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Abstract

We investigate the impact ®&tackelberg routingn network routing games. In this setting, a frac-
tion a of the entire demand is first routed by a central authoritiffedahe Stackelberg leademhile
the remaining demand is then routed by selfish (nonatomag)eps. The aim is to devisgtackelberg
strategiesi.e., strategies to route the centrally controlled demaads to minimize the price of anarchy
of the resulting flow.

Although several advances have been made recently in grdakiat Stackelberg routing may in
fact significantly reduce the price of anarchy for certaitweek topologies, it is still an open ques-
tion whether this holds true in general. We answer this guestegatively. We prove that the price of
anarchy achievable via Stackelberg routing can be unbalenkn for single-commaodity networks.

In light of this negative result, we consider bicriteria bds. We develop an efficiently computable
Stackelberg strategy that induces a flow whose cost is attim@sbst of an optimal flow with respect to
demands scaled by a factor of-1/1 — a. Thus, we obtain a smooth trade-off curve that scales betwee
the absence of centralized control (doubling the demargidfisient) and completely centralized control
(no scaling is necessary).

Finally, we analyze the effectiveness of a simple Stackglb&ategy, called SCALE, for polynomial
latency functions. Our analysis is based on a general tgubnihich is simple, yet powerful enough to
obtain (almost) tight bounds for SCALE in general netwoikat linear latency functions, we derive an
upper bound that matches the current best one and show ighabtind is tight. For general polynomial
latency functions, we obtain upper bounds that improveraNipusly known ones.



1 Introduction

Over the past years, the impact of the behavior of selfishpandinated users in congested networks has
been investigated intensively in the theoretical compsdegnce literature. In this contextetwork routing
gameshave proved to be a reasonable means of modeling selfishibelraaetworks. The basic idea is to
model the interaction between the selfish network usersnaseooperative gaméNe are given a directed
graph with latency functions on the arcs and a set of origistidation pairs, calledommaodities Every
commodity has @emandassociated with it, which specifies the amount of flow thatiede be sent from
the respective origin to the destination. We assume thay el@mand represents a very large population
of players, each controlling an infinitesimal amount of flofntlee entire demand (such players are also
callednonatomi¢. The latency that a player experiences to traverse an @igas by a (non-decreasing)
function of the total flow on that arc. We assume that everyaslacts selfishly and routes his flow along a
minimume-latency path from its origin to the destinationstborresponds to a common solution concept for
noncooperative games, that oNash equilibrium(hereNash flowy. In a Nash flow no player can improve
his own latency by unilaterally switching to another path.

It is well known that Nash equilibria can leefficientin the sense that they need not achieve socially
desirable objectives [1, 5]. That is, in the context of nekwmuting games, a Nash flow in general does
not minimize the total cost; or said differently, selfish adelor may cause a performance degradation in
the network. Koutsoupias and Papadimitriou [10] initiatkd investigation of the efficiency loss caused
by selfish behavior. They introduced a measure to quantéyirtbfficiency of Nash equilibria which they
termed theprice of anarchy The price of anarchy is defined as the worst-case ratio ofdlseof a Nash
equilibrium over the cost of a system optimum.

In recent years, considerable progress has been made itifgngrthe degradation in network perfor-
mance caused by the selfish behavior of noncooperative retwers. In a seminal work, Roughgarden and
Tardos [17] showed that the price of anarchy for networkingugames with nonatomic players and linear
latency functions is A3; in particular, this bound holds independently of the ulyiley network topology.
The case of more general families of latency functions has Istudied by Roughgarden [13] and Correa,
Schulz, and Stier-Moses [2]. (For an overview of these tesule refer to the book by Roughgarden [16].)
Despite these bounds for specific classes of latency fumtih is known that the price of anarchy for
general latency functions is unbounded even on simplelpheat networks [17].

Due to this large efficiency loss, researchers have propdiffiedent approaches to reduce the price of
anarchy in network routing games. One of the most promispmyaaches is the use 8tackelberg routing
[9, 15]. In this setting, it is assumed that a fractmre [0, 1] of the entire demand is controlled by a central
authority, termedStackelberg leademwhile the remaining demand is controlled by the selfish tam&
players, also called thllowers In a Stackelberg gamehe Stackelberg leader first routes the centrally
controlled flow according to a predetermined policy, catleeiStackelberg strategyand then the remaining
demand is routed by the selfish followers. The aim is to deStaekelberg strategies so as to minimize the
price of anarchy of the resulting combined flow.

Although Roughgarden [15] showed that computing hlest Stackelberg strategy, i.e., one that mini-
mizes the price of anarchy of the induced flow, is NP-hard éeeparallel-arc networks and linear latency
functions, several advances have been made recently imgrthat Stackelberg routing can indeed signifi-
cantly reduce the price of anarchy in network routing gamasan example, Roughgarden [15] showed that
for parallel-arc networks Stackelberg strategies ext teduce the price of anarchy t@dl, independently
of the latency functions. That is, even if the Stackelbeggléx controls only a small constant fraction of the
overall demand, the price of anarchy reduces to a constdmie(iwis unbounded in the absence of any cen-
tralized control). Very recently, Swamy [19] obtained ait@amresult for single-commodity, series-parallel
networks. Besides these efforts, researchers have aggbttricharacterize the effectiveness of different
Stackelberg strategies for specific classes of latencytibme



Our Results. In this paper, we investigate the impact of Stackelbergmgub reduce the price of anarchy
in network routing games with nonatomic players. Our ctntion is threefold:

1. Albeit the above mentioned advances in the context ofk8tiaerg routing, a central question is still
open: Can we always devise a Stackelberg strategy suchhingtrice of anarchy is bounded? A
partial answer to this question was given by Roughgardeh [He showed that for certain types
of Stackelberg strategies, which he ternvesbkstrategies (see Section 2 for a definition), the price
of anarchy for multi-commodity networks can be unboundedweler, this does not rule out the
existence of such Stackelberg strategies in general.

