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Abstract

We study reaction-diffusion waves on curved two-dimensional surfaces, and
determine the influence of curvature upon the nucleation and propagation of
spatially localized waves in an excitable medium modelled by the generic
FitzHugh—-Nagumo model. We show that the stability of propagating wave
segments depends crucially on the curvature of the surface. As they propagate,
they may shrink to the uniform steady state, or expand, depending on whether
they are smaller or larger, respectively, than a critical nucleus. This critical
nucleus for wave propagation is modified by the curvature acting like an
effective space-dependent local spatial coupling, similar to diffuson, thus
extending the regime of propagating excitation waves beyond the excitation
threshold of flat surfaces. In particular, a negative gradient of Gaussian curvature
I, as on the outside of a torus surface (positive /'), when the wave segment
symmetrically extends into the inside (negative I"), allows for stable propagation
of localized wave segments remaining unchanged in size and shape, or oscil-
lating periodically in size.
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1. Introduction

Wave propagation in excitable extended media described by nonlinear reaction-diffusion
equations has widespread applications in chemistry, biology, and medicine. A particularly
important example are neuronal systems where spreading depression (SD) waves are associated
with a pathological dysfunction of brain activity that occurs, for instance, during migraine or
stroke. Understanding the effect of internal control mechanisms in neuronal wave dynamics is
of great relevance not only for comprising the functionality of the human brain [1], but also for
developing novel future therapies of pathological states which are connected with cortical SD
waves in migraine aura or stroke [2, 3]. There is clinical and experimental evidence [4, 5] that
spatially localized wave segments play a dominant role in these phenomena. In general,
spatially localized wave segments, as they propagate, might shrink, expand, or remain
unchanged in size and shape, in which case they are called particle-like waves or dissipative
solitons. Spatially localized wave segments also represent critical structures which can be
stabilized by global feedback [6-8]. They play an important role for the nucleation of
propagating waves and wave segments in two-dimensional (2D) spatial domains. Generally,
waves can be controlled by feedback or closed loop control. This is a robust and versatile
concept which uses the internal dynamics of the system to generate a control signal which
directs the system towards a desired dynamics. A plethora of examples are provided by global
or nonlocal and in some cases time-delayed feedback control of wave propagation in reaction-
diffusion systems [9-15]. On the other hand, the curvature of the medium itself also provides a
means of internal control of the stability, as we will show in this paper.

Most previous studies have focussed on wave propagation in planar spatial domains, yet
there is also a considerable body of work on reaction-diffusion waves in curved surfaces mostly
on spirals and ring waves [16—24] but not to the best of our knowlege on nucleation. The cortex,
however, represents a strongly curved surface. It is the purpose of this paper to study nucleation
and propagation of wave segments on curved 2D surfaces. We will demonstrate that positive or
negative Gaussian curvature of the spatial domain has a dramatically different effect upon the
wave dynamics.

The paper is organized as follows. In section 2 we present the model. In section 3 we
discuss wave solutions on a torus, which represents a curved surface on which locally both
positive and negative Gaussian curvature occurs. We consider ring waves, wave segments, and
dissipative solitons (critical nuclei) stabilized by feedback control. Specifically, we study ring
wave break-up, curvature-induced changes of stability, and curvature-induced stabilization of
wave-segments. In section 4 we draw conclusions.

2. Model

In this work we use the FitzHugh—-Nagumo (FHN) system as a generic model for excitable
systems [25], and study it in two spatial dimensions. It is a generalization of the van der Pol
oscillator [26] and also known as Bonhoeffer-van der Pol oscillator [27, 28]. The model was
first suggested by FitzHugh in 1961 [29], and independently by Nagumo ef al in 1962 [30]. As
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Figure 1. The nullclines & = 0 (solid red) and v = 0 (solid green) in the phase space of
the homogeneous FHN system with § = 1.4. Their intersection at (us, vs) is a stable

fixed point. Three trajectories are drawn for e = 0.04: one canard-like trajectory
(dotted), passing through the maximum of the nullcline # = 0, and two trajectories
starting at v = v, nearby but on opposite sides of the canard trajectory. They diverge
sharply, producing threshold behaviour: the dashed and the dash-dotted trajectories
represent super-threshold and subthreshold stimulation, respectively.

a two-variable simplification of the four-variable Hodgkin—Huxley model, which describes the
propagation of action potentials along the giant squid axon [31], it describes the response of an
excitable nerve membrane to external current stimulation:

a—u=3u—u3—v+DV2u, (D)
ot
ov
— =¢(u+ p). 2
o =elu+p) 2)

The original interpretation of the FHN equations (1), (2) is based on a single neuron: the
variable u models fast changes of the electrical potential across the membrane of a nerve cell
axon (occurring as spikes in the time series), and v is the recovery variable related to the gating
mechanism of the membrane channels [29]. The small parameter ¢ < 1 represents the time
scale ratio of the two variables. The generic dynamical mechanism described by equations (1),
(2) was also suggested to describe a fundamentally different ionic excitability of neuronal tissue
that originates from bistable ion homeostasis and is the bais of SD [32, 33].

In general, the fast variable u is called the activator variable, whereas the slow variable v is
referred to as inhibitor variable. The diffusion constant of the activator is D, which is chosen as
0.12 throughout this paper (and can simply be interpreted as a scaling of space), and inhibitor
diffusion is assumed to be slow, and hence negligible. The threshold parameter f determines

whether the systems is excitable (f > 1) or exhibits self-sustained perodic oscillations (ﬂ < 1).

