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Abstract

Local hybrid functionals are a relatively new and promising tool in the widely used
Kohn-Sham density functional theory, but they have been lacking the capability
for structure optimization and vibrational spectroscopic calculations. To close that
gap, this thesis is concerned with the implementation and assessment of energy
derivatives w.r.t. nuclear displacements (gradients) for local hybrids. The new im-
plementation in the quantum chemical program package Turbomole is then used
in the evaluation of a new benchmark set of small, gas phase mixed-valence sys-
tems. One of the local hybrid functionals is among the best performing functionals
in that evaluation.

In the second part, the concept of making a previously constant parameter
position-dependent is transferred to the competing approach of range-separated
hybrid functionals. Expanding on previous preliminary work with this method, the
first self-consistent implementation of local range-separated functionals into Tur-
bomole is described, followed by an assessment of a new functional on molecular
properties of selected test sets. We use a semi-empirical range-separation function
in combination with PBE-type exchange and the standard PBE correlation func-
tionals. Even with this simple approach, the functionals with local range separation

are superior to those with constant parameters for thermochemistry and kinetics.
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Zusammenfassung

Lokale Hybridfunktionale sind ein relativ neues und vielversprechendes Werk-
zeug in der weit verbreiteten Kohn-Sham-Dichtefunktionaltheorie, jedoch waren
Strukturopimierungungen und schwingungsspektroskopische Berechnungen bis-
lang nicht moglich. Um diese Liicke zu schliefen, befasst sich diese Dissertation
mit der Implementierung und Validierung von Ableitungen der Energie bzgl. der
Kernpositionen (Gradienten) fir lokale Hybridfunktionale. Die neue Implementie-
rung im quantenchemischen Programmpaket Turbomole wird anschlieend bei der
Evaluierung eines neuen Benchmark-Testsatzes genutzt, der aus kleinen, gemischt-
valenten Systemen in der Gasphase besteht. Eines der lokalen Hybridfunktionale
ist unter den besten Funktionalen in dieser Untersuchung.

Im zweiten Teil wird das Konzept, einen zuvor konstanten Parameter positi-
onsabhéngig zu machen, auf den konkurrierenden Ansatz der Hybridfunktiona-
le mit Reichenweitenseparierung iibertragen. Aufbauend auf vorigen anfénglichen
Bemiihungen zu dieser Methode beschreiben wir die erste selbstkonsistente Imple-
mentierung lokaler Reichenweitenseparierungsfunktionale in Turbomole und vali-
dieren ein neues Funktional fiir molekulare Eigenschaften an ausgewéhlten Test-
siatzen. Es wird eine semiempirische Reichweitenseparierungsfunktion in Kombi-
nation mit einem Austauschfunktional des PBE-Typs und dem iiblichen PBE-
Korrelationfunktional genutzt. Selbst mit diesem einfachen Ansatz sind die Funk-
tionale mit lokaler Reichweitenseparierung solchen mit konstanten Parametern fiir

Thermochemie und Kinetik tiberlegen.
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1 Introduction

Modern chemistry is ever more reliant on predictions from theoretical electronic
structure methods, e.g. for the interpretation of experimental data or the prese-
lection of promising materials. Wave function methods can be highly accurate but
tend to be restricted to relatively small systems because of their often unfavorable
scaling of computational demands with systems size. As an alternative, density
functional theory (DFT)™ relies per definition on the electron density only and
therefore enables the investigation of larger systems. In practice, the approximate
Kohn-Sham density functional theory (KS-DFT)™ has become the most widely
used quantum chemical method because of its balance between accuracy and ef-
ficiency, albeit by introducing more complex ingredients like the gradient of the
electron density, and (un)occupied orbitals. Within this method, the difficulty
of finding an approximation for the universal density functional is shifted to the
notorious exchange-correlation (XC) functional, for which various constraints are
known. Starting from the simple model of the uniform electron gas, the sophis-
tication of new XC functionals has increased ever since, ranging from ab initio
derivations of exact constraints, over highly parametrized approaches optimized
for a (possibly large) selection of systems, to combined ansatzes.

Omne major domain is the inclusion of non-local exact exchange (XX) to mitigate
the self-interaction error (SIE), either in a constant way, as in global hybrid (GH)
functionals, or at certain interelectronic ranges, as in global range-separated hy-
brid (GRSH) functionals. In both cases the controlling parameters are constants
optimized for sets of properties and systems to get average values. Instead, the con-
stants can also be optimized individually to fulfill certain theoretical conditions
(e.g. Koopmans’ theorem) for a given system, resulting in optimally tuned range-
separated hybrid (OT-RSH) functionals.®’#! This leads to a (inhomogeneous) col-
lection of range-separated hybrid (RSH) functionals but with favorable description
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of outer valence properties.

To circumvent this one-size-fits-all mentality, using a position- and therefore
system-dependent local mixing function (LMF) to replace the constant fraction
of XX in GHs gives rise to local hybrid (LH) functionals.®? They yield improved
results for thermochemical properties and excitation energies.®® Computation of
structural or vibrational data of LHs have been out of reach so far since the neces-
sary algorithms had not been implemented. Following the prior efficient implemen-
tations of self-consistent field (SCF) energy and linear response time-dependent
density functional theory (TDDFT) algorithms for LHs ®*%* the first part (Chap-
ter 3) of this thesis will provide the theoretical background and implementation of
the energy derivatives w.r.t. the displacement of nuclei, i.e. the local hybrid gra-
dients (LHGs),! into the quantum chemical program package Turbomole.®® These
gradients enable structure optimization as well as the (numerical) calculation of
vibrational spectroscopic data for comparison with experiment. The implemen-
tation is assessed for accuracy and efficiency, especially regarding two screening
techniques. Furthermore, LHs are applied to a benchmark set of small, gas phase
mixed valence (MV) oxides, which are sensitive to the XX fraction for the correct
description of their electronic structure.?

The same principle can also be applied to GRSH functionals by introducing a
position-dependent range-separation function (RSF), which leads to local range-
separated hybrid (LRSH) functionals. Prior work in this direction yielded improve-
ments in comparison with the fixed approach.®® However, those investigations were
based only on functionals of the local density approximation (LDA) and were con-
ducted non-self-consistently. Interest in the further development of this method has
apparently halted since then. The second part (Chapter 4) of this thesis will be
concerned with the derivation and self-consistent implementation of this approach
for the LDA as well as a variant based on the generalized gradient approximation
(GGA) functional PBE into Turbomole.®> We introduce our first, general RSF,
optimize it for a small training set, and assess the resulting LRSH functionals
for multiple test sets covering various properties, including the comparison with
separately optimized global equivalents of our new functionals.

In preparation of those two main topics, the next chapter (Chapter 2) will give

some theoretical foundations. Starting from basic Hartree-Fock (HF) theory, KS-



DFT will be introduced, leading to approximations for the XC functionals, includ-
ing the GH, LH, and GRSH schemes mentioned above. Afterwards the mathemat-
ical and algorithmic common ground for both ansatzes will be defined for later

reference in the principal results chapters.






2 Theoretical Background

This chapter sets the theoretical background for the derivations and implementa-
tions. First, some basics of quantum chemical methodology with focus on the HF
method is given, followed by an overview of KS-DFT with focus on the global,
local and range-separated hybrid functionals. A short overview of the quantities
and integration techniques will help in understanding the implementation aspects
and changes to existing computer code in later chapters. The program package
Turbomole is described to give an impression of how the program parts interact,
followed by further details of current implementation details for later reference.
As is common practice in quantum mechanics, we will use atomic units in this
work. They are linked to fundamental constants® and their combinations”. The

upper limit of sums and products will be omitted if they are clear from context.

2.1 Hartree-Fock Method

According to the basic principles of quantum mechanics, every system can be
described by a wave function ¥, which contains all information about the system.?”

In the non-relativistic, time-independent case, the Schrodinger equation
HU = EV (2.1.1)

holds, where ¥ is the eigenfunction and the energy FE is the eigenvalue of the
Hamilton operator H , which expresses all interactions of the system. Except for
the simplest cases, Eq. (2.1.1) cannot be solved analytically. Various methods have

been developed to find approximate solutions.

dmass: rest mass of the electron m,; charge: elemental charge e; action: Planck constant .
blength: Bohr radius ag; energy: Hartree Ey,.



2 Theoretical Background

A typical simplification is the Born-Oppenheimer approximation, where the po-
sitions of the nuclei (because of their distinctly higher mass) is treated as fixed
compared to the electrons. With this, Eq. (2.1.1) reduces to an analogous equa-
tion with an electronic Hamilton operator ﬁe and an electronic wave function V.,
which depends only parametrically on the coordinates of the nuclei. We will only
consider these electronic operators and wave functions from here on and therefore
drop the index ‘e’ for simplicity.

The energy contribution of the nuclei is then limited to the internuclear Coulomb

Ex=)Y %" Z;;]ZBB (2.1.2)

A B>A

repulsion

Here Z4 and Zp are the charges of the nuclei A and B, respectively, and r4p is

the distance between them. The (electronic) Hamilton operator

L A PIAED D) S B D
i A v

)
iG> Y

(2.1.3)

therefore contains the remaining electronic energy contributions. The interaction
of the electrons with the potential of the nuclei is treated within the operator
Vxe. Additionally there is the kinetic energy (7') and the potential energy due
to the interelectronic repulsion (Vee) Again, Z, is the charge of nucleus A, and
Ta; or r;; refer to the distance between an electron ¢ and either a nucleus A or
another electron j. The symbol V? describes the second derivative w.r.t. electronic
coordinates.

According to the variational principle, the energy expectation value of an arbi-
trary trial wave function Wy, cannot lie below the true ground state wave function
Uy, i.e. Eyia > Ep. By minimizing the energy, one therefore tends towards Wy.
Since the inspection of all (infinitely many) possible wave functions is practically
impossible, one chooses a subset of functions from which the best one can be
determined algorithmically.

In the HF method, the system’s wave function ¥ is composed of orthonormal
one-electron wave functions @; for each electron ¢, which are called spin orbitals.
They are created by multiplying the spatial orbitals ¢; with an orthonormal spin

function a or 3 (in general o), which takes the spin s € {—3,+3} of the electron



2.1 Hartree-Fock Method

as an argument,
Qi(r,s) = @i(r)o(s). (2.1.4)

The Pauli principle states that the wave function changes sign when fermions (e.g.
electrons) are interchanged. To satisfy this condition, one uses an antisymmetric

product of spin orbitals, the Slater determinant

G1(r,51) - Pi(rw, sw)

1 . _ .
ﬁ : . : )

on(r,s1) -0 @n(TN, sn)

U = dgp = (2.1.5)

where N is the number of electrons.

Considering a closed-shell system, one can assign a pair of electrons to the same
spatial orbital ;. Each pair then contains one a and one [ spin function. Such
a calculation is called restricted Hartree-Fock (RHF). For systems with unpaired
electrons, the theory is extended to unrestricted Hartree-Fock (UHF'), where each
electron is assigned its own spatial orbital, so that open-shell systems can be
described as well. A disadvantage of UHF is that the resulting wave function is
not an eigenfunction of the total angular momentum operator 52, whereas this is
true for RHF. The deviation of the calculated from the expected value is called
spin contamination. In the restricted case (i.e. for closed-shell systems), the spin
functions vanish by integration over all spins, so that the equations contain only
spatial orbitals and further distinction between « and S is unnecessary.

According to the variational principle, by minimizing the energy of the system’s
wave function ®gp from Eq. (2.1.5) for an infinite (basis) set of orbitals, one reaches
the Hartree-Fock limit Eyp as the upper limit of the true ground state energy.
The minimization is accomplished by variation of the orbitals ;, which leads to

equations similar to Eq. (2.1.1), named HF equations,

%o = ey, (2.1.6)

where the eigenvalue ¢; represents the energy of the orbital ¢; and the Fock oper-
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ator is defined as

inHF = ]All + Z [2jj<’l"1) + f(j('f‘l) . (217)

The operator h; is the Hamilton operator of an independent system of electron ¢

in the potential of the nuclei. The Coulomb operator

Ji(r1)@i(r) = 901'(7“1)/903'(7“2)903'(7“2)74i dry (2.1.8)

12

describes the repulsion of an electron by the average potential of electron j. Because
of the sum over j in Eq. (2.1.7), every electron 7 interacts with the average potential
of all other electrons j, even from itself for ¢« = j, which is known as self-interaction.
The prefactor 2 in Eq. (2.1.7) stems from the simplification of RHF (the number
of orbitals is halfed but each is occupied twice).

The exchange operator

Kj(rl)%‘(’ﬁ) = _SOj(Tl)/S%’(""z)wl‘(”'z)ri dry (2.1.9)

12

does not have a classical equivalent. It is non-local and results from the Pauli
principle. Furthermore, it exactly compensates the unphysical self-interaction of
the Coulomb operator for i = j (see above).

To solve the system of equations depicted by Eq. (2.1.6), it would be necessary
to already know the solution because of the sum of Coulomb and exchange terms
over all electrons in Eq. (2.1.7). To circumvent this problem, one starts with initial
orbitals, e.g. by neglecting the Coulomb and exchange terms at first, and calculates
all orbitals anew. These solutions differ from the initial ones and can again be used
for the iterative recalculation until the change in energy from one cycle to the next
falls below a chosen threshold. Within this threshold, the resulting one-electron
wave functions then describe a potential from which they reemerge. Hence, this is
named the self-consistent field (SCF) method.

The HF method deals with the interaction of the electrons only in an averaged
manner (i.e. it is a mean-field theory). However, in their motion electrons avoid
each other due to their Coulomb and exchange interactions, so the Coulomb term

in Eq. (2.1.7) is too large and the true energy lies lower. This effect is termed
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(Coulomb) electron correlation, and the difference between the true energy £, and
the HF limit is called the correlation energy Fc = Ey — Eup. This quantity will
reappear in DFT with a slightly different meaning.

The correlation lacking in HF can be further dissected into dynamic correlation
and static (also non-dynamic, or near-degeneracy) correlation. The attribution
is inconclusive, though, and other terms are mangled with them, e.g. left-right
correlation.®® Part of the error stems from the usage of a single Slater determinant
to describe a non-interacting reference systems, which is insufficient in general.
Cases where this leads to especially erroneous results are called multi-reference
systems. A simple example is the hydrogen molecule with stretched bond length,
where the single determinant enforces a closed-shell, ionic description instead of
the open-shell covalent one with lower energy.

In modern quantum chemistry one tries to incorporate the missing energy as it
may amount to the range of binding energies. Next to various post-HF methods like
configuration interaction (CI), coupled cluster (CC), or perturbation theoretical
ansatzes like Mgller-Plesset (MP) theory, DFT is another approach that turned
out to be quite successful, especially within the approximation by Kohn and Sham.
After a short general introduction in the next section, we will consider only the
KS-DFT framework for the remainder of this work.

2.2 Density Functional Theory

The electron density is generally defined as

p(ry) :N/---/|\I/|2dr2...drN (2.2.1)

where U is the electronic wave function of the quantum system of interest.®® For
a normalized wave function, integrating p over the complete space (dr;) yields N,
the total number of electrons.

A function f(x) = y assigns a number y to another number x. In contrast, a
functional F'[f] = y assigns a number y to a function f. Formally, every expectation
value in quantum mechanics is a functional of the wave function but we will use

it to refer to the exchange and correlation functionals of KS-DF'T, which depend
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on the electron density and related quantities at each point in space.

2.2.1 From Hohenberg-Kohn Theory to the Kohn-Sham DFT
Method

The first Hohenberg-Kohn (HK) theorem™ states that the properties of a system
in the ground state can be described fully by the electron density alone (without
the wave function). The second HK theorem shows, analogously to the variational
principle for wave functions, that there is only one electron density p, that yields
the energy of the ground state; any other electron density pia Wwill give a higher
energy: E[puia] > Elpo]. This facilitates the application of an SCF method for
DFT analogous to HF as described in Section 2.1.

The total energy is, according to Hohenberg and Kohn, a functional of the

electron density and is composed of an intrinsic and an extrinsic part,
Elp] = Fux[p] + Vext[p]- (2.2.2)

The extrinsic part V. consists of the potential energy of the electrons in the field

of the nuclei A, with charge Z4 at positions A,

Z/‘T_A‘ dr (2.2.3)

and whatever additional external fields that affect the system under scrutiny, e.g.

a magnetic field. The HK functional
Fux[p] = T[p] + Veelp] (2.2.4)

contains the kinetic energy of the electrons 7" and the complete potential of inter-
action between the electrons. There is up to now no good approximative functional
known for the kinetic energy of a multi-electron system.

In the Kohn-Sham (KS) ansatz,™ one uses a Slater determinant of one-electron

wave functions, as with the HF method, which are now called KS orbitals. From

10
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this, one gets

T = —%Z/cp,(r)V%p,(r) dr . (2.2.5)

Its value is the correct kinetic energy of a non-interacting reference system with
the same density as the actual, interacting system. With this approximation, the
predominant portion of the kinetic energy is incorporated. The electron-electron
interaction

Veelp] = J[p] + Exclp], (2:2.6)

then consists of the Coulomb repulsion J and the exchange-correlation energy Fxc.

J = %//%ﬁmdrl dry (2.2.7)

is given as a functional of the density (cf. Eq. (2.1.8)). The non-interacting ki-

The Coulomb energy

netic energy and the Coulomb energy can thus be calculated exactly (and, more
importantly, simply). What is left is Fxc in Eq. (2.2.6).

From HF (Section 2.1) we know that the Pauli principle leads to a non-classical
exchange contribution to the energy. Furthermore, the correlation energy, defined
before as the difference between the HF limit and the true energy, and a small part
of the kinetic energy of the fully interacting system all need to be included. This
is done via the XC functional. In summary, the quantity Fxc is the condensed
problem to be solved in KS-DFT to get more accurate results. It is usually split

into the exchange energy Fx and the correlation energy E¢,
Exc = Ex + Ec, (2.2.8)

although this splitting is not mandatory. Note that this correlation energy is not
equivalent to the correlation energy defined in HF theory since it includes also the
missing kinetic energy contribution by definition. Furthermore, we introduce the

corresponding energy densities ex and e¢ according to

Exclp] = /Exc(’r) dr = /6x(T) d’r—i—/sc(’r) dr. (2.2.9)

In analogy to HF theory (cf. Eq. (2.1.6)) the orbitals that give the lowest energy

11
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are determined by solving the KS equations

S =i, (2.2.10)
where the KS operator
p 1 Z
fz.KS = —§VZ2 — Z —A —+ / p('l"g) d’l"g + VxC (2211)
7 A T2

includes the kinetic and classical Coulomb contributions (nuclear-electronic and

interelectronic), as well as the XC potential

E
Uxe = 55;“3 . (2.2.12)

From the HK theorem follows that Exc[p(r)] can be expressed using the electron
density alone. However, a prescription how this dependence looks like is still lacking
and may be arbitrarily complicated. Some constraints that the true functional must
fulfill are known, however. They may be used in the construction of approximate

functionals.

2.2.2 Approximate Functionals

Many approximate density functionals for exchange and correlation have been and
still are being proposed. They are the fundamental starting point for improving the
predictions of DFT, and they are often grouped by the quantities they depend on.
For functionals within the LDA only the electron density is used. For open-shell
systems one typically uses the local spin-density approximation (LSDA), which is
based on spin-DF'T with two separate densities p, and pg, one for each spin. We
will refer to both approximations as LDA going onward.

Functionals within the GGA additionally rely on the density gradient Vp. With
the term meta-GGA one refers to functionals that use the second derivative of the
clectron density V?p, and/or the KS-kinetic energy density 7= 3>, |Vi|. This
classification, which continues with hyper-GGAs, is referred to as Jacob’s ladder

of chemical accuracy® where each “rung” involves more complex ingredients and

12
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the prior ones. The aim of ever more accurate results is, however, not assured.

In a different classification® the first group contains all functionals with explicit
dependence on the electron density and quantities derived from it. The second
contains those that also incorporate quantities depending on occupied orbitals,
e.g. T or exact exchange (see below). The third class further includes unoccupied
(i.e. virtual) orbitals and promises the highest accuracy but also requires the largest
computing effort.

In search of functionals that give more reliable descriptions of quantum mechan-
ical systems, the number of parameters has increased. Some of them are fixed by
exact constraints, others by fitting to a (possibly large) selection of training sys-
tems in order to minimize the deviation of several properties compared to experi-
mental or highly accurate theoretical values. Those are often atomization energys
(AEs), barrier heights (BHs), and excitation energies. There is criticism that new
functionals may diverge from the true path towards the exact one if lowering of
energies is the only benchmark, while the density they export does not conform

with the correct one.??

LDA Functionals

For the LDA one assumes an artificial uniform electron gas with constant density
that exists in an infinite space filled with homogeneously distributed positive charge
(for electroneutrality). The Slater functional (S) for exchange was derived from this

model. Its energy density is

SLDA () — Z(ﬁ) épé‘(rr). (2.2.13)

T
The corresponding correlation term cannot be stated analytically, but there are
analytical fits to accurate Monte-Carlo simulations. Two prominent examples are
the functional by Vosko, Wilk, and Nusair (VWN)™ and PW92 by Perdew and
Wang. %

13
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GGA functionals

While a good starting point, LDA is not a sufficient model for molecular systems
where the density may vary strongly. The GGA gives rise to a variety of functionals.
They are classified as semi-local (SL), even though the gradient is local from a
mathematical point of view, to distinguish them from LDA.

For example, there is both the exchange and the correlation functional by
Perdew, Burke, and Ernzerhof (PBE).®! By using several constraints for the low

and high varying density limits (i.e. Vp — 0 and |Vp| — o0) they got for exchange

EX°Y = / eXCAFPEdr (2.2.14)
2
FPBE — 14 MY 2.2.15
X + 1 + IUJSQ//{ 9 ( )
v
oo Vol (2.2.16)
2(372)3 ps

where k = 0.804 is determined by the Lieb-Oxford bound?%* (Fx < 1.804), s is the
reduced density gradient, and p =~ 0.21951 is chosen w.r.t. the corresponding PBE
correlation functional.” Two examples of many further variations are revPBE®
with an adjusted x = 1.245, and RPBE,% where FYP¥ includes an exponential
term, exp (—us?/k). Both of them improve chemisorption results but may worsen

other properties.5

Global Hybrid Functionals

In case of GH functionals, part of the DFT exchange is replaced by a quantity
that is calculated analogously to the HF exchange. Since the orbitals used for
this calculation are not equal to the ones in the HF method, some authors prefer
to distinguish them by calling the DFT equivalent exact exchange (XX) instead
of HF exchange. For GHs, part of the DFT exchange is replaced by a constant
fraction ag of XX. The XX is non-local due to the dependence on two independent
positions ry and 7o (see r.h.s. of Eq. (2.1.9)), therefore all hybrid functionals are
also classified as non-local within the generalized Kohn-Sham (GKS) framework.

For example, in PBE0 one mixes 25 % XX with 75 % PBE exchange, while the

14
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correlation is not adjusted. The widely used functional B3LYP3810:55
ERP = o B + (1 — ag) EY + axAER® + BYWN 4 acAEET  (2.2.17)

contains XX (ex), Slater exchange (LDA), gradient corrections of the B88 ex-
change, and the correlation functional by Lee, Yang und Parr (LYP) in addition
to the VWN correlation functional. The mixing parameters ag = 0.20, ax = 0.72
und ac = 0.81 are empirical and the differences in Eq. (2.2.17) are AEES® =

B8&8 LDA LYP _ pLYP VWN

Local Hybrid Functionals

For GH functionals ag is a constant, for LH functionals it is a space-dependent

function, termed the LMF a(r), usually constrained by
0<a<Tl. (2.2.18)

The exchange energy for LHs is then defined as

Fx = /asgg‘ + (1 —a)eftdr | (2.2.19)

where €5 is an approximate exchange energy density (semi-local (SL) or Slater).

