bound on the capacity restricted to the set Dn using

an appropriate test function that is almost harmonic in Dn with boundary condition zero and

one, respectively, on the sets W1 ∩ Dn and W2 ∩ Dn. Afterwards, we will show that the

contribution to the capacity outside Dn is negligible.

5.3.2. Distortion by mesoscopic transition probabilities. In order to construct a test

function that is almost harmonic inside Dn, we have to take into account the Hessian of the

free energy, Fn, at the saddle point, z, as well as the mesoscopic transition probabilities.

In what following, we first adopted the construction of a distortion of the form Bn(z) =

GTAn(z)G that was originally introduced in [6]. In a second step, we characterize the eigen-

values of Bn(z) and some aspects of the corresponding eigenvectors.

We begin with considering the block diagonal matrix R = diag(R1, . . . , Rn) ∈ Rn·q×n·q

where the matrices Rk ∈ Rq×q, for each k = 1, . . . , n, are given by

Rk ≡ Rk(z) :=
∑

(r,s)∈∆k

rn
(
z, z − êk,r + êk,s

)
(er − es) · (er − es)T. (5.77)

Here, z is the saddle point, specified above, and ∆k ⊂ S2
0 , is the smallest set containing all

undirected edges of S2
0 , e.g. ∆k = {(r, s) ∈ S2

0 | s < r}. We denote by ê
k,r ≡ 1

N e
k ⊗ er a

coordinate vector in Rn·q of length 1
N . A characterization of ∆k for k = 1, . . . , n will be given

in Assumption 5.18. Obviously, for each k, the matrix Rk is positive semi-definite and has an

eigenvalue zero corresponding to the eigenvector 1 ∈ Rq.



88 5. RANDOM FIELD CURIE–WEISS–POTTS MODEL

Before we characterize the remaining eigenvalues of Rk, let us have a closer look at the

mesoscopic transition probabilities. As a consequence of the underlying microscopic single-

site dynamics, for any x,y ∈ Γn only those transitions rn(x,y) may be different from zero, for

which y = x− ê
k,r + ê

k,s with k ∈ {1, . . . , n} and r, s ∈ S0. For a given σ ∈ SN , let us denote

by

Λk,r(σ) :=
{
i ∈ Λk

∣∣σi = r
}

(5.78)

the set of lattice sites i in the block Λk those spin variable σi are equal to the color r. For

x ∈ Γn set x =
∑n

k=1 x
k. Then, we have

rn
(
x,x− êk,r+ êk,s

)
=

1

Qn(x)

∑

σ∈Sn[x]

µN (σ)
∑

i∈Λk,r(σ)

pN (σ, σi,s)

=
1

Qn(x)

∑

σ∈Sn[x]

µN (σ)
∑

i∈Λk,r(σ)

exp
(
−β

[
〈2x+ hi, er − es〉 − 2

N

]
+

)

N q
,

where the configuration σi,r is obtained from σ by replacing the color σi at site i through the

color r ∈ S0. Notice that for all x ∈ Γn and σ ∈ Sn[x] the cardinality of the set Λk,r(σ) is

equal to Nxkr . In particular, |Λk,r(σ)| assumes the same value for all σ ∈ Sn[x]. Using that

hi = h̄k + h̃i and diamHk ≤ ε(n), we get for i ∈ Λk the estimate

rn
(
x,x− ê

k,r+ ê
k,s) =

xkr
q

exp
(
−β

[
〈2x+ h̄k, er − es〉 − 2

N

]
+

) (
1 +O(ε(n))

)
. (5.79)

Thus, provided N is large enough, (5.79) implies that there exists a c15(n) > 0 independent

of N such that the mesoscopic rates at the saddle point z satisfy rn
(
z, z− êk,r+ êk,s

)
≥ c15(n)

for all k = 1, . . . , n and r, s ∈ S0.

Let us know come to a characterization of the eigenvalues in the orthogonal complement,

V1, to the subspace span{1}.

Lemma 5.13. For each k, the eigenvalues of the matrix Rk with respect to the subspace V1 are

bounded from below by c15(n).

Proof. The matrixRk is symmetric. Hence, by exploiting the interlacing property for symmetric

matrices, we can bound the eigenvalues of Rk with respect to V1 by the eigenvalues of the

leading principle minor, i.e. λs(Rk) ≤ λs([Rk]q) ≤ λs+1(Rk) for all s = 1, . . . , q − 1 whereas

λ1(Rk) = 0. By applying Gershgorin’s Theorem and computations similar to the ones given in

the proof of Lemma 5.6, the eigenvalues of the principle minor [Rk]q are bounded from below

by

λs
(
[Rk]q

)
≥ rn

(
z, z − êk,q+ êk,s

)1(q,s)∈∆k
+ rn

(
z, z − êk,s+ êk,q

)1(s,q)∈∆k
≥ c15(n),

(5.80)

for all s = 1, . . . , q − 1. This completes the proof. �

As an immediate consequence of the lemma above we have that, for each k, the restriction

of Rk to V1 is regular. Moreover, there exists a positive semi-definite matrix Gk such that

Rk = Gk G
T
k . The distortion of An(z) by the mesoscopic transition probabilities rn is now

defined through

Bn(z) := diag(GT
1 , . . . , G

T
n ) A

n(z) diag(G1, . . . , Gn) = GTAn(z)G. (5.81)

Let us denote by Bn(z) = (In ⊗ VT)Bn(z)(In ⊗ V ) and G = (In ⊗ VT)G (In ⊗ V ) the corre-

sponding projections to V 1.
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Remark 5.14. In comparison with the distortion defined in [6], it turns out that the block

diagonal form of the matrix G reflects the coarse graining procedure whereas the particular

form of the matrix Rk is linked to the underlying graph structure of the mesoscopic transition

probabilities.

Let {v̂1, . . . , v̂n·(q−1)} be an orthonormal basis of eigenvectors to the eigenvalues γ̂k of

Bn(z) with respect to V1. Further define the distorted vectors

vk := G−Tv̂
k and v̌k := G v̂

k = Rvk. (5.82)

Here, G−1 denotes the Moore-Penrose pseudo inverse of the matrix G, i.e. it is defined by the

property that GG−1G = G, G−1GG−1 = G−1 and GG−1 is symmetric.

Remark 5.15. Notice that the matrix G restricted to the subspace V1 is regular, and hence the

Moore-Penrose pseudo inverse does not cause any further difficulties.

An important fact about these vectors is that

〈v̌l,vk〉 = δ(l, k) and An(z) v̌k = γ̂k v
k. (5.83)

This implies the following non-orthogonal decomposition of the quadratic form

〈x, An(z)y〉 =

n·(q−1)∑

k=1

γ̂k 〈x,vk〉 〈vk,y〉, x,y ∈ V 1. (5.84)

In the following lemma we characterize the eigenvalues of Bn(z).

Lemma 5.16. Let z be a solution of the equation (5.50) and z be given by (5.49). Further, assume

that z is a critical point of index 1. Then, Bn(z) has a unique negative eigenvalue γ̂1 ≡ γ̂1(N,n)

which is given by the negative solution of the equation

det

(
Iq−1 − 2

n∑

k=1

(
Uk

(
zk/πk

)−1 − γ R−1
k

)−1
)

= 0. (5.85)

Moreover, we have that, Ph-a.s,

lim
n→∞

lim
N→∞

γ̂1(N,n) =: γ̄1, (5.86)

where γ̄1 is the unique negative solution of the equation

det

(
Iq−1 − 2β E

[((
V

T(diag(u1, . . . , uq)− u · uT)V
)−1− γ

(
V

TR̄V
)−1
)−1
])

= 0, (5.87)

with u ≡ u1(2βz), whereas the function ui is defined in (5.21) and

R̄ =
∑

(r,s)∈∆k

exp
(
2βzr + βh1r

)
exp
(
−β
[
〈2z + h1, er − es〉

]
+

)

β q
∑

r′∈S0
exp
(
2βzr′ + βh1r′

) (er − es) · (er − es)T. (5.88)

Proof. Since the matrix G is positive definite, the Theorem of Ostrowski implies that there exist

positive numbers θi such that λi(B
n(z)) = θi λi(A

n(z)). By combining this fact with Lemma

5.11, we deduce that if z is a critical point of index 1, Bn(z) has a unique negative eigenvalue.

Further set Rk = GkG
T
k . Then, for γ ∈ (∞, 0],

0 = det
(
B

n(z)− γ
)

=

n∏

k=1

det
(
RkU

−1
k − γ

)
· det

(
Iq−1 − 2

n∑

k=1

(
RkU

−1
k − γ

)−1
Rk

)
.

The fact that the eigenvalues of RkU
−1
k are positive implies that the unique negative eigenvalue

γ̂1 annihilate the last determinant. Hence, we recover (5.85).
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It remains to show the convergence property. Inserting the expression for Uk, given by

(5.60), reveals that (5.85) is equivalent to

0 = det

(
Iq−1 − 2β

n∑

k=1

πk

((
V

T HessU|Λk|
(
2βz + βh̄k

)
V
)−1 − γ

(
V

T 1
βπk

RkV
)−1
)−1
)

By substituting (5.49) into (5.79) we get

1
βπk

Rk =
∑

(r,s)∈∆k

exp
(
2βzr+βh̄k

r

)
exp
(
−β
[
〈2z+h̄k,er−es〉− 2

N

]
+

)

β q
∑

r′∈S0
exp
(
2βzr′+βh̄k

r′

) (er − es) · (er − es)T
(
1 +O(ε)

)
.

(5.89)

On the other hand, a simple computation shows that

HessU|Λk|
(
2βz + βh̄k

)
r,s

=

(
exp
(
2βzr + βh̄kr

)
∑

r′∈S0
exp
(
2βzr′ + βh̄kr′

) δ(r, s) − exp
(
2βzr + βh̄kr

)
exp
(
2βzs + βh̄ks

)
(∑

r′∈S0
exp
(
2βzr′ + βh̄kr′

))2

)
(
1 +O(ε)

)
.

By exploiting the continuity of the determinant allows to deduce the claimed convergence

property. �

A consequence of the particular form of the matrix An(z), see (5.59), is the following

Lemma 5.17. Let v ≡ v1. Then, there exists a constant c16 > 0 such that, independent of n.

c16 ≤ min
k

∥∥vk
∥∥ = max

k

∥∥vk
∥∥ ≤ 1

c16
. (5.90)

Proof. First of all notice that Bn(z)v̂1 = γ̂1v̂
1 is equivalent to An(z)R v1 = γ̂1v

1. By (5.59) it

follows that

2

n∑

l=1

RlV
Tvl =

(
U

−1
k Rk − γ̂1

)
V

Tvk, ∀ k = 1, . . . , n. (5.91)

Recall that V ∈ Rq×(q−1) is the matrix those columns consist of an orthonormal basis of V1. As

an immediate consequence of (5.91) we have that for all k, l = 1, . . . , n

Ck v
k :=

(
U

−1
k Rk − γ̂1

)
V

Tvk =
(
U

−1
l Rl − γ̂1

)
V

Tvl = Cl v
l (5.92)

Hence, v̂l = GT
l C

−1
l Ck v

k. On the other hand, U−1
k Rk =

(
VT HessU|Λk|(2βz+βh̄

k)V
)−1 1

βπk
Rk.

In view of Lemma 5.6 and (5.89) combined with Lemma 5.13 we conclude that the eigenvalues

of the matrix Ck are bounded away from zero and infinity, uniformly in n, N and k = 1, . . . , n.

Moreover,

1 = 〈v̂, v̂〉 =

n∑

l=1

〈
v̂l, v̂l

〉
=
〈
vk,CT

k

(∑n
l=1 C

−T
l RlCl

)
Ck v

k
〉
. (5.93)

By exploiting again the Theorem of Ostrowski, the assertion of the lemma follows. �

Concerning the construction of the matrices Rk there is some freedom in choosing the sets

∆k. Let us point out that the eigenvalues of the matrix Bn(z) as well as the corresponding

eigenvectors may depend crucially on the corresponding choice. Further, let us emphasis that

the computation of an upper bound on capacities is not sensitive to the particular choice of ∆k,

except for the fact that the unique negative eigenvalue γ̂1 appears in the resulting expression.

However, in order to construct a non-negative unit flow that leads to a matching lower bound,

the choice of ∆k really matters. It turns out that we should construct the matrices Rk in

such a way that the vector v1 ≡ v =
∑n

k=1 e
k ⊗ vk defined in terms of the eigenvector v̌1
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corresponding to the unique negative eigenvalue of the matrix Bn(z) satisfies the property

that

either vkr − vks ≥ 0 or vkr − vks ≤ 0 ∀ k = 1, . . . , n and (r, s) ∈ ∆k. (5.94)

One may expect that if we choose the sets ∆k in such a way that the eigenvector to the

negative eigenvalue of An(z) satisfies (5.94), this property is preserved for the distorted vector

v. However, a proof of this claim is challenging and missing so far. For this reason, we will

rely in the sequel on the following

Assumption 5.18. Assume that there exists sets ∆1, . . . ,∆n such that the vector v1 that corre-

sponds to the negative eigenvalue, γ̂1, of the matrix Bn(z) satisfy the property

vkr − vks ≥ 0 ∀ k = 1, . . . , n and (r, s) ∈ ∆k. (5.95)

5.3.3. Approximation of the harmonic function near the saddle point. Now, our aim is

to construct a function g : Rn·q → [0, 1] which is almost harmonic with respect to the generator

Ln. To start with, consider the function f : R → [0, 1] given by

f(s) =

√
βN |γ̂1|
2π

∫ s

−∞
exp
(
− βN |γ̂1|

2 t2
)
dt. (5.96)

Then, we define the function g through

g(x) = f
(
〈v,x− z〉

)
, (5.97)

with v ≡ v1 as defined in (5.82). Let us point out that this vector v is also used in the

definition of the sets W0,W1,W2. Due to the choice of δN , we have that in the limit when

N → ∞ the function g(x) converge exponential fast to 0 for all x ∈ W1 ∩ ∂Dn(z, δN ) and to 1

for all x ∈W2 ∩ ∂Dn(z, δN).

