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A B S T R A C T

Quantitative photoacoustic tomography aims to recover the spatial distribution of absolute chromophore con-
centrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion
scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral images of
a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated absorber
allowed scaling of the measured data during the inversion, while an acoustic correction method was employed to
compensate the effects of limited view detection. Chromophore- and fluence-dependent step sizes and Adam
optimization were implemented to achieve rapid convergence. High resolution 3-D maps of absolute con-
centrations and their ratios were recovered with high accuracy. Potential applications of this method include
quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical and clinical stu-
dies.

1. Introduction

Photoacoustic (PA) tomography is an emerging imaging modality
that combines the high contrast and spectral specificity of purely op-
tical imaging methods with the high spatial resolution of ultrasound
[1,2]. It relies on the absorption of short optical pulses by tissue
chromophores to generate broadband acoustic fields. The spatial dis-
tribution of the optical absorbers within the illuminated volume is
therefore encoded onto the time-resolved pressure signals measured at
multiple locations outside the imaged object. From this data, 3-D
images of the initial pressure distribution, which depends on the local
abundance of all tissue chromophores, are then reconstructed. Quan-
titative photoacoustic tomography (QPAT) aims to recover the spatial
distribution of absolute chromophore concentrations, such as oxy- and
deoxyhemoglobin as well as contrast agents, from these images to ex-
tend the capabilities of this modality to quantitative, deep-tissue func-
tional and molecular imaging. To reach this goal, a number of key
challenges have to be addressed. The accurate prediction of the spa-
tially varying and wavelength-dependent fluence, which causes so-
called spectral coloring and structural corruption [3], is vital. Ther-
modynamic properties, such as the dependence of the Grüneisen
parameter on chromophore concentration, also need to be accounted

for. In addition, factors such as limited view detection, scanner-specific
instrument transfer functions and detection noise determine to which
extent a measured PA image represents the true initial pressure dis-
tribution. Lastly, experimental and computational methods are required
to address the large scale of the inverse problem posed by high re-
solution images, which can result in millions of variables [3–6].

A variety of QPAT methods have been used to invert measured PA
images. Early fluence correction methods, which used linear inversions
under the assumption of homogeneous optical properties and empirical
parameters to obtain images of relative concentrations [7,8], have been
shown to be severely limited [9,10]. Other studies based on linear in-
versions incorporated independent measurements using acousto-optics
[11,12] or diffuse optical tomography [13–15] to obtain an estimate of
the fluence. Data-driven methods, by contrast, estimate the fluence
using algorithms trained on a large number of data [16,17]. However,
obtaining sufficiently large training data through measurements is often
impractical, and the use of models to simulate images acquired using
real imaging systems is non-trivial. It is therefore not yet clear to which
extent these methods are generally applicable.

Model-based inversion schemes are one of the most promising and
potentially generally applicable methods for QPAT due to the flexibility
numerical models afford. In principle, all physical processes involved in
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the generation of a PA image can be represented. By expressing a for-
ward model as a function of specific input parameters, e.g. chromo-
phore concentrations and optical scattering, its output can be fitted to
measured data using, for example, a least-squares minimization tech-
nique. The set of parameter values determined this way is then con-
sidered that which has the highest likelihood of explaining the ex-
perimental results. Most studies in this field have relied on the diffusion
approximation as a light transport model. It has the advantage that it is
easily implemented but lacks accuracy in non-diffuse illumination, e.g.
close to the optical source. It was nevertheless shown to enable the
recovery of absolute concentrations and a global scattering coefficient
from multispectral 2-D images given prior knowledge of the wavelength
dependence of the molar absorption and of scattering [9,18]. Fixed-
point iteration schemes have been applied in 2-D and 3-D [19,20] but
require a priori knowledge of the scattering distribution and quickly
diverge if the scattering coefficient is wrong [3]. Recently, an iterative
optimization scheme for the fluence correction of 2-D images taken
with a commercially available scanner was reported [21,22]. While 2-D
images are generally insufficient to support QPAT of complex 3-D ob-
jects, the method also relies on manual image segmentation to enable
stable inversions.

