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Abstract

The Einstein-Vlasov-Maxwell system models the time evolution of self - grav-
itating collisionless charged particles in the context of general relativity. The
particle could be for instance the electrons in a plasma. As it is proved in this
work, that system in the context of spherical symmetry has nice properties.
Firstly, the electromagnetic field Fαβ created by the fast moving particles re-
duces to its electric part and secondly if f = 0 then Fαβ = 0 and the latter is
not true in the case without spherical symmetry, where it is possible to have
non trivial source-free solutions of the Maxwell equations. In this thesis, we aim
to establish as G. Rein did in the uncharged case, a global existence theorem
of solutions for the asymptotically flat spherically symmetric Einstein-Vlasov-
Maxwell system. Before we do so, we show that the above system is physically
viable, since the strong energy condition holds.

The results on local existence are based on an iterative scheme. So, we first
discuss the existence of solutions for the constraint equations. We establish with
the help of O.D.E techniques the existence of two classes of the solutions for the
constraint equations: a global solution with low charge and a global solution
with high charge. In passing, we also prove that in the exterior region, this
solution is part of the Reissner-Nordström solution. Thus, the results on local
existence and continuation criterion obtained by G. Rein for the Einstein-Vlasov
system are extended to the Einstein-Vlasov-Maxwell system.

Now, to establish a global existence theorem in our context, we defined a

set of initial data in such a way that for fixed
◦
f , (

◦
λ,
◦
e) is a solution of the

constraint equations and
◦
λ is bounded in the L∞-norm. This is possible, since

we show that if the charge q is sufficiently small, then solutions of the constraint
equations depend continuously on the parameter q and then we can construct
the desired set of initial data as mentioned above. Once again, the results on
the global existence and geodesic completeness obtained by G. Rein for the
uncharged particles are extended to the Einstein-Vlasov-Maxwell system.
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Introduction

The global dynamical behavior of self-gravitating matter is a subject of cen-
tral importance in general relativity. A form of matter which has particularly
nice mathematical properties is collisionless matter, described by the Vlasov
equation. It has the advantage that it lacks the tendency observed in certain
models, such as perfect fluids, that solutions of the equations of motion of the
matter lose differentiability after a finite time. These singularities of the math-
ematical model form an obstacle to further analysis and prevent the study of
the global dynamical properties of the solutions. Collisionless matter is free
from these difficulties and there is a growing literature on global properties of
solutions of the Einstein-Vlasov system [32]. Local existence and uniqueness
in the general Cauchy problem for the Einstein-Vlasov system was proved by
Choquet-Bruhat [6]. A corresponding theorem for the more general Einstein-
Vlasov-Maxwell system can be obtained as a special case of a theorem of Bancel
and Choquet-Bruhat [4] on the Einstein-Maxwell-Boltzmann system. The fol-
lowing is concerned with global solutions of the Einstein-Vlasov-Maxwell system.
Some results on solutions of this system with cosmological boundary conditions
have been proved in [12]; here we study the case of asymptotically flat boundary
conditions.

In [26], the authors prove the global existence and uniqueness of solutions
for the spherically symmetric Einstein-Vlasov system with small initial data.
This provides a base for the mathematical study of gravitational collapse of
collisionless matter, for related work see [20] and therein. That study concerns
uncharged particles, the particles being different objects depending on the phys-
ical situation. For example, the particles can be taken as atoms and molecules in
a neutral gas or electrons and ions in a plasma. In stellar dynamics, the particles
are either stars in a galaxy or galaxies in a cluster of galaxies [1]. We consider,
under the same assumption of spherical symmetry, the case where the particles
are charged (for instance the electrons in plasma). To describe the full physical
situation, we must then couple the previous system to the Maxwell equations
that determine the electromagnetic field created by the fast moving charged
particles. As will be seen below, that reduces, in the spherically symmetric
case, to its electric part.

It is appropriate at this point to examine the motivation for considering
this particular problem. Although we are not aware that it has any direct
astrophysical applications, there are, however, two reasons why the problem is
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interesting. The first is that it extends the knowledge of the Cauchy problem for
systems involving the Vlasov equation and it will be seen that it gives rise to new
mathematical features compared to those cases studied up to now. The second
is connected with the fact that it would be desirable to extend the work of [26]
beyond spherical symmetry. In particular, it would be desirable from a physical
point of view to include the phenomenon of rotation. Unfortunately, presently
available techniques do not suffice to prove global results away from spherical
symmetry. In this situation it is possible to attempt to obtain further intuition
by using the analogy between angular momentum and charge, summed up in
John Wheeler’s statement, ’charge is poor man’s angular momentum’. Thus we
study spherically symmetric systems with charge in the hope that this will give
us insight into non spherically symmetric systems without charge. This strategy
has recently been pursued in the case of a scalar field as matter model, with
interesting results [3].

In our specific case, we are led to a difficulty in solving the Cauchy prob-
lem by following [26]. Let us first recall the situation in [26] before seeing how
it changes in the case of charged particles. In [26], using the assumption of
spherical symmetry, the authors look for two metric functions λ and µ, that
depend only on the time coordinate t and the radial coordinate r, and for a
distribution function f of the uncharged particles that depends on t, r and on
the 3-velocity v of the uncharged particles; the metric functions λ, µ are subject
to the Einstein equations with sources generated by the distribution function
f of the collisionless uncharged particles which is itself subject to the Vlasov
equation. They show that the Einstein equations to determine the unknown
metric functions λ and µ, turn out to be two first order O.D.E in the radial
variable r, coupled to the Vlasov equation in f . Putting t = 0, and denoting by
◦
λ(r),

◦
µ(r) and

◦
f(r, v) the initial datum for λ(t, r), µ(t, r) and f(t, r, v) respec-

tively, the constraint equations on the initial data can be solved easily and they

need just to prescribe an appropriate condition on
◦
f(r, v) to obtain a unique

local solution of the Cauchy problem by an iterative scheme and this solution
is extended to obtain the global one.

In the case of charged particles, due to the presence of the electromagnetic
field in the source terms of the Einstein equations,the initial value problem is
not easy to solve. We consider the case of a spherically symmetric electric field
~E of the form ~E(t, r) = e(t, r)~r

r , where e(t, r) is an unknown scalar function
and ~r the position vector in R3. We denote by

◦
e the initial datum for e(t, r).

The Einstein-Maxwell equations yield three constraint equations on the initial
data, that are a first order O.D.E in the radial variable r. In our context, using

singular O.D.E techniques, we first describe a large class of functions
◦
f for which

the constraint equations on the initial data are solved for
◦
λ,

◦
µ,

◦
e, to insure that

the sequence of iterates is well defined and to show that this sequence of iterates
converges to the unique local solution of the initial value problem, and we prove
the continuation criterion, i.e the control of momenta in suppf which allows to
extend the local solution and obtain the unique global solution of the Cauchy
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problem. But what is new in this work compared with what is done in [26]?

- In this work due to the non compactness of the support of e we deal with
a weaker regularity condition on the matter quantity.

- We prove that if the electric field ~E is regular then the same is true for e
and reciprocally.

- We prove also that in the case of spherical symmetry, the electromagnetic
field F reduces to its electric part.

- We prove that all solutions of the spherically symmetric Einstein- Vlasov-
Maxwell system satisfy the strong energy condition and for this solution,
in the corresponding space-time each trajectory is complete.

- We use ODE techniques to prove the existence of a global solution for the
constraint equations.

- To prove continuous dependence of solutions on initial data, we use the fact

that with low charge, we can construct a set of initial data (
◦
λ,
◦
e) such as to

obtain a uniform bound of
◦
λ in the L∞-norm. So under this consideration,

we establish that if the distance between
◦
f and

◦
g is small, then the same

is true for corresponding solutions (
◦
λf ,

◦
ef ) and (

◦
λg,

◦
eg) for the constraint

equations, and solution (
◦
λf ,

◦
ef ) is bounded in the appropriate functional

space.

Note that the Vlasov-Maxwell(linear charge) system we couple with the
Einstein equations in our work, is a particular case of the Vlasov-Yang-Mills(non-
linear charge) system. The last system which models for instance a plasma in
chromodynamics is studied in [21], [22] and [23]. In the above references the
authors study the initial value problem for that system with small initial data
on a curved spacetime and one local existence theorem is proved, using an iter-
ative scheme. So it is reasonable to apply once again this method in the present
investigation.

The work is organized as follows. In chapter 1, we recall the general formula-
tion of the Einstein-Vlasov-Maxwell system, from which we deduce the relevant
equations in the spherically symmetric asymptotically flat case and in passing
we also prove that the strong energy condition holds for the Einstein-Vlasov-
Maxwell system. In chapter 2, we establish some properties of the characteristics
and of the solution of the Vlasov equation for λ, µ and e given, show how to
solve the field equations for f and λ̄ given, establish certain conservation laws
and introduce auxiliary systems which will be used in the proof of the local
existence result. In chapter 3, we discuss the existence of initial data satisfying
the constraint equations for our system. This chapter is the cornerstone of our
investigation. In chapter 4 we prove a local existence and uniqueness theorem
for solutions of the initial value problem corresponding to the asymptotically
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flat, spherically symmetric Einstein-Vlasov-Maxwell system, together with a
continuation criterion for such solutions. In chapter 5, we show that solutions
depend continuously on their initial data and this plays a role in the proof of
global existence for small data. Chapter 6 contains the main result of our inves-
tigation.We prove that for data which are sufficiently small in an appropriate
sense one obtains a global solution of the spherically symmetric Einstein-Vlasov-
Maxwell system. This solution is not only global in the coordinates which we
use, but in the corresponding spacetime each trajectory of particles is complete
and geodesic completeness of spacetime holds. Several appendices where we
prove some technical results on spherically symmetric functions complete our
investigation.
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Chapter 1

Equations and Cauchy
problem

1.1 Hypotheses and notations

- The basic spacetime is (R4, g), g a Lorentzian metric with signature (−,+,+,+).

- In what follows, we assume that Greek indices run from 0 to 3 and Latin
indices from 1 to 3, unless otherwise specified.

- We also adopt the Einstein summation convention.

- g reads locally, in cartesian coordinates (xλ):

ds2 = gαβdx
α ⊗ dxβ (1.1)

- We assume that in Schwarzschild coordinates (x̃) = (t, r, θ, ϕ), the corre-
sponding metric g̃ takes the form [31]:

ds2 = −e2µdt2 + e2λdr2 + r2(dθ2 + sin2 θdϕ2) (1.2)

where µ = µ(t, r); λ = λ(t, r); t ∈ R; r ∈ [0,+∞[; θ ∈ [0, π]; ϕ ∈ [0, 2π].

- By virtue of (1.2), g̃ is a diagonal metric with:

g̃00 = −e2µ; g̃0i = 0; g̃11 = e2λ; g̃22 = r2; g̃33 = r2 sin2 θ (1.3)

- Using the usual tensor transformation law (see [[35], (2.3.8), p.22]) the
components of the metric g in cartesian coordinates (xλ) = (x0, xi), where

x0 = t, x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ

are deduced from g̃λµ by the identities:

gµτ =
∂x̃α

∂xµ
.
∂x̃β

∂xτ
g̃αβ (1.4)
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Now, calculations show (see Appendix A), that the components of g in
the cartesian coordinates (xλ) are:

g00 = −e2µ; g0i = 0; gij = δij + (e2λ − 1)
xixj

r2
(1.5)

where xi = δijx
j ; δij is the Kronecker symbol. Note also that the inverse

matrix gαβ of gαβ is given by:

g00 = −e−2µ; g0i = 0; gij = δij + (e−2λ − 1)
xixj

r2
. (1.6)

- We consider the unit timelike vector u such that:

gβνu
βuν = −1; ui = 0 (1.7)

- We introduce the lapse function α by taking:

α = eµ (1.8)

(1.7) shows that: u0 = α−1.

- F denotes the electromagnetic field. It is a closed antisymmetric 2-form
on R4. Locally,

F = Fβνdx
βdxν

- We denote by E and H the electric and the magnetic parts of F respec-
tively. We will give their expressions later.

- Recall that V α = gαβVβ and Vα = gαβV
β , where (gαβ) is both the inverse

matrix of gαβ and the contravariant 2-tensor associated to g on (R4, g).

- Local coordinates on the tangent bundle TR4 ≡ R8 are (xα, pα). Here
x = (xα) is the position and p = (pα) the 4-momentum of the particles.
The particles are supposed to have a rest mass m ≥ 0. One always has

gαβp
αpβ = −m2. (1.9)

Now, by virtue of (1.2) and (1.9), and the fact that p0 > 0 since 4-
momentum is future pointing, we have:

p0 = α−1(gijp
ipj +m2)

1
2 (1.10)

- The equations of motion of particles with charge q in the electromag-
netic field F are the following first order differential system for a path
s→ (xα, pα) in R8:

dxα

ds
= pα;

dpα

ds
= −Γα

λµp
λpµ − qpλFλ

α = Qα
0 (F ) (1.11)
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where Γα
λµ denote connection components of g. Hence, the trajectory has

tangent vector
Y = Y (F ) = (p,Q0(F )). (1.12)

In fact, the trajectories are in the sub-bundle of TR4 ≡ R8, which we
denote Pm ≡ R × TR3 ≡ R × R6 with local coordinates x0, xi, pi defined
by equation (1.10).

1.2 Equations and Cauchy problem

1.2.1 The Vlasov equation

- The distribution function f is a non-negative real-valued function defined
on the mass shell Pm.

- Now, the conservation of number of particles with distribution function
f moving without collision in the field F is expressed by the Vlasov (or
Liouville) equation:

LY (F )f = 0. (1.13)

Locally, (1.13) is written:

pα ∂f

∂xα
+Qα

0

∂f

∂pα
= 0 (1.14)

where Qα
0 is given in (1.11). Now, on the mass shell (1.14) reads:

pα ∂f

∂xα
+Qi

0

∂f

∂pi
= 0 (1.15)

- J denotes the current vector on R4, generated by the distribution of
charged particles. We have J = J(f) = (Jβ), where

Jβ = q

∫
R3
pβf(x, p)ωp (1.16)

where

ωp =| g | 12 dp1dp2dp3

p0
, p0 = g00p

0

1.2.2 The Maxwell equations

The Maxwell equations can be written in covariant notation on (R4, g):

δF = J (1.17)

dF = 0 (1.18)
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where d is the exterior differential operator and δ is the adjoint (or Hodge)
operator, given by: δw = (−1)p ∗−1 d ∗ w, for any p-form ω on Rn; ∗−1 is the
inverse of ∗ and is defined by: ∗−1 = (−1)p(n−p)∗. By computation, one has:

δF = ∇αF
αβdxβ (1.19)

thus, (1.17) is written locally:

∇αF
αβ = Jβ . (1.20)

Thus the identity ∇α∇βF
αβ = 0 (see [21]) implies that we must have:

∇βJ
β = 0. (1.21)

A direct calculation (using for instance normal coordinates at a given point),
shows that in (1.16) if f is solution of the Vlasov equation, then (1.21) is satis-
fied. On the other hand, in any system of local coordinates (xλ), (1.18) reads:

∇αFβγ +∇βFγα +∇γFαβ = 0. (1.22)

These identities are called Bianchi identities. Now, the electric field E asso-
ciated to F with respect to the unit timelike vector u is defined (see [6]) as
the contracted product E(u) = F.u. Locally, Eβ(u) = Fβνu

ν from which one
deduces {

E0(u) = 0
Ei(u) = α−1Fi0, i = 1, 2, 3.

(1.23)

On the other hand, Eβ(u) = gβνEν(u). Hence

E0(u) = g00E0(u) = 0. (1.24)

Now, for i = 1, 2, 3

Ei = giνEν = gijEj = gij(−αF0j) = −α−1gijg0λgjµF
λµ

= −αgijg00gjkF
0k = −α−1g00g

ijgjkF
0k = αF 0i

thus,
Ei = αF 0i. (1.25)

By definition, the magnetic field H associated to F with respect to the unit
timelike vector u is defined (see [6]) to be the contracted product H = −(∗F ).u;
locally

Hβ(u) = −(∗F )βνu
ν (1.26)

where (∗F )βν = 1
2Σ0123

ρτβνF
ρτ
√
| g | and

Σ0123
ρτβν =


0 if (0123) is not a permutation of (ρτβν)
1 if (0123) is even permutation of (ρτβν)
−1 if (0123) is odd permutation of (ρτβν).
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Note also that | g |=| det(g) |= α2 | det(gij) |. It follows that:

(∗F )00 =
1
2
Σ0123

ρτ00F
ρτ
√
| g | = 0

(∗F )01 =
1
2
Σ0123

ρτ01F
ρτ
√
| g | = 1

2
(
Σ0123

2301F
23 + Σ0123

3201F
32
)√

| g |

=
1
2
(F 23 − F 32)

√
| g | = F 23

√
| g |

(∗F )02 =
1
2
Σ0123

ρτ02F
ρτ
√
| g | = 1

2
(
Σ0123

1302F
13 + Σ0123

3102F
31
)√

| g |

=
1
2
(−F 13 + F 31)

√
| g | = −F 13

√
| g |

(∗F )03 =
1
2
Σ0123

ρτ03F
ρτ
√
| g | = 1

2
(
Σ0123

1203F
12 + Σ0123

2103F
21
)√

| g |

=
1
2
(F 12 − F 21)

√
| g | = F 12

√
| g |

(∗F )12 =
1
2
Σ0123

ρτ12F
ρτ
√
| g | = 1

2
(
Σ0123

0312F
03 + Σ0123

3012F
30
)√

| g |

=
1
2
(F 03 − F 30)

√
| g | = F 03

√
| g |

(∗F )13 =
1
2
Σ0123

ρτ13F
ρτ
√
| g | = 1

2
(
Σ0123

0213F
02 + Σ0123

2013F
20
)√

| g |

=
1
2
(−F 02 + F 20)

√
| g | = −F 02

√
| g |

(∗F )23 =
1
2
Σ0123

ρτ23F
ρτ
√
| g | = 1

2
(
Σ0123

0123F
01 + Σ0123

1023F
10
)√

| g |

=
1
2
(F 01 − F 10)

√
| g | = F 01

√
| g |.

Since (∗F )λµ is antisymmetic we get

(∗F )11 = (∗F )22 = (∗F )33 = 0

and others coefficients of (∗F ) which do not appear in the above can be deduced
from these by changing the sign of one of them. So, all components of (∗F ) are
calculated. Now,

H0(u) = −(∗F )0νu
ν = −(∗F )00u0 − (∗F )0iu

i = 0 (1.27)

H1(u) = −(∗F )1νu
ν = −(∗F )10u0 = (∗F )01u0

H1(u) = α−1F 23
√
| g | (1.28)

H2(u) = −(∗F )2νu
ν = (∗F )02u0

H2(u) = −α−1F 13
√
| g | (1.29)

H3(u) = −(∗F )3νu
ν = (∗F )03u0

15



H3(u) = α−1F 12
√
| g |. (1.30)

From equations(1.27), (1.28), (1.29) and (1.30), we can deduce the values of Hλ

by writing Hν = gνρHρ;
H0 = g00H0 = 0 (1.31)

H1 = g1iHi = g11H1 + g12H2 + g13H3 =

√
| g |
α

(g11F 23 − g12F 13 + g13F 12)

(1.32)
calculating each term in the brackets of the right hand side of (1.32), one finds:

g11F 23 = g11g2jg3kFjk

= (g11g12g23 − g11g22g13)F12 + (g11g12g33 − g11g23g13)F13

+ (g11g22g33 − g11(g23)2)F23

(1.33)

−g12F 13 = −g12g1jg3kFjk

= −(g12g11g23 − (g12)2g13)F12 − (g11g12g33 − (g13)2g12)F13

− ((g12)2g33 − g12g13g23)F23

(1.34)

g13F 12 = g13g1jg2kFjk

= (g13g11g22 − (g12)2g13)F12 + (g13g11g23 − (g13)2g12)F13

+ (g13g12g23 − (g13)2g22)F23.

(1.35)

Introducing (1.33), (1.34), (1.35) in (1.32) one finds:

H1 =

√
| g |
α

{g11(g22g33 − (g23)2)− g12(g12g33 − g13g23) + g13(g12g23 − g13g22)}F23

=

√
| g |
α

det(gij)F23 =

√
| g |
α

g00g
00 det(gij)F23 =

√
| g |
α

g00
det(g)

F23

= −α2 1
det(g)

√
| g |
α

F23 = α

√
| g |

−det(g)
F23 = α

√
| g |
| g |

F23.

Thus
H1 =

α√
| g |

F23 (1.36)

and we have, similarly:
H2 = − α√

| g |
F13 (1.37)

H3 =
α√
| g |

F12 (1.38)

H0 = 0

and we define

H̃ :=


H̃1 = −

√
|g|
α F 32 =

√
|g|
α F 23

H̃2 = −
√
|g|
α F 13 =

√
|g|
α F 31

H̃3 = −
√
|g|
α F 21 =

√
|g|
α F 12

(1.39)
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hence: 
αH̃1 =

√
| g |F 23

αH̃2 =
√
| g |F 31

αH̃3 =
√
| g |F 12.

(1.40)

So the knowledge of E and H entirely determines F . We now express the
Maxwell equations (1.17)-(1.18) in terms of E and H. We look for a radial
electric field, i.e, we take E of the form:

Ei(t, r) = e(t, r)
xi

r
. (1.41)

The Maxwell equation (1.20) for β = 0 gives, by virtue of (1.25) and the anti-
symmetry of F :

∇αF
α0 = ∇iF

i(0) = −∇iF
(0)i = − 1√

| g |
∂i(
√
| g |F 0i)

= − 1√
| g |

∂i(
√
| g |α−1Ei) = − 1√

| g |
∂i(
√
| g |α−1e

xi

r
) = J0

thus:

∂i(
√
| g |α−1e

xi

r
) = −J0

√
| g |. (1.42)

On the other hand, taking equations (1.20) for index β = i and using (1.40) and
the fact that F is antisymmetric, one has:

∇αF
αi = ∇αF

α(i) =
1√
| g |

∂α(
√
| g |Fαi)

=
1√
| g |

∂0(
√
| g |F 0i) +

1√
| g |

∂j(
√
| g |F ji)

=
1√
| g |

∂0(α−1Ei
√
| g |) +

1√
| g |

∂j(F ji
√
| g |)

=
1

r
√
| g |

∂0(α−1exi
√
| g |)− α−1curl(αH̃)i = J i

where curl(αH̃)i = eijk

2
√
|γ|

(∂j(αHk)− ∂k(αHj))

eijk =


0 if (ijk) is not a permutation of (123)
1 if (ijk) is even permutation of (123)
−1 if (ijk) is odd permutation of (123)

γ = (gij); (see [14]). Thus

1
r
√
| g |

∂0(α−1exi
√
| g |)− α−1curl(αH̃)i = J i. (1.43)

We now express another part (1.22) of the Maxwell equations in terms of E and
H. Hence, we need to prove this result:
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Proposition 1.1 The Bianchi identities can be reduced as follows:

1) (∇iFjk +∇jFki +∇kFij = 0) ⇔

(
∂l

(√
| g |
α

H l

)
= 0

)

2) (∇0Fij +∇iFj0 +∇jF0i = 0) ⇔ (
√
| γ |curl(αẼ)− ∂0(τH) = 0)

where E = (Ei); Ẽ = (Ei); τ = −
√
|g|
α .

Proof : Part 1) we have:

∇iFjk +∇jFki +∇kFij = ∂iFjk + ∂jFki + ∂kFij .

By virtue of (1.36)-(1.37)-(1.38), we can write:

∂1F23 + ∂2F31 + ∂3F12 = ∂1

(√
| g |
α

H1

)
+ ∂2

(√
| g |
α

H2

)
+ ∂3

(√
| g |
α

H3

)

= ∂l

(√
| g |
α

H l

)

∂1F32 + ∂3F21 + ∂2F13 = ∂1

(
−
√
| g |
α

H1

)
+ ∂2

(
−
√
| g |
α

H2

)
+ ∂3

(
−
√
| g |
α

H3

)

= −∂l

(√
| g |
α

H l

)

∂2F13 + ∂1F32 + ∂3F21 = ∂1

(
−
√
| g |
α

H1

)
+ ∂2

(
−
√
| g |
α

H2

)
+ ∂3

(
−
√
| g |
α

H3

)

= −∂l

(√
| g |
α

H l

)

∂2F31 + ∂3F12 + ∂1F23 = ∂1

(√
| g |
α

H1

)
+ ∂2

(√
| g |
α

H2

)
+ ∂3

(√
| g |
α

H3

)

= ∂l

(√
| g |
α

H l

)

∂3F12 + ∂1F23 + ∂2F31 = ∂1

(√
| g |
α

H1

)
+ ∂2

(√
| g |
α

H2

)
+ ∂3

(√
| g |
α

H3

)

= ∂l

(√
| g |
α

H l

)

18



∂3F21 + ∂2F13 + ∂1F32 = ∂1

(
−
√
| g |
α

H1

)
+ ∂2

(
−
√
| g |
α

H2

)
+ ∂3

(
−
√
| g |
α

H3

)

= −∂l

(√
| g |
α

H l

)
thus,

(∇iFjk +∇jFki +∇kFij = 0) ⇔ ∂l

(√
| g |
α

H l = 0

)

⇔
(

div
(

1
α
H

)
= 0
)
.

We now prove part 2). We can write:

∇0Fij +∇iFj0 +∇jF0i = ∇0Fij +∇jF0i −∇iF0j

= ∂0Fij + ∂jF0i − ∂iF0j .

By virtue of (1.23), (1.36), (1.37) and (1.38), we can deduce:

∂0F12 + ∂2F01 − ∂1F02 = ∂0(α−1
√
| g |H3) + ∂2(−αE1)− ∂1(−αE2)

= −∂0(τH3) +
√
| γ |curl(αẼ)3

∂0F13 + ∂3F01 − ∂1F03 = ∂0(τH3) + ∂1(αE3)− ∂3(αE1)

= ∂0(τH2)−
√
| γ |curl(αẼ)2

∂0F23 + ∂3F02 − ∂2F03 = −∂0(τH1) + ∂3(−αE1)− ∂2(−αE3)

= −∂0(τH1) +
√
| γ |curl(αẼ)1.

Thus,

(∂0Fij + ∂jF0i − ∂iF0j = 0) ⇔ (−∂0(τH) +
√
| γ |curl(αẼ) = 0).

Note that the Maxwell equations in terms of E and H are: (1.42) and (1.43)
with

div(α−1H) = 0 (magnetostatic law [13]) (1.44)

∂0(τH)−
√
| γ |curl(αẼ) = 0 (magnetodynamic law) (1.45)

Now, we prove that if H is radial magnetic field, then (1.44) has only the trivial
solution:

H = 0 (1.46)

Proposition 1.2 Let Hi = b(t, r)xi be a C1 function, then:

(div(α−1H) = 0) ⇔ (H = 0)
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Proof : Let Hi = b(t, r)xi be given as in the beginning of proposition 1.2. By
virtue of √

| g | =
√
| −e2(λ+µ) | = e(λ+µ) (see Appendix A)

we can write :

div(α−1H) = 0 ⇔ ∂l

(√
| g |
α

bxl

)
= 0

⇔ ∂l(Cxl) = 0 where C = hb,withh =

√
| g |
α

⇔ xl∂lC + C∂lx
l = 0

⇔ r
dC

dr
+ 3C = 0

⇔ r3
dC

dr
+ 3r2C = 0

⇔ d

dr
(r3C) = 0

⇔ r3C = δ, δ constant,

so C = hb = δ
r3 , from which we deduce b = δ

r3h . On the other hand, we need
our function b to be regular. Thus we must choose δ = 0 and obtain C = 0. So,
H is equal to zero as announced.

Now, by virtue of proposition 1.2, equations (1.43) and (1.45) read:

∂0(exiα−1
√
| g |) = rJ i

√
| g | (1.47)

curl(αẼ) = 0. (1.48)

Now, let us prove that a solution e of (1.42) and (1.47) is also a solution of
(1.48). Since curl(gradψ) = 0, it suffices to prove that αẼ = grad(ψ), where
ψ = ψ(t, r) is a smooth function to be determined.We look for function ψ such
that (αẼ)i = (gradψ)i i.e:

(αẼ)i = gij(gradψ)j = gijg
jk ∂ψ

∂xk
= δk

i

∂ψ

∂xk
=
∂ψ

∂xi
. (1.49)

Now, from (1.41), we deduce

(αẼ)i = αEi = αgijE
j = αegij

xj

r

since,

gijx
j =

(
δij + (e2λ − 1)

xixj

r2

)
xj

= δijx
j + (e2λ − 1)

xixjx
j

r2

= xi + (e2λ − 1)xi

= xie
2λ.

20



Then, (αẼ)i = αee2λ xi

r . Now, from

∂ψ

∂xi
=

∂r

∂xi

∂ψ

∂r
=
xi

r

∂ψ

∂r
(xi = xi),

equations (1.49) yield:

(αẼ)i =
∂ψ

∂xi
⇔ αee2λxi

r
=
xi

r

∂ψ

∂r

⇔ αee2λ =
∂ψ

∂r

⇒ ψ(t, r)− ψ(t, 0) =
∫ r

0

α(t, s)e(t, s)e2λ(t,s)ds.

Thus, once ψ(t, 0) is given, ψ(t, r) is determined by the following relation:

ψ(t, r) = ψ(t, 0) +
∫ r

0

α(t, s)e(t, s)e2λ(t,s)ds.

Remark 1.1 The Maxwell equations then reduce to (1.42) and (1.47).

1.2.3 The Einstein equations

The Einstein equations are given by:

Rαβ −
1
2
gαβR = 8π(Tαβ + ταβ) (1.50)

where R is the scalar curvature of g, Rαβ is the Ricci tensor given by:

Rαβ = Rν
α, νβ = ∂νΓν

αβ − ∂βΓν
αν + Γν

νρΓ
ρ
αβ − Γν

ρβΓρ
αν (1.51)

Tαβ = −
∫

R3
pαpβf(x, p)ωp; ταβ = −gαβ

4
FλµF

λµ + FβλFα
λ.

and here, the speed of light is set to unity.
Now (1.50) can be also written:

Rαβ − 1
2
gαβR = 8π(Tαβ + ταβ) (1.52)

where Rαβ = gαµgβρRµρ;

Tαβ = −
∫

R3
pαpβf(x, p)ωp; ταβ = −g

αβ

4
FλµF

λµ + Fα
λF

βλ. (1.53)

Now, it is well known that the Einstein tensor which is given by:

Gαβ = Rαβ − 1
2
gαβR (1.54)
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satisfies
∇αG

αβ = 0. (1.55)

On the other hand, by virtue of (1.55), equations (1.52) make sense if and only
if:

∇α(Tαβ + ταβ) = 0. (1.56)

A proof of (1.56)is obtained if the distribution function f is subject to the Vlasov
equation (see Appendix B).

1.2.4 Energy conditions

We know that (Tαβ + ταβ)V αV β physically represents the energy density of
charged particles as measured by an observer whose 4-velocity is V α [35]. So,
for any physically viable theory, this quantity is nonnegative for each timelike
(V α), and the above assumption is known as the weak energy condition. We
are going to show that in fact, the dominant energy condition holds, i.e:
(Tαβ + ταβ)V αW β ≥ 0, for all future-pointing timelike vectors (V α) and (Wα).
This implies the weak energy condition. Now it will be interesting if we be-
gin by showing that the above definition of the dominant energy condition is
equivalent to that given in [[11], p.91], or in [[35], p.219]. We also show that
since the Maxwell tensor is trace-free, and the strong energy condition that is
RαβV

αV β ≥ 0 for every timelike vector (V α), holds for the Einstein-Vlasov
system, the same is true in our context. First of all we are going to use the
following result, obtained using for instance the normal coordinates, see [33]:

Lemma 1.1 Let (V α), (Wα) be two future-pointing timelike vectors. Then
VαW

α ≤ 0

Lemma 1.2 The following assertions are equivalent:

1) For any two future-pointing timelike vectors (V α), (Wα), one has:
(Tαβ + ταβ)V αW β ≥ 0

2) For every timelike vector (V α), one has: (Tαβ + ταβ)V αV β ≥ 0, and
(Tαβ + ταβ)V β is a non-spacelike vector.

Proof: We first prove that 2) implies 1). If (V α) and (Wα) are two future-
pointing timelike vectors then 2) implies that (Tαβ + ταβ)V β is non-spacelike.
This means by definition that it is either timelike or null. Using once again 2), its
contraction with (V α) is positive. Thus by lemma 1.1 it is in fact past-pointing
timelike or null, its opposite is future- pointing timelike, and we use lemma 1.1
to conclude that its contraction with (Wα) is positive. So 1) is proved.

Now let us prove that 1) implies 2). Let (V α) be a timelike vector. If V 0 > 0,
then (V α) is future-pointing timelike and the first condition in 2) holds by taking
V = W . If V 0 < 0, then (−V 0,−V i) is future-pointing timelike and we can
conclude as we made before for the first condition in 2). For the second part,
suppose that (V α) is future-pointing timelike and define Pα := (Tαβ + ταβ)V β .
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Condition 1) implies that (Pα) satisfies PαW
α ≥ 0 for every future-pointing

timelike vector (Wα). We aim to show that (Pα) is non-spacelike. To do this,
let us assume that (Pα) is spacelike. and get a contradiction. Set L := PαP

α.
By assumption L > 0. Let (Tα) be a future-pointing timelike vector orthogonal
to (Pα) with TαT

α = −L and T 0 > P 0(for the construction of vector (Tα), one

can take for instance in normal coordinates: T 0 =

√
3∑

i=1

(P i)2, T i = P 0P i/T 0).

Set Wα = 2Tα − Pα. Then WαWα = −3L < 0, W 0 = 2T 0 − P 0 > 0 and
(Wα) is a future-pointing timelike vector, and WαPα = −L < 0. This is the
desired contradiction. Now if (V α) is past-pointing timelike, then (−V α) is
future-pointing and follow the first step of the proof in which Pα is replaced by
−Pα = (Tαβ + ταβ)(−V β). Analogously, we are led to (−Pα) is non-spacelike
and so is (Pα). In conclusion, the second part of condition 2) holds, for every
timelike vector (V α) and the proof is complete.

Lemma 1.3 1) For every two future-pointing vectors (V α), (Wα), one has:

TαβV
αW β + ταβV

αW β ≥ 0 (1.56’)

2) For every timelike vector (V α), one has:

RαβV
αV β ≥ 0.

Proof: Take part 1) of the above lemma. Since Penrose and Rindler state the
dominant energy condition for the Maxwell equations in writing the Maxwell
tensor ταβ as a quadratic form of spinor fields in [25], the second term in the
left hand side of (1.56’) is nonnegative and we just need to establish the same
result for the first term in the left hand side of (1.56’). Let (V α), (Wα) be two
future-pointing timelike vectors. Taking the first term in the left hand side of
(1.56’), we obtain, since f ≥ 0, (pα) is future-pointing timelike vector and using
lemma 1.1 and the fact that −p0 > 0:

TαβV
αW β =

∫
R3

(pαV
α)(pβW

β)f | g | 12 dp1dp2dp3

−p0
≥ 0

Thus,
TαβV

αW β ≥ 0,

and (1.56’) holds as well. Now concerning the part 2) of the above lemma, the
contraction of (1.50) gives, since the Maxwell tensor is trace-free:

R = −8πT

where T := gαβTαβ . Insertion of the above in (1.50) yields:

Rαβ = −4πTgαβ + 8π(Tαβ + ταβ)

= 8πταβ + 8π
(
Tαβ −

1
2
Tgαβ

)
.
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Next, let (V α) be a timelike vector. Then

RαβV
αV β = 8πταβV

αV β + 8π
(
Tαβ −

1
2
Tgαβ

)
V αV β (1.50’)

Since the Maxwell tensor satisfies the dominant energy condition and then the
weak energy condition, we can deduce that the first term in the right hand
side of (1.50’) is nonnegative. Also, the strong energy condition holds for the
Einstein-Vlasov system (for more details one can refer to [[31], p.37-38]). The
latter shows that the second term in the right hand side of (1.50’) is nonnegative
and the strong energy condition holds in our context. So lemma 1.3 is proved.

Remark 1.2 It is very convenient to formulate the field equations (1.50) in the
Schwarzschild coordinates (x̃λ), but doing so, one obtains an artificial singularity
at r = 0 in the Vlasov equation. So, one way to avoid this, is to reformulate
the Einstein equations and the Vlasov equation in the corresponding cartesian
coordinates. We take the metric g as given in (1.5).

Now, the Christoffel symbols in the cartesian coordinates are (see Appendix C
for more details):

Γ0
00 = µ̇; Γ0

0i = µ′ xi

r ; Γ0
ij = e2(λ−µ)µ̇

xixj

r2

Γi
00 = e2(λ−µ)µ′ xi

r ; Γi
0j = λ̇

xixj

r2

Γi
jk = λ′

xixjxk

r3 + 1−e−2λ

r (δjk − xjxk

r2 )xi

r

(1.57)

where λ′ = dλ
dr , λ̇ = dλ

dt . On the other hand, the covariant components of the
Einstein tensor read (see Appendix C):

G00 = e2µ

r2 {e−2λ(2rλ′ − 1) + 1}
G0i = 2λ̇xi

r2

Gij = {e−2λ(µ′′ + (µ′ − λ′)(µ′ + 1
r ))− e−2µ(λ̈+ λ̇(λ̇− µ̇))}(δij − xixj

r2 )
+ e2λ

r2 {e−2λ(2rµ′ + 1)− 1}xixj

r2

(1.58)

Remark 1.3 SO(3) acts on space manifold V = I × R3, where I ⊂ R is an
open interval, by the mapping Φ : SO(3)× V → V

(A,(t,x̃)) 7→(t,Ax̃)

, where x̃ = (xi).

