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Abstract

The development of software for scientific applications that rest on dynamic
or irregular meshes causes many problems because of the conflicting issues
of flexibility and efficiency.

This dissertation addresses these problems in the following way. Firstly,
it applies the ideas of domain engineering to the field of data-parallel ap-
plications in order to design reusable software products that accelerate the
development of specific applications in this domain. It starts with an analysis
of typical data-parallel applications and formulates general requirements on
the components that can be used in this domain. Secondly, using the ideas
of generic programming the Janus software architecture is defined.

The resulting conceptual framework and C++ template library Janus
provides a flexible and extensible collection of efficient data structures and
algorithms for a broad class of data-parallel applications. In particular, fini-
te difference methods, (adaptive) finite element methods, and data-parallel
graph algorithms are supported. An outstanding advantage of providing a
generic C++ framework is that it provides application-oriented abstractions
that achieve high performance without relying on language extension or non-
standard compiler technology. The C++ template mechanism allows to plug
user-defined types into the Janus data structures and algorithms. Moreover,
Janus components can easily be combined with standard software packages
of this field.

A portable implementation of Janus for distributed-memory architectures
that utilizes the standard Message Passing Interface (MPI) is described. The
expressiveness of Janus is proven by the implementation of several standard
problems from the realm of data-parallel scientific applications. The perfor-
mance of Janus is evaluated by comparing the Janus applications with those
that use other state-of-the-art components. The examination of scalability
on a high-performance Linux cluster system shows that Janus is on par with
current scientific software.

iii



iv



Zusammenfassung

Die Entwicklung von Software für wissenschaftliche Anwendungen, die auf
dynamischen oder irregulären Gittern beruhen, ist mit vielen Problemen ver-
bunden, da hier so unterschiedliche Ziele wie hohe Leistung und Flexibilität
miteinander vereinbart werden müssen.

Die vorliegende Dissertation geht diese Probleme folgendermaßen an:
Zunächst werden die Ideen des domain engineering auf das Gebiet daten-
paralleler Anwendungen angewandt, um wiederverwendbare Softwareproduk-
te zu entwerfen, deren Benutzung die Entwicklung konkreter Softwaresysteme
auf diesem Gebiet beschleunigt. Hierbei wird eine umfassende Analyse daten-
paralleler Anwendungen durchgeführt und es werden allgemeine Anforderun-
gen an zu entwickelnde Komponenten formuliert. In einem zweiten Schritt
wird auf der Grundlage der gewonnen Kenntnisse und unter Benutzung der
Ideen des generischen Programmierens die Janus Softwarearchitektur entwor-
fen und implementiert.

Das sich daraus ergebende konzeptionelle Gerüst und die C++-template
Bibliothek Janus stellt eine flexible und erweiterbare Sammlung effizienter
Datenstrukturen und Algorithmen für eine umfassende Klasse datenparalle-
ler Anwendungen dar. Insbesondere werden finite Differenz- und finite Ele-
mentverfahren sowie datenparallele Graphalgorithmen unterstützt.

Ein herausragender Vorteil einer generischen C++ Bibliothek wie Janus
ist, dass ihre anwendungsorientierten Abstraktionen eine hohe Leistung lie-
fern und dabei weder von Spracherweiterungen noch von nicht allgemein
verfügbaren Kompilationstechniken abhängen. Die Benutzung von C++-
Templates bei der Implementierung von Janus macht es sehr einfach, nut-
zerdefinierte Datentypen in die Komponenten von Janus zu integrieren, ohne
dass dabei die Effizienz leidet. Ein weiterer Vorteil von Janus ist, dass es sehr
einfach mit bereits existierenden Softwarepaketen kooperieren kann.

Diese Dissertation beschreibt eine portable Implementierung von Janus
für Architekturen mit verteiltem Speicher, die auf der standardisierten

v



Kommunikationsbibliothek MPI beruht. Die Ausdruckskraft von Janus
wird an Hand der Implementierung typischer Anwendungen aus dem Be-
reich des datenparallelen wissenschaftlichen Rechnens nachgewiesen. Die
Leistungsfähigkeit der Komponenten von Janus wird bewertet, indem
Janus-Applikationen mit vergleichbaren Implementierungen, die auf anderen
Ansätzen beruhen, verglichen werden. Die Untersuchungen zur Skalierbarkeit
von Janus-Applikationen auf einem Linux Clustersystem zeigen, dass Janus
auch in dieser Hinsicht hohe Anforderungen erfüllt.
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Chapter 1

Introduction

This chapter provides the background, main motivations and goals of this
dissertation. The contributions of this work are stated and an overview on
how this dissertation is structured is given.

This dissertation has evolved out of the work of the author in several
projects funded by the Real World Computing Partnerships (RWCP), Japan.
The objective of the RWCP Promise[89] project, conducted at GMD (now
Fraunhofer) FIRST, was to develop a programming environment for scientific
application with the objective

Make parallel programming as easy as sequential programming.

An explicit goal was that adaptive finite element methods can be effi-
ciently and conveniently expressed within this environment. Moreover, the
environment should be highly portable and interoperable with existing lan-
guages, libraries, and tools. Finite element methods are used to solve many
important and very demanding problems of science and engineering. To
solve adaptive finite element methods on parallel architectures is a particular
challenging task.

The author of this thesis started working in this field as a member of
the Promoter project (a predecessor of Promise). At that time, the
emphasis of the author’s research was requirement analysis of data paral-
lel applications[39, 41]. During his stay at the Tsukuba Research Center
of RWCP in Japan, the author developed a small parallel C++ template
library Janus [43, 44] that was targeted at adaptive finite element methods.
This first version of Janus already incorporated the insights that were gained
during the analysis of data parallel applications.
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Based on this prototype, the Janus conceptual framework and a re-
designed Janus template library were developed and later adopted as the
core of the Promise environment[40]. The main reason for this decision was
that Janus can handle not only regular and static data parallel applications
but also irregular and dynamic ones. Thus, in the process of incorporating
Janus into Promise it became clear that the conceptual framework of Janus
goes far beyond finite element methods. Cellular automata, finite difference
methods, and large classes of data parallel graph algorithms can be easily
expressed using Janus abstractions.

1.1 Motivation and Goals

The task of developing software in the domain of high performance scientific
computing has to deal with special requirements.

The most severe requirements are the stringent constraints regarding the
efficiency of the data structures and algorithms used in scientific applications.
Traditionally, the quest for high performance has been of such a paramount
importance that modern software engineering concepts have entered the field
only partially. This is true despite their potential to simplify multidisci-
plinary software development

In satisfying these performance constraints, developers often have to deal
with different programming models. These models reflect different hardware
architectures including distributed memory systems and shared memory sys-
tems and combinations of the two. Beside these dependences on different
memory models on the whole, the deep memory hierarchies (such as registers
and caches) can tremendously impact the overall performance of a scientific
application. This causes application developers to design their software often
in a hardware-oriented way. In general, developers of scientific codes are very
reluctant to use overhead-prone software engineering principles or languages.

This tendency is strengthened by the fact that the software environments
of high performance computing systems are often limited when compared
with end-user workstations. This hinders the use of newer design and im-
plementation techniques that might require additional tool support. The
latter issue has somewhat eased with the rise of high performance computing
systems that are based on clustering state-of-the-art workstations.

Algorithm development is a key activity in scientific computing. Multi-
grid methods[104] for the solution of large sparse systems of equations or the
Barnes-Hut algorithm[8] are well known examples of how efficient algorithms
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have been devised during the last decades. Implementing these algorithms
on high performance computing systems requires sophisticated data struc-
tures. In the realm of dense linear algebra, implementations of the Basic
Linear Algebra Subroutines BLAS[31] standard are heavily used. For sparse
systems that result from discretization of partial differential equations, only
a draft standard[80] exists—resulting in a huge amount of incompatible data
structures.

Over the years, it has been recognized that the complexity of multidis-
ciplinary scientific simulations places demand of software engineering tech-
niques that can deliver reusable and interoperable work products in this
field. These efforts include the definition and implementation of expressive,
portable, and efficient parallel programming models, such as the Message
Passing Interface[97] (MPI) for distributed memory systems or OpenMP[102]
for multi-platform shared-memory parallel programming.

The ISCOPE (Scientific Computing in Object-Oriented Parallel Environ-
ments) conference series that has been held since 1997 is exemplary in this
respect. There are also internet-based forums for discussing various aspects
of this field most notably

• Scientific Computing in Object-Oriented Languages[82],

• The Java Grande forum[47],

• The Common Component Architecture Forum[35].

The most prominent software engineering methods discussed by these
communities in the context of scientific computing are object-oriented design,
generic programming, and component based development. In particular, the
ideas of generic programming have been recognized as a viable approach to
develop interoperable and efficient software.

Nevertheless, generic programming as a mean to design software does
not solve the problem of devising the useful abstractions. A much broader
approach must be taken by carefully analyzing the domain, that is the area
of knowledge, for which the scientific software is developed.

Domain engineering takes advantage of knowledge and software products
that was obtained by developing systems in a specific “area of knowledge”,
that is, the domain under consideration. The emphasis is on knowledge
management and engineering reusable software. In particular, the latter as-
pect brings domain engineering in close contact with Parnas’ idea of program
families. Knowledge management, on the other hand, requires a thoroughly
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and repeatedly performed analysis of the requirements to the systems in the
domain.

1.2 Contributions

This dissertation covers a broad range of themes. After analyzing the state of
the art of software engineering in the realm of scientific computing an analysis
of the domain of data-parallel scientific applications is performed. Based on
this analysis, a software architecture of data structures and algorithms is
defined. Then the components of a C++ template library that implements
the generic architecture are presented. It is explained how this library can
be ported to different parallel architectures and how demanding data parallel
operations can be written with it.

The most important contribution of this dissertation is the conceptual
framework of Janus. The semantic and syntactic requirements of the three
fundamental Janus concepts Domain1, Relation, and Property Function were
devised after a thorough analysis of data parallel applications. Domain for-
mulates requirements for finite sets, Relation describes dependences of do-
main elements, and Property Function is an abstraction for attributes that
are associated with domains or relations.

These abstractions allow the unified treatment of regular and irregular
problems. Yet, the essential differences are not obliterated so that the ef-
ficient treatment of regular applications is not hindered by too general ab-
stractions.

The main result of the domain analysis is that differences between regu-
lar and irregular problems can be treated as differences in the initialization
process. The differences in initialization are addressed by so-called one-phase
and two-phase data structures and algorithms. Two-phase data structures
are particularly useful on distributed memory architectures because the ex-
plicit separation of insertions and access operations enables implementations
that can efficiently and almost transparently deal with the difference of local
and remote memory operations.

The next major contribution are the C++ template classes and func-
tions that provide an extensible implementation of the Janus conceptual
framework. The implementation of the Janus template library is very com-

1Note the difference between the term “domain” in the sense of an area of knowledge
and the term Domain that defines abstractions for finite sets as they occur in data parallel
applications

4



pact, consisting of less than 6000 lines of ISO-C++, and is highly portable.
Special layers within Janus provide port packages for different computing
platforms—including distributed-memory architectures, shared-memory sys-
tems, and purely sequential implementations.

The data structures and algorithms provides by Janus are not restricted
to the solution of discretized partial differential equations. Parallel graph
algorithms and cellular automata simulation are covered as well. Contrary
to many matrix and graph libraries, the Janus conceptual framework and
its template library explicitly supports an execution on distributed memory
architectures.

The third major contribution of this dissertation is the evaluation of the
conceptual framework and its C++ implementation by means of typical data
parallel applications. This evaluation covers bott the expressiveness of the
Janus approach and its performance in comparison with state-of-the-art so-
lutions.

1.3 Organization of this Thesis

The following Chapter 2 gives a a summary relating to the state of the art
of software engineering in the realm of parallel scientific computing. The
complexity of scientific software and the particular role played by perfor-
mance characterizes this domain. The most notable design-methods that are
considered in that chapter are object-oriented design, generic programming,
and component software. For each of the design methods, one or more ex-
amples from the field of scientific computing are given. It is elaborated that
generic programming is a particular promising approach to develop scientific
software.

In Chapter 3 an analysis of the domain of data-parallel scientific appli-
cations is undertaken. Several examples, including simple cellular-automata,
finite difference and finite element methods for the approximate solution of
discretized partial differential equations, mesh refinement, and parallel graph
algorithms are considered. The result of this domain analysis is a list of char-
acterizing properties of data parallel scientific applications.

Chapter 4 describes Janus—a generic software architecture for data-
parallel applications. Based on the results of the domain analysis in Chap-
ter 3, it defines a framework of concepts, that is, requirements for the seman-
tics, syntax, and complexity of components that are well-suited for scientific
computations. The most important ideas of Janus are the concepts Domain,
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Relation, and Property Function and the idea to use so-called two-phase data
structures to represent irregular or dynamic sets and relations.

Chapter 5 presents the Janus template library—a set of generic C++
classes, algorithms, and utilities that implement the design requirements of
the Janus concepts. The emphasis here is on the expressiveness and efficiency
of the implementation, that is, there are very light-weight components for
regular problems and more elaborated ones for irregular applications.

Chapter 6 discusses the portable implementation and configuration of
the Janus components of Chapter 5 for different classes of parallel archi-
tectures. The Janus Distributed Engine (Jade) is introduced whose lay-
ered architecture provides a small but expressive set of communication and
synchronization primitives that isolates lower level details of an underlying
distributed-memory architecture. A port of Jade for the standard Message
Passing Interface (MPI) is explained. Issues of shared-memory and strictly-
sequential implementations are also discussed.

Chapter 7 applies the work products of the domain analysis, that is the
Janus framework and library, to the implementation of applications in the
domain of data parallel applications. Here again, typical examples with vary-
ing complexities are considered in detail. Various aspects of the performance
of these applications are evaluated discussed in Chapter 8.

Chapter 9 concludes this thesis by discussing the Janus generic architec-
ture in the context of similar work. It also provides an outlook of future work
based on Janus.
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Chapter 2

Software Engineering for
Parallel Scientific Computing

In this chapter, the why and how modern software engineering methods have
entered the domain of scientific computing will be investigate. The most
prominent of these methods are object-oriented design §2.4, generic program-
ming §2.6, and component software §2.8. The general ideas of these ap-
proaches and how they relate to this special field of software development
will be presented. In particular, it is investigated how they address the issues
of reusability and high performance. In one or another way, these software
engineering approaches treat the problem of developing and maintaining a
set of related programs. that is program families.

2.1 Software Quality

Software is produced to satisfy customer needs. As with any product, cus-
tomers have various metrics for the quality of the software they employ. The
following list presents important quality characteristics (and subordinated
quality aspects) of software[58].

Functionality of software regards its completeness, correctness, security,
compatibility, and interoperability.

Reliability of software refers to its non-deficiency, error-tolerance, and
availability.

Usability of software regards its understandability, ease of learning, oper-
ability, and communicativeness.
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Efficiency of software encompasses time economy and resource economy.

Maintainability of software regards its correctability, expandability, and
testability.

Portability of software encompasses its independence of hardware and other
software, installability, and last but not least reusability.

In Chapter 1 the outstanding role of efficiency as a quality feature for
large scale scientific applications was pointed out. It was also discussed how
this striving for efficiency conflicts with applying techniques and tools that
can increase software quality.

Later in this chapter, several popular software engineering design methods
are investigated with respect to their relation to the efficiency requirements
in the field of scientific computing.

2.2 Program Families

The concept program family was introduced by Parnas who observed that
varying applications and hardware demands inevitably mean that software
exists in many versions. His classic definition reads:

We consider a set of programs to constitute a family, whenever it
is worthwhile to study programs from the set by first studying the
common properties of the set and then determining the special
properties of the individual family members.

Parnas[84]

The insight is that if a designer carefully considers the commonalities
and differences of the family members then the cost of development and
maintenance of the programs will be reduced. The main reason for this is
that members of a program family share basic design decisions and can use
identical or similar resources[51]. Program families provide solutions that
satisfy individual requirements and avoid performance deficiencies caused by
services that are not necessary for a less demanding user[85].

Designing program families requires a good understanding of the problem
and solution domains and is therefore closely related to domain engineer-
ing §2.3.
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2.2.1 Incremental System Design

Commonality analysis and variability analysis are the basic activities for de-
signing program families. Commonality analysis identifies basic abstractions
that are shared by all members of a family. Variability analysis differentiates
a family into individual members or subfamilies.

Program families are naturally represented as hierarchies that occur as
the result of incremental system design[51]. In incremental system design,
the fundamental abstractions form a minimal basis of the family. Step by
step, this basis is enriched by minimal extensions. These extensions them-
selves act as a new minimal basis, or virtual machine, for higher level family
members. This leads to a tree-like structure of the family where branches
denote subfamilies.

2.2.2 Example: A Family of Container Abstractions

Figure 2.1 gives a simplified view on the family graph of container abstrac-
tions of the C++ standard library that is also known as Standard Template
Library (STL)[99].

Simple Associative Pair Associative

Sequence

Back InsertionFront Insertion
Sequence Sequence Container Container

Container

Associative Container

list<> deque<> vector<>
mulitiset<>
set<>

multimap<>
map<>

Figure 2.1: The STL container family

The shaded nodes represent incomplete members of the family, that is,
they are not concrete software units but rather abstractions that define sub-
families. In this case, subfamilies are defined by sets of requirements that
regard syntax, semantics, and complexity of the abstractions.
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The minimal basis of the STL container family is the Container abstrac-
tion. In STL, the common properties of all containers are

• a container is an object that stores other objects (its elements), and
that has methods for accessing its elements,

• a container must provide an associated iterator type that can be used
to traverse the container’s elements.

Subfamilies are introduced by extending the list of requirements of the
preceding abstraction(s). The subfamily of sequences, for example, specifies
that container elements are arranged in a strict linear order. It supports
insertion of elements at a specific position. The subfamily of associative
containers, on the other hand, supports efficient retrieval of elements (values)
based on keys and does not provide a mechanism for inserting an element at
a specific position.

Front insertion sequences form a subfamily of sequences that provide the
methods front, push front, and pop front for accessing, inserting, and
erasing, respectively, the first element of a sequence. An indispensable part
of the semantics of these methods is that they have an amortized1 constant
complexity. Analogously, the family of back insertion sequences encompasses
sequences where it is possible to append an element to the end, to access the
last element, or to erase it in amortized constant time.

The “leaves” of this family graph are parameterized container types that
are represented as C++ template classes. In contrast to the shaded nodes,
the container template classes are directly usable software units. For ex-
ample, the list<T> and deque<T> template container classes belong to the
subfamily of front insertion sequences.

2.2.3 On the Implementation of Program Families

It is important to keep in mind that program families and incremental system
design, in particular, are primarily design methods that do not prescribe
particular implementation techniques. Habermann[51] explicitly states,

It is the system design which is hierarchical, not its implementation.

1Amortized complexity means that the time required to perform a sequence of data
structure operations is averaged over all the operations performed[25].
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The reason is that individual family members must be in the position to
fulfill special tasks without the overhead associated with unnecessary services.

The family of STL containers of 2.2.2 provides good examples for how
the same design decision can be implemented in very different ways. The
list and deque containers of Figure 2.1, for example, belong both to the
subfamily of front insertion sequences. Whereas list is implemented as a
doubly linked list, the implementation of deque typically rests on several
contiguous memory blocks. This is because deque supports, in contrast to
the list container, random access to its elements in amortized constant time.
The list container, on the other hand, is the preferred choice when insertion
at arbitrary positions occur frequently.

Nevertheless, it is possible that the implementation of all members of a
program family utilizes the same resources. This can be observed in SGI’s
implementation[98] of STL where the four associative container classes set,
map, multiset, and multimap are implemented by a single red-black tree[25]
template class.

2.3 Domain Engineering

When software systems are developed within the context of a certain domain
then the common requirements usually induce common characteristics in the
systems. Domain engineering is a systematic approach to take advantage of
the acquired knowledge and software artifacts obtained by developing sys-
tems within a domain. The goal is, using this experience and existing work
products to deliver new products in a shorter time and at lower costs.

A domain is an area of knowledge[26] that includes not only a set of
concepts and terminology understood by practitioners in that area but also
knowledge of how to build software systems in that area. Examples of do-
mains are database systems, numerical libraries, or graphical user interfaces.

This definition emphasizes how domain engineering involves knowledge
both from the problem and solution domains.

There are two important points that are addressed by domain engineering.
The first one is engineering of reusable software, e.g., libraries, frameworks or
tools, for systems in a domain. Therefore domain engineering is sometimes
traced back to Parnas’ concept of program families [24, 26]. The second
aspect is knowledge management which emphasizes that maintenance and
update of knowledge in a domain is a continuous process that incorporates
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experience and new trends that are observed while developing the reusable
work products.

2.3.1 Phases of Domain Engineering

According to Czarnecki and Eisenecker[26], domain engineering consists of
three major phases or components, namely, domain analysis, domain design,
and domain implementation. Figure 2.2 (which is based on the Figure in
[26][p. 21]) gives an overview on the software development based on domain
engineering.

Implementation

Domain

Domain Engineering

Domain Knowledge Domain Model System Family Architecture

Requirement Product Test

Customer

Application Engineering
Features

Design

Domain

Analysis

Domain

ConfigurationAnalysis Integration

Product

Needs
Custom
Design Devel.

Custom

Requirements

New

New

Requirements

− components
− generators

− domain−specific
    languages

Figure 2.2: Software development based on Domain Engineering

Domain Analysis The objective of domain analysis is to choose and de-
fine the domain under consideration. Information about the domain is
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gathered and used to formulate general requirements for the systems
in the domain.

Domain Design The objective of domain design is to develop a common
architecture for the systems in the domain.

Domain Implementation In the phase of domain implementation, the
reusable components, frameworks, tools, or libraries are implemented.

Figure 2.2 emphasizes how the products of domain engineering are reused
during application engineering, i.e., when developing a particular system in
a domain. It also indicates how the experience gained from building a par-
ticular system becomes part of the domain knowledge.

2.3.2 Domain Specific Languages

A particular approach to domain engineering is Weiss’ Family-oriented Ab-
straction, Specification and Translation (FAST) method[107] that extends
Parnas’s work on program families.

Within FAST, commonality analysis is used to gather domain knowledge
and to construct a structured vocabulary as a base for a Domain Specific
Language2 (DSL). The acquired knowledge on commonalities goes as a “de-
sign secret” into the DSL and becomes so part of all family members. The
domain specific language keeps the “design secret” and is used to express
variations between family members.

Domain specific languages can simplify the task of rapid prototyping.
However, they also have disadvantages. Coplien[24][p. 20] mentions the cost
of initial construction and of long-term maintenance of the tools and support
staff. If these costs can’t be spread across several projects then developing a
DSL can be too expensive.

2.3.3 Promoter as a Domain Specific Language

The Promoter[45] parallel programming language was developed at GMD-
FIRST as part of a programming environment for data-parallel scientific
applications. In Promoter which is realized as a parallel language
extension[32] of C++, the programmer specifies problem-specific[39, 53] data
topologies and communication topologies for an abstract parallel machine.

2Weiss uses the term Application Modeling Language (AML).
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Here the domain specific language is realized as a parallel language ex-
tension of a popular programming language. The design secret is the task
of mapping the graph structure of a parallel application onto the underlying
parallel machine and performing coordinated operations on distributed data.

Although domain engineering played no explicit role in the Promoter
project the components of this design method have been applied implicitly.

Domain Analysis The chosen domain were parallel scientific applications
as they occur as part of so-called Grand Challenges applications which in-
clude Global Climate Modeling, Quantum Chromodynamics, or Modeling
Ultra-Low Loss Accelerators. The reusable work products of the Promoter
project should relieve application programmers from the low-level aspects of
parallel programming. These aspects include distribution of the huge data
sets of these applications and the efficient handling of communication that
occur while performing parallel operations on the distributed data. While
this can be relatively easily achieved for regular applications, it is much more
challenging for applications with irregular spatial patterns.

Domain Design The Promoter programming model introduces so-
called data topologies and communication topologies as specifications of dis-
tributed data types. Jointly they describe the graph structure of arbitrary
parallel applications. The task of mapping the problem oriented program
graph onto a physical parallel machine is delegated to the compiler and
run time system. The corresponding communication patterns between dis-
tributed processes, so error prone if done by hand, are automatically gener-
ated by the compiler or run time system.

Domain Implementation The reusable work product were the definition
of the Promoter parallel programming language, a compiler that trans-
forms Promoter programs to C++ program, thereby incorporating calls
to Promoter Runtime Library[46] (PRL), and tools for partitioning large
point sets[12].

Lessons Learned One of the lessons learned from the Promoter project
was that creating (parallel) extensions to an already very complex language
such as C++ creates many problems. As a result, it took a long time until
a prototype of the Promoter compiler was available.
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It was also very difficult to keep track with the evolution of C++ which
was standardized during the time of the Promoter project. This reflects
Coplien’s statement on the construction and maintenance cost of domain
specific languages in §2.3.2.

Another experience gained through Promoter was that although Pro-
moter had constraints regarding the dynamic behavior[92] of the logical
spatial structures of scientific applications, it neglected a clear separation of
spatial structures and distributed data. This tremendously complicated the
efficient implementation of irregular methods.

These deficiencies have been addressed in the successor project
Promise[89]. Rather than defining language extension, the C++ template
library Janus was designed and prototypically implemented by the author of
this thesis.

2.4 Object-Oriented Design and Program-

ming

Object-oriented design rests on the identification and construction of abstrac-
tions that are closely related with their real-world equivalents.

Objects represent concrete or conceptual entities and encapsulate their
state and behavior. Classes describe objects with common attributes and
operation implementations[3].

A programming language that provides linguistic support for objects is
referred to as an object-based language. An object-based language is called
object-oriented if the classes that describe objects can be inherited, that is, a
more specific class (subclass) can acquire the attributes and operations of a
more general class (superclass).

This widely accepted definition of object-orientation is due to Wegner[106]
and can be concisely written as

object-oriented = objects + object classes + class inheritance.

Inheritance includes polymorphism of operations where a subclass can
redefine the implementation but not the specification of an operation of a
superclass. By searching the inheritance hierarchy the interface can be dy-
namically resolved to an implementation.
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When object-oriented design methods evolved in the 1980-ies they were
considered as a major advance over structural design methods and widely
embraced in the industry. The main reason for this enthusiasm was that
object-orientation rests on the encapsulation of state and behavior which
can simplify the use, deployment, testing, maintenance and reuse of software
units.

Also the scientific computing community appreciated these new ideas—as
the following quote shows.

Objects are natural metaphors for both physical objects and ab-
stract entities. Expressing computations in terms of objects re-
duces the gap between concept and program.[9]

In particular inheritance was considered to be a way to express incremen-
tal modifications and extensions of existing classes.

The following example presents the object-oriented design of a simple
matrix library. It highlights important drawbacks of the object-oriented de-
sign method when used in the field of high performance scientific computing.
The example provides some reasons why object-orientation entered the field
of scientific computing only partially.

2.4.1 An Object-Oriented Linear Algebra Library

Figure 2.3 shows a typical early example of object-oriented design of nu-
merical libraries. The matrix library[50] is implemented in the relatively
seldom used language Eiffel[74] but the crucial points of its design regard
also C++[99] or Java[5].

The base class MATRIX declares all fundamental methods. There are ac-
cessors for reading and writing matrix elements and operators that perform
high level computations like vector-matrix, matrix-matrix multiplications, or
Cholesky decomposition.

The accessors are declared as deferred3 methods and must be implemented
by derived classes. For operators, default implementations are provided that
can be redefined in the derived classes. The classes LOCAL and DISTRIBUTED

represent basic deployment decisions for sequential and distributed program-
ming environments. The library also provides several concrete distributed
matrix classes—see Figure 2.3.

3A deferred methods in Eiffel corresponds to a pure virtual C++ function or an abstract
Java method, that is, only a method signature is specified.
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MATRIX[T]

LOCAL DISTRIBUTED

DIST_MATRIX[T]LOCAL_MATRIX[T]

SUBMATRIX[T]

DSYM_MATRIX[T]

SYMMETRIC

DBLOCK_MATRIX[T] 

DROW_MATRIX[T]DCOL_MATRIX[T]

Figure 2.3: Example of a matrix class hierarchy

They claim that by deriving sequential and parallel matrix classes from
the MATRIX base class, a user can easily replace sequential matrices through
their parallel counterparts. Thus the parallelization would remain transpar-
ent to the user.

The drawback of this design is the high overhead related with calling the
abstract accessor functions. In general, the selection of the actual method in-
stance is deferred until runtime. The problem is not so much the additional
level of indirection when calling a deferred method but that it often pre-
vents optimizations that can be performed when the exact method instance
is visible to the compiler. The most important of these optimization tech-
niques is function inlining which not only completely removes the function
call overhead but also enables cross function optimizations.

As mentioned above, the operator functions that implement higher level
algorithms can be redefined in the derived classes to take advantage of ad-
ditional information of the involved matrix types. However, since inlining
the accessor functions is so crucial to obtain high performance this would
require a substantial amount of custom design for each concrete matrix type
and thus make the interface specified by the MATRIX class useless.
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2.4.2 Subclassing and Subtyping

The use of inheritance when constructing object-oriented systems has three
major aspects[100]:

• Subclassing, also called implementation inheritance,

• Subtyping, also called interface inheritance, and

• Promise of substitutability, which is also known as Liskov Substitution
Principle[70].

The substitution principle simply says that functions that use references
to base types must be able to use references to derived types without knowing
the difference. The “two levels of programming” discussed in §2.4.1 depends
on the substitution principle to hide the differences between sequential and
parallel matrix classes.

Interface inheritance, that is the use of abstract methods, is closely re-
lated with late binding and, as discussed in §2.4.1, the performance penalties
related with it are often considered unacceptable for the kernels of scientific
software.