For our further computations, the transition rates rn(x,y) are in a slightly unpleasant form.

Moreover, we would like to replace the measure Qn in the neighborhood Dn of the saddle

point z under consideration by the approximation given in (5.61). Based on the fact that

the Dirichlet form is monotone in the transition probabilities, in [6] the following comparison

result was established

Lemma 5.19 ([6, Lemma 4.1]). Let
(
r(x, y)

)
x,y∈Γ

and
(
r̄(x, y)

)
x,y∈Γ

be two transition matrices

that are reversible with respect to the invariant distributions Q and Q, respectively. Assume that

for all x, y ∈ Γ, there exists δ > 0 such that
∣∣∣∣
Q(x)

Q(x)
− 1

∣∣∣∣ ≤ δ and

∣∣∣∣
r(x, y)

r̄(x, y)
− 1

∣∣∣∣ ≤ δ. (5.98)

Then, for any disjoint subsets A,B ⊂ Γ,

(1 − δ)2 ≤ CAP(A,B)

CAP(A,B)
≤ (1 − δ)−2. (5.99)

Hence, we are left finding suitable modifications of the transition probabilities rn(x,y) and

the measure Qn(x), respectively. First, let us define the measure Qn
through

Qn
(x) := Qn(z) exp

(
− βN

2

〈
x− z, An(z)(x− z)

〉)
, x ∈ Γn. (5.100)

In view of (5.61), there exists a 0 ≤ c17 <∞ such that for all x ∈ Dn,
∣∣∣∣
Qn(x)

Qn
(x)

− 1

∣∣∣∣ ≤ c17Nδ
3
N . (5.101)
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By (5.79), the mesoscopic transition probabilities satisfy for all x ∈ Dn the bound

xkr
zkr

e−4βδN e−2βε(n) ≤ rn
(
x,x− êk,r+ êk,s

)

rn
(
z, z − êk,r+ êk,s

) ≤ xkr
zkr

e4βδN e2βε(n).

By exploiting the fact that critical points are bounded away from the boundary of×n

k=1 Mπk

implies that there exists 0 ≤ c18 <∞ such that for all x ∈ Dn,
∣∣∣∣
rn
(
x,x− êk,r+ êk,s

)

rn
(
z, z − êk,r+ êk,s

) − 1

∣∣∣∣ ≤ c18 max{δN , ε(n)}. (5.102)

Hence, we define the following mesoscopic transition rates

r̄n
(
x,x− êk,r+ êk,s

)
:= rkr,s and r̄n

(
x− êk,r+ êk,s,x

)
:=

rkr,s Q
n
(x)

Qn(
x− êk,r+ êk,s

)

(5.103)

with rkr,s ≡ rn
(
z, z − êk,r+ êk,s

)
having the property that they are reversible with respect to

the measure Q
n
. Moreover, we define the operator L

n
acting on functions g : Γn → R as

(
L
n
g
)
(x) =

n∑

k=1

q∑

r,s=1

r̄n
(
x,x− êk,r+ êk,s

) (
g
(
x− êk,r+ êk,s

)
− g(x)

)
. (5.104)

The actual advantage of choosing the negative eigenvalue, γ̂1, of Bn(z) and the distorted

eigenvector v1 is that we can derive an estimate on |(Ln
g)(x)| that is by a factor δ2N smaller

than an arbitrary choice of the parameters γ̂1 and v. We prove this fact in the following lemma.

Lemma 5.20. Consider the function g as defined in (5.97). Then, for all x ∈ Dn, there exists a

constant 0 ≤ c <∞ such that

∣∣(Ln
g
)
(x)
∣∣ ≤

√
β|γ̂1|
2πN

exp
(
− βN |γ̂1|

2 〈v,x− z〉2
)
c δ2N . (5.105)

Proof. To lighten the notation, we assume throughout this proof that the origin of the coor-

dinate system is chosen in such a way that z = 0. Further, we set An(z) ≡ A. Now, for any

k = 1, . . . , n and (r, s) ∈ ∆k, let us rewrite the corresponding terms in the generator (5.104)

by means of the detailed balance condition as

rkr,s

(
g
(
x− êk,r+ êk,s

)
− g(x)

)(
1 +

Qn(
x+ êk,r− êk,s

)

Qn
(x)

· g
(
x+ êk,r− êk,s

)
− g(x)

g
(
x− ê

k,r+ ê
k,s) − g(x)

)
.

(5.106)

Since x ∈ Dn(0, δN), we have that

Qn(
x+ êk,r− êk,s

)

Qn
(x)

= exp
(
−β

〈
ek,r− ek,s, Ax

〉)
exp
(
− β

2N

〈
ek,r− ek,s, A

(
ek,r − ek,s

)〉)

= exp
(
−β

〈
ek,r− ek,s, Ax

〉) (
1 +O(1/N)

)
. (5.107)

In view of (5.97), let us first consider the difference f
(
a + 1

N b
)
− f(a). A straight forward

computation yields

f
(
a+ 1

N b
)
− f(a) =

√
β|γ̂1|
2πN

exp
(
− βN |γ̂1|

2 a2
) ∫ b

0

exp
(
− β|γ̂1|

2N t2 − β|γ̂1| a t
)
dt

= b

√
β|γ̂1|
2πN

exp
(
− βN |γ̂1|

2 a2
)
exp
(
− β|γ̂1|

2 ab
) sinh

(
β|γ̂1|
2 ab

)

β|γ̂1|
2 ab

(
1 +O( 1

N )
)
.
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Notice that the function sinh(x)/x is symmetric. Hence,

g
(
x− êk,r+ êk,s

)
− g(x)

g
(
x+ êk,r− êk,s

)
− g(x)

= − exp
(
β |γ̂1| 〈v,x〉 (vks − vkr )

) (
1 +O(1/N)

)
. (5.108)

Since x ∈ Dn(0, δN ) and exp(−ax) sinh(ax)/ax = 1 − ax + O(x2), we obtain that to leading

order the difference g
(
x− êkr + êks

)
− g(x) is given by

g
(
x− ê

k,r+ ê
k,s) − g(x)

=
(
vks − vkr

)
√
β|γ̂1|
2πN

exp
(
− βN |γ̂1|

2 〈v,x〉2
)(

1− β|γ̂1|
2 〈v,x〉 (vks − vkr ) +O(δ2N )

)
. (5.109)

Plugging (5.107), (5.108) and (5.109) into (5.106) and using that for all x ∈ Dn(0, δN )

1 − exp
(
β
〈
ê
k,s− ê

k,r,
(
A+ |γ̂1|v · vT

)
x
〉)

= β
〈
ê
k,s− ê

k,r,
(
A+ |γ̂1|v · vT

)
x
〉
+O(δ2N ),

we obtain, by collecting the leading order terms, that there exists 0 ≤ c ≤ ∞ such that

∣∣∣
(
L
n
g
)
(x)
∣∣∣ ≤

√
β|γ̂1|
2πN

exp
(
− βN |γ̂1|

2 〈v,x〉2
)(

c δ2N + β
〈
v, R

(
A+ |γ̂1|v · vT

)
x
〉)

=

√
β|γ̂1|
2πN

exp
(
− βN |γ̂1|

2 〈v,x〉2
)
c δ2N . (5.110)

Here, we used in the first step the definition of R, see (5.77). Let us point out that the second

step relies on our choice of v and γ̂1 together with (5.82), (5.83) and the property (5.84).

Namely,

〈
v, R

(
A+ |γ̂1|v · vT

)
x
〉

=

n·(q−1)∑

i=1

γ̂i 〈v̌1,vi〉〈vi,x〉 − γ̂1 〈v̌1,vi〉〈v,x〉 = 0. (5.111)

This implies the statement of the lemma. �

After having shown that g is a good approximation of the equilibrium potential in a neigh-

borhood of a critical point z, we can now proceed to compute an upper bound for the capacity.

Proposition 5.21. For every n ∈ N and N sufficiently large we get

cap(A,B) ≤ Qn(z)
β |γ̂1|
2πN

q−
n
2

n·(q−1)∏

i=1

√
2πN

β |γ̂i|
√
det
(
GTG

) (
1 +O(max{ε(n), δN})

)
.

(5.112)

Proof. The strategy is to compute first the contribution to the mesoscopic Dirichlet form in

the neighborhood Dn(z, δN ) of the relevant saddle point z using the approximate harmonic

function g. By exploiting Lemma 5.19, the computations will be done with the modification of

the restricted Dirichlet form En
DN

En

DN
(g) :=

∑

x∈Dn

n∑

k=1

∑

(r,s)∈∆k

Qn
(x) r̄n

(
x,x− ê

k,r+ ê
k,s) (g

(
x− ê

k,r+ ê
k,s) − g(x)

)2
.

(5.113)

Afterwards, we will show that the contribution to the Dirichlet form outside Dn(z, δN ) is

negligible. Again, we choose the origin of the coordinate system in such a way that z = 0, and

we set A ≡ An(z).

First, note that by (5.109)
(
g(x− ê

k,r+ ê
k,s) − g(x)

)2
=

β|γ̂1|
2πN

exp
(
−βN |γ̂1|〈v,x〉2

) (
vks − vkr

)2 (
1 +O(δN )

)
.

(5.114)
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Inserting (5.114) together with the definitions of Qn
and r̄n into (5.113) gives

En

DN
(g) = Qn(0)

β|γ̂1|
2πN

∑

x∈Dn

exp
(
− βN

2

〈
x,
(
A+ 2 |γ̂1|v · vT

)
x
〉) (

1 +O(δN )
)
, (5.115)

where we take additionally advantage of the fact that due to (5.82) and (5.83)

n∑

k=1

∑

(r,s)∈∆k

rkr,s
(
vks − vkr

)2
= 〈v, Rv〉 = 〈v1, v̌1〉 = 1.

It remains to evaluate in (5.115) the sum over x ∈ Dn(0, δN). By a standard approximation

of the sum by an integral, we get that
∑

x∈Dn

exp
(
− βN

2

〈
x,
(
A+ 2 |γ̂1|v · vT

)
x
〉)

=

(
N q−1

√
q

)n ∫

V1

exp
(
− βN

2

〈
x,
(
A+ 2 |γ̂1|v · vT

)
x
〉)

dx
(
1 +O

(√
lnN/N

))
.

(5.116)

Let us briefly explain the arising of the factor
(
N q−1/

√
q
)n

. In order to replace the sum by

an integral we have to take into account the volume of the unit cell associated to each lattice

point that is given by the n-fold Cartesian product of the parallelepiped
{

1
N

∑q
s=2 λs (e

s − er)
∣∣∣ λs ∈ [0, 1]

}
⊂ V1 ⊂ Rq,

of side length 1/N . Its volume is given by
√
det(Iq−1 + 1 · 1T) /N q−1 =

√
q /N q−1.

For the purpose of evaluating the integral, we consider the immersion

Rn·(q−1) ∋ y 7→ G ·
(
v̂1, . . . , v̂n·(q−1)) y ∈ Rn·q,

where {v̂1, . . . , v̂n·(q−1)} is an orthonormal basis of eigenvectors of Bn(z). Then, in view of

(5.82), we have
∫

V1

exp
(
− βN

2

〈
x,
(
A+ 2 |γ̂1|v · vT

)
x
〉)

dx

=

n·(q−1)∏

k=1

∫

Rn(q−1)

exp
(
− βN

2 |γ̂k|y2
)
dy
√
det
(
GTG

)
=

n·(q−1)∏

k=1

√
2π

βN |γ̂k|
√
det
(
GTG

)
,

(5.117)

where we used the non-orthogonal decomposition (5.84) in the second step. Therefore, we

obtain the following estimate of the modified Dirichlet form En

DN

En

DN
(g) = Qn(0)

β|γ̂1|
2πN

q−
n
2

n·(q−1)∏

k=1

√
2πN

β|γ̂k|
√
det
(
GTG

) (
1 +O(δN )

)
. (5.118)

It remains to show that the contribution to the Dirichlet form coming from points x outside

of Dn(z, δN ) do not contribute significantly to the capacity. Let us define the test function g̃ as

g̃(x) =





0, x ∈W1

1, x ∈W2

g(x), x ∈W0

. (5.119)

It is worth noting that the only non-zero contribution to the Dirichlet form En(g̃) comes from

W0 := W0 ∪ ∂W0. Here, we denote by ∂W0 the set of all points x 6∈ W0 such that there exists
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v̌
1

D
n

W
in

0

W
out

0

W
out

0

W1

W2

FIGURE 2. Domains for the construction of the test function g̃

y ∈W0 with rn(x,y) > 0. Further, let us define the sets

W in
0 := W0 ∩Dn and W out

0 := W0 ∩ (Dn)c

W
in

0 := W0 ∩Dn and W
out

0 := W out
0 ∩ ∂W out

0 .

We denote by En

W
in

0

and En
W

out

0

, respectively, the restriction of the Dirichlet form to the corre-

sponding sets. Then,

En(g̃) = En

W
in

0
(g̃)
(
1 +O(max{ε(n), δN})

)
+ En

W
out
0

(g̃)

=
(
En

W
in

0
(g) −

(
En

W
in

0
(g) − En

W
in

0
(g̃)
)) (

1 +O(max{ε(n), δN})
)
+ En

W
out

0

(g̃) (5.120)

The remaining part of the proof comprises three steps.