Let A = (Ai
j) ∈ SO(3) and consider the C1-diffeomorphism ΦA : V → V

(t,x̃) 7→(t,Ax̃)

of the spacetime manifold V . As it is explained for example in ([35] , p.437),
this mapping canonically induces mappings on vector and tensor fields on V
usually denoted by Φ∗A. The canonically induced Φ∗A : TV → TV is given by:
(t, x̃, p0, p̃) 7→ (t, Ax̃, p0, Ap̃) where p̃ = (pi).

Lemma 1.4 For every matrix A = (Ai
j) ∈ SO(3), ΦA is an isometry of the

spacetime manifold (V, g) ; i.e

∀A ∈ SO(3), Φ∗Ag = g,

where g is given by (1.5).
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Proof : Given A = (Ai
j) ∈ SO(3) and (t, x̃) ∈ V , one has:

(Φ∗Ag)(t, x̃) = g(ΦA(t, x̃))
= g(t, Ax̃)

= g00(t, y)dt2 + gij(t, y)dyi ⊗ dyj

where y = Ax̃; yi = Ai
jx

j , dyi = Ai
kdx

k, dyi ⊗ dyj = Ai
kA

j
l d

k ⊗ dxl. Now, since

| Ax̃ |=| x̃ |, g00(t, y) = −e2µ(t,|y|) = −e2µ(t,|Ax̃|) = −e2µ(t,r) = g00(t, x̃).

On the other hand, by virtue of definition (1.5) of g,

gij(t, y) = δij + (e2λ(t,|y|) − 1)
yiyj

| y |2

= δij + (e2λ(t,|x̃|) − 1)
δimδjny

myn

| Ax̃ |2

= δij + (e2λ(t,r) − 1)
δimδjnA

m
m′xm′

An
n′x

n′

r2
.

Thus,

gij(t, y)dyi⊗dyj = δijA
i
kA

j
l dx

k⊗dxl+(e2λ(t,r)−1)
δimδjnA

m
m′xm′

An
n′x

n′Ai
kA

j
l

r2
dxk⊗dxl

and since A is orthogonal matrix, one has

δijA
i
kA

j
l = δkl; δimA

m
m′Ai

k = δm′k; δjnA
j
lA

n
n′ = δln′

δimA
m
m′Ai

kx
m′

= δm′kx
m′

= xk; δjnA
j
lA

n
n′x

n′ = δln′x
n′ = xl,

thus,

gij(t, y)dyi ⊗ dyj =
{
δij + (e2λ(t,r) − 1)

xixj

r2

}
dxi ⊗ dxj

= gij(t, x̃)dxi ⊗ dxj .

So, lemma 1.2 is proved.
Now by virtue of this result, we can say that SO(3) acts on the spacetime

manifold by isometries.

Remark 1.4 Since we can consider the distribution function f on Pm ≡ R× T (S)
as 0-tensor, the expression Φ∗Af = f ◦ ΦA makes sense. Thus, f is spherically
symmetric, if and only if:

∀A ∈ SO(3), Φ∗Af = f ◦ ΦA = f, i.e

∀A ∈ SO(3), ∀(t, x̃, p̃) ∈ R× R6; f(t, Ax̃, Ap̃) = f(t, x̃, p̃) (1.59)

(1.59) means that f is invariant under the canonical action of SO(3) on the
mass shell.
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Remark 1.5 In what follows, we consider only particles with rest mass m = 1.

Next, we calculate the energy momentum tensor for given, spherically symmetric
phase-space distribution f . First of all, we have (see Appendix A):

| g |= e2(λ+µ). (1.60)

Now,

Tαβ = −
∫

R3
pαpβf | g |

1
2
dp̃

p0

p0 = g00p
0 = −eµ

√
1 + gijpipj = −eµ

√
1 +

{
δij + (e2λ − 1)

xixj

r2

}
pipj

p0 = −eµ

√
1+ | p̃ |2 +(e2λ − 1)

(
x̃.p̃

r

)2

(1.61)

where
dp̃ = dp1dp2dp3, | p̃ |2= δijp

ipj , x̃.p̃ = δijx
ipj .

The spherical symmetry should allow us to write the field equations as a set of
differential equations in the variables t and r, and to see how this is done. We
observe that the energy momentum has the property that T00+τ00 is spherically
symmetric, i.e

T00(t, r) = T00(t, x̃) = eλ+2µ

∫
R3

√
1+ | p̃ |2 +(e2λ − 1)

(
x̃.p̃

r

)2

f(t, x̃, v)dp̃

(1.62)
and by Appendix D,

T0i = g00gijT
0j = −e2(λ+µ)K

xi

r
(1.63)

Tij = gilgjkT
lk = e4λP

xixj

r2
+Q(δij −

xixj

r2
) (1.64)

with spherically symmetric functions K, P , Q defined by

K(t, r) = K(t, x̃) :=
xi

r
T 0i(t, x̃) = eλ−µ

∫
R3

x̃.p̃

r
f(t, x̃, p̃)dp̃ (1.65)

P (t, r) = P (t, x̃) :=
xixj

r2
T ij(t, x̃)

P (t, r) = eλ

∫
R3

(
x̃.p̃

r

)2

f(t, x̃, p̃)
dp̃√

1+ | p̃ |2 +(e2λ − 1)
(

x̃.p̃
r

)2
(1.66)

Q(t, r) = Q(t, x̃) :=
1
2

(
δij −

xixj

r2

)
T ij(t, x̃)

26



Q(t, r) =
1
2
eλ

∫
R3

(
| p̃ | −

(
x̃.p̃

r

)2
)
f(t, x̃, p̃)

dp̃√
1+ | p̃ |2 +(e2λ − 1)

(
x̃.p̃
r

)2

(1.67)
(1.63) and (1.64) being direct consequences of identities:

T 0i = K
xi

r
(1.68)

T ij = e4λP
xixj

r2
+Q

(
δij −

xixj

r2

)
. (1.69)

By virtue of Appendix D, the electromagnetic stress tensor ταβ gives:
τ00 = 1

2e
2(λ+µ)e2

τ0i = 0
τij = 1

2e
2λe2{(δij − xixj

r2 )− e2λ xixj

r2 }.
(1.70)

Taking into account (1.58), (1.62), (1.63), (1.64) and (1.70), the Einstein equa-
tions read, in the (t, x̃, p) coordinates:

e−2λ(2rλ′ − 1) + 1 = 8πr2ρ
λ̇ = −4πreλ+µk

e−2λ(2rµ′ + 1)− 1 = 8πr2p
e−2λ(µ′′ + (µ′ − λ′)(µ′ + 1

r ))− e−2µ(λ̈+ λ̇(λ̇− µ̇)) = 4πq̄

(1.71)

where

ρ = α−1(T00 + τ00)

k = Keλ+µ

p = e2λ(P − 1
2
e2)

q̄ = 2Q+ e2λe2.

Now, since we have already calculated Christoffel symbols, we can reformulate
the Vlasov equation in the coordinates (t, xi, pi); from (1.15), one deduces:

p0 ∂f

∂t
+ pi ∂f

∂xi
+ (−Γi

νβp
νpβ − qpνFν

i)
∂f

∂pi
= 0. (1.72)

The first term in the round bracket gives, using (1.57):

−Γi
νβp

νpβ = −Γi
00(p

0)2 − 2Γi
0jp

0pj − Γi
jkp

jpk

= −µ′e2(µ−λ)x
i

r
(p0)2 − 2λ̇p0pj x

ixj

r2
− λ′

xixjxk

r3
pjpk

− 1− e−2λ

r

(
δjk −

xjxk

r2

) xi

r
pjpk
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−Γi
νβp

νpβ = −

(
µ′e2(µ−λ)(p0)2 + 2λ̇p0 x̃.p̃

r
λ′
(
x̃.p̃

r

)2

+
1− e−2λ

r

(
| p̃ |2 −

(
x̃.p̃

r

)2
))

xi

r
.

(1.73)
Next, taking the second term in round bracket in (1.72), one has:

−qpνFν
i = −qgijp0F0j − qgijpk Fkj︸︷︷︸

=0

= −qgijp0F0j = −qgijp0(−αEj)

= qgijp0αgjkE
k = qp0αδi

kE
k

−qpνFν
i = qp0αEi = qp0αe

xi

r
. (1.74)

Introducing (1.73)-(1.74) in (1.72), one has

∂f

∂t
+
pi

p0

∂f

∂xi
− 1
p0
{µ′e2(µ−λ)(p0)2 + 2λ̇p0 x̃.p̃

r
+ λ′(

x̃.p̃

r
)2

− qp0eµe+
1− e−2λ

r
(| p̃ |2 −(

x̃.p̃

r
)2)}x

i

r

∂f

∂pi
= 0.

(1.75)

Remark 1.6 Now, we observe that (1.75) and the equations defining the source
terms (1.62), (1.65), (1.66), (1.67) can be considerably simplified if one intro-
duces certain coordinates on the momentum space. In particular, these coordi-
nates can be chosen in such a way that no metric components appear under the
square root in the definition of p0 and that the source term k becomes indepen-
dent of the metric components.

Let us define:

vi = pi + (eλ − 1)
x̃.p̃

r

xi

r
. (1.76)

Taking the dot product of (1.76) by x̃, one has:

v.x̃ = eλx̃.p̃ (1.77)

(1.76) gives, using (1.77):

pi = vi + (e−λ − 1)
x̃.v

r

xi

r
(1.78)

and (1.78) is the inverse transformation. This allows us to introduce on R3 the
frame (ej), j = 1, 2, 3

ej
i = δj

i + (e−λ − 1)
xixj

r2
, i = 1, 2, 3 (1.79)

(1.78) gives, using (1.79):
pi = ei

jv
j (1.80)

28



and (1.80) shows that the vj are the coefficients of p̃ in that frame. We obtain
the following relations, using (1.61):

x̃.p̃ = δijx
ipj = e−λx̃.v

| p̃ |2= δijp
ipj = v2 + (e−2λ − 1)( x̃.v

r )2

p0 = −eµ
√

1 + v2

dp̃ = e−λdv (see Appendix E).

(1.81)

There will be no possibility to confuse v2 =| v |2= v.v with the second compo-
nents of the vector v ∈ R3. From equations (1.11), we deduce, since dx0

ds = p0 > 0
means that we can take x0 or t as parameter on the trajectories{

dxi

dt = pi

p0

dpi

dt = Qi
0

p0 .
(1.82)

Since p0 = g00p0 = e−µ
√

1 + v2 = α−1
√

1 + v2, the system (1.82) is equivalent
to (see Appendix E):

dxi

dt
= α

vi

√
1 + v2

+
α√

1 + v2
(e−λ − 1)

x̃.v

r

xi

r
(1.83)

dvi

dt
= −

(
αe−λµ′

√
1 + v2 + λ̇

x̃.v

r
− qαeλe

)
xi

r

+
α

r
√

1 + v2
(e−λ − 1)

(
v2x

i

r
− x̃.v

r
vi

) (1.84)

there will no possibility to confuse the value of eλ when λ = 1 and the function
e. Now, the Vlasov equation (1.75) is equivalent to what follows. (1.15) can be
written:

∂f

∂t
+
pi

p0

∂f

∂xi
+
Qi

0

p0

∂f

∂pi
= 0. (1.85)

Using (1.82), (1.85) can be written:

∂f

∂t
+
dxi

dt

∂f

∂xi
+
dpi

dt

∂f

∂pi
= 0. (1.86)

Now,
dpi

dt

∂f

∂pi
=

∂f

∂vj

∂vj

∂pi

∂pi

∂t
=

∂f

∂vj

dvj

dt
.

Then, (1.86) can be written:

∂f

∂t
+
dxi

dt

∂f

∂xi
+
dvi

dt

∂f

∂vi
= 0. (1.87)

29



Finally, using (1.83) and (1.84), (1.87) is written:

∂f

∂t
+
(
α

v√
1 + v2

+
α√

1 + v2
(e−λ − 1)

x̃.v

r

x̃

r

)
· ∂f
∂x̃

+
(
α
e−λ − 1
r
√

1 + v2

(
v2 x̃

r
− x̃.v

r
v

))
· ∂f
∂v

−
(
αe−λµ′

√
1 + v2 + λ̇

x̃.v

r
− qαeλe

)
x̃

r
· ∂f
∂v

= 0

(1.88)
(1.88) can be further simplified by taking into account the fact that we are
interested only in spherically symmetric solutions of this equation. As we said,
in the variable (t, x̃, v) spherical symmetry translates into the condition that:

f(t, Ax̃, Av) = f(t, x̃, v), x̃, v ∈ R3, A ∈ SO(3).

Then we have (see Appendix E for more details):

(r2v − x̃.vx̃) · ∂f
∂x̃

= (v2x̃− x̃.vv) · ∂f
∂v

and we finally arrive at the following formulation of the spherically symmetric
Vlasov equation:

∂f

∂t
+ αe−λ v√

1 + v2
.
∂f

∂x̃
−
(
αe−λµ′

√
1 + v2 + λ̇

x̃.v

r
− qαeλe

)
x̃

r
· ∂f
∂v

= 0.

(1.89)
Since f is spherically symmetric, it is convenient to know what about the
Maxwell equations. By virtue of remark 1.1, it suffices to consider only equations
(1.42) and (1.47). Then, calculations show that, since

√
| g | = eλ+µ = αeλ (see

Appendix A, D):
∂

∂r
(r2eλe) = qr2eλM (1.90)

∂

∂t
(eλe) = −q

r
αN (1.91)

where M and N are the following spherically symmetric functions

M(t, r) = M(t, x̃) :=
∫

R3
f(t, x̃, v)dv (1.92)

N(t, r) = N(t, x̃) :=
∫

R3

x̃.v√
1 + v2

f(t, x̃, v)dv. (1.93)

Now, in the (t, x̃, v) coordinates, the Einstein equations read:

e−2λ(2rλ′ − 1) + 1 = 8πr2ρ (1.94)

λ̇ = −4πreλ+µk (1.95)

e−2λ(2rµ′ + 1)− 1 = 8πr2p (1.96)

e−2λ

(
µ′′ + (µ′ − λ′)

(
µ′ +

1
r

))
− e−2µ(λ̈+ λ̇(λ̇− µ̇)) = 4πq̄ (1.97)
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where

ρ(t, r) = ρ(t, x̃) :=
∫

R3

√
1 + v2f(t, x̃, v)dv +

1
2
e2λ(t,x̃)e2(t, x̃) (1.98)

k(t, r) = k(t, x̃) :=
∫

R3

x̃.v

r
f(t, x̃, v)dv (1.99)

p(t, r) = p(t, x̃) :=
∫

R3

(
x̃.v

r

)2

f(t, x̃, v)
dv√

1 + v2
− 1

2
e2λ(t,x̃)e2(t, x̃) (1.100)

q̄(t, r) = q̄(t, x̃) =
∫

R3

(
v2 −

(
x̃.v

r

)2
)
f(t, x̃, v)

dv√
1 + v2

+ e2λ(t,x̃)e2(t, x̃)

(1.101)

Remark 1.7 (1.89), (1.90), (1.91), (1.94), (1.95), (1.96), (1.97) is the spher-
ically symmetric Einstein-Vlasov-Maxwell system. Note also that the square of
the angular momentum is given by [1]:

L :=| x̃ |2| v |2 −(x̃.v)2

and we can prove, using a direct computation and the spherical symmetry that
angular momentum is conserved along the characteristics.

Remark 1.8 Note that in the spherically symmetric Einstein-Vlasov-Maxwell
system f = 0 implies Fαβ = 0 and this is not true in the case without spherical
symmetry, where it is possible to have non-trivial source-free solutions of the
Maxwell equations.

1.2.5 The Cauchy problem

Now, to obtain a well-posed initial value problem we have to prescribe boundary
conditions for λ, µ, e and initial conditions. In our work, we are interested in
the case of an asymptotically flat spacetime with regular center. This means
that the metric should at spatial infinity approach the flat Minkowski metric
and λ should vanish at r = 0, i.e we impose the boundary conditions:

lim
r→∞

λ(t, r) = lim
r→∞

µ(t, r) = λ(t, 0) = 0. (1.102)

The same conditions are valid for the Maxwell field e, i.e

lim
r→∞

e(t, r) = e(t, 0) = 0 (1.103)

(1.103) means that at spatial infinity, there is no charged particle.

Remark 1.9 Note that the assumption e(t, 0) = 0 makes sense. To see the
latter, we use the fact that the electric field E is spherically symmetric, i.e
Φ∗AE = E, for every A ∈ SO(3). The assertion above is equivalent to AE = E
for every A ∈ SO(3) and this means that E vanishes at the origin in the spatial
variable. Once we have E(t, 0, 0, 0) = 0, it easily follows from
E(t, x̃) = e(t, x̃) x̃

|x| that e(t, 0) = 0.
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Remark 1.10 Once the global in time existence theorem is established, we will
look at the behaviour for t→ +∞. Namely: Is the spacetime also asymptotically
flat, Minkowski at future infinity? which means λ(t, r), µ(t, r), e(t, r) → 0

t→+∞
?

Since the three equations (1.90), (1.94) and (1.96) determine λ, µ, e for given λ̄
and f in their source terms ρ, p and M respectively, we need to prescribe initial
data for λ and f only, namely :

f(0) =
◦
f, λ(0) =

◦
λ

with
◦
λ ∈ C∞(R3) and

◦
f ∈ C∞c (R6) a smooth function with compact support,

which is nonnegative and spherically symmetric, i.e

∀A ∈ SO(3), ∀(x̃, v) ∈ R6,
◦
f(Ax̃,Av) =

◦
f(x̃, v)

Remark 1.11 The assumption on the compactness of support of
◦
f means that

the system is physically isolated.

Now, let us end this chapter by recalling this useful result:

Lemma 1.5 (Gronwall lemma) Let φ ∈ C([0,+∞[), ψ ∈ L1([0,+∞[), ψ ≥ 0
and C ≥ 0 such that:

φ(t) ≤ C +
∫ t

0

φ(s)ψ(s)ds, t ∈ [0,+∞[.

Then

φ(t) ≤ C exp
(∫ t

0

ψ(s)ds
)
.
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Chapter 2

Preliminary results,
conservation laws and
reduced systems

Introduction

In this chapter we establish some properties of the characteristics and of the
solution of the Vlasov equation for given λ, µ and e, show how to solve (1.90)
and the field equations (1.94), (1.96) for M , ρ and p given, establish certain
conservation laws and introduce an auxiliary system which is equivalent to the
full system and which will be used in the proof of the local existence result in
the next chapter. Beside this, we make precise the solution concept which we
use in the present investigation.

Now, observe the system stated at the end of chapter 1, the equations (1.90),
(1.94) and (1.96) alone determine λ, µ and e for given f and λ̄. So, we can
consider only the system (1.90), (1.94), (1.96) and establish local existence for
these equations. But, doing so, one encounters some difficulties in estimating the
term λ̇ in the iterative scheme used to obtain a local solution, just because the
iterates are not yet solutions. To avoid this, we replace in the Vlasov equation
λ̇ by λ̃, obtained from equation (1.95) and check at the end that λ̃ is exactly
the time derivative of λ. So, the auxiliary system that we consider here is the
following equations

∂f

∂t
+ αe−λ v√

1 + v2
· ∂f
∂x̃

−
(
αe−λµ′

√
1 + v2 + λ̃

x̃.v

r
− qeλ+µe

)
x̃

r
· ∂f
∂v

= 0,

(2.1)
where

λ̃ = −4πreλ+µk, (2.2)

coupled with (1.90), (1.94) and (1.96). If we have a solution of this system then
we have to check that indeed λ̃ = λ̇ and that (1.91), (1.95) and (1.97) hold
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as well. Before we do so, we make precise the regularity properties which we
require of solutions:

2.1 The concept of regularity

Definition 2.1 Let I ⊂ R be an interval.

a) f : I×R6 → R+ is regular, if f ∈ C1(I×R6), f(t) is spherically symmetric
and suppf(t) is compact for all t ∈ I.

b) ρ(or p, q̄) : I × R3 → R is regular, if ρ ∈ C1(I × R3), ρ(t) is spherically
symmetric for all t ∈ I.

c) M(or N) : I×R3 → R is regular, if M ∈ C1(I×R3), M(t) is spherically
symmetric and suppM(t) is compact for all t ∈ I.

d) k : I × R3 → R is regular, if k ∈ C(I × R3) ∩ C1(I × R3 \ {0}), k(t) is
spherically symmetric, suppk(t) compact and k(t) ∈ C1([0,+∞[) for all
t ∈ I.

e) λ, : I × [0,+∞[→ R is regular, if λ ∈ C1(I × [0,+∞[),
λ′ ∈ C1(I × [0,+∞[), λ satisfies (1.102) and

λ̇(t, 0) = λ′(t, 0) = 0,

for all t ∈ I.

f) µ, : I × [0,+∞[→ R is regular, if µ, µ′ ∈ C1(I × [0,+∞[), µ satisfies
(1.102) and

µ′(t, 0) = 0,

for all t ∈ I.

g) λ̃, : I × [0,+∞[→ R is regular, if λ̃ ∈ C1(I × [0,+∞[) and λ̃ satisfies

λ̃(t, 0) = λ̃′(t, 0) = 0,

for all t ∈ I.

h) e : I×[0,+∞[→ R is regular if e ∈ C1(I×[0,+∞[) and e satisfies (1.103).

Remark 2.1 The requirement that e be C1 is necessary to insure the existence
and uniqueness of solution for the characteristic system as we will see later. As
it is written in [20], there is no way to choose a weaker regularity condition on
e so that the result mentioned above holds.

34



2.2 The regularity of electric field E

We prove in the following result that regularity of e implies the same for E.

Lemma 2.1 Let e : [0,+∞[→ R be a function with e(0) = 0 and let E = (Ei)
be the vector field on R3 defined by Ei(x̃) = e(| x̃ |) xi

|x̃| for x̃ 6= 0 and Ei(0) = 0.
Then for any integer k ≥ 0 the following assertions are equivalent:

i) e ∈ Ck([0,+∞[) and e(2l)(0) = 0 for all integers l with 2l ≤ k

ii) Ei ∈ Ck(R3), i = 1, 2, 3.

Proof: We suppose that Ei ∈ Ck(R3), for i = 1, 2, 3. Then E1(x1, 0, 0) = e(x1)
for x1 ≥ 0 and this immediately shows that e ∈ Ck([0,+∞[). Also, one has:

E1(−x1, 0, 0) = −e(x1) = −E1(x1, 0, 0), for x1 ≥ 0.

Thus,

∂E1

∂x1
(x1, 0, 0) =

∂E1

∂x1
(−x1, 0, 0);

∂2E1

∂(x1)2
(x1, 0, 0) = − ∂2E1

∂(x1)2
(−x1, 0, 0)

and we deduce that ∂2E1

∂(x1)2 (0, 0, 0) = 0. Then e′′(0) = 0, since
∂2E1

∂(x1)2 (x1, 0, 0) = e′′(x1). Next from

∂2lE1

∂(x1)2l
(x1, 0, 0) = − ∂2lE1

∂(x1)2
(−x1, 0, 0)

we obtain e(2l)(0) = 0 for all integers l with 2l ≤ k and the part i) is proved.
Conversely, suppose that i) holds. By the Taylor Young formula at the origin,
one has, since e(0) = 0:

e(| x̃ |) =| x̃ | e′(0) +
| x̃ |2

2!
e′′(0) + ...+

| x̃ |k

k!
e(k)(0)+ | x̃ |k ε(| x̃ |)

where ε(| x̃ |) −→
|x̃|→0

0. So,

Ei(x̃) = xie′(0) + xi | x̃ |2

2!
e′′(0) + ...+ xi | x̃ |k−1

k!
e(k)(0)+ | x̃ |k−1 ε(| x̃ |)

and in this formula, only the coefficients of odd powers are non-zero. Thus
Ei ∈ Ck(R3) and ii) holds. Then lemma 2.1 is proved.

Remark 2.2 Recall that with spherical symmetry we consider functions of t
and x̃ as functions of t and r =| x̃ | (see Appendix F). Note that, if f and e are
regular then the quantities ρ, p, k, q̄, M and N defined from f and e are also
regular in the appropriate sense (see Appendix G).

Let us now consider the Vlasov equation (2.1) for fixed functions λ, µ, λ̃ and e.
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2.3 Existence of solutions for the Vlasov equa-
tion with fixed coefficients

Proposition 2.1 Let I ⊂ R be an interval with 0 ∈ I, λ, µ, λ̃ and e regular on
I × [0,+∞[, with λ ≥ 0, µ ≤ 0 and define

F1(s, x̃, v) = eµ−λ v√
1 + v2

F2(s, x̃, v) =

{
−
(
λ̃ x̃.v

r + eµ−λµ′
√

1 + v2 − qeµ+λe
)

x̃
r if x̃, v ∈ R3, x̃ 6= 0

0 if x̃ = 0, v ∈ R3

and

F (s, z) = F (s, x̃, v) = (F1, F2)(s, x̃, v); s ∈ I z = (x̃, v) ∈ R6.

Then

a) F ∈ C1(I × R6).

b) For every t ∈ I, z ∈ R6, the characteristic system

ż = F (s, z)

has a unique solution s 7→ Z(s, t, z) = (X,V )(s, t, z) with Z(t, t, z) = z.
Moreover, Z ∈ C1(I2 × R6) is a C1-diffeomorphism of R6 with inverse
Z(t, s, .), s, t ∈ I, and

(X,V )(s, t, Ax̃, Av) = (AX,AV )(s, t, x̃, v)

for A ∈ SO(3) and x̃, v ∈ R3.

c) For a nonnegative, spherically symmetric function
◦
f ∈ C1

c (R6),

f(t, z) = f(t, x̃, v) =
◦
f(Z(0, t, z)) =

◦
f(xi(t, z), vi(t, z))

t ∈ I, x̃, v ∈ R3, defines the unique regular solution of (2.1) with f(0) =
◦
f .

d) If f is the regular solution of (1.89), then

∂

∂t

(
eλ

∫
R3
fdv

)
+ div

x̃

(
eµ

∫
R3

v√
1 + v2

fdv

)
= 0 (2.3)

where div
x̃

is divergence in the Euclidian metric on R3 and thus the quantity∫ ∫
R6
eλ(t,x̃)f(t, x̃, v)dx̃dv, t ∈ I (2.4)

is conserved.
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Proof : The crucial point in the proof of part a) is regularity of F2 at r = 0.
Now the term

xi

r
µ′(s, r) =

∂µ

∂xi
(s, r)

is continuously differentiable with respect to x̃ ∈ R3 and vanishes at r = 0 by
virtue of the regularity of µ (see Appendix F). The term λ̃

xixj

r2 is continuously
differentiable with respect to x̃, using the regularity of λ̃ (see Appendix H). The
continuous differentiability of both terms with respect to t at x̃ = 0 follows from
the fact that

˙̃
λ(t, 0) = µ̇′(t, 0) = 0, t ∈ I

and the following expressions

∂

∂xk

(
eλ+µe

xi

r

)
= eλ+µ

(
e(λ′ + µ′)

xixk

r2
+ e′

xixk

r2
+
e

r
δi
k − e

xixk

r3

)
∂

∂t

(
eλ+µe

xi

r

)
= eλ+µ(e(λ̇+ µ̇) + ė)

xi

r

show that the term e x̃
r is also continuously differentiable at r = 0, since by the

regularity of e, we have:

e(t, r) = re′(t, 0) + rε(t, r), lim
r→0

ε(t, r) = 0.

Therefore F2 is continuously differentiable on I × R6. This implies local exis-
tence, uniqueness and regularity of Z(., t, z). Since

| ẋ |=| dx
ds

|=| eµ−λ v√
1 + v2

|≤ eµ−λ ≤ 1

X(., t, z) remains bounded on bounded sub-intervals of I. On the other hand,
by regularity of λ, µ, e and

| v̇ |≤| λ̃ || v | + | µ′ | (1+ | v |)+ | q || e | eλ+µ

which is bounded on every bounded sub-interval of I, the same is true for
V (., t, z). Therefore, Z(., t, z) exists on I. The other assertions in b) are standard,
or follow by uniqueness. Assertion c) is an immediate consequence of b) and the
fact that according to (1.89), f remains constant along the trajectories. Note in
particular that t 7→ Z(t, 0, z) with Z(0, 0, z) = z denotes the trajectory starting
from z ∈ R6 and

suppf(t) = {Z(t, 0, z)| z ∈ supp
◦
f}, t ∈ I

which is compact for every t ∈ I, as image of supp
◦
f by the diffeomorphism of R6:

z 7→ Z(t, 0, z). Now, to prove part d), we multiply (1.89) with eλ, integrate with

37



respect to v, use α = eµ and apply Gauss theorem, we obtain since suppf(t) is
compact:

∂

∂t

(
eλ

∫
R3
fdv

)
= λ̇eλ

∫
R3
fdv − eλ

∫
R3
eµ−λ v√

1 + v2
· ∂f
∂x̃
dv

+ eλ

∫
R3

(
αe−λµ′

√
1 + v2 + λ̇

x̃.v

r

)
x̃

r
· ∂f
∂v
dv

− qe2λαe
x̃

r
·
∫

R3

∂f

∂v
dv︸ ︷︷ ︸

=0

= λ̇eλ

∫
R3
fdv − ∂i

(
α

∫
R3

vi

√
1 + v2

fdv

)
+ µ′α

∫
R3

x̃.v

r
f

dv

1 + v2

+ eλ

∫
R3

∂

∂vj

((
αe−λµ′

√
1 + v2 + λ̇

x̃.v

r

)
xj

r
f

)
dv︸ ︷︷ ︸

=0

− αµ′
∫

R3

x̃.v

r
f

dv√
1 + v2

− λ̇eλ

∫
R3
fdv

= −∂i

(
α

∫
R3

vi

√
1 + v2

fdv

)
= −div

x̃

(
α

∫
R3

v√
1 + v2

fdv

)
,

thus (2.3) holds. Now integrate (2.3) over R3 with respect to x̃ to get (2.4).
The conservation law in d) corresponds to conservation of number of particles.
The term eλ comes from the fact that the coordinates v on the mass shell are
not the canonical momenta corresponding to x̃, and proposition 2.1 is proved.

We will need the following result obtained by direct computation as it is
shown below, to control certain derivatives of the unknown.

Lemma 2.2 Let I ∈ R be an interval, let λ,µ, λ̃, e : I × [0,+∞[→ be regular,
and define (X,V )(s) = (X,V )(s, t, z) for (s, t, z) ∈ I2 × R6 as in
proposition 2.1. For j ∈ {1, ..., 6} define

ξj(s) =
∂X

∂zj
(s, t, z)

ηj(s) =
∂V

∂zj
(s, t, z)

+
√

1 + V 2(s)e(λ−µ)(s,X(s))λ̃(s,X(s))
X(s)
| X(s) |

X(s)
| X(s) |

· ∂X
∂zj

(s, t, z),

Then,

38



dξj
ds

= a1(s,X(s), V (s))ξj + a2(s,X(s), V (s))ηj

dηj

ds
= (a3 + a5)(s,X(s), V (s))ξj + a4(s,X(s), V (s))ηj

where the coefficients of matrices a1, ..., a5 are

(a1(s, x̃, v))i
k =

(
αe−λ(µ′ − λ′)

vi

√
1 + v2

− λ̃
xi

r
+ λ̃

vi

1 + v2

x̃.v

r

)
xk

r
,

(a2(s, x̃, v))i
k = e−λ α√

1 + v2

(
δi
k −

vivk

1 + v2

)
,

(a3(s, x̃, v))i
k =

αe−λ

r
(2µ′ − λ′)

√
1 + v2

xixk

r2
+
λ̃

r

vixk

r

− 1
r

(
λ̃
x̃.v

r
+ αe−λµ′

√
1 + v2 − qeαeλ

)
δi
k

+ qαeλ

(
e(λ′ + µ′) + e′ +

e

r
λ̃

x̃.v√
1 + v2

)
xixk

r2

− qeαeλx
ixk

r3

(a4(s, x̃, v))i
k = −

(
α√

1 + v2
e−λµ′ + λ̃

x̃.v

r

1
1 + v2

)
xivk

r
,

(a5(s, x̃, v))i
k = −αeλ

√
1 + v2H̃

xixk

r2
,

where

H̃ = e−2λ

(
µ′′ + (µ′ − λ′)

(
µ′ +

1
r

)
− α−2

( ˙̃
λ+ λ̃(λ̇− µ̇)

))
.

If λ ∈ C2(I × [0,+∞[) and if we let λ̃ = λ̇, then

(a3(s, x̃, v))i
k =

αe−λ

r
(2µ′ − λ′)

√
1 + v2

xixk

r2
+
λ̇

r

vixk

r

− 1
r

(
λ̇
x̃.v

r
+ αe−λµ′

√
1 + v2 − qeαeλ

)
δi
k

+ qαeλ

(
e(λ′ + µ′) + e′ +

e

r
λ̃

x̃.v√
1 + v2

)
xixk

r2

− qαeλe
xixk

r3
− αeλ

√
1 + v2H

xixk

r2

where H is obtained from H̃, replacing λ̃ by λ̇ and we drop the coefficient a5.
In particular if (f, λ, µ, e) solves the full Einstein-Vlasov-Maxwell system the
second order derivatives of λ and µ can be removed from the coefficients since
by (1.97) H can be expressed via q̄.

39



Remark 2.3 Note that by regularity of λ, µ and λ̃ all derivatives in the above
lemma exist, and the transformation to variable (ξ, η) is regular at x̃ = 0; the
function

√
1 + v2eλ−µλ̃xixk

r2 is continuously differentiable at r = 0 by the regu-
larity of λ̃ (see Appendix H).

Proof of lemma 2.2: We denote

vi
j(s) =

∂V i

∂zj
(s, t, z), ξj = (ξi

j), ηj = (ηi
j), vi = δikv

k, xi = δikx
k

and for simplicity we drop all arguments, and use the summation convention.
Then

dξi
j

ds
=

d

ds

(
∂Xi

∂zj

)
=

∂

∂zj

(
dXi

ds

)
=
∂F i

1

∂zj

=
∂F i

1

∂xk

∂Xk

∂zj
+
∂F i

1

∂vk

∂V k

∂zj

=
∂F i

1

∂xk
ξk
j +

∂F i
1

∂vk

(
ηk

j −
√

1 + v2eλ−µλ̃
xk

r

xl

r
ξl
j

)
= αe−λ(µ′ − λ′)

xk

r

vi

√
1 + v2

ξk
j

+ e−λ α√
1 + v2

(
δi
k −

vivk

1 + v2

)(
ηk

j − α−1eλ
√

1 + v2λ̃
xkxl

r2
ξl
j

)
=
(
αe−λ(µ′ − λ′)

vi

√
1 + v2

− λ̃
xi

r
+

vi

1 + v2
λ̃
x̃.v

r

)
xk

r
ξk
j

+ e−λ α√
1 + v2

(
δi
k −

vivk

1 + v2

)
ηk

j ,

which is the desired result for ξ̇i
j ; now

η̇i
j =

dηj

ds
=
dvi

j

ds
+

d

ds

(√
1 + v2eλ−µλ̃

xixk

r2
ξk
j

)
. (2.5)

Taking the first term of the right hand side of (2.5), one has:

dvi
j

ds
=

d

ds

(
∂V i

∂zj

)
=

∂

∂zj

(
dV i

ds

)
=
∂F i

2

∂zj

= − ∂

∂zj

(
λ̃
x̃.v

r

xi

r
+ eµ−λµ′

√
1 + v2

xi

r
− qeλ+µe

xi

r

)
= − ∂

∂xk

(
λ̃
x̃.v

r

xi

r
+ eµ−λµ′

√
1 + v2

xi

r
− qeλ+µe

xi

r

)
ξk
j

− ∂

∂vk

(
λ̃
xlv

l

r

xi

r
+ eµ−λµ′

√
1 + v2

xi

r

)
vk

j
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dvi
j

ds
= −

(
xk

r
λ̃′
x̃.v

r

xi

r
+ λ̃

vkx
i

r2
+ λ̃

x̃.v

r

δi
k

r
− 2λ̃

x̃.v

r

xixk

r3

)
ξk
j

−
(
µ′(µ′ − λ′)

√
1 + v2

xixk

r2
eµ−λ + eµ−λµ′′

√
1 + v2

xkx
i

r2

)
ξk
j

−
(
eµ−λµ

′

r
δi
k

√
1 + v2 − eµ−λµ′

√
1 + v2

xixk

r3

)
ξk
j

−
(
λ̃
xkx

i

r2
+ eµ−λµ′

xi

r

vk√
1 + v2

)(
ηk

j −
√

1 + v2λ̃eλ−µx
kxl

r2
ξl
j

)
.

