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Abstract
Advances in the manufacturing of semiconductor-based hybrid nanostructures draws attention
towards possible optoelectronic and quantum computational applications. The present work
develops theoretical models to study the coherent couplings and excitation transfer mechanisms
in nanostructures and aims at a microscopic understanding of the underlying Coulomb-mediated
processes, thus, laying the foundation to access the full functionality of the studied quantum
systems. A rich and versatile theoretical toolbox is developed capable of describing a variety of
semiconductor nanostructures.

Nonlinear four-wave mixing spectroscopy in its various realizations depending on the specific
temporal and spatial configuration and polarization of the pulse sequence is a valuable tool to
infer the excitonic structure and dynamics of different kinds of quantum systems. In particular,
the combination of polarization-resolved nanooptical excitation with two-dimensional double
quantum coherence spectroscopy is employed to derive a quantum state tomography protocol
for Förster coupled, spin-degenerate two-level quantum emitters (e.g., quantum dots). The
here suggested reconstruction scheme makes it possible to resolve the internal structure of the
probed quantum system by decomposing the collective optical response into the contributions
from the single quantum emitters.

Photon echo spectroscopy, a different four-wave mixing technique, is simulated to evidence
coherent couplings in monolayer transition-metal dichalcogenides and, thus, the formation of
strongly correlated higher-order states without direct analogue in conventional semiconductors.
A thorough implementation of the valley- and spin-dependent optical selection rules and
separation of the involved quantum pathways in the presented calculations allows to identify
different types of intervalley biexcitons in measured two-dimensional spectra.

A theoretical treatment including electrostatic Coulomb couplings and fine-structure splitting
is developed to analyze the two-dimensional spectra measured in a two-beam four-wave mixing
experiment of individual quantum dots and quantum dot molecules in rephasing and double-
quantum pulse configurations. The spectral signatures can be traced back to the underlying
coupling mechanisms and strengths that determine the single- and double-excitonic resonances,
yielding a good agreement between theory and experiment.

Using a density-matrix equation technique, the geometry-dependent excitation transfer across
a semiconductor/molecule hybrid interface is studied within physically reasonable parameter
ranges. For this purpose, Förster-type non-radiative coupling is modeled microscopically using
a partial charge technique, and the case of creating excitons in an optically active, highly
ordered layer of organic molecules by strong electrical pumping of the semiconductor substrate
is considered. It is found that the interlayer coupling efficiency is highly sensitive to changes in
the resonance energy detuning, the molecular coverage, the charge carrier temperature and
concentration in the semiconductor quantum well, the interlayer separation, and the spatial
orientation of the flat-lying molecules on top of the substrate.

Finally, the theoretical framework for these hybrid inorganic/organic systems is extended to
treat the Coulomb coupling between Wannier excitons in the semiconductor substrate including
interface roughness, acoustic phonon scattering, and radiative recombination, and Frenkel
excitons in the disordered organic film including intermolecular Coulomb interaction and the
coupling to vibrational modes. For this purpose, a perturbative approach is chosen to derive
the transition amplitudes between exciton densities in the hybrid system, and a cumulant
expansion technique is used to describe the coupling to vibrational modes in the organic layer,
which constitutes the main dephasing mechanism in such systems.
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Kurzfassung
Fortschritte in der Herstellung von Halbleiter-basierten Hybrid-Nanostrukturen rücken mögliche
Anwendungen im Bereich der Optoelektronik und des Quantencomputings in den Fokus. Die vor-
liegende Arbeit entwickelt theoretische Modelle, um kohärente Kopplungen und Mechanismen
des Anregungstransfers in Nanostrukturen zu untersuchen, und zielt auf ein mikroskopisches
Verständnis der zugrundeliegenden Coulomb-induzierten Prozesse. Damit legt sie die Grundlage,
um auf die volle Funktionalität der untersuchten Quantensysteme zuzugreifen.

Nichtlineare Vier-Wellen-Mischungs-Spektroskopie in ihren verschiedenen von der zeitlichen
und räumlichen Konfiguration und der Polarisation der Pulssequenz abhängigen Realisierungen
ist eine wertvolle Methode, um die exzitonische Struktur und Dynamik unterschiedlicher
Quantensysteme zu erschließen. Insbesondere wird eine Kombination aus polarisationsaufge-
löster nanooptischer Anregung und zweidimensionaler Zwei-Quanten-Kohärenz-Spektroskopie
angewandt, um ein Quantentomographie-Protokoll für Förster-gekoppelte, spinentartete Zwei-
niveau-Quantenemitter (z.B. Quantenpunkte) herzuleiten. Das vorgestellte Rekonstruktions-
schema ermöglicht es, die innere Struktur des untersuchten Quantensystems aufzulösen, indem
die kollektive optische Antwort in die Beiträge der einzelnen Quantenemitter zerlegt wird.
Photon-Echo-Spektroskopie, eine weitere Vier-Wellen-Mischungs-Technik, wird simuliert,

um kohärente Kopplungen in Monolagen von Übergangsmetall-Dichalkogeniden und somit
die Bildung von stark korrelierten Zuständen höherer Ordnung ohne direktes Analogon in
herkömmlichen Halbleitern nachzuweisen. Eine gründliche Implementierung der valley- und
spinabhängigen optischen Auswahlregeln und eine Trennung der beteiligten Quantenpfade er-
lauben es, verschiedene Arten von Intervalley-Biexzitonen in den gemessenen zweidimensionalen
Spektren zu identifizieren.

Eine theoretische Beschreibung unter Einbeziehung von elektrostatischen Coulombkopplun-
gen und Feinstrukturaufspaltung wird entwickelt, um zweidimensionale Spektren von einzelnen
Quantenpunkten und Quantenpunktmolekülen zu analysieren, welche mittels Vier-Wellen-Mi-
schung in Form von Zwei-Strahl-Experimenten in Photon-Echo- und Zwei-Quanten-Kohä-
renz-Pulskonfigurationen gemessen wurden. Die spektralen Signaturen erlauben Rückschlüsse
auf die zugrundeliegenden Kopplungsmechanismen und -stärken, welche die einzel- und dop-
pelexzitonischen Resonanzen bestimmen, und zeigen eine gute Übereinstimmung zwischen
Theorie und Experiment.

Mit Hilfe einer Dichtematrix-Technik wird der von der Geometrie abhängige Anregungstrans-
fer an der Grenzfläche einer Halbleiter-Molekül-Hybridstruktur innerhalb physikalisch sinnvoller
Parameterbereiche untersucht. Zu diesem Zweck wird mittels einer Partialladungsmethode
Förster-Kopplung mikroskopisch modelliert und es wird der Fall betrachtet, dass Exzitonen
in einer optisch aktiven, geordneten organischen Molekülschicht durch starkes elektrisches
Pumpen des Halbleitersubstrats generiert werden. Die Kopplungseffizienz zwischen den beiden
Schichten erweist sich als hochempfindlich gegenüber Änderungen in der Verstimmung zwischen
den Resonanzenergien, der molekularen Bedeckungsdichte, der Ladungsträgertemperatur und
-konzentration im Halbleiter-Quantenfilm, dem Schichtabstand und der räumlichen Orientierung
der flachen Moleküle auf dem Substrat.

Abschließend wird das theoretische Modell zur Beschreibung dieser hybriden inorganisch-orga-
nischen Systeme erweitert, um den Einfluss von Oberflächenrauigkeit, Streuung an akustischen
Phononen und radiativer Rekombination im Halbleitersubstrat sowie intermolekularer Cou-
lombwechselwirkung und Kopplung an Vibrationsmoden im ungeordneten organischen Film
auf die Coulombkopplung zwischen Wannier- und Frenkel-Exzitonen zu berücksichtigen. Zu
diesem Zweck wird ein störungstheoretischer Ansatz gewählt, um die Übergangsamplituden
zwischen Exzitondichten im Hybridsystem herzuleiten, und eine Kumulantenentwicklung wird
benutzt, um die Kopplung an Vibrationsmoden in der organischen Schicht zu beschreiben,
welche hauptsächlich für die Dephasierung solcher Systeme verantwortlich ist.
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1 Introduction

1.1 Motivation
Excitons, i.e., Coulomb bound correlated electron-hole pair states, dominate the optoelectronic
properties of many dielectric solids and are particularly pronounced in the case of confined
quantum systems such as semiconductor nanostructures [Bas88, Hau04]. Therefore, an in-depth
insight into the structural and dynamical properties of excitonic complexes, their binding
energies and couplings, and coherent light-matter interactions is of outstanding importance
regarding possible solid-state realizations of coupled quantum emitters for optoelectronic and
quantum informational platforms [Bio00, Bay01, Mic03, Lov03, Bes05].
However, complex nanostructured materials often exhibit highly congested levels and cou-

plings that are challenging to resolve experimentally. Especially the nature of the coupling
(e.g., electrostatic or non-radiative Förster-type) plays a decisive role in the design of de-
vices. In this context, multidimensional nonlinear spectroscopy [Muk95] comes into play
as powerful instrument to disentangle the complex optical response of various kinds of
quantum systems. It overcomes many of the limitations of conventional one-dimensional
techniques since it has the ability to isolate distinct quantum pathways, to unfold the
third-order excitonic response across different frequency axes, and to separate homoge-
neous broadening of the individual emitters from inhomogeneity of the transition energies
[Muk00, Tia03, Jon03, Axt04, Lan07, Yan08, Cho08, Kar10, Sie10, Lan10, Fin12, Nar15]. The
application of a sequence of ultrafast laser pulses with defined polarizations creates coherent
superpositions of distinct excitonic states and reveals many-particle correlations between them.
This is exploited in this work to examine higher-order correlated states in coupled quantum
dots and monolayer transition-metal dichalcogenides by calculating four-wave mixing signals
and comparing them to experimental data. This way, two-dimensional spectroscopy provides
unique access to fundamental structural properties such as the nature of coupling, binding
energies, optical selection rules, and excited state configurations.

Dipole-dipole Förster-type excitation transfer can couple distant physical subsystems leading
to the formation of collective resonances that are potentially delocalized over the whole structure
described by a hybridization of the local basis states [Gue02, Lov03, Ger05, Chr10]. Using
conventional far-field spectroscopy techniques, these couplings can be inspected. However, it
is difficult to quantify to which extent an observed delocalized excitonic resonance contains
contributions from the different single emitters. To tackle this shortcoming, one can combine
temporal with spatial pulse control by using localized excitation of the single quantum emitters
with nanooptical fields [Zha09, Kin09, Hua09, Mer08, Nov11, Gue02, Bri05, vFr98, Pet04,
Web11].

Over the last two decades, hybrid inorganic/organic systems have emerged as promising
new material class capable of combining the optoelectronic properties of their constituents
to form novel, tailorable device functionality [Bas99, Blu06, Its07, Nev08, Blu10, Vay12,
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2 1 Introduction

Lia13, Qia15, Fri15, Sch15, Lju17]. Hybrid inorganic/organic systems are composed of two
complementary material components that differ fundamentally in their optoelectronic properties:
On the one hand, organic materials such as organic dye molecules usually exhibit a strong
light-matter coupling, thus enhancing the radiative emission yield. Moreover, the thermal
stability, the absorption and fluorescence efficiency and linewidth, the geometry, spatial
arrangement, orientation, and ordering of molecules in thin films can be manipulated by the
specific chemical synthesis and deposition technique [Kob12, Blu10], hence, making molecules
extremely versatile building blocks in terms of their optical and electrochemical properties.
On the other hand, inorganic semiconductor nanostructures such as ZnO quantum wells have
multiple advantageous features such as extended band states, atomically smooth interfaces,
high charge carrier mobilities, and efficient electrical carrier injection. Combining these different
material classes leads to the formation of novel types of excitations, e.g., Frenkel-Wannier
excitons [Agr98, Blu06] and hybrid charge transfer excitons (i.e., bound excitons with the
electron and hole located at different sites of the hybrid interface) [Vay12, Pie15, Eye15].
Having in mind the use of hybrid inorganic/organic systems as light-emitting devices, this work
develops a theoretical framework based on a density-matrix equation technique to describe
Förster-type non-radiative energy transfer across the inorganic/organic interface.

1.2 Structure of the thesis
This thesis is composed of three main parts:

The first part comprises the most important theoretical foundations of this work, including
some basic concepts of solid-state quantum mechanics and density-matrix theory in Chap. 2,
as well as an introduction into the theoretical toolbox to calculate coherent multidimensional
spectroscopy signals in Chap. 3.
In the second part, several third-order techniques are presented to resolve the internal

structure of different nanostructures. Chapter 4 treats a quantum state tomography protocol
to retrieve the excitonic wave functions of coupled quantum dots. In Chap. 5, photon echo
spectroscopy of atomically thin transition-metal dichalcogenides is investigated and a compari-
son with experimental data allows to identify multiple higher-order correlated states. As a last
example for the implementation of two-dimensional polarization-resolved four-wave mixing
spectroscopy, the experimentally observed signatures of individual quantum dots are simulated
including optical selection rules, Coulomb coupling, and fine-structure splitting in Chap. 6 to
illustrate the formation of a quantum dot molecule composed of two electrostatically coupled
quantum dots.
The third part of this thesis is dedicated to the theoretical description of the excitation

transfer efficiency and dynamics in hybrid inorganic/organic systems. Therefore, as a first step,
in Chap. 7 a density-matrix technique in momentum representation is developed to describe the
excitation transfer coupling between the Markovian electron-hole continuum in an electrically
driven idealized semiconductor quantum well and a highly ordered molecular adlayer. This
framework is in the following Chap. 8 extended to treat disorder, radiative dephasing, and
exciton-phonon scattering processes in both the organic and inorganic constituent using a
perturbative approach and a cumulant expansion technique.
Finally, a brief conclusion summarizes the main results and gives an outlook for future

investigations.



Part I

Theoretical background





2 Fundamental theoretical concepts

2.1 Density-matrix theory in Liouville space

2.1.1 Time evolution of the density operator
If the state of a quantum mechanical system is characterized by a single state vector |ψ(t)〉 in
Hilbert space, this state is called a pure state with wave function ψ. Its temporal evolution is
described by the Schrödinger equation ∂|ψ〉

∂t = − i
~Ĥ|ψ〉. The expectation value of an arbitrary

operator Â is then given by 〈Â〉 = 〈ψ(t)|Â|ψ(t)〉. However, in many experimental setups
only a statistical ensemble of pure states is accessible. Therefore, a mixed state description is
introduced, where pi denotes the probability for the system to be in state |ψi(t)〉. The density
operator

ρ̂(t) ≡
∑
i

pi|ψi(t)〉〈ψi(t)| (2.1)

can be assigned to this mixed state. The density matrix elements with respect to an arbitrary
basis set {|n〉} have the form

ρnm(t) =
∑
i

pi〈n|ψi〉〈ψi|m〉. (2.2)

The density matrix is Hermitian, its diagonal elements are non-negative and its trace (i.e.,
the sum over all diagonal elements) is 1. The diagonal elements of the density matrix ρ̂(t)
represent the population of the specific state, whereas the non-diagonal elements describe
transition amplitudes between two states and are referred to as coherences or polarizations.
An observable 〈Â〉 is calculated according to

〈Â〉 =
∑
i

pi〈ψi(t)|Â|ψi(t)〉 = tr
[
Âρ̂(t)

]
. (2.3)

Based on the Schrödinger equation, the dynamics of the density matrix can be derived
yielding the Liouville–von Neumann equation:

∂ρ̂

∂t
= − i

~

[
Ĥ, ρ̂

]
−
≡ − i

~
Lρ̂, (2.4)

where the Liouville operator L has been introduced. It is called superoperator, since it does not
act on state vectors but on operators of the Hilbert space. The new space where the density
operator is considered a vector and the operators are represented by superoperators is called
Liouville space. The Liouville–von Neumann equation describing the temporal evolution of
the density operator in Liouville space is the formal analogon of the Schrödinger equation in

5
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Hilbert space. Analogous to the time evolution operator in Hilbert space, the Liouville space
propagator U(t, t0) is introduced with ρ̂(t) = U(t, t0)ρ̂(t0), yielding the Liouville equation

∂U(t, t0)
∂t

= − i
~
L(t)U(t, t0) (2.5)

with initial condition U(t0, t0) = 1. The formal solution of this differential equation yields

U(t, t0) = exp←
(
− i
~

∫ t

t0

dτ L(τ)
)
. (2.6)

The expression exp←(...) represents the time-ordered expansion

U(t, t0) = 1 +
∞∑
n=1

(
− i
~

)n ∫ t

t0

dτn
∫ τn

t0

dτn−1· · ·
∫ τ2

t0

dτ1 L(τn)L(τn−1) . . .L(τ1) (2.7)

with t ≥ τn ≥ · · · ≥ τ1 ≥ t0.

2.1.2 Interaction expansion of the coupling to an external optical field
The Hamilton operator of the considered quantum system is assumed to be composed of an
electronic part representing the closed system and a semiclassical interaction with the external
light field E(t): Ĥ(t) = Ĥe(t)+Ĥel-L(t) with Ĥel-L = −E(r, t)·d̂. d̂ denotes the dipole operator,
cf. Eq. (2.41). Accordingly, also the Liouville operator is split into L(t) = Le(t) + Lel-L(t)
[Muk95, Abr09], and an interaction picture with respect to Le can be introduced, where the
propagator of Eq. (2.6) becomes:

U(t, t0) = U0(t, t0)U1(t, t0) (2.8)

with
U0(t, t0) = exp←

(
− i
~

∫ t

t0

dτ Le(τ)
)

(2.9)

and
U1(t, t0) = exp←

(
− i
~

∫ t

t0

dτ U0(t0, τ)Lel-L(τ)U0(τ, t0)
)
. (2.10)

G(t − t0) ≡ Θ(t − t0)U0(t, t0) is the retarded Green’s function describing the free evolution
of the density matrix between two interaction events [Abr09]. With that, the time evolution
superoperator becomes

U(t, t0) = U0(t, t0) exp←
(
− i
~

∫ t

t0

dτ U0(t0, τ)Lel-L(τ)U0(τ, t0)
)
. (2.11)

The initial time t0 can be chosen as an arbitrary time before the onset of the external electric
field, e.g., t0 → −∞.
Also the density operator ρ̂(t) can be expanded in orders of E(t):

ρ̂(t) = ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2)(t) + . . . (2.12)

The contribution in n-th order of the electric field is expressed using the retarded Green’s
function G [Muk95]

ρ̂(n)(t) =
(
− i
~

)n ∫ t

t0

dτn
∫ τn

t0

dτn−1· · ·
∫ τ2

t0

dτ1 G(t− τn)Lel-L(τn)

× G(τn − τn−1)Lel-L(τn−1) . . .G(τ2 − τ1)Lel-L(τ1)G(τ1 − t0)ρ̂(t0).
(2.13)
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The Green’s functions ensure that t0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ t. The τi represent the interaction
times with the external light fields. Introducing the dipole superoperator DÂ ≡ [d̂, Â], the
Liouville operator of the electron-light interaction takes the form Lel-L(t) = −E(r, t) · D.
Plugging this expression into Eq. (2.13), one obtains

ρ̂(n)(t) =
(
− i
~

)n ∫ t

t0

dτn
∫ τn

t0

dτn−1· · ·
∫ τ2

t0

dτ1 G(t− τn)E(r, τn) · D

× G(τn − τn−1)E(r, τn−1) · D . . .G(τ2 − τ1)E(r, τ1) · D ρ̂(t0),
(2.14)

where G(τ1 − t0)ρ̂(t0) = ρ̂(t0) was used. Substituting the interaction times τi by the time
intervals ti between two subsequent interactions according to

t1 ≡ τ2 − τ1, t2 ≡ τ3 − τ2, . . . , tn ≡ t− τn (2.15)

and sending t0 → −∞ yields [Muk95]

ρ̂(n)(t) =
(
i

~

)n ∫ ∞
0

dtn
∫ ∞

0
dtn−1· · ·

∫ ∞
0

dt1 G(tn)E(r, t− tn) · D

× G(tn−1)E(r, t− tn − tn−1) · D . . .G(t1)E(r, t− tn − · · · − t1) · D ρ̂(−∞).
(2.16)

For calculating spectroscopic signals, typically the quantity of interest is the n-th order of
the induced polarization P (t). It is given as the expectation value of the density operator:

P (n)(t) = 〈d̂〉(n) = tr
[
d̂ ρ̂(n)(t)

]
. (2.17)

2.1.3 Quantum master equations in open quantum systems
In Sec. 2.1.1 it was shown that in the Schrödinger picture the time evolution of the density
matrix is given by the Liouville–von Neumann equation. However, in situations where the
relevant quantum mechanical system S is weakly coupled to a reservoir R (i.e., an environment
with continuous modes), it is more convenient to treat the problem in the interaction picture
[Bre02, May00, Car99]. Let us assume that the full system Hamiltonian is given by

Ĥ(t) = Ĥ0 + ĤS-B(t), (2.18)

where the time-independent part Ĥ0 subsumes the free Hamilton operators of the system
and the reservoir and ĤS-B(t) describes the interaction between the system and the reservoir.
Keeping in mind that observables must not be affected by the choice of the physical picture,
i.e.,

〈Â(t)〉 = tr
[
Â(t)ρ̂(t)

]
!= tr

[
ÂI(t)ρ̂I(t)

]
, (2.19)

the interaction-picture operator

ÂI(t) ≡ U†0 (t, t0)Â(t)U0(t, t0) (2.20)

and the interaction-picture density matrix

ρ̂I(t) ≡ UI(t, t0)ρ̂(t0)U†I (t, t0) (2.21)

can be introduced. Here, the Schrödinger operator Â(t) of Eq. (2.3) is allowed to depend
explicitly on time. The interaction-picture time evolution operator UI(t, t0) ≡ U†0 (t, t0)U(t, t0)
is a product of

U0(t, t0) = e−
i
~ Ĥ0(t−t0) and U(t, t0) = exp←

[∫ t

t0

dτ Ĥ(τ)
]
. (2.22)
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The Liouville–von Neumann equation is accordingly translated into the interaction picture:

∂

∂t
ρ̂I(t) = − i

~

[
ĤI(t), ρ̂I(t)

]
−

(2.23)

with the interaction-picture system-reservoir coupling Hamiltonian

ĤI(t) ≡ U†0 (t, t0)ĤS-B(t)U0(t, t0). (2.24)

Integrating Eq. (2.23) yields

ρ̂I(t) = ρ̂I(0)− i

~

∫ t

0
ds
[
ĤI(s), ρ̂I(s)

]
−
. (2.25)

The initial time t0 has been arbitrarily set to 0. Inserting this back into Eq. (2.23) and taking
the partial trace over the reservoir degrees of freedom leads to the integro-differential equation

∂

∂t
ρ̂S(t) = − 1

~2

∫ t

0
ds trB

[
ĤI(t),

[
ĤI(s), ρ̂I(s)

]
−

]
−
, (2.26)

where the reduced system density matrix ρ̂S ≡ trB [ρ̂I] has been introduced and it was assumed
trB

[
ĤI(t), ρ̂I(t0)

]
−

= 0 [Bre02].
As a next step, a Born approximation is performed where the reservoir-system coupling is

assumed to be weak, such that the full system density matrix is approximated by a tensor
product ρ̂I(s) ≈ ρ̂S(s)⊗ ρ̂B with a time-independent reservoir density matrix ρ̂B.

According to Eq. (2.26), the system state at time t depends on all previous times. Within the
Markov approximation, ρ̂S(s) is replaced by ρ̂S(t), leading to the time-local Redfield master
equation [Red57, Bre02]

∂

∂t
ρ̂S(t) = − 1

~2

∫ t

0
ds trB

[
ĤI(t),

[
ĤI(s), ρ̂S(t)⊗ ρ̂B

]
−

]
−
. (2.27)

To obtain a Markovian master equation, the integration variable s is substituted by t−s, leaving
the integration boundaries unchanged. s then parametrizes how far back in time memory effects
are accounted for. Let τB be a characteristic timescale for the decay of bath correlations. In
Markov approximation, this timescale is very small (and not resolved), such that the integrand
vanishes very quickly for s� τB and the upper integration boundary can be sent to infinity:

∂

∂t
ρ̂S(t) = − 1

~2

∫ ∞
0

ds trB
[
ĤI(t),

[
ĤI(t− s), ρ̂S(t)⊗ ρ̂B

]
−

]
−
. (2.28)

This is the quantum master equation in Born-Markov approximation.

2.2 Solid-state Hamilton operator
The many-particle solid-state Hamilton operator Ĥs is derived using an adiabatic (or Born-
Oppenheimer) approximation, where the lattice dynamics is separated from the electron
dynamics [Hak73, Czy04]. The electronic system is assumed to follow the motion of the cores
instantaneously, since the latter takes place on a much slower time scale due to the large core
masses. The Hamiltonian in first quantization contains electronic (e) and ionic (i) parts and
their interaction correcting for the Born-Oppenheimer approximation:

Ĥs = Ĥe + Ĥi + Ĥe-i. (2.29)
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2.2.1 Electronic and free radiation part and electron-photon interaction
The electronic part Ĥe incorporates the interaction with an electromagnetic field assuming
minimal coupling. Within the effective mass approximation, a modified electron mass me is
introduced to account for the interaction of the electrons with the static field of the ions
[Coh92]:

Ĥe =
Ne∑
j=1

(pj − eA⊥(rj , t))2

2me
+ e2

4πε0εr

∑
i<j

1
|ri − rj |

+ 1
2

∫
d3r
{
ε0E

2
⊥(r, t) + 1

µ0
B2(r, t)

}
.

(2.30)
The electromagnetic field in Coulomb gauge is quantized according to [Coh92, Hak73]:

A⊥(r, t) =
∑
l,q

√
~

2ε0ωqV

(
el,qeiq·r ĉl,q(t) + el,qe−iq·r ĉ†l,q(t)

)
(2.31)

with wave vector q, frequency ωq = cq, quantization volume V , polarization vector el,q, and
photon mode l. The photonic creation (ĉ†l,q) and annihilation (ĉl,q) operators satisfy the bosonic
commutation relations: [

ĉl,q, ĉ
†
l′,q′

]
− = δq,q′δl,l′ ,

[
ĉ
(†)
l,q , ĉ

(†)
l′,q′

]
− = 0. (2.32)

The nanostructures considered in this work are small compared to the wavelength of the
radiation field, such that the vector potential is assumed to be spatially invariant over the
sample size: A⊥(r, t) ≈ A⊥(0, t) (long-wavelength approximation). In order to express the
atom-field interaction in terms of an electric dipole coupling between the radiation field and the
atomic dipole moment d =

∑
j erj , a unitary transformation (Göppert-Mayer transformation

[Göp31])
T̂ = exp

[
− i
~
d ·A⊥(0, t)

]
(2.33)

is applied to the full Hamiltonian according to Ĥ ′e = T̂ ĤeT̂
†, yielding [Coh92]

Ĥ ′e =
Ne∑
j=1

p2
j

2me
− d ·

∑
l,q

(
E l,q ĉl,q − E∗l,q ĉ

†
l,q

)
+ e2

4πε0εr

∑
i<j

1
|ri − rj |

+
∑
l,q

~ωq ĉ†l,q ĉl,q (2.34)

with

E l,q ≡ i

√
~ωq

2ε0V
el,q. (2.35)

The electronic system is also quantized by introducing Heisenberg field operators for electrons
with wave vector k in band λ ∈ {c, v}

Ψ̂(†)
s (r) =

∑
λ,k

ψ
(∗)
λ,k(r)â(†)

λ,k. (2.36)

The electronic annihilation (creation) operators â(†)
λ,k fulfill the fermionic commutation relations:[

âλ,k, â
†
λ′,k′

]
+ = δk,k′δλ,λ′ ,

[
â

(†)
λ,k, â

(†)
λ′,k′

]
+ = 0. (2.37)

This leads to the Hamiltonian in second quantization consisting of a interaction-free electron
part Ĥs

el, a free radiation part Ĥs
pt, a Coulomb part Ĥs

C, and an electron-photon interaction
Hamiltonian Ĥs

el-pt:

Ĥe =
∫

d3r Ψ̂†s(r)Ĥ ′eΨ̂s(r) = Ĥs
el + Ĥs

pt + Ĥs
C + Ĥs

el-pt (2.38)
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=
∑
λ,k

ελ,kâ
†
λ,kâλ,k +

∑
l,q

~ωq ĉ†l,q ĉl,q + e2

4πε0εr

∑
i<j

1
|ri − rj |

+
∑
l,q

∑
λ,λ′,k,k′

(
Mλλ′,kk′

l,q ĉl,qâ
†
λ,kâλ′,k′ +Mλλ′,kk′∗

l,q ĉ†l,qâ
†
λ′,k′ âλ,k

) (2.39)

The electron-photon coupling matrix element is given as

Mλλ′,kk′

l,q ≡
∫

d3r ψ∗λ,k(r)er · E l,qψλ′,k′(r). (2.40)

The treatment is usually restricted to interband processes with λ 6= λ′ neglecting intraband
processes with λ = λ′.

The external light field applied in typical optical experiments (such as photoluminescence (PL)
measurements) can usually be described using a semiclassical approach, where the incoming
laser light is treated as classical electromagnetic field E(t) and only the Schrödinger field of
the electrons is quantized. The Hamiltonian in dipole approximation takes the form:

Ĥel-L = −
∑
k,k′

dkk
′

cv ·E(t)â†c,kâv,k′ + h.c. (2.41)

For semiconductor nanostructures where the electronic wave function ψλ,k(r) = ξλ,k(r)uλ,k(r)
can be factorized into an envelope part ξλ,k and a Bloch part uλ,k, the transition ma-
trix element dkk′cv is given as product of the microscopic interband dipole moment dλλ′ ≡∫
uc d

3r̃ u∗λ,k≈0(r̃)er̃uλ′,k≈0(r̃) and the overlap integral of the envelope functions for the valence
and conduction bands, χk,k

′

λλ′ =
∫
d3r ξ∗λ,k(r)ξλ′,k′(r).

2.2.2 Ionic part and electron–phonon interaction
The ionic Hamiltonian Ĥi comprises the kinetic energy of the ions (usually treated perturba-
tively) and the effective interaction between the ions, described as screened Coulomb potential
between the ions (i.e., cores plus inner shells) and the outer electrons including the time-averaged
adiabatic electronic potentials [Czy04, Yu05]:

Ĥi =
Nuc∑
n=1

P 2
n

2M + Vi({Rn}). (2.42)

Here, Pn denotes the momentum, M the mass, and Rn the position of the ion in the n-th unit
cell (UC). Since the treatment is restricted to acoustic phonons (as discussed later), only one
basis atom per UC is considered. Assuming that the ions vibrate around their equilibrium
positions R(0) ≡ {R(0)

n }, the positions R ≡ {Rn} are expressed by Rn = R
(0)
n + un, where

un describes the displacement of the ion in the n-th unit cell with respect to its equilibrium
position R(0)

n . In the harmonic approximation, the potential is expanded in a Taylor series
around the equilibrium positions to second order in the displacement [Mad72, Czy04, Mah00]:

Vi(R) ≈ Vi(R(0)) +
Nuc∑
n=1

3∑
µ=1

∂Vi(R)
∂Rnµ

∣∣∣∣∣
R(0)

unµ︸ ︷︷ ︸
=0

+1
2

Nuc∑
n,n′=1

3∑
µ,µ′=1

∂2Vi(R)
∂Rnµ∂Rn′µ′

∣∣∣∣∣
R(0)︸ ︷︷ ︸

≡Φn
′µ′
nµ

unµun′µ′ .

(2.43)
By introducing normal coordinates and diagonalizing the dynamical matrix Dn′µ′

nµ ≡ Φn′µ′nµ /M ,
the ionic motion can be expressed by a set of uncoupled harmonic oscillators representing
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collective vibrations. Applying the usual quantization procedure yields quantized displacement
operators

ûn = i
∑
j,q

√
~

2MNucωj,q
ej,qeiq·R

(0)
n
(
b̂j,q + b̂†j,−q

)
. (2.44)

The quantized free phonon Hamiltonian is given by

Ĥi =
∑
j,q

~ωj,q
(
b̂†j,q b̂j,q + 1

2

)
(2.45)

with the bosonic annihilation (creation) operators b̂(†)j,q for phonon mode j with wave vector q.
They fulfill the commutator relations [b̂j,q, b̂

†
j′,q′ ]− = δj,j′δq,q′ . The free phonon Hamiltonian

Eq. (2.45) is supposed to be identical for all electronic states in the semiconductor, since
the vibrational modes are highly delocalized over the crystal lattice due to the translational
invariance. Also, the electronic state density is usually high, such that the nuclear vibrations
are hardly affected by changes in the electronic states. This changes in the case of molecules,
where the concept of potential energy surfaces (PESs) is introduced in order to account for the
different equilibrium positions (cf. Sec. 8.3.3).
The electron–phonon interaction Hamiltonian reads:

Ĥe-i =
Ne∑
i=1

Vel-ph(ri) =
Ne∑
i=1

Nuc∑
n=1

Ve-i(ri −Rn). (2.46)

Again, the interaction potential is expanded in powers of the displacements and terms in O(u2)
are neglected:

Vel-ph(ri) ≈
Nuc∑
n=1

Ve-i(ri −R(0)
n )︸ ︷︷ ︸

Bloch part

−
Nuc∑
n=1

∇Ve-i(ri −R(0)
n ) · un︸ ︷︷ ︸

≡Ṽel-ph(ri)

(2.47)

The first part gives rise to Bloch states for the electronic motion in the periodic potential of
the (fixed) ions. The second term describes the electron–phonon interaction. Fourier trans-
forming the potential according to Ve-i(r) = 1/Nuc

∑
Q Ve-i(Q)eiQ·r, plugging in the quantized

displacement operator Eq. (2.44), and using 1/Nuc
∑
n ei(q−Q)·Rn ≈

∑
Gs
δq−Q,Gs yields:

Ṽel-ph(ri) =
∑
j,q,Gs

√
~

2ρV ωj,q
Ve-i(q +Gs)(q +Gs) · ej,qei(q+Gs)·ri(b̂j,q + b̂†j,−q

)
. (2.48)

Gs denotes a reciprocal lattice vector of the semiconductor quantum well (QW), ρ is the mass
density of the solid and V the sample volume. The Schrödinger field is also quantized and the
particle density operator is introduced:

ρ̂(r) = Ψ̂†s(r)Ψ̂s(r) =
∑
λ,λ′

∑
k,k′

ψ∗λ,k(r)ψλ′,k′(r)â†λ,kâλ′,k′ . (2.49)

Note that the spin index σ is not mentioned explicitly here, since an interaction with the lattice
vibrations does not affect the spin state of the electrons. The electron–phonon interaction
Hamiltonian in second quantization is given by [Czy04, Mah00]:

Ĥs
el-ph =

∫
d3r Ψ̂†s(r)Ṽel-ph(r)Ψ̂s(r)

=
∑
j,q,Gs

√
~

2ρV ωj,q
Ve-i(q +Gs)(q +Gs) · ej,qρ̂(q +Gs)

(
b̂j,q + b̂†j,−q

) (2.50)

with form factor ρ̂(q +Gs) =
∫
d3r ei(q+Gs)·rρ̂(r).



12 2 Fundamental theoretical concepts

2.3 Factorization schemes
When evaluating equations of motion (EOM) of single-particle observables given as correlations
of the form 〈â†i âj〉, one often faces the problem that they couple to higher order quantities,
e.g., two-particle correlations 〈â†i â

†
j âkâl〉. To close the system of differential equations, various

factorization schemes are used depending on the character of the involved operators and the
expansion level. A Hartree-Fock factorization of fermionic two-particle correlations is given by
[Fic90]

〈â†i â
†
j âkâl〉 ≈ 〈â

†
i âl〉〈â

†
j âk〉 − 〈â

†
i âk〉〈â

†
j âl〉, (2.51)

where two-particle correlations are neglected. The bosonic analogon reads

〈b̂†i b̂
†
j b̂k b̂l〉 ≈ 〈b̂

†
i b̂l〉〈b̂

†
j b̂k〉+ 〈b̂†i b̂k〉〈b̂

†
j b̂l〉. (2.52)

If electron-photon or electron–phonon interaction is present, also mixed (or assisted) expecta-
tion values containing both fermionic and bosonic operators such as 〈b̂†i b̂

†
jÂ〉 can occur, where

Â denotes an arbitrary combination of fermionic creation and annihilation operators. On the
second-order Born level, they are factorized according to [Fic90, Sch94, Axt94, Bre02, Wal04]

〈b̂†i b̂
†
jÂ〉 ≈ 〈b̂

†
i b̂
†
j〉〈Â〉. (2.53)

Note that a factorization on a lower level, 〈b̂(†)i Â〉 ≈ 〈b̂(†)i 〉〈Â〉 is not considered here since
expectation values of the form 〈b̂(†)i 〉 vanish in the case of phonons treated as a bath in thermal
equilibrium or in the case of photons in the absence of coherent electromagnetic fields.

2.4 Markov approximation
A Markov approximation is frequently used to solve linear, inhomogeneous differential equations
of the form

i~
d
dt〈O〉(t) = ~ω〈O〉(t) + P (t) (2.54)

by neglecting quantum-mechanical memory effects. The formal solution of this problem is
found by variation of constants:

〈O〉(t)− 〈O〉(−∞)︸ ︷︷ ︸
=0

= − i
~

t∫
−∞

dt′ P (t′)eiω(t′−t). (2.55)

The above Eq. (2.55) shows that a solution for a particular time t depends on all previous
times t′ and therefore has a memory.

Substituting s = t− t′ leads to

〈O〉(t) = i

~

0∫
∞

ds P (t− s)e−iωs = − i
~

∞∫
0

ds P (t− s)e−iωs. (2.56)

Provided that the inhomogeneity (function with time argument (t− s)) temporally varies much
slower than the oscillation resulting from the exponential function determined by the free
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energy of the considered quantity, it is valid to neglect the memory kernel by approximating
P (t− s) ≈ P (t) and move P (t) outside the integral:

〈O〉(t) = − i
~
P (t)

∞∫
0

ds e−iωs

︸ ︷︷ ︸
=ζ(ω)

. (2.57)

ζ(ω) is the generalized δ function (Heitler Zeta function) [Cho12]. It is evaluated by introducing
a convergence factor γ:

ζ(ω) = lim
γ→0

∞∫
0

ds e−(iω+γ)s = lim
γ→0

1
iω + γ

= πδ(ω)− iP
( 1
ω

)
, (2.58)

where P denotes the Cauchy principal value and the δ function ensures energy conservation.
Usually, the principal value is neglected and only the delta function for the free energy is taken
into account, such that the differential equation is solved in Markov approximation according
to:

〈O〉(t) = − i
~
πδ(ω)P (t). (2.59)

In many physical contexts, the inhomogeneity P (t − s) contains fast oscillations, e.g.,
stemming from the free energy of polarizations of the form 〈â†i âj〉. Consequently, the Markov
approximation introduced above is not directly applicable. In these cases, a rotating frame is
introduced by separating the fast oscillating part from the slowly varying function P̃ (t− s):

P (t− s) = P̃ (t− s)e−iωP (t−s). (2.60)

The memory of P̃ (t − s) is neglected setting P (t − s) ≈ P̃ (t)e−iωP (t−s). Plugging this into
Eq. (2.56) yields

〈O〉(t) = − i
~
P̃ (t)e−iωP t︸ ︷︷ ︸

=P (t)

∞∫
0

ds e−iωseiωP s = − i
~
P (t)

∞∫
0

ds e−i(ω−ωP )s (2.61)

The solution in Markov approximation is then given by:

〈O〉(t) = − i
~
πδ(ω − ωP )P (t). (2.62)

2.5 Feynman disentanglement theorem for time-ordered
operators

Let an operator Û(t, t0) be given by a time-ordered exponential of the form

Û(t, t0) = exp←

[∫ t

t0

dτ(Â1(τ) + Â2(τ))
]

(2.63)

with arbitrary operators Â1(τ) and Â2(τ). According to the Feynman disentanglement theorem
[Fey51], this operator can be decomposed into

Û(t, t0) = Û1(t, t0)Û2(t, t0) (2.64)
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with

Û1(t, t0) = exp←

[∫ t

t0

dτÂ1(τ)
]
, (2.65)

Û2(t, t0) = exp←

[∫ t

t0

dτÛ1(t0, τ)Â2(τ)Û1(τ, t0)
]
. (2.66)



3 Coherent multidimensional
spectroscopy

3.1 Introduction
Nonlinear optical spectroscopy in its various experimental realizations is a powerful tool
to study the dynamics, energies, and microscopic couplings of higher excitonic states in
semiconductor nanostructures. In nuclear magnetic resonance experiments, multidimensional
frequency space spectra are acquired by Fourier transforming temporal sequences of radio
frequency pulses [Wüt03, Van05]. The remarkable technical progress in femtosecond pulse-
shaping allows to extend multidimensional spectroscopy techniques to optical frequencies:
Ultrafast sequences of short pulses with precisely tuned durations and time intervals as well
as defined frequencies, wave vectors, phases, envelopes, and polarizations are applied to the
sample [Gal98, Muk00, Wei09]. This work focuses on four-wave mixing (FWM) spectroscopy
probing the optical response of a system in third order of the electric field, the so-called χ(3)

regime. In particular, multidimensional coherent spectroscopy techniques allow a detailed
insight into the dynamical and structural properties by spreading the spectroscopic signal into
(at least) two dimensions [Muk95, Muk00, Gal98, Tia03, Jon03, Axt04, Lan07, Yan08, Cho08,
Kar10, Lan10, Fin12, Nar15, Kre15].

One-dimensional (1D) spectroscopy techniques such as linear absorption, photoluminescence,
and Raman, probe the energies and oscillator strengths of the system resonances. However,
complex nanostructured materials exhibit highly interlaced levels and couplings which often
remain unresolved in standard 1D optical experiments. Also, inhomogeneous broadening can
mask detailed spectral features in the optical response if the signal is projected onto a single
frequency axis. Coherent two-dimensional (2D) spectroscopy offers an additional degree of
freedom in terms of the additional frequency axis in order to disentangle the complex optical
signal [Muk00]. Moreover, a specific excitation configuration can be selected, thus reducing
the number of quantum pathways contributing to the signal, which can be used, e.g., to
eliminate inhomogeneous broadening [Kuz07, Sie10], cf. Chap. 5. Also, while 1D spectra
show the energetic positions of the system resonances, only two-dimensional spectroscopy
techniques allow to determine whether two specific transitions are fully independent or coupled
[Lan07, Moo13a, Moo14, Fin13, Spe15, Del17]. This way, 2D spectroscopy is a powerful
technique to study many-body effects in quantum systems such as semiconductor quantum
wells (QWs) [Sto09, Kar10, Tur10, Moo14] as well as ensembles of quantum dots (QDs)
[Moo13a, Moo13b] and nanocrystals [Cas16].

In this chapter, the theoretical treatment of heterodyne-detected coherent multidimensional
spectroscopy is demonstrated. First, the setup of a typical FWM experiment with heterodyne
detection is briefly illustrated in Sec. 3.2. Then, in Sec. 3.3.1, the third-order polarization and
response function are derived based on the density matrix formalism introduced in Sec. 2.1. Two
different signals are discussed in the later chapters of this work, namely the double quantum
coherence (DQC) and the photon echo (PE) signal, corresponding to different Liouville space

15
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(a) (b)
Figure 3.1: (a) Sketch of a typical FWM experiment with three incoming laser pulses E1, E2, and E3
and a local oscillator field Es that mixes with the signal field for heterodyne detection. (b) Timeline for
the pulse sequence applied in a heterodyne-detected FWM experiment.

pathways. They are visualized using the so-called double-sided Feynman diagrams representing
the evolution of the density matrix illustrated in Sec. 3.3.2 for the DQC case. Finally, the DQC
signal function is derived in Sec. 3.3.3 and the phase cycling technique is briefly discussed in
Sec. 3.3.4.

3.2 Four-wave mixing spectroscopy
3.2.1 Experimental setup
In a FWM experiment, a sequence of three temporally separated pulses centered at times τ1,
τ2, and τ3 is applied to the sample, cf. Fig. 3.1 (b). The interaction-free time intervals between
two subsequent pulses are denoted T1 and T2, as illustrated in Fig. 3.1 (b). The time ordering
of the pulses can be controlled by varying the delay times between them.1
The total optical field applied to the system is therefore composed of three pulses

E(r, t) =
3∑
j=1

∑
uj=±1

Eujj (r, t− τj)eiuj(kj ·r−ωj(t−τj)) (3.1)

and Eujj (t− τj) denotes the envelope of the j-th pulse with wave vector kj and laser frequency
ωj . The factors uj can take the values +1 or −1 with E−1

j = (E+1
j )∗. The total wave vector of

a specific signal ks is then given by a linear combination of the wave vectors of the incident
pulses: ks = u1k1 + u2k2 + u3k3. This way, different signals can be separated by directional
selection (induced grating). These different so-called Liouville space pathways are discussed in
more detail in Sec. 3.3.2. Note that a conventional pump-probe experiment is a special case of
FWM with T1 = 0 and k1 = k2.

3.2.2 Heterodyne detection
Early nonlinear optical spectroscopy experiments were restricted to large ensemble measure-
ments due to the bad signal-to-noise ratio that worsens with increasing order in the electric
field. However, heterodyne spectral interferometry enables to measure high signal strengths
even when probing single quantum systems and allows to retrieve both the amplitude and the
phase of the measured signal [Muk95, Gal98, Lan05, Yan08, Abr09]. For heterodyne detection,
an additional phase-locked laser pulse, the so-called local oscillator with envelope Es, is applied
at time τs in signal field direction (cf. Fig. 3.1). It interferes with the emitted signal, and
1 To exclude time-reverse ordered interactions with the incoming pulses and higher orders of electron-light
interactions, it is assumed that the pulses have no temporal overlap and each pulse interacts once with the
sample.
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the resulting field is then detected. This way, real and imaginary part of the signal can be
resolved. The intensity of the heterodyne pulse is much higher than the induced signal field,
thus enhancing the heterodyne detected signal. It is given by a convolution of the induced
polarization P (3)

ks
in direction ks (cf. Eq. (3.9)) with the local oscillator field (after subtracting

the well-known intensity of the heterodyne field, cf. [Abr09]):

S
(3)
ks

(T3, T2, T1) =
∫ +∞

−∞
dt P (3)

ks
(t) · E∗s (t− τs)eiωs(t−τs). (3.2)

Note that the signal depends on the variable delay times Tj between the four laser pulses.

3.3 Calculation of heterodyne-detected coherent signals

3.3.1 Third-order polarization and response function
The observable of interest in non-linear optical χ(3) experiments is the induced polarization
in third order of the electric field. As shown in Sec. 2.1, it is given by P (n)(t) = tr

[
d̂ ρ̂(n)(t)

]
.

Inserting the expansion of the n-th order density operator of Eq. (2.16) yields:

P (3)
α (r, t) =

∫ ∞
0

dt3
∫ ∞

0
dt2

∫ ∞
0

dt1
3∑

β,γ,δ=1
R

(3)
αβγδ(t3, t2, t1)

× Eβ(r, t− t3)Eγ(r, t− t3 − t2)Eδ(r, t− t3 − t2 − t1)

(3.3)

with the third order response function

R
(3)
αβγδ(t3, t2, t1) =

(
i

~

)3
tr
[
d̂αG(t3)DβG(t2)DγG(t1)Dδρ̂(−∞)

]
. (3.4)

Eq. (3.4) contains the three subsequent interactions of the system with the incoming fields.
t1, t2, and t3 denote the intervals between the interaction processes that are described by
the dipole superoperators D with D· ≡ [d̂, ·]. During the time intervals tj , the system density
matrix experiences a free propagation represented by the Green’s operators G(tj). The time
ordering of the interactions is depicted in Fig. 3.2 (a).
Note that the optical response of Eq. (3.3) contains in principle 33 = 27 contributions

stemming from the three interactions with the light field composed of three pulses. However,
assuming a temporal separation of the pulses, one is left with four independent wave vector
combinations contributing to the response function in third order of the electric field:

kI = −k1 + k2 + k3, (3.5)
kII = +k1 − k2 + k3, (3.6)
kIII = +k1 + k2 − k3, (3.7)
kIV = +k1 + k2 + k3. (3.8)

The fast oscillating kIV signal is usually neglected within the rotating wave approximation.
The remaining signal vectors are graphically illustrated in Fig. 3.2 (c). The detected wave
vector combination can be extracted from the full signal using

P (3)(r, t) =
∑
ks

Pks(r, t)eiks·r. (3.9)
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(a) (b) (c)
Figure 3.2: (a) Timeline for the successive interactions in a FWM experiment. (b) Level scheme of the
three-band model consisting of the ground state |g〉 and the excited state manifolds |e〉 (singly excited)
and |f〉 (doubly excited). The manifolds are connected by the dipole transitions deg and dfe. (c) Wave
vector combinations that can be extracted from the experiment by direction selection of the signal.
They form the distinct Liouville space pathways.

The sum refers to the possible values of uj = ±1. Plugging the expression for the electrical
field Eq. (3.1) into Eq. (3.3), substituting Eq. (3.9), and reordering the terms leads to [Abr09](

P
(3)
ks

)
α

(r, t) = e−iωs(t−τ3)−i(u2ω2+u1ω1)(τ3−τ2)−iu1ω1(τ2−τ1)
∫ ∞

0
dt3

∫ ∞
0

dt2

∫ ∞
0

dt1

×
3∑

β,γ,δ=1
R

(3)
αβγδ(t3, t2, t1) eiωst3+i(u2ω2+u1ω1)t2+iu1ω1t1

× Eu3
3β (r, t− t3 − τ3)Eu2

2γ (r, t− t3 − t2 − τ2)Eu1
1δ (r, t− t3 − t2 − t1 − τ1).

(3.10)

ωs = u1ω1 + u2ω2 + u3ω3 is the signal frequency.

3.3.2 Liouville space pathways and double-sided Feynman diagrams
Double-sided Feynman diagrams [Muk95] allow a direct graphical representation of the temporal
evolution of the density matrix when applying the pulse sequence. They enable a diagrammatic
understanding of the different excitation pathways contributing to the full signal measured
along a specific direction given by the wave vector combinations of Eqs. (3.5), (3.6), (3.7),
and (3.8). They are called Liouville space pathways. Therefore, learning how to read this type
of diagram greatly simplifies the understanding and interpretation of the 2D signals and the
underlying excitation pathways. As an example, Fig. 3.3 shows the double-sided Feynman
diagrams belonging to the DQC kIII signal, which is treated in Chap. 4 of this thesis.
The diagrams are constructed in the following way [Abr09]:

� The letters g, e, and f denote the ground state and the singly and doubly excited state
manifolds that are involved in χ(3) measurements where a maximum of two excitations
in the system is achieved. The corresponding three-band model is shown in Fig. 3.2 (b).

� The density matrix is illustrated by the two vertical lines. The left line represents the
ket, the right line the bra state of the density operator.

� The ket and bra labels indicate the state of the density matrix during the intervals tj
between two subsequent light-matter interactions.

� Time flows from bottom to top. The system always starts in the ground state ρ̂(t0) =
|g〉〈g|.

� Each interaction with the light field is indicated by a wavy arrow that begins or ends at
a vertex of the diagram.
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Figure 3.3: Feynman diagrams representing the Liouville space pathways of the density matrix that
contribute to the DQC signal kIII = k1 + k2 − k3.

� A wavy arrow pointing to the right (left) represents an interaction with a field component
of positive (negative) frequency Ej (E∗j ).

� Incoming (outgoing) arrows indicate a photon absorption (emission) that comes along
with a transition to a higher (lower) excitonic state of the density matrix. Each absorption
and emission process is described by a transition dipole moment dab.

� If the system is in a coherence, the corresponding oscillation frequency ωab = 1
~ (λa − λb)

is written in between the two vertical lines.

� The final arrow labeled ks marks the outgoing signal field and points to the left.

� The global sign for a specific Liouville space pathway is (−1)n with n being the number
of light-field interactions along the right line, and each third-order pathway is multiplied
by a factor

(
i
~
)3.

All possible excitation pathways belonging to a specific wave vector combination can be
constructed this way, and the corresponding third-order response functions can be directly
read out from the diagrams.

3.3.3 Double quantum coherence signal
The DQC signal detected in the kIII = k1 + k2 − k3 direction is composed of two excited state
absorption (ESA) pathways (cf. Fig. 3.3), both of them involving the doubly excited state
manifold. The DQC signal in frequency domain is obtained by Fourier transforming the signal
function with respect to (at least) two of the three pulse delay times. Often, the first two
intervals T1 and T2 are chosen, since they describe the single coherence time with an e↔ g
coherence and the double coherence time with a f ↔ g coherence (identical for both pathways),
giving the technique its name. The signal is the sum of the two ESA contributions:

S
(3)
DQC(T3,Ω2,Ω1) = S

(3)
ESA1

(T3,Ω2,Ω1) + S
(3)
ESA2

(T3,Ω2,Ω1). (3.11)

The heterodyned signals for the distinct pathways are calculated according to Eq. (3.2). The
response functions entering the third-order polarization given in Eq. (3.10) can be directly read
out from the Feynman diagrams following the recipe detailed in Sec. 3.3.2. This procedure is
presented in detail for the so-called rephasing or photon echo kI signal in App. A. The two
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ESA pathways contributing to the DQC kIII signal are calculated analogously, yielding:

S
(3)
ESA1

(T3,Ω2,Ω1) = −i(2π)4

~3

∑
e,e′,f

(
d∗fe′ · E∗s (ωfe′ − ωs)

) (
d∗e′g · E∗3 (ωe′g − ω3)

)
e−iξfe′T3

×dfe · E2(ωfe − ω2)
Ω2 − ξfg

deg · E1(ωeg − ω1)
Ω1 − ξeg

,

(3.12)

S
(3)
ESA2

(T3,Ω2,Ω1) = i
(2π)4

~3

∑
e,e′,f

(
d∗e′g · E∗s (ωe′g − ωs)

) (
d∗fe′ · E∗3 (ωfe′ − ω3)

)
e−iξe′gT3

×dfe · E2(ωfe − ω2)
Ω2 − ξfg

deg · E1(ωeg − ω1)
Ω1 − ξeg

.

(3.13)

dab = d∗ba = 〈a|d̂|b〉 denotes the dipole moment in the basis of the (potentially delocalized)
exciton states, ωab the resonance frequency and γab the homogeneous broadening of the
b→ a transition. ξab ≡ ωab − iγab was introduced as a complex transition frequency including
dephasing. Having derived the signal functions for the contributing pathways, it is now possible
to calculate 2D maps of the DQC signal depending on the Fourier transformed pulse delays.
In the impulsive limit, the exciting laser pulses are short compared to the timescale of any

material dynamics. Hence, the pulse bandwidth is large compared to the exciton bandwidth
and one can set Ej(ω) = 1. However, bandwidth limitations of the exciting pulses can play a
role if a broad energy range is covered, cf. Chaps. 5 and 6.
The Feynman diagrams allow a straightforward interpretation of the underlying physical

processes: After the arrival of the first pulse, the density matrix in both ESA pathways is in a
coherence between the ground state g and a single exciton state e, oscillating at an optical
frequency ωeg during the time interval t1. The second pulse creates a coherence between the
ground state and a two-exciton state f . The third laser pulse k3 acts differently in the two
pathways: It generates a |f〉〈e′| coherence in pathway 1 and a |e′〉〈g| coherence in pathway 2.
The last, outgoing pulse kIII represents the signal field.

