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Adding Mode Choice to Multiagent

Transport Simulation

Marcel Rieser, Dominik Grether, and Kai Nagel

It had been shown previously that so-called agent-based traffic micro-
simulations could be used for dynamic traffic assignment, that is, itera-
tive route adjustment, until either a Nash equilibrium or some steady
state distribution between alternatives had been found. It was also
shown that the same approach could be extended to (departure) time
adjustment; that is, time adjustment and route adjustment could exist in
the same iterative approach. In this paper it is shown that the approach
can be extended to mode choice by forcing every synthetic traveler to con-
sider every available mode. The implementation is verified with a test
case for which an approximate solution can be analytically derived and
for which it is shown that simulation and theory are consistent. It is then
applied to a large-scale real-world example, the metropolitan Zurich,
Switzerland, area, with about 1 million inhabitants. For this example, it
is shown that the adaptive scheme, albeit seemingly simple, can outper-
form a more traditional approach that first computes mode choice on
the basis of aggregate data and then runs the assignment for car traffic
only. Sensitivity tests show that the model reacts in meaningful ways, in
particular concerning the interaction between the time structure of
activities and mode choice.

The still increasing volume of traffic asks for different, mature mea-
sures. It is generally accepted that just building new roads is not a
sustainable way out of this problem, but that the amount of traffic
needs to be regulated, or alternative modes of transportation need to
be used. This makes traffic forecasts more and more complex, as the
proposed measures also gain in complexity. As an example, time-
and vehicle-dependent road pricing schemes could be mentioned [e.g.,
Verhoef (1) and Bonsall et al. (2)].

The traditional four-step process [see, e.g., Ortiizar and Willumsen
(3)] has some shortcomings with respect to such questions, because
neither time-dependent (such as time-variable toll) nor mode choice
problems are adequately addressed. Mode choice is traditionally
approached by so-called trip-end (after the trip generation step) or
trip-interchange (after the trip distribution step) models. Trip-end
models suffer from the obvious shortcoming that the accessibility of
the trip destination by mode is completely irrelevant. Trip-interchange
models are better, but they neglect the possible correlation between
destination and mode choice. In consequence, models of simultaneous
mode and destination choice were developed [e.g., Richards and
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Ben-Akiva (4), Jonnalagadda et al. (5), and Boyce and Bar-Gera
(6)], sometimes on the basis of more traditional trip modeling, some-
times in the context of activity-based demand modeling. VISEVA is
a software version of a simultaneous destination and mode choice
model (7).

However, all these models eventually produce origin—destination
(O-D) matrices, which are then fed into the assignment procedure.
There is at least one O-D matrix for the car mode, and another matrix
for the non-car mode. Often these days, these matrices are time-
dependent, that is, there are different such matrices for different time
slices. These O-D matrices are then assigned to the network, where
quite sufficient public transit assignment routines have been developed
[e.g., Nielsen and Frederiksen (8) and Nokel (9)].

Unfortunately, however, these assignment models at the down-
stream end of the procedure seem to be a bit removed from the demand
generating behavioral framework farther upstream. For example, it
seems that congestion effects need to be manually integrated by taking
an impedance matrix from the assignment and using it for the general-
ized cost functions in the mode choice model. Similarly, small-scale
effects such as local accessibility cannot be represented. Any time-
dependent reaction, such as possible earlier departure in the morning
because of a reduced service frequency in the early evening, seems to
be difficult to represent.

In this situation, microscopic, behavior-based simulations may be
applied to research the outcome of proposed measures [e.g., Zhang and
Levinson (10)]. Yet, such models usually are limited to small scenar-
ios for performance reasons. But as the environmental aspects gain
higher attention, the demand rises for behavior-based simulations that
support large-scale scenarios as well as alternative transportation
modes besides private cars. In this paper a description is given of how
a large-scale microscopic car-only simulation was extended to also
handle non-car modes, such as public transit. Especially, the mode-
choice reaction of the simulated agents is compared with the mathe-
matically to-be-expected reactions, to verify the correct functioning of
the extended simulation. Afterward, the mode choice model is applied
to a large-scale application to test its feasibility in a real-world context.

SIMULATION STRUCTURE
Overview

Each traveler of the real system is modeled as an individual agent
in this simulation. The overall approach consists of three important
pieces:

e Each agent independently generates a so-called plan, which
encodes the agent’s intentions during a certain time period, typically
a day.



e All agents’ plans are simultaneously executed in the simulation
ofthe physical system. This is also called the traffic flow simulation
or mobility simulation.

