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Abstract

In the past few years, it has been foreseeable that Moore’s law is coming to an end.
This law, based on the observation that the number of transistors in an integrated chip
doubles every 18-24 months, served as a roadmap for the semiconductors industry. On
the verge of its end due to the huge increase in integrated chips power density, a new
era in computing systems has begun. In this era, a core’s single performance is no
longer the most important parameter, but the performance of the whole multicore
system. It is an era where multiplicity and heterogeneity of computing units became

the norm in state-of-the-art systems on chips (SoCs), not the exception.

Although the problem of programmability of such complex systems has been ad-
dressed in both academia and industry, the pace at which more integration of pro-
cessing cores on chip was faster than that of bringing user applications to adapt and
scale well on these chips. New programming models emerged trying to bridge the gap
between programming complexity and well-utilization of the multicore systems, with

their various available resources.

One promising approach is the dataflow task-based programming model, where an
application is broken down to smaller execution units called tasks, which will dynam-
ically be scheduled to run on the available resources according to data dependences
between those tasks. However, this approach has an overhead as its runtime system
needs considerable amount of computational power to track dependences between
tasks and build the task graph, decide on ready tasks, schedule them on idle cores,
and upon task completion, kick off dependent tasks, all this performed dynamically
at runtime. Although dataflow task-based programming provides a solution to the
programmability problem of multicore systems, its runtime overhead, in practice, has
limited the scalability of applications programmed using this programming model,

especially when the tasks are fine-grain, and/or have complex task graphs.
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In case of applications that could be broken down to coarse-grain tasks, the runtime
overhead becomes less relevant, as the worker cores stay busy executing the coarse-
grain tasks long enough for the runtime system to simultaneously maintain the task
graph and find the next batch of ready tasks to feed the worker cores once they ask

for more work.

However, having control on the granularity of tasks is not a trivial task, as this
requires grouping tasks together in order to form coarser tasks. The grouping of tasks
implies knowledge of the dependences between them in order to reflect them on larger
tasks so that the behavior of the application remains unaltered. Although this work-
around to hide the runtime overhead pushes the dataflow programming model further
as a promising solution for utilizing multicore systems, it (the grouping of tasks) is

usually done by the programmer, which again raises the complexity of programming.

Moreover, grouping tasks becomes more complex for applications that can be broken
down to tens, if not hundreds or thousands of (fine-grain) tasks. As the number
and heterogeneity of cores is increasing, efficiently mapping a huge number of inter-

dependent tasks on modern multicore systems is simply beyond the human capabilities.

For the above reasons, a logical approach is to skip the grouping of tasks, and
offload the task graph management to another entity other than the runtime system:

a hardware accelerator for example.

About 15 years ago, at the time of single core processors of relatively low gate count
which were manufactured using the 180 nm technology, the overhead of a dedicated
hardware accelerator was significant when considering the extra power consumption,
overall chip area, and the resulting heat. In today’s measures this is not the case
anymore, as the semiconductor technology has advanced dramatically and multicore
processors are now the standard. Given the enormous number of transistors on chip
and the complexity of the individual processors, adding a dedicated hardware accel-

erator became justifiable.

The main contribution of this thesis is to offload the heaviest part of the runtime
system - task graph management - to a dedicated hardware accelerator, in order to
accelerate the runtime system, as well as to save some conflicts on using the shared
resources (microprocessor cores and memory system) by the runtime system and the

user applications. Moreover, a high-level application programming interface is pre-
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sented which enables system programmers of utilizing the proposed hardware task

graph manager to accelerate their own runtime systems.

In this thesis, the programmability problem of multicore systems has been analyzed,
highlighting the StarSs/OmpSs models as representative candidates of dataflow task-
based programming models and the need to make use of the very fine-grain tasks.
Afterwards, hardware support for such programming models is presented in the form
of the Nexus++ co-processor for the StarSs/OmpSs programming models. Using
traces of applications written in StarSs/OmpSs from the StarBench benchmark suite,

Nexus++ significantly improves the scalability of those applications.

To demonstrate its functionality in real applications, Nexus++ has been imple-
mented on an FPGA board and integrated with VSs: a light-weight runtime system
that implements the part of OmpSs runtime system that is needed to run most of the
StarBench benchmarks. Plugging the FPGA board into any multicore machine PCle
slot and installing the necessary tools, Nexus++ can successfully manage applications

with tens of thousands of tasks.

Nexus# is the successor of Nexus++4, which has an improved execution pipeline
compared to Nexus++, in addition to parallelizing the process of task graph man-
agement itself in a distributed fashion. For example, running an application with
coarse-grain independent tasks such as ray tracing and where a software-only par-
allel solution achieves 31x speedup compared to the serial execution, Nexus# and

Nexus++ achieve speedups of 194x and 60x respectively.

Nexus# outperforms Nexus++ in terms of scalability, which opens the door to
support even finer-grain tasks. For the case of fine-grain tasks with complex inter-
task dependencies as in H.264 video decoding, the software-only parallel solution is
slower than the serial execution due to runtime overhead, but Nexus# and Nexus++

achieve speedups of 7x and 2.2x respectively.

As described in this work, through its extensive reconfigurability, Nexus# presents
a suitable hardware accelerator for various multicore systems, ranging from embedded

to complex high-performance systems.






Zusammenfassung

Seit einigen Jahren ist absehbar, dass die Giiltigkeit von Moore’s Law nach fast 50
Jahren zu Ende geht. Dieses “Gesetz” basierte auf der Beobachtung, dass sich die
Anzahl der Bauelemente auf einem Chip etwa alle 18 Monate verdoppelte und legte

den Grundstein fiir die Roadmap der Halbleiterindustrie.

Aufgrund der enormen Zunahme der Leistungsdichte von Mikroprozessoren steht
diese Gesetz kurz vor dem Ende und ein neues Zeitalter in der Computerindustrie
bricht an. In diesem Zeitalter ist die Single-Thread-Performance kein so wichtiger
Faktor mehr, im Vergleich zur Leistung des gesamten Multicore-Systems. Es ist ein
Zeitalter in dem die Vielfalt und Vielzahl von Prozessoren die Norm in aktuellen

System on Chips (Soc) ist und nicht die Ausnahme.

Obwohl das Problem der Programmierbarkeit solcher komplexen Systeme sowohl
von der Forschung als auch der Industrie angegangen wurde, hat die Entwicklung
auf dem Softwaresektor nicht mit der Entwicklung der Hardware Schritt gehalten.
Seitdem sind neue Programmiermodelle entstanden, die versuchen, die Liicke zwischen
algorithmischer Komplexitdat und einer effizienten Nutzung aller Ressourcen der SoC-

Hardware zu tiberbriicken.

Ein vielversprechender Ansatz ist das Datenfluss taskparallele Modell. In diesem
wird das Anwendungsprogramm in kleine Arbeitseinheiten, engl. Task, zerlegt. Diese
Tasks werden dann unter Berticksichtigung der Datenabhéngigkeiten dynamisch auf

geeignete und verfiigbare Ressourcen verteilt und parallel abgearbeitet.

Dabei muss zwischen verschiedenen Laufzeitsystemen und Varianten dieses Pro-
grammiermodells abgewogen werden. Bei der Auswahl miissen folgende Punkte be-
riicksichtigt werden, da diese eine nicht unerhebliche Rechenleistung bendtigen: die
interne Verwaltung des Taskgraphen, das Verfolgen der Datenabhéngigkeiten zwischen
Tasks, die Entscheidung wann ein Task bereit zur Bearbeitung ist, die Verteilung auf

oder Zuteilung von Prozessoren und schliefllich, nach der Abarbeitung der Aufgabe,
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die Riickmeldung an das Laufzeitsystem, die die Freigabe von weiteren Tasks nach
sich zieht.

Fiir Datenfluss taskparallele Programmiermodelle, in vielen Fallen wenigstens theo-
retisch eine sinnvolle Moglichkeit zur Programmierung von Multi- und Many-core Sys-
temen, stellt der Overhead im Laufzeitsystem in der Praxis vielfach eine uniiberwind-
bare Hiirde dar. Dies gilt insbesondere fiir sehr fein unterteilte oder sehr komplexe

Datenfluss- oder Taskgraphen.

Fiir Anwendungsprogramme, die sich in grofe Tasks zerlegen lassen, ist der Aufwand
im Laufzeitsystem weniger relevant, da die Kosten dafiir im Verhaltnis zur geleiste-
ten Arbeit amortisiert werden. Das Laufzeitsystem kann hier mit relativ geringem
Aufwand gleichzeitig den Datenflussgraphen verwalten und Arbeit an die Hardwarer-

essourcen verteilen, um diese damit effektiv auszulasten.

Es ist jedoch keine triviale Aufgabe, die Granularitiat durch das Zusammenfassen
kleinerer Tasks zu grofleren Gruppen zu verbessern. Dies setzt genaues Wissen iiber
die Struktur des Datenflusses zwischen den einzelnen Tasks voraus, da die Semantik
der Applikation natiirlich nicht verdndert werden darf. Trotz des Workarounds zur
Verschleierung des Laufzeitmehraufwandes, stellen die taskbasierten Programmiermo-
delle eine vielversprechende Losung zur Auslastung von Multicore-Systemen dar. Diese
Tatigkeit wurde bisher von den Programmierern erledigt, was eine hohere Komplexitat

von Programmen fiir Multicore-Systemen nach sich zog.

Die Komplexitat der Aufgabe wéchst zukiinftig mit der Anzahl und der Vielfalt der
Prozessorkerne, sowie mit Applikationen, die nicht in zehn, sondern in hunderte oder
gar tausende von kleinen Fragmenten zerteilt werden. Diese konnen dann potentiell
parallel ausgefiihrt werden. Die Fragmente zu gruppieren und an das Laufzeitsystem
zur Ausfithrung zu tibergeben, tbertrifft die Leistungsfahigkeit eines normalen Men-

schen.

Aus den genannten Griinden ist es sinnvoll, die Gruppierung von Tasks zu vermei-
den, und stattdessen Funktionen wie zum Beispiel die Graph-Verwaltung, in einen

Coprozessor zu verlagern, um das Laufzeitsystem zu entlasten.

Vor etwa 15 Jahren waren Single-Core Prozessoren der Stand der Technik. In der
damals verfiigbaren 180 nm Technologie war der zusatzliche Aufwand an Gattern fir

einen Beschleuniger wirtschaftlich nicht zu rechtfertigen. Die meisten Computersys-
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teme verfiigten ohnehin nur iiber eine CPU und Programme bestanden auch nur aus

einem Thread.

Nach heutigem Mafistab ist dies nicht mehr der Fall, die Halbleitertechnologie hat
sich erheblich weiterentwickelt. Multiprozessorsysteme sind der Stand der Technik und
gemessen an der Zahl der verfliigharen Gatter, sowie der Komplexitét einzelner CPUs,

ist der Aufwand fiir einen HW Beschleuniger vernachlassigbar gering.

Der Hauptbeitrag dieser Dissertation ist es, den grofiten Teil eines Laufzeitsystems,
das Task-Graph-Management, auf einen dedizierten Hardwarebeschleuniger auszula-
gern. Ziel dabei ist es, die Laufzeit des Systems zu steigern und gleichzeitig einigen
Konflikten vorzubeugen, die entstehen, wenn das Laufzeitsystem oder Anwenderappli-

kationen geteilte Ressourcen (Mikroprozessorkerne und Speichersysteme) verwenden.

Zusatzlich wird eine high-level Programmierschnittstelle prasentiert, welche es dem
Systemprogrammierer ermoglicht den vorgeschlagenen Hardware-Taskgraph-Manager

auszulasten, um ihr eigenes Laufzeitsystem zu beschleunigen.

In dieser Arbeit wurde die Programmierbarkeit von heterogenen Multiprozessor-
systemen mit Schwerpunkt auf taskparallele Programmiermodelle analysiert, sowie
der Nachteil von gelegentlich sehr kleinen Arbeitseinheiten (Tasks). Danach wird die
Hardware-Unterstiitzung fiir das StarSs/OmpS Programmiermodell in Form des Nexus
++ Co-Prozessors eingefiihrt und der Einfluss auf Skalierbarkeit und Systemleistung

gemessen.

Fir Traces von Anwendungen aus der StarBench Benchmarksuite zeigte Nexus++
eine erheblich verbesserte Skalierbarkeit dieser in StarSs/OmpSs geschriebenen Pro-

gramme.

Um die Funktionalitdt im echten Anwendungsfall und die Leistungsfahigkeit des
Konzepts zu beweisen, haben wir Nexus++ auf einem FPGA Board implementiert.
Die Kommunikation mit dem Host-System erfolgte iiber eine PCle Schnittstelle. Auf
der Softwareseite wurde Nexus++ in VSs, ein light-weight Laufzeitsystem, integriert.
VSs unterstiitzt die wesentlichen Funktionen des OmpSs Laufzeitsystems und erlaubt

es die meisten Programme der StarBench Benchmarksuite auszufiihren.

Durch den Einsatz des FPGA Boards als Beschleuniger in den PCle Slot eines belie-

bigen Mehrkernsystems und Installation der notwendigen Softwarewerkzeuge, konnte
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gezeigt werden, dass Nexus++ in der Lage ist, Applikationen mit mehreren zehntau-

send Tasks zu verwalten.

Nexus# ist eine iiberarbeitete Version von Nexus+-+. Zusatzlich zur Parallelisie-
rung der Prozesse fiir die Task-Graph-Verwaltung, welche verteilt erfolgt, besitzt die
Version eine verbesserte Ausfiithrungspipeline gegentiber dem Nexus++. Hierdurch ist
es z.B. moglich, eine Applikation mit grobunterteilten unabhingigen Tasks, wie dem
ray tracing, um den Faktor 194x bzw. 60x mit Hilfe des Nexus# und Nexus++ zu
beschleunigen verglichen mit der seriellen Ausfithrung. Durch eine reine Softwarelo-
sung wiirde die Parallelisierung dagegen nur einen Geschwindigkeitszuwachs um den

Faktor 31x erreichen.

Nexus# tbertrumpft Nexus—++ hinsichtlich der Skalierbarkeit, was eine feingranula-
re Unterteilung der Tasks ermoglicht. Hiervon profitieren Applikationen wie die H.264
Videodekodierung, welche feingranulare Task hat, die zusétzlich noch untereinander
abhéngig sind. Eine rein softwarebasierte Losung zur Parallelisierung ware aufgrund
des Laufzeit-Overheads langsamer als die serielle Ausfiihrung. Im Gegensatz dazu er-
zielen Nexus# bzw. Nexus++ jedoch ein Geschwindigkeitszuwachs um den Faktor 7x
und 2.2x.

Wie in dieser Arbeit dargestellt, ist der Nexus# aufgrund seiner umfangreichen
Rekonfigurierbarkeit ein zeitgemafler Hardwarebeschleuniger. Er eignet sich fiir eine
breite Palette von Mehrkernsystemen, angefangen bei eingebetteten Systemen bis hin

zu komplexen Hochleistungssystemen.
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1 Introduction

Data processing in computing systems is a multi-step process, starting with fetching
inputs from memory, processing them, and (if necessary) writing the outputs back to

memory or displaying them on a monitor.

Depending on the domain of interest, a computing system should fulfill certain re-
quirements. In the High Performance Computing (HPC) domain for example, where
applications require huge computational capabilities, Central Processing Units (CPUs)
and memory systems should be fast enough to meet application demands. For exam-
ple, to deliver real time results as in the case of high definition video decoding or live

video streaming.

In the embedded systems domain, computations must be done within a certain
power budget, or should consume as less power as possible. More and more demands
are expected from commercial hand-held devices such as smart phones and tablets,
where the power budget is limited, as new applications and games are having more
content and are becoming more demanding, such as applications for Ultra High Defi-

nition (UHD) video capture and display, virtual reality, or augmented reality.

Computer systems have evolved over time. The computational power of some su-
percomputers in the past has been met or even surpassed by some of today’s mobile
devices. For example, Nvidia announced early 2015 its “super chip”, the Nvidia Tegra
X1 [116], and claimed that it is the first mobile chip that has “more horsepower than
the fastest supercomputer of 15 years ago; the ASCI Red, which was the world’s first
teraflops (TFLOPS) system” [116].

The comparison is obviously for marketing purposes, and is not totally precise,
since the ASCI Red supercomputer achieved back then 1 double-precision (FP64%)

'Double-precision floating-point format, known asl binary64 as specified by the IEEE 754 standard,
where the number occupies 8 bytes (64 bits) in the computer’s memory.
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TFLOPS, and the Tegra X1 is capable of 1 half-precision (FP16?) TFLOPS. Never-
theless, the other facts are still correct and show how amazingly the semiconductor

industry has evolved in this relatively short period of time.

Moreover, the ASCI Red supercomputer occupied about 150 square meters and
consumed 500 kilowatts plus another 500 kilowatts for cooling the system. The Tegra

X1 is about the size of a thumbnail, and consumes less than 10 watts.

Of course, supercomputers have evolved since then, tackling more complex prob-
lems in various domains, at high precision. At the time of writing this thesis, the
most powerful supercomputer in the Top 500 list [154] is the Sunway TaihuLight at
the National Supercomputing Center in Wuxi, China [155]. It has 10,649,600 cores,
1,310,720 GB of memory, and can achieve FP64 93,014.6 TFLOPS, at a massive power
budget of 15,371 kilowatts.

The next two sections discuss the developments in the semiconductor industry in the
last few decades, and how the trend shifted from designing single core microprocessors,

to multicore systems.

1.1 Moore’s Law and Dennard Scaling

In 1965, Gordon Moore predicted in his paper [114] that the number of transistors
in an integrated circuit would double every 18-24 months. His prediction is based on
observing how the electronics manufacturers back then was shaping the semiconductor
industry by competing to make their offerings more powerful. After sometime, the
prediction itself, also known as Moore’s law, started to shape the roadmap of the

semiconductor industry [106].

Over the past 50 years, Moore’s prediction proved to be true, and the semiconductor
industry continued to decrease the transistor size and pack more of them into a single
chip. This can be seen in the “Transistors” curve of Figure 1.1, which shows the

number of transistors used in some cutting edge microprocessors over time.

2Half-precision floating-point format, known as binary16 as specified by the IEEE 754 standard, where
the number occupies 2 bytes (16 bits) in the computer’s memory.
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Since the introduction of the first transistor-based computer back in the 1950s [95]
and until the last decade, the main focus for computer architects was improving the

single thread performance.

Microprocessor manufacturing technology has been directly reflected on applica-
tion’s performance. On one hand, the smaller size of integrated circuits (IC) compo-
nents yielded microprocessors running at higher clock frequencies, resulting in faster
applications as shown in the “Frequency” and “Single-Thread Performance” curves of
Figure 1.1. On the other hand, the increased transistor density enabled the design of

improved micro architectures and larger caches.

The amount of dynamic power P dissipated by a microprocessor is given by Equa-
tion 1.1 [164], where « is a constant indicating the percentage of the system that is
active, C' is the equivalent system capacitance, V' is the supply voltage, and f is the

clock frequency.

P = aCV?f (1.1)

Up the early 2000s, decreasing the transistor size was accompanied by decreasing
its supply voltage and increasing the clock frequency, and thus maintaining a fairly
constant power density as indicated by Equation 1.1. This effect is known as the
Dennard scaling effect [50] (named after Robert Dennard who and his team first
described this effect in their paper [50] in 1974). Dennard scaling effect suggests that
the scaling of the supply voltage and the clock frequency is proportional to the feature
size. In other words, more transistors can be integrated in a smaller area, clocked at

a higher speed, and would consume the same or less power.

The clock frequency continued increasing as Dennard et al. suggested from the sub
1-MHz range back in the early 1970s, up to the 3-4 GHz range about 15 years ago
and stagnated since then. This stagnation is mainly due to the power dissipation and
the resulting heat in integrated circuits. The more power a microprocessor dissipates,
the more heat it emits, and more difficult it becomes to cool it down which is a
major problem. This problem is generally referred to as the power wall, and it is the
reason why the microprocessors produced since the early 2000s until today have been
designed to dissipate 150 Watts at most. This can be seen from the “Power” curve of

Figure 1.1.
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1.1 Moore’s Law and Dennard Scaling

System capacitance and supply voltage should have scaled down according to Den-
nard et al, but what happened in reality is far from that. System capacitance increased
over time as microprocessor manufacturers used the increased transistor density to
add more features, and produced chips of similar of even larger areas [47]. For exam-
ple, Intel’s 386 microprocessor [166] produced in 1985 has 275,000 transistors (1.5um
process technology), in a 104mm? die. Almost 30 years later, Intel’s i7-5960X mi-
croprocessor (Haswell-E micro-architecture) [168] has 2.6 billion transistors (22nm
process technology), in a 355mm? die. Server-class microprocessors such as Intel’s
Xeon Haswell-E5 [168] are even more dense: it has 5.56 billion transistors (22nm

process technology), in a 661mm? die.

Vdd-Actual 4
Vdd-Dennard

x

Supply Voltage Vy4(V)
w
X

oligzo. . . . L1990 |, T e 2010,
10" 10° 107 102
Physical Gate Length (um)

Figure 1.2: Supply voltage scaling vs semiconductor technology [47]. After the early 1990s
(0.65um process technology) and until 2005 (0.035um process technology), the
supply voltage (Vy4-Actual) scaled down at a slower pace that what Dennard
et al. suggested (Vj4-Dennard). Logarithmic scale of the x-axis to highlight
the period after 1990.

The supply voltage used overtime for different transistor technologies is shown in
Figure 1.2. Until the early 1990s (0.65um process technology), microprocessors main-
tained a 5V supply voltage. Back then, power dissipation was not a major issue
(Intel’s Pentium microprocessor consumed less than 10 Watts [167]). Only between

1990 (0.65um process technology) and 2005 (0.13um process technology), the voltage
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started scaling down and at a slower pace than to the process technology as can be seen
in Figure 1.2. Calculating the scaling factor of the process technology, and reflecting
it on the supply voltage results in the lower curve (Vjg-Dennard) of Figure 1.2. This
theoretical curve shows the scaling behavior of the supply voltage suggested by Den-
nard et al. in order to produce more dense microprocessors that consume less power.
The upper curve of Figure 1.2 shows how the voltage supply changed in reality, and
how far it is from the trend suggested by Dennard et al.

Many techniques to reduce and control power dissipation have been implemented
in microprocessors over time, such as dynamic voltage and frequency scaling, under-
clocking, clock gating, etc. Although these helped in reducing the power density of
microprocessors, they did not prevent hitting the power wall eventually. Furthermore,
the static and leakage power in semiconductors became more significant as transistor
density increased over time [41]. All of the above explain the increase in power con-
sumption of modern microprocessors (made of smaller transistors) compared to the

older ones, as shown in the “Power” curve of Figure 1.1.

Nevertheless, transistor process technology kept improving and it still does with
more transistors being integrated in smaller chips. Therefore and about 10 years ago,
the trend in microprocessor manufacturing changed to use the increased transistor
density to integrate more than one core on chip. This trend can be clearly seen in the
“Number of Logical Cores” curve of Figure 1.1. The following section sheds some light
on the expected future trend in semiconductors based on the International Technology

Roadmap for Semiconductors.

1.2 The Multicore Era

The years to come are going to be interesting, as the transistor size cannot be reduced
anymore due to its physical limits. Moreover, semiconductors manufacturing costs
increase as transistors become smaller [141, 151]. This does not mean the end for the
semiconductor industry. On the contrary, this has pushed scientists to search for new
approaches to further increase the transistor density and consequently the number of

cores on chip.

The International Technology Roadmap for Semiconductors (ITRS) is a technologi-

cal roadmap produced periodically by semiconductors experts worldwide. It discusses
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Figure 1.3: Comparing the transistor gate length in semiconductors as predicted by the
International Technology Roadmap for Semiconductors in 2013 [140] and
2015 [141].

many aspects related to the semiconductor technology and predicts the trends for
10-15 years in the future. ITRS 2013 and 2015 prediction roadmaps are shown in
Figure 1.3.

In 2013, ITRS expected that process technology would have shrunk further reaching
Snm in 2027. However, two years later ITRS 2015 roadmap suggested that the semi-
conductor industry will continue reducing the transistor size down to 10nm in 2021
and would stagnate there. Since this implies that the semiconductor industry will be
eventually running out of horizontal space in integrated circuits, ITRS suggests that
the technology will move instead towards vertical integration, in order to achieve the

increased transistor density and integrate more cores on chip.

The ITRS 2015 roadmap also predicts the number of cores to be available in ap-
plication processors in the coming years as shown in Figure 1.4. ITRS predicts that
computers will have more than 36 application processors and 247 graphic processing
units in 2025.

Nowadays multicore processors are the standard, not the exception. Table 1.1 lists

some representative, off-the-shelf multicore processors that are in production at the
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Figure 1.4: Number of application processors (AP) and graphics processing units (GPU)
integrated on chip, as predicted by the International Technology Roadmap for
Semiconductors (ITRS) in 2015 [141].

time of writing this thesis. The processors listed in the table are the high-end products
of major companies and are targeting different domains, ranging from mobile systems
such as smartphones and tablets, to desktops and powerful workstations. High end
workstation processors have up to 24 cores, such as Intel’s Xeon processor, while
desktop processors have 4 - 10 processors, such as AMD’s Summit Ridge and Intel’s
core 17 processors listed in Table 1.1. Also processors used in mobile systems can have

up to 10 cores nowadays, but typically they have 4-8 cores.

According to statista.com, more than 1.4 billion smartphones [146] and about 500
million computers (including desktop PCs, laptops, and tablets) [145, 147] were shipped
worldwide in 2015. Most of these machines are powered by multicore processors, based
on the previously discussed trend shift towards multicores. In order to make use of
these systems, the software must be modified to utilize the multiple cores. In other
words, if the software is not multicore-aware, the increased number of cores on chip

and all the semiconductor technology advancements behind it would be useless.

The next two sections discuss the complexity of programming multicore systems

and the major challenges of parallel programming.
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Company | Processor Model ( ##T?n(")é:;s) Tei;(:i)elisgy Clock Speed Target Market
AMD Summit Ridge 4 (8) 14nm 2.8 GHz Desktops
Apple A10 Fusion 4 (4) 16nm up to 2.35 GHz Mobile
Intel i7-6700K 4 (8) l4nm 4.0 GHz Desktops
Intel i7-6950X 10 (20) 14nm 3.0 GHz Desktops
Intel i7-7500U 2 (4) 14nm 2.7 GHz Notebooks
Intel Xeon E7-8890V4 | 24 (48) l4dnm 2.2 GHz Workstations
Mediatek | Helio X20 10 (10) 20nm 1.4 - 2.34 GHz Mobile
Nvidia Tegra X1 8 (8) 20nm 1.3-1.9 GHz Tablets
Qualcomm | Snapdragon 821 4 (4) l4nm 1.6 - 2.35 GHz Mobile
Samsung | Exynos 8890 8 (8) l4nm 1.6 - 2.3 GHz Mobile

Table 1.1: Representative off-the-shelf multicore processors from major microprocessor
vendors in 2015/2016, listed alphabetically.

1.3 Application Parallelism

The goal of parallel programming is to break down an algorithm/application into
smaller parts that can fully exploit the multicore architecture, while maintaining cor-
rectness and efficiency [17]. Transforming a sequential algorithm to a parallel one,

according to Solihin [144], includes the following steps:

e decomposition: decomposing the problem to smaller tasks, the smallest ex-

ploitable units of concurrence,
e assignment: tasks are assigned to processes,

e orchestration/coordination: handling all work related to data movement, com-

munication and synchronization between processes,
e mapping: scheduling processes on the available processors.

Before discussing the decomposition step, I will discuss briefly Flynn’s classification
of computer architectures [59], which is related to the assignment, orchestration/co-

ordination and mapping steps in the above list.

Michael Flynn proposed in 1966 four classifications of computer architectures based
on the number of data streams and instruction streams in the architecture. Flynn’s

taxonomy of computer architectures is summarized in Table 1.2.
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Single-Instruction Multiple-Instruction
Single-Data SISD MISD
(Sequential Computers) (Redundancy, Fault Tolerance)
. SIMD MIMD
Multiple-Data (Vector Processors, GPUs) (Modern Multicores)

Table 1.2: Flynn’s classification of computer architectures.

In the single-instruction-multiple-data stream (SIMD) architecture, multiple pro-
cessing elements perform the same operation on multiple data streams in parallel.
This is mostly common in vector processors and graphics processing units (GPU)
where operations are naturally parallel, for example adjusting the brightness of a pic-
ture, in which the desired brightness value should be written for each pixel of the

picture.

The multiple-instruction-multiple-data stream (MIMD) architecture, where multi-
ple processing elements can perform different operations on different data streams
concurrently, is the most interesting one for the scope of this thesis. This class of par-
allel architectures is where most modern multicore systems fit, and the most difficult

to program.