STEP 1. Let us consider the term En

W in
0
(g). For a suitable choosen 0 < c < 1 such that

Dn(z, c δN) ⊆W
in

0 we have that

En

Dn(z,c δN )(g) ≤ En

W in
0
(g) ≤ En

Dn(z,δN )(g).

Hence, by inspecting the computation above, we obtain immediately that

En

Dn(z,c δN )(g) = En

Dn(z,δN )(g)
(
1 +O(δN )

)
.

Thus, it follows that

En

W in
0
(g) = En

Dn(z,δN )(g)
(
1 +O(δN )

)
. (5.121)

STEP 2. Consider now the term En

W
in

0
(g)− En

W
in

0
(g̃). Since, g̃ ≡ g on W0, we get

∣∣∣En

W
in

0
(g) − En

W
in

0
(g̃)
∣∣∣ ≤ I1 + I2, (5.122)
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say, with

I1 =
∑

x∈W1∩∂W in
0

Qn
(x)

n∑

k=1

∑

(r,s)∈∆k

rkr,s

((
g(x)− g

(
x− êk,r+ êk,s

))2
+ g

(
x− êk,r+ êk,s

)2
)
,

I2 =
∑

x∈W2∩∂W in
0

Qn
(x)

n∑

k=1

∑

(r,s)∈∆k

rkr,s

((
g(x)− g

(
x− êk,r+ êk,s

))2
+
(
1− g

(
x− êk,r+ êk,s

))2 )
,

where we used that, by definition, the function g̃ has boundary condition zero and one, re-

spectively, on W1 and W2. Due to the symmetry, we focus only on the first term. Notice that,

for x ∈W1 ∩ ∂W in
0 , it holds that 〈x,v〉 ≤ −δN and

g(x) ≤ f(−δN) ≤ 1√
2πβN |γ̂1| δN

exp
(
− βN

2 |γ̂1| δ2N
)
.

Inserting this estimate together with (5.109) into the expression for I1 gives

I1 ≤ β|γ̂1|
2πN

exp
(
−βN |γ̂1| δ2N

) ∑

x∈W1∩∂W in
0

Qn
(x)

n∑

k=1

∑

(r,s)∈∆k

rkr,s

((
vks − vkr

)2
+ c δ−2

N

)

= Qn(0)
β |γ̂1|
2πN

exp
(
−βN |γ̂1| δ2N

) ∑

x∈W1∩∂W in
0

exp
(
− βN

2 〈x, Ax〉
)
c′ δ−2

N , (5.123)

where we used in the second step that

n∑

k=1

∑

(r,s)∈∆k

rkr,s
(
vks − vkr

)2
= 〈v, Rv〉 = 〈v1, v̌1〉 = 1.

Let us point out that the constant c′ is independent of n and N . The evaluation of the remain-

ing sum over x ∈ W1 ∩ ∂W in
0 is similar to the computation we did above except for the fact

that the integration runs over a (n(q − 1) − 1)-dimensional hyperplane W orthogonal to V1

and shifted by the vector δnv. Thus, setting d = n(q − 1), then for N large enough, we have

∑

x∈W1∩∂W in
0

exp
(
− βN

2 〈x, Ax〉
)

≤
(
N q−1

√
q

)n ∫

W

exp
(
− βN

2 〈x, Ax〉
)
dx

=

(
N q−1

√
q

)n
exp
(
− βN

2 γ̂1 δ
2
N

) n(q−1)∏

k=2

∫

Rd−1

exp
(
− βN

2 |γ̂k| y2
)
dy
√
det
[
GTG

]
d

≤
√
N

(
N q−1

√
q

)n
exp
(

βN
2 |γ̂1| δ2N

) n(q−1)∏

k=2

√
2π

βN |γ̂k|
√
det
(
GTG

)
. (5.124)

Notice that the second step relies on the non-orthogonal decomposition (5.84). Moreover, by

taking advantage of the interlacing property of the eigenvalues of symmetric matrices and the

fact that the eigenvalues of the matrix Rk are bounded from below by c15(n) ≥ 1/N , we bound

the determinant of the principle minor det[GT
G ]n(q−1) by N det

(
G

T
G
)
. This implies that

I1 ≤ Qn(0)
β|γ̂1|
2πN

n(q−1)∏

k=2

√
2πN

β |γ̂k|
√
det
(
GTG

)
N exp

(
− βN

2 |γ̂1| δ2N
)
. (5.125)
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A similar bound can also be obtained for the term I2. Finally, comparing these expression with

(5.118) gives
∣∣∣E n

W
in

0
(g) − E n

W
in

0
(g̃)
∣∣∣ ≤ EDn(g) N e−

1
2β|γ̂1|N2δ

. (5.126)

STEP 3. It remains to consider the last Dirichlet form in (5.120). Since by assumption the

saddle point is not degenerate and we are interested in an estimate orthogonal to the direction

v, it holds for all x ∈W
out

0 that there exists K <∞ such that Fn(x) ≥ Fn(z) +KN−1+2δ for

some K <∞ and N sufficiently large. Hence,

En
W

out
0

(g̃) ≤
∑

x∈W
out
0

Qn(x) ≤ cQn(0) e−βKN2δ ≤ En

DN
(g) ON

(
δN
)
. (5.127)

Combining (5.120) with the estimates given in (5.121), (5.126) and (5.127), yields that the

Dirichlet form En(g̃) = En

DN
(g)
(
1 +O(max{ε(n), δN})

)
. This completes the proof of the upper

bound. �

In view of Proposition 5.12, we obtain the following upper bound for capacities.

Corollary 5.22. With the notation, introduced above, we obtain

ZN cap(A,B) ≤ β|γ̄1|
2πN

exp
(
−βN FN (z)

)
√∣∣det

(
Iq − 2 β HessUN (2βz)

)∣∣
(
1 +O(δN )

)
. (5.128)

Proof. First, recall that |γ̂i| denote the eigenvalues of the matrix Bn(z). Hence,

n·(q−1)∏

k=1

|γ̂k| =
∣∣ det

(
B

n(z)
)∣∣ =

∣∣ det
(
G

T
A
n(z)G

)∣∣ = det
(
G

T
G
)
·
∣∣det

(
A
n(z)

)∣∣. (5.129)

Substituting the expression (5.67) for the induced measure Qn(z) at a critical point together

with (5.68) and (5.129) into the upper bound (5.112) yields (5.128) except from the fact

that instead of γ̄1 the eigenvalue γ̂1 of the matrix Bn(z) appears. Notice that the error term

O
(
max{ε(n), δN}

)
becomes independent of n when n is chosen large enough. Hence, γ̂1 is

the only n-dependent quantities on the right-hand side of (5.128) while the left-hand side is

independent of n. By taking the limit n→ ∞ yields the desired bound. �

5.4. Lower bounds on capacities

In this section we will demonstrate how the Berman-Konsowa principle can be used to

derive lower bounds on capacities. In view of Proposition 1.22, our task is to construct a

suitable non-negative unit flow. The actual construction follows the strategy suggested in

[6] and is done in two steps. As a first step, we construct a mesoscopic unit flow from the

approximate harmonic function. In a second step, we construct for each mesoscopic path a

subordinate microscopic unit flow. By a careful construction of both flows, we can establish a

lower bound on the microscopic capacity in terms of the mesoscopic capacity that differs only

by a factor of size 1 +O
(
ε(n)

)
.

5.4.1. Mesoscopic and microscopic lower bounds: The strategy. Let us consider two

minima, m,m′, of the mesoscopic free energy Fn. Further, let us denote by z the lowest

saddle point of Fn between m and m′, i.e. Fn(ẑ) = minγ maxx∈γ F
n(x) where the minimum

is taken over all mesoscopic paths γ on Γn between m̂ and m̂′. Here, x̂ ∈ Γn denotes the

closest lattice point approximation of m ∈ ×n

k=1 Mπk
. For convenience, we pretend that

m, z,m′ ∈ Γn, since the proofs will not be sensitive concerning this correction. As in the

previous section, let A,B ⊂ Γn be two subsets which are strictly contained in two different

connected components of the level sets {x ∈ Γn | Fn(x) < Fn(z)} such that m ∈ A and

m′ ∈ B.
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In view of (1.86), we will construct a non-negative unit flow fA,B of the form

fA,B(x,y) =
Qn(x) rn(x,y)

En(g̃)
φA,B(x,y), (5.130)

such that with respect to the law, PfA,B , of the associated Markov chain it holds

PfA,B

[∑
(x,y)∈γ φA,B(x,y) = 1 + ON (1)

]
= 1− ON (1). (5.131)

As an immediate consequence of Proposition 1.22, Equation (5.131) implies that the meso-

scopic capacity is bounded from below by

CAP
n(A,B) ≥ EfA,B

[(∑
(x,y)∈γ

fA,B(x,y)

Qn(x) rn(x,y)

)−1
]

≥ En(g̃)
(
1− ON (1)

)
. (5.132)

As demonstrated in [6], for a suitable chosen neighborhood Dn of the saddle point z, the flow

fA,B consists of a concatenation of a flow fA from A to the boundary ∂ADn, a flow f through

Dn and a flow fB from ∂BDn to B. It turns out that, with a probability close to one, the major

contribution to the sum in (5.131) comes from the flow f, i.e.

Pf

[∑
(x,y)∈γ φ(x,y) = 1 + ON (1)

]
= 1− ON (1).

The actual construction of f, that is presented in the next subsection, is the most difficult

part and relies on the following observation. Although the test function g, which we have

constructed in (5.97), does not satisfy Kirchhoff’s law, Lemma 5.20 suggests that inside Dn a

potential candidate for φ seems to be a (small) perturbation of the discrete gradient ∇g. In

contrast to that, we will show that with a probability close to one the contribution to (5.131)

coming from fA and fB is indeed negligible.

After having established a mesoscopic lower bound via a suitable mesoscopic flow, our next

task is to construct a subordinate microscopic flow, fA,B, from A = Sn[A] to B = Sn[B]. In

order to do so, let X = {X(t)}t be the Markov chain on Γn with law PfA,B that starts in A

and is stopped on the arrival of B. Given a realization
¯
x of this mesoscopic Markov chain,

we choose the label in such a way that
¯
x =

(
x(a

¯
x), . . . ,x(0), . . . ,x(b

¯
x)
)

with x(a
¯
x) ∈ A,

x(b
¯
x) ∈ B and

∑n
k=1 x(0)

k =
∑n

k=1 z
k. Notice that a

¯
x < 0 and b

¯
x > 0. To each path,

¯
x, of

positive probability associate a subordinate microscopic unit flow f¯
x such that

f¯
x(σ, η) > 0 ⇐⇒

(
̺n(σ),̺n(η)

)
∈

¯
x. (5.133)

Hence, the total microscopic flow fA,B can be decomposed as

fA,B(σ, η) =
∑

¯
x

PfA,B
[
X =

¯
x
]
f¯
x(σ, η). (5.134)

Due to the fact that f¯
x is a unit flow, it holds that

∑

σ∈Sn[x]

∑

η∈Sn[y]

f¯
x(σ, η) = 1, ∀ (x,y) ∈

¯
x. (5.135)

As an immediate consequence of (5.134) and (5.135), the total microscopic flow has the

property
∑

σ∈Sn[x]

∑

η∈Sn[y]

fA,B(σ, η) =
∑

¯
x

PfA,B
[
X =

¯
x
]1(x,y)∈

¯
x = fA,B(x,y). (5.136)

Further, for each subordinate microscopic flow let us associate a microscopic Markov chain

Σ¯
x = {Σ¯x(t)}t on SN with law Pf¯

x

. Notice that (5.134) combined with (5.136) give rise to
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the following decomposition of unity1fA,B(̺n(σ),̺n(η))> 0 =
∑

¯
x

∑

¯
σ∋(σ,η)

PfA,B
[
X =

¯
x
]
Pf¯

x[
Σ¯

x =
¯
σ
]

fA,B

(
̺n(σ),̺n(η)

)
f¯
x(σ, η)

. (5.137)

Hence, by Proposition 1.22, the capacity cap(A,B) is bounded from below by

cap(A,B) ≥
∑

¯
x

PfA,B
[
X =

¯
x
]
Ef¯

x

[(
b
¯
x−1∑

t=a
¯
x

fA,B

(
x(t),x(t+ 1)

)
f¯
x
(
σ(t), σ(t + 1)

)

µN

(
σ(t)

)
pN
(
σ(t), σ(t + 1)

)
)−1]

≥ En(g̃)
∑

¯
x

PfA,B
[
X =

¯
x
]
(

b
¯
x−1∑

t=a
¯
x

Ef¯
x[
Φ¯

x
t

]
φA,B

(
x(t),x(t+ 1)

)
)−1

(5.138)

with

Φ¯
x
t

(
¯
σ
)

=
Qn
(
x(t)

)
rn
(
x(t),x(t+ 1)

)

µN

(
σ(t)

)
pN
(
σ(t), σ(t + 1)

) f¯x
(
σ(t), σ(t + 1)

)
(5.139)

where we applied in the last line Jensen’s inequality and replaced fA,B by the expression

(5.130). Hence, it remains to construct for each macroscopic path
¯
x a subordinate unit flow

f¯
x.

Remark 5.23. Let us consider for a moment the artificial case where all h̃i ≡ 0. In view of

(5.79), it holds that
∑

η∈Sn[x(t+1)] pN (σ, η) = rn(x(t),x(t+1)) for all σ ∈ Sn[x(t)]. Therefore,

we can define

f¯
x
(
σ(t), σ(t + 1)

)
:=

µN

(
σ(t)

)
pN
(
σ(t), σ(t + 1)

)

Qn
(
x(t)

)
rn
(
x(t),x(t+ 1)

)

which is indeed a unit flow, because Kirchhoff’s law is satisfied, i.e.

