
The Impact of Stackelberg Routing in General Networks

Vincenzo Bonifaci Tobias Harks Guido Schäfer
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Abstract

We investigate the impact ofStackelberg routingin network routing games. In this setting, a frac-
tion α of the entire demand is first routed by a central authority, called theStackelberg leader, while
the remaining demand is then routed by selfish (nonatomic) players. The aim is to deviseStackelberg
strategies, i.e., strategies to route the centrally controlled demand, so as to minimize the price of anarchy
of the resulting flow.

Although several advances have been made recently in proving that Stackelberg routing may in
fact significantly reduce the price of anarchy for certain network topologies, it is still an open ques-
tion whether this holds true in general. We answer this question negatively. We prove that the price of
anarchy achievable via Stackelberg routing can be unbounded even for single-commodity networks.

In light of this negative result, we consider bicriteria bounds. We develop an efficiently computable
Stackelberg strategy that induces a flow whose cost is at mostthe cost of an optimal flow with respect to
demands scaled by a factor of 1+

√
1−α. Thus, we obtain a smooth trade-off curve that scales between

the absence of centralized control (doubling the demands issufficient) and completely centralized control
(no scaling is necessary).

Finally, we analyze the effectiveness of a simple Stackelberg strategy, called SCALE, for polynomial
latency functions. Our analysis is based on a general technique which is simple, yet powerful enough to
obtain (almost) tight bounds for SCALE in general networks.For linear latency functions, we derive an
upper bound that matches the current best one and show that this bound is tight. For general polynomial
latency functions, we obtain upper bounds that improve all previously known ones.



1 Introduction

Over the past years, the impact of the behavior of selfish, uncoordinated users in congested networks has
been investigated intensively in the theoretical computerscience literature. In this context,network routing
gameshave proved to be a reasonable means of modeling selfish behavior in networks. The basic idea is to
model the interaction between the selfish network users as anoncooperative game. We are given a directed
graph with latency functions on the arcs and a set of origin-destination pairs, calledcommodities. Every
commodity has ademandassociated with it, which specifies the amount of flow that needs to be sent from
the respective origin to the destination. We assume that every demand represents a very large population
of players, each controlling an infinitesimal amount of flow of the entire demand (such players are also
callednonatomic). The latency that a player experiences to traverse an arc isgiven by a (non-decreasing)
function of the total flow on that arc. We assume that every player acts selfishly and routes his flow along a
minimum-latency path from its origin to the destination; this corresponds to a common solution concept for
noncooperative games, that of aNash equilibrium(hereNash flow). In a Nash flow no player can improve
his own latency by unilaterally switching to another path.

It is well known that Nash equilibria can beinefficient in the sense that they need not achieve socially
desirable objectives [1, 5]. That is, in the context of network routing games, a Nash flow in general does
not minimize the total cost; or said differently, selfish behavior may cause a performance degradation in
the network. Koutsoupias and Papadimitriou [10] initiatedthe investigation of the efficiency loss caused
by selfish behavior. They introduced a measure to quantify the inefficiency of Nash equilibria which they
termed theprice of anarchy. The price of anarchy is defined as the worst-case ratio of thecost of a Nash
equilibrium over the cost of a system optimum.

In recent years, considerable progress has been made in quantifying the degradation in network perfor-
mance caused by the selfish behavior of noncooperative network users. In a seminal work, Roughgarden and
Tardos [17] showed that the price of anarchy for network routing games with nonatomic players and linear
latency functions is 4/3; in particular, this bound holds independently of the underlying network topology.
The case of more general families of latency functions has been studied by Roughgarden [13] and Correa,
Schulz, and Stier-Moses [2]. (For an overview of these results, we refer to the book by Roughgarden [16].)
Despite these bounds for specific classes of latency functions, it is known that the price of anarchy for
general latency functions is unbounded even on simple parallel-arc networks [17].

Due to this large efficiency loss, researchers have proposeddifferent approaches to reduce the price of
anarchy in network routing games. One of the most promising approaches is the use ofStackelberg routing
[9, 15]. In this setting, it is assumed that a fractionα ∈ [0,1] of the entire demand is controlled by a central
authority, termedStackelberg leader, while the remaining demand is controlled by the selfish nonatomic
players, also called thefollowers. In a Stackelberg game, the Stackelberg leader first routes the centrally
controlled flow according to a predetermined policy, calledtheStackelberg strategy, and then the remaining
demand is routed by the selfish followers. The aim is to deviseStackelberg strategies so as to minimize the
price of anarchy of the resulting combined flow.

Although Roughgarden [15] showed that computing thebestStackelberg strategy, i.e., one that mini-
mizes the price of anarchy of the induced flow, is NP-hard evenfor parallel-arc networks and linear latency
functions, several advances have been made recently in proving that Stackelberg routing can indeed signifi-
cantly reduce the price of anarchy in network routing games.As an example, Roughgarden [15] showed that
for parallel-arc networks Stackelberg strategies exist that reduce the price of anarchy to 1/α, independently
of the latency functions. That is, even if the Stackelberg leader controls only a small constant fraction of the
overall demand, the price of anarchy reduces to a constant (while it is unbounded in the absence of any cen-
tralized control). Very recently, Swamy [19] obtained a similar result for single-commodity, series-parallel
networks. Besides these efforts, researchers have also tried to characterize the effectiveness of different
Stackelberg strategies for specific classes of latency functions.
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Our Results. In this paper, we investigate the impact of Stackelberg routing to reduce the price of anarchy
in network routing games with nonatomic players. Our contribution is threefold:

1. Albeit the above mentioned advances in the context of Stackelberg routing, a central question is still
open: Can we always devise a Stackelberg strategy such that the price of anarchy is bounded? A
partial answer to this question was given by Roughgarden [15]. He showed that for certain types
of Stackelberg strategies, which he termedweakstrategies (see Section 2 for a definition), the price
of anarchy for multi-commodity networks can be unbounded. However, this does not rule out the
existence of such Stackelberg strategies in general.