The remaining two types are less relevant for the scope of this thesis: single-
instruction-single-data stream (SISD) architecture which is basically a sequential pro-
cessor, and multiple-instruction-single-data stream (MISD) processors which can be
found in fault tolerance systems, where multiple processors are running the same pro-

gram and the final result would be chosen based on a voting algorithm for example.

MIMD architectures can be further categorized based on their memory system.
It can be a distributed memory, or a shared memory system among the different
processors. Shared memory can either be uniformly or non-uniformly accessed by
the processors. The non-uniform memory access (NUMA) architecture has become
more common in multicore systems [67, 85, 89] and adds more complexity to parallel
programming, since not only access to shared resources must be coordinated, but also
mapping application parts to the available processing cores plays a crucial role in

performance, as it affects data locality and cache hit rates.

10



1.3 Application Parallelism

To obtain speedups from multicore architectures, applications need to use parallel
algorithms that can efficiently exploit the underlying multicore architecture. This
is not a trivial task, since the application should be broken down to smaller parts
and parallelism should be detected, application parts should be efficiently mapped to
the available resources, dependences must be maintained, synchronization must be
handled, and finally after having all the different parts finished, their results should
be collected in order to produce the final application result. Therefore, due to these
management aspects, parallel algorithms are more challenging to develop than their

sequential alternatives.

Going back to the list of steps for transforming a sequential algorithm to a parallel
one shown at the beginning of this section, the decomposition step states that the
algorithm /application should be broken down to the smallest exploitable unit of con-
currence, in order to achieve the maximum speedup. An application can have one or

a mix of the following types of parallelism,

e Data parallelism: which is related to SIMD architectures, where a single op-
eration is performed concurrently on multiple data points. This is usually the
easiest type of parallelism and typically yields high speedups, as the degree of
concurrency depends on the input data size. For example, a program that sums
two arrays of size N and stores the result in a third array is a straightforward
example of data parallelism since all addition operations can be performed in
parallel. In this case, a multicore system of N cores (or more) can achieve N X

speedup with respect to serial execution.

e Pipeline parallelism: typical of loops, where loop iterations are partially depen-
dent (there exists a loop-carried dependence). In this case, the goal is to start
iteration k£ as soon as the loop-carried dependence data is ready from a previous
iteration, for example k-1, without waiting for the whole loop k-1 to finish. This
is done by dividing the operations in the loop into stages so that independent

stages can run in parallel.

e Task parallelism: this type is related to MIMD architectures, where different
programs are performed on different or same sets of data. For example, when
performing statistical analysis on a certain set of data, such as calculating the
average, geometric mean, min and max, etc. If there are dependences between

the operations, this type of parallelism can be difficult to detect and exploit.

11
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The speedup gain is less than in data parallelism, as it depends on the number

of parallel tasks in the application.

In modern programming models, the programmer can explicitly define any code
block (a function, loop, or arbitrary part of the code) as a task which can run in
parallel to other tasks. Task parallelism is therefore key to utilize multicore systems
and given that many algorithms can be parallelized this way, task parallelism is the

main type of interest for this thesis work.

1.4 Parallel Programming Challenges

The multicore era brought four major challenges for the parallel programming com-
munity. The first challenge is the detection of parallel regions. Classically, detection
of parallel regions is handled manually by the programmer or automatically by the
compiler [86, 94, 120]. Despite the existence of libraries [45, 101] and programming
language extensions [62, 73, 134, 157] to help the programmer parallelize programs,

parallel programming is considered an error-prone task [10, 76, 126].

While manual parallelization is limited to simple algorithms and a small number of
cores, compilers are able to tackle more complex scenarios [13, 30, 44, 119, 126, 131].
Nevertheless, there are some cases where compilers cannot automatically parallelize
the code, for instance when the program or target region makes heavy use of pointers
and a precise alias analysis or dependence analysis is not possible [10, 86]. A major
example is parallelism in loops, where two common cases exist [10, 86, 90]: (1) due
to dependences in loops that cannot be resolved at compile time compilers cannot
detect the existence of loop-carried dependences, and thus they give up on parallelizing
the loop. Since at runtime such dependences might never happen (referred to as
dynamic-DOALL loop); using task parallelism to divide loop iterations into tasks can
effectively handle parallelizing such loops [57]. (2) Even if the compiler can detect
the loop-carried dependence(s) at compile-time (so the loop is called a DOACROSS
loop), there is no effective loop parallelization algorithm for DOACROSS loops that
is always effective [76, 90, 103, 126]. Task parallelism can effectively handle this case

as well.

The second challenge in parallel programming is the management of tasks and re-

sources including: scheduling/mapping of ready tasks to the worker cores and coordi-

12
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nation of access to the shared resources: how to efficiently handle this challenge? In
the case of MIMD architectures and task parallelism as discussed before, decomposing
an algorithm manually (by the programmer) or automatically (by the compiler) into

smaller tasks and orchestrating access to the parallel architecture can be complex.

The third challenge is performance portability: how to make the applications main-
tain high performance over a wide range of parallel architectures? Multicore proces-
sors are rapidly evolving and are different from one another, although most of modern
processors fit under either SIMD or MIMD architectures according to Flynn’s tax-
onomy. Nevertheless, parallel programmers / programming tools should take perfor-

mance portability into account in order to avoid code rewriting for each architecture.

The fourth and last challenge is scalability: can the application benefit from the
increased number of cores? Amdahl’s law [5] shown in Equation 1.2, named after
computer scientist Gene Amdahl, gives the theoretical speedup S in latency to be
expected when executing part of the application in parallel (i.e. only part of the
application can benefit from the increased number of cores). Amdahl’s law is given
as a function of the number of the available cores N and the percentage P of the

application that can be executed in parallel.

1
S=——_ 1.2
P+ % .
For example, if 90% of an application can be run in parallel, the expected speedup
when running this application on a 16-core machine equals 1/((1—0.90)4(0.90/16)) =
6.4x. Furthermore, this application’s speedup cannot be more than 10x regardless of

the number of cores available.

In the ideal case, an application that can be entirely divided into many smaller tasks
has a linear scalability. This means that it can be sped up by 2x when running on 2
cores, 4x when running on 4 cores and so on, up to the maximum number of tasks
it can be divided into. Applications vary in their scalability, from those that scale
well (near-linear scalability), also known as embarrassingly parallel applications, to

the inherently serial applications that do not scale at all and can use only one core.

Figure 1.5 depicts the expected speedup according to Amdahl’s law, varying the
percentage of the application that can run in parallel and the number of the cores.

Amdahl emphasizes that the serial part of an application limits its scalability and the

13
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Figure 1.5: The theoretical speedup in latency to be expected when executing part of
the application in parallel, according to Amdahl’s law. It can be seen that
the serial part of the application is limiting its scalability. The y-axis in
logarithmic scale.

desired speedup. This can be clearly seen in Figure 1.5, especially for applications
that have more than a 10% serial part. As the number of cores on chip is continuously
increasing, application developers and parallelization tools should pay extra attention

to Amdahl’s law and exploit fine-grain parallelism in order to achieve better scalability.

Given the increasing complexity and diversity of multicore systems, the increasing
complexity and demand of applications and the importance and susceptibility of ap-
plications scalability, manual parallel programming is not feasible, as productivity is
limited and performance portability can be compromised. Therefore, it is important
to have a high level parallel programming model that well-exploits the available re-
sources, enables portability among a wide range of multicore systems, provides a high

degree of scalability, and also helps improving programmers productivity.

Indeed productivity is another challenge for parallel programming, depending on
whether the programmer has to manually extract parallelism in the application, ex-
plicitly exploit the hardware resources and handle coordination and synchronization

between application parts.
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The next section presents some parallel programming models that aim at solving

these challenges, with focus on task-based programming.

1.5 Parallel Programming Models

Several programming models have been proposed to enable parallel programming,
but they differ in their target architecture, application domain, and usability. Ex-
amples include Cilk [11, 22, 62], Cilk++ [43, 96], Google’s MapReduce [49], POSIX
threads [113], Intel’s TBB [136], OpenCL [87], CUDA [115], C++AMP [68], OpenMP [23,
45], StarPU [12], StarSs [127] and OmpSs [54].

Although they differ in the degree of abstraction they provide, all parallel pro-
gramming models share the goal of decoupling the programmer from the underlying
multicore system. Low level abstractions such as POSIX threads, CUDA, and OpenCL
require the programmer to have a thorough knowledge of the underlying architecture
and to explicitly manage parallelism and handle coordination between the available
resources. Therefore, low level abstractions are difficult to use and therefore have
limited productivity. Moreover, if the target application has a complex dependence
pattern, the scalability of such abstractions is totally dependent on the programmer’s
ability to extract and manage parallelism, which is a difficult task for the average
programmer. Moreover, CUDA, OpenCL, C++AMP, and OpenACC target the ap-
plication domain where massive data parallelism exist, and therefore are more useful
to use in SIMD/GPU architectures.

Higher-level abstractions such as Intel’s TBB, C++AMP, Charm, Cilk/Cilk++,
OpenMP, StarPU and StarSs/OmpSs are easier to use and typically lead to easier
programmability and thus higher productivity. They sometimes also imply higher
overheads as their runtime systems need to do more work to bridge the gap between
the programming model concepts and the machine’s specific architecture. High level
abstraction are also different from one another when it comes to programmability and
productivity. Some of them (Intel’s TBB, C++AMP, Charm, Cilk/Cilk++) require
the programmer to change the application code, use new syntax and take care of syn-
chronization between the parallel application parts. Other easier-to-use abstractions

such as OpenMP, StarPU and StarSs/OmpSs require the programmer to add some
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// Functions’ definitions
void main (){
int A, B, C, D, E;

#pragma omp task
F1(A, B);

#pragma omp taskwait
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#pragma omp taskwait
#pragma omp task
F4(C, D, E);

(a) (b)

= = =
© o 3

[ ]
o
-

Figure 1.6: Simple OpenMP example showing (a) source code with task annotations and
(b) the task graph.

hints to the code in the form of pragmas, which later on can be converted to runtime

system calls so as to exploit the parallelism in the application.

A simple source code of a task-based program in OpenMP is shown in Figure 1.6(a),

along its task graph in Figure 1.6(b)

In the listing shown in Figure 1.6(a), the programmer defines four tasks (F1 to F4)
using the #pragma omp task directive. While F2 and F3 can run out of order and in
parallel, they must wait for F1 to finish due to the #pragma omp taskwait directive.
Similarly, task F4 must wait for tasks F2 and F3 to finish execution before it can start.

This results in the task graph shown in Figure 1.6(b).

The task directive can be placed anywhere in the program annotating a function,
a part of a loop body, or any arbitrary code block. Whenever a task directive is

encountered by the thread executing the main program, a task is spawned. Upon
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1.6 The Dependency-Aware Task-Based Programming Model

spawning a task, it will placed in a conceptual task pool and its execution will be
deferred until a later time. The worker threads will execute the tasks in the task pool

until the pool becomes empty.

There are more directives in OpenMP and other task-based programming models
providing the programmer with the means of covering different parallel scenarios.

However, the programmer is responsible for discovering and managing parallelism.
In my opinion, the winner programming model is the one that:

e handles exploitation and management of the underlying system, relieving the
programmer from explicitly dealing with the parallel architecture details, and

thus increasing productivity,

e detects and manages parallelism in the application, and decomposes it into
smaller parts accordingly, with minimum or no intervention from the program-

mer, also increasing productivity,
e provides performance portability to a wide range of architectures,
e achieves maximum application scalability,
e targets several types of parallelism: data, task, and pipeline parallelism.

The following section discusses the dependency-aware task-based programming model
that targets increased programmer productivity through minimizing the programmer’s
role in parallelism extraction and management, and thus is a key candidate that tackles

the main challenges in programming multicore systems.

1.6 The Dependency-Aware Task-Based Programming
Model

The dependency-aware task-based programming model requires minimum interven-
tion from the programmer, by annotating sections of code that can potentially run in
parallel (tasks) with the conditions under which execution is allowed (dependences).
This programming model is very promising, as it provides means for solving the main
parallel programming challenges discussed previously. The runtime system then or-

ganizes execution of all tasks respecting the constraints, avoiding the need for the
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Application
OmpSs Programming Model
Application
Runtime System
ISA/API | | ISA/API
SMP Cluster GPU FPGA SMP Cluster GPU FPGA

(@) (b)

Figure 1.7: (a) OmpSs high-level abstraction of hardware from the application’s point of
view, enabling the programmer to focus on the application logic and leaving
the hardware resources specifics and parallelism management to the runtime
system, which in contrast to (b), those should be included in the application
in addition to the application logic [31].

programmer to reason (and potentially make difficult-to-find mistakes) about the cir-

cumstances when the dependences are fulfilled.

OpenMP v4.x [23], StarSs [127] and OmpSs [54] are good examples of this model.
The runtime system of those programming models builds, at runtime, a task graph
based on the sequence of function calls and their input/output requirements and de-
termines which tasks are ready to run. This model gained a special importance, since
it also targets irregular parallelism, based on the data dependences between tasks,

while at the same time, it requires minimal intervention from the programmer.

OmpSs high-level hardware-software layers can be seen in Figure 1.7(a), decoupling
the application from the hardware, with the runtime system orchestrating the usage
of the hardware resources transparently to the programmer. In contrast to OmpSs,
Figure 1.7(b) shows the classical, low-level abstraction of the hardware, where the
programmer should include hardware resources specifics and explicitly manage paral-
lelism in addition to the application logic in order to make use of the different hardware

resources.
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1.6 The Dependency-Aware Task-Based Programming Model

1 // Functions’ definitions

2 void main (){

3 int A, B, C, D, E;

4

5 #pragma omp task inout (A) out(B)
6 F1(A, B);

7

8§ #pragma omp task in(A) out (C)

9 F2(A, C);

10

11 #pragma omp task in(B) out(D)

12 F3(B, D);

13

14 #pragma omp task in(C) in(D) out (E)
15 F4(C, D, E);

16 }

(a) (b)

Figure 1.8: Simple OmpSs example showing (a) source code with inline task annotations
and (b) the task-dependency graph.

OmpSs enables the programmer to run his/her code on a heterogeneous machine,
by specifying the target of each task: a symmetric multiprocessor (SMP) system,
cluster, GPU, or a FPGA. Chapter 2 includes more information about the OmpSs

programming model.

The same simple program shown previously in Figure 1.6 is re-written using OmpSs
dependency-aware task annotations as shown in Figure 1.8. There are four function
calls in the main program to the F1, F2, F3, F4 subroutines, same as in the OpenMP
example before. Knowing that F1 reads the variable A and writes its outputs to the
variables A and B, the programmer can annotate subroutine F1 by the OmpSs task
pragma inline just before calling F1 in the program as indicated in line number 5 in
the listing shown in Figure 1.8(a). Annotations of the F2, F3, and F4 subroutines are

done similarly in lines 8, 11, and 14 respectively.

Whenever an annotated subroutine is called, rather than being directly executed,
a task will be created by the OmpSs runtime system and added to the application
task graph based on its input/output parameters. In Figure 1.8(b), the task graph
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of the simple example is depicted. The dependences between tasks are interpreted by
running F1 first, and after it finishes execution, the runtime system launches F2 and
F3 out of order and in parallel. Once F2 and F3 finish their execution, the runtime

system launches F4.

By launching tasks according to the task graph, OmpSs ensures that the program
runs correctly and produces the correct results, same as those resulting from the serial
execution of the program. In contrast to the OpenMP? example shown in Figure 1.6,
using the dependency-aware task directive in OmpSs the programmer does not need
to think about dependences between the different tasks, resulting in an increased

productivity.

1 void Cholesky(int NT, float *A[NT][NTI])

2 {

3 int i, j, k;

4 for (k=0; k<NT; k++)

5 {

6 #pragma omp task inout (A[k][k])

7 potrf (A[k] [k]);

8 for (i=k+1; i<NT; i++)

9 {

10 #pragma omp task in (A[k][k]) inout (A[k]I[il)
11

12 }

13 for(i=k+1; i<NT; i++)

14 {

15 for(j=k+1; j<i; j++)

16 {

17 #pragma omp task in (A[k]J[i], A[k]I[j]) inout C(A[jI[il)
18

19 }

20 #pragma omp task in (A[k][i]) inout C(A[i][i])
21 syrk (A[kI[i], A[il[il);

22 }

23 }

24 }

Listing 1.1: OmpSs example of Cholesky.

Another example of application parallelism using OmpSs is shown in Listing 1.1,

which is the source code of the Cholesky algorithm [39, 123], a matrix decomposition

30penMP supports task dependencies starting from v4.0 [23].
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1.6 The Dependency-Aware Task-Based Programming Model

algorithm (for real symmetric and (Hermitian) positive-definite matrices) widely used
for solving systems of linear equations. Except for lines 6, 10, 17, and 20, the code is
sequential. It has nested loops and calls to four subroutines (potrf/, trsm®, gemm® and
syrk”). Code lines 6, 10, 17, and 20 in Listing 1.1 are what the programmer needs to
add to the sequential code in order to parallelize it: the #pragma directives, indicating

the programmer’s hints about the subroutines he/she wants to run as tasks.

Based on these directives, the runtime system dynamically generates the dependency
graph (also know as the task graph) of all tasks. Two task graphs for Cholesky are
shown in Figure 1.9, (a) for a small matrix size (3x3), and (b) for a bigger matrix (6x6).
The nodes in the graphs are colored to reflect the different subroutines in Listing 1.1.
Based on the task graph, the runtime system can run the tasks out of order, as long as
dependences between tasks are preserved. This type of parallelism enables extraction
of irregular parallelism in the application. Task graph (a) in Figure 1.9 shows that
the application starts with task 1 running potrf, then tasks 2 and 3 running in parallel
trsm, then tasks 4, 5, 6 running in parallel instances of syrk and gemm, finally tasks
7 to 10 running sequentially because of data dependences between them. Task graph
(b) in Figure 1.9 shows that for a different input size, the resulting task graph has
more parallelism, but also becomes more complex, and thus more challenging for the

runtime system to maintain.

One more thing worth mentioning about the difference between task graphs (a) and
(b) of Figure 1.9, is the number of tasks depending on a certain task, for example (the
green nodes) in the second level, which are dependent on the first task (the red node)
in the first level. This number increases with input size and can grow large in the case

of Cholesky, and the runtime system has to deal with such a challenge.

The Cholesky’s OmpSs source code shown in Listing 1.1 and the task graphs shown

in Figure 1.9 reveal the challenges the runtime system has to deal with:

e the subroutines in program can have an arbitrary number of arguments,

e tasks can have an arbitrary number of dependent tasks,

4Computes the Cholesky factorization of a symmetric positive-definite matrix.
5Solves a triangular matrix equation.

6Computes a matrix-matrix product with general matrices.

"Performs a symmetric rank-k update.
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Figure 1.9: Task graphs (generated by TEMANEJO [24]) of the OmpSs-parallelized
Cholesky algorithm [39, 123] decomposing a matrix of size (a) 3x3, and (b)
6x6. Nodes correspond to task instances, their colors refer to the respective
functions in Listing 1.1, and edges indicate dependences between tasks. Tasks
are numbered according to the invocation order, but those in the same level
can run concurrently, out-of-order.
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e tasks can have an array as an input/output/inout, which complicates dependence
discovery in the case of partial overlapping of memory regions used by different

tasks,

e parallelism can be distant. For example in Figure 1.9b, task 21 is ready to run
after task 6, but 15 tasks are submitted in between. This means that the runtime
system must insert those tasks to the task graph before figuring out that task
21 is ready to run after task 6. This is important in cases when the runtime
system is blocked by for example a memory or task graph limit, before inserting
the distant task (task 21 in the example).

e task graphs can grow very big and complex.

Moreover, another challenge that is not shown in the Cholesky example is nested tasks

where hierarchical task graphs should be maintained.

1.7 Runtime System Overhead

Although dependency-aware task-based programming models such as OmpSs enable
parallelism with minimal programmer intervention, the overhead of the runtime sys-
tem, however, is a decisive factor whether to use such a programming model or
not [7, 16, 20, 57, 91, 109, 124, 143, 160]. In the case of OmpSs, the runtime overhead
is proportional to the number of tasks an application is broken down to; more tasks
implies more coordination and management work that has to be done by the runtime
system, and hence an increased runtime overhead. Therefore, programmers tend to
group several tasks together to reduce the total number of them, and the runtime

system overhead accordingly [7].

The runtime system in the worst case works as a sequential part of the application
execution, and can then introduce a scalability bottleneck which follows Amdahl’s law.
In fact, assuming that the overhead R is a percentage of the application’s serial time T,
then the parallel application time equals 7'/N+ RT, where N is the number of available

cores. The expected speedup S can be then calculated as shown in Equation 1.3.
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Figure 1.10: The theoretical speedup in latency to be expected when the runtime system
overhead, shown as a percentage of the application serial execution time, is
serialized with the application execution. The y-axis is in logarithmic scale.
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The expected speedup when varying the number of cores and the runtime overhead
time relative to application’s time is shown in Figure 1.10. For example, if the overhead
is 2% of the application time, then this application can achieve only a 19.5x speedup on
32 cores. Equation 1.3 and Figure 1.10 assume a worst-case-scenario that the overhead
is serialized to the application execution, i.e. none of the cores is performing any part
of the application while management work is taking place. By management work,
as described before I'm referring to the work not related to the application kernel,
but to the work needed to run the application in parallel on a multicore processor.
This includes spawning tasks, handling dependences and synchronization between
them, running them on the available resources. Of course, runtime systems developers

are aware of this scalability bottleneck, and they try to hide it by performing the
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management work in parallel to the application execution. Nevertheless, Figure 1.10

shows several aspects when the worst-case-scenario might be reached, namely:

e If the resulting tasks are fine-grain, meaning that the worker cores are going
to finish their assigned work earlier and ask the runtime system for new work.
Consequently, it is more likely that the worker cores will be idle, waiting for
work, and hence reaching the worst-case scenario at some points of time during
application execution. How often this can happen depends on how fine-grain the
tasks are, and how heavy the runtime library is. Moreover, a larger number of

tasks implies more runtime overhead, and therefore an increased R in Figure 1.10.

e If the parallelism in the application is limited or its dependency pattern is com-
plex, this increases the probability of starving worker cores as described in the
previous point. The more cores there are, the more critical the runtime overhead

becomes as shown in Figure 1.10.

The next section shows an example on the effect of runtime overhead on application

scalability, and consequently motivates for this thesis work.

1.8 Motivation

In the previous sections, I discussed the evolution of processor architectures and the
trend shift towards multicore architectures. Parallel programming challenges are also
discussed, and dependency-aware task-based programming such as OmpSs are high-
lighted as a promising approach that eases programmability of multicore systems, and

thus increases programmer’s productivity.

Although the idea behind OmpSs, and dependency-aware task-based programming
in general, is very promising as a solution for the programmability problem in the
multicore era, the overhead of the runtime cannot be neglected, potentially being a
bottleneck that limits the scalability of such systems. The overhead can be hidden if
the runtime system succeeds to keep the cores busy and does its task graph manage-
ment responsibilities concurrently. This becomes more difficult with larger numbers
of worker cores and/or with applications having fine-grain tasks, complex dependency

patterns, or both.
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This has been shown in previous works [109, 123] in the case of applications par-
allelized using StarSs. There, it has been shown that in order to hide the runtime

system overhead, the tasks should be of a relatively big size.

In the case of Cholesky shown in Listing 1.1, tasks are coarsened by assigning a
block of data points to a single task rather than a single data point. This method
is common in linear algebra algorithms such as matrix multiplications and Cholesky
factorization [29, 123] and is known as blocking or tiling of data. This leads naturally to
grouping of the operations related to all data points in the block, and thus coarsening
of tasks. Coarsening of tasks is not always easy (does not require algorithmic change

by the programmer) as it is the case in Cholesky and other linear algebra algorithms.

H.264 video decoding [165] is an example of complex applications, where the pro-
grammer must modify the source code in order to produce coarse-grain tasks [7, 110].
Snippets of the source code and the task graph are included in the next chapter that
discusses OmpSs programming model in more detail, but here I'm discussing the scal-
ability of H.264 video decoding as a representative, driving application for this thesis
work. H.264 video decoding is a compelling application, since it is widely used, it has

a complex dependency pattern and distant parallelism, and it has fine grain tasks.

Figure 1.11 shows the speedup achieved when running the H.264 video decoding
application [7] on a 40-core Xeon E7-4870 multicore machine, running at 2.40GHz. The
different curves in the figure show the different configurations used in the experiment.
1x1 means that only 1 macroblock is mapped to each task. In this configuration, the
programmer does nothing more than just annotating the sequential code, and this is
the target of dataflow programming models in general. As shown in the figure, this
configuration does not scale at all. On the contrary, it runs significantly slower than

the sequential version.

This is mainly due to the runtime overhead of managing the task graph on one
hand, and to the fact that this application has a complex dependency pattern and
thus limited amount of parallelism on the other hand. For this reason, and in order to
use the multicore system and at the same time achieve some speedup, the programmer
needs to group several tasks together to form larger tasks, and decrease the total
number of tasks, thus decreasing the overhead of the runtime. This process is done
in the case of H.264 video decoding by grouping several macroblocks together and

assigning them to a single task to decode them.
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Figure 1.11: The speedup achieved when running OmpSs-H264dec to decode a FHD video
sample. Speedup measured against the serial execution time on the same a
Xeon E7-4870 machine.

In Figure 1.11, 222 means that 4 macroblocks are grouped to be processed by one
task. 4z4 means 16 macroblocks are grouped per task and so on. Table 1.3 shows
the effect of grouping macroblocks on the total number of tasks and the average task
size. The average task size in the simplest configuration is less than 5us. In the most
coarsened configuration (8z8 macroblocks per task), the average task size is about

190us. The huge difference of the total number of tasks is also clear.

The grouping process in the case of H.264 is thoroughly presented by Andersch et
al. [7]. The authors emphasized that this process is not trivial, as it requires the pro-

grammer to explicitly define which macroblocks can be grouped together depending on

# tasks total work (ms) avg task size (us)
h264dec-1x1-10f | 139961 640 4.6
h264dec-2x2-10f | 35921 250 15.3
h264dec-4x4-10f | 9333 519 55.6
h264dec-8x8-10f | 2686 510 189.9

Table 1.3: H.264 video decoding application durations of the different configurations. Du-
rations are obtained from traces collected on Xeon E7-4870. Test input is the
first 10 FHD frames of pedestrian_area.h264.
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Figure 1.12: Dependency resolution and other runtime overhead for tasks with different
number of parameters per task.

the dependences between them. This brings us back to the programmability problem,

which limits the usability of OmpSs and similar programming models.

In order to analyze the runtime overhead, several micro benchmarks have been

designed that share the same number of tasks, but differ in the number of parameters
per task.

The runtime overhead includes:

1. the time spent by the runtime at the beginning of a task’s life cycle to:
a) allocate the task’s descriptor,
b) insert the task to the task graph and decide on task’s readiness,
c¢) schedule the task to run if found ready.

2. In addition to the time spent by the runtime system at the end of a task’s life
cycle to:

a) update the task graph upon its execution completion,

b) delete the task’s descriptor.
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The sizes of parts 1.b and 2.a of the runtime overhead in the list above are pro-
portional to the number of arguments per task, as the arguments constitute the basis

upon which the task graph is built and maintained.

In one experiment, all tasks have been designed to be independent, in which case
part number 2.a of the runtime overhead in the above list in minimized. Varying
the number of parameters per task from 0 to 5, the runtime overhead for running
those micro benchmarks is shown in Figure 1.12, which shows the aggregate overhead
measured on a Xeon E7-4870 multicore machine. It is clear that the overhead is
mainly due to maintaining the task graph and tracking the dependences between
tasks (overhead parts 1.b and 2.a) for the case of the micro benchmarks with 1 or more
arguments per task. The proportion dedicated to parts 1.b and 2.a is highlighted and
is directly proportional to the number of parameters a certain task has as shown in
the figure. Figure 1.12 also shows that the other parts of the runtime overhead related
to task descriptors allocation and deletion and to task scheduling are less impacted

by the number of parameters per task.

Therefore, the main goal of this thesis is to improve the scalability of multicore sys-
tems, by utilizing fine-grain tasks. This can be done by reducing the runtime overhead
of dataflow task-based programming models, by introducing hardware acceleration to

the runtime system, which is the research problem addressed in this thesis.
This will result in the following benefits:
e better scalability of applications,

e simple parallel implementation of complex applications: programmers do not
need to think about the granularity of tasks and grouping of them and at the

same time managing dependences and ensuring correct functionality.

Moreover, using a dedicated hardware unit for task management leads to an im-
proved power efficiency, since multiple cores can run a certain application at a lower
frequency and yet deliver the desired results, in comparison to stressing one or two
cores at high frequency. Power consumption has not been quantified in this thesis
though.