On the other hand, implementation inheritance as a technique for reuse, is
often considered as bad design because it can break encapsulation. Moreover,
it makes a derived class more fragile[100][p. 102] because its implementation
becomes more likely to depend on internal details of its base class. Therefore,
implementation inheritance is discouraged by many authors[9, 37] and object
composition considered the better way.

One way to avoid explicit naming of a base interface is structural subtyp-
ing. In structural subtyping, a subtype is formed if a subset of the operations
coincides with operations defined for another type[100][p. 78].

This is closely related to generic programming (see §2.6) where interfaces
are implicitly formulated by syntactic and semantic requirements. The con-
tainers of the C++ standard library constitute a good example for structural
subtyping. As mentioned in §2.2.2, all front insertion sequences of the STL
are required to provide the methods front, push front, and pop front.
There is however, no base class for STL containers that declares these meth-
ods. Rather each sequence class provides it own definition of these methods.
Thus, different sequence types can be easily interchanged and no run time
or space overhead occurs when using this implicit interface.
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2.4.3 Toolkits

Object-oriented languages provide class constructs for encapsulating sets of
definitions that are easily adapted for new programs[34]. Reusable classes
often occur as part of societies that, as a whole, provide services that make
them useful.

An example are the C++ standard library classes for input and output
operations. This set of classes provides stream classes and predefined stream
objects. There are also classes for stream buffering, stream formatting and
manipulators—see Figure 2.4 that is based on the description given in [81].
In this example the associated classes are related through inheritance and
common template parameters.

ostream

streambuf

cout,cerr,clog

cin
fstream

ifstream

ofstream

filebuf
streambuf

ostringstream

stringstream

istringstream

iostream

istream

ios

ios_base

<ostream>

<streambuf>

<istream>

<ios> <fstream>

<iostream> <sstream>

Figure 2.4: Main C++ stream classes and objects

Such societies of reusable classes are referred to as toolkits.

A toolkit is set of related and reusable classes designed to provide
useful, general-purpose functionality[37][p. 26].

The focus of toolkits is on code reuse.

2.4.3.1 Example: PETSc

The Portable, Extensible Toolkit for Scientific Computation[6, 7] (PETSc)
was developed at Argonne National Laboratory and is primarily aimed for
the numerical solution of partial differential equations and related problems
on high-performance (parallel) computers.
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PETSc is an object-based toolkit and implemented in C. The aim of
PETSc is to create various solvers for linear and nonlinear systems of equa-
tions with a particular emphasis for managing the low-level infrastructure of
parallel programming. PETSc has been used for finite element methods[2],
optimization[14], computational fluid dynamics[1], wave propagation, and
the Helmholtz equation[109]. Figure 2.5 gives an overview on the abstrac-
tions and services provided by PETSc.
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Matrices Vectors Index Sets

Krylov Subspace

Methods

PDE Solvers Time Stepping
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Application Codes

Preconditioners Draw

Linear and Nonlinear Equation Solvers

Figure 2.5: Overview on features offered by PETSc

PETSc represents an outstanding example of reuse in the field of scientific
computing and can be considered as state of the art for parallel libraries
in this field. It provide parallel vector and matrix types, scalable parallel
preconditioners, Krylov subspace methods, Newton-based nonlinear solvers
and more. It provides intensive error checking and is portably implemented
on UNIX and Windows systems. Besides its direct use in scientific application
programs, PETSc has been also interfaced to other scientific libraries[22]—for
example Overture (see §2.4.4.1) and SAMRAI (see §2.4.5.1).

One of the reasons why PETSc was implemented in C and not in C++
was that at that time (1995) C++ was still on the way to be standardized.
The definition of important language features, like C++ templates, were still
in the flux. Moreover the availability of C++ on supercomputers was very
restricted.
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The restriction to C as implementation language is one of the reasons that
PETSc is so portable. Moreover, it does not hinder its external usability. On
the other hand, it does complicate the internal reuse. For example, the
implementation of ordinary and block-structured matrix vector operations
are to a large extent unrelated[96]. Also the set of matrix and vector element
types is mostly restricted to simple builtin types.

2.4.4 Frameworks

When object-oriented techniques were adopted to scientific computing, devel-
opers often concentrated on the efficient implementation of concrete classes
(or simple class hierarchies) to represent vector or matrices. Later it was
observed that object-oriented design can offer benefit also on higher levels of
scientific software. The basic idea is to create frameworks that decompose
complex algorithm into smaller parts that can be tested and maintained more
easily. Moreover, frameworks also promote code and application reuse.

We use the following definition of the term framework.

A framework is a set of cooperating classes that make up a
reusable design for a specific class of software[37][p. 26].

A framework dictates the architecture of an application since it defines its
overall structure, the partitioning into classes, and their key responsibilities.
In contrast to earlier object-oriented reuse techniques based on class libraries,
frameworks are targeted for particular application domains and emphasize
design reuse.

In the field of parallel scientific computing the most notable frameworks
are Overture for applications on block-structured grids (see §2.4.4.1), SAM-
RAI for structured adaptive mesh refinement (SAMR) (see also §2.4.5.1),
and POOMA[56, 61, 62] for particle simulation. The next subsection gives
an overview on the Overture framework.

2.4.4.1 Example: Overture

Overture[21, 20] is an object-oriented code framework for writing parallel
structured adaptive mesh refinement methods (SAMR). It is implemented
as a collection of the parallel C++ libraries that enable the use of finite
difference and finite volume methods and hides the details of the parallel im-
plementation. The framework includes among others the A++/P++ array
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class libraries to represent grids and grid functions, AMR++ which provides
abstractions for adaptive mesh refinement (AMR), and support for load bal-
ancing for a collection of structure grids. Figure 2.6 shows the main parts
and layers of the Overture framework.
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Figure 2.6: Overview on the Overture framework

Overture is designed for solving problems on a structured grid or a col-
lection of structured grids and can not be used for finite element simulations
on general meshes.

Figure 2.6 indicates that the Overture framework includes not only dis-
cretized differential operators but also solvers for elliptic partial differential
equations. On the other hand, it has been pointed out[22] that although the
Overture data structures are well optimized for the discretization of partial
differential equations they are not optimal for linear algebra operations which
are at the heart of solver package. As mentioned in §2.4.3.1, Overture can
utilize PETSc for the efficient solution of the linear systems. For converting
Overture data structures to PETSc data structures a peer to peer approach
has been chosen[22].

2.4.5 Design Patterns

A design pattern names, abstracts, and identifies the key aspects of a com-
mon design structure. It accomplishes this by identifying the participating
classes and instances, their roles and collaborations, and the distribution
of responsibilities. The pattern catalog presented in Design Patterns[37] is
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widely accepted.

Design patterns are often used in building object-oriented systems but
are by no means restricted to them. For example, the Boost Graph Library
(BGL)[67] rests on the paradigm of generic programming §2.6 and is not
an object-oriented library. BGL uses the Visitor pattern[37] to extend and
customize the various steps of graph algorithms.

The book of DṠchmidt, et. al., on patterns for concurrent and networked
objects[90] must also be mentioned in this context. The patterns presented
there deal with event handling, concurrency, and synchronization. They are
very useful for client-server applications but not for data parallel applications.

2.4.5.1 Example: SAMRAI

SAMRAI[55, 65] stands for Structured Adaptive Mesh Refinement Applica-
tions Infrastructure and provides computational scientists with general and
extensible software support for rapid prototyping and development of paral-
lel structured adaptive mesh refinement (AMR) applications. The attribute
structured means here (as in the Overture framework presented in 2.4.4.1)
that meshes are considered as collections of regular grids (called patches).
Thus, in accordance with Overture §2.4.4.1 and POOMA[62], it cannot be
used for general finite element simulations.

Structured adaptive mesh refinement methods require a complex software
infrastructure and it is highly desirable that its design is reasonably flexible
so that the infrastructure can be reused for a broad range of applications.

SAMRAI uses several standard design patterns[37] to provide a flexible
framework design[55]. Among these patterns are

Smart Pointer which is used for type safe dynamic casting and memory
management of shared objects.

Abstract Factory that is an approach for creating families of related ob-
jects without specifying their concrete types. This pattern is used to
integrate user defined data types into SAMRAI.

Strategy to define and encapsulate families of algorithmic components. In
SAMRAI is is used to define a family of time stepping algorithms, see
Figure 2.7.

Figure 2.7 gives an example of Strategy pattern. The intent of the
Strategy pattern is to define a family of algorithms that are interchange-
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Figure 2.7: The Strategy pattern used for time stepping algorithms

able. This pattern provides an alternative to inheritance which expresses
a very close coupling of classes. Algorithms implemented with the Strat-
egy pattern can be dynamically exchanged. In this example, the abstract
base class TimeLevelIntegrator declares the methods initializeLevel or
”advanceLevel. Integrator classes that are derived from this abstract class
provide concrete time level integration procedures. The client, here repre-
sented by the class TimeSteppingAlgorithm, only refers to the abstract time
level integrator. Thus, the application can exchange the algorithms at run
time. The overhead related with this extra indirection is negligible for com-
plex algorithms. A potential drawback is that the application typically must
be aware of the semantics of the different concrete strategies.

2.5 Aspect-Oriented Programming

The principle of separation of concerns[29] is a fundamental engineering prin-
ciple approach to create quality software. A problem however is, that often
important design decisions cannot be clearly encapsulated into individual
functional units. Rather there are often issues that cross cut the basic func-
tionality of a system.

One example for this is error handling in a software system where excep-
tional situations that occur in one class (or module or procedure) is often
treated in other subsystems. Error handling is often expressed by small code
fragments that are scattered over several subsystems. Other examples are
security control, synchronization, or memory access patterns.

The paradigm of aspect-oriented programming (AOP)[64] explicitly ad-
dresses the problem of design and implementation aspects that cross cut sev-
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eral components. It is a programming technique that aims at an appropriate
isolation, composition and reuse of aspects.

Kiczales et al.[64] understand by a component a property that can be
cleanly encapsulated in a generalized procedure (i.e. class, module, proce-
dure). Cleanly means, well-localized, easily accessible, and composable. An
aspect on the other hand, cannot be cleanly encapsulated in a generalized
procedure.

Interesting for the development of software for scientific computing is the
following remark of Kiczales[64].

Many performance-related issues are aspects, because perfor-
mance optimizations often exploit information about the execu-
tion context that spans components.

From this point of view, data distribution is an aspect of a scientific simu-
lation because it cross cuts several (sometimes all) components of a parallel
simulation.

2.5.1 Structure of Aspect-Oriented Programming Sys-
tems

Aspect-oriented programming is still in a definition phase[26][p. 253]. Kicza-
les has proposed the following structure of a AOP system.

1. (a) a component language for the functional units (components),

(b) one or more aspect languages in order to program the aspect,

2. an aspect weaver for the combined languages,

3. (a) a component program implemented in the component language,

(b) one or more aspect programs which implement the various aspects.

In analogy to method binding in object-oriented languages, aspect weaving
can be performed at compile time or be delayed until runtime.
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2.5.2 Example: Aspect-Oriented Sparse LU Factoriza-
tion

An aspect-oriented programming environment for matrix computations has
been presented in[57]. This environment allows a user to write sparse matrix
code on a high level along with annotations that allow an efficient implemen-
tation. It is pointed out that efficient sparse matrix code requires a careful
selection of data structures. In particular, it must be avoided to perform
operation on zeros of a sparse matrix. Operator fusion is also an impor-
tant issue to achieve high performance. These aspects are usually explicitly
dealt within lower lever C or Fortran libraries which result in less readable
programs that are more difficult to maintain than code written in MATLAB.

The proposed environment has a component language that is similar to
MATLAB[23]. Aspects that have to be considered, are data representation
aspects (e.g. matrix formats and orientations) and permutation of vectors or
matrices. These aspects are represented by special annotations, e.g., decla-
ration of the matrix structure and a view annotation that allows to view a
matrix or vector through a permutation vector. The aspect weaver parses the
annotated program and generates C++ code. The run time of the generated
code is comparable with a standard Fortran library[57].

The paradigm of aspect-orientation is a very promising approach to deal
with the problem of different members of a program family. Individual mem-
bers that are specialized for certain aspects can be generated from an anno-
tated program using an aspect weaver. On the other hand, an aspect weaver
and the related aspect languages can result in a complex software infrastruc-
ture that poses the question of costs and maintenance (see also §2.3.2).

2.6 Generic Programming

The paradigm of generic programming[79] aims at simplifying the develop-
ment of libraries where a family of algorithms have to be implemented for
many data structures. Generic programming is programming in terms of
concepts[77], in contrast to programming in terms of individual data struc-
tures. The term concept is defined as a family of abstractions that are formed
by a common set of requirements. Musser[78] points out that

A large part of the activity of generic programming, particularly
in the design of generic software components, consists of con-
cept development—identifying sets of requirements that are gen-
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eral enough to be met by a large family of abstractions but still
restrictive enough that programs can be written that work effi-
ciently with all members of the family.

Generic programming is obviously related with program families (see 2.2).
However, program families present a much broader approach that is nei-
ther restricted to the problem of simplifying algorithm development for a
set of data structures nor bound to particular implementation strategies.
Generic programming relies on special language support such as the pres-
ence of generic types or generic functions. The described language support
emphasizes that the interoperability of algorithms and data-structures is not
the only aspect of generic programming. Two other aspects are element type
parameterization and extension through function objects.

In generic programming, a concept description consists not only of syn-
tactic and semantics parts but also of strict efficiency specifications. As in-
dicated in the above quote, efficiency is major concern because clients would
tend to prefer a non-generic program over a much less efficient generic pro-
gram. As a generic program can replace a large collection of non-generic
programs, it has the great advantage of simplified maintenance.

Generic programming[79] has become widely known since it was used to
design Standard template Library (STL), that is, the algorithm and container
framework of the C++ standard library[98, 99]. The essential points of this
framework are discussed in the following subsection §2.6.1.

2.6.1 The Standard Template Library

The containers of the Standard Template Library (STL) together with their
conceptual hierarchy have been introduced in §2.2.2. The point of STL,
however, is not so much the template container classes but rather how STL
algorithms are described so that they can work on the containers in a data-
structure neutral way.

For example, STL provides the template function find that implements
a linear search algorithm. The following code shows a prototypical imple-
mentation of STL’s find method[98].

template <typename InputIterator, typename EqualityComparable>

InputIterator find(InputIterator first, InputIterator last,

const EqualityComparable& value) {

while (first != last && *first != value) ++first;
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return first;

}

The keyword template indicates that the function find defines in fact a
family of functions for the argument types defined in the template parameter
list. The first two arguments first and last describe a range in which the
third argument value is searched. A range is given by the right open interval
[first, last).

To apply this algorithms to any container type Cont instantiated by one
of the seven container templates of Figure 2.1 one would supply the iterators
returned by the begin and end member functions.

Cont c;

Cont::value_type v;

//initialize c and v

Cont::iterator it = find(c.begin(), c.end(), v);

This is possible since all STL containers provide nested iterator types
that can be

• tested for equality with the operators == or !=,

• dereferenced using operator *, and

• incremented using operator ++.

This example shows how STL algorithms are decoupled from the actual
containers. The algorithms do not directly work on the containers but rather
on iterators as shown on Figure 2.8.

Containers Iterators Algorithms

Figure 2.8: Decoupling of containers and algorithms through iterators

Any type that fulfills the syntactic and semantic requirements that the
STL imposes on the first template parameter of find can be used to call
find. The precise set of requirements are given by the STL concept input
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iterator. STL provides a whole hierarchy of iterator concepts that are all
broad enough so that their requirements are satisfied by ordinary C pointers.
Therefore the find algorithm can also applied to search a value in a C array
as the following code fragment shows.

int a[100000];

// ...

int v = 12;

int* p = find(a, a+100000, v);

The interoperability with a wide range of data types is a key advantage of
the STL. Object-oriented design techniques, on the other hand, often rely on
a common base class for types that can be used within their container frame-
work. For example, the Java Collections framework[5] cannot directly deal
with built-in types such as int because they are not derived from Object

class. Moreover, the use of STL algorithms on pointers as iterators causes
no runtime overhead when compared to the following non-generic implemen-
tation of linear search.

int* find_int(int* first, int* last, const int& value) {

while (first != last && *first != value) ++first;

return first;

}

A decent C++ compilers generates for the function find_int object code
that is as efficient as that for the function find<int*>.

2.6.2 Generic Matrix Libraries

The task of simplifying algorithm development for various data structures is
particularly pressing for sparse matrix computations. Sparse matrices play a
central role in scientific software, in particular, when solving linear systems
that result from the discretization of partial differential equations. As men-
tioned in the introduction of this chapter, there are more than forty sparse
matrix formats in use[73].

A generic programming approach could avoid the problem of code explo-
sion because it would not be necessary to have for each sparse matrix data
structure its own sets of algorithm. Beside this, a generic library could be
easily parameterized over a broad range of element value type. This would
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cover not only predefined types such int, double, or complex<float> but
also user defined types. Conventional libraries, for example PETSc which
was introduced in §2.4.3.1 can only be used for a small set of types that are
known at library development time.

The Matrix Template Library MTL[72, 95] is a generic library that pro-
vides comprehensive linear algebra functionality for a wide range of matrix
formats including sparse ones. As the Standard Template Library (STL),
MTL has a conceptual framework of containers, iterators, adaptors, and
function objects. To traverse and access different matrix data structures
so-called two-dimensional iterators are introduced.

MTL comprises many generic matrix algorithms including matrix-vector
multiplication, matrix-matrix multiplication and routines for the solution
of triangular systems. Closely related to MTL is the Iterative Matrix
Library[71] (ITL) that provides iterative methods for solving linear systems.
ITL also includes various preconditioners. ITL uses the interface of matrix-
vector, vector-vector, and vector-scalar operations specified by MTL. How-
ever, ITL can also use other packages such as Blitz++[105].

To achieve high performance MTL relies on static polymorphism, auto-
matic loop unrolling, instruction scheduling and algorithmic blocking. This
brings MTL close to generative programming techniques that are discussed
in §2.7. A drawback of MTL is that it does not directly address the problem
of parallel and distributed matrices.

A new variant of the generic programming paradigm has been presented
by Mateev, Pingali, and Stodghill[73] to deal more directly with the above
mentioned code explosion problem for sparse matrices. They propose two
generic APIs. The first API allows designers to express generic matrix algo-
rithms in an array notation. The second API exposes the details of (com-
pressed) sparse matrices. Restructuring compiler technology[13] is used to
transform one API into the other.

2.6.3 Generic Graph Libraries

The paradigm of generic programming has also been creatively applied to the
domain of graph algorithms. An outstanding example is the Boost Graph
Library[67] (BGL) that is part of the Boost[28] library collection of free peer-
reviewed portable C++ source libraries. The emphasis of this collection is
that they work well Standard Library of C++. BGL was formerly known as
Generic Graph Component Library[68, 69].
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BGL provides an interface to abstract the details of particular graph
data-structures. BGL introduces its own iterators to define different graph
traversal patterns. Similar to element type parameterization of STL, BGL
graphs can be customized with user-defined properties.

Generic algorithms of BGL rest on a small set of algorithm patterns which
themselves are implemented as generic algorithms. The basic algorithm pat-
terns are breadth first search, depth first search, and uniform cost search.
The graph algorithms in BGL include among others Dijkstra’s and Bellman-
Ford Shortest Paths, Reverse Cuthill Mckee Ordering, and Topological Sorts.

The algorithms can be extended function objects with multiple methods
that are called at several “event points” of an algorithm. These functions
objects are referred to as visitors and are closely related to the Visitor de-
sign pattern[37]. This customization of algorithms by visitor objects is also
applied in the Janus template library—see Chapter 4.

Similarly to MTL, the Boost Graph Library can only be used for non-
distributed graphs. This restriction is addressed by the Janus template li-
brary that provides data structures and algorithms that can efficiently both
on distributed memory and shared memory architectures.

2.7 Generative Programming

Czarnecki and Eisenecker give the following definition of generative program-
ming:

Generative Programming (GP) is a software engineering
paradigm based on modeling software system families such that,
given a particular requirement specification, a highly customized
and optimized intermediate or end-product can be automatically
manufactured on demand from elementary, reusable implementa-
tion components by means of configuration knowledge[26].

Generative programming is aimed at program families §2.2 and represents
a particular way of domain engineering §2.3.

Generative programming requires a means of specifying family members,
implementation components as a generation base, and configuration knowl-
edge that maps from a specification to a product.

Traditionally, generative programming relies on code generators that are
outside the used programming language—see §2.7.1. In C++ however, for
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some years template metaprogramming has used to generate tailored config-
urations of classes and functions. Whereas traditional object-oriented design
and programming techniques rely on late binding, template metaprogram-
ming uses the compiler itself to run code that determines what program is
produced.

An example for the latter approach is the Generative Matrix Computation
Library[26] (GMCL). This library uses template meta programming for the
design, configuration, and generation. It is comparable with the Matrix
Template Library[72] that has been presented in section 2.6.

2.7.1 The AEOS Way

AEOS stands for Automated Empirical Optimization of Software and is a new
paradigm for the production of highly efficient routines on modern high per-
formance computing platforms[108]. It arose from the observation that the
efficient implementation of standard numerical software (e.g. linear algebra
kernels) hardly keeps pace with the hardware development. Providing an op-
timized implementation of BLAS[31] (Basis Linear Algebra Subroutines) for
a new processor, for example, requires several man-month of highly trained
(both in linear algebra and computational optimizations) personnel.

For supporting a library with the AEOS methodology several require-
ments must be fulfilled.

• Isolation of performance critical routines.

• A method of adapting software to different computing environments.
This may include parameterized code or configurable code generators.

• Robust, context-sensitive timers which is important to produce reliable
input for a generator.

• Appropriate search heuristics. This is necessary because an advanced
code generator can have hundreds of ways to implement an operation.
Therefore the search trees must be rapidly (yet reliably) pruned.

2.7.2 Application to Linear Algebra Kernels

The AEOS methodology has been successfully applied to the BLAS[31] li-
brary. ATLAS[108] which stands for Automatically Tuned Linear Algebra
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Software, uses code generators in order to produce many different ways a
given linear algebra operation can be performed. It concentrates on the
Level 2 BLAS (matrix-vector) operations and Level 3 (matrix-matrix) op-
erations because here optimizations can achieve remarkable result. This is
because the loop structure of a conventional BLAS implementation is often
too complex for a compiler to figure out appropriate configurations.

ATLAS relies on an adequate C Compiler because the code generator
produces ANSI-C code. There is however a tension between the code trans-
formations and requests for registers performed by ATLAS on the one hand,
and optimizations usually performed by a C compiler on the other hand.
Sometimes compilers ignore register requests4 that are present in the source
code. In the context of ATLAS this can yield poor results.

ATLAS code generation strategies include register blocking, loop un-
rolling, and choice of floating point instruction. It also relies on the presence
of hierarchical memory, at least, registers and a L1 data cache. Otherwise,
ATLAS blocking and register usage can turn into overheads[108].

Experiments[108] show that the speed of the ANSI-C code generated by
ATLAS is comparable with vendor-tuned implementations and often an or-
der of magnitude faster than a reference implementation of BLAS. Installing
ATLAS and generating the code usually requires only an hour. This com-
pares very favorably with the many man-months of hand-tuning mentioned
above.

2.8 Component-Oriented Programming

Component-oriented development of software is considered as an evolutionary
step beyond object-orientation[100]. Component programming means an en-
capsulation of units of functionality and providing a (usually meta-language)
specification of their interfaces[4].

It arose from the observation that object-oriented techniques did not re-
sult in significant amount of cross-project code reuse. This is related to in-
compatibilities of object-oriented languages and their need for compile-time
binding of interfaces.

Component-orientation focuses on issues of language independence and
defines standards for communication among (distributed) components. A
short definition of the term component is from Szyperski[100]:

4The C language family has the keyword register to hint register usage to a compiler.
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A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third parties.

Several technologies have evolved within the software industry to
support component programming, namely, CORBA[75], COM[49], and
JavaBeans[76].
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Figure 2.9: Component interactions in parallel applications Tightly coupled
numerical components, such a Krylov solver (B) and a Preconditioner (C),
require connections with high bandwidth and low latency. These compo-
nents however, can be parallel programs that uses MPI for intra-component
communication. The CCA proposes so-called collective directly connected
ports to handle interactions among parallel components. Visualization com-
ponents can often be more loosely coupled to the numerical components. For
connecting such components collective distributed ports are used.

In the field of high performance scientific computing, component tech-
nology is very promising since the applications are becoming more and more
complex and require multidisciplinary development teams. The challenge
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are the constraints to achieve high performance. This is why the industry
standards are currently considered as not usable for tightly coupled parallel
scientific applications[4].

The goal of the Common Component Architecture[38, 4] (CCA) is to
develop software component technology for high-performance parallel simu-
lation software. The main motivation is—as mentioned above—that compo-
nent approaches based on CORBA[75], COM[49], and JavaBeans[76] tech-
nologies do not address parallelism. The different needs of components in
parallel applications are sketched in Figure 2.9.

The CCA modifies these traditional approaches to suit the needs of high-
performance computing and to bring this advanced software technology to
the scientific community. Established in 1998, the CCA is still in a defini-
tion phase5. For this reason the PAWS (Parallel Application WorkSpace)
approach to components to parallel components is considered here.

2.8.1 Parallel Application WorkSpace

The Parallel Application WorkSpace (PAWS)[10, 11] was developed at the
Los Alamos National Laboratory. It proposes a software infrastructure to
connect different parallel applications within a component-like model.

A central PAWS Controller (similar to an object request broker) coordi-
nates the connection of sequential or parallel applications across a network.
PAWS addresses various challenges[11]

• dynamic coupling of applications during their execution,

• avoid serialization bottlenecks during data transfers between parallel
applications,

• sharing of parallel data structures (in the presence of different layout
strategies),

• support for data exchange between applications written in different
programming languages.

Which data structures are to be shared and at what points the data are
exchanged, must be specified with the PAWS API which is implemented as
a C++ class library. PAWS provides a general parallel data descriptor, and

5As of the time writing (March 2001) the most recent proposal is from January 2001
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automatically carries out parallel layout remapping when necessary. It does
not provide an interface definition language (IDL). In general, PAWS has a
data-centric view and does not focus on computational steering. A major
limitation of PAWS is that is restricted to rectangular data arrays which
excludes many irregular applications.

PAWS provides APIs for C++, C, and Fortran. Connections between dis-
tributed components can be dynamically established and canceled. PAWS
uses the Nexus[86] communication library of the Globus[87] toolkit that pro-
vides software tools to simplify building computational grids[36]. Nexus is
independent of the application’s parallel communication mechanism.

2.9 Conclusions

In this chapter a wide range of software design techniques has been con-
sidered for their applicability in the field of scientific applications. Since
efficiency is an outstanding concern when judging the quality of scientific
software the question was how other quality aspects such as maintainability
and portability can be increased without sacrifying performance.

In particular generic programming combined with design patterns present
a promising approach to design and implement efficient, portable and ex-
tensible kernels of scientific codes. Component frameworks can be used to
combine individual building blocks to larger multi-disciplinary applications.

The C++ standard template library STL[98], the Boost Graph Library
BGL[67], and the Matrix Template Library MTL[72] emphasize the expres-
siveness and efficiency of components engineered using generic programming
techniques. However, all three libraries do not address the issues of parallel
and, in particular, distributed programming platforms. These challenges are
addressed by the Janus conceptual framework and template library that will
be presented in the Chapters 4 and 5. However, before abstractions for data
parallel applications can be devised a proper analysis of the requirements of
this domains must be performed. This domain analysis will be undertaken
in the next chapter.

One obvious advantage of the generic programming paradigm and C++
templates is that generic components can be easily parameterized with user-
defined data types. Non-generic frameworks and toolkits, such as PETSc[6],
often suffer from a complicated customization process.

The broad range of discussed design paradigms makes it obvious that
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there is no single, all-encompassing design methodology. Therefore is has
become popular to speak of multi-paradigm design[24]. This favors C++ as
an implementation language[99] because it supports data-abstraction, object-
orientation, and generic programming without abandoning the efficiency of
the C programming language.
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Chapter 3

Domain Analysis for Data
Parallel Scientific Applications

A domain analysis starts (as described in §2.3) with a definition of the domain
under consideration. In this thesis “data parallel applications” are those that
that mainly rely on data parallel algorithms which are defined as algorithms
whose

parallelism comes from simultaneous operations across large sets
of data, rather than from multiple threads of control[54].

In §3.1 several important examples of data parallel applications are ana-
lyzed. Special emphasis is put on gathering information about data parallel
algorithms that involve irregular data sets. In §3.2 the gathered domain
knowledge is used to formulate general requirements for data parallel appli-
cations on regular and irregular data sets.

3.1 Examples of Data Parallel Algorithms

This section presents several examples of data parallel applications. This
selection encompasses both applications that rely on regular data sets and
those that involve irregular sets.

The class of regular applications includes a simple finite difference
method §3.1.1 and the Game of Life cellular automata simulation §3.1.2. Ex-
amples for applications on irregular or dynamically created data sets are the
Bellman-Ford graph algorithm §3.1.5, finite element discretizations §3.1.3,
and several mesh refinement procedures §3.1.4.
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3.1.1 A Simple Finite Difference Method

A simple boundary value problems is the Poisson equation on the unit square
Ω = (0, 1) × (0, 1). When imposing homogeneous Dirichlet conditions this
partial differential equation reads

−∂
2u

∂x2
(x, y)− ∂2u

∂y2
(x, y) = f(x, y) (x, y) ∈ Ω (3.1)

u(x, y) = 0 (x, y) ∈ ∂Ω. (3.2)

The basic idea of the finite difference method[19, 52] is to find an ap-
proximate solution of a boundary value problem for a finite subset G of Ω
by replacing partial derivatives through difference quotients. The differen-
tial equation turns then into a (finite) system of algebraic equations for the
approximate values in G.