We answer this question negatively. We prove that the price of anarchy achievable via Stackelberg
routing can be unbounded even for single-commodity networks. Our result holds for arbitrary Stack-
elberg strategies and independently of the fractionα ∈ (0,1) controlled by the Stackelberg leader.
This settles the open question explicitly posed by Roughgarden [14, Open Problem 4].

2. In light of this negative result, we investigate the effectiveness of Stackelberg routing strategies com-
pared to an optimum flow for a larger demand; i.e., we considerbicriteria bounds.

We develop an efficiently computable Stackelberg strategy inducing a flow whose cost is at most
the cost of an optimal flow with respect to demands increased by a factor of 1+

√
1−α. Thus, we

obtain a smooth trade-off curve that scales between the absence of centralized control (doubling the
demands is sufficient) and completely centralized control (no scaling is necessary). We also prove
that this characterization is tight. Our bound is a natural generalization of the bicriteria bound by
Roughgarden and Tardos [17]. We demonstrate that this result has a particular nice interpretation for
the class of (practical relevant) M/M/1-latency functionsthat model arc-capacities: In order to beat
the cost of an optimal flow, it is sufficient to scale all arc capacities by 1+

√
1−α.

3. One of the simplest Stackelberg strategies to implement is SCALE (see also [15]). SCALE simply
computes an optimal flow for the entire demand and then scalesthis flow down byα. The currently
best known bound for the price of anarchy induced by SCALE on multi-commodity networks and
linear latency functions is due to Karakostas and Kolliopoulos [8]. Their analysis is based on a (rather
involved) machinery presented in [12]. Very recently, Swamy [19] derived the first general bounds for
polynomial latency functions.

We introduce a general approach, which we term theλ-approach, to bound the price of anarchy of
Stackelberg strategies. This approach is simple, yet powerful enough to obtain better bounds for
SCALE in general networks. For linear latency functions, wederive an upper bound that coincides
with the bound in [8]. However, our analysis is much simpler;in particular, we do not rely on the
machinery in [12]. For general polynomial latency functions, our approach yields upper bounds that
significantly improve the bounds by Swamy [19]. We also derive lower bounds for SCALE. We
present a generalized Braess instance that shows that for the linear case our bound is tight; a similar
instance can be used to show that for higher degree polynomials our bounds are almost tight (though
there remains a gap for small values ofα). We believe that ourλ-approach may also prove useful to
derive improved bounds for other Stackelberg strategies.

Related Work. The idea of using Stackelberg strategies to improve the performance of a system was first
proposed by Korilis, Lazar, and Orda [9]. The authors identified necessary and sufficient conditions for the
existence of Stackelberg strategies that induce a system optimum; their model differs from the one discussed
here.

Roughgarden [15] first formulated the problem and model considered here. He also proposed some
natural Stackelberg strategies such as SCALE and Largest-Latency-First (LLF). For parallel-arc networks
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he showed that the price of anarchy for LLF is bounded by 4/(3+α) and 1/α for linear and arbitrary latency
functions, respectively. Both bounds are tight. Moreover,he also proved that it is NP-hard to compute the
best Stackelberg strategy. Kumar and Marathe [11] investigated approximation schemes to compute the best
Stackelberg strategy. The authors gave a PTAS for the case ofparallel-arc networks.

Karakostas and Kolliopoulos [8] proved upper bounds on the price of anarchy for SCALE and LLF.
Their bounds hold for arbitrary multi-commodity networks and linear latency functions. Their analysis is
based on a result obtained by Perakis [12] to bound the price of anarchy for network routing games with
asymmetric and non-separable latency functions. Furthermore, Karakostas and Kolliopoulos [8] showed
that their analysis for SCALE is almost tight.

Very recently, Swamy [19] obtained upper bounds on the priceof anarchy for SCALE and LLF for
polynomial latency functions. In the case of linear latencyfunctions, his bound is inferior to the one given
by Karakostas and Kolliopoulos [8]. Swamy also proved a bound of 1+1/α for single-commodity, series-
parallel networks with arbitrary latency functions.

Correa and Stier-Moses [3] proved, besides some other results, that the use ofopt-restricted strategies,
i.e., strategies in which the Stackelberg leader sends no more flow on every edge than the system optimum,
does not increase the price of anarchy. Sharma and Williamson [18] considered the problem of determining
the smallest value ofα such that the price of anarchy can be improved. They obtainedresults for parallel-arc
networks and linear latency functions. Kaporis and Spirakis [7] studied a related question of finding the
minimum demand that the Stackelberg leader needs to controlin order to enforce an optimal flow.

2 The Model

In a network routing game we are given a directed networkG = (V,A) and k origin-destination pairs
(s1, t1), . . . ,(sk, tk) calledcommodities. For every commodityi ∈ [k], a demandr i > 0 is given that spec-
ifies the amount of flow with originsi and destinationti . Let Pi be the set of all paths fromsi to ti in G
and letP = ∪iPi. A flow is a function f : P → R+. The flow f is feasible(with respect tor) if for all i,
∑P∈Pi

fP = r i . For a given flowf , we define the flow on an arca∈ A as fa = ∑P∋a fP.
Moreover, each arca∈ A has an associated variablelatencydenoted byℓa(·). For eacha∈ A the latency

function ℓa is assumed to be nonnegative, nondecreasing and differentiable. If not indicated otherwise, we
also assume thatℓa is defined on[0,∞) and thatxℓa

(

x) is a convex function ofx. Such functions are called
standard[13]. The latency of a pathP with respect to a flowf is defined as the sum of the latencies of the
arcs in the path, denoted byℓP( f ) = ∑a∈Aℓa( fa). The triple(G, r, ℓ) is called aninstance.

