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Abstract

In the current work, a novel analytical framework is developed which extends the
general elastic stability theory to certain non-conservative deformation processes
for which an extended total potential energy can be derived. The extended total
potential energy constitutes the governing functional for the non-conservative
deformation processes. The mechanical systems considered are described by
a set of generalized coordinates. The framework enables the semi-analytical
modelling of structural stability phenomena while considering material damage
and its propagation. With the aid of the analytical framework, the problems of
delaminated multi-layered composite struts and plates subjected to compressive
in-plane loading are investigated. The modelling approaches developed constitute
highly efficient engineering tools which require tremendously less computational
cost than standard finite element simulations. Qualitatively and quantitatively
substantial and conclusive results are obtained where the post-buckling behaviour
deviates up to 5% and the growth characteristics up to 12% from the respective

finite element simulations.
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Kurzfasssung

In der vorliegenden Arbeit wird ein analytischer Formalismus entwickelt, welcher
die allgemeine elastische Stabilitédtstheorie dahingehend erweitert, dass nicht-
konservative Deformationsprozesse, die die Herleitung eines erweiterten Gesamt-
potentials ermoglichen, beriicksichtigt werden kénnen. Das erweiterte Gesamt-
potential ist ein Funktional zur Beschreibung der nicht-konservativen Prozesse.
Die in der Arbeit untersuchten mechanischen Systeme werden mit generalisierten
Koordinaten beschrieben. Der entwickelte Formalismus ermoglicht die Analyse
strukturstabilitdtsrelevanter Phdnomene unter Beachtung von Materialschaden
und deren Ausbreitung. Mit Hilfe dieses Formalismus werden delaminierte Kom-
positmehrschichtverbundstiitzen und -platten unter axialer ebener Druckbelastung
untersucht. Die Modellierungsansétze sind hocheflizient, so dass verglichen mit
gewbhnlichen Finite-Elemente-Simulationen signifikant weniger Rechenaufwand
benotigt wird. Das Ergebnis sind qualitativ und quantitativ schliissige und
aussagekriftige Resultate, die im Vergleich zu Finite-Elemente-Simulationen Ab-
weichungen von bis zu 5% hinsichtlich des postkritischen Verhaltens und von bis

zu 12% beziiglich der Schadenscharakteristiken aufweisen.
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1 Introduction

Structures which are part of lightweight constructions fulfil, amongst other items,
the following criteria: slenderness and functional optimization. A special group of
lightweight structures complying with the above-mentioned criteria are layered
composites such as struts, plates and shells, which are focused upon in this work.
The criterion slenderness applies, if a certain ratio between effective length and
gyration radius is fulfilled. Slender structures, once loaded under axial compression,
are specifically prone to buckling, i.e. the loss of stability forcing a system to leave
its current equilibrium path.

The buckling and post-buckling behaviour of composite struts and plates de-
scribes a main area of ongoing structural stability research. However, particularly
the use of composites requires the consideration of material damage and failure.
The layered construction and the heterogeneity give rise to various damage mech-
anisms and hence inelastic deformations, which might have an influence on the
stability behaviour. Therefore, the possibility of inelastic deformations has to be
considered in a structural stability analysis.

The necessity to include material failure into the stability analysis of structures
becomes apparent when considering the well-known problem of a delaminated
multi-layered composite strut under compressive loading as shown in Fig. 1.1.
The post-buckling behaviour, as predicted by assuming a conservative process,
might be significantly altered if damage growth is considered. Thus, instead of a
stable post-buckling response, the structure could fail under unstable delamination

growth.

Fig. 1.1: Simply-supported composite strut with a through-the-width delamination.

In the monograph [94], THOMPSON and HUNT propose a highly regarded and
well established general elastic stability theory. However, the theory of THOMPSON
and HUNT and ensuing textbooks related to elastic structural stability, e.g. see

[4, 33, 95], focus on conservative, i.e. non-dissipative, processes which limits the



1 Introduction 1.1 General elastic stability theory

applicability. Thus, it stands to reason to turn towards a structural stability
analysis of structures prone to buckling and damage propagation by deriving an
extension of the theory described in [94].

This is achieved in the current work by extending the energy formulation while
keeping the benefits from the formalism of THOMPSON and HUNT. As a result, an
analytical framework is presented in which structural stability analysis and damage
propagation are combined into a single formulation allowing the modelling of
stability phenomena of certain inelastic deformation processes. The framework is
applied to the problem of delaminated composites loaded under axial compression.
Deformation paths and their stability are readily modelled for entire loading
processes comprising elastic and inelastic deformation.

Before presenting the analytical framework and its application, the fundamentals
used to derive the framework are described within the introductory chapter. First,
main aspects of the general elastic stability theory of THOMPSON and HUNT are
reviewed. Then, the concept of deriving strain energy-like potentials following
SCHAPERY is presented. The introduction closes with the research objective and

an outline of the thesis.

1.1 Fundamentals of the general elastic stability
theory of Thompson and Hunt

In the well-established textbooks [94, 95], THOMPSON and HUNT propose a general
non-linear mathematical theory of elastic stability of conservative! mechanical
systems described by a finite set of generalized coordinates. A LAGRANGIAN

energy formulation, i.e.
L(4i, i) = K(di, q:) — V(i) (1.1.1)

is employed in which ¢; are the generalized coordinates describing the spatial
configuration of the system, with ¢ = 1,2,...,1. In Eq. (1.1.1), the kinetic energy
is denoted by K and the total potential energy of the system by V.2 A dot implies
differentiation with respect to time. Since both monographs of THOMPSON and
HuNT [94, 95] as well as the present work are concerned with statical equilibrium,
the kinetic energy function is of no further interest for the subsequent text.

The mechanical system is in a statical equilibrium state if the first variation of

L Gyroscopic systems which also conserve energy are not considered in [94, 95] and in the
current work.

2V is referred to as the total potential energy to underline that it comprises both inner
potential and outer potential. The inner potential is the deformation energy of the system
and the applied forces can be derived from the outer potential.



1 Introduction 1.1 General elastic stability theory

the total potential energy vanishes, i.e. the total potential energy is stationary
with respect to the generalized coordinates. This can be easily proved by the
calculus of variation yielding the balance of linear (or angular) momentum and
vice versa [66]. In the matter of the discrete coordinate approach, the condition

for equilibrium can be written as

v
5 =Vi=0 (1.1.2)

Eq. (1.1.2) is formulated in [94] as one of two fundamental axioms for the general

elastic stability theory and reads as follows.

Axiom 1: A stationary value of the total potential energy with respect to the

generalized coordinates is necessary and sufficient for the equilibrium of the system.

Regarding the stability of an equilibrium state, THOMPSON and HUNT formulate

a second axiom.

Axiom 2: A complete relative minimum of the total potential energy with respect
to the generalized coordinates is necessary and sufficient for the stability of an

equilibrium state.

The second axiom can be visualized by the so-called rolling ball analogy shown
in Fig. 1.2 in which, for demonstration and illustration purposes, total potential

energy profiles for three distinct two-degree of freedom systems are illustrated.

1% Vv
IO Q
q2 q2 q2
q1 q1 q1
(a) (b) (c)

Fig. 1.2: Rolling ball analogy; (a) local minimum (stable), (b) local maximum (unstable),
and (c) saddle point (unstable).

For each profile in Fig. 1.2, the grey-shaded ball rests at the point where the
total potential energy is stationary, thus at an equilibrium state. Following the

second axiom, the behaviour of the total potential energy in the neighbourhood
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of the respective equilibrium states determines whether the equilibrium state is
stable or unstable. The profile of the total potential energy shown in Fig. 1.2a
describes a complete local minimum which indicates a stable equilibrium state.
Small perturbations of the equilibrium state illustrated by perturbing the grey-
shaded ball do not cause the system to leave ultimately its equilibrium state;
the system will remain in the vicinity of the equilibrium state for all time.?> The
profiles in Fig. 1.2b and Fig. 1.2c¢ exhibit a local maximum and a saddle point
respectively, so that following Axiom 2 the equilibrium state is unstable. Small
perturbations force the system to leave ultimately its current equilibrium state.

This concept can be readily mathematically implemented by studying higher
order derivatives of the total potential energy. Unless the system is in a critical
state, i.e. a change in stability occurs as for a bifurcation point or a limit point,
the second order derivatives of the total potential energy at an equilibrium state
(¢F), thus

oV
= Vll;j,
0q;0q; g

(1.1.3)

determine whether the equilibrium state is stable or unstable. Positive-definiteness
of the matrix VZ? indicates stable equilibrium and negative-definiteness unstable
equilibrium. At a critical state, the matrix VZ‘JE becomes singular, thus the stability
cannot be determined by the second derivatives. To study the stability of critical
states, higher order derivatives need to be evaluated.

Next, with the aid of an equilibrium path, main aspects of the total potential
energy formalism are reviewed. Fig. 1.3 shows an equilibrium path of a one-degree
of freedom system in terms of prescribed load against generalized coordinate. The
prescribed load is denoted by the loading parameter A which may be understood
as any basic parameter whose influence is aimed to be studied [94]. An obvious
choice for a loading parameter are prescribed forces or prescribed displacements.
However, an elastic modulus or a characteristic length may also be used [94].

Fig. 1.3 also shows the corresponding contours of the total potential energy
for certain values of the prescribed load (AL, A', A1), On the equilibrium path
the total potential energy must be stationary which is fulfilled for A! and A
Regarding A, no local equilibrium state exists for the ¢ examined in Fig. 1.3 as

the total potential energy does not exhibit a stationary point.

3 This follows an intuitive illustrative concept. A general definition of stability is given by
LYAPUNOV, see for instance [54, 60]. Briefly summarized, a deformation state gr (t) is stable
when the variations d¢;(t) satisfy |dg;(t)| < e for ¢ > to if |d¢i(to)| < n(e) holds at the initial
time to where € and 7(e) are arbitrary small positive numbers [60].
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A
AL V(Q1) AT h\\\‘\u
pu V(Q1) Al
Vig) .
AL N m\j

q1

Fig. 1.3: Equilibrium path of a one-degree of freedom system with corresponding total
potential energy contours; adopted from [94].

Next, the stability of the system under certain prescribed magnitudes of load
may be analysed. Stable equilibrium is indicated in Fig. 1.3 by a solid line and
unstable equilibrium by a dashed line. A complete local minimum of the total
potential energy is given for the solid line as can be exemplarily seen at Al. The
stability of the equilibrium path changes at A!! highlighted by the symbol “o” in
Fig. 1.3. This deformation state describes a critical equilibrium state referred to as
a limit point or a saddle-node bifurcation. At the limit point, the total potential
energy has a horizontal point of inflexion. Studying higher order derivatives of the
total potential energy yields that such a critical equilibrium state is unstable. On
the subsequent unstable equilibrium path (dashed line) the total potential energy
exhibits a local maximum for the respective prescribed loads. This is illustrated
in Fig. 1.3 for the prescribed load Al. Other phenomena comprising the loss of
stability of a fundamental equilibrium path are stable and unstable symmetric and
asymmetric bifurcation points. Such phenomena are discussed in detail in [94, 95]
and relevant aspects for the buckling and post-buckling behaviour of composite
struts and plates are summarized in Chapters 3 and 4.

THOMPSON and HUNT consider the dependency on the respective prescribed
load input by defining the total potential energy, such that

V =V(g, ), (1.1.4)
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in which A denotes the loading parameter. Assuming a load input in the form of a

prescribed conservative force P, the total potential energy can be written as
V =V(agi, P) = W(a) — PE(q:). (1.1.5)

where W describes the strain energy of the system and the second term on the
right hand side in Eq. (1.1.5) is the work done by the applied forces. The conjugate
displacement to the prescribed force P is denoted by &.

Despite using a discrete coordinate approach, the formalism may also be effi-
ciently applied to non-linear elastic continua by employing continuous mode-forms
as in RAYLEIGH-RITZ analyses. Therefore, the response of the mechanical system
is, in general, approximated by a finite modal analysis [94]. Thus, continuous
mechanical systems may be described and analysed by means of the discrete
coordinate approach employing generalized coordinates. Within the current work,
such continuous mode-forms are used for modelling the buckling and post-buckling

behaviour of delaminated composite struts and plates.

1.2 Work potentials following Schapery

The theory for deriving so-called work potentials or strain energy-like potentials
was proposed by SCHAPERY [55, 82, 83]. A work potential is to be understood
as a constitutive potential characterizing the mechanical behaviour of a given
structure with growing damage. The subsequent review of the theory strongly
follows the work of SCHAPERY in [82, 83].

As pointed out by SCHAPERY, deformation processes comprising inelastic be-
haviour are—in general—path dependent, i.e. the total work of deformation does
not obey a potential. However, there exist certain deformation processes, such
as micro and macro-cracking in composites [55, 82] and ceramics [83], as well as
metal-like inelasticity (plastic slip) [80, 83|, which exhibit path independence for
at least limited deformation paths. For such processes, a potential formulation
may be derived.

As an introductory example, consider an elastic material with a certain state
of damage defined by a set of damage parameters Dy with £k =1,2,..., K. For a
constant state of damage, the strain energy density w is a constitutive potential,
thus

Gw(Eij, Dk)

8Eij Dk’

5, (1.2.1)

where S;; and E;; are the components of the SECOND PIOLA-KIRCHHOFF stress
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tensor and the GREEN—LAGRANGE strain tensor respectively considering geomet-
rically non-linear behaviour.? Since isothermal processes are considered, the strain
energy density w is the HELMHOLTZ free energy density which is a well-known
thermodynamic potential of the stresses. The derivation of the strain energy
density from the first and second law of thermodynamics is described in Appendix
A.

Next, assume that the damage parameters D, change with time® as a result
of straining. In order to characterize the effective constitutive behaviour the
relationships governing these changes must be determined. If these changes are
known, then the parameters Dy may be expressed in terms of the instantaneous
strains Ejj, i.e. Dy (E;;). Following SCHAPERY [82], if the damage parameters are
found as functions of the strains, a strain energy-like potential @ may be found

from which the constitutive equations can be derived by differentiation, i.e.

0w (E;j, Di(Eij))
8Eij ’

Sij = (1.2.2)
where w is a constitutive potential which depends on the instantaneous strains

only but accounts for changing damage.

1.2.1 Illustrative one-dimensional example

To provide an illustration for the existence of work potentials, a simple example,
as given in [82], is reviewed. Therefore, a one-dimensional deformation path,
shown in Fig. 1.4, is considered. In contrast to the general theory that follows,
this example does not require the consideration of thermodynamic principles and
thus should just be regarded for illustration purposes.

In Fig. 1.4, the stress—strain curve (o wvs. €) consists of a loading and an
unloading path. The material—supposed to be undamaged in its initial state—is
monotonically strained up to a certain maximum strain €, associated with growing
damage within the specimen. Subsequently, the specimen is unloaded. Elastic
behaviour and constant damage is assumed during unloading. Hence, the stress
during unloading o, is a function of the instantaneous strain € and the maximum

strain occurring during loading &,,, thus

on = f(,em). (1.2.3)

4 For geometrically linear behaviour S;; would be the CAUCHY stress tensor o;; and E;; the
infinitesimal strain tensor €;;.

5 Herein, time is not strictly understood as the natural time. Regarding quasi-static processes,
time may be any scalar parameter defining the change of the response of the system from
one loading step to another.
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Fig. 1.4: Uniaxial stress—strain curve of an elastic material with increasing damage
during loading and constant damage during unloading; adopted from [82].

Regarding the strain energy density w, the maximum strain serves as a measure
of the amount and effect of damage, i.e. defines the respective current state
of damage, thus Dy = D; = ey, and w = w(e,ey). The unloading path is
characterized by the constant damage parameter . However, during loading
damage changes with time—from one loading step to another—as a result of
straining. In order to derive a constitutive potential as shown in Eq. (1.2.2), the
damage parameter £, needs to be expressed in the terms of ey, ().

As can be seen in Fig. 1.4, the loading stress o7 is also the upper end of an
unloading curve (unloading stress o). Hence, the loading stress can also be
expressed with the function f considering that on the loading curve the maximum

strain is the current strain, i.e.:
o= f(e,em = €). (1.2.4)

The mechanical work density during loading w; and unloading w, can be de-
termined using Eqs. (1.2.3) and (1.2.4) by integrating the function f over the

respective strain path, thus
&€ 3
wy = / f(g,é)de and wy = wy(e =em) + / f(€,em)dé. (1.2.5)
0 €m

It should be noted that as damage increases during loading (accounts for inelas-
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ticity) the mechanical work w) is not equal to the strain energy density.
Following Eq. (1.2.5), a function w* can be defined which equals w; during

loading and w, during unloading. Hence, the constitutive equation describing the

one-dimensional behaviour of an elastic material with growing damage may be

expressed as

_8w*
- 9e ]

o (1.2.6)

where w* is the work potential or strain energy-like potential and the net work to

the material at any stage of loading or unloading.

1.2.2 General theory

Following SCHAPERY [83], in order to establish a general condition for deriving a
work potential, the systems investigated are described in terms of generalized forces
A,, and generalized displacements «,, with m = 1,2,..., M.5 The generalized
displacements are treated as being independent herein, however, systems which
are exposed to independent generalized forces or independent generalized forces
and displacements may also be considered.

It is assumed that a strain energy function W = W (aym, &) exists,” for all

processes of interest, such that

oW
= e (1.2.7)

&k

Am

where & (kK = 1,2,...,K) are the only thermodynamic state variables besides
o, needed to account for changes in the strain energy [83]. The parameters &
completely describe the given state of damage in a structure and comprise the
damage parameters Dy of the introductory example; however, they also allow for
a more general interpretation regarding changes in structure such as geometry of
individual micro and macro-cracks or statistical averages, void volume, degree of
molecular entanglements, crosslinking or crystallinity [83]. The parameters {, are
commonly referred to as internal state variables following RICE [80]. SCHAPERY
proposes the terminology structural parameters. However, in order to distinguish
the terminology from the general structural stability analysis & is referred to

damage parameters in the subsequent text.

% The notation is changed in comparison with [83] to provide a clear distinction between the
generalized displacements and generalized coordinates.
7 Of. Appendix A.
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First, consider the work done during an actual® deformation process which can

be written as
Wtot = /Am dOém, (128)

where W, describes the total work of deformation. In contrast to the strain
energy, Eq. (1.2.8) describes the work done when changes in structure occur.

Evaluating the total derivative of the strain energy yields

- ow
 Oayy,
&k

ow

dw —_—
Ok

d&p, (1.2.9)

Qam

doy,, +

where the first partial derivative gives the generalized forces A,, (¢f. Eq. (1.2.7))

and the second derivative may be expressed by a set of parameters fi, such that

ow

fk:_T&

(1.2.10)

Qm

describes the change of the strain energy with respect to the kth damage parameter.

9 available for

The parameters fi may be understood as thermodynamic forces
producing a change in structure [80, 83]. Thus, Eq. (1.2.9) can be rewritten in

the form of
dW = A, dau, — fr dég. (1.2.11)

Note that if no change in damage occurs (d§; = 0), the expected relation
dW = dW,y is obtained. Rearranging Eq. (1.2.11) and integrating from an
arbitrary state (ag),fg)) at time 1 along the actual path to the current state

(ama gk) yields
AWM:W—WW+/h%k (1.2.12)
1

Here, it should be noted that any changes in structure need to satisfy the second
law of thermodynamics [65], i.e only those changes in & are possible which

correspond with a non-negative entropy production rate . This reads, in terms

8 An actual deformation process is understood as one in which the damage parameters & vary
in time in accordance with the appropriate constitutive equations governing their changes
[83].

9 The change in energy associated with a change in damage is often referred to as force which
is adopted in the present work.

10
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of the processes considered,
felk =TS >0, (1.2.13)

where T is the temperature. Thus, Eq. (1.2.12) may be rewritten, so that

AWigp =W — WO 4 /t TS dt, (1.2.14)
t1
from which it is shown that the latter term in Eq. (1.2.12) is never negative.

It should be stressed that fi is a function of the independent generalized
displacements and the damage parameters, i.e. fi = fr(am,&k). Thus, the total
work of deformation, as stated in Eqgs. (1.2.12) and (1.2.14), cannot be expressed
in the form of a work potential yet.

The requirement so that the total work of deformation may be expressed in
the form of a work potential is reviewed next. This is based on the assumption
that whenever &, # 0, i.e. a change in structure occurs (regarding quasi-static

processes from one loading step to another), the condition

oWy

fk_Ték

(1.2.15)

holds, in which Wy may be referred to as work of structural change. On the
contrary, it is assumed that if Eq. (1.2.15) is not satisfied for any given &, then
€, = 0.10 Tt is further assumed that the work of structural change is a function
depending on the damage parameters only, i.e. Wq = W4(&x). Thus, Wy is a
state function. If Eq. (1.2.15) holds, then the total work in Eq. (1.2.12) is also a
state function. Substituting Eq. (1.2.15) into Eq. (1.2.12) and taking W = 0 and
W4 = 0 for a chosen reference state (previously denoted with (1)), the total work

can be expressed as,
Wiot = W + Wy. (1.2.16)

In the view that fj is the thermodynamic force available for producing changes in
the corresponding damage parameters, the quantity 0W4/9¢, may be regarded as
the force required for these changes. Further it is assumed that all active, i.e. non-
constant, damage parameters §, (1 < a < k) may be derived from Eq. (1.2.15)

as functions of time-varying or constant o, assuming that Eq. (1.2.15) provides

10 This describes a theoretical condition to construct the work potential theory formulated
by SCHAPERY. It should be treated with care once applied to deformation processes. It
should not be assumed a priori that this condition is fulfilled. The study of the behaviour of
the parameters fj during the respective deformation processes determines whether a work
potential may be derived or not.

11
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a unique solution, differentiable in «,,, at least if processes are suitably limited
[83]. As a consequence, Eq. (1.2.15) may be considered as an evolution law for the
damage parameters and it constitutes the sufficient condition for deriving a work
potential. By substituting &, (., ) into Eq. (1.2.16) the total work of deformation

is a function of the independent generalized displacements only, such that

Am _ aVVtot

. 1.2.17
oy, ( )
in which Wit describes a true constitutive potential of the generalized forces.
Next, it is also shown that if Eq. (1.2.15) holds, the total work of deformation
is stationary with respect to the active damage parameters. Therefore, the
total work Wiet (Eq. (1.2.16)) is differentiated with respect to the active damage

parameters,11

OWiot  OW  OWy
= =0 1.2.18
8§a 8§a + 8§a ) ( )
where Eqgs. (1.2.10) and (1.2.15) have been used. Eq. (1.2.18) shows that if

Eq. (1.2.15) holds, the total work of deformation is stationary with respect to the

damage parameters. Subsequently, the stability of the deformation state regarding
a change in structure is investigated for any given state of loading (prescribed

Q), t.e. introducing small changes d§, to Wiot. Writing Wio as a TAYLOR series

yields
oW, 10*W,
Wior (€ +060) = Wiot(§a) + =56 060 + 5 5252060 86 + O(3), (1.2.19)
_(;l a A

Rewriting Eq. (1.2.19) leads to

1 62 Wtot
2 06,08,

PW Wy
9808, €08,

Har

AVVtot =

5E, 56,+0(3) = % ( ) 50 56,+O(3), (1.2.20)

in which H,, determines whether the deformation state is stable or unstable with
respect to a change in damage. A stable state is given if the matrix H,, (evaluated
at the reference state) is positive-definite, thus the total work exhibits a local

minimum. Otherwise, it is unstable.

11 Note that the damage parameters are not expressed in terms of the generalized displacements
for evaluating stationarity and stability.

12
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1.3 Research objective

The advantages associated with employing the theory of THOMPSON and HUNT
for structural stability analyses are manifold. Its discrete approach implementing
generalized coordinates enables exploratory studies of yet not fully understood
mechanical systems and deformation mechanisms in such a way that specific
phenomena may be added separately to a model description. This provides
the possibility to either focus on certain phenomena assumed to have a major
influence on a structure’s response or to develop geometric models of increasing
accuracy regarding the “real-world” deformation behaviour. This in turn enables
the restriction to a specific finite—in many cases small—amount of generalized
coordinates required to capture most phenomena of interest.

As an outcome, most applications of the theory of THOMPSON and HUNT
provide highly efficient models for structural mechanics problems. Such freedom
regarding the development of appropriate model descriptions applies for purely
discrete systems, e.g. see [29, 31, 100, 101, 103, 113], and systems in which
continuous mode-forms are implemented, e.g. see [6, 7, 19, 20, 30, 31, 32, 99, 102].

The current work aims at removing a major limitation of the theory of THOMP-
SON and HUNT—its restriction to conservative deformation processes. In many
structural applications, specifically since the increasing use of composite materi-
als, the stability behaviour is strongly affected by material defects and damage
propagation. Deformation processes associated with structural and material in-
stability are nowadays entirely investigated by means of purely numerical studies
such as finite element simulations, e.g. [26, 27, 58, 68, 69, 92]. Regarding such
applications, to the authors knowledge, analytical or semi-analytical models do
not exist.

The analytical framework developed in the current work fills this gap. Stability
phenomena considering damage growth are modelled by a set of generalized
coordinates only. Therefore, the theory of THOMPSON and HUNT and features
of the theory for deriving work potentials are merged which allows to analyse
the structural stability, the damage propagation and the stability of the damage
propagation efficiently.

With the aid of the framework, delaminated plated composite structures sub-
jected to in-plane compressive loads are investigated in the present work. De-
formation paths beyond the elastic limit are modelled. Thus, the framework
enables the analysis of the structural stability behaviour of such structures once
damage growth is initiated in a highly efficient manner. This adds valuable insight
regarding the structural stability and the damage growth behaviour of delaminated

composite structures.

13
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1.4 Outline of the thesis

The main body of the thesis starts in Chapter 2 in which the analytical framework
developed to model the structural stability behaviour of damageable structures is
presented. The fundamentals to this framework have been introduced in Sections
1.1 and 1.2.

The framework distinguishes whether a deformation process is purely elastic
(reversible) or contains inelastic deformations (irreversible). Hence, the first
two parts of Chapter 2 are concerned with reversible and irreversible processes
respectively. So long as the system exhibits elastic behaviour, i.e. all damage
parameters remain constant, the theory of THOMPSON and HUNT is employed.
The governing functional is the total potential energy II.'? The variational
principle, 6II = 0, is used to obtain the deformation paths in the conservative
(non-dissipative) range.

For the irreversible processes, a novel governing functional II*—the extended
total potential energy—is derived. Therefore, first, the derivation of the damage
parameters as functions of the generalized coordinates and the load parameters is
elucidated. The extended total potential energy is a functional of the generalized
coordinates only. The deformation path during the non-conservative process
is obtained by a variational principle 6II* = 0. The damage propagation is
determined by inserting the deformation path obtained in the functions derived
for the respective damage parameters.

In the third part of Chapter 2, a structural stability analysis formalism which
considers damage propagation is presented. The formalism provides a summary of
the analytical framework and delineates the modelling steps required to determine
the structural stability behaviour of damageable structures.

Chapter 3 presents the first application example of the analytical framework.
The non-linear buckling behaviour of delaminated composite struts is investigated.
The chapter commences with an overview of characteristic buckling phenomena
of struts and the current state of research regarding the buckling and damage
behaviour of delaminated struts loaded under in-plane compression. It becomes
obvious that there is a lack of analytical or semi-analytical modelling capable of
describing post-buckling responses beyond the state where delamination growth
is initiated which is thus far solely modelled by finite element simulations.

In the second part of Chapter 3, the geometric model used to describe the
buckling behaviour of the composite strut is presented. The non-linear buckling
response and the damage propagation of multi-layered struts are modelled by four

generalized coordinates only. Continuous mode-forms as part of a RAYLEIGH-RITZ

12 Tn the upcoming chapters, it will be strictly distinguished between the total potential energy
functional IT and the total potential energy function V' (c¢f. Section 2.1).

14
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formulation are implemented. Characteristic buckling responses for non-growing
delaminations are presented and analysed. Results obtained for the reversible
buckling behaviour are compared with findings provided within the literature.
Results considering delamination growth are compared with finite element simula-
tions using the commercial software package ABAQUS [93]. The study provides
detailed insight into the non-linear buckling phenomena of delaminated composites
without the restriction of non-growing delaminations. The chapter closes with a
critical discussion about the results obtained and the model implementation.

Chapter 4 deals with another type of delaminated composite structures. Whereas
the delaminated composite strut is mainly analysed to describe and obtain fun-
damental aspects of delamination buckling and buckling-driven delamination
propagation, the composite plate with an embedded delamination illustrates an
example closer to “real-world” applications. First, characteristic buckling phe-
nomena of plates and pre-existing studies regarding the deformation behaviour
of composite plates with an embedded delamination loaded under in-plane com-
pression are reviewed. Second, the geometric model is presented. The description
of the system with a set of generalized coordinates contains several obstacles
which are reviewed. The amount of generalized coordinates required to model
the buckling responses efficiently is determined. As performed in Chapter 3, a
RAYLEIGH-RITZ formulation is applied approximating the displacement field.

Non-linear buckling responses for a fully clamped composite plate with an
embedded elliptical delamination are presented and discussed. The derivation
of the damage parameter in terms of the generalized coordinates and the load
parameter is presented. Results for the conservative and non-conservative range
are compared with finite element simulations using ABAQUS. A critical discussion
regarding the assumptions made and the delamination growth characteristics
enabled by the model description closes Chapter 4.

Chapter 5 is concerned with a general discussion regarding the analytical frame-
work and its application to the problems studied in Chapters 3 and 4. The
general applicability of the framework is reviewed by means of theoretical consid-
erations and the insight obtained from both application examples. Furthermore,
requirements regarding appropriate model descriptions are discussed in detail.

The thesis closes with Chapter 6. It summarizes main aspects of the analytical
framework and the two application examples from which conclusions are drawn
with respect to the novelty and significance of the work as well as the applicability
of the framework. Further work regarding the analytical framework and future

application examples is outlined.
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2 An analytical framework for the
structural stability analysis of

damageable structures

Within this chapter, an analytical framework for the structural stability analysis
of mechanical systems prone to instability and damage propagation is developed.
Mechanical systems which can be described by I generalized coordinates ¢;, M
loading parameters \,,, and K damage parameters (internal state variables) & are
considered. The loading parameters are in the form of prescribed forces A,, or
prescribed displacements «,,. It is assumed that the systems contain an arbitrary
pre-existing state of damage which can be defined by the K damage parameters.
The framework subdivides the deformation processes to be investigated into two

parts:

o deformations in which all damage parameters remain constant (conservative

process) and

o deformations in which at least one damage parameter evolves from a loading

step to another (non-conservative process),

whereby it is not required that both types of deformation occur during a process.
In the present work, the terminology conservative and non-conservative is strictly
related to elastic, thus reversible, deformations and inelastic, thus irreversible,
deformations respectively.

With the aid of the deformation paths shown in Fig. 2.1, the separation into
reversible and irreversible deformation processes, as well as the uncertainty regard-
ing the deformation behaviour in the inelastic region, is visualized. For illustration
purposes, a system subjected to a single prescribed load A is considered. Initially,
the deformation path is reversible but not necessarily linear. At the deformation
state described by (a, A?), inelastic deformation is caused. The dotted line in
Figs. 2.1a and 2.1b indicates the system’s response if purely elastic deformations
were present (omitting damage growth). The dashed lines illustrate possible actual
deformation paths considering inelastic deformations. Thus, in Figs. 2.1a and 2.1b,

the area beneath the prescribed load vs. displacement curve (actual deformation
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paths) describes the total work of deformation. Up to the deformation state
(%, AY) indicated by the symbol “o” the total work of deformation is equal to the

1G]
[¢]

strain energy. Thus, the symbol illustrates the deformation state where the

conventional elastic stability theory loses its validity.
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Fig. 2.1: Equilibrium paths for processes with a reversible (solid lines) and an irreversible
part (dashed lines); (a) stable response in the inelastic region; (b) unstable
response in the inelastic region; hypothetical reversible paths are indicated by
dotted lines.

The stability of the equilibrium states during inelastic deformation can be
examined from Figs. 2.1a and 2.1b. Whereas the deformation path in Fig. 2.1a is
stable beyond the state where damage growth occurs, the path shown in Fig. 2.1b
is unstable. In Fig. 2.1b, the deformation state at (a’, A°) describes a limit
point from where the equilibrium loses its stability which has been elucidated in
Section 1.1.