3.3.4 Phase cycling
The directional selection of the signal field by varying the directions of the ingoing laser pulses
through spatial separation is only possible for spatially extended systems. However, if single
nanostructures of sizes smaller than the wavelength are probed, the emitted signal from an
individual state is in general isotropic. In this case, the excitation pathways can be controlled
using phase cycling [Sei95, Mey00, Tia03, Bri10, Muk11]. Here, it is used that all pulses have
a defined phase, such that the total applied field is given by

E(r, t) =
3∑
j=1

∑
uj=±1

Eujj (r, t− τj)e−iujωj(t−τj)+iujϕj (3.14)

and the detected signal phase combination is

ϕs = u1ϕ1 + u2ϕ2 + u3ϕ3 (3.15)

with uj = ±1. The experiment is conducted several times with varying phase relations between
the applied collinear pulses. Finally, a system of linear equations can be solved by matrix
inversion and the desired phase contribution can be extracted. The signals obtained via phase
cycling are derived in complete analogy to the signals presented earlier in this chapter, but
with phases ϕj instead of wave vector products kj · r.
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4 Probing spin-dependent exciton
wave functions of coupled quantum
emitters with localized 2D spectra

4.1 Introduction
In quantum theory, microscopic couplings between quantum emitters are modeled in order
to predict macroscopic observables such as polarizations that are experimentally probed in
optical spectra. The microscopic key ingredients for theory such as wave functions or (reduced)
density matrices that characterize the quantum state of nanoscaled systems are in most
cases not accessible in experiments [Ger10]. Quantum state tomography therefore aims at
the development of techniques to infer the quantum state of a nanostructured material from
measurements [Fan57, Gal68, Ban70, Woo86, Fre98, Ste10]. The information on the wave
function gained by retrieving the quantum state of a system can then be used to derive further
properties of the system, e.g., magnetic moments and transport properties [Ric12].

A research focus in the design of optoelectronic devices lies in optically active nanostructured
materials that are composed of several quantum emitters in close vicinity. As a consequence,
collective optical excitations due to (Coulomb) couplings between the individual constituents
arise. For example, dipole-dipole coupling between quantum emitters leads to the formation of
hybridized excitonic states that are potentially delocalized over the whole structure [Gue02,
Lov03, Ger05, Eng07, Chr10, Sch12, Ber03]. Typical examples of such nanomaterials are
quantum dot (QD) molecules [Lov03, Dan06, Del17], proteins and pigments in light-harvesting
complexes [Eng07, Ric07, Chr10], plasmon lasers [Ber03, Nog09], and hybrid materials [Vas08,
Mal11].

Experimental methods applying optical far-field techniques are restricted by the fundamental
diffraction limit dictating a resolution barrier at λ/2. However, the spatial dimension of the
above mentioned composite quantum systems is very small compared to the optical wavelength.
Therefore, the external optical fields are not able to selectively excite the individual emitters.
Instead, only the collective optical resonances are probed and the internal structural properties
cannot be resolved.
To overcome this fundamental limitation, the idea is to realize a spatiotemporal control of

optical excitations localized on a spatial scale well below the diffraction limit [Sto02, Aes11].
The applied near-field techniques range from nanoplasmonic antennas [Zha09, Kin09, Hua09,
Mer08, Nov11] to metal tips or (metalized) fiber tips [Gue02, Bri05, vFr98, Pet04, Web11].
An overview over the theoretical treatment of spatially localized excitation and detection

schemes and its application to linear optics and pump-probe spectroscopy is given in [Ric13].
In [Ric12], a novel quantum tomography protocol is suggested that combines coherent two-
dimensional (2D) spectroscopy with near-field excitation to decompose the delocalized single-
exciton wavefunctions in coupled QD systems into the contributions from the single emitters.
This reconstruction scheme was extended to two-exciton wave functions in [Sch13]. Both works
treat the case of probing one exciton per QD. This simplified model applies, e.g., to trions or
to systems where the spin-orbit coupling is larger than the inter-QD couplings.

23
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(a) (b)
Figure 4.1: (a) Two coupled QDs modeled as spin-degenerate two-level systems. (b) Optically allowed,
spin-selective dipole transitions between the heavy-hole valence and conduction band of a zincblende-type
semiconductor. [Spe16b]

However, it breaks down for QDs where spin-orbit coupling is small compared to the
homogeneous linewidth (in the order of few µeV for the zero-phonon line [Bor01, Sto11]). This
is the case for QDs with only few electrons [Jac98] and energetically degenerate spin states.
There, the Förster interaction can couple identical and opposite spin states of the excited
electron [Spe15]. To resolve these spin-dependent couplings, the reconstruction scheme of
[Ric12, Sch13] is generalized to energy degenerate, spin-dependent exciton states in this work.
This provides a tool to examine and quantify the impact of Förster-induced spin flip processes.

Also, if a circularly polarized excitation cannot be realized in the specific nanoplasmonic
setup, a combination of spin states ↑ and ↓ is created [Jac98]. Thus, in the case of weak Förster
coupling, the proposed protocol allows to resolve the contributions from different spin states
in the case of mixed polarizations of the exciting near-field pulses. Parts of this chapter have
been published in [Spe16b, Spe15].
This chapter is structured as follows: First, the QD model is introduced in terms of its

Hamiltonian, optical selection rules, and local and delocalized basis states in Sec. 4.2. In
Sec. 4.3, the linear absorption and 2D spectra in the far-field limit are discussed. Next, the
concept of localized double quantum coherence (DQC) spectroscopy using nanooptical fields
is presented and the corresponding spectra are discussed (cf. Sec. 4.4). Finally, the quantum
state tomography protocol for retrieving the single and two-exciton wave functions is described
and its accuracy is analyzed in Sec. 4.5.

4.2 Coupled quantum dots

4.2.1 Model system
In this work, a typical example of coupled nanoemitters is studied, namely two self-organized
InAs/GaAs QDs that interact with each other via the non-radiative dipole-dipole (Förster)
coupling [Lov03, Dan06, Spe15]. In the following, spin-orbit splitting is neglected and only the
energetically lowest dominant exciton transition between the highest valence (v) and lowest
conduction band (c) state is considered. Thus, each QD is described by a spin-degenerate two-
level system as illustrated in Fig. 4.1 (a). The distance between the two QDs is assumed to be
large enough that the electronic wave-function overlap between the QDs is negligible. Electron-
phonon coupling is not included in the treatment, since (i) it is usually weak in semiconductors
at low temperatures and would only cause an additional dephasing of the coherences without
significantly affecting the results of the reconstruction and (ii) the zero-phonon line dominates
over the phonon sidebands in the low-temperature regime [Bor01, Kru02, Ric06, Sto11].

The double QD system is modeled as in Ref. [Spe15]: In the envelope function approximation,
the wave functions are given by products of the lattice periodic Bloch function uλiσ,k≈0(r)
and the envelope function φλi(r) of an electron with spin σ ∈ {↑, ↓} in the valence or
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(a) (b)
Figure 4.2: (a) Scheme of the ground state and optically bright excited state configurations in the
double QD system. Superpositions of these states form the excited state manifolds e and f . (b) Sketch
of the Förster excitation energy transfer process between two QDs. The initially excited donor QD
relaxes, whereas the acceptor QD is excited via interdot dipole-dipole coupling. [Spe16b]

conduction band λ ∈ {v, c} of QD i ∈ {1, 2} [Hau04, Yu05]. QD indices will be labeled with
Latin letters and spin indices with Greek letters throughout this chapter. The field operators
are then given by: ψ̂(†)(r) =

∑
λ,i,σ φ

(∗)
λi (r)u(∗)

λiσ(r)â(†)
λiσ, where a

(†)
λiσ denotes the electronic

annihilation (creation) operator. In the effective mass approximation, φλi(r) is a solution of the
single-particle Schrödinger equation for the confinement potential UλC(r) of the QD structure:(
−~2∇2/(2m∗λ) + UλC(r)

)
φλi(r) = Eλiφλi(r). m∗v = 0.45 m0 and m∗c = 0.07 m0 denote the

valence and conduction band effective masses.
The two ellipsoidal QDs are located in the xy plane with growth direction (crystalline c

axis) along the z axis. The confinement UλC(r) is separated into the three spatial directions
UλC(r) = UλC(x) +UλC(y) +UλC(z), yielding a product ansatz for the envelope functions φλi(r) =
φxλi(x)φyλi(y)φzλn(z). Harmonic potentials are assumed in y and z direction with minima at
y, z = 0, such that the ground state envelopes in y and z direction are given by Gaussian
functions of widths b = 5 nm in y direction and h = 2.5 nm in z direction [Gro08]. The
confinement potential in x direction, i.e., along the connecting axis between the two QDs,
is described by two Gaussian functions with minima at the QD centers and center-to-center
distance R12 = 13 nm [Spe15]:

UλC(x) = −Uλ0 exp
[
−1

2

(
x+R12/2

l0,x

)2]
− (Uλ0 + ∆Uλ) exp

[
−1

2

(
x−R12/2

l0,x

)2]
(4.1)

with potential depths Uv
0 = 330 meV and U c

0 = 770 meV [Fon98] and offsets ∆Uv = −0.05 meV
and ∆U c = −0.5 meV. The one-dimensional (1D) Schrödinger equation for φxλi(x) is solved
numerically using eighth order finite differences [For94]. The lowest two eigenstates are taken as
the single-particle envelope functions of the two QDs, since they are predominantly localized at
the lower-energy QD 1 at x = −R12/2 and the higher-energy QD 2 at x = R12/2, respectively.

4.2.2 Local states and dipole selection rules
Since the χ(3) signal is of interest, a three-band model of the ground state g, the single-exciton
manifold e, and the two-exciton manifold f is considered (cf. Chap. 3 Fig. 3.2 (b)). The
nanostructure is assumed to be initially in the ground state g where the conduction band is
not occupied. The microscopic interband dipole moment for transitions between the valence
and conduction band is defined per unit cell using the Bloch functions [Web08]

diσλµ = 1
VUC

∫
UC

d3r̃ u∗λiσ(r̃)er̃uµiσ(r̃), (4.2)
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where VUC denotes the unit cell volume. In the considered zincblende type semiconductor
material, circularly polarized transition dipole moments describe the optically allowed interband
transitions from the heavy hole valence to the conduction band: di↑cv = d(êx − iêy)/

√
2 for

a spin-up and di↓cv = d(êx + iêy)/
√

2 for a spin-down electron in the i-th QD [Sch04], as
indicated by the dashed orange arrows in Fig. 4.1 (b). ex and ey denote orthogonal Cartesian
unit vectors. This way, different conduction band spin states can be selectively excited using
circularly polarized light. In particular, right-hand circularly polarized light (σ−) will excite
the spin-up states, whereas left-hand circularly polarized light (σ+) will induce the transition
of a spin-down electron.
As shown in Fig. 4.2 (a), four bright single and six bright double excitation configurations

are possible. They are generated from the ground state using the electronic annihilation
and creation operators introduced in Sec. 4.2.1: The states |Xσ

i 〉 = a†ciσaviσ|g〉 describe the
configurations where a single electron with spin σ in QD i is excited. The double excitation
states have the form |Bσµij 〉 = a†ciσaviσa

†
cjµavjµ|g〉.1 A small band gap detuning ∆ = 0.48 meV

(determined by the potential offsets ∆Uv/c) between the two QDs causes that the six double-
excitation states cover three different energies.2 These states are referred as local basis states,
since they represent the electronic configurations of the system without delocalization induced
by off-diagonal couplings (such as Förster interaction). Note that the local basis set is unique
up to an arbitrary phase.

4.2.3 Hamilton operator
The full Hamilton operator Ĥ = Ĥ0 + ĤC + Ĥel-L comprises three parts. The non-interacting
electron part H0 contains the electronic single-particle energies εi. In the local state basis
introduced in Sec. 4.2.2, it reads in bra-ket notation

Ĥ0 = ε0|g〉〈g|+
2∑
i=1

∑
σ∈{↑,↓}

εi|Xσ
i 〉〈Xσ

i |+
1
2

2∑
i,j=1

∑
σ,µ∈{↑,↓}

(εi + εj)|Bσµij 〉〈B
σµ
ij |. (4.3)

In a semiclassical treatment of the electron-light interaction, the quantized electronic system
couples to an external classical light field E(t) that is assumed to be constant on the spatial
scale of the considered nanostructure in the far-field limit:

Ĥel-L = −
∑
i

∑
σ

dgXσi ·E(t)|g〉〈Xσ
i | −

∑
i,j

∑
σ,µ

dgXσi ·E(t)|Xµ
j 〉〈B

σµ
ij |+ h.c. (4.4)

with the transition dipole matrix elements in the local basis

dgXσi ≡ 〈g|d̂|X
σ
i 〉 =

∫
d3r φ∗vi(r)φci(r)diσcv. (4.5)

Finally, the Coulomb interaction ĤC is given by

ĤC =V mono
0 |g〉〈g|+

∑
i

∑
σ

V mono
i |Xσ

i 〉〈Xσ
i |+

1
2
∑
i,j

∑
σ,µ

V mono
ij |Bσµij 〉〈B

σµ
ij |

+
{∑
σ,µ

V F
σµ|X

µ
2 〉〈Xσ

1 |+
∑
i

∑
σ,µ,ν

V F
σµ|B

νµ
i2 〉〈B

σν
1i |+ h.c.

} (4.6)

1 This construction ensures that Pauli-forbidden biexciton states |Bσµij 〉 with i = j and σ = µ where two
electrons with identical spins reside within the same QD are excluded.

2 The four two-exciton states Bσµ12 with one electron-hole pair in each QD are energetically degenerate.
However, due to the detuning, the biexciton states B↑↓11 and B↑↓22 are energetically separated.
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The Coulomb coupling elements V are obtained by performing a Taylor expansion of the
Green’s function G(r, r′) = 1/(4πε0εr|r − r′|) around the center of each unit cell. εr = 10.9
denotes the relative medium permittivity [Mac09]. The zeroth order coupling elements V mono

represent the diagonal monopole-monopole shifts of the Coulomb Hamiltonian. They describe
the electrostatic interaction between the electronic charge densities. The dipole-dipole coupling
elements V F

σµ incorporate Förster excitation transfer:

V F
σµ = 1

4πε0εr

∫
d3r

∫
d3r′

(
d1σ
vc · d2µ

cv
|r − r′|3

− 3
(
d1σ
vc · (r − r′)

) (
d2µ
cv · (r − r′)

)
|r − r′|5

)
× φ∗v1(r)φ∗c2(r′)φv2(r′)φc1(r).

(4.7)

A scheme of the Förster transfer mechanism is shown in Fig. 4.2 (b). The spin of the transferred
electron changes from σ to µ during the transfer. As a consequence, both spin-preserving (σ = µ)
and spin-flipping (σ 6= µ) Förster transfer processes occur in the considered QD geometry.
The monopole-monopole and Förster coupling elements are taken from the calculations in
Ref. [Spe15]: |V F

↑↑| = |V F
↓↓| = 0.05 meV and |V F

↑↓| = |V F
↓↑| = 0.14 meV.

Later on, the terms “uncoupled system” and “interaction shifted energies” refer to the
exclusion of Förster coupling. The diagonal monopole-monopole shifts are always included.

4.2.4 Delocalized exciton basis
The Förster interaction is off-diagonal in the local basis, i.e., it couples different local excited
state configurations. Consequently, the local states hybridize into new, delocalized exciton
states e and f that represent the eigenstates of the Coulomb-coupled electronic system (without
light-matter interaction). They are numerically obtained by diagonalizing the purely electronic
Hamiltonian Ĥ0 + ĤC, yielding linear combinations of the local states with spin-dependent
coefficients cei,σ and cfij,σµ:

|e〉 =
2∑
i=1

∑
σ∈{↑,↓}

cei,σ|Xσ
i 〉 and |f〉 = 1

2

2∑
i,j=1

∑
σ,µ∈{↑,↓}

cfij,σµ|B
σµ
ij 〉. (4.8)

The two-exciton coefficients cfii,σσ with i = j, σ = µ describe Pauli-forbidden states and are
therefore set to zero.

Knowledge of the spin-dependent coefficients of Eq. (4.8) provides access to the composition
of the delocalized exciton states, i.e., it reveals to which extent they contain contributions
from the different local states. This enables a detailed understanding of the underlying
microscopic coupling processes. In this chapter, a quantum state tomography protocol is
developed for retrieving ce and cf from measured 2D DQC signals obtained by applying
nanooptical fields [Spe16b]. It constitutes an extension of the non spin-dependent protocol
from Refs. [Ric12, Sch13].

In the new basis of delocalized eigenstates, the electronic Hamilton operator takes the simple
form

Ĥ0 + ĤC = ~ω0|g〉〈g|+
∑
e

~ωe|e〉〈e|+
∑
f

~ωf |f〉〈f | (4.9)

with the eigenenergies of the ground state (~ω0), single exciton states (~ωe), and two-exciton
states (~ωf ).
The electron-light coupling Hamiltonian in the delocalized basis is given by

Ĥel-L = −
∑
e

dge ·E(t)|g〉〈e| −
∑
e,f

def ·E(t)|e〉〈f |+ h.c. (4.10)
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with the delocalized dipole matrix elements

dge = 〈g|d̂|e〉 =
∑
i

∑
σ

cei,σd̂gXσi and def = 〈e|d|f〉 =
∑
i,j

∑
σ,µ

ce
∗

j,µc
f
ij,σµdgXσi (4.11)

for the ground-state to single-exciton and single-exciton to two-exciton transitions, respectively.
Note that deg = d∗ge and dfe = d∗ef .

4.3 Linear and nonlinear far-field spectroscopy
4.3.1 Linear absorption
A far-field linear absorption measurement serves to study the single-exciton resonance energies.
The linear absorption coefficient is calculated as [Hau04]

α(ω) ∝ ω Im
(
P (1)(ω) · ePol
E(ω) · ePol

)
. (4.12)

with frequency ω and normalized polarization vector ePol of the incident light field. P (1)(ω) de-
notes the (Fourier transformed) polarization in first order of the electron-light interaction given
by P (1)(t) = tr

[
d̂ρ(1)(t)

]
(cf. Sec. 2.1). To account for radiative dephasing, a phenomenological

dephasing constant γ = 1/(500 ps) is added [Bor01], leading to [Abr09, Hau04]

α(ω) ∝ ω
∑
e

|deg · ePol|2
γ

γ2 + (ωeg − ω)2 . (4.13)

ωeg = ωe − ω0 denotes the resonance frequency for a transition from the ground state to the
single-exciton state e.

4.3.2 Two-dimensional DQC spectroscopy
The additional frequency axis and the possibility to extract specific pulse combinations of the full
system response makes coherent multidimensional spectroscopy a valuable tool for studying the
internal structure of complex quantum systems such as coupled semiconductor nanostructures
and molecular assemblies [Muk95, Muk00, Tia03, Lan07, Yan08, Abr09, Kar10, Fin12, Nar15],
cf. Sec. 3.1. This has stimulated the idea to combine 2D DQC spectroscopy with local excitation
for disentangling the collective resonances and restoring the wave function coefficients ce and
cf , which is demonstrated in the following. As a first step, the far-field signal is analyzed.

Since a single nanostructure is treated, the DQC pulse configuration can be extracted using
a phase-cycling technique with heterodyne detection, where the experiment is repeated several
times for different phase contributions, cf. Sec. 3.3.4. The DQC spectra with a signal phase
ϕs = ϕ1 + ϕ2 − ϕ3 are studied. The corresponding nonlinear optical far-field signal is given
in Eqs. (3.11), (3.12), and (3.13) and illustrated in the Feynman diagrams of Fig. 3.3, where
deg and dfe are the transition dipole matrix elements in the delocalized exciton basis defined
in Eq. (4.11). The complex frequencies ξab ≡ ωab − iγab contain the exciton resonances ωab
and the dephasing constants γab ≡ γ = 1/(500 ps). The signal is plotted in frequency domain
as a 2D map depending on the Fourier transforms Ω1 and Ω2 of the first two pulse intervals.
The ground-state to single-exciton resonances ωeg show up along the Ω1 axis, whereas the
resonances ωfg for ground-state to two-exciton transitions are associated with the Ω2 axis. This
way, the positions and oscillator strengths of the resonance peaks in the 2D frequency map give
a first impression of how each two-exciton state is built up of the different single-exciton states.
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Figure 4.3: (a) Linear absorption spectrum and 2D DQC spectra for far-field excitation with laser pulses
of (b) identical circular polarizations σ−σ−σ−σ− and (c) alternating circular polarizations σ−σ+σ−σ+.
The vertical and horizontal dashed lines mark the uncoupled resonances before the transition into the
delocalized state basis. The calculations were performed for a fixed delay time T3 = 1 ps.

4.3.3 Evaluation of the linear and 2D far-field spectra

Figure 4.3 shows the linear and 2D DQC spectra for a far-field excitation with circularly
polarized pulses. The single- and two-exciton energy scales are shifted with respect to the
energies E1 for the creation of a single exciton in QD 1 and E11 for the creation of a biexciton
in QD 1, respectively. The signal function is plotted in a nonlinear scaling in order to make both
weak and strong features visible on the same scale: Snl = arsinh

[
S

(3)
DQC/N

]
with normalization

constant N [Fin13].
The signatures showing up in the spectra of Fig. 4.3 can be understood after a thorough

inspection of the possible excitation pathways dictated by the optical selection rules (cf.
Sec. 4.2.2). Fig. 4.4 shows a level scheme of the bright single- and two-exciton states in the
local basis. The excitation pathways that are addressed by the circular polarization sequences
used for the 2D spectra in Fig. 4.3 are marked by green (σ−) and blue (σ+) arrows. Fig. 4.3
(a) shows the linear absorption spectrum for excitation with right-hand circularly polarized
light. A σ− pulse can generate a spin-up conduction band electron either in QD 1 (X↑1 ) or
in QD 2 (X↑2 ), cf. Fig. 4.4. The states are energetically separated by the band gap detuning
∆. A bright single exciton in one QD couples to both bright single excitons in the other QD
via Förster interaction, resulting in a hybridization of all four bright single-exciton states.
Therefore, four peaks show up in the linear absorption spectrum (denoted e1 to e4) that are
shifted by the Förster interaction with respect to the uncoupled single-excitation resonances at
E1 and E2 = E1 + ∆ marked by the vertical dashed lines in Fig. 4.3 (a).
The nonlinear 2D spectra of Fig. 4.3 (b) and (c) allow to inspect also the two-exciton

resonances along the additional Ω2 axis. The three horizontal dashed lines mark the double
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Figure 4.4: Level scheme showing the local states of the uncoupled double QD system and the possible
light-induced excitation pathways between them. E0 denotes the energy of the ground state g, Ei the
energy of the uncoupled single excitation states Xσ

i (electron with spin σ in QD i excited) and Eij the
energy of the local double excitation states Bσµij (two electron-hole pairs at QDs i and j with electron
spins σ and µ). The band gap detuning ∆ between the QDs denotes the energetic difference between
the uncoupled single-excitation energies E1 and E2. The uncoupled biexciton energies E11 and E22 are
separated by 2∆. The blue and green arrows indicate the possible spin-selective transitions for excitation
with left-hand and right-hand circularly polarized light, respectively. After state diagonalization with
respect to Förster coupling, the local states hybridize into new delocalized states forming the singly and
doubly excited state manifold e and f . [Spe16b]

excitation energies E12, E11, and E22 of the uncoupled (local) system states, as indicated in
the level scheme of Fig. 4.4. The local two-exciton states Bσµ12 with one electron-hole pair in
each QD contribute mainly to the delocalized resonance f3 close to the uncoupled two-exciton
energy E12. In contrast, the resonance f1 (f2) located close to E11 marked by the middle
dashed line (E22 marked by the upper dashed line) is primarily assigned to the biexciton states
with both excitons in the lower-energy QD 1 (higher-energy QD 2).

The far-field DQC spectrum of Fig. 4.3 (b) is calculated for an excitation with a sequence of
four identically right-hand circularly polarized pulses: σ−σ−σ−σ−. According to the selection
rules illustrated in Fig. 4.4, only the local state B↑↑12 composed of one spin-up electron at each
QD at the degenerate energy level E12 can be directly generated through purely right-hand
circular excitation. However, the spin-flipping Förster transfer couples the two-exciton state
to the biexciton states B↑↓11 at energy E11 and B↑↓22 at energy E22. As a consequence, weak
resonance peaks are also visible at the interaction shifted energies f1 and f2.
The 2D spectrum for a pulse sequence of alternating circular polarizations σ−σ+σ−σ+ in

Fig. 4.3 (c) shows a similar peak pattern. In contrast to Fig. 4.3 (b), the oscillator strengths of
the peaks at f1 and f2 are substantially increased, since here the biexciton states B↑↓11 and B↑↓22
are directly excited by the second, left-hand circularly polarized pulse (cf Fig. 4.4), whereas
in the case of identical polarizations they can only be accessed due to the Förster induced
formation of hybridized states.

This way, off-diagonal couplings such as Förster interaction relax the strict optical selection
rules introduced in Sec. 4.2.2 due to excited state hybridization, thus leading to highly
delocalized exciton states. The aim of the following section is to disentangle these exciton
states into their local state contributions using spatiotemporal pulse control.
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4.4 Localized DQC spectroscopy
4.4.1 Spatiotemporal pulse control
The combination of 2D spectroscopy with localized nanooptical fields allows to unravel how
the delocalized exciton wave functions are spread over the individual emitters [Ric12, Sch13].
DQC spectroscopy is ideally suited for the proposed quantum state tomography protocol,
since the first pulse generates a ground-state to single-exciton coherence and the second pulse
excites a ground-state to two-exciton coherence in both involved Liouville space pathways.
Hence, localizing the first or the second pulse of the pulse sequence at a specific QD limits
the respective coherence to this particular QD. This opens the possibility to access the
single- and two-exciton expansion coefficients that determine to what extent the delocalized
wave functions are composed of the single local exciton states. As mentioned in Sec. 4.1,
there are several experimental implementations of spatial field control, e.g., by the use of
nanoantennas [Zha09, Kin09, Hua09, Mer08, Nov11], metal tips, or (metalized) fiber tips
[Gue02, Bri05, vFr98, Pet04, Web11]. The quantum state tomography protocol presented in
this chapter is independent of the applied near-field technique. However, for a successful
application of the protocols, there are some requirements concerning the nanoplasmonic setup:
First, the chosen localization technique must ensure that the electric field strength applied to
the selected QD is at least a factor of 10 higher than the residual field strength at the other
QDs (cf. the evaluation in Sec. 4.5). Second, the localization should be applicable to every QD
in the nanostructure [Spe16b].

Note that the zincblende optical selection rules for circularly polarized spin-selective excitation
are relaxed in the case of band mixing. Here, the heavy hole valence band states have a slight
admixture of light-hole states, causing an elliptical polarization of the optical dipole transitions
[Kou04, Sit12]. However, light-hole admixture is typically only in the range of few percent
[Gaw12], thus having no significant effect on the spectra.

4.4.2 Modification of the electron-light coupling for localized excitation
The electron-light interaction has to be adapted to the situation where one or two pulses of
the pulse sequence are replaced by localized fields with a spatial control on the nanometer
scale, such that it excites only one selected QD. The remaining pulses are assumed to excite
both QDs simultaneously as in the far-field case. The light-matter coupling Hamiltonian for an
electric field localized at the QD positions is modified as follows:

Ĥel-L = −
∑
i

∑
σ

dgXσi ·E(ri, t)|g〉〈Xσ
i | −

∑
i,j

∑
σ,µ

dgXσi ·E(ri, t)|Xµ
j 〉〈B

σµ
ij |+ h.c. (4.14)

Here, E(ri, t) describes the spatial field distribution of the field localized at QD i. To express
this Hamiltonian in terms of the delocalized eigenstates, the unitary basis transformations of
Eq. (4.8) are inverted:

|Xσ
i 〉 =

∑
e

ce
∗

i,σ|e〉 and |Bσµij 〉 =
∑
f

cf
∗

ij,σµ|f〉. (4.15)

Plugging these expansions of the local exciton states into Eq. (4.14) yields

Ĥel-L = −
∑
i

∑
σ

∑
e

cei,σdgXσi ·E(ri, t)|g〉〈e| −
∑
i,j

∑
σ,µ

∑
e,f

ce
∗

j,µc
f
ij,σµdgXσi ·E(ri, t)|e〉〈f |+ h.c.

(4.16)
Here, the spatial variation of the localized electric field prevents the formation of delocalized
dipole matrix elements (cf. Eq. (4.11)). However, the diagonalized exciton states e and f (in
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(a) (b)
Figure 4.5: Graphical illustration of the spatial and temporal pulse control in a partially localized
FWM experiment probing a double QD structure for (a) localization of the first pulse at QD 1 and (b)
localization of the second pulse at QD 2. All remaining pulses excite both QDs equally.

terms of the coefficients cei,σ and cfij,σµ) account for the Förster-induced delocalization taking
place right after the excitation. The far-field Hamiltonian of Eq. (4.10) can be restored from
this equation by assuming a spatially constant electric field and rewriting the expression in
terms of the delocalized dipole moments (Eq. (4.11)). This is however not possible for near-field
excitation since the electric field distribution E(ri, t) is different at every QD i.

4.4.3 Localization of the first pulse
To develop a reconstruction protocol for the delocalized single-exciton wave functions, the first
pulse of the pulse sequence and thus the ground-state to single-exciton coherence is localized
at a specific QD. All subsequent pulses still excite all QDs equally. This partially localized
excitation protocol is schematically depicted in Fig. 4.5 (a). The DQC signal function of
Eq. (3.11) is modified in a way that the first electron-light interaction is given by a localized
excitation as introduced in Eq. (4.16). The new signal function depends on the selected QD i:

Sloc
DQC(E i1, T3,Ω2,Ω1) =Sloc

ESA1
(E i1, T3,Ω2,Ω1) + Sloc

ESA2
(E i1, T3,Ω2,Ω1),

Sloc
ESA1

(E i1, T3,Ω2,Ω1) =− i(2π)4

~3

∑
e,e′,f

(
d∗fe′ · E∗s (ωfe′ − ωs)

) (
d∗e′g · E∗3 (ωe′g − ω3)e−iξfe′T3

)

× dfe · E2(ωfe − ω2)
Ω2 − ξfg

∑
j

∑
σ

ce
∗

j,σdXσj g · E
i
1(rj , ωeg − ω1)

Ω1 − ξeg
,

Sloc
ESA2

(E i1, T3,Ω2,Ω1) =i(2π)4

~3

∑
e,e′,f

(
d∗e′g · E∗s (ωe′g − ωs)

) (
d∗fe′ · E∗3 (ωfe′ − ω3)e−iξe′gT3

)

× dfe · E2(ωfe − ω2)
Ω2 − ξfg

∑
j

∑
σ

ce
∗

j,σdXσj g · E
i
1(rj , ωeg − ω1)

Ω1 − ξeg
.

(4.17)

The first pulse denoted E i1(rj , ωeg − ω1) is assumed to predominantly excite QD i.
Fig. 4.6 shows the calculated spectra for a localization of the first pulse at QD 1 (left

spectrum) and QD 2 (right spectrum). The remaining far-field pulses are assumed to have
circular polarizations. However, depending on the specific nanoplasmonic setup, the polarization
of the localized electromagnetic field may be difficult to control since depolarization effects
can occur at the nanoantenna or (metal) tip after exciting it with linearly polarized light or
polarization shaped pulses [Hua09, Bri05, vFr98, Web11]. According to recent experiments,
coaxial antennae structures are able to maintain the linear far-field polarization imprinted
by the excitation pulse [Web11, Bao12]. Moreover, it has been shown that cross antenna
structures [Bia09, Kla15] and aperture antennas with V-groove structures [Cai15] are able
to strongly enhance circularly polarized light while maintaining a high degree of circular
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Figure 4.6: 2D DQC spectra for localized excitation with the first pulse at QD 1 (a) and 2 (b). The first
(localized) pulse has an arbitrary mixed polarization êlocPol = (3êσ− + êσ+)/

√
10, whereas the subsequent

three far-field pulses have alternating circular polarizations: êlocPolêσ+ êσ− êσ+ . The DQC signals were
calculated for a fixed delay time T3 = 1 ps.

Figure 4.7: 2D DQC spectra for localized excitation with the second pulse at QD 1 (a) and 2 (b). The
second (localized) pulse has an arbitrary mixed polarization êlocPol = (3êσ− + êσ+)/

√
10, whereas the

three far-field pulses have alternating circular polarizations: êσ− êlocPolêσ− êσ+ . The DQC signals were
calculated for a fixed delay time T3 = 1 ps.

polarization. Still, nanooptical fields can exhibit a mixed polarization given by a superposition
of right- and left-hand circularly polarized components, and a dynamic localization protocol
(including a controlled circular polarization) is not generally feasible in every nanoplasmonic
setup [Spe16b]. Therefore, as an example, a normalized polarization êlocPol = (3êσ− + êσ+)/

√
10

of the localized pulse is arbitrarily chosen for the calculation of the 2D spectra shown in this
work. As cross-check, the reconstruction protocol was carried out for several different random
polarizations of the localized pulse and its result was almost unaffected by the particular choice
of polarization.
According to Eq. (4.17), the signal Sloc

DQC(E i1, T3,Ω2,Ω1) is directly proportional to the
single-exciton coefficients ce∗j,σ. Therefore, the DQC signal for a localization of the first pulse
at QD 1 depicted in Fig. 4.6 (a) provides information about the contribution of QD 1 to
the ground-state to single-exciton coherence induced by the first pulse. Due to its spatial
localization at QD 1, the first pulse excites the states X↑1 and X↓1 within QD 1 depending
on its polarization. The single-exciton resonances at e1 and e2 are energetically close to the
uncoupled energy E1 and are therefore predominantly located at QD 1. Their signal strengths
are significantly enhanced compared to the e3 and e4 peaks close the resonance energy E2
of QD 2. Moreover, the oscillator strengths of the resonances at (e1, f1) and (e2, f1) for the
creation of a biexciton in QD 1 are large compared to the biexciton resonances at f2 (biexciton
located at QD 2). This reflects the fact that a direct optical excitation of a biexciton within QD
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2 is not possible due to the pulse localization at QD 1. The resonances at f2 stem from Förster
coupling processes. The picture is inverted if the first pulse is localized at QD 2, cf. Fig. 4.6 (b):
Here, the resonances at the single-exciton states e3 and e4 close to the uncoupled resonance
energy E2 of QD 2 dominate and the resonances at (e3, f2) and (e4, f2) for a biexciton within
QD 2 are significantly enhanced compared to the biexciton resonances at f1.

4.4.4 Localization of the second pulse
In order to retrieve the two-exciton coefficients cfij,σµ and thus the two-exciton wave functions,
a localization of the second incident pulse at QD i is necessary, whereas a far-field excitation
with circular polarizations is applied for the remaining first, third and fourth pulse. The
corresponding partially localized pulse sequence is schematically shown in Fig. 4.5 (b). The
signal function for a localized second pulse has the form

Sloc
DQC(E i2, T3,Ω2,Ω1) =Sloc

ESA1
(E i2, T3,Ω2,Ω1) + Sloc

ESA2
(E i2, T3,Ω2,Ω1),

Sloc
ESA1

(E i2, T3,Ω2,Ω1) =− i(2π)4

~3

∑
e,e′,f

(
d∗fe′ · E∗s (ωfe′ − ωs)

) (
d∗e′g · E∗3 (ωe′g − ω3)e−iξfe′T3

)

×
∑
j,k

∑
σ,µ

cek,µc
f∗

jk,σµdXσj g · E
i
2(rj , ωfe − ω2)

Ω2 − ξfg
deg · E1(ωeg − ω1)

Ω1 − ξeg
,

Sloc
ESA1

(E i2, T3,Ω2,Ω1) =i(2π)4

~3

∑
e,e′,f

(
d∗e′g · E∗s (ωe′g − ωs)

) (
d∗fe′ · E∗3 (ωfe′ − ω3)e−iξe′gT3

)

×
∑
j,k

∑
σ,µ

cek,µc
f∗

jk,σµdXσj g · E
i
2(rj , ωfe − ω2)

Ω2 − ξfg
deg · E1(ωeg − ω1)

Ω1 − ξeg
.

(4.18)

It depends on a product of single-exciton and two-exciton coefficients cek,µc
f∗

jk,σµ. Therefore,
it is not connected to the two-exciton states as directly as the signal for localization of the first
pulse is assigned to the single-exciton states. Nevertheless, the composition of the two-exciton
states can be analyzed by means of the calculated spectra for a localization of the second
incident laser pulse at QD 1 and QD 2 as shown in Fig. 4.7 (a) and (b), respectively. This time,
the single-exciton to two-exciton coherence induced by the second pulse is localized at the
focused QD. The resonances projected onto the single-exciton Ω1 axis are more or less equally
distributed over all single-exciton states, since the first pulse acts on the full system and does
not selectively excite a specific QD. Comparing the biexciton resonances at f1 and f2 reveals
that the peak intensities at level f1 are stronger for a localization of the second pulse at QD 1
(cf. Fig. 4.7 (a)), whereas the resonances at f2 predominate for a localization at QD 2 (Fig. 4.7
(b)), since f1 is mainly located at QD 1 and f2 at QD 2. The two-exciton states at level E12
are predominantly composed of local states with one electron-hole pair in each QD. Therefore,
the resonance peaks at the two-exciton energy ~Ω2 = f3 exhibit a higher signal strength close
to the single-exciton energy ~Ω1 = E2 (~Ω1 = E1) for generating an exciton in QD 2 (QD 1) if
the second pulse is localized at QD 1 (QD 2), cf. Fig. 4.7 (a) (Fig. 4.7 (b)).

4.5 Reconstruction schemes
Having discussed the DQC signal for localized excitation in the previous section, now an
algorithm for reconstructing the exciton wave functions of coupled nanostructures is suggested,
providing a protocol to dissect the spin-degenerate delocalized excitons. Therefore, a scheme
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to extract the single- and two-exciton expansion coefficients is required, based on the protocols
presented in Refs. [Ric12] and [Sch13]. The algorithms are however modified with respect to
a treatment of the spin-degenerate exciton states, which appear as sums over σ and µ in
Eqs. (4.17) and (4.18). Once the expansion coefficients cei,σ and cfij,σµ are derived, the full
delocalized wave functions |e〉 and |f〉 are retrieved using Eq. (4.8) [Spe16b].

4.5.1 Extraction of the single-exciton coefficients
The reconstruction algorithm for the single-exciton wave functions is based on the signal in
Eq. (4.17), where the first pulse is localized and mainly excites QD i. So far, the sums over e,
j, and σ impede the retrieval of the coefficient ce∗j,σ. Therefore, an ideal pulse localization is
assumed in order to remove the sum over j:

E i1(rj , ωeg − ω1) ≈ δi,jE i1(ri, ωeg − ω1). (4.19)

As a second step, the sum over e is eliminated by selecting only the spectroscopic signal at
a particular single-exciton resonance ē. Therefore, the DQC signal close to the frequencies
Ω1 = Ω̄1 ≈ ωēg and Ω2 = Ω̄2 ≈ ωf̄g is extracted. f̄ must be selected in a way that the signal at
(Ω̄1, Ω̄2) has a strong contribution only from the chosen single-exciton state ē. For this purpose,
other delocalized states have to be spectrally well separated from this resonance. The localized
signal reads

Sloc
DQC(E i1, T3, Ω̄2, Ω̄1) =Sloc

ESA1
(E i1, T3, Ω̄2, Ω̄1) + Sloc

ESA2
(E i1, T3, Ω̄2, Ω̄1),

Sloc
ESA1

(E i1, T3, Ω̄2, Ω̄1) =− i(2π)4

~3

∑
e′

(
d∗
f̄e′
· E∗s (ωf̄e′ − ωs)

)(
d∗e′g · E∗3 (ωe′g − ω3)e−iξf̄e′T3

)
×
df̄ ē · E2(ωf̄ ē − ω2)

Ω̄2 − ξf̄g

∑
σ

cē
∗

i,σdXσi g · E
i
1(ri, ωēg − ω1)

Ω̄1 − ξēg
,

Sloc
ESA2

(E i1, T3, Ω̄2, Ω̄1) =i(2π)4

~3

∑
e′

(
d∗e′g · E∗s (ωe′g − ωs)

) (
d∗
f̄e′
· E∗3 (ωf̄e′ − ω3)e−iξe′gT3

)
×
df̄ ē · E2(ωf̄ ē − ω2)

Ω̄2 − ξf̄g

∑
σ

cē
∗

i,σdXσi g · E
i
1(ri, ωēg − ω1)

Ω̄1 − ξēg
.

(4.20)

The signal for a selected resonance is proportional to the spin sum over σ containing the
single-exciton coefficients and a scalar product of the local dipole moment and the electric field.
A proportionality factor Af̄ē is introduced that subsumes the part independent of i or σ:

Af̄ē
∑
σ

cē
∗

i,σdXσi g · E
i
1(ri, ωēg − ω1) = Sloc

DQC(E i1, T3, Ω̄2, Ω̄1). (4.21)

Still, the spin-dependent coefficients cē∗i,σ appear under a sum over σ together with the scalar
product dXσi g · E

i
1(ri, ωēg − ω1) and cannot be extracted. To overcome this obstacle, the DQC

measurement has to be carried out for two linearly independent polarization directions of
the localized electric field E i1(ri, ωēg − ω1).3 In the following, the index η ∈ {1, 2} labels the
two different polarizations, whereas i labels the QD at which the field is localized as before.
Evaluating Eq. (4.21) for the two polarization directions of E i,η=1/2

1 results in a system of

3 This is possible since the transition dipole moments dX↑
i
and dX↓

i
are linearly independent.
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Table 4.1: Absolute values |cei,σ| and phases arg(cei,σ) of the original (O) and reconstructed (R) single-
exciton wave-function coefficients. Different cases are considered: perfect pulse localization (0%) and
more realistic scenarios where still 10% or 20% of the optical field strength applied at the focused QD
reaches also the other QD not in focus. The phases are given in multiples of 2π with phase factors
p ∈ [0, 1]: p(cei,σ) = arg(cei,σ)/(2π). Due to the periodicity, a phase factor of 0 is equivalent to a phase
factor of 1. The last column contains the squared error (cf. Eq. (4.24).)

State Type |ce1,↑| |ce1,↓| |ce2,↑| |ce2,↓| p(ce1,↑) p(ce1,↓) p(ce2,↑) p(ce2,↓) Error

e1 O 0.667 0.667 0.234 0.234 0.500 0.000 0.500 0.000
R(0%) 0.667 0.667 0.234 0.234 0.499 0.995 0.495 0.011 0.000
R(10%) 0.648 0.648 0.282 0.282 0.500 0.996 0.496 0.008 0.050
R(20%) 0.629 0.629 0.323 0.324 0.500 0.997 0.497 0.006 0.100

e2 O 0.695 0.695 0.130 0.130 0.500 0.500 0.000 0.000
R(0%) 0.695 0.694 0.131 0.132 0.478 0.496 0.010 0.016 0.001
R(10%) 0.705 0.703 0.066 0.066 0.464 0.482 0.031 0.024 0.025
R(20%) 0.708 0.706 0.030 0.019 0.332 0.350 0.147 0.171 0.033

e3 O 0.130 0.130 0.695 0.695 0.500 0.500 0.500 0.500
R(0%) 0.130 0.130 0.695 0.695 0.506 0.494 0.497 0.503 0.001
R(10%) 0.192 0.192 0.680 0.681 0.503 0.497 0.497 0.503 0.040
R(20%) 0.247 0.247 0.662 0.663 0.501 0.499 0.497 0.503 0.088

e4 O 0.234 0.234 0.667 0.667 0.000 0.500 0.500 0.000
R(0%) 0.234 0.234 0.667 0.668 0.997 0.503 0.505 0.994 0.001
R(10%) 0.178 0.177 0.684 0.685 0.994 0.506 0.506 0.994 0.046
R(20%) 0.113 0.113 0.697 0.699 0.986 0.514 0.506 0.993 0.084

linear equations that is written in matrix form:

Af̄ē

(
d1
i,↑ d1

i,↓
d2
i,↑ d2

i,↓

)
︸ ︷︷ ︸

≡DS

(
cē
∗

i,↑
cē
∗

i,↓

)
=
(
Sloc
DQC(E i,η=1

1 , T3, Ω̄2, Ω̄1)
Sloc
DQC(E i,η=2

1 , T3, Ω̄2, Ω̄1)

)
(4.22)

with dηi,σ ≡ dXσi g · E
i,η
1 (ri, ωēg − ω1). The two polarizations of the near-field pulses have to be

chosen in a way that (i) they are linearly independent and (ii) a sufficient signal strength at
the selected resonances is achieved as required for the reconstruction. Then, the dipole matrix
DS in Eq. (4.22) has a non-vanishing determinant and can be inverted:

Af̄ē

(
cē
∗

i,↑
cē
∗

i,↓

)
= D−1

S

(
Sloc
DQC(E i,η=1

1 , T3, Ω̄2, Ω̄1)
Sloc
DQC(E i,η=2

1 , T3, Ω̄2, Ω̄1)

)
. (4.23)

With that, the single-exciton coefficients are determined up to a proportionality factor provided
that all local ground-state to single-exciton transition dipole moments dgXσi and the localized
fields E i,η1 (ri, ωēg−ω1) are known. To complete the reconstruction, the normalization condition∑
i,σ|A

f̄
ē c
ē∗

i,σ|2 = |Af̄ē |2 is used to calculate the normalized wave function coefficients (except for
a global phase) [Spe16b].
In order to evaluate the suggested protocol, the reconstructed single-exciton coefficients

are compared to the original coefficients obtained from the diagonalization of the electronic
Hamiltonian. This is demonstrated in Tab. 4.1. For the reconstruction, the signal was calculated
for the two arbitrary linearly independent normalized polarizations 1/

√
10(3êσ− + êσ+) and

1/
√

13(2êσ− − 3êσ+) of the localized field. The three subsequent far-field pulses have circular
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polarizations. The choice of the specific two-exciton frequency Ω̄2 for which the signal at the
single-exciton resonance ē is measured is in principle arbitrary.4 In general, it is beneficial to
select a value of Ω̄2 where low interference with neighboring peaks along the Ω1 axis occurs.
Moreover, a measurement point close to a pronounced system resonance should be chosen
for a strong, distortion-free signal. However, test calculations show that the accuracy of the
reconstruction is not very sensitive to the particular choice of Ω̄2. Therefore, the two-exciton
resonance f2 is chosen for the reconstruction of all single-exciton resonances in the example
given here. In the case of more significant peak overlaps than in the shown example, it is
advisable to average over several measurement points on the Ω2 axis in order to reduce the
interference from other resonances.
To estimate the quality of the reconstruction, the squared error√√√√ 2∑

i=1

∑
σ∈{↑,↓}

∣∣∣|ce,reci,σ |2 − |c
e,org
i,σ |2

∣∣∣2 (4.24)

of the difference between the reconstructed and original coefficients is calculated [Sch13] and
shown in the last column of Tab. 4.1.
In the case of ideal pulse localization, the reconstructed values agree perfectly with the

original ones. The coupling parameters in the low meV range are high compared to the
homogeneous linewidth of only few µeV [Bor01]. As a consequence, the resonance peaks are
sharp and well separated from neighboring resonances. However, the existence of significant
phonon side bands would be detrimental for the reconstruction quality, since they are likely to
mix with neighboring resonances. Fortunately, the zero phonon line dominates the spectrum in
most cases, since its amplitude is one to two orders of magnitude higher than the amplitude of
the phonon side peaks [Bor01, Sto11].

To simulate a more realistic spatial distribution of the localized field, further calculations are
performed where the amplitude of the localized electric field at the other QD is assumed to be
still (i) 10% and (ii) 20% compared to the focused QD [Ric12], cf. Tab. 4.1. The reconstruction
accuracy decreases, since the condition of an ideal field localization formulated in Eq. (4.19) is
violated. The reconstruction still shows an acceptable overall agreement, however the error
goes up to around 10% for a localization with 20% residual field strength at the QD out of
focus. The bar charts in Fig. 4.8 provide a direct graphical comparison of the original and
reconstructed single-exciton coefficients in the case of 20% field deviation. It is shown that the
amplitudes and phases of the original coefficients (darker red and blue bars, respectively) are
nicely reproduced by the reconstructed ones (lighter red and blue bars).

4.5.2 Extraction of the two-exciton coefficients
As a prerequisite for the extraction of the two-exciton coefficients, all single-exciton coefficients
have to be determined, e.g., by applying the reconstruction scheme introduced in Sec. 4.5.1.
The protocol for extracting the two-exciton coefficients is based on the procedure derived
in Ref. [Sch13], but generalized to the case of spin-degenerate exciton states [Spe16b]. The
starting point for the reconstruction is Eq. (4.18). First, the j sum is removed by assuming an
ideal pulse localization as in the previous chapter:

E i2(rj , ωfe − ω2) ' δijE i2(ri, ωfe − ω2). (4.25)

As a second step, the sums over e and f are eliminated: A specific resonance at frequencies
Ω1 = Ω̄1 ≈ ωēg and Ω2 = Ω̄2 ≈ ωf̄g is selected where states ē and f̄ make the main spectral
4 It is not even necessary that Ω̄2 coincides with a two-exciton resonance.
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Figure 4.8: Absolute values and phases of the original and reconstructed single-exciton wave function
coefficients cei,σ for an imperfect field localization with 20% residual field strength at the other QD.
Each bar chart shows the contributions from the different local states characterized by the quantum
numbers iσ to a specific delocalized exciton state e. Note that a phase factor of 0 (no bar visible) is
equivalent to a phase factor of 1.

contribution, yielding
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(4.26)

Introducing the proportionality factor Bf̄ē that contains all terms independent of i, k, σ, or µ,
Eq. (4.26) is rewritten as:

Bf̄ē
∑
k

∑
σ,µ

cēk,µc
f̄∗

ik,σµdXσi g · E
i
2(ri, ωf̄ ē − ω2) = Sloc

DQC(E i2, T3, Ω̄2, Ω̄1). (4.27)

The goal is to isolate the two-exciton coefficients cf̄
∗

ik,σµ. However, they show up under sums
over k ∈ {1, 2} and σ, µ ∈ {↑, ↓} together with the single-exciton coefficients cēk,µ and the dipole
scalar products dXσi g · E

i
2(ri, ωf̄ ē − ω2). Therefore, in its present form, Eq. (4.27) is not suited

for retrieving the two-exciton coefficients. As in the single-exciton reconstruction, Eq. (4.27) is
rewritten into a system of linear equations for two linearly independent polarizations η ∈ {1, 2}
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of the second pulse:

Bf̄ē
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with dηi,σ ≡ dXσi g · E
i,η
2 (ri, ωf̄ ē − ω2). By applying the inverse of the matrix DB to Eq. (4.28),

the dipole scalar products can be brought to the right-hand side and only the single- and
two-exciton coefficients under the sums over k and µ remain on the left-hand side:
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)
. (4.29)

Separating the lines of Eq. (4.29) again into an upper line whose right-hand side is abbreviated
by Sloc

1 (E i2, T3, Ω̄2, Ω̄1) and a lower line whose right-hand side is denoted Sloc
2 (E i2, T3, Ω̄2, Ω̄1)

yields

Bf̄ē
∑
k
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cēk,µc
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ik,↑µ =Sloc
1 (E i2, T3, Ω̄2, Ω̄1), (4.30)
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ik,↓µ =Sloc
2 (E i2, T3, Ω̄2, Ω̄1). (4.31)

The next step is to remove the single-exciton coefficients cēk,µ from the left-hand side of the
equations by applying the orthogonality relation. However, this is not yet possible because
the unknown proportionality factors Bf̄ē depend on ē [Spe16b]. In order to restore the spin
sum over σ and make Eqs. (4.30) and (4.31) symmetric, Eq. (4.30) is multiplied by cẽi,↑ and
Eq. (4.31) by cẽi,↓ on both sides of the equations. After that, a sum over the QD index i is
performed and both equations are added:
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The summation indices i↔ k and σ ↔ µ on the left-hand side are swapped and ē and ẽ are
exchanged. Using cf̄

∗

ik,σµ = cf̄
∗

ki,µσ, one obtains
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∑
i,k

∑
σ,µ
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For computing the ratio Bf̄ē /B
f̄
ẽ for two arbitrary exciton states ē and ẽ, Eq. (4.32) is divided

by Eq. (4.33) [Sch13]:

Bf̄ē
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) . (4.34)

Going back to Eqs. (4.30) and (4.31), the relation found in Eq. (4.34) can now be used to
replace the factors Bf̄ē = Bf̄ê ×B

f̄
ē /B

f̄
ê on the left-hand side by a factor Bf̄ê which is independent

of ē. Therefore, an arbitrary single-exciton state ê is selected, and Eqs. (4.30) and (4.31) are
multiplied by Bf̄ê and divided by Bf̄ē :

Bf̄ê
∑
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cēk,µc
f̄∗

ik,↑µ =Sloc
1 (E i2, T3, Ω̄2, Ω̄1)×Bf̄ê /B

f̄
ē , (4.35)
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Figure 4.9: Absolute values and phases of the original and reconstructed two-exciton wave function
coefficients cgij,σµ for an imperfect field localization with 20% residual field strength at the other QD.
Each bar chart shows the contributions from the different local states characterized by the quantum
numbers ijσµ to a specific delocalized two-exciton state f . Note that a phase factor of 0 (no bar visible)
is equivalent to a phase factor of 1.

Bf̄ê
∑
k,µ

cēk,µc
f̄∗

ik,↓µ =Sloc
2 (E i2, T3, Ω̄2, Ω̄1)×Bf̄ê /B

f̄
ē . (4.36)

Finally, for applying the orthogonality relation
∑
ē c
ē
k,µc

ē∗

j,σ = δkjδµσ, both equations are
multiplied with cē∗j,σ and a sum over ē is performed, ending up with

cf̄
∗

ij,↑σB
f̄
ê =

∑
ē

cē
∗

j,σS
loc
1 (E i2, T3, Ω̄2, Ω̄1)×Bf̄ê /B

f̄
ē , (4.37)

cf̄
∗

ij,↓σB
f̄
ê =

∑
ē

cē
∗

j,σS
loc
2 (E i2, T3, Ω̄2, Ω̄1)×Bf̄ê /B

f̄
ē . (4.38)

The two-exciton coefficients cfij,σµ are normalized using 1
2
∑
i,j

∑
σ,µ|c

f̄
ij,σµ|2 = 1. All ingredients

for the two-exciton reconstruction are now at hand: The localized DQC measurements, the
dipole scalar products entering Sloc

η , the reconstructed single-exciton coefficients, and the ratio
Bf̄ê /B

f̄
ē (from Eq. (4.34)).

Table 4.2 shows the calculated two-exciton coefficients of the states f1, f2, and f3. In the case
of a perfect field localization (0%), the protocol works well and the original and reconstructed
coefficients agree nicely. However, compared to the single-exciton case, the quality of the
reconstruction is reduced and the error goes as high as 45% for a residual electric field of 20%
at the QD out of focus. This scenario of an imperfect field localization is illustrated in the
bar diagrams of Fig. 4.9. Still, most values show an acceptable overall agreement and it is
at least possible to identify the local two-exciton states that make dominant and negligible
contributions to the considered delocalized two-exciton state.
There are several reasons for the decreased reconstruction quality: Interferences between

different two-exciton resonances (e.g. between f3 and E12) cause inaccuracies. The problem of
overlapping resonances can in principle be tackled by applying a filtering method in the data
postprocessing, as suggested in Refs. [Ric12] and [Sch13]. However, in the considered case, this



4.5 Reconstruction schemes 41

Ta
bl
e
4.
2:

A
bs
ol
ut
e
va
lu
es
|c
f ij
,σ
µ
|a

nd
ph

as
es

ar
g(
cf i
j,
σ
µ
)
of

th
e
or
ig
in
al

(O
)
an

d
re
co
ns
tr
uc
te
d
(R

)
tw

o-
ex
ci
to
n
ex
pa

ns
io
n
co
effi

ci
en
ts

of
th
e
st
at
es
f 1
,f

2,
an

d
f 3
,f
or

a
pe

rf
ec
t
pu

lse
lo
ca
liz
at
io
n
(0

%
)
an

d
m
or
e
re
al
ist

ic
sc
en
ar
io
s,

w
he
re

th
e
el
ec
tr
ic

fie
ld

st
re
ng

th
at

th
e
ot
he
r
Q
D

st
ill

is
10

%
or

20
%

of
th
e
fie
ld

m
ag

ni
tu
de

at
th
e
fo
cu
se
d
Q
D
.T

he
ph

as
es

ar
e
gi
ve
n
in

m
ul
tip

le
s
of

2π
w
ith

ph
as
e
fa
ct
or
s
p
∈

[0
,1

]:
ar

g(
ce i
,σ

)=
2π
p
(c
e i,
σ
).