Thecostof a flow f is C( f ) = ∑P∈P fPℓP( f ). Equivalently,C( f ) = ∑a∈A faℓa( fa). The feasible flow of
minimum cost is calledoptimal and denoted byo. A feasible flow f is a Nash flow, or selfish flow, if for
every i ∈ [k] andP,P′ ∈ Pi with fP > 0, ℓP( f ) ≤ ℓP′( f ). In particular, if f is a Nash flow, allsi-ti paths to
which f assigns a positive amount of flow have equal latency. It is well-known that if f1 and f2 are Nash
flows for the same instance, thenC( f1) = C( f2), see e.g. [17].

In a Stackelberg network game we are given, in addition toG, r andℓ, a parameterα ∈ (0,1). A (strong)
Stackelberg strategyis a flow g feasible with respect tor ′ = (α1r1, . . . ,αkrk), for someα1, . . . ,αk ∈ [0,1]
such that∑k

i=1αir i = α∑k
i=1 r i . If αi = α for all i, g is called aweak Stackelberg strategy. Thus, both strong

and weak strategies route a fractionα of the overall traffic, but a strong strategy can choose how much flow
of each commodity is centrally controlled. For single-commodity networks the two definitions coincide. A
Stackelberg strategyg is calledopt-restrictedif ga ≤ oa for all a∈ A.

Given a Stackelberg strategyg, let ℓ̃a(x) = ℓa(ga + x) for all a ∈ A and let ˜r = r − r ′. Then a flowh
is induced by gif it is a Nash flow for the instance(G, r̃ , ℓ̃). The Nash flowh can be characterized by the
following variational inequality[4]: h is a Nash flow induced byg if and only if for all flowsx feasible with
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Figure 1: The graphGk, used in the proof of Theorem 3.1. Arcs are labeled with theirtype.

respect to ˜r,

∑
a∈A

haℓa(ga +ha) ≤ ∑
a∈A

xaℓa(ga +ha). (1)

We will mainly be concerned with the cost of the combined induced flowg+ h, given byC(g+ h) =

∑a∈A(ga + ha)ℓa(ga + ha). In particular, we are interested in bounding the ratioC(g+ h)/C(o), called the
price of anarchy.

3 The Limits of Stackelberg Routing

In this section, we prove that there does not exist a Stackelberg strategy that induces a price of anarchy
bounded by a function ofα only. More precisely, we show that for any fixedα ∈ (0,1), the ratio between
the cost of the flow induced by any Stackelberg strategy and the optimum can be arbitrarily large, even in
single-commodity networks.

We first show this claim for multi-commodity networks. In this case, such a result was already known to
hold for weak Stackelberg strategies [16]; here we prove that it also holds for strong Stackelberg strategies.

Multi-Commodity Networks. We prove the following theorem.

Theorem 3.1. Let M > 0 and α ∈ (0,1). There is a multi-commodity instanceI = (G, r, ℓ,α) such that, if
g is any strong Stackelberg strategy forI inducing a Nash flow h, and o is an optimal flow for the instance
(G, r, ℓ), then C(g+h) ≥ M ·C(o).

To prove the theorem we will use an instance based on the graphdepicted in Figure 1. For a positive
integerk, the graphGk has 4k+2 nodesVk = {s0, t0,s1, t1, p1,q1, . . . ,sk, tk, pk,qk}. The arc setAk is the union
of three sets,{(pi ,qi) : i ∈ [k]}, {(si , ti) : i ∈ [k]}, and{(si , pi),(qi , ti),(qi , pi+1) : i ∈ [k]}∪{(s0, p1),(qk, t0)}.
We call the arcs in these sets of type A, B, and C respectively (see Figure 1). There arek+1 commodities
0,1, . . . ,k. Commodityi has originsi and destinationti. The demand isr0 := (1−α)/2 for commodity 0,
andr1 := (1+ α)/2k for all other commodities; thus, the total demand isr0 +kr1 = 1.

The latency of an arc is determined by its type. Type B arcs have constant latency 1, and type C arcs
have constant latency 0. Type A arcs have latencyℓε(x), where the functionℓε(x) is defined as follows:

ℓε(x) =

{

0, if x≤ r0

1− r0+r1−x
(1−ε)r1

, if x≥ r0 +2εr1

Hereε is any positive constant such thatε < 1−α
1+α . In the interval(r0, r0 +2εr1) the functionℓε is defined ar-

bitrarily so that overall it is a standard and convex function (see also Figure 3 in the appendix). In particular,
ℓε(x) ≥ 1− r0+r1−x

(1−ε)r1
for all x.

Let us first bound the cost of the optimal flow.
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Lemma 3.2. C(o) ≤ 1.

Proof. Consider the flowf̄ where each commodity is routed along the shortest path (in terms of number of
arcs) from origin to destination. The latency on thes0-t0 path is zero, since the load on each arc of the path is
r0 andℓε(r0) = 0. The latency of each othersi-ti path is 1. ThenC(o) ≤C( f̄ ) = k · r1 = (1+ α)/2≤ 1.

Proof of Theorem 3.1.For i ∈ [k], let gi be the amount of flow sent by the Stackelberg strategy over thearc
(si , ti). Since the total value of the flow controlled by any Stackelberg strategy isα, we have∑i∈[k] gi ≤ α.

The crucial point is that without loss of generality, all theselfish flow induced byg on ansi-ti path,i 6= 0,
will be sent along the path(si , pi ,qi , ti). Indeed, if the arc(si , ti) contained some selfish flowhi > 0, the
latency of the path(si , pi ,qi , ti) would beℓε(r0 + r1−gi −hi) < 1 = ℓ(si ,ti )(gi +hi). But this contradicts the
definition of Nash flows. Thus the combined flow on each(pi ,qi) arc is exactlyr0 + r1−gi . Now letP0 be
the uniques0-t0 path. We have

ℓP0(g+h) ≥ ∑
i∈[k]

ℓε(r0 + r1−gi) ≥ ∑
i∈[k]

(

1− gi

(1− ε)r1

)

≥ k− α
(1− ε)r1

=
1

1− ε
·
(

1−α
1+ α

− ε
)

·k.

