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Realistic agent-based simulation of infection dynamics and

percolation

Kai Nagel, Christian Rakow, Sebastian Müller

Transport Systems Planning and Transport Telematics, Institute for Land and Sea Transport
Systems, TU Berlin, Germany

Abstract

We present an agent-based epidemiological model that is based on an agent-based
model for traffic and mobility. The model consists of individual agents that follow
individual daily activity plans, which include, for each activity, locations, start times,
and end times. Evidently, one can place a virus spreading dynamic on top of this, by
infecting one or more agents, and then track the resulting virus dynamics through
the model.

Normally, the model is used to investigate non-pharmaceutical interventions. In
the present paper, we undertake steps to better understand the infection graph. It
becomes clear that the typical infection graph representation that connects individual
people is an even more expensive representation than our original, already expensive
data-driven mobility model. We then undertake first steps towards analysing the
model with respect to a possible percolation transition.

Keywords: Simulation, Mobility, Epidemiology, COVID-19, Percolation

1. Introduction1

The project that motivates the present paper came out of the COVID-19 pan-2

demics that started in spring 2020. Perceiving a lack of realistic virus spreading3

dynamics models in Germany, and recognizing that we could quickly build such a4

model based on our experience in transport modelling, we built a prototype in about5

two weeks [1]. Subsequently, we received funding to continue our research and to reg-6

ularly report to the ministry of research (e.g. [2, 3]). Some of the research promised7

within that project is to investigate the infection graph that is induced by the mo-8

bility model. Given that the progress of an infection in a graph has something to9

do with percolation for which Dietrich Stauffer is well known [4, 5], this seems like a10

good fit for the present special issue.11
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The present paper will first present some possible models for virus spreading, from12

mathematical models via agent-based models to percolation, with a particular focus13

on our own agent-based model. It will then discuss different graph interpretations14

of our data, in particular showing that the common representations are, other than15

we originally assumed, even more expensive than the full mobility model from which16

we start. Another section will show results with respect to cluster size distributions,17

where a cluster is defined as how far a single initial seed spreads. Additionally,18

clusters near the percolation threshold are shown and discussed. The paper ends19

with a discussion and a conclusion.20

2. Models for virus spreading21

2.1. Compartmental models for virus spreading22

The mainstay of epidemiological modelling are compartmental models. A useful23

starting point for the modelling of SARS-2 are the SEIR models, with states sus-24

ceptible, exposed (or latently infected = infected but not contagious), infectious, and25

recovered. The transitions from one compartment to another are described by rate26

equations. For a simple SIR model:27

İ = β · S · I − µ · I ,

where β is the probability to become infected given numbers of S and I, and µ is28

the probability to move into the R department.29

At the onset of an epidemic, S can be taken as large and constant, and in conse-30

quence then I(t) ≈ I0 · e(β S−µ)·t . Evidently, if βS−µ > 1, then there is an epidemic,31

otherwise not. So-called herd immunity is reached by the infection dynamics deplet-32

ing S, and thus eventually reducing βS − µ to below one.33

A shortcoming of compartmental models is that individuals do not have state.34

For example, it is difficult to attach age or geographical location to entities. The basic35

model does not even contain delay: If there is a sudden increase in the compartment36

of exposed, this will immediately lead to larger numbers of transitions to infectious.37

2.2. Agent based models for virus spreading38

An alternative are agent based models. In agent based models, each individual39

of the real world is represented by some synthetic avatar that follows certain rules.40

Examples of such an approach are by Virginia Biotechnology Institute [6, 7], Imperial41

College [8, 7], and by the Center for Statistics and Quantitative Infectious Diseases42

[9, 7]. An example for a similar approach on a global level is [10]. Groups that43

started more recently include [11, 12, 13, 14, 15, 16]. This section will concentrate44

on describing our own model; more information can be found in [17].45

2



2.2.1. Mobility model46

Since we come from the modelling of human mobility behavior and traffic flow [18],47

we use human movement patterns as starting point. The mobility model has a record48

of each synthetic person’s locations and movement patterns over the day, including49

the activity types at the locations, and the vehicle types during movement. Locations50

are called facilities. Person go about their daily movements; when they spend time51

at the same facility, the virus can move from one person to another (Fig. 1). Our52

first version of the model just repeated a typical day; the present version repeats the53

same pattern from Mondays to Fridays, but has different movements for the same54

persons on Saturdays and Sundays.55 From movement profiles to virus spreading
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Figure 1: Infection process.