D
ue

to
th
e
pe

rio
di
ci
ty
,a

ph
as
e

fa
ct
or

of
0
is

eq
ui
va
le
nt

to
a
ph

as
e
fa
ct
or

of
1.

St
at
e

T
yp

e
|c
f 11
,↑
↓
|
|c
f 12
,↑
↑
|
|c
f 12
,↓
↑
|
|c
f 12
,↑
↓
|
|c
f 12
,↓
↓
|
|c
f 22
,↑
↓
|

p
(c
f 11
,↑
↓
)

p
(c
f 12
,↑
↑
)

p
(c
f 12
,↓
↑
)

p
(c
f 12
,↑
↓
)

p
(c
f 12
,↓
↓
)

p
(c
f 22
,↑
↓
)

E
rr
or

f
1

O
0.
91

5
0.
26

2
0.
09

1
0.
09

1
0.
26

2
0.
09

6
0.
50

0
0.
50

0
0.
00

0
0.
00

0
0.
50

0
0.
00

0
R
(0
%
)

0.
81

4
0.
38

0
0.
15

1
0.
15

0
0.
37

8
0.
07

2
0.
51

1
0.
49

2
0.
02

6
0.
96

6
0.
49

0
0.
01

5
0.
20

5
R
(1
0%

)
0.
77

8
0.
43

1
0.
09

0
0.
08

5
0.
43

0
0.
09

3
0.
51

3
0.
49

0
0.
06

3
0.
94

1
0.
48

6
0.
00

6
0.
28

5
R
(2
0%

)
0.
68

8
0.
50

5
0.
08

7
0.
01

1
0.
50

5
0.
09

3
0.
47

7
0.
38

2
0.
14

3
0.
18

9
0.
37

7
0.
93

3
0.
44

9

f
2

O
0.
03

4
0.
10

8
0.
03

7
0.
03

7
0.
10

8
0.
98

6
0.
50

0
0.
50

0
0.
00

0
0.
00

0
0.
50

0
0.
50

0
R
(0
%
)

0.
08

1
0.
10

4
0.
00

3
0.
01

4
0.
10

5
0.
98

6
0.
52

5
0.
52

4
0.
10

5
0.
80

2
0.
52

1
0.
52

3
0.
00

6
R
(1
0%

)
0.
01

7
0.
13

9
0.
09

0
0.
09

1
0.
14

0
0.
97

2
0.
61

8
0.
66

9
0.
66

7
0.
69

4
0.
68

2
0.
67

0
0.
03

2
R
(2
0%

)
0.
00

8
0.
14

3
0.
17

5
0.
17

5
0.
14

4
0.
94

7
0.
55

2
0.
68

1
0.
68

2
0.
69

7
0.
70

6
0.
68

2
0.
08

7

f
3

O
0.
40

3
0.
60

5
0.
21

0
0.
21

0
0.
60

5
0.
13

4
0.
00

0
0.
50

0
0.
00

0
0.
00

0
0.
50

0
0.
00

0
R
(0
%
)

0.
26

2
0.
67

7
0.
05

1
0.
06

5
0.
68

0
0.
06

1
0.
02

6
0.
50

0
0.
06

1
0.
87

4
0.
49

6
0.
04

3
0.
17

3
R
(1
0%

)
0.
28

6
0.
66

2
0.
12

0
0.
13

1
0.
66

7
0.
06

8
0.
03

9
0.
49

6
0.
01

2
0.
93

0
0.
49

1
0.
03

2
0.
14

0
R
(2
0%

)
0.
35

6
0.
61

3
0.
21

1
0.
23

8
0.
62

4
0.
08

2
0.
15

6
0.
47

4
0.
93

3
0.
89

6
0.
46

9
0.
07

2
0.
04

7



42 4 Probing spin-dependent exciton wave functions with localized 2D spectra

will not considerably improve the reconstruction results, since the peaks are already very sharp
and well-separated from each other [Spe16b]. Another reason for the increased inaccuracy is
that the reconstructed single-exciton wave functions enter multiple times in the calculation of
the two-exciton coefficients, leading to an accumulation of their errors. However, this error is
of minor relevance in the considered case, since a very accurate single-exciton reconstruction
could be achieved. The most important error source is that the signal for reconstructing a
specific two-exciton state f̄ is not only recorded for one selected single-exciton frequency, but
it has to be measured for all single-exciton resonances along the selected two-exciton resonance.
Since the measured signals enter multiple times in different sums, products and quotients of
Eqs. (4.34), (4.37), and (4.38), the two-exciton reconstruction is highly sensitive to variations in
the signal strengths of the resonances. Hence, weak oscillator strengths of single resonances can
cause a substantial error in the reconstruction. Therefore, if possible it is beneficial to choose
excitation polarizations for which all peaks have a significant contribution to the selected
two-exciton state [Spe16b].

In general, a circularly polarized far-field excitation through the three remaining pulses (as
assumed for the example) is not mandatory. The non-localized pulses can also have mixed
polarizations and the far-field condition does not have to be fulfilled as long as they are more
or less equally distributed over the system such that a signal can be measured for all exciton
states [Spe16b].
A shortcoming of the proposed protocol is that the coefficients of the three remaining

two-exciton states f4, f5, and f6 cannot be reconstructed, since these states are degenerate at
energy E12 and therefore only span the same subspace as the original wave function coefficients
but are not identical.

4.6 Summary
To recapitulate the procedure, the subsequent steps of the reconstruction schemes for the
single- and two-exciton states are summarized and visualized in the flow chart of Fig. 4.10.
In this chapter, reconstruction protocols were derived for dissecting the spin-dependent

single- and two-exciton wave functions into the contributions from the local (uncoupled)
basis states of coupled self-organized InAs/GaAs QDs, cf. Ref. [Spe16b]. Therefore, 2D DQC
spectroscopy was combined with localized nanooptical fields in order to selectively excite a
specific emitter. The proportionality of the signal to the expansion coefficients of the wave
functions in the delocalized exciton basis was exploited to retrieve the local state contributions.
It was demonstrated that the localized excitation does not necessarily have to be spin-selective.
The experiment only has to be carried out for two linearly independent polarizations of the
local field in order to resolve the internal spin structure of the QDs.
In principle, the proposed algorithms are not limited to the specific QD model system

considered in this work. They are applicable to any coupled, spin-degenerate two-level quantum
emitters with defined spin states, for which the dynamics are described by the Hamilton
operator in Sec. 4.2.3 and a localized excitation is possible. Moreover, a polarization control of
the localized pulses must be feasible in order to be able to record the signal for two linearly
independent polarizations.
The quantum emitters should exhibit a detuning in the same order of magnitude as the

coupling strength, such that the exciton states of the two nanostructures are energetically
separate. To avoid spectral overlap between the peaks, the coupling strength between the
quantum states should be high compared to the homogeneous linewidth of the resonances.

In the considered model system, the reconstruction of the single-exciton coefficients has turned
out to be very accurate even for non-ideal field distributions. The two-exciton reconstruction
scheme is analytically and experimentally more challenging and is subjected to multiple error
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Single-exciton reconstruction

Prerequisite: local dipole mo-
ments dXσi g for all states Xσ

i and
localized fields E i,η1 are known
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the overall peak pattern
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contribution from the single-

exciton state ē to be reconstructed
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first pulse and repeat measurement
for a localization at each QD and
for two different, linearly indepen-
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ing to Eq. (4.23) and normalize
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Figure 4.10: Flow chart of the quantum state tomography protocol for the retrieval of the single- and
two-exciton wave functions in a double QD structure.

sources such as resonance peak interferences, insufficient signal strengths, and shortcomings in
the spatiotemporal control of the localized fields. Still, a good overall reconstruction result
is achieved, giving a unique insight into the microscopic spin- and polarization-dependent
coupling mechanisms that would not be accessible in far-field experiments and without the
proposed data postprocessing.





5 Coherent coupling of excitons and
trions in monolayer transition
metal dichalcogenides

5.1 Introduction
Over the last years, the fabrication and characterization of monolayer transition-metal dichalco-
genides has evolved an emerging research field in semiconductor physics [Wan12, But13].
Atomically thin transition-metal dichalcogenides (TMDs) constitute a novel material class of
two-dimensional direct band gap semiconductors in the visible frequency range with remarkable
optoelectronic properties such as strong and structural rich photoluminescence due to a large
interband dipole moment [Mak10, Spl10, Ple16]. They exhibit two energetically degenerate
direct band gaps in momentum space, namely the K and K ′ valley at the corners of the first
Brillouin zone. Using circularly polarized light, a valley- and spin-selective optical control of
charge carriers is possible (valley polarization), giving rise to rich coupled spin-valley physics
referred to as “valleytronics” [Xia12, Zen12, Mak12, Cao12].
Excitons, i.e., bound electron-hole pairs, constitute the fundamental optical excitations

in semiconductors and dominate the optical properties. In systems with strong Coulomb
interaction, excitons can couple to an extra charge carrier and even higher-order correlations
between four and more charge carriers such as bound biexcitons can be formed. In two-
dimensional (2D) TMD films, reduced dielectric screening and strong quantum confinement due
to the monolayer thickness cause the formation of strongly correlated many-body quasiparticle
states. Several experimental and theoretical works have reported on neutral excitons [Mak10,
Spl10, Kom12, Ram12, Qiu13, Yu14, Ber14, Gla14], trions (charged excitons) [Mak13, Ros13,
Ber13, Zha14, Wan14, Sri15, Sin16], biexcitons [Mai14a, Sie15, You15, Kyl15, Lee16, Szy17],
and even coupled exciton-trion states [Sin14]. The large exciton binding energies of several
hundred meV [Ram12, He14, Che14, Uge14, Klo14] and trion binding energies of 20− 40 meV
with respect to the excitonic resonance [Ros13, Mak13, Wan14, Sin14] are roughly one order
of magnitude larger than in other quasi-2D and bulk semiconductors. As a consequence,
excitonic states in monolayer TMDs are stable up to room temperature, making them ideally
suited candidates for optoelectronic device applications such as ultrathin biexciton lasers and
polarization-entangled photon sources.

Therefore, a precise classification of the rich excitonic features in optical spectra of atomically
thin TMDs is a crucial step towards assessing the full functionality of this promising new
material class. However, an unambiguous identification especially of higher excitonic states in
optical spectra as well as their theoretical prediction using effective mass models [Ber13], the
Stochastic Variational Method [Zha15], and path integral [Kyl15] and diffusion quantum Monte
Carlo calculations [May15, Szy17], is extremely challenging. As a consequence, experimental
and theoretical works come to different results concerning, e.g., the magnitude of the biexciton
binding energy: Experimental studies suggest that the biexciton binding energy is about twice as
large as the trion binding energy [Mai14a, You15, Sie15, Sha15, Ple16]. In contrast, theoretical
studies come to the opposite conclusion that the biexciton is spectrally located between the

45
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trion and the exciton [Kyl15, Zha15, May15, Kid16, Kez16, Szy17]. The discrepancy originates
on the one hand from the difficult assignment of peaks growing super-linearly with pump
fluence in photoluminescence (PL) measurements.1 On the other hand, it is a demanding task
for theory to calculate higher-order correlated states. Furthermore, it remains an unresolved
question whether, in addition to intervalley biexcitons, also bound intervalley exciton-trion
complexes (as suggested in Refs. [Sin14, Kyl15, Kid16]) and trion-trion couplings can be
observed in monolayer TMDs.
Here, polarization-resolved 2D coherent spectroscopy comes into play as ideal tool to

disentangle the complex optical response, since in pump/probe experiments the biexciton
resonances are spectrally masked by the broad trion peak. Moreover, the rephasing photon
echo (PE) signal offers two unique advantages: First, off-diagonal cross peaks reveal coherent
couplings between the excited states and second, the inhomogeneous broadening is eliminated
along the cross-diagonal. Considering the valley- and spin-dependent optical selection rules,
the detected spectral signatures can be traced back to the underlying correlated many-body
states. The signal functions derived in Sec. 5.2.1 are calculated incorporating possible excitation
pathways and inhomogeneous broadening, which allows to estimate the binding energies of
neutral and charged intervalley biexcitons as well as intervalley trions from measured spectra.
This chapter presents a collaboration with Galan Moody from the National Institute of

Standards & Technology in Boulder and the group of Xiaoqin (Elaine) Li from the University
of Texas (UT) in Austin, where the experiments were conducted under guidance of Kai Hao.
Parts of this chapter have been published in Ref. [Hao17]. The presented theoretical model
was used to identify the resonance peaks and couplings in the spectra and estimate the binding
energies. To the best of our knowledge, Ref. [Hao17] constitutes the first theoretically supported
measurement of the charged and uncharged biexciton binding energies of MoSe2 and of a
coupled six-particle correlated state arising due to trion-trion coupling.

The chapter is organized as follows: First, the PE signal is calculated based on the Liouville
space formalism introduced in Chap. 3 and its specific properties are discussed. In Sec. 5.3,
the spin- and valley-dependent optical selection rules in monolayer TMDs are analyzed and
translated into a theoretical model. The experimental setup is briefly described in Sec. 5.4.
The measured and calculated spectra are presented in Sec. 5.5.1 and analyzed in more detail
in Sec. 5.4.

5.2 Coherent photon echo spectroscopy
In the group of X. Li, rephasing PE spectra of monolayer MoSe2 were recorded. In this section,
the corresponding signal function is presented in Sec. 5.2.1 and the specific advantages of PE
spectroscopy are highlighted, making this technique an ideal candidate to probe the excitonic
structure of monolayer TMDs: First, off-diagonal peaks in the spectrum clearly indicate coherent
couplings (cf. Sec. 5.2.2) and second, the strong inhomogeneous broadening observed in these
materials can be eliminated along the cross-diagonal (Sec. 5.2.3).

5.2.1 Calculation of the rephasing one-quantum signal
The rephasing PE signal is measured along the phase-matching direction kI = −k1 + k2 + k3
direction (cf. Sec. 3.3.1). It has three Liouville space pathway contributions called excited state
emission (ESE), ground state bleaching (GSB), and excited state absorption (ESA) [Abr09],
as illustrated in the double-sided Feynman diagrams of Fig. 5.1. Its 2D representation in
1 These peaks may be associated with the neutral biexciton, but also the charged biexciton, electron plasma
excitations, and excitons localized by impurities and defects can show up at similar energies and make a
clear identification challenging [Der16, Hua16].
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Figure 5.1: Feynman diagrams representing the Liouville space pathways of the density matrix that
contribute to the PE signal kI = −k1 + k2 + k3.

frequency domain is calculated by Fourier transforming the third-order heterodyne-detected
signal with respect to the first and third time intervals T1 and T3 between the pulses, whereas
T2 is fixed. This way, In the 2D frequency representation depending on Ω1 (excitation axis)
and Ω3 (emission axis), the formation of the photon echo can be observed along the diagonal,
as discussed later.
The heterodyne-detected signal is calculated using the induced polarization, cf. Chap. 3.

It depends on the third-order response function that can be deduced from the double-sided
Feynman diagrams. Details on the derivation are given in App. A. The total (measured)
rephasing PE signal is the sum of all three contributions [Abr09]:

S
(3)
PE(Ω3, T2,Ω1) = S

(3)
ESE(Ω3, T2,Ω1) + S

(3)
GSB(Ω3, T2,Ω1) + S

(3)
ESA(Ω3, T2,Ω1). (5.1)

They are superimposed in the experiment, however separable in theory with distinct signal
functions:

S
(3)
ESE(Ω3, T2,Ω1) = i

(2π)4

~3

∑
e,e′

(
d∗e′g · E∗s (ωe′g − ωs)

)
(de′g · E2(ωe′g − ω2)) e−iξe′eT2

×deg · E3(ωeg − ω3)
Ω3 − ξe′g

d∗eg · E∗1 (ωeg − ω1)
Ω1 − ξge

,

(5.2)

S
(3)
GSB(Ω3, T2,Ω1) = i

(2π)4

~3

∑
e,e′

(
d∗e′g · E∗s (ωe′g − ωs)

)
(deg · E2(ωeg − ω2))

×de
′g · E3(ωe′g − ω3)

Ω3 − ξe′g
d∗eg · E∗1 (ωeg − ω1)

Ω1 − ξge
,

(5.3)

S
(3)
ESA(Ω3, T2,Ω1) = −i(2π)4

~3

∑
e,e′,f

(
d∗fe · E∗s (ωfe − ωs)

)
(de′g · E2(ωe′g − ω2)) e−iξe′eT2

×dfe
′ · E3(ωfe′ − ω3)

Ω3 − ξfe
d∗eg · E∗1 (ωeg − ω1)

Ω1 − ξge

(5.4)

with ξab ≡ ωab − iγab. dab denotes the dipole moment, ωab the resonance frequency and γab
the homogeneous broadening of the b → a transition. Ei is the envelope of the i-th pulse. e
and e′ label the singly excited and f the doubly excited state manifold.

5.2.2 Off-diagonal peaks as indicators of coherent couplings
The ESA pathway (cf. Eq. (5.4)) enters the total signal with a negative sign in contrast to the
first two contributions, which has an important consequence concerning the peak patterns in
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(a)

(b)
Figure 5.2: (a) Two two-level systems representing, e.g., an exciton (0 → X) and a trion (0 → T )
transition, can be equivalently expressed by a four-level system with ground state g, singly excited trion
(e1) and exciton (e2) states, and the doubly excited exciton-trion state f (cf. [Sin14]). Electrostatic
coupling between the two excited states leads to an energy shift ∆B of the two-exciton state. (b) Full
PE spectra (left panel) with ESE, GSB, and ESA contributions (from left to right) for the four-level
system of (a) in the absence ((i), upper row) and presence ((ii), lower row) of coupling in terms of the
biexciton shift. The diagonals are marked by the red dashed lines.

the spectra: A diagonal peak occurs when the oscillation frequencies ωge and −ωe′g during the
time intervals t1 between the interaction with the first and second pulse and t3 between the
interaction with the third pulse and the emission of the signal field are identical, cf. Fig. 5.1.
In the ESE and GSB pathway, this is the case if e = e′, designated as “photon echo”. It
immediately follows that the Ω1 axis has to be plotted as negative excitation photon energy
since the coherences oscillate at negative frequencies during t1 compared to t3. In contrast, an
off-diagonal peak shows up if e 6= e′, which indicates excitation at one energy and emission at
the other. The ESA pathway incorporates the doubly-excited state manifold. In the absence
of many-body interactions, the lower g ↔ e and upper e↔ f transitions are equivalent and
cannot be distinguished.

This is demonstrated for a typical four-level scheme of an exciton-biexciton system composed
of two single-exciton transitions, as shown in Fig. 5.2 (a) [Sin14]. If they are coupled, the energy
of the biexciton is reduced with respect to the sum of the energies of e1 and e2 by the biexciton
binding energy ∆B. Without many-body interactions (i.e., ∆B = 0), the g → e1 (g → e2) and
e2 → f (e1 → f) transitions marked by the dotted (dashed) arrows are degenerate. This way,
off-diagonal peaks induced either from ESE and GSB or from ESA coincide. The different
signs of the pathways lead to a cancellation of the off-diagonal peaks. This is shown in the
upper row of Fig. 5.2 (b), where the off-diagonal peaks vanish in the full PE spectrum due
to destructive interference and only diagonal peaks remain visible (left panel).2 In contrast,
many-body interactions lift this degeneracy by introducing a finite biexciton shift ∆B 6= 0. As a
consequence, the cancellation is incomplete and off-diagonal peaks are observed, as depicted in
the lower row of Fig. 5.2 (b). Here, the biexciton binding energy leads to an interaction-induced
shift of the ESA signal along the Ω3 axis (right panel).

2 Note that the diagonal goes from the upper left to the lower right corner due to the negative scaling of the
Ω1 axis.
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Figure 5.3: Upper row: Calculated PE spectra for a single-exciton resonance e0 at a fixed homogeneous
linewidth γe0g. Three cases are considered: no inhomogeneous broadening (left panel), equal homogeneous
and inhomogeneous broadenings γinhom = γe0g (middle panel) and a dominant inhomogeneous broadening
γinhom = 4γe0g (right panel). The red dashed line marks the diagonal and the solid blue line the cross-
diagonal. The lower row shows slices of the upper row PE spectra along the diagonal (red dashed curve)
and cross-diagonal (blue solid curve). A similar model was discussed in Ref. [Sie10].

5.2.3 Elimination of inhomogeneous broadening along the cross-diagonal
The spectral lineshapes of resonance peaks are governed by the homogeneous and inhomogeneous
broadening, however the latter can be partially eliminated in 2D PE spectra [Kuz07, Sie10],
which is briefly discussed in this section and exemplified for a simple two-level system.

Based on Eq. (A.9) given in the App. A, the signal function of a two-level system consisting
of states g and e0 in time-domain can be determined:

S
(3)
PE(T3, T1) ∝ e−(γe0g(T3+T1)+iωe0g(T3−T1))θ(T1)θ(T3). (5.5)

The expression does not depend on the fixed delay T2 since a single resonance e0 = e = e′ is
considered with ξe′e = 0. Inhomogeneous broadening is now included by assuming a Gaussian
distribution of the resonance energy ωe0g with half width at half maximum γe0inh =

√
2 ln 2σe0inh.

An integration over all possible fluctuations ∆ωe0g around the central value ωe0g is performed:

S
(3)
PE(T3, T1) ∝

∫ ∞
−∞

d(∆ωe0g)
1√

2πσe0inh
e
− 1

2

(
∆ωe0g
σ
e0
inh

)2

e−(γe0g(T3+T1)+i(ωe0g+∆ωe0g)(T3−T1))θ(T1)θ(T3)

=e−(γe0g(T3+T1)+iωe0g(T3−T1)+
σ
e0
inh

2

2 (T3−T1)2)θ(T1)θ(T3).
(5.6)

The signal function shows a homogeneous (Lorentzian) decay with γe0g along the diagonal
photon echo direction T3 = T1 that is not affected by the oscillation with the eigenfrequency
ωe0g and the Gaussian envelope. This relation is inverse after a Fourier transform with respect to
T1 and T3, as shown in Fig. 5.3: For increasing inhomogeneous broadening, the Gaussian-shaped
broadening along the diagonal increases strongly, whereas along the cross-diagonal the narrow
Lorentzian line shape dictated by the homogeneous broadening remains almost unchanged.
This way, the inhomogeneous broadening is effectively eliminated along the cross-diagonal.
Taking a closer look, a very slight broadening of the cross-diagonal slice can be observed as a
consequence of the time ordering: Through the Heaviside step functions, the diagonal (T1 + T3)
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(a) (b) (c)
Figure 5.4: (a) Unit cell, (b) top view on the honeycomb lattice, and (c) Brillouin zone with high-
symmetry points K and K ′ of monolayer MoSe2. The Mo atoms are light blue, the Se atoms orange.

and cross-diagonal (T3 − T1) directions are not completely separable, but the homogeneous
and inhomogeneous broadenings mix [Sie10].

In systems with more than two levels, a cancellation of the inhomogeneous broadening in the
cross-diagonal direction will only occur if the fluctuations in the resonance energies during T1
and T3 are perfectly correlated. This is usually the case in the considered optical experiments,
since the pulse sequence with delays in the sub-ps range takes place on a shorter timescale
than spectral diffusion processes and therefore, the relative change in the transition energies
should be stable over one measurement cycle [Sin14].

5.3 Spin- and valley-selective optical transitions in monolayer
MoSe2

Transition-metal dichalcogenides are chemical compound materials consisting of a transition
metal and a chalcogen atom in a 1 : 2 stoichiometry of the form MX2 (e.g., with M = Mo,
W and X = S, Se). When going from multilayers to monolayers, TMDs exhibit a crossover
from an indirect-gap to a direct-gap semiconductor with direct band gaps at the K and K ′
valley [Mak10]. Fig. 5.4 shows the unit cell, the typical honeycomb structure appearing in
top view, and the Brillouin zone of monolayer MoSe2. The inversion symmetry in monolayer
TMDs is broken since the two sublattices that form the TMD lattice exhibit different atomic
sites. This leads, together with spin-orbit coupling, to coupled spin and valley physics [Xia12].
Within the effective-mass approximation, a parabolic bandstructure is approximated around
the optically relevant high-symmetry K and K ′ points (with nearly identical effective masses
for the electrons and holes).
The spin-orbit coupling leads to a splitting of the spin ↑ and spin ↓ bands, which is

particularly pronounced for the valence bands with Ev
s-o ≈ 180 meV in MoSe2 [Zhu11] (factor

50 larger than the conduction band splitting). Therefore, an A transition from the energetically
higher and a B transition from the energetically lower valence band to the conduction band
are distinguished. They constitute the lowest dipole-allowed optical transitions in MoSe2. In
this chapter, the focus is on the energetically lowest allowed optical transitions (A excitons)
with an optical gap of roughly 1.66 eV [Ros13]. The highest valence and lowest conduction
band spin states are energetically reversely ordered at the K and K ′ point, such that the
optical excitation of the A transition with circularly polarized light is both spin and valley
selective. Fig. 5.5 (a) shows the lowest allowed optical A transitions that can be accessed under
excitation with circularly polarized light: Left-hand (σ+) polarized light with polarization
vector êσ+

Pol = (êx + iêy)/
√

2 excites the spin ↑ electron in the K valley and right-hand (σ−)
polarized light with êσ

−

Pol = (êx − iêy)/
√

2 the spin ↓ electron in the K ′ valley. The optical
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(a)

(b)
Figure 5.5: (a) Band structure of MoSe2 at the K and K ′ points. The green (σ−) and blue arrows (σ+)
indicate the possible optical transitions using circularly polarized light at a wavelength matching the A
transition. (b) Schematic illustration of the neutral (red) and charged (teal) singly excited (upper row)
and doubly excited (lower row) bound state configurations associated with the lowest-energy direct-gap
A transitions accessible using circularly polarized light. The purple arrows mark many-body interactions
responsible for the formation of bound biexcitons. [Hao17]

transitions are described by the following dipole moments:

dK↑eg = de
1√
2

(êx + iêy) and dK
′↓

eg = de
1√
2

(êx − iêy) (5.7)

with the magnitude de depending on the chosen singly excited state e.
Besides neutral excitons X composed of an electron and a hole with opposite spins in the

same valley, also negatively charged excitons, i.e., trions (T−) can be created in the case
of n-type sample doping. They comprise an exciton in one valley bound to an additional
electron with opposite spin in the same or the other valley. The treatment is restricted to these
singlet trions since triplet trions where the two electrons have identical spins have not yet been
observed in the absence of magnetic fields [Zha14].

In the nonlinear χ(3) regime, doubly excited states enter the optical response. In general, the
lowest-energy bound doubly excited state is an intervalley biexciton composed of two excitons
in opposite valleys, since the energy for generating an intravalley biexciton by simultaneous
excitation of two excitons in the same valley is roughly 20 meV higher [Sie15, Kyl15]. Besides
neutral intervalley biexcitons (XX), also bound five- and six-particle states such as mixed
exciton-trion (XT ) and trion-trion (TT ) states can form.
The lowest-energy bound state configurations belonging to the singly (e) and the doubly

excited state manifold (f) are illustrated in Fig. 5.5 (b). They are accessible using circularly
polarized light tuned close to the A exciton resonance. The singly excited state configurations
consist of two exciton (XK , XK′) and two trion (T−K , T−K′) states (one in each valley), whereas
the doubly excited states are given by one intervalley biexciton (XKXK′), one trion-trion state
(T−KT

−
K′), and two mixed exciton-trion states (XKT

−
K′ , XK′T

−
K ).3

In Fig. 5.6, the polarization-specific optical excitation scheme involving these excited state
configurations is shown. Exciton-exciton, trion-trion, and exciton-trion couplings (indicated by
3 Note that the excited state configurations included in the calculations are the lowest-energy bound states.
However, depending on multiple parameters such as the sample quality and preparation, the doping, and
the excitation energy and power, also other bound state configurations are possible, e.g., B excitons, excited
biexcitons [Zha15], intravalley AB biexcitons, triplet trions, etc. [Zha14, Zha15, Kyl15, Sie15, Ser01, San02].
However, they are at higher energies than the states considered here and thus not within the spectral
bandwidth [Hao17].
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Figure 5.6: Level scheme used to calculate the signal function. The arrows represent the possible
excitation pathways using right-hand σ− (green arrows) and left-hand σ+ (blue arrows) circularly
polarized light according to the valley-specific polarization selection rules. Solid lines mark the excitation
of exciton states, dashed-dotted lines indicate the excitation of trion states. The energy diagram consists
of the ground state g as well as the singly and doubly excited state manifolds e and f , respectively,
as introduced in Fig. 5.5 (b). Due to many-body interactions, the doubly excited states are shifted
by ∆XX , ∆TT , and ∆XT with respect to the sum of the individual transitions they are built of (gray,
dashed levels). [Hao17]

the purple arrows in Fig. 5.5 (b)) lead to Coulomb-induced shifts ∆ij in the energies of the
doubly excited states with respect to the sum of the individual (isolated) exciton and trion
transitions (with energies EX and ET , respectively) they are built of:

EXX = 2EX −∆XX , ETT = 2ET −∆TT , EXT = EX + ET −∆XT . (5.8)

As discussed in Sec. 5.2.2, off-diagonal peaks in PE spectra indicate coherent couplings between
the excited states, since in the absence of many-body interactions the Liouville space pathways
involving singly excited states (lower transitions) are completely canceled out by the pathway
including the doubly excited states (upper transitions). The interactions between the excited
states cause shifts ∆XX , ∆TT , and ∆XT , thus breaking the symmetry between the g → e and
e→ f transitions and leading to off-diagonal signatures in the 2D spectra.

Note that the considered model system (cf. Fig. 5.6) exhibits a common ground state for both
the excitons and trions. This ground state is assumed to incorporate the background charge
carrier density of unbound electrons and holes [Ess01]. An optical excitation then generates
an additional electron-hole pair, which can either form a neutral bound exciton or capture a
background carrier to form a bound trion state.

5.4 Experimental setup and numerical implementation
The biexcitons in monolayer MoSe2 are probed using coherent 2D PE spectroscopy with polar-
ization control. The sample, an atomically thin flake of roughly 80× 40µm2, is mechanically
exfoliated onto a sapphire substrate and the optical experiments are performed at a constant
temperature of 20 K. 40 fs pulses are generated from a mode-locked Ti:Sapphire laser at a
repetition rate of 80 MHz. A system of Michelson interferometers creates a sequence of four
phase-stabilized pulses, three of which are focused on the sample and interact with it coherently.
The delay T1 is scanned with interferometric precision and subsequently Fourier transformed.
T2 is held at 0 fs in order to obtain maximum signal-to-noise ratio. The four-wave mixing signal
is heterodyne detected in the phase-matched direction using the forth reference pulse. The
interference signal is directly resolved with a spectrometer. The generated 2D spectra correlate
the excitation energies ~Ω1 of the system during T1 with the emission energies ~Ω3 during
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Table 5.1: Parameter set (dipole moment de in e nm and transition energies E in meV) used to calculate
the spectra in Fig. 5.7 (c) and (d). Note that the two exciton states XK and XK′ are subsumed under
X, the two trion states TK and T−K′ are subsumed under T− and the two mixed exciton-trion XKT

−
K′

and XK′T
−
K states are subsumed under XT−. This is possible since the respective transitions have

identical properties. All parameters were chosen in agreement with the experiment.

g ↔ X X ↔ XX T ↔ XT g ↔ T T ↔ TT X ↔ XT

de 1.0 1.0 1.0 0.8 0.8 0.8
E EX = 1648.5 EX −∆XX EX −∆XT ET = 1620.8 ET −∆TT ET −∆XT

∆XX = 20.3 ∆XT = 5.0 ∆TT = 2.0 ∆XT = 5.0

T3. The fluence of the exciting pulses is kept below ∼ 4µJ cm−2 (∼ 1012 excitons per cm2) to
ensure that the signal is in the χ(3) regime, thus excluding higher-order nonlinearities [Hao17].
The laser frequency distribution is centered around the trion resonance ∼ 1620 meV, which
is tuned well below the exciton resonance at ∼ 1650 meV [Hao16] in order to predominantly
spectrally address signatures of energetically lower bound biexcitons. The laser bandwidth
covers an energy range of roughly 80 meV.

In order to incorporate laser bandwidth effects into the calculations presented in this chapter,
the excitation laser spectrum is approximated by a Gaussian-shaped spectral distribution
centered at the wavelength λc = 765 nm (corresponding to the trion resonance at 1620.8 meV)
with broadening γlaser = 30 meV (half width at half maximum). With that, the normalized
pulse envelope reads

E(ω) = ~
√

ln 2
γlaser

√
π

exp

−~2 ln 2
(
ω − 2πc

λlaser

)2
γ2
laser

 . (5.9)

The excitation laser spectrum is shown in the topmost panels of Figs. 5.9 and 5.10.
As discussed in Sec. 5.2.3, the inhomogeneous broadening is included into the calculations by

averaging the signal functions of Eqs. (5.2), (5.3), and (5.4) over normally distributed values
of the system resonances. A perfect correlation of the transition energies during T1 and T3
is assumed, i.e., the changes in the transition energies during T1 and during T3 are directly
correlated. This is a reasonable assumption since the (fixed) delay time T2 between the second
and third pulse is vanishing and therefore no spectral diffusion processes will occur between
T1 and T3. The inhomogeneous broadening is set to γinh = 4 meV. As a consequence, the
resonance peaks are elongated along the diagonal (Ω1 = −Ω3), whereas the broadening along
the cross-diagonal is predominantly governed by the homogeneous linewidth, which is set to
γhom = 2.0 meV for all transitions. The signals are averaged over 250 normally distributed
values of the resonance energies in order to obtain smooth curves.

5.5 Evaluation of the spectra
5.5.1 Comparison between experiment and theory
The rephasing spectra were recorded by K. Hao and coworkers employing two different
polarization combinations of the pulse sequence: First, in a co-circular configuration with four
left-hand circularly polarized pulses σ+σ+σ+σ+ and second, in a cross-circular configuration
with alternating polarizations σ+σ−σ+σ−. The two corresponding polarization-resolved spectra
are shown in Fig. 5.7 (a) and (b). (c) and (d) represent the simulated rephasing signals for
the two polarization combinations including exciton-exciton, exciton-trion, and trion-trion
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Figure 5.7: Amplitudes of the measured ((a)-(b)) and calculated ((c)-(d)) 2D coherent PE spectra.
(a) and (c) are obtained using identical left-hand circular polarizations of the excitation pulses and
the detected FWM signal (left column). Along the diagonal two peaks show up that are assigned to
the degenerate excitation and emission of the exciton (X) and trion (T ) resonances. In addition, two
off-diagonal peaks (TX and XT ) appear as a consequence of Pauli blocking (saturation) nonlinearities.
(b) and (d) show the measured and simulated spectra for excitation using a cross-circular configuration
with σ+ polarization of the first and third pulse and σ− polarization of the second and signal field
(right column). An additional peak (XX) is featured in the spectra that is associated with the neutral
bound biexciton. The shift of the off-diagonal XT b and TXb peaks along the Ω3 axis towards lower
emission energies is assigned to the charged bound biexciton. The measurements were performed by K.
Hao et al. in the group of X. Li and the postprocessed plot data was provided by G. Moody. [Hao17]

couplings phenomenologically using the level scheme of Fig. 5.6 and the parameter set given
in Tab. 5.1. Along the diagonals, two peaks show up that can be assigned to the trion
resonance at (ET ,−ET ) with ET ≈ 1620 meV and the exciton resonance at (EX ,−EX) with
EX ≈ 1650 meV. In the co-circular excitation case, two additional peaks show up at the
cross-diagonal intersections of the exciton and trion lines: TX at (ET ,−EX) connecting the
g → XK transition during T1 with the g → T−K transition during T3 and XT at (EX ,−ET )
associated with the g → T−K transition during T1 and the g → XK transition during T3.

Next, the polarization combination is changed to cross-circular excitation σ+σ−σ+σ−. This
allows to access the doubly excited state manifold via the ESA pathway, as illustrated in
Fig. 5.1. In Fig. 5.7 (b), an additional peak labeled XX shows up whose emission energy
along the Ω3 axis is redshifted by ∆XX ≈ 20 meV with respect to the exciton X. This spectral
feature is attributed to the bound biexciton state. The time and polarization ordered pulse
sequence and the energy level diagram shown in Fig. 5.8 gives a first graphical impression
of the underlying processes in terms of the density matrix evolution: The first pulse (σ+)
resonantly drives the g → XK transition, thus creating a coherence between the ground state
g and the neutral K valley exciton during T1. Subsequently, the second pulse (σ−) excites
the exciton transition in the K ′ valley. During the T2 interval, the density matrix is in a
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Figure 5.8: Graphical illustration of the ESA quantum pathway for cross-circular polarization of the
exciting and signal fields. Their time and polarization ordering is shown by the pulse sequence in the
upper part of the graph. The interactions are demonstrated below using a simple four-level system. The
first pulse (σ+) generates an exciton coherence in the K valley during T1. The second pulse (σ−) drives
the exciton transition in the K ′ valley. The third pulse (σ+) excites the exciton-to-biexciton transition,
which subsequently radiates as the four-wave mixing signal. [Hao17]

dipole-forbidden, non-radiative coherence between the excitons in the K and K ′ valleys due to
Coulomb coupling. Finally, the third pulse (σ+) drives the X ′K → XX transition, resulting in
an optical exciton-to-biexciton coherence during T3, which then radiates as the FWM signal.

In the ESA quantum pathway, the density matrix oscillates with energy EX during T1 and
with EX −∆XX during T3 with ∆XX being the neutral biexciton binding energy. Accordingly,
in frequency space the spectral contribution from the neutral biexciton (labeled XX) appears
at the excitation energy −EX along the Ω1 axis and emits redshifted by ∆XX ≈ 20 meV with
respect to the exciton resonance. In the same way, using cross-circular excitation it is possible
to create charged five-particle doubly excited exciton-trion states, where an exciton in one
valley is coupled to a trion in the other valley. As a consequence, the cross peaks TXb and
XT b are redshifted along the Ω3 axis by ∆XT ≈ 5 meV with respect to TX and XT in the
co-circular spectrum of Fig. 5.7 (a).

Interestingly, the intensity of the trion peak T relative to the exciton peak X is substantially
reduced in the cross-circular excitation scheme compared to the co-circular case. This implies
that trion-trion interactions associated with charged six-particle bound states composed of
one trion per valley are considerably weaker than the tightly bound neutral biexciton XX.
It is estimated to be an order of magnitude smaller: ∆TT ≈ 2 meV, possibly due to spatial
separation and weak localization of trions [Moo14]. As a consequence, the quantum pathways
involving the singly and doubly excited states of the trion interfere destructively, thus reducing
the amplitude of the trion peak T . This is discussed in more detail in the next section.

Within the considered spectral bandwidth, biexcitonic signatures are only visible if the first
two pulses have opposite helicity. This confirms the level scheme of Fig. 5.6, where all doubly
excited states in the f manifold are composed of two excitons with opposite valley indices.
Hence, since only the K valley is addressed using solely left-hand circularly polarized light, the
corresponding spectrum of Fig. 5.7 (a) does not involve the doubly excited state manifold.

Some differences in the relative peak intensities of the measured and calculated spectra are
observed. Possible reasons for that are effects that are not included in the phenomenological
model applied for the calculations, such as the electron density in the doped sample, disorder,
excitation power, admixture of unwanted polarization components, fluctuations in the pulse
bandwidth, higher-order effects beyond χ(3), and varying dipole coupling strengths. However,
the key features and overall peak patterns in the calculated signals are in agreement with the
measured spectra.
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Figure 5.9: Simulated total photon-echo spectra, ESE, GSB, and ESA contributions (from left to right)
for identical (upper row) and alternating (lower row) circular polarization combinations. The left column
corresponds to the calculated spectra shown in Fig. 5.7 (c) and (d). The topmost curves show the
excitation laser spectrum. The resonance peaks are labeled and marked by arrows. The spectra were
calculated for the parameter set given in Tab. 5.1. Gray dashed lines have been inserted at the exciton
and trion resonances of each frequency axis.

5.5.2 Discussion of the calculated spectra

The simulated rephasing signals for the co- and cross-circular polarization sequences are
analyzed in more detail in this section. The distinct spectral features can be traced back to
their microscopic origin by decomposing the full PE signal into its three different contributions
stemming from the ESE, GSB, and ESA Liouville space pathways illustrated in the Feynman
diagrams of Fig. 5.1. They are of course not separable in the experiment, however the theoretical
treatment allows to inspect them individually, thus providing direct insight into the microscopic
evolution of the system state and the complex interplay of the different space pathways.

As stated in the previous section, the rephasing PE spectrum for co-circular excitation (upper
row of Fig. 5.9) features four resonances marked in the upper left spectrum: Two diagonal
peaks labeled (X,X) and (T, T ) at the spectral positions (EX ,−EX) and (ET ,−ET ) as well
as two off-diagonal peaks labeled (T,X) and (X,T ) at the spectral positions (ET ,−EX) and
(EX ,−ET ), respectively. The diagonal population peaks are associated with the singly excited
exciton and trion state in the K valley. The lower (upper) off-diagonal cross-peak (T,X)
((X,T )) combines an excitation at the exciton (trion) energy ~Ω1 = −EX (~Ω1 = −ET ) with
an emission at the trion (exciton) energy ~Ω3 = ET (~Ω3 = EX). According to the optical
selection rules discussed in Sec. 5.3, only one valley is addressed using a co-circular excitation
scheme within the considered spectral bandwidth: When a σ− pulse excites the system, the
spin ↑ exciton in the K valley is populated. A second σ− pulse resonant with the A transition
can then not be absorbed any more due to Pauli blocking. Therefore, due to the co-circular
excitation scheme and the valley-specific optical selection rules, the ESA quantum pathway
involving bound biexciton states composed of one (charged) exciton in each valley does not
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Figure 5.10: The same spectra as in Fig. 5.9, but for artificially low homogeneous broadening of
γhom = 0.1 meV in order to resolve all signatures.

contribute. Many-body effects associated with interaction-induced shifts or binding between
multiple quasiparticles will not contribute, since the doubly-excited state manifold does not
enter the nonlinear optical response within the spectral bandwidth. As a consequence, the
cross-diagonal peaks (T,X) and (X,T ) are unshifted in the excitation and emission energies
with respect to the exciton and trion marked by the intersections of the dashed gray lines.
Pauli blocking causes that the cancellation of the ESE and GSB pathways through the ESA
pathway (entering with opposite sign, cf. Eq. (5.4)) is incomplete due to the vanishing ESA
signal [Hao17].
The situation changes in the case of cross-circular excitation with alternating circular

polarizations (cf. lower row of Fig. 5.9). Here, the doubly-excited state manifold is accessible
via the ESA pathway that involves transitions to biexcitons composed of one exciton per valley.
This leads to additional spectral signatures in the calculated spectra that agree nicely with the
measured spectrum shown in Fig. 5.7 (b). As stated in Sec. 5.2.2, the appearance of several
off-diagonal resonance peaks implies the existence of many-body effects. These additional peaks
indicate the formation of intervalley doubly-excited states composed of two Coulomb coupled
quasi-particles (excitons or trions). This time, the GSB pathway does not contribute, which can
again be understood by recalling the optical selection rules and the GSB Feynman diagram of
Fig. 5.1: After the σ+ polarized first pulse has excited a transition in the K valley, the second
pulse cannot induce stimulated emission of this K valley transition at the opposite circular
polarization σ−. Instead, the GSB pathway requires the same helicity of the first and second
excitation pulses. Due to the interaction-induced energy shifts of the doubly excited states
f , the e→ f transition energies are reduced compared to the corresponding g → e excitation
energies. As a consequence, the emission energies (along the Ω3 axis) of the e→ f resonances
in the ESA signal (lower right panel of Fig. 5.9) are redshifted with respect to the exciton and
trion resonances marked by the dashed lines by the binding energies of the exciton-exciton
(∆XX), trion-trion (∆TT ), and exciton-trion (∆XT ) complexes.
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Table 5.2: Resonances contributing to the peak patterns for co- and cross-circular polarizations. A
checkmark in the last two columns marks that the respective signature shows up in the co- and cross-
circular polarized spectra, respectively. The upper four resonances correspond to the singly excited state
manifold (ESE and GSB pathways), whereas the lower four peaks belong to the doubly excited state
manifold (ESA pathway) and can therefore only be addressed using alternating circular polarizations
due to the optical selection rules.

Label Name Spectral position (x, y) in meV co cross

(X,X) exciton (EX ,−EX) = (1648.5,−1648.5) 3 3
(T, T ) trion (ET ,−ET ) = (1620.8,−1620.8) 3 3
(T,X) lower cross peak (ET ,−EX) = (1620.8,−1648.5) 3 3
(X,T ) upper cross peak (EX ,−ET ) = (1648.5,−1620.8) 3 3

(XX,X) exciton-exciton (EX −∆XX ,−EX) = (1628.2,−1648.5) 7 3
(TT, T ) trion-trion (ET −∆TT ,−ET ) = (1618.8,−1620.8) 7 3
(XT,X) lower exciton-trion (ET −∆XT ,−EX) = (1615.8,−1648.5) 7 3
(XT, T ) upper exciton-trion (EX −∆XT ,−ET ) = (1643.5,−1620.8) 7 3

These multiple contributions from different states and pathways give rise to a rich peak
pattern consisting of a total of 8 peaks in the full PE spectrum shown in the lower left panel
of Fig. 5.9. For reasons of clarity, they are indicated by arrows. Due to the homogeneous and
inhomogeneous broadening present in the sample, several of the resonances merge into one:
The TX peak in the measured spectrum of Fig. 5.7 (b) is actually composed of the two peaks
labeled (XT,X) and (T,X). The measured XX and X peaks are here denoted (XX,X) and
(X,X), respectively. The two peaks (TT, T ) and (T, T ) again melt into one peak (T ) in the
experimental spectrum. Finally, the measured XT peak is composed of the two resonances
(XT, T ) and (X,T ). In order to resolve the full peak structure, the spectra are calculated again
but this time with an artificially reduced homogeneous broadening of only 0.1 meV instead of
2 meV in Fig. 5.10. Here, all signatures are clearly visible. The individual resonances forming
the peak patterns for the two polarization combinations are listed in Tab. 5.2.
The off-diagonal peaks showing up in the PE spectrum of Fig. 5.10 for alternating circular

polarizations σ+σ−σ+σ− (lower left panel) are: exciton-trion cross peaks, exciton-exciton
peaks, and trion-trion peaks. They are discussed in the following subsections.

Exciton-trion peaks

The lower cross peak (T,X) in the spectrum connects the g → XK transition at ~Ω1 and the
g → T−K transition at ~Ω3. The upper cross peak (X,T ) combines the g → T−K transition at ~Ω1
with the g → XK transition at ~Ω3. Both cross peaks are unaffected by interaction-induced
shifts, since the doubly excited state manifold is not involved in the formation of these peaks.
The lower exciton-trion peak (XT,X) is composed of the g → XK′ transition at ~Ω1 and

the XK′ → XK′T
−
K transition at ~Ω3. The upper exciton-trion peak (XT, T ) combines the

g → T−K′ transition at ~Ω1 and the T−K′ → XKT
−
K′ transition at ~Ω3. These exciton-trion

peaks represent the ESA contributions from the charged five-particle bound states XK′T
−
K

and XKT
−
K′ composed of an exciton in one and a trion in the other valley. The associated

exciton-trion binding energy ∆XT = 5 meV is considerably smaller than the tightly bound
biexciton state XX, which is consistent with previous experimental and theoretical studies
[Kyl15, Sin14].
Since ∆XT is in the same order of magnitude as the homogeneous and inhomogeneous

broadenings, the unshifted cross-diagonal peaks (T,X) and (X,T ) stemming from the singly-
excited state (ESE) contribution spectrally overlap and interfere with the doubly-excited
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Figure 5.11: PE spectrum for cross-circular σ+σ−σ+σ− polarization with the trion-trion coupling set
to zero: ∆TT = 0. As a result, the diagonal trion peak vanishes, as marked by the red circle.

exciton-trion peaks from the ESA pathway. The spectral shifts of these superposed resonances
denoted XT b and TXb peaks in the experimental and theoretical spectra of Fig. 5.7 (b) and
(d) depend on the relative intensities and phases of the two system resonances they are built
of and do not have to be identical for the lower and upper cross peaks. Therefore, in the
experiment (cf. Fig. 5.7), a shift by 3 meV for the superposed upper cross peak is observed,
while the superposed lower cross peak is shifted by 4.6 meV.

Exciton-exciton peak

The exciton-exciton peak (XX,X) is composed of the g → XK′ transition at ~Ω1 and the
XK′ → XX transition at ~Ω3. It represents the intervalley biexciton composed of one exciton
in each valley. Therefore, it is spectrally shifted from the exciton peak (X,X) by the biexciton
binding energy ∆XX = 20.3 meV (cf. Tab. 5.1) along the emission energy Ω3 axis. This
value agrees very well with the biexciton binding energy predicted from previous microscopic
calculations [Zha15, Kyl15, May15, Kid16, Kez16].

Trion-trion peak

The trion-trion peak (TT, T ) is composed of the g → T−K′ transition at ~Ω1 and the T−K′ →
T−KT

−
K′ transition at ~Ω3. It represents the charged six-particle state composed of one trion

in each valley with an estimated trion-trion binding energy of ∆TT = 2 meV. This small
binding energy causes that the T−K′ → T−KT

−
K′ transition in the ESA contribution is only

slightly shifted along the Ω3 axis and thus spectrally not well separated from the g → T−K′
transition in the ESE contribution. As a consequence, they partly cancel each other out,
resulting in a smaller overall amplitude of the superposed diagonal trion T peak compared to
the trion peak in the co-circular spectrum. However, the appearance of the diagonal T peak
in the measured spectrum in cross-circular configuration (cf. Fig. 5.7 (b)) is an indicator for
a non-zero (but small) trion-trion coupling: Rerunning the simulations for ∆TT = 0 leads to
a complete cancellation of the diagonal (T, T ) peak, as shown in Fig. 5.11. This contradicts
the experimental observation of an intense T peak. However, there are also other possible
explanations for this T peak such as spectral diffusion, admixture of unwanted polarization
components, or higher order effects.
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5.6 Conclusion
In this chapter, polarization-resolved 2D rephasing PE signals of monolayer MoSe2 were
calculated and compared to the experiment. The optical response was derived from Liouville
space pathways representing the evolution of the density matrix [Abr09]. Both the specific
properties of the chosen spectroscopy technique and the characteristics of the material class
were exploited in order to unfold the complex optical response in third order of the electric
field and identify multiple higher-order correlated states by:

� employing FWM spectroscopy to spread the nonlinear signal across two axes,

� eliminating inhomogeneous broadening using the PE technique,

� using circularly polarized pulses for spin- and valley-selective excitation,

� restricting the system response to the A transitions between the highest valence and
lowest conduction band through a careful choice of the pulse bandwidth,

� decomposing the simulated signal into the contributions from the different Liouville
space pathways.

Spectral signatures showing up in the cross-polarized spectra were assigned to neutral and
charged biexcitons. The quantum pathways giving rise to these states were analyzed taking
into account the optical selection rules. It was found that all formed doubly excited states are
intervalley states consisting of one (charged) exciton in the K and the other in the K ′ valley
with large difference in crystal momentum. This makes them novel higher-order bound states
with no direct analogue in conventional semiconductors [Hao17].

The microscopic evaluation of the calculated spectra helped to interpret the signatures
showing up in the measured spectra based on a phenomenological model. Exciton-exciton and
exciton-trion binding energies for the neutral and charged bound biexcitons were estimated as
∼ 20 meV and ∼ 5 meV, respectively. These values are in reasonable agreement with previous
theoretical works [Kyl15, Zha15]. Moreover, the theoretical analysis showed that the diagonal
trion peak T appearing with reduced relative intensity in the measured spectrum of Fig. 5.7 (b)
is an indicator of a weak trion-trion coupling. This leads to the formation of bound six-particle
states composed of one trion per valley that has so far not been observed in monolayer TMDs.
However, the presented results contradict most previous experimental studies on TMDs where
biexciton binding energies in the range of 40− 80 meV (significantly higher than the trion
binding energy) were found. Possibly, charged biexcitons or excited-state biexcitons have been
observed and misclassified in these previous measurements [Zha15].
Comparing the calculated and measured spectra shows that the overall resonance peak

structure coincides and the optical selection rules used to model the system are confirmed by
the experimental findings. However, the relative peak intensities of the measured and calculated
spectra show some deviations. This is likely connected to experimental parameters that are
not taken into account by the phenomenological model applied for the calculations, such as
doping concentrations, sample quality, variations in the excitation power and bandwidth, the
experimentally achieved degree of circular polarization, higher-order contributions beyond χ(3),
etc. These effects may alter the spectral signatures and the bound quasi-particle states.
In summary, a very good agreement of the simulated and measured spectra was achieved

using polarization-resolved 2D spectroscopy in the rephasing pulse geometry. The presented
study contributes to a better understanding of the Coulomb-driven many-body interactions
leading to the formation of correlated many-particle complexes in 2D TMDs. This could in turn
support experimental studies in their search for even higher-order multiple-exciton correlations
that are likely to form in this exciting new material class due to the long-range Coulomb
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interactions [Tur10]. The intervalley composition of all found types of doubly excited states
and the efficient control of light-matter interaction might pave the way towards the generation
of novel polarization- and valley-entangled photon states.





6 Two-dimensional rephasing and
double-quantum spectroscopy of
single QDs and QD molecules

6.1 Introduction
Four-wave mixing (FWM) spectroscopy has been widely used to probe the ultrafast dynamics
and coherent couplings of higher-order excited states in ensemble measurements of semiconduc-
tors [Cun94, Che01, Len04, Lan04, Vos06, Moo13a]. However, with regard to quantum infor-
mation processing in solid-state implementations such as semiconductor quantum dots (QDs)
[Los98, Bon98, Bay01, Mic03, Ram10], coherent control of individual excitons and their inter-
actions on a local (Coulomb) and long-range (radiative) spatial scale draws increasing scientific
interest. Coupling parameters such as the biexciton binding energy and fine-structure splitting in
individual QDs forming exciton-biexciton systems [Fin13] are of particular interest for the gen-
eration of entangled photon pairs [Ben00, Seg05, Ste06, Ako06, Din10, Sal10, Car10, Mer16b].
Coherent couplings between different QDs and the underlying microscopic mechanisms play a
major role for possible two-qubit operations [Nie00, Kas10]. Also, investigating the polarization-
specific excitation pathways is important to selectively excite optical transitions in quantum
optical applications [Ton12].
Studying individual transitions in single QDs also has the advantage to circumvent the

strong inhomogeneous broadening due to the QD size dispersion which frequently masks
the optical response in ensemble experiments. Only a residual spectral wandering of the
resonance energies in time-averaged measurements causes a slight inhomogeneous broadening
[Pat06, Kas13, Mer16a, Mer16b, Jak16].1 For a high sample quality, the inhomogeneous
linewidth is in the few µeV range, which is often in the same order as the homogeneous
broadening and the temporal sensitivity of the experimental FWM setup dictated by the
spectrometer resolution (∼ 120 ps in the experiment discussed in this chapter) [Del17].

