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Abstract

Sensory stimulus evoked magnetoencephalography (MEG) data are known to be highly impacted
by background brain and technical noise sources. In order toenhance the signal quality, sophis-
ticated signal processing is necessary and becomes crucialwhen looking at single-trials. Often,
linear decomposition techniques are utilized. Among many methods, those under the framework
independent component analysis (ICA) are most popular. Linear decomposition aims at finding
an unmixing matrix such that noise and signal sources can be recovered from the recorded data.
ICA is used to reduce artifacts or, optimally, to obtain a clear copy of the evoked MEG source
signal of interest.
Specifically, in a sensory stimulation experimental setting, the underlying source signal of in-
terest occurs after presenting a sensory stimulus. An ICA decomposition of evoked data often
yields a component that shows this behavior; it is tempting to refer to this ICA component as
the evoked source signal recovered from the recordings. However, ICA assumes independence
among the underlying source signals. If more than one sourcesignal is evoked by one or more
stimuli, the ICA independence assumption can be violated.
In the context of evoked dependent sources, this thesis investigates ICA and proposes a novel
blind separation method. As starting point, a virtual evoked MEG experiment with adjustable
source signal dependencies is designed and used for assessment of various decomposition meth-
ods. Furthermore, an audio-visual MEG data experiment is designed for a real world test. Rather
surprisingly, it is demonstrated that ICA is able to recover highly dependent source signals - for
specific source signal settings. Along this line, the use of ICA for decomposition as well as for
subspace identification is discussed. Subsequently, the novel time domain shifted factor analysis
(TDSFA) technique is proposed. In particular, TDSFA is based on a Taylor series expansion of
the shifted factor analysis (SFA) model, which is unique without assuming independence among
the source signals. The relation to a classic unique trilinear technique is investigated and it is
shown that the trilinear technique can be very sensitive to shifts. Indeed, TDSFA accounts for
shifts and is shown to be more suited for decomposition of evoked MEG data.
Utilizing actual as well as virtual MEG data, the results show that ICA and other state of the art
techniques can fail. The results suggest that the novel TDSFA technique has high potential as a
decomposition technique in the context of evoked MEG sourcesignals.

V





Zusammenfassung

Sensorisch evozierte Magnetenenzephalographie-Daten (MEG-Daten) sind stark durch das Hin-
tergrundrauschen im Gehirn und durch technische Rauschquellen gesẗort. Um die Signalqualiẗat
zu verbessern sind moderne Verfahren der Signalverarbeitung notwendig, insbesondere für eine
Single-Trial-Analyse.
Für die Verbesserung der MEG-Signalqualität werden oft lineare Zerlegungsmethoden einge-
setzt, wobei die Methoden der Independent Component Analysis (ICA) eine weite Verbreitung
gefunden haben.
Lineare Zerlegungsmethoden versuchen anhand gemischter Daten eine Entmischungsmatrix zu
gewinnen, um durch eine lineare Entmischung die Quellsignale wiederherzustellen. ICA wird
für MEG-Daten auch benutzt, um die Anzahl der Rauschquellen zureduzieren - im optimalen
Fall, um ein geẅunschtes MEG-Quellsignal unverrauscht zu rekonstruieren.
Für den Fall der sensorisch evozierten MEG-Daten treten die gewünschten MEG-Quellsignale
erst nach erfolgter sensorischer Reizung auf. Eine ICA-Zerlegung evozierter MEG-Daten zeigt
oft eine Komponente mit entsprechendem zeitlichen Verhalten; man ist versucht diese Kompo-
nente alsdas originaleevozierte MEG-Quellsignal zu interpretieren. ICA nimmt jedoch die stati-
stische Unabḧangigkeit der Quellsignale an. Werden durch eine sensorische Stimulation mehrere
Quellsignale im Gehirn evoziert, so kann die Unabhängigkeitsannahme verletzt sein.
In dieser Arbeit wird in dem Zusammenhang abhängiger evozierter MEG-Quellsignale ICA un-
tersucht und eine neue Zerlegungsmethoden vorgestellt. Eswird eine virtuelle Simulationsumge-
bung mit steuerbaren Quellsignalabhängigkeiten vorgestellt und zur Untersuchung der verschie-
denen Zerlegungsverfahren eingesetzt. Er wird gezeigt, dass ICA in Sonderf̈allen stark abḧangige
Signale trennen kann. Anhand dieser Erkenntnis wird der Nutzen von ICA zur Signaltrennung
und zur Unterraumanalyse von evozierten MEG-Daten diskutiert. Ein reales MEG-Experiment
zeigt das Verhalten der Methoden auch für den Fall von echten evozierten MEG-Daten.
Als neue Methode wird Time Domain Shifted Factor Analysis (TDSFA) vorgestellt. TDSFA ba-
siert auf einer Taylorreihenentwicklung des Modells der Shifted Factor Analysis (SFA), welches
eindeutig identifizierbar ist ohne die Unabhängigkeit der Quellsignale annehmen zu müssen. Die
Verbindung zu den etablierten trilinearen Methoden wird untersucht, und es wird gezeigt, dass
die etablierten trilinearen Methoden Schwierigkeiten mitzeitlicher Signalverschiebung haben.
TDSFA bezieht Zeitverschiebung in das Modell ein und ist für die lineare Zerlegung von evo-
zierten MEG-Daten besser geeignet.
Für echte und simulierte evozierte MEG-Daten zeigen die Ergebnisse, dass ICA und andere mo-
derne Methoden falsche Ergebnisse liefern können. Die neue Zerlegungsmehtode TDSFA liefert
bessere Ergebnisse und weist hohes Potential im Kontext evozierter MEG-Daten auf.
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1 Introduction

The functioning of the human brain is of great general interest. It has an impact on many dis-
ciplines such as medicine, engineering and psychology [Zsc02, Mün00]. Brain signals are used
for medical diagnostics, to quantify psychological effects or as input for brain computer inter-
faces [Nun81, M̈ul08]. A key technique for understanding brain functioningis the analysis of
brain signals related to sensory stimulations. In a sequence of trials, one or multiple stimuli are
presented to a human subject and the evoked brain signals arerecorded by a measuring device
[Pic95, Mün00].
Due to its excellent temporal resolution, magnetoencephalography (MEG) is next to electroen-
cephalography (EEG)1 often used to record brain signals. MEG is a non-invasive technique that
records magnetic fields at many positions distributed in space [Häm93]. The recorded fields can
be related to the evoked electrophysiological brain signals. However, many sources of interfer-
ence contribute to the MEG data. Although many methods have been proposed [Vig09, Pic95],
the evoked signal recovery task remains highly challenging. Specifically, ongoing brain activi-
ties and external noise sources can be by magnitudes larger than evoked activity. Furthermore,
spatial, temporal and frequency domains of noise interferers and evoked signals often overlap;
the evoked activity may not be simply recovered by standard filtering techniques.
Due to the low signal-to-noise ratio, evoked MEG data are often averaged over trials [Vig09].
The result is referred to as the event related field (ERF). However, this technique assumes that
evoked activity has a fixed latency between onset time of stimulation and evoked signal for all tri-
als. It neglects that evoked signals can vary from trial to trial [Tru02]. Interesting and potentially
relevant single-trial variations may not be recovered [Sal04, Jun01]. More recently, single-trial
analysis emerged, aiming at non-averaged ERFs that follow each stimulus [Tan05, Sal04, Jun01].
A promising technique is to decompose the recorded data prior to single-trial analysis for the sake
of artifact reduction or, optimally, to obtain a clear copy of the evoked signal [Tan05]. The idea
behind linear decomposition techniques is that the recorded MEG data consist of linearly super-
imposed contributions from many underlying source signalsat each recording channel. Among
the sources, some are of interest, many more are merely background brain and technical noise
sources.
To date, independent component analysis (ICA) is the most prominent tool for MEG data de-
composition. ICA is a statistical technique that aims to linearly decompose multivariate signals
into underlying independent source signals. ICA has been very successful in removing noise
sources, such as those introduced by muscle contractions, eye movement, electrical line or heart-
beat. These noise sources are often statistically independent. In contrast, if more than one signal
is evoked by one or more stimuli, this assumption may no longer hold for evoked brain signals.

1In this work, all considerations are limited to MEG data; results directly apply to EEG data.
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1 Introduction

1.1 Scope

This thesis addresses the recovery of evoked brain signals by means of mathematical decom-
position techniques. It is tempting to use ICA to separate theevoked signals from MEG data.
Often, the results look reasonable, i.e. often, dipolar magnetic field patterns suggest a successful
separation. However, evoked signals may be dependent and the key assumption of ICA may be
violated. Hence, the separation of dependent evoked signals shall be in focus. Specifically, the
hypothesis that evoked signals can be dependent is tested and ICA’s robustness against the vio-
lation of independence is investigated. To what extent evoked signals arestatisticallydependent
and to what extent ICA can still be used is currently not well known. It is intrinsic to MEG data
that mixing introduces dependency, even in the case of independent source signals. Thus, the use
of ICA for the recovery of single-trial evoked signals may be still of use and needs to be assessed
by virtual and actual experiments.
Subsequently, alternative decomposition techniques nextto ICA are discussed. It is intended to
design an algorithm without resorting to different contrasts such as sparsity, non-negativity, non-
frequency overlap or others. Contrarily, intrinsic features of evoked MEG data are investigated,
that allow auniquedecomposition. By employing a multilinear model, the inherent structure
of evoked experiments is used, yielding uniqueness, without resorting to objectives that may be
valid only for a subset of signals.
In summary, four main questions are investigated:

- Can evoked source signals bestatisticallydependent?
- Can ICA separate evoked dependent source signals?
- Can the subspace of evoked dependent source signals be recovered?
- Can evoked source signals be recovered from this subspace?

1.2 Contributions

This thesis contributes with a new method for the separationof MEG data with underlying evoked
dependent MEG source signals. A new virtual MEG experiment and a new actual MEG exper-
iment are introduced that can be used as a basis for evaluating the separation performance of
different methods. This is important as the ground truth of actual MEG data is not known in
general. It is shown that ICAcan separate dependent source signals in special cases. Evoked
dependent source signals are shown to be not separable by ICA in general. The near dipole effect
shows that a dipolar pattern does not ensure the success of ICA.
Furthermore, the identification of the evoked and possibly dependent source signal subspace is
discussed. The recovered subspace is shown to be separable by the proposed method. For both
actual and simulated MEG data, the separation performance is significantly improved using the
novel method in contrast to using ICA.
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1.3 Overview

Publications of this thesis are listed below.

Journal articles

• Kohl, F., Wübbeler, G., Kolossa, D., B̈ar, M., Orglmeister, R. and Elster, C. 2010. Shifted
factor analysis for the separation of evoked dependent MEG signals,Physics in medicine
and biology, 55:4219–4230.

• Sander, T.H., Kn̈osche, T.R., Schlögl, A., Kohl, F., Wolters, C.H., Haueisen, J. and Trahms,
L. 2010. Recent advances in modeling and analysis of bioelectric and biomagnetic sources.
Biomedizinische Technik, 55:65–76.

Conference articles

• Kohl, F., Wübbeler, G., Sander, T., Trahms, L., Kolossa, D., Orglmeister, R., Elster, C. and
Bär, M. 2008. Performance of ICA for dependent sources using synthetic stimulus evoked
MEG data.Proc. DGBMT-Workshop Biosignalverarbeitung, 32–35.

• Kohl, F., Wübbeler, G., Kolossa, D., Orglmeister, R., Elster, C. and Bär, M. 2008. Per-
formance of ICA for MEG data generated from subspaces with dependent sources.Proc.
ECIFMBE, 22:1281–1285.

• Kohl, F., Wübbeler, G., Kolossa, D., Elster, C., Bär, M., Orglmeister, R. 2009. Non-inde-
pendent BSS: a model for evoked MEG signals with controllabledependencies,Proc. ICA,
lecture notes in computer science, 5441:443–450.

• Kohl, F. and Ẅubbeler, G. and Kolossa, D. and Elster, C. and Bär, M. and Orglmeister,
R. 2010. Noise adjusted PCA for finding the subspace of evoked dependent signals from
MEG data.Proc. LVA, lecture notes in computer science, 6365:442–449.

• Ghaemi, D., Kohl, F. and Orglmeister, R. 2010. Classifying ICA components of evoked
MEG data.Proc. BMT, 55:302–305.

1.3 Overview

In Chapter 2, the basis of evoked MEG is introduced. Chapter 3 presents the framework of ICA.
In Chapter 4, ICA is investigated in the context of evoked brainsignals, using a new virtual
as well as a new actual experiment. In Chapter 5, a novel blind separation technique is intro-
duced that is based on multilinear models. Furthermore, Chapter 5 discusses alternative separa-
tion techniques and tackles the identification of the evokedsignal subspace. Chapter 6 provides
a concluding summary.
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2 Evoked brain signals

Evoked brain signals give evidence of a direct link between stimulation and neuronal activity. An
evoked signal is a response of the brain to an external stimulus, i.e. the flow of ions that result in
magnetic fields, which are recorded by MEG sensors.
MEG recordings can provide non-invasive access to evoked signals. These signals are used for
various tasks, such as evaluating cognitive paradigms or functional brain mapping. Figure 2.1
depicts the anatomy of the cerebral cortex with brain regions and associated topological naming.
For example, auditory stimulations evoke responses in the primary auditory cortex. [Pan88]
demonstrated that different acoustic frequencies are mapped to distinct regions therein. Brain
signals related to sensory stimulation experiments can further be evoked by visual stimulations,
by stimulation of the tactile as well as the olfactory and gustatory senses. The evoked responses
are often modulated by attention, emotions, vigilance and cooperation of the subject undergoing
testing [Mün00, Hai64].
The exact process of evoked activity is extremely complicated to reconstruct, as the brain con-
sists of more than1010 neurons that are largely interconnected [Häm93]. A virtual copy of the
brain, imaging all relevant ion flows and neurons involved during stimulation, is desirable but not
feasible to date. An insight into brain processing after stimulation is only incompletely provided
and is dependent on the acquisition technique in use.

2.1 Acquisition techniques

Acquisition techniques may be classified into invasive and non-invasive, among which non-
invasive recording is clearly preferable. However, it may provide access only to indirect infor-
mation.
Among the non-invasive methodologies, positron emission tomography (PET) [Ter75], func-
tional magnetic resonance imaging (fMRI) [Oga90], near infrared spectroscopy (NIRS) [Jöb77]
as well as electroencephalography (EEG) [Ber29] and magnetoencephalography (MEG) [Coh68]
are regularly used.
PET, NIRS and fMRI focus on blood flow and blood oxygenation effects which are linked to
neuronal activity [Roy90]. These techniques offer high spatial resolution, however, the exact re-
lation between neuronal activity and vascular activity remains complex [Cae03, Kim03]. For the
study of evoked signal dynamics, one of the main concerns is the low temporal resolution of
these techniques, which is in the range of seconds.
In contrast, EEG and MEG offer high temporal resolution in the ms range and cover the typical
frequency content of evoked signals. Hence, EEG and MEG are preferable to study the dynamics

4



2.1 Acquisition techniques

frontal lobe parietal lobe

occipital

lobe

temporal lobe

Figure 2.1: Topographical overview of the main cortical areas of the human brain. The primary
visual cortex and the primary auditory cortex are highlighted. These areas show
prominent activity 100 ms after stimulation; the so-calledN100/P100 instant has been
studied intensively [Fra03].

of evoked responses [Har05, Häm93]. An EEG records electrical potentials by using multiple
electrodes fixed to the scalp. The recorded potentials arisefrom volume conducting currents that
originate from the primary currents in the neurons. An MEG records resulting magnetic fields
from primary and secondary currents using multiple magnetic sensors placed near the scalp. In a
spherical approximation of the head, only primary currentshave to be considered [Sar87].
EEG recordings are affected by inhomogeneities of the head.As a consequence, MEG field maps
are often spatially less smeared [Har05]. However, MEG is insensitive to radially orientated cur-
rents in the spherical model. Hence, both methods may be regarded as providing complementary
information. Indeed, as the neocortex is folded to sulci andgyri both techniques offer their ad-
vantages. EEG is most sensitive to the radial currents that are prominent in the gyri and MEG
is most sensitive to tangential currents that are prominentin the sulci. Here, the MEG recording
modality is investigated; the MEG specific advantages as well as disadvantages have to be kept
in mind for making conclusions about the decomposition results. For studying brain functioning,
more than one acquisition technique should be considered. Benefits from combining techniques
have been recently reported [Dal93, Zav09].

2.1.1 Magnetoencephalography

Magnetic fields that result from evoked neuronal currents inthe brain are very weak. They range
from a few to several hundreds of femto Tesla. In comparison,the earth magnetic field is about
8 orders larger in magnitude.
As a consequence, in order to record an MEG, external fields have to be attenuated. Commonly,
a magnetic shielded room is used, such as the one depicted in Fig. 2.2. Passive shielding of-
ten consists of several layers of mu-metal and aluminum. AC coils are used for active shielding
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2 Evoked brain signals

Figure 2.2: In- and outside of a magnetically shielded room for magnetoencephalography record-
ings. During measurement, doors are closed. Layers of aluminum and mu-metal
yield a factor of103 − 105 magnetic field attenuation depending on the spectral
content of the noise. The interior of the cabin has to be as magnetically silent as
possible. Mirrors bring visual stimulation from a beamer that is placed outside into
the cabin. Plastic tubes transmit tones to subject’s ears holding the magnetic dis-
tortion to a minimum. The subject is instructed not to move, while the head is sta-
bilized by air cushions in the dewar helmet of the multichannel MEG system. The
pictures can be found at http://en.wikipedia.org/wiki/File:MSR layereddoor.jpg and
http://infocenter.nimh.nih.gov/il/publicil/image details.cfm?id=80.

[Häm93]. The cabin inside has to be demagnetized, while care has to be taken that only non-
magnetic material is present in the cabin while recording.
At the level of MEG hardware, superconducting coil gradiometers are used. As the spatial gradi-
ent of the magnetic field of interest falls off rapidly, the field of interferers appear homogeneous
in the surrounding of the human head. In contrast, fields fromneuronal currents possess a high
spatial gradient. Two radially oriented coils in opposite winding are used, one near the scalp and
one a few centimeters away. Hence, homogeneous fields of external interferers are suppressed,
while the recordings of interest are only weakly affected [Har05]. The current induced in the gra-
diometer is fed into a third coil producing a net magnetic field. This field, although less corrupted
by external noise, is still weak. Super conducting quantum interference devices (SQUID) are
used to record the weak magnetic fields with excellent sensitivity and low noise levels [Zim77].
Highly integrated sensors build the heart of today’s MEG systems with up to 300 sensors cooled
in a helium filled dewar. However, even if the dewar has a helmet shape, pickup coils are several
centimeters away from the source. In the case of a current dipole source, the resulting magnetic
field falls off as the inverse square of distance. Hence, it isimportant to instruct the subject to
place his head as close as possible to the sensors, i.e. into the MEG helmet. If a dipole current is
active in the brain, the map of the radial field component shows a dipolar pattern with two field
extrema. The physical dipole is halfway between and at a right angle to a line connecting the
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Figure 2.3: Event related field related to auditory stimulation. The depicted signal is the average
over 100 single-trials, lined up to the stimulation time 0 ms. Single-trials were evoked
by acoustic tones of 1 kHz and 30 ms duration, presented monaurally. The prominent
deflection at 110 ms is referred to as N100. It is a typical peakthat occurs after
roughly 100 ms. The N100 varies from trial to trial and among subjects. Here, channel
39 was used to obtain the trial average, while the field map corresponds to the time
instant 110 ms. Throughout this work, magnetic field plots are normalized to maximal
field strength. The corresponding field maps are color coded from -1 to 1, indicating
normalized field strength of the magnetic field vector pointing inside or outside the
skull, respectively.

field extrema. This field can be approximated via quasi staticMaxwell equations. Calculation of
fields from a probe dipole is termed forward calculation. Theresulting field is linearly related to
the strength of the dipole and nonlinearly related to its position. In Fig. 2.3 a dipolar pattern of
an auditory evoked source signal and the corresponding trial averaged response are displayed for
one sensor.

2.2 Sensory evoked fields

Three sensory evoked fields are often used in a clinical setting [Wal05]: auditory evoked field
(AEF), visual evoked field (VEF), and somatosensory evoked field (SEF). Parra and Walsh noted
that stimulation paradigms lose clinical impact because oflow specificity and better alternatives
[Par03, Wal05]. However, Parra commented that a successfulseparation will let sensory evoked
fields regain impact. Drug impacts, neuronal pathway integrity and diagnostic for epilepsy or
multiple sclerosis are potential candidates in clinical applications [Nuw98]. For functional brain
research, event-related paradigms are omnipresent and form a basis to understand many open
questions [M̈un00, Fra03].
Somatosensory fields are often evoked by electrical stimulation of peripheral nerves, AEFs are
often evoked by tones and VEFs are often evoked by checkerboard-like patterns or flashlights.
Throughout this thesis AEFs and VEFs shall be considered. Tounderstand the experimental
separation results, a brief neuroanatomical and physiological background is given, subsequently.
For a review on somatosensory stimulation paradigms, referto [Nie05].
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2 Evoked brain signals

Figure 2.4: Left: Auditory pathway. After the signal leavesthe cochlea, most of the nerves cross
over to the contralateral side of the brain. However, some nerves carry on ipsilaterally.
Hence, monaural stimulations, used in this work, evoke currents in the left and right
primary auditory cortex yielding two dipolar field patterns, one over the left and one
over the right temporal lobe.
Right: Visual pathway. The optic nerves from the nasal side ofthe retina cross at
the optic chiasm. The optic nerves from the temporal side of the retina continue
ipsilaterally. Hence, stimulations in the right visual field, used in this work, evoke
currents in the left primary visual cortex yielding a singledipolar field pattern over
the left occipital lobe. Pictures are modified versions of [Wil06, Gra18], respectively.

2.2.1 Auditory evoked fields

The primary auditory cortex is located in both hemispheres in the temporal lobe depicted in
Figure 2.1. Acoustic stimulation results in electrical activity that travels along the auditory path-
way, which is exemplified in Figure 2.4. The information is redistributed by many nuclei along
the pathway to the primary auditory cortex. As a result, sound stimulations result in contralat-
eral as well as ipsilateral neural activity; monaural as well as binaural stimulations give rise to
field maps that have a dipolar pattern over both hemispheres.The magnetic response to acoustic
stimulation has a prominent deflection after 90-110 ms, which is called the N100. The N100
was shown to vary with presentation conditions such as amplitude, spectrum or spatial sound di-
rection [N̈aä87, M̈ak88, Ḧam93]. Furthermore, different frequencies evoke different sites in the
cortex [Pan88]. Changes in sounds [Mäk88] or sound sequences [Nää87] have been used exten-
sively to study attention, reaction and memory and to study language disorders such as dyslexia.
Due to single tone stimulation, two dipoles are assumed to generate the N100, one dipole in each
hemisphere. However, more underlying sources (possibly less stable) may contribute [Lü92].
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2.3 Neuronal basis and mathematical modeling

2.2.2 Visually evoked fields

The primary visual cortex is located in the occipital lobe depicted in Figure 2.1. In contrast to the
auditory pathway, the visual nerves connect distinct partsof the retina to distinct parts of the pri-
mary visual cortex. Specifically, parts of the eyes that percept the left visual field are connected
to the right primary visual cortex, whereas parts of the eyesthat percept the right visual field
are connected to the left primary visual cortex. This is exemplified in Figure 2.4. As a result, a
dipolar magnetic field distribution appears contralateralto the stimulated visual field half.
Different types of visual stimuli exist. Commonly, pattern or flashlight stimuli are used with ei-
ther full visual field or part visual field stimulation [Ain03]. An established paradigm is pattern
reversal using checkerboard patterns [Ame94, Ahl92]. As with auditory evoked fields, the most
prominent deflection is the visual P100, that peaks 90-140 msafter stimulation. A checkerboard
stimulus reversing with 2 Hz was found to evoke a particularly large P100. However, the P100
was shown to vary widely with presentation condition such asdynamics, contrast, pattern orien-
tation, spatial frequency and location [Sha00, Oka82, Ain03]. The P100 has been used to map
the location of the visual fields to locations in the primary cortex [Slo99]. The number of regions
activated is still not known. Recent studies give evidence that more than one region with possible
similar temporal morphologies but larger time shifts are activated [N̈aä79, DaS91].

2.3 Neuronal basis and mathematical modeling

The neuronal basis of MEG data is of utmost importance for thedesign of separation methods,
i.e. for the design of mathematical models.
On the one hand, a particularly advantageous physical property is the linearity of the mixing
process. The field maps depend linearly on the amplitude of a spatial stationary source. They can
be calculated using the quasi-static Maxwell equations [Sar87, Häm93].
On the other hand, any linear decomposition yields a set of results having certain features. Hence,
knowledge about the biogenesis of neuronal currents and resulting magnetic fields yield prior in-
formation that is needed for exploratory data analysis. Onemay choose a model where only field
maps with certain patterns are allowed, or one may choose a less restrictive model but interpret
the results on the basis of some known features. If nothing isknown about the genesis of the
data, every separation method yields some separation results but conclusions cannot be drawn.