As discussed in the introductory chapter, quasi-static deformation processes
are investigated throughout this work. Such a process is to be understood as a
sequence of statical equilibrium states characterized by monotonically varying
magnitudes of the prescribed loading parameter(s), such as the applied forces A,,.
In general, the deformation path and its stability are determined with respect to
changes in the physical quantities of interest from one loading step to another,
i.e. in rate form. The governing functional depends on the velocity field (e.g. see
[24, 74]), whereby velocity is understood as the change of the deformation state
with respect to a monotonically varying loading parameter or a characteristic
geometric parameter [24].

On the other hand, so long as purely elastic deformations occur, the same defor-

mation path can be obtained by evaluating distinct prescribed magnitudes of the
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loading parameter which are independent from each other, i.e. they do not follow
a specific loading regime. Regarding the stability of statical equilibrium states
and the deformation path itself, there is also no need to differentiate between a
sequence of statical equilibrium states and statical equilibrium states correspond-
ing to sets of independent magnitudes of the loading parameter. This is easily
understood by recalling that the work of deformation is strictly path independent
during elastic deformation. Thus, a perturbed process remains on the actual
deformation path which is also obtained by a set of distinct magnitudes of load
input. As a consequence, it is not necessary to describe the deformation process
in rate form. Thus, in the elastic range, the deformation path corresponding to
consecutive but independent magnitudes of loading constitutes the response of
the system during a quasi-static process.!

This does not necessarily hold when inelastic deformations are present since the
total work of deformation is, in general, path dependent. Hence, the change from
one loading step to another becomes relevant, 7.e. the rate form of the physical
quantities of interest, and therefore distinct independent magnitudes of load input
do not adequately describe the deformation behaviour. However, as described
in Section 1.2, if the processes investigated are, at least in a limited sense, path
independent, then the total work of deformation obeys a potential. Therefore, a
description of such deformation processes in rate form is also not necessary.

Concluding the introductory thoughts, emphasis is placed on distinguishing
between deformations with constant (reversible processes) and changing damage
parameters (irreversible processes) as this is how the framework is set forth in the

following.?

2.1 Reversible processes

For purely elastic deformations, the framework follows the total potential energy
formalism of THOMPSON and HUNT described in [94]. The possibility of multi-
ple independent load parameters is taken into account which is not specifically
considered in [94] but which does not affect the theory to determine equilibrium
states and their stability as described in Section 1.1. However, it plays a role in
defining critical states such as limit and bifurcation points for which HUSEYIN

[33] provides detailed explanation.

L Ref. [94] applies both possibilities in order to derive post-critical deformation paths for
quasi-static deformation processes in the elastic range. First, distinct, for instance critical,
deformation states are determined and subsequently the deformation path is derived by
evaluating the response of the system for a change in the loading parameter, for instance
with the aid of a TAYLOR series.

2 Main aspects of the analytical framework developed in the current chapter are also described
in the work [48] of the author.
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In the following chapters, changes in the notation in comparison with Section 1.1
are implemented. This is done to draw attention specifically to the upcoming
applications in which deformable continuum bodies are studied. Thus, the total
potential energy is a functional IT of the displacement field u; = {u,v,w}T (in

terms of a CARTESIAN coordinate system), thus

T(u;) = /F (mu g;‘:f) av, (2.1.1)
J

\%4

where F' can be regarded as the total potential energy density. If the boundary
is subjected to prescribed displacements, F' is the strain energy density w. For
illustrative purposes, in terms of linear elastic behaviour and the assumption of

infinitesimal strains,® Eq. (2.1.1) can be rewritten such that

1
H(u,-)—/2a,-jejidV— /tiuidA (2.1.2)
Vv oVi

where 0;; are the CAUCHY stresses, €;; the infinitesimal strains and ¢; the surface
tractions. The first part of Eq. (2.1.2) is the strain energy and the second part
describes the work done by the surface tractions.*

By employing the discrete coordinate approach in the form of a finite set of
continuous mode-forms, for instance as in a RAYLEIGH—RITZ formulation, the
displacement field u; is, in general, approximated and expressed in terms of the
generalized coordinates ¢g; and the respective mode or shape functions depending on
the spatial coordinates xy, thus u; =~ @;(xy, ¢;). However, as the continuous mode
or shape functions are fixed, i.e. the magnitude of the displacement depends on
the generalized coordinates only, the approximated displacement field is generally
expressed as 1; = ;(g;). Therefore, the total potential energy can be written in

terms of the generalized coordinates rather than the displacement field, i.e.:

H(qi) = /w(qi) dV — /tjﬂj(qi) dA, (2.1.3)

Vv oy

where II may still be regarded as the total potential energy functional and therefore
the notation for continuous descriptions is adopted henceforth. It should be noted
that in Eq. (2.1.3), w denotes the strain energy density and the displacement field

uj in the work done by the surface tractions is replaced by ;.

3Eq. (2.1.2) can be readily rewritten in terms of geometrically non-linear behaviour using
the reference configuration as well as the SECOND PIO0LA-KIRCHHOFF stresses S;; and the
GREEN-LAGRANGE strains E;; instead of o;; and €;; respectively.

4 Since body forces are not considered in the current work, the work done by the body forces
is omitted in the total potential energy II in Eq. (2.1.2).

19



2 Analytical framework 2.1 Reversible processes

On the other hand, the specific characterization of the respective loading
parameter is adopted from [94], such that IT = II(g;, A). However, the dependence
of the functional on the generalized coordinates only remains unaffected.

The notation V will be used in the subsequent passage to refer to a thermo-
dynamic state function characterizing an isothermal reversible process in terms
of a force measure A,,. This function is referred to as the total potential energy
function which is a potential of the conjugate displacements to the prescribed
forces. The total potential energy function can be directly deduced from the

well-known thermodynamic state functions,

qf) = gf)(ﬁij,T) and ’gb = @b(U,’j,T), (214)

where ¢ is the specific HELMHOLTZ free energy and v is the specific GIBBS free
energy. In Eq. (2.1.4), &;; and o4 describe a strain and stress measure respectively.
For the isothermal processes considered within this work, the GIBBS free energy
and the HELMHOLTZ free energy are the total potential energy function V and
the strain energy function Wie, respectively (cf. Appendix A).

In the current work, the systems are examined in terms of generalized dis-
placements (a,) and generalized forces (A,,) which replace the strain and stress
measure in Eq. (2.1.4) respectively. Thus, the total potential energy is a function
of the generalized forces, i.e. V.=V (A,,) which can be readily derived from the
strain energy Wiey = Wiey(uy,) using the LEGENDRE transformation [63],

AWiey = OWrey doy, with OWrey = A, follows,
ooy, oo,
= ddnam) —andAn,,

—— —
14
ov

The functions V and Wie, are used in Section 2.2.1 to derive other thermodynamic
state functions which allow the description of irreversible deformation processes

in terms of the prescribed loading parameters only.

2.1.1 Total potential energy principle

The total potential energy (IT) of a mechanical system described by I generalized

coordinates ¢;, and adopting the notation given in Section 2.1, reads

H(Qia Am) = W(Qz) - Amam((h’)y (2.1.6)
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2 Analytical framework 2.1 Reversible processes

with W being the strain energy, i =1,2,...,1 and m = 1,2, ..., M. The prescribed
loads (A;,) and their conjugate displacements () describe the work done by
the external forces. If not explicitly stated otherwise, the summation convention
is employed in which a repeated index is to be summed over its range. The
prescribed loads A,, and the conjugate displacements a,,, may also be understood
as independent generalized forces and generalized displacements respectively.
Applying the well-known variational principle [76],

ol

= "—6g =
1) 8qi5q 0 =

oIl B
0q; B

0, (2.1.7)

yields the equilibrium solutions, i.e. the deformation paths A,,(g;).?

In Eq. (2.1.6), the current state of damage may be considered by a set of
damage parameters &,. However, the assumption that all damage parameters do
not change must hold. Thus, the total potential energy given in Eq. (2.1.6) may

be expressed as

H(Qu Ama gk) - W(q’u gk) - Amam(%a Ek): for gk = COHSt., (218)

in which the dependency with respect to the current state of damage is accounted
for and treated as a prescribed constant input not dissimilar to the treatment of
imperfections in [94]. However, only the deformation behaviour under a given

constant state of damage may be modelled.

2.1.2 Thermodynamic forces

Equilibrium states along the deformation path obtained from Eq. (2.1.7) in terms
of ¢;(A;,) can be examined with regards to the available forces for producing
a change in the structure, referred to as the thermodynamic forces fr. These
forces are the conjugate parameters to the damage parameters £, which have to
be considered when the thermodynamic state of structures possessing a certain
state of damage is characterized. Thus, the total potential energy function can be

expressed as
V=V(An, &) for & = const. (2.1.9)

Differentiating Eq. (2.1.9) with respect to the kth damage parameter yields the

thermodynamic force,

®Eq. (2.1.7) provides the solution in terms of g;(A,,) which, however, is commonly expressed
in terms of A,,(q;) [4, 94, 95].
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2 Analytical framework 2.2 Irreversible processes

fo = v (2.1.10)

73

available for producing a change in the kth damage parameter. So long as the
thermodynamic force is smaller than a certain threshold, no change in structure
occurs and the total potential energy principle can be applied.

By considering the conjugate parameters fi and &, the system is taken through
a sequence of so-called constrained equilibrium states in which the damage param-
eters are locked but the conjugate forces do not necessarily vanish [63]. This also
applies later on when irreversible processes are considered in which the damage
parameters evolve from one loading step to another. However, for each loading

step the system remains in a constrained equilibrium, if an equilibrium exists.

2.2 Irreversible processes

The analytical framework for modelling inelastic deformations is based on the
derivation of an extended total potential energy functional IT*(g;). This allows the
description of the response of the system by a set of generalized coordinates only,
without the limitation of a non-evolving state of damage (& are not assumed
constant any more).

First, the deformation state must be determined where the thermodynamic
force reaches the threshold required for producing a change in structure which is
denoted by the parameters ¢g;. A change in structure occurs if, at least for one

damage parameter, the following condition is fulfilled:

fre = gr- (2.2.1)

At this deformation state, the total potential energy principle described in Sec-
tion 2.1.1 loses its validity.

Before an extended total potential energy functional in terms of IT1*(g;) can
be derived, it is required to discuss the condition so that the total work of
deformation and the extended total potential energy obey a potential. If the total
work of deformation and the extended total potential energy can be expressed
in the form of a potential, then it is possible to derive a variational principle in
which the extended total potential energy functional is one of the generalized
coordinates only. This means that the changes in structure, generally governed
by the respective constitutive laws regarding the damage parameters &, are
considered by the deformation behaviour obtained by solving the variational

principle in the generalized coordinates.
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2 Analytical framework 2.2 Irreversible processes

2.2.1 Total work of deformation and extended total potential
energy

In this section, the response of a mechanical system is described in terms of
generalized displacements (o) and generalized forces (A,,). Consequently, it
is necessary to differentiate between systems where the boundary is subjected
to prescribed displacements (displacement-controlled) or prescribed loads (load-
controlled).® In reversible processes, for prescribed displacements, the governing
functional is the strain energy which is a function Wi, of the independent
generalized displacements (o) and the current state of damage defined by K

damage parameters (i), i.e.

Wrev = rev(armgk)- (222)

On the other hand, when prescribed loads are present, the problem is described
by the total potential energy which is a function of the independent generalized

forces (A;,) and the damage parameters (&), i.e.
V = V(Am, &) (2.2.3)

By applying the theory presented in Section 1.2, the condition for describing
the total work of deformation and the extended total potential energy only in
terms of the generalized displacements and the generalized forces respectively is

elaborated next.
2.2.1.1 Prescribed displacements
The total derivative of the strain energy function reads

8Wrev
Oou,

8Wrev
O

aWreV
/3%

AWiey = day, + dé, where fip=— , (2.2.4)

Qm

in which f; is the thermodynamic force associated with the kth damage parameter.
Since the strain energy is a constitutive potential of the generalized forces, the

first term in Eq. (2.2.4) can be expressed as

Am — 8‘/I/'I‘E!V

(2.2.5)

da
e

5 A combination of prescribed displacements and prescribed loads is also covered by the
framework. However, in order to provide a clear description, Section 2.2.1 distinguishes
strictly between prescribed displacements and prescribed forces.
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2 Analytical framework 2.2 Irreversible processes

Rearranging Eq. (2.2.4) and employing Eqs. (2.2.4)2 and (2.2.5) yields
Apday, = dWiey + [ A&, (2.2.6)

from where it becomes obvious that whenever a change in structure occurs, the
work done by the generalized displacements is not equal to the strain energy
any more. However, a change in structure, i.e. & > 0,7 is only generated if
the thermodynamic force reaches the threshold, as stated in Eq. (2.2.1). If
this threshold is reached, then the total work of deformation W;,;—obtained by
integrating Eq. (2.2.6) along the actual deformation path—is equal to the sum of
elastic energy (Wyey) and energy associated with dissipation (W), thus

Wtot(amy fk) = Wrev(arm fk) + Wd(gk)a (227)

where the dissipative energy is assumed to be a state function depending on the
damage parameters only. It is a potential of the forces required for a change in
structure g, i.e.:

o0Wyq
gk = 6 (2.2.8)
It should be noted that g may also be material parameters.

In order to express the total work of deformation in terms of a potential of
the generalized forces, the damage parameters need to be derived as functions of
the independent generalized displacements. This can be done, whenever, during
the non-conservative deformation process, fi equals gx. Then, Eqgs. (2.2.4)2 and
(2.2.8) yield

aI/Vrev o aVVd
&k oy,

fe(am, &) = gr(&k) = — (2.2.9)
From the set of equations in Eq. (2.2.9)9, the damage parameters &, may be
derived in terms of the independent generalized displacements oy, i.e. £ = & (un)
assuming that Eq. (2.2.9)2 provides a unique solution for the damage parameters
&k, differentiable in ay,. Therefore, Eq. (2.2.9)2 can be understood as the evolution
law for the damage parameters &;,.8

By substituting &k (ayy,) in Eq. (2.2.7), Wi is found as a function of the indepen-
dent generalized displacements only, i.e. Wioy = Wiot (). This means that the
function Wit considers the change in the respective damage parameters during the

deformation process. Thus, with the derived relationship between the prescribed

" The dot symbolizes the change of the damage parameter from one loading step to another.
8 With Eq. (2.2.9), the second term on the right hand side in Eq. (2.2.6) can be also determined
resulting in Eq. (2.2.7).
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2 Analytical framework 2.2 Irreversible processes

generalized displacements and the damage parameters, Wi, characterizes an

actual deformation process, where

Wiot = /Am dayy,, (2210)
constitutes the total work of deformation which is a potential of the generalized
forces, i.e.
8I/V‘cot
Ay = . 2.2.11
" ooy, ( )

It should be stressed that only if the condition of fr = gp holds during an
irreversible deformation process, the total work of deformation can be solely
expressed in terms of the generalized displacements. Thus, fi = g is the sufficient
condition, such that Egs. (2.2.10) and (2.2.11) are valid.

2.2.1.2 Prescribed forces

As discussed in Section 2.1, the total potential energy characterizes isothermal
reversible deformation processes in which generalized forces serve as the indepen-
dent variables. In a similar manner to Section 2.2.1.1, first, the total derivative of

the total potential energy, V = V (A, &), is examined, i.e.:

ov

_ v
~ 04,

dVv
/3%

dA, +

d¢x  where  fr(Am, &) = ———. (2.2.12)
k
&k

Am

From Eq. (2.2.12) follows that the thermodynamic forces fj, are equal to the (neg-
ative) change of the total potential energy with respect to the damage parameters
&. The forces required for a change in structure are determined, as in Section
2.2.1.1, by the change of the dissipative energy with respect to the kth damage

parameter, thus:

oWy

Ik = B (2.2.13)

Next, whenever during the non-conservative part of the deformation process the

parameters fi are equal to gx, a set of equations in the form of

v _ o,

Te(Am, &) = gr(&r) = “o6. g

(2.2.14)
can be derived from which the damage parameters may be found as functions

of the independent generalized forces, i.e. & = &k (Ay,). Therefore, Eq. (2.2.14)

serves as the evolution law for & in load-controlled configurations.
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2 Analytical framework 2.2 Irreversible processes

The energy that characterizes the irreversible deformation process is denoted
by V* and consists of the total potential energy V and the dissipative energy Wy

(assumed to be a state function of the damage parameters), i.e.:

V*(Am, &) = V(Am, &) + Wa(r). (2.2.15)

Inserting the functions & = &, (A,,) into Eq. (2.2.15) yields that V* depends on
the generalized forces only. In the following, V* = V*(A,,) will be referred to as
the extended total potential energy. The extended total potential energy comprises
the evolution of the damage parameters and therefore characterizes the actual
deformation process. As a consequence, during an inelastic deformation process
which fulfils the condition that fi = g, the extended total potential energy can

be obtained by the expression:

V= /am dAp,, (2.2.16)

which describes a potential of the generalized displacements, thus

_ovre
OAn

QU = (2.2.17)
In summary, Eq. (2.2.14) is the sufficient condition, such that Eqgs. (2.2.16) and
(2.2.17) hold for an irreversible deformation process, thus an extended total

potential exists which depends on the generalized forces only.

2.2.2 Extended total potential energy principle

For now, it is assumed that during an irreversible deformation process the condition
of equilibrium between f; and g, holds and that a potential form of the extended
total potential energy, as described in Eqs. (2.2.16) and (2.2.17), could be found.
For such processes, a variational principle in the form of 611*(¢;) = 0 may be
derived; II* is the extended total potential energy functional comprising the
total work of deformation and the work done by the external forces. Such a
variational principle is not dissimilar to the principles described in [24, 25, 74, 75]

for continuous problems, i.e.
5:](111) = /5E(VU1) dV — /tl5’Ul dA — /pblévl dV = 0, (2.2.18)
B St B

in which J is a functional of the velocity field v;, F is a potential of the stress
rates, t; are the surface tractions and b; are the body forces. In Eq. (2.2.18), a

dot denotes a differentiation with respect to time. However, as mentioned in the
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2 Analytical framework 2.2 Irreversible processes

introductory part of the current chapter, time may be regarded as a parameter
characterizing the quasi-static deformation process rather than the natural time.

As discussed before, whenever the respective energies—total work of deformation
or the extended total potential energy—may be expressed in the form of a potential,
the deformation process exhibits path independence. Thus, a description in
rate form, as done in Eq. (2.2.18), is not necessary. The deformation path for
an irreversible process which complies with the condition of f; = g can be
determined by a variational principle in terms of the displacement field wu; for
respective prescribed magnitudes of loading. Thus, Eq. (2.2.18) can be rewritten

as

5H*(u,) = /5wt(Vul) dVv — /tzéuz dA = 0, (2.2.19)
B St

where II* can be regarded as the extended total potential energy functional
in a continuous matter and the work done by the body forces is omitted. In
Eq. (2.2.19), [w;dV is the total work of deformation W; (elastic plus dissipative
energy contributions). Eq. (2.2.19) yields the EULER-LAGRANGE equations of
systems under prescribed magnitudes of loading.

In the context of the discrete coordinate approach, Eq. (2.2.19) can be directly
transformed into a description using I generalized coordinates ¢;, for instance by
applying continuous mode-forms as described in Section 2.1. Thus, the variational

principle using the extended total potential energy functional IT* reads
OIT"(45) = 6(We(4:) = Amevm(a:)) = 0. (2.2.20)

It should be noted that in Eq. (2.2.20) the damage parameters are already consid-
ered and replaced by functions of the generalized forces A,, and the generalized

coordinates ¢;, i.e.

&k = Ek(qis Am), (2.2.21)

using the condition fr = gr. In Eq. (2.2.21), the generalized coordinates are
accounted for since the equilibrium path is not determined yet. Once the equi-
librium path, ¢;(4,,), is obtained with the aid of Eq. (2.2.20), the evolution of
the damage parameters are expressed in terms of the generalized forces only, as
described in Section 2.2.1.2.

In comparison with Eq. (2.1.8), the dissipative energy (Wy) is added and the

damage parameters are replaced. Thus, the extended total potential energy can
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2 Analytical framework 2.2 Irreversible processes

be written as

I*(qi, Am) = W(Qiaék(‘]iv Am)) + Wy (fk(qz', Am))
— Amam (Qiafk(QiaAm)) (2'2‘22)

= Wt(Qiy Am) - Amam<qi; Am)a

in which the total work of deformation (W;) is the sum of the reversible strain
energy (W) and the dissipative energy (Wj) associated with a change in the
damage parameters.

At the moment, regarding the variational principle in Eq. (2.2.20), it does not
matter how the damage parameters are derived in the form of Eq. (2.2.21). The
derivation of the damage parameters is explained in detail in the subsequent
Section 2.3.

By solving Eq. (2.2.20), the deformation behaviour of mechanical systems is
obtained in terms of ¢;(A,,) starting from the deformation state where damage
propagation is initiated, thus where the condition f; = gy, is fulfilled first. Inserting
the solution into the K damage parameters, x(¢;(Am), Am), provides information
about the damage propagation within the structure from one loading step to
another. Hence, for processes which comply with the condition f; = gi, the
variational principle proposed in Eq. (2.2.20) provides the equilibrium solution
for prescribed magnitudes of loading and the corresponding evolution of the K
damage parameters.

This variational principle differs from other approaches in the literature (e.g. [17,
21]) not only regarding its discrete manner but also its a priori incorporation of
the damage evolution. Therefore, unlike the formulation proposed in the current
work that yields the deformation behaviour (equilibrium equations) which already
comprises the damage evolution, the variational principles described in [17, 21]
give the macroscopic force balance and the yield criterion for damage propagation.

The condition fr = g, herein assumed to hold during the irreversible processes
investigated, embodies the yield criterion in the proposed formalism and is incor-
porated in the variational principle by replacing the damage parameters in the
form of Eq. (2.2.21). This is in contrast to [17] where the yield criterion is an
inequality, basically in the form of Eq. (2.2.1). Therefore, unlike the deformation
processes considered in this work, the principles documented in [17, 21] do not
require a potential form of the total work of deformation. As a consequence, the
condition fr = g, though applicable to certain damaging processes, allows a
highly efficient description of the deformation process, viz. a variational problem
in which only the deformation state is perturbed.

The difference in comparison with [17, 21] can be observed by examining the
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2 Analytical framework 2.2 Irreversible processes

total work of deformation, as done in [17], and assuming, for demonstration
purposes, a one degree of freedom problem with a single damage parameter
(€). Thus, following [17], both the deformation state and the damage state are

perturbed, yielding a minimization problem which reads
Wi(g,€) < Wilg +n,€+X), (2.2.23)

in which n and x are independent perturbations of the deformation and damage
state respectively. However, in the framework proposed, the damage parameter is

obtained a priori by means of the deformation state? which results in

Wi(q,§) < Wi(g+n,&(g+n) with §=E&(q) for fr = g, (2.2.24)

which holds starting from the deformation state where damage propagation is
initiated, and the solution is a minimizer of the total work of deformation.

However, the solution must also comply with the second law of thermodynamics,
i.e. healing of the structure is not allowed, so {k > 0 or in a quasi-static loading
regime f,i D) 5,’;1 for i loading steps. This unilateral constraint is not included a
priori in the formalism. However, as the damage parameters & = £x(g;, Ap,) have
been predetermined, the variational principle provides one solution path on which
the deformation state triggering inelastic deformation is located. Depending on
the subsequent applied loading starting from the deformation state where the
condition fr = gi is fulfilled first, the solution path either complies with the
second law of thermodynamics or violates it. Fig. 2.2 illustrates that matter with
the aid of the well-known double cantilever beam (DCB) test.

A
VE<0
4 »
ay N f=g
l A0 \'5
. £>0
f<g
= § :
| § | E—0
i
al a

Fig. 2.2: Double cantilever beam test with the characteristic load—deflection response.

9 As it is irrelevant for the variational principle, the dependence of the damage parameter on
the loading parameter is neglected for demonstration purposes.
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2 Analytical framework 2.3 Structural stability analysis

At the deformation state (a”, A%) growth of the damage parameter (£) is initiated
and the solution of the variational principle would provide the deformation path
starting from (a®, A%)—both dashed and solid line in Fig. 2.2. The loading path
which fulfils the condition of non-healing damage—solid line in Fig. 2.2—is the
actual deformation path of the system. The procedure to choose the correct
path direction starting from (a”, A°) is readily implemented in a respective
solving algorithm which evaluates for the first loading step of the respective path
directions whether the response is associated with growth (actual deformation
path) or healing (subsequently omitted). This a posteriori procedure is seen
as advantageous for the framework, so that a variational principle of only the
generalized coordinates can be employed for modelling the non-conservative part

of the deformation processes considered in this work.

2.3 Structural stability analysis with damage

propagation

In this section, the formalism of the structural stability analysis of mechanical
systems S described by I generalized coordinates ¢;, M loading parameters )\,
and K damage parameters & is presented. Therefore, Fig. 2.3 summarizes the
analytical framework developed within this chapter.

Fig. 2.3 shows the strict distinction of the framework between the conservative
and non-conservative part of a deformation process. It is assumed that the
system contains a certain pre-existing state of damage definable by the K damage
parameters £. Hence, damage initiation is not considered within the formalism.
For instance, in multi-layered composite structures such pre-existing damage may
be a transverse matrix crack or a delamination where & would be the crack area
or the delamination area, respectively.

The formalism of the structural stability analysis commences by treating the sys-
tem as conservative (segment “Conservative process” in Fig. 2.3), thus all damage
parameters remain in its initial magnitude. Whether or not this actually applies
for the respective deformation process will be determined once the thermodynamic
forces for the current loading step are evaluated. The governing functional for
the conservative part of the deformation process is the strain energy or the total
potential energy which depends on whether independent generalized displacements
or independent generalized forces act on the boundary. Both functionals may be
expressed by II in Fig. 2.3. In the following, the formalism is delineated using the

total potential energy as the governing functional.
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Mechanical system S(q;, A, &x)

( N
Conservative process

TPE principle

i(Am
H(qia )\m7€k)7 6]___[((]1) =0 == q ( )

Y

Thermodynamic forces f = fr(A\m) for

fr=—55 with g;(Am) given &

Y

[ Critical deformation state at fi = gx } = (¢?,\%))

. J
!

Non-conservative process from (g2, \2)
for fr = gk

Damage parameter &

= &k (qis Am)
s oIl __ W,
Wlth —m = 35:

Y

ETPE principle

Y
[ Damage evolution with ¢;(A,,) J = &(q@i(Am), Am)

. J

Fig. 2.3: Framework for the structural stability analysis of damageable structures; ab-
breviations: TPE — total potential energy, ETPE — extended total potential
energy.

As illustrated in Fig. 2.3, first, with the aid of the conventional total potential
energy principle, 011 = 0 (cf. Eq. (2.1.7) and Section 2.1.1), the deformation paths
qi(Am) are determined for the given (constant) state of damage. Therefore, the
following steps are performed referring to the first box within the conservative

segment in Fig. 2.3.

e The displacement field is expressed in terms of the generalized coordinates.
This can be done in a discrete manner or by continuous mode-forms as

part of an approximation method (e.g. a RAYLEIGH-RITZ or GALERKIN
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2 Analytical framework 2.3 Structural stability analysis

formulation) whereby the respective boundary conditions defined by the

mechanical system S have to be considered.

e The total potential energy is derived in terms of the generalized coordinates,

the load parameters and the damage parameters.

e The set of algebraic equations resulting from the variational principle, 611 = 0,

is solved either analytically (if possible) or numerically.

With the deformation path ¢;(Ay,), the thermodynamic forces associated with
the K damage parameters, thus the forces available for producing a change in
structure, are determined next (second box within the conservative segment in
Fig. 2.3). Asillustrated in Fig. 2.3 and described in Sections 2.1.2 and 2.2, therefore,
the negative of the partial derivative of the total potential energy with respect to
the damage parameters is calculated. This can be done without the knowledge of
the deformation path, so that II is used in Fig. 2.3. The thermodynamic forces
are then readily determined by inserting the deformation path obtained by the
total potential energy principle. As a result, the thermodynamic forces can be
expressed in terms of the applied loading parameters.

In the next step, the deformation state is determined in which for the kth
damage parameter the thermodynamic force fj, reaches the threshold g; required
for producing a change in the respective damage parameter (third box within the
conservative segment in Fig. 2.3). The total potential energy principle is limited
to this deformation state which is defined by a set of generalized coordinates (g))
and the load parameters (\)), and is referred to as damage state rather than
critical state to avoid confusion with the terminology of the structural stability
analysis.

In order to determine the damage state, in addition to the information provided
by the previous steps, the dissipative energy Wy has to be introduced. The
dissipative energy is assumed to be a potential of the parameters g, i.e. the
forces required for damage growth g, can be determined by differentiating the
dissipation potential with respect to the damage parameters .. On the other
hand, the parameters g can also be material parameters which allows for a direct
comparison with the thermodynamic forces. The formalism for the conservative
process ends at the damage state (g, \)).

Before the non-conservative part of the deformation process can be modelled,
it is required to verify that the condition fi = gi holds during the subsequent
non-conservative deformation. This can be done by analysing the behaviour of
the thermodynamic forces with respect to the loading parameters and the damage

parameters. If the condition fj, = g is fulfilled, then the deformation path starting
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from the damage state is determined by the formalism outlined in the segment
“Non-conservative process” in Fig. 2.3.

As shown in the first box within the non-conservative segment in Fig. 2.3,
Eq. (2.2.14)9 is used to derive the respective (active) damage parameters &y
in terms of the generalized coordinates ¢; and the loading parameters \,,. If
displacements are prescribed, the governing functional is the strain energy and
Eq. (2.2.9)2 is used instead. As mentioned before, II is used rather than V
(cf. Section 2.2.1.2) since the damage parameters depend on the deformation
path g;(A,,) that is to be determined. In general, it is not possible to obtain an
explicit solution for the damage parameters from Eq. (2.2.14)9, however, rewriting
Eqgs. (2.2.14)4, such that

fe—9k=—F57——5-—"=0, (2.3.1)
yields the functions Dy, i.e.

Dy, (in)\rmgk) =0. (2.3.2)

From Eq. (2.3.2), &.(qi, A\m) is implicitly given assuming that a unique solution of
&k(qi, M) exists, thus:

Dy, (qz‘,)\m,ﬁk(qz',)\m)) =0. (2.3.3)

In order to obtain an explicit form of & (g;, \p,) @ TAYLOR series approximation

around the damage state (¢°,\))) is employed, thus

Ot 0%
A _ 0 0 _ )0
§k(qis Am) §k + dq; & (qi i)+ N o (A — Am)
A A
1 9%,
35000 | o @~ )~ )
J ;\1(:31
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in which {2 is the pre-existing magnitude of the kth damage parameter. For
the sake of clarity, the TAYLOR series in Eq. (2.3.4) is provided up to the 2nd

order only. However, depending on the given problem, higher order terms may, of
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2 Analytical framework 2.3 Structural stability analysis

course, be considered in the formalism which also results in higher computational
demand.

With the aid of Eq. (2.3.3), the derivatives of & with respect to ¢; and A,
are obtained by implicit differentiation. Thus, differentiating Eq. (2.3.3) with
respect to g; and A, and applying the chain rule yields the derivatives of & used
in Eq. (2.3.4), following some rearranging. For instance, the first order derivative

with respect to ¢; is obtained as follows:

de - 8Dk aDk 8§k =0 — 8€k _ %Lq),k
dg;  Oqi = 0% Oqi oq; %—?:.

(2.3.5)

It should be noted that there is no summation of the index k in Eq. (2.3.5). The
calculation for the derivative with respect to the loading parameters is analogous
to Eq. (2.3.5) in which ¢; is to be replaced by A,,. The first order derivatives of
the damage parameters provided by Eq. (2.3.5)2 can then be used to determine
the second order derivatives, thus

0% Dryy + Dr 8k, + Dy Sk, + Dy 8k, Sk

= ) 2.3.6
9q;0q; Dy, ( )

In Eq. (2.3.6), for the sake of clarity, partial derivatives are expressed in the form
of 0(e)/0q; = (e),; which applies also for the differentiation with respect to the
K damage parameters and the load parameters; there is also no summation over
the index k.

Subsequently, with the damage parameters given by Eq. (2.3.4), the extended to-
tal potential energy principle is applied (cf. second box within the non-conservative
segment in Fig. 2.3 and Eq. (2.2.20)). The extended total potential energy IT*
consists of the total potential energy and the dissipative energy contributions
associated with the respective active damage parameters in which these damage

parameters are replaced by the functions in Eq. (2.3.4), i.e.:

— Ao (4, §,(qi: Am)) (2.3.7)
== Wt - Amam.