The efficient calculation of functional gradients is a vital capability,
particularly if the scale of the inverse problem reaches millions of un-
knowns [23], and has been demonstrated using a diffusion light
transport model [24,25]. An iterative method for inverting high-re-
solution images in silico using a Monte-Carlo light transport model was
recently reported by the authors [26]. While this method is – in prin-
ciple – generally applicable, the inversion of measured images poses
additional challenges since image reconstruction artifacts, limited de-
tection apertures, and noise cause an inherent mismatch between the
model output and the experimental data.

In this work, methods for minimizing this mismatch were developed
and applied to images acquired in a tissue-mimicking phantom to re-
cover absolute chromophore concentrations and concentration ratios
from high resolution 3-D PA images. A Monte-Carlo (MC) light trans-
port model was used to obtain accurate predictions of the fluence for
superficial imaging depths (up to 1 cm). Multispectral image data sets
were obtained in planar detection geometry using a Fabry–Pérot based
PA scanner [27,28]. To account for the partial mapping of the PA field
due to the limited detection aperture and its effect on the reconstructed
images, an ad hoc correction method was employed. To accurately scale
the image intensity of the measured data sets, a calibrated absorber was
used, and the concentration dependence of the Grüneisen parameter
was incorporated into the forward model. The Adam algorithm [29]
enabled an efficient inversion despite noisy gradients. While this
methodology allows the simultaneous inversion of absorption and
scattering coefficients in principle, the scattering distribution was as-
sumed to be known a priori in this study.

In Section 2, the methods are introduced. This includes the forward
model (Section 2.1), the experimental setup and tissue phantom (Sec-
tion 2.2), the limited view correction method, and further details of the
optimization (Section 2.3). In Section 3 the inversion results are pre-
sented and limitations of the method are discussed. Concluding remarks
are given in Section 4.

2. Methods

2.1. Model-based inversion scheme

2.1.1. PA forward model
The intensity of a PA image is considered proportional to the initial

pressure distribution, p0, which is given by

= =r r r r r rp λ H μ λ λ( , ) Γ( ) ( ) Γ( ) ( , )Φ( , ),a0 (1)

where Γ is the Grüneisen parameter, which describes the PA efficiency,
H is the absorbed energy density, μa is the absorption coefficient, Φ is

the light fluence, r is the position, and λ is the excitation wavelength.
rp λ( , )0 is referred to as (PA) image data set throughout this paper. The

wavelength-dependent absorption coefficient at position r due to the
presence of k different chromophores is a function of the specific ab-
sorption coefficients, αk(λ), and concentrations rc ( )k as given by
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where Nk is the number of chromophores. The Grüneisen parameter and
its concentration dependence was approximated using
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(3)

where Γwater is the Grüneisen parameter of water and βk are empirical,
chromophore-dependent coefficients [18,30–32]. To calculate a PA
image data set, i.e. rp λ( , )0 , a Monte Carlo (MC) model was used to
predict the fluence, r λΦ( , ) [33,34]. The input parameters were the
illumination geometry, i.e. the incident laser beam profile and its lo-
cation, the chromophore concentrations, the scattering coefficients, and
the refractive index distribution.

2.1.2. Iterative inversion scheme
The iterative inversion scheme is described in detail elsewhere [26].

Briefly, the spatial distribution of the incident excitation pulses, the
refractive index, and the scattering coefficient distribution were as-
sumed to be known a priori and remained constant during the inversion.
The MC model was initialized assuming homogeneous absorption by
water and run to calculate a PA image data set, rp λ( , )0 . The difference
between rp λ( , )0 and the measured PA image data set, rp λ( , )m

0 , which
was reconstructed from the measured sensor-time series, xp t λ( , , )m ,
was represented by a least-squares error functional, ε, as given by

∫∑= −r rε λ p λ1
2
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l

N
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l lΩ 0 0
2

λ

(4)

where K is a scaling factor (described in Section 2.3.2), Nλ is the
number of excitation wavelengths λl and Ω is the image volume. By
minimizing ε, 3-D maps of chromophore concentrations were recovered
from measured image data sets. The gradient of ε with respect to the
concentration of chromophore ck at position ri is given as
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where Vvox is the volume of a single image voxel. It should be noted that
this gradient is an approximation. It was found to be valid for inversions
where the scattering coefficient can be assumed known and fixed [26].
The chromophore concentrations, the gradients, and the chromophore-
and fluence-dependent step size were updated at each iteration (de-
scribed in Section 2.3.4).