2.3.1 Currents and fields

By law of superposition, magnetic fields that result from opposite currents can cancel. Most of
cell depolarization effects and resultant currents are of this kind and generate no external mag-
netic field [Zsc02]. In early days action potentials were believed to give rise to scalp potentials
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2 Evoked brain signals

Figure 2.5: Electrophysiology, generation of magnetic fields and SQUID recording unit. The pic-
tures show that currents can take both directions in the dendrites of long pyramidal
cells (a). The latter are numerously arranged in parallel (b) and oriented perpendic-
ular to the cerebral cortex (c). The pick-up coil registers the magnetic field which is
fed to the SQUID sensor for recording (d).

[Zsc02]. However, a single action potential cannot be registered on the scalp. Furthermore, ac-
tion potentials are wired in a chaotic fashion and, hence, canceling effects occur. From an MEG
recording it is known that field variations occur smoothly and the spiky nature of action poten-
tials therefore cannot be the generator of an MEG.
The main contributors to MEG are ionic currents in the dendrites of pyramidal cells [Zsc02].
This is possible due to a parallel arrangement of long pyramidal cells in the cortex. So called
excitatory postsynapic potentials (EPSP) and inhibitory postsynapic potentials (IPSP) lead to
depolarization or hyperpolarization of these cells, whichresults in intra and extracellular ionic
currents. The extra-cellular currents (volume conduction) are seen in EEG, the fields of intracel-
lular currents in MEG. For this, thousands of pyramidal cells have to be synchronously active.
Postsynapic potentials last for several ms and new studies have shown that a single pyramidal
cell can have up to 50000 synapses connected to it. Due to overlapping of many postsynapic
potentials a rich variety of smooth signals can be generatedsharing the variability of an MEG
recording [Zsc02].
In Fig. 2.5 the biogensis effects are summarized. Fig. 2.5 a)shows that positive and negative cur-
rents can be generated, either by different locations of synapses or by different kind of synapses
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2.3 Neuronal basis and mathematical modeling

(EPSP or IPSP). In b) the net flow in many pyramidal cells is shown to yield a net magnetic field
that leaves and enters the cortex again. In MEG, this field is picked up with an axial gradiometer
and measured with a SQUID sensor, as depicted in d) [Har05].

2.3.2 Linear instantaneous forward model

The forward model relates neural signal strength and magnetic field recorded by the MEG sen-
sors. Ḧamäläinen [Ḧam93] showed that the human brain and skull are transparent to magnetic
fields and that quasi static Maxwell equations apply. Hence,the forward model is linear and
instantaneous. Sarvas [Sar87] showed that in a spherical approximation, secondary volume cur-
rents do not contribute to the magnetic field. Sinestra [Sti98] further noted that the volume current
effect for MEG in more realistic shaped head models is very small. Haueisen [Hau02] noted that
anisotropic volume conduction has a minor influence on source localizations but might have a
major influence on source strength estimation.
Nevertheless, the most relevant primary current can be approximated using an equivalent current
dipole (ECD) with a momentQ at the positionr0. Using the isoconducting spherical head model,
Sarvas solved the quasi-static Maxwell equations and the magnetic fieldB at the positionr can
be expressed as [Sar87]

B(r) =
µ0

4πF 2
(FQ× r0 −Q× r0 · r∇F ), (2.1)

whereF = |r − r0|(|r||r − r0| + |r|
2 − (r · r0)). The model is nonlinear to the location and

the orientation of the dipole. For a spatially fixed dipole, Eq. 2.1 shows that the forward model is
instantaneous and linear in signal strength|Q|. No field is observable, if the dipole is orientated
radially;Q× r0 equals zero in the radial dipole setting.

2.3.3 Evoked versus phase-reset theory

There is a long standing debate regarding how evoked signalsare generated [Nie09, Bec08,
Mäk05, Kli06]. Basically, two theories are being discussed: the evoked model [Say74] and phase-
reset model [Mak02]. The idea behind the evoked mechanism isthat an event increases the signal
power at some location in the brain, in addition to the ongoing processes. Thus, each stimulus
activates neural populations in a time locked fashion. The phase-reset model refers to a view that
stimulation changes ongoing activity nonlinearly by adjusting its phase domain after stimulation.
ERFs seem to give evidence to the evoked mechanism. However, if the ongoing activity is not
phase locked before stimulation, the same ERF is explainableby the phase-reset mechanism.
Furthermore, there exist event-induced phenomena. The power of existent ongoing process was
observed to increase or decrease with stimulation [Ber29]. Closing eyes blocks the alpha wave
and generates beta waves, which is known as event-related (de-)synchronization [Pfu99]. Mod-
eling the ongoing and the evoked mechanism together has beendone recently in [Xu09].
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2.3.4 Assumed evoked signal model

In this work event-related brain activity is modeled in simulations following the evoked model.
Specifically, evoked MEG data is modeled in this work as a superposition of the magnetic fields
that result from neuronal source signals. With each neuronal source signal, a particular spatial
pattern of the magnetic field is associated. The single neuronal source signals and hence their
magnetic fields are subject to amplitude and latency variations over trials. The evoked signals
shape shall be modeled constant. Hence, MEG recorded dataXcte are assumed to follow the
model expressed as

Xcte =
∑

f

AcfSf (t+ Tef )Def , (2.2)

wherec, t, e, f denote channel, time instant, trial number and component number. The matrixA
(with elementsAcf ) encodes the spatial mapping from the neuronal source signals to the MEG
channel,T the latency shifts andD the amplitude shifts. Thef th neuronal signal form is denoted
by Sf (t). For notational convenienceStf = Sf (t) shall be used interchangeably. For instance,
AcfStf is the magnetic signal at thecth channel evoked by thef th neuronal source at timet after
stimulus presentation when no amplitude and latency variation is present.

2.4 Analysis methods

The analysis of evoked responses range from frequency analysis, Wiener filtering, time warping,
wavelet filtering, statistical testing and component analysis of the ERP time domain signals. A
good review on the univariate techniques to analyze and to enhance evoked signals can be found
in [Pic95]. In the following, some of the considerations detailed in that work shall be discussed.

Averaging

The most widely used method for an analysis of evoked activity is the averaging method [Daw54],
which uses a univariate model

xe(t) = s(t) + ne(t), (2.3)

wheres(t) is the evoked signal.
The signals(t) is assumed to be invariant overe = 1...E trials and the noisen(t) is assumed
white and additive.
The average overE trials is obtained via [Nie05]

x(t) =
1

E

∑

e

xe(t), (2.4)

while assuming Ee[xe(t)] = s(t).
Since the noise is assumed zero mean, i.e. Ee[ne(t)] = 0, and the signal is assumed deterministic,
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i.e. var(se(t)) = Ee[(se(t)− Ee[se(t)])
2] = 0 it follows from

var(x(t)) =
1

E
var(n(t)). (2.5)

that the SNR improves linearly with the number of trials.
However, it is known that evoked signals can vary in amplitude and latencies [Tru02]. Further-
more, noise sources can be correlated and non-stationary with a certain degree of phase locking.
Furthermore, Equation 2.3 is a univariate model; averagingdoes not use the multivariate nature
of MEG nor does it model effects if more than one source is being evoked. Consequently, in
reality, an improvement of SNR proportional toE is not achieved. Hence, averaging is a good
technique to gain an overview over new data, but has to be regarded critically. In general, impor-
tant single-trial details may be missed.

Localization

Localization aims at finding a physical location for associated activity. One method is to fit the
forward calculated field of an ECD to a series of recorded field distributions in a least squares
sense. Often the recordings are averaged over trials and, hence, only phase locked activity is lo-
calized. Furthermore, the averaged fields are hampered due to artifacts.
An alternative way is to use source separation as a preprocessing step prior to localization.
Demixing yields signal vectors, while taking into account possible non-orthogonal noise sources.
Furthermore each pattern is reduced to the number of dipolesthat must be taken into account
leading to a more plausible and faster result. As the inversesolution is non-unique, the result
is always sensitive to the prior knowledge. Source separation, if successfully applied, can give
clearer field maps, improving localization [Vig00, Tan02].Studies showed that some sources are
only detected and locatable when using ICA in a first step towards localization [Vig00, Tan02].
More detailed information on inverse methods can be found in[Bai01].

Independent component analysis

Decomposition makes use of the multivariate nature of the MEG recording. The aim is to find the
underlying source signals, in contrast to the processing ofsuperimposed single channel record-
ings. As the multi-channel recordings follow a linear instantaneous mixing process, a linear un-
mixing process has to be found.
Independent component analysis aims to recover univariatesignals that underly the multivariate
recordings. In the context of evoked signals, the aim is to obtain time dynamics and the asso-
ciated field maps. Indeed, having the separated signals, improves single-trial analysis and the
solution to the inverse problem. This makes ICA a vital tool for preprocessing in brain research
[Tan05, Vig00, Par03, Ont06, Vig09]. The source signals, however, must be stationary and inde-
pendent. The latter assumption will be under investigationin this work.
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3 Independent component analysis

Independent component analysis (ICA) aims at recovering univariate source signals from mul-
tivariate recordings. The recorded data is assumed to be a mixture of these sources. Neither the
source signal samples nor the mixing coefficients are known.This makes ICA an instance of the
blind source separation (BSS) family. ICA assumes that all sources are stationary and statistically
independent and that the recorded data is explainable by a linear mixing process. In the context
of MEG data, the model underlying ICA is bilinear1 - linear in the MEG recording modalities
space and time.

3.1 Bilinear mixing model

A statistical instantaneous bilinear model may be expressed as

x = As, (3.1)

where, in the context of ICA,A ∈ R
mxn is called the mixing matrix. The random vectors com-

prisesn source signals and the random vectorx comprises the recorded data fromm channels.
The mixing matrixA is assumed to be stationary, square and of full rank.

ICA numerically adjusts an unmixing matrixW such that the estimatesu are as independent as
possible. An estimated source signal is one component of therecorded data and is recovered by
left multiplication of the unmixing matrix with the data, given by

u = Wx. (3.2)

In the case thatu = s holds true, ICA yields a clear copy of the underlying source signals by only
using the mixture. Having MEG data ofT time instances, Eq. 3.1 and Eq. 3.2 may be expressed
in matrix notation as

X = AS, (3.3)

U = WX, (3.4)

whereX, S,U represent the matrices of recorded data, source signals andrecovered signals with
T columns, respectively.

1Nonlinear, convolutive and noisy ICA models exist. These are often needed in more complex applications. For
the MEG source separation task, the instantaneous linear model is used.
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3.2 Identification

In order to identify a model, i.e. to estimate its parameters, the solution has to be existent and
unique. In the case that ICA is based on the bilinear model, allparameters of the matricesS and
A in Eq. 3.3 have to be estimated.
Let A0 = AB andS0 = B−1S be some matrices that differ from the original source matrixS

and the original mixing matrixA, due to multiplication by a regular matrixB and its inverse
B−1. Let some recorded data following Eq. 3.3 be modeled byA0 andS0 yielding

X = A0S0 (3.5)

= ABB−1S, (3.6)

= AS, (3.7)

whereBB−1 equals the identity matrixI. Eq. 3.6 shows that infinitely many matricesB yield
infinitely many candidate matricesA0 andS0 that all explain the recorded data equally well. The
correct solutionAS is not the only explanation of the data. As a consequence, thebilinear model
is inherently not unique. In order to obtain uniqueness, constraints have to be imposed, i.e. the
number of degrees of freedom have to be reduced.
Eq. 3.6 shall be further evaluated. ChoosingB to be a regular permutation matrixP shows that a
row change in the source signal matrix that is compensated bya corresponding row change in the
mixing matrix destroys uniqueness. ChoosingB to be a diagonal matrixD shows that energy can
be assigned to either the mixing vector or to the associated source signal, which destroys unique-
ness. ChoosingB to be a signed identity matrix with different signs along itsdiagonal shows
that changing the sign for both mixing vector and associatedsource signal destroys uniqueness.
These indeterminacies, namely ordering, norm and sign, cannot be recovered without imposing
constraints on the order, energy or sign of the source signals.
The solution to a constrained bilinear model, which is unique up to the indeterminacies ordering,
norm and sign, shall be calledessentially unique. An objective function, acontrastin the BSS
context, that constrains some parameters of the bilinear model has to be imposed. The contrast
must constrain the bilinear model, such that the solution isessentially unique.

3.2.1 PCA

Principal component analysis (PCA) [Str80, Gol96] is a frequently used signal processing tech-
nique. It has various applications with dimension reduction being its most prominent.
PCA may be introduced based on the bilinear model as stated in Eq. 3.1, in order to demonstrate
its essential uniqueness. For this, PCA constrains the sources in the vectors to be uncorrelated
as well as the mixing vectors to be mutually orthogonal. Then, Eq. 3.1 becomes

x = Es, (3.8)

whereE is orthogonal. Hence, the unmixing matrixW has to be orthogonal asW = E−1 = ET .

The unmixing matrix is found utilizing the decorrelation constraintCs = E[ssT ]
!
= Λ, whereΛ
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is diagonal. It follows with

E[ssT ] = E[ETxxTE] = ETE[xxT ]E = ETCxE
!
= Λ, (3.9)

that the data covariance matrix needs to be diagonalized. Hence,E andΛ can be found via an
eigenvalue decomposition of the sample covariance matrix with CxE = EΛ, whereE is the
eigenvector matrix andΛ is the eigenvalue matrix [Str80, Gol96].
LetQ be any non-diagonal orthogonal matrix and letD be any diagonal matrix. It follows with

QTETCxEQ = QTETEΛETEQ = QTΛQ 6= D, (3.10)

thatE is essentially unique if all eigenvalues are distinct. However, if an eigenvalue appears re-
peated, the inequality in Eq. 3.10 turns into an equality, when deleting all columns and rows of
E, Q, Λ andD that correspond to the distinct eigenvalues inΛ, respectively. It follows that
PCA is not essentially unique for eigenvectors that belong tothe same eigenvalues [Hyv01a].
This has an impact on decomposition and preprocessing.

3.2.2 ICA

ICA is introduced based on the bilinear model as stated in Eq. 3.1, in order to demonstrate
its essential uniqueness. For this, ICA constrains the sources in the vectors to be statistically
independent. The mixing matrix is assumed square and regular. An ICA of the recorded datax
aims at estimated sourcesu = Wx that are as independent as possible. Comon proved that ICA
is essentially unique, ifs are pairwise mutually independent [Com94]. Furthermore, atmost one
source ofs is allowed to be Gaussian distributed. This is a direct consequence of the Darmois-
Skitovitch theorem [Dar53, Ski53], which may be expressed as [Com94]

Theorem 3.2.1. (Darmois-Skitovitch theorem)Let si be independent random variables with
i = 1, ..., N and define two random variables asx1 =

∑N
i=1 aisi andx2 =

∑N
i=1 bisi. Then ifx1

andx2 are independent, all random variablessj for whichajbj 6= 0 are Gaussian.

ICA’s independence constraint is more strict than PCA’s decorrelation constraint. However, of-
ten, statistical independence is physically plausible. Furthermore, ICA drops the restriction to
orthogonal mixing matrices; sources with non-orthogonal field maps can be separated by ICA.
Hence, although both PCA and ICA can be essentially unique, ICA may be regarded as superior
in the decomposition context.

3.3 Framework of independence maximization

The most crucial assumption of ICA is that the sources are statistically independent. Indepen-
dence is a stronger assumption than uncorrelatedness; independent sources must be uncorrelated,
whereas uncorrelated sources may not be independent.
ICA is the framework under which different methods try to optimize an independence cost func-
tion. Theoretical basis and considerations shall be given in the following.
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3.3.1 Definition of independence

Mutual statistical independence of two discrete random variablesU andV is defined by

P(U ∈ A, V ∈ B) = P(U ∈ A)P(V ∈ B), (3.11)

where A and B are any sets on two Cartesian coordinates and P denotes probability [Pap07]. For
continuous random variablesu andv, statistical independence is given if and only if the joint
distribution p(u, v) factorizes into the product of the marginal distributions,given by

p(u, v) = p(u)p(v). (3.12)

ICA of mixed random sources that are pairwise mutually independent is essentially unique
[Com94]. Hence, in the case that ICA recovers pairwise mutually independent estimates, these
are guaranteed to be the sources if the ICA assumptions are met.
Let g and h be some absolutely integrable functions, it follows for the independent variablesu
andv that

E[g(u)h(v)] =

∫

u

∫

v

g(u)h(v)p(u, v)dudv, (3.13)

=

∫

u

g(u)p(u)du
∫

v

h(v)p(v)dv, (3.14)

= E[g(u)]E[h(v)] (3.15)

holds true [Hyv01a]. From Eq. 3.15 important properties of independence can be observed. Eq.
3.15 holds true also for non-independent uncorrelated random variablesu andv, but if and only
if g and h are linear functions. It follows that independenceis a stronger constraint than uncorre-
latedness.
However, ifu andv are Gaussians, then uncorrelateness implies independenceof u andv. This
property does not hold true for distributions that differ from the Gaussian [Hyv01a]. Thus, after
a decorrelation of two Gaussians, independence cannot assure essential uniqueness. Hence, no
more than one Gaussian is allowed for ICA decomposition.

3.3.2 Whitening

ICA algorithms often iteratively adjust some cost function that is to be optimized over the pa-
rameter space. For large scale problems, this task is numerically challenging.
In the search of independent ICA sources, uncorrelateness ofthe sources is a necessary condi-
tion. By utilizing whiteningas preprocessing, the recorded data are decorrelated and normalized
to unit variance. The advantage is that the unmixing matrix is constrained to the manifold of
orthogonal unmixing matrices [Car99, Hyv01a]. An increase in stability as well as numerical
efficiency is obtained. Consequently, most ICA methods use whitening as a preprocessing step
towards the goal of independent estimates.
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Whitening is often performed by using the results from PCA. In particular, it follows from Eq.
3.9 that an eigenvalue decomposition of the data covariancematrix yield a matrix of eigenvectors
that decorrelates the data. For normalization, element wise inversion of square root eigenvalues
is used. The composite of the two matrices yields the whitening matrix

V = Λ−0.5ET . (3.16)

Applying Eq. 3.16 to the recorded data yields

xw = Vx = VAs = Os, (3.17)

wherexw denotes whitened data. It can be observed from

Cxw
= E[xwx

T
w] = VE[xxT ]VT (3.18)

= Λ−0.5ETEΛETEΛ−0.5 (3.19)

= Λ−0.5ΛΛ−0.5 (3.20)

= I, (3.21)

that the elements ofxw are decorrelated and normalized to unit variance, i.e. white.
To see that the composite of whitening times mixing matrixO = VA is orthogonal the condition
E[ss] = I shall be employed. Diagonality is given by assuming independence; identity is obtained
by rescaling. As a consequence, Eq. 3.18 may be rephrased as

E[xwx
T
w] = OE[ss]OT = OIOT !

= I. (3.22)

Hence, the composite matrixO = VA is orthogonal and so is the unmixing matrix2 Ww =
O−1. The search space is reduced and numerical efficiency, stability, important information and
theoretical results (cf. Sec. 3.3.4) can be gained.
Whitening is not essentially unique. From Eq. 3.18 and

QTCxw
Q = QTVE[xxT ]VTQ = QT IQ = I, (3.23)

it follows that any orthogonal transformation (or rotation) of the whitening matrix again yields
data that is white. PCA suffers from an orthogonal (or rotational) invariance. This can be ob-
served from the eigenvalue decomposition ofCxw

; all eigenvalues equal one and in line with
Sec. 3.2.1 it follows that the associated eigenvector matrix is not essentially uniquely defined.
Hence, ICA has to go beyond second order decorrelation in order to determine the remaining
unknown rotation. The parameters of an orthogonal unmixingmatrix are left to be estimated by
ICA.

2The subscript indicates that the ICA unmixing matrix can be constrained orthogonal due to whitening. For con-
venience, the subscript will be omitted when the context is clear.
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3 Independent component analysis

3.3.3 ICA via maximum likelihood

Maximum likelihood is a fundamental statistical techniquefor parameter estimation [Sch91]. It
enjoys many favorable estimation theoretical properties,including consistency and asymptoti-
cally efficiency. Hence, it shall be used here as the first approach towards ICA.
The rule of strictly monotone density transformation relates the joint density of the random
source vector to the joint density of the random data vector in Eq. 3.1 as [Pap07]

p(x) =
1

| det A|
p(s) = | detW|p(Wx), (3.24)

wheredet denotes the determinant.
Using the assumption of source independence and inserting the rows of the unmixing matrixwi

into Eq. 3.24 yields [Car98a]

p(x) = | detW|
N
∏

i=1

pi(wix), (3.25)

where pi are the marginal source densities. Consequently, the likelihood ofT data samples as
function of the parametersW is obtained as

L(W) =
T
∏

t=1

| detW|
N
∏

i=1

pi(wixt), (3.26)

and the log-likelihood follows as

log L(W) =
T
∑

t=1

N
∑

i=1

log pi(wixt) + T log | detW|. (3.27)

In order to perform maximum likelihood estimation, Eq. 3.27has to be maximized with respect
to its parameters. As the source densities are not parametrized, an infinite number of parameters
are to be estimated. Clearly, this is problematic, given a limited number of observation samples.
Cardoso demonstrated in [Car98a, Car03], that the exact sourcedistribution is not crucial as long
as the main characteristic of the underlying sources is respected. For now, let g be a nonlinear
function somehow close to gi = (log pi)

′, where prime denotes the derivative.
The gradient may be expressed as [Hyv01a]

1

T

∂ log L(W)

∂W
= [WT ]−1 + E[g(Wx)xT ], (3.28)

and a gradient based optimization given some step sizeα iteratively identifies the parameters of
the unmixing matrix, given by

Wnew = Wold + α
1

T

∂ log L(W)

∂W
‖W=Wold

. (3.29)

From this brief ML ICA derivation, aspects that underly ICA by statistical independence maxi-
mization shall be discussed.
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3.3 Framework of independence maximization

Eq. 3.24 has two factors, being the determinant of the unmixing matrix and the source joint dis-
tribution. The first accounts for a volume change due to the transformation of the source joint
distribution. The latter holds information on the source joint distribution. Direct optimization of
Eq. 3.24 puts a maximization pressure on the determinant term, which is maximal for an orthog-
onal unmixing matrix [Cho02]. Hence, an orthogonal mixing matrix is favored, which does not
represent that the mixing matrix can be any regular matrix [Car98a].
For prewhitened data, the determinant is one and Eq. 3.24 amounts to finding the source joint
distribution and the unmixing matrix. At this point, the rotational invariance becomes appar-
ent. Once the source joint distribution has been found, any rotation of this joint distribution can
be transformed to the data joint distribution equally via anorthogonal unmixing matrix, i.e. by
counteracting the rotation. Hence, there is no point of absolute maximum of Eq. 3.24 over the
parameter space but a line of equal solutions, representingnon-uniqueness in the case that no
constraint is imposed.
Eq. 3.25 ensures essential uniqueness and the pressure now is on the product of the marginal
source densities [Cho02]. However, these have to be estimated from a limited number of sam-
ples. Specifically, exact independence measure involves exact estimation of densities. This is
difficult and for ICA often more robust and more numerically efficient features of independence
are in use. In this ML ICA derivation, an a priori fixed nonlinearity was used. Indeed, from Eq.
3.28, it can be observed that ICA is related to nonlinear decorrelation. To find a suited nonlinear-
ity, hence, is an important aspect of ICA.
Eq. 3.29, finally, shows that the ICA parameters may have to be iteratively optimized. It is of
importance which technique is used. Gradient ascent is not the best optimization technique as it
is prone to slow convergence and inefficient use of information. More sophisticated techniques
will be discussed later, which are detailed in [Gil81].