In the following we consider f in the excitable regime.
Figure 1 shows a schematic phase portrait of a spatially homogeneous system in the
excitable regime (f > 1) with the cubic activator nullcline and the vertical inhibitor nullcline

(solid red and green lines). The system has a single fixed point (us, vs), which is stable for g > 1
and located on the left branch of the cubic nullcline. At # = 1 a supercritical Hopf bifurcation of
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a limit cycle occurs, and the fixed point becomes unstable and is shifted to the middle branch of
the nullcline for f < 1.

The excitable behaviour of the system is crucially determined by the cubic nonlinearity of
the activator equation and the separation of time-scales between the two variables: when the
system is perturbed by a sufficiently large (super-threshold) external stimulus, which can be
regarded as setting the initial condition, the system undergoes a large excursion in phase space
(spiking). Starting from its initial condition, the system performs, due to the strong timescale
separation € < 1, a fast transition to the stable right branch of the activator nullcline. After that,
it travels slowly upwards approximately along this nullcline, until the phase points jumps back
to the left branch, and returns, along the left branch of the nullcline, slowly downwards to the
fixed point (recovery phase). Without further external stimulation the system remains in the
stable fixed point (rest state).

The threshold-like behaviour of the FHN system is associated with the canard-like
trajectory (dotted black line in figure 1), which is the trajectory passing through the local
maximum of the cubic nullcline, and which is often referred to as the threshold of the FHN
system. The region around the canard-like trajectory is extremely sensitive to initial conditions:
for initial conditions only slightly below the canard-like trajectory the systems will perform a
large excursion in phase space, whereas for initial conditions only slightly above the canard-like
trajectory the excursion will be small (subthreshold excitation). In principle, the transition from
small to large amplitude excitation is continuous; in fact, however, phase space excursions of
intermediate amplitude are very rare. Correspondingly, small subthreshold stimulations (dash-
dotted black line in figure 1) will result in fast relaxation, while super-threshold stimulations
(dashed black line in figure 1) induce a full excursion in phase space, corresponding to a
characteristic spike in the time evolution of the u-variable.

In the following we consider spatially inhomogeneous solutions, i.e., waves or wave
segments in 2D. Depending upon the set of parameters (e, ﬁ) there exist different wave
solutions [5, 34]. Here we focus on localized wave segments which may either shrink or
expand, as they propagate, or in the limit case, remain unchanged in size and shape, in which
case they are called particle-like waves or dissipative solitons.

For each set of parameters (e, ﬂ) with f < ﬁaRm (or & < gy , respectively) there exists a

localized wave solution (wave segment), which represents a critical spatio-temporal structure,
i.e. a particle-like wave, or dissipative soliton.

As we are interested in stationary propagating wave segments, equations (1)—(2) can be
written as

ou

c£=3u—u3—v+DV§u, (3)
c@—e(u+ﬂ) 4)
08 ’

where & = x + ct is the co-moving coordinate with propagation velocity c¢. In a co-moving
frame, the localized critical structure is related to a saddle-point with a single unstable
eigenvector (one-dimensional (1D) unstable manifold) in phase space. The curve representing
this solution in a parameter plane of the bifurcation diagram is called the rotor boundary dR. In
phase space, the stable manifold of states on dR separates the attractor of a spiral wave (spatially
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Figure 2. Schematic phase diagram of different regimes of the FitzHugh-Nagumo
model in the plane of wavesize S and threshold g for fixed e: weakly excitable
(perturbations grow to spiral waves); subexcitable (perturbations shrink in length);
nonexcitable (perturbations shrink in width, no propagation in one dimension). The
respective boundaries are marked by dR_ and dF,,. dR denotes the boundary of the
critical nucleus of size S below which perturbations shrink. The red solid line marks the

control loop, which stabilizes the critical nucleus (S*, ﬁ*) indicated by a red dot.

nonconfined) and the stable, spatially uniform steady state. Thus, when the form of this
dissipative soliton is perturbed, it either grows to a spiral wave, or shrinks and disappears.
Perturbations above the critical size of the dissipative soliton grow, while perturbations below
that critical nucleus shrink to the stable uniform state, i.e., the wave segments retracts. The
internal cortical control of such dissipative solitons may be viewed as a strategy of the cortex to
avoid re-entrant spiral waves, e.g., in migraine. Changing the nucleation size of this critical
structure changes the susceptibility to pathological conditions such as SD.

In figure 2, we show the rotor boundary oR (black dashed) in a schematic bifurcation
diagram of wavesize S as a function of the threshold parameter f. It separates the weakly
excitable parameter regime (perturbations grow to a spiral wave) from the subexcitable
parameter regime (wave segments in 2D below the critical size shrink in length, while in
spatially 1D systems wave propagation is stable). There exists another boundary dR_ (dash-
dotted vertical line), independent of size S, to the right of which all wave segments retract
(corresponding to infinitely large critical size). Furthermore, the propagation boundary 0F,, is
shown, which separates the subexcitable parameter regime from the nonexcitable regime. In the
nonexcitable parameter regime, perturbations shrink also in width and wave segments collapse,
i.e., even in spatially 1D systems no wave propagation is possible.