The last inequality follows from∑i gi ≤ α, and the last equality fromr1 = (1+ α)/2k. Sinceε < 1−α
1+α ,

we conclude thatℓP0(g+h) = Ω(k). Together with Lemma 3.2, we obtain

C(g+h) ≥ r0 · ℓP0(g+h) = 1
2 · (1−α) ·Ω(k) = Ω(k) ·C(o).

Thus the ratio ofC(g+h)/C(o) can be made arbitrarily large by picking a sufficiently largek.

Single-Commodity Networks. We use the insights gained in the previous section to prove the following,
stronger result:

Theorem 3.3. Let M > 0 andα ∈ (0,1). There is a single-commodity instanceI = (G, r, ℓ,α) such that, if
g is any Stackelberg strategy forI inducing a Nash flow h, and o is an optimal flow for the instance(G, r, ℓ),
then C(g+h) ≥ M ·C(o).

Theorem 3.3 extends Theorem 3.1 to single-commodity networks. The main idea behind the proof is to
simulate the instance used in Theorem 3.1 by creating a supersourcesand a supersinkt and connecting them
to the sources and sinks of the original network (see also Figure 4 in the appendix). If somehow we were
able to enforce thes-t flow to split according to the demand vector of the multi-commodity instance, the
result would easily follow as in the proof of Theorem 3.1. In order to achieve this, we use latency functions
that simulate capacities on the arcs connecting the supersource to the sources and the sinks to the supersink.
Although these “capacities” might be exceeded, we will makesure that if the excess flow is too large, the
price of anarchy will already be large enough for our purposes.

For a positive integerk, consider the graphG′
k = (V ′

k,A
′
k) obtained by the graphGk defined in the proof

of Theorem 3.1 by lettingV ′
k = Vk ∪{s, t} andA′

k = Ak∪{(s,si),(ti , t) : i = 0,1, . . . ,k}. There is a single
commodity(s, t), with unit demand. We call the two arcs(s,s0) and(t0, t) of type D, and all arcs(s,si), (ti , t)
with i ∈ [k] of type E(see also Figure 4 in the appendix).

The latencies of type B and C arcs are exactly the same as in theproof of Theorem 3.1. For arcs of
type A we use, for the sake of simplicity, an idealized version of the latency function used in Theorem 3.1;
specifically we use

ℓ0(x) =

{

0, if x≤ r0

1− r0+r1−x
r1

, if x > r0.

Although ℓ0(x) is not differentiable inr0, it can be approximated with arbitrarily small error by standard
functions (indeed, the functionℓε(x) used in the proof of Theorem 3.1 is such an approximation).
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For fixedL andτ, let uL,τ(x) be any standard function satisfyinguL,τ(L) = 0 anduL,τ(L + τ) = M/τ.
Type D arcs have latencyur0,δ/3k3(x), and type E arcs have latencyur1,δ/3k3(x). Here (as in Theorem 3.1)
r0 = (1−α)/2 andr1 = (1+ α)/2k. We will fix the constantδ later in the proof.

The proof of the following lemmas are deferred to the appendix.

Lemma 3.4. C(o) ≤ 1.

The following lemma will allow us to focus on the case where the “excess flow” on “capacitated” arcs
is less thanδ/3k3.

Lemma 3.5. For any Stackelberg strategy g inducing a Nash flow h, the following holds:

(i) If a is a type D arc and ga +ha ≥ r0 + δ/3k3, then C(g+h) ≥ M ·C(o).

(ii) If a is a type E arc and ga +ha ≥ r1 + δ/3k3, then C(g+h) ≥ M ·C(o).

For the remainder of the proof we assume that there is no arc satisfying the conditions of Lemma 3.5;
otherwise the theorem follows immediately.

Lemma 3.6. For any Stackelberg strategy g inducing a Nash flow h, the following hold:

(i) For any arc a= (qi−1, pi), i ∈ [k], ga +ha ≥ r0−δ/k.

(ii) For any arc a= (s,si), i ∈ [k], ga +ha ≥ r1−δ/k.

We are now ready to conclude the proof of Theorem 3.3.

Proof of Theorem 3.3.For anyi ∈ [k], consider theith block in the graph (Figure 2). Letgi ,hi be the Stack-
elberg and selfish flow on the arc(si , ti), respectively. We have two cases:

1. hi = 0: in this case, using Lemma 3.6, the flow on arc(pi ,qi) is at leastr0−δ/k+ r1−δ/k−gi . The
latency on that same arc is thus at leastℓ0(r0 + r1−2δ/k−gi).

2. hi > 0: in this case, the Nash flow on pathP′
i = (s,si , ti, t) is strictly positive. Consider the pathP′′

i =
(s,si , pi ,qi , ti , t). By definition of Nash flow,ℓP′′

i
(g+h) ≥ ℓP′

i
(g+h). Notice that the two pathsP′

i ,P
′′
i

share all their nonzero-latency arcs except for(si , ti) (only present inP′
i ) and (pi ,qi) (only present

in P′′
i ). ThusℓP′′

i
(g+ h) ≥ ℓP′

i
(g+ h) implies ℓ(pi ,qi )(g+ h) ≥ ℓ(si ,ti )(g+ h) = 1. As a consequence,

ℓ(pi ,qi )(g+h) ≥ 1 = ℓ0(r0 + r1) ≥ ℓ0(r0 + r1−2δ/k−gi) sincegi andδ/k are nonnegative.

In both cases,ℓ(pi ,qi)(g+h) ≥ ℓ0(r0 + r1−2δ/k−gi) ≥ 1− gi+2δ/k
r1

.
The latency on the pathP′

0 = (s,s0, p1,q1, . . . , pk,qk, t0, t) is at least

ℓP′
0
(g+h) ≥

k

∑
i=1

ℓ(pi ,qi )(g+h) ≥
k

∑
i=1

(

1− gi +2δ/k
r1

)

≥ k− α
r1

− 2δ
r1

=

(

1−α−4δ
1+ α

)

k.