VSs [55] is another research project of the Embedded Systems Architecture group at
TU-Berlin, which presents a runtime library for the OmpSs programming model. Com-

pared to the native runtime system of OmpSs, it lacks the instrumentation features
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and supports only symmetric multicore architectures on one hand, but this makes it a
lightweight runtime system on the other hand. It has been developed in close relation
to the hardware accelerator proposed in this thesis in Chapter 4, called Nexus++, and
can be configured to either offload tasks’ management to Nexus++, or use its own

(software) structures. VSs enabled evaluating Nexus++ with real applications.

The hardware accelerator presented in this thesis is based on Nexus [109]: a hard-
ware accelerator that is restricted to the Cell BE processor [26]. Nexus has limitations
on the number of parameters a task can have and on the number of tasks that can
depend on a certain memory segment. The work presented in this thesis solves the
limitations present in Nexus, in addition to providing a more optimized solution for

task graph management as shown in later chapters.

1.9 Contributions

As discussed before, dependency-aware task-based programming seems to be the most
promising programming model at the moment as it provides a transparent solution
for programming multicore systems. Nevertheless, its scalability is limited by the
runtime overhead, mostly noticeable when an application has fine-grain tasks, complex

dependency patterns, or both.

Moreover, the runtime system shares resources with the worker threads that run the
user application. This introduces potential side effects such as cache polluting with
task graph data and other runtime-system structures and will lead to replacing the
worker threads’ data in the cache memory. The problem of resource sharing becomes
worse for the worker threads, if there is more than one runtime thread, which usually

have higher priority.

The main contribution of this thesis is to offload the heaviest part of the runtime
system - task graph management - to a dedicated hardware accelerator, in order to
accelerate the runtime system, as well as to save some conflicts on using the shared
resources (microprocessor cores and memory system) by the runtime system and the
user applications. Moreover, a high-level application programming interface (APT) is
presented which enables system programmers of utilizing the proposed hardware task

graph manager to accelerate their own runtime libraries.
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Figure 1.13: A high-level picture the computation model of OmpSs shown in Figure 1.7(a)
with the proposed hardware accelerator.

The trade-off is the extra communication between the runtime system and the ded-
icated hardware module, and the eventual cost of the hardware module itself in the

form of logic gates and power consumption.

In more details, the list of contributions includes:

1. a configurable hardware accelerator for task graph management is presented,

2. support for fine-grain tasks, relieving the programmer from the burden of tasks
grouping,

support for tasks with arbitrary number of arguments,

Ll

support for dependency-lists of arbitrary size,

1

enabling discovery of distant parallelism, using large window of in-flight tasks.

6. a high-level software API to enable integration of the hardware accelerator with

any task-based runtime library.

The proposed hardware accelerator, named Nexus++ in its first prototype and
Nexus# in its latest, has been extensively evaluated using different benchmarks of
various granularity and dependency patterns. Nexus++ and Nexus# show an im-
proved application scalability when compared to the OmpSs software runtime system
(called Nanos++).

31



1 Introduction

Adding Nexus++ (or Nexus#) to the high-level computation model of OmpSs in
Figure 1.7(a), results in the system shown in Figure 1.13, where the same level of

abstraction is preserved, but this time using a lighter runtime system.
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1.10 Scientific Papers

1.10 Scientific Papers

This work has contributed to several publications in international conferences and

workshops, upon which this thesis is based. These are (listed in chronological order):

1.

Tamer Dallou, Ben Juurlink, and Cor Meenderinck. Improving the Scalability
and Capabilities of the Nexus Hardware Task Management System. First Inter-
national Workshop on Future Architectural Support for Parallel Programming
(in Conjunction with ISCA’11, 2011).

. Tamer Dallou and Ben Juurlink. Hardware-Based Task Dependency Resolution

for the StarSs Programming Model. 41st International Conference on Parallel
Processing Workshops (ICPPW), SRMPDS, 2012.

. Tamer Dallou, Ahmed Elhossini, and Ben Juurlink. FPGA-Based Prototype of

Nexus++ Task Manager. 6th Workshop on Many-Task Computing on Clouds,
Grids, and Supercomputers (MTAGS) 2013, Co-located with SC 2013, 2013.

Nina Engelhardt, Tamer Dallou, Ahmed Elhossini, and Ben Juurlink. An Inte-
grated Hardware-Software Approach to Task Graph Management. 16th IEEE In-

ternational Conference on High Performance and Communications HPCC-2014,
2014.

Tamer Dallou, Nina Engelhardt, Ahmed Elhossini, and Ben Juurlink. Nexus#:
A Distributed Hardware Task Manager for Task-Based Programming Models.
The 29th TEEE International Parallel and Distributed Processing Symposium,
IPDPS 2015.
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1.11 Thesis Organization

This chapter introduces the scalability problem in the era of multicore processors.
It sheds light on the challenges of parallel programming and highlights the benefit
of dependency-aware task-based programming as a promising solution to the parallel
programming challenges of multicore systems. It motivates for this thesis work by
highlighting the overhead resulting from the runtime systems of such a programming
model, which is a central bottleneck that limits their scalability. The remainder of
this chapter lists the contributions of this thesis, the scientific papers published in

international conferences and workshops upon which this thesis is based.

Chapter 2 elaborates in more details on OmpSs as a relevant task-based program-
ming model, in addition to special case of parallelizing H.264 video decoding using

OmpSs. The remainder of this chapter gives a summary of the related work.

Chapter 3 introduces the architecture of Nexus++: a hardware accelerator for task-
based programming models in general, and for the StarSs programing model in par-
ticular. It describes the design as a SystemC model, and evaluate it using several
synthetic benchmarks as a preliminary design-space exploration of the real hardware

presented in the next chapters.

In Chapter 4, an improved architecture of Nexus—++ is presented as a VHDL pro-
totype, along with an in-house light-weight runtime system capable of running sev-
eral benchmark with Nexus++ handling task-graph management. Part of evaluat-
ing Nexus++ in this chapter, Nexus++ bitstream (hardware) was downloaded to an
FPGA, and a special interface was designed to communicate with the host multicore
machine over the PCle bus. Several real benchmarks were used for evaluation, as well
as their traces to do further simulations for large number of cores that do not exist in

the multicore machine used in the evaluation.

Chapter 5 analyzes the bottlenecks in the architecture of Nexus++, and solves them
by introducing a distributed task-graph architecture called the Nexus#. The latter
architecture pushes the scalability of applications with fine-grain tasks further. It was

evaluated using trace-based simulations of the VHDL prototype.

Chapter 6 suggests future prospectives to further develop this research work and

finally Chapter 7 draws conclusions.
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2.1 The StarSs and OmpSs Programming Models

The StarSs programming model is a task-based dataflow model that creates tasks
out of the user program, which can potentially run in parallel. The StarSs name is
composed of the wildcard character (*) and the Superscalar abbreviation Ss, as it
exploits task-level parallelism (TLP) based on data dependences between tasks to the
same way instruction-level parallelism (ILP) is exploited in out-of-order superscalar
processors. StarSs is meant to target several architectures, for example CellSs for the

Cell architecture [19, 26], SmpSs for symmetric multiprocessors [123], etc.

In contrast to other task-based programming models, StarSs is dependency-aware,
meaning that the programmer can annotate the source code with certain pragmas
indicating the inputs and outputs of tasks. Using the information provided by the
pragmas, the StarSs runtime system tracks the inputs/outputs dependences between
tasks and builds at runtime a task graph to decide which tasks are ready to run at any
point in time. The runtime system also tracks tasks’ completion and updates the task
graph accordingly, in order to move any dependent tasks to the pool of ready tasks.
This way, the result of the parallel execution of a certain application is equivalent to its
sequential counterpart. StarSs also enables the programmer to optimize his/her code,
by bundling multiple tasks together in order to decrease the per-task management

overhead, or to exploit data locality by bundling a chain of dependent tasks.

OmpSs is a programming model [28, 54| that brings the benefits of StarSs and
OpenMP in one model. It adapts the task-based execution model and enables the
programmer to run his/her code on a heterogeneous machine, by specifying the target

of each task: SMP, cluster, GPU, or FPGA. Its high-level model can be seen in
Chapter 1, Figure 1.7(a). It decouples the hardware from the application, with the
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1%t task
input output in/out
*;*fg input none true true
& | output | anti output output
el . .
£,/ in/out | anti true  true

Table 2.1: Depedences between tasks accessing common objects.

runtime system orchestrating the usage of the hardware resources and transparently

managing parallelism for the programmer.

OmpSs enables uncomplicated exploitation of task-level parallelism. It provides the
programmers with pragmas to identify code blocks that can potentially run in parallel.
OmpSs extends the task model to capture data dependences between tasks. Using the
syntax #pragma omp task in(A,...) inout(B,...) out(C,...) (with A, B, C
are the objects passed as operands to the task), the programmer can indicate which
inputs a task consumes and which outputs it produces. An Input operand indicates
a read-only operation, whereas an output argument indicates a write-first operation
meaning that this operand will be written first and might be read and written later
on, therefore the initial value is irrelevant. An in/out operand indicates that the task
may read and write this operand and that its initial value might be read. In 2013,
OpenMP also introduced OmpSs-like task dependences in version 4.0 of the program-
ming model[23], using the depend(dependence-type: list) directive. For example, a task
that reads memory locations A and B and writes memory locations B and C' is anno-

tated by #pragma omp task depend(in:A) depend(inout:B) depend(out:C).

The arising dependences between two tasks accessing a common object can be seen
in Table 2.1 based on their access mode to the common object. The table shows an
example of two tasks marked as I1** task and 2" task indicating their order in the
program, which is the order at which they are to be inserted in the task graph. A
none dependence means that no dependence exist between the two tasks and therefore
they can run in parallel. A true dependence on the other hand means that the 2°d
task needs some data which is produced by the 1% task and therefore depends on
it. This type of dependence is also known as Read After Write (RAW) dependence.
There are two other types of dependences in the table, namely the anti and the output

dependences which are analogous to data hazards in CPU’s pipelines [72, 122].
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Anti and output dependences, also known as Write After Read (WAR) and Write
After Write (WAW) dependences respectively, are not true dependences since no data
flow between the two tasks in the form of a producer-consumer relationship. However,
they arise when two or more tasks use the same memory location to write their data.
Therefore such dependences can be removed by using different memory locations by
the tasks, a technique known as renaming. Renaming of function operands can be
done by the runtime system in order to remove false dependences and to build the
task graph solely based on true dependences between tasks. Although this might
simplify the resulting task graph, it increases the runtime overhead, since the runtime
should keep track of multiple versions of the same object and should ensure that a

certain task accesses the appropriate version of the object.

OmpSs is based on mercurium, a source-to-source compiler that transforms the
pragmas in the user code into function calls to its runtime library called Nanos. Mer-
curium translates task annotations to Nanos runtime library calls, so that whenever
an annotated function is called, rather than being directly executed a task will be
generated and added to the task graph based on its input/output parameters. The
resulting code can then be compiled by a conventional source-to-object compiler such
as gce. When running the resulting executable file, the runtime system builds the
task graph by spawning tasks one after the other according to their position in the
program. A dependence between two tasks means that the tasks must be executed
in the order they were generated in the first place. The resulting task graph is a
directed acyclic graph (DAG), since tasks can only depend on other earlier tasks in
the program order. The root nodes in a task graph are the tasks that are executing
or ready to execute. When they finish executing, the runtime system removes them

from the task graph, resulting in new root node(s) that can be scheduled to run.

OmpSs implements a thread-pool model where the master thread starts execution
and generates tasks, which can be executed using the other threads in the pool. By
dynamically maintaining the task graph, the runtime system resolves dependences

between tasks and decides which task is ready to run at any point in time.

The programmer does not need to care about synchronization between the tasks,
as this is done implicitly by the runtime system. OmpSs can be used also in hetero-
geneous, multicore systems. Such systems may include SMPs, GPUs, FPGAs, etc.

This can be done by providing alternative implementations for a certain function for
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different devices. The runtime system is then free to exploit parallelism in the user

code as much as it can.

The StarSs and OmpSs Programming Models have been developed and used in
several European research projects such as the SARC project (Scalable computer AR-
Chitecture, www.sarc-ip.org) [132, 135], the ENCORE Project (ENabling technologies
for a programmable many-CORE, www.encore-project.eu), the Mont-Blanc projects
(www.montblanc-project.eu) [133], the TERAFLUX project (www.teraflux.eu) [65],
the DEEP project (www.deep-project.eu) and the DEEP-ER project(www.deep-er.eu),
the INTERTWinE project (www.intertwine-project.eu/) and the AXIOM project (Ag-
ile, eXtensible, fast [/O Module, www.axiom-project.eu) [152].

2.2 H.264 Video Decoding in OmpSs

H.264 [165] is a video standard widely used in consumer devices worldwide. Andersch
et al. in their work presented the case of parallelizing H.264 using OmpSs [7]. They
demonstrated how OmpSs can be used to exploit pipeline parallelism in H.264 de-

coding and the relatively ease of programmability of OmpSs in contrast to Pthreads

parallelism.

1 MB_type* X[NB_WIDTH][NB_HEIGHT];

2 //MB_type: a data str. that rep. MB dependencies.

3 #pragma omp task input(left, upright) inout(this)

4 void decode (MB_typex left, MB_typex* upright, MB_typex this){...}
5 void main (){

6 int i, j;

7 init _matrix(X) ;

8 for(i=0; i<NB_WIDTH; i++)

9 for(j=0; j<NB_HEIGHT; j++)

decode (X[i][j-1], X[i-11[j+1], X[1i]1[j1);
#pragma omp taskwait

b

_= = =
N o= O

Listing 2.1: OmpSs example of macroblock wavefront decoding in H.264

Listing 2.1 shows an OmpSs example of exploiting parallelism using pragmas for
macroblock decoding in H.264 [7]. Each frame in an H.264 sequence is divided into

several macroblocks and each macroblock covers 16 x 16 pixels. In the example shown
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Figure 2.1: The dependency pattern in the macroblock reconstruction stage in H.264 video
decoding. Reconstructing a certain macroblock requires some pixel areas from
adjacent macroblocks.

in Listing 2.1, the function decode() is called inside a nested loop, iterating over the

macroblocks in a video frame.

Calculating the decode() function for a certain macroblock requires the results of the
decode() function on the left macroblock and the three macroblocks above it [156]. This
dependency pattern of H.264 macroblock decoding is shown in Figure 2.1, simplified by
having each macroblock being dependent only on the macroblocks at its left and upper-
right, since the latter macroblock depends on its left macroblock. This dependence
pattern appears repeatedly in H.264 macroblock decoding, however since H.264 video
decoding is data-dependent and thus has variable execution times, it is hard to apply
static task scheduling. Therefore, H.264 video decoding is amenable to dynamic task
scheduling to improve decoding performance. Exhibiting variable task execution times,
irregular parallelism, and fine grain tasks, in addition to being widely used in academia
and industry make H.264 video decoding a representative and driving application for
this thesis.

When a function declaration is annotated with the omp task pragma, any calls to
the function are turned into task submissions. The input and output parameters of
the task should be specified in the annotation pragma as well as shown in Listing 2.1.
This permits the runtime system to detect dependences between tasks and launch
them only when all their input data are available. In the example of Listing 2.1, every

time the function decode() is called, a task is generated. The call returns immediately,
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allowing the submission of more tasks concurrently to their execution. At the end, a

taskwait pragma makes the thread wait for completion of the submitted tasks.

Having identified the tasks and the direction of their parameters, the OmpSs envi-
ronment builds the task graph at runtime and the task-level parallelism is detected
and exploited. Ready tasks are scheduled to run on the worker cores and once they

finish, the task graph is revisited to release dependent tasks.

Central to this thesis is the work by Andersch et al. [7], where the authors show the
need to group the processing of several macroblocks to overcome the task management
overhead of the OmpSs runtime system, which constitutes a bottleneck limiting the
scalability of applications in OmpSs. In the same work, the authors show how grouping
several tasks together is not a trivial task and requires the programmer to interfere to

preserve the correct execution order of tasks, thus increasing code complexity.

Figure 2.2 shows different task graphs when running the H264dec benchmark for
one FHD video frame, which were generated using TEMANEJO, a tool that enables
the visualization of task-dependency in task-based programming models [24]. A node
represents one task and the edges between nodes are the dependences between tasks.
A FHD video frame in H.264 has 8100 macroblocks, each of which is 16 x 16 pixels.
Reconstruction one macroblock alone is a fine grain task. The figure shows three
task graphs for macroblock reconstruction in H.264. They differ in the number of
macroblocks grouped per task in order to coarsen the tasks and minimize the runtime
overhead. It can be seen how the task graphs build up with respect to time (top-
to-bottom). Tasks at the same row in the graph are independent and given enough
resources (worker cores) they can be run in parallel. Comparing the graphs side by side
shows how the number of parallel tasks is reduced as more macroblocks are grouped

together and assigned to one task.

The number of macroblocks assigned to each task is defined for the main body of the
video frame and is not the same for all tasks. This is due to the fact that macroblocks
on the edges of the frame require extra care from the programmer to preserve the
overall order of macroblocks reconstruction. In the example of Figure 2.2(c) where
256 macroblocks are grouped together per task a FHD frame should be processed by
32 (=8100/256) tasks, the figure has 53 nodes.
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(b) 64 MBPT (c) 256 MBPT

(a) 16 MBPT

the number of macroblocks to be reconstructed per task (MBPT). Graphs

Figure 2.2: Different task graphs of H.264 video decoding one FHD video frame varying
were generated using TEMANEJO [24].
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2.3 Related Work

Parallel programming has always been an active field, even before the breakthrough
of multi/many core processors. Nowadays, it receives more importance as the target

has shifted from programming supercomputers to normal consumer devices.

The quest to provide performance with less power can be achieved by further divid-
ing a certain workload into smaller pieces, by extracting any potential parallelism in
it and mapping them to the worker cores. This way, the worker cores can be clocked
at a lower frequency, hence consuming less power and still meeting the requirements
of the workload.

The goal of this research work is to improve the scalability of applications on systems
with large number of cores, by exploiting fine-grain parallelism in applications while
at the same time preserving the ease of programmability. Therefore, I'll mention the
related work, to the best of my knowledge, that enables programmability of multicore
systems with minimum or no interference from the programmer, as well as those related
to study of the runtime overhead of managing parallelism. In addition I discuss similar

approaches of hardware acceleration of parallelism detection and management.

2.3.1 Software-Based Approaches

In the literature there are several programming models that aim at improving the
parallelism and scalability of the user applications. Most of them, however, assume
independent tasks and are optimized for a certain application, a certain platform, or
both.

As previously introduced, OpenMP [14, 23], the StarSs family of programming mod-
els [18, 123, 127, 150] including OmpSs [27, 54|, and StarPU [12] are good examples
of a high-level parallel programming model, which require the programmer to only
annotate sections of code that can potentially run in parallel. The runtime system
then takes care of maintaining dependences between tasks and scheduling those ready
to run. To achieve that the runtime system can introduce overheads which can limit

the scalability to large number of cores.

Nanos++ [37] is a runtime system that handles task management for OmpSs and

OpenMP applications. It is developed and maintained at the Barcelona Supercom-
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puting Center. Nanos+-+ is a feature-rich system that supports running tasks on
GPUs and clusters, in addition to symmetric multiprocessors. It supports also differ-
ent scheduling policies and rich instrumentation capabilities. Nanos++ is the baseline

system used for performance evaluation in this thesis.

VSs [55] and MTSP [118] are other two runtime systems for OmpSs and OpenMP
task-based programming models. Targeting high performance, they are developed as
light-weight libraries that support basic task directives (task dependencies and syn-

chronization barriers), with limited instrumentation features compared to Nanos++.

Gautier et al. [63, 64] presented X-kaapi, a multi paradigm runtime system for
multicore architectures including the dataflow paradigm, where the user can specify
tasks using the #pragma kaapi task to declare tasks with their access modes. The

X-kaapi runtime system handles task creation and synchronization.

Lyberis et al. [61, 104, 105] presented Myrmics, a task-based runtime system target-
ing non cache-coherent, heterogeneous manycore processors. It exploits the producer-
consumer property using a dataflow model to provide software-based cache coherency
on non cache-coherent architectures, by transferring data from producer to consumer
CPU cores using decentralized runtime agents. It uses the same principle to prefetch
data into the cache memory of the consumer CPU in cache-coherent, shared mem-
ory architectures. Myrmics has been implemented and evaluated on a specifically
designed heterogeneous 520-core FPGA prototype, modeled after common trends in
manycore processors design. The proposed hardware task manager in this thesis sup-
ports double-buffering in a similar way as Myrmics to overlap computation and com-
munication and therefore enhances performance. Although not implemented with a
heterogeneous architecture yet, integrating our hardware task manager with Myrmics

can be an interesting approach towards Exascale architectures.

Wang et al. [162] proposed FPL (Flexible Programming Model) and the MP Toma-
sulo [163], where they developed a runtime system for StarSs applications, target-
ing FPGA-based embedded microprocessors (such as Microblaze, PowerPC, or ARM
cores) and custom IP cores, which are responsible for accelerating specific tasks in

hardware. Their runtime system supports renaming of tasks’ parameters to overcome
false (WAW and WAR) inter-task dependences.

Pop and Cohen [129] developed another dataflow extension to OpenMP called Open-

Stream, where the programmers can specify dependences between tasks using streams.
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This work has been extended by Drebes et al. [53] to support non-uniform memory
access (NUMA) architectures, by developing a NUMA-aware task and data place-
ment algorithm to achieve high data locality and at the same time preserve a uniform

abstraction of the hardware resources by the programing model.

The literature has some articles about similar task dataflow programming models
that support task dependencies [2, 40, 70]. Agrawal et al. [2] developed the NABBIT
library for Cilk+-, which enables the programmers to specify task inputs and outputs,
and therefore build a task graph to exploit parallelism.

Vandierendonck et al. [158] also extended Cilk++ by adding dependency clauses
(input, output or both (inout)) on task arguments to facilitate complex patterns of
parallelism such as pipeline parallelism, without increasing code complexity or loosing
performance. The authors also presented a unified scheduler [159] for task dataflow
applications, that enables the programmer to use algorithms with dependency-aware

tasks and algorithms with classical fork-join style.

Gupta et al. [70] in their approach exploit function level parallelism and by mapping
function calls to tasks, they construct task graphs based on the inputs and outputs
of the functions in applications. Although Gupta et al. provide the programmer with
a clear API to specify functions that should be considered for dataflow execution,
the needed effort is relatively more cumbersome when compared to directive-based

approaches, such as OmpSs and OpenMP.

Loghin et al. [102] worked on optimizing a fine-grain dataflow graph in order to
efficiently run it on a multicore processor. They did this by coarsening tasks by
applying node fusion on both loops and functions. Using matrix multiplication and
prime numbers counting as benchmarks, the authors emphasized the importance of

task granularity and its effect on application scalability.

Other approaches in the literature that utilize dataflow task graphs to exploit par-
allelism include Data-Driven Tasks [149], where the programmer can use the await
clause to specify the arguments a task requires before it can start. A put() operation

can be called by some task to provide an argument in the await clause of another task.

The OSCAR (Optimally SCheduled Advanced multiprocessoR) Multigrain Paral-
lelizing Compiler [82, 84, 88, 112, 117], the MAPS (MPSoC Application Programming
Studio) framework [34, 35, 97, Automatic Parallelization tool [60] and the DiscoPoP
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(Discovery of Potential Parallelism) project [48, 98], where static and dynamic analyses

are performed to automatically extract parallelism from the sequential programs.

Tareador [15] is a tool that helps the programmer iteratively annotate the sequential
program, by providing a simple API and a graphical representation of the dataflow
in the user program, identifying potential task-based parallelism in the sequential
programs. Other performance analysis, debugging, and visualization of dataflow task
programming models include Paraver [36, 38], Aftermath [51, 52|, DAGvis [77], and
TEMANEJO [24, 25, 74]. The latter tool has been used in this thesis, in particular for
generating the task graphs of some of the benchmarks used for performance evaluation

in this thesis.

Vandierendonck et al. [160] analyzed the runtime overhead for task-based program-
ming models, identifying two concepts that characterize a task graph: 1- versions,
capturing renaming of operands, and 2- generations, capturing sets of parallel tasks.
The authors analyzed the task graphs of applications programmed with task-based
models and using renaming of operands, they claim a reduced dynamic runtime over-
head for maintaining the task graphs by removing the anti and output dependencies
shown previously in Table 2.1. Moreover, they emphasized that grouping of parallel
tasks into generations allows a later dependent task to wait for a generation of paral-
lel tasks as a whole, rather than adding it to the waiting lists of the individual tasks
in the generation, simplifying dependence tracking and minimizing runtime overhead
while generating hyper task graph structure. Consequently, the authors proposed a
software approach for task management that exploits both versions and generations in
a task graph, and stored the task graph in a linked list structure reducing the number
of edges in the task graph. They proposed an edge-less scheme as well, where tickets
are issued to tasks upon task spawning and by maintaining counters, tasks with ticket

value equal to the global counter are ready to run.

Using microbenchmarks, the overhead of their proposed software task graph man-
ager can go as low as 400 cycles (0.2 us on their test machine, a 48-core AMD Opteron
6172 at 2.1GHz) per task, for the case of a microbenchmark with all independent tasks,
i.e., tasks are ready to run immediately after spawning. In their analysis, however, the
authors assumed that any task has one operand only, claiming that their findings are
applicable to tasks with multiple operands. Although this might be true for the case
of adding dependent tasks to the different waiting lists of the output operands of a
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certain task, the runtime overhead estimation can be more complicated when having
a certain task (with multiple input operands) on the waiting lists of multiple tasks. It

is also not clear if the renaming overhead is taken into account or not.

Using real benchmarks with complex dependency patterns on the other hand, such
as Cholesky factorization (described in the previous chapter in Section 1.6), Vandieren-
donck et al. showed that the different task graph management schemes exhibit nearly
the same scalability behavior. The task graph management overhead is dominant
at smaller task sizes, with the ticket-scheme being about 10% faster than the other

edge-centric schemes.

Although renaming of operands is not handled by the proposed hardware task man-
ager in this thesis, a generation-like mechanism is implemented, by handling a set of
parallel tasks accessing a certain object as a group, allowing a potential dependent
task (a task that writes this memory object later on) to wait for the whole group
and not the individual tasks. Therefore, the hardware task manager presented in this
thesis can be classified under the hypergraph paradigm discussed by Vandierendonck
et al. [160].

TurboBLYSK [128] presented a framework for OpenMP 4.0 [23] to support fine grain
tasks. The authors proposed a scheme that re-uses previously resolved dependency
patterns to minimize the runtime overhead. The proposed pattern-saving mechanism
is based on programmer annotations, where the programmers can use the dep_ pattern
clause introduced in the scheme. TurboBLYSK task graph is similar to the hypergraph
paradigm presented in Vandierendonck et al. [160] and has shown significant scalability

improvement over OmpSs.
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2.3.2 Hardware-Based Approaches

To the best of my knowledge, most of the contributions in the literature that propose
hardware support for task parallelism focus on the process of scheduling existing tasks
without participating in the process of dynamic dependency resolution. Among these
is Carbon [91], a hardware accelerator for dynamic task scheduling, with hardware
distributed task queues for low-latency retrieval of tasks and with task stealing sup-
port. In addition to the low-latency queues, the Carbon architecture has a per-core
prefetch unit to hide the latency of accessing the queues. A software API is pro-
vided to enable the programmers to create processes that enqueue and dequeue tasks
from Carbon queues. Carbon’s software library implements an overflow mechanism,
in case that the number of in-flight tasks exceeds the queues limited capacity, which
pushes the extra tasks to the memory system back and forth, thus supporting virtu-
ally an unlimited number of tasks and processes. Several benchmarks with loop-level
and task-level parallelism were used to evaluate Carbon’s performance on a cycle-
accurate, execution-driven multicore processor simulator developed by the authors
themselves [91]. Carbon showed to outperform software implementations of dynamic

task schedulers.

The prefetching mechanism implemented in Carbon is similar to the double-buffering
mechanism implemented in this thesis, as described in Chapter 3. Although Car-
bon provides a low-latency mechanism to enqueue/dequeue ready tasks to/from the
queues, the programmer is responsible for handling dependences between tasks and
pushing only ready tasks into the queues. Carbon-like queues can be integrated with
the proposed hardware task manager in this thesis in order to provide several ready
tasks queues with task stealing support, rather than using one centralized ready tasks

queue, which will be eventually a bottleneck in the case of a large number of cores.

