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Abstract

Sensory stimulus evoked magnetoencephalography (ME@ adaknown to be highly impacted
by background brain and technical noise sources. In ordenfi@ance the signal quality, sophis-
ticated signal processing is necessary and becomes cwlugal looking at single-trials. Often,
linear decomposition techniques are utilized. Among masthimds, those under the framework
independent component analysis (ICA) are most populardridecomposition aims at finding
an unmixing matrix such that noise and signal sources caadmered from the recorded data.
ICA is used to reduce artifacts or, optimally, to obtain a cleapy of the evoked MEG source
signal of interest.

Specifically, in a sensory stimulation experimental sgitihe underlying source signal of in-
terest occurs after presenting a sensory stimulus. An ICAmeosition of evoked data often
yields a component that shows this behavior; it is temptngeter to this ICA component as
the evoked source signal recovered from the recordings. HowE9é assumes independence
among the underlying source signals. If more than one saigrel is evoked by one or more
stimuli, the ICA independence assumption can be violated.

In the context of evoked dependent sources, this thesistigates ICA and proposes a novel
blind separation method. As starting point, a virtual exbkEG experiment with adjustable
source signal dependencies is designed and used for agsgssvarious decomposition meth-
ods. Furthermore, an audio-visual MEG data experimentdgyded for a real world test. Rather
surprisingly, it is demonstrated that ICA is able to recovighly dependent source signals - for
specific source signal settings. Along this line, the useC# for decomposition as well as for
subspace identification is discussed. Subsequently, tred time domain shifted factor analysis
(TDSFA) technique is proposed. In particular, TDSFA is lobbge a Taylor series expansion of
the shifted factor analysis (SFA) model, which is uniquéaitt assuming independence among
the source signals. The relation to a classic unique telinechnique is investigated and it is
shown that the trilinear technique can be very sensitivehiftss Indeed, TDSFA accounts for
shifts and is shown to be more suited for decomposition okeddMEG data.

Utilizing actual as well as virtual MEG data, the resultswlibat ICA and other state of the art
techniques can fail. The results suggest that the novel AD&Ehnique has high potential as a
decomposition technique in the context of evoked MEG sosigeals.






Zusammenfassung

Sensorisch evozierte Magnetenenzephalographie-DatEG¢Maten) sind stark durch das Hin-
tergrundrauschen im Gehirn und durch technische Rausdbagugsbrt. Um die Signalqualitt

zu verbessern sind moderne Verfahren der Signalverangeitatwendig, insbesonderérfeine
Single-Trial-Analyse.

Fur die Verbesserung der MEG-Signalquatitverden oft lineare Zerlegungsmethoden einge-
setzt, wobei die Methoden der Independent Component AsalyGA) eine weite Verbreitung
gefunden haben.

Lineare Zerlegungsmethoden versuchen anhand gemiscaten Bine Entmischungsmatrix zu
gewinnen, um durch eine lineare Entmischung die Quellésggnéederherzustellen. ICA wird
fur MEG-Daten auch benutzt, um die Anzahl der Rauschquelleneduzieren - im optimalen
Fall, um ein gewinschtes MEG-Quellsignal unverrauscht zu rekonstruieren

Fur den Fall der sensorisch evozierten MEG-Daten treten eli¢igschten MEG-Quellsignale
erst nach erfolgter sensorischer Reizung auf. Eine ICA-garlg evozierter MEG-Daten zeigt
oft eine Komponente mit entsprechendem zeitlichen Veghalinan ist versucht diese Kompo-
nente alglas originaleevozierte MEG-Quellsignal zu interpretieren. ICA nimmtget die stati-
stische Unabangigkeit der Quellsignale an. Werden durch eine sens@iStimulation mehrere
Quellsignale im Gehirn evoziert, so kann die Unabgigkeitsannahme verletzt sein.

In dieser Arbeit wird in dem Zusammenhang ahgiger evozierter MEG-Quellsignale ICA un-
tersucht und eine neue Zerlegungsmethoden vorgestelltirgine virtuelle Simulationsumge-
bung mit steuerbaren Quellsignal@oigigkeiten vorgestellt und zur Untersuchung der verschie
denen Zerlegungsverfahren eingesetzt. Er wird gezeigs, I€GA in Sondedllen stark ab&angige
Signale trennen kann. Anhand dieser Erkenntnis wird dez&uvon ICA zur Signaltrennung
und zur Unterraumanalyse von evozierten MEG-Daten digkuttin reales MEG-Experiment
zeigt das Verhalten der Methoden autdhden Fall von echten evozierten MEG-Daten.

Als neue Methode wird Time Domain Shifted Factor AnalysiBEFA) vorgestellt. TDSFA ba-
siert auf einer Taylorreihenentwicklung des Modells deft8tl Factor Analysis (SFA), welches
eindeutig identifizierbar ist ohne die Unabigigkeit der Quellsignale annehmen ziigsen. Die
Verbindung zu den etablierten trilinearen Methoden wirtetsucht, und es wird gezeigt, dass
die etablierten trilinearen Methoden Schwierigkeiten eeaitlicher Signalverschiebung haben.
TDSFA bezieht Zeitverschiebung in das Modell ein und istdie lineare Zerlegung von evo-
zierten MEG-Daten besser geeignet.

Fur echte und simulierte evozierte MEG-Daten zeigen die lirgse, dass ICA und andere mo-
derne Methoden falsche Ergebnisse liefedniken. Die neue Zerlegungsmehtode TDSFA liefert
bessere Ergebnisse und weist hohes Potential im Kontexiester MEG-Daten auf.

Vi
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1 Introduction

The functioning of the human brain is of great general irger has an impact on many dis-
ciplines such as medicine, engineering and psychologydZ,8elin00]. Brain signals are used
for medical diagnostics, to quantify psychological eféeot as input for brain computer inter-
faces [Nun8I1, Mil08]. A key technique for understanding brain functioniaghe analysis of
brain signals related to sensory stimulations. In a sequehtrials, one or multiple stimuli are
presented to a human subject and the evoked brain signale@meled by a measuring device
[Pic95,[MinQ0].

Due to its excellent temporal resolution, magnetoencegnaphy (MEG) is next to electroen-
cephalography (EE@))ften used to record brain signals. MEG is a non-invasivertegie that
records magnetic fields at many positions distributed icepEam93]. The recorded fields can
be related to the evoked electrophysiological brain sgrtdbwever, many sources of interfer-
ence contribute to the MEG data. Although many methods haee proposed [Vig09, Picd5],
the evoked signal recovery task remains highly challeng8pgecifically, ongoing brain activi-
ties and external noise sources can be by magnitudes l&r@ereioked activity. Furthermore,
spatial, temporal and frequency domains of noise interdesiad evoked signals often overlap;
the evoked activity may not be simply recovered by standéstifig techniques.

Due to the low signal-to-noise ratio, evoked MEG data arerotiveraged over trials [Vig0D9].
The result is referred to as the event related field (ERF). Wewehis technique assumes that
evoked activity has a fixed latency between onset time ofidéition and evoked signal for all tri-
als. It neglects that evoked signals can vary from trialitd fifru02]. Interesting and potentially
relevant single-trial variations may not be recovered(8alunOL]. More recently, single-trial
analysis emerged, aiming at non-averaged ERFs that followstamulus[[Tan05, Sal04, Juri01].
A promising technique is to decompose the recorded datatprgngle-trial analysis for the sake
of artifact reduction or, optimally, to obtain a clear cogtlte evoked signal[Tan05]. The idea
behind linear decomposition techniques is that the recbkdlEG data consist of linearly super-
imposed contributions from many underlying source sigaaksach recording channel. Among
the sources, some are of interest, many more are merely twacidybrain and technical noise
sources.

To date, independent component analysis (ICA) is the moshiment tool for MEG data de-
composition. ICA is a statistical technique that aims todimge decompose multivariate signals
into underlying independent source signals. ICA has beey seeccessful in removing noise
sources, such as those introduced by muscle contractigms@vement, electrical line or heart-
beat. These noise sources are often statistically indegpeénkh contrast, if more than one signal
is evoked by one or more stimuli, this assumption may no lohgél for evoked brain signals.

LIn this work, all considerations are limited to MEG data;ulésdirectly apply to EEG data.



1 Introduction

1.1 Scope

This thesis addresses the recovery of evoked brain sigyahsdans of mathematical decom-
position techniques. It is tempting to use ICA to separateetiuked signals from MEG data.
Often, the results look reasonable, i.e. often, dipolarme#g field patterns suggest a successful
separation. However, evoked signals may be dependent argyhassumption of ICA may be
violated. Hence, the separation of dependent evoked sighall be in focus. Specifically, the
hypothesis that evoked signals can be dependent is testelCAis robustness against the vio-
lation of independence is investigated. To what extent edlalignals arstatisticallydependent
and to what extent ICA can still be used is currently not wethkn. It is intrinsic to MEG data
that mixing introduces dependency, even in the case of srbignt source signals. Thus, the use
of ICA for the recovery of single-trial evoked signals may bk sf use and needs to be assessed
by virtual and actual experiments.

Subsequently, alternative decomposition techniquestod@A are discussed. It is intended to
design an algorithm without resorting to different contsasich as sparsity, non-negativity, non-
frequency overlap or others. Contrarily, intrinsic featuoé evoked MEG data are investigated,
that allow auniquedecomposition. By employing a multilinear model, the inm¢rstructure

of evoked experiments is used, yielding uniqueness, withesorting to objectives that may be
valid only for a subset of signals.

In summary, four main questions are investigated:

- Can evoked source signals statisticallydependent?

- Can ICA separate evoked dependent source signals?

- Can the subspace of evoked dependent source signals bemeddv
- Can evoked source signals be recovered from this subspace?

1.2 Contributions

This thesis contributes with a new method for the separatidtEG data with underlying evoked
dependent MEG source signals. A new virtual MEG experimadtanew actual MEG exper-
iment are introduced that can be used as a basis for evajulinseparation performance of
different methods. This is important as the ground truthatial MEG data is not known in
general. It is shown that ICAan separate dependent source signals in special cases. Evoked
dependent source signals are shown to be not separable by igaheral. The near dipole effect
shows that a dipolar pattern does not ensure the success of ICA

Furthermore, the identification of the evoked and possilklyethdent source signal subspace is
discussed. The recovered subspace is shown to be sepayahke froposed method. For both
actual and simulated MEG data, the separation performamsignificantly improved using the
novel method in contrast to using ICA.



1.3 Overview

Publications of this thesis are listed below.

Journal articles

e Kohl, F., Wibbeler, G., Kolossa, D., @8, M., Orglmeister, R. and Elster, C. 2010. Shifted
factor analysis for the separation of evoked dependent MEaks,Physics in medicine
and biology 55:4219-4230.

e Sander, T.H., Kiassche, T.R., Scbil, A., Kohl, F., Wolters, C.H., Haueisen, J. and Trahms,
L. 2010. Recent advances in modeling and analysis of bioelectd biomagnetic sources.
Biomedizinische Technik5:65-76.

Conference articles

e Kohl, F., Wiibbeler, G., Sander, T., Trahms, L., Kolossa, D., Orglreeif., Elster, C. and
Bar, M. 2008. Performance of ICA for dependent sources usinthsyic stimulus evoked
MEG data.Proc. DGBMT-Workshop Biosignalverarbeityrgp—35.

e Kohl, F., Wibbeler, G., Kolossa, D., Orglmeister, R., Elster, C. atd, B1. 2008. Per-
formance of ICA for MEG data generated from subspaces witkei@égnt source$roc.
ECIFMBE, 22:1281-1285.

e Kohl, F., Wiibbeler, G., Kolossa, D., Elster, C.aB M., Orglmeister, R. 2009. Non-inde-
pendent BSS: a model for evoked MEG signals with controlldbjgendencie®roc. ICA
lecture notes in computer science, 5441:443-450.

e Kohl, F. and Wibbeler, G. and Kolossa, D. and Elster, C. aré,BA. and Orgimeister,
R. 2010. Noise adjusted PCA for finding the subspace of evokpdrttent signals from
MEG data.Proc. LVA lecture notes in computer science, 6365:442-449.

e Ghaemi, D., Kohl, F. and Orglmeister, R. 2010. Classifying I@ponents of evoked
MEG data.Proc. BMT, 55:302—-305.

1.3 Overview

In Chapter 2, the basis of evoked MEG is introduced. Chaptee8amts the framework of ICA.
In Chapter 4, ICA is investigated in the context of evoked bsagnals, using a new virtual
as well as a new actual experiment. In Chapter 5, a novel biparstion technique is intro-
duced that is based on multilinear models. Furthermore, t€h&pdiscusses alternative separa-
tion techniques and tackles the identification of the evakigdal subspace. Chapter 6 provides
a concluding summary.



2 Evoked brain signals

Evoked brain signals give evidence of a direct link betwegnigation and neuronal activity. An
evoked signal is a response of the brain to an external sisnuk. the flow of ions that result in
magnetic fields, which are recorded by MEG sensors.

MEG recordings can provide non-invasive access to evokgthls. These signals are used for
various tasks, such as evaluating cognitive paradigmsrastiftnal brain mapping. Figuie 2.1
depicts the anatomy of the cerebral cortex with brain regamd associated topological naming.
For example, auditory stimulations evoke responses in threapy auditory cortex.[[Pan88]
demonstrated that different acoustic frequencies are athpp distinct regions therein. Brain
signals related to sensory stimulation experiments cahdube evoked by visual stimulations,
by stimulation of the tactile as well as the olfactory andtgt®y senses. The evoked responses
are often modulated by attention, emotions, vigilance aaperation of the subject undergoing
testing [Min00, Hai64].

The exact process of evoked activity is extremely compdiddb reconstruct, as the brain con-
sists of more thani0'° neurons that are largely interconnected@itiB3]. A virtual copy of the
brain, imaging all relevant ion flows and neurons involvedmystimulation, is desirable but not
feasible to date. An insight into brain processing aftenatation is only incompletely provided
and is dependent on the acquisition technique in use.

2.1 Acquisition techniques

Acquisition techniques may be classified into invasive and-mvasive, among which non-
invasive recording is clearly preferable. However, it magyde access only to indirect infor-
mation.

Among the non-invasive methodologies, positron emissamagraphy (PET)[[Ter75], func-
tional magnetic resonance imaging (fMRI) [Oga90], neararéd spectroscopy (NIRS)JB77]
as well as electroencephalography (EEG) [Ber29] and magneéphalography (MEG) [Coh68]
are regularly used.

PET, NIRS and fMRI focus on blood flow and blood oxygenation@ffevhich are linked to
neuronal activity[[Roy90]. These techniques offer high sppagsolution, however, the exact re-
lation between neuronal activity and vascular activity agm complex[[Cae03, Kim03]. For the
study of evoked signal dynamics, one of the main concerngeidaw temporal resolution of
these techniques, which is in the range of seconds.

In contrast, EEG and MEG offer high temporal resolution ia ths range and cover the typical
frequency content of evoked signals. Hence, EEG and MEGraferable to study the dynamics



2.1 Acquisition techniques
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Figure 2.1: Topographical overview of the main corticalesref the human brain. The primary
visual cortex and the primary auditory cortex are highkghtThese areas show
prominent activity 100 ms after stimulation; the so-calD0/P100 instant has been
studied intensively [Fra03].

of evoked responses [Hal05ak93]. An EEG records electrical potentials by using mldtip
electrodes fixed to the scalp. The recorded potentials Bidsevolume conducting currents that
originate from the primary currents in the neurons. An ME@Gores resulting magnetic fields
from primary and secondary currents using multiple magrsethsors placed near the scalp. In a
spherical approximation of the head, only primary currésaige to be considered [Sar87].

EEG recordings are affected by inhomogeneities of the Hesd.consequence, MEG field maps
are often spatially less smearéd [Har05]. However, MEGdemsitive to radially orientated cur-
rents in the spherical model. Hence, both methods may bededas providing complementary
information. Indeed, as the neocortex is folded to sulci gyxd both techniques offer their ad-
vantages. EEG is most sensitive to the radial currents tiegpr@mminent in the gyri and MEG
iS most sensitive to tangential currents that are promimetite sulci. Here, the MEG recording
modality is investigated; the MEG specific advantages asasgatlisadvantages have to be kept
in mind for making conclusions about the decompositionlteskor studying brain functioning,
more than one acquisition technique should be considerewfB®from combining techniques

have been recently reported [Dal93, Zav09].

2.1.1 Magnetoencephalography

Magnetic fields that result from evoked neuronal currenteébrain are very weak. They range
from a few to several hundreds of femto Tesla. In comparid@mearth magnetic field is about
8 orders larger in magnitude.

As a consequence, in order to record an MEG, external fields toebe attenuated. Commonly,
a magnetic shielded room is used, such as the one depicted.i2.B. Passive shielding of-

ten consists of several layers of mu-metal and aluminum. &S are used for active shielding



2 Evoked brain signals

Figure 2.2: In- and outside of a magnetically shielded roonmfagnetoencephalography record-
ings. During measurement, doors are closed. Layers of alumiand mu-metal
yield a factor of10®> — 10° magnetic field attenuation depending on the spectral
content of the noise. The interior of the cabin has to be asnetagplly silent as
possible. Mirrors bring visual stimulation from a beameattts placed outside into
the cabin. Plastic tubes transmit tones to subject’s eddinfgothe magnetic dis-
tortion to a minimum. The subject is instructed not to movajlevthe head is sta-
bilized by air cushions in the dewar helmet of the multichkedrMEG system. The
pictures can be found at http://en.wikipedia.org/wikKgBVISR layereddoor.jpg and
http://infocenter.nimh.nih.gov/il/publid/image details.cfm?ig-80.

[Ham93]. The cabin inside has to be demagnetized, while cardohbe taken that only non-
magnetic material is present in the cabin while recording.

At the level of MEG hardware, superconducting coil graditeneare used. As the spatial gradi-
ent of the magnetic field of interest falls off rapidly, thddief interferers appear homogeneous
in the surrounding of the human head. In contrast, fields fin@oronal currents possess a high
spatial gradient. Two radially oriented coils in oppositeang are used, one near the scalp and
one a few centimeters away. Hence, homogeneous fields ohekiaterferers are suppressed,
while the recordings of interest are only weakly affected®b]. The current induced in the gra-
diometer is fed into a third coil producing a net magnetidafidlhis field, although less corrupted
by external noise, is still weak. Super conducting quantntarference devices (SQUID) are
used to record the weak magnetic fields with excellent seitgiand low noise levels [Zim77].
Highly integrated sensors build the heart of today’s MEGeays with up to 300 sensors cooled
in a helium filled dewar. However, even if the dewar has a heshape, pickup coils are several
centimeters away from the source. In the case of a currentadgource, the resulting magnetic
field falls off as the inverse square of distance. Hence, imgortant to instruct the subject to
place his head as close as possible to the sensors, i.eh&kEG helmet. If a dipole current is
active in the brain, the map of the radial field component shawlipolar pattern with two field
extrema. The physical dipole is halfway between and at & aglgle to a line connecting the



2.2 Sensory evoked fields
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Figure 2.3: Event related field related to auditory stimuaolatThe depicted signal is the average
over 100 single-trials, lined up to the stimulation time Q Bimgle-trials were evoked
by acoustic tones of 1 kHz and 30 ms duration, presented nmalha he prominent
deflection at 110 ms is referred to as N100. It is a typical pibak occurs after
roughly 100 ms. The N100 varies from trial to trial and amoulgjects. Here, channel
39 was used to obtain the trial average, while the field mapesponds to the time
instant 110 ms. Throughout this work, magnetic field plo¢gsrearmalized to maximal
field strength. The corresponding field maps are color codmd £1 to 1, indicating
normalized field strength of the magnetic field vector paoigtinside or outside the
skull, respectively.

field extrema. This field can be approximated via quasi skdéigwell equations. Calculation of
fields from a probe dipole is termed forward calculation. Tésulting field is linearly related to
the strength of the dipole and nonlinearly related to itstpos In Fig.[2.3 a dipolar pattern of

an auditory evoked source signal and the correspondiri@tisaged response are displayed for
one sensor.

2.2 Sensory evoked fields

Three sensory evoked fields are often used in a clinicaihge[fVal05]: auditory evoked field
(AEF), visual evoked field (VEF), and somatosensory evol&d {ISEF). Parra and Walsh noted
that stimulation paradigms lose clinical impact becaudewfspecificity and better alternatives
[Par03/ Wal05]. However, Parra commented that a successfiaration will let sensory evoked
fields regain impact. Drug impacts, neuronal pathway intyegnd diagnostic for epilepsy or
multiple sclerosis are potential candidates in clinicgllaations [Nuw98]. For functional brain
research, event-related paradigms are omnipresent amdafdrasis to understand many open
questions[[Min00/ Fra03].

Somatosensory fields are often evoked by electrical stitmonl@f peripheral nerves, AEFs are
often evoked by tones and VEFs are often evoked by checkethi@a patterns or flashlights.
Throughout this thesis AEFs and VEFs shall be considereduntierstand the experimental
separation results, a brief neuroanatomical and phystdbbgackground is given, subsequently.
For a review on somatosensory stimulation paradigms, tefidie05].



2 Evoked brain signals
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Figure 2.4: Left: Auditory pathway. After the signal leatbe cochlea, most of the nerves cross

over to the contralateral side of the brain. However, someasecarry on ipsilaterally.
Hence, monaural stimulations, used in this work, evokeserusrin the left and right
primary auditory cortex yielding two dipolar field patteyiose over the left and one
over the right temporal lobe.

Right: Visual pathway. The optic nerves from the nasal sidéhefretina cross at
the optic chiasm. The optic nerves from the temporal sidehefretina continue
ipsilaterally. Hence, stimulations in the right visual dielsed in this work, evoke
currents in the left primary visual cortex yielding a singipolar field pattern over
the left occipital lobe. Pictures are modified versions ofl 0&, [Gral8], respectively.

2.2.1 Auditory evoked fields

The primary auditory cortex is located in both hemispherethe temporal lobe depicted in
Figure[2.1. Acoustic stimulation results in electricality that travels along the auditory path-
way, which is exemplified in Figule 2.4. The information islisributed by many nuclei along
the pathway to the primary auditory cortex. As a result, slostimulations result in contralat-
eral as well as ipsilateral neural activity; monaural aslaslbinaural stimulations give rise to
field maps that have a dipolar pattern over both hemisph&hesmagnetic response to acoustic
stimulation has a prominent deflection after 90-110 ms, Wwinsccalled the N100. The N100
was shown to vary with presentation conditions such as @&nagj spectrum or spatial sound di-
rection [N&a87, Vak88, Ham93]. Furthermore, different frequencies evoke diffesites in the
cortex [Pan88]. Changes in soundsgk88] or sound sequencésdaB7] have been used exten-
sively to study attention, reaction and memory and to stadgliage disorders such as dyslexia.
Due to single tone stimulation, two dipoles are assumedniergae the N100, one dipole in each
hemisphere. However, more underlying sources (possiblydtable) may contribute {i92].



2.3 Neuronal basis and mathematical modeling

2.2.2 Visually evoked fields

The primary visual cortex is located in the occipital lobgidéed in Figuré 2J]1. In contrast to the
auditory pathway, the visual nerves connect distinct partise retina to distinct parts of the pri-
mary visual cortex. Specifically, parts of the eyes that @etrthe left visual field are connected
to the right primary visual cortex, whereas parts of the dheas percept the right visual field
are connected to the left primary visual cortex. This is exéiad in Figure[2.4. As a result, a
dipolar magnetic field distribution appears contralateodahe stimulated visual field half.
Different types of visual stimuli exist. Commonly, pattemflashlight stimuli are used with ei-
ther full visual field or part visual field stimulatioh [AinPi3An established paradigm is pattern
reversal using checkerboard pattefns [Amé&94, Ahl92]. Ak wuditory evoked fields, the most
prominent deflection is the visual P100, that peaks 90-148ftas stimulation. A checkerboard
stimulus reversing with 2 Hz was found to evoke a particylé&atge P100. However, the P100
was shown to vary widely with presentation condition suchyasamics, contrast, pattern orien-
tation, spatial frequency and location [Shal00, Oka82, BjnThe P100 has been used to map
the location of the visual fields to locations in the primaoytex [SI099]. The number of regions
activated is still not known. Recent studies give evideneagrtiore than one region with possible
similar temporal morphologies but larger time shifts arevated [Nea79/DaS91].