2.2. Data acquisition

2.2.1. Experimental setup
The experimental setup is shown in Fig. 1. A custom-built Fabry–-

Pérot (FP) based PA scanner with planar detection geometry was used
to acquire multispectral PA image data sets [27,35]. The thickness of
the Fabry–Perot polymer film sensor was 40 μm, resulting in a flat
acoustic frequency response from 50 kHz to 20MHz. Due to the small
element size of 60 μm, the response of the sensor is near omni-direc-
tional [36]. An OPO laser (Spitlight 1000, Innolas GmbH) with a pulse
repetition frequency of 30 Hz was used as an excitation source. Its
output was coupled into a 1.5mm dia. multimode fiber to homogenize
the beam. The collimated fiber output illuminated the phantom through
the FP sensor in a backward-mode imaging configuration. The beam
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profile, which exhibited a near Gaussian profile (1/e2 dia.≈ 13mm),
was determined from the maximum intensity projection of a PA image
of a water-coupled neutral density filter that was in close proximity to
the sensor.

PA image data sets were acquired by 2-D raster-scanning the fo-
cused beam of a cw interrogation laser (Tunics T100s, Yenista) across
the FP sensor (16mm×16mm with 110 μm increments) and by re-
cording the time-resolved modulation of the reflected optical power,
i.e. the PA signal, at each scan position. Images were acquired at five
excitation wavelengths (i.e. 688, 721, 765, 811, 867 nm) and were re-
constructed using the time-reversal method of the k-Wave toolbox [37].
The speed of sound was determined from the measured images using an
auto-focus function [38] and was found to be 1499m/s. The intensity of
the images was normalized to correct for the wavelength dependent
pulse energy with an incident fluence ranging from 5 to 15mJ/cm2 at
the surface of the phantom.

2.2.2. Tissue phantom
The tissue-mimicking phantom consisted of nine polymer tubes

(THV, Paradigm Optics, Inc.) with an inner diameter of 670 μm and an
outer diameter of 800 μm. The tubes were immersed in diluted whole
milk (3.5% fat) with a milk-to-water ratio of 1:3. The scattering coef-
ficient was measured using time-resolved transmittance spectroscopy
[39] at wavelengths between 710 and 890 nm. To interpolate the data,
an empirical function for the wavelength dependence of scattering
( =′ +

−μ λ a λ( ) · mms
b 1 with λ+= λ/nm) was fitted to the measured

spectrum. The best fit yielded a=6.65×103 and b=−1.317. The
anisotropy factor g was assumed to be 0.9. To mimic the optical ab-
sorption of oxy- and deoxyhemoglobin, mixtures of aqueous stock so-
lutions of copper and nickel sulfate (CuSO4 and NiSO4) were prepared
to fill the tubes. The concentrations of the CuSO4 and NiSO4 stock so-
lutions were 0.28 and 1.54M, respectively. CuSO4 and NiSO4 are ideal
chromophores for PA tissue phantoms because they are photostable
during high peak power illumination and their absorption spectra mix
linearly [31]. The concentration- and chromophore-dependence of the
Grüneisen parameter was described using Eq. (3) and empirically de-
termined coefficients ( = −β 0.708 MCuSO

1
4 , = −β 0.325 MNiSO

1
4 ) [31].

Γwater was set to 0.124 [40,31]. The tubes were mounted parallel to
each other at depths of approximately 2, 4 and 7mm and were filled
with mixtures of the CuSO4 and NiSO4 solutions at different con-
centration ratios. The concentration ratio R represented a blood oxygen
saturation (SO2) analogue and was given by

=
+

R
c

c c
/1.54

/1.54 /0.28
,NiSO

NiSO CuSO

4

4 4 (6)

i.e. the concentrations of mixed solutions were normalized to the molar

concentration of the stock solutions. Spectra of the absorption coeffi-
cient of the solutions and the reduced scattering coefficient are shown
in Fig. 2. Fig. 3 shows a 3-D rendering of the phantom structure, which
was extracted from the measured PA images using a mixture of manual
image segmentation and a slice-wise template-matching algorithm to
identify the center position of each tube.