Hoogerbrugge and Terechko [75] proposed a task scheduling unit based on Carbon.
The authors evaluated their system using a simulated architecture, where they inte-
grated their proposed hardware task scheduling unit with a TriMedia-based multicore
system and a hardwired H.264 entropy decoding unit. As in Carbon, parallelism ex-
traction and management were left to the programmer. Nevertheless, the authors
demonstrated good scalability results (up to 14x) for the case of decoding an UHD
H.264 video file on a simulated 16-core prototype.
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Sanchez et al. [138] introduced an asynchronous direct messages (ADM) unit, which
can be integrated with individual cores in a multicore system. The unit enables, at
low overhead, direct exchange of short messages asynchronously between threads with-
out going through the memory hierarchy. It can be used to implement low-overhead
runtime systems and schedulers that can exploit fine-grain tasks without being a scal-
ability bottleneck. In their experimental setup, the authors simulated a tiled, large
scale (up to 128 cores) multicore system. They evaluated their approach by compar-
ing it to a software-only scheduler and to a Carbon-based model. Their proposed
ADM-based task scheduler outperformed software-only schedulers and matched the

performance of the Carbon-based model.

Castrillén et al. [32, 33] proposed OSIP (Operating System Instruction-set Proces-
sor); a programmable Application Specific Instruction set Processor (ASIP) for accel-
erating the scheduling, mapping and synchronization tasks in MPSoCs. While tradi-
tional ASIP designs target a certain application or an application domain [79], OSIP’s
target is to accelerate the operating system’s services (OSIP’s name OS Instruction-set
Processor), making it suitable to build efficient and scalable applications or system
libraries. The authors achieved this by profiling commonly used scheduling algo-
rithms (round-robin, priority-based, first-come first-serve, fair queue) in the hierarchi-
cal scheduling [66] approach for heterogeneous architectures, and designed the OSIP
architecture accordingly. In particular, OSIP provides hardware primitives for effi-
cient memory access, control and arithmetic operations used heavily in scheduling
algorithms. Moreover, OSIP provides a register interface which attaches to a MPSoC
through the latter’s standard interconnect, in addition to utilizing the MPSoC’s inter-
rupt lines to trigger the worker cores when needed. The authors also presented a set
of well-defined programming APIs for task management including CreateTask, Sus-
pendTask, DeleteTask, in addition to other synchronization APIs. Using those APIs,
the authors implemented a parallel H.264 video decoding exploiting macroblock-level

parallelism [110].

Integrating OSIP with an ARM9-based [8] multicore system in a virtual prototype,
OSIP demonstrated significant improvements over software solutions. The simulated
system consisted of variable number of ARM9 (2 to 15) cores, with different configu-
rations of OSIP and an idealized interconnect. All of the ARM9 cores in addition to
the OSIP core were clocked at 200 MHz. For a 15-processor configuration, OSIP was

able to manage tasks as small as 25 kcycle. On an 8-processor configuration, OSIP
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was able to manage even finer-grain tasks of size 10 kcycle. This is comparable with
Nexus# which is able to manage fine-grain tasks of size 12 kcycles (4.6us on a Xeon
E7-4870 multicore machine, running at 2.40GHz, shown in Table 1.3), with complex

inter-task dependences and scaled up to 6 cores as shown in Chapter 5.

Zhang et al. [176] analyzed the integration of OSIP in shared and distributed mem-
ory multicore systems. The authors emphasized on the importance of the communi-
cation infrastructure in order to fully utilize OSIP. This is the case for any runtime
hardware coprocessor including Nexus++ and Nexus#, where high-speed communi-
cation is critical for system performance, since communication takes place very often

and in small packets.

Hardware support for OS services such as task scheduling or even moving OS func-
tionality to dedicated hardware structures is an active topic in the literature. The
hardware OS kernel (HOSK) presented by Park et al. [121] provides hardware primi-
tives to reduce the multithreading overhead in RISC-based multiprocessors. In order
to reduce the overhead of context switching, HOSK proposed local context controllers
to be embedded in every RISC processor that communicate with HOSK’s central con-
text manager over a dedicated bus to prefetch the next ready task. Although HOSK
showed reduced multithreading overhead for the presented RISC-based environment,
the authors neither presented a software API to exploit HOSK nor did they give

insights on how to integrate HOSK with generic multiprocessors.

The SystemWeaver presented by Lippertt [100] uses task-based parallelism and pro-
vides hardware primitives for fast task creation, synchronization and scheduling in

heterogeneous multicore architectures.

The Swarm architecture [83] is another architecture which integrates distributed
hardware task queues in a tiled, cache-coherent chip multiprocessor. The authors
depend on the programmer to specify the order at which tasks can be executed by
assigning timestamps to tasks upon tasks creation. Their task execution model uses
thread-level speculation, in which tasks are executed speculatively out-of-order and
are concluded in-order. To achieve high scalability, they exploit fine-grain tasks and
use the distributed hardware queues for reducing task management overhead and
for supporting a large speculation window. Using an event-driven simulation model,

they achieved 3 — 18x speedup on a 64-core chip multiprocessor, compared to the
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software-only parallel implementation of a set of benchmarks from the domains of

graph analytics, simulation, and databases.

Other modern architectures adapting task-based programming with hardware sup-
port for fine-grain tasks vary from massively parallel architectures such as the Anton
2 [69, 142] supercomputer used for molecular dynamics simulations, to embedded sys-
tems such as the hardware thread scheduling unit for data-driven multithreading [92],
presented by Matheou and Evripidou [107]. Although those systems require the de-
pendency graph to be provided by the programmer and focus on optimizing thread /-
task management, they share the general approach with the hardware task manager

proposed in this thesis of providing hardware support for the software side.

In the industry, Texas Instruments presented the Keystone II architecture [21, 81]
that includes the Multicore Navigator, which utilizes hardware queues for fast task

dispatching and scheduling.

Few works exist that target dynamic dependency resolution in task-based program-
ming models. Most of them are either optimized for a certain application, a certain

platform, or both.

For example, a look-ahead task management unit (TMU) optimized for H.264 video
decoding is presented by Sjdlander et al. [143]. Based on the dependency pattern of
H.264 video decoding shown in Figure 2.1, the authors designed a simple TMU that
monitors which core decodes which macroblock in a video frame, and looks ahead
in time to prepare the dependent tasks of that macroblock so that the core can im-
mediately decode them once it finishes decoding its current macroblock. Although
this approach is beneficial for H.264 video decoding, it is not a generic solution, and
even for parallelization opportunities in H.264 other than macroblock decoding, for

example pipeline parallelism or inter-frame parallelism [7].

Al-Kadi et al. [3] proposed a hardware task scheduler (HTS) optimized for applica-
tions that exhibit repetitive inter-task dependency patterns with focus on H.264 video
decoding. However, it requires the programmer to isolate the parallel kernel in the
source code and to identify the repetitive dependency pattern between tasks. The pro-
posed approach in this thesis on the other hand provides hardware acceleration for the
runtime systems of StarSs/OmpSs and similar programming models to reduce their

overhead, leaving it to such programming models to provide a high level abstraction
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that facilitates programmability and performance portability as introduced in the first

chapter, thus supporting irregular parallelism in different application domains.

Seidel in his Phd dissertation [139] proposed a task-level programmable processor
that utilizes dataflow task-based parallelism and integrates a hardware unit that man-
ages dependencies between tasks. Limberg et al. [9, 99] proposed the CoreManager,
a hardware unit based on Seidel’s work [139]. The CoreManager is responsible for
detecting task dependencies, dynamically maintaining the task graph and for task
scheduling. It also handles data transfers between the different cores in the system. A
task-based programming model similar to OmpSs is also presented, which enables the
programmers to define tasks along the target architecture using simple annotations.
Furthermore, the programmer is required to specify the inputs and outputs of each
task at the point of task instantiation. The CoreManager is then integrated in a het-
erogeneous multicore architecture called the Tomahawk MPSoC, which is a software
defined radio platform with support for multimedia applications, demonstrating the

efficiency of the CoreManager managing parallelism in heterogeneous architectures.

Another approach similar to the one proposed in this thesis is the Task Superscalar
presented by Etsion et al. [56-58], who proposed a hardware task management unit
for the StarSs runtime system, based on the similarity between task-level parallelism
in task-based programming models and instruction-level parallelism in out-of-order
superscalar processors. In their work, the authors assume that a task in the StarSs
programming model is the basic unit of computation that can run on a core in a hetero-
geneous multicore processor. Their proposed accelerator tracks dependences between
tasks in the same way dependences are tracked between instructions in a modern
superscalar processor. The tasks are added to task reservation stations, where they
wait for their inputs to be produced by previous tasks, before they can be executed
on one of the processor cores. A VHDL prototype is presented for it in [174], but it
is only evaluated using high-level simulations. As shown in Chapter 5, the hardware
implementation, compared to ours, is relatively expensive. PICOS [148, 175] is also a
hardware implementation of the task superscalar [56] to support the OmpSs program-
ming model, which improves the hardware utilization and latencies over the original
task superscalar design. The task superscalar architecture supports renaming of tasks’

parameters, a feature that is not supported by our hardware task manager until now.
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Meenderinck et al. [109] proposed Nexus (the baseline of our design), a hardware
task manager that is restricted to the Cell BE processor [26]. Moreover, Nexus has
limitations on the number of parameters a task can have and on the number of tasks
that can depend on a certain memory segment. The work presented in this thesis
solves the limitations present in Nexus, in addition to providing a more optimized

solution for task graph management as shown in later chapters.

Finally, based on Nexus++, LG Electronics presented Tioga [46]: a hardware task
manager integrated in an ARM-based embedded multicore system, which aims at
providing efficient task-graph management to utilize fine-grain task-based parallelism

in embedded systems.

52



3 Hardware-Based Task Dependency
Resolution for the StarSs/OmpSs
Programming Model

The idea of relieving the programmer from explicitly extracting parallelism and lim-
iting his/her role to light-weight annotating the source code is very promising for
contemporary and future multicore SoCs. This approach, introduced by dependency-
aware task-based programming models, is what makes it substantially standing out

as a key solution for the programmability and scalability problems.

As the multicore processors era and OmpSs (the programming model in focus),
are relatively new, a proof-of-concept model for hardware support is thought to be

implemented first using SystemC.

SystemC is a C++ class introduced by the Open SystemC Initiative in 1999 [1],
which provides the basic primitives to rapidly model hardware modules and concurrent
processes, an event-driven simulation platform, in addition to the easy-to-code and

debugging capabilities of C++.

This first model, called Nexus++, gives an insight about the feasibility of introduc-
ing hardware support for task graph management. Furthermore, it is used to perform

design space exploration and get an estimate of the required hardware resources.
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3.1 Nexus++ Hardware Task Management System

The multicore system under consideration, shown in Figure 3.1, is assumed to have
one Master Core that executes the main thread and creates Tuask Descriptors, and

several worker cores that execute the tasks.

In StarSs and OmpSs, a task’s life cycle starts when a task pragma is encountered

in the source code.

A Task Descriptor contains task-related information such as its function pointer and
input/output list. Nexus++ is responsible for the task graph management responsi-
bilities usually carried out by the software runtime system. In an n-core system (one

master core and (n — 1) worker cores), Nexus—++ is composed of n hardware modules:

e one Task Maestro, which is mainly responsible for dependency resolution, task

scheduling, and load balancing,

e and n — 1 local Task Controllers (TCs), one per worker core, and are mainly

responsible for task buffering.

Master Core

main(){

for(i=0 to n)
for(j=0 to n){
td=create_task(*f, io_info);
submit_task(td);

frmmmiim i @ ,
i Nexus++ % i
1 Y 1
: Task Maestro !
| |
> (O—>
: 2o !
| 1
: | !
S ? 5
| |
! 1
: 1

Worker Worker Worker
Core 0 Corel | " Coren

Figure 3.1: Nexus++ in a multicore system.
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3.1.1 System Description

A more detailed view of the different components of Nexus++ is shown in Figure 3.2.
The main components in the Task Maestro include the Task Pool where tasks’ de-
scriptors are stored, the Dependence Table where the task graph is maintained, in
addition to several handlers needed to manage the task graph and queues needed for

communicating with the multicore system.

This section describes the different components in Nexus+-+ in the order they get
active or accessed, starting from receiving a task from the master core and inserting it
to the Task Pool and the Dependence Table, to sending ready tasks to the worker cores
and simulating task’s execution, and ending with retiring finished tasks and removing

them from Nexus+- structures.

1. Submitting tasks:
When the Master Core executes the main program, it generates Task Descriptors
and sends them to the Tusk Maestro via a dedicated bus; the T'Ds Busl in
Figure 3.2.

The bus width is chosen to be 64 bit in order to reflect bus widths in concurrent
computer architectures, and therefore to give a realistic picture of the perfor-

mance of Nexus—++ if integrated in real multicore systems.

The Get TDs handler; the first component in the Task Maestro; is responsible
for communicating with the Master Core and receives the variable-length Task
Descriptors (depending on the number of inputs/outputs per task) from the
Master Core over the TDs Busl and writes them to the TDs Buffer. The Get
T'Ds handler uses a simple master-slave handshaking protocol using two request

and acknowledge signals.

The Get TDs handler is important so that the Master Core is not blocked while
the Task Maestro is busy processing an earlier submitted task. The Get TDs
handler and the TDs Busi enable direct communication between the master
core and the Task Maestro, avoiding off-chip communication overhead, which is
one of the scalability limiting factors of Nexus[108]. A similar dedicated bus, the
TDs Bus?2 is shown in Figure 3.2 and is used for communication between the

Task Maestro and worker cores.
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Figure 3.2: Nexus++ block diagram.
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After having received a Task Descriptor, the Get TDs handler writes its size
(indicating the number of parameters the task has) to a FIFO list called the TDs
Sizes list. If this list is full, the Get TDs handler does not set the acknowledge
signal in response to future incoming request signal from the Master Core, causing

the latter to stall and stop sending new Task Descriptors.

Communication and synchronization between the different hardware handlers
inside the Task Maestro are done using FIFO lists (such as the TDs Sizes list).
Those FIFO lists are SystemC constructs that have useful properties. Reading
or writing any of the FIFO lists will generate a list_ (read/written) event re-
spectively. Reading is from the head of the list, and causes the read entry to be

deleted from the list, whereas writing is done at the tail of the list.

Those lists pipeline the work of the different hardware handlers. A handler will
stall if it tries to read/write from/to a FIFO list that is empty /full respectively.

. Storing tasks:

Once the TDs Sizes list is written, it triggers the Write TP handler, which reads
the size of the recently received Task Descriptor from the TDs Sizes list, then
it reads the Task Descriptor from the TDs Buffer, appends some meta data to
it, and finally writes it to the Task Pool, the main task storage structure in
Nexus++. In this prototype, a Task Descriptor packet received from the Master
Core does not have special start or stop characters that mark one Task Descriptor
from the other, this is why the sizes of the Task Descriptors are stored in the
TDs Sizes list.

The full format of the Task Pool is shown in Table 3.1. The 1% column in
Table 3.1 is the index at which tasks are stored. This index is determined by the
Write TP handler, which reads the TP Free indices list, that stores initially all
indices of the Task Pool. After the completion of a task, its Task Pool’s index is
written back to the TP Free indices list.

Inside Nexus++, a task is identified by its Task Pool index. This is important
to directly address a specific entry in the table, rather than searching the table
for that entry. That is why a task’s index is also stored in the Task Descriptor

as shown in the ¢p 7 column of Table 3.1.
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Index | busy | tp_i *f DC | nD nP | P, b ... P or ptr_next Dummy
17 0 17 | 0xABCD | 0 0 8 | 1A/4/in | 2A/4/in 1B/4/out
98 0 98 | 0xDCBA | 1 1 | 10 | 1B/4/in | 2B/4/inout | ... 99/.../...
99 0 99 - - - - | 8B/4/in | 9B/4/out 10B/4/out | -

Table 3.1: The Task Pool. (tp_i: TP index, *f: func. ptr, DC: dependence count, nD: num. dummy entries, nP: num.
parameters, P,: Parameter,).
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The busy column of a Task Descriptor is a boolean flag indicating whether this
Task Descriptor is currently under processing by one of the handlers of the Task
Maestro or not. This is to ensure exclusive access to any entry in the Task Pool
at a certain time, and hence, prevent deadlocks. No race condition can occur
on the busy flag itself, and this will be justified when explaining the process of
handling finished tasks in Section 3.1.2.

The *f column of a Task Descriptor indicates the function pointer of that task.
The DC' column stands for Dependence Counter, which records how many de-
pendences must be fulfilled before this task can be scheduled to run, i.e., how

many inputs of this task are outputs of older tasks.

The nD stores the number of dummy entries that are linked to this Task De-
scriptor. Adding dummy entries to the Task Pool is the mechanism used to
overcome the limit on the number of inputs/outputs a task can have. Applica-
tions are different from one another in the number and size of tasks they can
generate. In addition to differences in task granularity, tasks can have arbitrary
number of parameters. When designing a system to deal with such tasks, the
maximum number of parameters can be set to a large number in order to cover
a wide range of tasks. This however can result in an impractical system size.
This becomes more critical when designing a hardware unit to handle tasks. To
provide virtually an unlimited number of parameters per task, dummy entries
are reserved in the Task Pool for tasks that have large number of parameters.

This mechanism is explained in detail in Section 3.1.3.

Columns nP and the following ones indicate the number of inputs/outputs, and
their information, respectively. An input/output of a task is stored in the format:
(base memory address, size, and access mode), where the access mode can be

either input, output, or inout.

. Resolving tasks’ dependencies:

Once the Write TP handler has finished storing a task in the Task Pool, it writes
this task’s ID (its Task Pool’s index) in a FIFO list called the New Tasks lists
shown in Figure 3.2, the event that triggers the Check Deps handler. The latter
handler is responsible for checking whether the new submitted task is ready or
not, by checking the newly submitted task’s inputs/outputs against all those of
the previously submitted tasks. The task dependence graph is stored inside the
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Dependence Table. The process of dependency resolution is described in detail
in Section 3.1.2.

4. Scheduling tasks:
Once a task is found ready by the Check Deps handler, it writes its ID to a FIFO
list called the Global Ready Tasks list. This event triggers the Schedule handler,

which is responsible for scheduling ready tasks onto the worker cores.

Another FIFO list called the Worker Cores IDs list contains initially all worker
cores IDs. The Schedule handler reads the latter FIFO for a worker core ID and
schedules the last found ready task on this worker core. This simple round-robin
scheduling mechanism achieves load balancing between cores, since whenever a

core finishes running a task, the core’s ID is written back at the tail of the Worker
Cores IDs list.

The Task Maestro has two FIFO lists for each worker core. The first one is called
the C;RdyTasks (Core; Ready Tasks) list, and the second one is the C;FinTasks
(Core; Finished Tasks) list. Scheduling a task on a core is done by writing the
task’s ID in that core’s C;RdyTasks list. C;FinTasks lists are used later upon
completion of tasks. In this prototype of Nexus++, simple distributed queues
are used to communicate with the worker cores, since the focus at this point of

time is on the Task Maestro and it’s evaluation.

5. Send ready tasks to worker cores:
Once the RdyTasks list of a certain core is written, the list written event is
communicated to the corresponding worker core, via a simple unit called the
local Task Controller (TC), which is integrated per each worker core. The Task
Controller is mainly responsible for communication with the Task Maestro, and
to enable buffering of tasks according to the Task Controller buffering depth. If
the buffering depth equals m, then the Task Controller will buffer m — 1 tasks
while the worker core is busy executing one task. A buffering depth of 2 implies

double buffering, whereas that of 1 implies no buffering.

A Task Controller contains four hardware handlers, namely the Get TD, Get
Inputs, Run Task, and Put Outputs handlers, as shown in Figure 3.3. The first
of them is the Get TD handler, which is triggered upon writing a new task ID
to the corresponding core’s RdyTasks list. The Get TD handler is responsible
for fetching the function pointer of the ready task from the Task Maestro. This
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Task Controller

(Get TD]—M{Get InputsJ—M—»[Run Task]—M)[Put Outputs]

|_T'C_[

\Worker|
Core

Figure 3.3: The Task Controller block diagram.

is done by activating a request signal to the Task Maestro; the event that is
handled by the Send TDs handler in the Task Maestro.

The Send T'Ds handler works in a round-robin fashion. It checks all the requests
from the different Task Controllers, and whenever it finds an active one, it reads
the RdyTasks list corresponding to the incoming active signal and gets the ready
task ID. Since a task ID is the index at which it is stored in the Task Pool,
the Send TDs handler reads the Task Descriptor at that index directly without
searching the Task Pool and sends it over the T'Ds Bus2, shown in Figure 3.2 to
the requesting Task Controller.

After the Send TDs handler has sent the requested Task Descriptor to the re-
questing worker core, it writes the task ID to that core’s FinTasks list, which is

important upon task completion as will be shown later.

Sending tasks to worker cores on requests from the local Task Controllers ensures
that the Send TDs handler in the Task Maestro will not waste any clock cycle
waiting for a local Task Controller, due to for example a handshaking protocol
or full buffer at that local Task Controller.

. Run tasks:

After getting a task from the Task Maestro, the Get Inputs handler at the Task
Controller side, prefetches the task code and inputs from memory. Then, the Run
Task handler simulates running the task by waiting for a certain time indicating
by the application trace, and finally the Put Outputs handler writes the outputs

back to memory, and notifies the Task Maestro of task completion. Since task
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execution is simulated, the Put Outputs handler is necessary to simulate writing

task’s results.

The different hardware blocks in the Task Controller work in a pipelined fashion
so that each block works in parallel to the block after it. For example the Get T'D
block starts getting the Task Descriptor of a new task while the Get Inputs block
is getting the inputs of the previously fetched Task Descriptor. This happens
of course given that there are some new ready tasks in the corresponding core’s
RdyTasks list. Of course, the pipeline stalls when the internal buffers of the Task

Controller are full.

7. Finalize tasks, and update the task graph:
The task-finished notification signals from the local Task Controllers are handled
by the Handle Finished handler in the Task Maestro. The Handle Finished han-
dler also works in a round-robin fashion; it continuously checks the notification
signals from the different Task Controllers, and whenever it finds an active one,
it performs two things: first, it acknowledges the corresponding Task Controller
of the observation of its task-finished signal, so the Task Controller deactivates

its task-finished signal consequently.

The second thing the Handle Finished handler performs is that it reads the
FinTasks list of the corresponding worker core. The value read is the ID of
the finished task, since the FinTasks list was written by the Send TDs handler
immediately after having sent the Task Descriptor to the corresponding worker
core. Therefore, it is assumed that the order at which tasks are sent to a worker

core, is the same order tasks would finish.

The main goal of having the FinTasks lists is to minimize the communication
between the Task Maestro and the different Task Controllers, and also to reduce
the time of handling a finished task, since the Task Maestro does not need to
get the finished tasks IDs from the Task Controllers.

After reading the finished task ID, the Handle Finished handler reads the in-
put/output list of the finished task from the Task Pool, updates the Dependence
Table and kicks off pending tasks, if any. Finally, the Handle Finished handler
deletes the task from the Task Pool, adds the task ID to the TP Free indices
list, and adds the worker core ID to the Worker Cores IDs list.
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Since the system has only one Task Maestro and multiple Task Controllers, choosing
the round-robin mechanism to communicate the Task Descriptors to the Task Con-
trollers and to handle the task-finished notifications ensures that the Task Maestro is
not blocked by any of the Tausk Controllers.

Moreover, since inside Nexus++ any task is identified by the index at which it is
stored in the Task Pool, the size and access time of the different tables and FIFO
lists are reduced, since no search operation takes place. Furthermore all events and
notifications are one-bit signals, which ensures low communication overhead between
the Task Maestro handlers and the Task Controller handlers.

Both Nexus [109] and Nexus++ provide dependency resolution. However, Nexus
can only deal with tasks with a limited number of inputs/outputs. Moreover, Nexus
can deal with dependency patterns where only few, limited number of tasks depend on
a certain task. In addition, Nexus proposed Task Controllers, but did not implement

them. Nexus+-+ solves the above limitations as described next.

3.1.2 Dependency Resolution

Dependency resolution between tasks is accomplished inside the Task Maestro by the
Check Deps handler, Handle Finished handler, and the Dependence Table along with

the Dependence Counter associated with every Task Descriptor in the Task Pool.

Currently, dependencies between tasks are limited to comparing the base addresses
of the inputs/outputs of the different tasks. For example, if a task 77 is writing address
A and T; is reading the same address, then, given that Tb was submitted to the Tusk
Maestro after T, Ty depends on T; and thus, cannot be scheduled to run before T}

finishes execution.

The Dependence Table

The Dependence Table is shown in Table 3.2. It is the place where dependence infor-
mation is stored. Each input/output that is accessed by a task will have an entry in
the Dependence Table indicating its access mode, and a Kick-Off List that contains
the IDs of the tasks waiting for this address to be produced before they can run.
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hAddr | v | fAddr | Size | isOut | Rdrs | ww |n_v |n_i|p_i|h D |L D |T;p| ... | Tip or ptr_next Dummy
OxA 1| Ox1A 4 1 0 0 0 - - 0 - T - -
0xB 1] 0x1B 4 0 1 1 0 - - 0 - Tho - -
0xC 1| 0x1C 4 1 0 0 1 111 - 1 333 | Ty | ... 222

0x111 | 1 | 0x2C 4 1 0 0 0 - C 0 - Tso | ... -

0x222 | 1 | 0x1C 4 - - - - - - 1 333 | To7 | ... 333

0x333 | 1 | 0x1C 4 - - - - - - 0 - Tag | ... -

Table 3.2: The Dependence Table. (hAddr: hash address, fAddr: full address, isOut: is output, Rdrs: readers counter, n_ v:
next is valid, n_i: next entry index, p_i, prev. entry index, h_D: has dummy entries, 1 d: last dummy entry
index, ww: a writer waits, T,: Task,).
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Figure 3.4: A variable-length linked-list structure formed inside the Dependence Table
upon inserting two memory addresses x and y that map to the same location
in the Dependence Table described in Chapter 3.

The Dependence Table is a hash table with a simple separate chaining hash collisions
resolution algorithm. The hash function used in this prototype is a simple one shown

in Equation 3.1.

h = addr % [Dependence Table size] (3.1)

Basically, the addresses in a task’s input/output list are truncated to the least
significant bits equal to the logy(Dependence Table size). If a collision occurred
between memory locations z and y on a certain Dependence Table entry, a for example,
memory location (y) will be assigned another entry in the Dependence Table, b for
example, and a link to b will be inserted in a, creating a linked-list structure inside

the Dependence Table, as shown in Figure 3.4.

Although this hash function will not lead to a fairly even distribution in real ap-
plication executions, this is not the case in this SystemC prototype, where the task’s
input /output addresses are generated synthetically by the test bench. However, the
hash function is configurable and can be changed when necessary. In case of a hash
collision, the Dependence Table has an overflow section where the addresses causing a

collision can be inserted and connected in a linked-list style.
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The different fields of the Dependence Table are shown in Table 3.2. The first column
hAddr is the hash address, followed by a valid bit in the v column, followed by the full
memory address in the fAddr column. Size and access mode of this memory address

are stored in the Size and isOut columns respectively.

The Rdrs column indicates the number of tasks reading-only this memory address
at a certain time. The ww flag (stands for a writer waits) indicates whether a task
is waiting for previous readers to finish before it can run and write this memory
address. The latter case is known as the write-after-read hazard WAR. Although
the WAR hazards and the write-after-write WAW hazards are not real dependencies
and are normally resolved using renaming techniques, Nexus++ treats them as true
dependencies. However, implementing address renaming techniques in Nexus—++ is

considered in the future work.

The n_ v, n_ i, and p_ i columns stand for next is valid flag, next index, and previous
index respectively, which builds up the linked-list structure inside the Dependence
Table for entries that map to the same hash address. The h_D and [ D are the
has dummy flag and last dummy index to implement the dummy entries mechanism
explained in Section 3.1.3 in the Dependence Table, in order to overcome the limit on
the number of tasks that can depend on a certain memory address. The number of
dependent tasks can vary arbitrary and in order to solve this problem, multiple entries
in the Dependence Table are reserved for one memory address, in order to distribute
the tasks’ IDs of the dependent tasks over the different Kick-Off Lists of those entries.

A Kick-Off List is composed of the columns T} ...Tg of Table 3.2.

Resolving new tasks dependencies

Every newly submitted task to the Task Maestro is handled by the Check Deps handler,
whose pseudocode is shown in Listing 3.1. Listing 3.1 shows that for each entry A
in the input/output list of the newTask, the Dependence Table is looked up, and an
entry for A will be reserved if A was not found. If A was found on the other hand,
then an older task is already accessing A. In this case, the access modes are checked; if
both the old and new tasks access A as read-only, then the new task is granted access
to A. However, if the older task is writing A, then the new task 75 is added to the
Kick-Off List of A as shown in Table 3.2 regardless of its access mode to A , and its

Dependence Counter is incremented.
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1 foreach A in parameters[newTask]

2 A

3 if (A not in DT){ //1
4 Add A to DT;

5 if (newTask read-only A){ //2
6 DT[A].Rdrs=1;

7 DT[A].isOut = false;

8 }

9 else //2°
10 DT[A].isOut = true;

11 %}

12 else //1’°
13 if (newTask read-only A) //3
14 if (!DT[A].isOut && !DT[WriterWaits]) //4
15 DT[A].Rdrs++;

16 elsed /747
17 DT[A] .writeKickOffList (newTask);

18 TP [newTask] .DC++;

19 }

20 elsedq //3°

21 DT[A] .writeKickOffList (newTask);
22 TP [newTask] .DC++;

23 if (!DT[A].isOut)

24 DT[A].WriterWaits = true;

25 }

26 }

27 if (TP [newTask].DC == 0)

28 GlobalReadyTasksList.write(newTask);

Listing 3.1: Pseudocode of checking dependencies for the new tasks.