® There is a mechanism that allows agents to learn. In this imple-
mentation, the system iterates between plans generation and traffic
flow simulation. The system remembers several plans per agent and
scores the performance of each plan. Agents normally choose the plan
with the highest score, sometimes reevaluate plans with bad scores,
and sometimes obtain new plans by modifying copies of existing plans.

The simulation approach is the same as in many of the authors’
previous papers [e.g., Raney and Nagel (11, p. 42)]:

A plan contains the itinerary of activities that the agent wants to per-
form during the day, plus the intervening trip legs the agent must take
to travel between activities. An agent’s plan details the order, type,
location, duration, and other time constraints of each activity and the
mode, route, and expected departure and travel times of each leg. A
plan can be modified by various modules. In the test scenario, the time
adaptation module is used; the large-scale application additionally
uses a router module. The time adaptation module changes the timing
of an agent’s plan. A very simple approach is used that just applies a
random “mutation” to the duration attributes of the agent’s activities
(12). The router is a time-dependent best path algorithm, normally
using as link costs the link travel times from the previous iteration (13).

Mode choice will not be simulated by a module per se, but instead
by giving every agent both a car and a non-car plan. Further details
will be described later.

One plan is marked as “selected.” The traffic flow simulation exe-
cutes all agents’ selected plans simultaneously on the network and
provides output describing what happened to each individual agent
during the execution of its plan. The traffic flow simulation is imple-
mented as a queue simulation, in which each street (link) is repre-
sented as a first-in first-out queue with two restrictions (14, 15). First,
each agent has to remain for a certain time on the link, correspond-
ing to the free-speed travel time. Second, a link storage capacity is
defined that limits the number of agents on the link. If it is filled up,
no more agents can enter that link.

The modules base their decisions on the output of the traffic flow
simulation (e.g., knowledge of congestion) using feedback from the
multiagent simulation structure (16, 17). This sets up an iteration
cycle that runs the traffic flow simulation with specific plans for the
agents and then uses the planning modules to update the plans; these
changed plans are again fed into the traffic flow simulation, and so on,
until consistency between modules is reached. The feedback cycle is
controlled by the agent database, which also keeps track of multiple
plans generated by each agent.

Ten percent of the agents generate new plans by taking an exist-
ing plan, making a copy of it, and then modifying the copy with the
time adaptation or the router module. The other agents reuse one of
their existing plans. The probability to change the selected plan is
calculated by a model, which in the steady state converges to a logit
model:

P = W M

p; = probability for plan j to be selected,
§; = its current score, and
B = sensitivity parameter, set to 2.

The repetition of the iteration cycle coupled with the agent database
enables the agents to learn how to improve their plans over many
iterations. Because the number of plans that one agent may have is
limited by memory constraints, the plan with the worst performance
is deleted when a new plan is added to a person who already has the
maximum number of plans permitted. The iteration cycle continues
until the system has reached a relaxed state. At this point, there is no
quantitative measure of when the system is “relaxed”; the cycle is
simply allowed to continue until the outcome is stable.

Scoring Plans

To compare plans, it is necessary to assign a quantitative score to
the performance of each plan. In this work, to be consistent with
economic appraisal, a simple utility-based approach is used. The
elements of the approach are as follows:

¢ The total score of a plan is computed as the sum of individual
contributions:

U = Zupcn‘.i + zulam,i + ZU i 2
i=1

i=1 i=1

where

U, = total utility for a given plan;

n = number of activities, which equals the number of trips
(the first and the last activity—both “home”—are counted
as one);

U,erti = (positive) utility earned for performing activity i;
Ui = (negative) utility earned for arriving late to activity i; and
U,.; = (negative) utility earned for traveling during trip i.

To work in plausible real-world units, utilities are measured in
euros (€).

e A logarithmic form is used for the positive utility earned by
performing an activity:

Uperf,l (tperf,i) = Bperf -t ln(ttpe_rm] (3)

0,i
where

t,ur = actual performed duration of the activity,
t. = “typical” duration of an activity, and
Bpert = marginal utility of an activity at its typical duration.