∑

η∈Sn[x(t−1)]

f¯
x
(
η, σ(t)

)
=

µN

(
σ(t)

)

Qn
(
x(t)

) =
1

|Sn[x(t)]| =
∑

η∈Sn[x(t+1)]

f¯
x
(
σ(t), η

)
.

Note, that this choice of a subordinate flow implies that Φ¯
x
t (¯
σ) ≡ 1 for all t = a

¯
x, . . . , b

¯
x. Thus

it is immediate that cap(A,B) ≥ En(g̃).

In view of the assumption on the distribution of the magnetic field and the coarse graining

procedure, there is some hope to construct a subordinate flow f¯
x such that Φ¯

x
t (¯
σ) is very close

to one. Due to the fact that we are interested in proving a lower bound, it is enough to consider

a subset of all realizations of the mesoscopic chain. This subset is chosen in such a way that

its PfA,B -probability tends to one as N ↑ ∞, and that we are able to construct a subordinate

flow such that uniformly for all those realizations
¯
x it holds

b
¯
x−1∑

t=a
¯
x

Ef¯
x[
Φ¯

x
t

]
φA,B

(
x(t),x(t+ 1)

)
≤ 1 +O(ǫ(n)).

Clearly, if we are able to find such a subset, we immediately obtain

cap(A,B) ≥ En(g̃)
(
1−O(ǫ(n))

)
.

5.4.2. Construction of the mesoscopic flow. Let us point out that the construction of

f and fA, fB presented in this subsection is an adaptation of the corresponding construction

given in [6]. Our first aim is to construct a flow f on Γn within the set

Dn ≡ Dn(z, νδN ) := Dn(z, δN) ∩
{
x ∈ Γn

∣∣ |〈x− z, v̌〉| < νδN
}
, (5.140)
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D
n

0

FIGURE 3. Sketch of the set Dn(z, δN ) and the subset Dn that is used in the

construction of the flow f. Notice that the set Dn
0 is a narrow tube along the

direction v̌1 lying inside Dn.

for some small number ν > 0. Here, v̌ ≡ v̌1 is the vector previously defined in (5.82). Note

that the boundary of Dn, denoted by ∂Dn, consists of three disjoint parts. Namely,

∂Dn = ∂ADn ∪ ∂BDn ∪ ∂rD
n, (5.141)

where ∂ADn := {x ∈ ∂Dn | 〈x−z, v̌〉 ≤ −νδN} and ∂BDn := {x ∈ ∂Dn | 〈x−z, v̌〉 ≥ νδN},

while ∂Dn
r denotes all points x at the boundary of Dn(z, δN ) such that |〈x− z, v̌〉| < νδN , see

Figure 5.4.2. We choose ν small enough to guarantee that there exists K > 0 such that

Fn(x) ≥ Fn(z) + Kδ2N , ∀x ∈ ∂rD
n. (5.142)

Having in mind the definition of the harmonic flow (1.86) as well as Lemma 5.20, we will

construct a non-negative unit flow f of the form

f
(
x,x− ê

k,r+ ê
k,s) :=

c(N)

En(g̃)
F [φ]

(
x,x− ê

k,r+ ê
k,s), (5.143)

for all k = 1, . . . , n and (r, s) ∈ ∆k while f ≡ 0 otherwise. Here we introduced the notation

F [φ]
(
x,x− êk,r+ êk,s

)
= Qn

(x) r̄n
(
x,x− êk,r+ êk,s

)
φ
(
x,x− êk,r+ êk,s

)
. (5.144)

Notice that c(N) = 1 + ON (1) is a suitable normalization constants.

Hence, our task is to specify a function φ of the form φ = φ0T +u where φ0T is the truncation

of a suitable function φ0 and u should be a small correction. A natural candidate for φ0 would

be the discrete gradient of the test function g, see (5.97), because g is almost harmonic as

shown in Lemma 5.20. However, due to the fact that we have to add a correction u anyway in

order to satisfy Kirchhoff’s law, it is more convenient to start with

φ0
(
x,x− êk,r+ êk,s

)
:=

(
vkr − vks

)
√
β|γ̂1|
2πN

exp
(
− βN |γ̂1|

2 〈x− z,v〉2
)

(5.145)

for all k = 1, . . . , n and (r, s) ∈ ∆k. In order to construct the correction u we proceed as

follows. First, fix 0 < ν0 ≪ ν small enough and define a narrow tube Dn
0 along the direction
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FIGURE 4. Sketch of the narrow tube Dn
0 along the direction v̌1 together with

the sets Dn
1 and Dn

2 .

v̌, i.e.

Dn
0 ≡ Dn

0 (z, ν0δN ) := Dn ∩
{
x ∈ Γn

∣∣
∥∥∥x− z − 〈x− z, v̌〉 v̌

‖v̌‖2
2

∥∥∥
2
< ν0δN

}
, (5.146)

and let C be the cone spanned by the vectors {ek,s − ek,r | k = 1, . . . , n, (r, s) ∈ ∆k}. Mind

that, under the above Assumption 5.18, the vector v lies in the interior of C. Further, we define

Dn
1 :=

{
x− C

∣∣ x ∈ ∂BDn
0

}
∩ Dn, Dn

2 :=
{
x+ C

∣∣ x ∈ ∂ADn
1

}
∩ Dn, (5.147)

where ∂ADn
1 denotes all points x at the boundary ∂Dn such that x − êk,r+ êk,s ∈ Dn

1 for all

k = 1, . . . , n and (r, s) ∈ ∆k. We assume that the constants ν and ν0 in the definitions of Dn

and Dn
0 are such that Dn

2 ∩ ∂rD
n = ∅. Moreover, we denote by φ0T the restriction of φ0 to

Dn
1 ∪ ∂ADn

1

φ0T
(
x,x− êk,r+ êk,s

)
= φ0

(
x,x− êk,r+ êk,s

) 1x∈Dn
1 ∪ ∂ADn

1
. (5.148)

Remark 5.24. Let us now explain briefly the idea behind the construction of the sets Dn
1 and

Dn
2 . Consider a point x ∈ Dn

1 . In order to satisfy Kirchhoff’s law at x, the incoming flow

should equal the outgoing flow, i.e.
∑

y∈Γn f(y,x) =
∑

y∈Γn f(x,y). Recall that for a non-

negative flow f(x,y) > 0 implies f(y,x) = 0. By construction of Dn
1 and φ0T , it holds that

{y ∈ Γn | f(y,x) > 0} ⊂ Dn
1 . Hence, the incoming flow arriving at x can only come from

points in Dn
1 whereas points in Dn

2 cannot contribute to the incoming flow to x. Let us stress

the fact that this property holds true for all x ∈ Dn
1 . Hence, the total mass accumulated at

∂BDn
0 can only come from ∂ADn

1 . For this reason, we will distribute the initial mass one only

among the points in ∂ADn
1 .

On the other hand, concerning the outgoing flow, a mass transport from Dn
1 to Dn

2 \Dn
1 is

possible for all points x ∈ Dn
1 and y ∈ Dn

2 such that rn(x,y) > 0. Hence, while transporting

the initial total mass one from ∂ADn
1 to ∂BDn

0 we may loose some mass. The reason behind

the truncation of φ0 to Dn
1 is to minimize these losses. Further, since the total mass can only

be transported to ∂BDn
2 it is enough to construct the correction u on Dn

2 .
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Now, we turn to the construction of the function u. In order to satisfy Kirchhoff’s law inside

Dn, the function u should satisfy the following recursion

n∑

k=1

∑

(r,s)∈∆k

F [u]
(
x,x− êk,r+ êk,s

)
=

n∑

k=1

∑

(r,s)∈∆k

F [u]
(
x+ êk,r− êk,s,x

)
− dF

[
φ0T
]
(x)

(5.149)

where

dF
[
φ0T
]
(x) :=

n∑

k=1

∑

(r,s)∈∆k

(
F
[
φ0T
](
x,x− êk,r+ êk,s

)
−F

[
φ0T
](
x+ êk,r− êk,s,x

))
.

(5.150)

Since φ0T ≡ 0 on Dn \Dn
1 and due to the construction of Dn

2 , we may set u ≡ 0 on Dn \Dn
2 . In

the sequel, we solve the recursion (5.149) explicitly inside Dn
1 . For this purpose, we slice Dn

1

into layers Lk in the following way. Namely, set L0 := ∂ADn
1 and for j ∈ N0 define

Lj+1 :=

{
x ∈ Dn

∣∣∣ x+ ê
k,r− ê

k,s ∈
j⋃

i=1

Li, ∀ k = 1, . . . , n, (r, s) ∈ ∆k

}
. (5.151)

Since v lies inside the cone C, there exists c19(n) > 0 and T ≤ c19(n)NδN such that

Dn
1 =

T⋃

j=0

Lj .

By setting u ≡ 0 on ∂ADn, we define recursively, for every x ∈ Lj+1

F [u]
(
x,x− êk,r+ êk,s

)
:= qkr,s

( n∑

l=1

∑

(r′,s′)∈∆k

F [u]
(
x+ êl,r

′− êl,s
′

,x
)
− dF

[
φ0T
]
(x)

)
,

(5.152)

where the probability distribution
{
qkr,s | k = 1, . . . , n, (r, s) ∈ ∆k

}
is defined by

qkr,s =
rkr,s

(
vkr − vks

)
∑n

l=1

∑
(t,u)∈∆k

rlt,u
(
vlt − vlu

) . (5.153)

Obviously, this produces a solution to (5.149) on Dn
1 whereas on Dn

2 \Dn
1 u is implicitly given

by the solution of (5.149) subject to additional boundary conditions on ∂rD
n
2 and ∂rD

n
1 . Let

us emphasis the fact that the positivity of qkr,s relies crucially on the Assumption 5.18.

Proposition 5.25. The flow f, as constructed above, satisfies the following properties:

(i) For all x ∈ Dn it holds that

dF [φ](x) = 0 and
∑

x∈∂ADn

∑

(r,s)∈∆k

f
(
x,x− ê

k,r+ ê
k,s) = 1. (5.154)

(ii) Uniformly for all x ∈ Dn
0 it holds that

φ
(
x,x− êk,r+ êk,s

)
=
(
g(x) − g

(
x,x− êk,r+ êk,s

)) (
1 + ON (1)

)
, (5.155)

for all k = 1, . . . , n and (r, s) ∈ ∆k.

(iii) There exists κ > 0 such that

max
x∈Dn\Dn

0

max
k=1,...,n

max
(r,s)∈∆k

f
(
x,x− êk,r+ êk,s

)
≤ N−κ. (5.156)
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Proof. (i) As an immediate consequence of the construction of φ, the first statement in (5.154)

is satisfied for all x ∈ Dn, i.e. f is a non-negative, cycle-free flow. It remains to prove that f is

a unit flow.

By inspecting the proof of Proposition 5.21 we see that En(g̃) = E n

Dn ∪ ∂ADn(g)
(
1 +ON (1)

)
.

On the other hand, Green’s first identify implies that

E n

Dn ∪ ∂ADn(g) +
∑

x∈Dn

Qn
(x) g(x)

(
L

n
g
)
(x)

= −
∑

x∈∂BDn

n∑

k=1

∑

(r,s)∈∆k(x)

Qn
(x) g(x) r̄n

(
x,x+ êk,r− êk,s

) (
g
(
x+ êk,r− êk,s

)
− g(x)

)

−
∑

x∈∂ADn

n∑

k=1

∑

(r,s)∈∆k(x)

Qn
(x) g(x) r̄n

(
x,x− êk,r+ êk,s

) (
g
(
x− êk,r+ êk,s

)
− g(x)

)
,

(5.157)

where, for x ∈ ∂ADn and k ∈ {1, . . . , n}, ∆k(x) denotes the subset of all (r, s) ∈ ∆k such

that x − êk,r + êk,s ∈ Dn and analog for x ∈ ∂BDn. Recall that the function g converge

exponentially fast in N to 0 for all x ∈ ∂BDn and to 1 for all x ∈ ∂ADn. Hence, the first term

on the right-hand side of (5.157) is negligible and, in the second term, we can replace g(x) by

one. Moreover, a comparison of (5.105) with (5.114) reveals that
∣∣∣∣
∑

x∈Dn

Qn
(x) g(x)

(
L

n
g
)
(x)

∣∣∣∣ = E n

Dn ∪ ∂ADn(g)
(
1 +O

(
N−1/2+2δ

))
. (5.158)

Hence,

E n

Dn ∪ ∂ADn(g)
(
1 + ON (1)

)
= −

∑

x∈∂ADn

n∑

k=1

∑

(r,s)∈∆k(x)

F [∇g]
(
x,x− êk,r+ êk,s

)
. (5.159)

Here, we introduced the discrete gradient, ∇g, that is defined by
(
∇g
)
(x,y) := g(y) − g(x).

By employing the construction of φ we infer that

∑

x∈∂ADn

n∑

k=1

∑

(r,s)∈∆k(x)

F [φ]
(
x,x− êk,r+ êk,s

)
=

∑

x∈∂ADn
1

n∑

k=1

∑

(r,s)∈∆k(x)

F
[
φ0
](
x,x− êk,r+ êk,s

)
.