Finite difference methods often uses rectangular grids as the finite subset
of the domain. For the example at hand one can deploy the square grid

G = [0, N ]× [0, N ] (3.3)

as shown in figure 3.1. The number h = 1
N

is called the mesh width of this
equidistant grid. In this figure, boundary grid points are represented by •
and inner grid points by ◦. The value of a function v in a grid point (ih, jh)
where (i, j) ∈ G is denoted by vij.

0.0

0.0

1.0

1.0 0 N

N

0

Figure 3.1: A two-dimensional grid for the unit square

A simple approximation of the second derivatives in the left hand side of
Equation 3.1 for the inner grid points can be obtained by using a so-called
five-point finite difference stencil[52]. This means that for 0 < i, j < N the
following approximation holds
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(
−∂

2u

∂x2
− ∂2u

∂y2

)
ij

≈ 1

h2
(4uij − ui+1,j − ui−1,j − ui,j+1 − ui,j−1) .

Thus the discretization of Equation 3.1 reads

1

h2

(
4uij − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

)
= fij 1 < i, j < N − 1. (3.4)

Note that these equations relate each inner grid point (i, j) with five
neighbor points

(i, j)→


(i, j + 1)

(i− 1, j) (i, j) (i+ 1, j)

(i, j − 1)

 . (3.5)

Hence the name five-point stencil.

The simplest way to compute an approximate solution of this system
of equations is to use the Jacobi iterative method[52]. For the system of
Equations 3.4, a Jacobi step reads

un+1
ij ← 1

4

(
un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1 + h2fij

)
(3.6)

for all inner grid point (i, j).

Note that the computation of un+1 for a certain grid point is independent
from that in other grid points. This operation can therefore, within one
iteration, be performed in parallel for all grid points.

3.1.2 Conway’s Game of Life

Conway’s Game of Life is a well-known cellular automata simulation that
involves rectangular grids and a simple stencils to express data dependences.

In Life, the evolution of a population of cells is considered. The underlying
spatial structure is a rectangular grid (see Figure 3.2). A value of 1 represents
a living cell (marked by •), a value of 0 represents unoccupied grid points
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(not marked). The cells change their state depending on the number of
neighboring living cells and their own state.

The neighbors of a grid point are defined by the eight-point stencil

(i, j)→


(i− 1, j + 1) (i, j + 1) (i+ 1, j + 1)

(i− 1, j) (i+ 1, j)

(i− 1, j − 1) (i, j − 1) (i+ 1, j − 1)

 . (3.7)

Note that in this relation a grid point (i, j) is not a neighbor of itself.

If G is a two-dimensional rectangular grid and

a : G −→ {0, 1} (3.8)

a grid function that represents a population on G then the major part of the
determination of the next generation of cells consists of using the relation in
Equation 3.7 to compute the following sum

sij =


ai−1,j+1 + ai,j+1 + ai+1,j+1 +
ai−1,j + ai+1,j +
ai−1,j−1 + ai,j−1 + ai+1,j−1

(3.9)

for all (i, j) ∈ G. As in the case of the Jacobi iterative method of §3.1.1,
the computation of this sum is completely parallel with respect to the grid
points (i, j). Note that the sum sij is the living neighbors of grid point
(i, j) ∈ G with respect to the population a : G→ {0, 1}.

With these notations the exact rules for the determination of a new gen-
eration

b : G −→ {0, 1}

at an arbitrary grid point (i, j) read:

bij ←


1, if ai,j = 1 and sij ∈ {2, 3},
1, if ai,j = 0 and sij = 2,
0, otherwise.

(3.10)

Figure 3.2 shows the application of the rules in Equation 3.10 to a particular
population.
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Figure 3.2: Two successive generation in Life

3.1.3 Finite Element Methods

The finite sets and their relations that occur in scientific applications can only
in simple cases be described by rectangular grids. This holds in particular
when complex geometries or local characteristics have to be described.

The method of finite elements is a family of approximation methods for
partial differential equations that in contrast to finite difference methods
can easily handle general geometries and non-continuous coefficients. Rather
than replacing partial derivatives by difference quotients, a variational for-
mulation of the boundary problem that constitutes an equation in an infinite-
dimensional function space is approximated by a family of problems in finite-
dimensional function spaces.

3.1.3.1 Basic Concepts

The basic idea of finite elements is to subdivide an N-dimensional domain
Ω into a finite number of elements with simple geometry. The functions
on Ω are approximated by functions that have a simple definition on the
elements—often they are polynomials of a fixed degree.

Finite elements are distinguished by their shape and the degree of the
approximating polynomials. For two-dimensional problems, triangles and
rectangles are often used element shapes. In three dimensions hexahedra,
tetrahedra, or pyramids are common choices—see Figure 3.3.

The approximating functions are usually polynomials on the elements and
thus uniquely determined by the values, derivatives, or averages that can be
related with certain points of the elements. These points are called the nodes
of the finite elements. Figure 3.4 shows the nodes for linear, quadratic, and
cubic polynomials on a triangle element.
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Figure 3.3: Shapes of common finite elements

Figure 3.4: Nodes for different class of polynomials.

This means that a finite element program has to deal not only with the
sets of elements but also with the involved nodes that are shown in the right
part of Figure 3.5. The node set is the domain of definition of the approxi-
mating functions. Figure 3.5 shows the set of elements (i.e. a triangulation)
and the corresponding node set for the case of linear triangle elements.

Figure 3.5: Elements and nodes of a finite element triangulation

3.1.3.2 Finite Sets and Their Relations

If I denotes the node set of a finite element discretization then the coefficients
aij of the approximating system of equation usually form a sparse matrix.
This means that the set

R :=
{

(i, j) ∈ I × I
∣∣∣ aij 6= 0

}
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has a cardinality that is O(|I|). Note that the sparse matrix (aij) can be
considered as a real (or complex valued) function on R

a : R −→ R. (3.11)

For large discretizations it is of utmost importance to exploit the sparsity
of R when representing and solving the approximating system of equations.
The sparsity pattern R reflects the connectivity of elements and nodes. If E
denotes the elements of a finite element triangulation and Ie the nodes of a
finite element e ∈ E then R is often defined as

R :=
⋃
e∈E

Ie × Ie

holds.

Sparse matrices are represented using special sparse matrix formats that
stored only non-zero entries. On the other hand, sparse matrix equations are
often solved with with iterative methods that can utilize the nature of the
sparse matrix formats.

3.1.3.3 The Discrete System of Equations

The coefficients (aij) of the discrete system can be computed in an element-
oriented way using the sets Ie and data g that are related with the elements
e ∈ E.

aij ←
∑

{e∈E | i,j∈Ie}

g(e, i, j). (3.12)

For the Poisson problem 3.1 for example, the term g(e, i, j) reads∫
e

∇ψi · ∇ψj dx, (3.13)

where ψi : Ω −→ R is defined as an approximating function for which

ψi(k) = δik

holds for each k ∈ I.
Iterative methods are often used for the solution of the approximating

system of equations. Often preconditioned Krylov subspace methods[52] are
utilized because they provide sufficient robustness for a wide class of dis-
cretized problems. Besides the preconditioning step the main components of
iterative methods are
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• matrix vector multiplications with the sparse matrix of Equation 3.11,

• vector additions and multiplications of vectors by scalars,

• inner products.

These numerical components have a high degree of data parallelism with
respect to the node set I.

The convergence rate of Krylov subspace (and other iterative methods)
depends on spectrum of the matrix. Preconditioning is a technique that tries
to transform a linear system into an equivalent system with better spec-
tral properties. A problem for parallel computing is that many traditional
preconditioners such as the Gauss-Seidel relaxation method or incomplete
factorization are highly sequential[52].

3.1.4 Mesh Generation and Mesh Restructuring

The decomposition of an N-dimensional continuum into a set of simple ge-
ometric objects is referred to as mesh generation. Mesh generation is an
algorithmically demanding task, in particular, because certain quality re-
quirements must be met[19, 83, 94]. In the case of triangulations for finite
elements, for example, the angles of the triangles must not become too acute
since this can have a negative impact on the stability of numerical algorithms.

While mesh generation can be used for a wide variety of applications, e.g.
computer graphics, the principal applications of interest are finite element
methods and other discretization methods.

Often not only one but several related meshes are used when solving
finite element problems. Moreover, it is often preferable to start with a
relative coarse mesh and later refine it to achieve a better resolution of certain
features. Hereby knowledge gained by so far performed computation can be
incorporated into the new mesh. Therefore one speaks of adaptive mesh
refinement.

In order to simplify the process of generating adaptively refined meshes,
often local refinement strategies are applied. Instead of generating a new
mesh from scratch, some of the elements of the old mesh are subdivided into
several elements.

Some applications require also coarsening of previously refined meshes, for
example when shock waves must be represented. Here again locally defined
procedures are often of advantage.
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Mesh refinement and coarsening together are referred to as mesh restruc-
turing.

3.1.4.1 Example: Red-Green Subdivision of Triangles

In the case of triangle elements, one possible subdivision strategy would be to
decompose a triangle by bisecting its edges and create four smaller triangles
as shown in Figure 3.6.

Figure 3.6: Regular subdivision of a triangle

This subdivision pattern is applied to a triangle if two or all of its edges
are marked for refinement. Triangles created by this subdivision rule are
referred to as red.

If only one edge has been marked then the triangle is subdivided into two
triangles by connecting the midpoint of this edge with the opposite vertex.
This is shown in Figure 3.7.

Figure 3.7: Irregular subdivision of a triangle

Triangles that are obtained by this rule are referred to as green triangles.
The edge that is shared by two sibling green triangles is also referred to as
green.
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The point of the red-green subdivision rules is that Green triangles may
not be further subdivided. This restriction ensures that the angles of a
triangulation do not become too acute.

If an edge of a green triangle is marked for refinement then the this
triangle and its (green) sibling are replaced by their parent red triangle to
which the regular subdivision rule of Figure 3.6 is applied.

3.1.4.2 Example: Subdivision Rules for Tetrahedra

For tetrahedral meshes an analogous subdivision strategy would decompose
a tetrahedron into four tetrahedra (see Figure 3.8) that are located at its
vertices and a central octahedron that can be further decomposed into four
other tetrahedra. This decomposition is, however, not uniquely determined
since the subdivision of the inner octahedron depends on the selection of one
of its diagonals[15]. Moreover, the resulting inner tetrahedra are in contrast
to the for outer ones not similar to the original tetrahedron. This makes
maintaining a high mesh quality more complicated.

Figure 3.8: Regular subdivision of a tetrahedron

There are two subdivision patterns that deal with tetrahedra that have
only a few edges marked for refinement (see Figure 3.9). The first one decom-
poses a tetrahedron into two tetrahedra whereas the other one decomposes it
into four tetrahedra. These and other subdivision strategies for finite element
meshes are more thoroughly discussed in[16, 19]

3.1.4.3 Closure of Restructuring Marks

Before the subdivision patterns presented in Sections 3.1.4.1 and 3.1.4.2 can
be applied, there must be a consistent marking of the elements.

The problem is that an initial marking of edges of a triangulation may
make it necessary to refine other edges as well. This process is called clos-
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Figure 3.9: Irregular subdivision of a tetrahedron

ing the refinement and involves the repeated evaluation and update of the
refinement marks. Figure 3.10 illustrates this. This holds analogously also
for the subdivision rules of tetrahedra in Section 3.1.4.2.

Figure 3.10: Closure of refinement marks and resulting subdivision

For the previously discussed triangle and tetrahedron subdivision rules,
the refinement marks can be represented by a function m on the edge set E,
that is.

m : E −→ {0, 1} (3.14)

Here a value of 1 for m(e) indicates that the edge e ∈ E is to be refined. A
value of 0 is interpreted as keeping the edge.

Closing subdivision marks is an iterative procedure. Starting with an
initial marking m0 : E −→ N, it creates a monotone increasing sequence of
refinement marks

m0 ≤ m1 ≤ . . . ≤ mk. (3.15)

Note that mi ≤ mi+1 is argument-wise defined, that is, mi(e) ≤ mi+1(e) for
all e ∈ E.

Note also that for the determination ofmi+1 the edge marks ofmi must be
evaluated for every element (triangle or tetrahedron). Thus, the element-edge
relation plays a crucial role in this process. The evaluation can be performed
independent on all elements of the mesh.
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This monotone increase together with the fact that only a finite number of
refinement markings exist for a given triangulation ensures that to sequence
in Equation 3.15 reaches a maximum after finite steps. This maximum ele-
ment represents a consistent refinement marking that can be subdivided.

3.1.5 Parallel Graph Algorithms

A graph G consists of a set V (its vertices) and relation E ⊂ V × V (its
edges). Graphs are useful abstractions for the solution of many computer
science problems.

Parallel graph algorithms have been investigated in[88]. The discussion
there distinguishes between algorithms for unweighted graphs and algorithms
for weighted graphs. Examples of unweighted graph algorithms are searching
a graph and finding connected components. Examples that involve weighted
graphs are shortest path algorithms and minimum spanning trees.

3.1.5.1 Example: The Bellman-Ford Algorithm

A graph problem that contains a high degree of data parallelism is
the Bellman-Ford algorithm that solve the single-source shortest-paths
problem[25]. For a given G = (V,E) and a weight function w : E → R,
this problem consists in finding the shortest path from a fixed source vertex
s ∈ V to every vertex of V .

The weight of a path p = (v0, v1, . . . , vl), where (vi, vi+1) is an edge of G,
is defined as

w(p) =
l−1∑
i=0

w(vi, vi+1).

The shortest-path weight between two vertices u, and v of G is defined as

δ(u, v) =

{
minp{w(p)} over all paths from u to v.
∞ if no such path exists.

A shortest path between two vertices u and v is defined as any path p for
which w(p) = δ(u, v).

The Bellman-Ford algorithm solves the single-source shortest-path prob-
lem for general real-valued weights. Dijkstra’s algorithm[25], on the other
hand, can only be applied if the weights are non-negative. The Bellman-
Ford algorithm indicates whether there are cycles with negative weights that
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can be reached from the source vertex. In this case no solution exists. If no
cycle exist, the Bellman-Ford algorithm delivers the shortest paths and their
weights.

The Bellman-Ford algorithm associates two attributes with each vertex
v ∈ V , namely,

• the shortest path estimate d : V → R that is an upper bound for the
weight of the shortest path from s to v,

• the predecessor π : V → V in a path from s to v.

Initially, d(v) is set to ∞ for all vertices except for s where it is set to 0.
The initial value of π(v) is nil for all vertices.

The essential component of Bellman-Ford and Dijkstra’s algorithm is re-
laxation over an edge (u, v) and which reads

(d(v) > d(u) + w(u, v)) =⇒
{
d(v) ← d(u) + w(u, v),
π(v) ← u.

(3.16)

The data parallelism of Bellman-Ford is due to the fact that the relax-
ation step of Equation 3.16 can be performed simultaneously for all edges of
G. The degree of parallelism is comparable with that of a matrix-vector mul-
tiplication. At most |V | · |E| relaxation steps must be performed to produce
the shortest paths and their weights or to indicate that there are negative
cycles that are reachable from s.

3.2 Properties of Data Parallel Applications

In § 3.1, several examples of data-parallel application have been investigated.
The main source of data-parallel applications are computational problems
that group around the numerical solution of partial differential equations
(PDE). However, the field of graph algorithms or cellular automata also
provide many data parallel applications.

The following list describes common properties of the algorithms and
problem data that occur in these applications.

1. Algorithms are formulated in terms of (finite) sets and relations and
functions that are defined on these objects.
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2. Relations describe data dependences of the algorithms and are typically
sparse.

3. Sets and relations do not change as frequently as the associated data.
This observation, which is referred to as relative stability of the spatial
structures, is essential when designing efficient abstractions for scientific
applications and heavily influences the design of the Janus conceptual
framework (see Chapter 4).

4. Sets and relations can be described by simple algebraic expressions or
have to be represented by enumerating their elements.

One key observation of this domain analysis is the clear separation of
objects that occur in data parallel applications into sets, relations, and func-
tions that associated data with the both. The other important insight is the
relative stability of the sets and relations. This has a great impact on the
choice of data structures for these objects.

The relative stability however does not mean that sets and relations are
considered completely fixed. The mesh-refinement algorithms (§3.1.4) show
that in some circumstances modifying algorithms can be described by asso-
ciating temporary predicates to mesh elements.

The following Chapter 4, presents the Janus conceptual framework for
data structures and algorithms that rests on the insights gained during this
domain analysis.
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Chapter 4

The Janus Software
Architecture

In this chapter the Janus software architecture for data parallel applications
is presented. The design of Janus rests on the knowledge gained in during
the domain analysis of data parallel application that has been performed in
Chapter 3. Key requirements of the design are to define abstractions that
allow the efficient representation of sets and relation and the attributes that
are associated with them.

The description of the architecture uses the ideas of generic programming
(§2.6) to formulate general syntactic, semantic, and complexity requirements
that allow the construction of efficient components for this application do-
main. This conceptual framework provides the basic abstractions for the
C++ template library Janus whose components are presented in chapter 5.

The conceptual framework of Janus rests on three major concepts,
namely,

• Domain to represent finite sets, see Section 4.2,

• Relation to describe dependences of domain elements, see Section 4.4,

• Property Function to represent data that are associated with sets or
relations, see Section 4.3.

The description of these abstractions will also reveal how the relative
stability of sets and relations in data parallel applications is exploited.

Before describing the requirements of these abstractions, a short recapit-
ulation of the most important terms of generic programming is given. Hereby
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the terminology of Musser’s concept web for generic programming [77] is em-
ployed.

4.1 The Terminology of Concepts, Models,

and Refinement

Generic programming has been informally defined by David Musser[78, 77]
as programming with concepts. In the context of generic programming, the
term concept names families of abstractions that are related by a common
set of requirements.

Abstractions are data structures or algorithms. The requirements im-
posed on the abstractions regard their interfaces and their properties. More
precisely: Interface requirements regard the syntax of objects and opera-
tions of an abstraction. Property requirements, on the other hand, state
the semantics and resource constraints, for example, the complexity of the
operation of an abstraction.

For example, the concept Container of the C++ standard library[98] re-
quires that a container type A must provide a method ”size”with the signature

A::size_type A::size()

where the nested type size_type of A is an unsigned integer type. So far,
this is mostly an interface requirement. A semantic requirement imposed
on the size method is that it must return the number of elements in the
container. Moreover, it is required that the complexity of size is linear in
the number of elements of the container.

Models of a concept are abstractions that fulfill all requirements. The
template classes list and vector, for example, satisfy all requirements of
the concept Container and are thus models of this concept.

Usually, a concept description contains more than just a list of interface
and property requirements. It can, for example, contain a list of concept
it refines. A concept C ′ is said to be a refinement of the concept C if all
requirements of C also belong to C ′.

Refinement is not the only way to utilize other concepts in the description
of a new concept. A concept description can also use other concepts to
formulate its set of requirements. For example, the following description
of Janus concepts uses various concepts of STL [98] to formulate certain
requirements.
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Notation: In the following chapters, concepts are set in sans serif font and
start with a capital letter. Their required data types and members are set
in typewriter font. Classes that are models of a concept are also set in
typewriter font.

4.2 The Domain Concept

The concept Domain describes a set of n different objects. Figure 4.1 shows
simple examples of finite sets. Note that arbitrary finite sets are considered
not just two-dimensional point sets.

Figure 4.1: Examples of finite sets

Domain elements are numbered from 0 to n − 1. Figure 4.2 shows a
possible numbering of domain elements. A domain D is therefore a finite
sequence

(d0, d1, . . . , dn−1) (4.1)

with the additional requirement that the mapping i 7→ di is one-to-one.

0

5

1

4

73

6

2

0 1 2

3 4 5

6 7 8

Figure 4.2: Examples of domains

The inverse function to i 7→ di is denoted by π, so it holds i = π(di) for
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each i in the right-open1 interval [0, n).

π : D −→ [0, n) (4.2)

is a bijection. The index i of a domain element di is also referred to as the
position of this element with respect to the domain D.

4.2.1 Basic Domain Requirements

A type that is a model of Domain must provide the nested type value_type

shown in Table 4.1.

Type Description
value_type The type of the objects of the domain.

Similar to the STL[98] concept Container, the value type
must fulfill the requirements of Assignable and
Default Constructible[98].

Table 4.1: Nested types of the concept Domain

Table 4.2 shows the methods a domain must provide so that its elements
can be queried. Note that all methods are non-mutating, i.e., calling any
of these methods will neither change the elements of a domain nor their
positions within the domain.

The complexity of element access (operator[]) is constant and is the
same as that of a random access containers of STL[98] The position method
on the other, is typically used to search for domain elements. The constraints
for the position method have been chosen to allow using binary search for
finding individual elements. This logarithmic complexity corresponds to that
of the find method of Sorted Associative Container[98] like std::set.

Thus, Domain combines fundamental efficiency requirements of different
container concepts of STL. The relationship of Janus domains and STL con-
tainers will further be investigated in §4.2.4. Requirements regarding the
initialization of domains are presented and discussed in §4.2.2.

Table 4.3 gives the signature of constructors and related elementary meth-
ods a domain must provide. The methods of Table 4.2 are, as mentioned

1As in the description of the STL concepts and components [98], the mathematical
notation [a, b) denotes the range between a and b, where a is included but b is excluded
from the range.
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Method Name Description (all methods are non-mutating)
Size size_t size()

Returns n, the number of elements.
Complexity: O(1)

Element Access value_type operator[](size_t i)

Returns the ith element (0 ≤ i < n).
Complexity: O(1)

Position size_t position(const value_type& v)

Inverse method to operator[].
Returns size() if v is not an element.
Complexity: Not worse than O(log n)

Table 4.2: Methods required by the concept Domain

above, non-mutating. Using the assignment operator or the swap method
from Table 4.3 it is, however, possible, to change the content of a domain.
Table 4.3 shows the signature of constructors, the destructor, and assignment
operations that are required for a model X of Domain.

Method Name Signature

Default Constructor X::X()

Copy Constructor X::X(const X&)

Assignment Operator X& X::operator=(const X&)

Destructor X::~X

Swap X::swap(X&)

Table 4.3: Additional methods of a model X of Domain

4.2.2 One-Phase Domain and Two-Phase Domain

The requirements formulated in the Tables 4.1 and 4.2 offer access to domain
elements. Initialization of domains is not discussed there.

The concepts One-Phase Domain and Two-Phase Domain, provide a simple
and general framework to handle the differences in the initialization of regular
and irregular domains. Both concepts are refinements of Domain.

The requirements of the concepts One-Phase Domain and Two-Phase Do-
main rest on the relative stability of sets and relations as opposed to the
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associated data. The main benefit of these additional requirements is that
efficient data structures and initialization procedures can be used for the
representation of sets and relations.

4.2.2.1 Domains are Static Search Structures

The terminology of one/two phases has been motivated by Static Search
Structures, a concept that has been defined (see [91]) as

an Abstract Data Type with certain fundamental operations, e.g.,
initialize, insert, and retrieve. Conceptually, all insertions occur
before any retrievals.

Such structures occur frequently in software system applications, where set
members are inserted into the structure only once, usually during program
initialization, and are generally not modified at run-time (see also static sets
in [25]).

Simple (regular and static) spatial structures can be completely described
at initialization time. The rectangular grid from Figure 4.2 is an example
for One-Phase Domain. There is no need to insert individual elements into
it. Grid elements can be retrieved immediately after the initialization is
finished. Since they have only a retrieval phase but no insertion phase, they
are referred to as one phase structures (see Figure 4.3).

Complex (irregular or dynamic) spatial structures, such as a finite element
triangulation, usually cannot be completely described at initialization time.
The left part of Figure 4.2 gives a simple example of an irregular domain.

For such domains an insertion phase provides a simple way to put indi-
vidual elements or groups into them. Thus, an insertion phase would act as
an extended initialization—Figure 4.3.

A very important constraint here is that domain elements can only be
accessed when the insertion phase is completed and the so-called access phase
has been entered. Therefore, they are referred to as two phase structures.

To be explicit: insertion and retrieval phases are clearly separated, i.e.,
no access is allowed in the insertion phase and vice versa. Remember, that no
mutating operations can be performed during the access phase of a domain
(see Table 4.2). Two-Phase Domain require a freeze method that marks the
phase transition (see Table 4.5).
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Retrieval PhaseRetrieval Phase

Two−Phase DomainOne−Phase Domain

Figure 4.3: The phases of static search structures

4.2.2.2 Requirements

The concept One-Phase Domain does not add (nested) types or methods to
the concept Domain. It only specifies that there is no insertion phase.

The concept Two-Phase Domain, on the other hand requires the nested
type insert_type to represent objects that are to be inserted into a
domain—see Table 4.4.

Type Description
insert_type The type of the objects to be inserted into the domain.

Note that insert_type can be different from
value_type. It can be used to insert (disjoint)
chunks of value_type objects into the domain.

Table 4.4: Types required by Two-Phase Domain

The type insert_type is the argument of the the insert method in
Table 4.5. After all elements have been inserted the domain is closed by
calling the freeze method. This method marks the transition from the
insertion phase to the retrieval phase there is the method freeze. To test
whether a model of Two-Phase Domain has been frozen there is the method
frozen (see Table 4.5).
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Method Description
Insert void insert(const insert_type& v)

Inserts the object(s) v into the domain.
Each object may be inserted only once.
This method may only be called before freeze.
Complexity: see complexity of freeze.

Freeze void freeze()

Marks the transition from the insertion phase to the
retrieval phase. The complexity of all calls to insert

and the call to freeze is not worse than O(n log n).
This allows to sort the elements of a domain which in
turn enables the use of binary search in the method
position (see Table 4.2).

Frozen bool frozen()

Returns true if and only if freeze() has been called.
Complexity: O(1)

Table 4.5: Methods required by Two-Phase Domain

4.2.2.3 Thawing Frozen Domains

Naturally, the question arises, if it is possible to freeze a domain, is it also
possible to thaw it?

Mesh adaptation, for example, is an example where a thaw method could
be used to express modification of existing domains. For the Janus frame-
work, however, the answer is no and the main reasons for this decision are
simplicity of design and efficiency.

To justify this decision a general modification algorithm is considered.
Table 4.6 shows the different approaches to express modification of a domain
X. The left column shows the main steps for the case with thaw the right
column if only freeze is available.

It is acceptable and often conceptually clearer to express domain mod-
ification by creating a new domain, copying the needed data to the new
domain, and ignoring the unnecessary data. Table 4.6 also indicates that in
addition to a thaw method a remove method would be necessary. Erasing
data from a data structure, however, can be expensive as the erase method
of the vector container of the STL shows.

More important, relations (§4.4) and associated data depend on the posi-
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Modification with thaw Modification without thaw

Thaw X Declare temporary domain Y
Remove unnecessary elements Insert needed elements from X
Insert new elements Insert new elements
Freeze X again Freeze Y

Swap X and Y

Table 4.6: Domain modification with and without thaw

tion of domain elements. These positions, however, are likely to change when
modifying a domain. Thus, relations and associations of a domain have to
be changed as well. Therefore, we claim that a non-thaw approach is easier
to manage.

PETSc, the Portable, Extensible Toolkit for Scientific Computation[6],
also uses the so-called “rebuild data structure” approach for numerical prob-
lems that require mesh refinement.

The decision to provide no thaw method is also supported by data base
technology. The Standard Query Language (SQL) provides an ALTER state-
ment to change minor aspects (e.g. adding columns) of a table. However, for
substantial changes it is recommended to create a new table in the desired
format and to copy the content of the old table into the new one (see [33]).

4.2.3 The Distributed Domain Concept

By definition, Domain describes a finite sequence of objects d0, d1, . . . , dn−1

that can be accessed through operator[] and searched by position (see
Table 4.2).

The concept Distributed Domain is used to indicate when a domain is
spread over a group of processes. The background here are computer archi-
tectures with distributed memory. In order to take into account the much
higher cost of remote memory accesses, a fundamental requirement of Dis-
tributed Domain is that all domain methods introduced so far (see Table 4.2
and 4.5) act local to the (sub) domain object for which they are invoked.

4.2.3.1 The Janus Process Model

Janus rests on the same static process model as MPI [97]. This means that
processes are the fundamental computational unit. Each process consists of
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a thread of control that is executed in a separate address space. A Janus ap-
plication is executed by a collection of processes that form a communication
context. In MPI , communication contexts are referred to as communicators.
As in MPI, the elements of a communication context of p processes are in-
dexed from 0 to p − 1. The number of parallel processes and their process
identification numbers can be queried by the global functions processes and
process that are shown in Table 4.7.

Global Function Description
Number of Processes size_t processes()

Returns the number of parallel processes.
Process Identification size_t process()

Returns the unique process number of
the calling process.

Table 4.7: Global functions for process identification.

The processes are executed in an SPMD style. There is no mechanism for
loading code onto processors, or assigning processes to processors. Also there
is no explicit support for multi-threading in Janus. However, operations on
domains or relations can utilize several threads.

4.2.3.2 Subdomains of Distributed Domains

Let there be a communication context of p processes. A distributed domain
D is a collection of p mutually disjoint domains Di

D =

p−1⊔
i=0

Di. (4.3)

The domain Di is referred to as the i-th subdomain of D (see Figure 4.4).

Let ni be the size of the subdomain Di then the sum

n =

p−1∑
i=0

ni (4.4)

is referred to as the total size of the domain D.
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Figure 4.4: Local sub-objects of distributed objects.

4.2.3.3 Global and Local Positions

The position of an elements with respect to a subdomain Di is referred to as
local position. The vary in the range [0, ni − 1). A local position is unique
only with respect to its subdomain.

In order to maintain the important property of one-to-one correspondence
of domain elements and their positions, a global position jg is associated with
the j-th element in process i. The simple relation between local and global
positions involves only the sizes ni of the subdomains and reads

For this the concept of a global position offset of the subdomain Di is
defined as the partial sum of subdomain sizes up to process number i − 1,
that is

bi =
i−1∑
k=0

nk. (4.5)

Note that in the series (b0, b1, . . . , bp) (p the number of processes) b0
equals 0 whereas bp equals the total size n of Equation 4.4.