It would be easiest, or at least easiest to explain, if the movement patterns were56

directly taken from mobile phone data. In Germany, that is not possible for privacy57

reasons, and in consequence we use synthetic mobility patterns that are consistent58

with privacy requirements. The approach is to use some information from mobile59

phone data (but not the full trajectories), and process them together with information60

about the transport system and with statistical information from other surveys [19].61

That approach leads to synthetic movement trajectories for the complete population.62

One advantage of that approach is that the synthetic trajectories are available for all63

of Germany, and the model can thus easily be set up for different parts of Germany.64

Also, given access to the right data sources, the model could also be built for other65

countries. For the time being, we concentrate our simulations on the metropolitan66
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area of Berlin, although we have run simulations for Munich and for the small city67

of Gangelt near Dusseldorf and Cologne (an early COVID-19 hotspot in Germany).68

The mobility data for Berlin which is the input to our simulations is available; see69

“Availability of data and materials”.70

2.2.2. Further sub-models71

Given the information from the mobility model, one needs the following additional72

sub-models for infection modelling:73

Disease progression model Once a synthetic person becomes infected, it pro-74

gresses through states. We use states susceptible, exposed, contagious (but75

not showing symptoms), showing symptoms, seriously sick (= should be in76

hospital), critical (= needs intensive care and/or breathing support), and pos-77

sibly deceased. None of these additional states have a strong influence on the78

infection dynamics, but they are important to (1) compare to hospital statistics79

for model calibration/validation, and (2) to predict hospital demand, which is80

important to assess the criticality the situation. Since disease progression is81

age dependent [8], the same levels of infection may lead to different hospital82

demands.83

We use lognormal distributions, taken from the literature, for disease progres-84

sion, as detailed in Fig. 2. We use the same age-dependent transition proba-85

bilities as [8], shown in the table in Fig. 2.86

All of the states contagious to critical are in principle infectious. In practice, for87

SARS-2 most of the infections seem to happen from 2 days before to 2 days after88

starting to show symptoms [26], which is why we currently cut off infectiousness89

4 days after becoming contagious.90

Infection model Infection can happen if a susceptible and an infectious person are91

in the same facility or the same vehicle. Our infection model given contact is92

also taken from the literature [27, 28]:93

p(infect|contact) = 1− exp (−Θ · sh · ci · in · τ) , (1)

where sh is the shedding rate, in is the intake (reduced, e.g., by a mask) ci the94

contact intensity, and τ the duration of interaction between the two individuals.95

Θ is a calibration parameter.96

For aerosol infections, which seems to be the main infection pathway for SARS-97

2 [29], it is plausible to parameterize the contact intensity as a function of room98
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infectious

median = 3.5 days 
sd = 3.5 days

exposed

recoveredshowing 
symptoms

median = 2 days 
sd = 2 days

median = 4 days 
sd = 4 days

recoveredseriously sick

critical recovered

seriously sick recovered

median = 8 days 
sd = 8 days

median = 4 days 
sd = 4 days

median = 14 days 
sd = 14 days

median = 1 day 
sd = 1 day

median = 21 days 
sd = 21 days

median = 7 days 
sd = 7 days

sd = standard deviation

infectious symptomatic hospitalised
cases cases case

Age-group becoming requiring requiring
symptomatic hospitalisation critical care

0 to 9 80% 0.05% 5.0%
10 to 19 80% 0.15% 5.0%
20 to 29 80% 0.6% 5.0%
30 to 39 80% 1.6% 5.0%
40 to 49 80% 2.45% 6.3%
50 to 59 80% 5.1% 12.2%
60 to 69 80% 8.3% 27.4%
70 to 79 80% 12.15% 43.2%

80+ 80% 13.65% 70.9%

Figure 2: LEFT: Disease progression model [20, 21, 22, 23, 24, 25]. The transitions are described by
lognormal distributions with median and standard deviation as given in the figure. The transition
probabilities, where branches are possible, are given in the table on the RIGHT.

