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Abstract

The present work addresses a fundamental issue of electromagnetic simulations by
means of the Finite Integration Technique (FIT). This method is typically applied
to Cartesian and, therefore, geometrically inflexible computational meshes. In
order to achieve a high level of accuracy in a reasonable amount of time, the FIT
commonly requires the simulated object’s material interfaces to conform in a certain
way to the mesh facets. Since this narrows its scope of application, we discuss
two systematically different possibilities to transfer the expected accuracy from the
conformal Cartesian case to other areas.

On one hand, we abandon the Cartesian mesh in favor of a cylindrical one, which
naturally conforms to many circularly shaped objects. In this regard, our main
objective is the investigation and compensation of time domain methods’ limitations
that arise specifically due to inherent properties of the cylindrical mesh system. On
the other hand, we present a generalized theoretical framework to enable highly
accurate material modeling even in the event of nonconformal interfaces. Different
means of applying it to practical simulations are proposed.

Each introduced method is validated by means of numerical examples. Fur-
thermore, a set of practice-oriented applications allows for comparing them to
commercial simulation software and stresses their effectiveness.
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Kurzfassung

Gegenstand der vorliegenden Arbeit ist die Behandlung eines grundlegenden
Problems elektromagnetischer Feldsimulation auf Basis der Methode der Finiten
Integration. Diese Methode wird üblicherweise auf kartesischen, und daher aus
geometrischer Sicht unflexiblen, Rechengittern angewendet. Für ein hohes Maß
an Genauigkeit in Verbindung mit moderatem Rechenaufwand wird in der Regel
vorausgesetzt, dass die Grenzschichten zwischen verschiedenen Materialien in
gewisser Weise konform mit Gitterflächen sind. Da dies die Anwendbarkeit des
Verfahrens in der Praxis stark einschränken kann, werden im Verlauf der Arbeit
zwei systematisch verschiedene Möglichkeiten aufgezeigt, mit deren Hilfe sich die
zu erwartende Genauigkeit des konformen, kartesischen Falls auf andere Bereiche
übertragen lässt.

Zum einen wird die Abkehr von kartesischen zu Gunsten zylindrischer Git-
ter untersucht, die sich auf natürliche Weise zu einer Reihe von kreisförmigen
Objekten konform verhalten. In dieser Hinsicht gilt das Hauptaugenmerk der Unter-
suchung und dem Ausgleich sich durch inhärente Eigenschaften des Zylindergitters
ergebender Einschränkungen für Zeitbereichsverfahren. Zum anderen wird ein
verallgemeinertes theoretisches Konzept eingeführt, in dessen Rahmen eine sehr
genaue Abbildung nichtkonformer Materialgrenzen auf das Rechengitter möglich ist.
Darauf aufbauend sind verschiedene Möglichkeiten zur Umsetzung dieses Konzepts
in Simulationen gegeben.

Jede im Laufe der Arbeit vorgestellte Methode wird anhand numerischer Rechen-
beispiele validiert. Darüber hinaus heben durch Praxisanwendungen motivierte
Beispiele die Effektivität der Verfahren hervor, insbesondere durch den Vergleich zu
kommerzieller Simulationssoftware.
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CHAPTER1
Introduction

1.1. Motivation

Prior to the invention, advancement and massive deployment of modern computer
systems, the design process of electromagnetic components relies predominantly
on building prototypes and determining their characteristic properties by means
of measurements. Nowadays, the availability of affordable and powerful com-
puter hardware has led to the increasing popularity of simulation software as a
supplemental tool in the development process. As a consequence, the expensive
and time-consuming prototype construction becomes more and more obsolete. In
comparison to conventional measurements, simulation software offers several ad-
vantages, like non-intrusive or non-destructive means to obtain quantities of interest
or the ability to eliminate undesired feedback of the measurement equipment to
the device under test.

In order to model electromagnetic behavior in a manner that is machine-process-
able without strong simplifications, the governing set of partial differential equations,
i.e. Maxwell’s equations, needs to be subject to a process called discretization. A very
popular method for this purpose is the Finite Integration Technique (FIT), which is
developed by Thomas Weiland in 1977 [Wei77]. Since its initial publication, ongoing
research has extended the method’s scope to the entire range of the electromagnetic
frequency spectrum, the inclusion of countless enhancements and different kinds of
underlying mesh systems.

Specifically the last point is what the present thesis’ main focus is on. To motivate
its importance, we use the analogy of cells in a computational mesh with color
pixels in a TV screen. Real life objects get represented on the TV screen by means
of a finite and structured set of rectangular pixels. In principle, the same is true
for typical mesh representations of simulated objects, only in three dimensions,
i.e. with voxels instead of pixels. In both cases, this works remarkably well if the
represented object’s geometry inherently conforms well to the employed mesh,
even with small numbers of pixels. If it does not, i.e. the mesh is nonconformal,
the common strategy is to increase the number of pixels. The same what makes a
television set with millions of pixels expensive is what makes an accurate simulation
on a rectangular (Cartesian) mesh system slow or hardware-demanding.

1



Chapter 1. Introduction

1.2. Contribution

Since there exist objects, which are accurately mapped on a coarse mesh based on
Cartesian coordinate lines, it seems obvious that different classes of objects also find
an accurate representation on a different mesh system. Without sacrificing favorable
properties of the Finite Integration Technique, these mesh systems cannot be chosen
arbitrarily, i.e. material conforming in general. However, orthogonal coordinate
systems as foundation of computational meshes, even if they are curvilinear, are
permitted and well-documented. Specifically the cylindrical coordinate system
enables a large class of technically relevant objects to be described much better
than in Cartesian coordinates. Therefore, cylindrical meshes take up a vital part in
the present work.

To illustrate their peculiarities, we stay in the TV screen analogy mentioned
above. Accordingly, we modify each pixel’s shape to conform to lines of a polar
coordinate system, with its origin in the middle of the screen. Inevitably, the pixels
near the origin are much smaller in their azimuthal extent than those at the outer
perimeter. They would be technically challenging to manufacture. Even though
computational cylindrical meshes in the FIT are implementable straightforwardly,
they impose tedious restrictions to time domain simulation algorithms operating on
top of them. We suggest methods to formally describe these restrictions and also to
alleviate them based on hybrid implementations of nonstandard time integration
schemes.

The modification of the pixel shape is a practicable method if the object to
be represented by the mesh is known a priori and also suitable within narrow
constraints. In other cases it would be advisable to stick to the approved and
efficient to implement rectangular approach. However, a highly resolved mesh is
not always a viable option due to cost restrictions in terms of hardware resources.
For this reason, we first of all quantify the error made by the approximation of
nonconformal objects by Cartesian meshes. Emerging from the framework we use to
describe the discretization error, a method that is classifiable as a subpixel smoothing

technique is derived and used to improve the accuracy on coarse, Cartesian meshes.
In the context of the TV screen analogy, this can be interpreted as relieving pixels
from their limitation of showing only one color at a time.

1.3. Outline

After giving a brief introduction to the basic principles we make use of in the course
of this thesis (Chapter 2), we turn towards the time domain formulation of the

2



1.3. Outline

Finite Integration Technique on different kinds of cylindrical meshes in Chapter 3.
A method to obtain conditions for numerical stability is applied to each of them.
Subsequently, different methods for rectifying the stability analysis’ outcome are
developed and demonstrated by means of a simple numerical example with known
reference solution.

The focus of Chapter 4 lies on more versatile and efficient to implement Cartesian
meshes. We thoroughly investigate the implications of nonconformal material
interfaces with respect to the Finite Integration Technique’s accuracy. The abstract
concept of generalized material modeling is introduced. We propose two distinctive
means of using it in practice and validate their effectiveness. This chapter concludes
with some important remarks on the method’s extensibility to other use cases and
limitations thereof.

To show the so far introduced approaches’ usefulness beyond academic exam-
ples, we apply them to more practically oriented structures and time integration
schemes in Chapter 5. After a conclusion that explicitly states the present work’s
results in a broader context, some appendix sections follow with the aim of giving
comprehensive insight to concepts used or derived throughout this thesis.

3





CHAPTER2
Basic Principles

The aim of this chapter is to provide the basic framework for describing and
calculating electromagnetic phenomena. Therefore, we first of all state Maxwell’s

equations and other well-known analytical identities in Section 2.1. By means of
the Finite Integration Technique (cf. Section 2.2, [Wei77]), their representation in
discrete space, called Maxwell’s grid equations, is obtained. Since different kinds of
computational meshes are employed in this work, we perform the spatial discretiza-
tion in a general orthogonal coordinate system (u, v, w), which is subsequently
replaced by cylindrical (�,ϕ, z) or Cartesian (x , y, z) coordinates, respectively.

In order to obtain a space- and time-discrete, and thus machine processable
formalism, Maxwell’s grid equations’ continuous time dependence is approximated
on a discrete time axis in Section 2.3.

2.1. Electromagnetic Field Theory

The content of this section is a brief aggregation of fundamental concepts of
electromagnetic field theory with focus on those aspects that are of importance for
this thesis. For a more comprehensive insight, the reader is referred to the literature,
e.g. [Jac98; Hen15], which also serve as guideline for the following deductions.

2.1.1. Maxwell’s Equations

In 1865, James Clerk Maxwell publishes a set of partial differential equations
[Max65] that quantitatively describe the relations between, and sources of electric
and magnetic fields with respect to both space and time. Over the years, his original
work is reformulated several times, which gives rise to Maxwell’s equations in their
nowadays commonly known form:∮

∂ A

�E(�r, t) · d�s = −
∫∫

A

∂ �B(�r, t)
∂ t

· d�A (2.1a)

∮
∂ A

�H(�r, t) · d�s =
∫∫

A

�
∂ �D(�r, t)
∂ t

+ �J(�r, t)

�
· d�A (2.1b)

5



Chapter 2. Basic Principles

�
∂ V

�D(�r, t) · d�A=
∫∫∫

V

ρq(�r, t)dV (2.1c)

�
∂ V

�B(�r, t) · d�A= 0 (2.1d)

For the sake of brevity, we omit the explicit mention of space and time dependence
throughout this thesis. The occurring quantities’ symbols are assigned in the style
of typical literature. For a detailed declaration the reader is referred to the
Nomenclature on page 123. The current density �J comprises different parts like
the movement of electrons due to an electric field (�Jc), impressed source currents
(�Js) or convection currents as a result of space charge densities moving at a certain
speed (not regarded in this thesis).

By means of vector calculus methods, specifically Stokes’ and Gauss’ theorems
[Cor08], it is possible to convert (2.1) into an equivalent differential formulation:

∇× �E = −∂ �B
∂ t

(2.2a)

∇× �H = ∂ �D
∂ t
+ �J (2.2b)

∇ · �D = ρq (2.2c)

∇ · �B = 0 (2.2d)

2.1.2. Material Relations

From a strictly mathematical point of view, Maxwell’s equations, as given in (2.1) and
(2.2), are two sets of mutually independent partial differential equations. However,
there are physical relationships between the occurring quantities. Without further
assumptions, they make all four equations dependent on each other. In general,
these relationships are:

�D = ε �E (2.3a)

�B = μ �H (2.3b)

�Jc = σ�E (2.3c)

In the scope of this work, the material coefficients ε = ε0εr (permittivity), μ=
μ0μr (permeability) and σ (conductivity) are considered linear and time invariant.
The quantities that are indexed with r are the relative permittivity/permeability
and are material dependent.

6



2.1. Electromagnetic Field Theory

2.1.3. Continuity of Field Components

The behavior of electromagnetic fields at interfaces from one domain to another
follows directly from (2.1) under simple geometric considerations [Jac98]. Let �n
be the normal vector of an arbitrarily shaped material interface I pointing from
domain a into domain b. In order for the fields to fulfill Maxwell’s equations, they
need to obey the following continuity conditions:

�n× �
�Eb − �Ea

�
I
= 0 (2.4a)

�n · �εb
�Eb − εa

�Ea

�
I
= ςq (2.4b)

�n× �
�Hb − �Ha

�
I
= �K (2.4c)

�n · �μb
�Hb −μa

�Ha

�
I
= 0 (2.4d)

Under the assumption of vanishing surface charge density ςq and surface current
density �K , the above equations’ predication is that the electric and magnetic field’s
tangential components are continuous across I. Their normal components jump by
the ratio of the involved permittivities or permeabilities, respectively.

2.1.4. Derived Formulations

By making further assumptions, Maxwell’s equations are transformed into more
problem specific formulations. In the following, those of interest in the scope of
this thesis are introduced.

2.1.4.1. Poisson’s Equation for Electrostatics

In case only electric quantities are of interest and the time dependence is negligible,
(2.2) reduces to the following set of equations:

∇× �E = 0 (2.5a)

∇ · �D = ρq (2.5b)

The ansatz �E = −∇Φ with a scalar potential Φ satisfies (2.5a) directly and,
substituted into (2.5b), leads to a Poisson equation for Φ:

∇ · ε∇Φ= −ρq (2.6)

7



Chapter 2. Basic Principles

2.1.4.2. Diffusion Equation for Magnetoquasistatics

A possible simplification of Maxwell’s equations is the magnetoquasistatic approx-

imation ∂ �D
∂ t = 0, which is valid if σ

�E �  ∂ �D∂ t

, i.e. if the electric field can be

referred to as slowly varying with respect to the conduction current’s amplitude.
The magnetic flux density is obtained by means of a magnetic vector potential as
�B =∇× �A, so that (2.2d) is implicitly fulfilled. For a domain that includes no source
currents and after Lorenz gauging [Jac98], Maxwell’s equations lead to a diffusion
equation:

∇2 �A−μσ∂ �A
∂ t
= 0 (2.7)

2.1.4.3. Electromagnetic Wave Equation

If only the space charge density ρq is neglected, the electromagnetic wave equation
is obtained by substituting (2.2b) into (2.2a):

∇2 �E + εμ
∂ 2 �E
∂ t2

+μ
∂ �J
∂ t
= 0 (2.8)

In some cases the dependence on time is strictly sinusoidal at a distinct frequency
ω or can be decomposed into a series of sines and cosines. Then it is advantageous
to express the time dependence by ejωt and, thereby, obtain the wave equation for
the field’s and current’s complex amplitudes:

∇2 �E −ω2εμ�E + jωμ�J = 0 (2.9)

The time domain quantities result from their respective complex amplitudes by:

�E =ℜ��Eejωt
�

(2.10)

2.2. Finite Integration Technique

The formulations derived in Section 2.1.4, despite being more problem-specific than
the general form of Maxwell’s equations, still are of very limited use in real-world
applications. The governing partial differential equations (PDE) usually allow
for closed form solutions only if vast approximations and simplifications of the
underlying problem are made.

8



2.2. Finite Integration Technique

For that reason, we are interested in ways of systematically approximating
electromagnetic problems and their solutions in order to make them machine
processable. Driven by the invention and ambitious advancement of computer
architectures, this gives rise to the emergence of the branch of computational

engineering. The basic idea is to no longer try to solve PDEs directly, but instead
convert them to algebraic (systems of) equations that can be solved by means of a
computer and whose solution converges to the differential equation’s solution in
some sense.

The simulation method of choice in this thesis is the Finite Integration Technique
(FIT) [Wei77]. It is introduced by Thomas Weiland in 1977. Compared to other
popular methods, like for example Finite Elements, its most notable feature is the
fact that it does not originate from a problem-specific derived formulation (e.g.
the wave equation). Instead, it provides a matrix-vector formulation of Maxwell’s
equations themselves that contains only a finite number of spatial state variables.
This discrete set of equations is called Maxwell’s grid equations. They share a
significant amount of properties with their space-continuous counterpart, which
makes the Finite Integration Technique a comprehensible and straightforward
method. Moreover, it can be considered as a generalization of existing simulation
techniques (e.g. FDTD¹).

The following introduction to the Finite Integration Technique is supposed to give
a basic understanding and only becomes more elaborate if the respective subject
is particularly important in the course of this thesis. For more comprehensive
literature on this topic the reader is referred to [Wei96; CW01; SW01].

2.2.1. Maxwell’s Grid Equations

Like the majority of simulation techniques, the FIT relies on a computational mesh
whose elements (nodes, edges, facets, volumes) are assigned a certain physical
quantity. In its original formulation, the mesh edges are assumed to be aligned
with a Cartesian coordinate system, although the extension to other curvilinear
(but still orthogonal) coordinate systems follows straightforwardly. More effort has
to be put into extending the method to triangular [RW85], tetrahedral [Büs11] or,
more general, nonorthogonal [Sch99] meshes. Because both Cartesian, as well as
cylindrical meshes are used in the course of this thesis, the deduction of Maxwell’s
grid equations is preliminarily carried out in general (u, v, w) coordinates with
metric coefficients hu, hv and hw. We address each node by a triplet of integer
index values (ξ,η,ζ) and also assign this index triplet to the node’s adjacent cell

1Finite Difference Time Domain [Yee66].

9



Chapter 2. Basic Principles

in ascending coordinate direction. The distinctive properties of a particular mesh
coordinate system are then accounted for in sections 2.2.4 and 2.2.5, respectively.

u

v

w

G

�G

(ξ,η,ζ) ∈ G

(ξ,η,ζ) ∈ �G

Figure 2.1.: A primary and its corresponding dual cell. Note that primary nodes are centered
in dual cells addressed by the same index triplet (ξ,η,ζ) and vice versa.

In addition to an orthogonal mesh G, a necessary prerequisite for the Finite
Integration Technique’s deduction is a second, staggered mesh �G. This so-called
dual mesh is constructed by translating every node (ξ,η,ζ) from the primary mesh
G by (

huΔuξ
2 ,

hvΔvη
2 ,

hwΔwζ
2 ) and attaching the corresponding dual cell in descending

coordinate direction, as depicted in Fig. 2.1. Δuξ, Δvη and Δwζ are the mesh step
sizes in terms of the respective coordinate system. The mesh’s edge lengths huΔuξ,
hvΔvη and hwΔwζ need not necessarily be equal for each mesh cell. If they are
anyhow, their index is omitted. By design, all primary edges intersect dual facets
orthogonally and vice versa.

For the purpose of a formulation that is well suited for treatment with methods
from linear algebra, the index triplet (ξ,η,ζ) needs to be transformed into a one-
dimensional index, called the canonical index k. The first index k = 1 is assigned
to the mesh node that has the lowest coordinate values u, v and w. On a mesh with
Nu nodes along u (and so forth for v and w), k is incremented along u for each
v-line and, subsequently, for each w-plane:

k = 1+ (ξ− 1)Mu + (η− 1)Mv + (ζ− 1)Mw (2.11)

For convenience, the offset constants Mu = 1, Mv = Nu and Mw = NuNw are
defined. They indicate by how much a canonical index k has to be raised if the
node’s neighboring point in the specified direction is considered.

10



2.2. Finite Integration Technique

Edges (L) and facets (A) receive canonical indices as well. On the primary mesh,
the index results from the smaller index of the two (for edges) or four (for facets)
adjoining nodes. Since there are three times as many edges and facets than nodes,
a direction-dependent offset τNp is added for uniqueness: τ = 0 for u-direction,
τ = 1 for v-direction and τ = 2 for w-direction. Np is the total number of nodes,
i.e. Np = NuNv Nw.

Furthermore, each dual edge is assigned the same index as the primary facet
that it intersects. Correspondingly, each dual facet’s index is determined by the
intersecting primary edge. This also follows directly from the dual mesh construction
scheme, which is visualized in Fig. 2.1.

2.2.1.1. Faraday’s Law

�ek

�ek+M
v�e k+

N p

�e k+
N p+

Mu

��
bk+2Np

u

v

w

∂ Ak

k

k+Mu

k+Mv

k+Mu +Mv

Figure 2.2.: A w-directed primary mesh facet Ak with magnetic grid flux and related electric
grid voltages on its edges. All nodes and electromagnetic quantities are indexed
according to the canonical indexing scheme.

In order to obtain a matrix-vector formulation of Maxwell’s equation (2.1a), a
single, w-directed, primary mesh facet Ak is considered exemplarily (see Fig. 2.2).
We define the integrations to be carried out over its area or, respectively, its boundary

11



Chapter 2. Basic Principles

contour ∂ Ak. Then the left hand side’s integration path decomposes into four parts:

∮
∂ Ak

�E · d�s =

�ek︷ ︸︸ ︷∫
Lk

�E · d�s −

�ek+Mv︷ ︸︸ ︷∫
Lk+Mv

�E · d�s −

�ek+Np︷ ︸︸ ︷∫
Lk+Np

�E · d�s +

�ek+Np+Mu︷ ︸︸ ︷∫
Lk+Np+Mu

�E · d�s = − d
dt

��
bk+2Np︷ ︸︸ ︷∫∫

Ak

�B · d�A (2.12)

Instead of electromagnetic fields and fluxes, the FIT’s state variables are integral
quantities. As introduced in (2.12), there are electric grid voltages �ek defined as
integrals along primary edges, and magnetic grid fluxes

��
bk defined as integrals over

primary facets. In a mesh with Np nodes, there are 3Np state variables of each

kind². They are collected in vectors �e and
��

b. We arrange the signs that result from
splitting the contour path integral in (2.12) into a 3Np × 3Np matrix C and yield the
mesh representation of Faraday’s Law:

C�e = − d
dt

��

b (2.13)

Its appearance is similar to (2.2a), but, due to the introduction of the computational
mesh, it is discrete in a spatial sense. The matrix C goes by the name curl matrix

and takes the role of the continuous curl operator. The close relationship becomes
even more obvious if it is denoted by its Np × Np submatrices³ Pu, Pv and Pw that
can be interpreted as central difference approximations of partial derivatives with
respect to u, v or w:

C=

⎡
⎣ 0 −Pw Pv

Pw 0 −Pu−Pv Pu 0

⎤
⎦ (2.14)

The partial derivative matrices’ exact definitions depend on the type of mesh
system and are given in sections 2.2.4 and 2.2.5 for Cartesian and cylindrical meshes.

2.2.1.2. Ampère’s Law

Maxwell’s equation (2.1b) is transformed into its grid equation equivalent in exactly
the same way demonstrated in (2.12). However, the dual mesh �G is used for reasons
explained in Section 2.2.2. Local line integrals over the magnetic field �H are defined
as magnetic grid voltages

�

hk and facet integrals over the electric displacement �D

2Some of them are virtually nonexistent because they are located outside the computational domain. In
order for the canonical indexing scheme to work they are indexed anyway.

3This submatrix notation is only valid if the canonical indexing scheme is obeyed.
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2.2. Finite Integration Technique

are defined as electric grid fluxes
��
dk. The electric grid current

��
j k stands for the

facet-based current density �J . Aggregated to matrices and vectors, this leads to the
following formulation: �C�h= d

dt

��

d+
��
j (2.15)

Due to the aforementioned way of assigning dual edges �Lk and facets �Ak the same
index as their intersecting counterparts on the primary mesh, the dual curl matrix�C stands in close relationship to the primary one [Wei96]:

�C=
⎡
⎣ 0 −�Pw

�Pv�Pw 0 −�Pu

−�Pv
�Pu 0

⎤
⎦=

⎡
⎣ 0 PT

w −PT
v−PT

w 0 PT
u

PT
v −PT

u 0

⎤
⎦ = CT (2.16)

As we will see in Section 2.3.2, this is a very important property of the Finite
Integration Technique that essentially needs to be preserved even in nonstandard
implementations of the partial derivative operators.

2.2.1.3. Gauss’ Laws

The previous laws define the electric (magnetic) grid flux to be assigned to dual
(primary) facets. By adding up the six grid fluxes whose corresponding facets
constitute the volume of a dual (primary) mesh cell, (2.1c) and (2.1d) are discretized
as well:

�S��d= q (2.17a)

S
��

b= 0 (2.17b)

Again, the close resemblance to Maxwell’s equations (2.2c) and (2.2d) can be
noticed. The matrices S and �S are called primary and dual source matrices and
have the dimension Np × 3Np. They are assembled as follows:

�S= ��Pu
�Pv

�Pw

�
=
�−PT

u −PT
v −PT

w

�
(2.18a)

S=
�
Pu Pv Pw

�
(2.18b)

The vector q in (2.17a) contains each dual cell’s contained charge as a volume
integral over the space charge density ρq.

In close correspondence to the continuous vector calculus identity ∇ ·∇× �F = 0
(with an arbitrary vector field �F), the relations SC = 0 and �S�C = 0 hold for
conventional implementations [Wei96].
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Chapter 2. Basic Principles

2.2.2. Discrete Material Relations

Just like there are direct relations between space-continuous flux and field quantities,
namely the material parameters ε, μ and σ (cf. (2.3)), grid voltages and fluxes
are transformable into each other as well. However, since geometric integrals are
involved in the Finite Integration Technique’s state variables, the discrete material
parameters’ appearance is not immediately comparable to the continuous ones’. In
particular, the exact material coefficients for a grid voltage/flux-pair k are defined
as:

Mε,k =
��
dk
�ek
=

∫∫�Ak
�D · d�A∫

Lk
�E · d�s (2.19a)

Mμ,k =
��
bk
�

hk

=

∫∫
Ak
�B · d�A∫�Lk
�H · d�s (2.19b)

Mσ,k =
��
j k
�ek
=

∫∫�Ak
�J · d�A∫

Lk
�E · d�s (2.19c)

Obviously, the integrals avoid the quotients of flux densities and fields to be
replaced by the space-continuous parameters ε, μ and σ. The necessity of known
fields in order to obtain these ideal material coefficients seems to impose narrow
confines to the FIT’s practical applicability. Without assumptions and approximations
none of the above equations simplifies into a practically feasible formulation.
However, since this is the only place in the spatial discretization process of Maxwell’s
equations where approximations are made, a substantial understanding of the
introduced error allows to draw conclusions about the method’s overall accuracy.
This analysis is thoroughly carried out for different kinds of approximations to
(2.19) in Chapter 4.

For the time being, we settle for the simplifying assumption that each primary
mesh cell is entirely filled with one material, i.e. the material parameters ε, μ and
σ are no longer space-continuous but instead constant inside each cell⁴. In that
case, the kth material coefficient in (2.19) depends only on the kth facet area, edge
length and a weighted average of the involved materials, but no longer on any
field information. It is customary to introduce diagonal matrices that constitute the

4After imposing this assumption on curved material boundaries they appear to be shaped like staircases,
hence the name staircase approximation [Hol93].
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2.2. Finite Integration Technique

space-discrete approximations for each voltage/flux pair at once:

Mε = D�ADεD
−1
L (2.20a)

Mμ = DADμD
−1�L (2.20b)

Mσ = D�ADσD−1
L (2.20c)

For more details on these approximations’ deduction and their accuracy, the
reader is referred to Section 4.1.