The definition of a global position jg of the j-th element of subdomain
Di then simply reads

jg = bi + j. (4.6)
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Figure 4.5 shows local and global positions of the domains from Figure 4.2
for a communication context consisting of two processes. Local positions are
given as lower indices, global positions as upper ones.
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Figure 4.5: Examples of local and global positions

For each subdomain Di, the sequences (n0, . . . , np−1) and (b0, b1, . . . , bp)
are stored in a descriptor subobject that has the type descriptor_type.
Table 4.8 shows that the descriptor object of a distributed domain can be
queried by the method descriptor(). The type descriptor itself and re-
lated utilities are explained in Section 5.6.2.

Method Name Description
Descriptor const descriptor_type& descriptor() const

The type descriptor_type provides methods to
access size information of subdomains—see Table 5.13.
Complexity: O(1)

Table 4.8: The descriptor method of Distributed Domain

4.2.3.4 The Distributed Two-Phase Domain Concept

For Models of Distributed Domain that are also models of Two-Phase Domain
there is a method insert_at that is described in Table 4.9.

The method insert_at is the main primitive of Janus to specify mapping
information when inserting elements into a distributed two-phase domain.
Note that due to the semantics of Two-Phase Domain the transfer of v into
the domain of process p can be delayed until returning from freeze. This
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emphasizes the usefulness of the Two-Phase Domain concept for the efficient
implementation of irregular/dynamic distributed scientific applications.

Method Name Description
Global Insert void

insert_at(const insert_type& v, size_t p)

Inserts v into the subdomain of process p.
See Table 4.4 for a description of insert_type.
Complexity: See complexity of freeze in Table 4.5.

Table 4.9: The global insert method of Distributed Two Phase Domain

4.2.4 Relationship of Domain and Container

There are some differences between the Janus Domain concept and the STL
concept Container.

A container, in the sense of the STL [98], is an object that stores objects
of a certain type (“its elements”). A container provides iterators to traverse
and access its elements. A Janus domain can be a container but it does not
have to be since it is not required that it stores its elements. The elements
of regular domains, for example a rectangular grid, can be described much
more efficiently by simple constraints.

Domains whose elements have to be explicitly stored must be models the
STL Container concept. Having the access requirements of a domain in mind,
it is not surprising that if a model of Domain is also a model of Container
then it is a model of Random Access Container. However, only non-mutating
access is allowed (see Table 4.10).

4.3 The Property Function Concept

The concept Property Function describes a collection of objects of a type T that
are associated with the elements of a domain D or a relation R (see §4.4). The
reader shall think for example of pressure and velocity values that are related
to grid components and to matrix coefficients associated with relations.

Mathematically, these objects are functions on sets or relations. If D is
a domain then a function

f : D −→ T (4.7)
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Type/Method Description
size_type An unsigned integer type that can hold the

number of elements of the container.
difference_type A signed integer type.
const_iterator A read-only Random Access Iterator.
const_reference A type that behaves as a const reference

to the domain’s value type.
const_iterator begin() Returns an iterator to the first element

of the domain.
const_iterator end() Returns an iterator pointing one past the

last element in the domain.
const_iterator find( Finds v or returns end() if v i s not an
const_reference v) element of the domain. This method shall

have the same complexity as position.

Table 4.10: Nested types and methods of container domains.

where associates objects of type T with the elements of D.

If n is the size of the domain D then using the function π of Equation 4.2
the function

f ◦ π−1 : [0, n) −→ T (4.8)

is considered—see Figure 4.6.

D

−1

π

T

{0, 1, 2, 3, 4, 5, 6, 7}

f

πf

Figure 4.6: Property functions and domain positions
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The name property function goes back to the concept Property Graph of
BGL (Boost Graph Library[67]). Property functions that are associated with
a domain or a relation are also referred to as domain functions or relation
function, respectively.

The concept Property Function requires only operator[](size_t) to pro-
vide random access to n objects of T—see Table 4.11.

Method Name Description
Element Access T operator[] (size_t i)

Returns the ith element (0 ≤ i < n) where n is the
size of the underlying domain.
Complexity: O(1)

Table 4.11: Random access required by the concept Property Function

This approach allows to use various simple and efficient data structures
to represent property functions. For example, it is possible to use one-
dimensional C and Fortran arrays or the standard container template class
std::vector<T> to represent a property function with value type T. An ad-
vantage of using such minimal requirements to represent data on domains is
that it is very easy to interoperate with other libraries and languages.

Property Functions on Distributed Domains

For a distributed domain D =

p−1⊔
i=0

Di a property function f : D → T is

considered as a family of property functions

fi : Di → T, 0 ≤ i < p.

This means that a property function f is distributed according its underlying
domain D.

This design decision is different from the approaches taken by the C++
template libraries POOMA[61] and Blitz++[105]. Both libraries provide as
basic abstractions multi-dimensional array classes. In Janus, on the other
hand, dimensions and other spatial information are expressed by the under-
lying domains or relations. For this reason, models of Property Function are
not restricted to rectangular arrays and can also describe data on irregular
domains.
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4.4 The Relation Concept

The concept Relation is based on the mathematical concept of a relation
between two sets X and Y . In mathematics, a relation R is a subset of the
cross product X × Y , i.e., a set of ordered pairs (x, y).

In Janus, a relation R between two domains X and Y describes a set of
ordered pairs (x, y) ∈ X × Y . However, since domain elements have unique
(global) positions, elements of a relation between two domains are represented
as pairs of integers and not as pairs of domain elements. Therefore the
position methods πX and πY of the domains X and Y , respectively, will
play a crucial role.

If m and n are the number of elements of the domains X, respectively Y
then the functions

πX : X −→ [0,m)

πY : Y −→ [0, n)

assign to each domain element its position. The requirements of Domain
ensure that the position function is a bijection.

Therefore for each relation R ⊂ X × Y the following associated relation
R′ ⊂ [0,m)× [0, n) can be defined as

R′ = πX ◦R ◦ π−1
Y .

In other words, a relation between two domains is represented as the set of
the pairs of positions of the elements in the relation

R′ = {(πX(x), πY (y)) | (x, y) ∈ R} .

The Janus concept Relation has been devised for sparse relations. A
relation R ⊂ X × Y is called sparse if for the cardinality of the involved sets
holds

|R| = O(|X|+ |Y |). (4.9)

Sometimes a stronger requirement is imposed, namely, that there is a positive
number C so that

|Ri| < C for all i ∈ [0,m) where Ri := {j | (i, j) ∈ R′} . (4.10)
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Analogously to the concept domain, a relation R′ is considered as a se-
quence of position pairs

(i0, j0), (i1, j1), . . . , (ik, jk). (4.11)

This, however, does not define the internal representation of a relation ob-
ject, rather special sparse storage formats are deployed. The point of these
formats is to provide a compact description of the relation and to allow the
efficient implementation of basic linear algebra operations such as sparse
matrix-vector multiplication or solution of triangular systems—see the Draft
Sparse BLAS standard [80].

4.4.1 Basic Relation Requirements

There are similarities but also notable differences between the concepts Re-
lation and Domain.

Analogously to Domain, the concept Relation requires that, there is a
nested value_type which however is defined as “pair of objects of size_t”
(see Table 4.12).

Type Description
value_type This is a typedef for jns::pair_size_type (Table 4.13).

Table 4.12: Nested types of the concept Relation

Type Description
jns::size_vector Typedef for std::vector<size_t>
jns::pair_size_type Typedef for std::pair<size_t,size_t>
jns::pair_size_vector Typedef for std::vector<pair_size_type>

Table 4.13: Some globally defined auxiliary types

As for Domain (see Table 4.2), there is a size method to query the number
of pairs of a relation. Table 4.14 presents this method together with methods
that return information about the size of the involved domains.

Analogously to Table 4.2, Relation requires a position method that re-
turns the index of an element. There is, however, no random access (i.e.
through operator[]) to its elements. Rather there are a couple of methods
that allow accessing relation elements (x, y) through the first entry x. This
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Method Description (all methods are const methods)
Size size_t size()

Number of elements of the relation. Complexity: O(1)
Size 1 size_t size1()

Size of the first factor of a relation. Complexity: O(1)
Size 2 size_t size2()

Size of the second factor of a relation. Complexity: O(1)

Table 4.14: Basic query methods for size information required by Relation.

is similar to the widely used compressed row storage (CRS) sparse matrix
scheme[80], where the index x is referred to as “row entry” whereas y is
referred to as “column entry”.

However, providing access methods in the style of CRS format does not
mean that a model of Relation actually uses the CRS format to store its
elements. It only means that the elements of a relation can be efficiently
accessed through the methods of Table 4.15. In order to avoid a too close
binding to the CRS format the terms first entry and second entry instead or
row and column are used. Note however that the relation member function
size1() of Table 4.14 plays a distinguished role in the description of the
methods in Table 4.15.

4.4.2 One-Phase Relation and Two-Phase Relation

Similar to the concept Domain, there are the concepts One-Phase Relation
and Two-Phase Relation. These concepts formulate requirements for the ini-
tialization of relation objects. Since a relations deals with the position of its
domain elements a relation can only be constructed after its domains have
been completely initialized.

As in the case of Domain, there are clearly separated insertion and re-
trieval phases (§4.2.3).

One-Phase Relation are completely initialized by calling a constructor.
Two-Phase Relation, on the other hand, have insert methods that allow the
insertion of individual elements before the method freeze has been called.
These methods are described in Table 4.16.

The freeze method transforms the set of inserted pairs into sparse matrix
format. This enables both a compact representation and an efficient imple-
mentation of data transfer operations (§4.4.4). In the case of distributed
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Method Description (all methods are const methods)
Position size_t position(const value_type& v)

Index of v. Returns size() if v is not an element.
Size of Row size_t size(size_t i)

The number of elements that correspond to first index i.
It must hold i ∈ [0, size1()). Complexity: O(1)

Element value_type value(size_t i, size_t k)

Access Returns the k-th element of the i-th row. It must hold
i ∈ [0, size1()) and k ∈ [0, size(i)). Complexity: O(1)

Position size_t position(size_t i, size_t k)

Equivalent to position(value(i,k)). Complexity: O(1)
First Entry size_t first(size_t i)

This is equivalent to value(i,k).first for
all k ∈ [0, size(i)). Complexity: O(1)

Second Entry size_t second(size_t i, size_t k)

Equivalent to value(i,k).second. Complexity: O(1)

Table 4.15: Access methods required by Relation.

Method Name Description
Freeze void freeze()

Completes the initialization of the relation.
Complexity: Not worse than O(n log n), n is the
number of elements of the relation. As in Table 4.5,
this includes the work for element insertion.

Frozen bool frozen()

Returns true if and only if freeze() has been called.
Complexity: O(1)

Table 4.16: Methods required by Two-Phase Relation

relations (§4.4.3), this includes the negotiating buffer sizes for remote op-
erations before they are actually used. This again shows the suitability of
two-phase structures for parallel scientific applications.

No methods for insertion of relation elements are specified since these are
highly dependent on the concrete relation type. However, contrary to the
case of Two-Phase Domain, relation elements may be inserted into a relation
more than once— see Table 4.5
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4.4.3 Distributed Relation

As in the case of Domain, there is a refinements of Relation to efficiently handle
the constraints of distributed memory architectures. The concept Distributed
Relation operates with pairs of global positions. Row-oriented representation
of relations (see §4.15) also means that a pair (i, j) is hold at the same process
where the position i is kept. Thus, the mapping of a relation R ⊂ D1 ×D2

is determined by the mapping of X, or in other words

R′ =

p−1⊔
k=0

{
(i, j) | i ∈ D1

k

}
. (4.12)

Since by definition the mapping of relation is determined by its first re-
lation factor, there is no need to explicitly specify mapping information and
consequently there is no insert_at method (see Table 4.9) for distributed
two-phase relations.

Similar to Table 4.8, there is a method descriptor() that returns a
reference to a descriptor sub-object of a distributed relation—see Table 4.17.

Method Description
Descriptor const descriptor_type& descriptor() const

Returns distribution information for the relation.
See also Table 5.13. Complexity: O(1)

Descriptor 1 const descriptor_type& descriptor1() const

Returns distribution information for the first domain.
See also Table 4.8. Complexity: O(1)

Descriptor 2 const descriptor_type& descriptor2() const

Returns distribution information for the second domain.
See also Table 4.8. Complexity: O(1)

Table 4.17: Methods required by Distributed Relation.

4.4.4 A Generic Interface for Data-Parallel Operations

The concept Relation must provide expressive methods to perform typical
matrix-vector and related operations of data-parallel applications.

Consider a relation R ⊂ X × Y and a property function b on the domain
Y . As in Equation 4.10, for each position i of X the set Ri denotes the
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positions of Y that are related with i with respect to R. For the property
function b the set b(Ri) is defined as the image of b restricted to Ri, that is

b(Ri) := {bj | j ∈ Ri} . (4.13)

The general idea is to provide methods that allow for each position i of X to
access the elements of b(Ri).

Example Here is an example for the five-point stencil of Equation 3.5 on
Page 41. If b is a function on a two-dimensional grid G and i is the position
of a grid point (x, y) ∈ G then b(S5

i ) is the set{
b(x, y − 1), b(x, y + 1), b(x, y), b(x− 1, y), b(x+ 1, y)

}
.

Here, S5 ⊂ G×G denotes the five-point stencil.

The basic idea is to require that a relation provides a nested accessor

type—similar to the nested iterator types of STL container. The accessor
type must be template class that is parameterized over the type of data to
be accessed. If R is a model of Relation then the declaration of the associated
accessor type reads:

template<T>

class R::accessor;

The accessor type is used to declare accessor objects that are bound to a
particular relation and the data to be accessed

void foo(const R& r, const std::vector<double>& b)

{

R::accessor<double> acc(r, b.begin(), b.end());

// ...

}

Here b must be a property function that is associated with the second domain
of the relation object r. In particular, the following assertion

assert(r.size2() == b.end() - b.begin());

must be fulfilled. In order to access individual elements of b the methods of
Table 4.18 are used.
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Method Description

void pull()

Pull Prepares the direct access to the data of the property
function b to which the accessor has been bound.
In the case of a distributed relation, this includes
the transfer of the non-local data of

⋃
i b(ri).

Complexity: Not worse than O(|R|)
T get(size_t i, size_t k)

Get Accesses the element of the property function b

with the position r.second(i,k).
Complexity: O(1).

Table 4.18: The methods pull and get of the accessor type of a relation

A problem of these general operations is that they cannot completely re-
flect the underlying sparse matrix format of a relation. As a consequence,
they might be less efficient for standard sparse matrix operations such as
matrix-vector multiplication. Therefore Relation also provides member meth-
ods that provide efficient implementations of these operations. These meth-
ods are presented in the following subsection.

4.4.5 Data-Parallel Member Operations

In order to provide efficient support for important sparse matrix operation,
the concept Relation provides the pull_reduce and pull_matrix methods.
The point of these methods that they utilize the internal sparse matrix format
of the relation. Moreover these methods are highly customizable by the user.
Both the binary reduction operation(s) and the action performed on the
reduced value can be specified by the library user.

4.4.5.1 The pull reduce Method

The first reduction scheme uses the sum of the values in b(Ri)∑
j∈Ri

bj (4.14)
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or the result of a user-defined binary reduction operation ⊕⊕
j∈Ri

bj (4.15)

for argument reduction.

The interfaces of the version of pull_reduce that use operator + as
binary reduction operator is shown in Figure 4.7.

template<typename T, typename Visitor>

void R::pull_reduce(const T* t, Visitor v);

Figure 4.7: Signature of pull reduce

The template parameter T is the type of the values that are stored in the
property function represented by the pointer t.

The template parameter Visitor denotes a visitor type, that is, an object
v of this type is used in the sense of the visitor design pattern[37] for each
pair (

i,
⊕
j∈Ri

bj

)
, (4.16)

where i runs over all positions of the second domain of R. The requirements
for a visitor type are specified in Table 4.19. Janus provides several standard
visitor types that are explained in §5.3.3.

Name Description
Apply void Visitor::operator()(size_t i, value_type r)

The action performed for all pairs in Equation 4.16.

Table 4.19: Requirements for a visitor type

The semantics of pull_reduce for a model R of Relation is described using
nested accessor type introduced in the previous subsection. Note that the
code in Figure 4.8 does not necessarily reflect the actual implementation.

The variable reduce is default-initialized that is by the result of the
expression T(). The C++ standard specifies that for built-in arithmetic

75



template<typename T, typename Visitor>

void R::pull_reduce(const T* t, Visitor v)

{

// bind accessor to relations and data

typename R::accessor<T> access(*this, t, t+r.size2());

access.pull(); // transfer data

for(size_t i = 0; i < size1(); ++i) {

T reduce = T();

for(size_t k = 0; k < size(i); ++k)

reduce += access.get(i, k); // access data

v(i,reduce);

}

}

Figure 4.8: Semantics of pull reduce defined through accessor

types, such as int or float, the value of default initialization is 0 of the
respective type[99].

The complexity of a pull_reduce operation is |X| applications of the
argument reduction and the same number of applications of the visitor object
v. Note that the visitor object is passed per value.

The second version of pull_reduce (see Figure 4.9)allows to specify a
user-defined binary reduction operation 2 ⊕ and an initial value for it. The
template parameter BinaryOp declares the user-defined operation ⊕ of Equa-
tion 4.15. The fourth function argument init of pull_reduce is the initial
value for the reduction operator.

4.4.5.2 The pull matrix Method

The second argument reduction scheme is motivated by matrix-vector mul-
tiplication, that is, it uses the value

2The binary operation must be (at least theoretically) associative and commutative
because for the sake of an efficient implementation the order in which the reductions are
performed is not specified. Standard floating point types do not fulfill this requirement.
However, the differences that occur from different orders in which the reduction operations
are performed are ignored in this definition.
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template<typename T, typename Visitor, typename BinaryOp>

void R::pull_reduce(const T* t, Visitor v, BinaryOp op,

T init);

Figure 4.9: Signature of extended version of pull reduce

∑
j∈Ri

mij · bj (4.17)

or the result of a user-defined binary reduction operations ⊕ and ⊗⊕
j∈Ri

mij ⊗ bj (4.18)

for argument reduction.

As in the case pull-reduce there are two overloaded versions of
pull_matrix. The interface of the simple version is shown in Figure 4.10.

The template parameter T is the type of the matrix coefficients and the
vector elements. The requirements of Table 4.19 hold also for the visitor type
Visitor in Figure 4.10.

template<typename T, typename Visitor>

void R::pull_matrix(const T* m, const T* t, Visitor v);

Figure 4.10: Signature of pull matrix

The semantics of pull_matrix for a model R of Relation is described using
the nested accessor type from Section 4.4.4. As for the case of pull_reduce
the code in Figure 4.11 does not necessarily reflect the actual implementation.
A major difference to the code in Figure 4.8 is the use of the second position

method from Figure 4.15 to access the corresponding matrix coefficient.

The semantics of pull_reduce uses the binary functions operator +3

and operator *. As in Figure 4.8, the default value of type T is used.

3Strictly speaking, it is using operator += which implies that its definitions must
correspond to those of operator + and the assignment operator.
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template<typename T, typename Visitor>

void R::pull_matrix(const T* m, const T* t, Visitor v)

{

// bind accessor to relations and data

typename R::accessor<T> access(*this, t, t+r.size2());

access.pull(); // transfer data

for(size_t i = 0; i < size1(); ++i) {

T reduce = T();

for(size_t k = 0; k < size(i); ++k)

reduce += m[position(i,k)] * access.get(i, k);

v(i,reduce);

}

}

Figure 4.11: Semantics of pull matrix defined through accessor

In the more elaborate version of pull_matrix (see Figure 4.12), different
types M and T for the matrix coefficients and vector elements are allowed.
Moreover, user-defined binary reduction operators ⊕ and ⊗ can be specified.
As in the case of the more elaborate version of pull_reduce (Figure 4.8), an
initial value for the reduction can be specified.

template<typename M, typename T, typename Visits,

typename Mult, typename Plus>

void R::pull_matrix(const T* m, const T* t, Visitor v,

Mult mult, Plus plus, T init );

Figure 4.12: Signature of pull matrix

4.5 Conclusions

The Janus software architecture rests on three major concepts. The con-
cepts Domain and Relation formulate various requirements to describe (dis-
tributed) sets and their relations. The concept Property Function, on the
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other hand, formulates only very few and simple requirements do describe
data that are associated with sets or relations. It is this clear separation of
sets and relation, on the one hand, and associated data on the other hand,
that distinguishes the Janus from related architectures such as PETSc[6].

Models of Property Function can therefore be very simple data types. ba-
sically one-dimensional arrays, pointers, and random access iterators fulfill
these requirements. As it will be seen in the following chapters, this sim-
plicity leads to high performance. It also enables interoperability with other
scientific software packages.

A remarkable feature of both the Domain and Relation concepts is that
they have the semantics static search structures. This design decision is
justified by the relative stability that was recognized as a result of the domain
analysis performed in Chapter 3. This insight allows to devise flexible and yet
efficient models of these concepts—see the following chapter. In particular,
as Chapter 7 will show, it makes highly dynamic data structures, such as tree
or linked lists dispensable for the implementation of adaptive finite element
and related numerical methods.

The requirements of Relation follow state-of-the-art interfaces for sparse
matrix operations. In particular, matrix-vector multiplications are sup-
ported. However, efficient access through relations to individual elements
is also supported. In Chapter 7 and Chapter 8, this will turn out as a key
advantage when engineering parallel adaptive finite element methods and
parallel graph algorithms.
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Chapter 5

Components of Janus

In Chapter 4, the major concepts of the Janus architecture have been pre-
sented. This architecture consists of a set of requirements for data types and
algorithms for data parallel applications. In this chapter the models, that is,
template classes, template algorithms, and additional utilities of Janus are
briefly presented. The emphasis is on presenting concrete data structures
that can be applied in various fields of data parallel scientific applications.
However, this chapter does not describe how specific applications are devel-
oped using the Janus components. This is discussed in Chapter 7. Likewise,
implementation and portability issues of the components are not addressed
in this chapter. These problems are discussed in the following chapter 6.

The (template) classes presented in this chapter are models of the con-
cepts Domain §5.2 and Relation §5.3 discussed in §4. Thus, the description of
these classes can be restricted to the features they offer in addition to those
required by the concepts.

The small set of algorithms presented in §5.5 consists on the one hand
of reduction operations for scalar types (§{refaccumulator), operations on
property functions on domains (§5.5.2.2) or relations (§5.5.2.3). A unifying
feature of these algorithms is that they accumulate individual values and that
they provide an explicit terminate operation (freeze). This makes them very
useful in the context of a distributed computing environment.

The other set of algorithms are parallel versions (§5.5.3) of appropriate
STL algorithms, for example std::count. Note that this approach differs
significantly from HPC++[60] which aimed to provide distributed version of
all STL containers, parallel iterators, and parallel versions of STL algorithms.

Janus provides no components that are models of Property Function. The

81



requirements of this concept (§4.3) are so minimal that they can be easily
satisfied by existing standard classes. Section §5.4 lists some alternatives.

Section §5.6 presents auxiliary types and functions that simplify the task
of writing application programs which can run efficiently in a shared and
distributed environment.

5.1 Janus as a Program Family

The conceptual framework of chapter §4 and the components presented in
this chapter form the Janus program family in the sense of Parnas’ definition
in §2.2. Throughout the rest of this thesis the term Janus is used in the sense
of Janus program family.

The concepts of Janus represent the common properties of the compo-
nents. The components of this chapter provide solutions for particular ap-
plication requirements. Here, the main distinguishing factors are different
requirements regarding their dynamic behavior. This can be seen in Fig-
ure 5.1 which shows the Domain and Relation classes of Janus.

One Phase
Structure

jns::grid<N>

Domain

jns::stencil<N,L>

Two Phase
Structure

jns::sorted_set<T,C>

jns::hash_set<T,H>

Relation

jns::relation

Figure 5.1: Overview of Janus domains and relations

Figure 5.1 depicts the relationship of the Janus components to the Janus
concepts. In particular, it can be seen whether a model of Domain is a model
of One-Phase Domain or Two-Phase Domain. Note that all Janus components
belong to the namespace jns. A more detailed description of these domain
and relation classes is given in §5.2 and §5.3.
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5.1.1 Local and Distributed Components

Figure 5.1 does not specify whether the components shown there are models
of the concepts Distributed Domain or Distributed Relation.

In fact, all components in Figure 5.1 can be used pure locally or as dis-
tributed objects. Using these components simplifies the task of writing pro-
grams that work both for non-distributed memory and distributed memory
platforms. It also emphasizes that there are customized family members for
specific application scenarios.

At the same time it is important that clients of Janus components do not
have to pay for unwanted services. In particular, components that are to be
deployed shall not be burdened by distributed services.

Janus uses a simple trick to provide uniform names to components in
local and distributed environments. As Figure 5.2 suggests, there are two
sub-namespaces of jns, namely the namespaces local and distributed.

namespace jns

{

namespace local

{

class A { /* .. */ };

}

#ifdef JANUS_LOCAL

using local::A;

#endif

#ifdef JANUS_DISTRIBUTED

namespace distributed

{

class A { /* .. */ };

}

using distributed::A;

#endif

}

Figure 5.2: Janus namespaces for local and distributed components

Local components are defined in the sub-namespace local. If the prepro-
cessor flag JANUS_LOCAL is defined then the class jns::local::A is exported
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into the surrounding namespace jns, that is, it can be accessed as jns::A.

Distributed components, on the other hand, are only defined if the
preprocessor flag JANUS_DISTRIBUTED is set. In this case the class
jns::distributed::A can be accessed also as jns::A. At the same time,
the local component jns::local::A can be used as well.

5.2 Models of Domain

In this section the models of Domain that has been shown in Figure 5.1 are
explained in more details. In particular, all involved Janus concepts, the
template parameters of the classes, and important additional features of the
classes are presented.

5.2.1 Models of Two-Phase Domain

The templates sorted set §5.2.1.1 and hash set §5.2.1.2 are models of Two-
Phase Domain that implement different strategies to store and access domain
elements. Common to both template classes is that they are also models of
Container(see §4.2.4).

5.2.1.1 The sorted set Template

The template parameters and the non-trivial constructors of sorted set are
shown in Table 5.1:

template<typename T, typename Compare = std::less<T> >

class sorted_set {

public:

typedef T value_type;

sorted_set(Compare comp = Compare());

// ...

};

Table 5.1: Parameters and constructor of sorted set
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The type parameter T is the value type of this model of Domain. The
second parameter Compare is a comparison function that must implement a
strict weak ordering in the sense of STL[98]. The comparison object can be
specified through a constructor. By default std::less is used as comparison
function.

Upon freezing, the inserted elements are sorted according to the compar-
ison function and stored in an internal random access container so that they
can be searched later efficiently with binary search1. Note that the complex-
ity requirements of the position method of Domain matches those of the
STL binary search algorithms.

Using sorted set to represent a two-phase domain has the advantage of
being optimal with respect to memory usage. No additional storage is nec-
essary to represent all elements of a domain. The drawback is the relatively
slow logarithmic time of binary search.

Applications that desire for different time/space tradeoffs the template
hash set can be of advantage.

As discussed in 5.1, the class sorted set can be (depending on configu-
ration) be a model of Distributed Domain. In this case it provides the method
insert_at (Table 4.9) to specify the mapping of the element to be inserted.

5.2.1.2 The hash set Template

The template parameters and non-trivial constructor of hash set is shown
in Table 5.2.

The type parameter T is the value type of this model of Domain. The
second parameter Hash is a hash function, that is Unary Function[98], which
accepts objects of type T and returns a size_t. The hash function can be
specified in the constructor of hash_set.

Upon freezing, the inserted elements are put into an internal hash table.
This makes the complexity of method hashed_domain::position dependent
on quality of the hash function and the distribution of inserted elements. In
case both factors work together well then method position has an average
constant complexity.

As for the template sorted set, the class hash set can be a model of
Distributed Domainand thus provide the method insert_at of Table 4.9.

1To be more precise, the template function std::lower bound from the family of binary
search algorithms is used.
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template<typename T, typename Hash>

class hash_set {

public:

typedef T value_type;

hash_set(Hash hash = Hash());

// ...

};

Table 5.2: Parameters and constructor of hash set

5.2.2 Models of One-Phase Domain

Janus provides only one model of One-Phase Domain, namely the template
class grid §5.2.2.1. Rectangular grids are a class of simple and commonly
used domains. They are, however, by no means the only possible model of
One-Phase Domain. One could easily provide classes that represent general
polytopes of Zn or regular substructures of rectangular grids.

5.2.2.1 The grid Template

The class grid<N> is a model One-Phase Domain that describes an N-
dimensional rectangular grid. The template parameters and non-trivial con-
structor are shown in Table 5.3.

template<size_t N>

class grid {

public:

typedef boost::array<int,N> value_type;

grid(value_type a, value_type b);

// ...

};

Table 5.3: Parameters and constructor of grid
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The declaration of the value type of grid is used the fixed-size array

template of the Boost[28] library. The constructor with the two arguments
a and b of value_type creates the grid

N−1∏
i=0

[ai, bi) ⊂ ZN . (5.1)

Depending on the configuration of Janus (§6.1), grid is also a model of
Distributed Domain and provides a pre-defined mapping.

5.3 Models of Relation

In this section the Janus classes that are models of Relation are presented.
As in the case of model of Domain, the presentation distinguishes between
models of Two-Phase Relation §5.3.1 and models of One-Phase Relation §5.3.2.
Currently, Janus provides for each of these refinements of relation only
one model that correspond to often used sparse matrix formats. Depending
on the configuration of Janus these models also satisfy the requirements of
relation.

5.3.1 Models of Two-Phase Relation

Janus’ standard model of Two-Phase Relation is the relation template.