2.3 Neuronal basis and mathematical modeling

The neuronal basis of MEG data is of utmost importance fod#sgn of separation methods,
i.e. for the design of mathematical models.

On the one hand, a particularly advantageous physical pgsofgethe linearity of the mixing
process. The field maps depend linearly on the amplitude péad stationary source. They can
be calculated using the quasi-static Maxwell equations3B2Ham93].

On the other hand, any linear decomposition yields a sesoftehaving certain features. Hence,
knowledge about the biogenesis of neuronal currents andtiresmagnetic fields yield prior in-
formation that is needed for exploratory data analysis. @ag choose a model where only field
maps with certain patterns are allowed, or one may choossesadstrictive model but interpret
the results on the basis of some known features. If nothingasvn about the genesis of the
data, every separation method yields some separatiorigdsiiiconclusions cannot be drawn.

2.3.1 Currents and fields

By law of superposition, magnetic fields that result from opfcurrents can cancel. Most of
cell depolarization effects and resultant currents ardigfkind and generate no external mag-
netic field [Zsc02]. In early days action potentials werdeyad to give rise to scalp potentials
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Figure 2.5: Electrophysiology, generation of magnetiaBeind SQUID recording unit. The pic-
tures show that currents can take both directions in therieadf long pyramidal
cells (a). The latter are numerously arranged in paralleh(ia oriented perpendic-
ular to the cerebral cortex (c). The pick-up coil registéues inagnetic field which is
fed to the SQUID sensor for recording (d).

[Zsc02]. However, a single action potential cannot be tegésl on the scalp. Furthermore, ac-
tion potentials are wired in a chaotic fashion and, henaeg&ang effects occur. From an MEG
recording it is known that field variations occur smoothlglahe spiky nature of action poten-
tials therefore cannot be the generator of an MEG.

The main contributors to MEG are ionic currents in the derdrdf pyramidal cells [Zsc02].
This is possible due to a parallel arrangement of long pydahtells in the cortex. So called
excitatory postsynapic potentials (EPSP) and inhibitasgtgynapic potentials (IPSP) lead to
depolarization or hyperpolarization of these cells, whiesults in intra and extracellular ionic
currents. The extra-cellular currents (volume condugtaoe seen in EEG, the fields of intracel-
lular currents in MEG. For this, thousands of pyramidalétive to be synchronously active.
Postsynapic potentials last for several ms and new stu@wes $hown that a single pyramidal
cell can have up to 50000 synapses connected to it. Due ttappanrg of many postsynapic
potentials a rich variety of smooth signals can be genersttedng the variability of an MEG
recording [Zsc02].

In Fig.[2.3 the biogensis effects are summarized.[Eig. 2shavs that positive and negative cur-
rents can be generated, either by different locations adgy@s or by different kind of synapses
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2.3 Neuronal basis and mathematical modeling

(EPSP or IPSP). In b) the net flow in many pyramidal cells isghto yield a net magnetic field
that leaves and enters the cortex again. In MEG, this fieletlsepl up with an axial gradiometer
and measured with a SQUID sensor, as depicted in d) [Har05].

2.3.2 Linear instantaneous forward model

The forward model relates neural signal strength and magfield recorded by the MEG sen-
sors. Hamalainen [HAM93] showed that the human brain and skull are transpavenagnetic
fields and that quasi static Maxwell equations apply. Hetlee ,forward model is linear and
instantaneous. Sarvas [Sar87] showed that in a spheripebxdmation, secondary volume cur-
rents do not contribute to the magnetic field. Sinestra 8pfi@ther noted that the volume current
effect for MEG in more realistic shaped head models is verglsidaueisen [Hau02] noted that
anisotropic volume conduction has a minor influence on slocalizations but might have a
major influence on source strength estimation.

Nevertheless, the most relevant primary current can beoappated using an equivalent current
dipole (ECD) with a momen® at the positionr,. Using the isoconducting spherical head model,
Sarvas solved the quasi-static Maxwell equations and tlgnete fieldB at the positionr can
be expressed as [Sar87]

B(r) = 47’:;2 (FQ xty—Q x ro-rVF), (2.1)
whereF' = |r — ro|(|r||r — ro| + |r|* — (r - ro)). The model is nonlinear to the location and
the orientation of the dipole. For a spatially fixed dipolg,[E-1 shows that the forward model is
instantaneous and linear in signal stren@i. No field is observable, if the dipole is orientated
radially; Q x rqy equals zero in the radial dipole setting.

2.3.3 Evoked versus phase-reset theory

There is a long standing debate regarding how evoked sigmalgenerated [NieD9, Bec08,
MakO05/KIi06]. Basically, two theories are being discusskddvoked model [SayF4] and phase-
reset model[Mak02]. The idea behind the evoked mechaniimisn event increases the signal
power at some location in the brain, in addition to the onggmnocesses. Thus, each stimulus
activates neural populations in a time locked fashion. Tesp-reset model refers to a view that
stimulation changes ongoing activity nonlinearly by atpgits phase domain after stimulation.
ERFs seem to give evidence to the evoked mechanism. Howetleg, @hgoing activity is not
phase locked before stimulation, the same ERF is explairtabkbe phase-reset mechanism.
Furthermore, there exist event-induced phenomena. Therpaiexistent ongoing process was
observed to increase or decrease with stimulaiion [Ber29si@d eyes blocks the alpha wave
and generates beta waves, which is known as event-relageydchronizatior [Pfu99]. Mod-
eling the ongoing and the evoked mechanism together hasdoeenrecently in[XuQ9].

11



2 Evoked brain signals

2.3.4 Assumed evoked signal model

In this work event-related brain activity is modeled in slations following the evoked model.
Specifically, evoked MEG data is modeled in this work as a sagsation of the magnetic fields
that result from neuronal source signals. With each nelismace signal, a particular spatial
pattern of the magnetic field is associated. The single maligource signals and hence their
magnetic fields are subject to amplitude and latency vanatover trials. The evoked signals
shape shall be modeled constant. Hence, MEG recordedXjatare assumed to follow the
model expressed as

Xete = Z Acfo(t + Tef)Def, (22)
f

wherec, t, e, f denote channel, time instant, trial number and componenbeu The matrixA
(with elementsA,.;) encodes the spatial mapping from the neuronal sourcelsigméhe MEG
channel T the latency shifts an®) the amplitude shifts. Théth neuronal signal form is denoted
by S;(t). For notational conveniencs; = S;(¢) shall be used interchangeably. For instance,
A.; Sty is the magnetic signal at th¢éh channel evoked by th&h neuronal source at tinteafter
stimulus presentation when no amplitude and latency vanas present.

2.4 Analysis methods

The analysis of evoked responses range from frequencysasaliener filtering, time warping,
wavelet filtering, statistical testing and component asialpf the ERP time domain signals. A
good review on the univariate techniques to analyze andharere evoked signals can be found
in [Pic95]. In the following, some of the considerationsailetd in that work shall be discussed.

Averaging

The most widely used method for an analysis of evoked agiiwihe averaging method [Daw54],
which uses a univariate model
2o(t) = s(t) + ne(0), (2.3)

wheres(t) is the evoked signal.

The signals(t) is assumed to be invariant over= 1...E trials and the noise(t) is assumed
white and additive.

The average ovek trials is obtained via [Nie05]

o(t) = 5 S wlt) (2.4)

while assuming Bz.(t)] = s(t).
Since the noise is assumed zero mean, i.p..E )] = 0, and the signal is assumed deterministic,
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2.4 Analysis methods
i.e.vars.(t)) = E.[(s.(t) — Ec[s(t)])?] = 0 it follows from

var(z(t)) %var(n(t)). (2.5)

that the SNR improves linearly with the number of trials.

However, it is known that evoked signals can vary in ampétadd latencies [Tru02]. Further-
more, noise sources can be correlated and non-stationdryawertain degree of phase locking.
Furthermore, Equatidn 2.3 is a univariate model; averado&s not use the multivariate nature
of MEG nor does it model effects if more than one source isdewvoked. Consequently, in
reality, an improvement of SNR proportional ibis not achieved. Hence, averaging is a good
technique to gain an overview over new data, but has to bededaritically. In general, impor-
tant single-trial details may be missed.

Localization

Localization aims at finding a physical location for assteziaactivity. One method is to fit the
forward calculated field of an ECD to a series of recorded figdttidutions in a least squares
sense. Often the recordings are averaged over trials andghenly phase locked activity is lo-
calized. Furthermore, the averaged fields are hamperedaduréfacts.

An alternative way is to use source separation as a premiogestep prior to localization.
Demixing yields signal vectors, while taking into accouasgible non-orthogonal noise sources.
Furthermore each pattern is reduced to the number of diplésnust be taken into account
leading to a more plausible and faster result. As the inveodation is non-unique, the result
is always sensitive to the prior knowledge. Source sepmaraii successfully applied, can give
clearer field maps, improving localizatign [Vig00, Tan02{udies showed that some sources are
only detected and locatable when using ICA in a first step tdscalization[[Vig0D._Tan02].
More detailed information on inverse methods can be fouriBan01].

Independent component analysis

Decomposition makes use of the multivariate nature of th&viécording. The aim is to find the
underlying source signals, in contrast to the processirgupérimposed single channel record-
ings. As the multi-channel recordings follow a linear imééaeous mixing process, a linear un-
mixing process has to be found.

Independent component analysis aims to recover univagigtals that underly the multivariate
recordings. In the context of evoked signals, the aim is taiaktime dynamics and the asso-
ciated field maps. Indeed, having the separated signalspuagp single-trial analysis and the
solution to the inverse problem. This makes ICA a vital toolgteprocessing in brain research

[Tan05] Vig00[ Par03, Ont0B, VigD9]. The source signalsydw@r, must be stationary and inde-

pendent. The latter assumption will be under investigatidhis work.
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3 Independent component analysis

Independent component analysis (ICA) aims at recoveringaniaite source signals from mul-
tivariate recordings. The recorded data is assumed to betanmiof these sources. Neither the
source signal samples nor the mixing coefficients are kndis. makes ICA an instance of the
blind source separation (BSS) family. ICA assumes that alicesuare stationary and statistically
independent and that the recorded data is explainable logarlmixing process. In the context
of MEG data, the model underlying ICA is bilindar linear in the MEG recording modalities
space and time.

3.1 Bilinear mixing model

A statistical instantaneous bilinear model may be exprkease

x = As, (3.1)

where, in the context of ICAA € R™" is called the mixing matrix. The random vectocom-
prisesn source signals and the random vectatomprises the recorded data fromchannels.
The mixing matrixA is assumed to be stationary, square and of full rank.

ICA numerically adjusts an unmixing matrW such that the estimatesare as independent as
possible. An estimated source signal is one component oktteeded data and is recovered by
left multiplication of the unmixing matrix with the data,vgin by

u=Wx. (3.2)

In the case thai = s holds true, ICA yields a clear copy of the underlying sourgaails by only
using the mixture. Having MEG data @ftime instances, E. 3.1 and Eq.13.2 may be expressed
in matrix notation as

X = AS, (3.3)
U = WX, (3.4)

whereX, S, U represent the matrices of recorded data, source signaleaodered signals with
T columns, respectively.

INonlinear, convolutive and noisy ICA models exist. These @ften needed in more complex applications. For
the MEG source separation task, the instantaneous linedelnsoused.
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3 Independent component analysis

3.2 ldentification

In order to identify a model, i.e. to estimate its parametérs solution has to be existent and
unique. In the case that ICA is based on the bilinear modgbaaimeters of the matric&sand

A in Eq.[3:3 have to be estimated.

Let A, = AB andS, = B~!S be some matrices that differ from the original source marix
and the original mixing matribA, due to multiplication by a regular matri® and its inverse
B~!. Let some recorded data following Eq.13.3 be modeled\hyandS,, yielding

X = AS, (3.5)
= ABB'S, (3.6)
= AS, (3.7)

whereBB ™! equals the identity matrix. Eq.[3.6 shows that infinitely many matricBsyield
infinitely many candidate matrice’s, andS, that all explain the recorded data equally well. The
correct solutiomAS is not the only explanation of the data. As a consequencéjlihear model

is inherently not unique. In order to obtain uniquenessstramts have to be imposed, i.e. the
number of degrees of freedom have to be reduced.

Eq.[3.6 shall be further evaluated. Choosii¢p be a regular permutation mat@xshows that a
row change in the source signal matrix that is compensatedcbyresponding row change in the
mixing matrix destroys uniqueness. Choosiitp be a diagonal matril® shows that energy can
be assigned to either the mixing vector or to the associatas signal, which destroys unique-
ness. Choosin@ to be a signed identity matrix with different signs alongditagonal shows
that changing the sign for both mixing vector and associateoice signal destroys uniqueness.
These indeterminacies, namely ordering, norm and sigmatdre recovered without imposing
constraints on the order, energy or sign of the source sgnal

The solution to a constrained bilinear model, which is urigp to the indeterminacies ordering,
norm and sign, shall be callexssentially uniqueAn objective function, aontrastin the BSS
context, that constrains some parameters of the bilineaeittas to be imposed. The contrast
must constrain the bilinear model, such that the soluti@ssentially unique.

3.2.1 PCA

Principal component analysis (PCA) [Str80, Gol96] is a fiefly used signal processing tech-
nigue. It has various applications with dimension reducbeing its most prominent.

PCA may be introduced based on the bilinear model as stategl[8.F in order to demonstrate
its essential uniqueness. For this, PCA constrains the asumahe vectos to be uncorrelated
as well as the mixing vectors to be mutually orthogonal. Tik&n[3.1 becomes

x = Es, (3.8)

whereE is orthogonal. Hence, the unmixing matN¥X has to be orthogonal 3 = E~! = E”.
The unmixing matrix is found utilizing the decorrelationnstraintC, = E[ss”] = A, whereA
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3.3 Framework of independence maximization

is diagonal. It follows with

E[ss”] = E[E"xx"E] = E"E[xx”]E = ETC,E = A, (3.9)

that the data covariance matrix needs to be diagonalizedcdjE and A can be found via an
eigenvalue decomposition of the sample covariance matiitix @, E = EA, whereE is the
eigenvector matrix and is the eigenvalue matrix [Str80, Gol96].

Let Q be any non-diagonal orthogonal matrix andilebe any diagonal matrix. It follows with

Q'ETC,EQ = Q'ETEAETEQ = Q'AQ # D, (3.10)

thatE is essentially unique if all eigenvalues are distinct. Heeveif an eigenvalue appears re-
peated, the inequality in EQ._3]10 turns into an equalityermvbeleting all columns and rows of
E, Q, A andD that correspond to the distinct eigenvaluesAinrespectively. It follows that
PCA is not essentially unique for eigenvectors that belonthéosame eigenvalues [Hyv01a].
This has an impact on decomposition and preprocessing.

3.2.2 ICA

ICA is introduced based on the bilinear model as stated in(ELj.iB order to demonstrate

its essential uniqueness. For this, ICA constrains the ssurcthe vectos to be statistically
independent. The mixing matrix is assumed square and reduldCA of the recorded data

aims at estimated sourcas= Wx that are as independent as possible. Comon proved that ICA
is essentially unique, ¥ are pairwise mutually independent [Com94]. Furthermorej@st one
source ofs is allowed to be Gaussian distributed. This is a direct cgnsece of the Darmois-
Skitovitch theorem [Dar83, Ski53], which may be expressefCam94]

Theorem 3.2.1. (Darmois-Skitovitch theoreml.et s; be independent random variables with
i =1,..., N and define two random variables as = > | a;s; andazy = SO~ | b;s;. Then ifz,
andz, are independent, all random variablesfor whicha;b; # 0 are Gaussian.

ICA's independence constraint is more strict than PCA's detation constraint. However, of-
ten, statistical independence is physically plausibletifemmore, ICA drops the restriction to
orthogonal mixing matrices; sources with non-orthogoretifmaps can be separated by ICA.
Hence, although both PCA and ICA can be essentially unique, |@p e regarded as superior
in the decomposition context.

3.3 Framework of independence maximization

The most crucial assumption of ICA is that the sources aresstatlly independent. Indepen-
dence is a stronger assumption than uncorrelatednespgindent sources must be uncorrelated,
whereas uncorrelated sources may not be independent.

ICA is the framework under which different methods try to aptie an independence cost func-
tion. Theoretical basis and considerations shall be ginehe following.
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3 Independent component analysis

3.3.1 Definition of independence

Mutual statistical independence of two discrete randoratéesU andV is defined by

P(U € A,V €B) =P(U € A)P(V € B), (3.11)

where A and B are any sets on two Cartesian coordinates andoedgarobability[[Pap07]. For
continuous random variablesandv, statistical independence is given if and only if the joint
distribution gu, v) factorizes into the product of the marginal distributiogisen by

p(u, v) = p(u)p(v). (3.12)

ICA of mixed random sources that are pairwise mutually indeeat is essentially unique
[Com94]. Hence, in the case that ICA recovers pairwise muytuatlependent estimates, these
are guaranteed to be the sources if the ICA assumptions are met

Let g and h be some absolutely integrable functions, it fadldor the independent variables
andv that

Elgnt)] = [ [ gtunto)p(u, viduds (3.13)
~ [ gtwptu)du [ iw)pie)ae, (3.14)
— Elg(u)Elh(v)] (3.15)

holds true[[HyvO1@a]. From E@.3.1L5 important propertiesmofependence can be observed. Eq.
[3.13 holds true also for non-independent uncorrelatedor@neariables: andwv, but if and only

if g and h are linear functions. It follows that independerisca stronger constraint than uncorre-
latedness.

However, ifu andv are Gaussians, then uncorrelateness implies independéanandv. This
property does not hold true for distributions that diffesrfr the Gaussian [HyvOla]. Thus, after
a decorrelation of two Gaussians, independence cannateasssential uniqueness. Hence, no
more than one Gaussian is allowed for ICA decomposition.

3.3.2 Whitening

ICA algorithms often iteratively adjust some cost functibattis to be optimized over the pa-
rameter space. For large scale problems, this task is ncatigrchallenging.

In the search of independent ICA sources, uncorrelatenets® @ources is a necessary condi-
tion. By utilizing whiteningas preprocessing, the recorded data are decorrelated endlized

to unit variance. The advantage is that the unmixing masrigdnstrained to the manifold of
orthogonal unmixing matrice$ [Car99, Hyv01a]. An increasetability as well as numerical
efficiency is obtained. Consequently, most ICA methods uséewing as a preprocessing step
towards the goal of independent estimates.
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3.3 Framework of independence maximization

Whitening is often performed by using the results from PCA. dntipular, it follows from Eq.
[3.9 that an eigenvalue decomposition of the data covariaratex yield a matrix of eigenvectors
that decorrelates the data. For normalization, elemerd imgersion of square root eigenvalues
is used. The composite of the two matrices yields the whiggmatrix

V = AET (3.16)

Applying Eq.[3.16 to the recorded data yields

X, = Vx = VAs = Os, (3.17)

wherex,, denotes whitened data. It can be observed from

Cy, = E[x,x.]= VE[xx'|VT (3.18)
= A ETEAETEAT?? (3.19)
AOPAANTOD (3.20)

= 1 (3.21)

that the elements af,, are decorrelated and normalized to unit variance, i.e.ewhit

To see that the composite of whitening times mixing maix VA is orthogonal the condition
E[ss] = I shall be employed. Diagonality is given by assuming indelpene; identity is obtained
by rescaling. As a consequence, Eg. B.18 may be rephrased as

!

E[x.,x.] = OE[ss]O” = OI0" = 1. (3.22)

Hence, the composite matrf® = VA is orthogonal and so is the unmixing maﬁww =
O~L. The search space is reduced and numerical efficiencylistabiportant information and
theoretical results (cf. Sec. 3.B.4) can be gained.

Whitening is not essentially unique. From Eq.3.18 and

Q'C,,Q=Q'VExx'IVIQ =Q'IQ =1, (3.23)

it follows that any orthogonal transformation (or rotafi@mi the whitening matrix again yields
data that is white. PCA suffers from an orthogonal (or rotald invariance. This can be ob-
served from the eigenvalue decomposition(®f ; all eigenvalues equal one and in line with
Sec[3.21 it follows that the associated eigenvector matrnot essentially uniquely defined.
Hence, ICA has to go beyond second order decorrelation irr dodéetermine the remaining
unknown rotation. The parameters of an orthogonal unmiraagyix are left to be estimated by
ICA.

2The subscript indicates that the ICA unmixing matrix can bestrained orthogonal due to whitening. For con-
venience, the subscript will be omitted when the contextaarc
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3 Independent component analysis

3.3.3 ICA via maximum likelihood

Maximum likelihood is a fundamental statistical technidaeparameter estimation [Sch91]. It
enjoys many favorable estimation theoretical properieduding consistency and asymptoti-
cally efficiency. Hence, it shall be used here as the first@gr towards ICA.

The rule of strictly monotone density transformation re¢athe joint density of the random
source vector to the joint density of the random data vect&itj.[3.1 as/[Pap07]

1
PO) = et A]
wheredet denotes the determinant.

Using the assumption of source independence and insehigngtvs of the unmixing matriw;
into Eq.[3.24 yields[Car98a]

p(s) = | det W|p(Wx), (3.24)

N
p(x) = |det W| ] ] p;(wix), (3.25)

where p are the marginal source densities. Consequently, theHiked of 7" data samples as
function of the paramete is obtained as

T N
LOW) =[] I det W| ] ps(wixe), (3.26)
t=1 =1
and the log-likelihood follows as
T N
logL(W) = Z Z logp;(w;x;) + T log|det W]. (3.27)

t=1 i=1
In order to perform maximum likelihood estimation, Eq. 3t#& to be maximized with respect
to its parameters. As the source densities are not parametan infinite number of parameters
are to be estimated. Clearly, this is problematic, given &didnnumber of observation samples.
Cardoso demonstrated [n [Car98a, Car03], that the exact sdistdbution is not crucial as long
as the main characteristic of the underlying sources iseted. For now, let g be a nonlinear
function somehow close tg g (log p,)’, where prime denotes the derivative.

The gradient may be expressed|as [Hyv01a]

1 0logL(W)

T W
and a gradient based optimization given some stepcsigratively identifies the parameters of
the unmixing matrix, given by

= [WT]™! + E[g(Wx)x"], (3.28)

1 OlogL(W)
Wiew = W + TTTOW |W=w.- (3.29)
From this brief ML ICA derivation, aspects that underly ICA hgtsstical independence maxi-

mization shall be discussed.
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3.3 Framework of independence maximization

Eq.[3.24 has two factors, being the determinant of the umgiriatrix and the source joint dis-
tribution. The first accounts for a volume change due to thesfiormation of the source joint
distribution. The latter holds information on the sourcafalistribution. Direct optimization of
Eq.[3.24 puts a maximization pressure on the determinamt tehich is maximal for an orthog-
onal unmixing matrix[[Cho02]. Hence, an orthogonal mixingtrixas favored, which does not
represent that the mixing matrix can be any regular m&trix38a.

For prewhitened data, the determinant is one and_Eq] 3.24i@s1¢o finding the source joint
distribution and the unmixing matrix. At this point, the atbnal invariance becomes appar-
ent. Once the source joint distribution has been found, atation of this joint distribution can
be transformed to the data joint distribution equally viaoathogonal unmixing matrix, i.e. by
counteracting the rotation. Hence, there is no point of mitsanaximum of Eq[_3.24 over the
parameter space but a line of equal solutions, representinguniqueness in the case that no
constraint is imposed.

Eq.[3.25 ensures essential uniqueness and the pressures momthie product of the marginal
source densities [ChoD2]. However, these have to be estinfilaie a limited number of sam-
ples. Specifically, exact independence measure involvast estimation of densities. This is
difficult and for ICA often more robust and more numericallfieént features of independence
are in use. In this ML ICA derivation, an a priori fixed nonlim&awas used. Indeed, from Eq.
[3.28, it can be observed that ICA is related to nonlinear detaion. To find a suited nonlinear-
ity, hence, is an important aspect of ICA.