We answer this question negatively. We prove that the pria@narchy achievable via Stackelberg
routing can be unbounded even for single-commodity nets:athur result holds for arbitrary Stack-
elberg strategies and independently of the fractioa (0,1) controlled by the Stackelberg leader.
This settles the open guestion explicitly posed by Rougleyafl4, Open Problem 4].

2. In light of this negative result, we investigate the difgmess of Stackelberg routing strategies com-
pared to an optimum flow for a larger demand; i.e., we consdgiteria bounds.

We develop an efficiently computable Stackelberg strategyding a flow whose cost is at most
the cost of an optimal flow with respect to demands increaged factor of 1+ +/1—a. Thus, we
obtain a smooth trade-off curve that scales between thenabs# centralized control (doubling the
demands is sufficient) and completely centralized controlgcaling is necessary). We also prove
that this characterization is tight. Our bound is a natueaiggalization of the bicriteria bound by
Roughgarden and Tardos [17]. We demonstrate that thist tessila particular nice interpretation for
the class of (practical relevant) M/M/1-latency functiaghat model arc-capacities: In order to beat
the cost of an optimal flow, it is sufficient to scale all arcaepes by 1 +/1—a.

3. One of the simplest Stackelberg strategies to implenseSOALE (see also [15]). SCALE simply
computes an optimal flow for the entire demand and then staikefiow down bya. The currently
best known bound for the price of anarchy induced by SCALE aftirmommodity networks and
linear latency functions is due to Karakostas and Kollidps(i8]. Their analysis is based on a (rather
involved) machinery presented in [12]. Very recently, Swd#®] derived the first general bounds for
polynomial latency functions.

We introduce a general approach, which we termittapproach, to bound the price of anarchy of
Stackelberg strategies. This approach is simple, yet galvenough to obtain better bounds for
SCALE in general networks. For linear latency functions, deeive an upper bound that coincides
with the bound in [8]. However, our analysis is much simplarparticular, we do not rely on the
machinery in [12]. For general polynomial latency funcpour approach yields upper bounds that
significantly improve the bounds by Swamy [19]. We also deidower bounds for SCALE. We
present a generalized Braess instance that shows thaeftingar case our bound is tight; a similar
instance can be used to show that for higher degree polyt®ouabounds are almost tight (though
there remains a gap for small valueso)f We believe that ouk-approach may also prove useful to
derive improved bounds for other Stackelberg strategies.

Related Work. The idea of using Stackelberg strategies to improve thepagnce of a system was first
proposed by Korilis, Lazar, and Orda [9]. The authors idertinecessary and sufficient conditions for the
existence of Stackelberg strategies that induce a systémuwop; their model differs from the one discussed
here.

Roughgarden [15] first formulated the problem and model idensd here. He also proposed some
natural Stackelberg strategies such as SCALE and Largastity-First (LLF). For parallel-arc networks



he showed that the price of anarchy for LLF is bounded KB4 a) and Y/ a for linear and arbitrary latency
functions, respectively. Both bounds are tight. Moreoteralso proved that it is NP-hard to compute the
best Stackelberg strategy. Kumar and Marathe [11] invatstegapproximation schemes to compute the best
Stackelberg strategy. The authors gave a PTAS for the cgsaralfel-arc networks.

Karakostas and Kolliopoulos [8] proved upper bounds on tieemf anarchy for SCALE and LLF.
Their bounds hold for arbitrary multi-commodity networksddinear latency functions. Their analysis is
based on a result obtained by Perakis [12] to bound the pfiemarchy for network routing games with
asymmetric and non-separable latency functions. FurthernKarakostas and Kolliopoulos [8] showed
that their analysis for SCALE is almost tight.

Very recently, Swamy [19] obtained upper bounds on the pofcanarchy for SCALE and LLF for
polynomial latency functions. In the case of linear latefayctions, his bound is inferior to the one given
by Karakostas and Kolliopoulos [8]. Swamy also proved a looinl+ 1/a for single-commodity, series-
parallel networks with arbitrary latency functions.

Correa and Stier-Moses [3] proved, besides some othetsethudt the use adpt-restricted strategies
i.e., strategies in which the Stackelberg leader sends me flowv on every edge than the system optimum,
does not increase the price of anarchy. Sharma and Williarfif) considered the problem of determining
the smallest value af such that the price of anarchy can be improved. They obtaimdts for parallel-arc
networks and linear latency functions. Kaporis and SpirdK] studied a related question of finding the
minimum demand that the Stackelberg leader needs to cantootler to enforce an optimal flow.

