
This version is available at https://doi.org/10.14279/depositonce-8376

© © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Rohrer, Elias; Heidel, Steffen; Tschorsch, Florian (2018): Webchain: Verifiable Citations and References
for the World Wide Web. BLOCKCHAIN '18: Proceedings of the IEEE International Conference on
Blockchain. https://doi.org/10.1109/Cybermatics_2018.2018.00235

Elias Rohrer, Steffen Heidel, Florian Tschorsch

Webchain: Verifiable Citations and
References for the World Wide Web

Accepted manuscript (Postprint)Conference paper |

Webchain: Verifiable Citations and References
for the World Wide Web

Elias Rohrer
Distributed Security Infrastructres

Technical University of Berlin

Steffen Heidel
Distributed Security Infrastructres

Technical University of Berlin

Florian Tschorsch
Distributed Security Infrastructres

Technical University of Berlin

Abstract—Readers’ capability to consider and assess sources
is imperative. Digital preservation efforts, however, mostly ne-
glected citation provenance, which is a necessity for transparent
source verification. We therefore present Webchain, a new system
enabling verifiable citations and references on the World Wide
Web. Its architecture combines a distributed ledger with secure
timestamping to ensure history of creation, ownership, and
referential integrity of online resources. With Webchain, readers
can independently detect content manipulation by verifying
authenticity, integrity, and time consistency. At the same time,
authors gain a proof of existence for referenced articles. Web-
chain extends a well-known distributed timestamping scheme to
handle an open and dynamic network topology by providing a
solution for membership management. We examine the security
of our approach, particularly regarding forging attacks. Our
results show that we are able to render such attacks infeasible,
even in the face of a powerful attacker.

I. INTRODUCTION

The verifiability of sources is, also beyond science and
journalism, an essential method to substantiate arguments, give
authors credit, and enable readers to reproduce conclusions.
Traditionally, readers’ ability to verify claims and citations
depends on the respective author’s careful handling of citations
and references. Nevertheless, it also depends on the reader’s
capability to retrieve and check the referenced materials. Due
to the fact that more and more information is published online,
and given the highly volatile nature of digital information,
it is currently still unclear how to deal with digital sources.
It has been shown that loss of referential information is a
real issue [6], [12], and recent events [11] indicate that even
large publishers—which should provide a trust anchor—do not
guarantee the availability of their online articles. While web
archives such as the Wayback Machine [1] sustain availability
of web pages, they do not address verifiability.

In this paper, we therefore propose Webchain, a verifiable
citation system providing citation provenance for resources
on the World Wide Web (WWW). Participating authors can
use Webchain to cite other author’s online articles and give
readers the ability to independently verify the authenticity,
integrity, and time consistency of resources and references.
Hence, Webchain makes manipulation of cited content de-
tectable and provides non-repudiable publication of articles.
That is, Webchain does not only yield author attribution, it
also provides authors referencing content the necessary data
to prove that they referred to a certain “version” of an article.

In order to achieve these properties, Webchain’s design
is inspired by distributed timestamping [10] and blockchain-
based systems like Bitcoin [15]. To this end, Webchain builds
upon replicated data structures consisting of cryptographically
interlinked blocks. Each block represents an article and is
linked to all referenced articles, i. e., blocks. When new blocks
are created, they are distributed in a network of infrastructure
nodes that verify them and, if they are indeed valid, apply
them to their local ledger. To enable a proof of existence of
articles, i. e., a proof that articles existed at a certain point
in time, the Webchain architecture incorporates a secure and
distributed timestamping service. It ensures that blocks were
first seen in a certain time interval, effectively inserting them
into a total order over all blocks. As a consequence, re-dating
of articles becomes infeasible.

Webchain employs an extended version of a well-known
timestamping scheme [10]. It serves as an alternative to the
currently prevalent proof-of-work-based schemes to agree on a
network state based on a distributed trust model. Therefore, we
extend the scheme for use in dynamic network environments.
In order to still provide a verifiable validator election, the
notion of epochs is introduced to the system. Moreover, its
resilience and reliability is increased by validator redundancy
and replication. We evaluate the security of the Webchain
system, i. e., forging attacks on block timestamps. We show
such attacks to be infeasible for a resonable epoch length
and number of validators, even when assuming a powerful
adversary.