However, due to the bad signal-to-background ratio, probing individual excitonic transitions
is a demanding task. In addition, a directional selection of the signal field is not possible
for single nanostructures, which makes more challenging experimental detection techniques
with a collinear geometry of the exciting pulses necessary. These problems are tackled using
photonic nanostructures to improve the intrinsically weak FWM signal intensity of single QDs
by enhancing the coupling to the external laser field [Fra16, Mer16a, Jak16].
In this chapter, the internal coupling mechanisms within individual InAs QDs and QD

molecules embedded in a low-Q semiconductor microcavity [Mai14b] are analyzed using
heterodyne detected two-dimensional (2D) coherent, nonlinear optical spectroscopy. The
considered two-beam experiment conducted by Valentin Delmonte and conceptualized by Jacek
Kasprzak at the Institut Néel in Grenoble, France, allows to exploit the rephasing photon echo
(PE) as well as the double-quantum coherence FWM configurations by swapping the time
ordering of the pulse sequence.
1 Typical data acquisition times are in the range of tens to hundreds of seconds, where slow spectral diffusion
processes can take place.

63
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(a) (b)
Figure 6.1: (a) Schematic setup of a heterodyne detected FWM experiment for a sub-wavelength sized
nanostructure in a collinear geometry using acousto-optic modulators (AOM). The beam paths are
encapsulated (marked by the dashed frame) in order to prevent air turbulence, thus suppressing phase
fluctuations (passive stabilization) [Lan07]. (b) Pulse sequence applied in a two-beam FWM experiment.
Two configurations are possible: A positive (negative) delay corresponds to the rephasing one-quantum
PE (two-quantum DQC) pathways in the upper (lower) part of the graphics.

This chapter presents calculations of the corresponding FWM signals that allow to ascertain
the coherent coupling mechanisms between individual quantum systems. This way, the intra-
and interdot biexciton binding energies as well as the fine-structure splitting and the relative
alignment of the laser polarization and QD axis can be determined. Thus, combining 2D single
and double quantum coherence spectroscopy is a powerful tool to study coherent couplings,
representing a step forward in the quantum control of optically active two- and few-level
systems present in semiconductor nanostructures. The main results of this chapter have been
published in [Del17].
The chapter is organized as follows: First, the two-beam experiment with variable pulse

ordering and the applied phase referencing technique for heterodyne detection is briefly
introduced in Sec. 6.2. In Sec. 6.3, the corresponding signal functions are derived. The model
system and Hamiltonian incorporating the optical selection rules are introduced in Sec. 6.4.
Section 6.5 is dedicated to the analysis of the distinct spectral signatures and a comparison to
the experiment. Finally, in Sec. 6.6 the situation including Förster coupling between the QDs
is discussed. Section 6.7 briefly summarizes this chapter.

6.2 Two-beam four-wave mixing spectroscopy
In the considered two-beam FWM experiment conducted by V. Delmonte and J. Kasprzak,
a pulse train spectrally centered around the optical resonance of interest is split up into two
excitation pulses described by the electric field envelopes E1 and E2 and a reference pulse
Er [Lan10]. The setup is schematically shown in Fig. 6.1 (a). An optical delay line enables
a variable interval τ̃12 between the pulses E1 and E2, which is positive for E1 leading. Using
acousto-optic modulators, pulse 1 and pulse 2 are frequency upshifted by ω̃1 = 80 MHz and
ω̃2 = 80.77 MHz. The two pulses are recombined in a beam splitter and interact with the
sample (stored in a cryostat at 5 K) in the active region of a waveguide. The emitted signal
then is recombined and interferes with the reference beam, whose temporal separation from
E2 can also be varied. Finally, the signal is detected at the frequency 2ω̃2 − ω̃1 = 81.54 MHz,
corresponding in lowest-order (pulse 2 interacts twice, pulse 1 once) to the response E∗1E2E2.
The signal is spectrally dispersed using a spectrometer, detected with a CCD camera and
retrieved in amplitude and phase by employing spectral interferometry [Del17].

Using optical delay lines, both the delay τ̃12 as well as the arrival time of the reference pulse
can be adjusted. As mentioned in the introduction, by swapping the temporal ordering of the
two light pulses, one- and two-quantum configurations can be distinguished experimentally. For
positive delay τ̃12 > 0, the rephasing PE pathway is recorded where τ̃12 = T1 represents the
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delay between the first and second pulse and T2 = 0 for the subsequent interactions induced
by E2 according to the nomenclature introduced in Chap. 3. A negative delay τ̃12 < 0 in turn
corresponds to the DQC pathway with τ̃12 = −T2 and T1 = 0.
In order to obtain the typical FWM frequency maps for the different pulse orderings by

Fourier transforming the pulse delays, referencing the signal phase is a necessary precondition.
In the experiment discussed in this chapter, a post-treatment protocol was established which
uses auxiliary spectral interferences of the reference pulse Er with the individual excitation
pulses E1 and E2 for phase-referencing. This way, the necessity of active phase stabilization
during acquisition [Bri08, Hel11] is overcome. Further details on the implementation of this
phase-referencing protocol are given in [Del17].

6.3 Calculation of the four-wave mixing signals
In this section, the rephasing one-quantum and two-quantum signals are calculated following
[Abr09]. The applied optical field is described as a sequence of three pulses centered at times
τj with frequencies ωj and phases ϕj = ω̃jTj :

E(r, t) =
3∑
j=1

∑
uj=±1

Eujj (r, t− τj)e−iujωj(t−τj)+iujϕj (6.1)

with E2 = E3, ϕ2 = ϕ3, and τ2 = τ3 in the considered two-beam experiment. As introduced in
Sec. 3.2.2, the heterodyned signal in the optical χ(3) regime is a function of the delay times Tj
between the pulses:

S
(3)
ω̃s

(T3, T2, T1) =
∫ +∞

−∞
dt Pω̃s(t) · E∗r (t− τs)eiω̃s(t−τs) (6.2)

with reference field Er and third-order induced polarization Pω̃s given in Eq. (3.3). In the
considered experiment, the detected frequency combination is ω̃s = 2ω̃2 − ω̃1. If the field E1
interacts first, this corresponds to the rephasing PE phase combination ϕI = −ϕ1+2ϕ2 retrieved
by the phase-referencing protocol of [Del17]. If the time ordering of the two driving pulses is
swapped such that E2 is the leading pulse, the extracted phase combination ϕIII = 2ϕ2 − ϕ1
coincides with the DQC configuration.

6.3.1 Rephasing photon echo signal
Three types of excitation quantum pathways contribute to the rephasing signal denoted excited
state emission (ESE), ground state bleaching (GSB), and excited state absorption (ESA),
as discussed in detail in Sec. 5.2.1. The corresponding double-sided Feynman diagrams are
shown in Fig. 6.2 (a).2 Remember that the ESE and GSB pathways incorporate only the
ground state g and the singly excited state manifold e, whereas the ESA pathway includes
also the doubly excited states f . In the absence of many-body interactions, the off-diagonal
resonances stemming from the two Liouville space pathways involving singly excited states
(lower transitions) destructively interfere with the ones from the ESA pathway including
doubly excited states (upper transitions). This leads to a cancellation of all off-diagonal peaks
[Kas10, Dai12, Moo13a].
The rephasing one-quantum signal in the frequency domain is obtained by Fourier trans-

forming the third-order heterodyne-detected signal with respect to the time delays T1 between
2 Compared to Sec. 5.2.1, this time the pulses carry characteristic phases ϕj instead of wave vectors kj due
to the collinear measurement setup used for single nanostructures.
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Figure 6.2: Double-sided Feynman diagrams for the rephasing (a) and double-quantum (b) signal
representing the Liouville space pathways of the density matrix evolution in the considered two-beam
experiment.

pulse 1 and 2 and T3 between pulse 2 and the reference pulse, whereas T2 is vanishing in the
two-pulse experiment. The total rephasing PE signal is given by [Abr09]

S
(3)
PE(Ω3,Ω1) = S

(3)
ESE(Ω3,Ω1) + S

(3)
GSB(Ω3,Ω1) + S

(3)
ESA(Ω3,Ω1). (6.3)

with

S
(3)
ESE(Ω3,Ω1) = i

(2π)4

~3

∑
e,e′

(
d∗e′g · E∗s (ωe′g − ωs)

)
(de′g · E2(ωe′g − ω2))

×deg · E3(ωeg − ω3)
Ω3 − ξe′g

d∗eg · E∗1 (ωeg − ω1)
Ω1 − ξge

,

(6.4)

S
(3)
GSB(Ω3, τ2,Ω1) = i

(2π)4

~3

∑
e,e′

(
d∗e′g · E∗s (ωe′g − ωs)

)
(deg · E2(ωeg − ω2))

×de
′g · E3(ωe′g − ω3)

Ω3 − ξe′g
d∗eg · E∗1 (ωeg − ω1)

Ω1 − ξge
,

(6.5)

S
(3)
ESA(Ω3,Ω1) = −i(2π)4

~3

∑
e,e′,f

(
d∗fe · E∗s (ωfe − ωs)

)
(de′g · E2(ωe′g − ω2))

×dfe
′ · E3(ωfe′ − ω3)

Ω3 − ξfe
d∗eg · E∗1 (ωeg − ω1)

Ω1 − ξge
.

(6.6)

Here, ξab ≡ ωab − iγab has been defined, where dab denotes the dipole moment, ωab the
resonance energy and γab the homogeneous broadening of the b → a transition. A detailed
derivation can be found in App. A.

6.3.2 Double quantum coherence signal
Similarly, the two-quantum DQC signal is obtained by Fourier transforming the signal function
with respect to the delay times T2 between the leading pulse 2 and the subsequent pulse 1
and T3 between pulse 1 and the reference pulse. In contrast to Sec. 3.3.3 where the signal
was Fourier transformed with respect to T1 and T2, here the 2D frequency map is calculated
depending on Ω2 and Ω3. This has practical reasons: First, the delay T1 = 0 is fixed and
second, the Fourier transform with respect to Ω3 is directly achieved by the spectrometer,
thus facilitating the data postprocessing. The DQC signal has two contributing ESA pathways
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shown in Fig. 6.2 (b):

S
(3)
DQC(Ω3,Ω2) = S

(3)
ESA1

(Ω3,Ω2) + S
(3)
ESA2

(Ω3,Ω2) (6.7)

with

S
(3)
ESA1

(Ω3,Ω2) = −i(2π)4

~3

∑
e,e′,f

(
d∗fe′ · E∗s (ωfe′ − ωs)

)
(deg · E1(ωeg − ω1))

×
d∗e′g · E∗3 (ωe′g − ω3)

Ω3 − ξfe′
dfe · E2(ωfe − ω2)

Ω2 − ξfg
,

(6.8)

S
(3)
ESA2

(Ω3,Ω2) = i
(2π)4

~3

∑
e,e′,f

(
d∗e′g · E∗s (ωe′g − ωs)

)
(deg · E1(ωeg − ω1))

×
d∗fe′ · E∗3 (ωfe′ − ω3)

Ω3 − ξe′g
dfe · E2(ωfe − ω2)

Ω2 − ξfg
.

(6.9)

These signal functions allow to calculate 2D maps of the rephasing and double-quantum
pathways depending on the Fourier transformed pulse delays.

6.4 Quantum dot model system
6.4.1 Individual QD exciton-biexciton system with fine-structure splitting
An isolated QD with zincblende crystal structure located in a microcavity exhibits two s-shell
transitions, namely the circularly polarized spin ↑ and spin ↓ excitons. In the following, the
spectral bandwidth is chosen in a way that no higher transitions are driven.3 In the presence of
an anisotropic confinement potential of the QD, the degeneracy of the two exciton states is lifted
[Mer16b]. The reason is an exchange interaction between the two singly excited states within
one QD, resembling a coupling between the transition dipoles of the two spatially superimposed
circularly polarized excitons [Kas10]. This coupling within the single QD system leads to a new,
linearly polarized basis of two excitonic eigenstates separated by the fine-structure splitting
(FSS) δ, as shown in Fig. 6.3 (a). They are selectively addressed by driving the system along
one of its polarization axes. This FSS is accompanied by a strong biexciton shift ∆B altering
the energy of the doubly excited state.

6.4.2 Quantum dot molecule
Now, a QD molecule is considered consisting of two electrostatically coupled QDs with
resonance energies E1 and E2, each with a FSS δ1 and δ2, respectively. The level scheme and
possible excitation pathways of such a QD molecule are schematically depicted in Fig. 6.3
(b). The electrostatic Coulomb interaction shifts the energy of each doubly excited state with
respect to the sum of the energies of the contributing (isolated) single exciton states. ∆1 (∆2)
denotes the intradot biexciton shift within QD 1 (QD 2) and ∆12 represents the electrostatic
interdot coupling between an exciton in QD 1 and an exciton in QD 2, forming a bound
interdot biexciton B12. The FSS determines the optical selection rules for linear polarization,
cf. Sec. 6.4.1: Vertically polarized optical transitions are marked by red arrows, horizontally
polarized by teal arrows in Fig. 6.3 (b).
3 This has the consequence that exciton complexes without a doubly excited state within the excitation
bandwidth such as trions do not contribute to the DQC signal since they represent a single two-level system
[Del17].
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(a)

(b)
Figure 6.3: (a) Four-level system representing the s-shell excitons of a neutral single QD described as
exciton-biexciton system. FSS lifts the degeneracy of the singly excited states, resulting in a transition
from a circularly polarized to a linearly polarized excitation. ∆B denotes the biexciton binding energy.
(b) Schematic level scheme of a QD molecule consisting of two QDs. The single exciton energies of the
two QDs are E1 and E2. ∆12 is the electrostatic coupling of a doubly excited interdot two-exciton state
with one exciton in each QD. Both QDs exhibit a FSS δi, which separates the QD excitons into an
upper state E+

i = Ei + δi
2 and a lower state E−i = Ei − δi

2 (i = 1, 2). For the considered QD molecule,
the intradot biexciton binding energies ∆1 and ∆2 shift the biexciton states B11 at energy 2E1 and B22
at energy 2E2 towards lower energies. In contrast, the interdot coupling is repulsive, i.e., shifts the B12
states towards higher energies. [Del17]

6.4.3 Hamiltonian and model parameters
The procedure for deriving the energies and transition dipole moments in the delocalized
basis of eigenstates of the electronic Hamiltonian is similar to the one presented in Chap. 4.
The electronic Hamiltonian containing the free electron part, the FSS and the diagonal and
Förster-type Coulomb part for a system of NQD QDs reads in the local state basis:

Ĥ0 + ĤC =E0|g〉〈g|+
NQD∑
i=1

∑
σ∈{↑,↓}

Ei|Xσ
i 〉〈Xσ

i |+
1
2
∑
i,j

∑
σ,µ

(Ei + Ej + ∆ij)|Bσµij 〉〈B
σµ
ij |

+
{∑

i

δi
2 |X

↑
i 〉〈X

↓
i |+

1
2
∑
i,j

∑
σ

δi
2
(
|B↑σij 〉〈B

↓σ
ij |+ |B

σ↑
ji 〉〈B

σ↓
ji |
)

+ h.c.
}

+
{∑
i<j

∑
σ,µ

V F
σµ|X

µ
i 〉〈X

σ
j |+

∑
i,j<k

∑
σ,µ,ν

V F
σµ|B

νµ
ij 〉〈B

νσ
ik |+ h.c.

}
(6.10)

Note that Pauli-forbidden biexciton states such as B↑↑11 where two electrons with identical spins
reside within the same QD are excluded. As introduced in Sec. 6.4.2, Ei denotes the energy
(renormalized by the electrostatic Coulomb coupling) of a singly excited state in QD i. ∆ij

denotes the two-exciton shift for a doubly excited state composed of two single excitons in QD
i and j with ∆ii ≡ ∆i in the level scheme of Fig. 6.3 (b). The FSS δi lifts the degeneracy of the
two excitons within one QD, as discussed in Sec. 6.4.1. Finally, V F

σµ denotes the spin-preserving
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Table 6.1: Model parameters used to calculate the optical response of a QD molecule composed of two
coupled QDs and an individual QD.

QD 1 QD 2 QD 3

resonance energy E1 = 1358.95 meV E2 = 1359.7 meV E3 = 1360.1 meV
transition dipole moment d1 = 0.5 e nm d2 = 0.5 e nm d3 = 0.6 e nm
fine-structure splitting δ1 = 140µeV δ2 = 60µeV -
biexciton binding energy ∆1 = −3.6 meV ∆2 = −3.3 meV ∆3 = −3.5 meV

interdot coupling ∆12 = +0.09 meV -

(σ = µ) and -flipping (σ 6= µ) Förster coupling between different QDs.
In the experimental spectra recorded by V. Delmonte, signatures of a QD molecule consisting

of two electrostatically coupled InAs QDs labeled 1 and 2 and an isolated QD 3 were observed,
as verified by the calculations performed as part of this work (cf. Sec. 6.5). Therefore, the
Hamiltonian of Eq. (6.10) was adapted to the specific three-QD situation and the energies
and coupling elements were chosen in agreement with the experimental data [Del17]. All
parameters used to calculate the one- and two-quantum 2D FWM spectra are given in Tab. 6.1.
In order to obtain the system eigenstates and energies as well as the dipole moments in the
delocalized exciton basis, the electronic Hamiltonian of Eq. (6.10) was numerically diagonalized,
as demonstrated in more detail in Sec. 4.2.4. This yields the electron-light coupling Hamiltonian
in the new exciton basis of delocalized singly (e) and doubly (f) excited states:

Ĥel-L = −
∑
e

dge ·E(t)|g〉〈e| −
∑
e,f

def ·E(t)|e〉〈f |+ h.c. (6.11)

The Förster coupling was found to be vanishing in the measured spectra, as discussed later in
Sec. 6.6.
The homogeneous linewidth in QD systems is typically in the order of several µeV, corre-

sponding to a dephasing time of few hundred picoseconds [Sto11, Ost12]. Here, γ = 1/(500 ps)
is used for the calculations [Bor01]. Additionally, the spectrometer resolution of ∼ 25µeV is
accounted for by incorporating it into the homogeneous linewidth [Kas10]. The transition dipole
moments of the two QDs forming the QD molecule are chosen equally. Spectral wandering
causes an inhomogeneous broadening of 10µeV [Mer16b]. This is included in the calculations
by averaging the contributions to the signal functions for normally distributed values of the
system resonances. However, it does not have a noticeable effect on the line shapes since they
are dominated by the homogeneous broadening due to the spectrometer resolution.

6.5 Discussion of the spectral signatures
The left panel of Fig. 6.4 shows the measured PE (a) and DQC (c) spectra of the three-QD
system described in the previous section. The corresponding simulations of the rephasing and
DQC signals calculated for the parameter set of Tab. 6.1 are presented in the right panel. The
multiple off-diagonal peaks in the PEspectrum are decisive signatures of multiple interdot and
intradot exciton couplings in the QD system, which are analyzed in the following. Figure 6.5
illustrates the expected peak pattern and the underlying energies and couplings determining
the measured and calculated spectra of Fig. 6.4.
Both the rephasing and the two-quantum spectra share a common ~Ω3 axis displaying the

FWM frequency recorded by the spectrometer. Along this axis, ground state to single exciton
(G→ X) and single exciton to two exciton transitions (X → B) appear. For positive delays
τ̃12 > 0, the ~Ω1 axis contains the G→ X transitions, such that the photon echo of all single
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Figure 6.4: Measured ((a) and (c)) and calculated ((b) and (d)) single and double quantum 2D FWM
spectra of a system of three QDs, two of which are electrostatically coupled and form a QD molecule.
The coherent couplings between QD 1 and 2 as well as the intradot couplings in all three QDs are
revealed using 2D rephasing PE ((a) and (b)) and DQC ((c) and (d)) spectroscopy. The plot data for
the experimental spectra were provided by J. Kasprzak. [Del17]

exciton resonances shows up along the diagonal Ω1 = −Ω3. Three main resonances GX1, GX2,
and GX3 are visible on the diagonal at frequencies E1 = 1358.95 meV, E2 = 1359.7 meV, and
E3 = 1360.1 meV, belonging to the three QDs.4 For negative delay times, the ground state to
two-exciton coherences driven by the second pulse emerge along the ~Ω2 axis, corresponding
to the sum of the G→ X and X → B transitions.
A single exciton-biexciton pair (peaks GX3 and X3B3) shows up in both PE and DQC

spectra at the FWM frequencies E3 = 1360.1 meV and E3 + ∆3 = 1356.6 meV.5 This pair can
be attributed to the isolated QD 3 that is not involved in the molecule formation. The X → B
transition marked by the X3B3 peak in the PE and DQC spectra of Fig. 6.4 is redshifted along
the ~Ω3 axis by the binding energy ∆3 = −3.5 meV with respect to GX3. The resonance peaks
belonging to the isolated QD 3 exhibit a higher oscillator strength than the other two QDs,
which is reflected by a slightly larger transition dipole moment d3 = 0.6 e nm compared to the
two coupled QDs 1 and 2 with d1 = d2 = 0.5 e nm. The peaks exhibit no FSS, suggesting that
QD 3 is driven along its polarization axis.
Similar exciton-biexciton peak pairs can be identified for the QDs 1 and 2: The X1B1

and X2B2 resonance peaks are off-diagonally shifted along the FWM axis by the intradot
biexciton binding energies ∆1 = −3.6 meV and ∆2 = −3.3 meV with respect to the GX1 and
GX2 peaks, respectively (see also Fig. 6.5). However, the peak pattern belonging to the QD
molecule composed of the QDs 1 and 2 exhibits further features that significantly differ from
the exciton-biexciton resonance peak pair of the individual QD 3 in two major respects:

4 It is important to note that no biexciton signatures show up on the diagonal of the measured rephasing
spectrum. This observation confirms that the first pulse E1 does not excite any X → B transition, ensuring
that the measurements indeed take place in the low-excitation χ(3) regime.

5 Note that the biexciton binding energies ∆i are negative, i.e., they reduce the energy of the biexciton state
composed of two excitons in QD i with respect to the sum of the exciton resonances.
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Figure 6.5: Sketch of the resonance peak patterns in the one- (upper panel) and two-quantum spectrum
(lower panel) of the considered system of three QDs with resonance energies Ei, FSS δi, and biexciton
binding energies ∆i < 0 (not true to scale). The electrostatic coupling ∆12 > 0 between QDs 1 and
2 leads to the formation of a QD molecule, whereas QD 3 is independent. In contrast to the intradot
couplings ∆i, the interdot coupling ∆12 is positive and shifts the resonance peaks towards higher
energies. The dashed green line marks the diagonal Ω1 = −Ω3 in the PE spectrum. Teal markers label
the spectral positions of peaks that are observed when all pulses have a linear horizontal polarization,
whereas red markers denote the peaks visible when applying a vertically polarized pulse sequence. If the
polarization is somewhere in between these two cases, all marked positions show up in the spectrum.
The arrows in the plot mark the interaction-shifted peaks due to intradot (orange, blue, and pink) and
interdot (purple) exciton couplings. These shifted peaks showing up in addition to the unshifted cross
peaks indicate coherent couplings.

1. In contrast to the isolated exciton-biexciton system of QD 3, the two coupled QDs 1 and
2 show a pronounced FSS in the order of δ1 = 140µeV and δ2 = 60µeV, respectively.
This leads to a splitting of each exciton resonance GX1 and GX2 along the diagonal of
the rephasing spectrum into clusters of four peaks. In the measured spectra of Fig. 6.4
(a) and (c), the resonance peaks of the two exciton levels of each QD 1 and 2 separated
by the FSS are (more or less) equally pronounced. Therefore, an angle of 45◦ between
the linear polarization direction of the driving/reference pulse and the anisotropy axis
of the two dots is assumed for the theoretical calculation. This way, all the interaction
pathways shown in the level scheme of Fig. 6.3 (b) contribute to the measured signal.
Compared to the FSS of only 35− 40µeV found in similar systems [Mer16b], here a
much higher FSS is observed for the resonances associated with the QD molecule. This
suggests that the spatial proximity of the two coupled QDs alters the local symmetry of
the confinement, thus changing the magnitude of the FSS and the polarization of the
excitonic transitions [Del17].
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2. Two off-diagonal cross peaks labeled X2X1 (upper cross peak) and X1X2 (lower cross
peak) appear in the rephasing spectrum at the spectral positions (~Ω3 = E2, ~Ω1 = −E1)
and (~Ω3 = E1, ~Ω1 = −E2), respectively. They form a square with the two diagonal GX1
and GX2 resonances at energies E1 = 1359.7 meV and E2 = 1358.95 meV. The existence
of these off-diagonal cross peaks clearly indicates a coherent interdot exciton-exciton
coupling between the two QDs: The energy of the interdot biexciton B12 consisting of one
exciton in each QD is renormalized by the electrostatic Coulomb coupling. This biexciton
shift breaks the symmetry of the lower G → X1 (G → X2) and higher X1 → B12
(X2 → B12) transitions such that the Liouville space pathways involving the singly
excited states do not destructively interfere with the ESA pathway including doubly
excited states any more. As a consequence, cross peaks show up due to the incomplete
cancellation.

The electrostatic interdot coupling ∆12 between an exciton in QD 1 and an exciton in
QD 2 is small compared to the intradot biexciton binding energies of several meV as well as
the linewidth and spectrometer resolution. As a result, the corresponding interaction-shifted
resonances marked by the purple peak clusters in the sketch of Fig. 6.5 cannot be identified
as separate peaks in the measured rephasing spectrum of Fig. 6.4 (a). To better resolve the
signatures, three horizontal slices through the measured PE spectra at the fixed excitation
energies ~Ω1 = −E1,−E2,−E3 are plotted in the left column of Fig. 6.6, depicting the FWM
amplitude as a function of the emission energy ~Ω3. The corresponding simulations are shown in
the right column. The cuts at energies E1 and E2 reveal that ∆12 shifts the interdot two-exciton
resonances towards higher energies (repulsion), showing up as blueshifted high-energy shoulders
of the exciton cross peaks marked by the red circles in Fig. 6.6. The calculations suggest that
the interdot biexciton binding energy is of the order ∆12 = +0.09 meV.
In addition to the FWM amplitude, the orange traces in Fig. 6.6 depict the phases of the

FWM signals in the rephasing configuration. As expected for a single Lorentzian resonance, a
phase shift of π is observed for the diagonal peaks. The off-diagonal cross peaks in the upper
two panels exhibit a 2π phase shift, since they are – although not well separated in the spectra
– composed of two resonances: the unshifted cross peak and the interaction-shifted peak, each
inducing a π phase shift [Kas10, Ard16]. The intersection through the exciton-biexciton pair
of QD 3 (lowermost panels of Fig. 6.5) reveals that both the GX3 and X3B3 resonances are
accompanied by a π phase shift each in the absence of coherent couplings to other QDs. Note
that the calculated amplitudes and phases shown in the intersections of Fig. 6.6 quantitatively
differ from the measured ones, since in the calculations the FSS is better resolved. On the other
hand, the overlap with neighboring Lorentzian-shaped resonance peaks has a stronger impact
in the simulated spectra, resulting in phase interferences and amplitude superpositions. For
example, the slight jitter in the calculated phase and amplitude traces of QD 3 (lowermost panel
on the right-hand side) stems from spectral wings of the GX2, X1X2, and X2B2 resonance
peaks. They are not observed in the measured intersections, since here they are covered by the
strong background.

In the DQC spectra of Fig. 6.4 (c) and (d), the three QDs form exciton-biexciton complexes
at the two-photon frequencies ~Ω2 = 2E1 + ∆1 = 2714.3 meV, 2E2 + ∆2 = 2716.1 meV, and
2E3 + ∆3 = 2716.7 meV respectively. The corresponding peak pairs are labeled GXi and XiBi
with i = 1, 2, 3. Note that the peak pair GX1 and X1B1 is hardly visible in the measured
DQC spectrum of Fig. 6.4 (c), since it is outside the spectral bandwidth. The coupling of the
two QDs 1 and 2 manifests itself in a peak pair labeled X1B12 and X2B12 representing the
interaction-shifted G → B12 transition (energy ~Ω2 = E1 + E2 + ∆12 = 2718.74 meV) with
FWM frequencies ~Ω3 = E1 = 1359.7 meV and ~Ω3 = E2 = 1358.95 meV, respectively. In the
absence of interdot interactions, these peaks would cancel each other out due to the opposite
signs of the two ESA pathways entering the full DQC signal.
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Figure 6.6: FWM amplitudes (black traces) and phases (orange traces) retrieved from horizontal cuts
through the 2D maps of the measured (left column) and calculated (right column) rephasing signals
shown in Fig. 6.4 (a) and (b), respectively, at the three QD resonance energies E1 = 1358.95 meV,
E2 = 1359.7 meV, and E3 = 1360.1 meV. [Del17]

6.6 Comparison to a Förster-coupled quantum dot molecule
Hyperspectral imaging reveals that the two QDs 1 and 2 forming the molecule are simultaneously
excited by a laser spot focused down to the diffraction limit of around 0.85µeV. Thus the two
coupled dots are found to be within a few hundred nm vicinity [Del17, Kas10]. This raises the
question whether other short-ranged interaction mechanisms such as dipole-induced Förster
coupling or Dexter-type coupling via wave-function overlap are present in the QD molecule,
possibly contributing to the extraordinarily high FSS.

However, the Förster coupling strength is expected to be in the order of µeV [Spe15], which
is too small to be detected within the given spectrometer resolution of 25µeV. To inspect
a possible dipole-dipole coupling anyways, a (large) Förster coupling of V F

σµ = 0.1 meV was
included in the calculated spectra of Fig. 6.7. This Förster coupling leads to an additional
slight splitting of the exciton resonances. However, this so-called Förster shift scales nonlinearly
with the ratio V F

σµ/|E1 − E2|, making a considerable Förster coupling strength necessary to
have a noticeable effect on the spectral signatures.

Moreover, the Förster coupling leads to two additional peaks in the rephasing PE spectrum of
Fig. 6.7 (a) that show up at frequencies (~Ω3 = E1−(E2−E1)+∆1 = 1354.6 meV, ~Ω1 = −E2)
and (~Ω3 = E2 − (E1 − E2) + ∆2 = 1357.15 meV, ~Ω1 = −E1), as highlighted by the green
circles in Fig. 6.7. These peaks mark spectral positions where the third pulse creates an
XB coherence involving an intradot biexciton in one QD after the first pulse has created
a GX coherence involving a single exciton in the other QD. Speaking in terms of the level
scheme of Fig. 6.3 (b), the Förster coupling connects the X±2 (X±1 ) states with the biexciton
state B11 (B22). This process is only possible due to the Förster exciton transfer between the
QDs. In a similar manner, four additional peaks show up in the DQC spectrum of Fig. 6.7 (b)
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Figure 6.7: Calculated rephasing one-quantum (a) and non-rephasing two-quantum (b) 2D FWM
spectra including Förster coupling. The additional peaks arising due to exciton transfer processes
between the QDs are highlighted by green circles.

marking spectral positions where the second pulse creates a GB coherence involving an intradot
biexciton in one QD before the third pulse induces a GX or XB coherence involving a single
exciton in the other QD. However, these peaks are not observed in the experimentally measured
spectra, meaning that Förster and Dexter coupling processes (that have a similar effect on the
spectral signatures) are negligible and electrostatic couplings dominate the spectral signatures.

6.7 Summary
In this chapter, calculations reproducing the measured one- and two-quantum spectra of
individual QDs were presented, allowing to identify different intradot and interdot coupling
types and strengths and providing evidence of an isolated QD and a QD molecule consisting of
two electrostatically coupled QDs at the probed sample spot. It was demonstrated that the
combination of rephasing and double-quantum spectroscopy by swapping the pulse ordering in
a two-beam experiment constitutes a valuable tool to detect and characterize coherent coupling
mechanisms between excitons and the structure of the involved (bi)exciton states.

The theoretical model incorporates the optical selection rules, the FSS and intradot biexciton
binding energies, and the interdot coupling between the excitons addressed within the spectral
bandwidth. The electrostatic Coulomb interaction turns out to be the dominant coupling
mechanism, whereas Förster-type coupling processes are not relevant in the considered quantum
system. Moreover, while the isolated QD is driven along its polarization axis, the resonances
associated with the QD molecule exhibit a pronounced FSS of a factor 2 to 3 higher than
expected from earlier experimental studies [Mer16b]. A possible explanation is that the interdot
coupling affects the confinement geometry and thus the magnitude of the FSS and the
polarization of the excitonic eigenstates.
In summary, the presented study suggests a methodology to infer Coulomb-mediated cou-

plings in QD molecules, which serve as possible building blocks for quantum information
processing units, e.g., in terms of electrostatically coupled qubits [Par05, Shu12, Ard16].
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7 Excitation transfer from
semiconductor continuum states
into an ordered molecular layer

7.1 Introduction
The construction and characterization of hybrid inorganic/organic systems (HIOS) has evolved
into a vibrant research field over the last years [Bas99, Blu06, Its07, Nev08, Blu10, Vay12,
Lia13, Qia15, Fri15, Sch15, Lju17]. By exploiting the benefits of both constituents, they form
highly flexible building blocks for a large variety of optoelectronic applications, ranging from
photovoltaics using dye-sensitized solar cells [Bac98, Ima09, Har12, Lju17] to light-emitting
devices [Nev08, Bia14]. In this chapter, the Coulomb induced excitation transfer from continuum
states of a semiconductor substrate into a highly ordered molecular single layer across the
hybrid interface as well as within the organic layer is studied on a microscopic level, cf. Fig. 7.1
(c). Parts of this chapter have been published in [Spe16a, Spe18].

Electronic states in an inorganic semiconductor can couple non-radiatively to Frenkel
excitons in organic molecules via dipole-dipole interaction. This Förster-type excitation transfer
[För48] in hybrid systems has been studied both experimentally [Blu06, Blu08a, Nev08, Its07,
Ple15, Qia15] and theoretically [Agr94, Agr98, Nev08, Ver14]. To ideally exploit the beneficial
properties this novel material class is capable of, extensive parameter studies are of major
interest in order to explore the operating regimes for optimized device performance. Therefore,
this chapter aims at an in-depth theoretical understanding of the Coulomb-mediated excitation
transfer efficiency in such HIOS depending on the specific geometry and preparation of the
heterostructure.1
The optical absorption and Förster coupling characteristics have been investigated by

E. Verdenhalven et al. [Ver14], where a Heisenberg equation of motion technique based on the
density matrix formalism was used to derive Bloch equations for the composite inorganic-organic
system. Here, a von Neumann equation technique is used, where the Coulomb interactions
between the inorganic and organic constituent (referred to as “interlayer coupling”) as well as
between different molecular exciton states within the organic layer (referred to as “intermolecular
coupling”) are taken into account, cf. Fig. 7.1 (c). Besides the above-mentioned dipole-dipole
excitation transfer processes, also electrostatic monopole-monopole coupling terms enter the
considered Coulomb Hamiltonian, inducing monopole-monopole shifts in the resonance energies
that strongly depend on the molecular coverage. The microscopic Coulomb coupling elements
are calculated using so-called atomic (transition) partial charges. They are obtained from
density-functional theory (DFT) calculations employing the hybrid xc-functional HSE06,
provided by B. Bieniek and P. Rinke from the Fritz-Haber-Institut (FHI) Berlin.
In this chapter, strong electrical pumping of the semiconductor substrate is considered,

1 Note that depending on the growth technique and material, a quantum well is usually embedded in a
heterostructure [Blu06] and an organometallic donor or acceptor layer can be inserted to reduce the interlayer
energy-level offset by work-function tuning [Sch15]. This is not included in the simple model system used
here, since it is not supposed to change the electron dynamics considerably.

77
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Figure 7.1: (a) Atomic structure of the L4P molecule. C atoms are colored in gray, H atoms in
white. (b) The model system consisting of an organic molecular single layer adsorbed on an inorganic
semiconductor QW with interlayer separation ∆z. (c) Scheme of Förster energy transfer from an
electrically pumped semiconductor into the molecular film. The interlayer Förster coupling is marked
by purple arrows, the intermolecular Coulomb coupling is indicated by green arrows.

where Förster coupling transfers the excitation into the optically active, weakly bonded
organic film (cf. Fig. 7.1 (c)). This represents the case of operating an inorganic/organic
structure as hybrid light emitter, where the efficient electrical charge carrier injection into the
semiconductor substrate is combined with the radiative emission yield of molecules [Bia14].
Note that electronic wave-function overlap between the two layers as well as between different
molecules is assumed to be negligible. The intermolecular Coulomb interaction leads to the
formation of (flat) electronic bands within the molecular system. This plays a role especially
for small intermolecular distances, i.e., densely packed molecular films. Molecular excitons
can couple either to bound semiconductor excitons or continuum states of the substrate. The
coupling to semiconductor excitons resembles a typical molecular Förster resonance excitation
transfer. However, it requires an exact energetic match between the molecular HOMO-LUMO
transition energy and the exciton resonance in the semiconductor substrate. Therefore, this
work focuses on the interaction with the electrically pumped, i.e., occupied electron-hole
continuum that covers a broad energy range, thereby overcoming possible transition energy
mismatches between the organic and inorganic constituent.

The chapter is structured as follows: First, the model system and Hamiltonian is introduced
(Sec. 7.2). A partial charge approximation is employed for modeling the Coulomb coupling
elements (Sec. 7.3) and the problem is transformed into a Bloch basis representation assuming
a periodic arrangement of the molecules (Sec. 7.4). In Sec. 7.5, an exciton basis for the
organic part is constructed and in Sec. 7.6, equations of motion are derived for the full hybrid
structure. Finally, the transfer rate is calculated (Sec. 7.7) and numerically evaluated for
different parameter regimes (Sec. 7.8).

7.2 Modeling the hybrid inorganic/organic system
7.2.1 Model system
The inorganic-organic heterostructure is described by the following model system, schematically
shown in Fig. 7.1 (b): A single layer of flat organic ladder-type quarterphenyl (L4P) molecules
(cf. Fig. 7.1 (a)) forms a quasi two-dimensional film that is weakly (non-covalently) bound to a
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ZnO QW of wurtzite crystal structure with a (101̄0) surface acting as inorganic semiconductor
substrate. The distance between this molecular overlayer and the semiconductor surface is
denoted as ∆z. DFT calculations of this heterostructure show that the system relaxes at a
distance of ∆z ≈ 0.4 nm. ZnO is ideally suited for this kind of application since it is a wide-gap
semiconductor (εgap ≈ 3.4 eV [Yos97, Dju06, Tek04]) of high structural quality and with a large
exciton-binding energy of 60 meV, such that excitonic effects can occur up to room temperature
[Tek04, Özg05]. It is cheap, non-toxic, and chemically stable towards the deposition of molecules
at its surface, such that no additional passivation layers on top of the QW are required and
organic molecules can be deposited in a controlled manner [Blu06, Dju06, Blu08a, Sch15].
Consequently, ZnO has raised broad scientific interest as a promising candidate for future
photovoltaic applications [Blu08b, Vay12, Shi12, Nev08]. On the other hand, it is desirable
that the organic molecules exhibit a high radiative emission yield, narrow fluorescence and
absorption linewidths, and a small polaron shift for efficient energy migration within the
molecular overlayer. This is achieved using the above mentioned ladder oligo(p-phenylene)s
due to their fixed planar geometry compared to the less rigid oligo phenyls [Sch15, Kob12], cf.
Fig. 7.1 (a). It has been observed that these kinds of molecules can form highly ordered films
when they are deposited on the smooth surface of a semiconductor substrate [Kob12, Lju17].
Therefore, the molecules are assumed to arrange periodically on top of the substrate, which
will simplify the theoretical description. This way, the study is restricted to HIOS with a lattice
periodic arrangement of molecules and thereby represents an idealized first approach to derive
a microscopic description of such heterostructures. It marks a first step towards the description
of more complex systems with, e.g., a disordered molecular layer and imperfect semiconductor
substrates, cf. Chap. 8.
Due to the resonant excitation, only the energetically lowest allowed electronic transitions

are considered between the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) of the molecules and between the valence and the conduction band
in the semiconductor substrate.

7.2.2 Hamilton operator
The Hamilton operator of the composite system is defined as follows:

Ĥ = Ĥm
0 + Ĥs

0 + Ĥm-m
C + Ĥm-s

C , (7.1)

The free-particle part

Ĥ0 = Ĥm
0 + Ĥs

0 =
∑
A,ν

εA,ν â
†
A,ν âA,ν +

∑
λ,k

ελ,k â
†
λ,kâλ,k (7.2)

contains the undisturbed electronic eigenenergies εA,ν and ελ,k of the electrons in the molecular
orbitals and in the semiconductor bands, respectively. The index A ∈ {H,L} denotes the
HOMO (H) and LUMO (L) of the ν-th molecule described by the electronic wave function
ψA,ν . Assuming identical molecules, εA,ν ≡ εA holds. The index λ ∈ {v, c} parametrizes the
valence (v) and conduction (c) band and k ≡ k‖ the two-dimensional (2D) wave vector of
the semiconductor electrons in the QW plane with wave function ψλ,k. The three-dimensional
spatial coordinate r = (r‖, r⊥) is decomposed into the 2D in-plane component r‖ within
the QW plane and the one-dimensional (1D) component r⊥ ≡ z perpendicular to the QW
plane, here arbitrarily chosen as z direction. Within the envelope-function approximation, the
electronic wave functions ψλ,k(r) are given by [Cho99, Hau04, Yu05]:

ψλ,k(r) = 1√
AQW

eik·r‖uλ,k(r)ξλ(z). (7.3)
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They contain a plane-wave contribution with quantization area AQW in the QW plane, the
lattice periodic Bloch function uλ,k(r), and the envelope function ξλ(z) that accounts for the
QW confinement in z-direction. ξλ(z) is obtained by solving the 1D Schrödinger equation for
an appropriate confinement potential. AQW = NucAuc is the total sample area, consisting of
Nuc unit cells of size Auc.
â

(†)
A,ν and â(†)

λ,k denote the annihilation (creation) operators for an electron in a molecule and
in the semiconductor QW, respectively, obeying the fermionic anticommutator relations:

[â†A,ν , âA′,ν′ ]+ = δA,A′δν,ν′ , [â†λ,k, âλ′,k′ ]+ = δλ,λ′δk,k′ . (7.4)

The Heisenberg field operator of an electron in the semiconductor substrate is given by

Ψ̂(†)
s (r) =

∑
λ,k

ψ
(∗)
λ,k(r)â(†)

λ,k. (7.5)

Correspondingly, the molecular field operator is defined as

Ψ̂(†)
m (r) =

∑
A,ν

ψ
(∗)
A,ν(r)â(†)

A,ν . (7.6)

Starting from the Coulomb interaction Hamiltonian in second quantization,

ĤC = 1
2

∫
d3r

∫
d3r′ Ψ̂†(r)Ψ̂†(r′)e2G(r, r′)Ψ̂(r′)Ψ̂(r) (7.7)

with the Green’s function G(r, r′) = 1/(4πε0εr|r − r′|) arising from Poisson’s equation for
interacting charges, two different types of Coulomb interaction are obtained: Intermolecular
coupling Ĥm-m

C between molecules in the organic film and molecule-semiconductor interlayer
coupling Ĥm-s

C between the molecules and the QW electrons. Couplings among the semicon-
ductor electrons within the QW substrate are not considered here, since strong, incoherent
electrical pumping of the semiconductor leads to high carrier densities, which will suppress the
formation of Wannier-exciton like bound states within the semiconductor [Cho99].
The intermolecular Coulomb coupling Hamiltonian reads

Ĥm-m
C = 1

2
∑
A,B

∑
νa,νb
νa 6=νb

V A,νaA,νa
B,νb
B,νb

â†A,νa â
†
B,νb

âB,νb âA,νa

︸ ︷︷ ︸
diagonal part

+
∑
νa,νb
νa 6=νb

V H,νa
L,νa

L,νb
H,νb â

†
H,νa â

†
L,νb âH,νb âL,νa

︸ ︷︷ ︸
Förster part

(7.8)
with the Coulomb coupling matrix element

V A,νaA′,νa
B,νb
B′,νb

=
∫

d3r

∫
d3r′ ψ∗A,νa(r)ψ∗B,νb(r

′)e2Gm-m(r, r′)ψB′,νb(r
′)ψA′,νa(r). (7.9)

Gm-m(r, r′) denotes the Green’s function for the Coulomb interaction between two charges at r
and r′, which is derived treating dielectric screening at the hybrid interface, cf. App. B.1. The
matrix element given in Eq. (7.9) describes the Coulomb coupling between a molecule numbered
νa with electronic states A,A′ ∈ {H,L} and a molecule numbered νb with electronic states
B,B′ ∈ {H,L}. Two types of Coulomb coupling are distinguished in the Hamiltonian of Eq. (7.8)
[Ric06]: The first term represents the diagonal monopole-monopole shifts. They describe the
electrostatic interaction between two charge densities and cause an energy renormalization,
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thus shifting the system resonances. The second term contains the off-diagonal Förster coupling
that describes an excitation energy transfer between different molecules νa and νb.2
The molecule-substrate Hamiltonian is given by:

Ĥm-s
C =

∑
λ,k,k′

∑
A,ν

V λ,kλ,k′
A,ν
A,ν â

†
λ,kâ

†
A,ν âA,ν âλ,k′︸ ︷︷ ︸

diagonal part

+
∑
k,k′

∑
ν

(
V c,k

v,k′
H,ν
L,ν â

†
c,kâ

†
H,ν âL,ν âv,k′ + V v,k

c,k′
L,ν
H,ν â

†
v,kâ

†
L,ν âH,ν âc,k′︸ ︷︷ ︸

h.c.

)
︸ ︷︷ ︸

Förster part

(7.10)

with the Coulomb coupling matrix element

V λ,kλ′,k′
A,ν
B,ν =

∫
d3r

∫
d3r′ ψ∗λ,k(r)ψ∗A,ν(r′)e2Gm-s(r, r′)ψB,ν(r′)ψλ′,k′(r). (7.11)

Again, Gm-s(r, r′) denotes the Green’s function of the interlayer coupling derived in App. B.1.
Note that V λ,kλ′,k′

A,ν
B,ν

∗
= V λ

′,k′

λ,k
B,ν
A,ν .

7.3 Partial charge approximation of the Coulomb matrix
elements

Usually, a dipole approximation is applied as a microscopic model for the Coulomb coupling
elements of Eqs. (7.9) and (7.11) (cf., e.g., Refs. [Lov03, Dan06, Cur08, Mac09, Spe15]).
However, this common and simple approximation breaks down if two spatially extended
constituents interact over small distances, e.g., in the case of two neighbored interacting
molecules. Therefore, the Coulomb coupling matrix elements in this work are derived using
so-called atomic (transition) partial charges [Mad06, Cam09] that are obtained numerically by
fitting to the electrostatic potential. Within the partial charge approximation, the Coulomb
interaction is described as a Coulomb coupling between the atomic partial charges that are, for
example, centered at the nuclei of the molecule or the unit cell (UC) atoms of the semiconductor,
respectively. This way, the complex field distribution of the molecules and the semiconductor is
created by point charges located at the atomic positions. Note that this is only valid outside the
characteristic van der Waals (vdW) radius of the atoms, representing the radius of imaginary
hard spheres defined by the contact distance of the atoms [Pau60].
In this work, the partial charges are taken from ab initio calculations provided by Björn

Bieniek and Patrick Rinke from the Fritz-Haber-Institut, Berlin. The hybrid xc-functional
HSE06 [Hey03] implemented in the FHI-aims code [Blu09] is employed to determine the
equilibrium adsorption geometry for an organic L4P molecule relaxed on top of the (101̄0)
surface of a ZnO QW. This geometry is maintained for deriving the partial charges of each
2 Note that all non-energy preserving coupling elements are excluded, e.g., of the form A = B but A′ = B′

with A 6= A′, since they would describe a synchronous transition of both interacting electronic molecular
states either into the ground or the excited state via Coulomb interaction. The same holds for matrix
elements where one constituent is excited or relaxes while the other one remains in the same electronic
configuration, since this would describe a creation or annihilation of an excited state that is not outweighed
by the annihilation or creation of another state. Also, a wave function overlap between the electronic
states of two different molecules has been neglected by choosing the same molecular index νi for molecular
wave functions that belong to the same integration variable. Moreover, the condition νa 6= νb expresses
the assumption that only one electronic transition (between the respective HOMO and LUMO state) is
considered in each molecule.
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(a) (b) (c)
Figure 7.2: (a) Atomic structure of the ZnO (101̄0) unit cell that is repeated periodically in the lateral
directions. (b) Electrostatic potential obtained from a DFT calculation. (c) Electrostatic potential
reconstructed from the partial charges located at the atomic positions. The graphics were provided by
B. Bieniek [Spe18].

component in separate calculations. In the case of ZnO, a UC is defined with perpendicular
lattice vectors along the Cartesian coordinates and a thickness of 4.3 nm corresponding to the
QW thickness. In order to model the surface, these UCs are repeated periodically and the
periodic images of the slab in z direction (perpendicular to the QW plane) are separated by a
vacuum layer of > 30Å width. Fig. 7.2 (a) shows the ZnO UC employed in the DFT calculations.
The parameterization of the TS-scheme from Ref. [Zha11] was used. For the molecule, the
long-range electrostatic interactions were accounted for by the TS-scheme [Tka09].

Poisson’s equation for the full electron density is solved in order to obtain the full electrostatic
potential that is approximated by the partial charges qλλi and qAAj entering the monopole-
monopole coupling elements. The transition partial charges generating the transition potential of
the involved electronic states are calculated to approximate the Förster-type coupling elements.
The charges are fitted to the electrostatic potential obtained from a DFT calculation employing
the hybrid xc-functional HSE06 [Hey03]. Fig. 7.2 (b) shows the calculated electrostatic potential
and Fig. 7.2 (c) shows the potential reconstructed from the partial charges. A comparison of
(b) and (c) shows that the calculated electrostatic potential of (b) is well represented by the
reconstruction with partial charges of (c).

7.3.1 Partial charge technique for the intermolecular Coulomb coupling
In [Mad06], the partial charge technique is used for the Coulomb coupling between two molecules
described by many-particle wave functions. Here, the Hamiltonian is considered in a second
quantization formalism. First, the partial charge technique is applied to the intermolecular
Coulomb coupling element given in Eq. (7.9). The one-particle density ρABν (r) of the ν-th
molecule [Sch03] is introduced as follows:

ρABν (r) ≡ ψ∗A,ν(r)ψB,ν(r). (7.12)
For A 6= B, this product of two molecular wave functions is called HOMO-LUMO transition
density. The intermolecular Coulomb matrix element of Eq. (7.9) thus becomes:

V A,νaA′,νa
B,νb
B′,νb

= −
∫

d3r eρAA
′

νa (r)φBB
′

νb
(r), (7.13)

where the potential φBB′νb
(r) of molecule νb has been introduced, stemming from Poisson’s

equation ∆rφ
BB′

νb
(r) = e/ε0

(
ρBB

′

νb
(r)/εm − ρBB

′

νb
(x, y,−z)/εm-m

eff
)
:

φBB
′

νb
(r) ≡ −

∫
d3r′ eGm-m(r, r′)ρBB

′

νb
(r′) ≈

∑
J

Gm-m(r,RJνb
)qBB

′

Jνb
. (7.14)
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Here, RJνb
= Rνb + rJνb denotes the position of the J-th atom of molecule νb, which can be

expressed as a sum of the position Rνb of molecule νb and the position rJνb of the J-th atom
of molecule νb relative to Rνb . Assuming identical, uniformly oriented molecules, the relative
atomic positions and partial charges are equal for each molecule: rJνb ≡ rJ and qABJν ≡ q

AB
J . In

the last step of Eq. (7.14), the molecular potential has been approximated by the electrostatic
potential generated by point charges, namely the aforementioned atomic partial charges qBB′Jνb

.
They are in this case located at the atomic positions RJνb

. The Coulomb coupling matrix
element thereby becomes

V A,νaA′,νa
B,νb
B′,νb

≈
∑
J

qBB
′

J ×
(
−
∫

d3r eGm-m(r,RJνb
)ρAA

′

νa (r)
)

=
∑
J

qBB
′

J φAA
′

νa (RJνb
). (7.15)

The potential φAA′νa (RJνb
) of molecule νa is also approximated by partial charges:

φAA
′

νa (RJνb
) ≈

∑
I

Gm-m(RIνa ,RJνb
)qAA

′

I , (7.16)

where the index I runs over all atoms in molecule νa. Combining Eqs. (7.14) and (7.15), the
Coulomb coupling is obtained as the electrostatic interaction between atomic partial charges
[Mad06]:

V A,νaA′,νa
B,νb
B′,νb

≈
∑
I,J

Gm-m(RIνa ,RJνb
)qAA

′

I qBB
′

J (7.17)

with RIνa ≡ Rνa + rI , RJνb
≡ Rνb + rJ , and qABI = qBAI .