The LMF is also a function of the electron density and related quantities. The first
proposal®? was
W |VP|2

aqa = — =
T 8pT

t, (2.2.20)

where 7w is the von-Weizsacker kinetic energy density. By this definition the LMF
approaches one in one-electron regions so that only exact exchange is taken into
account, which is a desired effect: in HF', the Coulomb term includes the unphysical
self-interaction, which is canceled exactly by HF exchange. By using the analogous
equation for the Coulomb term in DFT (cf. Egs. (2.1.8) and (2.2.7)) the same
effect occurs here as well. Since the corresponding exchange is included in the XC
functional only approximately, this leads to the self-interaction error (SIE). It may

be compensated, at least in part, by admixture of XX.
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Figure 2.1 Two visualizations of a scaled t-LMF with b = 0.48 for carbon monox-
ide; left: graph along the bond axis; right: contour plot in bond axis
plane.

With PBE functionals for exchange and correlation the ansatz yields bad pre-
dictions for atomization energies.®® An extension of Eq. (2.2.20) is accomplished

by scaling with a constant prefactor 0 < b < 1, yielding the t-LMF

a=0bt=bp" (2.2.21)
T
which is visualized in Fig. 2.1 for carbon dioxide. Both near the nuclei and far
from them, the LMF values are high (even though scaled down), thereby adding
more XX. In a spherical shell some distance from the nuclei and especially inside
the bonding region, SL exchange dominates instead.

The optimal value when using the Slater exchange functional and the VWN
correlation functional (i.e. an LDA-based LH) is b = 0.48 for the G2-1 test set,%
although that reduces the compensation of the SIE. Nevertheless this produces
distinctly better results, even in comparison with GGA functionals. One possible
reason lies in the error compensation of the LDA functionals used, i.e. Slater and
VWN. The exchange energy is too high, the correlation energy too low, reduc-
ing the total error.”” If one combines, for example, Slater exchange with a GGA
correlation functional, that beneficial effect is reduced.

Another cause for bad results when using GGA exchange in LHs is related to the

gauge problem. In contrast to the energy, the energy density is arbitrary in that
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one can add a function to the integrand and get the same energy in Eq. (2.2.9) if
that function integrates to zero. This implies that any given energy density could
already contain portions of gauge. By multiplying with an LMF such a term may
not vanish anymore but distort the results. One can try to compensate the gauge
error by addition of a calibration function (CF) to the SL exchange functional,
leading to so-called calibrated LMFs.%® A calibrated t-LMF can improve GGA re-
sults for various properties over LDA-based ones.”® More sophisticated calibration
requires ingredients like second derivatives of the electron density or derivatives of
the XX energy density and therefore provides a challenge for developers.

Another family of LMFs transforms the reduced density gradient 0 < s < oo

(Eq. (2.2.16)) to a range between zero and one, e.g. using the error function,
a = erf(cs) (2.2.22)

with an adjustable constant ¢ = 0.22 (also optimized for G2-1). This s-LMF®
fulfills the constraint of mixing in full XX in asymptotic regions (low density, high
s) due to the error function, in contrast to the scaled down t-LMF, but it performs
worse than the latter for thermochemical kinetics.%”

We have so far assumed restricted calculations of closed-shell systems. For unre-
stricted cases there are two choices. The LMF may be calculated for each density
po and pg separately and then multiplied with the exchange energy density of the
respective spin (spin-channel LMF). Alternatively, one can use the sum p = p,+ps
for both, resulting in additional cross terms, e.g. the product of mixed-spin density
gradients Vp,Vps (common LMF). Such terms would violate that only electrons
of same spin interact via exchange. They can be justified if the exchange term is

interpreted as non-dynamical correlation that is added to the full XX, as can be

done by adding and subtracting ¢ in Eq. (2.2.19),
Fx = /ggg‘ +(1—a)(eFr — &%) dr . (2.2.23)
Such common LMFs further improve reaction barriers and other properties.>

There are also ansatzes to introduce range separation (RS) into the exchange!®%-191

(see next section) or correlation® part of LH functionals. The latter is motivated by

17



2 Theoretical Background

the idea that the SIE is more adverse at SR, i.e. for short interelectronic distances,
while it can have beneficial error canceling effects at LR. Thus the LDA correlation
functional PW92 was modified at SR to reduce the SIE partially (LH-sirPW92)
or fully (LH-sifPW92), in conjunction with Slater exchange and the t-LMF. Full
correction yielded better BHs but worse AEs, whereas partial treatment (related
to the t-LMF) improved both.>*

This is only a small glimpse of the developments in recent years. We refer to the
review by Maier, Arbuznikov, and Kaupp!'“? for a more comprehensive introduction

to LH functionals.

Range-Separated Hybrid Functionals

Another hybrid functional approach is the partitioning of the Coulomb operator
into a SR and a LR part, usually by applying the (complementary) error function
1 erf(wrp) 1 —erf(wr)

— = + , (2.2.24)
12 12 12

where 715 > 0 is the interelectronic distance and 0 < w < oo (or u) is the RS
parameter controlling the steepness of the partitioning. This facilitates the ap-
plication of different methods, functionals, or approximations for either or both
ranges.

Originally, this separation had been used for wave function methods to smoothly
simplify the computationally demanding Coulomb interactions by calculating the
LR erf term as a truncated Fourier series.!% An adjusted ansatz, termed Coulomb-

104

attenuation, neglected the LR part completely'”® and was also applied to LDA

functionals.'® Then DFT was used at SR within a CI framework to more efficiently
describe the correlation cusp of the wave function.!%

A now common use case, labeled long-range correction (LC), applies a semi-
local exchange functional at SR and XX at LR to ensure the correct asymptotic
behavior of p in regions far from the nuclei. For example, in LC-0wPBE this is
done for PBE exchange with fitted w = 0.4, which gives simultaneously good
results for enthalpies of formation and BHs.?® In contrast, HSE incorporates XX

at SR range while LR has only PBE exchange, which is favorable for solid-state
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systems.?15%197 Both ansatzes can be combined, as done for the HISS functional,
which incorporates XX only at mid-range while PBE is applied at both SR and
LR.?®

The HSE functional mentioned above is in fact a range-separated GH since
it reduces to PBEO for w — 0 (and PBE for w — o0). For CAM-B3LYP one
applies the RS to the exchange part of B3LYP (cf. Eq. (2.2.17)) to use different
mixing parameters for SR (ag = 0.19) and LR (ag = 0.65) with w = 0.33 yielding
better charge transfer energies.*® Another example is wB97X, which applies the
BI7 exchange!® (with 16 % XX) at SR and full XX at LR, and improves on
describing the dissociations of radical cations.3¢

The next step, combining RS and LHs, was taken first for LDA and PBE with
a t-LMF and either full XX at LR (i.e. the LC ansatz from above),

or the (semi-)local functional instead (denoted as “screened”),

while the LH functional is used at SR in both cases.!?0 Later, Haunschild and
Scuseria applied both versions (LC and screened) to one of their PBE-based LHs,'%
where the LC variant gave better results for AEs and non-hydrogen BHs than LC-
»PBE.1!

The parameter w is constant system-wide in the above examples. While the
overall performance is appreciable, in principle the optimal value for each system
varies considerably. This is underlined by the optimal tuning procedure for finite

10U in which the parameter w is optimized (“tuned”) for each system

systems,
individually to fulfill (or minimize the deviation from) an exact condition, e.g.
that the negative vertical ionization potential (IP) should be equal to the highest

occupied molecular orbital (HOMO) energy (Koopmans’ theorem),

€EHOMO — —IP = E(N) - E(N - 1) s (2227)
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for a system with N electrons. The IP condition could be complemented by con-
necting the electron affinity (EA) with the lowest unoccupied molecular orbital
(LUMO) energy (EA condition) to better describe fundamental gaps but there
is no theoretical basis for this. That is why the IP condition is applied to the
anion instead. Such OT-RSH functionals give good charge-transfer excitation en-

HOU2 and quasi-particle spectra.®'13 It was further shown that they can

ergies
achieve similar IP and EA results as the computationally more expensive many-
body calculations usually used.'* On the downside, the optimal w for a system of
two sufficiently separated subsystems can be different than for either subsystem
alone, so the sum of their total energies may not coincide. This size inconsistency
results in wrong predictions for binding energies, potential energy surfaces, and
spin configurations. !

As an alternative to individual tuning and in analogy to the relation between
global and local hybrids, the parameter w can be converted to a position-dependent
RSF with quantities like the electron density. Such LRSH functionals were inves-
tigated non-self-consistently by Krukau et al. for LDA ingredients and improve on
the global results.®® An extension to self-consistency and GGAs exchange appears

promising and will be discussed in Chapter 4.

2.3 Atomic Orbital Basis

This section will give some information on Gaussian basis functions, predominantly
used for molecular DFT applications, and the connection to the ingredients for
SL functionals to give context and introduce quantities for the derivations and
explanations later on. It will be complemented by the following sections giving
an overview of the program package Turbomole and some considerations for the

implementation thereafter.

2.3.1 Cartesian Gaussian Orbitals

To solve the DFT equations we choose a basis of primitive functions centered on the
nuclei, also known as atomic orbitals (AOs). For primitives one may use Slater-type

orbitals (STOs), which is the correct form for the hydrogen atom. More commonly,
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Gaussian-type orbitals (GTOs) are used since the analytical computation of their
integrals is very efficient, even though a larger number of primitives is needed to
approximate the correct orbital form. The type and parameters are defined by the
chosen basis set.

We will focus on GTOs of the general form

Ga=2'yh2Texp (—ary). (2.3.1)
The monomial exponents 7, k, m > 0 are integers and define the angular quantum
number £ = ¢ + k + m. The variable x4, = x — A, is the z-component of the
difference vector between the coordinate r and the position of nucleus A. The
quantities y4 and z4 are defined analogously, and r% = 2% + v% + 234.

These primitives may be contracted,
Xu = duG (2.3.2)
v

with constant contraction coefficients d.,. Both d,, and « from Eq. (2.3.1) are
defined by the basis set for each element of the system. The same values are used
for different AOs that belong to the same shell with angular quantum number L,
e.g. the three basis functions p,, p,, p, of a p-shell (£ = 1) use the same parameters.
In the special case of an uncontracted basis, the sum in Eq. (2.3.2) includes only
one term and the contraction coefficient is one.

We then define the molecular orbitals (MOs) as a linear combination of atomic
orbitals (LCAO),

0i=Y_ ChiXp (2.3.3)
"

with coefficients C),;, which are optimized in the context of the SCF algorithm.

Interaction of Two GTOs

For the interaction of two primitives we use an additional set of parameters j, [,

and n for a second primitive centered on atom B and distinguish the exponential
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prefactors as ay and apg. The overlap integral is then written as

Sap = /GAGB dr = /xgyf‘zf}f exp (—aAri)xgygzg exp (—aprg) dr . (2.3.4)

Using the Gaussian overlap rule, we can further simplify this to

Sap = Kap /xfgxfgyﬁygzglzg exp (—aprp) dr , (2.3.5)
a0 B 2
Kap = ——F—F R 2.3.6
e (240 g, ). (236)
A B
p-adtosb (2.3.7)
g+ ap

where P is called the center of charge between A and B (which is closer to the
center with greater o), Rap = |A — BJ, and ap = a4 + ap.

The more relevant integral for this work is the repulsion integral

1

——dr . 2.3.
P r (2.3.8)

Vap = Vap(G) = /GAGB

It will be at the center of attention in Sections 2.4, 3.1 and 4.1 as it is needed for
the calculation of XX.

Derivative of GTOs

Differentiating a one-dimensional GTO w.r.t. the electronic coordinate
VGZ = iGi_l — QOZGZ‘_H s (239)

results in a sum of two GTOs, one with a lower and one with a higher quantum
number ¢, with prefactors. Since x4 = = — A,, the gradient w.r.t. the nuclear
coordinates and w.r.t. the electronic coordinates can be converted to each other,
whereby the sign changes,

VaGy=—-VGy . (2.3.10)
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This also applies to the AOs because the contraction coefficients are constants,
Vaxuy = —Vxu. (2.3.11)

One should, however, keep in mind that the sums must still only consider AOs
X, centered on atom A. The identity Eq. (2.3.11) can be exploited for the im-
plementation by reusing intermediate quantities needed for the energy, SCF, and

gradient calculations.

2.3.2 From Eigenvalue to Matrix Equations

The AO basis enables us to restate the KS equations as matrix equations. By
inserting the MO definition from Eq. (2.3.3) into Eq. (2.2.10), multiplying from
the left with another AO Y, and integrating we get

ZCW/XN]EZ-KSXV drzgiZCm-/X”Xl,dr . (2.3.12)

This is equivalent to

Y FuCui=¢Y SuCui, (2.3.13)

v

FHV :/XufzKSXVdr ) (2314)

Sy = /XuXu dr , (2.3.15)

where we introduced the KS matrix with elements F),, and the overlap matrix
elements S, for AOs (not to be confused with the overlap integrals S,z for prim-
itives from Egs. (2.3.4) and (2.3.5)). Now the eigenvalue problem can be solved

with algebraic tools. We just have to construct the KS matrix.

2.3.3 Density and Related Quantities in the AO Basis

As preparation for the derivations in Chapters 3 and 4 this subsection defines all

quantities for the evaluation of semi-local functionals and real-space functions in
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the AO basis. For reference, we define a set of those depended-on quantities

Q={p,7,7}. (2.3.16)

Electron Density
The electron density
=Y = Y Gl = D (2817
% i v nv

is the most basic property. Here we expand the MOs in basis functions as described

in Section 2.3.1 and introduce the density matrix with elements

Dy = CuiCli . (2.3.18)

Density gradient

The derivative of the density w.r.t. the electronic coordinate is

Vp=2) Veipi =2 DuwVxuxu - (2.3.19)

1%

The derivative of the coefficients vanishes since they do not depend on the elec-
tronic coordinate. The density gradient was mentioned before as the next-step
ingredient for GGA functionals. In practice, one also uses the scalar product of

this gradient

v =VTpVp=4) VeV
ij
=4 DDV XX VXaXa

UVRA

(2.3.20)
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whose derivative is

Vy=8) VV 00V + VoV 0V,

ij

(2.3.21)
=83 DD (VV 0 Vo + ViV Vxexa) -
UVRA
Kinetic Energy Density
The kinetic energy density
1 T 1 T
T=3 > ViV = 5 > DV VX, (2.3.22)
7 nv
is similar to the density gradient. Its gradient is
Vr=> VV'eVp; =) D,VV'x,Vx, . (2.3.23)
A nv

Exact Exchange

For the exact exchange the dependency on either 71 or 7, is of relevance. For
brevity we will use ¢} = ¢;(r1), X, = Xu(71), and a; = a(r) in such instances.
The XX energy density is defined by

1
8X rl = ___'EE: %% %y d/ng% gb __; dTE

L (2.3.24)
= —— D,.D, —d
9 ;;; H AX#LXVU/ﬂX;§XAT12 T2

For the SCF method, the KS matrix has to be determined by calculating the
functional derivative of the energy w.r.t. the density. However, the XX depends
only implicitly on the density through the KS orbitals. In the GKS framework the
strict constraint of KS that the XC potential must be a local potential is relaxed.!!®
Realizing then that

OB _ OES dp _ 6E§<"2% | (2.3.25)
0p; op Opi  Op

the XX potential can be expressed as a functional derivative w.r.t. the orbitals
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(FDO),
SEE  16E¥

Ui = 5 P T e (2.3.26)
We therefore apply the FDO to the XX
5Eex
5o —2 Z o / o2 goj — d’rg (2.3.27)

but calculate the usual derivative w.r.t. the density for the other parts.

For LHs we have to consider that the integrand includes the LMF, which also
depends on 7y (cf. first term in Eq. (2.2.19)). The FDO then contains the derivative
of the LMF multiplied by the usual XX energy density, and two terms where the
derivative was applied to one orbital that depends on either r; or 7o, respectively.

By swapping the order of integration in one of those two we get

[

+Zg0]/ 2 Zmdrg. (2.3.28b)

12

o da
6¢i/a15§§‘(r1)dr1 :/5 15%{‘(r1)dr1 (2.3.28a)

where both a; and ay are included in the last term. For the contributions to the
KS matrix (see Eq. (2.3.14)) we change into the AO basis. Then we can split the
second term again due to the symmetry of the operator and integration, calculate

one of the resulting terms including aq,

1
_/GIZDVAXiXi/XiXia drodry (2.3.29)
VA

and add the transposed matrix,

Ic;m - IC/,LH + IC/@,LL . (2330)

The first term on the r.h.s. in Eq. (2.3.28) contains the derivative of the LMF,
which can be calculated and used as for SL energy densities. This also implies
derivatives w.r.t. the gradient of the orbitals, which do not occur for the second

term.
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2.4 Integration Techniques

This section includes some further details on integrals related to XX. Both Chap-
ters 3 and 4 will use it as the basis of their respective implementations. It en-
compasses the numerical integration on a grid necessary for semi-local KS-DFT
functionals as well as the schemes for Gauss-Rys quadrature or via Boys functions
for the GTO basis. Finally, we look at prescreenings to avoid some of the costly

evaluations.

2.4.1 Numerical Integration

The integrals for semi-local and non-local functionals cannot be solved analytically,
so the integration is done numerically on a grid. The integrals over the spatial

coordinates are converted to a summation over grid points g,
F = /f(r) dr ~ > f(G)w, (2.4.1)
9

with spatial vectors G = G, and weights w,. The grid points are not necessarily
distributed evenly but may be denser in regions where the electron density fluc-
tuates more strongly than where it is nearly constant. The weights are adjusted
accordingly and cannot be moved in front of the sum.

In Turbomole the molecular grid!® is constructed by combining atomic grids
for all atoms of the system and mitigating the overlaps via Becke partitioning.*!”
The atomic grids are built from spherical Lebedev!!® (or Lobatto!?) grid shells
placed on radial Chebychev grid points, which are transformed from their defined

range [—1, +1] to [0, 0o].
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2.4.2 Rephrasing Exact Exchange on the Grid

For easier reference later on we introduce intermediate quantities for the ingredi-

ents of the XX energy density on the grid:

Xug = VWgxu(G) , (2.4.2)
Feg=>  XugDp . (2.4.3)
1
gng = ZngAnz\g ) (244)
A
1
A,{)\g = /XH(T)X)\(T‘)m dr . (245)

For each grid point g the first three quantities (X, F, G) are vectors and the last
one (\A) is a matrix with components for all AOs (k, A). Applying this to the energy
density and KS matrix contributions of XX for LHs (cf. Section 2.3.3) yields

ggg(g - Z‘FRQ‘F)\Q KA — T 5 Zfﬁggﬁg ) (246)

Ko = Z Qg Z XugFrgArrg = Z agXugYrg - (2.4.7)

g

2.4.3 Gaussian Quadrature

Integration can be efficiently simplified under certain conditions using orthogonal
polynomials P,(x), which fulfill

/ (@) Po(a)W (2) dz = B, (2.4.8)

where W (z) is a weighting function, d,,, is the Kronecker delta, and h, = 1
if the polynomials are normalized (i.e. orthonormal). For our integrals we need
the weighting function to be the exponential of the GTO primitives, so Hermite

polynomials

H,(z) = (—1)" exp (—2?) o P (—2?) = (2:5 - a)nl (2.4.9)
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are suitable (W (z) = exp (—z?), a = —00, b = +00). Gaussian quadrature reduces
the effort of computing electronic integrals (overlap, Coulomb, exchange, etc.) to
finding the roots and weights of the polynomials, calculating the value of the GTO
monomials at those roots, and adding up the products. For example, the overlap
integral from Eq. (2.3.5) then is

_ Kus
- 3/2 Z Wy, T4 Z W, Y4YE Z Wy, 24 2 - (2.4.10)

Here 7, is the index for the roots in the z-direction and w;, is the weight corre-

sponding to the root o,, within

1
TA= —F—0yp, — XAP s (2411)

v ap
where Xap = A, — P, is (exemplary) the z-component of the difference vector
between A and P. The other quantities are analogous. The roots and weights of
the Hermite polynomials are independent of the integration parameters and are
given in the code.

The Coulomb operator can be expressed as the integral of a Gaussian,

|7“G| \/_/ exp (—rgv®) dv . (2.4.12)

Adapting this integral by variable transformation (or other integration techniques),

the repulsion integral from Eq. (2.3.8) is reformulated to

ZKAB i m_n
Vap = Jrar Z Wy Z Wy, Ty T Z W, Y4 Z Wn.ZA%p - (2.4.13)
gl N Ty n:

Here the integration of the additional integral from the operator is done via Gauss-
Rys quadrature'®® (W (z) = exp (—ax?), a = 0, b = 1) with the index v and the
weight w,. The roots and weights of the Rys polynomials must be determined

for each exponential prefactor o in contrast to Gauss-Hermite quadrature. The
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relative positions are transformed as

1—t2 )
T4 = 0n+ Xpt® — Xap (2.4.14a)
ap
! + Xgp— X (2.4.14D)
—_= —_—0 — y X
ap(l+u,) " Gpl%—wY Ar

where o,, and ?., are the roots of the Hermite and Rys polynomials, respectively.
The alternative u, = ¢2/(1 — 2) shown in Eq. (2.4.14b) is used sometimes instead,
e.g. in Turbomole. The other positions (zg, ya, etc.) are analogous, and Xgp =
G, — P, is (exemplary) the z-component of the difference vector between G and
P.

The number of needed points, i.e. the degree of the underlying polynomial,
depends on the angular quantum numbers via

i+
l’l’l&X> j

2.4.15
x 2 ? ( )

and analogously for y and z. If the integrals for all basis functions of a shell pair
are calculated together, the upper limit of all Gauss-Hermite sums can be set to

the highest among them without significant overhead,

itj+k+l+m+n  Lz+Ly
2 a 2 '

max

(2.4.16)

The same is true for the Gauss-Rys index ~.

2.4.4 Integration with Boys Functions

As an alternative to Gauss-Rys quadrature, one may express the integrals resulting

from Eq. (2.4.12) as Boys functions

F.(x) = /0 s*" exp (—xs°) ds . (2.4.17)
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The monomials centered on A and B can be further expanded into monomials on
the center of charge P with expansion coefficients C%,
i+j

Tl = Z Ciig'y . (2.4.18)
w=0

Combining this and the Gaussian product rule, we can rephrase the product of
GTOs as

i+7
G,G; = Z EZJW exp (—apap) , (2.4.19)
EAB — E”E’“’Em" (2.4.20)

with prefactors Ezj , E® and E™ for the z, y and z direction, respectively. They
can be calculated starting from E°) = K%, and analogues. The conversions culmi-
nate in another expression for the repulsion integral (cf. Egs. (2.3.8) and (2.4.13))
27 ot o oY
Vap = — o Fo(apRpg) -

AP ap £ T QPL 9Py OPY (@rFirc)

tuv

(2.4.21)

Differentiating the Boys function results in a Boys function of higher order. They
are usually approximated by interpolation and already implemented in the pro-

grams. For example, two p, primitives (i, 7 = 1;k,l,m,n = 0) yield

2T 1
Vitoooo = — Kap { (XPAXPB + —) Fy

ap 20ép

. (2.4.22)
— |:(XPB + XPA)XPG -+ 2—p:| F1 -+ X}%GFQ} .

For more details, see [121, Sections 9.4ff].

2.4.5 Prescreening Techniques for Exact Exchange

The computation of the repulsion integrals related to XX is the bottleneck of all
the functional implementations we are interested in. Therefore we prescreen pairs

of shells, basis functions, or primitives in order to skip any demanding computation
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for elements deemed to be negligible.

S-Junctions

The concept of S-junctions follows the chain-of-spheres exchange (COSX) algo-
rithm'?? for XX in GHs. Starting at an initial distance from the nucleus, esti-
mated from the most diffuse primitive, one probes each basis function of that
atom by varying the distance and evaluating its value until it is smaller than a
given threshold. Constructing spheres with these distances as radii, only shell pairs
whose spheres overlap are evaluated. Accordingly, a lower threshold results in more
shell pairs to be evaluated. Thresholds are adjusted in negative powers of ten, e.g.
107°.

P-Junctions

An additional ansatz for prescreening looks at the multiplication of A with F in
Eq. (2.4.4). If elements of F are very small, the corresponding products with A
will be negligible and the evaluation of some elements A,,, can be skipped. The

threshold is adjusted in negative powers of ten, as with S-junctions.

Exponential Overlap

This concept is similar to that of S-junctions but applied to pairs of primitives. The
prefactor K4p from Eqgs. (2.4.13) and (2.4.21) can be screened using the nuclear
positions and basis set information alone. If the exponential is very small, the

evaluation of the integral can be skipped.

