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Abstract. Staggered and linear multi-particle trains constitute characteristic structures in inertial mi-
crofluidics. Using lattice-Boltzmann simulations, we investigate their properties and stability, when flow-
ing through microfluidic channels. We confirm the stability of cross-streamline pairs by showing how they
contract or expand to their equilibrium axial distance. In contrast, same-streamline pairs quickly expand
to a characteristic separation but even at long times slowly drift apart. We reproduce the distribution of
particle distances with its characteristic peak as measured in experiments. Staggered multi-particle trains
initialized with an axial particle spacing larger than the equilibrium distance contract non-uniformly due
to collective drag reduction. Linear particle trains, similar to pairs, rapidly expand toward a value about
twice the equilibrium distance of staggered trains and then very slowly drift apart non-uniformly. Again,
we reproduce the statistics of particle distances and the characteristic peak observed in experiments. Fi-
nally, we thoroughly analyze the damped displacement pulse traveling as a microfluidic phonon through a
staggered train and show how a defect strongly damps its propagation.

1 Introduction

Since the discovery of inertial focusing by Segré and Sil-
berberg [1], inertial microfluidics has evolved into a ma-
ture research field with immense potential for biomedi-
cal applications [2–4]. At higher densities particles do not
only move to an equilibrium position in the channel cross
section but also form regular trains along the channel
axis [5–7]. This feature of inertial microfluidics is particu-
lar useful for counting [8–10], sorting [11–14], or manipu-
lating cells [15, 16]. While trains of particles were already
observed by Segré and Silberberg [1], the first systematic
analysis was done by Matas et al. about 40 years later [17].
This triggered further research on particle trains, which
we describe below, in order to understand their occurrence
more thoroughly. In this paper we contribute with our sim-
ulation study to the understanding of staggered and linear
multi-particle trains including particle pairs (see fig. 1).

1.1 Staggered and linear multi-particle trains

The first experiments used cylindrical tubes, where parti-
cles focus onto an annulus. In ref. [17] Matas et al. studied
particles with a low confinement ratio (ratio of particle to
cylinder radius between 0.03 and 0.05) and observed par-
ticle trains above the Reynolds number Re = 2wumax/ν ≈
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100. Here, 2w is the channel width, umax the maximum
flow velocity, and ν the kinematic viscosity. With increas-
ing Reynolds number more and more particles assembled
into trains. For channels with quadratic or rectangular
cross sections, the particles focus on one of the four or
two possible equilibrium positions depending on the as-
pect ratio of the cross section [18–20]. For such channels,
typically, a mixture of staggered and linear particle trains
occurs [21]. In staggered trains the particle locations alter-
nate between both channel halves, whereas in linear trains
all particles are located on one side (see fig. 1). For both
structures experiments and simulations report a distinct
axial spacing, where the spacing for linear trains is about
twice the spacing of staggered trains [5, 6, 22,23].

Lee et al. explained the formation of particle trains by
the combination of two effects: i) inertial lift forces focus
the particles onto their single-particle equilibrium posi-
tions and ii) the viscous disturbance flow together with
the imposed channel flow determine their axial separa-
tion [5]. In ref. [24] the well-defined axial spacing of two
particles in a cross-streamline pair is explained by the flow
field around a single particle viewed in its center-of-mass
frame. There one observes two inward spiraling vortices on
the opposite side of the channel, located around 4 particle
radii ahead and behind the particle. The second particle
then follows the streamlines created by the first particle
and spirals in damped oscillations toward its equilibrium
position [25]. This idea is also confirmed by analytical
calculations [26]. As shown in ref. [25], the stable cross-
streamline pair also corresponds to fixed points in the lift
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Fig. 1. Illustrations of the multi-particle structures discussed
in this work. Two particles either form cross-streamline (a)
or same-streamline (b) pairs. Several particles form the corre-
sponding staggered (c) or linear trains (d). xeq gives the equi-
librium distance from the channel centerline, Δz the distance
between two neighboring particles, and the arrows with �u indi-
cate the flow direction. (e) A microfluidic phonon in a staggered
particle train is triggered by moving one particle toward the
channel center (pink particle in the upper channel). It moves
faster than the rest of the train and thereby a displacement
pulse travels through the train. In the middle and bottom chan-
nel the maximal displacements of the gray and yellow particles
are shown. The arrow indicates increasing time.

force profiles of both particles. Finally, two-dimensional
simulations in ref. [27] indicate that above Re = 80 parti-
cles in a staggered train perform stable oscillations about
these equilibrium positions.

The stability of linear trains is less clear. Lattice-Boltz-
mann simulations performed by Kahkeshani et al. indicate
that same-streamline pairs are stable [6], for which ref. [26]
provided an explanation based on the minimization of the
kinetic energy of the fluid. However, early experiments [5]
and most recent 2D simulations [23] report an increase
of particle spacing over time in agreement with our own
findings [25]. Some experiments report that for increas-
ing Reynolds number the axial spacing between the parti-
cles decreases [22,28] even to the value of cross-streamline
pairs [6]. However, other experiments report an increase of
the spacing in linear trains with increasing Re, while the
spacing decreases in staggered trains [29]. In the range of
Re ≈ 1 to 4 recent experiments observe that the spacing
is independent of the flow velocity and that the small-
est channel dimension determines the axial spacing be-
tween pairs [30]. Finally, simulations using a force coupling
method report that trains are only stable up to lengths of

2 to 4 particles depending on the confinement ratio and
the particle Reynolds number [28].