2 The Model

In a network routing game we are given a directed netw@rk (V,A) and k origin-destination pairs
(s1,t1),..., (S tk) calledcommodities For every commodity € [k], a demand; > 0 is given that spec-
ifies the amount of flow with origirs; and destinatiortj. Let & be the set of all paths frog totj in G
and let? = U;B. A flowis a functionf : ? — R,. The flow f is feasible(with respect ta) if for all i,
Yper fp =ri. For a given flowf, we define the flow on an aecc Aasfa = 3 ps, fp.

Moreover, each ara € A has an associated varialtdeéencydenoted by, (-). For eacha € Athe latency
function ¢, is assumed to be nonnegative, nondecreasing and diffaioémtilf not indicated otherwise, we
also assume thdt is defined o0, ) and thatx/,(x) is a convex function ok. Such functions are called
standard[13]. The latency of a patP with respect to a flowf is defined as the sum of the latencies of the
arcs in the path, denoted Iy(f) = S 4caa(fa). The triple(G,r,¢) is called arinstance

Thecostof a flow f isC(f) = Y pcp felp(f). Equivalently,C(f) = ¥ s fala(fa). The feasible flow of
minimum cost is calledptimaland denoted by. A feasible flowf is aNash flow or selfish flow if for
everyi € [k andP,P’ € & with fp > 0, ¢p(f) < ¢p/(f). In particular, if f is a Nash flow, alk-t; paths to
which f assigns a positive amount of flow have equal latency. It i3-kvedwn that if f; and f, are Nash
flows for the same instance, théff,) = C(f,), see e.g. [17].

In a Stackelberg network game we are given, in additioB,toand/, a parametea € (0,1). A (strong)
Stackelberg strategis a flow g feasible with respect to' = (airy,...,axrg), for someas, ..., 0k € [0,1]
such thalz!‘zlo(iri =a Z};lri. If a; =a foralli, gis called aweak Stackelberg strateg¥hus, both strong
and weak strategies route a fractimmof the overall traffic, but a strong strategy can choose howmflow
of each commaodity is centrally controlled. For single-coaoulity networks the two definitions coincide. A
Stackelberg strateqyis calledopt-restrictedif g, < 04 for all a € A.

Given a Stackelberg strate@y let /5(x) = a(ga +X) for all ac A and letr"=r —r’. Then a flowh
is induced by df it is a Nash flow for the instancéG, T, Z). The Nash flowh can be characterized by the
following variational inequality[4]: his a Nash flow induced by if and only if for all flowsx feasible with
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Figure 1: The grapl®k, used in the proof of Theorem 3.1. Arcs are labeled with ttypie.
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We will mainly be concerned with the cost of the combined tetliflowg+ h, given byC(g+ h) =
Y aca(9a+ ha)la(da+ ha). In particular, we are interested in bounding the r&i@+ h)/C(o), called the
price of anarchy

3 The Limits of Stackelberg Routing

In this section, we prove that there does not exist a Staekglbtrategy that induces a price of anarchy
bounded by a function ai only. More precisely, we show that for any fixede (0,1), the ratio between
the cost of the flow induced by any Stackelberg strategy amapimum can be arbitrarily large, even in
single-commodity networks.

We first show this claim for multi-commodity networks. Ingtldase, such a result was already known to
hold for weak Stackelberg strategies [16]; here we proveitladso holds for strong Stackelberg strategies.

Multi-Commodity Networks. We prove the following theorem.

Theorem 3.1. Let M> O anda < (0,1). There is a multi-commodity instande= (G,r,¢,a) such that, if
g is any strong Stackelberg strategy fbinducing a Nash flow h, and o is an optimal flow for the instance
(G,r,0), thenGg+h) > M-C(0).

To prove the theorem we will use an instance based on the gigpiloted in Figure 1. For a positive
integerk, the graphGy has &+ 2 nodesk = {o,to,S1,t1, P1,01, - - - , S, tks Pk, Ok }- The arc sef is the union
of three sets{(pi,q) : 1 € K|}, {(s,ti) : 1 € [K]}, and{(s, pi), (G, ki), (G, pix1) : 1 € K }U{(S0, P1), (Ak,t0) }-
We call the arcs in these sets of type A, B, and C respectiwelg Figure 1). There aket+ 1 commodities
0,1,...,k. Commodityi has origins and destinatiot. The demand isp := (1— a)/2 for commodity O,
andrq := (14 a)/2k for all other commodities; thus, the total demandgis- kr; = 1.

The latency of an arc is determined by its type. Type B arce ltawmstant latency 1, and type C arcs
have constant latency 0. Type A arcs have latefacy), where the functior, (x) is defined as follows:

0 if x<r
ES(X):{’ ~10

1—%‘, if x> ro+ 2¢er;

Heree is any positive constant such trea& };—g In the interval(ro,ro + 2¢rq) the functionts is defined ar-
bitrarily so that overall it is a standard and convex funtfisee also Figure 3 in the appendix). In particular,
le(X) > 1— % for all x.

Let us first bound the cost of the optimal flow.



Lemma 3.2.C(0) < 1.