In Eq. (2.3.7), the loading parameter is replaced by the independent generalized
forces A, as the extended total potential energy is exemplarily considered. If the
load parameters are the independent generalized displacements, the total work of

deformation is the governing functional.
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2 Analytical framework 2.3 Structural stability analysis

The variational principle using Eq. (2.3.7) reads
O (gi) = 6 (W + Wa — Amaun) = 6(Wy — Apam) = 0. (2.3.8)

The solution of Eq. (2.3.8) is the equilibrium path ¢;(A,,) for the non-conservative
part of the deformation process in which fr = g holds starting from the damage
state (¢, A%,). The evolution of the damage parameters £ is obtained by inserting
the solution from Eq. (2.3.8) into Eq. (2.3.4).

Since the evolution of the damage parameters is approximated, the solution
obtained from Eq. (2.3.8) is consecutively examined regarding whether the re-
quirement f; = g is fulfilled. Once this is violated, the procedure restarts with
a new damage state (¢, A%) which describes the deformation state for which
the requirement f;, = g, was fulfilled last. This procedure is implemented in
an iterative scheme which approximates the damage evolution and solves the
extended total potential principle consecutively.

In summary, using the conventional total potential energy principle up to the
damage state and subsequently applying the extended total potential energy
principle enables the determination of the deformation and the stability behaviour
of mechanical systems during an entire loading process depending on I generalized
coordinates only.

With the analytical framework being developed, the next chapter is concerned
with the application of the framework to a mechanical system which requires a
structural stability analysis that considers damage growth, viz.: the problem of
delaminated multi-layered composite struts subjected to compressive in-plane

loading.
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3 Non-linear buckling of a composite
strut with a through-the-width

delamination

The problem of delaminated composite struts under compressive in-plane loading
has received much attention within the research community since the 1980s
starting with the work of CHAI et al. [10]. Such a delamination, i.e. the separation
along the interfaces of a layered structure, may be barely detectable during the
initial response of the structure when subjected to in-plane loading. However, its
influence on the structural stability and integrity can be significant. Depending on
size and location, such a delamination causes decreasing critical loads and possibly
unstable post-buckling responses leading to a premature failure of the strut. These
phenomena are, to a certain extent, documented within the literature. To date,
the modelling of the post-buckling behaviour beyond the elastic limit is solely
performed by comprehensive finite element simulations. Semi-analytical modelling
approaches are hitherto restricted to non-growing—stationary—delaminations.
An illustration of a delaminated strut under compressive loading is provided in
Fig. 3.1. The delamination is characterized by its length L and its depth h which
are, in general, provided by their ratio with respect to the total length L. and

the total thickness H of the strut, respectively.

l;l +at
|

Ltot

Fig. 3.1: Sketch of a delaminated strut subjected to an in-plane compressive load P.

In this chapter, post-buckling responses of delaminated composite struts without
the restriction to stationary delaminations are semi-analytically modelled by
employing the analytical framework developed in Chapter 2. As an outcome,

possible additional load bearing capabilities as well as the structural and material
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3 Delaminated composite strut 3.1 General phenomena

failure behaviour of composite struts are determined. This is performed in a
highly efficient manner by means of four generalized coordinates only.

The chapter is arranged as follows. In Section 3.1, general phenomena of the
buckling and post-buckling behaviour of struts are reviewed. This is followed by
an overview of the state of research regarding the (post-)buckling behaviour of
delaminated struts in Section 3.2. Section 3.3 presents the model description and
the application of the framework. Results of the non-linear buckling responses
for stationary and non-stationary delaminations are provided in Section 3.4. A
discussion of the phenomena observed is included in Section 3.4. The chapter
closes with concluding remarks (Section 3.5) regarding the results obtained and

the application of the framework.

3.1 General buckling and post-buckling phenomena of

struts

The section briefly reviews general phenomena of the buckling behaviour of struts
without any pre-existing state of damage. This serves as an introduction regarding
characteristic buckling responses of such structures and provides information
helpful to highlight changes in the buckling behaviour when delaminated struts
are considered.

Fig. 3.2 shows a one-dimensional representation of a strut. A strut is to be
understood as a structural component characterized by a large length (L) to height
(H) ratio! which is subjected to in-plane compressive loading.? The width of a
strut (B) is also considerably smaller than the length, whereby the mechanical
behaviour is, in general, assumed to be unchanged in the width dimension which is

therefore neglected in most model descriptions (as done in Fig. 3.2). All reasonable

Fig. 3.2: Sketch of a strut subjected to an in-plane compressive load P.

! In general, the strut is taken to be a slender structure.

2 Within the literature, the terms plate, beam, column and strut may be found when referring
to the structure illustrated in Fig. 3.2. In this work the term strut will be used; however, no
restriction with regards to other studies dealing with a structure as in Fig. 3.2 is implied in
doing so.
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3 Delaminated composite strut 3.1 General phenomena

combinations of clamped, hinged and free boundaries can be implemented; Fig. 3.2
shows a simply-supported strut for illustration purposes only.

The physical quantities often used within the structural stability analysis to
describe the buckling and post-buckling behaviour, also referred to as linear and
non-linear buckling, are highlighted in red in Fig. 3.2. The compressive load
is denoted by P, its conjugate displacement, referred to as end-shortening [94],
by £ and the generalized coordinate describing the amplitude of the buckling
displacement by gq.

The linear and non-linear buckling response of a strut can be summarized with
the aid of two plots showing the behaviour of the load against the end-shortening
and the load against the amplitude of the buckling displacement. This is illustrated

in Fig. 3.3 which provides characteristic responses of a strut.

P P
pPC
T P S
‘
q EC &
(a) (b)

Fig. 3.3: Linear and non-linear buckling response of a strut; (a) compressive load (P)
against out-of-plane deflection amplitude (g); (b) compressive load (P) against
end-shortening (&).

Each plot in Fig. 3.3 depicts three characteristic deformation paths: for an ideal
strut (solid lines), a strut with stretching—bending coupling (dashed lines), which
is regarded as a material imperfection,® and a strut with a geometric imperfection
(dotted lines), e.g. an initial out-of-plane displacement.

The deformation path for the ideal strut exhibits a critical point denoted by
PC and the symbol “o” in Fig. 3.3, which is also referred to as branching point or
bifurcation point [94]. At this deformation state, the fundamental equilibrium

path, i.e. ¢ = 0, loses its stability, which is illustrated in Fig. 3.3 by the grey

3 This is specifically relevant for composite structures with an asymmetric layup. Further
explanation is provided in Section 3.3.
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3 Delaminated composite strut 3.1 General phenomena

coloured solid line, forcing the strut to leave its current configuration and to follow
one of the bifurcation paths shown in Fig. 3.3a.

This behaviour is called buckling. Therefore, PC is also referred to as buck-
ling load or critical load. Determining the critical loads of a structure and its
corresponding mode shapes, for instance the dashed strut in Fig. 3.2, comprises
the linear buckling behaviour or the critical behaviour. The mechanical response
beyond such critical points are referred to as non-linear buckling behaviour, post-
critical behaviour or post-buckling behaviour.

A distinct critical behaviour, as for an ideal strut, does not exist when imper-
fections are present (dashed and dotted lines in Fig. 3.3). The initial response
of a strut containing material imperfections (dashed lines), for instance in the
form of stretching—bending coupling, may often be barely distinguishable from
the ideal structure. In the case of stretching—bending coupling, the effects are
initially comparably small and just scale up with increasing magnitudes of load.
However, the compressive force P causes minor bending deformations (curvature)
which vanishes the distinct critical behaviour. Therefore, as indicated in Fig. 3.3a,
there is no bifurcation point as well as no transition of an equilibrium path from
stable to unstable. Thus, the strut follows its initial path on which it will rather
smoothly changeover in its buckled configuration. This changeover is also referred
to as buckling. The buckling load or critical load is determined by the change
in slope of the equilibrium path. In order to underline the difference with the
bifurcation point of an ideal strut, the symbol “0” is used in Fig. 3.3 for the
critical point of the imperfect systems.

Fig. 3.3 shows that the presence of imperfections is associated with a decrease
of the buckling load and the loads describing the subsequent post-buckling path,
whereas the qualitative behaviour stays mostly unaffected. This is visualized in
Fig. 3.3 by the case of a geometric imperfection (dotted lines). However, the effect
of decreasing critical and post-critical loads diminishes with larger imperfections.

In the post-buckling range (non-linear buckling behaviour), Figs. 3.3a and 3.3b
delineate that the strut almost loses its entire stiffness against the compressive
force, also referred to as post-buckling stiffness. The reason for that is the negligible
contribution of in-plane stretching once the strut buckles. Therefore, it is often
assumed that the strut—more precisely the neutral axis—is inextensional [94, 95]
(¢f. Fig. 3.2), thus the strut undergoes bending deformations only. In order to
provide a realistic response of a strut, Fig. 3.3b considers in-plane deformations
prior to buckling. The compressive strain of the strut at PC is then assumed to
retain its magnitude during the post-buckling response.

The post-critical behaviour of struts can be summarized as weakly stable. This

implies that only minor increases of load are possible beyond P€. Tt stands to

39



3 Delaminated composite strut 3.2 State of research

reason that such structures may be prone to defects and damage propagation.
Thus, it is of great importance to model the buckling behaviour of struts containing
a certain state of damage. This is performed in the following parts of the chapter
for a composite strut with a delamination. Before proceeding to the model
description and the application of the analytical framework the state of research
regarding the linear and non-linear buckling behaviour of delaminated struts is

reviewed next.

3.2 State of research

The problem of a delaminated strut under compressive in-plane loading was first
studied by CHATI et al. [10]. With the aid of a one-dimensional model, the work
examines the behaviour of the strain energy and the strain energy release rate
depending on the applied loading and the delamination length. Information
regarding buckling loads and loads causing delamination growth is provided. The
study presents a closed-form formulation for thin-film buckling.* A more general
case without the restriction to thin-film buckling is also described. On the other
hand, the work considers isotropic material behaviour which results in a distinct
critical response, as described in Section 3.1. Moreover, the critical behaviour
depending on the delamination depth as well as post-buckling responses in terms
of load against amplitude or load against end-shortening are not provided. These
phenomena have been the subject of investigation for a fairly large number of
ensuing studies.

Therefore, the following review of the literature is subdivided into studies

investigating:
o the critical behaviour,
e the post-critical behaviour and

¢ the delamination growth characteristics.

3.2.1 Critical behaviour

The buckling responses of homogeneous isotropic (e.g. [30]), homogeneous or-
thotropic (e.g. [12, 28, 89, 90]) and multi-layered orthotropic® (e.g. [8, 23, 36, 57,

4 Thin-film buckling refers to a buckling response of a structure where the thickness of the
delaminated part h is very small compared with the overall thickness H (c¢f. Fig. 3.1),
i.e. h < H. A ratio of h/H < 0.1 is often taken as a requirement for thin-film buckling. In
thin-film buckling, it is assumed that only the delaminated part experiences out-of-plane
deflection, thus the buckling response of the thicker part is neglected.

5In most cases, the orthotropic struts are also transversally isotropic.
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72, 106]) struts are presented within the literature. Analytical, numerical and
experimental studies have been carried out.

With regards to analytical formulations, the delamination buckling is mostly
described in two ways. On the one hand, the equilibrium equations of the forces
and moments satisfying the respective boundary and continuity conditions are
directly derived with the aid of free-body diagrams [28, 89, 90]. The buckling
loads are then determined by employing a perturbation method, for instance
as described in [86]. On the other hand, equilibrium equations and boundary
conditions are derived by a variational principle using the total potential energy
[12, 23, 53, 72].

Another approach is documented in [30] in which the buckling loads and the
respective mode shapes are directly determined by evaluating the total potential
energy. As discussed in Sections 1.2 and 3.1, the study uses the fact that at a
critical state—buckling point—the HESSIAN matrix of the total potential energy
becomes singular. Thus, the magnitudes of load for which this condition is fulfilled
are the buckling loads.

Experimental work is provided in studies [23, 36, 53]. Samples of similar dimen-
sions are used in which the length is approximately 50 times larger than the height
and 5 times larger than the width. Refs. [36, 53] study unidirectional composite
struts and present similar results in which the deviation between the experimental
data and a finite element analysis [36] or an analytical model [53] respectively
is significant for deep and small delaminations (up to approximately 30%) and
becomes negligible for large and thin delaminations. The deviations decrease
significantly up to 15% when a non-linear kinematic approach is implemented
[36].

Multi-layered cross-ply [0°/90°/90°/0°]12s and angle-balanced laminates
[—45°/45°]gs are investigated in [23].° In contrast with [36, 53], deviations of the
experimentally determined critical loads are less than 10% compared with a linear
analysis and less than 5% when shear effects and non-linearity are considered.

Even though partly significant quantitative deviations between experimental
and computed data are documented, the qualitative behaviour of the buckling
load modelled by means of analytical or numerical methods is verified by the
experimental studies. The behaviour of the buckling load of delaminated composite
struts can be described by an analysis against the delamination length and the
delamination depth. The results obtained by the above-mentioned studies are

summarized and visualized in Fig. 3.4.

5 A numerical subscript indicates a multiplier of the stacking sequence in the brackets and the
label “s” refers to a symmetric layup.
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Fig. 3.4: Buckling load against delamination length for shallow and deep delaminations;
CPT — CLASSICAL PLATE THEORY,” SD — Shear deformations considered; in
normalized quantities.

All quantities shown in Fig. 3.4 are understood as normalized. The length
of the delamination is normalized to the respective overall dimension of the
strut and the buckling load of a non-damaged strut, e.g. the EULER load, is
used for the normalization of the load. The effect of the delamination depth is
visualized by considering two cases: shallow delaminations (0 < h/H < 0.2) and
deep delaminations (0.2 < h/H < 0.5). For increasing delamination depths, the
behaviour of the buckling loads transitions from the case “shallow delaminations”
into the case “deep delaminations”. The following conclusions can be drawn from
Fig. 3.4:

¢ the delamination length for which the buckling load remains almost unaf-

fected increases with deeper delaminations,

o the buckling load abruptly drops in the case of shallow delaminations when

a certain delamination length is reached,

e in the case of deeper delaminations, the buckling load decreases more or less

smoothly with larger delamination lengths and

o shear effects (grey lines in Fig. 3.4) lower the buckling loads compared with

" The specification CLASSICAL PLATE THEORY is used as an overall category combining all
studies on homogeneous and multi-layered plates which obey the KIRCHHOFF-LOVE plate
theory [76].
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the CLASSICAL PLATE THEORY (black lines), which are more relevant for
smaller delamination lengths. However, the overall length to height ratio of

the strut strongly dictates whether or not shear effects may be neglected.

It should be stressed that the applicability of the results and modelling ap-
proaches reviewed in this section strongly depends on the layups investigated.
Bifurcation analysis, 7.e. assuming that the fundamental path is described by zero
out-of-plane displacement, is not appropriate for laminates causing stretching—
bending coupling. Symmetrically laid-up non-damaged struts can become asym-
metric once delaminations are present yielding the aforementioned coupling effects.
This does not count for isotropic and homogeneous struts. On the other hand,
studies investigating multi-layered angle-plies are limited to cases in which the

delamination causes two symmetric sublaminates [23, 72].

3.2.2 Post-critical behaviour

Post-buckling responses in terms of load against midpoint deflections or load
against end-shortening were first documented by WHITCOMB [107] employing a
finite element simulation. In [107], thin-film buckling of a composite with a uni-
directional layup ([0°]4) on top of a thick isotropic sublaminate was investigated.
The results of the finite element simulation were compared with experimental
findings showing good correlations of the buckling point and the initial post-
buckling behaviour while deviating significantly beyond the initial deflection.

Early analytical studies employ either a perturbation scheme [38, 39] or a
variational principle using an energy formulation [12, 13, 88]. Unlike the buckling
responses, second order terms are required to obtain initial post-buckling paths
via the perturbation method. Most of the early work on delamination buckling
[12, 13, 38, 39, 107] considers homogeneous or unidirectional laminates. Various
stacking sequences were considered first in [88] in which the variational principle
using the total potential energy was solved using a finite-difference scheme.

In [88], detailed information about the load against midpoint deflection be-
haviour is provided in which focus is placed on the influence of initial imperfec-
tions, stretching-bending coupling and cylindrical bending. Varying delamination
lengths are also considered for an isotropic strut. The depth of the delamination
is selected so that only one sublaminate exhibits stretching-bending coupling.
This work is extended in [87] in which contact of both sublaminates is considered
and plane strain and plane stress assumptions are compared. Furthermore, the
influence of changes in the layup in the form of [0°/(6/ — 0)6/6/0°] with 6 taking
certain values in between 0° and 90° is investigated.

More recent analytical studies also investigate the post-buckling behaviour of
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multi-layered angle-ply composite struts (e.g. [42, 71, 72, 87]). In these studies,
either formulations are derived which employ a vast number of generalized coor-
dinates in the form of a RAYLEIGH-RITZ method [42, 71, 72] or the variational
principle is solved by means of purely numerical methods such as the finite dif-
ference method [87, 88] or the finite element method [58]. In contrast to these
studies, Ref. [30] presents detailed information about the post-buckling response
of an isotropic strut employing four generalized coordinates only. Post-buckling
paths are obtained by a variational principle using the total potential energy and
a RAYLEIGH-RITZ formulation.

All aforementioned studies provide post-buckling responses for stationary de-
laminations. The post-buckling behaviour beyond the deformation state causing
delamination growth is mainly provided by means of finite element [3, 27, 62, 64]
or finite strip [104, 112] analyses. Results are provided for unidirectional and
cross-ply layups as well as laminates of the type [0°/(6/ — 6),,/6/0°].

In a recent work, Ref. [105] proposes an analytical formulation for a unidirec-
tional bi-layered strut based on the thin-film buckling assumption which requires
input from numerical studies in order to describe post-buckling responses which
consider delamination growth. Comparisons with experimental work exhibit
significant deviations in the critical and post-critical behaviour.

Experimental studies are documented in [23, 36, 40], whereby only unidirectional
laminates are investigated in [36] and [40]. A specific support system is used in
[40] in order to trigger local buckling responses. In [36], post-buckling responses
in terms of load against end-shortening are provided for a laminate with a large
delamination for different delamination depths. The work documented in [23]
provides more detailed results. Cross-ply and balanced angle-ply layups are
studied for near surface and midplane delaminations. Post-buckling responses in
terms of load against end-shortening and load against midpoint deflections are
presented.

Characteristic phenomena obtained in the above-mentioned studies are visual-
ized in Fig. 3.5. The post-buckling response is shown in terms of compressive load
against midpoint deflections.® Central delaminations which are not located in the
middle of the layup (with respect to the depth) are considered. The black and
grey lines describe the deflection of the lower and upper sublaminate respectively.
The physical quantities are taken as normalized—the load against the EULER
buckling load of an undelaminated strut and the midpoint deflection against the

overall height of the strut.

8 The midpoint deflection is the out-of-plane displacement at the centre of the strut. As
symmetrically located delaminations are considered (with regards to the length dimension),
this coincides with the midpoint deflections of the delaminated parts—the sublaminates.
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Fig. 3.5: Post-buckling response in terms of compressive load against midpoint deflection
for small, mid-size and large delamination lengths; upper sublaminate (grey),
lower sublaminate (black); in normalized quantities.

By considering three distinct qualitative cases of delamination length (small
— dotted lines, mid-size — dashed lines, large — solid lines), Fig. 3.5 summarizes
post-buckling responses of delaminated struts documented within the literature. It
should be noted that all magnitudes used in Fig. 3.5 serve for illustration purposes
only and that the delamination depth is not further specified since the responses
associated with small, mid-size and large delaminations may be qualitatively
obtained for various delamination depths. The post-buckling phenomena are
subsequently reviewed by differentiating between post-critical deformation and
post-critical stability.

However, first, it should be stressed that most studies provide only information
about the case of large delaminations (solid lines). The response for mid-size
delaminations (dashed lines) is described by studies incorporating imperfections
in the form of initial out-of-plane deflections caused by the presence of the
delamination [23, 58, 88].2 This post-buckling behaviour is verified by experimental
data documented in [23]. The case of small delaminations (dotted lines) is solely
described by [30] which considers an isotropic strut and provides information
about the amplitudes of the respective delaminated regions without considering

the contribution of the undelaminated part.'© Whether such behaviour is also

9 Ref. [87] also considers such imperfections but provides post-buckling paths for large delami-
nations (solid lines in Fig. 3.5).

1% The information provided in [30] is used to sketch the midpoint deflections for the strut
(considering local and global contributions) in Fig. 3.5 (dotted lines).
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present for composite struts is not discussed in the literature.

Post-critical deformation.

For all three post-buckling responses shown in Fig. 3.5 the less stiff (thinner)
sublaminate buckles at first, thus exhibits significant larger deflections than the
thicker more stiff laminate. However, the extent of this phenomenon is strongly
dependent on the delamination length and delamination depth with larger and
shallow delaminations amplifying this effect and vice versa. The buckling response
as long as the thicker laminate remains mainly unaffected is referred to as local
buckling,.

Fig. 3.5 shows three distinct buckling responses when the thicker more stiff
sublaminate starts to buckle. This phenomenon is called global buckling. For
large delaminations, both sublaminates deflect in opposite directions once global
buckling occurs.!! This is different for mid-size delaminations (cases with imper-
fections). When global buckling is triggered, the less stiff sublaminate is pulled
towards the direction of the stiffer sublaminate, so that both parts deflect into
the same direction. It should be noted that both sublaminates still, relatively to
each other, deflect in opposite directions. The response for mid-size and large
delaminations is referred to as opening-mode buckling [30, 102].

The response for small delaminations shows that both sublaminates deflect

in the same direction, which is referred to as closed-mode buckling [30, 102],
exhibiting comparably small out-of-plane displacements. The post-buckling path
displays a limit point from where the deformation behaviour changes abruptly.
Large deflections are caused for the thicker more stiff laminate, so that both
sublaminates get in contact with each other, indicated in Fig. 3.5 by the symbol
“0”. Deformations beyond this deformation state considering the contact of both
sublaminates are not provided in [30] and are therefore omitted herein.
Post-critical stability.
Initially, the post-buckling response for all configurations of delaminations is
stable. For the case of small delamination lengths, a changeover to an unstable
response in the form of a limit point occurs which is associated with the initiation
of the global buckling response. This phenomenon is illustrated in Fig. 3.5 by the
dotted lines where the limit point is the peak value of the load. The subsequent
path may only be traced in a displacement-controlled configuration.

Mid-size and large delaminations do not exhibit such a change in stability.
During the local buckling response, most of the original stiffness of the system

against compression is retained which can be readily examined by the increasing

1 Some models concerning homogeneous plates [12, 38] present post-buckling responses in
which the black lines in Fig. 3.5 for the case of large delaminations (solid lines) deflect in
the opposite direction. So, in contrast with Fig. 3.5, such behaviour describes a closed-mode
response.
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magnitudes of load following the buckling point or the corresponding load against
end-shortening plot, see for instance [30]. Nevertheless, for the mid-size delamina-~
tions the delaminated strut rather abruptly loses almost the entire post-buckling
stiffness once global buckling is caused. This is visualized in Fig. 3.5 by the dashed
lines which indicate the characteristic asymptotic behaviour of the load towards
its maximum. This response is at most weakly stable if not neutrally stable.'?

Large delaminations (solid lines) also converge towards a maximum load showing

the characteristic weakly stable behaviour. With increasing delamination length,
the post-buckling stiffness decreases less abruptly compared with the case of mid-
size delaminations, however the respective maximum load decreases significantly.
Further remarks.
It should be noted that the classification in small, mid-size and large delamination
lengths and therefore the corresponding phenomena described in this section
strongly depend on the depth of the delamination. Thus, with changing depth,
the three cases presented in Fig. 3.5 shift quantitatively towards smaller length
(for shallow delaminations) or towards larger length (for deep delaminations).
The classification of small, mid-size and large cannot be generally quantified. An
analysis for all possible delamination depths is required to determine the respective
quantitative measures. So far, this has not been done for delaminated composite
struts. Such a classification is introduced by the author, such that a summary of
the results for various configurations of delaminated struts is enabled.

Shear effects influence the post-buckling response by lowering the magnitudes
of the load, similar to Section 3.2.1. However, the qualitative behaviour is not
affected and therefore, for reasons of clarity, shear effects are not considered in
Fig. 3.5. In general, the influence of the shear effects, as for the critical behaviour,
depends on the overall dimensions of the strut.

As a final remark, in Fig. 3.5, post-buckling responses for stationary delami-
nations are summarized. Within the literature, information about post-buckling
responses considering delamination growth is just provided for specific and limited
configurations mainly following the examples given by [104]. Therefore, such

limited case studies are herein excluded in the general review.

3.2.3 Delamination growth characteristics

The delamination growth characteristics comprise:

e the behaviour of the physical quantity governing the changes in structure
and thus

12 Neutrally stable refers to a deformation path exhibiting zero post-buckling stiffness (horizontal
line).
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e whether growth is stable or unstable.

As mentioned at the beginning of Section 3.2, the pioneering work of CHAI
et al. [10] already addresses both characteristics. With the aid of the energy
release rate the questions whether or not delamination growth occurs and whether
or not this growth would be stable or unstable are discussed. Therefore, the
energy release rate is analysed with respect to the delamination length for certain
constant magnitudes of the applied compressive strain.

Albeit subsequent studies enhance the general modelling of the post-buckling
behaviour and extend it to multi-layered laminates, the analysis of the delam-
ination growth characteristics remains similar. The energy release rate is the
physical quantity used to describe the delamination growth behaviour. It is
either determined with the aid of the J integral principle!® [79] applied to the
one-dimensional problem using the forces and moments at the delamination tip
[13, 38, 39, 87, 89, 90, 109] or by differentiating the total potential energy with
respect to the delamination length [10, 12]. All studies assume a GRIFFITH-
type crack problem [22] which is suitable for quasi-brittle material behaviour,
i.e. growth is triggered if G > G. with G = —9Il1/0 A where G is the energy release
rate, G, is the critical energy release rate and A is the crack area.

For homogeneous struts, the mode decomposition of the energy release rate is
employed in [39] using the concept of stress intensity factors and mode mixture
as documented in [35]. Mode mixture for multi-layered composite struts has been
considered in most finite element analyses starting with [107]. Detailed information
about the energy release rate for mode I and mode II in the pre-growth range and
during growth is documented in [104, 112] using a finite strip method. Most of
the information available concerns unidirectional laminates. Refs. [87] and [104]
present mode decompositions for mode I and mode II for cross-ply layups and
laminates of the type [0°/(45°/ — 45°),,/45°/0°] respectively.

Furthermore, the analysis of the energy release rate against the applied loading
is provided in most studies. This can be done for the energy release rate or
its decomposed modes. Findings documented within the literature are therefore
summarized by two plots showing the energy release rate against the applied forces
(Fig. 3.6) and the energy release rate against the delamination length (Fig. 3.7).
As performed in Sections 3.2.1 and 3.2.2, all quantities are normalized, the load
against the EULER buckling load of an undelaminated strut, the energy release
rate against its critical value causing delamination growth and the delamination

length against the overall length of the strut.

13 The J integral is a path-independent integral enclosing, for instance, a crack tip. In the
original work [79], it is formulated in terms of a two-dimensional stress state.
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Fig. 3.6: Energy release rate against applied forces for small, mid-size and large delami-
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Fig. 3.6 comprises the behaviour of the energy release rate for three characteristic

lengths of delamination (small — solid line, mid-size — dashed line, large — dotted
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line), which correspond to Fig. 3.5. For each case, the energy release rate stays
negligibly small as long as the strut does not buckle. A slight increase of the
energy release rate is shown when local buckling occurs. In general, delamination
growth is not caused during local buckling, which can be seen in Fig. 3.5 showing
magnitudes of the energy release rate that are significantly smaller than the
magnitude required to initiate growth which is indicated by the dot-dashed line.

The energy release rate increases significantly once global buckling occurs. As
the load converges towards its maximum the corresponding energy release rate
rises asymptotically. Thus, growth is generally initiated during the global buckling
response of delaminated composite struts if opening-mode buckling responses such
as those documented in Fig. 3.5 occur. For post-buckling deformations exhibiting
a closed-mode response the energy release rate would remain small in comparison
with its critical value [87].

The behaviour of the energy release rate against the delamination length for
prescribed magnitudes of load is shown in Fig. 3.7, in which applied strains are
exemplarily taken as the load input. Whenever the curve reaches the required
magnitude of load (dot-dashed line), growth occurs. So, minimum magnitudes
of load input required to cause delamination growth as well as the load inputs
required to cause growth for certain given delamination lengths can be obtained
from Fig. 3.7. Furthermore, it can be determined whether the delamination growth
is stable or unstable. Therefore, the behaviour of the energy release rate for a
constant state of loading is examined for an increase in delamination length. If the

energy release rate decreases, growth is termed stable; otherwise it is unstable.™

3.2.4 Concluding remarks

With regards to the post-buckling behaviour of delaminated struts, it should be
stressed that the majority of studies focus on certain configurations regarding
delamination size and location. Few of these studies investigate specific effects such
as shear deformations [12, 38, 39], contact conditions [72] or layups [88]. Refs. [13,
30, 58] analyse the influence of varying delamination length and depth, whereby
only changes causing similar qualitative buckling responses are documented in
[13, 58]. To the authors knowledge, only [30] presents a detailed analysis regarding
the influence of delamination length and depth. However, [30] considers isotropic
material behaviour and stationary delaminations.

Thus, a detailed analysis for delaminated composite struts is required, such
that more general insight into the post-buckling behaviour comprising qualitative

and quantitative changes regarding delamination length and depth can be gained.

1 Detailed explanation about the behaviour of the energy release rate is provided in Section 3.4
in relation with the application of the analytical framework (cf. Fig. 3.18).
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The study of the energy release rate, as documented in Section 3.2.3, mainly
considers homogeneous struts. Information about the energy release rate for multi-
layered struts in the form of Fig. 3.6 can be found in [87]. More recent studies
focus instead on the modelling of post-buckling paths considering delamination
growth which is, except in [105], entirely done by numerical simulations. Such
simulations—though powerful—focus on specific and limited problem definitions
mostly as documented in [104]. Ref. [105] employs the restricting case of thin-film
buckling and considers bi-layered unidirectional struts. Moreover, additional input
from purely numerical simulations is required in order to obtain post-buckling
deformations with delamination growth.

An analytical modelling approach which determines post-buckling responses
of multi-layered composite struts considering delamination growth has not been
found. This is presented in the subsequent sections by employing the framework

developed in Chapter 2.

3.3 Modelling approach

The application of the analytical framework (cf. Chapter 2) to the problem of
a delaminated composite strut under compressive in-plane loading is presented
in this section. First, the geometric model of a one-dimensional representation
of the strut and the constitutive relations are described. Subsequently, the total
potential energy principle is presented consisting of the derivation of the total
potential energy as well as a RAYLEIGH-RITZ formulation in order to solve the
variational principle for the conservative part of the deformation process. This is
followed by the extended total potential energy principle (c¢f. Sections 2.2.2 and
2.3) comprising the derivation of the damage parameter and the extended total
potential energy as well as the variational principle.

As an outcome, the deformation behaviour of the system as long as a conserva-
tive process is present (stationary delamination) and the post-buckling responses
beyond the deformation state causing delamination growth (non-stationary de-
lamination) are determined. Respective results are presented in Section 3.4.

For the geometric model presented in the upcoming Section 3.3.1, the description
provided in [30] is taken as a benchmark model. The derivation of the displacement
functions as well as the application of the analytical framework follow the studies
[47, 48, 49] of the author.
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3.3.1 Geometric model

The geometric model of the delaminated composite strut is shown in Fig. 3.8. Since
the deformation behaviour will be described by a one-dimensional representation
(refer to Sections 3.3.2 and 3.3.3), the width dimension of the strut (y-coordinate

in Fig. 3.8) is not considered in the geometric model.

z
e — : Tat
T3 (3 o T ¢
1 L ]
} Ltot |
P W /\ P
—— R

Fig. 3.8: One-dimensional model of a composite strut with a through-the-width delami-
nation.

Clamped boundary conditions are studied even though the model may be easily
reformulated for a simply supported case. It is assumed that the strut is subjected
to a compressive in-plane load in the form of an independent generalized force
P. The length of the strut is denoted by L. A central delamination with the
length L is assigned to the strut. Thus, as indicated in Fig. 3.8, the strut can be
subdivided into four parts.