2.2.3. Boundary Conditions

Primary mesh cells define the computational domain’s spatial extent. The staggered
fashion of the dual mesh leads to incomplete integration paths at the domain’s
boundaries. More precisely, tangential electric grid components are not uniquely
defined without further measures. Therefore, we impose so-called boundary

conditions that introduce a specified field behavior on the boundaries into Maxwell’s
grid equations. This concept is very similar to the introduction of Neumann or
Dirichlet boundary conditions [Jac98] in order to solve continuous field problems.

A magnetic boundary condition is implemented by appropriately shortened dual
edges and facets so that they no longer intersect the computational domain’s
boundary but fit exactly into it. This constitutes implicitly closed integration paths
that comprise vanishing tangential magnetic field components. This behavior equals
that of the transition to a perfect magnetic conductor.

If, on the other hand, the questionable tangential electric field components are
assumed to be zero directly, their underlying integration path is irrelevant and,
therefore, unproblematic. This is achieved by setting the corresponding edge
lengths in DL to zero. Vanishing tangential electric fields also occur on interfaces to
perfect electric conductors, which explains the name electric boundary condition.

2.2.4. Cartesian Mesh

The Cartesian mesh (cf. Fig. 2.3) is the most elementary one, which is why it
is employed by far the most often in practice. It is obtained by substituting
(u, v, w)→ (x , y, z). From a mathematical point of view its simplicity stems from
the fact that hx = hy = hz = 1, i.e. no metric coefficient needs to be considered
effectively. Geometrically speaking this means that all edges are straight lines,
all facets are rectangles and all cells are cuboids. Furthermore, if all mesh steps
Δxξ, Δyη and Δzζ are equal, all edges (facets, cells) have the same length (area,
volume). The mesh steps’ index can be dropped and the mesh is called equidistant.
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x

y

z

Δxξ=4
Δyη=1

Δ
z ζ
=

2

k = 1

k = Np = 480

k = 8Mx + 3My = 32

k = 1+ 10Mz +
Np =

961

Figure 2.3.: A non-equidistant Cartesian mesh with Nx = 8, Ny = 6 and Nz = 10. Some
indices are given for better comprehension of the canonical indexing scheme.

−1
1

Mx

N
p

Np

(a) Px

−1

1

My

N
p

Np

(b) Py

−1

1

Mz

N
p

Np

(c) Pz

Figure 2.4.: Symbolic representation of the partial derivative matrices for a Cartesian mesh.
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2.2. Finite Integration Technique

Regardless of its size, a Cartesian mesh is always terminated by six planar
boundaries. That makes its topology easy to handle because either a node lies
on the boundary or it has six directly adjacent nodes whose canonical indices are
determined by adding or subtracting Mx , My or Mz . As a consequence, this allows
for a two-banded structure of the partial derivative matrices Px , Py and Pz , as
depicted in Fig. 2.4.

2.2.5. Cylindrical Mesh

Literature on electromagnetic field simulation with focus on cylindrical mesh systems
is not as common as for Cartesian meshes. Examples include [Mül+82; Wei83;
Fus90; Deh93; DW94; Lie+13], on which the following implementation details are
based.

A cylindrical mesh is realized by substituting (u, v, w)→ (�,ϕ, z). The metric
coefficients are h� = 1, hϕ = � and hz = 1. That implies the mesh is inherently
inhomogeneous. Even if Δϕη is chosen independently of η, the azimuthal step size
�Δϕ varies with respect to the radius �.

Consequently, in contrast to a Cartesian mesh, a cylindrical mesh is not necessarily
terminated by six boundaries. Three cases with distinct topological properties have
to be distinguished. A special mesh that takes advantage of rotational symmetry
can be considered a fourth case.

2.2.5.1. Circular Segment, z-Axis Not Included

�

ϕ

z

Figure 2.5.: A simple cylindrical mesh.

A mesh example for this case
is depicted in Fig. 2.5. De-
spite the fact that the cells
are no longer cuboidal (but
still hexahedral), this case does
not differ from the Cartesian
case from a topological point of
view. Therefore, the operators
P�, Pϕ and Pz can be directly
inferred from Fig. 2.4.

2.2.5.2. Full Circle, z-Axis Not Included

In case the computational domain covers the entire ϕ-range [0, 2π] (cf. 2.6a) some
grid components need special treatment. In particular, these are the electric grid
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�

ϕ

z

(a) An exemplary cylindrical mesh with N� = Nz = 5 and Nϕ = 35. The entire azimuthal
range is covered by mesh cells.

��
dz

��
bz

G

�G
η = 1

ϕ = 0

η = Nϕ

η = 2

(b) Detail view of the marked area from Fig. 2.6a. Mesh objects
assigned to the first ϕ-plane are highlighted in green,
those assigned to the last plane in blue. Note the mutual
dependence of quantities from one plane on quantities from
the other one.

Mϕ

N
p

Np

(c) Schematic visulization of the partial
derivative matrix Pϕ . The canonical
indices’ offset across ϕ = 0 shifts
the corresponding matrix entries.

Figure 2.6.: Illustration of an azimuthally closed cylindrical mesh with explanation of its
topological properties.
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fluxes
��
d� and

��
dz in the first ϕ-plane η= 1 and, correspondingly, the magnetic grid

voltages
�

h� and
�

hz in the last ϕ-plane η= Nϕ . Fig. 2.6b shows a highlighted dual

facet with its contour path for a
��
dz-component and a primary facet with its contour

path for a
��
bz-component. Obviously, both contour paths incorporate an edge that

initially belongs to the respective other end of the ϕ-domain.
Clearly, this alters the mesh topology with respect to the previous or the Cartesian

case. The planes ϕ = 0 and ϕ = 2π no longer terminate the computational
domain, but instead are mutually coupled. This coupling is accounted for in the
partial derivative matrix Pϕ as demonstrated in Fig. 2.6c. Since �Pϕ is constructed
analogously, the important property of obtaining the dual derivative matrix �Pϕ by
negative transposition of Pϕ is preserved.

2.2.5.3. z-Axis Included

In a cylindrical mesh, like the one in Fig. 2.7a, the z-axis is characterized by � = 0.
Since � equals the metric coefficient hϕ , some special properties of mesh objects
with ξ= 1 arise:

• All primary ϕ-edges have zero length and are virtually nonexistent. Corre-
spondingly, all azimuthal electric grid voltages �eϕ and electric grid fluxes

��
dϕ

vanish.

• All primary �-facets have zero area and are virtually nonexistent. Corre-
spondingly, all radial magnetic grid fluxes

��
b� and magnetic grid voltages

�

h�
vanish.

• For each z-plane all primary z-edges and, correspondingly, all electric grid
voltages �ez are located at the same position⁵. Therefore, only one of these
edges is maintained per z-plane. All others’ lengths are set to zero. For
electric grid fluxes

��
dz this means that they are associated to circular dual

facets with the radius of the first dual mesh node (cf. Fig. 2.7b).

While the first two points are implemented straightforwardly by zeroing out
the respective entries in the geometry matrices (DL , D�L , DA and D�A), we deal
with the third point by adapting the radial partial derivative operator P�. The

aim is to calculate each of the Nϕ magnetic grid fluxes
��
bϕ per z-plane for ξ = 1

in a way that employs only the single remaining electric grid voltage along the

5Alternatively, the mesh could be constructed comprising only one z-edge at � = 0 per z-plane. This
would, however, require sacrificing the simple-bandedness of FIT’s operator matrices because the
canonical indexing scheme would be no longer applicable.
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�

ϕ

z

(a) A cylindrcal mesh including the z-axis and being azimuthally closed. Note that in this
case only three boundaries of the computational domain exist.

��
dz

ϕ = 0

G �G
(b) Detail view of the marked area from Fig. 2.7a. The dual z-facet

at � = 0 is the circle marked in blue. Correspondingly, its
boundary contour path is assembled by the ϕ-directed dual
edges (green arrows) adjacent to the z-axis.

M�

N
p

Np

(c) The partial derivative matrix P�
(schematic). The presence of sev-
eral grid voltages at one location
calls for shifting the canonical in-
dices.

Figure 2.7.: Illustration of a cylindrical mesh that includes the z-axis with explanation of its
topological properties.
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z-axis. Analogously, this also means that the contour path for each
��
dz at � = 0

is constituted by the boundary of its related dual facet. As a consequence, the
property �PT

�
= −P� holds and guarantees the validity of the relation �CT = C (cf.

Section 2.3.2). A schematic example of an adapted matrix can be found in Fig. 2.7c.
If all field components related to the z-axis are of interest, special measures have

to be taken. As described above, vanishing edge lengths and facets also let the
associated components’ integral state variables equal zero. An approximate means
of obtaining them anyhow is described in [DW94].

2.2.5.4. The Body of Revolution Assumption

This case is essentially different from the previous cases since it is based on an
assumption and, therefore, is not necessarily applicable in all situations. The
assumption at hand is the material distribution’s independence of ϕ, thus making
the simulated object a rotationally symmetric body of revolution. In that case the
fields’ ϕ-dependence becomes separable and is expanded into a complex Fourier
series [Wei83; TH05], which is shown exemplary for the electric field �E, but applies
to magnetic fields and all flux densities as well:

�E =
∞∑

m=−∞
�Em (�, z)ejmϕ =ℜ

∞∑
m=0

�
2−δm,0

�
�Em (�, z)ejmϕ (2.21)

The second identity holds because �E is real and, hence, its Fourier coefficients
obey �Em = �E∗−m. We use Kronecker’s Delta for taking into account that the azimuthal
mode m= 0 occurs only once in the spectrum, while all other modes appear twice
(as complex conjugates). In this context the Fourier coefficients are called azimuthal
modes⁶, which depend only on � and z. Note that the assumption is imposed in
the continuous regime of Maxwell’s equations.

If the discrete grid equation’s deduction is carried out again analogously to
Section 2.2.1, but now based on the series expansion (2.21), a very similar set of
matrix-vector equations results for each azimuthal mode m. A detailed deduction
of the FIT operators’ properties explaining the required modifications is carried
out in Appendix A. The main difference is that since the azimuthal modes are two-
dimensional, a cylindrical �-z-mesh is required (cf. Fig. 2.8a and 2.8b). Moreover,
the matrix Pϕ = −jmI becomes imaginary and diagonal, as depicted in Fig. 2.8c.
Also, P� requires slight adjustments.

6Each field and flux density’s azimuthal modes, whether space continuous or discrete, are represented by
their original symbol in Fraktur typeface.
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�

z

(a) The primary mesh G. Curved �-
and z-facets exist, but are not en-
closed entirely by edges.

�

z

(b) The corresponding dual mesh �G.
Note that the dual nodes are only
shifted along � and z.

−jmN
p

Np

(c) The imaginary partial
derivative matrix Pϕ
is diagonal.

Figure 2.8.: Illustration of a two-dimensional cylindrical mesh in the �-z-plane.

For the purpose of visualization or coupling to another cylindrical mesh it is
sometimes necessary to construct three-dimensional, canonically indexed grid
vectors from a discrete set of azimuthal modes or vice versa. Assuming an azimu-
thally closed cylindrical mesh with Δϕη =Δϕ the components are determined by
(scaled) Discrete Fourier Transforms (DFT) in two distinct ways:⎡

⎣�e� (ξ,η,ζ)
�ez (ξ,η,ζ)
�

hϕ (ξ,η,ζ)

⎤
⎦ =ℜ Nϕ/2∑

m=0

√√√2−δm,0

Nϕ

⎡
⎣ �e�,m (ξ,ζ)

�ez,m (ξ,ζ)
Δϕ

�
hϕ,m (ξ,ζ)

⎤
⎦e−jmϕη (2.22a)

⎡
⎣�eϕ (ξ,η,ζ)
�

h� (ξ,η,ζ)
�

hz (ξ,η,ζ)

⎤
⎦ =ℜ Nϕ/2∑

m=0

√√√2−δm,0

Nϕ

⎡
⎣Δϕ�eϕ,m (ξ,ζ)

�
h�,m (ξ,ζ)
�
hz,m (ξ,ζ)

⎤
⎦e−jm �ϕη (2.22b)

The components in (2.22a) are those located at full azimuthal mesh steps ϕη =
(η− 1)Δϕ and those in (2.22b) at half steps �ϕη = (η− 1/2)Δϕ, which is why they
need to be treated differently. We multiply the ϕ-components by Δϕ because
the ϕ-integration in the multi-modal field representation is carried out over a
normalized integration path length (cf. Appendix A).

The exponential functions and the square root terms are arranged in Np × N�Nz-
matrices Mm (or �Mm for quantities at �ϕη). The transformations can then be carried
out conveniently with canonically indexed grid quantities arranged in vectors:⎡

⎣�e��eϕ
�ez

⎤
⎦=ℜ Nϕ/2∑

m=0

⎡
⎣ Mm

�e�,m

Δϕ�Mm
�eϕ,m

Mm
�ez,m

⎤
⎦ ,

⎡
⎣�h��hϕ
�

hz

⎤
⎦=ℜ Nϕ/2∑

m=0

⎡
⎣ �Mm

�
h�,m

ΔϕMm

�
hϕ,m�Mm

�
hz,m

⎤
⎦ (2.23)
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Due to the square root term, the inverse transformation has exactly the same
appearance, except for a positive sign in the exponential function. Therefore, the
transformation of quantities from a three-dimensional mesh into their azimuthal
modes is constituted by Hermitian transposition of the same matrices Mm:⎡

⎣�e�,m
�eϕ,m
�ez,m

⎤
⎦ =

⎡
⎣ MH

m
�e�

1
Δϕ

�MH
m
�eϕ

MH
m
�ez

⎤
⎦ ,

⎡
⎣�h�,m
�
hϕ,m
�
hz,m

⎤
⎦=

⎡
⎣ �MH

m

�

h�
1
ΔϕM

H
m

�

hϕ�MH
m

�

hz

⎤
⎦ (2.24)

The fact that the partial derivative matrix Pϕ becomes diagonal and regular
causes azimuthal electric and magnetic grid voltages explicitly to be dependent on
�- and z-oriented voltages [Wei83]:

�S�dm = −PT
�

�
d�,m − jm

�
dϕ,m − PT

z
�
dz,m = q

⇔ �eϕ,m = − 1
jm

M−1
ε,ϕ

�
q+ PT

�

�
d�,m + PT

z
�
dz,m

� (2.25a)

S
�
bm = P�

�
b�,m − jm

�
bϕ,m + Pz

�
bz,m = 0

⇔ �
hϕ,m =

1
jm

M−1
μ,ϕ

�
P�

�
b�,m + Pz

�
bz,m

� (2.25b)

Thus, the azimuthal modes’ ϕ-components need not be computed, but can be
inferred from the other components, which reduces the number of unknowns to 2/3,
or even 1/3 for m= 0.

In practice, the degrees of freedom reduce even further because usually only
few modes carry a significant amount of energy or are of interest. We select these
modes by suitable criteria and restrict the spectrum to them. This makes the
transformations in (2.23) lose their exactness in general. Section 3.2.1.3 defines an
azimuthal mode’s energy and provides means of detecting those modes which are
crucial for accuracy.

2.3. Temporal Discretization

So far Maxwell’s equations’ spatial dependence is eliminated by the introduction
of a set of state variables, each of them defined at a fixed location. Their time
dependence, however, remains continuous, which makes Maxwell’s grid equations
a coupled system of differential equations. In order to solve them algebraically
without the assumption of special cases⁷, we introduce a uniformly spaced set

7For example the static regime ( d
dt → 0) or time harmonic problems ( d

dt → jω).
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of discrete points in time. Similar to the spatial mesh, electric and magnetic
components are allocated in a staggered fashion on the discrete time axis (cf.
Fig. 2.9).

t
�e(m−1)

(m
− 1)
Δ

t

�
h
(m−1/2)

(m
−1/

2)Δ
t

�e(m)

mΔ
t

�
h
(m+1/2)

(m
+

1/2
)Δ

t

�e(m+1)

(m
+

1)
Δ

t

�
h
(m+3/2)

(m
+

3/2
)Δ

t

Figure 2.9.: The time axis with staggered allocation of electric and magnetic grid voltages in
dependence of the time step m ∈ � and the time step size Δt.

2.3.1. The Leapfrog Algorithm

The starting points of the so-called leapfrog time integration scheme’s derivation
are Faraday’s and Ampère’s discrete laws (2.13) and (2.15). The time labels shown
in Fig. 2.9 are assigned to the left hand sides’ electric and magnetic grid voltage
vectors. The right hand sides’ time derivatives and the grid current in Ampère’s law
are assigned time step indices consistently:

C�e(m) = −Mμ

� d
dt

�

h
�(m)

(2.26a)

CT�h
(m+1/2) − ��j (m+1/2)

=Mε

� d
dt

�e
�(m+1/2)

(2.26b)

We approximate the time derivatives by a central difference quotient, defined as:

d f (t)
dt


t=t0

=
f (t0 + Δt/2)− f (t0 − Δt/2)

Δt
+O

�
Δt2

�
(2.27)

This effectively replaces them by two temporally adjacent components and
justifies the staggered allocation. We rearrange the equations and yield the leapfrog
update scheme:

�

h
(m+1/2)

=
�

h
(m−1/2) −ΔtM−1

μ
C�e(m) (2.28a)

�e(m+1) = �e(m) +ΔtM−1
ε

 
CT�h

(m+1/2) − ��j (m+1/2)
!

(2.28b)

24



2.3. Temporal Discretization

t
�e(m−1) �

h
(m−1/2) �e(m) �

h
(m+1/2) �e(m+1) �

h
(m+3/2)

Figure 2.10.: Visualization of
�
h-updates (2.28a) in red and �e-updates (2.28b) in blue.

Its eponymous leapfrog style of temporal updates is visualized in Fig. 2.10. Aside
from the use of integral quantities instead of electric and magnetic fields, this
algorithm equals the well-known Finite-Difference Time-Domain (FDTD) method
[Yee66] from a computational point of view. Since its initial publication in 1966,
it has been extensively investigated, modified and compared to other approaches.
A good overview of FDTD’s properties, extensions and areas of application can be
found in [TH05]. Throughout the course of this thesis, the terms leapfrog update

scheme and FDTD are synonymously used.

2.3.2. Convergence

The most important property of a numerical scheme for solving a differential
equation is its discrete solution’s convergence towards the differential equation’s
analytical solution in the limit of vanishing mesh step sizes (spatially and temporally).
Since this is usually very hard to prove theoretically, the Lax-Richtmyer theorem
[LR56] provides alternative means to assure convergence. It states that a finite
difference method is convergent if and only if it is consistent and numerically stable.
Consistency means that a differential equation’s discrete approximation (and not
its solution) becomes exact in the limit of vanishing mesh step sizes. This is a much
weaker criterion than the solution’s convergence. For Maxwell’s grid equations it
follows directly from Taylor expansions of finite difference approximations. However,
an additional criterion, called numerical stability, has to be met.

2.3.2.1. Numerical Stability

An iterative algorithm is said to be numerically stable if small perturbations⁸ in
its variables do not get amplified from iteration to iteration but instead remain

8These include, for instance, round-off or truncation errors, which always occur in practical implementa-
tions due to limited precision floating point arithmetic.
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Chapter 2. Basic Principles

bounded in some sense [CN47]. An important prerequisite in order for space- and
time-discrete schemes to be numerically stable are some properties that concern
only the spatial discretization. They are commonly summarized under the term
spatial stability and comprise the validity of the matrix relations SC = 0, �S�C = 0
and C = �CT , as well as the positive definiteness of the material matrices Mε, Mμ

and Mσ [TW98]. These properties can be shown to hold in the scope of the Finite
Integration Technique [Wei96]. Therefore, we can turn towards the assessment of
numerical stability for the fully discrete leapfrog scheme. Several methods exist for
this purpose. The most widely employed one is Von Neumann stability analysis
[CN47]. Another technique, the so-called energy method [KC03; ESW04], takes a
different, more intuitive, approach on finding criteria for numerical stability.

Requirements on parameters of a numerical finite difference scheme in order
for it to be numerically stable are called Courant–Friedrichs–Lewy (CFL) conditions,
named after the authors of an article from 1928 [CFL28]. Although the notion of
FDTD does not come up for another 38 years, they already give a criterion for a
time step size on equidistant Cartesian meshes that ensures numerical stability:

Δt ≤ 1

c
"

1
Δx2 +

1
Δy2 +

1
Δz2

(2.29)

This condition, amongst others for non-Cartesian meshes, is deducible by means
of the energy method as well (cf. Section 3.1).

As demonstrated in Section 3.1 and Appendix B, closed-form CFL criteria only
result under consideration of simplifications. Consequently, they can only be
taken as an approximation to the largest stable time step size. These approximate
limits always lie within the region of numerical stability [TH05], thus leading
to a time step size that is smaller than necessary. An alternative, yet more
involved and computationally expensive way of calculating the exact limit is the
eigenvalue method [Doh92]. Due to the CFL criteria’s closed-form solution and their
obvious dependence on mesh and material parameters, they are preferred over the
eigenvalue method in the scope of this thesis.

2.3.3. Newmark-Beta

The algorithm presented in this section is first published in 1959 by Nathan Newmark
[New59]. His work deals with time stepping methods in the field of structural
dynamics. Since the governing partial differential equation is of elliptic type, the
results are straightforwardly transferable to the space discrete electromagnetic

26



2.3. Temporal Discretization

wave equation. The FIT formulation of the electromagnetic wave equation follows
directly from (2.13) and (2.15) and reads:

Mε

d2

dt2
�e+Mσ

d
dt

�e+CT M−1
μ

C�e = − d
dt

��
j s (2.30)

Note the close resemblance to its space-continuous counterpart (2.8). Newmark’s
approach is to replace �e and its derivatives by weighted sums of time-discrete
values:#

d2

dt2
�e
$(m)
→

�e(m+1) − 2�e(m) + �e(m−1)

Δt2
(2.31a)� d

dt
�e
�(m)→ γ�e(m+1) + (1− 2γ)�e(m) − (1− γ)�e(m−1)

Δt
(2.31b)

�e(m)→ β�e(m+1) +
%

1
2
− 2β + γ

&
�e(m) +

%
1
2
+ β − γ

&
�e(m−1) (2.31c)

The second time derivative’s replacement (2.31a) corresponds to a standard
central difference approximation. The approximated first time derivative (2.31b)
introduces the coefficient γ and also corresponds to a standard central difference
approximation if γ = 1/2. We replace the electric grid voltage �e(m) by a weighted
sum of itself and its neighbors with weighting factors γ and β . In the special
case γ= 1/2 and β = 0 the algorithm can be exactly transformed into the leapfrog
update scheme (2.28).

The introduced weighting factors have influence on accuracy, numerical stability
and energy conservation [KK73]. The choice of γ= 1/2 guarantees the algorithm to
be numerically stable, while at the same time not causing any artificial attenuation
[KK73]. Therefore, we opt for this choice throughout this thesis. The coefficient
β , on the other hand, changes the restrictiveness of conditions in order to achieve
numerical stability. Simultaneously, the resulting quantities’ accuracy is altered
[GN95].

The dispersion and stability analysis carried out in Appendix B demonstrates
that the employable time step size increases monotonically with growing β . Since
Newmark’s scheme is unconditionally stable for β ≥ 1/4 [New59], the coefficient
usually ranges between zero and 1/4. In that case, the time step size on a Cartesian
mesh equates to the following expression, as derived in Appendix B:

Δt ≤ 1

c
'

1− 4β
"

1
Δx2 +

1
Δy2 +

1
Δz2

(2.32)
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Chapter 2. Basic Principles

The implications of altering β on the algorithm’s accuracy are not predictable with
general validity because not only does it depend on the temporal discretization, but
also on spatial mesh properties and, of course, the structure to be simulated [TH05].
For a simplified case, results shown in Appendix B indicate that the simulation’s
error increases the larger β is chosen.

Furthermore, incorporating β causes the update scheme to be more involved.
Resulting from (2.30) and (2.31), it is given under neglect of conductivities and
currents:

�
Δt2β

ACC︷ ︸︸ ︷
M−1
ε

CT M−1
μ

C+I
�
�e(m+1) =

( − �Δt2 (1− 2β)ACC − 2I
�
�e(m)

− �Δt2βACC + I
�
�e(m−1)

(2.33)

Compared to the leapfrog update scheme (2.28), the Newmark-Beta scheme in
its pristine formulation consists of only one equation and only electric grid voltages
occur. However, in order to calculate the most recent voltage we need to consider
two past values instead of one. It is no longer an explicit scheme because a linear
system of equations has to be solved in each update cycle. A visualization of the
algorithm is shown in Fig. 2.11.

t
�e(m−1) �e(m) �e(m+1) �e(m+2) �e(m+3) �e(m+4)

Figure 2.11.: Two (nonconsecutive) implicit Newmark-Beta update steps for the calculation of
�e(m+1) and �e(m+4).

We can rewrite it in terms of a scheme consisting of separate update equations
for electric and magnetic grid voltages:

�

h
(m+1/2)

=
�

h
(m−1/2) −ΔtM−1

μ
C
�
β�e(m+1) + (1− 2β)�e(m) + β�e(m−1)

�
(2.34a)

�e(m+1) = �e(m) +ΔtM−1
ε

 
CT�h

(m+1/2) − ��j (m+1/2)
!

(2.34b)

Note the close resemblance to the conventional leapfrog scheme (2.28), from
which the Newmark-Beta method results by replacing the electric grid voltage
inside the

�

h-update by (2.31c).
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CHAPTER3
Time Domain Methods
on Cylindrical Meshes

The local material coefficients Mε , Mμ and Mσ transform edge-allocated grid voltages
into facet-based grid fluxes. In Section 2.2.2 we briefly introduce the concept of
staircase approximations in order to obtain expressions for the material coefficients
that are implementable without a priori knowledge about the electromagnetic fields.
Chapter 4 assesses possibilities to effectively incorporate field information in order
to circumvent staircase approximations. A theoretical investigation of the staircase
approximation’s drawbacks can also be found there in Section 4.2.1.

(a) Circular structure. (b) Cartesian mesh representation. (c) Cylindrical mesh representa-
tion.

Figure 3.1.: A circularly shaped material distribution and its mapping to computational
meshes. Note that the structure effectively changes its shape in its Cartesian mesh
representation using the staircase assumption. It remains completely unaltered
on the cylindrical mesh.

This chapter, on the other hand, deals with the abandonment of Cartesian meshes
in favor of cylindrical mesh systems that meet the prerequisite of entirely filled
mesh cells inherently for certain material distributions. As depicted in Fig. 3.1c, a
cylindrical mesh conforms with a circularly shaped object’s boundaries in a very
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Chapter 3. Time Domain Methods on Cylindrical Meshes

favorable way, thus rendering the alteration¹ of the structure in order to fit the
Cartesian mesh (cf. Fig. 3.1b) dispensable.