3.3.4 Information theoretical aspects

It was argued in the last section that evaluating statistical dependence is difficult. Many re-
searchers have used information theoretical aspects to design and improve ICA objective func-
tions. Hence, important concepts shall be discussed briefly. They will build the basis for the
section on established ICA algorithms.
The informationor uncertaintyof an outcome of a discrete random variablex is defined as

H(xi) = log
1

P(xi)
= − logP(xi), (3.30)

where P andlog denote probability mass function and logarithm, respectively.
Originally introduced by Shannon [Sha48], entropy of a discrete random variablex equals the
expected value of uncertainty, given by

H(x) = E[− logP(xi)] = −
∑

i

P(xi) logP(xi). (3.31)
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3 Independent component analysis

The entropy of a continuous random variable is defined as

H(x) = −E[log p(x)] = −
∫

x

p(x) log p(x)dx, (3.32)

where p denotes the probability density function. Eq. 3.32 is sometimes called differential en-
tropy [Cov91]. Aslog p(x) is not defined for p(x) = 0, the integration extends only over the
support set, i.e. for p(x) 6= 0. The seemingly trivial extension of the entropy concept from
discrete-type to continuous-type random variables has limitations. Entropy given by Eq. 3.31
is always positive, whereas entropy defined as in Eq. 3.32 canbecome negative. As a conse-
quence, properties of discrete-type entropy can differ from properties of continuous-type en-
tropy. More details on the relation between discrete and continuous entropies can be found in
[Cov91, Pap07, K̈oh05].
The entropy concept can be generalized to more than one random variable [Cov91]. For two
random variablesx andy, joint differential entropy is given by

H(x, y) = −E[log p(x, y)] = −
∫

x

∫

y

p(x, y) log p(x, y)dxdy, (3.33)

while for a random vectorx the joint differential entropy is given by

H(x) = −E[log p(x)] = −
∫

x

p(x) log p(x)dx. (3.34)

Note that in ICA, the random vectorx has elements that are linear mixtures of random source
variables. An ICA adjusts the unmixing matrixW in order to minimize dependence of the esti-
mated random vectoru = Wx. For finding a suited objective function, here, dependency shall
be discussed in terms of entropy.

In particular, Eq. 3.34 is a measure of joint uncertainty. Joint uncertainty can be different from
marginal uncertainty as one element inx may already hold information about some other ele-
ment. However, one element cannot increase the uncertaintyof another element. Consequently,
the inequality

H(x) ≤
∑

i

H(xi) (3.35)

must hold true. Eq. 3.35 states that if knowledge about one element inx, sayxi, does not change
the uncertainty of another element, sayxj, the random variablesxi and xj are independent.
In turn, if knowledge ofxi does change the uncertainty ofxj (and vice versa), these random
variables are dependent. If uncertainty is not reduced by taking into account all elements of a
random vector instead of one by one, equality in Eq. 3.35 holds true and the elements of the
random vector are independent. If joint entropy is less thanthe sum of marginal entropies, some
elements are dependent, i.e. hold information about each other.
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3.3 Framework of independence maximization

Specifically, the information held by one random variablexi about anotherxj is termed as mutual
information (MI), which results in

I(x) =
∑

i

H(xi)− H(x). (3.36)

Together with Eq. 3.35, and the above reasoning, mutual information is the measure of uncer-
tainty reduction equaling the amount of statistical dependence of the random variables.
Inserting Eq. 3.34 into Eq. 3.36 yields

I(x) =
∫

x

p(x) log
p(x)

∏

i p(xi)
dx. (3.37)

This reformulation shows that mutual information is an instance of the more general Kullback-
Leibler information measure, which is defined as

D[p(x)||q(x)] =
∫

p(x) log
p(x)
q(x)

dx. (3.38)

The Kullback-Leibler distance quantifies differences between distributions; it is nonnegative, and
zero only for equal distributions. It follows with

I(x, y) = D[p(x, y)||p(x)p(y)] ≥ 0 (3.39)

that mutual information cannot become smaller than zero. Ifand only if I= 0, the random vari-
ables are independent; in this case the joint distribution is assured to factorize into its marginals.
However, optimization with mutual information as objective function is numerically difficult.
Joint and marginal densities have to be estimated using a finite data sample. Thus, mutual infor-
mation and related objective functions have to be elaborated further.
Evaluating Eq. 3.36 and 3.35 leads to important ICA concepts.Eq. 3.36 suggests that minimiz-
ing mutual information may be approached by minimizing marginal entropies or by maximizing
joint entropy. The latter approach is a direct consequence of Eq. 3.35. The former approach is
connected by the property of differential entropy of a Gaussian random variable. Assuming zero
mean and fix variance, the Gaussian distribution has maximalentropy among all distributions
[Cov91]. Furthermore, by the central limit theorem, a mixture of independent random variables
approaches a random variable with a Gaussian distribution as the number of mixed variables
grows [Pap07]. Hence, minimizing marginal entropies maximizes non-Gaussianity. In line with
the central limit theorem, the most non-Gaussian elements must be the least mixed.
Together wit Eq. 3.39 and the central limit theorem, minimization of marginal entropies assures
to lower dependence, i.e. to drive Eq. 3.36 to zero.
The numerical advantage is that only marginal distributions have to be considered. Although
the estimation of marginal distributions remains challenging, these results provide a first step
towards a more robust objective.
Differential entropy is not invariant to scaling of a randomvariable, i.e. it changes as

H(ax) = H(x) + log |a|. (3.40)
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3 Independent component analysis

Hence, the scale has to be fixeda priori in order to determine differential entropy.
A scale invariant measure of non-Gaussianity is negentropy[Hyv01a], defined as

J(x) = H(xG)− H(x), (3.41)

wherexG has the same variance asx, but it is defined to be Gaussian distributed. Due to the
maximum entropy property of a Gaussian, negentropy is always greater than zero and zero if and
only if the random vectorx is Gaussian distributed.
If the recorded data is prewhitened, Eq. 3.36 can be reformulated as [Hyv01a, K̈oh00]

I(xw) = J(xw)−
∑

i

J((xw)i). (3.42)

As negentropy is invariant to any linear transformation [Hyv01a], it follows that

−
∂

∂Ww

I(Wwxw) =
∂

∂Ww

∑

i

J((Wwxw)i). (3.43)

which proves that, in the case of prewhitened data, minimization of marginal entropies is equiv-
alent to minimization of mutual information.
This is an important finding, stating that the concept of non-Gaussianity is applicable for ICA.
In this context, the4th order cumulantkurtosiscan be used advantageously. Kurtosisκ(x) is a
higher order statistic of a random variable, which is zero for a Gaussian distributed signal; it
is negative for sub-Gaussian (less peaky) distributed variables and positive for super-Gaussian
(more peaky) distributed variables [Hyv01a]. Given a zero-mean variable, kurtosisκ(x) is cal-
culated as

κ(x) = E[x4] − 3E[x2]2. (3.44)

The relation of maximal non-Gaussianity and minimal mutualinformation, together with making
use of kurtosis, yields the first practical approach towardsICA without an estimation of full
underlying source distributions. However, kurtosis is known to be corrupted by outliers [Hyv01a]
and may not be fully robust for ICA in practice. In the next section, established ICA methods are
presented; most of them draw directly on mutual informationand its properties. In particular, this
section provides the basis for more efficient and more robustICA methods that will be presented
subsequently.

3.3.5 Quality measure

A normalized version of Amari’s performance index [Ama96] quantifies the unmixing errorerr,
which may be expressed as

err(G) =
1

2m(m− 1)

[

∑

j

(

∑

i

|gij|

maxk |gkj|
− 1

)

+
∑

i

(

∑

j

|gij|

maxk |gik|
− 1

)]

, (3.45)
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Figure 3.1: The unmixing error err will be used throughout this thesis as a measure of separa-
tion success. The unmixing error is a variant of Amari’s performance index, which
measures the deviation from a permuted identity matrix. It ranges between zero and
one and is zero only if unmixing is perfect. In the figure, random 2 × 2 dimensional
mixing matricesA and unmixing matricesW were generated. For each draw, each
parameter of each matrix was a sample of a uniform distribution in [-1,1]. Hence, the
figure provides statistics of the unmixing error err in the case of random unmixing.

where them × m matrix G = WA is the product of the estimated unmixing matrixW with
the a priori known mixing matrixA. The unmixing error err is always between 0 and 1 and
equal to 0 if and only ifG = PD, whereP is a permutation matrix andD is a diagonal matrix.
Hence, at this point, unmixing is perfect up to the indeterminacies permutation, sign and norm.
For prewhitened dataG equalsWwVA, whereV is the whitening matrix andWw is the unmix-
ing matrix recovered from whitened data.

3.4 Established methods

3.4.1 FastICA

FastICA aims at minimal dependence among the componentsu of the data vectorx by mini-
mizing the marginal entropy of each component. In Section 3.3.4, minimizing marginal entropy
was shown to be one approach towards minimizing mutual information. When the components
are constrained to have zero mean and fixed variance, minimization of marginal entropy can be
obtained by maximization of non-Gaussianty of each component.
Negentropy was introduced in Eq. 3.41 and shown to be a scale invariant measure for non-
Gaussianity. Using prewhitening, due to Eq. 3.41 to 3.43, maximization of negentropy was shown
to drive the components towards independence. Negentropy can be approximated by a truncated
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3 Independent component analysis

Gram-Charlier expansion [Com94] as

J(x) ≈
1

12
E[x3]2 +

1

48
κ(x)2. (3.46)

For symmetrically distributed signals, the first term vanishes. Thus, the maximum of Eq. 3.46 is
found by maximizing the absolute value of kurtosisκ(x).
Given whitened data3, the gradient of kurtosis may be expressed as

∂

∂w
|κ(wTx)| ∝ sign(κ(wTx))(E[x(wTx)3]). (3.47)

Simple gradient ascent is obtained via

wnew = wold + µ
∂

∂w
|κ(wTx)|w=wold

. (3.48)

The norm of the unmixing vectors can be set to unity after eachstep aswnew = wnew/||wnew||
[Hyv01a]. This normalization technique is often used in ICA methods, as the scale remains unde-
termined by ICA. It is the direction of the unmixing vectorwi only, that unmixes the component.
The kurtosis objective function grows fast due to the4th power in Eq. 3.44. Thus, optimization of
the absolute kurtosis value is not robust against outliers.Indeed, outliers can strongly dominate
the estimated value of kurtosis, which can destroy separation [Hyv01a].
Negentropy is based on the maximum entropy property of a Gaussian. The key property for a
maximum entropy objective function is being nonnegative and zero if and only if the component
is Gaussian distributed. Hence, Eq. 3.46 representsoneapproximation and may be generalized
to a family of approximations, given by [Hyv01a]

J(x) ≈ (E[G(x)]− E[G(xGauss)])
2, (3.49)

where G is some nonlinearity that is non-quadratic. Then, Eq. 3.49 represents a general measure
of non-Guassianity, being nonnegative and zero if and only if x is a Gaussian.
In particular, a more robust measure of non-Guassianity than kurtosis is obtained, whenG grows
less fast than to the4th power. Hyv̈arinen tested various nonlinearities, among which the nonlin-
earity

G(x) =
1

a
log cosh ax, (3.50)

where1 ≤ a ≤ 2, proved more suitable than kurtosis in many practical cases[Hyv97].
Hyvärinen proposed to optimize Eq. 3.49 by a fixed point algorithm rather than by plain gradient-
based optimization, for the sake of numerical robustness and efficiency. He showed that the
convergence improved significantly. The corresponding update rule is given by [Hyv97]

wnew = E[xG’(wT
oldx)]− E[G”(wT

oldx)]wold, (3.51)

3In this section, all data vectors are assumed white. The whitening indexw will be ommited in this section for
notational convenience.
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3.4 Established methods

Figure 3.2: Infomax transforms the ICA componentsu by using nonlinearities. Maximal joint
entropy of the transformed componentsy assures that its elements are independent
and distributed uniformly. The picture is taken from [Köh05].

where G′ denotes the first derivative of Eq. 3.50, given by

G′(x) = tanh ax (3.52)

and G′′ denotes the second derivative of Eq. 3.50, given by

G′′(x) = a(1− tanh2 ax). (3.53)

Again, normalization of the ummixing vectors is imposed after each iteration step.
In summary, a modified version of negentropy ensures to maximize non-Gaussianity, while
choosing some other nonlinearity than kurtosis yields a more robust negentropy measure. Go-
ing beyond simple gradient-based optimization yields moreefficiency and higher convergence
rates. Maximization of non-Gaussianity, in turn, minimizes marginal entropy and dependence
of the estimated ICA components. The result is a robust and fast ICA algorithm, referred to as
FastICA.

3.4.2 Infomax

Infomax approaches independence by maximization of joint entropy. However, even though joint
entropy is always smaller than the sum of the marginal entropies (Eq. 3.35), maximization of joint
entropy does also put a maximization pressure on the marginal entropies, which results from Eq.
3.36. Furthermore, the components are zero mean and unit variance and hence, maximal marginal
entropy is obtained when the components are maximally mixed! This is a direct consequence of
the central limit theorem and the maximal entropy property of a Gaussian.
However, applying nonlinear transformation units

y = g(wTx) = g(u), (3.54)
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3 Independent component analysis

to each estimated component makes the maximum joint entropyconcept applicable. The trans-
formation stage is depicted in Fig. 3.2. To see the validity,let a nonlinearity of the type

g : R→ (0; 1), strictly monotonous (3.55)

bound the amplitudes of the transformed signaly. In this case, marginal entropies become max-
imal if each transformed component is uniformly distributed. With the rule of density transfor-
mations [Pap07], marginal entropy is given by

H(y) = −E[log p(y)], (3.56)

= −E

[

log
p(u)
∂y/∂u

]

, (3.57)

= −E

[

log
p(u)
g′(u)

]

, (3.58)

= −D[g′(u)||p(u)] ≤ 0. (3.59)

Due to the Kullback Leibler distance in the last identity, marginal entropyH(y) becomes maxi-
mal if the derivativeg′ equals the distribution p(u). As g is obtained by integration of the deriva-
tive g′, the nonlinearityg must be the cumulative distribution function of the component u. In-
deed, transformation of a random variable by its own cumulative distribution function yields a
uniformly distributed random variable [Pap07]. Hence, maximization of the joint entropy

H(y) =
∑

i

H(gi(ui))− I(y) (3.60)

under the constraintg′ = p(u) leads inherently to maximal marginal entropies. Further maxi-
mization is only obtainable by reducing the dependence between the components driving these
to independence. Hence, maximization of joint entropy of the transformed vectory yields inde-
pendence of the estimated components.
For numerical implementation, let

y = (y1(u1), ..., yN (uN)) = (g1(w
T
1 x), ..., gN(w

T
Nx)). (3.61)

Substituting Eq. 3.61 into Eq. 3.60 yields

H(y) = −E[log p(y)], (3.62)

= −E

[

log
p(x)

| det ∂y/∂x|

]

(3.63)

= H(x) +
∑

i

E[log g′
i(w

T
i x)] + log | detW|, (3.64)
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3.4 Established methods

which is equal to the expression stated in Eq. 3.27. As a result, Infomax and maximum likelihood
are equivalent methods. Both have to estimate the source densities from a finite sample size.
Infomax uses a fixed source density, the logistic nonlinearity

y = g(u) =
1

1 + e−u
. (3.65)

Together with Eq. 3.65, the Infomax update rule may be expressed as [Bel95]

Wnew = Wold + α(W−T
old +

∂

∂W

∑

i

E[log g′
i(w

T
i x)]), (3.66)

= Wold + α(W−T
old + (1− 2y)xT ). (3.67)

Utilizing the natural gradient [Ama98] by right multiplying Eq. 3.67 withWTW, the speed of
convergence can be significantly improved in contrast to standard gradient techniques.

3.4.3 JADE

JADE generalizes the idea of FastICA by evaluating fourth-order crosscumulants as well as the
autocumulant kurtosis. Specifically, JADE aims at diagonalizing a four-way tensor holding all
fourth order cumulant statistics. This approach is valid, as crosscumulants of independent signals
are zero [Nik93].
A fourth-order cumulant tensor may be represented byN × N -dimensional cumulant slices
[Car93], defined as

nij =
N
∑

k,l=1

cum(xi, xj , xk, xl)mkl, (3.68)

where the matrixM with elementsmkl has a single non-zero element equal to one. There are
N2 different matrices M and hence a set ofN2 cumulant slicesN exist. Using prewhitened data
constrains the matrixO = VA to be unitary. Using the cumulative as well as the multi-linearity
property of cumulants [Nik93], Eq. 3.68 may be expressed as

nij =
N
∑

f=1

N
∑

k,l=1

oifojfokfolfcum(sf , sf , sf , sf )mkl, (3.69)

where cum(sf , sf , sf , sf ) equals kurtosis of thef th signal. In matrix notation, Eq. 3.69 becomes
[Car93]

N =
N
∑

f=1

κ(sf )(o
T
f Mof )ofo

T
f =

N
∑

f=1

λfofo
T
f . (3.70)

Eq. 3.70 represents an eigenvalue problem andO can be found via an EVD ofN. A more robust
estimate ofO is obtained when jointly diagonalizing the whole set ofN2 cumulant matrices by
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3 Independent component analysis

joint Jacobi transformation [Car96b].
Furthermore, Cardoso showed that for the set of matricesM, N matrices can fully exhaust the
fourth order information. Specifically, expressing Eq. 3.68 asN(M) = λM yieldsN matrices in
Mwith Eigenvalues greater than zero [Car93]. Joint approximate diagonalization of a reduced set
of only significant cumulant matrices amounts to a robust andefficient ICA method. Robustness
is obtained at the price of evaluating a high number of fourth-order cumulant statistics. Numerical
efficiency is obtained by matrix algebra-based simplifications.

3.4.4 SOBI

Second order blind identification (SOBI) [Bel97] as well as time domain separation (TDSEP)
[Zie98] use time delayed second order statistics. If the underlying sources are random variables
without temporal structure, all second order information is exhausted by prewhitening. As a
consequence, separation is not possible based on second order statistics. However, if the sources
have spectral color, then further second order informationcan be used. If two components are
decorrelated for all time shiftsτ , which may be expressed as

E[si(t)sj(t+ τ)] = 0, (3.71)

blind source separation based on second order statistics ispossible.
Different time lags of the recorded signals yield differentcovariance matrices. Using prewhitened
data, these covariance matrices are calculated as

Ri = E[x(t)xT (t+ τi)] = OE[s(t)sT (t+ τi)]O
T = OΛiO

T . (3.72)

Based on two covariance matrices from two time lagsτi andτj, the solution to the generalized
eigenvalue problem [Mol94]

OT (R−1
j Ri) = (Λ−1

j Λi)O
T (3.73)

yields the whitening mixing composite matrixO = VA and gives the unmixing matrixW =
OT . Joint Jacobi diagonalization [Car96b] of a set of time lagged covariance matrices given by
Eq. 3.72 yields more robust estimates.
The advantage of SOBI is that also (colored) Gaussian sourcescan be separated. The disadvan-
tage is that source signals need to have different spectral profiles. This can be seen from Eq. 3.72.
If the autocorrelation of theith signal at lagτ is equal to the autocorrelation of thejth signal at
lagτ than the eigenvalues are equal. Hence, the eigenvectors arenot essentially uniquely defined
and these signals are not separable at this time lag. When the spectra are equal then no time
lag can be found that makes the autocorrelation distinct. Hence, for similar spectra, SOBI loses
performance. Likewise, for overlapping spectra the right choice of a set ofτi becomes difficult
[Hyv01a].
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4 On ICA for evoked dependent source
signals

The motivation for using ICA for the task of source separationis its elegance. ICA does not
assume knowledge of the physical system but blindly infers information about both the mixing
process and the sources. Often, independence is a natural property of these sources and linear
mixing can be assumed or more sophisticated models, such as the convolutive, are used.
Nevertheless, real world signals are often not perfectly independent. If they are, any finite sample
realization gives rise to estimation errors. Indeed, many researchers have stressed that ICA yield
components that areas independent as possible. This is true in the sense that an ICA method
always favors the objective it is designed for, i.e. to maximize independence of the recorded
components. However, using the bilinear model, linear combination of the data will always yield
some local maximum of an independence objective function, even in the case when the signals
are dependent!
The question to ask is whether the optimization criterion allows the assessment of the indepen-
dence assumptions of the sources. Clearly, in the end, relevant is how closethe estimates are
from the truth and nothow independentthe estimates are after an ICA.
In this chapter, answers in the context of evoked MEG sourcesare given. For this, aspects based
on theory as well as virtual and actual data assessment will be presented.

4.1 Statistical dependence

4.1.1 Theory

Statistical independence of random sources equals zero Kullback-Leibler distance between the
joint distribution of random variables and the product of corresponding marginal distributions.
This distance was termed as mutual information, in Sec. 3.3.4, Eq. 3.37. In order to discuss
statistical dependence in detail, Eq. 3.37 shall be repeated for two discrete random variables1,
given by

I(x, y) =
∑

i

∑

j

P(xi, yj) log

(

P(xi, yj)

P(xi)P(yj)

)

. (4.1)

1 Note that real world signals are usually not represented by fine alphabet. However, sampled data signals always
are. Hence, the discussion of mutual information in terms ofEq. 4.1 is closely related to the mechanism of ICA
in practice.
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s1

s2
MI 0.003 0.068 0.085 0.124 0.241 0.589

Figure 4.1: Mutual information of six joint distributions ranges from0.003 to 0.589, i.e. the de-
picted signal pairs have no, little and strong dependencies. These were generated by
adjusting the original joint of the two signalss1 ands2 with uniform marginal distri-
butions, via rotation and erosion.

A thought experiment shall support deeper understanding ofEq. 4.1. Letx andy be two discrete
random sources having finite alphabet, each. The two random variables are independent if and
only if P(xi, yj) and P(xi) · P(yj) are equal for every combination of indicesi andj in Eq. 4.1.
For a more detailed discussion, letx andy be binary, i.e.x, y ∈ {0, 1}. Now, infinitively many
samples of the binary random variablesx andy shall be drawn, in tuples. Each variable can
take on only two different values,0 or 1, whereas four different tuples(x, y) mayoccur, namely
(0, 0), (0, 1), (1, 0) or (1, 1). If they all occur uniformly distributed, then P(xi, xj) equals 0.25 for
all combinations of indicesi andj, whereas P(xi) and P(xj) equal0.5 for i = 1, 2 andj = 1, 2.
Hence, for all combinations of indicesi andj, P(xi, yj) equals P(xi) · P(yj). Thus, the two ran-
dom variables are independent and, consequently, the logarithm in Eq. 4.1 is always zero. That
is, knowing the value of one source does not give informationabout the value of the other source
and the mutual information is zero.
In contrast, if knowledge ofx implies the value ofy, i.e. the entropy ofy is reduced to zero when
x is known, then only the tuples(0, 1), (1, 0) or the tuples(0, 0), (1, 1) occur. It follows that no
combination ofi andj result in P(xi, yj) = P(xi) · P(yj) and highest dependence is obtained.
Note that the occurrence of just one single tuple, say(1, 1) does not result in an even higher de-
pendence. In this case, the corresponding sources are no longer random and entropies and mutual
information are zero.
An intermediate dependence level is achievable, when next to two tuples, say(0, 1), (1, 0), also
one of the remaining tuples, i.e.(1, 1) or (0, 0), occurs. For the latter, it is known thaty must be
zero whenx is one, but nothing is known about the value ofy in the case thatx is zero. Evaluating
Eq. 4.1 for these scenarios, assuming uniform distributions, mutual information equals0 for the
independent scenario,0, 69 for the dependent scenario and0, 29 for the intermediate dependent
scenario.
From these elaborations, it can be concluded that if certainsample tuples have different prob-
ability than their marginal distributions would suggest, then these signals are dependent. If the
knowledge of one value from one source make certain values ofthe other source more probable,
then dependencies occur. The degree of dependence can be measured by mutual information,
given by Eq. 4.1.
Dependence can also be analyzed visually regarding the joint distribution of point tuples of two
signals. Fig. 4.1 depicts six joint distributions, each belonging to two discrete random sources.
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s1

s2
MI 0.003 0.003 0.003 0.019 0.062 0.167

Figure 4.2: Each signal pair of Fig. 4.1 is directly fed to ICA without any mixing. Here, the
outcomes are depicted, respectively. The resulting joint distributions suggests that all
but the first has been changed by ICA. Indeed, dependencies arereduced. However,
the last 3 joint distributions still show considerable amount of dependencies, that may
not be reduced by any linear transformation.

The first graph in Fig. 4.1 depicts the joint distribution of two independent signalss1 ands2 with
uniform marginal distributions. Indeed, regarding a fixed value ofs1 does not say anything about
the value ofs2. Hence, every sample tuple can occur with the same probability being the product
of the marginal distributions.
The third graph in Fig. 4.1 depicts a joint distribution thatis a45 degree rotated version of the
first. Here not every sample tuple can occur. The max ofs1 forcess2 always to be zero. Hence,
knowledge ofs1 reduces the entropy ofs2. The entropy can be reduced further by reducing the
number of tuples that can occur. Taking points from the jointdistribution by cutting a square with
increasing edge length, yields more and more dependent signals. The mutual information value is
given below each joint distribution depicted in Fig. 4.1. Specifically, mutual information ranges
from 0.003 to 0.589 and, thus, six signal pairs with almost no, little and strongdependencies are
generated by adjusting the original joint distribution of the two signalss1 ands2 with uniform
marginal distributions, accordingly.