Bperr is the same for all activities, because in equilibrium all activities
at their typical duration need to have the same marginal utility.

e t,;is ascaling parameter that is related to the minimum duration
and to the importance of an activity. As long as dropping activities
from the plan is not allowed, t,; has essentially no effect.

e The (dis)utility of being late is uniformly assumed as

Ulate,i = Blate : tla&e,i 4)

where By, is the marginal utility (in €/h) for being late, and ty,; is
the number of hours late to activity i. B, is usually negative.
e The (dis)utility of traveling is uniformly assumed as

Ulr,l = B[r . tlr,l (5)

where B, is the marginal utility (in €/h) for travel, and t,;; is the num-
ber of hours spent traveling during trip i. B, is usually negative.



In principle, arriving early or leaving early could also be punished.
There is, however, no immediate need to punish early arrival, because
waiting times are already indirectly punished by forgoing the reward
that could be accumulated by doing an activity instead (opportunity
cost). In consequence, the effective (dis)utility of waiting is already

_Bperft*,i

t = _Bperf

perf,i

Similarly, that opportunity cost has to be added to the time spent
traveling, arriving at an effective (dis)utility of traveling of

_lBul - Bperrt*,i

t z_lﬁu'l_ﬁpcrf

perf.i

No opportunity cost needs to be added to late arrivals because the
late arrival time is spent somewhere else. In consequence, the effec-
tive (dis)utility of arriving late remains at f3,,.. These approximate val-
ues (Boerts Poert + |B,r|, and | Blate|) are the values that would correspond
to the consensus values of the Vickrey model parameters (18).

MODE CHOICE MODEL

The basic idea behind the mode choice model is that each agent
always has at least one car plan and one noncar plan. Apart from
that, plans are treated as described earlier. Because this always keeps
both modes in the choice set, a decision between plans according to
Equation 1 is also a choice between modes.

That requires changes in many parts of the simulation frame-
work, namely, the transport simulation, the scoring of plans, and
the replanning. These changes are described in the following.

Generating Noncar Plans

To generate noncar plans, an initial demand with car plans must exist
already. Starting with that initial demand, the leg modes of all legs in
each plan are set to “car,” and the fastest routes are calculated. Then,
each plan is duplicated, changing all leg modes in the duplicated plans
to “noncar.”

Although no exact route is provided, the duration of every
noncar trip is assumed to take twice as long as the car mode at free
speed. This is based on the (informally stated) goal of the Berlin
public transit company to generally achieve door-to-door travel
times that are no longer than twice as long as car travel times. This,
in turn, is based on the observation that noncaptive travelers can be
recruited into public transit when it is faster than this benchmark
(19). For the purposes of this paper, it is assumed that all noncar
modes very roughly have the shared characteristics that they are
slower than the (noncongested) car mode—this will be further dis-
aggregated in future work. In the same vein, for both car and noncar
trips there are no separate considerations of access and egress.

Handling Noncar Plans in Transport Simulation

Currently, the simulation supports no walk or rail network, only a road
network. Thus, only car legs can be truly simulated. Agents on non-
car legs are teleported from one location to the next. But the telepor-
tation is not instantaneous; it takes some amount of time, which can
be stored in the legs as planned travel duration. Although this does not

impose any transit vehicle capacity constraints, it would still allow
having individual travel times, depending on agents’ demographics or
chosen noncar mode (e.g., bike, walk, transit). The simulation still
generates departure and arrival events for noncar legs, which can be
used for analyses.

Scoring Noncar Plans

The scoring of noncar plans is very similar to the scoring of car plans
as described previously, only the marginal disutility of traveling
changes. This is expressed by using B, for the marginal utility of
traveling, instead of By car- Bircar and Birnc are not values of time by them-
selves, but they are additional marginal disutilities caused by travel-
ing, in addition to the opportunity cost of time. This is consistent with
econometric approaches (20).

Replanning with Noncar Plans

During replanning, plans are duplicated and modified (see “iteration
cycle” in the section on simulation structure). This also holds for
noncar plans. The only difference is that the plans deletion module
makes sure that at least one plan of every mode is kept for every
agent. This is to make sure that all agents keep their ability to change
mode until the end of the iterations.

The steps above integrate mode choice into the replanning process
that takes place iteratively with the simulation. Instead of precalcu-
lation of the mode choice before the traffic assignment as done in
the traditional four-step process, mode choice is now treated at the
same level as route choice in the traffic assignment.