The last inequality is a consequence of the fact that the total Stackelberg flow isα, so∑i gi ≤ α.
Choosingδ < (1−α)/4, we can conclude thatℓP′

0
(g+h) = Ω(k). Together with Lemma 3.4 and Lemma

3.6, this gives

C(g+h) ≥ (r0−δ/k) · ℓP′
0
(g+h) ≥ (1

2 · (1−α)−δ) ·Ω(k) = Ω(k) ·C(o).

Thus the ratioC(g+h)/C(o) can be made arbitrarily large by picking a sufficiently largek.
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from qi−1 pi qi to pi+1

si ti

from s to t

gi +hi

Figure 2: Theith block of the graphG′(k).

4 A General Bicriteria Upper Bound

As we have seen in the previous sections, no Stackelberg strategy controlling a constant fraction of the traffic
can reduce the price of anarchy to a constant, even if we consider single-commodity networks. In light of
this negative result, we therefore compare the cost of a Stackelberg strategy on an instanceI = (G, r, ℓ,α)
to the cost of an optimal flow for the instanceI

β = (G,βr, ℓ) in which the demand vector has been scaled up
by a factorβ > 1.

We propose the following simple Stackelberg strategy, which we termAugmented SCALE (ASCALE):

1. Compute an optimal flowoβ for the instanceI β.

2. Define the Stackelberg flow byg := α
β oβ.

We prove that the resulting flow induced by the Stackelberg strategy ASCALE satisfiesC(g+h) ≤C(oβ) if
we chooseβ = 1+

√
1−α. This result can be seen as a generalization of Roughgarden and Tardos’ result

that the cost of a Nash flow is always not larger than the cost ofthe optimal flow for an instance in which
demands have been doubled [17]. Our bound gives a smooth transition from absence of centralized control
(where doubling the demands is sufficient) to completely centralized control (where no augmentation is
necessary). Due to the lack of space, most of the proofs in this section are deferred to the appendix.

Lemma 4.1. If g is the ASCALE strategy,β ·C(g+h) ≤ ∑a∈Aoβ
aℓa

(α
β oβ

a +ha
)

.

Theorem 4.2. If g is the ASCALE strategy, C(g+ h) ≤ 1
β−1 ·

(

1− α
β
)

·C(oβ). Furthermore, this bound is
tight.

Corollary 4.3. Let β = 1+
√

1−α. Then if g is the ASCALE strategy, C(g+h) ≤C(oβ).

The next theorem shows that our result for ASCALE has a consequence for the SCALE strategy as well.

Theorem 4.4. Let I = (G, r, ℓ,α) be an instance and define the modified latency functionℓ̂a by ℓ̂a(x) =
ℓa(x/β)/β for each arc a, whereβ = 1+

√
1−α. Let ĝ be the SCALE strategy forI , ĥ be the Nash flow

induced byĝ in Î = (G, r, ℓ̂,α), and o be the optimal flow for(G, r, ℓ). Then, ifĈ(x) is the cost of a flow x
with respect to the modified latency functionsℓ̂, we haveĈ(ĝ+ ĥ) ≤C(o).

In the case of M/M/1 latency functions, which are of the formℓa(x) = 1/(ua− x), whereua intuitively
represents the capacity of arca, the bicriteria bound has a particularly nice interpretation, sinceℓ̂a(x) =
ℓa(x/β)/β = 1/(β(ua − x/β)) = 1/(βua − x). In a purely selfish scenario, this implies that to beat optimal
routing it is sufficient to double the capacity of every edge [17]. In the Stackelberg case, Theorem 4.4 shows
that it is sufficient to increase the capacities by a factor of1+

√
1−α if the SCALE strategy is used.
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5 Bounds for Specific Classes of Latency Functions

In the following, we describe a general approach that may be used to analyze the price of anarchy of an opt-
restricted Stackelberg strategy. We use this approach to derive upper bounds on the price of anarchy for the
SCALE strategy in the case of linear latency functions and polynomial latency functions with nonnegative
coefficients.

Lemma 5.1. For any opt-restricted strategy g,∑a∈A(ga +ha)ℓa(ga +ha) ≤ ∑a∈Aoaℓa(ga +ha).

Proof. Use the variational inequality (1) withx = o−g.

In order to bound the price of anarchy, we use the variationalinequality (Lemma 5.1) and bound the cost
of the induced flow on every arc by aλ-fraction of the optimal cost plus someω-fraction of the cost of the
induced flow itself:

C(g+h) = ∑
a∈A

(ga +ha)ℓa(ga +ha) ≤ ∑
a∈A

λ ·oaℓa(oa)+ ω(ℓa;ga,λ) · (ga +ha)ℓa(ga +ha). (2)

Now, the idea is to determine aλ that provides the tightest bound possible. Choosingλ = 1, the above
approach resembles the one that was previously used by Correa, Schulz, and Stier-Moses [2] to bound the
price of anarchy of network routing games; however, optimizing over the parameterλ provides an additional
means to obtain better bounds. The idea of introducing the scaling parameterλ was first introduced in the
context of bounding the price of anarchy in atomic congestion games (see Harks [6]).

For any latency functionℓa and nonnegative numbersga, λ, we define the following nonnegative value:

ω(ℓa;ga,λ) := sup
oa,ha≥0

oa

ga +ha
· ℓa(ga +ha)−λℓa(oa)

ℓa(ga +ha)
. (3)

We assume by convention 0/0 = 0.
For a given opt-restricted strategyg we further defineω(g,λ) = maxa∈A ω(ℓa;ga,λ). Before we state the

main theorem, we need one additional definition.

Definition 5.2. Given an opt-restricted strategyg, thefeasibleλ-region is Λ(g) := {λ ∈ R+ |ω(g,λ) < 1}.