At this point we would like to remark that the critical nucleus (dissipative soliton), which
has the dynamic signature of a saddle-point, can be stabilized by an internal feedback control
loop which controls the excitation threshold £ in equation (2) that is,

p(1) =5+ KS (1) (5)
where K is the control strength, and the size of the wave segment S represents a measure of the
active area occupied by the wave segment.

Equation (5) defines a control line (red solid line with arrows) in the (ﬂ, S ) phase diagram
in figure 2. As the temporal evolution of a perturbation in a controlled system is confined to the
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control line, it asymptotically approaches a stable wave segment (ﬂ*, S *) (if perturbed with
convenient initial conditions). This follows from figure 2 since wave segments above dR, i.e.,

p < ﬁ*, grow in size, while wave segments below 0R, i.e., f > ﬁ*, shrink.
The size of the wave segment S can be calculated via an integral over the excited area, e.g.,

S (1) = /Rzu(r, 1) d’r. (©6)

If the stabilized solution (ﬁ*, S*) is reached, S(#) becomes stationary. Thus, although the
control is invasive, it does not produce new solution branches, and the stabilized critical nuclei
of the controlled system are unstable solutions of the system without control at § = (t—>oo).
Hence, it is adequate to define the size of the wave segment as the area where the activator
concentration u (r, t) is larger than zero

s(t) = /[R 0 (u(r, 1)) dr 7

with the Heaviside function 6.

In the following simulations we will apply an internal feedback mechanism as in equation
(5) with the wavesize S(f) from equation (7) to stabilize the critical nucleus. Furthermore, we
will study the influence of the curvature of the excitable medium on the stability of localized

waves. Hence the Laplace operator V> must be replaced with the Laplace—Beltrami operator

A, [35] for surfaces given in curvilinear coordinates o', i = 1,2,:
2
1 0 1 .. 0
A, =Y g 2—|g2g"— 8
. i,j=1g da’ (g § 60:’) ®
where g = Det G and G with the matrix elements g” is the metric tensor of the parametrization,
see appendix. The surface of a torus in the Euclidian space R’ can be described by the

parametrization (9, (p) of the position vectors

(6, 9) = (R+rcosf)sing [=| V| 9)

(R+rcos€)cos¢ (x)
r sin 0

The geometrical meaning of the major curvature radius R and the minor curvature radius r as
well as the angles @ and ¢ is visualized in figure 3. The Laplace—Beltrami operator in torus
coordinates reads

sind o  10° 1 0’

A = — — + —— + : 10
LB r (R +r COSQ) 00 r? 00* (R + 7 0089)2 (3402 (10

We investigate sections of a torus with von Neumann boundary conditions (no flux boundary)
on the equatorial section (at @ = 0 and @ = 7) and periodic boundary conditions in the
direction of the azimuthal angle ¢. This restricts all traveling wave solutions as they have to
obey the symmetries defined by these boundary conditions, i.e., the centre of mass of the critical
nucleus is pinned either on the outside or inside of the torus.
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Figure 3. Parametrization of a torus by coordinates (6, ¢).

The FHN model with diffusion and internal feedback control equation (5) including the
wavesize S(7) calculated with equation (7)

ou =3u—u — v+ DA u, (11)
ot
ov
—=¢elu+p +KS(t 12
—=e(u+p+KS(1)) (12)

is numerically solved using the explicit Euler method. With the discretization of space and time

x: = x,+jox,j=0,1,..,J

J

t: = ty+not,n=0,1,..,N,
where x stands for 6 or ¢, respectively, the time derivative is calculated as
3 n n
W= (3u; — («) = v + DAu )&, (13)
v = e (u + B+ KS (1)) 6. (14)

with o] :=u (t x.). The Laplace—Beltrami operator equation (8) contains derivatives of first and

n> v
second order with respect to € and ¢. The derivative of first order is solved using a
forward-backward Euler algorithm

u Uiy — U

00 200
The derivatives of second order are solved using the Euler method, first backward followed by
forward

(15)

3_2 N ujﬂl - 2uj" +u_,
06° (60)*

(16)

As initial condition, the activator concentration « is set equal to #, + 2 (which corresponds
to a supra-threshold excitation in figure 1) in a rectangular area, and the inhibitor concentration
vis set equal to v, + 1.5 in a rectangular area shifted relative to the activator stimulus, in order to
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determine the propagation direction of the wave segment. Outside the rectangle, the initial
condition is u = u, v = v, with the activator and inhibitor fixed point values u, v.. In order to
numerically obtain critical nuclei of smaller or larger size, the size of the rectangular area is
varied.

3. Results

3.1. Overview of wave solutions on a torus

The main results are twofold. First, by investigating excitation waves on a torus, we show that
the Gaussian curvature of the excitable medium changes the nucleation threshold in a
systematic way. Second, and more surprisingly, we observe that a curved medium can even
induce a change of stability. Unstable critical nuclei are transformed into stable propagating
localized wave segments.

We analyze the nucleation of excitation waves in reaction-diffusion media on curved 2D
surfaces, specifically on tori. A torus has positive and negative Gaussian curvature on the outside
(0=0) and the inside (0 = r), respectively, and a continuous transition in between with vanishing

Gaussian curvature on the top (0= %) and bottom (6= 37”), see figure 3. In general, a torus has, in
contrast to a sphere, not only locally varying and even negative Gaussian curvature, but a torus
also admits a global isothermal coordinate system, called toroidal coordinates ((Ql., ([)), see

appendix), that is, coordinates where the metric is locally conformal to the Euclidean metric.
Therefore an intuitive understanding of some of our results can be based on the particularly
simple form of the Laplace—Beltrami operator, the ‘diffusion operator’, in these coordinates.