TEST SCENARIO
Network

To test the mode choice model, a simple test network was used (see
Figure 1), consisting only of a cycle of one-way links (a simplified
version of another test network used internally, which explains the
numbering of the links). Traffic runs clockwise, that is, agents have
their home location at Link 1 and work on Link 20. The capacity of
all links except Links 6 and 15 are (unrealistically) high so as to min-
imize the influence these links have on the traffic, essentially mak-
ing it possible for most agents to drive with free speed. Links 6 and
15 have reduced capacity, building a bottleneck.

Initial Plans

The synthetic population consists 0of 2,000 agents. All agents have their
home activity at Link 1, which they initially leave at 6:00 a.m. They
drive to work (located on Link 20) with a car via Links 6 and 15, where
they stay for 8 h, after which they drive back home to Link 1 via Links
21 through 23. The free-speed travel time from Link 1 to Link 20 is
15 min. The free-speed travel time from Link 20 to Link 1 is 39 min.
Thus the total free-speed travel time driving by car is 54 min or 0.9 h.

Because the agents are forced to remain on that route, the scenario
converts into the well-known Vickrey bottleneck scenario (18, 21);
see below for more details.

In addition, each agent possesses an initially nonactive plan that
uses the noncar mode for both trips. These trips take twice as long as
by car in an empty network, that is, 30 min from Link 1 to Link 20,
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FIGURE 1 Links of test network with their corresponding IDs and attributes.

and 78 min from Link 20 to Link 1. The total noncar travel time is
108 min or 1.8 h. In contrast to the car travel times, these noncar travel
times are not affected by congestion. The first trip starts at 6:30 a.m.,
so the agents will arrive exactly at 7:00 a.m. at their workplaces.

Behavioral Parameters

The behavioral parameters are set and can be interpreted as follows:

e Utility of performing an activity at its typical duration is Byes=
6 €/h.

e Marginal disutility of coming late is B, =—18 €/h.

¢ Additional marginal disutility of traveling with a car is By =
—6 €/h.

® Additional marginal disutility of traveling with noncar mode is
Bune € [-10,-9, ..., +2] (see below).

e Constant in binary logit model (Equation 1) is B = 2.

e “Typical” durations of t. ,, = 8 and t. , = 12 h for work and home
mean that work and home times have a tendency to arrange themselves
with aratio of 8:12 (i.e., 2:3): assume a fixed travel time budget. In this
situation, for optimality of the scoring function the marginal utilities of
duration, 0U pei/Otperi = Ppertts i/tersi, need to be equal for all activity
types, resulting in

th tw

ty, - Loy ©)
The result is only approximately correct when the overall travel time
varies.

e A work start exactly at 7:00 a.m. means that (&) no utility can
be accumulated from an arrival earlier than 7:00 a.m. and (b) any
late arrival is immediately punished with ;... = —18 €/h. Because
of the argument made earlier concerning the opportunity cost of for-
gone activity time in situation (@), the effective marginal disutility
of early arrival is

_B arle
t"—“’ =By =—6€/h

perfi

Because the effective marginal disutility of car traveling is, by the
same argument,

_Bperft*,i
t

~ Bt — Brrew| =12 €/h

perfi

the effective values of time of this study are approximately the same
as the consensus values of (-6, —12, —18) of the Vickrey scenario (18,
21). The return trip has no influence because there is no congestion.

Simulation Results

The simulation in the test setup was run with different values for By .,
resulting in different mode shares. Each simulation was first run for
1,000 iterations. In each iteration, 10% of the agents were modified by
the time allocation module; all other agents chose an existing plan.
After that, the simulation was continued for 100 more iterations, but
without time adaptation. This allowed agents to select their best plan,
no longer being forced to execute (possibly bad) plans after replanning.

Binc Was varied from +2 to —10 in increments of —1. Figure 2
shows the resulting car mode shares as dots. It can be clearly seen
that an increase of the marginal disutility of traveling in the noncar
mode leads to an increasing number of agents choosing car as the
transportation mode. In the following section, these results are val-
idated by comparing them with the theoretical values one should
expect based on the aforementioned mode choice model.

THEORETICAL CALCULATIONS

Because of the simulation setup, the mode share of the car mode, .,
follows a binary logit model. This statement is, in fact, correct only
when the number of car plans is equal to the number of noncar plans
for every agent. (See the end of the section for a comment on this)

. exp(B - Uy, (o))
“exp(B-U, (f.))+exp(B-U,.)