The contributions of our paper are summarized as follows:
We propose the Webchain system architecture enabling refer-
ential and citation provenance in a secure and verifiable way
(Sec. II). We integrate distributed timestamping to provide
a proof of existence (Sec. III). We evaluate Webchain’s re-
silience in the face of a forging attack (Sec. IV).

II. SYSTEM OVERVIEW

In the following, we give an overview of Webchain’s core
architecture, before discussing individual system components.

A. The Webchain Architecture

The backbone protocol of the Webchain architecture is in-
spired by blockchain-based systems, such as Bitcoin [15]. Like
these systems, Webchain draws its security and accountability
from replicated data structures consisting of cryptographically

Back-end

Front-end

Timestamping

Back-end

Front-end

Timestamping

Back-end

Front-end

Timestamping

Back-end

Front-end

Timestamping

Author

Reader

publishes block

verifies block

Back-end

Front-end

Timestamping

Back-end

Front-end

Timestamping

Back-end

Front-end

Timestamping

Back-end

Front-end

Timestamping

Author

Reader

publishes block

verifies block

Fig. 1. Webchain architecture.

interlinked blocks, i. e., distributed ledgers. In Webchain how-
ever, every block represents an article published on the WWW.
Each of these blocks is linked to every block corresponding
to a cited article. Updates to a distributed ledger of blocks
are broadcast in a network of infrastructure nodes that verify
and apply them to their local ledger state. Infrastructure nodes
consist of three components (cf. Figure 1): a back-end compo-
nent that manages and provides access to the distributed ledger
data, a front-end component that integrates an author-facing
content management system, and a timestamping component
that securely keeps track of block creation.

The Webchain system knows two types of users: authors
and readers. Authors register at an infrastructure node to
create and publish articles, which may cite other articles.
The Webchain front-end provides an interface which authors
use to add or edit articles. The front-end also takes care of
all Webchain-related procedures. In particular, it verifies the
validity of citation chains, creates a new block, and embeds
the Webchain metadata into the article. In addition, articles
are signed by the author. We envisage that readers use a
lightweight client software, implemented as a browser plugin.
The client scrapes visited websites for embedded Webchain
metadata, queries Webchain infrastructure nodes for the block
data, and verifies the citation chain. Therefore, the client
does not need additional external knowledge to verify block
integrity locally and in particular is not required to trust a
specific infrastructure node to be trustworthy.

B. Block Layout

A Webchain block B is defined as the 6-tuple
B = (id, f, t,m, σid, D), which is also illustrated in Figure 2.
A block’s main purpose is to hold and secure a set of data
entries D. In the Webchain system, we differentiate two types
of data entries: (i) hash values of text segments, which are part
of an article and (ii) references to other blocks’ data entries.
These entry types are stored as a list, discriminated by a
preceding type header. In order to secure data entries, they are
used to construct a Merkle tree [14]. As all values are incorpo-
rated in the root value m, the Merkle root, the value m secures
the integrity of all block data. Furthermore, Webchain adds a
POSIX timestamp t and the block author’s fingerprint f , which
is given by applying a cryptographically secure hash function
H to the author’s public key Ka,pk, i. e., H(Ka,pk). A block is
uniquely identified by the block identifier id = H(f ‖ t ‖m),
which is also recorded in a block. Finally, the author adds her

id

t

f

m

σid

D

author fingerprint
H(Ka,pk)

merkle root

block signature
E(id,Ka,sk)

block identifier
H(f ‖ t ‖m)

timestamp

list of hashed
text segments

and references

Fig. 2. Webchain block layout.

digital signature σid = sign(id,Ka,sk), where Ka,sk denotes
her private key. This cryptographic block construction ensures
that block identifiers depend on the block content as well
as on the time it was created. Therefore, the construction
allows to check block integrity by reproducing and verifying
the block identifier based on the article data itself. Since a
cryptographic signature of the identifier is provided by the
author, a block’s authenticity can also be validated. We assume
that the respective key material is known by the validating
party. This can be implemented by employing a variety of
well-known identity management techniques.