2.5 Overview of Turbomole

The program package Turbomole® consists of various programs and scripts, col-
lectively called modules. The most important ones in the context of this thesis are
listed in Table 2.1. This section gives an overview of the interlocking of those mod-
ules to fulfill various tasks so that the changes applied for the LHGs and the LRSHs
are easier to comprehend. Modules and subroutines will be set in monospace font

and the latter have appended parentheses.
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2.5 Overview of Turbomole

Table 2.1 Some programs (P) and scripts (S) of Turbomole and their usage.

Name Type Usage

define P Interactive input for calculation parameters

dscf P SCF calculation

ridft P Same as dscf with RI approximation

grad P Analytical nuclear gradient calculation

rdgrad P Same as grad with RI approximation

statpt P Nuclear stationary point analysis and displacement of nuclei
aoforce P Analytical nuclear Hessian calculation

jobex S Structure optimization

NumForce S  Numerical nuclear Hessian calculation

2.5.1 SCF Calculation with dscf and ridft

The programs dscf and ridft both do SCF calculations to converge the ground-
state for a fixed configuration of nuclei. In ridft the resolution of the identity
(RI) approximation® is used for Coulomb (option $rij) and/or exchange (option
$rik). For both programs, starting orbitals (i.e. MO coefficients) have to be pro-

123 via the input

vided. This can be accomplished by an extended Hiickel guess
program define.

Some subroutines of both programs are visualized in Fig. 2.2. For dscf, the nu-
clear repulsion energy is calculated in nucrep(), then the one-electron integrals of
the core Hamiltonian as well as the overlap matrix are handled in symoneint ().
The same routine is used by ridft through allone(). The Coulomb repulsion
energies are determined in fockbuild() for dscf and in colaux() for ridft. The
XC parts are prepared in scf() and riscf() for dscf and ridft, respectively.
Both of them call scf_dft (). It splits according to the necessary ingredients be-
tween LDA (xcurhf()), GGA (xcrhf()), meta-GGA (mGGA) (xcmrhf () ), and
LH (xclhyb()), where the XC energy and the corresponding parts of the KS ma-
trix are calculated. The latter is used for the optimization of the MO coefficients
via matrix diagonalization in fdiag() for restricted or ufdiag() for unrestricted
calculations. The new implementation for LRSHs will be inserted analogously in

a new subroutine xclrs(), so it can be used by both programs.
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3520 (a110ne0 J—friare0)

N\ /-

)G .

xcurhf () scf_dft ()
xcrhf () xcurhf ()
XC XC

Figure 2.2 Call graph for dscf and ridft and the energy terms calculated
therein: nuclear repulsion N, electronic repulsion J, overlap integrals
S, kinetic energy T, nucleus-electron attraction V, DFT exchange and
correlation XC. The subroutine xclhyb() for LH energy and KS ma-
trix highlighted in blue has already been implemented®® and will be
described in Section 2.6. The orange-shaded xclrs() foreshadows the
implementation of LRSHs in Chapter 4.

Xclhyb()
XC

2.5.2 Nuclear Gradient Calculation with grad or rdgrad

Assuming a converged SCF calculation, the program grad (or rdgrad for the RI
version) calculates the change in energy w.r.t. a displacement of nuclear coordinates
directly from the MO coefficients.

As for the SCF programs, Fig. 2.3 depicts some subroutines of grad and rdgrad.
The former delegates to scfder () to call jkder () for the gradient contributions
of the electron-electron Coulomb interactions, and dstv () for the nucleus-electron
and nucleus-nucleus interactions as well as overlap integrals and kinetic energy.
For rdgrad the first part is done in twoder (), and oneder () calls dstv() as well.
Both rdgrad and grad (through scfder()) rely on the same routine grdfinp()
for the XC contributions. As for the SCF, it splits into grurhf () for LDA, grrhf ()
for GGA, grmrhf () for mGGA functionals. We can adopt this concept with a new
routine grlochyb() for LHG, thereby supporting both programs.
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grad() oneder () rdgrad O

jkder () dstv() twoder ()
grurhf () afinp Q)
XC /gr _—

A
grrhf () grmrhf )
XC XC
Figure 2.3 Call graph for grad and rdgrad. Gradients of the various energy
terms: nuclear repulsion N, electronic repulsion J, overlap integrals S,
kinetic energy T, nucleus-electron attraction V, DFT exchange and

correlation XC. The orange-shaded grlochyb() is the new subroutine
for LH gradients discussed in Chapter 3.

2.5.3 Structure Optimization with jobex

Structure optimizations are conducted using the superordinate script jobex. It calls
multiple modules sequentially, which depend on the results of the previous one.
The broad structure of the script is shown schematically in Fig. 2.4. After initial-
ization the script enters a loop for structure optimization. First a gradient module
(grad or rdgrad) is called to calculate the gradient w.r.t. nuclear coordinates,
followed by the computation of the (usually approximated) Hessian by statpt.
The latter subroutine also changes the nuclear coordinates, followed by a full SCF
calculation (with dscf or ridft) until convergence of the orbitals is reached. If
the difference in energy (and some other parameters) compared to the previous
(nuclear) iteration lies below the convergence criterion for structure optimization,
the script finishes successfully. Otherwise, the next iteration starts with the cal-
culation of a new gradient. To prevent an infinite loop the number of iterations
is limited. As soon as a new functional is implemented into grad or rdgrad, this

module can use it without further modification.
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Initialization

no [New Coordinatesj

|

Converged?

yes

!

Figure 2.4 Scheme of structure optimization in the script jobex.

2.5.4 Frequency Calculation with NumForce and aoforce

The script NumForce performs gradient calculations with grad or rdgrad for var-
ious nuclear positions to get a numerical approximation for the Hessian w.r.t.
nuclear displacement within the harmonic approximation. This is used for the cal-
culation of vibrational force constants, i.e. spectroscopic data for the infrared (IR)
range. The analytical equivalent is aoforce. Because of the complications arising
from the second derivatives, they are often not implemented for new functionals.
For such cases, NumForce remains a viable alternative. As soon as a new func-
tional is implemented into grad or rdgrad, this module can use it without further

modification.

2.6 Implementation Prerequisites

This section will shed some light on how A (Eq. (2.4.5)) is being constructed for
the SCF method of LHs, i.e. we will describe the integration techniques introduced
in Section 2.4 in the context of their explicit implementation in Turbomole. This
should prove helpful for understanding the changes for the implementation of both
LHGs (Section 3.2) and LRSHs (Section 4.2).
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Table 2.2 General flow of information for subroutines regarding LH SCF (without
grid and junctions).

Subroutine  Input Output
xclhyb() D Exc, FX©
funct _2() X5 X

ondes ks() D, x, X/, 0,7, T

Imf 10) Py Y, T a, g_Z’ g—f‘y, %
calc_ftg() D, x

numpot () F g
nlpot_1h() x,a, F,§G e, K

lochyb 1) D, a, g—;, g—g, da e Exc, 0,0, 0"

onf k() D.O,0,0" x,x F°

Storing G Instead of A

The matrix A is symmetrical, and its size depends on the number of AOs, i.e. the
number of atoms, the choice of elements and the basis set. To prevent unnecessary
memory usage, A is calculated per shell pair (for all its AOs, primitives and grid
points) and immediately multiplied with F to get G (see Eq. (2.4.4)). Nonetheless
we denote this as calculating A since its repulsion integrals are the most tedious
task.

2.6.1 Calculating LH XC in xclhyb()

The subroutine xclhyb()® consists prominently of a loop over grid point blocks,
which cluster the (possibly millions of) grid points into groups of about a hundred.
This is a compromise between not having to calculate intermediate results for each
grid point alone and keeping memory requirements at bay. The routine’s general
flow of information is listed in Table 2.2.

For each block of grid points the values and derivatives of the AOs are calculated
in funct_2(). These are used to calculate F (calc_ftg(), Eq. (2.4.3)) as well as
the electron density p, its squared derivative v, and the kinetic energy density 7
(ondes_ks (), Section 2.3.3). Then G is determined in numpot () (Eq. (2.4.4)), and
given to nlpot_1h() to calculate e (Eq. (2.4.6)) and I, the non-local XX part
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of the KS matrix (Eq. (2.4.7)). The subroutine lochyb_1() is used to calculate
the XC energy (Eq. (2.2.9)) as well as the operator terms (O, O’, O"). These
purely multiplicative potential terms arise from derivatives of the SL quantities
CNS {a,eiL,sf’jL} w.rt. @ € Q (Eq. (2.3.16)). They are subsequently contracted
with the AOs and their derivatives in onf_k() and added to the KS matrix,

56 OXpuXv
20 OVyux, ¢—Fo . (2.6.1)
OHVTXU,VXV

Finally, the non-multiplicative part K (Egs. (2.3.30) and (2.4.7)) is added to get
the complete XC contribution of the KS matrix,

FX°=F° 1 K. (2.6.2)

2.6.2 Calculating A in numpot ()

The general structure of numpot ()% can be seen in Algorithm 1. The upper triangle
of A is skipped because it is symmetrical. It is compensated by an additional
multiplication for G using the same (off-diagonal) element A, . Because of that
the integral routines assert that the second shell is never greater than the first.
The routine is dominated by five nested loops. The first two are the shell pairs,
the next two their primitives. The innermost loop discerns the grid points within
the current block and calls the integral routine vspdf () to acquire the current part
of A. A mapping for the monomial exponents is prepared before the primitive loops,
which is needed for the Gauss-Rys algorithm as will be explained in Section 2.6.3.
The integral values of A are summed up over all primitives of the shell pair,
multiplied with F (twice for the off-diagonal elements) and added to the respective

elements of G.

2.6.3 Calculating V,p in vspdf ()

The subroutine vspdf () is used for the repulsion integrals. It applies the Boys

algorithm from Section 2.4.4 for shells with angular quantum number 0 < £ < 3,
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for shell 7 do
L7 < angular quantum number of Z
for shell J up to Z do
L 7 < angular quantum number of J
calculate monomial exponents for L7L 7
for primitive Pz do
for primitive P; do
for grid point g do
I, < preliminary integrals for up to LzL s
for roots v do
| A« combine I, for L7L7
end
end
sum up over all primitives P

end

sum up over all primitives Pz
end

G < multiply A (LzL7) with F
G < multiply A (L7L7) with F
end

end
Algorithm 1: Algorithm to calculate elements of A for a shell pair Z.7.
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i.e. from s- to f-shells. For higher shells Gauss-Rys quadrature from Section 2.4.3

is used instead.

Boys Function Quadrature with vcl_77()

For the smallest possible pairs (ss and ps) Boys function quadrature is done com-
pletely in specific routines vel_s() and vcl_p(). For most higher ones, vel_11()
provides the basic building blocks with the Boys functions F,, the distances Xpg
(also for y and z), and the exponential parameter. They are then combined with
Xpa and Xpp (ete.) for the individual case, e.g. do_11() is used for two (non-
identical) p, primitives. The last few are handled by specific routines for each case
again (with vel_ff£fdf (), vel_fe()).

Gauss-Rys Quadrature with vint ()

We can rewrite the repulsion integral from Eq. (2.4.13) as

2K y
Vip = ——2 > w, IIIM (2.6.3)

e el

where we have introduced the Gauss-Hermite sums as preliminary integrals, e.g.

I;‘j = Zwmxgmg . (2.6.4)
e

They are stored in arrays of batches with ascending . Each batch has space for
all possible permutations of the underlying quantum numbers ¢ and j within the
system (e.g. from ¢ = 0,j = 0 through i = 0,j = 3 to i = 3, j = 3 if the highest is
an f-shell)°. Elements that are not needed for the shell pair at hand are skipped.

These integral arrays are computed by subroutine vint ().
The preliminary integrals are subsequently combined according to the mapping
of monomial exponents established in numpot() to get the A elements for the
current shell pair and summed up over all root batches. This concept is visualized

in Fig. 2.5 for two (different) p-shell pairs in a system where p is the highest shell

¢The examples use low shell types (s to f) for simplicity although this scheme is only used for
shells higher than f in vspdf ().
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X X =
~|[SP|[sP
o X X =
o|ps ps
PP||[PP PxPy PxP;

ss||ss||ss| |pyPx PyPy
SP||SP||SP|  P:Px PPy PP,

root 2

Figure 2.5 Calculating elements of A arising from a pair of two different p-shells.
Left: preliminary integrals in x, y and z for multiple Rys roots (only
two are shown); top right: two example calculations; bottom right:
overview of all results for the pp example. The preliminary integrals
are multiplied in specific patterns to give the actual integrals, e.g. pp,
ss, and ss yield the (p,p,) integral (yellow), ss, ps, and sp give (p,p.)
(blue), and so on. The products have to be calculated for each root,
then summed up over those roots, see Eq. (2.6.3).

(thus there are no gaps in the arrays). In case of identical shells Z = 7 the upper

triangular elements are skipped for efficiency, therefore the ordering is different

because of the symmetry of the A part (not shown).
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At the beginning of this project, SCF and linear-response TDDF'T capabilities for
LH functionals had already been implemented.?*®* Analytical nuclear gradients,
however, were still lacking.

This chapter is the first of the two main topics of this work. It contains the
derivation (Section 3.1), implementation (Section 3.2) and assessment (Section 3.3)
of nuclear gradients for LH exchange functionals, which we had published previ-
ously.! Furthermore, a validation and application case is given by the benchmark
of gas-phase MV oxides (Section 3.4),? taking advantage of structure optimization
and numerical force calculations based on the analytical gradients developed in

this work.

3.1 Theoretical Background

Applying the numerical integration from Eq. (2.4.1) to the exchange energy for
LHs from Eq. (2.2.19) yields

Ex = stgwg = Z [age, + (1 — ag)e)sé;]wg (3.1.1)
g g

with the index g denoting the evaluation at G. We differentiate w.r.t. nuclear

displacement and reorder to get

VaBx = Y [Vaay (5%, — %) + agVaes, + (1 — ag)VaeSh | wg + ex, Vaw, . (3.1.2)
g

In the following subsections, the gradients from Eq. (3.1.2) will be derived.
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3.1.1 Nuclear Gradients of the Coefficients

Since the MO coefficients C,; (Eq. (2.3.3)) depend on the nuclear positions through
the SCF scheme, the gradients of the energy, including V4 Ex, contain such con-
tributions as well. On the other hand the total energy was minimized w.r.t. the
coefficients during the SCF, so the corresponding partial derivatives within the
gradients are zero. Hence it is possible to convert all those contributions to a term
that does not include partial derivatives w.r.t. the coefficients.

Considering only the coefficient-related gradient terms of the total energy (de-

noted by the superscript C) within the AO basis, we get!?*
VOE =2) ) NaCuiFuCui (3.1.3)
i v
= ZZ&ZVAC#Z'SW,OW’ s (314)
% nv

where we have used Eq. (2.3.13) to replace the KS matrix elements F),, with the
MO eigenvalues ¢; and the overlap matrix elements S, (Eq. (2.3.14)). We then
apply the equality

2> VuCiSuwCoi =~ _ CCuiNaSu . (3.1.5)
g g

which emerges from the orthogonality constraint of the MOs and is derived in
Section 3.A.1. Inserting this into Eq. (3.1.4) yields

VCE ==Y &Y CuCuiNaSu (3.1.6)
7 nv
- - Z W;WVAS;W ) (317)
uv
W[,LV - ZEiCMiij 5 (318)

with the energy-weighted density matrix W. Thus all the energy derivatives w.r.t.
the MO coefficients, including those within Ex, can be converted to one gradient
term of the overlap matrix S. This term is calculated outside of our routines and

does not need to be changed for different functionals.
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3.1.2 Gradients of the Density and Related Quantities in the
AQ Basis

In analogy to Section 2.3.3, this section gives the explicit nuclear gradients for the
quantities the functionals depend on.
Nuclear Gradient of p, 7, and 7

The nuclear gradients of the basic quantities are analogous to the electronic ones
from Section 2.3.3:

Vap =2 Vapipi =2 D NaxuXo (3.1.9)
A v

iy =8 WiV 0ipiVeip; + VapiV 0V, (3.1.10)
i

=8> DyuDua(VaV X Vexs + Vax, VI Vexs) - (3.1.11)

VKA

T = f: VAV Ve =Y DNV, V. - (3.1.12)

A nuv

Due to the connection between the two gradients described in Section 2.3.1, the
same implementation can be used as for the SCF with changed sign and the re-

striction to basis functions concerned with atom A.

Nuclear Gradient of a and 5"

Both the LMF and the semi-local exchange energy are chosen by the user of the
program. Therefore we follow a general ansatz of those principal quantities © €
{a, eSt, 5?}} with dependencies on all quantities @@ € Q (Eq. (2.3.16)) via the total
differential, which yields

Ble)
V46 = — Vi@ . 3.1.13
250 (3.1.13)

The partial derivatives of © are the same as for SCF or TDDFT, and can be reused
as already implemented. The nuclear gradients of the inner quantities have been

given above.
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Nuclear Gradient of £

Here we use the abbreviations ¢} = ¢i(r1), x; = xu(r1), and a; = a(ry). Differ-

entiating the XX energy density (Eq. (2.3.24)) w.r.t. the nuclear positions yields

1
Vaex' (r1) ZVA% o /@?@fr—u dr,
—Z% ¥} /V sozsoj—drz (3.1.14a)

1
- - j{: l)pnl)VA[VQX&LXVu/ﬁXﬂX}f__-dr2

2PN

1
XX / VAXNX)\_dTZ} : (3.1.14b)

For GHs one would now swap the order of integration to get only one term. Yet this
is prevented by the LMF, which also depends on r; and would end up within the
inner integral (cf. Eq. (2.3.28b)), complicating its analytical computation. In the
AO basis we define the two energy gradient terms (including the LMF) separately,

VAET = — Z AgWyq Z D,Lsz//\vAXngug-AnAg

LUK
- Z gD Dyl FagAirg = Z ag Y DX, Gy, (3.1.15a)
RN UK

S == Sy 3 DDt

LUK

— Z a, Z FrgFrgAlng = Z ag Z FegGhg (3.1.15b)
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where we have applied the numerical grid, reused the matrix and vector elements

introduced in Section 2.4.2, and added their gradients

Xy = VWG VaX,y (3.1.16)
Flo=> XDy , (3.1.17)
m
Gly = Foghing - (3.1.18)
A
, 1
wg = | VAXe——xadr . (3.1.19)
ra

Note that A" is not symmetrical, in contrast to A, because the derivative only
applies to the first AO. It also has three components, one each for x, y, and z. The
number of elements will therefore be increased by a factor of about seven (one for

A and about six for A').

3.1.3 Nuclear Gradient of w,

The grid weights depend as well on the position of the nuclei due to the atom-
centered grids mentioned in Section 2.4.1. Consequently, they spawn a gradient
term as well. The values are usually small and can be neglected but for some
tasks, e.g. frequency calculations, they may be needed for the desired accuracy.
Because we use the DFT grids as provided by the program and there is no depen-
dence on the functional (besides multiplication, see last term in Eq. (3.1.2)), the
same routine can be used as in any other gradient implementation and multiplied

with our XC energy density.

3.2 Implementation

3.2.1 Calculating LHGs in grlochyb()

The LH gradient subroutine grlochyb() is similar to xclhyb() for LH SCF. It is,
however, based on a copy of the gradient routine grmrhf () (cf. Section 2.5.2) for
the mGGA case because that uses ingredients up to the kinetic energy density, as

does the LH case. The structure can be seen in Table 3.1.
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Table 3.1 General flow of information for subroutines regarding LHGs (without
grid and junctions).

Subroutine Input Output
grlochyb() D Vi Exc
flll’lCt_S() X X/7 X”
get_ftg dftg() D, x, ¥/ F, F
a_matrices() F g, g
get_hfx1() D, Y, G V4 ET*
get_hfx2() F, G Vi ES*
get_exx () F,. G ¢
ondes_ks() D, x, X 0y Y, T
Imf_10) Py, T a, 52, 9% 52
lochyb_10) D, ¢, a, g—‘;, g—f‘;, g—i exa, 0, 0", O
ongrd k() D,0,0,0" X, X" WuEL
wmgrd () EXC 26

For each block of grid points the values and derivatives of the AOs are calcu-
lated. In comparison with the LH SCF routine, we need basis function derivatives
of higher order for the gradient (i.e. funct_3() instead of funct_2()). These are
used to calculate F and F' in calc_ftg() (Egs. (2.4.3) and (3.1.17)), as well
as the electron density p, its squared derivative ~, and the kinetic energy den-
sity 7 (ondes_ks (), Section 2.3.3). Then G and G’ (Egs. (2.4.4) and (3.1.18)) are
determined in a_matrices() and used to calculate £ (Eq. (2.4.6)) and the gra-
dient parts Vi Ef* and V3 ES* of the XX energy (Egs. (3.1.15a) and (3.1.15b)) in
get_hfx1() and get_hfx2(), respectively. For the gradients from SL quantities
O € {a,é‘XL,e%L} we use the same operator terms as in the SCF implementa-
tion (O, O', O, cf. Section 2.6.1), which are calculated in lochyb_1(). They are
handed over to ongrd k() to be multiplied with the AOs and their derivatives,
yvielding Vi EYq,

56 OVaxuXy
70 O (VaXixw + VaxuX,,) ¢ = VaBxe - (3.2.1)
O"Nax, X,

If desired, the gradient of the grid weights (see Section 3.1.3) is computed in
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3.2 Implementation

wmgrd (). Finally, all the contributions are added up to the XC energy gradient
ViExc = VaEQy + VAES + Vi ES + A EY . (3.2.2)

Note that in get_hfx1() x’ and D have to be used instead of F' because the
mapping from the AO to the atom for which the gradient is being computed was

lost by summing up over the relevant index p.

3.2.2 Calculating A and A’ in a_matrices()

The structure of a_matrices() is more convoluted than that of numpot () (cf. Sec-
tion 2.6.2) because of the additional G'. As described in Section 3.1.2 the complete
A’ is needed for the gradient.

We could either extend the shell loops to go through all shell pairs (and skip
A for the upper triangle), or we keep the structure but calculate both A, and

/

\ng together. In the former case, the number of subroutine calls for the integral

routines is almost doubled. In the latter, the angular quantum number of both
shells is effectively increased by one, thereby also increasing the number of roots
by one, but the number of calls remains the same. Choosing the latter, the Gauss-
Rys quadrature (see Section 2.6.3) is a potent tool because of its modularity: We
can use all but one (the highest) elements of the intermediate integral elements
and combine them in different ways (see below). To do that, we need five mapping
arrays for the monomial exponents (L7L7; L7 L7, L3 L 7; L1L, ,CIE}), where in
numpot () we used just one (LzL7). Here we use the abbreviations £ = L1 + 1,
L7 = L7 — 1, and analogues.

To get the current parts of A’ for two primitives of a given shell pair, we multiply
the intermediate integrals £7 £ and £F L7 with their appropriate prefactors and
subtract one from the other according to Eq. (2.3.9). This is depicted on the r.h.s.
of Fig. 3.1. The same is done with the pair £7£; and EIC}. For this we need
a reversed mapping for the monomial exponents to find the correct elements to
combine, which is prepared together with the normal mapping. The remaining
integrals (L7L7) already represent the parts of A, as in numpot (). Outside the
primitive loops, all of those calculated elements are multiplied with F to get both
G and G'. This is illustrated in Algorithm 2.
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L7 < angular quantum number of shell Z

L 7 < angular quantum number of shell J
calculate mapping of monomial exponents for L7L 7
calculate mappings of monomial exponents for L7 L7, L3 L 7, LL, ﬁZE}
for primitive Pz do

for primitive P4 do

I, < preliminary integrals for up to L3 L7
for roots v do

A + combine I, for L7L 7

combine I, for L7 L

combine I, for LI L7

combine I, for LzL;

combine [, for EI[,}

sum up each product over all roots

end

A’ <= combine products of £L7L; and Ez[,}r
sum up over all primitives Py

end

A’ + combine products of L7 L7 and LI L 7
sum up over all primitives Pz

end

G < multiply A (LzL7) with F’

G < multiply A (LsL7) with F’

G’ + multiply A" (L7 L7 and LI L 7) with F

G’ < multiply A’ (£LzL and L7L7) with F
Algorithm 2: Algorithm to calculate elements of G and G’ for a shell pair Z.7
(without consideration of P-junctions, see Fig. 3.2). Compare with Algorithm 1
(shell loops were left out for simplicity).
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3.3 Assessment

Calculating V5 in a_matrices_integrals()

The subroutine a_matrices_integrals() is based on vspdf () (cf. Section 2.6.3).
As explained above, the Boys function part was removed because of the modularity
of the Gauss-Rys implementation. In Fig. 3.1 an example is given for a pp shell
pair, in comparison to Fig. 2.5. The routine is called as if it was a dd shell pair
(Lz = 2,L7 = 2). This gives rise to the preliminary integrals for ss, sp, sd, ps, pp,
pd, ds, dp and dd for multiple Rys roots, see L.h.s. of Fig. 3.1. They are multiplied
and summed up over all Rys roots for each of the five shell type pairs listed before,
as given by the mappings prepared in a_matrices(). These intermediate integrals

are returned to a_matrices() for further processing as explained above.