A comparison of the different experimental results is
hampered since they use very different parameters, such
as the channel Reynolds number and confinement ratio
a/w, where a is the particle radius and w is the half
width of the channel. While experiments with smaller par-
ticles can go to higher channel Reynolds numbers with
Re > 100 [17, 22], experiments with larger particles typ-
ically operate at channel Reynolds numbers between 1
and 20 [5, 24, 30]. As the particle Reynolds number is
Rep = (a/w)2Re, both experiments and simulations can
operate at the same particle Reynolds number although
the other parameters are very different. This is especially
relevant for Re ≈ 100, where the secondary flow around a
single larger particle (a/w = 0.4) becomes so strong that
it influences the particle-wall interactions [29]. A detailed
review of the effect of particle size suggests that for a small
confinement ratio a/w � 0.1 the particles move closer to-
gether with increasing Reynolds number [17, 22, 28] while
for larger particles the separation seems to increase [5,29].

Experiments are often limited by the channel length
L. Typical length-to-width ratios are L/2w ≈ 1000. To
overcome the limitation of the channel length, Dietsche
et al. used an oscillatory flow device which switched the
direction of the flow such that the particles stayed in the
channel and were not affected by the switching [30]. They
confirmed the stability of cross-streamline pairs with an
equilibrium axial distance of Δz/a = 3.8. For the same-
streamline pair they identified a range of separations,
7.4 < Δz/a < 14, where the particles moved together
at low speed. However, the error bars were much larger
than the measured speed values.

1.2 Microfluidic phonons

Toward the end of the paper we will also analyze how
perturbations of the regular structure move through a
staggered particle train. An initial particle displacement
triggers a displacement pulse, which travels through the
staggered train while being damped. Due to the resem-
blance with acoustic phonons, such excitations are called
microfluidic phonons [31]. So far, these phonons were
only analyzed for flowing droplets squeezed between two
parallel plates at vanishing Reynolds numbers [32, 33].
They provide an interesting model system with non-
linear and non-equilibrium behavior [34]. In this quasi–
two-dimensional geometry the interactions between the
droplets are determined by dipolar interactions [31]. Stud-
ies on such phonons in inertial microfluidics do not ex-
ist. Due to the strong inertial damping such microfluidic
phonons have to be triggered from outside. Staggered par-
ticle trains are desired for applications since due to the
regular and dense order they enhance particle throughput
and at the same time facilitate particle sorting. Analyzing
how these staggered trains react on perturbations might
help to obtain a better understanding how they can be
crystallized.
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1.3 Summary of results

In this paper we study the stability of staggered and linear
particle trains using lattice-Boltzmann simulations. First,
we focus on a pair of flowing particles and analyze their
dynamics when both particles are already initialized on
their lateral equilibrium positions. We confirm the sta-
bility of cross-streamline pairs and also show how they
contract or expand to their equilibrium axial distance. In
contrast, same-streamline pairs quickly expand to a char-
acteristic separation but even at long times slowly drift
apart. However, we are able to reproduce the distribution
of particle distances measured in experiments [5]. Then,
we extend our analysis to particle trains. We thoroughly
analyze how a staggered train initialized with an axial par-
ticle spacing larger than the equilibrium distance contracts
non-uniformly. We speculate about a possible realization
and consider a defect in the train. In contrast, particles
in linear trains slowly drift apart non-uniformly, and we
are able to reproduce the statistics of particle distances
observed in experiments [6]. Finally, the damped displace-
ment pulse traveling through a staggered train is presented
and how a defect strongly damps its propagation.

The paper is organized as follows. In sect. 2 we explain
the microfluidic setup of our system, describe the imple-
mentation of the lattice-Boltzmann method, and how we
couple the particles to the fluid. In sect. 3, we present the
results for the stability of staggered and linear particle
trains including particle pairs and discuss the phononic
displacement pulse as well as the influence of defects. We
summarize and close with final remarks in sect. 4.

2 System and methods

2.1 Microfluidic setup in the simulations

The microfluidic setup consists of multiple particles im-
mersed in a Newtonian fluid with density ρ and kine-
matic viscosity ν, which flows through a microchannel (see
fig. 1). The channel is of length L and has a rectangular
cross section with width 2w and height 2h. To ensure that
the particle dynamics is limited to the x-z plane, spanned
by the short axis x of the cross section and the channel
direction z, we set the aspect ratio to w/h = 0.5. Thus,
only two equilibrium positions along the short axis ex-
ist [18, 19]. To realize the Poiseuille flow through a rect-
angular channel [35] in our lattice-Boltzmann simulations
(sect. 2.2), we drive the fluid with a constant body force,
which stands for the pressure gradient.

We quantify the influence of fluid inertia by the chan-
nel Reynolds number Re = 2wumax/ν, where umax is the
maximum flow velocity in the channel center. In sects. 3.1
and 3.2 we restrict ourselves to the Reynolds number
Re = 20. This corresponds to a typical experimental setup
with a channel width of 2w = 25μm, ν = 1 × 10−6 m2/s
for water, and umax = 0.8m/s [24]. In sect. 3.3 we vary
the Reynolds number between 5 and 100. In the following,
we distinguish between the axial direction along the flow

(z-axis) and the lateral direction perpendicular to the flow
(x-axis).

We place N neutrally buoyant particle with radius a
in the channel flow. The particles are initialized either in
a staggered or a linear particle train (fig. 1). If not stated
otherwise, the particles are initialized on the equilibrium
position of single particles on the x-axis. The initial axial
spacing Δz0 of two neighboring particles in a staggered
configuration differs from the observed equilibrium value
and the initial spacing in a same-streamline configuration
is always chosen smaller than the limiting distance, we
observe at long times. To analyze the stability of parti-
cle pairs and trains, the channel length was always chosen
sufficiently long (at least L ≈ (N + 1) · 10 a) to ensure
that hydrodynamic interactions with images from the pe-
riodic boundary conditions along the channel were not
relevant. When analyzing the microfluidic phonons, the
channel length always was L = N · Δz, so that we simu-
lated an infinitely long particle train using periodic bound-
ary conditions. Finally, in all our simulations the particle
radius was fixed to a/w = 0.4 as in ref. [25].