(5.160)

Notice that by (5.109)

φ0
(
x,x− êk,r+ êk,s

)
=
(
g(x) − g

(
x− êk,r+ êk,s

)) (
1 +O(δN )

)
(5.161)

uniformly for all x ∈ Dn. Therefore, we are left with showing that the contribution coming

from ∂ADn \ ∂ADn
1 on the right-hand side of (5.159) is small. By using that

−F [∇g]
(
x,x− êk,r+ êk,s

)
= F

[
φ0
](
x,x− êk,r+ êk,s

) (
1 +O(δN )

)

together with the non-orthogonal decomposition (5.84) we have that

F
[
φ0
](
x,x− êk,r+ êk,s

)

Qn(z) rkr,s
(
vkr − vks

) =

√
β|γ̂1|
2πN

exp
(
− βN

2

〈
x− z,

(
An(z) + |γ̂1|v · vT

)
(x− z)

〉)

=

√
β|γ̂1|
2πN

exp
(
− βN

2

∑n·(q−1)

i=2
γ̂i 〈x− z,v〉2

)
. (5.162)

Taking advantage of the definition of Dn
0 we conclude that there exists c > 0 such that

F
[
φ0
](
x,x− êk,r+ êk,s

)

Qn(z) rkr,s
(
vkr − vks

) ≤ exp
(
−cN2δ

)
(5.163)
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uniformly for all x ∈ Dn \Dn
0 , k = 1, . . . , n and (r, s) ∈ ∆k. Hence, by choosing the constant,

c(N), in the definition of f, see (5.143), appropriately, (5.154) follows.

(ii) Notice that a computation along the lines of the proof of Lemma 5.20 reveals that there

exists c20 > 0 such that∣∣∣dF
[
φ0
]
(x)
∣∣∣

F
[
φ0
](
x,x− êk,r+ êk,s

) =

∣∣∣∣
〈
v, R

(
An(z) + |γ̂1|v · vT

)
(x− z)

〉
+ O(δ2N )

∣∣∣∣ ≤ c20 δ
2
N

(5.164)

uniformly for x ∈ Dn, k = 1, . . . , n and (r, s) ∈ ∆k. Here, the second step relies on (5.111).

In order to establish (5.155) and (5.156) we prove recursively a bound on the correction u.

To start with, let dj be the smallest constants such that for all x ∈ Lj
∣∣F [u]

(
x,x− ê

k,r+ ê
k,s)∣∣ ≤ dj δ

2
N F

[
φ0
](
x,x− ê

k,r+ ê
k,s), (5.165)

for all k = 1, . . . , n and (r, s) ∈ ∆k. Then, for any x ∈ Lj+1 ∩Dn
1 , the construction of u given

in (5.152) combined with (5.164) implies
∣∣F [u]

(
x,x− êk,r+ êk,s

)∣∣
F
[
φ0
](
x,x− êk,r+ êk,s

) ≤ qkr,s

(
n∑

l=1

∑

(r′,s′)∈∆k

∣∣F [u]
(
x+ êl,r

′− êl,s
′

,x
)∣∣

F
[
φ0
](
x,x− êk,r+ êk,s

) + c20 δ
2
N

)

≤ δ2N

(
dj q

k
r,s

n∑

l=1

∑

(r′,s′)∈∆k

F
[
φ0
](
x+ ê

l,r− ê
l,s,x

)

F
[
φ0
](
x,x− ê

k,r′+ ê
k,s′) + c20

)
.

(5.166)

By plugging in the definition of φ0, we have that

qkr,s

n∑

l=1

∑

(r′,s′)∈∆k

F
[
φ0
](
x+ ê

l,r− ê
l,s,x

)

F
[
φ0
](
x,x− ê

k,r′+ ê
k,s′)

= 1 + qkr,s

〈
v, R

(
An(z) + |γ̂1|v · vT

)
(x− z)

〉

rkr,s(v
k
r − vks )

+ O(δ2N ) = 1 + O(δ2N ) (5.167)

uniformly for all x ∈ Dn
1 , k = 1, . . . , n and (r, s) ∈ ∆k. Here, the first step holds true due to the

choice of the probability distribution, qkr,s, while in the second step we exploit again (5.111).

Thus, the constants dj satisfy the following recursive bound

d0 = 0, dj+1 ≤ dj
(
1 +O(δ2N )

)
+ c20. (5.168)

Since T ≤ c19(n)NδN , we obtain from (5.168) that for all 1 ≤ j ≤ T and N sufficiently large

dj ≤ j c20 e
j O(δ2N ) ≤ T c20 e

T O(δ2N) ≤ O(1/δN ). (5.169)

As a result, the function u satisfies
∣∣F [u]

(
x,x− ê

k,r+ ê
k,s)∣∣ ≤ O(δ2N )F

[
φ0
](
x,x− ê

k,r+ ê
k,s) (5.170)

uniformly for all x ∈ Dn
1 , k = 1, . . . , n and (r, s) ∈ ∆k. In particular, together with (5.161)

this concludes the proof of (5.155).

(iii) In view of (5.170), (5.163) and (5.118), (5.156) is satisfied uniformly on Dn
1 \ Dn

0 .

Moreover, due to our construction of the flow, φ ≡ 0 on Dn \Dn
2 and (5.156) is immediately

satisfied in the later domain. Thus, it remains to control f on Dn
2 \Dn

1 . Since φ(x) = u(x) and

dF [u](x) = 0 for all x ∈ Dn
2 \ Dn

1 , in the worst case, the flow f
(
x,x − ê

k,r+ ê
k,s) could be

equal to the total flow through Dn
2 \Dn

1 that is

∑

x∈Dn
1

n∑

k=1

∑

(r,s)∈∆k

f
(
x,x− êk,r+ êk,s

) 1x−êk,r+êk,s ∈Dn
2
. (5.171)
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However, due to (5.170) and (5.163), the latter is of order O
(
Nn/2 e−cN2δ)

. Hence, by com-

bining the estimates on the different domains, we conclude that there exists κ > 0 such that

(5.156) holds. �

Corollary 5.26. Let f be the flow constructed above. Then, for the associated Markov chain with

the law Pf it holds that

Pf

[∑
(x,y)∈γ φ(x,y) = 1 + ON (1)

]
= 1− ON (1). (5.172)

Proof. By (5.154), f is a unit flow that is non-negative by construction. Hence, we can as-

sociate a Markov chain X = {X(t)} to it. For some 0 < ε ≪ 1, we denote by ∂ADn
0,ε ≡

∂ADn
0 (z, εν0δN) the set of all configurations at the boundary ∂ADn

0 that lies deeply inside the

narrow tube. Now, let us consider the set of all realizations of X from ∂ADn
0,ε to ∂BDn

0 that

stays inside Dn
0 , i.e.

PA,B :=
{
¯
x | x(a

¯
x) ∈ ∂ADn

0,ε, x(b
¯
x) ∈ ∂BDn

0 , x(t) ∈ Dn
0 , ∀ a

¯
x < t < b

¯
x

}
.

In view of (5.155), we have for all γ ∈ PA,B that
∑

(x,y)∈γ

φ(x,y) =
(
g
(
a
¯
x

)
− g

(
b
¯
x

)) (
1 + ON (1)

)
= 1 + ON (1), (5.173)

where we used that the function g, as defined in (5.97), converge exponentially fast in N to

one for all x ∈ ∂ADn and to zero for all x ∈ ∂BDn.

Hence, it remains to show that the Pf-probability of the event PA,B is close to one. Recall

that the initial distribution of the Markov chain X is given by
∑

y∈Dn f(x,y) for all x ∈
∂ADn and its transition probabilities are given by qf(x,y) = f(x,y)/

∑
y′ f(x,y′). Since the

flow f is defined in terms of φ0 on ∂ADn
0 , (5.162) implies that the set of all path starting in

∂ADn \ ∂ADn
0,ε is negligible with respect to Pf. Now, set Y (t) := X(t)− v̌ 〈X(t), v̌〉/‖v̌‖22 and

decompose Y (t) = Y (0)+M (t)+N (t) into a martingale M(t) and a previsible process N(t).

As a consequence of (5.170), for all t ≤ T , ‖N(t)‖ ≤ T/NO(δN ) = δN O(δN ) on the event

{X(t) ∈ Dn
1 , ∀ 0 ≤ t ≤ T }. Hence, Doob’s maximums inequality for submartingales implies

P

[
max
0≤t≤T

∥∥Y (t)
∥∥ <

1

2
ν0δN

]
≥ 1 − P

[
max
0≤t≤T

∥∥M(t)
∥∥2 ≥ c2 δ2N

]

≥ 1 − 1

c2 δ−2
N

E
[∥∥M(T )

∥∥2]

≥ 1 − O(N−1/2−δ), (5.174)

where c < ν0(1/2− ε)−O(δN ) and E
[
‖M(T )‖2

]
≤ T O(N−2). This completes the proof. �

The remaining part of this subsection is devoted to the construction of the flow fA from A

to ∂ADn of the form

fA(x,y) =
Qn(x) rn(x,y)

En(g̃)
φA(x,y)

(
1 + ON (1)

)
(5.175)

and a of the corresponding flow fB from ∂BDn to B such that the concatenation fA,B =

{fA, f, fB} satisfies Kirchhoffs law and

PfA

[∑
(x,y)∈γ φA(x,y) = ON (1)

]
= 1− ON (1) (5.176)

and

PfB

[∑
(x,y)∈γ φB(x,y) = ON (1)

]
= 1− ON (1). (5.177)
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∂BD
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D
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0
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FIGURE 5. Construction of the paths γ̂x = {γ̂, η̂x} for each x ∈ ∂ADn
0 . While

γ̂ is defined in terms of the minimal energy curve that ends in some point

y ∈ Dn, η̂x is just the linear interpolation between y and x.

Together with (5.172) these estimates imply that (5.131) holds true. Since the construction of

fA and fB are completely similar, we will work out the details only for fA.

The strategy is the following. To each x ∈ ∂ADn associate a nearest neighbor path γ̂x =(
γ̂x(ax), . . . , γ̂x(0)

)
on Γn that starts in A and ends in x, i.e.

γ̂x(ax) ∈ A, γ̂x(0) = x and
∥∥γ̂x(t+ 1)− γ̂x(t)

∥∥
1
=

2

N
, ∀ t = ax, . . . ,−1.

Then, the flow from A to ∂ADn is given by

fA(y,y′) :=
∑

x∈∂ADn
0

1(y,y′)∈γ̂x

n∑

k=1

∑

(r,s)∈∆k(x)

f
(
x,x− ê

k,r+ ê
k,s).

Notice that the flow fA constructed above as well as its concatenation {fA, f} with the flow f

satisfies Kirchhoff’s law. The idea, we have in mind to satisfy (5.176), is to choose the paths

γ̂x is such a way that Fn(z) − Fn
(
γ̂x(t)

)
> εδ2N for all t = ax, . . . , 0 for some ε > 0 small

enough.

In the sequel, we describe the actual construction of the family of paths {γ̂x} for x ∈ ∂ADn.

Fix a x ∈ ∂ADn. The path γ̂x associated to x consists of a concatenation of two paths γ̂x =

{γ̂, η̂x} where γ̂ connects A with some point y ∈ ∂AD
n and η̂x runs from y to x ∈ ∂ADn,

see Figure 5.4.2.

Let m ≡ m(m) ∈ M1 and m′ ≡ m′(m′) ∈ M1 be local minima of the function FN that

correspond to the minima m,m′ of Fn. In view of Lemma 5.8 it holds that m(m) =
∑n

k=1m
k

and likewise form′. In order to construct γ̂, consider the minimal energy curve ϕ : [0, 1] → M1

with respect to FN that connects the minimum m and m′. In particular, this curve passes

through the saddle point z ≡ z(z). Further, the mesoscopic path ϕ corresponding to ϕ is

uniquely defined by (5.54) and (5.55). We denote its nearest neighbor path approximation in

Γn by ϕ̂. Let a ∈ A be the last point before ϕ̂ leaves the set A and y ∈ Dn be the first point

where ϕ̂ enters the set Dn. Then, the path γ̂ is given by the portion of the path ϕ̂ from a to y.

On the other hand, for any x ∈ ∂ADn, let ηx : [0, 1] →×n

k=1 Mπk
, t 7→ y + t (x− y) be the
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line segment that connects y and x. Then, η̂x is defined as the nearest neighbor approximation

of ηx in Γn.

Lemma 5.27. Let fA be the flow constructed above. Then, for the associated Markov chain with

law PfA , (5.176) is satisfied.

Proof. First of all note that, in view of (5.156), the contribution to the flow fA coming from

paths γ̂x with x ∈ ∂ADn \∂ADn
0 is negligible. By plugging the expressions for Qn(x), rn(x,y)

and En(g̃) given by (5.45), (5.79) and (5.118) into the right-hand side of (5.175), we obtain

immediately an upper bound for φA(x,y). Namely,

φA(x,y) ≤ 2
En(g̃) fA(x,y)

Qn(x) rn(x,y)
≤ cNn(q−1)/2 exp

(
−βN

(
Fn(z)− Fn(x)

))
. (5.178)

Thus, it remains to show that there exists ε > 0 such that Fn(z) − Fn(γ̂(t)) > εδ2N for all

t = ax, . . . , 0.

As a consequence of the fact that FN is essential smooth with respect to M1, there exists a

δ > 0 such that distance between the minimal energy curve and the boundary of M1 is at least

δ. Thus, by construction, the minimal distance between ϕ and the boundary of ×n

k=1 Mπk

is at least δmink πk. In particular, ‖∇FN (ϕ(t))‖ is for all t ∈ [0, 1] uniformly bounded from

above by a constant that is independent of N . Recall that z is the unique minimal saddle

point between the sets A and B. By exploiting the boundedness of ‖∇Fn(ϕ(t))‖ and the fact

that the Hausdorff distance between ϕ and γ̂ is at most
√
n(q − 1)/q /N , we conclude that

maxx∈γ̂ F
n(x) ≤ Fn(y) +O(n/N).