Eq.[3.29, finally, shows that the ICA parameters may have tddratively optimized. It is of
importance which technique is used. Gradient ascent ishedbést optimization technique as it
is prone to slow convergence and inefficient use of inforamatMore sophisticated techniques
will be discussed later, which are detailed[in [G]I81].

3.3.4 Information theoretical aspects

It was argued in the last section that evaluating statisiependence is difficult. Many re-
searchers have used information theoretical aspects ipndasd improve ICA objective func-
tions. Hence, important concepts shall be discussed briBflgy will build the basis for the
section on established ICA algorithms.

Theinformationor uncertaintyof an outcome of a discrete random variablis defined as

= —log P(z;), (3.30)

where P andog denote probability mass function and logarithm, respebtiv
Originally introduced by Shannoh [Sha48], entropy of a e random variable equals the
expected value of uncertainty, given by

H(x) = E[—log P(z;)] = — Z P(z;) log P(z;). (3.31)
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3 Independent component analysis

The entropy of a continuous random variable is defined as

H(z) = —E[log p(x /p )log p(z (3.32)

where p denotes the probability density function. [Eq.13s3& metimes called differential en-
tropy [Cov91]. Aslog p(x) is not defined for fr) = 0, the integration extends only over the
support set, i.e. for (@) # 0. The seemingly trivial extension of the entropy conceptrfro
discrete-type to continuous-type random variables hagdiions. Entropy given by Ed. 3.B1
is always positive, whereas entropy defined as in[Eq.] 3.32beaome negative. As a conse-
guence, properties of discrete-type entropy can diffemffmroperties of continuous-type en-
tropy. More details on the relation between discrete andimoous entropies can be found in
[Cov91 [Pap0i7, KhOS].

The entropy concept can be generalized to more than onemamdoable [Cov9l]. For two
random variables andy, joint differential entropy is given by

H(z,y) = —Ellog p(z, y)] / / o(z, y) log p(z, y)dzdy, (3.33)

while for a random vectax the joint differential entropy is given by

H(x) = —E[log p(x /p ) log p(x (3.34)

Note that in ICA, the random vectar has elements that are linear mixtures of random source
variables. An ICA adjusts the unmixing mati¥ in order to minimize dependence of the esti-
mated random vectar = Wx. For finding a suited objective function, here, dependehayl s

be discussed in terms of entropy.

In particular, Eq[-3.34 is a measure of joint uncertaintyntoncertainty can be different from
marginal uncertainty as one elementimmay already hold information about some other ele-
ment. However, one element cannot increase the uncerw@i@iiyother element. Consequently,
the inequality

x) < Z H(z;) (3.35)

must hold true. Eq._3.35 states that if knowledge about cereeht inx, sayz;, does not change
the uncertainty of another element, say the random variables; and z; are independent.
In turn, if knowledge ofr; does change the uncertainty of (and vice versa), these random
variables are dependent. If uncertainty is not reduced kipgainto account all elements of a
random vector instead of one by one, equality in [Eq.13.35stide and the elements of the
random vector are independent. If joint entropy is less tharsum of marginal entropies, some
elements are dependent, i.e. hold information about edughr.ot
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3.3 Framework of independence maximization

Specifically, the information held by one random variablabout anothet; is termed as mutual
information (MI), which results in

= Z H(z;) — H(x). (3.36)

Together with Eql_3.35, and the above reasoning, mutualrirdtion is the measure of uncer-
tainty reduction equaling the amount of statistical degece of the random variables.
Inserting EqL3.34 into E@._3.B6 yields

P(x)
= [ p(x)log =———dx. (3.37)
This reformulation shows that mutual information is an amste of the more general Kullback-
Leibler information measure, which is defined as

z)||a(x) / p(x log (3.38)

The Kullback-Leibler distance quantifies differences b}ﬂwdlstrlbutions; it is nonnegative, and
zero only for equal distributions. It follows with

I(z,y) = D[p(z,y)|Ip(z)p(y)] = 0 (3.39)

that mutual information cannot become smaller than zerandf only if | = 0, the random vari-
ables are independent; in this case the joint distribusassured to factorize into its marginals.
However, optimization with mutual information as objeetifunction is numerically difficult.
Joint and marginal densities have to be estimated usingta fiata sample. Thus, mutual infor-
mation and related objective functions have to be elabdratgher.

Evaluating Eq[3.36 arld 3.85 leads to important ICA concdmd3.36 suggests that minimiz-
ing mutual information may be approached by minimizing nrabentropies or by maximizing
joint entropy. The latter approach is a direct consequefié&gd3.3%. The former approach is
connected by the property of differential entropy of a Garssandom variable. Assuming zero
mean and fix variance, the Gaussian distribution has max@mabpy among all distributions
[Cov91]. Furthermore, by the central limit theorem, a migtof independent random variables
approaches a random variable with a Gaussian distribusothe& number of mixed variables
grows [Pap0[7]. Hence, minimizing marginal entropies max@s non-Gaussianity. In line with
the central limit theorem, the most non-Gaussian elemeuot bre the least mixed.

Together wit Eql_3.39 and the central limit theorem, miniatian of marginal entropies assures
to lower dependence, i.e. to drive [Eq. 3.36 to zero.

The numerical advantage is that only marginal distribigibave to be considered. Although
the estimation of marginal distributions remains challeggthese results provide a first step
towards a more robust objective.

Differential entropy is not invariant to scaling of a randeariable, i.e. it changes as

H(az) = H(z) + log|al. (3.40)
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3 Independent component analysis

Hence, the scale has to be fixagriori in order to determine differential entropy.
A scale invariant measure of non-Gaussianity is negentiidpy01d], defined as

J(x) = H(xg) — H(x), (3.41)

wherex; has the same variance asbut it is defined to be Gaussian distributed. Due to the
maximum entropy property of a Gaussian, negentropy is awagater than zero and zero if and
only if the random vectox is Gaussian distributed.

If the recorded data is prewhitened, Eq.3.36 can be refatedlas/[Hyv01a, Bh0O0]

() = I0¢) = Y H(ww)i). (3.42)
As negentropy is invariant to any linear transformat], it follows that
0
—ml (WoXy) = aw Z J(Wyx,):) (3.43)

which proves that, in the case of prewhitened data, minimezaf marginal entropies is equiv-
alent to minimization of mutual information.

This is an important finding, stating that the concept of @aussianity is applicable for ICA.
In this context, thelth order cumulankurtosiscan be used advantageously. Kurtos(s) is a
higher order statistic of a random variable, which is zenoddsaussian distributed signal; it
is negative for sub-Gaussian (less peaky) distributechkgs and positive for super-Gaussian
(more peaky) distributed variables [Hyv(Q1a]. Given a zevean variable, kurtosig(x) is cal-
culated as

k(z) = E[z*] — 3E[2?)* (3.44)

The relation of maximal non-Gaussianity and minimal mutoidrmation, together with making
use of kurtosis, yields the first practical approach towad@k without an estimation of full
underlying source distributions. However, kurtosis iswnado be corrupted by outliers [HyvOla]
and may not be fully robust for ICA in practice. In the next sattestablished ICA methods are
presented; most of them draw directly on mutual informadéind its properties. In particular, this
section provides the basis for more efficient and more rdi@Astmethods that will be presented
subsequently.

3.3.5 Quality measure

A normalized version of Amari’s performance index [Ama96haqtifies the unmixing erran-r,
which may be expressed as

er(G) = —Qm(ﬂ’lL Y [Z <Z —malcg:wk > + Z (Z mai;q,:]]gzﬂ 1)] . (3.45)

J
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Figure 3.1: The unmixing error err will be used throughous tihesis as a measure of separa-
tion success. The unmixing error is a variant of Amari’s parfance index, which
measures the deviation from a permuted identity matrixariges between zero and
one and is zero only if unmixing is perfect. In the figure, ramd® x 2 dimensional
mixing matricesA and unmixing matrice3v were generated. For each draw, each
parameter of each matrix was a sample of a uniform distobuti [-1,1]. Hence, the
figure provides statistics of the unmixing error err in theecaf random unmixing.

where them x m matrix G = WA is the product of the estimated unmixing mathX with
the a priori known mixing matrixA. The unmixing error err is always between 0 and 1 and
equal to 0 if and only ilG = PD, whereP is a permutation matrix anD is a diagonal matrix.
Hence, at this point, unmixing is perfect up to the indeteamies permutation, sign and norm.
For prewhitened dat& equalsW ,, VA, whereV is the whitening matrix an®V,, is the unmix-

ing matrix recovered from whitened data.

3.4 Established methods

3.4.1 FastICA

FastICA aims at minimal dependence among the componenfsthe data vectok by mini-
mizing the marginal entropy of each component. In Se¢fi83 minimizing marginal entropy
was shown to be one approach towards minimizing mutual nmédion. When the components
are constrained to have zero mean and fixed variance, matiimizof marginal entropy can be
obtained by maximization of non-Gaussianty of each compbne

Negentropy was introduced in Eg. 341 and shown to be a soadgiant measure for non-
Gaussianity. Using prewhitening, due to Eq. 3.41 fo3.4Ximization of negentropy was shown
to drive the components towards independence. Negentappe approximated by a truncated
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3 Independent component analysis

Gram-Charlier expansion [Com94] as

1 2
I) ~ (@) (3.46)

For symmetrically distributed signals, the first term vaeis. Thus, the maximum of Hq. 3146 is
found by maximizing the absolute value of kurtosis).
Given whitened dafathe gradient of kurtosis may be expressed as

%’/@(WTX)’ o sign (k(w”x)) (E[x(w!x)%]). (3.47)
Simple gradient ascent is obtained via

EL 4

0
Whew = Wold + rua (WTX) |W:Wold' (3.48)

The norm of the unmixing vectors can be set to unity after edep asw,,c., = Woew/||Waew||
[Hyv01&]. This normalization technique is often used in ICAthods, as the scale remains unde-
termined by ICA. Itis the direction of the unmixing vectwt only, that unmixes the component.
The kurtosis objective function grows fast due to4tiepower in Eql_3.44. Thus, optimization of
the absolute kurtosis value is not robust against outlladeed, outliers can strongly dominate
the estimated value of kurtosis, which can destroy searfitlyv01al].

Negentropy is based on the maximum entropy property of a €ausThe key property for a
maximum entropy objective function is being nonnegative zero if and only if the component
is Gaussian distributed. Hence, Eq. 3.46 represemésmpproximation and may be generalized
to a family of approximations, given by [HyvO1a]

J(z) = (E[G(z)] — E[G(rcauss])*, (3.49)

where G is some nonlinearity that is non-quadratic. Then[3&H) represents a general measure
of non-Guassianity, being nonnegative and zero if and dnlyis a Gaussian.

In particular, a more robust measure of non-Guassianity kinatosis is obtained, whes grows
less fast than to théth power. Hy\arinen tested various nonlinearities, among which theinenl
earity

G(x) = B log cosh ax, (3.50)

wherel < a < 2, proved more suitable than kurtosis in many practical cH3ee

Hyvarinen proposed to optimize Eq. 3149 by a fixed point algoritather than by plaln gradient-
based optimization, for the sake of numerical robustnesisediiciency. He showed that the
convergence improved significantly. The correspondingatgdule is given by [Hyv97]

Wiew = E[XG'(Wx)] — E[G”(Wgy0%) [ Woia, (3.51)

3In this section, all data vectors are assumed white. Theewinigy indexw will be ommited in this section for
notational convenience.
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3.4 Established methods
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Figure 3.2: Infomax transforms the ICA componentby using nonlinearities. Maximal joint
entropy of the transformed componegtassures that its elements are independent
and distributed uniformly. The picture is taken fromdk05].

where G denotes the first derivative of Hq. 3150, given by

G(z) = tanh ax (3.52)

and G denotes the second derivative of Eq. 3.50, given by

G’(x) = a(1 — tanh? az). (3.53)

Again, normalization of the ummixing vectors is imposecetaéach iteration step.

In summary, a modified version of negentropy ensures to magimon-Gaussianity, while
choosing some other nonlinearity than kurtosis yields aenmobust negentropy measure. Go-
ing beyond simple gradient-based optimization yields neffieiency and higher convergence
rates. Maximization of non-Gaussianity, in turn, miningz@arginal entropy and dependence
of the estimated ICA components. The result is a robust aridd@a#salgorithm, referred to as
FastICA.

3.4.2 Infomax

Infomax approaches independence by maximization of joitvtopy. However, even though joint
entropy is always smaller than the sum of the marginal eresqjiEq[3.3b), maximization of joint
entropy does also put a maximization pressure on the mamgitr@pies, which results from Eq.
[3.38. Furthermore, the components are zero mean and uiaihearand hence, maximal marginal
entropy is obtained when the components are maximally mikbis is a direct consequence of
the central limit theorem and the maximal entropy propefty Gaussian.

However, applying nonlinear transformation units

y =g(w'x) = g(u), (3.54)
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3 Independent component analysis

to each estimated component makes the maximum joint entropgept applicable. The trans-
formation stage is depicted in Flg. B.2. To see the valitktya nonlinearity of the type

g: R—(0;1), strictly monotonous (3.55)

bound the amplitudes of the transformed signdh this case, marginal entropies become max-
imal if each transformed component is uniformly distrilsit@Vvith the rule of density transfor-

mations|[Pap07], marginal entropy is given by

H(y) = —Ellogp(y)], (3.56)
p(u)

—E {log 8y/8u] , (3.57)
—_E|joe P®)

= —E [1 g g/(u)} , (3.58)

= —D[g'(u)|lp(u)] < 0. (3.59)

Due to the Kullback Leibler distance in the last identity,rgiaal entropyH (y) becomes maxi-
mal if the derivativey’ equals the distribution(@). As g is obtained by integration of the deriva-
tive ¢/, the nonlinearityy must be the cumulative distribution function of the compane In-
deed, transformation of a random variable by its own cunwdatistribution function yields a
uniformly distributed random variablg [Pap07]. Hence, imdxation of the joint entropy

Hy) = 2 H(g,(w)) = 1(y) (3.60)

under the constrainy’ = p(u) leads inherently to maximal marginal entropies. Furthekima
mization is only obtainable by reducing the dependence &&tvihe components driving these
to independence. Hence, maximization of joint entropy efttansformed vectgy yields inde-
pendence of the estimated components.

For numerical implementation, let

y = (i(w), - yn(un)) = (& (i), ... gy (wyx)). (3.61)

Substituting Eq-3.81 into EG._3160 yields

Hly) = —Eflogp(y)], (3.62)
_ P(x)
= —E {log et 8y/0x|} (3.63)
= H(x)+ Z E[log g (w] x)] + log | det W/, (3.64)

28



3.4 Established methods

which is equal to the expression stated in[Eq.13.27. As attédstdmax and maximum likelihood
are equivalent methods. Both have to estimate the sourcétiderfsom a finite sample size.
Infomax uses a fixed source density, the logistic nonlitgari

1

y=09(u) = =t (3.65)
Together with Eq._3.85, the Infomax update rule may be esecas[[Bel95]
0
— =T / T
Wnew - Wold + a(Wold + W Z E[lOg gz(wz X)Dv (366)
= Wy +a(W, D+ (1 -2y)x"). (3.67)

Utilizing the natural gradient [Ama98] by right multiplygnEq.[3.67 withW” W, the speed of
convergence can be significantly improved in contrast todgted gradient techniques.

3.4.3 JADE

JADE generalizes the idea of FastICA by evaluating fourtteocrosscumulants as well as the
autocumulant kurtosis. Specifically, JADE aims at diaganay a four-way tensor holding all
fourth order cumulant statistics. This approach is vali;rasscumulants of independent signals

are zero[[Nik93].

A fourth-order cumulant tensor may be represented\by N-dimensional cumulant slices
[Car93], defined as

N
N = Z cum(x;, x, Ty, Tp) My, (3.68)

k=1

where the matriXM with elementsn,, has a single non-zero element equal to one. There are
N2 different matrices M and hence a set’éf cumulant slicedN exist. Using prewhitened data
constrains the matri©® = VA to be unitary. Using the cumulative as well as the multi-dirigy
property of cumulants [Nik93], EG.3.68 may be expressed as

N N

T = Z Z OiijfOkalfCUfT(Sf, S, Sf, sf)mkl, (3.69)

f=1 k=1

where cunfsy, s¢, s¢, s¢) equals kurtosis of th¢th signal. In matrix notation, E@._3.69 becomes

[Car93]

N N
N = Z K}(Sf)(O?MOf)OfO? = Z AjosO7. (3.70)
f=1 f=1
Eq.[3.70 represents an eigenvalue problem@rwén be found via an EVD dN. A more robust
estimate ofO is obtained when jointly diagonalizing the whole set'¢f cumulant matrices by
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3 Independent component analysis

joint Jacobi transformation [Car96b].

Furthermore, Cardoso showed that for the set of matifdesv matrices can fully exhaust the
fourth order information. Specifically, expressing Eq8a8N (M) = AM yields N matrices in
M with Eigenvalues greater than zero [Car93]. Joint approteérdegonalization of a reduced set
of only significant cumulant matrices amounts to a robustetfidient ICA method. Robustness
is obtained at the price of evaluating a high number of foortter cumulant statistics. Numerical
efficiency is obtained by matrix algebra-based simplifaadi

3.4.4 SOBI

Second order blind identification (SOBI) [Bel97] as well asdigiomain separation (TDSEP)
[Zie98] use time delayed second order statistics. If theedgihg sources are random variables
without temporal structure, all second order informatierexhausted by prewhitening. As a
consequence, separation is not possible based on seca@rdtatistics. However, if the sources
have spectral color, then further second order informat&m be used. If two components are
decorrelated for all time shifts, which may be expressed as

Elsi(t)s;(t+7)] =0, (3.71)

blind source separation based on second order statisposssble.
Different time lags of the recorded signals yield differeovariance matrices. Using prewhitened
data, these covariance matrices are calculated as

R, = E[x(t)x”(t + 7)) = OE[s(t)s” (t + 7;)]O” = OA,O". (3.72)

Based on two covariance matrices from two time lagand;, the solution to the generalized
eigenvalue problem [Mol94]

O”(R;'R,) = (A;'A,)O7 (3.73)

yields the whitening mixing composite mat = VA and gives the unmixing matrixv. =
O Joint Jacobi diagonalization [Car96b] of a set of time lafgevariance matrices given by
Eq.[3.72 yields more robust estimates.

The advantage of SOBI is that also (colored) Gaussian soaetebe separated. The disadvan-
tage is that source signals need to have different spectfillgs. This can be seen from Eq. 3.72.
If the autocorrelation of théth signal at lagr is equal to the autocorrelation of thith signal at
lag 7 than the eigenvalues are equal. Hence, the eigenvectanstaessentially uniquely defined
and these signals are not separable at this time lag. Wherpéuotra are equal then no time
lag can be found that makes the autocorrelation distinatcelgefor similar spectra, SOBI loses
performance. Likewise, for overlapping spectra the rididice of a set of; becomes difficult

[HyvO1g].
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4 On ICA for evoked dependent source
signals

The motivation for using ICA for the task of source separai®its elegance. ICA does not
assume knowledge of the physical system but blindly infefermation about both the mixing
process and the sources. Often, independence is a nataparfyr of these sources and linear
mixing can be assumed or more sophisticated models, sutle asmvolutive, are used.
Nevertheless, real world signals are often not perfectlgpendent. If they are, any finite sample
realization gives rise to estimation errors. Indeed, masgarchers have stressed that ICA yield
components that aras independent as possiblehis is true in the sense that an ICA method
always favors the objective it is designed for, i.e. to mazenndependence of the recorded
components. However, using the bilinear model, linear doatton of the data will always yield
some local maximum of an independence objective functieen én the case when the signals
are dependent!

The question to ask is whether the optimization criteridoved the assessment of the indepen-
dence assumptions of the sources. Clearly, in the end, reélevhow closethe estimates are
from the truth and nadbow independerthe estimates are after an ICA.

In this chapter, answers in the context of evoked MEG sowuapegiven. For this, aspects based
on theory as well as virtual and actual data assessmentevitésented.

4.1 Statistical dependence

4.1.1 Theory

Statistical independence of random sources equals zetbaculLeibler distance between the
joint distribution of random variables and the product ofresponding marginal distributions.
This distance was termed as mutual information, in Sec43Bq.[3.3V. In order to discuss
statistical dependence in detail, Eq. 3.37 shall be refdatetwo discrete random variabfks
given by

2,0) = 32 3 Pl log (%) . @.1)

! Note that real world signals are usually not representedraydiphabet. However, sampled data signals always
are. Hence, the discussion of mutual information in term&af4.] is closely related to the mechanism of ICA
in practice.
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4 On ICA for evoked dependent source signals

|

s2 ——»
Ml 0.003 0.068 0.085 0.124 0.241 0.589

Figure 4.1: Mutual information of six joint distributionamges fron?).003 to 0.589, i.e. the de-
picted signal pairs have no, little and strong dependentiesse were generated by
adjusting the original joint of the two signads ands, with uniform marginal distri-
butions, via rotation and erosion.

A thought experiment shall support deeper understandifigdf.]. Letr andy be two discrete
random sources having finite alphabet, each. The two randoiables are independent if and
only if P(z;,y;) and Rz;) - P(y;) are equal for every combination of indiceand; in Eq.[4.].
For a more detailed discussion, leandy be binary, i.ex,y € {0, 1}. Now, infinitively many
samples of the binary random variablesandy shall be drawn, in tuples. Each variable can
take on only two different values,or 1, whereas four different tuplgs;, y) mayoccur, namely
(0,0), (0,1), (1,0) or (1, 1). If they all occur uniformly distributed, then®;, z-;) equals 0.25 for
all combinations of indicesandj, whereas Pr;) and Rz;) equal0.5 fori = 1,2 andj = 1, 2.
Hence, for all combinations of indicésandj, P(x;, y;) equals Rz;) - P(y;). Thus, the two ran-
dom variables are independent and, consequently, theittogain Eq.[4.1 is always zero. That
is, knowing the value of one source does not give informadioout the value of the other source
and the mutual information is zero.

In contrast, if knowledge of implies the value of), i.e. the entropy of is reduced to zero when
x is known, then only the tuple@), 1), (1,0) or the tupleg0,0), (1, 1) occur. It follows that no
combination ofi andj result in Rz;,y;) = P(x;) - P(y;) and highest dependence is obtained.
Note that the occurrence of just one single tuple, (day) does not result in an even higher de-
pendence. In this case, the corresponding sources areger landom and entropies and mutual
information are zero.

An intermediate dependence level is achievable, when peid tuples, sayo0, 1), (1,0), also
one of the remaining tuples, i.€L, 1) or (0, 0), occurs. For the latter, it is known thaimust be
zero whene is one, but nothing is known about the valueyah the case that is zero. Evaluating
Eq.[4.] for these scenarios, assuming uniform distribstiarutual information equalsfor the
independent scenario, 69 for the dependent scenario and9 for the intermediate dependent
scenario.

From these elaborations, it can be concluded that if cegample tuples have different prob-
ability than their marginal distributions would suggesien these signals are dependent. If the
knowledge of one value from one source make certain valugeajther source more probable,
then dependencies occur. The degree of dependence can beretehy mutual information,
given by Eq[4.11.

Dependence can also be analyzed visually regarding thieditnibution of point tuples of two
signals. Fig['4]1 depicts six joint distributions, eachobging to two discrete random sources.
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sl

s2 —»
Ml 0.003 0.003 0.003 0.019 0.062 0.167

Figure 4.2: Each signal pair of Fig._4.1 is directly fed to ICAthwut any mixing. Here, the
outcomes are depicted, respectively. The resulting jogttidutions suggests that all
but the first has been changed by ICA. Indeed, dependenciesdcareed. However,
the last 3 joint distributions still show considerable amioaf dependencies, that may
not be reduced by any linear transformation.