From a practical point of view, cylindrical meshes are more elaborate to implement
(cf. Section 2.2.5) than Cartesian meshes. Therefore, if the staircase approximation
can not be prevented by either mesh type to a certain extent, the Cartesian mesh is
likely to offer a better tradeoff between speed and accuracy. Nevertheless, a broad
range of practical examples (cf. Chapter 5) exhibit a material distribution that is
well suited for discretization by a cylindrical mesh, which is why its properties and
suitability for incorporation in the Finite Integration Technique are investigated in
the course of this chapter.

As long as cell shape and characteristic topology are properly accounted for, any
numerical simulation method based on the FIT is completely independent of the
underlying mesh system from an algorithmic point of view. Publications on these
details for cylindrical meshes are available for a long time [Wei83; Fus90; DW94;
Deh93]. Their mere implementation is, therefore, manageable straightforwardly.
The actual problem with cylindrical meshes and the justification for dedicating them
an entire chapter, is their dependence on the nonuniform metric coefficient hϕ = �.
As shown in detail in the following section, the resulting small azimuthal mesh step
sizes �Δϕ for � near zero (visible in Fig. 3.1c) impose severe practical restrictions,
particularly to FDTD-related time domain simulations. Throughout this chapter we
provide methods to address this issue and to compensate the inherent drawbacks
of cylindrical meshes.

3.1. Criteria for Numerical Stability

Section 2.3.2.1 introduces the concept of CFL conditions on the time step size of
a time integration scheme for ensuring numerical stability. In the following, the
energy method [KC03; ESW04] is employed to derive adapted stability criteria
for FDTD-like algorithms on cylindrical meshes. The method is based on the
assumption that the discrete electromagnetic energy [SW01],

E(m) =
1
2

%
�e(m)

T
Mε

�e(m) +
��

b
(m−1/2)T

M−1
μ

��

b
(m+1/2)

&
(3.1)

stays constant in the absence of sources and losses:

E(m+1) = E(m) ∀m ∈ � (3.2)
1The effect of the staircase approximation in Fig. 3.1b is visualized more drastic than it would be in

practice. Instead of entirely filled cells the FIT also enables triangular (2D) or pyramidal (3D) fillings
[Wei79].
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3.1. Criteria for Numerical Stability

We use the leapfrog scheme’s
�

h-update (2.28a) to express (3.1) in terms of only
two instead of three different time instances:
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��

b
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��
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μ
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μ

,
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M

)
�e(m)

��

b
(m−1/2)

*
(3.3c)

For clear disambiguation in the following, we name and color the contributing
terms in (3.3b) as follows: electric energy, magnetic energy and mixed energy. Note
that the mixed energy does not emanate from a physically tangible background, but
instead accounts for the temporal misalignment between the electric and magnetic
energy. The definition (3.1) satisfies (3.2) formally based on the leapfrog method
(2.28), which is demonstrated in [ESW04]. However, it remains to be shown that
(3.1) defines a quantity that represents a physically meaningful energy in the
context of the given mesh system. Specifically, E(m) needs to be a non-negative

quantity, regardless of �e(m) and
��

b
(m−1/2)

[KC03]. From (3.3c), we can deduce that
this is always the case if the symmetric matrix M is positive-semidefinite. Instead
of verifying this for M directly, which is infeasible in practice due to its large size
6Np × 6Np, positive-semidefiniteness is assessed for each mesh cell k separately.
Therefore, (3.3c) is evaluated in a cell-wise fashion under consideration of the
local energy E

(m)
k and the matrix Mk, which incorporate only those electric grid

voltages and magnetic grid fluxes that are assigned to edges and facets enclosing
cell k (for instance cf. Fig. 3.2). Only the cell k that imposes the most severe
restrictions in order to achieve positive-semidefiniteness locally determines under
which circumstances numerical stability is achievable in a global sense [KC03]. For
a Cartesian mesh system, this leads to the well-known CFL criterion (2.29) [KC03;
ESW04].

In order to enable a cell based examination, the material coefficients in (3.3b)
are disassembled into their facets’ areas, their edges’ lengths and their averaged
permittivities and permeabilities according to (2.20a). Only those parts which
are contained by the respective cell are taken into account. As an example for
one coefficient k of Mε, i.e. �Ak 〈ε〉�Ak

L−1
k , where 〈ε〉�Ak

stands for the averaged
permittivity across the dual facet, the implications are as follows. Both �Ak and Lk

have to be evaluated with respect to the actual cell’s geometry, i.e. in cylindrical
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Chapter 3. Time Domain Methods on Cylindrical Meshes

coordinates. �Ak intersects a total of four cells, so only its respective subarea inside
cell k is taken. Lk is not intersected, so it is taken entirely. Instead of 〈ε〉�Ak

, we
use the cell k’s permittivity ε. Note that for Mμ’s contribution the dual edge is
intersected and the primary facet is taken as a whole.

Due to basically three different cell shapes in cylindrical meshes this procedure is
performed separately for each unique cell geometry in the following sections. For
the sake of brevity, we omit the time step indices.

3.1.1. Standard 3D Mesh Cell

A cylindrical mesh excluding the z-axis (cf. sections 2.2.5.1 and 2.2.5.2) consists
only of hexahedral cells shaped like the one depicted in Fig. 3.2 and contributes
the energy given in Fig. 3.2c. Following the procedure outlined in [KC03], this
expression is transformed into a matrix notation of the form Ek = xTMkx, whereMk

is a symmetric 18×18-matrix. The vector x contains only those electric grid voltages
and magnetic grid fluxes that belong to the cell k (xT =

-
�e1, · · · ,�e12,

��
b1, · · · ,��b6

.
).

Its coefficients are the fraction terms in Fig. 3.2c.
In order to determine under which circumstances Mk is positive-semidefinite,

Sylvester’s criterion [HJ12] is evaluated. It states that a Hermitian matrix is positive-
semidefinite if and only if all its leading principal minors² are non-negative, i.e.
greater or equal to zero. This leads to 18 relations which need to be solved for the
time step size Δt. The most restrictive criterion, which in turn satisfies all other
relations, is the sought for CFL limit.

Unfortunately, due to a cylindrical cell’s irregular shape, these equations are
much harder to derive and to solve symbolically than in the Cartesian case. We
make use of computer algebra software (e.g. Maxima [Max15] or Mathematica
[Wol10]) to carry out the above mentioned tasks and, ultimately, yield the desired
stability criterion:

Δt ≤ 1

c
"

1
Δ�2 +

1��2
minΔϕ

2 +
1
Δz2

(3.4)

It is very similar to the Cartesian CFL condition (2.29) in its appearance. If Δ�,
Δϕ and Δz or the speed of light c are not equal for each cell, that cell’s values
leading to the smallest time step size have to be considered. Correspondingly, ��min

is the dual radius at the innermost cell’s center, as depicted in Fig. 3.2.

2A minor is the determinant of an N × N matrix’s submatrix that results from removing several rows and
columns. It is called principal minor if the removed rows have the same index as the removed columns.
Finally, it is called leading principal minor if the removed rows and columns are furthermore adjacent
and contain the N th row and column.
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(b) Magnetic grid fluxes.
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(c) Contribution to total energy.

Figure 3.2.: The kth cell of a cylindrical mesh apart from the z-axis with arbitrary indexing of
grid quantities.
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A similar criterion is found in the literature [CF94], only instead of the dual
radius �� the (smaller) primary radius � is used. This has two disadvantages. First,
the determined time step size is smaller than it would have to be according to (3.4).
Second, the case of a mesh including the z-axis (� = 0) is not included as a special
case, but instead leads to division by zero. By means of (3.4), however, that special
case follows for ��min = Δ�/2:

Δt ≤ 1

c
"

1
Δ�2 +

4
Δ�2Δϕ2 +

1
Δz2

(3.5)

It is also directly deducible by means of the energy method using a cell geometry
and cell-wise energy definition as shown in Fig. 3.3. Furthermore, it is given in
[Dib+99] in the same way.

3.1.2. Body of Revolution Mesh Cell

A CFL criterion for quasi-2D modal cylindrical meshes that rely on the body of
revolution assumption (cf. Section 2.2.5.4) is given in [Deh93; CW07]:

Δt ≤ 1

c
3

1
Δ�2 +

m2
max
Δ�2 +

1
Δz2

(3.6)

As expected, it depends on the highest azimuthal mode order mmax instead of
the azimuthal step size Δϕ. The formula’s lack of radial dependence indicates
that it is intended for a mesh including the z-axis, similar to (3.5) in the 3D case.
Body of revolution meshes leaving out a certain domain around the z-axis are
useful for instance for discretizing coaxial cables. In order to obtain a more general
CFL criterion for that case, the energy method is employed once more. The cell
geometry is schematically visualized in Fig. 3.4a and 3.4b. Note that even though
the mesh is two-dimensional, �- and z-directed facets have finite area, implemented
by Δϕ = 1. The energy per cell and azimuthal mode m is then accounted for by
the formula given in Fig. 3.4c. We use computer algebra software for assessing
the positive-semidefiniteness of the resulting matrix Mk,m by means of Sylvester’s
criterion and obtain the following CFL criterion:

Δt ≤ 1

c
4

1
Δ�2 +

m2
max

4��2
min
+ 1
Δz2

(3.7)

Again, the special case of ��min = Δ�/2 leads directly to (3.6). This generalized
formula is not to be found published elsewhere to the best of the author’s knowledge.
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(c) Contribution to total energy.

Figure 3.3.: The kth cell of a cylindrical mesh adjacent to the z-axis with arbitrary indexing of
grid quantities.

35



Chapter 3. Time Domain Methods on Cylindrical Meshes

�e 1

�e 2

�e
3

�e
4

�e
5

�e
6

� e
7

� e
8

k

(a) Electric grid voltages.

�
b 1

�
b 2

�
b
3

� b
4

� b
5

k

(b) Magnetic grid fluxes.
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(c) Contribution to total energy.

Figure 3.4.: The kth cell of a body of revolution mesh with arbitrary indexing of grid quantities.
We omit the mode index m of field quantities for the sake of brevity. The prime
stands for complex conjugation.
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3.1.3. Practical Implications

If a simulation’s frequency range is given, a typical measure for the quality of a mesh
(regardless if Cartesian or cylindrical) is the number of mesh lines that lie within the
lowest expected wavelength. This measure is often called lines per wavelength, or
the spatial sampling rate Ss. If we assume a homogeneous computational domain,
a Cartesian mesh generator is able to choose all three mesh step sizes Δx , Δy and
Δz similarly large. A cylindrical mesh generator, on the other hand, has to consider
the metric factor � in the azimuthal mesh step size �Δϕ, while Δ� and Δz are
radially independent. In order to satisfy the wavelength criterion anywhere in the
computational domain, an azimuthally oversampled mesh near the z-axis has to be
accepted.

Besides the fact that this increases the degrees of freedom involuntarily, it also
causes the previously derived CFL conditions to yield much smaller time steps
because only the smallest step sizes in each direction are taken into account.
Disregarding their more elaborate implementation, this is the main reason why
cylindrical meshes are less frequently used than their Cartesian counterparts since
a smaller time step size requires higher computational effort due to an increased
number of update cycles required to cover a given time interval. This effect also
arises in Cartesian meshes when local geometric details along one coordinate
direction find consideration.

Furthermore, the above mentioned inherent inhomogeneity of a cylindrical mesh
is also disadvantageous in terms of numerical accuracy. In order to quantitatively
assess the spatial discretization error, a mesh representation of the continuous
dispersion relation in cylindrical coordinates [Jac98] needs to be investigated. Such
a discrete dispersion relation is given in [Pet00]. However, due to its explicit
dependence on the radius it only permits to draw conclusions for individual cells
and not for the entire computational domain, as desired. The discrete dispersion
relation for Cartesian meshes, on the other hand, allows for such an analysis because
the mesh can be constructed homogeneously. Therefore, the origin of the discussed
inaccuracy is reasoned for heuristically by means of the dispersion analysis carried
out in Appendix B for equidistant Cartesian meshes.

We can infer from Figure B.1 and (B.8) that a Cartesian FDTD method’s error
increases the more its time step size deviates from the largest stable step size the
CFL criterion permits. More precisely, the ratio of temporal to spatial sampling rate
should be as close to one as possible.

Cylindrical meshes, as stated above, are inherently not equidistant. Their CFL
criterion is usually limited by the innermost cells (cf. (3.4)). Conversely, this means

37



Chapter 3. Time Domain Methods on Cylindrical Meshes

all other cells, especially those at the outer perimeter, would permit a larger time
step size than the one they are subjected to. The local ratio of temporal to spatial
sampling rate is clearly higher than that of cells near the z-axis. If we assume
that the outcome of the Cartesian dispersion analysis is qualitatively transferable
to cylindrical meshes, it stands to reason that the outermost cells introduce a
significant amount of error. This assumption is justifiable because with growing
radius � a cylindrical mesh cell’s shape more and more equals that of a Cartesian
cell. It is, furthermore, verified in Section 3.2.4 by means of a numerical example.

In conjunction with the previously described increase in computational effort,
it becomes obvious that cylindrical meshes are not unconditionally suited as the
foundation for conventional FDTD methods. In order to address this issue, the
following section introduces and discusses means that allow FDTD simulations on
cylindrical meshes to drastically increase the employable time step size.

3.2. Compensation of Degraded Time Step Size

According to the previous section’s findings, we need to circumvent the short
azimuthal edges of a cylindrical mesh to degrade the time step size in order to make
time domain simulations on cylindrical meshes practically feasible and reasonably
accurate. There are two basic approaches in order to achieve this.

Figure 3.5.: Cylindrical mesh with spatial
subgridding.

First, the spatial mesh can be altered
in a way that keeps all azimuthal edges
approximately at the same length, for ex-
ample by using a subgridding technique (cf.
[ZYM91] for general FDTD subgridding and
[Lie+13] for its application to cylindrical
meshes). An exemplary mesh constructed
by means of this technique is depicted in
Fig. 3.5. The need for spatial field interpo-
lation at the interfaces between differently
coarse domains introduces unwanted nu-
merical reflections that usually deteriorate
accuracy [TW96]. Furthermore, numeri-
cal stability can become an issue since the
necessary interpolations might violate the
conditions given in Section 2.3.2 for spatial
stability [TW96]. Standard CFL criteria are
also no longer valid [TW96].
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3.2. Compensation of Degraded Time Step Size

Second, if the spatial mesh is left unaltered, we can modify the time integration
scheme. A technique published in 1990 suggests temporal subgrids [Fus90]. That
means the global time step size is chosen according to the coarsest mesh cells. In
order to avoid this large time step size to cause instability when being applied to
finer mesh cells, these cells are treated in a subcycle consisting of two or more field
updates with appropriately diminished time step size. However, due to temporal
interpolation at interfaces between regions of different time step sizes, the same
disadvantages that occur with spatial subgridding exist here, too.

In the following, two distinct methods to overcome severe time step limitations
without subgrids are presented. A third method emerges from combining the two
initial ones appropriately. Initially, their increase in computational effectivity and
accuracy is theoretically motivated. By means of a common numerical example (cf.
Section 3.2.4) all three approaches are compared against each other and shown to
comprise specific advantages and disadvantages in terms of applicability, accuracy,
speedup, and memory requirements. Simulation results of practically more relevant
structures can be found in Chapter 5.

3.2.1. The Coupled Multi-Mode Method

The so-called Multi-Mode method is initially introduced in [Deh93; DW94] to
improve the accuracy, speed and memory requirements of solving electromagnetic
problems on cylindrical meshes in the frequency domain. The system matrix’s
condition number is typically very large [Deh93; DW94]. A method to overcome
the occurrence of a large condition number in the frequency domain also qualifies
for time step enhancements in the time domain. The reason is the system matrix’s
largest eigenvalue, which stands in a direct relationship to its condition number.
It behaves inversely proportional to the largest stable time step size for an FDTD
simulation [Doh92]. Reducing the condition number is thus equivalent to increasing
the time step size. Therefore, a time domain method based on the Multi-Mode
approach is introduced in this section.

In terms of numerical stability, the worst case, i.e. the smallest time step size,
usually occurs when a cylindrical mesh includes the z-axis (cf. (3.4)). Since
this is also the most relevant case from a practical point of view, the method is
derived with respect for this special case. Preliminary, we assume a rotationally
symmetric structure. The spatial discretization can be carried out either on a fully
three-dimensional mesh (Section 2.2.5.3) or on a multi-modal two-dimensional
body of revolution mesh (Section 2.2.5.4). Their respective maximum time step
sizes Δt3D and ΔtBOR are determined by (3.5) and (3.6). We stipulate that the
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Chapter 3. Time Domain Methods on Cylindrical Meshes

time step size for the BOR approach shall be larger than that of the 3D method and
yield a criterion for the highest azimuthal mode order:

ΔtBOR >Δt3D ⇐⇒ mmax <
Nϕ
π

(3.8)

Hence, in order for the body of revolution mesh to impose a weaker stability
criterion than the three-dimensional mesh, the highest azimuthal mode order needs
to be smaller than the number of nodes in ϕ-direction divided by π. The smaller it
is, the larger the time step gets.

This result has to be interpreted in the context of practical applications. Usually,
the field distribution of rotationally symmetric real-world problems is smooth³.
Concerning its expansion into azimuthal modes (2.21), high order modes are
likely to contribute only insignificantly to the field’s 3D representation. Therefore,
the maximum mode order mmax can often be chosen reasonably small, without
introducing substantial error⁴. Influenced by a given spatial sampling rate Ss, the
number of ϕ-nodes Nϕ is usually so high that (3.8) is easily fulfilled.

Section 3.2.1.3 provides a technique to automatically detect reasonably negligible
azimuthal modes in the course of a time domain simulation.

3.2.1.1. Radial Domain Decomposition

Recall that up to this point the assumption of rotationally symmetric objects has
to be valid. This is a very severe restriction because in practice only few objects
are bodies of revolution or strong simplifications would have to be applied. For
that reason, [DW94] proposes splitting the computational domain radially in two
parts: the Multi-Mode domain ranging from � = 0 up to a certain radius �BOR and
the three-dimensional domain from �BOR to �max. This allows for an advantageous
compromise between the requirement of rotational symmetry, which now only
needs to hold for � < �BOR, and the employable time step size. Even though
deviations from the body of revolution assumption are only permissible in the outer
domain (� ≥ �BOR), the scope of applications is broadly extended with regard to
spatial discretization. Fig. 3.6 demonstrates the decomposition of the computational
domain and the different mesh types by means of a practical example that is treated
more detailed in Section 5.1.1.

3In this context, we refer to a field distribution as smooth if it is sampled by the spatial mesh significantly
more often than the Nyquist-Shannon sampling theorem [Kot33; Sha49] demands.

4As a side-effect, the number of unknowns is reduced compared to a fully three-dimensional mesh. It can
be reduced even further by treating the components �eϕ,m and

�
hϕ,m only implicitly (cf. Section 2.2.5.4).

40



3.2. Compensation of Degraded Time Step Size

�BOR

BOR
3D

Figure 3.6.: Illustration of radial domain decomposition for Coupled Multi-Mode simulations
at the example of a microgear resonator. Detailed information on this structure
and its numerical treatment are given in Section 5.1.1.

Section 2.2.5.4 provides means to transform a discrete field representation on
a three-dimensional cylindrical mesh into a set of discrete azimuthal modes and
vice versa. Those ambiguous field components that lie exactly on the interface
� = �BOR are arbitrarily assigned to belong to the Multi-Mode domain. The electric
interface components �eϕ,m and �ez,m serve as auxiliary electric grid voltages �eaux

for the three-dimensional domain after transformation. Conversely, the magnetic
components at ��BOR (

�

hϕ and
�

hz) act as auxiliary magnetic grid voltages
�
haux,m

for the quasi two-dimensional region after transformation. ��BOR stands for the
dual interface radius, i.e. ��BOR = �BOR + Δ�/2. Fig. 3.7 visualizes the assignment
and required field exchange. We implement the chosen assignment by an electric
boundary condition in the three-dimensional domain at � = �BOR. No boundary
condition is imposed to the body of revolution mesh⁵.

In case the simulated object offers rotational symmetry across its entire radial
extent, the domain interface can be set to �BOR = �max and a conventional BOR
method without domain coupling results. Analogously, we obtain a purely three-
dimensional method for �BOR = 0.

5Dual edges and facets are not shortened but instead virtually reach into the 3D domain.
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�BOR

��BOR

�BOR

�
h�

�e z

�eϕ

�
hϕ

�
hz

�e�

Figure 3.7.: The (expanded) interface between the Multi-Mode domain and the 3D region
with highlighted field assignment. The red arrows represent the transfer of electric
and magnetic grid voltages from one mesh to the other in order to obtain auxiliary
quantities (dashed arrows) for coupling.

3.2.1.2. Coupled Update Scheme

Time domain simulations of the entire computational domain decompose into
separate time stepping schemes for each subdomain that are mutually coupled by
auxiliary grid voltages at the domain interface. A possible implementation is given
in Algorithm 1.

The fact that the Multi-Mode transformation matrix’ inverse results by Hermitian
transposition (cf. (2.23) and (2.24)) preserves the required duality properties for
spatial stability (cf. Section 2.3.2). Since each domain implies its own CFL condition,
the largest common time step size is chosen for both schemes:

Δt ≤min
�
max (ΔtBOR) , max

�
Δt3D

��
(3.9)

Note that the 3D-region is now located at the outer perimeter starting at � = �BOR,
which weakens its implication on the time step size to:

Δt3D ≤ 1

c
3

1
Δ�2 +

1��2
BORΔϕ

2 +
1
Δz2

(3.10)

Given fixed spatial mesh step sizes Δ�, Δϕ and Δz, the objective of maximizing
the time step size Δt is realized by choosing �BOR as large as possible in (3.10),
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Algorithm 1 Field update cycle for coupled BOR/3D simulations.
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aux,m

�− ��j (m+1/2)

m

!
end for

while at the same time selecting the highest azimuthal mode order m as low as
justifiable in (3.6). However, if one of these optimization parameters reaches a
practical limit, further tuning the other parameter does not increase the global time
step size. For example if �BOR has reached its upper limit, the choice of a mode
order m smaller than Δ�

�BORΔϕ
has no influence on numerical stability, which follows

directly from (3.8) and (3.9). Nevertheless, we may want to let one domain’s CFL
limit exceed that of the respective other one to reduce the total degrees of freedom
and the computational effort.

3.2.1.3. Automated Mode Selection

As pointed out in (3.8), the Multi-Mode method can only improve the time step size
if not every single mode up to the theoretical limit mmax = Nϕ/2 (cf. Section 2.2.5.4)
is required to obtain accurate results. Unfortunately, the a priori estimation of
the highest necessary azimuthal mode order requires extensive knowledge of the
simulated object and experience. In order to accomplish this task without user
interaction, an automated approach is described in the following.

For that purpose, a modal energy definition, similar to the one introduced in (3.1)
and Fig. 3.4c, is introduced:

E(m)
m
=

1
2

 
�e (m)
m

H�
d
(m)
m
+
�
h
(m+1/2)
m

H�
b
(m+1/2)
m

!
(3.11)

43



Chapter 3. Time Domain Methods on Cylindrical Meshes

Note that opposed to the typical staggered allocation according to (3.1), both
magnetic values are situated at time step (m+ 1/2) by this definition. Besides being
derived only on a per cell basis, the formula given in Fig. 3.4c leads to the conclusion
that the staggered allocation would otherwise cause the energy to be complex,
which would complicate further considerations⁶. The total approximate energy in
the rotationally symmetric domain is:

E
(m)
BOR =

mmax∑
m=0

E(m)
m

(3.12)

Since every confined object has a discrete set of resonance frequencies, it is
reasonable to assume that after a certain period of time the field pattern is
dominated by a superposition of resonant modes. In practical applications that are
well suited for simulation on a cylindrical mesh, these so-called eigenmodes usually
decompose into a small set of low order azimuthal modes without significant loss
of accuracy. By that reasoning, the energy of some azimuthal modes (especially
those with high mode order), which has become quantifiable by (3.11), is expected
to contribute only insignificantly to an eigenmode’s total energy.

The tradeoff for detecting each azimuthal mode’s energy is that initially each
theoretically existing azimuthal mode has to be taken into consideration, which
lets the employable time step size get much smaller than necessary⁷. As soon as
the excitation signal’s continuous energy spectrum is focused at the structure’s
eigenfrequencies, those azimuthal modes, which are not essentially contributing
to resonant fields in terms of energy can be detected and taken out of the update
scheme. Subsequently, we enable the time step size to be increased. For this
purpose, a threshold ratio is defined, below which an azimuthal mode’s energy
contribution to the total energy (3.12) is considered negligible.

3.2.2. The Hybrid Newmark-Beta Method

The previously introduced Coupled Multi-Mode algorithm requires some prerequi-
sites to be met, which limit its general applicability. In this section, a different time
domain algorithm that circumvents the time step size on cylindrical meshes from
being unfeasibly small is introduced.

6Nevertheless, the notion of complex modal energy is permissible, because it is an abstract, auxiliary
quantity rather than a physically meaningful energy. The sum of all mode energy terms always yields a
real value, which can be shown by inserting (2.24) into (3.11).

7As predicted by (3.8), the time step size might become even smaller than it would be for an equivalent
three-dimensional mesh.
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It is related to the Newmark-Beta time stepping scheme described in detail
in Section 2.3.3. Newmark-Beta’s main advantage is its numerical stability’s
manipulability by the parameter β . The higher it is chosen, the lower restrictions
on the time step size follow (cf. (2.32)). Ultimately, a value of β = 1/4 makes the
resulting algorithm unconditionally stable. At the same time, the results’ deviation
from those obtained by conventional FDTD (which results for β = 0) increases (cf.
Appendix B). The obvious approach of using a Newmark-Beta scheme with β = 1/4

on a cylindrical mesh is possible in principle and indeed solves the time step size
problem. But it would most likely deteriorate accuracy beyond acceptable levels.
Additionally, the computational effort per update cycle would be much higher than
for a standard leapfrog scheme because of Newmark-Beta’s implicitly formulated
update equations (2.34).

A very reasonable compromise between employable time step size, simulation
error and computational effort can be achieved by using the Newmark-Beta concept
only for those mesh elements which are restrictive in terms of numerical stability
and to no longer aim for unconditional stability. Instead, the scheme about to be
derived is supposed to obey a CFL limit that is comparable to that of Cartesian
FDTD under the assumption of a common spatial sampling rate Ss.