On tori, a stable solution besides the spatially homogeneous steady state are ring-shaped
localized traveling wave solutions. Ring-shaped traveling waves have been analyzed, and in
particular their critical properties have been discussed, namely, wave fronts with sufficiently large
geodesic curvature break up on the torus inside [36]. We reconsider these travelling waves in order
to compare them with the dynamics of critical nuclei. The stable manifold of a critical nucleus
separates the attractor of a ring-shaped traveling wave and the spatially uniform steady state.

We restrict our study to nucleation of waves propagating strictly in the direction of the
azimuthal angle ¢ (see section 2) and, furthermore, the centre of mass of the nucleation is
pinned either on the outside or inside of the torus, i.e., the locations where the extreme values of
the Gaussian curvature occur. In the following, we will simply refer to these solutions as inside
or outside critical nuclei or, if stabilized, inside or outside traveling wave segments. These
solutions are the symmetric solutions with respect to the equatorial section of the torus. Note
that there exist also asymmetric solutions on tori that we have not studied. Furthermore, note
that these two symmetric critical nuclei on the outside and inside assume the shape of a
localized wave segment where the open ends extend in the direction of @ (perpendicular to the
propagation direction), that is, into regions of decreasing and increasing Gaussian curvature,
respectively. Our results are mainly explained by this gradient in the Gaussian curvature and not
by the absolute value of the Gaussian curvature.

The results are displayed in two bifurcation diagrams. First, the same bifurcation diagram
as already introduced in section 2 to define the regimes of excitability (weakly, sub-, and
nonexcitable, see figure 2 in section 2) is shown in figure 4. The size S of the critical nucleus,
see equation (7), is plotted versus the threshold parameter f of the local dynamics of the FHN



New J. Phys. 16 (2014) 053010 F Kneer et al

OPyp

wavesize S

0 . .
1.3 1.32 1.34 1.36 1.38 1.4
threshold

Figure 4. Bifurcation diagram of wavesize S as a function of threshold parameter S

computed from equations (1), (2) with D = 0.12 and ¢ = 0.36; critical nucleus on a flat

surface (black dashed line); 1: solutions on a torus with minor curvature radius r = %

. . 80 . . . .
and major curvature radius R = - 2: solutions on a torus with minor curvature radius

40

20 . . . . . .
r = 7. and major curvature radius R = -; stable ring wave solutions (red solid lines)

with points of excitation block, i.e. propagation suppression (red asterisks); unstable
inside critical nucleus (blue dash-dotted lines); unstable outside critical nucleus (green
dashed lines); stable stationary and stable oscillating localized wave segment on the
torus outside (green solid lines). Feedback equation (5) is applied to stabilize the states
on the dashed and dash-dotted curves.

system equations (1), (2). The reference branch of the critical nucleus from simulation on a flat
medium is now labeled ‘flat’ in figure 4 (black dashed). It separates the weakly excitable regime
(to the left, decreasing /) from the subexcitable regime (to the right, increasing f), which ends at
B = 0B, where the nonexcitable regime is reached.

In figure 4, we show further solution branches simulated on two different tori. The torus
labeled 1 has lower absolute values of Gaussian curvature than the torus labeled 2, since the
latter torus has a two times smaller value of its major curvature radius R. For each torus, we
have a branch of the ring-shaped traveling wave solution (red solid). Furthermore, for each
torus, we have one branch of the inside (blue dash-dotted) and outside (green dashed) critical
nucleus. The states on the curves of the critical nucleus (dashed or dash-dotted) are stabilized by
applying an appropriate global feedback equation (5) with suitably chosen f and K such that

the respective state (ﬂ*, S*) is at the intersection with the line given by equation (5). In

addition, on the torus outside, we find stable wave segments and stable oscillating waves (green
solid), see section 3.4 below.

Second, figure 5 is a bifurcation diagram, where the propagation velocity c, see equation (3),
(4), 1s plotted versus the threshold parameter f. The reference branches are on the one hand the
propagation velocities of the stable fast and the unstable slow wave solution in spatially 1D
systems with diffusion in one spatial direction only, [37], (grey dashed), and, on the other hand, a
critical velocity c,;, (black solid), below which stable wave propagation cannot be obtained [36].

In figure 5, we show further solution branches simulated on the less curved torus (torus 1).
Two branches show the propagation velocity ¢ in azimuthal (¢) direction of the ring-shaped
traveling wave solution (red solid), the lower one is the propagation velocity on the torus inside,
the upper one the propagation velocity on the torus outside. Furthermore, for the inside critical
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Figure 5. Bifurcation diagram of propagation velocity ¢ as a function of threshold S
computed from equations (1), (2) with D = 0.12 and ¢ = 0.36 on a torus with minor
curvature radius r = % and major curvature radius R = %; propagation velocity of stable

ring wave solution (red solid lines) on the torus inside (lower line) and torus outside
(upper line), point of excitation block (red asterisk); propagation velocity of inside critical
nucleus (blue dash-dotted lines) at centre of mass (lower line) and open ends (upper line);
propagation velocity of stable stationary and stable oscillating localized outside wave
segment (green solid lines) at centre of mass (upper line) and at open ends (lower line);
hypothetical propagation velocity of outside stable wave segments (green dashed line) on
torus inside; minimum propagation velocity (black solid line) calculated from equation
(17) with ¢, and ¢, computed from equations (1), (2) in one spatial dimension;
propagation velocity of the stable and unstable wave solution in 1D (grey dashed).
Feedback equation (5) is applied to stabilize the states on the blue dash-dotted curves.

nucleus (blue dash-dotted), we display the propagation velocity in azimuthal (¢) direction at the
centre of mass (lower line) and at the open ends (upper line), where the open ends are defined as
the most distant lateral location where the activator concentration u equals zero.

