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A B S T R A C T

Substance-dependent individuals often lack the ability to adjust decisions flexibly in response to the changes in
reward contingencies. Prediction errors (PEs) are thought to mediate flexible decision-making by updating the
reward values associated with available actions. In this study, we explored whether the neurobiological
correlates of PEs are altered in alcohol dependence. Behavioral, and functional magnetic resonance imaging
(fMRI) data were simultaneously acquired from 34 abstinent alcohol-dependent patients (ADP) and 26 healthy
controls (HC) during a probabilistic reward-guided decision-making task with dynamically changing reinforce-
ment contingencies. A hierarchical Bayesian inference method was used to fit and compare learning models with
different assumptions about the amount of task-related information subjects may have inferred during the
experiment. Here, we observed that the best-fitting model was a modified Rescorla-Wagner type model, the
“double-update” model, which assumes that subjects infer the knowledge that reward contingencies are anti-
correlated, and integrate both actual and hypothetical outcomes into their decisions. Moreover, comparison of
the best-fitting model's parameters showed that ADP were less sensitive to punishments compared to HC. Hence,
decisions of ADP after punishments were loosely coupled with the expected reward values assigned to them. A
correlation analysis between the model-generated PEs and the fMRI data revealed a reduced association between
these PEs and the BOLD activity in the dorsolateral prefrontal cortex (DLPFC) of ADP. A hemispheric asymmetry
was observed in the DLPFC when positive and negative PE signals were analyzed separately. The right DLPFC
activity in ADP showed a reduced correlation with positive PEs. On the other hand, ADP, particularly the
patients with high dependence severity, recruited the left DLPFC to a lesser extent than HC for processing
negative PE signals. These results suggest that the DLPFC, which has been linked to adaptive control of action
selection, may play an important role in cognitive inflexibility observed in alcohol dependence when
reinforcement contingencies change. Particularly, the left DLPFC may contribute to this impaired behavioral
adaptation, possibly by impeding the extinction of the actions that no longer lead to a reward.

http://dx.doi.org/10.1016/j.nicl.2017.04.010
Received 23 December 2016; Received in revised form 24 March 2017; Accepted 14 April 2017

☆ Conflict of interest: The authors declare no competing financial interests.
⁎ Corresponding author at: Neural Information Processing Group, Technische Universität Berlin, Marchstrasse 23, Sekr. MAR 5-6, 10587 Berlin, Germany.
E-mail addresses: sinembalta@gmail.com, sinem.baltabey@mailbox.tu-berlin.de (S.B. Beylergil).

NeuroImage: Clinical 15 (2017) 80–94

Available online 17 April 2017
2213-1582/ © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

MARK

http://www.sciencedirect.com/science/journal/22131582
http://www.elsevier.com/locate/ynicl
http://dx.doi.org/10.1016/j.nicl.2017.04.010
http://dx.doi.org/10.1016/j.nicl.2017.04.010
mailto:sinembalta@gmail.com
mailto:sinem.baltabey@mailbox.tu-berlin.de
http://dx.doi.org/10.1016/j.nicl.2017.04.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2017.04.010&domain=pdf


1. Introduction1

Alcohol has been considered as the most harmful psychoactive
substance when physical, psychological, and social effects are taken
together (McGinnis and Foege, 1993; Nutt et al., 2010). It can cause
structural and functional changes in a network of cortical and sub-
cortical structures (Beck et al., 2012; Makris et al., 2008; Moriyama
et al., 2002; Ratti et al., 2002). These alterations, which partly seem to
persist during abstinence (Ratti et al., 2002; Zinn et al., 2004),
gradually reduce cognitive control, deteriorating individual's ability
to inhibit perseverative responses and adapt to the changes in environ-
mental contingencies. Indeed, alcohol use disorder itself can be seen as
an inability to adjust responses to stimuli formerly coupled with alcohol
leading to habitual, perseverative consumption patterns (Stalnaker
et al., 2009).

Probabilistic reversal learning task (PRLT) has been traditionally
used to assess cognitive flexibility in addiction (Izquierdo and Jentsch,
2012; Swainson et al., 2000). Experiments using PRLTs have demon-
strated that various substance-dependent groups including alcohol,
cocaine, and stimulant-dependent patients have difficulties adapting
to reversals, i.e. abrupt changes in reward contingencies (Deserno et al.,
2014; Ersche et al., 2008, 2011; Park et al., 2010). Recently, there has
been an increasing interest to understand the underlying computational
mechanisms of these impairments in substance use disorder through
reinforcement learning (RL) models (Deserno et al., 2014; Park et al.,
2010; Patzelt et al., 2014; Tanabe et al., 2013). These models are based
on the idea that while individuals tend to repeat the actions leading to
rewards, they tend to cease the activities that give them punishments
(Sutton and Barto, 1998). They rely on a teaching signal called
“prediction error,” which quantifies the discrepancy between the
estimated reward value of an action and the actual reward obtained
by selecting that action. Learning takes place as PE updates the selected
action's reward value, which then guides action selection on the next
trial. More recently, it has been suggested that healthy human subjects
in value-based decision-making tasks not only learn the expected
reward value of the action they select, but also consider what they
would have obtained if they selected the alternative action (Boorman
et al., 2009, 2013; Li and Daw, 2011; Lohrenz et al., 2007; Tobia et al.,
2014). The RL models accommodate this counterfactual learning via an
additional fictive update rule that updates the reward expectancy of the
unselected option, assuming that subjects consider the anti-correlated
reward structure of the PRLT such that if one choice is likely to be
rewarded, the alternative is likely to be punished (Hampton et al.,
2007). In this study, using a reward-guided decision-making task with
anti-correlated action-outcome contingencies that abruptly change
throughout the experiment, we hypothesized that subjects would infer
and incorporate this latent feature of the task structure in decision-
making and integrate both actual and fictive outcomes into their
decisions. Based on the recent reports showing superior model-fitting
performance of these “double-update” (DU) learning models (Glaescher
et al., 2009; Hampton et al., 2007; Schlagenhauf et al., 2014), we
hypothesized that the DU model would fit to the behavioral data better
than the standard RL models that only update the value of the selected
action. Previous reports with subsets of our subjects (Deserno et al.,
2014; Park et al., 2010) used the basic RL model to test their hypotheses
related to the blood oxygen level dependent (BOLD) activity in the

ventral striatum (VS) that varies with PEs, which has been shown to be
reliably predicted by this model (Pagnoni et al., 2002). Alternatively,
our approach was to compare various learning models with different
assumptions about the amount of task-related information subjects may
have extracted during the experiment. Our aim was to find the model
that best explains the underlying computations carried out by the
subjects while adjusting their responses to abruptly changing reinforce-
ment contingencies of the task.

The combination of RL modeling and fMRI holds promise for testing
various hypotheses concerning the brain mechanisms responsible for
computational processes in reward-based decision-making (Glaescher
and O'Doherty, 2010). Recently, by adopting this “model-based fMRI”
approach (Montague et al., 2012), neural representations of learning
have been compared between substance-dependent and control groups
to gain insight into the cognitive rigidity of addictive behavior.
Research to date has mainly focused on the striatal impairments in
reward-based decision-making (Deserno et al., 2014; Park et al., 2010)
because addictive drugs seem to “hijack” the reward-related processes
governed by striatal structures and evoke a pattern of behavior similar
to those evoked by natural rewards (Dayan, 2009; Hyman, 2005).
However, drugs also cause structural and functional changes in the PFC,
especially in the DLPFC, which possibly contribute to the decline of
cognitive control (Charlet et al., 2014; Goldstein et al., 2004; Loeber
et al., 2009; Sullivan et al., 2000). Furthermore, reduced neural
recruitment in the DLPFC has been extensively reported in various
drug-dependent groups performing other tasks that require cognitive
flexibility (Bolla et al., 2004; Eldreth et al., 2004; Paulus et al., 2008;
Salo et al., 2009; see Goldstein and Volkow, 2011 for a review).
Moreover, a previous study with a subgroup of our subjects reported
abnormal signal propagation between VS and DLPFC, possibly leading
to impairments in modifying and controlling behavior following
reinforcement (Park et al., 2010). Based on these findings, and recent
evidence on the involvement of DLPFC in PRLT (Budhani et al., 2007;
Cools et al., 2002; Greening et al., 2011; Mitchell et al., 2009), the focus
of this study was to elaborate on DLPFC's contribution to the inability of
ADP in making flexible decisions in response to the reversals of reward
contingencies. We sought to capture the neural substrates of decision-
making in the PFC via a model that assumes subjects infer the
unobservable (latent) reward structure of the task, which is then used
to choose actions that maximize reward attained. We hypothesized that
the BOLD activity in the DLPFC of ADP failing to track the PE signal
derived from this model would contribute to impaired behavioral
adaptation in alcohol dependence.