2.3. Image correction and inversion details

2.3.1. Limited view correction
For a truthful acoustic reconstruction of p0, a detection surface angle

of greater than 2π steradian is required [41,42]. Since a finite detection
aperture, such as the planar aperture of the all-optical FP scanner, limits
the surface angle, the reconstructed images exhibit the effects of partial
data, such as erroneous image intensities and artifacts. This can reduce
the accuracy of concentrations recovered using inversion schemes.
Limited aperture effects can nevertheless be compensated to some ex-
tent by either correcting the measured images using approximate
methods or by incorporating a numerical model of acoustic propagation
and detection into the PA forward model. In this study, an ad hoc
method based on the calculation of a correction matrix, which re-
presents the ratio of images acquired using limited and full aperture
detection, was applied to account for the loss of information. The cal-
culation of the correction matrix required the following steps: First, the
measured PA image data set, rp λ( , )m

0 , was smoothed using the built-in
smooth function (k-Wave) [37] to reduce effects of detection noise. To
avoid division by zero during subsequent steps, intensities below a
threshold of 1/100 of the maximum p0 were set to the threshold value.

Fig. 1. Schematic of the experimental setup. Excitation pulses were generated
by a wavelength-tunable OPO laser, the output of which was fiber-coupled to
homogenize the beam. The output of the distal end of the fiber was collimated
and directed through the FP sensor using a dichroic mirror.

Fig. 2. Absorption spectra of aqueous stock solutions of NiSO4 (green) and
CuSO4 (blue) with concentrations of 1.54 and 0.28M, respectively. Black
crosses indicate the measured reduced scattering coefficient of diluted whole
milk, the black line shows the exponential fit to the data.

Fig. 3. 3-D rendered structure of the phantom obtained using manual image
segmentation of the PA images. The color of the tubes indicates the relative
concentrations, i.e. green indicates cNiSO4, blue indicates cCuSO4. The illumina-
tion beam profile of the excitation pulses is shown in the x–y-plane.

J. Buchmann, et al. Photoacoustics 17 (2020) 100157

3



The smoothed and thresholded data set is referred to as rp λ( , )m
0,smooth .

Second, rp λ( , )m
0,smooth was used as an initial pressure distribution in a 3-

D acoustic propagation model (k-Wave) to obtain a PA time series
xp t λ( , , )m

fw detected over an aperture identical to that of the planar FP
sensor with which rp λ( , )m

0 was originally acquired. x indicates the
detector positions. From xp t λ( , , )m

fw , the PA image data set rp λ( , )m
0,fw/bw

was reconstructed. rp λ( , )m
0,fw/bw exhibits different (lower) image in-

tensities compared to the original rp λ( , )m
0 . This difference can be used

to approximate the error caused by the limited detection aperture.
Third, the correction matrix, rη ( ), was obtained by dividing the two
data sets and averaging over all wavelengths:

∑=r
r
r

η
N

p λ
p λ

( ) 1 ( , )
( , )

.
λ λ

m

m
0,fw/bw

0,smooth (7)

Finally, the measured PA images were corrected using

=r r rp λ p λ η( , ) ( , )/ ( ).m m
0,corrected 0 (8)

By averaging η over all wavelengths, it was ensured that the spectral
information of the image data set was not distorted.

2.3.2. Calibrated absorber
Measured PA image intensities, i.e. rp λ( , )m

i0 , are rarely presented in
units of absolute pressure as the calibration of an imaging system is
challenging. It is nevertheless advantageous to scale measured images
to the output of a model to achieve an efficient and accurate inversion.
In this study, a calibrated absorber positioned within the image volume
(tube 2 in Fig. 3) was used as a reference with which the measured
images were scaled to those calculated using the forward model. The
optical and acoustic properties of the calibrated absorber, such as μa(λ)
and Γ, were known a priori. The sub-volume of the calibrated absorber
was segmented manually, and the corresponding μa(λ) and Γ remained
fixed during the inversion. The scaling factor K was updated after every
iteration using

∑ ∑= r
r

K H λ
p λ

Γ ( , )
( , )

,
rλ

i
m

i

0

0CA (9)

where rCA indicates the sub-volume of the calibrated absorber. Using K,
the measured data were scaled according to Eq. (4).