3.2.3 Prescreening with S- and P-Junctions

To speed up the gradient calculations, S-junctions were implemented as explained
for LH SCF (see Section 2.4.5) without adjustments.

For P-junctions the procedure had to be extended to F’ (cf. Section 2.4.5).
For each shell the values of F and F’ are compared to a given threshold and if
any elements are above that threshold for the current block of grid points, the
shell is marked as mandatory. This results in two lists of junctions that indicate
non-negligible elements of A and A" upon multiplication with F or F’.

The modularity of the calculation enables us to further refine the prescreening.
For each shell pair to be calculated the combination of primary (Z) and secondary
(J) shell is evaluated to see if the pair can be skipped, or at least if the virtual
quantum number £ of the integral routine call can be lowered for this pair. The

procedure is illustrated in Fig. 3.2.

3.3 Assessment

During and after implementation of the new gradients, some tests were run to
check its correctness and efficiency. In addition to coinciding with numerical gra-
dients, the analytical gradient should give comparable structures and vibrational

frequencies.
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root 1

X

1 | spx | spy —

Sp 2ax —1x = 0,PxP;
sd 2ax -1x = 0y PxP;
ps 2ax —-1x = 0,PxP;
PP| OyxPx DxxPy )
pd| |dyyPy dyyPy dyyP,

OPxPx|9PxPy PP,

ds dZZpX dzzpy dZZpZ

opPyPx|9PyPy PP,
opP.Px PPy PP,

dp dxypx dxypy

dd dxsz dxzpy

dysz dyzpy dyzpz

Figure 3.1 Calculating elements of A’ arising from a pair of two different p shells.
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Left: preliminary integrals in z, y and z (only x is shown) for multiple
roots (only one is shown); center: intermediate integrals; top right:
example calculations; bottom right: overview of all results for the pp
example (0 summarizes 0,, 0, and 0,). The intermediate integrals sp,
pp and dp are crafted from the preliminary integrals as in Fig. 2.5.
The intermediate integrals of pp (gray) represent the elements of A.
Those from sp and dp are combined according to Eq. (2.3.9) to yield
the gradient of pp in all three directions, including the exponential
factor o and the Cartesian quantum number as a prefactor, here 1. For
example, each of (dyp.), (dzyp.) and (d,.p,) is combined with (sp,)
to give the gradients (0,p.p.), (Oypazp:), and (0,pyp.), which can be
denoted as a vector (Op,p.). This example only depicts the calculation
of elements A;Ag but with the remaining preliminary integrals the

\ng elements (e.g. (p,0p.)) can also be created.
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loops over l shells Z, J

Fr > thl—| F, > th [skip Z]

! )
(skip J || Fy > th |~ Fz > th| [Fs; > th skip J |

| | !
Lita] (228

Figure 3.2 Scheme for P-junctions. F and F’ for primary (Z) and secondary (7 )
shells are compared to the threshold (th) to possibly skip all for a
primary shell (skip Z), all for a secondary shell (skip J), or to lower
the virtual angular quantum number for the integral routine by one
(L3 Ly or L7L7 instead of L7 L7). Horizontal arrows (orange) denote
that all values of a shell are below the threshold, vertical ones (blue)
that at least one is not.

3.3.1 Comparing Analytical and Numerical Gradients

The smallest system to check the correctness of the gradients is a molecule of two
atoms, e.g. LiH. By calculating the total energy for two different distances and
dividing their difference by the change in that distance, we get a viable approx-
imation for the gradient. The smaller the change in distance the more accurate
this will be. The approximation is also better if one compares with the gradient
at average distance.

For example, we calculated the gradient of LiH with LH-SVWN (t-LMF with
b = 0.5, cf. Eq. (2.2.21)) for an atomic distance of 2.4000 and the energy for

displacements of £0.0001. The approximate numerical gradient

AE  —7.657339710539 — (—7.657 322442 382)
Ad 0.0002

ViPPE — = —0.086340785 (3.3.1)

is quite close to the analytical —0.086 340 797. Such tests were used during devel-

opment but we will instead look at more practical cases in the following sections.
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3 Local Hybrid Gradients

3.3.2 Main-Group and Transition-Metal Structure Test Sets
Computational Details

For structure optimizations we used a set of small molecules of main group elements
by Zhao and Truhlar*? (MGBL19 test set) and a 3d transition-metal test set by
Biihl and Kabrede.'?® We used def2-TZVP basis sets and a large grid size''% of 5.
S- and P-junctions were not used for these calculations.

To be consistent with two LHs previously optimized for thermochemistry and

70126 we used Slater exchange, VWN correlation and set the constant

kinetics,
prefactors b = 0.48 and ¢ = 0.22 for the t-LMF and s-LMF (cf. Egs. (2.2.21)
and (2.2.22)). Within this section we will refer to these specific LHs as “t-lh” and
“s-1h”. For comparison we used the following functionals: BP86*' and PBE®6! as

GGAs; TPSSh,%07.72 B3LYP,? 40 PBE0,5%%3 and BHLYP* as GHs.

Results

Figure 3.3 shows mean signed errors (MSEs) and mean absolute errors (MAEs)
of computed bond lengths for LHs and some other functionals, compared to the
experimental values of the MGBL19 set.

The results of t-lh are comparable to the BSLYP ones, with MAEs of 0.58 pm
and 0.59 pm and maximum errors (MAXs) of —2.68 pm (F3) and —2.65 pm (Cly),
respectively. The s-lh results are slightly worse with MAE 0.64 pm and MAX
3.05pm (F3). TPSSh performs somewhat better and PBEO slightly worse. BH-
LYP, chosen as its large XX admixture of 50 % is close to the maximum of 48 %
in the selected t-LMF, exhibits the largest errors (with generally negative MSE),
whereas the GGA functionals perform moderately well.

Figure 3.4 shows the results for the set of 3d transition-metal complexes. Here
TPSSh has also the lowest MAE. The MAEs of t-lh and B3LYP are similar
(1.73pm vs. 1.68pm). The GGA functionals perform well for this test set, as
had been noted before,'?® whereas PBE0 and in particular BHLYP are slightly
inferior. The MAE of s-1h (1.93 pm) lies between t-1h and PBEO. In summary, the
selected LHs have a similar accuracy for molecular structures as other commonly
used functionals like BSLYP for the chosen test sets while they have been shown

to be more accurate for a larger range of properties.?:70:91,127
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Figure 3.3 MSEs and MAEs for bond lengths (in pm) of main-group structure
test set MGBL19, comparing two local hybrids (t-lh, s-1h) and a few
other functionals.

3.3.3 Main-Group Vibrational Frequencies
Computational Details

As an even more critical test, we computed vibrational frequencies for a set of small
molecules (the F2 subset by Scott and Radom?®). The structures were optimized
and the frequencies calculated with def2-TZVP basis sets and a grid size m5 (i.e.
a medium grid size 3 during the SCF but a large grid size 5 for the last iteration
and the gradient). Furthermore the SCF convergence criterion was set to 107,
and the gradient threshold to 107 during the structure optimization.

In some cases, frequencies from different irreducible representations are very
close and the order may thus differ from one functional to another. We have
therefore compared the calculated to experimental frequencies in numerical or-
der without attempting to match representations. This avoids favoring a given
method that is used for the initial assignment. Since analytical second derivatives
so far are not available for LH functionals, we used the numerical differentiation of

analytical gradients, that is provided by Turbomole’s NumForce module (see Sec-
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Figure 3.4 MSEs and MAEs for bond lengths (in pm) of the set of 3d transition-
metal complexes, comparing two local hybrids (t-lh, s-1h) and a few
other functionals.

tion 2.5.4), to obtain the second derivatives. For consistency, this was also done
for the reference calculations with other functionals. Additional calculations with
fully analytical second derivatives (for available functionals), computed using the

aoforce module within the RI approximation,!16-128-131

were performed to gauge
the accuracy of numerical differentiation. The impact on mean errors is, however,
marginal (below 1cm™ for any GGA and GH functional) and only results with
numerical derivatives will be compared below. S- and P-junctions were not used

for these calculations.

Results

As is commonly done, for each functional we determined a scaling factor A =
> UihVexpt/ Y V4, that minimizes the root mean square error (RMSE) between cal-
culated and experimental frequencies. The scaling factor compensates for a general
overestimation in calculated frequencies, which is only in part caused by a given

functional and to a larger extent by the harmonic approximation.?>
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Table 3.2 Scaling factor A and errors (in cm™') for the F2 vibrational frequency
test set. SMSE, SMAE, SMAX: The scaled results for the corresponding
errors (without prefix S).

Functional A MSE MAE MAX SMSE SMAE SMAX
BHLYP 0.934339 111.3 113.2 3198 —0.8 204 179.3

PBEO 0.960138 60.0 63.5 216.6 —6.0 249  169.5
t-1h 0.960182  60.9 64.6 2158 —5.1 22.1 170.6
s-1h 0.967318 48.0 524 206.5 —5.7 23.1 169.7

B3LYP 0.967821 475 52.1 2104 54 203 174.1
TPSSh 0.968549 454 51.6 210.7 —6.2 206 175.2

Table 3.2 lists the scaling factors and the statistics without and with scaling.
Overall, scaling factors, and errors before and after scaling are very similar for
t-lh, s-lh, and most of the GHs. Only BHLYP requires notably more scaling, while
after scaling performance is comparable to the other functionals. These prelimi-
nary results suggest that both LHs perform similarly for main-group vibrational
frequencies as established GHs. The IR intensities (not shown) of t-lh and BSLYP

are also similar.

3.3.4 Timings for Linear Alkanes and Adamantane
Computational Details

To evaluate computational efficiency aspects, we measured the application of S-
and P-junctions by timing gradient calculations for unoptimized linear alkanes
(CpHapio with n € {1,...,20}) with t-lh. All timings were done using a single
central processing unit (CPU) core (Intel i3-4130 CPU @ 3.40 GHz). We used
the general timing output of the Turbomole programs. The initial structures were
created with C—C distances of 145.0 pm, H-C distances of 108.9 pm and angles
of 109.471°. A single SCF was run on each structure. Afterwards the gradient was
calculated with thresholds for S-junctions and P-junctions varying from 10~% to
1078, or without any junction screening. Grid size 1 and def2-TZVP basis sets
were used for these calculations.

Subsequently, the timing measurements were extended to adamantane (CyoHyg)
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3 Local Hybrid Gradients

as a more compact case. The initial structure parameters are the same as for the
linear alkanes above. Here we also investigated the time for a complete structure
optimization to an energy threshold of 107%. For the LH functional we tested
different P-junction thresholds between 10~* and 107%, and also distinct ones for
SCF and gradient calculations. In one case both S- and P-junction thresholds were
set to 107°. For comparison we also measured the CPU time for gradients of the
semi-numerical XX senex algorithm®? for GHs in Turbomole, with grid size 1
and its default S- and P-junction thresholds (which are not directly comparable
to ours). To estimate the influence of basis set size we compared def2-SVP, def2-
TZVP, and def2-QZVP basis sets, using the same computer as above and grid size
1. For all calculations with def2-QZVP basis sets, a grid point batch size of 70 was

used, otherwise it was 100.

Results for Linear Alkanes

Figure 3.5 provides timings for the computation of the LHG as a function of alkane
chain length, and with different thresholds for S- and P-junctions, respectively.
While the overall appearance of the two graphs is similar, the magnitude of the
time savings due to prescreening by S- and P-junctions is notably different. In both
cases, the percentage saving increases with chain length and thus with system size.
However, S-junctions are less efficient for prescreening in this case than P-junctions.
Taking reasonably conservative and accurate (see below) thresholds of 1075 for
both cases, S-junction savings converge to about 7% for longer chains, whereas
the reduction in computation time due to P-junctions does not seem to level off
much even at 20 carbon atoms, where it amounts already to almost 40 %. With
tighter thresholds, the savings are less and they start at larger chain lengths.
Turning to the effects of S- and P-junctions on numerical accuracy, we note that
the errors of the gradients with S- and P-junctions relative to calculations without
prescreening remain approximately constant with chain length. Table 3.3 provides
MAESs for all alkanes studied. These depend appreciably on the thresholds used.
Considering an accuracy of 107% for the gradient as reasonable for most purposes,
we see that thresholds of 107° for both S- and P-junctions provide sufficient accu-

racy but still allow for favorable timings (see above). If we want to be even more
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Figure 3.5 Relative CPU time of a local hybrid gradient calculation for n-alkanes
as function of chain length, with different thresholds for S-junction
(above) and P-junctions (below) in negative powers of ten, compared
to results without S- or P-junctions. The kink of graph 5 and 6 for
C4Hyy are artifacts caused by rounding the timings to seconds for

times longer than a minute.
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Table 3.3 Mean absolute error (MAE) of local hybrid alkane molecular gradients
(averaged over all alkanes) for different thresholds (th) of S- and P-
junctions. The reference values are gradients without prescreening.

h MAE (V4 FE) /a.u.
S p

107 6-107% 5.107%

107° 9-107% 4.107%7

1075 2-107% 1-107%

1077 4-1072 2.107'

1078 2107 1.1071

conservative, thresholds of 107% may be used.

Results for Adamantane

Figure 3.6 provides timings for a single gradient calculation of adamantane. In
addition to an LH with the present implementation (t-lh), we have chosen TPSSh
as an example of a GH and PBE as an example GGA functional (timings for
functionals of the same family are very similar). The timings are given relative
to those of TPSSh using the efficient analytical gradient of Turbomole’s rdgrad
module. We additionally provide data for TPSSh obtained with the senex option,
which also uses a semi-numerical treatment of the XX energy integrals (prefix sx).

As expected, the GGA gradient calculation is much faster than that with the
GH, which in turn is faster than the current implementation for LHs. However,
the semi-numerical implementation for LHs and for GHs scales better with basis
set size than the analytical implementation for GHs. Thus, while the LH gradient
takes 7.5 times longer than a standard TPSSh calculation with the small def2-SVP
basis sets, the factor decreases to 3.3 with def2-TZVP and to 2.6 with def2-QZVP.
We also confirm that the effect of using P-junctions (shaded area on the bar)
becomes more notable with increasing basis set size. The senex algorithm for GHs
(provided with default settings for S- and P-junctions) performs even better, with
factors of 1.5 (def2-SVP), 0.64 (def2-TZVP) and 0.62 (def2-QZVP). Due to the
additional integrals needed for A" with LHs (see Section 3.2.2), the corresponding

factor decreases less quickly for this system size.
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Figure 3.6 Relative CPU times for a gradient calculation of adamantane with
def2-SVP, def2-TZVP and def2-QZVP basis sets, respectively. The
time of TPSSh is set to 1 with each basis set. The shaded part of t-lh
depicts the time savings obtained with S- and P-junction thresholds of
10~°. sxTPSSh stands for a TPSSh calculation using the senex option
with default parameters.

Table 3.4 Absolute CPU time for a full structure optimization (excluding the
initial SCF) of adamantane with a local hybrid using def2-QZVP and
different P-junction thresholds (no S-junctions). The energy difference
and timing ratio refer to the optimization without P-junctions. For
comparison, timings with both the recommended value of S- and P-
junctions (107°) are given as well.

P threshold

Cycles

SCF  grad  SCF Strue /™ kJjmol /%
— 50 10 137
1074 116 15 13.8 10%° +1%
104 1075 84 11 123 10°  —10%
105 104 72 17 126 100 8%
10-5 50 10 104 102 —24%
105 106 50 10 123 102 —10%
106 1075 47 9 101 107 —26%
10-6 50 10 128 10 —6%
SPth.—10° 50 10 98 102 —28%
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Table 3.4 lists the computation times and cycles of a complete structure op-
timization of adamantane using t-lh with varying P-junction thresholds (no S-
junctions), plus one result with both S- and P-junction thresholds set to 1075.
While the computation time of a single SCF cycle and gradient calculation de-
creases with looser thresholds, for thresholds of 10™* the overall time for a struc-
ture optimization increases due to inaccuracies in the intermediate gradients. The
error in total energy after structure convergence decreases to 0.01kJ/mol upon
using P-junction thresholds of 107 or lower, and the computation time decreases
by 24 %. If S-junction thresholds are additionally set to 1075, the error remains the
same but the time is lowered further by about 4 %, resulting in an absolute CPU
time of 9.8 h compared to 13.7h without prescreening. This also confirms previous
findings that P-junctions are more important than S-junctions. Additional varia-
tions with tighter thresholds than 107° for either the SCF or the gradient are likely
insignificant within our measurement accuracy for a full optimization process. Fi-
nally our value of 10~ for both S- and P-junctions suggested above is confirmed

as a good compromise between accuracy and efficiency for most applications.

3.4 Application to a Gas-Phase Mixed-Valence
Oxide Benchmark Set

We have applied the gradients for LH functionals to optimize structures and cal-
culate vibrational data in a study on a new benchmark set for gas-phase mixed
valence (MV) oxides consisting of small molecules (MVO-10),? which followed an

extensive prior investigation on Al,Q, .13

3.4.1 Theoretical Background

Chemical systems with two or more formally identical redox centers sharing a
number of valence electrons, that do not allow the same integer number of them
assigned to all centers, may be considered to be in a mixed valence (MV) state. Such
systems are crucial in many technological applications or in biocatalysis and have

134-142

thus been studied by a wide range of experimental methods and increasingly

also by quantum-chemical approaches.'*? The classification by Robin and Day!*4
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distinguishes three main classes for MV systems based on the electronic coupling
of their redox centers and the resulting (de)localization of the charge: I) decoupled
with full localization, IT) moderately coupled with partial delocalization, and III)
strongly coupled with full delocalization. The distinction between class II and
I1I systems can be challenging for quantum-chemical models since several aspects
must be addressed simultaneously: (a) Exchange, as well as dynamical and non-
dynamical correlation need to be treated in a balanced way.1%:46:143:145.146 (1) Ag
most (spectroscopy) experiments on the (often charged) MV systems are performed
in polar solvents, a good treatment of environmental effects also becomes crucial.
Moreover, many of the MV systems of chemical or technological interest may have
appreciable size, rendering the most accurate post-HF methods to treat point (a)
too computationally demanding at present.

Small MV systems in the gas phase could alleviate part of this complication
and allow for the evaluation of DFT functionals by comparison with high-level
CC methods at the complete basis set (CBS) limit. The radical anion AlyO4
is such a system and was identified previously as class I1I'®® in agreement with
experiment.'®” Interestingly, the computations confirmed not only the localized
(5, minima representing terminal oxyl radicals but also provided a high-lying
further local minimum with Dy, symmetry that may be characterized as a bridge-
localized state with the electron hole distributed over the two bridging oxygen
atoms.'3® The initially surprising localized character of such a small MV system
has been rationalized by the relatively ionic Al-O bonding, which explains the

relatively weak electronic coupling between the terminal oxygen redox centers.
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Figure 3.7 Systems included in the MVO-10 benchmark set.
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Based on that study, we extended the investigation to ten systems of both main
group (Al, Si) and transition metal (Sc, Ti, V, Cr) oxides, shown in Fig. 3.7. For
details on the selection of systems, see [2, Section 2.

The performance of a given functional will be determined by the balance be-
tween a minimization of so-called delocalization errors arising from incomplete

4

cancellation of Coulomb self-interaction!*® on the one hand and covering impor-

tant left-right correlation contributions in the covalent bonds on the other hand.

3.4.2 Computational Details

The calculations have been performed with the Turbomole (revision 7.2),85:116,149

150 as well

Gaussian (version 09, revisions A.02 and D.01; version 16, revision A.03),
as with the MOLPRO (revision 2012.1)*1152 and MRCC'® program suites. We
have ensured that the programs usually provide identical energies (to within less
than 0.5 mH) and structures (to within less than 0.5 pm at a given computational
level). High-level benchmark data with an approximate energy accuracy of about
1 kJ/mol have been obtained by our collaborator Dr. Amir Karton at the University
of Western Australia? using W3-F12 theory”” for systems containing first- and
second-row atoms, and truncated levels of theory for systems containing first-
row transition metals. For more details on those benchmark calculations, see |2,
Sections 3 and 4].

The benchmark data have been used to evaluate the performance of a variety
of different DF'T approaches. In all cases, the structures of minima and transition
states were fully optimized using the given functional with def2-TZVP basis sets.!
Previous tests, e.g. against def2-QZVP results, showed that this basis set provides

133 (we confirmed this by some further

essentially converged structures and energies
test calculations that generally exhibited changes in energy differences that were
less than 2kJ/mol).

We have evaluated the following functionals: a) global hybrids (B3LYP,3* 4 BH-
LYP,* BLYP35,%+6 M06,5¢ M06-2X,5¢ MN15,5" PBE0,5%6* PBE0-1/3,%4 BMK*"),
b) global range-separated hybrids (CAM-B3LYP,*® wB97X-D37), and c) local hy-
brids: t-LMF™ with SVWN and b = 0.646 (LH646-SVWN) or b = 0.670 (LH670-

SVWN), LH-sifPW92%* (b = 0.709), and LH-sirPW92° (b = 0.646), see Sec-
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tion 2.2.2. The prefactors of the two LH-SVWN functionals have been chosen
either to be equal to that of LH-sirPW92 (b = 0.646), to probe the effects of the
correlation functional, or as b = 0.670 since this is above the threshold value where
the structural details of Al,O,  are correctly reproduced (see below). For the other
functionals, we will report data obtained with Gaussian 09 (and Gaussian 16 for
MN15),'%0 after having made sure that all programs provide essentially identical
results for functionals available in both.

With Gaussian we mostly used default options for convergence of structure op-
timizations and for vibrational frequency calculations. In some critical cases the
superfinegrid and tight or verytight options were used, or the more robust
quadratic convergence SCF procedure (QC) was employed. Because of its small en-
ergy difference to the high-lying Dy, minimum, we applied further options to con-
verge the transition state of Si,O, with ®B97X-D (maxstep=5) and the associated
intrinsic reaction coordinate (IRC) (maxpoints=200, stepsize=1, iop(1/7=10)).
For Turbomole, the SCF convergence threshold was generally set to 1078 to be on
par with the default value of Gaussian. In some tests, gridsize was set to 3 or 5,
the option gcart to 4 or 5 for the structure optimization, or the S- and P-junctions
were disabled. In particular, for frequency calculations we employed derivatives of
integral grid weights to improve numerical Hessians. The ground-state structure of
Al,O4 with LH-SVWN was a borderline case where stricter thresholds were not
reliably resulting in the lowest energy. We therefore started optimizations from
both delocalized and localized structures, choosing the result with the lowest en-
ergy. Use of this scheme when varying the prefactor for the LMF led to a crossing
point between b = 0.664 and b = 0.665. This established the safe value of b = 0.670
mentioned above.