There is growing evidence that the human brain has distinct neural
mechanisms for processing rewards and punishments (Bischoff-Grethe
et al., 2009; Frank et al., 2004; Liu et al., 2007; Wrase et al., 2007;
Yacubian, 2006). Furthermore, recent research suggests that these
mechanisms may act differently in the case of substance use disorder
(Parvaz et al., 2015; Paulus et al., 2008; Rossiter et al., 2012). The
mechanisms responsible for processing punishments may be of parti-
cular interest in understanding maladaptive decision-making in alcohol
use disorder because aversive consequences of alcohol use seem to be
often consciously acknowledged but behaviorally ignored by abusers.
Previous studies using behavioral modeling showed that the actions of
substance-dependent individuals usually fail to match with the punish-
ment expectancies attached to them (Bishara et al., 2009; Fridberg
et al., 2010; Stout et al., 2004; Tanabe et al., 2013). Therefore, we
hypothesized that punishments received in the current experiment
would have weaker effects on the decisions of ADP compared to the
decisions of HC. Negative PEs play a pivotal role in the current task as
they mediate the extinction of learned actions that no longer lead to a
reward when reinforcement contingencies change. In alcohol depen-
dence, abnormal representation of these signals may contribute to the
difficulties in ceasing drug-related behavior hindering the maintenance
of abstinence. Therefore, one of the aims of the present study was to
investigate the neural correlates of abnormal encoding of negative PEs.

1 ACC: anterior cingulate cortex, ADP: alcohol-dependent patients, ADS: Alcohol
Dependence Scale, BA: Brodmann area, BOLD: blood oxygen level dependent, DIC:
deviance information criterion, DLPFC: dorsolateral prefrontal cortex, DU: double-
update, FMRI (or fMRI): functional magnetic resonance imaging, FWE: family wise error,
HC: healthy controls, HDI: high-density interval, HMM: hidden Markov model, IPS:
intraparietal sulcus, LDH: lifetime drinking history, MCMC: Markov Chain Monte Carlo,
MNI: Montreal Neurological Institute, OCDS: Obsessive Compulsive Drinking Scale, PE:
prediction error, [+]PE: positive prediction error, [−]PE: negative prediction error,
PRLT: probabilistic reversal learning task, RL: reinforcement learning, SU: single-update,
SVC: small volume correction, VS: ventral striatum.
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It has been shown that the severity of dependence symptoms (Doyle and
Donovan, 2009) and craving for alcohol (Bottlender and Soyka, 2004)
are significantly related to the ability of an alcohol-dependent indivi-
dual to stay abstinent in high-risk relapse situations in which the
individual should override the action “to consume” alcohol. Therefore,
we reasoned that impaired negative PE signaling in ADP would be
related to high dependence severity and high craving for alcohol.

2. Materials and methods

2.1. Subjects

34 abstinent ADP and 26 HC (all male) participated in the current
study (see Table 1 for sample characteristics). Subjects had no other
neurological or psychiatric disorder and no current drug abuse other
than nicotine. All ADP were diagnosed according to the International
Classification of Diseases and Related Health Problems 10th edition
(World Health Organization, 2004) and Diagnostic and Statistical
Manual of Mental Disorders 4th edition (American Psychiatric
Association, 1994). The severity of dependence and the mean craving
for alcohol were assessed with the Alcohol Dependence Scale (ADS,
Skinner and Horn, 1984) and the average craving subscale of Obsessive
Compulsive Drinking Scale (OCDS) (Anton, 2000). The amount of
alcohol intake in the past year was evaluated with the Lifetime Drinking
History (LDH) questionnaire (Skinner and Sheu, 1982). The smoking
severity of the subjects was also assessed with the Fagerström Test for
Nicotine Dependence (Heatherton et al., 1991). During fMRI sessions,
ADP had been abstinent and were free of benzodiazepine or chlor-
methiazole medication for at least 1 week (> 4 half-lives). Groups did
not differ on age, handedness (Oldfield, 1971) or verbal intelligence as
assessed with a German vocabulary test (Schmidt and Metzler, 1992).
However, there were significantly more chronic cigarette smokers in
ADP than HC. All statistical analyses (including the fMRI analyses) were
therefore controlled for smoking status.

The study was approved by the Ethics Committee of Charité -
Universitätsmedizin Berlin and all subjects signed a written consent
after all procedures were explained thoroughly.

2.2. Task description

During fMRI acquisition, subjects performed a reward-guided
decision-making task with dynamically changing action-outcome con-
tingencies (Deserno et al., 2014; Park et al., 2010; Schlagenhauf et al.,
2013, 2014). On each trial, subjects had to choose one of the two
abstract visual stimuli presented on a computer screen for 2 s. Follow-
ing the action, the selected stimulus and its outcome—either a green
smiley for reward or a red frowny for punishment—stayed on the screen
for 1 s. The experiment included two runs of 100 trials separated by a
short break. Trial timings were jittered by an interval of 1–6.5 s.

There were three block types with the following reward contingen-

cies: 20% left- and 80% right-, (2) 80% left- and 20% right-, and (3)
50% left- and 50% right-hand choices leading to a reward, otherwise to
a punishment. Reward contingencies on the two options were fully anti-
correlated, so that, for instance, when one option resulted in a reward
on 80% of occasions, the other option led to a punishment 80% of the
time. Subjects started the experiment with either the block type (1) or
(2). Block type shifted abruptly and unpredictably to any of the
randomly chosen block types after ten trials (minimum block length)
when subjects chose the most highly rewarding option on 70% (50% for
the 3rd block type) of the trials of an entire block. Regardless of
whether this learning criterion was fulfilled, reward contingencies
automatically changed after the maximum block length of 16 trials.

Subjects were instructed that the aim of the task was to learn by trial
and error which of the two stimuli is better than the other, i.e. has a
higher chance of winning. They were asked to adapt their behavior to
possible changes in reward contingencies and win as often as possible.
However, they were not informed about the exact timing of contin-
gency changes or the reward probabilities (see Supplementary material
for task instructions). Before entering the fMRI scanner, subjects were
asked to perform a short version without the changes in reward
contingencies to become familiar with the probabilistic nature of the
task.

2.3. Statistical analysis of the behavior

The total number of correct choices and the number of blocks for
which the reversal criterion was met were compared between the two
groups using two-sample t-tests. Response times after rewards and
punishments were compared using a 2 × 2 ANCOVA, with a between-
subject factor group, a within-subject factor outcome valence, and a
covariate for smoking status. We also measured the extent to which the
outcome information gathered by the subjects during the previous four
trials was integrated into the decisions to stay on the same option (win-
stay behavior) or shift to the other option (lose-shift behavior). We then
tested for between-group differences in win-stay and lose-shift beha-
vior, which were assessed by a logistic regression analysis as explained
elsewhere (den Ouden et al., 2013) and in the Supplementary material.

All standard tests in this study were performed in R 3.0.2 (R Core
Team, 2013). Greenhouse–Geiser correction was used whenever the
sphericity assumption was violated.

2.4. Computational modeling of the behavioral data

2.4.1. Models
We adopted a behavioral modeling approach to understand the

computational processes underlying the reward-based decisions of the
subjects and to explore the differences between ADP and HC in these
processes. We considered three groups of computational learning
models with different assumptions about the amount of task-related
information subjects may have inferred during the experiment

Table 1
Sample characteristics. ADP: alcohol-dependent patients, HC: healthy controls, FTND: Fagerstrom Test for Nicotine Dependence, EDI: the Edinburgh Handedness Inventory, LDH: Lifetime
Drinking History, OCDS: Obsessive Compulsive Drinking Scale, ADS: Alcohol Dependence Scale.

ADP (34) HC (26) Statistics p

Age 44.73 ± 8.27, 23–60 years 41.92 ± 9.59, 28–61 years t58 = 1.21 0.220
Sex All male All male
Smoking 25 smokers 11 smokers χ2 = 4.75 0.020
FTND 5 ± 2.73, 1–10 3.36 ± 2.37, 0–7 t34 = −1.71 0.100
EDI Right-handed Right-handed
Verbal IQ 102.85 ± 8.92, 85–125 103.80 ± 8.93, 90–125 t58 = 0.41 0.680
LDH last year (kg) 89.10 ± 166.04, 2.10–999 5.69 ± 13.27, 0.12–68.88 t58 = −2.55 0.010
OCDS sum 17.48 ± 7.09, 4–33 2.53 ± 2.56, 0–11 t58 = −7.51 0.001
OCDS craving 8.23 ± 10.06, 0–40 28.32 ± 35.60, 0–100 t58 = −2.78 0.007
ADS 15.48 ± 7.73, 1–36 –
Days of abstinence 17.55 ± 7.92, 7–46 days –
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(Schlagenhauf et al., 2014). The first group of learning models consisted
of the standard Rescorla-Wagner type models (Rescorla and Wagner,
1972) in which learning is based on an error measure called “prediction
error”. Learning takes place as the PE (denoted as δt in Eq. (1)), which
quantifies the discrepancy between the received outcome Rt and the
expected outcome Qt(at), updates the expected value Qt(at) of the
selected action at the end of each trial when Rt information is revealed
(Eqs. (1) and (2)). It reinforces an action or facilitates its extinction
depending on whether the obtained Rt is better (positive PE) or worse
(negative PE) than the expected outcome Qt(at).