(2.6)
Taking the second term of the right hand side of (2.5) one has, using dv

ds = F2,
dx̃
ds = F1, (1.89) and expression of dξi

j

ds ; setting

A :=
√

1 + v2eλ−µλ̃
xixk

r2
ξk
j

dA

ds
= − x̃.v

r
√

1 + v2
eλ−µλ̃

(
λ̃
x̃.v

r
+ eµ−λµ′

√
1 + v2 − qeλ+µe

)
xixk

r2
ξk
j

+ (λ̇− µ̇)
√

1 + v2eλ−µλ̃
xixk

r2
ξk
j + (λ′ − µ′)

x̃.v

r
λ̃
xixk

r2
ξk
j

+
√

1 + v2eλ−µ ˙̃
λ
xixk

r2
ξk
j

+ λ̃′
x̃.v

r

xixk

r2
ξk
j + λ̃

(
vixk

r2
+
xivk

r2
− 2

x̃.v

r2
xixk

r2

)
ξk
j

+ λ̃(µ′ − λ′)
x̃.v

r

xixk

r2
ξk
j −

√
1 + v2eλ−µλ̃2x

ixk

r2
ξk
j

+
1√

1 + v2
λ̃2

(
x̃.v

r

)2
xixk

r2
ξk
j

+ λ̃
xi

r

(
xk

r
− x̃.v

r

vk

1 + v2

)
ηk

j

(2.7)

Introducing (2.6) and (2.7) in (2.5), one has:

η̇i
j = −1

r

(
λ̃
x̃.v

r
+ eµ−λµ′

√
1 + v2 − qeeλ+µ

)
δi
kξ

k
j + λ̃

vixk

r2
ξk
j

+
1
r
eµ−λ(2µ′ − λ′)

√
1 + v2

xixk

r2
ξk
j − qeλ+µe

xixk

r3
ξk
j

+ qeλ+µx
ixk

r2

(
e(λ′ + µ′) + e′ + λ̃

e

r

x̃.v√
1 + v2

)
ξk
j

− eλ+µ
√

1 + v2H̃
xixk

r2
ξk
j −

(
eµ−λµ′

1√
1 + v2

+ λ̃
x̃.v

r

1
1 + v2

)
xivk

r
ηk

j

and the proof is complete.
Next , we investigate field equations (1.94) and (1.96) for given ρ and p and

the Maxwell equation (1.90) for given M .
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2.4 Existence of solutions for the linear system
associated with (1.94), (1.96) and (1.90)

Proposition 2.2 Let λ̄, ē : I × [0,+∞[→ R+ and f̄ : I × R6 → R+ be regular
and define ρ = ρ(f̄ , λ̄, ē); p = p(f̄ , λ̄, ē), M = M(f̄) as in (1.92), (1.98),
(1.100), replacing f , λ and e by f̄ , λ̄ and ē and let:

m(t, r) = 4π
∫ r

0

s2ρ(t, s)ds =
∫
|y|≤r

ρ(t, y)dy (2.8)

where t ∈ I, r ∈ [0,+∞[. Then there exists a regular solution (λ, µ, e) of
the system (1.90), (1.94) and (1.96) on I × [0,+∞[ satisfying the boundary
conditions (1.102)-(1.103) if and only if:

2m(t, r)
r

< 1, t ∈ I, r ∈ [0,+∞[. (2.9)

The solution is given by

e−2λ(t,r) = 1− 2m(t, r)
r

(2.10)

µ′(t, r) = e2λ(t,r)

(
m(t, r)
r2

+ 4πrp(t, r)
)

(2.11)

µ(t, r) = −
∫ +∞

r

µ′(t, s)ds (2.12)

λ′(t, r) = e2λ(t,r)

(
−m(t, r)

r2
+ 4πrρ(t, r)

)
(2.13)

λ′(t, r) + µ′(t, r) = 4πre2λ(t,r)(ρ(t, r) + p(t, r)) (2.14)

λ(t, r) ≥ 0; µ(t, r) ≤ 0; λ(t, r) + µ(t, r) ≤ 0 (2.15)

and
e(t, r) =

q

r2
e−λ(t,r)

∫ r

0

s2eλ(t,s)M(t, s)ds (2.16)

for (t, r) ∈ I × [0,+∞[.

Proof : First observe that the field equation (1.94) can be written in the form

(re−2λ)′ = 1− 8πr2ρ

which can be integrated on [0,+∞[ subject to the condition λ(t, 0) = 0 if and
only if (2.9) holds. We obtain (2.11) by writing (1.96) and using (2.10). So,
(2.10), (2.11) and (2.12) clearly define the unique regular solution µ, which due
to compact support of f̄ , converges to 0 for r → ∞. The boundary condition
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for λ at r = 0 follows from the bound of ρ at r = 0. In fact, by (2.8), since ρ is
continuous in r, one has

0 ≤ m(t, r)
r

=
4π
r

∫ r

0

s2ρ(t, s)ds ≤ 4π
r

∫ r

0

r2ρ(t, s)ds = 4πr
∫ r

0

ρ(t, s)ds→ 0
r→0

and then (2.10) implies λ(t, r) → 0
r→0

. Now, if we solve (1.94) with unknown λ′

and observe (2.10) we obtain (2.13) and (2.11)+(2.13) give (2.14). On the other
hand (2.10) gives:

λ(t, r) = −1
2
Log

(
1− 2m(t, r)

r

)
> 0,

since 1− 2m(t,r)
r < 1. From (2.14) it follows that λ′+µ′ ≥ 0 and λ+µ is increasing

in r, and since this function vanishes at r = ∞, it follows that µ(t, 0) ≤ 0 and
then λ + µ ≤ 0. Next the above result with the fact that λ(t, r) ≥ 0 imply
µ(t, r) ≤ 0. On the other hand, we obtain (2.16) by integrating (1.90) on [0, r].
Since λ and M are bounded in r variable, one has, using (2.16) and λ ≥ 0:

| e(t, r) | ≤ | q |
r2

sup
s∈[0,r]

(
eλ(t,s)M(t, s)

)∫ r

0

s2ds

≤ r | q |
3

sup
s∈[0,r]

(
eλ(t,s)M(t, s)

)
thus

lim
r→0

e(t, r) = 0 = e(t, 0).

Note also that if suppf̄(t) ⊂ B(R) × B(R′), then from (2.16) we deduce for
r ≥ R,

| e(t, r) |=

∣∣∣∣∣ qr2 e−λ(t,r)

∫ R

0

s2eλ(t,s)M(t, s)ds

∣∣∣∣∣ ≤ C

r2

and then
lim

r→∞
e(t, r) = 0.

Now, the differentiability properties of λ and µ which are part of definition of
being regular are obvious. To study the regularity of e, we differentiate (2.16)
with respect to t and r respectively and obtain:

ė = −λ̇e+
q

r2
e−λ

∫ r

0

s2λ̇Meλds+
q

r2
e−λ

∫ r

0

s2Ṁeλds

e′ = −λ′e+ qM − 2q
r3
e−λ

∫ r

0

s2Meλds.

Since M is regular, we use an estimate as above to conclude that ė and e′ are
continuous at r = 0, and then ė, e′ ∈ C(I × [0,+∞[). So, e ∈ C1(I × [0,+∞[)
and e is regular. Then the proof is complete.
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We now show that the reduced system mentioned above is equivalent to the
full system. During the proof, we also obtain the conservation law:

∂ρ

∂t
+ div

x̃

(
eµ−λ

∫
R3
vfdv

)
= 0 (2.3’)

2.5 The auxiliary system

Proposition 2.3 Let (λ, µ, f, e) be a regular solution of subsystem (1.89), (1.90),
(1.94) and (1.96) satisfying the boundary conditions (1.102), (1.103). Then
(λ, µ, f, e) satisfies the full Einstein-Vlasov-Maxwell system (1.89), (1.90), (1.91),
(1.94), (1.95), (1.96), (1.97), and the A.D.M (Arnowitt-Deser-Misner) mass

M(t) :=
∫

R3
ρ(t, y)dy = lim

r→∞
m(t, r) (2.17)

is conserved.

Proof : First, we derive the conservation law (2.3′) for ρ, from which we will
deduce (2.17). The definition of ρ in (1.98) together with the Vlasov equation
in (1.89) and Gauss theorem yield:

∂ρ

∂t
=
∫

R3

√
1 + v2

(
−F1 ·

∂f

∂x̃
− F̃2

x̃

r
· ∂f
∂v

)
dv

+
1
2
∂

∂t

(
e2λe2

)
.

∂ρ

∂t
= −div

x̃

(
eµ−λ

∫
R3
vfdv

)
+ (µ′ − λ′)eµ−λk

−
∫

R3

∂

∂vj
(
√

1 + v2fF̃ j
2 )dv︸ ︷︷ ︸

=0

− λ̇

∫
R3

√
1 + v2fdv − λ̇

∫
R3

(
x̃.v

r

)2

f
dv√

1 + v2

− 2µ′eµ−λk +
q

r
eλ+µeN +

∂

∂t

(
e2λe2

)
.

(2.18)

In the equations above, F̃2 is obtained from F2, replacing in proposition 2.1, λ̃
by λ̇. Now, taking into account (1.98) and (1.100), (2.18) can be written:

∂ρ

∂t
= −div

x̃

(
eµ−λ

∫
R3
vfdv

)
− (µ′ + λ′)eµ−λk

− λ̇

(
ρ− 1

2
e2λe

)
− λ̇

(
p+

1
2
e2λe2

)
+
q

r
eλ+µeN +

1
2
∂

∂t

(
e2λe2

)
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∂ρ

∂t
= −div

x̃

(
eµ−λ

∫
R3
vfdv

)
− (µ′ + λ′)eµ−λk − λ̇(ρ+ p)

+
q

r
eλ+µeN +

1
2
∂

∂t

(
e2λe2

) (2.19)

taking into account (2.14), (2.19) can be written:

∂ρ

∂t
= −div

x̃

(
eµ−λ

∫
R3
vfdv

)
− (ρ+ p)(λ̇+ 4πreµ+λk)

+
q

r
eλ+µeN +

1
2
∂

∂t

(
e2λe2

) (2.20)

in order to simplify (2.20) we show that e defined by (2.16) is a solution of equa-
tion (1.91). Multiplying (2.16) with eλ, differentiating the equation obtained
with respect to t and using (2.3), one has, since

∫
|y|=r

dω(y) = 4πr2:

∂

∂t

(
eλe
)

=
q

4πr2

∫
|y|≤r

∂

∂t

(
eλ

∫
R3
fdv

)
dy

= − q

4πr2

∫
|y|≤r

div
y

(
α

∫
R3

v√
1 + v2

)
dy

= − qα

4πr3
N

∫
|y|=r

dω(y)

= −qαN × 4πr2

4πr3

= −q
r
αN.

This proves that (1.91) holds. Next, taking the last term in the right hand side
of (2.20), one has, since (1.91) holds:

1
2
∂

∂t

(
e2λe2

)
=

1
2
∂

∂t

(
eλe
)2

= 2
1
2
eλe

∂

∂t

(
eλe
)

= eλe
(
−q
r
αN
)

1
2
∂

∂t

(
e2λe2

)
= −q

r
eλ+µeN. (2.21)

Introducing (2.21) in (2.20), one has:

∂ρ

∂t
= −div

x̃

(
eµ−λ

∫
R3
vfdv

)
− (ρ+ p)(λ̇+ 4πreµ+λk). (2.22)

Now if equation (1.95) held then we would obtain (2.3′). Let us show that
(1.95) holds. Differentiating the relation (2.10) with respect to t, using (2.22)
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and Gauss theorem, we get:

−2λ̇e−2λ = −2
r
ṁ = −2

r

∫
|y|≤r

ρ̇dy

=
2
r

∫
|y|≤r

(
div

y

(
eµ−λ

∫
R3
vfdv

)
+ (ρ+ p)(λ̇+ 4πreλ+µk)

)
dy

=
2
r
eµ−λk

∫
|y|=r

dω(y) +
2
r

∫
|y|≤r

(ρ+ p)(λ̇+ 4πreλ+µk)dy

= 8πreµ−λk +
8π
r

∫ r

0

s2(ρ+ p)(λ̇+ 4πreλ+µk)ds.

Thus
re−2λ(λ̇+ 4πreλ+µk) = −4π

∫ r

0

s2(ρ+ p)(λ̇+ 4πseλ+µk)ds

and since the left hand side of this identity is 0 at r = 0 it is 0 anywhere with
the Gronwall lemma, and (1.95) holds. Then (2.3′) holds and the A.D.M mass
defined by (2.17) is conserved, i.e dM

dt (t) = 0.
Next, we show that (1.97) follows from (1.89), (1.90), (1.91), (1.94), (1.95)

and (1.96). We differentiate (2.11) with respect to r, to obtain:

µ′′ = 2λ′µ′ + e2λ
(
4πρ− 2

m

r3
+ 4πp+ 4πrp′

)
= 2λ′µ′ + 4πe2λ(ρ+ p) + 4πre2λp′ − 2

r
(µ′ − 4πre2λp)

and with (2.14)

e−2λ

(
µ′′ + (µ′ − λ)

(
µ′ +

1
r

))
= e−2λ

(
2λ′µ′ +

1
r
(λ′ + µ′) + 4πre2λp′

)
− e−2λ

(
2
r
(µ′ − 4πre2λp)− (µ′ − λ′)

(
µ′ +

1
r

))

e−2λ

(
µ′′ + (µ′ − λ)

(
µ′ +

1
r

))
= e−2λµ′(λ′ + µ′) + 4πrp′ + p. (2.23)

Differentiating (1.95) with respect to t, we obtain:

λ̈ = −4πr(λ̇+ µ̇)eλ+µk − 4πreλ+µk̇ = λ̇(λ̇+ µ̇)− r

2
eλ+µk̇. (2.24)

Using (2.24), we obtain:

e−2µ
(
λ̈+ λ̇(λ̇− µ̇)

)
= e−2µ(2λ̇2 − 4πreλ+µk̇). (2.25)
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The time derivative of k can be calculated using the definition (1.99) of k, the
Vlasov equation and Gauss theorem; we have:

k̇ =
∫

R3

x̃.v

r

∂f

∂t
dv

=
∫

R3

x̃.v

r

(
−eµ−λ v√

1 + v2
· ∂f
∂x̃

+
(
eµ−λµ′

√
1 + v2 + λ̇

x̃.v

r
− qeλ+µe

)
x̃

r
· ∂f
∂v

)
dv

= −eµ−λ

∫
R3

x̃.v

r

v√
1 + v2

· ∂f
∂x̃
dv

+
∫

R3

(
eµ−λµ′

√
1 + v2

x̃.v

r
+ λ̇

(
x̃.v

r

)2

− qeλ+µ x̃.v

r
e

)
x̃

r
· ∂f
∂v
dv

= −eµ−λ

(
p′ +

1
2
∂

∂r
(e2λe2)− 1

r
(q̄ − e2λe2) +

2
r
p+

1
r
e2λe2

)
− eµ−λµ′(ρ+ p)− 2λ̇k + qeλ+µeM. (see Appendix G)

Thus

k̇ = −eµ−λ

(
2
r
p+ p′ − q̄

r

)
− 2λ̇k − eµ−λµ′(ρ+ p)

+ qeλ+µeM − 2
r
eλ+µe2 − 1

2
eµ−λ ∂

∂r
(e2λe2).

(2.26)

Introducing (2.26) in (2.25), the left hand side H of (1.97) gives:

H = e−2λµ′(λ′ + µ′) + 4πrp′ + p− 2λ̇2e−2µ + 4πreλ−µ

(
−eµ−λp′ +

1
r
eµ−λq̄

)
+ 4πreλ−µ

(
2
r
eµ−λp− 2λ̇k − eµ−λµ′(ρ+ p)− 1

2
eµ−λ ∂

∂r
(e2λe2)

)
+ 4πrqe2(λ+µ)eM − 8πe2(λ+µ)e2

= 4πq̄ − 8π
(
r

4
∂

∂r
(e2λe2)− qr

2
e2λeM + e2λe2

)
.

Note that the equality above follows from (1.95) and: −8πrλ̇keλ−µ = 2λ̇2e−2µ.
Now we prove that, since (1.90) holds, we have:

A :=
r

4
∂

∂r
(e2λe2)− qr

2
e2λeM + e2λe2 = 0.

We have:

r

4
∂

∂r
(e2λe2) =

r

4
∂

∂r
(r−4r4e2λe2) =

r

4
∂

∂r
(r−4(r2eλe)2)

= −e2λe2 +
1
2r
eλe

∂

∂r
(r2eλe)

= −e2λe2 +
qr

2
e2λeM.

Then, A = 0 and (1.97) holds.
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Remark 2.4 We consider the auxiliary system (1.90), (1.94), (1.96), (2.1),
(2.2), which we use in the proof of local existence result in the next chapter.

Proposition 2.4 Let (e, λ, µ, f, λ̃) be a regular solution of (1.90), (1.94), (1.96),
(2.1) and (2.2). Then (1.89) holds and as a consequence, (f, e, λ, µ) solves by
proposition 2.3 the full spherically symmetric Einstein-Vlasov-Maxwell system
(1.89), (1.90), (1.91), (1.94), (1.95), (1.96) and (1.97).

Proof: Let (e, λ, µ, f, λ̃) be a regular solution of (1.90), (1.94), (1.96), (2.1) and
(2.2). We have only to show that λ̇ = λ̃. Again (2.10) holds, and differentiating
this equation with respect to t, we obtain

rλ̇e−2λ = ṁ =
∫
|y|≤r

∂f

∂t
dy.

As above,

∂ρ

∂t
= −div

x̃

(
eµ−λ

∫
R3
vfdv

)
− (µ′ + λ′)eµ−λk − λ̃(ρ+ p).

Using (2.14) which follows from (1.94), (1.96) and the definition (2.2) of λ̃,

∂ρ

∂t
= −div

x̃

(
eµ−λ

∫
R3
vfdv

)
.

Thus,

rλ̇e−2λ = −
∫
|y|≤r

div
y

(
eµ−λ

∫
R3
vfdv

)
dy

= −
∫
|y|=r

dω(y)︸ ︷︷ ︸
=4πr2

(
eµ−λ

∫
R3

y.v

r
fdv

)

= −4πr2eµ−λk.

So, λ̇ = −4πreλ+µk = λ̃.
Next, we conclude this chapter by defining the concept of regular solution

that we employ in our investigation.

Definition 2.2 The functions f : I × R6 → R, λ, µ, e : I × R3 → R,I ⊂ R
an interval are called regular solutions of the asymptotically flat, spherically
symmetric Einstein-Vlasov-Maxwell system, i.e of the system (1.89), (1.90),
(1.91), (1.94), (1.95), (1.96) and (1.97), if the following holds:

a) If M , ρ and p defined by (1.92), (1.98) and (1.100) and (e, λ, µ) is defined
as regular solution of equations (1.90), (1.94) and (1.96) subject to the
boundary conditions (1.102)-(1.103), the Vlasov equation (1.89) holds on
I × R6.
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b) The field equations (1.95) and (1.97) hold on I × [0,+∞[ where k and
q̄ are defined by (1.99) and (1.101), moreover, λ is twice continuously
differentiable with respect to t and also e is continuously differentiable in
the t variable.

Remark 2.5 a) The above definition makes sense since N , ρ, p, k, q̄ are reg-
ular if f and e are regular (see Appendix G). The Maxwell equation (1.90)
and the field equations (1.94), (1.96) have a regular solution (e, λ, µ), (see
proposition 2.2), the coefficients of the Vlasov equation (1.89) are con-
tinuously differentiable on I × R6 according to proposition 2.1 so that we
can require this equation to hold on all of I × R6, in particular also at
the center of symmetry r = 0, and finally, if (f, e, λ, µ) satisfies (1.89),
(1.90), (1.94) and (1.96) then (1.91) and (1.95) hold so that in particular
λ̇ is differentiable and (1.97) holds as well, (see proposition 2.3).

b) The regularity requirements in the above definition are such that all deriva-
tives which appear in the system (1.89), (1.90), (1.91), (1.94), (1.95),
(1.96) and (1.97) exist in the classical sense. However, it is desirable
that all the Christoffel symbols are (at least) continuously differentiable
and that the components of the Riemann curvature tensor are (at least)
continuous, and this is shown in the following result:

Proposition 2.5 Let f : I × R6 → R, λ, µ, e : I × R3 → R be a regular solu-
tion of the asymptotically flat, spherically symmetric Einstein-Vlasov-Maxwell
system. Then the following additional properties hold:

a) λ, µ ∈ C2(I × R3) and e ∈ C1(I × R3).

b) If we write the metric in cartesian coordinates i.e

g00(t, x̃) = −e2µ(t,x̃), g0i(t, x̃) = 0,

gij(t, x̃) = δij + (e2λ(t,x̃) − 1)
xixj

r2

then gαβ ∈ C2(I × R3).

c) For the Christoffel symbols (1.57) and the components of the Riemann
curvature tensor we have

Γα
βλ ∈ C1(I × R3), Rλ

α,βµ ∈ C(I × R3).

Proof: As a first step we show that for regular λ : I × R3 → R the metric
coefficients gij are twice continuously differentiable with respect to x̃. This
assertion follows from Appendix H, since the function e2λ − 1 is easily seen to
have the required properties. Next let λ be a regular solution, then

∂tgij = 2λ̇e2λxixj

r2
,
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and this function is continuously differentiable with respect to x̃ by
Appendix H. To complete the proof we have to investigate the differentiability
of µ and e with respect to t. From (2.12), i.e

µ(t, r) = −
∫ ∞

r

e2λ(t,s)

(
m(t, s)
s2

+ 4πsp(t, s)
)
ds,

it follows that

µ̇(t, r) = −
∫ ∞

r

e2λ(t,s)

(
ṁ(t, s)
s2

+ 4πsṗ(t, s)
)
ds

− 2
∫ ∞

r

λ̇(t, s)e2λ(t,s)

(
m(t, s)
s2

+ 4πsp(t, s)
)
ds.

(2.27)

Next, from (2.3′) we conclude that

ṁ(t, s) =
∫
|y|≤s

∂ρ

∂t
(t, y)dy

= −
∫
|y|≤s

div
y

(
eµ−λ

∫
R3
vfdv

)
= −

∫
|y|=s

dω(y)
(
eµ−λ

∫
R3

y.v

r
fdv

)
ṁ(t, s) = −4πs2e(µ−λ)(t,s)k(t, s). (2.28)

On the other hand, using the Vlasov equation (1.89) and Gauss theorem, one
gets

ṗ(t, r) =
∫

R3

(
x̃.v

r

)2
∂f

∂t
(t, x̃, v)

dv√
1 + v2

− 1
2
∂

∂t
(e2λe2)

= −
∫

R3

(
x̃.v

r

)2
dv√

1 + v2

(
F1.

∂f

∂x̃
+ F̃2.

∂f

∂v

)
− 1

2
∂

∂t
(e2λe2)

= −div
x̃

(
eµ−λ

∫
R3

(
x̃.v

r

)2

f
v√

1 + v2
dv

)

+ (µ′ − λ′)eµ−λ

∫
R3

(
x̃.v

r

)3

f
dv√

1 + v2

+ eµ−λ

∫
R3

2
x̃.v

r

(
v

r
− x̃.v

r2
x̃

r

)
.

v

1 + v2
fdv

− λ̇

∫
R3

(
3
(
x̃.v

r

)2
x̃

r
.
x̃

r

1√
1 + v2

− x̃

r
.

v√
1 + v2

)
fdv

− eµ−λµ′
∫

R3
2
x̃.v

r
fdv − 1

2
∂

∂t
(e2λe2)− qeλ+µe

∫
R3

(
x̃.v

r

)2
x̃

r
.
∂f

∂v
dv

= −div
x̃

(
eµ−λ

∫
R3

(
x̃.v

r

)2

f
v

1 + v2
dv

)
+ d1
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where

d1(t, r) =
2
r
eµ−λ

∫
R3

x̃.v

r

(
v2 −

(
x̃.v

r

)2
)
f

dv√
1 + v2

+ 3
q

r
eλ+µeN

+ (µ′ − λ′)eµ−λ

∫
R3

(
x̃.v

r

)3

f
dv

1 + v2
− 2eµ−λµ′

∫
R3

x̃.v

r
fdv

− λ̇

∫
R3

(
x̃.v

r

)2
(

3−
(
x̃.v

r

)2 1
1 + v2

)
f

dv√
1 + v2

− qeλ+µe

∫
R3

(
x̃.v

r

)3 1
1 + v2

f
dv√

1 + v2
.

Introducing this in the formula (2.27) for µ̇, we obtain

µ̇(t, r) = 4π
∫ ∞

r

e(λ+µ)(t,s)k(t, s)ds− 2
∫ ∞

r

λ̇(t, s)e2λ(t,s)

(
m(t, s)
s2

+ 4πsp(t, s)
)
ds

+ 4π
∫ ∞

r

se2λ(t,s)div
x̃

(
eµ−λ

∫
R3

(
x̃.v

s

)2

f
v

1 + v2
dv

)
ds

− 4π
∫ ∞

r

se2λ(t,s)d1(t, s).

(2.29)
Using Gauss theorem for the third term of the right hand side of (2.29), one
obtains, since div(fX) = fdivX + gradf ·X:

µ̇(t, r) = 4π
∫ ∞

r

e(λ+µ)(t,s)k(t, s)ds− 4π
∫ ∞

r

se2λ(t,s)d1(t, s)ds

+ 4π
∫ ∞

r

(1− 2s)λ′(t, s)d2(t, s)ds

− 4πreλ+µd2(t, r)− 2
∫ ∞

r

λ̇e2λ(t,s)

(
m(t, s)
s2

+ 4πsp(t, s)
)
ds

(2.30)
where

d2(t, r) = d2(t, x̃) = eλ+µ

∫
R3

(
x̃.v

r

)3

f(t, x̃, v)
dv

1 + v2
. (2.31)

The integrands in the s-integrals above are continuously differentiable with re-
spect to t and have compact support for s. This shows that µ̇ is continuously
differentiable with respect to t. Next, according to (2.16), we have shown in the
proof of proposition 2.3 that solution e satisfies (1.91). So ė is defined as:

ė(t, r) = −λ̇(t, r)e(t, r)− q

r
e(µ−λ)(t,r)N(t, r). (2.32)

Since all the expressions that appear in the right hand side of (2.32) are con-
tinuous, ė is continuous on I × [0,+∞[ and then e ∈ C1(I × [0,+∞[). So
the assertions in a) and b) are now established. The assertions in c) follow by
definition of Christoffel symbols and Riemann curvature tensor respectively.
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Remark 2.6 The rather lengthy formula (2.30) for µ̇ will play a role in the
proof of the global existence result for small initial data, which is the deeper
reason for including the above regularity considerations.

2.6 Constraint equations

We obtain the constraint equations satisfied by the initial data by taking (1.94),
(1.96) and (1.90) for t = 0, that gives:

e−2
◦
λ(2r

◦
λ
′
− 1) + 1 = 8πr2

(∫
R3

√
1 + v2

◦
fdv +

1
2
e2

◦
λ◦e

2
)

(2.33)

e−2
◦
λ(2r

◦
µ
′
+ 1)− 1 = 8πr2

(∫
R3

(
x̃.v

r

)2 ◦
f

dv√
1 + v2

− 1
2
e2

◦
λ◦e

2

)
(2.34)

d

dr
(r2e

◦
λ◦e) = qr2e

◦
λ

∫
R3

◦
fdv (2.35)

where
◦
µ and

◦
e denote initial datum for µ and e respectively. Let

◦
f ∈ C∞c (R6)

be nonnegative and spherically symmetric such that

8π
∫ r

0

s2
(∫

R3

◦
f(s, v)

√
1 + v2dv

)
ds < r.

Under this assumption, the cauchy problem for constraint equations (2.33),
(2.34) and (2.35) will be discussed in the next chapter.
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Chapter 3

Existence of initial data
satisfying the constraints

Introduction

In this chapter we focus on the Cauchy problem corresponding to the constraint

equations (2.33), (2.34) and (2.35). As we proved in chapter 2, for fixed
◦
f ,

each solution of (2.33) and (2.35) allows us to determine via equation (2.33),
◦
µ
′

and the boundary condition (1.102) determines
◦
µ. This is the reason why we

concentrate on (2.33) and (2.35). In what follows, we fix
◦
f in (2.33) and (2.35)

and we look for a unique global asymptotically flat solution (
◦
λ,
◦
e) of the system

(2.33) and (2.35) above with regular center. Note that, using the compact

support of
◦
f and equation (2.33) and (2.35), it follows that

◦
λ and

◦
e tend to

zero as r →∞. It also follows from (2.33) and (2.35) and the regularity of the

solution that
◦
λ
′
(0) = 0 and

◦
e(0) = 0. We are going to state below the main

results of this chapter and the reader will refer to [19] to obtain more details
on their proofs. These results are concerned with two classes of solution: global
solutions with low charge and global solutions with high charge.

3.1 Existence of Global solutions of the constraints:
case of low charge

Let us state first of all the following result of [30] on which our global existence
relies.

Theorem 3.1 Let V be a finite-dimensional real vector space, N : V → V a
linear mapping, G : I × V → V a smooth (i.e, C∞) mapping and g : I → V
a smooth mapping, where I is an open interval in R containing zero. Consider
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the equation

s
df

ds
+Nf = sG(s, f(s)) + g(s) (3.1)

for a function f defined on a neighborhood of 0 in I and taking values in V .
Suppose that each eigenvalue of N has a positive real part. Then there exists an
open interval J with 0 ∈ J ⊂ I and a unique bounded C1 function f on J \ {0}
satisfying (3.1). Moreover f extends to a C∞ solution of (3.1) on J . If N , G
and g depend smoothly on a parameter z and if the eigenvalues of N are distinct
then the solution also depends smoothly on z.

Proof: See theorem 1 in [30], p.989.

Remark 3.1 The assumption that N has distinct eigenvalues is to ensure that
N can be reduced to diagonal form by a similarity transformation depending
smoothly on z. In particular, theorem 3.1 applies if N is already a diagonal
matrix.

Theorem 3.2 (local existence) Let
◦
f ∈ C∞(R6) be nonnegative, compactly

supported and spherically symmetric. Then, the equations (2.33) and (2.35)

have a unique local and regular solution (
◦
λ,
◦
e) defined on some interval [0, R],

R > 0. The solution depends smoothly on the parameter q.

Proof: Let
◦
f ∈ C∞(R6) be nonnegative, compactly supported and spherically

symmetric. In this chapter, a regular solution means a solution that is smooth
and satisfies (1.102) and (1.103) for t = 0. Since we look for a regular solution

(
◦
λ,
◦
e) of equations (2.33) and (2.35), we have

◦
λ(0) = 0. It follows that every

regular solution
◦
λ can be written in the form:

◦
λ(r) = rL(r) (3.2)

for a smooth function L(r). Equation (3.2) implies
◦
λ
′
= L+ rL′ and (2.33) and

(2.35) can be written in the form, after bearing in mind that e2x − 1 − 2x =
x2F0(x) for a smooth function F0:

rL′ + 2L = rG1(r, L,
◦
e,
◦
f) (3.3)

r
◦
e
′
+ 2

◦
e = rG2(r, L,

◦
e,
◦
f) (3.4)

where G1 and G2 are a smooth function of their variables and where G2 depends

smoothly on q. For more details the reader can refer to [19]. Setting G =
(
G1

G2

)
and Φ =

(
L
◦
e

)
and using (3.3) and (3.4), the equations (2.33) and (2.35) can be

written:
r
dΦ
dr

+ 2Φ = rG(r,Φ(r)). (3.5)
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We apply theorem 3.1 with V = R2, NΦ = 2Φ to (3.5) and, since G clearly
depends smoothly on q, we obtain the desired result. Thus theorem 3.2 is
proved.

Theorem 3.3 (Global existence, low charge) Let
◦
f ∈ C∞(R6) be nonneg-

ative, compactly supported and spherically symmetric with

8π
∫ r

0

s2
(∫

R3

√
1 + v2

◦
f(s, v)dv

)
ds < r.

Then, for q small enough, the equations (2.33) and (2.35) have a unique global

and regular solution (
◦
λ,
◦
e) defined on [0,+∞[ that satisfies the boundary condi-

tion
◦
λ(0) =

◦
e(0) = 0.

Proof: Let
◦
f ∈ C∞(R6) be nonnegative, compactly supported and spherically

symmetric such that the above condition stated in theorem 3.3 is satisfied. By
theorem 3.2, the equations (2.33) and (2.35) have a unique local regular solution

on some interval [0, R], R > 0. Again, theorem 3.1 shows that, for fixed
◦
f , there

exists E > 0, such that for q ∈ [−E,E], R can be chosen uniformly and the

solution on [0, R] depends continuously on the parameter q. Now, for fixed
◦
f and

q, the solution has a right maximal interval of existence [0, R∗[, R∗ = R∗(
◦
f, q).

We have to prove that R∗ = +∞. In fact, the second term on the right hand
side of (2.33) vanishes for q = 0, as one can see by integrating (2.35) over [0, r],
r > 0. It follows that for q = 0, (2.33) and (2.35) have a global solution under

the above sole assumption on
◦
f . Then by the stability theorem for ODE, for

every R > 0, there exists a number E > 0, such that, for every q ∈ [−E,E],
the system (3.5) has a solution ΦE that exists on [0, R] (see theorem 4, p.92 in

[17]). Thus R∗ > R. Now, we can choose R large so that supp
◦
f ⊂ [0, R]× R3,

i.e
◦
f(r, v) = 0 for r ≥ R. If R0 is the radius of the support of the distribution

function then R may be chosen to be bigger than m(R0) +Q2/(8πR0) for all q
in the interval [−E,E], where

Q := 4πq
∫ +∞

0

s2eλ(s)

∫
R3

◦
f(s, v)dvds

is the total charge of the system and m(r) := m(0, r) being the mass function
whose limit as r →∞ is M the total or ADM mass of the system. Hence by the
lemma stated in Appendix I , the solution extends to one which is global and
regular. This completes the proof of the theorem.
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3.2 Existence of Global solutions of the constraints:
case of high charge

Here we look for global solution of equations (2.33) and (2.35) when the param-
eter q is sufficiently large. The corresponding result is stated by

Theorem 3.4 (Global existence, high charge) Let f̄ ∈ C∞(R6) be non-
negative, compactly supported and spherically symmetric. Then, for q large

enough, the equations (2.33) and (2.35) have a global and regular solution (
◦
λ,
◦
e)

defined on [0,+∞[ that satisfies the boundary condition
◦
λ(0) =

◦
e(0) = 0 for

which
◦
f is a constant multiple of f̄ . Moreover the charge to mass Q/M of the

solution can be made as large as desired.

Proof: Suppose f̄ is given as in the assumptions of the theorem. We set

α = q−1, f̄ = α−k
◦
f, ē = α−(k−1)◦e

for some integer k ≥ 2. Then (2.33) and (2.35) can be written as:

e−2
◦
λ(2r

◦
λ
′
− 1) + 1 = 8πr2

(
αk

∫
R3
f̄(r, v)dv +

1
2
e2

◦
λα2(k−1)ē2

)
, (3.6)

2ē+ rē
◦
λ
′
+ rē′ = −r

∫
R3
f̄(r, v)dv. (3.7)

Introducing a variable L as defined in (3.2) puts these equations into a form
closely analogous to that obtained in the proof of theorem 3.2. In fact the left
hand side has the same form as in that case. All that is changed is the form
of the nonlinear terms on the right hand side. The equations depend on α as a
parameter in a way which is smooth in a neighborhood of α = 0 the function
◦
λ vanishes identically while the equation for ē becomes linear and has a global
regular solution. From this point on we can argue just as in the proof of
theorem 3.3 to conclude that for α sufficiently small there is a unique global
regular solution of these equations. Here we must use the fact that m(R0) +
Q2/(8πR0) is bounded independently of α for α small. The assumption that α
is small corresponds to q being large. The distribution function belonging to the

solution is obtained from
◦
f by a constant rescaling. The total charge to total

mass ratio of the solution is proportional to α−1 and thus tends to infinity as α
tends to zero and the proof is complete.

Remark 3.2 The solution in the exterior region is part of the Reissner-Nordström
solution.

Remark 3.3 Our motivation in proving these theorems was to construct initial
data for the Einstein-Vlasov-Maxwell system which may allow us to establish the
local existence theorem for solution of the corresponding Cauchy problem via a
construction of iterates. The same arguments apply with other kinds of charged
fluid as sources for the Einstein equations.
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Chapter 4

Local existence and
continuation of solutions

Introduction

In this chapter we prove a local existence and uniqueness theorem for regular
solutions of the initial value problem corresponding to the asymptotically flat,
spherically symmetric Einstein-Vlasov-Maxwell system, together with a contin-
uation criterion for such solutions. The basic idea of the proof is to use for

given small
◦
f , a solution (

◦
λ,

◦
µ,
◦
e) of the constraint equations (2.33), (2.34) and

(2.35) obtained in chapter 3, and proposition 2.3, to construct the iterates and
show that these iterates converge to a solution on some interval of the coupled
system. Compared to the situation met by the authors in [26], here the main
difficulties are the following: equation (1.94) does not define directly λ for given
f as it is the case for Einstein-Vlasov system, and if we consider (1.95) to define
λ, then λ̇ will become very difficult to control. The latter difficulty is solved
by using the auxiliary system (1.90), (1.94), (1.96), (2.1), (2.2) and applying
proposition 2.4.

4.1 The construction of iterates

Let
◦
f ∈ C∞(R6) be nonnegative, compactly supported and spherically symmet-

ric with
8π
∫ r

0

s2
∫

R3

◦
f(s, v)

√
1 + v2dv < r (4.1)

Let
◦
λ,

◦
µ,
◦
e ∈ C∞(R3) be a regular solution of (2.33), (2.34) and (2.35). By

proposition 2.4, it sufficient to solve the auxiliary system (1.90), (1.94), (1.96),
(2.1) and (2.2). Furthermore, it is sufficient to solve this system for t > 0, the
proof for t < 0 would proceed in exactly the same way. Note that in chapter 3,

57



we proved a global existence theorem of the constraint equations for low charge
under the assumption (3.1) and that is the reason why we need the above

inequality in what follows. We assume that supp
◦
f ⊂ B(r0)×B(u0), with B(r)

the open ball of R3, with the center O and the radius r,

r0 = sup{| x̃ | | (x̃, v) ∈ supp
◦
f} (4.2)

u0 = sup{| v | | (x̃, v) ∈ supp
◦
f}. (4.3)

We consider the following iterative scheme:

λ0 =
◦
λ; λ̃0 = −4πre

◦
λ+

◦
µk(0, .), µ0 =

◦
µ; f0 =

◦
f ; e0 =

◦
e; T0 = +∞.