4.1.2 Why study ICA in such a context?

ICA is based on the concept of minimizing statistical dependence. If the signals to be separated
are known or conjectured to be dependent, why should ICA be used? Why study ICA in such a
context?
Indeed, dependence tailored algorithms may appear to be more appropriate. However, there is
only one independent joint distribution and unlimited dependent joint distributions of two or
more sources. This makes the choice of a tailored dependencya difficult one.
Furthermore, connectivity [Nol04] must not be confused with statistical independence. Two sig-
nals that are shifted copies have high connectivity; their cross-correlation at the shift lag is high.
However, if no temporal overlap exists, mutual informationis low! Consequently, two evoked
signals may be independent, although being connected to stimulation. Hence, it is of utmost im-
portance to investigate the existence and the influence of dependencies on the performance of
ICA in order to correctly design and interpret experiments for evoked brain research.
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4 On ICA for evoked dependent source signals

4.1.3 Can ICA separate dependent source signals?

Can ICA separate dependent signals? This question seems trivial. If ICA assumes independence
but the underlying signals are dependent, ICA does not seem tobe suitable. Nevertheless, some
general ideas on how ICA act on dependent sources shall be considered here.
Let the six signal pairs that are depicted in Fig. 4.1 and Fig.4.2 be the material for another
experiment. These signal pairs in Fig. 4.1 have almost no, little and up to high dependencies.
Each signal pair shall now directly be fed to ICA without any mixing. Fig. 4.2 shows the joint
distributions of the ICA estimates. These suggest that all but the first joint distribution has been
changed by ICA. Comparing the mutual information of the joint distributions depicted in Fig. 4.1
and depicted in Fig. 4.2, shows that ICA has been successful inreducing dependencies. The three
latter joint distributions still have dependencies and these components are only ’as independent
as possible’.
However, successful is the right term only if the task is to reduce dependency. In the described
experiment, ICA was applied to sources that have not been mixed. Instead, all the signal pairs (but
the first) weremixedin order to achieve a dependency reduction under a linear transformation.
If ICA was successful in separation, the joint distributionswould not have been changed, the
mutual information should have stayed the same. That is, theidentity unmixing matrix should
have been the ICA solution in all cases. Hence, for all of the sources depicted in Fig. 4.1 but the
first, ICA fails in separation.
On the other hand, applying ICA to sources with joint distribution exemplified in Fig. 4.2, i.e.
the joint distributions belonging to the estimates of the last experiment, will yield the identity
unmixing matrix in every case. However, the latter three joint distributions in Fig. 4.2 show
considerable dependency levels. Yet, ICA is successful alsofor these dependent signals. This is
obvious, considering that the sources are estimates of ICA; no more dependencies can be reduced
using ICA again. The joint distributions remain the same and ICA succeeds in separation - even
for dependent sources.
Fig. 4.3 summarizes these important findings in two plots. Onthe x-axis the dependency level
is given. On the y-axis the degree of mixing is given. The angle θ adjusts a rotational mixing
matrix from 0 to 45 degree. The unmixing error along the z-axis is the Amari performance index
(refer to Sec. 3.3.5, Eq. 3.45). Zero equals no error and one equals maximal error in unmixing
the source with corresponding joint distributions and corresponding degree of mixing.
In the left graph, utilized joints are similar to the latter 4joints of Fig. 4.2. In the right graph,
utilized joints are similar to the latter 4 joints of Fig. 4.1. Both start with little dependence and
end at a high level. Note, however, that in the left graph, ICA does not act on the joints. In
contrast, in the right plot, ICA act on these joints - even before mixing the corresponding signals.
Specifically, Fig. 4.3 makes explicit the findings of Fig. 4.1and Fig. 4.2. The right graph in Fig.
4.3 suggests that ICA cannot unmix the signals whatever the degree of mixing and whatever joint
distributions underlie. ICA fails completely.
However, the left graph in Fig. 4.3 shows that ICA always succeeds for all degrees of mixing and
all the joints underlying. Notably, even for joints with corresponding signals that are dependent. It
follows from this experiment that ICAcanseparate dependent signals, if the original sources, i.e.
the sources before being mixed, are dependent but cannot be made more independent by ICA.
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Figure 4.3: The two graphs depict two different classes of joint distributions. On the x-axis their
dependency levels are given, respectively. On the y-axis the degree of mixing is given
by adjusting a rotational mixing matrix from 0 to 45 degree.
The result is that ICAcan separate dependent signals if these cannot be made less
dependent by an ICA before mixing. Indeed, the source signalsin the left graph have
up to 0.2 dependency level but the unmixing error is zero for all mixing scenarios.
Notably for no mixing, the joints cannot be reduced in dependency. Hence, ICA re-
duces only dependencies imposed by linear mixing and succeeds in all cases. In the
right graph, ICA is observed to fail in separation even for joints with little dependen-
cies. Notably for no mixing, dependency of all joints is reduced as the unmixing error
is one. Hence, ICA reduces dependencies of the original sources and it follows that
ICA fails for all mixing scenarios.

It is the bilinear model that restricts ICA from removing moredependencies. Specifically, if
dependent signals cannot be made more independent by linearcombinations, then linear mixing
will introduce dependencies. These can be reduced by linearunmixing. Thus, dependent signals
of this classcanbe recovered by ICA!
For sensory stimulation MEG data the question arises, if dependent signals exist that can be
made less dependent by linear combinations before being mixed. If this is not the case, ICA will
succeed even in the case of dependent sources.
Consequently, the nature of evoked dependent signals has to be assessed and the performance
of ICA has to be considered carefully. In the next chapter, a virtual and an actual MEG data
experiment shall be designed and extensively tested, in order to assess the performance of ICA
for evoked signals.

4.1.4 The whitening step

ICA is often processed via a two step procedure. The first step is said to do ’half the job’, as it
cancels all dependencies based on the second order moment. Whitening has several advantages.
First, it comes along with assuming independence that the variables must be decorrelated. Sec-
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4 On ICA for evoked dependent source signals

ond, the search of the unmixing matrix reduces to the search of orthogonal matrices. Hence, the
number of degrees of freedom are reduced and algorithms become faster and more stable.
All established methods that are used in this work use whitening. Hence, whitening in the context
of dependencies shall be discussed in the following.
For convenience, let me restate some equations given earlier. Specifically, whitening yielded the
equation

xw = Vx = VAs = Os, (4.2)

whereV is the whitening matrix.

As whitening implies the correlation matrix to be the identity matrix, i.e. E[xwx
T
w]

!
= I,

it follows with

E[xwx
T
w] = OE[ssT ]OT , (4.3)

= OCsO
T , (4.4)

that

Cs = I⇒ OOT = I, (4.5)

must hold true andO is proven to be orthogonal.
However, this holds true only if the signals are independent. Otherwise Eq. 4.4 and Eq. 4.5
become

OCsO
T = I⇒ (OTO)−1 = Cs, (4.6)

whereCs is no longer the identity matrix, but can be a full regular matrix. HenceO = VA is no
longer proven to be orthogonal but can be any regular matrix.Consequently, assumingO to be
orthogonal, hence, introduces errors in recovering the mixing matrixA, when the source signals
are dependent.
However, note that in practical ICA tasks with independent signals, assuming zero cross-correlation
Cs = I is violated to some extent. The performance loss due to whitening only will not be inves-
tigated further in this thesis. Instead, the whole performance loss of ICA - including the effects
of whitening - will be in focus.

4.2 Virtual MEG data experiments

In the theory section 4.1.1, it was demonstrated that ICA musthave degraded performance, due
to a mistake in assuming that the signals have zero cross-correlation, and due to a mistake in
assuming that the signals cannot be further reduced in theirmutual dependence under linear
transformation. The theory section also gave examples of dependent signals that ICA can sepa-
rate.
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Figure 4.4: Synthetic MEG data. (a) 2 epochs of weakly dependent source signals are generated
by using the SSEJR model with a high jitter value. Lowering the jitter, all epochs
will eventually have responses as depicted in the first epochleading to two inde-
pendent signal subspaces (2D and 3D) with highly dependent source signals. The
last row depicts one representative AR noise process. (b) Associated field maps. (c)
Sphere model of human head with source (black) and noise (gray) dipoles. Sensor
coordinates (diamonds) correspond to PTB 93-channel MEG. (d) 2 typical sensor
observations exemplify the generated MEG data.

This section shall discuss ICA in the context of MEG sensory stimulation experiments. A virtual
experiment with close to reality signals that cover a wide range of variability shall investigate
the influence of dependence in this context. Subsequently, actual MEG data experiments will
be considered in order to assess the performance of ICA in the actual domain when the evoked
signals are tailored to be dependent.

4.2.1 The SSEJR model

In order to evaluate the performance of ICA for dependent evoked signals, it is most conve-
nient to have a single parameter that controls the degree of dependence. The ’Synthetic Stimulus
Evoked Jittered Response’ (SSEJR) model [Koh09] was established for generating synthetic
dependent evoked signals. The core functionality of this model is a simple mechanism that grad-
ually changes the degree of dependency, while subspaces remain mutually independent. Against
a sweep through values of the dependence parameter, the reliability of algorithms using indepen-
dence (ICA), relaxed independence or no independence assumptions may be evaluated.

4.2.2 Generation of dependence

The generation process is conveniently described for two signals. Let two time signals consist
of 100 trials each. Each epoch starts with an assumed stimulus followed by a time response,
one for each source, that has a source specific form and latency. The response time duration is
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Figure 4.5: Hinton diagrams with estimates of mutual information between 5 SSEJR source sig-
nals at different jitter levels. The 2D+3D subspace settingis clearly visible. The signal
dependencies decrease with increasing jitter. At 200 ms jitter all source signals can
be assumed independent.

about 200 ms. A random stimulus is modeled by randomly drawing the epoch length between
800 ms to 1200 ms, such that the average epoch length is 1000 ms. As an example, one source
may have a Gaussian shaped response with 300 ms latency whilethe other source may have a
time differentiated Gaussian shaped response with 290 ms latency. This setting is depicted in the
first epoch of Fig. 4.4 a). When all epochs are equal to epoch 1, the resulting signals in the 2D
subspace are highly dependent. In order to lower the dependencies, the source specific latencies
are changed in each epoch by two normally distributed randomnumbers with zero mean and
standard deviationσ, which leads to a jitter in the latencies. In the following,σ is referred to
as the jitter parameter. It is the key parameter of the model to gradually control the degree of
dependence. The greater the jitter, the lower the dependency between the signals and vice versa.
This model was named the Synthetic Stimulus Evoked JitteredResponse (SSEJR) model. Any
subspace of any size may be modeled likewise. Subspaces are made mutually independent by
choosing all source specific latencies such that signals from different subspaces do not overlap
in time. In this section, a setting uses 5 signals in 2D and 3D subspaces are used and depicted in
Fig. 4.4. The dependence of a set of SSEJR generated signalssi, i = 1, ..., 5, will be evaluated in
terms of their normalized pairwise mutual information, which may be expressed as

In(si, sj) =
I(si, sj)

√

H(si)H(sj)
, (4.7)

whereH(si) is the entropy ofsi. Mutual information and entropy were calculated based on
discrete bin-wise evaluated marginal and joint distributions [Kra04]. Note that the marginal dis-
tributionsp(si) andp(sj) of any pair of signals within a subspace remain unchanged with varied
jitter. The joint distributionp(si, sj) approaches the product of the marginal distributions while
increasing the jitter as more sample combinations occur. Hence the mutual information decreases
with increasing jitter. Fig. 4.5 shows the normalized pairwise mutual information between 5 sim-
ulated SSEJR source signals for different jitter values. Particularly, the Hinton diagrams show a
block diagonal structure with small off-blockdiagonal elements indicating almost mutually in-
dependent subspaces. Elements associated with source signals within each subspace decrease
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Figure 4.6: 10 examples of randomly generated evoked responses using a mixture of 3 bell
shaped time signals. Notably, a large variety of simulated evoked signals can be gen-
erated at random allowing to test a whole class of various smooth evoked signal forms
against separation performance of the method under test.

gradually with increasing jitter, which confirms the expected behavior of the SSEJR model.

4.2.3 Signal generation

Fixed signal forms as shown in Fig. 4.4a may not be general enough. As a matter of fact, the use
of different signal forms influences the performance of methods under test. Ideally, one would
like to consider all signal forms that can occur. The time domain signals are generated as follows.
In thee-th iteration, for a fixed jitter level, thef -th source signal shape is given by

sef (t) =
3
∑

k=1

ak exp(−
(t−mk)

2

s2k
), (4.8)

wheret is the time index with a support of 200 ms, andak, mk andsk are uniformly distributed
random numbers with−1 < ak < 1,−50 < mk < 50 and5 < sk < 50, respectively. Using Eq.
4.8, a large variety of simulated evoked signal shapes can begenerated at random. A draw of 10
responses is depicted in Fig. 4.6.

4.2.4 Setup and data assessment

A homogeneous conducting sphere model is taken for an approximation of the human head
and the neuronal currents in the brain are modeled by equivalent current dipoles (ECD) [Sar87,
Häm93]. As an example, 25 dipoles may be modeled, 5 dipoles to represent evoked sources, and
20 dipoles to represent independent noise processes. The latter ECDs shall be placed at random,
whereas the signal dipoles may be placed as to represent physiologically meaningful positions.
Each noise dipole represents a source that follows a7-th order AR process activated by Laplacian
distributed white noise with AR coefficients that were obtained from real world prestimulus MEG
data. Synthetic MEG data are obtained by a processing chain depicted in Fig. 4.4. The ECDs are
placed in the spherical human head model. Magnetic fields arecalculated using PTB 93-channel
MEG sensor coordinates, together with quasi-stationary Maxwell equations for dipole currents
[Sar87]. Following the linear ICA modelX = AX of Eq.3.3, the mixing matrixA emerges from
the contribution of each source to each sensor. The superposition of all magnetic fields gives the
observed MEG dataX. Finally, sensor noise is introduced with an average SNR of 30dB. Fig.
4.4b depicts associated field maps and Fig. 4.4d depicts typical sensor observations generated.
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Figure 4.7: Performance of ICA (a) and associated recovered field maps (b) for the 2D sub-
space (left) and 3D subspace (right) using signal forms and source constellations as
depicted in Fig. 4.4. All methods recover almost independent sources for high jit-
ter values; the associated field maps are close to the originals. However, it can be
observed that all methods lose performance when the jitter value is lowered; the un-
mixing error closely follows mutual information. The figures show the performance
of one specific setting, with random jitter values. Results with random source loca-
tions and random signal forms are given in the comparison section at the end of this
work (Figs. 5.15 to 5.18).

4.2.5 Results

Let the performance of ICA be analyzed for a first source setting, that of Fig. 4.4, i.e. with two
independent subspaces containing two and three dependent signals, respectively. These results
represent ICA performance for a specific setting, as the signal forms do not vary. The virtual
experiment is repeated 50 times per jitter value, yielding 50 realizations for each jitter value. The
signal locations and signals forms are the same for all experiments. Performance is evaluated
using median unmixing error and some corresponding field maps.
Particularly, two sets of SSEJR signals are analyzed by running 50 realizations per jitter value.
The median unmixing error and the median recovered field mapsare depicted in Fig. 4.7. The
left graph shows the ICA performance of unmixing the 2D subspace, while the right graph sug-
gests the ICA performance of unmixing the 3D subspace. In the left graph, the original sources
have a bell shaped and a time differentiated bell shaped response, whereas in the right graph the
original sources have a bell shaped and a temporal differentiated bell shaped response as well as
a mixture of 3 bell shaped time signals with fixed locations (cf. Fig. 4.4a and 4.4c).
Normalized mutual information, Eq. 4.7, are calculated from the generated signals. Fig. 4.7 sug-
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Figure 4.8: Random signal shapes generated according to Eq. 4.8 and dependent signals (low
jitter values) show that ICA fails on average. Some signal configurations can be sep-
arated by ICA. However, on average, the performance is not good enough asking for
alternatives to separate evoked dependent signals.

gests for both graphs that the median normalized mutual information decreases with an increas-
ing jitter value in line with our demands on the SSEJR model. For an assessment on separation
performance the unmixing error and typical field maps are provided. Below each graph, the origi-
nal source field maps are depicted. As expected, the performance of principle component analysis
(PCA) is poor even in the vicinity of independent source signals, i.e. for high jitter value. This
supports the well known fact that decorrelating generally does not lead to a correct separation. In
contrast, all established ICA methods show a good performance in recovering almost indepen-
dent sources. In both figures the unmixing error drops under 0.2 for 100 ms jitter; the associated
field maps are close to the originals.
However, it can be observed that all higher order statistic based ICA methods lose performance
when the jitter value is lowered. Strikingly, their unmixing error closely follows the binned mu-
tual information. The corresponding estimated field maps obtained by the Infomax methods is
depicted for 0 ms. These maps suggest that the source field maps have not been found correctly.
Most clearly visible, in the right graph, all Infomax recovered patterns show contributions from
all source field maps - the separation task failed.
In contrast to the distribution processing ICA methods, the performance of SOBI is more sen-
sitive to the shapes of the signals. From the left graph in Fig. 4.7, it can be observed that SOBI
performs best for the signals simulated in the 2D signal subspace. However, from the right graph
in Fig. 4.7, SOBI is observed to perform worst. The finding thatSOBI does not closely follow the
normalized mutual information may be explained as follows.SOBI exploits independence of the
lagged time signals. Yet the SSEJR model systematically adjusts the mutual information only for
0 lag, while the mutual information of lagged version of the generated signals may vary. Hence,
it depends on the choice of time lags, how SOBI performs. However, even for wisely chosen time
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Figure 4.9: Example of closely spaced dipoles: the recovered field maps for dependent SSEJR
sources do not correspond to the original sources. Hence, physiologically meaningful
estimates do not prove the success of ICA and have to be interpreted carefully.

lags, which is a difficult task in the actual data scenario, SOBI has problems with similar power
spectra, which occur when no jitter is present but which are less for highly jittered responses.
In summary, Fig. 4.7 suggests that all tested ICA methods showa decreasing performance for
increasing dependencies between two source signals. The results cannot suggest a preference for
a specific ICA method as performance is highly influenced by thesignal shape.
Repeating the experiment for low jitter and randomly chosen signals yields the results depicted
in Fig. 4.8 (see also Sec. 5.7) The figure suggests that all methods succeed for some shape con-
figurations. Nevertheless, ICA fails on average, i.e. for most signal configurations tested.

4.2.6 The near dipole effect

Yet another aspect is revealed by changing the sites of the source dipoles. For closely spaced
dipoles, all established ICA methods recovered clear dipolar patterns, which were different from
the originals. As an example, in Fig. 4.9 the recovered pattern from dependent sources, signif-
icantly differs from the original source field map. This pattern seems to emerge from a single
dipole but in fact is still a linear mixture of the source fieldmaps. Hence, the common practice of
judging an ICA decomposition to be successful when the estimated source patterns suggest phys-
iologically meaningful results may be wrong. This is an important result, exemplifying that the
plausibility of the structure of an ICA estimate can be misleading. For closely spaced activities,
mixtures can show a dipolar pattern, as suggested by Fig. 4.9. Hence, physiologically meaning-
ful ICA estimates must not be confused with successful sourceseparation. Interpretation of the
estimates has to be done with care, especially considering that the results representsomevector
of a subspace of evoked signals.
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4.3 Actual MEG data experiments

Virtual experiments are a vital tool in gaining understanding on different features of data and
to assess the separation method due to a well-defined ground truth. However, signal processing
methods also have to be tested in real world scenarios. For our project, it was of importance to
design a suitable paradigm, allowing to assess ICA in a dependent MEG data scenario. From the
dependency theory section, it can be concluded that this is best accomplished when signals have
temporal overlap.

4.3.1 An audio-visual paradigm

Inspired by the work of Tang et al. [Tan05] a novel actual dataexperiment was designed. In
Tang’s work, median nerve stimulation was used to test the source localization performance of
SOBI. Left, right and bilateral median nerve stimulation were recorded. The localization result
from bilateral stimulation was compared to the unilateral stimulation that was taken as a refer-
ence. The utilized N20 signals that occurs after median nerve stimulation is known to be stable.
However, bilateral evoked N20 signals only have short temporal overlap and may not be very
dependent if small time shifts occur.
For our purpose, a paradigm was designed using auditory and visual stimulation in order to obtain
significant temporal overlap. Nevertheless, in line with [Tan05], unisensory auditory stimulation
is used as reference and so is unisensory visual stimulation. Using noise adjusted PCA, a ref-
erence mixing vector for only auditory stimulated data and areference mixing vector for only
visual stimulated data is obtained. Against these reference mixing vectors, the separation results
obtained from bisensory audio-visual stimulation data is compared. Assuming the location of
unisensory evoked activity and bisensory activity the same, the Amari unmixing error can be
used, as the reference mixing vector are taken as the original mixing matrix. Note that in contrast
to the locations, the temporal profiles of the sources are allowed to vary. This is important, as
influence from visual stimulation to auditory processing has been discussed [McG76].

4.3.2 Subjects and recordings

Ten right-handed subjects from an homogeneous group of 5 male and 5 female students aged
20 to 30 participated, voluntarily. None of the subjects reported neurological pathologies. All
were healthy at date of recording. All subjects were informed about the recording facility and
non-invasive procedure. During recording a communicationsystem was running, such that infor-
mation could be given into the cabin and received from the subject. All subjects were instructed
to give a sign if not feeling well. One experiment had to be cancelled, due to magnetic material
that could not be removed from the subject. In total, 9 datasets were recorded, each with a total
duration of 20 minutes.
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Figure 4.10: Graphic representation of audio-visual stimulation paradigm. Tones of 1 kHz with
a duration of 300 ms were presented as well as alternating checkerboard wedges.
Trial length varies in reality between 1 to 2 seconds. Visual(V) and auditory (A)
and audio-visual (AV) stimulation are presented to the subject in an interleaved and
randomized fashion.

4.3.3 Experimental setup

Evoked MEG data with simultaneous auditory and visual stimulation are recorded using a full
head 125 channel MEG system [Kad99]. PresentationR© (Neurobehavioral Systems, Inc.) is used
with the following settings.
Tones of 1 KHz with a duration of 300 ms [Häm93, Har05, N̈aä87, Sal04] were presented monau-
rally to the right ear of subjects. Checkerboard wedges [Slo99, Ahl92] were presented in an al-
ternating fashion [Ain03, Sha00] to the right visual field. Bythis, stimulation was optimized to
mainly evoke auditory or visual related activity in the leftcerebral hemisphere [Oka82].
The duration of the single-trials lasted between 1 to 2 seconds [Slo99, Ain03]. Visual (V) and au-
ditory (A) and audio-visual (AV) stimulation was presentedto the subject in an interleaved and
randomized fashion. The sampling frequency was set to 500 Hz. The software PresentationR©

recorded trigger levels, from which the single-trials could be identified. Specifically, 300 trials
were recorded and subsequently cut from the continuous recordings. This data was bandpass fil-
tered with an zero-phase filter [Pic95] between 0.5 Hz and 100Hz. The concatenation of single-
trials with 100 ms prestimulation duration and 300 ms post-stimulation duration yield the MEG
data utilized. All trials were detrendet [Ẅub07] and the offset was removed [Pic95]. Bad trials
were identified after an ICA [Del04] and removed, subsequently. This was done in a fashion that
the best 200 trials were taken, each having 400 ms length. Theparadigm is outlined in Fig. 4.10;
the full audio-visual paradigm code using PresentationR© is provided in the appendix.