Moreover, assuming that the parameter ν in the definition of Dn(z, νδN ) is so small that Dn

lies deeply inside the set Dn(z, δN ), we can ensure that

Fn(y) < min
x∈∂ADn

0

Fn(x). (5.179)

Further, by choosing ν0 small enough, we can ensure that 〈An(z)(x−y),x−z〉 > 0 uniformly

for all x ∈ ∂ADn
0 . Hence,

[0, 1] ∋ t 7→
〈
An(z)

(
y − z + t(x− y)

)
,
(
y − z + t(x− y)

)〉
≤ 〈An(z)(x− z),x− z〉,

(5.180)

i.e. up to negligible corrections Fn
(
y + t(x − y)

)
≤ Fn(x) uniformly for all t ∈ [0, 1] and

x ∈ ∂ADn
0 . Hence, maxx′∈γ̂x Fn(x′) ≤ Fn(x) + O(n/N) and there exists a ε > 0 such that

Fn(z)− Fn(x) > εδN uniformly for all x ∈ ∂ADn
0 . �

5.4.3. Statistics of mesoscopic trajectories. In order to construct a subordinate flow it

suffices to consider a certain subset of all realizations of the mesoscopic chain {X(t)} that

starts in A and is stopped at the arrival of B. Recall our convention to choose the la-

bel of a realization
¯
x = (x(a

¯
x), . . . ,x(0), . . . ,x(b

¯
x)) such that x(a

¯
x) ∈ A, x(b

¯
x) ∈ B and∑n

k=1 x(0)
k =

∑n
k=1 z

k. For a given path
¯
x, we denote by τk[T ] ≡ τk[T ](

¯
x) the number of

changed in the k’s block compared to x(0) along the path
¯
x until time T , i.e. for T > 0 let

τk[T ] =
N

2

T−1∑

t=0

∥∥xk(t)− xk(t− 1)
∥∥
1

while for T < 0 the sum runs from T + 1 to 0.

The set of paths, we are focusing on in the construction of a subordinate flow, are charac-

terized by the following

Definition 5.28. A mesoscopic path
¯
x =

(
x(a

¯
x), . . . ,x(b

¯
x)
)

is called good if the following

properties are satisfied:

(i)
¯
x passes through Dn

0 .
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(ii) there exists C1 > 0 such that

max
k=1,...,n

τk[b
¯
x]

|Λk|
≤ C1 and max

k=1,...,n

τk[a
¯
x]

|Λk|
≤ C1. (5.181)

(iii) it holds that

b
¯
x−1∑

t=a
¯
x

exp

(
O
(
ε(n)

) ∑n

k=1

τk[t]
2

|Λk|

)
φA,B

(
x(t),x(t+ 1)

)
≤ 1 +O

(
ε(n)

)
. (5.182)

The set of all good paths is denoted by GPA,B.

Lemma 5.29 ([6, Proposition 5.4]). Let fA,B be the mesoscopic flow constructed in the previous

subsection and denote by X = {X(t)}t the Markov chain on Γn with law PfA,B . Then,

PfA,B
[
X ∈ GPA,B

]
= 1− ON (1). (5.183)

Proof. Due to the construction of the flow f, the probability of the event that the associated

Markov chain does not pass through Dn
0 is of order ON (1). As a further consequence, the step

frequencies, τk[t]/t, are on average proportional to πk. Therefore, there exist a constant C1

such that, up to an exponentially small PfA,B-probability, it holds that

max
k=1,...,n

τk[b
¯
x]

|Λk|
≤ C1.

Hence, it remains to show that the PfA,B-probability of the event (5.182) is close to one. In

order to do so, notice that from the construction of the mesoscopic flow, namely the fact that

the transition probabilities qf inside Dn
0 are given by (5.153) up to small correction, and from

the property (5.57) of the minimal energy curve ϕ, it follows that there exists a K < ∞,

independent of n, such that

PfA,B

[
max

k=1,...,n
max

|t|>N1/2−δ

τk[t]

|t|πk
> K

]
= ON (1). (5.184)

Now, observe that uniformly for all t < N1/2−δ and all paths
¯
x it holds that

n∑

k=1

τk[t]
2

|Λk|
= O

(
N−2δ

)
. (5.185)

On the other hand, for all paths
¯
x that satisfy the condition τk[t] ≤ Kπk|t| uniformly for all

|t| > N1/2−δ and k = 1, . . . , n, we have

O
(
ε(n)

) n∑

k=1

τk[t]
2

|Λk|
≤ O

(
ε(n)

)
K2 t

2

N

n∑

k=1

πk = O
(
ε(n)

)
K2 t

2

N
. (5.186)

Moreover, due to the construction of fA,B, there exists a c > 0 such that all those paths
¯
x

satisfy φA,B(x(t),x(t+1)) ≤ e−ct2/2 for all |t| > N1/2−δ. Hence, in view of (5.130) we obtain

that with PfA,B close to one

b
¯
x−1∑

t=a
¯
x

exp
(
O
(
ε(n)

)∑n
k=1

τk[t]
2

|Λk|

)
φA,B

(
x(t),x(t+ 1)

)
= 1 + O

(
ε(n)

)
. (5.187)

This yields the assertion. �
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5.4.4. Construction of a subordinate microscopic flow. Fix a mesoscopic path
¯
x ∈

GPA,B. Now, our strategy is to construct a directed Markov chain Σ¯
x = {Σ¯x(t)}t on the

set of configurations given by the mesoscopic path, i.e. Sn[x(a
¯
x)] ∪ . . . ∪ Sn[x(b

¯
x)]. In view

of (1.82), the subordinate flow, f¯
x, is then defined by f¯

x(σ, η) = Pf¯
x[
(σ, η) ∈ Σ¯

x
]
. Ac-

tually, since the construction of f¯
x from Sn[x(a

¯
x)] to Sn[x(0)] and Sn[x(0)] to Sn[x(b

¯
x)] is

completely similar, we will work out the details only for the latter one.

To start with, let us denote by

Θ±
k,t :=

{
r ∈ S0

∣∣∣ xk
r (t+ 1)− xk

r (t) = ± 1
N

}
(5.188)

the corresponding color that is created, respectively, annihilated in the k’s block from x(t)

to x(t + 1). Due to the underlying single site dynamic, for each t there exists a unique k ∈
{1, . . . , n} such that the sets Θ+

k,t and Θ−
k,t, respectively, consists of exactly one element while

for all l 6= k the sets Θ±
l,t are empty. For a given configuration σ, recall that we defined by

Λk,r(σ) :=
{
i ∈ Λk

∣∣ σi = r
}
, r ∈ S0

the set of lattice site in Λk those corresponding spin variables are equal to the color r.

Let us now define a time-inhomogeneous Markov chain {Σ¯x(t)}. Its initial distribution, ν¯
x
0

on Sn[x(0)] is given by the Gibbs measure, µN , conditioned on the set Sn[x(0)], and we choose

the following transition probabilities

qt
(
σ, σi,s

)
:=





exp
(
β 〈h̃i,−er + es〉

)
∑

j∈Λk,r(σ)
exp
(
β 〈h̃j ,−er + es〉

) , if Θ−
k,t = r, Θ+

k,t = s, i ∈ Λk,r(σ),

0, otherwise.

(5.189)

Thus, the subordinate flow, f¯
x, through the edge

(
σ(t), σ(t + 1)

)
where σ(t) ∈ Sn[x(t)] and

σ(t+ 1) ∈ Sn[σ(t+ 1)] is equal to

f¯
x
(
σ(t), σ(t + 1)

)
= ν¯

x
t

(
σ(t)

)
qt
(
σ(t), σ(t + 1)

)
, (5.190)

where ν¯
x
t denotes the marginal distribution of the chain.

Remark 5.30. Note that any choice of the transition probabilities qt give rise to a subordinate

flow. But, in general, the marginal distributions, ν¯
x
t , of this chain differ from the conditional

distribution µSn[x(t)] ≡ µN

[
· |Sn[x(t)]

]
. Thus, one would like to choose the transition prob-

abilities in such a way that ν¯
x
t = µSn[x(t)] for all t = 0, . . . , b

¯
x. Indeed, in the case where all

h̃i ≡ 0, by choosing

qt
(
σ, σi,s

)
=

{
1/|Λk,r(σ)|, if Θ−

k,t = r, Θ+
k,t = s, i ∈ Λk,r(σ),

0, otherwise,

the transported measure ν¯
x
t equals µSn[x(t)] that is just the uniform measure on Sn[x(t)].

However, in the general case it is not known under which conditions on size of the distortion

of h̃i a transition matrix, qt, exists satisfying such property.

Since,

qt
(
σ(t), σ(t + 1)

)
=

1 +O(ε(n))∣∣ΛΘ−
k,t

(
σ(t)

)∣∣ ,
pN
(
σ(t), σ(t + 1)

)

rn
(
x(t),x(t+ 1)

) =
1 +O(ε(n))∣∣ΛΘ−

k,t

(
σ(t)

)∣∣ (5.191)

the expression (5.139) can be rewritten as

Φ¯
x
t

(
σ(t)

)
=

ν¯
x
t

(
σ(t)

)

µN

[
σ(t)

∣∣ Sn[x(t)]
]
(
1 +O(ε(n))

)
=: Ψt

(
σ(t)

) (
1 +O(ε(n))

)
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where Ψt can be seen as a measure for the deviation of ν¯
x
t from the measure µSn[x(t)]. As a

consequence of the definition of the Markov chain {Σ¯x(t)}, Ψ0(σ) ≡ 1 for all σ ∈ Sn[x(0)].

However, for any t > 0 this is no longer true. Hence, it remains to study the average error

propagation along the mesoscopic path
¯
x. In particular, our goal is to show that for any good

mesoscopic path
¯
x ∈ GPA,B it holds that Ef¯

x[
Ψt

]
≤ exp

(
O(ε(n)) t2/N

)
.

Notice that the Gibbs measure, µN , conditioned of Sn[x(t)] is a product measure,

µN

[
·
∣∣Sn[x(t)]

]
=

n⊗

k=1

µk
t ( · ), (5.192)

where µk
t is the canonical measure on S|Λk| := SΛk

0 that is given by

µk
t (σ) :=

1

Z[xk(t)]
exp
(
β
∑

i∈Λk
〈h̃i, eσi〉

)1̺k(σ)=xk(t), σ ∈ SΛk
0 . (5.193)

On the other hand, according to the choice of the transition probabilities (5.189), the Markov

chain {Σ¯x(t)} splits into a direct product of n Markov chains
{
Σ¯

x,1(t)
}
, . . . ,

{
Σ¯

x,n(t)
}

on the

state spaces S|Λ1|, . . . ,S|Λn| that evolves independently. Hence, if the Markov chain {Σ¯x(t)}
has performed T steps, each of the chains

{
Σ¯

x,k(t)
}

performs exactly τk[T ] steps. Thus, the

corrector, Ψt, is equal to

Ψt

(
σ(t)

)
=

n∏

k=1

ψk
τk[t]

(
σΛk

(t)
)
, (5.194)

where σΛk
(t) is the projection of σ(t) onto S|Λk|. Therefore, it suffices to study the propagation

of errors with respect to each {Σ¯x,k(t)}.

Proposition 5.31. Fix a k ∈ {1, . . . , n} and let us denote by Pµk
0

the law of the Markov chain

{Σ¯x,k(t)} on S|Λk|. Then, there exists c <∞ such that

Eµk
0

[
ψk
t

]
≤ exp

(
c ε(n) t2

|Λk|

)
, ∀ t = 0, . . . , τk[b

¯
x]. (5.195)

In view of Proposition 5.31, we obtain the following lower bound for capacities.

Corollary 5.32. With the notation introduced above, we obtain

cap(A,B) ≥ β|γ̄1|
2πN

exp
(
−β NFN (z)

)
√
det
(
Iq − 2βHessUN(2βz)

)
(
1− ON (1)

)
. (5.196)

Proof of Proposition 5.31. To keep notation simple, we will use the following abbreviations

w(σ) ≡ exp
(
β
∑

i∈Λk
〈h̃i, eσi〉

)
, ∀σ ∈ S|Λk|, and x̃(s) ≡ xk

(
τ−1
k [s]

)

where τ−1
k [s] := min{t ∈ N0 | τk[t] ≥ s} and xk(t) ∈ Rq is the k’s block of x(t) for a given

path
¯
x =

(
x(0), . . . ,x(b

¯
x)
)
. Further, we define a family of functions dt ≡ dkt : S|Λk| → R,

σ 7→ dt(σ) :=
∑

i∈Λk,r(σ)
exp
(
β 〈h̃i,−er + es〉

)
, for r = Θ−

k,t, s = Θ+
k,t. (5.197)

The proof of this proposition comprises three steps.

STEP 1. In the sequel, let S[x] := {σ ∈ S|Λk| | ̺k(σ) = x} for x ∈ Rq. We start with showing

that for all t = 0, . . . , τk[b
¯
x]− 1 and η ∈ S[x̃(t)]

ψk
t (η) =

1

|Pt(η)|
∑

¯
σ∈Pt(η)

t−1∏

s=0

µk
s

[
ds
]

ds
(
σ(s)

) , (5.198)

where Pt(η) denotes the set of all paths
¯
σ =

(
σ(0), . . . , σ(t−1), η

)
from S[x̃(0)] to η of positive

Pµk
0
-probability. Let us point out that an analog statement was shown in [6, Proposition 5.1].
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To lighten notation, for a fixed t we set r = Θ−
k,t−1 and s = Θ+

k,t−1. Since the marginal

distribution, νkt , of the Markov chain {Σ¯x,k(t)} satisfies for η ∈ S[x̃(t)] the recursion

νkt (η) =
∑

i∈Λk,s(η)

νkt−1

(
ηi,r
)
qt−1

(
ηi,r, η

)
, (5.199)

it follows that

ψk
t (η) =

∑

i∈Λk,s(η)

νkt−1

(
ηi,r)

µk
t (η)

qt−1

(
ηi,r, η

)
=

∑

i∈Λk,r(η)

µk
t−1(η

i,r)

µk
t (η)

qt−1

(
ηi,r, η

)
ψk
t−1

(
ηi,r
)
.