Each part is given its own coordinate system. Parts (1) and (2) are the upper
and lower sublaminate respectively. Parts (3) and (4) describe the undelaminated
region of the strut. Subsequently, owing to the symmetry, only part (3) will
be considered for the undelaminated region. The depth of the delamination is
described by the parameter a.

Four generalized coordinates ¢; (i = 1,...,4) are employed to describe the
deformation behaviour of the system. The generalized coordinates ¢q; and ¢s are
the amplitudes of the upper and lower sublaminate respectively (with respect
to the neutral axis of the delaminated parts, see dashed lines in Fig. 3.8). The
generalized coordinate g3 is the rotation (also the slope) of the plane at the
interface between the delaminated and undelaminated part, and ¢4 (not shown in
Fig. 3.8) describes the total end-shortening of the delaminated parts.

The following assumptions and simplifications are employed within the problem

description.

e The dependence of the deformation behaviour with respect to the y-direction
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is assumed to be negligible, thus a one-dimensional representation of the
strut is employed. However, deformations caused by coupling effects are
considered for the y-direction as well as the z-y-plane. This is accounted for
by determining effective stiffness parameters which is described in Section
3.3.2.2.

o All parts of the strut are treated as independent laminates whose deformation

behaviour complies with the respective boundary and continuity conditions.

e In-plane stretching of the undelaminated region is omitted as its influence
on the (post-)buckling response is assumed to be small. This avoids the
introduction of another degree of freedom (similar to g4 for the delaminated

region) and neglects non-linear strains during the post-buckling response.

e Thin delaminated struts are considered, so that shear deformations are

neglected whose influence is assumed to be small.

o Contact of the sublaminates is not considered. In the case that both
sublaminates get into contact, the problem description provides the post-

buckling path up to the deformation state at which contact would occur.

3.3.2 Constitutive relations

The CLASSICAL LAMINATE THEORY [76] is employed in the application example.
Therefore, this section commences with a brief summary of the main derivation
steps of the constitutive relations comprised by the CLASSICAL LAMINATE THEORY.
This provides an orientation regarding the calculation of the stiffness parameters
used in the application example. An detailed derivation of the respective stiffness
matrices can be found in established textbooks such as [76, 85].

In the second part of the section, the incorporation of deformation character-
istics associated with various coupling effects into the one-dimensional problem

description is presented.

3.3.2.1 Classical laminate theory

The materials used for the multi-layered struts are assumed to obey linear elastic

behaviour, i.e. HOOKE’s law
oij = Cijki€ki, (3.3.1)

where the fourth order stiffness tensor Cj;y, relates the infinitesimal strains £;; with

the CAUCHY stresses 0;;. Eq. (3.3.1) may be rewritten for non-linear kinematic
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behaviour in terms of the GREEN-LAGRANGE strain tensor F;; and the second
P1oLA—KIRCHHOFF stress tensor Sij,15 thus

Sij = Cijki By (3.3.2)

Struts consisting of unidirectional layers are considered. Such unidirectional layers
exhibit transversally-isotropic material behaviour which is characterized by five
independent material parameters. With the aid of VOIGT’s notation [14, 76],
the constitutive relation of a transversally-isotropic unidirectional layer can be

expressed in matrix form, i.e.

o1 Cn Ci2 Ci2 0 0 0 €1
g2 022 023 0 0 0 £9
C 0 0 0
73| _ 2 = (3.3.3)
o4 5(C2—C) 0 0 €4
o5 Ces 0 €5
g3 Sym. Cée €6
where the following relation for the indices applies,'®
{1,2,3,4,5,6} < {11, 22,33,23,31, 12}. (3.3.4)

In the subsequent text, the spatial coordinates x; = {z,y, 2} may be used instead,
whenever it is considered to provide a better understanding. It should be noted
that Eq. (3.3.3) considers unidirectional layers in which the fibres are orientated
in parallel to the x or the x;-direction.

Since thin struts are investigated, the plane stress assumption is employed.
Rewriting Eq. (3.3.3) by considering plane stress and effective material parame-

ters!” yields

E1 vo1F1y

g1 1-viove1 1—v12v21 €1

— v12Fo9 Eyo
92| = | T=viaver  T-viovm 0 €2 1> (3'3'5)
o6 0 0 G2/ \ées

where E71 is the YOUNG’s modulus in the fibre direction, Eo is the YOUNG's

modulus in the transverse direction, 151 is the minor POISSON’s ratio, vy is

15 Eq. (3.3.2) is commonly referred to as SAINT VENANT-KIRCHHOFF law.

16 1t, should be noted that 4 = 2e93, €5 = 2e31 and €¢ = 2¢12; so-called engineering shear strain.

" The effective material parameters are either provided by the manufacturer of the uni-
directional plies or may be calculated by micro-mechanical homogenization methods as well
as empirical formulas based on the elastic properties of the two constituents [85].
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the major POISSON’s ratio and Gyo is the shear modulus in the z-y-plane or
x1-x9-plane.'®

The matrix in Eq. (3.3.5) is referred to as the reduced stiffness matrix and will
be denoted by [@Q] or Q7 (capital indices indicate VOIGT’s notation; for plane
stress, {I,J} = {1,2,6}). The stiffness matrix [Q)] refers to the local coordinate
system in which the fibres are always in parallel to the x-axis or xi-axis. In order
to obtain the reduced stiffness matrix with respect to the global coordinate system,

the transformation matrix!?

cos® 0 sin? 6 2 cosfsin 6
[T} = sin? ¢ cos? 6 —2cosfsinf (3.3.6)

—cosfsinf® cosfsin® cosf —sin26

is considered. Using [T] to transform the respective stresses and strains to
the global coordinate system, the reduced transformed stiffness matrix can be

determined as

@] =[] ][] (3:3.7)

which is subsequently employed to calculate the laminate stiffness matrices of the
multi-layered parts of the strut.

The CLASSICAL LAMINATE THEORY characterizes the material behaviour of
homogenized laminates,?” for which shear effects are neglected, with the aid of

three stiffness matrices: the in-plane stiffness matrix

4] = i / [Q](”) dz, (3.3.8)

n=1 Z(n)

the coupling stiffness matrix

|B] :i / [Q](n)zdz, (3.3.9)

n=1 Z(n)

and the bending stiffness matrix

D] :i / [Q}(n)szz. (3.3.10)

=1 0

18 For plane stress, just four independent material parameters are present. The fifth independent
material parameter—in the three-dimensional case—would be the POISSON’s ratio vas.

9 The transformation matrix is calculated with the aid of the rotation matrix (’); ; derived from
a EUCLIDEAN transformation [65, 76] in which the stresses are transformed from the global
(strut) coordinate system to the local (ply) coordinate system indicated by the symbol /,
i.e. O';j = O;ko;l(fkl.

20 The material parameters of the two constituents—fibre and matrix—are homogenized yielding
the effective parameters used in Eq. (3.3.5).
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In Egs. (3.3.8) to (3.3.10), the summation index n refers to the nth layer of the
respective part of the strut and Z(™ describes the integration range from the
lower to the upper bound of the nth layer.

The in-plane stiffness matrix [A] relates the in-plane strains

€1 Exx
{e} =qe2p =19 ey (3.3.11)
€6 2e4y

to the in-plane force resultants (force per unit width)

ni Ny
(ny=dns b =1ny, . (3.3.12)
Ne Ny

The bending stiffness matrix relates the curvatures

R1 Rax
{k} = K2 p = Ky (3.3.13)
K6 Ry

to the moment resultants (moment per unit width)

mi My
{m} = ma = myy . (3314)
meg mxy

The coupling matrix [B] couples the bending deformations (curvatures) with the
in-plane force resultants and the in-plane strains with the moment resultants.
This is commonly referred to stretching—bending coupling which occurs due to
an asymmetric layup in multi-layered laminates. The CLASSICAL LAMINATE

THEORY can be summarized with the following equation,

ni Ay A Ag B Bz B\ | a1
n2 Ao Agg Bas  Bog | | &2
ne | _ | sym. Agg  sym. Begg €6 ’ (3.3.15)
my Bi1 Bz Big Du D2 Dig| |1
ma Baa  Bag Doz Dag | | k2
meg sym. BGG sym. D66 K6

comprising all coupling effects between the deformation measures (in-plane strains
and curvatures) and the force measures (in-plane force resultants and moment

resultants).
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3.3.2.2 One-dimensional multi-layered composite strut

Even though the problem of a delaminated strut is described with the aid of
a one-dimensional model, various coupling effects comprised in Eq. (3.3.15) are
considered in the subsequent derivation. Owing to such coupling effects €9, €¢, Ko
and kg should not be neglected.

Therefore, entries responsible for bending—twisting (D16, D2g), bending—bending
(D12) as well as stretching—shearing (A6, A2g) and stretching—stretching (Aj2)
are considered and incorporated in the energy formulation by calculating effective
parameters for the in-plane (Aeg), coupling (Beg) and bending (Deg) stiffness of
the respective parts of the strut.

This is done by assuming that the forces n,, and ng, as well as the moments

Myy and my, are zero, thus

N Ay A Ag B Bz Bis Exz

0 Axy Agg By  Bag Eyy

0 _ | sym. Agg  Sym. Begg 2e5y 7 (3.3.16)
My Bi1 B2 Big Du Diz Dig Kz

0 Bas  Bog Doy Dag Kyy

0 sym. Bgs  sym. Degg Ky

from where the strains ¢y, and 2e;, as well as the curvatures k,, and x,y, can
be determined. Such strains and curvatures are subsequently replaced in the

expressions for ng, or m,, determined from Eq. (3.3.16) yielding

Ny _ Act Besr Exx (3317)
Mgy Beff Deff Rax ’ -

in which the effective stiffness parameters are smaller, thus less stiff, than the
respective ()11 entries due to the additional deformation considered in com-
parison with a purely one-dimensional representation. The formulas derived
from Eq. (3.3.16) to determine the effective stiffness parameters are provided in

Appendix B.

3.3.3 Total potential energy principle

First, the total potential energy II (¢f. Egs. (2.1.3) and (2.1.6)) is derived. In
order to obtain the strain energy W, the well-known formula for the strain energy

of a multi-layered composite plate employing the CLASSICAL LAMINATE THEORY
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[76],2! where:

1
W = 2//<€9A[J52+25?B[JI€J+K)[D[JK/J) dy dx, (3.3.18)
z Yy

is applied to the one-dimensional formulation of a composite strut, thus

1
W = 2b/ (E?Allé‘(l) + 25(1)3111%1 + H1D11/€1> dx. (3.3.19)

T

Next, Eq. (3.3.19) is rewritten, such that coupling effects in the y-direction and
the z-y-plane are considered, by using the effective stiffness parameters derived in
Section 3.3.2.2, i.e.

1
W = §b / (gngeﬁagx + 2% Beghoe + mmDeﬁmm) dz, (3.3.20)

T

where b denotes the width of the strut, €2 the membrane strains in the z-direction
and ki, the curvature in the z-direction.?? Tt should be noted that in Eq. (3.3.20),
the spatial coordinates have been used instead of VOIGT’s notation (e.g. €} = €2,).

Eq. (3.3.20) considers all coupling effects present in the CLASSICAL LAMINATE
THEORY, so that arbitrarily laid-up struts as well as asymmetric layups caused
by a delamination can be investigated. By applying Eq. (3.3.20) to the problem
description provided in Section 3.3.1, the reversible strain energy W comprising
energy contributions from stretching and bending deformations of each part of

the strut can be obtained, ¢.e.

L*
1 2
W = ib l2Dg§% (/@%2) dxs

0

+ <Dg </<;§2> i + Agg (e%?) i + 23&%5&25&%) dx; (3.3.21)

+ <Deff (&2) i + Ag? (g%)Q + 236%35928%) dm] )

T— T

in which L* = (Lot — L) /2 and, as mentioned in Section 3.3.1, stretching contri-
butions for the undelaminated part (3) are not considered.

Struts with a symmetric layup are investigated, thus no coupling effects occur

2! The derivation of Eq. (3.3.18) is provided in Appendix C.
221t should be noted that the notation ., refers to a moment around the y-axis denoted by
M.
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for the undelaminated part, i.e. Bg}? = 0. For illustration purposes, the membrane

0

strains €,

are stated as eg in Eq. (3.3.21) indicating the respective part of the
strut while omitting the symbol “0” used to refer to membrane strains.

The work done by the external loads is expressed in the form of a potential @,
b = —P¢&, (3.3.22)

where P is the prescribed force and £ denotes the end-shortening of the strut.
Egs. (3.3.21) and (3.3.22) define the total potential energy, Il = W — P&, of the
delaminated composite strut under compressive in-plane loading.

In general, the membrane strains and the curvatures in Eq. (3.3.21) as well
as the end-shortening in Eq. (3.3.22) depend on derivatives of the in-plane (u)
and out-of-plane displacement (w), so that a variational principle would yield
differential equations whose solution are the displacement functions. However,
as described in Chapter 2, the deformation behaviour of the problems to be
studied with the analytical framework is expressed in terms of a set of generalized
coordinates g;. Thus, the variational principle provides a set of algebraic equations
rather than differential equations.

In the present application example, a RAYLEIGH-RITZ formulation is employed.
Continuous mode forms, which fulfil the geometric boundary and the continuity
conditions for the case of clamped boundaries at the end of the strut as well as at

the interface between the delaminated and undelaminated part, thus

ws(zg=0) =0, w3(x3 = Lioy) =0,
ws(zs = L") = wi(x; =0), w;
’wé(l'g :0) =0, wé

wy(r3 = L") = wi(x; =0), wj

r;=L) =wh(rs=L"+1L),

with ¢ = 1,2, and L* = (Lo, — L) /2, are used to approximate the out-of-plane
displacements (buckling displacement of each part, (1) — (3)) by employing three

generalized coordinates only, i.e.:

w; = g; sin® (?) + Cozd + C1x? + Cox; + C3 with i =1,2, and
43 | Ltot <7TL*> Lot ) (W(L* + L)>
Co= —= tan — sin ,
T [ i Lot T cos (EL*) Lot
tot
L/ 2q3 )
Ci=5|—— —3CL 3.3.24
L ( L 0% ) ( )
q3 Lot wL*
= — t
2= O 27 an (Lt0t> ’
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w3 =4q3 Lot sin? (7T9U3) .

27 cos (%) sin (%) Lot
In Egs. (3.3.23) and (3.3.24), x; and w; (i = 1,2,3) denote the z-axis and the
out-of-plane displacement of the parts of the strut respectively. The polynomial
in Eq. (3.3.24), thus its coefficients Cj_ 3, enforce the continuity conditions for
the buckling displacements. In Eq. (3.3.23), a (') denotes a differentiation with
respect to the xz-coordinate of the respective part.

The approximation of the out-of-plane displacements is based on the assumption
that the delaminated sublaminates behave as being clamped in the undelaminated
part of the strut. Therefore, the local buckling response is taken as the exact
solution for a double-sided clamped EULER strut. The polynomial which enforces
the continuity conditions also adds the global buckling response to w; and ws.
The physical interpretation of the generalized coordinates introduced in Section
3.1 can be retrieved from Eq. (3.3.24), where ¢; and g2 are the amplitudes of the
local out-of-plane displacement of the sublaminates respectively, and g3 is the
rotation at the interface between the delaminated and the undelaminated parts.

The curvature k., for the respective parts are obtained by differentiating the

out-of-plane displacements twice, i.e.

2.
@ = 0w (3.3.25)

2 )
ox;

where the index 7 refers to the respective part of the strut, so that no summation
is implied in Eq. (3.3.25).

In order to model the post-buckling response, a non-linear kinematic approach is
required. Most studies employ the vON KARMAN plate theory [76] which considers
non-linear strains associated with the out-of-plane displacement. This follows the
assumption of moderate rotations in the post-buckling range, where the strain
contributions (Qw/dX;)? /2 are not negligible whereas other non-linear terms are
vanishingly small and thus omitted.?? However, implementing the VON KARMAN
approach would result in a larger amount of generalized coordinates required to
model the post-buckling response, which is discussed in Chapter 4.

The current approach follows a phenomenological model, described in [30, 95],
and employs a single generalized coordinate g4 which describes the end-shortening
of the delaminated region. The modelling approach is not dissimilar to the
VON KARMAN theory, in such a way that a non-linear kinematic approach is
considered. However, the modelling considers contributions to the shortening of

the sublaminates rather than the in-plane displacement field. Thus, it assumes

23 The vON KARMAN plate theory is described in detail in Chapter 4. It should be noted that
X refers to the coordinates system of the reference configuration.
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that the in-plane strain is evenly distributed.

The total end-shortening of the delaminated region (g4) comprises the axial
shortening of the sublaminates, which is denoted by u® and u®, and a purely
geometric part associated with the buckling displacement.?*

The stretching energy contribution to the strain energy is associated with the
in-plane strain caused by the the axial shortening of the delaminated parts (u®

and u@), which can be expressed as

L
2
-1 [ (2213
u U= Er dzy —2 > tqs,
° (3.3.26)
2
® _ J/(é‘w) (a>
u q4 5 0y dao + 2 5 tqs ,
0

where the second terms describe the aforementioned shortening associated with the
buckling displacement. In addition, Eq. (3.3.26) considers the axial displacements
associated with the rotation of the interface during the buckling response (third
terms in Eq. (3.3.26)) due to the offset in between the neutral axis from the
undelaminated region and the neutral axes of the sublaminates (cf. Fig. 3.8). This
contribution to the shortening is approximated as the rotation angle g3 multiplied
by the distance between the respective neutral axes.

The respective in-plane strains (59, 5@) are then obtained by simple division
with the respective length of the delaminated parts L owing to the aforementioned
assumption of evenly distributed in-plane strain, i.e.:
&—f,mthz (3.3.27)
Thus, all quantities required to determine the strain energy, cf. Eq. (3.3.21), in
terms of the four generalized coordinates are determined.

The total end-shortening of the strut £ required to describe the work done by

the external forces is calculated as

L*

8103 2
&= q4 + / (8%’3) dxg, (3328)
0

where the assumption that the undelaminated region does not undergo in-plane

deformations is considered, such that the shortening of the undelaminated part

24 The geometric part of the shortening of the delaminated parts, c¢f. the second terms in
Egs. (3.3.26) and (3.3.28), is the end-shortening—to the first order—of the respective part of
the strut under the assumption of an inextensional neutral axis.
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results entirely from the buckling displacement (the second term in Eq. (3.3.28)).

In terms of the notation of the analytical framework developed in Chapter
2, the prescribed force P and the total end-shortening of the strut £ denote
the conjugate variables A; and «j respectively. Regarding the current state of
damage, it should be noted that by considering the width of the strut b—even if
the problem is formulated as a one-dimensional model—the damage parameter
is, in general, the delamination area (L times b). However, since the width of
the delamination is constant, a change in structure is solely associated with the
delamination length. This is why the delamination length is subsequently stated
as the damage parameter of the current application example, i.e. K = 1 and
&i=¢=1L.

Thus, with all quantities determined for a post-buckling analysis of stationary
delaminations, Eq. (3.3.29) states the total potential energy of a composite strut

with a through-the-width delamination:
I(q;, P, L) =W(q;, L) — PE(q;, L) with i=1,... .4, (3.3.29)

where the delamination length L is treated as a constant and the deformation of
the strut is determined for independent prescribed magnitudes of load with the

variational principle
oll(g;) =6 (W — PE) = 0. (3.3.30)
Eq. (3.3.30) yields a non-linear set of four algebraic equations

oIl
= =0, withi=1,..,4, 3.3.31
9 ( )

whose solution is the deformation paths ¢;(P) (in the following expressed in terms
of P(g:)).

The total potential energy and the set of algebraic equations are determined
analytically using MATLAB [37]. The non-linear set of algebraic equations is
solved numerically using the software AuTO-07P [18] which performs a contin-
uous NEWTON method. As discussed in Chapter 2, the deformation path P(g;)
resulting from Eqgs. (3.3.30) and (3.3.31) applies only as long as the delamination
is stationary, i.e. no growth is initiated, thus up to the deformation state (¢?, P°)

referred to as damage state (cf. Section 2.3 and Fig. 2.3).
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3.3.4 Extended total potential energy principle

Delamination growth, 7.e. a change in the damage parameter £ = L, occurs,
whenever the thermodynamic force associated with a change in the delamination
length (f) reaches or exceeds the force required to produce delamination growth
(9), thus:

f=>g. (3.3.32)

Regarding the current application example, the thermodynamic force is effectively

the energy release rate G, i.e.
f=aG, (3.3.33)

which, following Section 2.3, can be determined by

101

f=G=—5p (3.3.34)

where the multiplier 1/b results from considering the width of the strut.

A quasi-brittle fracture behaviour, thus a GRIFFITH-type damage process,
is assumed for the delaminated composite strut which appears adequate when
considering the laminates studied within this work.?®> Therefore, the dissipative

energy can be expressed as
Wy =Wq(€ = L) = Ge(L — L0, (3.3.35)

in which LY is the initial delamination length and G, is the critical energy release
rate which is a material parameter that depends, in general, on the mode mixture
[69]. However, for reasons of simplicity, G, is assumed constant in the application
example.

Thus, following Section 2.3, the force required for delamination growth can be

determined by

_ 1 0Wy

9= 57 (3.3.36)
yielding
g = Ge. (3.3.37)

With Egs. (3.3.34) and (3.3.37), the condition for delamination growth (cf.

25 Unidirectional layers of fibre reinforced plastics are investigated in which duroplastic materials
are used as the matrix constituent. Such materials exhibit a brittle fracture behaviour.
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Eq. (3.3.32)) can be stated in terms of the current application example, i.e.:
G > Ge. (3.3.38)

Thus, the behaviour of the energy release rate with respect to the prescribed
load input as well as certain delamination lengths, cf. Figs. 3.6 and 3.7, can be
analysed with Eq. (3.3.34) and the solution for the conservative behaviour P(g;)
obtained from Eq. (3.3.31). Furthermore, the deformation state which causes
growth—the damage state (¢¥, P°)—can be identified using Eq. (3.3.38). At the
damage state, the total potential energy principle loses its validity. As described
in Section 2.3, the extended total potential energy principle applies starting from
the damage state (q?, P).

An extended total potential energy exists, if the condition
f=g (3.3.39)

holds during the non-conservative deformation process. Rewriting the condition
for the existence of an extended total potential energy in terms of the application
example yields

10I1(qg;, P, L)

It should be stressed that in contrast to purely tensile loading, the condition of
G = G, does not necessarily lead to a catastrophic failure of the strut in the
post-buckling regime, which is explained in detail in Section 3.4.

With the aid of Eq. (3.3.40), the damage parameter L is derived as a function of
the generalized coordinates ¢; and the applied force P. However, since an explicit

form cannot be found from Eq. (3.3.40) it is rewritten, such that

from where the damage parameter, i.e. the delamination length L = L(g;, P), is

implicitly given, thus
D (gi, P, L(gi, P)) = 0. (3.3.42)

Following the framework developed in Chapter 2, an explicit form of the damage
parameter is then obtained by employing a TAYLOR series approximation around
the damage state (), P°) up to the 2nd order, thus:
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oL oL
L(¢,P) =L+ —=| (¢g—¢\)+-=| (P—-P°
(¢:; P) * 50 qo(q %)+ 55 qo( )
PZO ZO
1 9L (i — ¢*)(gq; — 0)+1627L (P — P%)?
2 0q:04; | = %)%~ 9) T 5 5p2 2 (3.3.43)
o o
d*L 0
i — 45 P_PO )
* G| 1~ P =P+ 0
po

in which L° is the initial pre-existing delamination length. The partial derivatives
in Eq. (3.3.43) are obtained from Eq. (3.3.42) by implicit differentiation (cf. Section
2.3). The delamination length, as provided by Eq. (3.3.43), is subsequently
incorporated in the extended total potential energy principle.

With the dissipative energy described in Eq. (3.3.35), all energy terms of the
extended total potential energy are obtained. Subsequently, the damage parameter
L in the form of Eq. (3.3.43) is replaced in the respective expressions for the strain
energy (cf. Egs. (3.3.21) and (3.3.29)), the dissipative energy (cf. Eq. (3.3.35))
and the work done by the external forces (cf. Eq. (3.3.22) and (3.3.29)), so that

the extended total potential energy reads
IT*(q;, P) = W (qi, L(q;, P)) + Wq (L(q;, P)) — P& (qi, L(qi, P)) . (3.3.44)

The variational principle using the extended total potential energy can then be

written as
6I*(¢;) = 6 (W + Wq — PE) =0, (3.3.45)

which yields a set of four non-linear algebraic equations whose solution is the
deformation path ¢;(P) starting from the damage state (¢?, PY). The deformation
path is obtained numerically by applying the NEWTON method. It should be
stressed that the deformation path considers delamination growth. The behaviour
of the damage parameter—the delamination length—can be obtained by inserting
the solution ¢;(P) into Eq. (3.3.43).

Since Eq. (3.3.43) approximates the delamination length, the solution obtained
from Eq. (3.3.45) will violate the condition G = G. at a certain deformation state,
which is determined by evaluating G with the aid of Eq. (3.3.40)y for each loading

step.?6 The deformation state for which the condition is violated is taken as a

26 A deviation of 0.5% in between G and G. is taken as an error threshold indicating the
violation of G = G..
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“new” damage state from where a new expression for the delamination length is
determined with Eq. (3.3.43). This is implemented in an iterative scheme which
consecutively derives the delamination length and solves the variational principle.

For the current application example, a TAYLOR series up to the second order
was determined as optimal for the approximation of the delamination length. Such
an approximation provides just a marginally smaller range of loading steps until
the condition G = G, is violated than an expression with third order terms but
requires significantly less computational cost.

The implementation of the extended total potential energy principle as well as

the iterative scheme is performed by a MATLAB script.

3.4 Results

In this section, results obtained for the post-buckling behaviour of delaminated
composite struts are presented. It will be distinguished between post-buckling
responses for stationary delaminations (Section 3.4.2) and post-buckling responses
comprising delamination growth and thus an entire loading process (Section 3.4.3).

The former is included in this work since the model description in Section 3.3
enables a detailed study of the post-buckling behaviour of delaminated composite
struts similar to the study [30] investigating isotropic struts, so that general
phenomena of the post-buckling behaviour and characteristic buckling responses
of delaminated composite struts can be summarized. However, focus is placed
on the latter in which findings from the application of the framework developed
in the current work are presented. Post-buckling responses yet to be obtained
by semi-analytical modelling approaches are documented whereby residual and
additional load bearing capabilities are described as well as the stability of the
post-buckling behaviour is investigated.

Before proceeding to the results, first, the modelling approach is verified in
Section 3.4.1 by comparisons with findings documented within the literature for the
case of stationary delaminations for an isotropic and a multi-layered orthotropic

strut.

3.4.1 Verification of the model description

In order to verify the model description developed in Section 3.3, post-buckling
responses obtained (without considering possible delamination growth) are com-
pared with findings documented in [30] and [87] studying delaminated isotropic
and multi-layered orthotropic struts respectively.

Fig. 3.9 shows the post-buckling response of a delaminated isotropic strut in

terms of normalized compressive load vs. normalized end-shortening, Pyorm(Enorm )-
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A comparison with [30] is enabled by adjusting the model description in Section
3.3 to isotropic material behaviour and considering displacement functions for
the simply supported case studied in [30]. The strut has a total length of
Liot = 110mm and a thickness of ¢ = 2.13mm. The delamination length is
L = 55mm and the delamination depth is given by a = 0.235 (¢f. Fig. 3.8).

1 T T T T
o [30]
= present model
® buckling load
= P, crit -
:
Q.% 0.5 -
0 | | | | |
0 0.5 1 1.5

gnorm

Fig. 3.9: Post-buckling response of a delaminated isotropic strut in terms of normalized
load (Phorm) vs. normalized end-shortening (&,orm) in comparison with results

published in [30].

The normalization of the load and the end-shortening is carried out with
respect to the corresponding EULER buckling load and the end-shortening for an
undelaminated strut respectively, thus:

2
Pryler = CWL%iI and  Eguler = %, (3.4.1)
in which ET is the bending stiffness of an isotropic strut, FA is the in-plane
stiffness, Lot is the length of the strut and c is 1 for a simply-supported strut and
4 for a both-sided clamped strut.

Fig. 3.9 depicts that the model description provides results which are in very
good agreement. The critical load and the post-buckling path show almost no
deviations.

Fig. 3.10 describes the post-buckling response in terms of normalized compres-
sive load wvs. normalized midpoint deflections, Pyorm (wWnorm), for a multi-layered

cross-ply composite strut with the layup [0°/(90°/0°)7], a delamination depth of
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a = 4/15 and a delamination length of L = 50.8 mm (¢f. Fig. 3.8). The strut is
clamped on both sides and has a total length of Liot = 96.52 mm and a thickness
of t = 1.337 mm.

T T T T T T T
o [87]
upper sublaminate

0.6 - lower sublaminate
® buckling Load

Pnorrn

0 | |
-2 -1

Wnorm

Fig. 3.10: Post-buckling response of a delaminated multi-layered composite strut in
terms of normalized load (Pyorm) vs. normalized midpoint deflections (wnorm )
in comparison with results published in [87].

As in [87], an imperfection (assumed to be caused by the delamination) is
considered in the form of an initial midpoint deflection. The imperfection is
added to the energy formulation by assigning ¢; an initial value of ¢* = ¢/1000
and subtracting its respective energy contributions (this is provided in detail in
Appendix D). Such an imperfection is also considered for the results presented in
Section 3.4.3.

Normalization of the load in Fig. 3.10 is carried out with respect to the EULER
buckling load for an undelaminated strut with 0° degree layers only (as done in
[87]), i.e.

PEuler = 795 (342)

where Dy is the bending stiffness against moment resultants around the y-axis
(cf. Fig. 3.8) and b is the width of the strut.2” The midpoint deflections are

2T1n Sections 3.4.2 and 3.4.3, the compressive load is normalized with respect to the actual
layup of the strut and the effective bending stiffness Deg, as introduced in Section 3.3.2.2, is
employed.
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normalized to the total thickness of the strut,?® wporm = wi2(x12 = L/2)/t.
The results shown in Fig. 3.10 are in very good agreement. The initial post-
buckling solution almost coincides. Slight differences can be seen at larger de-
flections with deviations smaller than 4%. Based on such findings, the model
developed in Section 3.3 appears to describe the buckling and post-buckling

behaviour sufficiently well in the conservative range.

3.4.2 Stationary delamination

Even though focus of the current work is not on stationary delaminations, the
section is included to exhibit the capabilities of the model description in Section 3.3
to enable detailed analyses regarding the post-buckling behaviour of delaminated
composite struts. Therefore, the section summarizes post-buckling phenomena of
delaminated transversally-isotropic composite struts with the aid of an illustrative
example: a composite strut with a cross-ply layup and a symmetric stacking
sequence [0°/90°/0°/90°]s.

The dimensions of the strut are chosen, so that out-of-plane shear effects can be
omitted with certainty. Each of the eight plies (unidirectional layers) consists of
the same transversally isotropic material. In order to provide a realistic measure
for the material parameters, it is assumed that the layers consist of Toho Tenax®
UTS carbon fibres [97] and epoxy resin as matrix. The fibre volume fraction is
taken as 0.58. The dimensions and the calculated effective material parameters
are provided in Table 3.1, in which h describes the thickness of a single layer and
t the total thickness of the strut.

Dimensions Material Parameters
Lot 100.00 mm E 141.00 GPa
b 10.00 mm Foo 6.00 GPa
t 0.80 mm G112 2.60 GPa
h 0.10 mm V19 0.27

Table 3.1: Dimensions and material parameters of the delaminated strut.

The post-buckling behaviour is described by examining general phenomena
regarding the buckling modes?® as well as by analysing the deformation paths
for representative cases. In those cases, delaminations in between the fifth
and sixth layer, i.e. a = 0.375 (¢f. Fig. 3.8), are studied. Three delamination

28 For the purpose of comparison, the coordinate system of [87] is used in Fig. 3.10. Thus, the
signs of deflection are opposed to Fig. 3.8.

29 Buckling modes are herein understood as characteristic buckling shapes rather than eigen
modes. The terminology of [30] and [102] is adopted.
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lengths, Lyorm = {0.5,0.62,0.75}, are investigated. Such cases comprise most
characteristics of the post-buckling behaviour for the stationary delaminations.

The results are provided in terms of normalized compressive load (Pporm ) against
normalized end-shortening (Enorm) as well as normalized compressive load against
normalized midpoint deflections (wporm ), which can be readily obtained from the
deformation path P(g;) using Egs. (3.3.28) and (3.3.24) respectively. Furthermore,
the analysis of the load (Pyorm) against the rotation angle (g3) illustrates another
advantage of the model description, such that single deformation characteristics
can be readily analysed.