Finally, the WA R hazards are handled using the ww (a writer waits) flag in Table 3.2.
If a task T3 is reading B, and Tjg wants to write B, then T}y is added to the Kick-
Off List of B as shown in Table 3.2, its Dependence Counter is incremented, and
the ww flag is set. Any other task that wishes to access B afterwards, regardless its
access mode, will be added to the Kick-Off List of B, and its Dependence Counter is

incremented.

After checking all inputs/outputs of a new task, the Check Deps handler checks the
new task’s Dependence Counter, if it was 0, then the task does not depend on any

other older tasks, and can be scheduled to run.
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gl

Figure 3.5: The task graph of a program in which 6 tasks access memory address A.

Handling finished tasks

Upon task completion, the Handle Finished handler takes action. The pseudocode
of Listing 3.2 shows how the Handle Finished handler updates the Dependence Table
and passes ready tasks to the Schedule handler.

For example, the pseudocode shows that for each entry A in the input/output list
of the finished task 77, if A is read-only, then the Rdrs count of A is decremented. If
it becomes 0 and no writer task is waiting (ww flag is false), then A is deleted from
the Dependence Table. But if the ww flag is true, then a pending task T5 must exist
and is read from Kick-Off List of A.

On the other hand, if T} is a writer of A, and no tasks are waiting for A, then A is
deleted from the Dependence Table. But if there are some tasks waiting for A, then the
Handle Finished handler will continuously read these tasks’ IDs one after the other
as long as they read-only A, until it reads a task that writes A, or the Kick-Off List
of A is empty. Each time a reader is read from the Kick-Off List, the Rdrs count of A

is incremented.

Figure 3.5 shows the resulting task graph of an example, where 6 tasks access A.
T writes A, T, to Ty read A, whereas Tg writes A. The tasks are submitted starting

with 77 and ending with 7§ according to their numbers.
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In the example of Figure 3.5 and while 77 is running, the isOut field of A in the
Dependence Table is set. T to Tg are added to the Kick-Off List of A. When T

1f
2 {
3
4
5)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 ¥

oreach A in parameters[FinishedTask]

if (FinishedTask read-only A){
DT [A] .Rdrs--;
if (DT[A].Rdrs==0)
if (DT[A].WriterWaits){
wTask=DT[A].readKickOffList ();
DT[A].isOut=true;
DT[A] .WriterWaits=false;
TP [wTask].DC--;
if (TP [wTask].DC==0)
GlobalReadyTasksList.write (wTask);
}
else
delete DT[A];
}
elseq
bool RdrsOnly = true;
while (RdrsOnly){
if (DT[A].Rdrs==0 &&
DT[A].KickOffList empty){
delete DTI[A];
RdrsOnly = false;
}
elseq
wTask=DT[A].readKickOffList ();
TP [wTask] .DC--;
if (wTask reads-only A){
DT[A].isOut = false;
DT[A].Rdrs++;
}
elsif (DT[A].Rdrs==0){
DT[A].isOut = true;
RdrsOnly = false;
}
elseq
DT[A] .WriterWaits=true;
RdrsOnly = false;
DT[A].writeHead_KickOffList (wTask);
}
if (TP [wTask].DC==0)
GlobalReadyTasksList.write (wTask);
}
}
}

//1

//2

/72’

/71’

/73

//3’

/74

/747

//411

Listing 3.2: Handling finished tasks pseudocode.
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finishes execution, the Handle Finished handler reads the T to T5 tasks in A’s Kick-
Off List since they all read-only A, resets the isQOut flag, increments the Rdrs count
to 4, and stops reading tasks from the Kick-Off List when reaching Ty since it writes
A. In this case, the Handle Finished handler sets the ww flag of A in the Dependence
Table. When tasks T5 to T5 finish execution, the Rdrs count is reset to 0, Ty is fetched
from the Kick-Off List of A and the isOut field of A in the Dependence Table is set.
Finally, when T finishes execution, the Handle Finished handler deletes A from the
Dependence Table if its Kick-Off List is empty.

Of course, every time a task is read from a Kick-Off List, its Dependence Counter
is decremented, and if it becomes 0, the task ID will be written to the Global Ready
Tasks list to be scheduled to run.

Avoiding race conditions

In the Task Pool, the busy flag is used to ensure that the different handlers access a
certain Task Descriptor exclusively. More precisely, to prevent race conditions that

might occur when accessing the Dependence Counter of a certain task.

This might happen as in the following scenario: if 77 has 20 parameters, the first of
them is A which is an output of a previous task T,. The Check Deps handler will add
T to the Kick-Off List of A. If Ty is finished before the Check Deps handler has finished
processing all the 20 parameters of T7, then the Handle Finished handler will try to
access the Task Pool TP[Ti] in order to decrement its Dependence Counter whilst
the Check Deps might also be trying to increment it. This potential race condition is
prevented by the TP/[T}].busy flag, since the Handle Finished handler will not access
a Task Descriptor in the Task Pool if it was busy flag was set.

As shown in the previous scenario, the Check Deps and Handle Finished handlers
can never be active at the same time for the same Tuask Descriptor. The Check Deps
always starts first, and the Handle Finished will start later. Since the Handle Finished
handler checks the busy flag before trying to access any Task Descriptor, this ensures
that the Handle Finished will never access a Task Descriptor, before the Check Deps
has finished processing that Task Descriptor.

Dependency resolution in Nexus++ is more efficient than that in Nexus [109], since

Nexus++ uses fewer and simpler tables and Kick-Off Lists. Nexus++ has only one
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table (Dependence Table) to maintain the task graph, and using the Task Pool’s indices
as task IDs eliminates the need to search the tables. In Nexus, on the other hand,
three tables (containing two Kick-Off Lists) are used and are accessed always for all
kinds of scenarios. For example, if 17,75, T3 are a writer, a reader, and a writer of A
respectively!, then in Nexus, A4 will have an entry in two tables, with two Kick-Off
Lists, and task T3 will be added to the two Kick-Off Lists of A. Whereas no data is
replicated in Nexus++. Hence, Nexus++ is simpler and performs fewer computations

to resolve dependencies.

3.1.3 Dummy Tasks and Entries

Dummy tasks in the Task Pool

In a Task Descriptor, a task has a limited number of inputs/outputs, so applications
with tasks that have more inputs/outputs cannot be executed directly on a system
with Nexus. In addition, not all tasks necessarily have a number of inputs/outputs

equal to the Task Descriptor’s limit, which yields a poor memory utilization.

Nexus+-+ solves this problem by introducing dummy tasks. A dummy task will not
be executed, it just takes the form of a task by having an entry in the Task Pool, only
to store the inputs/outputs that did not fit in the original input/output list.

Figure 3.6 shows a scenario to demonstrate the need for dummy tasks. If T, has
2n outputs, and a Task Descriptor can only store n of them, then dummy tasks (D
and Dy) are created having their inputs/outputs as those that did not fit in the Task
Descriptor of T,. A dummy task is simply a pointer that replaces the last entry of an

input/output list.

In Table 3.1, this mechanism is accomplished using the nD (number dummy) column
along with the last column (Py or ptr_next Dummy) of a Task Descriptor. Assuming
that a Task Descriptor allows up to n inputs/outputs per task, if a task has more than
n inputs/outputs, then this task is distributed to occupy multiple Task Descriptors in
the Task Pool.

The number of the extra Task Descriptors needed is stored in the nDummies column

of the original entry, as shown in the example in Table 3.1. The Task Descriptor at

!The detailed example is shown in Figure 6.20 in [108]
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Figure 3.6: Dummy Tasks/Entries added to the Task Pool/Dependence Table.

index 98 has 10 inputs/outputs, which is more than the limit of 8 (for this example)
per Task Descriptor. That is why a new entry is occupied by this task, namely the
Task Descriptor at index 99. The entry at index 98 has 1 in its nDummies field,
indicating that this task occupies in total 2 Task Descriptors, and the last entry in its
input/output list now points to index 99. The Task Descriptor at index 99 is called
a Dummy Task, since it is not a true task, rather a placeholder to store the extra
input/output information that did not fit in the original entry. Reserving dummy
tasks for a certain task is done by the Write TP handler.

Using dummy tasks, Nexus++ can store tasks of arbitrary number of inputs/out-
puts, by implementing a linked-list structure inside the Tuask Pool. Although this
solves the problem of having a fixed, limited number of inputs/outputs per task, the

maximum number of inputs/outputs is still bounded by the size of the Task Pool.

Dummy entries in the Dependence Table

The same principle can be deployed in the Dependence Table shown in Table 3.2,
where the Kick-Off List has a limited size, thus restricting the number of tasks that
might depend on a certain memory address. As a solution, Nexus++ adds dummy

entries to the Dependence Table to extend the Kick-Off List of a certain entry.

Figure 3.6 can be interpreted as follows: assuming that 2n tasks depend on a single
output O of T, and given that the size of the Kick-Off List of the Dependence Table
entry DT[(O)] is n, then the 2n tasks cannot be fit in the Kick-Off List.
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A stall, stopping the process of inserting further tasks to the system, is not an opti-
mal solution because the Dependence Table might still have empty slots. Furthermore,
other tasks cannot be added to the system since they might depend on an output of
one of the extra tasks that did not fit in the Kick-Off List of O.

Another non-optimal solution is to increase the size of the Kick-Off List, since it
also limits, although larger, the Kick-Off List size. It also wastes memory since not

all outputs will be inputs for a number of tasks that is equal to the Kick-Off List size.

Furthermore, implementing the worst-case scenario is not scalable. The proposed
solution here is, therefore, to insert some dummy entries in the Dependence Table,
namely D; and Ds, resulting in a chain of Kick-Off Lists. Similar to dummy tasks in
the Task Pool, the number of tasks that can depend on a certain memory address is
bounded by the size of the Dependence Table, though not fixed at a certain value for

all Dependence Table’s entries.

In Table 3.2 on page 64, an example is shown. Memory address 0z1C' is currently
being written by a certain task 77, and the number of tasks that are waiting in the
Kick-Off List of 0x1C" does not fit in a single Kick-Off List. That is why the h_ D flag
of 0x1C' is set, and the last entry in the Kick-Off List of 0x1C points to address 222,
which contains also some tasks IDs, and also has another dummy entry at address
333 of the Dependence Table, where the rest of the waiting tasks are registered. The
parent entry of memory address 0z1C stores always the address of the last dummy
entry of the chain. This is important when adding new tasks to the Kick-Off List of
0x1C, since they will be added to the last dummy entry, without the need to traverse

the whole chain until the last one is reached.

In Figure 3.6, having only one dummy entry per Kick-Off List is efficient, since
when reading a Kick-Off List, the Task Maestro might read only one entry (in case
of a writer task), or more. Reading only one entry from the Kick-Off List chain is
simply reading the first entry of the first Kick-Off List in the chain. On the other
hand, allowing more than one dummy entry per Kick-Off List (forming a linked-list
structure of Kick-Off Lists) will result in multiple lookups in order to reach the leaf
Kick-Off List, which is an extra overhead.

Reading tasks IDs from the Kick-Off List of a certain memory address happens
from the head of the first Kick-Off List of the chain. Whenever all tasks are read
from the first Kick-Off List, this entry’s data (except the Kick-Off List and the h_D

73



3 Hardware-Based Task Dependency Resolution for the StarSs/OmpSs Programming Model

fields) will be copied to the next dummy entry so that it becomes the new head. For
example, memory address 0z1C occupies 3 entries (at DT[0xC, 0x222, and 0x333]) in
Table 3.2 on page 64. When all items in the Kick-Off List of DT[0xC] are read, this
entry will be invalidated, and the head entry of 0z1C will reside at DT[0x222]. This
way, the Dependence Table is efficiently utilized, since DT[0xC] can now be reused by
other memory addresses, even before memory address 0x1C is totally removed from
the Dependence Table. This also allows direct (and hence, fast) access to the first

Kick-Off List, since it always resides at the head entry of a memory address.

Dummy tasks are injected by the Task Maestro when needed at runtime. They
utilize memory well, and are scalable. The compiler could also add dummy tasks
when it discovers that a task has more inputs/outputs than the maximum. However,
the master core then would have to generate and submit more Task Descriptors, and
Meenderinck [108] in his work indicates that eventually the master core forms the
bottleneck. Furthermore, the compiler cannot add dummy entries to the Dependence
Table since it depends on runtime information which is not available to the compiler.
For these reasons it is the Task Maestro who is responsible for adding the dummy

tasks and entries.
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Figure 3.7: Dependency patterns (120 x 68 blocks): (a) ramp effect, (b, c¢) fixed # of
parallel tasks.

3.2 Experimental Setup

3.2.1 Benchmarks

Several benchmarks are used to evaluate Nexus++. First, a trace of a parallel H.264
decoder decoding one full HD frame on a Cell Broadband Engine processor [125]
is used, consisting of 8160 tasks in total. The trace consists of tasks input/output
information, tasks execution times and the time they have spent reading/writing their
inputs/outputs from/to memory. On average a task spends 7.5us for accessing the
off-chip memory and 11.8us for execution [42]. The benchmark processes a matrix
of 120 x 68 macroblocks and the dependency pattern is shown in Figure 3.7(a) [156].
Tasks are generated in the serial execution order, which is from left to right and from
top to bottom. Initially there is only one task ready for execution, but this number
increases until halfway execution, after which it decreases again [111]. This ramping
effect influences the average amount of parallelism available in the benchmark and

therefore its scalability too.

To evaluate Nexus++ for a range of dependency patterns, two additional synthetic
benchmarks were created. Their dependency patterns are shown in Figure 3.7(b) and
(¢). An additional benchmark without dependencies, i.e., has all-independent tasks,
was also created in order to measure the maximum scalability of Nexus++. All the

synthetic benchmarks feature 4 parameters per task.

In contrast to dependency pattern (a), the dependency patterns depicted in Fig-
ure 3.7(b) and (c¢) do not suffer from the ramping effect. Instead, these dependency
patterns provide a constant number of parallel tasks. In (b), however, the dependency

pattern has the same direction as the order in which tasks are generated. As a con-
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Figure 3.8: Dependency pattern for the Gaussian elimination benchmark. Tij D 4,J TOW
and column numbers respectively.

sequence, the amount of effective available parallelism can be reduced by the speed
of tasks’ insertion into the Task Pool as well as the size of the Task Pool, since when
the table is full, tasks of the first row have to be executed to make room for the other

tasks in the next rows.

To validate the dummy tasks/entries approach, the task graph of Gaussian elimi-
nation with partial pivoting [161] was used. In this benchmark, the number of tasks
that depend on certain outputs depends on the size of the input matrix as depicted

in the dependency pattern of Figure 3.8, assuming an n X n matrix.

The execution starts with one task (7}), on which n — 1 tasks (T%2...T}") depend.
After that only a single task (7%) can execute, and then n — 2 tasks, etc. The total

n2+n—2
2

matrix dimension. Each task performs a number of FLOPs. This number represents
the weight W of a task, which is equal to [161]:

number of tasks is proportional to the matrix size, and equals , where n is the

; n+1—¢ FLOPs ifi=j
):{ (3.2)

W (T , .
n—i FLOPs ifi<j

where 7, 7 are the row and column numbers respectively. Hence the duration of a
task T; equals W(Tij ), divided by the GFLOPS of one core. Each task also reads
W(Tij ) floating point numbers from memory, and writes the same number back when
finished.
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Matrix dimension | # Tasks | Average task weight (FLOPs)
250 31374 167
500 125249 334
1000 500499 667
3000 4501499 2012
5000 12502499 3523

Table 3.3: Gaussian elimination tasks for different matrix sizes.

Some tasks in the Gaussian elimination benchmark are very small (a few FLOPs),
but as shown in Equation (3.2) and Figure 3.8, the number of tasks of a certain weight
is directly proportional to the weight itself. So the majority of tasks are relatively
coarse-grain, and only a small number of tasks are fine-grain. For example, performing
Gaussian elimination on a matrix size of 1000 x 1000 generates (as shown in Figure 3.8)
one task of weight 1000, then 999 tasks each of weight 999, then a single task of weight
999, and 998 tasks each of weight 998, and so on until at the end, only a single task of
weight 1 is generated. Table 3.3 gives an overview about the number and granularity

of the Gaussian tasks for different matrix sizes.

3.2.2 Simulation Environment

Nexus++ is simulated using the Task Machine, a SystemC simulator of a task-based,
trace-driven multicore system. The Task Machine is a fully configurable system that
is designed to match modern real systems. Among the configurable parameters are
the number of cores, the core clock frequency, and on chip and off chip memory access

times. There are neither real cores in the Task Machine nor real task execution.

Tasks’ information are read from experimental traces, which include the input/out-
put information and also tasks’ execution and memory access times. Thus task exe-
cution is simply simulated by waiting for a certain time equivalent to the execution
time read from the experimental trace. The list of parameters and their values are
shown in Table 3.4.

Nexus++ is simulated assuming a clock cycle time of 2 ns, which equals a clock
frequency of 500 MHz The Task Maestro tables and the FIFO lists are on-chip

storage and therefore their access times are relatively fast. The hash table access time
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System Parameter Value
Cores clock freq. 2.0 GHz
Nexus++ clock freq. 500 MHz
On Chip Access Time 2 ns

Off Chip Access Time 12 ns

On chip bus bandwidth 2 GB/s
Memory bandwidth 10.67 GB/s
Task Descriptor (TD) size | 78 Byte

Task Pool size

78 KB (1K TDs)

No. Parameters per T'D

8

Dependence Table entry size | 28 Byte
Dependence Table size 112 KB (4K entries)
Kick-Off list size 8 task IDs

TDs Sizes list size 1 KB

New Tasks list size 2 KB

TP Free Indices list size 2 KB

Global Ready Tasks list size | 2 KB

Worker Cores IDs list size 2 KB

C, RdyTasks list size 4 Bytes

C, FinTasks list size 4 Bytes

Table 3.4: System parameters.

equals the on-chip access time multiplied by the number of lookups required per 1

aCCess.

The traces recording execution and communication times per task are generated af-
ter fine-grain (1 macroblock per task) parallel H.264 decoding on a Cell processor [125].
Thus, the experiments are assuming a local-stores, shared-memory architecture. Nev-
ertheless, Nexus++ concept can be applied to any other multicore architecture. For
the synthetic benchmarks shown in Figure 3.7 and the benchmark with all-independent

tasks, task durations are also from the H.264 decoding trace.
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Figure 3.9: The speedup achieved when varying the size of the Task Pool and fixing the
size of the Dependence Table and vice versa.

3.2.3 Design Space Exploration

Design space exploration is performed by running the all-independent tasks benchmark
on a 256-core system with double buffering, and contention-free memory. The speedup
in the following experiments is calculated by dividing the serial execution time (the
sum of all the tasks’ duration in the trace) by the time consumed by the simulated

256-core system.

First, in order to determine the optimal Dependence Table size, all the other struc-
tures are configured to be very large, the Tusk Pool, for example, is configured to hold
8K Task Descriptors at once (given that the total number of tasks is 8160).

The first experiment in Figure 3.9 shows the speedup achieved when increasing the
Dependence Table size, and fixing the Task Pool size at 8K entries. Maximum speedup

equals 143 x when setting the Dependence Table size to 2K entries or more.

The second experiment in Figure 3.9 shows the speedup when varying the Task
Pool size, and fixing the Dependence Table size at 8K entries. A Task Pool size of 512
entries is enough to achieve a speedup of 143x, however, a 1K entries Task Pool is

chosen to allow a larger task window.
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Figure 3.10: The effect of varying the Dependence Table size on the maximum length of
the linked-list structures that are formed whenever a hash-collision occurs in
the Dependence Table, when running the all-independent tasks benchmark.

Interestingly, the effect of varying the size of the Dependence Table on the speedup
is more visible in Figure 3.9, when comparing the two curves in the range of 128
to 1024 entries. The synthetic benchmark includes fine-grain tasks and each task
has 4 parameters. This indicates that a hash collision occurs after sending 32 tasks
(having 32%4=128 parameters) in the Dependence Table, and thereafter maintaining

the Dependence Table becomes more time-consuming.

This is shown in Figure 3.10 which depicts the maximum observed length of the
linked-list structures resulting from inserting dummy entries in the Dependence Table

whenever a hash collision occurs.

From the experiments shown in Figures 3.9 and 3.10, the Dependence Table is set
to 4K entries since this size enhances shorter linked-list structures (almost half of that
when the Dependence Table size is set to 2K entries), as longer linked-lists imply longer

search time and impact the system performance significantly as shown in Figure 3.9.
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Assuming 8 parameters and a total 78 Bytes per task descriptor yields a Task Pool
size of 78 KB. The Dependence Table, on the other hand, should be able to hold 4K
entries, as shown in Figure 3.9. Each entry size equals 28 bytes, which yields a table
size of 112 KB.

Having 1K tasks in the Task Pool, 10 bits are needed index it and to identify a
single task. This number is rounded up to multiples of a byte (i.e., 2 bytes), yields
that 2KB are needed to store the IDs of 1K tasks, which is the selected size for the
New Tasks list, the TP Free Indices list, and the Global Ready Tasks list. 1 byte is
allocated to store the size of one Tusk Descriptor upon its reception from the Master
Core. This gives a total size of 1KB for the New Tasks list to store the sizes of 1K
Task Descriptors. Although setting the size of a Task Descriptor to 1 byte limits the
number of inputs/outputs per task, but this number is configurable and is set to 1
byte in this prototype since all the benchmarks used for evaluation have small number

of inputs/outputs per task.

Simulating up to 512 worker cores, requires 9 bits to assign an individual ID to each
core. Rounding this number up to multiples of bytes gives a 2KB Worker Cores IDs
list size. Assuming double buffering, a worker core should be able to store two task

IDs in its RdyTasks and FinTasks lists, which yields a size of 4 bytes per list.

The sizes of the Task Maestro tables and lists were empirically determined. They

are summarized in Table 3.4 on page 78.

3.2.4 Memory Access Latencies

The access time for the ~100 KB on-chip memory structures (those are mainly the
Task Pool and the Dependence Table) was determined using Cacti 5.3 [93, 153], and
was found to be 2 ns for each of them. Off-chip memory (RAM) access time was
also determined using the same tool, and was found to be 12 ns per 128 bytes RAM
chunk, assuming 32-bank 1GB of RAM, which is equivalent to a maximum memory
bandwidth of 10.67 GB/s. The off-chip memory is assumed to have 32 banks, each
having one read/write port. Therefore, no more than 32 tasks can access the memory

at a given time, and this is how contention accessing off-chip memory is modeled.

The latencies of the preparation and submission of Task Descriptors by the master

core were estimated. These times were measured in Nexus [108] in detail. As Nexus++
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avoids off-chip communication in this part, we had to compensate for this. As a result,
the task preparation was set to 30 ns, while the task submission is not fixed since it

depends on the size of the input/output list of a task.

The modeled on-chip bus is a very basic one. It is an 8-byte bus, and its bandwidth
is assumed to be 2GB/s which is a typical bandwidth of the state-of-the-art on-chip
buses [130].

Every time the Master Core wishes to submit a task to the Task Maestro, it ar-
ranges the task’s information into 8-byte words. The first word specifies the task’s 1D
and function pointer, and every other word specifies a single parameter (including its
address, size, and access mode). The Master Core also sends initially a handshaking
word specifying the new task’s number of words, and hence, number of its parameters.
In the evaluation, it is assumed that for each task submission, an initial (handshak-
ing) bus delay of 5 cycles is needed, and that each word requires 2 cycles (2GB/s
bus bandwidth) to reach the Task Maestro. For example, a task with 4 parameters
consumes 10 cycles (20 ns), whereas an 8-parameter task consumes 14 cycles (28 ns)

submission delay.
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Figure 3.11: The speedup achieved by different number of cores with different buffering
depths, when running independent tasks.

3.3 Evaluation Results

Nexus++ was tested under different conditions, varying the number of worker cores,

the buffering depth, and with different dependency patterns.

Figure 3.11 depicts the speedup for the all-independent tasks benchmark on different
number of cores and buffering depths. The baseline system is based on Nexus [109],
which does not have any of the enhancements of Nexus++, i.e., no buffering of Task
Descriptors between the Master Core and the Task Maestro, no buffering of tasks at
the Task Controller side, and no dummy tasks or entries. In Figure 3.11, the speedup

is measured relatively to the 1-core experiment of the baseline system.

Figure 3.11 shows that a speedup of 85x is achieved with 64 cores when adding dou-
ble buffering (BD = 2). This speedup gain is larger than the number of cores because
the speedup is not measured against the 1-core experiment of the same configuration

(with Nexus++ enhancements enabled), but to the baseline configuration.

This baseline results differ (almost 16x speedup for 16 cores) from those shown in
the baseline [108], because the average task computation and communication times
are different. In our system it is assumed that these values to be 11.81 usec and 7.5

psec, respectively based on [42], while in [108] they are assumed to be 19 usec and 2
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psec, respectively. Furthermore, in [108] (page 217), on-chip access time is less than
one third of that in Nexus++.

Compared to other speedup curves in Figure 3.11, the speedup gain does not increase
when increasing the buffer depth. On the contrary, it decreases slightly as is most
visible in the 64-core experiment. This is reasonable since the Task Maestro stalls
when it fills all RdyTasks lists of the worker cores. Each of these lists has a size of
BD x2Bytes (the 2 Bytes in order to fit the largest task ID). Increasing the buffering
depth results in increasing the number of tasks the Task Maestro has to process before

it stalls, and thus, larger number of inputs/outputs will be inserted to the Dependence
Table.

Since the Dependence Table is a hash table, the more entries it has, the more col-
lisions will occur when searching for an entry, and hence, increasing the search time.
The experiments show that the maximum number of collisions was 4, 7, 11, and 19
having the buffering depth equals 1, 2, 4, and 8 respectively. This is why the speedup

gain decreased when increasing the buffering depth for 64 cores and more.

It can therefore be concluded that the experiment with double buffering (BD = 2)
is sufficient and most efficient. Having this result, the speedup will be measured from
now on against the single core experiment with double buffering. Accordingly, for the

independent tasks benchmark, the achieved speedup equals 54x on 64 cores.

In Figure 3.11, the only difference between the baseline experiment and the experi-
ment with BD = 1 is that there is no Task Descriptor buffering between the Master
Core and the Task Maestro in the baseline experiment. The effect of this can be seen
when the number of worker cores is larger than 128, where - in the baseline experiment
- the Master Core is not able to submit enough tasks for the Task Maestro to keep all
worker cores busy. This demonstrates how buffering of the Task Descriptors improves

the scalability to larger numbers of cores.

The independent tasks benchmark was also performed on different multicore systems
and different buffering depths, but this time assuming a perfect memory system, i.e.,
no memory contention can occur. The observed speedup was 143 x, and the benchmark
scaled up to 256 cores rather than to 64 cores (with 54x speedup) in the experiment

with memory contention modeled.
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Figure 3.12: The speedup achieved by different number of cores running tasks with de-
pendencies shown in Figure 3.7.

The baseline behavior was almost the same as that with memory contention mod-
eled, due to the lack of task double buffering. To calculate the maximum achievable
speedup, in addition to assuming memory contention free, task preparation delay is

disabled, and the resulting speedup was 221 x using 256 cores.

Although 256/512 cores are large numbers, these experiments are used to measure
the maximum scalability of Nexus+-+ using the independent tasks benchmark. Fur-
thermore, the Gaussian elimination benchmark can run on such large number of cores,

when applied to large matrices.

Figure 3.12 shows the achieved speedup for the benchmarks illustrated in Figure 3.7
on page 75. As before, 8160 tasks are simulated with execution and communication
times obtained from a parallel H.264 decoder [42]. Furthermore, since the previous
experiments has shown that double buffering is most efficient, the next experiments
assume a buffering depth of 2. The speedup is measured against the single core

experiment of Nexus++ (double buffering enabled).

The effect of the order of spawning tasks on the speedup is shown by noticing the
speedup difference between the benchmarks with horizontal and vertical dependencies
illustrated in Figures 3.7(b) and 3.7(c) on page 75. Although the Task Pool is larger
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Figure 3.13: The speedup achieved by different multicore systems running Gaussian elim-
ination for different matrix sizes (legend shows matrix dimension).

than a single row (which contains 120 tasks), the processing of non-ready tasks before
reaching the next ready task (first task in the second row of Figure 3.7(b)) limits the
scalability of this benchmark to at most 8 cores, whereas the benchmark with vertical

dependencies in Figure 3.7(c) scales well to 64 cores.