For the outside stable wave segments, we show the propagation velocity c¢ at the centre of
mass (green solid) and, after the bifurcation into two branches with decreasing threshold
parameter f, the maximum and minimum propagation velocity of the stable oscillating wave
segment. In addition, for the outside critical nucleus (with propagation velocity c,), we plot a

‘hypothetical’ branch (green dashed) that shows the propagation velocity ¢, = c(,ﬁ—:r: which a

point of this wave segment would have on the torus inside if it existed there.

3.2. Ring wave break-up at saddle-node bifurcation

First we focus on the break-up of ring-shaped traveling waves on tori [36]. The ring-shaped
traveling wave solution is a stable solution of equations (1)—(2) shown in figure 6. Thus the ring
waves can be conceived as homoclinic solutions of the related ordinary differential equations
(3), (4) in the co-moving frame. Ring waves have negative geodesic curvature on the torus
inside and positive geodesic curvature on the torus outside, see figure 6(a). Thus, compared to
1D pulses (or infinitely extended wavefronts on a flat surface, respectively), ring waves
propagate more slowly on the torus inside and faster on the torus outside, see figure 5 (red
solid). If the propagation velocity falls below a critical value ¢, , the ring wave breaks up on the

10
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t=15.4 t=22.4
t=10.8

(=]~

Figure 6. Snapshots of ring waves propagating counter-clockwise on a torus with minor
curvature radius r = g and major curvature radius R = % computed from equations (1),
(2) with D = 0.12 and ¢ = 0.36. (a) Stable ring wave, f = 1.378. (b) Ring-wave break-

up, f = 1.379. See movies 1 and 2 in the supplementary data, available from stacks.iop.
org/njp/16/053010/mmedia.

torus inside [36], see figure 6(b). This excitation block is marked by an asterisk in figures 4 and
5. Below the minimal velocity ¢, , stable wave propagation cannot be obtained.

For 1D waves, it is known that the propagation failure is due to the coalescence of the
homoclinic orbits of the fast and the slow wave (pulse) solution of the ordinary differential
equations (ODE) problem equation (3), (4) [37]. In the related partial differential equations
(PDE) problem equations (1), (2), the propagation boundary is a saddle-node bifurcation point
of the stable fast wave branch and the unstable slow wave branch.

In figure 5, the fast wave branch and the slow wave branch of 1D traveling wave solutions
are shown (upper and lower dashed grey line). At the propagation boundary dF,,, they meet in a
saddle-node bifurcation. Also in curved 2D media, the propagation failure is due to a saddle-
node bifurcation, where the fast wave branch collides with the slow wave branch in a saddle-
node bifurcation. In the 1D limit R—> oo, the threshold S, at which the ring waves break up,
converges to the propagation boundary 0F,,. This is shown in figure 7, where the lines show the
propagation failure in the (R, ) parameter space on two different tori; the upper line (dashed
blue) is computed on a less curved torus with lower absolute values of Gaussian curvature
compared to the lower line (dash-dotted green). The minimum velocity ¢, , below which stable
wave propagation is not possible, can be calculated as (see appendix)

¢ =c, (17)

min
801‘

where €, is the critical time separation parameter, where the homoclinic orbits of the 1D fast
and slow wave (pulse) solution of the ODE equation (3), (4) coincide, and ¢, is the
corresponding critical velocity. For the line ¢ . shown in figure 5, €, and ¢, are computed with

11
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Figure 7. Excitation block (propagation failure) of ring-shaped traveling waves on tori
in the (R, f) parameter space. No propagation is possible above the critical curves for
different r; dF,,, denotes the 1D propagation boundary.

AUTO from equations (1), (2) in one spatial dimension. AUTO is a software tool for
continuation and bifurcation problems in ordinary differential equations. Here, homoclinic
solutions of the FHN model in a co-moving frame equations (3), (4) in one spatial dimension
are continued in the threshold parameter . The propagation velocity ¢ of ring waves is affected
by both the parameters of the local dynamics (e and f) and the Gaussian curvature I of the
torus. An increase of f or € causes a deceleration of the ring wave on the torus inside. Also an
increase of the Gaussian curvature I” of a torus causes an increase of the absolute values of the
geodesic curvature of the ring wave, which results in a deceleration of the ring wave on the
torus inside. Thus, on more strongly curved tori (smaller R), the ring wave breaks up at smaller
threshold S, see figure 7.

3.3. Curvature-induced changes of nucleation

Next, we analyze the nucleation of excitation waves on the torus inside and outside,
respectively.