(N
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FIGURE 2 Noncar travel marginal disutilities (. ..) for different car shares (f;.).
The line refers to the analytical result, the dots to the simulation results.

U..r and U, are the total utilities of agents traveling either with a
car or using the noncar transport mode. These are utilities for the full
daily plan, and not partial utilities for the mode choice contribution
only. These utilities are defined according to Equation 2, with only
the two activities “home” and “work™:

t mode tW.mO e
Uose = chrf sy ln[h":_dJ + ch,f ‘t, . ln(—dj

0,h tO,w
+ Bu,mode : ttr,mode + Blale e ®)

As mentioned before, travel times depend on the transport mode.

Noncar Mode

Taking the activity duration ratio of Equation 6 together with the time
budget equation ty . + t, . + tine = 24h, one obtains the following for
people using the noncar mode:

t.
th,m: = (24h - t11',n<:) ‘ t _"Lht (9)
*h * W
t
e = (240 =t ) T (10)

At this point, all variables for Equation 8 for the noncar mode,
assuming on-time arrival, are expressed in the parameters of the
simulation.

Car Mode

For car users, the calculation is more complex. In line with Arnott
et al. (18) and Vickrey (21), it will be assumed that at the end of the
day every agent will have experienced the same total utility: Although
some may spend more time traveling (by being stuck in a traffic jam)
but arrive at the right time at the workplace, other agents may decide
to leave early, traveling the whole route with free speed, but also

arrive at work early, forgoing any utility by performing an activity
because the workplace is still closed. Other agents again may stay
longer at home, traveling after the jam has disappeared, arriving late
at work, and receiving the schedule delay penalty for that. One can
obtain results by looking just at the first and the last agent to arrive at
work. When Equation 8 is equated for these two, the travel time
drops out because it is the same for both, and one arrives at

t car - T tW,Cal‘ - TW
Bperf : t*,h ° ln( b t : J+ Bperf : t*,w ° ln( t ]
0,h

0,w

t car tWCar
= Bperf sl In (:_J + Bperf ly e IH[TJ + Blate e

0h 0w

where the left-hand side refers to the person who arrives early and
who suffers 1, T, reductions of his or her activity durations. After
linearization and dropping of terms that cancel out, this becomes

1 1
— T, chn“ ‘ t*,w ‘ t_ = Blatc * tlz\lc

W,car

T chrf : t*,h :

h,car

From the optimal time allocation, Equation 6, one infers that also
for the time deductions Ty, T, one needs T, /T, = t« /t+,, and therefore
Th = Learty * Lo p/(tep + Tey) and Ty = teany * e/ (L + 1 ). Taking this and
once more Equation 6 directly, one obtains, after some algebra,

BtL‘:

tearly perf t

Blale

b (11

h,car

In addition, one has the equation for the bottleneck

|A| : fcar
= 12)

b

t +t. =

early late

where

|A| = total number of agents,
C,, = flow capacity of bottleneck, and
f... = share of car users.



The equation states that the capacity of the bottleneck is exactly
enough to serve all agents between the first and the last. Inserting
Equation 11, one obtains

|Blme th,car . |A| ) fcar
th,car + Bperft*,h Cb

carlly

13)

B]ate

Similar to Equations 9 and 10, the optimal activity durations for the
“early” agent are

th,car + tw.car + ttr,fs + tearly = 24h

t = (24h—t,, 1, ) (14)
h,car tr,fs carly t*yh + t*yw

tye = (240 =1, —t )-—t"w 15
w,ear T ks T teary t*,w + t*_h ( )

where t,, 1, is the free-speed travel time by car. Substituting ty, ., from
Equation 14 into Equation 13 leads to an equation that contains only
teany and f,, as unknowns. It can be seen that the resulting equation
contains the square of t.,4,. Solving that resulting equation provides
two solutions for t.,,, of which only one is useful because the other
leads to negative times for either t.,q, or t,, in Equation 12. Thus at
this point one knows t.,q, and in consequence ty,, and t,,,, as func-
tions of f,,.. The expressions can be written down, but are rather long
and not easy to interpret.