size rs and air exchange ae [30, 31]:99

ci = const · 1

rs · ae
. (2)

This ignores transients, and simply assumes that viral material mixes uniformly100

into the available space. If room size rs is twice as large, the resulting virus101

concentration will be half as large.102

An air exchange ae of 1/h means that the air in the room is fully replaced once103

per hour. If one imagines virus accumulation for one hour and then complete104

replacement by window opening, one obtains a sawtooth function where the105

virus concentration in the average is half of what it is at the maximum. Twice106

as much air exchange in consequence reduces average virus concentration by107
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half. Note that this also implies that the same ae for a room twice as large108

means twice as much air volume exchange per hour.109

The constant const is not needed since it is absorbed into Θ during model110

calibration.111

Contact model One also needs a model for contact if simultaneously in the same112

facility/vehicle. One simple option is to assume contact between everybody in113

the same facility or vehicle.114

Additional information about the model can be found in [17].115

When all other parameters are given and fixed, then the question of how fast an116

initial infection grows depends on the parameter Θ: large Θ leads, in the average,117

to stronger growth and larger numbers of synthetic persons that eventually become118

infected.119

Because of fluctuations, however, the results are more fragmented than for the120

compartmental models: It can well be the case that an initial seed dies out even121

when the system as a whole is super-critical. This asks for an interpretation along122

the lines of percolation, where super-criticality is defined as having a larger than zero123

probability of an initial seed growing to infinity, i.e. in that definition there is always124

a chance that an initial infection dies out.125

2.3. Percolation126

As is well known, the percolation problem can be defined as follows: Consider127

a grid of d dimensions. Occupy its cells with probability p. Cells are defined as128

connected if they are immediately adjacent, i.e. in d dimensions each cell has 2d129

neighbors. Now search for the critical density pc where there is a non-zero probability130

that an occupied cell is connected via other occupied cells to cells that are infinitely131

far away.132

As is also well known, that definition needs to be operationalized for computer133

simulations with finite space and finite time. One option is to define a grid of size Ld,134

and then search for the probability that two opposing boundary hyperplanes of size135

Ld−1 are connected. That probability is found by averaging over many Monte Carlo136

simulations with different random seeds, where a different seed determines a different137

population of occupied cells given probability p. One then runs such simulations for138

different sizes of L, and finds139

• If p < pc, then the probability that the two hyperplanes are connected converges140

to zero with growing L.141

• If p > pc, then that probability converges to some finite value.142
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2.4. Cluster size distributions143

At the percolation threshold pc, one obtains144

n(s) ∼ s−τ , (3)

where τ ≈ 2.055 in two dimensions, and τ = 2.5 in 6 or more dimensions. Away145

from the percolation threshold, these distributions have exponential cut-offs:146

• Below the percolation threshold, there are no large clusters.147

• Above the percolation threshold, most cells are included in some system-wide148

network, and only small clusters exist as “islands”.149

2.5. Percolation and epidemics150

Percolation has been investigated for epidemics decades ago [32], showing that151

many different model formulations fall into the same universality class [33]. In par-152

ticular, it does not make a difference if, for bond percolation, the existence of links153

between nodes is computed beforehand (and thus a property of the substrate), or154

decided probabilistically on the fly. Clearly, our model falls into the second class,155

where infections are decided probabilistically on the fly according to Eq. (1).156

3. Graph interpretation157

Evidently, one can investigate percolation and/or epidemics on a graph. There158

is, in fact, considerable literature on this, for example two chapters in the book by159

Newman [34], or a long review article by Pastor-Satorras et al. [35]. In the following,160

we will present different graph representations of our model, and place them into the161

context of that review.162

3.1. Person-centric infection graph163

It is common to investigate the infection graph, which contains only the persons,164

and to draw edges between persons if they are able to infect each other [34, 35].165

Unfortunately, that representation becomes too large for our simulation:166

• Our original data has, for an area of 5 million inhabitants, about 46 million167

events. Since each facility/vehicle is entered and left, this corresponds to 23 mil-168

lion true edges.169
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• We have relatively large group sizes. For example, a public transit train easily170

contains 1000 persons. These 1000 persons do not interact on a single day, but171

given that the simulation runs many days, it is plausible to assume that they172

could interact. The same holds for large office buildings, large leisure facilities,173

etc. Our own representation of such a facility/vehicle with 1000 persons needs174