H.264 macroblock decoding tasks have the most complex dependency pattern among
the tested benchmarks including the horizontal dependencies between the tasks in the
same raw of a video frame. This explains why the limited speedup gain of the H.264
benchmark compared to the independent tasks and the vertically-dependent tasks

speedup gains shown in Figure 3.11.

The same benchmarks (Figures 3.7(a, b, and c¢)) were run on different multicore
systems, but with the assumption of a perfect (contention free) memory system. The
speedups achieved were almost similar to those depicted in Figure 3.12, and this is
mainly due to the dependencies between tasks in every benchmark, not allowing them

to reach the point of competing to access memory and thus cause memory contention.

Figure 3.13 shows the speedup achieved by using different multicore systems to
solve the Gaussian elimination problem (Figure 3.8) on page 76 for different matrices
of sizes ranging from 250 x 250 to 5000 x 5000. Memory contention is modeled, and

double buffering is used.
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Dep. Pattern Max. Speedup | Max. Scalability
Indep. tasks 54 x 64 cores
H.264-like (Figure 3.7 a) 8.2x 16 cores
Hor. deps. (Figure 3.7 b) 8.5% 16 cores
Ver. deps. (Figure 3.7 c) 5% 64 cores
Gaussian 5000 x 5000 45 % 64 cores

Table 3.5: Maximum scalability and speedup for the different dependency patterns.

Although the size of the Kick-Off List of each entry in the Dependence Table is
equal to 8, Nexus+-+ can handle the Gaussian elimination problem for matrices of

large sizes. This is because of the dummy entries added to the Dependence Table.

As shown in Figure 3.13, the matrix size has a great impact on the speedup gain
and the application scalability, since a bigger matrix results in a larger number of
tasks of larger granularity. Processing a 5000 x 5000 matrix scaled up to 64 cores with
a speedup of 45x. This experiment includes building and managing a task graph of
12,502,499 tasks with 3,523 FLOPs per task on average as shown in Table 3.3. Each
single worker core is assumed to be able to do 2 GFLOPS, which means that the

average computation time of each of the aforementioned tasks equals 1.77us.

Although the 250 x 250 experiment has very small tasks (83.5ns per task on average),
Nexus++ can handle them. The benchmark scaled to 4 cores with a speedup of 2.3 x.
This demonstrates the applicability of Nexus++ to any kind of applications, even
those with very fine-grain tasks. Table 3.5 concludes the maximum number of cores,
referred to as maximum scalability in the table, utilized by the different benchmarks

to achieve their maximum speedup.

All tables and FIFO lists in the Nexus++ task manager do not exceed 210KB of
memory. Nevertheless, they are sufficient to perform all the objectives of Nexus—++.
For comparison, the Task Superscalar [57], on the other hand, consumes more than
6.5MB. Nexus++ introduces dummy tasks/entries in the Task Pool and the Depen-
dence Table respectively, uses the Task Pool indices as tasks identifiers, and uses its
internal structures more dynamically and efficiently, therefore tables’ sizes are rela-

tively small.
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3.4 Summary

This chapter has introduced Nexus++, a hardware task management accelerator for
the StarSs/OmpSs runtime systems. Compared to previous work Nexus++ makes
four main contributions. First, it overcomes the limitation that a task can only have
a fixed, limited number of inputs/outputs by introducing dummy tasks in the Task
Pool. Tt also overcomes the limitation that only a fixed, limited number of tasks can
depend on a certain task by introducing dummy entries in the Kick-Off Lists of the
Dependence Table. Second, it support double buffering by integrating a task controller
in each worker core. Third, it implements task dependency resolution efficiently, since
few hash table lookups are required to determine if tasks depend on each other. Fourth,
a platform-independent implementation of Nexus++ is presented, whose parameters

are fully configurable.

Experimental results obtained using a SystemC model show that Nexus+-+ achieves
a speedup of 54 x /143x with/without modeling memory contention respectively,
for a synthetic benchmark that includes all-independent tasks. Furthermore, double

buffering increases the scalability of the system.

Eventually, for large (64 cores and more) systems, the speedup gain starts to de-
crease, mainly because the application does not exhibit sufficient task-level parallelism,
insufficient memory bandwidth, and/or because the master core cannot generate tasks
fast enough to keep all worker cores busy. Nevertheless, using a hardware task man-
ager showed its feasibility for improving the scalability of applications with complex

task graph.

Furthermore, it is also shown that a benchmark modeled after Gaussian elimination,
where the number of tasks that depend on a certain task is not constant and can
become very large, ran successfully with a speedup of 45x for a 5000 x 5000 matrix
using 64 cores. Even for small matrices, where the resulting tasks are fine-grain,
Nexus++ handles them successfully and the benchmark achieved 2.3 x speedup using

4 cores.

Although Nexus++ targets StarSs/OmpSs applications, parts of it can be reused
for other programming models. For example, it contains hardware queues that can be

used for low-latency retrieval of independent tasks.
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The SystemC model of Nexus++ presented in Chapter 3 shows the importance of
hardware support for task graph management. It also presents a design space explo-

ration that gives an idea of the sizes of the internal structures of Nexus++.

In SystemC, however, and as has been presented in the previous chapter, the de-
veloper should take care of all the timing details and define them manually such as
on-chip and off-chip memory access times. Moreover, the SystemC developer is not
able to know whether the design can be synthesized into real hardware or not, and

what would be the maximum clock frequency that can run the system.

Therefore, the next step is to implement Nexus++ in a hardware description lan-
guage such as VHDL. Then test its synthesizability and its hardware characteristics,

in addition to evaluating it with micro-benchmarks as well as real applications.

This will give a realistic insight about the efficiency of Nexus++, especially with
fine-grain tasks and tasks with complex dependency patterns, which are the goals of
this thesis.
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Figure 4.1: Nexus++ high level system overview.

4.1 Design Overview

Nexus++ is thought to be integrated with real multicore systems. Therefore, Nexus++
is implemented in VHDL using the Xilinx XUPV5-LX110T [170] FPGA development
board, which is a feature-rich Virtex 5 general purpose evaluation and development
FPGA board with on-board memory and industry standard connectivity interfaces
such as the PClIe bus. The high level design is depicted in Figure 4.1. The Nexus—++
task manager resides on the FPGA, and communicates with the runtime system on

the multicore system using the PCle bus.
To integrate Nexus++ in a generic multicore system:

Nexus++ has to be implemented, synthesized, and realized on the FPGA board,

e a communication interface that utilizes the PCle port on the FPGA and ex-

changes data with Nexus++ has to be implemented,

a software driver that enables data flow between the runtime system and the
FPGA using the PCle bus has to be developed,

the runtime system has to be modified in order to replace its current task

graph management mechanism by a communication unit (Nezus Plugin) with

Nexus++,
The FPGA board can then be plugged into the host multicore machine and the task

graph management responsibilities can be offloaded to Nexus—++.
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4.1.1 Functional Overview

Figure 4.2 shows the block diagram of the proposed task manager. It is mainly com-
posed of two units; Nexus input/output unit (Nezxus /0) which handles communica-
tion with the host runtime system, and the task management unit known as the Task
Maestro, which manages the task graph at runtime and issues tasks when they are

ready.

The multicore system under consideration is assumed to have one Master Core
that executes the main thread and creates Task Descriptors, and several worker cores
that execute the tasks. A Tusk Descriptor contains task-related information such as
its function pointer and input/output list. Nexus++ is responsible for task graph

management carried out by the runtime system.

As shown in Figure 4.1, data communication occurs between Nexus++ and the
runtime system via the Nexus Plugin. So when the master thread creates new tasks,
the runtime system submits them to Nexus++. Nexus++ sends ready tasks IDs to
the runtime system, and whenever a worker core finishes a task, the runtime system
notifies Nexus++ of that finished task’s ID.

Each FIFO list in the design is generated using Xilinx Coregen v14.4 FIFO Genera-
tor 9.3 [171]. We chose to use First-Word Fall-Through FIFOs, which are FIFOs with
registered output. This enables the designer to look ahead to the next available word
in the list without issuing a read operation. This will save one clock cycle every time
a FIFO list is read. The FIFO generator provides an output valid flag indicating, as
the name says, whether the current output is valid or not. The generated FIFOs also
include fifo empty and fifo full flags, which help the designer to stall reading/writing
whenever the FIFO empty /full flags are set respectively.
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Figure 4.3: The task format as submitted to the Nezus IO unit.

The Nezus IO unit is designed to communicate with the PCle port at the FPGA
board. Xilinx provides an integrated endpoint for PCle designs compliant with the
PCI Ezpress Base 1.1 specification, along with an example design that supports single
double word (32-bit) payload read and write PCle transactions [169].

The runtime system submits new tasks to the Nezus IO unit shown in Figure 4.2 as
32-bit packets (PCle payload width), which stores them as 32-bit words in the New
Tasks FIFO list. Checking the New Tasks FIFO list’s full flag before submitting new
tasks, the runtime system stalls when necessary. Each task starts with a header word
containing its function pointer and the number of inputs/outputs, and later words

containing task’s inputs/outputs as shown in Figure 4.3.

The Task Maestro then reads the New Tasks FIFO list, generates Task Descriptors
and stores them in (1) a temporary task storage table called the Task Buffer, and (2) in
the Task Pool, the main task storage table in Nexus+-+, where tasks reside until the
end of their life cycles. The Task Pool index at which a certain Task Descriptor is
stored becomes the unique identifier of this task inside Nexus++. This is an efficient

way for reading the Task Pool, since no address lookup is required at all.

The Task Buffer and Task Pool are shown in Figure 4.2. The Task Buffer is rel-
atively small (8 - 16 tasks) and is important, along with the New Tasks FIFO list,
to decouple task submission from processing new tasks. Both tables are implemented
as dual-port block RAMs. One port is accessed by the process writing new tasks to
them. The second port of the Task Buffer is accessed when processing new tasks,
and this happens in order. That is why this table is of a small size and tasks’ data is
not preserved after processing it. The Task Pool, on the other hand, is much larger
(256 - 1024 tasks), and its second port is accessed arbitrarily upon processing finished
tasks. Having three processes accessing the dual-port tables, the Tusk Buffer cannot
be merged in the Task Pool.
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For a certain Task T'1, the Task Pool stores the task’s ID in the ID field, the number
of inputs/outputs in the #10s field, the list of inputs/outputs in the 10 List field, and
a pointer to the next dummy task if the task has a large number of inputs/outputs
that do not fit in a single entry in the Task Pool. The IO List includes the addresses
and the mode of access of the task to those addresses. T1 for example has one input b
and one output c¢. The Dependence Table and the other structures in the Task Maestro

are described in later sections.

The Task Maestro reads incoming tasks one by one from the Task Buffer, builds
up the task graph and calculates the Dependence Counter for the task in progress.
This is done by comparing every single input/output of the new task against all
inputs/outputs of all previously submitted tasks. The resulting Dependence Counter,
if greater than 0, is stored in the Dependence Counts table shown in Figure 4.2.
Otherwise, the task is ready to run and the Task Maestro writes its function pointer
along with its Task Pool index to the Ready Tasks FIFO list inside the Nezus 10 unit.
The runtime system polls the latter list’s valid flag, reads it whenever it has valid

data, and schedules ready tasks to run.

Whenever a task is finished, the runtime system communicates only its Task Pool
index back to the Nezxus 10, which writes the incoming data to the Finished Tasks
FIFO list. After that, the Task Maestro reads the latter list for the index of the
finished task in Task Pool, then reads the finished task info from the Task Pool and
updates the task graph, and finally deletes the finished task entry from the Task Pool.

Each one of the tables shown in Figure 4.2, namely the Task Pool, Task Buffer,
Dependence Counts, Dependence Table, and the Dummy Kick off Lists table, is imple-
mented using one or more dual-port RAMs provided by the FPGA, in order to enable

concurrent accesses to any of the tables.

The detailed data/control flow inside Nexus++ is described in Chapter 3. There, a
Task Controller per worker core is responsible for double buffering and communicating
with Nexus++4. In the new design described in this chapter, those Task Controllers

are to be implemented as part of the Nezus Plugin of the runtime system.

As described in Chapter 3, Nexus++ design ensures deadlock-free processing, and
utilizes FIFO lists between the different handlers to pipeline them and implement

stalls.
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In Section 4.1.2, task graph management will be described to highlight the set-

associative dependence table used to store tasks inter-dependence information.

4.1.2 Set Associative Dependence Tables

The Dependence Tables shown in Figure 4.2 on page 92 are the storage place of the
task graph. Every memory location accessed by one or more tasks will have an entry
in the Dependence Table. Every time a new memory location is submitted (as an
input/output of a task) to Nexus++, the Task Maestro searches the Dependence Table
for this memory location. If it was not found, the Task Maestro inserts the new memory

location to the dependence table (by writing the Tag and access mode m fields).

In Chapter 3, the dependence table is a hash table with a simple hash collisions
resolution algorithm shown in Equation 3.1. There, each memory location can map
to one location in the Dependence Table. Therefore, a linked-list structure is imple-
mented as the hash collision resolution mechanism. This implies that searching the
Dependence Table for a certain memory address can include multiple accesses until
finding the correct entry in the linked-list structure that is formed when a collision
occurs. Moreover, if a certain memory location was accessed for the first time (i.e., it
will be assigned a new entry in the Dependence Table), but its hash address in the De-
pendence Table has a long linked-list of entries, searching for this new address includes
accessing the Dependence Table many times until reaching the end of the list, with
ultimately a negative search result. For this reason, the VHDL Nexus++ introduces
the Set-Associative Dependence Tables, a cache-like structure for maintaining the task

graph.

When inserting a memory location in the new Dependence Table shown in Figure 4.2
on page 92, it can be stored in one of the n-way structure. If all n locations, which a
certain memory address A maps to, are full, then A has to wait and the Task Maestro
stalls. Unlike the Dependence Table in Chapter 3, searching the n-way set-associative
table for a certain memory address costs only one read operation of the different ways.
Comparing the valid(v) and Tag fields will determine whether the searched memory

address is found or not.

Dependency resolution is performed by maintaining a Kick-Off List for each memory

address. A Kick-Off List of a memory address has room for 8 tasks. It records for
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each task valid and access mode flags, in addition to the task’s TP index. There is
a counter per Kick-Off List in addition to pointers to the head and tail of the list.
When for example task T2 is submitted to Nexus++, its input/output list will be
processed one by one. Task T2 has 4 inputs and 2 outputs as shown in the Task
Pool in Figure 4.2. When searching the Dependence Table for T2’s first input, namely
memory address ¢, the Task Maestro will find that ¢ was previously inserted to the
Dependence Table as an output to an older task. Therefore, T2 will be added to the
Kick-Off List of ¢, and the Dependence Counter of T2 will be incremented once.

On the other hand, if ¢ was inserted as input to an older task, and since that c
is also input to T2, then only the readers count Rdrs field in the Dependence Table
will be incremented, without changing the Dependence Counter. After processing all
memory pointers in the input/output list of the new task, if the resulting Dependence
Counter is 0, then this task is ready and will be written in the Ready Tasks FIFO list.

Whenever a task finishes executing, its input/output list will be fetched from the
Task Pool and processed. For example, when task 71 finishes, its input/output list
is looked up in the Dependence Table. Memory address b has an empty Kick-Off List,
and therefore can be invalidated. Memory address ¢, on the other hand, has some
tasks in its Kick-Off List. The Task Maestro reads the first task (72) in this Kick-Off
List and decrements its Dependence Counter. If the resulting Dependence Counter
equals 0, then task T2 will be sent to the Ready Tasks FIFO list. Finally, depending
on whether 72 is reading-only or writing memory address ¢, the Task Maestro decides
to further read tasks from the Kick-Off List(c) or not.

The short example above shows how Nexus++ handles read-after-write dependen-
cies. Nexus++ handles also write-after-read and write-after-write hazards (although

these two are name dependencies) as described in Chapter 3.

4.1.3 Dummy Tasks and Entries

The dummy tasks and entries mechanism that is explained in Chapter 3, is also
implemented in the VHDL version of Nexus++4-. Tasks that cannot fit into one entry
in the Task Pool will simply be stored in multiple entries, which are linked together

using the N-Dummy field in the Task Pool, as shown in Figure 4.2 on page 92.
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For example, task T2 shown in the Task Pool in Figure 4.2 has 6 memory locations
in its input/output list. Since in our design, each entry in the Task Pool can have up
to 4 inputs/outputs, the 2 extra parameters are stored in another entry (at TP(3)) in
the Task Pool, and a pointer to TP(3) is inserted in the next dummy (N-Dummy) field
of TP(2) where the first 4 parameters reside. Although the number of inputs/outputs
per entry in the Task Pool is determined to be 8 in the SystemC prototype of Nexus—++
presented in Chapter 3, it is set to 4 in the VHDL prototype presented in this chapter
in order to reduce the size of Nexus++. This has been decided after profiling several
benchmarks as described in Section 4.3.1 and finding out that most of them have less
than 4 parameters. Only one benchmark has few tasks that have up to 6 parameters,
the case that Nexus++ handles by inserting dummy tasks in the Task Pool as described

here.

Although this solves the problem of having a fixed, limited number of inputs/outputs
per task, the maximum number of inputs/outputs is still bounded by the size of the
Task Pool.

The same principle is deployed in the Dependence Table, where the Kick-Off List has
a limited size of 8, thus restricting the number of tasks that might depend on a certain
memory segment. An example is shown in the Dependence Table in Figure 4.2 too.
Memory address ¢ has more than 8 tasks waiting for it. The first 8 tasks are recorded
in the direct Kick-Off List of ¢, and the extra ones are recorded in an additional
table (the Dummy Kick off Lists shown in Figure 4.2) specially created to handle this

scenario.

Two pointers to the dummy Kick-Off List(s) are recorded in the original Dependence
Table: (1) the next dummy (N-Dummy) pointer points to the immediate following
Kick-Off List, and (2) the last dummy (L-Dummy) pointer points to the last dummy
Kick-Off List that might still have some room for more tasks, indicating where should
the next waiting tasks be added to. The N-Dummy pointer is important when the
Kick-Off List(c) is to be read, since reading Kick-Off Lists should be performed in a

first-in first-out order.
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Figure 4.4: Execution time comparison between Nanos and VSs, for various benchmarks
on a 4-core machine.

4.2 System Integration

4.2.1 VSs Runtime

VSs is another research project at the Embedded Systems Architecture group at TU
Berlin. It is based on a proto-runtime system that provides basic management of tasks:
creation, switching and destruction. It has been used to implement the functionality of
OmpSs including dependency resolution, synchronization primitives such as Taskwait
and Taskwait on (*mem__addr), as well as a simple scheduling policy. Having been
developed in the same group, VSs has the advantage over Nanos of easier debugging

and faster integration.

VSs is used in order to test Nexus++ with real applications as depicted in Figure 4.1
on page 90. VSs runtime library provides the same API as the Nanos runtime [54]
(official OmpSs runtime system). It uses OmpSs’s source-to-source compiler, called
Mercurium, which transforms pragmas into function calls to the Nanos runtime library,

but replaces Nanos, in order to support exchanging tasks’ information with Nexus—++.

As shown in Figure 4.4, the performance of VSs compared to Nanos is very similar

for a set of real benchmarks. In fact, VSs is slightly faster than Nanos for most of the

98



4.2 System Integration

Scaling (c-ray)

q)’.\ T T T T
€3
S 1.0t 1
sS<
gé’OB" -
0= 0.6 .
X
L
0] 0.4} .
>
& 0.2} |
o 0.0

' 1 2 4 8 16 32

Number of cores

Figure 4.5: Scaling behavior comparison between Nanos and VSs, for the c-ray
benchmark.

benchmarks. This indicates that if the proposed hardware accelerator can overcome

the scalability bottleneck of VSs, then it can also be beneficial for Nanos.

Figure 4.5 compares the scalability behavior of VSs and Nanos, by running the c-ray
benchmark which has independent tasks only. Figures 4.4 and 4.5 show that VSs is

very similar to Nanos in terms of performance and scalability.

4.2.2 Nexus++ API

VSs provides a simple API to program and communicate with Nexus++. This API

abstracts Nexus+-+ to the programmer and makes it easy to use.

The Nezus IO unit shown in Figure 4.2 on page 92 provides three FIFO lists to
communicate with the host runtime system VSs. Every new task will be submitted to
the New Tasks FIFO, available ready tasks can be read from the Ready Tasks FIFO,
and finally when a task is completed, the VSs runtime notifies Nexus++ by writing
the finished task ID to the Finished Tasks FIFO. Those FIFO lists have also status
registers that can be read by the runtime in order to make sure that a certain FIFO

list has enough room before writing it, or has some data before reading it.

The main operations provided by the software API are:

e void VSs_init_nexus();
This method is used to map Nexus++ I/O unit in the system’s memory space,

in addition to initializing the different structures inside VSs and Nexus++.

99



4 An Integrated Hardware-Software Approach to Task Graph Management

e void VSs_cleanup_nexus();
This method resets Nexus++ in addition to all the structures inside VSs related
to Nexus+-+.

e void VSs_submit task_to_nexus(* task_descriptor);
This method is used to submit a new task to Nexus++4, by writing it to the
memory-mapped space of the New Tasks FIFO list in Nexus++ /O unit shown
in Figure 4.2 on page 92.

e void VSs_end_task_to_nexus(* task_descriptor);
This method is used to submit a finished task to Nexus++, by writing its 1D
to the memory-mapped space of the Finished Tasks FIFO list in Nexus++ 1/O

unit in Figure 4.2.

e void VSs_get_ready_tasks_from nexus();
This method is used to read a ready task ID from Nexus++4, by reading the
memory-mapped space of the Ready Tasks FIFO list in Nexus++ [/O unit in
Figure 4.2.

e int VSs_nexus_has_outstanding tasks();

This method can be used to check how many tasks are still stored inside Nexus++-.

e int can write infifo();
This method can be used to check whether the New Tasks FIFO list in Nexus++
has enough empty space to write a new task descriptor into it. This method is

mainly used by the VSs_submit_task_to_nexus(task_descriptor) method.

e int can write finfifo();
This method can be used to check whether the Finished Tasks FIFO list in
Nexus++ has enough empty space to write a finished task ID into it. This
method is mainly used by the VSs_end_task_to_nexus(task_descriptor) method.

e int can read outfifo();
This method can used to check whether the Ready Tasks FIFO list in Nexus++
has new ready tasks to read them by the runtime system and schedule them to

run consequently.
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# tasks total work (ms) avg task size (us) # deps
c-ray 1200 7381 6151 1
emptytask 1000 1 1 2
h264dec 57051 833 15 2-6
rot-cc 16262 8150 501 1
sparselu 54814 38128 696 1-3
streamcluster | 652776 237908 364 1-3

Table 4.1: Overview of the benchmarks. Work durations obtained from traces collected
on Xeon E7-4870.

4.3 Experimental Setup

To evaluate the performance of Nexus++, several benchmarks are used based on a
series of trace-based simulations as well as by executing some real benchmarks using
the Nexus++ FPGA implementation on a PCle extension board.

The goal of the evaluation is to know the impact of Nexus++ on the performance
of the different benchmarks, especially those with fine-grain tasks, or with complex

dependency patterns.

4.3.1 Benchmarks

Several benchmarks from the Starbench benchmark suite [6] are used to evaluate
Nexus++. These include c-ray (ray tracing), h26/dec (H.264 video decoding), rot-cc
(image rotation and color conversion) and streamcluster (k-median clustering). In
addition, two other benchmarks are tested: the emptytask (a synthetic benchmark)

and the sparselu (sparse LU matrix factorization).

The chosen benchmarks range from totally parallel workloads to workloads with

more complex dependency patterns.

c-ray and rot-cc have simple dependency patterns, with tasks working on each line
of an input image independently. For c-ray, there is only one task per line, which
means that all tasks are independent. For rot-cc there are two tasks per line, one for
rotation and one for color conversion, with the second depending on the first. All pairs
are independent of each other. c-ray is the best case as it has large tasks and ample

parallelism, thus most runtime overhead can overlap with task execution.
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emptytask is a synthetic benchmark consisting of a sequence of 1000 tasks of minimal
task size (one addition operation) each dependent om the previous. In effect, this
represents a worst case, as there is no parallelism in the application at all, and runtime
overhead cannot be hidden behind task duration either. Together with c-ray this

benchmark gives an idea of the performance range of the different runtimes.

streamcluster is a streaming data analysis kernel with fork-join-style parallelism. It

consists of a chain of groups of about 400 tasks followed by a taskwait.

sparselu and h26/4dec have more complex dependency patterns. sparselu is a sparse
matrix LU factorization kernel from the developers of OmpSs. It scales well, as the
granularity is designed to match Nanos overheads. The H.264 decoder, on the other
hand, has small tasks with many dependencies. This fine-grain parallelism is especially
challenging to manage as introduced in Section 2.2. It is possible to adjust the task
size to expose more parallelism, but at the cost of increased overhead as more tasks
need to be managed. The granularity chosen for these experiments (2 x 2 macroblocks
per task) was determined based on Andersch et al. [6] to produce fine-grain tasks,
finer that the granularity (8 x 8 macroblocks per task) suggested by the authors, in
order to exploit more parallelism in the application as introduced in Section 2.2 and

to stress-test the different runtime systems (Nanos, VSs, Nexus++).

Table 4.1 summarizes the relevant characteristics of the benchmarks in focus. Us-
ing those benchmarks, several experiments were performed, ranging from trace-based
cycle-accurate simulations of these benchmarks, to truly running them on a multicore

machine.

4.3.2 VSs-Nexus++ Setup

The Nexus++ design described in Section 4.1.1 is implemented on a Xilinx XUPV5-
LX110T development board. The board is then installed in a machine equipped with
an Intel Core 15-2500K 4-core CPU due to the lack of physical access to machines with

larger number of cores.

Communication takes place over the PCle bus. Delays of the read and write opera-
tions are measured using VSs: writing one word over the PCle bus consumes approx-

imately 250ns in this experimental setup, and reading one word consumes 400ns.
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The width of a parameter of a task is assumed to be 48! bits, the maximum virtual
address space size in the x86-64 architecture [80]. Therefore, for a task with n argu-
ments, (n + 1) words are sent to Nexus++ (n words for the task’s parameters, and 1
header word), followed by reading 1 word from the Ready Tasks FIFO when the task
becomes ready, and then writing a finished task notification of 1 word after the task
is completed. So in total, n + 2 words are written and 1 word is read for a task with
n arguments. Practically, the communication time is more than that solely needed to
communicate the Task Descriptor, since in order to to communicate with the current
Nexus++ implementation, the runtime also needs to read the status registers to en-
sure flow control, and change the endianness to conform to the PCle protocol. These

steps incur additional overhead.
VSs is implemented to run in three operational modes:

1. the software-only mode, where it computes the task graph and schedules tasks

on its own,

2. the VSs-Nexus++ mode, where VSs sends the Task Descriptors to Nexus+-+
and waits for the latter to compute the ready tasks IDs and returns them to
VSs,

3. the debugging-mode, where VSs submits tasks to Nexus++, and at the same
time computes the task graph as in the first mode in order to compare the
results to those of Nexus++-.

In the VSs-Nexus++ and debugging modes, communication is implemented using

memory-mapped 1/O over the PCle bus.

4.3.3 Simulation-based Setup

Traces of the aforementioned benchmarks were collected on a 40-core Xeon E7-4870

machine running at 2.40GHz.

These traces include the task descriptors, which specify the inter-task dependencies,
and the execution time of each task. Using the information from the traces, three sets

of simulations were performed:

IBits 63:48 are a sign extension of bit 47.
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1. No Overhead: In order to determine the lower bound for the execution time of the
benchmarks, the execution of an application without any overhead is simulated.
In this simulation, the simulation time does not advance while dependencies are
being resolved. Only the execution time of the tasks is taken into account. This
allows us to determine when the lack of available parallelism in the application

is the limiting factor.

2. Nexus++ only: This simulation additionally accounts for the dependency resolu-
tion overhead incurred by the Nexus++ core. Failure to scale in this simulation
indicates a bottleneck inside the design. In this simulation free worker cores
start executing tasks directly after they are reported as ready by Nexus+4. No

communication or other non-dependency resolution overhead is accounted for.

3. Nexus++ and runtime: Here, an additional delay of (n + 1) % 250 + 400ns is
introduced between Nexus++ reporting a task as ready and the start of execution
of the task by the worker core, as well as a delay of 250ns between the end
of the task and the reception of the finished task notification by Nexus+-+.
This represents the overhead of communication between the processor cores and
Nexus++, as described in Section 4.3.2. Although the setup in Section 4.3.2
(an Intel Core 15-2500K machine) is different from the simulation setup (a Xeon
E7-4870 machine) in this section, the PCle interface is a standard bus and the
communication latencies from the Intel i5-2500K machine can be reflected on

the Xeon E7-4870 machine for evaluation purposes.