5.3.1.1 The relation Template

The class relation of Table 5.4 implements the compressed row sparse
format[80]. This class is not a template class. However, it provides tem-
plate member function pull_reduce and pull_matrix that are required by
Relation.

The class relation has a template constructor which allows to initialize
the size query size1 and size2 methods of Table 4.14 with the respective
sizes of the domain objects x and y. This also implies that a relation can
only be initialized if the corresponding domains are completely initialized.

Only domain positions can be inserted into relation. For this the
insert(size_t, size_t) method can be used. In order to insert domain el-
ements into a relation the algorithm class conversion_collector of §5.5.1.3
can be used.
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class relation {

public:

typedef jns::pair_size_type value_type;

template<typename X, typename Y>

relation(const X& x, const Y& y);

void insert(size_t, size_t);

void freeze();

// ...

};

Table 5.4: Parameters and constructor of relation

The initialization of a relation must be finished explicitely by calling the
freeze method.

5.3.2 Models of One-Phase Relation

Janus’ only model of One-Phase Relation is the stencil template which is
presented in Section 5.3.2.1.

5.3.2.1 The stencil Template

The template class stencil is to be used in conjunction with the grid do-
main class of §5.2.2.1.

The two template parameters of stencil represent the dimension of the
underlying grid and the size of the stencil.

In order to initialize a stencil, not only the grid and the offsets of the
stencil must be specified but also a subgrid on which the offsets can be safely
applied. This is important because for boundary points of the grid the stencil
might not be correctly defined. The corresponding constructor is shown in
Table 5.5.
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template<size_t N, size_t L>

class stencil {

typedef jns::pair_size_type value_type;

typedef grid<N>::value_type grid_value_type;

typedef boost::array<grid_value_type,L> offset_type;

stencil(const grid<N>& g, offset_type offsets,

grid_value_type a, grid_value_type b);

// ...

};

Table 5.5: Parameters and constructor of stencil

5.3.3 Visitor Classes

The template member methods pull_reduce and pull_matrix (§4.4.5)
expect visitor objects that perform operation with the values reduced
by the relation. Table 4.19 states that the operation is performed by
operator()(size_t i, T t).

Table 5.6 provides a small set of visitor template classes that solve some
often occurring standard cases.

template<typename T> class assign_visitor

Assign Assigns the reduced value at position i of a property
function represented by the type T*.
template<typename T, typename Op = std::plus<T> >

Binary class binary_function_visitor

Function Combines the reduced value with the value at position i

of a property function represented by the type T* using
the binary function Op.

Table 5.6: Standard visitor classes of Janus

The class assign_visitor can be used to implement a generic matrix-
vector multiplication y ← A · x where the matrix A = (R,m) is a pair of a
relation R and matrix coefficients m : R −→ T (see Figure 5.3).

The binary_function_visitor could be used for a matrix-vector multi-
plication with a subsequent binary operation, for example, in an expression
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template<typename Rel, typename T>

void multiply(const Rel& R, const T* m, const T* x, T* y)

{

R.pull_matrix(m, x, jns::assign_visitor<T>(y));

}

Figure 5.3: Generic matrix-vector multiplication

life y ← y − A · x (see Figure 5.4). This example also suggest that more
complex (generic) version of matrix-vector multiplication could be easily im-
plemented by providing appropriated visitor classes.

template<typename Rel, typename T>

void multiply1(const Rel& R, const T* m, const T* x, T* y)

{

jns::binary_function_visitor<T, std::minus<T> > v(y);

R.pull_matrix(m, x, v);

}

Figure 5.4: Using binary function visitor to customized matrix-vector
multiplication

5.4 Models of Property Function

As mentioned in §4.3, Janus does not provide models of the concept Property
Function. The reason is that the simple requirements of this concepts can be
easily fulfilled by pointers, and standard classes such as std::vector and
std:valarray. User-defined vector classes can also easily cooperate with
Janus as long as they provide a mean to access their data as specified in
Table 4.11.
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5.5 Algorithms

The algorithms provided by Janus can be classified into

• Collectors §5.5.1 which simplify the initialization of domains/relations
and associated property functions.

• Accumulators §5.5.2 support computations whose result depends on the
evaluation of accumulated values,

• Parallel STL algorithms §5.5.3 which are wrappers for STL algorithms
with parallel semantics.

5.5.1 Collectors

Collectors are data structures that temporarily store pairs of keys and data
objects. They are used for the initialization of domains/relations and as-
sociated property functions. The problem hereby is that before a property
function can be manipulated its underlying domain/relation must have been
initialized. Another important aspect handled by collectors is that they
transfer the pairs to other processes where they can be handled locally. Thus,
collectors play a crucial role in handling with explicitly or implicitly mapping
information.

Collectors are used similar to two-phase domains (see Section 4.2.2):

1. Elements are inserted,

2. The collector is frozen, and

3. Finally, the inserted elements can be accessed.

Common requirements of constructors are the types and methods given
in Table 5.7.

5.5.1.1 The collector Template

The template class collector of Figure 5.5 stores pairs of objects of type K

and T.

Pairs can be inserted using the following two insert methods. There
are also the methods insert_at which indicate that the inserted element of
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Type/Method Description
key_type The key type of the elements in the collector.
data_type The type of data stored in the collector.
value_type Defined as std::pair<key_type,data_type>.
void freeze() Marks the end of insertions.
size_t size() Number of locally accessible inserted elements.
const value_type& Access of elements.
operator[](size_t)

Table 5.7: Nested types and methods required of collectors.

template<typename K, typename T>
class collector {
public:
typedef K key_type;
typedef T data_type;
typedef std::pair<key_type,data_type> value_type;

void insert(const key_type& k, const data_type& t);
void insert(const value_type& v);

void insert_at(const key_type& k, const data_type& t, size_t p);
void insert_at(const value_type& v, size_t p);
};

Figure 5.5: The collector template class

value_type is transferred to process p. This transfer operation, however, is
known to be completed only after the freeze of Table 5.7 has been called.

This class is particular useful for initializing (distributed) domains and
associated property functions.

5.5.1.2 The relation collector Template

The template class relation_collector of Figure 5.6 stores pairs of
pair_size_type (see Table 4.13) and T. This class provides a template con-
structor that binds the collector to the domains of a relation.

If the pair (k,t) is inserted into the relation collector then k.first and
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template<typename T>

class relation_collector {

public:

typedef pair_size_type key_type;

typedef T data_type;

typedef std::pair<key_type,data_type> value_type;

template<typename X, typename Y>

relation_collector(const X& x, const Y& y);

void insert(const key_type& k, const data_type& t)

void insert(const value_type& v)

};

Figure 5.6: The relation collector template class

k.second must be global positions of the domains x and y, respectively.
In according with the mapping of relations (see Section 4.4.3) the inserted
pair value_type(k,t) is transferred to the process of the global position
k.first with respect to the domain x. As in §5.5.1.1, all transfer operations
are known to be completed only after freeze has been called.

5.5.1.3 The conversion collector Template

The template class conversion_collector of Figure 5.7 stores pairs of
size_t and T objects. The template parameter X must be a model of Do-
main or Relation. The constructor argument x must be a completely initialized
domain or relation.

Inserted pairs of X::value_type and type T are transformed into pairs of
size_t and T. The size_t object is the local position of the X::value_type
object with respect to the the process to which this object belongs. The
transformed pair is transferred to this process. The transformation and the
transfer are completed after freeze has been called.

A particular useful application of the class conversion_collector shows
the implementation of the Janus algorithm n_relation_insert in Fig-
ure 5.8.

Let x and y be two domains of type X and Y, respectively. Let G be a
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template<typename X, typename T>

class conversion_collector {

public:

typedef size_t key_type;

typedef T data_type;

conversion_collector(const X& x);

void insert(const typename X::value_type& e,

const data_type& d)

};

Figure 5.7: The conversion collector template class

unary function object[98] whose argument type is X::value_type and whose
result type is boost::array<Y::value_type,N> for some integer constant
N. For each element a of x all elements of gen(a) must be elements of the
domain y.

The n relation insert algorithm converts the pairs{
(a,G(a)j) | a ∈ x, 0 ≤ j < N

}
(5.2)

into their respective positions and inserts them into the relation object r.

The implementation of the algorithm shown in Figure 5.8 use the
conversion_collector with the template parameters Y and size_t. For
each position i of x and each element w of gen(x[i]) the pair (y,gi) is
inserted in the collector object. Hereby, gi is the global position of i. After
freezing the collector the contains pairs of elements (j,gi) where j is a local
position of an element of y. This local position is transformed into its global
counterpart gj and the pair (gi,gj) is inserted into the relation.

5.5.2 Accumulators

Accumulators are algorithms whose result depends on the evaluation of
groups of values. In contrast to STL algorithms, the values need not to
belong to containers or iterator ranges.

Another difference is that accumulator algorithms are implemented as
classes not as functions. The idea is to provide an insertion phase to submit
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template<typename X, typename Y, typename G, typename R>

void

n_relation_insert(const X& x, const Y& y, G gen, R& r)

{

conversion_collector<Y,size_t> rep(y);

for(size_t i = 0; i < x.size(); ++i)

{

const typename G::result_type w = gen(x[i]);

const size_t gi = jns::global_position(x,i);

for(size_t k = 0; k < w.size(); k++)

rep.insert(w[k],gi);

}

rep.freeze();

for(size_t i = 0; i < rep.size(); ++i)

{

const std::pair<size_t,size_t> v = rep[i];

assert(v.first < y.size());

r.insert(v.second,jns::global_position(y,v.first));

}

}

Figure 5.8: The n relation insert algorithm

values to the accumulator and an explicit termination function. Using classes
instead of functions to implement such algorithms is natural because it is
much easier to handle the any state related to the different phases. This
approach is of course inspired by the insertion and access phases of Two-Phase
Domain and Two-Phase Relation of §4.2.2 and §4.4.2, respectively. As in the
case of domains and relations, the two-phase approach to deal with groups of
values is particular useful in distributed programming environments.

Janus provides accumulators for different situations.

• The accumulator of §5.5.2.1 is used for the reduction of individual
values.

• The position_accumulator of §5.5.2.2 can be used to combine values
with elements at the position of property functions.

• The relation_accumulator of §5.5.2.3 should be used when values are
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to be combined with elements of property functions given by relation
elements (that is, pairs of integers).

5.5.2.1 The accumulator Template

The purpose of the accumulator template is the reduction of accumulated
scalar values. The public interface of this template class is shown in Table 5.8.

template<typename T, typename BinaryFunc = std::plus<T> >

class accumulator {

public:

accumulator(T init = T(), BinaryFunc bf = BinaryFunc());

void insert(T t);

T freeze();

};

Table 5.8: Public interface of accumulator

The two template parameters specify the scalar the type of the objects
to be accumulated and the binary operation to be used thereby. If no binary
operation is specified than the values are added to an initial value. The initial
value can be specified in the constructor of accumulator.

Values that are to be reduced are inserted into the accumulator. The
result of the reduction of all values—regardless in which process they were
inserted—is determined and returned by calling the freeze method. After
calling freeze no values may be inserted anymore. Moreover freeze may
be called only once.

This somewhat unusual syntax for scalar reduction operation is analogous
to the two phases of Two-Phase Domain. The explicit separation of insertion
and access phases provides, as in the case of domains and relations, several
opportunities for an efficient implementation on parallel machines. In par-
ticular, communication or synchronization that is necessary to determine the
reduction can be deferred until freeze is called.
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5.5.2.2 The position accumulator Template

The template class position_accumulator whose public interface is shown
in Table 5.9 can be used to manipulate values of a property function that is
associated with a domain or a relation. The property function is represented
by a pair of random access iterators.

template<typename X, typename T,

typename BinaryFunc = std::plus<T> >

class position_accumulator {

public:

typedef size_t key_type;

typedef T data_type;

template<typename Iterator>

position_accumulator(const X& x,

Iterator first, Iterator last,

BinaryFunc op = BinaryFunc());

void insert(key_type i, const data_type& v);

void freeze();

};

Table 5.9: Public interface of position accumulator

For manipulating the property function a user-defined binary operator
of type BinaryFunc is used. By default, std::plus<T> is used as binary
function. Note that T is also the value type that is associated with the
iterator type template parameter Iter in Table 5.9.

The constructor of position_accumulator takes a reference to the do-
main/relation object of type X and a pair of iterators that describes the
property function. In order to manipulate the property function, a pair of
global position i and an object of T must be inserted into the accumulator.

It is guaranteed that upon return from the accumulator’s freeze method,
all inserted values have been combined with the values at the corresponding
positions. Hereby the binary operation BinaryFunc has been used.
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5.5.2.3 The relation accumulator Template

The template class relation_accumulator can be used to manipulate values
of a property function that are associated with a relation of type R. The public
interface of this template class is shown in Table 5.10.

template<typename R, typename T,

typename BinaryFunc = std::plus<T> >

class relation_accumulator {

public:

typedef pair_size_type key_type;

typedef T data_type;

template<typename Iterator>

relation_accumulator(const R& r,

Iterator first, Iterator last,

BinaryFunc op = BinaryFunc());

void insert(size_t i, size_t j, const data_type& v);

void insert(const key_type& k, const data_type& v);

void freeze();

};

Table 5.10: Public interface of relation accumulator

The property function is represented by a pair of random access iterators
of type Iter. For manipulating the property function a user-defined binary
operator of type BinaryFunc is used. By default, std::plus<T> is used as
binary function.

The constructor of relation_accumulator takes a reference to the re-
lation object of type R and a pair of iterators that describes the property
function. In order to manipulate the property function, triples of global
position i, j, and an object of T must be inserted into the accumulator.

It is guaranteed that upon return from the accumulator’s freeze method,
all inserted values have been combined with the values at the corresponding
positions. Hereby the binary operation BinaryFunc has been used.
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5.5.3 Parallel STL Algorithms

Janus provides a parallel implementation for some of the STL algorithms[98].
The focus is on algorithms that return scalar values that are the result of a
reduction operation. The signature of some of the suitable STL algorithms
(accumulate, inner_product, or count) are shown in Table 5.11.

template <typename InputIterator, typename T>

T accumulate(InputIterator first, InputIterator last,

T init);

template <typename InputIterator1,

typename InputIterator2, typename T>

T inner_product(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2, T init);

template <typename InputIterator,

typename EqualityComparable>

std::iterator_traits<InputIterator>::difference_type

count(InputIterator first, InputIterator last,

const EqualityComparable& value);

Table 5.11: Examples of parallel STL algorithms

Parallel versions of these algorithms can be easily implemented by using
Janus’ reduce template function of Table 5.12. The function reduce returns
its first argument when called in a non-distributed context (see also 6.1).
When called in the context of p parallel processes, that is, for the distributed
tuple (t0, t1, . . . , tp−1), then reduce returns the value

p−1⊕
i=0

ti. (5.3)

Here, ⊕ denotes the template argument BinaryFunction which must be a
binary operation. The second version of reduce uses + as binary operation.

Note that as the other Janus components, the parallelized versions of the
algorithms of the Tables 5.11 and 5.12 are defined in the namespace jns.
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template<typename T, typename BinaryFunction>

T reduce(T t, BinaryFunction op = BinaryFunction());

template<typename T>

T reduce(T t);

Table 5.12: Signature of reduce

5.6 Utilities

This section describes various minor utilities of the Janus framework. These
utilities encompass, on the one hand, functions to initialize and query the
runtime environment (§5.6.1) and, on the other hand, the descriptor class
and related functions (§5.6.2).

5.6.1 Runtime Environment

5.6.1.1 The initialize Function

The function initialize sets up the runtime environment of a Janus pro-
gram. It must be called before any Janus object is created. This implies that
there can be no Janus objects in global scope. Arguments that are passed to
initialize depend on the underlying communication system (e.g. MPI).

The general form of this function is

jns::initialize(int& argc, char**& argv);

5.6.1.2 The finalize Function

The function jns::finalize() shuts down the Janus runtime environment.
This function is called without arguments.

5.6.1.3 The Functions process and processes

The function jns::processes() returns the number of parallel processes
that participate in a Janus applications.
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size_t jns::processes();

In case of a sequential configuration of Janus processes returns 1.

The function jns::process returns the identification number of the current
process.

size_t jns::process();

This number is between 0 and processes()-1.

5.6.2 The Class descriptor type and Related Functions

The type descriptor has been introduced in Section 4.2.3 for the description
of distributed domains and relations. The main methods (which are all non-
mutating) of this auxiliary type are shown in Table 5.13.

Method Description
size_t size(size_t k) Returns nk, the size of subdomain Dk.
size_t offset(size_t k) Returns bk, the offset of subdomain Dk.
size_t global_position Returns global position for local

(size_t j) position j.
size_t global_position Returns global position of local

(size_t k, size_t j) position j of subdomain Dk.
size_t process(size_t g) Returns process of global

position g.
pair_size_type Returns pair of process id and local
process_position(size_t g) position of global position g.

For pair_size_type see Table 4.13.

Table 5.13: Public methods of descriptor type

Closely related to the type descriptor are several global template func-
tions. They are, strictly speaking, not really necessary but they provide an
additional abstraction that smooth the difference between different configu-
rations of Janus (see also Section 6.1).

5.6.2.1 Global Size of a Domain or Relation

The template function
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template<typename X>

size_t jns::size(const X& x)

returns the global size of a domain/relation x. In case of a non-distributed
object x this functions returns the value x.size().

5.6.2.2 Conversion of Global and Local Positions

The function jns::global_position converts a local position i of a domain/
relation x into its global position.

template<typename X>

size_t jns::global_position(const X& x, size_t i)

If i is not a local position this function returns the global size of x. For a
non-distributed domain/relation this function acts as the identity.

The function jns::local_position, on the other hand, converts a global
position g of a domain/relation x into its local counterpart.

template<typename X>

size_t jns::local_position(const X& x, size_t g)

If g is not the global position for any position i of x then this function
returns x.size(). As in the case of global_position, this function acts for
a non-distributed domain/relation as the identity.

5.6.2.3 The Load of a Distributed Object

In order to check the quality of the distribution of a domain the following
metric is used. Let D be a distributed domain that consist of the subdomain
D0, . . . , Dp−1. If ni is the number of elements of the subdomain Di then the
load L of the distributed domain D is defined as

L := p
max{n0, . . . , np−1}

p−1∑
i=0

ni

. (5.4)

This means that an even distribution has a load of 1. An uneven distribution
is characterized by a load greater than 1.

The function jns::load returns the load of a domain/relation of type X.
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template<typename X>

double load(const X& x);

In case of a non-distributed object x this function return the value 1.0.

5.7 Conclusions

This chapter presented the most important models of the concepts of Chap-
ter 4. It has been shown that the conceptual framework of Janus is flexible
enough to support, on the one hand, rectangular index spaces and typical
stencil relations on them, and arbitrary sets and general sparse relations on
the other hand as well. At the same time, these domain and relation classes
are available for distributed and non-distributed application scenarios. Thus,
the Janus framework and its data structures support a broad range of data
parallel applications.

Since most of the data structures of the Janus library are C++ template
classes they can be easily and efficiently configured for user-defined data
types. This avoid a major drawback of libraries such as PETSc[6] that for
historic reasons are written in the C programming language. At the same
time, Janus components can easily mixed with components that are written
in C and Fortran.

The key for Janus’ ability to support both regular and irregular appli-
cations rests on the idea on one-phase and two-phase data structures and
its clear separation of insert and access operations. Many of the algorithms
discussed in this chapter also follow this idea. As it will be seen in Chapter 7,
this is particularly suited for complex initialization procedures of data par-
allel applications. Another remarkable feature of the Janus template library
are the parallel versions of simple STL algorithms.
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Chapter 6

Porting Janus to Specific
Parallel Platforms

The chapters 4 and 5 described the general requirements and corresponding
components of the Janus framework. This chapter discusses with various
implementation aspects of the Janus components and their configuration for
different parallel architectures. Jade, a parallel package for Janus, is intro-
duced and details of its MPI implementation are presented. The performance
of Janus on top of MPI will be evaluated in Chapter 8.

Section 6.1 gives an overview on the internal classification and configura-
tion possibilities of the Janus components.

Section 6.2 discusses the reuse of data structures and algorithms from
(standard) libraries such as STL[98] and Boost[28]. Additional components
are developed where those libraries do not provide the necessary functionality.

Section 6.3 introduces Jade which stands for Janus Distributed Engine.
Jade provides various layers of abstractions for distributed memory archi-
tectures and constitutes a port package for Janus. It is explained how the
Jade constructs can be implemented using the Message Passing Interface[97]
(MPI).

Section 6.4 discusses issues of a portable shared memory implementation
of the Janus components. The focus there is on OpenMP[102] which is an
accepted portable programming model for shared-memory platforms.
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6.1 Configuration of Janus

The conceptual framework of Janus supports independent configurations of
its components for distributed-memory and shared-memory architectures. As
Figure 6.1 shows, basically all user-visible components are available for dis-
tributed and local-memory operation modes. In Section 5.1 it has been
demonstrated how the sub-namespace distributed and local of the names-
pace jns can be activated using the C++ preprocessor.

STL
External
Software

Modules

MPI

JADE

Shared−Memory Distributed−Memory
ComponentsComponents

OpenMP Boost

Local−Memory
Components

Data−Parallel Application

Janus

Figure 6.1: Dependence of Janus Modules

There are of course differences regarding the interfaces and semantics of
the components in the different namespaces. For example, mapping informa-
tion can be specified for the sorted_set or hash_set template class when
configured for distributed memory.

Another difference concerns the size() method of the concept Domain.
In case of a distributed configuration, it returns only the number of elements
that are contained in the subdomain of the calling process (see §4.2.3). How-
ever, these differences can be overcome to some extend by using the auxiliary
functions from Section 5.6.2.

6.2 Basic Implementation Aspects

The major part of the Janus Modules in Figure 6.1 are the local core compo-
nents. They comprise most of the components in the namespace jns::local.
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Due to the close relation between Janus and STL, there happens a lot of
reuse here. For example the STL sort algorithm is used in the implementation
of sorted_set::freeze().

The implementation of most of the domain/relation classes of Janus uses
the vector container to store elements. Thus the implementors and main-
tainers of Janus can rely on the dynamic memory management system of
the C++ standard library. Standard function objects for comparison, logical
and numerical operations are also frequently used.

The Boost[28] library collection is another base on which the implemen-
tation of Janus rests. Here the fixed-size array class boost::array and the
class boost::tuple for inhomogeneous arrays are used, for example to define
the value type of grid<N> (see Section 5.2.2.1).

One important algorithm that is missing both in STL and Boost is count-
ing sort [25]. This algorithm allows sorting in linear time, provided the ele-
ments to be sorted can be considered as a bounded set of integers. Within
Janus, counting sort is used to sort the keys of the two-phase hash table
hash_set (§5.2.1.2) Counting sort is also used in the Jade, the distributed
abstraction layer of Janus (§6.3), in order to initialize message buffers effi-
ciently.

6.3 Jade—Janus Distributed Engine

Jade separates the implementation of distributed Janus components from
lower level parallel communication software.

Jade itself consists—as shown in Figure 6.2—of three layers. The differ-
ent layers reflect different functionalities. It starts with simple functions for
starting, finishing, and querying the run time environment. Then it continu-
ous with simple various data movement operations and ends with two-phase
data movement classes. Figure {jade-layers also shows Janus components
whose implementation use the Jade-components.

The first layer provides Jade counterparts for the utility functions of
the Janus runtime environment presented in Section 5.6.1. The second layer
consists of the three functions jade::collect, jade::exchange_size, and
jade::exchange_buffer which are all collective operations that represent
various send/receive patterns. The term collective operation is used in the
sense of MPI [97] to describe data movement and computation operations
that are performed by all processes in a computation.
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jade::processjade::processesjade::finalizejade::initialize

jade::exchange_buffer
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jade::exchange_sizejade::collect
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Janus

Collectors

Figure 6.2: Layers of Jade

The third layer is constituted by the two template classes
jade::deliverer and jade::replicator. These classes transfer data in a
two-phase manner, that is, elements are first inserted and buffered (if neces-
sary) until they are send. Among other methods, both classes have a freeze

method that is an collective operation.

6.3.1 Jade Layer 1 Components

The layer 1 of Jade is formed by counterparts of the Janus runtime environ-
ment functions of Section 5.6.1.

void jade::initialize(int& argc, char**& argv);

void jade::finalize();

size_t jade::processes();

size_t jade::process();

An MPI implementation of this functions is given in Section 6.3.4 on
Page 112.

6.3.2 Jade Layer 2 Components

6.3.2.1 The collect Function

The template function jade::collect has two arguments.
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template<class T>

void collect(const T& t, std::vector<T>& result);

The first argument t with which collect is called in the i-the process be-
comes the i-th entry of the vector result. The length of the result vector
equals the number of parallel processes.

6.3.2.2 The exchange size Function

The function exchange_size has two arguments of type jns::size_vector

whose length must equal the number of parallel processes.

void exchange_size(const size_vector& input,

size_vector& output);

The k-th element of the input vector of the i-th process is copied into the
i-th element of the output vector of the output vector.

6.3.2.3 The exchange buffer Function

The template function exchange_buffer has six arguments which come in
two groups of three arguments. The first three arguments describe the data
that shall be sent whereas the second group describes the data to be received
by this collective operation.

template<typename T>

void exchange_buffer(const T* send,

const size_vector& size1,

const size_vector& offset1,

T* recv,

const size_vector& size2,

const size_vector& offset2);

Each group of argument has the same structure.

1. A pointer of type T that holds the starting address of the data to be
sent or received, respectively.

2. A jns::size_vector object whose length equals the number p of par-
allel processes. For i-th process the k-th element of this array describes
the number of consecutive elements in the buffer that shall be (sent
to)/(received from) k-th process.
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3. A jns::size_vector object whose length equals p+1. For i-th process
the k-th element of this array is the offset in the buffer at which the
data to/from the k-th process are sent/received.

6.3.3 Jade Layer 3 Components

6.3.3.1 The deliverer Template Class

The template jade::deliverer in Figure 6.3 collects objects and transfers
them to their designated location. Collection and transfer happens in a two-
phase way.

template<typename T>
class deliverer {
public:

typedef T value_type;

void insert_at(const value_type& v, size_t p);

void freeze();

size_t size() const;

const value_type& operator[](size_t) const;
};

Figure 6.3: The deliver template class

In the first phase, elements are inserted into the deliverer object using the
insert_at method. The second argument of this method denotes the process
to which the element shall be delivered. After calling the freeze method, the
second phase starts. Note that freeze is an collective operation that must
be called in all parallel processes. In the second phase, all inserted elements
have been delivered to their respective processes. The method size returns
the number of locally accessible objects and can only be called after the
deliverer has been frozen. Delivered objects can be accessed with operator.

The semantics of the operations of this class is very similar to those
of Two-Phase Domain (§4.2.3) and the collectors of Section 5.5.1. In fact,
the class deliverer is used for the implementation of all collectors—except
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the conversion_collector for which the template class replicator from
Section 6.3.3.2 is used.

The implementation of deliver is quite simple. In the first phase, in-
serted elements are stored into a temporary buffer and prepared to be sorted
with respect to their process. Within freeze the following steps are per-
formed.

1. Elements are sorted with respect to their designation process. Hereby
the counting sort algorithm mentioned in Section 6.2 is deployed.
Counting sort can be used here because the keys are from a bounded
set of integers.

2. After sorting the input buffer, the elements that have to be sent a
process are consecutively stored. The numbers of elements to be sent
and their offsets within the buffer are determined and exchanged using
the jade::exchange_size function (§6.3.2.2).

3. After receiving the size information of data to be sent, the size of the
receive buffer and the offsets for the data from the different processes
can be determined.

4. Finally, the inserted and sorted data are exchanged using the
jade::exchange_buffer function (§6.3.2.3).

Thus, communication that occur in this class is completely expressed by
using Jade functions of layer 1.

6.3.3.2 The replicator Template Class

The interface of the replicator template in Figure 6.4 is very similar to
that of the class deliverer (Figure 6.3.3.1 The only difference is that there is
only a method insert(const value_type&) which does not allow to specify
mapping information. The semantic of the insert, freeze, and access methods
of this class is a follows.

The elements that have been inserted in the process p can, after freezing
it, be accessed at all other processes. The methods size and operator[]

are the means for access. As in the case of replicator, all communication
operations are implemented using the exchange_size and exchange_buffer

methods of Jade.

Thus this class replicates inserted elements on other processes. This fea-
ture is very useful when objects for which no mapping information is available
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template<typename T>
class replicator {
public:

typedef T value_type;

void insert(const value_type& v);

void freeze();

size_t size() const;

const value_type& operator[](size_t) const;
};

Figure 6.4: The replicator template class

must be globally evaluated. However, clients of this class must bear in mind
the high amount of memory that is consumed to store many replicated ob-
jects.

The class replicator is used to implement the template
conversion_collector (§5.5.1.3) that transforms pairs of domain ele-
ment and associated data objects into local positions and associated data
objects.

• Pairs inserted in this collector are checked whether there first compo-
nents is an element of the local subdomain.

– If the first component is locally contained then it can be immedi-
ately converted into its position.

– If it cannot be locally resolved then the pair is inserted in to the
replicator.

• The freeze method of conversion_collector calls the freeze method
of the replicator. Thus unresolved pairs can now be checked in all other
processes and eventually resolved.

6.3.4 Porting Jade to MPI

Message-passing has become accepted as a portable style of parallel program-
ming on distributed memory architectures.
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The Message Passing Interface (MPI) standard is a library specification
for message-passing[97]. It was designed for high performance on both mas-
sively parallel machines and on workstation clusters. MPI was primarily
designed to enable the development of parallel libraries. Among the MPI
abstractions that simplify writing parallel MPI libraries are process groups
that describe participants of collective operations and topologies that describe
process relationships.

This section describes a simple MPI[97] implementation of the layer 1
and layer 2 functions of Jade. Table 6.1 shows which MPI functions have
been mainly used for the implementation of the Jade/Janus constructs.