1000 true edges in the sense defined above. If one would encode directly the175

connections between persons, this would increase to 10002 edges. That is, a176

person-based graph representation of our model might have about 1000 times177

more edges than the representation that we are currently using. In practice,178

we find “only” a little more than 100 million edges, i.e. four times as many as179

our original representation.180

This makes the person-centric graph of our system too large for a typical desktop181

computer and graph analysis packages that we have tried, such as Gephi [36] or182

Graphia [37].183

3.2. Static representation with facilities184

An alternative representation is Fig. 3. This leaves the facilities/vehicles as in-185

termediaries between the different persons, and thus the sparse representation in186

place. In the review by Pastor-Satorras et al. this is called “particle-network frame-187

work” (Section IX in [35]).188
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p01 home1 p03

p02

p04

p05 home2 p08

p06

p07

p09 home3 p12

p11

home4

p13

work1 school pt veh work3shop1

Figure 3: Graph interpretation: Static representation with facilities.
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One could now use different edge weights, plotted as line thicknesses in the pic-189

ture, between the persons and the facilities. This might even have different weights190

in different directions, e.g. a person easily bringing an infection into a facility/vehicle,191

but not having a high probability of contracting it. (This could, for example, be the192

case when wearing a mask with a valve.) However, (only) when making the simplifi-193

cation of assuming the same edge weight in both directions, it becomes clear that one194

could identify sub-clusters, as denoted by the dashed lines, similar to the metapopu-195

lation model of [38]. It seems improbable that one could stop the infection dynamics196

in those sub-clusters without rather drastic measures (such as completely dropping197

the “restaurant” activity denoted in the image, or separating family members from198

each other). This clarifies that the substrate on which the infection is progressing is199

far from homogeneous, and thus one needs a more general definition of percolation.200

4. Methods and results201

Neither of the two graph interpretations seem a useful starting point for investi-202

gation: The first one makes the graph even larger than it originally was; the second203

omits all time-dependent information. We therefore progress by simulating the orig-204

inal epidemic spreading model, i.e. the one described in Sec. 2.2, where persons move205

between and spend time in facilities and vehicles, and there can infect/get infected206

from other persons at the same location. We will return to the point of graph rep-207

resentation in Sec. 5.2 in the discussion.208

4.1. Full model209

As a first attempt to better understand the structure of our model, we use the210

full production model, with no interventions. Additionally, to obtain a more homo-211

geneous situation, we do not include the separate models for saturdays and sundays,212

i.e. the simulation runs the same day over and over again.213

We now set the calibration parameter Θ such that the model is near the per-214

colation threshold, i.e. where initial seeds only grow in some of the cases. This is215

a counter-factual situation, since we have effectively reduced the transmissibility of216

SARS-2 until it barely spreads in our synthetic population. The motivation for this217

is to obtain clusters near the percolation threshold, which are easier to analyse than218

the full infection network.219

We infect one randomly drawn person in the model, and wait until the infection220

dies out. It will always die out, potentially after a sufficient number of persons has221

been infected and who are, thus, immune. This is run over and over again, and the222

sizes s of the resulting clusters are noted. The resulting cluster size distributions, for223
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different values of Θ, are displayed in Fig. 4. The data is summed up into bins of224

increasing size, implying a multiplication with s. In addition, the probability to hit225

a cluster of size s is proportional to s. In consequence, overall we plot s2 · ns vs. s,226

where ns is the cluster size distribution of Eq. (3).227
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Figure 4: Cluster size distributions of Berlin model near the percolation threshold. The data looks
consistent with a scaling law starting at s ≈ 10 and a percolation threshold near Θ = 0.1. – The
straight line with slope −0.5 is added for comparison. The errorbars, given only for the curve closest
to percolation to not overload the plot, denotes 3σ under the assumption of a Poisson distribution
for the number of clusters of size s in each aggregation bin. The curve for each value of Θ is based
on 8910 runs, i.e. 8910 clusters, many of them of size one.