2.2 Simulation method

To solve the Navier-Stokes equations, we performed simu-
lations in 3D with the lattice-Boltzmann method (LBM)
using 19 different velocities vectors (D3Q19) [36] and the
Bhatnagar-Gross-Krook (BGK) collision operator [37].
We relied on the same simulation code used in our pre-
vious publication [18, 25]. The LBM determines the one-
particle probability distribution fi(�x, t) on a cubic lattice
with lattice spacing Δx = 1. In addition to space and time
discretization, the LBM also discretizes the possible veloc-
ity vectors, which are indicated by the index i in fi(�x, t).
In the case of the velocity set D3Q19, 19 velocity vectors
are implemented. During time Δt the particle distribu-
tion function fi(�x, t) evolves according to two alternating
steps:

collision: f∗
i (�x, t) = fi(�x, t) +

1
τ

[
f
eq
i (�x, t) − f(�x, t)

]
, (1)

streaming: fi(�x + �ciΔt, t + Δt) = f∗
i (�x, t), (2)

where feq
i is a second-order expansion of the Maxwell-

Boltzmann distribution in the mean velocity and τ is the
relaxation time of the BGK model. For details on this
method we refer the interested reader to ref. [38].

One important feature of the LBM is that the viscosity
is related to the collision relaxation time τ [39],

ν = c2
sΔt

(
τ − 1

2

)
, (3)

where c2
s = 1/3 is the speed of sound measured in LBM

units (Δx = 1, Δt = 1). The lattice-Boltzmann method
does not strictly conserve volume. To ensure incompress-
ibility of the fluid, simulations have to be performed at
small Mach numbers Ma = umax/cs. For all our simula-
tions the Mach number is set to Ma ≤ 0.1, which corre-
sponds to a maximum possible density variation of 1%.
The exact procedure is explained in ref. [25].
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To drive the channel flow, we apply a constant body
force according to the Guo-force scheme [40]. At the chan-
nel walls we use regularized boundary conditions [41]. The
main part of our simulation code is provided by the Pala-
bos project [42], which we extended by implementing the
flowing particles. We use a resolution of 60 lattice cells
along the short axis.

For simulating the suspended particles, we rely on
the immersed-boundary method (IBM) proposed by In-
amuro [43]. This scheme belongs to the class of immersed-
boundary methods with direct forcing and was shown to
capture the correct behavior of solid particles in laminar
flow [44]. The immersed-boundary method is based on a
Lagrangian grid, which exists in between the fixed Eule-
rian grid for the fluid. The velocity of the fluid is inter-
polated to the particle surface, where a penalty force en-
sures the no-slip boundary condition. The resulting force
is interpolated back to the fluid. This process is done it-
eratively, where we use the recommended five iterations.
For further details on these methods we refer the reader to
the original publications [43] and our previous work [25].

3 Results

We now present our results starting with the stability of
cross-streamline and same-streamline pairs, which we then
extend to the same types of particle trains. Finally, we ad-
dress microfluidic phonons concentrating on the damped
propagation of a displacement pulse.

3.1 Stability of particle pairs

Before we consider multi-particle trains, we first analyze
the long-time behavior and stability of a pair of rigid par-
ticles where both particles are initialized at their lateral
single-particle equilibrium positions. We focus on the ax-
ial distance and look for stable axial configurations. We
already analyzed the dynamics of a pair of particles in-
teracting by inertial lift forces and briefly summarize here
the results relevant for this work [25].

Analyzing two-particle trajectories with different ini-
tial positions, we only found one class of bound trajecto-
ries, where two particles on opposing sides of the channel
(cross-streamline configuration) performed damped oscil-
lations toward their equilibrium positions. All other types
of trajectories were unbound; the axial particle distance
increased while the two particles moved individually to-
ward their single-particle equilibrium positions. In ad-
dition, an analysis of the two-particle lift force profiles
showed that cross-streamline configurations are stable and
thereby confirmed observations by other groups [6,24,26].
For the same-streamline configuration we could not iden-
tify a fixed point with a small axial particle distance,
which is reported in experiments at larger Reynolds num-
bers Re = 60 and 90 [6]. Instead, we observed that the
particles moved apart until their interaction was vanish-
ingly small close to the experimentally reported larger
spacing [6,30]. Hence, we concluded that same-streamline
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Fig. 2. Axial distance Δz/a as a function of time for a par-
ticle pair in cross-streamline configuration. Both particles are
initialized at single-particle equilibrium positions, x = ±xsingle

eq ,
and different initial axial distances Δz0 are chosen. The dashed
line indicates the equilibrium axial distance Δzpair

eq /a ≈ 4.2.
The upper axis indicates the traveled distance of the center of
mass of the pair along the channel for Δz0/a = 8.

pairs are only one-sided stable: the particles repel after be-
ing pushed together, while, when moved apart, they keep
their distance due to the missing attraction. A similar ob-
servation was reported in one of the earliest works on par-
ticle trains in inertial microfluidics [5].

In the following, we focus on the case where both par-
ticles already occupy their equilibrium lateral positions.
Thus, they stream with the same velocity.

3.1.1 Cross-streamline particle pairs

In our previous work we found that particles in all an-
alyzed bound trajectories reach the same value for their
axial distance, Δzpair

eq = 4.2 a, independent of the initial
positions [25]. In order to observe the damped oscillation,
leading and lagging particles in flow were initialized with
a similar lateral position xlag ≈ −xlead. Here, we analyze
the situation where both particles are initialized on the
single-particle equilibrium positions at ±xeq/w ≈ ±0.4
but with a distance Δz0 �= Δzpair

eq . In fig. 2 we vary the ini-
tial distance Δz0 from 2.5 a to 9 a and plot the respective
time course of the axial distance. In all cases the particles
reach Δzpair

eq ≈ 4.2, even when the initial axial distance is
as large as 9 a. In the graph we also added the traveled dis-
tance of the particle pair for Δz0/a = 8. This shows that
the particle pair relaxes to its equilibrium configuration
on distances much shorter than typical channel lengths of
the order of L/2w ≈ 1000 [5, 22].