Proof. Consider the flowf where each commaodity is routed along the shortest pathrfimstef number of
arcs) from origin to destination. The latency on €y path is zero, since the load on each arc of the path is
ro and/g(rg) = 0. The latency of each othert; path is 1. Ther€(o) <C(f)=k-r1=(1+a)/2<1. O

Proof of Theorem 3.1Fori € [K], let g; be the amount of flow sent by the Stackelberg strategy ovearthe
(s,t). Since the total value of the flow controlled by any Stackejtstrategy isx, we havey iy gi < a.

The crucial point is that without loss of generality, all gedfish flow induced bg on ans-t; path,i # 0,
will be sent along the patts, pi,q;,ti). Indeed, if the ards,t;) contained some selfish floly > 0, the
latency of the patiis;, pi, d,ti) would bele(ro+r1—gi —hi) < 1= £y (g +h). But this contradicts the
definition of Nash flows. Thus the combined flow on eéphgq;) arc is exactlyro+ri — gi. Now letPy be
the uniquesy-tg path. We have

gi a 1 <1_°( >
o (g+h) > S lelfo+ri—g)> S (1- >k =" —&)-k
R (9 )_ie%(] e(fo+r1 g')—ie%(]< (1—s)r1>_ (1-¢r; 1-¢ \1+a

The last inequality follows frony; gi < a, and the last equality fromy = (14 a)/2k. Sincee < ijr—g
we conclude thafp,(g+ h) = Q(k). Together with Lemma 3.2, we obtain

C(g+h) >ro-lp(g+h) =3 (1—a)-Q(k) = Q(k)-C(0).

Thus the ratio o€(g+ h) /C(0) can be made arbitrarily large by picking a sufficiently lakge O

Single-Commaodity Networks. We use the insights gained in the previous section to praéoifowing,
stronger result:

Theorem 3.3. Let M> 0 anda € (0,1). There is a single-commodity instane= (G,r,¢,a) such that, if
g is any Stackelberg strategy férinducing a Nash flow h, and o is an optimal flow for the instaf@g, ¢),
then Gg+h) > M -C(o).

Theorem 3.3 extends Theorem 3.1 to single-commodity nésydrhe main idea behind the proof is to
simulate the instance used in Theorem 3.1 by creating asurees and a supersinkand connecting them
to the sources and sinks of the original network (see alsor€ig in the appendix). If somehow we were
able to enforce thet flow to split according to the demand vector of the multi-cooality instance, the
result would easily follow as in the proof of Theorem 3.1. rder to achieve this, we use latency functions
that simulate capacities on the arcs connecting the suersto the sources and the sinks to the supersink.
Although these “capacities” might be exceeded, we will msliee that if the excess flow is too large, the
price of anarchy will already be large enough for our purgose

For a positive integek, consider the grap@ = (Vy,A) obtained by the grap@y defined in the proof
of Theorem 3.1 by lettingy), = ViU {s,t} andA, = AcU{(s,s),(ti,t) :1=0,1,...,k}. There is a single
commodity(s,t), with unit demand. We call the two ar¢s s) and(tp, t) of type D and all arcgs,s), (ti,t)
with i € [k] of type E(see also Figure 4 in the appendix).

The latencies of type B and C arcs are exactly the same as jprdloé of Theorem 3.1. For arcs of
type A we use, for the sake of simplicity, an idealized varsibthe latency function used in Theorem 3.1;

specifically we use
0 if x<

1t if x> ro.

Although ¢o(x) is not differentiable irrg, it can be approximated with arbitrarily small error by stard
functions (indeed, the functiofa (x) used in the proof of Theorem 3.1 is such an approximation).



For fixedL andT, let u_{(x) be any standard function satisfying (L) =0 andu (L +T1) = M/T.
Type D arcs have latenay, 5/3¢(X), and type E arcs have latenay, 5/33(x). Here (as in Theorem 3.1)
ro=(1—0a)/2 andr; = (14 a)/2k. We will fix the constan® later in the proof.

The proof of the following lemmas are deferred to the appendi

Lemma 3.4.C(0) < 1.

The following lemma will allow us to focus on the case where taxcess flow” on “capacitated” arcs
is less thard/3k3.

Lemma 3.5. For any Stackelberg strategy g inducing a Nash flow h, theviéiig holds:

() Ifais atype D arc and g+h, > ro+8/3k3, then Qg+ h) > M -C(0).
(i) Ifais atype E arc and g+ hy > r1 4 8/3k%, then Qg+ h) > M -C(0).

For the remainder of the proof we assume that there is no &sfysag the conditions of Lemma 3.5;
otherwise the theorem follows immediately.

Lemma 3.6. For any Stackelberg strategy g inducing a Nash flow h, theviéiig hold:
(i) For any arc a= (Gj_1,pi), i € [k, Ga+ha > 10— 8/k.
(i) Forany arca= (s,s),i € [k], ga+ha >r1—98/k.
We are now ready to conclude the proof of Theorem 3.3.

Proof of Theorem 3.3For anyi € [k], consider théth block in the graph (Figure 2). Let, h; be the Stack-
elberg and selfish flow on the afs,t;), respectively. We have two cases:

1. hj =0: in this case, using Lemma 3.6, the flow on goc ) is at leasto — d/k+r1 —d/k—gi. The
latency on that same arc is thus at le@agto+r1 — 20/k— gi).