Notice that everyλ ∈ Λ(g) induces a bound on the price of anarchy.

Theorem 5.3. Let λ ∈ Λ(g). Then C(g+h) ≤ λ
1−ω(g,λ)C(o).

Proof. The proof follows immediately from (2), Lemma 5.1 and the definition of ω(g,λ).

SCALE: Linear Latency Functions. In this and the following section, we will analyze the SCALE strat-
egy defined byg = αo.

Here, we consider the class of linear latency functionsL1 = {c1x+ c0 : c0,c1 ≥ 0}. We first derive a
bound on the valueω(g,λ) = ω(αo,λ).

Lemma 5.4. If λ ∈ [0,1], thenω(αo,λ) ≤ max
{

1
α(1−λ), 1

4λ
}

.

Proof. Without loss of generality, we can assume that each latency function is a monomial; otherwise, subdi-
vide each arca into two arcsa0,a1 whereℓa0(x)= c0 andℓa1(x)= c1x. Thus,ω(αo,λ)= maxa∈A ω(ℓa;αoa,λ)≤
supc0,c1≥0max{ω(c0;αoa,λ),ω(c1x;αoa,λ)}.

We start with constant latency functionsℓa(x) = c0. By definition ofω we get

ω(c0;αoa,λ) = sup
oa,ha≥0

oa

αoa +ha
· (1−λ)c0

c0
=

1
α

(1−λ).

8



For latency functionsℓa(x) = c1x, we get

ω(c1x;αoa,λ) = sup
oa,ha≥0

oa

αoa +ha
· c1(αoa +ha−λoa)

c1(αoa +ha)
.

Defineµ := ha
oa

if oa > 0 and zero otherwise. Then

ω(c1x;αoa,λ) = sup
µ≥0

1
α+µ

· α+µ−λ
α+µ

= sup
0<t≤1/α

t(1−λt) ≤ 1
4λ

.

We are now prepared to derive an upper bound on the price of anarchy.

Theorem 5.5(Karakostas and Kolliopoulos [8]). The price of anarchy of the SCALE strategy in the case of

linear latency functions is at most(1+
√

1−α)2

2(1+
√

1−α)−1
.

Proof. Let λ = 1
2(1+

√
1−α). Then, by Lemma 5.4,ω(αo,λ) ≤ 1

2(1+
√

1−α)
< 1. Thus,λ ∈ Λ(αo), and by

Theorem 5.3,
C(g+h)

C(o)
≤ λ

1−ω(αo,λ)
=

1+
√

1−α
2

· 2(1+
√

1−α)

2(1+
√

1−α)−1
.

Rewriting proves the claim.

We next present a family of instances that pointwise match the upper bound of Theorem 5.5 for infinitely
many values ofα. More precisely, the lower bound is matched for all values ofα such that 1/

√
1−α is an

integer. To the best of our knowledge, this is the first tight bound for values ofα 6= 0,1.

Theorem 5.6. Let n≥ 2 be an integer and let c= 1− (n−1)α/n. Then, the price of anarchy of the SCALE

strategy for linear latency functions is at leastnc2+(n−1)αc
(n−1)c+1/n . Moreover, for allα = 1−1/k2, with k a positive

integer, there exists an n such that the corresponding boundmatches the upper bound of Theorem 5.5.

The proof of Theorem 5.6 can be found in the appendix.

SCALE: Polynomial Latency Functions. In this section, we consider the classLd of polynomials with
nonnegative coefficients and degree at mostd ∈ N: Ld := {cd xd + · · ·+ c1 x+ c0 : cs ≥ 0,s = 0, . . . ,d}.
Similarly to the previous section, we start by boundingω(ℓa;αoa,λ) whenℓa(x) is a monomial inx.

Lemma 5.7. For all s∈ {0, . . . ,d}, ω(csxs;αoa,λ) = ωs(λ), where

ωs(λ) :=







1
α

(

1− λ
αs

)

, if λ ≤ αs

s+1
s

s+1 · 1
((s+1)λ)1/s, if λ ≥ αs

s+1.

Proof. By definition ofω (Eq. (3)),

ω(csx
s;αoa,λ) = sup

oa,ha≥0

oa

αoa +ha
· cs(αoa +ha)

s−csλos
a

cs(αoa +ha)s

= sup
µ≥0

1
α+µ

·
(

1− λ
(α+µ)s

)

= sup
0<t≤1/α

t(1−λts).

The supremum in the last expression can be attained either atan extreme point (t = 0 or t = 1/α) or at the
local maximum pointt∗ = ((s+1)λ)−1/s. If 1/α ≤ t∗, the global maximum will be at 1/α and will have a
value of 1

α(1− λ
αs); otherwise, the global maximum is att∗ and its value is s

s+1 ·((s+1)λ)−1/s. The condition
1/α ≤ t∗ can be rewritten asλ ≤ αs/(s+1) through straightforward manipulations.

9



Corollary 5.8. ω(αo,λ) ≤ max0≤s≤d ωs(λ).

Proof. As in the proof of Lemma 5.4, we use the fact that

ω(αo,λ) = max
a∈A

ω(ℓa;αoa,λ) ≤ sup
c0,c1,...,cd≥0

max{ω(c0;αoa,λ), . . . ,ω(cdxd;αoa,λ)}.

The claim then follows by Lemma 5.7.

The proof of the following lemma can be found in the appendix.

Lemma 5.9. Let s∈ [d]. There is a uniqueλ ∈ (0,1) such thatωs(λ) = ω0(λ); call it λs. Then:

(i) λs = zs
s/(s+1), where zs > α is the unique solution to the equation

zs+1− (s+1)z+ αs= 0; (4)

(ii) λs > 1/(s+1);

(iii) λ1 ≥ λ2 ≥ ·· · ≥ λd;

(iv) ωs(λd) ≤ ωd(λd) = ω0(λd).