3.2.2.1. Derivation by Curl Operator Splitting

We choose the radial and longitudinal spatial mesh step sizesΔ� andΔz to directly
satisfy the lines per wavelength criterion. However, the term that describes the
influence of ϕ-directed dual edge lengths (��Δϕ) varies with the radius and can
satisfy the criterion only at the outer perimeter without violating it elsewhere.
Inspired by a procedure described in [ZW02], we decompose the curl matrix C to
deal with spatial derivatives separately along specific directions:

C=

⎡
⎣ 0 −Pz Pϕ

Pz 0 −P�−Pϕ P� 0

⎤
⎦=

⎡
⎣ 0 −Pz 0

Pz 0 −P�
0 P� 0

⎤
⎦

︸ ︷︷ ︸
C�z

+

⎡
⎣ 0 0 Pϕ

0 0 0
−Pϕ 0 0

⎤
⎦

︸ ︷︷ ︸
Cϕ

(3.13)

By that measure the Newmark-Beta method can be applied selectively to those
components that are actually responsible for the time step degradation, i.e. those
subjected to finite differentiation by Cϕ . Starting from the conventional leapfrog
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update scheme (2.28), the curl operator splitting is incorporated:

�

h
(m+1/2)

=
�

h
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μ

�
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�e(m) +Cϕ
�e(m)
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(3.14a)

�e(m+1) = �e(m) +ΔtM−1
ε

 
CT�h

(m+1/2) − ��j (m+1/2)
!

(3.14b)

In close analogy to (2.34), we apply the Newmark-Beta extension (2.31c), but this
time only to the electric grid voltage vector that is subjected to Cϕ . The following
modified

�

h-update results from (3.14a):

�

h
(m+1/2)

=
�

h
(m−1/2) −ΔtM−1

μ

�
C�z

�e(m) +Cϕ
�
β�e(m+1) + (1− 2β)�e(m) + β�e(m−1)

� �
(3.15)

In combination with (3.14b) it is henceforth referred to as the Hybrid Newmark-

Beta scheme. Note the dependence of
�

h
(m+1/2)

on the grid voltage vector �e(m+1),
which is not yet available by the time it is needed. Therefore, just like conventional
Newmark-Beta, the resulting scheme is implicit. Its numerical treatment involves
the solution of linear systems of equations and is further described in Section 3.2.2.4.

3.2.2.2. Comparison with Existing Approach

An article published by Chen and Wang [CW11] in 2011 comprises a so-called Hybrid

Implicit-Explicit FDTD algorithm, which, albeit being derived for Cartesian meshes,
facilitates a very similar task. Like the Hybrid Newmark-Beta method, their scheme’s
purpose is to prevent one spatial mesh direction from taking influence on the CFL
limit. In fact, we can formally prove both algorithms’ equivalence to a certain
extent [KS13d]. Chen and Wang do not make use of Newmark’s approach and rely
on a component-wise temporal allocation⁸. However, the Hybrid Implicit-Explicit
method yields the exact same results, as far as the unusual temporal allocation
permits direct comparison.

While the algorithm might not be slower than the one proposed in this thesis, it
complicates the application of well-known concepts related to FDTD simulations,
like for instance absorbing boundary conditions (cf. Appendix D). Furthermore,
knowledge about general properties of Newmark-Beta, like accuracy and numerical
stability, is hard to take advantage of. An important modification of the algorithm
that arises specifically from its Newmark-Beta background is provided in the
following section.

8Applied to the problem at hand, the ϕ-components �eϕ and
�
hϕ are allocated at half time steps (m+ 1/2),

while all other components are assigned to full steps (m).

46



3.2. Compensation of Degraded Time Step Size

3.2.2.3. Stability Limit and Radially Adjusted β

As described in [CW11] and adapted to the Hybrid Newmark-Beta algorithm, the
time step size obeys the following CFL criterion⁹:

Δt ≤ 1

c
3

1
Δ�2 +

1−4β��2
minΔϕ

2 +
1
Δz2

(3.16)

It is in close correspondence to (2.32). Only the factor
'

1− 4β is now selectively
applied to the azimuthal term, instead of to the entire square root. The choice of
β = 1/4 would immediately remove the problematic restriction on the employable
time step size for cylindrical meshes. But, as reasoned for in Appendix B, this choice
is likely to be undesirable in terms of accuracy. As a remedy, it is no longer opted
for eliminating the azimuthal term’s influence entirely. Instead, we permit it to be
as large as the radial term’s. According to (3.16), this is achieved by the following
choice:

β =
1
4
− ��2

minΔϕ
2

4Δ�2
(3.17)

In practice, this leads to values that are only very slightly smaller than 1/4. In
the next step, the fact that this still undesirably large choice of β is only required
locally by the innermost cells of a cylindrical mesh is accounted for. Therefore, we
evaluate the parameter β in dependence of the radial mesh index ξ, i.e. for each
radial mesh layer separately:

βξ =
1
4
− ��2

ξ
Δϕ2

4Δ�2
(3.18)

Since βξ is no longer valid globally for the entire mesh, it is arranged in a diagonal
matrix Mβ according to the canonical indexing scheme (2.11). This matrix replaces
the scalar value β in (3.15). If the ϕ-edges at the outer perimeter are chosen to
have the same length as the radial mesh step size, i.e. �maxΔϕ = Δ�, β ranges
approximately between 1/4 and 0. Informally speaking, it facilitates a tradeoff
between complete neglect of the azimuthal term in the CFL condition (3.16) and full
consideration like in conventional FDTD. The numerical example in Section 3.2.4
shows that this method’s results are generally more accurate.

The notion of a spatially adjusted β straightforwardly extends to all other
Newmark-Beta applications, including Cartesian meshes. It has also been used for a
unified mathematical description of coupled FEM-FDTD algorithm in [RB02], where

9For a conversion between β and the parameter used in Chen and Wang’s publication, see [KS13d].
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the Finite Element part of the computational domain is subject to an unconditionally
stable update scheme with β ≥ 1/4 and the FDTD part results for β = 0. However,
using it in an edge-based fashion with larger β for shorter edges has not been
reported before to the best of the author’s knowledge.

3.2.2.4. Semi-Implicit Update Scheme

Because the curl operator splitting subjects only certain field components to the
Newmark-Beta extension, it is advisable to consider (3.15) and (3.14b) decomposed
into the three coordinate directions:
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Only two ((3.19a) and (3.19c)) of six component updates rely on grid voltages
that are not computed yet in the respective update cycle. At first glance this also
seems to be the case for the update equation (3.19b). However, we can postpone
its execution until the updates of

�

h� and
�

hz are completed. The dependence on
unavailable components is resolved by inserting (3.19f) into (3.19a) and (3.19d)
into (3.19c), which results in updates for �e� and �ez that involve the solution of
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linear systems of equations:
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The system matrices are:

A� = I+Δt2M−1
ε,�PT

ϕ
M−1
μ,zPϕMβ ,� (3.21a)

Az = I+Δt2M−1
ε,zP

T
ϕ
M−1
μ,�PϕMβ ,z (3.21b)

Opposed to a conventional Newmark-Beta approach where all six field components
rely on computationally expensive linear systems of equations, the hybrid approach
with only two implicit component updates is generally much more efficient in terms
of execution time per update cycle. Whether it is even more efficient than an entirely
explicit standard leapfrog scheme depends on several factors. Generally speaking,
the following circumstances positively influence the outcome of a comparison in
favor for the Hybrid Newmark-Beta method:

• A very dense mesh around the z-axis which would deteriorate a standard
FDTD method’s time step size but leaves the hybrid algorithm’s step size
unaffected.

• Simulations that cover long time intervals. They can be realized by signifi-
cantly less time samples.

• The existence of efficient matrix factorizations that permit the vast amount
of linear systems of equations to be solved fast by means of direct methods.

3.2.2.5. Performance Enhancement of Implicit Component Updates

The last point in the previous itemization is specifically addressed and investigated
in this section. The ability to speed up the solution of linear systems of equations
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for implicit component updates is crucial for the overall algorithm’s performance
because a the solution of a linear system of equations consumes much more time
than an explicit component update.

Direct solvers, like for example those based on Gaussian elimination, usually
attempt to factorize the system matrix into a lower and an upper triangular matrix
before actually solving them. Such a matrix decomposition is called LU factorization
[Dem97]. It is the time and memory consuming part of the solution process. Based
on the triangular LU decomposition, the final result is obtained by computationally
efficient forward and back substitutions [Dem97].

The Np × Np system matrices A� and Az (from (3.21)) remain unchanged in each
update cycle. This allows us to factorize them before we start the time loop so that
only forward and back substitutions have to be performed in order to accomplish
the implicit component updates.

However, the LU decomposition of a sparse matrices, like A� and Az , is not sparse in
general. Especially for large numbers of unknowns, this would lead to factorizations
that exceed the available computer memory. The systems would become practically
unsolvable by direct methods like Gaussian elimination and iterative methods like
conjugate gradients or generalized minimal residuals [Dem97] would be preferred.
Fortunately, the following closer investigation of Hybrid Newmark-Beta’s system
matrices reveals that they have very beneficial properties with regard to their LU
factorizations.

Their definition 3.21 and the Finite Integration Technique’s tendency to create
simply-structured, banded operators, allows for investigating the matrices’ sparsity
pattern¹⁰. Based on a given mesh comprising the full azimuthal range of 2π (Pϕ
takes the shape shown in Fig. 2.6c), this pattern is visualized in Fig. 3.8a. It is
independent of whether A� or Az is considered.

Due to the partial derivative operator Pϕ ’s banded pattern, we can infer that
the system matrix A� consists of only five bands. Besides the principal diagonal,
there are two bands on the Mϕth upper and lower diagonal and two bands on the
Mϕ(Nϕ − 1)th upper and lower diagonal. In case the computational domain does
not cover a full circle, Pϕ is chosen according to Fig. 2.4b and the outer bands of A�
vanish.

The lower and upper bandwidth of a matrix directly determines the respective
bandwidth of its lower and upper triangular factor [Dem97]. This can be clearly seen
in Fig. 3.8b and Fig. 3.8c and has a very fortunate outcome for the factorization’s
memory requirement, which turns out to be only slightly higher than the original
matrix one’s. This enables us to compute the LU decompositions before the time

10A sparsity pattern is a qualitative visualization of the nonzero entries of a matrix.
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(a) A� (b) L� (c) U�

Figure 3.8.: Exemplary sparsity patterns of A� and its triangular factors L� and U� (A� =
L�U�) evaluated for an azimuthally closed mesh with N� = 2, Nϕ = 7 and
Nz = 3.

loop is started and thereby greatly enhance the algorithm’s performance, as will be
demonstrated in Section 3.2.4.

3.2.3. Combination of Coupled Multi-Mode with Hybrid
Newmark-Beta

After the introduction of the Coupled Multi-Mode approach (Section 3.2.1) and the
Hybrid Newmark-Beta method (Section 3.2.2), the question at hand is whether both
algorithms can be combined in a way that circumvents each particular method’s
disadvantages. In fact, this is possible based on the domain decomposition as
performed in the context of the Coupled Multi-Mode method. The Hybrid Newmark-
Beta approach is then applied only to the rotationally symmetric inner domain with
very beneficial outcome.

As reported in [CW08], the combination of BOR FDTD with the hybrid approach
enables the otherwise (semi-)implicit scheme to be carried out without the need to
solve any linear system of equations. We insert the Multi-Mode method’s partial
derivative operator Pϕ , which is a diagonal matrix (cf. Fig. 2.8c), into the Hybrid
Newmark-Beta method’s system matrices (3.21), which makes them diagonal as
well and easily and explicitly invertible. The absence of implicit equations promises
an increased processing speed of each update cycle. Especially for simulations
consisting of large amounts of time samples, a faster overall simulation time can be
expected.
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Furthermore, the stability limit in the Multi-Mode domain (3.7) loses its depen-

dence on the mode order m because the azimuthal term
m2

max
4��2

min
is eliminated if we

subject the ϕ-derivatives to Newmark’s approach. Consequently, the restriction of
the simulation to azimuthal modes of low order for the sake of an increased time
step size is no longer necessary. Especially the elaborate and possibly error prone
automatic mode detection introduced in Section 3.2.1.3 can be circumvented by
taking into account each azimuthal mode 0 ≤ m ≤ Nϕ/2. On the other hand, the
number of degrees of freedom would remain the same, which is why we still might
want to take advantage of the automatic mode detection, particularly if only few
significant azimuthal modes are anticipated.

Even though the domain that incorporates the Newmark-Beta time integration
scheme is now smaller than in case of the previously described algorithm, it is
still advisable to adjust its parameter β ’s value dependent on the radius, just like
suggested in Section 3.2.2.3.

3.2.4. Validation and Comparison by Numerical Example

In the following, the previously introduced time domain simulation approaches
are utilized to determine the resonance frequencies of an ideal pillbox resonator,
shown in Fig. 3.9a. This allows for the predictions made in the previous sections
to be validated. We compare them mutually and to results obtained by analytical
formulas and conventional FDTD simulations. By that approach, each method’s
particular strengths and weaknesses are pointed out.

There exist very well-approved methods to handle curved interfaces to perfect
electric conductor on Cartesian meshes [Rie89; Kri+98; DM98]. However, interfaces
between nonconformal materials with finite material parameters are much harder to
handle in an accurate fashion (this will be the main topic of the following Chapter 4).
Since this simple example does not comprise such interfaces, we postpone the
comparison to FDTD on a Cartesian mesh to Chapter 5.

For those algorithms that rely on radial domain decomposition into a rotationally
symmetric inner part and an outer part that does not have to be symmetric, the
domain interface is introduced at � = �BOR¹¹. In this case, the coupled mesh
configuration can be seen in Fig. 3.9b. For approaches that operate on an entirely
three-dimensional mesh, the parameter �BOR is obsolete and the green mesh in
Fig. 3.9b is extended to � = 0 with otherwise identical parameters.

11This example exhibits rotational symmetry and, therefore, does not necessitate a 3D mesh. For the sake
of demonstration, it is introduced nevertheless.
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�max = 1 m�BOR
= 0.8 m

h= 0.04 m

(a) Pillbox cavity with perfectly conducting walls.
The red line indicates the radial domain in-
terface.

∑
m

(b) Mesh setup consisting of a Multi-Mode and a 3D
mesh. Step sizes: Δ� =Δz = 0.04m,Δϕ = 2π

157

Figure 3.9.: Geometry and computational setup of a pillbox resonator serving as numerical
example.

This example’s aim is to compute a subset of the resonator’s eigenfrequencies.
Specifically, all transversally magnetic (TM) modes¹² in the range of 0 – 1 GHz are
sought. For that purpose, the excitation current’s temporal dependence is chosen
as the inverse Fourier transform of a Gauss function¹³ that is shifted and stretched
to cover the desired frequency range. The time span in which the exciting current
is discernibly different from zero is called texc. From a spatial point of view, we
want to excite all azimuthal modes with 0≤ m≤ mmax. In order to achieve this, the
current’s amplitude along ϕ at a fixed radius is set as a superposition of sines and
cosines up to the order of mmax = Nϕ/2. If applicable, the automated mode detection
(cf. Section 3.2.1.3) is used to detect and disable those azimuthal modes that do not
contribute to eigenmodes in the excited frequency spectrum.

The mesh is configured to exhibit approximately Ss = 10 lines per minimum
wavelength at worst, i.e. at the outer perimeter. The simulation is stopped at
t = 200texc. Shortly after the excitation is decayed, i.e. in the steady state t > texc,
a temporal probe signal of the electric grid voltage’s z-component is recorded during
the entire simulation at a fixed location. Afterwards, the probe signal is subjected
to a Discrete Fourier Transform to obtain its frequency spectrum, which, in turn,
resembles the spectrum of the simulated pillbox resonator.

For the sake of concision, abbreviations for the different algorithms, including
their variants, are introduced and used throughout the rest of this section:

12These are modes consisting only of the components �e z ,
�
h� and

�
hϕ . In order for them to exist in the

context of the FIT, a mesh consisting of only two points longitudinally is sufficient.
13The more obvious choice of a rectangular function in the frequency domain would lead to an infinitely

long time domain signal. The Gaussian envelope translates into the time domain and can be reasonably
truncated due to its exponential decay.
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������� The conventional FDTD method applied to cylindrical meshes
without further adaption.

���� The Multi-Mode algorithm coupled to a 3D mesh as in Section 3.2.1
including automated mode detection.

��� The Hybrid Newmark-Beta method from Section 3.2.2 with radially
adapted β (Section 3.2.2.3) and precomputed LU factorization
(Section 3.2.2.5).

���� Same as ���, but with constant β = 1/4.
������� Same as ���, but without precomputed LU factorization.
����� The combined approach (Section 3.2.3), i.e. ���� with ��� in

the inner domain (without automated mode detection).
The main objective of the introduced time domain methods for cylindrical meshes

is to prevent the time step size from being diminished by short azimuthal edges.
Each method’s stability limit is calculable by its individually derived CFL criterion.
The results from Table 3.1 show that each method successfully accomplishes this
task.

������� ���� ��� ���� ������� �����

Δt in ps 1.86 7.38 64.19 78.62 64.19 59.50

Table 3.1.: Largest numerically stable time step size Δt. The value for ���� is taken after the
automated mode detection has eliminated all negligible azimuthal modes.

For comparison, an equidistant Cartesian mesh would, just like ���, yield a
time step size of 64.19 ps, if we assume the same number of lines per wavelength
Ss. Therefore, the increase in employable time step size of the proposed methods
compared to ������� seems to be drastic, but in fact barely compensates the
previous degradation due to the introduction of the cylindrical mesh. These
methods are therefore unlikely to outperform a comparable time domain simulation
on a Cartesian mesh in terms of speed, but, in turn, offer the possibility to capture
a circular structure’s details in a much more accurate and simple fashion. In order
to achieve similar levels of accuracy on Cartesian meshes, we would either have to
employ a higher spatial sampling rate Ss, or more elaborate methods for material
discretization (cf. Chapter 4).

Having noted that each introduced approach fulfills the basic requirement of
an increased time step size, it remains to see how they turn out with respect to
speedup of the entire simulation and, furthermore, accuracy.
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3.2.4.1. Impact on Simulation Speed

The speed question is addressed by implementing each algorithm on the same
machine¹⁴, the same programming environment¹⁵ and a comparable level of
optimization. The time for performing the actual update schemes is then measured,
with results given in the first row of Table 3.2. The second row indicates how fast
(in average) a single update cycle is completed.

Time for ������� ���� ��� ���� ������� �����

all cycles in s 930 227 54 45 201 47
one cycle in μs 1.02 0.99 2.05 2.08 7.61 1.65

Table 3.2.: Overall execution time for all necessary field update cycles and the average time
required for each individual update cycle.

The execution time compared to conventional FDTD is significantly shortened in
all cases. But there are mentionable differences, whose origins are discussed in the
following.
����’s speedup is relatively low in this example, mainly because its time step

size is smaller than that of the other specialized approaches (cf. Table 3.1). And
it is even smaller initially (1.18 ps), i.e. before the automated mode detection
has successfully recognized that only few azimuthal modes are of interest. The
detection works by monitoring each azimuthal mode’s energy and rejecting those
modes, whose energy drops below 10−5 times the total energy. As expected, this
comprises all azimuthal modes whose order m is higher than that of any eigenmode
in the excited frequency spectrum. In this example, all azimuthal modes whose
order ranges from m = 16 up to m =

Nϕ−1
2 = 94 are omitted, which reduces the

degrees of freedom by a factor of 3.45.
The outcome of ���� obviously depends on the underlying problem. The

simulated structure needs to be rotationally symmetric up to a reasonably high
radius �BOR. Additionally, if many especially high order azimuthal modes are
required to accurately describe the present fields, or if the automated mode
detection does not eliminate the others reliably, then other methods are probably
better suited. If, on the other hand, the simulation covers a very long range of time
(and therefore lots of update cycles) ���� becomes competitive again because a
single update cycle consumes less time (cf. Table 3.2).

14Intel Core i7-4770K, 16 GB RAM.
15Mathworks MATLAB R2014b [Mat14].
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A fundamentally different approach is Hybrid Newmark-Beta, whose results are
shown in Table 3.2 for three variations, each of them being significantly faster than
�������. From an algebraic point of view, ��� and ������� are identical. We only
optimize the solution of linear systems of equations in ��� by precomputing their
LU decompositions. Because ������� is drastically slower it is no longer considered
from now on. Due to the complete elimination of the azimuthal term in the CFL
criterion (3.16), ����’s time step size is even larger than ���’s. Subsequently, an
even higher speedup compared to ��� is achievable. The distinctly increased time
step size of all Hybrid Newmark-Beta variants comes at the expense of higher
computational effort per time step due to semi-implicit update schemes.

The combined approach, �����, just like ����, has a domain discretized by a
conventional three-dimensional mesh at its outer perimeter. Therefore, even though
its rotationally symmetric inner part is treated with the Hybrid Newmark-Beta
method, its global time step size is slightly smaller than ���’s. But the entirely
explicit update scheme consumes less time per cycle than the partially implicit
scheme of ���. This explains the additional speedup, which would turn out to be
even higher with longer simulation time spans. Also, we can take all azimuthal
modes into account without time step size degradation like in ����. Because of
that, the automated mode detection is no longer required.

3.2.4.2. Impact on Accuracy

Predictions about each method’s outcome on its simulation results’ accuracy are
made in their respective section. We extract the probe signals’ resonance frequencies
and compare them to analytical reference solutions¹⁶ in order to validate these
predictions.

Figure 3.10 shows the magnitude of the probe signals’ Discrete Fourier Transforms
over a subrange of the frequency spectrum of interest for each method separately.

Not only do all graphs appear to be very similar, their peaks also correspond
closely to the analytically calculated resonance frequencies. Accordingly, each
method can be considered as a reasonable numerical simulation technique, at least
qualitatively.

In order to retrieve the resonance frequencies accurately from the probe signals
and assess them quantitatively, the concept of Harmonic Inversion [MT98] is used.
It is implemented by the open source software package Harminv [Joh06] and,
amongst other information, returns a list of all detected resonance frequencies.

16For the exact formula of a pillbox resonator’s resonance frequencies and its deduction, the reader is
referred to [Jac98].

56



3.2. Compensation of Degraded Time Step Size

200 250 300 350 400 450 500
0

0

0

0

0

TM
21

0

TM
02

0

TM
31

0

TM
12

0

TM
41

0

TM
22

0

TM
51

0

TM
32

0

TM
13

0

Frequency in MHz

D
FT

M
ag

ni
tu

de

������� ���� ��� ���� �����

Figure 3.10.: Excerpt from frequency spectra of temporal probe signals. Analytical reference
solutions are given by dashed lines.

Each mode’s deviation from the respective analytical solution is then computed and
visualized in Fig 3.11.

It shows that resonances at high frequencies tend to exhibit larger simulation
error than those at lower frequencies, independent of the employed simulation
method. This is due to the fact that the spatial sampling rate Ss is specified for the
lowest wavelength (i.e. highest frequency) and gradually increases the lower the
frequency gets. Either the azimuthal order or the radial order can change from
mode to mode¹⁷. Typically, an increase of the latter has a higher impact on the
resulting field’s variation. In this case, the spatial discretization accuracy becomes
worse compared to an increase of the azimuthal mode order. This explains the
error’s non-uniform increase with the frequency.

More importantly, the previously made predictions about each method’s impact
on accuracy reflect in the results shown in Fig. 3.11. Compared to �������, the
average resonance error is obviously lower in case of the newly introduced methods.
Only ���� performs worse, which emphasizes the importance of choosing β as
small as possible or, as in ���’s case, even radially adjusted.

17The longitudinal mode order does not vary for the present set of parameters and equals zero for each
mode.
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Figure 3.11.: Relative error of the pillbox cavity’s resonance frequencies for TM modes between
0 and 1 GHz. The mean error of each particular method is represented by black
lines.
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3.3. Summary

The results presented above originate from only one particular numerical example
and by no means raise any claim for universal validity. They are rather supposed to
validate the theoretically motivated predictions and to provide better comprehension
for reasoning about the effects on real world applications.

3.3. Summary

As explained in detail in Section 3.1.3, FDTD in its pristine formulation is not well
suited for being applied to cylindrical mesh systems. Both the simulation speed and
accuracy suffer from the severe degradation of the highest stable time step size. By
means of the energy method, we derive these limits for various kinds of meshes in
Section 3.1.

Approaches that compensate the time step size issues are presented in Section 3.2.
Basically, they rely either on domain decomposition with more elaborate treatment
of the inner domain, or on a special incorporation of the Newmark-Beta extension.

The Multi-Mode approach (cf. Section 3.2.1, abbr. ����), which belongs to the
former category, requires the simulated object to be rotationally symmetric up to
a reasonably large radius and can only work efficiently if the simulated fields are
smooth in a specific way. Compared to conventional FDTD (�������), it is likely
to offer improved speed and accuracy, but, in turn, lacks universal applicability.
However, if a priori knowledge of the field’s behavior, especially about its azimuthal
modes, is available, this technique offers otherwise unachievable potential.

The second category comprises the Hybrid Newmark-Beta method (���) and
relies on an entirely three-dimensional mesh, just like ������� does. Likewise,
there are no further limitations concerning the object’s spatial properties. By means
of its alternative time integration scheme, we are able to significantly speed up the
simulation and improve accuracy. For that purpose, it is important to incorporate
the proposed enhancements of a radially adjusted parameter β (cf. Section 3.2.2.3)
and the precomputed LU factorizations (cf. Section 3.2.2.5). The enhancements’
omission results in strongly deteriorated accuracy or a very slow update scheme,
respectively. It is advisable to use this technique especially if rotational symmetry is
not exploitable by means of ����.

Another simulation method is obtained by combining both approaches (cf.
Section 3.2.3, abbr. �����). From a spatial point of view it is not as flexible
as ������� or ��� because, like ����, it requires a certain extent of rotational
symmetry. However, the incorporation of the Hybrid Newmark-Beta scheme to the
Multi-Mode domain enables each azimuthal mode to be included in the simulation
without any influence on the time step size. Opposed to ���, the update scheme
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remains completely explicit, which, in combination with a large time step size,
makes this method very fast, especially for long time spans to be simulated.

Table 3.3 highlights each method’s strengths and weaknesses and allows for direct
comparison.