2. hy > 0: in this case, the Nash flow on pa&h= (s, s,t;,t) is strictly positive. Consider the paR{ =
(s,s, pi, i, ti,t). By definition of Nash flow/p/(g+h) > ¢ (g+h). Notice that the two pathg’, B’
share all their nonzero-latency arcs except (®rt;) (only present i) and (pi,qi) (only present
in B"). Thus{p/(g+h) > lp(g+h) implies £, q)(9+h) > £54)(9+h) = 1. As a consequence,
Uprg)(9+h) > 1= Lo(ro+r1) > Lo(ro+r1 — 28/K— ) sinceg; andd/k are nonnegative.

In both cases/,(y, q)(9+h) > lo(ro+r1—25/k—g) > 1— gi+r216/k‘
The latency on the path) = (s,%0, P1, 01, - - -, Pk, Gk, o, ) is at least

k k
gi +25/k a 25 1-a-—-4d

, > G > - | 2K = K

gPo(ngh)_i;e(phq.)(ngh)—;(1 ry 2k rn. r l+a K

The last inequality is a consequence of the fact that thé $téekelberg flow isx, soy; g < a.
Choosingd < (1-a)/4, we can conclude thég; (g+h) = Q(k). Together with Lemma 3.4 and Lemma
3.6, this gives

Clg+h) = (ro—8/K) - fey (0+1) = (3 (1— ) — 8)- Q(K) = Q(K)-C(0).

Thus the ratia€C(g+ h) /C(0) can be made arbitrarily large by picking a sufficiently lakge O
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Figure 2: Theath block of the grapl&’ (k).

4 A General Bicriteria Upper Bound

As we have seen in the previous sections, no Stackelbetggtreontrolling a constant fraction of the traffic
can reduce the price of anarchy to a constant, even if we @ensingle-commaodity networks. In light of
this negative result, we therefore compare the cost of &&litaerg strategy on an instanée= (G,r,/,a)
to the cost of an optimal flow for the instané@ = (G, Br, ¢) in which the demand vector has been scaled up
by a factor3 > 1.

We propose the following simple Stackelberg strategy, tviie termAugmented SCALE (ASCALE)

1. Compute an optimal flow? for the instancel®.
2. Define the Stackelberg flow .= %

We prove that the resulting flow induced by the Stackelbemesty ASCALE satisfie€(g+ h) < C(o®) if
we choose3 = 1+ +/1—a. This result can be seen as a generalization of Roughgardkmeados’ result
that the cost of a Nash flow is always not larger than the coitebptimal flow for an instance in which
demands have been doubled [17]. Our bound gives a smoo8itibarfrom absence of centralized control
(where doubling the demands is sufficient) to completelytredined control (where no augmentation is
necessary). Due to the lack of space, most of the proofssrstttion are deferred to the appendix.

Lemma 4.1. If g is the ASCALE strategf-C(g+h) < zaeraéa( oh+ ha).

Theorem 4.2.If g is the ASCALE strategy,(@+h) < 717 - (1—

1 ) -C(0P). Furthermore, this bound is
tight.

a
B

Corollary 4.3. Letp=1++/I—a. Thenif g is the ASCALE strategy(@+ h) < C(oP).
The next theorem shows that our result for ASCALE has a caresemp for the SCALE strategy as well.

Theorem 4.4. Let I = (G,r,/,a) be an instance and define the modified latency funoﬁgphy la(X) =
La(x/B)/B for each arc a, wher@ = 1++/1—a. Let§ be the SCALE strategy fdr, h be the Nash flow
induced byg in 7 = (G,r,7,a), and o be the ' optimal flow foiG, r,£). Then, ifC(x) is the cost of a flow x
with respect to the modified latency functidhsve haveC(g+ h) < C(0).

In the case of M/M/1 latency functions, which are of the fofg{x) = 1/(ua — X), whereu, intuitively
represents the capacity of aacthe bicriteria bound has a particularly nice interpreﬁatisince@a(x) =
La(x/B)/B=1/(B(ua—x/B)) = 1/(Bua—X). In a purely selfish scenario, this implies that to beat ogkim
routing it is sufficient to double the capacity of every edgjé|[ In the Stackelberg case, Theorem 4.4 shows
that it is sufficient to increase the capacities by a factdr-6fy/1 — a if the SCALE strategy is used.



5 Bounds for Specific Classes of Latency Functions

In the following, we describe a general approach that mayskd to analyze the price of anarchy of an opt-
restricted Stackelberg strategy. We use this approachricedgoper bounds on the price of anarchy for the
SCALE strategy in the case of linear latency functions arlginmmial latency functions with honnegative
coefficients.

Lemma 5.1. For any opt-restricted strategy F,aca(9a+ ha)la(0a+ha) < T aca0ala(da+ ha).

Proof. Use the variational inequality (1) withb=0—g. O

In order to bound the price of anarchy, we use the variatimsgjuality (Lemma 5.1) and bound the cost
of the induced flow on every arc byXafraction of the optimal cost plus soneefraction of the cost of the
induced flow itself:

C(g+h) = ;(ga +ha)la(ga+ha) < %)\ - 0ala(0a) + W(a; Ja,A) - (Ja+ ha)la(da + ha). (2

Now, the idea is to determineXathat provides the tightest bound possible. Chooging 1, the above
approach resembles the one that was previously used bya;&taulz, and Stier-Moses [2] to bound the
price of anarchy of network routing games; however, opiingover the parameteérprovides an additional
means to obtain better bounds. The idea of introducing thkngcparameteh was first introduced in the
context of bounding the price of anarchy in atomic congesgjames (see Harks [6]).