The first graph in Fid._4]1 depicts the joint distribution wbtindependent signals ands, with
uniform marginal distributions. Indeed, regarding a fixatlie ofs; does not say anything about
the value ofs,. Hence, every sample tuple can occur with the same prohalbding the product
of the marginal distributions.

The third graph in Fig.4]1 depicts a joint distribution tief 45 degree rotated version of the
first. Here not every sample tuple can occur. The max dbrcess, always to be zero. Hence,
knowledge ofs; reduces the entropy af. The entropy can be reduced further by reducing the
number of tuples that can occur. Taking points from the jdistribution by cutting a square with
increasing edge length, yields more and more dependeralsigrhe mutual information value is
given below each joint distribution depicted in Hig.14.1e8ifically, mutual information ranges
from 0.003 to 0.589 and, thus, six signal pairs with almost no, little and strdegendencies are
generated by adjusting the original joint distribution loé ttwo signalss; and s, with uniform
marginal distributions, accordingly.

4.1.2 Why study ICA in such a context?

ICA is based on the concept of minimizing statistical depecdelf the signals to be separated
are known or conjectured to be dependent, why should ICA béugéy study ICA in such a
context?

Indeed, dependence tailored algorithms may appear to be appropriate. However, there is
only one independent joint distribution and unlimited degent joint distributions of two or
more sources. This makes the choice of a tailored dependedicfycult one.

Furthermore, connectivity [Nol04] must not be confusechwgitatistical independence. Two sig-
nals that are shifted copies have high connectivity; theiss-correlation at the shift lag is high.
However, if no temporal overlap exists, mutual informatisdow! Consequently, two evoked
signals may be independent, although being connectedalstion. Hence, it is of utmost im-
portance to investigate the existence and the influence pdrakencies on the performance of
ICA in order to correctly design and interpret experimentssfcoked brain research.
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4 On ICA for evoked dependent source signals
4.1.3 Can ICA separate dependent source signals?

Can ICA separate dependent signals? This question seenas IfiVCA assumes independence
but the underlying signals are dependent, ICA does not sedm saitable. Nevertheless, some
general ideas on how ICA act on dependent sources shall belecets here.

Let the six signal pairs that are depicted in Higl 4.1 and [Eig.be the material for another
experiment. These signal pairs in Hig.]4.1 have almost e And up to high dependencies.
Each signal pair shall now directly be fed to ICA without anyimg. Fig.[4.2 shows the joint
distributions of the ICA estimates. These suggest that aftimifirst joint distribution has been
changed by ICA. Comparing the mutual information of the joistributions depicted in Fi¢. 4.1
and depicted in Fid. 4.2, shows that ICA has been successtdlircing dependencies. The three
latter joint distributions still have dependencies andé&éeomponents are only 'as independent
as possible’.

However, successful is the right term only if the task is wuee dependency. In the described
experiment, ICA was applied to sources that have not beerdrixstead, all the signal pairs (but
the first) weremixedin order to achieve a dependency reduction under a lineasftyemation.

If ICA was successful in separation, the joint distributiamsuld not have been changed, the
mutual information should have stayed the same. That isididgrity unmixing matrix should
have been the ICA solution in all cases. Hence, for all of thees depicted in Fi§. 4.1 but the
first, ICA fails in separation.

On the other hand, applying ICA to sources with joint disttitw exemplified in Fig['4J2, i.e.
the joint distributions belonging to the estimates of th& kExperiment, will yield the identity
unmixing matrix in every case. However, the latter threatjalistributions in FigC4l2 show
considerable dependency levels. Yet, ICA is successfulfatsinese dependent signals. This is
obvious, considering that the sources are estimates of IGAjare dependencies can be reduced
using ICA again. The joint distributions remain the same &W succeeds in separation - even
for dependent sources.

Fig.[4.3 summarizes these important findings in two plotstii@nx-axis the dependency level
is given. On the y-axis the degree of mixing is given. The adghdjusts a rotational mixing
matrix from O to 45 degree. The unmixing error along the zaxthe Amari performance index
(refer to Sec_3.315, Eq.315). Zero equals no error and qoalg maximal error in unmixing
the source with corresponding joint distributions and esponding degree of mixing.

In the left graph, utilized joints are similar to the lattejodnts of Fig.[4.2. In the right graph,
utilized joints are similar to the latter 4 joints of F[g. WBoth start with little dependence and
end at a high level. Note, however, that in the left graph, I@&gnot act on the joints. In
contrast, in the right plot, ICA act on these joints - even befaixing the corresponding signals.
Specifically, Fig[ 4.8 makes explicit the findings of Hig.]4arid Fig[4.R. The right graph in Fig.
[4.3 suggests that ICA cannot unmix the signals whatever tipeedef mixing and whatever joint
distributions underlie. ICA fails completely.

However, the left graph in Fig. 4.3 shows that ICA always sadsdor all degrees of mixing and
all the joints underlying. Notably, even for joints with cesponding signals that are dependent. It
follows from this experiment that IC8anseparate dependent signals, if the original sources, i.e.
the sources before being mixed, are dependent but cannoatde more independent by ICA.

34



4.1 Statistical dependence

=
J,

o o
72

unmixing error
unmixing error

o
*

o pila

Vg

%
%

- M inforygqe 020 - M@l informag 080

Figure 4.3: The two graphs depict two different classes ot distributions. On the x-axis their
dependency levels are given, respectively. On the y-agidéigree of mixing is given
by adjusting a rotational mixing matrix from 0 to 45 degree.

The result is that ICAcan separate dependent signals if these cannot be made less
dependent by an ICA before mixing. Indeed, the source signmate left graph have

up to 0.2 dependency level but the unmixing error is zero flom&ing scenarios.
Notably for no mixing, the joints cannot be reduced in deperg. Hence, ICA re-
duces only dependencies imposed by linear mixing and sdsdeell cases. In the
right graph, ICA is observed to fail in separation even fonisiwith little dependen-
cies. Notably for no mixing, dependency of all joints is redd as the unmixing error

is one. Hence, ICA reduces dependencies of the original sswned it follows that

ICA fails for all mixing scenarios.

It is the bilinear model that restricts ICA from removing matependencies. Specifically, if
dependent signals cannot be made more independent by ¢tioedninations, then linear mixing
will introduce dependencies. These can be reduced by lingaixing. Thus, dependent signals
of this classcanbe recovered by ICA!

For sensory stimulation MEG data the question arises, ieddent signals exist that can be
made less dependent by linear combinations before beingdnikthis is not the case, ICA will
succeed even in the case of dependent sources.

Consequently, the nature of evoked dependent signals hasdedessed and the performance
of ICA has to be considered carefully. In the next chapter,reuai and an actual MEG data
experiment shall be designed and extensively tested, ir dodassess the performance of ICA
for evoked signals.

4.1.4 The whitening step

ICA is often processed via a two step procedure. The first stepid to do ’half the job’, as it
cancels all dependencies based on the second order mometeniiy has several advantages.
First, it comes along with assuming independence that thablas must be decorrelated. Sec-
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4 On ICA for evoked dependent source signals

ond, the search of the unmixing matrix reduces to the sedrattlmogonal matrices. Hence, the
number of degrees of freedom are reduced and algorithmsrzefaster and more stable.

All established methods that are used in this work use wimiteiiHence, whitening in the context
of dependencies shall be discussed in the following.

For convenience, let me restate some equations givenre&iecifically, whitening yielded the
equation

Xy = VX = VAs = Os, (4.2)

whereV is the whitening matrix.
As whitening implies the correlation matrix to be the idgnthatrix, i.e. Bx,,x7 | L I,
it follows with

E[x,x.] = OE[ss’]O7, (4.3)
0C,07, (4.4)

that
C,=1=00"=1, (4.5)

must hold true an@® is proven to be orthogonal.
However, this holds true only if the signals are independ&therwise Eql_4]4 and Ef. 4.5
become

0C,0" =1= (070) ! =C,, (4.6)

whereC; is no longer the identity matrix, but can be a full regular ixaHenceO = VA is no
longer proven to be orthogonal but can be any regular ma@axasequently, assumir@ to be
orthogonal, hence, introduces errors in recovering themgimatrix A, when the source signals
are dependent.

However, note that in practical ICA tasks with independegmais, assuming zero cross-correlation
C, = Lis violated to some extent. The performance loss due to wihigeonly will not be inves-
tigated further in this thesis. Instead, the whole perfarcealoss of ICA - including the effects

of whitening - will be in focus.

4.2 Virtual MEG data experiments

In the theory section 4.7.1, it was demonstrated that ICA rhagé degraded performance, due
to a mistake in assuming that the signals have zero crosskation, and due to a mistake in

assuming that the signals cannot be further reduced in theiual dependence under linear
transformation. The theory section also gave examples mdradent signals that ICA can sepa-
rate.
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Figure 4.4: Synthetic MEG data. (a) 2 epochs of weakly depehsburce signals are generated
by using the SSEJR model with a high jitter value. Lowering jikter, all epochs
will eventually have responses as depicted in the first epeatiing to two inde-
pendent signal subspaces (2D and 3D) with highly dependrnte signals. The
last row depicts one representative AR noise process. (8)@ated field maps. (c)
Sphere model of human head with source (black) and noisg)(dipoles. Sensor
coordinates (diamonds) correspond to PTB 93-channel ME2 gypical sensor
observations exemplify the generated MEG data.

This section shall discuss ICA in the context of MEG sensamdation experiments. A virtual

experiment with close to reality signals that cover a widegeaof variability shall investigate
the influence of dependence in this context. SubsequermrtiyabMEG data experiments will
be considered in order to assess the performance of ICA inctib@ladomain when the evoked
signals are tailored to be dependent.

4.2.1 The SSEJR model

In order to evaluate the performance of ICA for dependent edakignals, it is most conve-
nient to have a single parameter that controls the degreepsriience. The 'Synthetic Stimulus
Evoked Jittered Response’ (SSEJR) model [Koh09] was edteblifor generating synthetic
dependent evoked signals. The core functionality of thidehs a simple mechanism that grad-
ually changes the degree of dependency, while subspacesremtually independent. Against
a sweep through values of the dependence parameter, haligliof algorithms using indepen-
dence (ICA), relaxed independence or no independence aisusmay be evaluated.

4.2.2 Generation of dependence

The generation process is conveniently described for tgpoads. Let two time signals consist
of 100 trials each. Each epoch starts with an assumed stinfallowed by a time response,
one for each source, that has a source specific form and YyafEne response time duration is
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Figure 4.5: Hinton diagrams with estimates of mutual infation between 5 SSEJR source sig-
nals at different jitter levels. The 2D+3D subspace sets8miearly visible. The signal
dependencies decrease with increasing jitter. At 200 res gill source signals can
be assumed independent.

about 200 ms. A random stimulus is modeled by randomly drguihie epoch length between
800 ms to 1200 ms, such that the average epoch length is 1008snasm example, one source
may have a Gaussian shaped response with 300 ms latencytidiieher source may have a
time differentiated Gaussian shaped response with 290terscha This setting is depicted in the
first epoch of Figl_4J4 a). When all epochs are equal to epodhelrgsulting signals in the 2D
subspace are highly dependent. In order to lower the deperede the source specific latencies
are changed in each epoch by two normally distributed randombers with zero mean and
standard deviatiom, which leads to a jitter in the latencies. In the followingjs referred to
as the jitter parameter. It is the key parameter of the mamgradually control the degree of
dependence. The greater the jitter, the lower the depepditeween the signals and vice versa.
This model was named the Synthetic Stimulus Evoked JittResgponse (SSEJR) model. Any
subspace of any size may be modeled likewise. Subspacesaale mutually independent by
choosing all source specific latencies such that signams tfifferent subspaces do not overlap
in time. In this section, a setting uses 5 signals in 2D and@#i3gaces are used and depicted in
Fig.[4.4. The dependence of a set of SSEJR generated sighals 1, ..., 5, will be evaluated in
terms of their normalized pairwise mutual information, elhmay be expressed as

I(Si, Sj)

| 4.7
H(s )H(s)) @9

In(3i7 3j> -

where H(s;) is the entropy ofs;. Mutual information and entropy were calculated based on
discrete bin-wise evaluated marginal and joint distriogi [Kra04]. Note that the marginal dis-
tributionsp(s;) andp(s;) of any pair of signals within a subspace remain unchangeuwaitied
jitter. The joint distributionp(s;, s;) approaches the product of the marginal distributions while
increasing the jitter as more sample combinations occurckléhe mutual information decreases
with increasing jitter. Fid. 415 shows the normalized p#&@mmutual information between 5 sim-
ulated SSEJR source signals for different jitter valuesti®darly, the Hinton diagrams show a
block diagonal structure with small off-blockdiagonal rakents indicating almost mutually in-
dependent subspaces. Elements associated with souressigthin each subspace decrease
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2 AR T AV

Figure 4.6: 10 examples of randomly generated evoked reggsousing a mixture of 3 bell
shaped time signals. Notably, a large variety of simulateded signals can be gen-
erated at random allowing to test a whole class of variousosimevoked signal forms
against separation performance of the method under test.

gradually with increasing jitter, which confirms the expgetbehavior of the SSEJR model.

4.2.3 Signal generation

Fixed signal forms as shown in F[g. 4.4a may not be generalgindAs a matter of fact, the use
of different signal forms influences the performance of mdthunder test. Ideally, one would
like to consider all signal forms that can occur. The time donsignals are generated as follows.
In the e-th iteration, for a fixed jitter level, th¢-th source signal shape is given by

; (t = )’
e - k
$5(8) = D" an exp(———0), (4.8)
k=1 k

wheret is the time index with a support of 200 ms, ad m, ands; are uniformly distributed
random numbers with-1 < a;, < 1, =50 < m;, < 50 and5 < s < 50, respectively. Using Eq.
4.3, a large variety of simulated evoked signal shapes cageberated at random. A draw of 10
responses is depicted in Fig. 4.6.

4.2.4 Setup and data assessment

A homogeneous conducting sphere model is taken for an appatisn of the human head
and the neuronal currents in the brain are modeled by egutalrrent dipoles (ECD) [Sar87,
Ham93]. As an example, 25 dipoles may be modeled, 5 dipoleptesent evoked sources, and
20 dipoles to represent independent noise processes. fiéreH&EDs shall be placed at random,
whereas the signal dipoles may be placed as to represernblagysally meaningful positions.
Each noise dipole represents a source that followseorder AR process activated by Laplacian
distributed white noise with AR coefficients that were obéal from real world prestimulus MEG
data. Synthetic MEG data are obtained by a processing cleaiated in Figl44. The ECDs are
placed in the spherical human head model. Magnetic fieldsadcalated using PTB 93-channel
MEG sensor coordinates, together with quasi-stationaryviv#l equations for dipole currents
[Sar87]. Following the linear ICA mod& = AX of Eq[3.3, the mixing matriA emerges from
the contribution of each source to each sensor. The suptopasf all magnetic fields gives the
observed MEG datX. Finally, sensor noise is introduced with an average SNROOB3 Fig.
[4.4b depicts associated field maps and [Eid. 4.4d depictsalygensor observations generated.
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Figure 4.7: Performance of ICA (a) and associated recoveedd finaps (b) for the 2D sub-
space (left) and 3D subspace (right) using signal forms andce constellations as
depicted in Fig['4J4. All methods recover almost independenrces for high jit-
ter values; the associated field maps are close to the ddgiHawever, it can be
observed that all methods lose performance when the jitiesevs lowered; the un-
mixing error closely follows mutual information. The figgrehow the performance
of one specific setting, with random jitter values. Resultdvwandom source loca-
tions and random signal forms are given in the comparisoticseat the end of this
work (Figs[5.1b t¢ 5.18).

4.2.5 Results

Let the performance of ICA be analyzed for a first source sgttimat of Fig[4.4, i.e. with two
independent subspaces containing two and three deperngealss respectively. These results
represent ICA performance for a specific setting, as the kignas do not vary. The virtual
experiment is repeated 50 times per jitter value, yieldidgealizations for each jitter value. The
signal locations and signals forms are the same for all @xaerts. Performance is evaluated
using median unmixing error and some corresponding fieldsmap

Particularly, two sets of SSEJR signals are analyzed byimgrsO realizations per jitter value.
The median unmixing error and the median recovered field raepslepicted in Fig._4l7. The
left graph shows the ICA performance of unmixing the 2D subspwhile the right graph sug-
gests the ICA performance of unmixing the 3D subspace. Inghetaph, the original sources
have a bell shaped and a time differentiated bell shapedmsespwhereas in the right graph the
original sources have a bell shaped and a temporal diffiatedtbell shaped response as well as
a mixture of 3 bell shaped time signals with fixed locatiorfska.[4.4a and 4l4c).

Normalized mutual information, EQ. 4.7, are calculatedrfiihe generated signals. Fig. 4.7 sug-
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Figure 4.8: Random signal shapes generated according to.&a@nd dependent signals (low
jitter values) show that ICA fails on average. Some signafigonations can be sep-
arated by ICA. However, on average, the performance is nal goough asking for
alternatives to separate evoked dependent signals.

gests for both graphs that the median normalized mutuainrdton decreases with an increas-
ing jitter value in line with our demands on the SSEJR modet.dn assessment on separation
performance the unmixing error and typical field maps areigeal. Below each graph, the origi-
nal source field maps are depicted. As expected, the penfmera principle component analysis
(PCA) is poor even in the vicinity of independent source diginae. for high jitter value. This
supports the well known fact that decorrelating generadklsdnot lead to a correct separation. In
contrast, all established ICA methods show a good performmancecovering almost indepen-
dent sources. In both figures the unmixing error drops undefod 100 ms jitter; the associated
field maps are close to the originals.

However, it can be observed that all higher order statistseld ICA methods lose performance
when the jitter value is lowered. Strikingly, their unmigierror closely follows the binned mu-
tual information. The corresponding estimated field mapsiobd by the Infomax methods is
depicted for 0 ms. These maps suggest that the source fielsl ma&p not been found correctly.
Most clearly visible, in the right graph, all Infomax recogd patterns show contributions from
all source field maps - the separation task failed.

In contrast to the distribution processing ICA methods, tagggmance of SOBI is more sen-
sitive to the shapes of the signals. From the left graph in[£lg, it can be observed that SOBI
performs best for the signals simulated in the 2D signalgabs. However, from the right graph
in Fig.[4.7, SOBI is observed to perform worst. The finding ®@BI does not closely follow the
normalized mutual information may be explained as follo8©BI exploits independence of the
lagged time signals. Yet the SSEJR model systematicallységljhe mutual information only for
0 lag, while the mutual information of lagged version of tiengrated signals may vary. Hence,
it depends on the choice of time lags, how SOBI performs. Hewa&ven for wisely chosen time
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4 On ICA for evoked dependent source signals

Original

Figure 4.9: Example of closely spaced dipoles: the recavBedd maps for dependent SSEJR
sources do not correspond to the original sources. Hengsigdbgically meaningful
estimates do not prove the success of ICA and have to be iatedpcarefully.

lags, which is a difficult task in the actual data scenarioBSias problems with similar power
spectra, which occur when no jitter is present but which @se for highly jittered responses.

In summary, Figl'4l7 suggests that all tested ICA methods shdecreasing performance for
increasing dependencies between two source signals. $hksreannot suggest a preference for
a specific ICA method as performance is highly influenced bysitpeal shape.

Repeating the experiment for low jitter and randomly chosgnads yields the results depicted
in Fig.[4.8 (see also S€c. 5.7) The figure suggests that afiadstsucceed for some shape con-
figurations. Nevertheless, ICA fails on average, i.e. forts@mal configurations tested.

4.2.6 The near dipole effect

Yet another aspect is revealed by changing the sites of tneesalipoles. For closely spaced
dipoles, all established ICA methods recovered clear digaterns, which were different from
the originals. As an example, in Fig. 4.9 the recovered pafrem dependent sources, signif-
icantly differs from the original source field map. This gatt seems to emerge from a single
dipole but in fact is still a linear mixture of the source fiehdps. Hence, the common practice of
judging an ICA decomposition to be successful when the estidrsource patterns suggest phys-
iologically meaningful results may be wrong. This is an imtpat result, exemplifying that the
plausibility of the structure of an ICA estimate can be midleg. For closely spaced activities,
mixtures can show a dipolar pattern, as suggested by FigHé8ce, physiologically meaning-
ful ICA estimates must not be confused with successful soseparation. Interpretation of the
estimates has to be done with care, especially considdratghe results represesttmevector

of a subspace of evoked signals.
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4.3 Actual MEG data experiments

4.3 Actual MEG data experiments

Virtual experiments are a vital tool in gaining understaigdon different features of data and
to assess the separation method due to a well-defined grouthd However, signal processing
methods also have to be tested in real world scenarios. Fgsroject, it was of importance to
design a suitable paradigm, allowing to assess ICA in a depgMdEG data scenario. From the
dependency theory section, it can be concluded that thisssdrcomplished when signals have
temporal overlap.

4.3.1 An audio-visual paradigm

Inspired by the work of Tang et al. [Tan05] a novel actual datperiment was designed. In
Tang’'s work, median nerve stimulation was used to test thiecedocalization performance of
SOBI. Left, right and bilateral median nerve stimulation &reecorded. The localization result
from bilateral stimulation was compared to the unilatetahsglation that was taken as a refer-
ence. The utilized N20 signals that occurs after medianenstivnulation is known to be stable.
However, bilateral evoked N20 signals only have short tenaipaverlap and may not be very
dependent if small time shifts occur.

For our purpose, a paradigm was designed using auditoryiandlstimulation in order to obtain
significant temporal overlap. Nevertheless, in line withrf0%], unisensory auditory stimulation
is used as reference and so is unisensory visual stimuldtising noise adjusted PCA, a ref-
erence mixing vector for only auditory stimulated data aréfarence mixing vector for only
visual stimulated data is obtained. Against these referemging vectors, the separation results
obtained from bisensory audio-visual stimulation dataampared. Assuming the location of
unisensory evoked activity and bisensory activity the satme Amari unmixing error can be
used, as the reference mixing vector are taken as the drigireng matrix. Note that in contrast
to the locations, the temporal profiles of the sources amavalll to vary. This is important, as
influence from visual stimulation to auditory processing baen discussed [McG76].

4.3.2 Subjects and recordings

Ten right-handed subjects from an homogeneous group of & ara 5 female students aged
20 to 30 participated, voluntarily. None of the subjectsorggd neurological pathologies. All

were healthy at date of recording. All subjects were infatrabout the recording facility and

non-invasive procedure. During recording a communicagistem was running, such that infor-
mation could be given into the cabin and received from thgestibAll subjects were instructed

to give a sign if not feeling well. One experiment had to becedied, due to magnetic material
that could not be removed from the subject. In total, 9 désasere recorded, each with a total
duration of 20 minutes.
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Figure 4.10: Graphic representation of audio-visual sk@thon paradigm. Tones of 1 kHz with
a duration of 300 ms were presented as well as alternatingkehgoard wedges.
Trial length varies in reality between 1 to 2 seconds. Vig¥aland auditory (A)
and audio-visual (AV) stimulation are presented to theectiap an interleaved and
randomized fashion.

4.3.3 Experimental setup

Evoked MEG data with simultaneous auditory and visual satnon are recorded using a full
head 125 channel MEG systeim [Kad99]. Present&tifveurobehavioral Systems, Inc.) is used
with the following settings.

Tones of 1 KHz with a duration of 300 nis #h93[ HarOE, 18387 | Sal04] were presented monau-
rally to the right ear of subjects. Checkerboard wedges [&%[88192] were presented in an al-
ternating fashion [Ain03, ShaD0] to the right visual field. Bys, stimulation was optimized to
mainly evoke auditory or visual related activity in the lefirebral hemispherg [Oka82].