The data displays the typical picture known from a percolation transition:228

• For small values of Θ, the cluster size distribution ends early.229

• For large values of Θ, the cluster size distribution also ends early, but there are230

also large clusters. This means that some infections die out, but some percolate231

through the population, implying the existence of a giant cluster.232

• In between, the distribution becomes longer and longer.233

Additionally, there is a clear break around s = 10. Possibly, infections within house-234

holds are above criticality, and what we see is a variant of a metapopulation model235

[38]. Also see Sec. 5.2.236
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4.2. A more realistic situation237

Fig. 4 and the related text were generated with a model where the Θ parameter238

was set such that the model barely percolates. This corresponds to a reproduction239

number R of approximately one, i.e. every infected person infects about one other240

person. Such a situation normally does not occur naturally, but it occurs quite often241

when the epidemic spreading is managed. A possible argument is as follows:1 If the242

epidemic disease is dangerous enough, then it fills up hospitals quickly. For that243

reason, all countries that had the institutional capability to do so in the end reduced244

the spreading of the disease down to an R of approximately one. This also holds for245

countries such as Sweden, the USA, or UK.246

Extensive simulations of possible interventions can be found on our project web247

page, https://covid-sim.info, in related publications [39, 40], and in our regular248

reports.2 Here, in order to investigate such a controlled state further, we take our249

production model from the middle of January 2021 as a starting point. This includes250

the following interventions:251

1. The general level of out-of-home activities was reduced to 64% percent.252

2. Day care and schools were closed except for “emergency” cases. We model that253

as 0.2 participation at those activities.254

3. Universities were closed.255

4. Masks were obligatory in public transport and daily shopping.256

To make the model more homogeneous for the investigations that will follow, we257

omitted weekend days, i.e. the model replays the same day over and over again. We258

also omitted outdoors temperature effects, i.e. it is assumed that all leisure activities259

occur indoors. Contact tracing, vaccinations and rapid tests have been omitted as260

well.261

We consider this situation a useful starting point, since the situation in Germany262

at that point in time was such that infection numbers of the original variant of SARS-263

2 went down, while they went up for the new “Alpha” variant (B.1.1.7). This means264

that the Θ for the original variant was below the critical point, while for the alpha265

variant it was above the critical point. In consequence, it is plausible to investigate266

the behavior around the critical point.267

1Dirk Brockmann, personal communication.
2https://depositonce.tu-berlin.de/simple-search?query=modus-covid
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Figure 5: Cluster size distribution for the more realistic model from the first week of January 2021.
– The straight line with slope −0.5 is added for comparison. The prescription for the errorbars is
the same as in Fig. 4. The curves for for Θ = 0.45 and 0.65 are based on 5000 runs. The curves for
the other values of Θ are based on 15000 runs.

Fig. 5 presents the cluster size distribution for this situation, generated in the268

same way as Fig. 4. It behaves in the same way, showing a phase transition, this269

time at Θ ≈ 0.5. The Θ-value now is near its realistic value of our production model;270

the near-critical behavior is, as explained, generated by the interventions.271

We find the same break for small cluster sizes s as before, although the break272

seems to have shifted to larger values of s than before. Also, there seems to be an273

additional break around s = 2000, and maybe one around s = 150. Possibly, this274

model is more fragmented, because many activity types have been fully suppressed275

(schools), or essentially removed from the infection dynamics because of mask obli-276

gations (public transport, shopping). Also, having all these breaks in the data makes277

it difficult to decide on a possible slope for s2×ns ∼ s−τ+2; at best, one can say that278

the data is not inconsistent with a slope of 0.5, implying τ = 2.5. This would need279

to be investigated further, but the present method is computationally too expensive280

(Sec. 5.1).281

4.3. Super-spreading282

We now add the feature that some persons are more infectious than others. Re-283

cent work [26] has confirmed that there are large differences in maximum virus load284
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Figure 6: Distribution over the number of secondary cases per infected persons for each scenario.
The superspreading scenario is showing an over-dispersion with a longer tail. “unrestricted” =
original model where Θ was reduced to near the percolation threshold; “januar” = model where the
interventions have reduced the model to near the percolation threshold; “januar-susp” = version of
the “januar” model with super-spreading.