(5.200)

Plugging our choice of the transition probabilities in (5.189), we obtain

µk
t−1

(
ηi,r
)

µk
t (η)

qt−1

(
ηi,r, η

)
=

Z[x̃(t)]

Z[x̃(t− 1)]

(∑
i∈Λk,r(ηi,r) exp

(
β 〈h̃i,−er + es〉

))−1

. (5.201)

As a consequence of the single site dynamics, we consider, it holds that |Λk,r(σ)| = |Λk,r| for all

σ ∈ S[x̃(t)]. In particular, |Λk,r| = O(N). Notice that this property is implied by the fact that

the minimal energy curve, γ(t), used in the construction of the mesoscopic flow, is bounded

away from the boundary of M1 uniformly in N . Thus, by considering the ratio of the partition

functions we get

Z[x̃(t)]

Z[x̃(t− 1)]
=

1

Z[x̃(t− 1)]

∑

η∈S[x̃(t)]

1

|Λk,s|
∑

i∈Λk,s(η)

w(η)

=
1

Z[x̃(t− 1)]

∑

η∈S[x̃(t)]

1

|Λk,s|
∑

i∈Λk,s(η)

exp
(
β 〈h̃i,−er + es〉

)
w
(
ηi,r
)

=
1

Z[x̃(t− 1)]

∑

η∈S[x̃(t−1)]

1

|Λk,s|
∑

i∈Λk,r(η)

exp
(
β 〈h̃i,−er + es〉

)
w(η)

=
1

|Λk,s|
µk
t−1

[
dt−1

]
, (5.202)

where µk
t [f ] =

∑
σ∈S[x̃(t)] f(σ)µ

k
t (σ) denotes the expectation with respect to the measure µk

t .

As a result,

ψk
t (η) =

1

|Λk,s|
∑

i∈Λk,s(η)

µk
t−1

[
dt−1

]

dt−1(ηi,r)
ψk
t−1

(
ηi,r
)
. (5.203)

Iterating the argument above and using that ψk
0 ≡ 1 yields (5.198).

STEP 2. After having established a different representation for ψk
t , our next task is to

compute the average error propagation along the path
(
x̃(0), . . . , x̃(τk[b

¯
x])
)
. Let us remark

that the configurations σ(s) and ξ(s) for two different microscopic paths
¯
σ,

¯
ξ ∈ Pt(η) with

η ∈ S[x̃(t)] differs at most in 2(t− s) coordinates. Therefore, it is easy to see that there exists

c <∞ such that

ds
(
σ(s)

)

ds
(
ξ(s)

) = 1 − ds
(
σ(s)

)
− ds

(
ξ(s)

)

ds
(
ξ(s)

) ≤ exp
(
c ε(n) t−s

|Λk|

)
. (5.204)
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Hence,

Eµk
0

[
ψk
t

]
=

∑

η(0),...,η(t)

µk
0

(
η(0)

) t∏

s=1

qs
(
η(s− 1), η(s)

)
ψk
t

(
η(t)

)

=
∑

η(0),...,η(t)

µk
0

(
η(0)

) 1

|Pt

(
η(t)

)
|

∑

¯
σ∈Pt(η(t))

t∏

s=1

µk
s−1

[
ds−1

]

ds−1

(
σ(s− 1)

) qs
(
η(s− 1), η(s)

)

≤
∑

η(0),...,η(t−1)

µk
0

(
η(0)

) µk
0

[
d0
]

d0
(
η(0)

)
t−1∏

s=1

µk
s

[
ds
]

ds
(
η(s)

) qs
(
η(s− 1), η(s)

)
exp
(
c ε(n) t2

|Λk|

)
.

(5.205)

Note that the constant c may change from line to line throughout the following computations.

We can easily bound the ratio µk
s

[
ds
]
/ds
(
η(s)

)
by

µk
s

[
ds
]

ds
(
η(s)

) = 1 +
µk
s

[
ds
]
− ds

(
η(s)

)

ds
(
η(s)

) ≤ exp
(
Ys
(
η(s)

) (
1 + c ε(n)

))
, (5.206)

where we introduced the random variable

Ys(σ) :=
1∣∣Λk,Θ−

k,s

∣∣
∑

i∈Λk

ai(s)
(
µk
s

[1i∈Λ
k,Θ

−
k,s

]
− 1i∈Λ

k,Θ
−
k,s

(σ)

)
(5.207)

with ai(s) := exp
(
β 〈h̃i,−eΘ−

k,s + eΘ
+
k,s〉
)
− 1. Thus, it remains to evaluate the sums in (5.205).

For any u ∈ {1, . . . , t− 1}, we claim that

∑

η(u),...,η(t−1)

t−1∏

s=u

µk
s

[
ds
]

ds
(
η(s)

) qs
(
η(s− 1), η(s)

)
≤ exp

(
t−1∑
s=u

(
Ys
(
η(u − 1)

)
+ c ε(n) t−u

|Λk|

))

(5.208)

uniformly for all η(u − 1) ∈ S[x̃(u− 1)]. Once we have establish (5.208), it follows that

Eµk
0

[
ψk
t

]
≤ µk

0

[
exp
(∑t−1

s=0 Ys

)]
exp
(
c ε(n) t2

|Λk|

)
. (5.209)

The proof of (5.208) relies one the following observation. For any u ∈ {1, . . . , t− 1} consider

an arbitrary chosen but fixed σ ∈ S[x̃(u)]. Then, for all j ∈ Λk,Θ−
k,u−1

(σ) and arbitrary s,

Ys
(
σj,Θ+

k,u−1
)

= Ys(σ) +
1∣∣Λk,Θ−

k,s

∣∣
∑

i∈Λk

ai(s) 1i= j

(1Θ−
k,s=Θ−

k,u−1
− 1Θ−

k,s=Θ+
k,u−1

)

≤ Ys(σ) +
c ε(n)

|Λk|
. (5.210)

Therefore, we obtain by induction that

∑

η(u),...,η(t−1)

t−1∏

s=u

µk
s

[
ds
]

ds
(
η(s)

) qs
(
η(s− 1), η(s)

)

≤
∑

σ∈S[x̃(u)]

exp

(
t−1∑
s=u

(
Ys
(
σ
)
+ c ε(n) t−u+1

|Λk|

))
qu
(
η(u − 1), σ

)

≤ exp

(
t−1∑
s=u

(
Ys
(
η(u− 1)

)
+ c ε(n) t−u

|Λk|

))
,

where we take advantage of (5.210) is the second step.

STEP 3. Finally, we are left with the task to bound µk
0

[
exp

(∑t−1
s=0 Ys

)]
from above. Let us

consider the log-moment generating function h(u) = lnµk
0

[
exp

(
u
∑t−1

s=0 Ys
)]

for u ≥ 0. Since
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any function, h, that vanishes at zero, satisfies the bound h(t) ≤ t2

2 max0≤s≤t h
′′(s) + t h′(0),

we immediately get that

lnµk
0

[
exp
(∑t−1

s=0 Ys

)]
≤ max

0≤u≤1
Var

t,u
[
exp
(∑t−1

s=0 Ys

)]
+

t−1∑

s=0

µk
0

[
Ys

]
, (5.211)

where Var
t,u is the variance with respect to the tilted measure µk,t,u

0 conditioned on S[x̃(0)],

µk,t,u
0 (σ) =

µk
0(σ) exp

(
u
∑t−1

s=0 Ys(σ)
)

µk
0

[
exp
(
u
∑t−1

s=0 Ys

)1̺k(σ)=x̃(0)

] , ∀σ ∈ S[x̃(0)]. (5.212)

In Lemma 5.34 we derive bounds for the expectation µk
0

[
Ys
]

and the variance Var
t,u
[
Ys
]
,

respectively. Notice that the proof of this lemma crucially relies on the fact that the distance of

the mesoscopic path
¯
x from the boundary of×n

k=1 Mπk
is bounded from below by a constant

that is independent of N . Consequently, assuming (5.220) we have

t−1∑

s=0

µk
0

[
Ys
]
≤ c21 ε(n)

t−1∑

s=0

s

|Λk|
= c21 ε(n)

t2

|Λk|
.

On the other hand, using the Cauchy-Schwartz inequality and assuming (5.221) implies that

Var
t,u
[
exp
(∑t−1

s=0 Ys

)]
≤
( t−1∑

s=0

√
Var

t,u
[
Ys
])2

≤ c22 ε(n)
t2

|Λk|

Thus, by combining the estimates above, we finally obtain that there exists c <∞ such that

lnµk
0

[
exp
(∑t−1

s=0 Ys

)]
≤ c ε(n)

t2

|Λk|
. (5.213)

This concludes the proof. �

In the remaining part of this subsection we will proof the Lemma 5.34. To start with, notice

that the tilted measure, µk,t,u
0 , as well as the canonical measure, µk

0 ≡ µk,0,0
0 , can be written as

a product measures, νk,t,u, conditioned on S[x̃(0)], i.e.

µk,t,u
0 (σ) =

⊗

i∈Λk

pk,t,ui

[
σ
∣∣S[x̃(0)]

]
=: νk,t,u

[
σ
∣∣S[x̃(0)]

]
, (5.214)

where for all r ∈ S0

pk,t,ui (r) :=
exp
(
β 〈h̃i, er〉 + u

∑t−1
s=0 |Λk,Θ−

k,s
|−1 ai(s)1r=Θ−

k,s

)

∑
r′∈S0

exp
(
β 〈h̃i, er′〉 + u

∑t−1
s=0 |Λk,Θ−

k,s
|−1 ai(s)1r′ =Θ−

k,s

) . (5.215)

Let us point out that, as a consequence of the choice of the paths
¯
x ∈ GPA,B, there exists

δ1 ∈ (0, 1) independent of N such that uniformly for all i ∈ Λk, t ∈ {0, . . . , τk[b
¯
x]} and

u ∈ [0, 1] the probabilities pk,ui satisfy

δ1 ≤ pk,t,ui (r) ≤ 1− δ1, ∀ r ∈ S0. (5.216)

A key element in the analysis are sharp large deviation estimates, as well as properties of the

involved entropy and corresponding log–moment generating function. Given a subset Λ ⊂ Λk,

we define ̺|Λk\Λ| : S|Λk| → M(Λk−Λ)/N ,

σ 7→ ̺|Λk\Λ|(σ) :=
1

N

∑

i∈Λk\Λ
δσi
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Note that in later applications we will choose Λ = {i} or Λ = {i, j}. Further, for any x ∈ Rq

consider the entropy

It,u|Λk\Λ|(x) := sup
s∈Rq

(
〈s, x〉 − U t,u

|Λk\Λ|(s)
)

which is defined as the Legendre-Fenchel transform of the log-moment generating function

U t,u
|Λk\Λ| : R

q → R,

t 7→ U t,u
|Λk\Λ|(s) :=

1

N
ln νk,t,u

[
exp

(
N 〈s, ̺|Λk\Λ|〉

)]
=

1

N

∑

i∈Λk\Λ
ln
(∑

r∈S0
esr pk,t,ui (r)

)
.

Let us remark that, due to (5.216), a statement analog to Lemma 5.6 can be established.

Moreover, by inspecting the proof of [26, Theorem 3.1], it can be shown that the error term

in (5.33) is actually of order 1/N . Hence, for all x ∈ ri
(
M(Λk−Λ)/N

)
,

νk,t,u
[1̺|Λk\Λ| =x

]
=

exp
(
−N It,u|Λk\Λ|(x)

)

√(
2πN

)q−1
det
[
HessU t,u

|Λk\Λ|
(
tΛ(x)

)]
q

(
1 +O

(
1
N

))
, (5.217)

where tΛ(x) ∈ Rq is the solution of x = ∇U t,u
|Λk\Λ|

(
tΛ(x)

)
such that

∑
r∈S0

tΛr (x) = 0.

Lemma 5.33. Suppose y, y′ ∈ ri
(
M(Λk\Λ)/N

)
. Then, there exists c <∞, independent of N , such

that
∥∥tΛ(y′) − tΛ(y)

∥∥ ≤ c ‖y′ − y‖. (5.218)

Proof. Due to the fact that y, y′ ∈ ri(M(Λk−Λ)/N ), there exists δ ≡ δ(y, y′) > 0 such that for

all 0 ≤ s ≤ 1 the minimal component of s y′ − (1 − s)y is at least δ. Recall that in a local

coordinate system (5.30) reads

ψ(t∗) = ∇
(
It,u|Λk\Λ| ◦ ψ−1

)(
ψ(x)

)
⇐⇒ ψ(x) = ∇

(
U t,u
|Λk\Λ| ◦ ψ−1

)(
ψ(t∗)

)
.