Jade Section Implemented with MPI function
jade::initialize §6.3.1 MPI_Init

jade::finalize §6.3.1 MPI_Finalize

jade::processes §6.3.1 MPI_Comm_size

jade::process §6.3.1 MPI_Comm_rank

jade::gather §6.3.2.1 MPI_Allgather

jade::exchange_size §6.3.2.2 MPI_Alltoall

jade::exchange_buffer §6.3.2.3 MPI_Alltoallv

Table 6.1: Mapping of Jade to MPI functions

This table shows a close correspondence of Jade and MPI functions. For
communications routines, that is for routines from layer 2, collective MPI
functions have been used.

A major difference to MPI is that the routines gather and
exchange_buffer are template functions. MPI functions can also be called
with various types but the type the function is used for must be explicitly
specified by arguments. This is contrast to a C++ template function that
constitute a family of overloaded functions.

In order to use the MPI functions for the implementation of the generic
data movements of Jade Layer 2 the following condition must be fulfilled by
the template argument T.

• The bytes constituting an object of type T are contiguous.

• The bytes constituting an object of type T can be copied with
std::memcpy

– to a sufficiently large array of char and back again without chang-
ing the object’s value,
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– to another object of the type T, in which case the second object’s
value will be the same as that of the first.

Examples of types that fulfill these requirements are int, float,
std::pair<short,double>, or boost::array<int,3> which covers most of
the types used in the examples of Chapter 7 and inside the components of
Janus.

More generally said, these conditions are fulfilled by so-called plain old
data (POD)—a category of types specified by the C++ standard [101] which
includes

• Scalar types, i.e.,

– arithmetic types,

– enumeration types,

– pointer types, and

– pointer-to-member types.

• POD class types, which include classes without any of the following
members

– non-static data (including arrays) of any pointer-to-member type,

– non-static data (including arrays) of any non-POD class type,

– non-static data of any reference type,

– user-defined copy assignment operator, nor

– user-defined destructor.

6.4 Support for Shared Memory Systems

Since there are implementations of MPI for shared-memory systems, the MPI
port of Jade can run there as well. However, the message passing paradigm
is neither a natural nor efficient choice on shared-memory systems.

The OpenMP Application Program Interface[102] supports multi-
platform shared-memory parallel programming in C/C++ and Fortran. It is
a relatively new effort to boost shared memory programming on Unix plat-
forms and Windows NT platforms. OpenMP is a portable, scalable model
that gives shared-memory parallel programmers a simple and flexible inter-
face for developing parallel applications.

114



OpenMP specifies compiler directives, library routines, and environment
variables to express shared-memory parallelism. OpenMP fully supports
loop-level parallelism and to some extend permits nested parallelism. General
task parallelism is not supported by OpenMP.

In the paper[42], it has been described how OpenMP can be integrated
into Janus. As indicated in Figure 6.1, local components of Janus have been
enhanced by OpenMP directives. Hereby, mostly compiler directives that
annotate loops have been used. For simple applications such as the cellular
automaton simulation Game of Life (see Section 7.1), good speedup result
could be reported.

However, a problem is that in more complex applications much more
loops occur outside of Janus. With parallel processes, that is on top of
Jade, these loops are implicitly parallelized whereas with OpenMP they
must be explicitly annotated to perform in parallel.

Moreover, OpenMP requires an OpenMP-aware compiler and only a
few are available, for examples KAI’s Guide compiler[66]. This is in strong
contrast to MPI, which is a library specification that does not require addi-
tional tool support. Also, there are many MPI implementations including
free ones available[48].

For these reasons, the support for Janus on shared-memory architectures
is not yet as mature as on distributed-memory architectures.

6.5 Conclusions

In this chapter it has been shown how the components of Janus can be con-
figured for different parallel platforms. Jade, a parallel port package for
Janus, has been presented. Jade provides several layers of abstraction to
hide details of an underlying distributed-memory architecture. The compo-
nents of Jade are mostly (template) functions that can be easily ported to
MPI or other message passing systems. However, Jade provides also tem-
plate classes that implement higher level data movement operations that are
particular useful for the implementation of Janus’ two-phase data structures
and algorithms.

The relation of Janus two shared memory platforms has also been inves-
tigated. Janus can exploit the parallel processing power of these platforms
but not as transparently as for distributed-memory platforms.
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Chapter 7

Application Engineering with
Janus

The Janus conceptual framework and its generic components of Chapter 4
and Chapter 5 are the reusable work products for the domain of data parallel
applications. Their design rest on the domain analysis that was performed
in Chapter 3.

As pointed out in Section 2.3, the work products of domain engineering
are reused during application engineering, that is, when engineering concrete
systems in the domain.

In this chapter, the impact and the suitability of Janus on the implemen-
tation of broad field of data parallel application is investigated. This is done
by implementing representative data-parallel applications The chosen appli-
cations are closely related to those considered in Chapter 3. In particular
the following problems are considered:

• Conway’s Game of Life (see Section 7.1) which is cellular automa-
ton simulation that is performed on a two-dimensional grid and in-
volves stencil-like communication patterns. It is shown how simple
application-oriented communication patterns can be expressed with
Janus.

• Assemblage and solution of finite element method—see Section 7.2.
Both tasks constitute key components of finite element methods and
require Janus components that support irregular sparse structures. As
an example, a simple two-dimensional finite element method is consid-
ered and it is explained how the concrete, application-dependent data
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structures can be instantiated from generic Janus components. The
efficient assemblage of sparse matrices uses one of Janus’ two-phase
algorithms. The assembled linear system is solved with an iterative
method that uses the pull_matrix communication method of relation
classes.

• Red/Green refinement of triangulations is considered in Section 7.3.
This example extends the data structures used in Section 7.2. The em-
phasis of this section is on the use of Janus communication operations
that allow to evaluate individual (remote) elements.

• Bellman-Ford single-source shortest path algorithm—see Section 7.4.
This example shall illustrate the suitability of Janus for data-parallel
graph algorithms. Similar to the example on mesh refinement (Sec-
tion 7.3) the emphasis is on using Janus communication operations for
accessing individual elements.

Finally, a few general principles are formulated that are helpful when
writing data-parallel applications within the Janus framework. Performance
results will be presented in Chapter 8.

7.1 Conway’s Game of Life

A mathematical description of this cellular automaton simulation has been
given in §3.1.2. As pointed out there, Conway’s Game of Life rests on a
two-dimensional rectangular grid and uses an eight-point stencil to compute
the new state in each grid point.

In this section it is shown how the Janus components grid and stencil

can be deployed to provide a parallel implementation. In particular it
is shown how two-dimensional grids are declared and how an application-
dependent stencil can be described with Janus.

7.1.1 Grid Declaration

The grid that is at the bottom of Conway’s Game of Life can be defined with
the grid template §5.2.2.1.

jns::grid<2> g(lower, upper);
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The template parameter of grid specifies the grid dimension. The
arguments lower and upper of the grid object g are of type
jns::grid<2>::value_type. In order to describe the rectangular grid
[0,m) × [0, n) ⊂ Z, one can initialize lower and upper in the following
way:

lower[0] = 0; lower[1] = 0;

upper[0] = m; upper[1] = n;

7.1.2 Definition of the Eight-Point Stencil

A model of Relation that efficiently represents an eight-point stencil of
Equation 3.7 can now be easily built by using the jns::stencil template
(§5.3.2.1).

jns::stencil<2,8>

Note that the first template parameter of stencil is the dimension of the
underlying grid. The second parameter is the length of the stencil which is
in this case 8.

The offsets of the eight-point stencil are return by a short inline function
life_stencil:

boost::array<boost::array<int,2>,8>

life_stencil()

{

boost::array<boost::array<int,2>,8> r = {{

{{ -1, -1 }}, {{ -1, 0 }}, {{ -1, 1 }},

{{ 0, -1 }}, {{ 0, 1 }},

{{ 1, -1 }}, {{ 1, 0 }}, {{ 1, 1 }} }};

return r;

}

The pairs of braces {{ and }} are an artefact of the implementation of
boost::array as an aggregate[28, 99].

In order to define the concrete stencil object it must be specified on
which subset of the particular grid the stencil can be correctly applied. This
is necessary in order to avoid the application of a stencil on the boundary of
the grid where not all neighbors might exist.
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In the case of the eight-point stencil of Equation 3.7 the stencil can be
safely applied on subgrid [1,m− 1)× [1, n− 1) of [0,m)× [0, n).

For this two new temporary variables lower1 and upper1 of type
jns::grid<2>::value_type are declared

lower1 = {{ lower[0]+1, lower[1]+1 }};

upper1 = {{ upper[0]-1, upper[1]-1 }};

and initialized with the help of the previously defined (§7.1.1) grid bounds
lower and upper. Hereby, the fact that boost::array is implemented as an
C++ aggregate is exploited[99].

Finally, the definition of the concrete eight-point stencil object s on the
grid g reads:

jns::stencil<2,8> s(g, life_stencil(), lower1, upper1);

7.1.3 Application of the Eight-Point Stencil

The state (alive or dead) of the cells on the the grid object g can be eas-
ily represented by the STL container std::vector<int> which is a model
of Property Function(̃§4.3). The declaration of a property function object on
g reads:

std::vector<int> x(g.size());

The stencil object s defined in §7.1.2 will be used to compute the sum
of Equation 3.9 of living neighbor cells. When living cells are represented
by 1 and dead cells by 0 the sum is, as stated in §3.1.2 the number of living
neighbors.

The template member pull_reduce (§4.4.5.1) of stencil will be used
to compute these sums for all points of the grid g. The application-specific
visitor object LifeV uses these sums and the state of the cells to compute
the next generation.

The class LifeV in Figure 7.1 implements the rules of Equation 3.10 to
compute for a grid point the state of a cell in the next generation. The class
LifeV satisfies the requirements of a relation visitor (Table 4.19), that is, it
provides

void operator()(size_t i, int sum)
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where i is the position of the grid point under consideration and sum the
number of living neighbors.

struct LifeV {

const int* a;

int* b;

LifeV(const int* a_, int* b_) : a(a_), b(b_) {}

void operator()(size_t i, int sum) {

b[i] = (sum == 3) ? 1 : (sum == 2) && a[i];

}

};

Figure 7.1: Evaluate visitor for Life

With these preparations a short Life simulation on the grid g (consisting
of 100 iterations) finally reads:

std::vector<int> y(g.size());

for(size_t i = 0; i < 100; i++) {

s.pull_reduce(&x[0], LifeV(&x[0], &y[0]));

x.swap(y);

}

The property function y serves as a temporary variable that holds the new
state. By using the swap method of std::vector the property function x is
reinitialized with y at the end of each simulation step.

A temporary LifeV visitor object that is initialized with the starting
addresses of the state functions x and y is passed as second parameter to the
pull_reduce method (§4.4.5.1). The first argument of pull_reduce is also
the address to the data stored by x.

7.1.4 Discussion

In this section it has been shown how Conway’s Game of Life can be im-
plemented using the Janus components grid and stencil. The core of this
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simulation is the repeated evaluation of an eight-point stencil on a static
tow-dimensional grid.

A parallel implementation for a distributed-memory platform has to deal
with fact that some of the neighboring grid points are located on different
processors. For clients of Janus, however, this aspect is only of little concern.
After declaring the stencil and instantiating it for a particular grid, all data
movements that are caused by the application of the stencil are automatically
handled by the pull_reduce method required by Relation. Moreover, the
data movement and subsequent computation can be easily combined since
pull_reduce can be customized through a Visitor class.

The expressiveness of the Janus implementation is comparable with the
parallel implementation of Life that uses p3l —a structured parallel language
based on skeletons[27]. Skeletons are a fixed set of patterns that provide a
restricted parallel computation model.

The performance of the Janus implementation of Life is investigated in
Section 8.2 on Page 165.

7.2 A Simple Finite Element Method

In this section, it is outlined how a simple parallel finite element method can
be implemented using the Janus components of Section 5.

In accordance with Hackbusch[52], the Poisson problem

−∆u(x) = f(x) x ∈ Ω (7.1)

u = 0 on ∂Ω (7.2)

with homogeneous boundary conditions (see Equation 7.2) on a polygonal
domain is chosen as model boundary value problem. For sake of simplic-
ity linear triangle elements[19] are applied to provide a discretization of this
problem. This simple setting requires that only the triangles and vertices of
the triangulation have to be represented (see Section 7.2.1). It is explained
how a distributed representation of these sets and of the triangle-vertex re-
lation can be easily described.

The key points of this section is the use of the Janus classes domain and
relation in order to represent the components of the irregular mesh and
its relations. Section 7.2.1 also discusses the initialization of user-defined
domain types and associated values.

In Section 7.2.2 , it is shown how the discretized differential operator is
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assembled from so-called element matrices that are defined on the triangles. It
is also outlined how, using the triangle-vertex relation, the element matrices
are computed. For the efficient assemblage of the element matrices the Janus
algorithm relation_accessor is used.

Finally, in Section 7.2.3, it is shown how the conjugate gradient iterative
method for the solution of the discrete system can be implemented in Janus.
The emphasis of this section is on the use of the pull_matrix method of
Relation and of parallel versions of STL algorithms to express the core com-
ponents of an iterative method.

7.2.1 Sets and Relations

In this section it is explained how the different sets and relations that form
a triangulation are represented using domain and relation classes of Janus.
Figure 3.5 on Page 44 shows the sets of triangles T and set of vertices V
of the triangles. The emphasis is on the initialization of concrete two-phase
data structures and the application-dependent attributes that are associated
with them.

7.2.1.1 Defining Domain and Relation Types

Vertices are represented as integers whereas triangles are described as the
triple (a, b, c) of its three vertices a, b, and c. The corresponding type defini-
tions read:

typedef int Vertex;

typedef boost::array<Vertex,3> Triangle;

Hereby the fixed-size array template of the Boost library[28] is used.

With these types corresponding models of domains can be easily defined
using the sorted_set template (see §5.2.1.1).

typedef jns::sorted_set<Vertex> Vertices;

typedef jns::sorted_set<Triangle> Triangles;

Relations of domain elements must be explicitly defined in Janus. This
also holds for such an “obvious” relation such as the one that associates the
vertices with a triangle. Note that this relation is implicitly given through
the way triangles are described.
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Since the triangle-vertex relation is a sparse relation it can be naturally
represented using the relation template of Janus.

typedef jns::relation Relation;

7.2.1.2 Associating Properties with Domains

A mesh generator such as Triangle[93] provides not only the lists of vertices
and triangles of a triangulation but also certain attributes that are associated
with these geometric objects. Examples of such attributes are the Cartesian
coordinates of a vertex and flag that indicates whether a vertex is on the
boundary of the domain or not.

There are two major ways to represent such attributes. The first possibil-
ity is to augment the Vertex data type so that it contains the attributes as
subobjects. The following code fragment declares a type AugmentedVertex

that contains subobjects of type Vertex and bool to represent a boundary
flag.

struct AugmentedVertex {

Vertex vertex;

bool flag;

};

The close coupling of primary data (in this case the vertex) and attributes
(here the boolean flag) has obvious advantages. However, from the point of
view of high performance this close coupling has also drawbacks since it easily
leads to “heavy-weight” objects that in contrast to type Vertex cannot be
held in registers1 and lead to more frequent cache misses. Another drawback
of this approach is that a client of Vertex had to modify her/his augmented
data structure whenever new attributes must be added.

The second approach rests on associating one or more ranges of random
access iterators whose value type represents the attribute(s) with a domain.
This is the basic idea of property functions of Section 4.3 and it is also applied
in this case. Therefore at first the following attribute types are introduced:

typedef short Flag;

1The ability to keep objects on the stack and even to hold them in registers is a key
performance advantage of C++ over other languages, for example Java. For this reason,
the newer C# programming language introduces value types (in contrast to reference types)
to represent light-weight objects
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typedef double Real;

typedef boost::array<Real,2> Coordinate;

Then the vector class from the C++ standard library is deployed to define
types that can describe ranges of appropriate random access iterators.

typedef std::vector<Flag> Flags;

typedef std::vector<Real> Reals;

typedef std::vector<Coordinate> Coordinates;

In the following section it is explained how domain objects and associated
property functions can be initialized.

7.2.1.3 Initialization of Domains and Properties

At first the initialization of the triangle set is considered. The case of triangles
is easy since in the setting of linear triangle elements there are no additional
attributes associated with a triangle—except the mapping information of the
triangle. These data are contained in a file where each line consists of four
integers

a b c m.

The first three integers represent a triangle whereas the last integer m is the
process number to which the triangle (a, b, c) shall be mapped.

The mapping information can be provided by applying partitioning tools
such as Metis[63] or Mosaik[103]. More important, however, is to under-
stand that Janus does not provide any mapping procedures (except for the
grid template of §5.2.2.1). This important concern of parallel computing is
deliberately left to tools like Metis or Mosaik.

Reading the triangles from a file and distributing them according to the
mapping specified there is shown in Figure 7.2.

Two remarks are important for a better understanding of the code in
Figure 7.2.

1. Since every element may be inserted only once into a domain (cf. Ta-
ble 4.5 it is necessary to perform the read and insert operations only
on one process (in this case process 0). The freeze method, however,
must be called in all participating processes.

2. The distribution of the triangles is only completed when the freeze

method of the Triangles class has been called. The insert_at method
only indicates the mapping. This has been explained in Section 4.2.3.4.

125



void read(fstream& file, Triangles& triangles)

{

if (jns::process() == 0)

{

Triangle t;

size_t p;

while((file >> t) && (file >> p))

triangles.insert_at(triangle, p);

}

triangles.freeze();

}

Figure 7.2: Reading and distribution of triangles

Figure 7.3 shows a partitioning of the triangulation of Figure 3.5 onto
seven processes. This triangulation was created using the Triangle[93]
mesh generator. As partitioner Metis[63] was used.

Figure 7.3: Partitioning of a triangulation

A bit more complicated is the initialization of vertex set of the triangula-
tion because there are two attributes associated with a vertex. These are, on
the one hand, the Cartesian coordinates which will be represented as objects
of type Coordinate. On the other hand, there is a boolean flag associated
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with each vertex where true indicates that the vertex is on the boundary of
the domain. Boolean and other flags will be represented as objects of type
Flag.

For sake of clarity, only one vertex attribute, namely the Cartesian coor-
dinates are considered. Moreover, as in the case of triangles, a line-oriented
input format is assumed. This means that each line of the input file has the
structure

v x y m

where v denotes the vertex, (x, y) its Cartesian coordinates, and m the pro-
cess number to which the vertex shall be mapped.

The following Figure 7.4 shows a function that implements the task of
reading the vertex input and distributing it onto the parallel machine.

The major differences to reading and distributing the triangles (see Fig-
ure 7.2) are explained here.

1. A domain collector is introduced that distributes vertices and associ-
ated attributes according to the specified mapping info. The template
class collector<A,B> handles objects of type std::pair<A,B>, that
is in this particular case std::pair<Vertex,Coordinate>. For more
details see Section 5.5.1.1.

2. After freezing the collector all vertices and their respective attributes
have been transferred to the specified processes. As a consequence the
insert method instead of insert_at can be used to insert the vertices
that have been retrieved from the collector.

3. After freezing the vertex domain, the number of locally stored vertices
is known. This number is used to give the property function that shall
hold the vertex coordinates the correct size. Then again the collected
data are retrieved from the collector. For each retrieved object of type
std::pair<Vertex,Coordinate> the position of first component (i.e.
the vertex) is searched in the vertices domain and the second com-
ponent (i.e. the Cartesian coordinates) is assigned at that position of
the property function c.

Note that this procedure can be easily extended to the case of several
attributes by providing an appropriate class as second template parameter
of collector.
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void read(fstream& file, Vertices& vertices, Coordinates& c)

{

jns::collector<Vertex,Coordinate> collector;

if (jns::process() == 0)

{

Vertex v;

Coordinate xy;

size_t m;

while(file >> v && file >> xy && file >> m)

collector.insert(v, xy, m);

}

collector.freeze();

for(size_t i = 0; i < collector.size(); ++i)

vertices.insert(collector[i].first);

vertices.freeze();

c.resize(vertices.size());

for(size_t i = 0; i < collector.size(); ++i) {

std::pair<Vertex,Coordinate> a = collector[i];

size_t pos = vertices.position(a.first);

c[pos] = a.second;

}

}

Figure 7.4: Reading and distribution of vertices and their coordinates

7.2.1.4 Initialization of the Triangle-Vertex Relation

The triangle-vertex relation plays a special role when computing the dis-
cretization of the Laplace operator in Equation 7.1. As it name suggests,
this relation describes for each triangle of the triangulation what are the
(global) positions of its three vertices—see Figure 7.5.

The triangle-vertex relation is used to access the coordinates of the ver-
tices from the triangles.

After initializing the triangle set triangles and the vertex set
vertices, this relation can be easily defined. Hereby, the Janus algorithm
n_relation_insert of Figure 5.8 is deployed.
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Figure 7.5: Triangle-vertex relation

First a function object that describes the relationship between a triangle
and its vertices must be defined. The definition is trivial because the triple
of vertices that belong to a triangle constitutes this triangle.

struct TriangleVertices {

typedef Triangle argument_type;

typedef boost::array<Vertex,3> result_type;

result_type operator()(argument_type a) const

{

return a;

}

};

With this function object the code for the initialization of the triangle-
vertex relation object tv reads:

Relation tv(triangles, vertices);

TriangleVertices gen;

jns::n_relation_insert(triangles, vertices, gen, tv);

tv.freeze();

Figure 7.6: Initialization of the triangle-vertex relation

Thus, the generic Janus algorithms can be easily customized to initialize
an application-dependent relation. The computations and necessary data-
movement operations are hidden from the user.
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7.2.2 Sparse Matrix Assemblage

The discretized Laplace operator (Equation 7.1) is computed by assembling
element matrices according to Equation 3.12 on the triangles of triangulation.
For linear triangle elements, there are three degrees of freedom associated
with each triangle. These degrees of freedom are located at the vertices of the
triangle. Note that Equation 3.12 can be simplified by using the Term 3.13.
In order to compute this term, the coordinates of the vertices of all triangles
must be evaluated on the triangles. Therefore the triangle-vertex relation of
Figure 7.6 plays an important role in the code of Figure 7.7.

Two versions of sparse matrix assemblage are considered. In the first
version, both the sparse relation and the matrix coefficients associated to it
are assembled. In the second version, it is assumed that the sparse relation
has already been constructed and only the coefficients have to be computed.
The second version is more efficient when several matrices with the same
sparsity pattern have to be computed. This frequently occurs when solving
time dependent problems.

7.2.2.1 Assembling Relation and Coefficients

The structure of the code in Figure 7.7 is similar to that of reading the
vertices and their coordinates in Figure 7.4.

1. Objects that consist of a key component and a data component are
distributed according to the mapping of their key using a collector
object.

2. The spatial structure (in this case the relation) is initialized using the
collected key components.

3. Finally, the data components of the collected objects are used to ini-
tialize a property function that holds additional attributes of the spatial
structure.

A notable difference to the reading of Vertices in Figure 7.4, however, is that
in all processes the data are inserted in the collector object. Here follows a
more detailed description of the code in Figure 7.7.

1. (a) The triangle-vertex relation tv is used (as mentioned above) to
access the coordinates of the vertices of the triangles. Therefore
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void assemble(const Vertices& vertices, const Relation& tv,
const Coordinates& coordinates,
Relation& r, Reals& coefficients)

{
Relation::accessor<Coordinate> accessor(tv, coordinates);
accessor.pull();
jns::relation_collector<Real> coll(vertices, vertices);
for(size_t i = 0; i < tv.size1(); ++i) {

std::vector<Coordinate> value(tv.size(i));
std::vector<size_t> index(tv.size(i));
for(size_t k = 0; k < tv.size(i); ++k) {

value[k] = accessor.get(i,k);
index[k] = tv.second(i,k);

}
Matrix33 e = laplace_linear_element_matrix(value);
for(size_t m = 0; m < index.size(); ++m)

for(size_t n = 0; n < index.size(); ++n)
coll.insert(index[m], index[n], e(m,n));

}
coll.freeze();

for(size_t i = 0; i < coll.size(); ++i)
r.insert(coll[i].first);

r.freeze();

coefficients.resize(r.size());
for(size_t i = 0; i < coll.size(); ++i) {

std::pair<jns::pair_size_type,Real> p = coll[i];
coefficients[r.position(p.first)] += p.second;

}
}

Figure 7.7: Assemblage of the sparsity pattern and coefficients

at first, an appropriate accessor object is defined and updated by
calling its pull method (see Section 4.4.4).

(b) A relation_collector (Section 5.5.1.2) is declared and bound to
the vertices of the triangulation. This collector objects will tem-
porarily hold and deliver pairs of relation elements and associated
real numbers to their respective processes.
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(c) For all triangles (locally this number equals tv.size1()), two
auxiliary arrays value and index are initialized with the coor-
dinates and the (global) positions of the vertices. Hereby the
methods second of Table 4.15 and get of Table 4.18 are used.

(d) The array value whose size equals the number tv.size(i) of
vertices that belong to the i-th triangle (that is 3) is passed to the
function laplace_linear_element_matrix which computes the
corresponding 3× 3 element matrix object e of type Matrix33.

(e) The 9 matrix coefficients of the element matrix e are inserted
together with their indices in the collector. After all element ma-
trices have been computed the collect is frozen.

2. After freezing the collector, the pairs of indices and contributions to
the matrix coefficients are stored in the collector. At first the key
components, that is the relation elements are inserted into the relation
object r and the relation is frozen, too.

(a) Note that this relation r constitutes the nearest-neighbor relation
of the vertices of the mesh that is two vertices belong to r if there
is a triangle which both belong.

(b) Note also that most of the index pairs are inserted twice into the
relation. This is due to the fact that two triangles that share
the vertices with positions x and y compute a contribution to the
index pair (x, y). Multiple inserted index pairs are removed and
only one copy of them left in the relation during the execution of
the freeze method.

3. Finally, the collector is traversed again and the contributions to the
matrix are added to the matrix coefficients m at the position of the
corresponding index pair in the relation r.

7.2.2.2 Assembling only Coefficients

The Janus implementations of this version of matrix assemblage (shown in
Figure 7.8) is a simplified version of the general sparse matrix assemblage
routine of Figure 7.7.

Major differences are that instead of relation_collector an object of
type relation_accumulator (§5.5.2.3) is used. The relation accumulator
accu is initialized with the assembled relation r. The accumulator adds
the inserted values to the according positions of the coefficients property
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void assemble(const Vertices& vertices, const Relation& tv,
const Coordinates& coordinates,
const Relation& r, Reals& coefficients)

{
Relation::accessor<Coordinate> accessor(tv, coordinates);
accessor.pull();
jns::relation_accumulator<Relation,Real> accu(r,coefficients);
for(size_t i = 0; i < tv.size1(); ++i) {

std::vector<Coordinate> value(tv.size(i));
std::vector<size_t> index(tv.size(i));
for(size_t k = 0; k < tv.size(i); ++k) {

value[k] = accessor.get(i,k);
index[k] = tv.second(i,k);

}
Matrix33 e = laplace_linear_element_matrix(value);
for(size_t m = 0; m < index.size(); ++m)

for(size_t n = 0; n < index.size(); ++n)
accu.insert(index[m], index[n], e(m,n));

}
accu.freeze();

}

Figure 7.8: Assemblage of Coefficients only

function. Note that these operations can be delayed until the freeze method
has been called.

The Relation argument r is passed as non-mutating reference—
indicating that the relation has already been assembled.

7.2.2.3 Discussion

Assemblage of element matrices is a key component of finite element pro-
grams. This section presented two Janus implementations. The first version
assembles both the sparse relation and the associated matric coefficients. The
second versions assumes that the sparse relation has already been assembled
and only coefficients have to be accumulated. Both scenarios can occur in a
finite element program and it is therefore important that Janus can support
them.
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7.2.3 Implementation of the Conjugate Gradient
Method

Figure 7.9 shows the parallel implementation of the methods of conju-
gate gradient within the Janus framework. This implementation rests on
the conjugate gradient method that is part of the Iterative Matrix Library
(IML++)[30]. Major differences are that overloaded numerical operators are
not deployed in the Janus implementation. Rather the pull_matrix method
and simple template functions are used to express basic linear algebra oper-
ations. This approach is similar to that of Iterative Template Library[71].

7.2.3.1 Template Parameters and Signature

The function cg in Figure 7.9 has the following template parameters.

• Rel which is a model of Relation and represents the sparse matrix format
of the linear system to be solved.

• Vec is also a model of Property Function that represents right hand
side and solution of the liner system to be solved and moreover the
coefficients of the matrix.

• Prec represents the preconditioner used in the conjugate gradient
method.

• Real shall be the value type of Vec.

The arguments of the function cg are:

• the relation object R and the associated matrix coefficients m,

• the solution vector x and the right hand side b of the equation,

• the preconditioner prec, and

• the maximal number of iterations (max_iter) to be performed and the
value tol that indicates when the conjugate gradient method can be
terminated.

7.2.3.2 Implementation

The source code in Figure 7.9 emphasizes the four major algorithmic com-
ponents already mentioned in Section 3.1.3.3.
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template<class Rel, class Vec, class Prec, class Real>
std::pair<size_t, Real>
cg(const Rel& R, const Vec& m, Vec& x, const Vec& b,

const Prec& prec, std::pair<size_t,Real> control)
{

Real normb = norm(b); if (normb == 0.0) normb = 1;
Vec r(x.size());
R.pull_matrix(&m[0],&x[0],jns::assign_visitor<Real>(&r[0]));
scale_add(r, -1.0, b);

Vec p(x.size()), q(x.size());
Real rho, res = 0;
for (size_t i = 1; i <= control.first; i++) {

prec.solve(r,q);
Real rho_old = rho;
rho = dot(r,q);
scale_add(p, (i == 1) ? 0 : rho / rho_old, q);

R.pull_matrix(&m[0],&p[0],jns::assign_visitor<Real>(&q[0]));
Real alpha = rho / dot(p,q);
update(x, alpha, p);
update(r, -alpha, q);

res = norm(r)/normb;
if (res <= control.second) return std::make_pair(i,res);

}
return std::make_pair(control.first,res);

}

Figure 7.9: Implementation of the conjugate gradient method in Janus
.