2.3.3. Monte Carlo light model
5×106 photon packets were launched to simulate a PA image
rp λ( , )0 at a single excitation wavelength. The domain of the model was

discretized into isotropic voxels with a width of 110 μm. The model
domain was extended to 300×300×150 voxels compared to the size
of the measured data (146×145×75 voxels) to ensure the correct
calculation of optical scattering beyond the boundaries of the measured
image [43]. In the extended volume, water was assumed to be the sole
chromophore. The internal refractive index was set to that of water
(1.33). The external refractive index was set to 1.5 to match that of the
FP sensor.

2.3.4. Optimization
The gradients of the error functional, ε, (Eq. (4)), are affected by

noise due to the stochastic nature of the MC model. This makes stan-
dard gradient descent methods unsuitable because the noise increases
the likelihood of convergence to a local minimum or saddle point. To
overcome this limitation, the Adam algorithm was employed. It is an
extension of the momentum gradient descent specifically designed to
deal with noisy gradients [29]. In this study, most parameters of the
algorithm, except for the step size γ, were set to the value suggested by
the creators of the algorithm. γ was preconditioned for stable and fast
convergence [26] by making it dependent upon the type of chromo-
phore and the fluence. To account for the differences in the specific
absorption coefficients of the three chromophores (NiSO4, CuSO4,
H2O), γk for CuSO4 was set ad hoc to γCu= 0.1, and the step size for the
remaining two chromophores was calculated using

=
∑
∑

γ γ
α c
α c

·
·

,λ λ

λ λ
k Cu

k, max, Cu

Cu, max, k (10)

where k∈ {CuSO4, NiSO4, H2O}, and αk,λ represents the specific ab-
sorption coefficients of NiSO4 and CuSO4 and the absorption coefficient
of water at wavelength λ. cmax,k are maximum concentrations of the
chromophores and were set to cmax,Cu= 0.28M, cmax,Ni = 1.54M, and

=c 1max,H O2 . It is worth mentioning that in cases where the maximum
concentrations of the chromophores are not known, rough estimates are
also sufficient. Lastly, the step size at each location r was expressed as a
function of the local fluence using

=
+

∼r
r

γ
γ

ε
( )

Φ ( )
,k,scaled

k

norm Φ (11)

where
∼

rΦ ( )norm is the normalized fluence, averaged over all wave-
lengths. εΦ is a fixed-value parameter to avoid division by zero
(εΦ=10−4). The range of chromophore concentrations was restricted
to plausible values, i.e. only non-negative concentrations were allowed
and upper bound constraints of NiSO4 and CuSO4 were set to their
solubility (2.36 and 1.28M, respectively). The water content was al-
lowed to vary between 0 and 1. The inversion scheme was run for 300
iterations on both the original PA image data sets and those corrected
using the methods described in Section 2.3.1.

3. Results and discussion

3.1. Comparison of original and corrected PA images

Cross-sectional x–z-images of the measured 3-D PA images before
and after applying the limited view correction method are shown in
Fig. 4. The FP sensor plane is at the bottom of the images in the xy-
plane. A center xz-slice at y=8mm of an original PA image is shown in
Fig. 4A (λexc=726 nm, normalized to 1 J incident pulse energy).
Fig. 4B shows the result of the limited view correction (Eq. (7)). The
arc-shaped features indicated by black arrows in Fig. 4B are artifacts
that result from the limited planar detection geometry. While the lim-
ited view correction increased the image intensity in general, the

Fig. 4. Cross-sectional x–z-images (y=8mm) of the tissue phantom at an excitation wavelength of 721 nm. (A) Original image and (B) after applying the limited
view correction (Section 2.3.1).
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intensity of the deeper lying objects was amplified more strongly than
those located at shallow depths. The signals of the shallow tubes were
doubled in amplitude by the limited view correction, while the ampli-
tudes of the deepest row of tubes were increased by a factor of 3–5.