In fig. 3 we show the time course of the lateral coordi-
nates of the leading and lagging particles. When the initial
axial distance Δz0 is larger than the equilibrium value
(fig. 3(a)), the lateral positions hardly change. But this
is sufficient to let them approach each other. Only when
the particles are initialized closer together (fig. 3(b)), do
the lateral position change noticeably by ca. 10%. This
then initiates the initial rapid increase of the axial spac-
ing due to the different flow velocities (blue line in fig. 2
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Fig. 3. Leading and lagging particles in a cross-streamline
configuration. Distance from the channel centerline |x|/w as a
function of time. Both particles are initialized at x = ±xsingle

eq .
(a) Initial distance Δz0 = 6a > Δzpair

eq and (b) Δz0 = 2.5a <
Δzpair

eq .

with Δz0/a = 2.5) followed by a slow relaxation back to
the equilibrium value. Thus, our study also shows how
particle pairs relax toward their preferred distance even
when starting at their lateral equilibrium positions. We
note that in the final configuration the leading particle
is located slightly closer toward the channel center but
moves with the same velocity. However, the difference is
smaller than a lattice unit.

3.1.2 Same-streamline particle pairs

In ref. [25] we already observed that particles initialized on
the same streamline with an initial distance of Δz0/a = 5
slowly drift apart, even when positioned on the single-
particle equilibrium position. We explained this behavior
with an asymmetry in the two corresponding lift force
profiles: the leading particle is pushed toward the channel
center while the lagging particle toward the walls such
that they move apart. This behavior did not change for
larger Δz0. Hence, our previous simulations indicate that
same-streamline pairs are not stable.

We now analyze this behavior in more detail in fig. 4.
Again, we initialize the particles at the lateral equilib-
rium position and with an axial spacing equal to the axial
distance Δzpair

eq of the cross-streamline pairs. The lead-
ing particle is noticeably and rapidly pushed toward the
channel center while the lagging particle moves outwards
(fig. 4(a)). This drives the particles apart, which is visi-
ble by the rapid increase of the axial distance in fig. 4(b).
Beyond Δz/a ≈ 5, the particles slowly relax toward their
equilibrium lateral position. However, even at large times,
where both particles should move with the same speed,
we still observe a slow but steady increase of the particle
spacing (fig. 4 (inset)). In experiments such a drift might
be difficult to measure. According to our simulations, be-
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Fig. 4. (a) Lateral positions and (b) axial distance as a func-
tion of time for a same-streamline particle pair. The dashed line
localizes the maximum lateral displacement. Inset: at larger
times still a slow but steady increase of Δz is observable. The
upper axis indicates the traveled distance of the center of mass
of the pair along the channel. At t = 45w2/ν the particles have
moved a distance of z/2w = 650.

yond t = 5w2/ν the distance Δz increases by only 6%
while the particle pair travels a distance of 600×2w. This
is of the order of channel lengths used in experiments.
Taking typical values of L = 5 cm and 2w = 50μm, we
obtain L/(2w) ≈ 1000 [22].

Experiments typically report a distance of about twice
the equilibrium spacing of cross-streamline pairs, which
would be Δz/a ≈ 8.4 in our case [6]. Our simulations in-
dicate that the particles go to a somewhat larger spacing.
In experiments the starting conditions are not as well de-
fined as in our case. To reproduce the experimental statis-
tics for particle distances observed in ref. [5], we initialize
76 different pair configurations, where both particles are
randomly placed in the upper channel half with an initial
distance 5a < Δz0 < L/2. In fig. 5 we plot the distribu-
tion of particle distances after the particles have traveled
a distance of 1000× 2w, which is a typical value in exper-
iments as mentioned above. The simulated distribution
matches well with experiments for the same particle size
with a peak at Δz/a = 9.8 [5]. The authors do not specify
the channel Reynolds number explicitly, but the particle
Reynolds number Rep = Re(a/w)2 = 2.4 is similar to the
value of 3.2 used for this work.

To summarize, while we obtain good agreement with
early experiments [5], we could neither identify an ad-
ditional stable equilibrium distance for higher Reynolds
numbers [6] nor reproduce an attractive interaction of par-
ticles in same-streamline pairs [30].

3.2 Stability of particle trains

Based on the insights we gathered from the behavior of
particle pairs, we continue by analyzing multi-particle
trains and begin with staggered particle trains.
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line shows data from experiments for pairs of particles with
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factor of 0.4 to match the height of the peak.
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Fig. 6. Snapshots of the contraction process of a staggered par-
ticle train at different times given in units of w2/ν. At t = 0
all particles are initialized with a nearest-neighbor distance
Δz0 = 6.5a = 1.5Δzpair

eq . The color of the trailing pairs corre-
sponds to the lines in fig. 7(b).