Additionally, we measured the overhead due to runtime features that Nexus++ does
not replace (such as setting up the stack for the task and switching execution to it)
in VSs to be approximately 5us per task. In this simulation, task length is increased

by this constant, to account for all necessary parts of execution.

The VHDL testbench is set up to run Nexus++ at 12.5MHz and the Nezus 10
FIFOs at 100MHz, to match the speeds reported by the synthesis tool of the FPGA

implementation of Nexus++.

These simulations were compared to the actual runs of the benchmarks on the same
machine that the traces were collected on, compiled using the Mercurium compiler

version 1.3.5.8 and linked to the accompanying Nanos runtime library.
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Of special note is the h264dec benchmark, which is the only benchmark to use
the #pragma taskwait on (*p) construct that is not supported by Nexus++. A
taskwait instructs the issuing thread to suspend until all child tasks have finished ex-
ecution, and taskwait on (*p) requires to wait only for those child tasks that access
memory address p. It is thus functionally correct to replace instances of taskwait on
(*p) with taskwait. However, this will decrease the available parallelism of the ap-
plication. In the following experiemnts, this is how VSs handles taskwait on (*p)
when running with Nexus++. We report both the No Owerhead simulation with
taskwait on (*p), which represents the parallelism available when executing with
the Nanos runtime library, as well as the No Overhead simulation with taskwait
on (*p) replaced by taskwait, which is the parallelism that remains available to
Nexus++-.
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4.4 Evaluation Results

4.4.1 Simulation Results

Figure 4.6 shows the scaling behavior of the three simulations, as well as the Nanos-
linked run for comparison. Performance is reported as speedups relative to the No
Overhead simulation on one core (origin of the solid red line), which corresponds to

the total amount of work in the application.

For three of the four benchmarks with sufficient available parallelism to scale linearly
to 32 cores (c-ray, rot-cc and sparselu), Nexus++ itself adds negligible overheads in all
cases. In comparison, Nanos adds a slight overhead in the cases of c-ray and rot-cc, but
has a significant overhead for the benchmarks with complex inter-task dependencies

(sparselu).

The emptytask benchmark allows us to evaluate the response to lack of parallelism,
as well as estimate the overhead in absolute terms. In this benchmark, only a single
task is ready at a time, so additional cores cannot improve the performance, but should
avoid degrading it. Both Nexus++ and Nanos deal with this case well. In absolute
numbers, an average overhead per task of 3us for Nexus++ and 10us for Nanos is

observed.

The final two benchmarks, h264dec and streamcluster, are applications with limited
parallelism. For the H.264 decoder, using the taskwait on (*p) construct, a speedup
of up to 13x can theoretically be achieved (solid red line). The Nanos runtime, how-
ever, is incapable of using this parallelism, achieving less than sequential performance

no matter how many cores it uses.

Because it does not support taskwait on (*p) and instead replaces it with taskwait,
the parallelism available to Nexus++ is bounded at 3.5x speedup (dashed yellow
line). Even with this limitation, Nexus++ performs better than Nanos, achieving
2.8x speedup. This shows that for fine-grain tasks, hardware task management is of

great benefit.

The task size in h264dec was chosen to exploit much parallelism in the application.
In this benchmark 2 x 2 macroblocks are processed per task. With a more efficient
runtime, it would be possible to decrease task granularity, down to a single macroblock

per task.
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Figure 4.6: Scaling behavior of the benchmarks under consideration.
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Benchmark Speedup
c-ray 1-1.01x
emptytask 0.9-1.2x
h264dec 2.61-16.75 %
rot-cc 1.02-1.29 %
sparselu 1.21-3.75 %
streamcluster | 1.01-2.75x%

Table 4.2: the speedups gained from Nexus++ and runtime compared to Nanos runtime
system.

Streamcluster in theory continues to scale linearly beyond 8 cores. In practice,
some bottlenecks intervene to limit scaling at 8x for Nexus+4, and performance
degrades even worse for Nanos when run on more than 4 cores. One peculiarity of the
streamcluster benchmark is that it has many tasks demanding read access to the same
memory location, potentially leading to contention of the resources used to manage
it. This may be the reason for the failure to scale beyond 8 cores, with either Nanos
or Nexus++.

In summary, the speedups gained from Nezus++ and runtime compared to Nanos

are shown in Table 4.2.

4.4.2 Results using VSs and the Nexus++4+ FPGA Implementation

To confirm that Nexus++ works correctly in practice, a prototype was developed on
a Xilinx XUPV5- LX110T FPGA board and tested with a machine equipped with a
Intel Core i5-2500K 4-core CPU as described in Section 4.3.2.

The same benchmarks as before are compiled and linked to the VSs runtime de-

scribed in Section 4.2.1. Three versions were prepared:

1. Software dependency resolution: This is the baseline against which the Nexus++

FPGA implementation is evaluated.

2. Nexus++: This version uses Nexus+-+ for dependency resolution with VSs and

Nexus++ communicating over the PCle.

3. Nexus++ and improved flow control: This version also uses Nexus++4-, but the
Nezus Plugin in VSs is aware of the size of the New Tasks FIFO and the Finished
Tasks FIFO. Instead of checking for every packet if there is sufficient space, it
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benchmark name.

will read the FIFO occupancy counter once and keep a conservative estimate of
space available. Only when there is a possibility of the FIFO being full will the
Nexus Plugin check again before writing to either FIFOs.

The results of running the three above-mentioned versions of each of the benchmarks
are shown in Figure 4.7. The communication over PCle shows a significant impact.
From the emptytask benchmark, we can again derive an absolute estimate of overhead.
The naive implementation takes 12.5us per task. With flow control optimization, the
overhead is reduced to 6.9us per task. In comparison, the software version only takes

1.2us per task.

Measuring where time is spent inside the Nezus Plugin reveals that there are two
main sources of overhead. The first, reading the status registers for flow control
(which is addressed by the flow control optimization described above). The second is
in the nature of the communication protocol: the runtime has to poll the Ready Tasks
FIFO for new tasks to execute, as Nexus++ is not capable of initiating transfers

in this implementation. This second source of overhead is especially important for
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benchmarks which have few parallel tasks, and thus higher likelihood of idle cores

polling repeatedly and interfering with transfer of task finish notifications.

Accordingly, the results show that for the benchmarks with large amounts of avail-
able parallelism such as sparselu, optimizing the flow control reduces overhead by
95%. For streamcluster, which only spawns up to 20 tasks at a time, improvement is
only 11%, as polling overhead dominates. This version with flow control optimization

triggers a runtime error in the h264dec benchmark, so no results are provided for it.
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4.5 Summary

The VHDL implementation of Nexus++ has been presented in this chapter, as well
as its integration in real multicore systems as a PCle extension board using VSs, a

runtime library capable of making use of the Nexus-++ accelerator.

Evaluating the FPGA prototype of Nexus++ with real applications, the commu-
nication protocol between the VSs runtime system and the Nexus++ over the PCle
bus is suboptimal and adds significant delays. Nevertheless, the PCle extension board
is functional and the performance reaches levels similar to the software version af-
ter applying flow control optimization. This leads us to conclude that with an im-
proved communication protocol, or even bringing Nexus++ closer to the cores on
chip, Nexus++ would significantly speed up dependency resolution for OmpSs appli-
cations. One plausible approach would be to tightly couple Nexus++ as an on-chip

co-processor for an ARM multicore SoC using the AXI high performance bus.

This chapter presented a solid implementation of Nexus++ that can be integrated in
real SoC. It also demonstrated the positive impact of Nexus++ over the performance

of applications with fine-grain tasks as well as complex inter-task dependencies.

Furthermore, the implementation of Nexus++ deepened my insight of data and
control flow of task management, and opened more ideas to improve it. For example,
more OmpSs pragmas can be supported, and the processing pipeline can be parallelized
in a distributed fashion as will be presented in the next chapter. The goal is to bring the
scalability figures of the benchmarks under consideration closer to the ideal scalability

curve.
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In the previous chapter, Nexus—++ is presented. It is a hardware accelerator for runtime
systems of task-based programming models such as OmpSs. Task graph management
responsibilities that are usually handled by the runtime system, are off-loaded to
Nexus+-+. It tracks tasks’ input/output information and utilizes simple table lookups

to dynamically build the task graph and find ready tasks to run.

The hardware accelerator presents a significant enhancement in terms of scalability
for various applications. It is used to speed up the dependency resolution in OmpSs’s
runtime system. Tasks processed by Nexus++ can have various dependency patterns

and it is possible that tasks can have arbitrary number of input/output parameters.

The VHDL implementation of Nexus++ presented in Chapter 4 is the first real
prototype of the hardware task manager. Therefore, some room is still available to
further improve it. Nexus++ uses a single task graph architecture to resolve depen-
dencies, which may limit the expected scalability that can be obtained by Nexus++.
Although significant enhancements are introduced by Nexus++, using multiple task
graphs to process tasks in parallel can introduce further enhancements in terms of

scalability, aiming at achieving maximum possible performance.

Moreover, dependencies between tasks are expressed in OmpSs by several pragmas.
Nexus++ has limited support for these pragmas which limits the performance of some
applications employing other pragmas, namely the H.264 decoding benchmark, which

uses the taskwait on barrier pragma.

This chapter presents Nexus#, a hardware accelerator for task-based dataflow pro-
gramming models in general, and for OmpSs in its current prototype. Nexus# intro-
duces a scalable distributed task graph manager, where multiple tasks can be analyzed

in parallel. This further improves the scalability of applications with fine-grain tasks
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or complex dependency patterns. It is implemented as a synthesizable VHDL pro-
totype, aiming at on-chip integrability with future multicore SoCs as a co-processor.
It supports the taskwait on barrier pragma, among others, which can enhance the

performance of various applications.

Before presenting the design of Nexus#, the next section discusses the processing
pipeline of Nexus++4-, and highlights the spots where it can be improved, in order to

draw the roadmap of Nexus#.

5.1 Nexus++ Processing Pipeline

The Nexus++ task manager presented in previous chapters is a hardware accelerator
for runtime systems of task-based programming models such as OmpSs. Task graph
management responsibilities that are usually handled by the runtime system, are off-
loaded to Nexus++. It tracks tasks’ input/output information and utilizes simple

table lookups to dynamically build the task graph and find out ready tasks to run.

In Chapter 4, the VHDL prototype of Nexus++ is presented, which thoroughly
describes the design and implementation as well as a trace-driven evaluation testbench.
Also in the same chapter, the integration process with a real multicore runtime system

is highlighted, as well as the evaluation of Nexus++ with real applications.

Nexus++ processes the incoming tasks in a pipelined fashion. It has a simple 3-
stage pipeline.The pipeline is shown in Figure 5.1 and is an example for processing

tasks that have 4 parameters each.

The first stage is the Input Parser stage, and it handles receiving the new tasks
from the host multicore machine. It makes sure that all the parameters of the new

task have been received before forwarding it to the next stage.
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Data communication between the different stages are done using FIFOs lists. These
lists have status flags, such as fifo__empty, fifo_full, and data_valid flags, which serve
as the synchronization signals between the different pipeline stages. The first stage
needs two cycles to receive every memory address in the task’s input/output list, plus
4 cycles for the header word and synchronization, giving 12 cycles per task. Once the
data_wvalid flag of the first FIFO list gets activated, the second stage, namely Insert,
gets triggered. This is the longest stage in the pipeline, which, as the name indicates,
handles the insertion of the new tasks into the Dependence Table, as elaborated in

Chapter 4. This stage needs 18 cycles for our 4-parameter task example.

The result of the Insert stage decides whether the third stage will be activated or
not. The third stage is the Write Back stage, and is responsible for sending ready
task IDs back to the Nezus IO unit, in order to be read by the host multicore machine
subsequently. This means that if the inserted task had dependencies on older tasks,
it must wait until its dependencies are fulfilled, and therefore cannot be reported by
the Write Back stage as a ready task. If the inserted task on the other hand had no
dependencies, the Write Back stage needs 3 cycles to write it back to the Nexus 10

unit.

Using the FIFO lists as buffers between the different stages introduces extra delays
in the pipeline. The delay of the first FIFO list in the pipeline can be ignored, since
the second stage is longer than the first one, therefore this delay is only effective when
the pipeline is empty. On the other hand, the delay of the second FIFO is always
effective, since the Write Back stage is much shorter than the Insert stage. This

FIFO is important to decouple the last two pipeline stages though.

The pipeline shown in Figure 5.1 is, as mentioned before, an example of inserting
tasks that have 4 parameters each. In real cases, tasks might have varying number of
parameters. This implies that stalls might happen in one or more stages, for example

when the task graph has no more room.

There exists a second pipeline responsible for handling finished tasks. Handling
finished tasks includes kicking off any waiting tasks, and cleaning up Nexus+-+ tables

by deleting the related information of the finished tasks.

Although Nexus++ has one central task manager, it demonstrated significant im-

provement over the software runtime system using trace-based simulations. Neverthe-
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less, Nexus++ could not improve the scalability of the H264dec benchmark over the

software version, since it does not support the barrier pragma taskwait on.

Having lots of buffering in its pipeline, in addition to having relatively long as well
as variant pipeline stages leave some room for further improvement and optimization,

as will be discussed in the following section.

5.2 Nexus#: Distributed Task Graphs

The first thing to notice in the processing pipeline of Nexus++, Figure 5.1, is that the
smallest unit processed by Nexus++ is a whole task; i.e., the Insert stage does not
start before having all task parameters completely buffered. One idea is to parallelize
the Insert stage in the pipeline, by replicating the task graphs, and distributing the

different memory addresses in a task’s input/output list among them.

Looking at the original pipeline again, and having Amdahl’s law [5] in mind, we
notice that parallelizing only the Insert stage will yield a maximum of 2x speedup in

ideal cases, since the first and third stages in the pipeline are still serial.

Furthermore, the 2x speedup is an ideal situation, since practically parallelizing the
insertion process of the different parameters of a task, implies that a scatter-gather
process should take place, since those parameters belongs to the same task, and a
final decision must be made whether this task is ready or not. This introduces an

additional overhead that adds to the serial part in Amdahl’s equation.

Moreover, the pipeline under consideration is one example of tasks that have 4 pa-
rameters each. In real applications, tasks might have varying number of parameters.
In fact, the set of benchmarks which are used have in most cases up to 3 parame-
ters, and in only one case (h264 decoding) 2 to 6 parameters. This implies that the
maximum task graphs that can be practically used equals the maximum number of
parameters a task can have. Which is a scalability hard upper limit. Furthermore,
whenever a task with only one parameter is to be inserted, only one task graph will
be busy, and the others will be idle.

In order to overcome the above limitations, two design decisions have been made.

1. The first stage of the pipeline must be broken down into smaller steps.
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2. Not only parallelizing the insertion process of parameters of a single task is to

be implemented, but also those from different tasks.

The latter decision is to ensure that applications with very few number of parameters
per task can also utilize the different task graphs simultaneously, and thus removing
the upper limit on the number of task graphs that can be used, at least for this obvious

scenario.

5.2.1 Nexus# Design Overview

The block diagram of the proposed distributed task graph system, named Nexus# is
depicted in Figure 5.2. Looking at Figure 5.2 from top-to-bottom, tasks are submitted
to the Nezus IO unit. It has the same interface as in Nexus++, which is necessary
to comply with communication protocol between the runtime system and Nexus+-+

used in Chapter 4.

Since the idea behind Nexus# is to parallelize the insertion process of tasks’ param-
eters using distributed task graphs, and since the different parameters of a single task

might go to different task graphs, a scatter-gather approach must be implemented.

One might think at first that whole tasks should be distributed instead to avoid
the gathering step, but this way dependencies between tasks cannot be tracked, which

contradicts the main functional requirement of the hardware co-processor.

5.2.2 Input Parsing

Since the Input Parsing stage in Nexus++ pipeline (Figure 5.1) waits for a whole
task to arrive before forwarding it to the next stage, this stage is relatively long, and
as described before will be a scalability bottleneck according to Amdahl’s law if left
as is. Therefore, the Input Parser in Nexus# reads new tasks’ parameters from the
Nexus 10, and distributes them immediately among the different task graphs shown
in Figure 5.2. This way, the insertion process of the first parameter of a task can
start, even before the second or rest of parameters of the same task have arrived.
Furthermore, parameters of different tasks can be inserted in parallel, as long as they

do not share the same task graph.
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A key to enhanced utilization and scalability of Nexus# is the distribution algo-
rithm. It should have two essential properties; speed and fairness. Speed, since a
slow algorithm will bring us back to the long-delay pipeline stage, and fairness, since
having many task graphs that have nothing knocking their doors makes them useless.
The fairness property must be ensured not only spatially, but also temporally. This
can be explained by describing the best and worst case scenarios. Let’s say that we
have n task graphs (T'Gq---TG,—1), and m items to be distributed. The best case
is when having a round-robin-like distribution algorithm. In this case, TGy does not
get a second item at its input buffer before all other n — 1 task graphs have also
received some inputs. This is to ensure that the different task graphs are busy, while
the distribution process goes on as shown in Figure 5.3(A). The worst case on the
other hand is when the distribution algorithm gives the first m/n items to the first
task graphs, the second m/n items to the second task graphs and so on. This scenario
implies that the task graphs are working in a serial fashion as shown in Figure 5.3(B),
exactly one after the other, which is equivalent to having one active task graph at a
time, in addition to the extra overhead of running the distribution algorithm. Notice

that both scenarios have distributed exactly m/n items per task graph eventually.

Given that the data to be distributed are 48-bit memory addresses, and the number
of task graphs to choose from is relatively small (5 bits are needed to address 32 task
graphs), this problem sounds similar to error detecting codes problems. In our case we
should compute the target task graph index as fast as possible (in 1 cycle if possible),
therefore, multiple-rounds algorithms, or those which use complex operations such as
division should be avoided. Furthermore, since our input data are memory addresses,
we noticed that for a certain application, the memory addresses it touches differ only
in the lower 20 bits.

For those reasons, we empirically used the following algorithm to compute the target

task graph index:

TaskGraphlD = [addr(19..15) & addr(14..10)
@ addr(09..05) & addr(04..0)]

mod num_ task_graphs;
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Figure 5.3: (A) Best vs. (B) worst case scenarios of the utilization of 4 task graphs.

The proposed algorithm is based on simple X OR operations of the lowest 20 bits of
the input address, divided into 5-bit blocks. It can be computed in one cycle, and has
shown experimentally good distribution of the input data among the task graphs as

shown in Figure 5.4, regardless of the used number of task graphs, up to 32 though.

After having distributed all the memory addresses in the new task’s input/output
list, the Input Parser stores the new task in the Task Pool. This is important at the
end of a task’s life cycle; i.e., after running it. At this point, the runtime system should
report the task as a finished task, and the Input Parser will read its input/output list
from the Task Pool, and read their entries in the different task graphs using the same

algorithm, in order to update the task graphs subsequently.

5.2.3 Data Insertion into Task Graphs

The insertion process starts at each task graph whenever it receives data from the
Input Parser. Additional buffers must be added before each task graph, namely the

New Args. Buffers, in order to decouple the Input Parsing and Insertion processes.
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(described in Section 5.3.1) among variable number of task graphs.
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The same principle is applied in case that the incoming task is a finished task, in
which case the Input Parser will read its input/output list from the Task Pool, and
distribute them subsequently among the Finished Args. Buffers shown in Figure 5.2.

Each one of the task graphs shown in Figure 5.2 is the same as the one used in
Nexus++ described in Chapter 4. It uses the same set-associative data structure to

maintain a Kick-Off List for each incoming memory address.

When processing the data in the New Args. Buffers, one of two scenarios might
occur. The first one is when the task has only one parameter that is to be inserted
for the first time in the task graph. This means that the processed task has no other
parameters at other task graphs, and therefore can be immediately reported as a
ready task. This helps to shrink the size of the last gather step in our scatter-gather
approach. This kind of ready tasks are written at the Rdy Tasks Buffer shown below
every task graph in Figure 5.2.

The second scenario, is when the new task found dependent, or when it has other
parameters to be inserted in other task graphs. In this case, the result is written in
the Dep. Counts Buffer shown below every task graph in Figure 5.2, indicating the
task’s id, and its dependence count: how many Kick-Off Lists has it been added to in
that task graph only.

The gather step then takes place by the Dependence Counts Arbiter whenever any of
the Rdy Tasks Buffer or the Dep. Counts Buffer is written. If any task was reported
as ready, the gather step in this case will be an arbitration of writing them to the
Internal Ready Tasks Buffer, in order to be forwarded to the Nexus 10 unit.

When gathering the results from the Dep. Counts Buffers on the other hand, the
gather step is relatively longer. It should collect the results from the different task

graphs, and conclude the final dependence count of each incoming task.

Having a distributed approach, some parameters of a certain task might be processed
by other task graphs sooner than the others because of many factors. For example if
one task graph stalled and the other not, or if they stalled for different periods of time.
It can also be because one task graph received more data to process than the other.
In such cases, while waiting for all the parameters of a certain task to be processed
by the different task graphs, the temporal dependence count of this task is stored at
Sim(-ultaneous) Tasks Dep. Counts Buffer shown in Figure 5.2.
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Having all task’s parameters processed and was found ready, the task’s ID will be
written on the Internal Ready Tasks Buffer. Otherwise, its dependence count will be

stored in the global Dep. Counts Table shown in Figure 5.2 on page 119.

Finally, when processing finished tasks, if there were some tasks waiting in the
Kick-Off List of a finished task, those waiting tasks will be written in the Wait. Tasks
Buffer shown below every task graph in Figure 5.2. The Dependence Counts Arbiter
after that decrements the dependence counts of those waiting tasks one by one, and

decides accordingly whether they are ready to run, or not yet.

In the next section we will describe Nexus#’s pipeline, and how it improves over its

predecessor.

5.2.4 Nexus# Processing Pipeline

To demonstrate how Nexus#’s pipeline improves over that of Nexus+-+, we show in
Figure 5.5 the pipeline of inserting tasks that have 4 parameters each, which is the

same example used to explain Nexus++ pipeline.

The pipeline of Nexus# has four stages. Input Parsing, data INsertion to the task
graph, dependence counts A Rbiteration as described in Section 5.2.3, and finally, the
Write ready tasks Back to the Nexus IO unit.

The input parsing stage consumes two cycles to receive the header word of the
new task (its function pointer and number of parameters), and another two cycles for
each parameter (I P, and I P stages respectively in Figure 5.5). The communication
scheme is based on the PCle bus used in the FPGA board prototype of Nexus++ in
Chapter 4, therefore, one parameter (48-bit memory address) takes two 32-bit PCle

packets, and thus two cycles.

The Input Parser directly distributes every incoming parameter to one of the dif-
ferent task graphs, and in our example, after having distributed the four parameters
of the new task, this task’s descriptor gets written to the Task Pool in one cycle (I Py
stage in Figure 5.5).

fifoi_4 in the pipeline are the New Args. Buffers described in Section 5.2.3. The
date written to them needs 3 cycles to appear at their output, which will trigger the

next stage in the pipeline: Data Insertion into the task graph. The latter stage takes
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5 cycles per parameter, and once done, the Dependence Counts Arbiter collects its
result(AR stage in Figure 5.5).

Once having collected the results of all the 4 parameters of the inserted task in our
example, the arbiter checks the readiness of the task. If the task was found ready, its
ID will be written to the Internal Ready Tasks Buffer (fifo, in Figure 5.5). The latter
fifo takes also 3 cycles to get its data readable at its output port, after which the last
stage of the pipeline ( Write Back) takes place. The latter stage consumes 3 cycles, and
simply reads the actual function pointer of the ready task from the Function Pointers
table shown in Figure 5.2, and forwards it to the Nezus IO unit, to be read later by

the runtime system.

The difference between the two pipelines can be obviously seen comparing Fig-
ures 5.1 and 5.5. The insertion stage in the new pipeline consumed 11 cycles, com-
pared to 18 cycles in the old pipeline. Furthermore, the insertion stage does not wait
for the all the task’s parameters to arrive in order to start inserting the first one. Also
interesting, the write back stage, where ready tasks are forwarded to the Nexus IO
unit, took place every other 18 cycles in the old pipeline for our example. This number

decreased significantly to 11 cycles in the new pipeline.

Although the pipeline shown in Figure 5.5 is an example for inserting tasks of 4
parameters each, in real runs the pipeline will be different. The pipeline shown in
Figure 5.5 assumes that the input buffers of the task graphs are empty, hence the
pipelined parallel insertion of the different parameters. If on the other hand the 4
parameters of our example task were already in the buffers, the pipeline in this best-
case scenario will behave as shown in Figure 5.6. In this scenario, the Write Back
stage will take place every other 5 cycles. It is worth mentioning that in this case,
the arbiter consumes only two cycles to collect the results of all the task graphs and

conclude the final dependence count of the corresponding tasks.

There are also scenarios where the insertion stage takes longer periods of time, if for
example the task graph stalled due to not fining an empty slot for a certain line in the
set-associative structure. The task graph must then wait until one task finishes, which
its parameters share the same line. The good thing about such a scenario is that this
gives time to the Input Parsing stage to fill up the input buffer of the stalled task
graph, increasing the chance that all task graphs work in parallel as in the best-case

scenario shown in Figure 5.6.
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Figure 5.6: Nexus# best-case pipeline.

The Dependence Count Arbiter handles a relatively large amount of computation,
which might eventually make it a bottleneck. To avoid this, we designed it in a way
to iterate between the three buffers at the end of each task graph in a prioritized
fashion. The highest priority goes to reading the Ready Tasks Buffer, since they are
ready tasks and only need to be forwarded to the next pipeline stage. Second priority
is for reading the Waiting Tasks Buffers, since they have potential ready tasks. While
serving one of the previous two scenarios, this gives time for the different task graphs
to finish what they do, namely inserting new items to the task graph. Therefore, this
increases the chance of reaching the best-case scenario pipeline shown in Figure 5.6.

To accomplish this, the lowest priority in the Dependence Count Arbiter is for reading
the Dep. Counts Buffers.

In the whole design process, we made sure that Nexus# is deadlock-free, by well-
dividing it into different blocks, with fifo lists used as the communication medium to

ensure decoupling, and testing it thoroughly.
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Maximum (Test) Total

Configuration Registers  LUTs Block RAMs Frequency(MHz) Utilization
ZC 706 (Totals) 437200 218600 545

Nexus++ 1% % 14%  114.44 (100.00) %
Nexus# 1 TG 1% 8% 13%  112.63 (100.00) %
Nexus# 2 TGs 2% 15% 25%  112.63 (100.00) 15%
Nexus# 4 TCs 3% 29% 47% 85.26 (83.33) 20%
Nexus# 6 TGs 1% 4% 69% 55.66 (55.56) 44%
Nexus# 8 TGs A%  58% 91% 43.53 (41.66) 58%

Table 5.1: Device utilization using different design configurations on the ZC706 FPGA
board.

5.2.5 Nexus# Synthesis

Nexus# synthesizability was tested on the Xilinx ZYNQ-7 ZC706 FPGA board. This
board has a relatively larger FPGA compared to the Virtex-5 board used in the eval-
uation of Nexus++ in Chapter 4. In Nexus#, we wanted to evaluate the distributed
task graphs paradigm, which did not fit on the Virtex-5 FPGA board, and thus the
switch to the ZYNQ-7 ZC706 FPGA board. Table 5.1 shows an overview of the target

FPGA utilization, using different design configurations.

Our baseline is the Nexus++ design in Chapter 4. Although it was evaluated using
a different FPGA board, we have re-synthesized it using the ZC706 FPGA board to

make it comparable with the other configurations.

The three main criteria shown in the table are the registers, look-up tables(LUTs),
and block RAMs. The latter reflects the data structures used in the design, mainly
the tables in the task graphs for example, while the first two reflect the computational

part of the design, i.e., the state machines.

Having only one task graph in the configuration of Nexus# is most analogous to

Neuxs++. This can be seen in Table 5.1, as both have very close utilization values.

By increasing the number of task graphs in Nexus#, it can be noticed how this
is reflected in Table 5.1: the number of block RAMs almost doubles due to using
multiple task graphs, and the number of LUTs also doubles because of the extra work
the Imput Parser and the Dependence Counts Arbiter blocks have to manage every

time the number of task graphs doubles.
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# tasks total work (ms) avg task size (us) avg #deps total #deps
c-ray 1200 7381 6151 1 1200
rot-cc 16262 8150 501 1 16262
sparselu 54814 38128 696 1-3 155452
streamcluster 652776 237908 364 1-3 653168
h264dec-1x1-10f | 139961 640 4.6 2-6 760308
h264dec-2x2-10f 35921 550 15.3 2-6 192695
h264dec-4x4-10f 9333 519 55.6 2-6 49045
h264dec-8x8-10f 2686 510 189.9 2-6 13481

Table 5.2: Benchmarks’ Durations obtained from traces collected on Xeon E7-4870.