C. Block Creation

From an author’s perspective creating a new article feels
very much the same as before: she signs in to her respective
infrastructure node’s CMS and uses the web interface to edit
an article. After saving the article, however, the infrastructure
node prepares the article by subdividing the text into text seg-
ments. The reason for this kind of segmentation is to provide
other authors the ability to cite individual text segments rather
then requiring to cite complete articles only. The segmentation
can be achieved in different ways, e. g., by subdividing HTML
elements. Alternatively, the text could be segmented based
on sentence boundaries or semantically coherent text spans.
Both are well-studied areas in the field of natural language
processing [9], [16], [17]. An additional normalization step
might be necessary to yield an deterministic segmentation.

After preprocessing, the infrastructure node applies the hash
function H to each of the article’s segments and appends the
results to the data section D of the new block B. Given D, the
node derives the Merkle root m, adds f and t, and calculates
the block identifier id, which is signed by the author. The
block identifier is then embedded in the page header as a
corresponding HTML meta tag.

If an author cites an article which is part of the Webchain
ecosystem, a respective reference has to be added to D. In this
case, the client software automatically detects and includes
Webchain metadata when copy-pasting from a web site that
is part of the Webchain system. The reference, in form of a
block identifier, is also included as an HTML attribute.

When citations are translated to block references, so-called
citation chains emerge. Moreover, since various blocks can
reference the same block, multiple citation chains can form
a citation graph which is basically a directed acyclic graph
(DAG). Please note that many independent citation graphs can

coexist as blocks are not guaranteed to reference prior blocks.
This is especially noteworthy, as it differentiates the Webchain
design clearly from other blockchain-based approaches: the
Webchain system does not host a single ledger of blocks,
but many ledgers that only have to be stored by the involved
parties, which follows the separation of concerns principle.

Blocks are announced in a peer-to-peer network of infras-
tructure nodes. Every node receiving a new block verifies its
validity before forwarding the block to its neighbors. If one of
the node’s registered authors is associated with the block, i. e.,
a path between a block of the author and the new block exists,
the block is replicated by the infrastructure node. Otherwise,
the block is discarded after forwarding.

D. Block Verification

When infrastructure nodes receive a previously unknown
block B0 = (id0, f0, t0,m0, σid0

, D0), they perform a number
of checks to verify its validity:

1) Construct a Merkle tree from D0 with its root m′0.
2) Check that the Merkle roots match: m0 = m′0.
3) Check the block signature: id0 = verify(σid0

,Ka0,pk).

Additionally, when the nodes are involved with the block’s
citation graph, they inspect D0 and recursively retrieve all
referenced blocks Bi, i ∈ {1 . . . N}, i. e., they traverse the
citation graph. This enables them to verify the citation prove-
nance, by running additional checks:

1) Follow all references dj ∈ Di, i ∈ {0 . . . N} and assert
that dj is indeed included in the referenced block.

2) Assert that all referenced blocks are valid by running
the validity checks described before.

Therefore, a block is considered valid, when the integrity of
the data is confirmed through use of hashing and the Merkle
tree construction. Furthermore, citation provenance is ensured
by following the cryptographically secure links between blocks
and verifying the existence of data items in the cited sources.

The client software checks the accessed websites for Web-
chain metadata. When the client detects such metadata, it
extracts the block identifier and retrieves the corresponding
block B0 and referenced blocks Bi from an infrastructure node
in the background. Based on this data, the client constructs its
own local data set D′0. In order to verify the article’s content,
the client proceeds with the following steps:

1) Calculate Merkle root m′0 from D′0.
2) Assert that m′0 and the retrieved block’s m0 match.
3) Assert the validity and citation provenance of the re-

trieved blocks Bi, as described before.

Given that blocks can only reference other blocks that
already exist, it should be the case that timestamps in each
individual citation chain follow a certain pattern. In particular,
when following an individual link from a citing block Bi to
a referenced block Bj , it should hold that tj < ti. However,
this property can only be guaranteed to hold, if nodes have
a meaningful way to verify timestamps for a specific block,
which then is approved or discarded accordingly.

So far, we neglected to describe how infrastructure nodes
are able to verify the timestamp information provided in the
blocks. Webchain addresses this issue by implementing a
distributed timestamping scheme, which is described in the
following section.