between persons, and that these result in large differences of breeding infectious ma-285

terial from swabs of these persons. The last link, to true real world infectiousness,286

is missing, but it is plausible to assume that it is there.287

We model this by extending the infection model as described in Sec. 2.2.2 with288

an individual parametrization for each person. Each person p is assigned a value for289

their infectiousness and susceptibility infp, susp ∼ LogNormal(1, σ2). To show the290

effects of super-spreading, we choose σ = 1 for subsequent runs. Fig. 6 shows the291

distribution of the number of reproductions per infected person, indeed confirming292

that there is more dispersion for this model variant.293

Fig. 7 shows the cluster size distribution around the percolation threshold for the294

model including super-spreading. Evidently, the break that separates small cluster295

sizes remains, and roughly at the same position as for the model without super-296

spreading. The data for larger s is quite unstable, making it difficult to make any297

statement. Again, it is not inconsistent with τ = 2.5.298

4.4. Clusters299

One advantage of simulation near the percolation threshold is that one obtains300

clusters of manageable size which are also relevant for the dynamics. Fig. 8 shows301

a typical larger infection cluster, with all activity types open but Θ reduced to the302
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Figure 7: Cluster size distribution with superspreading for first week of January 2021. – The
straight line with slope −0.5 is added for comparison. The prescription for the errorbars is the
same as in Fig. 4. The curves for Θ = 0.8, 0.9 and 1.0 are based on 15000 runs, those for Θ = 1.1
on 10000 runs, and those for 1.2 on 5000 runs.

percolation threshold, as in Sec. 4.1. One finds that there are multiple small clusters303

in different settings, e.g. school, leisure, etc. Those clusters mostly remain in their304

setting, but the infections are cascaded, i.e. the first person infects a small number305

of others, those in turn infect a typically somewhat larger number of others, but306

the infection in that group then comes to an end when (presumably) the susceptible307

persons are exhausted.308

Recall that the model replays the same day over and over again. This is what309

makes such cascading invasions of such a group possible. This behavior is, pre-310

sumably, more realistic for the school and the work activities than for the leisure311

activities.312

Fig. 9 shows the same plot for the model of January, where a behavior close313

to criticality was reached by policy interventions, cf. Sec. 4.2. Here, one finds that314

there are mostly leisure clusters, with interdispersed infections at home. We know315

from other analysis [17] that in our simulations of that regime, infections at leisure316

and infections at home carry approximately the same weight (also see Sec. 4.5 be-317

low). Given that knowledge, note that their dynamical behavior is quite different:318

leisure comes in small clusters, as described above for the unrestricted model, but319

the infections at home rarely form clusters that are larger than three.320
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Figure 8: Cutout of an infection cluster in the unrestricted regime. The colors denot infection
contexts: blue home, orange leisure, green schools, brown work, pink public transport, gray other.

In consequence, the suspicion that the break in the cluster size distribution to-321

wards small sizes of s has something to do with households is wrong. Instead, it322

seems to be caused by the group sizes of the other activities.323

Super-spreading (Fig. 10) changes the picture towards some persons infecting324

many other persons, while most persons infect few other persons. This is interesting325

to note, but it is unclear if this makes a big difference for the present model type,326

since also without super-spreading the infection is able to work its way through327

groups. Possibly, it makes a difference for test trace and isolate (TTI) strategies,328
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where clusters may be easier to find, especially when there are many asymptomatic329

carriers [41].330

Figure 9: Cutout of an infection cluster in the regime of Jan’21. The colors are the same as in
Fig. 8.

4.5. Change of infection contexts with cluster size331

Finally, we show the distribution of the infection contexts as a function of cluster332

size for the three “realistic” models of Secs. 4.1 and 4.2. The corresponding plot for333

model of 4.3 looks similar to the latter, i.e. one finds that super-spreading does not334

make a difference for this type of analysis. In contrast, the model with all activity335

types of Sec. 4.1 behaves quite differently from the restricted model of Sec. 4.2. In336

both models, the initial seeds cause infections at home, i.e. within the own household.337