δ ρR Q a
R

= − ( );
where = {−1, 1}

t t t t

t (1)

Q a Q a αδ( ) = ( ) +t t t t t+ 1 (2)

Q a Q a( ′) = ( ′)t t t t+ 1 (3)

The effect of the reinforcement on subject's decision is represented
by a free parameter called reinforcement sensitivity, as denoted by ρ in
Eq. (1). Higher values of ρ magnify the differences between the option
values and increase the probability of the selection of the action with
higher expected value. On the other hand, lower values lead to
explorative decisions that are inconsistent and independent of the
reward expectancies (Stout et al., 2004). This definition of sensitivity
should be distinguished from the more traditional definition as the
ability to derive pleasure or displeasure from the reinforcers in the
experiment.

The extent to which PE updates the expected value is determined by
another free parameter called learning rate α (Eq. (2)). To study the
dependence-related behavioral patterns that are specific to processing
reward and punishment, we allowed the reinforcement sensitivity
parameter to take two distinct values, reward sensitivity (ρr) or
punishment sensitivity (ρp), according to the valence of outcome (Ito
and Doya, 2009; Schlagenhauf et al., 2013). Learning rate was also
allowed to take two different values depending on whether the received
outcome Rt is a reward (reward learning rate αr) or a punishment
(punishment learning rate αp).

The first group of learning models tested in this study assumes that
learning can only take place through experience. Therefore, they only
update the expected value of the selected action Qt(at), while leaving
the expected value of the unselected action Qt + 1(at′) unchanged (Eq.
(3)) (hence called “single-update” models). The second class of models,
called “double-update” models, extend the single update (SU) models
by also taking into account the counterfactual outcome that could have
been received from the unselected action (Boorman et al., 2009, 2013;
Li and Daw, 2011; Lohrenz et al., 2007; Tobia et al., 2014). Based on
the idea that subjects infer and utilize the knowledge that reward
contingencies on two options are fully anti-correlated, double update
(DU) models update the expected values of both the selected action at
(Eq. (2)) and the unselected action at′ (Eq. (4)). It is important to note
that after receiving a reward, the update rule for the unchosen option
does not assume a certain punishment (or vice versa); but a lower
probability of receiving reward, therefore a higher probability of
receiving punishment as there is no other type of feedback in the
experiment.

Q a Q a α ρR Q a( ′) = ( ′) + (− − ( ′))t t t t t t t+ 1 (4)

We generated three versions of SU and DU models with different
combinations of free parameters (SU1–3, DU1–3, see Table 2). Addi-
tionally, with an additional DU model (DU4), we tested the hypothesis
that fictive learning signals would not be utilized in updating of the
action values as effectively as actual learning signals (Matsumoto et al.,
2007). This model uses a fictive learning rate parameter, which is
calculated by weighting the learning rate with an additional parameter
ξ. This parameter is a fractional step size, which takes a value between
0 and 1 (Eq. (5)).

Q a Q a αξ −ρR − Q a( ′) = ( ′) + ( ( ))t t t t t t t+ 1 (5)

In all of the SU and DU models, action probabilities p(at) were
calculated from the expected reward values of the options using the
following action selection rule,

p a L σ β Q L Q R c( = ) = ( {( ( ) − ( )) − })t t t (6)

where σ(z) = 1 / (1 + exp(−z)) is the sigmoid function. The noise
temperature parameter β in Eq. (6) controls the level of stochasticity in
action selection. Adjusting the reward and punishment sensitivity
parameters in SU and DU models is an alternative way to modify β,
which was therefore set to 1 to avoid overparameterization. The
indecision point c in Eq. (6) determines the point on the sigmoid
function at which both choices are equally likely to be selected. No bias
was found in the choices when reward values of options were equal
(paired-sample t-test, t59 =−0.944, p = 0.348). Hence, c was fixed to
0.

The third group of learning models implemented in this study was
Hidden Markov Models (HMMs), which assume that subjects construct
a state-based representation of the task via probabilities that determine
contingency changes and the outcome that would arise from selecting
an action (Hampton et al., 2006; Schlagenhauf et al., 2014). HMMs
assign a prior belief probability to each action b(at), which indicates the
subjective belief that an action at is correct, i.e. associated with the
higher reward contingency. At the end of each trial upon each new
outcome, prior probabilities are updated to a posterior belief prob-
ability via Bayes' rule (Jordan, 1998) (see the Supplementary material
for the implementation details of HMM). An important feature of HMM
is that updating of the posterior belief probabilities does not involve
computations of PEs. In contrast to SU and DU models, HMM uses the
outcome information as an evidence to simultaneously update the belief
probabilities of all possible actions. The amount of change in the prior
belief made by an outcome is called “Bayesian surprise” (Itti and Baldi,
2005), which can only be computed after belief updating. On the other
hand, PEs in RL models are calculated at the time of the outcome
presentation and directly used in learning (Barto et al., 2013).

HMM captures the reversal nature of the task with a free parameter
called transition probability (τ), which governs the transitions among
the belief states. The probability with which an outcome can be
obtained in a particular belief state is represented by a free parameter
called outcome probability (φ). Analogous to the distinct reward and
punishment sensitivities defined in the SU and DU models, the outcome
probability parameter was also allowed to take two different values
according to the valence of the outcome. Reward probability (φr)
represents the likelihood of getting a reward given that subject is in a

Table 2
Computational learning models. Single-update (SU), double-update (DU) models, and
Hidden Markov Models (HMMs) use various combinations of free parameters. The
potential scale reduction factor (PSRF) values inform about the convergence of the
Markov Chain Monte Carlo (MCMC) algorithm. The minimum deviance information
criterion (DIC) value (written in bold) designates the most parsimonious model. DIC
values are reported for all behavioral data including (DICALL) and excluding the poorly-
fitted subjects (DICFit > Chance). α: learning rate, ρ: reinforcement sensitivity, ξ: fictive
weight, τ: transition probability, φ: outcome probability. The parameters, which take
different values according to the valence of the outcome, are marked with subscripts r for
reward and p for punishment.

Model Free parameters PSRF DICALL DICFit > Chance

SU1 α, ρ 1.03 11,178 8260
SU2 α, ρr, ρp 1.01 10,783 7888
SU3 αr, αp, ρ 1.26 10,819 7910
DU1 α, ρ 1.05 10,493 7588
DU2 α, ρr, ρp 1.04 10,015 7141
DU3 αr, αp, ρ 1.02 10,067 7184
DU4 α, ξ, ρ 1.01 10,515 7608
DU5 α, ξ, ρr, ρp 1.01 10,025 7150
HMM1 τ, φ 1.04 10,331 7461
HMM2 τ, φr, φp 1.01 10,049 7212
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correct belief state; whereas punishment probability (φp) accounts for
receiving a punishment given that subject is in an incorrect belief state.
We tested two versions of the HMM. The first version assumes that the
chance of getting a reward from a ‘correct’ belief state equals to the
chance of receiving a punishment from an ‘incorrect’ belief state. The
second version allows outcome probabilities to take different values
according to the valence of the outcome (see HMM1 and HMM2 in
Table 2).

2.4.2. Model fitting and model comparison
Individual and group parameters were simultaneously estimated in

terms of probability distributions using a hierarchical Bayesian infer-
ence method. We adopted this method because it provides a principled
approach for tackling optimization problems such as numerical stability
and estimations at parameter boundaries, which often occur in the
modeling of choice data (Daw, 2011; Wagenmakers et al., 2008;
Wetzels et al., 2010).

A Bayesian graphical model was created for each candidate learning
model in JAGS (Plummer, 2003). A Markov Chain Monte Carlo (MCMC)
algorithm called Gibbs sampling was used to sample from the para-
meter distributions of the models. Three chains of 100,000 samples
were generated. To reduce autocorrelation between the MCMC samples,
only every 5th sample was retained. The first 5000 samples from each
chain were discarded for burn-in, leaving 19,000 samples per chain.
Group prior distributions were only weakly informed to keep the
estimated parameters in a reasonable range [Uniform(0,1) for learning
rate, fictive weight parameter and all parameters of the HMMs; Uniform
(0,20) for reward and punishment sensitivities]. To assure convergence,
MCMC chains were visually analyzed for each parameter whether they
stabilized at the same region of the sample space (Gelman and Rubin,
1992a, 1992b). We also calculated the Gelman-Rubin convergence and
reported the potential scale reduction factor (PSRF) of each model
(Gelman and Rubin, 1992a).