III. DISTRIBUTED TIMESTAMPING

Distributed timestamping [10] is based on the idea that a
user should—rather than placing trust in a single centralized
authority—distribute the trust to a whole network of time-
stamping authorities, which we call timestamping validators.
By cryptographically signing hashed data together with a time-
stamp, these validators attest that they have seen the data at a
specific point in time. Of course, it would immensely reduce
the security properties of the timestamping protocol, if an
attestation would no longer be required to come from a specific
validator, but could stem from any of the validators. Therefore,
Haber and Stornetta introduced the idea of deterministically
electing k designated timestamping validators based on the
content of the data itself, k being a global constant. This is
done by using the hash y of the data (which is in our case
y = id) as seed for a pseudorandom number generator (PRNG)
function G, whose output sequence directly determines the k
designated validator nodes as

Vy =
⋃

i=1...k

G(y, i)

The hash y is sent to each of the selected validator nodes Vy ,
which respond with a digital signature, effectively creating a
timestamp.

Verification of these timestamps is done as follows: the
verifying party hashes the data to gain y and calculates k
executions of G to reconstruct the set of designated valida-
tors. The data is considered valid, if all of the determined
validators have signed the input. Thereby, the security of this
approach does not directly come from increasing the number
of validators (this only distributes the trust), but from the
deterministic validator election. For this, it is assumed that
a cryptographically secure hash function is used (i. e., the
probability of collisions can be neglected), and that it is hard
to spawn validator nodes with arbitrary identifiers.

In order to adapt this scheme for the Webchain system,
we assume that every infrastructure node also functions as
a timestamping validator and holds a public-private key pair
specifically for attestation purposes. Validators are addressed
by its fingerprint vi = H(pki) with pki being their public
key. When new blocks are distributed in the network, every
node, including the validators, are able to calculate the set
of designated validators Vid for a block identifier id. This of
course also applies to the designated validators, which issue a
corresponding attestation upon reception of a block they are
responsible for. The validator’s attestation is again broadcast in
the network, and stored replicas of the blocks are updated by
appending the additional signatures to the field σid. Blocks are
considered valid, if they not only feature the author’s signature,
but also the k validator signatures. However, deploying the

e0 e1 e2 . . .

te0 te1 te2 te3tg2

∆g

.

Fig. 3. Epochs define time intervals in which a specific validator set is
considered active. The validator set is secured by a Merkle root. The grace
period ∆g leaves room for data propagation but also implies, for example,
that valid announcements for e2 need a timestamp dated before tg2 .

scheme found in [10] is not entirely feasible for the Webchain
system: based on the construction, it can be assumed that the
authors required a network of static nodes, which however
does not fit the dynamic design of Webchain’s network. In
Webchain, we therefore propose an extension that manages
the network state in a dynamic overlay of validators.

A. Validator Membership Management

While we can assume that Webchain infrastructure nodes
are relatively stable, the network still is of dynamic and
open nature, which requires a flexible approach for addressing
and determining the designated validators. We address this
issue by—instead of directly using the output sequence of the
PRNG—introducing an addressing scheme based on the XOR
metric known from Kademlia [13]. This non-Euclidean metric
assigns a distance to two binary values, by applying the XOR
operation and interpreting the result as a integer number, i. e.,
d(x, y) = (x ⊕ y)10. By using the XOR metric, Webchain
can assign a well-defined distance between each value from the
sequence obtained by G and all existing validator nodes. This
allows to determine the k designated validators, i. e., Vy , by
selecting the k node identifiers closest to the values obtained
from G. However, since the deterministic validator election
scheme not only depends on the data input, but also on the
validator set, a node verifying a block has to know the state
of the validator network at the time of the block’s creation.

In order to manage the network state, we divide time into
epochs. In each particular epoch, the state of validators s builds
the basis for the respective validator election. We denote such
an epoch as ei = (i, s), including a continuous epoch number
i ∈ N and a value representing the state s. When joining the
network, every validator starts announcing her participation
for a future epoch. Every infrastructure node keeps track of
these announcements and thereby keeps a list of candidate
validators active for a specific epoch i. All infrastructure nodes
should reach consensus on which validators are considered
active in a specific epoch. However, depending on a variety of
factors (e. g., network performance), an announcement could
reach some nodes in time to register for a specific epoch,
while it may reach others too late. To mitigate this consistency
problem, we use the timestamping solution itself: other valida-
tor nodes sign announcements and broadcast the attestations
in the network. Similar to blocks, announcements are only
considered valid if they are signed by k designated validators

and received before the epoch starts. This is, announcing nodes
are then deemed active in the respective epoch.1