Normalization is carried out with respect to the EULER values for an undelami-
nated strut with the same stacking sequence in which the effective parameters for
in-plane and bending stiffness are used—contrary to Eq. (3.4.2). The midpoint
deflection is normalized to the thickness of the strut, wyorm = w1 2(z12 = L/2)/t,
and the delamination length to the total length of the strut, Lyorm = L/ Ltot.

3.4.2.1 General observations

The post-buckling behaviour can be described by examining the characteristic
buckling modes occurring during the post-buckling response, as shown in Figs. 3.11
to 3.14. At the buckling load, a closed-mode buckling response, as illustrated
in Fig. 3.11, is present for all possible delamination depth and length.?® The
response of the thicker sublaminate (grey line in Figs. 3.11) strongly depends
on the delamination depth and on its in-plane stiffness. For thin delaminations,
the thicker sublaminate remains unaffected (which is considered herein as closed-
mode buckling).3! Irrespective of the delamination length and depth, the initial
(post-)buckling response (in the vicinity of the buckling load) is always stable.
Depending on the layup, the delamination length and the delamination depth,
the post-buckling response of the strut may change from a closed-mode to an

opening-mode response which is illustrated in Figs. 3.12 and 3.13.

m— Upper sublaminate
lower sublaminate

deflection

delaminated region

Fig. 3.11: Closed-mode buckling (initial response).

30 Configuration which cause contact of both sublaminates are not considered.

31 This is often referred to as thin-film buckling. As the present work considers global buckling
responses, the post-buckling response in which just the thinner less stiff sublaminate exhibits
out-of-plane deflection is subsequently referred to as local buckling rather than thin-film
buckling.
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Fig. 3.12: Transition to opening-mode buckling.
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Fig. 3.13: Opening-mode buckling.
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Fig. 3.14: Closed-mode buckling before contact.

Such a changeover is associated with the onset of global buckling and is more
pronounced for deeper delaminations than for shallow delaminations. For shallow
delaminations, the changeover occurs in the initial post-buckling response directly
following the buckling load. For certain delamination configurations, i.e. the
smaller and the deeper the delamination is, such a changeover does not occur.

Table 3.2 lists the delamination lengths (Lchange) depending on the delamination
depth (a) for which the buckling response changes from remaining in the closed-
mode (L < Lehange) to the transition from a closed-mode into an opening-mode
response (L > Lchange)-

As can be seen, for increasing delamination depths the change in the buckling
response occurs at larger delaminations. Furthermore, the delamination length
L¢hange also provides a general indicator whether or not the strut loses its stability

during the post-buckling response.
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depth a Lchange|—]
a=0.125 0.22
a = 0.250 0.46
a=0.375 0.62
a = 0.500 no change

Table 3.2: Delamination length for the changeover in the buckling response.

For delamination length L > Lcpange, the post-buckling response remains stable
throughout the deformation process (for stationary delaminations). For delami-
nation length L < Lchange, the system remains in the closed-mode but loses its
stability during the post-buckling response in a load-controlled configuration. The
loss of stability—the post-buckling response exhibits a limit point—is associated
with the onset of global buckling. As a consequence, both sublaminates may get
in contact with each other at a certain deformation state which is indicated in
Fig. 3.14.

3.4.2.2 Post-buckling behaviour

Subsequently, characteristic phenomena of delaminated composite struts are de-
scribed by studying the post-buckling responses of the aforementioned three cases
of delaminated struts (a = 0.375, Lporm = {0.50,0.62,0.75}), as introduced in
Section 3.4.2. Following Table 3.2, the three delamination lengths character-
ize configurations which are smaller than, equal to and greater than Lchange,
respectively.

Fig. 3.15 describes the post-buckling behaviour for the three cases considered
in terms of the normalized compressive load (Pyorm) against the normalized end-
shortening of the strut (Enorm). The corresponding behaviour of the normalized
compressive load (Pyorm) against the normalized midpoint deflections (wnorm) is
provided in Fig. 3.16.

In Figs. 3.15 to 3.17, the buckling load (Pt ) for the cases studied is indicated by
the symbols “e”, “e” and “+”, respectively. As expected, Figs. 3.15 and 3.16 show
that larger delamination lengths cause smaller buckling loads. The drop of the
buckling load is more significant in between Ly = 0.50 and Lyorm = 0.62 than
Lyorm = 0.62 and Ly = 0.75. Such behaviour of the buckling load corresponds
to the information provided in Section 3.2.1 in Fig. 3.4 for the case of deeper

delaminations.
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Fig. 3.15: Normalized load (Pyorm) vs. normalized end-shortening (Enorm ); delamination
depth a = 0.375; delamination lengths Lyorm = {0.50, 0.62,0.75}.
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Fig. 3.16: Normalized load (Pyorm) vs. normalized midpoint deflections (wyerm); delam-
ination depth a = 0.375; delamination lengths Lyorm = {0.50, 0.62,0.75}.

Examining the case of Lyomm = 0.50 (black lines), Fig. 3.15 shows that, initially,

the post-buckling response is stable with a minor decrease in compressive stiffness

of the strut. The post-buckling stiffness decreases further towards the maximum
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load of Pyorm = 0.68. At an end-shortening of &0 = 0.78 associated with the
maximum load, the response changes from stable to unstable. This deformation
state is a limit point (P ) illustrated by the symbol “¢” in Figs. 3.15 and 3.16.
Thus, in a load-controlled configuration stability failure would occur at Pipy.

Fig. 3.16 depicts a closed-mode buckling response throughout the deformation
process for Lyorm = 0.50 whereby the upper less stiff sublaminate (dashed line)
exhibits larger deflections than the lower sublaminate. As described in Section
3.4.2.1, after the loss of stability both sublaminates get in contact with each
other which occurs shortly after the limit point is reached. The contact point is
indicated in Figs. 3.15 and 3.16 by the symbol “[J”.

As delineated by Table 3.2, such a post-buckling response occurs up to a
delamination length of Lyom = 0.61 where the buckling load, the maximum load
and the post-buckling stiffness would reduce consecutively without a change in
the qualitative behaviour. At Lyorm = 0.62, the post-buckling response of the
strut changes. The deformation behaviour is described in Figs. 3.15 and 3.16
by the dark grey lines. As can be seen, no limit point is present and hence the
deformation process is stable throughout the post-buckling response. The post-
buckling response can be subdivided into two parts. The first part comprises the
initial response which is characterized by a large post-buckling stiffness (Fig. 3.15)
and a closed-mode buckling response where the thinner sublaminate exhibits
significantly larger deflections than the thicker sublaminate (Fig. 3.16). The
second part commences when the global buckling response is triggered, thus the
thicker sublaminate also exhibits large deflections. The transition can be seen in
Fig. 3.16 at a load of P,orm = 0.52. At this deformation state, the changeover
from a closed-mode to an opening-mode response is initiated. Subsequently, both
sublaminates deflect in opposite directions. Once the global buckling response is
present, the post-buckling stiffness reduces significantly showing the characteristic
weakly stable behaviour as for undelaminated struts where the load converges
towards Pyorm = 0.55.

If larger delamination lengths are present, the qualitative post-buckling be-
haviour does not change again. However, each part of the post-buckling response
described for a delamination length of Lo = 0.62 occurs at a different extent.
This is depicted in Figs. 3.15 and 3.16 for a delamination length of Ljom = 0.75
(light grey lines). The initial post-buckling response in which both sublaminates de-
flect in the same direction (closed-mode response) associated with a small decrease
in stiffness shortens (Pyorm = 0.36 — 0.52 for Lyorm = 0.62, Pyoym = 0.26 — 0.37 for
Lyorm = 0.75). The transition to the second part of the post-buckling response is
smoother than for Lo, = 0.62 as the changeover from closed-mode to opening-

mode is already triggered during the initial post-buckling response (shortly after
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the buckling load at Pyorm = 0.30). The maximum load bearable by the system is
also significantly reduced to Phorm = 0.38.

Since the generalized coordinates used within the model description provide
further physical interpretation, Fig. 3.17 is analysed in which the normalized load
(Poorm) 1s plotted against the rotation angle (¢g3) at the connecting plane of the
delaminated and undelaminated region. Whereas the rotation angle is always
positive for a delamination length of Ly = 0.5 (black line in Fig. 3.17), the
changeover in buckling displacement from initially closed-mode to an opening-
mode buckling response is documented for delamination lengths of Lo = 0.62
(dark grey line) and Lyorm = 0.75 (light grey line). As can be seen in Fig. 3.17,
following buckling the rotation angle is positive associated with both sublaminates
deflecting in the positive direction. The transition into the opening-mode buckling
response is visualized by the rotation angle shifting to negative values which
also indicates the onset of the global buckling response for the respective cases
(cf. Figs. 3.15 and 3.16).
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Fig. 3.17: Normalized load (Pyorm) vs. rotation angle (g3); delamination depth a = 0.375;
delamination lengths Lyorm = {0.50,0.62,0.75}.

3.4.2.3 Discussion of the results

The results obtained in Section 3.4.2 provide insight into the influence of de-
laminations on the post-buckling behaviour of composite struts. As it is, to a

certain amount, random to what extent delaminations occur in composite struts
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the results showed that minor changes in delamination length (e.g. as shown for
a = 0.375 and Lypoym = 0.61 — 0.62) may change the buckling response of the
system (closed-mode to opening-mode) as well as, more importantly, the stability
of the post-buckling deformation. Configurations of delaminations causing such a
sudden change in the stability of the post-buckling response, and thus stability
failure under prescribed forces, are determined and summarized in Table 3.2.
Thus, with Table 3.2 and the characteristic post-buckling deformation paths
(Figs. 3.15 to 3.17), the post-buckling behaviour of delaminated composite struts
for stationary delaminations is described.

The characteristic post-buckling responses for delamination lengths
Lnorm > Lehange provided in Figs. 3.15 to 3.17 (dark grey and light grey lines)
only change quantitatively for varying delamination depth with respect to the
buckling load, the post-buckling stiffness and the out-of-plane deflections.

Post-buckling responses exhibiting a changeover in the buckling response from
closed-mode to opening-mode that is associated with a loss in stability, as doc-
umented in [30] for isotropic struts, have not been obtained. Such a response
is discussed in [30] as being related with a secondary bifurcation point which,
on the one hand, can be neglected a priori for the current study owing to the
stretching—bending coupling. On the other hand, a continuous change in the
delamination depth as for homogeneous and isotropic struts does not apply for
multi-layered composite struts. Thus, it remains to be investigated if for certain
delamination depths which randomly match the depth of an interface in between
two layers further post-buckling phenomena may be obtained.

Moreover, for smaller delamination depths than studied in Figs. 3.15 to 3.17
(shallow delaminations), a more pronounced local buckling response would be
obtained. This, however, does not affect the general phenomena of the post-
buckling behaviour presented in this section.

Imperfections in the form of an initial out-of-plane deflection, as it is partly
assumed in the literature, are not considered. Thus, post-buckling responses as
for mid-size delaminations in Fig. 3.5 are not present. Such imperfections would
mainly affect delamination lengths Lnorm < Lehange Which, up to a certain smaller
delamination length than Lcnange, cause stable post-critical behaviour exhibiting a
post-buckling response similar to Fig. 3.5 (dashed lines). Such a case is included in
the subsequent Section 3.4.3. The unstable post-buckling behaviour documented
in this section would occur then for smaller delamination length as given in Table
3.2.
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3.4.3 Non-stationary delaminations

This section presents the results following the application of the analytical frame-
work developed in this work to the problem of delaminated composite struts under
compressive in-plane loading.

Therefore, a laminate is chosen which is examined in [87] with respect to the
post-buckling behaviour for stationary delaminations. The model description for
a stationary delamination developed in Sections 3.3.1 and 3.3.2 has been verified
by comparison with [87] in Fig. 3.10. The strut has a [0°/(90°/0°)7] cross-ply
layup with a delamination at the depth a = 4/15.

The dimensions and material parameters of the delaminated strut are listed
in Table 3.3 in which h describes the thickness of a single layer and ¢ the total
thickness of the strut.

Dimensions Material Parameters
Lot 96.52 mm Eq 137.90 GPa
b 12.70 mm Foo 8.98 GPa
t 1.337 mm G2 7.20 GPa
a 4/15 V12 0.30
h 0.0889 mm G! 190 Nm/m?

Table 3.3: Dimensions and material parameters taken from [87].

The results are compared with findings from finite element simulations using
ABAQUS [93]. The strut is built-up by shell elements (type S4R) with an element
size of 0.2mm by 0.2mm and a total of 62790 nodes. Delamination propagation
is modelled using the virtual crack closure technique [50, 51] incorporated in
ABAQUS.

First, the thermodynamic force—the energy release rate—is examined. With
the aid of the energy release rate, the condition for the existence of an extended
total potential energy is verified. Subsequently, post-buckling responses for two
characteristic configurations are provided in terms of normalized compressive
load against normalized midpoint deflections (Pyorm vS. Wnorm) and normalized
compressive load against its corresponding end-shortening (Poorm vS. Enorm)- Post-
buckling responses for an entire loading process, i.e. up to stability and /or material

failure of the strut, are presented.
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3.4.3.1 Energy release rate

Fig. 3.18 shows the normalized energy release rate, Gpomm = G/GL, with respect
to the normalized delamination length, Lyoym = L/Liot, (used instead of the
delamination area as the width b is constant) and increasing levels of constant end-
shortening. The energy release rate is normalized with respect to the mode I critical
energy release rate G£ provided in Table 3.3 where Gporm = 1, i.e. G = G, = G};,
indicates delamination growth.3? It is generally advisable to evaluate the energy
release rate in terms of end-shortening £ rather than forces as weakly stable or

even unstable buckling phenomena can be analysed.
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Fig. 3.18: Normalized energy release rate (Gnorm) vs. normalized delamination length
(Lnorm) for increasing load levels in the form of normalized end-shortening
(Enorm); delamination depth a = 4/15.

Fig. 3.18 depicts a characteristic behaviour of the energy release rate for
delaminated struts with a through-the-width delamination. Similar results are
documented in the literature for homogeneous struts (c¢f. Fig. 3.7). The solid
lines in Fig. 3.18 describe the energy release rate for respective constant values of
end-shortening. The smallest value (Eyorm = 2.3) indicates the lowest level of “load
input” for which delamination growth occurs. Thus, for an initial delamination
length of Lyorm = 0.21, growth is generated at Eporm = 2.3. An initial delamination
length of Lyorm = 0.45 requires the highest value of end-shortening (Enorm = 9.72)
to cause growth. A vertical dotted line is added to Fig. 3.18 corresponding to a
delamination length of Ly = 0.45. The left vertical dotted line in Fig. 3.18

32 The assumption G. = Gi constitutes a conservative measure.
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indicates an arbitrary chosen initial delamination length of a strut (Lyerm = 0.36)
which is studied next.

At an end-shortening of E,orm = 6.58, the energy release rate equals the critical
value (G = G¢, Ghorm = 1) for an initial delamination length of Lyorm = 0.36.
Once the critical energy release rate is reached, delamination growth occurs. Thus,
for the current state of loading (quasi-static process) associated with the critical
energy release rate G, the delamination length increases from L to L + AL. For
the new configuration, i.e. the constantly kept state of loading and a delamination
length of L+ AL, the energy release rate changes from G. (Gnorm = 1) to another
value, which is referred to as Gpew. If the energy release rate decreases (G > Gpew),
growth stops and the process is termed stable. If Gpew > Gc, unstable growth
occurs causing catastrophic failure of the strut. If stable delamination growth
occurs, further loading may be applied until G is reached again. Thus, the
post-buckling response under stable delamination growth follows the condition
of G = G, (horizontal dashed line in Fig. 3.18) which also dictates the load that
may be applied to the system and embodies the requirement for deriving the
extended total potential energy (fr = gx) used within the framework developed.
With the study of Fig. 3.18, the existence of an extended total potential energy
for delamination growth in buckled delaminated composite struts is verified.

Furthermore, by analysing Fig. 3.18, regions of stable or unstable growth for
initial delamination lengths are obtained. For delamination lengths of 0.21 <
Lporm < 0.45 stable delamination growth occurs. Delamination lengths larger
than Ljorm = 0.45 but smaller than Lym, = 0.73 cause unstable growth. Stable

growth occurs again if the delamination length is larger than L,om = 0.73.

3.4.3.2 Post-buckling

The post-buckling behaviour of delaminated struts analysed in Fig. 3.18 (a = 4/15)
is subsequently examined. Two cases of initial delamination lengths are consid-
ered (Lporm = {0.36,0.67}) which provide characteristic post-buckling responses
associated with a distinct damage growth behaviour. Furthermore, such cases
refer to the classification of mid-size and large delaminations (cf. Fig. 3.5), thus
configurations of struts which do not evoke a limit point, i.e. loss of stability, for
the case of stationary delaminations.

First, the case of a delamination with the length Lyorm = 0.36 (L = 35mm)
and the depth a = 4/15 (in between the eleventh and twelfth layer, cf. Fig. 3.8) is
studied. Fig. 3.18 shows that for such an initial delamination length growth will
be stable until a delamination length of Ly = 0.45 is reached (in between left
and right vertical dotted line in Fig. 3.18).

In Figs. 3.19 and 3.20, the post-buckling behaviour is studied by examining

the load Phorm against the midpoint deflection of the sublaminates wporm. The
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normalization of the load is performed with respect to the EULER buckling load
of the undelaminated strut and the midpoint deflection is normalized against the
total thickness of the strut.
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Fig. 3.19: Normalized load (Pyorm) vs. normalized midpoint deflections (wnorm); initial
delamination length Lyorm = 0.36; delamination depth a = 4/15.
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delamination length Lo = 0.36; delamination depth a = 4/15; closer look
at the non-conservative part.
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Fig. 3.19 shows a characteristic post-buckling response as long as the delam-
ination does not grow (up to the symbol “e”). A local buckling response is
shown at around Pyorm = 0.45 where the upper delaminated part (thinner and
less stiff than the lower part) buckles whereas the lower part stays unaffected.
Once the global buckling response is triggered the lower sublaminate deflects in
the negative direction causing an opening-mode buckling response. The global
buckling response (buckling of the undelaminated and lower sublaminate) yields
that the midpoint deflection of the upper sublaminate also shifts into the negative
direction. However, the structure remains in an opening-mode response as the
delamination opens further, i.e. both parts deflect in opposite directions with
respect to each other, even though both parts show a negative deflection.

As documented in Fig. 3.19, the finite element simulation (“FEM” in Figs. 3.19
to 3.24) shows the same qualitative behaviour compared with the model whereas
quantitatively the respective local buckling load as well as the global buckling
differ by approximately 4%. This appears to be plausible since the model does not
incorporate out-of-plane shear deformations and neglects in-plane contributions
from the undelaminated region.

A changeover in the buckling response can be seen once delamination growth
occurs. This is illustrated in Fig. 3.20 which takes a closer look at the buckling
response around the deformation state where delamination growth is caused (“e”).

Fig. 3.20 shows that once the delamination grows both sublaminates deflect in
opposite directions associated with a slightly decreasing load. The dashed line
shows the deformation path as long as delamination growth is stable. At “o”,
the delamination reaches a length of Lyom = 0.45 at which unstable growth is
triggered causing failure of the strut. The same qualitative behaviour is obtained
by the finite element simulation with the load being approximately 4% smaller.
The midpoint deflections at the onset of growth almost coincide and just minor
deviations are shown during delamination growth.

Fig. 3.21 shows the post-buckling response in terms of the normalized compres-
sive load (Pyorm) vs. the normalized end-shortening (Eyorm ). Initially, a typical
“conservative” buckling response is shown where the post-buckling stiffness of
the strut remains unaffected during local buckling and almost reaches zero at
global buckling illustrating the characteristic weakly stable behaviour. However,
in contrast to other (semi-)analytical models, the deformation behaviour is also
determined once delamination growth occurs.

As predicted by Fig. 3.18, delamination growth is initiated at &,opm = 6.58
indicated by “e” in Fig. 3.21. The dashed line following “e” describes stable
damage growth as it was predicted by Fig 3.18. Once damage growth is caused a
slight drop in load occurs. In the range from Eyorm = 6.58 (@) to Enorm = 9.72 (0),

81



3 Delaminated composite strut 3.4 Results

the strut loses approximately 3.3% of the maximum load. Up to an end-shortening
of Enorm = 9.72, corresponding to a delamination length of Lyom = 0.45, the
delamination propagation is stable, i.e. the strut does not fail. However, at an
end-shortening of Eyorm = 9.72 (¢) the delamination grows unstably. Thus, for
this configuration, sudden failure of the strut occurs once end-shortening reaches
Enorm = 9.72 which may be understood as the “failure displacement” of the system
(indicated by the vertical dot-dashed line in Figs. 3.21 and 3.22).
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Fig. 3.21: Normalized load (Pyhorm) vs. normalized end-shortening (Enorm); initial delam-
ination length Lyomm = 0.36; delamination depth a = 4/15.

Regarding the stability analysis, the initiation of delamination growth is impor-
tant. For a load-controlled problem, “e” exhibits a limit point from which the
system will lose its stability causing a dynamic snap and thus stability failure. If
the problem is displacement-controlled (end-shortening), the loss of structural
stability coincides with the initiation of unstable delamination growth at “o”.

In order to enable a comparison with the finite element simulation, the axial
shortening of the undelaminated part of the strut (not considered in the model
description) has to be considered. This is done in Fig. 3.22, in which the axial
shortening corresponding to the compressive load is added by means of a pure
squashing contribution, such that the total end-shortening of the strut is increased

in comparison with Fig. 3.21.
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Fig. 3.22: Normalized load (Pyorm) vs. normalized end-shortening (Enorm); initial de-
lamination length Lyorm = 0.36; delamination depth a = 4/15; shortening of
undelaminated part considered.

Despite the rough consideration of the axial shortening of the undelaminated
part, Fig. 3.22 shows good agreement. The results coincide for the fundamental
path and for the local buckling response. The global buckling response is initiated
at a slightly smaller load in the finite element simulation and the subsequent path,
as mentioned before, deviates by approximately 4%. The deviations between the
finite element simulation and the results obtained for the onset of delamination
growth and the prediction of the material failure (unstable growth) in terms of
end-shortening are 8.5% and 12% respectively.

The second case of a delaminated strut—larger initial delamination length
(Lnorm = 0.67) but the same depth (a = 4/15)—is studied in Figs. 3.23 and 3.24.
From the behaviour of the energy release rate shown in Fig. 3.18 follows that once
growth is initiated, it is unstable for such a configuration. However, interestingly
Fig. 3.18 also depicts that such growth would stop at a larger delamination length
and henceforth proceed in a stable regime (this is similar to the case shown for
Enorm = 6.58 in Fig. 3.18 at Lyom = 0.58). Thus, contrary to the previously
discussed case, post-critical behaviour causing initially unstable delamination
growth but no complete failure is documented in Figs. 3.23 and 3.24.

Fig. 3.23 shows the normalized compressive load (Pporm) against the normalized
end-shortening (Eporm). As before, the symbol “e” indicates where delamination

growth occurs, i.e. at Enorm = 5.95. As discussed, unstable delamination growth
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is caused at “e”. This is associated with a sudden increase in delamination from
Lyorm = 0.67 to 0.77 and a drop in load of approximately 12% which is indicated
by the vertical dotted line from “e” to “0O” in Fig. 3.23. The model provides the
solution for the condition G = G, (dashed line in Fig. 3.23) which is violated for
unstable growth. Thus, the structure would follow the vertical dotted line and
would not undergo the snap-back response indicated in Fig. 3.23. At “0O”, growth
would follow a stable regime (corresponding to increasing end-shortening) up to
the symbol “¢” which is illustrated by the dashed line. At “¢”, the delaminated

parts of the strut are completely separated.
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Fig. 3.23: Normalized load (Phorm) vs. normalized end-shortening (Enorm); initial delam-
ination length Lyomm = 0.67; delamination depth a = 4/15.

The results obtained by the analytical model are in very good agreement with
the findings from the finite element simulation. Minor deviations in load of
approximately 1% are documented. The end-shortening at which growth occurs
shows slight differences between the models. However, the characteristic drop in
load is also illustrated by the finite element simulation and the points of complete
separation almost coincide.

In a load-controlled configuration, “e” would correspond to the failure load of
the system causing stability failure. The deformation path shown in Fig. 3.23
could be followed in a displacement-controlled setup. However, regarding the
quasi-brittle damage behaviour assumed and present in such composites, the
system would most likely not recover to a stable regime once unstable growth is

initiated.
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The corresponding load against midpoint deflection behaviour is shown in
Fig. 3.24. The local buckling as well as the global buckling response are in very
good agreement with the findings from the finite element simulation. The larger
delamination length almost diminishes the shear deformation effects which are
not considered in the model description. In contrast with Figs. 3.19 and 3.20,
both sublaminates deflect in opposite directions, without that the undelaminated
part pulls both sublaminates into the negative direction. The deflection at which

wgn

growth occurs (“e”) as well as the point of complete separation (“¢”) almost

coincide between the analytical model and the finite element simulation.
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Fig. 3.24: Normalized load (Pyorm) vs. normalized midpoint deflections (wnorm); initial
delamination length Lyorm = 0.67; delamination depth a = 4/15.

3.4.3.3 Discussion of the results

The model used to describe the buckling and post-buckling phenomena by means
of four generalized coordinates incorporates several simplifying assumptions such
as omitting out-of-plane shear deformations and the in-plane stiffness of the
undelaminated part. Such simplifications affect more the response of struts with
smaller delamination lengths (Figs. 3.19 to 3.22) than with larger delamination
lengths (Figs. 3.23 and 3.24). This appears plausible and was expected due to
the larger length-to-thickness ratio of the respective delaminated parts. In spite
of these simplifications, the results provided in Section 3.4.3 are in very good

agreement with findings from finite element simulations.
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In Figs. 3.22 and 3.23, the corresponding in-plane displacement of the undelam-
inated part has been added to the solution in order to enable the comparison with
the finite element simulation. This should be regarded as a rough approximation
of the in-plane stretching contribution of the undelaminated part. Furthermore,
it can be expected that this is a more precise approximation for smaller lengths
of the undelaminated part (Fig. 3.23) than for larger lengths (Fig. 3.22).

As described in Section 3.4.3.1, mode mixture is not considered and the critical
energy release rate of mode I is taken as G.. However, for “deep” delaminations
mode I is dominant, for which the simplification of G. = G. in the cases studied
is an acceptable choice.

The results presented indicate that delamination growth in delaminated com-
posite struts occurs once global buckling is triggered. However, the deformation
state where growth is initiated strongly depends on the material parameter G.

Regarding the stability of the post-buckling response, the results provided in
Section 3.4.3 depict that delamination growth in delaminated composite struts is
associated with a decrease in load, so that the deformation state causing growth
is also a limit point in a load-controlled configuration (prescribed forces) yielding
stability failure of the strut.

Such post-buckling paths are traceable in a displacement-controlled configu-
ration (prescribed end-shortening), so that additional load bearing capacities of
the systems are present and documented by the application of the framework.
Material failure characterized by unstable delamination growth can also be di-
rectly derived from the results as it is associated with a loss in stability in a
displacement-controlled system. Thus, with the aid of the post-buckling paths
as well as the behaviour of the energy release rate (Fig. 3.18), besides the post-
buckling behaviour, damage growth and failure characteristics (stability and/or
material failure) can be examined for a given delaminated strut.

Even if not specifically investigated within the current work, savings of compu-
tational cost are tremendous using the framework. The commercial finite element
code (specifically in the damaging process) requires hours for solving the given
problem (Intel® i7, 3.4 GHz 16 GB RAM), whereas the implementation of the

framework solves the four degree of freedom model within a few minutes.

3.5 Concluding remarks

3.5.1 Stationary delaminations

The post-buckling analysis for stationary delaminations presented in Section
3.4.2 shows that the model description developed in Section 3.3 provides an

efficient approach to obtain detailed information about the critical and post-critical
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behaviour of delaminated composite struts under the assumption of stationary
delaminations.

This has been achieved by employing four generalized coordinates where the
end-shortening of the delaminated part (q4) describes a passive coordinate, such
that it could be replaced for the case of stationary delaminations. As an outcome,
the (post-)buckling response is obtained by solving a set of just three non-linear
algebraic equations. The small number of generalized coordinates enables a
highly efficient analysis of the influence of delaminations on the (post-)buckling
behaviour of composite struts which, except [30] for isotropic material behaviour,
has not been done in the proposed manner yet. Therefore, the modelling of
the stationary case may be regarded as an extension of the study in [30] to
multi-layered composite struts with transversally isotropic material behaviour.
Furthermore, in contrast with [30], another approach regarding the displacement
functions as part of the RAYLEIGH-RITZ formulation has been employed.

The model allows for arbitrary delamination lengths and depths which guaran-
tees an applicability to arbitrary types of laminates (e.g. symmetric or asymmetric).
The description of the post-buckling behaviour by means of a one-dimensional
formulation simplifies the calculation but is regarded as sufficient as well as ex-
pedient since it may be argued whether a two-dimensional formulation of the

problem provides further insight.

3.5.2 Non-stationary delaminations

The novel analytical framework comprising the extended total potential energy
principle has been successfully applied to the problem of a composite strut with a
through-the-width delamination under a compressive in-plane load.

Post-buckling responses with delamination growth have been modelled using
four generalized coordinates only. Hence, the deformation behaviour, the stability
analysis and the damage propagation have been determined by solving a set of just
four non-linear algebraic equations. This has provided insight into the initiation of
delamination growth, the structural stability during growth and the possibility of
stable and unstable delamination growth. Deformation paths for an entire loading
process (stationary and non-stationary delaminations up to failure) have been
compared with finite element simulations. The results are in very good agreement
and the quantitative differences obtained (up to 4%) are directly linked to the
simplifications made in the model description of the composite strut.

For composite struts, thus far such information is not provided by semi-analytical
models. Moreover, with the results obtained in the current chapter, for all
configurations of delaminations, i.e. small, mid-size and large delaminations

(following the classification introduced in Section 3.2), the structural stability
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behaviour can be described and the type of failure can be predicted.

Concluding, employing the framework with just a few generalized coordinates
allows for fast solutions with demonstrably good accuracy, while demanding low
computational cost. This indicates the capability of the framework developed in
this work. The model description of a delaminated composite strut comprising the
analytical framework developed in Chapter 2 embodies an engineering tool which
can be used to predict the deformation behaviour of such structures considering
structural stability and damage mechanics phenomena. As a consequence, the
current structural stability analysis contributes to a better understanding of the
post-buckling behaviour of delaminated struts.

With the structural stability behaviour of delaminated composite struts being
determined, the next chapter is concerned with an extension of the problem to

delaminated multi-layered composite plates with embedded delaminations.
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4 Non-linear buckling of a composite
plate with an embedded

delamination

The problem of a composite plate with an embedded delamination under com-
pressive in-plane loading is studied in this chapter. It embodies an extension
to the problem investigated in Chapter 3 towards a wider range of applications.
In contrast to composite struts with a through-the-width delamination, growth
of embedded delaminations in plates is not necessarily, at first, associated with
decreasing loads bearable by the system and thus stability failure under prescribed
forces. This might give rise to wrong conclusions of safe post-buckling responses,
whereas damage growth can be already present potentially yielding unexpected
and sudden failure of the structure. This underlines further the need for efficient
modelling approaches describing the post-buckling behaviour considering delam-
ination growth. In the current chapter, characteristic post-buckling responses
of elliptically delaminated composite plates considering delamination growth are
modelled providing insight into the structural stability behaviour, additional load
bearing capabilities as well as the material failure behaviour. On the other hand,
unlike Chapter 3, a general analysis of the post-buckling behaviour of delaminated
plates is not intended.

Composite plates with embedded delaminations have been the subject of inves-
tigation of various studies whereof just a few employ semi-analytical modelling
approaches. Furthermore, such models are restricted to stationary delaminations
and, in most cases, consider local buckling responses only.

In the current chapter, besides the modelling of post-buckling responses by
applying the analytical framework developed in this work, the general issue
regarding the semi-analytical modelling of such a geometrically more complex
application example is addressed. Therefore, two modelling approaches are
analysed and the amount of generalized coordinates required to describe the
deformation behaviour efficiently is determined.