In Fig. 4.13, trial-average per channel of the unisensory and bisensory evoked data (A,V and
AV) is plotted for all 9 datasets. Normalization was done by dividing trial-averages by the largest
absolute value of temporal instants and over channels. Corresponding field maps are depicted for
one time instant in order to visualize the spatial field distribution. Fig. 4.13 suggests different
levels of signal quality. While the first data suggest high SNR,the last data has a clearly lower
ratio. Nonetheless, all unisensory evoked field maps show typical patterns. The auditory evoked
fields show dipolar structures over the primary auditory cortex, contra- and ipsilaterally. The
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Figure 4.11: A composite single-trial plot is obtained by applying one unmixing vector - found
using AV data - to AV data and to A sand V data, respectively. If, e.g., the V unmix-
ing vector separates the visual component from AV data, thensimilar evoked activity
should be visible when applying the V unmixing vector to AV data as well as to V
data. In contrast, applying the V unmixing vector to A data, no evoked contribution
must be observable (left figure). If an auditory evoked activity is observable, this
auditory activity is mixed into the component found by applying the V unmixing
vector to the AV data. Hence, unmixing is not perfect, which is observable by this
composite single-trial illustration technique (right figure).

visual evoked pattern show dipolar structures over primaryvisual cortex. As intended, a clear
tendency to the left hemisphere is observable.
From the patterns of the bisensory audio-visual MEG data, the experimenter cannot clearly de-
termine the visual and the auditory fields. Some show the mixed distribution, others only give
evidence to one of the two stimulation modalities, namely auditory and visual. Blind separation
shall be applied to recover the underlying original source signals and the corresponding unmixed
filed maps.
For the sake of source separation assessment and development in the actual domain, uni- and
bisensory stimulated data were preprocessed further. The unisensory stimulated data is projecting
on a single mixing vector, obtained from comparing post-stimulation and prestimulation energy.
Noise adjusted PCA (NAPCA) (refer to Sec. 5.1.2) is used to obtain two one-dimensional refer-
ence vectors. The obtained mixing vectors, i.e. one from unisensory auditory evoked data (A) and
one from unisensory visual evoked data (V), give the reference mixing vectors for the bisensory
evoked data. Specifically, the bisensory audio-visual stimulated data is projected onto the two-
dimensional subspace spanned by these reference vectors. Hence, the bisensory evoked data (AV
data) is two-dimensional after this preprocessing. The two-dimensional mixing matrix is known
to be the concatenation of the auditory and visual referencevectors and the Amari unmixing vec-
tor can be used, assuming that the location of unisensory andbisensory evoked data are the same.
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4.3.4 Novel performance illustration technique

The actual data of nine subjects form the basis of evaluatingthe algorithms in the real world
scenario. As a consequence, every source separation methodcan only act on a small number of
data sets. The unmixing error err is a functional of a matrix,mapping quality to a single number.
An unmixing error of say 0.3, does say something about the average separation performance, but
it may not be descriptive enough for a single recording.
Hence, the quality of actual data separation shall be further illustrated by comparing single-trials
from A,V and AV data for more detailed performance analysis.For this, recovered single-trials
are stacked row-wise in a matrix. This matrix in turn is displayed in a color coded fashion as
in Fig. 4.11 [Jun01]. Let the unmixing vectors of a separation algorithm be labeled as V if the
visual single-trials are recovered and as A if auditory single-trials are recovered by applying the
unmixing vector to the mixed data. The A and V unmixing vectors are obtained by running the
separation method under test using only AV data. Separationperformance can be analyzed by
stacking single-trials recovered from the AV data as well assingle-trials recovered from the A
data and the V data by applying each time the same unmixing vector recovered from using only
the AV data.
If the V unmixing vector obtained from AV data separates the visual component, then an evoked
activity should be obtained applying this V unmixing vectorto the AV data as well as to the V
data. In contrast, no evoked activity should be obtained, when applying the V unmixing vector to
the A data. If evoked activity is observable from applying the V unmixing vector to the A data,
unmixing is not perfect.
In Fig. 4.11 this novel illustration technique is displayed. Clearly, the left graphic shows a suc-
cessfully recovered visual component. The V unmixing vector gives an evoked contribution when
being applied to the AV data; applying it to the V data yields acomponent with similar single-trial
structure. Applying the V unmixing vector to the A data yields no evoked contribution. Hence, a
very good separation is observable.
In contrast, the right graph shows a separation that has not been successful. The V unmixing
vector applied to A or V data yields a contribution each time.In fact the contribution from A and
V data are of opposite signs and, hence, applying the unmixing vector to the AV data yields a
mixed component with auditory and visual contributions that almost cancel.

4.3.5 Results

In Fig. 4.12, the boxplots suggest that ICA does not sufficiently separate the audio-visual data.
All established methods have high median unmixing error. Hence, separation did not succeed on
average. Note that this is in contrast to the findings in the work of [Tan05].
Furthermore, using the novel performance illustration technique, Fig. 4.14 holds the results us-
ing FastICA. Clearly, the novel illustration technique givesinsight into how the different datasets
have been separated.
The optimal estimates are obtained by using the reference mixing vectors concatenated to a
pseudo mixing. Inversion gives an unmixing matrix. Using the vectors from this unmixing ma-

46



4.3 Actual MEG data experiments

PCA SOBI FastICA JADE Infomax
0

0.2

0.4

0.6

0.8

1

un
m

ix
in

g 
er

ro
r

Figure 4.12: The boxplots suggest that ICA does not sufficiently separate the AV data. All estab-
lished methods have a median unmixing error err, which indicates that separation
did not succeed.

trix yields by construction no contribution from A when the Vunmixing vector is used and vice
versa. However, it is worth comparing the evoked activity using AV data to using only V data
or only A data. For example, for subject 8, a very similar temporal profile of the single-trials
are found from the AV data and the unisensory evoked data. Forthe visual component, analyz-
ing subject 1, the activity seems to be more jittered when obtained from the bisensory evoked
data. All data showed reasonable agreement between single-trials from unisensory and single-
trials obtained from bisensory evoked data. Data from subject 7, observing the visual component,
seems to have the most disagreement.
The ICA estimates show a completely different picture, suggesting the usefulness of the novel
performance illustration technique. For example, the stacked single-trial pictures obtained for
subject 9 using ICA, show evoked activity for both the auditory as well as the visual unmixing
vector. However, a comparison with the unisensory evoked data shows that both recovered activ-
ities are still mixtures of auditory and visual signals. This can be seen as the auditory unmixing
vector should not yield activity when being applied to the visual evoked data. Hence, unmixing
failed.
In summary, the recordings from subject 6 are perfectly recovered using ICA; the recording from
subject 7 show a good performance. However, the remaining recordings fail in separation for one
or even both components. Fig. 4.12 suggests that actual evoked MEG data can have dependent
evoked signals, and that ICA is able to lower the contrast of independence for these signals under
linear transformations. This, however, leads to a failure in ICA decomposition as it was demon-
strated in Sec. 4.1.3.
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4.4 Discussion

Statistical dependence is difficult to measure; full knowledge of marginal and joint probability
distributions are involved. Indeed, numerous methods aim at estimating independence in a robust
and efficient manner [Kra04]. Each of these methods can be used to set up a contrast for ICA
yielding numerous ICA methods. Yet, the most importantfeatureof statistical independence is
its strictly non-negative property and that it must be zero only if the joint distribution factorizes
into the marginal distributions. Hence, an ICA contrast mustobey this feature. All established
ICA methods do have in common to optimize independence. In order to drive the components
towards independence, they use different features of mutual information that differently act on
the data.
It was demonstrated that ICAcanseparate dependent source signals. This is possible, in thecase
that the source signals are not changed by ICA if these are directly fed to ICA before being
mixed. Thus, ICA cannot further optimize its contrast function for these dependent source sig-
nals. On the other hand, an ICA methods fails if its contrast acts on the original signals in a way
that it mixes the sources to optimize the contrast. An optimal contrast is invariant to all source
dependencies and only reduces dependencies introduced dueto linear mixing.
In this chapter, all established methods yield bad median performance for dependent signals.
Hence, all established methods lower their utilized contrast function even for the task of sepa-
rating the sources. However, all established ICA methods possess cases that are fully successful,
although the sources are dependent. In line with the comparison section, about 25 % of our sig-
nal configurations tested in the two-dimensional setting show results below 0.25 unmixing error.
This means 25 % of ICA results are significantly better than random unmixing choosing a 0.1
significance level. The conclusions are manifold. First, ICAis not robust against dependencies.
Second, ICA can fully separate dependent signals in some cases and yields approximate results in
about one out of four results. One may conclude that ICA cannotbe used for dependent signals.
However, ICA should be considered as a preprocessor in order to obtain good starting points for
any method that is dependent on these.
In order to further assess performance, an actual audio-visual MEG experiment was set up. A
novel performance illustration technique shows that the separated single-trials using audio, vi-
sual and audio-visual data matches if the constructed ’original’ mixing matrix was used. The il-
lustration technique allows to evaluate ground truth in multisensory evoked data with unisensory
evoked reference data. Indeed, a high level of matching in all 9 data sets is observable suggesting
the high value of these recordings for the assessment of source separation performance. The re-
sults show that ICA is not suited to separate these actual data. Only two data sets show activities
that matches for both components, i.e. that may be considered separated.
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Figure 4.13: Trial-averages per channel for all subjects utilizing actual auditory evoked (A) data,
visual evoked (V) data and audio-visual evoked (AV) data. Ineach plot, for each
channel, 100 trials of 400 ms duration were averaged. One corresponding field map
at maximal normalized field strength suggests the location of evoked activity. As
expected, clear structured field maps are obtained for A and Vdata; less structured
field maps are obtained for AV data. 49
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Figure 4.14: Results of applying FastICA to the data from the audio-visual experiment (AV data).
The FastICA unmixing vectors are applied to all AV, A and V data, in order to assess
the performance. In the rightmost column the unmixing erroris also provided. The
obtained single-trial plots show that only two recordings are separated by FastICA.
Hence, actual domain data are shown to be dependent in a way that ICA can fail.
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5 Techniques for the separation of evoked
dependent source signals

Next to the established ICA methods, a large variety of decomposition algorithms exist, e.g.
[Abr03, Cai06, Hyv04]. Many other algorithms tackling the separation of dependent signals are
problem dependent as they use special knowledge, such as sparsity, time-, frequency-, phase- or
energy-contents. Furthermore, all methods that operate under the bilinear model have to make
assumptions that ensure essential uniqueness. Specifically, a method assuming a dependence
contrast may be more robust to the violation of independencebut will run into problems if this
dependence contrast is not met.
In contrast, here, extended trilinear models shall be used.It is known that evoked MEG data
are highly structured in space and time as well as in trials. Trilinear models make use of this
structure yielding essentially unique decomposition without the need of assumptions such as in-
dependence [Har70, M̈oc88, Fie91, Mor08]. However, due to shifts, trilinearity can be violated
and it is demonstrated that this approach may not work, either.
In this chapter, the recovery of the subspace of evoked dependent signals is discussed and trilinear
models are considered for the task of evoked dependent source separation. Subsequently, a novel
technique is presented that is not trilinear as it also models signal shifts. For this, a model is used
that is more flexible than a trilinear model, while still being essentially unique. It is demonstrated
that evoked data can be explained by this model and that separation of independent as well as
dependent sources is possible without the need of extra assumptions, such as independence.
Finally, a comparison study shall assess the performance ofall established ICA methods, general-
ized ICA methods, trilinear methods and our novel time domainshifted factor analysis (TDSFA)
method. For assessment, virtual MEG data and actual MEG dataare carefully set up and evalu-
ated.

5.1 Evoked subspace analysis

In order to reduce the complexity of dependent source separation, an important preprocessing
step is the recovery of the subspace of evoked dependent signals. After a brief definition, inde-
pendent subspace analysis (ISA) and noise adjusted principal component analysis (NAPCA) are
considered and compared using synthetic data.

Again, letX = AS + E be the recorded MEG data, whereE denotes sensor noise. Let thei’th
column of the mixing matrix beAi and thei’th row of the signal matrix beSi. Let furtherΩ be
the set of signal indices andEV the subset of evoked signal indices withEV ⊂ Ω. The recorded
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Figure 5.1: One trial of synthetic evoked MEG signals. The first three rows depict typical evoked
signals, while the remaining rows depict background activities. The latter reflect pos-
sible non-evoked signals. Noise adjusted PCA (NAPCA) utilizes two covariance ma-
trices that are estimated from pre- and poststimulation data. Based on these noise ad-
justed covariance matrices, the evoked subspace is found via a sequence of whitening
and ordinary PCA.

MEG data can be represented by two parts, given by the evoked signal part

XS =
∑

i∈EV

AiS
i (5.1)

and by the noise part

XN =
∑

i/∈EV

AiS
i + E, (5.2)

where the latter summarizes all non-evoked signal contributions. Evoked MEG data may be
expressed as

X = XS +XN . (5.3)

The task of evoked subspace analysis is to find a basis, i.e. any set of linear independent vectors
that are linear combinations of the evoked mixing vectorsAi, and to find the corresponding linear
combinations of the evoked signalsSi, wherei ∈ EV .

5.1.1 Cardoso’s conjecture

Independent subspace analysis (ISA) [The06, Gut07, Hyv01b] aims at subspaces of sources that
are dependent, while sources from different subspaces are assumed to be mutually independent.
Hence, ISA is a generalization of ICA in that the sources are allowed to be dependent within a
group as long as different groups are mutually independent.Specifically, Cardoso proposed to use
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Figure 5.2: Mechanism of NAPCA. Ordinary PCA cannot recover the evoked subspace directly
from the data (a). By whitening the data (b) based on prestimulus data, the evoked
subspace is found by PCA based on whitened poststimulus data.Due to whitening,
the eigenvalues corresponding to noise are one, while the eigenvalues corresponding
to evoked signal must be greater one by definition. Notably, next to finding the evoked
subspace, its dimensionality can also be inferred.

ICA followed by grouping the estimates to perform ISA [Car98b,Sza06]. Thus, he conjectured
that having data with underlying independent and dependentsignals, all signals are separable
by ICA but the dependent signals. If Cardoso’s conjecture is valid, ISA can be performed in
two steps. After running ICA, mutual information of the estimated sources is used to group the
estimates into subspaces of dependent signals and subspaces of independent signals. In contrast,
it is argued in section 5.3 that mutual information of estimates may not be easily linked to mutual
information of the sources and that this technique can fail.
Other ISA methods model the dependent subspaces but either suffer from high combinatorial
complexity [Poc05] or assume that the dimensions are known [Hyv06]. Some efforts have been
made to overcome this drawback [Bac03, Poc06] by introducingfurther signal assumptions.
These, however, may not hold for all evoked signal settings.
Consequently, the use of noise adjusted principal componentanalysis (NAPCA) is advocated
for finding the evoked signal subspace. NAPCA uses simple PCA techniques while considering
information from pre- and poststimulation, which is detailed in the following.

5.1.2 Noise adjusted principal component analysis

According to Equation 5.3, evoked MEG data can be split into anoise and a signal part. NAPCA
[Lee90, Ẅub07] assumes that the noise part is stationary, that the signal part is zero at known data
periods, and that the noise and signal part are uncorrelated. This setting is depicted in Figure 5.1.
LetCX andCXN be the covariance matrix of the data and noise part, respectively. NAPCA then
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Figure 5.3: Results from virtual experiments on the SNR performance [Lem06] of recovering
the subspace of dependent evoked signals using PCA, ICA followed by SNR based
grouping and by NAPCA. Clearly noise adjusted NAPCA yields bestperformance.

consists of two linear transformations. The first transformation whitens the noise part by left-
multiplication of Equation 5.3 with a whitening matrixV obtained from the covariance matrix
CXN of the noise part. The transformed data is given by

VTX = VTXS +VTXN , (5.4)

where the transformed covariance matrix isVTCXV. The transformed noise partVTXN is
white, thusVTCXNV = I. The second transformation consists of an ordinary PCA, given by

ETVTCXVE = Λ, (5.5)

whereE is the matrix of orthogonal eigenvectors andΛ the matrix of the corresponding eigen-
values, sorted by decreasing order.
The NAPCA estimated subspace basis is given by [Lee90, Wüb07]

B̂ = (VT )−1Ẽ, (5.6)

whereẼ is the matrix that contains the firstMe eigenvectors.The corresponding signals are esti-
mated by linearly projecting the data onto the subspace basis without inverting the first NAPCA
transformation, which may be expressed as

Ŝ = ẼTVTX. (5.7)

Figure 5.2 illustrates the working mechanism of NAPCA. In (a)the signal part and the noise
part of the signals are depicted. An ordinary PCA would have the principal components in the
direction of the noise. Transforming the data with the first step of NAPCA whitens the noise (b)
and transforms the signal part. The principal component of aPCA of the transformed data yields
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the mixing vector of the evoked signal.

A virtual experiment was set up using a two-dimensional evoked signal subspace. 100 randomly
placed ECDs were used to model unwanted signals with different energies. The mean SNR of
the simulated MEG data was dependent on the realization of the experiment and ranged between
-10 dB and -15 dB. Sensor noise with 30 dB simulated data to sensor noise ratio was added.
100 runs were evaluated, each having the same evoked signal forms and signal power, while the
location of the evoked signals in the sphere was chosen at random. For each realization, 100
trials with 400 samples were considered and ICA followed by single-trial SNR based grouping
[Lem06, Koh10b] as well as NAPCA were run.

The performance depicted in Fig. 5.3 is evaluated in terms ofSNR of recovered single-trials
[Lem06]. ICA followed by grouping is given a slight advantageas this method aims at maxi-
mizing the very quantity that is used to evaluate the performance, i.e. SNR. However, Fig. 5.3
suggests higher potential of using NAPCA. It suggests that PCAis not suited to recover the sub-
space. ICA followed by grouping yields better results, whileNAPCA enjoys best performance.
Hence, in the forthcoming, NAPCA will be run as a preprocessing method before decomposition
in order to extract the evoked subspace. Using this procedure, dimensionality is reduced and so
is the complexity of the separation task. For the methods based on structured model, this step is
essential in order to assure that these models can be applied.

5.2 Bilinear methods beyond ICA

In this section, methods that go beyond ICA shall be discussed. All of these have in common
that the dependent source problem is tackled, while having aclose link to the established ICA
methods, i.e. while including the independence scenario. They shall be termed here asreference
methods. Next to ICA, novel approaches shall be compared to these selected reference methods
in order to assess their value.

Spatial ICA (sICA)

McKeown et al. invented spatial ICA (sICA) [McK98] in order to apply this technique for fMRI
data (For more details refer also to [Cal09]). In contrast to ordinary ICA, the columns of the
mixing matrixA are assumed to be mutually independent, while the sourcesS can be dependent.
Spatial ICA is easily computed using ordinary ICA but feeding the data in a transposed manner.
In particular, with

XT = (AS)T = STAT , (5.8)

the rows of the signal matrix become the mixing matrix, whilethe columns of the mixing matrix
become the signal rows to be separated. Hence, in spatial ICA the mixing matrix, i.e. field pat-
terns, are assumed to be independent.
For evoked MEG data, the number of samples in signal matrixS is usually much larger than the
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5 Techniques for the separation of evoked dependent source signals

number of samples in the mixing matrixA. However, using measuring systems with more than
100 channels, spatial ICA may become a potential candidate for separating dependent source
signals.
Spatial ICA has been combined with temporal ICA in [Sto02, The05] to give more robust esti-
mates. For this, both the signal rows as well as the mixing columns are assumed to be indepen-
dent. Running spatial ICA and temporal ICA in sequence gives estimates that can be compared
to check the plausibility of the results. If both estimates show identical results a successful de-
composition is most likely. Here, spatial ICA shall serve as the first reference method.

Subband decomposition ICA - Tanaka’s approach (SDICA 1)

The next four methods aim at using ICA after preprocessing, such that the underlying sources
are made less dependent. Subband decomposition ICA (SDICA1) [Tan04] uses a bank of filters
and assumes that at least two source subbands are less dependent than the unfiltered dependent
sources.

In particular, SDICA1 considers each source signals as the sum ofL subsignals, given by

s =
∑

i

si, Ti(s) = si. (5.9)

wherei = 1, ..., L and Ti(·) is a linear transformation to obtain the subsignal corresponding to
theith subband.

In the same way, the recorded signal at some channelx is decomposed into the sum ofL subsig-
nals such that

x =
∑

i

xi, Ti(x) = xi. (5.10)

As T is a linear operator, theith recorded subsignalsXi are a linear mixture of theith source
subsignalsSi, given by

Ti(X) = Ti(AS) = ATi(S), (5.11)

where Ti operate row-wise. Hence, a correct ICA unmixing matrix recovered from theith data
subband applies also to the original data as

∑

i

Ti(X) = A
∑

i

Ti(S). (5.12)

A filter bank with 20 subbands from 0 Hz to 80 Hz is used. Chebycheff 2 filters are used having
a stopband of 90 dB. Subsequently, ICA is run on allL subbands of the recorded data. In order
to select a data subband with least dependent sources, Tanaka et al. [Tan04] proposed the use of
a modified unmixing error as follows. The unmixing error given by Eq. 3.45 is in need of the
’original’ mixing matrix A. This matrix is replaced by the inverse of a subband ICA unmixing
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5.2 Bilinear methods beyond ICA

matrixW0 yielding Ã = (W0)
−1. The unmixing matrixW is obtained from another subband

ICA unmixing matrix. By plugging

G̃ = ÃW (5.13)

into Eq. 3.45,blind Amari unmixing error is obtained. If two subbands have independent source
subsignals blind amari error will be zero as the two unmixingmatrices should be almost equal.
Hence, the two data subbands that correspond to least blind unmixing error are selected and yield
the unmixing matrixW that is applied to the original data.

SDICA1 is appealing because of its automated choice of the least dependent subbands. However,
very small frequency bands are similar to sinusoidal signals differing only in phase. Such signals
are not independent. Hence, a too high number of subbands will yield dependent source sub-
signals. In contrast, a too low number of subbands may not alter the original dependent sources
enough. Hence, the number of subbands and the cut-off frequency are parameters that have to be
chosen wisely. Nevertheless, this method shall be considered as a general reference method as
no fine-tuning of these parameters is done.

Subband decomposition ICA - Kopriva’s approach (SDICA 2)

Kopriva [Kop08] proposed to use wavelet tree decompositionfor subband decomposition ICA
(SDICA 2). More importantly, band selection is based on the assumption, that the data subband
with smallest mutual information corresponds to the sourcesubband with smallest mutual infor-
mation. If this assumption holds, it is possible to find the most independent source subband by
estimating the mutual information of all data subband and choosing the least dependent among
them. Subsequent use of ICA of that subband assures lowest mutual information among the
source subbands and, hence, best separation performance.
However, the proof in [Kop08] cannot be correct in general [Lin09], which shall be exemplified
in the following.

Let the dataX be given by two data subbandsXi andXj. The sources in theith subbandSi shall
be dependent, while the sources in thejth subbandSj shall be independent. With

Xi = ASi, (5.14)

Xj = ASj , (5.15)

the proof in [Kop08] claims thatXj is less dependent thanXi, which gives the least dependent
source subband, i.e. in our case thejth subband. However, this is not correct for at least one
signal constellation. E.g., let the dependent sources in the ith subband be given by

Si = BS̃i, (5.16)
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5 Techniques for the separation of evoked dependent source signals

whereS̃i shall contain independent sources andSi shall contain dependent sources due to the
linear transformationB. Furthermore, let the mixing matrix be given by

A = B−1. (5.17)

Mixing the sources using Eq. 5.14 together with Eq. 5.16 and 5.17 yields

Xi = ASi = ABS̃i = S̃i, (5.18)

Xj = ASj = B−1Sj. (5.19)

Hence, theith data subbandXi is independent, while the sourcesSi are dependent. Thejth data
subbandXj is dependent, while the sourcesSj are independent. It follows that choosing theith
data subband does not correspond to the most independent source subband.

Put into words, if the source signals are dependent because of a linear mixing then linear un-
mixing can make them independent. The corresponding data subband may become independent,
while the source subband is dependent. Another source subband may be less dependent and the
choice of the least dependent data subband may not be optimal.
However, one may argue that in most cases linear mixing makesthe source subbands more de-
pendent. The heuristic of choosing a data subband that is least dependent is still of interest.
Indeed, SDICA 2 was shown to be successful using real world data in [Kop08] and shall serve
as reference method here.

Highpass ICA (hpICA)

A more straight forward prefiltering concept is that of simply applying a highpass filter before
using ICA [Cic03]. Indeed, a highpass often reduces dependencies. This may be understood con-
sidering that small time shifts in the lower frequency rangeonly slightly change dependencies
as few new sample combinations occur. In contrast, small time shifts in the higher frequency
range introduce more new sample combinations yielding moreindependent evoked signals. As
small time shifts often occur from trial to trial, a highpassfilter shall give less dependent source
signals.
From this point of view, highpass filtering and subsequent use of ICA (hpICA) generalizes ICA.
Ad hoc, a12th order highpass butterworth filter with80 Hz cut-off frequency is utilized without
any fine-tuning.

Innovation ICA (innoICA)

A closely related approach to hpICA is ICA of innovations (innoICA). Particularly, Hyv̈arinen
proposed in [Hyv98] to model the recordings as a first order ARprocess. The difference between
the AR modeled data and the original data is termed innovations. As the AR operation is linear,
the innovations of the sources are mixed to give the innovations of the recordings. It is argued that
source innovations are more independent than the original sources, as they are not explainable
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Figure 5.4: Binned mutual information [Kra04] of dependent sources and estimates using ran-
dom mixing. a) Typical dependent source signals. b) Results from ICA based on
binned mutual information for 50 dependent signals. c) Result from FastICA of 50
filtered versions of a single mixture using 50 different filters.
Mutual information of the original signals is often changedby ICA. Low mutual in-
formation of ICA estimates can correspond to high unmixing error. Hence, ICA can
fail even when the ICA estimates are almost independent. In this case, the depen-
dent subspace cannot be found by using the mutual information of this ICA estimate.
Thus, using mutual information of ICA estimates for subspaceanalysis or subband
ICA is questionable.

by the AR model. A5th order AR model shall be used to feed the innovations to ICA asthe last
reference method considered.