The duration of the single-trials lasted between 1 to 2 ses@l099| Ain03]. Visual (V) and au-
ditory (A) and audio-visual (AV) stimulation was presentedhe subject in an interleaved and
randomized fashion. The sampling frequency was set to 500THe software Presentati®n
recorded trigger levels, from which the single-trials abbk identified. Specifically, 300 trials
were recorded and subsequently cut from the continuousdiegs. This data was bandpass fil-
tered with an zero-phase filtér [Pic95] between 0.5 Hz andHAOhe concatenation of single-
trials with 100 ms prestimulation duration and 300 ms pdisttgdation duration yield the MEG
data utilized. All trials were detrendet [i607] and the offset was removed [Pic95]. Bad trials
were identified after an ICA [Del04] and removed, subseqyentlis was done in a fashion that
the best 200 trials were taken, each having 400 ms lengthpaiteeligm is outlined in Fig. 4.10;
the full audio-visual paradigm code using Present&ignprovided in the appendix.

In Fig.[4.13, trial-average per channel of the unisensor lsisensory evoked data (A,V and
AV) is plotted for all 9 datasets. Normalization was done wding trial-averages by the largest
absolute value of temporal instants and over channels. sgneling field maps are depicted for
one time instant in order to visualize the spatial field disiion. Fig.[4.1B suggests different
levels of signal quality. While the first data suggest high SMIR,last data has a clearly lower
ratio. Nonetheless, all unisensory evoked field maps shpigdypatterns. The auditory evoked
fields show dipolar structures over the primary auditorytexgrcontra- and ipsilaterally. The
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Figure 4.11: A composite single-trial plot is obtained bylgmg one unmixing vector - found
using AV data - to AV data and to A sand V data, respective)\e.lj., the V unmix-
ing vector separates the visual component from AV data,sihmitar evoked activity
should be visible when applying the V unmixing vector to AMalas well as to V
data. In contrast, applying the V unmixing vector to A datagrmoked contribution
must be observable (left figure). If an auditory evoked dgtis observable, this
auditory activity is mixed into the component found by appiythe V unmixing
vector to the AV data. Hence, unmixing is not perfect, whiglolbservable by this
composite single-trial illustration technique (right frgl

visual evoked pattern show dipolar structures over prinvésyal cortex. As intended, a clear
tendency to the left hemisphere is observable.

From the patterns of the bisensory audio-visual MEG dataeiperimenter cannot clearly de-
termine the visual and the auditory fields. Some show the andkstribution, others only give
evidence to one of the two stimulation modalities, namelgitauny and visual. Blind separation
shall be applied to recover the underlying original sourgeas and the corresponding unmixed
filed maps.

For the sake of source separation assessment and developntle& actual domain, uni- and
bisensory stimulated data were preprocessed further.fikensory stimulated data is projecting
on a single mixing vector, obtained from comparing postigtation and prestimulation energy.
Noise adjusted PCA (NAPCA) (refer to Séc. 511.2) is used toiolpeo one-dimensional refer-
ence vectors. The obtained mixing vectors, i.e. one froreansory auditory evoked data (A) and
one from unisensory visual evoked data (V), give the refegemixing vectors for the bisensory
evoked data. Specifically, the bisensory audio-visualgated data is projected onto the two-
dimensional subspace spanned by these reference vectorse Hhe bisensory evoked data (AV
data) is two-dimensional after this preprocessing. Thedwaensional mixing matrix is known
to be the concatenation of the auditory and visual refergacers and the Amari unmixing vec-
tor can be used, assuming that the location of unisensoriiaadsory evoked data are the same.
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4.3.4 Novel performance illustration technique

The actual data of nine subjects form the basis of evaludakiagalgorithms in the real world
scenario. As a consequence, every source separation neghaahly act on a small number of
data sets. The unmixing error err is a functional of a mamapping quality to a single number.
An unmixing error of say 0.3, does say something about theageeseparation performance, but
it may not be descriptive enough for a single recording.

Hence, the quality of actual data separation shall be fuitlastrated by comparing single-trials
from A,V and AV data for more detailed performance analyS. this, recovered single-trials
are stacked row-wise in a matrix. This matrix in turn is diq@d in a color coded fashion as
in Fig.[4.11 [JunO]. Let the unmixing vectors of a separattgorithm be labeled as V if the
visual single-trials are recovered and as A if auditory rtgals are recovered by applying the
unmixing vector to the mixed data. The A and V unmixing vestare obtained by running the
separation method under test using only AV data. Separaggoformance can be analyzed by
stacking single-trials recovered from the AV data as welbiagle-trials recovered from the A
data and the V data by applying each time the same unmixingegcovered from using only
the AV data.

If the V unmixing vector obtained from AV data separates tise& component, then an evoked
activity should be obtained applying this V unmixing vectoithe AV data as well as to the V
data. In contrast, no evoked activity should be obtaine&napplying the V unmixing vector to
the A data. If evoked activity is observable from applying ¥Aunmixing vector to the A data,
unmixing is not perfect.

In Fig.[4.1] this novel illustration technique is display&iearly, the left graphic shows a suc-
cessfully recovered visual component. The V unmixing vegiees an evoked contribution when
being applied to the AV data; applying it to the V data yield®enponent with similar single-trial
structure. Applying the V unmixing vector to the A data y®lib evoked contribution. Hence, a
very good separation is observable.

In contrast, the right graph shows a separation that hase®t buccessful. The V unmixing
vector applied to A or V data yields a contribution each tilngact the contribution from A and
V data are of opposite signs and, hence, applying the unmmg@actor to the AV data yields a
mixed component with auditory and visual contributiong eilenost cancel.

4.3.5 Results

In Fig.[4.12, the boxplots suggest that ICA does not suffitjesgparate the audio-visual data.
All established methods have high median unmixing errondgeseparation did not succeed on
average. Note that this is in contrast to the findings in thekwb[Tan05].

Furthermore, using the novel performance illustratiomiegue, Fig[4.14 holds the results us-
ing FastICA. Clearly, the novel illustration technique givesight into how the different datasets
have been separated.

The optimal estimates are obtained by using the referengegnvectors concatenated to a
pseudo mixing. Inversion gives an unmixing matrix. Using #ectors from this unmixing ma-
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4.3 Actual MEG data experiments
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Figure 4.12: The boxplots suggest that ICA does not suffiljiesgfparate the AV data. All estab-
lished methods have a median unmixing error err, which atéis that separation
did not succeed.

trix yields by construction no contribution from A when theuvimixing vector is used and vice
versa. However, it is worth comparing the evoked activitingsAV data to using only V data
or only A data. For example, for subject 8, a very similar tenap profile of the single-trials
are found from the AV data and the unisensory evoked datathiéovisual component, analyz-
ing subject 1, the activity seems to be more jittered whemiobtl from the bisensory evoked
data. All data showed reasonable agreement between sirjtefrom unisensory and single-
trials obtained from bisensory evoked data. Data from suwi@jeobserving the visual component,
seems to have the most disagreement.

The ICA estimates show a completely different picture, sstgg the usefulness of the novel
performance illustration technique. For example, thek&dcsingle-trial pictures obtained for
subject 9 using ICA, show evoked activity for both the auditas well as the visual unmixing
vector. However, a comparison with the unisensory evokéal stzows that both recovered activ-
ities are still mixtures of auditory and visual signals. §ban be seen as the auditory unmixing
vector should not yield activity when being applied to thewal evoked data. Hence, unmixing
failed.

In summary, the recordings from subject 6 are perfectlyve using ICA; the recording from
subject 7 show a good performance. However, the remaincaydangs fail in separation for one
or even both components. Fig. 4.12 suggests that actuatdWdEG data can have dependent
evoked signals, and that ICA is able to lower the contrastadpendence for these signals under
linear transformations. This, however, leads to a failarBOJA decomposition as it was demon-
strated in Se¢. 4.1.3.
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4 On ICA for evoked dependent source signals

4.4 Discussion

Statistical dependence is difficult to measure; full knalgle of marginal and joint probability
distributions are involved. Indeed, numerous methods amstamating independence in a robust
and efficient mannef [Kra04]. Each of these methods can be tesset up a contrast for ICA
yielding numerous ICA methods. Yet, the most importattureof statistical independence is
its strictly non-negative property and that it must be zenty @ the joint distribution factorizes
into the marginal distributions. Hence, an ICA contrast naisty this feature. All established
ICA methods do have in common to optimize independence. lardaldrive the components
towards independence, they use different features of riricamation that differently act on
the data.

It was demonstrated that IC&anseparate dependent source signals. This is possible, catiee
that the source signals are not changed by ICA if these aretljired to ICA before being
mixed. Thus, ICA cannot further optimize its contrast fuontfor these dependent source sig-
nals. On the other hand, an ICA methods fails if its contratst e the original signals in a way
that it mixes the sources to optimize the contrast. An ogdtcoatrast is invariant to all source
dependencies and only reduces dependencies introducéd lilugar mixing.

In this chapter, all established methods yield bad mediafopeance for dependent signals.
Hence, all established methods lower their utilized catthanction even for the task of sepa-
rating the sources. However, all established ICA methodsgssscases that are fully successful,
although the sources are dependent. In line with the cosgrasection, about 25 % of our sig-
nal configurations tested in the two-dimensional settiraystesults below 0.25 unmixing error.
This means 25 % of ICA results are significantly better thamloam unmixing choosing a 0.1
significance level. The conclusions are manifold. First, I€Aot robust against dependencies.
Second, ICA can fully separate dependent signals in some aaskyields approximate results in
about one out of four results. One may conclude that ICA cabeatsed for dependent signals.
However, ICA should be considered as a preprocessor in ayadatain good starting points for
any method that is dependent on these.

In order to further assess performance, an actual audigvMEG experiment was set up. A
novel performance illustration technique shows that thpassied single-trials using audio, vi-
sual and audio-visual data matches if the constructedif@igmixing matrix was used. The il-
lustration technique allows to evaluate ground truth intreehsory evoked data with unisensory
evoked reference data. Indeed, a high level of matchind thddta sets is observable suggesting
the high value of these recordings for the assessment ofsseparation performance. The re-
sults show that ICA is not suited to separate these actual Qatg two data sets show activities
that matches for both components, i.e. that may be considearated.
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Figure 4.13: Trial-averages per channel for all subjedlizinig actual auditory evoked (A) data,
visual evoked (V) data and audio-visual evoked (AV) dataedch plot, for each
channel, 100 trials of 400 ms duration were averaged. Omesjmonding field map
at maximal normalized field strength suggests the locatfoevoked activity. As
expected, clear structured field maps are obtained for A addt¥; less structured
field maps are obtained for AV data. 49



4 On ICA for evoked dependent source signals
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Figure 4.14: Results of applying FastICA to the data from tlié@uisual experiment (AV data).
The FastICA unmixing vectors are applied to all AV, A and V datarder to assess
the performance. In the rightmost column the unmixing eis@iso provided. The
obtained single-trial plots show that only two recordings separated by FastICA.
Hence, actual domain data are shown to be dependent in a e can fail.
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5 Technigues for the separation of evoked
dependent source signals

Next to the established ICA methods, a large variety of deamsmipn algorithms exist, e.g.
[Abr03,[Cai06] Hyv04]. Many other algorithms tackling theoaeation of dependent signals are
problem dependent as they use special knowledge, suchm@ggpane-, frequency-, phase- or
energy-contents. Furthermore, all methods that operateruhe bilinear model have to make
assumptions that ensure essential uniqueness. Speygjfeathiethod assuming a dependence
contrast may be more robust to the violation of independé&nctevill run into problems if this
dependence contrast is not met.

In contrast, here, extended trilinear models shall be used.known that evoked MEG data
are highly structured in space and time as well as in trialgin€ar models make use of this
structure yielding essentially unique decomposition withthe need of assumptions such as in-
dependenceé [Har70, 888, Fie9ll, Mor08]. However, due to shifts, trilinearigncbe violated
and it is demonstrated that this approach may not work, rithe

In this chapter, the recovery of the subspace of evoked digmesignals is discussed and trilinear
models are considered for the task of evoked dependentesseparation. Subsequently, a novel
technique is presented that is not trilinear as it also nsosighal shifts. For this, a model is used
that is more flexible than a trilinear model, while still bgiessentially unique. It is demonstrated
that evoked data can be explained by this model and thatesépanf independent as well as
dependent sources is possible without the need of extrangsiguns, such as independence.
Finally, a comparison study shall assess the performaredéastablished ICA methods, general-
ized ICA methods, trilinear methods and our novel time dorshifted factor analysis (TDSFA)
method. For assessment, virtual MEG data and actual MEGadatearefully set up and evalu-
ated.

5.1 Evoked subspace analysis

In order to reduce the complexity of dependent source sepayan important preprocessing
step is the recovery of the subspace of evoked dependemisidyiter a brief definition, inde-
pendent subspace analysis (ISA) and noise adjusted paircmmponent analysis (NAPCA) are
considered and compared using synthetic data.

Again, letX = AS + E be the recorded MEG data, whdiedenotes sensor noise. Let tih

column of the mixing matrix be\; and thei'th row of the signal matrix b&®. Let furtherQ) be
the set of signal indices andV’ the subset of evoked signal indices wilv C 2. The recorded
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Figure 5.1: One trial of synthetic evoked MEG signals. That tinree rows depict typical evoked
signals, while the remaining rows depict background atidisi The latter reflect pos-
sible non-evoked signals. Noise adjusted PCA (NAPCA) uslizeo covariance ma-
trices that are estimated from pre- and poststimulatioa.ddsed on these noise ad-
justed covariance matrices, the evoked subspace is foaradsequence of whitening
and ordinary PCA.

MEG data can be represented by two parts, given by the evaded part

X% =Y AS (5.1)
1€EEV
and by the noise part
XV =) AS+E, (5.2)
i¢EV

where the latter summarizes all non-evoked signal coritabs. Evoked MEG data may be
expressed as

X = X% + XV, (5.3)

The task of evoked subspace analysis is to find a basis, yesatf linear independent vectors
that are linear combinations of the evoked mixing vectoysand to find the corresponding linear
combinations of the evoked sign&§ wherei € EV.

5.1.1 Cardoso’s conjecture

Independent subspace analysis (ISA) [The06, Gut07, Hy\éilis at subspaces of sources that
are dependent, while sources from different subspacesavened to be mutually independent.
Hence, ISA is a generalization of ICA in that the sources dmvald to be dependent within a

group as long as different groups are mutually indepen&gcifically, Cardoso proposed to use
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5.1 Evoked subspace analysis
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Figure 5.2: Mechanism of NAPCA. Ordinary PCA cannot recoverdtoked subspace directly
from the data (a). By whitening the data (b) based on prestisndéta, the evoked
subspace is found by PCA based on whitened poststimulus Diaéato whitening,
the eigenvalues corresponding to noise are one, while gemnealues corresponding
to evoked signal must be greater one by definition. Notaley to finding the evoked
subspace, its dimensionality can also be inferred.

ICA followed by grouping the estimates to perform ISA [Car@8ka06]. Thus, he conjectured
that having data with underlying independent and depensigntls, all signals are separable
by ICA but the dependent signals. If Cardoso’s conjecture lisl vVESA can be performed in
two steps. After running ICA, mutual information of the estited sources is used to group the
estimates into subspaces of dependent signals and subsacdependent signals. In contrast,
itis argued in section 5.3 that mutual information of estiesanay not be easily linked to mutual
information of the sources and that this technique can fail.

Other ISA methods model the dependent subspaces but eitfier §om high combinatorial
complexity [PocO5] or assume that the dimensions are knglyn(6]. Some efforts have been
made to overcome this drawback [Bac03, Poc06] by introdufmtper signal assumptions.
These, however, may not hold for all evoked signal settings.

Consequently, the use of noise adjusted principal compaaealysis (NAPCA) is advocated
for finding the evoked signal subspace. NAPCA uses simple P€i#ntques while considering
information from pre- and poststimulation, which is degdiin the following.

5.1.2 Noise adjusted principal component analysis

According to Equatioh 513, evoked MEG data can be split intoiae and a signal part. NAPCA
[Lee90/Wib07] assumes that the noise part is stationary, that thalgigrt is zero at known data
periods, and that the noise and signal part are uncorrelahégisetting is depicted in Figure 5.1.
Let Cx andCxn~ be the covariance matrix of the data and noise part, respgctNAPCA then
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Figure 5.3: Results from virtual experiments on the SNR parémce [[Lem06] of recovering
the subspace of dependent evoked signals using PCA, ICA fetldwy SNR based
grouping and by NAPCA.. Clearly noise adjusted NAPCA yields pestormance.

consists of two linear transformations. The first transfation whitens the noise part by left-
multiplication of Equatiori 5J3 with a whitening matr obtained from the covariance matrix
Cxn~ of the noise part. The transformed data is given by

VIX = VIX® 4+ VvIXY, (5.4)

where the transformed covariance matrixVi$ Cx V. The transformed noise pas” X" is
white, thusV?Cx~V = 1. The second transformation consists of an ordinary PCAngye

E'VICxVE = A, (5.5)

whereE is the matrix of orthogonal eigenvectors afdhe matrix of the corresponding eigen-
values, sorted by decreasing order.
The NAPCA estimated subspace basis is given by [Lée9ih ¥

B = (V)™'E, (5.6)

whereE is the matrix that contains the firdf, eigenvectors.The corresponding signals are esti-
mated by linearly projecting the data onto the subspace Basiout inverting the first NAPCA
transformation, which may be expressed as

S=E"V'X. (5.7)

Figure[5.2 illustrates the working mechanism of NAPCA. In tfag signal part and the noise
part of the signals are depicted. An ordinary PCA would hagepttincipal components in the
direction of the noise. Transforming the data with the fitspsof NAPCA whitens the noise (b)
and transforms the signal part. The principal componentR€A of the transformed data yields

54



5.2 Bilinear methods beyond ICA

the mixing vector of the evoked signal.

A virtual experiment was set up using a two-dimensional edaignal subspace. 100 randomly
placed ECDs were used to model unwanted signals with differeargies. The mean SNR of
the simulated MEG data was dependent on the realizatioreatperiment and ranged between
-10 dB and -15 dB. Sensor noise with 30 dB simulated data tocosersse ratio was added.
100 runs were evaluated, each having the same evoked sogned &nd signal power, while the
location of the evoked signals in the sphere was chosen dbnanFor each realization, 100
trials with 400 samples were considered and ICA followed bgle-trial SNR based grouping
[Lem06,' Koh10b] as well as NAPCA were run.

The performance depicted in Fig. 5.3 is evaluated in termSNIR of recovered single-trials
[LemOE€]. ICA followed by grouping is given a slight advantaag this method aims at maxi-
mizing the very quantity that is used to evaluate the peréoree, i.e. SNR. However, Fig. 5.3
suggests higher potential of using NAPCA. It suggests that Bt suited to recover the sub-
space. ICA followed by grouping yields better results, whEPCA enjoys best performance.
Hence, in the forthcoming, NAPCA will be run as a preprocegsnethod before decomposition
in order to extract the evoked subspace. Using this proeedimensionality is reduced and so
is the complexity of the separation task. For the methodsdas structured model, this step is
essential in order to assure that these models can be applied

5.2 Bilinear methods beyond ICA

In this section, methods that go beyond ICA shall be discussikadf these have in common
that the dependent source problem is tackled, while havicigse link to the established ICA
methods, i.e. while including the independence scenahiey EBhall be termed here sference
methods. Next to ICA, novel approaches shall be comparedsetbelected reference methods
in order to assess their value.

Spatial ICA (sICA)

McKeown et al. invented spatial ICA (sICA) [McK98] in order tpgly this technique for fMRI
data (For more details refer also {o [Cdl09]). In contrastrdimary ICA, the columns of the
mixing matrix A are assumed to be mutually independent, while the sorcas be dependent.
Spatial ICA is easily computed using ordinary ICA but feeding tlata in a transposed manner.
In particular, with

X" = (AS)T =STAT, (5.8)

the rows of the signal matrix become the mixing matrix, wkile columns of the mixing matrix
become the signal rows to be separated. Hence, in spatialHE€Aixing matrix, i.e. field pat-

terns, are assumed to be independent.

For evoked MEG data, the number of samples in signal m&trsxusually much larger than the
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5 Techniques for the separation of evoked dependent soignals

number of samples in the mixing matrX. However, using measuring systems with more than
100 channels, spatial ICA may become a potential candidatsefparating dependent source
signals.

Spatial ICA has been combined with temporal ICA[In [Sid02, Hj46 give more robust esti-
mates. For this, both the signal rows as well as the mixingroak are assumed to be indepen-
dent. Running spatial ICA and temporal ICA in sequence givamatts that can be compared
to check the plausibility of the results. If both estimatbew identical results a successful de-
composition is most likely. Here, spatial ICA shall servelssfirst reference method.

Subband decomposition ICA - Tanaka’s approach (SDICA 1)

The next four methods aim at using ICA after preprocessing) sinat the underlying sources
are made less dependent. Subband decomposition ICA (SDIJAGDY] uses a bank of filters

and assumes that at least two source subbands are less elejpirach the unfiltered dependent
sources.

In particular, SDICA1 considers each source signas the sum of. subsignals, given by
S = Zsi, Ti(s) =s;. (5.9)

wherei = 1,..., L and T;(-) is a linear transformation to obtain the subsignal corredpg to
thesth subband.

In the same way, the recorded signal at some chanisetlecomposed into the sum bfsubsig-
nals such that

X = in, T:(x) = x;. (5.10)

As T'is a linear operator, thih recorded subsignalX; are a linear mixture of théh source
subsignalss;, given by

T,(X) = T;(AS) = AT;(S), (5.11)

where T, operate row-wise. Hence, a correct ICA unmixing matrix reced from theth data
subband applies also to the original data as

D T(X)=A) Ti(S) (5.12)

A filter bank with 20 subbands from 0 Hz to 80 Hz is used. Chebf§¢hfiters are used having
a stopband of 90 dB. Subsequently, ICA is run on/alubbands of the recorded data. In order
to select a data subband with least dependent sources,alahak [Tan04] proposed the use of
a modified unmixing error as follows. The unmixing error giviey Eq.[3.45 is in need of the
‘original’ mixing matrix A. This matrix is replaced by the inverse of a subband ICA unmgixi
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5.2 Bilinear methods beyond ICA

matrix W, yielding A = (Wy)~!. The unmixing matrixW is obtained from another subband
ICA unmixing matrix. By plugging

G =AW (5.13)

into Eq.[3.45 pblind Amari unmixing error is obtained. If two subbands have irefegent source
subsignals blind amari error will be zero as the two unmiximgrices should be almost equal.
Hence, the two data subbands that correspond to least bimding error are selected and yield
the unmixing matrixW that is applied to the original data.

SDICAL is appealing because of its automated choice of tts¢ disgpendent subbands. However,
very small frequency bands are similar to sinusoidal sgydéfering only in phase. Such signals
are not independent. Hence, a too high number of subbantygiald dependent source sub-
signals. In contrast, a too low humber of subbands may net tide original dependent sources
enough. Hence, the number of subbands and the cut-off fnegjueee parameters that have to be
chosen wisely. Nevertheless, this method shall be coresidas a general reference method as
no fine-tuning of these parameters is done.

Subband decomposition ICA - Kopriva’s approach (SDICA 2)

Kopriva [Kop08] proposed to use wavelet tree decompositiwrsubband decomposition ICA
(SDICA 2). More importantly, band selection is based on tteeiagption, that the data subband
with smallest mutual information corresponds to the sosut#gand with smallest mutual infor-
mation. If this assumption holds, it is possible to find thesimodependent source subband by
estimating the mutual information of all data subband amabsing the least dependent among
them. Subsequent use of ICA of that subband assures lowestamntormation among the
source subbands and, hence, best separation performance.

However, the proof in [Kop(8] cannot be correct in generah{ld], which shall be exemplified
in the following.

Let the dataX be given by two data subban®s andX ;. The sources in th&h subbancs; shall
be dependent, while the sources in jlie subband; shall be independent. With

X; = AS; (5.14)
X; = AS (5.15)

J Js

the proof in [Kop08] claims thaK; is less dependent thaxy;, which gives the least dependent

source subband, i.e. in our case il subband. However, this is not correct for at least one
signal constellation. E.g., let the dependent sourceseiitihsubband be given by

S, = BS;, (5.16)
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5 Techniques for the separation of evoked dependent soignals

whereS; shall contain independent sources a&hdshall contain dependent sources due to the
linear transformatiom. Furthermore, let the mixing matrix be given by

A=B". (5.17)
Mixing the sources using Ef. 5J14 together with [Eq. b.16[afd $ields

X, = AS,=ABS, =S, (5.18)

Hence, theth data subbanX; is independent, while the sourc@sare dependent. Thigh data
subbandX; is dependent, while the sourcggare independent. It follows that choosing tiie
data subband does not correspond to the most independeoé Subband.