The chapter commences in Section 4.1 with a brief review regarding general
phenomena of the (post-)buckling behaviour of plates. This is followed by an

overview of the state of research (Section 4.2) regarding the post-buckling be-
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haviour of delaminated composite plates considering delamination growth. The
semi-analytical model is presented in Section 4.3 which contains three parts. First,
two modelling approaches considered for determining the post-buckling responses
are reviewed and compared. Then, the model description is presented followed
by the energy formulation used to determine the post-buckling responses for the
case of stationary and non-stationary delaminations. In Section 4.4, results of
non-linear buckling responses are presented. The chapter closes with concluding
remarks regarding the phenomena observed and the application of the framework

to the given problem.

4.1 General buckling and post-buckling phenomena of
plates

An illustration of the problem of plates under in-plane compressive loading is
shown in Fig. 4.1. For illustration purposes, Fig. 4.1 only depicts compressive
loading along the z-axis as well as the case of simply-supported boundaries.! As
often used to describe the two-dimensional plate problem (cf. [96]), the force
resultants? in the z-direction n,, and the corresponding displacements u are
provided in Fig. 4.1 in addition to the quantities introduced in the previous

chapters: compressive force P and end-shortening £.

f‘ ; Uug = 5/2 Uo

Fig. 4.1: Tllustration of a plate subjected to in-plane compressive loading (nz,).

As in Chapter 3, all physical quantities used for the structural stability analysis
are highlighted in red in Fig. 4.1. The buckling displacement is sketched by the

dashed lines. It should be noted that such a response refers to plates with similar

! The case of restrained edges is illustrated in Fig. 4.1, i.e. the boundaries are capable
of withstanding in-plane forces, thus no transverse in-plane displacements occur at the
longitudinal boundaries (along the z-axis in Fig. 4.1).

2 The unit of the force resultants is N/m.
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dimensions in length (2L) and width (2B), which are considered in this chapter.
The out-of-plane displacement of the plate may be adequately described by a single
generalized coordinate ¢ representing the amplitude of the buckling displacement.
As will be discussed in Section 4.3.1, in contrast to the strut, further generalized
coordinates are usually required to describe the in-plane displacements of the
plate, so that the post-buckling behaviour can be appropriately determined. Such
additional generalized coordinates are omitted in Fig. 4.1.

The linear and non-linear buckling response of a plate is summarized in Fig. 4.2
with the aid of two plots showing the behaviour of the compressive load against
the amplitude of the out-of-plane displacement (Fig. 4.2a) and the compressive
load against the end-shortening of the plate (Fig. 4.2b). Besides the illustration
of the general phenomena of plate buckling, this also serves to underline the
differences in the post-buckling responses between struts (cf. Fig. 3.3 in Section
3.1) and plates.

P
PC* /n:r’:,
‘
q EC E
(a) (b)

Fig. 4.2: Linear and non-linear buckling response of a plate; (a) compressive load (P)
against out-of-plane deflection amplitude (¢); (b) compressive load (P) against
end-shortening (&).

As in Chapter 3 for struts, Figs. 4.2a and 4.2b display deformation paths for
an ideal plate (solid lines), plates with stretching—bending coupling (material
imperfection, dashed lines) and the (post-)buckling response when geometric
imperfections, such as an initial out-of-plane deflection, are present (dotted lines).

The buckling loads (PC) for the ideal case can be determined analytically for
homogeneous isotropic and specifically laid-up orthotropic laminates® by solving

the equation of motion governing the buckling deflection and omitting non-linear

3 A detailed overview of the respective laminates is given in [76].
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terms (e.g. NAVIER and LEVY method [76, 96]) or by approximate methods
(e.g. R1TZ and GALERKIN method [76, 96]).

The fundamental path of the ideal plate (¢ = 0 in Fig. 4.2a) loses its stability
at the buckling load (indicated in Fig. 4.2 by the grey lines) forcing the plate to
undergo out-of-plane deflections following either of the branches shown in Fig. 4.2a.
As for struts, the critical deformation state describes a stable bifurcation point.
However, this distinct critical point does not exist once imperfections are present.
The influence of the imperfections on the critical behaviour is alike the buckling
of struts, as described in Section 3.1, and is therefore not elucidated again.

Unlike struts, plates exhibit a considerably large post-buckling stiffness and are
able to withstand loads far beyond the critical limit (neglecting material failure).
This can be seen in Fig. 4.2b following the buckling load. How much compressive
stiffness is retained depends strongly on the boundary conditions. In the present
work, plates are considered which are supported along all edges. For such systems,
a plate with all sides being simply-supported in such a manner that in-plane
displacements at the boundaries along the longitudinal axis (z-axis in Fig. 4.1)
are not restrained exhibit the lowest post-buckling stiffness of 0.408 times the
original compressive stiffness (of the fundamental path) [46, 95].

The post-buckling stiffness is, in general, not affected by imperfections as
illustrated in Fig. 4.2b, such that imperfect systems may also be loaded beyond
the buckling load. The qualitative post-buckling behaviour of the plates with
imperfections remains unaffected, thus the corresponding post-buckling paths
more or less converge onto to the response of an ideal plate depending on the type

of imperfection (material or geometric) and its extent.

4.2 State of research

Owing to the evident similarities with the problem studied in Chapter 3 as well
as the objective of the current chapter, viz. the modelling of characteristic post-
buckling responses of multi-layered delaminated composite plates without the
restriction to stationary delaminations, the subsequent review of the state-of-the-

art comprises only
o the post-critical behaviour considering delamination growth and
¢ the delamination growth characteristics.

The linear buckling behaviour remains qualitatively similar to the problem of
delaminated struts, so that the buckling loads may also be represented by Fig. 3.4
in Chapter 3 in which the delamination length is replaced by the delamination

area for distinct aspect ratios between delamination length and width. The
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post-buckling behaviour also exhibits the characteristic opening and closing-mode
responses depending on the delamination depth, shape and size. Such information
can be found, for instance, in [15, 26, 43, 44, 56, 59] for the critical behaviour and
in [44, 67, 71, 110, 111] for the post-critical behaviour.

Since the delamination shape embodies a new parameter to be considered when
studying embedded delaminations, Table 4.1 classifies studies referring to the

aforementioned criteria for rectangular, elliptical and circular delaminations.

Shape Post-buckling Energy release rate

rectangle | [26, 27, 98, 102] 2]

[

ellipse 92] [9, 41, 45, 73, 108, 110, 111]
[
[

2,6, 7, 45, 52, 68, 69, 70, 73]

circle 1, 52, 68, 69, 70] 77, 108, 110, 111]

Table 4.1: Overview of the studies investigating the post-buckling responses during
delamination growth and/or the behaviour of the energy release rate.

As illustrated in Table 4.1, the majority of studies investigate circular and
elliptical delaminations, whereby the case of circular delaminations can also
be regarded as a special case of the elliptical delaminations. However, only
[92] provides post-critical responses during delamination growth for elliptical
delaminations. The experimental study in [11] has demonstrated that elliptical
delaminations are caused by transverse impact scenarios in which a circular
delamination is initially generated which grows during the impact into an elliptical
shape. Similar reasoning is not provided for the case of rectangular delaminations.*
Subsequently, with the aid of the references in Table 4.1 the aforementioned criteria

are reviewed.

4.2.1 Post-critical behaviour considering delamination growth

To the author’s knowledge, Refs. [98, 102] comprise the only semi-analytical
modelling approach aiming at post-buckling paths during delamination growth.
In these studies, post-buckling responses for the case of stationary delaminations
(no growth is allowed) and non-stationary delaminations are determined with
the aid of a RAYLEIGH-RITZ formulation in which the out-of-plane displacement
is approximated by trigonometric functions. The non-linear strains generated

during post-buckling are considered by AIRY stress functions for the respective

4 An example for rectangular delaminations could be sensors inserted in between layers of
composite plates. Furthermore, delaminations could be defects caused during the manufac-
turing process. Such delaminations would also more likely fit an elliptical shape rather than
a rectangular shape.
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parts of the plate. Growth is assumed to occur uniformly in width and length
direction and is modelled by a discrete cohesive zone method assuming spring
elements along the plane of the delamination yielding an iterative solving scheme
for each segment of springs. Comparisons with solutions suppressing growth show
that delamination growth is generated during the initial post-buckling response
and yields large deviations compared with the stationary solution regarding the
load bearing capacities. Furthermore, for the cases presented, initially unstable
post-buckling responses are associated with delamination growth.

Except [98, 102], post-critical responses comprising delamination growth are
solely modelled by comprehensive finite element simulations. The majority of
studies consider circular delaminations [1, 52, 68, 69, 70, 78, 81, 92]|. Elliptical
delaminations with aspect ratios of 0.5 and 2 are studied in [92].> Rectangular
delaminations are investigated in [26, 27].

All aforementioned studies, with the exception of [1] for circular, [92] for
elliptical and [26, 27] for rectangular delaminations, investigate plates with clamped
boundary conditions on two opposite sides and free conditions on the remaining
sides (subsequently referred to as CFCF). Thus, the post-buckling responses
documented are very similar to the behaviour of struts, i.e. weakly stable behaviour
once global buckling is caused (see for instance the behaviour of stationary
delaminations in Figs. 3.19 and 3.21 in Chapter 3).

Refs. [69, 70] show that delamination growth for CFCF plates is strongly related
with the initiation of the global buckling response. Loads causing growth are almost
equal to the maximum load bearable by the system. On the other hand, in contrast
with the results provided in Chapter 3, initial growth of embedded delaminations
does not necessarily cause decreasing loads, so that the system remains in a
stable deformation process. Findings documented in [68, 69, 70] for cross-ply
laminates ([90°/0°/90°]16 in [68] and [(90°/0°)17/90°] in [69]) and quasi-isotropic
laminates ([90°/ F 45°/05/ 4+ 45°/90°/0°/ £+ 45° /905 / F 45°/0°]2 in [70]) are veri-
fied by comparisons with experimental work. Teflon films with a normalized
radius of 0.4 (with respect to the total width and length of the plate) were
inserted in between two layers to manufacture the desired delaminations. Very
good agreement was obtained for the post-buckling responses and the onset of
delamination growth.

Post-buckling responses of CFCF plates exhibiting unstable behaviour are pre-
sented in [81] (delamination radius of 0.3) considering local buckling responses only.
However, as described in [69] by comparing local and global buckling responses,

significantly higher loads than the global buckling load are required to cause

5 Regarding elliptical delaminations, the aspect ratio describes the ratio of the lengths of the
major and minor axis of the ellipse.
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delamination growth if the modelling is limited to local responses. The possibility
of unstable delamination growth is also documented in [70] once growth reaches
a certain extent. Such behaviour was observed for a delamination depth of 0.28
(normalized with respect to the overall height). In general, delamination depths
of 0.09 to 0.33 are investigated. Except [81], stable post-buckling responses are
documented for depths up to 0.2. Post-buckling responses for deeper delamina-
tions are limited to the case of 0.28 in [70] and 0.33 in an experimental study of
fatigue loading in [52].

As mentioned before, the post-buckling behaviour of delaminated composite
plates with all boundaries constrained in their out-of-plane displacement is limited
to the work in [1, 26, 27, 92] performing finite element simulations of fully clamped
(CCCC) uniaxial loaded plates with restrained edges® in [1, 92] and unrestrained
edges” in [26, 27]. Ref. [92] also provides results for plates with all boundaries
being simply supported (SSSS) and Ref. [1] provides findings from an experimental
study. For these plates, in contrast with the CFCF plates, a large ratio of its
compressive stiffness is retained in the post-buckling range, as described in Section
4.1 and illustrated in Fig. 4.2.

The plate configurations used in studies investigating delaminated composite
plates in which the out-of-plane displacement at the boundaries is constrained are
summarized in Table 4.2.

Mainly cross-ply laminates are investigated. The length-to-thickness ratio of
the plates ranges from 25 to 42. The ratio of the thickness of the delaminated
part to the overall thickness of the plate is, in all cases, smaller than 0.25 (this
ratio is often considered as a parameter describing the delamination depth).

Results are presented in [1, 26, 27] in terms of compressive force against end-
shortening and in [92] in terms of applied strain against midpoint deflection.
Refs. [26, 27] also provide information in terms of compressive force against

midpoint deflection.

6 Restrained edges refer to boundaries at which in-plane displacements transverse to the
boundary are suppressed.

" Unrestrained edges refer to boundaries at which in-plane displacements transverse to the
boundary are enabled (the edges are not required to remain straight).
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Ref. | Layup | Dim. [mm] BC DS DC [mm]
UD-1 circle tq ~ 0.56
(1] CP-1 | 150 x 100 x 4 CCCC-1 | (radius, r) | r =20
AB-1
CP-2 rectangle | tq =0.2
26] CP-3 24 x 24 x 0.8 CCCC-2 | (square) =10
CP-4 (I x1)
CP-5 100 x 100 x 2.4 tqg=0.2
I ={20,40,70}
27] UD-2 60 x 40 x 1.6 CCCC-2 | rectangle | tq =0.2
AB-2 (I xb) 1=20,b=10
CCCC-1 ellipse ta = 0.5
[92] | CP-6 100 x 100 x 4.06 I ={15,30}
SSSS-1 (I % b)? b={15,30}

Table 4.2: Summary of composite plates and their delamination configurations inves-
tigated in the literature; Layup: (UD — unidirectional, CP — cross-ply, AB
— balanced angle ply): UD-1: [0°]as, UD-2 [0°]15, CP-1: [05/90%,]s, CP-
2: [905/05/05/905]s, CP-3: [05/905/905/05]s, CP-4: [0°/90°/90°/0°]s, CP-
5: [03/903/905/05]s, CP-6: [05/903]ss, AB-1: [£45°/ F 45°/907,]s AB-2
[0°/ —45°/455/ —45°/90° /05]s; Dim. — Dimensions: 2L x 2B X t, cf. Fig. 4.1;
BC — boundary conditions: CCCC-1 — clamped boundaries, restrained edges,
CCCC-2 — clamped boundaries, unrestrained edges, SSSS-1 — simply sup-
ported boundaries, restrained edges, DS — delamination shape, DC — delami-
nation configuration: tq4 — depth of delamination and r — radius.

Findings of the studies can be summarized as follows:

« all post-buckling responses before delamination growth is caused are stable,?
o the deformation state at which growth is initiated depends on the layup
and the delamination depth and size,
— after global buckling (unidirectional layup in [1]),
— with global buckling (cross-ply layup in [1]),
— after local buckling, before global buckling (angle-balanced layup in [1]

and cross-ply layup in [92] for all sizes and aspect ratios considered),

8 The parameters | and b describe the semi major and semi minor axis respectively, cf. Fig. 4.3.
9 This is confirmed by studies investigating post-buckling responses for stationary delaminations
such as [44, 52, 71].
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¢ stable and unstable deformation processes under prescribed forces are docu-

mented for propagating delamination growth,

— stable behaviour throughout the range of loads considered (unidirec-
tional [1, 27] and balanced-angle layup in [1, 27] and cross-ply layup
in [26, 92]),

— changeover from stable to unstable after certain growth is generated

(cross-ply layup in [1]),

o the initiation of unstable delamination growth is not documented.

4.2.2 Delamination growth characteristics

As for delaminated composite struts, the delamination growth characteristics

comprise

e the behaviour of the physical quantity governing delamination growth,

i.e. the energy release rate GG, and thus
o whether delamination growth is stable or unstable.

Regarding semi-analytical modelling approaches, the work of CHAI and BABCOCK
[9] may be regarded as the foundation for most of the ensuing studies (e.g. see
6, 7,9, 73, 77,110, 111]). In all modelling approaches, the delamination area is
described by the axes of the ellipse (circle), such that growth can be modelled in
two directions, as visualized in Fig. 4.3.

All studies implement a RAYLEIGH-RITZ formulation and, except [41], determine
the energy release rate by differentiating the total potential energy with respect to
the delamination area for growth along either axis of the ellipse.!? Furthermore,
the thin-film buckling assumption is employed in the modelling approaches.

In comparison with [9], the determination and analysis of the energy release
rate remains unchanged, however, the ensuing studies implement more comprehen-
sive approximations of the displacement field such as higher order displacement
functions up to the seventh order [110] as well as shear deformations resulting in
56 degrees of freedom [73].11

The work in [6, 7, 77] employs main features of the one-dimensional model
of CHAI [10] in order to subdivide circular delaminations into finite strips, so
that thresholds of applied strain causing delamination growth can be determined
with the aid of a numerical software tool and a chosen stiffness reduction for the

post-buckling regime.

10 Ref. [41] determines delamination growth with the aid of the VON MISES criterion by consid-
ering the resin in between the layers only.
1 Al studies apply polynomial displacement functions.
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Fig. 4.3: Visualization of possible delamination growth incorporated in semi-analytical
modelling approaches (z-y-plane is the plane of the plate); solid line — initial
delamination, dashed line — growth along z-axis (I-direction), dotted line —
growth along y-axis (b-direction).

A detailed analysis of the energy release rate can be found in [9] and in [110, 111],
whereas comparisons with experimental tests regarding applied strains causing
growth for multiple layups are provided in [6, 7, 77].

The behaviour of the energy release rate can be studied, as done for delaminated
struts, by evaluation against the delamination area and the applied load. The
behaviour against the applied load does not add insight in comparison with Fig. 3.6
in Chapter 3 and is therefore not reviewed further. The possibility of growth into
two directions requires specific care when studying embedded delaminations. This
is visualized in Fig. 4.4 by showing the energy release rate against the aspect ratio
for certain magnitudes of applied strain which is adopted from [9].

Fig. 4.4 shows that the energy release rate governing growth in the width
direction (Gy, solid lines) behaves similar to the energy release rate documented
for delaminated struts (cf. Fig. 3.7). In contrast, the energy release rate for growth
in the length direction (Gj, dashed lines) does not exhibit a peak value. Thus,
for the aspect ratios considered in Fig. 4.4, growth in the length direction will be
unstable. The peak values in the Gy-plots in Fig. 4.4 indicate the transition from
unstable to stable delamination growth.

What kind of delamination growth is present depends on the critical threshold
for growth which is not specifically indicated in [9]. The y-axis in Fig. 4.4 shows
the energy release rate normalized against the critical energy release rate times a

multiplier required to be determined for each case to be studied.!? The results

12 The multiplier used in [9] includes the length of the ellipse, the height of the plate, the critical
energy release rate and the YOUNG’s modulus in the loading direction.
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shown in Fig. 4.4 apply to delaminations in a homogeneous isotropic plate which
is also the case for most of the semi-analytical studies providing information in
the form of Fig. 4.4.

20 -

Normalized energy release rate
—_
)
[

Aspect ratio, b/l

Fig. 4.4: Energy release rate against delamination aspect ratio for three distinct pre-

scribed magnitudes of load in the form of applied strain with ef < ell < eftl;

Gy, energy release rate for growth in width direction (solid lines); Gi, energy
release rate for growth in length direction (dashed lines); Gy = G, energy
release rate for simultaneous growth in both directions (dot-dashed line); in
normalized quantities; adopted from [9].

It should be noted that Fig. 4.4 contains another plot showing the energy release
rates where G}, equals G (dot-dashed line), i.e. for simultaneous growth in length
and width direction. It follows that whenever a deformation state is reached for
which this condition is fulfilled, growth will be unstable as the plot is strictly
increasing for larger aspect ratios.

As aforementioned, insight into the behaviour of the energy release rate provided
by semi-analytical modelling approaches is almost entirely bound to the work
of CHAI and BABCcOCK [9]. Additional information is provided in [110, 111]
determining the energy release rate in the form of Fig. 4.4 for the case of local
growth, where local is to be understood as at a certain point of the boundary
of the ellipse. Growth in transverse and longitudinal direction of the ellipse,
i.e. at the vertices, is analysed. This was done with the aid of the J integral
technique. Though, missing a direct comparison with the global growth behaviour
(delamination growth defined by increasing length or width of the ellipse), Ref. [111]

points out that partly significant deviations may be obtained in between both
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methods.

As conducted in [111] for two points along the boundary of the delamination,
studies implementing the finite element method (e.g. see [2, 45, 52, 68, 69, 70,
108]) provide detailed information about the energy release rate along the entire
boundary of the embedded circular or elliptical delaminations.

Except in [108], where a three dimensional model is implemented, finite element
simulations employ the REISSNER-MINDLIN plate theory or higher order shear
deformation theories [2]. In most cases, delamination growth is modelled with the
aid of a virtual crack closure technique (e.g. [2, 45, 52, 78, 108]). Refs. [68, 69, 70]
determine the energy release rate using the energy momentum tensor.

Subsequently findings will be summarized with the aid of two figures showing the
distribution of the energy release rate along the boundary of the delamination for
a certain state of loading (Fig. 4.5) and during delamination growth for increasing

magnitudes of applied strain (Fig. 4.6).

\ \ \
1000 = deep delaminations

= = = shallow Delaminations
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Fig. 4.5: Energy release rate against arc length of the boundary of the delamination for
shallow and deep delaminations; z-axis normalized to the total length of the
boundary; adopted from [70].

Fig. 4.5 shows the energy release rate along the boundary of a circular de-
lamination of a wuniaxially loaded CFCF plate with the layup
[90°/ F 45°/05/ + 45°/90°/0°/ + 45°/905/ F 45°/0°]2, in which the case of the
deep delamination is associated with a normalized depth of 0.2812 (in between
0° and 45° layers) and the shallow delamination refers to a depth of 0.1562 (in
between —45° and 90° layers). The arc length is normalized to the length of the
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boundary of the delamination where 0 and 1 refer to the point (I,0) in Fig. 4.3.

It can be seen that growth occurs for the case of deep delaminations along
the direction of loading and for shallow delaminations in the transverse direction.
Furthermore, it is visualized that growth is initiated at the vertices of the circular
delaminations (locally) and that the energy release rate diminishes along the rest
of the boundary. However, in [70], the direction of growth is associated with the
depth of delamination without considering further examples and examining the
influence of the stacking sequence. In the cases provided in [70] and in Fig. 4.5,
growth is also associated with 0° and 90° layers respectively.

In Fig. 4.6, the distribution of the energy release rate along the boundary of
a circular delamination for increasing values of applied strain is delineated. A
cross-ply laminate is investigated (layup of the sublaminate: [0°/90°]s) and the
thin-film buckling assumption is employed. Fig. 4.6 is included in this review since
it provides important information regarding the applicability of the analytical

framework developed in this work.
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Fig. 4.6: Energy release rate against arc length of the boundary of the delamination for

four distinct prescribed magnitudes of load in the form of applied strain with
11T

el < ell < el < £lV: in normalized quantities; adopted from [45].

Fig. 4.6 shows that growth is initiated at 5{) at an arc length of 0 which
corresponds to the point (0,b) in Fig. 4.3. In contrast with Fig. 4.5, the energy
release rate is normalized against its critical magnitude and the arc length against
the quarter of the length of the boundary using the symmetry of delamination

growth, as also illustrated in Fig. 4.5. As can be seen in Fig. 4.6, further loading
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in the form of increasing applied strains yields that growth proceeds along the
boundary whereby the energy release rate remains at its critical value. Such
behaviour proceeds for further loading as illustrated in Fig. 4.6 for the strains g}/
and &}V.

It is also documented in [45] that once unstable growth is caused, this behaviour
is violated and the energy release rate exceeds its critical value. Thus, in relation
with the current work, the findings from [45], which may also be found in [69,
70], underline the applicability of the analytical framework, such that equality
in between the energy release rate and its critical value holds during stable

delamination growth.

4.2.3 Concluding remarks

The modelling of the post-buckling behaviour of multi-layered delaminated com-
posites plates appears to constitute a mechanical problem which entails several
difficulties when encountered by means of semi-analytical approaches. Such issues

may be summarized as follows:

o an adequate description of the displacement field requires significantly more
generalized coordinates than, for instance, the problem of a delaminated

strut,

e the geometric description of the delamination area by global coordinates

limits the modelling of the delamination growth characteristics'® and

o the problem of mode mixture of the delamination growth would, in general,
require both a detailed approximation of the displacement field and the

evaluation of the energy release rate along the boundary.

On the other hand, as pointed out by [110, 111], computational cost is significantly
lower for those modelling approaches in comparison with finite element simulations.
However, the mandatory limitations are not addressed nor analysed with respect
to qualitative and quantitative deviations, specifically regarding the behaviour of
delamination growth. Furthermore, it may be argued whether model descriptions
incorporating more than 300 degrees of freedom [71] (stationary delaminations
investigated) still relate to the objective of semi-analytical formulations.
Regarding the mode decomposition of the energy release rate, studies in [34] and
[35] provide characteristic equations describing the mode mixture for simplified

cases of orthotropic bi-layered beams as well as the case of thin-film delamination

131t should be noted that growth is, in fact, not modelled by any semi-analytical approach
considering circular or elliptical delaminations. To date, only the energy release rate is
determined.
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which may yield adequate approximations for the plate problem as stated in [70].
However, as described in [16, 84], in general, mode decomposition requires the
consideration of shear deformation in the displacement field.

As aforementioned, to the author’s knowledge, Refs. [98, 102] considering
rectangular delaminations describe the only semi-analytical approach which models
post-buckling responses for the case of non-stationary delaminations. However,
the modelling approach is bound to isotropic material behaviour, simultaneous
and uniform growth along the boundary of the delamination as well as an iterative
solving scheme for discrete pre-determined changes in the delamination area. In
[98], a pilot study is included investigating non-simultaneous delamination growth
in the longitudinal and the transverse direction to the applied loading.

In general, information is sparse regarding delaminated plates being constrained
in the out-of-plane displacement along all sides of the boundary. However, as
stated in Section 4.2.1, such boundary conditions cause the characteristic post-
buckling behaviour of plates in which a significant amount of the compressive
stiffness is retained in the post-buckling regime. Especially when considering
delamination growth for such plates (CCCC), the system’s response may change
from thoroughly stable to unstable and consequently unexpected failure, which
has not been investigated thus far.

The literature review revealed that a lack of semi-analytical modelling ap-
proaches regarding the post-buckling behaviour of delaminated plates is present.
However, such a mechanical problem associated with a more comprehensive de-
scription regarding the geometry and the mechanical behaviour requires a clear
definition and analysis of the mandatory limitations to be employed in a mod-
elling approach. This is aimed at in the subsequent sections yielding a model
description which accomplishes the objective of predicting post-critical responses
of delaminated plates while addressing mandatory restrictions and approximations

in comparison with comprehensive finite element models.

4.3 Semi-analytical modelling

The current section is arranged in order to derive an efficient modelling approach
for predicting post-buckling responses of delaminated multi-layered composite
plates. Therefore, initially, two modelling approaches are evaluated for describing
the post-buckling behaviour of plates. Subsequently, the geometric model of the
delaminated plate is described and the amount of generalized coordinates required
to approximate the post-buckling responses efficiently is determined. In the last
part of the section, the energy formalism for modelling the post-buckling responses

for stationary and non-stationary delaminations is presented.

103



4 Delaminated composite plate 4.3 Semi-analytical modelling

4.3.1 Modelling approaches for non-linear plate buckling

The problem of a delaminated composite strut presented in Chapter 3 underlines
one of the main advantages of the formalism of THOMPSON and HUNT which thus
also applies for the framework developed in this work: computational efficiency
while employing a considerably small amount of generalized coordinates. However,
most of the applications of the structural stability formalism of THOMPSON
and HUNT focus on one-dimensional problems such as struts, bars or frames, or
problem descriptions which allow a simplified approach, so that, for instance, two-
dimensional formulations may be transformed into one-dimensional descriptions.

In [95], THOMPSON and HUNT propose a simplified approach for the non-
linear buckling of plates which was used in [30] by HUNT et al. and is therefore
subsequently referred to as the modelling approach “HUNT”. The approach
aims at considering non-linear in-plane strains which occur during the post-
buckling response without using further generalized coordinates for the in-plane
displacements. Thus, the post-buckling behaviour of plates may be described only
by a set of generalized coordinates approximating the out-of-plane displacements.

The modelling approach is based on the assumption that the in-plane strain is
evenly distributed (constant) over the length of the plate,'* where the in-plane
displacement is expressed in terms of a resulting end-shortening rather than a
displacement field u(x,y).!> Thus, the resulting axial shortening of the plate can

be determined as (using the coordinate system shown in Fig. 4.8)

L
1 /0w(x, 2
wmam [ 5 (M50 @ 31
L

where genq is the total end-shortening of the plate, yielding the in-plane strain

u

= — 4.3.2
€ar = 57 ( )

with the dimensions of the plate given in Figs. 4.1 and 4.8. The second term in
Eq. (4.3.1) represents the end-shortening—to the first order—associated with a
buckling process in which the neutral plane is inextensional. Thus, subtracting
this contribution from the total end-shortening genq yields the axial shortening u.

However, in general, the assumption of an inextensional neutral plane does not
hold in non-linear plate buckling. Only in the vicinity of the buckling load, where
the bending energy stored equals the membrane energy released [95, 96],'6 the

4 Ref. [95] states that this is reasonable in the absence of transverse and shear stresses.

15 In-plane contributions are just considered along the axis of the application of the load. There-
fore, the in-plane displacement and strain are expressed for the z-direction only (cf. Figs. 4.1).

6 This refers to the change in length from the pre-buckled length to the buckled length under
fixed end conditions.
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end-shortening under inextensional conditions (the first order approximation is
given by the second term in Eq. (4.3.1)) adequately describes the contribution to
the in-plane displacement.

Therefore, the modelling approach “HUNT” should be regarded as a rough
approximation of the non-linear buckling of plates which, however, requires a
minimal amount of generalized coordinates. Whether the approach is applicable
strongly depends on the problem description and the information intended to be
obtained. Before this is delineated by studying an application example, the second
modelling approach for describing the non-linear plate buckling is discussed.

The second approach adopts a non-linear kinematic formulation used in the
continuum-mechanical description of solids undergoing finite strains. Thus, the

strain can be expressed as

1
Eij =

5 (8% T au]‘ + 8um aum> , (4.3.3)

0X; ' 0X,  0X, 0X;

where E;; is the GREEN-LAGRANGE strain tensor and X; refers to the reference
configuration [76]. However, all non-linear strain components referring to in-plane
displacements remain negligible small during plate buckling [76], such that only
the out-of-plane contributions are considered. Thus, the strains associated with

the plane stress assumption can be written as

2
0 1(0
f 2
= 0 1(0
Eyy v t3 (8%) , (4.3.4)
2Bey)  \G¢ + 5% + 5% ov

which are referred to as VON KARMAN strains, so that subsequently the modelling
approach is termed “vON KARMAN”. Therefore, unlike the approach HUNT
(Eq. (4.3.1)) the voN KARMAN modelling approach requires the description of

the displacement field considering the in-plane displacements, i.e.

ul@,y)
u; = | v(z,y) |- (4.3.5)

w(z,y)

As a consequence, the approach requires more generalized coordinates. The
derivation of the respective energy terms of the total potential energy remains
unchanged in comparison with Chapter 3 distinguishing between stretching and
bending contributions.

Both modelling approaches are subsequently compared with each other by

studying the post-buckling responses of an all-sided simply-supported plate in
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terms of normalized load against normalized midpoint deflections (Fig. 4.7a) as
well as normalized load against normalized end-shortening (Fig. 4.7b).

Two cases of boundary conditions are considered in Fig. 4.7. Case “SSSS 1”
suppresses in-plane displacements at the boundaries (except for the compressive
shortening of the applied load) which are referred to as restrained edges, whereas
case “SSSS 2” enables in-plane displacements at the longitudinal boundaries (with
respect to the direction of the applied load, i.e. along the z-axis in Fig. 4.1)
which are referred to as unrestrained edges. Thus, the following displacements

are employed (with respect to the coordinate system shown in Fig. 4.8),

u(z,y) g0 + q1 sin (ZF) cos (3%)
v(x,y) | = g2 sin () cos (5F) ) (4.3.6)
w(z,y) g3 cos (57) cos (%)

in which only w(z,y) is used for the approach HUNT. The applied strain g¢ is
taken as the loading parameter,'” so that the modelling approach HUNT employs
one generalized coordinate whereas the modelling approach VON KARMAN requires
three.'® In case SSSS 2, the additional contribution to the displacement in the
y-direction, v(x,y), is approximated by the term agy cos(mz/(2L)) where ay is a
passive coordinate which can be replaced by solving the condition 9I1/dag = 0
with respect to ag.

A symmetrically laid-up cross-ply laminate with the material parameters given
in Table 3.3 in Chapter 3 and the dimensions 96.52 mm x 96.52 mm x 1.335 mm
(2L x 2B x t, cf. Fig. 4.8) is taken as an application example. The responses
are also compared with findings from a finite element simulation (S4R elements,
Imm x 1 mm element size, 11294 nodes) indicated by the symbols “o” and “0” in
Fig. 4.7 for the cases SSSS 1 and SSSS 2 respectively.'”