5.3 On mutual information of ICA results

In the last two sections, techniques were discussed that usemutual information of ICA results to
group dependent components for subspace analysis as well asfor finding least dependent sub-
bands to separate dependent sources. The latter approach may be exemplified further by the ideas
in [Zha06a, Zha06b], where the authors employ an adaptive filter that is adjusted such that ICA
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5 Techniques for the separation of evoked dependent source signals

yields most independent estimates. Despite these straightforward solutions, the use of mutual
information of ICA estimates for subspace and independent component analysis is not without
drawbacks and shall be discussed in the following.
Specifically, it was argued in section 4.1.1 that ICA can separate dependent data, if the original
dependent sources are not changed by an ICA. However, ICA fails, if the original dependent
sources are changed by ICA, i.e. some linear transformationslower some ICA contrast and the
sources are mixed up. This has consequences on techniques that are based on evaluating mutual
information of ICA results.
Let a crude ICA method be based on binned mutual information [Kra04]. Furthermore, let 50
dependent signals, such as depicted in Fig. 5.4 a), be mixed by 50 randomly chosen mixing ma-
trices. Fig. 5.4 b) depicts binned mutual information of the50 source signals and the 50 ICA
estimated signals, respectively. If the data were correctly unmixed, sources and estimates would
have the same binned mutual information. However, it can be clearly observed from Fig. 5.4 b)
right, that the binned mutual information of the original signals is lowered by ICA in all cases.
This is not surprising, as lowest binned mutual informationis seeked. Fig. 5.4 b) left, depicts
mutual information of estimates and the corresponding unmixing error. No trend indicates that
higher mutual information of the estimates is linked to lower performance of ICA or vice versa.
Contrarily, very low mutual information of ICA estimates can have high separation errors asso-
ciated.
Along this line, let a second experiment be based on FastICA. Asingle source signal pair as
depicted in Fig. 5.4 a) shall be used and a selection of 50 different filters shall give 50 different
subsignals. The logic of some prefiltering techniques is to design a filter such that ICA performs
best, evaluated by the level of mutual information of the estimates. However, 5.4 c) cannot sug-
gest a general success of this technique using the depicted signal pair. Specifically, Fig. 5.4 c)
right shows that the mutual information of the original signals is often changed by the use of
ICA. Fig. 5.4 c) left shows that independent results vary largely between low and high unmixing
error.
As a consequence, using mutual information of ICA estimates for unmixing or for grouping is
questionable. Low mutual information of the estimates can be linked to high unmixing errors.
Hence, ICA fails but a grouping algorithm is likely to miss these sources for the dependent sub-
space.
Of course, often, mutual information of ICA outputs with underlying dependent signals will not
be zero and ICA outputs from exactly independent signal will have most likely lower mutual
information. However, to find a powerful test statistic may be difficult as real world signals often
are not completely independent or the sample size and evaluation technique leads to deviation
from zero mutual information. For subspace analysis, NAPCA may be more useful. For separa-
tion, data models beyond the bilinear shall prove useful andare considered in the forthcoming
sections.
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Figure 5.5: Graphical representation of CP decomposition using three-way arranged MEG data.
F rank-one tensors representF sources that are assumed to underly the MEG data.
The residual is a three-way tensor of same size as the MEG datatensor.

5.4 Beyond the bilinear model

In order to tackle the problem of separating dependent components, a selection of reference
methods were presented that try to generalize ICA in that sense. Many more methods exist that
assume various objective functions next to independence. All these methods have in common
that they need some assumption in order to render the bilinear mixing model essentially unique.
This section shall discuss alternative models next to the bilinear model. In order to have an
essentially unique model, the degrees of freedom of the bilinear model need to be reduced. A
model that is not in need of the independence assumption mustcome at the prize of being more
problem specific, i.e. to model more features of evoked MEG data than the bilinear model does.
However, it must be general enough to cover all typical evoked signal settings.

5.4.1 Evoked data and trilinearity

Evoked MEG data are structured not only in time and space but also due to its repeating trials.
By rearranging the evoked data corresponding to space, time and trial, a threeway data tensor can
represent the evoked data recordings. In order to explain this data tensor by a mixture of evoked
sources tensors, a simple evoked signal model that differs from Eq. 2.2 shall be assumed for now,
which ignores latency shifts [M̈oc88, Fie91]. Specifically, the sources are assumed to remain at
fixed physical locations, having fixed temporal waveforms differing only in amplitudes from
trial to trial. Hence, for thef th source, the spatial profileAf is stationary and the signal profile
Sf is the same in every trial having just different amplitudes.This may be expressed by scalar
multiplication of the signal profileSf by theeth entry of an amplitude profileDef associated to
thef th source. Furthermore, in each trial, the signalDefSf is projected by scalar multiplication
to every sensor channel, given by the spatial profileAf . The sum off = 1...F sources finally
gives the mixture, which may be expressed as

Xcte =
∑

f

AcfStfDef + Ecte, (5.20)

where the space modality is indexed byc, the time modality is indexed byt and the trial modality
is indexed bye.
As only addition and scalar multiplication is involved, thegenerative model in Eq. 5.20 istrilin-
ear, i.e. linear inA, S andD. Note, however that the trilinear model for evoked MEG data may
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Figure 5.6: Unfolding concept demonstrated for a threeway array of dimensionsI × J × K.
Three different twoway matrices are expressed by unfoldingin order to process the
CP algorithm with ordinary twoway matrix manipulations.

be too simple as latency shifts are not modeled. The trilinear model can be identified essentially
uniquely, which is a strong property, discussed in the following.

5.4.2 Identification

As discussed in Sec. 3.2, the bilinear modelX = AS is inherently non unique, as

X = AS = AUVS. (5.21)

holds true for any regular matrices withU = V−1. Hence, infinitely many solutions to Eq. 5.21
exist; all represent the data equally well and an additionalassumption, such as independence, is
needed to render the bilinear model essentially unique.

Let the same data be represented by a trilinear model. Specifically, let theeth slab of the threeway
arranged data tensorX in Eq. 5.20, i.e. theeth twoway matrix cut from the threeway data tensor
X, be expressed as

Xe = A diag(De)S
T . (5.22)

As only one slab is considered, standard twoway matrix notation can be used. Let all matrices
have full rank. It shall be proven thatA andS are unique, given(De). For this, the regular
matricesU andV again are introduced into Eq. 5.22 yielding

Xe = A diag(De)S
T = AU diag(De)VST . (5.23)

Eq. 5.22 holds true for any regular matricesU andV that meet the identity

diag(De) = U diag(De)V. (5.24)

With U = diag(De)V
−1diag(De)

−1 infinitely many solutions to Eq. 5.21 exist only, whene is
fixed to one specific trial, saye0. If more than one triale is considered, the identity Eq. 5.24
needs to be reformulated as
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diag(De) = U diag(De)V, (5.25)

= diag(De)UV (5.26)

which holds true only for diagonal matricesU andV and if U = V−1. It follows that, given
(De), Eq. 5.22 is unique.

To prove that the complete trilinear model is unique, let Eq.5.23 be reformulated as [Mor08]

Xe = A diag(De)S
T , (5.27)

= AU[U−1 diag(De)V]V−1ST , (5.28)

= Ã diag(D̃e)S̃
T . (5.29)

As the term in square brackets needs to stay diagonal (constrained by the trilinear model), the
matricesU andV can only be of permuted diagonal form. In particular, Eq. 5.29 imposes

U = PD with U−1 = D−1
0 P−1 (5.30)

and

V = PD1 with V−1 = D−1
1 P−1 (5.31)

in order to be valid. Note that the permutation matrix is restricted to be the same for both matrices
matricesU andV to ensure a diagonal matrix in the square brackets. However,D0 andD1 are
allowed to differ. This states that energy can be held by the amplitudes, signals or mixing, while
permutation of sources has to be done for all three accordingly. This proves that the trilinear
model is unique up to the indeterminacies sign, norm and order [Har72, Möc88].
The assumption of full matrices rank can be further relaxed.Kruskal showed that the trilinear
model is essentially unique if

kA + kB + kC ≥ 2F + 2, (5.32)

whereF denotes the rank of the data tensor andk is the Kruskal rank, i.e. the smallest subset of
linearly independent columns of the associated matrix withkA ≤ rank(A) [Kru77].

5.4.3 The CP model

Trilinear tensor decomposition was originally introducedby Hitchcock in 1927 [Hit27], but be-
came popular later under the name canonical decomposition (CANDECOMP) [Car70] and par-
allel factor analysis (PARAFAC) [Har70]. More recently, it has been named as CP in order to
account for all three works [Kie00]. M̈ocks [Möc88] reinvented CP in the context of brain imag-
ing under the name topographic components model. The CP modelwas first proposed by Field et
al. in the context of evoked brain sources [Fie91]. However,problems arose and CP on wavelet
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transformed brain data was introduced in [Miw04, Mor05].
CP stands for fitting the trilinear model of Eq. 5.20 to structured threeway data in the least squares
sense. In particular, the threeway data tensor is decomposed into a sum of rank-one tensors. A
rank-one tensor is the outer product of vectors, i.e. each element of the rank-one tensor equals
the multiplication of scalars taken from these vectors withcorresponding indices. The CP de-
composition structure is depicted in Fig. 5.5.
The least squares objective function is given by

E = ||X− X̂||2F , (5.33)

whereX̂ denotes the trilinear CP model, i.e. Eq. 5.20 without noise yielding

X̂cte =
∑

f

AcfStfDef . (5.34)

Optimization of the least squares objective using Eq. 5.33 involves estimation of the matricesA,
S, D that are dependent on each other and amounts to a difficult nonlinear problem [Bro98]. As
a consequence, the CP model is commonly estimated by using alternating least squares (ALS)
optimization. ALS optimizes one subset of parameters giventhe remaining subsets. Linear least
squares (LLS) provide the solution to one subset given the remaining subsets and the estimation
is iterated until the model fit is not further improved. A fortunate feature of ALS is that in each
step, LLS forces the objective to decrease or to remain unchanged, which yields convergence
[Bro98]. In particular the estimation of LLS amounts tox = As, where a data vectorx lies in the
recording space of dimensionality equal to the number of channels. However, the columnspace of
the mixing matrixA most often is mostly a lower dimensional subspace of the recording space.
i.e. less sources than channelss give rise to less columns inA than channels. Hence, only if the
data vectorx lies in the columnspace ofA, a solution exists and the source vectors is readily
obtained bys = A−1x. Due to noise, the data vectorx will most likely not be comprised by the
columnspace ofA.
Hence, linear least squares amount to find a solution tos, such that the error vector between the
modeled data and the true data has smallest squared norm, i.e. least sum of squared error. This is
the case, when the error vectorx−As is orthogonal to the columnspace, i.e. to all modeled data
vectorsAs, as the squared norm is assured to be minimal by geometry [Str80]. It follows that

(As)T (x−As) = 0 (5.35)

sTATx− sTATAs = 0 (5.36)

ATAs = ATx (5.37)

s = (ATA)−1ATx (5.38)

s = (A)#x (5.39)

where Eq. 5.39 yields the optimal least squares solution and(A)# denotes the pseudo-inverse of
the mixing matrixA equal to(ATA)−1AT .
In order use LLS for ALS, the tensor must be rearranged such that twoway matrix operations can
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be performed. Tensor unfolding is used to arrange the data tensor and the Khatri-Rao product
is used to model rank-one tensors in twoway matrix notation [Kol09]. In particular, a threeway
tensor can be rearranged, by taking appropriate slices of the tensor in sequence. The process
is referred to as unfolding and is depicted in Fig. 5.6. A threeway data representation has six
different twoway matrices equivalents, however for performing ALS via LLS, only three are
needed.
The rank-one source tensors, which are depicted in Fig. 5.5,are also threeway tensors. These can
be given in twoway matrix notation using the Khatri-Rao product, which is given by

[D⊙ S] = [D1 ⊗ S1 D2 ⊗ S2 · · · DF ⊗ SF ], (5.40)

i.e. which equals column-wise Kronecker product of the matrices involved [Rao71, Bro98].

For convenience, let an example clarify these notations. Let the matrix of amplitudes be given by

D =

[

1 1 1
2 4 8

]

, S =









0 −1 0
1 1 0
1 −1 0
0 0 2









(5.41)

so that their Khatri-Rao product amounts to

D⊙ S =
[

D1 ⊗ S1 D2 ⊗ S2 D3 ⊗ S3

]

=

























0 −1 0
1 1 0
1 −1 0
0 0 2
0 −4 0
2 4 0
2 −4 0
0 0 8

























(5.42)

Let further the mixing matrix be given by

A =





1 0 0
0 1 1
0 1 2



 (5.43)

In the limit of no noise, the unfolded data tensorX(1), equals the mixture of the underlying
rank-one source tensors, expressed using the Khatri-Rao product, yielding
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X(1) = A(D⊙ S)T (5.44)





0 1 1 0 0 2 2 0
−1 1 −1 2 −4 4 −4 8
−1 1 −1 4 −4 4 −4 16



 =





1 0 0
0 1 1
0 1 2





























0 −1 0
1 1 0
1 −1 0
0 0 2
0 −4 0
2 4 0
2 −4 0
0 0 8

























T

(5.45)

With these notations at hand, the CP model given in Eq. 5.20 maybe rewritten in three equal
versions, given by

X(1) = A(D⊙ S)T + E(1), (5.46)

X(2) = S(D⊙A)T + E(2), (5.47)

X(3) = D(A⊙ S)T + E(3). (5.48)

The threeway evoked MEG data matrixX ∈ R
C×T×E is unfolded, by taking appropriate slices

of the data tensorX in sequence, yielding regular twoway matrices, whereX(1) ∈ R
C×TE,

X(2) ∈ R
T×CE andX(3) ∈ R

E×TC andC, T andE being the number of channels, timepoints
and trials, respectively. The noise tensorE is unfolded likewise. The Khatri-Rao productD⊙ S

gives a twoway matrix. Left multiplying the spatial matrixA and adding the unfolded noise
tensorE(1) equals the unfolded dataX(1), i.e. is no more than a different representation of the
three way data in long two-way matrix notation.
The ALS procedure, may now be expressed as

A ← X(1)(D⊙ S)T#, , (5.49)

S ← X(2)(D⊙A)T#, , (5.50)

D ← X(3)(A⊙ S)T#, (5.51)

whereT# denotes the pseudoinverse, i.e. ordinary LLS is involved. The ALS procedure to fit
the CP model to the recordings is the alternation through Eq. 5.49 to Eq. 5.51. In each step the
residual cannot increase. Due to the uniqueness results stated in the last section, only the original
components yield minimal residual and the components are identified by this procedure if the
model is correct. For this, the number of underlying components have to be known. They can be
estimated by techniques described in [Bro03] but are assumedknown throughout this work.
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Figure 5.7: Robustness analysis of CP against shifts given different signals shapes. A bell shaped
curve and its derivative were used. Both have a temporal support of 200, 160, 120, 80
and40 samples. Already for a support of 200 samples, shifts of up to3 samples lead
to problems for the CP model. For smaller temporal supports, i.e. higher frequency
contents, CP has troubles with shifts of only 1 sample. This shows that CP is not
robust to shifts, dependent on the spectral content of the signal shapes.

5.4.4 Shifts can destroy trilinearity

Varying latencies over trials result in shifts in the time modality from trial to trial, violating the
trilinear assumption. It is a reasonable question to ask howmuch shift is allowed in CP and
when a shifted factor analysis is needed. This question cannot be answered in general without
the knowledge of the signal shapes and its spectral content.For a signal with spectral content in
the very low frequency range small shifts shall not violate the CP model assumptions too much.
However the same latency shift scenario for signal shapes that have higher frequency contents
may lead to a failure of the CP model identification.
This is exemplified in Fig. 5.7. Here, a bell shaped curve and its derivative were used with a
temporal support of 200 samples duration down to 40 samples duration in steps of 40 samples.
Hence, both the temporal support of signal was lowered and the frequency content was aug-
mented. Fig. 5.7 suggests that already for a support of 200 samples, shifts of up to 3 samples
lead to problems for the CP model. The same form in higher frequency band, i.e. with a smaller
temporal support, leads to failure of the CP model already forshifts up to 1 sample. This is a re-
markable result, as it shows that the CP is not robust to shiftswhen signals have limited temporal
support with higher frequency contents. This situation caneasily occur in evoked signals and,
hence, the incorporation of shifts may improve results. Shifted factor analysis shall be discussed
in the following.
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5.5 Shifted factor analysis

Let evoked MEG data be modeled as a superposition of the magnetic fields induced by neuronal
source signals. With each neuronal signal a particular spatial pattern of the induced magnetic field
is associated. The single neuronal signals and hence their induced magnetic fields are subject
to amplitude and latency variations within the epochs, while the form of a neuronal signal is
assumed to be constant throughout all epochs. LetXcte denote the MEG data obtained for theeth
epoch in thecth channel at the timet after imposing the stimulus. According to our assumptions
the MEG data can then be described by the SFA model [Har03, Hon03a, Hon03b]

Xcte =
∑

f

AcfSf (t+ Tef )Def +Ncte, (5.52)

where the matrixA encodes the spatial mapping from the neuronal source signals to the MEG
channel,T the latency shifts andD the amplitude shifts. Thef th neuronal signal form is denoted
by Sf (t). For notational convenienceStf = Sf (t) shall be used interchangeably. For instance,
AcfStf is the magnetic signal at thecth channel evoked by thef th neuronal source at timet after
stimulus presentation when no amplitude and latency variation is present. The termNcte denotes
noise which is assumed white and stationary.
The SFA model (5.52) is linear with respect to the spatial mappingA and amplitude variations
D, but it depends non-linearly on the neuronal signal formsS due to the assumed latency shifts
T. Assuming all matrices to be of full rank, Morup has proven that the SFA model (5.52) is
essentially unique [Mor08], i.e. all of its unknowns (namely A, S, T andD) can be determined
essentially uniquely from the dataXcte. Hence, if the SFA model (5.52) applies for evoked MEG
data, estimation of its unknowns reveals the evoked neuronal source signals.

However, the SFA model is not as easy to identify compared to CP. Due to the nonlinearity,
estimation of its unknown is challenging. For instance, when applying least-squares estimation
a nonlinear (and possibly non-convex) program has to be solved which may have several local
solutions. There exist methods that are based on an exhaustive search of shifts [Har03, Hon03a,
Hon03b] as well as a Bayesian method [Knu06] that aim at identifying the SFA model. However,
these methods are numerically demanding, while only integer shifts are considered. In Sec. 5.4.4,
trilinear modeling was shown to be sensitive to violations due to very small shifts, possibly
non sample spaced. Hence, non-integer shifts shall be considered, i.e. shifts that may not be a
multiple of the sample frequency. The first method that estimates the SFA model efficiently, while
considering non-integer shifts, is frequency domain shifted factor analysis [Mor08]. It shall be
introduced in the next section and considered as another reference method for the comparison
study.

5.5.1 Frequency domain shifted factor analysis

Frequency domain shifted factor analysis (FDSFA) - originally named to as shifted CP (SCP)-
[Mor08] is obtained by transforming the temporal mode of Eq.5.52 into the frequency domain.
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5.5 Shifted factor analysis

Shifts in the time domain correspond to linear phase shift inthe frequency domain, using fast
Fourier transformation, the transformation may be expressed as

Sf (t+ Tef ) ❞ tSf (ν)exp(−j2π
ν − 1

N
Tef ), (5.53)

whereν,−j andN denote frequency, imaginary unit and total number of samples of the temporal
mode, respectively.
With Eq. 5.53, Eq. 5.52 is rewritten as

Xcνe =
∑

f

AcfSνfDefexp(−j2π
ν − 1

N
Tef ) +Ncνe. (5.54)

FDSFA aims at minimizing the objective

∑

c,ν,e

(

Xcνe −
∑

f

AcfSνfDefexp(−j2π
ν − 1

N
Tef )

)2

(5.55)

with respect toS,T,A andD using ALS. Specifically, let

S
(e)
tf = IFFT(Sν,fexp(−j2π

ν − 1

N
Tef )). (5.56)

I.e. S(e) denotes the matrix of source signals component wise shiftedcorresponding to theeth
epoch. Let further

Zt+e(N−1),f = De,fS
(e)
tf , (5.57)

i.e. Z denotes the Khatri-Rao product between the matrix containing the amplitudes for each
epoch and component and the source signal matrices containing the shifted source signals for
each epoch and component, respectively. With Eq. 5.56 and Eq. 5.57, Eq. 5.54 is reformulated as

X(1) = AZT + E(1), (5.58)

X(2)ν = Sν((D ◦ exp(−j2π
ν − 1

N
T))⊙A)T + E(2)ν , (5.59)

X(3)e = De(A⊙ S(e))T + E(3)e , (5.60)

whereD ◦ T denotes the Hadamard product andD ⊙ S the Khatri-Rao product ofD andT,
respectively. Again, all three equations are replicas of Eq. 5.54, being three different twoway
matrix representations.

The LLS updating equations forA, S andD can then be expressed as

A ← X(1)Z
T#, (5.61)

Sν ← X(2)ν (D ◦ exp(−j2π
ν − 1

N
T )⊙A)T#, (5.62)

De ← X(3)e(A⊙ S(e))T#. (5.63)
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Figure 5.8: Sphere model of the human head with three evoked equivalent current dipoles
(ECDs) (S1, S2, S3) and various background ECDs (alpha, eye, heart and noise). The
gray spheres represent 100 background noise ECDs. Sensor locations (diamonds)
correspond to a 93-channel MEG system.

By projecting out all but thef ′ source from the data at theeth epoch

R
3
(e)

f ′
= X(3)e −

∑

f 6=f ′

Def(Af ⊙ S
(e)
f )T (5.64)

the remaining signal is obtained. Maximum cross-correlation betweenR
3
(e)

f ′
andS(e)

f ′ yield integer

shift estimates. For the non-integer part, Morup et al. useda Newton-Raphson method starting
from the integer estimate and optimized Eq. 5.55 with respect to T non-linearly. A detailed
procedure can be found in the original works of Morup et al. [Mor08, Mor07].

5.6 Novel approach to shifted factor analysis in time domain

5.6.1 The ’infinite’ CP model

Motivated by [Möc86, Fie91], a Taylor series expansion of the neuronal signals will be employed
and it will be demonstrated that the non-trilinear SFA modelcan be transformed into a trilinear
CP model that has infinitely many components.
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By inserting a Taylor series expansion of the neuronal signals according to

Sf (t+ Tef ) =
∑

m

S
(m)
tf

m!
T m
ef (5.65)

into Eq. 5.52 yields

Xcte =
∑

f

∑

m

1

m!
AcfS

(m)
tf DefT

m
ef +Ncte, (5.66)

which may be expressed as

Xcte =
∑

f ′

Ãcf ′S̃tf ′D̃ef ′ +Ncte, (5.67)

wheref ′ encodes the tuple(m, f) in Eq. (5.66),Ãcf ′ = Acf , S̃tf ′ = S
(m)
tf andD̃ef ′ = 1

m!
DefT

m
ef .

The relation (5.67) shows that the SFA model (Eq. 2.2) is equivalent to a trilinear model with an
infinite number of components.

5.6.2 Approximation of the model

Nevertheless, let the derivatives of the neuronal signals be approximated by linear functionals
according to

S
(m)
tf =

∑

t′

Bm
tt′St′f , (5.68)

where the derivation matrixB may be set up, e.g., such that finite central differences are calcu-
lated. Inserting (5.68) into (5.66) gives

Xcte =
∑

f

∑

m

∑

t′

1

m!
AcfB

m
tt′St′fDefT

m
ef +Ncte. (5.69)

Since the matricesBm are known, Eq. 5.69 contains as many unknowns as Eq. 5.54. Forthe
application of the method, the Taylor series expansion has to be truncated. Note that the need for
truncating the Taylor series expansion also offers a model flexibility. For instance, when latency
shifts are small or even negligible, an order 0 Taylor seriesexpansion would be sufficient and
in this case the approximate SFA model (Eq. 5.69) is equivalent to a standard CP model. For
larger latency shifts, on the other hand, a higher order Taylor series expansion is required and in
this case model Eq. 5.69 is a good approximation to the SFA model (Eq. 5.54) For the results
presented in Section 5, an ad-hoc order of 100 is applied. Such high order shall show the robust-
ness as high order derivative are likely to have numerical problems. Furthermore, it is needed for
extreme shifts. In reality, in turn, a much lower number should be sufficient. In the comparison
study, a Taylor order of 10 is chosen, although good results have been obtained with an order 4
and for slow varying signals with an order down to 1.
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5.6.3 Numerical implementation

Least squares estimation is proposed to determine the unknownsA,S,T,D of the approximate
SFA model (Eq. 5.69) obtained by truncating the Taylor series expansion. For this, the term

∑

c,t,e

(

Xcte −
∑

m

∑

f

∑

t′

1

m!
AcfB

m
tt′St′fDefT

m
ef

)2

(5.70)

is minimized with respect toA,S,T,D. The unknownsA,S,D enter linearly in Eq. 5.69, and
hence the linear least squares (LLS) techniques well-knownin CP model identification [Bro97]
are employed for their updates during the ALS procedure. ThelatenciesT enter nonlinearly, and
in each iteration of the ALS procedure they are updated by application of a Levenberg-Marquardt
algorithm [Gil81].