Matrix-vector multiplication is expressed using the pull_matrix

method on the relation object R together with the coefficients m. Note that
the pull_matrix method handles any communication that might result from
a distributed representation of the matrix.

Vector updates are expressed using the template functions scale_add

and update whose simple implementations are shown here.

template<typename Vector, typename Scalar>
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void scale_add(Vector& w, Scalar s, const Vector& v) {

for(size_t i = 0; i < w.size(); ++i)

w[i] = v[i] + s*w[i];

}

template<typename Vector, typename Scalar>

void update(Vector& w, Scalar s, const Vector& v) {

for(size_t i = 0; i < w.size(); ++i)

w[i] += s*v[i];

}

Both are communication-free methods.

Inner products are represented by the functions dot and norm. Their
implementation rests on the parallel version (see Section 5.5.3) of the STL
algorithm inner_product.

template<typename Vector>
typename Vector::value_type
dot(const Vector& v, const Vector& w)
{

typedef typename Vector::value_type V;
return jns::inner_product(v.begin(), v.end(), w.begin(), V());

}

Preconditioning is the most complicated part of the conjugate gradient
method. Numerical efficient preconditioners have—as mentioned in Sec-
tion 3.1.3.3—only a small degree of data parallelism. Good preconditioners
must respect the structure of the matrix (R,m).

From the point of view of the conjugate gradient method
in Figure 7.9 a preconditioner is a class that has a method
solve(const Vector&, Vector&). In the next Section 7.2.3.3 it is
shown how a simple parallel preconditioner can be defined in Janus.

7.2.3.3 A Simple Preconditioner

In this section it is shown how a simple preconditioner can be defined for
the solution of the sparse system assembled in Section 7.2.2. The precondi-
tioner in question implements diagonal scaling and uses the inverse diagonal
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entries of the matrix (R,m). This preconditioner is also referred to as Jacobi
preconditioning[52].

As requested by the conjugate gradient method in Figure 7.9, there must
be a method solve(const V&, V&) with an appropriate vector type V. In
this example, the type Reals that was introduced in Section 7.2.1 is deployed.

Figure 7.10 shows the class Jacobi that implements the Jacobi precon-
ditioner.

class Jacobi {
Reals inverse;

public:
Jacobi(const Relation& r, const Reals& m)
{
inverse.resize(r.size1());
for(size_t i = 0; i < r.size1(); i++) {

size_t first = r.first(i);
for(size_t k = 0; k < r.size(i); k++)
if (first == r.second(i,k)) { // diagonal entry

Real diag = m[r.position(i,k)];
inverse[i] = (diag == 0) ? 1.0 : 1.0 / diag;
break;

}
}

}

void solve(const Reals& v, Reals& w) const
{
for(size_t i = 0; i < v.size(); i++)

w[i] = v[i]*inverse[i];
}

};

Figure 7.10: Implementation of Jacobi preconditioner

In the constructor of class Jacobi of Figure 7.10, the inverse of the diago-
nal of the matrix (R,m) is computed. At first, using the access methods from
Table 4.15 it is determined at which positions of the coefficient vector the
diagonal entries reside. Once a diagonal entry has been found, it is inverted
(or set to 1 if the diagonal entry equals 0).

The method solve in Figure 7.9 just multiplies the input vector with the
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initially computed inverse diagonal entries.

7.2.4 Discussion

This section has covered many aspects of finite element programming.
Firstly, it has been described how the basic sets and relations that con-
stitute a finite element mesh can be represented with Janus components. It
has been profoundly discussed how the initialization of these sets and the as-
sociated attributes is performed using the two-phase property of Janus data
structures.

Secondly, the use of Janus when assembling element matrices to a large
sparse matrix has been investigated. Interestingly, this computation follows a
pattern that is similar to the initialization of sets and relation in Section 7.2.1.
The use of two-phase algorithms allows to hide most aspects of an underlying
distributed-memory architecture from the user.

Thirdly, it has been shown how an iterative solver—a key component of
scientific software—is implemented in Janus. The pull_matrix method of
Relation allows to utilize the underlying sparse matrix format efficiently. The
implementation of other key components such as inner products or precon-
ditioners has also been discussed. The performance of this Janus implemen-
tation is evaluated in Section 8.3.

7.3 Red-Green Triangle Refinement

In this section, the Janus implementation of a triangle refinement method
is presented. Such a refinement scheme can be used, for example, when
the finite element problem of Section 7.2 is to be solved on a sequence of
adaptively refined triangulations.

To be more precise, the red-green refinement method whose subdivision
rules were presented in Section 3.1.4.1 is discussed.

The discussion includes

• The outline of a Triangulation data structure (Section 7.3.1). This
data structure will reuse most of the types introduced in Section 7.2.1.
Additional relations to access data that are associated with the edges
of triangles are introduced as well.

• A description of how the closure process of the initial edge marking
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is implemented (see Section 7.3.3). Closure is—as discussed in Sec-
tion 3.1.4.3—an iterative procedure that requires for each element the
evaluation of data that are associated with its edges or faces. Here the
nested accessor type that is provided by models of Relation is used to
efficiently access these data regardless whether the mesh is distributed
or not.

• The actual subdivision of the marked edges and triangles is outlined
in Section 7.3.4. In order to avoid multiple insertions of triangles or
edges into the new triangulation, an unambiguous subdivision policy
for triangulations is formulated.

• Finally, it is explained in Section 7.3.5 how the subdivided triangula-
tion is repartitioned to remove major imbalances that can occur during
adaptive refinement. The point is: when using Janus components to
represent a distributed mesh it is relatively easy to redistribute a mesh
according to the mapping information provided by external repartition-
ing tools.

7.3.1 Representing the Triangulation

The Triangulation used in this section shall hold the data that are produced
by the Triangle mesh generator[93] These data include not only the sets
of vertices or triangles but also associated properties. Thus restructuring
the triangulation means not only that new triangulation elements, that is,
triangles, edges, or vertices are generated and unnecessary ones are removed.
It also means that the associated properties are properly defined, for example,
interpolating coordinates of vertices that are created through subdivision of
an edge.

Here is a complete list of the involved sets and associated properties as
required by Triangle.

1. The set of vertices of the triangulation where a vertex is represented
by an integer. Associated attributes are:

(a) the Cartesian coordinates of the vertices

(b) for each vertex a flag that indicates whether it is a boundary vertex
or not.

2. The set of edges of the triangulation where an edge is represented by
an ordered pair of its vertices.
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(a) The only associated property of an edge is a flag that indicates
whether it is a boundary edge.

3. The set of triangles of the triangulation.

The simple types Vertex, Triangle, Flag, and Coordinate from Sec-
tion 7.2.1 together with their container equivalents Vertices, Triangles,
Coordinates, and Flags are used to represent most of the above mentioned
sets and associated properties.

7.3.1.1 Representing Edges

A new type Edge is introduced to represent edges of a triangulation.

typedef boost::array<Vertex,2> Edge;

Not surprisingly, the fixed-size container class array of Boost[28] is used to
define Edge. However, the template class std::pair could have also been
used.

Note that only undirected edges are considered. One way to deal with
this requirement is to ensure that for each edge e = (v1, v2) the condition
v1 < v2 holds. Edges that are created using the function

Edge make_edge(const Vertex& v, const Vertex& w);

are guaranteed to fulfill this requirement.

As for the sets of vertices and triangle, the Janus domain class
sorted_domain is deployed to represent sets of edges.

typedef jns::sorted_domain<Edge> Edges;

As in the case of vertices, boundary flags for edges will be represented by
objects of type Flag and Flags.

7.3.1.2 Representing Red-Green Information

The rules of red-green triangle subdivision have been formulated in Sec-
tion 3.1.4.1. As mentioned there, it is important to keep track of the color of
triangles in order to ensure that triangles that have been created by halving
an angle, that is green triangles, are not further subdivided.
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Triangle colors can be represented by objects of type Flag using the
symbolic constants

const Flag Red = 0;

const Flag Green = 1;

const Flag Blue = 2;

The color Blue serves as an additional color to differentiate the three edge of
a green triangle.

It had been also pointed out in Section 3.1.4.1 that it is important to be
able to reconstruct the red parent triangle of a two green sibling triangles. As
it will be seen in the following subsections, this can be achieved by assigning
to each edge one of the following flags:

const Flag First = 0;

const Flag Second = 1;

const Flag None = 2;

The meaning of these flags for an edge e = (v1, v2) is

• First: it is a green edge and its first vertex v1 subdivided the edge in
Figure 3.7.

• Second: it is a green edge and its second vertex v2 subdivided the edge
in Figure 3.7.

• None: it is a red edge.

7.3.1.3 The Class Triangulation

The public access methods of the Triangulation data structure is shown in
Figure 7.11.

Each of the public access methods of class Triangulation in Figure 7.11
returns a reference to a non-public data member. How these member can be
initialized by reading data from a file has been explained in Section 7.2.1.3.

7.3.2 Additional Relations and Properties

Several additional data structures are necessary to be able to perform red-
green refinement. However, as they are only temporarily needed, they are
not members of class Triangulation.
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class Triangulation {

public:

const Vertices& vertices() const;

const Edges& edges() const;

const Triangles& triangles() const;

const Coordinates& coordinates() const;

const Flags& boundary_vertices() const;

const Flags& boundary_edges() const;

const Flags& edges_mode() const;

};

Figure 7.11: Public access method of class Triangulation

The necessary items include several relations and properties that are as-
sociated with triangles of the triangulation.

7.3.2.1 The Triangle-Edge Relation

The triangle-edge relation associates with each triangle the (global) positions
of its three edges—see Figure 7.12. This relation plays an essential role in
red-green refinement.

Figure 7.12: Triangle-edge relation

As the triangle-vertex tv relation of Figure 7.5 it will be represented
by an object of type Relation. The corresponding relation object will be
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referred to as te. This relation object can be initialized analogously to the
triangle-vertex relation in Figure 7.6. A function object that describes the
relationship a triangle and its edges can be defined as:

struct TriangleEdges

{

typedef Triangle argument_type;

typedef boost::array<Edge,3> result_type;

result_type operator()(argument_type t) const

{

result_type edge;

edge[0] = make_edge(t[1], t[2]);

edge[1] = make_edge(t[0], t[2]);

edge[2] = make_edge(t[0], t[1]);

return edge;

}

};

7.3.2.2 The Edge-Vertex Relation

Similar to the triangle-edge of Figure 7.12, the edge-vertex relation in Fig-
ure 7.13 is used during edge-green refinement. This relation is represented
by the object ev of type Relation.

Figure 7.13: Edge-vertex relation

7.3.2.3 Triangle Colors and Edge Permutations

One immediate use of the triangle-edge relation is to compute for each tri-
angle:

1. Its color, that is, whether it is red because it was created according to
Figure 3.6 or whether it is green because it was created according to
Figure 3.7.
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2. In case of a green triangle, the three colors red, green, and blue can be
assigned to its edges—see Figure 7.14. For the correct implementation
of the red-green subdivision rules it is necessary to determine the per-
mutation of these three colors with respect to the order in which the
positions of the edges occur in the triangle-edge relation.

red

green

blue

Figure 7.14: Edge colors of green Triangles

3. While traversing the triangle-edge relation and accessing the edges and
associated data another important relation can be initialized. It is an
edge-edge relation that associates with each green edge its correspond-
ing two red edges as shown in Figure 7.15. This relation is useful when
two sibling green triangles have to be removed because one of their
edges has been marked for refinement.

Figure 7.15: Edge-edge relation of green Triangles

All these information can be determined by accessing for each triangle
its edge mode attributes. In order to compute the permutations the edges
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must also be accessed. These computations are performed by the routine
prepare_refinement whose signature is shown here:

void prepare_refinement(const Edges& edges,

const Flags& edge_colors,

const Relation& te,

Flags& triangle_colors,

jns::size_vector& red,

jns::size_vector& green,

jns::size_vector& blue,

Relation& ee);

Note that the permutations for the edges of green triangles are represented
by the three property functions red, green, and blue which are of type
jns::size_vector.

The implementation of this routine is presented in Figure 7.16.

First the triangle-edge relation is bound to the edges and edge modes
of the mesh. Then for each triangle the edge modes are evaluate using the
function check_flag.

std::pair<size_t,Flag>

check_flag(size_t i, const Relation::accessor<Flag>& mode) {

for(size_t k = 0; k < 3; ++k) {

Flag f = mode.get(i,k);

if (f == First || f == Second) return std::make_pair(k,f);

else assert(f == None);

}

return std::make_pair(3,None);

}

This function returns a pair of size_t and Flag. The first component
indicates which of the edges is a green edge. The second component holds
the flag of that edge. If no green edge exist for this triangle then the first
component is set to 3.

In case the i-th triangle in Figure 7.16 has a green edge it is checked
which of the remaining edges coincides with the vertex indicated by the flag
of the green edge.
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Relation::accessor<Flag> em_access(te, edge_mode);

em_access.pull();

Relation::accessor<Edge> edge_access(te, edges);

edge_access.pull();

for(size_t i = 0; i < te.size1(); ++i)

{

assert(te.size(i) == 3);

std::pair<size_t,Flag> which = check_flag(i, em_access);

if (which.first == 3) triangle_colors[i] = Red;

else {

triangle_colors[i] = Green;

green[i] = which.first;

const Edge edge = edge_access.get(i,green[i]);

const Vertex v = edge[which.second];

for(size_t k = 0; k < 3; ++k)

if (k != green[i]) {

Edge e = edge_access.get(i,k);

if(e[0] == v || e[1] == v) blue[i] = k;

else red[i] = k;

}

ee.insert(te.second(i,green[i]), te.second(i,red[i]));

}

}

ee.freeze();

Figure 7.16: Accessing edges and edge modes from triangles

7.3.3 Closure of Edge Refinement Marks

The process of closing a refinement is as pointed out in Section 3.1.4.3 an
iterative procedure. The Janus implementation for the case of red-green
subdivision rules is shown in Figure 7.17.

The function closure modifies its last argument marks which is a prop-
erty function on the edges of the mesh that represents the refinement marks
as boolean values. A value of true indicates that the edge is to be refined.

void closure(const Edges& edges,

const Relation& te,
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const Flags& triangle_colors,

const jns::size_vector& red,

const jns::size_vector& green,

const jns::size_vector& blue,

Flags& marks);

The remaining arguments are the edge set edges, the triangle-edges re-
lation te, the triangle colors (either red or green), and the permutations of
edge colors of green triangles.

In order to evaluate the edge refinement marks in each triangle the
triangle-edge relation te is used to declare the edge mark accessor object
em. At the beginning of each iteration, the accessor object is updated by
calling its pull method.

During each iteration, every triangle evaluates its edge refinement marks
using the accessor em and modifies them for according to the rules of red-
green refinement.

A position accumulator (§5.5.2.2) object accu is deployed in order to
modify the refinement marks on the edges of a triangle. The concrete type
of this accumulator is:

jns::position_accumulator<Edges,Flag,std::logical_or<Flag> >

This indicates that Flag values inserted at the same position of the property
function edge_marks to which the accumulator is bound are reduced by the
logical or, that is, the operator ||.

The positions that are put into the accumulator are delivered by the
triangle-edge relation te. The inline function update is used to hide the
details of calling the accumulators insert method the rest of code in Fig-
ure 7.17.

void

update(const Relation& te, size_t i, size_t k, accu_t& accu)

{

accu.insert(te.second(i,k), true);

}

Note that calling update, that is the insert method of
position_accumulator only indicates the modification. The modifi-
cation has been definitely performed when the freeze method has been
called.
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Relation::accessor<Flag> em(te, marks);

for(size_t cnt = 0; cnt < jns::size(edges); )

{

em.pull();

accu_t accu(edges, marks.begin(), marks.end());

for(size_t i = 0; i < te.size1(); ++i) {

if (triangle_colors[i] == Red) {

Flag sum = 0;

for(size_t k = 0; k < te.size(i); ++k)

if (em.get(i,k)) sum++;

if (sum > 1) for(size_t k = 0; k < te.size(i); ++k)

update(te, i, k, accu);

}

else {

assert(triangle_colors[i] == Green);

if (em.get(i,blue[i]) || em.get(i,green[i]))

update(te, i, red[i], accu);

if (em.get(i,blue[i]) || em.get(i,red[i]))

update(te, i, green[i], accu);

}

}

accu.freeze();

size_t cnt1 = jns::accumulate(marks.begin(),marks.end(),0);

if(cnt1 == cnt) break;

cnt = cnt1;

}

Figure 7.17: Closure of refinement marks

For red triangles, the refinement rules in Section 3.1.4.1 state the a modi-
fication of the edge marks of a red triangle only occurs if more than one edge
has been marked. Thus the code for red triangles in Figure 7.17 first counts
the number of marked edges and marks all of them in case more than one
has been marked.

For green triangles the rules are more complex and require to evaluate the
edge marks dependent on their color with respect to triangle—see Figure 7.17.
Figure 7.18 shows the modification rules. A • indicates a refinement mark
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whereas a ◦ indicates edges to be refined.

green

blue

red

Figure 7.18: Modification rules for edge refinement marks of green triangles

A mark on a blue edge triggers the green and red edges for refinement.
Green and red edges, on the other hand do not concern the blue edge. They
only trigger each other.

After calling the freeze method of the accumulator, the indicated mod-
ifications of the edge refinement marks are properly updated.

The function jns::accumulate counts the number of marked edges. This
number increases with every iteration (see Section 3.1.4.3). If the this number
does not change from one to another iteration than the closure process is
completed and the iteration loop can be terminated.

7.3.4 Subdivision of Marked Edges and Triangles

Once the refinement marks have been closed, the edges and triangles can
be subdivided. This mesh refinement is performed by creating a new mesh
that contains the unmarked vertices, edges, and triangles from the old tri-
angulation and in addition the new mesh components that are created by
subdivision of old components. However, not only the new sets of vertices,
edges, and triangles must be correctly created. The associated attributes,
that is the vertex coordinates, boundary and edge mode flags of the new
triangulation must be correctly defined. The latter process includes interpo-
lating the coordinates of newly created vertices.

Two instantiations of collector are use in order to temporarily hold the
attributes associated with the newly created vertices and edges.

typedef jns::collector<Vertex,VertexData> vertex_collector;

typedef jns::collector<Edge,EdgeData> edge_collector;
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The auxiliary type VertexData is defined as pair of Coordinate and Flag.
The type EdgeData is defined as std::pair<Flag,Flag> which reflects the
fact there are two Flag-valued property functions (boundary_edges and
edges_mode) associated with the edges.

When evaluating the refinement marks and applying the corresponding
subdivision rules, care must be taken that newly created mesh components
are inserted in their data structures only once. This restriction is a basic
requirement of the concept Two-Phase Domain of Section 4.2.2. A basic
mean to achieve this is to deal with vertices, edges, and triangles separately.

7.3.4.1 Subdivision of Vertices

Strictly speaking, vertices are not subdivided. Rather all vertices of the old
triangulation are put into the new one. The routine subdivide_vertices

in Figure 7.19 copies the vertices and the associated attributes (coordinates
and boundary flags) into a domain collector. Thus, mesh refinement uses
essentially the same data structures as for initialization of a a mesh—see
Section 7.2.1.3.

void subdivide_vertices(const Triangulation& mesh,

vertex_collector& vcoll)

{

for(size_t i = 0; i < mesh.vertices().size(); ++i)

{

Vertex v = mesh.vertices()[i];

VertexData a(mesh.coordinates()[i],

mesh.boundary_vertex()[i]);

vcoll.insert(v, a);

}

}

Figure 7.19: Copying old vertices and their attributes

Note that the collector is not frozen. Thus, vertices that are created by
subdividing edges can be inserted later.
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7.3.4.2 Subdivision of Edges

Subdivision of edges is more complex because their mode (Section 7.3.1)
must be taken into account. Three cases can occur which are listed below.
The Janus implementation is shown in Figure 7.20. This function has the
signature.

void subdivide_edges(const Triangulation& mesh,

const Flags& edge_marks,

const Vertex& vmax,

const Relation& ev,

const Relation& ee,

vertex_collector& vcoll,

edge_collector& ecoll,

Triangles& new_triangles);

Note that in addition to the vertex collector vcoll, there is also an edge
collector ecoll with EdgeData as second template parameter. Since there
are no attributes associated with the triangles there is no need to use the
collector template. Newly created triangles or triangles that are copied
from the current triangulation can directly be inserted into the Triangles

new_triangles.

The meaning of the other arguments are explained in conjunction with
the different subdivision cases.

1. A marked edge e = (u, v) with the attribute None, that is an edge that
is not shared by two sibling triangles is subdivided into a new vertex w
that represents the midpoint of the edge and the two edges (u,w) and
(v, w)—see Figure 7.21.

A unique name, that is a unique integer value, must be assigned to the
newly created vertex w. This name must be different from all vertices
of the current triangulation and different from any other vertex name
created during this subdivision. One way to achieve this is the following
rule to name w

maximum of old vertices + 1 + global position of edge (u, v). (7.3)

The following piece of code uses the parallel STL algorithm
jns::accumulate (§5.5.3) to compute the maximum of the vertex set
vertices.
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Relation::accessor<Coordinate> coord(ev, mesh.coordinates());

for(size_t i = 0; i < mesh.edges().size(); ++i) {

const Edge e = mesh.edges()[i];

const Flag b = mesh.boundary_edge()[i];

const Flag emode = mesh.edge_mode()[i];

if(edge_marks[i] == true) {

if (emode == None) {

Vertex vn = new_vertex(mesh.edges(), vmax, i);

Coordinate vcn = 0.5*(coord.get(i,0) + coord.get(i,1));

vcoll.insert(vn, make_pair(vcn,b));

ecoll.insert(make_edge(e[0],vn), make_pair(b,None));

ecoll.insert(make_edge(e[1],vn), make_pair(b,None));

}

else {

assert((emode == First) || (emode == Second));

Vertex x = new_vertex(vmax, ee.second(i,0));

Vertex y = new_vertex(vmax, ee.second(i,1));

Vertex u = e[emode];

Vertex v = e[1-emode];

new_triangles.insert(make_triangle(u, x, y));

new_triangles.insert(make_triangle(v, x, y));

ecoll.insert(make_edge(u, x), make_pair(false,None));

ecoll.insert(make_edge(u, y), make_pair(false,None));

ecoll.insert(make_edge(x, y), make_pair(false,None));

}

} else ecoll.insert(e,make_pair(b,emode));

}

Figure 7.20: Subdivision of Edges

Vertex vmax = jns::accumulate(vertices().begin(),

vertices().end(), 0, jns::maximum<Vertex>());

The value 0 serves here as the initial (neutral) element for the reduction
with the binary function object jns::maximum<Vertex>.

In order to insert the new vertex w into the vertex collector of Fig-
ure 7.19, its coordinates and its boundary flag must be determined.
The latter is quite simple because the newly created vertex is a bound-
ary vertex if and only if the edge (u, v) was a boundary edge. The
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Figure 7.21: Simple subdivision of an edge

coordinates of w are computed are interpolated by forming the arith-
metic mean of the coordinates of u and v. In order to access the
coordinates of u and v from the edge (u, v) the edge-vertex relation ev

of Figure 7.13 is used.

The newly created edges (u,w) and (v, w) have the same boundary flag
and mode flag as their parent edge (u, v). Both edges are inserted into
the domain collector for edges introduced above.

2. An marked edge with edge mode First or Second is shared by two
sibling triangles and not subdivided. Rather the red parent triangle
is regularly refined as shown in Figure 3.6 Thus this edge triggers the
creation of new triangles.

In order to avoid multiple inserts of edges or triangles, this kind of edge
inserts only those edges and triangles in Figure 7.22 that are drawn with
solid lines. In other words the two red triangles (u, v, x) and (u, v, y)
and three the edges (v, x), (v, x), (u, x), and (u, y) are inserted. These
other triangles and edges are inserted while subdividing green triangles
and their edges.

The newly created edges are inserted into the edge collector. Obviously,
these edges can’t be boundary edges and their edge mode is None.

The names of the vertices x and y are determined according to for-
mula 7.3. The edge (u, v) accesses the global positions of the edges
on which x and y were created by using the edge-edge relation of Fig-
ure 7.15

3. Unmarked edges are copied together with there associated attributes
into the edge collector ecoll.
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Figure 7.22: Edges and triangles created by marked green edges

7.3.4.3 Subdivision of Triangles

Five cases must be considered when subdividing triangles. The closure pro-
cess described in Section 7.3.3 ensures that more cases do not occur. Similar
to the subdivision of edges, it is exactly described which objects are created
during subdivision. This is necessary to ensure that no object is inserted
more than once into a two-phase domain.

The emphasis of this subsection is on the explicit description of respon-
sibilities when creating new triangulation elements or copying old ones.

1. Unmarked (red or green) triangles are copied into the new triangle set.

2. A red triangle with exactly one marked edge is subdivided into two
green triangles and the edge that is shared by them—see Figure 7.23.
The triangles are inserted into the new triangle set and the edge into
the edge collector.

Figure 7.23: Green subdivision of a triangle
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3. A red triangle with three marked edges is subdivided into four triangles
and three edges as shown in Figure 7.24.

Figure 7.24: Red subdivision of a triangle

4. If a green triangle has two marked edges then the small red triangle
that is indicated by the dotted line in the left part of Figure 7.25 is
inserted in the new triangle set.

Figure 7.25: Subdivision of a green triangle with two marked edges

5. If a green triangle has two marked edges then the small red triangle that
is indicated by the dotted line is subdivided into two green triangles
and the edge shared by them—see Figure 7.26.

7.3.4.4 Completing the Subdivision

After the three subdivision routines for vertices, edges, and triangles have
been called the collectors for vertices, edges, and the new triangle set contain
all data to initialize an new Triangulation object. The collectors vcoll

and ecoll are frozen and then traversed as shown in Figure 7.4 to initialize
the new vertices and edges and there associated attributes. The new triangle
set need only to be frozen since there are no attributes associated with it.
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Figure 7.26: Subdivision of a green triangle with three marked edges

7.3.5 Repartitioning of Refined Meshes

The vertices, edges, and triangles that were put into the collectors and do-
mains using the corresponding insert method. This implies that, for ex-
ample, the newly created triangles and edge of Figure 7.23 are placed at the
same process where their parent triangle was located. After several mesh
restructuring step this can lead to severe load imbalances that affect the
performance of the parallel program.

For this reason it important to check the distribution of the domains reg-
ularly and perform a repartitioning of the mesh if it is necessary. After a new
partitioning has been determined, the vertices, edges, and triangles together
with their associated attributed are inserted in their collectors. However,
this time the method insert_at that allows the specification of mapping
information is used.

The load of a domain is return by the global template function jns::load

of Section 5.6.2.3. In order to maintain a good parallel performance a load
of less than 1.1 is usually sufficient.

7.3.5.1 Combining Remapping with Subdivision

It is also possible to perform subdivision and remapping simultaneously.
That is, instead of creating a new triangulation and then remapping it, one
can use the refinement marks to determine weights on the old triangulation,
compute a new mapping for the weighted triangulation. and insert the new
vertices, edges, and triangles into the collector using this mapping informa-
tion.

This approach has a performance advantage if remapping occurs very
often. A disadvantage of this approach, from the point of view of software-
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engineering, is the tight coupling of the details of the mesh-restructuring
algorithm with the concern to balance the computational load.

7.3.5.2 Graph Partitioners and Geometric Partitioners

Many partitioning algorithms evaluate the graphs, which are inherent to the
application structure. In mesh-based applications mesh entities such as the
vertices or triangles of a Triangulation can be considered as vertices of a
graph. A dependence between two entities can be expressed as an edge of
the graph connecting the associated vertices. The set of vertices and their
nearest-neighbor relation r of the triangulation in Section 7.2.2 is an example
of such a graph.

Graph partitioning tools applied to these graphs provide load balancing
and reduce the amount of data to be communicated, e.g. by minimizing the
edge cut. Metis[63] is an example of a graph partitioner.

It is, however, not mandatory to use graph information explicitly in or-
der to achieve a good partitioning. In most mesh-based applications mesh
points are labeled with their spatial coordinates, and dependences exist only
between geometrical neighboring mesh points. For these meshes, load bal-
ancing and implicit edge cut minimization can be achieved by a suitable
geometric clustering of the mesh points. Mosaik[103] presents an example
of a geometric mesh partitioner. Mosaik is particular well-suited for repar-
titioning of refined meshes. It does not need to start from scratch like other
algorithms and completely reuses the partitioning of the previous mesh.

7.3.6 Discussion

Adaptive mesh-refinement has been a key motivation for the development
of the Janus framework. For this reason, the implementation of red-green
triangle refinement has been discussed so carefully. The complexity of the
description is in the problem itself and not an artifact of the Janus imple-
mentation.

A key component of mesh refinement is the correct evaluation of the
refinement marks in each element. Here, the nested accessor type that
is provided by Relation has been used. Accessors are used together with
accumulator objects to evaluate and update the refinement marks.

Load balance is an important issue on a parallel platform. In order to
ensure a balanced load the newly created mesh must usually be repartitioned
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from time to time. The task of computing a balanced partition is beyond the
scope of Janus. However, using the insert_at method of Distributed Domain
Janus can easily incorporate mapping information that was computed during
the runtime of a parallel mesh refinement algorithm.

7.4 The Bellman-Ford Algorithms

In this section a generic Janus implementation of the Bellman-Ford algo-
rithms is discussed. The basic idea of the Bellman-Ford single-source shortest
path algorithm have already been described in §3.1.5.1. Its key component
is the parallel relaxation over all edges expressed by Equation 3.16.