If λn−1, µn−1, en−1 and λ̃n−1 are defined and regular on [0, Tn−1[×[0,+∞[, with
Tn−1 > 0, then define

Fn−1(t, x̃, v) = (F1,n−1;F2,n−1)(t, x̃, v) (4.4)

where, following proposition 2.1:

F1,n−1(t, x̃, v) = eµn−1−λn−1
v√

1 + v2
(4.5){

F2,n−1(t, x̃, v) = −(λ̃n−1
x̃.v
r + eµn−1−λn−1µ′n−1

√
1 + v2 − qen−1e

µn−1+λn−1) x̃
r

0 if x̃ = 0
(4.6)

for t ∈ [0, Tn−1[ and (x̃, v) ∈ R6, denote by Zn(., t, z) = (Xn, Vn)(., t, x̃, v) the
solution of the characteristic system

ż = Fn−1(s, z)

with Zn(t, t, z) = z, and define

fn(t, z) =
◦
f(Zn(0, t, z)), t ∈ [0, Tn−1[, z ∈ R6,

i.e fn satisfies the auxiliary Vlasov equation:

∂fn

∂t
+ F1,n−1 ·

∂fn

∂x̃
+ F2,n−1 ·

∂fn

∂v
= 0 (4.7)

with fn(0) =
◦
f , and:

ρn(t, x̃) =
∫

R3
fn(t, x̃, v)

√
1 + v2dv +

1
2
e2λn−1(t,x̃)e2n−1(t, x̃)

pn(t, x̃) =
∫

R3

(
x̃.v

r

)2

fn(t, x̃, v)
dv√

1 + v2
− 1

2
e2λn−1(t,x̃)e2n−1(t, x̃)

kn(t, x̃) =
∫

R3

x̃.v

r
fn(t, x̃, v)dv

q̄n(t, x̃) =
∫

R3

(
v2 −

(
x̃.v

r

)2
)
fn(t, x̃, v)dv + e2λn−1(t,x̃)e2n−1(t, x̃)

(4.8)
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mn(t, r) = 4π
∫ r

0

s2ρn(t, s)ds =
∫
|y|≤r

ρn(t, y)dy (4.9){
Nn(t, x̃) =

∫
R3

x̃.v√
1+v2 fn(t, x̃, v)dv

Mn(t, x̃) =
∫

R3 fn(t, x̃, v)dv.
(4.10)

Now, (2.10) can be used to define λn as long as the right hand side is positive.
Thus we define

Tn := sup{t ∈ [0, Tn−1[| 2mn(s, r) < r, r ≥ 0, s ∈ [0, t]} (4.11)

and let

e−2λn(t,r) := 1− 2mn(t, r)
r

(4.12)

µ′n(t, r) := e2λn(t,r)

(
mn(t, r)
r2

+ 4πrpn(t, r)
)

(4.13)

µn(t, r) := −
∫ +∞

r

µ′n(t, s)ds (4.14)

λ̃n(t, r) := −4πre(λn+µn)(t,r)kn(t, r) (4.15)

en(t, r) :=
q

r2
e−λn(t,r)

∫ r

0

s2eλn(t,s)Mn(t, s)ds. (4.16)

We deduce from (4.12) that:

λ′n(t, r) = e2λn(t,r)

(
−mn(t, r)

r2
+ 4πrρn(t, r)

)
. (4.17)

We also use the Vlasov equation (2.1) and Gauss theorem to obtain the analo-
gous conservation law given by (2.3), that is:

∂

∂t

(
eλn

∫
R3
fndv

)
= −div

x̃

(
eλn+µn−1−λn−1

∫
R3

v√
1 + v2

fndv

)
+ (λ̇n − λ̃n−1)eλnMn

+ (λ′n − λ′n−1)
Nn

r
eλn+µn−1−λn−1 . (4.17’)

So, multiplying (4.16) by eλn and differentiating the equation obtained with
respect to t, using (4.17′) and Gauss theorem, we have:

∂

∂t
(eλnen) = −q

r
Nne

λn+µn−1−λn−1 +
q

4πr2

∫
|y|≤r

(λ̇n − λ̃n−1)eλnMndy

+
q

4πr3

∫
|y|≤r

(λ′n − λ′n−1)Nne
λn+µn−1−λn−1dy.

(4.18)

We now prove that all the above expressions make sense.
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Proposition 4.1 For all n ∈ N, the functions λn, µn, fn, en, ρn, pn, kn, Nn,
Mn, λ̃n are well defined and regular, Tn > 0, and µn +λn ≤ 0, λn ≥ 0, µn ≤ 0.

Proof: This assertion follows by induction: For n = 0, the assertion obviously

holds by construction of
◦
λ,

◦
e and proposition 2.2. Going from n − 1 to n,

we observe that assumption of proposition 2.1 hold with λn−1, µn−1, λ̃n−1,
en−1, instead of λ, µ, λ̃, e. Therefore Zn and fn and by Appendix G, also
ρn, pn, kn, q̄n, Mn, Nn are defined on [0, Tn−1[×[0,+∞[ and are regular. On
[0, Tn−1[×[0,+∞[ we can use proposition 2.2 to see that λn ≥ 0, µn ≤ 0,
λn + µn ≤ 0. To show that Tn > 0, we take t ≤ max(1, Tn−1

2 ) and then∫
R3
ρn(t, y)dy ≤ Cn (4.18’)

with some constant Cn > 0. How do we see the latter? In fact there are two
terms in the left hand side of (4.18’), the first is bounded due to the compact
support of fn(t) while the second can be written in polar coordinates as:

1
2

∫
R3
e2λn−1e2n−1dy = 2π

∫ +∞

0

s2e2λn−1e2n−1ds

= 2π
∫ r0

0

s2e2λn−1e2n−1ds+ 2π
∫ +∞

r0

s2e2λn−1e2n−1ds.

(4.18”)

The first term in the right hand side of (4.18”) yields, since λn−1 and en−1 are
defined and regular on [0, Tn−1[×[0,+∞[:

2π
∫ r0

0

s2e2λn−1e2n−1ds ≤
2πr30

3
Λn := sup

(t,s)∈[0,Tn−1/2]×[0,r0]

(e2λn−1(t,s)e2n−1(t, s))

≤ Cn.

Next, for s ∈ [r0,+∞[, one deduces from the integration of (1.90) on [r0, s] in
which e, λ and M are replaced by en−1, λn−1 and Mn−1 respectively and using
the fact that Mn−1 is compactly supported:

eλn−1(t,s)en−1(t, s) =
(r0
s

)2

eλn−1(t,r0)en−1(t, r0), s ∈ [r0,+∞[.

So, bearing in mind the above, the second term in the right hand side of (4.18”)
yields:

2π
∫ +∞

r0

s2e2λn−1e2n−1ds = 2π
∫ +∞

r0

s2
r40
s4
dse2λn−1(t,r0)e2n−1(t, r0)

≤ πr30Λn

≤ Cn
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We combine the estimates above to obtain (4.18’). Choose R > 0 such that
Cn

R < 1
2 , since mn

r is uniformly continuous on
[0,max(1, Tn−1

2 )]×[0, R] and mn(0,r)
r < 1

2 for r > 0, there exists T ′ ∈]0,max(1, Tn−1
2 )]

such that mn(t,r)
r < 1

2 , for t ∈ [0, T ′] and r ∈ [0, R]. Thus by definition of Tn

one obtains, 0 < T ′ ≤ Tn and we have the desired result.
Note that the regularity of λ̃n and en follow from (4.18), the identities:

λ̃′n = λ̃n(µ′n + λ′n)− 4πeµn+λnkn − 4πreµn+λnk′n

e′n = qMn − λ′nen −
2en

r

and the regularity of kn. So proposition 4.1 is proved.
Now, to establish the convergence of iterates we prove the existence of some

bounds on iterates which are uniform in n.

Proposition 4.2 The sequence of functions stated in proposition 4.1 is bounded.

Proof: First of all, we define

Pn(t) = sup{| v | | (x̃, v) ∈ suppfn(s), 0 ≤ s ≤ t}

= sup{| Vn(s, 0, z) | | z ∈ supp
◦
f, 0 ≤ s ≤ t}

(4.19)

Qn(t) = sup{e2λn(s,r), r ≥ 0, 0 ≤ s ≤ t}. (4.20)

Since ‖ fn(t) ‖L∞=‖
◦
f ‖L∞ for t ∈ [0, Tn[, we obtain for all n ∈ N, the estimates

after distinguishing the cases r ≤ r0 and r ≥ r0:
‖ kn(t) ‖L∞≤ C ‖

◦
f ‖L∞ (1 + Pn(t) +Qn(t))4

‖Mn(t) ‖L∞≤ C ‖
◦
f ‖L∞ (1 + Pn(t) +Qn(t))3

‖ Nn(t) ‖L∞≤ C ‖
◦
f ‖L∞ (r0 + t)(1 + Pn(t) +Qn(t))4

(4.21)

and by virtue of (4.16), and the fact that λn ≥ 0, one has:

‖ en(t) ‖L∞≤ CQ
1
2
n (t) ‖

◦
f ‖L∞ (1 + Pn(t) +Qn(t))3(r0 + t), (4.22)∣∣∣∣en(t, r)

r

∣∣∣∣ ≤ CQ
1
2
n (t) ‖

◦
f ‖L∞ (1 + Pn(t) +Qn(t))3. (4.22’)

Thus,

‖ ρn(t) ‖L∞ , ‖ pn(t) ‖L∞ , ‖ q̄n(t) ‖L∞≤ C(1+r0+t)2 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t)

(4.23)
where C > 0 denotes a constant which in the sequel may change its value from

line to line and does not depend on n, t and
◦
f , and where

Rn(t) = (1 + Pn−2(t) +Qn−2(t))7(1 + Pn−1(t) +Qn−1(t))7

× (1 + Pn(t) +Qn(t))14(1 + Pn+1(t) +Qn+1(t))7.
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We combine the estimates above with(4.13) and (4.15)to obtain, since
λn + µn ≤ 0 and∣∣∣∣mn(t, r)

r2

∣∣∣∣ , 4π | pn(t, r) |≤ C(1 + r0 + t)3 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t) :

| e(µn−λn)(t,r)µ′n(t, r) |≤ C(1 + r0 + t)3 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t) (4.24)

| λ̃n(t, r) |≤ C(r0 + t) ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t). (4.25)

Note that r =| x̃ |≤ r0 + t for fn(t, x̃, v) 6= 0. Next, we insert these estimates
into the characteristic system which yields:

| V̇n+1(t, 0, z) |≤ C(1 + r0 + t)3 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t) (4.26)

Integrating (4.26) on [0, t], one has:

| Vn+1(t, 0, z) |≤| v | +
∫ t

0

| V̇n+1(s, 0, z) | ds.

Thus,

Pn+1(t) ≤ u0 + C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)

∫ t

0

(1 + r0 + s)3Rn(s)ds. (4.27)

Next, we look for an inequality for Qn(t). From

| ∂
∂t
e2λn+1(t,r) |≤ 2Q2

n+1(t)
| ṁn+1(t, r) |

r
,

we see that we need an estimate for the time derivative of mn+1 in (4.9):

ṁn+1 =
∫
|y|≤r

∂ρn+1

∂t
(t, y)dy

=
∫
|y|≤r

(∫
R3

√
1 + v2

∂fn+1

∂t
(t, y, v)dv +

1
2
∂

∂t
(e2λn(t,y)e2n(t, y))

)
dy

= −
∫
|y|≤r

dy

∫
R3
dveµn−λnv.

∂fn+1

∂x̃

+
∫
|y|≤r

dy

∫
R3
dv

(
λ̃n

y.v

| y |
√

1 + v2 + eµn−λnµ′n(1 + v2)
)

y

| y |
.
∂fn+1

∂v

+ q

∫
|y|≤r

dy

∫
R3
eλn+µnen−1

√
1 + v2

y

| y |
.
∂fn+1

∂v
dv

+ 2π
∫ r

0

s2
∂

∂t
(e2λne2n)dy.
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Thus, using Gauss theorem,

ṁn+1 = −
∫
|y|=r

∫
R3

y.v

| y |
eµn−λnfn+1dvdω(y)

+
∫
|y|≤r

∫
R3

y.v

| y |
(µ′n − λ′n)eµn−λnfn+1dvdy

−
∫
|y|≤r

∫
R3

(
λ̃n

√
1 + v2 + λ̃n

(
y.v

| y |

)2 1√
1 + v2

)
fn+1dvdy

−
∫
|y|≤r

∫
R3

2eµn−λnµ′n
y.v

| y |
fn+1dvdy

− q

∫
|y|≤r

∫
R3
eλn+µnen

y.v√
1 + v2

fn+1dvdy

+ 2π
∫ r

0

s2
∂

∂t
(e2λne2n)ds.

(4.28)
Next, according to equation (4.18), one has:

2π
r

∫ r

0

s2
∂

∂t
(e2λne2n)ds = −4πq

r

∫ r

0

senNne
2λn+µn−1+λn−1ds

+
q

r

∫ r

0

eλnends

∫ s

0

τ2(λ̇n − λ̃n−1)eλnMndτ

+
q

r

∫ r

0

eλn
en

s
ds

∫ s

0

τ2(λ′n − λ′n−1)Nne
λn+µn−1−λn−1dτ.

(4.28’)

Now, we first estimate the above expression. To do so, we distinguish the cases
r ≤ r0 and r ≥ r0 if it is necessary. Since µn−1 + λn−1 ≤ 0, one has:

E1,n :=
∣∣∣∣−4πq

r

∫ r

0

senNne
2λn+µn−1+λn−1ds

∣∣∣∣
≤ C(r0 + t)2 ‖

◦
f ‖2L∞ (1 + Pn(t) +Qn(t))8Q

1
2
n (t)

and since
Q

1
2
n (t) ≤ 1 +Qn(t) ≤ 1 + Pn(t) +Qn(t),

E1,n ≤ C(r0 + t)2 ‖
◦
f ‖2L∞ (1 + Pn(t) +Qn(t))9 ≤ C(r0 + t)2 ‖

◦
f ‖2L∞ Rn(t).

(4.29)
Taking the second term in the right hand side of (3.28′) one has, since
λ̃n−1 = 4πreλn−1+µn−1kn−1:

E2,n :=
∣∣∣∣qr
∫ r

0

eλnends

∫ s

0

τ2(λ̇n − λ̃n−1)eλnMnds

∣∣∣∣
=
∣∣∣∣qr
∫ r

0

τ2(λ̇n − λ̃n−1)eλnMndτ

∫ s=r

s=τ

eλnends

∣∣∣∣
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and we take the partial derivative of equation (4.12) to obtain

| λ̇n(t, r) |≤ Qn(t)
| ṁn(t, r) |

r
.

So we finally obtain the following estimate for E2,n:

E2,n ≤ C(r0 + t)5 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t)

+ C(r0 + t)3 ‖
◦
f ‖L∞ Rn(t)

∫ r

0

| λ̇n ||Mn | ds. (4.29’)

Now, we estimate the last term of (4.28′):

E3,n :=
∣∣∣∣qr
∫ r

0

eλn
en

s
ds

∫ s

0

τ2(λ′n − λ′n−1)Nne
λn+µn−1−λn−1dτ

∣∣∣∣
≤| q |

∫ r

0

(λ′n − λ′n−1)Nne
λn+µn−1−λn−1dτ

∫ s=r

s=τ

eλnends

and using (4.17) we obtain:

| λ′n |, | λ′n−1 |≤ C(1 + r0 + t)3 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t)

So, we finally obtain the following estimate for E3,n:

E3,n ≤ C(1 + r0 + t)7 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t). (4.29”)

Next we estimate the remaining terms of the right hand side of ṁn+1
r , deduced

from (4.29):

1
r

∣∣∣∣∣−
∫
|y|=r

y.v

r
eµn−λnfn+1dvdω(y)

∣∣∣∣∣ ≤ C(r0+t) ‖
◦
f ‖L∞ (1+Pn+1(t)+Qn+1(t))4.

Denoting by An the second term of the right hand side of (4.28), one has, since∣∣∣∣1rAn

∣∣∣∣ = ∣∣∣∣4πr
∫ r

0

s2
(∫

R3

x̃.v

s
(µ′n − λ′n)eµn−λnfn+1dv

)
ds

∣∣∣∣ :∣∣∣∣1rAn

∣∣∣∣ ≤ C

∣∣∣∣∫ r0

0

(µ′n − λ′n)kn+1ds

∣∣∣∣ (4.30)

now, from (4.13), (4.17) one deduces:

| µ′n − λ′n |= e2λn

∣∣∣2mn

s2
+ 4πs(pn − ρn)

∣∣∣ .
Using the estimates (4.23), one has:

| µ′n − λ′n | (t, s) ≤ C(1 + r0 + t)3 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞ Rn(t).
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Introducing this in (4.30), one obtains:∣∣∣∣1rAn

∣∣∣∣ ≤ C(1 + r0 + t)4 ‖
◦
f ‖2L∞ (1+ ‖

◦
f ‖L∞)Rn(t). (4.31)

Also,

1
r

∣∣eµn−λnµ′n
∣∣ (t, r) = eλn+µn

∣∣∣∣mn(t, r)
r3

+ 4πpn(t, r)
∣∣∣∣

≤ C(‖ ρn(t) ‖L∞ + ‖ pn(t) ‖L∞)

≤ C(1 + r0 + t)2 ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t)

A′n :=
1
r

∣∣∣∣∣
∫
|y|≤r

∫
R3

2eµn−λnµ′n
y.v

| y |
fn+1dvdy

∣∣∣∣∣
=

8π
r

∣∣∣∣∫ r

0

s2eµn−λnµ′nkn+1ds

∣∣∣∣
≤ C(1 + r0 + t)4 ‖

◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)Rn(t)

and

Bn : =
| q |
r

∣∣∣∣∣
∫
|y|≤r

∫
R3
eλn+µnen

y.v√
1 + v2

fn+1dvdy

∣∣∣∣∣
=

4π | q |
r

∣∣∣∣∫ r

0

s2e(λn+µn)(t,s)en(t, s)Nn+1(t, s)ds
∣∣∣∣

≤ C(1 + r0 + t)4 ‖
◦
f ‖2L∞ Rn(t).

We end with the following estimate:

Cn : =
1
r

∣∣∣∣∣−
∫
|y|≤r

∫
R3

(√
1 + v2 +

(
y.v

| y |

)2 1√
1 + v2

)
λ̃nfn+1dvdy

∣∣∣∣∣
=

4π
r

∣∣∣∣∫ r

0

s2
(∫

R3

(√
1 + v2fn+1 +

(y.v
s

)2 1√
1 + v2

fn+1

)
λ̃ndv

)
ds

∣∣∣∣
≤ C(1 + r0 + t)3 ‖

◦
f ‖2L∞ (1+ ‖

◦
f ‖L∞)Rn(t).

Using the above inequalities , we conclude that:

| ṁn+1(t, r) |
r

≤ C(1 + r0 + t)7(1+ ‖
◦
f ‖L∞)3Rn(t)

+ C(1 + r0 + t)7(1+ ‖
◦
f ‖L∞)3Rn(t)

∫ r

0

| ṁn |
s

Mnds.

(4.31’)
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Set τn = sup
i≤n

∣∣ ṁi

r

∣∣. Then (τn) is increasing and for all i ≤ n,
∣∣ ṁi

r

∣∣ ≤ τn, and

taking the supremum of (3.31′) for i ≤ n, we obtain:

τn+1(t, r) ≤ C(1 + r0 + t)7(1+ ‖
◦
f ‖L∞)3sup

i≤n
Ri(t)

+ C(1 + r0 + t)7(1+ ‖
◦
f ‖L∞)3sup

i≤n
Ri(t)

∫ r

0

τn+1sup
i≤n

Mids.

Thus, we use the Gronwall lemma and the fact that x ≤ ex and distinguishing
the cases r ≤ r0 and r ≥ r0 to obtain:

τn+1(t, r) ≤ C exp
(
C(1 + r0 + t)8(1+ ‖

◦
f ‖L∞)4sup

i≤n
(1 +Ri(t))2

)
from which we deduce:

| ṁn+1 |
r

≤ C exp
(
C(1 + r0 + t)8(1+ ‖

◦
f ‖L∞)4sup

i≤n
(1 +Ri(t))2

)
. (4.31”)

Now since

Q2
n+1(t) ≤ (1 + Pn+1(t) +Qn+1(t))2

≤ Rn(t)
≤ sup

i≤n
Ri(t),

2Q2
n+1(t)

| ṁn+1 |
r

≤ C exp
(
C(1 + r0 + t)8(1+ ‖

◦
f ‖L∞)4sup

i≤n
(1 +Ri(t))2

)
.

(4.32)
We integrate (4.32) on [0, t] and have, since∣∣∣∣∫ t

0

∂

∂s
(e2λn+1(s, r))ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣∣ dds (e2λn+1(s, r))
∣∣∣∣ ds

≤
∫ t

0

2Q2
n+1(s)

| ṁn+1(s, r) |
r

ds

and
q0 = Qn+1(0) = sup{e2

◦
λ(r), r ≥ 0} :

Qn+1(t) ≤ q0 + C

∫ t

0

exp
(
C(1 + r0 + s)8(1+ ‖

◦
f ‖L∞)4sup

i≤n
(1 +Ri(s))2

)
ds

(4.33)
Adding (4.27) and (4.33), one has:

Pn+1(t) +Qn+1(t) ≤ u0 + q0

+ C

∫ t

0

exp
(
C(1 + r0 + s)8(1+ ‖

◦
f ‖L∞)4sup

i≤n
(1 +Ri(s))2

)
ds
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Let
P̃n(t) := sup

m≤n
Pm(t); Q̃n(t) := sup

m≤n
Qm(t).

Then P̃n, Q̃n are increasing and for all n ∈ N, Pn ≤ P̃n, Qn ≤ Q̃n and then we
have:

Rn(t) ≤ (1 + P̃n+1(t) + Q̃n+1(t))35.

Now fix n ∈ N∗ and write (4.27) and (4.33) for every m where m ≤ n. Taking
the supremum over m ≤ n, yields:

P̃n+1(t) + Q̃n+1(t) ≤ u0 + q0

+ C

∫ t

0

exp
(
C(1 + r0 + s)8(1+ ‖

◦
f ‖L∞)4(1 + P̃n+1(s) + Q̃n+1(s))70

)
ds

and by the Gronwall lemma, P̃n+1, Q̃n+1 and hence Pn, Qn are bounded on the
domain [0, T 0], of the solution z0 of:

z0(t) = u0 + q0 + C

∫ t

0

exp
(
C(1 + r0 + s)8(1+ ‖

◦
f ‖L∞)4(1 + z0(s))70

)
ds

(4.34)
It follows that, Pn(t)+Qn(t) ≤ z0(t), n ∈ N, t ∈ [0, T 0[∩[0, Tn[, and by definition
Tn ≥ T 0, n ∈ N. So by their definitions all the sequence in proposition 4.1 are
bounded. We end this proof by the following estimates obtained from the above
inequalities:

‖ ρn(t) ‖L∞ , ‖ pn(t) ‖L∞ , ‖ kn(t) ‖L∞ , ‖ λn(t) ‖L∞ ‖ Nn(t) ‖L∞ ,

‖Mn(t) ‖L∞ , ‖ µn(t) ‖L∞ , ‖ λ̃n(t) ‖L∞ , ‖ µ′n(t) ‖L∞ , ‖ λ′n(t) ‖L∞ ,

‖ en(t) ‖L∞ , ‖ ėn(t) ‖L∞ , ‖ e′n(t) ‖L∞≤ C(t), t ∈ [0, T 0[.

Next, we need to be informed about some bounds on certain derivatives. We
do it by proving the following result:

Proposition 4.3 There exists a nonnegative function z1 ∈ C1 defined on some
interval [0, T 1[ such that:

‖ ∂x̃fn(t) ‖L∞≤ z1(t), t ∈ [0, T 1[, n ∈ N.

Proof: In the following C(t) denotes an increasing, continuous function on
[0, T 0[ which depends on z0, but not on n. Note that z0 and [0, T 0[ come from
the proof of proposition 4.2. Now, the following derivatives

λ̃′n = λ̃n(µ′n + λ′n)− 4πeλn+µnkn − 4πreλn+µnk′n

µ′′n = 2λ′nµ
′
n + e2λn

(
−2

mn

r3
+ 4π(ρn + pn) + 4πrp′n

)
λ′′n = 2λ′2n + e2λn

(
2
mn

r3
+ 4πrρ′n

)
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imply the estimates:
‖ λ̃′n(t) ‖L∞≤ C(t)(1+ ‖ k′n(t) ‖L∞)
‖ µ′′n(t) ‖L∞≤ C(t)(1+ ‖ p′n(t) ‖L∞)
‖ λ′′n(t) ‖L∞≤ C(t)(1+ ‖ ρ′n(t) ‖L∞)

(4.35)

and by Appendix G,

‖M ′
n(t) ‖L∞ + ‖ k′n(t) ‖L∞ + ‖ N ′

n(t) ‖L∞ ≤ C(t) ‖ ∂x̃fn(t) ‖L∞

‖ ρ′n(t) ‖L∞ , ‖ p′n(t) ‖L∞ ≤ C(t)(1 + ∂x̃fn(t) ‖L∞)

Next, the definition of fn implies that

‖ ∂x̃fn(t) ‖L∞≤‖ ∂x̃

◦
f ‖L∞ sup{| ∂zZn(0, t, z) |, z ∈ suppfn(t)} (4.36)

∂zŻn+1(s, t, z) = ∂zFn(s, Zn+1(s, t, z))

= (∂zX
i
n+1∂xiFn + ∂zV

i
n+1∂viFn)(s, Zn+1(s, t, z))

= ∂zFn(s, Zn+1(s, t, z)).∂zZn+1(s, t, z), ∂z =
∂

∂z
.

The derivative ∂zFn(s, t, z) contains terms which are bounded by
proposition 4.2, terms like λ̃n

r , µ′n
r , λ′n

r , en, e′n and en

r which are again bounded
by proposition 4.2, and the terms µ′′n, λ̃′n. Thus

sup{| ∂zFn(s, Zn+1(s, x̃, , v) |; x̃ ∈ R3 | v |≤ z0(s)} ≤ C(s)(1+ ‖ ∂x̃fn(s) ‖L∞)

and

| ∂zŻn+1(s, t, z) |≤ C(s)(1+ ‖ ∂x̃fn(s) ‖L∞) | ∂zZn+1(s, t, z) | (4.37)

for any characteristics Zn+1(s, t, z) with z ∈ suppfn+1(t), and for which there-
fore, by proposition 4.2, | Vn+1(s, t, z) |≤ z0(s). By the Gronwall lemma, one
deduces from integration of (4.37) on [s, t], since Zn+1(t, t, z) = z:

| ∂zZn+1(s, t, z) | ≤| ∂zZn+1(t, t, z) | +
∫ t

s

C(τ)(1+ ‖ ∂x̃fn(τ) ‖L∞) | ∂zZn+1(τ, t, z) | dτ

≤ 1 +
∫ t

s

C(τ)(1+ ‖ ∂x̃fn(τ) ‖L∞) | ∂zZn+1(τ, t, z) | dτ

≤ exp
(∫ t

s

C(τ)(1+ ‖ ∂x̃fn(τ) ‖L∞)dτ
)

and combining this with (4.36), we obtain the inequality:

‖ ∂x̃fn+1(t) ‖≤‖ ∂z

◦
f ‖L∞ exp

(∫ t

0

C(s)(1+ ‖ ∂x̃fn(s) ‖L∞)ds
)
. (4.38)
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Let z1 be the maximal solution of

z1(t) =‖ ∂z

◦
f ‖L∞ exp

(∫ t

0

C(s)(1 + z1(s))ds
)

(4.39)

which exists on some interval [0, T 1[⊂ [0, T 0[; recall that C(t) = C(t, z0). Then

‖ ∂x̃fn(t) ‖L∞≤ z1(t), t ∈ [0, T 1[, n ∈ N

and therefore the quantities λ̃′n, and µ′′n can also be estimated in terms of z1 on
the time interval [0, T 1[ uniformly in n. This completes the proof of
proposition 4.3.

4.2 The convergence of iterates

Here we show that the above sequence of iterates which we constructed con-
verges. First of all, we need the following result in the proof of our a priori
estimates:

Lemma 4.1 Let h : [0, t] → R be a continuous function. Then for all n ∈ N,
n ≥ 1, we have:∫ t

0

ds1

∫ s1

0

ds2

∫ s2

0

ds3...

∫ sn−1

0

h(sn)dsn =
1

(n− 1)!

∫ t

0

(t− s)n−1h(s)ds

(4.40)

Proof: We proceed by induction on n ∈ N. Take n = 2, and consider the
domain D of R2 given by: D : 0 ≤ s2 ≤ s1 ≤ t. D can be represented by the
following figure:

- s2

6
s1

�
�

�
�

�
�

t

t

D

s1 = s2

O

We change variables to obtain:∫ t

0

ds1

∫ s1

0

h(s2)ds2 =
∫ t

0

h(s2)ds2
∫ s1=t

s1=s2

ds1

=
∫ t

0

(t− s2)h(s2)ds2

=
1

(2− 1)!

∫ t

0

(t− s)2−1h(s)ds
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and (4.40) holds for n = 2. Now, we suppose that (4.40) holds for n and we
check the same for n+ 1.

Dn : =
∫ t

0

ds1

∫ s1

0

ds2

∫ s2

0

ds3...

∫ sn−1

0

dsn

∫ sn

0

h(sn+1)dsn+1

=
∫ t

0

ds1

(∫ s1

0

ds2...

∫ sn

0

h(sn+1)dsn+1

)
=
∫ t

0

ds1

(
1

(n− 1)!

∫ s1

0

(s1 − s)n−1h(s)ds
)

=
1

(n− 1)!

∫ t

0

ds1

∫ s1

0

(s1 − s)n−1h(s)ds, 0 ≤ s ≤ s1 ≤ t

=
1

(n− 1)!

∫ t

0

h(s)ds
∫ s1=t

s1=s

(s1 − s)n−1ds1

=
1

(n− 1)!

∫ t

0

h(s)ds
(

1
n

(s1 − s)n

)s1=t

s1=s

=
1
n!

∫ t

0

(t− s)nh(s)ds

and the proof is complete.
We now prove the essential result of this section:

Proposition 4.4 The sequence of iterates (fn, λn, µn, en) converges.

Proof: Let δ ∈]0, T 1[. By proposition 4.2 ,

‖ kn+1(t)− kn(t) ‖L∞ , ‖ Nn+1(t)−Nn(t) ‖L∞ ,

‖Mn+1(t)−Mn(t) ‖L∞≤ C ‖ fn+1(t)− fn(t) ‖L∞ .
(4.41)

Now, by the definition of en, one has, distinguishing the cases r ≤ r0 and r ≥ r0:

| eλn+1en+1 − eλnen | (t, r) ≤ C

∫ r

0

ds(|Mn+1(t, s)−Mn(t, s) |

+ C

∫ r

0

|Mn+1(t, s) || eλn+1 − eλn | (t, s))ds

| eλn+1en+1 − eλnen | (t, r) ≤ C ‖ fn+1(t)− fn(t) ‖L∞

+ C

∫ r

0

|Mn+1(t, s) || eλn+1 − eλn | (t, s)ds.

(4.42)
We find an estimate for eλn+1 − eλn . Using the definition (4.12) of e−2λn , we
have

eλn+1 − eλn =
2
r
e2λn+λn+1

mn+1 −mn

1 + eλn−λn+1
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and since en and λn are bounded, we obtain:

| eλn+1 − eλn | (t, r) ≤ C

r

∫ r

0

s2 | ρn+1(t, s)− ρn(t, s) | ds

≤ C

∫ r

0

s | ρn+1 − ρn | (t, s)ds

≤ C

∫ r

0

s

∫
R3

√
1 + v2 | fn+1 − fn | (t, s, v)dvds

+ C

∫ r

0

s | eλnen − eλn−1en−1 | (t, s)ds

and we distinguish once again the cases r ≤ r0 and r ≥ r0 to obtain:

| eλn+1−eλn | (t, r) ≤ C ‖ fn+1(t)−fn(t) ‖L∞ +C
∫ r

0

s | eλnen−eλn−1en−1 | (t, s)ds.

(4.43)
Inserting (4.43) in (4.42), one has:

| eλn+1en+1 − eλnen | (t, r) ≤ C ‖ fn+1(t)− fn(t) ‖L∞

+ C

∫ r

0

∫ s

0

s′ |Mn+1(t, s′) || eλnen − eλn−1en−1 | (t, s′)ds′ds

and we use permutation of variables in the last term of the right hand side of
the above inequality with lemma 4.1 to obtain:

| eλn+1en+1 − eλnen | (t, r) ≤ C

n∑
i=1

‖ fi+1(t)− fi(t) ‖L∞ +C
Cn(r0 + δ)n

n!
.

(4.44)
By virtue of (4.44), (4.43) gives:

| eλn+1 − eλn | (t, r) ≤ C

n∑
i=1

‖ fi+1(t)− fi(t) ‖L∞ +C
Cn−1(r0 + δ)n−1

(n− 1)!
(4.45)

and since

eλn+1en+1 − eλnen = eλn+1(en+1 − en) + en(eλn+1 − eλn)

with −λn ≤ 0, ‖ en(t) ‖L∞≤ C and since q̄n satisfies also (4.28), we obtain:

‖ en+1(t)− en(t) ‖L∞ , ‖ ρn+1(t)− ρn(t) ‖L∞ , ‖ q̄n+1(t)− q̄n(t) ‖L∞

‖ pn+1(t)− pn(t) ‖L∞≤ C
n∑

i=1

‖ fi+1(t)− fi(t) ‖L∞ +C
n∑

i=n−1

Ci(r0 + δ)i

i!

(4.46)
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and we deduce also, since λn is bounded,the quantities

‖ µn+1(t)− µn(t) ‖L∞ , ‖ µ′n+1(t)− µ′n(t) ‖L∞ , ‖ λ̃n+1(t)− λ̃n(t) ‖L∞ ,

‖ λ′n+1(t)− λ′n(t) ‖L∞ , ‖ λn+1(t)− λn(t) ‖L∞ ,

‖ e′n+1(t)− e′n(t) ‖L∞≤ C
n∑

i=1

‖ fi+1(t)− fi(t) ‖L∞ +C
n∑

i=n−1

Ci(r0 + δ)i

i!

(4.47)
now, since

| Fn+1 − Fn |=| F1,n+1 − F1,n | + | F2,n+1 − F2,n |,

sup{| Fn+1 − Fn | (s, x̃, v)| x̃ ∈ R3, | v |≤ z0(s)}

≤ C
n∑

i=1

‖ fi+1(t)− fi(t) ‖L∞ +C
n∑

i=n−1

Ci(r0 + δ)i

i!
.

By proposition 4.3,

sup{| ∂zFn(s, x̃, v) | | x̃ ∈ R3, | v |≤ z0(s)} ≤ C

for s ∈ [0, δ], and the estimate of the difference of two iterates of characteristics
gives, since

(Żn+1 − Żn)(s, t, z) = (Fn − Fn−1)(s, t, z)
= Fn(s, Zn+1(s, t, z))− Fn−1(s, Zn(s, t, z))
= (Fn(s, Zn+1(s, t, z))− Fn(s, Zn(s, t, z)))

+ (Fn(s, Zn(s, t, z))− Fn−1(s, Zn(s, t, z)))

and using the mean value theorem:

| Żn+1 − Żn | (s, t, z) ≤ C | Zn+1 − Zn | (s, t, z)+C
n∑

i=1

‖ fi+1(t)− fi(t) ‖L∞

+ C
n∑

i=n−1

Ci(r0 + δ)i

i!

(4.48)
for z ∈ suppfn+1(t)∪suppfn(t); note that | Zi | (s, t, z) ≤ z0(s), for i = n, n+1,
and s ∈ [0, δ]; i.e the characteristics run in the set on which we have bounded
∂zFn. Gronwall’s lemma implies, after integrating (4.48)on [0, t]:

| Zn+1−Zn | (0, t, z) ≤ Cδ
n∑

i=n−1

Ci(r0 + δ)i

i!
+C

n∑
i=1

∫ t

0

‖ fi+1(s)−fi(s) ‖L∞ ds.

Thus, from

‖ fn+1(t)− fn(t) ‖L∞≤‖ ∂z

◦
f ‖L∞ sup{| Zn+1 − Zn | (0, t, z),

z ∈ suppfn+1(t) ∪ suppfn(t)}
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‖ fn+1(t)− fn(t) ‖L∞ ≤ Cδ
n∑

i=n−1

Ci(r0 + δ)i

i!
+ C

n−1∑
i=1

∫ t

0

‖ fi+1(s)− fi(s) ‖L∞ ds

+ C

∫ t

0

‖ fn+1(s)− fn(s) ‖L∞ ds

we deduce, using once again the Gronwall lemma:

‖ fn+1(t)−fn(t) ‖L∞≤ Cδ
n∑

i=n−1

Ci(r0 + δ)i

i!
+C

n−1∑
i=1

∫ t

0

‖ fi+1(s)−fi(s) ‖L∞ ds.

(4.49)
Now, for n = 2, (4.49) gives:

‖ f3(t)−f2(t) ‖L∞≤ Cδ

(
C1 (r0 + δ)1

1!
+ C2 (r0 + δ)2

2!

)
+C

∫ t

0

‖ f2(s)−f1(s) ‖L∞

for t ∈ [0, δ] and since

‖ f2(s)− f1(s) ‖L∞ ≤‖ ∂z

◦
f ‖L∞ sup{| Z2 − Z1 | (s, t, x̃, v), x̃ ∈ R3, | v |≤ z0(s)}

≤ C

we deduce that:

‖ f3(t)− f2(t) ‖L∞ ≤ Cδ

(
C1 (r0 + δ)1

1!
+ C2 (r0 + δ)2

2!

)
+ Cδ

≤ C
C3(1 + r0 + δ)3

3!
.

Suppose that

‖ fn(t)− fn−1(t) ‖L∞≤ C
Cn(1 + r0 + δ)n

n!
.

Then, by (4.49), we can write:

‖ fn+1(t)− fn(t) ‖L∞≤ C
Cn+1(1 + r0 + δ)n+1

(n+ 1)!
.

So we proved by induction that:

‖ fn(t)− fn−1(t) ‖L∞≤ C
Cn(1 + r0 + δ)n

n!
, n ≥ 1 (4.50)

where C depends on z0 and not on n. Next, we use the estimate (4.50) to show
that (fn(t)) is a Cauchy sequence in the complete space L∞. Consider two
integers m and n such that m > n. Then

‖ fm(t)− fn(t) ‖L∞ ≤‖ fm(t)− fm−1(t) ‖L∞ + ‖ fm−1(t)− fm−2(t) ‖L∞

+ ...+ ‖ fn+1(t)− fn(t) ‖L∞
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‖ fm(t)− fn(t) ‖L∞≤ C
n+1∑
i=m

Ci(1 + r0 + δ)i

i!
(4.51)

. Now, the right hand side of (4.51) goes to zero as m and n go to infinity,

since the series
∞∑

n=0

Cn(1+r0+δ)n

n! converges and we obtain for the left hand side

of (4.51):
‖ fm(t)− fn(t) ‖L∞

m,n→0
→ 0.