CP techniques and notations are used to transfer the threewaymodel into standard twoway ma-
trices. The dataXcte is unfolded, i.e. rearranged, yielding three different twoway representations
X(i), i = 1...3 [Bro97, p. 157]. For instance, the transposedc’th row of matrixX(1) is obtained
by concatenating the columns of the matrixC with elementsCte = Xcte. The same applies to
the noise termNcte. Using this notation, Eq. 5.67 can be expressed as

X(1) =
∑

m

A(D ◦Tm

m!
⊙BmS)T +N(1), (5.71)

X(2) =
∑

m

BmS(D ◦Tm

m!
⊙A)T +N(2), (5.72)

X(3) =
∑

m

D ◦Tm

m!
(A⊙BmS)T +N(3), (5.73)

where◦ denotes Hadamard product and⊙ the Khatri-Rao product. All of these equations are just
replicas of Eq. 5.69, i.e. three different twoway matrix representations. Note that the signal form
matrixS is enclosed by two matrices in Eq. 5.72. The LLS updating equations forA, S andD
can then be expressed as

A ← X(1)(
∑

m

(D ◦Tm

m!
⊙BmS)T )#, (5.74)

S ← mat( (
∑

m

(D ◦Tm

m!
⊙A)T ⊗Bm)# vecX(2) ), (5.75)

De ← X(3)e(
∑

m

diag(T
m
e

m!
)(A⊙BmS)T )#. (5.76)

where(·)# denotes the Moore-Penrose inverse, and⊗ is the Kronecker matrix product. Vec(X)
is a vector formed by concatenating the columns of the matrixX while mat(·) denotes the in-
verse operation. Diag(v) is a diagonal matrix with diagonal elements equal to the vector v. The
subscripte denotes thee’th row of the corresponding matrix. For instance,X(3)e is theeth row of
the matrixX(3). Eqs. 5.74 - 5.76 are the three LLS equations for our ALS procedure. Nonlinear
minimization of Eq. 5.70 with respect to the latency shiftsT then completes the proposed ALS
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Figure 5.9: Unmixing performance for 50 different evoked signal settings that are dependent
(maximum possible latency shiftsδ = 6ms).

procedure. Note that the nonlinear optimization step for updating the latencies allows for non-
integer latencies to be determined.

When using a first-order Taylor series expansion in Eq. 5.65, the approximated SFA model Eq.
5.69 depends linearly also on the latenciesT. In this case, the nonlinear optimization step for
updating the latencies can be replaced by a LLS step, given by

Te ← X̃(3)e(diag(De)(A⊙BS)T )#, (5.77)

whereX̃(3)e = X(3)e − diag(De)(A⊙ S)T .
The ALS identification procedure was run using ICA for initialization of a single starting point.
A was set to the ICA mixing estimate andS was set to the first epoch of the ICA signal esti-
mate.T was initialized with integer shifts that maximized the cross-correlation ofS with the
corresponding epoch of the ICA signal estimate, while forD all values were set to 1. The it-
erations were terminated when the relative difference between the values of the cost function
Eq. 5.70 in two subsequent iterations fell below the convergence level, which was set to10−6.
The number of components was set to 3. The update order wasT, D, A, S while enhanced line
search [Raj08] was used for acceleration. For further acceleration, arbitrary 5 channels and 5
epochs were utilized, and the ALS procedure was run with 200 time points until convergence or
until 500 iterations were exceeded. Then, the ALS procedurewas applied, considering either all
epochs (and the selected 5 channels) or all channels (and theselected 5 epochs), while using the
values for the unknowns obtained in the first step as the starting values. An appropriate choice
of the Taylor order depends on the possible latency shift andthe underlying signal form. In this
work, the Taylor order was fixed at 100. Calculations were carried out on a compute server (8
Intel Xeon cores, 2.66 GHz, 128 GB RAM) with typical calculation times of 165 seconds, 712
seconds and 3243 seconds for the Taylor orders 1, 10 and 100, respectively.
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Figure 5.10: Unmixing performance of ICA versus the proposedSFA procedure for different
dependency levels which are implicitly given by the maximalpossible shifts.

5.6.4 Simulation results

SFA versus ICA

The simulated evoked MEG data were analyzed by the proposed procedure and the results were
compared to those obtained by the Infomax ICA method [Bel95]. Assessment of blind source
separation was done using the unmixing error. In addition, the latency estimates obtained by the
proposed method were compared to those of an established single channel method [Jas99].
Fig. 5.9 shows the unmixing errors obtained for 50 differentsignal settings (amplitudes, latencies
and signal forms) by the proposed procedure and the Infomax ICA method. The latencies were
drawn from a uniform distribution on[−δ, δ] with δ chosen equal to 5 ms. For this parameterδ,
the resulting source signals show a high dependency. ICA fails as the signals are dependent, and
the proposed procedure clearly outperforms ICA with respectto blind source separation here.
But note that from the 50 different signal settings, 4 are apparently still not well separated. This
can have several reasons. The convergence level or the choice and the order of approximating the
derivatives may have been suboptimal. Another reason mightbe that the preprocessing step did
not recover the signal subspace correctly. Furthermore, local minima could have been an issue.
However, the results seem rather robust as no fine tuning was applied.

In a next step, the dependence of the source signals are controlled by varying the width of the
uniform distribution[−δ, δ] from which the latencies were drawn. In order to assess the con-
sequences of different values of the maximal possible latency shiftsδ, the mutual information
between the source signals is determined as a function ofδ. For δ = 5 ms, a high dependence
can be observed, whereas forδ = 40 ms, the source signals appear to be only moderately de-
pendent. Fig. 5.10 shows the unmixing errors in dependence on the parameterδ. In each case,
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Figure 5.11: Latency estimation for maximal possible latency shiftsδ=5 ms. For one setting of
the three evoked signals, single channel maximum likelihood shift estimates [Jas99]
are depicted in the first and second row using raw and NAPCA prefiltered data,
respectively. The third row depicts typical latency shift estimates obtained by the
proposed SFA procedure.

the results show the median together with the median absolute deviation from the unmixing er-
rors obtained for 50 different signal settings. If the maximal possible latency shift was chosen
to be greater than 100 ms (δ > 100 ms) ICA was observed to work well. Fig. 5.10 shows more
realistic shift settings choosingδ between 5 ms and 40 ms. ICA is observed to have difficul-
ties even for moderate dependencies, when the normalized mutual information is less than 0.1,
and fails for larger dependencies, while the proposed procedure appears to work well in all cases.

Unmixing error versus model fit

Throughout the whole work, the unmixing error is used as unmixing performance measure. In
the context of least squares data fitting, however, the modelfit is often looked at. Relative model
fit may be expressed as

rMSE =
||X− X̂||2F
||X||2F

, (5.78)

where rMSE denotes sum of squared error normalized to sum of squared data. The fit value is
dependent on the degrees of freedom of the utilized model. A model with as many degrees of
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Figure 5.12: Relative fit versus unmixing error of PCA, CP and SFA. Data dimensions were 10×
50× 20, modeling the modes space, time and trial. 2, 4, 6, 8 and 10 evoked signals
were fitted, respectively. Each, having a maximal shift of 5 samples. The figure sug-
gests that PCA gives best fit, followed by SFA. CP fits the data worst. This is clear
from the fact that CP uses least number of degrees of freedom. Nevertheless, low or
high fit does not correspond to low or high unmixing error. PCA has worst unmixing
performance, CP performs better, while SFA shows best unmixing performance.

freedom as data points yields perfect fit. Hence, fit must not be confused with separation success.
This shall be exemplified in the following.

Let PCA, CP and SFA be fit to some virtual evoked data using a data tensor with dimensions 10
× 50× 20 with modes space, time and trial, respectively. The underlying source dimensionality
sis 2, 4, 6, 8 and 10. Each time, the correct number of underlying components was assumed. All
evoked source signals have maximal shift of 5 samples and, thus, are dependent. For using PCA,
the data tensor is unfolded yielding ordinary twoway matrixchannel× time.
The results suggested by Fig. 5.12 show that the fit is always improved from CP to SFA to PCA.
However, only SFA yields unmixing error close to zero. In particular, fit merely shows the amount
of data variance that is explained. This value is useful as a measure for data compressing. At a
particular rMSE level, the method having least parameters compresses the data most efficiently.
In contrast, for assessing separation performance, the fit value can be highly misleading. Thus,
rMSE is not used here.
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Figure 5.13: Latency estimation performance for maximal latency shifts of 5 ms. For 50 different
evoke signal settings with fixed ECD locations S1 - S3, single channel maximum
likelihood shift estimates [Jas99] are depicted using raw (1) and NAPCA prefiltered
data (2). (3) depicts latency shift estimates obtained by the proposed SFA procedure.

Latency estimation performance

Latency estimation was studied for the case that the latencies were drawn from a uniform distri-
bution [−δ, δ] with the maximal possible latency shiftsδ chosen equal to 5 ms. Fig. 5.11 shows
the results for the latency estimation in one of the 50 signalsettings obtained by the proposed
procedure and the considered single channel method [Jas99]. The single channel method uses
maximum likelihood estimation in a single channel model with fixed signal form and varying
amplitudes and latencies. The method was first employed by taking a single channel (optimal for
each evoked signal) of the raw data without preprocessing. The channel was chosen such that the
resulting latencies best reflected the simulated latency shifts. Note that such a choice is possible
only for simulated data. However, it shall be intended to test our method against the best possible
choice of the channel taken for the single channel latency estimation procedure. In the results of
the single channel method, one observes a correlation between the estimated and the underlying
true latencies, but large estimation errors are still present. When the single channel method is
applied after NAPCA preprocessing, a significant improvement of the results is observed, which
also demonstrates the potential of the NAPCA method. The lastrow in Fig. 5.11, finally, shows
the results of the proposed procedure, which clearly outperform the single channel results ob-
tained with and without preprocessing. Fig. 5.13 summarizes the latency estimation errors from
all 50 signal settings considered. The figure shows the root mean square (RMS) errors of the
estimated latencies. For each method (and each of the 50 signal settings for the 3 evoked sig-
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nals) the RMS errors were determined after applying a common shift to the estimated latencies,
thus accounting for the indeterminacy of the absolute latency. The shift was chosen such that the
RMS error was minimal. Fig. 5.13 demonstrates that the proposed procedure yields improved
latency estimates in most of the cases. Fig. 5.13 further suggests that the latencies for signal 1
are better estimated than those for signal 2 and signal 3. This can be explained by considering
the locations of the corresponding ECDs. The optimal single channel sensors for signal 2 and
signal 3 (located above these sources) record highly mixed signals, whereas the optimal sensor
for signal 1 mainly receives a contribution from the first signal. For larger latencies (δ > 15 ms)
a degradation in latency estimation was observed, which maybe due to difficulties faced in the
estimation procedure caused by local minima. Difficulties also occurred for large latencies with
persistent evoked signal cross-correlations.
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Figure 5.14: Boxplot and cumulative distribution of two-dimensional random unmixing. For
10 % of the results, random unmixing yield an unmixing error equal or below 0.26.
A result with less more than 0.26 error to failure. Methods that have unmixing statis-
tics entirely above 0.26 fail, while methods that have unmixing statistics below 0.26
are considered to succeed. They are significantly better than random unmixing at a
significance level of0.1.

5.7 Comparison study

This section shall compare the novel TDSFA method, ICA, bilinear reference methods, CP as
well as FDSFA. Virtual experiments as introduced in Sec. 4.2and the real world audio-visual
MEG experiment as detailed in Sec. 4.3.1 are ground truth forcomparison.
The actual data experiment has two dimensions, i.e. associated with audition and vision. Hence,
all experiments will be carried out in the the two-dimensional setting, being somehow simple.
However, time domain support, frequency range, mixing condition, locations of dipoles and more
parameters leave high degrees of freedom in simulation.
In order to measure success and failure, two-dimensional random unmixing shall provide a
threshold for binary class separation. A boxplot and cumulative distribution of random unmixing
are depicted in Fig. 5.14. The statistics and distribution result from 10000 repetitions. For 10 %
of the results, random unmixing yields an unmixing error equal or below 0.26. Ad hoc, a result
below 0.26 error shall be classified as successful. Methods that have an unmixing level higher
0.26 are classified to having failed. Specifically, methods that yield all boxplot statistics below
the threshold are believed to be most useful. The threshold can be interpreted as a significance
test. The null hypothesis is that the result is not better than random unmixing. Below 0.26 un-
mixing error an results is said to be significantly better than random unmixing at 0.1 significance
level. Clearly, only an unmixing error close to zero corresponds to true unmixing.
Next to unmixing error statistics, unmixing vector angulardeviation statistics are also provided.
They shall give more insight into the performance of a methodunder test, especially in the actual
data scenario where the number of experiments is limited to 9datasets.
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5.7.1 Virtual MEG data

To evaluate the performance of TDSFA in contrast to established techniques, two virtual experi-
ments are set up:

• At each repetition of the second experiment, the source signal shapes are generated at
random (Eq. 4.8), such that a high variety of signal shapes with low and high-frequency
contents occur. The source locations are assumed to be spaced sufficiently apart from each
other. In each hemisphere, one source is randomly placed near the auditory cortex. The
location setting assures that the associated field maps are not or only partly overlapping.
Latency variation, i.e. time shifts, are uniformly distributed from -1 ms to 1 ms. Amplitude
variations are in the range of 0.85 to 1. The sampling frequency corresponds to 500 Hz.

• At each repitition of the second experiment, the source signal shapes are generated at
random (Eq. 4.8), such that a low variety of signal shapes with mainly low-frequency
contents occur. The source locations are assumed be more or less spaced nearby. In each
hemisphere, one source is randomly placed near the motor cortex. The location setting
assures that the resultant field maps are more or less overlapping. Latency variation, i.e.
time shifts, are uniformly distributed from -5 ms to 5 ms. Amplitude variations are in the
range of 0.85 to 1. The sampling frequency corresponds to 500Hz.

100 trials with 100 ms prestimulus duration and 300 ms poststimulus duration are simulated. In
total, 100 repetitions are run, each modeling two sources, by placing two ECDs into an isocon-
ducting sphere model. Virtual data was obtained using forward calculation [Sar87]. Furthermore,
50 noise ECDs with different AR processes are randomly placedinto the sphere and the corre-
sponding field components are superimposed to the data mixture. 30 dB SNR sensor noise is
added. More details are found in virtual experiment setup Sec. 4.2.
In Fig. 5.15 and Fig 5.16 the two experiments are illustratedby showing 4 signal forms and field
map distribution pairs that are typical for the first and second experimental settings, respectively.
Signal processing chain starts with bandpass filtering between 0.5 Hz and 100 Hz. All trials are
detrendet and the offset is removed (refer to Sec. 4.3.1 for more details). Subsequently, NAPCA
(Sec. 5.1.2) was applied in order to recover the subspace of evoked dependent components. Fi-
nally, the preprocessed data was fed to all decomposition methods under test in sequence.

Fig. 5.17 depicts the results for the first virtual experiment. Next to the unmixing error, angular
deviations from the true unmixing vector are provided. Thisis done to be in line with the actual
experiment, where angular deviation shall give more insight as only very few experiments are
evaluated. Due to permutation indeterminacy, mapping of unmixing vector and mixing vector
was done such that the summed angular deviation is smallest.Fig. 5.17, first row, depicts the
larger angular error, while the second row depicts the smaller angular error. The last row depicts
the unmixing error. Clearly, a method is said to perform without error, if median and standard
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Figure 5.15: Signal shapes and field maps from four runs of thefirst virtual experiment. Source
settings are such that the evoked signal shape show high activity. The field maps are
not or only partly overlapping. The signals are dependent with maximal time shift
equal 1 ms.

deviation of these performance measures are all equal zero.To further assess performance, 0.26
unmixing error is marked by a dotted line. This threshold shall allow the classification of good
and bad methods. For more details see above as well as Fig. 5.14. Median unmixing statistic
below 0.26 has good performance on average, while methods with median and standard devia-
tion below 0.26 perform most robust and are considered useful for separation in the context of
evoked signals and in the context of the subclass of signals being simulated. Note that the two
experiments try to split evoked MEG in roughly two classes inorder to allow for a large coverage
of signal settings, while gaining insight into different mechanism of the decomposition methods
under test.
Specifically, the results in Fig. 5.17 suggest that PCA fails to decompose signals of the first ex-
periment. Only a few outliers yield an unmixing error below 0.26 and PCA is considered not to
be suited for decomposition in this context. This is clear asthe sources are not constrained to
orthogonal mixing and become orthogonal with low probability.
All established ICA methods have an unmixing error statisticwith 75 % of the results above 0.26.
Hence, ICA is observed not to succeed on the average. The plotssuggest that ICA is not robust
against dependencies. Angular deviations suggest that some ICA results are recovered almost
perfectly. Notably, the whiskers of all boxplots reach zero, validating that ICA is able to recover
dependent components in some cases. As discussed in Sec.4.1.3 and 5.3 at length, it is not the
level of dependence but the level of ICA dependence reductionthat is crucial. However, a relation
between median mutual information and unmixing performance exist as shown in Sec. 4.2. Here,
it can be observed that ICA fails for most signal configurations, while performing without errors
for a small subset of experiments. Notably, the first quartile of the unmixing error distribution is
below 0.26. Hence, one in four settings yield an estimate that is only obtained by one in ten trials
of random guesses. This suggests that ICA still is worth considering as a reference method or as
an initialization method in the dependent signal scenario.
The reference methods and CP yield good average results. Nevertheless, upper quantiles of the
unmixing performance distribution suggest that only hpICA,sICA, innoICA and SFA yield very
good results. This can be explained by considering the properties of this experiment. The high
activity of the signal shape allow the highpass filtering approach and innovations approach to re-
duce source dependencies yielding improved ICA results. Theperformance of sICA is explained
by the spatial setting of this experiment. All field patternsare not or only partly overlapping and
sICA is based on this very assumption.
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5 Techniques for the separation of evoked dependent source signals

Figure 5.16: Signal shapes and field maps for four runs of the second virtual experiment. Source
settings are such that the evoked signal shape possess low activity. The field maps
are partly or fully overlapping. The signals are dependent with maximal time shift
equal 5 ms.

Notably, the SFA methods TDSFA and FDSFA outperform all methods. Both methods show ex-
cellent unmixing performance far below the 0.26 threshold.The associated angular deviations
are below 5 degrees for most results.

Fig. 5.18 depicts the results of the second experiment. It confirms that PCA is not suited for
source separation in this context. Again, the sources are not constrained to orthogonal mixing
and become orthogonal with low probability.
It is worth noting that all ICA methods but SOBI show worse performance than in the first ex-
periment. SOBI performs relatively better but not better than in the first experiment. It still fails
on average. Nevertheless, SOBI may be considered valuable for initialization. A consideration
of the other established ICA methods is not suggested for signals in this experiment as all results
for FastICA, Jade and Infomax are above 0.26 unmixing error. As a consequence, the original
source signals were always changed if they were fed to ICA before mixing.
All reference methods and CP show significantly worse resultsthan in the first experiment. This
shows that these methods may be more robust to dependencies but sensitive to other source sig-
nal assumptions. Spatial ICA fails as field maps are overlapping. CP runs into problems because
of temporal shifts. Prefiltering based method seems not to lower dependency enough.
In particular, TDSFA and FDSFA outperform all methods. Both boxplots show excellent perfor-
mance. The TDSFA associated angular deviations are below 5 degrees for most results. More
specifically, TDSFA is observed to yield better results thanFDSFA. This may be explained by
the fact that FDSFA operate in the frequency domain being more sensitive to transformation er-
rors when the frequency content of the signals are similar. However, FDSFA still has excellent
performance - at least for recovering one source.

The SFA methods are at great advantage as the underlying datado follow (almost1) a shifted
trilinear generative process. Hence, real world experiments are needed to further assess the use-
fulness of SFA. Actual audio-visual MEG data are consideredin the next section.

1NAPCA may not work perfectly and can yield data that are not completely corresponding to the shifted factor
analysis model.
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Figure 5.17: Results from the first virtual experiment. PCA andICA are observed to fail. The
prefiltering methods enhance ICA. Furthermore, sICA shows good performance. CP
is observed to yield reasonable results. However, TDSFA andFDSFA outperform
all methods being tested and show excellent performance.
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Figure 5.18: Results from the second virtual experiment. PCA and ICA are observed to fail.
All reference methods show poor performance. TDSFA and FDSFA outperform all
methods under test. Indeed, both have excellent performance, while TDSFA is at
slight advantage in this setting.
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Figure 5.19: Number of successes for actual audio-visual MEG data decomposition; associ-
ated unmixing error is below 0.26. InnoICA, hpICA, SDICA2 as well as sICA show
good performance. The latter is at advantage as sources are spaced far apart. TDSFA
shows better results than CP and FDSFA and equal results with sICA and innoICA.
Specifically, TDSFA is more suited than ICA as well as CP for these evoked data.
The last row suggests that TDSFA has even higher potential inperforming. 10 tri-
als are selected by visual inspection prior to running TDSFAyielding all but one
experiment with low unmixing error.

5.7.2 Actual MEG data

Actual audio-visual evoked MEG data are used to further assess performance in a real word
scenario using the 9 MEG datasets as presented in section 4.3.1. All details on preprocessing as
well as experimental setup are found in section 4.3.1. They include bandpass filtering, detrending
and offset and bad trial removal. NAPCA was used to construct amixing matrix from unisen-
sory auditory and visual data. The bisensory audio-visual stimulated data is projected onto the
columnspace of that mixing matrix. This procedure allows knowing the ground truth in an actual
data scenario - assuming locations of activity to be stationary. Finally, the preprocessed data was
fed to the method under test.
In Fig.4.14, ICA was applied to the 9 datasets and evaluated indetail by using a novel single-
trial performance illustration technique. ICA was observedto have failed in separation of seven
datasets as suggested by Fig. 4.14. The same figure shall be constructed using TDSFA for com-
paring the results. In particular, starting from the ICA, TDSFA performs as depicted in Fig. 5.21.
The single-trial plots show that five recordings are separated. More than double the number of
datasets have unmixing errors below 0.26 in comparison withICA. Still, four datasets are not
decomposed correctly. Choosing only the 10 best trials (selected by visual inspection) yield a
separation with associated unmixing error below 0.26 for 8 datasets! This suggests that SFA has
high potential in the case that trials follow the model assumed. In turn, not all trials seem to fol-
low the SFA model, which pose difficulties for this technique. Specifically, trials that occurred in
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the second half of the experiment as well as a first few are observed to lead SFA to worse results
than deleting those trials. This may be explained with the concentration level of the subject. At
the beginning and at the end of the experiment, the concentration is less accurate yielding data
that is not compliant with the model assumptions.
Fig. 5.19 shows the frequency of separation below 0.26 unmixing error for each method. The
results clearly suggest that SFA is a candidate method for the separation of actual domain MEG
data. The last column of 5.19 shows the excellent potential of SFA if only ’good’ trials are con-
sidered. In particular, SFA seems to be more successful thanCP and ICA. In Fig. 5.20, TDSFA is
further compared to all methods in more detail. Very similarto the virtual experiment, the boxplot
statistics are provided in Fig. 5.20. This time, angular deviation shall provide more information
as only 9 datasets are available. Again, 0.26 unmixing errorshall be used as threshold in order
to assess performance. In particular, Fig. 5.20 suggests that median unmixing performance be-
low the threshold is attained by innoICA, spatial ICA as well asTDSFA. The results of spatial
ICA are expected as field maps are only partly overlapping. Notably, SDICA2 and hpICA still
perform relatively well. However, it is not well understoodby the author why FDSFA performs
rather poorly. Fine tuning with different initialization,termination and number of iterations as
well as constraints such as orthogonality and non negativity of the amplitudes mode has been
considered. For the results depicted, ICA is used as initialization and no constraints are im-
posed, such as in the TDSFA setting. Notably, all methods arelargely outperformed by utilizing
’cheated’ TDSFA. Specifically, choosing trials by visual inspection (ten trials from the first 10
minutes of the experiment) yields results as suggested by the last column in Fig. 5.20. Eight of
the nine datasets are separated! Clearly, this underlines the high potential of SFA and shows that
the model assumptions are not always met in all trials.
Consequently, a method that deletes non-compliant trials may be helpful. Notably, this technique
can have a positive effect for CP and ICA as one may argue that only some trials are dependent
and only some trials are shifted. However, if the trials are assumed to be shifted and dependent,
SFA combined with sophisticated trial selection may have higher potential to benefit from a trial
selection technique. If less trials need to be rejected, SFAmay be more robust than ICA and CP
as it covers presumably more compliant trials. This approach and its consequences are beyond
the scope of this work and need to be addressed in the future.