However, the infection dynamics then moves to the other contexts, mostly leisure in338

the model of January (bottom plot), and first leisure and then schools in the model339

with all activity types (top plot).340

This implies that statistics taken from randomly drawn initial infections (such341

as in the present paper) need to be treated with care. Evidently, an infection that342

has run for many generations has a different behavior than one where the seed was343

randomly drawn. This can also be noted in our real-world situations, where, say, the344

opening of schools results in a transient phase of about two weeks until the contri-345

bution of schools to the infection dynamics has grown to its stationary level. This346
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Figure 10: Cutout of a cluster showing the effects of super-spreading. The colors are the same as
in Fig. 8.

also makes first-order analysis of the effects of interventions [42, 43, 44] incomplete,347

and confirms the necessity of models that complement statistical analysis.348

5. Discussion349

5.1. Computational issues350

The computational model used for this paper moves all synthetic persons through351

their daily plans, i.e. entering and leaving facilities and vehicles as they are in the352

plan. This is an inefficient implementation for the type of investigation here, where353

we start with a single seed, and normally only have small clusters.354

An alternative would be to grow the population as it is needed. Tadić and Melnik355

[12] present a model that does that. In their model, however, the new persons that356

are added into the model are created with randomly drawn properties, which is357

different from our approach, where the synthetic persons have attributes including358
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Figure 11: Distribution of infection context depending on the cluster size for unrestricted (top)
and the January model (bottom). The super-spreading model looks similar to the January model.
Small clusters show a larger share of household infections, while in big clusters the infection share
shifts to the most infectious contexts.

daily plans that are known from the beginning, and which make up the structure of359

the model. Possibly, a data structure would need to be found and implemented that360

could identify those synthetic persons that use the same facilities or vehicles as the361

contagious persons, and then compute the interaction only with those. This implies,362

however, a major implementation effort.363

5.2. Network analysis364

Much is known about epidemics on synthetic graphs [35]. Our work starts “at the365

other end”, i.e. from a realistic mobility model. The mobility model induces where366

people are co-located in the same facilities or vehicles and thus can infect each other,367

and how the infection is moved from one place to another.368
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For any given day, that process could be mapped onto a graph, as explained in369

Sec. 3.1: Persons who are co-located in a facility or a vehicle are connected; the370

strength of the connection is given by the infection probability described by the371

model (Eq. (1) and the following text); connections might not be symmetric since,372

e.g., one person may wear a mask and the other one not.373

Since the material analyzed in the present paper replays the same day over and374

over again, this graph would be static, and one would indeed have a spreading process375

in that graph, where edges are traversed with probabilities given by link strengths,376

and nodes that have become immune cannot be infected a second time. According377

to [33], this would fall into the same universality class as percolation where the links378

are pre-computed from the probabilities, and in consequence the percolation picture379

is a useful starting point.380

However, investigating that full graph for our model of Berlin is beyond reach for381

standard computational tools. In contrast, the introduced approach of investigating382

infection clusters near the percolation threshold leads to cluster sizes that can be383

handled, and from there to a number of insights. While the full model (Sec. 4.1)384

does not show discernible scale breaks beyond the one around s = 10, the model385

with reduced activity participation (Sec. 4.2) has additional such breaks. This intuits386

that the large number of activity types in the full model washes over the possibly387

resulting scale breaks, and therefore opens an avenue for analysis: To reduce the388

model to one that consists only of home and one out-of-home activity type, and389

obtain a better understanding of that set-up before moving on. Fig. 12 shows a first390

result in this direction, using an illustrative scenario where 10’000 persons live in391

single-person households, and simultaneously go to a joint activity for one hour per392

day. Evidently, the model still displays a percolation-like phase transition, but there393

are no more discernible scale breaks.394

All of our results imply that an important element of the dynamics is that once395

the infection is inserted into a sub-group, it does not infect that sub-group in a single396

super-spreading event, but rather needs multiple generations inside that sub-group.397

At the same time, members of that sub-group may carry it into other sub-groups.398

Cliques, which denote fully connected subsets of nodes, are not the right language399

to describe this, since cliques imply a zero-or-one connectedness, whereas here the400

strengths of the edges inside the sub-group are important. Possibly, the language of401

simplicial complexes [45, 46] may be useful here.402

5.3. Multi-day trajectories403

The model considered in the present paper plays back the same day over and404

over again. Our current production model has separate submodels for Saturdays and405
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Figure 12: Cluster size distributions of the illustrative model near the percolation threshold. – The
straight line with slope −0.5 is added for comparison. The prescription for the errorbars is the
same as in Fig. 4. Each curve is based on 25000 runs.