3.2. Convergence

The inversion was found to fully converge within 300 iterations
after 8 h computation time using an NVIDIA Titan X (Pascal) GPU. The
use of chromophore- and fluence-dependent step sizes (Eqs. (10) and
(11)) produced an increase in convergence speed of more than an order
of magnitude due to a better efficiency in regions of low fluence. Im-
portantly, inversions without the step size correction were found to fail.

3.3. Recovered chromophore concentrations

The recovered chromophore concentrations are shown in Fig. 5.
Fig. 5A and D illustrates the true distribution of cNiSO4 and cCuSO4, Fig. 5B
and E shows the concentrations recovered from the original image data
set, and Fig. 5C and F show those from the aperture-corrected data set.
Several observations can be made. First, significant cNiSO4 and cCuSO4

were recovered in the background sub-volume even though this region
contained only water. This is explained by image reconstruction arti-
facts, which lead to significant recovered concentrations in regions
coinciding with positive-going artifacts. Second, the circular tube cross-
sections are distorted in the deeper lying tubes, which is due to the
limited detection aperture. The concentrations recovered for the most
superficial tubes (including the calibrated absorber, bottom center) are
largely unaffected by the acoustic correction. This is in strong contrast
to the deeper lying tubes where significantly higher concentrations
were recovered from the corrected image data set compared to those
obtained from the original. This also resulted in a better agreement with
the true values (Fig. 5A and D). However, the increase in the absolute
values also applied to concentrations recovered from the background,
i.e. regions corresponding to image artifacts.

Line profiles through the recovered concentration maps are shown
in Fig. 6. The profiles were extracted from the 3-D maps along the
dashed line in the inset of Fig. 6A, which intersects the locations of
three tubes (tube IDs 2, 5 and 8). The profiles of cNiSO4 and cCuSO4 are
shown in Fig. 6A and B. The solid lines depict the true concentrations,
the dotted lines the concentrations recovered from the original images
and the dashed lines those recovered from limited view corrected
images. The first peak at a depth of approximately 2mm corresponds to
the tube that served as a calibrated absorber, showing perfect agree-
ment between the true and recovered values. A small second peak in
cNiSO4 (Fig. 6A) can be found at around 4mm depth, which corresponds
to the location of tube 5 in which =c 0NiSO4 M. By contrast, the high

cCuSO4 within tube 5 is clearly visible in Fig. 6 B. The peaks at a depth of
6–7mm in Fig. 6A and B correspond to the location of tube 8, which
contained a mixture of CuSO4 and NiSO4. In general, the concentrations
recovered from the original image data set are significantly lower than
the true values. By contrast, good agreement was observed for the
corrected images. The peak in cNiSO4 and cCuSO4 at a depth of approxi-
mately 8mm corresponds to an image reconstruction artifact.

Fig. 6C shows a cross-sectional xy-image of an original rp λ( , )m
0 at a

depth of z=4.2mm (λexc= 726 nm). While the tubes 4, 5 and 6 are
clearly shown, image reconstruction artifacts are also noticeable. The
profiles of the cNiSO4 and cCuSO4 along the length of tube 5 (corre-
sponding to the dashed line in Fig. 6C) are shown in Fig. 6D together
with that of the initial pressure distribution to illustrate the effective-
ness of the fluence correction provided by this method. The dashed and
dotted green and blue lines represent cNiSO4 and cCuSO4, respectively,
recovered from the original and corrected image data sets (averaged
over the tube cross-section). The solid red line illustrates the initial
pressure distribution (original image data set), which is six times
greater at the center of the image than at the boundary. By contrast, the
values of the recovered concentrations show much smaller variations
along the length of the tube, demonstrating that the inversion scheme is
highly effective at compensating the fluence variation. A deviation of
the recovered from the true values was observed at the edge of the
imaged volume (1–2mm from the image boundary). This may be ex-
plained by the inherently low SNR in this region and the potential
limitations in estimating the backscattering of light from adjacent re-
gions into the image volume using the extended MC model. Im-
portantly, the chromophore concentrations determined from the cor-
rected image data set are much closer to the true values compared to
those obtained from the original images.