For selecting the best-fitting model, we calculated the model scores
in deviance information criterion (DIC) (Spiegelhalter et al., 2002, see
Supplementary material for details). The model with the smallest value
was selected as the best-fitting model. Furthermore, to assess the level
of improvement provided by the best-fitting model over the null model
in predicting subject's choices, we calculated the pseudo-R2 values for
each subject, as described elsewhere (Camerer and Ho, 1999; Daw,
2011), using the posterior means of individual parameter distributions.
We used pseudo-R2 values to single out the subjects whose behavior
could not be predicted by the best-fitting model significantly better
than near chance level. Based on our previous reports (Schlagenhauf
et al., 2014), the threshold for near chance level was set to p≤ 0.55
which corresponds to pseudo-R2 ≤ 0.1375. This threshold value was
selected to make sure that our results were not confounded by poor
model fits because we believe that the behavioral data of the subjects
whose model-fits are close to chance level should also be treated with
caution due to the probabilistic nature of model fitting. Although not
reported in this article because of space limitations, we also used two
other threshold values, 0.50 and 0.52, to confirm that our results were
not sensitive to the selected specific threshold value.

After exclusion of these poorly-fitted subjects, we performed the
model selection analysis once more to confirm that the results were not
confounded by poor model fit. Model comparison was also applied
separately to the choice data of HC and ADP.

2.4.3. Comparison of the model parameters between the two groups
For each model parameter, we computed the differences between

the samples of the two groups (HC > ADP) at each step of the MCMC
chains. We then plotted these sample differences in a histogram. The
null hypothesis (H0) was rejected when the value zero—indicating no
significant group difference—fell outside the 95% high-density interval
(HDI) which spanned 95% of the histograms (Kruschke, 2010).

We also examined the relationship between the parameters of the

best-fitting model and clinical questionnaire scores. We used the scores
on the ADS, average craving subscale of the OCDS, and the LDH to
divide ADP into two subgroups at the median values. In the first
analysis, we estimated and compared the model parameters of the
“severely affected” (18 subjects, ADS: 15–36 ≥ 15) and the “less
severe” (16 subjects, ADS: 1–14 < 15) ADP. We used the same
parameter comparison technique described above. Similarly, we cate-
gorized ADP into “high craving” (19 ADP, OCDScraving: 10–100 ≥ 10)
and “low craving” (15 subjects, OCDScraving: 0–5 < 10) groups using
the median score on the OCDScraving. Finally, taking the same approach,
we compared the group parameters of the “high consumers” (17 ADP,
58.56–999 l ≥ 57 l) and the “low consumers” (17 ADP,
2.10–55.44 l < 57 l), which were specified according to the median
score on the LDH questionnaire. We also verified the results by testing
the correlation between the posterior means of individual parameter
distributions of ADP and their clinical scores.

2.4.4. Learning curves
Learning curve visualizes the adaptation of choice behavior to the

reversals of reinforcement contingencies. Average learning curves of
HC, ADP, and the poorly-fitted subjects were constructed by plotting
the mean correct responses as a function of trial number. Choosing the
stimulus with higher reward probability was considered as a correct
response. The number of trials was limited to ten because blocks
consisted of a minimum number of ten trials. We performed a 3 × 10
ANCOVA to compare the learning curves of the groups. The mean
correct responses of the subjects at each trial after contingency reversals
were defined as the dependent variable. The between-subjects factor
group had three levels for HC, ADP, and the poorly-fitted subjects;
whereas the within-subjects factor trial had ten levels for each trial after
the reversals. Smoking status was included as a nuisance variable.

A successful learning model should capture and replicate the
characteristics of behavioral data. To test if the best-fitting learning
model fulfilled this criterion, we examined whether surrogate learning
curves matched the actual learning curves of the subjects. Surrogate
learning curves were constructed by plotting the mean performance of
simulated data generated by letting the best-fitting model with para-
meters fitted to the individual subjects perform the task 100 times.
Poorly-fitted data were excluded from this analysis. Surrogate data
were then compared using a 2 × 10 group × trial ANCOVA.

2.5. FMRI data acquisition and preprocessing

Imaging was performed using a 3 Tesla GE Signa scanner with a
T2*-weighted sequence (29 slices with 4 mm thickness; repetition time,
2.3 s; echo time, 27 ms; flip, 90°; matrix size, 128 × 128; field of view,
256 × 256 mm2; in-plane voxel resolution of 2 × 2 mm2) and a T1-
weighted structural scan (repetition time, 7.8 ms; echo time, 3.2 ms;
flip, 20°; matrix size 256 × 256; 1 mm slice thickness; voxel size of
1 mm3).

Functional imaging data were analyzed using SPM8 (http://www.
fil.ion.ucl.ac.uk/spm/software/spm8/). The first three volumes of each
session were discarded. Volumes were corrected for the delay of slice
time acquisition and motion. They were spatially normalized into MNI
(Montreal Neurological Institute) space and were spatially filtered with
a Gaussian kernel (8 mm full width at half maximum). Imaging data of
6 subjects (3 ADP due to motion artifacts and 3 HC due to susceptibility
artifacts) were discarded. The region of interest (ROI) analyses were
performed using the Marsbar toolbox in SPM (Brett et al., 2002).

2.6. FMRI data analysis

FMRI data were analyzed in an event-related manner using a
general linear model approach with two levels. At the first level,
reward and punishment events were modeled by stick functions at the
onset of the outcome. Trial-by-trial PE time-series were computed using
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the best-fitting learning model. Similar to outcome events, PE signals
were also grouped into positive and negative PEs and included in the
GLM as parametric modulators for reward and punishment conditions.
Trials without a response were modeled separately. All regressors were
convolved with the canonical hemodynamic response function as
provided by SPM. The movement parameters from the realignment
process were included as regressors of no interest.

2.6.1. Reward and punishment representations in the brain
“Reward vs. punishment” and “punishment vs. reward” contrast

images were generated for each subject and taken to the second level.
For each contrast image, we performed a random-effects group-level
analysis with a one-sample t-test across the entire sample. We also
compared groups with a two-sample t-test. FMRI results were reported
as significant at p≤ 0.05 family wise error (FWE) whole-brain
corrected at the voxel level.

2.6.2. Neural correlates of the reward and punishment sensitivities
To investigate how reinforcement sensitivity parameters estimated

in behavioral modeling were correlated with reward- and punishment-
related BOLD responses across all subjects, we used two independent
linear regression models at the second level of the fMRI analysis. The
first regression model included the “reward vs. punishment” contrast
images as the dependent variable and the reward sensitivities of the
subjects as the covariate of interest. Likewise, the second regression
model included the “punishment vs. reward” contrast images as the
dependent variable, and the punishment sensitivities of the subjects as
the covariate of interest. Results were reported significant at p < 0.05
SVC within the brain regions, which showed significant “reward vs.
punishment” activity (for reward sensitivity), or “punishment vs.
reward” activity (for punishment sensitivity) across all subjects at
p < 0.05 FWE whole brain corrected.

2.6.3. Neural correlates of prediction errors
We performed a parametric model-based fMRI analysis to examine

the differences between HC and ADP in the neural correlates of PEs. PEs
were calculated using the mean values of the posterior parameter
distributions estimated for each individual. Single subject contrast
images of the parametric modulators positive PE ([+]PE) and negative
PE ([−]PE) were taken to a 2 × 2 repeated measures ANOVA (flexible
factorial design in SPM) with a between-subjects factor group (HC vs.
ADP) and a within-subjects factor PE type (positive vs. negative).
Subjects factor in SPM was also included to model subject constants.
We tested the following contrasts: (1) the PE-related activity across all
subjects, (2) between-group difference in the PE-related activity, (3)
between-group difference in the [+]PE-related activity, (4) between-
group difference in the [−]PE-related activity. FMRI results were
reported as significant at p ≤ 0.05 FWE whole-brain corrected at the
voxel level.

3. Results

3.1. Statistical analysis of the behavior

ADP met the learning criterion (70% correct responses during a
maximum block length of 16 trials) less often than HC (t58 = 1.99,
p = 0.05; MHC = 11.15, SDHC = 3.86; MADP = 9.176, SDADP = 3.76),
completing the task with a significantly lower number of correct
choices (t58 = 2.586, p = 0.012, MHC = 136.15, SDHC = 6.14;
MADP = 131.35, SDADP = 7.78). A 2 × 2 group × outcome valence
ANCOVA with response times as the dependent variable showed no
significant main effect of group (F(1,58) = 0.002, p = 0.960) or out-
come valence (F(1,58) = 2.986, p = 0.089); or a significant group × -
outcome valence interaction (F(1,58) = 1.031, p = 0.314).