Sundays, thus being able to represent the effect of special events on the weekends406

[17]. Clearly, it would be good to have even longer mobility trajectories, over several407

weeks or even months [47, 48]. Evidently, that will mean that the repeated visits408

to certain sub-groups (such as home, school or work) will be overlayed with singular409

events such as weddings or other large gatherings, and it remains to be investigated410

how these two elements interact. For Covid-19, clearly, the singular events were411

mostly suppressed, so that the investigation of the repeated visits is a useful starting412

point.413

6. Conclusion414

Much is known about epidemics on synthetic graphs [35]. Our work starts “at415

the other end”, i.e. from realistic mobility models. It is not possible to map, in a416

simple way, the infection graphs that our model generates back to the synthetic graph417

models treated in the literature. Therefore, the insight drawn from those synthetic418

models cannot be taken directly to the real situation.419

Our results show that the model displays elements of a percolation transition, in420

particular a cluster size distribution near the critical threshold that behaves similar421

to a percolation cluster size distribution in the sense that it has only small clusters422

below the threshold, clusters of all sizes at the threshold, and small clusters plus423
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one large cluster above the threshold. It is also demonstrated that this behavior is424

a result of the full model, since a simplified model where persons from single-person425

households join in one group once per day do not show the same behavior.426

It remains to understand the model better. Optimally, as a consequence, we427

would be able to move from the current simulation-driven approach to predicting428

the effect of interventions to one where we can design good interventions from better429

understanding the model and the reality that it represents.430
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verpflichtenden tests an schulen mit präsenzunterricht im vergleich zum dis-618

tanzunterricht 238 (2021). doi:10.5282/ubm/epub.76005.619

26

http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://www.biorxiv.org/content/early/2020/09/03/2020.09.02.279349
https://www.biorxiv.org/content/early/2020/09/03/2020.09.02.279349
https://www.biorxiv.org/content/early/2020/09/03/2020.09.02.279349
http://dx.doi.org/10.1101/2020.09.02.279349
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2020/09/03/2020.09.02.279349.full.pdf
http://dx.doi.org/10.1016/j.jtbi.2007.11.028
http://dx.doi.org/10.14279/DEPOSITONCE-9835
http://dx.doi.org/10.1101/2020.07.22.20160093
https://www.mofa.go.jp/files/100061341.pdf
https://www.mofa.go.jp/files/100061341.pdf
https://www.mofa.go.jp/files/100061341.pdf
http://dx.doi.org/10.1126/science.abd9338
http://dx.doi.org/10.1101/2021.03.25.21254330
http://dx.doi.org/10.5282/ubm/epub.76005


[45] D. Wang, Y. Zhao, H. Leng, M. Small, A social communication model based620

on simplicial complexes, Phys. Lett. A 384 (2020) 126895. doi:10.1016/j.621

physleta.2020.126895.622
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modèle de circulation générale du LMD (A parametrization of the gravity wave635

drag in the general circulation model of the LMD), Master’s thesis, University636

Paris 6, Paris, France, 1989.637

27

http://dx.doi.org/10.1016/j.physleta.2020.126895
http://dx.doi.org/10.1016/j.physleta.2020.126895
http://dx.doi.org/10.1016/j.physleta.2020.126895
http://dx.doi.org/10.1016/j.physa.2015.05.075
http://http://mobilitaetspanel.ifv.kit.edu/english/ index.php
http://http://mobilitaetspanel.ifv.kit.edu/english/ index.php
http://http://mobilitaetspanel.ifv.kit.edu/english/ index.php

	Introduction
	Models for virus spreading
	Compartmental models for virus spreading
	Agent based models for virus spreading
	Mobility model
	Further sub-models

	Percolation
	Cluster size distributions
	Percolation and epidemics

	Graph interpretation
	Person-centric infection graph
	Static representation with facilities

	Methods and results
	Full model
	A more realistic situation
	Super-spreading
	Clusters
	Change of infection contexts with cluster size

	Discussion
	Computational issues
	Network analysis
	Multi-day trajectories

	Conclusion