For any latency functiodi; and nonnegative numbegg, A, we define the following nonnegative value:

Oa la(Qa+ha) —Ala(0a)
W(la;Qa,A) = SU . .
(faiGa:A) oa,hago Oa+ha la(Qa+ha)

(3)

We assume by conventionf@= 0.
For a given opt-restricted strategyve further defin@o(g,\) = maxaca W(¢a; da, A). Before we state the
main theorem, we need one additional definition.

Definition 5.2. Given an opt-restricted strategythefeasibleA-regionis A(g) := {A € R} |w(g,\) < 1}.
Notice that even\ € A(g) induces a bound on the price of anarchy.

Theorem 5.3. LetA € A(g). Then Gg+h) < 1—25C(0).

Proof. The proof follows immediately from (2), Lemma 5.1 and the wigbn of w(g,A). O

SCALE: Linear Latency Functions. In this and the following section, we will analyze the SCALiEas
egy defined by = ao.

Here, we consider the class of linear latency functigas= {cix+ Cp : Cp,C1 > 0}. We first derive a
bound on the valuex(g,A) = w(ao,A).

Lemma 5.4. If A € [0,1], thenw(ao,A) < max{Z(1—A),z}.

Proof. Without loss of generality, we can assume that each latanastibn is a monomial; otherwise, subdi-
vide each arainto two arcsag, a; wherely, (X) = Cp andly, (X) = c1X. Thus,w(0a0,A) = MaXeea W(a; 004,A) <
SURY, ¢, >0 Max{ W(Co; 00a, A ), W(C1X; A0a, A) }.

We start with constant latency functioAgx) = cp. By definition ofw we get

04 (1-AN)co
W(Co; 00z,A) = SU .
(Co300a,A) oa,hagoa0a+ha Co

1
= ~(1-\).



For latency functiong,(X) = c1x, we get

o C1(00g+hg — Ao
0(C1X;A0s,A) = SUP ———— - 1(00a + Nla —10)
0a.ha>0 002 + g C1(010a + ha)

Definep:= Q—: if 05 > 0 and zero otherwise. Then

1 o+p—A 1
W(C1X;005,A) = SU . = sup t(1-At) < —.
( ! @ ) uz(r))CH‘U- a+H 0<t§lF}0( ( ) 4\

We are now prepared to derive an upper bound on the price offana
Theorem 5.5(Karakostas and Kolliopoulos [8])The price of anarchy of the SCALE strategy in the case of
. : . 1+v/1-a)?
linear latency functions is at mo TV 1

Proof. LetA = 3(1++/I—a). Then, by Lemma 5.4p(a0,A) < 5——2— < 1. Thus,A € A(00), and by

2(1+v1-a)
Theorem 5.3,
Clg+h) _ A _1+VI-a  2(1+Vi-aq)
C(o) ~ 1-w(ao,\) 2 21+v1-a)—-1
Rewriting proves the claim. O

We next present a family of instances that pointwise matetuiper bound of Theorem 5.5 for infinitely
many values ofi. More precisely, the lower bound is matched for all valuea stich that /1 —a is an
integer. To the best of our knowledge, this is the first tightitfd for values of £ 0, 1.

Theorem 5.6. Let n> 2 be an integer and lete 1— (n— 1)a/n. Then, the price of anarchy of the SCALE
strategy for linear latency functions is at le ff;fl)/anc Moreover, for alla = 1— 1/k?, with k a positive
integer, there exists an n such that the corresponding booaithes the upper bound of Theorem 5.5.

The proof of Theorem 5.6 can be found in the appendix.

SCALE: Polynomial Latency Functions. In this section, we consider the clasg of polynomials with
nonnegative coefficients and degree at mibstN: L4 := {cgXd+---+C1X+Co : s> 0,s=0,...,d}.
Similarly to the previous section, we start by boundin@,; 004,A) when/,(X) is a monomial irx.

Lemma5.7. For all s€ {0,...,d}, w(csX®; 004,A) = ws(A), where

l )\ . S

(}\)_ E<1_§)> If)\éﬁ
WWM=y s 1 if A > o
S+ ((srOnT = 541

Proof. By definition ofw (Eq. (3)),
Oa  Cs(00a+h,)° —cA0§

W(Ccsx®;a04,A) = SuUp

0 a>000a + ha . Cs(005 + hy)S
ZSUPL- (l—%> = sup t(1—At).
p>0 0 +H ((X + P-) 0<t<1/a

The supremum in the last expression can be attained eitlar @ttreme pointt(= 0 ort = 1/a) or at the
local maximum point* = ((s+1)A)~YS. If 1/a < t*, the global maximum will be at/b and will have a
value of2 (1— %); otherwise, the global maximum istitand its value is2y - ((s+ 1)A)~Ys. The condition
1/a <t* can be rewritten as < o®/(s+ 1) through straightforward manipulations. O



Corollary 5.8. w(010,A) < maXy<s<d Ws(A).