Based on these data, structures and spin-density distributions were visualized

using the Chemcraft (v1.8) software.!5*

3.4.3 Results and Discussion
Evaluation of XC Functionals for Energies and Minimum Structures

We compare the performance of different XC functionals in reproducing both en-

ergetics and structures obtained at CC levels. Figure 3.9 shows the spin-density
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10134

Figure 3.8 Spin-density distributions of different stationary points of SipO4"
(wB97X-D, £0.01 isosurfaces). Left: Cs, low-lying minimum; middle:
transition state (Cy,); right: Dy, bridge-localized high-lying minimum.

distributions (at wB97X-D/def2-TZVP level) for both localized and delocalized
structures of all species (and for the bridge state of Al,Oy ; SipO4 ™ is given in
Fig. 3.8) to give a better impression of the electronic-structure situation. Table 3.5
summarizes relevant energy differences for all complexes studied here. In most
cases, a positive number denotes the energy barrier in going from a localized,
symmetry-broken minimum to a delocalized transition state. Al,O4 and Si,O4™"
are exceptions, as here the structure at higher energy represents another minimum,
with the spin density delocalized over the two bridging oxygen ligands (a “bridge-
localized minimum” and bond-stretch isomer, as discussed in detail in [133] for
AL Oy ).

We start with these two isoelectronic main-group species. For Al,O,  we add
further results for LH functionals as well as for the GH MN15 to the data from
previous work.'3 While the energy differences for all four LHs are very similar
and overestimate the best reference data only slightly, the ground-state structure
depends very sensitively on minuscule details of the functional (Table 3.A.1). That
is, LH-sifPW92, LH-sirPW92, and LH646-SVWN do not give the correct symme-
try breaking but converge to a ground-state structure close to Dy, symmetry,
where the spin density is almost symmetrically delocalized over the two termi-
nal oxygen atoms (preliminary calculations for LH646-SVWN had suggested more
symmetry breaking, but for large grids and tight convergence criteria, the struc-
ture also remains close to Dsp,). We had found similar behavior for several GHs
with intermediate XX admixtures between 25 % and 32 % (see also PBEQ data in
Table 3.A.1). Notably, for this system the extreme sensitivity of the ground-state
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Figure 3.9 Spin-density distributions (40.01 isosurfaces) of localized and delo-
calized structures of the benchmark models (0B97X-D/def2-TZVP
level). For SipO4" see Fig. 3.8. Designations of transition states and
minima obtained at the same level (inconsistent for V4O with a
delocalized Dy structure deduced from experimental spectra).
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Table 3.5 Comparison of relevant energy differences (in kJ/mol) at different computational levels

3 Local Hybrid Gradients

mv\Mﬁma >Hwogw mwmo%gv mwmogw H,GO%\ waogLﬁ wOOM HWOM+ OH,NO@.\ <MO¢+ <%OHO\
Character O hole O hole Si el. Ti el. O hole O hole O hole Cr el. Vel Vel
Symmetries Dop, Cay Dap,Coy C2y, s Cop, Cs Cop, Cs Cay, Cs Coy, Cs Dopy, Coy - Cop, Cs Dag, Cs
CCSD(T) 69.5 120.5 48.1 —2.5 59.4 10.7 —6.9 —1.1 31.5 <5 d
CCSDT(Q) 67.9 112.2 47.8 —° —° 6.2 -0.6 — —° <5 d
B3LYP 19.1 P 0.0 49.1 0.3 55.0 0.5 0.1 9.5 18.8 1.1
BHLYP 98.6 158.4 64.6 33.6 124.9 32.7 11.4 51.2 68.4 62.1
BLYP35 76.6 133.3 57.6 13.3 91.5 16.3 5.5 304 44.4 26.4
MO06 19.4 P 134.5 47.2 0.6 67.7 9.6 4.3 4.3 12.4 0.1
MO06-2X 85.2 140.9 52.7 23.3 114.8 25.6 16.0 53.9 66.1 60.9
PBE 0.0 0.0 36.1 0.3 0.1 0.1 0.1 0.0 0.1 0.7
PBEO 80.3 ¢ 127.6 48.5 3.2 67.2 5.6 1.6 13.0 24.7 0.6
PBE0-1/3 74.5 136.0 52.1 11.0 87.0 14.8 4.9 24.0 38.3 18.3
BMK 77.8 134.5 50.1 10.1 101.0 13.9 10.2 36.7 56.7 31.0
MN15 76.2 131.7 39.0 5.9 85.1 12.8 6.7 13.0 27.7 6.7
CAM-B3LYP 68.7 124.4 58.2 15.2 89.4 14.4 4.1 23.0 36.5 18.7
»wBI97X-D 67.1 125.6 54.8 16.7 69.4 14.9 5.2 21.1 34.8 13.3
LH-sirPW92 76.9 ¢ 126.3 51.4 6.6 54.1 1.1 3.7 10.0 24.3 0.1
LH-sifPW92 74.5 ¢ 129.1 51.0 8.8 60.0 3.0 5.0 12.3 27.7 2.7
LH646-SVWN 76.5 ¢ 131.0 56.4 114 63.3 7.0 6.2 14.6 29.7 5.7
LH670-SVWN 76.3 133.2 60.2 13.3 66.8 8.7 7.3 16.3 32.2 8.2
aDFT/def2-TZVP with structures optimized at the same level, and CC single-point energies with BLYP35/CBS-
optimized structures as benchmarks. P Dy, structure does not represent proper bridge-localized minimum but an
artifact of the structure optimization. ¢ Low-lying minimum with spin density at the terminal oxygen atoms almost
delocalized to Do symmetry. 4 No benchmark computations available. The preference for a delocalized structure is

inferred from the experimental gas-phase vibrational spectra of [147], which are thought to correspond to a tempera-
ture below 50K. ¢ The highest-level W3-F12 computations corresponding to the CCSDT(Q)/CBS level have not been
possible with the available computational resources.
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structure may lead to convergence to different structures depending on the start-
ing point within a rather wide range of LMF prefactors around this borderline
value. MN15 provides also good structures and energy differences similar to those
of the better-performing functionals (Table 3.5). We note that GHs with lower XX
admixtures, such as B3LYP or M06 (as well as GGA or mGGA functionals), do
not allow the bridge-localized Dy, structure to be located and inevitably give a
“terminal-oxo delocalized” Dy, structure only (Table 3.A.1). GHs with too large
XX admixture (e.g. BHLYP or M06-2X) give good structures but overestimate the
energy difference.

For the isoelectronic Si;O4" (Fig. 3.8) the overall electronic and molecular struc-
ture is very similar but the energy difference between bridge-hole and terminal-hole
states is much higher, ca. 112 kJ/mol compared to about 68 kJ/mol.'33 Locating the
barrier for transformation from the high-lying Dy, minimum to the ground state
turned out to be difficult in several cases, likely due to its extreme smallness: with
»wB97X-D we found it to be 4kJ/mol (supported by a CCSD(T)/CBS//wB97X-
D/def2-TZVP single-point value of 4.3kJ/mol obtained from W2-F12 theory),
even smaller than the one found for the isoelectronic Al,O4~ (ca. 10kJ/mol'?3).
Otherwise, results for SioO4" show less sensitivity to the functional than observed
for Al,O4 . PBE and B3LYP delocalize and fail to provide the bridge state, PBEO
and MO6 give the high-lying bridge state (in contrast to its absence in case of
Al,O4 for M06') but a delocalized ground-state structure (Table 3.A.2). No-
tably, in contrast to Al,O4  (see above) all LHs tested give the correct Cy, ground-
state minimum. Interestingly, all functionals that provide the qualitatively correct
minimum structures overestimate the benchmark CCSDT(Q)/CBS energy differ-
ence at least by about 15kJ/mol. However, this could be related to the unusually
large effect of the post-CCSD(T) contributions for this system (cf. [2, Tab. 1]). We
note in this context that the high-lying Dy, minimum involves a higher degree of
non-dynamical correlation effects relative to the Cy, structure. This is reflected,
for example, in relative contributions of perturbative triples to the total atomiza-
tion energies™ 757" of 4.9 % and 6.8 % for the Oy, and Dy, structures, respectively.
This means that all qualitatively reasonable functionals provide energy differences
only 4kJ/mol to 14 kJ/mol larger than the CCSD(T)/CBS data (Table 3.5), with
noticeably good performance of ®wB97X-D and CAM-B3LYP.
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The anion SisO4  has a Cs minimum structure with pyramidalization and partial
silicon radical-anion character at one of the two silicon centers (the second Si center
is almost planar, Table 3.A.3; computations on the dianion Si,O4% gave a similar

195) 'whereas the Cy, transition state shows a delocalized

C structure for one isomer
distribution (Fig. 3.9). This anion differs from all other systems in this study by
exhibiting an unexpectedly small dependence of the activation barrier on the XC
functional (Table 3.5): only PBE as our single example for a GGA functional
underestimates the barrier noticeably, and surprisingly the GH MN15 (with 44 %
XX admixture) also gives a low barrier. The B3LYP and MO06 hybrids, which
featured clearly too low XX admixture and consequently too high delocalization
errors for Al,O, and Si,O," (see above), now provide the best agreement with the
ca. 48kJ/mol benchmark CC barrier (together with «B97M-V, PBEQ, and some
LHs). Moderately overestimated barriers are found with the other functionals,
with somewhat unexpected trends (Table 3.5). For example, M06-2X with 54 %
XX admixture, which clearly over-localizes the other species in this study, provides
a lower barrier than some functionals performing better for other systems.
Leaving these main-group radicals, we start with the smallest transition-metal
complexes, the isoelectronic ScOy and TiOy* (Table 3.5). The very small bench-
mark Cy, — Uy energy differences render these systems particularly challenging.
Given the remaining error margins of the benchmark data, any functional giving
an energy difference of only a few kJ/mol and reasonable structural data should
be considered adequate (some functionals do not give an imaginary frequency at
the (s, structure, even though it is higher in energy than the Cy minimum; for
TiO, ", this holds with PBE, for ScO, with PBE, B3LYP, and with some of the
LHs, consistent with CC data!®®). Most functionals reproduce small energy dif-
ferences, possibly with the exception of BHLYP and M06-2X (i.e. for the highest
XX admixtures of the GHs screened) for ScO, (Table 3.5). Structural differences
are not very pronounced (Tables 3.A.4 and 3.A.5): variations of the M—O dis-
tances in the Cy, structures are small, the O-M—-0O angles vary over a range of
ca. 20° for ScOy (with the CCSD(T) value in the middle) but only over less than
5° for TiOy" (with the CC value at the lower end). Differences between the short
and long M—O distances at the C; structure are fairly similar for ScO5 (with the

exception of PBE, which does not give a distorted structure), whereas those for
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TiOy" vary between 0 pm (PBE) and 22 pm (M06-2X), with the CC data (10 pm)
in the middle. While functionals with elevated XX admixtures agree best with the
CCSD(T) data for this difference in ScO,, the smaller CC distortion in TiO," is
best reproduced by B3LYP (8 pm, Table 3.A.5). In view of the extreme shallowness
of the potential-energy surfaces, these structural comparisons have to be viewed
with caution. We can thus draw only limited conclusions from these two systems.

It is therefore best to jump from the two smallest systems to the largest com-
plex of the present study, V4010 . In the absence of high-level quantum-chemical
benchmark data, we take the low-temperature experimental gas-phase vibrational
frequencies as indication for a Dsg-symmetrical delocalized structure, with small
uncertainties in the energetics arising from thermal fluctuations and zero-point
vibrations. Getting right simultaneously the molecular and electronic structure of
Al,O4 as the most clear-cut localized gas-phase MV system, and of V,O19 as
a delocalized counterpoint, provides a challenge for any approximate functional.
While functionals with low or zero XX admixture (PBE, B3LYP, M06) correctly
describe V404 as delocalized,'®” they clearly fail to capture the correct localized
ground-state structure and high-lying bridge-hole structure of Al,O4 . Functionals
like PBEO and the local hybrids LH-sirPW92, LH-sifPW92, LH646-SVWN provide
an almost but not quite delocalized situation for V,019~ and get the high-lying
bridge-hole structure for Al,O, , but they give a too delocalized ground-state
structure for the latter anion. Functionals that are already too localized for the
aluminum system (BHLYP, M06-2X) are obviously far from adequate for the vana-
dium complex and give a large bias towards a localized Cy minimum (see also Ta-
ble 3.A.6 for structural data). But even GHs like BLYP35 and BMK, which have
performed reasonably well in previous studies on class II MV systems, 43145146 ti]]
give sizeable stabilizations of above 25 kJ/mol to 30 kJ/mol to the C; minimum of
V4049 (Table 3.5). Focusing on the best-performing functionals for the localized
Al,O4 (see above!3?), we see that for V4O1o~ the global range-separated hybrids
»BI7X-D and CAM-B3LYP give an artificial barrier of only about 13 kJ/mol and
19 kJ/mol, respectively. The local hybrid LH670-SVWN gives 8 kJ/mol. Interest-
ingly, the recent MN15 global hybrid, which has been presented as a particu-
larly good compromise between single- and multireference situations,®” gives ca.

7kJ/mol. The latter two functionals may thus be considered to provide the overall
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best combined performance for these two extreme localized and delocalized cases.

The two d'd’ dinuclear systems CryOg~ and Ti,O,  are electronically similar to
V4019, as the benchmark data characterize them as close to a delocalized class 111
situation. We should keep in mind, however, that higher-order corrections beyond
CCSD(T)/CBS might still give non-negligible barriers for both systems. Similar to
V4010 , functionals with lower XX admixtures (PBE, B3LYP, M06, PBE0) obvi-
ously give small or zero “delocalization barriers”. Variations for CryOg  are larger
than for Ti,04 . Even ©B97X-D and LH670-SVWN give barriers of 21 kJ/mol and
16 kJ /mol, respectively, for the chromium complex, slightly lower ones for the tita-
nium complex (Table 3.5). The low barrier (6 kJ/mol) for MN15 is again notable.
Overall the trends are similar as for V4Oq¢ , suggesting that appreciably delocal-
ized d*d® MV cases exhibit closely comparable dependencies. Structural deviations
from a symmetrical arrangement for CroOg in cases where a Cy, structure is more
stable than the Dy, one are rather small (Table 3.A.7), a fraction of a pm and a
few degree in distances and angles, respectively. Differences in M—M distances
and M—-M-O angles for Ti;O4 are more pronounced (Table 3.A.8).

The last of the d'd® MV systems studied is the cationic VoO,™, which has sub-
stantially more localized character according to the benchmark data. Here B3LYP,
MO06 or PBEQ still provide localized minima (see also previous B3LYP datal!®®),
but with too low barriers compared to the ca. 32kJ/mol CCSD(T)/CBS//BLYP35
benchmark and the previous ca. 27kJ/mol MR-ACPF/B3LYP energies'”® (PBE
is the only functional tested that gives a delocalized structure). Among the best-
performing functionals for Al,O4  (see above), LH670-SVWN, MN15, »B97X-D,
and CAM-B3LYP provides the best agreement with the reference data for Vo0, "
(Table 3.5). LH-sifPW92 and LH646-SVWN approach the reference barrier for
V5,047 closely from below, but they do not provide the correct ground-state struc-
ture for the aluminum anion (see above). BHLYP or M06-2X overshoot strongly,
and even BLYP35 or BMK give clearly too large barriers. Structures are closely
comparable with all functionals (Table 3.A.9), except for the delocalized minimum
structure at PBE level.

Finally, we return to a localized terminal oxyl-hole system, Ti,O4" (cf. Fig. 3.9),
for which the benchmark data provide an appreciable Cy, — Cy barrier of ca.

60 kJ/mol for the more stable trans isomer. Interestingly, this value is bracketed
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quite well by the B3LYP and MO06 data (Table 3.5), while several of the func-
tionals performing well for the aluminum case (BLYP35, PBE0O-1/3, BMK, and
even CAM-B3LYP and MN15) overestimate the reference value appreciably. Keep-
ing in mind again possible effects of the missing “beyond CCSD(T)” corrections,
®wB97X-D and the LH670-SVWN local hybrid perform again well, underscoring the
overall good performance of these two functionals for the overall test set, with the
LH avoiding somewhat better over-localization in delocalized cases. Structurally,
the distortions of the Cj structure tend to be similar for most functionals (Ta-
ble 3.A.10). For example, the differences between the oxyl and oxo M—O bonds
vary between 22pm (B3LYP) and 25 pm (e.g. M06-2X, BHLYP), except for the
PBE GGA (3pm).

Comparison of Vibrational Frequencies with Experimental Data

While the aim was mainly to establish a benchmark set for (de)localization er-
rors in small gas-phase MV systems, some comparison with available experimental
data seems in order, in particular regarding vibrational spectra, where available.
Because of the new implementation this is also possible for the used LH function-
als. For Al,O4 , previous work showed that the infrared multiphoton dissociation
(IRMPD) spectra were reproduced by several functionals that provide the cor-

133,147 albeit the exact

rect symmetry breaking of the Cy, ground-state minima,
frequencies, and in particular the intensities were a challenge. For the isoelectronic
Si»O4 ™, so far no vibrational data are available, and thus the data provided in
Table 3.A.11, which are closely analogous to the corresponding data for Al,O4~
but naturally shifted to higher frequencies, are predictions.

In case of Si,O4 , the broad photoelectron detachment spectrum has been in-
terpreted!® as consistent with a Cy type structure (cf. Table 3.A.3), similar to a
previous suggestion for the dianion.'®> No vibrational structure could be extracted,
and thus the data in Table 3.A.12 are also predictions in this case.

We used the experimental IRMPD spectra for V,O19~ as evidence for the Doy
structure, as its very few features (one V=0 stretching frequency near 990 cm™!
and V-0O-V stretches below 750cm™") are consistent with a delocalized high-

symmetry structure.'® When comparing different functionals and structures (Ta-
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ble 3.A.13), it is clear that Dy, structures reproduce the spectra well, possibly
with some downscaling needed, while Cs minima do not, even if they are only very
slightly more stable than the Dy, transition state (e.g. for LH670-SVWN or for
MN15). That is, Cy structures always give additional bands in the region between

7 even if a

800 cm ™! to 900 cm ™!, which are absent in the experimental spectra,'®
given functional provides only a very small energetic penalty to the Dyy structure
(Table 3.A.13). This holds also for the mentioned LH, albeit interestingly it does
not give any imaginary frequency for the Dss-optimized structure in spite of its
energy being about 8kJ/mol above the C; structure (cf. Table 3.5). This suggests
on one hand that for this type of functional the potential energy surface is already
very shallow in the decisive region. On the other hand we may even question if a
zero-point vibration would fit into the computed well of the C structure. The ob-
served high-symmetry spectrum might thus also be consistent with a very weakly
stabilized Cy structure.

Another ion for which gas-phase vibrational spectra are available is Vo0, .16
Here the overall five bands at 594, 776, 794 (shoulder), 1029, and 1049 cm™! had
been clearly interpreted in terms of a localized symmetry-broken structure.!®® In-
deed, only calculations using a localized C structure provide these five bands
(Table 3.A.14), while computations for the delocalized Cy, structure (e.g. favored
at PBE level; Table 3.5) give only two bands. All functionals would require down-
scaling of the frequencies to agree better with experiment. Additionally, while all
functionals (except PBE, see above) correctly give higher intensity to the asym-
metric V=0 stretch at 1029 cm™! than to the symmetric one at 1049 cm™!, some
of them provide very low intensity to the symmetric band (Table 3.A.14). Ad-
ditionally, the experimental spectra would suggest that the band at 794cm™!,
which is a shoulder to the 776 cm~! band, should thus have much less intensity
than the latter. This lower intensity is not correctly reproduced by most func-
tionals (Table 3.A.14). We keep in mind, however, that intensities may depend on
anharmonicities, which are neglected in the computations.

More limited information from photodetachment spectra is available for TisOy4
and CryOg . The resolution does not allow full vibrational analyses. Thus, for
TisO4  the major information taken from the photoelectron spectra is that of a

localized extra electron.'®’ As we saw above, the energy differences between local-
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ized and delocalized structures are so small in this case that even the benchmark
data do not unequivocally decide between these two cases. Hence we provide com-
puted vibrational data for both Cy, and C structures in Tables 3.A.15 and 3.A.16
for future reference (we note, however, that other photoelectron spectra suggest a

162) The only vibrational information that may be

mixture of cis and trans isomers
extracted from the photoelectron spectra of CraOg”~ is a mode at 780 cm ™! (50).
A band in this area is present in the computed spectra both for delocalized and
localized structures, and thus no information on the structure of this borderline
case may be obtained from this comparison. No experimental vibration spectro-
scopic data are available for ScOy or TiO,™ (but note high-level CC data!®®), nor

for T12 ()4Jr .

3.4.4 Summary

Starting from the previous example Al,O, , we have collected a benchmark set
of ten relatively small main-group and transition-metal MV oxo systems (MVO-
10). For these systems we have obtained high-level CC benchmark energy data
(CCSD(T)/CBS or CCSDT(Q)/CBS, depending on system size), taking into ac-
count also experimental observations (e.g. for V401 ) on the relative stabilities
of localized and delocalized MV situations. These benchmark data have been used
to evaluate a range of DFT XC functionals, in particular GH, GRSH, and LH
functionals. The goal has been to provide guidelines to screen for minimal delo-
calization vs. localization errors for gas-phase MV systems, i.e. without the added
complication of environmental effects that usually affect studies of MV systems.
Pinning Al,O4 and V4019 against each other as the most extreme counter
points of a strongly localized class IT main-group oxyl system and a delocalized
early transition-metal d'd’ case provides already a substantial challenge that is
not fully met by any of the functionals tested. Functionals with relatively high XX
admixtures get the proper structures and energetics of the aluminum system right
(albeit too high admixtures overestimate the energy differences). However, these
functionals tend to artificially localize the spin/charge in V401 . The overall best
performers simultaneously for these two extreme cases are the highly parameterized
MN15 global hybrid, the much less empirical LH670-SVWN local hybrid, and

1)



3 Local Hybrid Gradients

the ©B97X-D global range-separated hybrid (all three functionals exhibit weak
symmetry breaking for the vanadium system but with energy differences that may
be insignificant compared to zero-point vibrational energies). Other systems in the
benchmark set encompass both delocalized and localized d'd® cases, as well as
oxyl cases on both sides of the divide between localized and delocalized. The three
functionals mentioned provide the overall best performance across these cases, with
the notable exception of the silicon-centered Si;O4 , which exhibits a pattern of
relative energies that is difficult to rationalize, and the oxyl-centered Ti,O,4 , where
MN15 clearly over-localizes. The systems studied cover an appreciable number but
certainly not all potential electronic situations we may encounter in MV systems.
The data set provided should thus at least constitute a good starting point for

further evaluations.

3.5 Conclusions and Outlook

Up to now implementations of LH functionals had been lacking gradients w.r.t.
nuclear displacement, hindering structure optimization and the calculation of vi-
brational force constants. This gap has now been closed by the implementation
of those gradients into the program package Turbomole. We employed a semi-
numeric integration scheme with the Gauss-Rys and Gauss-Hermite formalisms,
reusing auxiliary integrals in the simultaneous calculation of the XX-related matri-
ces A and A’ for efficiency. This is accompanied by adjusted screening techniques
of S- and P-junctions from the LH SCF routines.

The implementation was initially assessed for test sets of main-group and tran-
sition metal compounds yielding structures and vibrational data on par with com-
monly used GGA and GH functionals. The effectiveness of the screenings was
evalutated on timings and error estimates for unbranched alkanes and the three-
dimensional adamantane, resulting in recommended values of 107° (or 107%) for
both S- and P-junctions.

Finally, the gradients were applied to a new benchmark test set consisting of
ten small, gas-phase molecules that lie on the verge between the mixed valence
classes I and III. One LH (t-LMF, b = 0.670 with SVWN) performed especially

well, even though the transition state between the low- and high-lying minima of
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Sis04" could only be determined with another functional and program because of
its shallowness.

The gradient implementation may in the future be extended to further ingredi-
ents, e.g. the Laplacian and Hessian of the electron density. The efficiency could be
increased by adapting the Boys-function based integration for low angular quan-
tum numbers used by the energy calculations. Alternatively, the Obara-Saika

scheme!®

3 could yield even better timings by utilizing recurrence relations. The
P-junction scheme would have to be adapted accordingly.
Parts of the code can be reused in other implementations, e.g. for gradients

164) " An extension to second

of excited states (work along this line is in progress
derivatives (i.e. aoforce) is probably not worthwhile at this time as the second
derivatives of A would exhibit a very high demand for processing and memory,

while the numerical approximation (NumForce) already offers usable results.