Rating ������� ���� ��� ���� ������� �����

Universality ++ – ++ ++ ++ +
Speed – – – + + – ++

Accuracy – ++ ++ – – ++ ++

Table 3.3.: Each method ranked in categories of universal applicability, speed and accuracy.
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CHAPTER4
Nonconformal Material Interfaces

Cylindrical meshes, like those that are subjected to a detailed treatment in the
previous chapter, can unfold their full potential if the simulated structure is circularly
shaped. The key concept is to choose the FIT’s underlying mesh system so that its
facets directly match the material interfaces. However, if said material interfaces
are no longer shaped in alignment with an orthogonal coordinate system’s axes, it
is impossible to find an orthogonal mesh that fulfills this property in general. One
way to alleviate this problem, whose consequences are described in detail in the
course of this chapter, is to employ an unstructured (most commonly tetrahedral)
mesh that adapts well to arbitrarily shaped material discontinuities. Regardless
of the simulation method¹, unstructured meshes are likely to imply nondiagonal
material matrices, which are costly to invert and, therefore, limit the number of
employable mesh cells.

Opposed to the previous chapter, we dismiss the endeavor of material-conforming
meshes from now on and resort to efficiently implementable Cartesian meshes,
regardless of a possible misalignment between material interfaces and mesh facets.
In order to compensate the expectable loss of accuracy, we investigate possibilities
to deal with such material interfaces, which we henceforth refer to as nonconformal,
in an improved way. Practical ways of approximating and implementing the ideal
material coefficients (2.19) are the key spot for such measures.

This chapter is structured as follows. We assess conventional methods of material
averaging and highlight their restrictive conditions on the conformity between mesh
and material. An extended formula is then examined with regard to its potential
benefit and ways in order to achieve it. Within its scope, the loss of accuracy of
conventional methods is characterized. A numerical example with known reference
solution is consulted several times in order to validate the formal predictions. The
chapter concludes with some important remarks about employed simplifications
that mainly serve the purpose of better comprehension and how to extend the
discussed methods to more complex cases.

In a condensed and with regard to some points tentative fashion, the methods
and findings presented in this chapter are published by the author in [KCS14a;
KKS16].

1The Finite Element Method [Mon03] is usually preferred over the Finite Integration Technique on
tetrahedral meshes [Büs11], because of its more convenient extensibility to higher order basis functions.
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4.1. The Conformal Case
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Figure 4.1.: A primary mesh facet Ak and its corresponding dual edge �Lk intersect each other
in Pk . The material interface I separates the computational domain in two parts
with different permeabilities (μa and μb).

As depicted in Fig. 4.1, we assume the local material interface I to be parallel
(Fig. 4.1a) or perpendicular (Fig. 4.1b) to an u-directed primary facet Ak ². More
precisely, the interface’s local normal vector �n either satisfies �n · �eu = 1 or �n · �eu = 0.
In the scope of this thesis, this is referred to as the conformal case³. Consequently,
the dot products in (2.19b) lead to scalar integrands that comprise either strictly
normal or tangential field components with respect to the interface I:

Mμ,k =

∫
Ak
�B · d�A∫�Lk
�H · d�s =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ak

BndA∫�Lk
Hnds

=

∫
Ak

BndA∫�Lk
μ−1Bnds

, if I ‖ Ak (4.1a)∫
Ak

BtdA∫�Lk
Htds

=

∫
Ak
μHtdA∫�Lk
Htds

, if I⊥ Ak (4.1b)

2For the sake of simplicity we consider only planar interfaces. Furthermore, we preliminarily restrict
ourselves to interfaces between magnetic materials with different permeabilities. Remarks on alleviating
these restrictions can be found in Section 4.5.1.

3Note that this definition is weaker than what is commonly understood as a conformal mesh, i.e. a mesh
with entirely filled primary cells. Even tilted interfaces in the perpendicular case, like in Fig. 4.1b, are
permitted, as long as �n · �eu = 0.
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In the last steps, the piecewise constant permeability μ is used to obtain only
those field components that are continuous across the interface, i.e. Ht and Bn,
where Ht stands for the u-directed tangential component (cf. Fig. 4.1b). We expand
each of them into Taylor series around the intersection point Pk of primary facet
and dual edge. Without loss of generality, this point is assumed to coincide with
the local (u, v, w) coordinate system’s origin:

Ψ = Ψ |Pk
+

⎧⎪⎪⎨⎪⎪⎩
∂ Ψ

∂ u


Pk

u+
∂ 2Ψ

∂ u2


Pk

u2

2
+O

�
u3
�

, on �Lk (4.2a)

∂ Ψ

∂ v


Pk

v +
∂ Ψ

∂ w


Pk

w+O
�
v2, w2

�
, on Ak (4.2b)

The placeholder Ψ stands for Ht or Bn. Inserting (4.2) into (4.1) enables the
integrations to be carried out analytically if the integrals are split across the two
domains with constant permeability μa and μb. We introduce operators that
represent a weighted averaging of the (inverse) permeability::

μ−1
;�Lk
=

�La
k/μa + �Lb

k/μb�Lk

(4.3a)

〈μ〉Ak
=

Aa
kμa + Ab

kμb

Ak
(4.3b)

Therein, Aa
k stands for the part of Ak that lies inside domain a (and so forth). We

obtain⁴:

Mμ,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak +O
�
Δ4

�
�Lk 〈μ−1〉�Lk

+O (Δ2)
=

Ak�Lk 〈μ−1〉�Lk︸ ︷︷ ︸
M‖
μ,k

+O
�
Δ2

�
, if I ‖ Ak (4.4a)

Ak 〈μ〉Ak
+O

�
Δ3

�
�Lk +O (Δ3)

=
Ak 〈μ〉Ak�Lk︸ ︷︷ ︸

M⊥
μ,k

+O
�
Δ2

�
, if I⊥ Ak (4.4b)

In order to simplify the handling of higher order terms, expressed by the Landau
operator O, the primary facet’s area and the dual edge’s length are considered

4For a detailed deduction of the resulting convergence rate from those of numerator and denominator, the
reader is referred to Appendix C.1
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Chapter 4. Nonconformal Material Interfaces

asymptotically in terms of the largest mesh step size Δ=max{Δx ,Δy,Δz}. Thus,
the expressions Ak ∈ O

�
Δ2

�
and �Lk ∈ O (Δ) hold and are employed to deduce the

given absolute error terms in (4.4). For (4.4a), it is also given in [Rie89].
It is important to stress that the entire deduction so far strongly depends on

conformal, i.e. strictly parallel or perpendicular interfaces with respect to the mesh,
which is a severe restriction for practical applications. As already briefly discussed
in the opening of Chapter 3, these conditions can be easily enforced by altering
the investigated object. Most commonly, this is achieved through the staircase
approximation (cf. Fig. 3.1b). We address the implications of such a material
modification in Section 4.2.1.

Note that if the interface does not run exactly through the intersection point Pk,
refining the mesh may cause the pair of voltage and flux k to be no longer cut by
the interface. Therefore, all mentioned convergence rates have to be understood
in the context of a mesh refinement that leaves the intersection point’s relative
position to the interface unaltered.

4.2. The Nonconformal Case

In the following, we derive an approximation to the ideal material coefficient Mμ,k

without requiring the interface to be parallel or perpendicular to the mesh. We
only suppose it to be reasonably smooth in the mesh cell limit so that no mesh edge
or facet is multiply cut. For the sake of brevity, we assume the entire computational
domain to be homogeneous along z, which allows us to restrict all considerations to
the x-y-plane and leaves us with only one tangential vector �t with respect to the
interface. In terms of the angle θ , as shown in Fig. 4.2, we obtain �t = [cosθ , sinθ]T

and �n= [− sinθ , cosθ]T .
In analogy to Section 4.1, we originate from (2.19b), split the integrals at the

interface and evaluate the occurring dot products, now in dependence of the
interface angle θ . The primary facet Ak and dual edge �Lk are thereby split into
parts that lie completely inside the domain a or b and are indexed accordingly:

Mμ,k =
��
bk
�

hk

=

∫
Ak
�B · d�A∫�Lk
�H · d�s (4.5a)

=

∫
Aa

k

�
Ba

t cosθ − Ba
n sinθ

�
dA+

∫
Ab

k

�
Bb

t cosθ − Bb
n sinθ

�
dA∫�La

k

�
Ha

t cosθ − Ha
n sinθ

�
ds+

∫�Lb
k

�
H b

t cosθ − H b
n sinθ

�
ds

(4.5b)
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I

μa μb
��
bk

�
hk

�t

�n
θ
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B
a t

α

x

y

Pk

Figure 4.2.: A material interface I that encloses the angle θ with the mesh. The field �Ba is
decomposed into tangential and normal components with respect to I.

By means of the continuity conditions (2.4) and the permeabilities μa and μb,
the material coefficient (4.5b) transforms to the following expression, which only
contains interface-continuous field components from domain a:

Mμ,k =

∫
Aa

k

�
μaHa

t cosθ − Ba
n sinθ

�
dA+

∫
Ab

k

�
μbHa

t cosθ − Ba
n sinθ

�
dA∫�La

k

�
Ha

t cosθ − 1
μa

Ba
n sinθ

�
ds+

∫�Lb
k

�
Ha

t cosθ − 1
μb

Ba
n sinθ

�
ds

(4.6)

The Taylor series expansions (4.2) are now substituted for the integrands. After
we carry out the integrations for low order terms and conceal the remaining terms
behind the Landau operator, we obtain:

Mμ,k =

�
Ha

t cosθ
�

Pk

�
Aa

kμa + Ab
kμb

�− �Ba
n sinθ

�
Pk

Ak +O
�
Δ3

�
�
Ha

t cosθ
�

Pk
�Lk −

�
Ba

n sinθ
�

Pk

��La
k

1
μa
+ �Lb

k
1
μb

�
+O (Δ2)

(4.7a)

=
Ak�Lk

�
Ha

t cosθ
�

Pk
〈μ〉Ak
− �Ba

n sinθ
�

Pk�
Ha

t cosθ
�

Pk
− �Ba

n sinθ
�

Pk
〈μ−1〉�Lk

+O
�
Δ2

�
(4.7b)

=
Ak�Lk

〈μ〉Ak
tanαk −μa tanθk

tanαk −μa 〈μ−1〉�Lk
tanθk︸ ︷︷ ︸

M∠
μ,k

+O
�
Δ2

�
(4.7c)
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Appendix C.1 gives more detailed insight into the deduction. The last reformu-
lation (4.7c) makes use of the fact that all field components can be expressed in
terms of the field’s Euclidean norm

�Ba
 (which subsequently cancels out) and the

sine or the cosine of the field angle α. Instead of the square bracket notation [·]Pk
,

we indicate that the angles θ and α need to be evaluated for each k individually by
indexing them accordingly.

The second order converging approximation M∠
μ,k is the so called generalized

material coefficient. It is also introduced in similar form in [Sch05], but without
consideration of its convergence rate. It should be noted that the derivation so far
only considers x-directed edges and facets. For y-coefficients the angle θk has to be
substituted by θk → θk ± π/2. In the course of this chapter, we investigate M∠

μ,k only
for angles in the range of −π/2< αk ≤ π/2 and −π/2< θk ≤ π/2, which is sufficient
because of its π-periodicity both in αk and θk.

It becomes clear that this coefficient contains the conventional approaches M ‖
μ,k

and M⊥
μ,k as special cases by examining (4.7c). They emerge under the following

circumstances:

M∠
μ,k =

<
M ‖
μ,k, if (θk = π/2 ⇐⇒ I ‖ Ak) or (αk = 0) (4.8a)

M⊥
μ,k, if (θk = 0 ⇐⇒ I⊥ Ak) or (αk = π/2) (4.8b)

Apparently, they do not only occur if the interface is indeed parallel or per-
pendicular to the primary facet, as shown in Section 4.1. Second order accurate
approximations to the continuous material coefficient Mμ,k are obviously also achiev-

able by means of M ‖
μ,k and M⊥

μ,k if the magnetic field stands normally (αk = 0)
or tangentially (αk = π/2) to the interface I. This behavior is also reported in
[Sch05] and can be utilized to estimate which approximation is better suited in the
nonconformal case based on a priori knowledge about the fields [CBS12].

4.2.1. Artificially Induced Application of Conventional Coefficients

We make use of the generalized coefficient’s explicitly outlined deduction to derive
statements about the convergence rates of the conventional approximation M⊥

μ,k (or

M ‖
μ,k) in case of a foregoing modification of the investigated object, so that it locally

fulfills I ⊥ Ak (or I ‖ Ak). The desired neglect of Ha
t (or Ba

n) can be achieved by
substitution of the associated terms in (4.6) for O (1). Consequently, the resulting
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4.2. The Nonconformal Case

approximations are the same as if the interface fulfilled the conformity conditions:

Mμ,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ak 〈μ〉Ak

+O
�
Δ2

�
�Lk +O (Δ)

= M⊥
μ,k +O (Δ) , if I �⊥ Ak (4.9a)

Ak +O
�
Δ2

�
�Lk 〈μ−1〉�Lk

+O (Δ)
= M ‖

μ,k +O (Δ) , if I ∦ Ak (4.9b)

However, the coefficients’ convergence rates turn out to be linear, which we
formally prove in the framework of the generalized material coefficient. A statement
of this proof in a more elaborate fashion can be found in Appendix C.2.

This approach can be interpreted as a generalization of the staircase approx-
imation. Since we lower our requirements on the definition of conformity (cf.
Footnote 3 on page 62), (4.9) is valid even for interfaces like those shown in Fig. 4.1.
The standard staircase approximation, on the other hand, typically demands entirely
filled primary mesh cells [Hol93], possibly in combination with triangularly (in 3D:
pyramidally or prismatically) filled mesh cells [Wei79]. We can exploit this fact in
two ways. Either the material interfaces are a priori conformal according to the
weakened definition used herein and we can directly subject them to a second order
accurate discretization by means of (4.4), or we can slightly modify their shape
and obtain a first order converging, yet more accurate than standard staircase,
discretization by means of (4.9). Therefore, we point out that it is misleading to
judge mesh quality in terms of the exact congruency between mesh facets and
material interfaces. Accordingly, the occurrence of partially filled mesh cells does
not necessarily imply a degradation of the convergence rate, because all material
coefficients are based on edge/facet-pairs and not on mesh cells. From a practical
perspective, however, this makes higher demands on a mesh generator. Instead of
only deciding which cell gets assigned which set of material parameters, it has to
evaluate cut ratios based on the object’s CAD⁵ representation.

4.2.2. Bulk Material

So far we assume that for each canonical index k the respective primary facet or
dual edge are actually cut by the material interface. If this is not the case, like for
instance in bulk material apart from material interfaces, all three approximations
equal each other. They converge quadratically or even cubically, depending on
whether or not the Taylor series’ expansion point Pk divides the dual edge �Lk into

5Computer aided design.
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equal parts⁶, which also follows from Taylor series expansions inserted in (4.6):

Mμ,k =

⎧⎨
⎩

M⊥
μ,k

M ‖
μ,k

M∠
μ,k

⎫⎬
⎭+

(
O
�
Δ3

�
, for central expansion point

O
�
Δ2

�
, else

(4.10)

The convergence rates of M ‖
μ,k are also given in [CW01; Sch05] for entirely filled

mesh cells and for bulk material.

4.2.3. Implications of the Generalized Material Coefficient

In the following, we investigate the implications that the generalized coefficient
entails in comparison to the conventional ones. Table 4.1 summarizes at which rate
each approximation converges under given circumstances for a pair of voltage and
flux k that is cut by a material interface.

θk = 0 θk = π/2 αk = 0 αk = π/2 else

M ‖
μ,k O (Δ) O

�
Δ2

�
O
�
Δ2

�
O (Δ) O (Δ)

M⊥
μ,k O

�
Δ2

�
O (Δ) O (Δ) O

�
Δ2

�
O (Δ)

M∠
μ,k O

�
Δ2

�
O
�
Δ2

�
O
�
Δ2

�
O
�
Δ2

�
O
�
Δ2

�
Table 4.1.: Convergence rates of the absolute error of approximations of the ideal material

coefficient Mμ,k .

4.2.3.1. Convergence Rate of Simulation Results

It is important to stress that all convergence rates given so far only describe how
fast the approximations M ‖

μ,k, M⊥
μ,k and M∠

μ,k converge against the exact material
coefficient Mμ,k. What this implies for the convergence rate of results obtained by
means of the Finite Integration Technique is the subject of the following discussion.
For clear distinction, we use the term local convergence for the approximated material
coefficients’ asymptotic behavior, while the FIT’s convergence is referred to as global.

The literature commonly refers to the FIT and related schemes like FDTD as
second order accurate methods [TH05]. However, in the context of conventional
material modeling this implies that all interfaces conform with the mesh in a way
that lets the local material coefficient converge at least quadratically, as shown in

6Equidistant, orthogonal meshes ensure this property.
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4.2. The Nonconformal Case

[Gus75]⁷. Conversely, if we need to modify the material in order to apply one of
the approximations M ‖

μ,k or M⊥
μ,k (cf. (4.9)), only linear global convergence can

be expected [DDH01]. In common practical applications, only a small fraction of
mesh cells are cut by the material interface. The majority of material coefficients
converge at least quadratically (cf. (4.10)). As a result, the effectively measurable
global convergence rate usually lies between first and second order [WBC13].

Nevertheless, these findings make it highly desirable to give up the treatment
of nonconformal materials by conventional coefficients in favor of the generalized
material coefficient M∠

μ,k, which is shown to converge quadratically in any event
(cf. last row of Table 4.1). Without the abandonment of conventional material
coefficients, the Finite Integration Technique can not be guaranteed to yield second
order accurate results for nonconformal materials.

4.2.3.2. Numerical Properties

An introductory discussion on the generalized coefficient’s numerical properties
can be found in [Sch05]. The results presented therein are suggested to be
of general validity, even though only a limited domain of values for θk and
αk is investigated. Transferred to this thesis’ definitions, the key result is that
the generalized coefficient M∠

μ,k is bounded by M ‖
μ,k and M⊥

μ,k. While this is
unquestionably true in the assessed domain (θk,αk) ∈ [−π/2, 0]× [0,π/2] and, by
symmetry, also in (θk,αk) ∈ [0,π/2]× [−π/2, 0], it cannot hold in any other case.

Fig. 4.3 clearly shows the predicted boundedness in the second and fourth
quadrant. However, in the first and third quadrant, the coefficient takes up values
outside of this range and even exhibits poles and zeros. We can analytically deduce
this behavior from its definition (4.7c) by calculating zeros of the numerator and
denominator:

M∠
μ,k = 0 ⇐⇒ tanαk

tanθk
=
μa

〈μ〉Ak

(4.11a)

M∠
μ,k →±∞ ⇐⇒ tanαk

tanθk
= μa

:
μ−1

;�Lk
(4.11b)

Due to the right hand sides’ unconditional positivity, the effect of unbounded
values occurs regardless of a specific example every time θk and αk have the same
sign. As we will see in the following section, this case is by no means irrelevant in

7Especially in the FDTD related literature, the material coefficient is usually defined in terms of fields and
flux densities themselves, instead of spatial integrals thereof. This results in local convergence rates
that are one order smaller than those given here.
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Figure 4.3.: The generalized coefficient M∠
μ,k in dependence of field angle αk and interface

angle θk for μa = μ0 and μb = 15μ0.

practice and leads to various consequences that need to be accounted for. These
consequences are discussed more closely and in a broader context in Section 4.5.1.4.

4.3. Validation

The so far only theoretically predicted results regarding accuracy and convergence
rate are now demonstrated practically. Therefore, the following magnetostatic
example with analytically known reference solution is employed.

As depicted in Fig. 4.4, a z-directed line current I0 inside a medium with
permeability μa is placed in front of a half-space with permeability μb. The domain
is homogeneous along z̃, which reduces the problem’s spatial dependence to x̃ and
ỹ . Moreover, the vector potential �A reduces to its z̃-component �A= Az̃�ez̃ . By further
assuming a homogeneous domain μa = μb = μ and by Coulomb gauging [Jac98],
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μa

μb x̃

ỹ

I0 = 1A
h= 1m

x

y

L =
Δ(N

x
− 1) =

0.5m

x̃p

θ

Figure 4.4.: An infinitely long line current I0 in front of a magnetic material interface. The
square region of interest is centered at x̃ = x̃p, tilted by θ and covered by a
Cartesian mesh.

Maxwell’s equation (2.2b) decomposes into a Poisson equation:

∇× �B = μ�J �B=∇×�A⇐⇒ ∇×∇× �A= μ�J (4.12a)

∇·�A=0
=⇒ ∇2 �A= −μ�J �A=Az̃�ez̃

=⇒ ∇2Az̃ = −μJz̃ (4.12b)

In close analogy to the electrostatic case⁸ we can solve the inhomogeneous
problem μa �= μb by means of the method of images [Jac98] and obtain:

Az̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I0μa

2π

%
(μa −μb)
(μa +μb)

ln

'
x̃2 + (h+ ỹ)2

|h|
· · ·− ln

'
x̃2 + (h− ỹ)2

|h|
�, if ỹ ≥ 0 (4.13a)

− I0μaμb

π(μa +μb)
ln

'
x̃2 + (h− ỹ)2

|h| , if ỹ ≤ 0 (4.13b)

A square Cartesian mesh, as shown in Fig. 4.4, is introduced. Its center is located
at x̃ = x̃p and it is tilted by the angle θ . By that measure we yield a mesh with

8This analogy is applicable because the vector potential’s z̃-component obeys the same kind of differential
equation like the scalar potential Φ (cf. (2.6)).
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partially filled cells in the familiar x-y-coordinate frame and can refer to the
analytical solution (4.13) for the sake of comparison by means of a coordinate
transformation.

4.3.1. Angle Dependence and Introduced Error

Preliminarily, not the entire mesh but only one voltage/flux-pair centered at
x̃p = 0.5 m is considered (cf. Fig. 4.5a). This enables approximations of the

ideal material coefficient Mμ =
��
b/
�

h to be investigated in dependence of several
parameters with regard to accuracy. The permeabilities are μa = μ0 and μb = 15μ0.
Based on the magnetic flux density �B =∇× �A, this leads to the field angle α= 7.60◦.
Furthermore, we analytically evaluate the integral quantities

�

h and
��
b and, thereby,

obtain the ideal value Mμ as reference in dependence of θ and Δ.
For a fixed mesh step sizeΔ, the reference value and the discussed approximations

are shown in Fig. 4.5b in dependence of the interface angle θ ∈ [−π/2,π/2]. Since the
conventional coefficients M ‖

μ
and M⊥

μ
are constant regardless of θ , they approximate

Mμ only reasonably well in the special cases they are derived for. The generalized
coefficient M∠

μ
, on the other hand, provides a much more accurate representation

over the entire domain. Due to α’s positivity, the singularity and zero-crossing
occurs for positive values of θ and, furthermore, coincide very well with those of
Mμ.

With regard to the confirmation of the convergence rates that are given in
Table 4.1, we now choose the interface angle arbitrarily to θ = −π/3, vary the
mesh step size Δ and display the absolute error of the approximations. Fig. 4.5c
shows that only the generalized coefficient M∠

μ
achieves second order convergence,

as expected from (4.7). The standard coefficients converge linearly due to the
nonconformal mesh in agreement with the predictions made in (4.9).

4.3.2. Impact on Simulation Results

In the following, a complete two-dimensional mesh, as shown in Fig. 4.4, with
a given number of points Np = N 2

x is used to investigate the convergence rate of
discrete solutions of Maxwell’s equations in the magnetostatic case.

If the mesh’s extent and position are chosen so that it does not cover the position
of the excitation current I0, (4.12b) simplifies to a Laplace equation for the vector
potential’s z̃-component:

∇2Az̃ = 0 (4.14)
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ỹ

x̃p

�
h =
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(a) Excerpt from Fig. 4.4 with a tilted pair of grid voltage
�
h and flux

��
b, defined on an edge �L (length Δ) and a

facet A (area Δ2).
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(b) Dependence of the interface angle θ for Δ = 0.5 m.
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θ = −π/3 (dashed line in Fig. 4.5b).

Figure 4.5.: Numerical setup and comparison of the exact matrix coefficient Mμ =
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b/
�
h with

its approximations.
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In the scope of the Finite Integration Technique and based on (2.15), a similar
deduction like in (4.12) for the meshed domain leads to a discrete Laplace equation⁹:

CT Mμ−1 C�az = 0 (4.15)

We now consider (4.15) as a Dirichlet boundary value problem [Hen15], for which
we take the edge-integrated vector potentials �az on the mesh’s outer boundary from
the analytical solution (4.13) and incorporate them into (4.15). Opposed to the
vector of reference values �az,ref, the solution �az of the modified system of equations
is influenced by the way the coefficients of the matrix¹⁰ Mμ−1 are approximated. A
suitable measure for accuracy and, through a variation of the mesh resolution, the
global convergence rate is the solution vector’s relative error norm:

�=
@@�az − �az,ref

@@
2@@�az,ref

@@
2

(4.16)
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Figure 4.6.: Relative error norm of the discrete vector potential for different approximations
of the ideal material coefficient Mμ in dependence of Δ.

The results, shown in Fig. 4.6, support the theoretical predictions made in
Section 4.2.3.1. The relative error that is caused by the conventional approximations

9The Np-vector
�az incorporates line integrals of Az̃ over z-directed primary edges. The curl matrix in this

case reduces to C=
A

Py−Px

B
.

10In contrast to Chapter 3, we resort to the formulation Mμ−1 , by which we mean the material matrix
based on the reluctivity μ−1 instead of the inverse permeability matrix M−1

μ . In this context, these
matrices have to be strictly distinguished, as discussed in Section 4.4.2.
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M ‖
μ,k and M⊥

μ,k converges linearly (or slightly faster, but not quadratically) against
zero, whereas the generalized material coefficient leads to distinguishable global
second order convergence.

4.3.3. Sensitivity Analysis

Up to this point we assume that the field incidence angles αk are exactly known. As
discussed more closely in the following section, this cannot be taken for granted
in practical applications without analytically given solutions. Before we introduce
methods of estimating the required field information by other means, we utilize
the present example to predict the outcome of deviations from the exact angle αk

on the solution’s error.
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Figure 4.7.: Relative error norm of the discrete vector potential (cf. Fig. 4.6). The colored
regions indicate the range of the relative error if the field angles are variates from
a normal distribution with given standard deviation sα.

The uncertainty in the practical determination of the field angles αk is modeled by
taking each of them as samples from a normal distribution N

�
αk, s2

α

�
. Its arithmetic

mean is the respective analytical solution αk itself. For given standard deviations
sα, the convergence analysis from Section 4.3.2 is performed for 50 random samples
per mesh step size taken from the assumed probability distribution.

All of the 50 convergence curves that result per given standard deviation come
to lie inside the colored bands in Fig. 4.7. Even though an increasing amount
of material coefficients are subjected to uncertainty while refining the mesh, the
convergence rate is deteriorated only slightly. This suggests that an approximate
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method of obtaining field information can still lead to considerably improved
accuracy compared to the conventional approximations. Yet, in order to reliably
achieve global second order convergence, the field angles need to be known exactly.