86



5.8 Discussion

5.8 Discussion

This section discusses alternatives to ICA. It was shown thatthe use of ICA results based on
mutual information for subspace or separation analysis is questionable. Indeed, ICA optimizes
some feature of independence. At a global minimum no more reduction of this feature is possible
under linear transformation. However, the unmixing performance may be far from optimal.
This can be compared to least squares fitting in CP and SFA. A good fit only says that the model
explains variance. Yet, it was designed to do so! Arguing along the same line, ICA is designed to
yield independent components. Hence, for both techniques,the optimized value cannot be linked
to separation success. Clearly, a perfect fit is always obtained using a very large number of com-
ponents; independent components are always obtained when the dependent sources can be made
independent under linear transformation. A good fit as well as a reasonable level of independence
cannot tell separation performance.
As a consequence, virtual and actual experiments were designed to evaluate the separation per-
formance and to search for alternatives. Shifted factor analysis was shown to yield better results
than ICA or classic CP. SFA introduces more degrees of freedom to the CP model, while retain-
ing the favorable property of essential uniqueness. The data are assumed to follow this model and
must be trilinear up to one mode that is allowed to be shifted.Raw MEG data may not follow the
SFA model as non-evoked sources may be far from being shiftedtrilinear.
As a consequence, the use of NAPCA is highly advocated. NAPCA aims at finding structure
that corresponds to the SFA model, i.e. that contain the evoked sources. These are assumed to be
trilinear with shifts along the temporal mode and, hence, the combination of NAPCA and SFA is
assumed to be suited for decomposition of evoked MEG data.
The novel TDSFA method approaches SFA in the time domain. Taylor series are employed and
truncated in practical use. Derivatives were approximatednumerically. Nevertheless, TDSFA is
robust to the design choices. Low and high numbers of Taylor components both give good per-
formance, while using simple central differences for approximating the derivatives worked out.
The comparison study showed that for both virtual and actualdata experiment, TDSFA yields
very good performance without fine tuning its parameters, such as number of Taylor components
or numerical approximation of differentiation. In contrast, ICA as well as CP are observed to fail
in more cases.
In particular, this chapter has shown high potential for thecombination of NAPCA and TDSFA
and showed problems of ICA as well as CP due to dependencies as well as shifts. ICA performs
worse if no shifts occur and CP is the right model to choose. Shifts lower dependencies. Still,
CP and ICA are observed to fail and SFA should be used. For very high shifts, signals are made
independent and ICA should be used. However, in practice, small shifts are likely and SFA is
assumed to be most appropriate. Indeed, actual data suggestthat TDSFA is suited for real word
data. ICA and its generalizations, such as ICA on innovations,often yield good initial solutions.
They were considered as preprocessing techniques prior to the application of TDSFA.
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Figure 5.20: Decomposition results from actual audio-visual MEG data. PCA and ICA are ob-
served to fail in most cases. Median unmixing performance below 0.26 unmixing
error is reached by innoICA, sICA and TDSFA. SFA outperforms ICAand CP,
which underlines the potential of a flexible model that is still essentially unique.
The last row is cheated in the sense that only 10 trials are selected by visual inspec-
tion prior to running TDSFA. However, the boxplot suggests that TDSFA has even
higher potential in performing; all but one dataset is decomposed with low unmixing
error by TDSFA.
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Figure 5.21: Results of applying TDSFA to the data from the audio-visual experiment (AV data).
The TDSFA unmixing vectors are applied to AV, A and V data, respectively. In the
rightmost column the unmixing error is provided. The obtained and stacked single-
trial plots show that five recordings are separated by TDSFA.In comparison with
Fig. 4.14, the TDSFA approach clearly outperforms ICA.
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This thesis issued the decomposition of evoked MEG data intothe data underlying dependent
source signals employing a linear generative model assumption. Under the term blind source
separation, the framework of independent component analysis has gained widespread popularity.
ICA is a generalization of PCA as it is able to disentangle any regular mixing matrix, whereas
PCA is limited to orthogonal mixing. Separation of non-orthogonal mixing is possible assuming
independence among and non-Gaussianity of the sources. If these assumptions are met, ICA is
essentially unique and yields the underlying components, i.e. brain signals of interest as well as
brain or non-brain signals that are not of interest.
MEG data from stimulation experiments build a subset of general MEG data. One feature of
evoked data is its repetitive nature - evoked components arestructured in trials. In each trial, one
or more signals may be evoked at one or more brain locations. Using evoked data, ICA often
recovers at least one component that possess a dipolar field map as well as typical structure in
the time or frequency domain. Often, such a component is saidto be physiologically plausible.
Indeed, it is tempting to refer to such a component astheevoked signal. However, more than one
source may be evoked by one or more stimuli. As a consequence,ICA’s assumption of indepen-
dence may no longer hold true.
Whether plausible components give evidence to true components was not addressed in the con-
text of evoked experiments. In particular, an ICA robustnessanalysis of dependence was missing.
Consequently, this thesis posed and discussed questions such as ’Can ICA separate dependent
components?’ or ’How much dependence is allowed?’. It was demonstrated that highly depen-
dent signals can be separated by ICA, if, under linear transformation, the original sources cannot
be made less dependent. Indeed, ICA will reduce dependence introduced by the mixing process.
As it cannot further lower dependency, the original dependent signals are perfectly separated. On
the other hand, if, under linear transformation, dependentsources are changed by an ICA, the
unmixing matrixW will differ from identity. Consequently, if these dependentsource signals
are mixed, ICA will also act on the sources yielding the unmixing matrixW again . Indeed,
ICA lowers the dependency among the estimates that were introduced due to linear mixing but,
furthermore, lowers the dependency of the original signalsas much as possible under linear
transformation. In these cases ICA is deemed to fail. The question is, ’Can ICA separate typical
evoked dependent components?’.
To assess the performance and usefulness of ICA in the evoked dependent signal scenario, a
virtual MEG experiment as well as an actual MEG data experiment was designed. Using vir-
tual data, the results showed that median unmixing error closely follows mutual information of
the original signals. Furthermore, for closely spaced location of the sources, ICA components
showed physiologically plausible dipolar structure. Suchcomponents are often believed to be
correctly separated but were shown still to be a mixture - ICA did not succeed. For nine audio-
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visual evoked data sets with dependent sources, ICA was observed to fail in seven cases. This
means that ICA is likely to provide only some vector of an evoked signal subspace. This re-
covered component is not an underlying source but a mixture of evoked sources in that signal
subspace. Thus, the first challenge towards a technique thatcan separate independent and de-
pendent sources is subspace analysis. This step can be considered as a preprocessing step. It is a
useful step as the dimensionality of the recorded data is often drastically reduced by considering
only the subspace of evoked signals. Furthermore, noise canbe reduced and the structure un-
derlying the data can be assumed to be more homogeneous. The data consists mainly of evoked
contribution, which facilitates analysis.
Cardoso et al. conjectured that ICA can separate data with underlying dependent and indepen-
dent sources into independent sources and subspaces containing mixed dependent sources. A
grouping algorithm based on residual dependencies was proposed to determine these subspaces.
Nevertheless, it was demonstrated that using a binned mutual information ICA lowers binned
mutual information of the sources. Hence, ICA fails but the user may not be aware of it as the
estimates may only show low dependence. It was concluded that mutual information among ICA
estimates is a questionable quantity to use in order to groupcomponents to subspaces or to infer
the success of ICA. As a consequence, noise adjusted principal component analysis was con-
sidered. NAPCA makes use of pre- and poststimulation information, using simple and robust
covariance statistics. After whitening the noise space, a second PCA of sphered noise plus trans-
formed evoked signal yield eigenvectors that point into thedirection of evoked activity. By this,
NAPCA robustly recovers the evoked subspace. The use of NAPCA was highly advocated due
to its robustness and ease of use. For single evoked signal, NAPCA can serve as a separation and
denoising tool yielding highly accurate estimates. Hence,in all experiments, NAPCA was run
as a preprocessing method with excellent performance on virtual and actual MEG data. Notably,
finding the subspace of evoked signals is of utmost interest for specific evoked data models, such
as CP. Which in turn is of high interest as CP is essentially unique without assuming indepen-
dence. In contrast, the bilinear model is essentially non-unique.
Decomposition methods that aim at the data underlying sources have to impose assumptions.
Specifically, all methods that use a bilinear mixing model have to assume some objective func-
tion in order to render the solution essentially unique. It is questionable whether a new objective
is more robust than assuming independence for evoked MEG.
Stimulation experiments are structured, a general property, which may be further exploited. E.g.,
CP aims at using this structure assuming trilinear components with modes space, time as well as
trial. Nevertheless, for a successful CP decomposition to work, the recorded data must follow a
trilinear generative process. As shifts are common to actual data, the model is per se incorrect. In
line with the assessment of ICA to the violation of the independence assumption, CP needed to
be assessed for its robustness to shifts. Again, in the context of evoked MEG, this was not done
before. At some level, shifts must destroy the separation performance of CP. It was assessed in the
context of shifts using different signal shapes as well as temporal support of the virtual evoked
signals. Depending on the signal shape, already small shifts of a single sample was shown to
destroy a CP decomposition. Only for signals with low frequency content CP did tolerate shifts
up to 3 samples, in the case that temporal support is about 200samples. These findings suggested
that CP can be highly sensitive to model violation by shifts inone mode. Clearly, in actual data,
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List of contributions Section Figure Publication
Virtual simulation tool for evoked dependent sources4.2 4.4 [Koh08a, Koh09]
Robustness assessment of ICA to dependence 4.2.5 4.7 [Koh08b, Koh09]
The nearby dipole effect 4.2.6 4.9 [San10, Koh09]
Discussion on mutual information of ICA results 5.3 5.4 -
Proposition of using NAPCA for subspace analysis 5.1.2 5.2 [Koh10b]
Robustness assessment of CP to shifts 5.4.4 5.7 -
Time domain shifted factor analysis (TDSFA) 5.6 5.9 [Koh10a]
Audio-visual paradigm yielding dependent sources 4.3 4.10 [Koh10b]
Single-trial performance illustration technique 4.3.4 4.11 -
Comparison study based on actual and virtual data 5.7 5.21 -

shifts may not be integer spaced and can still have impact on the CP performance.

Harshman and Hong proposed a novel method including shifts.Shifted factor analysis was shown
to be essentially unique by Morup. He further presented the first method in the frequency do-
main, which is capable of estimating non-integer shifts. Field et al. noted that when applying CP
to evoked shifted data, components were doubled with the same spatial profile but with differ-
entiated temporal signatures. Based on this remarkable observation and the work of Morup, this
work proposed to approximate the shifted factor analysis model by using a Taylor series based
expansion. It turned out that for infinite many Taylor components, SFA equals the CP model that
has infinite many components. Truncating the Taylor series gave a robust algorithm that largely
outperformed ICA, CP and other reference techniques. In contrast to FDSFA, a linear algorithm
is obtained when using first order Taylor approximation. Forhigher order approximation, say a
10th order approximation, TDSFA was shown to perform better onthe actual audio-visual MEG
data. ICA and CP only succeed in one dataset, while TDSFA succeeded in 5 of 9 recordings.
Nevertheless, bad trials can lower the performance. In particular, it was demonstrated that man-
ual selection of 10 trials by visual inspection yielded excellent performance of TDSFA with 8 of
9 successful decompositions.

It is worth further investigating shifted factor analysis.One line of future work is automation
of trial selection. Another line is the investigation of thenumber of degrees of freedom, e.g. for
allowing signal shape variations from trial to trial, or other variations. This, however has to be
limited in order to keep the favorable essential uniquenessproperty.
Another line of investigation is to reformulate the multi-stage SFA algorithm as a single-stage
algorithm. Having all stages sharing information should improve the results of each stage. Lastly,
a method is only as good as its numerical implementation. As well as experimental stimulation
paradigm design and care in recording, the choice of preprocessing, numerical optimization and
its robustness are crucial. Efficient and robust numerical techniques are still to be assessed and
designed in order to profit from SFA to the full in practice.
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[Koh10a] Kohl, F., Ẅubbeler, G., Kolossa, D., B̈ar, M., Orglmeister, R. and Elster, C. 2010.
Shifted factor analysis for the separation of evoked dependent MEG signals.Physics
in medicine and biology, 55:4219–4230.
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[Poc06] Ṕoczos, B. and L̈orincz, A. 2006. Non-combinatorial estimation of independent au-
toregressive sources.Neurocomputational Letters69(16-18):2416–2419.

105



Bibliography

[Raj08] Rajih, M., Comon, P. and Harshman, R.A. 2008. Enhanced line search: a novel
method to accelerate PARAFAC.SIAM journal on matrix analysis and applications,
30(3):1128–1147.

[Rao71] Rao, C.R. and Mitra, S. 1971.Generalized inverse of matrices and its applications,
New York, Wiley.

[Roy90] Roy, C.S. and Sherrington, C.S. 1890. On the regulation of the blood-supply of the
brain.Physiology, 11(1-2):85–108.

[Sal04] Salajegheh, A., Link, A., Elster, C., Burghoff, M., Sander, T., Trahms, L. and Poeppel,
D. 2004. Systematic latency variation of the auditory evoked M100: from average to
single-trial.Neuroimage23(1):288–295.
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Appendix

Audio-visual paradigma code using the softwarePresentationR©

# header
s c e n a r i o = ”AVAV2” ;
s c e n a r i o t y p e = t r i a l s ;
n o l o g f i l e = f a l s e ;
d e f a u l t b a c k g r o u n d c o l o r = 255 , 255 , 255 ;
w r i t e c o d e s = t r u e ;
p u l s e w i d t h = 30 ;
a c t i v e b u t t o n s = 1 ;

# p o r t c o d e :
# 10 −− A
# 20 −− V
# 40 −− AV 0
# 40−85 −− AV 0 20

# t r i a l d e f i n i t i o n s
beg in ;#
# wh i t e p i c t u r e
p i c t u r e { b i tmap { f i l e n a m e = ” we iss2 . png ” ; h e i g h t = 300 ; w id th = 450 ;} ; x = 0 ; y = 0;} p i c w e i s s ;
# r e s t i n g p i c t u r e
p i c t u r e { b i tmap { f i l e n a m e = ” r e s t . j pg ” ; h e i g h t = 300 ; w id th = 450;} ; x = 0 ; y = 0;} p i c r e s t ;
# a u d i t o r y tone o f 1 kHz / d u r a t i o n 300 ms
sound { w a v e f i l e { f i l e n a m e = ” 1000 Hzsound . wav” ;} ; } tone 1kHz ;
# v i s u a l p i c t u r e checherwedge 1
p i c t u r e { b i tmap { f i l e n a m e = ” s t im wedge 1 . png ” ; h e i g h t = 300 ; w id th = 450 ;} ; x = 0 ; y = 0;} p i c c h e c k 1 ;
# v i s u a l p i c t u r e checherwedge 2
p i c t u r e { b i tmap { f i l e n a m e = ” s t im wedge 2 . png ” ; h e i g h t = 300 ; w id th = 450 ;} ; x = 0 ; y = 0;} p i c c h e c k 2 ;

t r i a l { n o t h i n g {}; p o r t c o d e =10; p i c t u r e p i cw e i s s ; s t i m u l u se v e n t{sound tone1kHz ; } A event ; } A t r i a l ;
t r i a l { s t i m u l u s e v e n t{p i c t u r e p i c c h e c k 1 ; } V1 event ; s t i m u l u se v e n t{p i c t u r e p i c c h e c k 2 ; } V2 event ; } V t r i a l ;
t r i a l { s t i m u l u s e v e n t{p i c t u r e p i c c h e c k 1 ; } AV V1 event ; s t i m u l u se v e n t{p i c t u r e p i c c h e c k 2 ; } AV V2 event ;

s t i m u l u s e v e n t{sound tone1kHz ; } AV A event ; } A V t r i a l ;
# b u f f e r , r e s t , a t t e n t i o n t r i a l
t r i a l { t r i a l d u r a t i o n =1300; p i c t u r e p i cw e i s s ; code=” b u f f e r ” ; } b u f f e r t r i a l ;
t r i a l { p i c t u r e p i c r e s t ; d u r a t i o n = r e s p o n s e ; code=” r e s t ” ;} r e s t i n g t r i a l ;

# PCL Code s t a r t s here

b e g i n p c l ;
i n t r a n v a l ;
i n t r a n j i t ;
i n t main exp ;
i n t p a r t ;
i n t f i x d e l a y ;
i n t g e n s h i f t ;

Figure 6.1: Original paradigma pictures: resting, checkerwedge 1 and 2. Mirrors reflect the pic-
ture from the beamer to the screen and the subjects sees mirrored versions.
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s t r i n g proband ;
s t r i n g s t rme ;
s t r i n g s t rmea ;
i n t s t rmeb ;
i n t t og ;
i n t i ;
i n t i i ;
i n t j ;
f i x d e l a y =50;
proband=” F l o r i a n Kohl ” ;
main exp =0;
g e n s h i f t =0;
p a r t =1;

# S t a r t o f paradigma
i f ( main exp<100) then

s t rme =proband ;
s t rme . append ( ” mainexp ” ) ;
s t rme . append ( ” ” ) ;
s t rme . append ( s t r i n g ( mainexp ) ) ;
s t rme . append ( ” ” ) ;
s t rme . append ( s t r i n g ( p a r t ) ) ;
s t rme . append ( ” . l og ” ) ;
l o g f i l e . s e t f i l e n a m e ( s t rme ) ;

j = 1 ;
loop u n t i l j > 5
beg in

# a u d i t o r y t r i a l s
i = 1 ;
loop u n t i l i > 8
beg in

r a n v a l = random (1500 , 2 0 0 0 ) ;
A t r i a l . s e t d u r a t i o n ( r a n v a l ) ;
A event . s e t t i m e ( f i x d e l a y + g e n s h i f t ) ;
A event . s e t e v e n t c o d e ( ” t o n e 1 k H z A t r i a l ” ) ;
A t r i a l . p r e s e n t ( ) ;
i = i +1;

end ;

# v i s u a l t r i a l s
i = 1 ;
tog =1;
loop u n t i l i > 11
beg in

r a n v a l = random (1500 , 2 0 0 0 ) ;
V t r i a l . s e t d u r a t i o n ( r a n v a l ) ;
i f t og ==1 then
V1 event . s e t s t i m u l u s ( p i c c h e c k 1 ) ;
V2 event . s e t s t i m u l u s ( p i c c h e c k 2 ) ;
t og =0;
e l s e
V1 event . s e t s t i m u l u s ( p i c c h e c k 2 ) ;
V2 event . s e t s t i m u l u s ( p i c c h e c k 1 ) ;
t og =1;
end ;
V1 event . s e t p o r t c o d e ( 2 0 ) ;
V2 event . s e t d e l t a t ( f i x d e l a y−5);
V1 event . s e t e v e n t c o d e ( ” V 1 V t r i a l ” ) ;
V2 event . s e t e v e n t c o d e ( ” V 2 V t r i a l ” ) ;
V t r i a l . p r e s e n t ( ) ;
i = i +1;

end ;

i i = 1 ;
loop u n t i l i i > 2
beg in

# audio−v i s u a l w i t h 17ms t ime s h i f t s
i = 1 ;
loop u n t i l i > 3
beg in

r a n v a l = random (1500 , 2 0 0 0 ) ;
A V t r i a l . s e t d u r a t i o n ( r a n v a l ) ;
i f t og ==1 then
AV V1 event . s e t s t i m u l u s ( p i c c h e c k 1 ) ;
AV V2 event . s e t s t i m u l u s ( p i c c h e c k 2 ) ;
t og =0;
e l s e
AV V1 event . s e t s t i m u l u s ( p i c c h e c k 2 ) ;
AV V2 event . s e t s t i m u l u s ( p i c c h e c k 1 ) ;
t og =1;
end ;
r a n j i t = random ( 1 , 3 ) ;
i f ( r a n j i t ==1) then AV V1 event . s e t p o r t c o d e ( 4 0 ) ;

AV V1 event . s e t e v e n t c o d e ( ” AV j i t 0 ” ) ;
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V V2 event . s e t d e l t a t ( f i x d e l a y−5);
AV A event . s e t d e l t a t ( g e n s h i f t ) ; end ;

i f ( r a n j i t ==2) then AV V1 event . s e t p o r t c o d e ( 6 0 ) ;
AV V1 event . s e t e v e n t c o d e ( ” AV j i t 16 1 ” ) ;
AV V2 event . s e t d e l t a t ( f i x d e l a y−5−17);
AV A event . s e t d e l t a t ( g e n s h i f t +17 ) ; end ;

i f ( r a n j i t ==3) then AV V1 event . s e t p o r t c o d e ( 6 5 ) ;
AV V1 event . s e t e v e n t c o d e ( ” AV j i t 16 2 ” ) ;
AV V2 event . s e t d e l t a t ( f i x d e l a y−5+17);
AV A event . s e t d e l t a t ( g e n s h i f t−17); end ;

AV A event . s e t e v e n t c o d e ( s t r i n g ( r a n j i t ) ) ;
AV V2 event . s e t e v e n t c o d e ( ” V AV t r i a l ” ) ;
A V t r i a l . p r e s e n t ( ) ;
i = i +1;

end ;

# audio−v i s u a l w i t h 0ms t ime s h i f t s
i = 1 ;
loop u n t i l i > 3
beg in

r a n v a l = random (1500 , 2 0 0 0 ) ;
A V t r i a l . s e t d u r a t i o n ( r a n v a l ) ;
i f t og ==1 then
AV V1 event . s e t s t i m u l u s ( p i c c h e c k 1 ) ;
AV V2 event . s e t s t i m u l u s ( p i c c h e c k 2 ) ;
t og =0;
e l s e
AV V1 event . s e t s t i m u l u s ( p i c c h e c k 2 ) ;
AV V2 event . s e t s t i m u l u s ( p i c c h e c k 1 ) ;
t og =1;
end ;
AV V1 event . s e t p o r t c o d e ( 4 0 ) ;

AV V1 event . s e t e v e n t c o d e ( ” AV j i t 0 ” ) ;
AV V2 event . s e t d e l t a t ( f i x d e l a y−5);
AV A event . s e t d e l t a t ( g e n s h i f t ) ;
AV A event . s e t e v e n t c o d e ( s t r i n g ( r a n j i t ) ) ;

AV V2 event . s e t e v e n t c o d e ( ” V AV t r i a l ” ) ;
A V t r i a l . p r e s e n t ( ) ;
i = i +1;

end ;

# audio−v i s u a l w i t h 8ms t ime s h i f t s
i = 1 ;
loop u n t i l i > 3
beg in

r a n v a l = random (1500 , 2 0 0 0 ) ;
A V t r i a l . s e t d u r a t i o n ( r a n v a l ) ;
i f t og ==1 then
AV V1 event . s e t s t i m u l u s ( p i c c h e c k 1 ) ;
AV V2 event . s e t s t i m u l u s ( p i c c h e c k 2 ) ;
t og =0;
e l s e
AV V1 event . s e t s t i m u l u s ( p i c c h e c k 2 ) ;
AV V2 event . s e t s t i m u l u s ( p i c c h e c k 1 ) ;
t og =1;
end ;
r a n j i t = random ( 1 , 3 ) ;
i f ( r a n j i t ==1) then AV V1 event . s e t p o r t c o d e ( 4 0 ) ;

AV V1 event . s e t e v e n t c o d e ( ” AV j i t 0 ” ) ;
AV V2 event . s e t d e l t a t ( f i x d e l a y−5);
AV A event . s e t d e l t a t ( g e n s h i f t ) ; end ;

i f ( r a n j i t ==2) then AV V1 event . s e t p o r t c o d e ( 8 0 ) ;
AV V1 event . s e t e v e n t c o d e ( ” A V j i t 8 1 ” ) ;
AV V2 event . s e t d e l t a t ( f i x d e l a y−5);
AV A event . s e t d e l t a t ( g e n s h i f t−8); end ;

i f ( r a n j i t ==3) then AV V1 event . s e t p o r t c o d e ( 8 5 ) ;
AV V1 event . s e t e v e n t c o d e ( ” A V j i t 8 2 ” ) ;
AV V2 event . s e t d e l t a t ( f i x d e l a y−5);
AV A event . s e t d e l t a t ( g e n s h i f t + 8 ) ; end ;

AV A event . s e t e v e n t c o d e ( s t r i n g ( r a n j i t ) ) ;
AV V2 event . s e t e v e n t c o d e ( ” V AV t r i a l ” ) ;
A V t r i a l . p r e s e n t ( ) ;
i = i +1;

end ;
i i = i i +1;
end ; # j i t t e r loop

r e s t i n g t r i a l . p r e s e n t ( ) ;
b u f f e r t r i a l . p r e s e n t ( ) ;
j = j +1;
end ;
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