In order to deal with network delays, infrastructure nodes
require that announcements have a timestamp ta that is dated
at least some time ∆g earlier than the start time tei of the
respective epoch ei. Therefore, ∆g = |tei−tgi | defines a grace
period, which is illustrated in Figure 3. The grace period is in-
troduced to ensure that “fresh” announcements and the related
attestations reach all nodes in the network, before the start
of the new epoch. Therefore, we think tgi should be chosen
so that ∆g is at least double the maximum expected round-
trip time (RTT) in the network, i. e., ∆g > 2 · RTTmax. For
practical considerations, a ∆g of around 500 ms should suffice
for most network topologies. From the list of active validators,
every node builds a sorted Merkle tree, yielding a root value
which succinctly and securely describes the membership state
of this epoch, denoted as s. When new blocks are created, ei is
appended to the block and secured by the identifier hash value,
now respectively denoted as B = (id, f, t,m, σid, ei, D) and
id = H(f ‖ t ‖m‖ ei). The introduction of epochs allows to
retroactively verify that a block was signed by the correct set of
validators. As a consequence, joining nodes have to retrieve the
historical epoch data needed for verifying a particular block.
As the introduction of epochs limits the time a specific set of
validators is designated for a given input, it also increases the
system security (cf. Sec. IV).

B. Validator Redundancy
The described timestamping scheme allows to determine

which validators are responsible for signing a specific data
item in any given epoch. However, what happens if a desig-
nated validator becomes unavailable or maliciously refuses to
issue attestations? As infrastructure nodes only accept new
blocks and announcements when they are confirmed by k
designated nodes, refusing to attest could be an easy way to
run a Denial-of-Service (DoS) attack on the Webchain system.
Fortunately, there is an effective way to mitigate such attacks
in form of validator redundancy: infrastructure nodes do no
longer check for k attestations of designated validators, but
they check for a number k′ < k. This solution was already
proposed by Haber and Stornetta and in our case also helps
to handle validator node failure: when a validator announces
its participation in an epoch, but then fails to attest a block or
announcement, the block is still valid, if at least k′ validators
are still online.

Leaving a certain degree of freedom and accepting a smaller
number of attestations, though, inevitably reduces the security
level. As we will see in our evaluation, it increases an at-
tacker’s chances to contribute the set of designated validators.

C. Validator Replication
As described before, infrastructure nodes replicate all ci-

tations graphs which are connected to any articles created by

1Note, that this introduces a bootstrapping problem: the announcements for
the initial validator set cannot get attested by a previous set of validator nodes.
Therefore, we assume a set of bootstrapping nodes for e0 to be hard-coded
in the Webchain software.

their authors. But, this also implies that only parties with some
interest in the cited articles are storing the data. In particular,
since they would be the only replicating nodes, this would
enable malicious infrastructure nodes to remove old uncited
articles from the network. To mitigate such an after-the-fact
manipulation and to guarantee non-repudiation for articles
in the Webchain system, we introduce validator replication.
This is, in addition to the respective infrastructure nodes, the
set of designated validators also replicate the attested blocks.
Therefore, the block data is replicated k more times in the
network, depending on its content. This ensures that an article
that is once inserted into the Webchain system cannot be
removed afterwards.

IV. EVALUATION

In the following, we analyze the properties of the time-
stamping algorithm in case of an attack. We assume an
adversary trying to construct a block with a forged timestamp.
The adversary can spawn additional infrastructure nodes and
hence control a fraction ε of all active validator nodes in a
given epoch.2 In order to succeed with forging a timestamp,
the adversary can only try different combinations of input data,
e. g., by adding or varying certain parts of the content, until
the deterministic validator election yields k validators which
are exclusively controlled by herself. As every run of the
pseudorandom generator function is statistically independent,
the probability of choosing k malicious validators is pk = εk.
Assuming a uniform distribution of hash values, the number of
trials before succeeding can be estimated as p−1k . However, the
distribution changes when we introduce validator redundancy
r: in case of allowing for a subset of at least k′ = k − r
attestations, the probability for a successful attack can be
calculated as

pk′ =

k∑
i=k′

P (X = i) =

k∑
i=k′

(
k

i

)
εi(1− ε)k−i.