The example is deliberately constructed in a way that causes some occurring field
angles αk to result in material coefficients near the singularity in Fig. 4.3. Due to
the large slope in its vicinity, the introduced uncertainty for these specific angles
has a disproportionately large, yet still moderate, influence on accuracy. If the
example is constructed in a way that excludes the singularity from taking influence,
the standard deviations can be chosen larger for comparable results.

It should be noted that the above results apply only for the given example and
set of parameters in a quantitative sense. However, further experiments turn out
to support the hypothesis that the general predication also applies in other cases,
at least qualitatively. Therefore, we now leave the theoretical framework that so
far provided us with exactly known field angles and turn towards more practically
oriented applications where these angles need to be obtained by other means.

4.4. Estimation of Field Information

Typically, the material matrix Mμ (or Mμ−1) is set up prior to the solution process.
The conventional approximations (4.4) facilitate this strategy by providing formulas
that depend only on the computational domain’s geometry and material distribution,
which are known after the mesh is generated and, most importantly, before the
actual solution takes place. If the matrix is supposed to be built in the same
way based upon the generalized material coefficient M∠

μ,k, we would depend on
information about the field before we obtain any simulation results. In some sense,
this contradicts the principle of electromagnetic field simulation, whose objective
it is to determine the field in the first place. In order to apply the concept of
generalized material averaging in practical simulations anyhow, we need to take
further measures.

The generalized coefficient M∠
μ,k is defined in (4.7b) in terms of the interface-

continuous field components and, equivalently, in terms of the field incidence angle
αk in (4.7c). Henceforth, we rely on the former definition, which approximates the
exact coefficient as follows:

Mμ,k =
��
bk
�

hk

≈ Ak�Lk

Ha
t


Pk

cosθk 〈μ〉Ak
− Ba

n


Pk

sinθk

Ha
t


Pk

cosθk − Ba
n


Pk

sinθk 〈μ−1〉�Lk

= M∠
μ,k (4.17)

As shown in Fig. 4.8, we no longer consider only the flux/voltage-pair k itself,
but also the four directly adjacent grid fluxes. They are indexed consecutively by a
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Figure 4.8.: An x-directed pair of grid flux and voltage and its directly adjacent fluxes. The
global canonical index is k, while the numeral superscripts are assigned locally.

numeral superscript. For the time being, let us treat all integral state variables as
given. Motivated by (4.17), we identify each grid flux with the numerator of the
generalized material coefficient they are involved in:

��
bk = Ak

�
Ha

t


Pk

cosθk 〈μ〉Ak
− Ba

n


Pk

sinθk

�
(4.18a)

��
b

i

k = Ai
k

 
Ha

t


Pi

k
sinθ i

k + Ba
n


Pi

k
cosθ i

k

:
μ−1

;�Li
k

!
, ∀i ∈ [1,4] (4.18b)

Since the neighboring facets are all y-directed (cf. Fig. 4.8), they contribute the
interface angle’s sine instead of its cosine and vice versa. The field components
Ha

t


Pk

and Ba
n


Pk
, which are those of interest, occur only in (4.18a). This single

equation, however, does not define them uniquely. As a remedy, we assume
that their value does not change significantly across the area covered by the five
introduced intersection points. This assumption is legitimate because of the involved
components’ continuity. Furthermore, the local interface angles are considered
as equal (θ i

k ≈ θk), which implies a smooth interface contour. Based on these
assumptions, we obtain four further equations that contain the sought for quantities
from (4.18b):

��
b

i

k = Ai
k

 
Ha

t


Pk

sinθk + Ba
n


Pk

cosθk

:
μ−1

;�Li
k

!
, ∀i ∈ [1, 4] (4.19)
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Each possible combination of (4.18a) with any equation from (4.19) leads to a
regular¹¹ 2 × 2 system of equations:⎡

⎣��bk/Ak
��
b

i

k/Ai
k

⎤
⎦= +

cosθk 〈μ〉Ak
− sinθk

sinθk 〈μ〉Ai
k

cosθk

,
︸ ︷︷ ︸

Θk,i

+
Ha

t


Pk

Ba
n


Pk

,
, ∀i ∈ [1, 4] (4.20)

With regard to an efficient practical implementation at a later point, it is advisable
to explicitly invert the system matrices Θk,i . Which system yields the most accurate
results is hard to predict in general. It turns out to be a good compromise to take
all of them into account and effectively use their arithmetic mean.

So far we are able to estimate the field information that is required to evaluate
the generalized material coefficients M∠

μ,k from a given set of adjacent grid fluxes.
Note that several assumptions and simplifications have taken place in order to
obtain this information. In particular, both the field across the interface, as well as
the interface itself have to be reasonably smooth in the mesh cell limit in order to
achieve accurate results.

A vital point that has remained unaddressed so far is how to obtain the grid

fluxes
��
b

i

k in the first place. For that purpose we suggest two different approaches
that are outlined in the following sections and compared against each other by
means of the previously used numerical example with given reference solution.

4.4.1. Iterative Approach

If no simulation result or a priori knowledge of the fields is available, we initially
make a guess or, preferably, a justified choice that directly leads to one of the
conventional coefficients. Whether the formula for the perpendicular case (4.4b) or
the parallel case (4.4a) is expected to yield more accurate results can be estimated
based on considerations that are outlined in [Sch05; CBS12]. Briefly summarized,
if the field is expected to be predominantly normal with respect to the interface,
M ‖
μ,k is likely to offer better accuracy. In case of a higher amplitude of tangential

components, M⊥
μ,k should be chosen. This can also be inferred from (4.8), according

to which the following sets of initial values lead to the desired coefficients:C
Ba

n


Pk
= 0, Ha

t


Pk

arbitrary
D
=⇒ M∠

μ,k = M ‖
μ,k (4.21a)C

Ha
t


Pk
= 0, Ba

n


Pk

arbitrary
D
=⇒ M∠

μ,k = M⊥
μ,k (4.21b)

11Except for very rare special cases.

78



4.4. Estimation of Field Information
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Figure 4.9.: Flow chart of the iterative ap-
proach.

After solving the problem at hand based
on initial choices for Ha

t


Pk

and Ba
n


Pk
, we

extract more reliable values for any affected
index k from the solution by means of the
estimation method from Section 4.4. As vi-
sualized in Fig. 4.9, the process is repeated
until the variation of the solution’s vector
norm drops below an adequately defined
threshold.

From a mathematical point of view, this
corresponds to a fixed-point iteration¹²
�az,ν+1 = f

�
�az,ν

�
, where f is a chain of gen-

erally nonlinear functions that comprises

• solving for �az ,

• obtaining
��

b from �az ,

• extracting the required fields Ha
t


Pk

and Ba
n


Pk

from
��

b,

• setting up the material matrix M−1
μ

based on M∠
μ,k.

Due to the complex and not closed-form structure of f , the guaranteed existence
of fixed points and the fixed-point iteration’s convergence towards one of them can
not be formally ensured. Nevertheless, various numerical experiments suggest that
high accuracy and up to second order convergence is reliably achievable for start
values, which result from one of the conventional material coefficients.

Fig. 4.10 shows the results of the numerical example from Section 4.3 in the
context of the iterative fixed-point approach. Starting from the conventional
coefficient in the parallel case¹³, each iteration gradually improves the results.
Ultimately, the accuracy and convergence rate are only slightly worse than in case
of exactly known field information. This behavior directly corresponds to the results
of the sensitivity analysis in Section 4.3.3 and can be explained by the fact that

12A thorough introduction to the solution of nonlinear, multi-dimensional problems by means of fixed-point
iterations can be found in [RT06].

13According to Fig. 4.6 and in correspondence to the reasoning of [Sch05; CBS12], the perpendicular case
would have been suited even better. To stress the iterative scheme’s robustness, the worse of both
alternatives is chosen.
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a small degree of uncertainty is introduced by the suggested estimation method.
Otherwise, we would expect the iterative approach to converge against the method
which is based on exact values (red line in Fig. 4.10). The final result is the same as
if the conventional coefficient in the perpendicular case were used initially.
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Figure 4.10.: Relative error norm of the discrete vector potential (cf. Fig. 4.6). The respective
iteration number ν is given at the left of each graph. Notice the omission of
some iterations’ visualization for better visibility.

Since fixed-point iterations are known to converge only linearly with the number
of iterations [RT06] and, therefore, require numerous iteration in order to reach
a certain residual, other means of solving this nonlinear system of equations
deserve to find consideration. Newton’s method offers faster convergence up to
second order [RT06]. However, it usually requires a closed form representation
of the system function in order to obtain the Jacobian matrix. If the Jacobian
is approximated by means of finite differences, the method is called a Quasi-

Newton method. Even though it thereby becomes evaluable in the present case,
the associated computational effort, especially for large problems, is very high.
Nevertheless, we manage to achieve comparably accurate results like after 25
fixed-point iterations in only four iterations of a Quasi-Newton method¹⁴, but the
fixed-point iteration approach is still significantly faster. Broyden’s method [Bro65]
is supposed to overcome the disadvantage of a Jacobian that is expensive to compute
in every iteration by updating it along with the solution vector. However, it did not
converge towards the desired solution in our experience.
14Specifically, we use the MINPACK [MGH80] routine ����� in a MATLAB [Mat14] implementation

provided by the free optimization toolbox OPTI [CW12; Cur15].
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In order to speed up the solution by means of the described fixed-point iteration,
it is advisable to take the previous iteration’s solution vector as initial guess for
the next pass in case an iterative solver is used. Under this circumstance, it is also
advantageous to use a preconditioning matrix. Since the system matrix changes
only slightly during the iteration process, it suffices to compute it only once and use
it in each pass.

Fig. 4.10 suggests that there are two possibilities to increase the simulation’s
accuracy. The classical method is the mesh refinement approach. By means of the
presented scheme based on the generalized material coefficient, we are able to keep
the mesh resolution constant and still yield higher accuracy at the expense of some
fixed-point iterations. The question at hand is, which possibility is more efficient. A
generally valid answer to that question can not be given, because not even ideal
conditions (red line) can guarantee any desired residual to be reached. However,
under reasonable requirements, the iterative approach usually turns out to be much
faster. In the present example, it takes about 30 s¹⁵ to solve the problem based on
M ‖
μ,k and the finest mesh resolution. Conversely, 25 fixed-point iterations on the

coarsest mesh, which result in an even higher accuracy, are finished after about a
second.

A more realistic application in the magnetoquasistatic time domain that takes
systematic advantage of the method’s iterative nature is demonstrated in Section 5.2.
Its deployment in the context of FDTD, where the field information is extracted
from fields that are available from the previous time step, has always led to unstable
schemes in our experience. This issue is addressed more closely in Section 4.5.1.4.

We successfully used a variation of the iterative scheme to find accurate eigenso-
lutions of the time harmonic wave equation [Wei85]. The resonance frequencies’
convergence behavior is very similar to the results shown in Fig. 4.10. However,
each resonance frequency corresponds to a unique field distribution. If several
eigenmodes are of interest, the field estimation needs to be performed for each of
them individually, which increases the computational effort.

4.4.2. Nondiagonal Matrix Approach

In the first part of Section 4.4, we establish an approximate relation between the
field information of interest and a set of grid fluxes that are allocated adjacently
to the location of the current material coefficient Mμ,k. Specifically, there are four
systems of equations (cf. (4.20)) that lead to possible values of Ha

t


Pk

and Ba
n


Pk
,

and whose mean value is subsequently taken. We now postpone this averaging

15Measured on an Intel Core i7-4770K CPU, 16 GB RAM, MATLAB R2014b.
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and instead formulate a similar equation for the magnetic grid voltage
�

hk. The
deduction is carried out in complete analogy to that of (4.20), only this time the
denominator of (4.17) is utilized. Put in a matrix-vector formulation it reads:

�

hk/�Lk =
-
cosθk − sinθk

:
μ−1

;�Lk

.
︸ ︷︷ ︸

Ξk

+
Ha

t


Pk

Ba
n


Pk

,
(4.22)

If we now invert each system of equations from (4.20) and insert it separately into
(4.22), we obtain four explicit relations between the voltage

�

hk, its corresponding

flux
��
bk and one of the neighboring fluxes

��
b

i

k:

�

hk = �LkΞkΘ
−1
k,i

⎡
⎣��bk/Ak
��
b

i

k/Ai
k

⎤
⎦ , ∀i ∈ [1,4] (4.23a)

=
�Lk

detΘk,i

)
cos2 θk + sin2 θk

:
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〈μ〉Ai

k

sinθk cosθk

�
1− :μ−1

;�Lk
〈μ〉Ak
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Ai
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*
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)��
bk
��
b

i

k

*
(4.23b)

The last reformulation follows from explicitly writing out the inverse Θ−1
k,i and

carrying out the matrix product ΞkΘ
−1
k,i . The resulting 1 × 2 matrix that transforms

grid fluxes into voltages can be understood as a local inverse material matrix Mμ−1,k,i .
The fact that the x-directed voltage

�

hk does not only depend on its corresponding
flux

��
bk, but also on a total of four of its y-directed neighbors implies off-diagonal

elements in the global material matrix Mμ−1 . For each row index k, the off-diagonal
elements’ values are taken from the second column of the matrix Mμ−1,k,i , ∀i ∈ [1,4].
The column indices equal the canonic indices of

��
bk ’s neighbors. Also, there are four

contributions to each affected main diagonal element k (first column of Mμ−1,k,i),
which we incorporate by means of their arithmetic average, just like in the iterative
approach.

It is worth noting that (4.23b), despite the introduced approximations, still
contains the (inverse) conventional material coefficients M ‖

μ,k and M⊥
μ,k for θk = π/2

or θk = 0, respectively. The second element of Mμ−1,k,i is always zero in any of
these cases, thus eliminating off-diagonal matrix components of Mμ−1 . The first
element contributes only the appropriate averaging operator

:
μ−1

;�Lk
or 〈μ〉Ak

and
the respective facet’s and edge’s area and length. All remaining terms cancel out.

The above deduction aims at directly obtaining the inverse matrix for the sake
of employment in (4.15). For other purposes, where the noninverted matrix Mμ is
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required, the deduction should be adapted accordingly in order to avoid the need
to explicitly invert a nondiagonal matrix. Opposed to the case of diagonal material
matrices build upon the conventional coefficients M ‖

μ,k and M⊥
μ,k, we now face the

inequality M−1
μ
�=Mμ−1 .

A question that arises due to its nondiagonality is whether or not it is symmetric.

Each local matrix Mμ−1,k,i invokes the neighboring mesh flux
��
b

i

k. Symmetry would

imply that the local matrix for this neighboring flux invoked
��
bk in exactly the same

way. Apparently, this is not the case since the neighboring pair of voltage and flux
needs not necessarily be cut by the material interface.

Similar to the iterative approach from the previous Section 4.4.1, the nondiagonal
matrix approach enables a comparably accurate solution to be obtained much faster
than by means of a mesh refinement. The main difference is the abandonment of
several solution passes at the expense of a nondiagonal material matrix. Since the
matrix structure for the iterative approach is exactly preserved in comparison to
the conventional case, we can assume that virtually no access computer memory is
required. The nondiagonal matrix, on the other hand, requires additional storage
capacity that shall be assessed more closely in the following. Therefore, we visualize
the matrices Mμ−1 and CT Mμ−1 C for the given example and study their nonzero
entries’ increase in dependence of the mesh resolution Δ in Fig. 4.11.

For the coarsest investigated mesh resolution, the sparsity pattern of Mμ−1 in
Fig. 4.11a clearly shows the nondiagonal, and furthermore unsymmetric, matrix
structure. Fig. 4.11b highlights those elements of CT Mμ−1 C that would not exist
if Mμ−1 were diagonal. Apparently, the increase in storage requirements for the
system matrix is relatively moderate. This observation is confirmed by Fig. 4.11c,
which compares the growth of nonzero matrix entries in dependence of the mesh
resolution. It states that for meshes, where a lot of nonconformal material-mesh
intersections occur, the nondiagonal approach can be noticeably more demanding
than the iterative one. However, if only a small percentage of edge-facet pairs face
a nonconformal interface, which is usually the case on highly resolved meshes, the
extra storage effort is negligible. Nevertheless, one has to keep in mind that the
system matrix becomes unsymmetric, thus imposing generally negative implications
in terms of an iterative solver’s convergence speed.

4.4.2.1. Comparison to Existing Subpixel Smoothing Schemes

The notion of introducing nondiagonal material matrices in order to accurately
handle nonconformal interfaces is actively pursued for over a decade, predominantly
in the optics and photonics community. In 2006, Farjadpour et al. [Far+06] propose
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Figure 4.11.: Visualization of the nondiagonal material matrix Mμ−1 , the corresponding system
matrix CT Mμ−1 C and the relative growth of nonzero matrix components with
respect to the iterative approach.
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a technique for finding an effective anisotropic medium that acts as a replacement
for cut mesh cells. This paper coins the phrase subpixel smoothing, which has
become a common name for methods that deal with partially filled mesh cells.
The implementation of Farjadpour’s tensor material in time domain turns out to
be unstable [WC07] and, furthermore, fails to consistently achieve second order
accuracy in frequency domain [WC07]. Werner and Cary introduce a method to
obtain symmetric material matrices from anisotropic media that leads to numerically
stable update schemes [WC07]. This method is implemented in the free FDTD
simulation software Meep [OKJ09; Osk+10].

Specifically in conjunction with an anisotropic effective medium from the subpixel
smoothing theory, Shyroki also investigates and compares ways of inferring material
matrices [Shy11]. His numerical experiments in frequency domain lead to the
unproved conjecture that second order accuracy can only be achieved by sacrificing
the symmetry of material matrices. The same perception is made by Werner, Bauer
and Cary in [WBC13], where the authors try to symmetrize a nonsymmetric, highly
accurate approach published by themselves in 2011 [BWC11].

The last-mentioned approach [BWC11] turns out to be very similar to the nondiag-
onal matrix approach presented herein. The key in both methods’ deduction is their
intermediate introduction of interface-continuous field components (here Ha

t


Pk

and Ba
n


Pk

), which are subsequently expressed in terms of grid voltages and fluxes.
In fact, both algorithms perform comparably well in practice (disregarding FDTD
due to instability). A major difference, however, is the way the inverse material
matrix Mμ−1 is constructed. The present method introduces off-diagonal matrix
elements in all rows k, for which �Lk or Ak are cut by a material interface. Bauer
et al. also introduce off-diagonal elements in those rows that belong to directly
adjacent mesh items, even if they are not cut. In our experiments the sparse matrix
Mμ−1 holds three to five times more nonzero entries, thus imposing much higher
requirements on system resources.

A comparison with regard to accuracy and convergence rate of the nondiagonal
matrix approach to the one from Bauer et al., as well as to all other methods
introduced in this chapter is given in Fig. 4.12 in the following, summarizing section.

4.5. Summary and Concluding Remarks

The generalized material coefficient M∠
μ,k, that is the foundation of this chapter,

in theory prevents the second order convergence rate of the Finite Integration
Technique from being deteriorated, even if nonconformal material interfaces are

85



Chapter 4. Nonconformal Material Interfaces

present in the computational domain. In this context, the term conformal refers
to one of the cases, in which the conventional coefficients M ‖

μ,k or M⊥
μ,k, which are

included as special cases, lead to the same second order convergence rate. We
have demonstrated this by means of a numerical example with analytically known
reference solution in Section 4.3.2.

In order to apply the generalized coefficient in practically relevant simulations,
where no a priori field information is available, we suggest two different methods.
The first one (Section 4.4.1) iteratively incorporates the material coefficient by
solving the problem at hand several times. The second one (Section 4.4.2) invokes
the generalized averaging formula implicitly, which leads to a nondiagonal material
matrix. An existing approach [BWC11] is consulted for comparison.
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Figure 4.12.: Relative error norm of the discrete vector potential for all discussed approxima-

tions to the ideal material coefficient Mμ,k =
��
bk/

�
hk.

For clear concision, we introduce the following abbreviations for each different
method:

The conventional coefficient assuming . . .
���� a parallel interface, (4.4a).
���� a perpendicular interface, (4.4b).

The generalized coefficient based on fields obtained from . . .
������ the analytical solution, (4.7c).
���ν the iterative approach, Fig. 4.9.
����� the nondiagonal matrix approach, (4.23b).
����� A nondiagonal matrix approach from the literature, [BWC11].
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Fig. 4.12 compares all essential results discussed so far against each other. If
the generalized coefficient is evaluated based on field information taken from the
analytical solution (������), distinct second order convergence with drastically
lower error than in the conventional approaches is noticeable. By means of the
proposed field estimation methods we manage to achieve similar levels of accuracy
and, furthermore, convergence rate, even in the absence of exploitable a priori
knowledge.

The nondiagonal matrix approach ����� is qualitatively indiscernible from �����.
However, due to a much larger number of matrix entries it takes approximately
1.4 times longer to obtain its results. The iterative approach ���ν performs
slightly worse in terms of accuracy, but still drastically better than the conventional
approaches ���� or ����. This degradation results from the fact that less quantities,
and therefore less information about cut ratios, are taken into account in ���ν’s
deduction. Specifically, five magnetic fluxes are used per affected index k, while
����� resorts additionally to

�

hk.
Even though the nondiagonal matrix consists of more elements and has less

favorable properties with regard to its invertibility than in the iterative approach,
the resulting algorithm is typically faster because it suffices to solve only once,
whereas the iterative approach requires several solution runs. How many iterations
are actually necessary strongly depends on the application and requirements
regarding accuracy. As seen in Fig.4.10, already very few passes suffice for a distinct
improvement.

The curves’ progressions are in accordance with the sensitivity analysis carried
out in Section 4.3.3, which confirms that both estimation methods are not able to
determine the required field information exactly, but with reasonably low deviation.

Summarizing this chapter, we have shown that the generalized material coefficient
provides means to significantly increase the FIT’s accuracy in case the mesh is not
able to conform to material discontinuities. Its application is competitive and, with
regard to efficiency, even superior to existing subpixel smoothing techniques from
the literature.

4.5.1. Remarks

Some points have been addressed only briefly so far or do not find detailed
consideration. For the sake of completeness and encouragement for further
research, they shall be recapitulated in this section.
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4.5.1.1. Dielectric or Conductive Materials

The entire chapter is concerned exemplarily with magnetic materials, where the
interface separates two media with different permeabilities μa and μb. Dielectric
or conductive materials can be handled in exactly the same way by analogously
derived coefficients M∠

ε,k or M∠
σ,k. The only difference worth mentioning is that the

related voltages �ek are defined on primary edges Lk and the respective flux terms
��
dk and

��
j k on dual facets �Ak. For reference, the deduction and examples in [Sch05;

KCS14a; Kue15] are mainly concerned with dielectric materials.

4.5.1.2. Curved Interfaces

Being exempt from the requirement of strictly parallel or perpendicular material
interfaces with respect to the mesh, it seems consequent to also dismiss their
requirement on being (piecewise) straight. As shown in Section 4.2, the field
information always needs to be evaluated at the intersection points Pk in terms of
interface-normal and -tangential components. If the interface is no longer straight,
i.e. its direction varies inside the mesh cell limit, it is not clear in what sense the
terms normal and tangential have to be understood. Intuitively, we evaluate �n and
�t at the point on the interface, which is closest to Pk. By that measure the discussed
approaches extend straightforwardly to curved interfaces.

As an interesting side node, the generalized material coefficient can be shown
to include a very similar technique for material transitions to perfect conductors
as a special case [Sch05]. This approach is initially published in [Rie89] and
is also described in [DM98] under the name Locally-Conformal Technique and in
[Kri+98] as Perfect Boundary Approximation Technique. It is furthermore subjected
to a profound theoretical analysis in [ZSW03] and, also therein, successfully applied
to curved material interfaces.

4.5.1.3. Extension to 3D

Fig. 4.1 gives an impression of the complexity of a 3D mesh, inside of which the
material interface has to be understood as a 2D plane. It is therefore and also
for a condensed notation that we restrict ourselves to a 2D formulation inside
the x-y-plane. The general principle, however, remains completely unaltered if
z-dependence is taken into account.

The generalized coefficient has to be supplemented by a term that concerns the
additional, linearly independent tangential field component. Alternatively, this can
be achieved by a second field angle in the formulation (4.7c). The field estimation
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methods presented in Section 4.4 also straightforwardly extend by additionally
considering neighboring mesh elements in the z-direction.

A master’s thesis that evolved from the present work has closely investigated the
generalized material averaging formula for 3D applications [Kue15]. Its conclusion
is that the FIT’s accuracy can in fact be considerably enhanced, but multiply cut
mesh facets and edges are more likely to occur and need to be dealt with adequately.

4.5.1.4. Indefiniteness of Material Matrices

Conventional material averaging, as described in Section 4.1, offers very beneficial
numerical properties that are often taken for granted mistakenly. The fact that these
conventional coefficients only consist of facet areas, edge lengths and (averaged)
material parameters (cf. (4.4)) guarantees each of them to be nonnegative and,
consequently, the resulting diagonal matrix to be positive semidefinite. This
matrix property may seem to reflect the physical characteristic of positive material
parameters ε, μ and σ without considering it in the context of generalized material
averaging.

If the matrix is no longer symmetric, like in case of the nondiagonal matrix
approach presented in Section 4.4.2, the term positive definiteness is not even
defined anymore and numerical stability no longer assurable. Furthermore, we
also cannot unconditionally rely on this favorable property in case we deal with
diagonal, i.e. symmetric, matrices, which result by obtaining the field information
from the iterative approach or an exact reference solution. This can be clearly seen
from Fig. 4.3 and Fig. 4.5b, which prove that negative values of the generalized
material coefficient are likely to occur¹⁶. Fig. 4.5b furthermore shows that this is no
spurious effect, possibly caused by approximations in its deduction, but instead also
happens for the ideal material coefficient Mμ,k.

Apparently, the effect of positive semidefinite material matrices does not naturally
arise from the positivity of physical material parameters alone. It is also influenced
by the way the ideal material coefficient is approximated. The results of this
chapter, especially the comparison of different approximations in Fig. 4.5, allow
for the conclusion that the occurrence of indefinite, or even unsymmetric material
matrices can not be ruled out, if the Finite Integration Technique’s results are
supposed to converge quadratically in case of nonconformal material interfaces.
This observation is backed by [Shy11]’s and [BWC11]’s results, which are also
mentioned in Section 4.4.2.