In this partial charge approximation, the diagonal and Förster matrix elements entering the
intermolecular Coulomb coupling Hamiltonian given in Eq. (7.8) take the form:

V A,νaA,νa
B,νb
B,νb
≈
∑
I,J

Gm-m(Rνa + rI ,Rνb + rJ)qAAI qBBJ , (7.18)

V H,νa
L,νa

L,νb
H,νb ≈

∑
I,J

Gm-m(Rνa + rI ,Rνb + rJ)qHLI qLHJ . (7.19)

7.3.2 Partial charge technique for the interlayer Coulomb coupling
The technique of the partial charge approximation for intermolecular Coulomb matrix elements
can also be applied to the interfacial coupling between molecular and semiconductor electrons.
First, the one-particle density for the semiconductor substrate

ρλλ
′

kk′(r) ≡ ψ∗λ,k(r)ψλ′,k′(r) (7.20)

is defined in analogy to the molecular one-particle density. This way, a more compact notation
for the interfacial molecule-semiconductor coupling element of Eq. (7.11) can be employed:

V λ,kλ′,k′
A,ν
B,ν =

∫
d3r

∫
d3r′ ρλλ

′

kk′(r)e2Gm-s(r, r′)ρABν (r′) = −e
∫

d3r ρλλ
′

kk′(r)φABν (r). (7.21)

In the last step, the potential φABν (r) of the ν-th molecule was plugged in, which is defined
and approximated by the electrostatic potential of the partial charges according to Eq. (7.16):

φABν (r) = −
∫

d3r′ eGm-s(r, r′)ρABν (r′) ≈
∑
J

Gm-s(r,RJν )qABJ . (7.22)

Compared to molecular systems, setting up the electrostatic potential generated by the atomic
partial charges is more demanding in the case of solids with periodic boundary conditions, since
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the charges are repeated infinitely and long-range electrostatic interactions take place [Cam09].
An electrostatic potential for the i-th UC of the semiconductor substrate is introduced:

φλλ
′,kk′

i (r) = − 1
Auc

∫
UCi

d3r̃ eGm-s(r,Ri + r̃) ei(k
′−k)·r̃‖u∗λ,k(r̃)uλ′,k′(r̃)ξ∗λ(Zi + z̃)ξλ′(Zi + z̃)

(7.23)
where Auc is the UC area, Ri represents the lattice vector of the i-th semiconductor UC and
r′ denotes the variation within this cell. Again, the semiconductor potential is approximated
by the electrostatic potential of the partial charges qλλ

′,kk′

I at the relative positions rI within
one unit cell:

φλλ
′,kk′

i (r) ≈
∑
I

Gm-s(r,RIi)q
λλ′,kk′

I . (7.24)

Here, RIi = Ri + rI denotes the position of the I-th atom within the i-th semiconductor unit
cell, where rI is the relative position of the I-th atom within this unit cell. In this study, only
electronic states close to the band edges are considered. Therefore, the momentum dependence
of the semiconductor partial charges qλλ

′,kk′

I is neglected and the value at the Γ point (k = 0)
is taken: qλλ

′,kk′

I ≈ qλλ
′,00

I ≡ qλλ′I .
The integral over r is decomposed into a sum of integrals over the single UCs and split into

the lattice vector Ri of the i-th UC and a variation r̃ within this cell in order to separate the
scales:

V λ,kλ′,k′
A,ν
B,ν =−

∑
J

qABJ

Nuc∑
i=1

∫
UCi

d3r̃ eGm-s(Ri + r̃,RJν ) 1
AQW

ei(k
′−k)·(Ri+r̃)‖

× u∗λ,k(Ri + r̃)uλ′,k′(Ri + r̃) ξ∗λ(Zi + z̃)ξλ′(Zi + z̃),
(7.25)

where the expression of the one-particle density Eq. (7.20) was evaluated by inserting the
QW wave function of Eq. (7.3). Next, the invariance of the Bloch functions under a lattice
translation is used, uλ,k(Ri + r̃) = uλ,k(r̃), and the QW area AQW is replaced by NucAuc with
Nuc being the number of UCs in the QW substrate. This yields a form where the electrostatic
potential of Eq. (7.23) can be identified and approximated by the partial charges according to
Eq. (7.24):

V λ,kλ′,k′
A,ν
B,ν ≈

1
Nuc

Nuc∑
i=1

ei(k
′−k)·Ri‖

∑
I,J

Gm-s(RIi ,RJν )qλλ
′

I qABJ (7.26)

with RIi ≡ Ri + rI and RJν ≡ Rν + rJ . Rν denotes the position of the ν-th molecule in
the organic film and Ri the position of the i-th UC in the QW substrate. The atomic partial
charges are located at rI within one semiconductor UC and rJ within the ν-th molecule,
respectively. The matrix elements entering the molecule-semiconductor Coulomb Hamiltonian
given in Eq. (7.10) are hence approximated by the partial charges according to

V λ,kλ,k′
A,ν
A,ν ≈

1
Nuc

Nuc∑
i=1

ei(k
′−k)·Ri‖

∑
I,J

Gm-s(Ri + rI ,Rν + rJ)qλλI qAAJ , (7.27)

V c,k
v,k′

H,ν
L,ν ≈

1
Nuc

Nuc∑
i=1

ei(k
′−k)·Ri‖

∑
I,J

Gm-s(Ri + rI ,Rν + rJ)qcvI qHLJ . (7.28)

Effective transition dipole moments can be assigned to the inorganic and organic component
by summing over the transition partial charges at the atomic position,

Dcv =
∑
I

qcv,kk
′

I rI = (0.003,−0.027,−0.007) e nm (7.29)
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(a) (b)
Figure 7.3: (a) Unit cells (UCs, left) and Brillouin zones (BZs, right) of the hybrid system with the
maximum coverage of 1 molecule per 12 substrate UCs (6× 2). ã1/2 and a1/2 denote the lattice vectors
of the molecule and ZnO unit cell, respectively. b̃1/2 and b1/2 represent the corresponding reciprocal
lattice vectors. The upper 3D graphics is taken from Ref. [Ver14]. (b) Illustration of the quasi-momentum
selection rules during interlayer Coulomb coupling ensured by the Kronecker delta. The momentum
difference k′ − k in the substrate BZ has to equal the momentum transfer q = l′ − l in the molecule
except for a molecular reciprocal lattice vector Gm.

and
DLH =

∑
J

qLHJ rJ = (0.187, 0.006, 0.004) e nm. (7.30)

The values given here correspond to the relaxed geometry of the heterostructure found in
DFT calculations performed by B. Bieniek. Note that, in order to study also other molecular
arrangements, the molecules are rotated on top of the semiconductor surface in the later
evaluation. For the numerical implementation of these rotations, the concept of quaternions is
used, which is briefly introduced in App. B.2.

7.4 Transformation of the molecular orbitals into a Bloch
basis

Up to now, the electrons in the ZnO QW were described in a lattice-periodic Bloch basis
representation, whereas the molecules were treated in a localized, non-periodic basis in position
space. In order to introduce a consistent description of both constituents, the molecular parts
of the Hamilton operator are transformed into a momentum representation. This is easily
feasible since a lattice-periodic arrangement of the molecules in the organic film is assumed, as
demonstrated in Fig. 7.3 (a). Moreover, the substrate UCs are assumed to match the molecular
UCs, meaning that the molecular lattice vectors are integer multiples of the substrate lattice
vectors (cf. Fig. 7.3 (a)). This relation is inverted in reciprocal space, as shown in the reciprocal
space schematic (right panel) of Fig. 7.3 (a).

2D wave vectors l for the molecular electrons are introduced. They are restricted to the first
BZ of the molecular reciprocal lattice. This way, the electronic operators of the molecules are



86 7 Excitation transfer from semiconductor continuum states into a molecular layer

transformed into momentum space according to [Sla34, Ver14]:

âA,ν = 1√
Nm

∑
l

e−il·Rν‖ âA,l, âA,l = 1√
Nm

Nm∑
ν=1

eil·Rν‖ âA,ν , (7.31)

where the new electronic molecule operators â(†)
A,l obey the fermionic commutation relations

[â†A,l, âA′,l′ ]+ = δA,A′δl,l′ . To satisfy the periodic in-plane boundary conditions, the volume
V = NmVm containing Nm molecular UCs of volume Vm must equal the volume V = NucVuc
containing Nuc semiconductor UCs of volume Vuc. The lattice-periodic ordering of the molecules
allows to define the lattice vectors ã1 and ã2 in real space and the reciprocal lattice vectors b̃1
and b̃2 that span the molecular BZ, cf. right panel of Fig. 7.3 (a). They are determined by the
condition ãi · b̃j = 2πδi,j . The in-plane component of the position Rν of the ν-th molecule is
then just a linear combination of the lattice vectors, Rν‖ = nν1 ã1 + nν2 ã2 with integers nν1 and
nν2 . Later on, the following relation will be used [Ver14]:3

1
Nm

Nm∑
ν=1

eiQ·Rν‖ ≈
∑

m1,m2∈Z
δQ,m1b̃1+m2b̃2

≡
∑
Gm

δQ,Gm (7.32)

with Gm = m1b̃1 +m2b̃2 being a reciprocal lattice vector in the molecular layer.
The individual parts of the Hamilton operator involving the operators of the molecular

electrons (Eq. (7.1)) can now be transformed. A detailed derivation is given in App. B.3. The
free electron part takes the form:

Ĥm
0 =

∑
A

εA
∑
l

â†A,lâA,l. (7.33)

The intermolecular Coulomb Hamiltonian in the new basis has the form

Ĥm-m
C =1

2
1
Nm

∑
A,B

∑
l1,...l4

∑
Gm

δl1−l4+l2−l3,GmVAA B
B(l2 − l3)â†A,l1 â

†
B,l2

âB,l3 âA,l4

+ 1
Nm

∑
l1,...,l4

∑
Gm

δl1−l4+l2−l3,GmVHL L
H(l2 − l3)â†H,l1 â

†
L,l2 âH,l3 âL,l4 ,

(7.34)

with the redefined Coulomb matrix element in partial charge approximation

VAA′ BB′(q) =
∑

∆m-m 6=0
eiq·∆m-m‖

∑
I,J

Gm-m(rI , rJ + ∆m-m)qAA
′

I qBB
′

J . (7.35)

The sum over ∆m-m ≡ Rνb −Rνa runs over all possible positions of a molecular UC relative to
another molecule at a fixed position. The sum over the reciprocal lattice vectors Gm accounts
for Umklapp processes and q ≡ l2 − l3 = −(l1 − l4) +Gm describes the momentum transfer.
The Kronecker delta in Eq. (7.34) accounts for momentum conservation except for a reciprocal
lattice vector. Note that the coupling element solely depends on the momentum transfer q and
is invariant under a translation of the momentum transfer vector by a reciprocal lattice vector
Gm of the molecular layer: VAA′ BB′(q +Gm) = VAA′ BB′(q).
In a similar fashion, the molecule-semiconductor Coulomb Hamiltonian of Eq. (7.10) is

transformed into momentum space (a detailed derivation is shown in App. B.3). It consists of
3 This approximation is valid for a sufficiently extended sample and thus large Nm, where the exponential
term eiQ·Rν‖ for any Q 6= Gm averages out when carrying out the sum over all molecular positions Rν .
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Figure 7.4: (a) Contour plot showing the magnitude of the intermolecular Förster coupling element
VHL L

H(q) over all q values within the first molecule Brillouin zone for a maximum coverage of 1 molecule
per 12 substrate unit cells (6× 2). (b) Contour plot of the coupling strength |Vcv H

L (q)| of the interlayer
Förster interaction.

a monopole-monopole part and a Förster part:

Ĥm-s
C = 1

Nuc

∑
λ,k,k′

∑
A,l,l′

∑
Gm

δl−l′+k′−k,GmVλλ A
A(k′ − k)â†λ,kâ

†
A,lâA,l′ âλ,k′

+ 1
Nuc

(∑
k,k′

∑
l,l′

∑
Gm

δl−l′+k′−k,GmVcv H
L (k′ − k)â†c,kâ

†
H,lâL,l′ âv,k′ + h.c.

)
.

(7.36)

The sum over ∆m-s runs over the positions Ri of all substrate UCs relative to a fixed molecular
position Rν . The redefined Coulomb coupling element in momentum space is given by

Vλλ′ AA′(q) =
∑
∆m-s

eiq·∆m-s‖
∑
I,J

Gm-s(rI + ∆m-s, rJ)qλλ
′

I qAA
′

J . (7.37)

The Kronecker deltas in Eq. (7.36) ensure momentum conservation during Förster transfer and
thereby impose microscopic quasi-momentum selection rules on the system. This is graphically
illustrated in Fig. 7.3 (b). Later on, it is shown that these selection rules will govern the effect
of Coulomb coupling.
For a numerically efficient calculation of the interlayer Förster coupling elements, a two-

dimensional discrete Fourier transform using the FFTW library is performed, cf. App. B.4.
In Fig. 7.4 (a), the intermolecular Förster coupling element VHL L

H(q) is plotted as function
of the momentum transfer q. Its shape resembles a dumbbell along the x direction, since the
effective dipole moments of all uniformly oriented molecules in the organic layer point into the
x direction (cf. Eq. (7.30)). As a result, the maximum coupling strength is shows up along
the x axis. Fig. 7.4 (b) shows the interlayer Förster coupling strength |Vcv H

L (q)| as function of
the momentum transfer q. The shape of the transfer element consists of four lobes oriented
roughly along the diagonals, since the effective transition dipole moments given in Eqs. (7.29)
and (7.30) are oriented almost perpendicular to each other along the coordinate axes.

7.5 Molecular exciton basis
The ground state of the molecular layer where the HOMOs of all molecules are fully occupied
is denoted |φm0 〉. An orthonormal two-particle basis can be generated from this ground state
using the annihilation (creation) operators â(†)

A,l for electrons in the molecule:

|l1, l2〉 ≡â†L,l1 âH,l2 |φ
m
0 〉. (7.38)
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The Coulomb coupling between the molecules leads to molecular exciton states designated
by the parameter α. They can be expressed as superpositions of the two-particle states (with
coefficients cαl1,l2 = 〈l1, l2|Xm

α 〉) that are potentially delocalized over the molecular film:

|Xm
α 〉 =

∑
l1,l2

cαl1,l2 |l1, l2〉 =
∑
l,q

cαl+q,l|l+ q, l〉. (7.39)

In the last step, the two-particle basis was expressed by specifying offset l ≡ l2 and momentum
difference q ≡ l1 − l2. Note that the coefficients cαl+q,l are only defined for wave vector sums
l + q within the first molecular BZ. Therefore, if the sum l + q exceeds the first BZ, it is
mapped back into the first BZ by means of a reciprocal lattice vector.
In this section, the eigenvalue problem for these molecular Frenkel excitons |Xm

α 〉 in the
organic layer will be treated. It is given by the Schrödinger equation:

Ĥm|Xm
α 〉 = (Ĥm

0 + Ĥm-m
C )|Xm

α 〉 = (Em
0 + Em

α )|Xm
α 〉, (7.40)

where the molecular eigenenergy Em
0 + Em

α was introduced. The ground state energy Em
0 of

the molecular layer acts as a constant offset:

Em
0 = 〈φm0 |Ĥm|φm0 〉 = NmεH + 1

2NmVHH H
H(0)− 1

2
1
Nm

∑
l,l′

VHH H
H(l− l′). (7.41)

A representation of the eigenproblem in the two-particle basis has the form:

〈l+ q, l|Ĥm|Xm
α 〉 = (Em

0 + Em
α ) cαl+q,l. (7.42)

A detailed derivation of the matrix elements 〈l+ q, l|Ĥm|Xm
α 〉 is given in App. B.5.1.

For a sufficiently large material sample, the 2D molecular wave vectors are continuous and
the sums can be replaced by integrals [Hau04]:∑

l

→ NmAm

(2π)2

∫
1st BZ

d2l, (7.43)

where Am denotes the area of one molecular UC and the area of the first molecular BZ is given
by Am

BZ = (2π)2

Am
. This leads to

Em
α c

α
l+q,l =cαl+q,l

[
εmgap − VHH H

H(0) + VHH L
L(0) + Am

4π2

∫
d2l′

(
VHH H

H(l′)− VHL L
H(l′)

)]
+ Am

4π2

∫
d2l′ cαl′+q,l′

[
VHL L

H(q)− VHH L
L(l− l′)

]
,

(7.44)

where the lattice periodicity of the Coulomb coupling elements in momentum space has been
used, cf. App. B.5.1. εmgap ≡ εL − εH denotes the molecular HOMO-LUMO gap.

To make the problem numerically tractable, the continuous wave vectors have to be discretized.
Therefore, the integrals over the first BZ are rewritten into sums over Nm

d small surface segments
of size ∆A ≡ Am

BZ
Nm
d
, where ∆A is determined by the discretization grid:

∫
d2l′ f(l′)→

Nm
d∑

i=1
∆Af(li). (7.45)

Since the monopole-monopole coupling elements exhibit only a slight variation of few percent
over the first BZ, one can approximate VHH L

L(l− l′) ≈ VHH L
L(0). This will greatly simplify the
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eigenvalue problem derived for the molecular Frenkel excitons in matrix form and enable its
analytical solution (see below). Nevertheless, the exact eigenproblem was solved numerically in
the context of this work using the PETSc [Bal15a, Bal15b] and SLEPc [Her05] libraries for
efficient computation of eigenvalue problems. A comparison of the numerical solutions for the
exact eigenproblem with the analytical results for the simplified eigenproblem shows that the
approximation introduced above is valid.

The eigenproblem for the energy Em
α and the coefficients cαli+qj ,li can be rewritten in matrix

form. It is diagonal with respect to the momentum transfer qj , yielding a block-diagonal form
for the entire index space (li, qj) of dimension Nm

d
2 ×Nm

d
2. Using the abbreviations

aqj ≡
1
Nm

d

[
VHL L

H(qj)− VHH L
L(0)

]
, (7.46)

dqj ≡ aqj + εmgap − VHH H
H(0) + VHH L

L(0) + 1
Nm

d

Nm
d∑

k=1

(
VHH H

H(lk)− VHL L
H(lk)

)
, (7.47)

each Nm
d ×Nm

d block for a given qj has the form

Em
qj


c
qj
l1+qj ,l1
c
qj
l2+qj ,l2

...
c
qj
lNm

d
+qj ,lNm

d

 =


dqj aqj · · · aqj

aqj
. . . ...

... . . . aqj
aqj · · · aqj dqj




c
qj
l1+qj ,l1
c
qj
l2+qj ,l2

...
c
qj
lNm

d
+qj ,lNm

d

 . (7.48)

This way, α = qj , n uniquely determines a particular solution of the full eigenproblem, where
n enumerates the Nm

d solutions of the reduced Nm
d ×Nm

d eigenproblem in the li index space
for a given qj . The excitonic states of the molecular layer introduced in Eq. (7.39) are then
expressed in the discretized basis set of vectors (li, qj) by:

|Xm
α 〉 = |Xm

qj ,n〉 = Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li+qj ,li |li + qj , li〉 (7.49)

with eigenenergies Em
α = Em

qj ,n for n, j = 1, ..., Nm
d .

Each Nm
d ×Nm

d block for a given qj is highly symmetric with identical entries dqj (Eq. (7.47))
on the diagonal and identical off-diagonal elements aqj (Eq. (7.46)). This symmetric eigen-
problem in matrix form can be solved analytically. It has only two distinct eigenvalues:
Em
− ≡ Em

qj ,n=1 = · · · = Em
qj ,n=Nm

d −1 = dqj − aqj and Em
qj+ ≡ Em

qj ,n=Nm
d

= dqj + (Nm
d − 1)aqj .

Plugging in Eqs. (7.46) and (7.47) yields:

Em
− = εmgap − VHH H

H(0) + VHH L
L(0) + 1

Nm
d

Nm
d∑

k=1

(
VHH H

H(lk)− VHL L
H(lk)

)
, (7.50)

Em
qj+ = Em

− + VHL L
H(qj)− VHH L

L(0). (7.51)

The normalized components of the (Nm
d − 1) eigenvectors corresponding to the degenerate

eigenvalue Em
− are given by

c
qj ,n
li+qj ,li = Nm

d
Nm
×


1√
2 for i = 1,
− 1√

2 for i = n+ 1,
0 else

(7.52)
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Figure 7.5: Molecular energy dispersion Em
qj+ corresponding to the symmetric solutions of the molecular

eigenvalue problem for (a) the closest possible molecular packing without steric overlap of one molecule
per 6× 2 substrate UCs and (b) a lower molecular coverage density with identical aspect ratio of one
molecule per 15× 5 substrate UCs.

for n ∈ {1, . . . , Nm
d −1}, fulfilling the normalization condition derived in Eq. (B.35) of App. B.5.2.

The Nm
d − 1 excitonic basis states corresponding to Em

− are pairwise antisymmetric linear
combinations of the two-particle basis functions with equal momentum transfer qj :

|Xm
qj ,n〉 = 1√

2
(
|l1 + qj , l1〉 − |ln+1 + qj , ln+1〉

)
for n ∈ {1, . . . , Nm

d − 1}. (7.53)

It appears that only the symmetric eigenvalue Em
qj+ shows a qj dispersion, whereas the

degenerate antisymmetric eigenenergy Em− as well as the corresponding eigenvector components
do not depend on qj .4
Em
qj+ has identical eigenvector components

c
qj ,n=Nm

d
li

=
√
Nm

d
Nm

for all i, (7.54)

so that the corresponding excitonic basis state is symmetric:

|Xm
qj+〉 ≡ |X

m
qj ,n=Nm

d
〉 = 1√

Nm
d

Nm
d∑

i=1
|li + qj −Gli+qjm , li〉. (7.55)

Figure 7.5 shows the symmetric energy eigenvalues Em
qj+ as a function of the molecular wave

vector qj for two different coverage densities of the semiconductor substrate with molecules.
The interlayer Coulomb coupling among the molecules causes the formation of energy bands in
the organic film. The effect is particularly pronounced in the case of densely packed molecular
films and thus small intermolecular distances, since then the coupling strength increases and
excitations in the molecular layer get more and more delocalized over several molecules placed
in close proximity. This relaxes the assumed electronic two-level configuration for each molecule,
resulting in a band dispersion reflecting the hybridized molecular states. The range of q vectors
shown in Fig. 7.5 represents the first molecule BZ. In the case of a maximum coverage without
steric overlap of one molecule per 6× 2 ZnO UCs (Fig. 7.5 (a)), the energetic dispersion ranges
over roughly 150 meV within the molecular BZ, thus making the energy of the molecular states
4 Note that the eigenvectors given in Eq. (7.53) represent only a generating set of vectors that span the
degenerate subspace associated with Em

− . However, it is numerically possible to obtain an orthogonal basis
by applying, e.g., the Gram-Schmidt orthogonalization scheme.
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strongly wave-vector dependent. This effect is weakened for reduced coverage densities, since
the coupling strength decreases for larger intermolecular separations until reaching the limit
of distant single, non-interacting molecules represented by simple two-level systems. Fig. 7.5
(b) shows an intermediate case with a coverage density of one molecule per 15× 5 substrate
UCs (and the same aspect ratio of 3 : 1 as in Fig. 7.5 (a)), where the dispersion over the first
molecule BZ is still in the order of 10 meV. As can be seen in Eq. (7.51), the energy Em

qj+ is
proportional to the intermolecular Förster coupling element VHL L

H(qj). Therefore, its shape
resembles a dumbbell oriented along the x direction, since all molecules are assumed to be
uniformly oriented with the effective dipole moments pointing in the x direction (cf. Eq. (7.30)).

In conclusion, the intermolecular monopole-monopole coupling leads to a substantial energy
renormalization for high molecular coverages. In the case of the closest molecular packing
without steric overlap of one molecule per 6× 2 substrate unit cells (cf. Fig. 7.5), the molecular
gap εmgap is adjusted by several tens of meV in order to get the inorganic and organic system
into resonance.

Later, it will be shown that the antisymmetric eigenvectors do not contribute to the charge
transfer across the hybrid interface, i.e., they form dispersionless dark states.

7.6 Equations of motion of the hybrid system
In this chapter, the equations of motion (EOM) of the hybrid system are derived in the
molecular exciton basis using the von Neumann equation

i~
∂

∂t
trs
[
〈am|Ôsρ̂|bm〉

]
= trs

[
〈am|Ôs[Ĥ, ρ̂]−|bm〉

]
(7.56)

for the density operator ρ̂ ≡ ρ̂m ⊗ ρ̂s. Here, |am〉 and |bm〉 represent states of the molecular
system, whereas Ôs is either an observable operating on the semiconductor system or the
identity. The Hamilton operator of the considered composite inorganic/organic system is given
by Ĥ = Ĥm

0 + Ĥs
0 + Ĥm-m

C + Ĥm-s
C . The quantity of interest is the population of the molecular

exciton states |Xm
qj ,n〉 whose eigenproblem has been solved in Sec. 7.5:

ρmqj ,n ≡ trs
[
〈Xm

qj ,n|ρ̂|X
m
qj ,n〉

]
. (7.57)

The EOM for this exciton density is given by
∂

∂t
ρmqj ,n = −2

~
∑
k,k′

Im
[
VFqj ,n(k′ − k)σk,k′qj ,n

]
, (7.58)

where the effective interlayer Förster coupling element has been defined as

VFqj ,n(k′ − k) ≡ Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li

1
Nuc

∑
Gm

δqj ,k′−k+GmVcv H
L (k′ − k). (7.59)

It contains the expansion coefficient and the Kronecker delta ensuring quasi-momentum
conservation during interlayer Förster coupling, as illustrated in Fig. 7.3 (b). The full calculation
is demonstrated in App. B.6.1. ρmqj ,n couples to the assisted molecule–semiconductor coherence

σk,k
′

qj ,n ≡ trs
[
â†c,kâv,k′〈X

m
qj ,n|ρ̂|φ

m
0 〉
]

(7.60)

whose EOM is given by
∂

∂t
σk,k

′

qj ,n = i

~
(
−Em

qj ,n + εc,k − εv,k′ + Vm-s
mono

)
σk,k

′

qj ,n

+ i

~
VF
∗

qj ,n(k′ − k)
(
(1− fh,k′)(1− fe,k)ρmqj ,n − fh,k′fe,kρ

m
0
)
,

(7.61)
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with ρm0 ≡ trs
[
〈φm0 |ρ̂|φm0 〉

]
. The calculation is shown in more detail in App. B.6.2. fe/h,k denotes

the carrier population probability given by Fermi functions for electrons (e) and holes (h).
Vm-s
mono subsumes all diagonal monopole-monopole shifts and is given in Eq. (B.51). It describes

the self-energy due to the electrostatic coupling of the electronic states in the molecular layer
and the semiconductor substrate.

In order to derive the above EOM, the following steps and approximations were undertaken:
� Only single excitations in the molecular system were considered, neglecting terms de-
scribing doubly excited states in the organic layer.

� A Hartree-Fock factorization was applied to expectation values of four electronic operators
of the substrate (cf. Sec. 2.3).

� Spatial homogeneity was assumed both in the semiconductor QW for fixed semiconductor
populations as well as in the molecular layer. Thus, expectation values of two elec-
tronic operators are diagonalized with respect to their (quasi-)momenta:5 〈â†λ,kâλ,k′〉 ≈
δk,k′〈â†λ,kâλ,k′〉 and, analogously,

N2
m

Nm
d

2 trs
[
〈Xm

qj ,n|ρ̂|X
m
ql,n′
〉
]
≈ δj,lδn,n′ρmqj ,n.

� Inhomogeneous monopole-monopole contributions (cf. Eq. (B.50)) have been neglected.
Later on, the energetic detuning between the resonance energies of the two constituents
will be varied anyway, such that monopole-monopole shifts are only of minor interest
here.

� The electronic semiconductor coherences 〈â†v,kâc,k′〉 are assumed to decay rapidly, such
that their products vanish: 〈â†v,k2

âc,k1
〉〈â†c,kâv,k′〉 ≈ 0.

� The system is assumed to be in the thermodynamic quasi-equilibrium, such that the
carrier populations in the respective bands are described by Fermi distribution functions
fe/h,k for electrons (e) and holes (h) [Hau04, But04, Cho12]:

ρv,k ≡ 〈â†v,kâv,k〉 = fv,k = 1− fh,k, ρc,k ≡ 〈â†c,kâc,k〉 = fc,k = fe,k (7.62)

with the Fermi function

fi,k = 1
exp

(
εi,k−µi
kBTi

)
+ 1

with i ∈ {e, h}. (7.63)

µi denotes the quasi-equilibrium chemical potential in the respective band. For a two-
band system consisting of a valence and a conduction band with dispersion, it can be
calculated analytically [Hau04]:

µi(ni, Ti) = kBTi ln
(

exp
(
πw~2ni
mikBTi

)
− 1
)

= kBTi ln
(

exp
(
π~2n2Di
mikBTi

)
− 1
)
, (7.64)

with the carrier density ni = Ni/V in 3D, and the two-dimensional carrier density
n2Di = Ni/AQW = niw. Ti is the non-equilibrium charge carrier temperature that can
differ for electrons and holes. The carrier temperature can exceed the surrounding lattice
temperature if the energy gained by the electrons from the external field or pumping is no
longer negligible compared to the thermal energy of the system. This effect is particularly
strong in the low-temperature regime and the electrons are called hot electrons.

5 This is a consequence of the translational invariance of the Wigner function [Kuh94, Ric05]

fλ,k(r, t) ≡
∑
k′

eik
′·r〈â†

λ,k− 1
2k
′
â
λ,k+ 1

2k
′
〉.
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� In the effective-mass approximation, a parabolic dispersion relation with effective masses
m∗v < 0 and m∗c > 0 is assumed:

εh,k = ~2k2

2mh
= −~2k2

2m∗v
= −εv,k, εe,k = ~2k2

2me
= ~2k2

2m∗c
= εc,k − εsgap (7.65)

where εsgap represents the band gap energy in the absence of excited electrons [Cho99].
Note that the point of zero energy was arbitrarily set at the valence band edge. The
effective masses m∗v = −8.3035 m0 of the valence and m∗c = 1.4463 m0 of the conduction
band electrons are obtained from a fit to the DFT band structure of ZnO surface bands
[Ver14]. They translate as me = m∗c and mh = −m∗v into the electron-hole picture.

� For applying the effective mass approximation, it is a necessary precondition that only k
states close to the Γ point (k = 0) are occupied. As a consequence, Umklapp processes
where the sum of two k vectors equals a molecular reciprocal lattice vector are not
possible and therefore neglected in the calculation by setting: δk−k′,Gm = δk,k′δGm,0.

Since the electron-hole states in both constituents form a continuum, the linear, inho-
mogeneous differential Eq. (7.61) for the molecular exciton–substrate polarization σk,k

′

qj ,n =
trs
[
â†c,kâv,k′〈Xm

qj ,n|ρ̂|φ
m
0 〉
]
is solved via Markov approximation (cf. Sec. 2.4). Formal integration

leads to:

σk,k
′

qj ,n(t) =− i

~

t∫
−∞

dt′ e−
i
~(εe,k+εh,k′−∆qj,n)(t′−t)

× VF
∗

qj ,n(k′ − k)
(
fh,k′fe,kρ

m
0 (t′)− (1− fh,k′)(1− fe,k)ρmqj ,n(t′)

) (7.66)

=− i

~

∞∫
0

ds e+ i
~(εe,k+εh,k′−∆qj,n)s

× VF
∗

qj ,n(k′ − k)
(
fh,k′fe,kρ

m
0 (t− s)− (1− fh,k′)(1− fe,k)ρmqj ,n(t− s)

)
,

(7.67)

where ∆qj ,n ≡ Em
qj ,n − ε

s
gap − Vm-s

mono has been introduced as energetic detuning between the
renormalized resonances of the two constituents.6 The memory kernel of the densities ρmqj ,n
and ρm0 is truncated by neglecting their s dependence. The solution for the assisted molecular
exciton–substrate polarization in Markov approximation is then given by:

σk,k
′

qj ,n = −iπVF
∗

qj ,n(k′−k)
(
fh,k′fe,kρ

m
0 −(1−fh,k′)(1−fe,k)ρmqj ,n

)
δ
(
εe,k + εh,k′ −∆qj ,n

)
. (7.68)

It is inserted into the EOM for the population of the molecular layer (Eq. (7.58)):

∂

∂t
ρmqj ,n = 2π

~
∑
k,k′

∣∣∣VFqj ,n(k,k′)
∣∣∣2 (fh,k′fe,kρm0 −(1−fh,k′)(1−fe,k)ρmqj ,n

)
δ
(
εe,k + εh,k′ −∆qj ,n

)
.

(7.69)
This EOM describes the transfer from the semiconductor electron-hole continuum into the
organic layer. It will be used to calculate the microscopic rate equations for Coulomb scattering
processes between the organic and inorganic component of the hybrid structure.

6 Later on, the parameters will be chosen in a way that the detuning ∆qj ,n is at least two orders of magnitude
larger than the interlayer Förster coupling strength |VF

qj ,n(k′ − k)|. This ensures that the inhomogeneity
temporally varies much slower than the oscillation resulting from the exponential function.
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7.7 Calculation of the interlayer transfer rate
Starting from the EOM for the molecular population ρmqj ,n derived in Sec. 7.6, the energy
transfer rates between the electrically pumped semiconductor and the molecular layer are
calculated in partial charge approximation. Using Eq. (7.69) and the expression for the effective
interlayer Förster coupling element VFqj ,n(k,k′) given in Eq. (7.59), the in-scattering rate from
the semiconductor substrate into the exciton state Xm

qj ,n of the molecular layer is determined
as:

Γin
qj ,n =

∑
k,k′

γqj ,n(k,k′)fh,k′fe,k (7.70)

with

γqj ,n(k,k′) ≡2π
~

1
N2

uc

N2
m

Nm2
d

Nm
d∑

i=1
c
qj ,n
li

Nm
d∑

k=1
c
qj ,n

∗

lk

∑
Gm

δqj ,k′−k+Gm

∣∣∣Vcv H
L (k′ − k)

∣∣∣2
× δ

(
εe,k + εh,k′ −∆qj ,n

)
.

(7.71)

It is governed by the interlayer Förster coupling strength, the Fermi functions fh,k′fe,k rep-
resenting the quasi-equilibrium carrier distributions in the QW, and the delta conditions for
momentum and energy conservation. In the same way, the back-scattering rate into the QW
substrate is identified as:

Γout
qj ,n =

∑
k,k′

γqj ,n(k,k′)(1− fh,k′)(1− fe,k), (7.72)

with the typical Pauli blocking terms (1− fh,k′)(1− fe,k) preventing back-scattering into the
substrate when the relevant states are already occupied.
In order to implement the expressions for the in- and out-scattering rates numerically, the

Kronecker and Dirac delta functions are evaluated and the remaining physical wave vector
sums are transformed into integrals and then numerically discretized and truncated, which is
shown in App. B.7. To obtain the total transfer rates involving all molecular exciton states, a
sum over all n solutions of the molecular eigenproblem and over all numerically discrete qj
vectors within the first molecular BZ of the molecules is performed, cf. Eq. (B.62). Note that
the factor

Nm
d∑

i=1
cqk,nli

= Nm
d

Nm

( 1√
2
− 1√

2

)
= 0 (7.73)

is zero for the antisymmetric eigenvectors with n = 1, . . . , Nm
d belonging to the (Nm

d − 1)-fold
degenerate eigenvalue Em

− (cf. Eqs. (7.50) and (7.53)). As a consequence, only the symmetric
solutions with eigenvalues Em

qj+ will contribute (cf. Eqs. (7.51) and (7.55)). The sum over the
corresponding eigenvector components given in Eq. (7.54) reads

N2
m

Nm3
d

Nm
d∑

i=1
c
qj ,n
li

Nm
d∑

k=1
c
qj ,n

∗

lk
= 1. (7.74)

With that, the total in-scattering rate is given by:

Γin
tot =Nm ×

|m∗v|m∗cAuc∆k′y
2π~3

Nm

Nuc

1
Nm

d

Nm
d∑

j=1

Ns
dy∑

my=1

∑
γ∈{+,−}

∑
Gm

∣∣∣Vcv H
L (qj −Gm)

∣∣∣2
× fh,kmγ fe,kmγ−qj+Gm

1∣∣(|m∗v|+m∗c)kmxγ − |m∗v|(qjx −Gmx)
∣∣θ(· · · ).

(7.75)
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Table 7.1: Material parameters used to calculate the HIOS transfer rates (if not varied in the plots).

L4P relative permittivity εm 1.0
ZnO relative permittivity [Yos97] εs 7.9
ZnO band gap [Yos97] εsgap 3.4 eV
2D electron density in ZnO n2De 1.5× 1013 /cm2

2D hole density in ZnO n2Dh 1.5× 1013 /cm2

Electron temperature in ZnO Te 10 K
Hole temperature in ZnO Th 10 K
Interlayer separation ∆z 0.4 nm
Molecular coverage Nm/Nuc 10× 10 unit cells2
Detuning ∆0 15 meV

with kmγ ≡
(
kmxγ
kmy

)
and km± = 1

|m∗v|+m∗c

(
|m∗v|q′kx ±

√
· · ·
)
with

√
· · · =

[ 2
~2 |m

∗
v|m∗c(|m∗v|+m∗c)∆qj ,n − (|m∗v|+m∗c)2k2

my + 2|m∗v|(|m∗v|+m∗c)kmy(qjy −Gmy)

− |m∗v|m∗c(qjx −Gmx)2 + |m∗v|(|m∗v|+m∗c)|(qjy −Gmy)2
]1/2

.

(7.76)

∆k′y defines the discretization step size of the k′y sum, cf. App. B.7. The factor Nm
Nuc

defines
the coverage density of the sample. The out-scattering rate has the same form except for the
Fermi factor which is instead given by (1− fh,kmγ )(1− fe,kmγ−qj+Gm).

This total rate scales linearly with the total number Nm of molecules in the system. Therefore,
the rate Γin/out

tot /Nm referring to one molecule (mean in/out-scattering from the inorganic layer
into one molecule of the organic layer) is numerically evaluated in the following.

7.8 Evaluation of the numerical results
For the systematic analysis of the transfer efficiency, all material parameters are kept fixed
at the values given in Tab. 7.1 except for one parameter that is varied within a physically
reasonable range.

7.8.1 Variation of the resonance energy detuning
First, the excitation transfer rate is calculated for increasing detunings ∆qj=0 ≡ ∆0 =
Em+
qj=0 − Vm-s

mono − εsgap between the resonance energy of the molecular layer renormalized by
the interlayer monopole-monopole shifts, Em+

qj=0, and the semiconductor band gap εsgap, cf.
Fig. 7.6 (a). This inorganic-organic resonance energy detuning enters the energy conserving
delta distribution in Eqs. (7.70) and (7.72) and determines which states fulfill the energy
matching restriction for excitation transfer coupling. One way to tune ∆0 is to manipulate the
molecular structure (e.g., by exchanging ligands [Sch15]), which is beyond the scope of this
work. To include these effects into the considered simple model system focusing on the transfer
and to achieve a qualitative understanding of the involved transfer processes, the detuning ∆0
is varied.

Fig. 7.6 (b) depicts the total in- and out-scattering rates depending on ∆0. The rates have
values in the range of several ns−1, which is consistent with experimentally measured transfer
times of 100 to 300 ps in comparable hybrid structures [Blu06, Sch15]. The in-scattering rate
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(a) (b)
Figure 7.6: (a) Scheme of the system states in the semiconductor substrate (left) and molecule (right)
for increasing detuning ∆0 = Em+

0 − εsgap − Vm-s
mono (not true to scale). To simplify the picture, the

organic part is represented by a simple two-level HOMO-LUMO system, ignoring the formation of flat
molecular bands due to the intermolecular Coulomb coupling. However, these bands cover a very small
energetic range compared to the electrically pumped semiconductor states for the considered coverage
density of one molecule per 10 × 10 substrate UCs. (b) Total in- and out-scattering rates from the
inorganic to the organic component depending on the detuning between the renormalized resonance
energies of the substrate and the molecular layer. [Spe18]

into the molecular film decreases for increasing ∆0 and vanishes for detunings larger than
30 meV, whereas the out-scattering rate has a maximum at ∼ 30 meV and drops to zero towards
higher (∼ 50 meV) and lower detunings (∼ 10 meV). This suggests that an efficient device
operation is only possible for small resonance energy detunings below 10-15 meV.

The scheme of system states of Fig. 7.6 (a) enables an intuitive understanding of the observed
behavior: The carrier population in the semiconductor substrate given by the product of the
Fermi function and the density of states is depicted along the y axis. The discrete HOMO
and LUMO levels representing the molecular states are plotted for two different detunings ∆0.
Low detunings correspond to a close energetic match between the resonances of the inorganic
and organic component (cf. the left two-level system of Fig. 7.6 (a)). Since the semiconductor
substrate exhibits a high population filling in regions that obey the energy and momentum
conservation for excitation transfer, this results in an efficient in-scattering into the molecular
layer indicated by the fat green arrows in Fig. 7.6 (a). In contrast, the HOMO-LUMO level
system on the right-hand side of Fig. 7.6 (a) depicts a higher detuning and thus an increased
energy mismatch. The number of available scattering partners in the high-energy band states
of the semiconductor substrate is reduced, such that the in-scattering is attenuated (and finally
fully suppressed) for increasing detunings, as illustrated by the thin green arrow.
Up to ∆0 = 30 meV, the out-scattering rate in Fig. 7.6 (b) shows the opposite behavior

governed by the Pauli blocking terms that prevent back-scattering into the substrate. However,
Pauli blocking gets weaker with increased detuning and the out-scattering rate increases until
the energy mismatch between the molecular and semiconductor gap is too large to be bridged
by any of the populated states in the semiconductor electron-hole continuum [Spe18].
The relevant processes that determine how the transfer rate depends on the detuning can

also be discussed by means of a reciprocal space analysis, as shown in App. B.8.

7.8.2 Variation of the molecular coverage
In Fig. 7.7 (a), the excitation transfer rate from the electrically pumped ZnO substrate into
the organic film is depicted as a function of the molecular coverage density given as the number
of molecules divided by the number of semiconductor unit cells, Nm/Nuc, for different aspect
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Figure 7.7: (a) Excitation transfer rates as functions of the molecular coverage density for different
aspect ratios of the molecular coverage. (b) Total in- and out-scattering rates depending on the 2D
carrier concentration in the ZnO substrate for a fix aspect ratio of 1 : 1 (10× 10 coverage) and charge
carrier temperature of 10 K. The dashed gray line marks the linear growing regime the in-scattering
rate enters at n2De/h ≈ 1.8× 1013 cm−2. [Spe18]

ratios of molecular coverage. The aspect ratio nx : ny is defined as the ratio between the
number of semiconductor UCs matching a molecular UC in x direction and the number in y
direction. It turns out that a variation of the coverage densities and aspect ratios changes the
transfer efficiency dramatically (by orders of magnitude). To make the calculation numerically
feasible over a large parameter range, the transfer rate is calculated for a high detuning of
∆0 = 30 meV. Smaller detunings show the same qualitative behavior.

When going towards low molecular coverages, the size of the molecular UC in real space is
increased, whereas the size of the molecular BZ is reduced [Ver14]: The molecular reciprocal
grid points get denser until a quasi-continuous density of reciprocal lattice vectors is reached.
As a consequence, momentum conservation is fulfilled more easily, thus increasing the interlayer
Coulomb coupling per molecule in the case of low molecular coverages. For very small molecular
coverages (left-hand side of Fig. 7.7), the distance between two neighboring molecules gets
so large that they do not interact and the particular UC geometry determined by the aspect
ratio does not play a role. Therefore, independent of the aspect ratio, the transfer rates tend
towards a common low-coverage limit.
In contrast, for increasing molecular coverages, the behavior of the transfer rate strongly

depends on the aspect ratio. This is a consequence of two counteracting processes: On the one
hand, increasing the total number of molecules per 100 substrate UCs improves the coupling
to the substrate, since the coverage density Nm/Nuc enters the transfer rate of Eq. (7.75). On
the other hand, the number of allowed momentum transfer processes decreases for increasing
coverages due to the reduced reciprocal grid density.

The dependence on the aspect ratio reflects the spatial orientation of the molecular transition
dipole moment DLH along the x axis (cf. Eq. (7.30)). For aspect ratios less than 1, the UC has
a larger extent in y direction than in x direction. This increases the number of unfavorable
scattering channels perpendicular to the effective dipole moment and results in a weaker
interaction for smaller aspect ratios. In fact, the transfer rate (normalized to the molecule
number) decreases by orders of magnitude when increasing the molecular coverage inside
typical ranges due to the reduction of allowed transfer processes, which is detrimental for the
device performance. For aspect ratios greater than 1 that coincide with the dipole orientation,
this effect is strongly attenuated or even inverted in the case of a 3 : 1 coverage. Here, the
increase in transfer efficiency for high coverages outweighs the counteracting decrease of allowed
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Figure 7.8: Electron ((a) and (c)) and hole ((b) and (d)) Fermi distributions for the parameter set
given in Tab. 7.1 and varying temperatures ((a) and (b)) and charge carrier concentrations ((c) and
(d)). [Spe18]

momentum transfer processes. The maximum molecular coverage without steric overlap is one
molecule per 6× 2 substrate UCs with an aspect ratio of 3 : 1 (cf. purple curve in Fig. 7.7).
This configuration will be most likely in the experiment with one or few fully closed organic
layers on top of the substrate. The presented calculations show that such a dense coverage in
combination with a high aspect ratio is beneficial for the device performance [Spe18].

7.8.3 Tuning the electrical driving
In this section, it is analyzed how changes in the charge carrier distribution in the semiconductor
bands of the ZnO substrate in terms of the carrier concentration and temperature (determined
by the electrical pump strength) influence the excitation transfer efficiency across the hybrid
interface. The charge carrier densities n2De/h and temperatures Ti enter the Fermi distribution of
the electron and hole continuum in the semiconductor substrate through the chemical potential
in Eq. (7.64), as shown in Fig. 7.8 for different values of n2De/h and Ti. Therefore, it is expected
that the transfer rate is highly sensitive to changes in the charge carrier occupation determined
by the density and temperature.

Variation of the carrier concentration

Figure 7.7 (b) shows the in- and out-scattering transfer rates in dependence of the 2D charge
carrier concentrations n2De/h in the inorganic constituent. When going towards high carrier
concentrations, more and more carriers are available as scattering partners at energies that
fulfill the energy conservation, thus increasing the in-scattering rate per molecule. For low
carrier concentrations, only electronic states close to the Γ point are occupied, whereas higher
energy and momentum states are not populated, cf. Fig. 7.8 (c) and (d). Therefore, the transfer
rate shows an initial non-linear increase until the momentum- and energy-allowed interaction
channels are saturated. Then it enters a period of linear growth at n2De/h ≈ 1.8× 1013 cm−2
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Figure 7.9: Total in-scattering (a) and out-scattering (c) rates depending on the charge carrier temper-
ature Te/h and energetic detuning ∆0. The thin gray contour lines serve as guide to the eye. The lower
panels (b) and (d) represent horizontal cuts through the 2D plots (a) and (c) (indicated by the dashed
lines) at fixed detunings ∆0 = 15 meV (orange curves), 22.5 meV (blue curves), and 30 meV (purple
curves). The red circles mark the standard values of Tab. 7.1 used throughout this work. [Spe18]

marked by the dashed gray line in Fig. 7.7 (b). This linear growing regime is dictated simply
by the constant growth of the carrier density.
Surprisingly, up to n2De/h = 0.7× 1013 cm−2, also the out-scattering rate increases before

decreasing again. The unexpected initial growth of the out-scattering rate is explained as
follows: For very low carrier densities, only few scattering channels are available in the absence
of higher energy and momentum states. The possible transfer processes are therefore restricted
to a small energy and momentum window, thus reducing both the in- and out-scattering
excitation transfer efficiency. The higher the carrier concentrations become, the more electron-
hole continuum states are occupied and contribute to the transfer. However, at a certain carrier
concentration, Pauli blocking is reached in the semiconductor substrate and starts to suppress
back-scattering into the ZnO QW until this process becomes negligibly small.

Variation of the carrier temperature

In this section, the interplay between the resonance energy detuning ∆0 and the charge carrier
temperatures Te/h is discussed by calculating 2D maps for the in-scattering (Fig. 7.9 (a)) and
out-scattering rates (Fig. 7.9 (c)) depending on the temperature (depicted along the x axis)
and the detuning (varied in y direction). To better resolve the different regimes, Fig. 7.9 (b)
and (d) show horizontal cuts through the 2D maps (a) and (c), respectively, at fixed detunings
∆0 = 15 meV (orange curve), 22.5 meV (blue curve), and 30 meV (purple curve). The positions
of the cuts are marked by the dashed lines in the corresponding 2D maps.
In the region of higher temperatures > 90 K, the in- and out-scattering rates are less

sensitive to changes in the resonance energy detuning and temperature. Here, the population of
higher electronic band states in the semiconductor substrate is increased, such that the energy
conservation condition is more easily fulfilled. As expected, the back-scattering rate shows a
monotonous growth with increasing temperature independent of the detuning, cf. Fig. 7.9 (c)
and (d).
However, the in-scattering rate depicted in the left column of Fig. 7.9 shows a rather

unintuitive behavior: At large detunings ∆0 > 25 meV (upper region in the 2D map of Fig. 7.9
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Figure 7.10: (a) Total in-scattering rate as a function of the rotational angle of the molecules within
the QW plane around the z axis. (b) Total in-scattering rate as function of the interlayer separation
between the ZnO QW and the molecular layer. [Spe18]

(a) and purple curve in the graph of Fig. 7.9 (b)), the in-scattering rate increases monotonously
with increasing temperature, as one would expect for the same reasons as stated above in the
case of the back-scattering rate (increased population filling of energy-conserving states). In
contrast, for lower detunings ∆0 < 25 meV (lower region in the 2D map of Fig. 7.9 (a) and
blue and orange curves in the graph of Fig. 7.9 (b)), the transfer rate exhibits initially a slight
increase, but then drops down again for higher temperatures. This is explained as follows:
Small detunings require a close energetic match between the semiconductor band states and
the molecular gap. This condition is only fulfilled by low-energy states close to the Γ point.
However, when increasing the temperature, the electron-hole continuum population is shifted
from low energy states close to the Γ point at k = 0 towards high energy states (cf. Fig. 7.8).
Therefore, combining high temperatures and small resonance energy detunings is negative for
the transfer efficiency.
In contrast, the back-scattering rate in Fig. 7.9 (c) increases monotonously for increasing

detunings for temperatures above 30 K. Below that, the out-scattering drops down again when
going to higher detunings > 30 meV, which is consistent with the non-monotonous shape of the
out-scattering curve in Fig. 7.6 (b) for T = 10 K. Here, the large energetic detuning between
the inorganic and organic part counteracts the fact that at low temperatures only low energy
band states are populated [Spe18].

7.8.4 Variation of the orientation and distance of the molecular film
As detailed in Sec. 7.3, the validity of the partial charge technique exceeds the common
dipole-dipole approximation. Nevertheless, effective dipole moments can be assigned to the
two constituents by summing over the respective partial charges and their atomic positions
according to Eqs. (7.29) and (7.30). Therefore, it is expected that the transfer efficiency
changes for varying orientations of the molecules on top of the semiconductor surface. In the
geometry found by DFT calculations, the effective dipole moments of the organic and inorganic
component are oriented almost perpendicular to each other within the QW xy plane. Therefore,
it should be instructive to rotate the molecules within their plane around the vertical z axis
in order to bring the effective dipole moments to coincidence. Figure 7.10 (a) depicts the
transfer rate into the molecular layer as a function of the rotational angle of the molecules
around the z axis. The rate shows a cos2-like behavior with maxima at roughly 85◦ and 265◦,
where the effective dipole moments are approximately parallel. This is completely in line with
the expectation, since the squared absolute value of the interlayer Förster coupling element
enters the rate (cf. Eq. (7.70)). Besides the simple cos2 dependence of the interlayer Förster
coupling element, also other parameters are affected when rotating the molecules, since also
the molecular band dispersion and therefore the energy matching condition change due to the
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altered intermolecular coupling. Moreover, the rate does not drop to zero for perpendicular
effective dipole moments as one would expect in the case of a pure dipole interaction, since
there is always a substantial remaining coupling strength due to the spatial distribution of the
partial charges. At perpendicular dipole moments, the rate still is around 24% of the maximum
value at parallel dipoles.

In Fig. 7.10 (b), the transfer rate into the molecular layer is depicted depending on the
interlayer distance ∆z between the semiconductor surface and the molecular film. Different
separations between the QW and the adsorbed organic layer can be realized experimentally,
e.g., by inserting a spacer layer of variable thickness [Blu06]. As expected, the transfer efficiency
exhibits a strong decrease for increasing interlayer separations, since the interlayer Förster
coupling strength gets weaker for increasing distances [Spe18].

7.9 Summary
In this chapter, a microscopic theory for deriving the excitation transfer rate from electron-hole
continuum states in an electrically pumped semiconductor substrate to excitonic states in a
molecular adlayer was developed using a density-matrix equation technique. Both electrostatic
shifts and Förster-type excitation transfer within the organic film as well as between the two
constituents were incorporated in the calculations. A partial charge technique for the molecules
and the semiconductor substrate was used to model the microscopic coupling elements beyond
the common dipole-dipole treatment, where the microscopic input parameters were taken from
DFT calculations of the electrostatic potential. The numerical evaluation revealed that the
excitation transfer rate strongly depends (sometimes in an unintuitive way) on multiple, but
tunable parameters such as the resonance energy detuning, the molecular coverage density, the
charge carrier temperature and concentration in the ZnO substrate, the spatial orientation
of the flat-lying molecules, and the interlayer separation. The calculations suggest that the
coupling efficiency can be improved substantially by altering the geometric arrangement of the
hybrid system and by varying the pumping strength. The effect of Förster coupling between
the two constituents is governed by the mutual orientation of the effective dipole moments and
the microscopic momentum and energy selection rules, making HIOS highly versatile building
blocks for semiconductor device application.

In conclusion, the following guidelines are recommended for optimized device performance: (i)
Using short distances between the constituents is advantageous for exploiting near-field effects
and the effective dipoles of molecules and semiconductor should be aligned. (ii) A densely
packed molecular film on top of the semiconductor substrate is beneficial for the transfer
efficiency, and even further layers of molecules with smaller band gaps should be added to act
as a cascade and suppress back-scattering into the substrate. (iii) A high carrier concentration
must be ensured such that in-scattering outweighs out-scattering at the operating point and
the resonance energy of the molecular layer and the semiconductor band gap should be aligned
accordingly.
Of course, the model system treated in this chapter is idealized by assuming a perfect

crystalline structure of the ZnO QW as well as a highly ordered molecular layer. However,
in real systems, the inorganic film exhibits well width fluctuations which may lead to the
formation of semiconductor excitons localized by disorder. In addition, in many cases the
molecules will form a disordered film on top of the substrate. For these systems, a Bloch basis
description as applied in this chapter is not practical and a treatment of disorder in position
space becomes necessary. Such a theoretical treatment is developed in the next chapter.





8 Coupling of Wannier excitons in a
disordered quantum well to Frenkel
excitons in an organic film

8.1 Introduction
Excitonic effects dominate the optical and electronic properties of dielectric nanomaterials due
to the strong confinement. Two types of excitons are distinguished: In organic materials with
small relative permittivity such as weakly bound molecular layers, Frenkel excitons [Fre31]
form with a high exciton binding energy of up to 1 eV. They are located on a small spatial scale,
since both electron and hole reside within one molecule. In semiconductor nanostructures, the
binding energy is usually much lower (typically between 1 and 10 meV) due to the enhanced
dielectric screening, and the relative wave function of the exciton can extend over hundreds of
unit cells (UCs). These types of excitons interacting on a large spatial scale and giving rise to
a variety of long-range many-particle effects are referred to as Wannier excitons [Wan37].
Even very advanced growth techniques such as molecular beam epitaxy are not able to

provide atomically smooth semiconductor interfaces and the quantum well (QW) width can
fluctuate over a few monolayers [Zim97b, Zim97a], cf. Fig. 8.1 (a). Therefore, the disorder-
induced localization of excitons due to interface roughness and alloy fluctuations is a typical
phenomenon observed in many (multi-)QW structures [Sum72, Wei81, Din92, Tak94, Lef98].
With regard to possible optoelectronic applications of semiconductor nanostructures, it is
essential to study the disorder-induced carrier localization dynamics. The spatial variations in
the confinement potential determine the spectral position and inhomogeneous broadening of
the exciton resonances [Heg85, Zim03, Sin17].

Compared to the highly ordered model considered in Chap. 7, a more elaborate theoretical
approach including structural disorder in both the inorganic and organic component is developed
in this chapter to describe the hybrid system. The analysis of the last chapter yielded a
fundamental understanding of exciton transfer mechanisms in hybrid inorganic/organic systems
(HIOS) and their dependence on material parameters and therefore served as a starting
point towards the description of more realistic (and thus, theoretically more complex) hybrid
structures. The new theoretical framework developed in the course of this chapter includes the
treatment of disorder, radiative dephasing, and exciton-phonon scattering processes in both
the organic and inorganic part.