Complete Mode Choice

Recall that the interest here lies in an expression that relates the
mode share, f,,, and the additional marginal disutility of the noncar
mode, By... What one has at this point is

¢ The utility of the optimal noncar plan can be computed as a
function of By, and

¢ The utility of the optimal car plan can be computed as a function
of T,

What remains is to insert these expressions into Equation 7,
which can also be written as

1 f
U, =~-In| —=—|+U_ 16
car B n(l— fcmj nc ( )

Substituting U, and U,,. with Equation 8, one obtains

t car t car
chrf . t*,h . ln[%J+chﬁ sy ln(:”_j-‘rﬁtﬁcar . ttnfs

0h (1]
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Recall that for the car mode the “first” (= most early) agent is
being considered; the term concerning late arrival is thus dropped.
More variables can be substituted in Equation 17 by their corre-
sponding calculations in the previous equations. Although it could

still be solved analytically, it once more becomes quite complex and
not easily readable.

Evidently, By, can be isolated in Equation 17, but not so f.,, if one
remembers that f.,, is also part of t.,.,, which is used to substitute ty ¢,
and ty ... (Equations 13-15).

Extracting [, ,. and plotting it as a function of f.,, ranging from 0
to 1, one obtains the line shown in Figure 2. Comparing it with the
simulation (dots), one can see that the results are very similar. Only
small variations can be seen, most likely due to the discrete size of
agents in the simulation as well as the not completely predictable
behavior of random numbers used in the simulation. In addition, the
calculations assume that every agent has an optimal plan, which
cannot be guaranteed in the simulation.

The fact that, despite the noise, the mode choice curve is “steeper”
in the simulations than in the analytical calculations is due to the
learning algorithm: If for an agent one mode is clearly better than
the other mode, the better mode will have more plans. This gives an
additional statistical advantage to the better mode, making the curve
steeper.

Overall, the mode choice model is found to be in excellent agree-
ment with the theoretical calculations. This, on the one hand, verifies
the implementation of the model. On the other hand, it means that, to
an extent, it is possible to understand analytically what the simulation
does, which will help to uncover and allow an understanding of the
economic and behavioral principles embedded in the implementation.

LARGE-SCALE APPLICATION

The mode choice model was also applied to a large-scale, real-world
scenario. The area of Zurich, Switzerland, which has about 1 million
inhabitants, was used for this application. The following paragraphs
give a simplified description of the scenario. A full description of the
scenario can be found in Chen et al. (22).

The network is a Swiss regional planning network that includes
the major European transit corridors. It consists of 24,180 nodes and
60,492 links.

The simulated demand consists of all travelers in Switzerland that
are inside an imaginary boundary around Zurich at least once during
their day (22, 23). All agents have complete day plans with activities,
such as home, work, education, shopping, and leisure, based on
microcensus information (24, 25). The time window during which
activities could be performed was limited to certain hours of the day:
work and leisure could be performed from 06:00 to 20:00, shopping
from 08:00 to 20:00, whereas home and leisure had no restrictions.
Unlike the sample scenario described in the sections above, there was
no punishment for being late. That was not possible because agents
could split their work activity into two or more parts, for example,
one in the morning and one in the afternoon. In such a case it would
be complicated to specify when an agent starts an activity late.

To speed up computations, a random 10% sample consisting of
181,725 agents was chosen from the synthetic population for simu-
lation. In this large-scale application, the agents not only could per-
form time adaptation as described previously, but could also do
route adaptation, which is essential for the car mode. For compari-
son, the same scenario was run with the precalculated mode choice
[see Chen et al. (22)].

Simulated traffic volumes were compared with the hourly traftic
volumes from 159 real-world counting stations. Figure 3 shows the
mean relative error between hourly flows in reality and hourly flows
from the simulation. Figure 3a contains the result from the fixed,
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FIGURE 3 Comparison of simulated traffic volumes with real-world counts. Note different scales on y-axis: (a) precalculated

mode choice and (b) mode choice during simulation (B;.,. = —3).

predetermined mode choice; Figure 3b contains the result of the new
adaptive mode choice that was explained in this paper. One notices a
quite distinct reduction in the average error, from about 40% to about
30%. Also the absolute bias, in blue, is reduced.