3.A Appendix

3.A.1 Connection Between Gradient and Overlap

Assuming orthonormal MOs, the overlap matrix is defined as'?*

/QOZSOJ dr = Z O,uz'S;wOI/j = 61']‘ ) (3A1>

j17%

with coefficients C); and C,;, overlap matrix elements S,,, and the Kronecker delta
d;;. If one differentiates the equation w.r.t. nuclear coordinates, the product rule
yields

> ViCiSuwCuj + CruiNaSuwCuj + CuiSuVaCluj =0 . (3.A.2)

uv
The first and last summand can be combined by interchanging the indices. Moving

the second summand to the other side gives

2> ViCiSuwCoi == CuiCyiVaSpm (3.A.3)

g g
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3 Local Hybrid Gradients

and for ¢ = j the used identity

2> VuCiSuwCoi =~y CCyiNaSyu - (3.1.5)

n n

3.A.2 Additional Tables for MVO-10

The following pages include tables of structural and vibrational data for the MV
systems discussed and referenced in Section 3.4. They were given as supporting

information for the original paper.?
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3 Local Hybrid Gradients

Table 3.A.2 Comparison of key structure parameters (in pm and °) for Si,O," at various computational levels.
d(MM) d(MM) d(MO;) d(MOy) Ad(MOy)

Functional AE Doy, Coy, Doy, [Cayl, [Ca))_q
CCSD(T)

\mcm-oo-<@N 116.7 269.9 234.3 150.0 150.2 12.0
B3LYP 0.0 233.4 233.5 154.2 154.2 0.0
BHLYP 158.4 266.3 232.3 147.1 147.5 12.7
BLYP35 133.3 267.8 233.4 148.2 148.5 12.3
MO6 134.5 266.0 231.0 148.1 153.3 0.1
MO06-2X 140.9 267.4 232.6 148.2 148.5 12.5
PBE 0.0 233.8 233.8 155.8 155.8 0.0
PBEO 127.6 267.6 231.8 148.8 153.8 0.0
HUWEO\H\w 136.0 266.8 232.0 148.1 148.5 12.2
BMK 134.5 267.6 232.3 148.2 148.5 12.3
MN15 131.7 267.5 233.2 148.1 148.5 12.2
CAM-B3LYP 1244 267.9 233.3 148.3 148.6 12.5
wB97X-D 125.6 267.7 232.6 148.4 148.7 12.5
LH-sirPW92 126.3 269.4 234.2 148.8 149.8 10.7
LH-sifPW92 129.1 269.4 234.4 148.8 149.3 12.4
LH646-SVWN 131.0 269.8 235.3 148.8 149.3 13.3
LH670-SVWN 133.2 269.9 234.8 148.8 149.2 134
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3 Local Hybrid Gradients

Table 3.A.4 Comparison of key structure parameters (in pm and °) for ScO, at various computational levels.
d(MO) d(MO) AdMO) ~Z(OMO) Z(OMO)

AE Coy (oA} c, Cay c,
CCSD(T)
A 0.8  180.1  17L5 29.4 146.5 123.4
B3LYP 05 177.0  169.9 20.2 134.3 119.9
BHLYP 3274 1760  166.6 30.2 140.1 120.9
BLYP35 163  176.6  167.7 28.0 137.6 119.3
MO6 0.6 1769  167.9 26.1 127.6 117.7
M06-2X 25.6  175.7  166.9 30.4 147.6 119.5
PBE 0.1 1773 177.3 0.1 129.7 129.3
PBE0 56 1756  167.5 25.1 136.1 118.0
PBE0-1/3 14.8  175.2  166.6 27.7 137.6 118.6
BMK 13.9 1764  168.1 27.8 138.6 120.1
MN15 128.8 1811 167.1 27.9 142.8 121.3
CAM-B3LYP 144  175.7  167.2 27.6 138.0 119.1
©BI7X-D 14.9 1757 167.0 28.2 136.0 119.1
LH-sirPW92 1.1 1758 1675 27.4 144.2 123.1
LH-sifPW92 3.0 1756  167.1 28.9 145.9 122.0
LH646-SVWN 7.0  176.6  167.6 29.9 146.1 120.7
LH670-SVWN 87  176.7  167.6 30.9 147.5 121.9
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3 Local Hybrid Gradients

Table 3.A.6 Comparison of key structure parameters (in pm and °) for V4,059 at various computational levels.
d(MM) d(MM) dMM) d(MM) d(MOy) d(MO;) d(MOy) d(MOy,)

Functional AE  [Dodlpin  [Dodlpax  [Colmin - [Cslpax D2a [Cilpax [D2alan - [Cs)meanmax
B3LYP 1.1 309.0 312.9 309.0 312.6 158.8 158.8 180.2 180.2
BHLYP 62.1 307.8 310.6 305.7 317.9 156.0 156.5 178.3 190.3
BLYP35 26.4 308.6 312.0 306.7 318.5 1574 157.7 179.3 190.2
MO06 0.1 306.0 310.6 306.0 310.5 157.8 157.7 179.4 1794
MO06-2X 60.9 308.6 311.2 306.1 317.7 156.1 156.5 179.2 191.3
PBE 0.7 307.6 312.9 307.6 312.8 160.4 160.4 181.1 181.1
PBEO 0.6 305.7 310.2 305.6 310.1 157.5 157.5 178.9 178.9
WW@O\H\w 18.3 305.2 309.3 303.7 315.3 156.6 156.9 178.2 188.5
BMK 31.0 308.7 311.9 307.0 317.6 157.3 157.7 179.5 190.0
MN15 6.7 305.3 310.1 304.2 315.3 150.7 157.2 178.5 187.8
CAM-B3LYP 18.7 307.1 311.0 305.9 317.1 157.3 157.5 178.9 189.3
wB97X-D 13.3 307.1 311.0 305.9 316.8 157.1 157.2 179.3 189.5
LH-sirPW92 0.1 306.9 311.0 306.1 315.1 1574 157.6 179.3 187.1
LH-sifPW92 2.7 306.7 310.6 305.7 315.7 157.2 157.3 179.2 188.1
LH646-SVWN 5.7 308.6 312.2 307.5 317.9 157.8 158.0 180.0 189.9
LH670-SVWN 8.2 308.8 3124 307.6 318.3 157.8 158.0 180.1 190.4
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Table 3.A.8 Comparison of key structure parameters (in pm and °) for Ti,O, at various computational levels.

dMM) d(MM) d(MO,) Ad(MO,) Ad(MO,) Z(MMO,) Z(MMO,) Z(MMOy)

Functional AFE Coy C, Coy (Csl, 1Cs), [Ca] [Cs], 1Cs),
CCSD(T),

\\Wwﬁ%ﬁv 0.8 169.4

B3LYP 0.3 269.5 269.6 167.1 0.1 0.1 144.8 144.6 146.0
BHLYP 33.6 266.6 273.3 165.8 0.0 1.6 156.1 149.2 162.4
BLYP35 13.3  268.3 272.2 166.5 0.2 1.1 150.1 148.3 153.0
MO6 0.6 266.9 266.8 166.3 0.0 0.0 146.2 146.8 146.9
MO06-2X 23.3 265.7 272.9 165.7 —0.2 1.5 163.6 146.5 162.1
PBE 0.3 2704 270.4 167.7 0.0 0.0 138.0 137.9 138.3
PBEO 3.2 267.4 269.0 165.8 0.2 0.4 144.0 141.7 145.8
Humwmuo\w\w 11.0 266.5 269.7 165.4 0.2 0.8 146.5 145.7 146.2
BMK 10.1 268.2 272.1 167.2 0.1 1.3 151.7 147.0 150.6
MN15 5.9 265.4 268.7 166.0 —0.1 0.6 154.5 151.0 153.4
CAM-B3LYP 15.2 266.6 271.1 166.3 0.0 0.6 151.4 147.1 149.7
wB97X-D 16.7  266.8 271.3 166.2 —0.1 0.5 150.3 145.5 145.9
LH-sirPW92 6.6 267.7 270.8 166.3 0.1 0.4 148.4 145.7 147.8
LH-sifPW92 8.8 20674 270.8 166.1 0.1 0.5 149.5 146.3 148.3
LH646-SVWN 114  269.1 272.8 166.9 0.0 0.7 150.6 147.8 149.0
LH670-SVWN 13.3  269.1 273.3 167.0 0.0 0.8 151.4 149.1 150.7

3 Local Hybrid Gradients

2 CCSD(T)//B3LYP results from [165].
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3 Local Hybrid Gradients

Table 3.A.10 Comparison of key structure parameters (in pm and °) for Ti,O," at various computational levels.

dMM)  d(MM) d(MO,) Ad(MOy)  Ad(MO,) /(MMO,) Z(MMO;) Z(MMOy)
Functional AE Cop Cs Cop, [Cs — Canls  [Cs — Cap)) [Can) [Cslsman [Csliarge
B3LYP 55.0 272.5 272.2 164.5 158.2 180.8 109.2 113.9 117.3
BHLYP 124.9 269.7 270.1 164.5 155.6 181.0 109.4 115.4 121.7
BLYP35 91.5 271.2 271.2 164.3 156.9 181.3 109.3 114.7 120.0
MO6 67.7 270.4 270.1 163.8 157.1 180.9 108.6 113.2 1154
MO06-2X 114.8 272.0 270.8 161.4 155.8 181.2 110.8 115.5 119.9
PBE 0.1 273.9 274.0 165.3 163.8 167.0 108.5 107.8 109.3
PBEO 67.2 270.2 269.8 163.3 156.9 180.2 108.5 113.2 117.4
TwHO\H\w 87.0 269.3 269.0 163.0 156.1 180.2 108.5 113.5 117.8
BMK 101.0 272.5 270.9 163.1 156.8 182.0 111.2 115.6 121.2
MN15 85.1 269.8 269.3 162.5 156.4 180.3 108.7 114.0 118.1
CAM-B3LYP 89.4 271.4 270.4 162.4 156.7 180.7 108.7 114.3 118.4
wB97X-D 69.4 272.3 270.6 161.6 156.6 181.8 108.8 112.7 118.1
LH-sirPW92 54.1 273.5 270.8 162.5 156.7 181.4 109.5 114.9 120.2
LH-sifPW92 60.0 273.6 270.6 162.1 156.4 181.3 109.6 115.1 120.8
LH646-SVWN 63.3 274.3 271.8 163.5 157.0 182.7 110.3 115.3 121.6
LH670-SVWN 66.8 274.4 271.9 163.6 157.0 182.9 110.4 115.6 121.9
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3 Local Hybrid Gradients

Table 3.A.12 Computed vibrational frequencies (intensities) for SioO, .*

Functional frequencies in cm™! (intensities in km/mol)
B3LYP 109 228 304 307 411 499 546 646 872 919 1134 1284
(15) (17) (0) (8 (39) (27) (68) (133) (7) (146) (216) (213)
BHLYP 117 247 326 329 452 536 592 712 934 977 1197 1356
(18) (23) (1) (11) (50) (48) (85) (194) (12) (174) (257) (268)
BLYP35 113 238 315 318 433 517 568 679 903 948 1163 1320
(17)  (20) (0) (10) (45) (37) (77) (166) (10) (160) (235) (241)
MO06 111 235 311 314 422 510 573 673 900 949 1177 1327
(15) (19) (0) (9) (41) (31) (71) (146) (8) (152) (243) (232)
MO06-2X 110 243 320 322 436 524 585 695 914 963 1184 1339
(17) (22) (1) (10) (50) (41) (78) (176) (11) (172) (260) (247)
PBE 100 213 287 289 366 471 528 598 821 878 1098 1230
(12) (14) (0 (6) (9 (13) (1) (79) () (122) (195) (166)
PBEO 109 233 310 313 416 508 572 669 885 940 1157 1303
(15) (190 (1) (9 (39) (27) (67) (143) (8) (148) (230) (218)
PBE0-1/3 112 239 316 320 429 518 58 689 904 958 1176 1325
(16) (20) (1) (9) (43) (33) (72) (162) (10) (156) (242) (235)
BMK 111 240 318 319 430 517 602 700 907 963 1185 1343
(17) (22) (1) (10) (46) (36) (72) (173) (12) (163) (239) (246)
CAM-B3LYP 113 236 313 318 432 516 568 681 901 946 1167 1318
(16) (19) (0) (9) (45) (38) (75) (177) (11) (157) (238) (239)
wB97X-D 112 237 319 322 429 512 583 683 897 965 1148 1321
(16) (20) (9) (1) (42) (35) (67) (180) (13) (155) (234) (246)
LH-sifPW92 118 245 319 323 430 516 567 673 892 939 1164 1310
(16) (20) (0) (9) (43) (41) (74) (167) (10) (164) (248) (244)
LH-sirPW92 123 250 323 324 434 518 567 673 891 939 1164 1309
(16) (21) (8) (0) (42) (43) (74) (166) (10) (165) (248) (243)
LH646-SVWN 112 237 314 321 430 515 556 669 891 940 1152 1303
(16) (19) (0) (10) (45) (41) (77) (179) (13) (165) (241) (253)
LH670-SVWN 120 246 319 323 434 515 561 673 892 935 1167 1308
(17)  (20) (0) (9) (45) (45) (77) (180) (12) (171) (262) (247)

2 With def2-TZVP basis, after optimization in Cs symmetry (trans isomer).
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3.A Appendix
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3 Local Hybrid Gradients

Table 3.A.14 Computed vibrational frequencies (intensities) for VoO,*.2

Functional frequencies in cm™! (intensities in km/mol)
B3LYP 112 194 208 328 353 389 442 639 789 852 1126 1145
(24) (14) (2) (1) (38) (19) (3) (237) (147) (141) (324) (59)
BHLYP 118 197 211 346 380 420 450 681 839 930 1203 1220
(28) (18) (4) (1) (56) (16) (2) (305) (212) (289) (512) (O)
BLYP35 114 195 209 337 366 406 441 662 813 896 1166 1183
(26) (16) (3) (1) (48 (17) (3) (274) (179) (230) (419) (31)
MO06 111 191 217 337 349 386 431 636 799 852 1139 1155
(25) (16) (2) (1) (36) (26) (6) (228) (167) (105) (395) (14)
MO06-2X 134 215 220 346 376 414 432 659 822 908 1202 1222
(23) (13) (3) (1) (B8 (16) (1) (297) (206) (282) (470) (45)
PBE 115 201 202 294 313 407 443 520 733 748 1080 1092
19) (8 (0 (42 (0 (0) (63 (0) (106 (0) (262) (0)
PBEO 115 198 212 337 360 401 454 658 812 881 1159 1176
(24) (14) (2) (1) (40) (18) (3) (250) (162) (178) (370) (45)
PBE0-1/3 116 199 214 342 368 411 456 671 827 906 1183 1199
(25) (15) (3) (1) (45) (17) (3) (269) (181) (229) (425) (27)
BMK 116 197 214 343 371 410 554 735 885 971 1168 1193
(28) (18) (3) (1) (46) (19) (6) (260) (189) (276) (420) (79)
CAM-B3LYP 115 197 211 337 363 404 446 666 817 897 1171 1190
(25) (14) (3) (1) (45 (17 (2) (275) (176) (218) (393) (55)
wB9I7X-D 115 198 216 341 364 404 468 682 821 894 1178 1200
(26) (15) (2) (1) (42) (21) (2) (267) (180) (213) (388) (72)
LH-sifPW92 103 199 215 343 363 404 446 653 822 889 1173 1189
(25) (14) (3) (1) (45) (21) (3) (268) (180) (196) (410) (64)
LH-sirPW92 102 195 214 341 361 401 448 651 818 882 1165 1182
(25) (15) (3) (1) (44) (21) (3) (262) (174) (180) (391) (68)
LH646-SVWN 108 202 209 339 363 402 446 650 810 878 1157 1170
(24) (15) (4) (1) (49) (19) (3) (272) (179) (192) (447) (10)
LH670-SVWN 124 210 212 340 365 402 436 646 812 882 1157 1172
(0 (15 () (1) (48 (1) (3) 272 (18) (00 (452) ()

& With def2-TZVP basis after optimization in Cs symmetry (trans isomer).
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3 Local Hybrid Gradients

Table 3.A.16 Computed vibrational frequencies (intensities) for CroOg .2

Functional frequencies in cm™! (intensities in km/mol)
B3LYP 426 455 604 762 781 1006 1031 1044 1053
(1) (2) (148) (138) (41) (458) (154) (48) (402)
BHLYP 467  4T7 659 799 873 1040 1044 1121 1128
(1) (2) (236) (191) (239) (288) (280) (270) (388)
BLYP35 448 464 642 779 837 1036 1050 1082 1091
(0) (2) (204) (165) (162) (430) (244) (124) (396)
MO06 423 467 571 T 783 1017 1030 1059 1065
(2) (1) (89)  (6) (135) (440) (202) (72)  (366)
MO06-2X 459 461 645 772 848 1053 1056 1109 1114
(1) (1) (231) (188) (253) (402) (299) (167) (438)
PBE 397 437 490 727 729 961 995 998 1006
M 0 (0 () (04 (52) (0 (0) (439)
PBEO 438 470 627 788 812 1035 1054 1075 1082
(1) (2) (167) (147) (72) (472) (194) (65) (409)
PBE0O-1/3 450 476 648 799 844 1053 1066 1099 1106
(0) (2) (197) (163) (141) (450) (246) (113) (407)
BMK 452 558 721 799 852 1128 1152 1169 1185
(0) (0) (202) (168) (174) (519) (260) (72) (453)
MN15 434 463 631 791 819 1053 1062 1093 1097
(0) (1) (170) (156) (81) (496) (223) (67) (408)
CAM-B3LYP 443 465 644 786 834 1049 1065 1090 1095
(0) (2) (199) (163) (137) (502) (206) (63) (441)
®wB97X-D 445 481 651 793 831 1034 1042 1075 1077
(0) (1) (190) (159) (123) (515) (226) (60)  (430)
LH-sifPW92 445 464 627 791 814 1047 1061 1088 1091
(1) (2) (175) (161) (73) (510) (209) (H9) (442)
LH-sirPW92 444 464 619 787 803 1039 1055 1079 1082
(1) (2) (161) (157) (51) (510) (190) (49) (443)
LH646-SVWN 445 454 621 779 808 1023 1037 1067 1074
(1) (2) (179) (160) (88) (446) (223) (106) (399)
LH670-SVWN 447 452 622 778 811 1022 1036 1067 1075
(1) (2) (184) (163) (101) (435) (232) (118) (396)

& With def2-TZVP basis after optimization in C5, symmetry. Only vibrations above
400 cm~! are shown.
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4 Local Range-Separated Hybrids

The idea of replacing the system-wide RS parameter by a function is straightfor-
ward in light of the analogous global vs. local hybrid functionals. A first step was
the non-self-consistent implementation in combination with LDA at SR and full
LDA correlation by Krukau et al.®® A full self-consistent implementation within

166 and the concept has been aban-

this scheme, however, was considered too costly
doned since then, despite promising first results.

This chapter is the second of the two main topics of this work. It contains the
derivation (Section 4.1), implementation (Section 4.2) and assessment (Section 4.3)
of self-consistent energy calculations for LRSH exchange functionals with common

ingredients from semi-local functionals.

4.1 Theoretical Background

Applying the position-dependent RSF w = w(r) in the split Coulomb operator
from Eq. (2.2.24) yields
1 erf(w(r) rp) 1 —erf(w(ry) r2)

— = + . (4.1.1)
T12 T12 712

We do not adjust the correlation functionals, therefore the XC energy is
Ex® = X" + EX* 4+ B¢ = / et + Xt +ed dr (4.1.2)

We use XX in the LR regime and DF'T functionals at SR. In the following subsec-

tions, the energy terms and the contributions to the KS matrix will be derived.
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4 Local Range-Separated Hybrids

4.1.1 Long-Range Exact Exchange

Here we use the abbreviations ¢} = ¢;(r1), x; = Xu(r1), and w; = w(ry). The
error function is introduced to the repulsion integrals of the LR XX energy (cf.
Eq. (2.3.24))

erf (wyr
EYt = ——Z/%soj /%2%2 - 12) drydry |

erf (wyr12) (4.13)
:__ZDuHDVA/XuXV/XR i 11 d Qd’f'l .
LUK
Applying the FDO (cf. Eq. (2.3.26)) yields
(5E>IZR 2erf (wiT12) + erf (warya)
5 Z%/ - dry (4.1.4a)
2 dw ng gpk/gpz-gaﬁ exp (—w%ré) dry . (4.1.4b)
- mopl e ’

The first term originates from the derivation w.r.t. the MOs, and subsequent re-
naming and regrouping. It is a non-local LR XX potential term (cf. Eq. (2.3.28b)).

As for LHs in Section 2.3.3, we change into the AO basis, calculate just the
term with wy, and add the transposed matrix for the KS matrix contributions (cf.
Egs. (2.3.14) and (2.3.29))

’Cerf ]Cerf —+ ’Czﬁf , (415)

— erf (wyr

Ket = — / > D / xﬁxi% dry dry (4.1.6)
vA 12

The last term in Eq. (4.1.4) stems from differentiating the error function, where
the denominator 715 is canceled by factors of the chain rule. Hence, the inner
integral contains an overlap integral instead of the repulsion integral, adjusted
by an exponential function. These contributions to the KS matrix are local and
multiplicative. They are similar those containing the derivative of the LMF in

Eq. (2.3.28) and can be treated together with the SL exchange energy density.
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4.1 Theoretical Background

Assuming that the RSF depends only on the density, the result would be

2 awl
\/_ 8,0 i ! Z D,,,\Dwxlfx}y / X?\sz] exp (—wfrfz) drydry .

vAYn

ICZ’;p —
(4.1.7)

For other quantities like derivatives of the density, this must be adjusted accord-

ingly. Rephrasing (cf. Section 2.4.2) both expressions yields

Kal=-Y" Z Xy Frg AL, = Z X, Gt (4.1.8)
g
ex aw ex ex
K == 2 5, angﬂg o= Z % R B anggngp (4.1.9)
Ow oox
_ _Z gx,i Lo (4.1.10)

with the intermediate quantities

f
Ay = /Xﬁszdﬁ , (4.1.11)
Tg2
Grg = ZFAgAirfg : (4.1.12)
Mg = NG / X3 exp (—wird,) dry (4.1.13)
Gob = Fpg Ak, (4.1.14)
A
&P = Z‘angs};p : (4.1.15)
n
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4.1.2 Short-Range Semi-Local Exchange

The exact expression for the (global) LDA exchange at SR has been derived (among
others) by Gill, Adamson, and Pople,'%

3/3 1/3
s = [ar= 3" [prmonar 4116
m

FePA(N) =1 - §>\ [Qﬁerf G) =3+ A+ (20 — A exp (—%)} . (4.1.17)

with the reduced RS parameter A = w/kp and the Fermi wave vector kp = (37T2p)%.

We further use a GGA variant proposed by Toulouse, Colonna, and Savin,'%”

EPBE _ / P gy, _ / cLDA [PBE(3) 4y (4.1.18)
FEPPO) = 14k — 4.1.1
X ( ) +t K 1+b<)\)82//i ) ( 9)
where k = —Cp*/3/ekPA is determined by the Lieb-Oxford bound with C' =
1.6358.°4 The parameter
—c1 + cpexp (A 7?)
b(\) = 4.1.2

() c3 + 5dcgexp (A72) 7 ( Oa)

cr =14+ 22)\% + 1442\ (4.1.20D)

Co = 2N (=T + 7207) , (4.1.20¢)

c3 = =864\ (—1 +2\7) (4.1.20d)

cg = N [=3 =240 + 32\ + 8 \/Terf (A71)] (4.1.20¢)

has been obtained from the second-order gradient coefficient for the SR exchange
hole. This does, however, not reduce to the commonly employed PBE exchange for
w — 0 because the constraints used here are different. By introducing a constant
prefactor Cy, = 2.5401 for b()) the resulting b(A — 0) = £; can be scaled up to the
“original” p = 0.21852. We refer to the exchange given by the above equations as
sPBE, and the rescaled version as oPBE.