Then the sequence (fn) converges uniformly on [0, δ].Note that the differences
of functions which appear in (4.47) can be written in the form (4.50) such that
the same holds for all sequences of functions that appear in (4.41) and (4.47).
The proof of proposition 4.4 is now complete, but the limit f of (fn) is not yet
known to be differentiable.

4.3 The local existence and uniqueness theorem

In this section, we use the lemma 2.2 to show that the limit obtained in propo-
sition 4.4 is regular and thus is a solution of the auxiliary system under con-
sideration. We replace λ, µ, λ̃, e in that lemma by λn, µn, λ̃n, en and choose
an arbitrary compact subinterval [0, δ] ⊂ [0, T 1[ and U > 0. Here the essential
result to be proved is the following:

Theorem 4.1 (local existence and uniqueness) The limit (f, λ, µ, e) of the
sequence (fn, λn, µn, en) is regular and is the unique solution of the initial value

problem under consideration with initial data (
◦
f,

◦
λ,

◦
µ,
◦
e).

Proof: The following bounds will be essential:

| an,i(s, x̃, v) |≤ C, n ∈ N, i = 1, 2, 3, 4, (s, x̃, v) ∈ [0, δ]× R3 ×B(U) (4.52)

| ∂zan,i(s, x̃, v) |≤ C, n ∈ N, i = 1, 2, 3, 4, (s, x̃, v) ∈ [0, δ]× R3 \ {0} ×B(U)
(4.53)

where B(U) is the open ball of R3 with center O and with radius U .
The bounds for an,1, an,2 and an,4 follow immediately from those established

in proposition 4.2. From

µ′n(t, r)
r

= e2λn(t,r)

(
mn(t, r)
r3

+ 4πpn(t, r)
)

(4.54)

λ′n(t, r)
r

= e2λn(t,r)

(
−mn(t, r)

r3
+ 4πρn(t, r)

)
(4.55)

λ̃n(t, r)
r

= −4πe(λ+µ)(t,r)kn(t, r) (4.56)

and
mn(t, r)
r3

≤ 4π
3
‖ ρn(t) ‖L∞
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we deduce the bound on an,3. Obviously, the derivatives of an,i w.r.t v exist
and are bounded on the set indicated above for i = 1, 2, 3, 4. The derivatives of
an,1, an,2 and an,4 w.r.t x̃ also exist and are bounded, since the bounds of the
terms µ′′n, λ′′n and λ̃′n which appear in these derivatives in addition to (4.35) were
established in proposition 4.3. The only qualitatively new terms which appear
in ∂x̃an,3 are (

µ′n
r

)′
;
(
λ′n
r

)′
;

(
λ̃n

r

)′
; e′′n;

e′n
r
− en

r2
.

The third term of these are bounded by proposition 4.3. In the two first terms,

the critical term is
(

mn(t,r)
r3

)′
, but for r > 0, since

ρn(t, r) = ρn(t, r)− ρn(t, 0) + ρn(t, 0), and

ρn(t, r) =
∫ s

0

ρ′n(t, τ)dτ − ρn(t, 0),

we have:∣∣∣∣∣
(
mn(t, r)
r3

)′∣∣∣∣∣ =
∣∣∣∣4πρn(t, r)

r
− 3

mn(t, r)
r4

∣∣∣∣
= 4π

∣∣∣∣ρn(t, r)− ρn(t, 0)
r

∣∣∣∣
+
∣∣∣∣4πρn(t, 0)

r
− 12π

r4

∫ r

0

s2
(∫ s

0

ρ′n(t, τ)dτ + ρn(t, 0)
)
ds

∣∣∣∣
≤ 4π ‖ ρ′n(t) ‖L∞ +

12π
r4

∫ r

0

s2
∫ s

0

‖ ρ′n(t) ‖L∞ dτds

+
∣∣∣∣4πρn(t, 0)

r
− 12π

r4

∫ r

0

s2ρn(t, 0)ds
∣∣∣∣

≤ 7π ‖ ρ′n(t) ‖L∞ .

We now look for bounds of the two last terms. To do so we calculate e′′n using
(4.16) and the following formula∫ r

0

s2eλnMnds =
r3

3
eλnMn −

1
3

∫ r

0

s3eλn(λ′nMn +M ′
n)ds (4.56’)

to obtain:

e′′n = −2q
r4
e−λn

∫ r

0

s3eλn(λ′nMn +M ′
n)ds+

4en

r
λ′n − λ′′nen

+ λ′2n − qλnMn + qM ′
n

from which we deduce the bound of e′′n:

‖ e′′n(t) ‖L∞≤ C(t)(1+ ‖ ρ′n(t) ‖L∞ + ‖ p′n(t) ‖L∞ + ‖M ′
n(t) ‖L∞),
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and we use once again (4.16) and (4.56’) to obtain:

e′n
r
− en

r2
=

2q
3r4

e−λn

∫ r

0

s3eλn(λ′nMn +M ′
n)ds

− q

r3
λ′ne

−λn

∫ r

0

s2eλnMnds,

from which we deduce the following bound for e′n
r − en

r2 :∣∣∣∣e′nr − en

r2

∣∣∣∣ (t, r) ≤ C(t)(1+ ‖M ′
n(t) ‖L∞),

and the existence of the bound of ∂zan,i in (4.53) is proved. Now, on the one
hand, the convergence established in proposition 4.4 shows that

| an,i − am,i | (s, x̃, v) → 0
n,m→∞

,

for i = 1, 2, 3, 4 and uniformly on [0, δ] × R3 × B(U). On the other hand, we
want to extend this result to an,5 − am,5 in which we have the following crucial
term:

eλn+µnH̃n − eλm+µmH̃m =
(
eλn+µn − eλm+µm

)
H̃n + (H̃n − 4πq̄n)eλm+µm

+ (q̄n − q̄m)eλm+µm + (4πq̄m − H̃m)eλm+µm

where

H̃n = e−2λn

(
µ′′n + (µ′n − λ′n)

(
µ′n +

1
r

))
− e−2µn

( ˙̃
λn + λ̃n(λ̇n − µ̇n)

)
.

So, using proposition 4.4 and the mean value theorem, the observation of the
above formula shows that (an,5) is a Cauchy sequence if Hn − 4πq̄n → 0

n→∞
, uni-

formly on [0, δ]× [0,+∞[. To do so we repeat calculations in the proof of
proposition 2.3, but now considering the iterates. As in that proof we obtain:

e−2λn

(
µ′′n + (µ′n − λ′n)

(
µ′n +

1
r

))
= e−2λnµ′n(λ′n + µ′n) + 4πrp′n + 8πpn

˙̃
λn = λ̃n(µ̇n + λ̇n)− 4πreλn+µn k̇n.
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To calculate the time derivative kn we now have to observe that ∂tfn is expressed
by the Vlasov equation with coefficient λn−1, µn−1, λ̃n−1 and en−1.

k̇n =
∫

R3

(
−eµn−1−λn−1

x̃.v

r

v√
1 + v2

· ∂x̃fn + λ̃n−1

(
x̃.v

r

)2
x̃

r
· ∂fn

∂v

)
dv

+
∫

R3

x̃.v

r
dv
(
eµn−1+λn−1µ′n−1

√
1 + v2 − qeλn−1+µn−1en−1

) x̃
r
· ∂fn

∂v

= −eµn−1−λn−1

(
p′n −

1
r
q̄n +

2
r
pn +

1
2
∂

∂r
(e2λn−1e2n−1) +

2
r
e2λn−1e2n−1

)
− eµn−1−λn−1µ′n−1(pn + ρn)− 2λ̃n−1kn + qeλn−1+µn−1en−1Mn

= −eµn−1−λn−1

(
p′n −

1
r
q̄n +

2
r
pn

)
− eµn−1−λn−1µ′n−1(pn + ρn)

− 2λ̃n−1kn −
1
2
eµn−1−λn−1

∂

∂r
(e2λn−1e2n−1)

− 2
r
eµn−1+λn−1e2n−1 + qeµn−1+λn−1en−1Mn.

Thus, using (2.22), one has:

Hn = e−2λnµ′n(λ′n + µ′n) + 4πrp′n + 8πpn − 2e−2µn λ̇nλ̃n

− 4πreλn−λn−1+µn−1−µn

(
2
r
pn + p′n −

q̄n
r

)
− 4πreλn−λn−1+µn−1−µnµ′n−1(pn + ρn)− 8πreλn−µnknλ̃n−1

− 2πreλn−µn+µn−1−λn−1
∂

∂r
(e2λn−1e2n−1)

− 8πeλn−µn+µn−1+λn−1e2n−1 + 4πrqeλn−µn+µn−1+λn−1en−1Mn

= e−2λn(λ′n + µ′n)
(
µ′n − eλn−λn−1+µn−1−µnµ′n−1

)
+ 4πrp′n

(
1− eλn−λn−1+µn−1−µnµn−1

)
+ 8πpn

(
1− eλn−λn−1+µn−1−µn

)
+ 4πeλn−λn−1+µn−1−µn q̄n

+ 8πrkne
λn−µn(λ̃n−1 − λ̇n) + 4πrqen−1e

λn−µn+λn−1+µn−1(Mn −Mn−1).

Note that since λ̃n = −4πreλn+µnkn and (1.90) holds we get

r

2
∂

∂r
(e2λn−1e2n−1) = −2e2λn−1e2n−1 + rqe2λn−1en−1Mn−1.

Now, the first three terms and the last term of the right hand side of the above
expression converge to 0, as n→ +∞ by proposition 4.4 and the bounds of pn,
p′n and kn. Also, the exponential coefficient of q̄n converges to 1 by proposition
4.4. Therefore Hn− 4πq̄n → 0 if we can show that λ̃n−1− λ̇n → 0, as n→ +∞.
To see the latter, we repeat the calculation leading to (1.95) in proposition 2.3
and using (4.18); in which we replace in the left hand side eλn and en by eλn−1
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and en−1 respectively, to obtain:

∂tρn = −div
x̃

(
eµn−1−λn−1

∫
R3
vfndv

)
− λ̃n−1(ρn + pn)

− 4πreλn−1+µn−1kn(ρn−1 + pn−1)

+
q

r
en−1e

λn−1+µn−1
(
Nn − eλn−1−λn−2+µn−2−µn−1Nn−1

)
+

q

4πr2
eλn−1en−1

∫
|y|≤r

(λ̇n−1 − λ̃n−2)eλn−1Mn−1dy

+
q

4πr2
eλn−1en−1

∫
|y|≤r

(λ′n−1 − λ′n−2)
Nn−1

r
eλn−1+µn−2−λn−2dy

Thus, differentiating (4.12) with respect to t, and setting

Ln−1 − Ln−2 := (λ′n−1 − λ′n−2)Nn−1e
λn−1+µn−2−λn−2 ,

we obtain:

rλ̇ne
−2λn =

∫
|y|≤r

∂ρn

∂t
dy

= −4πr2eµn−1−λn−1kn −
∫
|y|≤r

λ̃n−1(ρn + pn)dy

− 4π
∫
|y|≤r

| y | eλn−1+µn−1kn(ρn−1 + pn−1)dy

+ q

∫
|y|≤r

dy
1
| y |

en−1e
λn−1+µn−1

(
Nn − eλn−1−λn−2+µn−2−µn−1Nn−1

)
+

q

4π

∫
|y|≤r

dy
1

| y |2
eλn−1en−1

∫
0≤|z|≤|y|

(λ̇n−1 − λ̃n−2)eλn−1Mn−1dz

+
q

4π

∫
|y|≤r

dy
1

| y |2
eλn−1en−1

∫
0≤|z|≤|y|

(Ln−1 − Ln−2)
dz

| z |

By definition of λ̃, one has:

λ̇n = eλn−λn−1+µn−1−µn λ̃n

− 1
r
e2λn

∫
|y|≤r

λ̃n−1(ρn − ρn−1 + ρn−1 + pn−1 + pn − pn−1)dy

+
1
r
e2λn

∫
|y|≤r

eλn−1−λn+µn−1−µn λ̃n(ρn−1 + pn−1)dy

+ e2λn
q

r

∫
|y|≤r

dy
1
| y |

en−1e
λn−1+µn−1

(
Nn − eλn−1−λn−2+µn−2−µn−1Nn−1

)
+ e2λn

1
r

q

4π

∫
|y|≤r

dy
1

| y |2
eλn−1en−1

∫
0≤|z|≤|y|

(λ̇n−1 − λ̃n−2)eλn−1Mn−1dz

+ e2λn
1
r

q

4π

∫
|y|≤r

dy
1

| y |2
eλn−1en−1

∫
0≤|z|≤|y|

(Ln−1 − Ln−2)
dz

| z |
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λ̇n = eλn−λn−1+µn−1−µn λ̃n

− 1
r
e2λn

∫
|y|≤r

λ̃n−1(ρn − ρn−1 + pn − pn−1)dy

+
1
r
e2λn

∫
|y|≤r

(ρn−1 + pn−1)
(
eλn−1−λn+µn−1−µn λ̃n − λ̃n−1

)
dy

+ e2λn
q

r

∫
|y|≤r

dy
1
| y |

en−1e
λn−1+µn−1

(
Nn − eλn−1−λn−2+µn−2−µn−1Nn−1

)
+ e2λn

1
r

q

4π

∫
|y|≤r

dy
1

| y |2
eλn−1en−1

∫
0≤|z|≤|y|

(λ̇n−1 − λ̃n−2)eλn−1Mn−1dz

+ e2λn
1
r

q

4π

∫
|y|≤r

dy
1

| y |2
eλn−1en−1

∫
0≤|z|≤|y|

(Ln−1 − Ln−2)
dz

| z |

thus λ̇n → λ̃, by proposition 3.4 and the Gronwall lemma. Therefore
λ̃n−1 − λ̇n → 0 for n→∞, uniformly on [0, δ]× [0,+∞[. The above estimates
on the coefficients in lemma 2.2 show that for any ε > 0, there exists N ∈ N
such that for all n,m > N we have the different inequalities:

| ξ̇n,j(s)− ξ̇m,j(s) |≤ ε+ C(| ξn,j(s)− ξm,j(s) | + | ηn,j(s)− ηm,j(s) |)
| η̇n,j(s)− η̇m,j(s) |≤ ε+ C(| ξn,j(s)− ξm,j(s) | + | ηn,j(s)− ηm,j(s) |)

The Gronwall lemma now shows that (ξn,j) and (ηn,j) are Cauchy sequences
and thus also (∂zjXn(s, t, z)) and (∂zjVn(s, t, z))) are Cauchy sequences locally
uniformly on ([0, T 1[)2 × R6. Thus Zn(s, t, .) ∈ C1(R6) for s, t ∈ [0, T 1[,
f(t) ∈ C1

c (R6) for t ∈ [0, T 1[, and we deduce that ρ(t), p(t) ∈ C1
c (R3),M(t) ∈ C1

c (R3),
N(t) ∈ C1

c (R3), and k(t) ∈ C1(R3 \ {0}) ∩ C1([0,+∞[). The right hand side
of the characteristic system is therefore continuously differentiable in z, and
Z(0, t, z) is differentiable also w.r.t t, thus f ∈ C1([0, T 1[×R6) and (f, λ, µ, λ̃, e)
is a regular solution of the auxiliary system. Now we can check if that solu-

tion takes the initial value (
◦
f,

◦
λ,

◦
µ,
◦
e) at t = 0. We established before that the

convergence of iterates is uniform on some interval [0, δ]. So we can deduce:
fn(t) → f(t)
λn(t) → λ(t)
µn(t) → µ(t)
en(t) → e(t)

for all t ∈ [0, δ].

In particular this holds for t = 0. But by the construction of fn and λn and
separation of L∞ one has immediately:

f(0) =
◦
f ; λ(0) =

◦
λ.

Since
◦
e is a regular solution of constraint equation (2.35) we obtain, taking

(2.16) at t = 0: e(0) =
◦
e and the result for µ follows by using equations (2.12)

and (2.34). We end the proof of theorem 4.1 by showing uniqueness.
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Assume that we have two regular solutions (λf , µf , f, ef ), (λg, µg, g, eg), with
λf (0) = λg(0), µf (0) = µg(0), f(0) = g(0), ef (0) = eg(0). The estimates, which
we applied to the difference of two consecutive iterates in proposition 4.4 can
be applied in analogous fashion to the difference of f and g to obtain

‖ f(t)− g(t) ‖L∞≤ C

∫ t

0

‖ f(s)− g(s) ‖L∞ ds

and using the Gronwall lemma, one concludes that f(t) = g(t), and then
λf (t) = λg(t); µf (t) = µg(t), ef (t) = eg(t) as long as both solutions exist.

4.4 The continuation criterion for solutions

Here we establish the continuation criterion for local solutions which may allow
us to extend these solutions for a large time t.

Theorem 4.2 (Continuation criterion) Let (f, λ, µ, e) be a regular solution

of the initial value problem under consideration with initial data (
◦
f,

◦
λ,

◦
µ,
◦
e) de-

fined on a maximal interval I ⊂ R of existence which is open and contains 0.
If

sup{| v | | (t, x̃, v) ∈ supp f, t ≥ 0} < +∞

then sup I = +∞, if

sup{| v | | (t, x̃, v) ∈ supp f, t ≤ 0} < +∞

then inf I = −∞

Proof: Let [0, T [ be the right maximal interval of existence of a regular solution
(f, λ, µ, e), and assume that

P∗ = sup{| v | | (t, x̃, v) ∈ suppf} <∞

and T < ∞. We will show that under this assumption we can extend the
solution beyond T ,which is a contradiction. Take any t0 ∈ [0, T [. Then the
above proof shows that we obtain a solution f̄ with initial value f̄(t0) = f(t0)
on the common existence interval of the solution of

z0(t) = U0 +Q0 + C

∫ t

t0

exp
(
(1 +R0 + s)8(1+ ‖ f(t0) ‖L∞)4(1 + z0(s))70

)
ds

z1(t) =‖ ∂zf(t0) ‖L∞ exp
(∫ t

t0

C(s)(1 + z1(s))ds
)

where C(s) is a function which depends on z0, and

U0 = sup{| v | | (x̃, v) ∈ suppf(t0)} < P∗
R0 = sup{| x̃ | | (x̃, v) ∈ suppf(t0)} < r0 + T

Q0 = sup{e2λ(t0,r), r ≥ 0}.
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By proposition 2.4, λ̇ = λ̃ = −4πreλ+µk, and thus ‖ λ̇ ‖L∞≤ C, t ∈ [0, T [,
which implies the estimate

Q0 ≤ Q∗ = sup{e2λ(t,r), t ∈ [0, T [, r ≥ 0}

obviously ‖ f(t0) ‖L∞=‖
◦
f ‖L∞ . By proposition 2.4 and lemma 2.2,

| ∂zZ(0, t, z) |≤ C, for z ∈ suppf(t) and t ∈ [0, T [, since all coefficients in
lemma 2.2 are bounded along the characteristics in suppf ; for the coefficient a3

we observe that due to (1.97), H = 4πq̄, and q̄ is bounded due to the bound on
suppf(t, x̃, .). Thus

‖ ∂zf(t0) ‖L∞≤ sup{‖ ∂zf(t) ‖L∞ |, t ∈ [0, T [} < +∞.

These estimates imply that there exists δ > 0, independent of t0, such that
(z0, z1) and thus also the solution f̄ , exists on the interval [t0, t0 + δ]. For t0
close enough to T this solution extends the solution f beyond T , which is a
contradiction. Thus if P∗ < ∞ then T = +∞ and this ends the proof of
theorem 4.2.

Remark 4.1 It is interesting to know what other bounds also suffice to extend
a local solution. It is easy to see that a bound on ρ does so, in other words: If
a solution blows up in finite time then ρ has to blow up in the L∞-norm.

Corollary 4.1 Let (λ, µ, e, f) be a solution of the asymptotically flat, spheri-
cally symmetric Einstein-Vlasov-Maxwell system on a maximal existence inter-
val I ⊂ R, 0 ∈ I, with

sup{‖ ρ(t) ‖L∞ , t ∈ I, t ≥ 0} <∞

or
sup{‖ ρ(t) ‖L∞ , t ∈ I, t ≤ 0} <∞.

Then sup I = +∞ or inf I = −∞ respectively.

Proof : Let T = sup I and

C∗ = sup{‖ ρ(t) ‖L∞ , 0 ≤ t < T}.

Then clearly

‖ p(t) ‖L∞ , ‖ k(t) ‖L∞≤‖ ρ(t) ‖L∞≤ C∗, 0 ≤ t < T

We now have:

1
2
e2λe2 ≤‖ ρ(t) ‖L∞ ⇒ e2 ≤ 2e−2λ ‖ ρ(t) ‖L∞

⇒ e2 ≤ 2 ‖ ρ(t) ‖L∞

⇒| e |≤
√

2 ‖ ρ(t) ‖
1
2
L∞

⇒| e |≤ C
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and ∣∣∣∣m(t, r)
r2

∣∣∣∣ ≤ 4πr
3

‖ ρ(t) ‖L∞≤ rC∗, r ≥ 0, 0 ≤ t < T

From (1.95) and (2.11) it follows that for r ≥ 0 and 0 ≤ t < T the estimates

| λ̇(t, r) |≤ r

2
e(λ+µ)(t,r) | k(t, r) |≤ Cr,∣∣∣e(µ−λ)(t,r)µ′(t, r)

∣∣∣ = ∣∣∣∣e(λ+µ)(t,r)

(
m(t, r)
r2

+
r

2
p(t, r)

)∣∣∣∣ ≤ Cr

hold; recall that λ+µ ≤ 0. On the other hand, by the estimate above on e, one
has: ∣∣eλ+µe

∣∣ ≤| e |≤ C.

These estimates imply that for any characteristic which starts in supp
◦
f and for

which in particular | X(t, 0, x̃, v) |≤ r0 + t we get

| V̇ (t, 0, x̃, v) |≤ C(1 + r0 + t)(1+ | V (t, 0, x̃, v) |).

Assume T < ∞. Then the last inequality implies by the Gronwall lemma,

that:| V (t, 0, x̃, v) |≤ C for (x̃, v) ∈ supp
◦
f and t ∈ [0, T [, or

sup{| v | | (t, x̃, v) ∈ suppf, t ≥ 0} ≤ C

which is a contradiction to theorem 4.2. Thus T = ∞, and the case t ≤ 0
being completely analogous. Then the proof is complete. Using theorem 4.1
and theorem 4.2 we can prove the following essential result of this chapter:

Theorem 4.3 (local existence, continuation criterion) Let
◦
f ∈ C∞(R6)

be nonnegative, compactly supported and spherically symmetric such that (4.1)

be satisfied. Let
◦
λ,

◦
µ,
◦
e ∈ C∞(R3) be a regular solution of (2.33), (2.34) and

(2.35). Then there exists a unique regular solution (λ, µ, f, e) of the asymp-
totically flat spherically symmetric Einstein-Vlasov-Maxwell system with initial

data (
◦
λ,

◦
µ,

◦
f,
◦
e) on a maximal interval I ⊂ R of existence which contains 0. If

sup{| v | | (t, x̃, v) ∈ suppf, t ≥ 0} < +∞

then sup I = +∞, if

sup{| v | | (t, x̃, v) ∈ suppf, t ≤ 0} < +∞

then inf I = −∞.
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Chapter 5

Continuous dependence on
the initial data

Introduction

In this chapter we prove that solutions depend continuously on their initial data.
Besides being of interest in itself for physically viable theory, cf.[[35], p. 243f],
the results of this section will be applied in the proof of global existence for
small data in the next chapter. For r0 > 0, u0 > 0 and Λ > 0, we consider the
following set of initial data:

D := {(
◦
f,

◦
λ,
◦
e) ∈ C∞(R6)× (C1([0,+∞[))2,

◦
f ≥ 0, spherically symmetric,

and satisfies (4.1) supp
◦
f ⊂ B(r0)×B(u0)and (

◦
λ,
◦
e)

is a regular solution of (2.33) and (2.35)with ‖
◦
λ ‖L∞≤ Λ}.

Let (λg, µg, eg, g) denote a fixed, regular solution of the spherically symmetric

Einstein-Vlasov-Maxwell system with initial datum (
◦
λg,

◦
eg,

◦
g) ∈ D and right

maximal existence interval [0, Tg[. We want to control the distance of another
solution (λf , µf , ef , f) from (λg, µg, eg, g) and the relation between the maximal
existence times Tf and Tg in terms of distance of the initial data, [0, Tf [ being
the right maximal existence interval of (λf , µf , ef , f); the whole argument would
also work for t < 0. To do so, we first have to control the distance between two

solutions (
◦
λf ,

◦
ef ), (

◦
λg,

◦
eg) of constraint equations and the essential tool we use

is the fact that we can construct a set of initial data (
◦
λ,
◦
e) such a way as the L∞-

norm of
◦
λ be uniformly bounded. This comes from the continuous dependence

of solutions of the constraint equations on parameter q, when q is small as it is
shown in chapter 3.

83



5.1 Continuous dependence of solutions for the
constraint equations

Let us give the main result of this section:

Proposition 5.1 Consider (
◦
f,

◦
λf ,

◦
ef ), (

◦
g,
◦
λg,

◦
eg) ∈ D. Given a sufficiently

small real number ε > 0, if d :=‖
◦
f − ◦

g ‖L∞< ε, then

‖
◦
λf ‖L∞ , ‖ ◦ef ‖L∞≤ C (5.1)

‖ e
◦
λf − e

◦
λg ‖L∞ , ‖ e

◦
λf
◦
ef − e

◦
λg
◦
eg ‖L∞ , ‖ ◦ef −

◦
eg ‖L∞

‖
◦
λf −

◦
λg ‖L∞ , ‖ e2

◦
λf
◦
e
2

f − e2
◦
λg
◦
e
2

g ‖L∞ , ‖ e2
◦
λf − e2

◦
λg ‖L∞≤ Cd

(5.2)

where the constant C depends on r0, u0,
◦
g,Λ and not on

◦
f .

Proof : Take (
◦
f,

◦
λf ,

◦
ef ) ∈ D, with d < ε. The bound of

◦
λf comes immediately

from the definition of D. Next, using equation (2.35), we have

◦
ef (r) =

q

r2
e−

◦
λf (r)

∫ r

0

s2e
◦
λf (s)

◦
Mf (s)ds

where
◦
Mf is defined as in (1.92), replacing f by

◦
f .

- For r ≤ r0, we obtain the bound of
◦
ef using ‖

◦
λf ‖L∞≤ Λ and the estimate

‖
◦
Mf ‖L∞≤ C ‖

◦
f ‖L∞≤ C(ε+ ‖ ◦g ‖L∞) ≤ C.

- For r ≥ r0, since
◦
f is with compact support, we have:

| ◦e(r) |=
∣∣∣∣ qr2 e−◦λf (r)

∫ r0

0

s2e
◦
λf (s)

◦
Mf (s)ds

∣∣∣∣ ≤ C

where C = C(r0, u0,
◦
g,Λ) is a constant, and (5.1) holds.

We now prove inequalities (5.2). We write, using (5.1) and the following equality

e
◦
λf − e

◦
λg =

2
r
e2

◦
λg+

◦
λf

◦
mf −

◦
mg

1 + e
◦
λg−

◦
λf

| e
◦
λf − e

◦
λg | (r) =

∣∣∣∣∣
(

1− 2mf (0, r)
r

)−1
2

−
(

1− 2mg(0, r)
r

)−1
2

∣∣∣∣∣
≤ C

∫ r

0

s | ◦ρf (s)− ◦
ρg(s) | ds
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where
◦
ρf is defined as ρ, replacing f by

◦
f . Thus, using (5.1) and distinguishing

the cases r ≤ r0 and r ≥ r0, we have:

| e
◦
λf − e

◦
λg | (r) = C ‖

◦
f − ◦

g ‖L∞ +C
∫ r

0

s | e
◦
λf
◦
ef − e

◦
λg
◦
eg | (s)ds. (5.3)

Now, we find an estimate for e
◦
λf
◦
ef − e

◦
λg
◦
eg. Using once again (2.35), we get

(e
◦
λf
◦
ef − e

◦
λg
◦
eg)(r) =

q

r2

∫ r

0

s2(e
◦
λf

◦
Mf − e

◦
λg

◦
Mg)(s)ds

=
q

r2

∫ r

0

s2(e
◦
λf − e

◦
λg )(s)

◦
Mf (s)ds

+
q

r2

∫ r

0

s2(
◦
Mf −

◦
Mg)(s)e

◦
λgds.

So we deduce the following inequality:

| e
◦
λf
◦
ef−e

◦
λg
◦
eg | (r) ≤ C

∫ r

0

| e
◦
λf−e

◦
λg | (s) |

◦
Mf (s) | ds+C

∫ r

0

|
◦
Mf−

◦
Mg | (s)ds

(5.4)
Inserting (5.4) in (5.3) and distinguishing the cases r ≤ r0 and r ≥ r0, we
obtain:

| e
◦
λf − e

◦
λg | (r) ≤ C ‖

◦
f − ◦

g ‖L∞ +C
∫ r

0

s

∫ s

0

| e
◦
λf − e

◦
λg | (s′) |

◦
Mf (s′) | ds′ds

≤ C ‖
◦
f − ◦

g ‖L∞ +C
∫ r

0

ds′ |
◦
Mf (s′) || e

◦
λf − e

◦
λg | (s′)

∫ s=r

s=s′
sds

≤ C ‖
◦
f − ◦

g ‖L∞ +C
∫ r

0

(r − s′)2 | e
◦
λf − e

◦
λg | (s′) |

◦
Mf (s′) | ds′

and by the Gronwall inequality, we obtain:

| e
◦
λf − e

◦
λg | (r) ≤ C ‖

◦
f − ◦

g ‖L∞ exp
(
C

∫ r

0

(r − s)2 |
◦
Mf (s) | ds

)
and since

◦
Mf vanishes outside of B(r0), we obtain the desired result by distin-

guishing the cases r ≤ r0 and r ≥ r0. Now, by (5.4), we do the same discussion
as above to deduce:

| e
◦
λf
◦
ef − e

◦
λg
◦
eg | (r) ≤ C ‖

◦
f − ◦

g ‖L∞ .

On the other hand,

e
◦
λf
◦
ef − e

◦
λg
◦
eg =

◦
eg(e

◦
λf − e

◦
λg ) + e

◦
λf (

◦
ef −

◦
eg).

Thus

e
◦
λf | ◦ef −

◦
eg | (r) ≤|

◦
eg || e

◦
λf − e

◦
λg | + | e

◦
λf
◦
ef − e

◦
λg
◦
eg |

≤ Cd,
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with C = C(r0, u0,
◦
g) and using (5.1), we obtain:

| ◦ef −
◦
eg | (r) ≤ Cd.

We also deduce, using the mean value theorem and for ε sufficiently small:

|
◦
λf −

◦
λg | (r) =| Log e

◦
λf − Log e

◦
λg | (r)

≤ sup
{

1
z
| | z − e

◦
λg | (r) ≤ Cε

}
| e

◦
λf − e

◦
λg | (r)

≤ Cd,

and the rest of inequalities in (5.2) follow immediately from those above. Thus,
this ends the proof of proposition 5.1.

We now give the essential result of this chapter:

5.2 Continuous dependence of solutions for the
Einstein-Vlasov-Maxwell on initial data

Theorem 5.1 There exists a constant ε > 0, a positive increasing function
ξ ∈ C([0, Tg[), and a positive decreasing function σ ∈ C(]0, ε[) such that

lim
β→0

σ(β) = Tg (5.5)

and for any solution (λf , µf , ef , f) with the initial datum (
◦
f,

◦
λf ,

◦
ef ) ∈ D satis-

fying d :=‖
◦
f − ◦

g ‖L∞< ε, we have the estimates:

Tf > σ(d) (5.6)

‖ f(t)− g(t) ‖L∞ + ‖ λf (t)− λg(t) ‖L∞ + ‖ µf (t)− µg(t) ‖L∞ + ‖ ef (t)− eg(t) ‖L∞

+ ‖ e2λf (t) − e2λ(t) ‖L∞ + ‖ λ̇f (t)− λ̇g(t) ‖L∞

‖ µ′f (t)− µ′g(t) ‖L∞≤ ξ(t)d
(5.7)

for t ∈ [0, σ(d)]. The analogous assertion holds for t ≤ 0.

Proof : As a first step in our estimates for the difference to two solutions at
time t > 0 we determine a time interval on which we get a uniform bound on
the suppf(t) for all solutions which the initial data are in D and close enough
to

◦
g. Define

T0(f) : = sup{t ∈]0,min(Tf , Tg)[ | such that 0 ≤ s ≤ t,

‖ ef (s)− eg(s) ‖L∞ + ‖ e2λf e2f − e2λge2g ‖L∞ (s)

‖ λ̇f (s)− λ̇g(s) ‖L∞ + ‖ µ′f (s)− µ′g(s) ‖L∞≤ 1}.
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Notice that for d small enough, say d < ε1 for a suitable defined ε1 > 0, the
estimate defining T0(f) holds at t = 0 so that by continuity, T0(f) > 0. For a
solution (f, λf , µf , ef ) with d < ε1 the following estimates for the characteristics
hold on [0, T0(f)[:

| ẋ(s) |≤ 1,

| v̇(s) | ≤ C(‖ λ̇f (s) ‖L∞ + ‖ µ′f (s) ‖L∞ + ‖ ef (s) ‖L∞)(1+ | v(s) |)

≤ C(1+ ‖ λ̇f (s) ‖L∞ + ‖ µ′f (s) ‖L∞ + ‖ ef (s) ‖L∞)(1+ | v(s) |)

with C = C(q) being a constant. Via the Gronwall inequality this implies that

suppf(t) ⊂ {(x̃, v) ∈ R6 | | x̃ |≤ r0 + t, | v |≤ Ug(t)} (5.8)

for t ∈ [0, T0(f)[, where

Ug := (1 + u0) exp
(
C

∫ t

0

(1+ ‖ λ̇g(s) ‖L∞ + ‖ µ′g(s) ‖L∞ + ‖ eg(s) ‖L∞)ds
)
.

If we denote by C a continuous, increasing function on [0, Tg[ which depends
only on (g, λg, µg, eg) we obtain the following estimates on [0, T0(f)[

‖ ρf (t)− ρg(t) ‖L∞ + ‖ pf (t)− pg(t) ‖L∞ + ‖ kf (t)− kg(t) ‖L∞

+ ‖Mf (t)−Mg(t) ‖L∞≤ C(t)(‖ f(t)− g(t) ‖L∞ + ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞)
(5.9)∣∣∣∣mf (t, r)

r
− mg(t, r)

r

∣∣∣∣ ≤ 4π
r

∫ r

0

s2 | ρf (t, s)− ρg(t, s) | ds

≤ C(t)(‖ f(t)− g(t) ‖L∞ + ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞)

∣∣∣∣mf (t, r)
r2

− mg(t, r)
r2

∣∣∣∣ ≤ 4π
r2

∫ r

0

s2 | ρf (t, s)− ρg(t, s) | ds

≤ C(t)(‖ f(t)− g(t) ‖L∞ + ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞)
(5.9’)

to obtain the latter two estimates we distinguished the cases r ≤ r0 + t and
r > r0 + t and used (5.9). In fact, take r ∈ [r0 + t,+∞[ and integrate equation
(1.90) on [r0 + t, r], use the fact that M is compactly supported to obtain:

eλ(t,r)e(t, r) =
(
r0 + t

r

)2

eλ(t,r0+t)e(t, r0 + t), r ∈ [r0 + t,+∞[ (5.9”)

Thus

2π
r

∣∣∣∣∫ +∞

r0+t

s2(e2λf e2f − e2λge2g)(t, s)ds
∣∣∣∣ ≤ C(t) ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞

2π
r2

∣∣∣∣∫ +∞

r0+t

s2(e2λf e2f − e2λge2g)(t, s)ds
∣∣∣∣ ≤ C(t) ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞
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Next as the second step, we derive an estimate for the time evolution of f−g
along the characteristics Zf = (Xf , Vf ) corresponding to f . From the fact that
f is constant along these characteristics and from the Vlasov equation for g it
follows that:

d

ds
(f − g)(s, Zf (s, t, z)) = − d

ds
g(s, Zf (s, t, z))

= −(∂tg + ∂x̃g. ˙̃x+ ∂vg.v̇)(s, Zf (s, t, z))

= (F1,g.∂x̃g + F̃2,g.∂vg)(s, Zf (s, t, z))

− αfe
−λf

v√
1 + v2

.∂x̃g(s, Zf (s, t, z))

− F̃2,f .∂vg(s, Zf (s, t, z))

where αf = eµf , αg = eµg ; and F1,g, F̃2,f , F̃2,g are obtained from F1, F̃2,
replacing λ, µ by λf , µf respectively. We apply Taylor formula for the function
ex with x ≤ 0 to obtain:∣∣∣∣ dds (f − g)(s, Zf (s, t, z))

∣∣∣∣ ≤‖ ∂x̃g(s) ‖L∞ | eµg(s)−λg(s) − eµf (s)−λf (s) |

+ ‖ ∂vg(s) ‖L∞‖ λ̇f (s)− λ̇g(s) ‖L∞ (1 + Ug(s))

+ ‖ ∂vg(s) ‖L∞ | eµg(s)−λg(s) − eµf (s)−λf (s) | (1 + Ug(s))

+ eµf (s)−λf (s) ‖ µ′f (s)− µ′g(s) ‖L∞ (1 + Ug(s))

+ | q | eλf +µf ‖ ef (s)− eg(s) ‖L∞ (1 + Ug(s))
≤ C(s)(‖ λf (s)− λg(s) ‖L∞ + ‖ µf (s)− µg(s) ‖L∞)

+ C(s) ‖ ef (s)− eg(s) ‖L∞

+ C(s)(‖ λ̇f (s)− λ̇g(s) ‖L∞ + ‖ µ′f (s)− µ′g(s) ‖L∞);

recall that µ − λ ≤ 1 and µ + λ ≤ 1 both for f and g. Integration of above
estimate with respect to s from 0 to t yields:

‖ f(t)− g(t) ‖L∞ ≤‖
◦
f − ◦

g ‖L∞ +C(t)
∫ t

0

‖ λf (s)− λg(s) ‖L∞ ds

+ C(t)
∫ t

0

‖ µf (s)− µg(s) ‖L∞ ds

+ C(t)
∫ t

0

(‖ ef (s)− eg(s) ‖L∞ + ‖ λ̇f (s)− λ̇g(s) ‖L∞)ds

+
∫ t

0

‖ µ′f (s)− µ′g(s) ‖L∞ ds.