This means that the weights on the edge and the distance on the vertices
are combined in a way that is similar to a matrix-vector multiplication. How-
ever, an important difference is that the result of a relaxation is not only a
combination of the edge weights and vertex distances. Rather for each vertex
the nearest vertex that is its neighbor must be selected. For this reason, the
pull_matrix matrix method is not the best choice and similar to the case of
adaptive mesh refinement in Section 7.3 the nested accessor type of Relation
is used to access and evaluate individual values.

Figure 7.27 shows the source of the template function bellman_ford.

7.4.1 Interface

Template Parameters The three template parameters of bellman_ford
are

Edges which must be a model of Relation,

Nodes which must be a model of Domain, and

Type which typically is a built-in integral or floating point type. However
also a user-defined type can be used if it provides addition through
operator + and comparison by operator <.

Return and Argument Values The function bellman_ford returns the
Boolean value true if the tree that represents the shortest paths from a single
source node to all nodes has been constructed. In case a negative cycle (due
to negative weights) has been found, the Boolean value false is returned.
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1 template<typename Edges, typename Nodes, typename Type>
2 std::pair<bool,size_t> bellman_ford(const Edges& e,
3 const Nodes& n, const Type* w, std::vector<Type>& d,

size_t* p)
4 {
5 typedef volatile Type vT;
6 typename Edges::accessor<Type> access(e,d.begin(),d.end());
7 for(size_t it = 0; it < jns::size(n); ++it)
8 {
9 jns::accumulator<bool,std::logical_and<bool> > ok(true);
10 access.pull();
11 for(size_t i = 0; i < n.size(); ++i)
12 {
13 size_t min_k = e.size(i);
14 vT relaxed = d[i];
15 for(size_t k = 0; k < e.size(i); ++k) {
16 vT t = w[e.position(i,k)] + access.get(i,k);
17 if (t < relaxed) {
18 relaxed = t;
19 min_k = k;
20 }
21 }
22 if (min_k < e.size(i)) { // something happened
23 d[i] = relaxed;
24 p[i] = e.second(i, min_k);
25 ok.insert(false);
26 }
27 }
28 if (ok.freeze()) return std::make_pair(true,it);
29 }
30 return std::make_pair(false,jns::size(n));
31 }

Figure 7.27: Janus implementation of Bellman Ford algorithm

The arguments e and n are the relation and the node set of the graph,
respectively. The third argument w points to an array of e.size() objects
of type Type that represent the weights on the graph edges.

The arguments d and p point to arrays of n.size() objects of type Type

and size_t, respectively. On successful completion of bellman_ford, the
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array p holds for each node the (global) position of the node’s predecessor
in the tree constructed by the Bellman-Ford algorithm. The array d, on the
other hand, will hold the distance to the single source.

Note that the single source s ∈ n must be properly marked in the array
d by assigning appropriate high distances all nodes but at s (see §3.1.5.1).
As initial value nil for the elements of array p and to identify the root of the
tree serves the number jns::size(n) (§5.6.2.1) since this value cannot be a
(global) position2 of a node in n. Thus, the arrays d and p are both input
and output parameters.

7.4.2 Implementation

The typedef in Line 5 of Figure 7.27 is a shortcut to add the volatile specifier
to Type. It is used to prevent aggressive3 optimizations of the comparison in
Line 14 that may lead to incorrect results[99, p. 808].

Setup In Line 6 the accessor for the property function d is declared.

The Bellman-Ford algorithm needs to perform at most as many iterations
as there are nodes in the graph. The call of the global function jns::size

(Line 7) of Section 5.6.2.1 returns this information.

The algorithm can be terminated when no relaxations (Equation 3.16)
need to be performed anymore. In order to keep track of changes in one
iteration, the Janus accumulator template can be used (see §5.5.2.1).

Relaxation Sweep The Lines 11 to 27 cover one sweep of relaxations for
all nodes of the graph. The sweep is performed by relaxing all edges that
belong to a certain node (Line 11). Note that instead of n.size() one could
also call e.size1().

However, in order to to be able to access values of d through the accessor
access they must be cached (Line 10) using the accessor’s pull methods
(Table 4.18).

2Note that for a domain object dom, the global function jns::size(dom) returns the
number of all elements. Only for a non-distributed domain jns::size returns the same
as result the method domain.size(). Thus jns::size provides unified access to an
important graph property, regardless whether it is distributed or not.

3In particular floating point types are affected by this problem since values kept in
register sometimes use more bits than those kept in variables. For example, Intel’s IA-32
architecture provides 80-bit register to store 64-bit numbers.
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In Lines 13 through 21, the (relative) edge number min_k that yields the
largest relaxation gain for the i-th is determined. If such an edge has been
found (Lines 22 through 26) then the following operations are executed.

Line 23 The relaxation along the edge min_k is performed and d is updated.

Line 24 The predecessor of the i-node is set to the (global) position of the
node to which the edge refers.

Line 25 It is marked that a relaxation has been performed.

Note that the new value of d[i] is only guaranteed to be accessible
through access if pull has been called. The Bellman-Ford algorithm how-
ever does not depend on an immediate accessibility of the newly computed
value d[i]. Thus, during each relaxation sweep pull must be called only
once which underlines the robustness of Bellman-Ford. On the other hand,
this makes the number of relaxation sweeps dependent on the distribution of
the graph.

Termination The freeze operation in Line 28 returns the reduction of
all update marks. If no update did occur during the current sweep that the
algorithm terminates successfully. The return statement in Line 30 indicates
that a negative cycle has been encountered.

7.4.3 Discussion

The Bellman-Ford shortest path algorithm is an example of a data parallel
graph algorithm that can be easily implemented with Janus. The pull and
get methods of the nested accessor type of the Relation concept are sufficient
to hide the most important source of communication in this algorithm. The
two-phase property of the accumulator also hides communication that is
related with the reduction operation.

Thus, the Janus concepts and components are expressive enough to im-
plement parallel graph algorithm. The performance of this Bellman-Ford
implementation is evaluated in Section 8.4. On the other hand, the imple-
mentation of Bellman-Ford that is provided by the Boost Graph Library[67]
does not allow a straightforward parallel implementation on a distributed
memory platform.
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7.5 Conclusions

The Janus conceptual framework and its components provide a small yet
expressive set of (distributed) data structures, algorithms, and parallel data
access primitives. Most of these primitives rest on basic components of par-
allel algorithms like matrix-vector multiplication and can be found in other
libraries as well. Janus provides these primitives in a generic way so that
they can be easily customized by user-defined components.

The examples in this chapter have demonstrated that parallel program-
ming relatively easy within the Janus framework. In particular, most of the
data movement operation that result into communication on a distributed-
memory architecture are hidden within higher level constructs, such as pull
or freeze. However, a user must of course ensure that the requirements
imposed by Janus concepts and components are properly fulfilled.

For example, it is not allowed to insert an element into a domain more
than once (see Table 4.5). Therefore a Janus application must organize its
insertion operation in a way that multiple insertions do not occur. Also a
Janus application must explicitely declare the relation it will use to access
(remote) data associated with a domain.

For these reasons the following three questions have been formulated.
Answering these question during the design of a parallel Janus application
greatly simplifies the correct and efficient use of Janus components.

1. Which object is responsible to manipulate, and in particular, to insert
a certain object.

2. Which data are necessary to manipulate an object?

3. How can the necessary data be obtained?

In the following chapter, the performance of selected Janus applications
is evaluated for various computing platforms.
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Chapter 8

Performance Measurements

The previous chapters introduced the Janus architecture and its main com-
ponents. In Chapter 7 the Janus architecture has been applied for the imple-
mentation of representative sample problems in the domain of data parallel
applications. Thereby it has been proved that Janus is expressive enough
to support a wide range of scientific application—ranging from cellular au-
tomata on rectangular grids to adaptive finite element methods and parallel
graph algorithms.

In this chapter the performance of Janus applications is evaluated. In
particular, it is investigated how Janus programs behave on a state-of-the-
art parallel platform, namely a Linux cluster connected by dedicated high-
performance network. Here a configuration of Janus is used that utilizes MPI
for the implementation of its distributed components—see Chapter 6. The
test platform is described in more detail in Section 8.1.

Performance evaluation has many aspects, including

• Comparing Janus on different platforms,

• Comparing Janus programs with implementations that use other frame-
works,

• Examining the scalability of Janus on parallel platforms.

Not all aspects can be thoroughly investigated within the scope of this
dissertation. However, an attempt is made to be as profound as possible
for three of the applications described in Chapter 7. The three applications
are Conway’s Game of Life §7.1, linear triangle element analysis §7.2, and
the Bellman-Ford Shortest Path Algorithm §7.4. Due to the lack of access
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to a reliable shared-memory system only the performance on sequential and
distributed-memory systems can be compared. The performance of these
codes is also compared with that of analogous implementations using state-
of-the-art libraries in the respective domains.

8.1 Description of Test Platform

For performance evaluation a Linux PC cluster with 32 processors is used.
Its specifications read:

• 16 Tyan Tiger MP S2460 boards where each board is equipped with
two Athlon 1.2 GHz MP,

• 1GB RAM PC2100 and 20GB Local Disk per board,

• Myrinet 2000 network and 100 MBit FastEthernet interconnection net-
work,

• Linux 2.4.17-smpSCORE operating system.

Myrinet[17] is a high-performance, packet-communication and switching
technology that provides high data-rate and low-latency communication be-
tween host processes. The Myrinet network and the shared memory on each
board is utilized by the SCORE[59] cluster operating system developed by
Real World Computing Partnership. The SCORE system includes an imple-
mentation of MPI that is used by the generic MPI layer of Janus/Jade.

The Gnu C++ compiler g++[18] (the unofficial release 2.96 that is in-
cluded in the Red Hat Linux distribution) will be used for all examples. The
compiler flags -O3, -funroll-loops, and -fexpensive-optimizations are
used as optimization flags. These flags perform among others the follow-
ing optimizations: function inlining, loop unrolling for loops whose number
of iterations can be determined at compile time or run time, and register
renaming.

All times are measured with the utility function jns::time(). In a se-
quential configuration, this function is implemented using the C-library func-
tion gettimeofday. Parallel configuration on top of MPI use the function
MPI_Wtime to implement jns::time().
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8.2 Game of Life

An implementation of Conway’s Game of Life that uses the grid and stencil

classes of Janus has been presented in Section 7.1. In this section, two aspects
of the performance of this program are investigated.

1. The runtime of a (sequential) C implementation of Life is compared
with the Janus program that is configured for a sequential machine.

2. It is investigated how the same Janus program, however, this time con-
figured for a distributed-memory architecture, scales when the number
of used processing elements increases.

The sequential C implementation of Life uses dynamically allocated inte-
ger arrays to represent the state of the cells. The code is shown below. The
argument matrix_size denotes the length (measured in cells) of a square
grid on which the computation is performed. The variable ntimes is the
number of generations that are simulated.

void life(int matrix_size, int ntimes)
{

int i, j, k, sum ;
int **a, **b, **tmp ;
/* initialization not shown */

for (k = 0; k < ntimes; k++) {
for (i = 1; i < matrix_size-1; i++) {

for (j = 1; j < matrix_size-1; j++) {
sum = a[i-1][j-1] + a[i-1][j] + a[i-1][j+1] +

a[i][j-1] + a[i][j+1] +
a[i+1][j-1] + a[i+1][j] + a[i+1][j+1];

if ((sum == 2) && a[i][j]) b[i][j] = 1;
else if (sum == 3) b[i][j] = 1;
else b[i][j] = 0;

}
}
tmp = a; /* Swap data */
a = b;
b = tmp;

}
}
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The following Table 8.1 shows the time in seconds needed by both the
Janus and the C program for 1000 generations on different grid sizes. Note
that the measured times do not include the initialization of the arrays that
hold the state of the cells. All times are measured in seconds.

1000× 1000 2000× 2000 3000× 3000

Time C Program 27.4 108.5 243.9
Time Janus Program 29.0 115.7 256.3
Overhead Ratio 1.06 1.07 1.05

Table 8.1: Relative overhead of a sequential Janus implementation of Life
compared with a C implementation

The data of Table 8.1 show that the ratio of the runtimes of the Janus to
the C implementation is approximately 1.06. This is a very good factor and
shows that a modern C++ compiler can generate very efficient object code
from template classes and functions.

The following two Tables 8.2 and 8.3 show timing results and the relative
speedup for different usage scenarios of the SCORE cluster. Here, of course,
the grid and stencil classes are configured to utilize MPI. The program is
run on a medium-size grid of 2000× 2000 points. Again, 1000 iterations are
computed.

Table 8.2 shows the results when using only one of the two processors per
board. This means that only 16 of the 32 processors can be used. Except for
the step from 1 to 2 processors the runtime is reduced by roughly a factor of
two when doubling the number of processors. The relative low speedup of 1.3
when using two instead of one processor is caused by extra copy operations
in the implementation of the pull method of stencil. Future revisions of
stencil have to remove this bottleneck.

Processors 1 2 4 8 16

Time 114.7 86.1 43.0 22.0 11.5
Relative Speedup 1.0 1.3 2.6 5.2 10.0

Table 8.2: Runtime results for parallel Janus Life program using one pro-
cessor per board

Table 8.3 shows the results when using two processors per board (where
possible). This has, on the hand, the advantage that all 32 processors of the
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Processors 1 2 4 8 16 32

Time 114.7 97.5 54.5 27.4 14.5 7.9
Relative Speedup 1.0 1.2 2.1 4.1 7.9 14.5

Table 8.3: Runtime results for parallel Janus Life program using multiple
processors per board

cluster can be utilized. On the other hand, the speedup results are not as
good as in Table 8.2. For example, for 16 processors the relative speedup
when using only one processor per board is 10, whereas in the case of two
processors per board the speedup is approximately 8.

8.3 Finite Element Program

In this section the performance of a simple finite element solver implemented
in Janus is evaluated. More precisely, the process of solving a the linear
system of equations that results from a simple finite element approximation
by a preconditioned iterative method is investigated.

In order to evaluate the performance of the Janus implementation of
the conjugate gradient method in Figure 7.9 (p. 135) it is compared with the
conjugate gradient routine of the PETSc package discussed in Section 2.4.3.1.
In both cases, diagonal scaling is used as preconditioner.

The finite element problem under consideration is constituted by the Pois-
son problem discretized with linear finite elements. The details of this prob-
lem have been presented in the Sections 3.1.3 and 7.2.

The triangulation on which the Poisson equation was discretized consists
of

• 345,909 vertices,

• 1,034,618 edges, and

• 688,709 triangles.

For linear finite elements the number of vertices is approximately the
number of unknowns of the linear system. The number of edges indicates
the number of non-zero entries in the sparse matrix. Thus, the matrix has
approximately 106 non-zero entries.
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The time for 500 iterations of the conjugate gradient method is mea-
sured for both the Janus implementation and the PETSc routine for various
numbers of processors.

Table 8.4 shows the measured time in seconds and the relative speedup
when using only one processor per board. Up to 8 processors, the Janus
routine is slightly faster than the PETSc routine. In both cases, an almost
ideal (relative) speedup is achieved and even surpassed in the case of PETSc.
For 16 processors, Janus achieves a speedup of 15.6 and PETSc a speedup
of 17.9.

Processors 1 2 4 8 16

Time Janus 77.9 40.8 20.1 9.9 5.0
Relative Speedup 1.0 1.9 3.9 7.9 15.6

Time PETSc 80.4 41.2 20.3 10.1 4.5
Relative Speedup 1.0 2.0 4.0 8.0 17.9

Table 8.4: Time and speedup of different conjugate gradient implementations
when using one processor per board

Table 8.5 shows the measured time and the relative speedup when using
two processors per board. As in the previous section, step from using one to
two processors yields a worse speedup. Later, however, both routines scale
remarkably well. For 32 processors, Janus achieves a speedup of 20.5 and
PETSc a speedup of 28.7.

Processors 1 2 4 8 16 32

Time Janus 77.9 51.3 24.5 13.1 6.7 3.8
Relative Speedup 1.0 1.5 3.2 5.9 11.6 20.5

Time PETSc 80.4 53.3 26.6 14.4 6.5 2.8
Relative Speedup 1.0 1.5 3.0 5.6 12.4 28.7

Table 8.5: Time and speedup of different conjugate gradient implementations
when using two processors per board

It is not easy to explain the differences in the scalability of the Janus
and PETSc implementations. Sparse matrix-vector multiplication and inner
products are the causes of communication in this preconditioned conjugate
gradient method. Janus solely uses collective MPI functions whereas PETSc
also utilizes collective operations such as MPI_Allreduce. However, many
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data exchange operations are implement by non-blocking send and receive
operations (MPI_Isend and MPI_Irecv) in conjunction with an explicit syn-
chronization (MPI_Waitall). This allows a fine tuned overlapping of commu-
nication and computation and may be one reason for the better scalability.

One also has to take into account the much longer availability and ma-
turity of the PETSc software. It has been actively developed by a large
team for at least 6 years. More than one hundred sample applications exist
and some of the PETSc designers are strongly involved in the design and
implementation of the MPI standard.

8.4 Bellman-Ford Graph Algorithm

In this section the performance of the Janus implementation of the Bellman-
Ford shortest path algorithm is investigated. The Janus implementation of
this algorithm has been discussed in Section 7.4.

On the one hand, the runtime of the routine in Figure 7.27 (con-
figured for a sequential architecture) is compared with that of the
bellman_ford_shortest_paths routine of the Boost Graph Library [67]
(BGL). On the other hand, the speedup of a parallel configuration of the
routine in Figure 7.27 is examined.

In both cases, the test graphs consist of triangulations, that is, the graph
nodes are the vertices of of the triangles and the graph edges are the edges of
the triangles. Figure 3.5 on Page 44 gives an examples of such a graph. The
length of the edges are chosen as the graph weights. Thus, the Bellman-Ford
shortest path algorithm literally finds the shortest path form on vertex of the
triangulation to all others.

There is one important difference between the BGL and Janus imple-
mentation of Bellman-Ford. The accumulator object in Figure 7.27 is used
to determine whether the algorithm can be terminated. The BGL imple-
mentation does not terminate early—for unknown reasons. In particular for
sparse graphs, the savings in runtime can be tremendous. For the sake of
fair comparison the accumulator is not used in the Janus implementation.

Table 8.6 shows timing results of the sequentially configured Janus routine
and the BGL routine.

The ratio of the Janus and BGL implementations is approximately 0.45.
This means that the sequential Janus is more than two times faster than
its BGL counterpart. The performance advantage of Janus is caused by the
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Nodes Edges Time BGL Time Janus Overhead Ratio
4,097 11,968 7.2 3.2 0.45
8,176 24,076 30.5 13.7 0.45
13,466 39,829 90.1 40.3 0.45

Table 8.6: Runtime results for sequential Janus and Boost implementations
of Bellman-Ford

data structures used in the Janus implementation that are better suited for
sparse structures such as finite element triangulations.

The Janus program uses the classes jns::sorted_domain<int> (§5.2.1.1)
and jns::relation (§5.3.1.1) to represent the nodes and edges of the graph.
Since the jns::relation class rests on the compressed row storage (CRS)
scheme it is particular well suited for sparse graphs such as triangulations.
The BGL example, on the other hand, deploys its general purpose edge_list
data structure whose memory access patterns are for sparse graphs not as
efficient as that of jns::relation.

Table 8.7 shows time measurements and relative speedup of the parallel
Janus implementation when using only one processor per board. Up to 8
processors the speedup is super linear–due to fewer cache misses. However,
this also shows that particular care has been taken to achieve an efficient
implementation of the accessor methods.

Processors 1 2 4 8 16

Time 39.1 17.9 8.2 4.6 3.5
Relative Speedup 1.0 2.2 4.8 8.5 11.2

Table 8.7: Runtime and speedup for a parallel implementation of Bellman-
Ford when using one processor per board

Table 8.8 shows time measurements and relative speedup of the parallel
Janus implementation when using both processors on a board board. Again,
the speedup is super linear up to 8 processors. However, not as good as in
the case of using one processor per board. For 16 processor (on eight boards)
there is only a speedup of 8.7 and for 32 processors there is even a slowdown.
This is related to the local problem size that is getting too small to perform
enough work between communication steps.

The data structures that have been used in the implementation of
Bellman-Ford are the same as those used in the implementation of the fi-
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Processors 1 2 4 8 16 32

Time 39.1 18.4 8.2 4.8 4.5 7.0
Speedup 1.0 2.1 4.8 8.1 8.7 5.6

Table 8.8: Runtime and speedup for a parallel implementation of Bellman-
Ford when using both processors per board

nite element method in Section 7.2. Yet, in the case of Bellman-Ford the
scalability is not as good as for the conjugate gradient method (see Sec-
tion 8.3).

The main reason is that in the case of Bellman-Ford a much smaller
triangulation has been used. It consists only of approximately 13,000 vertices
and less than 40,000 edges. This graph has been chosen since without early
termination the runtime of Bellman-Ford depends on the product of number
of edges and number of nodes. The conjugate gradient method, on the other
hand, performs usually much less iterations than there are nodes. Smaller
problem size of the data-parallel part of the computation, however, means
worse scalability.

8.5 Conclusions

The main result regarding the performance of Janus is that it favorably
compares with state-of-the-art implementations in the field of data-parallel
applications. This holds in particular for the scalability of Janus applications
that have been configured to use MPI on a Linux cluster system. Thus, a
major goal of the Janus effort has been achieved: Providing expressive and
efficient parallel abstractions that do not rely on language extension or non-
standard tools.

With respect to the solution of a finite element problem, Janus has
been compared with the Portable Extensible Toolkit for Scientific comput-
ing (PETSc). The direct comparison of Janus with PETSc shows better
results for the latter software package for a high number of processors. This
is attributed to the more sophisticated utilization of MPI in PETSc.

The evaluation of the Janus implementation of Game of Life has shown
that Janus components introduce almost no overhead compared to applica-
tions that have been completely written in the C programming language.
This is due to the Janus implementation that uses compile time polymor-
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phism rather than dynamic polymorphism. In other words, Janus uses class
and function templates and avoids virtual functions for the implementation
of its core components. Of course, the low overhead of the Janus components
when compared with hand-written code is also due to the good optimization
capabilities of state-of-the-art C++ compilers.

With regard to the Bellman-Ford algorithm, the Janus data structures are
more efficient for sparse graphs than those of Boost Graph Library. However,
it has to be taken into account that the Janus data structures have been
specially designed for sparse relations whereas a general data structure of
BGL was used.
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Chapter 9

Discussion

This chapter concludes this dissertation by discussing the Janus framework
and its components in different contexts. In particular, the influence of var-
ious software engineering paradigms on the design and implementation of
Janus is investigated. Most notably in this context are domain engineering,
generic programming, and program families. The highlights and limitations
of Janus are compared with related frameworks in the field of scientific com-
puting. This chapter also provides an outlook of upcoming research themes.

9.1 Janus in the Context of Domain Engi-

neering

In the context of domain engineering a domain is considered as an area of
knowledge that includes concepts and a terminology for that area but also
knowledge of how to construct software systems in that area. Domain engi-
neering attempts to take advantage of the knowledge and software products
that are engineered in the domain. The emphasis is on knowledge man-
agement and engineering reusable software to accelerate the development
of specific systems in the domain. A key activity of domain engineering is
domain analysis that gathers essential information and formulates general
requirements for systems in the domain.

The Janus framework has been designed for the domain of data-parallel
applications. In Chapter 3, a thoroughly domain analysis has been under-
taken by investigating a large range of data-parallel applications. This anal-
ysis started with investigating finite difference and cellular automata sim-
ulations that mostly rely on rectangular grids and stencil-like operations.
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Finite element methods and adaptive mesh refinement algorithms have also
carefully been surveyed. Finally, a typical parallel graph algorithm has been
analyzed.

As a result of this analysis several general design guidelines have been
formulated.

1. A clear classification of the objects that occur in data-parallel applica-
tion has been carried out. Firstly, there are (finite) sets across which
simultaneous operations are performed. Secondly, there are relations
between these sets that describe data dependences. Finally, there are
attributes or properties associated with the elements of the sets and
relations. These attributes describe the data on which most of the
parallel computations are performed.

2. Based on this classification rests the insight that the sets and relations
are more stable than the data associated with them.

The clear separation into spatial structures, that is, the sets and relations,
and associated data is usually not found in other approaches to develop
software in the realm of scientific computing. State-of-the-art representatives
of scientific software use vectors and matrices as basic abstraction. Examples
are PETSc[6] and the Matrix Template Library[72]. In Janus, however, a
matrix is considered as a pair of a relation and the coefficients that are
associated with the relation.

One advantage of this clear separation is that it simplifies the use of
different implementation techniques and data structures for sets and relations
on the one hand, and associated data on the other hand. Deploying different
data structures is recommendable because of the relative stability of spatial
structures.

The stability aspect of the spatial structures also puts into perspective
the necessity of dynamic data structures such as trees or lists. Rather it is
sufficient to use less flexible yet more efficient data structures as they occur
in the context of sparse matrices.

Emphasizing the relative stability is, nevertheless, a restriction on the dy-
namics of data-parallel problems. In particular, the design of Janus precludes
highly dynamic particle simulation methods.
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9.2 Janus in the Context of Generic Pro-

gramming

In domain engineering, the steps that follow the analysis are domain design
and domain implementation. The objective of domain design is the develop-
ment of a common architecture for the systems in the domain.

The ideas of generic programming have been used to define the Janus
architecture.

Generic programming has become famous through the Standard Template
Library—a framework of containers, iterators, and algorithms. The compo-
nents of STL—and even more so the conceptual framework behind them—
proved the expressiveness, usability, high performance, and extendibility for
the domain of fundamental data structures and algorithms of computer sci-
ence. This promising approach has been applied by researchers to other
fields, for example, matrix computations[72] and graph algorithms[67]. Not
surprisingly, these are domains where performance is a major design concern.

The conceptual framework of Janus rests on that of STL and introduces
new concepts that reflect the particular requirements of data parallel scientific
applications.

The three major concepts of Janus are Domain, Relation, and Property
Function. They formulate syntactic and semantic requirements for the repre-
sentation of (distributed) sets, their relations, and data that are associated
with them. The most important feature is the explicitly stated relative sta-
bility of Domain and Relation with respect to Property Function. At the same
time the concept of relative stability is flexible enough to represent irregular
and dynamically created domains and relations.

This flexibility is more precisely specified in the concepts of One-Phase
Domain and Two-Phase Domain. One-phase structures are used, for example,
to represent rectangular grids. Two-phase structures, on the other hand,
are deployed to represent irregular or dynamic problems. Thus, the Janus
conceptual framework is flexible enough to support a wide range of data-
parallel problems.

Two-phase structures also simplify the problem of hiding the details of
constructing distributed data structures. Many of the Janus algorithms, for
example accumulators, have this clear separation into initiation and comple-
tion phases.

Generic programming frameworks are often implemented as C++
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libraries—and Janus is no exception. Using C++ has the advantage that
it heavily relies on compile-time polymorphism. As a result, generic compo-
nents can be as efficient as hand-written components. However, a drawback
is that generic components cannot be easily exchanged at run time. Dynamic
polymorphism provides here more flexibility.

9.3 Janus as a Program Family

Domain engineering aims at developing reusable software components to ac-
celerate the construction of systems in a domain. This is very closely related
to Parnas’ idea of program families [84]. A more recent extension of this idea
is software product line engineering [107].

Janus is in many aspects a program family. First of all, its components
are C++ template classes and template functions that yield a family of
concrete data structures and algorithms when instantiated with built-in or
user-defined types. Though this seems a trivial aspect, it is worth empha-
sizing that a state-of-the-art scientific framework such as PETSc (written
in the C programming language) has much greater difficulties to integrated
user-defined types.

Secondly, the conceptual framework of Janus allows to define components,
that is family members, that are highly customized and efficient and not
impaired by too general functionalities. The grid and stencil template
classes are very lean and efficient data structures for data-parallel problems
on rectangular grids.

Another example for the occurrence of sub-families within Janus are the
different platforms for which the components can be configured. In particu-
lar, distributed-memory hardware architectures can be efficiently utilized on
top of MPI. However, the components can also be configured to run efficiently
on a single-processor architecture.

The main reason for the ability to efficiently utilize different computing
platforms is that the Janus concepts are very application-oriented. In par-
ticular, the two-phase data structures and algorithms and the data transfer
primitives of the Relation concept make it very easy to hide platform depen-
dent issues such as buffering of data that shall be sent to a remote address
space.

At the same time, it must be noted that the fundamental issues of
distributed-memory architectures are already addressed by the concepts of
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Janus. Most notably are here the concepts Distributed Domain and Distributed
Relation. Moreover, the process model of Janus follows this of MPI. A draw-
back of this predisposition towards distributed-memory architectures is that
shared-memory parallelism can currently not as easily exploited by Janus.

9.4 Perspectives

As pointed out in this dissertation, Janus is well suited for a broad range
of data-parallel applications. However, highly dynamic particle simulation
methods can not represented within the Janus framework very well currently.
The Janus framework should be extended to be able to cope with these issues.

Deepening the domain analysis of data-parallel applications, Janus mod-
ules that provide service for particular sub-domains should be developed.
This holds in particular for mesh-restructuring methods that despite the di-
versity of element shapes, restructuring rules, or remapping strategies expose
a lot of commonalities. A closer examination of the relationships between
the Janus concepts and the ideas of (distributed) data bases could further
improve the usability and interoperability of Janus.

The very important domain of embedded and real-time software systems
also shares considerable commonalities with the domain of scientific com-
puting. In particular, the real-time constraints and the limited computing
resources preclude many standard software-engineering techniques and plat-
forms. Here again, lean and application-oriented abstractions are the key to
achieve reuse. Similar to Janus in the field of data-parallel scientific applica-
tions, generic programming can deliver flexible and efficient work products
here as well.
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