This chapter is organized as follows: First, the inorganic semiconductor substrate is treated
in Sec. 8.2. An excitonic basis in terms of disorder eigenstates is introduced in Sec. 8.2.1 and
the electron-phonon (Sec. 8.2.2) and electron-photon Hamiltonians (Sec. 8.2.3) are deduced
in this new eigenbasis, resulting in the total Hamiltonian of Sec. 8.2.4. Equations of motion
(EOM) for the ZnO excitons are derived in density matrix formalism in Sec. 8.2.5. Finally,
the incoherent optical pumping of the substrate is included phenomenologically in a Lindblad
approach, cf. Sec. 8.2.6. In the next Sec. 8.3, the organic part is treated. The intermolecular
Förster interaction causes that the local molecular basis states introduced in Sec. 8.3.1 are
hybridized into delocalized molecular exciton states, cf. Sec. 8.3.2. The coupling to vibrational

103



104 8 Coupling of Wannier and Frenkel excitons in a hybrid inorganic/organic system

(a) (b)
Figure 8.1: (a) Schematic of a semiconductor QW with disorder due to well width fluctuations of
average size (correlation length) ζ. (b) Simplified level scheme of a QW embedded in a surrounding
material with valence and conduction band offsets ∆εvb and ∆εcb, respectively.

modes in the molecular layer is treated in Sec. 8.3.3. Finally, Sec. 8.4 contains the full treatment
of the hybrid system, containing electrostatic and Förster-type Coulomb coupling between the
inorganic and organic constituent (cf. Sec. 8.4.1). For the subsequent perturbative treatment
in density-matrix formalism, the Hamiltonian is translated into a Liouville propagator in
Sec. 8.4.2. With that, the amplitudes for transitions of the system between different exciton
densities can be derived in a perturbative approach in Sec. 8.4.3 and a cumulant expansion
technique is used to treat the coupling to the phonon bath in the organic layer, cf. Sec. 8.4.4.
Finally, time-independent transition rates are derived in Sec. 8.4.5 that enter the EOM for the
molecular and semiconductor exciton dynamics, as demonstrated in Sec. 8.4.6. A summary
and outlook is given in Sec. 8.5.

8.2 Inorganic part: Wannier excitons including interface
roughness, acoustic phonon scattering, and radiative
recombination

This section introduces a theoretical framework for treating QW excitons localized by disorder
due to well width fluctuations. The used microscopic model incorporates exciton-phonon
scattering, radiative dephasing, and incoherent optical pumping. The theoretical approach is
based on works of R. Zimmermann et al. [Zim97b, Zim97a, Zim03]. First, the exciton wave
functions are derived as disorder eigenstates in Sec. 8.2.1.

8.2.1 Exciton states in disordered quantum wells
First, an orthonormal two-particle basis is introduced, given as

|k1,k2〉 = â†c,k1
âv,k2

|φs0〉. (8.1)

Here, the annihilation (creation) operator â(†)
λ,k for an electron with wave vector k in band

λ = c, v has been introduced. |φs0〉 denotes the electronic ground state of the semiconductor
QW, where the valence bands are fully occupied. The transition to position space is possible
through a Fourier series:

|re, rh〉 = 1
Vs

∑
k1,k2

ei(k1·re−k2·rh)|k1,k2〉, (8.2)

where Vs denotes the sample volume. The wave function for exciton state α is defined as
Ψs
α(re, rh) ≡ 〈re, rh|Xs

α〉.
Provided that the exciton binding energy is much larger than the disorder induced broadening,

but small compared to the energetic subband separation, the total exciton wave function
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Ψs
α(re, rh) can be factorized into the envelope functions ξe(ze) and ξh(zh) in the growth (z)

direction perpendicular to the QW plane and the in-plane part Ψ s
α(ρe,ρh) in the QW xy plane

[Zim97b, May99]:
Ψs
α(re, rh) = ξe(ze)ξh(zh)Ψ s

α(ρe,ρh), (8.3)
where ri = (xi, yi, zi) denotes the electron (i = e) and hole (i = h) coordinates and ρi ≡ (xi, yi)
the corresponding two-dimensional (2D) coordinates in the QW xy plane. The envelope
functions obey the Schrödinger equation for the confinement potential Ui(zi) in z direction:(

− ~2

2mi

∂2

∂z2
i

+ Ui(zi)
)
ξi(zi) = Eziξi(zi) with i = e, h. (8.4)

In the considered system, Ui(zi) can be modeled as finite potential well of width L̄QW = 4.5 nm
and solved numerically. Only excitons with electrons in the lowest and holes in the highest
subbands are considered. The depth of the potential well is given by the band offsets for the
valence and conduction band, i.e., the energetic band edge difference between the well and
barrier material, cf. Fig. 8.1 (b).1 For a two-band model in effective mass approximation, the
stationary Schrödinger equation for the 2D exciton wave function reads(
− ~2

2me
∇2
ρe −

~2

2mh
∇2
ρh

+Ve-h(ρe−ρh) +Ve(ρe) +Vh(ρh)
)
Ψ s
α(ρe,ρh) = Es

αΨ
s
α(ρe,ρh). (8.5)

Here, Es
α = Es

α,3D −
∑
iEzi denotes the exciton energy, εr the relative permittivity, mi the

effective mass, and ∇2
ρi the Laplace operator for the position of the electron (i = e) and

hole (i = h). Ve(ρe) and Vh(ρh) are the disorder potentials responsible for the single-particle
localization. Ve-h(ρe − ρh) represents the attractive Coulomb interaction between the electron
and the hole and is given as an effective in-plane potential incorporating the envelope functions:

Ve-h(ρe − ρh) = − e2

4πε0εr

∫
dze

∫
dzh

|ξe(ze)|2|ξh(zh)|2√
(ρe − ρh)2 + (ze − zh)2

. (8.6)

The disorder potentials Ve(ρe) and Vh(ρh) account for the spatial variation in the QW width

h(ρi) = L̄QW + ∆h(ρi), (8.7)

where ∆h(ρi) is the deviation from the mean film thickness L̄QW. The spatially dependent
width h(ρi) is normally distributed around L̄QW with standard deviation ∆LQW ∼ 0.1 nm,
which is chosen in a way that it suits the inhomogeneous broadening of the sample [Sin17].
The thickness fluctuation characterized by the mean deviation ∆LQW can be attributed to
a change in the energy of an infinite potential well, thus giving a reasonable estimate of the
mean disorder energy ∆E(∆LQW) corresponding to the considered thickness fluctuation:

∆E(∆LQW) =
∣∣∣∣∣ dEgs

dL̄QW

∣∣∣∣∣∆LQW = ~2π2

µL̄3
QW

∆LQW. (8.8)

Here, Egs denotes the analytic solution for the ground state energy of a particle in an infinite
potential well and µ ≡ 1

/( 1
me

+ 1
mh

)
= memh/(me + mh) the exciton reduced mass. The

lateral extent of the well width fluctuations is determined by the so-called correlation length
ζ ∼ 30 nm representing the average diameter of the disorder islands [Zim97a]:

〈h(ρ)h(ρ′)〉 = c2 exp
[
−|ρ− ρ

′|2

2ζ2

]
(8.9)

1 In a Zn0.9Mg0.1O/ZnO heterostructure, band offsets ∆εvb = 0.06 eV and ∆εcb = 0.09 eV have been measured
by photoelectron spectroscopy [Zha13].



106 8 Coupling of Wannier and Frenkel excitons in a hybrid inorganic/organic system

with c being an arbitrary constant. The subband energies Ee
gs and Eh

gs for the electron and
hole are approximated as lowest energy solutions for an infinite potential well of variable width
h(ρi) (cf. Ref. [Sin17]):

Eigs(h(ρi)) = ~2π2

2mih2(ρi)
≈ ~2π2

2miL̄2
QW
− ~2π2

miL̄3
QW

∆h(ρi). (8.10)

Assuming small well width variations, these subband energies have been expanded in a Taylor
series up to first order around the average thickness L̄QW with ∆h(ρi) ≡ h(ρi)− L̄QW in the
last step of Eq. (8.10). The first-order contribution is identified as the disorder potential Vi(ρi):

Ve(ρe) = ~2π2

meL̄3
QW

∆h(ρe), Vh(ρh) = ~2π2

mhL̄3
QW

∆h(ρh), (8.11)

such that the disorder potential is directly proportional to the spatially dependent variation in
the QW width: Vi(ρi) ∝ ∆h(ρi). The final numerical results are obtained by averaging over
multiple random realizations of the disorder potential.

In the limit of weak localization (where the internal motion is hardly affected), the relative and
center-of-mass (COM) motion can be separated via a coordinate transform and a factorization
ansatz is made in order to reduce the complexity of the 4-dimensional partial differential
equation for Ψ s

α(ρe,ρh) given in Eq. (8.5):

Ψ s
α(ρe,ρh) = φs1s(r)ψs

α(R) (8.12)

with the relative coordinate r ≡ ρe − ρh and the COM coordinate R ≡ (meρe +mhρh)/M .
M ≡ me +mh is the total mass. The relative motion satisfies the Wannier equation:

(
− ~2

2µ∇2
r + Ve-h(r)

)
φs1s(r) = Es

relφ
s
1s(r), (8.13)

where Es
rel the binding energy of the exciton in the ideal QW (without disorder). The theoretical

treatment focuses on the lowest bound 1s exciton states, since higher states are assumed to be
energetically well separated and therefore do not play a major role in the considered dynamics.
The COM Schrödinger equation is obtained by inserting the separation ansatz Eq. (8.12)

into Eq. (8.5), multiplying with φs1s(r) and integrating over the relative coordinate r:

(
− ~2

2M∇2
R + VCOM(R)

)
ψs
α(R) = Es

α,COMψ
s
α(R) (8.14)

with the localization energy Es
α,COM = Es

α − Es
rel and the effective disorder potential of the

COM motion given as:

VCOM(R) =
∫

d2r |φs1s(r)|2
(
Ve
(
R+ mh

M
r
)

+ Vh
(
R+ me

M
r
))
. (8.15)

The COM wave functions are normalized according to
∫
AQW

d2R ψs
α
∗(R)ψs

β(R) = δα,β . In a
numerical evaluation, typically a few thousand of the lowest COM exciton states have to be
calculated, such that a sufficient number of bright and dark COM eigenstates is included in
order to account for the exciton-phonon coupling [Sin17]. A treatment in the basis of disorder
eigenstates has the advantage that it avoids off-diagonal contributions due to disorder scattering
[Zim03].
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8.2.2 Electron–phonon interaction
Since the system dynamics at temperatures up to room temperature are of interest, the
interaction with lattice vibrations will play an important role for the system dynamics. Usually,
three types of electron–phonon interactions are distinguished in a semiconductor: the polar
coupling to optical phonons, the piezoelectric coupling to acoustic phonons, and the deformation-
potential coupling to acoustic phonons. The latter coupling type describes a periodic longitudinal
displacement of the ions in the crystal in the form of compressions and expansions. The
corresponding change in the band edge energy δEλ is determined by the volume deformation
potential Dλ for band λ = c, v (or De/h with De = Dc and Dh = −Dv):2

δEλ = Dλ
δV

V
. (8.16)

In fact, longitudinal-acoustic (LA) phonon scattering via deformation-potential coupling makes
the dominant contribution to the dephasing of the exciton dynamics in a disordered QW,
whereas optical phonon scattering has no notable influence for near band-gap excitations
[Tak85, Sia01, Zim03]. Starting from the general electron–phonon Hamiltonian derived in
Sec. 2.2.2, the limit of long wavelengths is considered with q ≈ 0, where Umklapp processes
with Gs 6= 0 are neglected. As a consequence, the matrix elements for transverse phonon
coupling vanish in the case of normal processes with Gs = 0 due to q · ej,q = 0 for transverse
polarization (cf. Eq. (2.50)). Instead, only longitudinal phonons contribute with ej,q → q̂ (in
the case of non-degenerate bands) [Mah00]. Furthermore, it is assumed that all interactions
with the lattice vibrations where a phonon is absorbed or emitted are diagonal with respect
to the involved electronic states: λ = λ′ in Eq. (2.49). This is reasonable since the electronic
structure is described as two-band model where only the lowest conduction subband and
highest valence subband are considered. The corresponding large energy gap is unlikely to be
overcome by acoustic phonons. For simplicity, a plane-wave representation is chosen (i.e., the
free bulk solution) where ρ̂(q) =

∑
λ,k â

†
λ,k+qâλ,k:

Ĥs
el-ph, LA =

∑
λ,k

∑
j,q

gλj,q
(
b̂j,q + b̂†j,−q

)
â†λ,k+qâλ,k (8.17)

with the matrix element for the deformation-potential coupling to LA phonons [Tak85, Mah00]:

gλj,q ≡
√

~ωj,q
2ρsVsu2

j

Dλ (8.18)

with sound velocity uj = ωj,q/q (assuming a linear dispersion of the acoustic phonons).3
Now, the electron–phonon coupling Hamiltonian in Eq. (8.17) is reformulated in terms of

the exciton basis introduced in Sec. 8.2.1:

Ĥs
el-ph, LA =

∫
d3re

∫
d3rh

∑
α,β

|Xs
α〉〈Xs

α|Ĥs
el-ph, LA|re, rh〉 〈re, rh|Xs

β〉︸ ︷︷ ︸
=Ψs

β
(re,rh)

〈Xs
β | (8.19)

=
∑
α

∑
j

(
b̂j,0 + b̂†j,0

)
gvj,0|Xs

α〉〈Xs
α|+

∑
α,β

∑
j,q

gαβj,q
(
b̂j,−q + b̂†j,q

)
|Xs

α〉〈Xs
β |. (8.20)

2 First-principles calculations yield deformation potentials Dv = −0.6 eV and Dc = −2.3 eV for ZnO [Jan07].
3 A mass density of ρs = 5.676 g/cm3 and average speeds of sound of 6090 m/s (longitudinal) and 2760 m/s
(transverse) have been found for ZnO [Bat62].
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The matrix element gαβj,q for deformation-potential scattering with disorder eigenstates is
expressed by [Zim97b]:

gαβj,q =
√

~ωj,q
2ρsVsu2

j

(
DcKe(qz)χ

(
mh
M q‖

)
−DvKh(qz)χ

(
me
M q‖

)) ∫
d2R ψs

α
∗(R)eiq‖·Rψs

β(R),

(8.21)
with Ki and χ being the Fourier transforms of the squared confinement and relative exciton
wave functions ξi and φs1s, respectively:

Ki(qz) ≡
∫

dzi |ξi(zi)|2eiqzzi and χ
(
mi
M q‖

)
≡
∫

d2r |φs1s(r)|2ei
mi
M q‖·r. (8.22)

Here, the factorization Ψs
α(re, rh) = ξe(ze)ξh(zh)φs1s(r)ψs

α(R) discussed in Sec. 8.2.1 has been
used. The first term of Eq. (8.20) is omitted in the following, since it only causes a constant
phonon-induced shift in the system energy.

8.2.3 Electron–photon interaction
The quantized interband electron-photon interaction derived in Sec. 2.2.1 is given by

Ĥs
el-pt =

∑
l,q

∑
k,k′

{(
M cv,kk′
l,q ĉl,q+Mvc,kk′∗

l,q ĉ†l,q
)
â†c,kâv,k′ +

(
Mvc,kk′
l,q ĉl,q+M cv,kk′∗

l,q ĉ†l,q
)
â†v,kâc,k′

}
.

(8.23)
Two polarization modes l = TE,TM of the electric field are distinguished: the transverse
electric (TE, electric field in the QW xy plane) and transverse magnetic (TM, electric field in
the plane of incidence) mode. The respective optical matrix elements are given by [Zim03]

Mλλ′,kk′

TE,q ≡Mλλ′

TE,qδk,k′ = i

√
~ωq

2ε0εrV
dλλ′δk,k′ , (8.24)

Mλλ′,kk′

TM,q ≡Mλλ′

TM,qδk,k′ = i

√
~ωq

2ε0εrV
qz
q
dλλ′δk,k′ , (8.25)

where dλλ′ denotes the microscopic interband dipole moment at k ≈ 0. Note that Mλλ′∗
l,q =

−Mλ′λ
l,q . Rewriting the Hamiltonian in the exciton basis defined by the disorder eigenstates

|Xs
α〉 as in the previous Sec. 8.2.2 leads to

Ĥs
el-pt =

∑
α

∑
l,q

(
Mα
l,q ĉ
†
l,q|φ

s
0〉〈Xs

α|+Mα∗
l,q ĉl,q|X

s
α〉〈φs0|

)
(8.26)

with the redefined optical matrix element in excitonic basis

Mα
l,q ≡Mvc

l,qφ
s
1s(0)Oeh

∫
d2R ψs

α(R) (8.27)

and the confinement overlap Oeh =
∫
dz ξe(z)ξh(z) (defined as in Ref. [Zim03]).4 The optical

matrix element contains the integrals over the excitonic wave functions with equal electron
and hole coordinates re = rh, i.e., it is determined by the probability of finding an exciton
with electron and hole at the same position (optically bright exciton).
4 Note that in the upper Eq. (8.26), terms that violate energy conservation (e.g., by describing the creation of
an exciton under photon emission) and describe the creation of more than one exciton have been neglected.
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8.2.4 Total Hamiltonian for disordered quantum wells in exciton basis
All in all, the total Hamiltonian for the QW substrate including disorder, acoustic phonon
scattering, and radiative recombination in the excitonic basis reads:

Ĥs =
∑
α

Es
α|Xs

α〉〈Xs
α|+

∑
j,q

~ωj,q b̂†j,q b̂j,q +
∑
l,q

~ωq ĉ†l,q ĉl,q +
∑
α,β

∑
j,q

gαβj,q
(
b̂j,−q + b̂†j,q

)
|Xs

α〉〈Xs
β |

+
∑
α

∑
l,q

(
Mα
l,q ĉ
†
l,q|φ

s
0〉〈Xs

α|+Mα∗
l,q ĉl,q|X

s
α〉〈φs0|

)
.

(8.28)

Note that the ground state energy Es
0 has been set to zero.

8.2.5 Equations of motion in density matrix formalism
According to the above Hamiltonian for the disordered QW of Eq. (8.28), the excitons do not
form a closed system, but they couple to phonons and photons acting as an environment in
thermal equilibrium that is often referred to as bath or reservoir. The reduced system density
operator ρ̂S ≡ trB[ρ̂] is derived by taking the trace of the combined system and bath density
operator ρ̂ over the reservoir states [Car99, Bre02]. The quantities of interest for the further
study are the expectation values of the exciton density matrix elements. These are on the one
hand the exciton densities

ρsαβ ≡ 〈|Xs
α〉〈Xs

β |〉 = trS
[
|Xs

α〉〈Xs
β | trB[ρ̂]

]
= 〈Xs

β |ρ̂S|Xs
α〉 = trB

[
〈Xs

β |ρ̂|Xs
α〉
]

(8.29)

describing the population of exciton state Xs
α for α = β or the amplitude for a transition

from Xs
β to Xs

α for α 6= β. Accordingly, the polarization between an exciton state Xs
α and the

electronic ground state φs0 is given by

ρsα0 ≡ 〈|Xs
α〉〈φs0|〉 = trB

[
〈φs0|ρ̂|Xs

α〉
]
. (8.30)

The ground state population is calculated as

ρs00 ≡ 〈|φs0〉〈φs0|〉 = trB
[
〈φs0|ρ̂|φs0〉

]
. (8.31)

The von Neumann equation i~∂tρ̂S = [Ĥs, ρ̂S] yields the following EOM for the exciton
densities and polarizations and the ground state population:

∂

∂t
ρsαα =− 2Rs

αρ
s
αα +

∑
β

γsα←βρ
s
ββ , (8.32)

∂

∂t
ρsαβ =

( i
~
(
Es
α − Es

β

)
−
(
Rs
α +Rs

β

))
ρsαβ + δαβ

∑
ζ

γsα←ζρ
s
ζζ , (8.33)

∂

∂t
ρsα0 =

( i
~
Es
α −Rs

α

)
ρsα0, (8.34)

∂

∂t
ρs00 =

∑
α

rαρ
s
αα. (8.35)

A detailed derivation including Markovian solutions of phonon- and photon-assisted density
matrices is given in App. C.1. Rs

α denotes the total out-scattering rate

Rs
α ≡

1
2

(
rα +

∑
β

γsβ←α

)
(8.36)
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composed of the spontaneous radiative decay rate

rα ≡
2π
~
∑
l,q

∣∣Mα
l,q

∣∣2δ(Es
α − ~ωq

)
(8.37)

and the phonon scattering rate

γsβ←α ≡
2π
~
∑
j,q

∣∣gβαj,q ∣∣2{(nj,q + 1
)
δ
(
Es
β − Es

α + ~ωj,q
)

+ nj,qδ
(
Es
β − Es

α − ~ωj,q
)}
. (8.38)

These two rates are further evaluated in App. C.1.1. Two different processes can be distinguished:
The second term in Eq. (8.38) describes the transition to an energetically higher state via
phonon absorption. As a prerequisite, thermal energy is necessary to generate phonons, such
that this term is purely temperature dependent. The transition to an energetically lower state
under phonon emission is described by the first term. This process is either spontaneous or
stimulated due to thermal energy.
The system of EOM Eqs. (8.32), (8.33), (8.34), and (8.35) shows that only the exciton

population ρsαα is refilled by other populations via phonon scattering. Therefore, it is long-
lived compared to the fast decaying polarizations ρsαβ (α 6= β). The EOM for the exciton
density Eq. (8.32) does not incorporate off-diagonal polarizations and is therefore only suited
to describe the long-time dynamics after the initially relevant polarizations have decayed.
The exciton number is conserved with the exception of radiative decay processes into the
ground state [Zim03]. The EOM for the exciton polarization ρsα0 of Eq. (8.34) is easily solved
by ρsα0(t) = exp

[
( i~E

s
α − Rs

α)t
]
. It decays with the rate Rs

α due to phonon scattering and
radiative recombination. It follows that also Eq. (8.33) is analytically solved by factorizing
ρsαβ(t) = ρsα0(t)ρs∗β0(t) for α 6= β. Thus, only the EOM for the diagonal exciton density Eq. (8.32)
is left to be solved numerically.

8.2.6 Phenomenological Lindblad approach
So far, the external optical pumping of the semiconductor substrate has not been encountered
in the EOM derived in Sec. 8.2.5. In many spectroscopic experiments, the laser excitation
takes place at energies far above the band gap given by the lowest bound exciton of the system.
However, the available computational memory restricts the number of calculated excitonic
states to a very limited energy range above the band gap (even if several thousand lowest
eigenstates are calculated). In order to phenomenologically include the incoherent optical
pumping, a Lindblad approach is chosen [Car99, Bre02]. Therefore, the Lindblad dissipator D
is introduced that modifies the von Neumann equation in the following way:

∂

∂t
ρ̂S = − i

~
[Ĥs, ρ̂S] +Dρ̂S (8.39)

with
Dρ̂S ≡

∑
k

γk
2
(
2Âkρ̂SÂ

†
k − Â

†
kÂkρ̂S − ρ̂SÂ

†
kÂk

)
. (8.40)

Here, the Lindblad operators Â(†)
k describe processes that occur at a rate γk in the system.

In a phenomenological approach similar to [Cas17], a probability ensemble of high-energy
states in the semiconductor substrate is introduced. They are assumed to form a quasi-
continuous band of high energetic states labeled h̃. At a given initial time, a short laser pulse
excites charge carriers from the ground state into the ensemble of high-energy band states at a
rate γexc. The probability ensemble h̃ itself can interact with the low-energy exciton states Xs

α

in two ways: First, states of the high-energy band h̃ can decay into the states Xs
α under phonon
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Figure 8.2: Schematic of the Lindblad processes involving the high-energy band h̃.

emission at a rate γinα and second, the states Xs
α can be excited into the high-energy band states

h̃ by absorbing a phonon at rate γoutα . All rates are assumed to be mean values and therefore
independent of the specific auxiliary state within the high-energy band h̃, since nothing is
known about these states. The three processes, namely the optical pumping from the crystal
ground state into the high-energy band and the in- and out-scattering between the high-energy
states and the Ns numerically calculated lowest-energy excitons Xs

α are schematically depicted
in Fig. 8.2. They are described by the operators

Âexc
h̃

= |h̃〉〈φs0|, Âexc†
h̃

= |φs0〉〈h̃|, (8.41)

Âin
αh̃

= Âout†
h̃α

= |Xs
α〉〈h̃|, Âin†

αh̃
= Âout

h̃α
= |h̃〉〈Xs

α|. (8.42)

With that, the three Lindblad contributions are given by

Dρ̂S =(Dexc +Din +Dout)ρ̂S (8.43)

=γexc

2
(
2ρs00|h̃〉〈h̃| − |φs0〉〈φs0|ρ̂S − ρ̂S|φs0〉〈φs0|

)
+
∑
ζ

γinζ
2
(
2ρs
h̃h̃
|Xs

ζ〉〈Xs
ζ | − |h̃〉〈h̃|ρ̂S − ρ̂S|h̃〉〈h̃|

)
+
∑
ζ

γoutζ

2
(
2ρsζζ |h̃〉〈h̃| − |Xs

ζ〉〈Xs
ζ |ρ̂S − ρ̂S|Xs

ζ〉〈Xs
ζ |
)
.

(8.44)

Recalling that ρsαβ = 〈Xs
β |ρ̂S|Xs

α〉, the Lindblad contributions to the EOM for the semiconductor
exciton densities and polarizations can be determined:

〈Xs
α|Dρ̂S|Xs

α〉 =γinα ρsh̃h̃ − γ
out
α ρsαα, (8.45)

〈Xs
β |Dρ̂S|Xs

α〉 =γinα ρsh̃h̃δα,β −
(γoutβ

2 + γoutα

2

)
ρsαβ , (8.46)

〈φs0|Dρ̂S|Xs
α〉 =−

(γexc
2 + γoutα

2

)
ρsα0, (8.47)

〈φs0|Dρ̂S|φs0〉 =− γexcρs00. (8.48)

Equations (8.45) and (8.46) reveal that the exciton populations ρsαα and coherences ρsαβ
couple to the high-energy density ρs

h̃h̃
, whose EOM is given by

∂

∂t
ρs
h̃h̃

= γexcρs00 −
∑
ζ

γinζ ρ
s
h̃h̃

+
∑
ζ

γoutζ ρsζζ . (8.49)
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In photoluminescence (PL) experiments, the system is usually excited with a short laser
pulse of tens to hundreds of fs duration centered around the initial time t0.5 Therefore, the
time-dependent pulse intensity γexc is assumed have a Gaussian shape with pulse duration τ
and peak intensity I0: γexc = I0 exp[−(t− t0)2/τ2].
Next, an expression for the phonon-assisted in- and out-scattering rates between the high-

energy quasi-continuum states and the calculated lower-energy states has to be found. Treating
the exciton relaxation via acoustic phonon scattering similar to Sec. 8.2.4 is not possible since
the energies and wave functions of the high-energy continuum states are unknown. Therefore,
the in-scattering rate is assumed to follow a Gaussian distribution around the mean energy
Es
h̃
of the high-energy band: γinα = γLA0 exp

[
−(Es

α −Es
h̃
)2/σ2

h̃

]
. The width σh̃ is expected to be

rather small, but it must be large enough that at least the energetically highest calculated
exciton state at energy Es

αNs
is significantly filled from the high-energy band. The quantities

Es
h̃
and σh̃ characterizing the high-energy band are modeled depending on the energy coverage

Es
αNs
− Es

α1
[Cas17]:

Es
h̃

=Es
αNs

+A
(
Es
αNs
− Es

α1

)
with 0 < A < 1, (8.50)

σh̃ =BA
(
Es
αNs
− Es

α1

)
with 0 < B < 1, (8.51)

where Es
α1

denotes the energetically lowest calculated exciton state. The parameter A defines
the energetic distance between the high-energy band and the highest calculated exciton state.
The factor B in turn determines the width of the in-scattering rate depending on the distance
of Es

h̃
from the energy edge of the calculated exciton states.

For the out-scattering rate, a detailed-balance expression is chosen: γoutα = γinα exp
[
Es
α −

Es
h̃
/(kBT )

]
.

8.3 Organic part: Frenkel excitons in a disordered molecular
monolayer including intermolecular Coulomb coupling
and coupling to vibrational modes

8.3.1 Local molecular basis states
In this chapter, the condition of a periodically arranged molecular layer imposed in the previous
chapter Chap. 7 is dropped and the treatment of the organic site is extended to disorder in the
molecular layer. Therefore, the theoretical framework for the organic component will be set in
position space. A molecular basis is constructed describing an excitation of the ν-th molecule:

|ν〉 ≡ â†L,ν âH,ν |φ
m
0 〉. (8.52)

Here, â(†)
A,ν denotes the annihilation (creation) operator of molecular orbital A ∈ {H,L} in the

ν-th molecule, as introduced in Sec. 7.2.

8.3.2 Diagonalization of the electronic Hamiltonian
The interaction-free electronic part of the Hamiltonian for the organic layer is given by

Ĥm
0,e =

∑
A,ν

εA,ν â
†
A,ν âA,ν . (8.53)

5 For example, a femtosecond Ti:sapphire laser is used [Sch15] with a pulse duration of 150 fs.
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The molecules in the organic film are assumed to be identical with εA,ν ≡ εA and an optical
gap εmgap = εL − εH. To describe the Coulomb coupling between the electrons in the molecular
layer, the Hamiltonian in partial charge approximation derived in Secs. 7.2 and 7.3 is used:

Ĥm-m
C = 1

2
∑
A,B

∑
νa,νb
νa 6=νb

V A,νaA,νa
B,νb
B,νb

â†A,νa â
†
B,νb

âB,νb âA,νa +
∑
νa,νb
νa 6=νb

V H,νa
L,νa

L,νb
H,νb â

†
H,νa â

†
L,νb âH,νb âL,νa

(8.54)
with the coupling element (cf. Eq. (7.17))

V A,νaA′,νa
B,νb
B′,νb

=
∑
I,J

Gm-m(Rνa + rIνa ,Rνb + rJνb )q
AA′

I qBB
′

J (8.55)

containing the Green’s function for Coulomb interaction in the organic film defined in Eq. (B.4).
Rν denotes the position of the ν-th molecule in the organic film and rIν describes the relative
positions of the partial charges labeled I within this molecule. In contrast to the previous
Chap. 7, this time they depend on the molecular index ν, since here a non-uniform orientation
of the molecules in the organic layer is considered. The first term in Eq. (8.54) is the monopole-
monopole part leading to a ground and excited state renormalization, whereas the second
term describes Förster excitation transfer between different molecules. The latter is responsible
for an off-diagonal coupling between different molecules. Therefore, the local molecular basis
states |ν〉 are not eigenstates of the purely electronic Hamiltonian Ĥm

e = Ĥm
0 + Ĥm-m

C for the
organic layer. Analogous to Sec. 7.5, the electronic Hamiltonian is diagonalized, yielding new,
delocalized exciton states |Xm

α 〉 given as linear combinations of the local basis states with
coefficients cαν and eigenenergies Em

α :

|Xm
α 〉 =

∑
ν

cαν |ν〉 with Ĥm
e |Xm

α 〉 = (Em
0 + Em

α )|Xm
α 〉. (8.56)

Here, the ground state energy was defined as

Em
0 ≡ 〈φm0 |Ĥm

e |φm0 〉 = NmεH + 1
2
∑
νa,νb
νa 6=νb

V H,νa
H,νa

H,νb
H,νb . (8.57)

Evaluating the matrix element 〈ν|Ĥm
e |Xm

α 〉 = (Em
0 + Em

α )cαν yields the eigenproblem for the
coefficients cαν and eigenvalues Em

α in matrix form:

Em
α


cα1
cα2
...

cαNm

 =


d(1) a(1, 2) · · · a(1, Nm)
a(2, 1) d(2) · · · a(2, Nm)

...
... . . . ...

a(Nm, 1) a(Nm, 2) · · · d(Nm, Nm)



cα1
cα2
...

cαNm

 (8.58)

with diagonal and off-diagonal entries

d(ν) = εmgap −
1
2
∑
ν′

ν′ 6=ν

V H,ν
H,ν

H,ν′
H,ν′ +

∑
ν′

ν′ 6=ν

V H,ν′
H,ν′

L,ν
L,ν and a(ν, ν′) = V H,ν

L,ν
L,ν′
H,ν′ . (8.59)

This eigenproblem for the molecular excitons has in general the dimension Nm × Nm with
Nm being the number of molecules in the organic layer. Disorder in the molecular layer is
included here, such that no lattice periodicity can be exploited as in Chap. 7. To make the
diagonalization of this matrix numerically tractable, a quadratic supercell is defined containing
a large number of flat-lying, non-overlapping molecules with a random spatial distribution
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(a) (b)
Figure 8.3: (a) Example for a small molecular supercell of dimension 10 nm×10 nm filled by 15 randomly
arranged flat-lying L4P molecules. Note that the supercell dimensions for the numerical implementation
have to be considerably larger. (b) Graphical illustration of two different PES with coordinate Q. Q0
(Q∗0) denotes the equilibrium position of the ground state (excited state) PES.

and orientation. This supercell is repeated periodically in the x and y directions building
an extended disordered molecular layer. The supercell size is chosen large enough that (i)
this periodicity does not have a physical relevance and (ii) the Coulomb interaction strength
of a molecule in the center of the supercell with the surrounding molecules has sufficiently
decreased at the boarders of the supercell. This way, the eigenvalue problem of Eq. (8.58) gets
blockdiagonal with respect to one supercell, thus reducing the dimension of the matrix to the
number of molecules per supercell. Figure 8.3 (a) illustrates such a supercell.

8.3.3 Electron–phonon interaction
For lack of translational invariance, the vibrational modes in molecules (often called “vibrons”)
are rather localized compared to phonons in semiconductor structures. The Hamilton operator
for the interaction-free electron and phonon part as well as the electron–phonon coupling in
the molecular layer is given in the electron picture by

Ĥm
0,e + Ĥm

0,ph + Ĥm
el-ph =

∑
A,ν

εA,ν â
†
A,ν âA,ν +

∑
j

~ωj b̂†j b̂j +
∑
A,ν

∑
j

~
(
gA,νj b̂j + gA,ν∗j b̂†j

)
â†A,ν âA,ν

(8.60)

with vibrational modes j. Note that only electron–phonon coupling processes that are diagonal
in the electronic states are considered. The upper representation of the Hamiltonian (Eq. (8.60))
entails the following problem related to the initial system state: The phonon dynamics is
already driven at the initial time t0 before the onset of electronic excitations in the system.
The Hamiltonian includes fluctuations in the phonon number and thus in the system energy
at the initial time t0, since phonons are created and annihilated also when applying the
Hamiltonian to the electronic ground state where all highest occupied molecular orbitals
(HOMOs) are occupied and all lowest unoccupied molecular orbitals (LUMOs) are empty:
Ĥm

el-ph|φm0 〉 =
∑
ν

∑
j ~
(
gH,νj b̂j + gH,ν∗j b̂†j

)
|φm0 〉. However, these phonon-induced fluctuations

contradict the conventional definition of the ground state as initial dynamics-free equilibrium
state without exciton-phonon coupling as stated by the Born-Oppenheimer approximation. To
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solve this problem and restore the initial equilibrium state, the phonon operators are replaced
by new, effective phonon operators that are defined relative to the equilibrium position

b̂gj = b̂j + 1
ωj

∑
ν

gH,ν∗j 1, b̂g†j = b̂†j + 1
ωj

∑
ν

gH,νj 1 (8.61)

This is called a Weyl transformation [Wey25].
Plugging this transformation into the Hamiltonian of Eq. (8.60), one obtains:

Ĥg,m
0,e + Ĥg,m

0,ph + Ĥg,m
el-ph =

∑
A,ν

εgA,ν â
†
A,ν âA,ν +

∑
j

~ωj b̂g†j b̂
g
j

+
∑
ν

∑
j

(
~
(
gL,νj − gH,νj

)
b̂gj + ~

(
gL,ν∗j − gH,ν∗j

)
b̂g†j

)
â†L,ν âL,ν

+
∑
j

1
~ωj

(∑
ν

~gH,νj

)(∑
ν′

~gH,ν
′∗

j

)
1.

(8.62)

Through the transformation, the modified Hamiltonian contains the following terms:

1. Free electron part with renormalized energy

εgA,ν ≡ εA,ν − 2
∑
j

Re
[gA,νj

ωj

∑
ν′

~gH,ν
′∗

j

]
(8.63)

shifted by the so-called polaron (or Stokes) shift. This constant shift does not play a role
for the dynamics, since only energy differences will enter the EOM.

2. Free phonon part with transformed phonon operators (effective phonon modes).

3. Electron–phonon interaction that only gives a contribution when applied to the exciton
states and not to the phonon-assisted ground state.

4. Constant shift (renormalization): The last term of Eq. (8.62) is removed by gauge
transformation in the following since it does not influence the system dynamics.

As intended, applying the transformed electron–phonon Hamilton operator to the molecular
ground state yields 0: Ĥg,m

el-ph|φm0 〉 = 0. If it operates on the molecular exciton state |Xm
α 〉 =∑

ν c
α
ν |ν〉, one obtains

Ĥg,m
el-ph|X

m
α 〉 =

∑
β

∑
ν

cαν c
β∗
ν

∑
j

(
~
(
gL,νj − gH,νj

)
b̂gj + ~

(
gL,ν∗j − gH,ν∗j

)
b̂g†j

)
|Xm

β 〉. (8.64)

Due to the overlap of the coefficients cαν cβ∗ν entering the expression, the contribution for α = β
will dominate. The electron–phonon coupling terms with α 6= β are non-diagonal in the exciton
states. They describe an electron–phonon relaxation between different disorder eigenstates in
the molecular layer. With that, the free phonon and electron–phonon Hamilton operators for
the system being initially in the electronic ground state is expressed in the molecular exciton
basis as:

Ĥg,m
0,ph =

∑
j

~ωj b̂g†j b̂
g
j

(
|φm0 〉〈φm0 |+

∑
α

|Xm
α 〉〈Xm

α |
)
, (8.65)

Ĥg,m
el-ph =

∑
α,β

∑
j

~
(
gαβj b̂gj + gβα∗j b̂g†j

)
|Xm

β 〉〈Xm
α | (8.66)
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with the effective electron–phonon coupling element in the delocalized exciton basis

gαβj ≡
∑
ν

cαν c
β∗
ν

(
gL,νj − gH,νj

)
. (8.67)

The Hamiltonian Ĥg,m
el-ph of Eq. (8.66) is valid if the molecular system is initially in the

electronic ground state. If it is in an excited electronic state α at the initial time t0, the
electron–phonon Hamiltonian has to be transformed in a way that it gives no contribution
when acting on |Xm

α 〉, since this higher PES acts as new equilibrium state. Therefore, the
phonon operators are transformed as follows:

b̂αj = b̂j + 1
ωj

(
gαα∗j 1+

∑
ν

gH,ν∗j 1

)
, b̂α†j = b̂†j + 1

ωj

(
gααj 1+

∑
ν

gH,νj 1

)
(8.68)

Applying this transformation to the phonon operators in Eq. (8.60) yields:

Ĥα,m
0,e + Ĥα,m

0,ph + Ĥα,m
el-ph =

∑
A,ν

εαA,ν â
†
A,ν âA,ν +

∑
j

~ωj b̂α†j b̂
α
j

+
∑
ν

∑
j

(
~
(
gL,νj − gH,νj

)
b̂αj + ~

(
gL,ν∗j − gH,ν∗j

)
b̂α†j

)
â†L,ν âL,ν −

∑
j

~
(
gααj b̂αj + gαα∗j b̂α†j

)
+
∑
j

1
~ωj

(
~gααj +

∑
ν

~gH,νj

)(
~gαα∗j +

∑
ν′

~gH,ν
′∗

j

)
1

(8.69)

with the renormalized energy

εαA,ν ≡ εA,ν − 2
∑
j

Re
[
gA,νj

ωj

(
~gαα∗j +

∑
ν′

~gH,ν
′∗

j

)]
. (8.70)

The last term constitutes the polaron or Stokes shift. It describes the displacement of the
minimum of the PES of the excited state |Xm

α 〉 with respect to the electronic ground state
configuration. As a consequence, the fluorescence spectrum is redshifted relative to the linear
absorption spectrum by the Stokes shift. As before, the last term is ignored since it constitutes
a constant shift that is of no importance for the system dynamics. In the exciton basis, the
transformed phonon Hamiltonian for a system that is initially in the excited state |Xm

α 〉 is
given as:

Ĥα,m
0,ph =

∑
j

~ωj b̂α†j b̂
α
j

(
|φm0 〉〈φm0 |+

∑
β

|Xm
β 〉〈Xm

β |
)
, (8.71)

Ĥα,m
el-ph =−

∑
j

~
(
gααj b̂αj + gαα∗j b̂α†j

)(
|φm0 〉〈φm0 |+

∑
β

|Xm
β 〉〈Xm

β |
)

+
∑
β,ζ

∑
j

~
(
gβζj b̂αj + gζβ∗j b̂α†j

)
|Xm

ζ 〉〈Xm
β |.

(8.72)

As required, the electron–phonon Hamiltonian of Eq. (8.72) has no contribution when acting
on the excited state |Xm

α 〉 that was chosen as the new equilibrium state. Figure 8.3 (b)
illustrates the concept of transferring the equilibrium position to the respective PES via Weyl
transformation.
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8.4 Exciton dynamics in the hybrid system
8.4.1 Molecule–semiconductor Coulomb coupling
This section deals with the composite system, i.e., the semiconductor substrate with the
weakly bound molecular adlayer on top, both treated separately in Secs. 8.2 and 8.3. The
treatment is restricted to single excitations in the hybrid systems. First, a common ground state
|φ0〉 = |φs0〉⊗|φm0 〉 is defined, designating the state where all valence bands in the QW substrate
and all HOMOs in the organic layer are occupied. The local basis states introduced in Eqs. (8.1)
and (8.52) are redefined with respect to the common ground state: |k1,k2〉 = â†c,k1

âv,k2
|φ0〉

and |ν〉 ≡ â†L,ν âH,ν |φ0〉.
The Hamiltonian for the interlayer Coulomb coupling is derived in partial charge approxima-

tion according to Secs. 7.2 and 7.3:

Ĥm-s
C =

∑
λ,k,k′

∑
A,ν

V λ,kλ,k′
A,ν
A,ν â

†
λ,kâ

†
A,ν âA,ν âλ,k′

+
∑
k,k′

∑
ν

(
V c,k

v,k′
H,ν
L,ν â

†
c,kâ

†
H,ν âL,ν âv,k′ + V v,k

c,k′
L,ν
H,ν â

†
v,kâ

†
L,ν âH,ν âc,k′︸ ︷︷ ︸

h.c.

)
.

(8.73)

The first term constitutes the electrostatic shifts and the last term in brackets describes Förster
excitation transfer between the inorganic and organic component. The molecule–substrate
coupling element in partial charge approximation is given as (cf. Eq. (7.26)):6

V λ,kλ′,k′
A,ν
B,ν = 1

Nuc

Nuc∑
i=1

ei(k
′−k)·Ri

∑
I,J

Gm-s(Ri + rI ,Rν + rJν )qλλ
′

I qABJ (8.74)

with the Green’s function defined in Eq. (B.6). Rν denotes the position of the ν-th molecule in
the organic film and Ri the position of the i-th UC in the QW substrate. The atomic partial
charges are located at rI within one semiconductor UC and rJν within the ν-th molecule,
respectively. Note that, compared to Chap. 7, this time the semiconductor wave vectors k,k′
are three-dimensional. The coupling elements in partial charge approximation are transformed
into position space according to

V λ,iλ′,i
A,ν
B,ν ≡

∑
I,J

Gm-s(Ri + rI ,Rν + rJν )qλλ
′

I qABJ . (8.75)

The Hamiltonian is rewritten in the excitonic basis of the hybrid system:

Ĥm-s
C =Em-s

0
(
|φ0〉〈φ0|+

∑
α

|Xm
α 〉〈Xm

α |+
∑
α

|Xs
α〉〈Xs

α|
)

+
∑
α

V m-s
H-L (Xm

α )|Xm
α 〉〈Xm

α |

+
∑
α

V m-s
v-c (Xs

α)|Xs
α〉〈Xs

α|+
∑
α,β

(
V m-s
F (Xm

α , X
s
β)|Xm

α 〉〈Xs
β |+ V m-s∗

F (Xm
α , X

s
β)|Xs

β〉〈Xm
α |
)

(8.76)

with

Em-s
0 =

Nm∑
ν=1

Nuc∑
i=1

V v,i
v,i

H,ν
H,ν , (8.77)

6 In principle, approximating the Coulomb potential by partial charges is only valid in the case of an ideal
QW without disorder. However, the well width fluctuations considered in this chapter occur on a very large
spatial scale compared to the UC size for which the electrostatic potential is approximated by partial charges.
Therefore, the partial charge technique is also suited for the case of disordered QWs.
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V m-s
H-L (Xm

α ) =
Nm∑
ν=1
|cαν |2

Nuc∑
i=1

(
V v,i

v,i
L,ν
L,ν − V

v,i
v,i

H,ν
H,ν

)
, (8.78)

V m-s
v-c (Xs

α) = Vs
Nuc

Nm∑
ν=1

Nuc∑
i=1

(∫
d3rh|Ψs

α(Ri, rh)|2V c,i
c,i

H,ν
H,ν −

∫
d3re|Ψs

α(re,Ri)|2V v,i
v,i

H,ν
H,ν

)
,

(8.79)

V m-s
F (Xm

α , X
s
β) = Vs

Nuc

Nm∑
ν=1

Nuc∑
i=1

cα∗ν Ψs
β(Ri,Ri)V v,i

c,i
L,ν
H,ν , (8.80)

where only the dominant contributions to the monopole-monopole shifts were kept that
are diagonal in the exciton basis by setting cα∗ν cβν ≈ |cαν |2δαβ and Ψs∗

α (re, rh)Ψs
β(re, rh) ≈

|Ψs
α(re, rh)|2δαβ. Note that the interlayer Förster coupling element of Eq. (8.80) has only a

contribution for re = rh ≡ Ri, indicating that the electron and hole in the semiconductor
exciton have to be located at the same position in order to couple via dipole-dipole interaction
to an exciton in the molecular layer.

8.4.2 Hamiltonian and Liouville propagator

The total Hamiltonian for the interaction between the inorganic and organic layer including
vibrational coupling in the molecular layer can be split into a diagonal part and an off-diagonal
part with respect to the exciton basis: Ĥg/α = Ĥ

g/α
diag + Ĥ

g/α
off-diag. It has two representations:

Depending on whether the molecular system is initially in the ground state or the excited
state |Xm

α 〉, the phonon operators are transformed into the respective equilibrium state, cf.
Sec. 8.3.3. The diagonal Hamiltonian for the two equilibrium situations reads:

Ĥg
diag =Ĥg,m

0,e + Ĥg,m
0,ph + Ĥg,m

el-ph + Ĥm-s
C,mono

=
(
Eg,m0 +

∑
j

~ωj b̂g†j b̂
g
j + Em-s

0

)
|φ0〉〈φ0|

+
∑
β

(
Eg,m0 + Es

β,3D +
∑
j

~ωj b̂g†j b̂
g
j + Em-s

0 + V m-s
v-c (Xs

β)
)
|Xs

β〉〈Xs
β |

+
∑
β

(
Eg,m0 + Em

β +
∑
j

~ωj b̂g†j b̂
g
j + Em-s

0 + V m-s
H-L (Xm

β )

+
∑
j

~
(
gββj b̂gj + gββ∗j b̂g†j

))
|Xm

β 〉〈Xm
β |,

(8.81)

Ĥα
diag =

(
Eα,m0 +

∑
j

~ωj b̂α†j b̂
α
j + Em-s

0 −
∑
j

~
(
gααj b̂αj + gαα∗j b̂α†j

))
|φ0〉〈φ0|

+
∑
β

(
Eα,m0 + Es

β,3D +
∑
j

~ωj b̂α†j b̂
α
j + Em-s

0

−
∑
j

~
(
gααj b̂αj + gαα∗j b̂α†j

)
+ V m-s

v-c (Xs
β)
)
|Xs

β〉〈Xs
β |

+
∑
β

{
Eα,m0 + Em

β +
∑
j

~ωj b̂α†j b̂
α
j + Em-s

0 + V m-s
H-L (Xm

β )

+
∑
j

~
((
gββj − g

αα
j

)
b̂αj +

(
gββ∗j − gαα∗j

)
b̂α†j

)}
|Xm

β 〉〈Xm
β |

(8.82)



8.4 Exciton dynamics in the hybrid system 119

with
E
g/α,m
0 = Nmε

g/α
H + 1

2
∑
νa,νb
νa 6=νb

V H,νa
H,νa

H,νb
H,νb . (8.83)

ε
g/α
H are the renormalized free-particle energies defined in Eqs. (8.63) and (8.70). The last term
of Eq. (8.82) describing the electron–phonon interaction vanishes if β = α, thus fulfilling the
requirement that the Hamiltonian Ĥα

diag does not contribute when it is applied to the excited
state |Xm

α 〉 that acts as equilibrium state.
The non-diagonal Hamiltonian contains the Förster part of the molecule–semiconductor

Coulomb Hamiltonian and the off-diagonal part of the exciton-phonon Hamiltonian. It is
treated perturbatively in the following, assuming a weak coupling compared to the system
energies:

Ĥ
g/α
off-diag = Ĥm-s

F + Ĥ
g/α
el-ph

∣∣∣
off-diag

=
∑
β,ζ

(
V m-s
F (Xm

β , X
s
ζ)|Xm

β 〉〈Xs
ζ |+ V m-s∗

F (Xm
β , X

s
ζ)|Xs

ζ〉〈Xm
β |
)

+
∑
β,ζ
β 6=ζ

∑
j

~
(
gβζj b̂

g/α
j + gζβ∗j b̂

g/α†
j

)
|Xm

ζ 〉〈Xm
β |.

(8.84)

The Liouville operator is split in the same way:

Lg/α = Lg/αdiag + Lg/αoff-diag with Lg/αdiagÔ =
[
Ĥ
g/α
diag, Ô

]
− and Lg/αoff-diagÔ =

[
Ĥm-s

off-diag, Ô
]
−.

(8.85)
The Liouville propagator is defined as:

Ug/α(t, t0) = exp←
[
− i
~

∫ t

t0

dτ Lg/α(τ)
]

= exp←
[
− i
~

∫ t

t0

dτ
(
Lg/αdiag(τ) + Lg/αoff-diag(τ)

)]
. (8.86)

It is rewritten using the Feynman disentanglement theorem [Fey51] (cf. Sec. 2.5):

Ug/α(t, t0) = exp←
[
− i
~

∫ t

t0

dτ Lg/αdiag(τ)
]

︸ ︷︷ ︸
≡Ug/αdiag(t,t0)

exp←
[
− i
~

∫ t

t0

dτ Ug/αdiag(t0, τ)Lg/αoff-diag(τ)Ug/αdiag(τ, t0)
]

︸ ︷︷ ︸
≡Ug/α

I
(t,t0)

.

(8.87)
The interaction part Ug/αI (t, t0) is now expanded perturbatively up to second order:

Ug/αI (t, t0) ≈ 1− i

~

∫ t

t0

dτ Ug/αdiag(t0, τ)Lg/αoff-diag(τ)Ug/αdiag(τ, t0)

− 1
~2

∫ t

t0

dτ
∫ τ

t0

dτ ′ Ug/αdiag(t0, τ)Lg/αoff-diag(τ)Ug/αdiag(τ, t0)Ug/αdiag(t0, τ ′)︸ ︷︷ ︸
=Ug/αdiag(τ,τ ′)

Lg/αoff-diag(τ ′)Ug/αdiag(τ ′, t0).

(8.88)

The full propagator then reads:

Ug/α(t, t0) ≈Ug/αdiag(t, t0)− i

~

∫ t

t0

dτ Ug/αdiag(t, τ)Lg/αoff-diag(τ)Ug/αdiag(τ, t0)

− 1
~2

∫ t

t0

dτ
∫ τ

t0

dτ ′ Ug/αdiag(t, τ)Lg/αoff-diag(τ)Ug/αdiag(τ, τ ′)Lg/αoff-diag(τ ′)Ug/αdiag(τ ′, t0).

(8.89)
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8.4.3 Transition amplitudes
For calculating the dynamics, the amplitude for a transition of the system from the density
ρsαα ≡ |Xs

α〉〈Xs
α| (exciton in the semiconductor substrate excited) to the density ρmββ ≡

|Xm
β 〉〈Xm

β | (exciton in the molecular layer excited) is of interest. Therefore, the matrix element
of the Liouville propagator is calculated:

tρm
ββ
←ρsαα(t, t0) ≡ tr

[
|Xm

β 〉〈Xm
β |Ug(t, t0)|Xs

α〉〈Xs
α|ρ̂

g
B
]
, (8.90)

where ρ̂gB denotes the density operator of the phonon bath corresponding to the case where the
molecular ground state acts as equilibrium state (as marked by the superscript g). It is assumed
that the phononic bath and the electronic system factorize: ρ̂g = ρ̂S ⊗ ρ̂gB. Approximating the
Liouville propagator by the expansion of Eq. (8.89), it is clear that only the last term (second
order in the interaction) will survive, since here the off-diagonal Liouvillian Lgoff-diag acts twice
and is thus capable of transforming the semiconductor density ρsαα into the molecular density
ρmββ through Förster interaction. Therefore, the term to evaluate is given by

tρm
ββ
←ρsαα(t, t0) = tr

[
|Xm

β 〉〈Xm
β |
{
− 1
~2

∫ t

t0

dτ
∫ τ

t0

dτ ′

× Ugdiag(t, τ)Lgoff-diag(τ)Ugdiag(τ, τ ′)Lgoff-diag(τ ′)Ugdiag(τ ′, t0)|Xs
α〉〈Xs

α|ρ̂
g
B

}]
.

(8.91)

This expression is evaluated in detail in App. C.2 using the Feynman disentanglement theorem
[Fey51] introduced in Sec. 2.5 and assuming that the phonon bath is in thermal equilibrium,
such that the mean number of vibrational quanta in a given mode, n̄(ωj) = 〈b̂†j b̂j〉B is described
by a Bose distribution. This yields the amplitude for the transition from the semiconductor
density ρsαα to the molecular density ρmββ in second order:

tρm
ββ
←ρsαα(t, t0) = 1

~2

∣∣V m-s
F (Xm

β , X
s
α)
∣∣2 ∫ t

t0

dτ
∫ τ

t0

dτ ′
{
e+ i

~E
m-s
el (Xm

β ,X
s
α)(τ−τ ′) trB

[
Ug,β†I,ph (τ, τ ′)ρ̂gB

]
+ e− i

~E
m-s
el (Xm

β ,X
s
α)(τ−τ ′) trB

[
Ug,βI,ph(τ, τ ′)ρ̂gB

]}
(8.92)

with

Em-s
el (Xm

β , X
s
α) ≡ Em

β − Es
α,3D + V m-s

H-L (Xm
β )− V m-s

v-c (Xs
α), (8.93)

Ug,β†I,ph (τ, τ ′) = exp←
[
− i
~

∫ τ ′−τ

0
dτ ′′

∑
j

~
(
gββj b̂gje−iωjτ

′′
+ gββ∗j b̂g†j e+iωjτ ′′)]. (8.94)

The transition amplitude for the inverse process (transition from ρmαα to ρsββ) is calculated
using the phonon operators b̂α(†)

j obtained via Weyl transformation into the excited molecular
state |Xm

α 〉 (cf. Sec. 8.3.3):

tρs
ββ
←ρmαα(t, t0) ≡ tr

[
|Xs

β〉〈Xs
β |Uα(t, t0)|Xm

α 〉〈Xm
α |ρ̂αB

]
(8.95)

≈ 1
~2

∣∣V m-s
F (Xm

α , X
s
β)
∣∣2 ∫ t

t0

dτ
∫ τ

t0

dτ ′
{
e− i

~E
m-s
el (Xm

α ,X
s
β)(τ−τ ′) trB

[
Uα†I,ph(τ, τ ′)ρ̂αB

]
+ e+ i

~E
m-s
el (Xm

α ,X
s
β)(τ−τ ′) trB

[
UαI,ph(τ, τ ′)ρ̂αB

]}
(8.96)
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with

Uα†I,ph(τ, τ ′) = exp←
[
+ i

~

∫ τ ′−τ

0
dτ ′′

∑
j

~
(
gααj b̂αj e−iωjτ

′′
+ gαα∗j b̂α†j e+iωjτ ′′

)]
. (8.97)

Finally, the amplitude for the transition from one molecular density denoted ρmαα to the
other given by ρmββ (with α 6= β) is deduced, describing the phonon-induced relaxation between
different molecular excitons:

tρm
ββ
←ρmαα(t, t0) ≡ tr

[
|Xm

β 〉〈Xm
β |Uα(t, t0)|Xm

α 〉〈Xm
α |ρ̂αB

]
. (8.98)

The evaluation shown in App. C.3 yields the following expression:

tρm
ββ
←ρmαα(t, t0) = 1

~2

∫ t

t0

dτ
∫ τ

t0

dτ ′
{
e+ i

~E
m
el (X

m
β ,X

m
α )(τ−τ ′) trB

[∑
j

~
(
gβαj b̂αj e−iωj(τ

′−τ)

+ gαβ∗j b̂α†j e+iωj(τ ′−τ))Uα,β†I,ph (τ, τ ′)
∑
j′

~
(
gαβj′ b̂

α
j′ + gβα∗j′ b̂α†j′

)
ρ̂αB

]
+ e− i

~E
m
el (X

m
β ,X

m
α )(τ−τ ′) trB

[∑
j′

~
(
gβαj′ b̂

α
j′ + gαβ∗j′ b̂α†j′

)
Uα,βI,ph(τ, τ ′)

×
∑
j

~
(
gαβj b̂αj e−iωj(τ

′−τ) + gβα∗j b̂α†j e+iωj(τ ′−τ))ρ̂αB]
}

(8.99)

with

Em
el (Xm

η , X
m
ζ ) ≡ Em

η − Em
ζ + V m-s

H-L (Xm
η )− V m-s

H-L (Xm
ζ ), (8.100)

Uα,β†I,ph (τ, τ ′) = exp←
[
− i
~

∫ τ ′−τ

0
dτ ′′

∑
j

~
(
(gββj − gααj )b̂αj e−iωjτ

′′
+ (gββ∗j − gαα∗j )b̂α†j e+iωjτ ′′)].