(5.10)
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Using (5.9) and the fact that ‖ f(t) ‖L∞=‖
◦
f ‖L∞≤‖

◦
g ‖L∞ +ε1, we obtain the

estimates

‖ ρf (t) ‖L∞ + ‖ pf (t) ‖L∞

+ ‖ kf (t) ‖L∞ + ‖ Nf (t) ‖L∞≤ C(t), t < T0(f) (5.10’)
and ∣∣∣∣mf (t, r)

r2

∣∣∣∣ ≤ C(t), t < Tf , r > 0.

Furthermore, µ+λ ≤ 0 for any solution. Thus, we get from Taylor formula and
from (1.95) the estimate:

‖ λ̇f (t)−λ̇g(t) ‖L∞≤ C(t)(‖ kf (t)−kg(t) ‖L∞ + ‖ eµf (t)+λf (t)−eµg(t)+λg(t) ‖L∞)

‖ λ̇f (t)− λ̇g(t) ‖L∞ ≤ C(t)(‖ f(t)− g(t) ‖L∞ + ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞)

+ C(t)(‖ λf (t)− λg(t) ‖L∞ + ‖ µf (t)− µg(t) ‖L∞).
(5.11)

Next, (2.11) implies the estimate, using (5.9):

| µ′f − µ′g | (t, r) ≤
(∣∣∣∣mf (t, r)

r2

∣∣∣∣+ r

2
| pf (t, r) |

)
| e2λf − e2λg | (t, r)

+ e2λg(t,r)

∣∣∣∣mf (t, r)
r2

− mg(t, r)
r2

∣∣∣∣+ r

2
| pf − pg | (t, r)

and by the integration on [0,+∞[ w.r.t r one has since

lim
r→+∞

µf (t, r) = lim
r→+∞

µg(t, r) = 0 :

‖ µf (t)− µg(t) ‖L∞ ≤ C(t)(‖ f(t)− g(t) ‖L∞ + ‖ e2λf (t) − e2λg(t) ‖L∞)

+ C(t) ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞

(5.12)

| ∂se
2λf − ∂se

2λg | (s, r) = 2 | λ̇fe
2λf − λ̇ge

2λg | (t, r)
= 2 | λ̇f (e2λf − e2λg ) + e2λg (λ̇f − λ̇g) | (s, r)
≤ reλf +µf | e2λf − e2λg | (t, r) + e2λg ‖ λ̇f (s)− λ̇g(s) ‖L∞

≤ C(s)(‖ e2λf (s) − e2λg(s) ‖L∞ + ‖ λ̇f (s)− λ̇g(s) ‖L∞),
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after inserting (5.11) and (5.12) we deduce by integration from the above in-
equality:

‖ e2λf (t) − e2λg(t) ‖L∞ ≤‖ e2
◦
λf − e2

◦
λg ‖L∞ +C(t)

∫ t

0

‖ f(s)− g(s) ‖L∞ ds

+ C(t)
∫ t

0

‖ λf (s)− λg(s) ‖L∞ ds

+ C(t)
∫ t

0

‖ µf (s)− µg(s) ‖L∞)ds

+ C(t)
∫ t

0

‖ e2λf (s) − e2λg(s) ‖L∞ ds

+ C(t)
∫ t

0

‖ e2λf (s)e2f (s)− e2λg(s)e2g(s) ‖L∞ ds.

(5.13)
Now, using equation (1.91), one obtains:

| ∂s(e2λf (s)e2f (s))− ∂s(e2λg(s)e2g(s)) | =| eλf ef∂s(eλf ef )− eλgeg∂s(eλgeg | (s, r)

=
2 | q |
r

| eλf +µf efNf − eλg+µgegNg | (s, r)

=
2 | q |
r

| eµfNf (eλf ef − eλgeg) | (s, r)

+
2 | q |
r

| eλgeg(eµfNf − eµgNg) | (s, r)

≤ C(s) ‖ eλf (s)ef (s)− eλg(s)eg(s) ‖L∞

+ C(s) ‖ µf (s)− µg(s) ‖L∞

+ C(s) ‖ f(s)− g(s) ‖L∞ .

Note that the last inequality above follows from, since µ ≤ 0 and λ+µ ≤ 0 hold
for both f and g:

| Ng(s, r) |≤ (r0 + t) ‖ ◦g ‖L∞≤ C(s)
| eµf − eµg | (s, r) ≤| µf − µg | (s, r) (Taylor formula).

Thus, by integration with respect to s, one has:

‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞ ≤‖ e2
◦
λf
◦
e
2

f − e2
◦
λg
◦
e
2

g ‖L∞

+
∫ t

0

C(s) ‖ f(s)− g(s) ‖L∞ ds

+
∫ t

0

C(s) ‖ µf (s)− µg(s) ‖L∞ ds

+
∫ t

0

C(s) ‖ eλf (s)ef (s)− eλg(s)eg(s) ‖L∞ .

(5.14)
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We use once again equation (1.91) to obtain:

| ∂s(eλf ef )− ∂s(eλgeg) | (s, r) =
| q |
r

| eµfNf − eµgNg | (s, r)

=
| q |
r

| eµf (Nf −Ng) +Ng(eµf − eµg ) | (s, r)

≤ C(s)(‖ f(s)− g(s) ‖L∞ + ‖ µf (s)− µg(s) ‖L∞).

Thus, by integration of above expression with respect to s, one has:

‖ eλf (t)ef (t)− eλg(t)eg(t) ‖L∞ ≤‖ e
◦
λf
◦
ef − e

◦
λg
◦
eg ‖L∞

+
∫ t

0

C(s) ‖ f(s)− g(s) ‖L∞ ds

+
∫ t

0

C(s) ‖ µf (s)− µg(s) ‖L∞ ds.

(5.15)

Now, from (5.10), (5.11), (5.13), (5.14) and (5.15), it follows that on the time
interval [0, T0(f)[ the estimates:

‖ f(t)− g(t) ‖L∞ + ‖ λf (t)− λg(t) ‖L∞ + ‖ e2λf (t) − e2λg(t) ‖L∞

+ ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞ + ‖ eλf (t)ef (t)− eλg(t)eg(t) ‖L∞

≤ Cd+
∫ t

0

C(s)(‖ f(s)− g(s) ‖L∞ + ‖ λf (s)− λg(s) ‖L∞)ds

+
∫ t

0

C(s) ‖ e2λf (s) − e2λg(s) ‖L∞ ds

+
∫ t

0

C(s)(‖ e2λf (s)e2f (s)− e2λg(s)e2g(s) ‖L∞ + ‖ eλf (s)ef (s)− eλg(s)eg(s) ‖L∞)ds

hold, where the function C ∈ C([0, Tg[) depends only on g and can be taken
strictly increasing with lim

t→Tg

C(t) = +∞. By the Gronwall inequality, we obtain:

‖ f(t)− g(t) ‖L∞ + ‖ λf (t)− λg(t) ‖L∞ + ‖ e2λf (t) − e2λg(t) ‖L∞

+ ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞ + ‖ eλf (t)ef (t)− eλg(t)eg(t) ‖L∞≤ ξ(t)d
(5.16)

and by (5.11) and (5.15), we also have:

‖ ef (t)− eg(t) ‖L∞ + ‖ λ̇f (t)− λ̇g(t) ‖L∞ + ‖ e2λf (t)e2f (t)− e2λg(t)e2g(t) ‖L∞

+ ‖ µ′f (t)− µ′g(t) ‖L∞≤ ξ(t)d
(5.17)

where ξ ∈ C([0, Tg[) depends only on g, strictly increasing, ξ(0) > 0, and
lim

t→Tg

ξ(t) = +∞. Define

ε := min
{
ε1,

1
2ξ(0)

}
; σ(β) := ξ−1

(
1
2β

)
; β ∈]0, ε[.
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Then σ ∈ C(]0, ε[) is positive, strictly decreasing, and lim
β→0

σ(β) = Tg. Let

(
◦
f,

◦
λ,
◦
e) ∈ D be such that 0 < d < ε. Then on the interval [0,min{σ(d), T0(f)}]

the following estimate holds since ξ is strictly increasing:

A(t) := ‖ ef (t)− eg(t) ‖L∞ + ‖ e2λf e2f (t)− e2λge2g(t)e
2
g(t) ‖L∞

+ ‖ λ̇f (t)− λ̇g(t) ‖L∞ + ‖ µ′f (t)− µ′g(t) ‖L∞≤ ξ(t)d < ξ(σ(d))d =
1
2d
d =

1
2
.

Thus,

A(t) <
1
2
, for t < σ(d). (5.18)

Assume Tf ≤ σ(d). Then by definition of T0(f) and (5.18) we obtain the identity
T0(f) = min{Tf , Tg} = Tf , in particular the estimate

| v |≤ Ug(σ(d)) <∞

holds for all (x̃, v) ∈ suppf(t) and t ∈ [0, Tf [. Since Tf ≤ σ(d) < ∞, this is a
contradiction to theorem 4.3, and we have shown that Tf > σ(d). Furthermore,
(5.18), implies that T0(f) > σ(d) so that the estimates which were established
on the interval [0, T0(f)[ hold on [0, σ(d)], and the proof is complete.

Besides the estimates stated in the above theorem there are a number of
other estimates which will be used in the next chapter.

Corollary 5.1 Let (
◦
f,

◦
λ,
◦
e) ∈ D be such that

d =‖
◦
f − ◦

g ‖L∞< ε.

Then in addition to the estimates in theorem 4.1 the following holds on [0, σ(d)]:

(a)
suppf(t) ⊂ {(x̃, v) ∈ R6 | | x̃ |≤ r0 + t, | v |≤ Ug(t)}

where

Ug(t) := exp
(∫ t

0

(1+ ‖ λ̇g(s) ‖L∞ + ‖ µ′g(s) ‖L∞ + ‖ eg(s) ‖L∞)ds
)

(1+u0)

(b)
‖ λ′f (t)− λ′g(t) ‖L∞≤ S(t)d (5.19)

(c)
‖ µ̇f (t)− µ̇g(t) ‖L∞≤ S(t)d (5.20)

(d)

1
r
(| λ̇f (t)− λ̇g(t) | + | λ′f (t)− λ′g(t) | + | µ′f (t)− µ′g(t) |)(t, r) ≤ S(t)d.

(5.21)
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Note that ε and σ are introduced as in theorem 5.1, and the positive, increasing
function S ∈ C([0, Tg[) will be redefined in the sequel.

Proof : Part (a) was already established when proving theorem 5.1. In the
sequel we drop the indices f or g for simplicity, since they hold for both solutions.
The assertion in (b) comes from

λ′(t, r) = e2λ(t,r)

(
−m(t, r)

r2
+
r

2
ρ(t, r)

)
and the estimates in theorem 5.1 together with part (a). In other to prove part
(c), we use the representation (2.29), for µ̇. In this formula only terms appear
whose continuous dependence on initial data in the sense of theorem 5.1 have
already been established, and thus

‖ µ̇f − µ̇g ‖L∞≤ S(t)d

on the interval [0, σ(d)] for a function S which has to be suitably redefined and
has all the properties stated in theorem 5.1. To prove part (d) we observe that
by the formulas for λ̇, λ′ and µ′ the only new term to consider here is m(t,r)

r3 ,
but ∣∣∣∣mf (t, r)

r3
− mg(t, r)

r3

∣∣∣∣ ≤ 4π
3
‖ ρf (t)− ρg(t) ‖L∞

and the proof is complete.
Next we show that the characteristics, the Christoffel symbols, and the Rie-

mann curvature tensor and thus the geometry of spacetime manifold also depend
continuously on the initial data.

Corollary 5.2 Let (
◦
f,

◦
λ,
◦
e) ∈ D be such that d < ε. Then the following in-

equalities hold on [0, σ(d)]:

(a)

| Zf − Zg | (t, 0, z) ≤ S(t)d, for z ∈ supp
◦
f ∪ supp

◦
g (5.22)

(b)
‖ Γα

βγf (t)− Γα
βγg(t) ‖L∞≤ S(t)d (5.23)

(c)
‖ Rα

δ
,βγf (t)−Rα

δ
,βγg(t) ‖L∞≤ S(t)d. (5.24)

Once again, ε and σ are as in theorem 5.1, and positive increasing function
S ∈ C([0, Tg[) has to be cleverly reintroduced.

Proof: To prove part (a), we consider the difference of the characteristic systems
corresponding to f and g respectively and abbreviate (X,V )(t) = (X,V )(t, 0, z)

for z ∈ supp
◦
f ∩ supp

◦
g. Define for x̃, v ∈ R3 and x̃ 6= 0:

Ff (t, x̃, v) = (F1,f , F̃2,f )(t, x̃, v)
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and Fg as we did before. Then

| Żf (t)− Żg(t) |=| Ff (t, Zf (t))− Fg(t, Zg(t)) |

| Żf (t)− Żg(t) |≤| Ff (t, Zf (t))− Fg(t, Zf (t)) | + | Fg(t, Zf (t))− Fg(t, Zg(t)) |
(5.25)

and since µ+ λ ≤ 1 for both functions f and g, we obtain

| Ff (t, x̃, v)− Fg(t, x̃, v) | ≤ C(t)(‖ λf (t)− λg(t) ‖L∞ + ‖ µf (t)− µg(t) ‖L∞)

+ C(t)(‖ λ̇f (t)− λ̇g(t) ‖L∞ + ‖ µf (t)− µg(t) ‖L∞)
+ C(t) ‖ ef (t)− eg(t) ‖L∞

≤ C(t)d, 0 ≤ t ≤ σ(d), | x̃ |≤ r0 + t, | v |≤ Ug(t)

Next, from

| ∂zFg(t, x̃, v) |≤ C(t), t ∈ [0, Tg[, | x̃ |≤ r0 + t, | v |≤ Ug(t),

we use the mean value theorem to write:

| Fg(t, Zf (t))− Fg(t, Zg(t)) |≤ C(t) | Zf (t)− Zg(t) |, t ∈ [0, Tg[.

So, (5.25) can be written as:

| Żf (t)− Żg(t) |≤ C(t)d+ C(t) | Zf (t)− Zg(t) |, t ∈ [0, Tg[. (5.26)

Note from the proof of proposition 2.1 that Fg(t) ∈ C1(R6) and that the terms

λ̇′g, µ
′′
g , λ̇g

r , µ′g
r , eg

r , mg(t,r)
r2 which appear in ∂zFg are bounded by one suitable

function C. Thus, the assertion in part (a) follows when applying Gronwall’s
lemma on (5.26). Now, part (b) is proved, recalling the formulas (1.57) for
Christoffel symbols. We only have to check continuous dependence on the initial
data for this function

1− e−2λ(t,r)

r
=

2m(t, r)
r2

.

But the assertion is obvious for this term. Finally, calculation shows that all
terms appearing in the Riemann curvature tensor formulas depend continuously
on the initial data in the appropriate sense. Note that

H = e−2λ

(
µ′′ + (µ′ − λ′)(µ′ +

1
r
)
)
− e−2µ

(
λ̈+ λ̇(λ̇− µ̇)

)
= 4πq̄

can be expressed by q̄ due to the field equation (1.97), and the continuous
dependence of q̄ on the initial data is obvious, and the proof of corollary 5.2 is
complete.

Next we end this chapter with one important result concerning the contin-
uous dependence of f(t) on the initial data.
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Corollary 5.3 With the assumption in theorem 5.1, let
◦
g ∈ C2(R6). Then the

following

‖ ∂zf(t)− ∂zg(t) ‖L∞≤ S(t)(‖
◦
f − ◦

g ‖L∞ + ‖ ∂z

◦
f − ∂z

◦
g ‖L∞), t ∈ [0, σ(d)]

holds for initial data (
◦
λ,
◦
e,
◦
f) ∈ D, with d ≤ ε, and ‖ ∂z

◦
f − ∂z

◦
g ‖L∞< 1,

where ε, σ and d are as in theorem 5.1 and the nonnegative, increasing function
S ∈ C([0, Tg[) is cleverly reintroduced.

Proof: We deduce from f(t, z) =
◦
f(Zf (0, t, z)) and the corresponding formula

for g that, using the mean value theorem:

| ∂zf − ∂zg | (t, z) =| ∂z

◦
f(Zf (0, t, z))∂zZf (0, t, z)− ∂z

◦
g(Zg(0, t, z))∂zZg(0, t, z) |

≤| ∂z

◦
f(Zf (0, t, z)) || ∂zZf (0, t, z)− ∂zZg(0, t, z) |

+ | ∂zZg(0, t, z) || ∂z

◦
f(Zf (0, t, z))− ∂z

◦
g(Zf (0, t, z)) |

+ | ∂zZg(0, t, z) || ∂z
◦
g(Zf (0, t, z))− ∂z

◦
g(Zg(0, t, z)) |

≤‖ ∂z

◦
f ‖L∞ | ∂zZf (0, t, z)− ∂zZg(0, t, z) |

+ (‖ ∂z

◦
f − ∂z

◦
g ‖L∞ + ‖ ∂2

z

◦
g ‖L∞) | ∂zZf (0, t, z) |

Since
(‖ ∂z

◦
f − ∂z

◦
g ‖L∞≤ 1) ⇒ (‖ ∂z

◦
f ‖L∞≤ 1+ ‖ ∂z

◦
g ‖L∞)

one has:

| ∂zf − ∂zg | (t, z) ≤ (1+ ‖ ∂z
◦
g ‖L∞) | ∂zZf (0, t, z)− ∂zZg(0, t, z) |

+ ‖ ∂z

◦
f − ∂z

◦
g ‖L∞ | ∂zZg(0, t, z) |

+ | ∂zZg(0, t, z) |‖ ∂2
z

◦
g ‖L∞ | Zf (0, t, z)− Zg(0, t, z) | .

We have the bound, for z ∈ suppf(t) ∪ suppg(t):

| ∂zZg(0, t, z) |≤ C(t),

where the function C depends only on g. This is a consequence of lemma 2.2,
since all the coefficients a1,g, ...a4,g in that lemma are bounded in terms of g.
To prove the assertion of the corollary, it is convenient to estimate

| ∂zZf (0, t, z)− ∂zZg(0, t, z) |

in an appropriate way. We do so using again lemma 2.2 to obtain, with the
notation of that lemma:

| ξ̇f − ξ̇g | (s) =| a1,f (s, Zf )ξf + a2,f (s, Zf )ηf − a1,g(s, Zf )ξg − a2,g(s, Zg)ηg |
≤| a1,f (s, Zf ) || ξf − ξg | (s)+ | a1,f (s, Zf )− a1,g(s, Zf ) || ξg(s) |

+ | a1,g(s, Zf )− a1,g(s, Zg) || ξg(s) |
+ | a2,f (s, Zf )− a2,g(s, Zf ) | ηg(s) |
| a2,g(s, Zf )− a2,g(s, Zg) || ηg(s) | + | a2,f (s, Zf ) | | ηf − ηg | (s)
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and, using corollary 4.1 and the proof of theorem 5.1, one has:

| ξ̇f − ξ̇g ≤ C(s)((| ξf − ξg | + | ηf − ηg |)(s) + (| ξg(s) | + | ηg(s) |)d)
+ C(s)(‖ ∂za1,g(s) ‖L∞ + ‖ ∂za2,g(s) ‖L∞) | Zf − Zg | (s)

≤ C(s)d+ C(s)(| ξf − ξg | + | ηf − ηg |)(s).

An analogous estimate can be obtained for | η̇f − η̇g | (s), and adding these two
estimates and applying the Gronwall lemma, we have the desired estimate for

| ξf − ξg | (0)+ | ηf − ηg | (0) =| ∂zZf (0, t, z)− ∂zZg(0, t, z) | .

Note that we take on R6 the norm:

| (x̃, v) |=| x̃ | + | v |, (x̃, v) ∈ R6,

and the proof of corollary is complete.
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Chapter 6

Global existence for small
initial data

Introduction

In this chapter we prove that solutions exist globally if their initial data are suf-
ficiently small. Here we also prove that in this global spacetime, all trajectories
are complete.

Theorem 6.1 For all r0 > 0, u0 > 0 and Λ > 0 there exists ε > 0 such
that if (λ, µ, e, f) is the maximal solution of the asymptotically flat, spherically

symmetric Einstein-Vlasov-Einstein system with data (
◦
λ,
◦
e,
◦
f), satisfying

supp
◦
f ⊂ B(r0)×B(u0), ‖

◦
f ‖L∞< ε, ‖

◦
λ ‖L∞≤ Λ,

(
◦
λ,
◦
e) being a regular solution of (2.33) and (2.35), then the solution exists

globally in t. Moreover, it satisfies condition (FS) stated below on R with δ = 1
and some constant γ > 0,

‖ ρ(t) ‖L∞ , ‖ p(t) ‖L∞ , ‖ k(t) ‖L∞ , ‖M(t) ‖L∞ ≤ C(1+ | t |)−3

‖ λ(t) ‖L∞ , ‖ µ(t) ‖L∞ , ≤ C(1+ | t |)−1

‖ Γα
βγ(t) ‖L∞ , ‖ N(t) ‖L∞ , ‖ e(t) ‖L∞ ≤ C(1+ | t |)−2

‖ R β
α,δγ(t) ‖L∞ ≤ C(1+ | t |)−3

for t ∈ R, and the trajectories are defined on R.

Assuming theorem 6.1, we obtain the following result:

Proposition 6.1 a) If (f, λ, µ, e) is a regular solution of the asymptotically
flat, spherically symmetric Einstein-Vlasov-Maxwell system on some in-
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terval I, then for every a ∈ R∗{
fa(t, x̃, v) := a2f(at, ax̃, v); λa(t, r) := λ(at, ar)
µa(t, r) := µ(at, ar); ea(t, r) := ae(at, ar)

(6.1)

define another regular solution of this system on the interval a−1I.

b) For every u0 > 0 there exists a constant ε0 > 0 such that if
◦
f ∈ C∞c (R6)

is nonnegative and spherically symmetric with

8π
∫
|y|≤r

∫
R3

√
1 + v2

◦
f(y, v)dvdy < r, r ≥ 0

supp{| v | | (x̃, v) ∈ supp
◦
f} ≤ u0, sup{| x̃ | | (x̃, v) ∈ supp

◦
f} ‖

◦
f ‖L∞< ε0.

Then the corresponding solution is global and all the assertions in the
theorem 6.1 hold for this solution.

Proof (of proposition 6.1): We prove firstly the assertion in a). Let (λ, µ, ef)
be a regular solution of the asymptotically symmetric Einstein-Vlasov-Maxwell
system on some interval I. Fix a ∈ R∗ such that (6.1) holds. For t ∈ a−1I, we
consider

τ = at; y = ax̃; | x̃ |= r; r′ =| y |= ar.

First of all we show that fa satisfies the Vlasov equation (1.89).

∂fa

∂t
(t, x̃, v) = a2 ∂f

∂t
(τ, y, v) = a2 ∂τ

∂t

∂f

∂τ
(τ, y, v) = a3 ∂f

∂τ
(τ, y, v) (6.2)

e(µa−λa)(t,r) v

1 + v2
· ∂fa

∂x̃
(t, x̃, v) = a2e(µ−λ)(τ,r′) vi

√
1 + v2

· ∂f
∂xi

(τ, y, v)

= a2e(µ−λ)(τ,r′) vi

√
1 + v2

∂yk

∂xi

∂f

∂yk
(τ, y, v)

= a3e(µ−λ)(τ,r′) vi

√
1 + v2

δk
i

∂f

∂yk
(τ, y, v)

e(µa−λa)(t,r) v

1 + v2
· ∂fa

∂x̃
(t, x̃, v) = a3e(µ−λ)(τ,r′) v√

1 + v2
· ∂f
∂y

(τ, y, v) (6.3)

Setting

Va : = −
(
e(µa−λa)(t,r)µ′a(t, r)

√
1 + v2 + λ̇a(t, r)

x̃.v

r

)
x̃

r
· ∂fa

∂v

+ qe(λa+µa)(t,r)ea(t, r)
x̃

r
· ∂fa

∂v

Va = −a3
(
e(µ−λ)(τ,r′)µ′(τ, r′)

√
1 + v2 + λ̇(τ, r′)

y.v

r

) y
r′
· ∂f
∂v

(τ, y, v)

+ a3e(λ+µ)(τ,r′)e(τ, r′)
y

r′
· ∂f
∂v

(τ, y, v).
(6.4)

98



Adding (6.2), (6.3), (6.4) and using the fact that f satisfies the Vlasov equation,
one has the desired result.

Next, we show that ea satisfies the Maxwell equation (1.90).

∂

∂r
(r2eλa(t,r)ea(t, r)) =

∂

∂r

(
r′2

a2
eλ(τ,r′)ae(τ, r′)

)
=

1
a

dr′

dr

∂

∂r′
(r′2eλ(τ,r′)e(τ, r′))

=
∂

∂r′
(r′2eλ(τ,r′)e(τ, r′))

= qr′2eλ(τ,r′)M(τ, r′), (since e(τ, r′) satisfies(1.90))

= qa2r2eλa(t,r)

∫
R3
f(τ, y, v)dv

= qr2eλa(t,r)

∫
R3
fa(t, x̃, v)dv

= qr2eλa(t,r)Ma(t, r)

and we obtain the desired result.
Now we show that λa satisfies (1.94), this means

e−2λa(2rλ′a − 1) + 1 = r2
(∫

R3

√
1 + v2fadv +

1
2
e2λae2a

)
.

But,

e−2λa(t,r)(2rλ′a(t, r)− 1) + 1 = e−2λ(τ,r′)(2raλ′(τ, r′)− 1) + 1

= e−2λ(τ,r′)(
2r′

a
aλ′(τ, r′)− 1) + 1

= e−2λ(τ,r′)(2r′λ′(τ, r′)− 1) + 1

= r′2ρ(τ, r′), sinceλ satisfies (1.94)

and the desired result is obtained.
By the proposition 2.3, we have only to show that µa satisfies (1.96); this

means:
e−2λa(t,r)(2rµ′a(t, r) + 1)− 1 = r2pa(t, r)

where pa(t, r) is deduced from p(t, r) in (1.100), replacing f , λ and e by fa, λa

and ea respectively. But,

e−2λa(t,r)(2rµ′a(t, r) + 1)− 1 = e−2λ(τ,r′)(2raµ′(τ, r′) + 1)− 1

= e−2λ(τ,r′)

(
2r′

a
aµ′(τ, r′) + 1

)
− 1

= e−2λ(τ,r′)(2r′µ′(τ, r′) + 1)− 1

= r2pa(t, r) (sinceµ satisfies (1.96))
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and the desired result is obtained. Thus, the part a) of proposition 6.1 is proved.
For the part b), let u0 > 0 be given and choose ε0 > 0 according to the

theorem 6.1 with r0 = 1. Now take
◦
f as an initial datum satisfying the assump-

tions listed in b) and choose a > 0 such that

sup{| x̃ | | (x̃, v) ∈ supp
◦
fa} =

1
a

sup{| x̃ | | (x̃, v) ∈ supp
◦
f} = 1.

where
◦
fa(x̃, v) := a2

◦
f(ax̃, v). Then

supp
◦
fa ⊂ B(1)×B(u0)∫

|y|≤r

∫
R3

√
1 + v2

◦
fa(y, v)dvdy =

∫
|y|≤r

∫
R3
a2
√

1 + v2
◦
f(ay, v)dvdy

=
1
a

∫
|y|≤ar

∫
R3

√
1 + v2

◦
f(y, v)dvdy <

r′

2a
=
r

2
,

for r ≥ 0 and

‖
◦
fa ‖L∞= a2 ‖

◦
f ‖L∞=

2
sup{| x̃ | | (x̃, v) ∈ supp

◦
f} ‖

◦
f ‖L∞< ε0.

Thus, by the choice of ε0 and the theorem 6.1, the solution fa corresponding to

the initial datum
◦
fa is global and has the properties stated there, and this shows

that the same is valid for the solution f corresponding to the initial datum
◦
f .

Proposition 6.2 Let (
◦
f,

◦
λ,
◦
e) ∈ D. Then the following inequalities hold:

a) | ◦e(r) | ≤ C ‖
◦
f ‖L∞

b) | m(0, r) | ≤ C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)

c) | ◦µ(r) | ≤ C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)

for all r ≥ 0, where C is a constant with depends on r0 and Λ, and m(0, r) is
deduced from (2.8) setting r = 0.

Proof: Note that D is the set of initial data introduced in chapter 5. Take

(
◦
f,

◦
λ,
◦
e) ∈ D. We obtain directly the assertion a) by definition of

◦
e and distin-

guishing the cases r ≤ r0 and r ≥ r0. Concerning the part b) of proposition 6.2,
we have; using the Cauchy-Schwarz’ inequality:

- Case r ≤ r0

| m(0, r) | ≤ C ‖
◦
f ‖L∞ +C

∫ r

0

1
s2

(∫ s

0

τ2e
◦
λ(τ)

◦
M(τ)dτ

)2

ds

≤ C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞), C = C(r0,Λ)
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- Case r ≥ r0

| m(0, r) | ≤ 4π
∣∣∣∣∫ r0

0

s2
√

1 + v2
◦
f(s, v)dvds

∣∣∣∣+ 2π
∣∣∣∣∫ r0

0

s2e2
◦
λ◦e

2
ds

∣∣∣∣
+ 2π

∣∣∣∣∫ +∞

r0

s2e2
◦
λ◦e

2
ds

∣∣∣∣
≤ C ‖

◦
f ‖L∞ (1+ ‖

◦
f ‖L∞) + C

∣∣∣∣∫ +∞

r0

s2e2
◦
λ◦e

2
ds

∣∣∣∣ .
Using (5.9”) and a) the third term in the right hand side of inequality
above yields:∣∣∣∣∫ +∞

r0

s2e2
◦
λ◦e

2
ds

∣∣∣∣ ≤ C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞) + Ce2

◦
λ(r0)◦e

2
(r0)

≤ C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞).

and b) holds.

We end this proof by establishing the assertion c). We recall that:

◦
µ(r) = −

∫ +∞

r

◦
µ
′
(s)ds = −

∫ +∞

r

e2
◦
λ(r)

(
m(0, r)
r2

+ 4πrp(0, r)
)
ds

where p(0, r) is obtained from (1.100), setting r = 0. For r ≤ r0 one has:∣∣∣∣∫ +∞

r

m(0, s)
s2

ds

∣∣∣∣ ≤ ∣∣∣∣∫ r0

r

m(0, s)
s2

ds

∣∣∣∣+ ∣∣∣∣∫ +∞

r0

m(0, s)
s2

ds

∣∣∣∣
Using the same method as in the proof of part b), we have:∣∣∣∣∫ +∞

r0

m(0, s)
s2

ds

∣∣∣∣ ≤ C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)∣∣∣∣∫ r0

r

m(0, s)
s2

ds

∣∣∣∣ ≤ ∣∣∣∣∫ r0

0

m(0, s)
s2

ds

∣∣∣∣
≤ C

∣∣∣∣∫ r0

0

1
s2
ds

∫ s

0

τ2ρ(0, τ)dτ
∣∣∣∣

≤ C

∣∣∣∣∫ r0

0

∫ s

0

ρ(0, τ)dτds
∣∣∣∣

≤ C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)∣∣∣∣∫ +∞

r

sp(0, s)ds
∣∣∣∣ ≤ ∣∣∣∣∫ r0

r

sp(0, s)ds
∣∣∣∣+ ∣∣∣∣∫ +∞

r0

sp(0, s)ds
∣∣∣∣

≤ C ‖
◦
f ‖L∞ (1+ ‖

◦
f ‖L∞)
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and c) holds for r ≤ r0. The case r ≥ r0 follows from the above estimates, since∣∣∣∣∫ +∞

r

m(0, s)
s2

∣∣∣∣ ≤ ∣∣∣∣∫ +∞

r0

m(0, s)
s2

∣∣∣∣∣∣∣∣∫ +∞

r

sp(0, s)ds
∣∣∣∣ ≤ ∣∣∣∣∫ +∞

r0

sp(0, s)ds
∣∣∣∣ .

So, c) holds and proposition 6.2 is proved.

6.1 The free-streaming (FS) condition

Let (f, λ, µ, e) be a regular solution which exists on a time interval [0, T [. For
δ ∈]0, 1] and γ > 0 we consider the following decay condition on an interval
[0, T ′[⊂ [0, T [:

(FS)


| λ̇(t, r) | + | µ̇(t, r) | + | λ′(t, r) | + | µ′(t, r) |≤ γ(1 + t)−1−δ

|M(t, r) | +
∣∣∣ e(t,r)r

∣∣∣+ | H(t, r) |≤ γ(1 + t)−2−δ

1
r (| λ̇(t, r) | + | µ′(t, r) | + | λ′(t, r) |) ≤ γ(1 + t)−2−δ

| e(t, r) |≤ γ(1 + t)−1−δ

for t ∈ [0, T ′[ and r ≥ 0; recall that

H = e−2λ

(
µ′′ + (µ′ − λ′)(µ′ +

1
r
)
)
− e−2µ(λ̈+ λ̇(λ̇− µ̇))

We first show that under such an assumption the momenta cannot grow very
much.

Lemma 6.1 Let δ ∈]0, 1] and u0 > 0. If γ is sufficiently small and if (f, λ, µ, e)
is a solution which satisfies (FS) on an interval [0, T ′[, then every solution of
the characteristic system satisfies the estimate

| V (t, 0, x̃, v) |≤ u0 + 1, (x̃, v) ∈ R3 ×B(u0), t ∈ [0, T ′[.

Proof : Suppose the free-streaming condition (FS) holds on [0, T ′[ with some
γ > 0 then:

| V̇ (t, 0, x̃, v) |≤ γ(1 + t)−1−δ(1+ | V (t, 0, x̃, v) |) (6.5)

for (x̃, v) ∈ R6 and t ∈ [0, T ′[, and by integrating (6.5) on [0, t];

| V (t, 0, x̃, v) |≤ u0 + γ

∫ t

0

(1 + s)−1−δ(1+ | V (s, 0, x̃, v) |)ds

for (x̃, v) ∈ R3×B(u0) and t ∈ [0, T ′[. By the Gronwall inequality, one deduces:

| V (t, 0, x̃, v) |≤ (1 + u0)e
γ
δ , (x̃, v) ∈ R3 ×B(u0), t ∈ [0, T ′[
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and the assertion is proved.
Now, the crucial step in the proof of theorem 6.1 will be to show that

det(∂vX(0, t, x̃, v))−1 decays like t−3 for a solution satisfying the free-streaming
condition. The essential material for doing this is lemma 2.2.

Lemma 6.2 Let δ ∈]0, 1] and r0, u0, C0 > 0. Then there exists constants γ > 0
and C1 > 0 such that if solution (f, λ, µ, e) satisfies the free-streaming condition
(FS) on an interval [0, T ′[, suppf(0) ⊂ B(r0)×B(u0) and

‖
◦
f ‖L∞ + ‖

◦
λ ‖L∞ + ‖ ◦

µ ‖L∞ + ‖ ◦e ‖L∞≤ C0,

then
‖ ρ(t) ‖L∞≤ C1t

−3, t ∈]0, T ′[.

Proof : We choose γ > 0 small enough to make assertion in lemma 6.1 hold,
that is

| V (s) |≤ u0 + 1, 0 ≤ s ≤ t ≤ T ′ (6.6)

for every characteristic Z(s) = (X,V )(s) = (X,V )(s, t, x̃, v) with (x̃, v) ∈ suppf(t).
Now take t ∈ [0, T ′[ and z = (x̃, v) ∈ suppf(t) and define ξ̄ and η̄ as{
ξ̄i
k(s) = ∂Xi

∂vk
(s, t, z)

η̄i
k(s) = ∂V i

∂vk
(s, t, z) +

√
1 + V 2(s)e(λ−µ)(s,X(s))λ̇(s,X(s)) X(s)

|X(s)|
X(s)
|X(s)| .ξ̄

i
k(s).

Here i, k = 1, 2, 3. We do the calculations as in the proof of lemma 2.2 to find
by abuse of notations: {

˙̄ξ(s) = a1(s)ξ̄(s) + a2(s)η̄(s)
˙̄η(s) = a3(s)ξ̄(s) + a4(s)η̄(s)

(6.7)

where the matrices ai, i = 1, 2, 3, 4 are defined as as in lemma 2.2. From the
estimate (6.6), the free-streaming condition (FS) and

e′(s, r) = −2
r
e(s, r)− λ′(s, r)e(s, r) + qM(s, r),

we conclude that: {
| a1(s) | + | a4(s) |≤ Cγ(1 + s)−1−δ

| a3(s) |≤ Cγ(1 + s)−2−δ.
(6.8)

Define I := a2(t) and
y(s) := ξ̄(s)− (s− t)I. (6.9)

Note that the above definition makes sense since ξ̄ and I are square matrices of
order 3 and this corrects what is written in ([28], page 73) where they subtract
two matrices with different order in defining y(s). Then, by virtue of (6.7),

ẏ(s) = ξ̇(s)− I = a1(s)ξ̄(s) + a2(s)η̄(s)− I

= a1(s)(y(s) + (s− t)I) + a2(s)η̄(s)− I

˙̄η(s) = a3(s)(y(s) + (s− t)I) + a4(s)η̄(s)
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{
ẏ(s) = a1(s)(y(s) + (s− t)I) + a2(s)η̄(s)− I

˙̄η(s) = a3(s)(y(s) + (s− t)I) + a4(s)η̄(s).
(6.10)

We transform the system (6.10) so as to apply the Gronwall lemma. We observe
that:

d

ds
(a2(s)η̄(s)) = a5(s)(y(s) + (s− t)I) + a6(s)a2(s)η̄(s) (6.11)

where {
a5(s) := a2(s)a3(s)
a6(s) := ȧ2(s)a−1

2 (s) + a2(s)a4(s)a−1
2 (s).