Figure 4a shows the expected number of necessary trials
for a varying fraction of malicious active validators ε and
k ∈ {50, 100} designated validators. For example, even when
controlling a fraction ε = 0.5 of all validators, an attack is only
possible after approximately 1.13 · 1015 and 1.26 · 1030 trials
for k = 50 and k = 100, respectively. Moreover, it is shown
that redundancy significantly weakens security: when allowing
r = 5 redundant validators (i. e., k′ = k − 5), the number of
trials is approximately 4.75 · 108 for k = 50 and 1.59 · 1022

for k = 100. As each trial involves calculating a number of
hashes, these numbers may be compared to a proof-of-work
process, e. g., mining in Bitcoin [15]. As of March 2018, the
biggest mining pool, BTC.com has an aggregated hash rate
of around 6 · 1018H/s [5]. When we assume these efforts to
be equivalent, this would mean that the biggest mining pool
in Bitcoin could instantly run an attack on Webchain with
k = 50, given that it controls more than 50% of infrastructure

2Note that depending on the identity management system, rate limiting node
registrations could mitigate spawning a large number of nodes.

101 1030 1060 1090 10120
0

0.2

0.4

0.6

0.8

1

Trials (log)

M
al

ic
io

us
sh

ar
e
ε

k = 50, r = 0

k = 50, r = 5

k = 100, r = 0

k = 100, r = 5

(a) Number of trials needed for an adversary to find an input for the PRNG
that yields a designated validator set contained in her fraction ε of controlled
nodes.

10−20 10−12 10−4 104 1012
0

50

100

150

200

250

Minutes (log)

V
al

id
at

or
se

t
si

ze
k

r = 5

r = 10

r = 20

r = 50

(b) Average time needed for a successful attack run by an adversary
comparable to the largest Bitcoin pool, depending on replication parameter
k and redundancy parameter r, assuming ε = 0.5.

Fig. 4. Forging attack on block timestamps.

nodes. However, for the case of k = 100, it would take such
an powerful adversary a much longer period of time, that
is, approximately 2.10 · 1011s or around 6, 660 years. Then
again, when redundancy is introduced, this shrinks to around
45 minutes.

Clearly, there is a trade-off between the security and the
reliability of the system. Therefore, we further investigate
this trade-off to infer parameters rendering the forging attack
infeasible, while still providing an adequate level of reliability.
Since the attacker has to find an appropriate input value before
the underlying state changes at the start of the next epoch, the
time for running the attack is limited by the epoch length.
Therefore, by choosing an epoch length that is sufficiently
lower than the expected time needed for the attack, based on
a given network size k and a desired redundancy factor r, this
attack can be mitigated.

However, the shorter the epoch, the more epochs are created,
hence the higher the overhead in terms of space and message
complexity. Therefore, we propose to fixate the epoch duration

at a reasonable default value, e. g., in the order of minutes
to hours, and adjust r with respect to a given network size
k. In the worst case, assume an adversary with comparable
computational capabilities as BTC.com and in control of 50%
of active validator nodes. Based on this adversary model,
Figure 4b shows the average time needed for a successful
attack, depending on the parameters k and r. Again, it can be
seen that the redundancy factor has a big impact on how fast
the attacker can conduct the attack. For example, if we assume
a Webchain network of just k = 200 infrastructure nodes and
a redundancy factor of r = 20, an attack would still take
more than 4,685,000 years, well above any reasonable epoch
value. If we assume a network of k = 150 nodes and r = 10,
timestamps would be still secure, since an attack would take
around 5,996 years. And, as mentioned before, for k = 100
and r = 5, the system would still hold for approximately
44 minutes, which may be considered insecure for an epoch
length of 1 hour. Then again, given we are considering the
worst-case, five redundant validators would probably still be
fine for an epoch length of 10 minutes.

While the epoch length and r should be adapted based on
the requirements experienced in practice, it is expected that—
if gaining traction—the Webchain network would easily reach
100 nodes before drawing the interest of a powerful attacker.
Therefore, we propose an epoch length of 10 minutes and
r = 5 as default parameters for the Webchain system.

V. RELATED WORK

The challenging goal of digital preservation is defined as
the archival of authenticated content over time. To this end,
web archives such as the Wayback Machine at the Internet
Archive [1], Perma.cc [3], and WebCite [7] have evolved
to ensure the preservation of digital content. While these
approaches sustain availability of web pages, they do not
protect from manipulation of the archive’s contents [4].

To some extent, the OpenTimestamps project [2] tackles
these weaknesses by using Bitcoin’s blockchain as a secure
time attestation service.