Put into words, if the source signals are dependent becdusdireear mixing then linear un-
mixing can make them independent. The corresponding dataasa may become independent,
while the source subband is dependent. Another source sdbbay be less dependent and the
choice of the least dependent data subband may not be optimal

However, one may argue that in most cases linear mixing migeesource subbands more de-
pendent. The heuristic of choosing a data subband that $¢ tegoendent is still of interest.
Indeed, SDICA 2 was shown to be successful using real worla idgiKop08] and shall serve
as reference method here.

Highpass ICA (hpICA)

A more straight forward prefiltering concept is that of signppplying a highpass filter before
using ICA [Cic03]. Indeed, a highpass often reduces depeimekerichis may be understood con-
sidering that small time shifts in the lower frequency raongéy slightly change dependencies
as few new sample combinations occur. In contrast, smaé# shifts in the higher frequency
range introduce more new sample combinations yielding nmolependent evoked signals. As
small time shifts often occur from trial to trial, a highpds®r shall give less dependent source
signals.

From this point of view, highpass filtering and subsequeatafdCA (hpICA) generalizes ICA.
Ad hoc, al2th order highpass butterworth filter wi) Hz cut-off frequency is utilized without
any fine-tuning.

Innovation ICA (innolCA)

A closely related approach to hplCA is ICA of innovations (il©A). Particularly, Hy\arinen
proposed in[[Hyv98] to model the recordings as a first ordepfdtess. The difference between
the AR modeled data and the original data is termed innavsitids the AR operation is linear,
the innovations of the sources are mixed to give the innomatof the recordings. It is argued that
source innovations are more independent than the origimaitss, as they are not explainable
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Figure 5.4: Binned mutual informatioh [Kra04] of dependemtirees and estimates using ran-
dom mixing. a) Typical dependent source signals. b) Resudits ICA based on
binned mutual information for 50 dependent signals. c) Rdsuin FastICA of 50
filtered versions of a single mixture using 50 different fdte
Mutual information of the original signals is often chandsdICA. Low mutual in-
formation of ICA estimates can correspond to high unmiximgreHence, ICA can
fail even when the ICA estimates are almost independent.ignctise, the depen-
dent subspace cannot be found by using the mutual informafithis ICA estimate.
Thus, using mutual information of ICA estimates for subspatalysis or subband
ICA is questionable.

by the AR model. Asth order AR model shall be used to feed the innovations to ICthadast
reference method considered.

5.3 On mutual information of ICA results

In the last two sections, techniques were discussed thahugeal information of ICA results to

group dependent components for subspace analysis as wel f@sding least dependent sub-
bands to separate dependent sources. The latter approgdiermeemplified further by the ideas
in [ZhaO6a| Zha06b], where the authors employ an adapties flat is adjusted such that ICA
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5 Techniques for the separation of evoked dependent soignals

yields most independent estimates. Despite these strfmighérd solutions, the use of mutual
information of ICA estimates for subspace and independemipoment analysis is not without
drawbacks and shall be discussed in the following.

Specifically, it was argued in sectign 4]1.1 that ICA can sajgadependent data, if the original
dependent sources are not changed by an ICA. However, ICA flatlse original dependent
sources are changed by ICA, i.e. some linear transformalibover some ICA contrast and the
sources are mixed up. This has consequences on technigii@sdlbased on evaluating mutual
information of ICA results.

Let a crude ICA method be based on binned mutual informaticaQK]. Furthermore, let 50
dependent signals, such as depicted in[Eid. 5.4 a), be mix&0 bandomly chosen mixing ma-
trices. Fig[ 5.4 b) depicts binned mutual information of Btesource signals and the 50 ICA
estimated signals, respectively. If the data were cogertmixed, sources and estimates would
have the same binned mutual information. However, it canderly observed from Fid. 5.4 b)
right, that the binned mutual information of the originajisals is lowered by ICA in all cases.
This is not surprising, as lowest binned mutual informaiimiseeked. Fid. 514 b) left, depicts
mutual information of estimates and the corresponding mmgierror. No trend indicates that
higher mutual information of the estimates is linked to lowerformance of ICA or vice versa.
Contrarily, very low mutual information of ICA estimates caavk high separation errors asso-
ciated.

Along this line, let a second experiment be based on FastlCaingle source signal pair as
depicted in FigL5}4 a) shall be used and a selection of 5ereifit filters shall give 50 different
subsignals. The logic of some prefiltering techniques istgh a filter such that ICA performs
best, evaluated by the level of mutual information of thénestes. Howevet, 514 c) cannot sug-
gest a general success of this technique using the depigeal pair. Specifically, Fid. 514 c)
right shows that the mutual information of the original sifmis often changed by the use of
ICA. Fig.[5.4 c) left shows that independent results varydrdgpetween low and high unmixing
error.

As a consequence, using mutual information of ICA estimatesiimixing or for grouping is
guestionable. Low mutual information of the estimates cadirked to high unmixing errors.
Hence, ICA fails but a grouping algorithm is likely to miss $leesources for the dependent sub-
space.

Of course, often, mutual information of ICA outputs with ungisng dependent signals will not
be zero and ICA outputs from exactly independent signal vallenmost likely lower mutual
information. However, to find a powerful test statistic maydifficult as real world signals often
are not completely independent or the sample size and ¢waluachnique leads to deviation
from zero mutual information. For subspace analysis, NAPGH tve more useful. For separa-
tion, data models beyond the bilinear shall prove usefulamedconsidered in the forthcoming
sections.
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cl cf

al af

Figure 5.5: Graphical representation of CP decompositiorgubree-way arranged MEG data.
F' rank-one tensors represefitsources that are assumed to underly the MEG data.
The residual is a three-way tensor of same size as the MEGeatear.

5.4 Beyond the bilinear model

In order to tackle the problem of separating dependent coemis, a selection of reference
methods were presented that try to generalize ICA in thateséviany more methods exist that
assume various objective functions next to independenitehédse methods have in common
that they need some assumption in order to render the hilmedang model essentially unique.
This section shall discuss alternative models next to thiedar model. In order to have an
essentially uniqgue model, the degrees of freedom of thedzl model need to be reduced. A
model that is not in need of the independence assumptioncoust at the prize of being more
problem specific, i.e. to model more features of evoked MEfa ttean the bilinear model does.
However, it must be general enough to cover all typical edaignal settings.

5.4.1 Evoked data and trilinearity

Evoked MEG data are structured not only in time and spacelbatdue to its repeating trials.
By rearranging the evoked data corresponding to space, tich&ial, a threeway data tensor can
represent the evoked data recordings. In order to explam#ta tensor by a mixture of evoked
sources tensors, a simple evoked signal model that diffens Eq[2.2 shall be assumed for now,
which ignores latency shifts [BE88[Fie9ll]. Specifically, the sources are assumed to neatai
fixed physical locations, having fixed temporal waveformifeding only in amplitudes from
trial to trial. Hence, for thefth source, the spatial profil& ; is stationary and the signal profile
S; is the same in every trial having just different amplitudBisis may be expressed by scalar
multiplication of the signal profil&; by theeth entry of an amplitude profil®, ; associated to
the fth source. Furthermore, in each trial, the sigha}S; is projected by scalar multiplication
to every sensor channel, given by the spatial prafile The sum off = 1...F sources finally
gives the mixture, which may be expressed as

Xcte = Z AcfSthef + Ecte7 (520)
/

where the space modality is indexeddyhe time modality is indexed hyand the trial modality
is indexed bye.

As only addition and scalar multiplication is involved, tipenerative model in EQ. 5.R0tislin-
ear, i.e. linear inA, S andD. Note, however that the trilinear model for evoked MEG daty m
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Figure 5.6: Unfolding concept demonstrated for a threewagyaof dimensiond x J x K.
Three different twoway matrices are expressed by unfoldingrder to process the
CP algorithm with ordinary twoway matrix manipulations.

be too simple as latency shifts are not modeled. The tritineadel can be identified essentially
uniquely, which is a strong property, discussed in the ¥aihgy.

5.4.2 ldentification
As discussed in Selc. 3.2, the bilinear moNek AS is inherently non unique, as

X = AS = AUVS. (5.21)

holds true for any regular matrices with = V. Hence, infinitely many solutions to Hg. 5121
exist; all represent the data equally well and an additiasaumption, such as independence, is
needed to render the bilinear model essentially unique.

Let the same data be represented by a trilinear model. Sgalyifiet theeth slab of the threeway
arranged data tensX in Eq.[5.20, i.e. theth twoway matrix cut from the threeway data tensor
X, be expressed as
X, = A diagD,)S”. (5.22)

As only one slab is considered, standard twoway matrix iwtatan be used. Let all matrices
have full rank. It shall be proven that and S are unique, giver{D.). For this, the regular
matricesU andV again are introduced into Hg. 5122 yielding

X, = A diag D, )S” = AU diagD.)VS”. (5.23)
Eq.[5.22 holds true for any regular matridésandV that meet the identity

diagD.) = U diagD.)V. (5.24)

With U = diagD.)V'diagD.)! infinitely many solutions to E4.5.21 exist only, wheiis
fixed to one specific trial, say,. If more than one triak is considered, the identity Ef. 5124
needs to be reformulated as
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diagD.) = U diagD,)V, (5.25)
— diagD,)UV (5.26)

which holds true only for diagonal matric&% andV and if U = VL. It follows that, given
(D.), Eq.[5.22 is unique.

To prove that the complete trilinear model is unique, letl£g83 be reformulated as [Mor08]

X. = AdiagD,)S7, (5.27)
= AU[U !diagD,)V]V ST, (5.28)
= A diagD,)S”. (5.29)

As the term in square brackets needs to stay diagonal (edmetk by the trilinear model), the
matricesU andV can only be of permuted diagonal form. In particular, [Eq95r@poses

U=PD withU'=D,'P! (5.30)

and

V =PD; withv!'=D;'P! (5.31)

in order to be valid. Note that the permutation matrix isniestd to be the same for both matrices
matricesU andV to ensure a diagonal matrix in the square brackets. HowByeandD; are
allowed to differ. This states that energy can be held by thelidudes, signals or mixing, while
permutation of sources has to be done for all three accdydifbis proves that the trilinear
model is unique up to the indeterminacies sign, norm andr k72, Moc88].

The assumption of full matrices rank can be further relakadskal showed that the trilinear
model is essentially unique if

ka + kg + kg > 2F +2, (5.32)

whereF denotes the rank of the data tensor arid the Kruskal rank, i.e. the smallest subset of
linearly independent columns of the associated matrix with< rank( A ) [Kru77]).

5.4.3 The CP model

Trilinear tensor decomposition was originally introdudsdHitchcock in 1927[[Hit2[7], but be-
came popular later under the name canonical decompos@ANDECOMP) [Car70] and par-
allel factor analysis (PARAFAC) [Har70]. More recently, itheeen named as CP in order to
account for all three works [Kie00]. btks [M6c88] reinvented CP in the context of brain imag-
ing under the name topographic components model. The CP mwagdlrst proposed by Field et
al. in the context of evoked brain sources [Fie91]. Howeprsblems arose and CP on wavelet
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5 Techniques for the separation of evoked dependent soignals

transformed brain data was introduced(in [Miw04, Mor05].

CP stands for fitting the trilinear model of EEq. 5.20 to struetlthreeway data in the least squares
sense. In particular, the threeway data tensor is decordpog&ea sum of rank-one tensors. A
rank-one tensor is the outer product of vectors, i.e. eaammeht of the rank-one tensor equals
the multiplication of scalars taken from these vectors wibhresponding indices. The CP de-
composition structure is depicted in Fig.]5.5.

The least squares objective function is given by

E =X - X]|3. (533)
whereX denotes the trilinear CP model, i.e. Eq.5.20 without noisédjig

Xete =Y AcpSipDey. (5.34)
f

Optimization of the least squares objective usingl(Eq.]5188lves estimation of the matrices,

S, D that are dependent on each other and amounts to a difficdihean problem[[Bro98]. As

a consequence, the CP model is commonly estimated by usergating least squares (ALS)
optimization. ALS optimizes one subset of parameters gilierremaining subsets. Linear least
squares (LLS) provide the solution to one subset given tma@ng subsets and the estimation
is iterated until the model fit is not further improved. A fantite feature of ALS is that in each
step, LLS forces the objective to decrease or to remain unggdh which yields convergence
[Bro98]. In particular the estimation of LLS amountste= As, where a data vectorlies in the
recording space of dimensionality equal to the number oficaks. However, the columnspace of
the mixing matrixA most often is mostly a lower dimensional subspace of therdatg space.
i.e. less sources than channelgive rise to less columns iA than channels. Hence, only if the
data vector lies in the columnspace &%, a solution exists and the source vecias readily
obtained bys = A~!'x. Due to noise, the data vectamwill most likely not be comprised by the
columnspace oA.

Hence, linear least squares amount to find a solutian $och that the error vector between the
modeled data and the true data has smallest squared narl@asesum of squared error. This is
the case, when the error vector As is orthogonal to the columnspace, i.e. to all modeled data
vectorsAs, as the squared norm is assured to be minimal by geonet80Stt follows that

(As)T(x—As) = 0 (5.35)
sTATx —sTATAs = 0 (5.36)
ATAs = ATx (5.37)

s = (ATA)'ATx (5.38)

s = (A)x (5.39)

where Eq[5.39 yields the optimal least squares solution{ Andé denotes the pseudo-inverse of
the mixing matrixA equal to(ATA)~1AT,
In order use LLS for ALS, the tensor must be rearranged siathiwoway matrix operations can
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5.4 Beyond the bilinear model

be performed. Tensor unfolding is used to arrange the datoteand the Khatri-Rao product
is used to model rank-one tensors in twoway matrix notami(9]. In particular, a threeway
tensor can be rearranged, by taking appropriate sliceseofetiisor in sequence. The process
is referred to as unfolding and is depicted in Figl] 5.6. A ¢way data representation has six
different twoway matrices equivalents, however for parforg ALS via LLS, only three are
needed.

The rank-one source tensors, which are depicted i Figakeslso threeway tensors. These can
be given in twoway matrix notation using the Khatri-Rao pragwhich is given by

DoS=D;®S;D;®S; --- Dp® Sy, (5.40)
i.e. which equals column-wise Kronecker product of the rasrinvolved[Rao71, Bro98].

For convenience, let an example clarify these notationistHeematrix of amplitudes be given by

0 -1 0
1 11 1 1 0
D:{248}’ S = 1 -1 0 (5.41)
0 0 2
so that their Khatri-Rao product amounts to
[0 -1 0]
1 1 0
1 -1 0
0 0 2
DoS=[D;®S D;®8,D3®8; | = 0 —4 0 (5.42)
2 40
2 -4 0
0 0 8
Let further the mixing matrix be given by
1 00
A=1|011 (5.43)
01 2

In the limit of no noise, the unfolded data tenskr;), equals the mixture of the underlying
rank-one source tensors, expressed using the Khatri-Raoggielding
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5 Techniques for the separation of evoked dependent soignals

Xqy = ADoS)" (5.44)
0 -1 01"
1 10
01 10| 02 2 0 100 é_ég
11 -1 2| -4 4 —4 8 = 011 0 4 0 (5.45)
1 1 —1 4|—-4 4 —4 16 01 2 5 40
2 —4 0
|0 0 8|

With these notations at hand, the CP model given in[Eqg.] 5.20 lmeagwritten in three equal
versions, given by

Xuy = AMDGS) +Eq), (5.46)
Xg = SMDoA)" +Eq), (5.47)
X3 = DA®S)" +Eg). (5.48)

The threeway evoked MEG data mati ¢ R“*7*¥ is unfolded, by taking appropriate slices
of the data tensoK in sequence, yielding regular twoway matrices, wh¥ig, € RO*7%,
X2 € RT™CF andX; € RF*TC andC, T and E being the number of channels, timepoints
and trials, respectively. The noise tengbis unfolded likewise. The Khatri-Rao produot® S
gives a twoway matrix. Left multiplying the spatial matri and adding the unfolded noise
tensorE(,) equals the unfolded daf,), i.e. is no more than a different representation of the
three way data in long two-way matrix notation.

The ALS procedure, may now be expressed as

A +« XyDos)™,, (5.49)
S + XgpDoA)# (5.50)
D «+ Xg(A®S)™, (5.51)

whereT# denotes the pseudoinverse, i.e. ordinary LLS is involvdee ALS procedure to fit
the CP model to the recordings is the alternation through B8 t Eq[5.511. In each step the
residual cannot increase. Due to the uniqueness resuks stithe last section, only the original
components yield minimal residual and the components amnetifted by this procedure if the
model is correct. For this, the number of underlying compisi@ave to be known. They can be
estimated by techniques described in [Brio03] but are asskmman throughout this work.
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unmixing error

shift / samples

Figure 5.7: Robustness analysis of CP against shifts givaarelift signals shapes. A bell shaped
curve and its derivative were used. Both have a temporal stipp200, 160, 120, 80
and40 samples. Already for a support of 200 samples, shifts of tjdamples lead
to problems for the CP model. For smaller temporal suppagshigher frequency
contents, CP has troubles with shifts of only 1 sample. Thasvshthat CP is not
robust to shifts, dependent on the spectral content of grakshapes.

5.4.4 Shifts can destroy trilinearity

Varying latencies over trials result in shifts in the timeduabty from trial to trial, violating the
trilinear assumption. It is a reasonable question to ask mueh shift is allowed in CP and
when a shifted factor analysis is needed. This questionatdmnanswered in general without
the knowledge of the signal shapes and its spectral coritent signal with spectral content in
the very low frequency range small shifts shall not viol&te €P model assumptions too much.
However the same latency shift scenario for signal shapgshtve higher frequency contents
may lead to a failure of the CP model identification.

This is exemplified in Figl_517. Here, a bell shaped curve andiérivative were used with a
temporal support of 200 samples duration down to 40 sampieidn in steps of 40 samples.
Hence, both the temporal support of signal was lowered aedréguency content was aug-
mented. Fig[[5]7 suggests that already for a support of 28plsa, shifts of up to 3 samples
lead to problems for the CP model. The same form in higher grquband, i.e. with a smaller
temporal support, leads to failure of the CP model alreadgliidts up to 1 sample. This is a re-
markable result, as it shows that the CP is not robust to shifes signals have limited temporal
support with higher frequency contents. This situation easily occur in evoked signals and,
hence, the incorporation of shifts may improve resultstt&tifactor analysis shall be discussed
in the following.
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5.5 Shifted factor analysis

Let evoked MEG data be modeled as a superposition of the rtiadieéds induced by neuronal
source signals. With each neuronal signal a particularadjetttern of the induced magnetic field
is associated. The single neuronal signals and hence titkicéd magnetic fields are subject
to amplitude and latency variations within the epochs, avllile form of a neuronal signal is
assumed to be constant throughout all epochsXl.gtdenote the MEG data obtained for #ta
epoch in theith channel at the timeafter imposing the stimulus. According to our assumptions
the MEG data can then be described by the SFA madel [Har0308riHon03b]

Xcte - ZAcfo<t + Tef)Def + thea (552)
f

where the matrixA encodes the spatial mapping from the neuronal source sigmaihe MEG
channel T the latency shifts an®) the amplitude shifts. Théth neuronal signal form is denoted
by S;(t). For notational conveniencs; = S;(¢) shall be used interchangeably. For instance,
At Sty is the magnetic signal at th¢éh channel evoked by th&h neuronal source at tinteafter
stimulus presentation when no amplitude and latency vanas present. The termv,,. denotes
noise which is assumed white and stationary.

The SFA model[(5.52) is linear with respect to the spatial pirgp A and amplitude variations
D, but it depends non-linearly on the neuronal signal fofhthie to the assumed latency shifts
T. Assuming all matrices to be of full rank, Morup has proveattthe SFA model[(5.52) is
essentially unique [Mor08], i.e. all of its unknowns (nagndl, S, T andD) can be determined
essentially uniquely from the dafg.,.. Hence, if the SFA mode[(5.52) applies for evoked MEG
data, estimation of its unknowns reveals the evoked neusmce signals.

However, the SFA model is not as easy to identify compared toDTié to the nonlinearity,
estimation of its unknown is challenging. For instance, whpplying least-squares estimation
a nonlinear (and possibly non-convex) program has to beedoihich may have several local
solutions. There exist methods that are based on an exyesstirch of shifts [Har03, Hon(3a,
[Hon03b] as well as a Bayesian method [Knu06] that aim at ifientj the SFA model. However,
these methods are numerically demanding, while only imtelgiéts are considered. In Sé€c. 514.4,
trilinear modeling was shown to be sensitive to violation® do very small shifts, possibly
non sample spaced. Hence, non-integer shifts shall bedmmesi, i.e. shifts that may not be a
multiple of the sample frequency. The first method that estimthe SFA model efficiently, while
considering non-integer shifts, is frequency domain eHifiactor analysis [Mor08]. It shall be
introduced in the next section and considered as anothererefe method for the comparison
study.

5.5.1 Frequency domain shifted factor analysis

Frequency domain shifted factor analysis (FDSFA) - oritijynaamed to as shifted CP (SCP)-
is obtained by transforming the temporal mode of [E&2 into the frequency domain.
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Shifts in the time domain correspond to linear phase shithenfrequency domain, using fast

Fourier transformation, the transformation may be exgess

Aty (5.53)
N e ) -

wherer, —j andN denote frequency, imaginary unit and total number of saspiléhe temporal

mode, respectively.
With Eq.[5.58, Eq.5.82 is rewritten as

Sf(t + T€f> o—e Sf(l/)eXF(—jQT('

Xepe = Zf: AcfSVfDefexp(—jzw”]; Y1)+ Nae. (5.54)
FDSFA aims at minimizing the objective
2
Z (X - zf: Aep Sy DepeXp(— j%%@)) (5.55)
with respect td3, T, A andD using ALS. Specifically, let
s = |FFT(SV,fexp(—j27r”];1Te )). (5.56)

l.e. S(®) denotes the matrix of source signals component wise shifte@sponding to theth
epoch. Let further

Zywen-1),f = De s S\, (5.57)

i.e. Z denotes the Khatri-Rao product between the matrix contgitiie amplitudes for each
epoch and component and the source signal matrices corgdime shifted source signals for
each epoch and component, respectively. WitH Eq] 5.56 arff.&f}, Eq[5.54 is reformulated as

Xa = AZ" +Eq, (5.58)

v—1

X, = S.(Doexp—j2nr ¥ T)) ®A)" +Eq),, (5.59)

X, = Do(A©S) +Egy,, (5.60)

whereD o T denotes the Hadamard product ddd> S the Khatri-Rao product oD and T,
respectively. Again, all three equations are replicas offE§4, being three different twoway
matrix representations.

The LLS updating equations fek, S andD can then be expressed as

A+ XuyZ', (5.61)
—1

S, X(Q)U(Doexp(—jZWVN T) o A)T#, (5.62)

D. <« Xg).(A®SO)T#, (5.63)
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Figure 5.8: Sphere model of the human head with three evoked/aent current dipoles
(ECDs) (S1, S2, S3) and various background ECDs (alpha, egd,dred noise). The
gray spheres represent 100 background noise ECDs. Senstiotsc(diamonds)
correspond to a 93-channel MEG system.

By projecting out all but thg” source from the data at tla¢h epoch
Ry = Xey. - S Def(A; @ ST (5.64)
F#I

the remaining signal is obtained. Maximum cross-correfelietween?, ., andS}?) yield integer
fl

shift estimates. For the non-integer part, Morup et al. wsétwton-Raphson method starting
from the integer estimate and optimized Eq. 5.55 with resped non-linearly. A detailed
procedure can be found in the original works of Morup et alof®8,[Mor07].