5.3 Performance Evaluation

To evaluate the performance of Nexus#, we performed several trace-based simula-
tions using various benchmarks. The purpose of our experiments is to measure the

scalability enhancements that can be obtained by the new distributed task graphs.

5.3.1 Benchmarks

The set of benchmarks used to evaluate Nexus# are from the Starbench benchmark
suite [6], which are described in Chapter 4 and were used to evaluate Nexus++. These
include c-ray (ray tracing), h264dec (H.264 video decoding), rot-cc (image rotation
and color conversion) and streamcluster (k-median clustering). To these benchmarks,
we add sparselu (sparse LU matrix factorization benchmark used by the OmpSs de-

velopers).

Moreover, the task size in h264dec was increased by processing several (8 x 8)
macroblocks in one task as the optimum tradeoff between paralellism and runtime
overhead for the Nanos runtime [6]. In the evaluation of Nexus#, we vary the task size
for the h26/dec to check the effect of this on the scalability of Nexus#, especially that
the latter supports the taskwait on pragma. Table 5.2 lists the main characteristics of

the set of used benchmarks.

We test 4 variation of the h264dec benchmark varying the number of macroblocks
that are mapped to one task. h26jdec-1x1-10f indicates that only 1 macroblock is
mapped to one task, h264dec-2x2-10f mappes 4 macroblocks to one task, and so
on. All variation has 10 full HD frames (hence the 10f) of a video stream (pedes-

trian_area.h264) as input.
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To validate the dummy tasks/entries approach, the task graph of Gaussian elimina-
tion with partial pivoting is used, which is presented in Chpater 3. In this benchmark,
the number of tasks that depend on a certain memory segment can grow very large
since it depends on the size of the input matrix, as depicted in the dependency pattern

of Figure 3.8, assuming an n X n matrix.

5.3.2 Experimental Setup

From the execution of each benchmark on a 40-core Xeon E7-4870 machine running
at 2.40GHz, we collected traces that include the task descriptors (which specify the
inter-task dependencies) and the execution time of each task. The test bench simulates
the runtime system. It submits new tasks to Neuxs#, receives ready task information
from it, schedules ready tasks to worker cores and simulates their execution, and finally
notifies Nexus# of finished tasks. Using the information from the traces, the same set

of simulations presented in Chapter 4, Section 4.3.3, were performed, namely:

No Overhead: This simulates the execution of an application without any overhead,
to determine the lower bound for the execution time of the benchmarks. In this
simulation, the simulation time does not advance while dependencies are resolved.
Only the execution time of the tasks is taken into account. This allows us to determine

when the lack of available parallelism in the application is the limiting factor.

Nezxus# only: In this simulation, we additionally account for the dependency res-
olution overhead incurred by the Nexus# core. If an application scales much worse
in this simulation than in the No Owerhead experiment, this indicates a bottleneck
inside the Nexus# design. In this simulation free worker cores start executing tasks
directly after they are reported as ready by Nexus#. No communication or other

non-dependency resolution overhead is accounted for.

Nezus# and runtime: Here, an additional delay of (n+1)+%2504400ns is introduced
between Nexus# reporting a task as ready and the start of execution of the task by
the worker core, as well as a delay of 250ns between the end of the task and the
reception of the finished task notification by Nexus#. This represents the overhead of
communication between the processor cores and Nexus#, as described in Section 4.3.2
Additionally, Nexus# cannot replace other runtime duties such as setting up the stack

for the task and switching execution to it. We measured the overhead of these features
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to be approximately 5us per task. In this simulation, task length is increased by this

constant, to account for all necessary parts of execution.

These simulations are compared to the actual runs of the benchmarks on the same
machine that the traces were collected on, compiled using the Mercurium compiler ver-
sion 1.3.5.8 and linked to the accompanying Nanos runtime library. We also compare

them to the results obtained when using Nexus++ as the task manager.
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5.4 Evaluation Results

5.4.1 Design Space Exploration

The first experiments we carried out to evaluate Nexus# were to explore the design
space: we simulated the H264dec benchmarks with changing the number of task graphs
(TGs) used in Nexus#, in order to get the optimal configuration. We chose the
H264dec benchmark because we can group several macroblocks to be decoded by one
task, and hence varying the task size. The finer the tasks are, the more challenging it
becomes for any task graph manager, since the worker cores will finish executing their
fine tasks quickly and demand the scheduler for new tasks more often. This way, we

can see the impact of the task size on the performance Nexus#.

Grouping several macroblocks together is not a trivial task, and requires the pro-
grammers to explicitly specify which macroblocks can be grouped together in order to
preserve dependencies. The goal of Nexus# is to alleviate the programmer from doing
this, by being able to manage the most fine-grain tasks without the need to apply the

grouping technique (1 macroblock per task), as discussed in Section 2.2.

The results of the different scalability tests are depicted in Figure 5.7. The graphs
in Figure 5.7 show the results of running Nexus# at 100MHz, regardless the number
of task graphs used. This is to give a fair scalability test and relating it to only
the number of task graphs used. Figure 5.8 on the other hand, depicts the results
of running Nexus# at variable frequencies depending on the number of task graphs,
as per Table 5.1. This gives the realistic performance of Nexus# using a certain
number of task graphs, and helps to determine the optimal configuration of Nexus#.
Furthermore, Figure 5.8 shows the results of a second set of experiments on the right-
hand side, adding runtime and communication overheads to the simulations. This is
to show the effect of the runtime overhead on the scalability behavior, when dealing
with tasks having different granularities. All speedup results are calculated against

the single core execution time of the ideal curve.

No grouping of macroblocks exist in Figures 5.7(A), 5.8(A, A’), meaning that these
experiments have the most fine-grain tasks. The other graphs include grouping of
macroblocks: from top-to-bottom order of both figures, 2 x 2, 4 x 4, and 8 X 8 mac-
roblocks per task respectively. Looking back at Table 5.2, one can see the effect of

macroblock grouping on task size, which went from 4.6 us on average in case of no
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Figure 5.7: Scalability of Nexus# running different configurations of the H264dec bench-

mark, at 100 MHz.
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grouping, to about 190 us in case of grouping 8 x 8 macroblocks per task. Having the
same input, the total number of tasks also changed drastically between the different

configurations.

The red line (most-upper in all graphs) in Figure 5.7 is the ideal scalability curve,
where only the execution times of tasks have been simulated, without adding the time
needed to resolve dependencies or other runtime overhead as described in Section 5.3.2,

the No Owerhead experiment.

It can be seen that the larger the task size is, the easier it becomes for Nexus# to
handle tasks, since it can get closer to the ideal scalability curve, even using small
number of task graphs. Most interestingly is the hardest experiment shown in the
upper-most graphs in Figures 5.7, 5.8, where Nexus# scales up to 7x, using 6 task
graphs.

The differences between using 4, 6, and 8 task graphs are very minimal, but we
chose to use 6 task graphs for our later evaluation, since this configuration achieves
the best scalability results, and that best utilizes the look-up tables (LUT) in the
target FPGA. Basically, the LUTs on our target FPGA board support six-input and
two-output logic, which means that a 6-input adder, for example, can be mapped to
one LUT, which is one main instant used by the Dependence Counts Arbiter described

earlier in Section 5.2.3.

For the case of the target FPGA, implementing a logic circuit that has more than
6 inputs, an 8-input adder for example used by the 8-task graphs configuration of
Nexus#, means that cascading of two LUTs is necessary to realize this logic circuit on
the FPGA. Cascading LUTs affects the maximum clock frequency at which the final
design can operate, as shown in Table 5.1 when increasing the number of used task

graphs.

Furthermore, changing the number of task graphs in Nexus# impacts the maximum
operating frequency as shown in Table 5.1, since the design has more structures as
the number of task graphs grows. This imposes more work on the Dependence Counts

Arbiter; the unit responsible for gathering results from the different task graphs.

Hardware-wise comparison with a major related work by Yazdanpanah et al. [173,
174] shows that their design consumes 29,138 registers and 110,729 LUTSs respec-

tively, which is comparable to the resources needed by our 8 task graphs design
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(19,350/127,290 registers/LUTs respectively), and 6 x more than the resources needed
by the 1 task graph configuration. Moreover, using a micro benchmark built after [173]
that includes inserting 5 independent tasks, each with two parameters, Nexus# (with
one task graph) consumes 78 cycles compared to 172 cycles consumed in [173]. Their

design can run at a higher frequency though.

The results of the two experiments shown in Figure 5.7, with Nexus# running at
100MHz and in Figure 5.8, with it running at the test frequency shown in Table 5.1,
they both confirm our observation that using 6 task graphs achieves the best scala-
bility results. Although the operating frequency has been reduced significantly in the
experiments of Figure 5.8 using 6 and 8 task graphs to 55.56 MHz and 41.66 MHz
respectively, their performance results were slightly smaller than their higher speed

counterparts in Figure 5.7.

The runtime overhead effect shown in the right-hand experiments of Figure 5.8
differs significantly as the granularity of the tasks change. In the case of very fine-
grain tasks, the runtime overhead reduces the scalability significantly, since this slows
down the incoming tasks stream to Nexus#, as well as the finished tasks notifications.
This effect gets slowly less significant as the granularity of tasks increases as shown in
Figure 5.8(B’, C’, D’) respectively.

5.4.2 Benchmarks Scalability

Based on the design space exploration experiments presented in the previous section,
the following experiments were performed using 6 task graphs running at 55.56 MHz.

First, we evaluate the benchmarks listed in Table 5.2.

Figures 5.9 and 5.10 show the performance evaluation of Nexus# using 6 task
graphs, and compares it to other task graph managers: 1- the OmpSs runtime sys-
tem called Nanos, and 2- Nexus++4. Furthermore, the ideal scalability curve for each
benchmark is also added to the different graphs in order to see the big picture, i.e.

how close are the different task managers to achieving the ideal scalability.

All speedup results are calculated against the single core execution time of the ideal
curve, which is very close (although faster) to the sequential version of the benchmark.
The results of Nanos are only up to 32 cores, which is limited by the hard number
of cores our test Xeon E7-4870 machine has. Figure 5.9 left-hand side shows the
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scalability of the different benchmarks varying the number of cores from 1 up to 256.
As this limits the clarity of the results for cores up to 32, the results for cores up to

32 are shown separately on the right-hand side of Figure 5.9.

In Figure 5.9(A), the c-ray benchmark represents an easy case for all the task
managers; it has relatively large tasks (6 msec on average), and has only independent
tasks. All task graph managers performed well and were close to the ideal scalability
curve and scored 31.5x speedup on 32 cores. Nexus# continued scaling and scored

194 x speedup on 256 cores, compared to 60.4x achieved by Nexus++.

The rot-cc benchmark has smaller tasks, with pairwise independent tasks, which
is a harder case for the task graph managers than c-ray, but still relatively easy.
Both the hardware task managers (Nexus++ and Nexus#) scored 32X speedup on 32
cores, which is better than the software task manager (Nanos) which scored only 24 x.

Nexus# and Nexus++ continued scaling to 256 cores, both achieving 254 x speedup.

The sparselu benchmark has more complex dependencies between its tasks, and
again, the hardware task managers performed better than Nanos (31x vs. 24.5x
speedup on 32 cores respectively). Nexus# achieved up to 94.4x speedup on 256
cores, which is slightly better than the 84.9x speedup achieved by Nexus++.

The streamcluster benchmark is a more difficult one for the task graphs. Nanos
achieved only 4.9x on 32 cores, whereas Nexus++ and Nexus# achieved 7.9x and
30.1x respectively. Nexus# continued scaling achieving about 39x speedup on 64

cores.

Figure 5.10 shows the scalability results of the H264dec benchmark for up to 32
cores, since this benchmark, in its different configurations, did not scale beyond this
number of cores. Grouping several macroblocks per task increases the average task
size, and makes the management of the task graph much easier. Nanos in particular
achieved its best performance when 8 x 8 macroblocks are grouped in one task, and
scored 3.9x on 8 cores. Its performance dropped down when using larger number of
cores though. Nexus# achieved slightly better speedup, and sustained its performance
for larger number of cores. Our main focus is on Figure 5.10(A), the experiment in
which the programmer does not do any grouping of macroblocks per task. In this
figure, we can see that Nanos did not achieve any speedup. Nexus# on the other
hand achieved up to 6.9x on 16 cores. Nexus+-+ does not support the “task-wait-on”

OmpSs pragma, and achieved only 2.2x speedup on 4 cores.
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Benchmark Nanos Max. Nexus++ Max. Nexus# Max.
c-ray 31.4x 60.4x 194.0x
rot-cc 24.5x 254 % 254 %
sparselu 24.5% 84.9x 94.4x
streamcluster 4.9x 7.9% 39.6 x
h264dec-1x1-10f 0.7x 2.2% 6.9x
h264dec-2x2-10f 1.4x 2.7x 7.7%
h264dec-4x4-10f 3.6 2.7X% 6.8%
h264dec-8x8-10f 3.9x 2.5x 4.7x

Table 5.3: Maximum achievable speedup using the different task graph managers.

From all the graphs in Figures 5.9 and 5.10, it can be clearly seen that Nexus# has
the upper hand over the other two task graph managers. Most interestingly are the
cases where tasks are very fine grained. Such tasks are the key to utilizing the ever-
increasing computing power embedded on the state-of-the-art and future SoCs. In
such cases, the strength of Nexus# is mostly clear and needed. Table 5.3 summarizes

the maximum achievable speedup for the different benchmarks using Nanos, Nexus++,
and Nexus#.

Since we based our evaluation results on the single-core ideal simulations, it is also
worth mentioning that the sequential version for most of the benchmarks has a very
close (slower) execution time as our baseline. The only exception is the H264dec
benchmark, where the sequential execution is almost twice as fast as the single-core
ideal simulation, resulting in a real speedup of Nexus# versus the sequential execution
time half of that versus the single-core ideal simulations as can be shown in Figure 5.10.
This shows the potential overhead of porting an application to the dataflow task
execution model. Hence, the maximum (real) speedup achieved by Nexus# in the

case of H264dec benchmarks is about 3x.

Figure 5.11 shows the speedup achieved when running the Gaussian elimination
problem (Figure 3.8 on page 76) on different multicore systems for different matrices
of sizes ranging from 250 x 250 to 3000 x 3000. The Gaussian elimination benchmark
is a micro benchmark that is not trace-based as the previous benchmarks. This bench-

mark in particular is a worst-case scenario for Nexus# as the example described in
Figure 5.3(B) on page 121.
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Running the application on a 250 x 250 matrix for example, starts by having one
ready task (77), and 249 dependent tasks. Those are direct dependencies, meaning
that all the 249 tasks have the same memory address as input, that is to be produced
by the first ready task (77). This indicates that regardless the number of task graphs
used in Nexus#, only one will be used to insert the first 250 tasks, and another one
for the next wave of tasks, and so on. For this reason, increasing the number of
task graphs used for this benchmark will have a negative impact on performance,
mainly because the clock frequency deriving Nexus# decreases as the number of task
graphs increases. Furthermore, the tasks generated in this benchmark has only up to
2 parameters per task. As a result, we chose to evaluate this benchmark using only

up to 2 task graphs.

Figure 5.11 shows the results of the Gaussian elimination benchmark using Nexus++-,
Nexus# with one task graph (1TG), Nexus# with two task graphs (2TG) respectively,
all running at 100 MHz. The baseline here is the single-core execution time using
Nexus++. Each worker core is assumed to be able to do 2 GFLOPS, which means
that the average computation time (in us) of the Gaussian tasks = 2000/#FLOPs, as
shown in Table 3.3 on page 77 in Chapter 3. It can be seen that Nexus# (2TG) has a
slight improvement over Nexus++. About 19% in case of the very fine grain tasks in
matrix-250. As the matrix size increases (and hence larger number of tasks of larger
granularity), Nexus# has about 10% performance improvement over Nexus++. This
benchmark is to show that our hardware task managers do not have a static limit on

the number of tasks that can wait for a certain memory address.

According to Vandierendonck et al. [160], the runtime overhead of their proposed
software task graph manager can go as low as 400 cycles (0.2 us on their test machine)
per task, their experiment assumed inserting 1-parameter tasks to an empty task

graph, which is an ideal case. Therefore, the hardware acceleration is vital.

Designing a hardware accelerator for the runtime system in a multicore system
implies that a communication between the two to take place in real time. Our hardware
task manager is meant to be integrated in future many-core chips, which in the era
of high integrity and homogeneity. We believe that a FPGA will also be integrated
on the same chip. This will provide a low-latency communication channel between
the computing cores and the user design on the FPGA, which opens the door to

more research and development. Eventually, Nexus# as in the case of other hardware

141



5 Nexus#: A Distributed Approach to Task Graph Management

(A) 250x250

24 T W s X —_— — *
Nexus++ —+—
2.2 - Nexus# 1TG 5
5 Nexus# 2TG ---*::"
o B *‘“
] -
-O —
[0}
m —
Q
(D —
1 1 | .
4 8 16 32 64
(B) 500x500
4
NeXUS++ _+_I L * ------------------ -* ------------------- * ................... *
3.5 |- Nexus#1TG e i
Nexus# 2TG ---%---
Q- —
]
O
q) —
[}
Q
m —
| 1 |
8 16 32 64
(C) 1000x1000
7 .......................................
Nexwse+ —— ' — : . )
6 I Nexus# 1TG ) : i
Nexus# 2TG --- %---
Q 5} |
>
ge]
O 4} |
[0}
Q
» 3r |
2 i —
1 % el 1 I | . |
(D) 3000x3000
20 , : :
18 | Nexus++ —+—
16 | Nexus# 1TG
Nexus# 2TG ---%---
o 14
S
!
S st .
wn 6 | - - .
4 + — — i
2L i
0 j— ] ! | | |

Number of Cores

Figure 5.11: Performance of Nexus# running Gaussian elimination benchmark for differ-
ent matrix sizes.
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co-processor, would achieve its best performance when implemented as an ASIC co-

processor.

Compared to the state-of-the-art clock frequencies that drive microprocessors found
in HPC machines or even consumer products, Nexus# runs at a relatively very low
frequency (50 - 100 MHz). Although power-consumption analysis is part of the future
work, Nexus# has a potential to manage the task graphs in a wide range of multicore
machines, without becoming the power-drain hot spot. Depending on the use case,
the needed number of task graphs can be accordingly configured. In cases with limited
number of cores and/or limited power, as in smartphones and other consumer devices,
it can even be turned off (as dark silicon) if the number of ready tasks exceeds a

certain threshold.

The door is wide open ahead of Nexus# to be integrated in real multicore/manycore
SoCs, as we think that the task-based dataflow execution model is a key to utilizing

the computational power of such systems.
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5.5 Summary

This chapter presents Nexus#, a VHDL prototype of a hardware task manager for
the OmpSs runtime system. Supporting the in, out, inout, taskwait, and taskwait on
pragmas, Nexus# is suitable for wide range of applications, including H264 decoding.
It employs a distributed task graph management strategy, which enables the parallel
insertion of the input/output memory addresses of the incoming tasks. Besides imple-
menting a low-latency task graph look-up mechanism using set-associative cache-like
structures, Nexus# also uses a fast distribution function that efficiently directs the

incoming memory addresses to the proper task graph.

Generating data and runtime traces for multiple benchmarks in the Starbench suite,
and embedding them in a Modelsim testbench, the experimental results show that
Nexus# achieves significant speedups for all the benchmarks on a 256-core pseudo-
machine. Results also demonstrate that Nexus# performs better than Nanos, the
official OmpSs runtime, as well as Nexus+-+, our central task graph manager, by
orders of magnitude, for benchmarks that have very fine grain tasks and/or complex

dependency patterns.

It is also shown that a benchmark modeled after Gaussian elimination, where the
number of tasks that depend on a certain task is not constant, ran successfully and

efficiently with a speedup of 19x for a 3000 x 3000 matrix using 64 cores.

Nexus# is fully configurable, and depending on the use case, the number of task
graphs can be changed. Although targeting OmpSs applications, Nexus#’s low-

latency retrieval task graphs can be used with other programming models.
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The main goal of this thesis is utilizing fine-grain task parallelism with irregular de-
pendency patterns in a quest to conquer multicore systems without compromising the
easiness of programmability. This would lead to reaching the maximum performance
of high-performance computers in general applications, not only by the specially-tuned
benchmarks. Furthermore, well-utilizing the multiple cores in an embedded SoC for ex-
ample, enables delivering the required performance using energy-efficient cores clocked

at small frequencies, resulting in lower power consumption and an extended battery

life.

Nexus++ and Nexus# present hardware architectures that support runtime sys-
tems of the dataflow task-based programming models, focusing on OmpSs. They
demonstrated improved scalability of OmpSs applications when the task graph is be-
ing managed by either of them. Nexus# has better performance and reconfigurability
that can be well tuned to match the target system. In particular since Nexus# has
multiple task graphs that process the incoming tasks’ information in parallel, the

number of task graphs can be varied.

After having implemented the presented both Nexus++ and Nexus# hardware ac-
celerators, this is the right place to answer the question whether this effort is feasible
or not? In my opinion, task-based parallel programming models are very appropriate
answer to the problem of programmability of multicore, heterogeneous systems. They
do not present a challenge to the programmer, yet they enable him/her to utilize the
available resources in his/her current and future machine. The runtime overhead is
the bottleneck of this approach, and even if in the future a very light weight runtime
system has been developed, its thread(s) will be sharing the available resources with
the worker threads, limiting the worker threads from utilizing the full potential of the

system.
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Moreover, adding hardware acceleration for the runtime system that can be used by

various applications, is a better idea compared to adding custom hardware for only

certain applications. Not only do the proposed hardware task managers reduce the

conflict on the available resources as the runtime thread is relieved from managing

the data structures of the task graphs, Nexus++ and Nexus# also demonstrated

their ability of pushing the scalability of applications that have fine-grain tasks, or

complex dependency patterns. So the answer whether Nexus++ and Nexus# designs

are feasible or not is absolutely yes.

Possible future perspectives can be categorized as in the following list:
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Improving how Nexus# manages tasks, and improving the handshaking protocol
between it and the runtime system, starting with task creation and submission,

until the point of task retirement.

Off-loading more runtime tasks to Nexus#, this requires further analysis of the
runtime system and decide on hot spots that can be accelerated by Nexus#.
For example, more ready queues can be added to Nexus# where it pushes ready

tasks to them based on a pre-determined priority.

Supporting prefetching, since the memory footprint of the different tasks is
recorded in the dataflow graph. Once a task becomes ready to run, the run-
time system can be signaled by Nexus# to issue a DMA operation to prefetch

the needed data from memory, if they do not already exist in the cache hierarchy.

Supporting more features in the programming model, for example adding support
for nesting tasks, or for virtualization enabling multiple OmpSs applications to

run concurrently.

Supporting more programming models, such as OpenMP 4.0 [23] which, as

OmpSs, supports dependency-aware tasking constructs.
Implementing address renaming techniques in Nexus++ and Nexus#.

Tightly integrating Nexus++ or Nexus# on chip with modern multicore SoCs.
One example was done as a master thesis at TU Berlin [71], where Nexus++
was evaluated as a Tightly coupled co-processor of an ARM-based multicore SoC.
The evaluation environment is a Zyng-7000 FPGA board from Xilinx, on which
Nexus++ communicates with the multicore system (having two ARM A9 cores)

over the AXI bus, and a testbench simulating larger number of cores that do not



exist in the Zyng-7000 SoC. This work can be easily ported to more advanced
SoCs, such as Xilinx’s Zynq UltraScale+ MPSoC [172] or Altera’s Stratix 10
FPGA [4], which both have Quad Cortex-A53 64-bit CPU, in addition to a big
FPGA fabric. The simulation results show that Nexus++ scales well for a set
of synthetic benchmarks and emphasize on the criticality of the communication
interface with the multicore system in order to efficiently integrate Nexus++4
with embedded ARM processors, which are found in modern devices such as
smartphones and tablets. It also presents a decent experimental environment
for improving Nexus++ /Nexus# as well as the handshaking protocol with the

runtime system.

Other examples of modern multicore architectures include IBM’s Power§ 12-core
chip, each core capable of 8 hardware threads simultaneously. This presents a mas-
sively multithreaded chip capable of executing total of 96 threads simultaneously.
Furthermore, it has a Coherent Accelerator Processor Interface (CAPI) [78], which
enables connecting custom accelerator to the coherent Power8 SoC. Although meant
to bring external accelerators such as GPUs, integrating Nexus-+-+/Nexus# as a co-
processor for such a massive multithreaded chip is interesting to bring the most out

of OmpSs on the Power8 chip.
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Nowadays, personal computers as well as battery-powered devices have multiple CPUs,
GPU, DSPs, and even FPGA devices forming complex, high performance systems.
The heterogeneity also came across CPUs, where some of them are high performance,
while the others are power-efficient, as in the case of ARM’s big. LITTLE architecture.
Demanding applications, such as video processing for example, are assigned to the
big cores, while less demanding ones such as audio playback are assigned to the little

cores.

The increased complexity of modern multicore systems introduced several challenges
to the computing community, including the detection of parallel regions in a program,
management of tasks and resources, performance portability across different architec-

tures, application scalability, and programmer’s productivity.

This thesis discusses those parallel programming challenges of state-of-the-art and
future multicore systems in general, and tackled the bottleneck of dataflow task-based
programming models in particular, focusing on making the most out of fine-grain

parallelism, while at the same time maintaining easiness of programmability.

Modern systems provide a proper infrastructure for parallel programming for the
experienced programmers who are aware of the low-level hardware details of the sys-
tem. For the average programmer on the other hand, this is not an easy task, since
manually dividing a big task into smaller ones and executing them in a proper order
according to the dependencies between them is a complex task, especially for complex
applications. Furthermore, writing an application manually to run on a certain mul-
ticore system is most likely not future-proof, since the programmer is biased by the
available multicore system at the time of writing the application. This means that a
certain application that can successfully utilize the four cores in a certain system to-
day, might not utilize the eight cores in next year’s SoC. Therefore, new programming

models emerged addressing those challenges, differing in the degree of relying on the
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programmer to do the job of parallel implementation of the application and resource

management.

The focus of this thesis is the OmpSs programming model, which abstracts the
multicore system to the programmer and reliefs him /her from the burdens of extracting
parallelism in the application, by offloading this task to the runtime system. This

results in a costly runtime overhead which limits application’s scalability.

Although OmpSs and other dependency-aware task-based programming models
make it easier for the programmers to utilize a multicore systems, it is beneficial
in cases where the resulting tasks out of a certain application are of a big size, since in
this case the worker cores can be busy for relatively long time, enough for the runtime
system to find the next tasks to be executed, and thus hiding the runtime overhead.
Since this is not the case for many applications, the programmer has to interfere in
order to take control of tasks’ granularity, which brings us to the problem of easiness

of programmability and the other parallel programming challenges consequently.

This thesis presents hardware co-processors for the runtime system of task-based
programming models such as OmpSs, resulting in reliefing the programmer from the
burdens of extracting parallelism, as well as that of controlling tasks’ granularity. The
co-processor, called Nexus++ in its first prototype, presented a preliminary archi-
tecture in the form of a SystemC model, which provided an insight of the optimal
configuration of Nexus++, by evaluating the scalability of several micro benchmarks,

designed after traces from parallel H.264 video decoding on the Cell processor.

Nexus++ is then implemented as a VHDL module, realized on the FPGA of a Xilinx
board with a PCle bus interface. A wrapper that interfaces Nexus++ with the PCle
bus on the FPGA board has been implemented, as well as a communication protocol
to VSs; a light-weight runtime system that supports basic OmpSs tasking capabilities.
The board can be inserted in the PCle slot of any multicore machine and using a high

level software API, OmpSs applications can be run using Nexus++.

In order to improve the performance of Nexus++, it has been thoroughly analyzed
and improved in a take to parallize Nexus++ itself. Introducing a new distributed
architecture of the hardware co-processor by having multiple task graphs working in
parallel, the latest version of the co-processor, called Nexus#, further improves the

scalability of OmpSs applications of fine-grain tasks or complex dependency patterns.
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Besides implementing a low-latency task graph look-up mechanism using set asso-
ciative cache-like structures, Nexus# uses a fast distribution algorithm that efficiently
distributes the incoming memory addresses to the proper task graph. It also provides
a configurable architecture in terms of the number of task graphs and the size of each
task graph, which can be modified depending on the target system. Although target-
ing OmpSs applications, Nexus#’s low-latency retrieval task graphs can be used with

other programming models.

Generating data and runtime traces for multiple benchmarks in the Starbench suite
and embedding them in a Modelsim testbench, experimental results show that Nexus#
achieves significant speedups for all the benchmarks on a 256-core pseudo-machine.
Results also demonstrated that Nexus# outperforms Nanos, the official OmpSs run-
time, as well as Nexus++ which has a central task graph manager, by orders of mag-
nitude, for benchmarks that have very fine grain tasks and/or complex dependency

patterns.

Finally, some future perspectives are presented, focusing on several modern SoC

architectures, for which Nexus# can be suitable as a tightly coupled co-processor.
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