Proof. As in the proof of Lemma 5.4, we use the fact that

w(00,A\) = maxw({a;00a,A) < sup  max{w(Co; a0, A), ..., w(Cgxd;004,A)}.
acA €0,C1,e--,Ca >0

The claim then follows by Lemma 5.7. O
The proof of the following lemma can be found in the appendix.
Lemma 5.9. Let se [d]. There is a uniqué € (0,1) such thatws(A) = wp(A); call it As. Then:

(i) As=2/(s+1), where > a is the unique solution to the equation

£ (s+1)z+as=0; (4)

(i) As>1/(s+1);
(i) Az >A2> > Ag;
(iv) ws(Ag) < wi(Ad) = o(Ad)-

Theorem 5.10. The price of anarchy of the SCALE strategy in the case of ¢gt&umctions in the classg
is at most

(d+1)zg—ad

(d+1)zg—d

where g > 1is the unique solution of the equatiotz — (d+ 1)z+ad = 0.

Proof. We will use Theorem 5.3 with = Ay4. However, in order to apply the theorem, we first need to upper
boundw(ao,Aq).

Using Corollary 5.8, we know thab(ao,Ag) < max<s<dWs(Aq). Notice that by Lemma 5.9 (i,iv)
and by definition ofwy, MaX<s<a Ws(Ad) = Wa(Ag) = g2 - ((d+ DAg) V¢ = 347 - z;* < 1. This implies
Ad € A(00) and we can invoke Theorem 5.3 to obtain a bound on the priceasthy given by

T T4 C R -~ (d+1)z —ad

1-w0oAs) 1-g071 ([@d+lz-d (d+lz-d

O

A lower bound for polynomial latency functions of degrean be obtained by generalizing the con-
struction used in Theorem 5.6. We use again the network ofr€i§ (see appendix), except that we replace
everywhere the latency functionby x? and the constant by (1— (n— 1)a/n)¢. The optimal flow is still
split evenly on the direct paths, so that with similar argntaeve obtain the following lower bound.

Theorem 5.11. Let n> 2 be an integer and let & (1— (n—1)a/n)9. Then, the price of anarchy of the
SCALE strategy for latency functions in the clagsis at least(nc+/4 + (n—1)ac) / ((n— 1)c+n~9).

Notice that the theorem does not fixso it is possible to optimize based oru as in Theorem 5.6. For
latency functions inZ, and Lz, we compare in Figure 6 (in the appendix) the lower bound thiained
with the upper bound of Theorem 5.10.
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Figure 3: The latency functiof(x) used in the proof of Theorem 3.1.

A Proofs of Section 3

Proof of Lemma 3.4Let Py be the path(s,so, p1,01, P2, - -, Pk, Ok, to, t), and fori € [k], let P/ be the path
(s,s,t,t). Consider the feasible flow such thatfp, = ro and fp =y for i € [k]. The latency induced by

is 0 on arcs of type A, C, D, E and 1 on arcs of type BG30) <C(f)=k-r1=(1+a)/2<1. O
Proof of Lemma 3.5Consider for example (i). We have

C(g+h) = (ga+ha) - fa(da+Na) = (a+Na) - Uy, 5/3(da + ha)
> (ro+6/3k3) -M/(8/3k%) > M > M-C(0),
where the last inequality follows from Lemma 3.4. Part @iproved similarly. O
Proof of Lemma 3.6Regarding (i), we will prove by induction drthe stronger claim
Oa+ha >ro— (204 1)8/3K2.

Fori = 1, notice that by Lemma 3.5 the flow along eacti$;),..., (s, s) is at mostr; +8/3k3, so the
flow on (s,so) must be at least 2 € ; (r1 +8/3k%) = 1—kry — 8/3k? = ro — §/3k2. But the flow on(s, o)
is the same as that on ai®, p1) = (o, p1). Notice that a similar argument allows also to conclude tihet
flow on each(s,s) arc € [K]) is at least; — 8/3k?. This implies (ii) for alli € [].

To prove (i) fori > 1, consider théth block in the graph (Figure 2) and lét= g+ h.

By flow conservationfq n..) = fq_.,p) * fss) — ft.p)- Using induction and Lemma 3.5,

fapin) = faap T fes) ~ Ty
>(ro—(2i —1)8/3k?) 4 (r1 — 8/3k%) — (r1 4 8/3K%) =ro — (2i +1)5/3K>.

B Proofs of Section 4

Proof of Lemma 4.1Consider the flow(1 — a)g/a; it is a flow feasible with respect td — a)r. Using the
variational inequality (1), we get

1-a
hafa(Ga+ha) < —— % Gafa(ga+ha).
a;aaa a o a;aaa a
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Adding ¥ 5 0ala(da+ ha) to both sides and using= %oﬁ, we obtain
C(g+h)<1 J o < +h> 0B < +h>
= a a; B ata B a a Bae a B a a | -

Proof of Theorem 4.2\We first show that foeveryarca € A,

og£a<%o§+ ha> < (%OQ+ ha> €a<%o§+ ha> + (l— %) 0Br4(0f). (5)

There are two cases. Wh%mB +hg > 02, the inequality holds simply because its left hand side jseup
bounded by the first summand of the right hand side. Other\rﬂsg > 0‘oa + hg,

o§£a<%o§+ha> < (BoB+ ha+0f — BoB> £a<BoB+ ha>
(e leon) (-5 (5
< (%o§+ ha> €a<%0§ + ha> + (1— %) 0Bl4(0f)

(1-5)°

B-C(g+h) < a;o§£a<%o§+ ha> <C(g+h)+ <1_ %) C(oP).