5.6 Novel approach to shifted factor analysis in time domain

5.6.1 The ’infinite’ CP model
Motivated by [Moc86/ Fie9l], a Taylor series expansion of the neuronabssgmill be employed

and it will be demonstrated that the non-trilinear SFA mazhel be transformed into a trilinear
CP model that has infinitely many components.

70



5.6 Novel approach to shifted factor analysis in time domain

By inserting a Taylor series expansion of the neuronal sggaetording to

(m)

S
St +Tep) =) LY (5.65)
into Eq.[5.52 yields
1 (m) m

Xope = Xf: > —Acs S, DesTJ" + Nae, (5.66)

which may be expressed as
Xcte - ZAcf/gtf’Def’ + th€7 (567)

f/

wheref’ encodes the tuplen, f) in Eq. (586)A.; = Acp, Sip = S andD.p = L DosT, 7.
The relation[(5.67) shows that the SFA model (Eql 2.2) is\edent to a trilinear model with an
infinite number of components.

5.6.2 Approximation of the model

Nevertheless, let the derivatives of the neuronal signalagproximated by linear functionals
according to

S =" BSuy, (5.68)
tl

where the derivation matriB may be set up, e.g., such that finite central differencesalocei€
lated. Inserting[(5.68) intd (5.66) gives

Xae = 30303 A B S Des T + N (5.69)
fomov

Since the matriceB™ are known, EqL5.69 contains as many unknowns a$ Eql 5.54h&or

application of the method, the Taylor series expansiondas truncated. Note that the need for
truncating the Taylor series expansion also offers a moebebility. For instance, when latency

shifts are small or even negligible, an order 0 Taylor segigzansion would be sufficient and

in this case the approximate SFA model (Eq.b.69) is equivdte a standard CP model. For
larger latency shifts, on the other hand, a higher orderofasgries expansion is required and in
this case model EQ. 5.69 is a good approximation to the SFAein@d).[5.54) For the results

presented in Section 5, an ad-hoc order of 100 is appliech Bigh order shall show the robust-
ness as high order derivative are likely to have numeriaablpms. Furthermore, it is needed for
extreme shifts. In reality, in turn, a much lower number $tidae sufficient. In the comparison

study, a Taylor order of 10 is chosen, although good resalie lheen obtained with an order 4
and for slow varying signals with an order down to 1.
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5.6.3 Numerical implementation

Least squares estimation is proposed to determine the wmsw, S, T, D of the approximate
SFA model (Eq[_5.69) obtained by truncating the Taylor segigansion. For this, the term

2
1 m m
Z (Xcte - Z Z Z EACtht’St'fDefTef) (570)
c,t,e m f t’

is minimized with respect té, S, T, D. The unknownsA, S, D enter linearly in Eq_5.69, and
hence the linear least squares (LLS) techniques well-kriov@P model identificatior [Bro97]

are employed for their updates during the ALS procedure |dtieaciesT’ enter nonlinearly, and

in each iteration of the ALS procedure they are updated bliagion of a Levenberg-Marquardt

algorithm [Gil81].

CP techniques and notations are used to transfer the threeadgl into standard twoway ma-
trices. The dat& ;. is unfolded, i.e. rearranged, yielding three differentway representations
X),i = 1...3 [Bra97, p. 157]. For instance, the transpos#i row of matrix X, is obtained
by concatenating the columns of the mat@xwith element’;, = X .. The same applies to
the noise termV,,.. Using this notation, Eq. 5.67 can be expressed as

Xy = 3 A(D o T™ @BmS)T+N(1), (5.71)
Xp = Y B"S(P2 )"+ N, (5.72)
Xg = S2° (A ® B™S)" + Ny, (5.73)

whereo denotes Hadamard product andhe Khatri-Rao product. All of these equations are just
replicas of Eq_5.89, i.e. three different twoway matrixresgntations. Note that the signal form
matrix S is enclosed by two matrices in Eg. 5.72. The LLS updating ggos for A, S andD
can then be expressed as

A~ Xo(Z(PL-oBmS)h, (5.74)
S « maf (z(DC’T” ® AT @ B™)* vecXy ), (5.75)
D, «+ Xge (Zdlag( “)(A©B"S)")*. (5.76)

where(-)# denotes the Moore-Penrose inverse, anid the Kronecker matrix product. VEX)

is a vector formed by concatenating the columns of the m&riwhile mat() denotes the in-
verse operation. Didg) is a diagonal matrix with diagonal elements equal to theorect The
subscript denotes the’th row of the corresponding matrix. For instan®gg). is theeth row of
the matrixX ;). Eqs[5.74 E5.76 are the three LLS equations for our ALS mfoce Nonlinear
m|n|m|zat|on of Eq[5.710 with respect to the latency shiftshen completes the proposed ALS
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Figure 5.9: Unmixing performance for 50 different evokednsil settings that are dependent
(maximum possible latency shifts= 6ms).

procedure. Note that the nonlinear optimization step fatating the latencies allows for non-
integer latencies to be determined.

When using a first-order Taylor series expansion in[Eq.] 55 approximated SFA model Eq.
depends linearly also on the latenciésin this case, the nonlinear optimization step for
updating the latencies can be replaced by a LLS step, given by

T, + X).(diagD.)(A ® BS)")#, (5.77)

WheI’EX(g)e = X(g)e — dlaQDe)(A © S)T

The ALS identification procedure was run using ICA for inizakion of a single starting point.
A was set to the ICA mixing estimate asdwas set to the first epoch of the ICA signal esti-
mate. T was initialized with integer shifts that maximized the c@®rrelation ofS with the
corresponding epoch of the ICA signal estimate, whileIboall values were set to 1. The it-
erations were terminated when the relative difference éetwthe values of the cost function
Eq.[5.70 in two subsequent iterations fell below the cormecg level, which was set tid)—°.
The number of components was set to 3. The update ordefwBs A, S while enhanced line
search|[Raj08] was used for acceleration. For further acatgda, arbitrary 5 channels and 5
epochs were utilized, and the ALS procedure was run with 208 points until convergence or
until 500 iterations were exceeded. Then, the ALS procedaseapplied, considering either all
epochs (and the selected 5 channels) or all channels (aséldwted 5 epochs), while using the
values for the unknowns obtained in the first step as thersgavelues. An appropriate choice
of the Taylor order depends on the possible latency shifthedinderlying signal form. In this
work, the Taylor order was fixed at 100. Calculations wereiedrout on a compute server (8
Intel Xeon cores, 2.66 GHz, 128 GB RAM) with typical calcutetitimes of 165 seconds, 712
seconds and 3243 seconds for the Taylor orders 1, 10 andelp&atively.
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Figure 5.10: Unmixing performance of ICA versus the propoS€4 procedure for different
dependency levels which are implicitly given by the maxipasdsible shifts.

5.6.4 Simulation results
SFA versus ICA

The simulated evoked MEG data were analyzed by the propaseédgure and the results were
compared to those obtained by the Infomax ICA method [Bel9SkeSsment of blind source
separation was done using the unmixing error. In additiom Jatency estimates obtained by the
proposed method were compared to those of an establishgld shlannel method [Jas99].
Fig.[5.9 shows the unmixing errors obtained for 50 diffeséghal settings (amplitudes, latencies
and signal forms) by the proposed procedure and the Info@&xnhethod. The latencies were
drawn from a uniform distribution ofr-4, 6] with 6 chosen equal to 5 ms. For this parameéter
the resulting source signals show a high dependency. ICAdaithe signals are dependent, and
the proposed procedure clearly outperforms ICA with respe&iind source separation here.
But note that from the 50 different signal settings, 4 are egtdy still not well separated. This
can have several reasons. The convergence level or theecmiche order of approximating the
derivatives may have been suboptimal. Another reason rbiglthat the preprocessing step did
not recover the signal subspace correctly. Furthermoca] lminima could have been an issue.
However, the results seem rather robust as no fine tuning pya=d.

In a next step, the dependence of the source signals areledtby varying the width of the
uniform distribution[—4, 0] from which the latencies were drawn. In order to assess the co
sequences of different values of the maximal possible ¢gtshiftsj, the mutual information
between the source signals is determined as a function edér 6 = 5 ms, a high dependence
can be observed, whereas for 40 ms, the source signals appear to be only moderately de-
pendent. Figl 5.10 shows the unmixing errors in dependendbeoparametes. In each case,

74



5.6 Novel approach to shifted factor analysis in time domain

S2 S3
single channel 4 g 4
method L o4
Rt <
o ot o, ..
41" -4 .

-4 0 4 -4 0 4
single channel 4 ad 4 -
method P o
(after NAPCA) 0 P i 0 e

. ““‘ . .‘...'l
s 4
_4 {"‘ _4 i"'g-‘

-4 0 4 -4 0 4
SFA g g ya R
(after NAPCA) >4 7 S A !

= o 4 ~ ~
ﬁ I' " o
=0 / ,./ 0 /
$ /’ 0 r" o
-4 0 4 -4 0 4 -4 0 4

true shifts / ms

Figure 5.11: Latency estimation for maximal possible layeshifts =5 ms. For one setting of
the three evoked signals, single channel maximum liketirsioft estimates [Jas99]
are depicted in the first and second row using raw and NAPCAlerefd data,
respectively. The third row depicts typical latency shitimates obtained by the
proposed SFA procedure.

the results show the median together with the median alesdkitiation from the unmixing er-
rors obtained for 50 different signal settings. If the maxipossible latency shift was chosen
to be greater than 100 mé & 100 ms) ICA was observed to work well. Fig. 5.10 shows more
realistic shift settings choosing between 5 ms and 40 ms. ICA is observed to have difficul-
ties even for moderate dependencies, when the normalizéghimoformation is less than 0.1,
and fails for larger dependencies, while the proposed piuresappears to work well in all cases.

Unmixing error versus model fit

Throughout the whole work, the unmixing error is used as uimgi performance measure. In
the context of least squares data fitting, however, the nfadeloften looked at. Relative model
fit may be expressed as

X - X%
X3

where rMSE denotes sum of squared error normalized to sumuafred data. The fit value is
dependent on the degrees of freedom of the utilized modelodetwith as many degrees of

rMSE = (5.78)
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Figure 5.12: Relative fit versus unmixing error of PCA, CP and 3p#a dimensions were 10
50 x 20, modeling the modes space, time and trial. 2, 4, 6, 8 anddked signals
were fitted, respectively. Each, having a maximal shift chmples. The figure sug-
gests that PCA gives best fit, followed by SFA. CP fits the datastvdhis is clear
from the fact that CP uses least number of degrees of freedeweriteless, low or
high fit does not correspond to low or high unmixing error. PG& tvorst unmixing
performance, CP performs better, while SFA shows best ungnperformance.

freedom as data points yields perfect fit. Hence, fit must aatdnfused with separation success.
This shall be exemplified in the following.

Let PCA, CP and SFA be fit to some virtual evoked data using a datot with dimensions 10
x 50 x 20 with modes space, time and trial, respectively. The uyidgrsource dimensionality
sis 2, 4, 6, 8 and 10. Each time, the correct number of undaerigomponents was assumed. All
evoked source signals have maximal shift of 5 samples ans, #ne dependent. For using PCA,
the data tensor is unfolded yielding ordinary twoway mathannelx time.

The results suggested by Hig. 5.12 show that the fit is alwapsdved from CP to SFA to PCA.
However, only SFA yields unmixing error close to zero. Intgatar, fit merely shows the amount
of data variance that is explained. This value is useful agasore for data compressing. At a
particular rMSE level, the method having least parametenspresses the data most efficiently.
In contrast, for assessing separation performance, thaltiexcan be highly misleading. Thus,
rMSE is not used here.
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Figure 5.13: Latency estimation performance for maxim@iay shifts of 5 ms. For 50 different
evoke signal settings with fixed ECD locations S1 - S3, singknael maximum
likelihood shift estimates [Jas99] are depicted using rBva(d NAPCA prefiltered
data (2). (3) depicts latency shift estimates obtained byptbposed SFA procedure.

Latency estimation performance

Latency estimation was studied for the case that the lateneere drawn from a uniform distri-
bution [—4, 6] with the maximal possible latency shifichosen equal to 5 ms. Fig. 5111 shows
the results for the latency estimation in one of the 50 sige#tings obtained by the proposed
procedure and the considered single channel method [JaB9®]single channel method uses
maximum likelihood estimation in a single channel modehwiked signal form and varying
amplitudes and latencies. The method was first employeddiyga single channel (optimal for
each evoked signal) of the raw data without preprocessing channel was chosen such that the
resulting latencies best reflected the simulated lateniéis sNote that such a choice is possible
only for simulated data. However, it shall be intended tbdes method against the best possible
choice of the channel taken for the single channel latenitjason procedure. In the results of
the single channel method, one observes a correlation batthe estimated and the underlying
true latencies, but large estimation errors are still pres&/hen the single channel method is
applied after NAPCA preprocessing, a significant improvetroéthe results is observed, which
also demonstrates the potential of the NAPCA method. Thedastn Fig.[5.11, finally, shows
the results of the proposed procedure, which clearly otdperthe single channel results ob-
tained with and without preprocessing. Hig. %.13 summatrike latency estimation errors from
all 50 signal settings considered. The figure shows the remsquare (RMS) errors of the
estimated latencies. For each method (and each of the 58l sigttings for the 3 evoked sig-
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nals) the RMS errors were determined after applying a comrhidnts the estimated latencies,

thus accounting for the indeterminacy of the absolute tatebhe shift was chosen such that the
RMS error was minimal. Fid. 5.13 demonstrates that the pegh@socedure yields improved

latency estimates in most of the cases. Fig.]5.13 furthegestg that the latencies for signal 1
are better estimated than those for signal 2 and signal 3.ddn be explained by considering
the locations of the corresponding ECDs. The optimal singenoel sensors for signal 2 and
signal 3 (located above these sources) record highly mixgais, whereas the optimal sensor
for signal 1 mainly receives a contribution from the firstr&y For larger latencies (> 15 ms)

a degradation in latency estimation was observed, whichlmeajue to difficulties faced in the

estimation procedure caused by local minima. Difficultils® accurred for large latencies with

persistent evoked signal cross-correlations.
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Figure 5.14: Boxplot and cumulative distribution of two-@nsional random unmixing. For
10 % of the results, random unmixing yield an unmixing ermquad or below 0.26.
A result with less more than 0.26 error to failure. Methods tltave unmixing statis-
tics entirely above 0.26 fail, while methods that have unngpstatistics below 0.26
are considered to succeed. They are significantly bettarrdradom unmixing at a
significance level 0f.1.

5.7 Comparison study

This section shall compare the novel TDSFA method, ICA, bainreference methods, CP as
well as FDSFA. Virtual experiments as introduced in $ed.ah@ the real world audio-visual
MEG experiment as detailed in Séc. 4]13.1 are ground truthdomparison.

The actual data experiment has two dimensions, i.e. assdasth audition and vision. Hence,
all experiments will be carried out in the the two-dimensibsetting, being somehow simple.
However, time domain support, frequency range, mixing @ locations of dipoles and more
parameters leave high degrees of freedom in simulation.

In order to measure success and failure, two-dimensiommlora unmixing shall provide a
threshold for binary class separation. A boxplot and cutivdalistribution of random unmixing
are depicted in Fid. 5.14. The statistics and distribut@sult from 10000 repetitions. For 10 %
of the results, random unmixing yields an unmixing erroraaeu below 0.26. Ad hoc, a result
below 0.26 error shall be classified as successful. Methuatshiave an unmixing level higher
0.26 are classified to having failed. Specifically, methddd yield all boxplot statistics below
the threshold are believed to be most useful. The threstasidbe interpreted as a significance
test. The null hypothesis is that the result is not betten tismdom unmixing. Below 0.26 un-
mixing error an results is said to be significantly bettentrendom unmixing at 0.1 significance
level. Clearly, only an unmixing error close to zero corrggpmto true unmixing.

Next to unmixing error statistics, unmixing vector angudawiation statistics are also provided.
They shall give more insight into the performance of a metnuder test, especially in the actual
data scenario where the number of experiments is limiteddat&sets.
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5.7.1 Virtual MEG data

To evaluate the performance of TDSFA in contrast to estadtigechniques, two virtual experi-
ments are set up:

e At each repetition of the second experiment, the sourceabigimapes are generated at
random (Eq[418), such that a high variety of signal shap#s kv and high-frequency
contents occur. The source locations are assumed to bedsp#tGeiently apart from each
other. In each hemisphere, one source is randomly placadtmeauditory cortex. The
location setting assures that the associated field mapsoai@ only partly overlapping.
Latency variation, i.e. time shifts, are uniformly distrtbd from -1 ms to 1 ms. Amplitude
variations are in the range of 0.85 to 1. The sampling frequenrresponds to 500 Hz.

e At each repitition of the second experiment, the sourceasighapes are generated at
random (Eq[4J8), such that a low variety of signal shapek wiainly low-frequency
contents occur. The source locations are assumed be maresospaced nearby. In each
hemisphere, one source is randomly placed near the mottaxcdrhe location setting
assures that the resultant field maps are more or less opentpad.atency variation, i.e.
time shifts, are uniformly distributed from -5 ms to 5 ms. Alityzle variations are in the
range of 0.85 to 1. The sampling frequency corresponds td+z00

100 trials with 100 ms prestimulus duration and 300 ms piost$tis duration are simulated. In

total, 100 repetitions are run, each modeling two sourcgegjdrcing two ECDs into an isocon-

ducting sphere model. Virtual data was obtained using fahwalculation[[Sar87]. Furthermore,

50 noise ECDs with different AR processes are randomly plagedhe sphere and the corre-
sponding field components are superimposed to the data n@ix0 dB SNR sensor noise is
added. More details are found in virtual experiment setup[&&.

In Fig.[5.1% and Fi§ 5.16 the two experiments are illustrégdhowing 4 signal forms and field

map distribution pairs that are typical for the first and setexperimental settings, respectively.
Signal processing chain starts with bandpass filtering @etw0.5 Hz and 100 Hz. All trials are

detrendet and the offset is removed (refer to §ec.14.3.1 éwemetails). Subsequently, NAPCA
(Sec[5.1.R) was applied in order to recover the subspaceo&td dependent components. Fi-
nally, the preprocessed data was fed to all decompositiadghade under test in sequence.

Fig.[5.17 depicts the results for the first virtual experitn@&text to the unmixing error, angular
deviations from the true unmixing vector are provided. Tikidone to be in line with the actual
experiment, where angular deviation shall give more irtsgghonly very few experiments are
evaluated. Due to permutation indeterminacy, mapping aofiximg vector and mixing vector

was done such that the summed angular deviation is smdHigst5. 17, first row, depicts the

larger angular error, while the second row depicts the gmnatigular error. The last row depicts
the unmixing error. Clearly, a method is said to perform witherror, if median and standard
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Figure 5.15: Signal shapes and field maps from four runs ofittsievirtual experiment. Source
settings are such that the evoked signal shape show higftyackhe field maps are
not or only partly overlapping. The signals are dependettt miaximal time shift
equal 1 ms.

deviation of these performance measures are all equal Eefarther assess performance, 0.26
unmixing error is marked by a dotted line. This thresholdlsidbow the classification of good
and bad methods. For more details see above as well a5 Fj. Median unmixing statistic
below 0.26 has good performance on average, while methdtdswadian and standard devia-
tion below 0.26 perform most robust and are considered Liafgeparation in the context of
evoked signals and in the context of the subclass of sigratgylsimulated. Note that the two
experiments try to split evoked MEG in roughly two classesriter to allow for a large coverage
of signal settings, while gaining insight into different ah@nism of the decomposition methods
under test.

Specifically, the results in Fig. 517 suggest that PCA faildécompose signals of the first ex-
periment. Only a few outliers yield an unmixing error belo@®and PCA is considered not to
be suited for decomposition in this context. This is cleathessources are not constrained to
orthogonal mixing and become orthogonal with low probapili

All established ICA methods have an unmixing error statistth 75 % of the results above 0.26.
Hence, ICA is observed not to succeed on the average. Thespig¢est that ICA is not robust
against dependencies. Angular deviations suggest thag $6 results are recovered almost
perfectly. Notably, the whiskers of all boxplots reach zemdidating that ICA is able to recover
dependent components in some cases. As discussed [n S@eddl5.B at length, it is not the
level of dependence but the level of ICA dependence redutitatrns crucial. However, a relation
between median mutual information and unmixing perforneamast as shown in Sdc. #.2. Here,
it can be observed that ICA fails for most signal configuratiomhile performing without errors
for a small subset of experiments. Notably, the first quadiflthe unmixing error distribution is
below 0.26. Hence, one in four settings yield an estimateishanly obtained by one in ten trials
of random guesses. This suggests that ICA still is worth clemsig as a reference method or as
an initialization method in the dependent signal scenario.

The reference methods and CP yield good average resultsrtNetess, upper quantiles of the
unmixing performance distribution suggest that only hpIGKEA, innolCA and SFA yield very
good results. This can be explained by considering the ptiepeof this experiment. The high
activity of the signal shape allow the highpass filteringrapgph and innovations approach to re-
duce source dependencies yielding improved ICA resultspén@rmance of sICA is explained
by the spatial setting of this experiment. All field patteans not or only partly overlapping and
sICA is based on this very assumption.
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Figure 5.16: Signal shapes and field maps for four runs ofg¢hersd virtual experiment. Source
settings are such that the evoked signal shape possesstivityathe field maps
are partly or fully overlapping. The signals are dependatit maximal time shift
equal 5 ms.

Notably, the SFA methods TDSFA and FDSFA outperform all radth Both methods show ex-
cellent unmixing performance far below the 0.26 threshdlie associated angular deviations
are below 5 degrees for most results.

Fig.[5.1I8 depicts the results of the second experiment.rficons that PCA is not suited for
source separation in this context. Again, the sources darearstrained to orthogonal mixing
and become orthogonal with low probability.

It is worth noting that all ICA methods but SOBI show worse parfance than in the first ex-
periment. SOBI performs relatively better but not bettenthrathe first experiment. It still fails
on average. Nevertheless, SOBI may be considered valuabieitialization. A consideration
of the other established ICA methods is not suggested foasgn this experiment as all results
for FastICA, Jade and Infomax are above 0.26 unmixing erreraA&onsequence, the original
source signals were always changed if they were fed to ICArbefoxing.

All reference methods and CP show significantly worse reghéis in the first experiment. This
shows that these methods may be more robust to dependentssnisitive to other source sig-
nal assumptions. Spatial ICA fails as field maps are oventgp@ P runs into problems because
of temporal shifts. Prefiltering based method seems notterddependency enough.

In particular, TDSFA and FDSFA outperform all methods. Bodkots show excellent perfor-
mance. The TDSFA associated angular deviations are beloggfeds for most results. More
specifically, TDSFA is observed to yield better results tREISFA. This may be explained by
the fact that FDSFA operate in the frequency domain beingereensitive to transformation er-
rors when the frequency content of the signals are similawaver, FDSFA still has excellent
performance - at least for recovering one source.

The SFA methods are at great advantage as the underlyinglddtalow (almosﬁ) a shifted
trilinear generative process. Hence, real world expertmare needed to further assess the use-
fulness of SFA. Actual audio-visual MEG data are consid@ngtie next section.

INAPCA may not work perfectly and can yield data that are nohietely corresponding to the shifted factor
analysis model.