Torus inside. The inside branches of the critical nucleus (blue dashed) in figure 4 are to the
right of the reference curve (rotor boundary dR on flat surfaces). The larger the size S of the
critical nucleus is, the stronger is the shift towards larger threshold f. On the more strongly
curved torus (torus 2), the branch of the critical nucleus is shifted further. Thus, on the torus
inside, there exist critical nuclei in the subexcitable parameter regime, where on flat surfaces all
wave segments retract and vanish, cf figure 2. A qualitative explanation of this behaviour can be
given by the relation of the Gaussian curvature I” at the centre of mass of the critical nucleus
(0 = ) and at the open ends of the critical nucleus. Mathematically, the Gaussian curvature is
described by the Laplace-Beltrami operator equation (8) in torus coordinates [35]. A torus

admits a global isothermal orthogonal coordinate system, so-called toroidal coordinates (9,-’ g?)),

that is, coordinates, where the metric is locally conformal to the Euclidean metric. The
Laplace—Beltrami operator equation (8) given in toroidal coordinates is

_ (cosh 7 — cos 6) ( u  du )

LB aZ 6012 a¢2

(18)
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T
RN

coupling strength C

0 /2 n
0

Figure 8. Coupling strength C as a function of common toroidal angular variable 8 for
two tori with different Gaussian curvature I" with n = g.

where @ = (R* — %)z is a measure for the scaling of the space, y = arcoth [RAR® — r2)2] is a
measure for the relation between the major radius R and the minor radius r and ¢ = ¢ sinhp.
The derivation can be found in the appendix. Introducing an effective coupling strength
C (Q) = (cosh 5 — cos #)*/a’, a torus can mathematically be interpreted as a flat medium with
a spatial coupling being a function only of the location 8 (6, can be expressed in terms of 6, see
appendix), i.e. D(6) = DC(6). This is similar to effective geometric potentials arising from

curved surfaces in hard condensed-matter physics [40]. The coupling strength C (8) is strictly
monotonically increasing from the torus outside (8 = 0) to the torus inside (8 = =), see figure 8.

For more strongly curved tori, the gradient of C (@) is larger. The effective coupling strength

C (0) of the inside critical nucleus is larger at the centre of mass than at the open ends. Thus, the
resultant diffusion perpendicular to the propagation direction is directed towards the open ends.
This counteracts the retraction of the open ends in the parameter regime which is subexcitable in
a flat medium. Larger critical nuclei reach over a region of larger difference in effective
coupling strength, thus the shift towards larger threshold f is stronger. The propagation velocity
c of the centre of mass of the inside critical nucleus is similar to the propagation velocity of the
ring-shaped traveling waves at the torus inside, see figure 5.

Torus outside. On the torus outside, we find that, under certain conditions, unstable critical
nuclei bifurcate into stable propagating wave segments (green solid line in figure 4).
Furthermore, we find stable oscillating wave segments, whose size oscillates periodically in a
self-sustained way. This striking bifurcation pattern will be explained in section 3.4. The
outside branches (green) in figure 4 are to the left of the flat reference branch dR (black dashed).
On more strongly curved tori, the branch of the critical nucleus is further shifted.

The coupling strength relation between the torus inside and outside also explains this

behaviour. As the coupling strength C () at the centre of mass of the outside critical nucleus is
smaller than at the open ends, the resultant diffusion perpendicular to the propagation direction
is directed towards the centre of mass, which enhances the retraction of the open ends.

On the torus outside, critical nuclei with increasing size S are found at decreasing threshold
p. This is distinct from the inside nucleation branch and the flat reference branch: the larger the
size S of the critical nucleus is, the larger is the difference between the coupling strength at the

13
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centre of mass and the coupling strength at the open ends. Thus, larger critical nuclei at the torus
outside are shifted to smaller threshold f, whereas on the torus inside larger critical nuclei are
shifted to larger threshold f.

Critical nuclei with small size S extend over an area with almost constant coupling strength
C, see figure 8. This supports the assumption that the branches of the inside and outside critical
nucleus with small wavesize S in figure 4 lie close to the flat reference branch. This implies that
the outside nucleation branch (green solid in figure 4) at small wavesize S terminates in a
saddle-node bifurcation, and the unstable outside nucleation branch coalesces with the flat
reference branch; this could, however, not be resolved numerically.

3.4. Curvature-induced stabilization

Depending upon the excitation parameter f, different space-time patterns occur (figure 9).
Localized wave segments may either grow to become stable ring waves (figure 9(a)), or they
may shrink and vanish (figure 9(d)). Additionally, as an effect of the curved surface, on the
torus outside, we find stable propagating localized wave segments, see figure 9(c). Furthermore,
we find stable oscillating wave segments, whose size oscillates periodically, see figure 9(b). In
figure 10, we show the activator profile of a stable wave segment propagating with a stationary
profile, and in figures 11(a) and (b) we show snapshots of the activator profile of an oscillating
wave segment at its minimum size S and at its maximum size S, respectively.

The existence of stable wave segments on surfaces with positive Gaussian curvature can be
qualitatively explained with the help of the space-dependent effective coupling strength C, as
discussed in section 3.3. The open ends of a stable wave segment on the torus outside lie in an
area of the torus where the coupling strength C is larger than the coupling strength at 8 = 0,
where the centre of mass of the wave segment is located. Thus the resultant effective diffusion
perpendicular to the propagation direction caused by curvature is directed towards the centre of
mass of the wave segment. The larger the size S of the perturbation is, the stronger is this effect.
At the same time, in the excitable parameter regime (see figure 2), small perturbations grow in
length. If these two effects are balanced, we find stable propagating wave segments. In figure 4,
we show the branch of stable wave segments (green solid). Perturbations with size S larger than
the stable wave segments (and smaller than ring waves) shrink, as the difference in effective
coupling strength between the centre of mass and the open ends is large. Perturbations with size
S smaller than the stable wave segments and larger than the small outside critical nucleus
(which is not shown in figure 4 but supposed to lie close to the flat reference branch, see
section 3.3) grow, as the difference in coupling strength between the centre of mass and the
open ends is small.