For the large-scale tests, the marginal disutility for the car mode,
Bir.cars Was set to —6 €/h; the marginal disutility for the noncar mode,
Bine, Was varied between 0 and —6. An interpretation of this might
be that measures are discussed that change the attractiveness of the
noncar modes, leaving everything else, including the travel times,
constant. An obvious concrete example would be fare changes. And
the importance of the results at this point is not so much the magnitude
of the response itself, but the fact that the model displays the inter-
action between activity timing and mode choice. Figure 4 shows the
number of agents en route with cars over the time of day. It can be

clearly seen that the number of car users decreases the lower the travel
marginal disutility for the noncar mode becomes. The peaks at 6 a.m.
and 8 p.m. are due to the opening time restrictions.

Figure 5a shows all departures as a function of the time of day,
for different values of By,.. Because demand itself is inelastic, the
area under all the curves is the same. One notices, however, a shift
toward the peak periods when the marginal disutility of the noncar
mode is reduced. That occurs because there is no peak avoidance in
the noncar mode and because the peak period becomes less con-
gested, meaning that other car users readjust their schedules toward
the peak hour.

Noncar departures (Figure 5b) show the expected behavior: more
noncar departures at all times as a function of a reduced marginal
disutility.
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FIGURE 4 Cars en route in large-scale scenario over time of day with different marginal disutilities for traveling with

noncar modes.
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FIGURE 5 Number of agents departing per 15 min over time of day: (a) all agents departing and (b) agents departing with

noncar mode.

Outside the time from 6 a.m. to 6 p.m., the noncar share is markedly
lower than during the day. The reason is that during those times there
is little car congestion, thus making the car more attractive.

FURTHER STEPS

At the moment, only one transport mode can be used for the com-
plete plan. That is, all trips of a given day need to be done by the
same mode. Although the data structures, file formats, and simula-
tion could deal with a different transport mode per leg, there are some
conceptual points that it is desirable to solve first before applying
mode choice to a subtour level.

The simulation setup would allow having different . over the
time of day, as every trip has a departure time. This could be used to
model a changing attractiveness to use the noncar modes during a
day. One example might be to improve the quality of service in tran-
sit in the late evening or night hours, resulting in a lower absolute
marginal disutility during that time of day.

An improved router for noncar modes would improve results.
Possibilities are the use of transit schedules instead of the “double

free speed travel time” assumption currently used. Currently, that
assumption makes the noncar mode highly unattractive for long-
distance trips. This will most likely change by the use of more real-
istic travel times, especially for long-distance trips that are served
well by fast trains.

The simulation should not only teleport agents with noncar mode,
but also actually simulate them as well. Different aspects of this would
be important to include, say, public transport vehicle overcrowding
effects or the effect of public transport being caught in car congestion.
It would require adding transit vehicles, bikes, and other means of
transport, together with their characteristics, schedules, and so on.

A car ownership model, or arguably a lifestyle model, could be
added in the demand modeling. That would reduce the choice between
car and noncar mode to travelers that actually have access to a car. A
preliminary attempt to do this for the Zurich scenario did not lead to
improved results with respect to the real-world traffic counts. This was
presumably a result of the fact that the car ownership model was based
on zonal characteristics, whereas the mode choice model of the pres-
ent simulation, at least on the car side, picks up very detailed accessi-
bility issues. It becomes quite clear that the behavioral basis of all
relevant decision models needs to be consistent.



CONCLUSION

It was shown how to include a noncar mode into a multiagent
transport simulation with relatively few conceptual changes. The
noncar mode was integrated by giving every agent two initial
plans, one using the car for all trips and one using the noncar mode
for all trips. The noncar trips are assumed to use twice as much
travel time as the uncongested car mode. Travelers can then, in the
simulation, adjust times and car routes; the performance of the
resulting plans is scored after execution in the traffic flow simulation,
based on a utility function that includes positive utility for perform-
ing an activity, different negative utilities for traveling by different
modes, and opening times outside which no utility for performing an
activity can be accumulated.

The model was first tested in a simplified scenario based on the
famous Vickrey bottleneck example. The noncar mode was used as
an alternative to the congested car mode. It was shown that the ana-
lytical calculation and the simulation model produce the same results
when one looks at the mode split as a function of the noncar mode
marginal disutility.

The model was then applied to a realistic real-world example for the
Zurich metropolitan area. The reaction of users to changes in the non-
car marginal disutility was analyzed in some detail, including tem-
poral reactions. Adding the mode choice to the large-scale scenario
improved the realism of the scenario when the simulated traffic
volumes were compared to data from counting stations.
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