(8.101)

8.4.4 Cumulant expansion
In order to describe the coupling of the electronic hybrid system to the phonon bath in the
molecular layer, a cumulant expansion technique is employed. Note that the electron–phonon
coupling in the semiconductor substrate is already included in the phonon scattering rates
(derived in App. C.1.1) entering the EOM for the semiconductor density. Its impact on the
excitation transfer dynamics across the hybrid interface is negligible, since there the coupling
to the vibrational modes of the molecules comes into play and dominates the dynamics. The
phonon bath in the molecular layer is assumed to be in thermal equilibrium, such that cumulants
of an order higher than two vanish as a consequence of Wick’s theorem [Abr75, Muk95].

Interlayer coupling

The term

Jg,β(τ ′ − τ) ≡ trB
[
Ug,β†I,ph (τ, τ ′)ρ̂gB

]
= trB

[
exp←

[
− i
~

∫ τ ′−τ

0
dτ ′′ Ĥg,β

I,ph(τ ′′)
]
ρ̂gB

]
(8.102)

with
Ĥg,β

I,ph(τ ′′) ≡
∑
j

~
(
gββj b̂gje−iωjτ

′′
+ gββ∗j b̂g†j e+iωjτ ′′) (8.103)
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occurring on the right-hand side of Eq. (8.92) is evaluated using the cumulant expansion
technique. Expanding Eq. (8.102) in orders of Ĥg,β

I,ph(τ ′′) yields

Jg,β(τ ′ − τ) = trB
[
1− i

~

∫ τ ′−τ

0
dτ ′′ Ĥg,β

I,ph(τ ′′)ρ̂gB

− 1
~2

∫ τ ′−τ

0
dτ ′′

∫ τ ′′

0
dτ ′′′ Ĥg,β

I,ph(τ ′′)Ĥg,β
I,ph(τ ′′′)ρ̂gB + · · ·

]
.

(8.104)

The first order contribution vanishes due to 〈b̂gj 〉B = 〈b̂g†j 〉B = 0. The cumulant expansion is
derived by making the ansatz [Muk95]

Jg,β(τ ′ − τ) = e−F
g,β(τ ′−τ), (8.105)

where Fg,β(τ ′ − τ) is expanded in powers of Ĥg,β
I,ph:

Fg,β(τ ′ − τ) = Fg,β1 (τ ′ − τ) + Fg,β2 (τ ′ − τ) + · · · . (8.106)

Plugging this into Eq. (8.105), expanding Jg,β(τ ′ − τ) in a Taylor series, collecting terms of
the same order in Ĥg,β

I,ph, and comparing it to Eq. (8.104) yields

Fg,β1 (τ ′ − τ) =0, (8.107)

Fg,β2 (τ ′ − τ) = trB
[ 1
~2

∫ τ ′−τ

0
dτ ′′

∫ τ ′′

0
dτ ′′′ Ĥg,β

I,ph(τ ′′′)Ĥg,β
I,ph(0)ρ̂gB

]
. (8.108)

Here, it has been used that 〈b̂g†j b̂
g
j′〉B = δj,j′〈b̂g†j b̂

g
j 〉B = δj,j′ n̄(ωj), 〈b̂g†j b̂

g†
j′ 〉B = 〈b̂gj b̂

g
j′〉B = 0.

Truncating the expansion Eq. (8.106) after the second order leads to

Jg,β(τ ′ − τ) = exp
[
− 1
~2

∫ τ ′−τ

0
dτ ′′

∫ τ ′′

0
dτ ′′′

〈
Ĥg,β

I,ph(τ ′′′)Ĥg,β
I,ph(0)

〉
B

]
. (8.109)

The exponent is further evaluated using the definition of Ĥg,β
I,ph (cf. Eq. (8.102)) and performing

the time integrals:

Jg,β(τ ′ − τ) = exp
[∑
j

∣∣∣gββj ∣∣∣2 1
ω2
j

{
(1 + n̄(ωj))e−iωj(τ

′−τ) + n̄(ωj)e+iωj(τ ′−τ)

− 2n̄(ωj)− 1 + iωj(τ ′ − τ)
}]
.

(8.110)

The same calculation is performed for the amplitude of the reverse process. This way, the
transition amplitudes become:

tρm
ββ
←ρsαα(t, t0) = 1

~2

∣∣V m-s
F (Xm

β , X
s
α)
∣∣2 ∫ t

t0

dτ
∫ τ

t0

dτ ′
{
e+ i

~E
m-s
el (Xm

β ,X
s
α)(τ−τ ′)e−g

g,β(τ ′−τ)

+ e− i
~E

m-s
el (Xm

β ,X
s
α)(τ−τ ′)e−g

g,β∗(τ ′−τ)
}
,

(8.111)

tρs
ββ
←ρmαα(t, t0) = 1

~2

∣∣V m-s
F (Xm

α , X
s
β)
∣∣2 ∫ t

t0

dτ
∫ τ

t0

dτ ′
{
e− i

~E
m-s
el (Xm

α ,X
s
β)(τ−τ ′)e−g

g,α(τ ′−τ)

+ e+ i
~E

m-s
el (Xm

α ,X
s
β)(τ−τ ′)e−g

g,α∗(τ ′−τ)
}

(8.112)
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with

gg,β(τ ′ − τ) =−
∑
j

∣∣∣gββj ∣∣∣2 1
ω2
j

{
(1 + n̄(ωj))e−iωj(τ

′−τ) + n̄(ωj)e+iωj(τ ′−τ)

− 2n̄(ωj)− 1 + iωj(τ ′ − τ)
} (8.113)

=
∫ τ ′−τ

0
dτ ′′

∫ τ ′′

0
dτ ′′′ Cg,β(τ ′′′). (8.114)

Cg,β(τ ′′′) denotes the two-time correlation function:

Cg,β(τ ′′′) ≡ 1
~2

〈
Ĥg,β

I,ph(τ ′′′)Ĥg,β
I,ph(0)

〉
B

=
∑
j

∣∣∣gββj ∣∣∣2 {(1 + n̄(ωj))e−iωjτ
′′′

+ n̄(ωj)e+iωjτ ′′′}
(8.115)

=
∑
j

∑
ν

∣∣cβν ∣∣4 ∣∣∣gL,νj − gH,νj

∣∣∣2 {(1 + n̄(ωj))e−iωjτ
′′′

+ n̄(ωj)e+iωjτ ′′′}. (8.116)

In the last step, the definition of the effective coupling element in exciton basis Eq. (8.67) has
been inserted and it was assumed that different molecules couple to different phonon modes
due to the spatial separation.
At this point, the spectral density Jν(ω) of the ν-th molecule is introduced to describe

the interaction of the phonon bath with the system states. It represents the density of
vibrational modes in the molecular layer weighted with the reservoir–system coupling strength
[Muk95, May00, Ren02]:

Jν(ω) ≡
∑
j

∣∣∣gL,νj − gH,νj

∣∣∣2
ω2
j︸ ︷︷ ︸

≡Sj,ν

δ(ω − ωj) =
∑
j

Sj,νδ(ω − ωj). (8.117)

Sj,ν denotes the dimensionless Huang-Rhys factor. It can be directly determined in fluorescence
and absorption measurements [Muk95]. In the following, it is assumed that each molecule
exhibits its own set of vibrational modes. Therefore, the sum over all modes j is reduced to
a sum over the modes belonging to the ν-th molecule (since all other modes belonging to
other molecules show no coupling to the ν-th molecule). Furthermore, it is assumed that the
set of vibrational modes assigned to molecule ν is identical for all molecules in the organic
layer. Therefore, the spectral density and Huang-Rhys factor are identical for all molecules and
the molecule index ν can be removed (provided that the sum over j is reduced to the modes
belonging to one molecule). With that, the two-time correlation function becomes:

Cg,β(τ ′′′) =
∑
ν

∣∣cβν ∣∣4 ∫ ∞
0

dω J(ω)ω2{(1 + n̄(ω))e−iωτ
′′′

+ n̄(ω)e+iωτ ′′′} (8.118)

and Eq. (8.113) takes the form

gg,β(τ ′ − τ) = −
∑
ν

∣∣cβν ∣∣4 ∫ ∞
0

dω J(ω)
{

(1 + n̄(ω))e−iω(τ ′−τ) + n̄(ω)e+iω(τ ′−τ)

− 2n̄(ω)− 1 + iω(τ ′ − τ)
}
.

(8.119)
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Intermolecular coupling

The same procedure is applied to the intermolecular transition amplitude tρm
ββ
←ρmαα(t, t0) of

Eq. (8.99) by defining

Jα,β(τ ′ − τ) ≡ trB

[∑
j

~
(
gβαj b̂αj e−iωj(τ

′−τ) + gαβ∗j b̂α†j e+iωj(τ ′−τ))
× exp←

[
− i
~

∫ τ ′−τ

0
dτ ′′ Ĥα,β

I,ph(τ ′′)
]∑
j′

~
(
gαβj′ b̂

α
j′ + gβα∗j′ b̂α†j′

)
ρ̂αB

] (8.120)

with

Ĥα,β
I,ph(τ ′′) ≡

∑
j

~
(
(gββj − gααj )b̂αj e−iωjτ

′′
+ (gββ∗j − gαα∗j )b̂α†j e+iωjτ ′′). (8.121)

Expanding the time-ordered exponential up to second order yields

Uα,β†I,ph (τ, τ ′) = exp←
[
− i
~

∫ τ ′−τ

0
dτ ′′ Ĥα,β

I,ph(τ ′′)
]

(8.122)

≈1− i

~

∫ τ ′−τ

0
dτ ′′ Ĥα,β

I,ph(τ ′′)− 1
~2

∫ τ ′−τ

0
dτ ′′

∫ τ ′′

0
dτ ′′′ Ĥα,β

I,ph(τ ′′)Ĥα,β
I,ph(τ ′′′).

(8.123)

This expansion is plugged into Eq. (8.120) and the trace over the phonon bath is performed.
It is used that in thermal equilibrium (i) the expectation value of an odd number of phonon
operators vanishes, (ii) the expectation value of an even number of phonon operators is only
non-vanishing if it contains an equal number of creation and annihilation operators, and (iii)
normally ordered four-operator expectation values factorize according to

〈b̂α†i b̂
α†
j b̂

α
k b̂
α
l 〉 = 〈b̂α†i b̂αl 〉〈b̂

α†
j b̂

α
k 〉+ 〈b̂α†i b̂αk 〉〈b̂

α†
j b̂

α
l 〉 = (δi,lδj,k + δi,kδj,l)n̄in̄j . (8.124)

It follows immediately that the first order in the expansion vanishes since it only contains
three-operator expectation values. After some calculation, Eq. (8.120) becomes

Jα,β(τ ′ − τ) =
∑
j

~2{∣∣gβαj ∣∣2(1 + n̄(ωj))e−iωj(τ
′−τ) +

∣∣gαβj ∣∣2n̄(ωj)e+iωj(τ ′−τ)}
×
{

1− trB
[ 1
~2

∫ τ ′−τ

0
dτ ′′

∫ τ ′′

0
dτ ′′′ Ĥα,β

I,ph(τ ′′′)Ĥα,β
I,ph(0)ρ̂αB

]}
− 1

~2

∫ τ ′−τ

0
dτ ′′

∑
j

~2{gαβ∗j (gββj − gααj )n̄(ωj)e+iωjτ ′′

+ gβαj (gββ∗j − gαα∗j )(1 + n̄(ωj))e−iωjτ
′′}

×
∫ τ ′−τ

0
dτ ′′′

∑
j′

~2{gαβj′ (gββ∗j′ − g
αα∗
j′ )n̄(ωj′)e+iωj′τ

′′′

+ gβα∗j′ (gββj′ − g
αα
j′ )(1 + n̄(ωj′))e−iωj′τ

′′′}
.

(8.125)

The last term is omitted in the following, since coupling processes that are diagonal in the
excitonic states are assumed to involve different phonon modes than off-diagonal couplings.
This means, a local bath is assumed for each molecule. Moreover, the applied treatment aims at
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a realistic lineshape, which is already contained in the first term. For the cumulant expansion,
the ansatz

Jα,β(τ ′ − τ) = ~2Aα,β(τ ′ − τ)e−F
α,β(τ ′−τ) (8.126)

is made with

Aα,β(τ ′− τ) ≡
∑
ν

∣∣cαν ∣∣2∣∣cβν ∣∣2 ∫ ∞
0

dω J(ω)ω2{(1 + n̄(ω))e−iω(τ ′−τ) + n̄(ω)e+iω(τ ′−τ)}. (8.127)
Here, the spectral density of Eq. (8.117) has been inserted. Note that the form of Aα,β resembles
the two-time correlation function Cg,β given in Eq. (8.118) with the difference that here a
phonon-mediated transition between two different molecular exciton states is described.
Following the same procedure as before by expanding Fα,β(τ ′ − τ) in powers of Ĥα,β

I,ph and
comparing it to Eq. (8.125) yields:

Jα,β(τ ′ − τ) =Aα,β(τ ′ − τ) exp
[∑
j′

∣∣gββj′ − gααj′ ∣∣2 1
ω2
j′

{
(1 + n̄(ωj′))e−iωj′ (τ

′−τ)

+ n̄(ωj′)e+iωj′ (τ
′−τ) − 2n̄(ωj′)− 1 + iωj′(τ ′ − τ)

}]
.

(8.128)

With that, the intermolecular transition amplitude becomes

tρm
ββ
←ρmαα(t, t0) =

∫ t

t0

dτ
∫ τ

t0

dτ ′
{
e+ i

~E
m
el (X

m
β ,X

m
α )(τ−τ ′)Aα,β(τ ′ − τ)e−g

α,β(τ ′−τ)

+ e− i
~E

m
el (X

m
β ,X

m
α )(τ−τ ′)Aα,β∗(τ ′ − τ)e−g

α,β∗(τ ′−τ)
} (8.129)

with

gα,β(τ ′ − τ) =−
∑
ν

(∣∣cβν ∣∣2 − ∣∣cαν ∣∣2)2 ∫ ∞
0

dω J(ω)
{

(1 + n̄(ω))e−iω(τ ′−τ)

+ n̄(ω)e+iω(τ ′−τ) − 2n̄(ω)− 1 + iω(τ ′ − τ)
} (8.130)

=
∫ τ ′−τ

0
dτ ′′

∫ τ ′′

0
dτ ′′′ Cα,β(τ ′′′), (8.131)

where the two-time correlation function has been introduced:

Cα,β(τ ′′′) ≡
∑
ν

(∣∣cβν ∣∣2 − ∣∣cαν ∣∣2)2 ∫ ∞
0

dω J(ω)ω2{(1 + n̄(ω))e−iωτ
′′′

+ n̄(ω)e+iωτ ′′′}. (8.132)

Multimode Brownian oscillator model

Usually, the vibrational modes are modeled as a set of independent harmonic oscillators in
a multimode Brownian oscillator model using a Spin-Boson Hamiltonian. The correlation
function is decomposed into [Muk95]

C(t) =
∑
j

ξ2
j (C ′j(t) + C ′′j (t)) with ξj ≡

mjω
2
jdj

~
. (8.133)

Here, dj represents the polaron shift, i.e., the displacement of the equilibrium PES of the j-th
mode. In order to introduce a damping of the oscillations, the nuclear motion itself is coupled
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to a set of harmonic bath oscillators labeled n with coupling strength cnj . In the case of a
strongly overdamped harmonic oscillator, the relaxation rate

γj(ω) ≡ π
∑
n

c2nj
2mnω2

n

(
δ(ω − ωn) + δ(ω + ωn)

)
(8.134)

is large compared to the characteristic frequencies, γj � 2ωj , and one obtains [Muk95]

C ′j(t) =λ′jΛj coth(β~Λj/2)e−Λjt +
4Λjλ′j
~β

∞∑
n=1

νne−νnt

ν2
n − Λ2

j

, (8.135)

C ′′j (t) =− iλ′jΛje−Λjt (8.136)

with the Matsubara frequencies νn ≡ 2π
~βn and

Λj ≡
ω2
j

γj
, λ′j ≡

~
2mjω2

j

. (8.137)

8.4.5 Transition rates
The goal is to translate the transition amplitudes calculated in the previous chapters into
time-independent transition rates entering the EOM for the molecular and semiconductor
exciton densities. The treatment applies a secular approximation, where the dynamics of the
densities are assumed to decouple from the polarizations. As a first step, the time derivatives
of the transition amplitudes are taken, yielding time-dependent transfer rates:

rρm
ββ
←ρsαα(t) = 1

~2

∣∣V m-s
F (Xm

β , X
s
α)
∣∣2 ∫ t

0
dτ ′

{
e+ i

~E
m-s
el (Xm

β ,X
s
α)(t−τ ′)e−g

g,β(τ ′−t)

+ e− i
~E

m-s
el (Xm

β ,X
s
α)(t−τ ′)e−g

g,β∗(τ ′−t)
}
,

(8.138)

rρs
ββ
←ρmαα(t) = 1

~2

∣∣V m-s
F (Xm

α , X
s
β)
∣∣2 ∫ t

0
dτ ′

{
e− i

~E
m-s
el (Xm

α ,X
s
β)(t−τ ′)e−g

g,α(τ ′−t)

+ e+ i
~E

m-s
el (Xm

α ,X
s
β)(t−τ ′)e−g

g,α∗(τ ′−t)
}
,

(8.139)

rρm
ββ
←ρmαα(t) =

∫ t

0
dτ ′

{
e+ i

~E
m
el (X

m
β ,X

m
α )(t−τ ′)Aα,β(τ ′ − t)e−g

α,β(τ ′−t)

+ e− i
~E

m
el (X

m
β ,X

m
α )(t−τ ′)Aα,β∗(τ ′ − t)e−g

α,β∗(τ ′−t)
}
.

(8.140)

Here, t0 = 0 was chosen as initial time. With that, the rate equations can be written as

∂

∂t
ρmαα(t) =−

(∑
β

rρs
ββ
←ρmαα(t) +

∑
β

β 6=α

rρm
ββ
←ρmαα(t)

)
ρmαα(t)

+
(∑

β

rρmαα←ρsββ (t)ρsββ(t) +
∑
β

β 6=α

rρmαα←ρmββ (t)ρmββ(t)
) (8.141)

for the molecular exciton density and

∂

∂t
ρsαα(t) = −

∑
β

rρm
ββ
←ρsαα(t)ρsαα(t) +

∑
β

rρsαα←ρmββ (t)ρmββ(t) (8.142)
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for the exciton density in the semiconductor substrate. In both equations, the first term
represents the out-scattering processes and the second term describes in-scattering into the
exciton state.
The e−gg/α,β(∗) terms stemming from the cumulant expansion treatment in terms of the

spectral density describe the line broadening through exciton-phonon relaxation. If they are
replaced by a Lorentzian dephasing describing the complex lineshape, the form of Eqs. (8.141)
and (8.142) resembles the Born-Markov Redfield master equation discussed in Sec. 2.1.3 in
secular approximation (i.e., only densities are considered) for the density matrix elements

ρm/sαα ≡ 〈|Xm/s
α 〉〈Xm/s

α |〉 = trB
[
〈Xm/s

α |ρ̂S ⊗ ρ̂B|Xm/s
α 〉

]
= 〈Xm/s

α |ρ̂S|Xm/s
α 〉 (8.143)

and the interaction picture Hamiltonian

Ĥ
g/α
I (t) =

∑
ζ,η

(
V m-s
F (Xm

ζ , X
s
η)e− i

~E
m-s
el (Xm

ζ ,X
s
η)t|Xm

ζ 〉〈Xs
η|

+ V m-s∗
F (Xm

ζ , X
s
η)e+ i

~E
m-s
el (Xm

ζ ,X
s
η)t|Xs

η〉〈Xm
ζ |
)

+
∑
ζ,η
ζ 6=η

∑
j

~
(
gζηj b̂

g/α
j e−iωjte− i

~E
m
el (X

m
ζ ,X

m
η )t

+ gηζ∗j b̂
g/α†
j e+iωjte− i

~E
m
el (X

m
η ,X

m
ζ )t)|Xm

η 〉〈Xm
ζ |.

(8.144)

Therefore, in complete analogy to the master equation, a Markovian treatment is applied
to the EOM of Eqs. (8.141) and (8.142). This is valid since the discrete exciton states are
very dense. τ ′ is substituted by t− τ ′ (leaving the limits of the integral unchanged) and the
upper integration boundary is extended to t→∞, which is possible if the integrands vanish
sufficiently fast for τ ′ � τB (with the characteristic time τB for the decay of bath correlations)
[Bre02]:

rρm
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←ρsαα = 1

~2
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s
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}
,

(8.145)

rρs
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(8.146)

rρm
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←ρmαα =

∫ ∞
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dτ ′
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(8.147)

where Jν(ω), gg,β(−τ ′), gα,β(−τ ′), and Aα,β(−τ ′) have been defined in Eqs. (8.117), (8.119),
(8.127), and (8.130), respectively. A Fourier representation of Gg,β(−τ ′) ≡ e−gg,β(−τ ′) is
introduced:

Gg,β(−τ ′) =
∫ ∞
−∞

dω̃ G̃g,β(ω̃)e+iω̃τ ′ . (8.148)

The τ ′ integration is transformed into a δ function (where the principal values of the two terms
cancel each other out) and the ω̃ integration is eliminated by evaluating the δ function:

rρm
ββ
←ρsαα = π

~2

∣∣V m-s
F (Xm

β , X
s
α)
∣∣2 {G̃g,β(−Em-s

el (Xm
β , X

s
α)/~) + G̃g,β∗(−Em-s

el (Xm
β , X

s
α)/~)

}
,

(8.149)
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rρs
ββ
←ρmαα = π

~2

∣∣V m-s
F (Xm

α , X
s
β)
∣∣2 {G̃g,α(Em-s

el (Xm
α , X

s
β)/~) + G̃g,β∗(Em-s

el (Xm
α , X

s
β)/~)

}
(8.150)

with

G̃g,α(ω̃) ≡ 1
2π

∫ ∞
−∞

dτ ′ Gg,α(−τ ′)e−iω̃τ
′

= 1
2π

∫ ∞
−∞

dτ ′ e−g
g,α(−τ ′)−iω̃τ ′ . (8.151)

The last expression is evaluated numerically and inserted into the rates of Eqs. (8.149) and
(8.150).

8.4.6 System of equations for the population dynamics
The contributions to the population dynamics of the hybrid system derived in the last sections
are now summarized. This leads to a system of Ns + Nm + 2 coupled equations of motion
containing the Ns +Nm calculated exciton eigenstates in the inorganic and organic component,
the ground state, and the phenomenological high-energy excited state continuum ρs

h̃h̃
of

the semiconductor substrate (introduced in Sec. 8.2.6). It includes disorder due to interface
roughness, phonon scattering, radiative recombination, and incoherent pumping in the QW
substrate as well as Coulomb interaction and coupling to vibrational modes in the molecular
layer and interlayer Förster coupling. Only populations, i.e., diagonal density matrix elements
are considered. Defining the vector

P ≡ (ρ00, ρ
m
α1α1

, ρmα2α2
, · · · , ρmαNmαNm , ρ

s
β1β1

, ρsβ2β2
, · · · , ρsβNsβNs , ρ

s
h̃h̃

)T , (8.152)

the system of equations is given by

∂

∂t
P = Â · P . (8.153)

Â is given in Eq. (8.155).
In order to access the population dynamics in the system, the derived system of equations

of motion for the exciton densities can be solved numerically, e.g., using a time-stepping
Runge-Kutta solver contained in the PETSc library [Bal15b, Bal15a]. This can in turn be used
to calculate observables that are probed in spectroscopic experiments such as the time- and
frequency-resolved detection signal for incoherent emission of a semiconductor QW coupled to
a molecular layer [Zim03]:

I incl,q (ω, t) =
∑
α

∣∣Mα
l,q

∣∣2 (ρsαα(t)− |ρsα0(t)|2
) Rs

α + ∆S

(ω − Es
α/~)2 + (Rs

α + ∆S)2 (8.154)

with spectrometer resolution ∆S.

8.5 Summary and outlook
In this chapter, the simple model system of a highly ordered molecular layer adsorbed on
an atomically smooth ZnO substrate developed in Chap. 7 was extended towards treating
structural disorder, radiative dephasing, and exciton-phonon scattering processes. Therefore,
the interlayer Förster-type interaction as well as the electron-phonon couplings that are off-
diagonal in the excitonic eigenstates were treated in second-order perturbation theory and a
cumulant expansion technique was used to model the coupling to vibrational modes in the
organic layer.
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As a next step, the derived equations are going to be implemented numerically and evaluated
in order to calculate spectroscopic observables such as the incoherent PL signal in time and
frequency domain accessible in optical experiments. This is not contained in the scope of this
work. The above-mentioned effects are expected to significantly alter the lifetimes and thus the
PL decay transient of the QW substrate. In particular, Förster coupling to the organic layer
constitutes an additional decay channel for the QW excitons, thus decreasing the PL decay
transient compared to the isolated inorganic ZnO QW, as observed in previous experimental
works [Blu06, Sch15].

The developed theoretical framework thus paves the way for a large variety of further
theoretical studies investigating different parameter regimes that characterize the hybrid
structure. E.g., limiting cases of the semiconductor dynamics can be investigated: On the
one hand, the regime where disorder constitutes the main broadening mechanism in the
semiconductor substrate due to strong well width fluctuations can be studied, where phonon
couplings are expected to be strongly suppressed. On the other hand, the regime of dominant
phonon coupling where long-range lattice vibrations take place in the case of moderate disorder
can be considered. The disorder parameters are expected to be critical for the observed phonon
frequencies and coupling strengths.
In summary, the presented theoretical treatment aims at a systematic investigation of the

exciton dynamics including excitation transfer and vibrational couplings in realistic (i.e., non-
perfect) hybrid systems of variable geometry. It thus enables to explore different parameter
regimes for optimized device performance in future studies.



9 Conclusion and outlook

In summary, this thesis comprises a theoretical treatment of nonlinear two-dimensional spec-
troscopy and excitation transfer processes in different (hybrid) nanostructures ranging from cou-
pled quantum dots and monolayer transition-metal dichalcogenides to hybrid inorganic/organic
systems. Thus, it contributes to a microscopic understanding of Coulomb-mediated couplings
in nanoscaled systems.

Four-wave mixing experiments probing the third-order nonlinear response of semiconductor
nanostructures have evolved as a versatile and valuable toolbox to examine not only the
energies and oscillator strengths of the system under study, but to provide also unique
access to the coherent couplings between higher-order bound states. This can be used to
resolve the internal structure of excitonic wave functions. This was demonstrated in Chap. 4,
where reconstruction protocols have been derived for dissecting the spin-dependent single-
and two-exciton wave functions of coupled, spin-degenerate two-level quantum emitters into
contributions from the local (uncoupled) basis states. Therefore, two-dimensional double
quantum coherence spectroscopy was combined with polarization-resolved nanooptical fields in
order to selectively excite a specific emitter. A comparison of the reconstruction results with
the wave function coefficients extracted from the numerically calculated eigenstates yielded a
good overall agreement even for non-ideal field distributions. This enabled a close inspection of
the microscopic spin- and polarization-dependent coupling mechanisms that are not available
in far-field experiments and without the proposed data postprocessing.
As a future research project, a reconstruction algorithm could be developed for systems

with pronounced spin-orbit splitting, which is however difficult since (i) this alters the optical
selection rules, (ii) the different spin states cannot be selectively addressed using localized
excitation for lack of spatial separation and (iii) a substantial spectral overlap between the
fine-structure split resonance peaks is expected, which is detrimental for the reconstruction
protocol. The latter can possibly be reduced by establishing a spectral filtering method to
eliminate selected resonances similar to Refs. [Ric12, Sch13].

Monolayer transition-metal dichalcogenides are known to exhibit strongly correlated many-
body states that can be probed using polarization-resolved, two-dimensional coherent photon
echo spectroscopy. In Chap. 5, the formation of charged and uncharged intervalley biexcitons
was studied and a comparison to experiment allowed to infer the corresponding quasi-particle
binding energies for exciton-exciton, exciton-trion, and even trion-trion complexes that agree
well with previous theoretical predictions. The present work helps to guide efforts characterizing
higher-order bound states in this novel two-dimensional semiconducting material class.
In Chap. 6, simulations of rephasing and photon echo signals of individual quantum dots

and a quantum dot molecule were performed including electrostatic and Förster-type Coulomb
coupling, fine-structure splitting, and linearly polarized excitation at a defined angle relative to
the quantum dot axis. This allowed to ascertain the spectral signatures observed in a two-beam
experiment and to trace back the coherent coupling mechanisms and strengths as well as the
optical selection rules of the quantum dot system. It was found that the coupling between the
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quantum dots is governed by the electrostatic biexciton shift rather than Förster coupling.
The suggested methodology provides an important step towards the systematic description of
electronic couplings and charge transfer in deterministically defined quantum dot molecules
[Sti06, Ard16].
In the third part of this work, a theoretical model for describing Förster-type excitation

transfer across the interface of hybrid inorganic/organic systems was developed. A first theoret-
ical approach (Chap. 7) focused on the coupling between electron-hole continuum states in an
electrically pumped semiconductor substrate and Frenkel excitons in a periodically arranged
molecular layer. The presented parameter studies allow to find the ideal operating regime by
adjusting the geometry of the organic layer and the charge carrier reservoir in the inorganic
quantum well substrate: The coupling efficiency can be substantially enhanced by aligning
the dipole moments and the resonance energy detunings of the two constituents, minimizing
the interlayer distance, and preparing a dense molecular coverage as well as a high carrier
concentration. This way, in-scattering into the molecular layer outweighs the back-scattering
into the substrate, yielding a high performance of hybrid light-emitting devices.

This simple model is extended in the last Chap. 8 to a more extensive theoretical framework
taking into account structural disorder, radiative dephasing, and exciton–phonon scattering
processes. It uses a perturbative approach to treat the interlayer Förster interaction as well as
the off-diagonal electron–phonon coupling and a cumulant expansion technique to model the
coupling to vibrational modes in the organic layer. In future studies, this derived theoretical
framework will be implemented numerically and evaluated in order to calculate spectroscopic
observables such as the incoherent photoluminescence signal in time and frequency domain
accessible in optical experiments. The photoluminescence decay transient of the quantum well
excitons is expected to decrease when a molecular film is adsorbed on top of the substrate,
indicating the opening of an extra decay channel into the organic film which shortens the
lifetime of the quantum well excitons, as observed experimentally [Blu06, Sch15]. Also, different
limiting cases of the semiconductor dynamics are going to be studied, namely (i) the regime of
dominant disorder-induced broadenings due to strong fluctuations in the quantum well thickness
(thus suppressing phonon coupling) and (ii) the regime where phonon coupling constitutes
the main broadening mechanism in the case of moderate disorder (making long-range lattice
vibrations possible). It is expected that the disorder parameters are crucial for the observed
phonon frequencies and coupling strengths.
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A Calculation of the rephasing
photon echo signal

The response functions of the excited state emission (ESE), ground state bleaching (GSB),
and excited state absorption (ESA) pathways contributing to the photon echo (PE) signal
can be directly read out from the corresponding Feynman diagram of Fig. 5.1. This way, the
third-order response of Eq. (3.4) is given by the sum-over-states expressions [Abr09]:

(
R

(3)
ESE

)
αβγδ

(t3, t2, t1) = +
(
i

~

)3
θ(t1)θ(t2)θ(t3)

∑
e,e′

(dge′)α (deg)β (de′g)γ (dge)δ

× e−iξe′gt3−iξe′et2−iξget1 ,
(A.1)
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(t3, t2, t1) = +
(
i

~

)3
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(
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(3)
ESA
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θ(t1)θ(t2)θ(t3)

∑
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(def )α (dfe′)β (de′g)γ (dge)δ

× e−iξfet3−iξe′et2−iξget1 .
(A.3)

The sums over e, e′, f run over all states belonging to the same excited state manifold. The
complex frequencies ξab ≡ ωab−iγab contain the resonances ωab and the dephasing constants γab.
The Heaviside step functions ensure the right time ordering of the interactions. Substituting the
pulse times τj by the intervals between two pulses, T1 = τ2− τ1, T2 = τ3− τ2, and T3 = τs− τ3,
and plugging the ESE response function of Eq. (A.1) into the polarization Eq. (3.10) with
(u1, u2, u3) = (−1,+1,+1), and inserting the result into the heterodyne detected signal function
of Eq. (3.2) provides the ESE signal

S
(3)
ESE(T3, T2, T1) =

∫ ∞
−∞

dt
∫ ∞

0
dt3

∫ ∞
0

dt2
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0
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×
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(dge′)α (deg)β (de′g)γ (dge)δ e
−iξe′gt3−iξe′et2−iξget1 .

(A.4)

The intervals t1, t2, and t3 between two interactions with the radiation field are now
substituted by the times τ̃1 = τ̃2 − t1, τ̃2 = τ̃3 − t2, τ̃3 = t− t3, and t where the interactions
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take place (cf. Fig. 3.2 (a)). Collecting terms with the same ωj , Eq. (A.4) takes the form:
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dt
∫ t
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(A.5)

The substitution of the integration boundaries already expresses the time ordering of the
interactions: t0 ≥ τ̃1 ≥ τ̃2 ≥ τ̃3 ≥ t. This condition is ensured by the Heaviside step functions
in Eq. (A.5). The initial time is t0 → −∞.
Furthermore, it is assumed that the dephasing constants γab (and thus the linewidths) are

small compared to the resonance frequencies ωab and the intervals between the pulses are
approximately the same as the intervals between the light-field interactions tj ≈ Tj , such that
the factors γab(tj − Tj) are negligible. Assuming that the pulses are temporally well separated,
the upper integration bounds Eq. (A.5) are extended to ∞. The pulse envelopes Ej(t) are
Fourier transformed:

Ej(t) =
∫ ∞
−∞

dω̃j Ej(ω̃j)e−iω̃jt. (A.6)

With that, Eq. (A.5) becomes

S
(3)
ESE(T3, T2, T1) =

∫ ∞
−∞

dt
∫ ∞
−∞

dτ̃3
∫ ∞
−∞

dτ̃2
∫ ∞
−∞

dτ̃1
3∑

α,β,γ,δ=1

(
i

~

)3

×
∫ ∞
−∞

dω̃s
∫ ∞
−∞

dω̃3

∫ ∞
−∞

dω̃2

∫ ∞
−∞

dω̃1θ(T1)θ(T2)θ(T3)

×
∑
e,e′

E∗sα(ω̃s) E3β (ω̃3) E2γ (ω̃2) E∗1δ(ω̃1) (dge′)α (deg)β (de′g)γ (dge)δ

×eit(ωs+ω̃s−ωe′g) eiτs(−ωs−ω̃s+ω3+ω̃3+ω2+ω̃2−ω1−ω̃1)

×eiτ̃3(−ω3−ω̃3+ωe′g−ωe′e) eiT3(−ω3−ω̃3−ω2−ω̃2+ω1+ω̃1+ωe′g−ξe′g)

×eiτ̃2(−ω2−ω̃2+ωe′e−ωge) eiT2(−ω2−ω̃2+ω1+ω̃1+ωe′e−ξe′e)

×eiτ̃1(ω1+ω̃1+ωge) eiT1(ω1+ω̃1+ωge−ξge).

(A.7)

Evaluating the Fourier representation of the δ function∫ ∞
−∞

dt eiωt = 2πδ(ω), (A.8)

removes all integrals and greatly simplifies the expression:
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Since multidimensional signals are often depicted in frequency space, finally a Fourier
transform of the signal function is performed with respect to the first and third pulse interval
(which are of interest in the case of PE measurements where the photon echo can be observed
on the diagonal):

S
(3)
ESE(Ω3, T2,Ω1) =

∫ ∞
0

dT3

∫ ∞
0

dT1 S
(3)
ESE(T3, T2, T1) ei(Ω3T3+Ω1T1). (A.10)

Performing the integrations and applying the same procedure to the other space pathways
leads to the signal function given in Eqs. (5.2), (5.3), and (5.4).





B Details on the derivation and
implementation of the HIOS
transfer rates

B.1 Dielectric screening at the hybrid interface
Particular care has to be taken of the relative permittivity εr incorporating the impact of
the core electrons [Ver13], since the organic and inorganic parts of the hybrid structure
exhibit different dielectric properties. The system is treated as two half spaces with different
bulk dielectrics, separated by an interface at z = 0: εm in the molecular layer and εs in the
semiconductor substrate, depicted in Fig. B.1. Image charges are introduced in order to account
for the influence of the electrostatic charges within one of the half spaces on the electrostatic
potential in the other half space. A point charge q in the molecular layer at a distance d from
the interface induces the image charge q′ within the semiconductor substrate at the distance
−d, such that the potential at any point P in the molecular half space (z > 0) expressed in
cylindrical coordinates (ρ, ϕ, z) reads [Jac99]

φ(z > 0) = 1
4πε0εm

(
q√

ρ2 + (d− z)2
+ q′√

ρ2 + (d+ z)2

)
. (B.1)

For specifying the potential at an arbitrary point in the semiconductor half space (z < 0),
another image charge q′′ is placed at the same position as the real charge q:

φ(z < 0) = 1
4πε0εs

q′′√
ρ2 + (d− z)2

. (B.2)

Evaluating the boundary conditions, the following relations between the real charge q and the
image charges q′ and q′′ [Jac99] can be derived:

q′ = −εs − εm
εs + εm

q, q′′ = 2εs
εs + εm

q. (B.3)

Figure B.1: Visualization of the dielectric properties at a hybrid interface between two materials with
different dielectric constants (εm in the molecular layer and εs in the semiconductor substrate). A charge
q within the molecular layer induces an image charge q′ located in mirror symmetry to the real charge
q. P denotes an arbitrary point within the molecular half space.
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The Green’s function Gm-m(r, r′) for the Coulomb interaction between two charges at r and
r′ within the molecular layer in the presence of the dielectric semiconductor substrate is given
by [Jac99]

Gm-m(r, r′) = 1
4πε0εm

1
|r − r′|

− 1
4πε0εm-m

eff

1√
(x− x′)2 + (y − y′)2 + (z + z′)2

(B.4)

with the effective dielectric constant

εm-m
eff ≡ εm

εs + εm
εs − εm

= εm

εs
εm

+ 1
εs
εm
− 1 . (B.5)

Equivalently, the Green’s function Gm-s(r, r′) for an interaction between one charge at the
organic and the other at the inorganic site takes the form [Jac99]

Gm-s(r, r′) = 1
4πε0εs

2εs
εs+εm
|r − r′|

= 1
4πε0εm-s

eff

1
|r − r′|

, (B.6)

where the effective dielectric constant εm-s
eff is the average of the intrinsic permittivities of the

two constituents:
εm-s
eff ≡

1
2(εs + εm). (B.7)

This way, the dielectric screening in the composite system is taken into account by introducing
effective dielectric constants εm-m

eff for the intermolecular and εm-s
eff for the interlayer Coulomb

matrix elements.

B.2 Quaternions
The concept of quaternions was introduced by Sir William Rowan Hamilton in 1843 as a
four-dimensional extension of the complex numbers. Today, they are mainly used for simplifying
the spacetime description and in computer graphics, since it is possible to express the rotation
of a vector in three-dimensional vector space by a normalized quaternion in a numerically
efficient and elegant way [Kui02]. The orthogonal basis of the quaternion vector space contains
four elements: 1, i, j, k. An arbitrary quaternion then has the form

q = s+ ix+ jy + kz or q =

s,
xy
z

 = [s,v], (B.8)

where the latter notation reveals that quaternions are composed of a scalar (s) and a three-
dimensional vector part (v). As for complex numbers, the squares of the imaginary parts are
−1:

i2 = j2 = k2 = ijk = −1. (B.9)
The addition of two quaternions is defined as:

q + q′ = [s+ s′,v + v′]. (B.10)

The multiplication is defined as:

qq′ = [ss′ − v · v′,v × v′ + sv + s′v′]. (B.11)

It is not commutative: ij = k, jk = i, ki = j, ji = −ij = −k. The conjugate of a quaternion is
given by

q∗ = s− ix− jy − kz = [s,−v] (B.12)



B.3 Transformation to momentum representation 141

The norm is calculated as

‖q‖ =
√
qq∗ =

√
q∗q =

√
s2 + x2 + y2 + z2 (B.13)

and the inverse is defined as:
q−1 = q∗

‖q‖2
. (B.14)

The inverse and conjugate are identical for unit quaternions with ‖q‖ = 1.
In order to describe rotations, one defines a quaternion of rotation:

qR =
[
cos
(
θ
2
)
, sin

(
θ
2
)
r
]
, (B.15)

where r is the normalized axis of rotation and θ the angle of rotation. The point p whose
rotated coordinates are to be determined is transformed into a quaternion like p = [0,p].
Finally, the rotated point p′ is obtained from the transformed quaternion p′ with

p′ = [c,p′] = qR p q
−1
R = qR p q

∗
R. (B.16)

There are three main reasons why expressing three-dimensional rotations as unit quaternions
instead of matrices is more convenient:

1. Concatenating rotations is computationally faster and numerically more stable.

2. The use of quaternions allows for a direct rotation around the desired rotation axis and
angle (without transformation to Euler angles).

3. Quaternions do not suffer from gimbal lock as Euler angles do (i.e., loosing one degree of
freedom due to the coincidence of two rotation axes).

B.3 Transformation to momentum representation
Introducing Bloch basis operators for the molecular electrons (given in Eq. (7.31)), the Hamilton
operator of the hybrid system can be rewritten into a consistent momentum representation for
both the inorganic and organic component. The free electron part transforms as

Ĥm
0 =

∑
A,ν

εA â
†
A,ν âA,ν =

∑
A

εA
∑
l,l′

1
Nm

∑
ν

ei(l−l
′)·Rν‖

︸ ︷︷ ︸
≈
∑

Gm
δl−l′,Gm=δl,l′

â†A,lâA,l′ =
∑
A

εA
∑
l

â†A,lâA,l.

(B.17)
For evaluating the Kronecker delta, it was used that the molecular wave vectors l and l′ are
restricted to the first Brillouin zone (BZ), such that the difference of two arbitrary molecular
wave vectors l− l′ will never equal a reciprocal lattice vector, as illustrated in Fig. B.2.

Next, the intermolecular Coulomb Hamiltonian given in Eq. (7.8) is transformed into
momentum representation:

Ĥm-m
C =1

2
∑
A,B

∑
νa 6=νb

1
N2

m

∑
l1,l2,
l3,l4

ei(l1−l4)·Rνa‖ei(l2−l3)·Rνb‖V A,νaA,νa
B,νb
B,νb

â†A,l1 â
†
B,l2

âB,l3 âA,l4

+
∑
νa 6=νb

1
N2

m

∑
l1,l2,
l3,l4

ei(l1−l4)·Rνa‖ei(l2−l3)·Rνb‖V H,νa
L,νa

L,νb
H,νb â

†
H,l1 â

†
L,l2 âH,l3 âL,l4 .

(B.18)
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Figure B.2: Graphical illustration of the relation
∑
Gm

δl−l′,Gm = δl,l′ for two arbitrary lattice vectors
l and l′ that are restricted to the first BZ. The 2D reciprocal lattice shown in the figure is arbitrarily
chosen to be rectangular. The rectangle marks the first BZ around the central reciprocal lattice point
at l = 0. Due to the periodicity condition, not all boundaries are included: The boundaries included
in the first BZ are marked by thick, solid lines, whereas the boundaries represented by dashed lines
are not included. Here, the extreme case of l and l′ pointing in opposite directions and reaching the
boundaries of the first BZ is depicted. Still, the vector sum l − l′ will not equal a reciprocal lattice
vector Gm connecting two reciprocal lattice points, since the right-hand boundary towards which l′ is
pointing is not included.

The coupling elements in partial charge approximation derived in Eq. (7.17) are inserted and
the Kronecker delta condition given in Eq. (7.32) is used to eliminate the sum over νa:

Ĥm-m
C ≈ 1

Nm

∑
l1,l2,
l3,l4

∑
∆m-m 6=0

1
Nm

∑
ν

ei(l1−l4+l2−l3)·Rν‖

︸ ︷︷ ︸
=
∑

Gm
δl1−l4+l2−l3,Gm

ei(l2−l3)·∆m-m‖
∑
I,J

Gm-m(rI , rJ + ∆m-m)

×
(

1
2
∑
A,B

qAAI qBBJ â†A,l1 â
†
B,l2

âB,l3 âA,l4 + qHLI qLHJ â†H,l1 â
†
L,l2 âH,l3 âL,l4

)
.

(B.19)

Here, the substitutions Rν ≡ Rνa and ∆m-m ≡ Rνb −Rνa were undertaken, and the sum
over νb was transformed into a sum over all relative molecular positions ∆m-m with respect to
the position of molecule νa. This is allowed since all possible reference points Rν ≡ Rνa are
summed up as well, such that ∆m-m is independent of the reference point for a sufficiently
extended molecular layer with translational invariance. Again, the molecular wave vectors li
are restricted to the first BZ. In contrast to Eq. (7.33), this time the vector sum l1− l4 + l2− l3
consists of four vectors, which can indeed add up to a reciprocal lattice vector. However,
the sum over the reciprocal lattice vectors is restricted to vectors Gm ≡ m1b̃1 +m2b̃2 with
m1,m2 ∈ {0,±1}, since only the nearest neighbored reciprocal lattice points are reached
starting from the center of the first BZ (cf. Fig. B.2).
The molecule-semiconductor Hamiltonian transforms in an analogous way:

Ĥm-s
C =

∑
λ,k,k′

∑
A,ν

1
Nm

∑
l,l′

ei(l−l
′)·Rν‖V λ,kλ,k′

A,ν
A,ν â

†
λ,kâ

†
A,lâA,l′ âλ,k′

+
∑
k,k′

∑
ν

1
Nm

∑
l,l′

ei(l−l
′)·Rν‖

(
V c,k

v,k′
H,ν
L,ν â

†
c,kâ

†
H,lâL,l′ âv,k′ + V v,k

c,k′
L,ν
H,ν â

†
v,kâ

†
L,lâH,l′ âc,k′

)
(B.20)
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Again, the coupling elements are expressed using the partial charge technique:

Ĥm-s
C ≈

∑
k,k′

∑
l,l′

∑
∆m-s

1
Nm

∑
ν

ei(l−l
′+k′−k)·Rν‖

︸ ︷︷ ︸
=
∑

Gm
δl−l′+k′−k,Gm

ei(k
′−k)·∆m-s‖

∑
I,J

Gm-s(rI + ∆m-s, rJ)

×
(∑

λ

∑
A

qλλ
′

I qABJ â†λ,kâ
†
A,lâA,l′ âλ,k′ + qcvI q

HL
J â†c,kâ

†
H,lâL,l′ âv,k′

+ qvcI q
LH
J â†v,kâ

†
L,lâH,l′ âc,k′

)
,

(B.21)

where ∆m-s ≡ Ri −Rν was substituted.

B.4 Discrete Fourier transform
To calculate the transfer rate of Eq. (7.75), the interlayer Förster coupling element

Vcv H
L (q) = 1

4πε0εm-s
eff

∑
∆m-s

eiq·∆m-s‖
∑
I,J

qcvI q
HL
J

|rJ − rI −∆m-s|
. (B.22)

has to be evaluated for a very large number of momentum transfer vectors q.
Note that the sum over the three-dimensional vector ∆m-s only runs over two dimensions (x

and y), since both the semiconductor and the molecular component are composed of a single
layer of unit cells (UCs). Thus, all vectors ∆m-s have the same (constant) z component ∆m-sz
defined by the interlayer separation. Without loss of generality, the x and y coordinates of the
“central” UCs of both the semiconductor substrate and the molecular adlayer are chosen to
be identical, such that ∆m-sx = ∆m-sy = 0 for the two central cells. As a result, the in-plane
component ∆m-s‖ is a linear combination of integer multiples of the 2D semiconductor lattice
vectors a1 and a2: ∆m-s‖ = ka1 + la2 with integers k, l ∈ Z. Here, the substrate UCs are chosen
in a way that the lattice vectors coincide with the Cartesian coordinate directions: a1 = a1ex,
a2 = a2ey. However, this is not a necessary precondition for the following deductions.

The 2D sum over ∆m-s has to be evaluated in a region around 0 where the coupling elements
have sufficiently dropped at the borders (which is checked using a convergence test in the
program). Let this rectangular “interesting” region have the size Ma1 in x direction and Na2
in y direction (cf. Fig. B.3). With that, Eq. (B.22) can be rewritten to

Vcv H
L (q) = 1

4πε0εm-s
eff

M
2 −1∑

k=−M2

N
2 −1∑
l=−N2

ei(qxka1+qyla2)
∑
I,J

qcvI q
HL
J∣∣∣∣∣rJ − rI −
 ka1

la2
∆m-sz

∣∣∣∣∣
. (B.23)

This expression resembles a two-dimensional discrete Fourier transform (2D-DFT), which can
be exploited for an efficient numerical calculation. To implement this numerically, the FFTW
library is used [FFT]. The forward 2D-DFT of a 2D complex array X of size m× n computes
an array Y of the same size with

Ykl =
M−1∑
m=0

N−1∑
n=0

Xmne−2πimkM e−2πinlN for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1. (B.24)
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Figure B.3: Graphical illustration of the interesting region around the 0-coordinate of ∆m-s‖ where the
Fourier coefficients of the Coulomb coupling element (marked as filled blue, fading circle) are calculated.
Since the numerical computation of a discrete Fourier transform can only handle summations over
positive integers, the region has to be shifted to positive values (see dashed rectangle) and the matrix
element has to be continued periodically.

The backward 2D-DFT computes:1

Xmn =
M−1∑
m=0

N−1∑
n=0

Ykle2πimkM e2πinlN for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1. (B.25)

Here we see that the sums computed numerically using the FFTW library run over positive
integers, whereas the summation in Eq. (B.23) is symmetric around 0. Therefore, the summation
region must be shifted to positive values and the matrix element has to be continued periodically,
which is depicted in Fig. B.3. Therefore the Fourier coefficients are defined as a piecewise
function:

Ykl = 1
4πε0εm-s

eff
×



∑
I,J

qcvI q
HL
J∣∣∣∣∣rJ−rI−

 ka1

la2

∆m-sz


∣∣∣∣∣
for k = 0, . . . , M2 − 1, l = 0, . . . , N2 − 1 (I)

∑
I,J

qcvI q
HL
J∣∣∣∣∣rJ−rI−

 ka1

(l −N)a2

∆m-sz


∣∣∣∣∣
for k = 0, . . . , M2 − 1, l = N

2 , . . . , N − 1 (II)

∑
I,J

qcvI q
HL
J∣∣∣∣∣rJ−rI−

(k −M)a1

la2

∆m-sz


∣∣∣∣∣
for k = M

2 , . . . ,M − 1, l = 0, . . . , N2 − 1 (III)

∑
I,J

qcvI q
HL
J∣∣∣∣∣rJ−rI−

(k −M)a1

(l −N)a2

∆m-sz


∣∣∣∣∣
for k = M

2 , . . . ,M − 1, l = N
2 , . . . , N − 1 (IV)

(B.26)

1 Note that this transform is not normalized. For a proper normalization, the backward transform would have
to be multiplied by a factor 1

NM .
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Here, (I) denotes the wavy region, (II) the stripy region, (III) the dotted region, and (IV)
the checkered region of Fig. B.3. By setting up an input array with these Fourier coefficients
and applying a backward 2D-DFT using the FFTW library, an output array consisting of the
following entries is obtained:

Xmn = 1
4πε0εm-s

eff

M
2 −1∑

k=−M2

N
2 −1∑
l=−N2

e2πimkM e2πinlN
∑
I,J

qcvI q
HL
J∣∣∣∣∣rJ − rI −
 ka1

la2
∆m-sz

∣∣∣∣∣
, (B.27)

where the summation indices have been transformed. A comparison with the Coulomb coupling
element of Eq. (B.23) provides the discrete representation of the momentum transfer vector q
(momentum space coordinate):

qx(m) = 2π
a1

m

M
and qy(n) = 2π

a2

n

N
. (B.28)

The discretization

∆qx = qx(m)− qx(m− 1) = 2π
Ma1

and ∆qy = qy(n)− qy(n− 1) = 2π
Na2

(B.29)

is determined by the discretization of ∆m-s in real space (which is given by the geometry a1
and a2 of the UCs) and the spatial extent of the “interesting region” defined by M and N (cf.
Fig. B.3). This means, M and N must be chosen large enough that (i) the discretization of q
is sufficiently fine and (ii) the value of the Fourier coefficients of the coupling elements has
sufficiently dropped at the borders of the interesting region.
Note that the output array covers all q values within the first BZ of the semiconductor

substrate. Its extension is given by 2π
a1

in x direction and 2π
a2

in y direction. In conclusion,
by implementing a discrete Fourier transform, one obtains a 2D array of interlayer Förster
coupling elements Vcv H

L (q) covering discrete equidistant q values within the first semiconductor
BZ. The value for an arbitrary q vector is then obtained by bilinear interpolation.