In figure 5, we show the branch of the propagation velocity ¢ at the centre of mass of the
stable wave segments and the stable oscillating wave segments (green solid). Furthermore, we
show a hypothetical branch, the related propagation velocity at the torus inside (green dashed).

It is impossible that the stable wave segments grow to ring-shaped traveling waves
(without enlarging their geodesic curvature), as the hypothetical propagation velocity at the
torus inside is smaller than the minimal velocity c, . (black solid line in figure 5).

For decreasing threshold f, the hypothetical propagation velocity at the torus inside of the
stable outside wave solution (green dashed) accelerates, whereas the minimum velocity c,;,
(black solid) slows down. At the intersection point of these two branches, the stable wave
solution bifurcates into a stable oscillating wave segment and an unstable critical nucleus.
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Figure 9. Snapshots of wave segments propagating counter-clockwise on a torus with

. . 20 . : 80
minor curvature radius r =7~ and major curvature radius R = -~ computed from

equations (1), (2) with D = 0.12 and ¢ = 0.36. (a) Wave segment growing towards ring-
shaped traveling wave, f# = 1.315. (b) Oscillating wave segment, = 1.321476. (c)
Stable propagating wave segment, f = 1.325. (d) Wave segment shrinking towards
homogeneous steady state, f = 1.33. See movies 3—-6 in the supplementary data,
available from stacks.iop.org/njp/16/053010/mmedia.
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0.3t =n

Figure 10. Snapshot of a stable propagating wave segment on the torus outside:
activator concentration u (¢, €) on a torus with minor curvature radius r = % and major

curvature radius R = % computed from equations (1), (2) with f = 1.324, D=0.12 and
e = 0.36.

i

-2

o 0.3t -1 o ’ 0.3n-7

Figure 11. Snapshots of oscillating wave segment on the torus outside: same plots as in
figure 10 with § = 1.321476, D = 0.12 and ¢ = 0.36. (a) t = 478.5 (minimum size), (b)
t = 492.5 (maximum size).

The stable oscillating wave segments grow in length, until the propagation velocity c of the
open ends falls below the minimum velocity c,; . The open ends become unstable and decrease
in width. Although they continue growing in length, after the minimum velocity ¢, is reached,
the open ends asymptotically vanish.

in

4. Conclusions

SD is a pathological dysfunction of brain activity that occurs, e.g. during migraine or stroke. It
appears as spatially localized wave segments propagating in the cortex [5]. Despite substantial
progress in the understanding of SD, the inherent processes are still incompletely known. Here,
we study the influence of the curvature of the cortex on SD.

For this purpose, nucleation and propagation of spatially localized reaction-diffusion
waves are investigated on the surface of a torus. These unstable structures, which represent
critical nuclei, are stabilized by an internal feedback control equation (5). We confine attention
to the case that the centre of mass of the critical nuclei is pinned on the torus inside or outside,
respectively.

We have shown that negative Gaussian curvature (torus inside) causes a shift of the
nucleation branch to larger threshold g, i.e. there exist critical nuclei in a parameter regime that
is subexcitable on flat surfaces. In view of SD waves in the cortex, this might indicate that SD is
more likely to be initiated in areas with negative Gaussian curvature.
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In addition, we have made the surprising discovery that curvature can induce a change of
stability, i.e. on the torus outside we have found stable propagating localized wave segments, as
well as wave segments periodically oscillating in size.

These findings are qualitatively explained by an effective coupling strength, which can be
found as an equivalent mathematical description of the Gaussian curvature on surfaces that
admit isothermal coordinates.

Furthermore, we have reviewed the behaviour of ring-shaped wave solutions (autowaves),
which were first described by V' A Davydov in 2003 [36]. In the context of critical propagation
effects, we have confirmed that the propagation boundary of ring-shaped waves, constituting
break-up on the torus inside, is caused by a saddle-node bifurcation, where the fast wave branch
collides with the slow wave branch. Thereby, the propagation velocity of ring-shaped waves is
compared to a semianalytically calculated minimum velocity ¢, equation (17).

Appendix

Minimum propagation velocity

It 1s well known that wave propagation becomes impossible if the propagation velocity of a
traveling wave falls below a critical value ¢, [38]. Here, we consider the case of a traveling
wave on a curved surface, which leads to slowing down of the wave by negative geodesic
curvature of the wave front. The geodesic curvature of a wavefront is the curvature of the front
projected in its tangential plane. This should not be confused with the Gaussian curvature I” of a

surface, which is the product of the two principal curvatures, i.e.

cos 0
I = A.l
r(R +r cos&) @A)

in common torus coordinates (6, ¢).

The FHN model (1), (2) in one spatial dimension for1 < # < +/3 and sufficiently small &,
has a stable fast wave solution and an unstable slow wave solution corresponding to homoclinic
orbits of the related ODE problem equation (3), (4), see [37]. There exists a critical line in the
(e, B) space, at which the fast wave branch is connected to the slow wave branch. For values of
P or g, respectively, above this critical line, propagation of traveling waves is not possible. The
values of ¢ on this critical line are denoted by ¢, the corresponding critical propagation velocity
is c,,.