Summing (5) over akh€ A, we obtalnzaera€a< o+ ha> <C(g+h)+ (0P). Invoking Lemma 4.1

we get

Solving forC(g+ h) now gives the bound as claimed. The bound is also tight, ab&aeen by considering
a slightly modified Pigou instance (we omit the details). O

Proof of Theorem 4.40bserve that the SCALE strategy fbican be obtained by computing the ASCALE
strategy forI%/® := (G,r/B,¢,a) and scaling it up by a factor ¢, that is,’= Bg, whereg is the ASCALE
strategy for/*/B. Leth be the Nash flow induced hyin 1%/B. By the variational inequality (1),

a;haga(ga +hg) < a;)’aga(ga +ha) (6)

for any flowy feasible for(1—a)r/B. Sincela(x/B)/B = la(x), we can rewrite (6) as ,(Bha)la(Ga +

Bhy) < za(Bya)Ea(QaJr Bha). This Jimplies thaf3h is a Nash flow induced by ih 1. Since the cost of

Nash flows is uniqueC(g-+ ph) = C(§—+ h). Finally, sinceC(Bx) = C(x) for any flowx, we can conclude
C(g+h) =C(B(g+h)) =C(g+ h) < C(0) where the inequality follows from Corollary 4.3. O

C Proofs of Section 5
Proof of Theorem 5.6We use the network depicted in Figure 5. There is a single coalityn(s,t) with unit

demand. In the optimal flow the demand is split evenly amoegptiths(s, p;,q;,t), i € [n]. The resulting
cost isC(0) = (n—1)c+1/n.

14



Figure 4: The grapks;, used in the proof of Theorem 3.3. Arcs are labeled with ttygie.

The SCALE strategy sends a flow of vala¢n along each direct patfs, p;,q,t), i € [n]. Due to the
conditionc=1— (n—1)a/n, the Nash flow is sent along the zigzag pé&hp:, a1, P2, - -, Pn,Gn,t). Thus,
the cost of the combined flogi+ h is given by

C(g+h) = n(l— n%lcx)er(n—l)cxc: nc+ (n—1)ac

and the bound follows.

To see that the bound is tight when= 1— 1/k?, pick n=k+1=1+1/y/1—a. After substituting
the expressions fam andc into the bound and appropriate rewriting we obtain the saxpeession as in
Theorem 5.5. O

Proof of Lemma 5.9Let A be such thatos(A) = wp(A). Assuming thalh < as/(s+ 1), ws(A) = wp(A) is
A 1

equivalent toé(l— &) = g(1=7), which is impossible foo € (0,1). ThusA > a®/(s+ 1) and g25 ((s+
DA)~Ys = 2(1- ). If we substituteA = 5/(s+ 1), the last relation becomes equivalent to (4). On the
other hand)s as defined in (i) satisfiess(As) = wp(As). To check that equation (4) has indeed exactly one
solution larger thamt, use for example Descartes’ rule of signs.

Part (ii) follows from (i) and the fact that equation (4) hasetly one solution larger than 1 (again by
Descartes’ rule of signs), implyirg > 1.

To prove (iii), we now viewAs, as given in (i), as a real function of a real variable, Ae= A(s). To
show (iii) it is then enough to argue thi{s) < 0 for s [1,d]. In the following we omit the dependency of
A andA’ from sto improve readability.

As seen earlier in the proof, the equation (4) is equivalelgﬁ . % = %(1— M), which is in turn

_ _ : SENNEE
equivalent to the identity
as

1 _
A /5(1—)\) = (s 1T

(7)

If we differentiate both sides of (7), we obtain

1 1 In(s+1) as
1 1 —
AYS(1-2) (- 5INA + )\’> NN = = T

Rearranging terms and substituti@% with )\1/5(1— A), (which is valid by (7)),

1-(s+1)A 1 1

1/51'7:_ 1/s/q = \1/spq

AEA X Sz)\ (1 )\)In)\+827\ (1—A)In(s+1)

and finally after further simplifications
—(s+1)A

= AL é(l—)\)ln((s+ D).
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Figure 5:
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Figure 6: Upper vs. lower bounds for SCALE for latency fuons in £, (left) and £3 (right). The plots
also show the previously best upper bound by Swamy [19].

Using part (ii) of the lemma, the right hand side has to betpasiwhile the term multiplying\’ in the left
hand side has to be negative, again by part (ii). TAUs; O.

To prove part (iv), first notice that the functiorng; and wy are both continuous and monotonically
decreasing, and in the intervgd, 1), they intersect exactly once (k). Sincews(€) < wp(€) for all suf-
ficiently smalle > 0, we haveuws(A) < wp(A) for all A < As. But by (iii), Ag < As, SOws(Ag) < wo(Ag).
Finally, wo(Aq) = wg(Ag) by definition ofAgy. O
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