Theorem 5.10.The price of anarchy of the SCALE strategy in the case of latency functions in the classLd

is at most
(d+1)zd −αd
(d+1)zd −d

where zd ≥ 1 is the unique solution of the equation zd+1− (d+1)z+ αd = 0.

Proof. We will use Theorem 5.3 withλ = λd. However, in order to apply the theorem, we first need to upper
boundω(αo,λd).

Using Corollary 5.8, we know thatω(αo,λd) ≤ max0≤s≤d ωs(λd). Notice that by Lemma 5.9 (i,iv)
and by definition ofωd, max0≤s≤d ωs(λd) = ωd(λd) = d

d+1 · ((d+ 1)λd)
−1/d = d

d+1 · z
−1
d < 1. This implies

λd ∈ Λ(αo) and we can invoke Theorem 5.3 to obtain a bound on the price of anarchy given by

λd

1−ω(αo,λd)
=

zd
d/(d+1)

1− d
d+1z−1

d

=
zd+1
d

(d+1)zd −d
=

(d+1)zd −αd
(d+1)zd −d

.

A lower bound for polynomial latency functions of degreed can be obtained by generalizing the con-
struction used in Theorem 5.6. We use again the network of Figure 5 (see appendix), except that we replace
everywhere the latency functionx by xd and the constantc by (1− (n−1)α/n)d. The optimal flow is still
split evenly on the direct paths, so that with similar arguments we obtain the following lower bound.

Theorem 5.11. Let n≥ 2 be an integer and let c= (1− (n− 1)α/n)d. Then, the price of anarchy of the
SCALE strategy for latency functions in the classLd is at least

(

nc1+1/d +(n−1)αc
)

/
(

(n−1)c+n−d
)

.

Notice that the theorem does not fixn, so it is possible to optimizen based onα as in Theorem 5.6. For
latency functions inL2 andL3, we compare in Figure 6 (in the appendix) the lower bound thusobtained
with the upper bound of Theorem 5.10.
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x

ℓε(x)

r0 r0 + r1

0

1

r0 +2εr1

1− 1−2ε
1−ε

Figure 3: The latency functionℓε(x) used in the proof of Theorem 3.1.

A Proofs of Section 3

Proof of Lemma 3.4.Let P′
0 be the path(s,s0, p1,q1, p2, . . . , pk,qk, t0, t), and for i ∈ [k], let P′

i be the path
(s,si , ti , t). Consider the feasible flow̄f such thatf̄P′

0
= r0 and f̄P′

i
= r1 for i ∈ [k]. The latency induced bȳf

is 0 on arcs of type A, C, D, E and 1 on arcs of type B. SoC(o) ≤C( f̄ ) = k · r1 = (1+ α)/2≤ 1.

Proof of Lemma 3.5.Consider for example (i). We have

C(g+h) ≥ (ga +ha) · ℓa(ga +ha) = (ga +ha) ·ur0,δ/3k3(ga +ha)

≥ (r0 + δ/3k3) ·M/(δ/3k3) ≥ M ≥ M ·C(o),

where the last inequality follows from Lemma 3.4. Part (ii) is proved similarly.

Proof of Lemma 3.6.Regarding (i), we will prove by induction oni the stronger claim

ga +ha ≥ r0− (2i +1)δ/3k2.

For i = 1, notice that by Lemma 3.5 the flow along each of(s,s1), . . . ,(s,sk) is at mostr1+δ/3k3, so the
flow on (s,s0) must be at least 1−∑k

i=1

(

r1 + δ/3k3
)

= 1−kr1−δ/3k2 = r0−δ/3k2. But the flow on(s,s0)
is the same as that on arc(s0, p1) = (q0, p1). Notice that a similar argument allows also to conclude thatthe
flow on each(s,si) arc (i ∈ [k]) is at leastr1−δ/3k2. This implies (ii) for alli ∈ [k].

To prove (i) fori > 1, consider theith block in the graph (Figure 2) and letf = g+h.
By flow conservation,f(qi ,pi+1) = f(qi−1,pi) + f(s,si) − f(ti ,t). Using induction and Lemma 3.5,

f(qi ,pi+1) = f(qi−1,pi ) + f(s,si)− f(ti ,t)

≥(r0− (2i −1)δ/3k2)+ (r1−δ/3k2)− (r1 + δ/3k3) = r0− (2i +1)δ/3k2.

B Proofs of Section 4

Proof of Lemma 4.1.Consider the flow(1−α)g/α; it is a flow feasible with respect to(1−α)r. Using the
variational inequality (1), we get

∑
a∈A

haℓa(ga +ha) ≤
1−α

α ∑
a∈A

gaℓa(ga +ha).
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Adding ∑a gaℓa(ga +ha) to both sides and usingg = α
β oβ, we obtain

C(g+h) ≤ 1
α ∑

a∈A

α
β

oβ
aℓa

(

α
β

oβ
a +ha

)

=
1
β ∑

a∈A

oβ
aℓa

(

α
β

oβ
a +ha

)

.

Proof of Theorem 4.2.We first show that foreveryarca∈ A,

oβ
aℓa

(

α
β

oβ
a +ha

)

≤
(

α
β

oβ
a +ha

)

ℓa

(

α
β

oβ
a +ha

)

+

(

1− α
β

)

oβ
aℓa(o

β
a). (5)

There are two cases. Whenα
β oβ

a + ha ≥ oβ
a, the inequality holds simply because its left hand side is upper

bounded by the first summand of the right hand side. Otherwise, if oβ
a > α

β oβ
a +ha,

oβ
aℓa

(

α
β

oβ
a +ha

)

≤
(

α
β

oβ
a +ha+oβ

a −
α
β

oβ
a

)

ℓa

(

α
β

oβ
a +ha

)

≤
(

α
β

oβ
a +ha

)

ℓa

(

α
β

oβ
a +ha

)

+

(

1− α
β

)

oβ
aℓa

(

α
β

oβ
a +ha

)

≤
(

α
β

oβ
a +ha

)

ℓa

(

α
β

oβ
a +ha

)

+

(

1− α
β

)

oβ
aℓa(o

β
a).