We also tested for between-group differences in win-stay and lose-
shift behavior. A logistic regression analysis estimated the beta para-
meters of the four win-stay regressors and the four lose-shift regressors.
These regressors model the extent to which subjects integrated the
outcome information from the previous four trials (lag) into their
decisions to stay on the same option or shift to the other option. The
first 2 × 4 group × lag ANOVA with the parameter estimates of win-
stay regressors revealed no significant difference between the groups (F
(1, 58) = 1.479, p = 0.229, see (Fig. 1A); however the main effect of
the factor lag was found significant (F(3, 174) = 7.679, p < 0.0001).
No significant interaction effect was found between the factors group
and lag (F(3, 174) = 0.629, p = 0.597). The second 2 × 4 ANOVA
with the parameter estimates of the four lose-shift regressors indicated
a significant difference between HC and ADP in lose-shift behavior (F(1,
58) = 5.971, p = 0.017, see Fig. 1B). The main effect of the factor lag
(F(3, 174) = 2.694, p < 0.047), as well as the interaction effect
between the factors group and lag (F(3, 174) = 0.966, p = 0.410) were
found insignificant.

3.2. Computational modeling of the behavioral data

3.2.1. Model fitting and model comparison
Potential scale reduction factors (PSRF) of the candidate models

indicated that the MCMC algorithm converged for each model (see the
PSRFs calculated for each model in Table 2). The model comparison
analysis based on the DIC scores of the models showed that compared to
the SU models, the DU models and HMMs provided superior fits to
behavioral data, supporting the assumption that subjects inferred and
utilized the knowledge that reward contingencies on two options are
fully anti-correlated. The DU2 model (the DU model with equal reward
and punishment learning rates, but distinct reward and punishment
sensitivities) was selected as the best model as it fitted the behavioral
data of all subjects better than the other candidate models (Fig. 2A and
Table 2). The DU5 model was another candidate model with a similar
DIC score. However, this model can easily be reduced to the DU2

Fig. 1. Win-stay/lose-shift analysis. Parameter estimates of the (A) win-stay and (B) lose-shift regressors of the 4 trials into the past. “t” represents the time of choice. Bars denote standard
errors. Asterisk denotes statistical significance (p≤ 0.05).
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model, because the estimated fictive weight parameter was found to be
approximately equal to 1 (equal learning rates for actual and fictive
outcomes).

The pseudo-R2 values computed for each subject revealed that the
DU2 model was not able to predict the behavioral data of 5 HC and 6
ADP better than near chance level (Fig. 2B). To make sure that these
poorly-fitted data did not confound the model comparison results, we
repeated the model selection analysis for the well-fitted subjects only.
We found that the DU2 model once again explained the behavioral data
significantly better than the other models (Fig. 2C and Table 2). None of
the candidate models were able to predict the behavioral data of the
poorly-fitted subjects better than near chance level.

Additionally, when we repeated the analysis separately for each
subject group, the DU2 model provided a parsimonious fit for HC;

whereas, when only ADP were considered, the HMM2 provided a
slightly better fit than the DU2 model (see Supplementary Fig. 1). HMM
requires the complete model of the environment, which may be seen as
a strong assumption about learning given the fact that subjects were not
given the chance to practice the task beforehand (orientation version
did not involve reversals). On the other hand, DU model can handle the
stochastic transitions and rewards of this task without constructing the
model of the environment. As a matter of fact, a comparison of the
surrogate learning curves generated by these models revealed that both
of these models were able to predict the behavioral data of both groups
statistically alike (see Supplementary material for a comparative
analysis). This similarity is also consistent with the recent studies
which did not perform any model comparison analysis and used the DU
model based on the assumption that this model provides a good

Fig. 2. Model comparison. (A) The DIC scores of the candidate learning models for all subjects. The most parsimonious model, the DU2 model (plotted with a patterned bar) has the
lowest DIC score. (B) The pseudo-R2 values of the subjects show the relative improvement in model-fitting provided by the DU2 model over the null model. The DU2 model was not able to
predict the behavioral data of 11 subjects (5 HC and 6 ADP; marked by asterisks) better than near chance level which is marked with a horizontal dotted line at the pseudo-R2 = 0.1375
(corresponding to p = 0.55). (C) The DIC scores of the candidate learning models for all subjects fitted above the near chance level. α: learning rate, ρ: reinforcement sensitivity, ξ: fictive
weight, τ: transition probability, φ: outcome probability. Parameters, which take different values according to the valence of the outcome, are marked with subscripts r for reward and p
for punishment.
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approximation of the HMM for this task design while being more
parsimonious (Glaescher et al., 2009; Hampton et al., 2007).

Also, our model selection was motivated by our study's hypotheses.
In this study, we were particularly interested in addiction-related
changes in reward-based learning guided by PEs. However, learning
in HMMs do not involve computations of PE signals. Therefore, we
selected the DU2 model as the best fitting model for all subjects and
used this model to derive the PEs for the subsequent model-based fMRI
analysis.

3.2.2. Comparison of the model parameters between the two groups
The posterior group parameter distributions of HC and ADP (see

Table 3) were approximated using the DU2 model with converged
MCMC samples (PSRF = 1.04, see Table 2). For each parameter of the
DU2 model, parameter comparison between HC and ADP was per-
formed by computing the differences between the samples of the two
groups (HC > ADP) and plotting these differences as histograms
(Fig. 3A). The null hypothesis H0 of “no group difference
(HC − ADP = 0)” was rejected only for the punishment sensitivity
parameter, as the value zero fell outside the 95% HDI (0.09–1.35) of the
histogram. The positive value of the mean difference

(HC − ADP = 0.705) indicates that ADP had significantly lower pun-
ishment sensitivities compared to HC. The result remained unchanged
when the analysis was repeated only for the well-fitted subjects (mean
difference = 0.906, 95% HDI = 0.24–1.58). On the other hand, neither
the learning rates, nor the reward sensitivities showed differences
between groups (learning rate: mean difference = 0.003, 95%
HDI = −0.14–0.15; reward sensitivity: mean difference = 0.265,
95% HDI = −0.61–1.17).

To examine the relationship between the parameters of the DU2
model and the clinical questionnaire scores, we ran additional model
fitting analyses within ADP. First, we sought to determine whether the
severity of alcohol dependence (assessed with ADS) was related to the
parameters of the DU2 model. The posterior parameter distributions of
the less severe (LO) and the severely affected (HI) ADP were approxi-
mated using MCMC samples. Difference distributions, which were
computed by subtracting the parameter distributions of the severely
affected ADP from those of the less severe ADP, were plotted as
difference histograms (Fig. 3B). Reward sensitivity parameter was
found significantly different between these subgroups as the value zero
indicating no difference was outside the 95% HDI
(−2.31 − [−0.147]) of the histogram. The negative mean difference
(severely affected − less severe = −1.21) indicated that the severely
affected ADP had significantly higher reward sensitivities relative to the
less severe ADP (MLO = 1.419, SDLO = 0.828; MHI = 2.633,
SDHI = 1.672). Also, a significant positive correlation was found
between the posterior means of individual reward sensitivity distribu-
tions of ADP and their ADS scores (Pearson's r = 0.482, p = 0.005).

There was no significant difference between the low craving and the
high craving ADP; or between the low consumers and the high
consumers.

3.2.3. Learning curves
We constructed the average learning curves of HC, ADP, and the

Table 3
Summary table of the DU2 model's estimated parameters (mean ± SD). N: sample size,
α: learning rate, ρr: reward sensitivity, ρp: punishment sensitivity.

Model parameters All subjects (N = 60) Good-fit (N = 49)

HC
(N = 26)

ADP
(N = 34)

HC
(N = 21)

ADP
(N = 28)

α 0.50 ± 0.19 0.50 ± 0.30 0.51 ± 0.16 0.56 ± 0.25
ρr 2.19 ± 1.65 1.92 ± 1.20 2.56 ± 1.53 2.10 ± 1.27
ρp 1.29 ± 1.08 0.59 ± 0.61 1.52 ± 0.99 0.61 ± 0.65

Fig. 3. Histograms of parameter differences. A. Between-group comparisons in DU2 model parameters indicate lower punishment sensitivity in ADP. B. Parameter comparison between
less severe (LO) and severely affected (HI) ADP indicate greater reward sensitivity in severely affected ADP. Mean values of the histograms are shown with solid black lines. The point of
no group difference is marked with a red dashed line. 95% of the distributions are found within arrows. HDI: High-density interval. μα: group parameter distribution for learning rate, μρR:
group parameter distribution for reward sensitivity, μρP: group parameter distribution for punishment sensitivity. The figure is generated by adapting the R code originally created by
Kruschke (2010).
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poorly-fitted subjects by plotting the mean correct responses as a
function of trial number (bold curves in Fig. 4). Learning curves were
then compared using a 3 × 10 group × trial ANCOVA, which showed a
significant main effect of group (F(2, 57) = 6.27, p = 0.003), a
significant main effect of trial (F(3.90, 222.64) = 46.46, p < 0.001,
Greenhouse–Geiser corrected) and a significant group × trial interac-
tion (F(7.81, 222.64) = 6.351, p < 0.001, Greenhouse–Geiser cor-
rected). When the analysis was repeated for the well-fitted HC and
ADP only, the main effect of group (F(1, 47) = 5.378, p = 0.002) and
trial remained significant (F(3.21, 151.01) = 82.707, p < 0.001,
Greenhouse–Geiser corrected); whereas the significant group × trial
interaction effect disappeared (F(3.21, 151.01) = 1.042, p = 0.404,
Greenhouse–Geiser corrected). Post hoc two-sample t-tests revealed a
significant difference between the mean correct responses of HC and
ADP at the 5th trial after reversal, at which both groups reached their
highest performance (t47 = 2.894, p = 0.028, Holm–Bonferroni cor-
rected, MHC = 92.09%, SDHC = 9.27%; MADP = 81.53%,
SDADP = 14.64%).