82



5.7 Comparison study

Z loula g|bue "dsiod

T lould g|bue "dsiod

lo1ia Buixiwun

0.4

Z2voIds
volouul
Tv0las
voldy
VOIS
do
v4Sa4
v4Sal
Xewoju|
3ave
vohsed
190S
vOd

83

prefiltering methods enhance ICA. Furthermore, sICA shows gesformance. CP
is observed to yield reasonable results. However, TDSFAFIDEFA outperform

Figure 5.17: Results from the first virtual experiment. PCA #DA are observed to fail. The
all methods being tested and show excellent performance.
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All reference methods show poor performance. TDSFA and FD&FRperform all
methods under test. Indeed, both have excellent perforepaviule TDSFA is at

Figure 5.18: Results from the second virtual experiment. PGA I€A are observed to fail.
slight advantage in this setting.
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Figure 5.19: Number of successes for actual audio-visuaGMEta decomposition; associ-
ated unmixing error is below 0.26. InnolCA, hpICA, SDICA2 as haslsICA show
good performance. The latter is at advantage as sourcegaredsfar apart. TDSFA
shows better results than CP and FDSFA and equal results Mighand innolCA.
Specifically, TDSFA is more suited than ICA as well as CP for ¢hesoked data.
The last row suggests that TDSFA has even higher potent@iforming. 10 tri-
als are selected by visual inspection prior to running TD§#eding all but one
experiment with low unmixing error.

5.7.2 Actual MEG data

Actual audio-visual evoked MEG data are used to furthersassperformance in a real word
scenario using the 9 MEG datasets as presented in sécfidh Aldetails on preprocessing as
well as experimental setup are found in secfion 4.3.1. Thelywde bandpass filtering, detrending
and offset and bad trial removal. NAPCA was used to construmixang matrix from unisen-
sory auditory and visual data. The bisensory audio-vistiadated data is projected onto the
columnspace of that mixing matrix. This procedure allowswimg the ground truth in an actual
data scenario - assuming locations of activity to be statiriinally, the preprocessed data was
fed to the method under test.

In Fig[4.14, ICA was applied to the 9 datasets and evaluatetiail by using a novel single-
trial performance illustration technique. ICA was obsertetave failed in separation of seven
datasets as suggested by Fig, #.14. The same figure shalhseumted using TDSFA for com-
paring the results. In particular, starting from the ICA, TH2Soerforms as depicted in Fig. 5]21.
The single-trial plots show that five recordings are sepdratlore than double the number of
datasets have unmixing errors below 0.26 in comparison Mag Still, four datasets are not
decomposed correctly. Choosing only the 10 best trials ¢ssleby visual inspection) yield a
separation with associated unmixing error below 0.26 foai&skts! This suggests that SFA has
high potential in the case that trials follow the model assdnin turn, not all trials seem to fol-
low the SFA model, which pose difficulties for this technig8eecifically, trials that occurred in
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the second half of the experiment as well as a first few arerebde¢o lead SFA to worse results
than deleting those trials. This may be explained with theceatration level of the subject. At
the beginning and at the end of the experiment, the condemtrig less accurate yielding data
that is not compliant with the model assumptions.

Fig.[5.19 shows the frequency of separation below 0.26 uimquigrror for each method. The
results clearly suggest that SFA is a candidate method éoseparation of actual domain MEG
data. The last column 6f 5.119 shows the excellent potenti@Fa if only 'good’ trials are con-
sidered. In particular, SFA seems to be more successful@Raand ICA. In Figl.5.20, TDSFA is
further compared to all methods in more detail. Very sintitethe virtual experiment, the boxplot
statistics are provided in Fig. 5]20. This time, angulariakin shall provide more information
as only 9 datasets are available. Again, 0.26 unmixing esfial be used as threshold in order
to assess performance. In particular, Eig. .20 suggestsrtedian unmixing performance be-
low the threshold is attained by innolCA, spatial ICA as wellT&SFA. The results of spatial
ICA are expected as field maps are only partly overlappingablgt SDICA2 and hplICA still
perform relatively well. However, it is not well understoby the author why FDSFA performs
rather poorly. Fine tuning with different initializatiotermination and number of iterations as
well as constraints such as orthogonality and non negaifithe amplitudes mode has been
posed, such as in the TDSFA setting. Notably, all method$aagely outperformed by utilizing
'cheated’ TDSFA. Specifically, choosing trials by visuaspection (ten trials from the first 10
minutes of the experiment) yields results as suggestedelagt column in Fig.5.20. Eight of
the nine datasets are separated! Clearly, this underliedsgh potential of SFA and shows that
the model assumptions are not always met in all trials.

Consequently, a method that deletes non-compliant triajsbadelpful. Notably, this technique
can have a positive effect for CP and ICA as one may argue thaisonhe trials are dependent
and only some trials are shifted. However, if the trials e&sguaned to be shifted and dependent,
SFA combined with sophisticated trial selection may haghér potential to benefit from a trial
selection technique. If less trials need to be rejected, @B be more robust than ICA and CP
as it covers presumably more compliant trials. This apgr@ad its consequences are beyond
the scope of this work and need to be addressed in the future.
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5.8 Discussion

This section discusses alternatives to ICA. It was shownttieuse of ICA results based on
mutual information for subspace or separation analysisiestionable. Indeed, ICA optimizes
some feature of independence. At a global minimum no monectéxh of this feature is possible
under linear transformation. However, the unmixing perfance may be far from optimal.

This can be compared to least squares fitting in CP and SFA. A fijpanly says that the model
explains variance. Yet, it was designed to do so! Arguing@fine same line, ICA is designed to
yield independent components. Hence, for both technighesptimized value cannot be linked
to separation success. Clearly, a perfect fit is always aidaising a very large number of com-
ponents; independent components are always obtained Wwlelependent sources can be made
independent under linear transformation. A good fit as vweed eeasonable level of independence
cannot tell separation performance.

As a consequence, virtual and actual experiments wererdabip evaluate the separation per-
formance and to search for alternatives. Shifted factolyaisawas shown to yield better results
than ICA or classic CP. SFA introduces more degrees of freeddhetCP model, while retain-
ing the favorable property of essential uniqueness. Theatatassumed to follow this model and
must be trilinear up to one mode that is allowed to be shifesdv MEG data may not follow the
SFA model as non-evoked sources may be far from being shiftear.

As a consequence, the use of NAPCA is highly advocated. NAP@# ait finding structure
that corresponds to the SFA model, i.e. that contain theexVskurces. These are assumed to be
trilinear with shifts along the temporal mode and, hence ciombination of NAPCA and SFA is
assumed to be suited for decomposition of evoked MEG data.

The novel TDSFA method approaches SFA in the time domainofagries are employed and
truncated in practical use. Derivatives were approximataderically. Nevertheless, TDSFA is
robust to the design choices. Low and high numbers of Tayorponents both give good per-
formance, while using simple central differences for agpmating the derivatives worked out.
The comparison study showed that for both virtual and actatd experiment, TDSFA yields
very good performance without fine tuning its parametersh si number of Taylor components
or numerical approximation of differentiation. In contld€A as well as CP are observed to fail
in more cases.

In particular, this chapter has shown high potential fordbmbination of NAPCA and TDSFA
and showed problems of ICA as well as CP due to dependenciedlaswsaifts. ICA performs
worse if no shifts occur and CP is the right model to choosditsSluiwer dependencies. Still,
CP and ICA are observed to fail and SFA should be used. For vghydhiifts, signals are made
independent and ICA should be used. However, in practicell siméts are likely and SFA is
assumed to be most appropriate. Indeed, actual data sugge$DSFA is suited for real word
data. ICA and its generalizations, such as ICA on innovatioften yield good initial solutions.
They were considered as preprocessing techniques prioe tayplication of TDSFA.
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Figure 5.20: Decomposition results from actual audio-®iMEG data. PCA and ICA are ob-
served to fail in most cases. Median unmixing performandevn®.26 unmixing
error is reached by innolCA, sICA and TDSFA. SFA outperforms 1@#d CP,
which underlines the potential of a flexible model that il sgsentially unique.
The last row is cheated in the sense that only 10 trials aeetsel by visual inspec-
tion prior to running TDSFA. However, the boxplot suggesist fTDSFA has even
higher potential in performing; all but one dataset is degosed with low unmixing
error by TDSFA.

88



Subject
1

Optimal estimates
A

EE
EE
‘EE

- e B

8 T

= =3 =
;‘ -

-100 O 100 200 300

time / ms

TD SFA estimates

5.8 Discussion

0error:0.1 1531

0error=0.1 2611

— - 1
g -3 -
S error=0.7992
= 1
3z
= mm
= Qrror=0.59547
& 1
= , I
error=0.42914
=
E =
F = e
. o error=0.23968
= = 1
‘2=
EE 8 1or=0.063085
ggE
Eii‘ 0error:0.67366
= =l
= =

0error=0.1 0729

Figure 5.21: Results of applying TDSFA to the data from tha@wdsual experiment (AV data).
The TDSFA unmixing vectors are applied to AV, A and V datapesgively. In the

rightmost column the unmixing error is provided. The ob¢giand stacked single-
trial plots show that five recordings are separated by TD3kAomparison with
Fig.[4.14, the TDSFA approach clearly outperforms ICA.

89






6 Summary

This thesis issued the decomposition of evoked MEG datativalata underlying dependent
source signals employing a linear generative model assomgiinder the term blind source
separation, the framework of independent component asdlgs gained widespread popularity.
ICA is a generalization of PCA as it is able to disentangle agyler mixing matrix, whereas
PCA is limited to orthogonal mixing. Separation of non-ogboal mixing is possible assuming
independence among and non-Gaussianity of the sourcé®esié assumptions are met, ICA is
essentially unique and yields the underlying componersbrain signals of interest as well as
brain or non-brain signals that are not of interest.

MEG data from stimulation experiments build a subset of gdn&lEG data. One feature of
evoked data is its repetitive nature - evoked componentstaretured in trials. In each trial, one
or more signals may be evoked at one or more brain locatiossiglevoked data, ICA often
recovers at least one component that possess a dipolar fegdcamwell as typical structure in
the time or frequency domain. Often, such a component istedig physiologically plausible.
Indeed, it is tempting to refer to such a componernhagvoked signal. However, more than one
source may be evoked by one or more stimuli. As a consequElws,assumption of indepen-
dence may no longer hold true.

Whether plausible components give evidence to true compemes not addressed in the con-
text of evoked experiments. In particular, an ICA robustesdysis of dependence was missing.
Consequently, this thesis posed and discussed questiomsasu€an ICA separate dependent
components?’ or 'How much dependence is allowed?’. It wasaiestrated that highly depen-
dent signals can be separated by ICA, if, under linear tramsftoon, the original sources cannot
be made less dependent. Indeed, ICA will reduce dependeinoduced by the mixing process.
As it cannot further lower dependency, the original depahdignals are perfectly separated. On
the other hand, if, under linear transformation, dependentces are changed by an ICA, the
unmixing matrixW will differ from identity. Consequently, if these dependaource signals
are mixed, ICA will also act on the sources yielding the unmixmatrix W again . Indeed,
ICA lowers the dependency among the estimates that weralintenl due to linear mixing but,
furthermore, lowers the dependency of the original sigaalsnuch as possible under linear
transformation. In these cases ICA is deemed to fail. Thetopureis, 'Can ICA separate typical
evoked dependent components?’.

To assess the performance and usefulness of ICA in the evagehdent signal scenario, a
virtual MEG experiment as well as an actual MEG data expartmeas designed. Using vir-
tual data, the results showed that median unmixing erraetyofollows mutual information of
the original signals. Furthermore, for closely spacedtiooaof the sources, ICA components
showed physiologically plausible dipolar structure. Seomponents are often believed to be
correctly separated but were shown still to be a mixture - |@Arobt succeed. For nine audio-
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6 Summary

visual evoked data sets with dependent sources, ICA was\aas#y fail in seven cases. This
means that ICA is likely to provide only some vector of an ewbke&nal subspace. This re-
covered component is not an underlying source but a mixteyaked sources in that signal
subspace. Thus, the first challenge towards a techniquedhnaseparate independent and de-
pendent sources is subspace analysis. This step can bde@usas a preprocessing step. Itis a
useful step as the dimensionality of the recorded data@énaftastically reduced by considering
only the subspace of evoked signals. Furthermore, noisdearduced and the structure un-
derlying the data can be assumed to be more homogeneousat&heamsists mainly of evoked
contribution, which facilitates analysis.

Cardoso et al. conjectured that ICA can separate data withriymdedependent and indepen-
dent sources into independent sources and subspacesnaugtaiixed dependent sources. A
grouping algorithm based on residual dependencies waggeddo determine these subspaces.
Nevertheless, it was demonstrated that using a binned inafoamation ICA lowers binned
mutual information of the sources. Hence, ICA fails but therusay not be aware of it as the
estimates may only show low dependence. It was concludédinaal information among ICA
estimates is a questionable quantity to use in order to gcoogponents to subspaces or to infer
the success of ICA. As a consequence, noise adjusted prirccipgponent analysis was con-
sidered. NAPCA makes use of pre- and poststimulation infitonausing simple and robust
covariance statistics. After whitening the noise spacegcarsd PCA of sphered noise plus trans-
formed evoked signal yield eigenvectors that point intodiection of evoked activity. By this,
NAPCA robustly recovers the evoked subspace. The use of NAP&Ahighly advocated due
to its robustness and ease of use. For single evoked sighRICIH can serve as a separation and
denoising tool yielding highly accurate estimates. Hemtall experiments, NAPCA was run
as a preprocessing method with excellent performance tuaVisnd actual MEG data. Notably,
finding the subspace of evoked signals is of utmost inteoesdecific evoked data models, such
as CP. Which in turn is of high interest as CP is essentially unigithout assuming indepen-
dence. In contrast, the bilinear model is essentially noigue.

Decomposition methods that aim at the data underlying gsulhave to impose assumptions.
Specifically, all methods that use a bilinear mixing modeleho assume some objective func-
tion in order to render the solution essentially uniques ljuestionable whether a new objective
is more robust than assuming independence for evoked MEG.

Stimulation experiments are structured, a general prgpehich may be further exploited. E.qg.,
CP aims at using this structure assuming trilinear compaengith modes space, time as well as
trial. Nevertheless, for a successful CP decomposition i vibe recorded data must follow a
trilinear generative process. As shifts are common to &data, the model is per se incorrect. In
line with the assessment of ICA to the violation of the indefsce assumption, CP needed to
be assessed for its robustness to shifts. Again, in the xiooftevoked MEG, this was not done
before. At some level, shifts must destroy the separatidiopeance of CP. It was assessed in the
context of shifts using different signal shapes as well agpteral support of the virtual evoked
signals. Depending on the signal shape, already smalkgbiifa single sample was shown to
destroy a CP decomposition. Only for signals with low fregzyecontent CP did tolerate shifts
up to 3 samples, in the case that temporal support is abowgdtifles. These findings suggested
that CP can be highly sensitive to model violation by shifteme mode. Clearly, in actual data,
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List of contributions Section| Figure Publication
Virtual simulation tool for evoked dependent sour¢esi.2 4.4 | [Koh08a/Koh09]
Robustness assessment of ICA to dependence | 425 | 4.7 | [Koh08K, Koh09]
The nearby dipole effect 426 | A9 | [Sanl0|KohO9]
Discussion on mutual information of ICA results 5.4 -
Proposition of using NAPCA for subspace analysis Koh106]
Robustness assessment of CP to shifts -

Time domain shifted factor analysis (TDSFA) 5.0 [Koh10a]
Audio-visual paradigm yielding dependent sources [4.3 4.10 [Koh106]
Single-trial performance illustration technique 434 | 411 -
Comparison study based on actual and virtual data -

shifts may not be integer spaced and can still have impadi®CP performance.

Harshman and Hong proposed a novel method including s8ififted factor analysis was shown
to be essentially unique by Morup. He further presented tisé fiethod in the frequency do-
main, which is capable of estimating non-integer shiftsld=et al. noted that when applying CP
to evoked shifted data, components were doubled with the sgatial profile but with differ-
entiated temporal signatures. Based on this remarkableattiga and the work of Morup, this
work proposed to approximate the shifted factor analysidehby using a Taylor series based
expansion. It turned out that for infinite many Taylor com@ois, SFA equals the CP model that
has infinite many components. Truncating the Taylor ser@@e @ robust algorithm that largely
outperformed ICA, CP and other reference techniques. In asiniv FDSFA, a linear algorithm
is obtained when using first order Taylor approximation. ligher order approximation, say a
10th order approximation, TDSFA was shown to perform bettethenactual audio-visual MEG
data. ICA and CP only succeed in one dataset, while TDSFA sdedei@ 5 of 9 recordings.
Nevertheless, bad trials can lower the performance. Inqodatt, it was demonstrated that man-
ual selection of 10 trials by visual inspection yielded dbace# performance of TDSFA with 8 of
9 successful decompositions.

It is worth further investigating shifted factor analys3ne line of future work is automation
of trial selection. Another line is the investigation of thember of degrees of freedom, e.g. for
allowing signal shape variations from trial to trial, or ethvariations. This, however has to be
limited in order to keep the favorable essential uniqguepesgerty.

Another line of investigation is to reformulate the multage SFA algorithm as a single-stage
algorithm. Having all stages sharing information shoul@iave the results of each stage. Lastly,
a method is only as good as its numerical implementation. élsag experimental stimulation
paradigm design and care in recording, the choice of pregsieg, numerical optimization and
its robustness are crucial. Efficient and robust numeraainiques are still to be assessed and
designed in order to profit from SFA to the full in practice.
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Appendix

Audio-visual paradigma code using the softwBresentatiof?

# header

scenario = "AVAV2";

scenariatype = trials;

no_logfile = false;
defaultbackgroundcolor = 255, 255, 255;
write_codes = true;

pulse.width = 30;

active_buttons = 1;

port.code:

10 — A

20 — V

40 — AV.0
40—-85 — AV.0-20

H* O H

# trial definitions

begin #

# white picture

picture { bitmap { filename = "weiss2.png”; height = 300; width = 45p; x = 0; y = 0;} pic_weiss;

# resting picture

picture { bitmap { filename = "rest.jpg”; height = 300; width = 450; ; x = 0; y = 0;} pic.rest;

# auditory tone of 1 kHz / duration 300 ms

sound { wavefile { filename = "1000Hzsound.wav”;}; } tone.lkHz;

# visual picture checherwedge 1

picture { bitmap { filename = "stimwedgel.png”; height = 300; width = 450;; x = 0; y = 0;} pic.checkl;
# visual picture checherwedge 2

picture { bitmap { filename = "stimwedge2.png”; height = 300; width = 450;; x = 0; y = 0;} pic.check2;

trial { nothing {}; port.code=10; picture picweiss; stimulusevent{sound tonelkHz; } A_event; } A_trial;

trial { stimulus.event{picture piccheckl;} Vl_event; stimulusevent{picture piccheck2;} V2_event; } V_trial;

trial { stimulus.event{picture piccheckl;} AV_Vl_event; stimulusevent{picture piccheck2;} AV_V2_event;
stimulus_event{sound tonelkHz; } AV _A_event; } AV _trial;

# buffer, rest, attention trial

trial { trial_-duration=1300; picture pioweiss; code="buffer”;} buffer_trial;

trial { picture picrest; duration=response; code="rest"”; resting-trial;

# PCL Code starts here

begin.pcl;

int ran.val;
int ran_jit;
int main_exp;
int part;

int fixdelay;
int genshift;

COUfIL
&2 pl&zE pAfou [0

Figure 6.1: Original paradigma pictures: resting, cheskelge 1 and 2. Mirrors reflect the pic-
ture from the beamer to the screen and the subjects seesedirrersions.
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Appendix

string proband;
string strme;
string strmea;
int strmeb;

int tog;

int i;

int ii;

int j

fixdelay =50;
proband="Florian.Kohl”;
main_.exp=0;
genshift=0;
part=1;

# Start of paradigma
if (main.exp<100) then

strme=proband;

strme . append("mainexp”);

strme .append(2”);

strme .append(string (maiexp));
strme . append(2”);
strme .append(string (part));
strme.append(”.log”);
logfile.setfilename (strme);

=1
loop until j>5
begin
# auditory trials
i=1;
loop until i > 8
begin

ran.val = random (1500, 2000);
A_trial .setduration(ranval);
A_event.settime (fixdelay+genshift);
A_event.seteventcode( "tonelkHz_A_trial” );
A_trial .present();
i=i+1;

end;

# visual trials

i =1;

tog=1;

loop until i > 11

begin
ran.val = random (1500, 2000);
V_trial .setduration(ranval);
if tog==1 then
Vi1_event.setstimulus (piccheckl);
V2_event.setstimulus (piccheck2);
tog=0;
else
V1_event.setstimulus (piccheck2);
V2_event.setstimulus (piccheckl);
tog=1;
end;
V1_event.setport.code (20);
V2_event.setdeltat (fixdelay—5);
V1_event.seteventcode ( "V1.V_trial” );
V2_event.seteventcode ( "V2.V_trial” );
V_trial .present();
i=i+1;

end;

i =1;
loop until ii > 2
begin

# audio—visual with 17ms time shifts

i =1;

loop until i > 3

begin
ran.val = random (1500, 2000);
AV _trial . setduration (ranval);
if tog==1 then
AV _V1_event.setstimulus (piccheckl);
AV _V2_event.setstimulus (piccheck2);
tog=0;
else
AV _V1_event.setstimulus (piccheck2);
AV _V2_event.setstimulus (piccheckl);

tog=1;

end;

ran-jit = random(1, 3);

if (ran.jit==1) then AV_V1_event.setport.code (40);

AV _Vl_event.seteventcode ( "AV.jit0" );
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V_.V2_event.setdeltat(fixdelay—5);
AV _A_event.setdeltat(genshift); end;

if (ran_jit==2) then AV_V1_event.setport.code (60);
AV _Vl1_event.seteventcode ( "AV_jitl6_.1" );
AV _V2_event.setdeltat (fixdelay—5—17);
AV _A_event.setdeltat(genshift+17); end;

if (ran.jit==3) then AV_V1_event.seiport.code (65);
AV _Vl_event.seteventcode ( "AV_jitl6.2" );
AV _V2_event.setdeltat (fixdelay—5+17);
AV _A_event.setdeltat (genshift—17); end;

AV _A_event.seteventcode ( string(ranjit));

AV _V2_event.seteventcode ( "V_AV_trial” );

AV _trial . present();

i=i+1;

end;

# audio—visual with Oms time shifts
i =1;
loop until i > 3
begin
ran.val = random (1500, 2000);
AV _trial . set.duration(ranval);
if tog==1 then
AV _V1_event.setstimulus (piccheckl);
AV _V2_event.setstimulus (piccheck2);
tog=0;
else
AV _V1_event.setstimulus (piccheck2);
AV _V2_event.setstimulus (piccheckl);
tog=1;
end;
AV _Vl1_event.setport.code (40);
AV _Vl1_event.seteventcode ( "AV._jit0" );
AV _V2_event.setdeltat (fixdelay—5);
AV _A_event.setdeltat(genshift);
AV _A_event.seteventcode ( string(ranjit));
AV _V2_event.seteventcode ( "V_AV _trial” );
AV _trial . present();
i=i+1;
end;

# audio—visual with 8ms time shifts

i =1;

loop until i >3

begin
ran.val = random (1500, 2000);
AV _trial . setduration (ranval);
if tog==1 then
AV _V1_event.setstimulus (piccheckl);
AV _V2_event.setstimulus (piccheck2);
tog=0;
else
AV _V1_event.setstimulus (piccheck2);
AV _V2_event.setstimulus (piccheckl);

tog=1;

end;

ran_jit = random (1, 3);

if (ran.jit==1) then AV_.V1_event.setiport.code (40);

AV _Vl1_event.seteventcode ( "AV_jit0" );
AV _V2_event.setdeltat (fixdelay—5);
AV _A_event.setdeltat(genshift); end;
if (ran_jit==2) then AV_V1_event.setport.code (80);
AV _V1_event.seteventcode ( "AV_jit8_1" );
AV _V2_event.setdeltat (fixdelay—5);
AV _A_event.setdeltat (genshift—8); end;
if (ran.jit==3) then AV_Vl1_event.setport.code (85);
AV _Vl_event.seteventcode( "AV._jit8.2" );
AV _V2_event.setdeltat (fixdelay—5);
AV _A_event.setdeltat(genshift+8); end;
AV _A_event.seteventcode ( string(ranjit));
AV _V2_event.seteventcode ( "V_AV_trial” );
AV _trial . present();
i=i+1;
end;
ii=ii+1;
end; # jitter loop

resting_trial .present();
buffer_trial . present();
j=i+1

end;
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