As can be seen from Fig. 4.7a, the midpoint deflections for the vON KARMAN
approach and the finite element simulation almost coincide for both cases with
the case of restrained edges (SSSS 1) showing almost no deviations. For both
cases, the approach HUNT yields the same response. This is expected, as in-plane
displacements apart from the end-shortening are not considered. Thus, a different
post-buckling response is only caused when other boundary conditions with respect

to the out-of-plane displacements are studied.

1" The generalized coordinate genq in Eq. (4.3.1) is equal to 2¢9L and describes the loading
parameter in a displacement-controlled configuration for the approach HUNT.

18 The amount of generalized coordinates used describes the minimum, such that adequate
post-buckling responses can be obtained. Further generalized coordinates may be required
when studying other boundary conditions.

19 As commonly done for non-linear buckling problems (e.g. [68, 69]), an imperfection in the
form of a transverse load at the midpoint of the plate is incorporated in the finite element
model, so that the post-buckling path can be traced.
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Fig. 4.7: Comparison of the modelling approaches “HUNT” and “vON KARMAN” for
an all-sided simply-supported plate (SSSS); SSSS 1: restrained edges, SSSS
2: unrestrained edges; (a) normalized compressive load (Pyorm) vs. normal-
ized midpoint deflections (wporm); (b) normalized compressive load (Phorm)
vs. normalized end-shortening (Enorm )-
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The post-buckling responses in terms of normalized load against normalized
end-shortening (Fig. 4.7b) underline the deviations between the two approaches.
Whereas the VON KARMAN approach is in very good agreement with the finite
element simulation, partly significant deviations are documented in comparison
with the approach HUNT. It appears that only case SSSS 2 can be roughly
approximated by the approach HUNT.

The post-buckling stiffness of the finite element path shown in Fig. 4.7b for the
case SSSS 2 (“0”) is 0.402 which is very close to the exact value of 0.408 [46, 95].
The stiffness of the approach HUNT is 0.33, as also stated in [46, 95].

From the insight gathered in this section, the following concluding remarks can

be made.

e The approach HUNT may only provide arguably acceptable deviations, when
the deformation of the system is least restricted, i.e. for certain boundary
conditions, specifically in terms of the in-plane displacements. This appears
plausible as the approach employs the condition of an inextensional neutral
plane which is “more suitable” when the in-plane displacements at the

boundaries are enabled (unrestrained edges).

¢ Since the approach HUNT considers only the axial shortening of the plate,
i.e. in-plane boundary conditions are omitted, the post-buckling responses
are only altered by a change of the out-of-plane boundary conditions. Thus,
one deformation path is obtained for various types of in-plane boundary
conditions. Regarding the results provided in Fig. 4.7, the single path may
roughly approximate the deformation behaviour for the case SSSS 2 but
fails to predict the post-buckling response for the case SSSS 1 adequately.

e The approach VON KARMAN provides results which are in very good agree-
ment with the finite element simulation. Furthermore, various in-plane
conditions at the boundaries can be considered. However, more generalized
coordinates are required since all components of the displacement field have
to be approximated. This may seem negligible reviewing the case presented,
but may become relevant when studying other boundary conditions such
as an all-sided clamped plate as well as problem descriptions naturally

comprising more degrees of freedom.

Furthermore, it should be stressed that the approach HUNT requires a certain
geometry which enables the application of the generalized coordinate describing
the end-shortening of the respective part. This may become cumbersome when
studying non-rectangular geometries.

As a final remark, regarding the application to a composite plate with an

embedded delamination, the prediction of the onset of delamination growth as well
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as the growth itself requires the adequate description of the in-plane displacement
field. Hence, studies employing an approach similar to HUNT consider thin-film-
buckling as well as a geometric split into various strip elements which enables the
aforementioned description (e.g. see [6, 7, 77]).

Concluding, for the study of the post-buckling behaviour considering delami-
nation growth of non-rectangular delaminations the approach HUNT appears to
be too restrictive, so that the vON KARMAN approach is employed henceforth

understanding the higher computational effort to be expected.

4.3.2 Model description

Fig. 4.8 shows the geometric model of a plate with an embedded delamination.
As can be seen, the plate is subdivided into three parts, two sublaminates and
one undelaminated region. Parts (1) and (2) describe the upper and lower sublam-
inate respectively. The undelaminated part of the plate is denoted by (3). The

delamination is visualized in Fig. 4.8 by a grey shaded area.

f é—EoL

Fig. 4.8: Geometric model of a composite plate with an embedded elliptical delamination.

An elliptical delamination is chosen since experimental proof is existent for
such a shape (c¢f. [11]). On the other hand, information about the post-buckling
behaviour of elliptically delaminated composite plates is comparably sparse within
the literature (cf. Table 4.1). The elliptical delamination is defined by the measures
[ and b describing the length and width of the ellipse (semi major and semi minor
axis) respectively. The overall dimensions of the plate are denoted by 2L x 2B x t
(length x width x thickness). The depth of the delamination is described by the
parameter a.

A uniaxial loading is applied to the plate in the z-direction in the form of an
applied strain such that the boundaries at (L,y) and (—L,y) are subjected to
the displacements +¢gL respectively (cf. Fig. 4.8), i.e. a displacement-controlled
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configuration is studied. The plate is taken to be clamped at the boundaries
with in-plane displacements being restrained except for the applied compressive
shortening. These boundary conditions are denoted in Table 4.2 by CCCC-1 and
are described in the experimental test standard [91].

The CLASSICAL LAMINATE THEORY is employed, as described in Section
3.3.2.1 (¢f. Eq. (3.3.15)). In the current chapter, plate dimensions are chosen
such that the effect of shear deformations is assumed to be small. Therefore,
out-of-plane shear contributions are omitted in the description of the displace-
ment field.?° The boundary and continuity conditions for the displacement field

u = {u(z,y),v(x,y), w(z,y)}" can be expressed as

in-plane, u:
us(xL,y) = +eol, us(xz, £B) = e,
uz(T) = (1) — uj™,

in-plane, v:
v3(£L,y) =0 vs3(z, £B) =0,
v3(T) = v;(T) — vi*, (4.3.7)
out-of-plane, w:
wy(+L,y) =0, ws(z, £B) =0,
V,ws(+L,y) =0, Vjws(z, +B) =0,
w3(T) = w;(T), Vjws(I') = Vwi(I'),

where the subscript at the displacement field entries (“3” and ¢ = 1,2) refers to
T

the respective part of the plate, V; = {%, 8%} and I' describes the boundary of

the ellipse, i.e.

T(z,y) = (?)2 + <Z)2 —1=0. (4.3.8)

The post-buckling behaviour is modelled with the aid of a RAYLEIGH-RITZ
formulation employing continuous mode-forms in order to approximate the dis-
placement field of the plate. Owing to the description of the boundary of the
delamination by Eq. (4.3.8), polynomial shape functions are employed in order to
satisfy the geometric boundary and continuity conditions provided in Eq. (4.3.7).2!

Those functions can be expressed in terms of a series which is shown in Eq. (4.3.10)

20 Plates with an overall length/width to thickness ratio of at least 40 are considered.

2 Tn the current description of the geometric model, trigonometric functions do not allow a
symbolic integration of the strain energy density as required by the semi-analytical modelling
approach.
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employing Eq. (4.3.8) and the function defining the boundary of the plate,

Tp = ((2)2 - 1) <<g)2 - 1> =0, (4.3.9)

thus

part (3):

m=1n=1
M N 2(m—1) 2(n—1)
y T Y
v3(z,y) = (I'p) <> > | an () () ) ’
B m=1n=1 L B
M N 2(m—1) 2(n—1)
T Yy
wy(z,y) = (Tp)? D° 3 | aws () () ) ’
m=1n=1 L B
ot O (4.3.10)
M N 2(m—1) 2(n—1)
ui(z,y) = ug + (T) (?) > (q%n (9;) (Z) ) + uf",
m=1n=1
M N 2(m—1) 2(n—1)
e = (}) 2 8 (o (7)) e
m=1n=1
M N 2(m—1) 2(n—1)
(x
wi(w,y) =ws+ () D Y (q;% (l) (Z) ) ’
m=1n=1

with ¢ = 1,2, where uf°* and v{°® describe contributions to the in-plane displace-
ments of the sublaminates resulting from the rotation of the interface between
the sublaminates and the undelaminated part considering the offset of the neutral

planes. Such contributions can be approximated by

rot 61113
W= h (‘ax ) ’
r
_ (-a)t
) with hz = { at2 } y
T 2

where ¢ indicates the respective sublaminate and the offsets of the neutral planes

(4.3.11)

are denoted by h;. It should be noted that the following symmetries are employed
in the displacement functions (Eq. (4.3.10)),

Uz($7y) = —’LL@'(—IL‘, _y)7 ul(fv,y) = —ui(—az,y) = Ui(ZL‘, _y)v
vi(7,y) = —vi(—=, —y), vi(w,y) = —vi(—z,y) =iz, —y), (4.3.12)
wz(ﬂﬂ,y) :wi(*xy*y)v U}Z(l',y) :’U)i(*l‘,y) :wi(:Ca *y)v
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with ¢ = 1,2,3. Those symmetries are present for typical laminates, such as
unidirectional, cross-ply and quasi-isotropic layups, using the coordinates system
shown in Fig. 4.8, whereby the symmetry of the out-of-plane displacement is also
associated with studying quadratic plates (L = B, c¢f. Fig. 4.8), as it is done in
the present chapter.

In Eq. (4.3.10), any chosen M and N satisfies the geometric boundary conditions
mandatory for the RAYLEIGH-RITZ formulation. However, with increasing M and
N the accuracy of the approximation of the displacement field improves which,
on the other hand, requires higher computational cost.

With the displacement field being described by a set of generalized coordinates,
the analytical framework developed in the current work can be applied. This is

done in the subsequent section presenting the energy formalism.

4.3.3 Energy formalism

As concluded in Section 4.3.1, the vVON KARMAN modelling approach is employed
considering the non-linear terms in the GREEN-LAGRANGE strain tensor associated
with the out-of-plane displacements, i.e. the VON KARMAN strains, cf. Eqgs. (4.3.3)
and (4.3.4). Bearing this in mind, subsequently a commonly used notation
(cf. [46, 76, 96]) is adopted henceforth, such that the vVON KARMAN strains are
also denoted by ¢;; and lower case characters are employed for the coordinate

system. Thus, the strain energy density w can be written as
1~ .
w = §Q1J€[€J, with I,J=1,2,6, (4.3.13)

in which the plane stress assumption is considered, Qs is the reduced trans-
formed stiffness matrix (cf. Eq. (3.3.7)) and e; comprises in-plane contributions

(VON KARMAN strains {¢(g)}) and strains associated with bending deformations

(2{K}),2 i.e.

<7w) _ 0w

[?) Ox2

{5} = {5(0)} +z {n} = (%’) +z —%2712“ . (4.3.14)
+ + 8:13 By n 8855;

Integrating Eq. (4.3.13) over the volume and employing Eq. (4.3.14) and the

*?In this chapter, the in-plane strains are denoted by {e()} in order to avoid confusion with
the applied strain €9 used in the model description.
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CLASSICAL LAMINATE THEORY (c¢f. Section 3.3.2) yields the strain energy,

1
W = 2//<€9A[J52+25?B[JI€J+K)[D[JK/J) dy dx, (4.3.15)
Yy oz

where Ajjy, Brj and Dy are the in-plane, coupling and bending stiffness matrix
respectively. Owing to the subdivision of the plate into three parts, the strain
energy of each part is determined with Eq. (4.3.15) and subsequently summed up.

Since a displacement-controlled configuration is studied in this chapter, the
strain energy in Eq. (4.3.15) is the governing functional. Thus, by employing
the RAYLEIGH-RITZ method using the displacement field defined in Eq. (4.3.10),
a set of non-linear algebraic equations is obtained by applying the variational

principle, i.e.

ow
oq

ST = 6W (qi) = 0 = 0, (4.3.16)
where all generalized coordinates used in Eq. (4.3.10) are comprised by the set g;.
Eq. (4.3.16) yields the deformation path for the case of stationary delaminations in
terms of g;(g¢) since gq is the loading parameter in the current model description.

As in Section 3.4 for the delaminated strut, an imperfection caused by the pre-
existing delamination is assumed in the form of an initial out-of-plane deflection
with an amplitude of ¢/1000. The energy contributions associated with the
imperfection are deducted from the total potential energy as described in Appendix
D.

Following the structural stability analysis framework developed in Chapter 2,
with the aid of the equilibrium path g;(gp), the thermodynamic force, thus the
energy release rate, is determined next.

Even though a single damage parameter &, i.e. the delamination area Ag,
§ = Aen = mlib, (4.3.17)

is present in the current application example, owing to the model description,
delamination growth into two directions can be investigated. The force available
for producing delamination growth in the width direction (Gy) and in the length

direction (Gj) of the ellipse can be calculated as

1 oW 1 oW
Gy = T and G] = T (4.3.18)
respectively.

As for the problem of a delaminated strut, a quasi-brittle fracture behaviour is
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considered, thus growth into the length direction occurs, whenever

G > Ge, (4.3.19)
and growth into the width direction, whenever

Gy > Ge. (4.3.20)

It should be noted that simultaneous growth into both directions is also possible,

whenever for a current state of loading
G)
> Ge. (4.3.21)

Subsequently, the extended total potential energy principle (cf. Section 2.2.2) is
applied in order to determine the post-buckling responses beyond the deformation
state causing delamination growth. As has been shown in Section 3.4 and by

Fig. 4.6, during stable delamination growth the condition
G =G, (4.3.22)

holds, which can be rewritten in terms of the current model description, such that

Gy, =G, or @G =0GGe. (4.3.23)

Eq. (4.3.23) is the requirement for the existence of an extended total potential
energy, thus the total work of deformation being a potential of the generalized
forces (cf. Section 2.2.1.1).

Since the width and length of the ellipse cannot be explicitly obtained from
Eq. (4.3.23), it is rewritten such that

Gb — GC = Db(qi,é‘o, b) =0 and G1 — GC = Dl(Qi7507 l) = 07 (4.3.24)

from where the width and length of the ellipse are implicitly given by the functions
Dy, and D respectively. It should be noted that the indicated dependencies of Dy,
on the width b and D; on the length [ only account for the possible directions of
growth and do not delineate two distinct damage parameters.

As described in Section 3.3.4, an explicit form of the width b and the length [ of
the ellipse is obtained by a TAYLOR series approximation (cf. Eq. (3.3.43)) around

the damage state (q?, &78), i.e. the deformation state at which delamination growth
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is initiated. Thus, the delamination width and length are obtained in terms of
b= b(qi, 80) and [ = l(qi, 60) (4325)

respectively, depending on whether growth in the width or length direction is
initiated. In the current application example, the TAYLOR series is truncated
after the second order terms.

For growth in the width direction, the extended total potential energy can be
derived by inserting Eq. (4.3.25); into the strain energy of the plate (Eq. (4.3.15))

and adding the dissipative energy associated with delamination growth,

Wa = Ge(Aar — Ay) (4.3.26)
which can be rewritten regarding growth in the width direction, i.e.

Wq = Gerl(b — %), (4.3.27)

where Agu and b° denote the initial delamination area and the initial delamination
width respectively. Thus, the extended total potential energy, i.e. the total work

of deformation, during delamination growth in the width direction reads
Wiot = W (gi, €0, (i, €0)) + Wa(b(gi, €0))- (4.3.28)

For growth in the length direction, Eq. (4.3.25)2 is used instead for replacing the
delamination length in Eqs. (4.3.26) and (4.3.28) while keeping the delamination
width b constant.

The total work of deformation given by Eq. (4.3.28) (or the respective form
for growth in the length direction) is a potential of the generalized forces and
the governing functional of the deformation process during delamination growth.

Thus, the variational principle,
Wiot(qi) = 0, (4.3.29)

is applied yielding the equilibrium path in terms of g;(g¢) starting from the damage
state (qZQ, 58). It should be stressed that for each loading step the energy release
rates for growth in the length and width direction need to be determined in order
to trace the growth direction accurately. Furthermore, as described in Section
3.3.4, owing to the TAYLOR series approximation, the respective delamination
parameter has to be recalculated once the respective condition of G = G, is

violated.2?

23 This strictly refers to a violation due to the approximation of the damage parameter.
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With the variational principles in Egs. (4.3.16) and (4.3.29) an entire loading
process starting from an unloaded configuration up to the failure displacement
(stability and/or material failure) can be modelled.

Before results for characteristic post-buckling responses of multi-layered com-
posite plates with embedded elliptical delaminations are presented, the adequate
choice of the order of the displacement functions shown in Eq. (4.3.10) is addressed
next. This is done in order to enable an efficient modelling approach for describing
post-buckling responses of such structures. Efficiency is understood as an optimal

choice in between accuracy of the approximation and computational cost.

4.3.4 Order of the displacement functions

Regarding an adequate choice of the displacement functions, ¢.e. determining the
order of the polynomials provided in Eq. (4.3.10), plates exhibiting the following

features are considered:
o quadratic dimensions, i.e. L = B (cf. Fig.4.8),
o a length/width to thickness ratio of greater than 40,
o elliptical delaminations (including circular delaminations) and

o delamination depth of less than 0.2 (normalized to the total thickness of the

plate), i.e. shallow delaminations.

All plates investigated in the current chapter are required to comply with the
aforementioned criteria. As done by the vast majority of studies, quadratic plates
are studied, as discussed in Section 4.2. The length to thickness ratio is taken
such that shear effects are small. Elliptical delaminations are studied owing to
the experimental proof provided in [11]. Shallow delaminations are investigated
which is defined such that a < 0.2 (¢f. Fig.4.8).

The displacement functions investigated are evaluated by means of the prediction
of the buckling and post-buckling response for the case of a stationary delamination.
The displacement functions are determined by performing two steps. First, the
order of the polynomials is continuously increased. Second, generalized coordinates
remaining negligibly small are omitted. Furthermore, it is well-documented
and therefore considered that the in-plane displacements require higher order
approximations than the out-of-plane displacement [71, 110, 111].

The outcome of the evaluation is presented in Fig. 4.9 showing a post-buckling
response for the case of stationary delamination in terms of normalized compressive
applied strain against normalized midpoint deflection. A plate with the dimensions

150 mm x 150 mm x 3.115mm and an elliptical delamination of [ = 25 mm and
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4 Delaminated composite plate 4.3 Semi-analytical modelling

b = 50 mm is taken as an example. The plate has a unidirectional layup of 35

layers. The material parameters are provided in Table 3.3 (cf. Section 3.4). The
delamination is in between the 32nd and 33rd layer (a = 3/35).
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Fig. 4.9: Post-buckling response in terms of applied normalized strain (enorm) against

normalized midpoint deflections (wyerm) for different numbers of degrees of
freedom (DOF).

The cases shown in Fig. 4.9 are compared with findings obtained from a finite

element simulation using ABAQUS and refer to Eq. (4.3.10) as follows:

nine degrees of freedom (9 DOF, and thus nine generalized coordinates) —

first order polynomials for the out-of-plane and in-plane displacements,

27 degrees of freedom (27 DOF) — second order polynomials for the out-of-

plane and in-plane displacements,

34 degrees of freedom (34 DOF') — second order polynomials for the out-of-
plane and third order polynomials for the in-plane displacements; omitting

vanishingly small coefficients (|¢;| < 107%),

49 degrees of freedom (49 DOF) — second order polynomials for the out-of-

plane and third order polynomials for the in-plane displacements,

78 degrees of freedom (78 DOF') — third order polynomials for the out-of-

plane and fourth order polynomials for the in-plane displacements.

As can be seen in Fig. 4.9, the case of 9 DOF does not yield adequately accurate

results. A significant improvement is documented in between the cases of 9
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4 Delaminated composite plate 4.4 Results

DOF and 27 DOF. The post-buckling response improves further specifically for
normalized compressive strains greater than 1 for the case of 34 DOF. The cases
of 34 and 49 DOF are barely distinguishable with the thicker lower sublaminate
showing marginally larger out-of-plane deflections (softer response). The case of
78 DOF exhibits an improvement of approximately 2% compared with the case of
34 DOF.

Based on the findings, the case of 34 DOF is chosen to model the post-buckling
behaviour of delaminated composite plates. This case covers all buckling phe-
nomena (critical and post-critical responses) adequately and yields quantitative
results which are deemed sufficiently, i.e. being in a margin of 5% to the reference
solution (the finite element simulation). On the other hand, computational cost is
significantly lower in comparison with the cases 49 and 78 DOF.

Concluding, an efficient modelling approach being understood as an optimal
choice in between accuracy and computational cost is provided by the case of 34
DOF which is adopted henceforth.

4.4 Results

The application of the geometric model (cf. Section 4.3.2) and the analytical
framework (cf. Chapter 2) is demonstrated by studying the post-buckling responses
of delaminated plates with a unidirectional ([0°]35) and a cross-ply ([0°/(90°/0)17])
layup. The same unidirectional plies as in Section 3.4 are used for the laminates,
such that the material parameters are provided in Table 3.3.

The dimensions of the plate are taken as 150mmx150mmx3.1115 mm
(2L x 2B x t). A delamination is assigned in between the 32nd and 33rd layer,
thus a = 3/35 (cf. Fig. 4.8). The dimension of the plate as well as the amount of
layers follow case studies from the literature (e.g. [70]).

The results are compared with findings from finite element simulations using
ABAQUS. The finite element model consists of two layers possessing the layup
of the upper and lower sublaminate, respectively. The layers are built-up by
S4R elements. The two layers are bonded with each other in the undelaminated
region and disbonded in the region of the delamination. The virtual crack closure
technique, as implemented in ABAQUS, was employed where growth is allowed
to propagate in the plane of the delamination. The mesh is refined around the
delamination tip with an element size of 0.5 mmx0.5mm. An element size of
1.5mmx1.5mm is assigned to the rest of the model. A small imperfection load at

the centre of the plate is used to enable the tracing of the post-buckling path.

118



4 Delaminated composite plate 4.4 Results

First, post-buckling responses of the unidirectional laminate are studied. An
elliptical delamination with lporm = 1/3 and bporm = 2/3 is investigated where
the lengths are normalized against the respective dimension of the plate, 7.e.:
lnorm = /L and bpoym = b/B. The condition of G, = G£ is employed in the
analytical model and the finite element simulation.

Fig. 4.10 comprises the structural stability and the material damaging behaviour
of the system by delineating the deformation paths in terms of normalized com-
pressive applied strain (enorm) vs. normalized midpoint deflections (wperm) in
Fig. 4.10a and by visualizing the delamination growth contours calculated with
the aid of the current model and with the finite element simulation in Fig. 4.10b
and Fig. 4.10c respectively.

Characteristic deformation states which are analysed with regards to the delam-
ination growth behaviour are highlighted in Fig. 4.10 by Roman numerals for the
current analytical model and by Arabic numerals for the finite element simulation
(denoted by FEM in 4.10a).

The applied strain is normalized against the buckling strain of an undelaminated
plate which was determined by a linear analysis employing a RAYLEIGH-RITZ
formulation in which only the out-of-plane displacement is considered. The
midpoint deflection is normalized with respect to the total thickness of the plate.

Fig. 4.10a shows that, initially, the upper less stiff sublaminate mainly ex-
periences out-of-plane deflection (local response), whereas the lower more stiff
sublaminate slightly deflects in the opposite direction. Thus, the delaminated
composite plate exhibits an opening-mode buckling response. Once the global
buckling response is triggered, the thicker more stiff sublaminate pulls the upper
sublaminate into the negative direction. However, as discussed in Section 3.4.3.2,
the buckling response remains in the opening-mode.

The post-buckling behaviour determined by the analytical model is in very
good agreement with the finite element model. The critical behaviour as well
as the initial post-buckling response coincide. In the post-buckling range, small
deviations of approximately 4% are present in between the analytical model and
the FEM.

The onset of delamination growth is indicated in Fig. 4.10a by (D (red dot)
for the analytical model and by (0) and (1) (blue circles) for the FEM. Two
deformation states, (0) and (1), are used for the FEM in order to emphasize the
difference in predicting delamination growth compared with the current model

description (I), which is discussed next.
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Fig. 4.10: Post-buckling response of a [035] plate with an elliptical delamination
(Inorm = 1/3 and byorm = 2/3) at depth a = 3/35; (a) normalized compressive
applied strain (€n0;m) against normalized midpoint deflections (wporm); (b)
delamination growth contours of the current model (Roman numerals); (c)
delamination growth contours of the FEM (Arabic numerals).
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In the FEM, the initiation of growth is given by disbonding of a single node as
shown by (0) in Fig. 4.10c, whereas the analytical model predicts growth by an
entire disbonding of the boundary ((I) in Fig. 4.10b). After growth is initiated,
during the subsequent post-buckling path, only further disbonding along the
boundary occurs in the FEM. Thus, the FEM generates a delamination growth
contour which is similar to the one of the current model. Therefore, the second
growth contour (1) is provided in Fig. 4.10c which serves for the comparison with
the analytical model as it constitutes the deformation state at which growth is
generated beyond the initial boundary.

Comparisons between the deformation states assigned by (I) and (1) in Fig. 4.10a
and associated with the growth contours (I) and (1) in Figs. 4.10b and 4.10c
respectively show good agreement in which the quantitative values for applied
strain and midpoint deflection deviate by approximately 12%.

Subsequently, both models predict the same behaviour where growth occurs
in the width (b) direction and the post-buckling path remains thoroughly stable.
At the deformation states denoted by @ for the analytical model and by (2) for
the FEM in Fig. 4.10a, the maximum load bearable by the system is reached.
For those deformation states, the growth profiles associated with @ and (2) in
Figs. 4.10b and 4.10c respectively almost coincide.

At the deformation state denoted by @ in Fig. 4.10a, the energy release rate
for growth in the length direction of the ellipse reaches the critical energy release
rate, thus G} = G, = G¢. As discussed in Section 4.2.2, if G} = G}, = G, unstable
damage growth is caused (cf. Fig. 4.4). Thus, at @ sudden failure of the system
occurs which is indicated by the red symbol “¢” in Fig. 4.10a. The applied strain at
“o” can therefore be seen as the failure load of the system. As a consequence, the
delamination grows instantaneously from @ to @ in Fig. 4.10b which visualizes
the material failure.?*

This behaviour is verified by the FEM where failure is indicated by the blue “¢”
in Fig. 4.10a which is associated with an instantaneous growth of the delamination
from (2) to (3) in Fig. 4.10c.

As mentioned before, the findings provided in Fig. 4.10 are associated with
the condition that G. = G which may be regarded as a conservative measure.
However, mode mixture is, in general, relevant for the case of plates with embedded
delaminations.

Therefore, the effect of mode mixture is addressed with the aid of another
example (Fig. 4.11) in which a delamination of l,orm = 0.20 and byorm = 0.53 is
assigned to the plate with the unidirectional layup. Moreover, this case further
clarifies the effect of the description of the delamination by the parameters [ and

b on predicting the onset of delamination growth.

24 The solving algorithm is aborted at a delamination size in which I or b exceeds 0.95.
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Fig. 4.11: Post-buckling response of a [03;] plate with an elliptical delamination
(lnorm = 0.20, byorm = 0.53) at depth a = 3/35; (a) normalized compres-
sive applied strain (eporm) against normalized midpoint deflections (wporm );
(b) delamination growth contours of the current model (Roman numerals);
(c) delamination growth contours of the FEM (Arabic numerals).
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Fig. 4.11 shows the post-buckling response (Fig. 4.11a) in terms of normalized
compressive applied strain (eporm) vs. normalized midpoint deflections (wnorm) as
well as the delamination growth contours of the analytical model (Fig. 4.11b) and
the finite element simulation (Fig. 4.11c).

The qualitative post-buckling behaviour is similar to the case studied in Fig. 4.10.
However, owing to the smaller delamination area—specifically the smaller de-
lamination length—the critical load is increased, the local buckling response is
smaller than in Fig. 4.10a and the global buckling response is more dominant.
The post-buckling response determined with the aid of the model description is in
very good agreement with the finite element simulation (“FEM” in Fig. 4.11a).

The effect of the decreased length of the delamination is clearly visible when
studying the deformation state causing delamination growth which is highlighted in
Fig. 4.11a by (D (red dot) and by (1) (blue circle) for the analytical model and the
FEM respectively. The deformation state causing growth almost coincides for the
analytical model and the FEM. The smaller length of the elliptical delamination
yields that the onset of delamination growth is associated with a larger disbond
along the boundary compared with the case studied in Fig. 4.10. This is visualized
by the delamination contours (I) and (1) in Figs. 4.11b and 4.11c respectively.

As can be seen in Fig. 4.11a, the onset of growth does not change the stability of
the deformation process, thus further loading can be applied during delamination
growth.

Regarding mode mixture, in the FEM, the BENZEGGAGH-KENANE criterion
[5], as implemented in ABAQUS, is considered.?® Since the analytical model
description does not consider mode mixture, it is assumed, due to the geometry
of the delamination, that growth in the length direction is dominated by mode II,
thus G, = GII, and growth in the width direction by mode I, thus G® = G.. This
is similar to [7], however, it may only serve as a rough approximation.

The influence of the mode mixture on the growth behaviour as well as the
post-buckling response is documented by the growth profiles @ and @ as
well as (2) and (@) in Figs. 4.11b and 4.11c respectively in conjunction with the
post-buckling path during growth (Fig. 4.11a). In both models, growth occurs in
the width direction. However, the analytical model assumes that growth follows
GP = G! along the entire boundary of the delamination. In the FEM, growth is
only governed by mode I around the vertex of the delamination (0,b). Outside the
vicinity of the vertex (0, b) growth is governed by mode II. Thus, growth proceeds
significantly slower in comparison with the analytical model and is more localized

around the vertex of the ellipse (0,b). This is visualized by the delamination

25 The parameters used are: G- = 0.19 N/mm, GIf = 0.63N/mm, G = 0.63N/mm, mixture
parameter n = 1.75.

123



4 Delaminated composite plate 4.4 Results

contours associated with @ and (2) in Figs. 4.11b and 4.11c respectively. At the
deformation states indicated with @ and (2) in Fig. 4.11, the analytical model
predicts more than double the magnitude of growth compared with the FEM.

Furthermore, mode mixture and the local description of damage growth affect
the qualitative behaviour of delamination growth. As mentioned before, whenever
the condition of G = G}, = G, is fulfilled, unstable growth is triggered. This
condition refers to a global description of the delamination in terms of the
parameters [ and b. Thus, in the analytical model the condition for unstable
growth reads G = GI and G}, = G which is not fulfilled during the post-buckling
response in Fig. 4.11a. In the FEM, the direction of growth as well as the mode
partition are evaluated node-wise. As a consequence, unstable growth is caused
in the FEM at the blue symbol “¢” causing failure of the system.

Further information can be gained by studying the post-buckling response in
terms of normalized compressive force (Pporm) against normalized end-shortening

(Enorm ), as shown in Fig. 4.12.
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Fig. 4.12: Normalized compressive force (Phorm) against normalized end-shortening
(Enorm) of a [035] laminate with an elliptical delamination (lhorm = 0.20,
bnorm = 0.53) at the depth a = 3/35.

The force associated with the applied strain is calculated by integrating the
force resultant n,, at the boundary (L, y) over the width of the plate, i.e.

dy. (4.4.1)
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The end-shortening is calculated by simple multiplication of the applied strain
with the entire length of the plate.

As can be seen in Fig. 4.12, the local buckling response of shallow delaminations
barely affects the compressive stiffness of the system. Once global buckling occurs,
a change in the compressive stiffness of the system is documented where a large
ratio of the compressive stiffness is retained in the post-buckling range. This is a
characteristic response for fully clamped plates (cf. Section 4.1). Thus, visually,
delamination growth is barely detectable from Fig. 4.12. As a consequence,
unexpected failure may occur at the deformation state indicated by the symbol
“om,

Compared with the FEM, the analytical model shows approximately 5% larger
forces in the post-buckling regime after the global buckling occurred. The post-
buckling stiffness as well as the prediction of the onset of delamination growth
are similar for both models. During delamination growth, the differences in the
quantitative and qualitative damage growth behaviour due to the mode mixture,
as described in Fig. 4.11, causes the FEM to fail by unstable growth at the blue
symbol “o”, whereas further loading can be applied in the analytical model which
predicts failure by delamination growth through the entire width of the plate at
the red symbol “o”.

Next, the post-buckling behaviour of a cross-ply laminate ([0°/(90°/0)17]) is
compared with the response of the unidirectional layup ([035]). This provides
insight into the influence of the stacking sequence on the initiation of delamination
growth, 7.e. the resistance against damage growth, and the subsequent post-
buckling behaviour during delamination growth.