Next, we tested whether surrogate learning curves generated by the
DU2 model followed the actual learning curves of the subjects.
Specifically, we were interested whether the difference in the punish-
ment sensitivities of the DU2 model (when fitted to the ADP and HC)
translated into the difference in learning curves. First, we generated
surrogate choice data. DU2 models with parameters fitted to the
individual subjects performed the task (100 times per model).
Second, we averaged the correct responses and constructed the
surrogate learning curves for HC, ADP and poorly-fitted subjects
(dashed curves in Fig. 4). Finally, we compared the surrogate learning
curves using a 2 × 10 group × trial ANCOVA. Poorly-fitted data, as well
as the data recorded during blocks with L: 50%–R: 50% reward
contingencies, were excluded from this analysis. ANCOVA showed a
significant main effect of group (F(1, 47) = 6.95, p = 0.011) and a
significant main effect of trial (F(2.26, 106.59) = 139.19, p < 0.001,
Greenhouse–Geiser corrected). The group × trial interaction was found
to be insignificant (F(2.26, 106.59) = 1.81, p = 0.064). Post hoc t-tests
revealed a significant group difference in the mean correct responses at
the 4th trial after the reversal (t47 = 3.244, p = 0.01, Holm–Bonferroni
corrected, MHC = 87.62%, SDHC = 7.99%; MADP = 78.37%,

SDADP = 11.06%) in addition to the 5th trial after the reversal
(t47 = 3.273, p = 0.01, Holm–Bonferroni corrected, MHC = 91.43%,
SDHC = 5.88%; MADP = 83.18%, SDADP = 10.35%). Hence, replication
of the between-group difference in learning curves using the simulated
data confirmed the significant association found between the decrease
in the punishment sensitivity and the impaired behavioral adaptation of
ADP.

Learning curve analysis was not affected by the selection of the near
chance threshold as both values yielded comparable results.

3.3. FMRI analysis

3.3.1. Reward and punishment representations in the brain
Across all subjects, compared to punishments, rewards elicited a

significant BOLD response in the bilateral posterior cingulate cortex,
the bilateral precuneus, and the medial orbitofrontal cortex.
Additionally, the left middle/superior PFC and the right putamen
displayed an increased activity for reward vs. punishment (see
Supplementary Fig. 2A and Supplementary Table 1). On the other
hand, a significant activation in response to punishments relative to
rewards was observed bilaterally in the anterior insula/inferior PFC, the
dorsal anterior cingulate cortex (ACC), and the pre-SMA (see
Supplementary Fig. 2B and Supplementary Table 1). Two-sample t-
tests revealed no significant between-group difference in the reward vs.
punishment or punishment vs. reward activity (p ≥ 0.001 uncor-
rected).

3.3.2. Neural correlates of the reward and punishment sensitivities
We also sought to probe whether there are neural correlates of

reward and punishment sensitivity parameters. A linear regression
performed at the second level of the fMRI analysis, which examined the
correlation between “punishment vs. reward” activity and punishment
sensitivity parameter, revealed a significant positive correlation across
all subjects in the right insula/inferior PFC (MNI [x y z] = [32 21 5];
k = 11; t52 = 3.80; pFWE voxel (SVC) = 0.024; Fig. 5). On the other hand,
no significant correlation was found between “reward vs. punishment”
activity and reward sensitivity parameter (p≥ 0.001 uncorrected).

3.3.3. Neural correlates of prediction errors
Across all subjects, neural correlations of model-derived PE were

found bilaterally in the VS, the middle, superior and inferior prefrontal
cortices, the ACC, the midbrain, the globus pallidi, the middle temporal
lobules, as well as in the left insula, the left supramarginal gyrus, the
right inferior parietal lobule, the right precuneus and the right
cerebellum (see Supplementary Fig. 3 and Supplementary Table 2).

Among these regions, the contrast HC > ADP showed a significant
between-group difference in the PE-related activity in the bilateral
DLPFC (right: MNI [x y z], [40 33 43], t52 = 5.831, pFWE peak voxel (whole-

brain) = 0.005; left: [−41 18 53], t52 = 5.488, pFWE peak voxel (whole-

brain) = 0.014), the bilateral dorsal premotor areas (right: [25 8 63],
t52 = 6.081, pFWE peak voxel (whole-brain) = 0.002; left: [−41 11 53],
t52 = 5.23, pFWE peak voxel (whole-brain) = 0.032), and the right intrapar-
ietal sulcus (IPS) ([42 −62 43], t52 = 6.112, pFWE peak voxel (whole-

brain) = 0.002) (Fig. 6A and Table 4). Striatal activity related to PE did
not differ between the two groups (p≥ 0.001 uncorrected). Further-
more, the reverse contrast, ADP > HC showed no significant differ-
ence (p≥ 0.001 uncorrected). In order to address the concern that
group differences observed in the DLPFC might be confounded by the
individual differences in the model-fits, we repeated the 2nd level
analysis only for the well-fitted subjects. The differences between HC
and ADP in the PE-related activity remained significant in the left and
the right DLPFCs (left DLPFC: [−23 6 43], t43 = 5.15, pFWE peak voxel

(whole-brain) = 0.05; right DLPFC: [35 38 23], t43 = 5.16, pFWE peak voxel

(whole-brain) = 0.05).
We also analyzed the effect of PE type (positive vs. negative) on the

neural correlates of PE. PE was grouped into [+]PE and [−]PE

Fig. 4. Learning curves of HC, ADP, and poorly-fitted subjects. Correct responses
(selection of the stimulus with higher reward probability) were averaged over blocks of
10 trials for actual (solid lines) and simulated data (dashed lines). Individually estimated
parameters of the DU2 model were used for simulations. Shaded regions denote standard
errors.

S.B. Beylergil et al. NeuroImage: Clinical 15 (2017) 80–94

88



according to whether the obtained outcome is better ([+]PE) or worse
([−]PE) than the expected outcome. The contrast “HC > ADP”
showed a hemispheric asymmetry in the DLPFC activation for the
between-group differences such that a significant decrease in the [−]

PE-related activity ([−38 11 53], t52 = 5.298, pFWE peak voxel (whole-

brain) = 0.026) was observed in the left DLPFC (Fig. 6B and Table 4). On
the other hand, reduced [+]PE-related activity in ADP was found in the
right DLPFC ([40 33 40], t52 = 5.218, pFWE peak voxel (whole-

Fig. 5. Neural correlates of punishment sensitivity. The “punishment > reward” activity in the right insula is positively correlated with punishment sensitivity parameter of the best-
fitting learning model. A scatter plot of the log-transformed punishment sensitivities vs. the mean parameter estimates of the punishment-related activity in the R insula (circled area) is
also shown.

Fig. 6. Impaired PE-related activity in ADP. Group differences (HC > ADP) in the neural correlations of (A) total prediction error (PE) (both positive and negative), (B) negative
prediction error ([−]PE), (C) positive prediction error ([+]PE). A threshold of p = 0.001 uncorrected with an extent threshold of 20 voxels is used for visualization (corresponds to
t > 3.31). The color bar represents t-values. Bar plots show the beta estimates of the parametric modulators (D) [−]PE and (E) [+]PE extracted from the peak coordinates [−33 8 50]
and [42 36 35] showing significant group × PE type interaction effect. Asterisks denote statistical significance. Error bars indicate standard errors.
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brain) = 0.033) (Fig. 6C and Table 4).
This unanticipated asymmetry in the DLPFC for negative and

positive PEs prompted us to perform a post hoc ANOVA. The interaction
effect between group and PE type was tested using the contrasts “(HC vs.
ADP) × ([−]PE vs. [+]PE)” and “(HC vs. ADP) × ([+]PE vs. [−]
PE)”. Results were reported as significant at p < 0.05 FWE corrected
for the multiple comparisons within a volume in Brodmann area 9 and
46 that shows significant PE-related activity across all subjects. The
contrast “(HC vs. ADP) × ([−]PE vs. [+]PE)” revealed a significant
activation in the left DLPFC ([−33 8 50], t52 = 3.459, pFWE voxel

(SVC) = 0.043, Fig. 6D and Table 5); whereas the contrast “(HC vs.
ADP) × ([+]PE vs. [−]PE)” showed a significant activation in the
right DLPFC ([42 36 35], t52 = 4.359, pFWE voxel (SVC) = 0.016, Fig. 6D
and Table 5).