Summing (5) over alla∈A, we obtain∑a∈Aoβ
aℓa

(

α
β oβ

a +ha

)

≤C(g+h)+
(

1− α
β

)

C(oβ). Invoking Lemma 4.1
we get

β ·C(g+h) ≤ ∑
a∈A

oβ
aℓa

(

α
β

oβ
a +ha

)

≤C(g+h)+

(

1− α
β

)

C(oβ).

Solving forC(g+h) now gives the bound as claimed. The bound is also tight, as canbe seen by considering
a slightly modified Pigou instance (we omit the details).

Proof of Theorem 4.4.Observe that the SCALE strategy forI can be obtained by computing the ASCALE
strategy forI 1/β := (G, r/β, ℓ,α) and scaling it up by a factor ofβ; that is,ĝ = βg, whereg is the ASCALE
strategy forI 1/β. Let h be the Nash flow induced byg in I

1/β. By the variational inequality (1),

∑
a∈A

haℓa(ga +ha) ≤ ∑
a∈A

yaℓa(ga +ha) (6)

for any flow y feasible for(1−α)r/β. Sinceℓa(x/β)/β = ℓ̂a(x), we can rewrite (6) as∑a(βha)ℓ̂a(ĝa +
βha) ≤ ∑a(βya)ℓ̂a(ĝa + βha). This implies thatβh is a Nash flow induced by ˆg in Î . Since the cost of
Nash flows is unique,̂C(ĝ+ βh) = Ĉ(ĝ+ ĥ). Finally, sinceĈ(βx) = C(x) for any flowx, we can conclude
Ĉ(ĝ+ ĥ) = Ĉ(β(g+h)) = C(g+h) ≤C(o) where the inequality follows from Corollary 4.3.

C Proofs of Section 5

Proof of Theorem 5.6.We use the network depicted in Figure 5. There is a single commodity (s, t) with unit
demand. In the optimal flow the demand is split evenly among the paths(s, pi ,qi , t), i ∈ [n]. The resulting
cost isC(o) = (n−1)c+1/n.
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Figure 4: The graphG′
k, used in the proof of Theorem 3.3. Arcs are labeled with theirtype.

The SCALE strategy sends a flow of valueα/n along each direct path(s, pi ,qi , t), i ∈ [n]. Due to the
conditionc = 1− (n−1)α/n, the Nash flow is sent along the zigzag path(s, p1,q1, p2, . . . , pn,qn, t). Thus,
the cost of the combined flowg+h is given by

C(g+h) = n
(

1− n−1
n

α
)2

+(n−1)αc = nc2 +(n−1)αc

and the bound follows.
To see that the bound is tight whenα = 1− 1/k2, pick n = k+ 1 = 1+ 1/

√
1−α. After substituting

the expressions forn andc into the bound and appropriate rewriting we obtain the same expression as in
Theorem 5.5.

Proof of Lemma 5.9.Let λ be such thatωs(λ) = ω0(λ). Assuming thatλ ≤ αs/(s+ 1), ωs(λ) = ω0(λ) is
equivalent to1

α(1− λ
αs) = 1

α(1−λ), which is impossible forα ∈ (0,1). Thusλ > αs/(s+ 1) and s
s+1((s+

1)λ)−1/s = 1
α(1− λ). If we substituteλ = zs/(s+ 1), the last relation becomes equivalent to (4). On the

other hand,λs as defined in (i) satisfiesωs(λs) = ω0(λs). To check that equation (4) has indeed exactly one
solution larger thanα, use for example Descartes’ rule of signs.

Part (ii) follows from (i) and the fact that equation (4) has exactly one solution larger than 1 (again by
Descartes’ rule of signs), implyingzs > 1.

To prove (iii), we now viewλs, as given in (i), as a real function of a real variable, i.e.λs = λ(s). To
show (iii) it is then enough to argue thatλ′(s) ≤ 0 for s∈ [1,d]. In the following we omit the dependency of
λ andλ′ from s to improve readability.

As seen earlier in the proof, the equation (4) is equivalent to s
s+1 · 1

((s+1)λ)1/s = 1
α(1−λ), which is in turn

equivalent to the identity

λ1/s(1−λ) =
αs

(s+1)1+1/s
. (7)

If we differentiate both sides of (7), we obtain

λ1/s(1−λ)

(

− 1
s2 lnλ+

1
sλ

λ′
)

−λ1/sλ′ =
ln(s+1)

s2

αs

(s+1)1+1/s
.

Rearranging terms and substituting αs
(s+1)1+1/s with λ1/s(1−λ), (which is valid by (7)),

λ1/sλ′ · 1− (s+1)λ
sλ

=
1
s2 λ1/s(1−λ) lnλ+

1
s2λ1/s(1−λ) ln(s+1)

and finally after further simplifications

λ′ · 1− (s+1)λ
sλ

=
1
s2 (1−λ) ln((s+1)λ).
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Figure 5: The network used in the proof of Theorem 5.6. Arcs are labeled with their latency function.
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Figure 6: Upper vs. lower bounds for SCALE for latency functions inL2 (left) andL3 (right). The plots
also show the previously best upper bound by Swamy [19].

Using part (ii) of the lemma, the right hand side has to be positive, while the term multiplyingλ′ in the left
hand side has to be negative, again by part (ii). Thus,λ′ < 0.

To prove part (iv), first notice that the functionsωs and ω0 are both continuous and monotonically
decreasing, and in the interval(0,1), they intersect exactly once (inλs). Sinceωs(ε) < ω0(ε) for all suf-
ficiently smallε > 0, we haveωs(λ) ≤ ω0(λ) for all λ ≤ λs. But by (iii), λd ≤ λs, so ωs(λd) ≤ ω0(λd).
Finally, ω0(λd) = ωd(λd) by definition ofλd.
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