3.2.1 Staggered particle trains

When we start the simulations with arbitrarily placed
particles, we obtain staggered particle trains with defects
in it. To concentrate first on the ideal case, in the fol-
lowing we analyze how an expanded staggered particle
train contracts toward its equilibrium configuration. For
this we consider 11 particles, which we initialize on their
single-particle position at ±xeq with an axial distance of
Δz0 = 6.5 a ≈ 1.5Δzpair

eq .
As expected from the analysis of the cross-streamline

pairs, the axial distances between the particles decrease in
time. However, as figs. 6, 7(a), and video 1 in the electronic
supplementary material (ESM) demonstrate, the contrac-
tion does not occur uniformly but rather through the for-
mation of particle pairs. The contraction starts in the front
and back of the train. We observe that initially only the
leading and trailing pairs contract, whereby mainly the
leading particle of the pair moves backwards toward the
lagging particle (fig. 6 (t = 3.2)). While the pairs contract,
they slow down. The leading pair stays connected to the
staggered train but the last pair separates from the rest of
the train due to its reduced velocity (see below). This trig-
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Fig. 7. (a) Axial positions of all the particles in a stag-
gered particle train plotted versus time. The positions are
given in the center-of-mass frame of the train. (b) Axial par-
ticle distances of the trailing particle pairs as a function of
time. The curves of the second and third pair are shifted such
that they fall onto each other. The initial axial distance is
Δz0 = 6.5 a ≈ 1.5Δzpair

eq .

gers the contraction of the next pair and then a third pair
so that at t = 7.2 three individual pairs in the back of the
train exist. The contraction of these pairs always occurs
in the same manner. In fig. 7(b) we plot their particle dis-
tances versus time and have shifted the curves by the time
the previous pair needed to contract and separate. Then,
all three curves fall onto each other. The particle pair in
the front of the staggered train also slows down. The next
particle in line catches up so that a three-particle cluster
exists at t = 4.4. This cluster slows down further and the
next two particles can catch up. Ultimately, at t = 7.2
a contracted five-particle cluster exists followed by the 3
trailing pairs. The larger cluster slows down (see below)
so that the three pairs can catch up one by one (t = 16.9)
and, finally, at t = 32.2 the staggered train has reached
its equilibrium configuration.

For the contraction of the particle train, two mecha-
nisms are relevant. They are related to viscous drag reduc-
tion of clusters of particles compared to a single particle
and when the clusters are more compact [34,45,46]. In our
case, this means the resistance to an imposed Poiseuille
flow is reduced and therefore the clusters slow down rela-
tive to the flow. Thus, a pair of particles slows down when
the axial distance decreases and the center-of-mass veloc-
ity also decreases for larger staggered trains. We discuss
this in detail in fig. 8. In graph (a) we plot the center-of-
mass velocity of a cross-streamline pair as a function of the
axial particle distance. Although the decrease of the ve-
locity with Δz is very small, it quantitatively agrees with
the reported results of simulations for a pair of rigid par-
ticles (a/w = 0.8) moving on the centerline of a confined
flow at Re � 1 [46]. In plot (b) we observe for staggered
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Fig. 8. (a) Axial center-of-mass velocity for a cross-streamline
pair as a function of the particle distance. The velocity is plot-
ted in units of the fluid flow velocity at the lateral position of
the particle pair. The data were extracted from the gray curve
in fig. 2, which starts at Δz0 = 9a. (b) Axial center-of-mass
velocity for a staggered particle train as function of the num-
ber of particles in the train. The velocity is plotted in units of
the single-particle velocity. The gray dashed line is a linear fit
for range with N > 5.
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Fig. 9. Axial equilibrium distance of neighboring particles in a
staggered train as a function of the pair index, which increases
from the back to the front of the train. The dashed line indi-
cates the particle distance of a single pair, Δzeqpair/a = 4.2.

particle trains that the center-of-mass velocity monoton-
ically decreases with increasing number of particles. For
N > 5 this decrease is linear. The difference in velocities
of a cluster consisting of 20 particles and a single particle
is about 5%. A very similar dependence on the particle
number was reported for simulations of a chain of par-
ticles driven by an applied force along a ring in a bulk
fluid [45]. However, in this situation the variation of the
velocity is more pronounced (around 50%). The same type
of collective drag reduction was also reported by Beatus
et al. [31] for a linear chain of droplet disks in a quasi-2D

flow. The authors named this observation the peloton ef-
fect, in analogy to the reduced drag of a group of closely
riding cyclists.

We finish with a final observation. For cross-streamline
pairs we found that all particles relax toward the same
value Δz/a = 4.2 for the axial distance. In contrast, as
fig. 9 shows the axial spacing of neighboring particles in
a staggered train is non-uniform. It increases when one
moves forward in the train. For trains with more than
nine particles the axial distance saturates at a value of
Δz/a = 4.8, which is about 15% larger than the distance
of a single pair. Finally, we observe that the distance of
the leading pair is slightly reduced for trains consisting of
seven particles or more.

3.2.2 Linear particle trains

Linear particle trains flowing on the same streamline have
been observed both in experiments [6, 22] and simula-
tions [28]. Typically, they have an axial particle spacing
about twice the distance measured for staggered trains. So
far, in sect. 3.1 we found that the axial distance of a same-
streamline particle pair steadily increases in time. In the
following we analyze the stability of longer particle trains
and check if multi-particle interactions can stabilize them.

We initialize the particles in a linear train at the lateral
equilibrium positions of single particles and choose an ini-
tial axial distance of Δz0/a = 4 between neighboring par-
ticles. Figure 10(a) shows that the mean axial distance for
linear trains of different sizes increases monotonically in
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Fig. 10. (a) Mean axial particle distance as a function of time
for linear trains with different numbers of particles. (b) Axial
distance of neighboring particles within a linear train consisting
of 5 particles. From the back to the front the pairs are indexed
by 1 to 4.
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Fig. 11. Snapshots of an expanding linear particle train at dif-
ferent times given in units of w2/ν. At t = 0 all particles are ini-
tialized with the axial equilibrium distance of cross-streamline
pairs. The dashed lines correspond to Δz plotted in fig. 10(b).

time. However, while for N = 2 the axial distance hardly
changes after reaching a distance of Δz/a ≈ 10, the mean
distance of trains with N > 2 increases visibly and the
increase is slower for longer trains.