We choose those two exchange functionals (LDA and PBE) as the first targets

for our LRSH implementation, changing their constant RS parameter into an RSF.
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4.1 Theoretical Background

LRSH for LDA

The functional derivative results in partial derivatives of the exchange energy den-

sity. If we consider only the density, we get for LDA

LDA 1/3 LDA

Oex ™ §<§) (§p1/3F>%DA +p4/3aL@> (4.1.21)
op 4\ 7 3 oN 0Op)’

OFEPA

- (}) w0

01w Low
dp  3pkpdp  kpOp

(4.1.23)

But the (reduced) RSF may also depend on other quantities @@ € (Q\ p), cf.
Eq. (2.3.16), implying

LDA 1/3 LDA
0™ _ 3 (3) 7 jusOEXT ON N (4.1.24)
0Q 4\ 7 ox  0Q

o\ 1 Ow

%—k_}?@ . (4.1.25)

LRSH for PBE

The PBE functional builds upon the results from last section since P4
both explicitly in the integral of Eq. (4.1.18) and implicitly within x (Eq. (4.1.19)),

thus all of those may depend on Q € Q through X in P2, The derivatives are

appears

9=XPF  9eXPA ope | oA OFX"
PBE 2 2 2.2 \2 2 24 9
OFx _ bs Ok L[ 0b OA N Kb 0s* C@127)
0Q k+bs?2) 0Q k+bs?2) OXOQ k+bs?) 0Q
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4 Local Range-Separated Hybrids

The derivative of b is a bit unwieldy:

gg ::g§4_9%§£7 (4.1.28a)
dy = =203 (=TAT + 18X et T — 220 — 7200 4 (14N + T2X%) et T, (4.1.28D)
dy = 27\2dse " + 5401 (2 — \?) | (4.1.28¢)
ds = —11)\2 — 18" + (=7TA2 + 18)")e ™ — 2, (4.1.28d)
dy = 54N dser T — 5Dzt T — 2TA\2ds — 216X° (2 — A?) + 10807, (4.1.28¢)
ds = dy/mherf (A1) —6A* + 20" — 3, (4.1.28f)
do = —120 + 8X° + dy/merf (A7) — 8™ 7 (4.1.28g)

4.1.3 Range-Separation Function

The RSF w is an inverse length that screens the interelectronic distance r15 within
the error function. Therefore we use the inverse Wigner-Seitz radius 1/rws =
[%Wp} '3 for the length scale. Starting from a gradient expansion in previous work
by Krukau et al.,®¢ the best results were obtained with w = 3 er_ps' A more general
ansatz is obtained by adding the reduced kinetic energy density ¢ (cf. Eqgs. (2.2.16)
and (2.2.20)) to the reduced density gradient s,

weCyy GG st (4.1.29)

Tws

where Cjy through C3 are adjustable parameters. This form allows for simpler
variants to be investigated as well, e.g. a constant w = Cj, or the truncated
gradient expansion w = C - s/rws mentioned above.

Now we can take the derivative of the chosen RSF w.r.t. the quantities it depends
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on (Q in Eq. (2.3.16)),

W o (AN 2w (4.1.30)
op T\81p? 28 B P129613p s +
Ow 1 1/3

9y - ¢ S TV 4.1.31
Oy (14dm) P p 12 TR ( )
Oow 7Tl/3’}/

or 38413252 (4.1.32)

4.2 Implementation

4.2.1 Calculating XC in xclrs()

The LRSH SCF subroutine xclrs () is similar to xclhyb () for LHs (Section 2.6.1).
The structure can be seen in Table 4.1. For each block of grid points the values and
derivatives of the AOs are calculated in funct 2(). These are used to calculate
the electron density, its squared derivative, and 7 (ondes_3()), as well as the
RSF (rsf_10), Eq. (4.1.29)) and F (calc_ftg(), Eq. (2.4.3)). Then G and G
(Egs. (4.1.12) and (4.1.14)) are determined in 1lrs_a() and used in get_exx()
to calculate both ¢ and 9P (Egs. (4.1.3) and (4.1.15)). They are combined
in 1rs_1() with the RSF and its derivatives to get the XC energy as well as
the operator terms (O, O', O", cf. Section 2.6.1). As for LHs (Eq. (2.6.1)), the
operators include the derivatives of the SL quantities © € {w,aXL,es%L} w.r.t.
Q € Q (Eq. (2.3.16)). They are multiplied with the basis functions and their
derivatives to get part of the KS matrix (onf_3()),

90 OXHXZ/
70~ O'Vyux» ¢—Fy - (4.2.1)
O//VTXMVXV

The routine get_kmat () provides the other part, K, stemming from the sym-
metric multiplication of G with the basis functions (Eqgs. (4.1.5) and (4.1.8)).
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4 Local Range-Separated Hybrids
Together they give the full XC contribution to the KS matrix,
FXC = FO ot (4.2.2)

Table 4.1 General flow of information for subroutines regarding LRSH SCF (with-
out grid). See Section 4.2.1.

Subroutine  Input Output
xclrs() D Exc, FX¢
funct _2() Xs X
ondes 3() D, y, X p, Vp, T
rsf 10 p, Vp, T w, 3—5
calc_ftg(O D, x F
1rs_a() F, w get ger
get_exx() F, Gof, goxp g, EFP
1rs_10) D, w, 95, %, €™ Exc, 0,0, 0"
onf 2() D, O, 0,0" x, X F°
get_kmat() y, GF Kcert

4.2.2 Calculating A" and A®® in 1rs_a()

The structure of lrs_a() is shown in Algorithm 3. It is similar to numpot ()
(cf. Section 2.6.2) but extended because the RSF is used directly, whereas the
multiplicative LMF was applied afterwards. While the shell and primitive loops
are used as before, the grid point loop now includes the preparation of the RSF
and the additional calculation of AP (cf. Eq. (4.1.13)). It is an overlap integral
between the primitives for atoms A and B, and a third, s-type primitive at G with
the squared RSF as the exponential coefficient. We apply the Gaussian product
rule twice, first to merge A and B to the center of charge P, then P and G
to C. We then use Gauss-Hermite quadrature (see Section 2.4.3) to calculate the

necessary overlap integrals for the shell types of A and B resulting in elements

exp
KAG "

The RSF is provided to 1rs_v() as a “reduced mass”-like coefficient

- 4= (4.2.3)
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4.2 Implementation

and within the prefactor as \/a, /ap, where ap = oy + ap as in Eq. (2.3.5). The
returned elements Air/\fg and Af;f\z are summed up for all primitive pairs within the
shell pair and multiplied with F to get Ggi' and G&XP (Eqs. (4.1.12) and (4.1.14)).

K9

L7 < angular quantum number of 7
L 7 < angular quantum number of J
for primitive Pr do
for primitive P4 do
for grid point g do
w?, a, < preparation of RSF w
AP < overlap integrals for A, B and G with w?
A < repulsion integrals via Boys functions with o,
end
sum up over all primitives P
end
sum up over all primitives Pz
end
Gt < multiply A (L7L7) with F
Gt < multiply A (L£7L7) with F
GP <+ multiply AP (LzL7) with F
GP +— multiply A®P (LsL7) with F
Algorithm 3: Algorithm to calculate elements of G and G™P for a shell pair
J.

Calculating V5 in 1rs_v()

The subroutine 1rs_v () is based on vspdf () presented in Section 2.6.3. The Boys
function part was adjusted for LRSHs. Initially, the Gauss-Rys part was removed
but the necessary changes will be explained here as well in prospect of future
implementations.

We recall from Section 2.4.4 that the Coulomb integrals can be described as a
Boys function Fy(apR%) that is differentiated w.r.t. the center of charge P with
coefficients B/ (Eq. (2.4.21)). For RS this scheme is updated by adjusting the

prefactor and the argument of the Boys function, yielding

2 |« ot ov o
Vg = —, /-2y EAB___ Fy(a,R%.) . 424
Y ap\ ap £ OPLOPy OP: b(wtirg) (424)

103



4 Local Range-Separated Hybrids

Due to the chain rule the derivatives of the Boys function introduces a,, (cf.
Eq. (4.2.3)) to the polynomials in front it. It combines with ap in EAP in such a

way that there is always a power of «a,,/ap equal to the order of the corresponding

Boys function. For example, the integral for two p, primitives (cf. Eq. (2.4.22)) is

2r oy, 1
Vitoooo = —4/ — Kas { (XPAXPB + —) Fo
ap ap 20ép
. X i’ (4.2.5)
- (X Xpa)X — |+ 2 X3cFhp .
ap {( B+ Xpa) Pc+2p] 1+a§3 PC 2}
This vanishes for small w,
lima, =w? =0, (4.2.6)
w—0
2 oy 1
aligl[) F,(awRpg) = /o 57" ds = 1’ (4.2.7)
) 2m ap O
aliglo Vitoo00 = o o P G_P;F” (awRpa) =0, (4.2.8)
and reduces to full XX for large w,
lim o, = ap, (4.2.9)
w—r00
lim 2% =1, (4.2.10)

Qyy—ap OéP

For the implementation the subroutines vcl_77() used in vspdf () were copied
to 1rs_v??(). The prefactor was adjusted by a,/ap, the argument for the Boys
function calculation (i.e. interpolation) was changed to a,, R% and the result mul-
tiplied by «,,/ap to the power according to the order of the Boys function. The
rest of the code, including the do_?7() routines, were kept as is.

This limits the calculations with LRSHs up to f-type shells for now. One solution
would be the extension of the given algorithm to higher angular quantum numbers.
This gets, however, more and more complex. As an alternative, one could resort
to the Rys scheme and adapt vint (), which employs a generic ansatz instead of
specific routines for each case.

The necessary adjustments are given here to prepare the extension of the current
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4.2 Implementation

implementation to basis sets with higher angular quantum numbers. For that the

prefactor would change (cf. Eq. (2.4.13)), yielding

2KA aw
Vap = \/_Oéi \ a Zw"/ anxAmB anyAyB anZA 2B (4.2.11)

as would the transformation of the coordinates (cf. Eq. (2.4.14)), e.g.

Jap — a,t? a2
r il “Y Xep — Xap (4.2.12a)

Tp=——"—"—""0;,t
OéP O[P
ap + (ap — a,)u, Uy
= Opy + ————Xap — Xap . 4.2.12b
\/ A Tw) T apawor T (42.12b)

4.2.3 Calculating DFT Exchange in 1rs_1()

Both enhancement factors, FEP* and FLYBE (Eqs. (4.1.17) and (4.1.19)), are subject
to numerical instabilities for small and large A\ due to the exponential and error
functions in conjunction with the higher powers of A. To avoid errors the Maclaurin

series expansion (i.e. a Taylor series at zero)

= Z o cha: (4.2.13)

was applied for the functions themselves (for small \) and for exp and erf (for
large \). The latter is possible because the argument is the reciprocal of A in both
functions.

To estimate the deviation of those approximations and the numerical problems
with double precision (64 bit) calculations, we used the Python module sympy!®

(version 1.1.1) for results of arbitrary precision.

Approximations for the LDA Enhancement Factor

For the lower limit (small arguments) of F¥P2 only the coefficients for n € [0, 1,2, 4]
are non-zero. The series gives deviations below 10716 for 0 < A\ < 0.15. At the upper
limit (large arguments) the square within the exponential and error functions (cf.

Egs. (4.1.17) and (4.1.20a)) mean that only the even powers appear. We mapped
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4 Local Range-Separated Hybrids

the coefficients according to those expansions up to 2n = 18 and accomplished a
deviation of 107! for 4 < A. In between (0.15 < X\ < 4) the plain formula was
used with deviations up to 1071%. The derivative of FEP* was approximated in the

same way. The coefficients of all four series are given in Table 4.A.1.

Approximations for the PBE Enhancement Factor

For FYBE the inaccuracies lie within the function b()\). The lower (0 < A < 0.04)
and upper limit (6 < \) were in principle applied as for F¥PA. The lower limit was
accomplished with terms of 0 < n < 6 and had a deviation below 10719,

Because of the polynomial division the upper limit is not as compact as for LDA.
The series for the exponential function was truncated after n = 6, for the error
function after 11. The derivatives were applied directly to those approximations.
Moreover, the derivative is less stable and requires an additional approximation
for 0.085 < A < 0.6. A minimax approximation'® using Mathematica'™ in that

range yielded a function of the form
FYPE R " pa N ) guh” (4.2.14)
n=0 n=0

with a maximal error estimate of 107, which we eventually used in the inter-
val [0.006,0.6]. The coefficients for all three cases can be found in Tables 4.A.2
to 4.A.4.

4.3 Assessment

4.3.1 Optimizing the RSF

We combined the RSF from Eq. (4.1.29) with our LRSH-adjusted exchange func-
tionals for LDA and PBE, together with standard correlation functionals VWN
and PBE, respectively. With all four parameters adjustable we denote the cor-
responding functionals as LRS-SVWN, LRS-sPBE, and LRS-oPBE. To compare
with global variations we also defined GRS-SVWN, GRS-sPBE, and GRS-oPBE,
for which C7 = Cy = C3 = 0.
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4.3 Assessment

Table 4.2 Parameters of separation schemes for SVWN and PBE, optimized for
AEG6/11 and HTBH6, see text. Energies in kcal/mol.

Functional Co Cq Cy Cs MAE

GRS-oPBE 0.166 6.8
GRS-sPBE 0.559 3.9
GRS-SVWN  0.612 6.7

LRS-oPBE 0.000  0.252  0.000 0.000 4.5
LRS-sPBE 0.362  0.000 0.098 0.055 3.3
LRS-SVWN  0.160  0.000 0.264 0.149 3.7

The parameters were globally optimized by minimizing the MAE of two small
test sets via a multi-level single linkage (MLSL) algorithm.'™ The first test set,
AEG6/11, includes atomization energies and is a subset of MGAE109/11. The sec-
ond, HTBHG, consists of barrier heights for hydrogen transfer reactions and is part
of the superset HTBH38/08. The optimized values were rounded to three decimal
places as given in Table 4.2.

The RSFs are depicted in Fig. 4.1 for carbon monoxide along the molecule axis.
All those RSFs have maxima at the nuclei, i.e. there they mix in XX even at short
interelectronic distances r15. The bonding and asymptotic regions feature small
values below 0.5. The magnitude of the GRSH parameters decreases with SVWN >
sPBE > oPBE. The functions for both oPBE and SVWN feature relatively high
peaks up to 3.0 at the nuclei, which are sharper (i.e. steeper) for oPBE than for
SVWN or sPBE. The peaks of sPBE are smaller (up to 1.5) and their steepness
resembles those for SVWN. The RSF of oPBE levels off towards zero in the outer
regions since the optimization reduced to the function w = 7%—18, which depends
only on the density. The optimized RSFs for sPBE and SVWN, on the other
hand, approach a constant in the asymptotic region, due to the parameter C)
and the TCW—Q‘; terms. This is physically more meaningful as it ensures the correct
asymptotic decay of the XC potential through the remaining XC contribution at
long range. Overall the RSF of sPBE stays about constant with a slightly lower
value in the bonding region. For SVWN the RSF behaves similarly but with lower
value, which is consistent with the respective base parameters (Cy = 0.160 for
SVWN, Cj = 0.362 for sPBE). The lack of distinct features may indicate that the
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Figure 4.1 Two visualizations of optimized RSFs for carbon monoxide with oPBE
(top), sPBE (middle), and SVWN (bottom); left: graph along the
bond axis (z) with dotted global values; right: contour plot in bond
axis plane (white denotes values above 0.5).

108



4.3 Assessment

optimized RSFs are not yet sensitive enough for the electronic structure.

4.3.2 Computational Details

For the assessment of the new functionals we used subsets of the categories basic
properties and reaction energies from the large test set GMTKN30% with def2-
TZVP®19 basis sets. We also included the subsets ABDE4, AE6/11, HATBHS,
HTBHG6, NSBH6, and UABHG6 from the AECE test set,?® which was developed for
relevance in catalysis. For ABDE4 the 6-311+G(3df,2p)*!* basis sets were used,
MG3S?? basis sets for the other subsets in AECE. Following the procedure of the
electron affinities (subset G21EA) outlined in [29], we augmented the def2-TZVP
basis sets with diffuse s- and p-type basis functions from aug-cc-pVTZ" (only
s-type for hydrogen) for that subset.

To verify Koopmans’ theorem, the HOMO energies were compared to the IPs
obtained as energy differences between the neutral and the cationic species of
several small systems from [172] and two heterocyclic aromatic systems (pyridine
and pyrimidine).!™

To gauge the performance of LRSH functionals for electronic eigenvalue spectra,
we calculated the orbital energies for benzene, pyridine and pyrimidine from the
IP test above. For comparison we adjusted our RS parameter in combination with
the oPBE functional to each molecule according to the IP-tuning'™ procedure:
w = 0.287 for benzene, 0.312 for pyridine, 0.353 for pyrimidine.

All calculations were carried out using grid size 1 and an SCF convergence
threshold of 107%. The results are discussed in terms of (partly weighted) MAEs
and MAXs.

4.3.3 Basic Properties and Reaction Energies (GMTKN30)

The largest test set considered in this work is GMTKN30,% which consists of
30 subsets grouped into three categories. We calculated the basic properties with
twelve subsets and the reaction energies with eight subsets, which are shown in
Tables 4.3 and 4.4. First, we discuss a summary given by the weighted MAEs
(WMAESs) from Table 4.5 that are calculated according to [29, SI] for each cate-

gory and both categories together. Although we focus mainly on the comparison
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Table 4.3 MAEs of basic properties subsets from the test set GMTKN30 and their
weighted mean in kcal/mol.

— 3
o —
< |
e & = & = I g g
) 0 N N =
Functional M m @) (@) E n = = B
GRS-oPBE 54 58 65 4.1 38 83 77 121 8.4

GRS-sPBE 41 70 70 55 25 49 9.1 16.2 | 10.1
GRS-SVWN 6.1 163 59 142 29 71 129 156 | 124
LRS-oPBE 35 58 87 39 48 6.7 6.3 104 7.2
LRS-sPBE 3.1 51 74 43 1.7 438 72 121 7.8
LRS-SVWN 3.1 97 46 68 14 56 83 11.3 8.1
PBE 98 30 6.6 39 20 122 126 9.2 8.8
PBEO 46 22 87 53 26 11.2 4.8 9.2 6.5

Table 4.4 MAEs of reaction energies subsets from the test set GMTKN30 and
their weighted mean in kcal /mol.

O Nej
~ © @) C&] 8 a2 ™ | (1
oo © o ) o A
N2 E 2 £ 3 § 32%5%% 4|3
Functional < << M M A A O B B =z O x|k
GRS-oPBE 9.0 39 29 96 13.0 136 58 22 7.7 5.1 4.5 2.8|6.7
GRS-sPBE 14 1.3 3.3 32 164 16.5 109 3.2 74 52 9.3 0.9|5.5
GRS-SVWN 7.1 89 39 81 27 129 7.1 19 52 4.0 9.1 0.9|5.1
LRS-oPBE 6.7 34 24 107 &8 13.0 4.8 19 6.2 3.7 1.6 2.7/6.0
LRS-sPBE 09 1.2 29 3.2 120 135 85 2.8 59 3.8 6.8 1.2|4.5
LRS-SVWN 9.1 105 3.1 7.5 80 11.0 3.0 15 54 48 3.9 1.6/5.1
PBE 40 23 42 66 6.0 103 74 20 6.8 2.6 44 3.7|5.1
PBEO 26 1.6 29 71 32 96 70 1.9 42 25 48 2.1(4.3
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Table 4.5 Weighted MAEs for subsets of categories basic properties (BP) and
reaction energies (RE) from the test set GMTKN30, and weighted
mean in kcal/mol.

Functional BP RE BP4+RE

GRS-oPBE 84 6.7 7.6
GRS-sPBE  10.1 5.5 8.0
GRS-SVWN 124 5.1 9.1
LRS-oPBE 72 6.0 6.7
LRS-sPBE 7.8 4.5 6.3
LRS-SVWN 81 5.1 6.8
PBE 8.8 5.1 7.2
PBEO 6.5 4.3 2.5

between global and local RSHs and the different SR exchange functionals, PBES%6!
and PBE(0%%%3 values are shown as a reference for standard GGA and GH func-
tionals. The widely used GH B3LYP gave generally worse or similar results than
PBEO in our tests.

The wMAESs confirm that the LRSH functionals are on average superior to their
global counterparts. Interestingly, the GRSH scheme with oPBE does not improve
upon the parent GGA functional. But LRS-oPBE is significantly better than PBE
for basic properties and slightly worse for reaction energies. When comparing global
and local RSHs with the same SR exchange energy density functional, the improve-
ment is most notable with LDA exchange and correlation. PBEO has the lowest
average wWMAE in both categories, and in total (5.5kcal/mol). For the combined
subsets, LRSH functionals perform best after that (6.3 kcal/mol to 6.8 kcal/mol).
The functionals with global RS parameters exhibit the highest wMAEs (up to
9.1 kecal/mol for GRS-SVWN), and PBE gives an wMAE between those two groups
(7.2kcal/mol). For reaction energies the LRSHs are especially effective with an
wMAE of 4.5kcal/mol for LRS-sPBE close to that of PBEO (4.3 kcal/mol). The
largest wMAE among the listed functionals belongs to GRS-oPBE (6.7 kcal /mol).
PBE (5.1kcal/mol) is comparable with the GRS-SVWN results. For basic proper-
ties oPBE exchange seems more suitable than sPBE in an RSH scheme. With a
slightly higher wMAE of 7.2kcal/mol than PBEO (6.5 kcal/mol) LRS-0PBE per-
forms second best, followed by LRS-sPBE with 7.8kcal/mol. In this category,
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GRS-SVWN exhibits the highest wMAE (12.4 kcal/mol), followed by GRS-sPBE
with 10.4 kcal/mol and PBE with 8.8 kcal/mol.

The slightly worse performance of RS functionals for basic properties as com-
pared to reaction energies is primarily due to the subset MB08-165 (decomposition
energies of artificial molecules). Therein the MAEs range from 16.2 kcal/mol with
GRS-sPBE down to 10.4 kcal /mol with LRS-oPBE, which is still higher than PBEQ
and PBE (both 9.2 kcal/mol). Nevertheless, the good performance of LRS-sPBE is
additionally supported by the fact that it yields the lowest error for five of the 20
subsets (AL2X, ALK6, BH76, BSR36, SIE11) and never the largest. While LRS-
SVWN also performs best for five subsets (BH76, G21EA, G2RC, ISO34, PA), it
yields the largest MAEs for two others (AL2X, ALK6). Six smallest MAEs are ac-
complished by PBE0 (BHPERI, DC9, ISOL22, NBPRC, W4-08, MB08-165), two
each by GRS-SVWN (DARC, RSE43), GRS-SVWN (DARC, RSE43), and LRS-
oPBE (BH76RC, O3ADD6). One should keep in mind that in some cases the next
best values are very close, so the total performance of a functional may be good
despite a low number of peak performances. The size and weights of the subsets
also vary as seen in the overall wWMAE performance discussed before.

It is notable that the GRSH functionals are sometimes better than their lo-
cal siblings. Within our GMTKN30 results this occurs six times with SVWN
(AL2X, ALK6, DARC, ISOL22, NBPRC, RSE43), three times with oPBE (BSR36,
G21EA, PA), and two times with sPBE (G21EA, RSE43). This might be due to
an overtraining effect of the four-parameter LRSHs to the quite small AEG/11
and HTBHG6 test sets compared to the more rigid one-parameter GRSH. The out-
standing performance of PBEQ is probably caused by the fixed 25 % XX admixture,
which is also done for some GRSH functionals at SR and should be considered for

our LRSH functionals in future investigations.

4.3.4 AECE

Additionally to the Grimme test set, we assessed the LRSH functionals for the
AECE database® by Truhlar. It was assembled as a small, representative set with
relevance to catalysis and is thus of interest for new functionals that are by design

more flexible and should cover a broad range of properties. We have omitted two
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Table 4.6 MAEs for the test set AECE (without transition metals) in kcal/mol.
Functional ~ABDE4 AE6/11 HATBH6 HTBH6 NSBH6 UABH6 Mean

GRS-oPBE 11.0 8.7 7.3 4.8 3.2 1.8 6.1
GRS-sPBE 1.7 6.1 4.3 1.7 5.4 3.0 3.7
GRS-SVWN 59 10.5 7.1 3.0 7.0 4.1 6.3
LRS-oPBE 9.1 5.1 4.4 3.9 1.0 1.6 4.2
LRS-sPBE 2.3 5.2 3.0 1.4 4.0 2.5 3.1
LRS-SVWN 7.5 5.5 1.9 1.9 3.4 24 3.8
PBE 3.9 15.1 13.7 9.3 7.0 2.9 8.7
PBEO 4.9 5.9 5.9 4.6 2.1 1.9 4.2

subsets containing transition metal compounds, due to the current restriction of
our implementation up to f-functions (see Section 4.2). The results for the subsets
are shown in Table 4.6. Among the functionals tested in the original paper, the
GRSH functional «B97X-D3" (MAE of 1.9kcal/mol for our selection) was one of
the best along with the mGGA GH M06°° (2.3 kcal/mol).