Therefore, a delamination with a normalized length (Ihorm) of 0.2 and a width
(bnorm) of 0.267 is assigned to the plate, i.e. the aspect ratio (b/l) is 4/3. The
delamination depth remains unchanged compared with the cases studied for the
unidirectional layup (a = 3/35). Fig. 4.13 shows the normalized compressive
applied strain (enorm) against the normalized midpoint deflections (wyorm) for
each laminate. It should be stressed that, in order to analyse the effect of the
stacking sequence on the delamination growth, both responses are normalized
against the critical strain for the respective undelaminated plate.

First, Fig. 4.13 shows for the case of stationary delaminations that the uni-
directional laminate provides a larger resistance against buckling delineated by a
higher critical load, smaller out-of-plane deflections during the local response as
well as a “sharper” transition into the global buckling response.

The deformation state causing delamination growth is indicated in Fig. 4.13 by
the red (cross-ply) and blue (unidirectional) symbol “e”. It can be seen that for
the cross-ply laminate growth is generated with the onset of the global buckling

response. On the other hand, the unidirectional laminate experiences delamination
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Fig. 4.13: Normalized compressive applied strain (eporm) against normalized midpoint
deflection (wyerm) of a [0°/(90°/0)17] laminate and a [035] laminate; elliptical
delamination with lyorm = 0.20 and byorm = 0.267 at the depth a = 3/35.

growth considerably later during global buckling. Thus, for the case considered
in Fig. 4.13, the unidirectional laminate exhibits a higher resistance against
delamination growth than the cross-ply laminate. This is further underlined by
the fact that the cross-ply laminate already fails by a complete separation along
the width of the plate, indicated by the red symbol “¢”, shortly after growth is
initiated for the unidirectional laminate.

Significantly higher loads beyond the range shown in Fig. 4.13 can be withstood
by the unidirectional laminate which is, for illustration purposes, visualized
in Fig. 4.14 which shows the post-buckling responses in terms of normalized
compressive force (Pporm) against normalized end-shortening (Eporm ). In order to
enable a comparison, the response of the unidirectional laminate is, in contrast
with Fig. 4.13, visualized by a dashed green line. Post-buckling paths during
delamination growth are provided by dotted lines.

Fig. 4.14 shows that delamination growth for the cross-ply laminate is generated
when the system starts to lose its linear behaviour visually, thus at the onset of
the global buckling response. During the ensuing post-buckling response with
increasing delamination size, an effect of growth on the post-buckling stiffness is
barely detectable.

Comparing the compressive force causing growth for both laminates a difference

of approximately 15% is documented in Fig. 4.14. Furthermore, whereas the
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cross-ply laminate experiences growth at smaller forces than the critical buckling
load of an undelaminated plate, the unidirectional layup can be loaded slightly

above the critical point without causing delamination growth.
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Fig. 4.14: Normalized compressive force (Pyorm) against normalized end-shortening
(Enorm) of a [0°/(90°/0)17] laminate and a [035] laminate; elliptical delamina-
tion with lhorm = 0.20 and byorm = 0.267 at the depth a = 3/35.

In addition, Fig. 4.14 visualizes that significantly larger forces are required to
cause a complete separation (red and blue symbols “¢”) along the width of the
unidirectional plate than for the cross-ply laminate. This also underlines the
higher resistance against delamination growth of the unidirectional layup for the
case studied in Figs. 4.13 and 4.14.

4.5 Concluding remarks

The objective of applying the analytical framework to the problem of multi-layered
delaminated composite plates subjected to compressive in-plane loading is ac-
complished. Thus, it is shown that the analytical framework can be successfully
applied to mechanical problems requiring a larger amount of generalized coor-
dinates. Characteristic post-buckling responses of unidirectional and cross-ply
laminates are obtained. In the following, conclusions are drawn regarding the

semi-analytical modelling approach and the post-buckling responses obtained.
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4.5.1 Semi-analytical modelling

With the condition for the existence of an extended total potential energy being
fulfilled for stable delamination growth (cf. Figs. 3.18, 4.4 and 4.6), the analytical
framework for a structural stability analysis considering damage growth (cf. Section
2.3) can be applied to the given problem. The analytical framework and the
model description presented in Section 4.3 yield that the given problem is solved
semi-analytically.

The model description developed in Section 4.3 enables the prediction of the
post-buckling behaviour of delaminated multi-layered composite plates by means
of 34 generalized coordinates. While this constitutes considerably more generalized
coordinates than for the problem of a delaminated strut (cf. Chapter 3), the amount
of generalized coordinates appears small in comparison with semi-analytical models
aiming at the case of stationary delaminations and the behaviour of the energy
release rate.?

The choice of the displacement functions yielded adequate predictions of the
post-buckling behaviour with expected confined deviations. Such deviations
associated with the order of the approximation, as determined in the preceded
analysis in Section 4.3.4, are considered as expedient in order to determine an
efficient model description, i.e. requiring the least amount of computational cost
while yielding adequate buckling responses.

The description of the damage parameter, i.e. the delamination area, in terms
of the semi major and semi minor axis of the ellipse appears beneficial regarding
the approximation of the displacement field, but causes restrictions with regards

to the modelling of delamination growth. Such restrictions can be summarized as:

¢ delamination growth can be modelled in the width and length direction of

the ellipse,

e growth in either direction can only be predicted by a complete disbonding

of the boundary and

e mode mixture, which would require an analysis along the boundary, cannot

be considered.

Studying elliptical delaminations, the influence of the first two bullets diminishes
the smaller the dimensions of the ellipse are as well as with increasing aspect ratios
(b/1), as delineated in Section 4.4. Neglecting mode mixture and assuming the
conservative measure for delamination growth G, = G yields very good agreement

of the qualitative and quantitative growth behaviour in comparison with the FEM.

26 For instance, more than 300 generalized coordinates are employed in [71], and more than 30
in [110] for thin-film buckling only.
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Characteristic deformation states causing unstable delamination growth and thus
sudden failure are determined. The implementation of a rough approximation
of mode mixture such that growth in the width direction is governed by mode I
and growth in the length direction by mode II results in the adequate prediction
of the growth direction but overestimates growth and omits deformation states
causing unstable growth.

The aforementioned issues are strictly associated with the model description
and thus independent from the analytical framework. Considering the mandatory
restrictions of the model description yields results which capture the post-buckling
behaviour and damage growth characteristics adequately.

The current semi-analytical approach enables an efficient modelling of the
post-buckling behaviour up to the deformation state causing failure (material
and/or stability) which provides important insight into the structural stability of

delaminated composite plates.

4.5.2 Post-buckling responses

With the aid of the results provided in Section 4.4, the following conclusions
regarding the post-buckling behaviour considering delamination growth can be

drawn.

o For the plates investigated (unidirectional and cross-ply laminates with
elliptical shallow delaminations), the onset of delamination growth does
not alter the stability of the system, thus the deformation process remains
stable.

e Delamination growth is triggered with the initiation of global buckling or

shortly afterwards.

¢ Delamination growth, initially, commences in the perpendicular direction of

the loading for the cases studied (shallow delaminations).

e During an initial period of delamination growth, further loading may be

applied to the system and the post-buckling stiffness barely reduces.

o Unstable delamination growth, thus failure of the system, occurs, whenever
the energy release rate for growth in the width direction and in the length
direction reach the respective critical energy release rates for a given state

of loading.

Regarding the structural stability analysis, considering delamination growth in
a buckling analysis is crucial, since failure may occur unexpected once growth

reaches a certain magnitude. Up to such a deformation state, growth may be
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barely detectable tracing the post-buckling paths such as compressive load against
midpoint deflections and compressive force against end-shortening. Such a stability
analysis is enabled by the semi-analytical modelling approach presented in this
chapter.

The post-buckling responses have been verified by comparison with finite element
simulations using ABAQUS. The approximation of the displacement field by means
of 34 generalized coordinates yields almost no deviations for the critical and the
initial post-critical response compared with the FEM. Deviations of approximately
5% regarding the applied loads during the post-buckling response succeeding
global buckling are documented.

The issue of mode mixture and the description of growth by means of the
delamination length | and width b (cf. Fig. 4.8) is addressed. Both affect the
post-buckling responses once growth is considered. The influence of describing
the delamination by [ and b diminishes with increasing aspect ratios (b/l) and
decreasing dimensions of the delamination. Since experimental proof for elliptically
shaped delaminations exists (cf. [11]), such a description may be considered as
expedient assuming that the delamination complies with the aforementioned

geometry.
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The current chapter is concerned with a general discussion regarding the capabili-
ties, advantages and restrictions of the analytical framework developed as well as
its application to the mechanical problems studied in Chapters 3 and 4. Therefore,
it stands to reason to subdivide the chapter into these parts which is subsequently

done.

5.1 Analytical framework

The analytical framework enables the modelling of deformation processes, compris-
ing both: structural stability phenomena and damage propagation, by employing
only a set of generalized coordinates, 7.e. by considering the configuration of a
mechanical system. This is achieved by separating the deformation process in
a conservative and a non-conservative part in which the deformation paths, the
stability behaviour as well as the damage growth characteristics are obtained with
the aid of variational principles (conservative process, non-conservative process)
yielding sets of non-linear algebraic equations.

Solving the respective system of algebraic equations requires minimal computa-
tional cost. For solving the set of non-linear algebraic equations numerically, the
framework also provides an optimal initial guess, which is the deformation state
causing damage growth. Thus, the application of the framework to mechanical
problems considered within the current work constitutes highly efficient modelling
approaches. They are enabled by employing the key requirement of the framework,
viz. during the non-conservative part of the deformation process equality holds
between the forces available for producing a change in structure (thermodynamics
forces, fx) and the forces required for such a change (gx).

Whenever the equality fr = gr holds, then an extended total potential energy
may be derived in which the damage parameters &, i.e. the internal state variables,
are expressed in terms of the generalized coordinates ¢; and the load parameters
Am, G-e. & = &k(qi, A\m). This extended total potential energy constitutes the
governing functional of the non-conservative part of the deformation process.

Thus, unlike treating the deformation process as a coupled problem of the

displacements and the damage states, the framework resolves the direct dependence
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5 General discussion 5.1 Analytical framework

of the damage parameters by employing the aforementioned equality. As a
consequence, a variational principle of only the generalized coordinates is sufficient
to determine the deformation path during the non-conservative process which is
in contrast with other variational principles of fracture (cf. [17, 21]) where both
the deformation state and the damage state are perturbed.

Since the damage parameters are not treated as independent variables in the
variational description, the commonly comprised unilateral constraints within
the variational description of fracture (KUHN-TUCKER conditions, cf. [17]) are
not present in the framework. The incorporation of the KUHN-TUCKER con-
ditions would yield the deformation path associated with energy minimization
and compliance with the second law of thermodynamics. The analytical frame-
work yields a solution path on which the deformation state is located where
damage growth is initiated. Starting from this deformation state, two loading
directions are possible. Only one loading direction complies with the second law of
thermodynamics—healing of the structure is not allowed—and hence constitutes
the actual deformation path of the system, whereas the other one violates it
and is therefore omitted. The choice of the correct loading regime and thus the
tracing of the actual deformation path—irrespective whether the deformation state
constitutes an energy minimum or maximum—is made a posteriori in the solving
algorithm. From a strictly mathematical point of view, this may be regarded as a
disadvantage. However, considering the advantages of the extended total potential
energy principle, the basic thermomechanical reasoning required to choose the
adequate deformation path and its straightforward implementation in the solving
algorithm, this is regarded as expedient and advantageous.

As an outcome, the analytical framework also exhibits the advantageous char-
acteristics of the discrete coordinate approach employed in the general elastic
stability theory of THOMPSON and HUNT [94], such as

o the (semi-)analytical description of mechanical systems,

o the capability to derive modelling approaches of increasing accuracy and/or

distinct deformation phenomena and

e the modelling of continuous systems by employing continuous mode-forms

in which the generalized coordinates serve as the respective amplitudes,

without the restriction to conservative deformation processes, such that the
objective of the current work is accomplished.

Employing the extended total potential energy also restricts the framework.
Deformation processes to be investigated must comply with a potential formulation

of the total work of deformation and hence an extended total potential energy.
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This is, in general, not always feasible, however, many processes are known
(e.g. metal-like inelasticity, micro-cracking in ceramics, cf. [83]) for which such
a potential may be derived. Especially regarding composites, studies in [55, 82]
have shown that a potential formulation for damaging processes can be found
(e.g. for matrix cracking).

Furthermore, the analysis of the energy release rate in Chapter 3 has demon-
strated that such a potential formulation for delamination growth in layered
composites under in-plane compressive loading holds and thus an extended to-
tal potential energy exists. As a consequence, the application of the analytical
framework requires, besides the description of the deformation behaviour of the
mechanical system by a set of generalized coordinates, the analysis of the respective
thermodynamic forces concerning the aforementioned equality fi = gx.

The implementation of the equality between fi and g and thus the replacement
of the damage parameters also dictates the applied loading. In the non-conservative
regime, each loading step is associated with a certain growth in the respective
damage parameters. Thus, the applied load constitutes the load required to
generate a certain increase in the damage parameters without limitations on
the extent of growth. Unloading of the system is performed by assuming that
all damage parameters remain constant (conservative process), such that the
conventional total potential energy principle can be applied.

Whenever during a non-conservative deformation process growth of multiple
damage parameters is initiated, the framework assumes that all such parameters
continuously undergo growth from one loading step to another. Thus, unloading of
single damage parameters after growth is initiated, i.e. the parameter transitions
from active into inactive, is not considered. However, such behaviour might occur
during a loading process with multiple active damage parameters which embodies
a current restriction of the framework.

The requirement of fi = gi also describes the necessary condition for stable
damage growth. Whenever stable damage growth is present, the deformation
path can be modelled with the aid of the analytical framework. Unstable damage
growth may violate the equality, such that an expression of the damage parameters
cannot be obtained. However, as has been demonstrated for a certain case of a
delaminated composite strut (cf. Fig. 3.23), the deformation behaviour during
unstable growth may be adequately predicted by implementing the equality
fr = g as well as with the understanding that unstable damage growth is also
associated with instability in a displacement-controlled configuration. Therefore,
certain deformation processes which are associated with unstable growth may be

also traced with the analytical framework.
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5.2 Application examples

The application examples: delaminated multi-layered composite struts (Chapter
3) and plates (Chapter 4) under compressive in-plane loading, have shown that
the structural stability behaviour of mechanical systems, which comply with the
requirement for deriving an extended total potential energy, can be efficiently
modelled with the aid of the analytical framework. Qualitatively and quantitatively
substantial and conclusive results have been obtained. The verification of the
findings has been performed by comparison with finite element simulations.

The analysis of the energy release rate has demonstrated that an extended total
potential energy can be derived for the problems studied in Chapters 3 and 4,
which allows the application of the analytical framework.

Applying the framework to the problem of a delaminated multi-layered com-
posite strut with a through-the-width delamination enabled the description and
analysis of various structural stability phenomena associated with non-growing

and growing delaminations, such as

o the behaviour of the buckling loads depending on the delamination size and
depth,

o the qualitative buckling responses related with opening-mode and closed-

mode as well as local and global responses,

o structural instability for small delamination lengths for stationary delamina-

tions in load-controlled problems,

o stable deformation processes for mid-size and large delamination lengths for

stationary delaminations in load- and displacement-controlled problems,

o structural instability once delamination growth is initiated during global

buckling in load-controlled problems,

o stable and unstable deformation processes as well as processes exhibiting a
transition from stable to unstable and wvice versa in displacement-controlled

problems during delamination growth and
o the relation of unstable delamination growth with structural instability.

In summary, the application of the analytical framework has yielded a compre-
hensive structural stability analysis of delaminated composite struts which has
been accomplished by employing only four generalized coordinates.

Regarding the problem of a delaminated multi-layered composite plate with

an embedded delamination, Chapter 4 focuses on characteristic post-buckling
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phenomena associated with delamination growth. The key findings from applying

the analytical framework can be summarized as

o the onset of delamination growth in the post-buckling range does not change
the structural stability of the systems in displacement- and load-controlled

configurations,

o the initial delamination growth in the post-buckling range is stable for all

cases investigated for displacement- and load-controlled problems,

o unstable delamination growth is caused during the post-buckling response,
whenever the delamination intends to grow simultaneously in the width and

length direction of the plate and
o unstable delamination growth is associated with structural instability.

The insight obtained emphasizes the importance of including delamination growth
in the structural stability analysis. Failure owing to unstable delamination growth
or complete separation along a dimension of the plate can occur unexpectedly,
since initially stable delamination growth in the post-buckling regime may be
barely distinguishable from the post-buckling behaviour if growth was omitted.

It should be noted that the application of the framework is highly sensitive
to an adequate description of the mechanical systems. Simplifications made in
the model description, of course, affect the results obtained by applying the
framework. Both the description of the displacement field and the damage state
require a certain accuracy such that present deformation characteristics can be
modelled. This has been elucidated in Chapter 4 by studying the problem of a
delaminated composite plate. Whereas the description of the displacement field
by 34 generalized coordinates captured all buckling and post-buckling phenomena
with satisfactory accuracy, the description of the delamination by the semi major
and semi minor axis of the ellipse resulted in the prediction of delamination growth
along the entire boundary as well as the inability to consider mode mixture along
the boundary of the delamination. As a consequence, certain shapes of the ellipse,
which would mainly cause local delamination growth, are unfavourable for the
current modelling approach. Thus, the semi-analytical modelling approach of the
delaminated composite plate yields results of increasing accuracy for delaminations
with smaller dimensions in comparison with the length and width of the plate as
well as with increasing aspect ratios (width to length).

Findings of both application examples have been compared with results from
finite element simulations. Considering the vast difference in degrees of freedom
between the semi-analytical models and the finite element simulations, it should

be stressed that the comparisons made are eminently good. Critical responses
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as well as initial post-buckling paths obtained by the semi-analytical modelling
approaches and the finite element simulations coincide in the majority of the
cases studied. In the post-buckling regime, deviations in the load parameters of
1 to 5% are documented depending on the dimensions of the structures and the
delaminations investigated. In all cases studied, the semi-analytical modelling ap-
proach overestimates the response in comparison with the finite element simulation.
The prediction of the onset of delamination growth deviates by 1 to 4% for the
delaminated strut and 1 to 12% for the delaminated plate. The same qualitative
post-buckling behaviour during delamination growth has been obtained for the
modelling approach and the finite element simulation. Quantitative deviations
in the post-buckling response remain unaffected between the conservative and
non-conservative part of the deformation process.

In addition, it should be noted that savings of computational cost are tremen-
dous. The computational time required to solve the application examples scales
approximately by the relation minutes to hours comparing the semi-analytical

models and the finite element simulations.
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6 General conclusions and further

work

In the current work, a novel analytical framework for the structural stability
analysis of damageable structures has been developed and successfully applied to
two characteristic mechanical problems.

The framework employs the description of mechanical systems by means of

generalized coordinates. The characteristics of the analytical framework comprise:

o the strict separation of a deformation process in a conservative and non-

conservative part,

o the description of the conservative part of the deformation process with the

aid of the total potential energy principle,

o the analytical derivation of the damage parameters in terms of the generalized

coordinates and the applied loading,

o the derivation of an extended total potential energy which constitutes the
governing functional of the non-conservative part of the deformation process

and

e a variational principle for the extended total potential energy functional

yielding the deformation paths considering damage growth.

The framework enables the semi-analytical modelling of the deformation be-
haviour of mechanical systems prone to structural instability and material failure
which comply with the requirement that during the non-conservative part of a
deformation process equality holds in between the thermodynamic forces and the
forces required to produce a change in structure.

The analytical framework has been applied to the problems of a delaminated
multi-layered composite strut and a delaminated multi-layered composite plate
subjected to a compressive in-plane load. By doing so, the problems have been—
for the first time—semi-analytically modelled, thus the post-buckling behaviour
considering delamination growth has been determined. Verification of the results

obtained has been provided by findings from finite element simulations.
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6 General conclusions and further work

The application of the framework to the problems studied has yielded qualita-
tively and quantitatively substantial and conclusive results which provide insight
into the structural stability behaviour of such structures.

The mechanical systems investigated in the current work only illustrate first
applications of the framework. Various further mechanical problems may be
modelled with the analytical framework. For instance, in relation with composites

structures, potential problems to be investigated are:

o the effect of matrix cracking on the structural stability of composite plates

with and without delaminations,

e the compressive behaviour of sandwich structures prone to core-interface-

delaminations and
e matrix cracking and fibre failure associated with kink banding,

which are also highly relevant application examples for practical purposes. Re-
garding lightweight structures consisting of ductile materials, inelastic buckling
responses associated with plasticity describe another area of possible applications.

With regards to the analytical framework, ensuing research will be directed on
resolving the current restriction that for multiple active damage parameters the
possible transition of single parameters from active to inactive is not incorporated.
Considering this will further enhance the generality and the applicability of the
analytical framework.

Concluding, the analytical framework developed in this work enables the mod-

elling of specific mechanical deformation processes in a highly efficient manner.
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A Relevant aspects of energy
balances, laws of thermodynamics

and thermodynamic potentials

The strain energy, the dissipative energy (work associated with structural change)
and thus the total work of deformation employed in the analytical framework in
Chapter 2, can be derived from the total energy balance of a closed system and
the laws of thermodynamics. The subsequent derivation follows [61, 63, 65]. The

total energy of a closed system reads

ViU
Eiot = (U + K) = / (pU+p 5 > dv, (A1)
v(t)

in which U and K are the internal and kinetic energy respectively. In Eq. (A.1),
the velocity field is denoted by v;, the specific internal energy by u, the density by
p and the volume by V. For demonstration purposes, the system is considered in
its actual configuration (EULERian description). The total energy is a conserved
quantity; its temporal change, i.e. the balance of the total energy of a closed

system, can be written as

% / (PqupU;Ui)dV:

V(t)
% (—qmi) dA+/TdV+ % t;v; dA/pbl’UZ dv,

AV (t) V(t) AV (t) V(t)

in which the first two integrals on the right hand side (r.h.s.) of Eq. (A.2) are the
rate of heat received by the system with ¢; being the heat flux, r the volumetric
density of the internal heat production and n; the outward unit normal to 9V,
i.e. the boundary of the system. The last two integrals on the r.h.s. in Eq. (A.2)
describe the actual power of the external forces with ¢; = njo;; being the surface
tractions (o is the CAUCHY stress tensor) and b; the body forces.

Next, the temporal change of the entropy of a system is considered which can
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be written as,

d r

i dV = 75 —n] dA + / T dV + / o dV. (A.3)
V(t) V(t) V(t)

in which s is the specific entropy, 1" is the temperature and o is the entropy
production rate density. The second law of thermodynamics states that the

entropy production rate is always non-negative [65], thus irreversible, i.e.
o> 0. (A.4)

Rewriting Eq. (A.3) using the divergence theorem (also referred to as GAUSS

theorem), i.e.:

%(o)ni dA = / %(;i) av, (A.5)

ov \%4

where (o) may be a continuously differentiable tensor field of arbitrary order,

yields

ds a q; r .
[ (it am (7)-7) = [oav=o A

V(t) V(t)

The radiation in Eq. (A.6) can be replaced using the balance of the internal energy

in the local form,

Jq;
8.%

du
pa = Uijdij +r— (A7)
which is deducible from Eq. (A.2) by subtracting the terms associated with the

balance of the kinetic energy (cf. [65]) yielding

ds a [q 1 du dq
— Z) - = iid; =0 >0, A.
pdt+axi (T) < dt Ujdj_i_(‘)%) 020 (A-8)

where d;; is the rate of the deformation tensor which in the case of small defor-
mations is equal to the strain rate tensor de;;/dt = €;;5, which is subsequently
employed.

Eq. (A.8) is regarded as the fundamental inequality containing the first and

second law of thermodynamics [61].! By multiplying Eq. (A.8) with 7" and ensuing

! Eq. (A.8) represents a specific form of the CLAUSIUS-DUHEM inequality.
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rearranging, the fundamental inequality can be expressed as

du ds) 49T _ 1y, (A.9)

oo =0 (G ~T%) ~ Tam

Furthermore, by introducing the specific HELMHOLTZ free energy,
¢=u—Ts, (A.10)

with its derivative with respect to time

d¢ du ds dT

Eq. (A.9) can also be rewritten, such that

d¢ dT) q; OT

O'Z'jéz‘j —p ( +s— | — Taxl

= > 0. .
TR To >0 (A.12)

Egs. (A.8), (A.9) and (A.12) represent forms of the so-called CLAUSIUS-DUHEM
inequality.

Next, the deformation processes studied in the current work are considered.
Thus, isothermal processes are investigated and it is assumed that dissipation is
entirely associated with a change of the internal state variables () describing the
current state of damage. Irreversible deformation associated with plasticity are
herein omitted even though such processes may be considered. As a consequence,
the specific HELMHOLTZ free energy is a function of the strains (e;;) and the

internal state variables (&), thus

_ 99 4. 99
d¢ = 9o, dej; + o6, dé, (A.13)
such that from Eq. (A.12) follows
99 \ . 99 ;
04 — Eii — P=— ZTUZO. A14

which yields the relationships

9 | _
e Tij (A.15)
13
and
foler .
2 — > 0. .
p85 & =To>0 (A.16)
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Employing the definition of the thermodynamic force densities associated with

the internal state variables, i.e.

99
Fp=—p—11, A.17
T (A.17)
Eq. (A.16) can be rewritten as
Fibr=To =D >0, (A.18)

in which, as commonly done (cf. [61, 63]), the existence of a dissipation potential
D(&) is postulated.

From Egs. (A.15) and (A.16) follows that the HELMHOLTZ free energy density
(po) is a thermodynamic potential of the stresses and the thermodynamic force
densities as well as it constitutes, for the processes considered, the strain energy
density w which can be obtained by integration along the actual deformation path

from a reference state (“0”) to a current state (“1”), i.e.
1
w = /pd¢. (A.19)
0
Thus, the density of the total work of deformation is
1

wy = w + /]:k dé&g. (A.20)

0

Integration of Eq. (A.20) over the volume yields the total work of deformation of
the system.
In the case of independent stresses, the associated thermodynamic potential

can be derived with the aid of the LEGENDRE transformation, i.e.

pd(b =0yj dé‘ij - fk dgk =
pde =d(oijeij) — €ijdoy; — Frdée < (A.21)
pd(¢ — oijeij) = — eij doy; — Fi, déx <

pdyp = —g;;doy; — Fp A,

where ¢ = (05, ) is referred to as specific GIBBS free energy, which is, for the
processes investigated in the current work, the specific total potential energy of

the system.
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B Effective in-plane, coupling and

bending stiffness

The equations for calculating the effective material parameters used in the mod-
elling approach in Chapter 3 are provided in this appendix. The parameters are
obtained by determining the strains €,, and 2e,, as well as the curvatures x,, and
Kay from Eq. (3.3.16) which are subsequently replaced in the equations for the in-
plane force resultant n,, and the moment resultant m,,, respectively. Rearranging
the equations in the form of Eq. (3.3.17) yields the effective parameters.

The effective in-plane stiffness (Aeg), the effective coupling stiffness (Beg) and
the effective bending stiffness (Deg) are provided in Egs. (B.1) to (B.3). It should
be noted that Egs. (B.1) to (B.3) state the general form in which all entries of
the in-plane stiffness matrix (A7), the coupling stiffness matrix (By;) and the
bending stiffness matrix (Djs) are considered while employing the symmetry of
the stiffness matrices. The equations may simplify significantly for symmetric
layups and certain stacking sequences. For the cross-ply laminate investigated in
Chapter 3, the entries Aig, Aog, D1g, Dog are zero. Furthermore, in the case of
an asymmetric cross-ply laminate (delaminated part of the strut in Chapter 3),

all entries of the coupling matrix, except Bi; and Bao, are zero.
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C Strain energy of a thin

multi-layered composite plate

The strain energy density w of a structure obeying a linear elastic material
behaviour reads
€ij=¢ij
N N 1
w = Uij(&'j) dsij = §Cijkl€ij€kl7 (C.l)

é"ij =0

where Cjj1; is the fourth order stiffness tensor, €;; is the infinitesimal strain tensor
and o;; is the CAUCHY stress tensor.
Regarding thin multi-layered composite plates, with the assumption of plane

stress as well as VOIGT’s notation, Eq. (C.1) can be rewritten as

1 -
w = §5IQIJ5J7 (C.2)

in which I,J = 1,2,6 and Qys is the transformed reduced stiffness matrix
(cf. Egs. (3.3.5) and (3.3.7)). Next, as done in the CLASSICAL LAMINATE THEORY
[76], the strains £; are subdivided in a part associated with the in-plane force

resultants (¢7) and a part associated with the moment resultants (£4), thus:

0
Exx Erx Kz
— -0 Kk 0
Er = Eyy =&y + Er = gyy +z Ryy (> (03)
0
2e4y 2e4y Ky

where {k} are the curvatures of the neutral plane of the plate and z is the distance
of the respective layers from the neutral plane.
Inserting Eq. (C.3) in Eq. (C.2) yields

1 _ _ _
w = 5 (6(}62[]83 + 226?@[]/6] + ZQKIQIJ”J) . (C4)

The strain energy of the plate is obtained by integrating Eq. (C.4) over the volume,
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C Strain energy of a thin multi-layered composite plate

i.e.

1 —~ — p—
W= 2/// (e?Que‘} +2269Qr kg + z%,QUw) dzdy dz. (C.5)

T Yy 2

Employing the definitions of the in-plane stiffness matrix A;; (¢f. Eq. (3.3.8)),
the coupling stiffness matrix Bry (¢f. Eq. (3.3.9)) and the bending stiffness matrix
Dyy (cf. Eq. (3.3.10)) yields

1
W = 2//<€?A]J€g+2€?B[JK/J+K/[D[JK/J) dy dx, (CG)
z Yy

which constitutes the strain energy of a thin multi-layered composite plate em-

ploying the CLASSICAL LAMINATE THEORY.
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D Geometric imperfection

As mentioned in Chapters 3 and 4, an initial geometric imperfection in the form
of an out-of-plane displacement w* is considered in the modelling approaches.
The imperfection is assumed to be caused by the presence of the delamination
and is verified by the experimental studies in [23, 68, 69, 70]. An illustration of
such a geometric imperfection is provided in Fig. D.1 showing the delaminated
region of a plate. The magnitude of the amplitude of the imperfection ¢* is taken
as t/1000 in Chapters 3 and 4 which results in a measure of the order 10~ mm.

The parameter t is the total thickness of the plate.

at

| ! |

Fig. D.1: Sketch of a segment of a plated structure (delaminated region) with an initial
geometric imperfection ¢*; at describes the thickness of the delaminated region.

For instance, the out-of-plane displacement associated with the imperfection

for the problem of a delaminated composite plate can be modelled as

w*(z,y) = ¢* [(?)2 + (Z)2 — lr (D.1)

where [ and b describe the semi major and semi minor axis of an elliptical
delamination respectively (cf. Fig. 4.8).
The geometric imperfection does not contribute to the work of deformation.

Thus, the deformations associated with the geometric imperfection, i.e. the strains,

2
* 1 (ow*
€ 2 ( Oz )
2
* ={ 1 (0w*
Exy . ( 5’;) , (D.2)
2e* ow* Jw*
ry Ox Oy
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D Geometric imperfection

and the curvatures,

* 92w*
Kaa T Ox2
_ 9%w*
Hf’jy Y T 92 ’ (D3)
* 92w*
Ky _28x8y

have to be subtracted from the strains and curvatures in the energy formulation

yielding
2 2
ou 1 (0w 1 (ow*
Ean %ﬂﬁ(%) _§<893)
2 2
e} = —{ w1 (ow\? 1 (0w D.4
{e} “wy 8y+2(3y) 2(3?4 (D-4)
ou v ow dw ow* Jw*
2z oy tort ooy ~ or oy
and
2 2, %
Raz ~ 5+ G
_ _ 2w d2w*
{KV} - ﬁyy - _TyQ + 8y2 . (D5)
9w dw*
Kay _28x8y + 23:1:83,(

Egs. (D.4) and (D.5) are the strains {¢} and curvatures {x} associated with the
displacement field u; = {u(z,y),v(z,y),w(z,y)}T of the delaminated part of the
plate (cf. Section 4.3.2) considering the initial geometric imperfection. It should
be noted that the amplitude of the imperfection ¢* is also the initial value of the
respective generalized coordinate describing the amplitude of the delaminated

region.
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