Moreover, another often neglected property is citation
provenance (i. e., history of creation, ownership, and referential
integrity), which is essential to ensure the reader’s ability to
verify claims and statements.

To the best of our knowledge, the Webchain system is the
first approach that combines content authenticity and integrity
with citation provenance and non-repudiation provided by se-
cure timestamping. While approaches which require complete
trust in a centralized authority exist [8], Webchain’s archi-
tecture distributes the necessary trust. To this end, Webchain
constructs a distributed ledger, which shows similarities to
blockchain-based approaches such as Bitcoin [15] and directed
acyclic graphs (DAGs) of blocks. Webchain, however, follows
the separation of concerns principle and allows multiple inde-
pendent ledgers.

A central component of Webchain’s architecture is the time-
stamping service. In order to distribute the trust, we integrate
Haber and Stornetta’s distributed timestamping scheme [10].

While they assume a static network and do not specify node
addressing, we fill the gap and develop a protocol for a
dynamic overlay network, which includes maintaining network
state in a distributed environment.

VI. CONCLUSION

With Webchain, we presented a novel approach to citation
provenance for the World Wide Web. It delivers a transpar-
ent and secure way to verify citations and references. We
achieve this goal by securing article and referential integrity
with a distributed ledger maintained by infrastructure nodes.
Furthermore, we integrated distributed timestamping and in-
troduced a membership protocol, which makes use of epochs
to manage and maintain the network state. As consequence,
we gain time consistency and non-repudiation of articles and
references. Moreover, we examined the system security in
general and evaluated forging attacks in particular. The results
provide insights on the parameter choice with respect to the
security properties. We can conclude that the combination of
distributed ledger technologies and distributed timestamping
effectively renders forging attacks infeasible without requiring
a central trust anchor.

ACKNOWLEDGMENT

The authors thank the German Federal Printing Office, in
particular Alexander Mühle, for valuable discussions.

REFERENCES

[1] “Internet archive: Wayback machine.” [Online]. Available: https:
//archive.org/web/

[2] “Opentimestamps.” [Online]. Available: https://opentimestamps.org
[3] “Perma.cc.” [Online]. Available: https://perma.cc
[4] M. Aturban, M. L. Nelson, and M. C. Weigle, “Difficulties of time-

stamping archived web pages,” CoRR, vol. abs/1712.03140, 2017.
[5] BTC.com, “Pool distribution,” accessed on 12.3.2018. [Online].

Available: https://btc.com/stats/pool?pool mode=week
[6] R. P. Dellavalle, E. J. Hester, L. F. Heilig, A. L. Drake, J. W. Kuntzman,

M. Graber, and L. M. Schilling, “Going, going, gone: Lost internet
references,” Science, vol. 302, no. 5646, pp. 787–788, 2003.

[7] G. Eysenbach and M. Trudel, “Going, going, still there: Using the
webcite service to permanently archive cited web pages,” JMIR, vol. 7,
no. 5, Dec 2005.

[8] M. Factor, E. Henis, D. Naor, S. Rabinovici-Cohen, P. Reshef, S. Ronen,
G. Michetti, and M. Guercio, “Authenticity and provenance in long term
digital preservation: Modeling and implementation in preservation aware
storage,” in TaPP’09.

[9] G. Grefenstette and P. Tapanainen, “What is a word, what is a sentence?:
problems of tokenisation,” 1994.

[10] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,”
in CRYPTO ’90, 1991, pp. 437–455.

[11] J. C. Hernandez. (2017, Nov.) Leading western publisher bows to
chinese censorship. [Online]. Available: https://nyti.ms/2z3K5aZ

[12] W. Koehler, “A longitudinal study of web pages continued: a consider-
ation of document persistence,” Information Research, vol. 9, no. 2, pp.
9–2, 2004.

[13] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in IPTPS ’02, pp. 53–65.

[14] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in CRYPTO ’87, pp. 369–378.

[15] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[16] D. D. Palmer and M. A. Hearst, “Adaptive multilingual sentence

boundary disambiguation,” Computational Linguistics, vol. 23, no. 2,
pp. 241–267, 1997.

[17] J. C. Reynar and A. Ratnaparkhi, “A maximum entropy approach to
identifying sentence boundaries,” in ANLP ’97, Mar. 1997, pp. 16–19.