16In fact, all results obtained by means of the generalized coefficient in this chapter are based on indefinite
material matrices.
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As discussed in Section 2.3.2, positive definiteness is a necessary condition for
numerical stability and, thus, convergence of FDTD schemes. We can conclude
that for converging FDTD simulations, the material needs to conform with the
mesh. Otherwise, it must be modified in order to do so, with significant loss of
accuracy and convergence rate. By that result, the effort put in the advancement
of time domain methods on cylindrical meshes in Chapter 3 becomes even more
justified, because it enables circular structures to conform with a computational
mesh without geometrical modifications.

The iterative scheme presented in Section 4.4.1 provides us with the ability to
easily check material matrices with regard to positive definiteness, since they are
always diagonal by design. As indicated in [KKS16], it may turn out beneficial to
exploit this ability and replace all matrix coefficients that cause undesired numerical
properties with more favorable ones. Possibilities include any of the conventional
coefficients or weighted averages thereof. We do not pursue this approach in
the present work because we cannot guarantee a consistently positive impact on
simulation results. Further research on suitable scenarios of this technique and
meaningful ways of application is required.
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CHAPTER5
Practice-Oriented Applications

So far, the suggested methods from Chapters 3 and 4 are only applied to abstract
examples with analytically known reference solutions. This chapter’s aim is to
demonstrate their use in more involved cases that are motivated by practically
relevant structures. However, the focus shall not lie on a realistic reproduction
of results from the literature or measurements, but rather on the comparison
between the proposed approaches with other simulation techniques. Therefore, we
idealize the simulated structures strongly and neglect some properties that would
otherwise make it very hard to yield meaningful conclusions. These simplifications
are discussed in detail in the respective sections.

While all algorithms that are introduced in this work are implemented in Math-
works MATLAB R2014b [Mat14], we also use the commercial simulation software
CST Studio Suite 2015 [CST15] for comparison’s sake. It offers many highly evolved
and optimized simulation techniques for various applications. For that reason, it
is not instructive to compete against it in terms of execution speed. Instead, we
establish scenarios in which the CST Studio Suite works under similar circumstances
and evaluate all results with respect to reference solutions. They are also obtained
by the CST Studio Suite, but under exploitation of its full potential.

5.1. FDTD on Cylindrical Meshes

The Coupled Multi-Mode method ���� (cf. Section 3.2.1) and the combined Hybrid
Newmark-Beta approach ����� (cf. Section 3.2.2) are applied in the following
sections to deduce the frequency spectra and resonant modes of two optical devices
in the micrometer range. Besides some geometrical idealizations that make them
fit perfectly to a cylindrical mesh, we treat them only in 2D inside a �-ϕ-plane.

Another simplification is the termination of the computational domain with
electric boundary conditions. In order to accurately reproduce the behavior of
such devices in free space, the use of an absorbing boundary condition is advisable.
Most commonly in FDTD simulations, it is realized by means of a so called Perfectly

Matched Layer (PML) [Bér94; TC00]. Its implementation for cylindrical meshes in
the Finite Integration Technique is discussed by the author in [Kir10]. However, its
sophisticated deployment makes a direct comparison with results obtained from
the CST Studio Suite on Cartesian meshes unfeasible. Electric boundaries, on the
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other hand, can be modeled comparably well. In the cylindrical examples, they are
realized by an electric boundary condition, while the Cartesian meshes in the CST
Studio Suite are terminated by circular PEC walls under employment of the Perfect
Boundary Approximation technique [Rie89; Kri+98; DM98].

The following sections’ investigations are already published in similar form by the
author in [KS12a] and [KS13d], respectively. They comprise different setups and
are based on tentative versions of the methods presented in this thesis. Opposed
to the setups presented herein, they involve absorbing boundaries but lack the
comparison to FDTD on Cartesian meshes and to a reference solution. One of them
is restated in Appendix D.

5.1.1. Microgear Resonator

Reproduced from [FB02]
(M. Fujita and T. Baba. “Microgear Laser”. In:

Applied Physics Letters 80.12 (2002), pp. 2051–2053,
�����������	
�	����������������),

with the permission of AIP Publishing.

Figure 5.1.: Scanning electron micrograph of a
microgear cavity.

This section deals with a so called mi-

crogear cavity (cf. Fig. 5.1). This struc-
ture is proposed and investigated in
[FB01] and [FB02] with the purpose to
eliminate non-lasing modes from mi-
crocavity lasers’ spectra. The character-
istic grating at the dielectric structure’s
perimeter is supposed to selectively
privilege a specific whispering-gallery

mode [Ora02], whose azimuthal order
directly corresponds to the number of
cogs.

An idealized model of the micro-
gear cavity provides a well-suited ap-
plication example for the Coupled
Multi-Mode approach ���� (cf. Sec-
tion 3.2.1), due to the structure’s high
degree of symmetry, specifically its per-
fect rotational symmetry up to a cer-
tain radius. For the sake of demon-
stration and meaningful comparison,
we restrict ourselves to the actual res-
onator structure without its pedestal
and align the grating with only 8 cogs
along a cylindrical coordinate system.
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5.1. FDTD on Cylindrical Meshes

As discussed above, it is placed inside a perfectly conducting, circular box instead
of terminating the computational domain with absorbing boundary conditions.

The mesh configuration for ���� is shown in Fig. 5.2a. The Multi-Mode domain
covers nearly the entire rotationally symmetric part. Only the cogs and the
surrounding free space are discretized by a conventional cylindrical mesh. The
perfectly conducting enclosure is implemented by an electric boundary condition
(cf. Section 2.2.3).

To stress the advantages of the coupled approach (����), we compare its results
to a highly accurate reference solution (������

���
). It is obtained by an eigenmode

calculation on a dense tetrahedral mesh in CST Microwave Studio. We also compare
the results to those of a fully cylindrical approach (������	) on an otherwise equal
mesh and, furthermore, to a Cartesian FDTD approach on a comparably coarse
mesh. This Cartesian mesh is shown in Fig. 5.2b. The simulation is carried out in
the CST Studio Suite under the premises described in the previous section. In order
to deal with the nonconformal material interfaces, an advanced, but undisclosed¹
treatment of partially filled mesh cells (�������), as well as the straightforward
staircase technique (������

���
) come to action.

The simulation and evaluation process is based on that described for the numerical
example in Section 3.2.4. We excite the given structure symmetrically by imprinting
a z-directed current in its center. Its frequency spectrum covers the range from
90–110 THz. During the simulation, which runs 30 times the duration of the
excitation signal, a probe signal of the z-directed electric field is recorded inside one
of the cogs. For each respective approach, its Fourier spectra are given in Fig. 5.3.

The single resonance frequency inside the excited spectrum is determined
distinctively and in reasonably good correspondence to its reference solution ������

���

for each respective method. Fig. 5.2c gives a visual representation of this mode’s
electric field. It is obtained during the simulation by an on-the-fly calculation of the
discrete Fourier transform at each z-directed mesh edge. The mode is well-confined
inside the cavity and also aligned with respect to the cogs.

In the following, we assess the simulation approaches quantitatively with regard
to accuracy and simulation time, if applicable. Therefore, we subject each of the
temporal probe signals to harmonic inversion [MT98] by means of the free software
Harminv [Joh06]. The resulting resonance frequencies for the mode shown in
Fig. 5.2c are then compared to the reference solution from ���

���
���

. This leads to
the relative errors given in Table 5.1.

As expected from the results of Section 3.2.1, ���� leads to the most accurate
results. Under consideration of the findings of Chapter 4, it is also evident that the

1It is titled FPBA with Enhanced Accuracy in the CST Studio Suite.
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(a) Cylindrical mesh with Δ� = 100 nm, Δϕ = 2π
96 .

Simulations take place in Mathworks MATLAB.
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(b) Cartesian mesh with Δx = Δy = 100 nm.
Simulations take place in CST Studio Suite.

(c) Real part of the electric field’s complex amplitude
near 98 THz.

Figure 5.2.: True to scale computational setup and mode pattern of the investigated microgear
resonator. The dielectric medium has the permittivity 8ε0.
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Figure 5.3.: Normalized Fourier spectra of the recorded probe signals for each different
approach. The dashed line represents a highly accurate eigenmode solution from
the CST Studio Suite.

���� ������� ������� ����
��
���

0.03 % 0.16 % 0.84 % 0.95 %

Table 5.1.: Relative error of the resonance frequency for the mode shown in Fig. 5.2c, compared
to the reference solution from ���

��	
���.

Cartesian mesh in ������
���

performs worse due to nonconformal material interfaces
(cf. Fig. 5.2b). Even ������� ’s special treatment for partially filled mesh cells cannot
compete with the cylindrical algorithms’ accuracy.

The generalized material coefficient from Chapter 4 does not find consideration at
this point, because of the microgear cavity’s involved geometry and the associated
complexity of the coefficients’ evaluation. Furthermore, it is shown to lead to
unstable FDTD schemes (cf. Section 4.5.1.4).

Despite ����’s improved accuracy, it also performs noticeably faster than �������.
This is made possible by the automated mode selection (cf. Section 3.2.1.3), which
disables all negligible azimuthal modes m and, consequently, drastically increases
the employable time step size. In this example, we set the threshold for disabling
an azimuthal mode to a modal energy Em that is lower than 10−5 times the total
energy in the BOR domain. Fig. 5.4 shows each modal energy in relation to the total
energy. Due to the microgear’s grating structure, only those azimuthal modes that
stand in an integer relation to the resonator’s number of cogs are excited in the first
place. Amongst all azimuthal modes that are in fact excited, the automated mode
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Figure 5.4.: Energy per azimuthal mode according to (3.11). Notice the close connection
between the microgear resonator’s number of cogs (eight), and the relevant
azimuthal modes.

selection disables those with m≥ 20 and, additionally, all further azimuthal modes
that are not excited. Consequently, the time step size increases from 6.94 · 10−18 s
to 2.76 · 10−17 s, i.e. by about four times. In terms of measured execution times for
the entire time loop, this leads to a speedup of 2.3. The Cartesian mesh dictates
a time step size of 6.27 · 10−17 s. Due to this advantage, and also due to their
highly optimized implementation, ������� and ����

��

���
clearly outperform the

cylindrical algorithms. However, we expect them to be similarly fast in consistent
implementation frameworks, because ���� works on a reduced set of degrees of
freedom after disabling unnecessary azimuthal modes.

5.1.2. Pierced Microdisk

If a microdisk is not bordered by a grating structure, like in the previous application
example of a microgear resonator, its modes are less confined and undirected
radiation takes place across its boundary. In case this radiation is supposed to
take place predominantly along a predefined direction, the disk’s perfect rotational
symmetry needs to be disturbed. A possibility to realize such a directed radiation
pattern is to manufacture the disk with a piercing in its outer perimeter. These so
called pierced microdisks are investigated thoroughly in [Wil08; Ban11].
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(a) Cylindrical mesh with Δ� = 100 nm, Δϕ =
2π
108 . Simulations take place in Mathworks
MATLAB.
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(b) Cartesian mesh with Δx = Δy = 100 nm.
Simulations take place in CST Studio Suite.

(c) Real part of the electric field’s complex amplitude
near 158 THz.

Figure 5.5.: True to scale computational setup and mode pattern of the investigated pierced
microdisk. The dielectric medium has the permittivity 8ε0.
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Because of the strong perturbation of the rotational symmetry by a local piercing,
the Coupled Multi-Mode approach ���� is no longer suited for simulation. A large
number of azimuthal modes would be required to accurately describe the occurring
fields and the automated mode selection could not enhance the employable time
step size significantly. Therefore, we turn towards the Hybrid Newmark-Beta
approach with radially adjusted β (cf. Section 3.2.2). Since the inner part of the
pierced disk is still rotationally symmetric, as seen in Fig. 5.5, we use the combined
approach with a BOR mesh that ranges radially up to the perturbation. Like in
Section 3.2.4, we abbreviate this algorithm with �����. The computational mesh
setup is shown in Fig. 5.5a. Except for its multi-modal BOR domain it is used
unchanged for the conventional cylindrical FDTD approach �������.
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Figure 5.6.: Normalized Fourier spectra of the recorded probe signals for each different
approach. The dashed line represents a highly accurate eigenmode solution from
the CST Studio Suite.

The remaining simulation process and its setup are oriented on those in the
previous section. A mode pattern that clearly constitutes the desired properties
is obtained from ������� and shown in Fig. 5.5c. It occurs at approximately
158 THz and exhibits a distinct orientation of its field pattern with respect to the
piercing. Each probe signal that results from the discussed simulation approaches
features this mode in its Fourier spectrum. These spectra are given in Fig. 5.6.
The respective deviations to the reference solution are qualitatively noticeable and
denoted numerically by means of their relative error in Table 5.2. As expected,
����� leads to the most accurate results, followed by �������. The Cartesian
mesh approaches have to deal with partially filled mesh cells and, therefore, cannot
compete in terms of accuracy. Even though ����

��
���

yields a smaller relative error
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for this particular mode than �������, parasitic modes are excited due to the
inaccurate representation of the piercing on a staircase mesh.

����� ������� ������� ����
��
���

0.12 % 0.27 % 1.07 % 0.79 %

Table 5.2.: Relative error of the resonance frequency for the mode shown in Fig. 5.5c, compared
to the reference solution from ���

��	
���.

Besides the increase in accuracy, ����� yields an overall speedup of 8.0 with
respect to �������, which can be traced back to the significant enlargement of the
time step size from 9.70 · 10−18 s to 1.35 · 10−16 s (about 14 times larger). Since the
update scheme is completely explicit and the degrees of freedom remain unchanged,
we expect the speedup to be even higher if more effort is put into a speed-optimized
implementation.

A more realistic version of the pierced microdisk setup is given in Appendix D. It
comprises a higher mesh resolution and an absorbing boundary in radial direction.

5.2. Time Domain Magnetoquasistatics with Nonconformal
Material Interfaces

This section’s topic is the treatment of the structure shown in Fig. 5.7. From
a geometrical point of view, it is the same like in the numerical example from
Section 4.3. The tilted mesh causes nonconformal material interfaces, which we
subject to treatment with the generalized material coefficient M∠

μ,k. However,
instead of the magnetostatic case, we now focus on an application based on the
time domain formulation of the magnetoquasistatic approximation of Maxwell’s
equations (abbr. MQSTD). In the context of the Finite Integration Technique, it
reads [CW99]:

CT Mμ−1 C�a(t) +Mσ

d
dt

�a(t) =
��
j s(t) (5.1)

Notice the close resemblance to its space-continuous counterpart (2.7), except for
the occurrence of source currents

��
j s(t). The time dependence can be discretized

by means of the Backward Euler² method [CW99], which leads to the following,
unconditionally stable iteration scheme:%

CT Mμ−1 C+
1
Δt

Mσ

&
�a(m+1) =

1
Δt

Mσ
�a(m) +

��
j
(m+1)

s (5.2)

2Other discretization methods are feasible as well. However, Backward Euler leads to the simplest update
scheme, which is sufficient for the sake of demonstration.
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(a) Cartesian mesh with Δx =Δy = L
32 . Simulations

take place in Mathworks MATLAB.
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(b) Triangular mesh with 2180 elements. Simula-
tions take place in CST Studio Suite.

Figure 5.7.: True to scale computational setup of the tilted (θ = 63.43◦) material interface.

For details about its derivation and numerical properties, the reader is referred
to [CW99; CW01]. As we have already discussed in Section 4.4.1, the generalized
material coefficient, as foundation of the matrix Mμ−1 , constitutes a nonlinear
material relation, which depends on the actual fields. A technique, called the Suc-

cessive Approximation Algorithm [DW00], allows for the incorporation of nonlinear
magnetic materials with given magnetization curves into (5.2). For that purpose,
the vector potential �a(m+1) is reevaluated based on the magnetization curve by
means of a fixed-point iteration with index ν in every time step m:%

CT Mμ−1

�
�a(m+1)
ν

�
C+

1
Δt

Mσ

&
�a(m+1)
ν+1 =

1
Δt

Mσ
�a(m) +

��
j
(m+1)

s (5.3)

Applied to the present case, we can adapt the Successive Approximation Al-
gorithm in order to obtain the updated value of the field-dependent material
matrix Mμ−1

�
�a(m+1)
ν

�
via the generalized material coefficient’s definition (4.7c) in

combination with the field estimation method from Section 4.4. Effectively, this
equals a repetition of the iterative scheme presented in Fig. 4.10 for each consec-
utive time step based on (5.3). We stress the fact that the simulated materials
are not inherently nonlinear in the following example, but instead are treated by
a mathematical model, which turns out to be nonlinear. If they are inherently
nonlinear and the Successive Approximation Algorithm is employed already, then
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an additional incorporation of the generalized material coefficient in each update
cycle can be achieved very efficiently.

In order to induce and observe a temporal variation of the generalized coefficients
at the material interface, we imprint two spatially distinct source currents into
the computational domain that are constituted by phase shifted sines, as shown
in Fig. 5.8a. By that measure, the field incidence angles αk, which the coefficients
M∠
μ,k are built upon, change in every time step. We monitor a probe signal Bp

x (t) of
the magnetic flux density’s x-component at a different location inside a conductive
region of the domain. Two different variants of the computational setup are
depicted true to scale in Fig. 5.7. For the sake of comparison, we not only rely on a
Cartesian (cf. Fig. 5.7a), but also on a triangular mesh (cf. Fig. 5.7b). The latter
is used in conjunction with the Finite Element method, implemented by the CST
Studio Suite [CST15]. An MQSTD solver on Cartesian meshes is not available in the
CST Studio Suite.

We assign abbreviations to the different simulation approaches:
�����‖ Conventional material averaging on the Cartesian mesh (cf.

(4.4a)).
�����

‖
���

Same as �����‖, but higher mesh resolution with Δx =Δy =
L

256 .
�����

∠
���

Successive Approximation Algorithm based on generalized ma-
terial coefficient (4.7c) on the Cartesian mesh.

��������
��	

Finite Element method on the triangular mesh, implemented by
the CST Studio Suite.

There are some conceptual peculiarities in the simulation setup for the CST Studio
Suite, which need to be addressed. The current sources, implemented as so called
coil segments, cannot be made infinitely thin like in the MATLAB implementation of
the Cartesian mesh. Making them reasonably small leads to a very inhomogeneous
mesh in their vicinity (cf. Fig. 5.7b). Furthermore, the utilized time integration
scheme is undisclosed and very likely based on a more advanced and more accurate
technique than Backward Euler, which we use for our schemes on the Cartesian
mesh. By these considerations, it seems advisable not to rely on ��������

��	
as a

suitable reference solution, but instead verify our schemes against �����‖
���

.
Fig. 5.8b shows the transient behavior of the recorded probe signals. All methods,

including ��������
��	

, lead to qualitatively indiscernible results. A closer look reveals
that the reference solution �����‖

���
is approximated most accurately by �����∠

���
,

i.e. the iterative method based on the generalized material coefficient. This
perception is confirmed by Table 5.3, which shows each probe signal’s root-mean-
square (RMS) error with respect to �����‖

���
.
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(a) Phase shifted excitation currents that are imprinted at the positions given in Fig. 5.7. The sines’
frequency is 50 Hz. A total of 180 time samples is used, which results in a step size ofΔt = 1/3 ms.
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(b) The monitored probe signals that are recorded at the position given in Fig. 5.7 for different simulation
approaches.

Figure 5.8.: Temporal dependence of excitation current and monitored probe signal.
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�����
∠
���

�����‖ ��������
���

�����
‖
��	

RMS error in μT 0.0087 0.038 0.12 0

sim. time in s 14 1 41 21

Table 5.3.: RMS error of probe signals and required time for simulation. The RMS error is
given with respect to the reference solution �����

‖
��	

.

��������
���

’s large deviation has to be understood in the context of the chosen
reference solution, which comprises some substantial conceptual differences (see
above). With respect to a hypothetical exact solution of (5.1) for this example, it
is likely to turn out more accurate than �����

∠
���

and �����‖ due to its ideally
material-conforming mesh and its more elaborate time integration scheme.

In terms of simulation times³, �����‖ is uncontestedly fast. However, the iterative
approach �����

∠
���

offers a reasonable compromise between improved accuracy
and reduced simulation time that cannot be achieved by a mesh refinement. Its
speedup can be further increased by a more resource economical implementation
that has not been the main focus of this work. All Cartesian mesh based algorithms
even outperform the triangular mesh approach in the CST Studio Suite, which has
to deal with approximately twice as much mesh cells in this example.

The remaining Figures 5.9a and 5.9b are given to demonstrate the working
principle of the generalized material coefficient. Fig. 5.9a shows the estimated field
incidence angle αk for one particular facet/edge-pair k = k0, which is cut by the
interface (cf. Fig 5.7a). The periodically recurring pattern, which results from the
spatially and temporally shifted, yet sinusoidal, excitation currents is clearly visible.
Its smooth appearance is evidence for good accuracy of the field angles’ estimation by
means of the method described in Section 4.4. Under consideration of the interface
angle θk = θ , as well as the respective cut- and material ratios, evaluating (4.7c)
leads directly to the generalized material coefficient M∠

μ,k, as shown in Fig. 5.9b. In

this case, it ranges mostly between the conventional approximations M⊥
μ,k and M ‖

μ,k.
An exception of this bounded behavior occurs whenever αk > 0. In conjunction
with the positive interface angle θk, this directly reflects the predication of Fig. 4.3.

3Measured on an Intel Core i7-4770K CPU, 16 GB RAM, MATLAB R2014b.
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(a) Progression of the estimated field angle αk for k = k0.
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(b) The material coefficient M∠
μ,k after 15 iterations in each time step for k = k0.

Figure 5.9.: Temporal dependence of monitored field angle and generalized material coeffi-
cient.
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CHAPTER6
Summary and Outlook

The superordinate topic of this thesis are material interfaces that do not conform
well with a Cartesian mesh system. Even though we extend the generally accepted
meaning of the term conformal from perfect alignment of mesh facets and material
interfaces to a more general definition that also permits partially filled cells under
some constraints (cf. Fig. 4.1), typical simulations still suffer from a significant
loss of accuracy. We trace this loss of accuracy back to a strongly simplified,
yet commonly employed, approximation of the ideal material coefficient, which
converges only linearly in the nonconformal case (cf. (4.9)). The awareness of
this fundamental and restrictive property can be seen as the present thesis’ central
motivation, which emerges into two distinctive approaches with the aim to restore
a second order accurate discretization.

The first approach, which is dealt with in Chapter 3, assumes the simulated object
to be shaped in a way that qualifies it for being represented in a directly conformal
sense by a cylindrical mesh. This constitutes a rather problem-specific approach
that is readily described in the scope of the Finite Integration Technique in [Wei83;
Deh93; DW94]. Our efforts focus on the employment of cylindrical meshes in time
domain simulations, which is a rarely used combination due to severe restrictions
that a cylindrical mesh imposes on the conventional FDTD algorithm. In order
to quantify these restrictions, mesh specific CFL conditions for a time step size
that leads to numerical stability are derived in Section 3.1. They clearly indicate
that cylindrical FDTD comes at the price of a strongly diminished time step size
in comparison to its deployment on comparable Cartesian meshes. Consequently,
the extra effort due to a large number of required update cycles is likely to have
yielded a more favorable outcome if it were invested in a highly resolved Cartesian
simulation.

Therefore, we dedicate ourselves to modifications of the conventional FDTD
scheme. The Coupled Multi-Mode method (cf. Section 3.2.1) is inspired by a similar
approach for frequency domain simulations [Deh93; DW94]. Within its context, a
technique called Automated Mode Detection enables unnecessary, yet strongly time
step limiting, modal field contributions to be disabled. The outcome is shown to
not even speed up the calculation significantly, but also increases its accuracy due
to a better balanced ratio of temporal and spatial error terms (cf. Appendix B). A
different FDTD modification, the Hybrid Newmark-Beta method (cf. Section 3.2.2),
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Chapter 6. Summary and Outlook

achieves the same goals, but on an unaltered mesh system. Any Newmark-Beta
scheme can be made unconditionally stable at the expense to be less accurate than
FDTD. We apply it in a hybrid fashion very precisely only to those mesh components
that are responsible for the time step degradation. Ultimately, a combination of
both methods is shown to lead to very beneficial properties in many use cases and
unifies each method’s advantages.

The second main pillar of this thesis is constituted by Chapter 4 and takes an
entirely different way to address the issue of nonconformal material interfaces.
The concept of generalized material modeling (cf. (4.7)), which is mentioned in
similar form in [Sch05], is first of all formally proven to converge quadratically
even for arbitrarily tilted interfaces, as desired. After deducing the implications
of the widely employed staircase approximation by means of this formula, two
different means of implementing it in practice are discussed in Section 4.4. The
first relies on a successive iteration, while the other yields results directly, based
on a nondiagonal and unsymmetric material matrix. The latter is comparable to
an existing subpixel smoothing technique [BWC11]. Despite the additional effort for
both of them, they can be shown to reach a certain level of accuracy much faster than
by a conventional mesh refinement. The extensibility to other areas of application,
i.e. for dielectric materials, in three dimensions or for curved interfaces, is reasoned
for in Section 4.5.1. We also address the side effect of indefinite material matrices
with regard to the generalized coefficient’s applicability in FDTD simulations with a
most likely negative outcome.

Chapter 5 demonstrates the application of all essential concepts introduced in
this thesis to practice-oriented examples. The Coupled Multi-Mode method and
Hybrid Newmark-Beta come to action with the aim of determining the spectrum and
resonant modes of optical devices in the micrometer regime. Their characteristic
properties are highlighted and significant speedups are achieved. Comparisons to
the commercial simulation software CST Studio Suite [CST15] prove to be favorable
for the algorithms presented herein, at least in terms of accuracy. We also give a
more realistic simulation example in Appendix D.

The accurate handling of nonconformal material interfaces is demonstrated by
means of a time domain formulation of the magnetoquasistatic approximation
of Maxwell’s equations, like it is commonly used in electric machine simulations.
Especially the iterative approach (cf. Section 4.4.1) turns out to integrate itself very
well in an existing technique for handling nonlinear magnetic materials [DW00].

In order for the presented methods to find consideration in user-friendly simula-
tion software tools, some hurdles need to be overcome. Both the cylindrical, as well
as the nonconformal Cartesian mesh approach make high demands on the mesh
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generation process. There exist highly evolved mesh generators for unstructured
tetrahedral meshes, e.g. Gmsh [GR09]. Nevertheless, versatile and user-friendly
software for this purpose with regard to cylindrical meshes is not publicly available
to the best of the author’s knowledge. Cartesian mesh generators often rely on the
staircase approximation or at least do not expose the edge’s and facet’s material
cut ratios to the user without further measures. However, the generalized mate-
rial coefficient’s applicability is tightly limited without a possibility to obtain this
information automatically.
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APPENDIXA
Maxwell’s Grid Equations for Bodies of

Revolution

We carry out the following deduction in close analogy to [Deh93; DW94]. The main
difference is the ϕ-dependence’s description by complex exponentials instead of
two separate sets of sines and cosines. This makes both polarizations treatable by
means of the same (complex) equation.