The concentrations recovered from each sub-volume of the phantom
are listed in Table 1. It was found that the concentration of water had a
negligible effect on the PA pressure, which is explained by its low ab-
sorption coefficient at the excitation wavelengths used in this study.
This resulted in low sensitivity and accuracy for the recovered water
concentrations. On a positive note, the errors in the water concentration
were found to have a negligible effect on the accuracy of the recovered
cNiSO4 and cCuSO4.

3.4. Concentration ratios

In Fig. 7, cross-sectional x–z-images of the true and recovered maps
of the concentration ratio R are shown. Fig. 7C illustrates the true
distribution, which ranges from 0 to 1. In regions where NiSO4 and
CuSO4 were not present, Eq. (6) is not defined (division by zero) and the
corresponding regions are rendered in gray. Fig. 7A shows R recovered
from the original image data set. Due to the image reconstruction

Fig. 5. Cross-sectional x–z-images (y=8mm) of the true and recovered chromophore concentrations. (A) and (D) True cNiSO4 and cCuSO4, respectively. (B) and (E)
cNiSO4 and cCuSO4 recovered from uncorrected images. (C) and (F) cNiSO4 and cCuSO4 recovered from corrected images.
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artifacts, significant cNiSO4 and cCuSO4 were recovered across large re-
gions of the background. It was also observed that the value of R de-
termined at the location of an artifact is similar to that of the specific
absorber, i.e. a tube, where it originated. To aid visualization, the lo-
cation of the tubes is indicated by green circles in Fig. 7A. Fig. 7B shows
the inversion result (Fig. 7A) after masking the background to allow a
better comparison of the recovered R with the true values (Fig. 7C). In
Fig. 7D, profiles of the cross-sectional average of R along the length of
the nine tubes are shown. For most tubes, R is close to the true value
and deviates little for the entire length of the tube, including near the
image boundaries. The strongest deviation is noticeable for tube 6,
where R is significantly greater at the center of the image compared to
the boundaries. This may be explained by the presence of an arc-shaped
artifact that originates from the strong PA signal of tube 2. It is su-
perimposed onto the region that corresponds to tube 6, resulting in a
corruption of its PA spectrum. Since tube 2 contained a solution with
higher R than that of tube 6, the superposition of the PA spectra may
explain the error. In general, most values for R are slightly higher than
their true values (see also Table 1). The reason for this systematic error
is unclear. While the limited view correction was found to have a major

impact on the recovered absolute chromophore concentrations, its ef-
fect on the accuracy of the recovered R was negligible. A possible ex-
planation is the absence of significant background absorbers in this
specific phantom. In a scenario where the background also contains
chromophores at significant concentrations, any change in the image
intensity, e.g. from the acoustic ad hoc correction, may in turn affect R
in deeper lying vessels.

3.5. Limitations and general applicability

The method described in this paper was tailored to the inversion of
multispectral PA image data sets acquired over a planar detection
aperture. It is a flexible approach that allows the inversion of multi-
spectral 3D PA images acquired using constant illumination geometry
and is applicable to other targets, scan geometries, and experimental
setups. The required a priori knowledge does not result in undue re-
strictions. For example, the chromophores that are expected within the
image volume, as well as their absorption spectra and approximate
maximum concentrations, are typically known. Similarly, the Grüneisen
parameter and its concentration dependence is known for most

Fig. 6. Depth profile of the true and recovered 3-D maps of cNiSO4 (A) and cCuSO4 (B) along the dashed line indicated in the inset of (A). Inset of (A) x–z-slice of the true
cCuSO4 distribution (see Fig. 5D). (C) cross-sectional x–y-image of the initial pressure distribution at depth of z=4.2mm (λ=726 nm). The initial pressure along the
dashed line is shown in (D), which also shows the chromophore concentrations recovered from original and corrected image data sets. The solid, dotted and dashed
lines indicate the true values, those recovered from original images, and those recovered from corrected images, respectively. cNiSO4 is shown in green and cCuSO4 in
blue. The red solid line illustrates the initial pressure distribution (original image data set).