Finally, we tested whether the impairments in the [−]PE- and [+]
PE-related activities in the left and right DLPFC are correlated with the
clinical severity of dependence and the mean craving for alcohol as
assessed with ADS and OCDScraving, respectively. We extracted the
mean parameter estimates (beta estimates) of the [−]PE- and [+]PE-
related activities from the clusters showing significant group differences
(cluster centers at [−38 11 53] and [40 33 40]). We found that [−]PE-
related activity in the left DLPFC is significantly correlated with ADS
scores of ADP (Pearson's r = −0.347, p = 0.032). This result remained

significant when the poorly-fitted ADP were excluded from the analysis
(r = −0.494, p = 0.006). No correlation was found between the [−]
PE-related activity difference in the left DLPFC and OCDScraving scores
(r = −0.001, p = 0.498). Additionally, we found that [+]PE-related
activity were correlated neither with ADS (r =−0.022, p = 0.454),
nor with OCDScraving scores (r =−0.079, p = 0.346). None of the
other subscales or the total score of OCDS were correlated with the PE-
related activity in the DLPFC.

4. Discussion

In this study, by using a reward-guided decision-making task and a
so-called “double-update” RL model, we report a relation in alcohol
dependence between impaired adaptation to the changes in reinforce-
ment contingencies and decreased sensitivity to punishments. We also
report a reduced correlation between the PEs derived from this DU
model and the BOLD activity in the DLPFC of ADP. Moreover, we report
an association between the severity of alcohol dependence and the
decrease in the DLPFC activity related to negative PE signals, which
play a critical role in adaptation to contingency changes by mediating
the extinction of the behavior that is no longer associated with reward.

ADP had difficulty adapting their responses to the changing reward
contingencies of the reward-guided decision-making task, a finding
consistent with the results of the previous studies with subsets of our
sample (13 ADP and 14 HC in Deserno et al., 2014; 20 ADP and 16 HC
Park et al., 2010). Statistical analysis of win-stay and lose-shift behavior
revealed that this adaptation difficulty was related to the weakened
influence of punishments on decisions to shift the response. To under-
stand the underlying computational mechanisms of this impairment, we
modeled the choice behavior of our subjects using computational
learning models with different assumptions about the amount of task-
related information subjects may have inferred during the experiment.
In line with our expectations, we found that the DU model achieved the
highest accuracy in predicting the choices of all subjects. Between-
group comparisons of the free parameters of this best-fitting model
revealed that ADP had significantly lower punishment sensitivity. This
finding is congruent with our hypothesis and the previous reports on
reduced loss sensitivity and lower decision consistency in drug abuse
(Ahn et al., 2014; Bishara et al., 2009; Fridberg et al., 2010; Stout et al.,
2004; Tanabe et al., 2013; Vassileva et al., 2013). A computer
simulation of behavioral data using the fitted parameters of the DU
model reproduced the maladaptive behavior of ADP, further verifying
the association between decreased punishment sensitivity and impaired
behavioral adaptation. On the other hand, no significant group
difference was found in other parameters of the DU model, i.e. learning
rate and reward sensitivity. We argue that the difference observed
between HC and ADP in adapting to changes in contingencies may not
be related to learning speed or implemented learning strategy. Slower
adaptation to reversals may rather be due to the fact that ADP's choices
just after reversals (when subjects receive the majority of consecutive
punishments) were less affected by the action values. Therefore, our
results suggest that when faced with punishment, decisions of ADP are
more often replaced by random guesses, which are possibly reached in
the absence of deliberation. Finally, when ADP were divided into two
groups at the median ADS score, we found that relative to the “less
severe” group, the “severely affected” ADP had greater reward sensi-
tivity, showing a behavioral pattern suggestive of increased tendency to
respond actively to the stimuli leading to pursuit of rewards (Hyman,
2005).

Across all subjects, we discovered a positive correlation between the
model-estimated punishment sensitivity and right anterior insula/
inferior PFC activity in response to “punishment vs. reward”. In
previous neuroimaging studies featuring tasks with reversals, anterior
insula, and inferior PFC responses have been shown to signal the
decreases in the expected values of selected actions and predict the
consecutive behavioral shifts (Cools et al., 2002; Ghahremani et al.,

Table 4
Model-based fMRI analysis results. Between-group differences (HC > ADP) in the neural
correlates of the prediction error (PE), the positive PE and the negative PE. BA: Brodmann
Area, k: cluster size at p < 0.001 uncorrected, FWE (whole-brain): FWE whole-brain
corrected at the voxel level, MNI: Montreal Neurological Institute, HC: healthy controls,
ADP: alcohol-dependent patients, PFC: prefrontal cortex, R: right, L: left.

Region BA k pFWE voxel (whole-brain) t MNI (x,y,z)

PE (positive & negative)
HC > ADP

R Superior PFC 6 529 0.002 6.081 25 8 63
R Middle PFC 46 0.005 5.831 40 33 43

9 0.028 5.280 27 23 45
L Middle PFC 9 251 0.014 5.488 −41 18 53

9 0.032 5.230 −41 11 53
9 0.070 4.950 −33 13 53

R Angular gyrus 39 530 0.002 6.112 42 −62 43
7 0.073 4.934 27 −80 48
7 0.095 4.840 17 −72 50

Positive PE
HC > ADP

R Middle PFC 46 176 0.032 5.218 40 33 40

Negative PE
HC > ADP

L Middle PFC 9 339 0.025 5.298 −38 11 53
8 0.050 5.067 −28 11 50

R Superior PFC 6 34 0.041 5.135 25 8 65
R Angular gyrus 39 162 0.072 4.941 42 −65 45

Table 5
Group × type of the prediction error (PE) interaction effects in the left and the right
dorsolateral prefrontal cortices. BA: Brodmann Area, k: cluster size at p < 0.001
uncorrected, FWE voxel (SVC): FWE small volume corrected at the voxel level, MNI:
Montreal Neurological Institute, HC: healthy controls, ADP: alcohol-dependent patients,
[+]PE: positive prediction error, [−]PE: negative prediction error, PFC: prefrontal
cortex, R: right, L: left.

Region BA k pFWE voxel

(SVC)

t MNI (x,y,z)

Group × PE type interactions
(HC vs. ADP) × ([+]PE vs.

[−]PE)
R Middle PFC 46 13 0.013 4.359 42 36 35

(HC vs. ADP) × ([−]PE vs.
[+]PE)

L Middle PFC 9 9 0.034 3.459 −33 8 50
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2010; Glaescher et al., 2009; Hampton et al., 2006; O'Doherty et al.,
2003; Schlagenhauf et al., 2014). Thus, our finding can be interpreted
as evidence that the right anterior insula may be involved in the
reduced ability of ADP to adjust choice behavior according to negative
outcome experiences. As a part of the salient network, the anterior
insula plays a crucial role in detecting salient events and engaging the
central executive network for high-level cognitive control and atten-
tional processing (see reviews by Menon and Uddin, 2010; Uddin,
2015). In our experiment, high performance partly depends on detect-
ing the saliency of punishing stimuli, and channeling brain's top-down
control resources via other cortical regions such as the DLPFC
(Johnston et al., 2007). The significant correlation between punishment
sensitivity and the activity in the right anterior insula therefore suggests
that reduced punishment sensitivity in ADP can be related to a
compromised detection of punishment events as being salient by the
right anterior insula, which may fail to trigger appropriate cognitive
control signals in alcohol dependence. However, it is pertinent to point
out that punishment vs. reward activity in the right anterior insula/
inferior PFC did not differ between HC and ADP despite the significant
difference found in punishment sensitivity. The reason for this might be
that the event-related fMRI analysis per se was not able to differentiate
alterations in neural activity with respect to learning or decision-
making in our patient group, which motivated us to combine model-
derived PEs and the fMRI data in a model-based fMRI analysis.