B.5 Derivation of the eigenproblem of the molecular excitons
B.5.1 Calculation of the matrix elements in the exciton basis
The matrix elements of the electronic Hamiltonian Ĥm in the molecular layer are derived in
the new basis. The free part is given by:

〈l1, l2|Ĥm
0 |l3, l4〉 = δl1,l3δl2,l4

(
(Nm − 1)εH + εL

)
. (B.30)

The matrix element of the Coulomb interaction within the molecular layer in terms of the new
basis has the form:

〈l1, l2|Ĥm-m
C |l3, l4〉 =δl1,l3δl2,l4

[1
2(Nm − 2)VHH H

H(0)− 1
2

1
Nm

∑
l,l′

VHH H
H(l− l′)

+ 1
Nm

∑
l

VHH H
H(l− l2) + VHH L

L(0)− 1
Nm

∑
l

VHL L
H(l− l1)

]
+ 1
Nm

∑
Gm

δl1−l3,l2−l4+Gm

[
VHL L

H(l1 − l2)− VHH L
L(l2 − l4)

] (B.31)
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The eigenvalue problem of Eq. (7.42) takes the form:

(Em
0 + Em

α )cαl+q,l =〈l+ q, l|Ĥm|Xm
α 〉

=cαl+q,l
[
Em

0 + εmgap − VHH H
H(0) + 1

Nm

∑
l′

VHH H
H(l′ − l) + VHH L

L(0)

− 1
Nm

∑
l′

VHL L
H(l′ − (l+ q))

]
+
∑
l′

cαl′+q,l′
1
Nm

[
VHL L

H(q)− VHH L
L(l− l′)

]
,

(B.32)

where εmgap ≡ εL−εH denotes the highest occupied molecular orbital (HOMO)-lowest unoccupied
molecular orbital (LUMO) transition energy in the molecules.
After converting the molecular wave vector sums into integrals according to Eq. (7.43), it

can be used that the Coulomb coupling element in momentum space is periodic with respect
to the reciprocal lattice. When integrating over all possible orientations of molecular wave
vectors l′ within the first BZ, the reference vector l of the momentum transfer vector l′ − l is
arbitrary (and can be chosen as zero), since the integration over a whole period (in this case:
BZ) is invariant under an arbitrary translation of the periodic function:∫

1st BZ

d2l′ VAA′ BB′(l′ − l) =
∫

1st BZ

d2l′ VAA′ BB′(l′). (B.33)

A formal proof for a periodic one-dimensional function f(k) = f(k +G) can be easily shown:∫ G

0
dk f(k − a) =

∫ G−a

−a
dk′ f(k′) =

∫ 0

−a
dk′ f(k′) +

∫ G

0
dk′ f(k′)−

∫ G

G−a
dk′ f(k′)

=
∫ G

G−a
dk′′ f(k′′ −G)︸ ︷︷ ︸

f(k′′)

+
∫ G

0
dk′ f(k′)−

∫ G

G−a
dk′ f(k′) =

∫ G

0
dk f(k).

(B.34)

The resulting expression is given in Eq. (7.44) in the main part of this thesis.

B.5.2 Normalization of the molecular exciton states in the discrete basis
The eigenvector coefficients are normalized according to

〈Xm
qj ,n|X

m
qj′ ,n

′〉 = N2
m

Nm
d

2

Nm
d∑

i=1

Nm
d∑

k=1
c
qj ,n

∗

li
c
qj′ ,n

′

lk
〈li + qj , li|lk + qj′ , lk〉︸ ︷︷ ︸

=
Nm2
d
N2
m
δi,kδj,j′

=
Nm
d∑

i=1
c
qj ,n

∗

li
c
qj ,n

′

li
δj,j′

!= Nm2

d
N2

m
δj,j′δn,n′ ⇒

Nm
d∑

i=1
|cqj ,nli

|2 = Nm2

d
N2

m
.

(B.35)

An orthonormal basis of eigenvectors can be found, such that

N2
m

Nm
d

2

Nm
d∑

j,n=1
|Xm
qj ,n〉〈X

m
qj ,n| = 1. (B.36)



B.6 Derivation of the equations of motion for the hybrid system 147

This is used for deriving the representation of the two-particle basis in terms of the delocalized
exciton basis. Therefore, the two-particle state |lk + ql, lk〉 is multiplied from the right-hand
side to the complex conjugate of Eq. (7.49):

〈Xm
qj ,n|lk + ql, lk〉 = Nm

Nm
d

Nm
d∑

i=1
c
qj ,n

∗

li
〈li + qj , li|lk + ql, lk〉︸ ︷︷ ︸

=
Nm
d

2

N2
m
δi,kδj,l

= Nm
d

Nm
cql,n

∗

lk
δj,l. (B.37)

N2
m

Nm
d

2 |Xm
qj ,n〉 is finally multiplied from the left-hand side, a sum over j and n on both sides of

the equation is performed and the orthonormality condition of Eq. (B.36) is used:

|lk + ql, lk〉 = Nm

Nm
d

Nm
d∑

j,n=1
cql,n

∗

lk
δj,l|Xm

qj ,n〉 = Nm

Nm
d

Nm
d∑

n=1
cql,n

∗

lk
|Xm
ql,n
〉. (B.38)

B.6 Derivation of the equations of motion for the hybrid
system

B.6.1 Homogeneous exciton density of the molecular system
First, in order to solve the equation of motion (EOM) for the population of the molecular
exciton state |Xm

qj ,n〉, the molecule–semiconductor Hamiltonian in momentum representation
given in Eq. (7.36) is applied to the local two-particle basis state |l1, l2〉:

Ĥm-s
C |l1, l2〉 =(Ĥm-s

C,diag + Ĥm-s
C,F)|l1, l2〉

=Nm

Nuc

∑
k,k′

∑
Gm

δk′−k,Gm

(
Vvv H

H(k′ − k)â†v,kâv,k′ + Vcc H
H(k′ − k)â†c,kâc,k′

)
|l1, l2〉

− 1
Nuc

∑
k,k′

(
Vvv H

H(k′ − k)â†v,kâv,k′ + Vcc H
H(k′ − k)â†c,kâc,k′

)
|l1, l2 − k + k′〉

+ 1
Nuc

∑
k,k′

(
Vvv L

L(k′ − k)â†v,kâv,k′ + Vcc L
L(k′ − k)â†c,kâc,k′

)
|l1 + k − k′, l2〉

+ 1
Nuc

∑
k,k′

∑
Gm

δl1−l2,k′−k+GmVcv H
L (k′ − k)â†c,kâv,k′ |φ

m
0 〉

+ 1
Nuc

∑
k,k′

∑
l,l′

l′ 6=l1
l 6=l2

∑
Gm

δl′−l,k′−k+GmVcv H
L (k′ − k)â†v,k′ âc,k|l

′, l; l1, l2〉.

(B.39)

The last term describes Förster coupling to a doubly excited molecular state |l′, l; l1, l2〉 ≡
â†L,l′ âH,lâ

†
L,l1 âH,l2 |φ

m
0 〉. In the following, only single excitations in the molecular layer will be

considered, neglecting coupling to doubly (and higher) excited molecular states. Based on the
upper equation, the full system Hamiltonian is applied to the excitonic state |Xm

qj ,n〉 of the
molecule in the basis set of numerically discrete wave vectors (li, qj):

Ĥ|Xm
qj ,n〉 =

(
Em

0 + Em
qj ,n +

∑
λ,k

ελ,kâ
†
λ,kâλ,k

)
|Xm
qj ,n〉+ Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li

Ĥm-s
C |li + qj , li〉, (B.40)
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where the last term was derived in Eq. (B.39).
With that, the commutator entering the EOM of the homogeneous exciton density (cf.

Eq. (7.56)) can be derived:

∂

∂t
〈Xm

qj ,n|ρ̂|X
m
qj ,n〉 = i

~
Nm

Nm
d

Nm
d∑

i=1

1
Nuc

∑
k,k′

[(
Vvv H

H(k′ − k)â†v,kâv,k′ + Vcc H
H(k′ − k)â†c,kâc,k′

)
×
(
−cqj ,nli

〈Xm
qj ,n|ρ̂|li + qj , li − k + k′〉+ c

qj ,n
∗

li
〈li + qj , li − k′ + k|ρ̂|Xm

qj ,n〉
)

+
(
Vvv L

L(k′ − k)â†v,kâv,k′ + Vcc L
L(k′ − k)â†c,kâc,k′

)
×
(
c
qj ,n
li
〈Xm

qj ,n|ρ̂|li + qj + k − k′, li〉 − c
qj ,n

∗

li
〈li + qj + k′ − k, li|ρ̂|Xm

qj ,n〉
)]

+ i

~
Nm

Nm
d

Nm
d∑

i=1

1
Nuc

∑
k,k′

∑
Gm

δqj ,k′−k+Gm

×
(
c
qj ,n
li
Vcv H

L (k′ − k)â†c,kâv,k′〈X
m
qj ,n|ρ̂|φ

m
0 〉 − c

qj ,n
li

∗Vcv H
L
∗(k′ − k)â†v,k′ âc,k〈φ

m
0 |ρ̂|Xm

qj ,n〉
)
.

(B.41)

Finally, a trace over the semiconductor states is performed, leading to an EOM for the
population ρmqj ,n ≡ trs

[
〈Xm

qj ,n|ρ̂|X
m
qj ,n〉

]
. To further evaluate the expression, it is used that

trs
[
â†λ,kâλ′,k′〈a

m|ρ̂|bm〉
]

= 〈â†λ,kâλ′,k′〉 tr
[
|bm〉〈am|ρ̂

]
. (B.42)

Assuming approximative spatial homogeneity, one can set

〈â†λ,kâλ,k′〉 ≈ δk,k′〈â
†
λ,kâλ,k′〉. (B.43)

This dramatically simplifies the EOM for the population of the molecular system, since all
monopole-monopole coupling terms cancel out in the commutator and only the Förster coupling
part remains:

∂

∂t
ρmqj ,n = −2

~
1
Nuc

∑
k,k′

∑
Gm

δqj ,k′−k+Gm Im

Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li
Vcv H

L (k′ − k)σk,k′qj ,n

 (B.44)

with the assisted molecule–semiconductor coherence σk,k′qj ,n ≡ trs
[
â†c,kâv,k′〈Xm

qj ,n|ρ̂|φ
m
0 〉
]
.

B.6.2 Molecule–semiconductor coherence
In order to derive an EOM for the assisted molecule–semiconductor coherence σk,k′qj ,n, it is used
that

trs
[
â†c,kâv,k′〈X

m
qj ,n|ρ̂|φ

m
0 〉
]

= tr
[
â†c,kâv,k′ ρ̂|φ

m
0 〉〈Xm

qj ,n|
]
, (B.45)

where tr[. . . ] = trs[trm[. . . ]] denotes the full system trace. The temporal dynamics is again
calculated using the von Neumann equation:

∂

∂t
σk,k

′

qj ,n = i

~
tr
[[
Ĥ, â†c,kâv,k′ |φ

m
0 〉〈Xm

qj ,n|
]
−ρ̂
]
, (B.46)

where the invariance of the trace under cyclic permutation of its arguments was used. First, the
commutator entering the EOM Eq. (B.46) for the assisted molecule–semiconductor coherence
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is calculated:

[
Ĥ, â†c,kâv,k′ |φ

m
0 〉〈Xm

qj ,n|
]
− =

(
−Em

qj ,n + εc,k − εv,k′
)
â†c,kâv,k′ |φ

m
0 〉〈Xm

qj ,n|

− Nm
Nuc

∑
k′′

∑
Gm

(
δk′−k′′,GmVvv H

H(k′′ − k′)â†c,kâv,k′′

− δk′′−k,GmVcc H
H(k − k′′)â†c,k′′ âv,k′

)
|φm0 〉〈Xm

qj ,n|

+ Nm
Nm
d

Nm
d∑

i=1
c
qj ,n
li

∗ 1
Nuc

∑
k1,k2

â†c,kâv,k′
[(
Vvv H

H(k2 − k1)â†v,k1
âv,k2

+ Vcc H
H(k2 − k1)â†c,k1

âc,k2

)
× |φm0 〉〈li + qj , li − k2 + k1|

−
(
Vvv L

L(k2 − k1)â†v,k1
âv,k2

+ Vcc L
L(k2 − k1)â†c,k1

âc,k2

)
× |φm0 〉〈li + qj + k2 − k1, li|

]
+ 1

Nuc

∑
k1,k2

∑
Gm

N3
m

Nm
d

3

Nm
d∑

k,l,n′=1
cql,n

′

lk

∗
δql,k2−k1+Gm

× Vcv H
L
∗(k2 − k1)â†v,k2

âc,k1
â†c,kâv,k′ |X

m
ql,n′
〉〈Xm

qj ,n|

− 1
Nuc

∑
k1,k2

∑
Gm

Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li

∗
δqj ,k2−k1+GmVcv H

L
∗(k2 − k1)â†c,kâv,k′ â

†
v,k2

âc,k1
|φm0 〉〈φm0 |.

(B.47)

Note that again, terms including a doubly excited molecular system have been excluded. Next
step is to rearrange the quantum well (QW) operators into normal order and evaluate the trace
over the commutator and the density operator in Eq. (B.46). Terms containing more than two
QW operators are rewritten using Eq. (B.42). All other terms are transformed using Eq. (B.45).
A Hartree-Fock factorization (cf. Sec. 2.3) is applied to expectation values of four electronic
operators. Moreover, spatial homogeneity is assumed according to Eq. (B.43). The system is
assumed to be in the thermodynamic quasi-equilibrium, such that the carrier populations in
the respective bands are given by Fermi distribution functions fe/h,k for the electrons (e) and
holes (h) [Hau04, But04, Cho12]:

ρv,k ≡ 〈â†v,kâv,k〉 = fv,k = 1− fh,k and ρc,k ≡ 〈â†c,kâc,k〉 = fc,k = fe,k. (B.48)

Only k states close to the Γ point are occupied, such that the sum of two k vectors cannot
equal a molecular reciprocal lattice vector (no Umklapp processes): δk−k′,Gm = δk,k′δGm,0.

In order to set up a closed system of equations, only homogeneous densities of the molecular
system are considered, i.e., the diagonal density matrix elements ρmqj ,n ≡ trs

[
〈Xm

qj ,n|ρ̂|X
m
qj ,n〉

]
,

neglecting fast decaying coherences:

N2
m

Nm
d

2 trs
[
〈Xm

qj ,n|ρ̂|X
m
ql,n′
〉
]
≈ δj,lδn,n′ρmqj ,n. (B.49)

Also, the electronic semiconductor coherences 〈â†v,kâc,k′〉 are assumed to decay rapidly, such
that products of two coherences vanish: 〈â†v,k2

âc,k1
〉〈â†c,kâv,k′〉 ≈ 0.
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This leads to the EOM for the assisted molecule–semiconductor coherence:

∂

∂t
σk,k

′

qj ,n = i

~
(
−Em

qj ,n + εc,k − εv,k′ + Vm-s
mono

)
σk,k

′

qj ,n

+ i

~
Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li

∗ 1
Nuc

∑
k′′

(
fh,k′Vvv H

H(k′′ − k′) trs
[
â†c,kâv,k′′〈li + qj , li − k′′ + k′|ρ̂|φm0 〉

]
− fh,k′Vvv L

L(k′′ − k′) trs
[
â†c,kâv,k′′〈li + qj + k′′ − k′, li|ρ̂|φm0 〉

]
− fe,kVcc H

H(k − k′′) trs
[
â†c,k′′ âv,k′〈li + qj , li − k + k′′|ρ̂|φm0 〉

]
+ fe,kVcc L

L(k − k′′) trs
[
â†c,k′′ âv,k′〈li + qj + k − k′′, li|ρ̂|φm0 〉

])
+ i

~
(1− fh,k′)(1− fe,k) 1

Nuc

∑
Gm

Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li

∗
δqj ,k′−k+GmVcv H

L
∗(k′ − k)ρmqj ,n

− i

~
fh,k′fe,k

1
Nuc

∑
Gm

Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li

∗
δqj ,k′−k+GmVcv H

L
∗(k′ − k)ρm0

(B.50)

with ρm0 ≡ trs
[
〈φm0 |ρ̂|φm0 〉

]
. Vm-s

mono subsumes all diagonal monopole-monopole terms, leading to
a constant shift (renormalization) of the system resonance:

Vm-s
mono ≡

Nm

Nuc

(
Vcc H

H(0)− Vvv H
H(0)

)
+ (1− 1

2n
2D
h Auc)

(
Vvv H

H(0)− Vvv L
L(0)

)
+ 1

2n
2D
e Auc

(
Vcc H

H(0)− Vcc L
L(0)

)
,

(B.51)

where n2De/h = Ne/h/AQW denotes the 2D carrier density for electrons (e) and holes (h).
Neglecting the inhomogeneous monopole-monopole contributions given in lines 2-5 of

Eq. (B.50), one ends up with:

∂

∂t
σk,k

′

qj ,n = i

~
(
−Em

qj ,n + εc,k − εv,k′ + Vm-s
mono

)
σk,k

′

qj ,n + i

~
Nm

Nm
d

Nm
d∑

i=1
c
qj ,n
li

∗

× 1
Nuc

∑
Gm

δqj ,k′−k+GmVcv H
L
∗(k′ − k)

(
(1− fh,k′)(1− fe,k)ρmqj ,n − fh,k′fe,kρ

m
0
)
.

(B.52)

B.7 Numerical implementation of the in-scattering rate
Starting from Eq. (7.70), first, the Kronecker delta ensuring momentum conservation during
interlayer Förster transfer is evaluated, eliminating the sum over k. The Kronecker delta only
selects certain wave vectors k within the first semiconductor BZ that satisfy the condition
k = k′ − qj +Gm. Note that at the same time, the sum over Gm is restricted to molecular
reciprocal lattice vectors for which k = k′ − qj +Gm is still within the first semiconductor BZ.
This way, the sum over k is eliminated by replacing kx = k′x−qjx+Gmx and ky = k′y−qjy+Gmy .
Assuming a spatially extended semiconductor QW, the remaining sum over the wave vector k′
can be converted into an integral over the first BZ of the semiconductor substrate using the
relation ∑

k′

→ AQW

(2π)2

∫
1st BZ

d2k′. (B.53)
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with the QW area AQW = NsAuc. One obtains

Γin
qj ,n =2π

~
1
N2

s

N2
m

Nm2
d

Nm
d∑

i=1
c
qj ,n
li

Nm
d∑

k=1
c
qj ,n

∗

lk

AQW

(2π)2

∫
d2k′

∑
Gm

∣∣∣Vcv H
L (qj −Gm)

∣∣∣2
× fh,k′fe,k′−qj+Gm δ

(
εe,k′−qj+Gm + εh,k′ −∆qj ,n

)
.

(B.54)

Finally, the Dirac delta distribution for energy conservation stemming from the Markov
approximation is evaluated. Therefore, the property of a Dirac delta function composed with a
smooth function g(x) is used:∫ ∞

−∞
dx f(x)δ(g(x)) =

∑
i

∫ ∞
−∞

dx f(x)δ(x− xi)
|g′(x)| =

∑
i

f(xi)
|g′(xi)|

, (B.55)

where the sum extends over the simple roots xi of g(x). The x-component of k′, k′x, is arbitrarily
chosen to evaluate the delta condition. The argument of the Dirac delta, denoted as g(k′x), is
differentiated with respect to k′x:

g′(k′x) ≡ d
dk′x

(
εe,k′−qj+Gm + εh,k′ −∆qj ,n

)
= ~2

|m∗v|m∗c

(
(|m∗v|+m∗c)k′x − |m∗v|(qjx −Gmx)

)
,

(B.56)
where it was used that εe,k = ~2k2

2m∗c
and εh,k = ~2k2

2|m∗v|
. The roots of g(k′x) are:

k′x± = 1
|m∗v|+m∗c

(
|m∗v|q′kx ±

√
· · ·
)
, (B.57)

with the abbreviation
√
· · · =

[ 2
~2 |m

∗
v|m∗c(|m∗v|+m∗c)∆qj ,n − (|m∗v|+m∗c)2k′

2

y + 2|m∗v|(|m∗v|+m∗c)k′y(qjy −Gmy)

− |m∗v|m∗c(qjx −Gmx)2 + |m∗v|(|m∗v|+m∗c)|(qjy −Gmy)2
]1/2

.

(B.58)

It follows

δ
(
εe,k′−qj+Gm + εh,k′ −∆qj ,n

)
=

∑
γ∈{+,−}

|m∗v|m∗c
~2
∣∣(|m∗v|+m∗c)k′x − |m∗v|(qjx −Gmx)

∣∣︸ ︷︷ ︸
= 1
|g′(k′x)|

δ
(
k′x − k′xγ

)

(B.59)
with k′x± given in Eq. (B.57). The expression under the square root has to be positive or zero in
order to get a real solution, which will be ensured by a Heaviside step function in the transfer
rate. This way, evaluating the Dirac delta distribution lifts the k′x integration:

Γin
qj ,n =2π

~
1
N2

s

AQW

(2π)2
N2

m
Nm2

d

Nm
d∑

i=1
c
qj ,n
li

Nm
d∑

k=1
c
qj ,n

∗

lk

∫
LBZy

dk′y
∑

γ∈{+,−}

∑
Gm

∣∣∣Vcv H
L (qj −Gm)

∣∣∣2

× fh,k′γfe,k′γ−qj+Gm

|m∗v|m∗c
~2
∣∣(|m∗v|+m∗c)k′xγ − |m∗v|(qjx −Gmx)

∣∣θ(· · · ),
(B.60)

where k′γ ≡
(
k′xγ
k′y

)
and Ls

BZy denotes the extension of the first substrate BZ in y direction.
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Figure B.4: Graphical illustration of the region AΓ around the Γ point in reciprocal space. The k
integration over the first BZ is restricted to this area since the Fermi functions truncate any occupation
outside this area.

Since the Fermi distributions contained in the semiconductor occupation density truncate
high k values far away from the Γ point, it is valid to restrict the evaluation to k values
inside a small circular region AΓ centered around the Γ point with radius kmax in the BZ:
AΓ = πk2

max. This is graphically illustrated in Fig. B.4. kmax is determined such that the Fermi
functions have sufficiently declined within AΓ. E.g., kmax is chosen such that the k summation
is truncated when the Fermi functions have declined below 10−5:

fi,k = 1

exp
(

~2k2
2mi
−µi

kBTi

)
+ 1
≥ 10−5 ⇒ k ≤

√
2mi

~2 (kBTi ln(99999) + µi). (B.61)

Note that this limit is different for electrons and holes. A similar treatment can be employed
for the out-scattering rate, however here not the Fermi factor is responsible for the truncation
but the energy conservation condition. By now, only the one-dimensional (1D) integral over
k′y is left to be numerically discretized by converting it into a Riemann sum with a factor
∆k′y = 2kmax

Ns
dy

given by the discretization step size with N s
d = N s

dyN
s
dx . The total in-scattering

rate into the organic layer is given as the sum over all molecular exciton states enumerated by
the parameter α = qj , n:

Γin
tot = N2

m
Nm2

d

Nm
d∑

n=1

Nm
d∑

j=1
Γin
qj ,n. (B.62)

B.8 Reciprocal space analysis of the transfer rates for varying
resonance energy detunings

The behavior of the in- and out-scattering transfer rates for varying resonance energy detunings
is examined via a reciprocal space analysis. Therefore, the individual transfer rates Γin/out

qj+
which are summed up in the total rates of Fig. 7.6 (b) are studied in dependence of the
molecular transfer vector qj . To support the analysis, the in- and out-scattering Fermi factors
f inqj+ and foutqj+ are introduced as the sums over the products of the respective Fermi functions
that obey the delta conditions for momentum and energy conservation entering the transfer
rates:

f inqj+ =
∑
k,k′

∑
Gm

fh,k′fe,kδqj ,k′−k+Gmδ
(
εke + εk

′

h −∆qj

)
, (B.63)

foutqj+ =
∑
k,k′

∑
Gm

(1− fh,k′)(1− fe,k)δqj ,k′−k+Gmδ
(
εke + εk

′

h −∆qj

)
. (B.64)
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Figure B.5: In-scattering rates Γin
qj+ (upper row) and Fermi factors f inqj+ (lower row) for increasing

resonance energy detuning ∆0 of 10 meV (a), 20 meV (b), and 30 meV (c). The shown q range represents
the size of the first molecule BZ for a coverage of one molecule per 10× 10 substrate UCs. [Spe18]

Figure B.6: Out-scattering rates Γout
qj+ (upper row) and Fermi factors foutqj+ (lower row) for increasing

resonance energy detuning ∆0 of 10 meV (a), 20 meV (b), and 30 meV (c). The shown q range represents
the size of the first molecule BZ for a coverage of one molecule per 10× 10 substrate UCs. [Spe18]

These Fermi factors reflect the population filling resolved for the momentum transfer q vectors
and governed by momentum and energy conservation. Figs. B.5 and B.6 show the q-dependent
in- and out-scattering rates (upper row), respectively, and the corresponding Fermi factors
(lower row) for increasing detuning ∆0 of 10 meV (a), 20 meV (b), and 30 meV (c). For a small
detuning ∆0 = 10 meV, the in-scattering Fermi factor depicted in the lower panel of Fig. B.5
(a) shows a constantly high value over all possible momentum transfer q vectors within the
first molecule BZ, resulting in an efficient in-scattering into the molecular film (cf. upper panel
of Fig. B.5 (a)). The reason for that is the close energetic match between the resonances of
the two constituents: The lower band states that fulfill energy and momentum conservation
for the transfer process to the molecular system are highly occupied in the ZnO substrate (cf.
left HOMO-LUMO system of Fig. 7.6). When the detuning is increased, the q space region
with a high Fermi factor that contributes to the excitation transfer shrinks significantly (lower
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panel of Fig. B.5). This is due to the decreasing number of energy- and momentum-allowed
scattering partners, as illustrated by the right HOMO-LUMO system in Fig. 7.6 (a).
However, this simple scheme does not explain (i) why the decrease of scattering partners

occurs predominantly along the x direction and (ii) why the in-scattering rates in the upper
panel of Fig. B.5 are reduced in the central region around q = 0 for all detunings. The decrease
along the x direction (i) can be understood by means of the q-dependent intermolecular Förster
coupling element VHL L

H(qj) shown in Fig. 7.4 (a): According to the molecular dipole moment,
the coupling element exhibits dumbbell-shaped maxima along the x axis at the borders of the
molecular BZ, i.e., around qy = 0 and qx = ±b̃1/2 with b̃1 being the absolute value of the
molecular reciprocal lattice vector pointing in x direction. As a consequence, the molecular
eigenenergy Em

qj+ ∝ V
H
L

L
H(qj) entering the energy conservation shows maxima in these q space

regions. This further increases the energy difference ∆qj = Em
qj+ − V

m-s
mono − εsgap and results

in a reduced energy match. The reduced in-scattering at low q values around 0 (ii) is caused
by the interlayer Förster coupling element entering the transfer rate in Eq. (7.70). As shown
in Fig. 7.4 (b), the matrix element exhibits four lobes oriented along the diagonals and is
vanishing in the center, which is reflected in the transfer rate.

As expected, the opposite behavior is observed for the out-scattering rate and Fermi factor,
cf. Fig. B.6. The out-scattering Fermi factor (lower row of Fig. B.6) reveals that the q space
regions where Pauli blocking prevents back-scattering into the substrate is decreased for
increasing detunings, causing an increase in the out-scattering rate (upper row of Fig. B.6).
However, the out-scattering rate decreases again for detunings larger than 30 meV. Here, the
energy mismatch between the renormalized molecular gap and the semiconductor band gap is
larger than the energy difference between any of the populated states in the semiconductor
electron-hole continuum [Spe18].
In summary, the in-scattering efficiency decreases for large detunings as a consequence of

the reduced population filling in the relevant momentum- and energy-allowed region. Note that
discrete contributions are visible as sharp spots in the rather continuous in- and out-scattering
rates and Fermi factors of Figs. B.5 and B.6. The appearance of these discrete points might be
due to the discrete molecular positions in the periodic hybrid structure considered here, similar
to the patterned observables in X-ray diffraction experiments probing the elastic scattering at
crystalline structures.



C Details on the derivation of the
Wannier-Frenkel excitation
transfer dynamics

C.1 Equations of motion of the exciton densities and
polarizations

The EOM are derived following the notation of Ref. [Zim03]. First, the phonon-assisted density
matrices

Tαβj,q ≡ trB
[
b̂†j,q〈X

s
β |ρ̂|Xs

α〉
]
, T βα∗j,−q ≡ trB

[
b̂j,−q〈X

s
β |ρ̂|Xs

α〉
]
, (C.1)

Tα0
j,q ≡ trB

[
b̂†j,q〈φ

s
0|ρ̂|Xs

α〉
]
, T 0α∗

j,−q ≡ trB
[
b̂j,−q〈φ

s
0|ρ̂|Xs

α〉
]

(C.2)

and the photon-assisted density matrices

G0α
l,q ≡ trB

[
ĉ†l,q〈X

s
α|ρ̂|φs0〉

]
, G0α∗

l,q ≡ trB
[
ĉl,q〈φ

s
0|ρ̂|Xs

α〉
]
, (C.3)

Gαβl,q ≡ trB
[
ĉ†l,q〈X

s
β |ρ̂|Xs

α〉
]
, G00

l,q ≡ trB
[
ĉ†l,q〈φ

s
0|ρ̂|φs0〉

]
(C.4)

are introduced. Plugging the Hamiltonian of Eq. (8.28) into the von Neumann equation
i~∂tρ̂S = [Ĥs, ρ̂S] and making use of the orthonormality 〈Xs

α|Xs
β〉 = δα,β and 〈Xs

α|φs0〉 = 0,
the EOM for the exciton densities and polarizations and the ground state population can be
derived:

∂

∂t
ρsαβ = i

~

{(
Es
α − Es

β

)
ρsαβ +

∑
ζ

∑
j,q

(
gζαj,q

(
T ζβj,q + T βζ∗j,−q

)
− gβζj,q

(
Tαζj,q + T ζα∗j,−q

))
+
∑
l,q

(
Mα
l,qG

0β
l,q −M

β∗
l,qG

0α∗
l,q

)}
,

(C.5)

∂

∂t
ρsα0 = i

~

{
Es
αρ

s
α0 +

∑
β

∑
j,q

gβαj,q
(
T β0
j,q + T 0β∗

j,−q
)

+
∑
l,q

(
Mα
l,qG

00
l,q −

∑
β

Mβ
l,qG

αβ
l,q

)}
, (C.6)

∂

∂t
ρs00 = i

~
∑
α

∑
l,q

(
−Mα

l,qG
0α
l,q +Mα∗

l,qG
0α∗
l,q

)
. (C.7)

Here it was used that the trace is invariant under cyclic permutations of bath operators.
Eqs. (C.5) and (C.6) reveal that the exciton densities and polarizations couple to mixed
expectation values involving both reservoir and system operators, introduced as phonon- and
photon-assisted density matrices in Eqs. (C.1), (C.2), (C.3), and (C.4). These in turn couple to
terms of even higher order, leading to an infinite hierarchy of assisted equations. In order to get
a closed system of equations, the hierarchy is truncated by making the following approximations:
First, assuming a weak interaction between the system and the reservoir, a factorization into
exciton and phonon operators can be applied (second order Born approximation, cf. Sec. 2.3):

trB
[
b̂†j,q b̂j′,q′〈X

s
β |ρ̂|Xs

α〉
]

= 〈b̂†j,q b̂j′,q′ |X
s
α〉〈Xs

β |〉 ≈ 〈b̂
†
j,q b̂j′,q′〉 trB

[
〈Xs

β |ρ̂|Xs
α〉
]

= 〈b̂†j,q b̂j′,q′〉ρ
s
αβ .

(C.8)
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Second, the phonons are assumed to be in thermal equilibrium with 〈b̂†j,q b̂
†
j′,q′〉 = 〈b̂j,q b̂j′,q′〉 = 0

and are described by a Bose distribution nj,q:

〈b̂†j,q b̂j′,q′〉 = δq,q′δj,j′nj,q = δq,q′δj,j′
1

exp
[
~ωj,q
kBT

]
− 1

(C.9)

The photon distribution 〈ĉ†l,q ĉl′,q′〉 is assumed to vanish since only emission into the field vacuum
is considered [Zim03]. Finally, a coupling between phonons and photons is excluded by neglecting
mixed expectation values of phonon and photon operators of the form trB

[
b̂†j,q ĉl,q′〈φs0|ρ̂|Xs

α〉
]
.

Bringing the bath operators into normal order and applying the above mentioned approxi-
mations, one obtains the following EOM for the phonon-assisted quantities:

∂

∂t
Tαβj,q = i

~

{(
Es
α − Es

β + ~ωj,q
)
Tαβj,q +

∑
ζ

(
gζαj,−q

(
nj,q + 1

)
ρsζβ − g

βζ
j,−qnj,qρ

s
αζ

)}
, (C.10)

∂

∂t
T βα∗j,−q = i

~

{(
Es
α − Es

β − ~ωj,−q
)
T βα∗j,−q +

∑
ζ

(
gζαj,−qnj,−qρ

s
ζβ − g

βζ
j,−q

(
nj,−q + 1

)
ρsαζ

)}
,

(C.11)
∂

∂t
Tα0
j,q = i

~

{(
Es
α + ~ωj,q

)
Tα0
j,q +

∑
β

gβαj,−q
(
nj,q + 1

)
ρsβ0

}
, (C.12)

∂

∂t
T 0α∗
j,−q = i

~

{(
Es
α − ~ωj,−q

)
T 0α∗
j,−q +

∑
β

gβαj,−qnj,−qρ
s
β0

}
, (C.13)

and for the photon-assisted matrices:

∂

∂t
G0α
l,q = i

~

{(
−Es

α + ~ωq
)
G0α
l,q +

∑
β

Mβ∗
l,qρ

s
βα

}
, (C.14)

∂

∂t
G0α∗
l,q = i

~

{(
Es
α − ~ωq

)
G0α∗
l,q −

∑
β

Mβ
l,qρ

s
αβ

}
, (C.15)

∂

∂t
Gαβl,q = i

~
(
Es
α − Es

β + ~ωq
)
Gαβl,q , (C.16)

∂

∂t
G00
l,q = i

~

{
~ωqG00

l,q +
∑
α

Mα∗
l,q ρ

s
0α

}
. (C.17)

Since Gαβl,q (Eq. Eq. (C.16)) is not driven and does not change the dynamics, its contribution
to the EOM for ρsα0 (Eq. (C.6)) will be ignored.
The remaining EOM for the assisted quantities are solved in Markov approximation. This

means, the limit t0 → ∞ is studied where the excitation pulse is assumed to be so far in
the past that it is not remembered by the system at time t. The initial conditions become
Tαβj,q (t0) = 0, Tα0

j,q(t0) = 0, and G0α
l,q(t0) = 0. A formal solution of the EOM of Tαβj,q is given by:

Tαβj,q (t) = i

~

∫ ∞
0

ds
∑
ζ

(
gζαj,−q

(
nj,q + 1

)
ρsζβ(t− s)− gβζj,−qnj,qρsαζ(t− s)

)
e
i
~

(
Es
α−E

s
β+~ωj,q

)
s,

(C.18)
where s = t− t′ has been substituted. In the absence of interactions of the excitons with the
surrounding phonon and photon baths, the density matrix element ρsαβ(t) whose EOM is given

in Eq. (C.5) would be proportional to e
i
~

(
Es
α−E

s
β

)
t (and ρsα0(t) ∝ e i~Es

αt). Therefore, the term
ρ̃sαβ(t − s) ≡ e−

i
~

(
Es
α−E

s
β

)
(t−s)ρsαβ(t − s) is assumed to vary slowly in time and is taken out
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of the integral in Eq. (C.18) by neglecting its memory: ρ̃sαβ(t− s) ≈ ρ̃sαβ(t). This treatment
is often referred to as “weak-memory approach” [Zim95, Med95, Thr00, Zim03, But05]. The
solution for the assisted quantity Tαβj,q (t) is now given by:

Tαβj,q (t) = i

~
∑
ζ

gζαj,−q
(
nj,q + 1

)
ρsζβ(t)

∫ ∞
0

ds e
i
~

(
Es
α−E

s
ζ+~ωj,q

)
s︸ ︷︷ ︸

=π~δ
(
Es
α−Es

ζ
+~ωj,q

)
− i

~
∑
ζ

gβζj,−qnj,qρ
s
αζ(t)

∫ ∞
0

ds e
i
~

(
Es
ζ−E

s
β+~ωj,q

)
s︸ ︷︷ ︸

=π~δ
(
Es
ζ
−Es

β
+~ωj,q

) ,

(C.19)

yielding the typical energy-conserving delta function that is closely related to Fermi’s Golden
Rule. As usual, the principle-value terms have been neglected, since they only cause a polaron
shift of the exciton energies.
The same procedure is applied to the remaining assisted quantities, yielding

Tαβj,q =iπ
∑
ζ

gζαj,−q
(
nj,q + 1

)
ρsζβδ

(
Es
α − Es

ζ + ~ωj,q
)
− iπ

∑
ζ

gβζj,−qnj,qρ
s
αζδ
(
Es
ζ − Es

β + ~ωj,q
)
,

(C.20)

T βα∗j,−q =iπ
∑
ζ

gζαj,−qnj,−qρ
s
ζβδ
(
Es
α − Es

ζ − ~ωj,−q
)

− iπ
∑
ζ

gβζj,−q
(
nj,q + 1

)
ρsαζδ

(
Es
ζ − Es

β − ~ωj,−q
)
,

(C.21)

Tα0
j,q =iπ

∑
β

gβαj,−q
(
nj,q + 1

)
ρsβ0δ

(
Es
α − Es

β + ~ωj,q
)
, (C.22)

T 0α∗
j,−q =iπ

∑
β

gβαj,−qnj,−qρ
s
β0δ
(
Es
α − Es

β − ~ωj,−q
)

(C.23)

for the phonon-assisted matrices and

G0α
l,q =iπ

∑
β

Mβ∗
l,qρ

s
βαδ

(
−Es

β + ~ωq
)
, (C.24)

G0α∗
l,q =− iπ

∑
β

Mβ
l,qρ

s
αβδ

(
Es
β − ~ωq

)
, (C.25)

G00
l,q =iπ

∑
α

Mα∗
l,q ρ

s
0αδ
(
Es
α + ~ωq

)
(C.26)

for the photon-assisted matrices. Equations (C.24), (C.25), and (C.26) are the Markovian
solutions of the respective EOM Eqs. (C.14), (C.15), and (C.17), representing the fluctuations
induced by the surrounding photon bath.
These Markovian solutions are inserted into Eqs. (C.5), (C.6), and (C.7). It is used that

ωj,q = ωj,−q and gβαj,−q = gαβ∗j,q . The system of solutions is reduced by taking only the dominant
contributions whose leading frequencies coincide and assuming non-degenerate exciton states,
such that the resonance condition Es

α = Es
η directly translates into α = η. This approximation

is of course questionable for extended systems where the energies of the disorder eigenstates
are very close. However, the approximation is consolidated by factors such as gζαj,qg

ηζ
j,−q entering

the equations. From Eq. (8.21) it is clear that this term only contributes if the center-of-mass
(COM) wave function of exciton ζ has a significant spatial overlap with both excitons α and η.
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Therefore, states α and η have to be localized in the same spatial region. This together with
the energy conservation condition Es

α = Es
η suggests that states α and η are indeed identical

due to level repulsion [Zim03].

C.1.1 Radiative and phonon scattering rates
Radiative decay rate

In this section, the radiative rate of Eq. (8.37) is further evaluated by inserting the expression
for the matrix element in exciton basis of Eq. (8.27) and carrying out the l sum over the two
modes (TE and TM) given in Eqs. (8.24) and (8.25):

rα = πd2
vc

ε0εrV

∑
q

ωq
(

1 + q2
z

q2

)∣∣φs1s(0)
∣∣2∣∣Oeh

∣∣2∣∣ψ̃s
α(q‖ = 0)

∣∣2δ(Es
α − ~ωq

)
(C.27)

with ωq = cq√
εr

and q =
√
q2
‖ + q2

z . ψ̃s
α(q‖) ≡

∫
d2R ψs

α(R)eiq‖·R denotes the Fourier transform
of the COM wave function. The argument q‖ = 0 reflects the fact that the exciton is well
localized [Zim03]. φs1s(0) is the relative wave function with the electron and hole at the same
position and Oeh denotes the confinement overlap, cf. Sec. 8.2.3. The sum over q is converted
into a 3D integral over the photon momentum q = (q‖, qz):

∑
q → V

(2π)3

∫
d2q‖

∫
dqz. The delta

function for energy conservation is used to eliminate the sum over qz by using the property of
the delta function composed with a smooth function (cf. Eq. (B.55)), yielding

δ
(
Es
α − ~ωq

)
=
∑
γ=±1

K0
√
εr

~c
√
K2

0 − q2
‖

θ
(
K2

0 − q2
‖
)
δ
(
qz − γ

√
K2

0 − q2
‖

)
. (C.28)

Here, the light cone K0 ≡ Es
α

√
εr

~c was introduced. It is almost constant. The Heaviside step
function ensures that the solutions are real and the integration gives only a contribution close
to the center of the Brillouin zone. With that, the radiative rate reads

rα = d2
vc

2π2ε0εr~
∣∣φs1s(0)

∣∣2∣∣Oeh
∣∣2∣∣ψ̃s

α(0)
∣∣2 ∫ d2q‖ θ

(
K2

0 − q2
‖
) K2

0 −
q2
‖
2√

K2
0 − q2

‖

(C.29)

The integration can be performed analytically by transforming q‖ into polar coordinates,
yielding:

rα = 2d2
vc

3πε0εr~
∣∣φs1s(0)

∣∣2∣∣Oeh
∣∣2∣∣ψ̃s

α(0)
∣∣2K3

0 . (C.30)

Phonon scattering rate

The phonon scattering rate of Eq. (8.38) is evaluated in a similar manner by inserting the
expression of the phonon coupling element in the basis of disorder eigenstates, Eq. (8.21). The
sum over the 3D phonon wave vectors is converted into an integral and the qz integration is
again eliminated by evaluating the energy conserving delta function:

γsβ←α =
∑
j

1
8π2ρsu2

j~

∫
d2q‖

∑
γ=±1

Q2
αβ,j√

Q2
αβ,j − q2

‖

{(
nj,q + 1

)
θ
(
Es
α − Es

β

)
+ nj,qθ

(
Es
β − Es

α

)}
×
∣∣∣DcKe

(
γ
√
Q2
αβ,j − q2

‖
)
χ
(
mh
M q‖

)
−DvKh

(
γ
√
Q2
αβ,j − q2

‖
)
χ
(
me
M q‖

)∣∣∣2
×
∫

d2R ψs
β
∗(R)eiq‖·Rψs

α(R)θ
(
Q2
αβ,j − q2

‖
)

(C.31)
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with Qαβ,j ≡
Es
α−E

s
β

~uj . The Heaviside step functions ensure that the expressions under the
square roots are non-negative and account for the fact that the phonon dispersion ~ωj is a
positive quantity.

C.2 Calculation of the semiconductor–molecule transition
amplitude

The starting point is the matrix element of the Liouville propagator in second-order perturbation
expansion of Eq. (8.91):

tρm
ββ
←ρsαα(t, t0) = tr

[
|Xm

β 〉〈Xm
β |
{
− 1
~2

∫ t

t0

dτ
∫ τ

t0

dτ ′

× Ugdiag(t, τ)Lgoff-diag(τ)Ugdiag(τ, τ ′)Lgoff-diag(τ ′)Ugdiag(τ ′, t0)|Xs
α〉〈Xs

α|ρ̂
g
B︸ ︷︷ ︸

≡ 1︸ ︷︷ ︸
≡ 2︸ ︷︷ ︸

≡ 3

}]

(C.32)

Term 1 is evaluated first. The time-ordered exponential is replaced by an ordinary exponential
function, since Ĥg

diag is time-independent in the Schrödinger picture:

1 =Ugdiag(τ ′, t0)|Xs
α〉〈Xs

α|ρ̂
g
B = e−

i
~ Ĥ

g
diag(τ ′−t0)|Xs

α〉〈Xs
α|ρ̂

g
Be

+ i
~ Ĥ

g
diag(τ ′−t0)

=Ug0,ph(τ ′, t0)|Xs
α〉〈Xs

α|ρ̂
g
BU

g†
0,ph(τ ′, t0)

(C.33)

with
Ug0,ph(τ ′, t0) ≡ e−

i
~

∑
j
~ωj b̂g†j b̂

g
j (τ ′−t0)

. (C.34)
The second term includes an interaction with the Förster Hamiltonian:
2 =Ugdiag(τ, τ ′)Lgoff-diagU

g
diag(τ ′, t0)|Xs

α〉〈Xs
α|ρ̂

g
B

=e−
i
~ Ĥ

g
diag(τ−τ ′)(Ĥoff-diag 1 − 1 Ĥoff-diag

)
e+ i

~ Ĥ
g
diag(τ−τ ′)

=
∑
ζ

(
V m-s
F (Xm

ζ , X
s
α)e− i

~E
m-s
el (Xm

ζ ,X
s
α)(τ−τ ′)Ug,ζph (τ, τ ′)Ug0,ph(τ ′, t0)|Xm

ζ 〉〈Xs
α|ρ̂

g
BU

g†
0,ph(τ, t0)

− V m-s∗
F (Xm

ζ , X
s
α)e+ i

~E
m-s
el (Xm

ζ ,X
s
α)(τ−τ ′)Ug0,ph(τ, t0)|Xs

α〉〈Xm
ζ |ρ̂

g
BU

g†
0,ph(τ ′, t0)Ug,ζ†ph (τ, τ ′)

)
(C.35)

with
Em-s
el (Xm

ζ , X
s
α) ≡ Em

ζ − Es
α,3D + V m-s

H-L (Xm
ζ )− V m-s

v-c (Xs
α) (C.36)

and
Ug,ζph (τ, τ ′) ≡ e−

i
~

∑
j
~
(
ωj b̂

g†
j b̂

g
j+gζζj b̂gj+gζζ∗j b̂g†j

)
(τ−τ ′)

. (C.37)
The Feynman disentanglement theorem [Fey51] (cf. Sec. 2.5) is applied to Eq. (C.37):

Ug,ζ†ph (τ, τ ′) = Ug†0,ph(τ, τ ′) exp←

[
+ i

~

∫ τ

τ ′
dτ ′′ Ug†0,ph(τ ′, τ ′′)

∑
j

~
(
gζζj b̂

g
j + gζζ∗j b̂g†j

)
Ug†0,ph(τ ′′, τ ′)

]
.

(C.38)
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The integrand is further evaluated:

Ug†0,ph(τ ′, τ ′′)
∑
j

~
(
gζζj b̂

g
j + gζζ∗j b̂g†j

)
Ug†0,ph(τ ′′, τ ′)

=e+ i
~

∑
j′

~ωj′ b̂
g†
j′ b̂

g

j′ (τ
′−τ ′′)∑

j

~
(
gζζj b̂

g
j + gζζ∗j b̂g†j

)
e−

i
~

∑
j′′

~ωj′′ b̂
g†
j′′ b̂

g

j′′ (τ
′−τ ′′)

(C.39)

=
∑
j

~gζζj

{
b̂gj + i(τ ′ − τ ′′)

[∑
j′

ωj′ b̂
g†
j′ b̂

g
j′ , b̂

g
j

]
−︸ ︷︷ ︸

=−ωj b̂gj

− (τ ′ − τ ′′)2

2

[∑
j′

ωj′ b̂
g†
j′ b̂

g
j′ ,

[∑
j′′

ωj′′ b̂
g†
j′′ b̂

g
j′′ , b̂

g
j

]
−

]
−︸ ︷︷ ︸

=ω2
j b̂
g
j

+ · · ·
}

+
∑
j

~gζζ∗j

{
b̂g†j + i(τ ′ − τ ′′)

[∑
j′

ωj′ b̂
g†
j′ b̂

g
j′ , b̂

g†
j

]
−︸ ︷︷ ︸

=ωj b̂g†j

− (τ ′ − τ ′′)2

2

[∑
j′

ωj′ b̂
g†
j′ b̂

g
j′ ,

[∑
j′′

ωj′′ b̂
g†
j′′ b̂

g
j′′ , b̂

g†
j

]
−

]
−︸ ︷︷ ︸

=ω2
j b̂
g†
j

− · · ·
}

(C.40)

=
∑
j

~gζζj b̂
g
j

{
1− iωj(τ ′ − τ ′′)−

1
2ω

2
j (τ ′ − τ ′′)2 + · · ·

}
+
∑
j

~gζζ∗j b̂g†j

{
1 + iωj(τ ′ − τ ′′)−

1
2ω

2
j (τ ′ − τ ′′)2 − · · ·

} (C.41)

=
∑
j

~
(
gζζj b̂

g
je−iωj(τ

′−τ ′′) + gζζ∗j b̂g†j e+iωj(τ ′−τ ′′)). (C.42)

This way, Eq. (C.38) is rewritten into:

Ug,ζ†ph (τ, τ ′) = Ug†0,ph(τ, τ ′)Ug,ζ†I,ph (τ, τ ′) (C.43)

with

Ug,ζ†I,ph (τ, τ ′) ≡ exp←
[
+ i

~

∫ τ

τ ′
dτ ′′

∑
j

~
(
gζζj b̂

g
je−iωj(τ

′−τ ′′) + gζζ∗j b̂g†j e+iωj(τ ′−τ ′′))]. (C.44)

In the third term, the off-diagonal Liouvillian acts on the system a second time:

3 =Ugdiag(t, τ)Lgoff-diag(τ)Ugdiag(τ, τ ′)Lgoff-diag(τ ′)Ugdiag(τ ′, t0)|Xs
α〉〈Xs

α|ρ̂
g
B (C.45)
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=
∑
ζ,η

V m-s∗
F (Xm

ζ , X
s
η)V m-s

F (Xm
ζ , X

s
α)e− i

~E
s
el(X

s
η,X

s
α)(t−τ)e− i

~E
m-s
el (Xm

ζ ,X
s
α)(τ−τ ′)

× Ug0,ph(t, τ)Ug,ζI,ph(τ, τ ′)Ug0,ph(τ, t0)|Xs
η〉〈Xs

α|ρ̂
g
BU

g†
0,ph(t, t0)

−
∑
ζ,η

V m-s
F (Xm

η , X
s
α)V m-s∗

F (Xm
ζ , X

s
α)e− i

~E
m
el (X

m
η ,X

m
ζ )(t−τ)e+ i

~E
m-s
el (Xm

ζ ,X
s
α)(τ−τ ′)

× Ug,ηph (t, τ)Ug0,ph(τ, t0)|Xm
η 〉〈Xm

ζ |ρ̂
g
BU

g†
0,ph(τ, t0)Ug,ζ†I,ph (τ, τ ′)Ug,ζ†ph (t, τ)

+
∑
ζ,η
ζ 6=η

V m-s
F (Xm

ζ , X
s
α)e− i

~E
m-s
el (Xm

η ,X
s
α)(t−τ)e− i

~E
m-s
el (Xm

ζ ,X
s
α)(τ−τ ′)Ug,ηph (t, τ)

×
∑
j

~
(
gζηj b̂

g
j + gηζ∗j b̂g†j

)
Ug,ζI,ph(τ, τ ′)Ug0,ph(τ, t0)|Xm

η 〉〈Xs
α|ρ̂

g
BU

g†
0,ph(t, t0)

+ h.c.

(C.46)

with

Em
el (Xm

η , X
m
ζ ) ≡Em

η − Em
ζ + V m-s

H-L (Xm
η )− V m-s

H-L (Xm
ζ ), (C.47)

Es
el(Xs

η, X
s
α) ≡Es

η,3D − Es
α,3D + V m-s

v-c (Xs
η)− V m-s

v-c (Xs
α). (C.48)

Finally, in order to derive the transition amplitude of Eq. (8.91), the trace is evaluated using its
invariance under cyclic permutations. In thermal equilibrium the mean number of vibrational
quanta in mode j with frequency ωj is described by a Bose distribution:

n̄(ωj) = 〈b̂g†j b̂
g
j 〉B = 1

eβ~ωj − 1 (C.49)

with β = 1/(kBT ), and the density operator is given as harmonic ensemble of the thermal bath
[Muk95]:

ρ̂gB =
∑
j,nj

ρnjnj |nj〉〈nj | with ρnjnj = n̄(ωj)nj
(n̄(ωj) + 1)nj+1 . (C.50)

Here, Fock number states have been introduced for the phonon modes. It follows that

Ug0,ph(τ, t0)ρ̂gBU
g†
0,ph(τ, t0) = ρ̂gB. (C.51)

Transforming the integration variable of Eq. (C.44) according to τ ′′ → τ ′ − τ ′′ leads to the
expressions of Eqs. (8.92) and (8.93).

C.3 Calculation of the intermolecular transition amplitude
In this section, the transition amplitude between different molecular densities ρmαα and ρmββ
(with α 6= β) is calculated. Again, the first order in the perturbative expansion of the Liouville
propagator vanishes and the second order is evaluated:

tρm
ββ
←ρmαα(t, t0) ≈ tr

[
|Xm

β 〉〈Xm
β |
{
− 1
~2

∫ t

t0

dτ
∫ τ

t0

dτ ′ Uαdiag(t, τ)Lαoff-diag(τ)Uαdiag(τ, τ ′)

× Lαoff-diag(τ ′)Uαdiag(τ ′, t0)|Xm
α 〉〈Xm

α |ρ̂αB
}] (C.52)
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= 1
~2

∫ t

t0

dτ
∫ τ

t0

dτ ′
{
e+ i

~E
m
el (X

m
β ,X

m
α )(τ−τ ′) trB

[
Uα0,ph(τ, τ ′)

∑
j

~
(
gβαj b̂αj + gαβ∗j b̂α†j

)
× Uα,β†ph (τ, τ ′)

∑
j′

~
(
gαβj′ b̂

α
j′ + gβα∗j′ b̂α†j′

)
ρ̂αB

]
+ e− i

~E
m
el (X

m
β ,X

m
α )(τ−τ ′) trB

[∑
j′

~
(
gβαj′ b̂

α
j′ + gαβ∗j′ b̂α†j′

)
Uα,βph (τ, τ ′)

×
∑
j

~
(
gαβj b̂αj + gβα∗j b̂α†j

)
Uα†0,ph(τ, τ ′)ρ̂αB

]}
,

(C.53)

where Em
el (Xm

η , X
m
ζ ) is defined in Eq. (C.47) and

Uα0,ph(τ, τ ′) ≡e−
i
~

∑
j
~ωj b̂α†j b̂αj (τ−τ ′)

, (C.54)

Uα,βph (τ, τ ′) ≡e−
i
~

∑
j
~
(
ωj b̂

α†
j b̂αj +(gββj −g

αα
j )b̂αj +(gββ∗j −gαα∗j )b̂α†j

)
(τ−τ ′) (C.55)

with Uα,αph (τ, τ ′) = Uα0,ph(τ, τ ′). Using the Feynman disentanglement theorem [Fey51] (cf.
Sec. 2.5), the propagator of (C.55) can be written as:

Uα,β†ph (τ, τ ′) = Uα0,ph(τ, τ ′)Uα,β†I,ph (τ, τ ′) (C.56)

with

Uα,β†I,ph (τ, τ ′) ≡ exp←
[
+ i

~

∫ τ

τ ′
dτ ′′

∑
j

~
(
(gββj − gααj )b̂αj e−iωj(τ

′−τ ′′)

+ (gββ∗j − gαα∗j )b̂α†j e+iωj(τ ′−τ ′′))]. (C.57)

Moreover, it is used that

Uα0,ph(τ, τ ′)
∑
j

~
(
gβαj b̂αj + gαβ∗j b̂α†j

)
Uα†0,ph(τ, τ ′) =

∑
j

~
(
gβαj b̂αj e−iωj(τ

′−τ) + gαβ∗j b̂α†j e+iωj(τ ′−τ)).
(C.58)

Transforming the integration variable in Eq. (C.57) finally yields Eq. (8.99) in the main part
of this thesis.
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