Table 1
Absolute chromophore concentrations and their ratio R recovered using the model-based inversion (BKG=background, Orig= original images, Corr= acoustically
corrected images). Values in brackets indicate the standard deviation (concise notation) within the sub-volume.

Tube ID cNiSO4 [M] cCuSO4 [M] R [%]

True Orig Corr True Orig Corr True Orig Corr

BKG 0 0.02(7) 0.02(9) 0 0.003(11) 0.004(23) n/a 51.1 44.4
1 0.385 0.25(6) 0.26(7) 0.21 0.13(3) 0.13(3) 25 25.8 25.5
2 0.77 0.77(0) 0.77(0) 0.14 0.14(0) 0.14(0) 50 50.0 50.0
3 1.154 1.14(26) 1.18(29) 0.07 0.05(1) 0.05(1) 75 80.7 80.2
4 1.154 0.60(15) 0.97(24) 0.07 0.03(1) 0.04(1) 75 78.1 80.7
5 0 0.012(27) 0.005(19) 0.28 0.12(4) 0.28(8) 0 1.9 0.3
6 0.385 0.41(13) 0.54(19) 0.21 0.13(3) 0.21(5) 25 36.7 32.4
7 1.539 0.80(28) 1.29(39) 0 0.001(3) 0.001(4) 100 99.0 99.4
8 0.77 0.39(17) 0.76(30) 0.14 0.06(2) 0.10(3) 50 55.2 58.5
9 0 0.002(10) 0.000(0) 0.28 0.07(4) 0.33(2) 0 0.5 0.0
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endogenous tissue chromophores or can be measured. While the use of
a calibrated absorber results in additional image processing steps, such
as segmentation, it was found to greatly improve the efficiency and
accuracy of the inversion. The ad hoc acoustic correction was found to
compensate the corrupting effects of limited-view detection geometries
with sufficient accuracy. The effects of inhomogeneities in the speed of
sound and refractive index were not considered in this work but stra-
tegies for addressing these effects can be found elsewhere [6]. The as-
sumption of a priori knowledge of the wavelength dependence of the
scattering coefficient, which is required to solve the non-uniqueness
problem of QPAT [44], and its magnitude is a limitation of the current
implementation of the method. In theory, the method can be extended
to facilitate inversions that recover the spatial distribution of the scat-
tering coefficient (in addition to the chromophore maps) from multi-
spectral images by solely relying on a priori knowledge of the scattering
wavelength dependence. The inversion of the scattering coefficient may
also be achieved by incorporating multiple illuminations in the image
acquisition protocol. Lastly, a parameter that currently requires manual
optimization when the method is applied to a new set of measurements
is the chromophore-dependent step size to minimize the number of
iterations needed for convergence.

4. Conclusions

In this study, an iterative model-based inversion scheme was suc-
cessfully used to recover maps of the absolute chromophore con-
centrations and their ratios from high resolution 3-D PA image data sets
measured in a tissue phantom. The forward model, which was based on
a MC light transport model, was used to predict 3-D images of the initial
pressure distribution. To address the mismatch between the image data
sets predicted by the model and those measured using an all-optical PA
scanner based on a planar Fabry–Pérot ultrasound sensor, an ad hoc
correction method was introduced to compensate the effects of limited

view detection. A calibrated absorber was used to scale measured data
to the output of the forward model. In addition, the Adam algorithm
and a chromophore- and fluence-dependent step size were used to ad-
dress the large scale of the inverse problem (>10million variables).
High resolution 3-D maps of absolute chromophore concentrations and
their ratios were recovered with high accuracy. The limited-view cor-
rection was found to greatly improve the agreement between true and
recovered concentrations, while having a negligible effect on the ac-
curacy of the recovered concentration ratios. Current limitations of the
method lie in an insufficient compensation of image reconstruction
artifacts, which can corrupt the parameter values recovered from re-
gions containing a discrete absorber, and a priori knowledge of the
scattering coefficient. The adverse effect of artifacts can be compen-
sated by incorporating a model of the acoustic propagation and de-
tection into the forward model, albeit at the expense of computation
speed. While the method also enables the recovery of the scattering
coefficient in principle, additional methods, such as multiple source
illumination, may increase the sensitivity to this parameter.
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