(6.12)

In (6.12) and the sequel we suppose the matrix a2(s) is invertible. Now, defining

w(s) := a2(s)η̄(s)− I

we obtain, using (6.10):

ẏ(s) = a1(s)(y(s) + (s− t)I) + w(s) (6.13)

ẇ(s) = a5(s)(y(s) + (s− t)I) + a6(s)w(s) + a6(s)I (6.14)

and since X(t, t, x̃, v) = x̃, V (t, t, x̃, v) = v, we deduce

ξ̄(t, t, x̃, v) =
∂X

∂v
(t, t, x̃, v) = 0

∂V

∂v
(t, t, x̃, v) = I3

where I3 is the identity square matrix of order 3, and then

η̄(t, t, x̃, v) = I3; w(t) = a2(t)I3 − a2(t) = 0 = y(t).

But the decay of a3 together with the estimate (6.6) implies that:

| a5(s) |≤ Cγ(1 + s)−2−δ, 0 ≤ s ≤ t.

Set

D(v) :=
(
∂

∂vi

vj

√
1 + v2

)
=

1√
1 + v2

(
δj
i −

viv
j

1 + v2

)
, v ∈ R3.

Then the above matrix is invertible and its inverse is:

D−1(v) =
√

1 + v2(δk
j + vjv

k), v ∈ R3,

and we deduce that
a2(s) = e(µ−λ)(s,X(s))D(V (s))

is invertible with the inverse

a−1
2 (s) = e(µ−λ)(s,X(s))D−1(V (s)), 0 ≤ s ≤ t.
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The decay of a4 together with the estimate (6.6) gives:

| a2(s)a4(s)a−1
2 (s) |≤ Cγ(1 + s)−1−δ, 0 ≤ s ≤ t,

and from

ȧ2(s) = (µ̇− λ̇)(s,X(s))a2(s) + (µ′ − λ′)(s,X(s))
X(s)
| X(s) |

.Ẋ(s)a2(s)

+ e(µ−λ)(s,X(s)) ∂

∂v

(
v√

1 + v2

)
.V̇ (s),

the condition (FS), and (6.6) we conclude that

| ȧ2(s)a−1
2 (s) |, | a6(s) |≤ Cγ(1 + s)−1−δ, 0 ≤ s ≤ t.

Insertion of these estimates into (6.14) yields by integration:

| w(s) | ≤ Cγ

∫ t

s

(1 + τ)−2−τ (| y(τ) | +(t− τ) | I |)dτ

+ Cγ

∫ t

s

(1 + τ)−1−τ | w(τ) | dτ + C
γ

δ
,

and by Gronwall’s inequality,

| w(s) |≤ Cγ + Cγ

∫ t

s

(1 + τ)−2−τ (| y(τ) | +(t− τ))dτ,

where the constant C depends on δ and u0, but not on γ or t; also we can
observe that

I = a2(t) = e(µ−λ)(t,r)D(v), (x̃, v) ∈ R6

and we deduce the following estimate for I:

| I |≤ C, (x̃, v) ∈ suppf(t).

Now, introducing the above inequalities into (6.13) we obtain the estimate:

| ẏ(s) | ≤ Cγ + Cγ

∫ t

s

(1 + τ)−2−τ (| y(τ) | +(t− τ))dτ

+ Cγ(1 + s)−1−δ(| y(s) | +(t− s))

and by integration on [s, t], one has:

| y(s) | ≤ Cγ(t− s) + Cγ

∫ t

s

∫ t

τ

(1 + σ)−2−δ | y(σ) | dσdτ

+ Cγ

∫ t

s

(1 + τ)−1−δ | y(τ) | dτ + Cγ

∫ t

s

(1 + τ)−1−δ(t− τ)dτ
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and changing variables for two double integrals which appear in the right hand
side of the above inequality, we obtain:

| y(s) | ≤ Cγ(t− s) + Cγ

∫ t

s

∫ σ

s

(1 + σ)−2−δ | y(σ) | dτdσ

+ Cγ

∫ t

s

(1 + τ)−1−δ | y(τ) | dτ

≤ Cγ(t− s) + Cγ

∫ t

s

(1 + τ)−1−δ | y(τ) | dτ.

We now apply the Gronwall inequality to obtain:

| y(s) | ≤ Cγ(t− s) exp
(
Cγ

∫ t

s

(1 + τ)−1−δdτ

)
≤ Cγ(t− s) exp

(
−C γ

δ
(1 + t)−δ

)
≤ Cγ(t− s)

for s ∈ [0, t] and z ∈ suppf(t). Taking s = 0 and recalling the definition (6.9)
of y we conclude that: ∣∣∣∣1t ∂vX(0, t, z) + I

∣∣∣∣ ≤ Cγ (6.15)

for t ∈]0, T ′[ and z ∈ suppf(t), where the constant C depends on δ and u0.
Now, calculation gives:

det I = det a2(t) = e3(µ−λ)(t,r) detD(v) = e3(µ−λ)(t,r)(1 + v2)−
5
2

and since for γ ≤ 1,

| λ(t, r) | + | µ(t, r) |≤ C0 + 2γ
∫ t

0

(1 + s)−1−δds ≤ C,

we have
det I ≥ C > 0, (x̃, v) ∈ suppf(t),

where the constant C depends on δ, u0 and C0. For γ small enough, using
(6.15), we deduce: ∣∣∣∣det

(
1
t
∂vX(0, t, z)

)∣∣∣∣ ≥ C > 0

and using properties of determinant one deduces:

| det(∂vX(0, t, z))−1 |≤ Ct−3

for t ∈]0, T ′[ and z ∈ suppf(t). Furthermore, for γ small enough and
v, v̄ ∈ suppf(t, x̃, .), by the mean value theorem, one has; using the triangle
inequality and (6.15):

| X(0, t, x̃, v)−X(0, t, x̃, v̄) |≥ Ct | v − v̄ |
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with C > 0. Thus for t ∈]0, T ′[ the mapping v 7→ X(0, t, x̃, v) is a diffeomor-
phism on suppf(t, x̃, .). So we change variables in R3 to obtain:∫

R3

√
1 + v2f(t, x̃, v)dv =

∫
suppf(t,x̃,.)

√
1 + v2f(t, x̃, v)dv

≤
√

1 + (1 + u0)2
∫

suppf(t,x̃,.)

◦
f ((X,V )(t, x̃, v)) dv

≤ C

∫
T
dX | det(∂vX(0, t, x̃, v))−1 |

where
T = {X(0, t, x̃, v)| v ∈ suppf(t, x̃, .)}.

On the other hand for (x̃, v) ∈ suppf(t) we have | X(0, t, x̃, v) |≤ r0. Using the
estimate on the determinant we obtain:∫

R3

√
1 + v2f(t, x̃, v)dv ≤ C1t

−3, t ∈]0, T ′[ (6.16)

where the constant C1 depends on r0, u0, C0 and δ. As we find the decay on ρ
we need an estimate for e as in (6.16). By virtue of the free-streaming condition
(FS) one has for γ small enough:

e2(t, r) ≤ γ2(1 + t)−2−2δ ≤ t−3 (6.17)

and since λ(t, 0) = 0, we obtain for γ sufficiently small and r ≤ r0:

(| λ′(t, r) |≤ γ(1 + t)−1−δ) ⇒ (| λ(t, r) |≤ r0γ(1 + t)−1−δ)
⇒ (| λ(t, r) |≤ 1)

⇒ (eλ(t,r) ≤ e).

Thus,
1
2
e2λ(t,r)e2(t, r) ≤ e2

2
t−3. (6.18)

Now adding (6.16) and (6.18) we obtain:

ρ(t, x̃) ≤ C2t
−3

where C2 = C1 + e2

2 and the proof is complete.

6.2 Decay of the fields

We have already proved that decay estimates of the field terms imply the same
for ρ. In this section we show that this decay of ρ gives the decay assumptions
in condition (FS) with a better assumption for the large time.
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Lemma 6.3 Let r0, C0, C1 > 1. Then there exists a constant γ > 0 such that
if (f, λ, µ, e) is a solution on [0, T [, satisfying the estimates

‖ ρ(t) ‖L∞≤ C1(1 + t)−3, t ∈ [0, T ′[,

and
sup{| x̃ | | (x̃, v) ∈ suppf(0)} ≤ r0, ‖ ρ(t) ‖L∞≤ C0

for some T ′ ∈]0, T [, then (f, λ, µ, e) satisfies the free-streaming condition (FS)
on the interval [0, T ′[ with the parameters δ = 1 and γ.

Proof: Let C be a constant which depends on r0, C0 and C1. Obviously,

‖ p(t) ‖L∞ , ‖ k(t) ‖L∞ , ‖M(t) ‖L∞ , ‖ q̄(t) ‖L∞

≤ C ‖ ρ(t) ‖L∞≤ C(1 + t)−3, t ∈ [0, T ′[,

and
‖ N(t) ‖L∞≤ (r0 + t) ‖ ρ(t) ‖L∞≤ C(1 + t)−2, t ∈ [0, T ′[.

Equation (1.90) implies, distinguishing the cases r ≤ r0 and r ≥ r0:

| e(t, r) | ≤ C
1
r2

∫ r

0

s2 |M(t, s) | ds ≤ C(1 + t)−2,∣∣∣∣e(t, r)r

∣∣∣∣ ≤ C
1
r3

∫ r

0

s2 |M(t, s) | ds ≤ C(1 + t)−3

Equation (1.97) implies:

| H(t, r) |≤ 1
2
‖ q̄(t) ‖L∞≤ C(1 + t)−3.

Equation (1.95) implies the following estimate:

| λ̇(t, r) | ≤ 4πr | k(t, r) |≤ C(r0 + t)(1 + t)−3 ≤ C(1 + t)−2∣∣∣∣∣ λ̇(t, r)
r

∣∣∣∣∣ ≤ 4π | k(t, r) |≤ (1 + t)−3,

for t ∈ [0, T ′[, r ∈ [0,+∞[; recall that λ(t, r) ≥ 0, µ(t, r) ≤ 0 and using
(1.94)+(1.96) we see that λ′ + µ′ ≥ 0, and with the boundary condition at
spatial infinity this implies λ+ µ ≤ 0. Next, we can write:

| λ(t, r) |≤‖ λ(0) ‖L∞ +C
∫ t

0

(1 + s)−2ds ≤ C, t ∈ [0, T ′[, r ≥ 0.

From (1.92) and (1.96) we obtain:

λ′(t, r) = e2λ

(
−m(t, r)

r2
+ 4πrρ(t, r)

)
µ′(t, r) = e2λ

(
m(t, r)
r2

+ 4πrp(t, r)
)
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where
m(t, r) = 4π

∫ r

0

s2ρ(t, s)ds.

Since
| e2λ4πrρ(t, r) | + | e2λ4πrρ(t, r) |≤ C(r0 + t)(1 + t)−3

and
m(t, r)
r2

≤ 4π
∫ r0+t

0

ρ(t, s)ds ≤ C(1 + t)−2,

we have:
‖ λ′(t) ‖L∞ + ‖ µ′(t) ‖L∞≤ C(1 + t)−2.

Next, from
m(t, r)
r3

≤ C ‖ ρ(t) ‖L∞≤ C(1 + t)−3,

we deduce the expression below:

1
r
(| λ′(t, r) | + | µ′(t, r) |) ≤ C(1 + t)−3.

All the above estimates hold on the interval ]0, T ′[, and we have just to estimate
only µ̇. But we obtain this by estimating the terms which appear in the formula
for µ̇ in (2.29). From

e(λ+µ)(t,s) | k(t, s) |≤ C(1 + t)−3

and

e2λ(t,s) | λ̇(t, s) |
(
m(t, s)
s2

+ 4πsp(t, s)
)
≤ C(1 + t)−4

and since both these terms vanish for s ≥ r0 + t it follows that the first two
terms in (2.29) can be estimated once again by C(1 + t)−2. Also, we observe
that all the integrals with respect to v which appear in (2.29) can be estimated
by ρ. So, we have:

se2λ(t,s) | d1(t, s) | + | 1− 2λ′(t, s) || d2(t, s) |≤ C(1 + t)−3,

and since these terms again vanish for s ≥ r0 + t we deduce that the third and
fourth term in (2.29) decay in the desired way:

| µ̇(t, r) |≤ C(1 + t)−2, for t ∈ [0, T ′[

and the proof is complete.
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6.3 Proof of theorem 5.1

6.3.1 Global existence and the decay with respect to co-
ordinate time t

Let r0, u0 > 0 and Λ > 0 be fixed. Take (
◦
f,

◦
λ,
◦
e) ∈ D, whereD is the set of initial

data defined in chapter 5. Using proposition 6.2, we observe that if
◦
f is small

in the L∞-norm, then so are
◦
µ and

◦
e. We choose ε > 0 small enough in such

a way that for all nonnegative, spherically symmetric initial data
◦
f ∈ C∞c (R6),

with
supp

◦
f ⊂ B(r0)×B(u0), and ‖

◦
f ‖L∞< ε the estimates

8π
∫
|y|≤r

∫
R3

√
1 + v2

◦
f(y, v)dvdy < r, r ≥ 0,

‖
◦
λ ‖L∞≤ Λ, ‖

◦
f ‖L∞ + ‖ ◦

µ ‖L∞ + ‖ ◦e ‖L∞≤ 1

hold. Using theorem 4.1, we have for such initial data a local solution on some
right maximal existence interval [0, T [ and we can choose C0 = 1 when applying
lemma 6.2 and lemma 6.3. Take g = λg = µg = eg = 0, and Tg = 1. Applying
theorem 5.1, there exists ε > 0, a positive decreasing function ξ ∈ C([0, 1]) and
a positive decreasing function σ ∈ C(]0, ε]) such that lim

β→0
σ(β) = 1, and for any

solution (f, λf , µf , ef ) with d =‖
◦
f ‖L∞< ε, and the estimates below

‖ f(t) ‖L∞ , ‖ e2λf (t) ‖L∞ , ‖ ef (t) ‖L∞≤ ξ(t)ε, t ∈ [0, σ(ε)]
and then

‖ ρ(t) ‖L∞≤ Cξ(t)ε, t ∈ [0, σ(ε)],

where C is a constant which depends only on u0 by lemma 6.1. So, we can
choose ε small enough to have CLε ≤ 1, where L := sup

t∈[0,1]

ξ(t) and obtain a

solution (f, λ, µ, e) which is defined on the interval [0, 1], with

‖ ρ(t) ‖L∞≤ 1, t ∈ [0, 1].

Take δ = 1
2 and choose a corresponding γ > 0 such that lemma 6.2 and

lemma 6.3 hold. Let Cγ be the constant corresponding to γ and define

C∗ := 8(Cγ + 1)

LetγC∗ be the corresponding constant to C1 = C∗ and we consider r0, u0, C0 = 1
as in lemma 6.3, and we take for instance T1 = 4γ2

C∗
γ2 + 1 to have

γC∗(1 + t)−1 ≤ γ

2
(1 + t)

−1
2 , for t ≥ T1.
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Using theorem 5.1 and corollary 5.1 with g = 0, we can choose ε such that the
solution (f, λ, µ, e) exists on [0, T1] and on this interval the condition (FS) with

parameters δ = 1
2 and γ considered above, provided ‖

◦
f ‖L∞< ε. Consider

T2 := sup{t ∈ [0, T [| (f, λ, µ, e) satisfies (FS) on [0, t]}.

Then by definition T2 > T1, and using lemma 6.2

‖ ρ(t) ‖L∞≤ Cγt
−3, t ∈]0, T2[,

and we use the fact that ‖ ρ(t) ‖L∞≤ 1 for t ∈ [0, 1], to establish the following
inequality:

‖ ρ(t) ‖L∞≤ C∗(1 + t)−3, t ∈ [0, T2[.

We prove this in two steps:
Case 0 ≤ t ≤ 1
We have:

1 + t ≤ 2 ⇔ (1 + t)−3 ≥ 1
8

⇔ 1 ≤ 8(1 + t)−3

and since ‖ ρ(t) ‖L∞≤ 1 for t ∈ [0, 1] we obtain the desired result.
Case 1 < t < T2

We have:

1 + t ≤ 2t⇔ (1 + t)3 ≤ 8t3

⇔ t−3 ≤ 8(1 + t)−3

and we obtain the desired result by multiplying the last inequality with Cγ . Now,
using lemma 6.3, the free-streaming condition (FS) holds with the parameters
δ = 1 and γC∗ , and with the choice of T1, (FS) holds again on [T1, T2[ with
parameters γ

2 and δ = 1
2 . By the construction of T2 we obtain T2 = T . We

deduce from lemma 6.1

suppf(t) ⊂ R×B(u0 + 1), t ∈ [0, T [

and using theorem 4.3, we conclude that T = ∞. Note that the decay estimates
of p(t), k(t), M(t) and N(t) come with the proof. We just have to estimate the
metric, the Christoffel symbols and the Riemann curvature tensor. From

λ(t, r) = −
∫ +∞

r

λ′(t, s)ds = −
∫ +∞

r

e2λ(t,s)

(
−m(t, s)

s2
+ 4πsρ(t, s)

)
ds

and

| λ(t, r) | =
∣∣∣∣λ(0, r) +

∫ t

0

λ̇(s, r)ds
∣∣∣∣

≤‖ λ(0) ‖L∞ +C
∫ ∞

0

(1 + s)−2ds

≤ C
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we deduce the following:

| λ(t, r) | ≤ C

∫ r0+t

0

m(t, s)
s2

ds+ C

∫ ∞

r0+t

M

s2
ds+ C(1 + t)−3

∫ r0+t

0

sds

≤ C(1 + t)−1, r0 ≥ 0, t ≥ 0

where M > 0 is the A.D.M mass of the solution, (see (2.17)). The estimates for
µ are similar. To estimate the Christoffel symbols, we have just to do it for his
second term in (1.57). But the following

1− e−2λ(t,r)

r
=

2m(t, r)
r2

≤ 8π
∫ r0+t

0

ρ(t, s)ds ≤ C(1 + t)−2

proves the decay estimates of Christoffel symbols. The decay of the components
of Riemann curvature tensor is obtained easily taking into account various terms
in (1.57). Now, from the above decay, we observe that

lim
t→+∞

λ(t, r) = lim
t→+∞

µ(t, r) = 0

and by the estimate
‖ e(t) ‖L∞≤

√
2 ‖ ρ(t) ‖L∞ ,

e(t, r) → 0
t→+∞

. So, the solution (f, λ, µ, e) is asymptotically flat in time coordi-

nate, as announced.

6.3.2 Trajectory completeness

- Case m > 0
Given a solution s 7→ (xα(s), pα(s)) of the trajectory equations

dxα

ds
= pα;

dpα

ds
= −Γα

βγp
βpγ − qpβFβ

α

which exists on a maximal interval J =]s−, s+[, we need to prove that

s± = ±∞, or J = R.

In our investigation we consider particles which are future pointing, this means
p0 > 0 on J . From

gαβp
αpβ = −m2

we deduce as we said
p0 = e−µ

√
gijpipj +m2

and since dt
ds = p0 > 0, we can reparametrize the trajectory by the time coordi-

nate t ∈ J and obtain the trajectories system:

dxi

dt
=
pi

p0
;

dpi

dt
= −Γi

βγ

pβpγ

p0
+ qeµe

xi

r
, i = 1, 2, 3.
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We use the decay of Christoffel symbols and the fact that the right hand side
of the second equation is linearly bounded in pi (since suppf is compact) to
conclude that pi and thus also p0 remains bounded and t(s±) = ±∞. Now, due
to the inequality dt

ds = p0 ≤ C, one obtains by integration(∫ s

0

dt

ds′
ds′ ≤ C

∫ s

0

ds′
)
⇒ (t(s)− t(0) ≤ Cs).

Thus s± = ±∞, and the desired result is proved.
- Case m = 0
Take s0 ∈ J such that p0

0 = e−µ(s0,X(s0))
√
gij(X(s0))pi

0p
j
0 > 0. Then, since

p̃ = (p1, p2, p3) 7→ p0 = e−µ(s0,X(s0))
√
gij(X(s0))pipj

is continuous on p̃0 = (p1
0, p

2
0, p

3
0), we can find a neighborhood W of p̃0 such that

(p̃ ∈W ) ⇒
(
p0 >

p0
0

2
> 0
)

and we can reparametrize again the trajectory by time coordinate, and the rest
of argument remains unchanged. This ends the proof of theorem 6.1

Remark 6.1 Note that geodesic completeness holds as well with the proof being
as in [28].
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Conclusion

In this work we proved that the initial value problem for the asymptotically flat
spherically symmetric Einstein-Vlasov-Maxwell system with small initial data
admits a global regular solution and the corresponding spacetime is complete,
i.e each trajectory is defined on R So, in that case, the solution does not develop
a singularity.

Besides, it is interesting to consider the case of collisional particles. Here
the Vlasov equation (1.89) is replaced by the Boltzmann equation which is the
Vlasov equation with a non zero right hand side, which expresses change in f
due to collisions. There is a local existence theorem for the Einstein- Vlasov-
Boltzmann system, using the energy inequalities and contracting mapping prin-
ciple [4]. But up to now, we are not aware that a global existence theorem
has been already established for these equations, since even in the case of the
Einstein-Boltzmann system which are homogeneous and isotropic, a fundamen-
tal error has been observed in Mucha’s work [18], and so the problem is still
open.

In the case of arbitrary spherically symmetric data it is extremely difficult to
get analytical results and the problem has not been solved even in the uncharged
case. To try to go beyond what is known analytically numerical work was done
[[29], [24]].

It would be interesting to generalize our results to the spherically symmetric
Einstein-Vlasov-Yang-Mills system but this would be much more difficult. Even
in the case f = 0 there are non-trivial spherically symmetric asymptotically flat
solutions of the Einstein-Yang-Mills system. In fact it is known that there are
static solutions. These were discovered numerically by Bartnik and Mckinnon [2]
and their existence was proved by Smoller [34]. The spherically symmetric Yang-
Mills equations in Minkowski space also give rise to interesting mathematical
problems [9]. Thus there are a number of interesting issues to be explored in
this direction.

We end by giving some other related literature. Global existence for the
Vlasov-Maxwell system without symmetry is not known in general. The most
general result which has been proved is for a case with a one-dimensional sym-
metry group [10]. Global existence for the Yang-Mills equations in Minkowski
space was proved by Eardley and Moncrief [8] and another proof by quite differ-
ent methods was given by Klainerman and Machedon [15]. Global existence for
the Yang-Mills equations on a general globally hyperbolic spacetime was proved
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by Chruściel and Shatah [7].
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Appendices

Appendix A

Here we give the proof of expressions (1.5), (1.6) for gαβ and gαβ respectively.
We also calculate the determinant of the metric g.

i) g00 = −e2µ; g0i = 0; gij = δij + (e2λ − 1)
xixj

r2

ii) g00 = −e−2µ; g0i = 0; gij = δij + (e−2λ − 1)
xixj

r2

iii) | g |=| det g |= e2(λ+µ)

First we prove i). We deduce from formula (1.3):

g00 = g̃00 = e−2µ; g0i =
∂x̃α

∂x0

∂x̃β

∂xi
g̃αβ = 0

gij =
∂x̃α

∂xi

∂x̃β

∂xj
g̃αβ =

∂r

∂xi

∂r

∂xj
e2λ +

∂θ

∂xi

∂θ

∂xj
r2 + r2

∂ϕ

∂xi

∂ϕ

∂xj
sin2 θ

gij =
xi

r

xj

r
e2λ + r2

∂θ

∂xi

∂θ

∂xj
+ r2

∂ϕ

∂xi

∂ϕ

∂xj
sin2 θ. (A.1)

Since
x1 = r sin θ cosϕ; x2 = r sin θ sinϕ; x3 = r cos θ (A.2)

one deduces x2

x1 = sin ϕ
cos ϕ = tanϕ. Thus

ϕ = arctan
x2

x1
. (A.3)

Taking the partial derivative of ϕ in (A.3) with respect to xi, one has:

∂ϕ

∂x1
= − x2

(x1)2 + (x2)2
;
∂ϕ

∂x2
=

x1

(x1)2 + (x2)2
;
∂ϕ

∂x3
= 0. (A.4)

Now, from (A.2), one deduces, since sin θ ≥ 0 (because θ ∈ [0, π]):

((x1)2 + (x2)2 = r2 sin2 θ) ⇒

(
sin θ =

√
(x1)2 + (x2)2

r

)
(A.5)
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and cos θ = x3

r . Taking the partial derivative of sin θ in (A.5) with respect to
xi, one has:

cos θ
∂θ

∂xi
=

∂

∂xi

(√
(x1)2 + (x2)2

r

)
.

Thus

∂θ

∂xi
=

r

x3

xi(x3)2

r3
√

(x1)2 + (x2)2
=

xix3

r2
√

(x1)2 + (x2)2
, i = 1, 2, 3. (A.6)

For i = 3, we have:

∂θ

∂x3
=

r

x3

√
(x1)2 + (x2)2

∂

∂x3

(
1
r

)
= −x

3

r3
r

x3

√
(x1)2 + (x2)2

∂θ

∂x3
= −

√
(x1)2 + (x2)2

r2
. (A.7)

Now, by virtue of (A.2), (A.4), (A.6) and (A.7), one has:

g11 =
(x1)2

r2
e2λ + r2

(
∂θ

∂x1

)2

+ r2 sin2 θ

(
∂ϕ

∂x1

)2

=
(x1)2

r2
e2λ + r2

(x1)2(x3)2

r4((x1)2 + (x2)2)
+ r2sin2θ

(x2)2

((x1)2 + (x2)2)2

=
(x1)2

r2
e2λ +

(x1)2

r2
r2 − ((x1)2 + (x2)2)

(x1)2 + (x2)2
+

(x2)2

(x1)2 + (x2)2

=
(x1)2

r2
e2λ +

(x1)2

(x1)2 + (x2)2
− (x1)2

r2
+

(x2)2

(x1)2 + (x2)2

g11 = (e2λ − 1)
(x1)2

r2
+ 1. (A.8)

The same calculations show that:

g22 = (e2λ − 1)
(x2)2

r2
+ 1; g33 = (e2λ − 1)

(x3)2

r2
+ 1

g12 = (e2λ − 1)
x1x2

r2
; g13 = (e2λ − 1)

x1x3

r2
; g23 = (e2λ − 1)

x2x3

r2
.

Thus, we have i). We now prove ii). It suffices to show that gikg
kj = δj

i . One
has:

gikg
kj =

(
δik + (e2λ − 1)

xixk

r2

)(
δik + (e−2λ − 1)

xixk

r2

)
= δj

i + δik(e−2λ − 1)
xkxj

r2
+ δkj(e2λ − 1)

xixk

r2

+ (e2λ − 1)(e−2λ − 1)
xixkx

kxj

r4
.
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Since
xkx

k = r2; δikx
k = xi; δkjxk = xj ,

we obtain

gikg
kj = δj

i + (e−2λ − 1 + e2λ − 1 + (e2λ − 1)(e−2λ − 1))
xix

j

r2

= δj
i + (e−2λ − 1 + e2λ − 1 + 1− e2λ − e−2λ + 1)︸ ︷︷ ︸

=0

xix
j

r2

= δj
i

and ii) holds. We end this appendix by proving part iii).

det g =

∣∣∣∣∣∣∣∣
g00 0 0 0
0 g11 g12 g13
0 g21 g22 g23
0 g31 g32 g33

∣∣∣∣∣∣∣∣
Thus

det g = g00 det(gij) = −e2µ det(gij)

where

det (gij) =

∣∣∣∣∣∣∣
1 + (e2λ − 1)x2

1
r2 (e2λ − 1)x1x2

r2 (e2λ − 1)x1x3
r2

(e2λ − 1)x1x2
r2 1 + (e2λ − 1)x2

2
r2 (e2λ − 1)x2x3

r2

(e2λ − 1)x1x3
r2 (e2λ − 1)x2x3

r2 1 + (e2λ − 1)x2
3

r2

∣∣∣∣∣∣∣
and calculation gives

det(gij) = 1 +
e2λ − 1
r2

(x2
1 + x2

2 + x2
3)

= 1 +
e2λ − 1
r2

r2 (since x2
1 + x2

2 + x2
3 = r2)

= e2λ,

from which we deduce what we announced before:

| det g |=| −e2(λ+µ) |= e2(λ+µ)

Appendix B

Here we prove the following identities:

∇α(Tαβ + ταβ) ≡ ∇αT
αβ +∇ατ

αβ = 0. (B.1)

We assume in what follows that f satisfies the Vlasov equation (1.15) and
f ∈ C1

c (R7). To simplify the proof, we take normal coordinates at x; then

g = η = diag(−1, 1, 1, 1), Γλ
αβ = 0, ∇α = ∂α.
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Now, the first term of right hand side of (B.1) gives, since

(p0)2 =
3∑

i=1

(pi)2 +m2; | g |=| det g |= 1,

∂pα

∂xλ
= 0;

∂p0

∂pk
=
pk

p0
= −p

k

p0
; p0 = g0λp

λ = g00p
0 = −p0 :

∇αT
αβ = ∂αT

αβ = −
∫

R3
pαpβ∂αfωp. (B.2)

Since F is antisymmetric, (B.2) yields:

∇αT
αβ = qgijFλj

∫
R3
pλf

∂pβ

∂pi
ωp − qF0k

∫
R3

pkpβ

p0
fωp

+ qg00F0k

∫
R3

pkp0pβ

p2
0

fωp. (B.3)

Now, if β = 0, then

∇αT
α0 = qδijFλj

∫
R3
pλf

pi

p0
ωp + qF0k

∫
R3
pkfωp − qF0k

∫
R3
pkfωp

= qδijFλj

∫
R3
pλf

pi

p0
ωp

= qδijF0j

∫
R3
p0f

pi

p0
ωp + qδijFkj

∫
R3
pkf

pi

p0
ωp

= qF0k

∫
R3
pkfωp = F0kJ

k = −g00F0kJ
k (g00 = g00 = −1)

∇αT
α0 = −g00F0kJ

k = g00Fk0J
k = Fλ

0Jλ. (B.4)

Next, (B.3) yields for β = l,

∇αT
αl = qgijFλj

∫
R3
pλf

∂pl

∂pi
ωp − qF0k

∫
R3

pkpl

p0
fωp

− qF0k

∫
R3

pkp0pl

p2
0

fωp

= qgijFλj

∫
R3
pλfδl

iωp (since p0 = g00p0 = −p0)

= qgljFλj

∫
R3
pλfωp = qglµFλµ

∫
R3
pλfωp.

Thus
∇αT

αl = glµFλµJ
λ = Fλ

lJλ. (B.5)

From (B.4) and (B.5), we deduce:

∇αT
αβ = Fλ

βJλ (B.6)
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Now, the second term of right hand side of (B.1) yields, using Bianchi identities
and the Maxwell equations:

∇ατ
α0 = ∂ατ

α0 = g00F0kJ
k = −g00Fk0J

k = −g0λFkλJ
k

∇ατ
α0 = −Fλ

0Jλ (B.7)

∇ατ
αk = −gkjFλjJ

λ = −gkµFλµJ
λ = −Fλ

kJλ. (B.8)

Both (B.7) and (B.8) can write:

∇ατ
αβ = −Fλ

βJλ. (B.9)

Thus, (B.6) and (B.9) show that (B.1) hold.

Appendix C

Here we calculate Christoffel symbols and components of the Einstein tensor in
cartesian coordinates.

1) Calculation of Christoffel symbols

From relations
Γα

βλ =
1
2
gαµ(∂βgλµ + ∂λgµβ − ∂µgβλ) (C.1)

one deduces:

Γ0
00 =

1
2
g00∂0g00 = µ̇ (C.2)

Γ0
0i =

1
2
g00∂ig00 = µ′

xi

r
(C.3)

Γ0
ij = −1

2
g00∂0gij = λ̇e2(λ−µ)xixj

r2
(C.4)

Γi
00 = −e2µ 1

2
gij∂jg00 = µ′e2(µ−λ)x

i

r
(C.5)

Γi
0j =

1
2
gik∂0gjk = λ̇

xixj

r2
(C.6)

Γi
jk =

1
2
gil(∂jgkl + ∂kglj − ∂lgjk). (C.7)

The calculation of first term in the round brackets gives:

∂jgkl = 2λ′
xj

r

xkxl

r2
e2λ + (e2λ − 1)δjk

xl

r2
+ (e2λ − 1)δjl

xk

r2

− 2(e2λ − 1)
xkxlx

j

r4
. (C.8)

120



Similarly,

∂kglj =
2λ′xkxlxj

r3
e2λ + (e2λ − 1)δkl

xj

r2
+ (e2λ − 1)δkj

xl

r2

− 2(e2λ − 1)
xjxlx

k

r4
(C.9)

−∂lgjk = −2λ′xlxjxk

r3
e2λ − (e2λ − 1)δlj

xk

r2
− (e2λ − 1)δlk

xj

r2

+ 2(e2λ − 1)
xjxkx

l

r4
. (C.10)

Taking the first term of right hand side of (C.7), since (C.8) holds, one finds:

1
2
gil∂jgkl =

1
2

(
2λ′

xixjxk

r3
− (e−2λ − 1)δjk

xi

r2

)
− 1

2

(
(e−2λ + 1)(e2λ − 1)

xixjxk

r4
− (e2λ − 1)δi

j

xk

r2

)
. (C.11)

Similarly, by virtue of (C.9) and (C.10), the second and third term of right hand
side of (C. 7) read:

1
2
gil∂kglj =

1
2

(
2λ′

xixjx
k

r3
− (e−2λ − 1)δkj

xi

r2
+ (e2λ − 1)δi

k

xj

r2

)
− 1

2
(e2λ − 1)(e2λ + 1)

xixjxk

r4
(C.12)

−1
2
gil∂lgjk =

1
2

(
−2λ′

xixjxk

r3
+ 2(e2λ − 1)

xixjxk

r4
− (e2λ − 1)δi

j

xk

r2

)
− 1

2
(e2λ − 1)δi

k

xj

r2
. (C.13)

Next, introducing (C.11), (C.12) and (C.13) in (C.7) one finds

Γi
jk = λ′

xixjxk

r3
+

1− e−2λ

r

(
δjk −

xjxk

r2

) xi

r
(C.14)

Γi
ik = λ′

xk

r
.

So, all the Christoffel symbols are calculated.

2) Calculation of components of the Einstein
tensor

We have to calculate the following tensor components:

Gαβ = Rαβ −
1
2
Rgαβ (C.15)
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where
Rαβ = Rλ

α,λβ = ∂λΓλ
αβ − ∂βΓλ

αλ + Γλ
λµΓµ

αβ − Γλ
µβΓµ

αλ. (1.51)

First of all, we calculate the components of Ricci tensor Rαβ . From (1.51), one
deduces:

R00 = ∂λΓλ
00 − ∂0Γλ

0λ + Γλ
λµΓµ

00 − Γλ
µ0Γ

µ
0λ. (C.16)

a) The first term of right hand side of (C.16) reads, using (C.2) and (C.5):

∂λΓλ
00 = ∂0Γ0

00 + ∂iΓi
00 = µ̈+ e2(µ−λ)

(
µ′′ + 2µ′(µ′ − λ′) +

2µ′

r

)
. (C.17)

b) The second term of right hand side of (C.16) reads:

−∂0Γλ
0λ = −(∂0Γ0

00 + ∂0Γi
0i) = −µ̈− λ̈. (C.18)

c) The third term of right hand side of (C.16) reads:

Γλ
λµΓµ

00 = (Γ0
00)

2 + Γi
0iΓ

0
00 + Γ0

0iΓ
i
00 + Γj

jiΓ
i
00

Γλ
λµΓµ

00 = µ̇2 + µ̇λ̇+ e2(µ−λ)(µ′2 + µ′λ′) (C.19)

d) The fourth term of right hand side of (C.16) reads:

−Γλ
µ0Γ

µ
0λ = −

(
(Γ0

00)
2 + 2Γi

00Γ
0
0i + Γj

0iΓ
i
0j

)
−Γλ

µ0Γ
µ
0λ = −µ̇2 − 2µ′2e2(µ−λ) − λ̇2. (C.20)

Introducing (C.17), (C.18), (C.19) and (C.20) in (C.16), one finds:

R00 = −λ̈− λ̇2 + µ̇λ̇+ e2(µ−λ)
(
−µ′λ′ + µ′′ + 2µ′

r + µ′2
)

. (C.21)

Next, taking (1.51) for α = 0 and β = 0:

R0i = Rλ
0,λi = ∂λΓλ

0i − ∂iΓλ
λ0 + Γλ

λµΓµ
0i − Γλ

iµΓµ
0λ. (C.22)

f) The first term of right hand side of (C.22) can be written:

∂λΓλ
0i = ∂0Γ0

0i + ∂jΓ
j
0i = µ̇′

xi

r
+ λ̇′

xi

r
+ 2λ̇

xi

r2
. (C.23)

g) The second term of right hand side of (C.22) can be written:

−∂iΓλ
λ0 = −(∂iΓ0

00 + ∂iΓ
j
0j) = −(µ̇′ + λ̇′)

xi

r
(C.24)

h) The third term of right hand side of (C.22) can be written:

Γλ
λµΓµ

0i = Γ0
00Γ

0
0i + Γj

0jΓ
0
0i + Γ0

0jΓ
j
0i + Γk

kjΓ
j
0i = (µ̇µ′ + 2λ̇µ′ + λ̇λ′)

xi

r
. (C.25)
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i) The last term of right hand side of (C.22) can be written:

−Γλ
µiΓ

µ
0λ = −(Γ0

0iΓ
0
00 + Γj

0iΓ
0
0j + Γ0

ijΓ
j
00 + Γk

ijΓ
j
0k)

−Γλ
µiΓ

µ
0λ = −(µ̇µ′ + 2λ̇µ′ + λ̇λ′)

xi

r
. (C.26)

Introducing (C.23), (C.24), (C.25) and (C.26) in (C.22), one finds:

R0i = 2λ̇xi

r2 . (C.27)

Next, taking (1.51) for α = i and β = j: one has:

Rij = ∂λΓλ
ij − ∂jΓλ

iλ + Γλ
λµΓµ

ij − Γλ
µjΓ

µ
iλ. (C.28)

j) the first term of right hand side of (C.28) can be written:

∂λΓλ
ij = ∂0Γ0

ij + ∂kΓk
ij = 2(λ̇− µ̇)e2(λ−µ)λ̇

xixj

r2
+ 2λ′

xixj

r3

+ e2(λ−µ)λ̈
xixj

r2
+ λ′′

xixj

r2

+ 2λ′
e−2λ

r

(
δij −

xixj

r2

)
+

1− e−λ

r2

(
δij −

xixj

r2

)
.