The reason is that the expansion of the linear train is
non-uniform as we show in fig. 10(b), where we plot the
axial distance of neighboring particles for a train with five
particles. Snapshots of the expanding train are presented
in fig. 11. The expansion for five and 11-particle trains is
also visualized in videos 2 and 3 of the ESM. After an
initial fast expansion to Δz/a ≈ 8, which is about twice
the distance in a cross-streamline pair, always the lead-
ing particle is carried away by the imposed flow while the
particle train behind it moves more slowly. This creates a
particle train where the particle distance at one instant in
time increases from the back (pair index 1) to the front
(index 4). In our simulations all particles have traveled
a distance of more than 1000w as the upper axis of the
plot shows. Thus, the steady increase of Δz is very slow
and it might not be possible to observe this in a typical
experiment. However, our data show that the final config-
uration in the simulations is not a stable configuration.

The separation of the leading particle from the rest
of the train was also reported in simulations by Gupta
et al. [28]. They also mention stable trains up to a cer-
tain cluster size, an effect the authors name conditional
stability. Their critical cluster size depends on the con-
finement ratio a/w and the particle Reynolds number. In
their analysis the authors focused on confinement ratios
a/w = 0.08–0.14, which is much smaller than in our work.
However, their results indicate that for larger particles the
critical cluster size reduces to N = 2.

Finally, we calculate the statistics of the particle spac-
ing in linear trains (fig. 12). For this we randomly place
4, 6, or 11 particles in the upper channel half and en-
sure that there is no overlap between the particles. The
channel length is chosen such that the volume fraction is
fixed at ϕ = 0.004 as in ref. [6]. After the particles trav-
eled at least a distance of 160 w, we measure the distance
to the nearest-neighbor particles. The recorded statistics
shows good agreement with experimental data measured
for slightly smaller particles with a/w = 0.34 compared to
our particles with a/w = 0.4 (fig. 12). Again, we observe a
small peak at Δz/a = 4.2 which, in our case, corresponds

0 10 20 30 40 50
0

5 ·10−2

0.1

0.15

0.2

Δz/a

pd
f(

a.
u.

)

Fig. 12. Histogram of particles distances for 4, 6, or 11 parti-
cles randomly initialized in the upper channel half after they
have traveled at least a distance of 160w along the channel.
The small peak at Δz/a = 4 corresponds to cross-streamline
pairs, which formed despite the fact that all particles were ini-
tialized on the same channel side. The red line shows data from
experiments by Kahkeshani et al. [6] for slightly smaller parti-
cles with a/w = 0.34. We rescaled the experimental data by a
factor of 0.7 to match the height of the peak.

to particles which move to the lower channel half. This
first peak is much smaller than in the experiments. This
is most probably due to how the linear trains are set up.
In the experiment the same-streamline trains are created
with two inlets which form a Y-shaped channel, where the
particles enter via one inlet. It sounds plausible that with
this method cross-streamline particle pairs are more easily
formed compared to our simulations, where we initialize
the particles already on the same streamline.

3.2.3 Staggered particle train with defect

Besides the pure cross-streamline and same-streamline
particle trains we also initialized a staggered train with
a single defect. The results for the temporal evolution of
the particle distances and the final configuration are pre-
sented in fig. 13.

To create a defect, the fourth and fifth particles are
placed on the same channel side so that two staggered
trains exist, which consist of four and five particles, re-
spectively. The trains first contract individually while they
drift apart from each other as the increasing distance of
particle 4 and 5 indicates (red line in fig. 13, see also video
4 in the ESM). Only after the two trains have reached
their equilibrium configuration, we observe that the lag-
ging four-particle train catches up to the slightly slower
train with five particles (see fig. 8(b)). In the final state
the particle distance of the defect is about twice the equi-
librium particle distance of cross-streamline pairs similar
to observations in [15, 21]. We note that this distance is
not governed by any attractive interaction between the
two particles but solely due to the fact that the larger
leading train moves slower than the smaller trailing train.
Indeed, when we swap the two trains such that the smaller
one is leading, the two trains slowly drift apart in time.
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Fig. 13. Staggered particle train with defect. Top: snapshots
at different times t of the non-uniform contraction from the
initial (t = 0) toward the final (t = 154) configuration. Bot-
tom: distances between neighboring particles plotted versus
time. The numbers indicate the pair index increasing from the
back to the front. The final particle distance of the defect is
2Δzpair

eq as indicated by the dashed line.

3.3 Microfluidic phonons

Regular structures such as the staggered particle trains
can be perturbed and thereby show propagating phononic
excitations or microfluidic phonons. To study them in
more detail, we analyze how a cross-streamline train reacts
to a perturbation of a single particle position. Video 5 in
the ESM shows the resulting damped pulse propagation.
We fit a train of 12 particles into a channel and adjust its
length such that periodic boundary conditions generate
an infinitely extended staggered train.

In fig. 14(a) we show the staggered train, where we ini-
tialized the 12 particles with an axial spacing of Δz/a =
4.2, which corresponds to the equilibrium distance of an
isolated particle pair, and with lateral equilibrium posi-
tions at ±xeq/w = ±0.4. To perturb the system, we move
one particle inwards toward the channel center as indi-
cated. Thus, it moves faster than the train and approaches
the neighboring particle in front. Figure 14(b) quantifies
the reaction of all the particles by plotting their displace-
ments Δ|x(t)| = |x(t)|−xeq from the equilibrium position
where Δ|x| < 0 means motion toward the channel center
and Δ|x| > 0 toward the channel wall. While approaching
the neighboring particle, the first particle is pushed back
to its equilibrium position and thereby pulls the neigh-
boring particle from the opposite channel side toward the
center. Thus, the whole process repeats such that a dis-
placement pulse travels through the staggered train as il-
lustrated by fig. 14(b). The particle motion is strongly
damped since the inertial lift force pushes the particles
back toward their equilibrium positions. Thus, the initially
displaced particle (pink curve) overshoots only by a small
distance and then relaxes toward its equilibrium position.
Also, the propagating displacement pulse is exponentially

∝ exp(−γt)
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−0.2

−0.1

0

t/(w2/ν)

Δ
|x|

/
w

−xeq

+xeq

Δx
b)

a)

Fig. 14. (a) Staggered particle train with an initial displace-
ment of the seventh particle counted from the end (pink) and
equilibrium axial particle distance is Δz/a = 4.2. (b) Lateral
particle displacement from the equilibrium position, Δ|x(t)| =
|x(t)| −xeq, plotted versus time for all the particles. The color
coding is the same as in (a). Here Δ|x| < 0 means motion
toward the channel center and Δ|x| > 0 toward the channel
wall. The exponential decay of the pulse height with time is
indicated (dashed line) and γ is damping rate. The Reynolds
number is Re = 25.