As motivated in Section 2.2.5.4, the electric field and magnetic flux in a rotationally
symmetric domain read:

�E =
∞∑

m=−∞
�Em (�, z)ejmϕ (A.1a)

�B =
∞∑

m=−∞
�Bm (�, z)ejmϕ (A.1b)

�Em and �Bm are Fourier coefficients that are also called azimuthal modes in the
scope of this thesis. In the following, Maxwell’s grid equations are derived based
on considering the fields’ Fourier expansions (A.1) for an arbitrary mode m. This is
done exemplary for Faraday’s Law, which is evaluated on a primary mesh facet A
separately for each coordinate direction.
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Appendix A. Maxwell’s Grid Equations for Bodies of Revolution

For a �-facet situated at � = �0 and ranging from z = z1 to z = z2 this yields:∮
∂ A

�E · d�s = − d
dt

∫∫
A

�B · d�A (A.2a)

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Δϕ/2∫
−Δϕ/2

Eϕ (�0,ϕ, z1)�0dϕ +

z2∫
z1

Ez (�0,Δϕ/2, z)dz

−
Δϕ/2∫
−Δϕ/2

Eϕ (�0,ϕ, z2)�0dϕ −
z2∫

z1

Ez (�0,−Δϕ/2, z)dz

=− d
dt

z2∫
z1

Δϕ/2∫
−Δϕ/2

B� (�0,ϕ, z)�0dϕdz

(A.2b)

Substituting A.1 and carrying out the integrations results in:

�em,ϕ(z1)− �em,ϕ(z2) + jmΔϕ�em,z = − d
dt

�
bm,� (A.3)

Analogously, evaluating Faraday’s Law on a ϕ-directed facet yields:

�em,�(z2)− �em,�(z1) +
�em,z(�1)− �em,z(�2) = − d

dt
�
bm,ϕ (A.4)

Finally, choosing a z-directed facet results in:

− jmΔϕ�em,� − �em,ϕ(�1) +
�em,ϕ(�2) = − d

dt
�
bm,z . (A.5)

Since theϕ dependence is explicitly integrable, the azimuthal step size is arbitrary
and, for the sake of simplicity, set to Δϕ = 1.

Inspecting the above equations allows for drawing conclusions about the partial
derivative matrices’ appearance. Specifically, P� and Pz seem to remain unchanged
compared to the conventional case (cf. Section 2.2.5.1). The azimuthal operator,
however, is constituted by an imaginary, diagonal matrix Pϕ = −jmI.

The above deduction can be performed analogously for Ampère’s Law, i.e. for
dual mesh facets, which reveals that the duality relation 2.16 still holds by means
of Hermitian transposition. The dual azimuthal operator, therefore, reads �Pϕ =−PH

ϕ
= Pϕ = −jmI.
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Evaluating Ampère’s Law for a dual z-facet �A at � = 0 also leads to an important
special case: ∮

∂ �A
�H · d�s = d

dt

∫∫
�A
�D · d�A (A.6a)

2π∫
0

Hϕ(��1,ϕ, z0)��1dϕ =
d
dt

��1∫
0

2π∫
0

Dz (�,ϕ, z0)�dϕd� (A.6b)

2π∫
0

∞∑
m=−∞

Hm,ϕ (��1, z0)e
jmϕ ��1dϕ =

d
dt

��1∫
0

2π∫
0

∞∑
m=−∞

Dm,z (�, z0)e
jmϕ�dϕd� (A.6c)

=⇒ �
h0,ϕ(��1) =

d
dt

�
d0,z(� = 0) (A.6d)

Because
∫ 2π

0
ejmϕdϕ vanishes for all m �= 0, the electric grid flux

�
dm,z at � = 0

exists only in case m = 0. This reflects on the radial derivative matrix P�, which
implements A.6d only for m= 0 and establishes no connection between

�
hm,ϕ(��1)

and
�
dm,z(� = 0) otherwise.

Conclusively, Maxwell’s grid equations for an azimuthal mode m are obtained by
adapting the pseudo-two-dimensional mesh geometry with Δϕ = 1 and modifying
the partial derivative operators P� and Pϕ as described above.
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APPENDIXB
Stability and Accuracy of
Newmark-Beta Schemes

B.1. Discrete Dispersion Relation

The deduction of an equation that generalizes the continuous dispersion relation
k2

x + k2
y + k2

z = ω
2/c2 to apply for discrete field quantities on equidistant Cartesian

meshes in a homogeneous medium is outlined in [TH05]. The basic idea is to insert
plane wave solutions for the electric and magnetic field into the discrete form of
Maxwell’s equations. The result for the conventional leapfrog method is as follows
[TH05]:

sin2
�
k̃x
Δx
2

��
Δx
2

�2 +
sin2

�
k̃y
Δy
2

��
Δy
2

�2 +
sin2

�
k̃z
Δz
2

��
Δz
2

�2 =
sin2

�
ωΔt

2

�
c2
�
Δt
2

�2 (B.1)

The wave numbers k̃x , k̃y and k̃z are the so-called discrete wave numbers that
arise from the discrete mesh representation when a temporal frequency ω is given.
The discrete wave numbers are associated with a frequency ω̃, which is called
the discrete frequency. Since the entire left hand side only accounts for the spatial
discretization, it is not affected by incorporating the Newmark-Beta extension.
Therefore, in order to derive the dispersion relation’s right hand side in dependence
of β , it suffices to investigate (2.33), i.e.

�
Δt2βACC + I

�
�e(m+1) =

( − �Δt2 (1− 2β)ACC − 2I
�
�e(m)

− �Δt2βACC + I
�
�e(m−1)

(B.2)

in a spatially continuous domain (Δx → 0, Δy → 0 and Δz → 0). In this limit,
(B.1)’s left hand side results in ω̃2/c2 and the matrix ACC equals the squared speed
of light times the Laplacian¹, i.e. ACC → −c2∇2. Incorporating a plane wave
�e = �e0e

j(k̃x x+k̃ y y+k̃z z)ejωt with constant and scalar amplitude �e0 then yields:

�
Δt2βω̃2 + 1

�
ejω(m+1)Δt =

( − �Δt2 (1− 2β) ω̃2 − 2
�
ejωmΔt

− �Δt2βω̃2 + 1
�
ejω(m−1)Δt

(B.3)

1This direct relationship between discrete and continuous operators is possible because the Finite
Integration Technique results in a grid representation of Maxwell’s equations that preserves their
original appearance (cf. Section 2.2).

113



Appendix B. Stability and Accuracy of Newmark-Beta Schemes

After several algebraic simplifications and resubstituting the left hand side of
(B.1) for ω̃

2

c2 , the resulting discrete dispersion relation for a Newmark-Beta scheme
reads:

sin2
�
k̃x
Δx
2

��
Δx
2

�2 +
sin2

�
k̃y
Δy
2

��
Δy
2

�2 +
sin2

�
k̃z
Δz
2

��
Δz
2

�2 =
sin2

�
ωΔt

2

�
c2
�
Δt
2

�2 �
1− 4β sin2

�
ωΔt

2

�� (B.4)

For β = 0, as expected, (B.1) results.

B.2. Numerical Stability

As also described in [TH05], the discrete dispersion relation permits the derivation
of a CFL stability criterion for the time step size Δt in order to avoid numerical
instability. A numerically stable algorithm does not have decaying or increasing
field amplitudes in the absence of exciting currents and conductivities. Therefore, a
monochromatic wave’s frequency ω needs to be real and, consequently, the right
hand side sine terms in (B.4) range between zero and one. The left hand side sine
terms also can not be greater than one for real wave numbers, which allows for
rearranging (B.4) to yield an upper bound for the time step size:

Δt ≤ 1

c
'

1− 4β
"

1
Δx2 +

1
Δy2 +

1
Δz2

(B.5)

Again, the well-known CFL criterion for Cartesian meshes (2.29) results for β = 0.
For β ≥ 1/4 this formula loses its validity because the update scheme then becomes
unconditionally stable [New59].

B.3. Accuracy

In order to quantitatively investigate the accuracy of an electromagnetic wave
simulated on a Cartesian mesh with Newmark-Beta time integration, the discrete
dispersion relation (B.4) is evaluated for a wave traveling along a specific direction.
Only in that case it is possible to solve it explicitly for the discrete wave number. In
the following the x-direction is chosen, so that only k̃x exists:

k̃x =
2
Δx

arcsin

7
Δx
cΔt

sin
�
ωΔt

2

�E
1− 4β sin2

�
ωΔt

2

�
8

(B.6)
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B.3. Accuracy

Introducing the number of lines per (continuous) wavelength Ss =
2π

kxΔx and the

number of time samples per (continuous) period St =
2π
ωΔt , i.e. the spatial and

temporal sampling rates, (B.6) equates to:

k̃x =
Sskx

π
arcsin

⎛
⎝St

Ss

sin
�
π
St

�
3

1− 4β sin2
�
π
St

�
⎞
⎠ (B.7)

This formulation allows for a closed form expression of the discrete wave number’s

relative error δk̃x
= k̃x−kx

kx
:

δk̃x
=

Ss

π
arcsin

⎛
⎝St

Ss

sin
�
π
St

�
3

1− 4β sin2
�
π
St

�
⎞
⎠− 1 (B.8)

Furthermore, investigating (B.8) in the limit of infinite sampling rates allows for
closed form expressions of the spatial and temporal relative error, respectively. The
spatial error equates to

lim
St→∞

δk̃x
=

Ss

π
arcsin

%
π

Ss

&
− 1 (B.9)

whereas the temporal error results in

lim
Ss→∞

δk̃x
=

St

π

sin
�
π
St

�
3

1− 2β + 2β cos
�

2π
St

� − 1 (B.10)

These individual errors, whose sum very well approximates the overall relative
error, are visualized in Fig. B.1 in dependence of their respective sampling rate. In
case β = 0 (conventional FDTD), both errors’ superposition results in a vanishing
overall error, which is known from [TH05] under the notion magic time step.
Unfortunately, the spatial and temporal sampling rates can only be chosen equally
in the one-dimensional case. Considering β and a three-dimensional, equidistantly
meshed computational domain, the relationship between spatial and temporal
sampling rate follows as:

St = Ss

�
3
J

1− 4β (B.11)

It can be inferred from (B.5). By this result, it becomes impossible to generally
extinct the overall simulation error, especially if a wave’s propagation direction is
no longer unique and known a priori.
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Appendix B. Stability and Accuracy of Newmark-Beta Schemes
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Figure B.1.: Spatial and temporal discretization error in dependence of the respective sampling
rate, evaluated for several choices of β .

Fig. B.1 also allows for drawing the conclusion that, typically, large choices of
β turn out to be disadvantageous in terms of accuracy. Beyond a certain value of
β the temporal error even changes its sign and, therefore, emphasizes the overall
error instead of diminishing it.

Due to the extensive simplifications made to obtain these results, their implications
on accuracy for realistic applications have to be reasoned carefully. Nevertheless,
it seems reasonable to infer that exploiting Newmark-Beta’s relaxed CFL criterion
to full extent, especially for large values of β , drastically deteriorates accuracy.
Numerical results from [GN95] support this conclusion. Newmark-Beta should,
therefore, be used only if the positive effects of an increased time step size
prospectively outweigh the disadvantage of reduced accuracy. It is, furthermore,
advisable to take measures that restrict the method to small parts of the simulation
and to make sure that β is only chosen as high as necessary (cf. Section 3.2.2).

Another important implication of Fig. B.1, specifically for conventional FDTD
methods (β = 0), is that the time step size should be chosen as close to the stability
limit as possible. Otherwise, the temporal sampling rate St becomes even larger
compared to the spatial sampling rate Ss than it already is due to (B.11). Both
error terms are then even more unlikely to cancel out. This result, which is also
known from [TH05], is used in Section 3.1.3 to explain why increasing the time step
size in time domain methods on cylindrical meshes is usually favorable in terms of
accuracy.
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APPENDIXC
Detailed Deduction of Convergence

Rates

The convergence rates of approximations of the ideal material coefficient Mμ,k =
��
bk/

�

hk are of great importance in order to make accurate predictions about the
convergence rates of the Finite Integration Technique in case of nonconformal
material interfaces (cf. Section 4.2.3.1). They are motivated and given in Sections 4.1
and 4.2 with only a very brief mathematical deduction. To better comprehend their
origin, we carry out the deductions in the following in more detail. Therefore, let
us restate (4.6), the starting point of their derivation:

Mμ,k =

∫
Aa

k

�
μaHa

t cosθ − Ba
n sinθ

�
dA+

∫
Ab

k

�
μbHa

t cosθ − Ba
n sinθ

�
dA∫�La

k

�
Ha

t cosθ − 1
μa

Ba
n sinθ

�
ds+

∫�Lb
k

�
Ha

t cosθ − 1
μb

Ba
n sinθ

�
ds

(C.1)

C.1. Generalized Material Coefficient

In order to reformulate (C.1) in terms of the generalized material coefficient M∠
μ,k

and an error term (cf. (4.7)), we exemplarily evaluate one integral from the
numerator and one from the denominator after inserting the Taylor series expansion
(4.2). As indicated in Fig. 4.1, the Taylor expansion points Pk coincide with the
intersection point of primary facet and dual edge. It suffices to integrate Ha

t and
Ba

n , for which we use the placeholder Ψ . Their continuity is assured by the absence
of material discontinuities in their respective region of integration. Furthermore,
we assume them to be sufficiently differentiable.

An exemplary calculation for the numerator then reads:∫
Aa

k

ΨdA=

∫∫
Aa

k

�
Ψ |Pk

+
∂ Ψ

∂ v


Pk

v +
∂ Ψ

∂ w


Pk

w+O
�
v2, w2

��
dv dw (C.2a)

= Aa
k Ψ |Pk

+O (Δ)

5
∂ Ψ

∂ v


Pk

O
�
Δ2

�
2

+
∂ Ψ

∂ w


Pk

O
�
Δ2

�
2

6
+O

�
Δ4

�
(C.2b)

= Aa
k Ψ |Pk

+O
�
Δ3

�
(C.2c)
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Appendix C. Detailed Deduction of Convergence Rates

The second order terms O
�
Δ2

�
in (C.2b) result from substituting the bounds of

a parameterization of Aa
k for the integrated linear terms. Since the Taylor series’

expansion point Pk is aligned centrally on Ak, the asymmetric integration region
(Aa

k) prevents the non-constant parts of the Taylor series from canceling out after
integration. Along with a linearly converging contribution from the other variable,
this ultimately adds a cubically converging error to the desired solution.

We now perform a similar integration along the dual edge’s direction u for a
denominator term of (C.1). In this case, ua

1 and ua
2 are the supposed limits of the

present (sub-)edge �La
k :∫

�La
k

Ψds =

ua
2∫

ua
1

�
Ψ |Pk

+
∂ Ψ

∂ u


Pk

u+
∂ 2Ψ

∂ u2


Pk

u2

2
+O

�
u3
��

du (C.3a)

= �La
k Ψ |Pk

+

+
∂ Ψ

∂ u


Pk

u2

2

,ua
2

ua
1︸ ︷︷ ︸

O(Δ2)

+

+
∂ Ψ

∂ u


Pk

u3

6

,ua
2

ua
1︸ ︷︷ ︸

O(Δ3)

+O
�
Δ4

�
(C.3b)

= �La
k Ψ |Pk

+O
�
Δ2

�
(C.3c)

The denominator’s error term therefore converges quadratically. These results
lead directly to (4.7b), which we restate and explicitly reformulate several times
until we arrive at the generalized material coefficient’s definition (4.7c):

Mμ,k =

Γ∈O(Δ2)︷ ︸︸ ︷�
Ha

t cosθ
�

Pk

�
Aa

kμa + Ab
kμb

�− �Ba
n sinθ

�
Pk

Ak+O
�
Δ3

�
�
Ha

t cosθ
�

Pk
�Lk −

�
Ba

n sinθ
�

Pk

%�La
k

1
μa
+ �Lb

k

1
μb

&
︸ ︷︷ ︸

Π∈O(Δ)

+O (Δ2)
(C.4a)

=
Γ (1+O (Δ))
Π (1+O (Δ))

=
Γ

Π
(1+O (Δ)) (1−O (Δ)) (C.4b)

=
Γ

Π
(1+O (Δ)) =

Γ

Π
+O

�
Δ2

�
= M∠

μ,k +O
�
Δ2

�
(C.4c)

C.2. Conventional Material Coefficient

The previous deduction also covers the conventional material coefficients’ definitions
M ‖
μ,k and M⊥

μ,k in the conformal case (cf. (4.4)), as well as their convergence rates.
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C.2. Conventional Material Coefficient

Under the assumption of conformity, either Ha
t (parallel case) or Ba

n (perpendicular
case) in (C.4a) can be set to zero, without altering the error terms.

As described in Section 4.2.1, the deployment of the conventional coefficients M ‖
μ,k

and M⊥
μ,k in the nonconformal case is possible as well and leads to a generalization

of the well-known staircase approximation. Their reduced convergence rate can be
reasoned for elegantly by means of a small modification of the previous deduction.
We still need to make sure that either Ha

t or Ba
n vanish. Since this does no longer

happen by virtue of the conformity of material and mesh, it has to be induced
artificially. We realize this omission exemplarily for Ha

t by replacing it in (C.1) with
a constant error term O (1):

Mμ,k =

∫
Aa

k

�
O (1)− Ba

n sinθ
�

dA+
∫

Ab
k

�
O (1)− Ba

n sinθ
�

dA∫�La
k

�
O (1)− 1

μa
Ba

n sinθ
�

ds+
∫�Lb

k

�
O (1)− 1

μb
Ba

n sinθ
�

ds
(C.5)

The following relations hold:∫
Aa

k

O (1)dA∈ O �
Δ2

�
(C.6a)

∫
�La

k

O (1)ds ∈ O (Δ) (C.6b)

Subsequently, the numerator’s and denominator’s convergence rates are dimin-
ished by one order with respect to (C.4a), while the remaining field terms cancel
out:

Mμ,k =
Ak +O

�
Δ2

�
�Lk 〈μ−1〉�Lk

+O (Δ)
=

Ak (1+O (1))�Lk 〈μ−1〉�Lk
(1+O (1))

(C.7a)

=
Ak�Lk 〈μ−1〉�Lk

(1+O (1)) =
Ak�Lk 〈μ−1〉�Lk

+O (Δ) (C.7b)

= M ‖
μ,k +O (Δ) (C.7c)

The perpendicular coefficient M⊥
μ,k resulted in the same manner if Ba

n were
replaced by a constant error term instead of Ha

t .
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APPENDIXD
Extended Example of

Pierced Microdisk

The application example provided herein represents an extension of the pierced
microdisk example from Section 5.1.2 in combination with the algorithm �����

from Section 3.2.3 It is taken unmodified from the author’s publication [KS13d]
and the associated presentation [KS13e]. Besides slightly modified geometry and
material parameters (cf. Fig. D.1a), the main difference to the example from
Section 5.1.2 is a much finer mesh that also extends along the z-coordinate, as shown
in Fig. D.1c. Furthermore, the computational domain is terminated radially by
means of a 75 nm thick Perfectly Matched Layer [Bér94; TC00] in order to absorb
radiated fields. The PML’s implementation in time domain with specific regard to
the cylindrical mesh system is carried out as described in [Kir10].

A reference simulation on an entirely three-dimensional mesh comprises about
850,000 degrees of freedom and leads to a time step size of Δt = 2.0 · 10−18 s. The
discretization of the computational domain’s inner part with a BOR mesh enlarges
the time step size to Δt = 4.1 · 10−17 s, i.e. by 20 times. Along with the reduction to
only about 360,000 degrees of freedom, this leads to a total speedup of 11.5.

Due to the presence of an absorbing boundary in radial direction, Fig. D.1a shows
the radiation of fields in the direction given by the piercing much clearer than
Fig. 5.5c, which is based on conventional, i.e. reflecting, boundary conditions.
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Appendix D. Extended Example of Pierced Microdisk

1 μm

0.2 μm

εr = 6 εr = 1

(a) Geometry and material parameters. (b) Real part of the electric field’s z-component in a
central cutting plane at 411.8 THz.

(c) True to scale mesh setup. The inner part (up to 0.8 μm) is discretized by means of a multi-modal BOR
mesh with 20 azimuthal modes. The mesh step sizes are Δ� =Δz = 25 nm and Δϕ = 2π

302 . Blue cells
indicate the location of the Perfectly Matched Layer.

Figure D.1.: Computational setup and results of a pierced microdisk, as shown in [KS13e].
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Nomenclature
General and Mathematical Symbols

(u, v, w) General, orthogonal coordinates

(x , y, z) Cartesian coordinates

( x̃ , ỹ , z̃) tilted Cartesian coordinate system

(�,ϕ, z) Cylindrical coordinates

A, ∂ A facet and its boundary path

δ·,· Kronecker’s Delta

d�s, d�A, dV infinitesimal path, facet and volume element

�eu unit vector in u-direction

e Euler’s number, e= 2.7182 . . .

hu metric coefficient for u

I identity matrix

j imaginary unit, j=
�−1

∇ nabla operator

N Gaussian normal distribution

O Landau operator

π ratio of a circle’s circumference to its diameter, π= 3.1415 . . .

�r spatial variable

ℜ real part operator

t temporal variable

V , ∂ V volume and its boundary facet

123



Nomenclature

Space- and Time-Continuous Field Theory

�A vector potential

a,b indices of materials on both sides of interface I

�B magnetic flux density

Bn, Ht normal and tangential flux density and field components w.r.t the interface

c, c0 speed of light inside a medium and in vacuum

�D electric flux density

�E electric field strength

�Em, �Dm electric field’s and flux density’s mth Multi-Mode coefficient

ε permittivity

ε0 free-space permittivity

εr relative permittivity

Φ scalar potential

�H magnetic field strength

�Hm, �Bm magnetic field’s and flux density’s mth Multi-Mode coefficient

I interface between different materials

�J electric current density

�Jc , �Js conduction and source current density

�K surface current density

kx wave number along x

m azimuthal mode order

μ permeability

μ0 free-space permeability
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Nomenclature

μr relative permeability

�n, �t normal and tangential unit vector on interface I

ρq electric charge density

σ conductivity

ςq surface charge density

Ψ placeholder for quantities subject to Taylor series expansion

ω angular frequency

(Time-Discrete) Finite Integration Technique

(ξ,η,ζ) index triplet to address a mesh element:
μ−1

;�Lk
edge-weighted average of inverse permeability

〈μ〉Ak
facet-weighted average of permeability

α, αk angle between field and interface I (in general and locally at Pk)

ACC curl-curl-matrix ACC =M−1
ε

CT M−1
μ

C

Ak, �Ak primary and dual facet

A� , Az system matrices for semi-implicit update scheme

�az ,
�az,ref vector of z-directed line integrals over magnetic vector potential �A and its

analytically computed reference solution

β , γ Newmark-Beta parameters

βξ radially dependent parameter β

��

b,
��
bk magnetic grid flux vector and its kth element

Bp
x (t) temporal probe signal recorded during simulation

C, �C primary and dual curl matrix

Dε averaged permittivity matrix
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Nomenclature

Dμ averaged permeability matrix

Dσ averaged conductivity matrix

δk̃x
relative error of discrete wave number w.r.t. the continuous one

Δ largest mesh step size

Δt time step size

Δt3D time step size in three-dimensional part of computational domain

ΔtBOR time step size in multi-modal part of computational domain

Δuξ mesh step size in u-direction

��

d,
��
dk electric grid flux vector and its kth element

�eaux,
�
haux,m auxiliary grid voltages for three-dimensional and multi-modal domain

�e, �ek electric grid voltage vector and its kth element

�em,
�
dm mth Multi-Mode coefficient vector of �e and

��

d

�e(m),
�

h
(m+1/2)

temporally discrete electric and magnetic grid voltage

Ek,m cell- and mode-wise contribution to discrete electromagnetic energy at
time step m

E(m)
m

, E(m)BOR discrete electromagnetic energy per mode m and the total energy in the
multi-modal domain

E(m), E(m)k discrete electromagnetic energy at time step m and its cell-wise contri-
bution

� relative error norm of FIT quantity w.r.t. reference solution

G, �G primary and dual mesh

Γ , Π abbreviations for generalized material coefficient’s numerator and denomi-
nator

�

h,
�

hk magnetic grid voltage vector and its kth element
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Nomenclature

�
hm,

�
bm mth Multi-Mode coefficient vector of

�

h and
��

b

i locally assigned index of k’s directly adjacent neighbors
��
j ,
��
j k electric grid current vector and its kth element

k canonical index

Lk, �Lk primary and dual edge

L� , U� LU decomposition of A� with A� = L�U�

m time step index

Mε , Mε,k dielectric material matrix and its kth main diagonal entry

Mμ, Mμ,k magnetic material matrix and its kth main diagonal entry

Mσ, Mσ,k conductivity material matrix and its kth main diagonal entry

Mμ−1 (generally nondiagonal) reluctivity material matrix

Mμ−1,k,i contribution of i to kth row of nondiagonal reluctivity matrix Mμ−1

Mβ diagonal matrix for edge-wise assignment of parameter β

M, Mk symmetric energy matrix and its cell-wise contribution

Mm, �Mm mth primary and dual Multi-Mode transformation matrix

mmax highest azimutahl mode order

M∠
μ,k generalized material coefficient

M ‖
μ,k, M⊥

μ,k material coefficient in parallel and perpendicular case

Mu increment of canonical index k along u

ν fixed-point iteration index

Np number of mesh nodes

Nu number of nodes along u

Pk intersection point of primary facet Ak and dual edge �Lk
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Nomenclature

Pu, �Pu primary and dual partial difference matrix w.r.t. u

q electric grid charge vector

θ , θk angle between mesh axis and interface I (in general and locally at Pk)

Θk,i local 2× 2-matrix to obtain grid fluxes from interface-continuous compo-
nents

Ξk local 1× 2-matrix to obtain grid voltage from interface-continuous compo-
nents

�BOR, ��BOR primary and dual radius of interface between multi-modal and three-
dimensional mesh

��min dual radius of innermost mesh cell

sα standard deviation of field angle αk

S, �S primary and dual source matrix

Ss, St mesh lines per wavelength and time samples per period, i.e. spatial and
temporal sampling rate

τ offset multiplicator

texc duration of excitation signal

ω̃, k̃x discrete frequency and wave number along x
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