Model-based fMRI analysis revealed significantly lower PE-related
activities in the bilateral DLPFC, the bilateral dorsal premotor areas,
and the right IPS of ADP, indicating that these regions were less
responsive to teaching signals that putatively facilitate behavioral
adaptation. This result accords with our hypothesis that the DLPFC is
implicated in the maladaptive reward-based decision-making of ADP
given that the adaptive processes taking place in the PFC were captured
by a computational learning model that incorporates task-related
information into decisions. PEs, which form the basis for learning
(Schultz and Dickinson, 2000), seem to evoke BOLD responses in the
DLPFC of healthy subjects when they learned the associations between
cues and affectively neutral outcomes in an associative learning task
(Fletcher et al., 2001). Furthermore, Fletcher et al. demonstrated that
the DLPFC activity was also able to predict the subsequent decisions of
these subjects. Indeed, the tendency for taking the corrective action
upon receiving an error seems to get weakened by DLPFC damage
(Gehring and Knight, 2000). Similarly, transient disruption of the
DLPFC activity with transcranial magnetic stimulation impairs flexible
decision-making in healthy individuals (Smittenaar et al., 2013).
Therefore, it is possible to interpret the observed attenuation in the
PE-related DLPFC activity as a decline in ADP in the selection of the
corrective action in an environment requiring adaptive responses.

To our knowledge, this is the first fMRI study with substance-
dependent patients showing reduced PE-related activity in the DLPFC.
Although the DLPFC has been regarded as an important neural
substrate of maladaptive decision-making in substance dependence
(Eldreth et al., 2004; Ersche et al., 2005; Monterosso et al., 2007;
Paulus et al., 2002), a decrease in the neural tracking of PEs in this
brain region has not yet been reported by other studies with substance-
dependent subjects (Chiu et al., 2008; Deserno et al., 2014; Park et al.,
2010; Tanabe et al., 2013). The primary reason might be that the PEs
used in our model-based fMRI analysis were derived from a model that
was selected from a pool of candidate models according to its
performance in predicting behavioral data. On the contrary, the
previous studies cited above defined the standard Rescorla–Wagner
model a priori, based on their hypotheses related to the striatal PE-
signaling, which has been shown to be reliably predicted by this model
(Pagnoni et al., 2002). To confirm this interpretation, we repeated the
model-based fMRI analysis with the PEs derived from the standard
Rescorla–Wagner (denoted as “SU1” in the model set). Consistent with
these studies mentioned above, we also observed significant PE-related
signals in the bilateral VS (see Supplementary material). However, the

between-group difference we found in the PE-related DLPFC activity
disappeared. It is probable that improvement provided by the DU model
in explaining the computational processes underlying the choice
behavior increased the model-based fMRI analysis's capability to
capture the group differences in the neural correlates of these processes.
Therefore, we conclude that selecting the learning model based on its
performance on predicting behavioral data also improved the sensitiv-
ity of the subsequent model-based fMRI analysis.

Consistent with two previous studies with subsets of our subjects
(Deserno et al., 2014; Park et al., 2010), we found intact striatal PE
signaling in ADP, which suggests that action selection in ADP is
inadequately informed by otherwise properly computed reward-learn-
ing signals in the reward/valuation network. It has been suggested that
DLPFC potentiates adaptive decisions by incorporating the reward
expectancies into decision representations (Barraclough et al., 2004;
Christakou et al., 2009; Gold and Shadlen, 2001; Kim and Shadlen,
1999; Sugrue et al., 2005; Wallis and Miller, 2003). Consistent with this
idea, simultaneous recordings from the caudate nucleus (a limbic brain
structure known to encode PEs) and the lateral PFC of monkeys during
a reversal learning task showed that in addition to encoding PE, the
lateral PFC activity also predicts the forthcoming responses (Asaad and
Eskandar, 2011). Therefore, intact striatal but reduced DLPFC activity
correlated with PE suggests an ineffective integration of the reward-
related information in the DLPFC of ADP which may result in selection
of choices that are loosely coupled with the recently updated con-
tingencies of the environment (Park et al., 2010; Sakagami and
Watanabe, 2007).

Another way to interpret our data is that motivational signals may
not be effectively embedded into cognitive processing in alcohol
dependence. For reward maximization, it has recently been proposed
that cognitive control function interacts with motivation (Botvinick and
Braver, 2015). For instance, cognitive tasks offering monetary gains
have shown that motivation can enhance executive processes to achieve
efficient goal-directed behavior (e.g. Engelmann et al., 2009). Experi-
mental data suggest that this interplay between motivation and
cognition requires robust interactions between the reward/valuation
network and the fronto-parietal attentional network (Pessoa, 2008;
Pessoa and Engelmann, 2010). In particular, the DLPFC in the latter
network appears to bridge cognitive control and value-processing by
representing both cognitive and motivational (value-based) information
(Dixon and Christoff, 2014). A previous report with a subset of our
subject group demonstrated an abnormal functional connectivity
between these two networks, specifically between the VS and the
DLPFC (Park et al., 2010). Therefore, the reduced PE-related activity in
the DLPFC of ADP, together with the findings of Park et al. (2010)
suggest an impaired integration of motivational signals with executive
control, with a possible consequence of a decrease in the engagement of
cognitive control mechanisms in alcohol dependence.

The left DLPFC activity in ADP showed a decreased neural tracking
of negative PEs, which, according to the RL theory, facilitate the
extinction of a learned response (Schultz, 1998). This attenuated
activity in the left DLPFC may contribute to the cognitive rigidity of
ADP by delaying the extinction of the action that is no longer paired
with a reward when reinforcement contingencies change. Diminished
activity in the left DLPFC has also been demonstrated in ADP perform-
ing stop signal (Li et al., 2009) and Stroop tasks (Dao-Castellana et al.,
1998), which involve extinction of “old” and reconfiguration of “new”
stimulus-response associations. Moreover, transcranial magnetic stimu-
lation of the left but not the right DLPFC disrupted the cognitive
flexibility of healthy participants (Ko et al., 2008; Smittenaar et al.,
2013). Here, it is important to note that the ranges of the negative PEs
used in this study were determined by the punishment sensitivity
parameter of the DU model estimated for each subject. Therefore, the
reduced tracking of these signals suggests a neural substrate in the left
DLPFC for the diminished influence of adverse consequences over the
actions of ADP. An additional finding was that the right DLPFC of ADP
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showed a reduced tracking of positive PEs, which may reflect impair-
ment in initiating actions to select the action that was formerly
punishing and became rewarding after a contingency reversal.

Correlating the PE-related activations in the DLPFC with a severity
index of alcohol dependence (Alcohol Dependency Scale, ADS) revealed
that the diminished encoding of negative PEs in the left DLPFC was
more prominent in ADP with high severity scores. This finding suggests
that functional abnormalities in the left DLPFC may contribute to the
difficulties severely affected ADP commonly experience in overriding
drug-related behavior and maintaining abstinence. On the other hand,
neither the PE-related activity in the DLPFC nor the PE-related activity
in the VS of ADP was found to be correlated with the craving scores of
ADP (as measured using OCDScraving). This finding is discordant with
Deserno et al. (2014) showing an association between the striatal PE
signals and OCDScraving. This discrepancy, which may be due to sample-
to-sample variation between these two studies or the methodological
differences in behavioral modeling, needs to be clarified by future
studies.

One limitation of this study was the magnetic susceptibility artifacts
leading to the loss of signal intensity in the orbitofrontal cortex, as this
region is located in the vicinity of the sinonasal areas. Future studies
should tackle this problem with a more sensitive scanning method.
Also, only male participants were recruited to avoid gender's confound-
ing effects. Future studies with female subjects are of interest, as
differences between gender groups in addictive behavior have been
noted in several studies (Brady and Randall, 1999; Kosten et al., 1985;
Nolen-Hoeksema, 2004). Finally, it is important to bear in mind that
our correlational design limits causal inferences. Therefore, longitudi-
nal studies are required to determine whether the alterations in the PE-
related DLPFC activity reflect changes in cognitive flexibility due to
alcohol dependence, or they result from preexisting vulnerabilities.

5. Conclusions

In conclusion, our results may contribute to the elucidation of the
behavioral mechanisms and their neural correlates involved in im-
paired decision-making in substance dependence. They may, in parti-
cular, help us to understand the cognitive processes underlying the
difficulties in overriding previously rewarded, but currently punishing
drug-related actions with non-drug-related ones. There is some evi-
dence that computer-aided cognitive training can treat impaired
cognitive processes; improving information processing, verbal and
non-verbal memory, attention, and problem-solving (Vinogradov
et al., 2012). Moreover, it has successfully been shown with alcohol-
dependent individuals that cognitive training can support rehabilitation
as part of the traditional treatment (e.g. Fals-Stewart and Lam, 2010;
Houben et al., 2011; Rupp et al., 2012). Therefore, it is possible that a
focused training of adaptation to reversing reinforcement contingencies
might be a valuable treatment module for improving clinical outcomes
in alcohol dependence, especially in severe cases.
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