�urel

�urel

Fig. 15. The swapping mechanism from ref. [25] explains how
the displacement pulse is passed from the lagging to the lead-
ing particle. The curved arrows indicate the particle trajecto-
ries during swapping. The lateral equilibrium position of the
particles and the channel center are marked by the dashed and
dotted lines, respectively. The swapping mechanism is also vi-
sualized in video 6 of the ESM.

damped (dashed line in fig. 14) with a damping rate γ,
which we discuss in more detail further below. We observe
that individual particles in a train return much faster to
their equilibrium positions compared to isolated particles
due to the coupling to neighboring particles, while the re-
laxation time of the whole pulse, γ−1, is roughly twice as
big. Below, we will also discuss in more detail the velocity
of the displacement pulse.

The mechanism for the propagating displacement
pulse can be explained as a sequence of swapping tra-
jectories similar to the one we discussed in a previous
work [25]. As indicated in fig. 15, the displaced particle
approaches the next particle in line, and they swap their
lateral positions such that xafter

lead = −xbefore
lag and vice versa.

In principle, a propagating displacement pulse of the same
type but without damping should also be possible in low-
Reynolds-number flow, as swapping trajectories exist in
this regime as well [47].

We also mention that if the displacement brings the
first particle close to or across the channel centerline such
that Δ|x|/w ≤ −0.4, it becomes too fast and can no longer
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passed two of its neighbors. See also video 7 in the ESM.
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Δz0/a ≈ 4.2 and the initial displacement is Δ|x|0/w = −0.2
toward the channel center. For comparison, we also plot γ for
an oscillating particle pair from [25].

swap its position with the next particle. Instead, it moves
through the staggered train (see fig. 16) and leaves be-
hind a defect, where two neighboring particles move on
the same streamline. This is reminiscent of the passing
trajectory for a particle pair identified in ref. [25].

3.3.1 Quantitative analysis of the displacement pulse

In fig. 17 we plot the ratio of pulse velocity to train velocity
upulse/utrain (main plot) and the damping rate γ (inset)
of the displacement pulse as a function of the Reynolds
number Re. This is similar to our analysis of the damped
oscillations for a pair of rigid particles [25]. The velocity
ratio is roughly constant in Re so that we identify a lin-
ear dependence upulse ∝ utrain ∝ Re, which makes sense
since the fluid flow directly determines how fast displaced
particles approach their neighbors. A similar scaling was
observed for the oscillating frequency of a pair of rigid
particles [25]. The pulse velocity is also larger than the
train velocity since the displacement pulse is propagated
by faster moving particles. For the damping rate γ of the
displacement pulse in the inset we find good agreement
with the damping rate of the oscillating particle pair in the
regime of Re ≤ 20. The γ values for the propagating pulse
are slightly lower. The damping rate scales quadratically
with Re, only for higher Reynolds numbers the scaling de-
viates slightly from Re2. Thus, damping of the propagating
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Fig. 18. Damping rate γ (main plot) and ratio of pulse to
train velocity (inset) of the displacement pulse as a function of
axial particle distance Δz. The other parameters are Re = 20
and Δ|x|0/w = −0.2. The dashed lines indicate a region with
almost constant γ.

pulse is a clear inertial effect due to the acting inertial lift
force and therefore the scaling with Re2 is expected.

In our setting using periodic boundary conditions
along the channel axis, we can compress or expand the
infinitely extended particle train by changing the channel
length. This allows to study pulse propagation under ten-
sion. A possible experimental realization are expanding
or contracting channels, where the channel width changes
abruptly. For example, in an expanding channel the par-
ticle spacing relaxes slowly to its larger distance [5, 9]. In
fig. 18 we show ratio of pulse to train velocity upulse/utrain

(inset) and the damping rate γ (main plot) as a function of
the axial particle distance Δz. The velocity ratio again is
nearly constant with varying Δz, while the train velocity
increases linearly with Δz due to the increased friction
(not shown). For the damping rate we find three differ-
ent regimes. When the staggered train is strongly com-
pressed, the damping rate is strongly reduced, which is
due to the strong repulsive interactions between particles.
Additionally, we observe that the displacement pulse no
longer travels in one direction only, rather it propagates
in both directions at the same time as we demonstrate in
video 8 in the ESM. For axial distances around the equi-
librium value (3.5 < Δz/a < 4.5) the damping rate is
almost constant and it slightly increases for Δz/a > 4.5.
Here, the regular train is not stable. Instead, the distances
between two particles contract leaving larger gaps between
particle pairs. Since then the particles relax toward their
equilibrium positions more like an individual particle, the
overall damping rate increases.