Here, we choose as a local chart ψ : M(Λk−Λ)/N → Rq−1 the linear map ψ(x) = VTx where

the columns of the matrix V consists of the vectors of an orthonormal basis of V1. Further, we

set ξ := y′ − y ∈ V1. Then,
∥∥ψ
(
tΛ(y + ξ)

)
− ψ

(
tΛ(y)

)∥∥

=
∥∥∥∇
(
It,u|Λk\Λ| ◦ ψ−1

)(
ψ(y + ξ)

)
− ∇

(
It,u|Λk\Λ| ◦ ψ−1

)(
ψ(y)

)∥∥∥

≤
∫ 1

0

∥∥∥Hess
(
It,u|Λk\Λ| ◦ ψ−1

)(
ψ(y)− s ψ(ξ)

)
ψ(ξ)

∥∥∥ ds

≤
∫ 1

0

∥∥∥
(
V

T HessU t,u
|Λk\Λ|

(
tΛ(y − s ξ

)
V

)−1

ψ(ξ)
∥∥∥ ds

≤ c
∥∥ψ(y′ − y)

∥∥, (5.219)

where c = δ−2 e2βε(n). Note that we used (5.58) in the third step and Lemma 5.6 in the last

one. This completes the proof. �

Lemma 5.34. For all
¯
x ∈ GPA,B and k = 1, . . . , n there exists constants c21, c22 <∞ such that

for all s ∈ {0, . . . , τk[b
¯
x]}

(i) the expectation of Ys with respect to µk
0 is bounded by

µk
0

[
Ys
]
≤ c21 ε(n)

s

|Λk|
, (5.220)
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(ii) the variance of Ys with respect to µk,u
0 is bounded by

Var
u
[
Ys
]
≤ c22

ε(n)

|Λk|
(5.221)

uniformly for all u ∈ [0, 1].

Proof. Let us consider an arbitrary but fixed k ∈ {1, . . . , n} and s ∈ {0, . . . , τk[b
¯
x]}. Moreover,

we set r = Θ−
k,s and abbreviate νk ≡ νk,0,0 throughout this proof to lighten notation.

(i) In view of (5.207), it remains to analyze the difference
∣∣µk

s

[1i∈Λk,r

]
− µk

0

[1i∈Λk,r

]∣∣ for

s ≥ 1. By a straight forward computation we obtain first of all that, for N large enough,

µk
s

[1i∈Λk,r

]
− µk

0

[1i∈Λk,r

]

µk
s

[1i∈Λk,r

]

=
∑

q∈S0

µk
s

[1i∈Λk,q

]
(
1 −

νk
[1̺|Λk\{i}| = x̃(0)−êr

]
νk
[1̺|Λk\{i}| = x̃(s)−êq

]

νk
[1̺|Λk\{i}| = x̃(0)−êq

]
νk
[1̺|Λk\{i}| = x̃(s)−êr

]
)

=
∑

q∈S0

µk
s

[1i∈Λk,q

] (
1 − exp

(
−|Λk|R1

) (
1 +O

(
1
N

)))
(5.222)

where the remainder, R1, is given by

R1 = Ii|Λk|
(
x̃(s)− êr

)
− Ii|Λk|

(
x̃(s)− êq

)
− Ii|Λk|

(
x̃(0)− êr

)
+ Ii|Λk|

(
x̃(0)− êq

)
. (5.223)

Here, we introduce the notation Ii|Λk| ≡ I0,0|Λk\{i}|. Now, for any y ∈ ri
(
M(|Λk|−1)/N

)
, let us

define ti(y) ∈ Rq as a solution of y = ∇U i
|Λk|
(
ti(y)

)
. As a immediate consequence of (5.29),

we have

Ii|Λk|
(
y − êr

)
− Ii|Λk|

(
y − êq

)
=
〈
ti(y − êr), êq − êr

〉
+ U i

|Λk|
(
ti(y − êq)

)

− U i
|Λk|
(
ti(y − êr)

)
−
〈
ti(y − êr)− ti(y − êq), y

〉

=
〈
ti(y − êr), êq − êr

〉
+ O

(
1/N2

)
. (5.224)

where we used a Taylor expansion of U i
|Λk|
(
ti(y − êq)

)
and (5.218) in the second step. There-

fore,

R1 =
〈
ti(x̃(s)− êr) − ti(x̃(0)− êr), êq − êr

〉
+ O

(
1/N2

)
≤ c

s

N2
, (5.225)

provided that c <∞ is chosen appropriately. As a result, there exists c21 <∞ such that

µk
0

[
Ys
]
= O

(
ε(n)

) ∣∣∣µk
s

[1i∈Λk,r

]
− µk

0

[1i∈Λk,r

]∣∣∣ ≤ c21 ε(n)
s

N
. (5.226)

(ii) To start with, let us rewrite the variance, Var
t,u[Ys], as

Var
t,u[Ys] ≤ c ε(n)

|Λk,r|
+

1
∣∣Λk,r

∣∣2
∑

i,j∈Λk
i6=j

ai(s) aj(s) Cov
t,u
[1i∈Λk,r

,1j∈Λk,r

]
(5.227)
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Hence, it suffices to show that the covariance Cov
t,u
[1i∈Λk,r

,1j∈Λk,r

]
is of order 1/N for any

distinct i, j ∈ Λk. By a computation similar to the one in (5.222), we obtain

Cov
t,u
[1i∈Λk,r

,1j∈Λk,r

]

µk,t,u
0

[1i∈Λk,r
1j∈Λk,r

]

=
∑

q∈S0

µk,t,u
0

[1i∈Λk,q

]
(
1 −

νk,u
[1̺|Λk\{i}| = x̃(0)−êr

]
νk,u

[1̺|Λk\{i,j}| = x̃(0)−êr−êq
]

νk,u
[1̺|Λk\{i}| = x̃(0)−êq

]
νk,u

[1̺|Λk\{i,j}| = x̃(0)−2 êr
]
)

=
∑

q∈S0

µk,t,u
0

[1i∈Λk,q

] (
1 − exp

(
−|Λk|R2

) (
1 +O

(
1
N

)))
. (5.228)

By introducing the notation Ii,j|Λk| ≡ It,u|Λk\{i,j}|, the remainder can be written as

R2 = Ii,j|Λk|
(
x̃(0)− 2 êr

)
− Ii,j|Λk|

(
x̃(0)− êr − êq

)
− Ii|Λk|

(
x̃(0)− êr

)
+ Ii|Λk|

(
x̃(0)− êq

)

=
〈
ti,j(x̃(0)− 2 êr) − ti(x̃(0)− êr), êq − êr

〉
+ O

(
1/N2

)

= O
(
1/N2

)
. (5.229)

In the last step, we took advantage of (5.218) and the fact that ti
(
x̃(0) − êr

)
∈ ∂Ii,j(y) with

‖x̃(0) − êr − y‖ ≤ √
q/N . Thus, by combining the estimates above, the assertion of (5.221)

follows. �

5.5. Sharp estimates on metastable exit times and exponential distribution

The representation (1.49) of the averaged mean hitting time, EνA,B [τB ], in terms of the

capacity, cap(A,B), and the equilibrium potential, hA,B, has the advantage that it suffices to

compute precisely only cap(A,B) and to establish some rough bounds on hA,B. In the previous

sections we have established upper and lower bounds on cap(A,B) that coincides in the limit

when N tends to infinity. Hence, our main objective now is to show that the equilibrium

potential is close to one in the neighborhood, Uδ(A), of the starting set A, whereas outside

this neighborhood it is sufficiently small to ensure that the summation of µN (σ)hA,B(σ) over

all σ ∈ SN \ Uδ(A) compare to µN [A] is negligible. Notice that in general such a behavior of

the equilibrium potential, hA,B, depends crucially on the choice of the subsets A and B.

To start with, let m,m′ ∈ Γn be two local minima of the mesoscopic free energy Fn.

Further, let z ∈ Γn be the lowest saddle point of index one between m from m′. As a con-

sequence of Lemma 5.8, for any n, every mesoscopic critical point m determines uniquely

a corresponding macroscopic critical point m ≡ m(m) ∈ ΓN and vice versa. Recall that

the value of the mesoscopic free energy and macroscopic free energy coincides at critical

points, i.e. FN (m) = Fn
(
m
)
. Let us consider the sets A ≡ An = Sn[m] ⊂ SN and

B ≡ Bn = Sn[m′] ⊂ SN . In view of (5.67) and (5.128), there exists C1 > 0 such that

for all n ∈ N there exists N(n) ∈ N and some an <∞ such that

PµA

[
τB < τA

]
≤ an N

n(q−1)/2−1 exp
(
−βN

(
FN (z)− FN (m)

))
≤ e−βC1N , (5.230)

for all N ≥ N(n). By choosing C1 appropriately, we can ensure that the last inequality holds

true uniformly for all minima m,m′ of Fn. For this reason, for every n, the set Mn :={
Sn[m] | m ∈ Γn local minima of Fn

}
is a suitable candidate for the set of metastable sets.

In the following lemma we show that, if n is chosen large enough, Mn satisfies (3.1) with

C := C1 − 2βε(n).

Lemma 5.35. For all n ∈ N there exists N(n) ∈ N such that for all X = Sn[x] 6∈ Mn with

x ∈ Γn

PµX

[
τMn < τX

]
≥ e−2βε(n)N , ∀N ≥ N(n). (5.231)
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Proof. For every x ∈ Γn there exists a local minimum m of Fn and a self-avoiding mesoscopic

path
¯
x from x to m such that the mesoscopic free energy is non-increasing along the path. By

exploiting the fact that the Dirichlet form is monotone in the transition probabilities provides

an immediate lower bound for PµX

[
τMn < τX

]
in terms of the capacity cap¯

x(M,X) of a chain

where all pN (σ, η) are set to zero whenever σ, η 6∈ Sn[
¯
x], i.e.

cap(X,Mn) ≥ inf
f∈HX,M

1

2

∑

σ,η∈Sn[
¯
x]

µN (σ) pN (σ, η)
(
f(σ)− f(η)

)2
= cap¯

x(X,A).

HereA = Sn[m] and Sn[
¯
x] denotes the set of configurations that correspond to the mesoscopic

path. On the other hand, the Berman-Konsowa principle implies

cap¯
x(X,A) ≥ CAP

n,
¯
x(x,m)

( |
¯
x|−1∑

t=0

Ef¯
x[
Φ¯

x
t

] (
gx,m

(
x(t)

)
− gx,m

(
x(t+ 1)

))
)−1

where Φ¯
x
t is defined in (5.139) and gx,m is the mesoscopic harmonic function along the one-

dimensional path.

For the subordinate unit flow f¯
x we choose the flow that is induced by a simple directed

random walk on Sn[
¯
x], i.e. for k = 1, . . . , n such that ‖xk(t+ 1)− xk(t)‖ = 2/N and r = Θ−

k,t

f¯
x(σ, η) =

1η∈Λk,r(σ)∣∣Sn[x(t)]
∣∣ |Λk,r(σ)|

∀σ ∈ Sn[x(t)], η ∈ Sn[x(t+ 1)].

Since Qn(x)/µN (σ) ≤ eβε(n)N |Sn[x]| for all σ ∈ Sn[x] and x ∈ Γn, our choice of f¯
x gives

rise to Φ¯
x
t (¯
σ) ≤ eβε(n)N uniformly for all σ ∈ Sn[x(t)] and t = 0, . . . , |

¯
x| − 1. Using that the

mesoscopic capacity along a one-dimensional path can be computed explicitly, see e.g. [11]

CAP
n,
¯
x(x,m) =

( |
¯
x|−1∑

t=0

1

Qn
(
x(t)

)
rn
(
x(t),x(t+ 1)

)
)−1

≥ c
Qn
(
x
)

N
√
N

where we used that rn
(
x(t),x(t+ 1)

)
≥ c′/N and Fn

(
x(t)

)
− Fn(m) ≥ c′′(|

¯
x| − t)2/N2 in a

neighborhood of a local minimum m. Hence, there existsN(n) ∈ N such that for allN ≥ N(n)

PµX

[
τMn < τX

]
≥ c

N
√
N

e−βε(n)N ≥ e−2βε(n)N .

This concludes the proof. �

Proof of Theorem 5.5. (i) For δ specified in Theorem 5.5, we define

Uδ :=
{
x ∈ Γn

∣∣ Fn(x) < Fn(m) + δ
}

= Uδ(m) ∪
⋃

m′∈M

Uδ(m
′) (5.232)

where Uδ(m) denotes the connected component of Uδ containing m. Inspecting the proof of

Theorem 3.10, we obtain that

EνA,B

[
τB
]
=

1

cap(A,B)

∑

x∈Uδ(m)

Qn(x)
(
1 + ON (1)

)
. (5.233)

Note that, in view of (5.231), we only have to choose c1 > 1 + α−1 for α−1 = O(q) such that

c2 > 2βε(n). It remains to evaluate the right-hand side of (5.233). Analog to the proof of
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Proposition 5.21, a standard approximation of the sum by an integral yields
∑

x∈Uδ(m)

Qn(x) = Qn(m)
∑

x∈Uδ(m)

exp
(
− βN

2 〈x, An(m)x〉
)

= Qn(m)

(
N q−1

√
q

)n ∫

V1

exp
(
− βN

2 〈x, An(m)x〉
)
dx
(
1 + ON (1)

)

= Qn(m)

((
2πN

)q−1

q βq−1

)n/2 (√
det
(
An(m)

))−1/2(
1 + ON (1)

)
(5.234)

Thanks to (5.67) and (5.68), we get that

∑

x∈Uδ(m)

Qn(x) =
exp
(
−βNFN (m)

)

ZN

√
det
(
Iq − 2β

(
D(z)− Eh

[
u1(2βz) · u1(2βz)T

]))
(
1 + ON (1)

)
.

(5.235)

Thus, by combining (5.233) with (5.234) and the expression for the capacity that is given in

(5.20) concludes the proof of (i).

Moreover, (ii) and (iii) follows easily from Corollary 3.12 and Theorem 3.13. �
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