The LRSH functionals yield overall better results than the corresponding GRSH
ones. One exception are the alkyl bond dissociation energies (ABDE4), where
the MAEs are slightly smaller with the GRSH versions of sPBE and SVWN.
For these systems we also observe a significant difference between the two PBE
flavors. Also confirming our findings for the GMTKN30 subsets, all optimized RSH
functionals yield better results for barriers than for bond energies. Again, this
may originate from the choice of training set. According to the MAEs (Table 4.6)
it favors a better description of barriers. Investigating larger training sets will
possibly resolve this issue. Note that neither PBE nor its variations RPBE® or
revPBE,% which are popular in catalysis, perform very well for this data base.??
Here PBEO gives also mediocre results, except for NSBH6 and UABHG6. A different
exchange functional at SR, e.g. based on the B97 scheme,*?%3 should thus be
considered in the future to add more flexibility to our functional form. LRS-sPBE
performs best on average with a total MAE of 3.1 kcal/mol, underlining the good
performance for the GMTKN30 subsets. We also observe a significant improvement
with global and local RSHs based on oPBE (6.1 kcal/mol and 4.2 kcal/mol) over
the parent GGA (8.7 kcal/mol). We should keep in mind, however, that two of the
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six test sets (AE6/11 and HTBHG6) are exactly the training sets of our RSFs.

4.3.5 Koopmans’ Theorem (IP)

For molecular properties, the LRSH scheme is clearly superior to the associated
GRSHs. We further investigate its potential to replace optimal tuning of GRSHs to
specific systems. While this procedure is particularly successful for the calculation
of quasiparticle spectra, the optimized parameters depend heavily on the system.
This was shown for a selection of nine molecules,'” where the optimal value of the
RS parameter varies between 0.25 for the largest molecule (anthracene) and 0.73
for the smallest (Fy). We evaluate the IP condition

enomo = —IP = E(N) — E(N — 1) (4.3.1)

with our previously optimized GRSH and LRSH functionals for the same set of
molecules and two aromatic heterocycles (pyridine, pyrimidine), which were also
studied in the context of photoelectron spectra!™ with OT-RSH functionals. The
deviations between the HOMO energies and the vertical IPs from ASCF calcula-
tions

AIP = egomo — [E(N) — E(N —1)] (4.3.2)

for all eleven molecules are given in Table 4.7.

As expected for GGAs, the HOMO energies are consistently too high (i.e. not
negative enough) for PBE. Introducing 25 % XX in PBEOQ reduces the error for all
molecules in this test set. The functionals with global and local RSHs are distinctly
better than PBEO and PBE. The smallest MAEs are obtained with GRS-sPBE
(0.5eV), LRS-sPBE (0.4eV), and LRS-SVWN (0.3 eV). On average the functionals
with LRSH perform better than their GRSH counterparts: with SVWN and oPBE
the MAE is reduced significantly from 1.9eV and 0.8eV to 1.2eV and 0.4eV,
respectively. LRS-sPBE improves upon the global scheme by merely 0.1 eV, which
is similar to the values observed for the GMTKN30 subsets.

A general trend for sPBE (with two exceptions) and SVWN is a shift of the de-
viations to more positive values with LRSHs. GRS-sPBE and GRS-SVWN feature
solely (except for Fy with the former) negative deviations (i.e. the HOMO energy
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Table 4.7 Deviation from the IP condition, Eq. (4.3.2), for several molecules and

functionals.
GRS LRS
oPBE sPBE SVWN oPBE sPBE SVWN PBE PBEO
CH20 2.2  —=0.5 —-0.9 1.4 —-0.1 0.1 4.5 3.2
F2 3.9 0.2 —0.4 1.5 0.6 0.3 6.0 4.3
H20 3.2 —=0.2 —0.7 2.2 0.3 1.0 5.8 3.9
HCOOH 21 =07 =12 1.1 —-04 0.0 4.4 3.0
N2 29 —0.2 —0.7 1.9 0.2 0.3 5.2 4.0
NH3 3.3 —0.5 —-0.8 2.0 0.0 0.6 4.9 3.4

anthracene 0.3 —0.7 —0.9 0.2 —-08 =05 20 1.7
naphtalene 0.8 —0.8 —0.9 0.8 —-0.7 —0.1 2.9 1.9
benzene -04 —-0.7 —-0.9 04 —-07 —-04 24 19
pyrimidine 1.1  —-0.7 —0.7 0.6 —0.3 0.0 3.3 2.1
pyridine 1.2 —-08 —-08 0.8 —-05 —0.1 34 20

MAE 1.9 0.5 0.8 1.2 0.4 0.3 4.1 2.9

is more negative than the total energy difference), while their local versions feature
mixed signs. In contrast, GRS-oPBE already has quite large positive values (esp.
for the small molecules), which are shifted down in the local variant.

Concerning Koopmans’ theorem the RS and especially the local variant with
sPBE give quite good results, while its scaled sibling oPBE falls behind consider-
ably. Both PBE and PBEOQ are at a disadvantage, confirming the need for LR XX

for a better description of frontier orbital energies.

4.3.6 Outer-Valence Electron Spectra

Our self-consistent implementation of LRSH functionals allows the calculation of
electronic eigenvalues that are frequently used to simulate or complement exper-
imental photoelectron spectra. OT-RSHs in particular have been shown to yield
outer-valence spectra of representative organic molecules with an accuracy com-
parable to GoWj results.!™1™ The tuning procedure of the RS parameter can be
ambiguous concerning the definition of the target function (band gap, pure IP-

tuning or Koopmans’ condition for the anion, neutral and cationic) as well as the
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choice of optimal parameters for open-shell species.!”™ It has further been pointed
out that the lower valence spectra are not necessarily well represented since the op-
timization procedure favors the HOMO and similar orbitals while retaining larger
SIEs for the other orbitals.!?

Following the approach used with OT-RSHs, we approximated the outer-valence
electron spectra by applying Gaussian broadening to the calculated eigenvalues of
occupied orbitals.!'™ Since LRS-sPBE was so far the best functional, its resulting
spectra for benzene, pyridine and pyrimidine are shown in Fig. 4.2 in comparison
to the spectra with GRS-sPBE, the oPBE-based OT-RSH (OT-oPBE) and PBEO.
The spectra are not shifted. We checked that OT-oPBE indeed fulfills the target
condition AIP = 0'™ for the reference parameters (see Section 4.3.2), and that the
spectra resemble those from [173], where they were shown to be close to GoyWj and
experimental ones. We give them here as a guidance, considering that OT-RSH
functionals are currently the best available option to calculate electronic spectra
in the KS framework.

For all three systems, the LRS-sPBE spectra recreate the OT-oPBE shape quite
faithfully but they are shifted down to more negative energies (ca. 1.0eV for ben-
zene, 0.5 for pyrimidine). The resemblance decreases with the introduction of more
nitrogen atoms, which can be seen most prominently for pyrimidine in the merging
of the two peaks around —11 eV and the increased gap at —17eV. With GRS-sPBE
the differences are more pronounced, starting with a further downshift in all sys-
tems (from 1.5 to 1eV). For pyridine the peaks around —11eV appear to switch
places and the two peaks in pyrimidine merge to one. In fact, the order of the
two HOMOs (11A4; and 1A4,) in pyridine changes for both local and global sPBE
in comparison with OT-oPBE. The spectrum at PBEO level shows significantly
less resemblance and is shifted to higher energies by about 2eV to 3eV but non-
consistently as can be seen for the peaks around —12 and —9eV (cf. OT-oPBE at
—17eV and —11eV).

Given the simple form of our LRSH functional, the overall agreement with the
spectra obtained from RSH functionals that are specifically tuned to the systems
is remarkable, even more so considering that our parameters were optimized for
total energies rather than orbital energies. Apart from more sophisticated RSFs

and SR exchange functionals, improved eigenvalue spectra may be obtained by
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4.2 Calculated outer-valence electron spectra for benzene (top), pyri-
dine (middle), and pyrimidine (bottom) with Gaussian broadening
(FWHM = 1.0eV for benzene and 0.5¢eV otherwise). Energy in eV.
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adding a fixed constant percentage of XX at SR, as inferred for the GMTKN30

tests.

4.4 Conclusions and Outlook

As an alternative to GH functionals with globally fixed admixture of XX, GRSH
functionals partition the Coulomb interaction in SR and LR, modifying the ex-
change functional in either or both ranges by inclusion of XX. The ansatz of LH
functionals was transferred to GRSHs by replacing the constant parameter with the
RSF w for two functionals, the LDA exchange (Slater) and the PBE variant (GGA)
by Toulouse, Colonna, and Savin'®” denoted sPBE, which can be made equal to
the original PBE by adding a prefactor for the limit w — 0 (0PBE). These RSH
exchange functionals are combined with unadjusted correlation functionals VWN
and the original PBE, respectively. Our self-consistent implementation employs a
semi-numerical integration scheme based on Boys functions, limited up to f-shells
at this time. To mitigate numerical inaccuracies in both semi-local functionals
they are approximated for small and large input values by truncated series and a
minimax algorithm.

We proposed a generic RSF with a constant parameter as well as a scaled depen-
dence on the density, its gradient, and the KS kinetic energy density, and optimized
it globally for two small test sets of atomization energies and barrier heights, sep-
arately for the three functionals (LRSH) and their global versions (GRSH). The
resulting functionals were assessed for reaction barriers and relative energies in a
selection of sub test sets from GMTKN30% and AECE,?? for Koopmans’ theorem
in a set of main-group molecules™ as well as two heterocyclic, aromatic systems.!™
For the latter we also compared outer electron spectra (from orbital energies with
Gaussian broadening) to reproduce OT-RSH results.

Despite the small training set and the (especially for sSPBE) unadjusted correla-
tion functional, the LRSH functionals fare quite well in comparison with the GGA
PBE or the GH PBEO, although the latter was clearly more suited for GMTKN30
(less so for AECE). They also give similar orbital energies as shown for the outer
valence electron spectra against a recreated OT-RSH for PBE (OT-oPBE), with-

out the need to adjust the prefactor for each system.
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Further development should include the extension to higher shells, e.g. by adap-
tation of the Gauss-Rys/Gauss-Hermite implementation or the Obara-Saika algo-
rithm.%3 The recent implementation of known GRSH functionals into Turbomole
could help in this, by improving efficiency and the addition of more LRSH-based
exchange and correlation functionals (e.g. using B974243). Integral screening tech-
niques like S- and P-junctions should be considered as well. Moreover, larger train-
ing sets may yield more generally applicable variants of the already implemented
LRSH functionals and give insight into the influence of the distinct parts of the
functional on various properties. This should lead to more sophisticated RSFs. The
restriction to XX only at LR could be easily mitigated in a first step by mixing
in a constant XX fraction to the SR functional part as was done for some GRSH
functionals and is inspired by the good performance of PBEO for the GMTKN30
subsets. This can later be complemented by an RSF-dependent contribution of its
own, resulting in a three-fold partitioning. Lastly, the combination of LRSHs with

LHs should be considered as well.

4.A Appendix

4.A.1 Approximations for LRSH Functionals

To circumvent the numerical instabilities of LRSH enhancement factors and their
derivatives, approximations for different ranges of the argument were necessary
(see Section 4.2.3). We used Maclaurin series (Eq. (4.2.13)) for the LDA factor
FEPA and its derivative (Eqs. (4.1.17) and (4.1.22)) with small, i.e. near-zero, ar-
guments (lower limit). Their coefficients are given in Table 4.A.1 as 1% and 1V, For
large arguments (upper limit), the exponential and error functions were approxi-
mated by such series instead, and inserted into the original equations. This yielded
polynomial equations with coeflicients given as u(_ogn and u(_lgn_l in Table 4.A.1.

The same principle was applied to the function b(\) (Eq. (4.1.20a)) and its
derivative (Eq. (4.1.28a)) for the PBE-based SR exchange functional. The coeffi-
cients for small arguments are given as 1 and 1 in Table 4.A.2.

For large arguments of b itself, inserting the Maclaurin series of exp and erf

yielded the quotient of two even polynomials u(?) /v(®). Their coefficients are given
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Table 4.A.1 Coefficients for approximated FYPA and its derivative, with
>, cnx™, based on Maclaurin series up to degree n = 9 for near-
zero (lower) and large (upper) arguments.

n 0o 1 23 4 5 6 T 8 9

0 —4 —

B 1 2792 0 22 0 0 0 0 0

u(O) 0 1 -1 1 -1 1 -1 1 -1 1

—2n 9 60 420 3240 27720 262080 2721600 4626720 2585520
1 —4 —

i VT4 0 0 0 0 0 0 0

uL) 0 =2 1 -1 1 -1 1 —1 1 —1

—2n—1 9 15 70 405 2772 21840 194400 4626720 2585520

Table 4.A.2 Coefficients for approximated b from

FYBE and its derivative, with

>, lhx™, based on Maclaurin series up to degree n = 6 and n = 5,

respectively, with near-zero arguments.
0 1
n 1y I
0 56v/7
81 243
1 287 16(—18+177)
243 729
o 16(=18+7m) 8(—207456m) /7
729 729
3 8(=207436m)/r 8(2781—43207-+89672)
2187 6561
4 2(2781-43207+89672 ) 320(837—6667-+1127% ) /7
6561 19683
5 64(837-666m+112m)/ 8(28917+939607 — 5068872+ 71687 )
19683 19683
6 4(—28917+939607 — 5068872+ 71687 )

59049

120



4.A Appendix

Table 4.A.3 Coefficients for approximated b from FPF, with Y w,2"/ Y, v,a™,
based on Maclaurin series for exp and erf up to degree n = 22, with
large arguments. The derivatives are used via the quotient rule, see

Eq. (4.A.1).
nou oY uM oM
0 63
2 o6 112
4 1931 7724
6 2604 15624
3 24738 197904
10 2695 43953 26950 439530
12 11935 126945 143220 1523340
14 64680 435330 905520 6094620
16 274890 1926540 4398240 30824640
18 808500 6486480 14553000 116756640
20 970200 14844060 19404000 296881200
22 17463600 384199200

in Table 4.A.3 as u!” and v{”). The derivative was taken directly from this approx-

imation via the quotient rule

ob  u® — M

SR (4.A.1)

Thus, the coefficients of these odd polynomials (™ and v™® are closely related to
the former ones and also given in Table 4.A.3

The derivative of b required an additional approximation around A ~ 0.07. For
this we applied a minimax approximation!'®® within 0.085 < X\ < 0.6, which yielded
the quotient of two polynomials, Y p,A"/ > ¢,A", whose coefficients p,, and g,
are listed in Table 4.A 4.
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Table 4.A.4 Coefficients for approximated derivative of b from FYBPE  with
Yo DAY/ D, A", using a minimax algorithm within 0.085 < A <

122

0.6.

Pn

an

n
0
1
2
3

+0.20423336553555649
—0.41492105854350596
—0.35605859294397825
—0.34138199734535602

+1.0

—2.8894177391350542
+3.6943201135864023
—1.7635611733984347




5 Conclusions and Outlook

The aim of this thesis was the advancement of modern KS-DFT methods by im-
plementing novel approaches for more flexible hybrid functionals into the quantum
chemical program package Turbomole, and by evaluating these implementations
in numerical computations.

One of the modern ansatzes is LH functionals® (Section 2.2.2), which use a
position-dependent LMF to determine the amount of XX combined with approx-
imate SL exchange in order to mitigate the SIE, whereas widely-used GHs apply
a constant fraction everywhere and are based on theoretical or empirical consid-
erations for the choice of that value. Building on prior efficient implementations
of SCF® and linear-response TDDFT 34 the up-to-now missing energy derivatives
w.r.t. nuclear displacement, i.e. local hybrid gradients,! were derived and imple-
mented (Sections 3.1 and 3.2) using a semi-numerical Gauss-Rys/Gauss-Hermite
quadrature scheme. Those gradients enable structure optimizations as well as the
(numerical) calculation of vibrational frequencies but require additionally the ma-
trices A’, i.e. the (Cartesian) derivatives of the repulsion integral A for XX. The
quadrature scheme was adapted to reuse intermediate integrals so that all neces-
sary matrix elements are calculated together, for the cost of calling the integral
subroutines with an increased quantum number and more quadrature roots. This
scheme was complemented by the addition of the S-junction and P-junction pre-
screenings® in order to skip the time-consuming evaluation of some of the XX
repulsion integrals. The former relies on the diffuseness of basis functions and
their relative distances,'?? the latter on the product of the density matrix and
basis functions.

Both screenings were evaluated for linear alkanes and the three-dimensional
adamantane to determine their effectiveness for different thresholds (Section 3.3).

The savings for S-junctions are less pronounced (up to 7 %) for the inspected chain
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lengths compared to those for P-junctions (up to about 40 %) for a threshold of
1075, This setting leads to absolute deviations up to ca. 1077 relative to the results
without junctions. For the structure optimization of adamantane this threshold was
optimal, yielding 28 % less computing time and a merely 1072 kJ/mol deviation in
total energy. While the prefactor for the new implementation is higher in compari-
son with the mGGA GH TPSSh, the scaling is more favorable with increasing basis
set size because of our semi-numeric scheme. In terms of accuracy, the LHGs were
about en par with GHs as tested for interatomic distances on the test sets of main
group and 3d transition metal molecules, and slightly worse for frequency calcula-
tions on small main group molecules. In both cases we used Slater exchange and
VWN correlation in conjunction with LMFs depending on either the reduced KS
kinetic energy density (t-LMF) or the reduced electron density gradient (s-LMF),
with a prefactor optimized for a small set of AEs and BHs.

Moreover, the gradient implementation was used to optimize the structure and
calculate the vibrational frequencies of ten small, gas phase MV oxo systems con-
taining either main group or transition metal centers (Section 3.4).> The goal was
to find functionals that can distinguish between different Robin/Day MV classes'4*
simultaneously, which can be difficult since it requires varying amounts of XX in
different systems for the description of localization/delocalization. As reference we
used high-level coupled cluster benchmark data and experimental spectroscopic
results. The t-LMF with SVWN and a prefactor of b = 0.670 was one of the best-
performing in this study, along with the highly parametrized MN15 and the GRSH
functional wB97X-D. Yet none of the tested functionals accomplished the correct
description in all test cases.

For a better description, more sophisticated ingredients of the LMF may be
necessary, e.g. the Laplacian or the Hessian of the density (Section 3.5). Such
additions would require further development of the accompanying gradient sub-
routines, while for ingredients already in use (density, its gradient, kinetic energy
density) any new functional implementation can apply the gradient as is. The
available code can also be built upon for further implementations like LHGs for
excited states. The extension to derivatives of second order w.r.t. nuclear displace-
ment (Hessian) does not seem worthwhile at this time because of the even larger

demands on memory and processing for the new matrices from the second deriva-
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tives of A. A speedup of the current gradient algorithm could be a first step in
that direction. One possible avenue to this is the adaptation of the Boys function
quadrature scheme for low quantum numbers as employed for the SCF calculation,
although this implies a significant rewrite of existing routines (full A’ vs. half A).
The Obara-Saika scheme!®® may provide an efficient alternative and reduce code
repetition because of its use of recurrence relations. Because of the integration
grid, parallelization should be straightforward and decrease the effective run time
appreciably (while processing time increases due to multiple processors).

As a competing ansatz to GH and LH functionals, the GRSH functionals split
the Coulomb operator into LR and SR parts (most often) via an error function
and may mix in XX in either or both regions (Section 2.2.2). In analogy to the
LH approach, the RS parameter can be replaced by a position-dependent RSF w.

101 Hhyt had been abandoned afterwards.

Preliminary investigations were promising
As detailed in Section 4.1 we derived the necessary equations for the self-consistent
implementation of LRSH functionals. The energy expression and KS matrix con-
tributions for LRSH functionals were subsequently implemented into Turbomole.
For the XX integrals, a scheme with Boys functions up to f-shells was adapted.
As SR exchange, we used LDA'% and a variant of the GGA exchange functionals
PBE'" (sPBE). Numerical instabilities have to be considered for small and large
values of the RSF. We circumvented them by series expansions for small and large
arguments, and a minimax approximation for an intermediate interval.

The applied RSF depends on the electron density, its reduced gradient and
the reduced kinetic energy density, including four scaling parameters. They were
optimized for LDA, sPBE, and oPBE (a modified sPBE, which reduces to the orig-
inal PBE®*®! for w — 0) separately for global (GRSH, one parameter) and local
(LRSH, four parameters) test functionals on two small sets of AEs and BHs. They
were then assessed (Section 4.3) in a selection of sub test sets of GMTKN30%" and
AECE?? containing AEs and BHs, where especially LRS-sPBE gave good results
on average (weighted MAE of 3.1kcal/mol for GMTKN30 without non-covalent
interactions). We further tested how well the six functionals fulfill Koopmans’ IP
theorem for some small molecules and aromatic systems. Despite their optimiza-
tion against AEs and BHs, the functionals with sPBE and SVWN yielded good
results with slight improvement for the LRSH variant (MAEs 0.4eV and 0.3¢eV,
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respectively). The rescaled oPBE fared worse (1.2eV), and both PBE and PBEO
are at a disadvantage for this property (4.1eV and 3.0eV, respectively). Finally,
we tested the global and local version of our so far best-performing sPBE for the
outer electron spectra of three aromatic systems (benzene, pyridine, pyrimidine)
by visual comparison of their orbital energies with Gaussian broadening. The ref-
erence was a rebuilt OT-RSH, i.e. our GRS-oPBE with an adjusted RS constant
for each system to fulfill Koopmans’ theorem for the first IP. The resemblance
for LRS-sPBE was very good but slightly shifted towards lower energies, which
increased with each additional nitrogen atom. The corresponding GRSH showed
an even larger shift, while the GH PBEO gave pronounced shifts towards more
positive energies and less resemblance for the peaks.

Overall the results are quite promising (Section 4.4), especially considering the
simple form of our RSF and the optimization on small, specific test sets. Fur-
ther development should consider more sophisticated RSFs as well as RS-adapted

exchange and correlation functionals (e.g. using B974%43)

. The latter may be sim-
plified by the recent implementations of GRSH functionals into Turbomole. Larger
training sets should prevent an overtraining to specific systems and could reveal
some relations between the LRSH ingredients and system properties, leading to
improved RSFs. Also, training sets for Koopmans’ theorem (i.e. for IPs and EA)
should be tested, given that OT-RSH functionals are a often used for these prop-
erties. While the current implementation only provides XX at LR, this could be
amended in a first step by a constant fraction of XX at SR (GH / LRSH) and later
by an SR implementation of LRSH of its own. A combination of LH and LRSH
functionals should be considered as well.

Prior to those extensions, however, it is essential to eliminate the current lim-
itations. To enable the calculation of higher shells than f, one may adapt the
Gauss-Rys/Gauss-Hermite scheme used for LHG also for the LRSH calculations
as given in Section 4.2. A subsequent (or alternative) step could be the usage of the
Obara-Saika algorithm mentioned above, especially if it is planned for the LHG im-
plementation as well. For efficiency, S- and P-junctions should be straightforward
to implement.

In conclusion, two modern DFT methods have been advanced by derivation,

implementation, and assessment of gradients for LH functionals, and SCF energies
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for LRSH functionals. First results were promising, and the new capabilities due
to the gradient were used in a benchmark test set for MV systems, revealing one
of the LH functionals to give compelling results albeit not succeeding perfectly
for all systems. Still, a lot can be done by increasing efficiency and extending to
yet unavailable functionality. This work represents a stepping stone for such an

endeavor.
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