(C.29)

k) The second term of right hand side of (C.28) can be written:

−∂jΓλ
iλ = −

(
µ′′
xixj

r2
+ µ′

δij
r
− µ′

xixj

r3
+ λ′′

xixj

r2
+ λ′

δij
r
− λ′

xixj

r3

)
. (C.30)

m) The third term of right hand side of (C.28) can be written:

Γλ
λµΓµ

ij = Γ0
00Γ

0
ij + Γ0

0kΓk
ij + Γk

0kΓ0
ij + Γk

klΓ
l
ij

Γλ
λµΓµ

ij = µ̇λ̇e2(λ−µ)xixj

r2
+ λ′µ′

xixj

r2
+ µ′

(
1− e−2λ

r

)(
δij −

xixj

r2

)
+ λ̇2e2(λ−µ)xixj

r2
+ λ′2

xixj

r2

+ λ′
(

1− e−2λ

r

)(
δij −

xixj

r2

)
. (C.31)

n) The last term of right hand side of (C.28) can be written:

−Γλ
µjΓ

µ
iλ = −Γ0

0jΓ
0
0i − Γk

0jΓ
0
ik − Γ0

kjΓ
k
0i − Γl

kjΓ
k
il

−Γλ
µjΓ

µ
iλ = −µ′2xixj

r2
− 2λ̇2e2(λ−µ)xixj

r2
− λ′2

xixj

r2
. (C.32)
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Introducing (C.29), (C.30), (C.31) and (C.32) in (C.28), one has:

Rij = −λ̇µ̇e2(λ−µ)xixj

r2
+ λ̈

xixj

r2
e2(λ−µ) + 2λ′

xixj

r3

+ λ′
(

1 + e−2λ

r

)(
δij −

xixj

r2

)
+

1− e−2λ

r2

(
δij −

xixj

r2

)
− µ′′

xixj

r2
− µ′

r

(
δij −

xixj

r2

)
− λ′

r

(
δij −

xixj

r2

)
+ λ′µ′

xixj

r2
+ µ′

(
1− e−2λ

r

)(
δij −

xixj

r2

)
+ λ̇2e2(λ−µ)xixj

r2
− µ′2

xixj

r2
. (C.33)

Next, we calculate the scalar curvature

R = gλµRλµ = g00R00 + gijRij . (C.34)

o) The first term of right hand side of (C.34) reads, since (C.21) holds:

g00R00 = λ̈e−2µ + λ̇2e−2µ − µ̇λ̇e−2µ + µ′λ′e−2λ − µ′′e−2λ

− 2µ′

r
e−2λ − µ′2e−2λ (C.35)

p) The last term of right hand side of (C.34) reads, since (C.33) holds:

gijRij = δijRij +
e−2λ − 1

r2
xixjRij . (C.36)

Now, we calculate the first term of right hand side of (C.36). Since
δijxixj = δijx

ixj = r2, one has:

δijRij = −λ̇µ̇e2(λ−µ) + λ̈e2(λ−µ) + 2λ′
(

1 + e−2λ

r

)
− µ′2

+ 2
(

1− e−2λ

r2

)
− µ′′ + λ′µ′ − 2µ′

r
e−2λ + λ̇2e2(λ−µ) (C.37)

We calculate the last term of right hand side of (C.36), that gives:(
e−2λ − 1

r2

)
xixjRij = −λ̇µ̇e−2µ + λ̈e−2µ +

2λ′

r
e−2λ − µ′′e−2λ + λ′µ′e−2λ

+ λ̇2e−2µ − µ′2e−2λ + λ̇µ̇e2(λ−µ) − λ̈e2(λ−µ)

− 2λ′

r
+ µ′′ − λ′µ′ − λ̇2e2(λ−µ) + µ′2. (C.38)

Introducing (C.37) and (C.38) in (C.36), (C.34) yields, using (C.35):

R = 2
(

1− e−2λ

r2

)
+ 2e−2λ

(
λ′ − µ′

r

)
+ 2e−2µ(λ̈+ λ̇(λ̇− µ̇))

− 2e−2λ

(
µ′′ + (µ′ − λ′)

(
µ′ +

1
r

))
.
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Thus,
R = 2

r2 (e−2λr(λ′ − µ′) + 1− e−2λ − r2H) (C.39)

where

H = e−2λ

(
µ′′ + (µ′ − λ′)

(
µ′ +

1
r

))
− e−2µ(λ̈+ λ̇(λ̇− µ̇)) (C.40)

We now are ready to calculate all the components of Einstein tensor Gαβ :

G00 = R00 −
1
2
Rg00 (C.41)

The calculation of the second term of right hand side of (C.41) yields:

−1
2
Rg00 =

1
2
Re2µ =

λ′ − µ′

r
e2(µ−λ) + e2µ

(
1− e−2λ

r2

)
− e2µH

−1
2
Rg00 = λ̈+ λ̇(λ̇− µ̇) + 2

λ′ − µ′

r
e2(µ−λ) + e2µ

(
1− e−2λ

r2

)
− e2(µ−λ)(µ′′ + µ′(µ′ − λ′)) (C.42)

Introducing (C.21) and (C.42) in (C.41), one finds:

G00 = e2µ

r2 ((2rλ′ − 1)e−2λ + 1) (C.43)

Next,

Gij = Rij −
1
2
Rgij . (C.44)

We calculate the second term of right hand side of (C.44)

−1
2
Rgij = −1

2
R
(
δij + (e2λ − 1)

xixj

r2

)
= −1

2
Rδij −

1
2
R(e2λ − 1)

xixj

r2
. (C.45)

We calculate the first term of right hand side of (C.45), using (C.39), that gives:

−1
2
Rδij = −1− e−2λ

r2
δij − e−2λ

(
λ′ − µ′

r

)
δij − e−2µ(λ̈+ λ̇(λ̇− µ̇))δij

+ e−2λ

(
µ′′ + (µ′ − λ′)

(
µ′ +

1
r

))
δij (C.46)

Next, we calculate the last term of right side of (C.45), using again (C.39):

−1
2
R(e2λ − 1)

xixj

r2
= −

(
λ′ − µ′

r

)
(1− e−2λ)

xixj

r2
−
(
−2 + e2λ + e−2λ

r2

)
xixj

r2

+ (1− e−2λ)
(
µ′′ + (µ′ − λ′)

(
µ′ +

1
r

))
xixj

r2

− (e2(λ−µ) − e−2µ)(λ̈+ λ̇(λ̇− µ̇))
xixj

r2
(C.47)
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Introducing (C.46), (C.47) in (C.45), one has:

−1
2
Rgij = −e−2µ(λ̈+ λ̇(λ̇− µ̇))

(
δij −

xixj

r2

)
− e2(λ−µ)(λ̈+ λ̇(λ̇− µ̇))

xixj

r2

+ e−2λ

(
µ′′ + (µ′ − λ′)

(
µ′ +

1
r

))(
δij −

xixj

r2

)
+
(
µ′′ + (µ′ − λ′)

(
µ′ +

1
r

))
xixj

r2
− λ′ − µ′

r

xixj

r2

− e−2λ

(
λ′ − µ′

r

)(
δij −

xixj

r2

)
− 1− e−2λ

r2
δij

−
(
−2 + e2λ + e−2λ

r2

)
xixj

r2
(C.48)

Introducing (C.33) and (C.48) in (C.44), one finds:

Gij = H
(
δij − xixj

r2

)
+ e2λ

r2 (e−2λ(2rµ′ + 1)− 1)xixj

r2 (C.49)

Note that since g0i = 0, we deduce from (C.27):

G0i = R0i = 2λ̇xi

r2

and this ends Appendix C.

Appendix D

1) Calculation of Tαβ, ταβ

We recall that

Tαβ = −
∫

R3
pαpβfωp; ταβ =

−gαβ

4
FλµF

λµ + FβλFα
λ (D.1)

T00 = −
∫

R3
p2
0f | g |

1
2
dp1dp2dp3

p0
= −

∫
R3
p0f | g |

1
2 dp̃.

where dp̃ = dp1dp2dp3. Since

p0 = −eµ

√
1+ | p̃ |2 +(e2λ − 1)

(
x̃.p̃

r

)2

; | g |= e2(λ+µ),

T00 = eλ+2µ

∫
R3

√
1+ | p̃ |2 +(e2λ − 1)

(
x̃.p̃

r

)2

f(t, x̃, p̃)dp̃ (D.2)

Now, we define the spherically symmetric functions K, P and Q such that

T 0i = K
xi

r
(D.3)

T ij = e4λP
xixj

r2
+Q

(
δij − xixj

r2

)
(D.4)
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where

K(t, r) = K(t, x̃) :=
xi

r
T 0i(t, x̃) = eλ−µ

∫
R3

x̃.p̃

r
f(t, x̃, p̃)dp̃

P (t, r) = P (t, x̃) :=
xixj

r2
T ij(t, x̃)

= eλ

∫
R3

(
x̃.p̃

r

)2

f(t, x̃, p̃)
dp̃√

1+ | p̃ |2 +(e2λ − 1)
(

x̃.p̃
r

)2

Q(t, r) = Q(t, x̃) :=
1
2

(
δij −

xixj

r2

)
T ij(t, x̃)

=
1
2
eλ

∫
R3

(
| p̃ |2 −

(
x̃.p̃

r

)2
)
f(t, x̃, p̃)

dp̃√
1+ | p̃ |2 +(e2λ − 1)

(
x̃.p̃
r

)2

From (D.3), we obtain:

T0i = g00gijT
0j = −e2(λ+µ)K

xi

r
(D.5)

From (D.4), we deduce:

Tij = gilgjkT
lk = e4λP

xixj

r2
+Q

(
δij −

xixj

r2

)
(D.6)

Next,

τ00 = −g00
4
FλµF

λµ + gλµF0λF0µ

= −g00
2
F0iF

0i + gijF0iF0j (sinceFij = 0)

= −g00
2
g00gijF0iF0j + gijF0iF0j

=
1
2
gijF0iF0j

=
1
2
gijg00gilF

0lg00gjkF
0k

=
1
2
g2
00δ

j
l gjkF

0lF 0k

=
1
2
g2
00glkF

0lF 0k

=
1
2
(e2µ)2(e−2µ)glkE

lEk (sinceF 0i = α−1Ei)

=
1

2r2
e2µe2glkx

lxk (sinceEi = e
xi

r
).

Now, since

glkx
lxk =

(
δlk + (e2λ − 1)

xlxk

r2

)
xlxk = r2 + r2(e2λ − 1) = r2e2λ,
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one has:

τ00 = 1
2e

2(λ+µ)e2 (D.7)

τ0i = FiλF0
λ = gλµFiλF0µ = gjkFijF0k = 0 (D.8)

We end this first part by calculating τij . (D.1) yields for index α = i, β = j;

τij = −gij

4
FλµF

λµ + FjλFi
λ

= −gij

2
F0kF

0i + gikFjλF
kλ

= −gij

2
F0kF

0k + gikF0jF
0k

= −gij

2
g0αgkβF

αβF 0k + gikg0αgjβF
αβF 0k

= g00

(
−gijgkl

2
+ gikgjl

)
F 0lF 0k

= −α2
(
−gijgkl

2
+ gikgjl

)
(α−1El)(α−1Ek)

= −
(
−gijgkl

2
+ gikgjl

)
e2
xlxk

r2

τij = −e
2

r2

(
−gij

2
gklx

lxk + gikgjlx
lxk
)
. (D.9)

Since gklx
kxl = r2e2λ and gikx

k = e2λxi, (D.9) yields:

τij = −e
2

r2

(
−r

2

2
e2λgij + e4λxixj

)
= −1

2
e2e2λ

(
−gij + 2e2λxixj

r2

)
Thus

τij = 1
2e

2e2λ
((
δij − xixj

r2

)
− e2λ xixj

r2

)
(D.10)

2) Proof of equations (1.90) and (1.91)

By virtue of equations (1.47), one has:

∂

∂t

(
eλe

xi

r

)
= qeλ+µ

∫
R3
pifωp = qe2(λ+µ)

∫
R3
pif

dp̃

p0

= qe2(λ+µ)

∫
R3
f

(
vi + (e−λ − 1)

x̃.v

r

xi

r

)
e−λdv

−eµ
√

1 + v2

= −qeλ+µ

∫
R3
f

vi

√
1 + v2

dv − qeλ+µ

(
e−λ − 1

r

)
xi

r
N
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Thus

∂

∂t

(
eλe

xi

r

)
= −qeλ+µ

∫
R3
f

vi

√
1 + v2

dv − qeλ+µ

(
e−λ − 1

r

)
xi

r
N. (D.9)

Contracting (D.9) with respect to xi one has:

r
∂

∂t
(eλe) = −qeλ+µN − qeλ+µ(e−λ − 1)N

= −qeµN

and we obtain the desired equation. Next, from equations (1.42), we deduce:

∂

∂xi

(
eλe

xi

r

)
= −qe2(λ+µ)

∫
R3
p0f

dp̃

p0
= −qe2(λ+µ)

∫
R3
p0f

e−λdv

g00p0

= −qeλe2µ(−e−2µ)
∫

R3
fdv = qeλM

Thus
r
∂

∂r
(eλe) + 2eλe = qreλM,

and we obtain (1.90) by multiplying the above equation by r.

Appendix E

1) Here we prove that (1.75) and (1.89) are equivalent. This means if f =
f(t, x̃, p̃) is a continuously differentiable solution of (1.75), then
f = f(t, x̃, v) is the same for (1.89) and conversely.

First of all, we prove that characteristic systems (1.82) and (1.83)-(1.84) are
equivalent, since the C1-diffeomorphism

φ : R6 → R6 : (x̃, p̃) 7→ (x̃, v), v := p̃+ (eλ − 1)
x̃.p̃

r

x̃

r

where λ, µ : I× [0,+∞[→ R are regular, I ⊂ R an interval, transforms solutions
of the first system into solutions of the second system and reciprocally. Obvi-
ously (1.83) holds. To prove (1.84) we need to calculate dvi

dt . (1.76) gives, using
(1.83):

dvi

dt
=
dpi

dt
+
(
λ̇eλ + λ′eλ x̃.p̃

r

1
p0

)
x̃.p̃

r

xi

r

+ (eλ − 1)
1
p0
| p̃ |2 x

i

r2
+ (eλ − 1)

1
p0
xjQ

j
0

xi

r2

− 2(eλ − 1)
1
p0

(
x̃.p̃

r

)2
xi

r2
+ (eλ − 1)

1
p0

x̃.p̃

r

pi

r
(E.1)
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Next, the first term of the right hand side of (E.1) yields:

dpi

dt
=
Qi

0

p0
=

1
p0

(−Γi
αβp

αpβ − qpαFα
i)

=
1
p0

(−Γi
00(p

0)2 − 2Γi
0kp

0pk − Γi
jkp

jpk − qgikpαFαk)

=
1
p0

(−Γi
00(p

0)2 − 2Γi
0kp

0pk − Γi
jkp

jpk − qgikp0F0k)

=
1
p0

(−Γi
00(p

0)2 − 2Γi
0kp

0pk − Γi
jkp

jpk − qg00p
0F 0i)

Thus

dpi

dt
=

1
p0

(
−e2(µ−λ)µ′

xi

r
(p0)2 − 2λ̇

xi

r

x̃.p̃

r
p0 − λ′

(
x̃.p̃

r

)2
xi

r

)

− 1
p0

(
1− e−2λ

r

(
| p̃ |2 −

(
x̃.p̃

r

)2
)
xi

r
− qp0αe

xi

r

)
(E.2)

≡ Qi
0

p0
.

From (E.2) we deduce:

1
p0
xjQ

j
0 = −e2(µ−λ)rp0µ′ − 2λ̇x̃.p̃− λ′

r

p0

(
x̃.p̃

r

)2

− (1− e−2λ)
1
p0

(
| p̃ |2 −

(
x̃.p̃

r

)2
)

+ qαre (E.3)

Taking the last term of right hand side of (E.1), one has, using (1.77)-(1.78):

1
p0

(eλ − 1)
x̃.p̃

r

pi

r
=

1
p0

(eλ − 1)
x̃.p̃

r2

(
vi + (e−λ − 1)

x̃.v

r

xi

r

)
=

1
p0

(1− e−λ)
x̃.v

r2

(
vi + (e−λ − 1)

x̃.v

r

xi

r

)
1
p0

(eλ − 1)
x̃.p̃

r

pi

r
=

1
p0

(
1− e−λ

r

)
x̃.v

r
vi +

1
po

(1− e−λ)(e−λ − 1)
(
x̃.v

r

)2
xi

r2

(E.4)
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Introducing (E.2), (E.3) and (E.4) in (E.1), one has:

dvi

dt
=

1
p0

(
1− e−λ

r

)
x̃.v

r
vi +

xi

r

1
rp0

(1− e−λ)(e−λ − 1)
(
x̃.v

r

)2

+
xi

r

(
λ̇eλ x̃.p̃

r
+
λ′

p0
eλ

(
x̃.v

r

)2

+
1
rp0

(eλ − 1) | p̃ |2
)

+
xi

r

eλ − 1
r

(
−e2(µ−λ)rµ′p0 − 2λ̇x̃.p̃− λ′

r

p0

(
x̃.p̃

r

)2
)

− xi

r

eλ − 1
r

(
1
p0

(1− e−2λ)

(
| p̃ |2 −

(
x̃.p̃

r

)2
)
− qαer

)

+
xi

r

(
− 2
p0

(
eλ − 1
r

)(
x̃.p̃

r

)2

− e2(µ−λ)µ′p0 − 2λ̇
x̃.p̃

r

)

+
xi

r

(
−λ

′

p0

(
x̃.p̃

r

)2

− 1− e−2λ

rp0

(
| p̃ |2 −

(
x̃.p̃

r

)2
)

+ qαe

)
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By virtue of (1.81), one has ; in terms of v:

dvi

dt
=

α√
1 + v2

(
1− e−λ

r

)
x̃.v

r
vi +

xi

r

α

r
√

1 + v2
(1− e−λ)(e−λ − 1)

(
x̃.v

r

)2

+
xi

r

(
λ̇
x̃.v

r
+ λ′

α√
1 + v2

e−λ

(
x̃.v

r

)2
)

+
xi

r

α

r
√

1 + v2
(eλ − 1)

(
v2 + (e−2λ − 1)

(
x̃.v

r

)2
)

+
xi

r

eλ − 1
r

(−e2(µ−λ)rµ′α−1
√

1 + v2 − 2λ̇e−λx̃.v + qαer2)

− xi

r

eλ − 1
r

λ′r
α√

1 + v2
e−2λ

(
x̃.v

r

)2

− xi

r

eλ − 1
r

α√
1 + v2

(1− e−2λ)

(
v2 −

(
x̃.v

r

)2
)

− xi

r

2α√
1 + v2

(
e−λ − e−2λ

r

)(
x̃.v

r

)2

− xi

r

(
e2(µ−λ)µ′α−1

√
1 + v2 + 2λ̇e−λ x̃.v

r

)
− xi

r
λ′

α√
1 + v2

e−2λ

(
x̃.v

r

)2

− xi

r

(
α√

1 + v2

(
1− e−2λ

r

)(
v2 −

(
x̃.v

r

)2
)
− qαe

)

= −
(
αe−λµ′

√
1 + v2 + λ̇

x̃.v

r
− qeλαre

)
xi

r

−
(

1− e−λ

r

)
αv2

√
1 + v2

xi

r
+

α√
1 + v2

(
1− e−λ

r

)
x̃.v

r
vi

Thus,

dvi

dt
= −

(
αe−λµ′

√
1 + v2 + λ̇

x̃.v

r
− qeλαre

)
xi

r

+
α√

1 + v2

(
e−λ − 1

r

)(
v2x

i

r
− x̃.v

r
vi

)
and (1.84) is proved.
2) Now, we have to prove equation

(r2v − x̃.vx̃) · ∂f
∂x̃

= (v2x̃− x̃.vv) · ∂f
∂v

; x̃, v ∈ R3 (E.5)

Given r =| x̃ |, u =| v |, ω = x̃.v
r we take vectors (x̃, v) ∈ R3 that generate R6,
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this means x̃ 6= ~0 and | ω |< u. Then since f = f(t, r, u, ω(r, u)), one has:{
∂f
∂x̃ = x̃

r
∂f
∂r +

(
v
r −

x̃.v
r2

x̃
r

)
∂f
∂ω

∂f
∂v = v

u
∂f
∂u + x̃

r
∂f
∂ω

(E.6)

Introducing (E.6) in (E.5) we obtain:(
rv − x̃.v

r
x̃

)
· ∂f
∂x̃

= rω
∂f

∂r
+ r

1
r
(u2 − ω2)

∂f

∂ω

− rω
∂f

∂r
− ω

(
ω − ω

r

r2

r

)
∂f

∂ω

= (u2 − ω2)
∂f

∂ω(
v2 x̃

r
− x̃.v

r
v

)
· ∂f
∂v

= u2ω

u

∂f

∂u
+ u2 ∂f

∂ω
− ω

u2

u

∂f

∂u
− ω2 ∂f

∂ω

= (u2 − ω2)
∂f

∂ω

and formula (E.5) is proved. Now, 1) and 2) show that the Vlasov equation
(1.89) holds.

3) Proof of dp̃ = e−λdv
By definition, dp̃ =| Jacφ−1

x̃ | dv =| Jacφx̃ |−1 dv where

φx̃ : R3 → R3 p̃ 7→ v := p̃+ (eλ − 1)
x̃.p̃

r

x̃

r

and

Jacφx̃ =

∣∣∣∣∣∣∣
∂v1

∂p1
∂v1

∂p2
∂v1

∂p3

∂v2

∂p1
∂v2

∂p2
∂v2

∂p3

∂v3

∂p1
∂v3

∂p2
∂v3

∂p3

∣∣∣∣∣∣∣
By differentiating (1.76) with respect to pk,

∂vi

∂pk
= δi

k + (eλ − 1)δi
k

xixj

r2

from which we deduce as we did before in calculating det (gij) that:

Jacφx̃ = eλ

and we obtain the desired result.

Appendix F

Here we have to give the proof of this important result.
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Lemma 6.4 Let g : R3 → R be a spherically symmetric function, i.e

g(Ax̃) = g(x̃), x̃ ∈ R3, A ∈ SO(3).

a) There exists g̃ : [0,+∞[→ R such that

g(x̃) = g̃(| x̃ |), x̃ ∈ R3,

b) g ∈ C1(R3) if and only if g̃ ∈ C1([0,+∞[) and g̃′(0) = 0,

c) g ∈ C2(R3) if and only if g̃ ∈ C2([0,+∞[) and g̃′(0) = 0.

Proof: Given x̃ ∈ R3, there exists A ∈ SO(3) such that Ax̃ = (r, 0, 0), and thus

g(x̃) = g(Ax̃) = g(r, 0, 0) = g(| x̃ |, 0, 0) = g̃(| x̃ |) = g̃(r)

and a) is proved. Concerning part b) of lemma, take g ∈ C1(R3). From the
above definition of g̃(r), r > 0 we have obviously g̃ ∈ C1([0,+∞[) and we use
the fact that g(., 0, 0) ∈ C1(R) is even to obtain ∂x1g(0) = 0 = g̃′(0).Conversely,
for x̃ 6= 0,

∂x̃g(x̃) = g̃′(r)
x̃

r

and since the right hand side converges to 0 as x̃→ 0 (by assumption on g̃), so
∂x̃g is continuously extended to x̃ = 0.

Now for part c) of lemma it is easy, following the proof of b), to go from left
to right. To prove the opposite side we just calculate ∂xi∂xjg(x̃) and find:

∂xi∂xjg(x̃) =
g̃′(r)− g̃′(0)

r
δij +

(
g̃′′(r)− g̃′(r)− g̃′(0)

r

)
xixj

r2

and the right hand side of the above expression go to g̃′′(0)δij as r → 0, i.e
g ∈ C2(R3).

Appendix G

Here we prove the following result

Lemma 6.5 Let f ∈ C1
c (R6) be a spherically symmetric function, λ, µ ∈ C1([0,+∞[),

e ∈ C1([0,+∞[) and define:

ρ(x̃) =
∫

R3

√
1 + v2f(x̃, v)dv +

1
2
e2λe2

k(x̃) =
∫

R3

x̃.v

r
f(x̃, v)dv; p(x̃) =

∫
R3

(
x̃.v

r

)2

f(x̃, v)
dv√

1 + v2
− 1

2
e2λe2

q̄(x̃) =
∫

R3

(
v2 −

(
x̃.v

r

)2
)
f(x̃, v)

dv√
1 + v2

+ e2λe2

M(x̃) =
∫

R3
f(x̃, v)dv; N(x̃) =

∫
R3

x̃.v√
1 + v2

f(x̃, v)dv
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Then ρ, p, q̄ ∈ C1(R3), M,N ∈ C1
c (R3), k ∈ Cc(R3) ∩ C1(R3 \ {0}) and all the

functions are spherically symmetric, and as function of r, k ∈ C1([0,+∞[).more
precisely

ρ′(r) =
∫

R3

√
1 + v2

x̃

r
· ∂f
∂x̃
dv +

1
2
∂

∂r
(e2λe2)

k′(r) =
∫

R3

x̃.v

r

x̃

r
· ∂f
∂x̃
dv; M ′(r) =

∫
R3

x̃

r
· ∂f
∂x̃
dv; N ′(r) =

∫
R3

x̃.v√
1 + v2

x̃

r
· ∂f
∂x̃
dv

p′(r) =
∫

R3

(
x̃.v

r

)2
x̃

r
· ∂f
∂x̃

dv√
1 + v2

− 1
2
∂

∂r
(e2λe2)

q̄′(r) =
∫

R3

(
v2 −

(
x̃.v

r

)2
)
x̃

r
· ∂f
∂x̃

dv√
1 + v2

+
∂

∂r
(e2λe2)

and ∫
R3

x̃.v

r

v√
1 + v2

· ∂f
∂x̃
dv = p′(r)− 1

r
q(r) +

2
r
p(r) +

1
2
∂

∂r
(e2λe2)

+
2
r
e2λe2

Proof: Clearly ρ ∈ C1(R3), and for every matrix A ∈ SO(3),

ρ(Ax̃) =
∫

R3

√
1 + v2f(Ax̃, v)dv +

1
2
e2λe2

Now, putting in the integral v = Aω, one has since det A = 1:

ρ(Ax̃) =
∫

R3

√
1+ | Aω |2f(Ax̃,Aω)dv +

1
2
e2λe2

=
∫

R3

√
1 + ω2f(x̃, ω)dv +

1
2
e2λe2

= ρ(x̃) (since f is spherically symmetric)

So, ρ is spherically symmetric and the same is true for the other functions p, q̄,
M , N and k. The derivative of ρ comes from:

ρ′(r) =
x̃

r
· ∂ρ
∂x̃
dv +

1
2
∂

∂r
(e2λe2)

Now, since p′(r) = x̃
r ·

∂p
∂x̃ , the identity

∂

∂x̃

(∫
R3

(
x̃.v

r

)2

f(x̃, v)
dv√

1 + v2

)
= 2

∫
R3

x̃.v

r

(
v

r
− x̃.v

r2
x̃

r

)
f

dv√
1 + v2

+
∫

R3

(
x̃.v

r

)2
∂f

∂x̃

dv√
1 + v2
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and x̃
r ·
(

v
r −

x̃.v
r2

x̃
r

)
= 0 implies the assertion on p′(r) for r > 0. Note that k′

and q̄′ are established similarly. We now establish the last formula for r > 0.
We will use formula (E.5) in Appendix E, that gives:

v · ∂f
∂x̃

=
x̃.v

r

x̃

r
· ∂f
∂x̃

+
(
v2

r

x̃

r
− x̃.v

r

v

r

)
· ∂f
∂v
,

and thus∫
R3

x̃.v

r

v√
1 + v2

· ∂f
∂x̃
dv =

∫
R3

(
x̃.v

r

)2
x̃

r
· ∂f
∂x̃

dv√
1 + v2

+
∫

R3

x̃.v

r

(
v2

r

x̃

r
− x̃.v

r

v

r

)
· ∂f
∂v

dv√
1 + v2

= p′(r) +
1
2
∂

∂r
(e2λe2)

−
∫

R3

x̃

r
·
(
v2

r

x̃

r
− x̃.v

r

v

r

)
f

dv√
1 + v2

−
∫

R3

x̃.v

r

v

r
· x̃
r
f

dv√
1 + v2

+ 3
∫

R3

x̃.v

r

x̃.v

r2
f

dv√
1 + v2

= p′(r) +
1
2
∂

∂r
(e2λe2)

− 1
r
(q̄(r)− e2λe2)

+
2
r

(
p(r) +

1
2
e2λe2

)
= p′(r)− 1

r
q̄(r) +

2
r
p(r)

+
2
r
e2λe2 +

1
2
∂

∂r
(e2λe2), r > 0

Next, it remains to check the assertions at r = 0. We can write:

f(x̃, v) = f̃(r, u, θ), u =| v |, cos θ =
x̃.v

ru

for x̃ 6= 0 and v ∈ R3 such that | ω |< u, ω = x̃.v
r where

f̃(r, u, θ) = f((r, 0, 0), (u cos θ, u sin θ, 0)), r ≥ 0, u ≥ 0, θ ∈ [0, π].

Introducing polar coordinates (u, θ, ϕ) in v-space with x̃ as polar axis
v1 = u sin θ cosϕ
v2 = u sin θ sinϕ
v3 = u cos θ,

u ∈ [0,+∞[, θ ∈ [0, π], ϕ ∈ [0, 2π]
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we obtain:

p(r) = 2π
∫ +∞

0

∫ π

0

u2 cos2 θ√
1 + u2

f̃(r, u, θ) sin θdθu2du− 1
2
e2λe2

q̄(r) = 2π
∫ +∞

0

∫ π

0

u2 sin2 θ√
1 + u2

f̃(r, u, θ) sin θdθu2du+ e2λe2

k(r) = 2π
∫ +∞

0

∫ π

0

u cos θf̃(r, u, θ) sin θdθu2du

M(r) = 2π
∫ +∞

0

∫ π

0

f̃(r, u, θ) sin θdθu2du

N(r) = 2π
∫ +∞

0

∫ π

0

ru cos θ√
1 + u2

f̃(r, u, θ) sin θdθu2du

These formulas and the definition of f̃ show that p, q̄,M,N ∈ C1([0,+∞[),
k ∈ Cc(R3) ∩ C1(R3 \ {0}). We now have to show that

p′(0) = q̄′(0) = M ′(0) = k(0) = N(0) = e(0) = 0.

By spherical symmetry,

f̃(0, u, θ) = f(0, v) = f(0, (u, 0, 0)) = f̃(0, u, 0)

and 1
2

∫ π

0
sin 2θ = 0 implies that k(0) = N(0) = 0. Again by spherical symmetry,

f(x̃, v) = f((r cos θ,−r sin θ, 0), (u, 0, 0)) = f(Ax̃,Av)
= f((r, 0, 0), (u cos θ, u sin θ, 0))

where

A =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , x̃ = (r cos θ,−r sin θ, 0), v = (u, 0, 0)

and thus

∂f̃

∂r
(0, u, θ) =

∂f

∂x1
(0, (u, 0, 0)) cos θ − ∂f

∂x2
(0, (u, 0, 0)) sin θ

Now ∂f
∂x2 (0, (u, 0, 0)) = 0 since f(0, ., 0, (u, 0, 0)) is continuously differentiable

and even because taking

A =

1 0 0
0 −1 0
0 0 −1

 ∈ SO(3),

one has

A.

 0
x2

0

 =

 0
−x2

0


137



and since
f(A(0, x2, 0), A(u, 0, 0)) = f(0, x2, 0, (u, 0, 0)),

we obtain
f(0,−x2, 0, (u, 0, 0)) = f(0, x2, 0, (u, 0, 0)).

Thus,

p′(0) = 2π
∫ +∞

0

u4

√
1 + u4

∂f

∂x1
(0; (u, 0, 0))du

∫ π

0

sin θ cos3 θdθ = 0

q̄′(0) = 2π
∫ +∞

0

u4

√
1 + u4

∂f

∂x1
(0; (u, 0, 0))du

∫ π

0

cos θ sin3 θdθ = 0

N ′(0) = 2π
∫ +∞

0

u3

√
1 + u3

∂f

∂x1
(0; (u, 0, 0))du

∫ π

0

sin θ cos2 θdθ

=
4π
3

∫ +∞

0

u3

√
1 + u3

∂f

∂x1
(0; (u, 0, 0))du

M ′(0) = 2π
∫ +∞

0

u2 ∂f

∂x1
(0; (u, 0, 0))du

∫ π

0

sin θ cos θdθ = 0

and Appendix G is proved.

Appendix H

Here we prove this important result

Lemma 6.6 Let g ∈ C([0,+∞[), and define

hij(x̃) =

{
g(r)xixj

r2 , x̃ 6= 0
0 x̃ = 0

for i, j = 1, 2, 3.

a) If g ∈ C1([0,+∞[) with g′(0) = 0, then hij ∈ C1(R3).

b) If g ∈ C2([0,+∞[) with g′(0) = 0, then hij ∈ C2(R3).

Proof: Suppose the assumptions of a) hold. For x̃ 6= 0 the function hij is
continuously differentiable and calculation gives

∂khij(x̃) =
(
g′(r)− 2g(r)

r

)
xixjxk

r3
+ g(r)

δikxj + δjkxi

r2

from which we deduce that the derivative converges to 0 as x̃ → 0, and the
assertion in a) holds. Next suppose in addition that g is twice continuously
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differentiable. We obtain by differentiating the above formula:

∂2
lkhij(x̃) =

(
g′′(r)− 2g′(r)

r
+

8g(r)
r2

− 3g′(r)
r

)
xixjxkxl

r4

+
(
g′(r)− 2g(r)

r

)
δikxjxl + δjkxixl + δlkxixj

r3

+
(
g′(r)− 2g(r)

r

)
δilxjxk + δjkxixk

r3
+ g(r)

δilδjk + δjlδik
r2

Using l’Hopital’s rule twice we obtain:

lim
r→0

g(r)
r

= lim
r→0

g′(r)
2r

= lim
r→0

g′′(r)
2

=
g′′(0)

2

and we deduce

lim
x̃→0

∂2
lkhij(x̃) =

g′′(0)
2

(δilδjk + δjlδik).

Since this limit exists the assertion in b) follows.

Appendix I

Here we analyze the exterior regions free of particles in initial data sets for the

Einstein-Vlasov-Maxwell system. Let
◦
f be an initial distribution of compact

support. Let R0 be the radius of its support in space so that
◦
f vanishes for all

r ≥ R0. In what follows we are only concerned with quantities on the initial
hypersurface and so we will drop the label zero indicating the restriction of
spacetime quantities to the initial hypersurface.

Lemma 6.7 Take a solution of the constraint equations for the spherically sym-
metric Einstein-Vlasov-Maxwell system defined for 0 ≤ r ≤ R1 and having a
regular center. Suppose that radius R0 of the support of the distribution function
f is less than R1. Let M̃ = m(R0) + Q2/(8πR0). Then if R > 2M̃ the given
solution extends to a unique solution of the constraints defined for all [0,+∞[
which is asymptotically flat and has f = 0 for R ≥ R0.

Proof: Integration of the constraint equation (2.35) gives:

r2eλ(r)e(r) = q

∫ r

0

s2eλ(s)

∫
R3
f(s, v)dv. (I.1)

For r ≥ R0 the upper limit r in the integral can be replaced by R0 or infinity
without changing the value of the expression. It is equal to Q/4π where Q is
the total charge of the system defined in chapter 3 (section 3.1). For r ≥ R0 the
function f vanishes and the mass function m(r) = m(0, r) defined in chapter 2
(section 2.4) satisfies

m′ =
2π
r2

(Q/4π)2. (I.2)
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It follows that M̃(r) = m(r) + Q2/(8πr) is independent of r. If the solution
exists globally in r and is asymptotically flat then taking the limit r → +∞
shows that M̃ is equal to the ADM mass M . In any case M̃ is positive and it
follows that in the exterior region m = M̃ − Q2/(8πr). In order to determine
whether a solution can be extended to larger values of the radius it is enough
to ensure that 1 − 2M̃/r + Q2/(4πr2) remains positive. In that case λ can be
defined by the following relation:

e−2λ = 1− 2M̃/r +Q2/(4πr2). (I.3)

Note that lim
r→+∞

λ(r) = 0. Once λ is defined, we can take µ to be equal to

−λ and e(r) = r−2e−λ(Q/4π) in the exterior region and this gives the unique
solution satisfying the correct boundary conditions. If r > 2M̃ then
1−2M̃/r+Q2/(4πr2) is automatically positive and the desired result is obtained.
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