Here we show the derivation of the analytical dependency between the minimum velocity
¢, and the critical time scale separation ¢, and the critical propagation velocity c,,.

As described in [38], the propagation of slightly curved fronts (curvature radius R < rising
front width L) can be approximated by

T2

2
ca—u=3u—u3—v+DaTu+20—u, (A.2)
o 0¢ RO
Cg_;; = e(u + ﬂ), (A.3)

where the FHN model has been transformed to the co-moving coordinate & = x + ct, with
propagation velocity c.
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This can be written as

2
(C—B)a—u=3u—u3—v+DaTu, (A4)
R ) o 0°¢
1%
c— =¢€l\u + . A5
% (u + p) (A.5)
Introducing rescaled parameters ¢* and &*
” D
c'=c——, A.6
2 (A.6)
*
e = e, (A7)
c
yields
2
M =3y~ vy DI, (A.8)
0& ¢
o - e (u+ p) (A.9)
o0& ’ '

which has the same form as the FHN model in one spatial dimension.

Thus, for ¢* = ¢, and €* = ¢_, the homoclinic solution of (A.8), (A.9) corresponds to the
connection between the fast wave branch and the slow wave branch. Hence, the minimal
velocity ¢, of curved fronts can be derived from equation (A.7) by setting ¢* = ¢, and

¢" = g,. This yields
C... = —C,. (A.10)

min cr
cr

Toroidal coordinates

A parametrization f: {ai } > {xj} gives the Laplace—Beltrami operator in curvilinear
coordinates
1 o

Ag= ) ——
BN RS
where G is the metric tensor with matrix elements g, , which is the product of the transposed

0

ik = 0
(ee2)

Jacobian matrix of f multiplied with the Jacobian matrix of f, and g = Det G, see [35]. The
single components of the metric tensor thus are the scalar product

_ af/ﬁ_.<af i>. (A.12)

B ].w&ak o' oa*

gik : aai

A parametrization f'is isothermal, if the derived coordinate system is orthogonal and conformal.
In two spatial dimensions, a parametrization
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X
fi(a a’) - (y) (A.13)
Z
is orthogonal, if the scalar product of the basis vectors for i # k equals zero,
o | of
—|=) =0. A.14
< da' | da* > ( )
The condition for conformal mapping is
o |9 o | o
f. f. = lk ik , (A.15)
oa' | da' oa” | da

see [35]. This yields the following form of the Laplace-Beltrami operator
Ay =), ! ii akasz Ly, (A.16)
< god ot T g
To derive a global isothermal coordinate system for the surface of a torus, we start from the
parametrization [39]

a sinh 5 cos @

coshn — cos 6.
a sinh 5 sin @ (x]

(6. @) ~ -

A.17
cosh#n — cos 6. ( )

a sin 6,

coshn — cos 6.

where a > 0 is a scaling factor of space and > 0 is a measure for the ratio of major curvature
radius R and minor curvature radius r. As can easily be proved, these are orthogonal
coordinates. As

2
a

g =
% (cosh  — cos 6)’

and

a’sinh’y

8pp =

(coshn — cos Gl)z ,

84, # &, thus the parametrization (A.17) is not conformal. Introducing the variable
@ = @ sinh

yields

2
a

85 = 800, = V8 = (A.13)

(cosh n — cos 9,.)2 '
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Thus the Laplace—Beltrami operator in isothermal torus coordinates reads

(cosh 7 — cos Qi)z ( ou  ou )

LB = e 0@2 0@2

(A.19)

To obtain the dependencies of a and # upon the major curvature radius R and the minor
curvature radius r, which are parameters of the common parametrization

(R+rcos€)coscp X
(0, @) = (R+rcosf)sing | = (y]’ (A.20)
r sin 8 ‘

one needs to compare equation (A.20) with the isothermal parametrization

4
sinh 5

a sinh 5 cos

coshn — cosé,

3 x
(6, @) ~ | a sinhy sin| — d = (y) (A.21)
sinh 5

cosh n — cosé,
a sin 6,

coshn — cosé,

A necessary and sufficient condition that a point from the domain of definition of the
parametrization equation (A.20) lies on the 2D surface of a torus in the Euclidian R’ is

(W/x2 +y - R)2 v 2= (A22)

In toroidal coordinates equation (A.21) yields

Pty 4= 205 LTI v gt =0, (A.23)
sinh 5
By comparing the coefficients one obtains from equation (A.23) and equation (A.22)

R=a2M _ 4 cothy, (A.24)

sinh 5
1

r=a— , (A.25)

sinh 5

and the inverse relations
a=+R? - r2’ (A.26)

n= ar(:othL = arcothL (A-27)

JR* - r? Jnr =1 ,
where n = § As can be seen from the parametrizations (A.20) and (A.21), the transformation

P(p) is
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@(p) = ¢ sinh 7. (A.28)

To derive the dependency between 6, and 0, the expressions 4/x° 4+ y* — R of both coordinate
systems are compared. This yields

sinh 5

rcosf =a

- R. (A.29)
coshn — cos 6.

Replacing R and r with equations (A.24) and (A.25), this yields

cosh 7 cos 6, — 1) ' {+1 0> 0 (A30)

0=arccos( 1 <0

cosh n — cosé,

The inverse function is

2 2
6, = arccos R__R=r -{+1 020 (A.31)
r r(R+rcosf) -1 <0
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