Finally, we also varied the initial displacement Δ|x|0
from the equilibrium position and plot in fig. 19 the ratio
of the pulse to train velocity upulse/utrain (inset) and the
damping rate γ (main plot). Positive Δ|x|0 means that
the particle is moved toward the channel wall. Since it
thereby slows down relative to the staggered train, it ap-
proaches the particle behind and the displacement pulse
moves against the staggered train. For the velocity ratio
in the inset this means, while for positive and negative
Δ|x|0 the pulse velocity is relatively constant, the ratio
upulse/utrain jumps from a value larger than one to a value
smaller than one when Δ|x|0 becomes positive. The depen-
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Fig. 19. Damping rate γ (main plot) and ratio of pulse to train
velocity (inset) of the displacement pulse as a function of the
initial displacement Δ|x|0. The other parameters are Re = 20
and Δz/a = 4.2.
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Fig. 20. (a) Staggered particle train with a defect and an
initial displacement of the first particle counted from the end
(pink). The equilibrium axial particle distance is Δz/a = 4.2
and Δz/a = 8.4 between the defect particles. (b) Lateral par-
ticle displacement from the equilibrium position, Δ|x(t)| =
|x(t)| − xeq, plotted versus time for all the particles in the
upper and lower channel half. The color coding is the same as
in (a). The arrow indicates the strongly damped displacement
of the first particle after the defect has been passed.

dence of the damping rate is less intuitive. It is constant
for large negative Δ|x|0, goes through a minimum and
then increases linearly from Δ|x|0 = −0.1 for increasing
Δ|x|0.

3.3.2 Influence of a defect on the pulse propagation

At the end we study how a defect in the staggered particle
train strongly dampens the propagating pulse and show
our results in fig. 20. We reduce the number of particles to
11 and introduce a defect with two neighboring particles
on the same streamline, as already investigated above. As
illustrated in fig. 20, the pulse is initiated at the pink
particle at the left end of the channel, which is the fifth
particle to the left of the defect. Up to the defect (black
particle) the pulse propagates as before. However, having
passed the defect (blue particle) it is strongly damped such
that the pulse vanishes almost completely.

4 Conclusions

The axial alignment of particles in an inertial microchan-
nel is an important feature for the counting, manipulation,
and sorting of cells. Therefore, the stability of trains is
a crucial ingredient for designing and understanding lab-
on-a-chip devices. As the literature on this topic does not
always agree with their findings, we focused on a detailed
analysis for one specific set of parameters.

The stability of cross-streamline pairs is accepted in
the literature. We show that particles in such a pair at-
tract each other over large distances while their lateral
positions hardly change. A cross-streamline pair always
contracts or expands to its equilibrium axial distance. For
same-streamline pairs we thoroughly analyze and thereby
confirm the result of our previous work that the same-
streamline configuration does not have an equilibrium ax-
ial spacing [25]. However, from smaller distances it quickly
expands to a characteristic separation but even at long
times very slowly drifts apart. Their dynamics is domi-
nated by a repulsive interaction, which rapidly decays with
increasing axial distance. With our simulations we also
reproduce the distribution of axial distances for a same-
streamline pair measured in experiments [5]. In particular,
it has a well-defined peak at about twice the distance of
cross-streamline pairs.

Then, we extended our analysis to particle trains with
more than two particles and first analyzed how staggered
trains relax to their equilibrium configurations. In par-
ticular, a staggered train initialized with an axial parti-
cle spacing larger than the equilibrium distance contracts
non-uniformly. The non-uniform contraction is related to
two effects of collective drag reduction: i) when two par-
ticles in a cross-streamline configuration approach each
other they slow down since they exhibit less resistance to
the driving Poiseuille flow and ii) the center-of-mass ve-
locity of staggered trains decreases the more particles are
in the train (peloton effect). These two effects drive the
non-uniform contraction in the front and back of a stag-
gered train. While in the front the leading pair slows down
and collects more and more particles, in the back trailing
pairs of particles separate from the rest of the train. Only
with time the pairs catch up with the particle train in
front of them and form one large train. Finally, we find
a master curve for the axial spacing within a staggered
train. The spacing between the particles increases from
the back to the front of the train and ultimately saturates
for sufficiently long trains. So a staggered train is slightly
expanded at the front relative to the back. In experiments
a particle train slowly expands when it enters a channel
with a suddenly expanding cross section [5,9]. This could
be a means to observe the scenario outlined here.

For linear trains we find a very similar behavior as for
same-streamline pairs. Starting from a particle distance
similar to the staggered train, the spacing relaxes in the
beginning phase to a value close to experimental results [6]
about twice the distance of cross-streamline pairs. Then,
the particles continue to slowly drift apart non-uniformly.
The leading particle moves the fastest and separates from
the rest of the train. This confirms a similar observation
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reported by Gupta et al. for a smaller confinement ra-
tio [28]. In addition, we are able to reproduce the statistics
of particle distances observed in experiments [6].

Finally, we analyzed how a displacement pulse mi-
grates as inertial microfluidic phonon through a staggered
train. The displacement is transported from one particle
to another via swapping trajectories, where the inertial
lift forces damps the amplitude of the displacement pulse.
When the initial displacement is too large, the displaced
particle itself moves through the staggered train and leaves
behind a defect. The ratio of pulse to train velocities is
almost constant for varying Reynolds number and axial
particle distance, whereas it is by ca. 30% smaller for ini-
tial displacement toward the wall compared to perturba-
tions toward the channel center. For the damping rate of
the displacement pulse we confirm the quadratic scaling
with the Reynolds number, which identifies damping as
an inertial effect. The damping rate is almost constant for
varying axial distance between the particles or changing
line density. Only when the particles are close together
the damping rate is reduced. This is especially interesting
when the line tension of staggered trains changes rapidly
when entering sections of the channel with expanding or
contracting cross sections [5,9] since then the trains want
to expand or contract.

We hope that with our careful numerical study we
initiate further research on staggered and linear particle
trains to clarify some of the still open questions and also to
provide guidance how microfluidic phonons in the inertial
regime behave.
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D.A. Weitz, M. Toner, Lab. Chip 8, 1262 (2008).

16. M. Dhar, J.N. Lam, T. Walser, S.M. Dubinett, M.B. Ret-
tig, D. Di Carlo, Proc. Natl. Acad. Sci. U.S.A. 115, 9986
(2018).
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